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Chapter 1

Introduction

The present thesis is devoted to the study of the Lp-theory of a class of quasilinear
parabolic problems with nonlinear boundary conditions. The main objective here is to
prove existence and uniqueness of local (in time) strong solutions of these problems. To
achieve this we establish optimal regularity estimates of type Lp for an associated linear
problem which allow us to reformulate the original problem as a fixed point equation
in the desired regularity class, and we show that under appropriate assumptions the
contraction mapping principle is applicable, provided the time-interval is sufficiently
small.

We describe now the class of equations to be studied. Let Ω be a bounded domain
in Rn with C2-smooth boundary Γ which decomposes according to Γ = ΓD ∪ ΓN with
dist(ΓD,ΓN ) > 0. For the unknown scalar function u : R+ × Ω → R, we consider the
subsequent problem:

∂tu+ dk ∗ (A(u) : ∇2u) = F (u) + dk ∗G(u), t ≥ 0, x ∈ Ω
BD(u) = 0, t ≥ 0, x ∈ ΓD
BN (u) = 0, t ≥ 0, x ∈ ΓN
u|t=0 = u0, x ∈ Ω.

(1.1)

Here, (dk∗w)(t, x) =
∫ t
0 dk(τ)w(t−τ, x), t ≥ 0, x ∈ Ω, ∂tumeans the partial derivative of

u w.r.t. t, ∇u = ∇xu is the gradient of u w.r.t. the spatial variables, ∇2u denotes its Hes-
sian matrix, that is (∇2u)ij = ∂xi∂xju, i, j ∈ {1, . . . , n}, and B : C =

∑n
i=1, j=1BijCij

stands for the double scalar product of two matrices B, C ∈ Rn×n. Furthermore, we
have the substitution operators

A(u)(t, x) = −a(t, x, u(t, x),∇u(t, x)), t ≥ 0, x ∈ Ω,
F (u)(t, x) = f(t, x, u(t, x),∇u(t, x)), t ≥ 0, x ∈ Ω,
G(u)(t, x) = g(t, x, u(t, x),∇u(t, x)), t ≥ 0, x ∈ Ω,

BD(u)(t, x) = bD(t, x, u(t, x)), t ≥ 0, x ∈ ΓD,

BN (u)(t, x) = bN (t, x, u(t, x),∇u(t, x)), t ≥ 0, x ∈ ΓN ,

where a is Rn×n-valued, and f, g, bD, bN are all scalar functions. The scalar-valued
kernel k is of bounded variation on each compact interval [0, T ] with k(0) = 0, and
belongs to a certain kernel class with parameter α ∈ [0, 1) which contains, roughly
speaking, all ’regular’ kernels that behave like tα for t (> 0) near zero. Note that this
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formulation includes the special case k(t) = 1, t > 0, in which (1.1) amounts to the
quasilinear initial-boundary value problem

∂tu+A(u) : ∇2u = H(u), t ≥ 0, x ∈ Ω
BD(u) = 0, t ≥ 0, x ∈ ΓD
BN (u) = 0, t ≥ 0, x ∈ ΓN
u|t=0 = u0, x ∈ Ω,

(1.2)

where H(u) = F (u) + G(u). Observe further that the case k(t) = t, t ≥ 0, is not
admissible; in our setting, this kernel would lead to a hyperbolic problem.

Although there is a wide literature on problems of the form (1.1), not much seems to
be known towards an Lp-theory in the integrodifferential case with nonlinear boundary
conditions, even in the linear situation with inhomogeneous Dirichlet and/or Neumann
boundary conditions. Before presenting the main result concerning (1.1) and comment-
ing on available results in the literature we give some motivation for the study of these
problems.

Equations of the form (1.1) appear in a variety of applied problems. They typically
arise in mathematical physics by some constitutive laws pertaining to materials with
memory when combined with the usual conservation laws such as balance of energy or
balance of momentum. To illustrate this point, we give an example from the theory of
heat conduction with memory. For details concerning the underlying physical principles,
we refer to Nohel [59]. See also Clément and Nohel [23], Clément and Prüss [25], Lunardi
[54], Nunziato [60], and Prüss [63] for work on this subject.

Example: (Nonlinear heat flow in a material with memory)
Consider the heat conduction in a 3-dimensional rigid body which is represented by a
bounded domain Ω ⊂ R3 with boundary ∂Ω of class C1. Let ε(t, x) denote the density of
internal energy at time t ∈ R and position x ∈ Ω, q(t, x) the heat flux vector field, u(t, x)
the temperature, and h(t, x) the external heat supply. The law of balance of energy then
reads as

∂tε(t, x) + div q(t, x) = h(t, x), t ∈ R, x ∈ Ω. (1.3)

Equation (1.3) has to be supplemented by boundary conditions; these are basically either
prescribed temperature or prescribed heat flux through the boundary, that is to say

u(t, x) = ub(t, x), t ∈ R, x ∈ Γb, (1.4)
−q(t, x) · n(x) = qf (t, x), t ∈ R, x ∈ Γf , (1.5)

where Γb and Γf are assumed to be disjoint closed subsets of ∂Ω with Γb ∪ Γf = ∂Ω,
and n(x) denotes the outer normal of Ω at x ∈ ∂Ω. In order to complete the system we
have to add constitutive equations for the internal energy and the heat flux reflecting the
properties of the material the body is made of. In what is to follow we shall consider an
isotropic and homogeneous material with memory. Following [23], [39], [60] and many
other authors, we will use the laws

ε(t, x) =
∫ ∞

0
dm(τ)u(t− τ, x), t ∈ R, x ∈ Ω, (1.6)

q(t, x) = −
∫ ∞

0
dc(τ)σ(∇u(t− τ, x)), t ∈ R, x ∈ Ω, (1.7)

wherem, c ∈ BVloc(R+), and σ ∈ C1(R3,R3) are given functions. Note that the heat flux
here depends nonlinearly on the history of the gradient of u. It is physically reasonable
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to assume that m, c are bounded functions of the form m(t) = m0 + (1 ∗m1)(t), t > 0,
m(0) = 0, and c(t) = c0 + (1 ∗ c1)(t), t > 0, c(0) = 0, respectively, with m0 > 0, c0 ≥ 0,
and m1, c1 ∈ L1(R+). Here and in the sequel, f1 ∗ f2 denotes the convolution of two
functions defined by (f1 ∗ f2)(t) =

∫ t
0 f1(t− τ)f2(τ) dτ, t ≥ 0.

Without loss of generality we may assume that the material is at zero temperature
up to time t = 0, and is then exposed to a sudden change of temperature u(0, x) = u0(x),
x ∈ Ω; otherwise one has to add a known forcing term in both (1.8) and (1.10) below
that incorporates the history of the temperature up to time t = 0. Then (1.3)-(1.7) yield

∂t(dm ∗ u)− dc ∗ (divσ(∇u)) = h, t > 0, x ∈ Ω, (1.8)
u = ub, t > 0, x ∈ Γb, (1.9)

dc ∗ σ(∇u) = qf , t > 0, x ∈ Γf , (1.10)
u|t=0 = u0, x ∈ Ω. (1.11)

We show now that (1.8)-(1.11) can be transformed to a problem of the form (1.1),
see also [23]. Note first that without restriction of generality we may assume m0 = 1.
By integrating (1.8) with respect to time we obtain

u+m1 ∗ u− c ∗ (divσ(∇u)) = 1 ∗ h+ u0, t ≥ 0, x ∈ Ω. (1.12)

Define the resolvent kernel r ∈ L1, loc(R+) associated with m1 as the unique solution of
the convolution equation

r +m1 ∗ r = m1, t ≥ 0.

Application of the operator (I − r∗) to (1.12) then results in

u− (c− r ∗ c) ∗ (divσ(∇u)) = 1 ∗ (h− r ∗ h− ru0) + u0. (1.13)

Using (formally) the chain rule yields

divσ(∇u(t, x)) = Dσ(∇u(t, x)) : ∇2u(t, x), t ≥ 0, x ∈ Ω,

Dσ denoting the Jacobian of σ. Hence, with k = c − r ∗ c, f = h − r ∗ h − ru0, and
a = Dσ, it follows by differentiation of (1.13) that

∂tu− dk ∗ (a(∇u) : ∇2u) = f, t ≥ 0, x ∈ Ω,

which is a special form of the integrodifferential equation in (1.1). Lastly, if c belongs to
a certain class of ’nice’ kernels, one can invert the convolution with the measure dc and
thus rewrite (1.10) as a nonlinear boundary condition of non-memory type as in (1.1).
�

Another important application is the theory of viscoelasticity; here problems of the form
(1.1) naturally occur when balance of momentum is combined with nonlinear stress-strain
relations of memory type. General treatises on this field are, for example, Antman [3],
Christensen [12], and Renardy, Hrusa, and Nohel [71], but we also refer the reader to
Chow [11], Engler [33], and Prüss [63]. A short account of the basic equations in the
linear vector-valued case is given in Chapter 5.

Having motivated the investigation of (1.1) by examples from mathematical physics,
we describe next the main result to (1.1), which is stated in Theorem 6.1.2. For T > 0
and 1 < p <∞, set J = [0, T ] and define the space ZT by

ZT = H1+α
p (J ;Lp(Ω)) ∩ Lp(J ;H2

p (Ω)).
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Here Hs
p(J ;Lp(Ω)) (s > 0) means the vector-valued Bessel potential space of functions

on J taking values in the Lebesgue space Lp(Ω). We assume n+ 2/(1 + α) < p <∞, a
condition which ensures that the embedding ZT ↪→ C(J ;C1(Ω)) is valid. Theorem 6.1.2
now asserts that under suitable assumptions on the nonlinearities and the initial data,
problem (1.1) admits a unique local in time strong solution in the following sense: there
exists T > 0 such that there is one and only one function u ∈ ZT that satisfies (1.1),
the integrodifferential equation almost everywhere on J × Ω, the initial and boundary
conditions being fulfilled pointwise on the entire sets considered.

As to literature, there has been a substantial amount of work on nonlinear Volterra
and integrodifferential equations. We can only mention some of the main results here.
Using maximal Cα-regularity for linear parabolic differential equations, in 1985 Lunardi
and Sinestrari [56] were able to prove local existence and uniqueness in spaces of Hölder
continuity for a large class of fully nonlinear integrodifferential equations with a homo-
geneous linear boundary condition. However, to make their approach work, they assume
(in our terminology) that the kernel k has a jump at t = 0, a property which is not
required in this thesis. Concerning Cα-theory for Volterra and integrodifferential equa-
tions, we further refer the reader to Da Prato, Iannelli, Sinestrari [28], Lunardi [53],
Lunardi and Sinestrari [55], Prüss [63]; for the case of fractional differential equations
see also Clément, Gripenberg, Londen [17], [18], [19], and the survey article Clément,
Londen [21]. The standard reference for parabolic partial differential equations in this
context is Lunardi [52].

In the Lp-setting, quasilinear integrodifferential equations were first studied by Prüss
[68]. He also employs the method of maximal regularity, now in spaces of integrable
functions, to obtain existence and uniqueness of strong solutions of the scalar problem ∂tu(t, x) =

∫ t
0 dk(τ){div g(x,∇u(t− τ, x)) + f(t− τ, x)}, t ∈ J, x ∈ Ω

u(t, x) = 0, t ∈ J, x ∈ ∂Ω
u(0, x) = u0(x), x ∈ Ω

(1.14)

in the class H1
p (J ;Lq(Ω)) ∩ Lp(J ;H2

q (Ω)) provided that either T or the data u0, f are
sufficiently small. In the latter case he further shows existence and uniqueness for the
corresponding problem on the line. The kernel k ∈ BVloc(R+) involved is assumed to be
1-regular in the sense of [68, p. 405] and to fulfill an angle condition of the form

|arg d̂k(λ)| ≤ θ <
π

2
, Reλ > 0, (1.15)

where the hat indicates Laplace transform. So, e.g., the important case k(t) = tα, t ≥ 0,
with α ∈ (0, 1) is covered. The author’s approach to maximal regularity basically relies
on the inversion of the convolution operator in Lp-spaces (see Section 2.8), on the Dore-
Venni theorem about the sum of two operators with bounded imaginary powers (see
Section 2.3), and on results of Prüss and Sohr [70] about bounded imaginary powers of
second order elliptic operators. We point out that these tools will also play an important
role in the present work.

For Ω = (0, 1), g not depending on x, and with k = 1 ∗ k1, that is dk ∗ w = k1 ∗ w,
global existence of strong solutions of (1.14) (J = R+) with u ∈ L2, loc(R+;H2

2 ([0, 1]))
was established by Gripenberg under different assumptions on g and the kernel k1; in [37]
he considers kernels k1 satisfying (1.15), while in [38] k1 is assumed to be nonnegative,
nonincreasing, convex, and more singular at 0 than t−1/2. Engler [34] extended the
results of the latter work by treating also higher space dimensions and by allowing for a
larger class of nonlinear functions g.
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We give now an overview of the contents of the thesis and present the principal
ideas in greater detail. The text is divided into three main parts, devoted respectively
to preliminaries (Chapter 2), linear theory (Chapters 3, 4, 5), and nonlinear problems
(Chapter 6).

Chapter 2 collects the basic tools needed for the investigation of the linear equations
to be studied. After fixing some notations, in Section 2.2 we review important classes of
sectorial operators, among others, operators which admit a bounded H∞-calculus, op-
erators with bounded imaginary powers, and R-sectorial operators. We further discuss
some properties of the fractional powers of such operators in connection with real and
complex interpolation, and prove that the power Aα, α ∈ R, of an R-sectorial operator
A with R-angle φRA is R-sectorial, too, as long as the inequality |α|φRA < π holds (Propo-
sition 2.2.1); the latter result seems to be missing in the literature. In Section 2.3, which
is devoted to sums of closed linear operators, we state a variant of the Dore-Venni theo-
rem. Section 2.4 is concerned with the joint H∞-calculus for pairs of sectorial operators.
In particular, we look at the calculus for the pair (∂t,−∆x) in the space Lp(R+ × Rn),
which proves extremely useful in establishing optimal regularity results in Chapter 5.
Section 2.5 deals with operator-valued Fourier multipliers. The central result here is the
Mikhlin multiplier theorem in the operator-valued version, which was proven recently by
Weis [80]. In Section 2.6 we introduce the class of K-kernels consisting of all 1-regular,
sectorial kernels k whose Laplace transform k̂(λ) behaves like λ−α as λ→ 0,∞ for some
α ≥ 0; an example is given by k(t) = tα−1e−βt, t ≥ 0, with α > 0 and β ≥ 0. Kernels of
that type have already been studied by Prüss [63] in the context of Volterra operators
in Lp, which is the subject of Section 2.8. Before, in Section 2.7 we give a short account
of the abstract Volterra equation

u(t) +
∫ t

0
a(t− s)Au(s) ds = f(t), t ≥ 0, (1.16)

where a ∈ L1, loc(R+) is a scalar kernel, and A is a closed linear operator in a Banach
space X. We explain the notion of parabolicity of (1.16), give the definition of resolvents,
and recall the variation of constants formula. Section 2.8 is devoted to convolution
operators in Lp associated to a K-kernel. After stating two fundamental theorems from
Prüss [63] on the inversion of such operators in Lp(R;X) with 1 < p <∞ and X ∈ HT ,
we consider restrictions of them to Lp(J ;X), where J = [0, T ] or R+. The main facts
about these operators are summarized in Corollary 2.8.1. It asserts that for every K-
kernel k with angle θk < π there is a unique sectorial operator B in Lp(J ;X) inverting
the convolution (k∗), and that this operator - assuming in addition k ∈ L1(R+) in case
J = R+ - is invertible and satisfies B−1w = k ∗ w for all w ∈ Lp(J ;X); it further
says that B ∈ BIP(Lp(J ;X)) and that its domain D(B) equals the space 0H

α
p (J ;X),

where α ≥ 0 refers to the order of k in the sense describe above. So, we have precise
information about the mapping properties of the convolution operators under study and
see that their inverse operators are accessible to the Dore-Venni theorem. In Section
2.8 we further recognize the fractional derivative (d/dt)α of order α ∈ (0, 1) to be the
inverse convolution operator associated with the standard kernel tα−1/Γ(α). Besides, we
introduce equivalent norms for the spaces Hα

p (J ;X) and consider operators of the form
(I −k∗), which appear in connection with transformations of Volterra equations, cf. the
above example on heat conduction.

The main purpose of Chapter 3 is to establish maximal regularity results of type
Lp for equation (1.16) as well as for a class of abstract linear Volterra equations on an
infinite strip J×R+ with inhomogeneous boundary condition of Dirichlet resp. (abstract)

7



Robin type. Unique existence of solutions of these problems in certain spaces of optimal
regularity is characterized in terms of regularity and compatibility conditions on the
given data. The main result concerning (1.16), Theorem 3.1.4, is proven in Section 3.1.
To describe it for the case J = [0, T ], let 1 < p <∞, κ ∈ [0, 1/p), X be a Banach space
of class HT , A an R-sectorial operator in X with R-angle φRA, and a a K-kernel (with
angle θa) of order α ∈ (0, 2) such that α + κ /∈ {1/p, 1 + 1/p}. Let further DA denote
the domain of A equipped with the graph norm of A. Assume the parabolicity condition
θa+φRA < π. Then (1.16) has a unique solution u in the space Hα+κ

p (J ;X)∩Hκ
p (J ;DA)

if and only if the function f satisfies the subsequent conditions:

(i) f ∈ Hα+κ
p (J ;X);

(ii) f(0) ∈ DA(1 + κ
α −

1
pα , p), if α+ κ > 1/p;

(iii) ḟ(0) ∈ DA(1 + κ
α −

1
α −

1
pα , p), if α+ κ > 1 + 1/p.

Here, DA(γ, p) stands for the real interpolation space (X,DA)γ, p. In the special case
a ≡ 1 (i.e. α = 1) and κ = 0, by putting g = ḟ and u0 = f(0), we recover the main
theorem on maximal Lp-regularity for the abstract evolution equation

u̇+Au = g, t ∈ J, u(0) = u0, (1.17)

stating that in the above setting, unique solvability of (1.17) in the space H1
p (J ;X) ∩

Lp(J ;DA) is equivalent to the conditions g ∈ Lp(J ;X) and u0 ∈ DA(1 − 1/p, p). We
remark that the motivation for considering also the case κ > 0 comes from the problem
studied in Chapter 5 which involves two independent kernels.

The proof of Theorem 3.1.4 essentially relies on techniques developed in Prüss [64]
using the representation of the resolvent S for (1.16) via Laplace transform, as well as
on the Mikhlin theorem in the operator-valued version. With the aid of the latter result
and an approximation argument, we succeed in showing Lp(R;X)-boundedness of the
operator corresponding to the symbol M(ρ) = A((â(iρ))−1 + A)−1, ρ ∈ R \ {0}; this
operator is closely related to the variation of parameters formula.

After proving a rather general embedding theorem in Section 3.2, we continue the
study of (1.16), now focusing on the case κ ∈ (1/p, 1+1/p), and establish a result corre-
sponding to Theorem 3.1.4. This is done in Section 3.3. In Section 3.4 we collect some
known results on maximal Lp-regularity of abstract problems on the halfline. Among
others, we consider two abstract second order equations that play a crucial role in the
treatment of problems on a strip which are respectively of the form{
u− a ∗ ∂2

yu+ a ∗Au = f, t ∈ J, y > 0,
u(t, 0) = φ(t), t ∈ J,

{
u− a ∗ ∂2

yu+ a ∗Au = f, t ∈ J, y > 0,
−∂yu(t, 0) +Du(t, 0) = φ(t), t ∈ J,

(1.18)
where a is a K-kernel of order α ∈ (0, 2), and A and D are sectorial resp. pseudo-sectorial
operators in a Banach space X with DA1/2 ↪→ DD. The investigation of these problems
is pursued in Section 3.5. We prove results characterizing unique solvability of (1.18) in
the regularity class Hα

p (J ;Lp(R+;X))∩Lp(J ;H2
p (R+;X))∩Lp(J ;Lp(R+;DA)) in terms

of regularity and compatibility conditions on the data. Besides the results concerning
(1.16) and that from Section 3.4 we make here repeatedly use of the inversion of the
convolution, the Dore-Venni theorem, as well as properties of real interpolation.

Chapter 4 is devoted to the study of linear scalar problems of second order in the
space Lp(J×Ω), J = [0, T ] and Ω a domain in Rn, with general inhomogeneous boundary
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conditions of order ≤ 1. Sections 4.1 and 4.2 deal with the full resp. half space case.
The theory from Chapter 3 is applied to find necessary and sufficient conditions on the
data that characterize maximal Lp-regularity of the solutions. The strategy is to look
first at problems with constant coefficients and differential operators consisting only of
their principle parts, and then to use pointwise multiplication properties of the function
spaces involved together with perturbation arguments to extend the results to the general
case. In Section 4.3 we study the case of an arbitrary domain Ω ⊂ Rn with compact
C2-smooth boundary Γ decomposing into two disjoint closed parts ΓD and ΓN on which
inhomogeneous boundary conditions of zeroth resp. first order have to be satisfied. The
basic idea here is to employ the localization method to reduce the problem to related
problems on Rn and Rn

+. Proceeding this way we obtain a characterization of unique
solvability of the problem v + k ∗ A(·, x,Dx)v = f, t ∈ J, x ∈ Ω,

v = g, t ∈ J, x ∈ ΓD,
B(t, x,Dx)v = h, t ∈ J, x ∈ ΓN ,

(1.19)

with
A(t, x,Dx) = −a(t, x) : ∇2

x + a1(t, x) · ∇x + a0(t, x), t ∈ J, x ∈ Ω,

B(t, x,Dx) = b(t, x) · ∇x + b0(t, x), t ∈ J, x ∈ ΓN ,

in the regularity class Hα
p (J ;Lp(Ω)) ∩ Lp(J ;H2

p (Ω)). Here as before, k is a K-kernel
of order α ∈ (0, 2). As to the regularity of the top order coefficients, we only assume
a ∈ C(J × Ω,Rn×n) and that a has a limit as |x| → ∞ uniformly w.r.t. t ∈ J .

In Chapter 5 we are concerned with a linear parabolic problem of second order which
appears in the theory of viscoelasticity. In comparison to the problems investigated
in Chapter 4, it has two new challenging features: first it is a vector-valued problem,
and second it contains two independent kernels. Once more we characterize unique
existence of the solution in a certain class of optimal regularity in terms of regularity
and compatibility conditions on the given data. Section 5.1 gives a short account of the
basic equations of linear viscoelasticity. In Section 5.2 we state the problem and discuss
the assumptions on the kernels, which are stronger than in the previous chapters, since
the method of proof relies heavily onH∞-calculus. Section 5.3 is devoted to the thorough
investigation of a half space case of the problem under study, which reads

∂tv − da ∗ (∆xv + ∂2
yv)− (db+ 1

3da) ∗ (∇x∇x · v + ∂y∇xw) = fv (J × Rn+1
+ )

∂tw − da ∗∆xw − (db+ 4
3da) ∗ ∂

2
yw − (db+ 1

3da) ∗ ∂y∇x · v = fw (J × Rn+1
+ )

−da ∗ γ∂yv − da ∗ γ∇xw = gv (J × Rn)
−(db− 2

3da) ∗ γ∇x · v − (db+ 4
3da) ∗ γ∂yw = gw (J × Rn)

v|t=0 = v0 (Rn+1
+ )

w|t=0 = w0 (Rn+1
+ ),

where the unknown functions v and w are Rn- resp. scalar-valued, and γ denotes the
trace operator at y = 0. To solve this problem, we introduce an appropriate auxiliary
function by which the system can be decoupled. Using the results from Chapter 3, the
problem is further reduced to an equation on the boundary, which can be solved by
means of the joint H∞-calculus for the pair (∂t,−∆x) in the space Lp(R+ × Rn). The
essential difficulty is the estimate for the principal symbol of the problem. To be precise,
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we have to show that there exist c > 0 and η ∈ (0, π/2) such that the inequality

∣∣∣∣ 1
â(z)τ2

+ 2
∣∣∣∣ ≤ c

∣∣∣∣∣∣∣
1

â(z)τ2
+

4b̂(z)+ 4
3
â(z)

b̂(z)+ 4
3
â(z)

√
1

â(z)τ2 + 1√
1

â(z)τ2 + 1 +
√

1
(b̂(z)+ 4

3
â(z))τ2

+ 1

∣∣∣∣∣∣∣ , (z, τ) ∈ Σπ
2
+η × Ση

holds true; here Σθ = {λ ∈ C \ {0} : |argλ| < θ}. This crucial estimate is obtained by a
careful function theoretic analysis.

Finally, in Chapter 6 we study the nonlinear problem (1.1) described at the beginning
and prove the last main result of the present thesis, Theorem 6.1.2, by means of the
contraction mapping principle employing the optimal regularity results obtained for the
linear problem (1.19). Section 6.1 deals with the fixed point construction and the basic
estimates. It also contains the list of all assumptions needed for our treatment of (1.1).
The proof of the harder estimates concerning in particular the nonlinearities on the
boundary is deferred to Section 6.2.
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Chapter 2

Preliminaries

2.1 Some notation, function spaces, Laplace transform

In this section we fix some of the notations used throughout this thesis, recall some basic
definitions and give references concerning function spaces and the Laplace transform.

By N, Z, R, C we denote the sets of natural numbers, integers, real and complex
numbers, respectively. Let further N0 = N∪{0}, R+ = [0,∞), C+ = {λ ∈ C : Reλ > 0}.
X, Y, Z will usually be Banach spaces; | · |X designates the norm of the Banach space
X. The symbol B(X,Y ) means the space of all bounded linear operators from X to Y ,
we write B(X) = B(X,X) for short. If A is a linear operator in X, D(A), R(A), N (A)
stand for domain, range, and null space of A, respectively, while ρ(A), σ(A) designate
resolvent set and spectrum of A. For a closed operator A we denote by DA the domain
of A equipped with the graph norm.

In what follows let X be a Banach space. For Ω ⊂ Rn open or closed, C(Ω;X)
and BUC(Ω;X) stand for the continuous resp. bounded uniformly continuous functions
f : Ω → X. Further, if Ω ⊂ Rn is open and k ∈ N, Ck(Ω;X) (BUCk(Ω;X)) designates
the space of all functions f : Ω → X for which the partial derivative ∂αf exists on Ω
and can be continuously extended to a function belonging to C(Ω;X) (BUC(Ω;X)), for
each 0 ≤ |α| ≤ k.

If Ω is a Lebesgue measurable subset of Rn and 1 ≤ p < ∞, then Lp(Ω;X) denotes
the space of all (equivalence classes of) Bochner-measurable functions f : Ω → X with
|f |p := (

∫
Ω |f(y)|pX dy)1/p <∞. Lp(Ω;X) is a Banach space when normed by | · |p.

For an interval J ⊂ R, s > 0 and 1 < p < ∞, by Hs
p(J ;X) and Bs

pp(J ;X) we
mean the vector-valued Bessel potential space resp. Sobolev-Slobodeckij space of X-
valued functions on J , see Amann [6], Schmeisser [73], Štrkalj [76], and Zimmermann
[83]. Concerning the scalar case, we refer further to Runst and Sickel [72], Triebel [78],
[79]. In Section 2.8 we give a definition of the spaces Hs

p(J ;X) in the situation where
X belongs to the class HT (cf. Section 2.3); this will always be the case when we are to
consider vector-valued Bessel potential spaces. We will frequently use the property that
the Sobolev-Slobodeckij spaces appear as real interpolation spaces between the spaces
Lp and Hs

p ; more precisely (Lp(J ;X),Hs
p(J ;X))θ, p = Bθs

pp(J ;X) for all 1 < p < ∞,
s > 0, and θ ∈ (0, 1). For general treatises on interpolation theory we refer to Bergh
and Löfström [9], and Triebel [78].

If F is any of the above function spaces, then f ∈ Floc means that f belongs to the
corresponding space when restricted to compact subsets of its domain. In the scalar
case X = R or X = C we usually omit the image space in the function space notation.
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Following these conventions, BVloc(R+) designates the space of all scalar functions that
are locally of bounded variation on R+.

If not indicated otherwise, by f ∗ g we mean the convolution defined by (f ∗ g)(t) =∫ t
0 f(t− τ)g(τ) dτ, t ≥ 0, of two functions f, g supported on the halfline.

For u ∈ L1, loc(R+;X) of exponential growth, i.e.
∫∞
0 e−ωt|u(t)| dt < ∞ with some

ω ∈ R, the Laplace transform of u is defined by

û(λ) =
∫ ∞

0
e−λtu(t) dt, Reλ ≥ ω.

For a comprehensive account of the vector-valued Laplace transform we refer to Hille
and Phillips [44], and Arendt, Batty, Hieber, Neubrander [7]; see also Prüss [63]. For
the classical Laplace transform, one of the standard references is Doetsch [30].

We conclude this section by stating a result on the inversion of the vector-valued
Laplace transform. It is due to Prüss, see [64, Corollary 1].

Proposition 2.1.1 Let X be a Banach space. Suppose g : C+ → X is holomorphic and
satisfies

|g(λ)|+ |λg′(λ)| ≤ c|λ|−β, Reλ > 0, (2.1)

for some β > 0. Then, with n := [β], there is an n-times continuously differentiable
function u : (0,∞) → X such that û(λ) = g(λ) for all λ ∈ C+. Moreover,

|u(k)(t)| ≤M tβ−k−1, t > 0, 0 ≤ k ≤ n, (2.2)

where M > 0 is a constant depending only on c and β.

2.2 Sectorial operators

This section contains the definitions and certain known properties of sectorial opera-
tors, operators which admit a bounded H∞-calculus, operators with bounded imaginary
powers, R-sectorial operators, and operators with R-bounded functional calculus. A
general reference for the material presented here is the extensive work by Denk, Hieber
and Prüss [29].

We begin with the definition of sectorial operators. Let X be a complex Banach
space, and A be a closed linear operator in X. Then A is called pseudo-sectorial if
(−∞, 0) is contained in the resolvent set of A and the resolvent estimate

|t(t+A)−1|B(X) ≤M, t > 0,

holds, for some constant M > 0. If in addition N (A) = {0}, D(A) = X, and R(A) = X,
then A is called sectorial. The class of sectorial operators in X is denoted by S(X).
We recall that in case X is reflexive and A is pseudo-sectorial, the space X decomposes
according to X = N (A) ⊕ R(A). Thus in such a situation A is sectorial on R(A).
Putting

Σθ = {λ ∈ C \ {0} : |argλ| < θ}
it follows by means of the Neumann series that if A ∈ S(X), then ρ(−A) ⊃ Σθ, for some
θ > 0 and sup{|λ(λ + A)−1| : | argλ| < θ} < ∞. Therefore one may define the spectral
angle φA of A ∈ S(X) by

φA = inf{φ : ρ(−A) ⊃ Σπ−φ, sup
λ∈Σπ−φ

|λ(λ+A)−1| <∞}.
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Clearly, φA ∈ [0, π) and φA ≥ sup{|argλ| : λ ∈ σ(A)}.
We turn now to the H∞-calculus. For φ ∈ (0, π], we define the space of holomorphic

functions on Σφ by H(Σφ) = {f : Σφ → C holomorphic}, and the space

H∞(Σφ) = {f : Σφ → C holomorphic and bounded},

which when equipped with the norm |f |φ∞ = sup{|f(λ)| : |argλ| < φ} becomes a Banach
algebra. We further let H0(Σφ) =

⋃
α, β< 0Hα, β(Σφ), where Hα, β(Σφ) := {f ∈ H(Σφ) :

|f |φα, β < ∞}, and |f |φα, β := sup|λ|≤1 |λαf(λ)| + sup|λ|≥1 |λ−βf(λ)|. Now suppose that
A ∈ S(X) and φ ∈ (φA, π). We select any ψ ∈ (φA, φ) and denote by Γψ the oriented
contour defined by Γψ(t) = −teiψ, −∞ < t ≤ 0, and Γψ(t) = te−iψ, 0 ≤ t < ∞. Then
the Dunford integral

f(A) =
1

2πi

∫
Γψ

f(λ)(λ−A)−1 dλ, f ∈ H0(Σφ),

converges in B(X) and does not depend on the choice of ψ. Further, it defines via
ΦA(f) = f(A) a functional calculus ΦA : H0(Σφ) → B(X) which is an algebra homo-
morphism. The following definition is in accordance with McIntosh [57].

Definition 2.2.1 A sectorial operator A in X admits a bounded H∞-calculus if there
are φ > φA and a constant Kφ <∞ such that

|f(A)| ≤ Kφ|f |φ∞, for all f ∈ H0(Σφ). (2.3)

The class of sectorial operators which admit an H∞-calculus will be denoted by H∞(X).
The H∞-angle φ∞A of A ∈ H∞(X) is defined by

φ∞A = inf{φ > φA : (2.3) is valid}.

If A ∈ H∞(X), then the functional calculus for A on H0(Σφ) extends uniquely to
H∞(Σφ).

We consider next operators with bounded imaginary powers. This subclass of S(X)
has been introduced in Prüss and Sohr [69]. To justify the subsequent definition, we first
note that for any A ∈ S(X) one can define complex powers Az, where z ∈ C is arbitrary;
cf. Komatsu [48], Prüss [63, Section 8.1] or Denk, Hieber, Prüss [29, Section 2.2].

Definition 2.2.2 A sectorial operator A in X is said to admit bounded imaginary
powers if Ais ∈ B(X) for each s ∈ R and there is a constant C > 0 such that |Ais| ≤ C
for |s| ≤ 1. The class of such operators will be denoted by BIP(X).

Since Ais has the group property (see e.g. Prüss [63, Proposition 8.1]), it is evident
that A admits bounded imaginary powers if and only if {Ais : s ∈ R} forms a strongly
continuous group of bounded linear operators in X. The growth bound θA of this group,
that is

θA = lim sup
|s|→∞

1
|s|

log |Ais|,

will be called the power angle of A. Owing to the fact that the functions fs defined
by fs(z) = zis belong to H∞(Σφ), for any s ∈ R and φ ∈ (0, π), we clearly have the
inclusions

H∞(X) ⊂ BIP(X) ⊂ S(X),
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and the inequalities

φ∞A ≥ θA ≥ φA ≥ sup{|argλ| : λ ∈ σ(A)}.

Operators with bounded imaginary powers are of overriding importance in the con-
text of sums of commuting linear operators. This finds expression in the Dore-Venni
theorem, which is one of the fundamental results in this connection. We will state a
version of it in the next section.

Another important application of the class BIP(X) concerns the fractional power
spaces

Xα = XAα = (D(Aα), | · |α), |x|α = |x|+ |Aαx|, 0 < α < 1,

where A ∈ S(X). If A belongs to BIP(X), one can derive a characterization of Xα in
terms of complex interpolation spaces.

Theorem 2.2.1 Let A ∈ BIP(X). Then

Xα = [X,DA]α, α ∈ (0, 1),

the complex interpolation space between X and DA ↪→ X of order α.

For a proof we refer to Triebel [78, pp. 103-104], or Yagi [82].
At this point let us state a very useful property of the real interpolation spaces

(X,Xα)β, p, 0 < α, β < 1, 1 ≤ p ≤ ∞, between X and the fractional power spaces Xα

associated with an operator A ∈ S(X), defined by, e.g. the K-method. Recall that for
A ∈ S(X), 1 ≤ p ≤ ∞, and γ ∈ (0, 1), the real interpolation space (X,DA)γ, p coincides
with the space DA(γ, p) which is defined by means of

DA(γ, p) := {x ∈ X : [x]DA(γ,p) <∞},

where

[x]DA(γ,p) =

{
(
∫∞
0 (tγ |A(t+A)−1x|X)p ddt)

1
p : 1 ≤ p <∞

supt>0 t
γ |A(t+A)−1x|X : p = ∞,

(2.4)

see e.g. [16, Prop. 3].
Suppose now that A ∈ BIP(X). By Theorem 2.2.1 and the reiteration theorem (see

e.g. Amann [5, Section 2.8]), we deduce that

(X,Xα)β, p = (X, [X,DA]α)β, p = (X,DA)αβ, p, 0 < α, β < 1, 1 ≤ p ≤ ∞. (2.5)

Since A ∈ S(X) implies Aα ∈ S(X) for all α ∈ (0, 1), we conclude from (2.5) that
DAα(β, p) = DA(αβ, p). One can show that this relation is even valid for all A ∈ S(X),
cf. Komatsu [49, Thm. 3.2].

Theorem 2.2.2 Let A ∈ S(X). Then

DAα(β, p) = DA(αβ, p), α, β ∈ (0, 1), 1 ≤ p ≤ ∞.

We come now toR-sectorial operators. First we have to recall the definition ofR-bounded
families of bounded linear operators.
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Definition 2.2.3 Let X and Y be Banach spaces. A family of operators T ⊂ B(X,Y )
is called R-bounded, if there is a constant C > 0 and p ∈ [1,∞) such that for each
N ∈ N, Tj ∈ T , xj ∈ X and for all independent, symmetric, {−1, 1}-valued random
variables εj on a probability space (Ω,M, µ) the inequality

|
N∑
j=1

εjTjxj |Lp(Ω;Y ) ≤ C|
N∑
j=1

εjxj |Lp(Ω;X) (2.6)

is valid. The smallest such C is called R-bound of T , we denote it by R(T ).

The notion of R-sectorial operators is obtained by replacing bounded with R-bounded in
the definition of sectorial operators.

Definition 2.2.4 Let X be a complex Banach space, and assume A is a sectorial oper-
ator in X. Then A is called R-sectorial if

RA(0) := R{t(t+A)−1 : t > 0} <∞.

The R-angle φRA of A is defined by means of

φRA := inf{θ ∈ (0, π) : RA(π − θ) <∞},

where
RA(θ) := R{λ(λ+A)−1 : |argλ| ≤ θ}.

The class of R-sectorial operators in X will be denoted by RS(X).

The R-angle of an R-sectorial operator A is well-defined and it is not smaller than the
spectral angle of A, cp. Denk, Hieber and Prüss [29, Definition 4.1].

The following fundamental result, which has been proven in Clément and Prüss [24],
says that the class of R-sectorial operators contains the class of operators with bounded
imaginary powers, provided that the underlying Banach space X belongs to the class
HT , see Section 2.3 for the definition of the latter.

Theorem 2.2.3 Let X be a Banach space of class HT and suppose that A ∈ BIP(X)
with power angle θA. Then A is R-sectorial and φRA ≤ θA.

For sectorial operators A one knows that the powers Aα with α ∈ R and |α| < π/φA are
sectorial as well and φAα ≤ |α|φA, see e.g. [29, Thm. 2.3]. It turns out that there is a
corresponding result for the class RS(X).

Proposition 2.2.1 Let X be a complex Banach space. Suppose A ∈ RS(X) and α ∈ R
is such that |α| < π/φRA. Then Aα is also R-sectorial and φRAα ≤ |α|φRA.

Proof. In view ofA−α = (A−1)α, it suffices to consider positive α. In fact, forA ∈ RS(X)
and φ > φRA, the relation

λ(λ+A−1)−1 = λA(1 + λA)−1 = A(λ−1 +A)−1, λ ∈ Σπ−φ,

shows that A−1 ∈ RS(X) and φRA−1 = φRA. So let α ∈ (0, π/φRA) be fixed. Since
RS(X) ⊂ S(X), it follows that Aα ∈ S(X) with spectral angle φAα ≤ αφA.

Let now φα < π−αφRA and µ ∈ Σφα . Then the function gµ(λ) = µ/(µ+ λα) belongs
to H∞(Σφ) as long as φα + αφ < π. By means of the extended functional calculus (cf.
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[29, Section 2.1]) we have gµ(A) = µ(µ+Aα)−1; the problem is to show that the family
{gµ(A) : µ ∈ Σφα} ⊂ B(X) is R-bounded.

To this purpose we consider first appropriate approximations of A. For ε > 0 set
Aε = (ε + A)(1 + εA)−1. Then Aε is bounded, sectorial and invertible, for each ε > 0,
and φAε ≤ φA, see [29, Prop. 1.4]. Furthermore, Aε is also R-sectorial with R-angle
φRAε ≤ φRA, and the R-bounds RAε(φ) are uniformly with respect to ε > 0, for each fixed
φ < π − αφRA. To see this verify that the subsequent relation is valid.

λ(λ+Aε)−1 =
λ

λ+ ε
ϕε(λ)(ϕε(λ) +A)−1 +

ελ

1 + ελ
A(ϕε(λ) +A)−1, λ ∈ Σφ,

where ϕε(λ) = (ε + λ)/(1 + ελ). Here it is essential that the functions ϕε leave all
sectors Σφ invariant. The claim follows then by the rule R(T1 + T2) ≤ R(T1) +R(T2)
and Kahane’s contraction principle, cf. [29, Section 3.1].

We next show that RAαε (φα) ≤ C < ∞ uniformly w.r.t. ε > 0. To this end we
employ the following representation formula for the operators gµ(Aε), cf. the proof of
Theorem 2.3 in [29].

gµ(Aε) =
µ

2πi

∫ ∞

0
(

eiθα − ei(θ−2π)α

(µ+ rαeiα(θ−2π))(µ+ rαeiαθ)
)rαeiθ(reiθ −Aε)−1dr

+ µ

n∑
j=1

λ1−α
j (λj −Aε)−1/α. (2.7)

This formula is obtained by contracting the contour Γψ from the Dunford integral for
gµ(Aε) to a suitable halfray Γα = [0,∞)eiθ, with φRA < ψ < θ ≤ π, and using Cauchy’s
theorem as well as residue calculus. The numbers λj = λj(µ), j = 1, . . . , n denote the
zeros of µ + λα; note that there are only finitely many of them, and n = 0 means that
there are none. The angle θ = θ(µ) is chosen such that for some δ > 0, we have with
ϕ =argµ the inequalities |ϕ−αθ(µ)−(2k+1)π| ≥ δ and |ϕ+2απ−αθ(µ)−(2k+1)π| ≥ δ
for all µ ∈ Σφα and k ∈ Z. From (2.7) we get with µ+λαj = 0 and the change of variables
r = (|µ|s)1/α

gµ(Aε) =
∫ ∞

0

eiϕ(ei(2π−θ)α − e−iθα)(1 + s)2

2παi (ei(ϕ−αθ) + s)(ei(ϕ+2απ−αθ) + s)︸ ︷︷ ︸
| · |≤C

(|µ|s)
1
α eiθ((|µ|s)

1
α eiθ−Aε)−1 ds

(1 + s)2

−
n∑
j=1

λj(λj −Aε)−1/α.

Hence gµ(Aε) ∈ C0aco ({λ(λ+ Aε)−1 : λ ∈ Σπ−ψ}), where aco (T ) means the closure in
the strong operator topology of the absolute convex hull of the family T . Proposition
3.8 in [29] and the above observation concerning the R-bounds RAε(φ) then yield

RAαε (φα) ≤ 2C0RAε(ψ) ≤ C <∞,

uniformly w.r.t. ε > 0.
The assertion RAα(φα) <∞ can now be established by the following approximation

argument, which relies on gµ(Aε)x → gµ(A)x as ε → 0+ on D(A) ∩ R(A), which is a
dense subset of X, see [29, Thm. 2.1]. Set T = {gµ(A) : µ ∈ Σφα} and Tε = {gµ(Aε) :
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µ ∈ Σφα}. Let N ∈ N, Tj ∈ T , xj ∈ X and suppose that εj are independent, symmetric,
{−1, 1}-valued random variables on a probability space (Ω,M, µ), j = 1, . . . , n. Let
further Tε, j ∈ Tε be the approximation of Tj , that is, for Tj = gµj (A) we put Tε, j =
gµj (Aε). Also, we choose for each xj a sequence {xj, k}∞k=1 ⊂ D(A) ∩ R(A) such that
xj, k → xj as k →∞. By uniform R-boundedness of Tε, we may then estimate

|
N∑
j=1

εjTjxj |Lp(Ω;X) ≤ |
N∑
j=1

εjTε, j xj |Lp(Ω;X) + |
N∑
j=1

εj(Tj − Tε, j)xj, k|Lp(Ω;X)

+ |
N∑
j=1

εj(Tj − Tε, j)(xj − xj, k)|Lp(Ω;X)

≤ C |
N∑
j=1

εjxj |Lp(Ω;X) +
N∑
j=1

|(Tj − Tε, j)xj, k|X + 2C
N∑
j=1

|xj − xj, k|X ,

(2.8)

where C does not depend on ε, j, k. Now let ε → 0+ in (2.8) with k being fixed. This
makes the second summand disappear. The third one vanishes if we then send k →∞.
It remains the desired inequality expressing R-boundedness of {gµ(A) : µ ∈ Σφα} for
each φα < π − αφRA. �

Connecting the concept of R-boundedness to the H∞-calculus, leads to the notion of
operators with R-bounded functional calculus.

Definition 2.2.5 Let X be a complex Banach space and suppose that A ∈ H∞(X). The
operator A is said to admit an R-bounded H∞-calculus if the set

{f(A) : f ∈ H∞(Σθ), |f |θ∞ ≤ 1}

is R-bounded for some θ > 0. We denote the class of such operators by RH∞(X) and
define the RH∞-angle φR∞A of A as the infimum of such angles θ.

