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4 Inhaltsverzeichnis

Abstract.-
The understanding of elementary excitations in many-body correlated systems is of a fundamental im-
portance for a variety of branches in physics [1, 2, 3, 4, 5]. This work gives an overview on recent
theoretical treatments of correlated electronic collisions in non-relativistic many-body systems. In par-
ticular, concepts are presented that unravel the role of electronic correlation in finite few-body (atomic)
systems and large extended systems, such as large molecules, metal clusters, and surfaces. For a finite
system consisting oV correlated particles a method is suggested for the derivation of correlated many-
body wave functions. Furthermore, a Green’s function concept is introduced to investigate correlated
electronic excitations as well as to trace down effects related to the thermodynamic and to the collective
behaviour of finite systems. For the treatment of one and two-particle excitations in extended electro-
nic systems, such as in solids and surfaces, the Green’s function method as developed in field theory is
utilized and a procedure is presented for the numerical calculations of the single and the two-particle
Green’s functions. The predictions of the theoretical concepts are contrasted with available experimental
findings.



1 Einleitung

Die elektronische Struktur der Materie birgt den Gebel zum Vergindnis einer Reihe wich-

tiger Materialeigenschaften, wie z. B. der elektrischen Béitjkeit, des Magnetismus oder

des optischen Verhaltens [5]. Ein verbreiteter und auch in vieddle-befriedigender Ansatz

zur Beschreibung der Elektronen im Fasiker geht davon aus, dass die Elektronenbewegung
im Rahmen einer Einteilchentheorie beschreibbar ist [2, 6]. Die Korrelationen der Elektronen
fuhren dann zu einer Renormierung der Einteilcheneigenschaften [7, 8]. Andererseits hat sich
gezeigt, dass die Wechselwirkung der Elektronen miteinandetié Erkarung einer Reihe

von Ptanomenen, wie beispielsweise der Supraleitung, dem Metall-Isdititergang oder

dem Ferromagnetismus uri@sklich ist [5]. Vor diesem Hintergrund sind theoretische und ex-
perimentelle Methoden, die verschiedene Aspekte der elektronischen Korrelation sowie deren
Einfluss untersuchen, von grof3em Interesse.

Fur ein N-Teilchen-System liefert die GReU = En_o — 2EN_; einen ersten Ein-
blick in die Strke der Korrelation. Dabei sinfly_; und E _» die Energien, die notwendig
sind, um dem System ein bzw. zwei Teilchen zu entziehén.uRkorrelierte Teilchen ver-
schwindetl/. Dagegen stellt man experimentell fest, ddssatomare Systeme die qualitative
BeziehungEy_» ~ 3EN_; gilt. Der Grenzibergang vom atomaren Limit bis hin zu ther-
modynamischen, delokalisierten Elektronen-Systemen, bei dépen ~ 2Ey_; zu erwar-
ten ist, wird durch Untersuchungen an Clustern beleuchtet [@lhaéhd @ir kleine Cluster
atomares Verhaltetiberwiegt o ~ 3Ex_1), zeigen grol3e Cluster typische Merkmale
(En—_2 = 2FEN_1) thermodynamischer Systeme [9]. Die Feststellung, dass in einem System
En_o = 2FEN_1, alsoU = 0 gilt, ist aber kein notwendiges Zeicheiirfeine untergeord-
nete Rolle der elektronischen Korrelationen. Denn, im thermodynamischen Grenzwert (also
fur groRes Volumen, grof3e Teilchenzahl und endliche Teilchendichten) treten neue dynami-
sche Erscheinungsformen der elektronischen Wechselwirkung zutagahi®a korrelierte
Fluktuationen in der elektronischen Dichte zum Auftreten ausggpr (Plasma-) Resonan-
zen sowie zu einer charakteristischen Antwort auRere Strungen. Zum Beispiel, wie in
dieser Arbeit dargelegt ist, ist die ionisierende Streuung geladener Teilchen von groRen Me-
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tallclustern hauptechlich durch die kollektive Antwort des Clusters bestimmt, die sich als
eine Abschirmung deau3eren Strung manifestiert. & kleine (atomare) Cluster sind die
Abschirmeffekte vernachksigbar.

Handelt es sich um kleinguBere Strungen bzw. um kleine Anregungen oder Fluktua-
tionen um den Grundzustand, so kann man solche kollektiven Effekte der elektronischen
Korrelation durch die Theorie der linearen Antwort (linear response) bzw. der so genann-
ten random-phase approximation (RPA) theoretisch erfassen. Dagegen wigrdbe Be-
handlung von (ein, zweifach oder mehrfach) hoch-angerejtéreilchen-Systemen andere
Methoden beitigt, die nicht nurEy_; und En_» richtig wiedergeben, sondern auch in der
Lage sind, die korrelierte Dynamik des hoch-angeregten Systems zu beschreiben.

In dieser Arbeit werden Konzepte entworfen, die eine systematische Untersuchung an-
geregter korrelierter Zughde erlauben. Ein Hauptaugenmerk gilt dem Vergleich von end-
lichen (Atomen, Clustern) und thermodynamischen, nicht-relativistischen Systemen (grofRen
Molekilen und Metallclustern sowie Festipern und Oberéichen).

Fur endliche atomarév-Teilchen-Systeme wird eine Methode zur Herleitung korrelier-
ter N-Teilchen-Wellenfunktionen vorgeschlagen, diedie Berechnung von Reaktionswahr-
scheinlichkeiten beitigt werden [10, 11]. Das Verfahren beruht auf eine direkte approxima-
tive Losung der nicht-relativistischen Sékiinger-Gleichung.

Einen Zugang zu thermodynamischen Eigenschaften in korrelierten endlichen Systemen
bietet eine kumulative Greensfunktionsmethode, die hier vorgestellt wird. Diese Methode er-
laubt eine systematische Untersuchung derakigigkeit derV-Teilchen-Greensfunktion so-
wie des Spektrums von der&8ke der Inner-Teilchen-Korrelationen. Im Rahmen der kanoni-
schen Gesamtheit ergibt sich aus diesem Verfahren eine Rekursivfdmaé Zustandssum-
me, aus der das thermodynamische Verhalten des Systems abgeleitet werden kann.

Weiterhin wird gezeigt, wie sich kollektive Effekte auf die Anregungsspektren in einem
endlichen System auswirken und wie dies theoretisch zu erfassen ist. Als Beispiel betrachten
wir die Elektronen-Stof3ionisation vafig,-Molekilen sowie vonL:-Clustern und untersu-
chen die AbRngigkeit der Wirkungsquerschnitte von deioGe der Cluster.

Zur theoretischen Behandlung von Mehrteilchen-Anregung in einem ausgedehnten Sy-
stem, wie bei einem Fesikper oder einer Obeé#the wird die Greensfunktionstheorie in
ihrer feld-theoretischen Formulierung herangezogen. Inshesondere werden die Einteilchen-
und Zweiteilchen-Greensfunktionen diskutiert und neue Methoden zur numerischen Berech-
nung aufgezeigt. Als Anwendung werden die Ein- und Zweiteilchen-Emission von Ober-



flachen untersucht. #Wrend die Einteilchen-Emissionsspektren aussaftéke Informatio-
neniber die elektronische Bandstruktur des Targetmaterials liefern, bietet das Zweiteilchen-
Anregungsspktrum einen detaillierten Einblick in die Energie-, Winkel- und SpiraAdig-

keit der Material-abéingigen Paar-Korrelationsfunktionen. Diese Aussage wird durch nume-
rische Berechnungefif Kupfer-, Nickel- und Wolfram-Targetobeafthen sowie durch einen
entsprechenden Vergleich mit viagbaren experimentellen Befunden untermauert.






2 Wechselwirkende Mehr-Teilchen-Systeme indul3eren Po-
tential

Ziel dieses Kapitels ist die Darlegung einer allgemeinen Methode zur Herleitung von korrelier-
ten Mehrteilchen-Wellenfunktionen. Dazu betrachten wir ein wechselwirkeNdesilchen-
System, das sich in einem externen Potetifibefindet. Wir nehmen weiterhin an, ddssls

eine Summe von Einteilchen -Potentialen dargestellt werden kaanckh.ZjV u;, wobei

u; nur auf das Teilcher wirkt. Die Korrelationen zwischen den Teilchen werden durch eine
paarweise Wechselwirkung; = v;; hervorgerufen.

Zur quantenmechanischen, nicht-relativistischen Beschreibung des Systems wird eine ge-
eignete losung¥ der N-Teilchen-Schidinger-Gleichung bditigt. Da das Mehrteilchen-
Problem (v > 3) in der Regel nicht separabel ist, sind solch&siungen nur @herungs-
weise bekannt. Die @e der approximativen Wellenfunktionef@rgt stark vom Bsungs-
verfahren sowie von den Eigenschaften des betreffenden Zustandes ab. So liefert z.B. die
Dichte-Funktional-Theorie (DFT) [12] @djuate Grundzuahde fir eine Reihe von Syste-
men (Atome, Molekle und kondensierter Materie) [2, 6, 12]. Hingegen sind die angeregten
Zus@inde im Rahmen der konventionellen DFT [12] im Prinzip nicht beschreibbaichmsten
Abschnitt wird ein allgemeines Verfahren zusdung detV-Teilchen-Schidinger-Gleichung
vorgestellt, das die Korrelation der Teilchen ieksichtigt und eine Beschreibung angeregter
Zustnde erlaubt.

2.1 Approximative Losungen der
N-Teilchen-Schidinger-Gleichung

Die Theorie wird im Rahmen der ersten Quantisierung formuliert. Die Symmetrie der Teilchen
wird durch die (Anti)symetrisierung der hergeleiteten Wellenfunktionen wiedergegeben.

Der Einfachheit halber nehmen wir an, dass alle Teilchen die gleiche Masmsitzen.
Die nicht-relativistische, zeit-unabhgige Schidinger-Gleichungifr dasN-Korper-Problem
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hat im Ortsraum die Gestdlit

N N
Ho+ Y uj+ Y vij—E| U(ry, -+ ,ry) =0, (2.1)
=t it
Die Ortskoordinate ; legt die Position des Teilcherisn Bezug auf einen geeignet gatlten
Koordinatenursprung fest (z.B. im Falle eindsElektronenatoms bietet sich der Kern als
eine gute Wahlidr den Ursprung an). Der Operator der kinetischen Endifgidat die Form
Hy=— Zévzl Ay /2m, wobeiA, der Laplacian bzgl. der Koordinate darstellt.
Zur Herleitung desV-Teilchenzustande® (ry,--- ,rx) mit den entsprechenden Rand-
bedingungen machen wir den Ansatz

P(ry, -, rn) = NO(re, -, rn)@rr(re, -+ on)x(rr, - TN). (2.2)

Wie unten dargelegt ist, werden in einem ersten Schritt bekannte Eigenschaften des Systems
durch eine spezielle Form der Funktion&p, ®;; bericksichtigt. Dies bedeutet keine Ein-
schiankung, denn die Funktiog(ry,--- ,ry) hat eine beliebige noch zu bestimmende Ge-
stalt. In Gl. (2.2) ist\ eine Normierungskonstante.

Die Funktion®; wird als die Losung von Gl. (2.1) im Falle unabkhgiger Teilchen, d.h.

N
Ho+ Y uj—E | ®/(ry,-+ ,xy) =0. (2.3)
j=1
Diese Gleichung ist separabel. Diédung®;(ry,--- ,ry) is das Produkt
N
Or(ry,-,rn) =[] &elro)ps(r;), (2.4)
j=1

wobei die Funktioneg,(r,).(r,) aus der Gleichung

[=A/(2m) + ue — €] Eo(re)pe(re) = 0

zu bestimmen sind. Die Gesamtenergie kann somit in der Eyree ), ¢, angegeben wer-
den. Die Art der Randbedingungen wird durch eine geeignete Wahl der Funkijefrein

in Gl. (2.4) beticksichtigt: Im Falle gebundener Systemegidir,) eine asymptotisch expo-
nentiell abfallende Funktion.tF Kontinuum-Probleme is§;(r,) eine ebene Welle und die
Funktiony,(r,) beschreibt dann die Modifikation dieser ebenen Welle aufgrund des Potenti-
alsuy.

Iwenn nicht ausdicklich ervéhnt, werden atomare Einheiten benutzt. Relativistische Korrekturen werden nicht
berucksichtigt.
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Sind die Teilchen stark zum externen Feld gekoppelt> v;;; V i,j € [1, N], so liefert
die Funktion®; einen guten Ausgangspunkt zupdung der Gl. (2.1), denn man kann in
diesem Falle das Gesamtpotential nagly (3, ux) entwickeln und GI. (2.4) als die erste
Naherungu;;/ (>, ux) = 0 erhalten. Werdendhere Ordnungen bétigt, so empfiehlt sich
die Strungstheorie als ein systematischésuingsverfahren zur Behandlung der Teuye

Ein weiterer Extremfall, neben dem Model unabliger Teilchen, ist die Situation, wenn
die Korrelation zwischen den Teilchen sehr stark im Vergleich zur Koppelung zum externen
Feld sind. Dies ist der Fall, wenn; > u;; Vi,j € [1, N]. Um diesem besonderen Umstand
Rechnung zu tragen,atlen wir®;; in der Form

N N
‘I’H(I‘h ce ,I‘N) = lH fe(l‘z)l H Soij(rij)~ (2-5)
=1

j>i=1

The Funktionernp;,;(r;;) sind die Losungeniir die Schodinger-Gl. (2.1) im Falle extrem star-
ker Korrelation zwischen dem Teilcheand dem Teilcheni (v;; > w;, vij > Vmn, VI, m,n #
1, 7), in diesem Fall vereinfacht sich GI. (2.1) zu

(Ho—ﬁ—vij - )gpw ri;) ﬂ (2.6)

Es ist zu beachten, dass i.a. die Funktion (2.5) keine exakte bzw. keine ghterd zur
Ldsung von Gl. (2.1) in Abwesenheit externer Felder (alsa:;f — 0) ist. Der Grund dair

ist, dass die y (N — 1)/2)-Zweiteilchen-Systeme, die in eineVi-Korper-Problem gebildet
werden lbnnen, miteinander verkoppelt sind. Im Rahmen der Theorie des wechselwirken-
den Elektronengases ist wohl bekannt [3], dass ein solches Problem kompliziert ist, und die
Losung bzw. bsungsverfahren von derZ8ke der mitteleren kinetischen Energié,| vergli-

chen mit der potentiellen Energie abigt. So liefert z.B. die $tungstheorie im Falle dichter
Eletronengase einen geeigneten Zugang. Zur Herleitung approximativer Wellenfunktionen f
ein endliches System beliebiger Dichte verfahren wir wie folgt. Man kann zeigen [13], dass

m—1

N
Am H Qoij(rij) = Z Am‘plmH‘pz] + Z A7n30'mn H ©ij + Ama me [1 N]
j>i=1 j>i n=m-+1 j>i

1#£1 J#En
2.7)
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wobei der Differentialoperatod,,, die Gestalt hat

22_: (vale)'( Z vm‘Pmn) H Pij

=1 n=m-+1 ji>i
JF#ni#El
m—1 m—1 N
+ m@lm . Z vm‘pqm H Pij
=1 l#s=1 i>i
sF#£1F£]
N N
+ Z rrL(p'mrL : Z vm<p7m‘) H Pij m e [LN]
n=m-1 t=m+1 i>i
t#n JF#tF#EN

(2.8)

Den Operator, der die Zweiteilchensubsysteme (d.h. im kalle 0) miteinander verkoppelt,
erhalt man durch die Substitution der Funktion (2.5) in GI. (2.1) untefiBlesichtigung der
Relation (2.7). Daraus folgern wir, dass der Term, der die Sepa#hiithindert, die Form

N
A=A, (2.9)

besitzt. Der Mischterm (2.8) ist ein Teil des kinetischen Energieoperators und als séliithes f
asymptotisch wie- r;? ab.

Um die komplette Wellenfunktion (2.2) zu bestimmen, bedarf es einer Bestimmung der
Funktionx(ry, - -+ ,ry). Eine Bestimmungsgleichung é&lbman, wenn die Auditke (2.5,2.4)
in die GIn. (2.2,2.1) eingesetzt werden, was zur Relatibmtf

{HO__Z{ Veln®; + V,In®yg) - Vy
HJ>7, 1 Pij

HVeln®r) - (Vy 111‘1)11)} + E} x(ri, - ,rn) =0. (2.10)

Aus dieser Gleichung ist ersichtlich, dass das weitere Vorgehen von der Form der Funktionen
®; und®;; (und somit vonu,, v;;) abhangt, deren Bestimmung in der Regel keine Schwie-
rigkeiten bereitet.

Der Vorteil der oben skizzierten Methode liegt darin, dass bekannte Aspekte des Problems
in die Losung miteinbezogen werdeirknen. So haben wir durch die obige Wahl vibhund
d;; erreicht, dass 1.) diedsung fir den Fall unab@ingiger Teilchen korrekt wiedergegeben
ist, und dass 2.) alle Zweiteilchen-Potentiale dubgh exakt beticksichtigt sind. Somit ist die
Zweiteilchen-Korrelation explizit in der Theorie enthalten. Mehrteilchen-Kopplungen werden
durch die Gl. (2.10) beschrieben.
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Die hier vorgestellte Methode wurdiérfdie Berechnung von Mehikper-Kontinuumszuanden
eines Systems herangezogen, dasiugeladene Teilchen besteht [13, 11]. Eine Kopie von
der Arbeit [13] ist im Anhang beigéft.






3 Greensfunktionstheorie endlicher Systeme

Mit steigender Teilchenzahl wird die Behandlung korrelierter Systeme komplizierter und neue
Phanomene treten auf, deren Brking einer detaillierten Beschreibung der kollektiven Ei-
genschaften des Systems bedarf. Deswegen ist eine Methode notwendigeditas Wel-
lenfunktionsverfahren hinaus geht und das gesamte Spektrum des Systems beinhaltet. Die
Greensfunktionsmethode (GF) hat si¢in fliesen Zweck als sehr flexibel, effizient und allge-
mein erwiesen. In diesem Kapitel werden wir diese TheadnéNenigteilchen-Systeme kurz
erlautern und eine neue Betrachtungsweiseldirdn. Im Kapitel (5.2) werden wir auf die GF

im Falle unendlich ausgedehnter Systeme eingehen.

Die Hauptschwierigkeiteriii die Theory stammen aus den Inner-Teilchen-Korrelationen,
denn varen die Teilchen unaflngig, so knnte man existierende Stand&slingmethoden
heranziehen und das Verhalten des Systems genau vorhersagen. Aus diesem Grunde wird in
diesem Kapitel eine nicht-perturbative Methode entwickelt [14], die es erlaubt, dikeSt
der Innter-Teilchen-Korrelationeriif eine kanonische Gesamtheit systematisch soweit zu
reduzieren, dass eine Behandlung mit konventionellen Methoden, @iengstheorie oder
Molekular-Feld-Niherung, sinnvoll wird. Dies wird durch eine kumulative Prozedur erreicht,
die ein wechselwirkended-Teilchen-System auf Systeme abbildet, in denen Nur M
Teilchen miteinander korreliert sind, dabeilgt € [1, N — 2]. Das heil3t die Sirke der Kor-
relationsenergie wird schrittweise reduziert.

3.1 Formale Behandlung

Die fundamentale @fe fir die Beschreibung der mikroskopischen Eigenschaften éihes
Korper-Quantumsystems ist die Resolvente des Hamiltonoperators, die auch als der Greens-
operatoiGV) bezeichnet wirdG ") erfilllt die Lippmann-Schwinger-Integralgleichuag™) =

Go + GoUM G wobei G, der Greensoperator eines Referenzsystems\mibneinan-

der unabhngigen Teilchen ist. Eingquivalente Prozedur ist die Benutzung vom so genannten
Ubergangsoperatd@¥), der durch die IntegralgleichurgY) = U®) + UM G, T®) defi-

niert ist. Diese IntegralgleichungeirfG™¥) undT(") sind die Basisiir sbrungstheoretische
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Methoden. |Br N > 3 ist aber die Anwendung dieser Lippmann-Schwinger-Gleichungen
mit zwei wesentlichen Schwierigkeiten behaftet: 1.) Wie in den Arbeiten [15, 16] gezeigt
wurde, liefern die Lippmann-Schwinger-Gleichungéndie Zustandsvektoren keine eindeu-
tige Losung. 2.) Wie Faddeev gezeigt hat [17, 18], ist der Kern dieser Integralgleichungen
K = GoUW) fur N > 3 nicht integrabel, d.h. die NorfiK || = [Tr(K K)]'/2 ist nicht
integrabel. Weiterhin ist der Kerik auch nicht kompakt.

In diesem Abschnitt wird ein neuer Zugang vorgestellt. Wir nehmen an, dass das totale
Potential die Form/™) = S~ v;; besitzt, wobei die Zweiteilchen-Potentialg; an
dieser Stelle nicht auf eine spezielle analytische Form bérkhisind. Der Punkt ist nun,
dass das Potential(N) die Rekursionsformel

N N-1
g 1 ST ulNTY N = ﬁ STAlN T Ak (3.1)
k=1

N —2¢
=1

erfullt, wobei ugN’l) das totale Potential des Systems ist, in d&m- 1 Teilchen mitein-
ander wechselwirken. Der Indek deutet darauf hin, dass das Teilchen mit der Bezeich-
nung j nicht mit dem Rest des Systems Korreliert ist, denn man kann leicht zeigen, dass
uN Y = N Umn, m # j # ngilt. Wie in der im Anhang beigéifgten Arbeit gezeigt

ist [14], kann man die Formel (3.1) heranziehen, um @ineliche Rekursionsformelif den

Ubergangsoperatd (™) sowie fir den Greensoperat6t’¥) herzuleiten. Es gilt amlich
N

TN) _ ZTJ(N_l)’ = [17]\7}7 (3.2)
j=1
wobei sich die Operatoreﬁj(N_l) aus der Matrix-Integralgleichung
T1(N71) t(lzvq) T1(N71)
TZ(N—l) t;N—l) T2(N—1)
: = : + [KWV-1)] : (3.3)
N-1 N-1 N-1
Ty oy Ty
T](VNA) t%vfl) T](VNA)

ergeben. Der OperatmEN’l) ist der Ubergangsoperator eines Systems, in demMu# 1
Teilchen miteinander korreliert sind. Der Kefid (N —)] der obigen Integralgleichungahgt
nur von den reduzierten Operatoméﬁ[_l) [14] ab, es gilt @mlich

0 AN N A
(AR B N
KNV=D] = | Go, (3.4)
(N-1) (N-1) (N-1)
PR o) 0
&Y N
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wobei G der Referenz-Greensoperator ist (der Greensoperator in Abwesenhéit(¥on
Aus Gl. (3.1) wird Klar, daS$§N_1) als Funktion vonUbergangsoperatoren von Systemen
ausgedickt werden kann, in denen ni¥ — 2 Teilchen miteinander wechselwirken. Somit
ergibt sich ein iteratives Scheméarfdie Herleitung vom Mehrteilchebibergangsoperato-
ren. DurchahnlicheUberlegungeniir die Greensoperatorei(’¥) sowie durch die Relation
GWN) = Gy + GoT™) Gy kommt man zur SchluBfolgerung, dass

N
G =G+ > e, (3.5)

j=1

Die OperatorerGg.N_l) sind mit den Greensoperatorgﬁv_l) von Systemen verkipft, in
denen nutN — 1 Teilchen miteinander korreliert sind, es giimlich [14]

G(1N_1) giN—l) e GEN_D

Gngl) géNfl) - GO GéNfl)
: = : + KOV : , (3.6)
N-1 N-1 N-—1

Gg\J[vfll) 91(\/]\711) o GS\J[\fll)

GV oY G GV

wobei [K(V=1] = Gy [KN-D ]G5t

Die obigen Ergebnissedkinen so zusammengefasst werden, ist der Greensoperator des
(N — 1)-Teilchen-Systems bekannt, so ergibt sich der Greensopefatay fwechselwir-
kende Teilchen durch diedsung vonN linear, gekoppelten Integralgleichungeréimlich
GIn. (3.3,3.6)). Ist aber nur diedsung des §¥ — M)-Teilchen-Problem bekannt {/ €
[1, N — 2]), so bedarf es der Durdhifirung von einer Hierarchie von Rechnungen beginnend
mit der Herleitung der bisung des{ — M + 1)-Teilchen-Problems. Die Prozedur muss dann
solange wiederholt werden, bis sich diédung desV-Teilchen-Problems ergibt.

3.2 Anwendung auf ein Vierteilchen-System

Fur ein Vierteilchen-System kann man den Greensopef#tbrin Abhangigkeit von Dreiteilchen-
Greensfunktionen ausitken, mlichG*®) = ijl g§3) — 3Gy, WObeig§3) ist der Greens-
operator eines System, in dem nur drei Teilchen miteinander wechselwirken. Dies érgibt f
die Zustandsvektoren die Relation

[T = [ + [0 + [0 + i3 — 36l (3.7)
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wobei |¢§j}1> ist der Zustandsvektor eines Systems, in dem die Teilechgand & korreliert

sind. \gbﬁfc)c) ist der Zustandsvektor eines nicht-wechselwirkenden Vierteilchen-Systems. An-
hand von Gl. (3.7) wird der rechen-technische Vorteil des vorgeschlagenen Verfahrens deut-
lich: Aus Dreiteilchen-Wellenfunktionen, die wir z.B. durch die Methode von Kap. 2 herleiten,
lassen sich Vierteilchen-Wellenfunktionen mit Hilfe von Gl. ( 3.7) direkt konstruieren. Eine
Anwendung dieser Ideen auf konkrete physikalische Reaktionen sowie ein Vergleich mit den

Experimenten befinden sich in Ref. [14] (Diese Arbeit ist im Anhang béuyef

3.3 Thermodynamik und Phasetiibergange endlicher
Systeme

Endliche Systeme zeigen keine Phagssrdginge im strikten Sinne [19]. So sind z.B. die
Fluktuationen in solchen Systemen inditherweise beschnkt, wogegen Phaibergangen

in einem thermodynamischen System durch unendliche Fluktuationen am kritischen Punkt
gekennzeichnet sind. Nichtdestotrotande man erwarten, dass mit steigendeb(€&r des Sy-
stems Spuren kritischer Bhomene immer mehr in Erscheinung treten. Traditionell werden
solche Fragen im Rahmen deénite-size scaling Theorie abgehandelt [20)r €in endliches,
wechselwirkendesV-Teilchen-System ist die hier vorgestellte GF-Methode auch geeignet,
um thermodynamische und quantenstatistische Fragen zu untersuchen. Zu diesem Zweck ma-
chen wir uns die in den Refn. [19, 21] vorgeschlagenen Ideen zunutze und schreiben die
kanonische Zustandssumme al§3) = [dE Q(E) e~?F. Dabei istQ(E) die Zustands-
dichte, die aus dem Imaginanteil der Spur der GreensfunktiGh™) erhalten werden kann:

Q(E) = —2Tr 3G (E). Die in dieser Arbeit hergeleitete Rekursionsformial die N-
Teilchen-Greensfuncktion kann nun zur BerechnungQ0R) herangezogen werden. In er-

ster Ordnung ergibt dieses Verfahrém flie kanonische Zustandssumme die Formel

N
Z(N) _ ZZJ(_N*U — (N =1)Z. (3.8)
j=1
7, ist die kanonische Zustandssumme einessusmablangigen Teilchen bestehenden Re-
ferenzsystems. Weiterhin iSj(N_l) die kanonische Zustandssumme eines Systems, in dem
die Stirke der Korrelationen dadurch reduziert sind, dass alle Wechselwirkungen mit dem
Teilchenj ausgeschaltet sind.
Gl. (3.8) erlaubt das Studium thermodynamische Eigenschaften endlicher korrelierter Sy-
steme auf mikroskopischer Ebene. Insbesondere, bietet die obige Gl. (3.8) @jtiehHeit,
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den Einflul der Sirke der Korrelationen auf die Thermodynamik des Systems systematisch
Zu untersuchen.

Kritische Planomene &nnen mit Hilfe der Methoden von Yang und Lee [19, 21] unter-
sucht werden. Gehen wir z.B. der Frage nach, wann eine Kondensation in einem Quanten-
Bose-Gas einsetzt, so ist die GrundzustandspopulatioN, 3) die relevante Gi3e, die sich
aus
10,Z2M(8) 1550020 V= (N —1)0,%

B ZMN(3) B AQY
ergibt.¢q ist die Grundzustandsenergie. Mit Hilfe dieser Gleichung kann man systematisch die

nO(Na ﬂ) =

(3.9)

Wirkung der Inner-Teilchen-Korrelationen auf das Auftreten von kritischem Verhalten, oder
man kann alternativ dazu die Nullstellen von Gl. (3.8) in der komplexdétbene untersu-
chen. Eine Menge von Nullstellen vai™¥)(3), die systematisch der reellghAchse nahe
kommen, ist eine Signatur eines kritischen Verhaltens im thermodynamischen Grenzfall.






4 Kollektive Antwort und kurz-reichweitige Dynamik

Im thermodynamischen Grenzfall (alsarfgrol3es VolumerV, grof3e TeilchenzahV, aber
fur endliche Teilchendichten = N/V') wird die charakteristische Antwort eines Systems
durch ein kooperatives Zusammenspiel aller Elektronen hervorgerufen. Zum Beispiel, die
Fluktuationen in der elektronischen Dichte sind durch den so genannten Polarisationsope-
ratorII(q,w) bestimmt. Dabei sind> und q, die von eineauReren Strung auf das System
Uibertragene Frequenz und Impul.q,w) beschreibt die Anregung und die Relaxation von
den Teilchen-Loch-Paaren, was in der Summe globale Dichtefluktuationen erzeugt.

Der kollektiven Antwort des Systems steht die kurz-reichweitige Dynamik dgegan
Dies wird am Beispiel voriI(q,w) ersichtlich: Die Polarisation des Mediums modifiziert die
Eigenschaften der Zweiteilchen-Wechselwirkdngy, w). Das modifizierte Potentidl .z ist
eng mitU undIl(q,w) durch die Integralgleichung [2, 3]

Uy = U+ UIU, (4.1)
= U@-vunt (4.2)

verknipft. Die durch das Medium verursactbschirmungonU kann somit durck(q, w) :=

1/(1 — UTI), die so genannte generalisierte dielektrische Funktion [3], quantifiziert werden.
Um U,z undx zu bestimmen, bedarf es der Kenntnis der Polarisationsfunktidgin ver-
breitetes Mherungsverfahren zur Berechnung \drist die so genannteandom phase ap-
proximation(RPA). In RPA wirdII durchlIl, gerahert, wobeil, durch die Relation gegeben

ist

Mlo(q,w) = % / dpdeGio(q + pw + €)Go(p, €). 4.3)

G, ist das freie Einteilchen-Greensfunktion. Die Berechnungl¥gkann fir ein homogenes
Elektronengas analytisch durchgbeft werden. Im Grenzwert langer Welléngen erhlt man
Iy ~ —2N(u), wobei N () die Zustandsdichte beim Fermi-Zustapdst. Das bedeutet,
dass in Anwesenheit eines Mediums die Elektron-Elektron-Wechselwirkung dielFprna-=
47 /[q* + 87N (1)) besitzt. Im Konfigurationsraum it manUzr = e~"/* /r. Deswegen,
im Gegensatz zu atomaren Systemen, in denen Streuprozesse mit kleinemibaptdsg
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dominierend sind ( wegebi « 1/4?), sind in einem Medium Streuereignisse mit kleingm
von untergeordneter Bedeutung. Dies ist eine Folge der kurzen Reichweite des re-normierten
Streupotential$/.g (4.2).

AuRer fir ein homogenes, unendlich ausgedehntes Elektronengas, (das ebene Wellen als
unkorrelierte Eigenzuéhde besitzt) ist die Berechnung vbipg i.a. eine schwierige Aufga-
be. Rir ein inhomogenes elektronisches System, wie eine @Globeh, bietet die so genannte
GW-Naherung [22] eine direkte Erweiterung der RRA gteht fir die Greensfunktion und
W = U,y fur die abgeschirmte Wechselwirkung). In Ref.[23] befinden sich mehr Einzelhei-
ten zu diesem Verfahren sowie eine Diskussion der Beziehung zur RPA.

4.1 Die Signatur kollektiver Antwort in endlichen
elektronischen Systemen

Fur endliche Systeme ist das Spektrum diskret, was eine signifikante Fluktuation um den
Grundzustand verhindert. Mit steigended@e und Teilchenzahldichtetreten aber kollek-
tive Effektse immer mehr in Erscheinung. Um dieses Verhalten zu illustrieren sind grof3e Mo-
lekule oder Metall-Cluster besonders geeignet. Wir studieren hier den Einflu3 der Fluktuatio-
nen in diesen Systemen auf den Prozess der ElektronenstoR3ionisation. Das Projektilelektron
spielt die Rolle einer Testladung, die als eine wohldefinigaiéere Sirung die elektronische
Dichteverteilung des Targets anregt. Die Antwort des Systems wird in der Form von lonisati-
onswirkungsquerschnitten experimentell gemessen.

Im Rahmen der RPAE (RPA mit Austausch (engl. exchange)) schreibt sich die abge-
schirmte Wechselwirkung .z zwischen dem Projektilelektron (also der Testladung) und dem
Target als

(Kike [Ueg | 0k0 ) = (Kiky|U | 6uko )

N Z <<Sﬁpk2 ‘Ueﬁ‘¢u9011><90hk1 ’U‘ ko@p>

= €0 — (ep — ep — 10)
ep>u

< onks ’Ueff ‘ v Pp > < ‘Ppkl ’U‘ koyn >

€0 + (ep —en — 19)

(4.4)

©p undyy, sind die intermediaren Teilchen- und Lochzusie mit den Energien, bzw.cy,.
0 ist eine kleine positive reelle Zahl undist das chemische Potential.
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Abbildung 4.1: Der totale Wirkungsquerschnittrfdie ElektronstoRionisation vofig, als
Funktion der Projektilenergie. Digbsolutenexperimentellen Daten (volle Quadratéy flie
Produktion von stabile',-lonen [24, 25] sind gezeigt. Die durchgezogene Kurve mit Kreu-
zen ist das Resultat einer DFT-Rechnung [26], die punktierte Kurve stetiaf Resultat der

in dieser Arbeit vorgestellten Theorie ohne RPAE. Dagegen ist das Resultat der Theorie mit
RPAE durch die durchgezogene Kurve dargestellt.

Wirde man die Elektron-Loch-Anregung vernaxddigen, dann iwde sich Gl. (4.4) auf
den ersten Term auf der rechten Seite reduzieren. Diésemng wurde in Ref.[27] ange-
wandt, wobei die Einteilchenzistde mit Hilfe der Dichtefunktionaltheorie im Rahmen der
lokalen Dichte-Niherung (DFT-LDA) [12] berechnet wurden. Gl. (4.4) wurde in der Afbeit
[28] selbst-konsistentif ein Cgp-Target gebst. AnschlieRend wurden damit die lonisations-
wirkungsquerschnitte errechnet. Die Resultate sind im Abb. 4.1 gezeigt. Aus dieser Abbildung
entnehmen wir, dass die durch die Dichtefluktuationen verursachte Abschirmung zu einer Ab-
senkung der lonisationswirkungsquerschniiter. Dies ist verstndlich, denn durch die Ab-
schirmung schrumpft die effektive GiRe des Bereiches, in dem das Streupotential aktiv ist,
was wiederum in eine verminderte Streuwahrscheinlichkeit resultiert.

IDieser Artikel istim Anhang beigéft
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Fig. (4.2) bietet einen Einblick in die Aléimgigkeit der Abschirmung von der @e von
Li-Metallclustern: Vernacklssigt man die kollektive Abschirmung [Fig. (4.2) (a)], so steigt
der auf die Anzahl der Elektronen normierte Wirkungsquerschnitt mit wachsend8e@er
Cluster. Auf der anderen Seite ist es klar, dagsgfol3er werdende Cluster kollektive Abschir-
meffekte immer mehr in den Vordergrund treten, was zu einem vermindereten Streuvolumen,
und somit zu kleiner werdenden Streuwirkungsquerschnitibrt {Fig. (4.2) (b)]. Far kleine
Cluster liefern die Rechnungen mit und ohne RR#&liche Ergebnisse.
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Abbildung 4.2: Der normierte totale Wirkungsquerschriitt flie Elektronen-Stof3ionisation
von splarischen Li-Clustern mit verschiedenen Clusterradi&},;. (a) entlalt die Re-
sultate der RPAE-Rechnung. (b) zeigt die Ergebnisse der Rechnung ohiaek&enti-

gung der Teilchen-Loch-Anregung. (a) und (b) zeigen auch eine &sgrung des nieder-
energetischen Bereiches.
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Fur die theoretische Behandlung stark korrelierter Systeme oder mehrfacher Anregung be-
darf es Methoden, digber RPA hinaus gehen. Zu diesem Zweck wurden mehrere Theorien
entworfen [3, 4, 29], die aber meistens auf die Behandlung von Grundzustandseigenschaf-
ten beschinkt sind. Zur Untersuchung von angeregten korreliertendfgetn hat sich die
Greensfunktionsmethode als ein selitatich erwiesen. Diese Methode haben wir in Kapitel

(3) eingefihrt. Dies geschah allerdings im Rahmen der ersten Quantisierung, d.h. die Symme-
trie der Teilchen ist durch entsprechende (anti)symmetrische Wellenfunktioniéckbieh-

tigt, mit Hilfe derer relevante Matrixelemente der Greensfunktion zu berechnen sind. Mit
steigender TeilchenzahV, wird dieses Verfahren sehr urasdlich. Eine alternative Me-
thode bietet die Greensfunktionstheorie, die von Migdal & Galitskii sowie von Martin und
Schwinger [30, 31] im Rahmen der Quantenfeldtheorie entwickelt wurde. Die Grundidee ist
die Anwendung der Regel der Feynman-Diagrame, um eine Verbindung der Propagatoren
hoher Ordnung mit dem Einteilchen-Propagator (esigjle-particle propagatdrherzustel-

len. Der sp-Propagator exth man mittels einer Integralgleichung (Dyson-Gleichung) aus dem
ungesbrten (freien) Propagator. Der Symmetrie der Teilchen (Fermionen oder Bosonen) wird
durch entsprechende Vertauschungsrelationen der Operatoren Rechnung getragen [3, 7, 8].
Dieses girungstheoretische Verfahren wurde sehr intensiv untersuchtiurdief Beschrei-

bung von einer Reihe physikalischer Probleme verwendet. In diesem Kapitel werden wir nur
auf die Aspekte eingehen, diégrfdie Ein- und die Zweiteilchen-Anregung von unmittelbarer
Bedeutung sind.

