
Spontaneous N = 2→ N = 1 Supersymmetry Breaking

and the Super-Higgs Effect in Supergravity

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der

Mathematisch-Naturwissenschaftlich-Technischen Fakultät

der Martin-Luther-Universität Halle-Wittenberg

von

Herrn Bobby Eka Gunara

geb. am: 28.1.1974 in: Jakarta

Gutachter

1. Prof. Dr. Jan Louis (Uni. Hamburg)

2. Prof. Dr. Andreas Wipf (FSU Jena)

3. Dr. habil. Klaus Behrndt (MPI, Golm)

Halle (Saale), 11.6.2003

urn:nbn:de:gbv:3-000005114
[http://nbn-resolving.de/urn/resolver.pl?urn=nbn%3Ade%3Agbv%3A3-000005114]



ii



iii

Acknowledgment

First of all, I would like to thank Prof. J. Louis for his excellent and patient supervision
and also, the proposal of the project. Many thanks to the former member of the Quan-
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Chapter 1

Introduction

1.1 Why Supersymmetry ?

Today the Standard Model has become a successful theory describing physics at sub-
nuclear scales which has been tested by many collider experiments to a high level of
accuracy [1, 2]. The Higgs bosons predicted by the Standard Model has not been di-
rectly observed by todays experiments.

Despite its great success, there still remains several serious problems, such as the
arbitrariness of the particle spectrum and gauge group, the large number of free pa-
rameters, and maybe the most severe one is the inability to turn on gravity described
by the general theory of relativity. These suggest that the Standard Model is not the
final answer of nature but rather an effective description valid up to the electroweak
scale of order O(100GeV ). Thus, the Standard Model has to be extended.

Various efforts have been made over the last two decades to go beyond the standard
model and correspondingly, solve the above problems. The most prominent one and
still promising until now is the supersymmetric extension of the Standard Model which
is reviewed, for example, in [3].1 It has N = 1 global supersymmetry because extended
supersymmetries (N ≥ 2) cannot accommodate the chiral structure of the Standard
Model. As supersymmetry is not observed in nature, it must be broken at low energy
if it is to play any role at all. This leads to a mass split between bosonic and fermionic
partners of the supersymmetry breaking scale. The determination of this scale should
explain why the supersymmetric partners of the Standard Model particles could be
heavy enough to escape detection in accelerator experiments around the electroweak
scale ∼ 100GeV so far. One of interesting aspects of this theory is that all three gauge
couplings unify at a scale ∼ 1016GeV , see e.g. [4].

There are various ways to break supersymmetry, however only two of them are of
phenomenological interest, namely, supersymmetry has to be either spontaneously or
softly broken. Since the supersymmetric extension of the Standard Model only has a
global supersymmetry, spontaneous breaking poses a new problem, namely the pres-
ence of a massless fermion called Goldstone fermion. This is a consequence of the
supersymmetric Goldstone theorem, see e.g. [5]. So if the global supersymmetry is
spontaneously broken, the supersymmetric extension of the standard model would be
ruled out. Thus, the only way out is a soft breaking of global supersymmetry. This
can be done by adding non-supersymmetric terms to the theory which do not generate

1See next section for a discussion of supersymmetry.
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2 CHAPTER 1. INTRODUCTION

any quadratic divergences [6]. In addition, there is an alternative way to motivate the
relevance of softly broken supersymmetric theories. Ultimately, one has to couple the
supersymmetric standard model to gravity. This in turn requires the promotion of
global supersymmetry to a local supersymmetry which is called supergravity.2 Further-
more, spontaneous local supersymmetry breaking in the limit MPlanck → ∞ but with
the gravitino mass remains fixed, yields the soft supersymmetry breaking terms [7].
This motivates many theorists today to study supergravity as a candidate beyond the
Standard Model.

Let us turn to extended supersymmetric theories. Since these theories cannot ac-
commodate the chiral structure, it seems that the extended supersymmetries are not
phenomenologically interesting. Furthermore, the no go theorem which states that any
supersymmetric theory with N supersymmetries either all or none of them are sponta-
neously broken, demands that extended supersymmetric theories must be broken at the
same supersymmetry breaking scale which is phenomenologically impossible. However,
in the last decade few examples have been appeared which show that these theories
can spontaneously be broken to N = 1 [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].3 These
examples indicate that the no go theorem can be avoided and in addition, yield a hope
for phenomenological studies. Still the resulting N = 1 theories cannot accommo-
date the chiral structure because their parental theories are extended supersymmetric
theories. Nevertheless, extended supersymmetries remain an interesting study, in par-
ticular to see how one can evade the no go theorem and study the general aspects of
their breaking. In this thesis, we address some general aspects of spontaneous breaking
N = 2 → N = 1 in supergravity as an example of spontaneous breaking of extended
supersymmetric theories.

1.2 What is Supersymmetry ?

In this section we briefly consider the structure of rigid (global) supersymmetry in four
dimensional Minkowski space. The interested reader is referred to the literature for
further details [20, 21,22,5].

By definition, supersymmetry transforms bosons into fermions and vice versa. In
order to realize of such transformations one introduces supersymmetry generators (or
supercharges) Q, acting as:

Q|boson〉 = |fermion〉 , Q|fermion〉 = |boson〉 , (1.1)

where we have split up the Hilbert space into bosonic states |boson〉, and fermionic
states |fermion〉. Such a boson-fermion symmetry has far-reaching consequences. First
it affects the statistic of the transformed state and changes it by a half-unit. Thus, the
supersymmetry generators themselves have spin one-half and form spinor representa-
tions of the Lorentz group, contrary to the usual generators of symmetry transformation
which have integer spin. The second important implication of such transformation is
that every particle has a superpartner. The notation for the bosonic superpartners
of the known fermions are labeled by the prefix ’s-’ (e.g. slepton, squark), whereas
the fermionic superpartners of the known bosons are denoted by the suffix ’-ino’ (e.g.
gaugino, gravitino). The members of a supersymmetric theory are arranged in a so

2See section 1.3 for a discussion of supergravity
3See also section 1.4.



1.2. WHAT IS SUPERSYMMETRY ? 3

called supermultiplet which has the same number of bosonic and fermionic degrees of
freedom.

Such supercharges Q which form spinor representations of the Lorentz group satisfy
an anticommutation relation [23]

{A,B} ≡ AB +BA , (1.2)

and moreover, do not contradict the theorem of Coleman and Mandula [24], which
states that for every non-trivial relativistic field theory , under some very mild assump-
tion all the symmetries of the S-matrix commute with the generators of the Poincaré
group. This is because the essential assumption that they make, is that the symmetry
generators form a closed algebra under commutation relations, thus restricting them-
selves to Lie groups of symmetry transformation.

It was proven in [25] that a set of commutation and anticommutation relations be-
tween Poincaré generators and supercharges (usually called Poincaré superalgebra) is
the only graded Lie algebra of symmetries of the S-matrix consistent with relativis-
tic quantum field theory. Furthermore, the Poincaré superalgebra together with other
generators of the Lie group G which is the symmetry of the S-matrix form an algebra
which admits a Z2 graded structure. Such an algebra is usually called supersymmetry
algebra. To see the meaning of this graded structure, let us first call the generators
which satisfy the commutation relation (Lie algebra) even and the supercharges Q to
be odd. Then these even and odd generators must satisfy the rules:

[even, even] = even ,

{odd, odd} = even , (1.3)
[even, odd] = odd .

To make it clear, let us denote Pa the four momentum and Jab the Lorentz group
generators respectively, with a = 0, ..., 3 and in addition there are some supercharges
QÂ, where Â = 1, ..., N . Therefore the expression of the supersymmetry algebra which
has the Z2 graded structure (1.3) is the following:

[Jab, Jcd] = −i
(
ηbc Jad + ηad Jbc − ηbd Jac − ηac Jbd

)
,

[Jab, Pc] = i
(
ηac Pb − ηbc Pa

)
,

{QÂ, QB̂} = −2 (γC)aPa δÂB̂ − 4C ZÂB̂ , (1.4)

[Pa, Pb] = [Pa, QÂ] = 0 ,

[Jab, QÂ] = − i
2
γabQ

Â ,

where QÂ are four spinors, C is a charge conjugation matrix defined by

C γaC
−1 = −γT

a , (1.5)

with the superscript T stands for the transpose, γa are the Dirac matrices, 2γab ≡
[γa, γb], and the metric 2ηab = {γa, γb} = 2 diag(+1,−1− 1,−1).4 In (1.4) we have also
introduced the antisymmetric quantities ZÂB̂ called central charges and they commute
with all the generators defined above. Due to their antisymmetry, it is easy to see that

4See also appendix A.



4 CHAPTER 1. INTRODUCTION

the central charges are trivially zero if there is only one supercharge. This minimal
supersymmetry in four dimensions is called N = 1 supersymmetry. On the other hand
if there are more than one supercharge present in a theory, then it is called extended
supersymmetry.

Furthermore, since the mass squared operator defined as

M2 = P aPa , (1.6)

commutes with all generators of the supersymmetry algebra (1.4), then the mass
squared is a supersymmetric invariant.5 Hence in Minkowski space all the particles
within the same supermultiplet have to be degenerate in mass. There are two types of
irreducible representation: the massive and massless representations. As we are going
to see they have a rather different structure and need a separate study. In addition,
we restrict ourselves in this section to study the massive representation without the
central charges, i.e. ZÂB̂ = 0, while the massless representation satisfies trivially this
requirement.

Before proceeding further to the massless and massive representations of the super-
symmetry algebra (1.4), let us first use the fact that a four spinor is reducible which
means that the supercharges QÂ can be decomposed into two Weyl spinors

QÂ± =
1
2

(1± γ5)QÂ . (1.7)

Then it follows that the anticommutation relation in (1.4) reduces into

{QÂ+, Q̄B̂−} = 2σaPa δÂB̂ ,

{QÂ+, Q̄B̂+} = {QÂ−, Q̄B̂−} = 0 , (1.8)

where Q̄Â ≡ QÂ† γ0 = QÂTC and we have chosen the following basis for γ-matrix:

γa =
(

0 σa

σ̄a 0

)
, γ5 =

(
1l 0
0 −1l

)
, C =

(
−iσ2 0

0 iσ2

)
, (1.9)

with
σa = (1l, σx) , σ̄a = (1l,−σx) , (1.10)

where x = 1, 2, 3 and σx are the standard Pauli matrices.6

We shall first analyze the massless case, P aPa = 0. Using Lorentz boost we can
always go to the frame where P a = m(1, 0, 0, 1). The commutation relations (1.8) show
that the only non-zero supercharges are QÂ+2 and its conjugate Q̄Â−2. Furthermore,
QÂ+2(QÂ−2) raise (lower) the spin of a state by a half-unit. Thus, the particle spectrum
in a multiplet can be constructed by acting with QÂ+2’s on the vacuum states |λ〉 where
λ denotes the helicity. Below, we list some examples for N = 1, 2, 4.

N = 1 :
{

2|0〉 , | ± 1/2〉
| ± 1/2〉 , | ± 1〉

5By definition, an element which commutes with all elements of a Lie algebra is called Casimir

element. In our case, the mass squared operator M2 and the central charges ZÂB̂ are indeed the
Casimir elements of the supersymmetry algebra (1.4).

6See appendix A.
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N = 2 :
{
| ∓ 1/2〉 , 4|0〉 , | ± 1/2〉

2|0〉 , 2| ± 1/2〉 , | ± 1〉 (1.11)

N = 4 : 6|0〉 , 4| ± 1/2〉 , | ± 1〉

Thus, for N = 1, the representation contains a Majorana spinor and two real scalars
(a complex scalar) called scalar multiplet, or a massless vector and a Majorana spinor
called vector multiplet. For the N = 2 hypermultiplet we have two Majorana spinors
with four real scalars (two complex scalars). This representation has the same particle
content as two copies of the N = 1 scalar multiplet. The N = 2 vector multiplet
contains a massless vector, two Majorana spinors and a complex scalar. Note that this
multiplet contains two N = 1 multiplets, namely a vector and a scalar multiplet in
the adjoint representation of the gauge group.7 Finally, the N = 4 massless multiplet
it accommodates a massless vector, four Majorana fermions, and six real scalars. In
addition, no scalar multiplet is possible in this case.

Now, we can then study the massive case, P aPa = m2. We can always go to the
rest frame where P a = (m, 0, 0, 0). Let us first consider the N = 1 case. The particle
spectrum in a multiplet is built up by acting with QÂ+’s on the vacuum states |Ωj〉
which has spin j, with j ≥ 0. For j = 0, the ground state is a spin singlet (a singlet
vacuum), while for j > 0, it belongs to a (2j + 1)-dimensional representation of the
group SU(2). This leads to a multiplet with spins

(j)⊕ (j + 1/2)⊕ (j − 1/2)⊕ (j) . (1.12)

In the following we give some examples for N = 1, 2.8

N = 1 :


j = 0 ; 2|0〉 , |1/2〉
j = 1/2 ; |0〉 , 2|1/2〉 , |1〉
j = 1 ; |1/2〉 , 2|1〉 , |3/2〉

(1.13)

N = 2 :


j = 0 ; 5|0〉 , 4|1/2〉 |1〉
j = 1/2 ; 4|0〉 , 6|1/2〉 , 4|1〉 |3/2〉
j = 1 ; |0〉 , 4|1/2〉 , 6|1〉 , |3/2〉 |2〉

We see that in the case N = 1, j = 0, the massive multiplet has the same particle
content as in massless multiplet. For j = 1/2, the multiplet contains a real scalar field,
two Majorana spinors, and a gauge bosons. Of particular interest to us is the j = 1
multiplet which consist of a Majorana spinor, two gauge fields and a spin-3

2 field called
Rarita-Schwinger field. This multiplet is called N = 1 massive spin-3

2 multiplet and
futhermore, as we will see in section 3.2 and 4.1, plays an important role in studying
spontaneous N = 2→ N = 1 supersymmetry breaking.

In the N = 2 case, no massive hypermultiplet exists and moreover, the situation
becomes complicated as j increased. For j ≥ 1, the theories also involve a massive

7Thus, when extending the theory from N = 1 to N = 2, the additional supersymmetry requires the
introduction of two more N = 1 scalar multiplets which are called mirror gauge and mirror matter [26].

8In the massive representation, the anticommutation (1.8) may also be cast in a form which exhibits
the SU(2)×USp(2N) symmetry. This symmetry group is useful because states of a given spin transform
irreducibly under USp(2N), see [20,22].
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spin-2 boson (called graviton) which has been ruled out by today’s experiments. Thus,
the j ≥ 1 multiplets are unphysical.

To summarize, we have discussed the supersymmetry algebra in Minkowski space
and constructed its massless and massive representations. In all cases, these finite col-
lections of particles have the same number of bosonic and fermionic degrees of freedom.
In addition, the members of a massive supermultiplet have to be degenerate in mass
since the squared mass operator P aPa is supersymmetric Casimir operator.

Next, we discuss the possibility of supersymmetry representation on the fields. For
that purpose, we consider a simplest case, namely the N = 1 massless scalar multiplet
which is often called the chiral multiplet. The free Lagrangian of this chiral multiplet
is given by

L =
1
2
∂az ∂

az̄ +
i
2
ζ̄+γ

a∂aζ− , (1.14)

where (z, z̄, ζ) are a complex scalar, its complex conjugate, and a single Majorana
fermion whose supersymmetry transformations leave invariant (1.14) can be written
down in

δz = 2ε̄+ ζ+ , δz̄ = 2iε̄− ζ− ,
δζ+ = −iγa∂az ε− , δζ− = −iγa∂az̄ ε+ , (1.15)

where ζ± = 1
2(1l±γ5)ζ. Here ε is the parameter of supersymmetry transformation which

is constant in this case. For this reason supersymmetry with constant transformation
parameters is usually called rigid (global) supersymmetry.9 The above free model is
called the massless Wess-Zumino multiplet [27] and can also be generalized in a super-
symmetric way to include a mass and interaction terms. Furhermore, looking at the
scalar kinetic term, one can check that the scalars in rigid N = 1 theory form a complex
manifold which is Kähler [28].10 This feature plays a prominent role in studying the
supersymmetric σ-model for general scalar interaction.

To see whether the supersymmetry transformations (1.15) form a representation of
the anticommutation relation in (1.4), we have to perform two subsequent supersym-
metry variations:

[δ1, δ2]z = −2i ε̄+2γ
aε−1 ∂az , (1.16)

and analogously for z̄.11 For ζ, however, we also find a term proportional to the
fermionic field equation. So the multiplet (z, ζ) forms a representation of the super-
algebra, only when impose the fermionic field equation. In general, we speak of an
on-shell multiplet when it forms a representation of the supersymmetry algebra, pro-
vided the equations of motion hold. If we add a new complex scalar F and change the
transformation rules for the multiplet (z, ζ, F ) as follows:

δz = ε̄+ζ+ ,

δζ+ = −iγa∂az ε− + Fε+ , (1.17)
δF = −iε̄−γa∂aζ+ ,

9In other words, ε is a Killing spinor which is the solution of the Killing spinor equation ∂µε = 0.
However, in anti-de Sitter space a Killing spinor is no longer constant spinor, see appendix B.

10See also [29] for a review.
11Note that the supersymmetry transformation δ can be expressed in term of supercharge Q via

δ = ε̄Q. So the change from anticommutator to commutator is due to the exchange of fermions.
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then the supersymmetry algebra closes without the need for equations of motion and
we speak of an off-shell representation. An off-shell Lagrangian is found by adding to
(1.14) the term 1

2FF̄ . Note that the field equations of F and F̄ are algebraic. When
resubstituted into the action, we retrieve (1.14) for the component of the on-shell
multiplet. Such non-propagating fields that are needed to close the supersymmetry
algebra without reference of the action, are called auxiliary fields.12

Finally, we want to mention that the supersymmetric field theories also exist for
all multiplets (1.11) and (1.13) [30]. Thus, we can discuss them in the similar way
as the N = 1 chiral theory described above. The generalization of such theories with
non-constant supersymmetry transformation parameters is the main subject of the next
section.

1.3 Supergravity

Now, we turn to multiplets which contain a spin-2 boson called graviton and discuss
their corresponding field theories. It turns out that in order to have consistent super-
symmetric field theories, the supersymmetry transformation parameters should not be
constant but rather depend explicitly on the spacetime coordinates.13 Such theories
are manifestly local supersymmetric and referred to as supergravity theories.