One important application of such operators concerns the joint functional calculus of
sectorial operators, see Section 2.4.

2.3 Sums of closed linear operators

Let X be a Banach space, A, B closed linear operators in X, and consider the problem

Ax+Bx = y. (2.9)

Given y ∈ X one seeks a unique strict solution x of (2.9) in the sense that x ∈ D(A) ∩
D(B), that is x possesses the regularity induced by A as well as that coming from B.
In this situation we say that the solution has maximal regularity. Furthermore it is
desirable to have an a priori estimate of the form

|Ax|+ |Bx| ≤ C|Ax+Bx| for all x ∈ D(A) ∩ D(B), (2.10)

where C does not depend on x.
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Let us define the sum operator A+B by

(A+B)x = Ax+Bx, x ∈ D(A+B) = D(A) ∩ D(B).

If 0 ∈ ρ(A+B), which in particular means that A+B is closed, equation (2.9) is solvable
in the strict sense for all y ∈ X, and the closed graph theorem shows (2.10) with some
C > 0. For the latter it suffices to know only that A+B is injective and closed. If A+B
is merely closable but not closed, and 0 ∈ ρ(A+B), then (2.9) only admits generalized
solutions in the sense that there exist sequences (xn) ⊂ D(A) ∩ D(B), xn → x, and
yn → y satisfying

Axn +Bxn = yn, n ∈ N.
In general, nothing can be said on A+B. It may even happen that it is not closable.

In order to prove positive results in this direction, further assumptions on A and B have
to be imposed.

In 1975 Da Prato and Grisvard ([26]) were able to show that if A and B are com-
muting sectorial operators satisfying the parabolicity condition φA +φB < π then A+B
is closable, and the closure L := A+B is a sectorial operator with φL ≤ max{φA, φB},
see also [16], [63, Section 8]. Recall that two closed linear operators are said to commute
(in the resolvent sense) if there are λ ∈ ρ(A), µ ∈ ρ(B) such that

(λ−A)−1(µ−A)−1 = (µ−A)−1(λ−A)−1.

By strengthening the assumptions on A, B and X Dore and Venni [31], [32] succeeded
in proving closedness of A+ B. Prüss and Sohr [69] improved their result by removing
some extra assumptions. Before we repeat a version of the Dore-Venni theorem we have
to recall what it means for a Banach space X to belong to the class HT .

A Banach space X is said to be of class HT , if the Hilbert transform is bounded
on Lp(R, X) for some (and then all) p ∈ (1,∞). Here the Hilbert transform Hf of a
function f ∈ S(R;X), the Schwartz space of rapidly decreasing X-valued functions, is
defined by

(Hf)(t) =
1
π

lim
ε→0

∫
ε≤|s|≤ 1/ε

f(t− s)
ds

s
, t ∈ R,

where the limit is to be understood in the Lp-sense. There is a well known theorem
which says that the set of Banach spaces of class HT coincides with the class of UMD
spaces, where UMD stands for unconditional martingale difference property. It is further
known that HT -spaces are reflexive. Every Hilbert space belongs to the class HT , and
if (Ω,Σ, µ) is a measure space, 1 < p <∞, then Lp(Ω,Σ, µ;X) is an HT -space. For all
these results see the survey article by Burkholder [10].

We state now a variant of the Dore-Venni theorem, cf. [31], [65], [69].

Theorem 2.3.1 Suppose X is a Banach space of class HT , and assume A,B ∈ BIP(X)
commute in the resolvent sense and satisfy the strong parabolicity condition θA+θB < π.
Let further µ > 0. Then

(i) A+ µB is closed and sectorial;
(ii) A+ µB ∈ BIP(X) with θA+µB ≤ max{θA, θB};

(iii) there exists a constant C > 0, independent of µ > 0, such that

|Ax|+ µ|Bx| ≤ C|Ax+ µBx|, x ∈ D(A) ∩ D(B). (2.11)

In particular, if A or B is invertible, then A+ µB is invertible as well.
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We remark that a theorem of the Dore-Venni type for noncommuting operators has been
established by Monniaux and Prüss [58]. Another remarkable result has been obtained by
Kalton and Weiss [47]. They could show, without restriction on the underlying Banach
space X, that A + B is closed, provided that A ∈ H∞(X) and B ∈ RS(X) commute
with φ∞A + φRB < π.

Some consequences of Theorem 2.3.1 concerning complex interpolation are contained
in the following corollary, see Prüss [65, Cor. 1]. For a proof we refer to the forthcoming
monograph Hieber and Prüss [43].

Corollary 2.3.1 Suppose X belongs to the class HT , and assume that A,B ∈ BIP(X)
are commuting in the resolvent sense. Further suppose the strong parabolicity condition
θA + θB < π. Let A or B be invertible and α ∈ (0, 1). Then

(i) Aα(A+B)−α and Bα(A+B)−α are bounded in X;

(ii) D((A+B)α) = [X,D(A+B)]α = [X,D(A)]α ∩ [X,D(B)]α = D(Aα) ∩ D(Bα).

We conclude this section with two results which are also very useful in connection with
the method of sums. The first of these has been established by Grisvard [40], even in a
more general situation.

Proposition 2.3.1 Suppose that A, B are sectorial operators in a Banach space X,
commuting in the resolvent sense. Then

(X,D(A) ∩ D(B))α, p = (X,D(A))α, p ∩ (X,D(B))α, p,

for all α ∈ (0, 1), p ∈ [1,∞].

The following result is known as the mixed derivative theorem and is due to Sobolevskii
[75].

Proposition 2.3.2 Suppose A, B are sectorial operators in a Banach space X, com-
muting in the resolvent sense. Assume that their spectral angles satisfy the parabolicity
condition φA + φB < π. Further suppose that the pair (A,B) is coercively positive, i.e.
A + µB with natural domain D(A + µB) = D(A) ∩ D(B) is closed for each µ > 0 and
there is a constant M > 0 such that

|Ax|X + µ|Bx|X ≤M |Ax+ µBx|X , for all x ∈ D(A) ∩ D(B), µ > 0.

Then there exists a constant C > 0 such that

|AαB1−αx|X ≤ C|Ax+Bx|X , for all x ∈ D(A) ∩ D(B), α ∈ [0, 1].

In particular, if A or B is invertible, then AαB1−α(A+B)−1 is bounded in X, for each
α ∈ [0, 1].

2.4 Joint functional calculus

This section is devoted to the joint H∞-calculus for a pair of sectorial operators A, B on
X with commuting resolvents. It was first introduced by Albrecht [1] and is a natural
two-variable analogue of McIntosh’s H∞-calculus, which we have already discussed in
Section 2.2. For proofs and many more details we refer to [1], [2], [51], and [47].
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Given φ, φ′ ∈ (0, π] we denote by H∞(Σφ × Σφ′) the Banach algebra of all bounded
holomorphic scalar-valued functions on Σφ × Σφ′ equipped with the norm |f |φ, φ

′
∞ :=

sup{|f(λ, λ′)| : |arg λ| < φ, |arg λ′| < φ′}, and we put H0(Σφ × Σφ′) = {f ∈ H∞(Σφ ×
Σφ′) : ∃(f1, f2) ∈ H0(Σφ)×H0(Σφ′), f1 and f2 non-vanishing, and f(f1f2)−1 ∈ H∞(Σφ×
Σφ′)}. Let A, B ∈ S(X) with spectral angles φA and φB, respectively, commute in the
resolvent sense. For φ ∈ (φA, π), φ′ ∈ (φB, π), and f ∈ H0(Σφ × Σφ′) one defines

f(A,B) = − 1
4π2

∫
Γψ×Γψ′

f(λ, λ′)(λ−A)−1(λ−B)−1dλ dλ′, (2.12)

where (ψ,ψ′) ∈ (φA, φ)× (φB, φ′). This integral converges in B(X) and does not depend
on the choice of ψ and ψ′. Via ΦA,B(f) = f(A,B), it defines a joint functional calculus
ΦA,B : H0(Σφ×Σφ′) → B(X). In analogy to Definition 2.2.1, we say that (A,B) admits
a bounded joint H∞-calculus (symbolized by (A,B) ∈ H∞(X)) if there exist φ ∈ (φA, π),
φ′ ∈ (φB, π), and a constant Kφ, φ′ <∞ such that

|f(A,B)| ≤ Kφ, φ′ |f |φ, φ
′

∞ for all f ∈ H0(Σφ × Σφ′). (2.13)

If (A,B) ∈ H∞(X), then the functional calculus for (A,B) on H0(Σφ × Σφ′) extends
uniquely to H∞(Σφ × Σφ′).

An interesting question is the following: what are the Banach spaces X for which
(A,B) admits a bounded joint H∞-calculus as soon as A and B, each, admit a bounded
H∞-calculus? In [1] Albrecht was able to prove that this is the case if X = Lp(Ω,Σ, µ),
1 < p <∞, where (Ω,Σ, µ) is a σ-finite measure space, see also [2, Section 5]. Lancien et
al. [51] extended this result to a class of Banach spaces which enjoy a certain geometric
property. They also give an example for a Banach space not possessing the joint calculus
property. We would further like to mention a result by Kalton and Weis [47] which
asserts, without additional assumption on X, that if A ∈ H∞(X) and B ∈ RH∞(X)
with commuting resolvents, then (A,B) admits a bounded joint H∞-calculus.

We consider now an important example.

Example 2.4.1 Let 1 < p < ∞, X = Lp(R+ × Rn), and denote the independent vari-
ables by t (∈ R+) resp. x (∈ Rn). Take B = ∂t with domain D(B) = 0H

1
p (R+;Lp(Rn)),

and define A as the natural extension of −∆x in Lp(Rn) with D(−∆x) = H2
p (Rn) to X,

i.e. D(A) = Lp(R+;H2
p (Rn)) and Af = −∆xf, f ∈ D(A). Then A and B commute in

the resolvent sense, and A, B ∈ H∞(X) with H∞-angles φ∞A = 0 resp. φ∞B = π/2. Since
X has the joint calculus property, we have (A,B) ∈ H∞(X). More precisely, for each
η ∈ (0, π/2), there exists Cη > 0 such that for all f ∈ H∞(Ση ×Σπ

2
+η), f(A,B) ∈ B(X)

and |f(A,B)|B(X) ≤ Cη|f |η, π/2+η
∞ .

Regarding functions in X as elements in Lp(R+;Lp(Rn)), the resolvent of B admits
the kernel representation

(λ−B)−1w(t) = −
∫ t

0
eλ(t−s)w(s) ds, t ∈ R+,

for all w ∈ X. Thus, for f ∈ H0(Ση × Σπ
2
+η), the operators f(A,B) admit a kernel

representation as well, namely

f(A,B)w(t) =
∫ t

0

(
−1
2πi

∫
Γψ′

eλ
′(t−s)f(A, λ′)dλ′

)
w(s) ds, t ∈ R+. (2.14)
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Here f(A, ·) ∈ H0(Σπ
2
+η;B(X)) results from the functional calculus of A:

f(A, λ′) =
1

2πi

∫
Γψ

f(λ, λ′)(λ−A)−1dλ, λ′ ∈ Σπ
2
+η.

Since the resolvent of A is a pointwise operator with respect to t ∈ R+, we deduce from
(2.14) that f(A,B) is causal for all f ∈ H0(Ση × Σπ

2
+η). For an arbitrary function

f ∈ H∞(Ση × Σπ
2
+η), this property of f(A,B) can be seen by approximating f with a

sequence (fn) ⊂ H0(Ση × Σπ
2
+η).

2.5 Operator-valued Fourier multipliers

Let 1 < p <∞ and X be a Banach space. We denote by D(R;X) the space of X-valued
C∞-functions with compact support on R. Let D′(R;X) := B(D(R), X) be the space
of X-valued distributions on the real line. Further we denote by S(R;X) the Schwartz
space of smooth rapidly decreasing X-valued functions on R, see e.g. Amann [5, p. 129].
By S ′(R;X) := B(S(R), X) we mean the space of X-valued temperate distributions. Let
Y be another Banach space. Given M ∈ L1, loc(R;B(X,Y )), one may define the operator
TM : F−1D(R;X) → S ′(R;Y ) by means of

TMφ := F−1MFφ, for all Fφ ∈ D(R;X), (2.15)

F denoting the Fourier transform. Note that F−1D(R;X) is dense in Lp(R;X). Thus
TM is well-defined and linear on a dense subset of Lp(R;X).

One can now ask what conditions have to be imposed on M so that TM is bounded
in Lp-norm, i.e. TM ∈ B(Lp(R;X), Lp(R;Y )). The following theorem, which is due to
Weis [80], contains the operator-valued version of the famous Mikhlin Fourier multiplier
theorem in one variable.

Theorem 2.5.1 Suppose X and Y are Banach spaces of class HT and let 1 < p <∞.
Let M ∈ C1(R \ {0};B(X,Y )) be such that the following conditions are satisfied.

(i) R({M(ρ) : ρ ∈ R \ {0}}) =: κ0 <∞;
(ii) R({ρM ′(ρ) : ρ ∈ R \ {0}}) =: κ1 <∞.

Then the operator TM defined by (2.15) is bounded from Lp(R;X) into Lp(R;Y ) with
norm |TM |B(Lp(R;X),Lp(R;Y )) ≤ C(κ0 + κ1), where C > 0 depends only on p,X, Y .

A rather short and elegant proof of this theorem is given in [29].

2.6 Kernels

In this section we collect some of the basic definitions and properties concerning scalar
kernels which we need for the treatment of parabolic Volterra equations. Definition 2.6.1
and 2.6.2 as well as Lemma 2.6.1 were taken from the monograph Prüss [63, Sections 3
and 8].

Let a ∈ L1, loc(R+). We say that a is of subexponential growth if for all ε > 0,∫∞
0 e−εt|a(t)| dt <∞. If this is the case, then it is readily seen that the Laplace transform
â(λ) exists for Reλ > 0.
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Definition 2.6.1 ([63, Def. 3.2]) Let a ∈ L1, loc(R+) be of subexponential growth and
suppose â(λ) 6= 0 for all Reλ > 0. a is called sectorial with angle θ > 0 (or merely
θ-sectorial) if

|arg â(λ)| ≤ θ for all Reλ > 0. (2.16)

Here, arg â(λ) is defined as the imaginary part of a fixed branch of log â(λ), and θ in
(2.16) is allowed to be greater than π. In case a is sectorial, we always choose that
branch of log â(λ) which yields the smallest angle θ; in particular, if â(λ) is real for real
λ we choose the principal branch.

The next definition introduces an appropriate notion of regularity of kernels.

Definition 2.6.2 ([63, Def. 3.3]) Let a ∈ L1, loc(R+) be of subexponential growth and
k ∈ N. a is called k-regular if there is a constant c > 0 such that

|λnâ(n)(λ)| ≤ c |â(λ)| for all Reλ > 0, 0 ≤ n ≤ k. (2.17)

It is not difficult to see that convolutions of k-regular kernels are again k-regular. Fur-
thermore, k-regularity is preserved by integration and differentiation, while sums and
differences of k-regular kernels need not be k-regular. However, if a and b are k-regular
and

|arg â(λ)− arg b̂(λ)| ≤ θ < π, Reλ > 0, (2.18)

then a+ b is k-regular as well (see Lemma 2.6.2(ii)).
Some important properties of 1-regular kernels are contained in the following lemma.

Lemma 2.6.1 ([63, Lemma 8.1]) Suppose a ∈ L1, loc(R+) is of subexponential growth
and 1-regular. Then

(i) â(iρ) := limλ→iρ â(λ) exists for each ρ 6= 0;

(ii) â(λ) 6= 0 for each Reλ ≥ 0;

(iii) â(i·) ∈W∞
1, loc(R \ {0});

(iv) |ρâ′(iρ)| ≤ c|â(iρ)| for a.a. ρ ∈ R;

(v) there is a constant c > 0 such that

c|â(|λ|)| ≤ |â(λ)| ≤ c−1|â(|λ|)|, Reλ ≥ 0, λ 6= 0;

(vi) limr→∞ â(reiφ) = 0 uniformly for |φ| ≤ π
2 .

With regard to Volterra operators in Lp (see Section 2.8), we now introduce the subse-
quent class of kernels.

Definition 2.6.3 Let a ∈ L1, loc(R+) be of subexponential growth, and assume r ∈ N,
θa > 0, and α ≥ 0. Then a is said to belong to the class Kr(α, θa) if

(K1) a is r-regular;

(K2) a is θa-sectorial;

(K3) lim supµ→∞ | â(µ)|µα <∞, lim infµ→∞ | â(µ)|µα > 0, lim infµ→0 | â(µ)| > 0.
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Further, K∞(α, θa) := {a ∈ L1, loc(R+) : a ∈ Kr(α, θa) for all r ∈ N}. The kernel a is
called a K-kernel if there exist r ∈ N, θa > 0, and α ≥ 0, such that a ∈ Kr(α, θa).

An example for a K-kernel is the so-called standard kernel:

Example 2.6.1 (standard kernel) Let a(t) = tα−1/Γ(α), t > 0, with α > 0. Then
a ∈ L1, loc(R+), a is of subexponential growth, and its Laplace transform is given by
â(λ) = λ−α, Reλ > 0. Hence, a ∈ K∞(α, απ2 ).

From [58, p. 4793] it follows that Kr(α, θ) 6= ∅ entails the inequality θ ≥ απ2 . In view of
Example 2.6.1 we thus get the following equivalence:

Remarks 2.6.1 Let α > 0. Then Kr(α, θ) 6= ∅ if and only if θ ≥ απ2 .

The subsequent lemma collects some important algebraic properties of K-kernels.

Lemma 2.6.2 Suppose a ∈ Kr(α, θa), b ∈ Ks(β, θb), and ω > 0. Let aω be defined by
aω(t) = a(t)e−ωt, t ≥ 0. Then the following statements hold true.

(i) aω ∈ Kr(α, θa) ∩ L1(R+), and there exist positive constants C1, C2 such that

C1

|λ+ ω|α
≤ |âω(λ)| ≤ C2

|λ+ ω|α
, Reλ > 0. (2.19)

(ii) If a and b satisfy (2.18), then a+ b ∈ Kmin{r,s}(min{α, β},max{θa, θb}).

(iii) a ∗ b ∈ Kmin{r,s}(α+ β, θa + θb).

(iv) If α > β and lim infµ→0 |â(µ)/b̂(µ)| > 0, then there exists a unique kernel c ∈
Kmin{r,s}(α− β, θa + θb) such that a = b ∗ c. If in addition Im â(λ)·Im b̂(λ) ≥ 0 for
all Reλ > 0, then c ∈ Kmin{r,s}(α− β,max{θa, θb}).

(v) If α > 0 and θa < π, then there is a unique kernel ξ ∈ Kr(α, θa) such that
ξ + ωξ ∗ a = a.

(vi) If a ∈ L1(R+) and ε := ω|a|L1(R+) < 1, then there is a unique kernel ξ ∈ Kr(α, θa+
arcsin(ε)) ∩ L1(R+) such that ξ − ωξ ∗ a = a.

Proof. Suppose a ∈ Kr(α, θa) and ω > 0. Then it is evident that aω lies in L1(R+) and
is of subexponential growth. Further, âω(λ) = â(λ + ω), Reλ > 0. Thus, for all k ∈ N
with 1 ≤ k ≤ r and λ ∈ C+,

|λkâ(k)
ω (λ)| = |λkâ(k)(λ+ ω)| = |(λ+ ω)kâ(k)(λ+ ω)|

∣∣∣∣ λ

λ+ ω

∣∣∣∣k
≤ C|â(λ+ ω)| = C|âω(λ)|,

where C > 0 is the constant of r-regularity of a, i.e. aω is r-regular. We easily see θa-
sectoriality of aω, too. Moreover, Lemma 2.6.1(v) implies |âω(λ)| ≤ c|âω(|λ|)| for all λ ∈
C+, with c not depending on λ. So, owing to continuity and the asymptotic behaviour
of â on R+ described in (K3), there exist two positive constants C1 and C2 such that
|âω(λ)(λ+ω)α| = |â(λ+ω)(λ+ω)α| ∈ [C1, C2] for all Reλ > 0. This shows (2.19). As for
property (K3), by Lemma 2.6.1(ii), we have lim infµ→0 | âω(µ)| = |â(ω)| > 0. The other
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two properties in (K3) follow immediately from (2.19) and limµ→∞ |µα/(µ + ω)α| = 1.
Hence, assertion (i) of Lemma 2.6.2 is proved.

To show (ii), suppose a ∈ Kr(α, θa) and b ∈ Ks(β, θb). Trivially, a+ b ∈ L1, loc(R+),
and a+b is of subexponential growth. We then note that by (2.18) there exists a constant
c > 0 such that |â(λ)|+ |b̂(λ)| ≤ c|â(λ) + b̂(λ)|, Reλ > 0. Therefore, for all k ∈ N with
1 ≤ k ≤ min{r, s} and λ ∈ C+,

|λk(â(λ) + b̂(λ))| ≤ |λkâ(λ)|+ |λk b̂(λ)| ≤ C(|â(λ)|+ |b̂(λ)|) ≤ C c|â(λ) + b̂(λ)|,

where C only depends on the constants of min{r, s}-regularity of a and b. This proves
min{r, s}-regularity of a + b. From θa-sectoriality of a, θb-sectoriality of b, and (2.18)
it follows that |arg (â(λ) + b̂(λ))| ≤ max{θa, θb} for all Reλ > 0. Thanks to (2.18) we
further have

lim inf
µ→0

|â(µ) + b̂(µ)| ≥ c−1 lim inf
µ→0

(|â(µ)|+ |b̂(µ)|) > 0,

which shows the third condition in (K3) for a+ b. W.l.o.g. we may then assume α ≤ β
and obtain the estimates

lim inf
µ→∞

|â(µ) + b̂(µ)|µα ≥ c−1 lim inf
µ→∞

(|â(µ)|+ |b̂(µ)|)µα ≥ c−1 lim inf
µ→∞

|â(µ)|µα > 0,

lim sup
µ→∞

|â(µ) + b̂(µ)|µα ≤ lim sup
µ→∞

|â(µ)|µα + lim sup
µ→∞

|b̂(µ)|µβµα−β <∞.

So assertion (ii) is also established.
We now come to (iii). Suppose a ∈ Kr(α, θa), b ∈ Ks(β, θb). By Young’s inequality,

a ∗ b ∈ L1, loc(R+) and given ε > 0, we have

|(a ∗ b)e−ε·|L1(R+) = |(aε ∗ bε)|L1(R+) ≤ |aε|L1(R+) |bε|L1(R+) <∞,

i.e. a ∗ b is of subexponential growth. Further, (a ∗ b)̂ = âb̂ due to the convolution
theorem. So a ∗ b is (θa + θb)-sectorial. Assuming k ∈ N, 1 ≤ k ≤ min{r, s} Leibniz’
formula in combination with r-regularity of a and b yields

|λk(â(λ)b̂(λ))(k)| ≤
k∑
i=0

(
k

i

)
|λiâ(i)(λ)| |λ(k−i)b̂(k−i)(λ)| ≤ C <∞, Re λ > 0. (2.20)

Thus a ∗ b is min{r, s}-regular. Finally,

lim sup
µ→∞

|â(µ)b̂(µ)|µα+β ≤ (lim sup
µ→∞

|â(µ)|µα)(lim sup
µ→∞

|b̂(µ)|µβ) <∞.

The other two conditions in (K3) are shown similarly. Hence, a ∗ b satisfies (K3) with
exponent α+ β, and so (iii) is proved.

Next we show (iv). Suppose a ∈ Kr(α, θa), b ∈ Ks(β, θb), and α > β. For any fixed
ω > 0 we know from (i) that aω ∈ Kr(α, θa) and bω ∈ Ks(β, θb), in particular b̂ω(λ) 6= 0,
Reλ > 0, due to Lemma 2.6.1(ii). So we can define gω(λ) := âω(λ)/b̂ω(λ), Reλ > 0. The
function gω is holomorphic in C+, and by 1-regularity of aω and bω we get

|λg′ω(λ)| =

∣∣∣∣∣λâ′ω(λ)b̂ω(λ)− λâω(λ)b̂′ω(λ)

b̂ω(λ)2

∣∣∣∣∣ ≤
(∣∣∣∣λâ′ω(λ)

âω(λ)

∣∣∣∣+
∣∣∣∣∣λb̂′ω(λ)

b̂ω(λ)

∣∣∣∣∣
)
|gω(λ)|

≤ C1|gω(λ)|, Reλ > 0. (2.21)
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Using (2.19) for aω and bω yields |gω(λ)| ≤ C2|λ + ω|β−α ≤ C2|λ|β−α, Reλ > 0, where
C2 > 0 is independent of λ. In view of (2.21) we thus obtain

|λg′ω(λ)|+ |gω(λ)| ≤ C

|λ|α−β
, Reλ > 0, (2.22)

with C > 0 not depending on λ. Proposition 2.1.1 then allows us to define uω ∈
C(0,∞) ∩ L1, loc(R+) by means of ûω(λ) = gω(λ), Reλ > 0. Estimate (2.2) implies
that uω is of subexponential growth. So we have û(λ)b̂ω(λ) = âω(λ), λ ∈ C+, i.e.
(uω ∗ bω)(t) = aω(t), t > 0. With u(t) := uω(t)eωt, t > 0, we thus arrive at u ∗ b = a.
Observe that the construction of u is independent of the chosen ω > 0. Further, u
is of subexponential growth, for uω possesses this property for each ω > 0. Since
û(λ) = â(λ)/b̂(λ), Reλ > 0, it is clear that u is (θa + θb)-sectorial, even max{θa, θb}-
sectorial provided that Im â(λ)·Im b̂(λ) ≥ 0 for all λ ∈ C+.

We now show min{r, s}-regularity of u. To this purpose we put m = min{r, s} and
ĥ(λ) = 1/b̂(λ), λ ∈ C+. Then 1-regularity of b yields an estimate

|λkĥ(k)(λ)| ≤ C|ĥ(λ)|, λ ∈ C+, (2.23)

for k = 1. Here the constant C does not depend on λ. Let us now assume that (2.23)
holds true for all k ∈ N with 1 ≤ k ≤ n, where n ∈ N and n < m. If we then differentiate
(n + 1) times both sides of the equation b̂ĥ = 1 and use Leibniz’ formula it becomes
apparent that

ĥ(n+1)(λ) = − 1

b̂(λ)

n+1∑
i=1

(
n+ 1
i

)
b̂(i)(λ)ĥ(n+1−i)(λ), Reλ > 0.

Thus, by hypothesis and m-regularity of b,

|λn+1ĥ(n+1)(λ)| ≤
n+1∑
i=1

(
n+ 1
i

) ∣∣∣∣∣λib̂(i)(λ)

b̂(λ)

∣∣∣∣∣ ∣∣∣λn+1−iĥ(n+1−i)(λ)
∣∣∣ ≤ C1|ĥ(λ)|

for all λ ∈ C+, with C1 not depending on λ. So, induction over n ≤ m establishes (2.23)
for all k ≤ m. Using this fact and m-regularity of a we can argue as in the proof of (iii)
(cp. (2.20)) to see that u is m-regular.

The function u also fulfills property (K3) with exponent α − β. In fact, we have
lim infµ→0 |û(µ)| > 0 by assumption. Moreover, owing to a1 ∈ Kr(α, θa), b1 ∈ Ks(β, θb),
and (2.19), we have

lim sup
µ→∞

∣∣∣∣∣ â(µ)

b̂(µ)

∣∣∣∣∣µα−β = lim sup
µ→∞

∣∣∣∣∣ â(µ+ 1)(µ+ 1)α

b̂(µ+ 1)(µ+ 1)β

∣∣∣∣∣ <∞.

Likewise we see lim infµ→∞ |û(µ)|µα−β > 0. Hence, the kernel c := u possesses all
properties claimed in (iv). Uniqueness follows from the unique inverse of the Laplace
transform. The proof of (iv) is complete.

Our next aim is to show (v). Suppose a ∈ Kr(α, θa), ω, α > 0, and θa < π. Further
fix an arbitrary η > 0. Due to the last assumption there exists a constant c > 0 not
depending on λ such that

|1 + ωâ(λ)| ≥ c, Reλ > 0. (2.24)
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Letting gη(λ) = âη(λ)/(1 + ωâη(λ)), Reλ > 0, we thus obtain |gη(λ)| ≤ C0|λ|−α for all
λ ∈ C+, where C0 > 0 is independent of λ. Here, we also made use of (2.19) for the
kernel aη. Observe that

λg′η(λ) = gη(λ)
λâ′η(λ)
âη(λ)

· 1
1 + ωâη(λ)

, Reλ > 0.

Thanks to (2.24) and 1-regularity of aη, we therefore get an estimate

|λg′η(λ)|+ |gη(λ)| ≤ C

|λ|α
, Reλ > 0, (2.25)

which, together with α > 0 and holomorphy of gη in C+, implies existence of uη ∈
C(0,∞) ∩ L1, loc(R+) satisfying ûη(λ) = gη(λ), Reλ > 0, by Proposition 2.1.1. (2.2)
entails that uη is of subexponential growth. By inversion of the Laplace transform we
then obtain uη + ωaη ∗ uη = aη, hence u+ ωa ∗ u = a, where u(t) := uη(t)eηt, t > 0. As
in the proof of (iv), we see that the construction of u is independent of η > 0, and that
u is of subexponential growth. From û = â/(1 + ωâ) and ω > 0 one deduces that u is
θa-sectorial. Furthermore, the function h(λ) := 1 + ωâ(λ) defined on C+ satisfies (2.23)
with a suitable constant C > 0 for k = 1, . . . , r. In fact,

|λkĥ(k)(λ)| = ωk|λkâ(k)(λ)| ≤ C|â(λ)| ≤ C|ĥ(λ)|
∣∣∣∣ 1
ω + 1/â(λ)

∣∣∣∣ ≤ C1|ĥ(λ)|

for all λ ∈ C+ and k = 1, . . . , r, in virtue of θa < π and r-regularity of a. By the
considerations in the proof of (iv), that property of h is passed on to the function
h̄(λ) := 1/h(λ), λ ∈ C+, which is well-defined in view of (2.24). Then û = âh̄, and as
above, with the aid of Leibniz’ formula, we see that u is r-regular. Concerning (K3), the
assumption ζ := lim infµ→0 |â(µ)| > 0 implies lim infµ→0 |û(µ)| > 0, since

lim inf
µ→0

|û(µ)| ≥ lim inf
µ→0

(ω + |1/â(µ)|)−1 = (ω + 1/ζ)−1.

Besides, by (2.24), lim supµ→∞ |â(µ)|µα <∞, and (2.19) applied to a1, we have

lim sup
µ→∞

|û(µ)|µα ≤ c−1 lim sup
µ→∞

|û(µ)|µα <∞,

as well as

lim inf
µ→∞

|û(µ)|µα ≥ lim inf
µ→∞

(µ+ 1)α

ω + |1/â(µ+ 1)|
≥ lim inf

µ→∞

(µ+ 1)α

ω + C(µ+ 1)α
> 0.

Hence, the kernel ξ := u satisfies ξ + ωa ∗ ξ = a and belongs to Kr(α, θa). Uniqueness
follows again from the unique inverse of the Laplace transform. Thus (v) is shown.

It remains to prove (vi). Suppose a ∈ Kr(α, θa) ∩ L1(R+), ω > 0, and ε :=
ω|a|L1(R+) < 1. We proceed as in the previous part. Fix an arbitrary η > 0 and
define gη(λ) := âη(λ)/(1 − ωâη(λ)), Reλ > 0. This time the assumption ε < 1 ensures
that the denominator in the definition of gη is bounded away from zero. Using this and
1-regularity of aη yields (2.25) in a similar fashion as above. With the aid of Proposi-
tion 2.1.1, existence of u ∈ L1, loc(R+) with u − ωa ∗ u = a can then be seen. By the
same line of arguments as in the previous part one further shows that u is r-regular.
Validity of the conditions in (K3) with exponent α can be proved for u similarly as
above. By elementary trigonometry, |arg (1 − ωâ(λ))| ≤ arcsin(ε) for all λ ∈ C+, i.e.
u is (θa + arcsin(ε))-sectorial. Last but not least, u ∈ L1(R+) follows from ε < 1 and
a ∈ L1(R+) by the Paley-Wiener theorem. Hence, ξ := u possesses all properties claimed
in (vi), uniqueness being evident as above. �
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2.7 Evolutionary integral equations

Let X be a Banach space, A a closed linear, but in general unbounded operator in X
with dense domain D(A), and a ∈ L1, loc(R+) a scalar kernel of subexponential growth
which is not identically zero. We consider the Volterra equation

u(t) +
∫ t

0
a(t− s)Au(s) ds = f(t), t ≥ 0, (2.26)

where f : R+ → X is a given function, strongly measurable and locally integrable, at
least. Observe that in case a(t) ≡ 1 and f differentiable, (2.26) is equivalent to the
Cauchy problem

u̇(t) +Au(t) = ḟ(t), t ≥ 0, u(0) = f(0).

Following Prüss [66] (see also [63, Def. 3.1]), we call (2.26) parabolic if â(λ) 6= 0 for
Reλ > 0, −1/â(λ) ∈ ρ(A), and there is a constant M > 0 such that

|(I + â(λ)A)−1| ≤M for Reλ > 0.

If A belongs to the class S(X) with spectral angle φA, and a is θa-sectorial, then (2.26)
is parabolic provided that θA + φA < π, cf. [63, Prop. 3.1].

An important property of parabolic Volterra equations consists in that they admit
bounded resolvents whenever the kernel a is 1-regular, see [63, Thm 3.1]. By a resolvent
for (2.26) we mean a family {S(t)}t≥0 of bounded linear operators in X which satisfy
the following conditions:

(S1) S(t) is strongly continuous on R+ and S(0) = I;
(S2) S(t)D(A) ⊂ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A), t ≥ 0;
(S3) S(t)x+A(a ∗ Sx)(t) = x, for all x ∈ X, t ≥ 0.

(S3) is called resolvent equation, cf. [63, Def. 1.3, Prop. 1.1]. One can show that (2.26)
admits at most one resolvent, and if it exists, then (2.26) has a unique mild solution u
represented by the variation of parameters formula

u(t) =
d

dt

∫ t

0
S(t− s)f(s) ds, t ≥ 0, (2.27)

at least for such f for which (2.27) is meaningful, see [63, Section 1.1 and 1.2].

2.8 Volterra operators in Lp

This paragraph looks at convolution operators in Lp which are associated to a K-kernel.
After stating two fundamental theorems from the monograph Prüss [63] on the inver-
sion of the convolution in Lp(R;X), we will consider restrictions of it to Lp(J ;X) and
use them to introduce equivalent norms for the vector-valued Bessel-potential spaces
Hα
p (J ;X). We will also study operators of the form (I − a∗) in these spaces. Such

operators occur in connection with transformations of Volterra equations.
For J = [0, T ] and J = R+, we identify in the sequel Lp(J ;X) with the subspace

{f ∈ Lp(R;X) : supp f ⊆ R+} of Lp(R;X).
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Theorem 2.8.1 (Prüss [63, Thm. 8.6]) Suppose X belongs to the class HT , p ∈
(1,∞), and let a ∈ L1, loc(R+) be of subexponential growth. Assume that a is 1-regular
and θ-sectorial, where θ < π. Then there is a unique operator B ∈ S(Lp(R;X)) such
that

(Bf )̃ (ρ) =
1

â(iρ)
f̃(ρ), ρ ∈ R, f̃ ∈ C∞0 (R \ {0};X). (2.28)

Moreover, B has the following properties:

(i) B commutes with the group of translations;

(ii) (µ+B)−1Lp(R+;X) ⊂ Lp(R+;X) for each µ > 0, i.e. B is causal;

(iii) B ∈ BIP(Lp(R;X)), and θB = φB = θa, where

θa = sup{|arg â(λ)| : Reλ > 0}; (2.29)

(iv) σ(B) = {1/â(iρ) : ρ ∈ R \ {0}}.

The next theorem provides information about the domain of the operator B.

Proposition 2.8.1 (Prüss [63, Cor. 8.1]) Suppose X belongs to the class HT , p ∈
(1,∞). Assume a ∈ K1(α, θ) with θ < π, and let B be defined by (2.28). Then D(B) =
Hα
p (R;X).

Here Hα
p (R;X) := D(Bα/2

0 ), α ∈ R+, where B0 = −(d2/dt2) ∈ BIP(Lp(R;X)), cf. [63,
p. 226].

Suppose the assumptions of Proposition 2.8.1 hold. Let J = [0, T ] or J = R+. We put
Hα
p (J ;X) = {f |J : f ∈ Hα

p (R;X)} and endow this space with the norm |f |Hα
p (J ;X) =

inf{|g|Hα
p (R;X) : g|J = f}. We further introduce the subspace 0H

α
p (J ;X) by means

of 0H
α
p (J ;X) = {f |J : f ∈ Hα

p (R;X) and supp f ⊆ R+}. Define then the operator
B ∈ S(Lp(J ;X)) as the restriction of the operator B constructed in Theorem 2.8.1 to
Lp(J ;X). This makes sense in virtue of causality. In fact, we have

D(B) = D(B|Lp(J ;X)) = {f ∈ Lp(J ;X) ∩ D(B) : Bf ∈ Lp(J ;X)}
= {f ∈ Lp(J ;X) ∩Hα

p (R;X) : Bf ∈ Lp(J ;X)}
= {f |J : f ∈ Hα

p (R;X), supp f ⊆ R+, Bf ∈ Lp(R;X), and supp Bf ⊆ R+}
= {f |J : f ∈ Hα

p (R;X) and supp f ⊆ R+}
= 0H

α
p (J ;X),

the equals sign before the last following from the causality of B. Assuming in addition
a ∈ L1(R+) in case J = R+, by Young’s inequality, the operator B is invertible and
B−1w = a ∗ w for all w ∈ Lp(J ;X). From Theorem 2.8.1 we further see that B ∈
BIP(Lp(J ;X)) and θB ≤ θB = θa. We summarize these observations in the subsequent
corollary.

Corollary 2.8.1 Let X be a Banach space of class HT , p ∈ (1,∞), and J = [0, T ] be a
compact interval or J = R+. Suppose a ∈ K1(α, θ) with θ < π, and assume in addition
a ∈ L1(R+) in case J = R+. Then the restriction B := B|Lp(J ;X) of the operator B
constructed in Theorem 2.8.1 to Lp(J ;X) is well-defined. The operator B belongs to
the class BIP(Lp(J ;X)) with power angle θB ≤ θB = θa and is invertible satisfying
B−1w = a ∗ w for all w ∈ Lp(J ;X). Moreover D(B) = 0H

α
p (J ;X).
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Example 2.8.1 For J = [0, T ] and aα(t) = tα−1/Γ(α), t > 0, α ∈ (0, 1), the operator
B in Corollary 2.8.1 takes the form

Bu(t) =
d

dt

∫ t

0
a1−α(t− s)u(s) ds, t > 0, u ∈ 0H

α
p (J ;X),

thus coincides with (d/dt)α, the derivation operator of (fractional) order α. The function
Bu is called the fractional derivative of u of order α.

We point out that Corollary 2.8.1 will prove extremely useful in establishing maximal
Lp-regularity results for parabolic Volterra equations. On the one hand it describes
precisely the mapping properties of the convolution operators associated to a K-kernel,
on the other hand it enables us to apply the Dore-Venni theorem to operator sums in
Lp(J ;X) which involve an inverse convolution operator B.

We next show how Volterra operators can be used to introduce equivalent norms for
the vector-valued Bessel-potential spaces Hα

p (J ;X). Suppose we are in the situation of
Corollary 2.8.1, where we restrict ourselves to the case J = [0, T ]. Assume further that
α ∈ (0, 2) \ {1/p, 1 + 1/p} and let µ > 0. For f ∈ Hα

p (J ;X), we put with some abuse of
language

|f |(a,µ)
Hα
p (J ;X) =


|Bf |Lp(J ;X) :α ∈ (0, 1

p)
|B(f − f(0))|Lp(J ;X) + µ|f(0)|X :α ∈ (1

p , 1 + 1
p)

|B(f − f(0)− tḟ(0))|Lp(J ;X) + µ|f(0)|X + µ|ḟ(0)|X :α ∈ (1 + 1
p , 2).

(2.30)
This is a well-defined expression in view of Sobolev’s embedding theorem. Observe that
| · |(a,µ)

Hα
p (J ;X) enjoys the properties of a norm for the space Hα

p (J ;X). To verify that it
is equivalent to the usual norm | · |Hα

p (J ;X) we can employ Corollary 2.8.1 and Sobolev
embeddings. Indeed, if α > 1 + 1/p and f ∈ Hα

p (J ;X), we may estimate

|f |Hα
p (J ;X) ≤ |f − f(0)− tḟ(0)|Hα

p (J ;X) + |f(0)|Hα
p (J ;X) + |tḟ(0)|Hα

p (J ;X)

= |a ∗ B(f − f(0)− tḟ(0))|Hα
p (J ;X) + |{t 7→ 1}|Hα

p (J)|f(0)|X
+|{t 7→ t}|Hα

p (J)|ḟ(0)|X
≤ c1 (|B(f − f(0)− tḟ(0))|Lp(J ;X) + µ|f(0)|X + µ|ḟ(0)|X)

= c1 |f |(a,µ)
Hα
p (J ;X),

with c1 not depending on f . Conversely, by

|f(0)|X + |ḟ(0)|X ≤ |f |C1(J ;X) ≤ CSob|f |Hα
p (J ;X) (2.31)

and

|B(f − f(0)− tḟ(0))|Lp(J ;X) ≤ c|f − f(0)− tḟ(0)|Hα
p (J ;X)

≤ c(|f |Hα
p (J ;X) + |f(0)|Hα

p (J ;X) + |tḟ(0)|Hα
p (J ;X))

≤ c(|f |Hα
p (J ;X) + c̃(|f(0)|X + |ḟ(0)|X)),

we also get an inequality of the form

|f |(a,µ)
Hα
p (J ;X) ≤ c2 |f |Hα

p (J ;X),
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where c2 does not depend on f .
To see the equivalence of the norms for α < 1 + 1/p, replace the non-existing traces

in the above estimates with zero and use Hα
p (J ;X) ↪→ C(J ;X) instead of (2.31), if

α ∈ (1/p, 1 + 1/p). We thus have proved

Corollary 2.8.2 Let the assumptions of Corollary 2.8.1 hold. Let J = [0, T ], µ > 0,
and assume that α ∈ (0, 2) \ {1/p, 1 + 1/p}. Then (2.30) defines an equivalent norm for
Hα
p (J ;X).

We continue to consider the setting of Corollary 2.8.1, where J = [0, T ] and α ∈ (0, 2) \
{1/p, 1 + 1/p}.

Let us additionally assume that a ∈ L1(R+) with ν := |a|L1(R+) < 1, and define the
operator Ta in Lp(J ;X) by

Taf = f − a ∗ f, f ∈ Lp(J ;X). (2.32)

By Young’s inequality,

|a ∗ f |Lp(J ;X) ≤ |a|L1(J)|f |Lp(J ;X) ≤ ν|f |Lp(J ;X), f ∈ Lp(J ;X),

i.e. Ta ∈ B(Lp(J ;X)) and |Ta|B(Lp(J ;X)) ≤ 1 + ν. Since ν < 1, we also see that Ta is
invertible with |T −1

a |B(Lp(J ;X)) ≤ 1/(1− ν).
Suppose now that f ∈ Y := Hα

p (J ;X). Then trivially f ∈ Lp(J ;X), and thus
Corollary 2.8.1 yields Taf ∈ Y . Assuming µ ≥ ν−1T 1/p max{1, T/(1 + p)1/p} in (2.30),
we obtain in the case α > 1 + 1/p,

|a ∗ f |(a,µ)
Y = |B(a ∗ f)|Lp(J ;X) = |f |Lp(J ;X)

≤ |f − f(0)− tḟ(0)|Lp(J ;X) + |f(0)|Lp(J ;X) + |tḟ(0)|Lp(J ;X)

≤ |a ∗ B(f − f(0)− tḟ(0))|Lp(J ;X) + T
1
p |f(0)|X + (

T p+1

p+ 1
)

1
p |ḟ(0)|X

≤ |a|L1(J)|B(f − f(0)− tḟ(0))|Lp(J ;X) + µν(|f(0)|X + |ḟ(0)|X)

≤ ν |f |(a,µ)
Y .

In the same way, we see that |a ∗ f |(a,µ)
Y ≤ ν|f |(a,µ)

Y is valid for α < 1 + 1/p. This
shows Ta ∈ B(Y ) and |Ta|B(Y ) ≤ 1 + ν, where the operator norm is induced by | · |(a,µ)

Y ,
which is a norm for Y , due to Corollary 2.8.2. Moreover, in view of ν < 1, it follows
that Ta is invertible in Y and |T −1

a |B(Y ) ≤ 1/(1 − ν). This is also true in the subspace

0Y := 0H
α
p (J ;X). Here (2.30) reduces to |f |(a,µ)

0Y
= |Bf |Lp(J ;X), f ∈ 0Y .