5.1 Die Einteilchen-Greensfunktion ausgedehnter Systeme

Die sp-Greensfunktion(at, 5t') kann als der Erwartungswert eines zeit-geordneten Produk-
tes von zwei Operatoren betrachtet werden

iglat, Bt') = (Wo| T lana(t) afy4(t')]|¥o), (5.1)
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wobei|¥,) der korrelierte, exakte sowie normierte Grundzustand\d@®ilchen-Systems ist.
7 ist ein Zeitordnungsoperator. Weiterhin bezeichmég(t’) unday, (t) die Fermionischen
Erzeugungs- und Vernichtungsoperatoren im Heisenberg-Bild, die in einer Bagiserpert
sind, deren Elemente mit den Quantenzaklemd 5 charakterisiert sind. i ein translations-
invariantes System bieten die Impulseigenaode (mit den Quantenzahlkheine geeignete
Basis. Der Effekt des chronologischen Operatbrsann durch die Stufenfunktio® (¢t — ')
beschrieben werden, d.h.

ig(k,t —t') = Ot — t')(Wolam(t)aly, (1) To) — O — t)(Wolafy, (¢ )am(t)| o)

. 1 , 2
_ @(t _ tl) Z 6,1[E§N+ ),E(()N)](tft ) <\IJEYN+1) ‘a;2|\p0>‘
v

—0(t' —t) Z o—ilES =BTV et
5

(05 x| @)

2
‘ (5.2)

\I/%NH) und\IJf;N_l) bezeichnen einen kompletten Satz von Eigergndgn de$N +1)- bzw.

des(N — 1)-Teilchen-Systems. Die EnergieE]()N), E§N+1), undEngl) beziehen sich auf

die exakten Energien des korrelierten Grundzustanded/ddes(N + 1), bzw. deg N — 1)-
Teilchen-Systems. The Exponentialfunktionen in GI. (5.2) stammen aus den Exponentialfunk-
tionen (mit den Hamiltonians als Argument), die in der Definition der Heisenberg-Operatoren
eingehen. Da die Stufenfunktion die Integraldarstell@rg) = — lim, .o 5 [~ dwér
besitzt, erfahlt man die Greensfunktion im Energieraum mittels einer Fourier-Transformation

—iwt

bzgl. des Zeitunterschiedés- . Dies fuhrt auf die Frequenz.()-abhangige, spektrale (oder
Lehmann-) Darstellung der sp-Greensfunktion [32],

2 2
| (@8 o)
w =By — B ) —in

N+1
=i |5 (o w)
g\k,w) = lm Nt1 N .
=015 w—[Eg +)—Eé ' +in

+
o
(5.3)

Diese Relation unterstreicht die physikalische Bedeutung der sp-Greensfunktion: Die Pole
von g(k,w) korrespondieren zuAnderung der Energie (bezogen dﬂgm), wenn demN-
Teilchen-System ein zéaszliches Teilchen hizugéft (E§N+1) — EéN)) bzw. ein Teilchen
entnommer(ESY) — E{N ) wird. Die Residuen dieser Pole sind durch die so genannten
spektroskopischen Faktorggegeben. Diese liefern die messbare Wahrscheinlichaeidie
Addition bzw. fir die Entnahme eines Teilchen mit dem Wellenvelktpum den mit den
Quantenzahlen (§) bezeichneten Zustand zu erreichen.
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Offensichtlich sind solche Wahrscheinlichkeiten von direkter Bedeutiingén (e,2e)-
Prozess.

Es hat sich eingdbrgert, die spektrale Darstellung der sp-Greensfunktion inigyikeit
der spektralen Funktionen debdther bzw. der Teilchen darzustellen. Diese sind definiert als

1
Sp(k,w) = f\sg (k,w) Z‘ \I!(N 1)|ak|\P0>’ §(w — (ESN) - EgN_l)))a for w < ep;

(5.4)
1 2
Splk,@) = ~S gk, ) = Y ‘MN“)\@LWO)‘ §(@— (BN — BN foro > e
vy

(5.5)

Die sp-Greensfunktion kann dann in der Form geschrieben werden

€R ! o !/
g(k,w) = lim (/ dw’M —|—/ dw’Sp(k;w),) ) (5.6)
€F

n—0 \ J_ w—w —1m w—w +1n

In einer Reihe von Experimenten wurde eingehend demonstriert [33], iflasstfe Energien

die (e, 2¢)-Spektroskopie die Funktiofi, (k, w) direkt abbildet. Die Bedeutung der Untersu-
chung vonS,, (k,w) wird aus der Tatsache ersichtlich, dass der Erwartungswert von einem
beliebigerEinteilchen-Operatop) aus der RelatiolO) = 3° ; [ dwSu(af,w)(al0|6)
berechnendRt, wobei(a|O|3) die Matrixdarstellung vorO in der Basis|a) ist. Dies wie-
derum unterstreicht die Wichtigkeit von Spketroskopien, die auf die Emission eines Teilchens
beruhen, wie die einfache Photoemission [34, 35] oder die (e,2e)-Reaktion. Ein weiterer Vor-
teil der Methode der Greensfunktion ist die Existenz einer systematischen Vorgehensweise,
die mit Hilfe der Diagramm-Technik geeignetéherungen zy liefert [8].

In der diagrammatischen Entwicklung vgrfiihrt man das Konzept der Selbstenergiein

[22]. Die Kenntnis vor®: erlaubt die Bestimmung vog@mittels der Dyson-Gleichung

g(af;w) = go(afw +Z!Jo ay;w) X(v6;w) g(65;w), (5.7)

wobeigg die Greensfunktion eines (nicht-wechselwirkenden) Referenzsystems ist. Die Selbst-
energieX beschreibt alle Anregungen aufgrund der Wechselwirkung des Teilchens mit dem
umgebenden Mediums und spielt die Rolle eines nicht-lokalen, energégigien, komple-

xen Einteilchen-Potentials.
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5.2 Spektrale Teilchen-Teilchen und
Loch-Loch-Funktionen

Die Dyson-Gleichung (5.7) kann mit algebraischen Methoden hergeleitet werden [8], die
auch belegen, dass der sp-Propagatart, o't’) in einem engen Zusammenhang mit der
Zwei-Teilchen-Greensfunktiop' (8ty, 8't}, vt2, vt5) steht. Diese Ablngigkeit ist die er-
ste in einer Hierarchie, die de¥i-Teilchen-Propagator mit de@V + 1)-Teilchen-Propagator
[31, 30] verbindet. Von direkter Bedeutunigyfunsere Untersuchungen ist der Zwei-Teilchen-
Propagatop" (Bt1, 5/}, vz, yt5).

AhnlicheUberlegungen wie im Falle des sp-Propagatoisén auf die Lehmann-Darstellung
der Zweiteilchen-Greensfunktion in Ahgigkeit der Energien und Z@stden der Systeme

mit N Teilchen undN =+ 2 Teilchert
N N+2 N+2 N
(W5 lapan | U)W 0l af |05
a_ [ET(LN+2) B E(()N)] i
N N-—-2 N-—-2 N
(w7 lalaf| Ui )R apaq|05)

- Z (N) (N=2)7 . : (5.8)
Q—[Ey" —En “]—1in

@By = Y

n

m
Durch analog&berlegungen wie im Einteilchenfalit sich die spektrale Zwei-Loch-Funktion
Shn(k1, ki1, Q) ausg™ gewinnen, amlich Sy (ki, k1, Q) = S g (k1, ki, Q), Q < 2ep/7.
Spektroskopien, die auf der Emission zweier Teilchdimden, wie z.B. die doppelte Photo-
emission [oder die,2e)-Reaktion], sind direkt miy;, (k1, kq, ) verknipft.

Die Zweiteilchen-Greensfunktion beinhaltet zwei Klassen von Diagrammen: Der erst Typ
wird von zwei nicht-wechselwirkenden sp-Propagatoren [vergl. Gl. (5.7)] generiert und ist er-
weitert mitahnlichen Diagrammen, die alledglichen Selbstenergie-Einddbe darstellen [3].

Der zweite Typ definiert die so genannte Vertex-FunkfiorDiese beinhaltet alle Verallge-
meinerungen der Korrekturen zu der simpleahidrung @ir den Zweiteilchen-Propagator, in
der nur eine einzige Wechselwirkung zwischen den zwei Teilcheircksichtigt wird.

Um die Rolle vorl zu erfutern, schreiben wiy'! in der Form

g (aty, 't Bta, B'th) = i[g(aB.ti —t2) g(o/ Bt — t5) — g(aB t1 — th) g(&/ B, t] — t2)]

X /dta dtydtedts > glaa,ty —ta) gla' bt — )
abed

X (@[T (Fas by s ta)lcd) g(c B te — t2) g(d By ta — th).  (5.9)

lin diesem Zusammenhang sei éiwmt, dass di¢ N — 2)-Teilchen-Zusinde das Endprodukt der doppelten
Photoemissionr(,2e) sind.
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Diese Gleichung verdeutlicht, daBsals eine effektive Wechselwirkung zwischen zwei Qua-
siteilchen angesehen werden kann. Weiterkiingtl" sehr eng mit der (Einteilchen-) Selbst-
energieX [3] zusammen.

Im Energieraum ergibt sichuf das Produkt zweier nicht-wechselwirkender Propagatoren
in einfachster lherung, also die nullte Ordnung in der Entwicklung der GI. (5.9) lizglie

Relation
(8,959 = 5= [ delg(a,71) 9562~ @) — g(a 55 (57 2 - )
N N N N N N N N
oy (6 )\aa\m )@ lad [ 96) (UG Jag [ Wi ) (W a9
oy Q- (B - EfV) + BV - BV} +in
N N— N— N N N— N— N
e e T @D g [95) (5 a0 (00 a0
Q- {(EBY - BV + (B8 - BS T + i
— (y+e—9). (5.10)
Die Leiterapproximation zur Zweiteilchen Propagator lautet
g (aB,78;Q) = gi'(aB, 6 Q) + Zg (B, en; )(en|V16¢) g1 (6¢,75; ), (5.11)
en@(

wobei V' die nackte Zweiteilchen-Wechselwirkung ist. Diese Integralgleichung kann nun ite-
riert werden, was auf eine Serie von Leiterdiagramnigmtf Die entsprechende Leitersumme
fur die effektive Wechselwirkung, die in Gl. (5.9) vorkommt, sieht wie folgt aus

(o, BalTL (DN, ) = (e BalV]at 55)
1 D (o BalVIen) gl (em, 6 G 92)(6, CITL ()l 35).

end¢
(5.12)
Die RPA Naherung iir den im Kapitel (4) eingéthrten Teilchen-Loch-Propagator (oder den
Polarisationspropagatall) bedeutet, dass nur der Term (5.10)ibxsichtigt ist. Daiaber hin-
aus fihrende Approximationen (Vertex-Korrekturen) ergeben sich durch die Mithahme weite-
rer Terme in der Summe (5.11).

Wie oben enithnt,g'! ist von gibRter Bedeutungif die ¢y,2e) Reaktion. Wir merken wei-
terhin an, dass die Leiter-Entwicklung (5.11ly die Zweiteilchen-Greensfunktion ein wich-
tige Rolle in der Bestimmung der Selbstenergispielt [8, 30], die ihrerseits bétigt wird,
um die Einteilchen-Greensfunktion mittels Gl. (5.7) herzuleiten. Auf der anderen Seite geht
die Einteilchen-Greensfunktion in die Definition vgH ein, wie aus GIn. (5.10,5.11) ersicht-
lich ist. Deshalb sollten im Prinzip die Dyson GIn. (5.7) und (5.1l die Einteilchen- und
Zweiteilchen-Greensfunktionen in selbst-konsistenter Weisisgelerden.
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Dieser Zusammenhang zwischennd g'' verdeutlicht zugleich die Beziehung zwischen
den Informationen, die man durch die (e,2e) und di@€) Experimente e#it:

Im Einteilchenfall haben wir die Beziehung der (e,2e)-Reaktionswahrscheinlichkeiten zu
der spektralen Darstellung vanhervorgehoben. In gleicher Weise zeigt man anhand von
Gl. (5.8) die Bedeutung vog'! fuir den ¢,2e)-Prozess,amlich g'' besitzt Pole bei den (re-
lativ zum Grundzustandsenergie gemessenen) Energien, die zur Aqmaﬁ%{h”) — E((,N)]
bzw. Entnahm¢EéN) — E,(ZN_Q)] von zwei Teilchen vom Grundzustand korrespondieren. Die
Residuen dieser Pole sind ein Maly flie messbaren spektroskopischen Faktoren der ent-
sprechenden Prozesse [inZe)-Experimenten [36] werden zwei Elektronen aus dem System
herausgeschlagen]. Dies zeigt, dag2¢€) und (e,2e) verschiedene Informationen liefern, die
dennoch in der Weise miteinander veilft sind, wieg mit g'! verflochten ist.

5.3 Der Zweiteilchen-Photostrom

Die ersten 4, 2¢)-Experimente an Obe#éthen wurden 1998 w@ifentlicht [36]. Von theore-
tischer Sicht misst man in eineny,e)-Experiment einen Zwei-Photoelektronen-Strgfm
der durch Wellenvektorek, undk, charakterisiert ist.7 hat die From [37]

J o (ki ka|g"" A Sy (ki ko, E) AT g% ki, ko), (5.13)

wobei A den Dipoloperator bezeichnef{! ist die Loch-Loch spektrale Funktion,akrend

g"? (¢™™) fur die avancierte (retardierte) Zweiteilchen-Greensfunktion steht. Wie im Falle
der einfachen Photoemission, der Photostrom kann durch ein Zweiteilchen-Caroli-Diagramm
[37] reptasentiert werden, das keine Signatur einer Zeitordnung zeigt. Dies ist darackzur
zufuhren, dass die experimentelle Zeitasting (typischerweise 200 ns) viéhiger als alle
Zeitskalen im System ist, weswegen eine Zeitintegration notwendig wird, um Gl. (5.13) zu
erhalten. Dies schlief3t den,@2e)-Prozess als Mittel zur Untersuchung der zeitdaigigen
korrelierten Dynamik der Elektronen aus. Nichtdestotrotz erlaubtddej-Methode eine ge-

zielte Untersuchung der Effekte der Korrelationen im Anfangs- bzw. im Endzustand. Dies
wird durch eine geeignete Wahl vén /, erreicht. Sind z.Bk; undk; sehr grol3, verglichen

mit dem Fermi Wellenvektor, so wird erwartet, dass die Endzustandskorrelation nur in einem
Bereich des Phasenraums eine Rolle spielt, wo die zwei Photoelektronen mit fast gleicher
Geschwindigkeit emittiert werden.
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5.3.1 Praktische Implementierung fir Metalloberfl achen

Wie aus Gl. (5.13) hervorgeht ist die Berechnung y8rein wesentliches Element in der nu-
merischen Realisierung von (5.13). Auf der anderen Seite haben wir in Kapitel (5.2) gezeigt,
dass die Einteilchen-Greensfunktigriiir die Bestimmung vog'' berbtigt wird, undg' be-

stimmt u.a. auclt und somit aucly. Bis jetzt ist es nicht gelungen diese selbst-konsistente
Schleife im Rahmen einer realistischen Beschreibung der @bkdlnumerisch umzusetzen.

Da aber die Eigenschaften des Targets das wesentliche Ziel der theoretischen und experimen-
tellen Untersuchungen sind, werden wiselbst-konsistent und @izise bestimmen. Mit Hilfe

von ¢ wird danng™ durch eine Methode bestimmt, die wir ifichsten Abschnitt skizzieren.

5.3.2 Beschreibung der Einteilchen-Bandstruktur

Um J numerisch zu berechnen, gehen wir wie folgt voranh die zwei Photoelektronen
unablangig, dann ergibt Gl. (5.11)if die Zweiteilchen -Greensfunktiofi' die vereinfach-
te Formg!! = gfl. Das heif}t, dass in diesem Fall, wie in der RPARNrung r II, g'!
sich zu einem anti-symmetrischen Produkt von Einteilchen-Greensfungtién, E;), ¢ =
1,2 vereinfacht. Die Greensfunktion; (k;, E;), ¢ = 1,2 (sowie den einfachen Photoelek-
tronenstrom) berechnen wir mit Hilfe der Schicht-Korringa-Kohn-Rostoker-Methode (layer
Korringa-Kohn-Rostoker method, LKKR) [2]. Dazu wird die Density-Funktional Theorie
(DFT) [2] kombiniert mit einer semi-empirischen Funktioir fden komplexen Anteil der
Selbstenergie herangezogen.

Fur die Implementierung der elektronischen Korrelation in der Berechnung/voma-
chen wir uns das Wechselwirkungspotentigl» zunutze, wobei die Zustandsdichdé(s)
mit Hilfe der (ab-initio) LKKR berechnet wird. Weiterhin schreiben wir um

2a;

Zl Z2 . | -
o T, VithZ = exp (—==ry), j=1,2, (5.14)

Urp =
wobeia; = r12/(2r;). Gl. (5.14) kann dahin gehend interpretiert werden, dass der Effekt der
Elektron-Elektron-Wechselwirkung als eine Modifikaticf)/r; der Einteilchen-Potentiale
angesehen werden kann. Die inner-elektronischen Korrelationen werden als eine dynamische
nicht-lokale Abschirmung der Wechselwirkung der Elektronen mit dem Kristall back-

sichtigt. Das Verhalten der Abschirmfunktion ist durch die Funktiogemestimmt, die fol-

gende Merkmale zeigen: Wenn die zwei Elektronen in die gleiche Richtung emittiert wer-
den, wird das Potentiab; abstoend, um der starken, kurz-reichweitigen AbstoBung der

zwei Elektronen Rechnung zu tragen. Sind die zwei Elektronen weit von einander entfernt
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(r; > rj, i # j € [1,2]), so kann man die Abschirmeffekte vernaddigen. Br die numeri-
sche Berechnung der Zweiphotoelektronenstromes ist es notwefydigrchZ; anzurahern,
WobeiZj = aj_l exp (—2a,r;/A) unda; = kiz/(2k;) sind. k2 = ki — ko ist der relati-

ve Wellenvektor der zwei Photoelektronen. Mit dieser Abschirmung werden démderun-
genZ;/r; zu den ursginglichen Einteilchen-Potentialen; bericksichtigt und eine korre-
lierte Greensfunktiory; generiert. Im Gegensatz zuhangen die Funktioneg; von den
Wellenvektoren dexweiElektronen, sowie voki, ab. Als die Zweiteilchen-Greensfunktion
wird g'' benutzt, die sich aus dem anti-symmetrisierten, direkten Produkt der modifizier-
ten Einteilchen-Greensfunktiongy) ergibt [also der erste Term in der Leiterapproximati-
on, Gl. (5.11)]. Diese Idee wurde auch mit beachtlichem Erfolg zur Berechnung der (e,2e)-
Reaktionswahrscheinlichkeiten herangezogen [38, 39, 40].

5.3.3 Winkelabhangigkeit der Paar-Korrelationsfunktion

In diesem Abschnitt werden numerische Ergebnigsalie (y, 2¢)-Reaktion pasentiert. Die
Diskussion konzentriert sich auf die Abbildung von Korrelationseffekten sowie auf die Unter-
schiede und Gemeinsamkeiten zur einfachen Photoemission (single photoemission, SPE). Der
Einteilchen-Grundzustand der Probe wird zuerst durch eine selbst-konsistente lineare muffin-
tin-Orbitalmethode (LMTO) behandelt, die auf der lokalen Dichtegrung der Dichtefunk-
tionaltheorie basiert. Darauf bauen die Rechnungedén SPE-Prozess im Rahmen des Ein-
stufenmodells der Photoemission auf. Die durch das elektromagnetische Feld des Photons
induzierte Shrung wird dabei im Rahmen der Dip@herung behandelt. Die numerischen
Berechnungen des Photoelektronenstrgfaund 7> erfolgen mittels der Schichtmethode
nach Korringa-Kohn-Rostoker (layer-KKR), wie oben dargelegt ist.

Abbildung (5.1) veranschaulicht den entscheidenden Unterschied zwischen SPE und DPE:
Abb. (5.1)(a) zeigt die gemessene Inted@isiverteilung des Photostroms eines Cu(001)-Kristalls
als Funktion der zur Obe#the parallelen Komponenten des Photoelektronenwellenvektors,
der durch Energie und Austrittsrichtung bestimmt ist. Dass die Ergebiiisge fAbb. (5.1)(b)]
gut mit den gezeigten Experiment&hereinstimmen, weist darauf hin, dass der Einteilchen-
anteil des Problems adquat beschrieben wirdilFdie SPE [Abb. (5.1)(a,b)] sind Symmetrie
und Struktur der Kristallobegche bestimmende Faktordir flas Photoelektronenspektrum.

Wir vergleichen diesen Befund mit der Inteidggverteilung in DPE, wobei die Energie und
die Emissionswinkel eines Photoelektrons fixiert sind [markiert durch den weil3en Punkt], und
das zweite mit derselben Energie wie in SPE detektiert wird [Abb. (5.1)(c) und (d)]. Wird das
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fixierte Elektron in Richtung der Obe#éithennormalen emittiert [Abb. (5.1)(c)], so haben die
SPE- und die DPE-Impulsverteilung gleiche Symmetrieeigenschaften. BéigethDetek-

tion jedoch [Abb. (5.1)(d)], wird die Symmetrie des Prozesses gebrochen. Im DPE-Prozess
weist die Photoelektronenverteilung eine neuartige Struktur auf: ein um das fixierte Elektron
zentriertes Loch [Abb. (5.1)(c) und (d)]. Dieses Coulomb-Korrelationsloch (CL) ist eine di-
rekte Folge der Korrelationen der zwei Photoelektronen und ist nicht isotrop. Seine Form
wird durch zwei Faktoren bestimmt: 1. Die Elektron-Elektron-Wechselwirkung und die Aus-
tauschwechselwirkung diktieren seine Symmetrie und verhindern, dass die zwei Elektronen
mit gleichen Wellenvektoren innerhalb eines Gebiets emittiert werden, dessen Ausdehnung
durch die Abschirnidnge gegeben ist. Deshalb ist die Ausdehnung des Loches ein qualitatives
MalR fur die Strke der Wechselwirkung zweier Elektronen miteinander, die durch gegebene
Wellenvektoren, Energien und Spins charakterisiert sind. 2. Sind die zwei Photoelektronen
(im Impulsraum) weit voneinander getrennt, so ist die Korrelation dieser Elektronen schwach.
Da der DPE-Prozess bei Abwesenheit elektronischer Korrelationen verboten ist, verschwindet
das DPE-Signal in diesem Fall. Durch Kombination dieser beiden Effekte wird die Form der
Verteilungen in Abb. (5.1)(c) und (d) nachvollziehbar. Hervorzuheben ist die Tatsache, dass
die Ausdehnung des CL energiedblyig ist: Bei niedrigen Photoelektronenenergien ist sie
grof3 und dominiert das Spektrumalrend das CL beidheren Energien nur in einer be-
schiéankten Region sichtbar ist [vergl. Abb. (5.1)(d) und 2(b")]. Dieses Verhalten ergibt sich
daraus, dasdif schnelle Photoelektronen eine kleidaderung der Emissionsrichtung mit
einem grof3en relativen Impuls der Photoelektronen einhergeht, was wiederum die Elektron-
Elektron-Wechselwirkung signifikant abscheht. Die Abbildungen (1) und (2) veranschau-
lichen weitere Merkmale des DPE-Prozesses: 1. Die Form des CL ist stark von den Photo-
elektronenenergien alhgig, da das interelektronische Wechselwirkungspotential dynamisch
in die Ubergangsmatrixelemente eingeht. Die Photoelektronenbeugung, die im Falle der DPE
von den elektronischen Korrelationen aloigt, tritt mit wachsender Energie der Photoelek-
tronen sérker in Erscheinung. 2. Sowohl in Abb. (5.1) als auch in Abb. (5.2) beobachten
wir in den DPE-Spektren eine schwache Reminiszenz zu den entsprechenden SPE-Spektren.
Das KRt sich damit erldren, dass in einer groberaNerung der DPE-Photostrom durch die
Selbstfaltung der Einteilchenzustandsdichten [density of states (DOS)] bestimn#tisena

in derselben [dherung der SPE-Photostrom durch die DOS selbst gegeben ist. Demzufolge
erwarten wir in Regionen mit niedriger DOS geringe Emissionen von Photoelektronen in SPE
und DPE. 3. Da in der DPE zwei Elektronen die Ol#afile verlassen ixsssen, ist zu erwar-
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Abbildung 5.1: (a) Experimentelle Inten&itder Einzelphotoelektronenemission [single pho-
toemission (SPE)] vom Fermi-Niveau von ©Q{) als Funktion der obeidkchenparallelen
Komponenterk,, k| des Photoelektronenwellenvektors. Die Photonenenergie+s21,2

eV. (b) Entsprechende theoretische Intexte fir den Fall (a). Das unpolarisierte Liclilit
senkrecht zur Obe#the ein. (c) Intensit der Doppelphotoemissiofirf die gleiche Probe

und fur die gleichen Photoneneigenschaften wie in (a) und (b),wrd42,4 eV. Die zwei
Photoelektronen haben identische Energien von 16 eV, jedoch sind Energie und Austrittsrich-
tung eines Photoelektrons festgehalten [markiert durch den weil3en Punkitécpund 30
Polarwinkel in (d)]. Die DPE-Intensit wird dann als Funktion der Ob&xfihenkomponente

des Wellenvektors des zweiten Photoelektrons dargestellt.
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Abbildung 5.2: (a) SchichttiefenaBhgigkeit der SPE- [(a) und ()] und DPE- [(b) und (b")]
Intensitit fur die Anordnung in Abb. (5.1)(d). Die Photoelektronenenergien betragen jeweils
30 eV. Die Photonenenergie bigtw = 35,2 eV fir die SPE und> = 70,4 eV fir die DPE. Die
Anteile der ersten zwei bzwiihf Oberfichenschichten zum Photoelektronenstrom werden in
(a) und (b) bzw. in (a") und(b’) gezeigt.

ten, dass die DPE obeifthenempfindlicher ist als die SPE. Dies#8stIsich demonstrieren,
indem die Anzahl der obe#thennahen Kristallschichten, die zum Photostrom beitragen, va-
riiert wird [Abb. (2)]. In der DPE sind Form und &tke des Photoelektronenstromes bereits
durch die ersten zwei Obeifthenschichten bestimmtalwend in der SPE auch die tieferen
Schichten erheblich zum Photostrom beitragen.
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5.3.4 Energieablingigkeit der Paar-Korrelationsfunktion

Bei den bislang vaiffentlichten DPE-Experimenten an Obéardhen werden die Emissions-
winkel #; und 6, der zwei Photoelektronen festgehalten und die Energiemind E5 der
Photoelektronen variiert, d. h. man studiert die Energie-Korrelationsfunktionen. Die Abbil-
dungen 3(a) und (b) decken deutliche Strukturen in den gemessenen und berechneten Energie-
Korrelationen auf, deren Ursache die Elektronenbeugung ist. In Abb. (5.3)(b’) ist der DPE-
Photostrom ir £, = E, , undf,=0, als Funktion der Anzahh der gebeugten Strahlen ge-
zeigt, die in die Berechnungen einbezogen wurdénverschwindet fir abnehmendes n.
Dieses Verhalten ist typischuf DPE von Atomen, wie in Abb. (5.3)(c) verdeutlicht wird.

In Fall von Helium im Grundzustand fehlt die Elektronenpaarbeugung und nur ein einziges
(Zweiteilchen-) Niveau, amlich He(1Se), &gt zur DPE bei. Der Wirkungsquerschnitt von

He verschwindet, wenn der Schwerpunktimpuls des Elektronenpaars senkrecht zum elektri-
schen Feld des Photons steht [das ist genau der Fall')bei F» in Abb. (5.3)(c)]. Ein wei-

terer wesentlicher Unterschied zwischen DPE von atomaren und molekularen Systemen im
Vergleich zu DPE von Obeithen ist die unterschiedliche elektronische Struktur der Probe.
Wenn die Photonenenergieund die Elektronenpaarenergie= E; + E5 festgehalten sind,

ist die Anfangsenergie= w — E des emittierten Elektronenpaars eindeutig bestimmt. Somit
stammt das in Abb. (5.3)(c) gezeigte SpektrimHe von einem einzigen atomaren Niveau.

Im Gegensatz dazuéngt bei Oberfichen die elektronische Struktur nicht nur von der Ener-
gie € ab, sondern auch von den Bloch’'schen Wellenvektoren der Elektronen. Wird in Abb.
(5.3) die Energieverteilung®, - E,)/E (bei fester Energié) variiert, soandern sich diese,

und somit entstammen die Photoelektronen aus verschiedenen Anfaagsemstdie sich in
ausgepagten Strukturen in den DPE-Spektren manifestieren.

5.4 Aspekte der korrelierten Zweielektronen-Emission
induziert bei Elektronenstol}

Neben der(~, 2¢) hat sich die(e, 2e)-Spektroskopie alsiitzliches Mittel zur Untersuchung

der elektronischen Korrelationen erwiesen [41]. In diesem Fall werden zwei Elektronen gleich-
zeitig nachgewiesen, die hach dem Beschuld mit nieder-energetischen Elektronen von einer
Oberfliche emittiert werden. Inipgster Zeit wurden eine Reihe von Materialien mit dieser
Methode untersucht [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. In diesem Abschnitt
werden wir auf die wesentlichen Aspekte der2e)-Theorie eingehen.
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Abbildung 5.3: (a) Gemessene Energie-Korrelation zwischen zwei Photoelektronen, die in ei-
nem DPE-Prozess von Ni(001) emittiert werden. Die Wellenvektkfamdk, der zwei Pho-
toelektronen und der Feldvektor des linear polarisierten Lichts sind koplanar (siehe graphische
Darstellung). Die Gesamtenergie des ElektronenpBats £, + F5 =34 eV ist festgehalten,
wobeiw =45 eV. Der DPE-Photoelektronenstrom wird als Funktion (®n— E>)/E aufge-
nommen. Die zwei Elektronendetektoren mit Winkelasifing von 15liegen araquivalenten
Positionen (40 bzgl. der Oberfichennormale). (b) Theoretische Ergebnisselen Fall (a).

Die Grafik (b") in (b) verdeutlicht die Abfingigkeit des DPE-Stromeg, (bei F; = F» ) bzgl.

der Anzahln der gebeugten Strahlen, die in die Rechnung einbezogen wurden. (cyzé&igt

der entsprechenden Situation zu (a) und ip)d = 34 eV, wenn anstelle von Ni(001) atomares
Helium als Probe verwendet wird. Um die Doppelionisationsschwelle von He auszugleichen,
wird w angepasst.
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Im Eingangskanal betrachten wir zwei Elektronen, ein einfallendes Elektron (1) und ein
Valenzelektron (2). Die zwei Vakuum Elektronen im Endkanal werden mit (3) und (4) be-
zeichnet. Der Anfangszustand ist ein antisymmetrisiertes Prc<diJJ<2 ’ = < 1 ‘ ®< 2 l von

zwei LEED-Zusi'anden< 1 ’ und< 2 ‘ (low-energy electron-diffraction state), jeder von denen
beschreibt die Bewegung eines Elektrons mit Quantenzdllerk; |, 0;), j = 1—4. E; und

k;, | sind die Energien sowie die zur Obéadhe parallelen Wellenvektoren der Elektronep.
charakterisiert den Spinzustand. Der korrelierte Endzus{a‘mdl ‘ der Elektronen (3) und
(4) wird in der gleichen Weise hergeleitet, wie dies im Falle mmé) in Abschnitt (5.3.1) er-
klart wurde. Eine Vernachtsigung der Korrelation bedeutet, dass manin Gl. (37344) = 0
setzt. In diesem Fall i% 3,4 . ~ < 3,4 ’ = < 3 ’ ® < 4 ’ Die Ubergangsamplitudif die

(e, 2e)-Reaktion ergibt sich aus Termen der Form

<3,4

wobei g3 die retardierte Einteilchen-Greensfunktion ist, die, wie im Falle {or2e), mit
Hilfe von DFT-LDA und LMTO hergeleitet werden kann. Die LEED-Zaistle werden mit
Hilfe von LKKR berechnet.

Abb. (5.4) zeigt ein typisches Beispiel der Spektren, die man in eimepa)(erhalt. Die

UTF’1>S95<1’UTF|374> ;

Emissionsrichtungen der zwei Elektronen sind durch einéagéiesPosition der Detektoren im
Raum festgehalten. Man variiert dariir £ine feste Einschuf3energie die Enerdigrund E,
der zwei auslaufenden Elektronen. Der Vergleich mit dem Experiment zeigt, dass die elektro-
nische Korrelation dazuiihrt, dass die Elektonen vorzugsweise mit gleicher Energie emittiert
werden. Weiterhin wird die Emission von nieder-energetischen Elektronen urtkrdbies
liegt daran, dass die Absto3ung innerhalb des Elektronenpaares mit sinkenden Elgrgien
starker wird. Dieser Effekt wird, im Gegensatz zum unkorrelierten Fall [Abb. (5.4)a], durch
den Zustanc( 3,4 | richtig erfalRt [Abb. (5.4)b], wie der Vergleich mit den experimentellen
Daten [Abb. (5.4)c] belegt.

In Fig.(5.4) haben wir die spin-gemittelte Energie-Paar-Korrelation untersucht. In diesem

Zusammenhang sei es éfhnt, dass die Auflsung des Spin-Zustands der Vakuumelektro-
nen bzw. die Benutzung von Ferromagneten einen Einblick in die Spin-Paar-Koorelationen
erlaubt, sowie eine analytische Methode zur Untersuchung von magnetischen Eigenschaften
von Oberfchen bietet. Dies wurde in den Arbeiten [46, 52, 55] dldich diskutiert.

Weiterhin wurde gezeigt [54], dass sich die (e,2e)-Methode besonders eignet, die elektro-
nischen Eigenschaften von Legierungen und ungeordneten &tyesfl zu untersuchen.



Energy E, (eV)

Energy E, (eV)

Abbildung 5.4: Die Energie-Korrelation der theoretisch berechneten Ini¢figidie Emissi-

on von zwei korrelierten Elektronen aus einer W(001) Okehfé nach dem Beschuf? mit Elek-
tronen der Energie 10.6 eV. Die Einfallsrichtung des Projektils ist entlang-dRichtung, die
senkrecht zur Obe#the gewhlt ist. Die Richtung [100] definiert die—Richtung. Die zwei
emittierten Elektronen sind in det (- =) Ebene nachgewiesen. Der Emissionswinkel dieser
Elektronen betigt jeweils40° bzgl. derz—Achse, wobei der Zwischenwink&D°® ist. Die
Abbildung zeigt die Resultate ohne (Teil a) und mit (Teil b) Beksichtigung der Coulomb-
Korrelation, wie diese durch Gl. (5.14) beschrieben ist. Teil (c) der Abbildung zeigt die ent-
sprechenden Experimente. Die ka@nrtdiagonalen Linie ist die Bindungsenergie des Valenz-
elektronsEr. Entlang der eingezeichneten Diagonalen haben die zwei emittierten Elektronen
die gleichen Energien.