As was shown in the previous sections, by its very nature supersymmetry implies
the presence of both bosonic and fermionic fields carrying integer and half-integer, re-
spectively. The graviton, the particle described by the spacetime metric has spin 2.
The gravitino, the particle associated with fermionic gauge field of supersymmetry, has
spin 3/2. Massless spin-3/2 particles are described by the Rarita-Schwinger action.
In N -extended supergravity the number of gravitino must be equal to N . All other
particles carry spin less than 3/2. They are described by vector, spinor, and spinless
(scalar) fields.

For realistic supergravity in four dimensions, this number of supercharges cannot
exceed 8. Hence, the possibility of supergravity in four dimensions is the interval
1 ≤ N ≤ 8. In the table 1.1 below we list some massless examples which are gravita-
tional multiplet together their vector- and hypermultiplet for N = 1, 2, 3, 4. For N > 4,
no matter multiplets are possible, and all particles, including the spin-1 gauge fields,
belong to the gravitational multiplet.

12In fact, the addition of auxiliary fields is related to the counting of bosonic and fermionic degrees
of freedom in an off-shell supersymmetry representation. For the case at hand, a real scalar still has
one degree of freedom, while a Majorana spinor has four instead of two degrees of freedom. Thus we
have four bosonic and fermionic degrees of freedom.

13In addition, these parameters are not Killing spinors.
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N gravitational multiplet vector multiplet matter multiplet

1 [(2), (3
2) ] [(1), (1

2) ] [(1
2), 2(0) ]

2 [(2), 2(3
2), (1) ] [(1), 2(1

2), 2(0) ] [2(1
2), 4(0) ]

3 [(2), 3(3
2), 3(1), (1

2) ] [(1), 4(1
2), 6(0) ] none

4 [(2), 4(3
2), 6(1), 4(1

2), 2(0) ] [(1), 4(1
2), 6(0) ] none

Table 1.1: Some examples of local supersymmetric theories for N = 1, 2, 3, 4

In N = 1 supergravity, the gravitational multiplet is composed of a graviton and
a gravitino. This multiplet can also be coupled to the N = 1 vector- and chiral mul-
tiplets. In general N = 1 supergravity, local supersymmetry demands the scalar fields
forming a Kähler manifold, a manifold with a closed fundamental two-form, with an
additional line bundle on it. Such manifold is called a Hodge-Kähler manifold.14 In
addition, the scalar potential is in general is not positive definite.

Beautiful structures emerge for the geometry of the scalar fields in N = 2 theories.
The scalar manifold is the product of two different manifold that belong to special class
of Kähler and quaternionic Kähler geometries.15 The word ’special’ for the Kähler ge-
ometries indicates that their Kähler potential is no longer an arbitrary real function
but determined in terms of a holomorphic prepotential. It also has an extra symplectic
structure related to the duality transformation of the vectors. In general, these special
Kähler manifolds are not homogeneous spaces. Yet there is a subclass of homogeneous
special manifolds. These manifolds have been classified for homogeneous noncompact
symmetric spaces in [31] which can be expressed in terms of coset manifolds, see ap-
pendix C.16

The second geometries are the quaternionic Kähler manifolds. All these manifolds
are Einstein spaces of constant (non-zero) curvature. Furthermore, N = 2 supergrav-
ity requires negatively curved (and typically noncompact) manifolds [33,34]. The only
known homogeneous noncompact cases are the symmetric spaces which have been stud-
ied in mathematical literature [35,36,37].17 All of them are given in appendix C.

Unlike N = 1 theory, the scalar potential in N -extended supergravity theories is
caused by gauging the supersymmetric σ-model with respect to Killing vectors which
generate isometries on the scalar manifold. This general extended theory is referred to
as gauged N -extended supergravity theory. Of particular interest for us is the N = 2
theory.

14See appendix D and references given there.
15See next section and references given there.
16The homogeneous but nonsymmetric Kähler geometries which arise as manifolds of the scalars in

vector multiplet have also been determined in [32].
17The homogeneous nonsymmetric quaternionic Kähler spaces has also been found in [36].
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1.4 Partial Supersymmetry Breaking

In this section, we discuss the possibility of breaking supersymmetry. First of all, we
recall the no-go theorem which was first discussed in [38]. Let us consider the rigid N -
extended supersymmetry algebra, namely the anticommutator (1.8) in the rest frame

{QÂ+, Q̄B̂−} = 2H δÂB̂ , (1.18)

and therefore for any fixed Â,

||QÂ+|0〉||2 = 2〈0|H|0〉 , (1.19)

where H is the Hamiltonian and |0〉 is a vacuum state. Now, if there exists a Â0

such that the vacuum is not annihilated by the corresponding supercharges, or in other
words supersymmetry is spontaneously broken, then the left hand side (1.19) is strictly
positive and so is the vacuum expectation value of H. Then, for any other supersym-
metry generator QÂ, the left hand side of (1.19) is also strictly positive and QÂ is
spontaneusly broken as well. So, the no-go theorem states that in a N -extended global
supersymmetric theory, either all or no supercharges are spontaneusly broken. From
this line of reasoning, one might think that partial breaking is impossible.

Fortunately, this no-go theorem has two significant loopholes. The first is that,
technically-speaking, spontaneously-broken supercharges do not exist. Indeed, in a
spontaneously broken theory, one only has the right to consider the algebra of the
currents. For the case at hand, the current algebra can be modified as follows [8],∫

d3~x1{J̄ Â0−(x1), J B̂µ+(x)} = 2σν Tνµ(x) δÂB̂ + σµC
ÂB̂ , (1.20)

where J B̂µ±(x) are the supercurrents, Tνµ(x) is the stress energy tensor, and CÂB̂ are
constants. The addition of this constant term is valid since it is only a central extension,
and thus the Jacobi identity is still satisfied. For unbroken supersymmetry CÂB̂ = 0
because integrating the left hand side of (1.20) over three-space varibles ~x would prevent
the infinite contribution and then, one retrieves the supersymmetry algebra (1.18).
However, for the broken case this is not the case. This discrepancy prevents the current
algebra (1.20) from being integrated into the supersymmetry algebry (1.18), so the no-
go theorem is evaded. There are, by now, few examples of partial supersymmetry
breaking which exploit this first loophole. This phenomena first emerged in string
theory, which is manifestly global supersymmetry discussed in [8,9]. Several years later,
this feature also appeared in four dimensional global supersymmetric theories [10,11,12].

The second loophole is that the Hilbert space we are dealing with has a positive
definite metric, which fails in the case of local supersymmetry.18 Therefore, one cannot
conclude that if the right hand side of (1.19) is zero, then the supercharges annihilate
the vacuum state as it was shown in [13, 14]. There are also only few examples which
take advantage of this second loophole. For example, in Minkowski (flat) backgrounds
it was studied in [13,16,17,18,19] whereas in curved backgrounds, namely anti-de Sitter
backgrounds, only two examples are known [14,15]. These facts leave many important
questions open. First and foremost, one would like to know how the general story of
partial supersymmetry breaking in supergravity theories looks like without considering
any specific model.

18For example, in canonically quantized supergravity the metric of the Hilbert space is indefinite,
see [39] and references therein.
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1.5 Topic and Organization of the Thesis

After this long discussion about supersymmetry and its partial breaking, we come
finally to the main concern of the thesis. Here, we want to mention that the examples
in supergravity use the second loophole to facilitate partial breaking N = 2→ N = 1.
However, only four of them which was studied in [16,17,18,19] are interesting for us to
consider. These models have Minkowskian ground states and moreover, are discussed
only for a particular class of the scalar manifold of the N = 2 supergravity theory. Thus,
it is of interest to uncover the general story of spontaneous N = 2→ N = 1 breaking.
There are various questions one can address which can be roughly be structured as
follows [40]:

(i) What are the necessary conditions for a given ground state which preserves N =
1 supersymmetry. As we are going to see these are equivalent to geometrical
conditions on the scalar manifold which is spanned by the scalar fields in vector-
and hypermultiplets.

(ii) What are the solutions to the geometrical conditions found in (i).

(iii) What are the consistency conditions on the couplings of the original N = 2
theory in order to have the low energy effective N = 1 action which describes the
interactions below the supersymmetry breaking scale. These can also be stated
as geometrical properties of the scalar manifold.

In this thesis we mainly study ground states which respect the full Lorentz invariance.
These turn out to be flat Minkowski spaces or spaces of constant curvature (de Sitter
and anti-de Sitter). For the latter case, only anti-de Sitter spaces is a consistent solution
with residual N = 1 supersymmetry in the ground states.

This thesis is organized as follows. In chapter 2 we review several facts about
N = 2 supergravity in four dimensions. Some useful formulae needed for our analysis
are discussed. We start by discussing the properties of the scalar manifolds and at the
end, we discuss the gauged N = 2 supergravity theory including the scalar potential
and its first derivative. The main part of this thesis related to the questions (i) and (ii)
is chapter 3 and 4. In chapter 3 we discuss N = 2→ N = 1 supersymmetry breaking in
Minkowski backgrounds. At the beginning, we give the simple example which has been
studied in [16]. Next, we describe a general picture of N = 2→ N = 1 supersymmetry
breaking and then derive the necessary condition for the occurence of such breaking
where the no-go theorem is evaded. The Higgs and the super-Higgs effects is also
discussed. Furthermore, we extend the case to the curved backgrounds, namely anti-de
Sitter spaces in chapter 4. In this chapter, we apply the same procedure as in Minkowski
spaces. Chapter 5 contains our conclusion. In additon, four appendices are included.
The first assembles our notation and conventions. In the second, we give a discussion
about anti-de Sitter supersymmetry which is used for our analysis in chapter 4. The
third gives some additional facts about N = 2 supergravity. In the fourth appendix
we review N = 1 supergravity and further discuss N = 1 → N = 0 supersymmetry
breaking.

We finally want to mention that the results in chapter 3 and 4 will be published
in [41].



Chapter 2

N = 2 Gauged Supergravity

In this section we briefly recall several facts about gauged N = 2 supergravity in four
dimensions [42] and introduce the notations used in our analysis. We assemble our
notation in appendix A and give some additional properties of N = 2 supergravity
in appendix C. This chapter is organized as follows. First, we describe the particle
content in N = 2 supergravity and then discuss geometries spanned by the scalar fields.
At the end we discuss the Lagrangian of the gauged N = 2 supergravity and its scalar
potential.

2.1 Multiplets of N = 2 Supergravity

A physical spectrum of the N = 2 supergravity is composed of a gravitational multiplet,
nV vector multiplets, and nH hypermultiplets. These multiplets consist of the following
component fields:

• a gravitational multiplet

(eaµ, ψ
A
µ , A

0
µ) , a, µ = 0, ..., 3, A,B = 1, 2 .

This multiplet contains the vielbein eaµ, the SU(2) doublet of gravitinos ψAµ , and
the graviphoton A0

µ.

• nV vector multiplets

(Aiµ, λ
iA, zi) , i = 1, ..., nV .

Each vector multiplet contains a gauge boson Aiµ, a doublet of gauginos λiA, and
a complex scalar field zi.

• nH hypermultiplets

(ζα, qu) , α = 1, ..., 2nH , u = 1, ..., 4nH .

Each hypermultiplet contains a doublet of spinors, that is the hyperini ζα and
four real scalar fields qu(u = 1, ..., 4nH).

11
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The scalar fields can be viewed as the coordinates of a scalar manifold M, N = 2
supersymmetry imposes that this manifold factorizes

M =MV ⊗MH , (2.1)

whereMV has real dimension dimIRMV = 2nV and is spanned by the zi whileMH has
real dimension dimIRMH = 4nH and is spanned by the qu. Furthermore, MV has to
be a Hodge-(special) Kähler manifold whereasMH is constrained to be a quaternionic
Kähler manifold.1

2.2 Special Kähler Geometry

In the vector multiplet the complex scalars span a Hodge-(special) Kähler manifold
whose the holonomy is subgroup of U(1) × U(nV ). MV is a Kähler manifold with
metric gij̄(z, z̄) = ∂i∂j̄KV (z, z̄) where the Kähler potential KV obeys an additional
constraint [44,45]. This constraint states that the KV is not an arbitrary real function
but determined in terms of a holomorphic prepotential F according to

KV (z, z̄) = −ln(iX̄ΛFΛ − iXΛF̄Λ) , Λ = 0, ..., nV , (2.2)

where F(X) is a holomorphic prepotential of degree two, i.e. XΛFΛ = 2F(X) with
FΛ ≡ ∂F

∂XΛ and the XΛ are (nV + 1) holomorphic function of the zi. In addition, the
pair (XΛ,FΛ) transforms as(

XΛ

FΛ

)
→

(
X̃Λ

F̃Λ

)
= efM

(
XΛ

FΛ

)
, (2.3)

where f ∈ lC and M ∈ Sp(2nV + 2, IR). In addition, the transformation (2.3) leaves the
metric gij̄ invariant.

Furthermore, as (XΛ,FΛ) transform under symplectic transformation (2.3), one can
always choose a basis of holomorphic section where no prepotential F(X) exists. Let
us discuss this aspect in detail. First, we set f = 0 and parameterize the matrix M as

M =
(
A B
C D

)
. (2.4)

Moreover, A,B,C,D, are (nV + 1) × (nV + 1) matrices which satisfy the symplectic
condition

ATC − CTA = 0 ,

BTD −DTB = 0 , (2.5)
ATD − CTB = 1l .

Then using FΛ = FΛΣX
Σ the new basis (X̃Λ, F̃Λ) has the form

X̃Λ = (AΛ
Σ +BΛ∆F∆Σ)XΣ ,

F̃Λ = (CΛΣ +D∆
ΛF∆Σ)XΣ , (2.6)

1In rigid N = 2 supersymmetric theories the hypermultiplet scalars span a hyper-Kähler manifold
[43,29].
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and the holomorphic prepotential has form 2F̃(X̃) = X̃ΛF̃Λ.
Now we discuss the possible non-existence of F(X). If we start with some special

coordinates (XΛ,FΛ), it is possible to find the new basis X̃Λ in that the mapping
XΛ → X̃Λ is not invertible. This happens whenever the (nV + 1) × (nV + 1) matrix
(AΛ

Σ + BΛ∆F∆Σ) is not invertible, i.e. its determinant vanishes. This does not mean
that (X̃Λ, F̃Λ) are not good symplectic section since the symplectic matrix M is always
invertible. It simply means that F̃Λ 6= F̃ΛΣ X̃

Σ and furthermore, F̃Λ 6= ∂F̃
∂X̃Λ

. There-

fore, a prepotential F̃(X̃) does not exist. Such basis has been studied for a large class
of special Kähler manifold MV [16, 17,46,47,48,49].

2.3 Quaternionic Kähler Geometry

In the hypermultiplet the scalars span a quaternionic Kähler manifold [50,33,42] whose
holonomy is a subgroup of Sp(2) × Sp(2nH , IR). A quaternionic manifold is a 4nH -
dimensional real manifold endowed with the metric huv, (u, v = 1, ..., 4nH) and three
complex structures Jx, (x = 1, 2, 3) that satisfy the quaternionic algebra

JxJy = −δxy1l + εxyzJz . (2.7)

Associated with the complex structures is a triplet 2-forms

Kx
uv = huw(Jx)wv , (2.8)

which are called the hyperKähler forms which are covariantly closed with respect to an
Sp(2)-connection ωx

∇Kx ≡ dKx + εxyzωy ∧Kz = 0 . (2.9)

Furthermore, the Sp(2)-curvature given by

−Kx ≡ dωx +
1
2
εxyzωy ∧ ωz . (2.10)

The vielbeins of the quaternionic manifold MH will be denoted by UAα ≡ UAαu dqu

where α = 1, ..., 2nH is an index labelling the fundamental representation of Sp(2nH).
The vielbein UAα is covariantly closed with respect to the SU(2) connection ωx and to
some Sp(2nH) connection ∆αβ = ∆βα

∇UAα = dUAα +
i
2
ωx σxAB ∧ UαB + Cβγ∆αβ ∧ UAγ = 0 . (2.11)

The metric for a such vielbein is

huv = UAαu UAαv , (2.12)

where UAα = (UAα)∗ = εABCαβUBβ, εAB = −εBA and Cαβ = −Cβα are the flat
Sp(2nH) and Sp(2) ∼= SU(2) invariant metric respectively and the ∗ is the complex
conjugate. More specifically one can write a stronger version of eq.(2.12) [33]

(UAαu UBβv + UAαv UBβu )Cαβ = huvε
AB ,
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(UAαu UBβv + UAαv UBβu )εAB = huv
1
nH
C
αβ , (2.13)

with the additional property

huvUAαu UBβv = εABCαβ . (2.14)

Now consider the equations (2.7), (2.8), and (2.10). We easily deduce that the following
relation

htsKx
utK

y
sv = −δxyhuv + εxyzKz

uv , (2.15)

holds in the quaternionic case. The relation (2.15) further implies that the Sp(2)-
curvature Kx can alternatively be written as

iKx
ts(σ

x)AB = UAαt UBαs − UAαs UBαt . (2.16)

2.4 Gauging Isometries on Scalar Manifolds

Let us consider the scalar manifold M with isometries

δzi = εΛkiΛ(z) , δqu = εΛkuΛ(q) , (2.17)

where kiΛ(z), kuΛ(q) are Killing vectors of MV and MH , respectively. These isometries
can be gauged in that the gauge parameters εΛ are made spacetime dependent and the
following covariant derivatives are introduced

∇µ zi = ∂µz
i + kiΛA

Λ
µ , ∇µ qu = ∂µq

u + kuΛA
Λ
µ , (2.18)

In this thesis we are mainly interested in the case where kiΛ = 0 and for simplicity we
focus on this situation henceforth.

These Killing vectors determine a triplet of prepotentials P xΛ, x = 1, 2, 3 (or momen-
tum maps) via [34]

2kvΛK
x
uv = −∇uP xΛ ≡ −(∂uP xΛ + εxyzωyu P

z
Λ) , (2.19)

where Kx
uv is defined in (2.10).

As consequence of the above gauging, supersymmetry requires fermionic masses and
a scalar potential. These issues will be discussed in the next section.