We record these properties of Ta in

Corollary 2.8.3 Let the assumptions of Corollary 2.8.1 hold. Let J = [0, T ], and as-
sume α ∈ (0, 2) \ {1/p, 1 + 1/p}. Suppose further a ∈ L1(R+) and ν := |a|L1(R+) < 1.
Then the operator Ta defined by (2.32) is an isomorphism of the spaces Y = Lp(J ;X),
Hα
p (J ;X), and 0H

α
p (J ;X), satisfying

|Ta|B(Y ) ≤ 1 + ν, |T −1
a |B(Y ) ≤

1
1− ν

,

where in case Y = Hα
p (J ;X) or 0H

α
p (J ;X), the operator norm is induced by (2.30) with

µ ≥ ν−1T 1/p max{1, T/(1 + p)1/p}.
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We conclude this section by illustrating the usefulness of the operators T in connection
with transformations of Volterra equations.

Let X be a Banach space of class HT , p ∈ (1,∞), and J = [0, T ] be a compact
interval. We consider in X the Volterra equation

u+ a ∗Au = f, t ∈ J, (2.33)

where A is a closed linear operator in X with domain D(A), and the kernel a is assumed
to belong to the class a ∈ Kr(α, θa) for some r ∈ N, α ≥ 0, and 0 < θa < θ. Given λ > 0,
our aim is to transform (2.33) in such a way that the operator A is shifted to λ+A.

To this end, we choose an ω ≥ 0 such that aω defined by aω(t) = a(t)e−ωt, t ≥ 0,
is an L1(R+)-function and ν := λ|aω|L1(R+) < 1, as well as θν := θa + arcsin(ν) < θ.
According to Lemma 2.6.2, we have aω ∈ Kr(α, θa), and there is a unique kernel b ∈
Kr(α, θν) ∩ L1(R+) such that b − λb ∗ aω = aω. Further, the kernel λaω fulfills the
assumptions of Corollary 2.8.3, hence the operator T := Tλaω := (I − λaω∗) is well-
defined and is an isomorphism of Lp(J ;X), of (0)H

α
p (J ;X), and also of Lp(J ;D(A)).

Observe that aω ∗ g = b ∗ T g for all g ∈ Lp(J ;X). Multiply now (2.33) by e−ωt, put
uω(t) = u(t)e−ωt as well as fω(t) = f(t)e−ωt and add a zero-term to obtain

uω − λaω ∗ uω + aω ∗ (λ+A)uω = fω, t ∈ J. (2.34)

If we set v = T uω, then b ∗ v = aω ∗ uω and so (2.34) transforms to

v + b ∗ (λ+A)v = fω, t ∈ J. (2.35)

This equation is equivalent to (2.33). The kernel b enjoys the same properties as a, and
instead of A we have now the shifted operator λ+A.
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Chapter 3

Maximal Regularity for Abstract
Equations

3.1 Abstract parabolic Volterra equations

In this section we study the abstract Volterra equation

u+ a ∗Au = f, t ≥ 0, (3.1)

on a Banach space X. Here A is an R-sectorial operator in X, the kernel a belongs to the
class K1(α, θa) with α ∈ (0, 2), and we assume the parabolicity condition θa + φRA < π.
Our aim is to find conditions on the given function f which are necessary and sufficient
for the existence of a unique solution u of (3.1) in the space

Hα+κ
p (J ;X) ∩Hκ

p (J ;DA),

where J is R+ or a compact time-interval [0, T ], DA denotes the domain of A equipped
with the graph norm of A, and κ is a real parameter belonging to the interval [0, 1/p).

We begin with the special case of vanishing traces at t = 0.

Theorem 3.1.1 Let X be a Banach space of class HT , p ∈ (1,∞), and A an R-sectorial
operator in X with R-angle φRA. Further let J be R+ or a compact time-interval [0, T ].
Suppose that a belongs to K1(α, θa) with α ∈ (0, 2) and that in addition a ∈ L1(R+)
in case J = R+. Further let κ ∈ [0, 1/p), α + κ /∈ {1/p, 1 + 1/p}, and suppose the
parabolicity condition θa + φRA < π.

Then (3.1) has a unique solution in Z := 0H
α+κ
p (J ;X) ∩ Hκ

p (J ;DA) if and only if
f ∈ 0H

α+κ
p (J ;X).

Proof. Suppose that u ∈ Z is a solution of (3.1). This clearly implies Au ∈ Hκ
p (J ;X) =

0H
κ
p (J ;X). From Corollary 2.8.1 we then deduce that a ∗ Au ∈ 0H

α+κ
p (J ;X). This,

together with u ∈ 0H
α+κ
p (J ;X), entails f ∈ 0H

α+κ
p (J ;X). Hence, the necessity part is

established.
To prove the converse, we first consider the case κ = 0. Suppose f ∈ 0H

α
p (J ;X)

is given. From Section 2.7 we know that equation (3.1) is parabolic and admits a
resolvent S(·), with the aid of which the mild solution u of (3.1) can be represented
by the variation of parameters formula (2.27). According to Corollary 2.8.1 it makes
sense to define B ∈ S(Lp(J ;X)) as the inverse convolution operator associated with the
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kernel a. The operator B is invertible and we have B−1w = a ∗ w for all w ∈ Lp(J ;X).
Furthermore, D(B) = 0H

α
p (J ;X) so that we may set g = Bf . Then g ∈ Lp(J ;X) and

u(t) =
d

dt
(S ∗ (a ∗ g))(t), t ∈ J.

Let EJ : Lp(J ;X) → Lp(R;X) denote the operator of extension by 0, i.e.

(EJh)(t) = h(t), t ∈ J, (EJ)(t) = 0, t 6∈ J,

let PJ : Lp(R;X) → Lp(J ;X) be the restriction to J , and define the operator-valued
kernel K by means of K(t) = (S ∗ a)(t)χ[0,∞)(t), t ∈ R. Then the solution u can be
written in terms of a convolution operator on Lp(R;X):

u = PJ
d

dt
(K ∗ EJg). (3.2)

In order to show that Au ∈ Lp(J ;X), we study the symbol of the operator (A d
dtK∗),

which reads

M(ρ) = A

(
1

â(iρ)
+A

)−1

, ρ ∈ R, ρ 6= 0. (3.3)

By Lemma 2.6.1, for each ρ 6= 0, â(iρ) := limλ→iρ â(λ) exists and does not vanish.
Besides, â(i·) ∈W 1

∞, loc(R\{0}), and the sectoriality of a implies |arg(â(iρ))| ≤ θa for all
ρ 6= 0. The idea is to apply the Mikhlin multiplier theorem in the operator-valued version,
Theorem 2.5.1, to the symbol M . But it is not clear that M ∈ C1(R\{0};B(Lp(J ;X))),
so we introduce the sequence of symbols

Mn(ρ) := A

(
1

â((i+ 1
n)ρ)

+A

)−1

, ρ ∈ R, n ∈ N.

Since A is R-sectorial with R-angle φRA < π − θa, we deduce that R({Mn(ρ) : ρ ∈
R \ {0}}) ≤ κ <∞ for all n ∈ N with κ not depending on n. From

ρM ′
n(ρ) =

(i+ 1
n)ρâ′((i+ 1

n)ρ)
â((i+ 1

n)ρ)2

(
1

â((i+ 1
n)ρ)

+A

)−1

Mn(ρ), ρ ∈ R,

using 1-regularity of a, R-sectoriality of A, and Kahane’s contraction principle (see [29,
Lemma 3.5]), we obtain

R({ρM ′
n(ρ) : ρ ∈ R \ {0}}) ≤ Cκ(1 + κ),

for all n with C not depending on n. By Theorem 2.5.1, it follows that the operators Tn
defined by

Tnφ = F−1(MnFφ), for all Fφ ∈ D(R;X),

are uniformly Lp -bounded, i.e.

|Tn|B(Lp(R;X)) ≤ κ0, n ∈ N.

Furthermore we have, for all ρ 6= 0, limn→∞Mn(ρ) = M(ρ) and |Mn(ρ) − M(ρ)| ≤
2κ. Thus, by Lebesgue’s dominated convergence theorem, we conclude Mn → M in
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L1, loc(R;B(X)) as n→∞. It follows now by an approximation result, cp. Clément and
Prüss [24, p. 6] or [29, Proposition 3.18], that (A d

dtK∗), which corresponds to the symbol
M , is a bounded linear operator on Lp(R;X) with |A d

dtK∗)|B(Lp(R;X)) ≤ κ0. Since EJ
and PJ are bounded as well we see that Au ∈ Lp(J ;X). As in the necessity part, this
implies a ∗Au ∈ 0H

α
p (J ;X), i.e. u = f − a ∗Au ∈ 0H

α
p (J ;X). Hence u ∈ Z.

We now consider the case κ ∈ (0, 1/p). Suppose that f ∈ 0H
α+κ
p (J ;X). Putting

b(t) = e−ttκ−1, t > 0, yields b ∈ K1(κ, κπ/2) ∩ L1(R+). Let Bκ be the operator con-
structed in Corollary 2.8.1 associated with the kernel b. Then Bκf ∈ 0H

α
p (J ;X). Suf-

ficiency being already established for κ = 0, we may define v ∈ 0H
α
p (J ;X) ∩ Lp(J ;DA)

as the solution of
v + a ∗Av = Bκf, t ≥ 0.

Since Bκ commutes with both A and the Volterra operator corresponding to the kernel
a, we see that u := b ∗ v solves (3.1) and lies in Z. �

Remarks 3.1.1 (i) Although not explicitly stated in Theorem 3.1.1, we have an esti-
mate of the form

C−1|f |
0H

α+κ
p (J ;X) ≤ |u|Z ≤ C|f |

0H
α+κ
p (J ;X), f ∈ 0H

α+κ
p (J ;X),

where C is a positive constant not depending on f . This follows immediately from
the above proof. Note that the subsequent theorems on linear problems have to be
understood in the same sense: whenever necessary resp. sufficient conditions are stated
in terms of regularity classes, this, by convention, means that the corresponding a priori
estimates hold true.

(ii) Observe that the statement of Theorem 3.1.1 remains true if κ ≥ 1/p and Z is
defined by 0H

α+κ
p (J ;X) ∩ 0H

κ
p (J ;DA).

(iii) In the case of a compact interval J , one can weaken the assumption on A. In
view of the transformation property of (3.1) discussed at the end of Section 2.8, it suffices
to know that µ+A ∈ RS(X) with θa + φRµ+A < π for some µ ≥ 0.

(iv) If κ = 0, equation (3.1) is equivalent to Bu+Au = Bf in the space Y := Lp(J ;X),
where A stands for the natural extension of A to Y . If one additionally assumes that
A ∈ BIP(X) and θA + θa < π, the assertion of Theorem 3.1.1 can also be proved by
means of the Dore-Venni theorem, Theorem 2.3.1. This approach has been used in Prüss
[63, Thm. 8.7].

(v) In the case J = R+ there is a variant of Theorem 3.1.1 which does not need
the assumption a ∈ L1(R+). Instead one assumes that A is invertible and that f in
(3.1) is of the form f = a ∗ g. In this situation, existence of a unique solution of
(3.1) in Z is equivalent to the condition g ∈ 0H

κ
p (R+;X). In fact, if g ∈ Lp(R+;X),

then, as seen in the above proof, we have Au ∈ Lp(R+;X), which by invertibility of A
entails u ∈ Lp(R+;X). From Bu + Au = g, we then deduce that Bu ∈ Lp(R+;X). So
u ∈ 0H

α
p (R+;X)∩Lp(R+;DA). The converse direction is trivial, and the case κ > 0 can

be reduced to the case κ = 0 as above.
(vi) The idea to use Theorem 2.5.1 to show that the linear operator corresponding to

the symbol (3.3) is bounded in Lp(R;X) goes back to Clément and Prüss [24]. However,
they do not give a detailed proof including the approximation argument, by the aid of
which one can surmount the technical difficulty consisting in the fact that Theorem 2.5.1
cannot be applied directly to (3.3).

We now turn our attention to situations where the function f or its derivative ḟ , if it
exists, has a non-vanishing trace at t = 0. If f ∈ Hα+κ

p (J ;X) and α + κ > 1/p, then
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x := f(0) ∈ X exists and we are led to ask under what conditions on x ∈ X the solution
of the problem

u(t) + (a ∗Au)(t) = x, t ≥ 0, (3.4)

lies in the space Z = Hα+κ
p (J ;X) ∩Hκ

p (J ;DA). In case α + κ > 1 + 1/p we even have
to take into account the trace y := ḟ(0). Thus we also have to examine the problem

u(t) + (a ∗Au)(t) = ty, t ≥ 0, (3.5)

with given y ∈ X.
Observe that the solution u of (3.4) is given by u(t) = S(t)x, t ≥ 0, while that of (3.5)

equals (1 ∗ S)(·)y. This follows immediately from the variation of parameters formula
(2.27).

The next theorem gives conditions on the traces which ensure that the solutions of
(3.4) and (3.5), respectively, are contained in Z. Take notice of the fact that here the
operator A is only assumed to be sectorial.

Theorem 3.1.2 Let X be a Banach space of class HT , J = [0, T ] a compact time-
interval, p ∈ (1,∞), and A a sectorial operator in X with spectral angle φA. Suppose
that κ ∈ [0, 1/p), a ∈ K1(α, θa) with α ∈ (1/p− κ, 2), α+ κ 6= 1 + 1/p. Further suppose
that θa + φA < π. Then

x ∈ DA(1 + κ
α −

1
pα , p) ⇒ S(·)x ∈ Z = Hα+κ

p (J ;X) ∩Hκ
p (J ;DA), (3.6)

and if α+ κ > 1 + 1/p,

y ∈ DA(1 + κ
α −

1
α −

1
pα , p) ⇒ (1 ∗ S)(·)y ∈ Z. (3.7)

Proof. We first show (3.6). In case 0 < κ < 1/p we let Bκ ∈ S(Lp(J ;X)) be the inverse
convolution operator associated with the kernel b(t) = tκ−1/Γ(κ), t > 0. If κ = 0, we set
Bκ = I. Suppose x ∈ D(A). Letting u(·) = S(·)x our goal is to show that |BκAu|Lp(J ;X)

is bounded above by the DA(1 + κ/α − 1/pα, p)-norm of x. Since D(A) is densely
embedded into DA(1 + κ/α − 1/pα, p), the assertion then follows by an approximation
argument.

To establish the desired estimate we use the representation of the resolvent S via
Laplace transform. Recall that Ŝ is given by

Ŝ(λ) =
1
λ

(1 + â(λ)A)−1 , Reλ > 0.

Let Γ denote a contour γ + i(−∞,∞) with some γ > 0. We have

t̂BκS(λ) = − d

dλ
B̂κS(λ)

= − d

dλ

(
λκ · 1

λ
(1 + â(λ)A)−1

)
=

1− κ

λ2−κ (1 + â(λ)A)−1 +
1

λ1−κ â
′(λ)A (1 + â(λ)A)−2 .

With

φ(λ) = 1− κ+
λâ′(λ)
â(λ)

· â(λ)A (1 + â(λ)A)−1 , Reλ > 0, (3.8)
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and
Gκ(λ) = λκA(1 + â(λ)A)−1, Reλ > 0, (3.9)

we then obtain
(tBκAS)̂ (λ) =

φ(λ)
λ2

Gκ(λ), Reλ > 0.

Inversion of the Laplace transform now yields for t > 0

tBκAS(t)x =
1

2πi

∫
Γ
eλt(tBκAS)̂ (λ)x dλ

=
1
2π

∫ ∞

−∞
e(γ+iρ)t φ(γ + iρ)Gκ(γ + iρ)x

dρ

(γ + iρ)2

=
1
2π

∫ ∞

−∞
eγt+iσ φ(γ + i

σ

t
)Gκ(γ + i

σ

t
)x

t dσ

(γt+ iσ)2
,

where we used the change of variables σ = tρ. By 1-regularity of a and parabolicity of
(3.4) we get a bound |φ(λ)| ≤ C, for all Reλ > 0. Using this estimate and choosing
γ = 1

t we obtain

|BκAS(t)x|X ≤ C

∫ ∞

−∞
|Gκ((1 + iρ)/t)x|X

dσ

1 + σ2
, t > 0.

Taking the Lp-norm on the interval J = [0, T ] and applying the continuous version of
Minkowski’s inequality yields

|BκAS(·)x|Lp(J ;X) ≤ C

∫ ∞

−∞
(
∫ T

0
|Gκ((1 + iρ)/t)x|pX dt)

1/p dσ

1 + σ2
.

Now we employ the change of variables s =
√

1 + σ2/t for the inner integral and enlarge
its interval of integration to get

|BκAS(·)x|Lp(J ;X) ≤ C

∫ ∞

−∞
(
∫ ∞

1
T

(s−
2
p |Gκ( (1+iσ)s√

1+σ2
)x|X)p ds)1/p

dσ

(1 + σ2)1−
1
2p

≤ C sup
σ∈R

{(
∫ ∞

1
T

(s−
1
p |Gκ( (1+iσ)s√

1+σ2
)x|X)p

ds

s
)1/p}.

This shows that BκAS(·)x ∈ Lp(J ;X) whenever

η := sup
σ∈R

{(
∫ ∞

1
T

(sκ−
1
p |â( (1+iσ)s√

1+σ2
)|−1|A(1/â( (1+iσ)s√

1+σ2
) +A)−1x|X)p

ds

s
)1/p} <∞. (3.10)

Now we have by the resolvent equation

A

(
1

â(λ)
+A

)−1

= A(|λ|α +A)−1 +

+
(
|λ|α − 1

â(λ)

)(
1

â(λ)
+A

)−1

A(|λ|α +A)−1,

for Reλ > 0, thus using the parabolicity of (3.4)

|A(1/â(λ) +A)−1x| ≤ |A(|λ|α +A)−1x|+
+| |λ|αâ(λ)− 1| |(1 + â(λ)A)−1| |A(|λ|α +A)−1x|

≤ (C1 + C2|â(λ)| |λ|α) |A(|λ|α +A)−1x|,
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with two positive constants C1, C2 not depending on λ. Therefore, we can estimate η as
follows.

η ≤ C1 sup
σ∈R

{(
∫ ∞

1
T

(sκ−
1
p |â( (1+iσ)s√

1+σ2
)|−1|A(sα +A)−1x|X)p

ds

s
)1/p}+

+C2(
∫ ∞

1
T

(sα+κ− 1
p |A(sα +A)−1x|X)p

ds

s
)1/p

=: η1 + η2.

As for η2, by employing the change of variables r = sα we get

η2 ≤ C2(
∫ ∞

( 1
T

)α
(r1+ κ

α
− 1
pα |A(r +A)−1x|X)p

dr

rα
)1/p ≤ C̃2|x|DA(1+ κ

α
− 1
pα
, p).

Concerning η1, there exists C3 > 0 independent of λ such that |â(|λ|) | ≤ C3|â(λ)|, for
all Reλ ≥ 0, λ 6= 0, see Lemma 2.6.1. Thus,

η1 ≤ C1C3(
∫ ∞

1
T

(sκ−
1
p |â(s)|−1|A(sα +A)−1x|X)p

ds

s
)1/p.

Exploiting the assumption lim infµ→∞ | â(µ)|µα > 0 for a bound |â(s)| sα ≥ C4 > 0,
1/T ≤ s <∞, we deduce that

η1 ≤
C1C3

C4
(
∫ ∞

1
T

(sα+κ− 1
p |A(sα +A)−1x|X)p

ds

s
)1/p,

i.e. we have the same expression as above for η2, hence the desired estimate follows.
So if x ∈ DA(1 + κ/α − 1/pα, p), then BκAu ∈ Lp(J ;X), which is equivalent to Au ∈
Hκ
p (J ;X) = 0H

κ
p (J ;X), by Corollary 2.8.1. Applying this once more it follows then that

a ∗Au ∈ 0H
α+κ
p (J ;X), thus u = x− a ∗Au ∈ Hα+κ

p (J ;X). Hence u ∈ Z.
We now prove (3.7). Suppose y ∈ D(A), and put u(·) = (1∗S)(·)y. To show that the

Lp(J ;X)-norm of BκAu can be estimated above by the DA(1+κ/α−1/α−1/pα, p)-norm
of y, we use once more the representation of u via Laplace transform. With

(tBκ(1 ∗ S))ˆ(λ) = − d

dλ
(Bκ(1 ∗ S))̂ (λ) = − d

dλ

(
λκ

λ2
(1 + â(λ)A)−1

)
=

2− κ

λ3−κ (1 + â(λ)A)−1 +
1

λ2−κ â
′(λ)A (1 + â(λ)A)−2

and φ as well as Gκ from above (see (3.8),(3.9)), we have this time

(tBκA(1 ∗ S))ˆ(λ) =
φ(λ) + 1

λ3
Gκ(λ), Reλ > 0.

By repeating all steps from the first part of the proof, we get

|BκAu|Lp(J ;X) ≤ C

∫ ∞

1
T

(sα+κ−1− 1
p |A(sα +A)−1x|X)p

ds

s

= C

∫ ∞

( 1
T

)α
(r1+ κ

α
− 1
α
− 1
pα |A(r +A)−1x|X)p

dr

rα
≤ C̃|y|DA(1+κ/α−1/α−1/pα, p).

So by approximation, we see that y ∈ DA(1 + κ/α − 1/α − 1/pα, p) implies BκAu ∈
Lp(J ;X). As in the first part, we obtain u ∈ Z. �
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Remarks 3.1.2 (i) It is not difficult to see that the second assertion of Theorem 3.1.2
remains true if we allow κ to lie in [1/p, 1 + 1/p).

(ii) Let κ = 0, A be invertible, and assume that the kernel a admits in addition the
estimate C ≤ s−α|â(s)|, s > 0, for some constant C > 0. Then by taking J = R+ in the
above lines and by employing this additional estimate, one obtains the implications

x ∈ DA(1− 1
pα , p) ⇒ S(·)x ∈ Lp(R+;DA), if α > 1

p ;

y ∈ DA(1− 1
α −

1
pα , p) ⇒ (1 ∗ S)(·)y ∈ Lp(R+;DA), if α > 1 + 1

p ,

see also Prüss [64, Theorem 6].
(iii) The proof of Theorem 3.1.2 is inspired by the estimates derived in the proof of

Theorem 6 in Prüss [64].

We next want to show that these conditions on the traces are also necessary. In the
following theorem, again, the operator A is only sectorial. For technical reasons, we
have to assume maximal regularity of the solutions of (3.4) and (3.5), respectively, on
the whole halfline. Later on we shall extend this result to problems on compact time-
intervals where the operator A is R-sectorial.

Theorem 3.1.3 Let X be a Banach space of class HT , p ∈ (1,∞), and A a sectorial
operator in X with spectral angle φA. Suppose that κ ∈ [0, 1/p), a ∈ K1(α, θa) with
α ∈ (1/p−κ, 2), α+κ 6= 1+1/p. Further let ω ≥ 0 and assume that θa+φA < π. Then

e−ω·AS(·)x ∈ Hκ
p (R+;X) ⇒ x ∈ DA(1 + κ

α −
1
pα , p), (3.11)

and if α+ κ > 1 + 1/p,

e−ω·A(1 ∗ S)(·)y ∈ Hκ
p (R+;X) ⇒ y ∈ DA(1 + κ

α −
1
α −

1
pα , p). (3.12)

Proof. The main idea of the proof is to use Proposition 1 in [64], which says that for
every function g in Lp(R+;X), the Laplace transform ĝ(λ) exists for Reλ > 0, and with
p−1 + q−1 = 1 the estimate∫ ∞

0
|ĝ(λ)|pλp−2 dλ ≤ |g|pLp(R+;X)Γ(1/q)p (3.13)

holds true.
We first show implication (3.11). Let Bκ be defined as in the proof of Theorem

3.1.2. Suppose that g(t) := Bκ(e−ωtAS(t)x), t ≥ 0, is contained in Lp(R+;X). Then
g is Laplace transformable, according to the proposition mentioned above. From the
resolvent equation for S(·), S(t)x+(a∗AS)(t)x = x, t ≥ 0, it follows by the convolution
theorem that

ĝ(λ) =
λκ

λ+ ω
A(1 + âω(λ)A)−1x, Reλ > 0.

Here, aω(t) := a(t)e−ωt, t ≥ 0. Therefore, using (3.13) we obtain

η :=
∫ ∞

0
(
λ

1+κ− 1
p

λ+ ω
|A(1 + âω(λ)A)−1x|X)p

dλ

λ
≤ C|g|pLp(R+;X). (3.14)

From Lemma 2.6.2 we know that aω ∈ K1(α, θa). So, in similar manner as in the proof
of Theorem 3.1.2, we can derive the following estimate from the resolvent equation for
A and parabolicity of (3.4):

|A(|λ|α +A)−1x| ≤ (C1 + C2(|âω(λ)| |λ|α)−1) |A(1/âω(λ) +A)−1x|, Reλ > 0,
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with two positive constants C1 and C2. Employing this estimate as well as the inequality
λ/(λ+ ω) ≥ C0 > 0, λ ≥ 1, we deduce that

η ≥ Cp0

∫ ∞

1
(
λ
κ− 1

p

|âω(λ)|
|A(1/âω(λ) +A)−1x|)pdλ

λ

≥ Cp0

∫ ∞

1
(

λ
α+κ− 1

p

C1|âω(λ)|λα + C2
|A(λα +A)−1x|)pdλ

λ
.

We now exploit the assumption lim supµ→∞ |â(µ)|µα < ∞ to get an upper bound
|âω(λ)|λα ≤ C3 <∞, 1 ≤ λ <∞, and thus arrive at

C|g|pLp(R+;X) ≥
∫ ∞

1
(λα+κ− 1

p |A(λα +A)−1x|)pdλ
λ

=
∫ ∞

1
(r1+ κ

α
− 1
pα |A(r +A)−1x|X)p

dr

rα
,

i.e. x ∈ DA(1 + κ/α− 1/pα, p).
The proof of (3.12) is similar. Suppose g(t) := Bκ(e−ωtA(1 ∗ S)(t)x), t ≥ 0, lies in

Lp(R+;X). Then g is Laplace transformable, on account of the proposition mentioned
at the beginning of the proof. Integrating the resolvent equation for S(·) yields with
S1 := 1 ∗ S the relation S1(t)x + (a ∗ AS1)(t)x = tx, t ≥ 0. Thus, by the convolution
theorem, we obtain that

ĝ(λ) =
λκ

(λ+ ω)2
A(1 + âω(λ)A)−1x, Reλ > 0.

Using (3.13) then yields∫ ∞

1
(
λ

1+κ− 1
p

(λ+ ω)2
|A(1 + âω(λ)A)−1x|X)p

dλ

λ
≤ C|g|pLp(R+;X),

in consequence of which we arrive at∫ ∞

1
(λκ−1− 1

p |A(1 + âω(λ)A)−1x|X)p
dλ

λ
≤ C̃|g|pLp(R+;X),

thanks to the inequality λ/(λ+ ω) ≥ C0 > 0, λ ≥ 1. By the same line of conclusions as
in the first part of the proof we then obtain∫ ∞

1
(r1+ κ

α
− 1
α
− 1
pα |A(r +A)−1x|X)p

dr

rα
≤ C̃|g|pLp(R+;X).

Hence x ∈ DA(1 + κ/α− 1/α− 1/pα, p). �

We have now got all important ingredients of the main theorem concerning (3.1) which
reads as follows.

Theorem 3.1.4 Let X be a Banach space of class HT , p ∈ (1,∞), J a compact time-
interval [0, T ] or R+, and A an R-sectorial operator in X with R-angle φRA. Suppose that
a belongs to K1(α, θa) with α ∈ (0, 2) and that in addition a ∈ L1(R+) in case J = R+.
Further let κ ∈ [0, 1/p) and α + κ /∈ {1/p, 1 + 1/p}. Assume the parabolicity condition
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θa + φRA < π. Then (3.1) has a unique solution in Z := Hα+κ
p (J ;X)∩Hκ

p (J ;DA) if and
only if the function f satisfies the subsequent conditions.

(i) f ∈ Hα+κ
p (J ;X);

(ii) f(0) ∈ DA(1 + κ
α −

1
pα , p), if α+ κ > 1/p;

(iii) ḟ(0) ∈ DA(1 + κ
α −

1
α −

1
pα , p), if α+ κ > 1 + 1/p.

Proof. We consider three cases with respect to the sum α+ κ.
Case 1: α + κ < 1/p. Because here Hα+κ

p (J ;X) = 0H
α+κ
p (J ;X), we are in the

situation of Theorem 3.1.1.
Case 2: 1/p < α + κ < 1 + 1/p. We begin with the necessity part. Suppose

that u ∈ Z is a solution of (3.1). Then Au ∈ Hκ
p (J ;X) = 0H

κ
p (J ;X), which entails

a ∗ Au ∈ 0H
α+κ
p (J ;X), thanks to Corollary 2.8.1. Thus f = u+ a ∗ Au ∈ Hα+κ

p (J ;X),
i.e. condition (i) is proved.

To show the second condition we extend u in the case J = [0, T ] to a function v on
R+ such that

v ∈ ZR+ := Hα+κ
p (R+;X) ∩Hκ

p (R+;DA).

If J = R+, we simply set v := u. From a ∈ K1(α, θA), it follows by Lemma 2.6.2
that the kernel a1 defined by a1(t) = a(t)e−t, t ≥ 0, belongs to K1(α, θA), too. Further,
a1 ∈ L1(R+). Thus we deduce that a1∗Av ∈ 0H

α+κ
p (R+;X). Therefore, g := v+a1∗Av ∈

Hα+κ
p (R+;X) as well as g − g(0)e−· ∈ 0H

α+κ
p (R+;X). Define now v1 by means of the

equation v1 + a1 ∗ Av1 = g − g(0)e−t, t ∈ R+. This makes sense owing to Theorem
3.1.1, which also yields v1 ∈ 0H

α+κ
p (R+;X) ∩ Hκ

p (R+;DA). Then v2 := v − v1 ∈ ZR+

is the solution of the equation w + a1 ∗ Aw = g(0)e−t, t ∈ R+. Denoting the resolvent
of (3.1) by S(·) it is not difficult to see that v2(t) = e−tS(t)g(0), t ≥ 0. Consequently,
by Theorem 3.1.3, we get g(0) = v(0) = u(0) = f(0) ∈ DA(1 + κ/α − 1/pα, p). This
establishes condition (ii).

To prove the converse, suppose that the conditions (i) and (ii) are satisfied. Unique-
ness is a direct consequence of Theorem 3.1.1. Concerning existence, we construct a
solution of (3.1) in the following way. If J = [0, T ], we define u1, u2 ∈ Z as the solutions
of the problems w1 + a ∗ Aw1 = f − f(0), t ∈ J , and w2 + a ∗ Aw2 = f(0), t ∈ J ,
respectively. These solutions exist and lie in Z, by virtue of Theorem 3.1.1 and The-
orem 3.1.2. Thus u := u1 + u2 has the desired regularity and solves (3.1). In case
J = R+ let v1 be the solution of w1 + a ∗ Aw1 = f(0), t ∈ [0, 1]. Condition (ii) implies
v1 ∈ Hα+κ

p ([0, 1];X) ∩ Hκ
p ([0, 1];DA), by Theorem 3.1.2. We extend v1 to a function

u1 ∈ Z. Then g := u1 +a∗Au1−f ∈ 0H
α+κ
p (R+;X), and the solution u2 of the problem

w2 + a ∗Aw2 = g, t ∈ R+, lies in Z, thanks to Theorem 3.1.1. Hence, u := u1 + u2 ∈ Z
is a solution of (3.1).

Case 3: α + κ > 1 + 1/p. We first prove the necessity part. Suppose that u ∈ Z is
a solution of (3.1). Then condition (i) can be derived as in the second case. Our next
objective is to show (iii). The idea behind the following argument is a reduction to a
situation of Case 2.

For this purpose we extend u to a function v ∈ Hα+κ
p (R;X) ∩Hκ

p (R;DA). Define A
as the natural extension of A to Y := Lp(R;X) and let G := (I −D2

t )
α/2 with domain

D(G) = Hα
p (R;X). Then the operators A,G are sectorial in Y with spectral angles

φA ≤ φRA and φG = 0. Thus, φA + φG < π. Furthermore the resolvents of A and G
commute, and the pair (G,A) is coercively positive. This allows us to apply the mixed
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derivative theorem to this pair of operators acting on Y to obtain

|A1− 1−κ
α G

1−κ
α y|Y ≤ C|Ay + Gy|Y , for all y ∈ D(A) ∩ D(G), (3.15)

where C > 0 is a constant not depending on y. By definition, D(G
1−κ
α ) = H1−κ

p (R;X).
This together with (3.15) implies

Hα
p (R;X) ∩ Lp(R;DA) ↪→ H1−κ

p (R;D
A1− 1−κ

α
).

Thus, by the boundedness of DtG−
1
α in Lp(R;D

A1− 1−κ
α

),

v̇ = DtG−
1
αG

1−κ
α G

κ
α v ∈ Hα+κ−1

p (R;X) ∩ Lp(R;D
A1− 1−κ

α
).

To determine the regularity of v̇(0) we now use the necessity part of the second case.
Let b(t) = tα+κ−2, t ≥ 0. Then b ∈ K1(α+κ−1, (α+κ−1)π/2). Since A is R-sectorial,
the operator C := A1−(1−κ)/α is R-sectorial as well, and

φRC ≤ (1− 1−κ
α )φRA ≤ (α+κ−1

α )(π − απ2 ) = (α+κ−1
α )π − (α+κ−1

2 )π,

by Proposition 2.2.1 and the parabolicity condition, combined with Remark 2.6.1. So
we see that θb + φRC < π. By the necessity part of Case 2, applied to the equation

v̇(t) + (b ∗ Cv̇)(t) = g(t), t ∈ [0, 1],

with some g ∈ Hα+κ−1
p ([0, 1];X), we get ḟ(0) = v̇(0) ∈ DC(1 − 1/p(α + κ − 1), p). It

follows now, by Theorem 2.2.2, that ḟ(0) lies in

D
A1− 1−κ

α

(
1− 1

p(α+κ−1) , p
)

= DA

(
(1− 1−κ

α )(1− 1
p(α+κ−1)), p

)
= DA

(
1 + κ

α −
1
α −

1
pα , p

)
.

Hence condition (iii) is satisfied.
It remains to show (ii). Put J1 := [0, 1] in case J = R+ and J1 := J , otherwise.

Define w1 by means of

w1(t) + (a ∗Aw1)(t) = tḟ(0), t ∈ J1.

Then, due to Theorem 3.1.2, it follows from condition (iii) that u|J1−w1 ∈ Hα+κ
p (J1;X)∩

Hκ
p (J1;DA). We extend u|J1 − w1 to a function v ∈ ZR+ and put h(t) := v(t) + (a1 ∗

Av)(t), t ∈ R+, where a1 is defined as in Case 2. As above, we see that h ∈ Hα+κ
p (R+;X).

By construction, we have v̇(0) = ḣ(0) = 0, i.e. h−ψ(·)h(0) ∈ 0H
α
p (R+;X), where ψ(t) =

(1 + t)e−t, t ≥ 0. In fact, ψ ∈ Hα+κ
p (R+), ψ(0) = 1, ψ̇(t) = −te−t, t ≥ 0, in particular

ψ̇(0) = 0. Define now the function v1 by means of v1+a1∗Av1 = h−ψh(0), t ∈ R+. This
is possible in view of Theorem 3.1.1, which also gives v1 ∈ 0H

α+κ
p (R+;X)∩Hκ

p (R+;DA).
Consequently, v2 := v−v1 ∈ ZR+ , and v2 solves the equation w+a1∗Aw = ψh(0), t ∈ R+.
If S(·) denotes the resolvent for (3.1), then one verifies that

v2(t) = e−tS(t)h(0) + e−t(1 ∗ S)(t)h(0), t ≥ 0.
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Letting k(t) = e−t and ξ(t) = e−tS(t)h(0), t ≥ 0, we thus have

v2(t) = ξ(t) + (k ∗ ξ)(t), t ≥ 0. (3.16)

Define now r ∈ L1, loc(R+) by means of

r(t) + (r ∗ k)(t) = k(t), t ≥ 0.

Then (3.16) implies
ξ(t) = v2(t)− (r ∗ v2)(t), t ≥ 0,

in particular
Aξ(t) = Av2(t)− (r ∗Av2)(t), t ≥ 0.

Since k ∈ L1(R+) and

1 + k̂(λ) = 1 + 1
λ+1 6= 0, Reλ ≥ 0,

it follows by the halfline Paley-Wiener theorem (see [39, Chapter 2, Theorem 4.1, p. 45])
that r ∈ L1(R+). So, letting b(t) = tκ−1e−t, t ≥ 0, and Bκ = (b∗)−1 ∈ S(Lp(R+;X)),
we see with the aid of Young’s inequality and Corollary 2.8.1 that

r ∗Av2 = r ∗ b ∗ BκAv2 = b ∗ r ∗ BκAv2 ∈ Hκ
p (R+;X).

Therefore Aξ ∈ Hκ
p (R+;X), and so, by Theorem 3.1.3, we get h(0) = v(0) = u(0) =

f(0) ∈ DA(1 + κ/α− 1/pα, p). This proves condition (ii).
To prove the converse direction, suppose that the conditions (i),(ii) and (iii) are

fulfilled. Uniqueness is an immediate consequence of Theorem 3.1.1. As for existence,
we build a solution u ∈ Z of (3.1) as follows. Put x = f(0) and y = ḟ(0). If J = [0, T ],
let u1 be the solution of

w(t) + (a ∗Aw)(t) = f(t)− x− ty, t ∈ J.

This solution exists and lies in 0H
α+κ
p (J ;X)∩Hκ

p (J ;DA), thanks to Theorem 3.1.1. By
Theorem 3.1.2, we also have S(·)x, (1 ∗S)(·)y ∈ Z, so that u := u1 +Sx+1 ∗Sy ∈ Z. It
is easy to see that u solves (3.1). In case of J = R+, we extend v1, v2 ∈ Hα+κ

p ([0, 1];X)∩
Lp([0, 1];DA) defined by v1(t) = S(t)x, v2(t) = (1∗S)(t), t ∈ [0, 1], to functions u1, u2 ∈
Z and set f1 = f − (u1 +a∗Au1)− (u2 +a∗Au2). By construction, f1 ∈ 0H

α+κ
p (R+;X).

So, due to Theorem 3.1.1, we can define u3 ∈ Z as the solution of v+a∗Av = f1, t ∈ R+.
Clearly, u := u1 + u2 + u3 ∈ Z solves (3.1). Hence the proof is complete. �

Remarks 3.1.3 (i) In Section 3.3 we will prove a corresponding result for the case of a
compact time-interval J where κ ∈ (1/p, 1 + 1/p).

(ii) In the case of a compact interval J , one can weaken the assumptions on both a
and A. Due to the transformation property of (3.1) discussed at the end of Section 2.8,
it suffices to assume that µ + A ∈ RS(X) with θa + φRµ+A < π for some µ ≥ 0. As for
the kernel, the theorem is also true, if a is of the form a = b+ dk ∗ b, where b is like a in
the statement of Theorem 3.1.4 and k ∈ BVloc(R+) with k(0) = k(0+) = 0. This follows
from a straightforward perturbation argument, cp. [63, Section 8.5].
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3.2 A general trace theorem

Let X be a Banach space of class HT , p ∈ (1,∞), J = [0, T ] or R+, and A be an
R-sectorial operator in X with arbitrary R-angle φRA < π. Further suppose γ ∈ [0, 1/p),
s > 1/p− γ, and

u ∈ Z := Hs+γ
p (J ;X) ∩Hγ

p (J ;DA). (3.17)

Our first aim is to prove that u(0) ∈ DA(1 + γ/s− 1/ps, p). To do so, note that, by the
mixed derivative theorem, we have the embedding

Hs+γ
p (J ;X) ∩Hγ

p (J ;DA) ↪→ H(1−θ)s+γ
p (J ;DAθ), θ ∈ (0, 1). (3.18)

We now distinguish two cases.
Case 1: 1/p− γ < s < 2(1/p− γ). By hypothesis and (3.18), we see that

u ∈ Hs+γ
p (J ;X) ∩H(1−θ)s+γ

p (J ;DAθ), θ ∈ (0, 1).

If we put κ = (1 − θ)s + γ, B = Aθ, and a(t) = e−ttθs−1, t > 0, then we are in the
situation of Theorem 3.1.4, provided that κ < 1/p and θsπ/2 + φRB < π. But these
two conditions are fulfilled with θ = 1/2. In fact, in case of θ = 1/2, we estimate
κ = s/2 + γ < (1/p− γ) + γ = 1/p, as well as

θsπ2 + φRB ≤
sπ
4 + 1

2 φ
R
A <

π
2 + π

2 = π,

where the inequality φRB ≤ φRA/2 follows from Proposition 2.2.1. Further,

1 + κ
θs −

1
θsp = 2 + 2γ

s −
2
ps ,

and so, by Theorem 3.1.4 and Theorem 2.2.2, we obtain

u(0) ∈ DB(2 + 2γ
s −

2
ps , p) = D

A
1
2
(2 + 2γ

s −
2
ps , p) = DA(1 + γ

s −
1
ps , p).

Case 2: s ≥ 2(1/p− γ). Here, we look at the regularity with respect to the operator
A. By hypothesis and (3.18),

u ∈ H(1−θ)s+γ
p (J ;DAθ) ∩Hγ

p (J ;DA), θ ∈ (0, 1).

Therefore, if we choose the base space Xθ = D(Aθ), then we get

u ∈ H(1−θ)s+γ
p (J ;Xθ) ∩Hγ

p (J ;DA1−θ), θ ∈ (0, 1).

Again, we want to apply Theorem 3.1.4. So we have to ensure that 1/p < (1− θ)s+ γ
and (1− θ)sπ/2 + (1− θ)φRA < π. But these conditions are satisfied for

θ = 1− η
s

(
1
p − γ

)
with an arbitrary η ∈ (1, 2/(1 + 1/p− γ)]. We namely have in this case

(1− θ)s+ γ = η
(

1
p − γ

)
+ γ > 1

p

as well as

(1− θ)s π2 + (1− θ)φRA < η
(

1
p − γ

)
· π2 + η

s

(
1
p − γ

)
π ≤ η

(
1
p − γ

)
· π2 + η

2 π ≤ π,
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where we used the assumption s ≥ 2(1/p− γ) for the second summand. Furthermore,

1 + γ
(1−θ)s −

1
(1−θ)ps = 1− 1

η .

Thus, Theorem 3.1.4 yields

u(0) ∈ (Xθ, DA)1− 1
η
, p = (D(Aθ),D(A))1− 1

η
, p,

which entails, by the reiteration theorem (cf. Amann [5, Section 2.8]),

u(0) ∈ (X,D(A))θ 1
η
+(1− 1

η
), p = DA(1− 1−θ

η , p) = DA(1 + γ
s −

1
ps , p).

Hence, u(0) ∈ DA(1 + γ/s− 1/ps, p) is established for all s > 1/p.
Suppose now that s + γ > n + 1/p with n ∈ N. If u ∈ Z, then uk(0) exists for all

0 ≤ k ≤ n. Taking θ = 1− (k − γ)/s in (3.18) shows that

u(k) ∈ Hs+γ−k
p (J ;X) ∩ Lp(J ;D

A1− k−γs
).

So, with B = A1− k−γ
s , the above mapping property of the trace operator implies that

u(k)(0) ∈ DB(1− 1
(s+γ−k)p , p) = D

A1− k−γs
(1− 1

(s+γ−k)p , p) = DA(1 + γ
s −

k
s −

1
ps , p),

(3.19)
using once more Theorem 2.2.2.

If we replace in (3.17) and (3.19) the operator A by As, assuming A ∈ RS(X) and
φRA < π/s, we see that the composition of Dk

t and the trace operator tr

tr ◦Dk
t : Hs+γ

p (J ;X) ∩Hγ
p (J ;DAs) → DA(s+ γ − k − 1

p , p) (3.20)

is bounded. Thus, by real interpolation, we obtain boundedness of

tr ◦Dk
t : Bs+γ

pp (J ;X) ∩Hγ
p (J ;DA(s, p)) → DA(s+ γ − k − 1

p , p). (3.21)

Strong continuity of the translation group then yields (3.22) and (3.23) in the following

Theorem 3.2.1 Let X be a Banach space of class HT , p ∈ (1,∞), γ ∈ [0, 1/p), and
s + γ > n + 1/p with n ∈ N0. Let further J = [0, T ] or R+, and A be an R-sectorial
operator in X with R-angle φRA < π/s. Then for all 0 ≤ k ≤ n,

Hs+γ
p (J ;X) ∩Hγ

p (J ;DAs) ↪→ BUCk(J ;DA(s+ γ − k − 1
p , p)) (3.22)

and

Bs+γ
pp (J ;X) ∩Hγ

p (J ;DA(s, p)) ↪→ BUCk(J ;DA(s+ γ − k − 1
p , p)). (3.23)

The proof of the previous result is inspired by [43]. Theorem 3.2.1 is an extension of [65,
Proposition 3], where κ = 0 and A is assumed to have bounded imaginary powers.
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3.3 More time regularity for Volterra equations

This section deals with the question under what conditions the solution of equation (3.1)
lies in the space

Hα+κ
p (J ;X) ∩Hκ

p (J ;DA),

where, in contrast to Section 3.1, we assume κ ∈ (1/p, 1 + 1/p) and α+ κ < 2 + 1/p.