6 Zusammenfassung und Ausblick

Ziel dieser Arbeit ist die Entwicklung und die Anwendung theoretischer Konzepte zur Be-
handlung von Anregungsprozessen in korrelierten, nicht-relativistis¥h&eilchen-Systemen.
Fur Wenigteilchen-Systeme wurde ein Verfahren zur Herleitung von korrelierten N-Teilchen-
Wellenfunktionen vorgeschlagen und diskutiert.
Einen allgemeineren Zugang bietet die kumulative Greensfunktionsmethode, die in der Lage
ist, dynamische und thermodynamischen Eigenschaften korrelierter Systeme zu untersuchen.
Desweiteren wurde im Rahmen demndom-phase approximaticauf die Rolle kollektiver
Antwort in endlichen Systemen eingegangen. Insbesondere wurde gezeigt, dass die durch
Dichte-Fluktuationen verursachte Abschirmung eiaeBeren Strung eine dominante Rol-
le bei Anregungsprozessen in grof3en Mdlek und Metallclustern spielt.
Fur die theoretische Beschreibung von Mehrteilchen-Anregungen in einem ausgedehnten Sy-
stem wurde die Greensfunktionstheorie in der Feld-theoretischen Formulierung herangezo-
gen. Ein Hauptaugenmerk galt der spektralen Eigenschaften der Einteilchen- und Zweiteilchen-
Greensfunktionen sowie deren Verbindung zu der einfachen und zweifachen Teilchenemission.
Weiterhin wurden Methoden zur numerischen Berechnung dieser Greensfunktionen im Rah-
men der Dichte-Funktional-Theorie aufgezeigt und diskutiert.

Als Anwendung haben wir die einfache lonisation in Fullerenen und Metallclustern be-
trachtet. Diese Arbeit wird z.Z. auf die mehrfache lonisation verallgemeinert, um Einblicke
in die elektronischen Korrelationen in diesen Systemen zu gewinnen. Weiterhin, haben wir
gezeigt, wie die Energie- und Winkeladtgigkeit der Paar-Korrelationsfunktionen in Kupfer,
Nickel und Wolfram mit Hilfe der hier entworfenen Techniken visualisiert werd@nmnlen.
Ziel laufender sowie zulknkftiger Projekte ist die Untersuchung von Mischkomplexen, in de-
nen physikalische Eigenschaften endlicher und ausgedehnter Systeme zusammenwirken, wie
z.B. von an Oberichen adsorbierten Molélen und Legierungen [54].
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Correlated scattering states ofN-body Coulomb systems
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For N charged particles of equal masses moving in the field of a heavy residual charge, an approximate
analytical solution of the many-body time-independent Sdimger equation is derived at a total energy above
the complete fragmentation threshold. All continuum particles are treated on equal footing. The proposed
correlated wave function represents, to leading order, an exact solution of the many-bodjirgghrequation
in the asymptotic region defined by large interparticle separations. Thus, in this asymptotic region the
N-body Coulomb modifications to the plane-wave motion of free particles are rigorously estimated. It is shown
that the Kato cusp conditions are satisfied by the derived wave function at all two-body coalescence points. An
expression of the normalization of this wave function is also given. To render possible the calculations of
scattering amplitudes for transitions leading to a four-body scattering state, an effective-charge method is
suggested in which the correlations between the continuum particles are completely subsumed into effective
interactions with the residual charge. Analytical expressions for these effective interactions are derived and
discussed for physical situatior{$1050-2947®7)01103-7

PACS numbes): 34.80.Dp, 34.10tx, 25.10+s

[. INTRODUCTION been reported in Refl], however, without derivation.
In this work we derive an approximate analytical expres-

Many-body Coulomb scattering states arise in varioussion for the solution of the non-relativistic, time-independent
fundamental reactions in atomic and molecular physics. AlSchralinger equation o charged particles moving in the
though the Coulomb interactions governing the motion offield of a residual ion. The total energy of the system is
charged particles possess a simple analytical dependence, tigsumed to be above the complete breakup threshold. The
theoretical treatment of Coulomb scattering states is a chabtudy is restricted to continuum particles with comparable
lenging task even in the asymptotic region. The main diffi-masses and, with respect to these masses, a very heavy mass
culties in the theoretical description of such states arise fronof the residual charge so that mass-polarization terms can be
the infinite-range behavior of the Coulomb interaction. Thisneglected and the center-of-mass motion can be separated
is already revealed in the exactly solvable two-bdidgplery  out in a relative-coordinate frame of reference. The wave
problem in which case the asymptotic free motion in thefunction is determined by separately solving for the
relative coordinate is modified by the notorious CoulombN-independent Coulomb particle motion in the residual ion
phase. For the three-body system the theoretical treatmentfi€ld and the correlated motion between the continuum par-
much more involved due to the nonseparability of the many4icles with disregard of the residual-charge field. These two
body Schrdinger equation. Asymptotic states for the three-solutions are then subsequently coupled by an arbitrary func-
body problem have been reported at large interparticle sepdion that is determined from the Schiinger equation of the
rations [1-4]. Only recently[5,6] have asymptotic three- system. The derived correlatétbody wave function coin-
body scattering states been derived that are valid in the entirgides with known expression4,6—8§ in the case of three-
asymptotic region defined by large hyperradius. The introbody system and, for a two-body system, with the exact two-
duction of coupling between individual two-body sub- body Coulomb wave function. It is shown that the proposed
systems(in the form of local relative momenta in Rg5] wave function constitutes an exact solution of the many-
and local Sommerfeld parameters in the case of f&f.in  body problem in the asymptotic region of large interparticle
deriving these asymptotic states underlines the complexity idistances. In this region the asymptotic expression of the
the theoretical descriptions of Coulomb systems in the conderived wave function tends to the asymptotic form sug-
tinuum. For systems with more than three particles in thegested in Ref[1], hence providing the proof for this sugges-
continuum only little is known. Employing hyperspherical tion. In addition, the normalization of the proposed wave
coordinates in the ¥-configuration space, Peterkgp] has  function is derived by requiring that the total flux, generated
derived an estimate of the Coulomb phase modification to aby the wave function derived here, through a large multidi-
outgoing (N —1)-dimensional spherical free wave &f  mensional manifold defined by large, but constant, interpar-
electrons receding from a massive nucleus. The Coulombcle separations should be the same as the flux due to nor-
phase modifications to the asymptotic plane-wave motion ofmalizedN plane waves of the receding particles.
the individualN electrons as well as the propagation of such The inclusion of the correlations between the continuum
asymptotic scattering states to finite distances have not begrarticles presents an obstacle in actual calculations of scat-
given. Due to unpublished work by Redmond, an expressiotering amplitudes using the derived wave function since in
for the Coulomb distortions of the asymptotic plane-wavethis case a Bl-dimensional integral has to be evaluated. The
relative motions inN-body Coulomb scattering systems hasreactions for which such Coulomb scattering amplitudes are

1050-2947/97/568)/199410)/$10.00 55 1994 © 1997 The American Physical Society



55 CORRELATED SCATTERING STATES ORN-BODY ... 1995

currently needed are the double ionization of atomic systemeherer; is the position of particlg with respect to the
upon charged particle impact and the electron-impact singleesidual charg& andr;; : =r;—r; denotes the relative coor-
ionization of atomic inner shells followed by an Auger decaydinate between particlésandj. The kinetic-energy operator
[9]. Both of these processes lead to a four-body Coulomid, has the form (in the limit m/M—0)
continuum states in the final channel. Measurements of sudH,=—3"_,A, /2m, whereA | is the Laplacian with respect
reactions have already been perforn{d®-14,16,1% In  to the coordinater, . We note here that for a system of
light of the absence of theoretical descriptions under situageneral masses the problem is complicated by an additional
tions where the four-body problem cannot be reduced tonass-polarization term that arises in Et). Upon introduc-
three-body one using the Born approximation, it appearsion of N-body Jacobi coordinatesi, becomes diagonal;
timely to investigate methods of simplifying the proposedhowever, the potential terms acquire a much more complex
wave function such that reaction cross sections can be calcprm. Assuming the continuum particles to escape with rela-
lated. In a method proposed in R¢f7] the correlations tive asymptotic momente; (with respect to the chargg), it
between the continuum particles are taken into account as afas been suggested in REE], due to unpublished work by

effective interaction between the continuum particles and th@edmond’ that for |arge interpartide distances the wave
nucleus. However, as shown below, the effective productunction ¥ (r,, ... ry) takes on the form

charges given by the method of RgL7] exhibit some un-

desirable features. Therefore, maintaining the philosophy of _ a2 N
effective charges, an alternative set of effective product  lim W(ry,....ry)—(2m) Hl Es(re) Ps(rs)
charges is derived by requiring that the many-body wave  'm—* S

r—®°

function constructed by this method should analytically
match the known solution of the many-body Salirmer N
equation in some limiting cases. The derived product charges % H i (rij)
are then well behaved. Properties of the proposed effective ij=1
product charges are discussed in the case of positron-impact
double ionization of HE(S®) . Using the method developed VI, mne[1,N]; m>l, (2)
in this work, pilot calculations for the multiple differential

cross sections of the electron- and positron-impact doublehere the functions;(r;),#;(r;),#i;(ri;) are defined as
ionization of HefS®) have already been reportgiis].

j>i

The plan of the paper is as follows. In Sec. Il, after for- &i(ry)=explikj-rj), 3
mulating the theoretical framework, the correlated many- _ . N
body wave function is derived and the asymptotic behavior gi(rp):=exp +iajin(kir;=k;-ry], (4)
of the Schrdinger equation is investigated. In Sec. Ill the o .
proposed wave function is shown to satisfy the Kato cups i (rij): = expl =i aggInChiri; £ Kij - 13p) ] - ®)

conditions[19] at all N(N—1)/2 two-body collision points. e+ and— signs refer to outgoing and incoming boundary

Section IV deals with the normalization of the derived Waveconditions, respectively, arid; is the momentum conjugate

function, whereas in Sec. V the method is applied to thg | o | -=(ki—k;)/2. The Sommerfeld parameters
four-body Coulomb continuum problem. To render possible, 1" ' ’gi\I/Jen byl !
the calculations of scattering amplitudes, the proposed wave' " "

functions is simplified using a method based on the effective- 2,z 2z,

product-charge method. Conclusions are drawn in Sec. VI. aij=——, aj=——. (6)

Atomic units are used throughout. Vil Ui
In Eq. (6) vj denotes the velocity of particlerelative to the
Il. FORMULATION OF THE PROBLEM residual charge, Wherea@j =V In this work we re-
AND ASYMPTOTIC SCATTERING STATES strict the considerations to outgoing-wave boundary condi-
tions. The treatment of incoming-wave boundary conditions
We considemN charged particles of equal massesand  runs along the same lines. The total energy of the sy&ésn
with chargesZ;, je[1,N] moving in the field of a residual given by
chargeZ. The massM of the chargeZ is assumed to be
much larger thaim (M>m). In this work only continuum N i
states are considered, i.e., the total en&gyf the system is E=|Zl B where E=5_. @)
larger than the complete fragmentation-threshold energy. Ne-
glecting terms of the orders/M, the center-of-mass system To derive asymptotic scattering states in the limit of large
and the laboratory frame of reference can be chosen to hterparticle separations and their propagations to finite dis-

2

identical. The nonrelativistic time-independent Safinger  tances we assume far(rq, ... ,ry) the ansatz
equation of theN-body system can then be formulated in the
relative-coordinate representation as W(ry, . TN =NO(ry, . i) ®y(ry, - Iy)
N N XX(rlv '--er)! (8)
2z, 2z, _ -
Ho+_z T + 2 ?—E W(ry, ... ry=0, where ®,,®,, are appropriately chosen functions/ is a
=L T normalization constant, ang(r,, . .. ry) is a function of an

(1) arbitrary form. The function®, is chosen to describe the
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motion of N-independent Coulomb particles moving in the . om-1 N N N
field of the chargeZ at the total energ¥, i.e., ®, is deter- Ap®y = > Amq;lm_]_[_ @ + > Am¢mnH @i
mined by the differential equation =1 I n=m+1 in:]
s 27, tAn, me[1N], (16)
Ho+lle—E ®,(ry, ... ry)=0. 9)
=17

where the differential operatd,, has the form

Since we are interested in scattering solutions with outgoing- _—
wave boundary conditions that descridgparticles escaping A2 E
with asymptotic moment&;,j e[1,N], it is appropriate to mTe &

N N
(Vm‘PIm)'( E Vm‘Pmn) H Pij
n=m+1 i>i

factor out the plane-wave part and write by j#ni#l
N m—1 m—1 N
I + \v/ . Vv -
Dy(ry, ----rN):q)l(rlu"'arN)Hl §j(rp). (10 IZl (Vi) (lgs:=1 mPsm El il
1= S#Fi#

N
(Vi®mn) ( E Vm®mt
t=m+1

t#n

N
Upon substitution of the ansatz0) into Eq. (9) it is readily n E
concluded that E(9) is completely separable and the regu- -
lar solution®, can be written in closed form

N
H_ Pij»
>i

j#t#n

N me[1N]. (17)
D(rq, ---JN):J_Hl §i(rpe;(ry), (11
To obtain the differential operator that couples the two-body
where ¢;(r;) is a confluent-hypergeometric function in the Subsystems in the absence of the chatgee neglect in Eq.

notation of Ref[20] (1) the interactions between the residual charge and the con-
tinuum particles Z=0) and substitute the functidid3) into
ei(rp)= 1Fi[a;,1,—i(kjrj+k;-rj]. (12 Eq. (1). Making use of the relatiofil6) it is straightforward,

however cumbersome, to show that the coupling term that
The function®, describes the motion of the continuum par- prevents separability has the form
ticles in the extreme case of very strong coupling to the
residual ion, i.e.|ZZj|>|Z;Z;|vi,j e[1N]. In order to in- N
corporate the other extreme case of strong correlations A= 2 A (18
among the continuum particle$Z(Z;|>|ZZ;|Vi,j e[1N]) m=1
we choosed,, to possess the form
Equations(17) and(18) warrant comment. The terd,, is a
— N mixing operator. It couples an individual two-body sub-
Dy(ry, .. =P (rq, ... ,rN)H &(rp, (13 system formed by two continuum particles to all other two-
=1 body subsystems formed by the continuum particles in the
absence of the residual ion. Hence it is clear that all the terms
in the sum(17) vanish for the case of the three-body system
N since in this case only one two-body system exists in the
., (r )= H oii(ri) (14) field of the residual charge. The second remark concerns the
WALy AN S TR structure ofA,, and henceA. From Eq.(16) it is evident that
the remainder ternfl7) is part of the kinetic-energy opera-
where ;i(rj):= 1Fq[a;;,1,—i(kyrij+k;-rij)]. It is  tor. Thus itis expected that, under certain circumstances, this
straightforward to show that the  expressionterm has a finite range, which indicates that asymptotic sepa-
goij(rij)l'[,'ila(n) solves for the Schdinger equatiorfl) in  rability, in the sense specified below, exists for many-body
the case of extreme correlations between partidad par-  continuum Coulomb systems. In fact, as the functional form
ticle j, i.e.,|Z2Z|<|ZZj|>|ZnZn|VI,m,n#i,j. In terms of  of ¢;;(r;;) is known, the ternA can be calculated explicitly,
differential equations this means which will be done below.
Now with &, and ®,, determined, the exact wave func-

with

2.z, N tion (8) is given by the expressiog(ry, . .. ry). Upon sub-
Ho+ ——— E) quj(fij)H §i(r))=0. (15  stitution of the expressiond.3) and(11) into the ansatz8)
4 =1 and inserting in the Schdinger equatior(1), a differential

It should be stressed, however, that the functi®8) does equation for the determination gi(ry, . .. ry) is derived

not solve for Eq.(1) in the case of weak coupling to the N

residual ion Z—0), but otherwise comparable strength of A

correlations between the continuum particles. This is due tg o~ ?_21 [(ViIn®, +ViIn®y)-V,

the fact that two-body subsystems formed by the continuu '

particles are coupled to each other. To derive an expression

for this coupling term we note first that +(ViIn®)) - (ViInd ) ]+E | x(ry, ... ry)=0 . (19
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From the derivation of the function®, and ®,, [Egs.(9) _ N m-1
and (13)] it is clear that all long-range two-body Coulomb V. In®;,= > V. Inem,+ 2 Vilnem
interactions have already been diagonalizeddhyand &, n=m+1 =1

because the total potential is exactly treated by these wave N m-1

fu_nctipns. Hence the functiog, to be dgtermineq here, con- = 2 rknnFrmn(Fmn) — E mKimFim(Tim),
tains information on many-body couplings, which are, under n=m+1 =1

certain conditiongsee below, of finite range. To explicitly (25)
show that, and due to flux arguments we write the function

x in the form where

1F1[1+Ia”,2,—I(k,]r”+k”I’,])] ~ ~

N
X(rl! "'1rN)=J1;[1 g*(rj)[l_f(rll ---er)]! (20) Fij(rij):: 1F1[iaij,1,—i(kijrij+kij~rij)] ( Ij+r”)(26)

wheref(ry, ... ry) is a function of an arbitrary structure. Thus the behavior of the coupling ter is controlled by
Inserting the form(20) into Eq. (19) we arrive, after much  the generalized functions;;(r;;),F(r,) since Eq.(22) can
differential analysis, at the inhomogeneous differential equape written in the form

tion

N N
N R:= Z ’amkmFm(rm)'|: 72 amnkmnan(rmn)
Ho— > [V.(In®, +Ind,)+ik]-V {f+R(1—f)=0, m=1 n=mtl
L=1 m-1
21
@D _s§=:l a’smksmFsm(rsm)}
where the inhomogeneous tefRis given by 1N
N . . _2 E almampklmkmpFIm'Fmp
I=1 p=m+1
Ri= 2 {(VIn®))-(VInd;)
m=1 lm—l m—1
m-1 N +§|Zl ;I almasmklmksmFlm'Fsm
+2 2 (Valneim) - (Velnemp)
I=1 p=m+1 1 N N
qm-1m-1 + En:%H ot (St 1 @mn@mKmnKmgFmn' Fmg -
52 2 (Ve (Vmingsn)
<1 &3 (27)

N N

=

The simplest approximation is to neglect the teRnalto-
+5 2 2 (len‘Pmn)'(len‘qu)]' gether. In this case the functioh=0 solves for Eq.(21).

2041 n#g=m+1 _ _
22 Then the solution of Eq(l) takes on the approximate form

N
It is the inhomogeneous terM that contains the coupling W(ry, ... rn~N H Erpei(r)em(rm). (28
between all individual two-particle subsystems. For example, m>1.j=1
the first term in Eq.(22) describes the coupling of a two-
body subsystems formed by particieandj to all two-body
subsystems formed by the individual continuum particles an
the residual ion. The second term originates from @®&)
and, as explained above, is a measure for the couplin
among two-body subsystems of the continuum parti¢ies

the absence of). To these couplings to be negligible the properties ofR, as readily concluded from Eq27). From

norm of the termR must be small. To get some insight into : : ¢ .
the functional form ofR, given by Eq.(22), we note that Egg] fg?}?gt{ﬁ a?xpansmn of the hypergeometric functions

Thus the justification of the approximatid28) reduces to

he validity of neglecting the inhomogeneous td@2i). One
egion in which this term can be disregarded is the asymp-
totic region of large interparticle separations. This is imme-
giately deduced from the asymptotic behavior of the gener-
alized functiongF;; (rj;),F(r,), which dictate the asymptotic

VLIanI: a k Fi(ry), (23

: kij+ 155
lim [Fj(rip)|—= | ——=——=—
where rij—o Kij - (Kij+ripri
+O([kijrij+kij-ri| %) (29

~ aFa[l+iag 22—k tkeer)] o
F(ry):= Foliag, 1—i(kor +k -r))] (ke+ry) An asymptotic relation similar to Eq29) holds forF(r,). It
(24 should be noted that the functiofsg(r;;),F(r;) have to be
considered in a distributivéoperatoy sense, which means
In addition, we remark that that, asymptotically, only terms d¥; ,F, that fall off faster
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than the Coulomb potentials can be disregarded. Sids - N

essentially a sum of products Bf; ,F|, the expressiorR is W(ry, ...;0=ND(r) IT &e;(r)@im(rim). €m0,
of finite range, in the sense that it diminishes faster than the L

Coulomb potential in the asymptotic regime, only in the case (32
where all particles are far apart from each other, i.e.,

i - - where
I|mR — O(|k|]r”+k”r|]| 2,|k|r|+k|'r|| 2)
Fij—o
I'|~>aa
1

2
(r)= —zf r2dcosd[ 1+ ik;cosf+ a;kir;(1+ cosd)]

Vj>i,le[1N]. (30) 4mr2) 4

Therefore, in the limit(30), the termR can be asymptoti- =1+aikir;. (33
cally neglected and the approximati@B8) is justified. In
fact, it is straightforwar_d to Show that the wave funct_(@ﬁ) To arrive at Eq.(33) one takes the axes ak; and defines
tends to the asymptotic forrt2) in the limit of large inter- A A . )

particle separations, which proves the assumption made if°¥=Ki-ri. From Egs(33) and(32) it is obvious that
Ref.[1]. However, if two particles are close together, regard-

less of whether all other particles are well separated, the PR N
coupling term is of infinite range, as seen from E@®) and (ra, ... ’rN)} = aki N H & (1) @m(Tim)
(27). In this case the relatiofi30) does not hold. Conse- ar; - izj=1

quently, the wave functioli28) is not an exact asymptotic i I=m

eigenfunction of the total Hamiltonian in this limit. It is im- =akiV(rq, ... ri=0,...rn),
portant to note that the limit Eq30) is energy dependent.

With increasing momenta of the escaping particles the as-

ymptotic region, i.e., the limit Eq30), is reached faster. In &em#0. (34
other words, at a certain interparticle separations, the remain-

der termR, which has been neglected to arrive at the ap-

proximate form(28), diminishes with increasing velocities of In deriving Eq.(34) we made use of the fact that in the limit
the emerging particles. In this sense the approximation lead!i/rij—0) the distance;; tends tor;. The proof that the

ing to the wave function(28) is a high-energy approxima- Wave function(28) fulfills the cusp conditions at the collision
tion. points of two continuum particlesr {—0) runs along the

same lines. Finally, we remark that the wave funcii@8) is
not compatible with the expansion of the exact solution of
the Schrdinger equation(1) at the three-body collision

In the preceding section it has been shown that the appoints (e.g.,r;—0 andr;—0,j#i) since in this case the
proximation (28) is, to leading order, exact for large par- exact wave function is known to satisfy a Fock expansion
ticles’ separation. In addition, it is concluded below that this[22] in the coordinate: = \/(rzi +rj2), which contains, in ad-
function exhibits a behavior compatible with E@.) at all  dition to powers inp, logarithmic terms inp, whereas the
two-body coalescence points;;—0,r;—0, with j>i,l wave function(28) possesses a regular power-series expan-
€[1,N]. To guarantee regular behavior of the wave functionsion around;—0 andr;—0.
at these collision points, at which the corresponding Cou-
lomb two-body potential is divergent, the solution
W(rq, ... ,ry) of Eq. (1) must satisfy the Kato cusp condi- IV. NORMALIZATION
tions[19,2]] (provided the solution does not vanish at these
points. At a collision pointr;—0 these conditions are

IIl. TWO-BODY CUSP CONDITIONS

The knowledge of the normalization fact&f of the wave
function (28) is imperative for the evaluation of scattering
amplitudes using the wave functid@8) as a representation
—Kiay W (ry, ... Fi=0,...rn) of scattering states. In principle) is derived from a
r =0 3N-dimensional integral over the norm of the functi8)
' which, for largeN, is an inaccessible task. Thus, for the
determination of\" we resort to the requirement that the flux
through an asymptotic manifold defined by a constant large
(31) interparticle separations should be the same in the case of the
wave function(28) and a normalized plane-wave representa-
tion of the scattering state, i.e.,

d \Tf(rl, coafN)
ar;

V(rilr))—=0,ri/rm)—0; m>I, i#je[1N] .

The quantity ¥(rq,,...,ryN) is the wave function
W(rq, ... ry) averaged over a sphere of small radius
r s<1 around the singularity;=0. A relation similar to Eq.
(31) holds in the case of the coalescence poimts-0. To Jow=Jv , (35)
prove that the wave functiof28) satisfies the condition81)

we linearize¥(rq, ... ,ry) aroundr;=0 and average over a

sphere of small radiuss<1 to arrive at where the plane-wave flux is given by



55 CORRELATED SCATTERING STATES ORN-BODY ... 1999

N V. APPLICATION TO THE FOUR-BODY COULOMB

. N

Apart from the Rutherford scattering, the simplest appli-
N N . . . . .
. cation of the theory presented in the previous sections is the
- H §.(r.)VH & (r,)} description of three-body Coulomb continuum states that are,
for example, achieved as final states of electron-impact ion-
N ization and doublephoto ionization of atomic and molecular
=(2m)NY k. (36)  systems. In this case the wave functi@8) simplifies to the
=1 three-body wave function proposed in Rd#,7] and exten-
) N _ sively used by various authors. The second step in complex-
In Eq. (36) the total gradienV:=X_,V, has been intro- iy js'the description of the four-body scattering states. These
duced. To evaluate the flux generated by the wave functioisies arise in the final channel of various reactions such as
(28) we note that, by taking advantage of E(3) and(25),  the double ionization of atomic systems by electron and pos-
we can write for the total gradient of the wave functi@®) jtron impact as well as the triplephoto ionization. Experimen-
tally there has been an increased interest in such reactions
due to recent advances in coincidence-detection techniques
[10-13. The measurement of fully differential cross sec-
tions of reactions leading to four-body Coulomb continuum

N
V¥ :=PN D, [ iKW + a ke
m=1

N N states was reported in Refd.0,11. In this study argon and
+ 2 amnkmnan(fmn)H @i krypton targets have.b.een double |_on|zed by a fast prOJegtlle
n=m+1 By electron under conditions where litle momentum is being
I=n transferred to the target atoms. To describe the final state, the
m—1 N

- 2 almkImEIm(rlm)H Pij
=1 j>i

i1 #1

N standard theoretical treatmd28—3( has been to reduce the
IT &roesry |, four-body Coulomb continuum problem to a three-body
s=1 problem by employing a first-order Born-type approximation
37) (FBA) in the projectile-target potential, which is justified for

the conditions under which the experiment has been per-
formed. Recently, measurements for electron-impact double
ionization have been performed at intermediate incident en-
eergies using the cold-target recoil-ion momentum spectros-
. ) copy [12,14. In this case the FBA model is inappropriate.
readily deduqed from Eqs24) and(26) Wh.'Ch state that all The last statement was also inferred from recent measure-
other terms in Eq(37), except for t_he first term, can be. ments[15] of the cross section for the double ionization of
neglected asymptotlcally. Note, in this c_ontext, that terms Ir}nagnesium by electron impact at moderate incident energy.
the wave function that are asymptotlcally. of _the OFdefm view of these recent experiments and the absence of ad-
O(1/rj,1/r\m) correspond to parts of the Hamiltonian falling oqate theoretical models it appears timely to consider the

off faster t.han the C°”'°”?b potgntials and hence can be disa'pplicability of the theory developed in the previous sections
regarded in the asymptotic regime. Now making use of th%r the case of the four-body problem.

asymptotic expansion of the confluent hypergeometric func-
tion [20] and taking leading order in the interparticle dis-
tances, the fluXlg can be deduced

WhereEmn is given byF,n¢mn. The decisive point now is
that since we are considering the flux at large interparticl
distances only the first term of E(37) is relevant. This is

A. Product charges according to Jetzke and Faisal

For N continuum particles the wave functioi28) de-
N exp(7a;) scribesN(N—1)/2 two-body Coulomb subsystems. The cou-
Jw=N2H T(1—ia)*(1—ia) pling between these two-body subsystems through the rela-
=1 @)™ (11 tive coordinates presents a serious problem for the
N exp( ey N calculations of scattering amplitudes. To overcome these dif-
x [1 : > k,, (38 ficulties further simplifications are needed. In REE7] a
m>i=1 I(1=Tam) ™ (1=iam)i=1 procedure has been proposed in which the correlations be-
tween the continuum particles are completely subsumed in
whereI'(x) is the Gamma function. From Eqg35), (36),  an effective interactions of each continuum particle with the
and (38) it follows that nucleus. This is achieved by rewriting the total Coulomb
potential in the form

N

— (D) 3NR2 _ a2 N _ N SN
N=(2m) J:lml—[>I:1 X~ mamt a;)/2] > ZZ; S lelzz Z_, (40)
j=1 T T T
XT(1=ia)T(1-iay). (39) oot Y '

F .
For two charged particles moving in the field of a heavyWhere the local product chargé.é are given by

nucleus the wave functio{28) with the normalization, given N
by Eg. (39), simplifies to the three-body wave function pro- 2%y, . I=2Z+ D Z,Z; Fi-Fijfi _ (41)
posed in Refs[4,7]. e CE T
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2500 . i . of the way in which these product charges are constructed.
We remark in passing that the same behavior of these prod-
uct charges also arise for different charge states of the con-
. . tinuum particles as well as for a different number of these
L, s particles, in particular for a three-body system.
E 0 " % B. Product charges for the four-body Coulomb system
5" in the continuum
In order to construct product chargés,j €[1,3], for a
four-body system, that do not exhibit the unphysical behav-
ior shown in Fig. 1, we maintain the philosophy of com-
pletely subsuming the correlations between the continuum
-2500 L L L particles into an effective interaction of these particles with
0.0 0.5 1.0 L5 2.0 X :
v, [a.0] the nucleus. In other words, the wave functi@8) is written
in the form
FIG. 1. Case where one positron and two electrons are moving N
in a nuclear field of a chargg=2. The velocity vectors of all if Y —
particles lie in the same pla?ne. One electron,yparticle 2, and the Py, ) =P, ’rN)_A/jljl & ei(ry,
positron, particle 1, are assumed to escape in the same direction (43)
with the positron having a fixed velocity; =1 a.u. The remaining
(Aele(Etron, partlcle 3_, is ejecteq in a direction perpend.lculafrlto.e., where (),Tj(rj) = <Pj(rj)|a-=§ and N:M“':i'i' where
v1-v3=0, with a fixed velocityvs=1 a.u. The positron-nucleus — P ! !
product charg&", determined according to E¢42), is studied as aj(ry, - ) =Zj(re, i) The local prpduct
function ofv,. charge<Z(ry, . .. ry) are then determined by requiring that

the solution(43) should match the known solutions of the

The position dependence of the product cha@g¥sis then Schralinger equation(1) in some limiting cases. In what

converted into a velocity dependence by making use of th&P!lows we investigate these limiting cases of the four-body
asymptotic approximation;=v;t, wheret is the time. This Schralinger equation. However, for brevity, iny the struc-
approximation is valid at large interparticle separations infU"® of EQ.(1) is discussed. The corresponding wave func-
which case Eq(41) reduces to tions m_these cases are easily d_educed:_ _ _

(a) Since all particles appear in the Sctiliger equation
N Vi VD (1) in a symmetrical way all three continuum particles must
ZF(vy, . =22+ 2, Z;Z, % (42 be treated on equal footing, which results in the relations
J#i ij
Upon substitution of Eq(42) in Eq. (40), the differential Zi(Zi 132y 1) = Zi( 2,132 1) (44)
equation(1) becomes completely separable. The solution is
obtained from the function(28) in the special case
a;=Z}lv; and a;;=0. When two continuum particleis
approach each other in momentum spagg-0) the effec-
tive charges, given by Eq4l), diverge so as to simulate
attractive(if Z;Z;<<0) or repulsive(if Z;Z;>0) interaction
between these particles. However, since these product . o g ; :
charges contain scalar products between the velocity vecto hich partlc_le_l IS app_roached by_ partlcl_p The interaction
of the escaping particles they exhibit unphysical behavior i the_ remaining continuum particles with the nucleus must
the limit vi|v;, vi—v;*6,1>6>0. This is clearly illus- remain finite, i.e.,
trated in Fig. 1, where we envisage the case of two electrons

(b) When two particlesi,j approach each other
(rij—0yrj;/r,—0) their mutual interaction increases as
ZZjlr;; and dominates the other interactions appearing in
Eqg. (1). Hence the interactions of particleand particlej

with the nucleus must change in a way that simulates their
ggutual Coulomb interaction regardless of the direction in

and one positron moving in the triple continuum of a residual lim Z_Z_—>C£ Z_| finite, |d|<0,e#0
chargez=2. This is the final state achieved by positron- | Zo.q rij ' e
impact double ionization of He. We focus on the case in rij/r—0

which one electron and the positron emerge in the same di- (45

rection. When this electron approaches the positiormo-

mentum spade the positron-nucleus interactiofproduct ~ whereC is a positive real number. Conditi@#5) is violated
chargé becomes strongly attractive in order to simulate theby the product charges, given by Hel).

attractive electron-positron interaction. However, as the elec- (c) If one particle is moving in the vicinity of the nucleus
tron passes the positron the positron-nucleus interactioit experiences the full nuclear charge. Assuming the remain-
(product chargevaries rapidly from an attractive to a repul- ing two continuum particles to be far away from the nucleus,
sive interaction. In other words, at the removable singularitheir interaction with the nucleus must remain finite,

ties v;;=0 of the product chargeg42) the functions o L

z%v§ ,zjv} are discontinuous in the limit;;—0. This be- lim  z—Zzz4z, finite V i#je[1,3]. (46)
havior is quite unphysical and must be considered as a result  ri—0ri/rj—0
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(d) In order to treat the total potenti&l in an exact man- whereV;=ZZ;/r; andV;;=Z;Z;/r;; are the physical two-
ner,V, and hence the Schimger equatior(1), must be in-  body potentials. Equivalent transformations of the charges

variant under the local product chargés, Z;=V,r; immediately derive from Eq(52). To determine
3 5 the product chargeg; the 6x3-matrix A with elements
E v, (47) aj ha_s_ to be deri\_/ed. The conservation of the total potential
=11 [conditiond] requires

(e) From the Schidinger equation(1) it is readily con- 3
cluded that if one particle, say partidlgis far away from the Z a;=1 Vje[l,6]. (53
remaining three particles, this particle) (experiences a net =1
charge ofZ+Z+7;, i.e., Relation(46) implies
lim Z—Z(Z+Z,+Z;),€;#0. 48 .
Fj—o I I 20 € “9 a;=1 Vie[l3], ap=ajz=a,=axp=az=2az=0.
r|/ri,r|/rjﬂ:>c (54)

In addition, if in the three-body system, formed by the Imposing condition(45) leads to
nucleus, particleé, and particlej, particlei approaches the

nucleus, particlej experiences a net nuclear charge of a16=0, a5=0, az=0. (55)
Z+Z;, as immediately concluded from E@L). Mathemati- . .
cally this condition can be formulated as Thus the product charges are determined by the equations
im  Z—Z{(Z+Z). 49 — _ry ZyZory oty ZyZgr
r—o 2l ) 49 Z,=ZZi+ay——— — A — ——,
ri—0,(ri/r}.rj/r)—0 ERRFINEY: Fitrs s (56)
(f) It is established that for three electrons moving in the
field of a residual positive charge the gradient of the total Z 7747 2 2ol v o 23250

H H FeE 2= 2 24 26 ’
potential vanishes when the three electrons recede equidis- ri+ro, rio Fo+rz Tog
tant from the nucleus forming an equilateral triangle with the (57)
nucleus residing in the center of this triandg®l]. In this
case the force exerted on the three electrons by the nucleus — Iy ZyZ3r3 . 13 ZyZ3r;
vanishes and the interelectronic correlations are minimized. Z3—ZZ3+a35rl+r3 M3 +a36r2+ rg oy '
The Schrdinger equatioril) reduces in this configuration to (58)

1 where the coefficients;; have been transformed E, to
s 2+ ﬁ simplify subsequent calculations. The relations, given by Eq.
H0+2 —— —E |P(rqy,rp,rz)=0. (500 (48), yield, in the limits  {q/rp,ry/rg)—o,
=1 " (rofrq,ralrg)—oo, and (3/rp,rg/ry)—o0, respectively,
The eigenfunction of Eq(50) can be given in closed form. L7 =a i3
To account for this Wannier-type configuratif®2], which 2122 Z3) = 1a21 22 a1 2, (59)
is known to dominate the escape dynamics at lower excess — —

. . - . . Zy(Z1+2Z3)=a421Zy+ asel 273, 60
energiesE, we impose on the local charggs, je[1,3], in 2217 23) =824l125 BoeZoLs (60
the case of three continuum electrons, the relations — —

Z3(Z1+Zy)=agsl 1 Z3+ azelrZ3. (61)
lim Z—--Z+— Making use of Eq(59), relation(56) reduces to
ri—>rl~—>r| \/§
Fi,Fj=c0$r/3 [— _ ri
Z2y=72Z +[Zy(Z5+ 23)_3152123]m
Vi,jle[1,3], €;#0, Z,=2,=Z3=-1. (51 1ri2lie
. . . — 1 ZyZ3ry
We note that all the conditions listed above are directly de- +al5r IS (62
1 3 13

duced from the Schrdinger equation1) in the respective
(dipole) limits. To incorporate the above relations into local

Now we impose conditiori49) on Eq.(62) and arrive at
product charge<;, which are analytical functions in the P 149 a.(62

whole configuration space, except for the _@Ies_given by Eq. lim Z_1=Zl(Z+Zg) —77,+ 27,75 (63)
(45), we define effective two-body potenti&lj=Z;/r; and rp—®, 130
introduce the linear transformation rp>ry>rg

V_,: a1V1+aVo+aaVata Vit asVistaeVas, which leads toa;s=1. From Eq.(59) we deduce that

a_14_=1._ Similar considerations yield ay,=ay
jel[1,3], (52 =age=ass= 1. Thus the final form of the product charges is
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@ nucleus product charge in a typical scattering geometry
where all momenta of the outgoing particles lie in the same
plane. From Figs. @) and 2b) it is evident that when one of
the electrons approaches the positron in velocity space the
interaction of this electron with the nucleus and the positron-
nucleus interaction become strongly attractive, which simu-
"/,;'o;"“;'.“:-:-:\\\“‘-\‘m“““ late the capture of the respective electron to the continuum of
the positron. With diminishing interelectronic velocity the
electron-nucleus interactions become strongly repulsee
Fig. 2(b)] as to signify the repulsive electron-electron final-
state interaction.