2.5 Lagrangian of Gauged N = 2 Supergravity

In this section we record the part of the N = 2 gauged supergravity Lagrangian which
is needed for our analysis. The complete N = 2 Lagrangian can be found, for example
in [51,42] and also in appendix C. The N = 2 gauged supergravity up to four-fermion
terms can be written as

LN=2 = −1
2
R+

1
2
IΛΣF

Λ
µνF

Λµν +
1
2
RΛΣF

Λ
µνF̃

Σµν

+ gij̄∂µz
i∂µz̄ ī + huv∇µqu∇µqv − V N=2(z, z̄, q)

+ 2
εµνλσ√
−g

ψ̄Aµ γσ∇νψAλ − igij̄ λ̄
iAγµ∇µλj̄A − 2i ζ̄αγµ∇µζα (2.20)
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−{gij̄∂µz̄ ī(ψ̄
µ
Aλ

iA − λ̄iAγµνψAν)− 2UAαu ∇µqu(ψ̄µAζα − ζ̄αγ
µνψAν) + h.c.}

+ [2SAB ψ̄Aµ γ
µνψBν + igij̄W

iABλ̄j̄Aγ
µψBµ + 2iNA

α ζ̄
αγµψAµ

+Mαβ ζ̄αζβ +Mα
iA ζ̄αλ

iA +MiA|lB λ̄
iAλlB + h.c.] + ... ,

where we omitted couplings of the gauge fields to the fermions. The gauge coupling
functions IΛΣ and RΛΣ are

IΛΣ = ImNΛΣ ,

RΛΣ = ReNΛΣ , (2.21)

and NΛΣ are determined in terms of the prepotential by2

NΛΣ = F̄ΛΣ + 2i
ImFΛΓImFΣ∆X

ΓX∆

(ImF XX)
, (2.22)

where (ImF XX) = ImFΓ∆X
ΓX∆. The mass matrix of the gravitinos and their

mixing to the spin-1
2 fermions are

SAB =
i
2
σxABP

x
ΛL

Λ ,

W iAB = i σxABP xΛg
ij̄ f̄Λ

j̄ + εABkiΛL̄
Λ , (2.23)

NA
α = 2UAαukuΛL̄Λ ,

where LΛ(z, z̄) ≡ e
1
2
KV (z,z̄)XΛ(z) and f̄Λ

ī
is the complex conjugate of fΛ

i ≡ ∇iLΛ =
(∂i + 1

2KV,i)L
Λ. The mass matrices of the spin-1

2 fermions are given by

MiA|jB = εAB gl̄[if
Λ
j]k

l̄
Λ +

i
2
σxABP

x
Λ∇ifΛ

j ,

Mα
iA = −4UαAu kuΛfΛ

i , (2.24)
Mαβ = −UAαu UBβv εAB∇ukvΛLΛ .

The scalar potential V N=2(z, z̄, q) is given by [51]3

δAB V
N=2(z, z̄, q) = −12S̄ACSCB + gij̄W̄

j̄
BCW

iCA + 2N̄α
BN

A
α . (2.25)

Now one can derive the first derivative of the scalar potential V N=2 with respect to the
scalar fields in N = 2 supergravity

δAB
∂V N=2

∂zk
= −4gkl̄ W̄

l̄
BC S̄

CA + 2MkB|iCW
iCA +Mα

kB N
A
α ,

δAB
∂V N=2

∂z̄k̄
= −4gk̄lW

lAC SCB + 2M̄A|C
k̄|̄i W̄ ī

CB + M̄A
k̄α N̄

α
B , (2.26)

∂V N=2

∂qu
UBβu = −4N̄β

A S̄
AB +

1
2
Mβ

iAW
iAB +MβαNB

α

+ εABCαβ(−4NC
α SCA +

1
2
M̄C

αī W̄
ī
CA + M̄αγ N̄

γ
A) .

2We assume here that the prepotential F exists.
3See also appendix C.
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The potential (2.25) and its first derivative (2.26) are very important equations in
order to study the properties of the ground states of N = 2 theory together with the
supersymmetry transformation of the fermions defined below. In addition, (2.26) can be
used to show the possibility of the super-Higgs mechanism in the ground states because
it relates the gravitino mass matrix SAB with the spin-1

2 fermion Mαβ ,Mα
iA,MiA|jB

as we will see in section 3.5 and 4.3.
Finally the supersymmetry transformation of the fermions laws up to 3-fermion

terms leaving invariant (2.20) are:

δψAµ = D̂µεA + iSABγµεB + ... ,

δλiA = i∇µziγµεA +W iABεB + ... , (2.27)

δζα = iUBβu ∇µquγµεAεAB Cαβ +
√

2NA
α εA + ... ,

where εA are the parameters of the two supersymmetry transformations, D̂µεA = ∂µεA−
1
4γab ω

ab
µ εA+ i

2Q̂µεA+ω̂ B
µ|A εB, andQµ is the U(1)-connection of special Kähler manifold

(see appendix C).



Chapter 3

Spontaneous N = 2→ N = 1
SUSY Breaking in Minkowski

In this chapter we investigate the spontaneous N = 2 → N = 1 local supersymmetry
breaking in Minkowski backgrounds. Starting with a simplest example, we derive the
necessary conditions for spontaneous N = 2→ N = 1 supersymmetry breaking in such
backgrounds. As we are going to see these conditions can be formulated as geometrical
conditions on the scalar manifold M. Furthermore we discuss the occurrence of the
Higgs and the super-Higgs effect.

3.1 Simplest Example

The simplest realization of the partialN = 2 local supersymmetry breaking in Minkowski
ground states was discussed by the authors in references [16]. Here we study in detail
such example including the Higgs and the super-Higgs mechanism and derive the low
energy effective N = 1 theory.

The spectrum of the model has six scalars because nV = nH = 1 and the scalar
manifold has form

M =
SU(1, 1)
U(1)

⊗ SO(4, 1)
SO(4)

. (3.1)

The manifold SU(1,1)
U(1) is spanned by the complex scalar. Its Kähler potential and its

metric are given by

KV = −ln(z + z̄) , gzz̄ = (z + z̄)−2 , (3.2)

which correspond to a basis where no prepotential F exists.1 Instead one has

X0(z) = −1
2
, X1(z) =

i
2
, F0 = iz , F1 = z , (3.3)

which can be obtained from F = iX0X1 via the symplectic transformation

X1 → −F1 , F1 → X1 , (3.4)
1This choice in turn is a condition in the vector multiplet where the spontaneous breaking can be

realized. See section 3.4.

17
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with z = X1

X0 .
The quaternionic Kähler manifold SO(4,1)

SO(4) is parameterized by the four real scalars
b0, bx, x = 1, 2, 3. The Sp(2) connection ωx and the Sp(2) curvature Ωx for this manifold
are

ωxu =
1
b0
δxu , Kx

0u =
1

2(b0)2
δxu , Kx

yz = − 1
2(b0)2

εxyz , (3.5)

then using (2.15) one can get the metric

huv =
1

2(b0)2
δuv . (3.6)

Additionally we need the vielbein UAα, α, A = 1, 2,. From the metric (3.6) one can
read off that the vielbein is

UAα =
1

2b0
(−εAαdb0 + iσxAαdbx) , (3.7)

where σxAα = −εαβσxAβ and σxAβ are the standard Pauli matrices (see appendix A).
The metric (3.6) is invariant under three Peccei-Quinn isometries. These isometries

are arbitrary constant translation of the coordinates b1, b2, b3. Moreover, it turns out
that two of them have to be gauged

b1 → b1 + ε0g0 , b2 → b2 + ε1g1 , (3.8)

where g0, g1 ∈ IR. The Killing vectors which generate these isometries can be written
in the simple form

ku0 = g0 δ
u1 , ku1 = g1δ

u2 , (3.9)

and then inserted into (2.19) the corresponding prepotentials for these vectors are

P x0 =
g0

b0
δx1 , P x1 =

g1

b0
δx2δΛ1 . (3.10)

Inserting all of the above quantities into (2.23) and (2.24), one arrives at the explicit
expression of those quantities

(SAB) =
i

4b0
e
KV
2

(
g1 − g0 0

0 g1 + g0

)
,

(W zAB) = − i
2b0

e
KV
2 (z + z̄)

(
g1 − g0 0

0 g1 + g0

)
,

(NA
α ) = − i

2b0
e
KV
2

(
0 g0 + g1

g0 − g1 0

)
, (3.11)

(MzA|zB) = 0 , (Mα
zB) =

i
b0
e
KV
2 (z + z̄)−1

(
0 g0 − g1

g0 + g1 0

)
,

(Mαβ) =
i

2b0
e
KV
2

(
g1 + g0 0

0 g1 − g0

)
.

Note that MzA|zB = 0 because we use the following fact for the complex manifold
SU(1,1)
U(1) :

∇z fΛ
z = ∇z̄ f̄Λ

z̄ = 0 . (3.12)
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Before turning to the properties of this model, let us first write the scalar potential
(2.25) and its first derivative (2.26) in the matrix form

(δAB)V N=2(z, z̄, q) = −12(S̄AC)(SCB) + gij̄(W̄
j̄
BC)(W iCA) + 2(N̄α

B)(NA
α ) ,

(δAB)
∂V N=2

∂zk
= −4gkl̄(W̄

l̄
BC)T(S̄CA) + 2(MkB|iC)(W iCA) + (Mα

kB)(NA
α ) ,

∂V N=2

∂qu
(UBβu) = −4(N̄β

A)T(S̄AB) +
1
2

(Mβ
iA)T(W iAB) + (Mβα) (NB

α ) (3.13)

+εABCαβ
(
− 4(SCA)(NC

α )T +
1
2

(W̄ ī
CA)(M̄C

αī)
T + (N̄γ

A)(M̄αγ)
)
.

Subtituting (3.11) into (3.13), one gets

∂V N=2

∂zk
=
∂V N=2

∂qu
= V N=2 ≡ 0 , (3.14)

identically, for any value of g0, g1 and also of z and b0, bx. The equation (3.14) means
that this model has Minkowskian ground states.

From the first equation of (3.11), we see that there can be a mass gap between the
two eigenvalues of SAB. The interesting case is g0 = g1 (and nonzero) such that the
mass matrix SAB has a zero eigenvalue, i.e. S11 = 0, or in other words one of the two
gravitinos becomes massless. Moreover a look at the supersymmetry transformation
(2.27) restricted to the parameter ε1, one finds

〈δε1ψ1µ〉 = ∂µε1 + i〈S11〉γµε1 = ∂µε1 = 0 ,

〈δε1λiA〉 = 〈W iA1〉ε1 = 0 , (3.15)
〈δε1ζα〉 = 〈

√
2N1

α〉ε1 = 0 ,

where the bracket 〈 〉 means that (2.27) have to be evaluated in the ground states, while
for the parameter ε2 (3.15) does not hold. This simply means that the parameter ε1
represents the unbroken direction. Thus, the requirements (3.15) ensure the existence
of an unbroken N = 1 supersymmetry in the ground states, i.e. for g0 = g1.

The residual N = 1 supersymmetry demands the appearing of an N = 1 massive
spin-3

2 multiplet which has spin content (3
2 , 1, 1,

1
2). Both the graviphoton A0

µ and the
matter vector A1

µ become massive, together with one of the gravitinos. One might
wonder how one can simultaneously get the three massive particles with different spin.
This can be seen from the N = 2 Lagrangian (2.20). Charging the scalar fields b1, b2

with the Killing vectors (3.9) implies the appearing of the fermionic mass term in the
theory. At g0 = g1 not all fermions are massive. In fact, besides the massless gravitino
ψ1
µ, there exist a massless spin-1

2 fermion. However, in unitary gauge this massless
spin-1

2 fermion is eaten by the gravitino ψ2
µ while the scalar fields b1, b2 are eaten by the

gauge fields A0,1
µ . This leaves only the massive mode in the gravitino multiplet. Thus,

we have a super-Higgs and a Higgs mechanisms. In addition to the N = 1 massive spin
3
2 multiplet, there are also two massless chiral multiplets which survive in the ground
states. They span a scalar manifold in the low energy effective N = 1 theory derived
below.

Let us first discuss the occurence of the super-Higgs mechanism. To see this, one
has to focus on the fermionic terms in the Lagrangian (2.20). Subtituting all of the
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quantities in (3.11) into (2.20), one has then 2

Lmass = i〈g0

b0
e
KV
2 〉
(
ψ̄2
µγ

µνψ2
ν + iη̄γµψ2

µ −
√

2〈(z + z̄)−1〉ζ̄1λ
z2 +

1
2
ζ̄1ζ1

)
+ h.c. , (3.16)

where
η ≡ −〈(z + z̄)−1〉λz2 +

√
2ζ1 . (3.17)

From the supersymmetry transformation of the gaugino and the hyperino (2.27), the
supersymmetry transformation of η has form

δη = 3〈(g0)2

(b0)2
eKV 〉ε2 . (3.18)

Such fermion η is called a Goldstone fermion and can be gauged away by a suitable gauge
transformation of the gravitino ψ2

µ. It is easy to see that this gauge transformation is

ψ2
µ → ψ2

µ +
i
6
γµη +

i
3
〈 b

0

g0
e−
KV
2 〉∂µη (3.19)

and then inserting it into (3.16), then the Lagrangian (3.16) takes a form simply like 3

Lmass = i〈g0

b0
e
KV
2 〉
(
ψ̄2
µγ

µνψ2
ν −

1
3
(
〈(z + z̄)−1〉λ̄z2 +

1√
2
ζ̄1

)(
〈(z + z̄)−1〉λz2 +

1√
2
ζ1

))
+ h.c. . (3.20)

Let us define a new massive spin-1
2 fermion in (3.20) as

χ ≡ 1√
3

(
〈(z + z̄)−1〉λz2 +

1√
2
ζ1

)
, (3.21)

and one can then simplify (3.20) as follows :

Lmass = i〈g0

b0
e
KV
2 〉
(
ψ̄2
µγ

µνψ2
ν − χ̄χ

)
+ h.c. . (3.22)

We see that the above Lagrangian contains only the physical massive fermions which are
degenerate in mass. This also shows that the residual N = 1 supersymmetry requires
the presence of an additional massive spin-1

2 fermion in the massive gravitino multiplet.
On the other hand, the fermions (λz1, ζ2) remain massless.

The gauge bosons masses come from the gauge covariant derivative

∇µb1 = ∂µb
1 + g0A

0
µ , ∇µb2 = ∂µb

2 + g1A
1
µ , (3.23)

in the hypermultiplets (gauged) kinetic term

Lb = huv∇µbu∇µbv

= ....+
1
2

(g0

b0

)2 (
(A0

µ)2 + (A1
µ)2
)

, (3.24)

2After rescaling
√

2ζ1 → ζ1.
3The second term ∼ ∂µη in the shifting transformation (3.19) is used to cancel the kinetic term of

the Goldstone fermion η. We postpone for the moment the discussion until section 3.5.
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with g0 = g1. Furthermore, the massless scalars b1, b2 can be eliminated from (3.24) by
employing the gauge transformation of A0,1

µ ,

A0
µ → A0

µ −
1
g0
∂µb

1 , A1
µ → A1

µ −
1
g0
∂µb

2 . (3.25)

This is the ordinary Higgs mechanism.
To get the correct mass of the gauge bosons, we must normalize the gauge bosons

kinetic term in the Lagrangian (2.20)4

1
2
IΛΣF

ΛµνFΣ
µν = −1

4
e−KV

(
F 0µνF 0

µν + F 1µνF 1
µν

)
. (3.26)

Transforming to the canonical normalization −1
4F

2 + 1
2m

2A2, we finally obtain the
correct squared mass of the gauge bosons

m2
A0,1 = 〈eKV

(g0

b0

)2
〉 . (3.27)

Comparing the fermion mass in (3.20) and the gauge bosons mass (3.27), we see
that the members of the N = 1 gravitino multiplet are degenerate in mass

mψ2 = mA0 = mA1 = mχ = 〈e
KV
2
g0

b0
〉 . (3.28)

This property is typical in Minkowski space because the squared mass operator P aPa
is supersymmetric Casimir operator.

Let us now focus on the low energy effective N = 1 theory which is valid well
below the scale of the supersymmetry breaking set by mψ2 = 〈g0

b0
e
KV
2 〉. This effective

theory can be derived by integrating out the massive 3
2 multiplet [40].5 At the two

derivative level this can be achieved by using the equation of motions of the massive
fields to first non-trivial order in p/mψ2 where in p� mψ2 is a characteristic momen-
tum. For the gravitino and the 1

2 -fermion this is a straightforward procedure because
they are simply set to zero. For the spin-1 gauge bosons due to their coupling to the
Goldstone bosons (3.12) eliminating A0,1

µ also eliminates the two Goldstone bosons and
furthermore changes the σ-model interactions of the remaining scalar fields. To make
it precise, let us consider the hypermultiplets (gauged) kinetic term (3.24). Since we
have p � mψ2 , then the kinetic terms of A0,1

µ can be omitted and their equations of
motion read6

∂Lb
∂A0,1

µ

= 0 . (3.29)

Then we arrive at
A0
µ = − 1

g0
∂µb

1 , A1
µ = − 1

g0
∂µb

2 . (3.30)

Inserting back (3.30) to (3.24), we find that the left over scalar fields b0, b3 span a
Kähler manifold which is SU(1,1)

U(1) . Indeed, we define u = b0 + ib3 and derive

L′b = guū ∂
µu ∂µū (3.31)

4Since in this basis no prepotential F exists, one cannot use (2.22) to compute NΛΣ but rather the
general formulae (C.1) [46,48].

5We generalize this aspect in [41].
6In other words, this is a quotient procedure with respect to the isometries (3.8) [52].
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with metric and Kähler potential

guū = ∂u∂ūKH , KH = −2 ln(u+ ū) , (3.32)

respectively.
Moreover, N = 1 supersymmetry demands that the scalar potential can be written

in terms of a covariantly holomorphic object the superpotentialW, and correspondingly,
the inverse gauge couplings are harmonic. Let us check that our simplest model satisfies
these requirements. As we have discussed above, this model has Minkowskian ground
states in which the N = 1 gravitino ψ1

µ is exactly massless. This implies that W =
V N=1 = 0, where V N=1 is the N = 1 scalar potential and hence the first requirement
is satisfied. Furthermore, this simplest model contains only one vector multiplet and
this immediately implies that the low energy N = 1 theory contains no massless N = 1
vector multiplets, then the second requirement is trivially satisfied. Thus the low energy
effective theory of our simplest model satisfies the properties of N = 1 theory.