Theorem 3.3.1 Let X be a Banach space of class HT , p ∈ (1,∞), J a compact time-
interval [0, T ], and A an R-sectorial operator in X with R-angle φRA. Suppose that a
belongs to K1(α, θa) with α ∈ (0, 2). Further let κ ∈ (1/p, 1 + 1/p), α+ κ < 2 + 1/p and
α + κ 6= 1 + 1/p. Assume the parabolicity condition θa + φRA < π. Then (3.1) has a
unique solution in Z := Hα+κ

p (J ;X) ∩Hκ
p (J ;DA) if and only if

(i) f(0) ∈ D(A);

(ii) f = h+ (1 ∗ a)Af(0), with h ∈ Hα+κ
p (J ;X), and ḣ(0) ∈ DA(1 + κ

α −
1
α −

1
pα , p) in

case α+ κ > 1 + 1/p.

Proof. We first show the necessity part. Suppose that u ∈ Z solves (3.1). Then, κ > 1/p
entails α + κ > 1/p. Thus, the trace x := u(0) ∈ X exists. Furthermore we see that
Au ∈ C(J ;X). So, by the closedness of A, x ∈ D(A) and we infer from (3.1) that

u(t) + (a ∗A(u− x))(t) = f(t)− (1 ∗ a)(t)Ax, t ∈ J.

From A(u − x) ∈ 0H
κ
p (J ;X), it follows that a ∗ A(u − x) ∈ 0H

α+κ
p (J ;X), in view of

Corollary 2.8.1. In addition, 1 ∗ a is absolutely continuous on J and vanishes at t = 0.
Hence, f(0) = x as well as f = h+(1∗a)Af(0), where h is defined by h = u+a∗A(u−x) ∈
Hα+κ
p (J ;X). This proves (i) and the first part of (ii).

To verify the second condition in (ii), suppose that α + κ > 1 + 1/p. Owing to
a ∗ A(u − x) ∈ 0H

α+κ
p (J ;X), we have ḣ(0) = u̇(0). We now consider two cases. In

case of κ ∈ (1/p, 1), we can argue as in the proof of Theorem 3.1.4, Case 3, to see that
u̇(0) ∈ DA(1 + κ/α− 1/α− 1/pα, p). If κ ∈ [1, 1 + 1/p), then

u̇ ∈ Hα+κ−1
p (J ;X) ∩Hκ−1

p (J ;DA),

and we obtain the desired regularity of u̇(0) with the aid of Theorem 3.1.4, applied to
the equation

u̇(t) + (a ∗Au̇)(t) = g(t), t ∈ J,

with some g ∈ Hα+κ−1
p (J ;X). Hence, the necessity part is complete.

We now want to prove the converse. Uniqueness follows immediately from Theorem
3.1.1. Concerning sufficiency, we suppose validity of (i) and (ii) and distinguish two
cases.

If α+κ < 1+1/p, we set u = x+u1, where u1 is defined as solution of v+a∗Av = h−x
on J . Condition (i) ensures that the constant function w(t) = x, t ∈ J lies in Z. From
the second condition, we deduce h(0) = f(0) = x and h− x ∈ 0H

α+κ
p (J ;X). So, due to

Remark 3.1.1(ii), we obtain u1 ∈ 0H
α+κ
p (J ;X) ∩ 0H

κ
p (J ;DA). Thus u ∈ Z. Further,

u+ a ∗Au = (x+ (1 ∗ a)Ax) + (h− x) = f,

by condition (ii). Hence, u ∈ Z is indeed the solution of (3.1).
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We now assume α + κ > 1 + 1/p. Put this time u = x + 1 ∗ Sḣ(0) + u1, where u1

solves (3.1) with right-hand side g(t) := h(t)− x− tḣ(0) on J . Because of (ii), we have
g ∈ 0H

α+κ
p (J ;X). So it follows by Remark 3.1.1(ii) that u1 ∈ 0H

α+κ
p (J ;X)∩0H

κ
p (J ;DA).

Further, the property ḣ(0) ∈ DA(1+κ/α− 1/α− 1/pα, p) implies 1 ∗Sḣ(0) ∈ Z, thanks
to Remark 3.1.2(i). Finally, as in the first case, condition (i) ensures that the constant
function w(t) = x, t ∈ J lies in Z. So we conclude that u ∈ Z. From

u(t) + (a ∗Au)(t) = (x+ (1 ∗ a)(t)Ax) + tḣ(0) + (h(t)− x− tḣ(0)) = f(t), t ∈ J,

we see that u solves (3.1). �

It should be mentioned that, in the situation of Theorem 3.3.1, we have in general
1 ∗ a /∈ Hα+κ

p (J). As illustration, we consider the following example.

Example 3.3.1 Let 0 ≤ κ 6= 1/p, α ∈ (0, 1 − κ), and take a(t) = tα−1/Γ(α), t > 0.
Further put b = 1 ∗ a. Since b(0) = 0, we see that b ∈ Hα+κ

p (J) if and only if b ∈
0H

α+κ
p (J). So, letting k(t) = t−(α+κ)/Γ(1− (α+ κ)), t > 0, we have

b ∈ 0H
α+κ
p (J) ⇔ d

dt
(k ∗ b) ∈ Lp(J) ⇔ k ∗ a ∈ Lp(J).

But (k ∗a)(t) = t−κ/Γ(1−κ), t > 0, so that k ∗a ∈ Lp(J) if and only if κ < 1/p. Hence,
1 ∗ a /∈ Hα+κ

p (J) whenever κ > 1/p.

3.4 Abstract equations of first and second order on the
halfline

In this paragraph we collect some known results on maximal Lp-regularity of abstract
problems on the halfline.

The first theorem, which is due to Weis [81], concerns the abstract Cauchy problem

u̇+Au = f, t > 0, u(0) = u0, (3.24)

in a Banach space X.

Theorem 3.4.1 Let X be a Banach space of class HT , p ∈ (1,∞), and A be an invert-
ible and R-sectorial operator in X with R-angle φRA < π/2.

Then (3.24) has a unique solution in Z := H1
p (R+;X) ∩ Lp(R+;DA) if and only if

(i) f ∈ Lp(R+;X); (ii) u0 ∈ DA(1− 1/p, p).

Proof. The assertion follows immediately from Remark 3.1.1(iv), Remark 3.1.2(ii) and
Theorem 3.1.4 with a ≡ 1. �

In the remainder of this section, we consider two abstract second order problems, which
play an essential role in the treatment of abstract parabolic problems with inhomoge-
neous boundary data. By the aid of the two subsequent key results, in Section 3.5, we
will succeed in finding the natural regularity classes for the data on the boundary.

The following theorem concerns the problem with Dirichlet condition{
−u′′(y) + F 2u(y) = f(y), y > 0,

u(0) = φ,
(3.25)

in Lp(R+;X).
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Theorem 3.4.2 Suppose X is a Banach space of class HT , p ∈ (1,∞). Let F ∈
BIP(X) be invertible with power angle θF < π/2, and let Dj

F denote the domain D(F j)
of F j equipped with its graph norm, j = 1, 2.

Then (3.25) has a unique solution u in Z := H2
p (R+;X)∩Lp(R+;D2

F ) if and only if
the following two conditions are satisfied.

(i) f ∈ Lp(R+;X); (ii) φ ∈ DF (2− 1
p , p).

If this is the case we have in addition u ∈ H1
p (R+;D1

F ).

This result has been obtained by Prüss, cf. [65, Theorem 3]. Recall that DF (2−1/p, p) =
{g ∈ D(F ) : Fg ∈ DF (1− 1/p, p)}.

There is a corresponding result for the abstract second order problem with abstract
Robin condition {

−u′′(y) + F 2u(y) = f(y), y > 0,
−u′(0) +Du(0) = ψ,

(3.26)

in Lp(R+;X). For D = 0, the Robin condition becomes the Neumann condition.

Theorem 3.4.3 Suppose X is a Banach space of class HT , p ∈ (1,∞). Let F ∈
BIP(X) be invertible with power angle θF < π/2, and let Dj

F denote the domain D(F j)
of F j equipped with its graph norm, j = 1, 2. Suppose that D is pseudo-sectorial in X,
belongs to BIP(R(D)), commutes with F , and is such that θF + θD < π.

Then (3.26) has a unique solution u in Z := H2
p (R+;X) ∩ Lp(R+;D2

F ) with u(0) ∈
D(D) and Du(0) ∈ DF (1−1/p, p) if and only if the following two conditions are satisfied.

(i) f ∈ Lp(R+;X); (ii) ψ ∈ DF (1− 1
p , p).

If this is the case we have in addition u ∈ H1
p (R+;D1

F ).

This result is also due to Prüss, see [65, Theorem 4].

3.5 Parabolic Volterra equations on an infinite strip

We now study the vector-valued problem{
u− a ∗ ∂2

yu+ a ∗Au = f, t ∈ J, y > 0,
u(t, 0) = φ(t), t ∈ J, (3.27)

in Lp(J ;Lp(R+;X)). HereX is a Banach space which belongs to the classHT , J = [0, T ]
is a compact time-interval, A is a sectorial operator in X and the kernel a belongs to the
class K1(α, θa) with α ∈ (0, 2). The data f and φ are given. Our aim is to characterize
unique existence of a solution u in the maximal regularity class of type Lp, i.e.

u ∈ Z := Hα
p (J ;Lp(R+;X)) ∩ Lp(J ;H2

p (R+;X)) ∩ Lp(J ;Lp(R+;DA))

in terms of regularity classes for the data. Recall that DA denotes the space D(A)
equipped with the graph norm of A. The main result reads as follows.
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Theorem 3.5.1 Let p ∈ (1,∞) and X be a Banach space of class HT . Suppose that
a ∈ K1(α, θa) with α ∈ (0, 2)\

{
1
p ,

2
2p−1 , 1 + 1

p , 1 + 3
2p−1

}
and A ∈ BIP(X) with power

angle θA. Assume further θa + θA < π. Then the problem (3.27) has a unique solution
in Z if and only if the data f and φ satisfy the following conditions.

(i) f ∈ Hα
p (J ;Lp(R+;X));

(ii) φ ∈ B
α(1− 1

2p
)

pp (J ;X) ∩ Lp(J ;DA(1− 1
2p , p));

(iii) f |t=0 ∈ B
2− 2

pα
pp (R+;X) ∩ Lp(R+;DA(1− 1

pα , p)), if α > 1
p ;

(iv) f |t=0, y=0 = φ|t=0, if α > 2
2p−1 ;

(v) ∂tf |t=0 ∈ B
2(1− 1

α
− 1
pα

)
pp (R+;X) ∩ Lp(R+;DA(1− 1

α −
1
pα , p)), if α > 1 + 1

p ;

(vi) ∂tf |t=0, y=0 = φ̇|t=0, if α > 1 + 3
2p−1 .

If this is the case, then additionally

(vii) f |t=0, y=0, φ|t=0 ∈ DA(1− 1
2p −

1
pα , p), if α > 2

2p−1 ;

(viii) ∂tf |t=0, y=0, φ̇|t=0 ∈ DA(1− 1
2p −

1
α −

1
pα , p), if α > 1 + 3

2p−1 .

Proof. We begin with the necessity part. Suppose that u ∈ Z is a solution of (3.27).
Then clearly f = u − a ∗ ∂2

yu + a ∗ Au ∈ Hα
p (J ;Lp(R+;X)), i.e. the first condition is

satisfied.
Next we extend u w.r.t. y to all of R by u(t, y) = 3u(t,−y) − 2u(t,−2y), y < 0,

resulting in a function (again denoted by u) that belongs to

Hα
p (J ;Lp(R;X)) ∩ Lp(J ;H2

p (R;X)) ∩ Lp(J ;Lp(R;DA)).

Define A as the natural extension of A to Y := Lp(R;X) and let G = −∂2
y with domain

D(G) = H2
p (R;X). Then G is sectorial and belongs to the class BIP(Y ) with power

angle θG = 0. Since both operators commute in the resolvent sense, Theorem 2.3.1 yields
that

Λ := A+G (3.28)

with domain D(Λ) = D(A)∩D(G) is sectorial and belongs to BIP(Y ) with power angle
θΛ ≤ θA, in particular Λ ∈ RS(Y ) with R-angle φRΛ ≤ θA, by Theorem 2.2.3. It now
follows from Theorem 3.1.4 that u|t=0 ∈ DΛ(1− 1/pα, p), if α > 1/p. Proposition 2.3.1
gives

DΛ(1− 1
pα , p) = DG(1− 1

pα , p) ∩DA(1− 1
pα , p)

= B
2− 2

pα
pp (R;X) ∩ Lp(R;DA(1− 1

pα , p)), (3.29)

which entails the third condition, by restriction to y ∈ R+. If α > 1+1/p, then Theorem
3.1.4 further yields ∂tu|t=0 ∈ DΛ(1 − 1/α − 1/pα, p). By employing Proposition 2.3.1
once more, we get

DΛ(1− 1
α −

1
pα , p) = B

2(1− 1
α
− 1
pα

)
pp (R;X) ∩ Lp(R;DA(1− 1

α −
1
pα , p)). (3.30)

Thus, after restriction to y ∈ R+ we arrive at condition (v).
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Our next objective is to show necessity of (ii). For this purpose we choose an ex-
tension of the solution u ∈ Z w.r.t. t to all of R (again denoted by u) which lies in the
regularity class

Z1 := Hα
p (R;Lp(R+;X)) ∩ Lp(R;H2

p (R+;X)) ∩ Lp(R;Lp(R+;DA)). (3.31)

Set A1 = I+A with domain D(A1) = D(A) and let A1 be the natural extension of A1 to
Y := Lp(R;X). Then the operator A1 is invertible, and by Theorem 2.3.1 it belongs to
the class BIP(X) with power angle θA1 ≤ θA; thus A1 is invertible as well and contained
in BIP(Y ) with power angle θA1 ≤ θA. Further let B ∈ BIP(Y ) be the inverse Volterra
operator from Theorem 2.8.1. Then the resolvents of A1 and B commute, and we have
θB + θA1 ≤ θa + θA < π. This allows us to apply Theorem 2.3.1 to the pair (B,A1) in
the space Y yielding that B +A1 with domain D(B)∩D(A1) = Hα

p (R;X)∩Lp(R;DA)
is invertible and contained in BIP(Y ) with power angle θB+A1 ≤ max{θa, θA}. The
function u ∈ Z1 now satisfies a problem of the form

Bu− ∂2
yu+A1u = g, y > 0, t ∈ R,

u(t, 0) = ϕ(t), t ∈ R,

with g ∈ Lp(R;Y ) and some ϕ, which is an extension of φ to all of R. To determine the
regularity of ϕ, we apply Theorem 3.4.2 to the invertible operator

F :=
√
B +A1, (3.32)

which belongs again to BIP(Y ) and has power angle θF ≤ max{θa, θA}/2 < π/2. This
results in ϕ ∈ DF (2− 1/p, p). Due to Theorem 2.2.2 and Proposition 2.3.1, we have

DF (γ, p) = D(B+A1)1/2(γ, p) = DB+A1(
γ
2 , p) = DB(γ2 , p) ∩DA1(

γ
2 , p), γ ∈ (0, 1).

Therefore
DF (1− 1

p , p) = B
α( 1

2
− 1

2p
)

pp (R;X) ∩ Lp(R;DA(1
2 −

1
2p , p)), (3.33)

which implies

DF (2− 1
p , p) = B

α(1− 1
2p

)
pp (R;X) ∩ Lp(R;DA(1− 1

2p , p)). (3.34)

Here we employ the embeddings

B
α(1− 1

2p
)

pp (R;X) ∩ Lp(R;DA(1− 1
2p , p)) ↪→ B

α( 1
2
− 1

2p
)

pp (R;D
A

1
2
), (3.35)

B
α(1− 1

2p
)

pp (R;X) ∩ Lp(R;DA(1− 1
2p , p)) ↪→ H

α
2
p (R;DA(1

2 −
1
2p , p)), (3.36)

which follow from the mixed derivative theorem and real interpolation. Hence, we have
shown that

ϕ ∈ B
α(1− 1

2p
)

pp (R;X) ∩ Lp(R;DA(1− 1
2p , p)).

By restriction to J , we see that the second condition in Theorem 3.5.1 is necessary.
To derive condition (iv), we notice that u ∈ Z satisfies

u ∈ Hαs
p (J ;H2(1−s)

p (R+;X)), (3.37)
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for each s ∈ [0, 1]. This follows from the mixed derivative theorem. The space in (3.37)
embeds into BUC(J ×R+;X) if 1/p < sα and 1/p < 2− 2s, i.e. if 1/pα < s < 1− 1/2p.
This shows that the compatibility condition (iv) is necessary in case α > 2/(2p− 1).

We proceed with the determination of the regularity of φ|t=0 in case α > 2/(2p− 1).
Observe that this inequality is equivalent to 1/p < α(1 − 1/2p). In light of Theorem
3.2.1, we have the embedding

Bsγ
pp(J ;X) ∩ Lp(J ;DA(γ, p)) ↪→ C(J ;DA(γ − 1

p s , p)), (3.38)

if γ, γ− 1/ps ∈ (0, 1) and sγ ∈ (1/p, 2). Thus, by taking s = α and γ = 1− 1/2p, we see
that φ|t=0 ∈ DA(1− 1/2p− 1/pα, p). Hence property (vii) is established.

It remains to show (vi) and (viii). Let α > 1+3/(2p− 1), which in particular means
that α > 1 + 1/p. Exploiting (3.37) with s = 1/α yields

∂tu ∈ Hα−1
p (J ;Lp(R+;X)) ∩ Lp(R;H

2(1− 1
α

)
p (R+;X)),

which in turn entails

∂tu ∈ H(α−1)s
p (J ;H

2(1− 1
α

)(1−s)
p (R+;X)),

for each s ∈ [0, 1], by the mixed derivative theorem. This space is embedded into
BUC(J×R+;X) whenever (α−1)s > 1/p and 2(1−1/α)(1−s) > 1/p, i.e. if 1/p(α−1) <
s < 1−α/2p(α− 1). An easy calculation shows that existence of such an s is equivalent
to α > 1 + 3/(2p− 1), which we just assumed. Therefore the trace ∂tu(0, 0) exists, and
we see that the compatibility condition (vi) is necessary.

Last but not least, we restrict ∂tf |t=0 to some finite interval J1 = [0, y0], which results
in a function that belongs to

B
2(1− 1

α
− 1
pα

)
pp (J1;X) ∩ Lp(J1;DA(1− 1

α −
1
pα , p)),

owing to property (v). Then we apply again (3.38), this time with γ = 1− 1/α− 1/pα
and s = 2. This is possible on account of α > 1 + 3/(2p− 1). We immediately see that
∂tf |t=0, y=0 enjoys the regularity claimed in (viii). Hence the necessity part of Theorem
3.5.1 as well as the additional properties (vii) and (viii) are established.

We turn now to the sufficiency part of Theorem 3.5.1. Let the data f and φ be given
such that the conditions (i)-(vi) are satisfied. We will build the solution u ∈ Z of (3.27)
as a sum of two functions in Z.

At first we will construct a function u1 ∈ Z such that

u1 − a ∗ ∂2
yu1 + a ∗Au1 = f, t ∈ J, y > 0, (3.39)

i.e. u1 solves the first equation of (3.27). For this purpose we extend the function f
w.r.t. y to all of R in such a way that (i),(iii),(v) are fulfilled with R+ replaced by
R. Let Y := Lp(R;X) and Λ ∈ BIP(Y ) be the operator defined in (3.28). Then we
have f |t=0 ∈ DΛ(1 − 1/pα, p), if α > 1/p, and ∂tf |t=0 ∈ DΛ(1 − 1/α − 1/pα, p) in case
α > 1 + 1/p, owing to (3.29) and (3.30). Thus, by Theorem 3.1.4, the Volterra equation

v + a ∗ Λv = f, t ∈ J, (3.40)

admits a unique solution v1 in the regularity class

Hα
p (J ;Lp(R;X)) ∩ Lp(J ;H2

p (R;X)) ∩ Lp(J ;Lp(R;DA)).
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Let u1 be the restriction of v1 to y ∈ R+. Then clearly u1 ∈ Z, and u1 satisfies (3.39).
Next we put φ1 := u1|y=0. Due to the necessity part of Theorem 3.5.1 (conditions

(ii),(iv),(vi)), we see that

φ1 ∈ B
α(1− 1

2p
)

pp (J ;X) ∩ Lp(J ;DA(1− 1
2p , p)),

and f |t=0, y=0 = φ1|t=0, if α > 2
2p−1 , as well as ∂tf |t=0, y=0 = φ̇1|t=0, in case α >

1 + 3/(2p− 1). Therefore we deduce that

φ− φ1 ∈ 0B
α(1− 1

2p
)

pp (J ;X) ∩ Lp(J ;DA(1− 1
2p , p)).

Consider now the problem{
v − a ∗ ∂2

yv + a ∗Av = 0, t ∈ J, y > 0,
v(t, 0) = φ− φ1, t ∈ J. (3.41)

Define this time A as the natural extension of A to Y1 := Lp(J ;X). Let further B ∈
BIP(Lp(J ;X)) be the inverse Volterra operator from Corollary 2.8.1 associated with the
kernel a. Then B is invertible, A and B belong to BIP(Y1), their resolvents commute,
and θA + θB ≤ θA + θa < π. Therefore, by Theorem 2.3.1, the operator B + A with
domain D(B) ∩ D(A) = 0H

α
p (J ;X) ∩ Lp(J ;DA) is invertible and contained in BIP(Y1)

with power angle θB+A ≤ max{θa, θA}. Moreover, the operator F1 :=
√
B +A is also

invertible and belongs to BIP(Y1) with power angle θF1 ≤ max{θa, θA}/2 < π/2. We
can now rewrite (3.41) as

−v′′(y) + F 2
1 v(y) = 0, y > 0, v(0) = φ− φ1. (3.42)

In the same way as above for the operator F , one can show that

DF1(1− 1
p , p) = 0B

α( 1
2
− 1

2p
)

pp (R;X) ∩ Lp(R;DA(1
2 −

1
2p , p)) (3.43)

and
DF1(2− 1

p , p) = 0B
α(1− 1

2p
)

pp (J ;X) ∩ Lp(J ;DA(1− 1
2p , p)). (3.44)

Compare this with (3.33) and (3.34). Thus we have φ − φ1 ∈ DF1(2 − 1/p, p), which
implies existence of a solution u2 of (3.41) in the space

0H
α
p (J ;Lp(R+;X)) ∩ Lp(J ;H2

p (R+;X)) ∩ Lp(J ;Lp(R+;DA)),

by virtue of Theorem 3.4.2.
Finally let u := u1 + u2. Then u ∈ Z, and by construction u is a solution of problem

(3.27).
Uniqueness follows from Theorem 3.4.2. To see this, rewrite (3.27) with zeros on the

right-hand side as (3.42) with initial value zero. This completes the proof of Theorem
3.5.1. �

There is a corresponding result for the problem{
u− a ∗ ∂2

yu+ a ∗Au = f, t ∈ J, y > 0,
−∂yu(t, 0) +Du(t, 0) = φ(t), t ∈ J. (3.45)
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Here the operator D is pseudo-sectorial in X, and we assume that DA1/2 ↪→ DD. As
above we seek a solution in

Z = Hα
p (J ;Lp(R+;X)) ∩ Lp(J ;H2

p (R+;X)) ∩ Lp(J ;Lp(R+;DA)).

Before we state the theorem concerning (3.45) we note that any function v in the space
Z automatically satisfies v|y=0 ∈ Lp(J ;DD) and

Dv(·, 0) ∈ B
α( 1

2
− 1

2p
)

pp (J ;X) ∩ Lp(J ;DA(1
2 −

1
2p , p)). (3.46)

In fact, if v ∈ Z, then it follows, by Theorem 3.5.1, that

v|y=0 ∈ Lp(J ;DA(1− 1
2p , p)),

which entails the first claim, for we have the embeddings

DA(1− 1
2p , p) ↪→ D

A
1
2
↪→ DD.

As for (3.46), we see with the aid of the mixed derivative theorem (Proposition 2.3.2)
that for w := A1/2v,

w ∈ H
α
2
p (J ;Lp(R+;X)) ∩ Lp(J ;H1

p (R+;X)) ∩ Lp(J ;Lp(R+;D
A

1
2
)). (3.47)

We extend w w.r.t. t to all of R such that (3.47) holds true, with J replaced by R.
As above, set Y = Lp(R;X) and define the operator F by (3.32). Then we know that
F is invertible and lies in the class BIP(Y ) with power angle θF < π/2. Further,
w ∈ H1

p (R+;Y ) ∩ Lp(R+;DF ). Thus, Theorem 3.4.1 yields w|y=0 ∈ DF (1 − 1/p, p),
which by restriction to t ∈ J implies

A
1
2 v(·, 0) ∈ B

α( 1
2
− 1

2p
)

pp (J ;X) ∩ Lp(J ;DA(1
2 −

1
2p , p)),

in view of (3.33). Assertion (3.46) now follows on account of DA1/2 ↪→ DD.

Theorem 3.5.2 Let p ∈ (1,∞), X be a Banach space of class HT , a ∈ K1(α, θa) with
α ∈ (0, 2) \

{
1
p ,

2
p−1 , 1 + 1

p

}
, and A ∈ BIP(X) with power angle θA. Let further D be a

pseudo-sectorial operator in X such that D ∈ BIP(R(D)) with power angle θD. Suppose
that A and D commute in the resolvent sense, and that DA1/2 ↪→ DD. Assume further
the angle conditions θa + θA < π and θD < π−max{θa, θA}/2. Then the problem (3.45)
has a unique solution in Z if and only if the data f and φ are subject to the following
conditions.

(i) f ∈ Hα
p (J ;Lp(R+;X));

(ii) φ ∈ B
α( 1

2
− 1

2p
)

pp (J ;X) ∩ Lp(J ;DA(1
2 −

1
2p , p));

(iii) f |t=0 ∈ B
2− 2

pα
pp (R+;X) ∩ Lp(R+;DA(1− 1

pα , p)), if α > 1
p ;

(iv) f |t=0, y=0 ∈ D(D) and − ∂yf |t=0, y=0 +Df |t=0, y=0 = φ|t=0, if α > 2
p−1 ;

(v) ∂tf |t=0 ∈ B
2(1− 1

α
− 1
pα

)
pp (R+;X) ∩ Lp(R+;DA(1− 1

α −
1
pα , p)), if α > 1 + 1

p .

If this is the case, then additionally

(vi) f |t=0, y=0 ∈ DA(1− 1
2p −

1
pα , p), if α > 2

2p−1 ;

(vii) Df |t=0, y=0, φ|t=0 ∈ DA(1
2 −

1
2p −

1
pα , p), if α > 2

p−1 .
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Proof. We begin with the necessity part. Suppose we have a function u ∈ Z which is a
solution of (3.45). Then u is also a solution of the problem{

u− a ∗ ∂2
yu+ a ∗Au = f, t ∈ J, y > 0,

u(t, 0) = ϕ(t), t ∈ J,

where ϕ := u|y=0. Therefore, conditions (i),(iii) and (v) are necessary, by the first part of
the proof of Theorem 3.5.1, where the case α = 2/(2p− 1) is admissible, too. Moreover,
we see that f |t=0, y=0 ∈ DA(1 − 1/2p − 1/pα, p), if α > 2/(2p − 1), i.e. property (vi) is
fulfilled.

To show condition (ii), we proceed similarly as in the proof of Theorem 3.5.1. We
extend u w.r.t. t to all of R such that u ∈ Z1 (see (3.31) for the definition), u|y=0 ∈
Lp(R;DD), and

Du(·, 0) ∈ B
α( 1

2
− 1

2p
)

pp (R;X) ∩ Lp(R;DA(1
2 −

1
2p , p)).

Let Y := Lp(R;X) and define D as the natural extension of D to this space. Let F
be as in (3.32). Then the space DF (1 − 1/p, p) is given by (3.33). Thus we see that
u ∈ H2

p (R+, Y ) ∩ Lp(R+;DF 2), u|y=0 ∈ D(D), and Du|y=0 ∈ DF (1 − 1/p, p). Now
consider u as the solution of the problem

−u′′(y) + F 2u(y) = g, y > 0, −u′(0) = φ̄−Du(0),

with some g ∈ Lp(R+;Y ) and an extension φ̄ of φ on the real line. Since θF ≤
max{θa, θA}/2 < π, it then follows from Theorem 3.4.3 that φ̄−Du(0) ∈ DF (1−1/p, p),
i.e. φ̄ ∈ DF (1− 1/p, p), which after restriction to t ∈ J yields condition (ii).

Finally, we have to prove (iv) and (vii). By the mixed derivative theorem, it follows
from u ∈ Z that

∂yu ∈ H
α
2
p (J ;Lp(R+;X)) ∩ Lp(J ;H1

p (R+;X)),

and further
∂yu ∈ H

αs
2
p (J ;H1−s

p (R+;X)),

for all s ∈ [0, 1]. This space embeds into BUC(J×R+;X) if αs/2 > 1/p and 1−s > 1/p,
i.e. in case 2/pα < s < 1− 1/p. Such an s exists if and only if α > 2/(p− 1) as a short
computation shows. Thus in this situation the trace (∂yu)(0, 0) ∈ X exists. Further,

Du|y=0, φ ∈ B
α( 1

2
− 1

2p
)

pp (J ;X) ∩ Lp(J ;DA(1
2 −

1
2p , p))

and
B
α( 1

2
− 1

2p
)

pp (J ;X) ∩ Lp(J ;DA(1
2 −

1
2p , p)) ↪→ C(J ;DA(1

2 −
1
2p −

1
pα , p)),

thanks to Theorem 3.2.1 and the remark before Theorem 3.5.2. Therefore, by the closed-
ness of D, f |t=0, y=0 ∈ D(D) and

−∂yf |t=0, y=0 +Df |t=0, y=0 = φ|t=0,

where each term in this equation lies in the space DA(1/2 − 1/2p − 1/pα, p). Hence,
conditions (iv) and (vii) are proved. This completes the necessity part of the proof.
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We come now to sufficiency. Suppose we are given the data f and φ which fulfill the
conditions (i)-(v). We proceed similarly as in the proof of Theorem 3.5.1.

Firstly, let u1 ∈ Z be a function which satisfies (3.39). Such a function was con-
structed in the proof of Theorem 3.5.1. Put φ1 := −∂yu1|y=0 + Du1|y=0 and consider
the problem {

v − a ∗ ∂2
yv + a ∗Av = 0, t ∈ J, y > 0,

−∂yv(t, 0) +Dv(t, 0) = φ(t)− φ1(t), t ∈ J. (3.48)

Owing to the necessity part of Theorem 3.5.2 and the above remark concerning (3.46),
φ1 is well-defined and lies in the same regularity class as the data φ. In addition, we see
that (φ−φ1)|t=0 = 0, if α > 2/(p−1), by construction of φ1 and thanks to condition (iv).
That is, the compatibility condition is satisfied. To solve (3.48), we let Y1 = Lp(J ;X),
D be the natural extension of D to this space, and define the operator F1 as in the
paragraph following problem (3.41). Then (3.48) can be rewritten as

−v′′(y) + F 2
1 v(y) = 0, y > 0, −v′(0) +Dv(0) = φ− φ1. (3.49)

Observe that D is pseudo-sectorial in Y1 and D ∈ BIP(R(D)) with power angle θD ≤
θD. In view of (3.43), φ − φ1 ∈ DF1(1 − 1/p, p). Further, we have θD + θF1 ≤ θD +
max{θa, θA}/2 < π. By Theorem 3.4.3, problem (3.48) thus admits a unique solution u2

in the space

0H
α
p (J ;Lp(R+;X)) ∩ Lp(J ;H2

p (R+;X)) ∩ Lp(J ;Lp(R+;DA))

with

Du2(·, 0) ∈ DF1(1− 1/p, p) = 0B
α( 1

2
− 1

2p
)

pp (J ;X) ∩ Lp(J ;DA(1
2 −

1
2p , p)).

Finally put u := u1 + u2. Then u clearly possesses the desired regularity and solves
(3.45).

Uniqueness follows by Theorem 3.4.3. In fact, rewrite (3.45) with zero data as (3.49)
with zeros on the right-hand side. Then it is apparent that the zero-function is the only
solution of (3.45) in Z. �

Remarks 3.5.1 (i) Theorem 3.5.1 and Theorem 3.5.2 are also true, if the kernel a is of
the form a = b+dk∗b, where b is like a above and k ∈ BVloc(R+) with k(0) = k(0+) = 0.

(ii) The proofs of the two foregoing theorems are inspired by Prüss [65]. In the case
a ≡ 1 Theorem 3.5.1 is equivalent with a version of [65, Thm. 5] for compact J , while
Theorem 3.5.2, roughly speaking, can be regarded as an extension of [65, Thm. 6], at
least in the case DA1/2 ↪→ DD.
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Chapter 4

Linear Problems of Second Order

This chapter is devoted to the study of linear problems of second order on Lp(J × Ω),
Ω a domain in Rn, with general inhomogeneous boundary conditions of order ≤ 1. We
shall apply abstract results proven in Chapter 3 to characterize maximal Lp-regularity
of the solutions in terms of regularity and compatibility conditions for the data. We will
first consider problems on the full space Rn. This will be followed by the investigation
of the half space case. Finally, we study the case of an arbitrary domain. Here we use
the localization method to reduce the problem to related problems on Rn and Rn

+.

4.1 Full space problems

In this section we study the Volterra equation

v + k ∗ A(·, x,Dx)v = f, t ∈ J, x ∈ Rn, (4.1)

in Lp(J ;Lp(Rn)). Here J = [0, T ], the kernel k belongs to the class K1(α, θ) with
α ∈ (0, 2), θ < π, and A(t, x,Dx) is a differential operator of second order with variable
coefficients:

A(t, x,Dx) = −a(t, x) : ∇2
x + b1(t, x) · ∇x + b0(t, x), t ∈ J, x ∈ Rn. (4.2)

By ∇2
xv we mean the Hessian matrix of v w.r.t. x, that is (∇2

xv(t, x))ij = ∂xi∂xjv(t, x),
i, j = 1, . . . , n. The double scalar product a : b of two matrices a, b ∈ Cn×n is defined
by a : b =

∑n
i, j=1 aijbij . We further denote the principal part of the differential operator

(4.2) by A#(t, x,Dx), that is A#(t, x,Dx) = −a(t, x) : ∇2
x, and we write A(t, x,Dx) =

A#(t, x,Dx) +AR(t, x,Dx).
For an unbounded domain Ω ⊂ Rn and a Banach space X, we set

Cul(J × Ω;X) = {g ∈ C(J × Ω;X) : lim
|x|→∞

g(t, x) exists uniformly for all t ∈ J}.

The symbol Sym{n} stands for the space of n-dimensional real symmetric matrices.
The goal of this section is to prove the following result.

Theorem 4.1.1 Let 1 < p <∞ and n ∈ N. Suppose the differential operator A(t, x,Dx)
is given by (4.2). Assume the following properties.

(H1) k ∈ K1(α, θ), where α ∈ (0, 2) \ {1/p, 1 + 1/p}, θ < π;
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(H2) a ∈ Cul(J × Rn,Sym{n}), b1 ∈ L∞(J × Rn,Rn), b0 ∈ L∞(J × Rn);

(H3) ∃a0 > 0 : a(t, x)ξ · ξ ≥ a0|ξ|2, t ∈ J, x ∈ Rn, ξ ∈ Rn.

Then the Volterra equation (4.1) admits a unique solution in the space

Z := Hα
p (J ;Lp(Rn)) ∩ Lp(J ;H2

p (Rn))

if and only if the function f is subject to the subsequent conditions.

(i) f ∈ Hα
p (J ;Lp(Rn));

(ii) f |t=0 ∈ γ0Z := B
2− 2

pα
pp (Rn), if α > 1/p;

(iii) ∂tf |t=0 ∈ γ1Z := B
2(1− 1

α
− 1
pα

)
pp (Rn), if α > 1 + 1/p.

Proof. We start with the necessity part. Suppose that v ∈ Z solves (4.1). By assumption
(H2), we immediately verify that A(t, x,Dx)v ∈ Lp(J ;Lp(Rn)). Thus, in view of (H1),
f = v − k ∗ A(·, x,Dx)v ∈ Hα

p (J ;Lp(Rn)), i.e. condition (i) is satisfied. To see (ii)
and (iii), apply Theorem 3.2.1 to the space Lp(Rn) and the operator A = −∆ with
domain H2

p (Rn), and use (Lp(Rn),H2
p (Rn))s, p = B2s

pp(Rn), s ∈ (0, 1), together with
∂jt v|t=0 = ∂jt f |t=0 in case α > j + 1/p, j = 0, 1.

The sufficiency part is more involved. Suppose f satisfies (i)-(iii). In order to prove
existence of a unique solution of (4.1) in Z, we use localization and perturbation to
reduce (4.1) to related equations with constant coefficients.

Given η > 0, assumption (H2) allows us to select a large ball Br0(0) ⊂ Rn such that

|a(t, x)− a(t,∞)|B(Rn×n) ≤
η

2
, for all t ∈ J, x ∈ Rn, |x| ≥ r0.

Putting U0 = Rn \ Br0(0) we can further cover Br0(0) by finitely many balls Uj =
Brj (xj), j = 1, . . . , N , and choose a partition 0 =: T0 < T1 < . . . < TM−1 < TM := T
such that for all i = 0, . . . ,M − 1, j = 1, . . . , N ,

|a(t, x)− a(Ti, xj)|B(Rn×n) ≤ η, t ∈ [Ti, Ti+1], x ∈ Brj (xj),

and
|a(t,∞)− a(Ti,∞)|B(Rn×n) ≤

η

2
, t ∈ [Ti, Ti+1].

Define coefficients of spatially local operators Aj#(t, x,Dx) = −aj(t, x) : ∇2
x e.g. by

reflection, that is

a0(t, x) :=
{
a(t, x) : t ∈ J, x /∈ Br0(0)
a(t, r20

x
|x|2 ) : t ∈ J, x ∈ Br0(0)

and

aj(t, x) :=

{
a(t, x) : t ∈ J, x ∈ Brj (xj)
a(t, xj + r2j

x−xj
|x−xj |2 ) : t ∈ J, x /∈ Brj (xj)

for each j = 1, . . . , N . With x0 = ∞, we then have

|aj(t, x)− a(Ti, xj)|B(Rn×n) ≤ η, t ∈ [Ti, Ti+1], x ∈ Rn,

for all i = 0, . . . ,M − 1, j = 0, . . . , N .
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The strategy for solving (4.1) is now as follows. First we determine the solution of
(4.1) on the interval [0, T1]. Let us denote it by v1. Now suppose we already know the
solution vi of (4.1) on the interval [0, Ti], where 1 ≤ i ≤ M − 1. We then seek the
solution vi+1 of (4.1) on the larger interval [0, Ti+1] which equals vi on [0, Ti]. The last
step is repeated as long as i < M . Proceeding in this way we finally obtain the solution
of (4.1) on the entire interval [0, T ]. This is the basic idea concerning the localization
in time. Besides, we will also localize (4.1) with respect to the space variable. This will
be done in each single time step by means of a partition of unity {ϕj}Nj=0 ⊂ C∞(Rn)
which enjoys the properties

∑N
j=0 ϕj ≡ 1, 0 ≤ ϕj(x) ≤ 1 and supp ϕj ⊂ Uj . We will

also make use of a fixed family {ψj}Nj=0 ⊂ C∞(Rn) that satisfies ψj ≡ 1 on an open set
Vj containing suppϕj , and suppψj ⊂ Uj .

Suppose we are in the (i + 1)th time step of the above procedure. Set (0)Zi+1 =
(0)H

α
p ([0, Ti+1];Lp(Rn)) ∩ Lp([0, Ti+1];H2

p (Rn)). If i = 0 (initial time step), we have to
find v1 in the space

Z1(v0) := {w ∈ Z1 : ∂mt w|t=0 = ∂mt f |t=0, if α > m+ 1/p, m = 0, 1}.

If i > 0, we assume that vi =: V−1
i f lies in Zi. Here Vi refers to the operator I + k ∗

A(·, x,Dx) on [0, Ti]. Using the notation

Zi+1(w̃) := {w ∈ Zi+1 : w|[0,Ti] = w̃} for w̃ ∈ Zi, (4.3)

our aim is then to determine vi+1 in the space Zi+1(vi). To achieve this, observe that
with d(w1, w2) = |w1 − w2|Zi+1 , (Zi+1(vi), d) is a complete metric space. Our plan is
to transform (4.1) to an appropriate fixed point equation in Zi+1(vi) and to apply the
contraction principle.

We first derive the local equations associated with {ϕj}Nj=0. Note that (4.1) is equiv-
alent to

v + k ∗ A#(·, x,Dx)v = f − k ∗ AR(·, x,Dx)v,

which when multiplied by ϕj becomes

ϕjv + k ∗ Aj#(·, x,Dx)ϕjv = ϕjf − k ∗ ϕjAR(·, x,Dx)v

+k ∗ [A#(·, x,Dx), ϕj ]v. (4.4)

We freeze the coefficients of the local operator Aj#(t, x,Dx) at the point (Ti, xj) to get the

homogeneous differential operator with constant coefficients Aij(Dx) := Aj#(Ti, xj , Dx).
Then (4.4) can be written as

ϕjv + k ∗ Aij(Dx)ϕjv = ϕjf − k ∗ ϕjAR(·, x,Dx)v + k ∗ [A#(·, x,Dx), ϕj ]v

+k ∗ (Aj#(Ti, xj , Dx)−Aj#(·, x,Dx))ϕjv. (4.5)

Let Aij be the Lp -realization of the differential operatorAij(Dx). For l ∈ {1, . . . ,M},
we put Xl = Lp([0, Tl];Lp(Rn)) and define the space Ξl as the set of all functions g ∈
Hα
p ([0, Tl];Lp(Rn)) satisfying g|t=0 ∈ γ0Z in case α > 1/p, and ∂tg|t=0 ∈ γ1Z in case

α > 1 + 1/p. Ξl endowed with the norm

|g|Ξl = |g|(k,1)
Hα
p ([0,Tl];Lp(Rn)) + χ( 1

p
,2)(α)|g|t=0|γ0Z + χ(1+ 1

p
,2)(α)|∂tg|t=0|γ1Z
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is a Banach space, cp. Corollary 2.8.2. Recall that for g ∈ 0Ξl := 0H
α
p ([0, Tl];Lp(Rn)),

one has |g|(k,1)
Hα
p ([0,Tl];Lp(Rn)) = |Bkg|Xl , Bk denoting the inverse convolution operator in Xl

associated with the kernel k. For the spaces Zl, l = 1, . . . ,M , we choose the norm

|w|Zl = |w|(k,1)
Hα
p ([0,Tl];Lp(Rn)) + |∇2

xw|Xn2
l
.

Claim 1: Let i ∈ {0, . . . ,M − 1}, j ∈ {0, . . . , N}, and l ∈ {1, . . . ,M}. Then

w + k ∗Aijw = g, t ∈ [0, Tl], x ∈ Rn, (4.6)

possesses a unique solution w =: Lijl g in the space Zl if and only if g ∈ Ξl. Further,
there exists a constant C > 0 not depending on i, j, l such that

|Lijl g|Zl ≤ C|g|Ξl , ∀g ∈ 0Ξl. (4.7)

Claim 1 is an immediate consequence of Theorem 3.1.4. Note that after a rotation
and a stretch of the spatial coordinates, the elliptic operator Aij becomes the negative
Laplacian. The constant C in (4.7) can be selected to be independent of i and j, due to
the uniform ellipticity assumption (H3); the independence on l is clear, because in (4.7),
functions g in the subspace 0Ξl are considered, only.

By applying the solution operator Liji+1 to (4.5) we get

(I − Sij)ϕjv = Liji+1(ϕjf) + Liji+1 k ∗ Cj(·, x,Dx)v =: hij(f, v), (4.8)

where
Sijw = Liji+1 k ∗ (Aj#(Ti, xj , Dx)−Aj#(·, x,Dx))w, (4.9)

and
Cj(t, x,Dx) = [A#(t, x,Dx), ϕj ]− ϕjAR(t, x,Dx). (4.10)

One immediately verifies that Sij ∈ B(Zi+1). Furthermore, Sij enjoys the subsequent
properties, which will be shown at the end of this proof.