Three final remarks concerning the use of effective
charges are due here. As our conditiqdd)—(51), which
have been used to determine the product cha#jesare
limits, there will naturally be other functional forms of local
product charges that smoothly connect between these limits.
®) The procedure used here is based on the transform@&n
which is motivated by physical arguments rather than by
strict mathematical reasoning. A different procedure might

///////"'//,
///////////"7,,;

y

o5
/'f

|

5

. ////”’/////77/’;;' - T well lead to different product charges . Thus the bench-
. //////////////////77777///////’/”’///7/ /\ \\\\\\\\\\\\\\\\\ mark for such approximate methodsﬁ that the derived effec-
//////////// tive product charges must be compatible with the physical
- picture of the dynamics of many-body continuum Coulomb
» states.
The second remark concerns the Kato cusp conditions at
= the collision point of two continuum particles. All effective-

a0

charge methods yield many-body wave functions of the form

given by Eq.(43). Since&\lferf/ar” =0 such wave functions
3s0™55g " 900 8, [deg] do not satisfy the Kato cups condition at the coalescence

point of two continuum particles, as immediately concluded
FIG. 2. For a four-body Coulomb system consisting of two elec-from Eg. (31).

trons and one positron in the field of a residual chafge2, the The final remark concerns the applicability of this method

effective charges, given by Eq&4) and(65), are depicted for the for calculating scattering amplitudes. The basic idea of this

case where all particles escape in the same plane with velocitiggork is to propagatéapproximatg asymptotic solutions of

v1=vp=1au. anz=1.2 a.u. The positron is taken to be particle the many-body Schringer equation to finite distances. The

1. All angles are measured with respect to the directign(a)  region around the origin where the reaction takes place, how-

shows the angular dependence of the positron-nucleus effectivever, is not covered by this procedure. Therefore, the success

product chargeZ,, whereas in(b) the product charge of electron or failure of employing this method to calculate reaction

1 with the nucleusZ,) is investigated. cross sections will decisively depend on how the process

under consideration is treated at shorter distances around the

150
200
0, [deg] * 250

— L z.Z, YAV ) origin. For example, in Ref§34,35 the one-photon double
Ly=20+ | m ri, (64  jonization of helium has been considered. In both cases the
[ (ra+ro)ryp  (ri+ra)rag) ) i .

wave function of the two electrons in the continuum of

- 1 He?* was taken, at large distances, in the form of ).
o Z1Z, 2’3 |, : \
2,=27Z,+ rs, (65)  However, due to different treatments of the reaction around

L(raFra)rp  (Fp+rs)rag the origin, the cross section presented in RRe4] is in very

i ; good agreement with experimental finding, whereas the
= _ 2123 ZyZ3 2 method used in Ref35] yielded quite disappointing results.
Z3=275+ rs. (66)

[(ritr3)ris (ra+ra)rog)

It is straightforward to verify that all the conditior{g4)— VI CONCLUSION

(51) are satisfied by the function®4)—(66). For practical In this work a many-body correlated scattering Coulomb
applications the position dependence of the effective chargagave function has been derived fbr charged particles of
(64)—(66) has to be converted into velocity dependence byequal masses moving in tHé continuum of a massive re-
applying the asymptotic approximatian=v;t. Using this  sidual charge. It has been shown that the derived wave func-
method, pilot calculations of the fully differential cross sec-tion solves, to leading order, for the many-body Sclimger
tions for the electron- and positron-impact double ionizationequation in the asymptotic regime defined by large interpar-
of He('S®) have been reportgfd8]. A more extensive study ticle distances, which provides an expression for the asymp-
of these reactions is in preparatig3s]. For the case of pos- totic many-body Coulomb scattering states. It has been veri-
itron impact the positron-nucleus product chaifieis de- fied that the Kato cusp conditions at all two-body collision
picted in Fig. Za), whereas Fig. @) shows the electron- points are fulfilled by the derived wave function. In addition,
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Energy-Exchange Effects in Few-Particle Coulomb Scattering
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For the description of an arbitrary nonrelativistic three-body Coulomb system an analytical
approximate wave function is designed which is correct for large interparticle separations. At shorter
distances, where the potential energy dominates the kinetic one, the wave function is a linear mixture of
products each consisting of three two-body Coulomb waves propagafitige two-bodyenergy shell
but on the totalenergy shell. The method is employed for the calculations of multiply differential cross
sections for photo-double ionization of helium and for electron, positron, proton, and antiproton-impact
ionization of atomic hydrogen. [S0031-9007(97)02917-7]

PACS numbers: 32.80.Fb, 34.10.+x, 34.80.Dp

The description of the correlated dynamics of fewwherek;; denote the momenta conjugate to the interparti-
charged particles is one of the fundamental unsolvedle distances;;, while R, refers to the position of parti-
problems in atomic, molecular, and nuclear physics. Ircle k with respect to the center of mass of the pair K,
addition to the inherent nonseparability of many-bodydesignates the momentum conjugat®ig andN is a nor-
interacting systems, the infinite range of the Coulombiamalization factor. The distortio® (r;;, R) is solely due
interaction poses a severe obstacle in theoretical treate the presence of the total potential. It can be determined
ments. For example, in resonant or direct fragmentatioms an eigensolution of an operafdrwhose properties are
processes involving charged particles the long-range taihost transparent when expressed in the curvilinear coordi-
of Coulomb forces precludes free asymptotic states of thaate system
reaction fragments [1—4], which in turn seriously limits .
the applicability of standard methods of scattering theory. {6 = rij + Kij - rij3 &m = rij}s
While the complicated dynamical nature of asymptotic . )

Coulombic states has been unraveled in recent years cije #0: j>ik€[L3) meld6l ()
[1-4], our knowledge of the fragmentation dynamics atin terms of (2) # decomposes into twparametrically
finite interparticle distances is still scarce, in particular, if coupled differential operators; an operatdg,, which is
the strength of the different interactions involved is of thegjtferential in theparabolic coordinatest; » 5 only and an
same order and a perturbative approach is inappropriatgperator acts only on internal degrees of freedeni4].
An adequate description of the short-range dynamicn additional mixing term arises from the off-diagonal
is, however, imperative, since dissociation amplitudessiements of the metric tensor. The parabolic operatQr

involve the many-body scattering state in the entire Hilberis exactly separable in the coordinatgs; for it factorizes
space. as

This study aims at modeling the reaction dynamics of
three arbitrary charged particles at finite interparticle sep-
arations while maintaining the requirement of exact treat-
ment at infinite interparticle distances. For this purpose,
following Refs. [5,6], we split the Hilbert space into an
“‘inner” and a “far zone” depending on whether the to-, hare
tal potential is larger or smaller than the kinetic energy.

The scattering state in the inner zone is designed with spe- .
cial regard to the fragmentation dynamics. Subsequently, ¢ — WimTim
this state is mapped onto the asymptotic solution at the )

boundary between the inner and the far zone to arrive at €jim #0, jE{l,23} (4)

an asymptotically correct behavior. Here we operate in n EQ. (4) i}, Zy» denote the reduced mass of the pigir

n_onrelat_lwstlc tlme—lnd_ependent frgmework._ To deC(_)Upleand their product charge, respectively. Equation (4) is the
kinematic from dynamical properties we write the eigen-

. Mo Schrédinger equation for two-body Rutherford scattering
fun_cUon\Ifof the tota_l Hamlltonlarﬂ-[,at the total energy expressed in parabolic coordinates [7]. Hence, within
E, in the form (atomic units are used throughout) H =~ Hp,, the three-body system is considered as the sum
W(r;, Ry) = Nexplir;j - ki + iRy - Kp)W(r;;, Ry), of three spatially decoupled two-bcz)dy Coulomb systems

on thetwo-body energy shell;; = k;;/2u;;. The exact
(1) regular eigenfunction of the operatdi, within H =

3
Hpar = Hf.f’[Hf.f’Hff]
j=1

=0, Vi je({l23} 3)

[agjfjagj + iklmfjagj = wimZim);

2712 0031-900797/78(14)/2712(4)$10.00 © 1997 The American Physical Society
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H.p,r, has thus the explicit form (outgoing wave boundarywhere E' is the intermediate total energy. Sinck™

conditions are assumed) is a linear combination of eigenstates &f (within
W ) _ . . H =~ H,,) it is obvious that { — E)¥™ = 0. To ac-
v 6 Kij) = 1F1(iB2s, 1, —ik par )
par (€163 Kig) = 1 F1 (i 261) count for the neglected pall — H,, the expansion
X 1 Fi(iB13, 1, —ik1367) coefficientsAy;, have to be deduced, e.g., variationally.

For many-body continuum states, however, this proce-
X 1F(iB12, 1, —iki2€3).  (5)  dure is intractable. Here only the low-energy part of

Using Eq. (1), the eigenstat¥,,. of # is then readily Akb is peeded since the wave function (6) is defined only
deduced. The Sommerfeld parameteds are given N the |nner,_momentum-exchange_ zone whose boundary
by Bi; = Zyjumi;/kj. The asymptotic separability (R,) scales inversely witle [6]. Within our model the
(img,, o H — Hy,) and the parametric dependence &xpansion coeﬁ|0|enmk;/(§4...§) indicate the occupation

of He, [Eq. (4)] on internal degrees of freedom can bepr/obabllltles for the |'ntermed|ate states characterized by
exploited to introduce coupling between the two-bodyZi; € [0.E]. According to the Wannier threshold anal-
subsystems [4]. This approach, however, does not adSiS [5],.the correlated motion in .the interaction region
count for transitions into intermediate virtual states and idS ergodic and hence our assumptiog, (£s..) = 1. At
applicable only to two electrons moving in the field of a the boundang,, the functionW™ has to be mapped onto
residual ion [8]. To circumvent these shortcomings wethe asymptotic state (5), which can be done as inRhe
adopt a strategy which is motivated by the measurementatrix approach [9]. Here we smoothly conndct with
process and the analysis of Refs. [5,9]. In a scatteringh€ asymptotic states (5) &, by writing the three-body
experiment the measurable quantities (observables) are tgEate in the entire Hilbert space in the form
asymptoticmomentak;; of the emerging reaction frag- in

mgntsp(spin and spatiajl degrees of fr?eegom are consigered\PeX(fl'"“ E) = f¥" + (1 = %16 ki), (7)

to be decoupled). In the “reaction zon_e” th_ese_quanturqvheref .= exp(—R/R,,) is an exponential matching fac-
nur_nbers are undetermined. To quantify this picture Wgor andR = 1, + ri3 measures the extent of the three-
define an innermomentum-exchange zoaed an outer, o4y system. Sinc®,, andR are scalar quantities, i.e.,
asymptotic zpnelepend_mg on Whet'her the totql potentlgl they depend 0i4..¢ only, the wave functionVex (1..¢; E)

or the kinetic energy is the dominant quantity. AS iSig g eigensolution of the total Hamiltonian within the ap-
well known [5,6], the boundary between these regimes oximationH ~ Hpy = zj?leg,-- As W, is asymp-

is the Wannier radiu®,, which is a scalar quantity. In toically correct for large interparticle separations [2,4]
the inner zone a two-body subsystéjncan assume any .4 satisfy the Kato [10] cusp conditions [4§ (s al-

two-body quantum state defined by a particukdy, i.e., ways large in this case) it follows that these properties are
each two-body subsystem propagatdé the two-body  girectly reflected intoVe, (imgs1 f — 0). FOrR > R,
energy shelE;;. 'I_'he description of this is \(vell facilitated e fall back to Eq. (5); i.e., in a high-energy scattering
by Egs. (3)(5) since the momerkg enterin Eqs. (4)as (g '« 1/E — 0) the escaping particles directly assume
dummy parameters and are determined only in the outgf,q;, experimentally measured momenta. Ror R,, the
asymptotic zone where they are measured. To ensure thg, hogy subsystems exchange an indefinite amount of
invariance of the Schrodinger equation under the mtroducénergy. At low energie®, extends to very large dis-

- . - /
tion of intermediate momentk,; we must operate under (ances The three particles then exchange energies up
the constraint that the total enerdy is conserved, i.e., to infinity for E — 0 and the transformation of the to-

the two-body su'bsystems exchange an indefinite amouRt; \vave function from¥™ to W,,, occurs at very large
of momentum in the momentum-exchange zone andisiances. This implies that properties of scattering am-
virtually occupy all (two-body) continuum states available iy, des which are derived from asymptotic arguments are

in the energy banfD, £]. As the system evolves towards gmeareqd out at threshold. If the integral in Eq. (7) runs

the Wannier boundang,, the reaction fragments take e yirtual bound states as well, highly excited Rydberg

on the (asymptotic) momenta measured in a scatteringiates provide, at lower energies, the major contribution
reaction. In this model the directiorks; are fixed by the to the wave function®.,. If the Hamiltonian#{ con-
boundary conditions [see Eq. (2)]. The exact (regularkying short-range (nuclear) interactions, the second term
eigenfunctions¥y,, of 3 (within H ~ Hp,) are known Eq. (7) remains unchanged while the signature of these
and characterized b¥/;, with Ej; € [0,E]. The general i ieractions is carried byin.
solution in /the inner zone is a linear superposition of |, 5 reaction leading to three-body continuum states
Wpar (£1-65 ki), scattering amplitudes are determined by transition ma-
in . 3y 3l L trices of the form (prior form)T = (V. |W|i), where
VE(Er0) = N f &k K A Wpar (€165 K7y) li) is the initial state of the three-body System and
W is the perturbation operator due to which the final
state ¥, is achieved. Introducing hyperspherical mo-

(6) mentax = E'; tana = (Ki/kij)/mij/mr where p; =

X 8(E — E"8%(k;; — ki;)8* (K, — K}),

2713
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mi(m; + m;)/ >, m;, and performing the integrals in- of intermediate virtual transitions, given kg, which

volved in (6), the amplitud& reads may interfere to result in the measured cross section.
7/2 The present method is applicable to an arbitrary three-
T =T + Cf da sir 2aT*, (8) body Coulomb system. Here we investigate the one-
0 photon double ionization of H&S¢) (DPI) and include in
whereC = Nﬂ?j/2,u2/2E2 and the integral (6) continuum states only. As momentum-
@ ] . exchange effects occur at shorter distan¢Rs< R,,)
T = fWpar (€161 )W, the velocity form of the dipole operator is employed
T = (1 = f)®par(&1.6: ki) IWi). (9) (first-order perturbation theory for the radiation field is

] ) ] ) assumed). Neglecting energy exchange between the two-
If virtual bound states are included the integral in Eq. (8)body subsystems results in the approximatid, —
contains a sum over these states. From Eq. (8) it iy which has been employed for the calculations of the
obvious that a transition to an asymptotic state defined byg|ative angular distributions of electrons following DPI
the measured momenlg; occurs via an infinite number \yith remarkable success [11,12]. From Figs. 1(a) and
1(b) it is evident that energy-exchange effects strongly
depend on the configuration in which the two electrons
(a) are emitted. A drastic influence is observed when the
two electrons escape with low and asymmetric energies
[Fig. 1(b)] in which case the symmetry of the initial-
state {S¢) and the final-state electronic repulsion imposes
less severe restrictions on the angular distribution than
in the case of equal-energy electrons [12]. In Fig. 2 the
electron- and positron-impact ionization of atomic hydro-
gen is considered. For electron impact the approximation
H — Hp,, = 0 leads to some discrepancy between theory
and experiment in the binary region. The recoil regime is
well described. The present model provides no evidence

s Y . for two additional shoulders predicted by the convergent

0.0 90.0 180.0 270.0 360.0  close coupling (CCC) calculations [13]. Differences be-
9, [deg] tween electron and positron impact as observed in Fig. 2
can be traced to final-state interactions. For proton and
antiproton impact [Figs. 3(a) and 3(b)] the projectile is
(b) mainly scattered into the forward direction and different

1.5¢-08 . . . r . T

TDCS [a.u.]

8e-09 : : .

10

TDCS [a.u.]

TDCS [a.u.]

0 X

0.0 90.0 180.0 270.0 360.0

0,, [deg] 0 90 180 270 360
0 [deg]

FIG. 1. (a) The triply differential cross section (TDCS) for

the double ionization of H&S¢) by a linearly polarized photon. FIG. 2. The TDCS for the coplanar electron-impact ionization
One electron is detected along the direction of the polarizatiorof atomic hydrogen calculated using the wave function (7)
vector () while the other electron is detected, in coincidence(solid curve). The incident energy is 54.4 eV. One electron
with the first one, under an angh, with respect toe. The s detected under an angle of 350ith respect to the incident
two equal-energy electrons escape with a total excess energirectionk;, whereas the other one is detected under an angle
of 4eV. The relative experimental data are due to [16].6 with respect tdk; and with an energy of 5 eV. Experimental
Representing the final state by Eq. (7) [®g. = ¥,,] results data are due to Ref. [17] with error bars indicating the
in the solid [dashed curve scaled downbg§]. The initial state  uncertainty in the absolute value. The CCC results (solid
is represented by a Hylleraas wave function which containdight curve) are taken from Ref. [13] where comparison with
radial and angular correlations. (b) The same as in (a) but tha number of other models is made. Predictions of the present
electron fixed toe is detected with an energy of 3.3 eV. study for positron impact are included (dashed curve).
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the field of the projectile [electrons captured into the
projectile’s continuum (ECC), ECC electrons with. —
0]. Detailed study showed that these electrons are ejected
via multiple scattering from both nuclei in events with
large deflection of the projectile.

In conclusion, transitions into two-body virtual states
have been included for the first time into analytical cor-
related three-body wave functions with correct asymptotic

Cross Section [a.u.]
f—
[—]

10 . . "
behavior. To elucidate the effect of these transitions, scat-
. tering amplitudes for photo-double ionization and elec-
10° L L L tron, positron, proton, and antiproton-impact ionization
0 100 200 300 : . .
leading to three-body continuum final state have been cal-
Secondary-Electron Energy [eV]
culated.
| am grateful to S. Buckman, E. Weigold, M. Hooger-
10° land, and S. Mazevet for helpful comments and to A.
\ cofte ' ! Huetz for communicating his data. This work was sup-
10" P\ (b) ported by the Alexander von Humboldt Foundation and
2 the Australian National University.
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The fully differential cross section for the positron- and electron-impact ionizatidf,a$ calculated.
For positron impact the results are contrasted against a recent experiment which evidently shows the
influence of the electron capture to a low-lying positronium continuum state. From a detailed analysis
it is deduced that the capture probability is dependent on the orientation of the electron-positron relative
momentum vector with respect to the residual ion. Within the used model, this asymmetric positronium
formation is traced back to the distortion of the positron motion by the two-center potential formed by
the residual ion and the secondary electron. [S0031-9007(98)06857-4]

PACS numbers: 34.85.+x, 34.10.+x, 34.80.Gs, 34.90.+q

A detailed understanding of correlated many-body scatuum states can be identified. This channel shows up
tering states is of fundamental importance for diverseas a rapid increase in the cross section when the elec-
fields of physics such as discharge and plasma physics, ftron approaches the positron in velocity space. The func-
sion physics, and physics of the upper atmosphere. Sudfonal dependence of this enhancement is dictated by the
continuum states are usually achieved as the final ouklectron-positron Coulomb density of states (CDS) (see
come of charged particle- and photon-impact ionizationbelow). Previous experimental and most of the theoreti-
Recent technological advances in multiple detection techeal work on positron-atom ionizing collisions concen-
niques have rendered possible an unprecedented insiginated on the analysis of the secondary electron spectra
into the properties of these states: the energy and momewhile the scattered positron is being undetected [6—15].
tum transfer to the many-body continuum can be probedNo unambiguous evidence as to the existence of the elec-
independently by virtue of equivelocity heavy- and light-tron capture to the positron continuum has been found.
particle impact; for a fixed amount of energy and mo-On the other hand, the phenomenon of electron capture
mentum transferred to the final state, the open reactioto the projectile’s continuum (ECC) is well established
channels as well as the total potential surface can be vaim heavy ion-atom ionizing collisions both experimentally

ied using particle and antiparticle projectiles. and theoretically [17—-28]. From these studies it has been
A unified description of all of these facets is a major concluded that a theoretical description of the energy and
challenge for current theoretical investigations. angular distributions of the secondary electrons must ac-

The present study is motivated by a recent kinematicallycount for the interaction of these electrons both with the
complete experiment [1] in whichH, molecule is ionized residual ion and the projectile [29]. For light-particle im-
upon positron impact. The resulting final continuum statepact, such as positron, the theoretical description is even
which consist of a positron and an electron moving in themore challenging, for in this case the projectile is de-
field of H, [hereafter referred to d8 "¢ H; )] have been flected through very large angles [11,15]. In contrast, in
simultaneously resolved in angle and energy. the case of heavy-particle impact the projectile is scat-

Contrasting this final channel with that achieved intered around the forward direction. Therefore, for the de-
electron-impact ionization [two electrons in the doublescription of the(e"¢™H7) final states, at least, a genuine
continuum of a residual ion, labeled hereafter bythree-body model is required. In this work we model the
(e~eH3)], two distinctive differences can be noted. final state by a wave function originally derived for ion-

(i) Evidently the total potential surface is markedly atom collisions [16] and recently applied for electron and
different in both cases [2] which results in completely positron ionizing scattering [14] (atomic units, a.u., are
different dynamics. This is particularly reflected by used throughout; corrections due to finite electron mass as
the decisively different threshold laws for total breakupcompared to that of the proton are neglected):

(cf. [3—5] and references therein). W(r,,r,) = 27) 3NyNyNypePeTeePr ™

(i) The indistinguishability of the two electrons intro- ) )
duces exchange effects in the caséeofe H»), i.e., the X (Filiag, 1, =i(para + Pa * ¥a)]
Cross ;ections are st_atistical mixtur_es of triplet and si_nglet X (Filiap, 1, =i(ppry + pp * 1b)]
scattering cross sections. While this effect is absent in the ] )
case of(e et H5), an additional channel opens, namely, X Filiaay, 1, =i(paprap + Pab * Tap)],
that of positronium formation. (b

In the experiment of Kévér and Laricchia [1], capture where r,;, are, respectively, the coordinates of the
of the ejected electron to low-lying positronium contin- positron and the electron with respect to the residual ion,

0031-900798/81(7)/1393(4)$15.00 © 1998 The American Physical Society 1393
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r,, = r, — rp, andp,, is its conjugate momentum. The 10
vector momenta of the emerging positron and electron

are, respectively, labelep, andp,, andFi[a,b,c] is

the confluent hypergeometric function. The normalization 10" 4
factorsN; are given by

N; = exp—7a;/2)I(1 — iaj), j=a,b,ab,
)
with the Sommerfeld parameters beiag = Z,Z,/p,,
ap = —Z;/pp, and ag, = —Z,/(2pay), WhereZ, and
Z, are the projectile and the final-state ion charge, re-
spectively. The cross section, differential in the energies

E.,E, and the solid angle§),, ), of the escaping par-
ticles, is then given by BT R FUA

Secondary-Electron Energy [eV]
7(Qa, Qp, Ep) = CAV (r4,15) [VIgp, () (e, ), (3) 107 5

where C = 27)*p.ps/po and ¢,, is a plane wave ECC
describing the projectile incident with momentupy. )
The H, target, as described bg(r,), is assumed to 10.0 25.0 40.0 55.0 70.0

be composed of two noninteracting hydrogen atoms. Secondary-Electron Energy [eV]

Fu+rthermore, the relaxation time of the fmal'_State '(_)nFIG. 1. The positron (thick curve) and electron (light curve)
H, is supposed to be much longer than the interactiofimpact ionization cross sections’ of, as a function of
time so that a frozen-core approximation can be appliedhe secondary-electron energy. The solid squares are the
In Eq. (3) the perturbation operatdf is the scattering experimental data of Ref. [1]. The incident energy is 100 eV.

potential of the incoming particle from the active electronhe absolute value of the experimental cross section is
and the residual ion unknown. Both emerging particles are detected in the forward

. . . . . direction. The inset shows the positron calculations convoluted
The first Born approximation (FBA) is obtained from jth the experimental resolution, as given by [1]. The position
this scheme in the limik, = 0 = ;. Itis well known of the ECC peak is indicated.

that the FBA vyields cross sections that depend on the
velocity of the impinging projectile and the square of
its charge. Therefore, the FBA does not distinguishcross section ap,, = 0. This is quite different from
between particle and antiparticle impact at the saméon-atom collision where, due to the basically undeflected
impact velocity. projectile, the ECC peak is much more pronounced even
In contrast, the full calculations (Fig. 1) reveal a drasticafter convolution and with the scattered projectile being
difference between reactions leading @ ¢ H;) or  undetected (see, e.g., [27]).
(e~ e*Hs) continuum, in particular, in the region where For the following analysis it is important to note,
the escaping particles emerge with equal velocities. Thi§owever, that the general slope of around the ECC
difference is readily understood from the CDS of theposition is not much affected by the convolution, as can
electron-electron and electron-positron subsystems that ke observed in Fig. 1. Unfortunately, for the™ ¢~ Hy )
described by|N.,|* = 27 ag[explmaq) — 1171 In system there is no available experimental data in the
the limit of p,, — 0, |N,;|* attains the behavior present scattering geometry.
The obvious difference betweesi and e™ impact,
as seen in Fig. 1, is simply a reflection of the markedly

e impact
¢ impact

0.7

0.5

6(Q,Q,E,) [au]

0.34
_2 +

10° 4 0.14

°

lim |Nab|2 - _27Taab — %,

P for z, >0 (e* impach, (4) different analytical behavior of (4) and (5). This effect
also shows up in heavy-particle and antiparticle impact
lim |Ngp|> = 27 g, exp(—2maq,) — 0, [31]. Inour case, however, exchange introduces additional
Par—0 _ . phenomena which can be unraveled by analyzing the
forZ, <0 (e” impach. (5) quantity
From Eq. (4) it is clear thatr(,, ,, E;) possesses a o (Q,, Oy, Ep)
first order pole atp,, = 0 in the case ofe* impact a"(Qq, Qp, Ep) = Feaas (6)

2
that signifies the ECC channel. Because of the localized INa |
nature of this pole it is very important to account for For the case of Fig. 1 we depict in Fig. 2 the normalized
the experimental resolution in order to compare with thecross sectiono”. As is more clear from Fig. 2, due
experimental finding [30]. In fact, as shown in the insetto exchange in the case ef impact, " (and o) is
(Fig. 1), the convolution with the experimental resolution, symmetric with respect to the ECC position. Thus,dor
as given by Ref. [1], leaves only a small peak in theimpact exchange imposes a continuag% at p,, = 0.
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as will be shown below, this study sheds new light on this
question but certainly does not resolve it.

10" - T it with exchange / Here we define the cusp asymmetry as
] N G_Yvilhin lhe]TBA / . .
— — - e impact without exchange A — I|m O'n _ I|m O'n,
(E/2—E,)—0* (E/2—E})—0~

where E is the total excess energy. In the caseeof
impact the cusp asymmetry is disguised by exchange
(Fig. 2); its sign is the same as that observedeih
impact. This rules out an explanation of this asymmetry
in terms of screening. Further calculations (not illustrated
here for space limitations) showed the following: (a) The
asymmetry diminishes at higher energiesl(keV) and
increases when the impact energy is lowered, and (b) the
sign of the asymmetry is not dependent on the emission
angles of the final-state products; i.e., if the ejected
electron and the scattered projectile are detected both in
the backward direction we end up with a behavior similar
to that depicted in Fig. 2.

As mentioned above, the experimental data of Fig. 1
follow the slope of the calculated cross section and hence
FIG. 2. The same as in Fig. 1, but the normalized crossint at the existence ak. Further ongoing experimental

sectiono™”, as defined by (6), is considered. The cross section ; inai :
o for ¢~ impact with (light solid curve) and without (dashed ®fforts should provide more insight into the exact value

¢ (Q, Q.E) [au]

100 250 400 550 700
Secondary-Electron Energy [eV]

curve) exchange are depicted along wiitt for e* impact of A. . . . . .
(solid thick curve). The cross section (3) (not o) as As realized in the early studies on ion-atom collision
predicted by the FBA is also shown (dotted curve, same resultf32,33], a description ofA requires a higher order
fore” ande™ impact). treatment. This is obvious from Fig. 2. The FBA yields

no asymmetry. In addition, if we neglect final-state

Neglecting exchange reveals remarkable similarities
betweene™ ande~ impact except for the region of very 10’ ]
slow positrons in which case the repulsion betwé&h
and the positron leads to a vanishing cross section [this is
described by a positron-ion CDRV,|?, that behaves simi-
lar to Eq. (5) for slowe™]. It is worthwhile to note that
the slope ofr” for e™ ande ™ (without exchange) is given
by o (not o) as calculated within the FBA. In fact, even 10° 4
a plane-wave impulse approximation (PWIA) yields the ;
same slope behavior ef as within the FBA. The cross
sectiono P14 within the PWIA can be evaluated from the
above model by setting, = 0 = a;,a,, = 0. The re-
sultis ™A = € /274" | D (pion)|?, Wwhered (pion) is
the Fourier transform aob, p;,, is the recoil momentum of
the ion, andy is the momentum transfer. Thus the slopes 10 3
of the o as depicted in Fig. 1 are determined by the ]
Compton profile of the initially bound state and the
projectile-electron interaction potential in momentum
space. Superimposed on that is th&p, |> and exchange
requirements in the case of electron impact. 100 200 300 400 500 600  70.0
A much more delicate feature of the” is the discon- Secondary-Electron Energy [eV]
tinuity at p,, — 0, i.e., the capture probability is depen- F|G. 3. The ¢*-impact case for the same geometry as in
dent on whethep, — p, + € or p, — p, — €, where Fig. 1is studied. Neglect of the positron-residual ion final-state
€ < 1. This behavior has also been encountered in ioninteraction f, = 0 in Eq. (1)] yields the dotted curve, whereas
atom ionizing collisions (both experimentally and theo-if we disregard the interaction between the emergingand

. e’ [a, = 0in Eq. (1)] we end up with the solid light curve.
retically) [16,23,28,29,32-35] and has been dubbesb  Tq final-state interaction of the secondary electron with the ion

asymmetry To my knowledge there is as yet no clearhas basically no influence on the cusp asymmetry £ 0 in
physical explanation of the origin of this asymmetry and,Eq. (1) leads to the thick solid curve].

6" (Q, Q,E) [av.]

ECC
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Abstract

A scheme is presented for expressing the many-body Green operator of an interacting system in terms of Green operators
of systems with a fewer number of interacting particles. The method relies on an exact algebraic operator identity proved in
this work. Furthermore, we present a hierarchical approximation that reduces successively the many-body problem to a lower
dimensional solvable problem. Recipes for higher order corrections are given and practical applications are poin2@Dout.
Elsevier Science B.V. All rights reserved.

In recent years there has been an impressive progress in computational material science [1]. This development i
driven by the unprecedented growth of computational resources and by the demand for yet more precise informatior
on technologically relevant material properties, such as the optical, transport and magnetic characteristics. On
the microscopic level, those properties can be obtained from the eigensolutions of the many-body quantum
Hamiltonian of the system under study. Thus, one has to deal with the notoriously difficult many-body problem
in a computationally acceptable manner. For this purpose remarkably successful and efficient conceptual scheme
have been developed where the multi-particle system is mapped onto a one body problem for a particle moving in
an effective (non-local) field created by all the other constituents of the system [2,3]. Usually, this effective field is
further simplified according to certain recipes such as those provided by the local approximation within the density
functional theory [4]. It is these theoretical concepts that rendered possible the calculation of the behavior of many
particle systems. A wealth of static properties, such as the ground state energies are well described by such effectivi
one particle methods for a considerable number of elements. However, static features of strongly correlated
systems, such as transition metal oxides, still posse a challenge to single particle theories [3]. In addition, for
the theoretical description of the many-body excitation spectrum [6] and for the treatment of dynamical processes,
such as many particle reactive scattering, methods have to be envisaged that go beyond the single particle picture

For example, correlated many-body states are a prerequisite for the theoretical formulation of recent
measurements of the double and triple electronic excitation of localized or delocalized electronic compounds by
one ultraviolet photon [5,7,8]. Recent technological advances have made it even possible to explore in full details
the many-body continuum spectrum of four and more interacting particles [8—13] where numerical calculations
are absent. Thus, it is desirable to develop, for many-body interacting systems, conceptually sound methods anc
schemes of approximations that can be numerically implemented.

E-mail addressjber@mpi-halle.de (J. Berakdar).

0375-9601/00/$ — see front mattér 2000 Elsevier Science B.V. All rights reserved.
PIl: S0375-9601(00)00676-9
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Fig. 1. (a) A pictorial representation of the potential decomposition (1) for a system consisting of three clusters. The coupled particles are
located at the corners of the geometrical shapes. Thus, two of the clusters contain three interacting particles each, whereas one cluste
encompasses four coupled particles. The shading of the shapes indicates that the various clusters might have different inherent internal dynamic:
(b) A diagrammatic illustration of the Green operator expansion (16) which corresponds to the decomposition in (a). Each of the diagrams stands
for a Green operator (written above it) with an interaction symbolized by the geometrical shapes (explained in (a)). The particles are indicated
by straight lines.
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In this study we design for an interacting many-body system a theoretical framework, within which the many-
body state is derived cumulatively from the solution of a lower dimensional problem. To deal with strongly
correlated systems, the treatment should not give a preference to a certain interaction. Furthermore, the metho
provides a systematic and mathematically sound scheme for approximations that are computationally manageabl
and allows, when desirable, to incorporate well established single particle and perturbative approaches.

The fundamental quantity that describes the behavior of the quantubody system is the total Green
operatorG™¥) which is the resolvent of the respective Hamiltonian. Our goal is thus to find exact expressions
for G™V) in terms of quantities of lower dimensionality that are computationally accessible. To this end we consider
two distinct cases.

Case 1. The N-body system can be broken down idialusters. The cluster labeled by the numbeontainsn;

coupled particles. Thus, we requi e,L m; = N. Them; particles within each subdivision are interacting via the
potentialvl(’"’ ) so that the total interactioti ™) can be cast in the form

L
U™ =3y, (1)
[

The non-relativistic total Hamiltonian of the system can be writte®@/ &% = K + U™), whereK is the kinetic
energy operator. Fig. 1(a) demonstrates geometrically decomposition (1).

Let us introduce the Green operat®y, of a system with the total potent@:j lv('"’), m € [1, L]. Thus,
G =6, whereG™ is the Green operator of the total system. As

m—1
HN — (K + Z v(m’)> + Z L)

Jj=1 Jj=m
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we can treatG,,_1 as a reference Green operator and deduce from the Lippmann-Schwinger equation the
recurrence relations

¢M =6, =G a[1+ "G, ], 2)
Gr-1=Gr_2[1+ U(L”iLl_l)GLfl]- 3)
These equations are reformulated in the simple but exact product expansion
-1
¢ =T][6Gy"Gj11]. 4)
j=1
where
G;=Go+Gov|"G;. 5)

Expansion (4) is derived for a system that can be naturally subdivided into clusters each of which possesses
a characteristic internal dynamical structure (dictated by the terms in Eq. (1)). The total Green operator of the
system is constructed from the Green operators of the individual clusters by means of Eq. (4). Here the question
arises whether it is possible to perform similar analysis to systems that are completely coupled entities, such as the
individual clusters themselves. The answer to this question leads us to the second case.

Case 2.We consider a strongly interacting finite system consisting pérticles. We attempt at expressing the
many-body Green operatct™ in terms of lower dimensional Green operators. For the further development we
need assume a certain class for the interaction potentials. In what follows we treat the case where the total potentia
is of the formU ™ = > j~i=1vij, wherev;; have not to be further specified. The method can be generalized to

more than two body interactions in a straightforward manner. The total potéfitiatan be decomposed as

n
U =Yy, ©)
j=1
n—1
af =2k ™
k=1

wherex "™ = ﬁg,”_l)/(n —2). Hereﬁg»”_l) is the total potential of a system consisting:ef 1 interacting particles
while the patrticle;j is free (“disconnected”). In terms of the two-body interactiony,{ the collective potential
" Vis expressed as" b = Yo _qUrs, I # j #s.InFig. 2(a) expansion (6) is explained geometrically.

The basic idea behind the exact relation (6) is to divide the completely interacting system into coupled clusters

[cf. Egs. (1), (6)] with an internal interaction.