3.2 General Picture in Minkowski

Using the above example, we are now going to generalize the picture of partial su-
persymmetry breaking in Minkowskian ground states. It is important to notice that
Minkowskian ground states respect the Lorentz invariance which implies that the vac-
uum expectation values of all fermions and gauge bosons vanish, i.e. 〈fermions〉 =
〈AΛ

µ 〉 = 0, and in addition, for the scalar fields we only allow constant vacuum expec-
tation values 〈∂µzi〉 = 〈∂µqu〉 = 0. The discussion here follows rather closely [40].

The presence of an unbroken N = 1 supersymmetry corresponds to the vanishing
supersymmetry transformation (2.27) of the fermions evaluated in the ground states
for the unbroken supersymmetry generator

〈δψAµ〉 = 〈δλiA〉 = 〈δζα〉 = 0 , (3.33)

while for the broken generator (3.33) should not hold. We see from (2.23) that equa-
tions (3.33) can be viewed as geometrical conditions on the scalar manifold M and its
gauged isometries.

Although (3.33) are equivalent to the geometrical condition on the the scalar mani-
fold, still one cannot directly determine the properties of the couplings SAB,W iAB, NA

α

and its gauged isometries from the definitions (2.23). These provide us to use some
additional physical input. First of all from the action (2.20) we see that SAB also is
the mass matrix for the two gravitinos. As we have learned from the previous example,
the necessary condition for the existence of N = 1 ground states is that the two eigen-
values mψ1 ,mψ2 of SAB are non-degenerate and one has, for example, mψ1 < mψ2 .
In Minkowski ground states one further needs mψ1 = 0 which means that one of the
gravitinos stays massless while the other one has to become massive.7 Furthermore,
the unbroken N = 1 supersymmetry requires the existence of an N = 1 massive spin-
3
2 -multiplet which has spin content s = (3

2 , 1, 1,
1
2) and is degenerate in mass.8 This

7In anti-de Sitter ground states setting mψ1 = 0 is not possible but the two eigenvalues should not
be degenerate. See chapter 4.

8Such situation is different in anti-de Sitter because the mass operator p2 is no longer Casimir
operator. See appendix B.
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implies that one also needs two vectors, say A0
µ, A

1
µ and a spin-1

2 fermion χ have to be-
come massive. Thus, the complete spectrum consists of a gravitino ψ2

µ together with a
Goldstone fermion η, two gauge bosons together with two Goldstone bosons, say φ0, φ1

and a massive fermion χ [17]. The Goldstone bosons and the two gauge bosons indicate
that the minimal model require at least a hypermultiplet and a vector multiplet. Thus,
in order to display spontaneous N = 2→ N = 1 the minimal N = 2 spectrum consists
of the N = 2 gravitational multiplet, one vector multipet, and one hypermultiplet.

Furthermore the two Goldstone bosons φ0, φ1 couple to the gauge fields A0
µ, A

1
µ only

via derivative couplings with respect to two constant Killing vectors k0, k1 (defined in
(2.17)) which generate isometries on MH . Let us parameterize them as

kuΛ = g0 δ
u1δΛ0 + g1δ

u2δΛ1 , (3.34)

where g0, g1 are constant charges. The existence of these Killing vectors implies that
the Lagrangian has a Peccei-Quinn symmetry

φ0,1 → φ0,1 + ε0,1 g0,1 , (3.35)

which can be gauged, that is ε0,1 can be made spacetime dependent. As a consequence
the covariant derivatives (2.18) read

∇µφ0 = ∂µφ
0 + g0A

0
µ , ∇µφ1 = ∂µφ

1 + g1A
1
µ . (3.36)

In geometrical terminology this means thatMH has to admit two commuting transla-
tional IR2-isometries and these isometries have to be gauged [17].9

Before turning our attention to the necessary conditions of spontaneous N = 2 →
N = 1 breaking, let us discuss further properties of an N = 2 theory and in particular
the quaternionic geometry MH which admits IR2-isometries.

3.3 N = 2 Theories with IR2-Isometries

Besides two linearly independent Killing vectors ku0 , k
u
1 , we also have via (2.19) two

Killing prepotentials P x0 , P
x
1 . They carry SU(2) quantum numbers in that they trans-

form as a triplet. In this representation space two triplets (vectors) span a plane and
thus, without loss of generality we can always choose an SU(2) basis where P 3

0 = P 3
1 = 0

holds. This choice fixes an SU(2) gauge and leaves a U(1) transformation (correspond-
ing to a rotation in the plane) intact. From (2.23) we see that in this basis SAB is
diagonal and given by

(SAB) =
(
S11 0
0 S22

)
, (3.37)

where
S11 =

i
2
e

1
2
KV (P 1

Λ − iP 2
Λ)XΛ , S22 = − i

2
e

1
2
KV (P 1

Λ + iP 2
Λ)XΛ , (3.38)

and thus the two gravitino masses are given by

mψ1 = 2|〈S11〉| , mψ2 = 2|〈S22〉| . (3.39)
9Strictly speaking we only need these couplings in the neighborhood of the ground states. However,

we do not consider the possible generalization for Minkowski backgrounds in this thesis.
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Similarly, (2.23) also implies that W iAB is blockdiagonal and one finds

W i12 = W i21 = 0 , W i11 = 2gij̄∇j̄S̄11 , W i22 = 2gij̄∇j̄S̄22 , (3.40)

where ∇j̄ = ∂j̄ + 1
2KV,j̄ . In addition, we also have

U1α
u N1

α = ∇uS̄11 , U2α
u N2

α = ∇uS̄22 . (3.41)

Inserting (3.37), (3.40) and (3.41) into (2.25), for the block-diagonal components we
arrive at

V N=2 = 4
(
gij̄ ∇iS11∇j̄S̄11 +

1
2
huv∇uS11∇vS̄11 − 3 S̄11S11

)
,

= 4
(
gij̄ ∇iS22∇j̄S̄22 +

1
2
huv∇uS22∇vS̄22 − 3 S̄22S22

)
, (3.42)

and for the off-diagonal components, we have

N̄α
2 N

1
α = N̄α

1 N
2
α = 0 . (3.43)

In addition the covariant derivatives ∇u with respect to the Sp(2) connection ωxu are
obtained from (2.19) which for P 3

Λ = 0 simplify as

∇uP 1
Λ = ∂uP

1
Λ − ω3

u P
2
Λ ,

∇uP 2
Λ = ∂uP

2
Λ + ω3

u P
1
Λ , (3.44)

∇uP 3
Λ = ω1

u P
2
Λ − ω2

u P
1
Λ .

The potential cannot depend on the two Goldstone bosons φ0, φ1. This can explicitly
be shown by using the identity

Kx
uvk

u
Λk

v
Σ =

1
2
εxyzP yΛ P

z
Σ , (3.45)

which holds in general for Abelian isometries [51]. Inserting (2.19) and (3.44) into
(3.45), it results in

kuΛ ω
1,2
u = −P 1,2

Λ , kuΛ ∂uP
1,2
Σ = 0 . (3.46)

This explicitly establishes that V N=2 is independent of the Goldstone bosons.
Furthermore, the first derivative of the scalar potential (2.26) in this SU(2) gauge

takes the form

∂V N=2

∂zk
= −4gkl̄ W̄

l̄
11 S̄

11 + 2Mk1|i1W
i11 +Mα

k1N
1
α ,

= −4gkl̄ W̄
l̄
22 S̄

22 + 2Mk2|i2W
i22 +Mα

k2N
2
α ,

0 = Mα
k2N

1
α , (3.47)

∂V N=2

∂qu
U1βu = −4N̄β

1 S̄
11 +

1
2
Mβ

i1W
i11 +MβαN1

α

+ −Cαβ
(
− 4N2

α S22 +
1
2
M̄2

αī W̄
ī
22 + M̄αγ N̄

γ
2 ) .

Finally, from the action (2.20) and using (3.36) one read off the mass matrix for
the gauge bosons to be

Lb = huv∇µqu∇µqv = ...+
1
2
m2

ΛΣA
Λ
µ A

Σµ , (3.48)
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where
1
2
m2

ΛΣ = huvk
u
Λ k

v
Σ . (3.49)

3.4 Necessary Condition for N = 2→ N = 1

Let us now look at the supersymmetry transformation (2.27). Since we are dealing
with Minkowski ground states which respect four dimensional Lorentz invariance, the
vacuum expectation values of (2.27) can be simplified as

〈δψAµ〉 = ∂µεA + i〈SAB〉γµ εB ,

〈δλiA〉 = 〈W iAB〉 εB , (3.50)
〈δζα〉 = 〈

√
2NA

α 〉 εA ,

where 〈ωabµ 〉 = 0 because the ground states are flat space.
To have an unbroken N = 1 supersymmetry, the equations (3.50) vanish for the

unbroken supersymmetry generator. Without loss of generality we choose the unbro-
ken direction represented by the supersymmetry transformation parameter ε1 which
is associated with the unbroken supersymmetry generator. Thus the equations (3.33)
can be obtained by restricting (3.50) to the unbroken direction ε1. Let us first analyze
the supersymmetry variation of the spin-1

2 fermions. The solution of 〈δε1λiA〉 = 0 and
〈δε1ζα〉 = 0 are given by

〈W i1A〉 = 〈W iA1〉 = 0 ,

〈N1
α〉 = 0 , (3.51)

respectively. These equations together with the fact that 〈V N=2〉 = 0 simplify (3.42)
as

〈S̄11S11〉 = 0 ,

〈gij̄ ∇iS22∇j̄S̄22〉+
1
2
〈huv∇uS22∇vS̄22〉 − 3 〈S̄22S22〉 = 0 , (3.52)

and (3.43) is trivially satisfied. The first equation in (3.52) means that we further need
mψ1 = 2|〈S11〉| = 0. Now let us look this requirement in detail. From (3.38), setting
〈S11〉 = 0 means

〈(P 1
Λ − iP 2

Λ)XΛ〉 = 0 , Λ = 0, 1 . (3.53)

Trivially, one expects that the Killing prepotentials P 1
Λ = P 2

Λ = 0 are the solutions
of (3.53). However, such solutions preserve fully N = 2 supersymmetry which we do
not want. Thus, we need an additional equation in the ground states. From the first
equation of (3.51), i.e. 〈W̄ i

11〉 = 0, we have

〈(P 1
1 − iP 2

1 ) ∂iX1〉 = 0 , (3.54)

because X0 is a constant. So we need to find an appropriate basis for X1. If the basis of
XΛ is linearly independent, this would give ∂iX1 = δ1

i and further implies P 1
1 = P 2

1 = 0.
Then it is impossible to have N = 1 ground states because one of the Killing vector
ku1 = 0 and moreover, the gauge boson A1

µ is no longer massive.10 Therefore, the choice
10In other words, the no go theorem cannot be evaded if the basis of XΛ is linearly independent.
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of basis of XΛ for our purpose cannot be linearly independent. As we know from
chapter 2, the pair (XΛ,FΛ) transforms under symplectic group Sp(2nV + 2, IR). Now,
using this symplectic group our problem can be solved by choosing a symplectic basis
where X1 → −F1, F1 → X1. Thus, we obtain

〈Fi1〉 = 0 . (3.55)

Let us denote (X̃Λ, F̃Λ) as a new basis with the new prepotential X̃ΛF̃Λ = 2F̃ . Consider
now the example in section 3.1. One can check using (3.3) that in this new basis
F̃ = 0. This means that one has to choose to a basis where no F exists in order to
have spontaneous N = 2 → N = 1 in Minkowskian ground states. Indeed such basis
has been appeared in the literatures which studied spontaneous N = 2 → N = 1
breaking [16,17,47,48].

Next, we analyze the supersymmetry variation of the gravitino fields. The solutions
of 〈δε1ψAµ〉 = 0 consist of

〈S12〉 = 〈S21〉 = 0 ,

∂µε1 + i〈S11〉γµε1 = 0 , . (3.56)

We see that the first equation of (3.56) and also 〈W i12〉 = 0 do not contradict with
the particular SU(2) basis where P 3

0 = P 3
1 = 0 in the previous section. Hence, such

particular SU(2) basis and our choice of the unbroken parameter ε1 are compatible.
Using (3.53) the second equation in (3.51) simplify as

∂µε1 = 0 , (3.57)

which is called Killing spinor equation. The solution of (3.57) is an arbitrary constant
four spinor ε0. Thus the existence of the Killing spinor equation (3.57) explicitly shows
that the ground states preserve N = 1 supersymmetry.

Furthermore, the ground states require that〈
∂V N=2

∂zi

〉
=
〈
∂V N=2

∂qu

〉
= 0 , (3.58)

and inserting (3.51), the first derivative of the scalar potential (3.47) take the form

− 4 〈gkl̄ W̄ l̄
22 S̄

22〉+ 2 〈Mk2|i2W
i22〉+ 〈Mα

k2N
2
α〉 = 0 ,

−4 〈N̄β
2 S̄

22〉+
1
2
〈Mβ

i2W
i22〉+ 〈MβαN2

α〉 = 0 . (3.59)

To summarize, we have determined the necessary conditions any model has to obey
this necessary conditions in order to display spontaneous N = 2 → N = 1 super-
symmetry breaking. By comparing (3.37) for S11 = 0 with the quantities in (3.11)
evaluated at g0 = g1 in the previous simplest model, clearly it satisfies the requirement
for spontaneous N = 2→ N = 1 supersymmetry breaking in Minkowski backgrounds.

3.5 The Higgs and Super-Higgs Effects

Having derived the necessary condition of spontaneous N = 2→ N = 1 supersymmetry
breaking, we can now investigate the occurence of the Higgs and super-Higgs effects.
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Let us first discuss the Higgs effect. Our starting point is the gauged supersymmetric
σ-model (3.48) and the coupling (3.36). The Goldstone bosons φ0, φ1 can be eliminated
from the theory by employing the gauge transformation of A0

µ, A
1
µ which has form

A0
µ → A0

µ −
1
g0
∂µφ

0 , A1
µ → A1

µ −
1
g1
∂µφ

1 . (3.60)

Then the resulting theory consists only of the remaining physical scalar fields and
the massive gauge bosons. Note that since IR2-isometries are our additional input,
one can always perform the gauge tranformation (3.60). However, in general such
gauge tranformation (3.60) cannot be done because the couplings g0, g1 might explicitly
depend on qu. This occurs for example if we consider the situation where it is far enough
from the ground states.

Next, we discuss the super-Higgs effect. In order to see this, let us consider the
fermionic part of the Lagrangian (2.20), namely the kinetic and the mass-like term
which is related to the broken direction in these flat backgrounds. After rescaling√

2ζα → ζα we can write such terms as

Lf = 2
εµνλσ√
−g

ψ̄2
µγσ ∂νψ2λ − igij̄ λ̄

i2γµ∂µλ
j̄
2 − i ζ̄αγµ∂µζα

+[2〈S22〉 ψ̄2
µγ

µνψ2
ν + i〈gij̄W i22〉λ̄j̄2γ

µψ2µ + i
√

2〈N2
α〉ζ̄αγµψ2

µ (3.61)

+
1
2
〈Mαβ〉 ζ̄αζβ +

1√
2
〈Mα

i2〉 ζ̄αλi2 + 〈Mi2|l2〉 λ̄i2λl2 + h.c.] .

The mixing of the spin-1
2 fermion (λi2, ζα) to the gravitino field ψ2

µ plays an important
role to identify a massless fermion (called Goldstone fermion)

η2 = 〈gījW̄ ī
22〉λj2 +

√
2 〈N̄α

2 〉ζα . (3.62)

To see that η2 is indeed a Goldstone fermion, let us first write (3.50) for gaugino λiA

and hyperino ζα restricted to the broken parameter ε2,

〈δλi2〉 = 〈W i22〉 ε2 ,

〈δζα〉 = 〈
√

2N2
α〉 ε2 , (3.63)

where the right hand side is non-zero. Then using (3.63) and the fact that the cosmo-
logical constant is zero, i.e. (3.52), the vacuum expectation value of the supersymmetry
variation of η2 is given by

〈δη2〉 = 12 〈S̄22S22〉 ε2 . (3.64)

We see that η2 transform by a shift and furthermore, indicates that η2 is a Goldstone
fermion. A fermion with a supersymmetry transformation like (3.64) can be removed
from the theory by a suitable local supersymmetry transformation of the gravitino ψ2

µ.
This is the super-Higgs effect.

Before writing down the suitable local supersymmetry transformation of the grav-
itino ψ2

µ, let us first define physical fermions (ζ⊥α , λ
i2
⊥) as

ζ⊥α = ζα −
√

2〈N2
α〉

12〈S̄22S22〉
η2 ,
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λi2⊥ = λi2 − 〈W i22〉
12〈S̄22S22〉

η2 . (3.65)

Then it can be shown by using (3.63) that the physical fermions (ζ⊥α , λ
i2
⊥) cannot be

gauged away by any field redefinition of the gravitino ψ2
µ because

〈δλi2⊥〉 = 0 , 〈δζ⊥α 〉 = 0 . (3.66)

Now, we split off the Goldstone mode η2 and the physical fermions (ζ⊥α , λ
i2
⊥) in the

Lagrangian (3.61) and it can be written down as

Lf = 2
εµνλσ√
−g

ψ̄2
µγσ ∂νψ2λ − igij̄ λ̄

i2
⊥γ

µ∂µλ
j̄
2⊥ − i ζ̄α⊥γµ∂µζ⊥α

− i
12〈S̄22S22〉

η̄2γ
µ∂µη

2 + [2〈S22〉 ψ̄2
µγ

µνψ2
ν + iη̄2γ

µψ2
µ (3.67)

+
1

6〈S22〉
η̄2 η2 + 〈M(0)αβ〉ζ̄⊥α ζ⊥β + 2〈M(0)α

i2 〉 ζ̄
⊥
α λ

i2
⊥

+〈M(0)
i2|l2〉 λ̄

i2
⊥λ

l2
⊥ + h.c.] .

where11

〈M(0)
i2|l2〉 = 〈Mi2|l2〉 −

〈gij̄ glk̄ W̄
j̄
22 W̄

k̄
22〉

6〈S22〉
,

〈M(0)α
i2 〉 =

1
2
√

2
〈Mα

i2〉 −
√

2 〈gij̄ W̄
j̄
22 N̄

α
2 〉

6〈S22〉
, (3.68)

〈M(0)αβ〉 =
1
2
〈Mαβ〉 − 〈N̄

α
2 N̄

β
2 〉

3〈S22〉

are the physical masses of the fermions (ζ⊥α , λ
i2
⊥) for vanishing cosmological constant

denoted by superscript (0).
To find a suitable redifinition of the gravitino ψ2

µ, we need the form of its super-
symmetry variation in the ground states. From the first equation in (3.50) restricted
to the broken parameter ε2, one finds

〈δψ2µ〉 = ∂µε2 + i〈S22〉γµε2 . (3.69)

In addition, (3.64) means that the Goldstone fermion η2 can be regarded as a super-
symmetry transformation parameter and thus one can introduce a replacement

ε2 →
1

12〈S̄22S22〉
η2 . (3.70)

Hence, from (3.69) and (3.70) one concludes that the local supersymmetry transforma-
tion of the gravitino ψ2

µ which eliminates the Goldstone fermion η2 from the Lagrangian
(3.67) should have form

ψ2
µ → ψ2

µ +
1

12〈S̄22S22〉
(
∂µη

2 + i〈S̄22〉 γµ η2

)
. (3.71)

11See (3.79) for the explicit form of 〈M(0)

i2|l2〉 and 〈Mα
i2〉.
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We want to notice that the transformation (3.71) could not be defined if 〈S22〉 = 0,
which is precisely the condition for unbroken supersymmetry in the Minkowski back-
grounds. The supersymmetry transformation required to remove the Goldstone fermion
would then be singular and in fact the splitting off in the Lagrangian (3.67) would not
be possible as the physical fermions would diverge.