Claim 2: There exists η0 > 0 such that whenever η ≤ η0, i ∈ {0, . . . ,M − 1}, and
j ∈ {0, . . . , N},

(a) |Sijw|Zi+1 ≤ 1
2 |w|Zi+1 for all w ∈ Zi+1(0) (Z1(0) := 0Z1);

(b) if w ∈ Zi+1(0) and w0 = (I − Sij)w, then |w|Zi+1 ≤ 2|w0|Zi+1 ;

(c) for each g ∈ Ξi+1 and v ∈ Zi+1(V−1
i g), the equation (I − Sij)w = hij(g, v) ad-

mits a unique solution w =: (I − Sij)|−1

Zi+1(ϕjV−1
i g)

hij(g, v) in Zi+1(ϕjV−1
i g). Here

Z1(V−1
0 g) := {v ∈ Z1 : ∂mt v|t=0 = ∂mt g|t=0, if α > m+ 1/p, m = 0, 1}.

Let η ≤ η0. By employing the operators (I −Sij)|−1
Zi+1(ϕjvi)

desribed in Claim 2 we infer
from (4.8) that

ϕjv = (I − Sij)|−1
Zi+1(ϕjvi)

hij(f, v).
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Since ψj ≡ 1 on suppϕj , we may multiply this equation by ψj resulting in

ϕjv = ψj(I − Sij)|−1
Zi+1(ϕjvi)

hij(f, v).

Summing over j then yields

v =
N∑
j=0

ψj(I − Sij)|−1

Zi+1(ϕjV−1
i f)

Liji+1(ϕjf + k ∗ Cj(·, x,Dx)v) =: G(v), (4.11)

which is a fixed point equation for v ∈ Zi+1(vi).
Due to Claim 2(c), G is a self-mapping of Zi+1(vi). Thus the contraction principle is

applicable to (4.11), if we can verify that G is a strict contraction. It turns out that this
can be achieved by choosing a yet finer partition 0 = T0 < T1 < . . . < TM−1 < TM =
T , more precisely, by making δ := maxi |Ti+1 − Ti| sufficiently small. The following
observation is crucial in this connection.

Suppose u ∈ Zi+1(0). By causality, it is clear that Bku|[0,Ti] = 0. So we can write

u = k ∗ Bku = (kχ[0,Ti+1−Ti]) ∗ Bku.

Thus, by Young’s inequality,

|u|Xi+1 ≤ |k|L1(0,Ti+1−Ti)|Bku|Xi+1 ≤ |k|L1(0,δ)|u|Zi+1 ∀u ∈ Zi+1(0). (4.12)

Another observation concerns the operators Cj(t, x,Dx). Since those are at most of
first order and have bounded coefficients, for each ε > 0, there exists Cε > 0 such that

|Cj(t, x,Dx)w|Xi+1 ≤ ε|∇2
xw|Xn2

i+1
+ Cε|w|Xi+1 (4.13)

for all i = 0, . . . ,M − 1, j = 0, . . . , N , and w ∈ Lp([0, Ti+1];H2
p (Rn)).

We are now ready to prove the contractivity of G. Let v, v̄ ∈ Zi+1(vi). In view of
(4.7), Claim 2(b), (4.12), and (4.13), we may estimate

|G(v)− G(v̄)|Zi+1 = |
N∑
j=0

ψj(I − Sij)|−1
Zi+1(0)L

ij
i+1k ∗ Cj(·, x,Dx)(v − v̄)|Zi+1

≤ C0

N∑
j=0

|Liji+1 k ∗ Cj(·, x,Dx)(v − v̄)|Zi+1

≤ C0C1

N∑
j=0

|Cj(·, x,Dx)(v − v̄)|Xi+1

≤ C0C1

N∑
j=0

(ε|∇2
x(v − v̄)|

Xn2
i+1

+ Cε|(v − v̄)|Xi+1)

≤ C0C1(N + 1)
(
ε+ Cε|k|L1(0,δ)

)
|v − v̄|Zi+1 =: κ(ε, δ)|v − v̄|Zi+1 , (4.14)

with C0, C1 and N being independent of δ. This shows existence of a left inverse Qi+1

for the operator

Vi+1 = I + k ∗ A(·, x,Dx) : Zi+1(vi) → Ξi+1(Vivi), (4.15)
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provided that κ < 1, that is, if the numbers ε and δ are selected sufficiently small.
The symbol Ξi+1(Vivi) in (4.15) has to be understood like the corresponding one for Z
defined in (4.3).

We still have to show that vi+1 = Qi+1f indeed solves (4.1) on [0, Ti+1], i.e. that
Vi+1 is a surjection. To this purpose we define the linear operator Ki+1 : Ξi+1 → 0Ξi+1

by

Ki+1g = k ∗
N∑
j=0

[A#(·, x,Dx), ψj ](I − Sij)|−1

Zi+1(ϕjV−1
i g)

hij(g,Qi+1g).

The commutators [A#(t, x,Dx), ψj ] are differential operators of order ≤ 1. Thus for
δ sufficiently small, we see that the mapping g 7→ f − Ki+1g is a strict contraction
in the space {g ∈ Ξi+1 : ∂mt g|t=0 = ∂mt f |t=0, if α > m + 1/p, m = 0, 1}. That
means for such δ, there exists g ∈ Ξi+1 satisfying g + Ki+1g = f . We apply now
V#, i+1 := I + k ∗ A#(·, x,Dx) to v = Qi+1g in (4.11) with f replaced by g. This gives

V#, i+1Qi+1g =
N∑
j=0

V#, i+1ψj(I − Sij)|−1

Zi+1(ϕjV−1
i g)

hij(g,Qi+1g)

=
N∑
j=0

ψj(ϕjg + k ∗ Cj(·, x,Dx)Qi+1g) +Ki+1g.

From
∑

j ϕj = 1 we infer that
∑

j [A#(t, x,Dx), ϕj ] = 0. Using this, together with the
fact that ψj ≡ 1 on suppϕj , we see that

N∑
j=0

ψj(ϕjg + k ∗ Cj(·, x,Dx)Qi+1g) = g − k ∗ AR(·, x,Dx)Qi+1g.

Therefore
Vi+1Qi+1g = g +Ki+1g = f. (4.16)

Hence Vi+1 is surjective, provided that δ is sufficiently small.
Concluding, we have proven that (4.1) admits a unique solution v ∈ Z.
It remains to prove Claim 2. Let w ∈ Zi+1(0). Thanks to Claim 1 we may estimate

|Sijw|Zi+1 = |Liji+1 k ∗ (Aj#(Ti, xj , Dx)−Aj#(·, x,Dx))w|Zi+1

≤ C|(Aj#(t, x,Dx)−Aj#(Ti, xj , Dx))w|Xi+1

≤ C |(aj(·, ·)− a(Ti, xj)) : ∇2
xw|Lp([Ti,Ti+1];Lp(Rn))

≤ Cη |∇2
xw|Xn2

i+1

≤ Cη |w|Zi+1 ≤ 1
2 |w|Zi+1 , (4.17)

provided that η ≤ η0 := 1/2C. This shows (a). Suppose now that w ∈ Zi+1(0) and
w0 = (I − Sij)w. Then in view of (a)

|w|Zi+1 ≤ |Sijw|Zi+1 + |w0|Zi+1 ≤ 1
2 |w|Zi+1 + |w0|Zi+1 .

Hence (b) holds.
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Turning to (c), let g ∈ Ξi+1 and v ∈ Zi+1(V−1
i g). Evidently hij(g, v) ∈ Zi+1. If i > 0,

we further have

hij(g, v)|[0,Ti] = (Liji+1(ϕjg + k ∗ Cj(·, x,Dx)v))|[0,Ti]
= Liji (ϕjg|[0,Ti] + k ∗ Cj(·, x,Dx)V−1

i g) (here ∗ is meant on [0, Ti])

= ϕjV−1
i g − Liji k ∗ (Aj#(·, x,Dx)−Aj#(Ti, xj , Dx))ϕjV−1

i g.

Thus, w ∈ Zi+1(ϕjV−1
i g) implies F (w) := Sijw + hij(g, v) ∈ Zi+1(ϕjV−1

i g). In fact,

(F (w))|[0,Ti] = Liji k ∗ (Aj#(·, x,Dx)−Aj#(Ti, xj , Dx))ϕjV−1
i g + hij(g, v)|[0,Ti]

= ϕjV−1
i g.

So F is a self-mapping of Zi+1(ϕjV−1
i g). This is true for i = 0, too. Compare the

initial values of all terms occurring above to see this. In view of (4.17), F is also a strict
contraction. Hence the assertion follows by the contraction principle. �

4.2 Half space problems

This section is devoted to parabolic problems of second order in a half space subject
to general boundary conditions. In the first subsection we study the case in which the
coefficients are constant and the differential operators consist only of their principal
parts. Then we shall prove pointwise multiplication properties for the function spaces
arising as the natural regularity classes on the boundary. These results allow us to treat
also the case of variable coefficients by means of perturbation arguments. This will be
done in the last part of this paragraph.

4.2.1 Constant coefficients

Let J = [0, T ] and Rn+1
+ = {x := (x′, y) ∈ Rn+1 : x′ ∈ Rn, y > 0}. We separately

consider the problems{
u− k ∗ a : ∇2

xu = f, t ∈ J, x ∈ Rn+1
+ ,

u = g, t ∈ J, x′ ∈ Rn, y = 0, (4.18){
u− k ∗ a : ∇2

xu = f, t ∈ J, x ∈ Rn+1
+ ,

−∂yu+ b · ∇x′u = h, t ∈ J, x′ ∈ Rn, y = 0, (4.19)

where k is as in Section 4.1, a is an (n + 1)-dimensional real matrix, and b ∈ Rn. We
look for unique solutions u in the maximal regularity space

Z := Hα
p (J ;Lp(Rn+1

+ )) ∩ Lp(J ;H2
p (Rn+1

+ )).

As to (4.18), we have the following result.

Theorem 4.2.1 Let 1 < p <∞, n ∈ N, and a ∈ Sym{n+1}. Let further k ∈ K1(α, θ),
where θ < π and α ∈ (0, 2) \

{
1
p ,

2
2p−1 , 1 + 1

p , 1 + 3
2p−1

}
. Assume that a is positive

definite.
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Then (4.18) has a unique solution in the space Z if and only if the data f and g are
subject to the subsequent conditions.

(i) f ∈ Hα
p (J ;Lp(Rn+1

+ ));

(ii) g ∈ B
α(1− 1

2p
)

pp (J ;Lp(Rn)) ∩ Lp(J ;B
2− 1

p
pp (Rn));

(iii) f |t=0 ∈ B
2− 2

pα
pp (Rn+1

+ ), if α > 1
p ;

(iv) f |t=0, y=0 = g|t=0, if α > 2
2p−1 ;

(v) ∂tf |t=0 ∈ B
2(1− 1

α
− 1
pα

)
pp (Rn+1

+ ), if α > 1 + 1
p ;

(vi) ∂tf |t=0, y=0 = ∂tg|t=0, if α > 1 + 3
2p−1 .

Proof. By means of a variable transformation of the form x̄ = QTΛQx, where Q is a
rotation matrix and Λ is diagonal with Λii = 1/

√
λi (λ1, . . . , λn+1 denoting the positive

eigenvalues of the matrix a), problem (4.18) can be reduced to a problem of the same
structure but with a = In+1. The assertion follows then from Theorem 3.5.1 applied to
X = Lp(Rn) and the operator A = −∆x′ , which belongs to BIP(X) and has power angle
0, and from the fact that all function spaces occurring in that theorem are preserved
under the above variable transformation. �

The corresponding result for (4.19) reads

Theorem 4.2.2 Let 1 < p < ∞, n ∈ N, a ∈ Sym{n + 1}, and b ∈ Rn. Suppose
k ∈ K1(α, θ), where θ < π and α ∈ (0, 2) \

{
1
p ,

2
p−1 , 1 + 1

p

}
. Assume that a is positive

definite.
Then (4.19) possesses a unique solution in the space Z if and only if the functions

f and h satisfy the following conditions.

(i) f ∈ Hα
p (J ;Lp(Rn+1

+ ));

(ii) h ∈ B
α( 1

2
− 1

2p
)

pp (J ;Lp(Rn)) ∩ Lp(J ;B
1− 1

p
pp (Rn));

(iii) f |t=0 ∈ B
2− 2

pα
pp (Rn+1

+ ), if α > 1
p ;

(iv) −∂yf |t=0, y=0 + b · ∇x′f |t=0, y=0 = h|t=0, if α > 2
p−1 ;

(v) ∂tf |t=0 ∈ B
2(1− 1

α
− 1
pα

)
pp (Rn+1

+ ), if α > 1 + 1
p .

Proof. Use the variable transformation described in the proof of Theorem 4.2.1 and
normalize the coefficient in front of the normal derivative to reduce (4.19) to a problem
of the same structure with a = In+1. The assertion is then a consequence of Theorem
3.5.1 applied to X = Lp(Rn), A = −∆x′ , and D = b · ∇x′ (b ∈ Rn). Note that
D ∈ BIP(R(D)) with power angle θD ≤ π/2 (cp. Prüss [65, Section 3]) and thus
θD < π− θ/2 = π−max{θ, θA}/2 showing the second angle condition in Theorem 3.5.1.
�

4.2.2 Pointwise multiplication

Let 1 < p < ∞, s1, s2 ∈ (0, 1), 0 < T2, 0 ≤ T1 ≤ T2, and Ω be an arbitrary domain in
Rn. We are interested in pointwise multipliers for the intersection space

Y T2 := Y T2
1 ∩ Y T2

2 := Bs1
pp([0;T2];Lp(Ω)) ∩ Lp([0, T2];Bs2

pp(Ω))
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endowed with the norm | · |Y T2 defined by

| · |Y T = | · |Lp([0,T ]×Ω) + [ · ]Y T1 + [ · ]Y T2 , T > 0 (4.20)

where

[f ]Y T1 = (
∫ T

0

∫ T

0

∫
Ω

|f(t, x)− f(τ, x)|p

|t− τ |1+s1p
dx dτ dt)

1
p , (4.21)

[f ]Y T2 = (
∫ T

0

∫
Ω

∫
Ω

|f(t, x)− f(t, y)|p

|x− y|n+s2p
dx dy dt)

1
p . (4.22)

We consider first products with bounded factors. Suppose that m, f ∈ Y T2 ∩
L∞([0, T2] × Ω) =: Y T2 ∩ L∞. In what is to follow we estimate |mf |Y T2 , using among
other things terms referring to norms of functions on [0, T1] and [T1, T2], respectively.
Note that in case T1 = 0 respectively T1 = T2 these terms have to be regarded as zero.

It is readily seen that

|mf |Lp([0,T2]×Ω) ≤ |mf |Lp([0,T1]×Ω) + |mf |Lp([T1,T2]×Ω)

≤ |m|L∞([0,T1]×Ω)|f |Lp([0,T1]×Ω) + |m|L∞([T1,T2]×Ω)|f |Lp([0,T2]×Ω).

By employing the trivial identity

m(t, x)f(t, x)−m(t, y)f(t, y) = m(t, x)(f(t, x)− f(t, y)) + (m(t, x)−m(t, y))f(t, y)

and Minkowski’s inequality, we further get

[mf ]
Y
T2
2

≤ |m|L∞([0,T1]×Ω)[f ]
Y
T1
2

+ [m]
Y
T1
2
|f |L∞([0,T1]×Ω)

+|m|L∞([T1,T2]×Ω)[f ]
Y
T2
2

+ [m]Lp([T1,T2];B
s2
pp(Ω))|f |L∞([0,T2]×Ω).

Proceeding similarly as above, we also obtain

[mf ]
Y
T2
1

= (
∫ T2

0

∫ T2

0

∫
Ω

|m(t, x)f(t, x)−m(τ, x)f(τ, x)|p

|t− τ |1+s1p
dx dτ dt)

1
p

≤ (
∫ T1

0

∫ T1

0

∫
Ω
· · ·)

1
p + 2(

∫ T2

T1

∫ T2

0

∫
Ω
· · ·)

1
p (4.23)

≤ |m|L∞([0,T1]×Ω)[f ]
Y
T1
1

+ [m]
Y
T1
1
|f |L∞([0,T1]×Ω)

+2(|m|L∞([T1,T2]×Ω)[f ]
Y
T2
1

+ [m]
Y
T1, T2
1

|f |L∞([0,T2]×Ω)),

where we have set

[m]
Y
T1, T2
1

= (
∫ T2

T1

∫ T2

0

∫
Ω

|m(t, x)−m(τ, x)|p

|t− τ |1+s1p
dx dτ dt)

1
p . (4.24)

So with | · |Y Ti∩L∞ = | · |Y Ti + | · |L∞([0,Ti]×Ω), i = 1, 2, and

|m|Y T1, T2∩L∞ = |m|L∞([T1,T2]×Ω) + [m]
Y
T1, T2
1

+ [m]Lp([T1,T2];B
s2
pp(Ω)), (4.25)

we have thus proved
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Lemma 4.2.1 Let 1 < p < ∞, s1, s2 ∈ (0, 1), 0 < T2, 0 ≤ T1 ≤ T2, and Ω be an
arbitrary domain in Rn. Then

|mf |Y T2 ≤ |m|Y T1∩L∞ |f |Y T1∩L∞ + 2|m|Y T1, T2∩L∞ |f |Y T2∩L∞ (4.26)

for all m, f ∈ Y T2 ∩ L∞([0, T2]× Ω).

We turn now to products where one factor might be unbounded. Such a constellation
arises for example when s1 < 1/p. We confine ourselves to the case Ω = Rn. By means
of extension and restriction, the subsequent multiplication property can be transferred
to domains with sufficiently smooth boundary.

Suppose f ∈ Y T2 and m ∈ Cr1([0, T2];C(Rn)) ∩C([0, T2];Cr2(Rn)) =: MT2 for some
si < ri < 1, i = 1, 2. Letting J be a subinterval of [0, T2], we then estimate

[mf ]Lp(J ;B
s2
pp(Rn)) = (

∫
J

∫
Rn

∫
Rn

|m(t, x)f(t, x)−m(t, y)f(t, y)|p

|x− y|n+s2p
dx dy dt)

1
p

≤ |m|L∞(J×Ω)[f ]Lp(J ;B
s2
pp(Rn)) + I(m, f),

where

I(m, f) ≤ (
∫
J

∫
Rn

∫
B1(y)

|m(t, x)−m(t, y)|p|f(t, y)|p

|x− y|n+s2p
dx dy dt)

1
p + (

∫
J

∫
Rn

∫
Rn\B1(y)
· · ·)

1
p

=: I1(m, f) + I2(m, f).

We put [m]C(J ;Cr2 (Rn)) = supt∈J, x, y∈Rn |m(t, x) − m(t, y)| |x − y|−r2 . By hypothesis
1− s2/r2 > 0. If η ∈ [0, 1− s2/r2), then (1− η)r2 − s2 > 0, and we obtain

I1(m, f) ≤ (2|m|L∞(J×Rn))
η[m]1−ηC(J ;Cr2 (Rn))(

∫
J

∫
Rn

∫
B1(y)

|f(t, y)|p dx dy dt
|x− y|n−((1−η)r2−s2)p

)
1
p

≤ C(p, r2, s2, n)|m|ηL∞(J×Rn)[m]1−ηC(J ;Cr2 (Rn))|f |Lp(J×Rn).

Further,

I2(m, f) ≤ 2|m|L∞(J×Rn)(
∫
J

∫
Rn

∫
Rn\B1(y)

|f(t, y)|p dx dy dt
|x− y|n+s2p

)
1
p

≤ C(p, s2, n)|m|L∞(J×Rn)|f |Lp(J×Rn).

Hence

[mf ]
Y
T2
2

≤ [mf ]Lp([0,T1];B
s2
pp(Rn)) + [mf ]Lp([T1,T2];B

s2
pp(Rn))

≤ C(|m|L∞([0,T1]×Rn) + [m]C([0,T1];Cr2 (Rn)))(|f |Lp([0,T1]×Rn) + [f ]
Y
T1
2

)

+|m|L∞([T1,T2]×Rn)

(
[f ]

Y
T2
2

+ C(1 + [m]C([T1,T2];Cr2 (Rn)))|f |Lp([0,T2]×Rn)

)
.

Let now [m]Cr1 (J ;C(Rn)) = supt, τ∈J, x∈Rn |m(t, x) − m(τ, x)| |t − τ |−r1 . To estimate
[mf ]

Y
T2
1

, we take (4.23) with Ω = Rn as starting point, apply Fubini’s theorem, and
use the same estimation techniques as for [mf ]

Y
T2
2

to the result

[mf ]
Y
T2
1

≤ |m|L∞([0,T1]×Rn)[f ]
Y
T1
1

+ C1[m]Cr1 ([0,T1];C(Rn))|f |Lp([0,T1]×Rn)

+2|m|L∞([T1,T2]×Rn)([f ]
Y
T2
1

+ C2[m]Cr1 ([T1,T2];C(Rn))|f |Lp([0,T2]×Rn)).
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We remark that the constant C2 stems from finding an upper bound for the integral∫ T2

T1
|t − τ |−β dt, τ ∈ [0, T2], where β < 1 is a fixed number. Thus if T1 and T2 vary

within the set [0, T ], C2 can be chosen to be independent of those numbers.
Set

|m|MT1 = |m|L∞([0,T1]×Rn) + [m]Cr1 ([0,T1];C(Rn)) + [m]C([0,T1];Cr2 (Rn))

and
[m]MT1, T2 = [m]Cr1 ([T1,T2];C(Rn)) + [m]C([T1,T2];Cr2 (Rn)).

Then our observations can be summarized as follows.

Lemma 4.2.2 Suppose that 1 < p < ∞, 0 < T , 0 ≤ T1 ≤ T2 ≤ T , and 0 <
si < ri < 1 for i = 1, 2. Let Y T2 = Bs1

pp([0;T2];Lp(Rn)) ∩ Lp([0, T2];Bs2
pp(Rn)), and

MT2 = Cr1([0, T2];C(Rn))∩C([0, T2];Cr2(Rn)). Then there exists a constant C > 0 not
depending on T1 and T2, such that

|mf |Y T2 ≤ C
(
|m|MT1 |f |Y T1 + |m|L∞([T1,T2]×Rn)(1 + [m]MT1, T2 )|f |Y T2

)
(4.27)

for all m ∈MT2 and f ∈ Y T2.

4.2.3 Variable coefficients

The goal of this subparagraph is to extend the results proven in Subsection 4.2.1 to vari-
able coefficients. Besides we no longer stick to differential operators consisting only of the
principal part but consider general operators of second (Volterra equation) respectively
first order (boundary condition).

To start with, recall the notation Rn+1
+ = {(x′, y) ∈ Rn+1 : x′ ∈ Rn, y > 0}. Define

the operators A(t, x,Dx) and B(t, x′, Dx) by

A(t, x,Dx) = −a(t, x) : ∇2
x + a1(t, x) · ∇x + a0(t, x), t ∈ J, x ∈ Rn+1

+ ,

and
B(t, x′, Dx) = −∂y + b(t, x′) · ∇x′ + b0(t, x′), t ∈ J, x′ ∈ Rn, (4.28)

respectively. We are concerned with the two separate problems{
v + k ∗ A(·, x,Dx)v = f, t ∈ J, x ∈ Rn+1

+ ,
v = g, t ∈ J, x′ ∈ Rn, y = 0 , (4.29){

v + k ∗ A(·, x,Dx)v = f, t ∈ J, x ∈ Rn+1
+ ,

B(t, x′, Dx)v = h, t ∈ J, x′ ∈ Rn, y = 0 , (4.30)

and seek, as in Subsection 4.2.1, unique solutions in the regularity class

Z = Hα
p (J ;Lp(Rn+1

+ )) ∩ Lp(J ;H2
p (Rn+1

+ )).

Concerning (4.29), we have the following result.

Theorem 4.2.3 Let 1 < p <∞, J = [0, T ], n ∈ N, and k ∈ K1(α, θ), where θ < π, and
α ∈ (0, 2) \

{
1
p ,

2
2p−1 , 1 + 1

p , 1 + 3
2p−1

}
. Suppose a ∈ Cul(J × Rn+1

+ ,Sym{n+ 1}), a1 ∈
L∞(J × Rn+1

+ ,Rn+1), a0 ∈ L∞(J × Rn+1
+ ), and assume further that there exists c0 > 0

such that a(t, x)ξ · ξ ≥ c0|ξ|2, t ∈ J, x ∈ Rn+1, ξ ∈ Rn+1.
Then (4.29) has a unique solution in the space Z if and only if the data f and g are

subject to the conditions (i)-(vi) stated in Theorem 4.2.1.

67



In order to formulate the corresponding result for (4.30), we put s1 = α(1
2 −

1
2p), s2 =

1− 1
p , as well as Y = Y1 ∩ Y2, where Y1 = Bs1

pp(J ;Lp(Rn)) and Y2 = Lp(J ;Bs2
pp(Rn)).

Theorem 4.2.4 Let 1 < p < ∞, J = [0, T ], n ∈ N, and k ∈ K1(α, θ), where θ < π,
and α ∈ (0, 2) \

{
1
p ,

2
p−1 , 1 + 1

p

}
. Let further a, a1, and a0 be as in Theorem 4.2.3.

Assume b ∈ Cul(J × Rn), as well as (b, b0) ∈ Y n+1, if p > n + 1 + 2/α, and (b, b0) ∈
(Cr1(J ;C(Rn)) ∩ C(J ;Cr2(Rn)))n+1 with some ri > si, i = 1, 2, otherwise.

Then (4.30) has a unique solution in the space Z if and only if the data f and h
satisfy the conditions (i)-(iii) and (v) stated in Theorem 4.2.2, as well as

(iv) B(0, x′, Dx)f |t=0, y=0 = h|t=0, if α > 2
p−1 .

We only prove Theorem 4.2.3. Theorem 4.2.4 can be established by means of the same
techniques; the proof is even much simpler, since one does not have to consider pertur-
bations on the boundary.

Proof of Thm. 4.2.4. We begin with the ”only if” part. Suppose v ∈ Z is a solution
of (4.30). By the regularity assumptions on A(t, x,Dx), it is evident that A(t, x,Dx)v ∈
Lp(J ;Lp(Rn+1

+ )), which in turn implies k ∗ A(t, x,Dx)v ∈ 0H
α
p (J ;Lp(Rn+1

+ )), according
to Corollary 2.8.1. Thus f ∈ Hα

p (J ;Lp(Rn+1
+ )). Since ∂jt v|t=0 = ∂jt f |t=0 in case α >

j+1/p, j = 0, 1, Theorem 4.2.1 shows (iii) and (v). Another consequence of that theorem
is that v|y=0 ∈ Y . Also, ∇xv|y=0 ∈ Y n+1, by Theorem 4.2.2. Since p > n + 1 + 2/α
entails Y ↪→ C(J × Rn), the coefficients b and b0 exhibit just the regularity needed for
the application of Lemma 4.2.1 and Lemma 4.2.2, respectively. Hence condition (ii) is
necessary. Last but not least, the compatibility condition (iv) follows from the regularity
assumptions on b, b0, and the embedding Y ↪→ C(J ;Lp(Rn)), which is valid whenever
α > 2/(p− 1), cp. the proof of Theorem 3.5.2 and that of Theorem 4.2.2.

We come now to the sufficiency part. Although problem (4.30) is far more compli-
cated than (4.1), the strategy we are going to follow is basically the same as in the proof
of Theorem 4.1.1. Unless stated otherwise and apart from trivial modifications, the
notation used here is adopted from that proof. Note that we decompose the boundary
differential operator as B(t, x′, Dx) = B#(t, x′, Dx) + b0(t, x′).

Given η > 0, the assumptions on a and b permit us to choose a large ball Br0(0) ⊂
Rn+1 such that

|a(t, x)− a(t,∞)|B(R(n+1)2 )
≤ η

2
, for all t ∈ J, x ∈ Rn+1

+ , |x| ≥ r0,

as well as

|b(t, x′)− b(t,∞)|B(Rn,R) ≤
η

2
, for all t ∈ J, x′ ∈ Rn, |x′| ≥ r0.

Put U0 = {x ∈ Rn+1 : |x| > r0}. We can cover Br0(0) ∩ Rn+1
+ by finitely many balls

Uj = Brj (xj), j = 1, . . . , Nb + N , and select a partition 0 =: T0 < T1 < . . . < TM−1 <
TM := T such that for all i = 0, . . . ,M − 1, the following conditions are fulfilled:

∃x′j ∈ Rn : Brj (xj) = Brj ((x
′
j , 0)), 1 ≤ j ≤ Nb;

Brj (xj) ∩ {(x′, y) ∈ Rn+1 : y = 0} = ∅, Nb + 1 ≤ j ≤ Nb +N ;

|a(t, x)−a(Ti, xj)|B(R(n+1)2 )
≤η, t ∈ [Ti, Ti+1], x ∈ Rn+1

+ ∩Brj (xj), 1≤j≤Nb+N ;

|b(t, x′)−b(Ti, x′j)|B(Rn,R)≤η, t ∈ [Ti, Ti+1], (x′, 0) ∈ Brj (xj), 1≤j≤Nb;

|a(t,∞)−a(Ti,∞)|B(R(n+1)2 )
, |b(t,∞)−b(Ti,∞)|B(Rn,R) ≤

η

2
, t ∈ [Ti, Ti+1].
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One can then construct functions aj ∈ C(J × Rn+1
+ ), 0 ≤ j ≤ Nb, as well as aj ∈

C(J × Rn+1), Nb + 1 ≤ j ≤ Nb + N , which are subject to a0(t, x) = a(t, x), t ∈ J, x ∈
U0 ∩ Rn+1

+ ; aj(t, x) = a(t, x), t ∈ J, x ∈ Uj ∩ Rn+1
+ , j > 0; and

|aj(t, x)−a(Ti, xj)|B(R(n+1)2 )
≤η, t ∈ [Ti, Ti+1], x ∈ Rn+1

+ resp. Rn+1,

for all i = 0, . . . ,M − 1 and j = 0, . . . , Nb + N , where x0 = ∞. Similarly, one finds
functions bj , 0 ≤ j ≤ Nb, defined on J × Rn enjoying the same regularity properties as
b, and which are such that bj equals b on J × {x′ ∈ Rn : (x′, 0) ∈ Uj} as well as

|bj(t, x′)− b(Ti, x′j)|B(Rn,R) ≤ η, t ∈ [Ti, Ti+1], x′ ∈ Rn,

for all i = 0, . . . ,M − 1 and j = 0, . . . , Nb. With these functions we define spatially
local operators by Aj#(t, x,Dx) = −aj(t, x) : ∇2

x, 0 ≤ j ≤ Nb +N , and Bj#(t, x′, Dx) =

−∂y + bj(t, x′) · ∇x′ , 0 ≤ j ≤ Nb. Further, let Aij(Dx) = Aj#(Ti, xj , Dx) and Bij(Dx) =

Bj#(Ti, x′j , Dx).

We next choose a partition of unity {ϕj}Nb+Nj=0 ⊂ C∞(Rn+1) which has the properties∑Nb+N
j=0 ϕj ≡ 1 on Rn+1

+ , 0 ≤ ϕj(x) ≤ 1 and supp ϕj ⊂ Uj . Fix also a family {ψj}Nb+Nj=0 ⊂
C∞(Rn+1) that satisfies ψj ≡ 1 on an open set Vj containing suppϕj , and suppψj ⊂ Uj .
To derive the local equations associated with {ϕj}Nb+Nj=0 we multiply both equations
in (4.30) by ϕj . For the Volterra equation, this again results in (4.5). Concerning
the boundary, for j = Nb + 1, . . . , Nb + N a condition does not appear, whereas for
j = 0, . . . , Nb we obtain

Bij(Dx)ϕjv = ϕjh− ϕjb0(·, x′)v + (B#(t, x′, Dx)ϕj)v

+(Bj#(Ti, x′j , Dx)− Bj#(t, x′, Dx))ϕjv. (4.31)

Rephrasing, for j = Nb+1, . . . , Nb+N we encounter the full space problems which were
already considered in the proof of Theorem 4.1.1 and which, with η being sufficiently
small, gave rise to the equations

ϕjv = ψj(I − Sij)|−1
Zi+1(ϕjvi)

hij(f, v). (4.32)

In case 0 ≤ j ≤ Nb we are led to half space problems of the form{
w + k ∗ Aij(Dx)w = g, t ∈ [0, Tl], x ∈ Rn+1

+ ,
−∂yw + b(Ti, x′j) · ∇x′w = φ, t ∈ [0, Tl], x′ ∈ Rn, y = 0, (4.33)

where 1 ≤ i+1, l ≤M . By Theorem 4.2.2, (4.33) has a unique solution w =: LijH, l(g, φ)T

in the space Zl if and only if g and φ are subject to the conditions (i)-(v) enunciated
therein with J = [0, Tl]. Let us write for the latter (g, φ) ∈ ΞH, l. Moreover, an a priori
estimate for |w|Zl in terms of the norms of the data g and φ holds, and the constant in
this estimate is independent of i, j, l, if the data belong to the spaces with vanishing
traces at t = 0. Note that for Zl, we use as in the proof of Theorem 4.1.1 the norm

|w|Zl = |w|(k,1)
Hα
p ([0,Tl];Lp(Rn+1

+ ))
+ |∇2

xw|X(n+1)2

l

.

Here Xl = Lp([0, Tl]× Rn+1
+ ). The corresponding norm for

Yl := B
α( 1

2
− 1

2p
)

pp ([0, Tl];Lp(Rn)) ∩ Lp([0, Tl];B
1− 1

p
pp (Rn)),
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the natural regularity space of φ in (4.33), is equivalent to

| · |Yl = | · |Lp([0,Tl]×Rn) + [ · ]
Y
Tl
1

+ [ · ]
Y
Tl
2

,

see (4.21) and (4.22) for the definition of [ · ]
Y
Tl
1

, [ · ]
Y
Tl
2

.

Taking now for (g, φ) in (4.33) the right-hand sides of (4.5) and (4.31), application
of the solution operator LijH, i+1 yields

(I − SijH)ϕjv=LijH, i+1

(
ϕjf + k ∗ Cj(·, x,Dx)v
ϕjh+ γyCH, j(·, x′)v

)
=: hijH(f, h, v), (4.34)

where

SijHw = LijH, i+1

(
k ∗ (Aj#(Ti, xj , Dx)−Aj#(·, x,Dx))w
γy(Bj#(Ti, x′j , Dx)− Bj#(·, x′, Dx))w

)
,

and
CH, j(t, x) = B#(t, x′, Dx)ϕj − ϕjb0, (4.35)

γy denoting the trace operator at y = 0. One can then show an analogue to Claim 2 (cf.
the proof of Theorem 4.1.1) asserting in particular existence of a small η0 > 0 which is
such that whenever δ = maxi |Ti+1 − Ti|, η ≤ η0, the equation (I − SijH)w = hijH(f, h, v)
admits a unique solution

w =: (I − SijH)|−1

Zi+1(ϕjV−1
H, i(f, h))

hijH(f, h, v)

in Zi+1(ϕjV−1
H, i(f, h)) for all (f, h) ∈ ΞH, i+1, v ∈ Zi+1(V−1

H, i(f, h)), i = 0, . . . ,M−1, and
j = 0, . . . , Nb. Here V−1

H, i(f, h), i ≥ 1, refers to the solution of (4.30) on the time-interval
[0, Ti], which is already known in the (i+ 1)th time step. Further, Z1(ϕjV−1

H, 0(f, h)) :=
{ϕjw : w ∈ Z1, ∂

m
t w|t=0 = ∂mt f |t=0, if α > m+ 1/p, m = 0, 1}.

The proof of these properties is similar to that of Claim 2 above, which is why we
only consider the part that involves estimates on the boundary.

Let w ∈ Zi+1(0). If p > n + 1 + 2/α, that is Y ↪→ BUC([0, T ] × Rn), Lemma 4.2.1
yields

|γy(Bj#(Ti, x′j , Dx)− Bj#(t, x′, Dx))w|Yi+1 = |(b(Ti, x′j)− bj(·, ·)) · ∇x′γyw|Yi+1

≤ C|b(Ti, x′j)− bj(·, ·)|(Y Ti, Ti+1∩L∞)n | |∇x′γyw|(Yi+1∩L∞)n

≤ C1|b(Ti, x′j)− bj(·, ·)|(Y Ti, Ti+1∩L∞)n |w|Zi+1 =: κ1|w|Zi+1 ,

where the constant C1 does not depend on i, j. Similarly, if p ≤ n + 1 + 2/α, Lemma
4.2.2 shows that

|γy(Bj#(Ti, x′j , Dx)− Bj#(t, x′, Dx))w|Yi+1 ≤

≤ C|(b(Ti, x′j)−bj(·, ·))|L∞([Ti,Ti+1]×Rn)n(1+[b(Ti, x′j)−bj(·, ·)](MTi, Ti+1 )n)|w|Zi+1

≤ C2η|w|Zi+1 =: κ2|w|Zi+1 ,

again with a constant not depending on i, j. In view of (4.24) and (4.25), it is clear that
κ1, κ2 tend to zero if η and δ do so. This, together with Theorem 4.2.2 and an estimate
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analogous to (4.17), shows that SijH : Zi+1(ϕjV−1
i (f, h)) → Zi+1 is contractive if both η

and δ are sufficiently small.
Assuming this, we thus obtain, aside from (4.32),

ϕjv = (I − SijH)|−1

Zi+1(ϕjV−1
H, i(f, h))

hijH(f, h, v), j = 0, . . . , Nb.

Multiplying these equations by ψj and summing over all j then results in

v = GH(v) :=
Nb∑
j=0

ψj(I − SijH)|−1

Zi+1(ϕjV−1
H, i(f, h))

hijH(f, h, v)

+
Nb+N∑
j=Nb+1

ψj(I − Sij)|−1

Zi+1(ϕjV−1
H, i(f, h))

hij(f, v), (4.36)

a fixed point equation for v ∈ Zi+1(vi). Since GH leaves this space invariant, the con-
traction principle is applicable, provided that GH is a strict contraction.

To verify that this can be arranged by selecting δ sufficiently small, we let v, v̄ ∈
Zi+1(vi) and estimate with the aid of Theorem 4.1.1 and 4.2.2

|GH(v)−GH(v̄)|Zi+1 =
∣∣∣ Nb∑
j=0

ψj(I − SijH)|−1
Zi+1(0)L

ij
H, i+1

(
k ∗ Cj(·, x,Dx)(v − v̄)
γyCH, j(·, x)(v − v̄)

)

+
Nb+N∑
j=Nb

ψj(I − Sij)|−1
Zi+1(0)L

ij
i+1k ∗ Cj(·, x,Dx)(v − v̄)

∣∣∣
Zi+1

≤ C(
Nb+N∑
j=0

|Cj(·, x,Dx)(v − v̄)|Xi+1 +
Nb∑
j=0

|γyCH, j(t, x)(v − v̄)|Yi+1),

with C > 0 not depending on δ. By extension to J × Rn+1, estimate (4.14), and
restriction to J × Rn+1

+ , we obtain for the first sum

Nb+N∑
j=0

|Cj(·, x,Dx)(v − v̄)|Xi+1 ≤ C1(ε+ Cε|k|L1(0,δ))|v − v̄|Zi+1 , (4.37)

where ε > 0 can be chosen arbitrary small and C1, Cε > 0 do not depend on δ.
Turning to the second sum, we introduce the space

0Z
1/2
i+1 = 0H

α
2
p (J ;Lp(Rn+1

+ )) ∩ Lp(J ;H1
p (Rn+1

+ )),

which is normed by
|w|

0Z
1/2
i+1

= |Bkα/2w|Xi+1 + |∇xw|Xn+1
i+1

,

where kα/2(t) = tα/2−1, t > 0, and Bkα/2 = (kα/2∗)−1 in Xi+1. Suppose that u ∈ Zi+1(0).
By causality, B2

kα/2
u|[0,Ti] = 0, and so we have

|u|
0Z

1/2
i+1

= |(kα/2χ[0,Ti+1−Ti]) ∗ B
2
kα/2

u|Xi+1 + |∇xu|Xn+1
i+1

≤ |kα/2|L1(0,Ti+1−Ti)|B
2
kα/2

u|Xi+1 + ε|∇2
xu|+ Cε|u|Xi+1

≤ C0|kα/2|L1(0,δ)|Bku|Xi+1 + ε|∇2
xu|+ Cε|k|L1(0,δ)|Bku|Xi+1

≤ (C0|kα/2|L1(0,δ) + ε+ Cε|k|L1(0,δ))|u|Zi+1 ∀u ∈ Zi+1(0), (4.38)
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where C0 is independent of δ (u ∈ Zi+1(0)!) and ε > 0 can be chosen arbitrary small,
cf. (4.12) for the last term. Theorem 4.2.1, the results in Section 4.2.2 on pointwise
multiplication, and (4.38) allow us now to estimate

Nb∑
j=0

|γyCH, j(t, x)(v − v̄)|Yi+1 ≤ C2(Nb + 1)|γy(v − v̄)|Yi+1 ≤ C2(Nb + 1)C3|v − v̄|
0Z

1/2
i+1

≤ C4(C0|kα/2|L1(0,δ) + ε+ Cε|k|L1(0,δ))|v − v̄|Zi+1 , (4.39)

the constants C0, C4 being independent of δ. In view of (4.37) and (4.39), it is now
apparent that GH is a strict contraction for δ sufficiently small. Consequently, for such
δ, (4.36) possesses a unique solution v =: QH, i+1(f, h) in the space Zi+1(V−1

i (f, h)). In
other words, QH, i+1 is a left inverse for the operator

VH, i+1 :=
(
I + k ∗ A(·, x,Dx), γyB(t, x′, Dx)

)
:

Zi+1(vi) → Ξi+1(Vivi)× Yi+1(γyB(t, x′, Dx)vi).

Here the symbols Ξi+1(ψ) and Yi+1(ψ) have to be understood like the corresponding one
for Z defined in (4.3).

To show that VH, i+1 is a surjection, we proceed as in the proof of Theorem 4.1.1.
Define the linear operator KH, i+1 by means of

KH, i+1(g, gb) = (K(1)
H, i+1(g, gb),K

(2)
H, i+1(g, gb))

=
(
k ∗

Nb∑
j=0

[A#(·, x,Dx),ψj ](I − SijH)|−1

Zi+1(ϕjV−1
H, i(g,gb))

hijH(g, gb,QH, i+1(g, gb))

+k ∗
Nb+N∑
j=Nb+1

[A#(·, x,Dx),ψj ](I − Sijλ )|−1

Zi+1(ϕjV−1
H, i(g,gb))

hij(g, gb,QH, i+1(g, gb)),

γy

Nb∑
j=0

(B#(t, x′, Dx)ψj)(I − SijH)|−1

Zi+1(ϕjV−1
H, i(g,gb))

hijH(g, gb,QH, i+1(g, gb))
)
.

Observe that KH, i+1 maps pairs (g, gb) ∈ Ξi+1 × Yi+1 satisfying the compatibility con-
dition (iv) into 0Ξi+1 × 0Yi+1. Indeed, if α > 2/(p− 1), the function

w := (I − SijH)|−1

Zi+1(ϕjV−1
H, i(g,gb))

hijH(g, gb,QH, i+1(g, gb))

has temporal trace w|t=0 = ϕjg|t=0. Since ψj ≡ 1 on an open set Vj containing suppϕj ,
it follows that B#(t, x′, Dx)ψj ≡ 0 on suppϕj . Hence (K(2)

H, i+1(g, gb))|t=0 = 0.
The commutators [A#(t, x,Dx), ψj ] are differential operators of first order, while mul-

tiplying pointwise by B#(t, x′, Dx)ψj can be regarded as an operator of order zero. So
we see that by choosing δ small enough, the mapping (g, gb) 7→ (f, h)−KH, i+1(g, gb) be-
comes a strict contraction in the space {(g, gb) ∈ Ξi+1×Yi+1 : ∂mt g|t=0 = ∂mt f |t=0, if α >
m + 1/p, m = 0, 1; gb|t=0 = h|t=0, if α > 2/(p − 1)}; thus for such δ we find a pair
(g, gb) ∈ Ξi+1 × Yi+1 satisfying

(g, gb) +KH, i+1(g, gb) = (f, h).
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Apply now V#, i+1 := I + k ∗ A#(·, x,Dx) to QH, i+1(g, gb); by (4.36) this gives

V#, i+1QH, i+1(g, gb) =
Nb+N∑
j=0

ψj(ϕjg+k ∗ Cj(·, x,Dx)QH, i+1(g, gb))+K
(1)
H, i+1(g, gb)

= g − k ∗ AR(·, x,Dx)QH, i+1(g, gb)) +K(1)
H, i+1(g, gb),

whence
Vi+1QH, i+1(g, gb) = g +K(1)

H, i+1(g, gb) = f.

Similarly,

γyB#(t, x′, Dx)QH, i+1(g, gb) =
Nb∑
j=0

ψj(ϕjgb+γyCH, j(t, x)QH, i+1(g, gb))+K
(2)
H, i+1(g, gb)

= gb − b0γyQH, i+1(g, gb) +K(2)
H, i+1(g, gb),

which entails
γyB(t, x′, Dx)QH, i+1(g, gb) = gb +K(2)

H, i+1(g, gb) = h.