Now, let us introduce the Green operaﬂif’l) of a system with the total potential (sum of collective potentials)
P u;."_l), m e [1,n] (noteGY Y = G™M). As

m—1 n
H(n) — (K + Z u;rzl)) + Z uﬁnfl)

j=1

Jj=m
we consider:l’:ll) as a reference and conclude the recurrence relations
-1 _ _
G"M =G Pl1+ur VeIV, (8)
(n—1) (n—1) (n—1) ~(n—1)
G, 1 =G, 5 [1+u, "G "]. ©)

n
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Again, these equations can be compactly written in the form

n—1
~(n—1) o1 7 (n—1)
G =[GV PGs 6 ). (10)
j=1
where
GV =Go+ Goul' PG Y. (11)

At first sight it seems that little has been gained by the above mathematical manipulation, since on the right-hand
side of Egs. (4), (10) the total Green operator appears. However, the following theorem can be shown (through
lengthy but otherwise exact operator algebra):

e , k,1 € [2,n], be the Green operator of a system wihtlinteracting particles subject to the potentia
Let GV, k,1 € [2,n], be the G tor of tem witfinteract ticles subject to the potential
le:l u;.k). The Green operatcﬂ?l(k) can be written in the form}l(k) =Go+ le:l Fj(k). The operators!“j(k) are

related to the Green operat@%) of the systems in which thie particles are correlated by virtue @ Y via the
linear coupled integral equation
(k) (k) (k)
r - Go r
(k) (k) (k)
I, - Go r,
N I (12)
(k) (k) (k)
L) 821~ Go 172
Fl(k) (k) — Go Fl(k)

The kernelK %] contains only Green operators with a reduced number of interactions and is given by

k k k
0 ¢ —Go g’ —Go g = Go
k k k
() —Go 0 gé)—go () —Go
[K®] = Gyt (13)
.. oo .. oo .. O
gl( )l Go ... gl( )l Go 0 gl( )l Go
(k) — Go - gl(k) Go (k) —Go 0

It can be further shown that the kern&l®] is square integrable (i.e., the noftK © || = [Tr([K ®][K ®)]T)]1/2
is square integrable). Therefore, Eq. (12) can be solved by standard methods for treating integral equations of the
Fredholm type. Here we just consider the first term (iteration) of Eq. (12) from which we deduce

GM =Go+ Xl: gt —1Go. (14)
j=1
The central quantity in Egs. (4), (10) is of the foit + Goul(k)Gl(k). From Eq. (14) we conclude that
Go+ Gou' GV = Go+ GouV gV + Gou gV, + - + Gou Vgl — (1 — DGouy Go
=g+ Gou(k)(Go—i-Goul(k)lgl(k)l) +- 4 Gou (Go+Goulg) — (1 = DGou Go
¢ +6u®(Gou g™+ +G u(lk)gik)). (15)
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Fig. 2. (a) The reduction of a four interacting particle potential (indicated by a square) to a sum of three body potentials (depicted as triangles)
according to Eq. (6). The interacting particles are located at the corners of the geometrical shapes. The orientation of the triangles signifies
which particles are interacting. (b) According to Eq. (17), the interaction decomposition shown in (a) leads to a product expansion of the total
Green operator in terms of Green operators with a reduced number of interacting particles. Each of the diagrams stands for the Green operato
(indicated above it) that involves the interaction symbolized by the geometric shape. The particles are shown as straight lines. Only particles
are interacting whose lines cross a triangle.

The leading term of Eq. (15) is identified as the Green operga}(f‘ér All other terms are higher order multiple
scattering between different subdivisions of the total system. Hence the first order terms in the exact expansions
(4) and (10) attain respectively the forms

L-1
(N) l-order (mj) ~—1(mji1)
g "= T 6, Gote (16)
j=1
and
-1
G(n) 1-cldern (n—l)G_;L (n—1) 17
=" [1e/ 6ol (17)
j=1
-2
(n—1) 1-ordern n—-2) ~—1 (n—2) .
8; = 1_[81 Go 8141 L#]. (18)
=1

In Eq. (16) only the Green operatotes(m) of the individual (isolated) clusters occur. Fig. 1(b) illustrates
expansion (16) for the potential decomposition shown in Fig. 1(a). Note, that since each glaeterinsm ;

interacting particles(,;g.m" )isin fact a correlate ; particle Green operator. A recipes to deal with such interacting
many-body Green operators is provided by Eqgs. (17), (18) which allow to deduce the Green operator of a system
of n interacting particles in a cumulative way from Green operators with a reduced dimensionality (lower number
of interactions). An example is shown diagrammatically in Fig. 2(b) for the corresponding situation of Fig. 2(a).
The correction terms beyond approximation (17), (18) are readily given by are readily given by Eq. (15). It should
be noted here that for the case of a three interacting particle system the present results coincide with those obtaine
in Ref. [15].

The validity of the approximate expressions (17), (18) relies on the truncation of the multiple scattering series
Eq. (15) after the first term. This first order approximation means that, within each individual cluster, multiple
scattering events are taken into account to all ordergﬁiaHowever, scattering between various clusters is
neglected. For example, in the three-body Coulomb @és'ﬂn Eq. (15) is a two-body Green operator (known
analytically). Eq. (17) accounts then for two-body interactions but excludes three-body ones which are of a
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shorter range (cf., e.g., second term of Eq. (15)). This is a first hint that the present proposal for approximation is
reasonable, when for a particular physical system processes inva@i/ial@ more important than those mediated
by ufufﬁl. Thus, the present method is not appropriate for the special case of zero-range potentials.

For practical application we operate as follows: The first step is to envisage whether the system can be separate
in individual clusters as given by Eq. (1). If yes, we use Eq. (16) to deduce the total Green operator. The Green
operators of the individual clusters with interacting particle can then be deduced according to Egs. (17), (18).

If a solution of them; body problem is not possible we can reduce it toithe- k problem using Egs. (17), (18)
for which the solution can be found, e.g., from other analytical or numerical procedures or from an effective field
method. Thus, the method shown here is quite flexible and can be employed as a basis for a family of solutions.

Finally, the following general features should be noted: (1) Usually, the various Green operators of the reduced
systems can be derived only approximately. The product expansions (16)—(18) have the advantage that no spuriou
interference terms can occurs due to different approximate treatment of the various reduced systems. (2) It is
decisive to realize that relations (17), (18) are expansions in the numb#erHctionsand not in the number of
particles The number of particles in each of the clusters is the same. It is only the numb&grattingparticles
in the individual clusters which is reduced (with respect to the total number of interactions). Because of this the
symmetry of a (fermionic, bosonic) system can be taken into account when calculating the desired observables from
the Green operator. For example, the spectral function can be extracted from the trace of the imagina6/part of
The symmetry of the system enters then through the appropriate symmetry of the states used to obtain the trace
of G™. (3) Egs. (4), (10) are algebraic operator identities and are valid for all abstract operator. Thus, the theory
is readily applied to atomic, molecular, nuclear, and condensed matter systems [14]. (4) For many interacting
particlesn > 3 the Lippmann—Schwinger equations do not provide unique state vectors [16] and their kernel is
not square integrable (and also not compact) [17]. As shown by Faddeev [17] the reason for this shortcoming
is the occurrence of the so-called disconnected diagrams where oneroptrécles is not interacting, i.e., not
correlated with the other — 1 particles. For the present case it can be shown that expansion (10) does not contain
any disconnected terms. (5) The present model encompasses perturbative approaches in so far as the perturbati
series for the reduced Green operatcgt‘é)[in (17)] can be applied when necessary.

One of the simplest applications of] Eq. (12) to condensed matter is the description of the propagation of two
correlated hot electrons at surfaces. According to approximation (17), the total Green operator of two electrons
moving in the surface crystal field is a product of three Green operators: the Green opgratmig, of each of
the individual electrons in absence of the inter-electronic coupling and the Green oggsaibthe electron pair
in absence of the crystal. Expressions g@randg> can be obtained from standard single particle band structure
methods [2]. To evaluatgi> we need an expression for the electron electron interaction in extended systems.
This can be derived from th&W [6] method within the random phase approximation. A simplified version
of this scenario has been implemented to study the excitation spectrum of an electron pair in a ferromagnetic
surface [18]. When compared with experiments, the results are very promising and strongly indicate the validity of
approximation (17) for this specific case.
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This study presents a theoretical framework for the propagation of a compound consisting of NV interact-
ing particles in a multicenter potential. A novel Green operator approach is proposed that disentangles
the geometrical and dynamical properties of the scatterers from the internal evolution of the projectile
compound. Furthermore, the transition operator for the scattering from the multicenter potential is
expanded in terms of many-body scattering path operators, which in turn are expressed in terms of sin-
gle site transition operators that are amenable to computations. To deduce the correlated many-body
Green operator of the scattering compound, a cumulative method is designed that reduces the problem
to the evaluation of Green operators of systems with a reduced number of interacting particles. This
is particularly useful for efficient calculations and encompasses the usual perturbative approaches.

When an electronic system is subjected to an exter-
nal perturbation, it may respond collectively by the
emission of electrons. A variety of important struc-
tural and electronic properties of materials can then
be deduced by analyzing the spectrum of the emitted
electron flux. Prominent examples of such analytical
techniques are electron energy loss spectroscopy,! the
(low, high and medium energy) electron diffraction
method? and single photoemission measurements.®
Correspondingly, a number of reliable theoretical
concepts have been put forward to deal with the sin-
gle particle scattering from ordered and disordered
matter.*5

On the other hand, the propagation of a many-
body system with coupled internal degrees of free-
dom through a multicenter potential is much less
understood theoretically. Examples of such cases
are the scattering of atoms, molecules and corre-
lated electrons from surfaces (see Ref. 6 and refer-
ences therein). A detailed analysis of such processes
is, however, of great fundamental and technological

*E-mail: jber.mpi-halle.de

importance, as a number of important catalytic re-
actions occur at surfaces.”

The difficulties in the theoretical treatment stem
from the nonseparability introduced by the corre-
lated many-body scattering compound and the sub-
tle coupling of the internal motion (of the con-
stituents of the compound) to the external multi-
center potential.

This work aims at developing a systematic frame-
work for the description of a compound with a finite
number of interacting particles that propagates in
the field created by a multicenter potential. This po-
tential could be ordered or disordered, but it should
be possible to cast it reasonably well in a nonover-
lapping muffin tin form.

The fundamental quantity that describes the be-
havior of the correlated system in the presence of
the external potential is the total Green operator
G, which is the resolvent of the respective Hamil-
tonian. Our goal is thus to find exact expressions
for G in terms of single particle quantities that are
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computationally accessible. Our strategy is to de-
couple formally the degrees of freedom of the com-
pound with /V interacting particles from the external
scattering potential. For the Green operator of the
N-body system we propose an incremental method
due to which the Green operator is cumulatively re-
duced to Green operators of systems with a reduced
number of interactions. This procedure can be suc-
cessively repeated until a reduced interacting system
is reached whose Green operator is known. In a
second step the scattering compound is considered
as a quasi-single-particle with an internal dynamical
structure. For the scattering of this quasiparticle we
design a scattering path operator formalism that ex-
presses the multisite many-body transition operator
in terms of single site transition operators.

For a mathematical formulation we consider a
nonrelativistic compound consisting of N correlated
particles. The total interaction within this system
is assumed to be described by a potential of the
form UL = Z;\;iﬁlvﬁ, where v;; have not been
further specified at this stage. This structured pro-
jectile is then scattered from an external multicenter
potential We,, which can be cast in terms of a super-
position of M individual nonoverlapping potentials,
w;, acting within specific distinguishable domains Q;,
ie. W = M w;, ©:1Q; =0, Vj # i. Thus, the
correlated system is coupled to the external scatter-
ing potential via

Wexi = Z Z Wy (1)

where wy; is the interaction of particle [ with the
scattering site k. The total Hamiltonian of the sys-

tem can be written as H = Hl(nf} + Wy, where

HY = g4+ U. (N), and K being the kinetic energy

int int

operator. The behavior of the correlated system,
characterized by Hl(;t , When subjected to the exter-

nal potential Weyt is described by the total Green
operator (the resolvent of H) which satisfies the
relation

ext G( N) ’ (2)

int

Av
g G( ) + Gznt

int

Text = Wext + G(

int

Wext Text L] (3}

Here Tox: is the so-called transition operator and
G is the Green operator of the correlated system

int

when the external potential is switched off. From

Egs. (2) and (3) it is clear that G can be formu-
lated as G = AB where A = 1+ G T = 1+

int
Gl(nt)WeXt o G extG )Wext +---and B = G(N).

int int

These relations for G disentangle the internal degrees
of freedom of the projectile, described by B, from the
dynamical and geometrical properties of the external
potential scattering that are described by A. The
external motion is coupled to the internal one via
Gi(:t'), which occurs in the expression for 4. Thus,
the task is focused on finding simple and mathemat-

ically sound expressions for G(ﬂ) and To.:.

mt

The total internal potential U, (N) g decomposed

int

as
N o N
g =y i, (4)
i=1
N-1 :
WV =3 WM e, N-1, ()
k=1
where u(N V= “(N 1)/(N 2), with @ u bemg

the total potent1al of the correlated systems when
N —1 particles are interacting while particle j is free.
In Fig. 1 the expansion (4) is explained geometrically.

Let us introduce the Green operator Gf{fv_” of a
systemn with the total potential ijl u(N_l) M e

1, N] (note that G5 = ¢y As H(N) =

int int

(K + E (N' !)} + Z (N U we can treat
Gf.:,f_ 11) as the reference (known) Green operator and

deduce from the Lippmann—Schwinger equation the
recurrence relations

Gi(i\? _ (N 1)[1+ (N— I)G (N— 1] (6)
N-1 N-1 N—1Y ~(N—
GE’\fhl ) = GE’V’—2 )[1 + uE’\T+11)GfV—11)] - (M

These equations are reformulated in the simple but
exact relation

N
G =G T (Go + GoulM V6 -D). (s)

int
i=1

The physical meaning of the operators G;Nf}‘}
which determine the expansion (8) is readily seen
from Fig. 2 for a compound with six interact-
ing comstituents. It is clear from this diagram
for the six-particle system that each of the re-
duced five-particle diagrams can be further expanded
in terms of four-particle diagrams. To reach a
simplified expression we note that 3J_, N -
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Fig. 1. Pictorial geometric sketch of the total potential expansion (4) for six interacting particles. The particles are
enumerated and marked by the full dots at the corners of the hexagon. The hexagon stands for the full potential U(®) of
the six correlated particles. According to Eq. (4), the hexagon can be broken down into six pentagons. Each pentagon
symbolizes the full five-body potential u(5]
particle not at a corner (particle j) is free.

of those five particles situated at the corners of the pentagon, whereas the

1
2
i L 3
1 = 4
5
6
1
2
(5) 3
= 4
5
6

G’
3 =

—oldP —
= |1 =

ﬂ

gD

(5)
4 =

(3)

G;
6

0]
R R

Fig. 2. The Green operators which occur in the expansion (6) are illustrated diagrammatically. As in Fig. 1, we
choose an example of six mteractmg particles. The hexagons and the oriented pentagons stand for the same potenmals,
as explained in Fig. 1. The particles are indicated by straight lines. The interaction that occurs in each Green operator
is the sum of the pentagons depicted in the respective diagrams. Only particles that cross a pentagon or a hexagon
are interacting.
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(N 4 +E {N b, Therefore, the Green opera-

tor G’(N b satlsﬁes the equation G( =) :gﬁN 2

N 1)[2 (N 1)]G(N V) Where g(N_l) is the
(N-1)

Green operator mvolvmg the interaction u} only.
Inserting this relation into Eq. (8), we deduce that
the leading term of the expansion (8) is given by the
recurrence relations

N
G](i\tr) s G«EN+1 H {Gu-i-Gou(N 1)g§N 1)
=1
(N=1) (N-1)
+ Gou > 9;

j—1
<[] ool
k=1

G(N) lorder G_N+ ﬁ N 1) (9}

int

(N i ol B4 H g2 g, N-1].
=1
(10)

In other words, the Green operator of an N-body
system is, in a first order approximation, a product
of N Green operators of all the different interacting
N — 1 subsystems that can be combined within the
N-body system. The Green operators of the N — 1
subsystems can in turn be reduced in the same man-
ner to a product of those of the (/N — 2)-body sub-
systems that exist in the (N — 1)-particle system.
Figure 3 gives a diagrammatic representation of this
hierarchical procedure. In practice, one starts the
incremental method as depicted in Fig. 3 from a sys-
tem with a reduced number of interacting particles
M for which the Green operator is known. Then,
the recipe given above yields the solution (the Green
operator) when M + 1 particles are interacting. This
procedure has to be further continued to reach the
interacting N-body system. It is important to real-
ize that this approach is not perturbative and that
all interactions are treated on an equal footing. On
the other hand, a perturbative treatment is encom-
passed in the expansion (9) through the Born series
for g( )i ke [ D]

Having established a reduction formula for the
many-body Green operator, we turn now to deal-
ing with the transition operator T,y;, as defined by

Eq. (3). The aim is to express it in terms of sin-
gle site transition operators. For this purpose we
introduce w'*) ;= Z:V Wy as the interaction of all
N interacting particles with the site k. The external
potential (1) reads W = 22’1:1 w'® | Thus, Tue

can be expanded in a sum as
Toxer= Z q(k) (ll)

q(k) - w(k) -+ w(k)Gi(rﬁr)Text (12)

¢ = ) @G (k)

N
£ WE0.
Ik
Now we introduce the k site transition operator of
the correlated compound as t;, = w(®) + w(k)Gi([ﬁr)tk
and rewrite Eq. (13) as

M
™ =t + 3 4G q®. (14)
12k

Combining this relation with Eq. {11) leads to

Tost = Ztk-i—z t: G (4 + w G Tow) . (15)
1k

Following the treatment by Gyorffy®® of the single
particle scattering from a multicenter potential, we
introduce the many-body scattering path operators,
7 as

W S Z LG = 6+ Z kgl
ki kg
' (16)
and sum over j. The comparison with Eq. (14) yields
g = ;'-M 7%, and from Eq. (11) we finally conclude

that
Mo Mo
= Z q(*) = Z TH (17
i ij

The physical interpretation of tg, ¢'*) and 7% is as
follows. The operator t; describes the scattering of
the correlated system (H, 1(nt )) as a whole from the site
k in the absence of all the other scatterers, whereas
q'®) characterizes the collision of this correlated Sys-
tem from the site k in the presence of all other scat-
tering centers. The operators 7% describe the tran-

sition of the correlated projectile under the action
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(N-1)

9,

1)
9

(N-1)

gN—&

[+
x
z
Z eana bl = b
»

Fig. 3. Schematic representation of the approximation (9), (10) for N interacting particles. The total potential is
labeled by the black circle and the N — 1, N — 2 and N — 3 body potentials are indicated by ellipses with different
eccentricities. The particles are shown by the solid lines. Only those particles that cross an ellipse are interacting.
Each diagram stands for the Green operator (shown in the diagram) of a system with the potential symbolized by the

circles and/or the ellipses.

of wy, following an initial scattering from the poten-
tial centered around the site I. Thus, the transi-
tion operator from the multicenter potential Tyy is
broken down into successive single site transitions
that are computationally more accessible. Combin-
ing Egs. (17) and (8) we arrive at the final exact
expression for the total Green operator (2):

N
G=|1+GN)

1

M

ig —N+1
_;_ ™\ Gy
1

N
* = N-—
x [T [Go+ Gou{" " VGN D] (18)
k=1

As evident from Egs. (10) and (16), the compo-
nents of the main expression (18) can be obtained
from established single particle theories. The first
order term of the exact expansion (18) is

~

M N
Gr |1+Go Y 7| GV T ¥V (19)
iF =1

In conclusion, we have proposed a nonperturbative
scheme for the theoretical treatment of correlated
many-body finite systems from a multicenter poten-
tial. The total Green operator is reduced to the eval-
uation of Green operators of systems with a reduced

number of interactions and to the sequential scatter-
ing of these reduced systems as a whole from a single
site. This has been achieved by the development of
an incremental method that yields the Green opera-
tor of a system with IV interactions from that for sys-
tems involving N -/ interactions, where ! € [1, N-2|.
For the scattering from the external potential we de-
signed a many-body scattering path formalism that
relates the multicenter transition operator to single
site transition operators.
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The transition and the Green operators of an interacting N body system are obtained from the solutions

of the N — M body problem where M = 1,2,...,N

— 2. This is achieved via the development of a

cumulative, nonperturbative approach that makes use of existing knowledge on the system when the
number of interacting particles is reduced. The method is applied to four interacting Coulomb particles
where the Green operator is expressed as a sum of Green operators of all three body subsystems that
can be combined within the four body system. The calculated four particle continuum spectrum is in a
remarkable agreement with recent experimental findings.

PACS numbers: 34.10.+x, 25.10.+s, 34.80.Dp, 34.80.Ht

The description of the spectrum of many interacting
particles is a problem of a long-standing history in theo-
retical physics. One of the efficient solution procedures
has been to reduce the many-body problem to one for a
single particle moving in an effective (nonlocal) field cre-
ated by all other particles. For computationally tractable
solutions approximate expressions for the effective field
are employed according to certain recipes such as those
provided by the local approximation within the density
functional theory [1]. With the advent of many particle
spectroscopy, however, it has been possible to probe in
great detail the properties of many-body systems that are
strongly dependent on the interparticle correlation. For
example, the double and triple ionization and ionization/
excitation of localized and delocalized electronic systems
by an ultraviolet photon [2—4] cannot be described with-
out the explicit use of correlated few-body states. Re-
cently, experiments have pushed the limits to explore in
full detail the many-body continuum spectrum of four or
more interacting particles [4—10]. For this case, theory is
lagging way behind. On the other hand, a system stud-
ied intensively in nuclear, atomic, and molecular physics
is that consisting of three interacting particles. In 1961
Faddeev proposed coupled linear integral equations with a
square integrable kernel to solve the three particle problem
[11,12]. Nowadays, we have a wealth of further analyti-
cal and numerical methods at hand to deal with three body
systems. In view of this situation it seems worthwhile to
develop for the four body problem, in particular, and for
N body systems in general, a cumulative method that takes
advantage of previously accumulated knowledge on the so-
lution of the N — 1 particle problem.

The fundamental quantity that describes the microscopic
properties of N body quantum systems is the Green opera-
tor GY) which is the resolvent of the total Hamiltonian.
It can be deduced from the Lippmann-Schwinger equation
G = Gy + GoUNMGW) where G is the Green opera-
tor of a reference N particle system which is usually cho-
sen as a noninteracting system. An equivalent approach
to determine the dynamical behavior of a system is to
derive the respective transition operator T™) which sat-

4036 0031-9007/00/85(19)/4036(4)$15.00

isfies the integral equation TW) = ™) + yMG,T™).
These integral equations for G™ and T™") provide a natu-
ral framework for perturbative treatments. However, for
N = 3 the application of the above Lippmann-Schwinger
equations (and those for the state vectors) is hampered
by mainly two difficulties: (1) as shown in Refs. [13,14]
the Lippmann-Schwinger equations for the state vectors do
not have a unique solution, and (2) as shown by Faddeev
[11,12] the kernel of these integral equations K = GoU (V)
is not a square integrable operator for N = 3, i.e., the norm
IK|l = [Tr(KK1)]'/2 is not square integrable. The kernel
K 1is also not compact.

This study proceeds as follows: (a) We develop a re-
cursive procedure to express the Hamiltonian of N inter-
acting body systems in terms of Hamiltonians of systems
with a reduced number of interactions. (b) In the spirit
of the Faddeev approach [11,15,16] we derive nonper-
turbative integral equations with the following properties:
(1) they treat all N particles on equal footing, and (2) they
relate in a linear manner G and TW) to G¥~M) and
TW=M) where M = 1,2,...,N — 2. (c) We develop a
systematic and mathematically sound scheme for approxi-
mations and apply it to deduce the continuum spectrum of
four interacting Coulomb particles.

To this end we consider a nonrelativistic system con-
sisting of N interacting particles. We assume the total po-
tential to be of the class UN) = Zj\;i:l v;; without any
further specification of the individual potentials v;;. The
potential U (V) satisfies the recurrence relations

(R I
v = Doup (1
N-23 !
N-1) 1w
U s DI A
where uﬁN_l) is the total potential of a system of N — 1

interacting particles in which the j particle is missing,

i.e., in terms of the physical pair potentials v,,, one can
. N—1 . . .

write u; = Z>n=l Umn,m # j # n. It is straight-

forward to show that the potential expansions [Egs. (1)

© 2000 The American Physical Society
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and (2)] are reflected in similar relations for the total
Hamiltonian.  Figure 1 illustrates how, according to
Egs. (1) and (2), the potential of a system of six inter-
acting particles is expressed in terms of potentials of five
correlated particles. The latter potentials can be further ex-
pressed in terms of four body potentials [cf. Eq. (2)]. This
procedure is repeated until a potential with a desired num-
ber of interactions is achieved. From Fig. 1 it is clear that
this “minimal geometric reduction” scheme [Eqgs. (1) and
(2)] treats all interactions on equal footing and provides
maximal flexibility to reduce systematically the N body
potential (Hamiltonian) to sums of N — M potentials
(Hamiltonians) with M = 1,2,...,N — 2. This simple
geometric observation has wide ranging consequences
in that the transition and the Green operators can be
expanded in the same way. This can be seen as follows:

According to the decomposition (1), the integral equation
for the transition operator can be written as

N
T =3 7V, 3)

T(N*l) __(N-1)

J = Uuj

(N-1)

+ T™Gow; ', j=1,...,N.

“
~(N-1)

Here we introduced the scaled potentials ii;
(N 1)

)/(N — 2). The physical meaning of the operators
(4) is illustrated in Fig. 2 for the system depicted in Fig. 1.
The transition operator of the system, when N — 1

*l)
particles are interacting via the scaled potential ii; ,

is t(N b - ﬁ;N ) + u(-N 1)GotJ(N 1). With this relation
Eq. (4) can be reformulated as
i VGor™y = V7V 4 VUG ™ — VY
&)
as
TfN—l)
TZ(N—I)
+ KV (6)
(N—1)
Tn—
T](VNfl)

N-1) _ (N—l) (N—l) N (N—l) ~(N=1)
T, =1t Go T( b — 1 Gol;
_ W=D e 7N
= lj l] Gy Z .
k#j
Equation (5) can be expressed alternatively in a matrix form
Tl(Nfl) Z‘§N71)
Tz(N—l) téN_l)
(N=1) (N=1)
Ty IN-1
T}(\]N*l) t,(vN 1)
The kernel [KV=D] is a matrix operator whose ele- |
ments consist of tj(-Nfl);j =1---N. From Eq.(2)

o N-1 .
it is clear that t; ) can also be expressed in terms
of the transition operators of the N — 2 interacting
(N-D _ 1 (N=2)
k¢ j Lk

subsystems as ; The operators

T,EN_Z) are deduced from Eq. (6) with N being replaced
by N — 1.
64 1
Shg
4 3
63 +1
5@?
FIG. 1.

full dots at the corners of the hexagon. The hexagon indicates the full potential U®
)/4 of those five particles that are at the corners of the pentagon. The particle

symbolizes the full five body potentlal ﬁ; )

being not at a corner of a pentagon is free (dlsconnected).

)
= (u;

From the relation G = Gy + GoT™)G, we conclude
that the Green operator of the interacting N particle system
. The operators

has the form G™) = Gy + Y| gV Y
G](-N_l) are related to the Green operators g;-N_l) of the
systems in which only N — 1 particles are correlated by

. ~(N-1) .. . . .
virtue of it; . This interrelation is given via

61 .
E?e 2
4° 3
6- .q
5 Bz

A pictorial interpretation of the total potential expansion (1) for six interacting particles enumerated and marked by the

) of the six correlated particles. Each pentagon
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BRI —

FIG. 2. A diagrammatic representation of Eq. (4) for a system
of six correlated particles (cf. Fig. 1). The hexagons and the
pentagons (with a specific orientation) label the same potentials
as explained in Fig. 1. Each of the pictures stands for a transition
operator of the six body system (the particles are labeled by

straight lines). For example, the diagram Tl(s) means that the five
particles 2,3, 4,5, and 6 interact first, propagate, and then all six
particles interact with each other. The system then propagates
and finally the five particles 2,3,4,5, and 6 interact again.
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GEN—I)
G;Nﬂ)

+IRY |, )

(N—1)
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G}(\}Nﬂ)

where [KWV D] = Go[KW V]G, . From Egs. (6) and (7)
we conclude that if the Green operator of the interacting
N — 1 body system is known the Green operator of the N
particles can then be deduced by solving a set of N linear,
coupled integral equations [namely, Egs. (6) and (7)]. Ac-
cording to the above equations, if only the solution of the
N — M problem is known where M = 1,2,...,N — 2
we have to perform a hierarchy of calculations starting by
obtaining the solution for the N — M + 1 problem and re-
peating the procedure to reach the solution of the N body
problem. For N = 3 the present scheme reduces to the
well-established Faddeev equations.

As an example we apply the method to the four body
problem. This is particularly instructive, for a substantial
body of knowledge on the three particle problem has been
accumulated whereas theoretical studies on the four body
problem are still scare. Moreover, an impressive amount
of experimental data is available [4-8,10] that renders
possible a detailed insight into the four body continuum
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spectrum. Therefore, using the present method, we express
the four body Green operator in terms of known, approxi-
mate solutions of three body systems. For N = 4 the first
iteration of Eq. (7) yields

4
3
g - 3G, ®)

j=1
where gf) is the Green operator of the interacting three
body system (particle j is noninteracting) and can be
taken from other numerical or analytical studies. For
example, it has been shown recently [17] that, under
certain conditions specified in Ref. [17], the Hamiltonian
of a general three body system reduces to a sum of

G(4) =

. o 2) . .
three commuting Hamiltonians h,({) in which only two
particles are interacting (particle k is free). The Green

operators g; " in Eq. (8) can therefore be written as

g = G2 [iwj 8ok €11,2,3,4) D j where g is

the resolvent of h,(f). Thus we obtain from Eq. (8) G®¥ =
[ Go s 801 — 3Go,j # k €11,2,3,4.  Tn
many situations it is possible to encompass in the ref-
erence Hamiltonian Gg valuable and easily accessible
preknowledge of the system which reduces the number of
interactions in the potential (1). For example, we consider
here the continuum dynamics of three electrons (or two
electrons and a positron) in the Coulomb field of a heavy
nucleus. Such a state is achieved following the electron
and positron impact double ionization. As a reference we
choose Gy to be the Green operator of the three continuum
particles moving independently in the Coulomb nuclear
field. What remains in the potential (1) is then the in-
teraction among the continuum particles which is treated
according to the present method. Figures 3(a) and 3(b)
show the results for the electron and the positron impact
double ionization of ground state helium along with the
experimental data [5,10] and a full numerical evaluation
of the first Born term within a convergent close coupling
(CCC) method [18]. The first Born approximation (FBA)
corresponds to one term in Eq. (8) where the projectile
motion is decoupled from the rest of the system. Thus, the
results of the FBA are insensitive to the projectile charge
state. The origin of the main peaks in the FBA spectrum
has been unraveled in Ref. [10]. Thus we focus here on
the novel additional structures predicted by the present
theory. From Figs. 3 and 4 the following important
implications are inferred: (i) The difference between
the positron and the electron impact case indicates that
the Born limit is not yet reached. We note that at such
a high impact energy and a small momentum transfer
as considered in Fig. 3 and 4 the Born limit is usually
achieved in single ionization. This emphasizes the funda-
mental difference between single and double ionization
as the latter having much higher ionization threshold and
being basically correlation induced. (ii) The Born (and
the optical) limit is approached differently depending on
the emission angles and energies of the ejected electrons.
(iii) In the author’s view, the most remarkable prediction
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FIG. 3. The fully resolved double ionization cross section of

He(15°¢) following electron (solid lines) or positron (dotted line)
impact. The scattering geometry is shown by the inset in
(d). ko and k; are the initial and final state momenta of
the projectile while k, and kj; refer to the momenta of the
two ejected electrons. The incident energy is 5.6 keV and
k3/2 = k3/2 = 10 eV. All angles are measured with respect
to ko. The projectile is scattered through an angle of 0.45°. The
emission angle @, of one of the electrons is fixed at the value
indicated on the figures while the cross section is scanned as a
function of the emission angle 65 of the second electron. The
thick solid (dotted) line is the result of the present model for
electron (positron impact) whereas the light solid curve is the
outcome of the CCC method within the first Born approximation
[18]. The data (full square [10]) are on absolute scale.

of the present calculations is the presence of additional
subsidiary peaks (in the spectrum shown in Figs. 3 and
4 which are absent in the FBA (CCC) results (cf. also
Ref. [10]). An optimistic observer can identify these
structures in the experimental data of Figs. 3(b), 3(e),
and 3(f). In Fig. 4, however, these peaks are clearly
observable. The origins of these peaks are interference
effects between the various terms in the sum (8) when
evaluating the cross sections. It is most interesting to
recall here that the appearance of such interference effects
in a Faddeev-type approach to Coulomb scattering prob-
lems [19] has been considered hitherto as a drawback and
has not been confirmed experimentally [19]. The present
study which is in the spirit of the Faddeev theory together
with the notable agreement with experiment sheds a new
light on Faddeev-type approaches as a useful route to
few-body systems with long range correlations. In spite
of this exciting result it should be noted that only the first
iteration of (7) is used for the calculation of Figs. 3 and 4.

0.004 e
(a) 0,=99°
0.001
0.002
E 0.000 : ; 0.000
_5 T T T T T
§ 0.004 - (c) ,=207° (d) 8,=243° 0.004
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FIG. 4. The same as in Fig. 3 with the same labeling of curves,
however the ejection energies are lowered to K/2=14k/)2 =
4 eV. For shape comparison, the experimental data have been
normalized by a single factor to the present theory.

The evaluation of higher order terms should remove the
remaining discrepancies between theory and experiment.
The compactness of the kernel of the integral equation
(7) for Coulomb potentials is the subject of current
research [20].

I thank Anatoli Kheifets for communicating his results.
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The fluctuations in the electronic charge density of metallic clusters in response to an approaching
electron suppress the single-ionization channel. This conclusion is made on the basis of numerical cal-
culations for the total ionization cross sections using the random-phase approximation with exchange
to describe the particle-hole (de)excitations. The general trends can be understood by means of the
Thomas-Fermi model. The present theory explains, for the first time, the behavior of the measured total
ionization cross section for Cgo. The interplay between finite size and nonlocal screening effects is studied
by tracing the changes in the ionization cross sections for Li clusters with an increasing cluster radius.

DOI: 10.1103/PhysRevLett.87.263401

The primary source of knowledge on the structure and
the dynamics of electronic systems is provided by their
characteristic response to external perturbations. For
systems with a large number of active electrons, such
as clusters and surfaces, the collective response is de-
termined basically by the cooperative behavior of the
system’s constituents, e.g., the delocalized electrons in a
metallic surface shield, by an organized rearrangement,
an external electric field which might be induced by an
approaching test charge. These correlated fluctuations of
the electronic density, i.e., the excitation and deexcitation
of electron-hole pairs, can be described by the so-called
polarization operator II (or the particle-hole propagator)
[1]. On the other hand, the spin and the charge density
fluctuations of the medium modify the properties of
the electron-electron interaction U. How the modified
potential Uerr emerges from the naked interaction U
is determined by II through the integral equation [1]
Uest = U + UllUg+. This relation can be formally
written as Uefr = 7—pg. Thus the screening of U is
given by k := 1/(1 — UII) which is referred to as the
generalized dielectric function [1] and plays a central role
in a variety of phenomena. To name one, the frequency
(w) and wave vector (p) dependent electrical conduc-
tivity o( p, w) of a plasma is obtained from «(p, w) as
o(p,w) = iw(l — k). This is just one of numerous
examples for the fundamental interest in the study of the
dynamical screening in electronic systems.

The determination of the renormalized interaction Ulss
and of the dielectric function « entails the knowledge
of II. In essence, II is a two-point Green function that
describes the particle-hole excitations. Its lowest order
approximation Il is provided by the so-called random
phase approximation (RPA) [1]. For a homogeneous
system and in the long wavelength limit (A > Ap, where
A is the Fermi wave length) one obtains 1y = —2N(w).
Here N(u) is the density of states at the Fermi level u.
Hence, for A > Ap, the screened potential of the bare
electron-electron interaction U(q) = 4 /q* is readily

263401-1 0031-9007/01/87(26)/263401(4)$15.00
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derived as Utr = 47/[q*> + 87 N(w)]. In configuration
space we recover thus the well-known Thomas-Fermi
potential Urg = e "//r [ry = 1/\/87N(n)].  This
form of the interaction gives a first hint of the nature of
electronic collisions in many-particle systems, such as in
metallic clusters: In an isolated scattering of two charged
particles, events with a small momentum transfer ¢
(far collisions) are predominant, for the naked potential
behaves as U « 1/¢%. In contrast, these events are sup-
pressed in the presence of a polarizable medium due to the
finite range of the renormalized scattering potential Uesr
which dictates that scattering can occur only at distances
close enough such that the medium is not able to screen
the external field (lim,«;Utr(g) < 1/[2N(u)] = const).
Hence, we conclude that the scattering probability as a
function of the impact parameter saturates at a distance
d determined by the extent rp of the scattering region
(lim,—» d — ), these conclusions are endorsed by the
full-numerical RPA calculations presented in this work.