Inserting the trasformation (3.71) into the Lagrangian (3.67), the Goldstone fermion
does vanish from the theory. The Lagrangian (3.67) takes the form

Lf = 2
εµνλσ√
−g

ψ̄2
µγσ ∂νψ2λ − igij̄ λ̄

i2
⊥γ

µ∂µλ
j̄
2⊥ − i ζ̄α⊥γµ∂µζ⊥α

+[2〈S22〉 ψ̄2
µγ

µνψ2
ν + 〈M(0)αβ〉ζ̄⊥α ζ⊥β + 2〈M(0)α

i2 〉 ζ̄
⊥
α λ

i2
⊥ (3.72)

+〈M(0)
i2|l2〉 λ̄

i2
⊥λ

l2
⊥ + h.c.] .

where we have used the property of the flat space, i.e. the Riemannian curvature is
zero or [∂µ, ∂ν ] = 0. We see that the Lagrangian (3.72) only contains the physical
massive fields. The massive gravitino ψ2

µ has four instead of two degrees of freedom as
a consequence of spontaneous local supersymmetry breaking.

To give an explicit expression of the physical mass matrix (3.68) we need some
additional equations in the ground states. First, let us consider the first equation in
(C.2) for Λ,Σ = 0, 1. Since 〈∂iXΛ〉 = 0 for Λ = 0, 1 in the ground states, the first
equation in (C.2) becomes

〈gij̄KV,iKV,j̄ LΛL̄Σ〉 = −1
2
〈(I−1)ΛΣ〉 − 〈L̄ΛLΣ〉 . (3.73)

Antisymmetrizing (3.73), one obtains

〈gij̄KV,iKV,j̄〉 = 1 , (3.74)

while the symmetric part of (3.73) gives

〈(I−1)ΛΣ〉 = −2〈eKV (XΛX̄Σ + X̄ΛXΣ)〉 . (3.75)

Furthermore, evaluated the second equation of (C.2) in the ground states, we have

〈∇i fΛ
j 〉 = i〈Cijk gkl̄KV,l̄ L̄Λ〉 . (3.76)

The equation (3.76) together with (3.53) can be used to show

〈Mk2|i2〉 = 0 . (3.77)

In the ground states the quantities W i22 and M(0)α
k2 simplify as

〈W i22〉 = 2〈S̄22gij̄KV,j̄〉 ,

〈Mα
k2〉 = 2〈KV,k N̄α

2 〉 . (3.78)

Now, using (3.74), (3.77) and (3.78) the physical mass (3.68) have the form

〈M(0)
i2|l2〉 = −2

3
〈KV,iKV,l S22〉 ,



30CHAPTER 3. SPONTANEOUSN = 2→ N = 1 SUSY BREAKING IN MINKOWSKI

〈M(0)α
i2 〉 =

√
2

6
〈KV,i N̄α

2 〉 , (3.79)

where 〈M(0)αβ〉 have the same form as in (3.68).
Finally, we can discuss the properties of the physical mass (3.68), namely these

must have a zero eigenvalue and are degenerate with the gravitino mass 〈S22〉. Let
us first check the previous property. Our starting point is to check that the following
equations

〈M(0)
k2|i2W

i22〉+
√

2〈M(0)α
k2 N2

α〉 ,

〈M(0)β
i2 W i22〉+

√
2〈M(0)βαN2

α〉 , (3.80)

vanish. Using (3.79) together with (3.52), we can show that

〈M(0)
k2|i2W

i22〉+
√

2〈M(0)α
k2 N2

α〉 =
1
3
KV,k

(
−4〈S̄22S22〉+ 〈N̄α

2 N
2
α〉
)

= 0 , (3.81)

while for the last equation in (3.80), we use (3.52) and the second equations in (3.59)
to show

〈M(0)β
i2 W i22〉+

√
2〈M(0)βαN2

α〉 =
1√
2

(
〈M(0)βαN2

α〉 − 2〈S̄22N̄β
2 〉
)

= 0 . (3.82)

This proves that there exist a vector (W i22,
√

2N2
α) such that the physical masses (3.68)

has a zero eigenvalue which means the physical mode is already separated from the
Goldstone mode.

The second property can be shown by using the second equation in (3.59) and
(3.79), the first equation of (3.78) together with (3.52) that

〈M(0)
k2|i2W

i22〉 − 1√
2
〈M(0)α

k2 N2
α〉 = −〈S̄22 gkl̄W̄

l̄
22〉 ,

〈M(0)β
i2 W i22〉 − 1√

2
〈M(0)βαN2

α〉 =
1√
2
〈S̄22N̄β

2 〉 . (3.83)

This proves the existence of a vector (W i22, 1√
2
N2
α) such that the physical fermion mass

(3.68) has an eigenvalue 〈S̄22〉, or in other words the gravitino ψ2
µ and the physical

fermion (ζ⊥α , λ
i2
⊥) are degenerate in mass.



Chapter 4

Spontaneous N = 2→ N = 1
SUSY Breaking in Anti-de Sitter

In this chapter we extend the previous analysis to curved backgrounds with negative
cosmological constant, namely anti-de Sitter spaces. Our analysis here uses appendix B
where the aspects of anti-de Sitter supersymmetry are mainly reviewed. Furthermore,
the general setting in this chapter is the same as in section 3.3. First, we start by
discussing the N = 1 massive gravitino multiplet with its mass relation and then
describe general picture of spontaneous N = 2→ N = 1 breaking. Next, we derive the
necessary conditions of such breaking and finally, discuss the super-Higgs effect.

4.1 General Picture in Anti-de Sitter

First of all let us illustrate the general description of the spontaneous N = 2→ N = 1
supersymmetry breaking in curved backgrounds with negative cosmological constant.
These backgrounds respect the local Lorentz invariance and naturally appear as so-
lution of the supersymmetry transformation (2.27) which maintain a residual N = 1
supersymmetry in the ground states. However, so far no simple model with sponta-
neous N = 2→ N = 1 supersymmetry breaking in these backgrounds has been found
in the literature.

In this section we first discuss the definition of physical mass for the N = 1 massive
gravitino multiplet because this problem is rather delicate. For this purpose, we re-
view several facts about anti-de Sitter representation of this massive multiplet and then
construct its Lagrangian. At the end we discuss a particular property of spontaneous
N = 2→ N = 1 supersymmetry breaking in anti-de Sitter space.

Now we turn to anti-de Sitter ground states which preserve N = 1 supersymmetry.
It follows that the unbroken N = 1 supersymmetry ensures the existence of the N = 1
massive gravitino multiplet which has spin content s = (3

2 , 1, 1,
1
2). To make it clear,

let us consider anti-de Sitter representation of the N = 1 massive gravitino multiplet.
Using the massive multiplet (B.33) for s = 1, we get

D(E0 +
1
2
,
3
2

)⊕D(E0, 1)⊕D(E0 + 1, 1)⊕D(E0 +
1
2
,
1
2

) , (4.1)

where D(E0, s) denote the unitary irreducible representation of the non-compact group
SO(2, 3) and E0, s denote energy and spin, respectively which are the eigenvalues of

31
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the diagonal operators of the maximal compact subgroup SO(2)× SO(3) ⊂ SO(2, 3).1

To see the mass relation between the particles in (4.1), we use the mass formula (B.24).
Replacing the energy label E0 in (B.24) by E0 + 1

2 for the gravitino, E0 + 1, E0 for the
two gauge bosons, and E0 + 1

2 for spin-1
2 fermion, we obtain the physical mass of each

particle in (4.1) in the following:

(m 3
2
− `)2 = `2(E0 − 1)2 ,

m2
1 = `2(E0 − 2)(E0 − 1) , (4.2)

(m′1)2 = `2E0 (E0 − 1) ,

m2
1
2

= `2(E0 − 1)2 ,

for E0 > 2, where ` is a constant related to the cosmological constant Λ0 via Λ0 = −3`2,
m′1 is the mass of the gauge bosons with the energy label E0 + 1, while m1 is the mass
for the gauge bosons with the energy label E0. Furthermore, the physical mass in (4.2)
satisfy the mass relation (B.37)

−4(m 3
2
− `)2 + 3m2

1 + 3(m′1)2 − 2m2
1
2

= 0 . (4.3)

We see from (4.1) that the three fields, e.g. the gravitino and the two gauge bosons,
have different energy labels. This means that these fields are not degenerate in mass.
Such situation occur in anti-de Sitter backgrounds because the mass operator P aPa is
no longer Casimir operator.

Next, we construct the Lagrangian of the N = 1 massive gravitino multiplet. Due
to its spin content, the Lagrangian should have form2

Lgravitino =
εµνλσ√
−g

ψ̄2
µγσDνψ2,λ − i χ̄γµDµχ−

1
4
F 0
µνF

0µν − 1
4
F 1
µνF

1µν

+
1
2
m2
A0 A

0µA0
µ +

1
2
m2
A1 A

1µA1
µ (4.4)

+
(
mψ2 ψ̄2

µγ
µνψ2

ν +mχ χ̄χ+ h.c.
)

,

and the mass parameters in (4.4) are not the physical masses given in (4.2) but instead
obey the relation

mψ2 = m+ 2` ,

m2
A0 = m(m− `) ,

m2
A1 = m(m+ `) , (4.5)
mχ = m ,

where m = `(E0−1) and Dµ is the anti-de Sitter covariant derivative. For gravitino ψµ,
the physical mass is defined to be m 3

2
≡ mψ2−` = m+` [53,54]. An interesting feature

of this definition is the case where mψ2 = `. It then follows that m 3
2

= 0. In view of the
Rarita-Schwinger field equation this simply means that we are dealing with a ’massless’

1For an extended discussion about anti-de Sitter supersymmetry see appendix B and the references
given there.

2For a review of the Lagrangian of the N = 1 massive gravitino multiplet in anti-de Sitter space,
see [14].
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gravitino fields in anti-de Sitter space. On the other hand, the physical mass of the
two gauge bosons A0

µ, A
1
µ are mA0 = m1 =

√
m(m− `) and mA1 = m′1 =

√
m(m+ `)

respectively, while the physical mass of the spin-1
2 -fermion χ is m 1

2
= m. Thus, the

members of the N = 1 gravitino multiplet are not degenerate in mass.
Finally, let us turning our attention to the necessary condition for the existence

of N = 1 ground states that the two eigenvalues of the mass parameter SAB satisfy,
for example, mψ1 < mψ2 . From the discussion in the previous paragraph, we see that
a massless gravitino in anti-de Sitter space corresponds to the case where the mass
parameter in the Lagrangian is simply mψ1 = ` and non-zero. This shows that one
cannot set mψ1 = 0 in anti-de Sitter space.

4.2 Necessary Condition for N = 2→ N = 1

Let us now consider the supersymmetry transformation (2.27). Again Lorentz invari-
ance simplifies the vacuum expectation values of (2.27) as

〈δψAµ〉 = DµεA + i〈SAB〉γµ εB ,

〈δλiA〉 = 〈W iAB〉 εB , (4.6)
〈δζα〉 = 〈

√
2NA

α 〉 εA ,

where Dµ = ∂µ − 1
4〈ω

ab
µ 〉 is an anti-de Sitter covariant derivative.

In order to maintain an unbroken N = 1 supersymmetry in the ground states,
(4.6) has to vanish for the unbroken supersymmetry generator. In this case, we also
choose the supersymmetry transformation parameter ε1 to be the unbroken direction
associated with the unbroken supersymmetry generator. Let us first analyze the su-
persymmetry variation of the gaugino λiA and the hyperino ζα. The solutions of the
variations 〈δε1λiA〉 = 0 and 〈δε1ζα〉 = 0 are given by

〈W i1A〉 = 〈W iA1〉 = 0 ,

〈N1
α〉 = 0 . (4.7)

We see that compared with (3.51) no modification arises at the level of spin-1
2 fermion.

The anti-de Sitter ground states further require 〈V N=2〉 = Λ0. Then the potential
(3.42) in these ground states can be simplified as

− 12〈S̄11S11〉 = Λ0 ,

4 〈gij̄ ∇iS22∇j̄S̄22〉+ 2 〈huv∇uS22∇vS̄22〉 − 12 〈S̄22S22〉 = Λ0 , (4.8)

and the off-diagonal components of (3.43)

〈N̄α
2 N

1
α〉 = 〈N̄α

1 N
2
α〉 ≡ 0 . (4.9)

are trivially satisfied. As we see from the first equation in (4.8), mψ1 = 2|〈S11〉| cannot
be set to zero but rather generates the cosmological constant Λ0. Using (3.38), this
implies

〈ie
1
2
KV (P 1

Λ − iP 2
Λ)XΛ〉 =

√
−Λ0

3
, Λ = 0, 1 . (4.10)

Furthermore, 〈W i11〉 = 0 give an additional condition

〈ie
1
2
KV (P 1

Λ − iP 2
Λ)gj̄i∂iXΛ〉 = −〈gj̄iKV,i〉

√
−Λ0

3
. (4.11)
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A look at (4.11), it is not obvious to find an approriate basis for XΛ where the no go
theorem can be avoided. However, as the cosmological constant Λ0 → 0, we should
retrieve (3.55). Therefore, the basis of XΛ cannot be linearly independent.

Now let us consider the supersymmetry variation of the gravitino fields. The solu-
tions of 〈δε1ψAµ〉 = 0 are given by

〈S12〉 = 〈S21〉 = 0 ,

Dµε1 + i〈S11〉γµ ε1 = 0 , (4.12)

We see that 〈S21〉 = 0 and 〈W i21〉 = 0 are compatible with our choice of the SU(2)
basis where P 3

0 = P 3
1 = 0 holds. Thus, we have a set of consistent equation. The second

equation in (4.12) is a Killing spinor equation in anti-de Sitter space. To solve this let
us take an ansatz of metric [55,56]

ds2 = e2mψ1z ηab dx
a dxb − dz2 , (4.13)

where a, b = 0, 1, 2 and mψ1 = 2〈S11〉 =
√
−Λ0/3. With this choice of metric, the Ricci

curvature is Rµν = Λ0 gµν which is indeed anti-de Sitter space. The solution of the
second equation in (4.12) is then given by

ε = e
i
2
mψ1zγ3

(
1 +

i
2
mψ1 xa γa(1− iγ3)

)
ε0 , (4.14)

where ε0 is an arbitrary constant four spinor. Thus the existence of Killing spinor
ensure the presence of residual N = 1 supersymmetry in the ground states.

Finally we want to mention that the ground states require the vanishing of the first
derivative of the scalar potential (3.47). Again the resulting equations are described by
(3.59).

To summarize, we have derived the necessary condition of spontaneous N = 2 →
N = 1 supersymmetry breaking in anti-de Sitter backgrounds. As we see from the first
equation of (4.8), the cosmological constant Λ0 is negative and furthermore, the second
equation of (4.12) shows the existence of a Killing spinor in the ground states. Thus,
anti-de Sitter backgrounds appear naturally as a solution in order to have a residual
N = 1 supersymmetry in the ground states.

4.3 The Super-Higgs Effects

In this section we mainly discuss the super-Higgs effect because the Higgs effect in
anti-de Sitter backgrounds is similar as in Minkowski backgrounds. The difference is
that the two gauge bosons are not degenerate in mass. For the super-Higgs effect, the
situation is slightly modified from Minkowski backgrounds but the philosophy is the
same: one needs to find a unitary gauge in which a massless spin-1

2 fermion is eaten by
a gravitino which acquires a mass.

To discuss the super-Higgs effect, let us consider the fermionic part of the La-
grangian (2.20), namely the kinetic and the mass-like term which is related to the
broken direction in these curved backgrounds. After rescaling

√
2ζα → ζα such terms

can be written down as3

Lf (Λ0) = 2
εµνλσ√
−g

ψ̄2
µγσ Dνψ2λ − igij̄ λ̄

i2γµDµλj̄2 − i ζ̄αγµDµζα
3As Λ0 → 0, then Lf (Λ0)→ Lf , see (3.61).
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+
(

2〈S22〉 ψ̄2
µγ

µνψ2
ν + i〈gij̄W i22〉λ̄j̄2γ

µψ2µ + i
√

2〈N2
α〉ζ̄αγµψ2

µ (4.15)

+
1
2
〈Mαβ〉 ζ̄α ζβ +

1√
2
〈Mα

i2〉 ζ̄αλi2 + 〈Mi2|l2〉 λ̄i2λl2 + h.c.
)

.