This proves surjectivity of VH, i+1, provided δ is sufficiently small.
All in all, we have shown that there exists a unique solution v of (4.30) in the space

Z. �

4.3 Problems in domains

In this section let Ω ⊂ Rn+1 be a domain with compact C2-boundary Γ which decomposes
according to Γ = ΓD ∪ΓN and dist(ΓD,ΓN ) > 0. Let further 1 < p <∞ and J = [0, T ].
We consider the problem v + k ∗ A(·, x,Dx)v = f, t ∈ J, x ∈ Ω,

v = g, t ∈ J, x ∈ ΓD,
B(t, x,Dx)v = h, t ∈ J, x ∈ ΓN .

(4.40)

Here the differential operators A(t, x,Dx) and B(t, x,Dx) are of the form

A(t, x,Dx) = −a(t, x) : ∇2
x + a1(t, x) · ∇x + a0(t, x), t ∈ J, x ∈ Ω, (4.41)

respectively
B(t, x,Dx) = b(t, x) · ∇x + b0(t, x), t ∈ J, x ∈ ΓN .

Put Y = Bs1
pp(J ;Lp(ΓN )) ∩ Lp(J ;Bs2

pp(ΓN )) with s1 = α(1
2 −

1
2p), s2 = 1− 1

p , as well as
M =

⋃
ri>si

Cr1(J ;C(ΓN )) ∩ C(J ;Cr2(ΓN )). Let further ν(x) denote the outer unit
normal of Ω at x ∈ Γ. Then our assumptions read as follows.

(H1) (kernel): k ∈ K1(α, θ) with θ < π and α ∈ (0, 2)\
{

1
p ,

2
2p−1 ,

2
p−1 , 1 + 1

p , 1 + 3
2p−1

}
;

(H2) (smoothness of coefficients): a ∈ Cul(J×Ω,Sym{n+1}), a1 ∈ L∞(J×Ω,Rn+1), a0 ∈
L∞(J × Ω), as well as (b, b0) ∈ Y n+2 in case p > n+ 1 + 2/α, and (b, b0) ∈ Mn+2, oth-
erwise;
(H3) (uniform ellipticity): ∃c0 > 0 s.t. a(t, x)ξ · ξ ≥ c0|ξ|2, t ∈ J, x ∈ Ω, ξ ∈ Rn+1;
(H4) (normality): b(t, x) · ν(x) 6= 0, t ∈ J, x ∈ ΓN .

The aim of this section is to prove the subsequent result.
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Theorem 4.3.1 Let 1 < p < ∞, J = [0, T ], and Ω ⊂ Rn+1 be a domain with compact
C2-boundary Γ which decomposes according to Γ = ΓD ∪ ΓN and dist (ΓD,ΓN ) > 0.
Suppose the assumptions (H1)-(H4) are satisfied. Then (4.40) admits a unique solution
in the space

Z := Hα
p (J ;Lp(Ω)) ∩ Lp(J ;H2

p (Ω))

if and only if the functions f, g, h are subject to the following conditions.

(i) f ∈ Hα
p (J ;Lp(Ω));

(ii) g ∈ B
α(1− 1

2p
)

pp (J ;Lp(ΓD)) ∩ Lp(J ;B
2− 1

p
pp (ΓD));

(iii) h ∈ B
α( 1

2
− 1

2p
)

pp (J ;Lp(ΓN )) ∩ Lp(J ;B
1− 1

p
pp (ΓN ));

(iv) f |t=0 ∈ B
2− 2

pα
pp (Ω), if α > 1

p ;

(v) ∂tf |t=0 ∈ B
2(1− 1

α
− 1
pα

)
pp (Ω), if α > 1 + 1

p ;

(vi) f |t=0 = g|t=0 on ΓD, if α > 2
2p−1 ;

(vii) B(0, x,Dx)f |t=0 = h|t=0 on ΓN , if α > 2
p−1 ;

(viii) ∂tf |t=0 = ∂tg|t=0 on ΓD, if α > 1 + 3
2p−1 .

Before proving Theorem 4.3.1 we recall some general properties of variable transforma-
tions. Let Ω ⊂ Rn+1 be a domain with compact C2-boundary Γ and x0 ∈ Γ. Without
restriction of generality, we may assume that x0 = 0 and that n(x0) = (0, . . . , 0,−1);
this can always be achieved by a composition of a translation and a rotation in Rn+1. It
is easy to see that such affine mappings of Rn+1 onto itself leave invariant all function
spaces under consideration (i.e. Lp, Z, and the regularity classes of the data and of
the coefficients), and they also preserve ellipticity (including the ellipticity constant in
(H3)) as well as normality. Continuing, by definition of a C2-boundary, there exist an
open neighbourhood U = U1 × U2 ⊂ Rn+1 of x0 with U1 ⊂ Rn and U2 ⊂ R as well as a
function ζ ∈ C2(U1) such that

Γ ∩ U = {x = (x′, y) ∈ U : y = ζ(x′)},
Ω ∩ U = {x = (x′, y) ∈ U : y > ζ(x′)}.

Define ϑ : Ū → Rn+1 by

ϑk(x) = x′k if k = 1, . . . , n and ϑn+1(x) = y − ζ(x′). (4.42)

Clearly, ϑ ∈ C2(U,Rn+1) is one-to-one and satisfies Ω ∩ U = {x ∈ U : ϑn+1(x) > 0}
as well as Γ ∩ U = {x ∈ U : ϑn+1(x) = 0}. By extending ζ to a function ζ̃ ∈ C2(Rn)
with compact support and defining ϑ̃ by (4.42) with ζ being replaced by ζ̃, we get a
C2-diffeomorphism ϑ̃ of Rn+1 onto itself extending ϑ and satisfying ϑ̃(x) = x for large
values of |x|. Also, ϑ̃ is a C2-diffeomorphic mapping from Ω0 := {x ∈ Rn+1 : y > ζ̃(x′)}
onto Rn+1

+ . For the Jacobian Dϑ̃(x), one obtains

Dϑ̃(x) =
(

In 0
−∇x′ ζ̃(x′) 1

)
, x ∈ Rn+1,

which entails detDϑ̃(x) = 1 for all x ∈ Rn+1. Notice also that Dϑ̃(0) = In+1.
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Given a function v ∈ H2
p (Rn+1

+ ) we consider the pull-back Θv defined on Ω0 by
Θv(x) = v(ϑ̃(x)). Using now the notation x = (x1, . . . , xn+1), the function u = Θv
satisfies

∂xiu(x) =
n+1∑
k=1

∂x̄kv(ϑ̃(x))∂xi ϑ̃k(x),

∂xi∂xju(x) =
n+1∑
k=1

∂x̄kv(ϑ̃(x))∂xi∂xj ϑ̃k(x) +
n+1∑
k, l=1

∂x̄k∂x̄lv(ϑ̃(x))∂xi ϑ̃k(x)∂xj ϑ̃l(x)

for x ∈ Ω0 and i, j = 1, . . . , n+ 1. For a differential expression of the form

(Eu)(x) = −c(x) : ∇2
xu(x) + c1(x) · ∇xu(x) + c0(x)u(x), x ∈ Ω0, (4.43)

we thus obtain

(Eu)(x) =− (Dϑ̃(x)c(x)Dϑ̃T (x)) : ∇2
x̄v(ϑ̃(x))

+ (Dϑ̃(x)c1(x)−D2ϑ̃(x) : c(x)) · ∇x̄v(ϑ̃(x)) + c0(x)v(ϑ̃(x)), x ∈ Ω0,

with (D2ϑ̃(x) : c(x))k =
∑n+1

i, j=1 cij(x)∂xi∂xj ϑ̃k(x), k = 1, . . . , n + 1. So applying the
push-forward operator Θ−1 to the function Eu on Ω0 gives

Θ−1Eu = (Θ−1EΘ)Θ−1u = E ϑ̃v,

where E ϑ̃ := Θ−1EΘ is the second order differential operator

(E ϑ̃w)(x̄) = −cϑ̃(x̄) : ∇2
x̄w(x̄) + cϑ̃1 (x̄) · ∇x̄w(x̄) + cϑ̃0 (x̄)w(x̄), x̄ ∈ Rn+1

+ , (4.44)

with coefficients

cϑ̃(x̄) = (Dϑ̃ cDϑ̃T ) ◦ ϑ̃−1(x̄), cϑ̃1 (x̄) = (Dϑ̃c1 −D2ϑ̃ : c) ◦ ϑ̃−1(x̄),

cϑ̃0 (x̄) = c0(ϑ̃−1(x̄)), x̄ ∈ Rn+1
+ , (4.45)

see also [69, Section 5].
Observe that the preceeding formulas are also valid for functions on J × Ω0 resp.

J ×Rn+1
+ and differential operators (4.43) resp. (4.44) with time-dependent coefficients.

In view of (4.45), it follows in particular that for an operator A(t, x,Dx) of the form
(4.41) and satisfying the smoothness and ellipticity conditions in (H2) and (H3) with
Ω replaced by Ω0, the transformed operator Aϑ̃(t, x̄,Dx̄) defined on J × Rn+1

+ enjoys
the same properties, the ellipticity constant c0 appearing in (H3) remaining unchanged.
Further, since Dϑ̃ ≡ 1 and the derivatives of ϑ̃ and ϑ̃−1 up to order 2 are bounded, the
change of variable formula for the Lebesgue integral shows that Θ induces isomorphisms
Θ(p) : Hm

p (Rn+1
+ ) → Hm

p (Ω0) for each p ∈ (1,∞) and m = 0, 1, 2.
Proof of Theorem 4.3.1. We begin this time with the sufficiency part. The overall

plan can roughly described as follows. With the aid of localization w.r.t. space and
the coordinate transformations discussed above, problem (4.40) is reduced to a finite
number of related problems on Rn+1 and Rn+1

+ , respectively. For these problems, solution
operators are available thanks to the Theorems 4.1.1, 4.2.3, and 4.2.4. So the local
equations can be solved and, by summing over all ’local solutions’, we obtain a fixed
point equation for v of the form v = v0 + R(v) =: G(v), where v0 is determined by
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the data, and R(v) contains only terms of lower order, see equation (4.52) below. By
means of the contraction principle, this fixed point equation can be solved first on a
small interval [0, T1] (denote the (unique) solution by v1), then on [0, T2], where T2 > T1

and the unknown v equaling v1 on [0, T1], and proceeding in this way, finally, after
finitely many steps, it can be solved on the entire interval [0, T ]. Here it is essential that
maxi |Ti+1 − Ti| is sufficiently small to ensure that, in each step of this procedure, the
mapping G is a strict contraction.

Let us start with the spatial localization. By boundedness of Γ, there exists r0 > 0
such that Γ is entirely contained in the open ball Br0(0). If Ω is unbounded we set
U0 = {x ∈ Rn+1 : |x| > r0}, otherwise we may assume that Ω ⊂ Br0(0) and put
U0 = ∅. The other assumptions on Ω allow us to cover Br0(0) by finitely many open sets
Uj , j = 1, . . . , N , which are subject to the following conditions.

(L1) Uj ∩ Γ = ∅ and Uj = Brj (xj) for all j = 1, . . . , N1;

(L2) Uj ∩ ΓD 6= ∅ for N1 + 1 ≤ j ≤ N2, Uj ∩ ΓN 6= ∅ for N2 + 1 ≤ j ≤ N , and
for each j in either index set, there exist xj ∈ Uj ∩ ΓD resp. Uj ∩ ΓN and ζ̃j ∈ C2(Rn)
with compact support such that - using coordinates corresponding to xj (i.e. xj = 0
and n(xj) = (0, . . . , 0,−1)) - Γ ∩ Uj = {x = (x′, y) ∈ Uj : y = ζ̃j(x′)} as well as
Ω ∩ Uj = {x = (x′, y) ∈ Uj : y > ζ̃j(x′)}, and Uj = ϑ̃−1

j (Brj (xj)), where ϑ̃j is related to
ζ̃j as described above.

(L3) Ui ∩ Uj = ∅ for all N1 + 1 ≤ i ≤ N2 and N2 + 1 ≤ j ≤ N .

It is then not difficult to construct local operators Aj = Aj(t, x,Dx), j = 0, . . . , N ,
and Bj = Bj(t, x,Dx), j = N2 + 1, . . . , N , of second resp. first order which enjoy the
subsequent properties.

(LO1) Aj is defined on J×Rn+1 if 0 ≤ j ≤ N1, and on J×Ωj otherwise; here the set
Ωj is given in coordinates corresponding to xj by means of Ωj = {x = (x′, y) ∈ Rn+1 :
y ≥ ζ̃j(x′)}; Bj is defined on J × Γj for all j = N2 + 1, . . . , N , where Γj = {x = (x′, y) ∈
Rn+1 : y = ζ̃j(x′)};

(LO2) the coefficients of Aj coincide with the corresponding coefficients of A(t, x,Dx)
on Ω∩Uj , for all j = 0, . . . , N , and the coefficients of Bj coincide with those of B(t, x,Dx)
on Γ ∩ Uj , for all j = N2 + 1, . . . , N ;

(LO3) Aj satisfies the assumptions of Theorem 4.1.1 for all j = 0, . . . , N1; A
ϑ̃j
j =

Θ−1
j AjΘj defined on J × Rn+1

+ fulfills the assumptions of Theorem 4.2.3 for all j =

N1 + 1, . . . , N ; finally, Bϑ̃jj = Θ−1
j BjΘj defined on J × Rn satisfies the assumptions of

Theorem 4.2.4 for all j = N2 + 1, . . . , N .

Here we use the fact that ellipticity and normality, as well as smoothness of the
coefficients of A(t, x,Dx) resp. B(t, x,Dx) are preserved in Ω ∩ Uj resp. Γ ∩ Uj under
the coordinate transformations x̄ = ϑ̃j(x) for all j = N1 + 1, . . . , N . We refer to [29,
Section 8.2], where appropriate extensions of the coefficients are constructed by means
of reflection and cut-off techniques.

We choose next a partition of unity {ϕj}Nj=0 ⊂ C∞(Rn+1) such that
∑N

j=0 ϕj(x) ≡ 1
on Ω, 0 ≤ ϕj(x) ≤ 1, and supp ϕj ⊂ Uj ; we fix also a family {ψj}Nj=0 ⊂ C∞(Rn+1) that
satisfies ψj ≡ 1 on an open set Vj containing suppϕj , as well as suppψj ⊂ Uj . As to
localization w.r.t. time, we subdivide the interval [0, T ] according to 0 =: T0 < T1 <
. . . < TM−1 < TM := T and put δ := maxi |Ti+1−Ti|. Then, owing to (LO1) and (LO2),
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v is a solution of (4.40) on Ji+1 := [0, Ti+1] if and only if ϕjv+k ∗ Aj(·, x,Dx)ϕjv = ϕjf+k ∗ [Aj(·, x,Dx), ϕj ]v (Ji+1 × Ω) , 0≤j≤N
ϕjv = ϕjg (Ji+1 × ΓD), N1+1≤j≤N2

Bj(t, x,Dx)ϕjv = ϕjh+[Bj(t, x,Dx), ϕj ]v (Ji+1 × ΓN ), N2+1≤j≤N.
(4.46)

In case j = 0, . . . , N1, we have to consider full space problems for the functions ϕjv. In
view of (LO3), we can apply Theorem 4.1.1, which ensures existence of corresponding
solution operators LFij , thereby obtaining

ϕjv = LFij(ϕjf + k ∗ [Aj , ϕj ]v) =: hFij(f, v), j = 0, . . . , N1. (4.47)

For j = N1 + 1, . . . , N2, we get problems on crooked half spaces with inhomogeneous
Dirichlet boundary condition. Using affine mappings that transform xj to the origin and
n(xj) to (0, . . . , 0,−1) combined with the variable transformations x̄ = ϑ̃j(x) (denote
these compositions again by ϑ̃j) leads to{

Θ−1
j (ϕjv) + k ∗ Aϑ̃jj Θ−1

j (ϕjv) = Θ−1
j (ϕjf) + k ∗Θ−1

j [Aj , ϕj ]v (Ji+1 × Rn+1
+ )

Θ−1
j (ϕjv) = Θ−1

j (ϕjg) (Ji+1 × Rn),
(4.48)

that is, to half space problems for Θ−1
j (ϕjv), for which Theorem 4.2.3 is applicable, in

virtue of (LO3). Employing the corresponding solution operators denoted by LDij thus
yields

ϕjv = ΘjLDij
(

Θ−1
j (ϕjf) + k ∗Θ−1

j [Aj , ϕj ]v
Θ−1
j (ϕjg)

)
=: hDij (f, g, v), j = N1 + 1, . . . , N2.

(4.49)
The situation is similar for j = N2 +1, . . . , N . In this case we have to consider problems
on crooked half spaces with inhomogeneous boundary condition of first order. Using
again the variable substitutions x̄ = ϑ̃j(x) gives Θ−1

j (ϕjv) + k ∗ Aϑ̃jj Θ−1
j (ϕjv) = Θ−1

j (ϕjf) + k ∗Θ−1
j [Aj , ϕj ]v (Ji+1 × Rn+1

+ )

Bϑ̃jj Θ−1
j (ϕjv) = Θ−1

j (ϕjh) + [Bj , ϕj ]v (Ji+1 × Rn),
(4.50)

which are problems on a half space for Θ−1
j (ϕjv). Without loss of generality, we may

assume that b(t, x) · ν(x) = 1 for all t ∈ J, x ∈ ΓN ; in fact, we can always divide
the boundary condition in (4.40) by (b(t, x) · ν(x)) to achieve this without affecting the
smoothness of the inhomogeneity and that of the coefficients of the boundary operator,

see Section 6.2. As a consequence of this normalization, the operators Bϑ̃jj take the
form (4.28). By (LO3), we can apply Theorem 4.2.4, which asserts existence of solution
operators LNij for the above problems. So we immediately get

ϕjv = ΘjLNij
(

Θ−1
j (ϕjf) + k ∗Θ−1

j [Aj , ϕj ]v
Θ−1
j (ϕjh) + [Bj , ϕj ]v

)
=: hNij (f, h, v), j = N2 + 1, . . . , N.

(4.51)
Multiplying now (4.47), (4.49), and (4.51) by ψj and summing over all j yields the
formula

v =
N1∑
j=0

ψj h
F
ij(f, v) +

N2∑
j=N1+1

ψj h
D
ij (f, g, v) +

N∑
j=N2+1

ψj h
N
ij (f, h, v) =: G(v), (4.52)
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which is necessary for v to be a solution of (4.40) on [0, Ti+1].
Let Zi+1 = Hα

p ([0, Ti+1];Lp(Ω)) ∩ Lp([0, Ti+1];H2
p (Ω)) for i = 0, . . . ,M − 1, and set

as usual Z1(v0) = {w ∈ Z1 : ∂mt w|t=0 = ∂mt f |t=0, if α > m + 1/p, m = 0, 1}, as well as
Zi+1(vi) := {w ∈ Zi+1 : w|[0,Ti] = vi} for i > 0, where vi denotes the unique solution of
(4.40) on [0, Ti] determined in the ith time step. In similar fashion as in the proofs of
Theorem 4.1.1 and Theorem 4.2.3, one can now show that for each i = 0, . . . ,M −1, the
mapping G leaves Zi+1(vi) invariant and is a strict contraction, provided that δ is small
enough. In fact, one uses the estimates derived in the above proofs together with the
diffeomorphism property of the coordinate transformations x̄ = ϑ̃j(x). Observe that we
have uniform bounds for |Θj | and |Θ−1

j | w.r.t. i and j, as only the spatial variables are
transformed and by compactness of Γ. So for sufficiently small δ, equation (4.52) admits
a unique solution v =: Qi+1(f, g, h) in the space Zi+1(vi). To see that this function
indeed solves (4.40) on [0, Ti+1], one can again argue as in the proofs of Theorem 4.1.1
and Theorem 4.2.3. Here one has to consider the linear operators Ki+1 defined by

Ki+1(f1, f2, f3) = (K(1)
i+1(f1, f2, f3), 0 ,K(3)

i+1(f1, f2, f3))

=
( N1∑
j=0

[A, ψj ]hFij(f1, Qi+1(f1, f2, f3)) +
N2∑

j=N1+1

[A, ψj ]hDij (f1, f2, Qi+1(f1, f2, f3))

+
N∑

j=N2+1

[A, ψj ]hNij (f1, f3, Qi+1(f1, f2, f3)), 0 , γΓN

N∑
j=N2+1

[B, ψj ]hNij (f1, f3, Qi+1(f1, f2, f3))
)
,

for triples (f1, f2, f3) in the product space of the regularity classes of f, g, h whose tempo-
ral traces at t = 0 coincide with those of f, g, h (including the first temporal derivative)
whenever these traces exist. Since Ki+1 contains only terms of lower order, one can prove
existence of a triple (f1, f2, f3) satisfying (f1, f2, f3)+Ki+1(f1, f2, f3) = (f, g, h), provided
that δ is sufficiently small. By simple computations, one shows then that Qi+1(f1, f2, f3)
solves (4.40) on [0, Ti+1]. Finally, uniqueness implies v = Qi+1(f, g, h) = Qi+1(f1, f2, f3).
This establishes the sufficiency part.

We turn now to necessity. Suppose that v ∈ Z solves (4.40). Clearly, ϕjv ∈ Z for
all j = 0, . . . , N , which in turn implies Θ−1

j (ϕjv) ∈ Hα
p (J ;Lp(Rn+1

+ ))∩Lp(J ;H2
p (Rn+1

+ ))
for all j = N1 + 1, . . . , N . Observe further that all those terms on the right-hand
sides of (4.48), (4.50), and the first equation of (4.46) (i = M − 1) which involve the
function v have the regularity desired for the corresponding inhomogeneity (f, g resp.
h) on J × Rn+1 resp. J × Rn+1

+ . In view of the Theorems 4.1.1, 4.2.3, 4.2.4, and the
diffeomorphism property of the variable transformations x̄ = ϑ̃j(x), it thus follows that
the functions ϕjf , ϕjg, and ϕjh enjoy the desired regularity on J×Ω, J×ΓD, and J×ΓN ,
respectively, for each j. On account of

∑N
j=0 ϕj(x) ≡ 1 on Ω, we eventually obtain the

desired regularity for the data f, g, h themselves. The compatibility conditions can be
seen in the same way. �
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Chapter 5

Linear Viscoelasticity

In this chapter we shall study a linear parabolic problem of second order which arises in
the theory of viscoelasticity. In comparison to the problems investigated in the previous
chapter, it has two new challenging features: (1) it is a vector-valued problem, and (2)
it contains two independent kernels. As before we shall characterize unique existence
of the solution in a certain class of optimal Lp-regularity in terms of regularity and
compatibility conditions on the given data.

The chapter is organized as follows. At first we recall the model equations from
linear viscoelasticity, here following the presentation given in Prüss [63, Section 5]. In
the second part we state the problem and discuss the assumptions on the kernels. The
third and main part of this chapter is devoted to the thorough investigation of a half
space case of the problem.

For a derivation of the fundamental equations of continuum mechanics and of linear
viscoelasticity, we further refer to the books by Christensen [12], Gurtin [41], Pipkin
[62], and Gripenberg, Londen, Staffans [39].

5.1 Model equations

Let Ω ⊂ R3 be an open set with boundary ∂Ω of class C2. The set Ω shall represent
a body, i.e. a solid or fluid material. Acting forces lead to a deformation of the body,
displacing every material point x ∈ Ω at time t to the point x+ u(t, x). The vector field
u : R × Ω → R3 is called the displacement field, or briefly displacement. The velocity
v(t, x) of the material point x ∈ Ω at time t is then given by v(t, x) = u̇(t, x), the dot
indicating partial derivative w.r.t. t.

The deformation of the body induces a strain E(t, x), which will depend linearly on
the gradient ∇u(t, x), provided that the deformation is small enough. We will put

E(t, x) =
1
2
(∇u(t, x) + (∇u(t, x))T ), t ∈ R, x ∈ Ω, (5.1)

i.e. E is the symmetric part of the displacement gradient ∇u.
The strain in turn causes stress in a way which has to be specified, expressing the

properties of the material the body is made of. The stress is described by the symmetric
tensor S(t, x). If ρ denotes the mass density and assuming that it is time independent,
i.e. ρ(t, x) = ρ0(x), the balance of momentum law implies

ρ0(x)ü(t, x) = divS(t, x) + ρ0(x)f(t, x), t ∈ R, x ∈ Ω, (5.2)
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where f represents external forces acting on the body, like gravity or electromagnetic
forces. In components (5.2) reads

ρ0(x)üi(t, x) =
3∑
j=1

∂xjSij(t, x) + ρ0(x)fi(t, x), i = 1, 2, 3.

We have to supplement (5.2) by boundary conditions. Possible boundary conditions are
either ’prescribed displacement’ or ’prescribed normal stress’. Let ∂Ω = Γd ∪ Γs with
◦

Γd= Γd,
◦
Γs= Γs and

◦
Γd ∩

◦
Γs= ∅. The boundary conditions then read as follows.

u(t, x) = ud(t, x), t ∈ R, x ∈
◦

Γd, (5.3)

S(t, x)n(x) = gs(t, x), t ∈ R, x ∈
◦
Γs, (5.4)

where n(x) denotes the outer normal of Ω at x ∈ Ω.
A material is called incompressible, if there are no changes of volume in the body Ω

during a deformation, i.e. if

det (I +∇u(t, x)) = 1, t ∈ R, x ∈ Ω, (5.5)

is fulfilled; otherwise the material is called compressible. For the linear theory, the
nonlinear constraint (5.5) can be simplified to the linear condition

divu(t, x) = 0, t ∈ R, x ∈ Ω. (5.6)

In the sequel, we shall consider compressible materials.
We still have to describe how the stress S(t, x) depends on the strain E . This is done

by a constitutive law or a stress-strain relation. Such an equation completes the system
inasmuch as it relates the stress S(t, x) to the unknown u and its derivatives. If the
material is purely elastic, then the stress S(t, x) will depend (linearly) only on the strain
E(t, x). However, the stress may also depend on the history of the strain and its time
derivative; in this case the material is called viscoelastic. The general constitutive law
for compressible materials is given by

S(t, x) =
∫ ∞

0
dA(τ, x) Ė(t− τ, x) dτ, t ∈ R, x ∈ Ω, (5.7)

where A : R+×Ω → B(Sym{3}) is locally of bounded variation w.r.t. t ≥ 0. The symbol
Sym{n} denotes the space of n-dimensional real symmetric matrices. As a consequence
of this, the symmetry relations

Aijkl(t, x) = Ajikl(t, x) = Aijlk(t, x), t ∈ R+, x ∈ Ω, (5.8)

have to be satisfied for all i, j, k, l ∈ {1, 2, 3}. The function A is called the relaxation
function of the material. Its component functions Aijkl, the so-called stress relaxation
moduli, have to be determined in experiments.

In the following we want to consider the case where the material is isotropic, which
by definition means that the constitutive law is invariant under the group of rotations.
It can be shown that the general isotropic stress relaxation tensor takes the form

Aijkl(t, x) =
1
3
(3b(t, x)− 2a(t, x))δijδkl + a(t, x)(δikδjl + δilδjk), (5.9)
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where δij denotes Kronecker’s symbol. The function a describes how the material re-
sponds to shear, while b determines its behaviour under compression. Therefore, a is
called shear modulus and b compression modulus. The constitutive law (5.7) becomes

S(t, x) = 2
∫ ∞

0
da(τ, x)Ė(t− τ, x) +

1
3
I
∫ ∞

0
(3db(τ, x)− 2da(τ, x))tr Ė(t− τ, x).

Besides, we want to assume that the material is homogeneous, i.e. ρ0 as well as a and
b do not depend on the material points x ∈ Ω. For simplicity, let us put ρ0(x) ≡ 1, x ∈ Ω.

To summarize, we obtain the following integro-differential equation for homogeneous
and isotropic materials:

ü(t, x) =
∫ ∞

0
da(τ)∆u̇(t− τ, x) +

∫ ∞

0
(db(τ) +

1
3
da(τ))∇∇ · u̇(t− τ, x) + f(t, x), (5.10)

for all t ∈ R and x ∈ Ω. This equation has to be supplemented by the boundary
conditions (5.3),(5.4).

Let us consider a material which is at rest up to time t = 0, but is then suddenly
moved with the velocity v0(x), x ∈ Ω. More precisely, we want to assume that v(t, x) =
u̇(t, x) = 0, t < 0, x ∈ Ω, and v(0, x) = v0(x), x ∈ Ω. Then the problem (5.10),(5.3),(5.4)
amounts to 

∂tv − da ∗∆v − (db+ 1
3da) ∗ ∇∇ · v = f, t > 0, x ∈ Ω

v = vd, t > 0, x ∈ Γd
(2da ∗ Ė + 1

3 I(3db− 2da) ∗ tr Ė)n = gs, t > 0, x ∈ Γs
v|t=0 = v0, x ∈ Ω,

(5.11)

where we use the notation (dk ∗ φ)(t) =
∫ t
0 dk(τ)φ(t− τ), t > 0.

5.2 Assumptions on the kernels and formulation of the goal

Given f, vd, gs, v0, our goal is to solve (5.11) for v. For this to be possible it is necessary
that the convolution terms in (5.11) do not produce terms involving the displacement u,
which would be the case, if for example a(t) = t, t ≥ 0. That means the problem must
not be hyperbolic. Further we need certain regularity assumptions on a and b so that
we can apply the results from Section 3.5. It turns out that the following class of kernels
is appropriate for our problem.

Definition 5.2.1 A function k : [0,∞) → R is said to be of type (E) if

(E1) k(0) = 0, and k is of the form k(t) = k0 +
∫ t
0 k1(τ) dτ, t > 0, where k0 ≥ 0 and

k1 ∈ L1, loc(R+);

(E2) k1 is completely monotonic, i.e. k1 ∈ C∞(0,∞) and (−1)lk(l)
1 (t) ≥ 0 for all

t > 0, l ∈ N0;

(E3) if k1 6= 0, then k1 ∈ K∞(α, θk1), for some α ∈ [0, 1) and θk1 <
π
2 .

Observe that (E1) and (E2) imply that the function k in Definition 5.2.1, restricted to
the interval (0,∞), is a Bernstein function, which by definition means that k is R+-
valued, infinitely differentiable on (0,∞), and that k′ is completely monotonic. We
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further remark that property (E2) already entails r-regularity of k1 for all r ∈ N as well
as Re k̂1(λ) ≥ 0 for all Reλ ≥ 0, λ 6= 0, i.e. k1 is of positive type. For a proof of this fact
see Prüss [63, Proposition 3.3]. In comparison to the last inequality, (E3) requires that
|arg k̂1(λ)| ≤ θk1 < π/2 for all Reλ > 0.

We recall that the Laplace transform of any function which is locally integrable on
R+ and completely monotonic has an analytic extension to the region C\R−, see e.g. [39,
Thm. 2.6, p. 144]. Thus if k is of type (E), both k̂ and d̂k, given by k̂(λ) = (k0+k̂1(λ))/λ
resp. d̂k(λ) = k0 + k̂1(λ), may be assumed to be analytic in C \ R.

In the sequel we will assume that both kernels a and b are of type (E) and that
a 6= 0. Define the parameters α, θa1 and β, θb1 by a1 ∈ K∞(α, θa1) and b1 ∈ K∞(β, θb1),
if a1 6= 0 respectively b1 6= 0.

We will study (5.11) in Lp(J ;Lp(Ω,R3)), where 1 < p < ∞, and J = [0, T ] is a
compact time-interval. We are looking for a unique solution v of (5.11) in the regularity
class

Z := (Hδa
p (J ;Lp(Ω)) ∩ Lp(J ;H2

p (Ω)))3,

where the exponent δa is defined by δa := 1, if a0 6= 0, and δa := 1 + α, otherwise. In
other words, δa gives the regularization order of a in the sense of Corollary 2.8.1. Here,
the regularity properties of b are not taken into account, since, in some sense, b only
plays a subordinate role in solving problem (5.11) as we shall see below. Nevertheless,
if b 6= 0, we have to distinguish two principal cases. Letting δb be the regularization
order of b 6= 0, defined in the same way as for a, we have to distinguish the cases δa ≤ δb
and δa > δb. The second case is more difficult, for here the terms involving b have
less regularity than those involving a. In order to cope with this defect, supplementary
regularity conditions have to be introduced.

It is convenient to define δb also in the case b = 0. So we put δb = ∞ in that case.

The strategy in solving (5.11) is the same as in Chapter 4. (5.11) is studied first
in the cases Ω = R3 and Ω = R3

+, where in the latter situation one has to consider
both boundary conditions separately. Having solved those cases, a solution of (5.11) can
be constructed by the aid of localization and perturbation arguments. We will restrict
our investigation to the half space case with prescribed normal stress. It will become
apparent that the techniques used here also apply to the much simpler full space case
and the half space case with prescribed velocity.

5.3 A homogeneous and isotropic material in a half space

In this section we consider a homogeneous and isotropic material in a half space with
prescribed normal stress. We do not only look at the three-dimensional situation but
study the general (n+ 1)-dimensional case, n ∈ N.

Let Rn+1
+ = {(x, y) ∈ Rn+1 : x ∈ Rn, y > 0} and denote the velocity vector by (v, w),

where v is Rn-valued and w is a scalar function. From (5.11) we are then led to the
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problem

∂tv − da ∗ (∆xv + ∂2
yv)− (db+ 1

3da) ∗ (∇x∇x · v + ∂y∇xw) = fv (J × Rn+1
+ )

∂tw − da ∗∆xw − (db+ 4
3da) ∗ ∂

2
yw − (db+ 1

3da) ∗ ∂y∇x · v = fw (J × Rn+1
+ )

−da ∗ γ∂yv − da ∗ γ∇xw = gv (J × Rn)
−(db− 2

3da) ∗ γ∇x · v − (db+ 4
3da) ∗ γ∂yw = gw (J × Rn)

v|t=0 = v0 (Rn+1
+ )

w|t=0 = w0 (Rn+1
+ ),

(5.12)
where γ denotes the trace operator at y = 0. We seek a unique solution (v, w) of (5.12)
in the regularity class

Z := (Hδa
p (J ;Lp(Rn+1

+ )) ∩ Lp(J ;H2
p (Rn+1

+ )))n+1.

5.3.1 The case δa ≤ δb: necessary conditions

In this and the following subsection, we assume that δa ≤ δb. On the basis of the results
in Section 3.5, we first derive necessary conditions for the existence of a solution (v, w)
of (5.12) in the space Z.

Suppose that we are given such a solution. By Corollary 2.8.1, it then follows imme-
diately that

(fv, fw) ∈ (Hδa−1
p (J ;Lp(Rn+1

+ )))n+1. (5.13)

Taking the temporal trace of (v, w) and (∂tv, ∂tw), respectively, at t = 0 gives according
to Theorem 3.5.2 (see also the results from Chapter 4)

(v0, w0) ∈ (B
2(1− 1

pδa
)

pp (Rn+1
+ ))n+1, (5.14)

and
(fv, fw)|t=0 ∈ (B

2(1− 1
δa
− 1
pδa

)
pp (Rn+1

+ ))n+1 (5.15)

in case δa > 1 + 1/p. Putting

Y = B
δa
2

(1− 1
p
)

pp (J ;Lp(Rn)) ∩ Lp(J ;B
1− 1

p
pp (Rn))

Theorem 3.5.2 further yields (γ∂yv, γ∇xw, γ∂yw, γ∇x · v) ∈ Y 2n+2. So if we set

φ = −γ∂yv − γ∇xw,

then it follows from the first boundary condition in (5.12) that gv is of the form

gv = da ∗ φ, with φ ∈ Y n. (5.16)

As, in case p > 1 + 2/δa, we have the embedding B
δa
2

(1− 1
p
)

pp (J ;Lp(Rn)) ↪→ C(J ;Lp(Rn)),
we see that φ satisfies in addition the compatibility condition

φ|t=0 = −γ∂yv0 − γ∇xw0, if p > 1 + 2
δa
. (5.17)

Turning to the second boundary condition in (5.12), we put

ψ1 = 2
3γ∇x · v − 4

3γ∂yw, ψ2 = −γ∇x · v − γ∂yw.
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Then it follows that gw is of the form

gw = da ∗ ψ1 + db ∗ ψ2, with ψ1, ψ2 ∈ Y. (5.18)

In case that p > 1 + 2/δa, we discover the additional compatibility conditions

ψ1|t=0 = 2
3γ∇x · v0 − 4

3γ∂yw0, ψ2|t=0 = −γ∇x · v0 − γ∂yw0, if p > 1 + 2
δa
. (5.19)

All in all we have established necessity of

(N1) (5.13), (5.14), (5.15), (5.16), (5.17), (5.18), (5.19).

5.3.2 The case δa ≤ δb: sufficiency of (N1)

We now want to prove the converse. So assume that the data satisfy all conditions in
(N1). At first glance, it seems to be a hard task to solve (5.12) for it is a coupled system
in the unknown functions v, w and since, in contrast to the previous problems, we have
to cope with two kernels. To overcome these difficulties, the basic idea is to introduce an
appropriate auxiliary function p by the aid of which (5.12) can be decoupled and made
amenable to the results from Chapter 3.

To start with, we set k = b + 4
3a and introduce the inverse convolution operators

A = (a∗)−1 and K = (k∗)−1 in Lp(J ;X), where X is Lp(Rn+1
+ ) or Lp(Rn). This

makes sense since a and b are of type (E) and in view of Lemma 2.6.2(ii). Further let
F = (A +Dn)

1
2 and G = (K +Dn)

1
2 with natural domains, Dn denoting the negative

Laplacian on Rn. We proceed now in three steps.

Step 1. Assume for the moment that (v, w) is a solution of (5.12) and define the pressure
p by means of

p = −∇x · v − ∂yw. (5.20)

Then it follows from (5.12) that

∂tv − da ∗ (∆xv + ∂2
yv) + (db+ 1

3da) ∗ ∇xp = fv (J × Rn+1
+ )

∂tw − da ∗ (∆xw + ∂2
yw) + (db+ 1

3da) ∗ ∂yp = fw (J × Rn+1
+ )

−da ∗ γ∂yv − da ∗ γ∇xw = gv (J × Rn)
−γ∂yw − γ∇x · v = γp (J × Rn)

v|t=0 = v0 (Rn+1
+ )

w|t=0 = w0 (Rn+1
+ )

(5.21)

and
−da ∗ γ∂yw + 1

2(db− 2
3da) ∗ γp = 1

2gw. (5.22)

Applying −∇x· to the first, −∂y to the second equation of (5.21) and adding them yields
further{

∂tp− (db+ 4
3da) ∗ (∆xp+ ∂2

yp) = −∇x · fv − ∂yfw (J × Rn+1
+ )

p|t=0 = −∇x · v0 − ∂yw0 (Rn+1
+ ),

(5.23)

where here ∇x· and ∂y are meant in the distributional sense. This shows one direction
of

(5.12), (5.20) ⇔ (5.21), (5.22), (5.23). (5.24)
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To see the converse direction, suppose the triple (v, w, p) satisfies (5.21), (5.22), and
(5.23). Let q = −∇x ·v−∂yw and deduce from (5.21), by performing the same calculation
as above, that ∂tq − da ∗ (∆xq + ∂2

yq)− (db+ 1
3da) ∗ (∆xp+ ∂2

yp) = −∇x · fv − ∂yfw (J × Rn+1
+ )

γq = γp (J × Rn)
q|t=0 = −∇x · v0 − ∂yw0 (Rn+1

+ ).
(5.25)

Then we replace the right-hand side of the first and third equation of (5.25) by the
corresponding terms in (5.23), to discover ∂t(q − p)− da ∗ (∆x + ∂2

y)(q − p) = 0 (J × Rn+1
+ )

γ(q − p) = 0 (J × Rn)
(q − p)|t=0 = 0 (Rn+1

+ ).
(5.26)

So by uniqueness of the solution of (5.26), we find q = p, that is, (5.20) is established.
System (5.12) now follows immediately.

Observe that if we once know the boundary value γp, then the pressure p is uniquely
determined by (5.23). With p being known, (v, w) can then be obtained via (5.21). So
we have to find a formula for γp involving only the given data.

Step 2. To approach our goal, we continue by extending the functions ψf := −∇x ·fv−
∂yfw and ψ0 := −∇x · v0 − ∂yw0 to all of R w.r.t. y so that the new functions (again
denoted by ψf and ψ0) lie in the corresponding regularity classes on J × Rn+1, that is

• ψf ∈ Hδa−1
p (J ;H−1

p (Rn+1));

• ψf |t=0 ∈ B
1− 2

δa
− 2
pδa

pp (Rn+1), if δa > 1 + 1
p ;

• ψ0 ∈ B
1− 2

pδa
pp (Rn+1).

We then consider the problem{
∂tq − dk ∗ (∆xq + ∂2

yq) = ψf , t ∈ J, x ∈ Rn, y ∈ R,
q|t=0 = ψ0, x ∈ Rn, y ∈ R, (5.27)

on the space X−1 := H−1
p (Rn+1). By integration we see that (5.27) is equivalent to the

Volterra equation

q(t) + (k ∗ Λq)(t) = (1 ∗ ψf )(t) + ψ0, t ∈ J, (5.28)

where Λ = Dn+1 with domain D(Λ) = H1
p (Rn+1). One readily verifies that

• 1 ∗ ψf + ψ0 ∈ Hδa
p (J ;X−1);

• ψ0 ∈ (X−1,D(Λ))1−1/pδa, p;

• ψf (0) ∈ (X−1,D(Λ))1−1/δa−1/pδa, p, if δa > 1 + 1
p .

So according to Theorem 3.1.4, (5.27) admits a unique solution φp in the space

Hδa
p (J ;H−1

p (Rn+1)) ∩ Lp(J ;H1
p (Rn+1)).
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Note that φp only depends upon the data and the selected extension operator.
We now set

p0 := γp− γφp. (5.29)

Then clearly, γp can be determined immediately as soon as p0 is known, and vice versa.
Putting p1 := φp|Rn+1

+
∈ Z−1 := Hδa

p (J ;H−1
p (Rn+1

+ ))∩Lp(J ;H1
p (Rn+1

+ )), it further follows
from the construction of φp that (5.23) is equivalent to the identity

p = e−Gyp0 + p1. (5.30)

By the mixed derivative theorem, we have

Z−1 ↪→ H
δa
2
p (J ;Lp(Rn+1

+ )) ∩ Lp(J ;H1
p (Rn+1

+ )).

Notice also that

e−Gyp0 ∈ 0H
δa
2
p (J ;Lp(Rn+1

+ )) ∩ Lp(J ;H1
p (Rn+1

+ ))

⇐⇒ p0 ∈ 0Y := 0B
δa
2

(1− 1
p
)

pp (J ;Lp(Rn)) ∩ Lp(J ;B
1− 1

p
pp (Rn)).

Consequently

p0 ∈ 0Y ⇒ p ∈ H
δa
2
p (J ;Lp(Rn+1

+ )) ∩ Lp(J ;H1
p (Rn+1

+ )).

According to Theorem 3.5.2, this regularity of p suffices to obtain (v, w) ∈ Z when (5.21)
is solved for this pair of functions. In fact, let

u =
[
v
w

]
, u0 =

[
v0
w0

]
, f =

[
fv − (db+ 1

3da) ∗ ∇xp
fw − (db+ 1

3da) ∗ ∂yp

]
,

h =
[
A(1 ∗ gv)

γp

]
, D =

[
0 −∇x

−∇x· 0

]
.

Then system (5.21) is equivalent to the following problem for u. ∂tu− da ∗∆xu− da ∗ ∂2
yu = f, t ∈ J, x ∈ Rn, y > 0

−γ∂yu+ γDu = h, t ∈ J, x ∈ Rn

u|t=0 = u0, x ∈ Rn, y > 0.
(5.31)

Setting

f1 =
[
fv − (db+ 1

3da) ∗ ∇xp1

fw − (db+ 1
3da) ∗ ∂yp1

]
, h1 =

[
A(1 ∗ gv)
γp1

]
,

as well as

fp =
[
−A(b+ 1

3a) ∗ ∇xe
−Gyp0

A(b+ 1
3a) ∗Ge

−Gyp0

]
, hp =

[
0
p0

]
,

the solution u can be written as
u = u1 + up, (5.32)

where u1 is defined by means of ∂tu1 − da ∗∆xu1 − da ∗ ∂2
yu1 = f1, t ∈ J, x ∈ Rn, y > 0

−γ∂yu1 + γDu1 = h1, t ∈ J, x ∈ Rn

u1|t=0 = u0, x ∈ Rn, y > 0,
(5.33)
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and up solves {
Aup −∆xup − ∂2

yup = fp, t ∈ J, x ∈ Rn, y > 0
−γ∂yup + γDup = hp, t ∈ J, x ∈ Rn.

(5.34)

Observe that u1 is determined by the data and does not depend on p0. Note further
that the compatibility condition is satisfied in either case. Theorem 3.5.2 yields u1 ∈ Z.

To summarize we see that step 2 shows the equivalence

(5.21), (5.23) ⇔ (5.30), (5.32), (5.34), (5.35)

as well as the implication
p0 ∈ 0Y ⇒ (v, w) ∈ Z. (5.36)

Step 3. We will now employ condition (5.22), together with (5.32),(5.34), to derive a
formula for p0.