The ideas sketched above are the key to resolving a yet
open question of how metal clusters are ionized in response
to an external perturbation induced by an approaching elec-
tron. In the experiments, which have been performed using
free Cgp clusters, one measures the absolute total ioniza-
tion cross sections W(ep), i.e., the yield for the Cqy pro-
duction, as a function of the energy (€y) of an incoming
electron [2—4]. These measurements confirmed repeatedly
that the cross section W(ep) possesses a plateau shape:
Near the ionization threshold it rises strongly with increas-
ing €p and then falls off slowly at higher energies. This
saturation effect is markedly different from what is known
for atomic targets where W(e€g) shows a pronounced peak
at low €g [cf. Fig. 1(a)].

Theoretical attempts to explain the behavior of W(ep)
for Cgp are scarce. For the energy region €p < 100 eV
only semiempirical models exist [4,5], whereas for
€o > 100 eV a quantum scattering approach has been pro-
posed in Refs. [6,7]. All of these previous theories [4—7]
were unable to explain the energy dependence of W(eo),

© 2001 The American Physical Society 263401-1
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basically because the problem has been approached from
an atomic scattering point of view without accounting for
the influence of the fluctuating electron density on the
scattering process which is of a key importance at low
energies (ep < 1000 eV) , as shown here in detail: The
central quantity that determines W(ep) is the transition
matrix element T (ko, ¢,; k1, k2). This matrix element is a
measure for the probability that an incoming electron with
momentum ky ionizes a valence electron bound to the
state ¢, of the cluster with a binding energy €,,, where v

stands for a collective set of quantum numbers that quan-
tify uniquely the electronic structure of the cluster. The
emitted and the scattered electrons’ states are labeled by
the momenta k; and k,. As outlined above the renormal-
ized electron-electron interaction U is determined by an
integral equation with a kernel describing the particle-hole
(de)excitation. Therefore, the evaluation of the 7' matrix
entails a self-consistent solution of an integral equation. In
the random-phase approximation with exchange (RPAE)
[1] and within the post formulation [8] the T matrix has

| the form Trpag = <k1k2|Ueff|¢Vk0>, where
<<€0pkz|Ueff|¢V€0h><§0hk1|U|k0¢p>
= €0 — (gp — &, — i0)

_ <¢’hk2|Ueff|¢v€0p><¢pk1|U|k0§Dh>>
60+(8p—8h—i5) '

(kiko|Uest | b ko) = (kika|U| ko) + Z

ey

The spin averaged cross section W(e) is obtained from the weighted average of the singlet « |7=9|? [vanishing total
spin (S = 0) of the electron pair] and the triplet o |T5=Y|? cross sections (we assume spin-flip processes to be irrelevant)

1

_ Q2m)* 3 3 (5=0) . 2
W(eo) = ko d’ky d’ky ZZ 1T ko, b3 k1, ko)

14

+ %|T<S:”(ko,¢V;k1,k2)|26[eo + e, — (kK2 + k%/z)]]. )

In Eq. (1) ¢, and ¢ are, respectively, the intermediate
particle’s and hole’s states with the energies &,, &,
whereas 6 is a small positive real number. The first
line of Eq. (1) amounts to a neglect of the electron-hole
(de)excitations, as done in Ref. [7]. If Utr is employed
as an effective potential only the first line of Eq. (1)
has to be evaluated, and we obtain the much simper
expression Tt = (k1k2|Utg|¢ ko) from which the cross
section Wrr follows according to Eq. (2). In contrast, as
evident from Egs. (1),(2), the numerical evaluation of
W (€p) within RPAE is a challenging task. To tackle this
problem we proceeded as follows: The quantum states of
the metal clusters are constructed within the Hartree-Fock
approximation and within the spherical jellium model
[8,9]. The cluster potential which is a superposition of
atomic potentials, is replaced by a shell confinement.
The latter is formed by the delocalized valence electrons
of carbon atoms and is modeled by the potential well:
V(r) = Vy within the region R — A < r < R + A, and
V = Qelsewhere. For C¢y we use R = 6.7aq as the radius
of the fullerene. The thickness of the shell is 2A = 2a,
(ag is the Bohr radius). The height of the well was chosen
such that the experimental value of the electron affinity
of Cgp and the number of valence electrons are correctly
reproduced. Alternatively, one can employ a model cluster
potential as derived from the density functional theory
(DFT) within the local density approximation [7]. As
shown below, the DFT potential leads basically to the
same conclusions as the model potential outlined above.
As remarked in Refs. [6,7], the relatively large size
of the cluster leads to severe convergence problems in
evaluating the transition matrix elements. To circumvent

263401-2

this situation we utilized the nonlocal variable phase
approach [10-12] for the numerical calculation of the
Hartree-Fock states. In this method the electronic eigen-
functions and eigenvalues of the cluster are provided
through scattering phase functions and through the poles
of the scattering amplitudes in the complex plane of
the particle’s wave vectors. We find that this choice for
the numerical realization renders a rapid and a reliable
convergence of the self-consistent calculations. Upon the
numerical summation over the states ¢, in Eq. (2) we
carry out the six-dimensional integral over the momenta
ki and k; using a Monte Carlo procedure.

To get an insight into the effect of the screening we
calculated Wrg(e) for different strengths of screening as
quantified by ro. As seen in Fig. 1(a), when approach-
ing the unscreened limit (ry I'=0.01 a.u.), the calculated
Wrr(eg) agree well both in shape and magnitude with the
finding of Ref. [5] at lower energies. At higher energies,
the present model and the DFT calculations [6,7] yield ba-
sically the same results. To simulate experimentally this
atomic case let us assume the C¢p molecule to be simply an
ensemble of 60 independent carbon atoms, in which case
the cross section for Cg is a factor 60 larger than W (eg)
for atomic carbon [13]. The experimental cross sections
we obtain by this procedure [Fig. 1(a)] agree very well
with the shape of the calculated Wrg(eg) at low screen-
ing. On the other hand, all of the theoretical models
shown in Fig. 1(a) are clearly at variance with the mea-
sured W (eg) for Cgg (note the measured and the calculated
cross sections are on an absolute scale). Figure 1(b) sheds
light on the underlying reasons for the shortcomings of the

263401-2
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FIG. 1. (a) The total ionization cross section [Eq. (2)] for the
electron impact single ionization of Cgy as a function of pro-
jectile energy. The absolute experimental data (full squares) for
the production of stable C J) ions [2,3] are shown along with the
experimental electron-impact total ionization cross sections for
atomic carbon (open circles) [13] multiplied by a factor of 60
(cf. text). The solid line with crosses is the result of the DFT
calculations [6], whereas the dashed line is due to the model of
Ref. [5]. The dotted line indicates the present calculations with
very small screening (rg '=0.01 a.u.). (b) The RPAE results
(solid line) are shown together with calculations employing the
Thomas-Fermi model of screening with varying values of the
screening length, as shown in the figure. Full squares as in (a),
whereas the open squares are the absolute experimental total
counting cross section for the emission of one electron from the
initially neutral cluster (cf. text for details) [2,3].

theories shown in Fig. 1(a): As alluded to in the introduc-
tion, with increasing screening the region where scatter-
ing may take place shrinks. This results in a suppression
of the ionization cross section with increasing screening
length, as is evident from Fig. 1(b). This effect is not a
simple scaling down of W(ep), but the shape is also af-
fected. The peak of W(ep) is shifted to higher energies
and W(ep) is generally flattened. In fact, for extremely
high screening the cross section is very small and shows
basically very weak dependence on €j. This can be under-
stood from the behavior of the form factor of the potential
Utr which for large screening is independent of €y, i.e.,
Urr(q) « r% = const,V €y [14]. Another extreme limit
that shows up in Fig. 1 (cf. also Fig. 2) is that when €y
is very large the electronic density of the cluster cannot
react within the very short passage time of the electron
through the interaction region and hence only small de-
viations between all the models are observed in the high
energy regime.

263401-3

The full numerical RPAE calculations for the cross sec-
tion Wgrpag(€o) confirm the trends we pointed out by
means of the locally screened potential Urr. In fact, by
comparing the Wrpag(€g) and Wrr(eg) one may deduce
a rough estimate of the screening length which is of im-
portance for the consideration of the relaxation time due
to electron-electron collisions [15]. We obtain a quali-
tative agreement between Wrpag(€o) and Wrp(eg) when
ro 1'— 0.3 au. is used to evaluate Wrr(ep), however, it
should be stressed that we were not able to reproduce cor-
rectly the RPAE calculations by simply adjusting rg, as can
be concluded from Fig. 1(b).

For a comparison of Wrpag(€p) with the experiments
we recall the remarks of Ref. [5] that, experimentally the
electron impact on Cgp may lead not only to the formation
of stable Cg but also may produce unstable Cg that within
a certain lifetime, not resolved by the experiment, decay
subsequently into various fragmentation channels. There-
fore, we show in Fig. 1(b) the experimental total counting
rates, i.e., the total electron-impact ionization cross sec-
tions for the emission of one electron from Cgy along with
the experimental total cross section for the ionization of
Ceo and for the formation of the stable C;O ion. We re-
gard the agreement between the parameter-free Wrpag/(€o)
and the experimental results as satisfactory, in view of
the fact that the RPA is the first order approximation to
the two-point particle-hole Green function, as outlined in
the introduction.

To study the interplay between quantum-size effects and
the nonlocal screening as described by RPAE we calcu-
lated within the spherical jellium model the cross section
Wrpak(€o) for Li clusters with varying sizes. For a judi-
cious conclusions we normalized the cross sections to the
number of electrons in the respective cluster. Figures 2(a)
and 2(b) reveal a striking influence of charge density fluc-
tuation on W(eo), in particular at low energies: The RPAE
model predicts a suppression of Wrpag(€p) with an in-
creasing cluster size due the increasing phase space for
the particle-hole creation [cf. inset of Fig. 2(a)]. In con-
trast the neglect of charge density fluctuations results in
increased peak values of W (o) for larger clusters. Further-
more, according to the RPAE, the peak in W (ep) is consid-
erably broadened and shifted towards higher energies when
the cluster size is increased (for the cluster with a radius
Ry; = 4ay the peak is at g = 200 eV whereas this peak
is shifted to €y = 700 eV for Ry; = 10aq) [cf. Fig. 2(a)
and inset]. As explained above, this is consistent with
the behavior of W(ep) with increased screening length
[14]. In contrast, the neglect of the particle-hole (de)exci-
tations leads to cross sections with the peak positions be-
ing shifted towards lower energies as the cluster size grows
[cf. Fig. 2(b) and inset]. For small clusters or for €y >> 1
there is hardly an influence of charge density fluctuations
[cf. heavy solid lines in Figs. 2(a) and 2(b)].

Summarizing the above results, we have seen how
the particle-hole (de)excitations suppress and modify the
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FIG. 2. The total electron-impact cross section for the ion-
ization of spherical Li clusters with varying radius size Rp;.
(a) shows the RPAE calculations. (b) shows the results when
the particle-hole (de)excitation is neglected [the first term of
Eq. (1)]. The insets in (a) and (b) highlight the low-energy re-
gion.

ionization cross sections for the electron scattering from
neutral metal clusters. The simple Thomas-Fermi (TF)
model of screening provided a useful tool to obtain global
views on the role of delocalization of the electrons. The
more elaborate random phase approximation confirmed
and specified more precisely the understanding gained
from the TF model. We also envisaged the interrelation
between quantum-size and screening effects. From a for-
mal point of view, we note that to treat scattering processes
in isolated few charged particle systems, such as in atoms
or small molecules, one has to deal with the infinite-range
tail of the Coulomb interaction that precludes the use of
standard methods [16] and induces multiple scattering

263401-4

between the collision partners up to very large distances.
In contrast, the presence of the screening in systems with
a large number of delocalized active electrons renders
possible the use of standard scattering theory but on the
considerable expense of actually calculating the nonlocal
screening properties of the medium, e.g., as described by
the polarization propagator II. The crossover between
the two cases is marked by a breakdown of the RPAE
for dilute systems, where other methods such as the
ladder approximation become more appropriate. In any
case one has to bear in mind that, both from a practical
and a conceptual point of view, approximate methods
that perform well for few particle scattering may not be
suitable for the treatment of delocalized many-particle
systems (and vice versa).
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Excitation spectra of free fullerene clusters
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Abstract

In this work we study the single electron emission from fullerene clusters upon the impact of low-energy electrons.
The calculations of the quantum ground states of the fullerene are performed within the Hartree-Fock and the jellium
shell model. The interaction between the incoming projectile and knocked out electrons is described on the basis of
random phase approximation with exchange, which leads to the concept of screening of the inter-electronic interaction.
We compare the results of the calculations with available experimental data for the ionization of Cg by electron impact
and show that neglect of polarization leads to results at variance with experimental finding. © 2002 Elsevier Science
B.V. All rights reserved.

Keywords: Jellium models; Many body and quasi-particle theories; Electron density, excitation spectra calculations; Electron

bombardment; Electron emission; Electron-solid interactions

The aim of this work is the investigation of the
single ionization of the fullerene cluster from its
(single-particle) ground state |¢,;) upon the impact
of an electron with wave vector ky. In the final
channel two electrons recede from the residual
cluster to emerge with asymptotic momenta k; and
k. The transition amplitude for such a reaction is
given by

T(ko, ki, ka, ¢,) = Eo(kiko|ViaT| ¢y ko) (1)

E, is the total kinetic energy of the two electrons
and IT = Gy + GyV 1 is the total Green operator of
the projectile—cluster system with the total poten-
tial V. The interaction between the projectile and
the knocked-out electron is designated by V},. Here
we report on the calculation of the first-order term
of Eq. (1) as well as of the next terms due to the
electron—hole excitations. In the presence of the

" Corresponding author. Tel.: +49-345-5582613; fax: +49-
345-5511223.
E-mail address.: okidun@mpi-halle.de (O. Kidun).

external electron with momentum k, the self-con-
sistent cluster potential changes. Taking into ac-
count the polarization of the electronic cloud, we
write the amplitude of the process as a sum of two
terms. The “direct” one corresponds to the exci-
tation of the cluster’s electron labeled by index ““2”
from the jth bound state ¢,; to the continuum state
with the asymptotic momentum k,. The second
“correlation” term describes correction, which
appears from electron—hole excitations. Thus, in
the random phase approximation with exchange
(RPAE) the matrix element reads

T ~ {kk| Veff|¢2jk0>
= (k| Viol s ko)
<dk2|Veff|¢2jﬁ><ﬁk1 Vl%

o Sorey g — (&, — &5 — 10)

<ﬂk2|l/eff|¢z/“><“k‘ i‘k0ﬁ> 2
S s ?

kooz>
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Vuir being an effective interelectron interaction,
1/rj;3—bare Coulomb between impact and inter-
mediate electrons; o, f are the intermediate elec-
tron’s and hole’s states with the energies ¢, €g; &
and ep are the initial energy of the projectile and
the Fermi energy respectively. The different terms
in the sum describe electron-hole excitation and
deexcitation.

The differential electron-impact ionization cross-
section is to be summed over ionization events
from all the initial bound states ¢, accessible
within the energy conservation, i.e.

d’c 2n)* 2
d3kl d3k2 - |k0| z]: |T(k0ak17k2a ¢2j)’

X (e — (€™ + k1 /2 + k3 /2)) (3)

The quantum states of the fullerene cluster are
constructed within the Hartree—Fock approxima-
tion and within the spherical jellium model. The
potential of Cgy, which is a superposition of atomic
potentials, is replaced by a potential of a fullerene
shell. The latter is formed by delocalized valence
electrons of carbon atoms and is modelled by a
potential well: V(r) = ¥, within the region R — 4 <
ry <R+ A4,and V = 0 elsewhere. Here R =~ 6.7ay is
the radius of the fullerene, the thickness of the
shell is 24 = 2ay, ay being the Bohr radius. The
height of the well was chosen such that the ex-
perimental value of the electron affinity of Cg, and
the number of valence electrons are correctly re-
produced.

Numerical calculation of the Hartree-Fock
states is based on the non-local variable phase ap-
proach [1-3]. This method allows to find the eigen
functions and eigen values through the scattering
phase function and through the poles of the scat-
tering amplitude in the complex plane of the wave
vector of the particle. Such a choice of numerical
realization of the self-consistent procedure allows
to accelerate its convergency significantly.

For this purpose we look at the scattering of the
spinless particle with the energy E = k? and orbital
momentum / in the nonlocal potential V' (r,7):

2

%u[(r) + <k2 Jg(%”)w(r) = /0 mdr’Vz(fﬁ P Jug(r')
(4)

After replacement of the radial part u,(r) of the
wave function by the partial amplitude and phase
functions oy(r) and d,(r):

ug(r) = ay(r) - F(6,(r))
du,(r) = o(r) - dG(0,(r))
where
F(0(r)) = cos 0,(r)je(kr) — sin 0,(r)n,(kr)
dG(0,(r)) = cos o,(r)dj,(kr) — sin 6,(r)dn,(kr)

(5)
the Schrodinger second order differential (4) trans-

forms to the system of the first order Riccati-type
equations:

500 = (= )P [[avir

- / dG(3,(+"))
v F(0(r"))

X exp
ioc (") = 0y(r) sin 8,(r) - jo(kr) + cos O4(r) - ne(kr)
dr . F(3,(r))

X 555(7’)

(6)
Jje(kr), ny(kr)—Riccati—Bessel functions are regular
and irregular solutions of the free Schrodinger
equation. For the local potential V(r), dy, and
o have clear physical interpretation: they are the
asymptotic scattering phase and the asymptotic
amplitude of the wave function built for cutoff at r
potential.

The eigen energies are calculated by finding the
poles of the partial scattering amplitude in the
imaginary half-axis of the wave vector k = ik,
k€ R. It is related to the scattering phase
fi = (1/k)e* sin §,. After some algebra, Volterra-
type equation for f;, corresponding to the system
(6), can be derived

d(i - fi(r))

:dr< 2> %Fz(ﬂ(r)) /0 rdr’Vz(r, ")

K

"L () - dgo(er”) + Bdp(r)
Sha / VAC)

—
-
~—



664 O. Kidun, J. Berakdar | Surface Science 507-510 (2002) 662—665

F(fi(r)) =1~ fi(r) - qu(r) + B*pe(xr)

where p, and ¢, are modified Riccati—Bessel func-
tions of the real argument rr; = (i)""'. Initial
condition for the integration is f;(r = 0) = 0. The
condition for the bound state is condition for the
poles of fi;(r — o00). In practical calculation
the regularization of this equation can be made in
two different ways: by the replacement 1i- f; =
1/¢ or by the replacement i- f; = tany. Then the
eigen state exists at zeros of ¢ or for y=
(2n+ 1)n/2, n€ Z. In this work we used the
regularization of the first kind.

Due to the spherical symmetry the Hartree—
Fock total wave function was constructed from
2(2¢ + 1) degenerate single-electron orbitals. The
latter form several sub-bands characterized by
different number of nodes of the radial wave
functions. The lowest sub-band orbitals with the
orbital momenta 0 < /<7 do not have nodes on
radial axis, the next ones (0 < £ < 5) have one node,
and highest sub-bands occupied orbitals (with
0</4<3 and 0</£<2)—two and three nodes re-
spectively. All shells are closed and the total
number of the electrons is equal to 240.

To get a qualitative insight into the role of
screening for the shape of the cross section we
compare our RPAE calculations with the calcula-
tions in intuitively transparent approximation:
Due to the presence of a large number of mobile
electrons on the surface of the fullerene the inter-
action of the incident electron with the cluster
electrons is screened. A simple model to account
for this effect is the Thomas-Fermi approach
which yields a local screening of the electron—
electron interaction described by the one-para-
meter Yukawa potential: V(ry) = exp(—Ar12)/ri2,
where A is the inverse screening length. The results
of our calculations are presented in Fig. 1a, where
the total cross section of the process a(g) is given
as a function of the impact energy. Dashed curves
correspond to different values of the inverse
screening length, solid curve is the RPAE result.

Despite their conceptual simplicity, these models
of electronic correlation yield encouraging results.
We compare them with available experimental data
[4] together with the calculation of work [5], where
the bare Coulomb interaction was taken into ac-
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Fig. 1. Integrated electron-impact single ionization cross sec-
tion of Cg as a function of the projectile energy: (a) Present
calculations in Thomas-Fermi model (dashed curves) with
different values of the inverse screening length and in the RPAE
(solid curve). (b) Solid line: calculation in the plane wave Born
approximation for the jellium-shell model [5]; dashed line: result
of semi-empirical model calculation [6]; (a) and (b) symbols:
experimental cross section for production of C/, ions [4].

count and the (e, 2e) total cross section was calcu-
lated in the plane wave Born approximation, and
with the semi-empirical model calculation [6] (see
Fig. 1b). When contrasted with calculations that
neglect screening effect, the account of it results in a
flattening of the total ionization cross section at
lower impact energies. This effect can be traced
back to the fact that for the unscreened Coulomb
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interaction the main contribution to the cross sec-
tions originates from far collisions, whereas in case
of screening there is a cut-off impact parameter
beyond which the contribution of collisions to the
cross section diminishes.
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The energy-sharing spectra of correlated electron pairs ejected from Cu(001) and Fe(110) surfaces
reveal characteristic structures associated with diffraction of the pair from the lattice. It is demonstrated
theoretically and experimentally that (1) the momentum-spaasitions of these new features are
determined by the change of the center-of-mass wave vector of the pairs as compared to the reciprocal
lattice vector, and (2) the relativiatensitiesof the peaks and thehapesof the individual peaks are
dependent on the internal correlation of the pairs. Possible pathways for the pair creation are envisaged
at various diffracted beams. [S0031-9007(98)07432-8]

PACS numbers: 79.20.Kz

An electronic system distorted externally by a photondetailed description can be found in Refs. [7-9]. The
or a charged particle impact can integrally respond by theample surface defines tkey plane, while the; axis co-
simultaneous emission of two electrons into the vacuumincides with the surface normal. In thex plane two po-

The vacuum states of these two correlated electrons can Iséion sensitive microchannel plate electron detectors are
then determined using an angular and energy-resolved ctacated at a distance of 160 mm to the sample surface,
incidence technique. The spectra of low-energy electrosuch that the relative angle between the detector axes and
pairs, the subject of this study, carry the signature of theithe surface normal is given by«a. The angular accep-
mutual correlations and their coupling to other degreesance of each electron detector within the scattering plane
of freedom of the environment while in the high energyis *13.2°. A parallel electron beam of about 1 mm di-
regime information on the initial-momentum componentsameter impinges onto the sample surface including the
of the pair can be extracted from the recorded spectra [Langle y with the surface normal. For investigating the
4]. These observations have been made in diverse areas®©@fi(001) sample, the angles and vy are chosen to be
physics, such as plasma, atomic, molecular, and condensé€®° and 0°, respectively, while in the case of Fe(110)
matter physics [3,5,6]. For pair emission from localized(BCC), « was set to be50° and y = 5°. Correlated
electronic states, such as atomic and molecular orbitals, &lectron pairs emitted from the sample upon excitation
turns out that the spectra are dominated by the intereledy a primary electron are detected in coincidence. Their
tronic interaction of the pair, in particular at lower energiesenergies have been measured using a time-of-flight tech-
(with respect to the initial orbital energies) [6]. Thus, annique. In the range of electron energies detected here, we
adequate theoretical description of these phenomena musthieve an energy resolution AF = 0.4-0.8 eV. Stan-

go beyond an independent particle description. For dedard cleaning procedure of the surface is applied before
localized electronic states, as present in metallic crystalsach measurement under a base pressure in the range of
and surfaces, it is established that delocalization does na0~!'! mbar.

preclude correlations. E.g., in transition metalsdhadec- The probability for the two electrons to be detected
trons are delocalized, yet correlation between them is fawith asymptotic momentk; andk, is derived from an
from weak.

In this work it is shown theoretically and experimentally z
that an electron pair can be regarded as a “two-electron
quasiparticle.” The scattering of this quasi-single-particle
from a crystal potential results in characteristic diffraction
pattern that is, for the first time, experimentally observed.
The positions of the diffraction peaks are governed by

a von Laue-like diffraction condition for the center-of-
mass wave vector of the electron pair. The relative \
intensities of the diffraction maxima are largely determined k v

2 kl

by the internal degree of freedom of the pair, i.e., by
interelectronic correlations.

The experimental setup used for the angular and
energy-resolved detection of the pairs, i.e., for the projec-
tion of the two-electron initial state onto the two-electronfF|G. 1. A schematic representation of the experimental setup
vacuum state, is schematically depicted in Fig. 1. A mores described in the text.

0031-900798/81(16)/3535(4)$15.00 © 1998 The American Physical Society 3535
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excitation amplitudeT, that is, to leading order, a sum Tee = 8P (Ko — KL (6)

of dir_ect electron peir excitation amplitud@ee, and an _InEq. (6)Ko = ko + k is the initial wave vector of the

amplitude, 7., that mv_olves the scat_terlng of_the pair pair. The functionsC, £, £’ depend on the description

from the crystal potentiaW,. [10,11] (i.e., atomic units ¢ the momentum-space wave functiogl y.u) of the

[a.u] are used throughout) bound electron. For a jellium-state momentum distribu-
T =T, + To. (1) tion and free interelectronic propagation, Egs. (5) and (6)

. - . can be evaluated in closed form [10].
To emphasize the quasi-single-particle nature of the Equation (5) has important implications:

correlated pair we canonically transform to a wave vector (1) Only the pair center-of-mass wave vector enters in
S S P :

represer]ltatlorK ® K wher]eIh( = ki + K2 is the  ihe yon Laue-like diffraction condition, expressed by the

center-ca-mass wave ;]/ec_tor 0 It e pair, 8d = (ki = el function. This is equivalent to a diffraction of a

k»)/2 characterizes the interelectronic wave vector, i.e. asinarticle located at the pair's center of mass when the

the_lnt_ernal degree of freedom of the pair. The direct Paibarallel component of its wave vector is changedghy

emission amplitude has the form during the collision. We note that in LEED studies (Low
Tee = (K, K" [Weelko, xek)) - (2) Energy Electron Diffraction) diffraction occurs when

herelk is the stat tor d ibing th . __the change in the wave vector of the incident electron
wh _erltlal O’Xf(k)>d'sb is ate vector elscrlhlng € pair askequaISg” [12,13]. The decisive difference to the pair's
initially prepared by the experiment. In the present WorKig 4 ction s that a fixedk * does not imply fixedk |, k,
|ko, xex)) consists of an excited electronic vacuum stat

. X Since a momentum exchange of the two electrons (the
with wave vectotko and a bound statie)) with energy  jyiarna) coordinatd ~ changes then) does not necessarily
€ and wave vectok. Theee two states are then coupledmodify K*. Therefore, a definite change K* does
via a screened (renormahzed) Coul_omb mtera(_:tﬂzig}. not fix the amount of change in the wave vector of the
The transition amplitud&... that describes scattering from

h Cnfini I be deduced incoming projectile.
the semi-infinite crystal can be deduced to (2) While K* determines theositionsof the diffrac-

T, = f[ d&*p Pq(K K |W,.g..1p.q) tion peaks, the functional dependence/ofon K™, which
characterizes the strength of electronic correlations (in
X (pIWeclko) (@l xew)) - (3) Momentum spacéV,. depends only oK), controls

the intensityof the individual diffraction peaks. Further-

Hereg,, is the propagator in the interelectronic Coulombmore’ theshapeof the individual peaks is influenced by

interaction, W, is the interaction potential between the the interelectronic correlation.

projectile and the lattice, anid) ® |p) is a complete set  (3) The gistribution of the wave vectok; of the

of plane waves. For the numerical calculations presenteghiia |y hound Bloch electron results in a smear-out effect
here we approximatéV,. by nonoverlapping muffin-tin ¢ 1o gitfraction pattern even in the case wh&é and
onic potentialsV'*" (W, =3, V;*"). The quality of ‘a6 experimentally sharply resolved.

this approximation is discussed in Ref. [12]. The form (4) Conversely, in caser{,g” and ko are well

factor We. := (p|Wec|ko) can then be reduced to defined, the position and widths of the diffraction peaks

- N\27f ik iy reflects the character &j.

Wee = A Z e e Z 5P (g — KV (K). To substantiate the above statements we performed, us-
ue ¢ ]

(4) ing the setup depicted in Fig. 1, three sets of measure-
ments where, for a fixed inciderff; and total excess

In Eq. (4) VI**(K) is the Fourier transform of'*", N gnergiesr, = (k2 + k2)/2 of the pair, we scan the elec-
is the number of ionic cores illuminated by the electron, o energy sharing. As shown in Fig. ko, ki, k>

beam.A,. is the volume of the two-dimensional unit cell, ic iy the x-; plane, i.e.K; possesses only one nonva-
g| is the surface reciprocal lattice vectdr,enumerates nishing componenk* along thex axis. As indicated
the atomic layers with shortest distance, with respect 456 " it is this component that is relevant for the pair
to the origin,K = p — ko, and/ = explip - r) Withr1igrraction, and hence we investigate the energy sharing
referring to_the position of the bound electron,. as function ofK. SinceEw = K /2m + K*Z/zmﬂ,
The decisive point is that due to Bloch's theorem, are. — 7 is the total mass of the pair and, — 0.5 is

which relies only on the two-dimensional ‘periodiCity y,qir requced mass, the valuekf is generally restricted

of W.., regardless of it's actual functional form, the t00 <K+ = JAE—. In the arranaement of Eia. 1 the
transition amplituded’,. and7,, can be expressed as T tot- g g.

condition
TeC = C Z 8(2) [g” - (KlT - KO,”)] - S'na A/ 2Et0[ = K; = S|na A/ 2Et0[ (7)
ba 4 has to be imposed. In Fig. 2 the results are presented for
X L(g, €, K"K k), (5 a Cu(001) monocrystal. The cross section is then propor-
whereasl,, is given by tional to|7"|> [Eg. (1)]. An integration ovek) (weighted

3536
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with the density of states) is, however, necessary as it igibution originates fromT,. [Eq. (5)], i.e., from events
not experimentally resolved [10]. Furthermore, an averwhere the pair is back-reflected from the crystal poten-
age of the spin degrees of freedom has been performed.tial. Nonetheless, at the specular beam the amplifude
Sincey = 0in Fig. 2, the whole experimental arrange- [EQ. (6)] provides an observable contribution to the total
ment, i.e., the scattering plane, spannedkgyand k,, transition amplitudg¢7 | = |T,. + T..| (cf. Fig. 2). The
and the crystal is invariant undég0° rotation aroundz  contribution of |T,.| [Eq. (6)] to the (—1,0) and (1,0)
(note thatkg || Z lies in the scattering plane and is the peaks vanishes identically. This is in line with Eq. (6)
bisector of the relative angle coSk, - k,). Thus, the and supports the identification of these peaks-as,0)
spectrum depicted in Fig. 2 is symmetric with respect taand (1, 0) diffraction maxima of the pair. As suggested
K} = 0. FurthermoreL, L' are symmetric with respect above, the width of the structure corresponding to the
to K = 0; hence structures left and right &7 = 0 are  (0,0) diffraction is determined by the initial momentum
modified in the same way by , L. components of the pair. Sindg is fixed by the experi-
For illustration, assumingk; = 0, the positions of ment, the initial momentum distribution of the pair is
the first diffraction maxima [hereafter referred to as thegiven by that of the bound electron with its maximum
(—1,0) (1,0) maxima] are indicated by arrows. The theo-value being the Fermi wave vectéf. l.e., each of the
retical and experimental data (Fig. 2) clearly show the ondliffraction peaks has an extension &f" = *kr. This
set of the(1, 0), and(—1, 0) diffraction peaks. The abrupt is consistent with the experimental findings of Figs. 2—4.
decrease of these peaks at the wings is due to the cu¥e note however, that the cutoff condition (7) has to be
off condition (7). The structure in the middle is due to superimposed on the widths of the diffraction peaks, in
the specular beart®, 0). This is clearly demonstrated by particular on those at the wings of the spectra.
analyzing separately the contributioti&..| and |T,.| to Going down withE,, (andE;) the variation interval of
the total transition amplitude (1). By far the major con- K shrinks according to Eq. (7). In fact, &t = 34 eV
and Ey,, = 27 eV (see Fig. 3) only the structure in the
middle of Fig. 2 is captured by the region in whidfy"

is allowed. To demonstrate the sensitivity of the spectra
0.0006
— 2.0
=]
S,
.5 0.0004- [ e T A4
o 15+ E
? 5
3 < I
5 =
O 0.0002 o
‘g 1.0 -
N
[%)]
A L
e
®)
0.00092. 05 -
FIG. 2. For a fixed incident energ¥; = 85 eV and fixed
excess energy, = 79 eV, the excess energy-sharing of the 0.0
escaping electrons is depicted as function Bof = k;, + -1.0

k,x. The experiment has been performed on a Cu(001)
crystal in normal incidence, corresponding+o= 0 in Fig. 1,
Furthermore, we choose = 40° (cf. Fig. 1). Depicted are FIG. 3. The same as in Fig. 2, however, the incident energy is
the separate contributions of amplitudes for direct pair emissiofowered toE; = 34 eV andE,,, = 27 eV. For the calculations
[IT..| as given by Eq. (6)] (dotted curve) and the amplitudewe employ the coherent surfl;, of the amplitudes for the di-
for the pair's scattering from the lattice potentidl’].| as  rect pair emission and the pair's scattering from the crystal po-
defined by Eq. (5)] (dashed curve). Calculations using theential, i.e., 7 = T,, + T.. [Eq. (1)]. The singlets* (dotted
coherent sumT | = |T,. + T..| (solid curve) are also shown. curve) and the triplet’ (dashed curve) scattering cross sections
The calculations are performed for infinite energy and angulaare shown along with their statistical averagé5o* + 0.750"
resolution of the detectors; for clarity the theoreticall,0) and  (solid curve). The finite experimental resolution has not been
(1,0) diffracted peaks are scaled down by 2. The positions oftaken into account. The spin nonresolved experimental data
the (1,0) and(—1,0) diffracted beams are indicated (see text). (full dots) are relative and have been normalized to theory at
The experimental data (full dots) are on relative scale. one point.
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‘ diffraction pattern. E.g., the positions of tiie 1,0) and

. (1,0) diffraction peaks in Fig. 4 are not symmetric with
respect toK,” = 0, in contrast to Figs. 2 and 3. Hence,
only a reminiscence of—1,0) diffraction is seen in the

1 spectra shown in Fig. 4. An interplay of this effect with
the scattering dynamics, described by the now asymmetric
functions £, £’ in Egs. (5) and (6), leads to the relative
heights of the peaks as observed in Fig. 4.

From an analysis, analogous to that done in Fig. 2, we
conclude in cases of Figs. 3 and 4 that pair emission at the
(—1,0) and(1,0) beams is solely due to the amplituéig.

Eq. (5). The pair generation around the specular beam

(0,0) is dominated by (5) as well, however, interference

with the amplituder,, [Eq. (6)] is evident. Investigating

2o the sum over in Eqg. (5) we deduce that in this present
case of Figs. 2—4 correlated pairs are predominantly
generated in the two topmost atomic layers.

0.010

1,0

0.005 -

Cross Section [a.u.]

0.000 CERN
-2.0 -1.0

Fig. 4. The experimental results (full dots) for a Fe(110)
(BCC) sample at an incident energy 60 eV and E,, =

44 eV. The incident beam is tilted with respect to the normal
by an angle ofy = 5° and @ = 50° (cf. Fig. 1). Theoretical
results (solid curve) are obtained by evaluatidg| = |7,. +
Te| [Eg. (1)].
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Abstract

An electron pair emitted from a crystalline surface system is represented by a relativistic two-electron scattering state, which
contains the pair correlation mediated by a screened Coulomb interaction. This state is obtained from the solutions of two one-
electron Dirac equations with potentials, which incorporate the electron—electron interaction as a dynamical screening of the
usual effective one-electron potentials. Numerical applications to the electron pair emission due to low-energy electron impact
on a He atom and on a clean W(001) surface demonstrate that pair correlation effects can be quite strong and significantly
improve the agreement of calculated results with experimental @at899 Elsevier Science Ltd. All rights reserved.