Focusing on the mixing spin-1
2 fermion (λi2, ζα) and the gravitino field ψ2

µ term, we
arrive at the identification of a fermion

η2 = 〈gījW̄ ī
22〉λj2 +

√
2 〈N̄α

2 〉ζα . (4.16)

To see its supersymmetry transformation in the ground states, let us first consider (4.6)
for gaugino λiA and hyperino ζα restricted to the broken parameter ε2,

〈δλi2〉 = 〈W i22〉 ε2 ,

〈δζα〉 = 〈
√

2N2
α〉 ε2 , (4.17)

where the right hand side is non-zero. Using (4.17) together with the fact that 〈V N=2〉 =
Λ0, we find that the vacuum expectation values of the supersymmetry transformation
of η2 is given by

〈δη2〉 = (12 〈S̄22S22〉+ Λ0) ε2 . (4.18)

Thus η2 transforms non-trivially which shows that η2 is a Goldstone fermion. Thus, η2

can be gauged away from the theory by a suitable local supersymmetry transformation
of the gravitino ψ2

µ.
Next we define define physical fermions (ζ⊥α , λ

i2
⊥) as

ζ⊥α = ζα −
√

2〈N2
α〉

12〈S̄22S22〉+ Λ0
η2 ,

λi2⊥ = λi2 − 〈W i22〉
12〈S̄22S22〉+ Λ0

η2 . (4.19)

Then using (4.17), the physical fermions (ζ⊥α , λ
i2
⊥) cannot be gauged away by any gauge

transformation of the gravitino ψ2
µ since

〈δλi2⊥〉 = 0 , 〈δζ⊥α 〉 = 0 . (4.20)

Now, we split off the Goldstone mode η2 and the physical fermions (ζ⊥α , λ
i2
⊥) in the

Lagrangian (4.15) which can be written down as

Lf (Λ0) = 2
εµνλσ√
−g

ψ̄2
µγσ Dνψ2λ − i gij̄ λ̄

i2
⊥γ

µDµλj̄2⊥ − i ζ̄α⊥γµDµζ⊥α

− i
12〈S̄22S22〉+ Λ0

η̄2γ
µDµη2 +

{
2〈S22〉 ψ̄2

µγ
µνψ2

ν + iη̄2γ
µψ2

µ (4.21)

+
2〈S̄22〉

12〈S̄22S22〉+ Λ0
η̄2 η2 + 〈M(Λ0)αβ〉 ζ̄⊥α ζ⊥β + 2〈M(Λ0)α

i2 〉 ζ̄⊥α λi2⊥

+〈M(Λ0)
i2|l2〉 λ̄

i2
⊥λ

l2
⊥ + h.c.

}
.

where

〈M(Λ0)
i2|l2〉 = 〈Mi2|l2〉 −

2 〈gij̄ glk̄ W̄
j̄
22S̄

22W̄ k̄
22〉

12〈S̄22S22〉+ Λ0
,
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〈M(Λ0)α
i2 〉 =

1
2
√

2
〈Mα

i2〉 −
2
√

2 〈gij̄ W̄
j̄
22S̄

22N̄α
2 〉

12〈S̄22S22〉+ Λ0
, (4.22)

〈M(Λ0)αβ〉 =
1
2
〈Mαβ〉 − 4 〈N̄α

2 S̄
22 N̄β

2 〉
12〈S̄22S22〉+ Λ0

,

are the physical masses of the fermions (ζ⊥α , λ
i2
⊥) for non-zero cosmological constant

denoted by superscript (Λ0). The requirement of the ground states (3.59) together
with (4.8) can be used to show that

〈M(Λ0)
k2|i2W

i22〉+
√

2〈M(Λ0)α
k2 N2

α〉 = 〈Mk2|i2W
i22〉+

1
2
Mα

k2N
2
αS̄

22〉

−2〈gkl̄ W̄ l̄
22〉
〈gij̄W i22W̄ j̄

22〉+ 2〈N̄α
2 N

2
α〉

12〈S̄22S22〉+ Λ0

= 0 , (4.23)

and also,

〈M(Λ0)β
i2 W i22〉+

√
2〈M(Λ0)βαN2

α〉 =
1√
2

(
1
2
〈Mβ

i2W
i22〉+ 〈MβαN2

α〉
)

−2
√

2〈N̄β
2 S̄

22〉
〈gij̄W i22W̄ j̄

22〉+ 2〈N̄α
2 N

2
α〉

12〈S̄22S22〉+ Λ0

= 0 . (4.24)

The equations (4.23) and (4.24) mean that the physical masses (4.22) has a zero eigen-
value which means that the physical modes are already separated from the Goldstone
mode.

Next, we discuss the gauge transformation of the gravitino ψ2
µ which can be used

to eliminate η2 from the theory. Let us consider the first equation in (4.6) restricted to
the broken parameter ε2. Then we arrive at

〈δψ2µ〉 = Dµε2 + i〈S22〉γµ ε2 . (4.25)

Moreover, (4.18) means that the Goldstone fermions η2 acts as a supersymmetry trans-
formation parameter and we can perform the replacement

ε2 →
1

12〈S̄22S22〉+ Λ0
η2 . (4.26)

Thus, (4.25) and (4.26) tell that the local supersymmetry transformation of the grav-
itino ψ2

µ which eliminates the Goldstone fermion η2 from the Lagrangian (4.21) should
take form

ψ2
µ → ψ2

µ +
1

12〈S̄22S22〉+ Λ0

(
Dµη2 + i〈S̄22〉 γµ η2

)
. (4.27)

Note that the transformation (4.27) could not be defined if 12S̄22S22 = −Λ0, which
is precisely the condition for ψ2

µ to be invariant in anti-de Sitter backgrounds. The
supersymmetry transformation needed to remove the Goldstone fermion would then be
singular and in fact the splitting off in the Lagrangian (4.21) would not be possible as
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the physical fermions would diverge.
Inserting the trasformation (4.27) into the Lagrangian (4.21), we have then

Lf (Λ0) = 2
εµνλσ√
−g

ψ̄2
µγσ Dνψ2λ − i gij̄ λ̄

i2
⊥γ

µDµλj̄2⊥ − i ζ̄α⊥γµDµζ⊥α

+
1

(12〈S̄22S22〉+ Λ0)2

(
iΛ0 η̄2γ

µDµη2 + εµνλσD̄µη̄2γσ[Dν ,Dλ]η2 + h.c.
)

+
1

(12〈S̄22S22〉+ Λ0)

(
iΛ0 η̄2γ

µψ2
µ + εµνλσψ̄2

µγσ[Dν ,Dλ]η2 + h.c.
)

(4.28)

− 1
(12〈S̄22S22〉+ Λ0)2

(
2Λ0〈S̄22〉η̄2 η2 +

i
2
〈S̄22〉 εµνλση̄2γµν [Dλ,Dσ]η2 + h.c.

)
+
{

2〈S22〉 ψ̄2
µγ

µνψ2
ν + 〈M(Λ0)αβ〉ζ̄⊥α ζ⊥β + 2〈M(Λ0)α

i2 〉 ζ̄⊥α λi2⊥

+ 〈M(Λ0)
i2|l2〉 λ̄

i2
⊥λ

l2
⊥ + h.c.

}
.

Now using the property of this curved spacetime with non zero cosmological constant,

[Dµ,Dν ]η2 = −Λ0

6
γµν η2 ,

[D̄µ, D̄ν ]η̄2 =
Λ0

6
η̄2γµν , (4.29)

with D̄µη̄2 = ∂µ η̄2 + 1
4 η̄2γab 〈ωabµ 〉, the Lagrangian (4.28) can be simplified as

Lf (Λ0) = 2
εµνλσ√
−g

ψ̄2
µγσ Dνψ2λ − i gij̄ λ̄

i2
⊥γ

µDµλj̄2⊥ − i ζ̄α⊥γµDµζ⊥α

+
{

2〈S22〉 ψ̄2
µγ

µνψ2
ν + 〈M(Λ0)αβ〉ζ̄⊥α ζ⊥β + 2〈M(Λ0)α

i2 〉 ζ̄⊥α λi2⊥ (4.30)

+〈M(Λ0)
i2|l2〉 λ̄

i2
⊥λ

l2
⊥ + h.c.

}
.

We see that the Lagrangian (4.30) only contains the physical massive fields. The
massive gravitino ψ2

µ has four instead of two degrees of freedom as a consequence of
spontaneous local supersymmetry breaking.



Chapter 5

Conclusion

Let us finally summarize our main results in chapter 3 and 4 and give an outlook for
future investigations.

Some aspects of spontaneousN = 2→ N = 1 supersymmetry breaking in Minkowski-
an ground states have been discussed in chapter 3. First, the simplest example in [16]
has been studied in detail including the Higgs and the super-Higgs effects, showing the
mass degeneracy of the N = 1 gravitino multiplet, and then deriving the low energy
effective N = 1 theory described by the left over massless scalar fields in section 3.1.
Also we have desribed the general description of spontaneous N = 2 → N = 1 su-
persymmetry breaking and also discussed our additional input to solve the fermionic
supersymmetry transformation in ground states, see (3.33). These are in section 3.2
and 3.3. Furthermore, we have derived the necessary conditions in section 3.4. An
interesting aspect is that the necessary conditions constrain the symplectic vectors XΛ

of the special Kähler manifold that they have to choose a basis where no prepotential F
exists in order to avoid the no go theorem. In section 3.5 we have discussed the Higgs
and super-Higgs mechanisms and then, showed the mass degeneracy of the N = 1 mas-
sive gravitino multiplet using some properties of Minkowsian ground states.

In chapter 4 we discussed the possibility of spontaneous N = 2→ N = 1 supersym-
metry breaking in anti-de Sitter spaces by applying the same procedure as in chapter 3.
We have illustrated the general picture of such breaking and discussed the properties
of the N = 1 massive gravitino multiplet in section 4.1. Then, the necessary conditions
have been discussed in section 4.2 and finally, the super-Higgs effect in anti-de Sitter
backgrounds has been showed in section 4.3.

A lot of open problems remain. Firstly, we do not address here the general deriva-
tion of the low energy effective N = 1 theory which is described by the left over massless
scalar fields. It is worth to mention that in Minkowski ground states the theory choose
a basis of XΛ where no F exists in order the inverse gauge couplings of the gauge bosons
to be harmonic in the low energy effective N = 1 theory. However, this feature is still
unclear for anti-de Sitter backgrounds, see (4.11). Another important condition is to
show that the left-over massless scalar fields span a manifold which is Kähler as N = 1
supersymmetry requires. This manifold is a quotient MH/IR2 [40]. These aspects will
be discussed in our publication [41].

Secondly, the situation changes if one allows the possibility of a reduced Lorentz
invariance or in other words considers domain wall solutions of N = 2 supergravity.
In this case quite generically BPS-type solutions exist which do preserve half super-
charges. At this level, it is still not obvious that our framework can consistently be
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applied to domain wall case. We hope that in future investigation this might explain
the hierarchical spontaneous N = 2→ N = 1→ N = 0 supersymmetry breaking.



Appendix A

Convention and Notation

The purpose of this appendix is to assemble our conventions in this thesis. The space-
time metric is taken to have the signature (+,−,−,−) while the Riemann tensor is
defined to be −Rµνλρ = ∂λΓµνρ − ∂νΓµλρ + ΓµλσΓσνρ − ΓµνσΓσλρ. The Christoffel symbol is
given by Γµνρ = 1

2g
µσ(∂νgρσ + ∂ρgνσ − ∂σgνρ) where gµν is the spacetime metric.

Indices

µ, ν = 0, ..., 3 label curved four dimensional spacetime indices

a, b = 0, ..., 3 label flat four dimensional spacetime indices

â, b̂ = −, 0, ..., 3 label flat five dimensional space indices
with two time-like directions

a, b = 0, 1, 2 label flat three dimensional spacetime indices

Â, B̂ = 1, ..., N label the number of supercharges

A,B = 1, 2 label the fundamental representation of
the R-symmetry group SU(2)⊗ U(1)

x, y, z = 1, 2, 3 label adjoint representation of SU(2) operator

i, j, k = 1, .., nV or nc label the N = 2 vector multiplet or
the N = 1 chiral multiplet respectively

ī, j̄, k̄ = 1, .., nV or nh label conjugate indices of i, j, k

u, v, w = 1, ..., 4nH label the real scalars of the N = 2 hypermultiplet

α, β = 1, ..., 2nH label the fundamental representation of Sp(2nH)

Λ,Σ = 0, ..., nV label holomorphic and antiholomorphic section
of Special Kähler manifold and also all gauge fields
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gij̄ denotes the metric of the special Kähler manifold whose Levi-Civita connection is
defined as Γlij = glk̄∂igjk̄ and its conjugate Γl̄

īj̄
= g l̄k∂īgj̄k, while huv denotes the metric

of the quaternionic Kähler manifold.

SU(2) and Sp(2nH) metrics

εABεBC = −δAC , εAB = −εBA, (A.1)
C
αβ
Cβγ = −δαγ , C

αβ = −Cβα (A.2)

For any SU(2) vector (and Lorentz scalar) VA we have:

εABV
B = VA, εABVB = −V A, (A.3)

and also for Sp(2nH) vectors (and Lorentz scalar) Vα:

CαβV
β = Vα, C

αβVβ = −V α. (A.4)

The above formulae are useful to lower and raise indices for quantity such as the vielbein
UAα in the quaternionic Kähler manifold and the Pauli matrices. Note that the lower
and upper index of any SU(2) Weyl spinor εA is related by hermitian conjugate (see
spinor convention)

Pauli matrices
The standard Pauli matrices used in this thesis are

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.5)

The Pauli matrices with two lower indices can be defined as

(σx)AB ≡ (σx) C
A εBC (A.6)

where x = 1, 2, 3 and (σx) C
A are the standard Pauli matrices. The equation(A.6) can

be read as

(σ1)AB =
(

1 0
0 −1

)
, (σ2)AB =

(
−i 0
0 −i

)
, (σ3)AB =

(
0 −1
−1 0

)
, (A.7)

and their complex cojugate are

(σxAB)∗ = −σxAB. (A.8)

Symmetric and antisymmetric indices
For any indices I, J , we define symmetric indices {I, J} and antisymmetric indices [I, J ]
as

{I, J} ≡ 1
2

(IJ + JI), [I, J ] ≡ 1
2

(IJ − JI) (A.9)

respectively.
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Clifford algebra

{γa, γb} ≡ γaγb + γbγa = 2gab
[γa, γb] ≡ γaγb − γbγa = 2γab

γ5 ≡ −iγ0γ1γ2γ3

{γa, γ5} = 0 (A.10)

γ†0 = γ0, γ0γ
†
i γ0 = γi (i = 1, 2, 3), γ†5 = γ5

εabcdγ
cd = 2iγabγ5

γaγbγc = gac γb − gbc γa − gab γc − iεabcdγdγ5

Spinor convention
For any fermion Ψ :

Ψ̄ ≡ Ψ† γ0 = ΨTC . (A.11)

Let ΨA be a Majorana spinor in four dimensions which can be decomposed into Weyl
spinors ψA and ψA as

ψA ≡ 1
2

(1 + γ5)ΨA ,

ψA ≡ 1
2

(1− γ5)ΨA , (A.12)

and ψA, ψA have right or left chirality respectively. In this paper the right chiral spinors
are

ψAµ ≡ 1
2

(1 + γ5)ΨAµ ,

λiA ≡ 1
2

(1 + γ5)ΛIA ,

ζα ≡ 1
2

(1 + γ5)Υα , (A.13)

εA ≡ 1
2

(1 + γ5)ΞA ,

while the left chiral spinors are

ψAµ ≡ 1
2

(1− γ5)ΨAµ ,

λīA ≡ 1
2

(1− γ5)ΛIA ,

ζα ≡ 1
2

(1− γ5)Υα , (A.14)

εA ≡ 1
2

(1− γ5)ΞA ,

where ΨAµ,ΛIA,Υα,ΞA are the Majorana spinors in four dimensions. As an example
(for εA) the eq.(A.11) becomes

ε̄A = ε†Aγ
0 = ε†A , (A.15)

where ε̄A has the same chirality as εA and they are ’inverse’ into each other in the
representation with respect to the SL(2, lC) [57].
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Let χA, ηB are (0-form) spinors which have right or left chirality respectively, then
Hermiticity of currents for these spinors are

(χ̄AηB)† = η̄BχA = χ̄AηB ,

(χ̄AγaηB)† = η̄Bγ
aχA = −χ̄AγaηB , (A.16)

(χ̄AγabηB)† = −η̄BγabχA = χ̄AγabηB .



Appendix B

Anti-de Sitter Supersymmetry

In this appendix we give a discussion about the structure of supersymmetry in a curved
spacetime with negative cosmological constant, namely anti-de Sitter spacetime. The
interested reader can consult the literature for more details, see for example [21,58].

B.1 Anti-de Sitter Spacetime

A four dimensional anti-de Sitter spacetime can be viewed as a hypersurface (or hyper-
boloid) embedded in a five dimensional space with two time-like directions. Denoting
the extra coordinate of the five dimensional space by y−, so that we have coordinates
yâ with â = −, 0, .., 3, this hypersurface is defined by [58]

(y−)2 + ηab y
ayb = ηâb̂ y

âyb̂ = − 3
Λ0

, (B.1)

where Λ0 < 0. Obviously, the hypersurface is invariant under linear transformations
that leave the metric ηâb̂ = diag(+,+,−,−,−) invariant. These transformations con-
stitute the group SO(3, 2) whose 10 generators are denoted by Ĵâb̂ satisfy the SO(3, 2)
Lie algebra in its standard form:

[Ĵâb̂, Ĵĉd̂] = −i
(
ηb̂ĉ Ĵâd̂ + ηâd̂ Ĵb̂ĉ − ηb̂d̂ Ĵâĉ − ηâĉ Ĵb̂d̂

)
. (B.2)

In other words, anti de-Sitter space has 10 Killing vectors which generate the isometries
corresponding to the group SO(3, 2). Furthermore, by these isometries any two points
on anti de-Sitter space can be related into each other. This means that anti de Sitter
space is a homogeneous space.

Using a redefinition

Ĵ−a =
1
2`
Pa , Ĵab = Jab , (B.3)

where ` is a real quantity related to the cosmological constant Λ0 via Λ0 = −3`2, then
the algebra (B.2) takes form

[Jab, Jcd] = −i
(
ηbc Jad + ηad Jbc − ηbd Jac − ηac Jbd

)
,

[Jab, Pc] = i
(
ηac Pb − ηbc, Pa

)
, (B.4)

[Pa, Pb] = 4i`2Jab .