To begin with, the function up can be written in the form

up(y)=e−Fy(F +D)−1hp +
1
2
F−1

∫ ∞

0
[e−F |y−s| + (F −D)(F +D)−1e−F (y+s)]fp(s) ds

(cp. Prüss [65, p. 6]), which implies

γup = (F +D)−1hp + (F +D)−1

∫ ∞

0
e−Fsfp(s) ds.

A short computation using the Fourier transform shows that

(F +D)−1 =
[
F + ((∇x∇x·) +Dn)F−1 ∇x

∇x· F

]
F−2

1 , F1 := (A+ 2Dn)
1
2 ,

so we obtain

γvp = ∇xF
−2
1 p0 − FF−2

1

∫ ∞

0
e−FsA(b+ 1

3a) ∗ ∇xe
−Gsp0 ds+

+∇xF
−2
1

∫ ∞

0
e−FsA(b+ 1

3a) ∗Ge
−Gsp0 ds,

and furthermore

γ∇x · vp = ∆xF
−2
1 p0 −∆xFF

−2
1 A(b+ 1

3a) ∗ (F +G)−1p0+

+∆xF
−2
1 A(b+ 1

3a) ∗G(F +G)−1p0

= ∆xF
−2
1 p0 −∆xF

−2
1 A(b+ 1

3a) ∗ (F −G)(F +G)−1p0. (5.37)

On the one hand, we now have

−γ∂yw = −γ∂ywp − γ∂yw1 = γ∇x · vp + p0 − γ∂yw1. (5.38)

On the other hand, it follows from (5.22) that

−γ∂yw = 1
2A(1 ∗ gw)− 1

2A(b− 2
3a) ∗ γp

= 1
2A(1 ∗ gw)− 1

2A(b− 2
3a) ∗ γp1 − 1

2A(b− 2
3a) ∗ p0. (5.39)
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Combining (5.38) with (5.39), setting

q0 := 1
2A(1 ∗ gw)− 1

2A(b− 2
3a) ∗ γp1 + γ∂yw1 (5.40)

and using (5.37) leads to

q0 = p0 + 1
2A(b− 2

3a) ∗ p0 + γ∇x · vp
= Aa ∗ p0+ 1

2A(b− 2
3a) ∗ p0+∆xF

−2
1 p0−∆xF

−2
1 A(b+ 1

3a) ∗ (F−G)(F+G)−1p0

= 1
2A(b+ 4

3a) ∗ p0−∆xF
−2
1

(
−Aa ∗ (F+G) +A(b+ 1

3a) ∗ (F−G)
)
(F+G)−1p0

= 1
2A(b+ 4

3a) ∗ p0 −∆xF
−2
1

(
A(b− 2

3a) ∗ F −A(b+ 4
3a) ∗G

)
(F +G)−1p0.

Further,

2Ka ∗ q0 =
(
I + 2DnF

−2
1 [K(b− 2

3a) ∗ F −G](F +G)−1
)
p0

=
(
(A+ 2Dn + 2DnK(b− 2

3a)∗)F +AG
)
(F +G)−1F−2

1 p0

=
(
A+ [2Dn + 2DnK(b− 2

3a)∗]F (F +G)−1
)
F−2

1 p0

=
(
A+ [2Dn(K(b+ 4

3a)∗) + 2DnK(b− 2
3a)∗]F (F +G)−1

)
F−2

1 p0

=
(
A+DnK(4b+ 4

3a) ∗ F (F +G)−1
)
F−2

1 p0 = Lp0, (5.41)

where the operator L is defined by

L =
(
A+DnK(4b+ 4

3a) ∗ F (F +G)−1
)
F−2

1 . (5.42)

We claim now that q0 ∈ 0Y . Indeed, in virtue of (5.18),(5.19), there exist ψ1, ψ2 ∈ Y
such that

q0 = 1
2(ψ1 +Ab ∗ ψ2)− 1

2A(b− 2
3a) ∗ γp1 + γ∂yw1

= 1
2(ψ1 +A(b− 2

3a) ∗ ψ2) + 1
3ψ2 − 1

2A(b− 2
3a) ∗ γp1 + γ∂yw1

= 1
2A(b− 2

3a) ∗ (ψ2 − γp1) + (1
2ψ1 + 1

3ψ2 + γ∂yw1),

and
ψ1|t=0 = 2

3γ∇x · v0 − 4
3γ∂yw0, ψ2|t=0 = −γ∇x · v0 − γ∂yw0 (5.43)

in case p > 1 + 2/δa. But from (5.43) and the definition of p1 and w1, we deduce that

ψ2 − γp1 ,
1
2ψ1 + 1

3ψ2 + γ∂yw1 ∈ 0Y.

Hence the claim follows, because A(b∗) ∈ B(0Y ).
From q0 ∈ 0Y and K(a∗) ∈ B(0Y ) we conclude further that K(a ∗ q0) ∈ 0Y . That is,

to solve (5.41) for p0, we have to show that L has a bounded inverse on 0Y . To achieve
this, we shall use, aside from extension and restriction, the joint (causal)H∞(Σπ

2
+η×Ση)

- calculus (0 < η < π/2) of the pair (∂t, Dn) in Lp(R+ × Rn), cf. Example 2.4.1.
For this purpose we look at the symbol l(z, ξ) of L (in Lp(R+ × Rn)). Taking the

Laplace-transform in t and the Fourier-transform in x we obtain for l(z, ξ) :

l(z, ξ) =

 1
â(z)|ξ|2

+

4b̂(z)+ 4
3
â(z)

b̂(z)+ 4
3
â(z)

√
1

â(z)|ξ|2 + 1√
1

â(z)|ξ|2 + 1 +
√

1
(b̂(z)+ 4

3
â(z))|ξ|2

+ 1

( 1
â(z)|ξ|2

+ 2
)−1

. (5.44)
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It can be written as

l(z, ξ) =
(
ζ +

4(1− κ)
√
ζ + 1√

ζ + 1 +
√
κζ + 1

)
(ζ + 2)−1, (5.45)

where
ζ(z, ξ) :=

1
â(z)|ξ|2

, κ(z) :=
â(z)

b̂(z) + 4
3 â(z)

.

We first study the function k defined by

k(z, τ) =
1

â(z)τ2
+

4(1− κ(z))
√

1
â(z)τ2 + 1√

1
â(z)τ2 + 1 +

√
1

(b̂(z)+ 4
3
â(z))τ2

+ 1
, (z, τ) ∈ Σπ

2
+η × Ση.

Remember that both â and b̂ are analytic functions in C\R−, since a and b are assumed
to be of type (E).

Lemma 5.3.1 There exist c > 0, η > 0 such that

|k(z, τ)| ≥ c

(∣∣∣∣ 1
â(z)τ2

∣∣∣∣+ 1
)
, (z, τ) ∈ Σπ

2
+η × Ση. (5.46)

Proof. Let ν = 1/(â(z)τ2). Assume for the moment that z is fixed with arg(z) ∈ [0, π/2)
and τ ∈ (0,∞). Then we have arg(1/d̂a(z)) ∈ [0, θa] and arg(1/d̂b(z)) ∈ [0, θb]. Now we
examine two cases.

Case 1: arg(1/d̂a(z)) ≥ arg(1/d̂b(z)). It follows that

arg

(
1

d̂b(z)

)
≤ arg

(
1

d̂a(z)
+

ω

d̂b(z)

)
≤ arg

(
1

d̂a(z)

)
, ∀ω ≥ 0.

Thus we have

arg(κ) = arg

(
d̂a(z)

d̂b(z) + 4
3 d̂a(z)

)
= arg

 1

d̂b(z)

1

d̂a(z)
+ 4

3
1

d̂b(z)

 ≤ 0

as well as arg(1 − κ) ≥ 0. Moreover, it is easy to see that arg(1 − κ) ≤ θa and |κ| < 1.
From arg(1/d̂a(z)) ∈ [0, θa] and arg(z) ∈ [0, π/2) we infer that arg(ν) ∈ [0, π/2 + θa).
Since arg(κ) ≤ 0, we have arg(κν) ≤ arg(ν). This together with |κν| < |ν| and arg(ν) ≥ 0
implies arg(κν + 1) ≤ arg(ν + 1). Therefore, arg(1 +

√
(κν + 1)/(ν + 1)) ≤ 0. On the

other hand we have arg(κν) ∈ [0, π/2 + θa), by definition of κ and the inequality

0 ≤ arg
(
(d̂b(z) + 4

3 d̂a(z))
−1
)
≤ arg

(
1

d̂a(z)

)
.

Thus arg(1 +
√

(κν + 1)/(ν + 1)) ∈ (−(π/4 + θa/2), 0]. By writing

k(z, τ) = ν + 4(1− κ(z))

(
1 +

√
κν + 1
ν + 1

)−1
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we see that both summands in the formula for k(z, τ) lie in the sector Σπ/2+θa ∩ {z ∈
C : Im(z) ≥ 0}. This means in particular k(z, τ) 6= 0.

Case 2: arg(1/d̂a(z)) ≤ arg(1/d̂b(z)). This time we have arg(κ) ∈ [0, θb], arg(1−κ) ≤
0 and again |κ| < 1. We write k(z, τ) as

k(z, τ) =
b̂(z) + 1

3 â(z)
â(z)

(
1

(b̂(z) + 1
3 â(z))τ

2
+

4κ
√
ν + 1√

ν + 1 +
√
κν + 1

)
.

Clearly, 1/[(b̂(z) + 1/3â(z))τ2] ∈ Σπ/2+θb ∩ {z ∈ C : Im(z) ≥ 0}. Now we look at the
second summand. The inequality arg(1− κ) ≤ 0 yields

arg(1 + κν) = arg((1− κ) + κ(1 + ν)) ≤ arg(κ(1 + ν))
= arg(κ) + arg(1 + ν). (5.47)

By employing (5.47), we get

arg
(

κ
√
ν + 1√

ν + 1 +
√
κν + 1

)
≥ arg(κ) + 1

2arg(1 + ν)− 1
2 max {arg(1 + ν), arg(1 + κν)}

≥ 1
2arg(κ) ≥ 0.

On the other hand it is easy to see that

arg
(

κ
√
ν + 1√

ν + 1 +
√
κν + 1

)
≤ π

4 + 3
2 θb.

Therefore both summands in parentheses lie in the sector Σπ/2+θb ∩{z ∈ C : Im(z) ≥ 0}.
If arg(z) ∈ (−π/2, 0] then all signs of the arguments in the above lines change which

means that the summands under consideration lie in the corresponding sectors in the
lower half plane.

By continuity of the argument function, there exists η > 0 such that, in each case, the
summands under consideration lie in a sector of angle θ < π, for all (z, τ) ∈ Σπ

2
+η ×Ση.

Consequently, there is c > 0 such that

|k(z, τ)| ≥ c

(
|ν|+

∣∣∣∣ 4(1− κ)
√
ν + 1√

ν + 1 +
√
κν + 1

∣∣∣∣) ,
for all (z, τ) ∈ Σπ

2
+η × Ση. From the boundedness of the function ψ defined by

ψ(ρ) =
1 + 4

3 ρ

1 + 1
3 ρ

, ρ ∈ Σπ
2
+η,

it follows that |1 − κ(z)| is bounded away from zero. We also see that the term√
(κν + 1)/(ν + 1) is bounded, for all (z, τ) ∈ Σπ

2
+η × Ση. Thus we obtain the desired

estimate (5.46). �

By (5.46), it follows that the function l0 defined by

l0(z, τ) =
ν + 2
k(z, τ)

, (z, τ) ∈ Σπ
2
+η × Ση (5.48)
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belongs to H∞(Σπ
2
+η ×Ση). Hence the associated operator is bounded in Lp(R+×Rn),

by the joint H∞(Σπ
2
+η × Ση) - calculus of the pair (∂t, Dn). By causality, extension

and restriction, it is then clear that L−1 ∈ B(Lp(J × Rn)). In view of [F−1, L−1] = 0
we also have L−1 ∈ B(D(F )), where D(F ) = 0H

δa/2
p (J ;Lp(Rn)) ∩ Lp(J ;H1

p (Rn)). Since
0Y = (Lp(J ;Lp(Rn)),D(F ))1−1/p, p, by real interpolation it follows that L−1 ∈ B(0Y ).

In sum we have proved

Theorem 5.3.1 Let 1 < p < ∞, and suppose that the kernels a 6= 0 and b are of type
(E). Let δa and δb denote the regularization order of a and b, respectively, and assume
that δa ≤ δb. Suppose further that δa /∈ { 2

p−1 , 1 + 1
p}. Then (5.12) has a unique solution

(v, w) ∈ Z if and only if the conditions (N1) are satisfied.

5.3.3 The case 0 < δa − δb < 1/p

Let κ = δa− δb (= α−β). Suppose that (v, w) ∈ Z solves (5.12) and satisfies in addition

p = −∇x · v − ∂yw ∈ Hκ
p (J ;H1

p (Rn+1
+ )). (5.49)

According to Corollary 2.8.1, the latter implies

(db ∗ ∇xp, db ∗ ∂yp) ∈ (0Hδa−1
p (J ;Lp(Rn+1

+ )))n+1.

In light of (5.21), we therefore obtain again necessity of (5.13) and (5.15). In the same
way as in the case δa < δb, we further see that conditions (5.14),(5.16), and (5.17) are
necessary. Concerning gw we deduce from (5.22) that

gw = da ∗ ψ1 + db ∗ ψ2, with ψ1 ∈ Y, ψ2 ∈ Yκ, (5.50)

where

Yκ = B
δb
2

(1− 1
p
)+κ

pp (J ;Lp(Rn)) ∩Hκ
p (J ;B

1− 1
p

pp (Rn)).

Observe as well that we have the compatibility conditions

ψ1|t=0 = 2
3γ∇x · v0 − 4

3γ∂yw0, if p > 1 + 2
δa
, (5.51)

ψ2|t=0 = −γ∇x · v0 − γ∂yw0, if p > 2+δb
2κ+δb

. (5.52)

Finally, from (5.49) and (5.23) there emerge the two conditions

∇x · v0 + ∂yw0 ∈ B
1+ 2κ

δb
− 2
pδb

pp (Rn+1
+ ), (5.53)

(∇x · fv + ∂yfw)t=0 ∈ B
1+ 2κ

δb
− 2
δb
− 2
pδb

pp (Rn+1
+ ), if α > 1

p , (5.54)

where ∇x· and ∂y have to be understood in the distributional sense.
In sum we have shown necessity of

(N2) (5.13), (5.14), (5.15), (5.16), (5.17), (5.50)− (5.54).

Turning to the converse, we suppose that all conditions in (N2) are fulfilled. Let us
look first at q0. In virtue of (5.50),(5.51), and (5.52), we see that

q0 = 1
2A(b− 2

3a) ∗ (ψ2 − γp1) + (1
2ψ1 + 1

3ψ2 + γ∂yw1),
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with ψ1 ∈ Y, ψ2 ∈ Yκ and

ψ2 − γp1 ∈ 0Yκ ,
1
2ψ1 + 1

3ψ2 + γ∂yw1 ∈ 0Y,

where

0Yκ := 0B
δb
2

(1− 1
p
)+κ

pp (J ;Lp(Rn)) ∩Hκ
p (J ;B

1− 1
p

pp (Rn)).

Thus

q0 ∈ 0B
δb
2

(1− 1
p
)

pp (J ;Lp(Rn)) ∩ Lp(J ;B
1− 1

p
pp (Rn)),

which entails K(a∗q0) ∈ 0Yκ. In view of L−1 ∈ B(0Yκ) and 2K(a∗q0) = Lp0, it therefore
follows that p0 ∈ 0Yκ. Observe now that

p0 ∈ 0Yκ ⇔ e−Gyp0 ∈ 0H
δb
2

+κ
p (J ;Lp(Rn+1

+ )) ∩Hκ
p (J ;H1

p (Rn+1
+ )).

Concerning p1, we proceed as in the case δa ≤ δb. According to Theorem 3.1.4, it
follows from (5.13),(5.53),(5.54) that (5.27) admits a unique solution φp in the space

Hδa
p (J ;H−1

p (Rn+1)) ∩Hκ
p (J ;H1

p (Rn+1)),

which is embedded into

H
δb
2

+κ
p (J ;Lp(Rn+1

+ )) ∩Hκ
p (J ;H1

p (Rn+1
+ )),

by the mixed derivative theorem. Consequently, due to (5.30),

p ∈ H
δb
2

+κ
p (J ;Lp(Rn+1

+ )) ∩Hκ
p (J ;H1

p (Rn+1
+ )),

as well as γp ∈ Yκ. From
δb
2 (1− 1

p) + κ > δa
2 (1− 1

p)

we then deduce

Yκ ↪→ B
δa
2

(1− 1
p
)

pp (J ;Lp(Rn)) ∩ Lp(J ;B
1− 1

p
pp (Rn)).

Hence, p and γp lie in the right regularity classes when (5.21) is solved for (v, w). Us-
ing this fact, together with (5.13),(5.14),(5.15),(5.16), and (5.17), Theorem 3.5.2 yields
(v, w) ∈ Z.

Theorem 5.3.2 Let 1 < p < ∞, and suppose that the kernels a 6= 0 and b are of
type (E). Let δa and δb denote the regularization order of a and b, respectively, and
assume that 0 < κ := δa − δb < 1/p. Suppose further that δa /∈ { 2

p−1 , 1 + 1
p} as well as

p(2δa − δb) 6= 2 + δb. Then (5.12) has a unique solution (v, w) ∈ Z satisfying (5.49) if
and only if the data are subject to the conditions (N2).

5.3.4 The case δa − δb > 1/p

Let κ > 1/p. Suppose that (v, w) ∈ Z solves (5.12) and satisfies in addition (5.49). Then
the latter implies

p ∈ C(J ;H1
p (Rn+1

+ )),

in particular
p|t=0 = −∇x · v0 − ∂yw0 ∈ H1

p (Rn+1
+ ), (5.55)
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which allows us to write the first two equations in (5.21) as{
∂tv − da ∗ (∆xv + ∂2

yv) + db ∗ ∇x(p− p|t=0) + 1
3da ∗ ∇xp = fv − b(∇xp|t=0),

∂tw − da ∗ (∆xw + ∂2
yw) + db ∗ ∂y(p− p|t=0) + 1

3da ∗ ∂yp = fw − b(∂yp|t=0).
(5.56)

Owing to (v, w) ∈ Z and

(∇x(p− p|t=0), ∂y(p− p|t=0)) ∈ (0Hκ
p (J ;Lp(Rn+1

+ )))n+1,

it is clear that all terms on the left-hand side of (5.56) are functions in the space
Hδa−1
p (J ;Lp(Rn+1

+ )). Thus

fv = hv + b(∇xp|t=0), fw = hw + b(∂yp|t=0), (5.57)

with
(hv, hw) ∈ (Hδa−1

p (J ;Lp(Rn+1
+ )))n+1, (5.58)

and furthermore
(hv, hw)|t=0 ∈ (B

2(1− 1
δa
− 1
pδa

)
pp (Rn+1

+ ))n+1. (5.59)

As in the two cases before one can see that (5.14),(5.16),(5.17) are necessary.
We now consider (5.23). Note that in view of (5.57) and (5.58) we have in the

distributional sense

∇x · fv + ∂yfw = ∇x · hv + ∂yhw + b(∆x + ∂2
y)p|t=0.

So it follows from (v, w) ∈ Z and (5.49), cp. Theorem 3.3.1, that

(∇x · hv + ∂yhw)|t=0 ∈ B
1+ 2κ

δb
− 2
δb
− 2
pδb

pp (Rn+1
+ ). (5.60)

Turning to gw, observe first that (v, w) ∈ Z and (5.49) entail

∂tp ∈ H
δb
2

+κ−1
p (J ;Lp(Rn+1

+ )) ∩ Lp(J ;H
1+ 2κ

δb
− 2
δb

p (Rn+1
+ )), if δb

2 + κ− 1 > 0,

and

γp ∈ B
δb
2

(1− 1
p
)+κ

pp (J ;Lp(Rn)) ∩Hκ
p (J ;B

1− 1
p

pp (Rn)).

Therefore

γ∂tp ∈ B
δb
2

(1− 1
p
)+κ−1

pp (J ;Lp(Rn)) ∩ Lp(J ;B
1+ 2κ

δb
− 2
δb
− 1
p

pp (Rn)), if δb
2 (1− 1

p) + κ > 1,

as well as
(γ∂tp)|t=0 ∈ Bη

pp(Rn), if η := 1 + 2κ
δb
− 2

δb
− 2

pδb
− 1

p > 0,

the latter also being a consequence of (5.60). So we conclude from (5.22) that gw is of
the structure

gw = da ∗ ψ1 + db ∗ ψ2, with ψ1 ∈ Y, ψ2 ∈ Yκ, (5.61)

where Yκ is defined as in the previous case, that is

Yκ = B
δb
2

(1− 1
p
)+κ

pp (J ;Lp(Rn)) ∩Hκ
p (J ;B

1− 1
p

pp (Rn)),
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and ψ1, ψ2 are subject to the compatibility conditions

ψ1|t=0 = 2
3γ∇x · v0 − 4

3γ∂yw0, (5.62)

ψ2|t=0 = −γ∇x · v0 − γ∂yw0, (5.63)

and
∂tψ2|t=0 = −(∇x · hv + ∂yhw)|t=0, if η > 0. (5.64)

All in all we have established necessity of

(N3) (5.14), (5.16), (5.17), (5.55), (5.57)− (5.64).

That these conditions are also sufficient for the existence of a unique pair (v, w) ∈ Z
solving (5.12) and satisfying (5.49), is shown in the following.

Suppose that (N3) is fulfilled. We first investigate the regularity of q0. Using as-
sumptions (5.61)-(5.64) we see that

q0 = 1
2A(b− 2

3a) ∗ (ψ2 − γp1) + (1
2ψ1 + 1

3ψ2 + γ∂yw1),

with ψ1 ∈ Y, ψ2 ∈ Yκ and

ψ2 − γp1 ∈ 0Yκ ,
1
2ψ1 + 1

3ψ2 + γ∂yw1 ∈ 0Y,

where

0Yκ := 0B
δb
2

(1− 1
p
)+κ

pp (J ;Lp(Rn)) ∩ 0H
κ
p (J ;B

1− 1
p

pp (Rn)).

Therefore

q0 ∈ 0B
δb
2

(1− 1
p
)

pp (J ;Lp(Rn)) ∩ Lp(J ;B
1− 1

p
pp (Rn)),

and so, by the same conclusions as in the previous case, we find that

e−Gyp0 ∈ 0H
δb
2

+κ
p (J ;Lp(Rn+1

+ )) ∩ 0H
κ
p (J ;H1

p (Rn+1
+ )).

Next we look at p1. From (5.14),(5.55),(5.57),(5.58), and (5.60) it follows by Theorem
3.3.1 that (5.27) has a unique solution φp in the space

Hδa
p (J ;H−1

p (Rn+1)) ∩Hκ
p (J ;H1

p (Rn+1)).

So we can argue as in the case κ ∈ (0, 1/p) to see that (5.12) admits a unique solution
(v, w) ∈ Z with (5.49).

Theorem 5.3.3 Let 1 < p < ∞, and suppose that the kernels a 6= 0 and b are of type
(E). Let δa and δb denote the regularization order of a and b, respectively, and assume that
κ = δa−δb > 1/p. Suppose further that δa 6= 2

p−1 as well as p(2δa−δb) 6= 2+δb+2p.Then
(5.12) has a unique solution (v, w) ∈ Z satisfying (5.49) if and only if the data are subject
to the conditions (N3).
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Chapter 6

Nonlinear Problems

6.1 Quasilinear problems of second order with nonlinear
boundary conditions

Let Ω be a bounded domain in Rn with C2 boundary Γ which decomposes as Γ = ΓD∪ΓN
with dist(ΓD,ΓN ) > 0. Let further J0 = [0, T0] be a compact time-interval and U0 ⊂ R,
U1 ⊂ Rn be nonempty open convex sets. With the functions a : J0×Ω×U0×U1 → Rn×n,
f, g : J0 ×Ω× U0 × U1 → R, bD : J0 × ΓD × U0 → R, and bN : J0 × ΓN × U0 × U1 → R,
we put

A(u)(t, x) = −a(t, x, u(t, x),∇u(t, x)), t ∈ J0, x ∈ Ω,
F (u)(t, x) = f(t, x, u(t, x),∇u(t, x)), t ∈ J0, x ∈ Ω,
G(u)(t, x) = g(t, x, u(t, x),∇u(t, x)), t ∈ J0, x ∈ Ω,

BD(u)(t, x) = bD(t, x, u(t, x)), t ∈ J0, x ∈ ΓD,

BN (u)(t, x) = bN (t, x, u(t, x),∇u(t, x)), t ∈ J0, x ∈ ΓN ,

where ∇ = ∇x refers to the spatial variables, and u : J0 × Ω → R is a C(J0;C1(Ω))
function subject to u(t, x) ∈ U0 and ∇u(t, x) ∈ U1, for all t ∈ J0, x ∈ Ω.

Let further k ∈ BVloc(R+) ∩ K1(1 + α, θ) with k(0) = 0, θ < π and α ∈ [0, 1). Then
the problem under consideration reads as

∂tu+ dk ∗ (A(u) : ∇2u) = F (u) + dk ∗G(u), t ∈ J0, x ∈ Ω
BD(u) = 0, t ∈ J0, x ∈ ΓD
BN (u) = 0, t ∈ J0, x ∈ ΓN
u|t=0 = u0, x ∈ Ω.

(6.1)

Our goal is to prove unique existence of a local strong solution, more precisely, we are
looking for an interval J = [0, T ] with 0 < T ≤ T0 and a unique solution u of (6.1) on J
in the space

ZT := H1+α
p (J ;Lp(Ω)) ∩ Lp(J ;H2

p (Ω)).

This will be achieved under appropriate assumptions by means of maximal Lp-regularity
of a linear problem related to (6.1) and the contraction mapping principle.

To fix notation, we denote the independent variables by t ∈ J0, x ∈ Ω, ξ ∈ U0, and
η ∈ U1. For what is to follow we need the spaces

XT = Lp(J ;Lp(Ω)), XT
1 = Hα

p (J ;Lp(Ω)), (6.2)
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ZT∇ = H
1
2
(1+α)

p (J ;Lp(Ω)) ∩ Lp(J ;H1
p (Ω)),

Y T
D = B

(1+α)(1− 1
2p

)
pp (J ;Lp(ΓD)) ∩ Lp(J ;B

2− 1
p

pp (ΓD)), (6.3)

Y T
N = B

(1+α)( 1
2
− 1

2p
)

pp (J ;Lp(ΓN )) ∩ Lp(J ;B
1− 1

p
pp (ΓN )), (6.4)

and
Y0 = B

2− 2
p(1+α)

pp (Ω), Y1 = B
2− 2

1+α
− 2
p(1+α)

pp (Ω),

α > 1/p being assumed in the definition of Y1. For Λ ∈ {ZT , ZT∇, Y T
D , Y

T
N , X

T
1 ), we as

usual denote by 0Λ the subspace of all functions h ∈ Λ with h|t=0 = 0 and ∂th|t=0 = 0,
in case that these traces exist.

If u ∈ ZT , then this corresponds, as we know from Theorem 4.3.1, to the regularity
classes

∇u ∈ (ZT∇)n,∇2u ∈ (XT )n×n, γDu ∈ Y T
D , γN∇u ∈ (Y T

N )n, u|t=0 ∈ Y0, ∂tu|t=0 ∈ Y1.

Consequently, Y0 is the natural space for u0, and if α > 1/p and u ∈ ZT is a solution of
(6.1), then we have to ensure that u1 := ∂tu|t=0, which is given by

u1(x) = f(0, x, u0(x),∇u0(x)), x ∈ Ω,

belongs to Y1. Of course, we have to assume that

u0(x) ∈ U0, ∇u0(x) ∈ U1, x ∈ Ω. (6.5)

Observe also that
ZT ↪→ C(J ;Y0) ↪→ C(J × Ω)

as well as
ZT∇ ↪→ C(J ;B

1− 2
p(1+α)

pp (Ω)) ↪→ C(J × Ω),

provided that 1− 2/p(1 + α) > n/p, which is equivalent to

p > 2
1+α + n (6.6)

and which will be assumed throughout this section.
Notice further that we have to take into account the three compatibility conditions

bD(0, x, u0(x)) = 0, x ∈ ΓD,
bN (0, x, u0(x),∇u0(x)) = 0, x ∈ ΓN ,

bDt (0, x, u0(x)) + bDξ (0, x, u0(x))u1(x) = 0, x ∈ ΓD, if α > 3
2p−1 .

Here and in the subsequent lines we assume that bD and bN are as smooth as needed to
make the formulas meaningful. Precise regularity statements will be given later on.

We now set out to reformulate (6.1) as a fixed point problem in an appropriate subset
of ZT . To this end, we first put

A0(x) = −a(0, x, u0(x),∇u0(x)), x ∈ Ω.

Further we fix a function φ ∈ ZT0 which satisfies φ|t=0 = u0 and ∂tφ|t=0 = u1, the latter
being demanded in case that α > 1/p. In view of (6.5) and (6.6), we see that, for T
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sufficiently small, say T ≤ T1 ≤ T0, we have φ(t, x) ∈ U0 and ∇φ(t, x) ∈ U1 for all t ∈ J
and x ∈ Ω. So for such T we may define operators B◦K(φ) and Rφ

K , K = D, N , by means
of

B◦D(φ)u(t, x) = bDξ (t, x, φ(t, x))u(t, x), t ∈ J, x ∈ ΓD,

B◦N (φ)u(t, x) = bNξ (t, x, φ(t, x),∇φ(t, x))u(t, x)

+ bNη (t, x, φ(t, x),∇φ(t, x)) · ∇u(t, x), t ∈ J, x ∈ ΓN ,

and
Rφ
K(u) = BK(u)− BK(φ)− B◦K(φ)(u− φ), K = D,N.

Obviously, (6.1) restricted to J is equivalent to
∂tu+ dk ∗ A0 : ∇2u = F (u) + dk ∗G(u)

+dk ∗ ((A0 −A(u)) : ∇2u) (J × Ω)
B◦D(φ)u = −BD(φ) + B◦D(φ)φ−Rφ

D(u) (J × ΓD)
B◦N (φ)u = −BN (φ) + B◦N (φ)φ−Rφ

N (u) (J × ΓN )
u|t=0 = u0 (Ω).

(6.7)

In other words, u ∈ ZT solves a problem of the form
∂tv + dk ∗ A0 : ∇2v = h (J × Ω)

B◦D(φ)v = ψD (J × ΓD)
B◦N (φ)v = ψN (J × ΓN )
v|t=0 = v0 (Ω).

(6.8)

with certain functions on the right-hand side. Given data h, ψD, ψN and v0, (6.8) is
a linear problem. For our construction, it is essential to understand this problem, in
particular, one needs a precise characterization of unique solvability of (6.8) in ZT in
terms of regularity and compatibility conditions for the data.

Let us assume for the moment that we have such a result at our disposal - possibly
on a yet smaller time-interval - and that the right-hand sides of the following both
problems (6.9) and (6.11), which are of the form (6.8), fulfill the conditions needed to
get a unique solution in ZT in either case. Then it makes sense to define the reference
function w ∈ ZT as solution of the linear problem

∂tw + dk ∗ A0 : ∇2w = F (φ) + dk ∗G(φ) (J × Ω)
B◦D(φ)w = −BD(φ) + B◦D(φ)φ (J × ΓD)
B◦N (φ)w = −BN (φ) + B◦N (φ)φ (J × ΓN )
w|t=0 = u0 (Ω).

(6.9)

Given ρ > 0, let

Σ(ρ, T, φ) = {v ∈ ZT : v|t=0 = u0, ∂tv|t=0 = u1 (if α > 1/p), |v − w|ZT ≤ ρ},

which is a closed subset of ZT . Since ZT ↪→ C(J ;C1(Ω)), we may further put

µw(T ) = max{|w(t, x)− u0(x)|+ |∇w(t, x)−∇u0(x)| : t ∈ J, x ∈ Ω}.

Apparently, µw(T ) → 0 as T → 0, due to w|t=0 = u0.
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Suppose that u ∈ Σ(ρ, T, φ). Then for t ∈ J and x ∈ Ω, we estimate

|u(t, x)− u0(x)|+ |∇u(t, x)−∇u0(x)| ≤ |u− w|C(J ;C1(Ω)) + µw(T )

≤M |u− w|ZT + µw(T ) ≤Mρ+ µw(T ). (6.10)

Here the constant M > 0 does not depend on u and T ∈ (0, T1], the latter being true
because u− w ∈ 0Z

T . So (6.10) shows that u(t, x) ∈ U0 as well as ∇u(t, x) ∈ U1 for all
u ∈ Σ(ρ, T, φ), t ∈ J and x ∈ Ω, provided that T and ρ are sufficiently small, let us say
T ≤ T2 ≤ T1 and ρ ≤ ρ1. Henceforth we will assume that these smallness conditions
hold.

The last assumption allows us to define the mapping Υ : Σ(ρ, T, φ) → ZT which
assigns to every u ∈ Σ(ρ, T, φ) the solution v = Υ(u) of the linear problem

∂tv + dk ∗ A0 : ∇2v = F (u) + dk ∗G(u)
+dk ∗ ((A0 −A(u)) : ∇2u) (J × Ω)

B◦D(φ)v = −BD(φ) + B◦D(φ)φ−Rφ
D(u) (J × ΓD)

B◦N (φ)v = −BN (φ) + B◦N (φ)φ−Rφ
N (u) (J × ΓN )

v|t=0 = u0 (Ω).

(6.11)

Observe now that, in view of (6.7), every fixed point u of Υ is a solution of (6.1) and
vice versa, at least for some small time interval J = [0, T ]. So the idea is to apply the
contraction principle to Υ.

After these introductory considerations we become now more rigorous. We have not
yet shown that w and Υ are really well-defined. Nor is it clear that the contraction
principle is applicable.

In order to succeed we need the subsequent assumptions. Here, for short, we put
ζ = (ξ, η) and U = U0 ×U1. For a function b(x) on a boundary segment ΓK (K = D or
N), we denote the surface gradient by bxΓ .

(H1) (kernel): k ∈ BVloc(R+) ∩ K1(1 + α, θ), k(0) = 0, θ < π, α ∈ [0, 1) \
{

1
p ,

3
2p−1

}
,

κ := (1 + α)(1− 1
2p) 6= 1;

(H2) (exponents): n ≥ 2, 2
1+α + n < p <∞;

(H3) (smoothness of nonlinearities):

(a) a ∈ C(J0 × Ω× U ; Rn2
),

|a(t, x, ζ)− a(t, x, ζ̄)| ≤ C|ζ − ζ̄|, t ∈ J0, x ∈ Ω, ζ, ζ̄ ∈ U ;

(b) g(·, ·, ζ) is measurable on J0 × Ω for all ζ ∈ U ; ∃Cg ∈ XT0 , Cg≥0, s.t.

|g(t, x, ζ)− g(t, x, ζ̄)| ≤ Cg(t, x)|ζ − ζ̄|, t ∈ J0, x ∈ Ω, ζ, ζ̄ ∈ U ;

(c) f is as g in case α = 0, otherwise: f(·, ·, ζ) and fζ(·, ·, ζ) are measurable on J0×Ω
for all ζ ∈ U ; fζ ∈ L∞(J0 × Ω× U ; Rn+1); ∃Cf ∈ Lp(Ω), Cf ≥ 0 and σf > α s.t.

|fζ(t, x, ζ)− fζ(t̄, x, ζ̄)| ≤ Cf (x)|t− t̄|σf + C|ζ − ζ̄|, t, t̄ ∈ J0, x ∈ Ω, ζ, ζ̄ ∈ U ;
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(d) bD ∈ C(J0 × ΓD × U0), ∃Cb1 ∈ Lp(ΓD), Cb1 ≥ 0, ∃Cb2 ∈ Lp(J), Cb2 ≥ 0, and
∃σ2 > 1− 1

p such that in case κ < 1: ∃σ1 > κ s.t.

|bDxΓ
(t, x, ξ)− bDxΓ

(t, x̄, ξ)| ≤ Cb2(t)|x− x̄|σ2 , (6.12)

|bDξ (t, x, ξ)− bDξ (t̄, x, ξ)| ≤ Cb1(x)|t− t̄|σ1 ,

|bDxΓξ
(t, x, ξ)− bDxΓξ

(t, x̄, ξ̄)| ≤ Cb2(t)|x− x̄|σ2 + C|ξ − ξ̄|, (6.13)

|bDξξ(t, x, ξ)− bDξξ(t, x̄, ξ̄)| ≤ C(|x− x̄|σ2 + |ξ − ξ̄|),

and in case κ > 1: ∃σ1 > κ− 1 s.t. (6.12), (6.13),

|bDt (t, x, ξ)− bDt (t̄, x, ξ)| ≤ Cb1(x)|t− t̄|σ1 ,

|bDtξ(t, x, ξ)− bDtξ(t̄, x, ξ̄)| ≤ Cb1(x)|t− t̄|σ1 + C|ξ − ξ̄|,
|bDξξ(t, x, ξ)− bDξξ(t̄, x̄, ξ̄)| ≤ C(|t− t̄|σ1 + |x− x̄|σ2 + |ξ − ξ̄|),

all these inequalities being true for t, t̄ ∈ J0, x, x̄ ∈ ΓD, ξ, ξ̄ ∈ U0; each of the
derivatives of bD occurring above is Carathéodory and essentially bounded on
J0 × ΓD × U0;

(e) bN ∈ C(J0×ΓN×U), bNζ ∈ L∞(J0×ΓN×U ; Rn+1) is Carathéodory, ∃Cb1 ∈ Lp(ΓN ),
Cb1 ≥ 0, ∃Cb2 ∈ Lp(J), Cb2 ≥ 0, ∃σ1 > (1 + α)(1

2 −
1
2p), ∃σ2 > 1− 1

p , s.t.

|bN (t, x, ζ)− bN (t̄, x̄, ζ)| ≤ Cb1(x)|t− t̄|σ1 + Cb2(t)|x− x̄|σ2 ,

|bNζ (t, x, ζ)− bNζ (t̄, x̄, ζ̄)| ≤ Cb1(x)|t− t̄|σ1 + Cb2(t)|x− x̄|σ2 + C|ζ − ζ̄|,

t, t̄ ∈ J0, x, x̄ ∈ ΓN , ζ, ζ̄ ∈ U ;

(H4) (initial data): u0 ∈ Y0; u1 ∈ Y1, if α > 1
p (u1(x) := f(0, x, u0(x),∇u0(x)), x ∈ Ω);

f(·, ·, u0(·),∇u0(·)), g(·, ·, u0(·),∇u0(·)) ∈ XT0 .

(H5) (compatibility): (u0(x),∇u0(x)) ∈ U0 × U1, x ∈ Ω;

bD(0, x, u0(x)) = 0, x ∈ ΓD;

bN (0, x, u0(x),∇u0(x)) = 0, x ∈ ΓN ;

bDt (0, x, u0(x)) + bDξ (0, x, u0(x))u1(x) = 0, x ∈ ΓD, if α > 3
2p−1 ;

(H6) (ellipticity): a(0, x, u0(x),∇u0(x)) ∈ Sym{n}, x ∈ Ω; ∃c0 > 0 s.t.

a(0, x, u0(x),∇u0(x))% · % ≥ c0|%|2, x ∈ Ω, % ∈ Rn;

(H7) (normality):
bDξ (0, x, u0(x)) 6= 0, x ∈ ΓD;

bNη (0, x, u0(x),∇u0(x)) · ν(x) 6= 0, x ∈ ΓN .

We have now the following result.

Theorem 6.1.1 Suppose that the assumptions (H1)-(H7) are satisfied. Let φ ∈ ZT0 be
as above, and assume that ρ ≤ ρ1. Then there exists T3 ∈ (0, T2] such that for each
T ∈ (0, T3] the following statements hold:
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(i) (6.9) has a unique solution w in ZT ;

(ii) for every u ∈ Σ(ρ, T, φ), (6.11) has a unique solution v = Υ(u) in ZT ;

(iii) there exist positive constants M and µ(T ) both not depending on ρ, with M being
also independent of T and µ(T ) → 0 as T → 0, such that for all u, v ∈ Σ(ρ, T, φ)∪
{φ|J} and K = D,N , the subsequent inequalities are fulfilled:

|(A0 −A(u)) : ∇2u|XT ≤M(µ(T ) + ρ)2, (6.14)

|(A0 − A(u)) : ∇2u− (A0 −A(v)) : ∇2v|XT ≤M(µ(T ) + ρ)|u− v|ZT , (6.15)
|F (u)− F (v)|XT

1
+ |G(u)−G(v)|XT ≤ µ(T )|u− v|ZT , (6.16)

|Rφ
K(u)−Rφ

K(v)|Y TK ≤M(µ(T ) + ρ)|u− v|ZT . (6.17)

Proof. To prove (i) and (ii), we have to consider the linear problem (6.8). Since φ|t=0 =
u0, it follows from (H7) and the compactness of Γ that there exist T3 ∈ (0, T2] and
c > 0 such that |B◦D(φ)(t, x)| ≥ c as well as |B◦N (φ)(t, x) · ν(x)| ≥ c for all t ∈ [0, T3] and
x ∈ ΓD resp. x ∈ ΓN . Hereafter, we suppose that T ∈ (0, T3]. We may then normalize
the boundary conditions in (6.8) by dividing by B◦D(φ)(t, x) resp. B◦N (φ)(t, x) · ν(x), and
integrate the first equation in (6.8) w.r.t. time. This way we can rewrite (6.8) as a
problem of the form (4.40). One has now to check that Theorem 4.3.1 is applicable to
the reformulations of (6.9) and (6.11).

As to regularity of the data, clearly the initial data u0 and u1 belong to the right
regularity classes, by assumption (H4). Let us next look at the term which involves the
function g. Suppose u ∈ Σ(ρ, T, φ) ∪ {φ|J}. By (H3b) and (H4), we have

|g(·, ·, u,∇u)|XT ≤ |g(·, ·, u,∇u)− g(·, ·, u0,∇u0)|XT + |g(·, ·, u0,∇u0)|XT

≤ |Cg|XT (|u− u0|∞ + |∇u−∇u0|∞) + |g(·, ·, u0,∇u0)|XT .

So G(u) ∈ XT , that is, this term lies in the right regularity class. Furthermore, we have
(A0 −A(u)) : ∇2u ∈ XT , in view of (6.14), which will be shown below. Concerning the
other terms, we refer to Section 6.2, where we shall prove that the regularity assumptions
on f , bD, and bN , together with (H4), ensure that these terms enjoy the regularity
required for the application of Theorem 4.3.1, i.e. that F (u) ∈ XT

1 and BK(φ)−B◦K(φ)φ+
Rφ
K(u) ∈ Y T

K for all u ∈ Σ(ρ, T, φ) ∪ {φ|J}, K = D,N . We shall also demonstrate that
this regularity is also preserved under the above normalization on the boundary.

Observe further that the compatibility conditions are satisfied for (6.9) and (6.11).
This follows from (H5), the definition of Σ(ρ, T, φ), and from the fact that φ|t=0 = u0

and ∂tφ|t=0 = u1 in case α > 1/p. Normality has already been discussed above. Hence,
(i) and (ii) are established for all T ∈ (0, T3].

Turning to (iii), we here only show (6.14), (6.15), and one half of (6.16). The re-
maining estimates, which take more effort to be proved, are subject of Section 6.2. In
the subsequent inequalities, M and µ(T ) are constants, which may differ from line to
line, but which are such that both do not depend on ρ, M is independent of T , too, and
µ(T ) → 0 as T → 0.

Let u, v ∈ Σ(ρ, T, φ) ∪ {φ|J}. By means of (H3a) we get

|(A0 −A(u)) : ∇2u|XT ≤ (|A0 −A(w)|∞ + |A(w)−A(u)|∞)

× (|∇2u−∇2w|
(XT )n

2 + |∇2w|
(XT )n

2 )

≤ (µ(T ) +Mρ)(ρ+ µ(T )),
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which entails (6.14). Correspondingly,

|(A0−A(u)) : ∇2u− (A0 −A(v)) : ∇2v|XT

≤ |(A0 −A(u)) : (∇2u−∇2v)|XT + |(A(u)−A(v)) : (∇2v −∇2w)|XT

+ |(A(u)−A(v)) : ∇2w|XT

≤ (µ(T ) +Mρ)|u− v|ZT +Mρ|u− v|ZT +Mµ(T )|u− v|ZT
≤M(µ(T ) + ρ)|u− v|ZT ,

showing (6.15). We finally estimate the term |G(u)−G(v)|XT . By virtue of (H3b), we
obtain similarly as above

|g(·, ·, u,∇u)− g(·, ·, v,∇v)|XT ≤ |Cg|XTM |u− v|ZT ≤Mµ(T )|u− v|ZT .�

Existence and uniqueness of a local strong solution of (6.1) can now be obtained by
means of Theorem 6.1.1 and the contraction mapping principle.