Keywords:A. Metals; A. Surfaces and interfaces; D. Electron—electron interactions; E. Electron emission spectroscopies

The simultaneous two-electron emission induced by elec- ejected electrons, at least, an effective “quasi-particle”
tron impact on atomic and solid targets, so-called (e,2e) theory is needed. The initial asymptotic state of the system is
spectroscopy, has a long history of success for high-energy an anti-symmetrized direct product of two single quasi-
primary electrons (cf. e.g. [1-3] and references therein). For particle states, which represent the projectile electron and
low-energy primary electrons (with less than a few 100 eV) an individual valence electron, i.¢l,2) = |[1) ® |2). The
impinging on a crystalline surface and momentum-resolved stateg1) and|2) are solutions of a Dirac equation involving
pair observation in the reflection mode, substantial experi- optical potentiald/; andV,, respectively, which incorporate
mental and theoretical progress was made only fairly the interaction with the nuclei and all the other ground state
recently [4—10]. Good overall agreement between experi- electrons. We recall (cf. e.g. [9]) that for a semi-infinite
mental data and their calculated counterparts was achievedcrystalline system with lattice periodicity parallel to the
and details of the (e,2e) mechanism were thence revealed. surface relativistic one-electron stafésare characterized

In the existing theoretical treatments (cf. [6,8,9]), the two by energies,E;, surface-parallel two-dimensional wave
ejected electrons are described by an anti-symmetrized vectorski” and spin labelsy;. The numberi in |i) is thus
product of single-particle states. Whilst a “pair correlation” an abbreviation for the set of quantum numtx&ski”, ;).
due to exchange (Pauli principle) is thus incorporated, the For the relativistic LEED (low energy electron diffraction)
Coulomb interaction between the two ejected electrons has state|1), the set(E;, kﬂ, o) is dictated by the experimental
not been taken into account. On the other hand, the Coulomb conditions and is equivalent to the three-dimensional wave

pair correlation is known to be vital for photon-induced two-
electron emission [11,12]. We therefore explore in the
present work its potential importance in the low-energy
(e,2e) process by formulating a theoretical method and
applying it numerically to the prototype surface W(001).
To incorporate the Coulomb interaction between the two

* Corresponding author. Faxi 49-345-55-11223.
E-mail addressjber@mpi-halle.de (J. Berakdar)

vectork; and the spin alignment at the electron gun. Even if
the primary beam is unpolarized, stafés with o, = +
have to be employed and finally summed over. The same
holds in any case for the valence sta®s

For the electron—electron interactidh considered as a
perturbation, standard scattering theory gives the transition
amplitude for the initial statél,2) to go over into the two-
electron excited stat8,4) as

W(1,2;3,4) = (3,4/U

1,2). 1

0038-1098/99/$ - see front matt€r 1999 Elsevier Science Ltd. All rights reserved.
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Strictly speaking/3,4) is an eigenstate of a two-electron be reformulated as

Dirac equation involving the total potential Z Z

Vvtot:W3+r_+W4+r_ 3
Vigt = V3 + V4 + U, ) 3 4

where
whereV; andV, are one-particle optical potentials, and with _
asymptotic boundary conditions such that an electron with Z = aj’l exp(— %rj), j=3,4, (@)
momenturk; and spin alignmendr; arrives at one detector
and an electron with momentuky and spin alignmentr, at with g = 2rg,/r;. The interpretation of Eq. (3) is straightfor-

the other detector. Obviously, an exact solution of this non- ward. Owing to the electronic correlation, the single-particle
separable many-body equation is not possible. On the other potentialsw;, j = 3,4 are augmented by the terfyr;. This

hand, if we neglect in Eq. (2) the interaction tet the means that the inter-electronic correlation is subsumed into
state|3,4) reduces to an anti-symmetrized direct product of a dynamic non-local screening of the electron core interac-
two independent time-reversed LEED stat8sand|4), as tion.

was done in previous work [8,9]. Since these (uncoupled)  The strength of this screening is determined by the func-
LEED states|3) and |4) are calculated using one-particle  tionsz;, as given by Eq. (4). In fact, the augmented electron
optical potentialsVz and V,, respectively, each of them  core potentialsw, = w, + Z/r; may even turn repulsive
contains—within the framework of a local spin density when the two electrons are “on top of each other”
approximation to exchange and correlation terms—the (r3, — 0).. If the two electrons are far away from each
exchange and correlation with all the other “passive elec- other (r; >, i #j € [3,4]) the screening strengthZ;
trons”. andZ, become negligible and we end up with two indepen-
The interactionJ between the two active electrons must  dent particlegw; — w;). Furthermore, if one of the electrons
be included in a dynamic way that reflects the dependence of approaches closely the ionic sites its motion becomes domi-
the mutual coupling on the electrons’ positions relative to nated by the corresponding ionic potentigl This is readily
each other. For example, the interaction between the two deduced from the relation lim.o W — w;.
electrons is strongest when they escape close to each Our dynamic screening expression in Eq. (3) is, for the
other, whereas this interaction diminishes when the elec- above-defined), merely a rearrangement of the interaction

trons are far apart. terms in Eq. (2). Its direct numerical implementation is
To implement this dynamical coupling, we first identify — extremely difficult. In the present exploratory study, we
the electron pair interactiot) as a Coulomb potential,  therefore approximate the dynamical screening strengths

which is screened by the ground state electrons of the Z by ZJ- = a{l exp(—(g/2M)rj) with a3 = 2v34/v3 anda, =
semi-infinite crystal. Since the calculation of a realistic 2v;4/v,, wherev; andv, are velocities of the two emitted
dielectric functione(r,r’) for such a highly inhomogeneous  electrons andva, = v3 — v,. The approximationZ; = Z,
electron gas is beyond the scope of this work, we adopt amounts to assuming; o< v3 andr, o< v,; this means that
the Thomas—Fermi formU(ra,r,) = exp(—r3/A)/r3,, the potential Eq. (2) is exactly diagonalized when the parti-
where r; and r, are the positions of the two active cles proceed along trajectories where the positions are
electrons andrs;=r3—r,. To obtain a physically proportional to the velocities. Whilst inside the solid this

reasonable estimate of the screening lengthwe start is of course not the case, we feel that the above approxima-
from the Thomas—Fermi expression (&t=0) A= tion is of a semi-quantitative value if we choose the two
(4me?N(Ep)) Y2, whereN(E) is the total density of states  velocities v; = klo/m—with i = 3,4—where klo is the

at the Fermi energ. Rather than approximatind(Er) by wave vector of the 00 LEED beam inside the crystal,

a non-interacting homogeneous electron gas value, as iswhich is obtained from the wave vectky outside the crys-
frequently done, we take it from a self-consistent electronic tal (and in particular at the detector) by refraction at the
structure calculation for the actual crystal. Employing the surface potential barrier.

simple Thomas—Fermi form appears reasonable in this To assess the quality of the above approach we evaluate at
work, firstly because it is our aim to get first and perhaps first the amplitude Eq. (1) for an atomic helium target in its
only semi-quantitative results on pair correlation effects, ground state. This should give a direct insight into the
and secondly, because it led to rather good agreementsingle-site behavior of the dynamic screening. In this case
between theory and experiment in a recent (e,2e) study on the state$3(Z;(vs, V,4))) and|4(Z4(vs, V,))) are derived from

W(001) [9]. the corresponding Schdinger equation for one particle
With this approximation fotJ, we return to the potential moving in the electrostatic field of Hewith an effective

Vit (EQ. (2)). We express the one-electron potentialand screening of this field given b¥;(v3, v4), j = 3,4. The elec-

V, as lattice sums over potentialg and w, residing in tron—electron interaction is assumed unscreened\i-e.

muffin tin spheres around the lattice sites. Inside each sphere, . The cross-section with appropriate flux normalization is

we then have the total potentidl,; = w; + w, + U. With readily obtained from the transition amplitude, Eq. (1) [6].

the above Thomas—Fermi expression fbrthis can easily Fig. 1 shows the cross-section at 2 eV above the single
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Fig. 1. The cross-section for the emission of two equal-energy elec-
trons following the collision of an electron with an atomic P&
target. The excess energy of the pair is 2 eV. The angular correlation
pattern is depicted as a function of the angle of the interelectronic
axis with respect to the beam direction (see inset). The calculations
with (continuous line) and without (dashed curve) dynamical
screening are shown along with the results of the first Born approx-
imation (dotted line) (see text for more details). The experimental
data are taken from Ref. [14] where comparison with other theore-
tical methods can be found.
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Fig. 2. Spin-averaged intensity for the two-electron emission from a
W(001) surface following the impact of a 10.6 eV electron along the
surface normal (chosen as thaxis), i.e. polar angle of incidence
6, = 0. The direction [100] defines theaxis. The emitted electrons
are detected in the-zplane, i.e. their azimuthal angles apg = 0

and ¢, = 180, and the polar angles are set@p= 6, = 40°. The
contour plots in theH3,Ey)-plane show calculated results without
Coulomb pair correlation (panel a) and with pair correlation accord-
ing to Eq. (3) (panel b), in comparison with experimental data (panel
¢) [15]. For outgoing pair energies indicated by the solid counter-
diagonal lines, the corresponding valence electron energy is the
Fermi energy. Along the diagonal lines, the two outgoing electrons
have equal energies.
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ionization threshold of He as a function of the interelectro-
nic axis with respect to the incident beam direction. As
shown in the inset, both electrons escape with the same
energy (1 eV) and opposite to each other, kgk, = —1.

The absolute experimental data are well reproduced by the
present theory. To highlight the effect of correlation we also
show in Fig. 1 the results neglecting the dynamic screening,
i.e. we discardJ in Eq. (2). This leads to results clearly at
variance with the experimental finding. Furthermore, the
importance of the coupling to the ionic core can be demon-
strated by switching oft) andVs3, i.e. one electron moves in
the field of the residual ion whereas the second one is
considered as free. This inadequate (cf. Fig. 1) procedure
amounts to the well-known first Born approximation. The
geometry depicted in Fig. 1 is in so far remarkable as in this
situation the electronic correlation is minimal (at fixed total
excess energy of 2 eV). Thus for situations where the elec-
trons are detected close to each other in velocity space we
can expect an even more striking effect of the pair correla-
tion.

Having established the usefulness of the above method
for single-site reactions we turn now to its application to
(e,2e) spectroscopy from the clean crystal surface W(001),
which was recently studied in detail experimentally and by
calculations without the Coulomb pair correlation [9].
Employing a relativistic layer-KKR method [13] we
numerically calculate the correlated time-reversed LEED
states (3(Z1(Va, V4))| and (4(Z,(vs,V4))|, each of which
depends on the velocitieg andv, of the two electrons—
chosen above as velocities of the 00 LEED beams inside the
crystal—and their mutual relative velocity. For the screen-
ing lengthA of the electron—electron interaction (cf. earlier)
we obtained, with the aid of a self-consistent LMTO calcu-
lation for W, the value\ = 0.48 A. The cross-section is then
calculated as in [9]. It essentially involves absolute squares
of transition amplitudes (cf. Eq. (1)) summed over all spin
labelsa; (withi = 1,...,4), since we wish to make contact
with experiments without any spin resolution.

For the experimental conditions used in [9]—with
primary electron energies between 16 and 24 eV and an
angle of 80 between the directions of the two outgoing
electrons—we find only rather small pair correlation effects,
and the fairly good agreement between experiment and
theory, which was reached in [9], remains practically
unchanged. For different conditions, however, quite drastic
effects emerge.

Firstly, we retained the coplanar geometry with the large
angle between the two detected electrons, but lowered the
primary energy to 10.6 eV, which implies a maximal total
energy of the pair of 6 eV. The intensity distribution calcu-
lated without Coulomb pair correlation, i.e. f&§ = 0= 2,4
in Eg. (3), is shown in Fig. 2a. For total pair energies
between 5 and 6 eV, the intensity is small &y = E, and
has maxima aroundks, E;) = (4.8,1.0) and (1.0,4.8). In
contrast, the spectra obtained with pair correlation (Fig.
2b) are maximal closer to and arout = E,. This is
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Fig. 3. Calculated spin-averaged angular distributions of two elec-
trons emitted from W(001) upon impact of electrons with primary
energy 17.2 eV. The polar and azimuthal angles of the incident
electron aref; = 88 (i.e. grazing incidence) ang, = 0°. The

two outgoing electrons are detected with equal energies
E; = E, =6¢€V. One electron detector is fixed at a direction
defined byf; = 47 and ¢3 = 18CF°. The coincident emission rate

is scanned as a function of the anglesind¢ 4 of the other electron
detector, which correspond to the radial and angular coordinates in
the contour plots. The Coulomb pair correlation between the two
outgoing electrons is switched off in the upper panel and taken into
account according to Eqg. (3) in the lower panel. The broken circle
around 0, = 47 and ¢, = 180 marks the direction of parallel
escape of the two electrons, i.e. the centre of the “pair correlation
hole”.

understandable from the fact that the Coulomb interaction
can transfer energy from the one escaping electron to
the other. Close to the threshold, arourHs, E,) =
(1,1), where refraction implies a very small angle
betweenv; and v,, the electron—electron interaction is
seen to prevent pair emission. Comparison with experi-
mental data [15] (cf. Fig. 2¢) shows that the inclusion
of pair correlation significantly improves the agreement
for total pair energies between 4 and 6 eV. As for the
intensity aroundEs, E;) = (1, 1), we recall from [9] that
this feature in experimental data is likely to arise from
two accidentally time-correlated secondary electrons.
Altogether, our calculations predict a strong influence
of the pair correlation, which is substantiated by experi-
mental findings.

The dependence of correlation effects on the angle
between the two outgoing electrons is demonstrated in
Fig. 3, where the detection direction of one electron is
fixed and that of the other sweeps over the entire

J. Berakdar et al. / Solid State Communications 112 (1999) 587—-591

hemisphere. Comparison of the calculated results in
the upper half of Fig. 3 with those in the lower half
shows that the inter-electronic coupling results in a
drastic modification of the angular distribution pattern.
Without correlation, the emission probability is seen (cf.
upper half of Fig. 3) to be maximal when the two
electrons escape into the same direction and with the
same velocity. This unphysical result is remedied by the
pair interaction (cf. lower half of Fig. 3), which carves
a considerable “pair correlation hole” around the position
where electrons are close to each other in velocity space. For
regions where the two electrons emerge with diverging
directions, the effect of the pair correlation becomes less
and less visible.

In conclusion, we have presented a theoretical formalism
for including the Coulomb pair correlation in the calculation
of two-electronscattering states from single atoms and from
crystalline surface systems. This has been achieved through
position-dependent dynamical screening of the usual effec-
tive one-electron potentials. For the actual evaluation of
transition amplitudes, the position dependence has been
approximated by a velocity dependence. Numerical results
for an atomic target and for a crystal surface demonstrate
that pair correlation effects can be important in two-electron
emission upon low-energy electron impact. The application
of the present formalism to electron pair emission due to the
absorption of a VUV photon [11], a reaction forbidden
in the absence of the pair correlation [12], is currently in
progress.
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The emission of correlated electrons from an itinerant ferromagnet following the impact of a polarized
electron beam is analyzed in terms of irreducible tensorial parameters that can be measured. Under
favorable conditions, specified in this work, these parameters are related to the spin polarization in
the ferromagnet. The formal results are illustrated by numerical studies of the polarized electron pair
emission from a Fe(110) surface, and a novel technique for the investigation of magnetic properties of

ferromagnets is suggested.

PACS numbers: 79.20.Kz, 72.10.—d, 75.30.Ds

The electronic and magnetic properties of low dimen-
sional systems with long-range magnetic order, such as
ultrathin ferromagnetic films and magnetic surfaces, are
currently under intensive investigations[1]. Thisisdueto
the fundamental and technological importance of such ma-
terials. Magnetic systems with reduced symmetry can be
explored by avariety of techniques[1]. Low-energy spin-
polarized electron spectroscopy is particularly suitable as
the penetration depth is on the order of a few atomic lay-
ers[2]. Inthis method one resolves the quantum states of
the incoming and outgoing electrons to extract the acces-
sible information on the sample under investigation. On
the other hand, a promising technique emerged in recent
years where an electron pair, resolved in energy and mo-
mentum, is detected following the impact of an unpolar-
ized electron beam upon anon-magnetic sample[3—6]. As
demonstrated successfully for avariety of materials[3-5],
the electron pair carries, under favorable conditions, direct
signature of the Bloch spectral function which is a cen-
tral quantity as far as the electronic structure is concerned.
However, these studies[3,4] have been performed at higher
energies (=20 keV) and the role of the spin polarization
has not been yet addressed. Very recently, however, it has
been demonstrated by a pioneering experiment [7] that the
electron-pair emission depends strongly on the spin polar-
ization of the electron beam and the magnetization of the

Wk}, kb k) = C

>

UNRUNRUNE PR

X M*(k/’ké’msismxé;a$m‘Y2$klsmS1)5(Ef - Ei)a

where E; is the final-state total energy. The initial-state
total energy E; is E; = Ex, — €, while Ey, is the en-
ergy of the projectile beam and C = (27)*/k;. All ener-
gies are measured with respect to the vacuum level. The
transition amplitude M (K, K5, my, my; e, my,, Ky, ms,)
is glven by M = <'7Z/k/1,k'2,msl,m5£|T|¢e,a,sz,msz§0k],51m”>a
where @, 5m, IS @ spinor] vacuum state describing
the incoming beam. The emitted electrons with spin
projections my ,my, are represented by the state vec-
tor I(,bkf],k;,,,,d_q ,m5_12>, whereas 7 is the transition operator.

5150 0031-9007/99/ 83(24) /5150(4) $15.00

sample. Thus, it seems timely to inspect theoretically the
low-energy polarized electrons emission from ferromag-
nets. We conclude the following: (i) the electrons’ spectra
are quantified fully by a set of irreducible tensorial com-
ponents; (ii) under certain circumstances specified below,
the electron-pair spectrum is directly related to the spin-
resolved spectral function of the surface.

For atheoretical formulation we consider a reaction in
which two electrons are simultaneously emitted from a
ferromagnet with a defined magnetization direction M af-
ter the impact of a monoenergetic spin-polarized electron
beam. The spins of the electrons in the incoming beam
and in the sample are assumed to be good quantum num-
bers. A corresponding experiment resolves the asymp-
totic wave vectors of the impinging and the two emitted
(vacuum) electrons which we label k; and k|, kb, re-
spectively. No spin analysis of the outgoing electrons is
performed. The target surface is described by the state
vectors |¢>E,a,sz,msz), where € is the ground state energy,
my, 1S the projection of the spin s, of the ground state
along a quantization axis, and « denotes all other quan-
tum numbers. The spin polarization of the incoming beam
with projection my, of the electron’s spin s; is character-
ized by the density matrix p s g, whereas the population
of the magnetic sublevels of the state |¢E,a,sZ,mY2> isgiven
by the density matrix Piim,, - The scattering probability

isrelated to (atomic units, a.u., are used throughout)

/ / . s — s
M(k 9k ’mS;’mS;’ a’ mSZ’ l(l”/nS])prnl31 mS1pn’f§2mS2(€’ a)

1)

I

In Eq. (1) the density matrices are diagona. Further-
more, we adopt M as a joint quantization axis for s,
and s,. For convenience we express the electrons’ fi-
nal state in the total spin space as |‘//k’1,k’z,m.v;,ms;> =

Y sm (SMs | sym) , siml ) Wi, kysm,), Where S is the to-
tal spin and M isits projection.

To disentangle geometrical from dynamical properties,
we expand the density matrices in state multipoles (statis-
tical tensors) p,, [8],

© 1999 The American Physical Society
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2S1

- Z (—)p1simm
p1=0

S1
pm”m“

25‘2

[)f,fxzmjz (6,a) = ZO(_)[?z—Sz_m
P2=

Substituting Egs. (2) and (3) into the general expression (1) yields

2S| 2&2

=0 pr=

where

A gm0 = C ()P0 (s —

mg,

>< Z M(k/ ’k/2a SMH a’mS29k1, m‘Yl)M*(kl’ /2$SMS‘, as mxzs k19mS1) .

SM

P
Z Z Ppiqi=0P prg,= ~o(e, a)A 1 Cthzz

sy — my;simg, | prgy = 0)ppig=0 2
2(sy — my,; samy, | paga = 0>ﬁp2q2=0(€,a)- (3)
06(Ef — Ej), (4)
my,ssimy, | prgi = 0) D (=) M2 (sy — my,5somy, | paga = 0)
5)

The decisive point isthat the sum over my, (my,) in Eq. (5)
defines the component (along M) of a spherical tensor of
rank p; (p2) [9]. This mathematical observation yields
important information as to the transformation behavior
of Abs"™: Abo *7 (AL ") is a scalar with respect to
spin rotatlons generated by s; (s3), i.e., it represents spin
averaged quantities in the s; (s;) spin space, whereas the

it is a polar vector) and, hence, changes sign upon spin
reflection, i.e, ALL S (—my) = — ALY ()
(AL (—my,) = —A”' 7= (m, )] The tensorial
components with even p; vaues are alignment parame-
ters, i.e., they describe the deviations in the spectra from
the unpolarized case. The above formaism is easily

components Afy 7> (AB57 7YY can be regarded as  generalized [9] to the case of strong spin-orbit coupling
a spin orientation in the s1 (s2) spin space (for p; = 1  and/or multielectron emission. For two electrons, Eq. (4)
| reducesto
Ao Ao _ Agp
W = i{/\oo[ﬂoopoo + pooP10 55 T P10P0 55 T PioP10 g |O(Er — Eip. (6)
Ao 0.0 Aop

Thefirst term of thesumin Eq. (6) isthe pair emission rate l
averaged over the spin orientation of the incoming electron
beam and the spin polarization of the sample. The second
term describes the spin asymmetry due to the inversion
of the magnetization while the incoming electron beam is
being unpolarized. Thethird term isthe spin asymmetry in
the electron-pair emission from unpolarized targets when
inverting the spin polarization of the electron beam. In
the absence of explicit spin interactions in the transition

C 1
Ay = 5 3 DML Ky, SM ki, @, LP -
S=

operator T, e.g., spin-orbit coupling, the parameters A(l)jg
and Ag vanish. The last term of Eq. (7) is related to
the electron-pair emission from spin-polarized samples
by spin-polarized electrons. It is a polar vector both in
. . 1,1

the s; and the s, spin spaces, i.e., Ago(—my,,ms,) =
—my,). The explicit forms
of Af)j(]) and A8;8 are derived from Eq. (5) to be

1,1 1,1
_AO,O(msl’msz) = AO,O(ms],

| M (K}, kb, SMy; ky, a,1, 1)

0 M,
+ M (i, Ky, SM Kk, e, LM — [M (K5, Ky, SM; ki, e, L DI, (7)
1
Ago = % > UMK K, SM ki @ LD + [ MK} kb, SM,: K, a1, 1)
§=0 M,
+ M (K}, Ky, SM ki, a, DI+ [M (KK, SM ko, a, L DI ®
The projections of the spins of the sample state and the | (5=0) (5=1) i ]
electron beam paralel (antiparallel) to the quantization ~X°  and X°~7, respectively, i.e,
axis are labeled, respectively, by the arrows {1 (I) and 1 A(l):(l) _C [XS=D(K!, kb ks )
(). Inthetota spin space, Egs. (7) and (8) are expressed 2
in terms of the singlet and the triplet partial cross sections, XS=0k! KD ks a)], (9)
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Agg _C [3X(S:”(k’,k§;k1; a) wave vec_tor ko and over thge surface layers. The Bloch

’ 2 theorem imposes a conservation law for the surface com-

+ XS=0(k! Ky ky; )] =: 2X™. (10) poDents cl)f the t9tal wave vector of the emi}rted electrons

X©=9 and X=1 are determined by the matrix elements, K = kyy + ky [10]; 1., thechange of Ky fromitsini-
Tk} Kh: k. ), of the singlet (S = 0) and triplet (S — tial va!ue Ky + Ky (beforgthe coII|S_|on) is restricted to
D tranls’itiéﬁ (;E)era;tors TS5 = (1+ (—1¥PyT. Here amultiple of the surface reciprocal lattice vector g. This
. i . 12)< - ' fact can be used to perform theintegrals over k) in Eg. (6)

P is a permutation operator that interchanges the tWo it ces then to a summation over the surface layers
emitted electrons. Thus, one obtains the symmetry prop- YES,

ety TOK, Kb kiza) = (—1)STOKS, K :ky, @) ie, indexed by 7, and over g, i.e.,
in situations where an interchange of the electrons does

not modify the ionization dynamics the triplet scattering W Zl{zxmt(k'ak/z;kl,gll,l)[Pooﬁoo(e’AIIJ)
amplitude and, hence, X=V = C|T®=V|? vanishes. An oL Ar DAYK! K. K

example will be shown below. Until this point the elec- propiole Ay, DAY, kas ki, gy, 1]
tronic and structural properties of the sample have not been X 8(Ef — Ej}, (11)

yet specified. For perfect clean surfaces the integral over

— + « .
« in Eq. (6) implies summation over the surface Bloch , Where Ay = Ky — gy — kyj. The "exchange scattering
| asymmetry” has been defined as

o XOTOL Kos ko gy ) — XOTO(k) ko KL g, )

A’ = — T 1./ — T 1./ . (12)
3X6=D(ky, ko ki, gy, 1) + XS=0(k, ky: ko, gy, 1)

To calculate the terms in Eq. (11), the state multipoles
p1o and po are needed. These can be obtained by invert- | [w(kyy, L, €,1) — wikyy, [, €, D]/[wo(kyy, L, €)]. Here
ing the relations (2) and (3). In the standard represen-  w(ky, [, €, m,,) stands for the spin and layer resolved
tation, the density operators of the beam and the surface  Bloch spectral function. Thus we obtain pgpoo =
are linearly expanded in terms of the Pauli matrices o as  [wo(ky, 1, €)]/2 and  piopio = [wo(ky, 1, €)]P1P2/2,
p' =1+ P; -0 andp” = wy(ky,l,e)(1 + P, - o), andEq. (11) reducesto
where wy(ky,/, €) is the spin-averaged Bloch spectral
function of the layer /, and P, and P, are the polarization W o ZWo(An,l, e)X"'[1 + AlS(E; — Ej). (13)
vectors. The sample polarization is given by P, = gt
| The asymmetry function A has been introduced as

2ilwAy, L e — w1 e, )] Xy XAS(E, — E) _ w(ih) — W)
2 wolAy 1, €) 2 g X S(Ey — E;) wan + wan

Thus, for the calculation of the tensorial parameters two
major ingredients are needed: (i) The spin and layer- | or a bulk system is considered the magnetic asymme-
resolved spectral function of the sample which can be try P, can be scanned by determining W(I1) and W(l1)).
obtained from the trace of the imaginary part of the  This yields a direct (relative) estimate of the popula-
corresponding Green function and (ii) the matrix element  tion of the spin states in the sample. For multilay-
of the singlet and triplet transition operators. Now we  ered systems, we have to consider the weighting factor
caculate the terms in Eq. (13) for a Fe(110) surface.  X'' in Eq. (14). An example is shown in Fig. 1 for
The Bloch spectral functions used here are provided by  a Fe(110) sample. The two electrons are detected with
two independent calculations: (i) The scaar relativistic  fixed equal energies in the x-z plane and at symmetric
full-potential linearized augmented plane-wave method  positions with respect to the z direction while the inci-
[11,12] and (ii) the full relativistic layer Korringa-Kohn-  dent beam direction is varied in the z-y plane. The ex-
Rostoker method [2,13]. For the calculations of the  periment, in the geometry of Fig. 1, is invariant under a
transition matrix element we approximate the 7 operator ~ 180° rotation with respect to the z direction. This rota-
by T = Ugr + Uee(1 + G, Ugus), Where U,, is the  tion can be regarded as an interchange of k) by k5 and,

electron-electron interaction, G, is the Green function  since T¢=V(k}, kb; ky, a) = —TS=D(k), k/: ky, ), the
of the electron pair, and Uy, is the surface scattering  triplet scattering (X*=" = C|7=Y|2) vanishes.
potential. For Ug,¢ we employ, for agiven layer, alinear The energies € in Eq. (14) are determined by € =

combination of nonoverlapping muffin-tin potentials [10].  E} + E5 — Ex,, Where E; and E; are the energies

As stated above, for certain geometries, the triplet scat-  of the vacuum electrons. Thus we tune Ej, Ej, and
tering amplitude vanishes due to symmetry and, hence,  E), such that e coincides with the Fermi energy Er.
A’ tends to —1 [cf. Eq. (12)]. Thus, if a monolayer  Now by varying 8 = cos 'z - k; we scan P, along
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Il
0 0.2 0.4 0.6 0.8
A=Ky, sin(B) [au] N

FIG. 1. The asymmetry, as given by Eq. (14), for the emis
sion of two equal-energy electrons from a magnetized Fe(110)
surface following the impact of a polarized electron beam
with an energy of 35eV. The total energy of the pair is
fixed to E{ + E5 = 30.15 eV. The two electrons are detected

A

in the y-z plane at symmetric position cos ™'z - k| = 40° =
cos 'z - k| left and right to the z axis (cf. inset) and M || x.
The angle of incidence B8 = cos ~'2 - k; is varied in the x-z
plane, as shown by the inset. In this geometry, the triplet scat-
tering vanishes and A can be related to P,. The predomi-
nant contributions to ‘A originate from the first and second
surface layers.

the I'-N direction in the Brillouin zone, as shown in
Fig. 1. Alternatively, one may fix the direction A = ky
and image P,(e) by varying, e.g., the incident energy.
For a polarized homogeneous electron gas, one scans (as
function of energy) the relative difference between the
occupied density of states of the majority and minority
bands.

Away from the points of high symmetry (cf. Fig. 1)
the scattering dynamics, as described by X©=0 and
X =1 become dominant. An exampleis shown in Fig. 2
for B =0. Again a the I' point (kj; = —kj) the
asymmetry A, and in particular its sign, is determined
solely by P,. The For highly asymmetric energy sharing
the scattering exchange asymmetry A* is small which
leads to a reduced asymmetry A, as seen in Fig. 2.

I would like to thank X. Qian, W. Hibner, A. Erngt,
and N. Fominykh for communicating their results on
the spectral functions and also S.N. Samarin, J. Henk,
J. Kirschner, and P. Bruno for valuable discussions.
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0.05 | " 1
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-0.05 -

-0.15 - +

-0.25 : .
-1 -0.5 0 0.5 1
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FIG. 2. The spin asymmetry A as a function of the energy
sharing (E| — E5)/(E| + E3) for a fixed total energy (Ej +
E}) =21eV. The incident electron has an energy 26 eV
and a polarization degree of =65%. This is the same
target as in Fig. 1, however, we choose 8 = 0 and the two
electron detectors to lay in the x-z plane. As in Fig. 1,
the detectors are positioned at cos ™'z - k| = 40° = cos ' -
ki. The theoretical results are averaged over the angular
resolution of the detectors. The experimental data are courtesy
of Ref. 7. The spectral functions are calculated within the
scalar relativistic full-potentia linearized augmented plane-
wave method [11].
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Visualizing Spin-Dependent Electronic Collisions In Ferromagnets

S.N. Samarin, J. Berakdar,* O. Artamonov, and J. Kirschner

Max-Planck-Institut fiir Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany
(Received 22 November 1999)

This work demonstrates experimentally and theoretically that the coincident two-electron emission
from a ferromagnetic surface, upon the impact of a polarized electron, carries detailed information on
the spin-dependent electronic collisions in ferromagnets. The analysis of the calculated and the mea-
sured two-electron spectra reveals the potential of the electron-pair emission technique for the study of
(a) surface magnetism and (b) spin-dependent electron scattering dynamics in ferromagnets.

PACS numbers: 79.20.Kz, 72.10.—d, 75.30.Ds

Magnetic systems with reduced dimensionality, such
as ultrathin ferromagnetic films and magnetic surfaces
are in the focus of current experimental and theoreti-
cal investigations [1,2]. These studies are driven by
the fundamental importance of such materials and by
their technological potential for magnetic storage and
recording media as well as by the prospects of the
fabrication of artificially synthesized devices. A number
of dynamical features of magnetic systems are primarily
controlled by the spin-dependent excitation spectrum
[2]. Examples of such properties are the response char-
acteristics and the spin dependence of the mean-free
path of excited electrons. Thus, experimental techniques
that probe the spin-dependent excitation of magnetic
systems are of considerable value. One of the established
methods that serves this purpose is the spin polarized
electron energy loss spectroscopy (SPEELS). As low
energy electrons can penetrate only the first few atomic
layers, SPEELS can be employed to investigate the
elementary excitations of magnetic systems with reduced
symmetry [3]. For example, the Stoner spectrum (electron
hole pair spectrum) has been successfully explored by
SPEELS [4,5]. The Stoner excitation involves, at least,
a two state transition: A majority band electron interacts
with an incoming polarized electron (of opposite spin
projection) and goes over into a vacuum state. Upon
this interaction, the projectile electron loses energy and
occupies an empty state in the minority band. This col-
lision process is called exchange scattering. In SPEELS
only one (the excited majority band electron) of the two
participating electronic states is resolved. Obviously,
valuable details of the exchange scattering dynamics
are obscured by averaging over the second electron
not detected by SPEELS. Therefore, we designed an
experiment which measures the two-electron coincident
emission rate from a magnetic surface following the
impact of a polarized electron, while the energies (£, E3)
and the emission angles of the two emitted electrons as
well as the energy Ej and the angle of incidence of the
electron beam are being determined (cf. Fig. 1). Hence,
the wave vectors ko and ki,k, of the impinging and
two receding electrons are measured in coincidence. The
escaping electrons are detected using two time of flight

1746 0031-9007/00/85(8)/1746(4)$15.00

(TOF) detectors [6]. The sample normal, the incident
electron beam, and the axes of the TOF detectors are
chosen to be in the same plane. The polarization vector
P, of the incident beam and the magnetization direction
of the sample, a bcc Fe(110) single crystal, are both
perpendicular to the scattering plane (cf. Fig. 1). As a
source of spin polarized electrons we used a strained GaAs
multilayer photocathode activated by Cs deposition and
oxygen exposure. Photoelectrons generated from the
photocathode by the circularly polarized light of the laser
diode were deflected by a 90° deflector to convert the
longitudinally polarized beam into a transversely polarized
one. The average count rate of coincidence was 1 event per
second. For reasonable statistics a typical spectrum takes
an acquisition time of about 270 hours. This long term
measurement requires the stability of electronics, constant
incident current, and good vacuum conditions. To reduce
the influence of the possible instabilities the polarization
of the incident beam is inverted every 5 seconds and
the data for each polarization are stored in two different
files. In spite of the UHV conditions (=5 X 10~!'! mbar)
the cleanliness of the sample surface has to be ensured
regularly (by Ar" ion sputtering followed by an annealing
and, if necessary, oxygen treatment to remove the carbon
from the surface). The surface properties were monitored

(11042

FIG. 1. The experimental setup as used for the coincident mea-
surements. The direction of the magnetization M, the spin po-
larization vector of the incoming beam P, as well as the wave
vectors of the incoming and the two emitted electrons k( and
k, and k; are indicated. The electron detectors are positioned
at 40° to the left and to the right of the z axis.

© 2000 The American Physical Society
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using Auger electron spectroscopy and low-energy
electron diffraction. The experiment requires a high
degree of polarization of the incident beam and a single
domain magnetization of the sample. To guarantee that
these conditions are given we employed SPEELS and
measured the energy loss spectra (the Stoner spectrum)
for an electron beam polarization parallel and antiparallel
to the magnetization in the same geometry of Fig. 1 while
one of the TOFs is being switched off. The asymmetry
A, derived from the two intensities for the opposite spin
projections of the incident beam, is measured before
and after the coincidence experiments and is used as an
indicator for the stability of the experimental setup.

As illustrated in Figs. 1 and 2, the energy and wave
vector balance impose the conditions

Ey+e€=E + E,, (1)
Ko + qp + g1 = ki + k. (2)

Here, € is the energy of the valence band electron and
q is its (surface) Bloch wave vector. The surface recip-
rocal lattice vector is denoted by g|. Since the quantities
Ey, E1, E> and Ko, k1 ||, ko || are determined experimentally
[cf. Figs. 1 and 2] we can control, via Egs. (1) and (2), the
values of € and q; i.e., we can perform the experiment in
a certain region of the (magnetic) surface Brillioun zone.
For example, by lowering E, while keeping E; and Ej
fixed we can zoom in deeper levels of conduction band
[cf. Figs. 2(a) and 2(b)]. Equivalently, one can scan qj by
varying, e.g., ko for given k|, ko, and g.

The role of the exchange scattering in the present ex-
periment is illustrated in Figs. 2(a)-2(d). In the reaction
shown in Fig. 2(a) the impinging electron escapes as the
fast electron, i.e., E; > E;. This process is called the
direct scattering and proceeds with an amplitude f. In
contrast, as illustrated in Fig. 2(c), the incoming elec-
tron may exchange as much energy and momentum with
the initially bound one that it emerges as the slower one
(E; < E,). This scattering process is precisely the one
active in the case of the aforementioned Stoner excitation.
It is usually referred to as the exchange process and is

quantified with an amplitude g. Intuitively one can expect
that | f| > | g| for Ey = E| and E| > E, < E|.

Our experiment does not resolve the electron spin pro-
jections in the final state, i.e., we cannot distinguish be-
tween the processes shown in Figs. 2(a) and 2(c). Thus,
the coincident rate for antiparallel [Fig. 2(a)] or paral-
lel [Fig. 2(b)] alignment of the spins of the incoming
and the bound electron is proportional to | f|*> + |g|?> and
| f — g|* respectively. This is because the processes
shown in Figs. 2(a) and 2(c) can be distinguished experi-
mentally while the processes shown in Figs. 2(b) and 2(d)
are experimentally identical, and hence f and g are added
coherently. Theoretically, to sum over the (final-state) spin
quantum numbers we couple the electrons’ spins to the
(conserved) total spin of the electron pair S and end up
with two spin channels: the singlet channel (S = 0) and
the triplet channel (S = 1). The singlet (triplet) cross sec-
tion X5=9 (X=D) can then be expressed in terms of f
and g [7]. The experiment (Fig. 1) measures a spin asym-
metry A; i.e., for a certain magnetization direction M,
we register the electron-pair emission rate W for antipar-
allel [W({1)] and parallel [W(])] alignment of the polar-
ization vector of the incoming beam with M (cf. Fig. 1)
and evaluate A as

wan — wan
wn + wan -

For a gaseous atomic target with a defined spin
polarization P, (taken as a quantization axis) the
asymmetry A is directly expressible in terms of X($=0/1)
(and hence in terms of f and g) as [7] A = P,P,AY,
AW = (x(=0 — xX=1)/(x(5=0) 4 3x6=1) = (2| f| X
lglcosd)/(| fI? + |g|> + | f + gl?), where & is the
phase difference between the amplitudes f and g. This
relation for A implies that lim(g|/sp—0A — 0, as dis-
cussed and shown experimentally below. For magnetized
surfaces, the spin polarization of electronic states is
dependent on the binding energy € and on qy; i.e., the
theory has to consider the spin resolved Bloch spectral
functions w rather then the density of states. The influence

ﬂ(kl,kz;ko) = (3)

FIG. 2. An illustration of the
direct (a),(b) and the exchange
(c),(d) scattering (see text for
details). The energies of the

incoming and the two escaping
electrons are denoted by E, and
E\,E,. The vacuum and the
Fermi levels are shown as E,.
and Eg. € is the initial binding
energy of the ejected electron.
The surface density of states of
the majority band (referred to
by 1) and the minority band
(indicated by |}) are shown.