In perfect analogy with the Poincaré case, a unitary irreducible representation of
SO(3, 2) is what one calls a particle in anti-de Sitter space. However, the mass squared
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operator P aPa is no longer invariant under the SO(3, 2) subalgebra (B.2). Hence in
anti-de Sitter a particle is not characterized by the eigenvalue of P aPa, rather by the
eigenvalue of the true second order Casimir of SO(3, 2) which in our normalization has
the following expression [21]:

C2 =
1
2
Ĵ âb̂Ĵâb̂ =

1
2
JabJab +

1
4`2

P aPa , (B.5)

where we lower and raise indices by contracting with ηâb̂ and its inverse ηâb̂.
Now, let us consider the unitary irreducible representation of SO(3, 2). Our start-

ing point is its compact subgroup SO(2) × SO(3) corresponding to rotations of the
compact anti-de Sitter time and spatial rotations. It is convenient to decompose the
10 generators as follows. First, the generator J−0 is related to the energy operator
when the radius of the anti-de Sitter space is taken to infinity. The eigenvalues of this
operator, which is associated with motions along the circle, are quantized in integer
units in order to have single-valued functions. So we define the energy operator H by

H ≡ J−0 =
1
2`
P0 . (B.6)

Obviously the generators of the spatial rotations are Jxy with x, y = 1, 2, 3. The
remaining 6 generators J−x and J0x are combined into pairs of mutually conjugate
operators,

J±x ≡ J0x ± iJ−x ,

(J+
x )† = J−x . (B.7)

From the SO(3, 2) algebra (B.4), one can see that the J±x play the role of raising and
lowering operators: when applied to an eigenstate of H with eigenvalue E0, application
of J±x yields a state with eigenvalue E0 ± 1.

The representation we are interested in must have an energy spectrum bounded
from below, H ≥ E0, and the lowest eigenvalue E0 is realized on states that we denote
|E0, s〉, where E0 is the eigenvalue of H and s indicates the value of the total angular
momentum operator. Since states with E < E0 should not appear, vacuum states are
given by the condition, J−x |E0, s〉 = 0. Evaluating the Casimir operator (B.5) on the
vacuum states |E0, s〉 we get

C2 = E0 (E0 − 3) + s(s+ 1) . (B.8)

The other states with energy E0 + n are constructed by an n-fold product of creation
operators J+

x . In this way we obtain states of higher eigenvalues E with higher spin.
The states constructed above might have three possible norms: negative, zero, and

positive. To obtain a physical Hilbert space, the states must have a positive norm.
Therefore, if there are zero-norm states, the Hilbert space is composed of the equiv-
alence classes of all states modulo the zero-norm states. Such a situation is typical
of all massless theories. However, to avoid the negative-norm states we must impose
conditions which are expressed as the lower bounds on the energy E0 relative to the
spin s. We give the results in the following [21]:

1. For s ≥ 1, then E0 ≥ s+ 1.
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When E0 = s + 1, the corresponding representation is massless and the states are in-
deed zero-norm, while for E0 > s+ 1 no zero-norm states occur, so the representation
is massive.

2. For s = 1/2, then E0 ≥ 1.
In this case the zero-norm states occur for E0 = 3/2 and E0 = 1. The first value is a
massless representation, while the latter corresponds to a so called Dirac singleton for
which no field-theoretic interpretation has been found. It is called singleton because
we have only one state for a given value of spin. In addition, such representation has
no counterpart in the Poincaré case.

3. For s = 0, then E0 ≥ 1/2.
The zero-norm states are found for the special values E0 = 1, 2 which yield the standard
massless representation, and E0 = 1/2 is again a Dirac singleton where again we are
left with just one state for every spin value, with no counterpart in the Poincaré case
and no field theory interpretation.

B.2 Mass in Anti-de Sitter Spacetime

To make contact between the properties of the unitary irreducble representation of
SO(3, 2) and the physical mass of a field, it is important to establish a relation between
the D’Alembertian in anti-de Sitter space, i.e. �adS ≡ DaDa, and the Casimir operator
C2 defined in (B.5) of the isometry group. For that purpose, let us first look at a field
equation described by the following wave equation:

(−�adS + bs)ϕ(s)(x) = m2
s ϕ(s)(x) , (B.9)

where bs is a constant and ms is the physical mass for a particle with spin s. In the
following we derive the equation (B.9) for s = 0, 1

2 , 1,
3
2 [21]:

i) s = 0 .
Let us consider the Klein-Gordon equation in general curved spacetime

(−�+
R

6
)ϕ(0)(x) = m2

0 ϕ(0)(x) . (B.10)

Since we are dealing with anti-de Sitter spacetime with constant scalar curvature R =
12`2, (B.10) takes the form

(−�adS + 2`2)φ(x) = m2
0 φ(x) . (B.11)

ii) s = 1
2 .

For spin-1
2 fermion, (B.9) can be obtained as follows. We start with the Dirac equation

(−iγaDa +m 1
2
)χ = 0. Then, we evaluate (−iγaDa +m 1

2
)(−iγaDa −m 1

2
)χ = 0, which

gives rise to the wave equation

(−�adS −
1
2
γab[Da, Db]−m2

1
2

)χ(x) = 0 . (B.12)
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Inserted [Da, Db]χ = 1
2`

2γabχ into (B.12), we obtain

(−�adS + 3`2)χ(x) = m2
1
2

χ(x) . (B.13)

iii) s = 1 .
The equation of motion of a gauge boson Aa is given by

Da(DbAa −DaAb) = m2
1Ab . (B.14)

Imposing the Lorentz condition DaAa = 0, we can write (B.14) as

(−�adSAb −RacabAc) = m2
1Ab . (B.15)

In anti-de Sitter spacetime we have Rabcd = −`2(δac δ
b
d−δad δbc), so (B.15) can be simplified

as
(−�adS + 3`2)Ab = m2

1Ab . (B.16)

iv) s = 3
2 .

The dynamical of a spin-3
2 fermion is described by the Rarita-Schwinger equation

εabcdγ5γb(Dc +
i
2
` γc)ψd = m 3

2
γad ψd . (B.17)

Imposing the conditions Daψa = γaψa = 0, then (B.17) reduces to the Dirac equation

−iγaDaψd = (m 3
2
− `)ψd . (B.18)

Using the same procedure as spin-1
2 fermion, one obtains

(−�adS −
1
4
γceRabceγab)ψd + γabRedab ψe = (m 3

2
− `)2ψd , (B.19)

which can be simplified as

(−�adS + 4`2)ψd = (m 3
2
− `)2ψd . (B.20)

To summarize, below we collect bs for s = 0, 1
2 , 1,

3
2 :

b0 = 2` , b 1
2

= 3`2 , b1 = 3`2 , b 3
2

= 4`2 . (B.21)

In addition, the operator�adS is a second order invariant differential operator, i.e. it
is invariant along the isometries generated by the SO(3, 2) Killing vectors. Therefore,
since we have only one Casimir operator, it must be C2(�adS) ∼ �adS. Using the
characteristic of the massless multiplet described in the previous section, we find that
the physical mass m2

s can be written as [21]1

m2
s

`2
= C2 − 2(s2 − 1) + δs, 3

2
= E0 (E0 − 3)− s2 + s+ 2 + δs, 3

2
, (B.22)

1Note that the additional term δs, 32
is introduced in order to get the correct (B.9) for Rarita-

Schwinger field.
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where

δs, 3
2

=


1 for s = 3

2
.

0 for s 6= 3
2

(B.23)

Below, we list the physical mass for s = 0, 1
2 , 1,

3
2 :

m2
0

`2
= (E0 − 2)(E0 − 1) ,

m2
1
2

`2
= E0 (E0 − 3) +

9
4

= (E0 −
3
2

)2 ,

m2
1

`2
= (E0 − 2)(E0 − 1) , (B.24)

(m 3
2
− `)2

`2
= E0 (E0 − 3) +

5
4

+ 1 = (E0 −
3
2

)2 .

B.3 Anti-de Sitter Superalgebra

As in Minkowski case, the supersymmetry algebra in anti de-Sitter space also admits
a Z2 graded structure. The SO(3, 2) algebra (B.4) together with the following algebra

{QÂ, QB̂} = −2
(

(γC)aPa + `(γC)ab Jab
)
δÂB̂ − 4C ZÂB̂ ,

[Pa, QÂ] = −` γaQÂ ,

[Jab, QÂ] = − i
2
γabQ

Â , (B.25)

[ZÂB̂, QĈ ] =
`

4
(
δÂĈQB̂ − δB̂ĈQÂ

)
,

[ZÂB̂,ZĈD̂] = `
(
δB̂ĈZÂD̂ + δÂD̂ZB̂Ĉ − δB̂D̂ZÂĈ − δÂĈZB̂D̂

)
,

forms an anti-de Sitter superalgebra which is usually called OSp(4/N) superalge-
bra [21]. Its Lie subalgebra is SO(2, 3) × SO(N). Additionally the supercharges QÂ

transform under SO(3, 2) as a four dimensinal spinor and under SO(N) as a vector.
From the last equation in (B.25) we see that the antisymmetric ZÂB̂ form an SO(N)
algebra rather than being supersymmetrically invariant. Unlike in the Minkowski case,
one cannot set the SO(N) generators ZÂB̂ to zero for N -extended supersymmetry
since the SO(N) group belongs to the Lie subalgebra of the superalgebra OSp(4/N).
However, setting ZÂB̂ to zero would reduce the superalgebra OSp(4/N) to OSp(4/1)
which is the minimal supersymmetry, i.e. N = 1 supersymmetry in anti-de Sitter space.
Furthermore, as the cosmological constant Λ0 → 0, then the first generator in (B.3)
becomes singular. In this case we regain the supersymmetry algebra in the Minkowski
case (1.4) and the SO(N) generators ZÂB̂ become the central charges ZÂB̂ which are
supersymmetric invariants.

Furthermore, the squared mass operator P aPa is no longer a supersymmetric Casimir
operator with respect to the OSp(4/N) superalgebra. This implies that the particle
spectrum in a supermultiplet is not degenerate in mass. We discuss this feature in
detail by giving example for Wess-Zumino multiplets (see next section).

Next, we construct the supermultiplets in anti-de Sitter space. To derive the struc-
ture of the supermultiplets we begin by choosing a gamma matrix basis. For reasons
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of convenience we do not take the same basis in (1.9), rather we adopt the following
convention

γ0 =
(
−1l 0
0 1l

)
, γx =

(
0 σx

−σx 0

)
,

γ5 =
(

0 1l
1l 0

)
, (B.26)

which corresponds to an exchange of γ0 with −γ5. In this basis the charge conjugation
matrix is given by

C =
(

0 iσ2

iσ2 0

)
, (B.27)

and we write the decomposition of the supercharges QÂ as

QÂ =

(
Q̃Â+
Q̃Â−

)
. (B.28)

Also the commutation relation between the supercharges QÂ and the Hamiltonian H
in the supersymmetry algebra (B.25) can be written down as

[H, Q̃Â±] = ±1
2
Q̃Â± . (B.29)

It appears that Q̃Â+ like J+
x is a raising operator for the energy eigenvalue in addition

to the spin. Differently from J+
x , however, Q̃Â+ raises the energy eigenvalue by a half

unit rather than a unit. Moreover Q̃Â+ is an SO(N) vector.
To build up a unitary irreducible representation of OSp(4/N) we introduce a mul-

tiplet of vacuum states |E0, s,Z〉 which are annihilated not only by J−x but also by all
the Q̃Â−, i.e. Q̃Â−|E0, s,Z〉 = 0, where E0 is, as usual, the eigenvalue of H, s is the
spin, and Z is the quantum numbers of the SO(N) representation. Furthermore, from
the anticommutation relation in (B.25) it follows that all even symmetric combination
of the operators Q̃Â+ can be expressed through the even elements of the OSp(4/N)
superalgebra, namely the generators of SO(3, 2) × SO(N). Therefore applying such
combinations to the vacuum state we simply build up the the unitary irreducible rep-
resentation D(E0, s) × Z of SO(3, 2) × SO(N). Such a representation is one of the
finite number of particles into which the OSp(4/N) irreducible representation breaks
up. Henceforth we suppress SO(N) labels Z for simplicity. To find the other particles
D(E′0, s

′) which sit with D(E0, s) in the same multiplet, we just need to consider the
action on the vacuum state of the antisymmetric combinations of Q̃Â+ operators. Then
there are C2N

n at level n and the dimension of the representation is given by 22N .
The resulting OSp(4/N) supermultiplets are of the form

D(E(1)
0 , s(1))⊕ ....⊕D(E(r)

0 , s(r)) , r <∞ , (B.30)

and additionally, in general, we shall have E(1)
0 6= E

(2)
0 6= ... 6= E

(r)
0 so that the particles

within the same supermultiplet having different energy labels also have different mass.
This is because the mass squared operator P aPa is not supersymmetric invariant. Fur-
thermore the supermultiplets in (B.30) are also constrained by the energy label E0 in
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order for no negative-norm states to be present in the spectrum. This problem can be
solved by expressing the energy eigenvalue E0 relative to the spin s and the SO(N)
quantum number Z. Also there are zero-norm states related to the critical value of
E0 which can be decoupled producing a shortening of the multiplet. For N ≥ 2, these
are the short massive representations where E0 is related in a convenient way to the
SO(N) quantum numbers. These short representation are somehow the counterpart of
the Poincaré massive multiplet with central charge.

Here, we just give the results for the minimal N = 1 supermultiplet in anti-de Sitter
space which is the case relevant for our analysis in chapter four. In N = 1 case, there
is no SO(N) group, so the vacuum state is labeled only by E0 and by its spin s. Thus
the OSp(4/1) supermultiplets are [59]

1. Wess-Zumino multiplets (E0 >
1
2)

D(E0, 0)⊕D(E0 +
1
2
,
1
2

)⊕D(E0 + 1, 0) , (B.31)

2. Massless higher spin multiplets (E0 = s+ 1, s ≥ 1
2)

D(s+ 1, s)⊕D(s+
3
2
, s+

1
2

) , (B.32)

3. Massive higher spin multiplets (E0 > s+ 1, s ≥ 1
2)

D(E0, s)⊕D(E0 +
1
2
, s+

1
2

)⊕D(E0 +
1
2
, s− 1

2
)⊕D(E0 + 1, s) , (B.33)

4. The Dirac singleton

D(
1
2
, 0)⊕D(1,

1
2

) . (B.34)

Apart from the Dirac singleton which has no counterpart in the Poincaré case, we see
that the particle content is perfectly the same between the OSp(4/1) and the N = 1
Poincaré multiplets. However, the latter case the spectrum is degenerate in mass.
For the massless multiplet, i.e. (B.32) and massless Wess-Zumino multiplet (see next
section), we have the same picture as in the Minkowski space.

B.4 Example: Wess-Zumino Multiplet

To make the above supermultiplet clear, we discuss here in detail the Wess-Zumino
multiplet including its mass relation and construct a simple Lagrangian in order to see
the difference between rigid supersymmetry in anti-de Sitter and Minkowski spacetimes.

Let us first discuss about the mass relation for Wess-Zumino multiplet (B.31). Using
the mass formula (B.24) and replacing the energy labels E0 by, E0 + 1 for real scalar
0+, E0 for real pseudoscalar 0−, and E0 + 1

2 for spin-1
2 fermion, we have then

m2
0+ = `2E0 (E0 − 1)

m2
0− = `2(E0 − 2)(E0 − 1) (B.35)
m2

1
2

= `2(E0 − 1)2

for E0 >
1
2 . We see that for E0 = 1 we obtain a massless Wess-Zumino multiplet in

anti-de Sitter space which is the same as in Minkowski space.
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Furthermore, one can check that the masses in (B.35) satisfy the following sum rule

m2
0+ +m2

0− − 2m2
1
2

= 0 . (B.36)

This is an example of a more general relation satisfied by the mass of any supersym-
metric theory in an unbroken phase [54]

StrM2 =
∑
s

(−1)2s(2s+ 1)m2
s = 0 , (B.37)

where Str denotes the supertrace of the squared mass matrix.
Now we construct the Lagragian for the Wess-Zumino multiplet in anti-de Sitter

space. Let us first consider the massless case. Due to its spin content, the free La-
grangian of the on-shell massless Wess-Zumino multiplet in anti-de Sitter space should
have form [60,61]

L =
1
2
DaADaA+

1
2
DaBDaB +

i
2
ζ̄γaDaζ + `2

(
A2 +B2

)
, (B.38)

where (A,B, ζ) are a scalar, a pseudoscalar, and a single Majorana fermion respec-
tively. The derivative Da is the anti-de Sitter covariant derivative and acts on scalar as
(DaA,DaB) = (∂aA, ∂aB) and Daζ = ∂aζ − 1

4〈ω
bc
a 〉γbcζ. The supersymmetry transfor-

mations of the fields leaving invariant (B.38) are

δA = ε̄ζ , δB = −iε̄γ5ζ ,

δζ = −iγaDa(A+ iγ5B)ε− `(A+ iγ5B)ε , (B.39)

where ε is a Killing spinor satisfy the Killing spinor equation

(Da +
i
2
` γa)ε = 0 . (B.40)

Unlike in the Minkowski case, the appearing new term in the free model (B.38) is
caused in order for maintaining invariance under the supersymmetry transformation
(B.39) and correspondingly, by the fact that the spinor parameter ε is a Killing spinor.

Indeed, as the cosmological constant Λ0 → 0, we retrieve the Lagrangian and the
supersymmetry transformation of the Wess-Zumino multiplet constructed in the previ-
ous section. Furthermore, the Killing spinor equation (B.40) reduces to ∂µε = 0 whose
solution is a constant spinor. Thus rigid supersymmetry in general is supersymmetry
which admits Killing spinor [60,58].

With the above example, one can further generalize to the massive case which can
be written down as [60]

L1 =
1
2
DaADaA+

1
2
DaBDaB +

i
2
ζ̄γaDaζ

−1
2

(m2 +m`− 2`2)A2 − 1
2

(m2 −m`− 2`2)B2 − 1
2
mζ̄ζ , (B.41)

together with its supersymmetry transformation

δA = ε̄ζ , δB = iε̄γ5ζ ,

δζ = −iγaDa(A+ iγ5B)ε− `(A+ iγ5B)−m(A− iγ5B)ε . (B.42)
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Comparing (B.38) and (B.41), we see that the parameter m in the Lagrangian (B.41)
is related to the mass m2

0+ ,m
2
0− ,m

2
1
2

by the formulae

m2
0+ = m(m+ `) ,

m2
0− = m(m− `) , (B.43)
m2

1
2

= m2 .