Theorem 6.1.2 Let Ω be a bounded domain in Rn with C2 boundary Γ which decom-
poses as Γ = ΓD ∪ΓN with dist(ΓD,ΓN ) > 0. Let further U0 ⊂ R, U1 ⊂ Rn be nonempty
open convex sets. Suppose that the assumptions (H1)-(H7) are satisfied. Then there
exists T ∈ (0, T0] such that (6.1) restricted to J = [0, T ] admits a unique solution in ZT .

Proof. Let ρ ≤ ρ1 and T ∈ (0, T3], so that the reference function w ∈ ZT as well as
v = Υ(u) ∈ ZT are well-defined for each u ∈ Σ(ρ, T, φ), cf. Theorem 6.1.1. We want
to show that, for sufficiently small T and ρ, Υ maps Σ(ρ, T, φ) into itself and is strictly
contractive.

To show the first property we have to estimate v−w in the ZT -norm. By definition
of w and v = Υ(u), we see that v − w satisfies

∂t(v − w) + dk ∗ A0 : ∇2(v − w) = F (u)− F (φ) + dk ∗ (G(u)−G(φ))
+dk ∗ ((A0 −A(u)) : ∇2u) (J × Ω)

B◦D(φ)(v − w) = −Rφ
D(u) (J × ΓD)

B◦N (φ)(v − w) = −Rφ
N (u) (J × ΓN )

(v − w)|t=0 = 0 (Ω).

The maximal regularity estimate for problem (6.8) thus yields

|v − w|ZT ≤M1

(
|F (u)− F (φ) + dk ∗ (G(u)−G(φ)) + dk ∗ ((A0 −A(u)) : ∇2u)|XT

1

+ |Rφ
D(u)|Y TD + |Rφ

N (u)|Y TN
)
,

with a constant M1 > 0 not depending on T (v − w ∈ 0Z
T !). Using the estimates from

Theorem 6.1.1, combined with Rφ
K(φ) = 0, K = D,N , we obtain an inequality of the

form
|v − w|ZT ≤M(ρ+ µ(T ))2, (6.18)

where M > 0 is independent of T and ρ, and µ(T ) > 0 vanishes as T → 0. Here we
employ the simple inequality |u− φ|ZT ≤ ρ+ |φ−w|ZT , the last term of which behaves
like µ(T ). From (6.18) it is clear that Υ is a self-mapping of Σ(ρ, T, φ), if T and ρ are
sufficiently small; choose e.g. ρ so small that 4Mρ2 ≤ ρ, and diminish T until µ(T ) ≤ ρ.
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Strict contractivity of Υ can be established in similar fashion. Let u, ū ∈ Σ(ρ, T, φ)
and put v = Υ(u) and v̄ = Υ(ū). Then v̄ − v satisfies

∂t(v̄ − v) + dk ∗ A0 : ∇2(v̄ − v) = F (ū)− F (u) + dk ∗ (G(ū)−G(u)) (J × Ω)
+dk ∗ (((A0−A(ū)) :∇2ū)−(A0−A(u)) :∇2u)

B◦D(φ)(v̄ − v) = −(Rφ
D(ū)−Rφ

D(u)) (J × ΓD)
B◦N (φ)(v̄ − v) = −(Rφ

N (ū)−Rφ
N (u)) (J × ΓN )

(v̄ − v)|t=0 = 0 (Ω),

whence

|v̄ − v|ZT ≤M1

(
|G(ū)−G(u) + (((A0−A(ū)) :∇2ū)−(A0−A(u)) :∇2u)|XT

+ |F (ū)− F (u)|XT
1

+ |Rφ
D(ū)−Rφ

D(u)|Y TD + |Rφ
N (ū)−Rφ

N (u)|Y TN
)

≤M(µ(T ) + ρ)|ū− u|ZT ,

by maximal regularity and the estimates from Theorem 6.1.1. Here the constants M
and µ(T ) are like those in (6.18). Hence Υ becomes a strict contraction, when ρ and T
are selected sufficiently small.

The assertion follows now by the contraction mapping principle and the fact that
fixed points of Υ correspond to solutions of (6.1) for small time-intervals J = [0, T ]. �

Remarks 6.1.1 (i) The statement of Theorem 6.1.2 is also true, if k is of the form
k = k1 + dl ∗ k1, where k1 is like k in (H1) and l ∈ BVloc(R+) with l(0) = l(0+) = 0.

(ii) One can further replace k on the right-hand side of (6.1) by an arbitrary kernel
k1 ∈ BVloc(R+) ∩ K1(1 + α1, θ1) with k(0) = 0, α1 ≥ α, θ1 < π, and the theorem still
holds true.

6.2 Nemytskij operators for various function spaces

This paragraph can be regarded as an appendix to Section 6.1. Its purpose is to com-
plete the proof of Theorem 6.1.1. We still have to show certain mapping properties and
Lipschitz estimates for the substitution operators which involve the nonlinear functions
f, bD and bN , cf. the beginning of Section 6.1. The Nemytskij operators under con-
sideration act on the function spaces which arose as natural regularity classes for the
inhomogeneities in the treatment of the linear problem (6.8), and turned out to be the
spaces XT

1 , Y T
D , and Y T

N , see (6.2), (6.3), (6.4) for their definitions. These are anisotropic
Bessel-potential and Sobolev-Slobodeckij spaces in domains, respectively, compact mani-
folds in the euclidean space, which means that the subject of this section is not altogether
trivial.

We remark that in order to get the desired estimates for Y T
D and Y T

N , which are spaces
on J ×ΓD resp. J ×ΓN , one considers first the corresponding spaces in domains (w.r.t.
the spatial variable). The results obtained for the latter can then be transferred to Y T

D
and Y T

N by means of the standard method of local coordinates. In what is to follow, we
shall focus on the first step. As to the second step, we merely point out that the fact that
Ω (in Section 6.1) has a (compact) C2 boundary ensures that the smoothness of bD resp.
bN w.r.t. the spatial variable x is preserved under the local coordinate transformations
studied in Section 4.3, which flatten the boundary.

The reader is further reminded of the embedding ZT ↪→ C(J ;C1(Ω)), which is valid
in view of the assumption (H2), and which considerably simplifies the investigation of the
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substitution operators to be studied in this section. Note that thanks to this embedding,
we do not require any growth conditions on the nonlinearities.

It should also be remarked that all nonlinearities appearing in the subsequent esti-
mates are tacitly assumed to be Carathéodory functions so that we do not have to be
concerned with measurability questions, cf. Appell and Zabrejko [4, Section 1.4]. Notice
that this corresponds to the regularity assumptions in (H4).

We fix now the notation used in this section. Let J = [0, T ] (0 < T ≤ T0), and
Ω be a bounded domain in Rn with C1 boundary. For p ∈ (1,∞) and m ∈ N we
introduce the symbols Xm := Lp(J × Ω,Rm), Xm

1 := H1
p (J ;Lp(Ω,Rm)), and Xm

2 :=
Lp(J ;H1

p (Ω,Rm)). Our interest lies in the spaces Xm
1, s := Hs

p(J ;Lp(Ω,Rm)), (Y k,s
1 )m :=

Bk+s
pp (J ;Lp(Ω,Rm)), (Y k,s

2 )m := Lp(J ;Bk+s
pp (Ω,Rm)), where k ∈ {0, 1} and s ∈ (0, 1).

But we will also deal with the space (Cr1)m := Cr(J ;C(Ω,Rm)), where r ∈ [0, 1). For
more brevity, we omit the parameter m in all these notations if m = 1, i.e. we write
X = X1, Xi = X1

i and so forth. With |z| :=
∑m

i=1 |zi| for z ∈ Rm, the following
seminorms will play a part below:

|f |∞,m = |f |L∞(J×Ω,Rm), [f ]Xm
1

= |∂tf |Xm , [f ]Xm
2

=
n∑
i=1

|∂xif |Xm ,

[f ]
(Y k,s1 )m

= (
∫ T

0

∫ T

0

∫
Ω

|∂kt f(t, x)− ∂kt f(τ, x)|p

|t− τ |1+sp
dx dτ dt)

1
p ,

[f ]
(Y 0,s

2 )m
= (

∫ T

0

∫
Ω

∫
Ω

|f(t, x)− f(t, y)|p

|x− y|n+sp
dx dy dt)

1
p ,

[f ]
(Y 1,s

2 )m
=

n∑
i=1

(
∫ T

0

∫
Ω

∫
Ω

|∂xif(t, x)− ∂xif(t, y)|p

|x− y|n+sp
dx dy dt)

1
p ,

[f ](Cr1 )m = sup
t6=τ∈J, x∈Ω

|f(t, x)− f(τ, x)|
|t− τ |r

(r ∈ (0, 1)),

[f ]Xm
1, s

= (
∫

Ω

∫ T

0
(
∫ 1

0
σ−2s(

1
|V (t, σ)|

∫
V (t, σ)

|f(t+ h, x)− f(t, x)| dh)2dσ
σ

)
p
2 dt dx)

1
p ,

where V (t, σ) = {h ∈ R : |h| < σ and t+h ∈ J}. The subsequent expressions are norms
in the corresponding spaces:

| · |
(Y

0,s1
1 ∩Y 0,s2

2 )m
= | · |Xm + [ · ]

(Y
0,s1
1 )m

+ [ · ]
(Y

0,s2
2 )m

,

| · |
(Y

0,s1
1 ∩Y 1,s2

2 )m
= | · |Xm + [ · ]

(Y
0,s1
1 )m

+ [ · ]Xm
2

+ [ · ]
(Y

1,s2
2 )m

,

| · |
(Y

1,s1
1 ∩Y 1,s2

2 )m
= | · |Xm + [ · ]Xm

1
+ [ · ]

(Y
1,s1
1 )m

+ [ · ]Xm
2

+ [ · ]
(Y

1,s2
2 )m

,

| · |Xm
1, s

= | · |Xm + [ · ]Xm
1, s
,

cf. Triebel [78], [79], as well as Runst and Sickel [72].
Throughout this section, let further K be an open convex subset of Rm and b :

J×Ω×K → R, (t, x, ξ) 7→ b(t, x, ξ). We shall investigate the Nemytskij operator B which
assigns to a function f on J ×Ω with values in K the function Bf(t, x) = b(t, x, f(t, x))
which is real-valued and defined on J × Ω. In what follows w will be a fixed K-valued
function defined on J×Ω, too, which is as smooth as the functions f under consideration,
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and which serves as a reference function in the following sense. For F = Y k1,s1
1 ∩ Y k2,s2

2 ,
and given ρ ∈ (0, ρ0], let Σ = Σ(ρ,w, F ) be the set of all K-valued f in Fm such that
f −w ∈ 0F

m and |f −w|Fm ≤ ρ. The aim is to show that Bf ∈ F whenever f ∈ Σ and
that

|Bf −Bg|F ≤ C(ρ+ µ(T ) + |bξ(·, ·, w)|∞,m)|f − g|Fm , f, g ∈ Σ, (6.19)

where C > 0 is independent of ρ and T , and 0 < µ(T ) → 0 as T tends to zero. We
further need the property that Bf ∈ X1, s if f ∈ Xm

1, s0
∩ (C0

1 )m (s0 ∈ (s, 1)), and we
wish to have a Lipschitz estimate of the form

|Bf −Bg|X1, s ≤ µ(T )(|f − g|Xm
1, s0

+ |f − g|∞,m), (6.20)

for all (K-valued) f, g ∈ Σ′ = Σ′(ρ,w) := {h ∈ Xm
1, s0

∩ (C0
1 )m : (h−w)|t=0 = 0 and |h−

w|Xm
1, s0

+ |h− w|∞,m ≤ ρ}, where again the constant µ(T ) > 0 vanishes as T → 0.
In both cases we shall only establish the Lipschitz estimate. The corresponding

mapping property of B follows by means of the same techniques; here the proof is
even simpler than for the Lipschitz estimate. When proving Lipschitz estimates we will
restrict ourselves to the seminorms of highest order, that is, e.g., if we are to estimate
Bf −Bg in the Y 1,s1

1 ∩Y 1,s2
2 -norm, we shall consider only the seminorms [Bf −Bg]

Y
1,s1
1

and [Bf −Bg]
Y

1,s2
2

. Having proved the desired estimate for these terms, it will then be
clear how to obtain it for the seminorm terms of lower order, which are much easier to
treat.

We begin now with the spaces

(Y k1,s1
1 ∩ Y k2,s2

2 )m = Bk1+s1
pp (J ;Lp(Ω,Rm)) ∩ Lp(J ;Bk2+s2

pp (Ω,Rm)),

ki ∈ {0, 1}, si ∈ (0, 1), i = 1, 2. Here, the cases (k1, k2) = (0, 0), (0, 1), (1, 1) have to
be studied. We assume that in each of these cases, p is large enough such that we
have the embedding Y 0,s1

1 ∩ Y 0,s2
2 ↪→ C(J ;C(Ω̄)), Y 0,s1

1 ∩ Y 1,s2
2 ↪→ C(J ;C1(Ω̄)), and

Y 1,s1
1 ∩Y 1,s2

2 ↪→ Cr(J ;C(Ω̄))∩C(J ;C1(Ω̄)), respectively, with some number r in (s1, 1).
More precisely, we make the assumption that p > p?(n, k1, s1, k2, s2), where

p?(n, k1, s1, k2, s2) :=


1
s1

+ n
s2

: (k1, k2) = (0, 0)
1
s1

(1 + 1
s2

) + n
s2

: (k1, k2) = (0, 1)

max
{

1
s2

(1+s2
1+s1

+ n), 1 + n 1+s1
1+s2

}
: (k1, k2) = (1, 1).

Roughly speaking, this condition on the exponent p when translated to the situation of
Section 6.1 corresponds to the assumption (H2) therein.

The first lemma is concerned with the case (k1, k2) = (0, 0). Here and in the sub-
sequent estimates we denote by µ(T ) a positive constant depending on T such that
µ(T ) → 0 as T → 0. Further, M and C denote constants which may differ from line to
line, but which do not depend on T and ρ.

Lemma 6.2.1 Let w ∈ (Y 0,s1
1 ∩ Y 0,s2

2 )m be a fixed K-valued function and ρ > 0. Let
further Σ be as described above. Suppose that there exist CHL > 0, r ∈ (s1, 1), and
Cb ∈ Lp(Ω) such that

|bξ(t, x, ξ)− bξ(τ, x, η)| ≤ CHL(Cb(x)|t− τ |r + |ξ − η|),
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for all t, τ ∈ J, ξ, η ∈ K, and a.a. x ∈ Ω. Then there exists a constant C > 0 not
depending on T and ρ such that

[b(·, ·, f)− b(·, ·, g)]
Y

0,s1
1

≤ C
(
ρ+ µ(T ) + |bξ(·, ·, w)|∞,m

)
|f − g|

(Y
0,s1
1 ∩Y 0,s2

2 )m
, f, g ∈ Σ.

Proof. Let f and g be arbitrary functions in Σ. Put

h(t, τ, x) = b(t, x, f(t, x))− b(t, x, g(t, x))− b(τ, x, f(τ, x)) + b(τ, x, g(τ, x))

for t, τ ∈ J , and a.a. x ∈ Ω. Then

[b(·, ·, f)− b(·, ·, g)]
Y

0,s1
1

= (
∫ T

0

∫ T

0

∫
Ω

|h(t, τ, x)|p

|t− τ |1+s1p
dx dτ dt)

1
p .

Letting φ(t, τ, x, θ) = bξ(t, x, g(τ, x) + θ(f(τ, x)− g(τ, x))), t, τ ∈ J, x ∈ Ω, θ ∈ [0, 1], we
write

h(t, τ, x) =
∫ 1

0
φ(t, t, x, θ) dθ · (f(t, x)− g(t, x))−

∫ 1

0
φ(τ, τ, x, θ) dθ · (f(τ, x)− g(τ, x))

=
∫ 1

0
φ(t, t, x, θ) dθ · (f(t, x)− f(τ, x)− g(t, x) + g(τ, x))+

+
∫ 1

0
(φ(t, t, x, θ)− φ(τ, τ, x, θ)) dθ · (f(τ, x)− g(τ, x)).

With ψ(f, g) := ess sup{|φ(t, t, x, θ)| : t ∈ J, x ∈ Ω, θ ∈ [0, 1]}, we therefore have

|h(t, τ, x)| ≤ ψ(f, g)|f(t, x)− f(τ, x)− g(t, x) + g(τ, x)|+

+
(
CHL

∫ 1

0
((1− θ)|g(t, x)− g(τ, x)|+ θ|f(t, x)− f(τ, x)|) dθ +

+CHLCb(x)|t− τ |r
)
· |f(τ, x)− g(τ, x)|

≤ ψ(f, g)|f(t, x)− f(τ, x)− g(t, x) + g(τ, x)|+ CHL|f − g|∞ ·
·(|f(t, x)− f(τ, x)|+ |g(t, x)− g(τ, x)|+ Cb(x)|t− τ |r)

for all t, τ ∈ J , and a.a. x ∈ Ω. On the whole we thus find that

[b(·, ·, f)− b(·, ·, g)]
Y

0,s1
1

≤ ψ(f, g)[f − g]
(Y

0,s1
1 )m

+ CHL|f − g|∞,m

(
[f ]

(Y
0,s1
1 )m

+

+[g]
(Y

0,s1
1 )m

+ |Cb|Lp(Ω)(
∫ T

0

∫ T

0

dτ dt

|t− τ |1+(s1−r)p
)

1
p

)
= ψ(f, g)[f − g]

(Y
0,s1
1 )m

+ CHL|f − g|∞,m

(
[f ]

(Y
0,s1
1 )m

+

+[g]
(Y

0,s1
1 )m

+ |Cb|Lp(Ω)C1T
r−s1+ 1

p

)
,

where C1 = 21/p[(r − s1)p(1 + (r − s1)p)]−1/p.
By definition of Σ, the Lipschitz estimate for bξ, and in view of the embedding

Y 0,s1
1 ∩ Y 0,s2

2 ↪→ C(J ;C(Ω̄)), we have the inequalities

[f − g]∞,m ≤M |f − g|
(Y

0,s1
1 ∩Y 0,s2

2 )m
, [f ]

(Y
0,s1
1 )m

+ [g]
(Y

0,s1
1 )m

≤ 2(ρ+ [w]
(Y

0,s1
1 )m

),
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ψ(f, g) ≤Mρ+ |bξ(·, ·, w)|∞,m, f, g ∈ Σ,

M being independent of T because (f − g)|t=0 = 0. Hence the assertion follows with
µ(T ) = [w]

(Y
0,s1
1 )m

+ T
r−s1+ 1

p . �

By repeating the above considerations with the roles of J and Ω being reversed, one
obtains (under the corresponding assumptions, cf. (H4) in Section 6.1) the estimate

[b(·, ·, f)− b(·, ·, g)]
Y

0,s2
2

≤ C
(
ρ+ µ(T ) + |bξ(·, ·, w)|∞,m

)
|f − g|

(Y
0,s1
1 ∩Y 0,s2

2 )m
, f, g ∈ Σ.

We come now to exponents greater than 1.

Lemma 6.2.2 Let w ∈ (Y 1,s1
1 ∩ Y 1,s2

2 )m be a fixed K-valued function and ρ > 0. Let
further Σ be as described above. Suppose bξ, btξ ∈ L∞(J × Ω ×K,Rm), bξξ ∈ L∞(J ×
Ω×K,Rm×m), and assume that there exist CHL > 0, r1 ∈ (s1, 1), and Cb ∈ Lp(Ω) such
that

|btξ(t, x, ξ)− btξ(τ, x, η)| ≤ CHL(Cb(x)|t− τ |r1 + |ξ − η|),
|bξξ(t, x, ξ)− bξξ(τ, x, η)| ≤ CHL(|t− τ |r1 + |ξ − η|),

for all t, τ ∈ J, ξ, η ∈ K, and a.a. x ∈ Ω. Then there exists a constant C > 0 not
depending on T and ρ such that

[b(·, ·, f)− b(·, ·, g)]
Y

1,s1
1

≤ C
(
ρ+ µ(T ) + |bξ(·, ·, w)|∞,m

)
|f − g|

(Y
1,s1
1 ∩Y 1,s2

2 )m
, f, g ∈ Σ.

Proof. For brevity we set Y = Y 1,s1
1 ∩ Y 1,s2

2 . Remember that we have the embedding
Y ↪→ Cr(J ;C(Ω̄)) for some r ∈ (s1, 1). Let now f, g ∈ Σ be arbitrary functions. Put

h1(t, τ, x) = bt(t, x, f(t, x))− bt(t, x, g(t, x))− bt(τ, x, f(τ, x)) + bt(τ, x, g(τ, x)),
h2(t, τ, x) = bξ(t, x, f(t, x)) · ft(t, x)− bξ(t, x, g(t, x)) · gt(t, x)

−bξ(τ, x, f(τ, x)) · ft(τ, x) + bξ(τ, x, g(τ, x)) · gt(τ, x)

for t, τ ∈ J , and a.a. x ∈ Ω. Then

[b(·, ·, f)− b(·, ·, g)]
Y

1,s1
1

= (
∫ T

0

∫ T

0

∫
Ω

(|h1(t, τ, x) + h2(t, τ, x)|)p

|t− τ |1+s1p
dx dτ dt)

1
p

≤
2∑
i=1

(
∫ T

0

∫ T

0

∫
Ω

|hi(t, τ, x)|p

|t− τ |1+s1p
dx dτ dt)

1
p =: I1 + I2.

Concerning I1, we may use the estimates from the proof of Lemma 6.2.1, thereby ob-
taining

I1 ≤ C
(
(ρ+ |btξ(·, ·, w)|∞,m)[f − g]

(Y
0,s1
1 )m

+ (ρ+ µ(T ))|f − g|∞,m

)
≤ C

(
(ρ0 + |btξ|∞,m)µ(T )[f − g](Cr1 )m +M(ρ+ µ(T ))|f − g|Ym

)
≤ C(ρ+ µ(T ))|f − g|Ym .

The term I2 is more sophisticated. We employ the identity

aA− bB − cC + dD = (a− b− c+ d)D + (−a+ b+ c)(A−B − C +D) +
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+(a− c)(A−B) + (a− b)(A− C)

to write

h2(t, τ, x) = h21(t, τ, x) · gt(τ, x) +
+(−bξ(t, x, f(t, x)) + bξ(t, x, g(t, x)) + bξ(τ, x, f(τ, x))) · h22(t, τ, x)
+(bξ(t, x, f(t, x))− bξ(τ, x, f(τ, x)) · (ft(t, x)− gt(t, x)) +
+(bξ(t, x, f(t, x))− bξ(t, x, g(t, x))) · (ft(t, x)− ft(τ, x))

=: I3(t, τ, x) + I4(t, τ, x) + I5(t, τ, x) + I6(t, τ, x),

where

h21(t, τ, x) = bξ(t, x, f(t, x))− bξ(t, x, g(t, x))− bξ(τ, x, f(τ, x)) + bξ(τ, x, g(τ, x)),

h22(t, τ, x) = ft(t, x)− gt(t, x)− ft(τ, x) + gt(τ, x), t, τ ∈ J, a.a.x ∈ Ω.

The summand I3 can be estimated by mimicking the middle part of the proof of Lemma
6.2.1. Letting

h23(t, τ, x) = f(t, x)− g(t, x)− f(τ, x) + g(τ, x)

and r0 = min{r, r1} we get

|h21(t,τ, x)| ≤
≤ C(|h23(t, τ, x)|+ |f − g|∞,m(|f(t, x)− f(τ, x)|+ |g(t, x)− g(τ, x)|+ |t− τ |r1))
≤ C(|t− τ |r[f − g](Cr1 )m + |f − g|∞,m(|t− τ |r([f ](Cr1 )m + [g](Cr1 )m) + |t− τ |r1))
≤ C(|t− τ |r[f − g]Ym(1 + ρ+ [w](Cr1 )m) + [f − g]Ym |t− τ |r1)
≤ C|t− τ |r0 [f − g]Ym

for all t, τ ∈ J , and a.a. x ∈ Ω. Thus,

(
∫ T

0

∫ T

0

∫
Ω

|I3(t, τ, x)|p

|t− τ |1+s1p
dx dτ dt)

1
p ≤

≤ C[f − g]Ym(
∫ T

0

∫
Ω
|gt(τ, x)|p(

∫ T

0

dt

|t− τ |1+(s1−r0)p
) dx dτ)

1
p

≤ CT r0−s1 [g]Xm
1
|f − g|Ym ≤ Cµ(T )|f − g|Ym .

Turning to I4, we immediately see that

(
∫ T

0

∫ T

0

∫
Ω

|I4(t, τ, x)|p

|t− τ |1+s1p
dx dτ dt)

1
p ≤M(ρ+ |bξ(·, ·, w)|∞,m)[f − g]

(Y 1,s
1 )m

.

As for I5, we estimate

|I5(t, τ, x)| ≤ |bξ(t, x, f(t, x))− bξ(τ, x, f(t, x))||ft(t, x)− gt(t, x)|+
+ |bξ(τ, x, f(t, x))− bξ(τ, x, f(τ, x))||ft(t, x)− gt(t, x)|

≤ (|btξ|∞,m|t− τ |+ |bξξ|∞,m2 [f ](Cr1 )m |t− τ |r)|ft(t, x)− gt(t, x)|
≤ C|t− τ |r|ft(t, x)− gt(t, x)|
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for all t, τ ∈ J , and a.a. x ∈ Ω. Therefore,

(
∫ T

0

∫ T

0

∫
Ω

|I5(t, τ, x)|p

|t− τ |1+s1p
dx dτ dt)

1
p ≤ CT r−s1 [f − g]Xm

1
.

Finally,

|I6(t, τ, x)| ≤ |bξξ|∞,m2 |f − g|∞,m|ft(t, x)−ft(τ, x)| ≤ C[f − g]Ym |ft(t, x)−ft(τ, x)|.

for all t, τ ∈ J , and a.a. x ∈ Ω. So we deduce

(
∫ T

0

∫ T

0

∫
Ω

|I6(t, τ, x)|p

|t− τ |1+s1p
dx dτ dt)

1
p ≤ C|f − g|Ym [f ]

(Y
1,s1
1 )m

≤ C(ρ+ [w]
(Y

1,s1
1 )m

)|f − g|Ym ≤ C(ρ+ µ(T ))|f − g|Ym .

The assertion follows now from

[b(·, ·, f)− b(·, ·, g)]
Y

1,s1
1

≤ I1 +
6∑
j=3

(
∫ T

0

∫ T

0

∫
Ω

|Ij(t, τ, x)|p

|t− τ |1+s1p
dx dτ dt)

1
p . �

Under the corresponding assumptions, cf. (H4) in Section 6.1, we can repeat the above
steps with the roles of J and Ω being reversed to obtain the estimate

[b(·, ·, f)− b(·, ·, g)]
Y

1,s2
2

≤ C
(
ρ+ µ(T ) + |bξ(·, ·, w)|∞,m

)
|f − g|

(Y
1,s1
1 ∩Y 1,s2

2 )m
, f, g ∈ Σ.

It is further not difficult to check that the same line of arguments also yields

[b(·, ·, f)− b(·, ·, g)]
Y

1,s2
2

≤ C
(
ρ+ µ(T ) + |bξ(·, ·, w)|∞,m

)
|f − g|

(Y
0,s1
1 ∩Y 1,s2

2 )m
, f, g ∈ Σ,

in the case (k1, k2) = (0, 1). Here, the reader should recall that in the proof of Lemma
6.2.2, we employed the embedding Y 1,s1

1 ∩ Y 1,s2
2 ↪→ Cr(J ;C(Ω̄)) with some r ∈ (s1, 1).

In the case (k1, k2) = (0, 1) the situation is more comfortable since, by assumption, we
even have the embedding Y 0,s1

1 ∩ Y 1,s2
2 ↪→ C(J ;C1(Ω)).

To conclude, we see that the estimate (6.19) holds true for F = Y k1,s1
1 ∩ Y k2,s2

2 . As
already mentioned at the beginning of this section, this result can be transferred to the
spaces Y T

D and Y T
N considered in Section 6.1 by means of the well-known method of local

coordinates. If we apply the corresponding result to the function b defined by

b(t, x, ξ) = bD(t, x, ξ)−bD(t, x, φ(t, x))−bξ(t, x, φ(t, x))(ξ−φ(t, x)), t ∈ J, x ∈ ΓD, ξ ∈ U0,

then we get, owing to bξ(t, x, ξ) = bDξ (t, x, ξ)− bDξ (t, x, φ(t, x)), an estimate of the form

|Rφ
D(u)−Rφ

D(v)|Y TD ≤M(µ(T ) + ρ+ |bDξ (·, ·, w)− bDξ (·, ·, φ)|∞)|u− v|ZT

for all u, v ∈ Σ(ρ, T, φ) ∪ {φ|J}. Since |bDξ (·, ·, w) − bDξ (·, ·, φ)|∞ → 0 as T → 0, the
inequality (6.17) with K = D follows. In the same way one can also show the validity
of (6.17) with K = N .

We turn now to the spaces Xm
1, s = Hs

p(J ;Lp(Ω)), 0 < s < 1.
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Lemma 6.2.3 Let 0 < s < s0 < 1, ρ ∈ (0, ρ0], and w ∈ Xm
1, s0

∩ C(J ;C(Ω)) be a fixed
K-valued function. Let further Σ′ be as described above. Suppose that b is as in Lemma
6.2.1 with r ∈ (s, 1) and bξ ∈ L∞(J × Ω×K,Rm). Then there exists a constant C > 0
not depending on T and ρ such that

[b(·, ·, f)− b(·, ·, g)]X1, s ≤ Cµ(T )(|f − g|Xm
1, s0

+ |f − g|∞,m), f, g ∈ Σ′.

Proof. Let f, g be arbitrary functions in Σ′. Put

ω(t, h, x) = b(t+ h, x, f(t+ h, x))−b(t+ h, x, g(t+ h, x))−b(t, x, f(t, x))+b(t, x, g(t, x))

for t, t+ h ∈ J , and x ∈ Ω. Then

[b(·, ·, f)−b(·, ·, g)]X1, s = (
∫

Ω

∫ T

0
(
∫ 1

0
σ−2s(

1
|V (t, σ)|

∫
V (t, σ)

|ω(t, h, x)| dh)2dσ
σ

)
p
2 dt dx)

1
p .

Similarly as in the proof of Lemma 6.2.1 we may establish

|ω(t, h, x)| ≤ |bξ|∞,m |f(t+ h, x)− f(t, x)− g(t+ h, x) + g(t, x)|+
+CHL|f − g|∞,m(|f(t+ h, x)− f(t, x)|+ |g(t+ h, x)− g(t, x)|+ Cb(x)|h|r)

for all t, t+ h ∈ J and a.a. x ∈ Ω. With

Θ := (
∫ T

0
(
∫ 1

0
σ−2s(

1
|V (t, σ)|

∫
V (t, σ)

|h|r dh)2dσ
σ

)
p
2 dt)

1
p

≤ (
∫ T

0
(
∫ 1

0
σ−2s(

1
|V (t, σ)|

∫
V (t, σ)

σr dh)2
dσ

σ
)
p
2 dt)

1
p = T

1
p√

2(r−s)
,

we thus obtain

[b(·,·, f)− b(·, ·, g)]X1, s ≤

≤ C
(
[f − g]Xm

1, s
+ |f − g|∞,m([f ]Xm

1, s
+ [g]Xm

1, s
+ |Cb|Lp(Ω)Θ)

)
≤ C

(
[f − g]Xm

1, s
+ |f − g|∞([f − w]Xm

1, s
+ [g − w]Xm

1, s
+ [w]Xm

1, s
+ µ(T ))

)
≤ Cµ(T )

(
[f − g]Xm

1, s0
+ |f − g|∞,m([f − w]Xm

1, s0
+ [g − w]Xm

1, s0
+ 1)

)
≤ Cµ(T )([f − g]Xm

1, s0
+ |f − g|∞,m). �

Lemma 6.2.3 and the trivial inequality |Bf−Bg|X ≤ Cµ(T )|f−g|∞,m yield the estimate
(6.20), which we were aiming at. This completes the proof of the inequality (6.16), since
we have ZT∇ ↪→ H

(1+α)/2
p (J ;Lp(Ω)) ∩ C(J × Ω) and (1 + α)/2 > α.

We conclude this paragraph with a result on pointwise multiplication which have been
used several times in the previous sections. In Section 4.2.2 we have already seen that
the space Y 0,s1

1 ∩ Y 0,s2
2 forms a multiplication algebra if the embedding Y 0,s1

1 ∩ Y 0,s2
2 ↪→

C(J ;C(Ω)) is valid. We will show under the above assumptions on p that this is true
also for Y k1,s1

1 ∩ Y 1,s2
2 with k1 = 0, 1. As before, we shall only consider the seminorm

terms of highest order.
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Lemma 6.2.4 Let 0 < s1 < r < 1. Then there exists a constant C > 0 not depending
on T such that

[fg]
Y

1,s1
1

≤ C([f ]
Y

1,s1
1

|g|∞ + |f |∞[g]
Y

1,s1
1

+ T r−s1 [f ]X1 [g]Cr1 + T r−s1 [f ]Cr1 [g]X1)

for all f, g ∈ Y 1,s1
1 ∩ Cr(J ;C(Ω)).

Proof. Clearly Y 1,s1
1 ↪→ X1. Suppose f, g ∈ Y 1,s1

1 ∩ Cr(J ;L∞(Ω)). We estimate

[fg]
Y

1,s1
1

=

= (
∫ T

0

∫ T

0

∫
Ω

|(ftg)(t, x) + (fgt)(t, x)− (ftg)(τ, x)− (fgt)(τ, x)|p

|t− τ |1+s1p
dx dτ dt)

1
p

≤ (
∫ T

0

∫ T

0

∫
Ω

(|ft(t, x)− ft(τ, x)||g(t, x)|)p

|t− τ |1+s1p
dx dτ dt)

1
p +

+(
∫ T

0

∫ T

0

∫
Ω

(|ft(τ, x)||g(t, x)− g(τ, x)|)p

|t− τ |1+s1p
dx dτ dt)

1
p +

+(
∫ T

0

∫ T

0

∫
Ω

(|f(t, x)||gt(t, x)− gt(τ, x)|)p

|t− τ |1+s1p
dx dτ dt)

1
p +

+(
∫ T

0

∫ T

0

∫
Ω

(|f(t, x)− f(τ, x)||gt(τ, x)|)p

|t− τ |1+s1p
dx dτ dt)

1
p

≤ [f ]
Y

1,s1
1

|g|∞ + [g]Cr1 (
∫ T

0

∫
Ω
|ft(τ, x)|p(

∫ T

0

dt

|t− τ |1+(s1−r)p
) dx dτ)

1
p +

+|f |∞[g]
Y

1,s1
1

+ [f ]Cr1 (
∫ T

0

∫
Ω
|gt(τ, x)|p(

∫ T

0

dt

|t− τ |1+(s1−r)p
) dx dτ)

1
p

≤ [f ]
Y

1,s1
1

|g|∞ + C1T
r−s1 [f ]X1 [g]Cr1 + |f |∞[g]

Y
1,s1
1

+ C1T
r−s1 [f ]Cr1 [g]X1 ,

where C1 = [2/(r − s1)p]1/p. �

A corresponding estimate can be obtained for [fg]
Y

1,s2
2

, so together with the inequalities

from Section 4.2.2, we see that Y k1,s1
1 ∩Y 1,s2

2 with k1 ∈ {0, 1} is a multiplication algebra
provided the above assumptions on p are fulfilled.

We conclude this section by justifying the normalization step which we carried
through in Section 6.1 for the coefficients on the boundary. Let f, g ∈ Y T

N and f(t, x) >
0, t ∈ J, x ∈ ΓN . By compactness of ΓN , we even have f(t, x) ≥ c, t ∈ J, x ∈ ΓN , for
some positive constant c. Set K = (c/2,∞) and consider the function b : K → R defined
by b(ξ) = 1/ξ. Clearly f is K-valued, b ∈ C∞(K) and b, b′ are bounded. Therefore
1/f ∈ Y T

N . Since Y T
N is a multiplication algebra, we deduce that g/f ∈ Y T

N , too. By an
analogous argument, this property can also be proved for the space Y T

D .
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Rico Zacher: Quasilinear parabolic problems with nonlinear boundary
conditions (Zusammenfassung)

Die vorliegende Arbeit widmet sich dem Studium der Lp-Theorie für die nachfolgend
beschriebene Klasse von quasilinearen parabolischen Problemen mit nichtlinearen Rand-
bedingungen. Sei Ω ⊂ Rn ein beschränktes Gebiet mit C2-Rand Γ, welcher sich aus zwei
disjunkten abgeschlossenen Mengen ΓD und ΓN zusammensetzt. Für die unbekannte
skalare Funktion u : R+ × Ω → R betrachten wir das Problem

∂tu+ dk ∗ (A(u) : ∇2u) = F (u) + dk ∗G(u), t ≥ 0, x ∈ Ω
BD(u) = 0, t ≥ 0, x ∈ ΓD
BN (u) = 0, t ≥ 0, x ∈ ΓN
u|t=0 = u0, x ∈ Ω.

(NP)

Dabei sind (dk ∗w)(t, x) =
∫ t
0 dk(τ)w(t− τ, x), t ≥ 0, x ∈ Ω, ∂tu die partielle Ableitung

von u nach t, ∇u = ∇xu der Gradient von u bezüglich der räumlichen Variablen und
∇2u die zugehörige Hesse-Matrix, d.h. (∇2u)ij = ∂xi∂xju, i, j ∈ {1, . . . , n}. Ferner steht
B : C =

∑n
i=1, j=1BijCij für das Doppelskalarprodukt von zwei Matrizen B, C ∈ Rn×n.

Die Substitutionsoperatoren sind gegeben durch

A(u)(t, x) = −a(t, x, u(t, x),∇u(t, x)), t ≥ 0, x ∈ Ω,
F (u)(t, x) = f(t, x, u(t, x),∇u(t, x)), t ≥ 0, x ∈ Ω,
G(u)(t, x) = g(t, x, u(t, x),∇u(t, x)), t ≥ 0, x ∈ Ω,

BD(u)(t, x) = bD(t, x, u(t, x)), t ≥ 0, x ∈ ΓD,

BN (u)(t, x) = bN (t, x, u(t, x),∇u(t, x)), t ≥ 0, x ∈ ΓN ,

wo a eine Rn×n-wertige und f, g, bD, bN skalare Funktionen sind. Der skalare Kern
k ∈ BVloc(R+) mit k(0) = 0 gehört einer gewissen Klasse von Kernen mit Parame-
ter α ∈ [0, 1) an, welche, grob gesprochen, alle ”regulären” Kerne enthält, die sich wie
tα für t (> 0) nahe Null verhalten. Der Spezialfall k(t) = 1, t > 0, wo sich die Inte-
grodifferenzialgleichung zu einer partiellen Differenzialgleichung vereinfacht, ist in dieser
Formulierung mit enthalten.

Gleichungen der Form (NP) treten in einer Vielzahl von angewandten Problemen
auf. Wichtige Beispiele sind die nichtlineare Viskoelastizität und Wärmeleitung in Ma-
terialien mit Gedächtnis. Obwohl es in der Literatur eine Fülle von Resultaten zu Pro-
blemen der Form (NP) gibt, scheint nur wenig in Bezug auf eine Lp-Theorie im Falle der
Integrodifferenzialgleichung mit nichtlinearen Randbedingungen bekannt zu sein.

Unter geeigneten Voraussetzungen an die Nichtlinearitäten und den Anfangswert
wird in der Arbeit nachgewiesen, dass das Problem (NP) eine eindeutige lokale starke
Lösung in folgendem Sinn besitzt: Sei n+ 2/(1 + α) < p <∞. Dann gibt es ein T > 0,
so dass im Raum ZT = H1+α

p ([0, T ];Lp(Ω)) ∩ Lp([0, T ;H2
p (Ω)) genau eine Funktion u

existiert, welche (NP) genügt. Hierbei bezeichnet Hs
p([0, T ];Lp(Ω)) (s > 0) den vektor-

wertigen Besselpotenzialraum von Funktionen auf [0, T ] mit Werten im Lebesgueraum
Lp(Ω). Die obige Voraussetzung an p ist wesentlich; sie stellt sicher, dass die Einbettung
ZT ↪→ C(J ;C1(Ω)) gilt.

Die Grundidee des Beweises besteht darin, für ein mit (NP) verwandtes lineares
Problem (LP) mit inhomogenen Randdaten optimale Regularitätsabschätzungen vom
Lp-Typ herzuleiten, welche es erlauben, (NP) als Fixpunktgleichung im Raum ZT zu
schreiben. Existenz und Eindeutigkeit eines Fixpunktes werden dann für hinreichend



kleines T mit Hilfe des Kontraktionsprinzips erhalten. Entscheidend ist bei diesem Zu-
gang, Bedingungen an die Inhomogenitäten, insbesondere die Randdaten, zu finden,
welche die eindeutige Lösbarkeit von (LP) im Raum der maximalen Regularität charak-
terisieren. Diese Bedingungen werden mit Hilfe der Lokalisierungsmethode und Störungs-
argumenten aus Resultaten zu Ganz- und Halbraumproblemen mit konstanten Koef-
fizienten gewonnen. Letztere folgen aus Sätzen über abstrakte Probleme, deren Analyse
einen wesentlichen Bestandteil der vorliegenden Arbeit darstellt.

Zwei Klassen von abstrakten Gleichungen werden dabei untersucht: 1. die abstrakte
Volterra-Gleichung

u(t) + (a ∗Au)(t) = f(t), t ≥ 0,

und 2. Probleme auf einem Streifengebiet J × R+ (J = [0, T ]) von der Form{
u− a ∗ ∂2

yu+ a ∗Au = f, t ∈ J, y > 0,
u(t, 0) = φ(t), t ∈ J,

{
u− a ∗ ∂2

yu+ a ∗Au = f, t ∈ J, y > 0,
−∂yu(t, 0) +Du(t, 0) = φ(t), t ∈ J,

wobei A ein sektorieller und D ein pseudosektorieller Operator in einem Banachraum
X sind. Für jede dieser abstrakten Gleichungen werden Bedingungen an die gegebenen
Daten hergeleitet, die notwendig und hinreichend für die eindeutige Lösbarkeit des be-
treffenden Problems in einem bestimmten Raum optimaler Regularität vom Lp-Typ
sind. Wesentliche Hilfsmittel sind dabei die Inversion der Faltung, Dore-Venni-Theorie,
reelle Interpolation, und der Multiplikatorensatz von Michlin in der operatorwertigen
Version. Die Resultate verallgemeinern bekannte Sätze über maximale Lp-Regularität
von abstrakten Evolutionsgleichungen.

Die vorliegende Arbeit beschäftigt sich ferner mit dem vektorwertigen Halbraumpro-
blem

∂tv − da ∗ (∆xv + ∂2
yv)− (db+ 1

3da) ∗ (∇x∇x · v + ∂y∇xw) = fv (J × Rn+1
+ )

∂tw − da ∗∆xw − (db+ 4
3da) ∗ ∂

2
yw − (db+ 1

3da) ∗ ∂y∇x · v = fw (J × Rn+1
+ )

−da ∗ γ∂yv − da ∗ γ∇xw = gv (J × Rn)
−(db− 2

3da) ∗ γ∇x · v − (db+ 4
3da) ∗ γ∂yw = gw (J × Rn)

v|t=0 = v0 (Rn+1
+ )

w|t=0 = w0 (Rn+1
+ ),

welches in der Theorie der Viskoelastizität eine Rolle spielt. Die unbekannten Funktio-
nen v und w sind Rn- bzw. R-wertig, γ bezeichnet den Spuroperator bzgl. y = 0. Im
Gegensatz zu den obigen Problemen tauchen hier zwei unabhängige Kerne auf. Einmal
mehr charakterisieren wir die eindeutige Lösbarkeit des Problems in einem bestimmten
Raum maximaler Regularität vom Lp-Typ in Form von Regularitäts- und Kompati-
bilitätsbedingungen an die Daten. Dabei verwenden wir die Resultate zu obigen abstrak-
ten Gleichungen und den gemeinsamen H∞-Kalkül des Operatorenpaares (∂t,−∆x) im
Raum Lp(R+ × Rn). Die wesentliche Schwierigkeit besteht dabei in der Abschätzung
für das Hauptsymbol des Problems: Man muss zeigen, dass es Konstanten c > 0 und
η ∈ (0, π/2) gibt, so dass die Ungleichung

∣∣∣∣ 1
â(z)τ2

+ 2
∣∣∣∣ ≤ c

∣∣∣∣∣∣∣
1

â(z)τ2
+

4b̂(z)+ 4
3
â(z)

b̂(z)+ 4
3
â(z)

√
1

â(z)τ2 + 1√
1

â(z)τ2 + 1 +
√

1
(b̂(z)+ 4

3
â(z))τ2

+ 1

∣∣∣∣∣∣∣ , (z, τ) ∈ Σπ
2
+η × Ση

gilt, wobei Σθ = {λ ∈ C \ {0} : |argλ| < θ}. Diese entscheidende Abschätzung wird
mittels einer sorgfältigen funktionentheoretischen Analyse gezeigt.
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May 1999 Spring School in Paseky: ’Evolution Equations’
June 1999 Summer School in Besançon: ’Evolution Equations and
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