Appendix C

More on N = 2 Supergravity

In this section we give some additional facts about N = 2 supergravity. The homoge-
neous symmetric special and quaternionic Kähler manifolds are listed. In addition, the
gauged N = 2 Lagragian up to four-fermion terms and the supersymmetry transfor-
mation of the field content are written down.

C.1 Special Kähler Geometry

nV Coset Manifold

1 SU(1,1)
U(1)

n SU(n,1)
SU(n)×U(1)

n+ 1 SU(1,1)
U(1) ⊗

SO(n,2)
SO(n)×SO(2)

6 Sp(6,IR)
U(3)

9 U(3,3)
U(3)×U(3)

15 SO∗(12)
U(6)

27 E7(−26)

E6×SO(2)

Table C.1: Homogeneous Symmetric Special Kähler Manifold

Useful formulae in special Kähler geometry

FΛ = NΛΣX
Σ ,

Dj̄F̄Λ = NΛΣDj̄X̄
Σ , (C.1)
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gij̄fΛ
i f̄

Σ
j̄ = −1

2
(I−1)ΛΣ − L̄ΛLΣ ,

∇i fΛ
j = iCijkgkl̄f̄Λ

l̄ , (C.2)

where

DiX
Λ = ∂iX

Λ +KV,iXΛ ,

DiFΛ = ∂iFΛ +KV,iFΛ ,

IΛΣ = ImNΛΣ ,

Cijk = fΛ
i f

Σ
j f

Γ
k FΛΣΓ .

C.2 Quaternionic Kähler Geometry

nH Coset Manifold

n lHP (n) = Sp(2n,2)
Sp(2n)×Sp(2)

n X(n) = SU(n,2)
SU(n)×SU(2)×U(1)

n Y (n) = SO(n,4)
SO(n)×SO(4)

2 G2
SO(4)

7 F4
Sp(6)×Sp(2)

10 E6
SU(6)×SU(2)

16 E7
SO(12)×SU(2)

28 E8
E7×SU(2)

Table C.2: Homogeneous Symmetric Quaternionic Kähler Manifold

Note that X(2) ∼= Y (2).

C.3 Gauged N = 2 Lagrangian

The gauged N = 2 Lagrangian up to 4-fermion terms

LN=2 = −1
2
R+ gij̄∇µzi∇µz̄ ī + huv∇µqu∇µqv +

εµνλσ√
−g

(
ψ̄Aµ γσ∇νψAλ − ψ̄Aµγσ∇νψAλ

)



C.3. GAUGED N = 2 LAGRANGIAN 55

− i
2
gij̄

(
λ̄iAγµ∇µλj̄A + λ̄j̄Aγ

µ∇µλiA
)
− i

(
ζ̄αγµ∇µζα + ζ̄αγ

µ∇µζα
)

+ i
(
N̄ΛΣF

−Λ
µν F

−Λµν −NΛΣF
+Λ
µν F

+Λµν
)

+ {−gij̄∇µz̄ īψ̄
µ
Aλ

iA

− 2UAαu ∇µquψ̄
µ
Aζα + gij̄∇µz̄j̄ λ̄iAγµνψAν + 2UAαu ∇µquζ̄αγµνψAν + h.c.}

+ {F−Λ
µν IΛΣ(4LΣψ̄AµψBνεAB − 4if̄Σ

ī λ̄
ī
Aγ

νψµBε
AB

+
1
2
∇ifΣ

j λ̄
iAγµνλjBεAB − LΣζ̄αγ

µνζβC
αβ) + h.c.}

+ [2SABψ̄Aµ γ
µνψBν + igij̄W

iABλ̄j̄Aγ
µψµB + 2iNA

α ζ̄
αγµψAµ

+Mαβ ζ̄αζβ +Mα
iAζ̄αλ

iA +MiA|lBλ̄
iAλlB + h.c.]− V N=2(z, z̄, q) , (C.3)

The N = 2 Scalar Potential

V N=2(z, z̄, q) =
(
gij̄k

i
Λk

j̄
Σ + 4huvkuΛk

v
Σ

)
L̄ΛLΣ +

(
gij̄fΛ

i f̄
Σ
j̄ − 3L̄ΛLΣ

)
P xΛP

x
Σ . (C.4)

Supergravity transformation rules of the Fermi fields

δψAµ = D̂µεA + iSABγµεB + εABT
−
µνγνε

B ,

δλiA = i∇µziγµεA +G−iµνγ
µνεABεB +W iABεB , (C.5)

δζα = iUBβu ∇µquγµεAεAB Cαβ +
√

2NA
α εA ,

where D̂µεA = ∂µεA− 1
4γab ω

ab
µ εA+ i

2Q̂µεA+ ω̂ B
µ|A εB, and also T−µν = 2i ImNΛΣL

ΣF−Λ
µν

and G−iµν = −gij̄ f̄Λ
j̄

ImNΛΣF
−Σ
µν .

Supergravity transformation rules of the Bose fields

δeaµ = −iψ̄AµγaεA − iψ̄AµγaεA ,

δAΛ
µ = 2L̄Λψ̄AµεB ε

AB + 2L̄Λψ̄Aµ ε
BεAB

+ ifΛ
i λ̄

iAγµε
BεAB + if̄Λ

ī λ̄
ī
AγµεB ε

AB (C.6)

δzi = λ̄iAεA ,

δz̄ ī = λ̄īAε
A ,

δqu = UuAα(ζ̄αεA + CαβεAB ζ̄βεB) .



Appendix D

Spontaneous N = 1→ N = 0
SUSY Breaking and the
Super-Higgs Effect

In this appendix we discuss spontaneous N = 1→ N = 0 supersymmetry breaking for
arbitrary cosmological constant in the absence of vector multiplets. We start by review-
ing N = 1 supergravity and also introduce the notation used in our analysis. At the
end, we discuss the super-Higgs effect for spontaneous N = 1→ N = 0 supersymmetry
breaking.

D.1 Short Review of N = 1 Supergravity

In four dimensions the spectrum of a generic N = 1 theory consists of a gravitational
multipet, nv vector multiplets and nc chiral multiplets. These multiplets are decom-
posed of the following component fields:

• a gravitational multiplet

(gµν , ψ1
µ) , µ = 0, ..., 3 . (D.1)

This multiplet consist of the graviton gµν and a gravitino ψ1
µ. For the gravitino

ψ1
µ, ψ1µ and the upper or lower index denotes left or right chirality respectively,

see appendix A.

• nv vector multiplets

(AΛ0
µ , λΛ0) , Λ0 = 1, ..., nv . (D.2)

Each vector multiplet contains a gauge boson AΛ0
µ and a gaugino λΛ0 .

• nc chiral multiplets

(χi, zi) , i = 1, ..., nc . (D.3)

Each chiral multiplet consist of a spin-1
2 fermion χi and a complex scalar zi.
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The complex scalars (z̄ ī, zi) span a Hodge-Kähler manifold with a metric gij̄ = ∂i∂j̄Kh
where the Kähler potential Kh is an arbitrary real function [22,62,63].

The N = 1 supergravity Lagrangian which can be written, up to four-fermions
terms and in the absence of the vector multiplets [62,63]1:

LN=1 = −1
2
R+ gij̄∂µz

i∂µz̄ ī +
εµνλσ√
−g

(
ψ̄1
µγσ∇̃νψ1λ − ψ̄1µγσ∇̃νψ1

λ

)
− i

2
gij̄

(
χ̄iγµ∇µχj̄ + χ̄j̄γµ∇µχi

)
− gij̄

(
ψ̄1νγ

µγνχi∂µz̄
j̄ + ψ̄1

νγ
µγνχj̄∂µz

i
)

+W(z, z̄) ψ̄1
µγ

µνψ1
ν + W̄(z, z̄) ψ̄1µγ

µνψ1ν + igij̄
(
N̄ j̄χ̄iγµψ1

µ +N iχ̄j̄γµψ1µ

)
+Mijχ̄

iχj + M̄īj̄ χ̄
īχj̄ − V N=1(z, z̄) , (D.4)

whereW(z, z̄)(W̄(z, z̄)) can be written in terms of an (anti)-holomorphic superpotential
function of W (z)(W̄ (z̄)),

W(z, z̄) = e
1
2
Kh(z,z̄)W (z) ,

W̄(z, z̄) = e
1
2
Kh(z,z̄)W̄ (z̄) , (D.5)

with Kh(z, z̄) is a Kähler potential of the chiral multiplets, and the quantities N i,Mij

are given by:

N i = gij̄∇̄j̄W̄(z, z̄) ,

Mij =
1
2
∇i∇jW(z, z̄) . (D.6)

On the other hand, the N = 1 scalar potential can be expressed in terms of W(W̄) as

V N=1(z, z̄) = gij̄∇iW ∇̄j̄W̄ − 3WW̄ , (D.7)

where∇iW = ∂iW+ 1
2Kh,iW. The supersymmetry transformation laws up to 3-fermion

terms leaving invariant (D.4) are:

δψ1µ = D̃µε1 +
i
2
W(z, z̄) γµ ε1 ,

δχi = i∂µziγµε1 +N iε1 , (D.8)
δeaµ = −iψ̄1µγ

aε1 − iψ̄1µγaε1 ,

δzi = χ̄iε1 ,

where D̃µε1 = ∂µε1 − 1
4γab ω

ab
µ ε1 + i

2Qh,µε1, and Qh,µ is a U(1)-connection with respect
to Kähler potential Kh.

D.2 N = 1→ N = 0 Supersymmetry Breaking

In this section we demand that the ground states respect fully Lorentz invariance which
implies that the vacuum expectation value of all fermions and ∂µzi are set to zero. Thus
the supersymmetry variation (D.8) becomes

〈δψ1µ〉 = Dµε1 +
i
2
〈W(z, z̄)〉 γµ ε1 ,

1Many articles and books review N = 1 supergravity see, for example [22], but the convention used
in this thesis follows rather closely references [62,63](see Appendix A).
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〈δχi〉 = 〈N i〉 ε1 , (D.9)
〈δeaµ〉 = 〈δzi〉 = 0 ,

The ground states require〈
∂V (N=1)

∂zi

〉
= 〈N i∇jNi〉 − 2〈W̄Nj〉 = 0 , (D.10)

where Ni = ∇iW(z, z̄) and in addition, assuming that the potential (D.7) evaluated at
the minimum is Λ0, one gets

〈N iNi〉 = 3〈WW̄〉+ Λ0 , (D.11)

where Λ0 is the cosmological constant. Thus, in this case we have three possible ground
states, namely, Minkowski ground states (Λ0 = 0), anti-de Sitter ground states (Λ0 <
0), and de Sitter ground states (Λ0 > 0).2

Let us now consider the fermionic part of the Lagrangian (D.4) around the ground
states

L′f =
εµνλσ√
−g

(
ψ̄1
µγσDνψ1λ − ψ̄1µγσDνψ1

λ

)
− i

2
gij̄

(
χ̄iγµDµχj̄ + χ̄j̄γµDµχi

)
+ 〈W(z, z̄)〉 ψ̄1

µγ
µνψ1

ν + 〈W̄(z, z̄)〉 ψ̄1µγ
µνψ1ν (D.12)

+i
(
〈Ni〉 χ̄iγµψ1

µ + 〈N̄ī〉 χ̄īγµψ1µ

)
+ 〈Mij〉 χ̄iχj + 〈M̄īj̄〉 χ̄īχj̄ ,

where Dµ = ∂µ − 1
4γab 〈ω

ab
µ 〉 is the anti-de Sitter or de Sitter covariant derivative and

reduced to ordinary partial derivative if the ground states are Minkowski. As it has been
discussed in the sections 3.5 and 4.3, the mixing spin-1

2 fermion χi and the gravitino
field ψ1

µ term in the mass-like term (D.12) plays an important role to define a Goldstone
fermion

η1 = 〈Ni〉χi . (D.13)

Using the second equation in (D.9), the supersymmetry transformation of η1 evaluated
at the ground states has form

〈δη1〉 = (3〈WW̄〉+ Λ0)ε1 . (D.14)

which indicates that supersymmetry is spontaneously broken. As the Goldstone fermion
η1 transform by a shift, it has a consequence that it can be eliminated from the theory
by a suitable local supersymmetry transformation of the gravitino ψ1

µ [22].
We define then the physical fermions χi⊥ as

χi⊥ = χi − 〈N i〉
3〈WW̄〉+ Λ0

η1 . (D.15)

which cannot be removed from the theory by any local supersymmetry transformation
of the gravitino ψ1

µ, because
〈δχi⊥〉 = 0 . (D.16)

2 The stability of these ground states have been studied in reference [54].
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Let us write the Lagrangian (D.12) in terms of the Goldstone mode η1 and the physical
fermions

L′f =
εµνλσ√
−g

(
ψ̄1
µγσDνψ1λ − ψ̄1µγσDνψ1

λ

)
− i

2
gij̄

(
χ̄i⊥γ

µDµχj̄⊥ + χ̄j̄⊥γ
µDµχi⊥

)
− i

2(3〈WW̄〉+ Λ0)
(
η̄1γ

µDµη1 + η̄1γµDµη1

)
+ 〈W〉 ψ̄1

µγ
µνψ1

ν

+ 〈W̄〉 ψ̄1µγ
µνψ1ν + iη̄1γ

µψ1
µ + iη̄1γµψ1µ (D.17)

+
1

(3〈WW̄〉+ Λ0)
(
〈W̄〉 η̄1η1 + 〈W〉 η̄1η1

)
+ 〈M(Λ0)

ij 〉 χ̄
i
⊥χ

j
⊥

+〈M̄(Λ0)

īj̄
〉 χ̄ī⊥χ

j̄
⊥ ,

where
〈M(Λ0)

ij 〉 = 〈Mij〉 −
〈NiNj〉

3〈WW̄〉+ Λ0
〈W̄〉 , (D.18)

is the physical mass of the fermions χi⊥ for arbitrary cosmological constant (denoted by
superscript (Λ0)). Using (D.10) one can shows that the physical mass (D.18) satisfies

〈M(Λ0)
ij N j〉 = 0 , (D.19)

which means that the Goldstone fermion is already split off from the physical mode.
Now, let us consider the supersymmetry variation of ψ1

µ in (D.9) and of η1 (D.14).
The equation (D.14) means that the Goldstone fermion η1 can be viewed as a super-
symmetry transformation parameter and further, we have a replacement

ε1 →
1

(3〈WW̄〉+ Λ0)
η1 . (D.20)

Thus, the local supersymmetry transformation of the gravitino ψ1
µ which removes the

Goldstone fermion η1 is given by

ψ1
µ → ψ1

µ +
1

3〈WW̄〉+ Λ0

(
Dµη1 +

i
2
〈W̄〉 γµ η1

)
. (D.21)

This transformation would not be defined if 3〈WW̄〉 = −Λ0, which is precisely the con-
dition for ψ1

µ to be invariant under supersymmetry in these backgrounds, i.e. Minkowski
or anti-de Sitter backgrounds [53,54]. Then the supersymmetry transformation needed
to eliminate the Goldstone fermion would be singular and in fact the definition of the
physical fermions (D.15) would not be possible as it would diverge. However, such con-
dition cannot occur in de Sitter ground states. Our argument is as follows. From (D.11)
we see that in order to get the unbroken supersymmetry one should have 〈N i〉 = 0.
But since we have Λ0 > 0, so it is impossible to have 〈N i〉 = 0. Thus, in de Sitter
ground states supersymmetry is always broken.

Finally, to see the super-Higgs we insert the above gauge transformation to the
Lagrangian (D.17), then we arrive at

L′f =
εµνλσ√
−g

(
ψ̄1
µγσDνψ1λ − ψ̄1µγσDνψ1

λ

)
− i

2
gij̄

(
χ̄i⊥γ

µDµχj̄⊥ + χ̄j̄⊥γ
µDµχi⊥

)
+

iΛ0

(3〈WW̄〉+ Λ0)2

(
η̄1γ

µDµη1 + η̄1γµDµη1

)
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+
1

(3〈WW̄〉+ Λ0)2
εµνλσ

(
D̄µη̄1γσ[Dν ,Dλ]η1 + [D̄µ, D̄ν ]η̄1γλDση1

)
+

Λ0

(3〈WW̄〉+ Λ0)
(
iη̄1γ

µψ1
µ + iη̄1γµψ1µ

)
(D.22)

+
1

(3〈WW̄〉+ Λ0)
εµνλσ

(
ψ̄1
µγσ[Dν ,Dλ]η1 + [D̄µ, D̄ν ]η̄1γλ ψ1σ

)
+

1
(3〈WW̄〉+ Λ0)2

{
− Λ0 (〈W̄〉 η̄1η1 + 〈W〉 η̄1η1)

+
i
4
εµνλσ(−〈W̄〉 η̄1γµν [Dλ,Dσ]η1 + 〈W〉 [D̄µ, D̄ν ]η̄1 γλση

1)
}

+ 〈W〉 ψ̄1
µγ

µνψ1
ν + 〈W̄〉 ψ̄1µγ

µνψ1ν + 〈M(Λ0)
ij 〉 χ̄

i
⊥χ

j
⊥ + 〈M̄(Λ0)

īj̄
〉 χ̄ī⊥χ

j̄
⊥ .

Now using the following equations

[Dµ,Dν ]η1 = −Λ0

6
γµν η1 ,

[D̄µ, D̄ν ]η̄1 =
Λ0

6
η̄1γµν , (D.23)

where D̄µη̄1 = ∂µ η̄1 + 1
4 η̄1γab 〈ωabµ 〉, the Lagrangian (D.22) takes then simply form as

L′f =
εµνλσ√
−g

(
ψ̄1
µγσDνψ1λ − ψ̄1µγσDνψ1

λ

)
− i

2
gij̄

(
χ̄i⊥γ

µDµχj̄⊥ + χ̄j̄⊥γ
µDµχi⊥

)
+W ψ̄1

µγ
µνψ1

ν + W̄ ψ̄1µγ
µνψ1ν +M(Λ0)

ij χ̄i⊥χ
j
⊥ + M̄(Λ0)

īj̄
χ̄ī⊥χ

j̄
⊥ . (D.24)

From the resulting Lagrangian (D.24) one can see that the gravitino ψ1λ eats the
Goldstone fermion η1 and then becomes massive. It has four instead of two degrees
of freedom. Thus we have seen that the super-Higgs effect occurs if the N = 1 local
supersymmetry is spontaneously broken.
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