Energy [eV]

Energy [eV]
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of the crystal structure on the scattering dynamics is en-
compassed in f and g. The exchange induced asymmetry
A has the form [8] (other spin asymmetries [8] are negli-
gible within the accuracy of the present experiment)

(m) ((s)
Zl,gn Ap Al,gu Blagu

Here, the atomic layers parallel to the surface are indexed
by I. In Eq. (4) A" describes the sample’s magnetic
asymmetry, whereas the dynamical aspects of the spin-
dependent collisions are contained in the exchange scatter-
ing asymmetry A®). The spin averaged intensity is referred

Ak, ky ko) = P, (4) toas ‘B. This interpretation follows from the definitions
bRe R0 Zl’,g’u Bl’,g’“ | of AW A®) and B
m W(q ,ly Ey'U') - W(q 91’ f,ﬂ)
A; ) _ Il I ’ (5)
wo(qy, . €)
A _ X0 (ky, ko ko, g1, 1) — X5V (ky, ko; ko, gji, 1) ©)
LI 3X=D(ky, ko Ko, g, ) + XO=0(ky, ko3 ko, g, 1)

3 - 1 -

Brgy = wO(qu,l,e)[z X7+ xS ﬂ, ™

where w(q), [, €, ) and w(q, [, €, |}) are the Bloch spectral |
functions of, respectively, the majority and the minority
bands. The spin averaged Bloch spectral function is wy.

The calculational scheme for A, A®) and B of
Ref. [8] is employed for the subsequent numerical study.
A is derived from band structure calculations within
the scalar relativistic full potential linearized augmented
plane wave method [9], whereas AY and B are calculated
from the layer dependent transition matrix elements.

Equations (5)—(7) demonstrate the versatile potential
of the pair emission technique for material and scattering
dynamics studies: (a) In case of unpolarized electrons
and provided X~V and X®=0 are sufficiently known,
the Bloch spectral functions wy can be mapped using
Eq. (7). This is documented in Refs. [10,11] for diverse
systems; (b) the magnetic asymmetry A [ie., Eq. (6)]
in the spin-split band structure can be visualized by
using polarized electron beam and choosing a geometrical
arrangement under which the triplet channel is closed
[8] (X®=Y = 0) in which case A® =1 [cf. Eq. (6)];
(c) conversely in the case that the spin polarized band
structure is known, e.g., from reliable ab initio calcu-
lations, A”™ can be deduced from Eq. (5) and the spin
scattering dynamics, which is embedded in A®), can be
extracted from the measured asymmetry A [Eq. (4)].

The present experimental setup does not yet allow one
to explore in full detail all these facets of the pair emission
technique. In particular, the averaging over the present
angular resolution involves an integration over qj that ex-
tends basically over the entire surface Brillouin zone. The
q integration of the Bloch spectral functions [cf. Eq. (5)]
yields the surface spin split density of states p (e, 1), p (€, 1)
that are depicted in Fig. 2. For the interpretation of the data
we employ thus A = [p(e,l)) — p(e,M/[p(e, ) +
p(e,MI.

In Figs. 3(a) and 3(b) the asymmetry A is scanned as a
function of the energy sharing within the electron pair for
a fixed total energy E = E| + E,. According to Eq. (1)
the energy of the valence band state € is then fixed (Ey is
constant). When the two electrons escape with equal ener-
gies E; = E, the triplet scattering X =" vanishes due to
symmetry [8], and hence for E; = E, we obtain AW =1,
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as experimentally verified in a recent work [7]. There-
fore, in this situation (E; = E;), the magnitude and sign of
the asymmetry A are dictated merely by A" (€) which in
Fig. 3(a) amounts to A(’”)(e = —53¢eV) = +60%. This
interpretation can be substantiated experimentally by shift-
ing € deeper into the band [cf. Figs. 2(a) and 2(b)] in
which case A" changes sign. This results, as shown in
Fig. 3(b) (e = —7 eV and A =~ —40%), in an inverted
sign of A as compared to the case of a positive A",

+' T T B
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=
[0)
£ E
E -005 ;
(2} E
< E
025 E ! L
-20

-10 ‘ 0 ‘ 10 ‘ 20
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FIG. 3. (a) The measured (full dots) and calculated spin asym-
metry A as a function of the energy sharing E; — E, for a
fixed total energy £ = E; + E, = 17.7 = 0.7 eV. The surface
(bulk) electronic band structure has been employed for the cal-
culations shown by the solid (dotted) line. The incident electron
energy is Ey = 23 eV; i.e., € is just below Ep [cf. Fig. 2(a)].
The sample and the scattering geometry are as shown in Fig. 1.
The theoretical results are averaged over the angular and the ex-
cess energy (E) resolution of the detectors. (b) The same as
in (a) except that the energies are chosen as Ey = 26 eV and
E =19 £ 1eV; ie., € is well below Er [cf. Fig. 2(b)]. The
experimental findings (open squares) are shown along with the
(surface) calculations (solid curve).
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FIG. 4. (a) The measured (full dots) and calculated (solid

curve) asymmetry for the same sample, incident, and excess
energies as in Fig. 3(a) (Ep =23 eV, E = 17.7 £ 0.7 eV);
however, the sample is tilted with respect to the incident beam
by an angle @ = 5°, as shown in the inset. The calculations
(solid curve) are averaged over the angular and energy reso-
lution of the experiment, as done in Fig. 3(a). (b) The same
situation as in (a) but A is calculated for different angles «
(from @ = 1 to @ = 5°, as depicted on the curves). The excess
energy is £ = 18 eV. The curves are averaged only over the
angular resolution of the detectors.

Since € is constant in Fig. 3(a) (and hence A g
constant) the variation of ‘A is due to the spin-dependent
scattering dynamics which is dictated by A®. Thus
the structure of A, as depicted in Figs. 3(a) and 3(b),
can be understood as follows: At E; = E; the triplet
cross section vanishes in which case A" attains its
highest value (unity). This structure is a peak (mini-
mum) when A > 0 (A" < 0). The decline in A for
E, > E, or E; < Ej is due to a dominance of the direct
scattering amplitude | f| [Fig. 2(a)] over the exchange
one |g| [Fig. 2(c)]; i.e., it is more likely for the fast
incoming electron to escape as the fast electron than
for it to lose almost its whole energy and emerge as
the slower one. As deduced above limjg| /-0 A =
(I fl1glcosd)/(I fI*Igl* + | fl1glcos8) — 0, and hence
the asymmetry in Figs. 3(a) and 3(b) decreases with
increasing deviations from E; = E,.

Figure 3(a) shows the asymmetry as calculated using a
surface and a bulk electronic band structure. The model
employing bulk spectral functions is clearly at variance

with the data. This is comprehensible as in our experi-
ment two low-energy electrons have to escape the surface
and hence the surface sensitivity is increased as compared
to SPEELS.

The special symmetry of the experimental arrangement
depicted in Fig. 1 implies a symmetrical A with respect
to E; = E, (in our case, spin orbit effects are negligibly
small). This symmetry is broken by tilting the sample as
shown in the inset of Fig. 4. Since € is fixed, A" has a
fixed constant value in Fig. 4. Therefore, the structure of
A is related to that of A®). To explore the origin of the
shape of A in Fig. 4(a) we carried out numerical calcu-
lations [Fig. 4(b)] for varying angle of incidence, ranging
from the symmetric case of Fig. 3(a) to that of Fig. 4(a)
(in the single atom case A remains unchanged). As seen
in Fig. 4(b), with increasing values of «, the broad peak in
Fig. 3(a) at E; = E; diminishes to the small positive hump
around E; — E; = 8 eV in Fig. 4(a). Its origin can still
be related to a small triplet contribution. The negative dip
in Fig. 3(a) at the left wing develops to the broad valley at
E, — E; = 12 eV in Fig. 4(a). This trend illustrates the
subtle dependence of the scattering dynamics on the prop-
agation directions of the electrons through the surface.

The present Letter illustrates evidently that the utiliza-
tion of the coincident two-electron emission technique
renders possible a novel insight into the spin-dependent
electronic scattering at surfaces. Future refinement of
the present study will yield yet more precise information
on the spin polarization A”™ of the surface electronic
states in a well-defined region of the surface magnetic
Brillouin zone.
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Spin-correlation imaging of electrons in ferromagnets
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The angular and energy dependencies of the exchange interaction between the electrons in an itinerant
ferromagnetic surface can be mapped out by exciting two interacting spin-polarized electrons into the vacuum
and resolving at the same time the energies and emission angles of the two electrons. From a tensorial
symmetry analysis it is deduced that the recorded two-particle spectra carry detailed information on the
spin-split electronic structure that can be extracted under favorable conditions. To substantiate these statements
we present and analyze experimental results and numerical calculations for a ferromagnetic iron surface.

DOI: 10.1103/PhysRevB.65.104425 PACS nunider75.30.Ds, 34.80.Nz, 34.80.Dp, 79.20.Kz

[. INTRODUCTION the study of the electron-hole pair excitations in ferromag-
nets, known as the Stoner spectrtimThe Stoner excitation
The fermionic nature of electrons dictates that theof a ferromagnetic surface involves a two-state transition: A
guantum-mechanical wave function of a multielectron sysimajority band electron interacts with the incoming polarized
tem has to be antisymmetric with respect to exchange of thelectron(of opposite spin projectignand is promoted to a
states of two individual electrons. This symmetry require-highly excited state. If this state lies above the vacuum level,
ment has profound consequences as to the properties of cdhe electron may escape such that it can be detected by a
related electronic systems. In particular, the exchange “cousuitable detector. Due to this interaction, the projectile elec-
pling” between electrons is essential for the ferromagnetidron loses energy and relaxes into an unoccupiedt-
state of matter. Therefore, experimental and theoretical apelectron state in the minority band. Therefore, an observer
proaches that expose details of the energy and angular deronitoring the spin state and the energy loss of the incoming
pendencies of the exchange interaction are of considerabfmlarized electron beam registéusing SPEEL$a spin-flip
value for fundamental and applied research. The obstaclesvent at a certain energy loss determined by the characteris-
encountered in such studies are of a technical as well as oftacs of the unoccupied density of states of the minority band.
theoretical/conceptual nature: To investigate the influence dih a SPEELS experiment only oiéne excited majority band
the exchange interaction one should be able to control exelectron is detected while the mechanism that triggered the
perimentally the states, i.e., the quantum numbers, of at leastansition is an exchange process that involves, at least, two
two electrons and then change the spin state of one of thesdectrons. To map out the details of the exchange-dependent
electrons while monitoring the change in the properties oklectron-electron scattering one needs to resolve the energies
the system. and emission angles of the two electrons which are excited
Experimentally, this can be realized by measuring theupon the interaction of one single energetic, spin-polarized
two-particle excitation spectrum of a ferromagnet upon theelectron with a single domain ferromagnet. The dependence
impact of a single polarized electron. Features related to thef the spectrum on the spin projection of the projectile elec-
exchange interaction are studied by observing the depertron and/or the magnetization direction of the sample yields
dence of the spectrum on the electrons’ spin projections. It iglirect information on the spin-dependent electronic interac-
clear from the outset that such measurements put high deéions. If spin-orbit interactions are deemed small it suffices to
mands on the experiment as one has to utilize a multiparticldetermine the spin states of the electrons prior to the colli-
coincidence technique using a spin-polarized beam to resolva@on as the total spin is conservétlis does not exclude the
and control the two electrons’ quantum numbers. Such @ossibility for the individual electrons to exchange their spin
method is hampered by low counting rates as compared tprojections via exchanging their energies and emission
conventional single-particle spectroscopic techniques. Nevangles. The latter exchange process is mediated by the spin-
ertheless, since the exchange coupling is a many-body effegidependent electron-electron interacjion
it is indispensable to use many-particle techniques to trace In this work we conducted this type of experiment on an
the various facets of this interaction, such as the energy anée(110) single-crystal surface with a well-defined magneti-
angular dependencies of the exchange-influenced pairation direction. The experiment allows one to set the energy
correlation function. Correspondingly, a theoretical treatmenand spin polarization of the incoming electron beam. The
has to deal with the excited states of a fermionic many-bodyneasurement determines the energy and angle-resolved co-
system to describe the propagation of two hot electrons thahcidence rate of electron pairs emitted after excitation by a
interact with each other and with the surface and emergsingle electron. Furthermore, in order to address the influ-
eventually into the vacuum with well-defined wave vectorsence of the exchange interaction directly, the relative orien-
and with a given total spin of the electron pair. tation of sample magnetization and incident-beam polariza-
The experimental approach used in this work can be retion is switched between parallel and antiparallel.
garded as an extension of the well-established spin-polarized As deduced from a tensorial symmetry analysis, the spin-
electron energy-loss spectroscofyPEELS as applied to dependent two-particle spectrum can be classified according
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cident beam and the magnetization direction of the sample
are both perpendicular to the scattering plétfeFig. 1). As
a source of spin-polarized electrons we used a strained GaAs
multilayer photocathode activated by Cs deposition and oxy-
gen exposure. Photoelectrons generated from the photocath-
ode by the circularly polarized light of a laser diode are
deflected by a 90° deflector to convert the longitudinally
polarized beam into a transversely polarized one. At an elec-
tron pulse frequency of 500 MHz, the average coincidence
count rate was 30 events per s. To obtain a data set with
statistics suitable for the detailed analysis presented in this
aper, a typical spectrum took an acquisition time of about
[00 h. This long term measurement requires good vacuum
conditions to maintain a clean sample surface, and good sta-
bility of the incident-beam polarization. To reduce the influ-
nce of the possible instabilities the polarization of the inci-
ent beam is inverted ewer5 s and the data for each
polarization are stored in two different files. In spite of the

to the symmetry of the interactions involved in the excitationUHV conditions (=5.10 ** mbar) the cleanliness of the
process(exchange and spin-orbit interactiondhe math- sanIe surface.has to be restored regglarly. Th|§ was done by
ematical treatment yields a prescription to disentangle and’  ion sputtering followed by annealing and, if necessary,
measure the various terms related to a specific symmetr§xygen treatment to remove the carbon from the surface. The
class. For the calculations of the two-particle spectrum weurface properties were monitored by Auger electron spec-
utilize a numerical method which employs a realistic spin-{foscopy and low-energy electron diffraction. The experi-
split surface electronic band structure combined with gMent requires a high degree of polarization of the incident
Green-function technigue to propagate the two excited, co?€@m and single domain magnetization of the sample. To
related electrons into the vacuum in the presence of the scaf?onitor these conditions we measured the energy-loss spec-
tering from the surface crystal potential. tra (the Stoner s_pectru)rfor an electron-_bea_m pplanzauon
The results of this work show a strong dependence of th@arallel and qntlparqllel to the magnetization in the_ same
two-electron coincidence signal on the direction of the spifd€ometry of Fig. 1 with one of the TOF detectors switched
polarization of the incoming beam. The origin of this spin off.” The a}symmetryA,_derlved from the two intensities for
asymmetry is revealed by an analysis of its rotational prop{h® OPposite spin projections of the incident beam, is mea-
erties(in the two-electron spin spacecrom this analysis we sured before_an_d after the commd_e_nce experiments and is
conclude that, within the resolution of the present setup, th&S€d as an indicator for the stability of the experimental
spin asymmetry measured for the(EE)) surface is induced S€tup. . _
by the exchange coupling. It depends on the mutual angle of 1he energy and wave-vector balance imposes the condi-
the two escaping electrons as well as on their relative eneflons
gies and on the crystal orientation, providing thus detailed
information on the influence of the exchange interaction on
excited electrons at surfaces. A brief account of the present
studies and first results has been published in Refs. 6 and 7.

FIG. 1. The experimental setup as used for the coincidence me
surements. The direction of the magnetizatibh, the spin-
polarization vector of the incoming beaR, as well as the wave
vectors of the incoming and the two emitted electrkpandk,, k,
are indicated. The electron detectors are positioned at 40° to the le
and to the right of the axis.

E0+€:E1+E2, (1)

Koyt o+ gy=kyt+ky . @)
II. EXPERIMENTAL DETAILS

The experimental realization of the coincident measureHere, € is the energy of the valence-band electron gpds
ment is depicted in Fig. 1. A pulsed spin-polarized electronts (surface@ Bloch wave vector. The surface reciprocal-
beam with wave vectok, impinges onto a clean ferromag- lattice vector is denoted bg;. Since the quantitieg,, E,
netic surface, in our study, bcc @&0). The time structure in - andE, andkg, ky, andky are determined experimentally
combination with the very low average current of the incom-(cf. Fig. 1) we can control, via Eqgl) and(2), the values of
ing beam ensure that only single electrons interact with the andq;, i.e., we can perform the experiment in a certain
sample. A fraction of the scattering events leads to the emisegion of the(magneti¢ surface Brillouin zone. Lowering,
sion of two electrons with energieB;,E, and emission while keepingE, and E, fixed we can zoom in to deeper
anglesdq, 6, with respect to the incoming beam direction. levels of the conduction band. Equivalently, one can sgan

Hence, the experiment measures simultaneously the waugy varying, e.g.Kq for givenk,, Ky, andg;. The experi-
vectorsky andk, k, of the impinging and two ejected elec- ment(Fig. 1) measures a spin asymmetd; i.e., for a cer-
trons. The escaping electrons are detected by two positiotin magnetization directiokl, hereafter denoted by, we
sensitive time-of-fligh{ TOF) detectors. The sample normal, register the electron-pair emission ratefor antiparallel and
the incident electron beam, and the axes of the TOF detectoparallel alignment of the polarization vector of the incoming
are in the same plane. The polarization ved®grof the in-  beam withM (cf. Fig. 1) and evaluated as
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W(TIM) =W M) The cross sectiolV for the simultaneous emission of two
A(kq, ko5 ko) = v ™ (3)  electrons with wave vectork; and k, in response to the
WTL™) +W(CLLY) impact of a projectile electron with wave vectog is given
by

Ill. THEORETICAL CONSIDERATIONS

For a theoretical formulation we describe the incoming W(ky,ky:kg)=C > i TpSTIS8(E;—E). (7)

polarized electron beam agmicrocanonical ensemble and my Mg
qlSJantify it by the density operatgr® with matrix elements msi,msi
P, - Here ms, is the projection of the electron’s sp®

S1 Sy

along an appropriately chosen quantization ag., the Here mg,,mg denote the spin projections of the final-state
magnetization direction The density matrix is chosen to be electronls anzdx stands for all the quantum numbers needed
diagonal. This is not a restriction since it can always by guantify uniquely the quantum-mechanical state of the
diagonalized by an appropriate unitary transformation. In th%ystem which are not resolved by the experime6t.
standard representation the density operafolis expanded =(2m)*/k, is a kinematical factor that originates from the

linearly in terms of the Pauli matrices as normalization to the incoming electron flux current density.
In Eq. (7) T denotes the matrix elements of the transition
p1=1+P;- 0, (4)  operator7 of the total system consisting of the projectile

electron and the magnetic surface, i.e.,
whereP; is the polarization vector of the beam. Analogously,
the electrons in the exchange-split conduction band are char-

acterized by the density matriX? — wheres, is the spin T(ky1,mg;, Kz, Mgy ko, Mg, M)
Sy Sy

of the electron andng, labels the corresponding magnetic =<¢kl,k2,m8,,m3,(1,2)|7| beras, mg (2) @k, .s,m (1))
—_ 1 2 2 1
sublevels. The density operatpi? is expressed as )
p2=wo(Kyy,l,€)(1+ Py o), (5)

Py symg, is a spinor vacuum state describing the incoming

wherew,(kyy 1, €) is the spin-averaged Bloch spectral func- P€am. The ground state of the surface is to be described by
tion of the layerl andP, characterizes the polarization of the the single-particle, spin-resolved orbital s, m, (2) which
band states, for its value is defined as is characterized by the energy the spin state,,ms,, and

the collective quantum numbers. The emitted electrons
©) with spin projectionsmsi,msé are represented by the two-

b _ Wikl e, —w(ky 1 e,l)
Wo(Ka,l,€) ' particle state vectolyy k, m,,m,(1.2)).

2

Here w(qy,l,e,f1) andw(qy,l,e,l) are the Bloch spectral To Ie_ading olrder in the electron-electron anq the electron-
functions of, respectively, the majority and the minority CyStal interaction the operataFcan be approximated By
bands. The spin-averaged Bloch spectral function is denotedr> Usurit Ued 11 GeUsurr) Where Ue, is the electron-
by w,. These samples’ spectral functions are obtained fronglectron interactionG,, is the Green function within the
the trace of the imaginary part of the corresponding singlepotentialUc., and U, is the surface scattering potential.
particle Green function of the surface. For the calculations of-or a given atomic layer of the surface the poteritlg), ¢ is
the (ground-stateelectronic properties of the sample we uti- cast in a nonoverlapping muffin-tin form. For the electronic
lized the full-potential linearized augmented plane-waveinteractionU.. we employ a screened Coulomb potential
method and compared the results with those obtained from avith the screening length determined according to the
self-consistent  layer-resolved  Korringa-Kohn-RostokerThomas-Fermi theory. Iii we discard any spin-orbit effects.
method!® Both methods are based on density-functionalThe justification for the neglect of spin-orbit interaction can
theory within the local-density approximation. The densitybe checked experimentally, as explained below.
matrix p° of the combined electron-surface system, long be-
fore the collision, is obtained from the direct prodyst
=pS2p%. . . L
For the calculations of the pair-emission probability we Having sketched the general calculational scheme it is
note that the experiment resolves the asymptotic wave ved@dvantageous to analyze the transformational properties of
tors of the impinging and the two emittédacuun electrons ~ the spectrum(7) using group theory. This analysis is gener-
(cf. Fig. 1). However, no spin analysis of the outgoing elec-ally valid and does not rely on the specific approximation to
trons is performed in the final channel. Such a spin analysid- T0 this end and to disentangle geometrical from dynamical
is redundant in the absence of spin-orbit interaction, adeatures we express the density matri¢®sand(5) in terms
shown below. of the statistical tensors, 4 andpp,q,.*?

A. Tensorial recoupling
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. 2s; the ms, (mSZ) component of a spherical tensor of rask
Pnislmslzpzo (—)Prmm My (s,). Furthermore, the complex conjugate can be written in
! the formT* (sy,mg ) =(—)°~M)M(s;,—m ). This relation
X(s1=Mg ;$1Mg [P101=0)pp.q,=0» (9 is a definition for the tensorV, and resembles formally the
definition of the adjoint of a tensor operator where the phase

2 é is chosen arbitrarily under the constraint tldat mg must
P (@)= X (=P integet? '
pmszmsz ' v=o 2 be an integet® Thus we choosé— Mg, =P1—S1— M (note
. thatp,;=0---2s; ands; — mg, are always integeysThe ten-
X (= Ms,;SoMs,[P202=0)pp,q,-0( €, @). sor product ofT(sy,ms ) andT'(s;,mg ), which is again a
(10) spherical tensor, is then given by
We recall here that the density matrices are both diagonal [T(s1,ms )T (sy,mg )]
; - ; sy 1:7s/dg =0
due to the assumption that there exists a common quantiza- 1
tion axis, therefore, only the components along the axes -
Pp,q,~0 @ndpy 4.~ @ppear in Eqs(9) and(10) [in Egs.(9) :ES (—)Pr 517 Msy( sy —mg ;Mg [p10)
and(10) (---|---) denotes Clebsch-Gordon coefficights '
Substituting Eqs(9) and (10) into the general expression XW(s1,— msl)T(sl,msl).
(7) yields
Y Comparing this result with Eq13) it is obvious that for a
25, 25, - - given p, the parameteAZiféQz:Q can be regarded as the
W= T 2:0 2:0 ppquoppzqz:O(E’“)Aqi':g,qzzo component along the quantization axis of a spherical tensor
Pim P2 of rank p;. The same argument applies to the dependence on
X 8(Es—Ej), (1)  p,, i.e., for a givenp; we can treatAgi’:pg’qzzo as theM
where component of the spherical tensor with ramk

This mathematical analysis yields important information
as to the transformation behavior of the tensorial components

AghP2: Ag}ozo’pz (AS}O‘DZZO) is ascalarwith respect to spin
rotations generated by, (s,), i.e., it represents spin-
averaged quantities in thg (s,) spin space, whereas the

P1.p _ -5— : _
Aqi:&qzzo—mE (=P 517 Msy(s —mg ;$1mg [p10, = 0)
S1

X2 ()P %2 Moy, — M, ;S2Ms, | P202=0)

g, components A810=°dd’p2 (Aglo'pf(’dd) can be regarded
as spinorientation in the s; (s,) spin space(for p;=1
X]fa(msl,msz), (12 it is a vectoj and hence changes sign upon spin
. . py=odd,p _ p;=odd,p
reflection, i.e., AO;O 2(=ms)=—Agh 2(ms))
‘7:01( mslaavmsz) = CE T(klamsi!k21m5é;k0 rmslva!msz) [ASJdY:Z_Odd(_ msz) == Ag]apz_Odd(mSZ)]' The tensorlal
mg’ ' '
ms} components with evep, values are alignment parameters,
%2 i.e., they describe the deviations in the spectra from the un-
XTT(klva'!kZ!mS’;kOImsllaamSZ)' p0|arlzed case.
1 2 For the cases;=1/2 ands,=1/2 Eq.(11) reduces to
(13
. ) ) . AO,l Al,O
The complete dynamical information on the two-particle W:i: AOQ = o,o+ — 700
emission are encompassedArﬂi‘gj whereas the geometry 7 00 PooPoo pooploAg,g P1oPoo 8’8
of the ground state is described by the state multipoles. i1 ' ’
The importance of the above recoupling scheme follows _ Ago
from the conclusion that the sum owet, (mg) in Eq. (13) +p1op10—— O(Es—Ej) (. (14)
defines the component along the quantization &kie mag- 0.0,

netization direction of a spherical tensor of rank; (p2)  As stated above, the first term of the sum in B yields
while the dependence of the sum wg, (mg;) is considered  the pair-emission rate averaged over the spin orientation of
parametrically. This is readily deduced from the fact that forthe incoming electron beam and the spin polarization of the
given spin projectionmsi andmsé thems, (ms,) behavior of sample. The second term describes the spin asymmetry due

T is given by the dependence on the magnetic sublevels of & the inversion of the magnetization while the incoming

angular momentum state, namely, by the (m.) depen- electron beam isunpolarized. The third term is the spin
' ' (NG asymmetry in the electron-pair emission frampolarized

dence of the spin part dfpi, sm, (1)) [[beas,m (2))]- targetswhen inverting the spin polarization of the electron
ThusT(kl,msi,kz,msé;ko,msl,a,msz) may be regarded as beam!* In the absence of explicit spin interactions in the
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transition operatof, e.g., spin-orbit coupling, the parameters To understand the polarized multielectron emission it is
A§9 and AJg vanish. In the present experiment on theUuseful to introduce the direct-ff and the exchange-gj
Fe(110 sample we measured the parametéfs and A3S ~ Scattering amplitudes. These are defined as
and found them to be zero in the particular geometry of Fig.

1 and within the accuracy of our setup. In this context we f:kakz(l’z)m¢f~a(2)q’ko(1)>' (22)
note that with the same setup it has been possible to deter-

mine a finite value ofA§5 when a tungsten sample is 9= (Y, .k, (LD T de o(2) @i (1)) (22)
employed:® due to the enhanced strength of spin-orbit inter- _ _ _ _

action as compared to the case of B). In physical termdf, the direct-scattering amplitude, can be

Therefore, the present study is devoted to the last term dhterpreted as a measure for the probability that the projectile
Eq. (14). This parameter is relevant for the description of theelectron, labeled1) and incident with wave vectoky, is
electron-pair emission from an exchange-split ferromagnetigcattered into the asymptotidetectoy state that is charac-
surface induced by spin-polarized electrong;s is a polar terized by the wave vectde; while the other electrof2) is

vector both in thes, ands, spin spaces, i.e. being excited into the asymptotic state with the wave vector
k,. Analogously, the exchange-scattering amplituglele-
Agd—ms Mg )=~ Aggms ,mg ), scribes the probability that electrdft) is scattered into the
' ’ statek, while particle(2) is promoted to the state with the
Aé;é( Mg, — Mg )= _A<1)I(1)( Mg, Mg ), wave vectork;. _ _
If ko andk; are very largdwith respect to the Fermi wave
ectop and if a small amount of momentum is being trans-
AFY-me,—my)=AdYmemy). s yectoyand| 5 um Is Leing

ferred to the sample during the collision, it can be expected
intuitively that|f|>|g|, i.e., the fast incoming electron is the

The explicit forms ofA55 and A5 are derived from Eq. : . > e
e explicit forms ofA g and Agg are derived from Eq. o "o1c fron which emerges swiftly. In other words, in this

(13) to be case the electrons are distinguishable via their highly asym-
1 metric energies and hence, as shown below, the spin asym-
Aéj$=§{f(l,U)+F(T.ﬂ)—f(T,U)—f(l,ﬂ)}, (16)  metry vanishes in this case.
From Egs.(20) and (18) we deduce the relations
1 -
ASG=SAFALW+ AT D+FAT DALMY (17 X(5=0ky kz;ko, @) =Clf+g/?, (23
To expose the symmetry properties of the total wave function XE=D(ky ,kz5ko,a)=Clf—g|?. (24)

that are imposed by the Pauli principle we transfofhand . . ) ) )

T' as given by Eq(8), into the tota|_sp|r(s) space and obtain Equatlon.(lS) yle|dS a I’e|atl0n_ that links the Slngle-

(we assume separable spin and spatial degrees of freedonglectron spin-resolved cross sectidf{ms ,ms)) with the
triplet and singlet cross sections, namely,

f(msl’msz):CSEMs |<Slmsl;32m52|SMS>|2 f(Tyﬂ):f(l,U):X(S:D:C|f_g|2, (25)

xXO(ky,kaiko, @), (18) 1
FLM=F1,1) = 5[XE D+ XE0)=C|f[*+Clg|*

X (ks kako, @) =[(¥(D, (1.2 xsmg( 1.2 7] (26)

’ 2
X®(S)(1’Z)XSMS(1’2)>| . (19 Equations(16) and (17) reexpressed in terms of the sin-

glet and the triplet partial cross sectiod§>=? and X(5=1),

Here we introduced the total-spin-resolved cross seétiGh q
real

and the normalized two-particle spin wave function as
| X'SMS>- The spatial parts of the two-electron state in the ini- 1
tial and the final channels are denoted by, respectively, Aéj(l)zz[x(szl)(kl,kz;ko;a)—X(SZO)(kl,kz;ko,a)],
(Wi (1,2)) and|D(S)(1,2)), ie.,

(27)
1
(Wi (1,2)= ﬁ{l Ui, k(1.2 + (=), 1, (1,2)}- Agg:%[gx(szn(kl,kz Ko, @)+ XE=0(ky Koikg,a)]
20
(20 =:2Xy, . (28)

From this relation we deduce an important feature of the

triplet state §=1) and the corresponding triplet transition Evidently, these two equations can as well be expressed in
amplitude: In cases where an exchang& andk, does not terms of the direct- and exchange-scattering amplitfides!
affect the experiment, e.g., whén=k,, the triplet scatter- g. In Eq.(28) we introduced the spin-averaged cross section
ing vanishes. Xap -
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B. Calculational scheme their relative phasé. Thus, Eq.(31) reveals the spin asym-

For perfect clean surfaces the average avén Eq. (14) metry as the result of a quantum interference of the two

implies summation over the surface Bloch wave veajor amplitudesf andg. _ o
and over the surface layers. The Bloch theorem for two in- WO conclusions follow directly from Eq31): (i) For a.
teracting particles imposes a conservation [aiv Eq. (2)] given layer the asymmetnyA® assumes unity value if

for the surface components of thetal wave vector of the X(5=1=0. As stated above this is the case if the experiment
emitted eIectronsK“*:leJrkzu 1je. the change OK\T is invariant under an exchange lof andk,. The functionA®

from its initial value ko +q; (before the collision is re- varies between 1 and-1/3. The experimentally relevant

L . X .
stricted to a multiple of the surface reciprocal-lattice vectorduantity is, however_, the va;IuA weighted dW'th the paur-
g/ This fact can be used to perform the integrals aygin ~ S""'5S10N CTOSS sectioN,, [cf. Egs.(29) and(34)], i.e., in

Eq. (14). Therefore, Eq(14) reduces to a summation over cases where the cross section diminishes, e.g., for emission
thé surféce layers 'indexed byand overg , i.e from atomic layers whose positions with respect to the sur-

face are beyond the electron’s inelastic mean free path, the
pair-emission cross section and the spin asymmetry are not

WO‘2| {2Xap(ky,Ka:ko,G1, DL poopoo( € Ay 1) measurabldin the way proposed in this papefii) In the
9 casegf|>|g|, |f|<|g|, or fL g the spin asymmetry vanishes
— prpd € AL DASK, Ko Ko g ) S(E;—E), as the interference betweémndg is then negligible.
propd e Ap A K Katko. 0y DO(E ~ B} To calculate the terms in ER9) the state multipolep;o
(29 and p,, are needed. These can be obtained by inverting the
where relations(9) and (10) as
A=K =gk (30
= —)P7STMs(s—mg;s S 32
We recall that spin interactions in the transition operafor Ppa % (=) ( ° mS|pq>pmSmS 32

have been neglected, in which case the parametf§fsand
Agjg vanish identically. In Eq.(29) we introduced the
“exchange-scattering asymmetry” as

From this equation it is clear that even for pure stafaly
spin-polarized statesll state multipoles are generally finite.
Since we have neglected spin-dependent interactions only

X(S:O)(kl,kz;ko,g”,|)—X(S:1)(k1,k2;ko,g||,|) the multipolespgg, po1, pPoo, and poy are required. From
Egs. (9)_,(10), and (32) we deducepggpoo=[Wo(q),l,€)]/2
andpyop10=[Wo(q|,!,€)]P,P,/2. Equation(29) can thus be

|f|lg|coss written in the form
(31

S.

XG0 (Ky Ky ko, gy, 1)+ 3XE=D(ky k1Ko, gy 1)

|12+ 1g]>|f[|g|coss”

In the last equation we reexpressed the cross sections in W“% Wo(A,1,€)Xq,[1+ A]S(Et—E)), (33

terms of the direct- [f=f(ky,ko;ko,9),1)] and the
exchangetg=g9(k;.k;;Kq,g;,!)] scattering amplitudes and where the asymmetry functiad is defined by the relation

Aplel)—W(Ayle, XayAS(Ef—E;
EI[w( 1l ed) —w(A «ETT)@H (Es )_W(Tﬂ)—W(lﬂ)

A=Py S WO FWO

(34

> Wo(Ayl7,€) 2 Xay8(E—E))
V' 9

This result for the asymmetry admits a simple structure inbpeam E,>1 keV), the three-dimensional translational

some limiting situations: symmetry of the sample results in a simplified form of Eq.
For atomic gaseous targets the sample’s polarization veg34), namely,

tor P, is a constant, experimentally determined quantity,
namely, the polarizatio®, of the atomic beam. Therefore,
A reduces tad=P,P A,

For a spin-polarized homogeneous electron (&t®ner 29 XayAO(Ef—E)
mode) P, is directly related to the density of states; and A=P,P, . (35
therefore A= P4[ (py—py)/ (py + pp) JAL. > X 8(E—E))

For bulk sensitive studies, e.g., for a high-energy electron g
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@ W ©® |l oo therefore the termA® (31) becomes unity. This means that
Spin sum e BE spinditerence i the_ spin asymmetryd (34) in this situation reflects the prop-
200 5000 erties of the electronic band structure of the sample. The
= 000 =49 e scattering dynamics plays no role due to symméasy/far as
uf T 200 the quantity.4 is concernefd
4000 5 i . The above statements apply strictly speaking glong the
2000 \ 2000 line L only. In our experiment, however, we have to integrate
i3 o -350,0 .7 . . . .
10 5 E1[0V] 15 over a finite detection solid angle in order to obtain reason-
E, [eV] ,[e

able statistics, i.e., in the geometry of Fig. 1 and along the

FIG. 2. (a) The coincident two-electron spectrum measured ir]Iine L the electrons are emitted into a solid anflig with an
the geometry of Fig. 1. The incident energyEig=22.6 eV and the apertAureA"; Th_e .sampllng. ovel), implies an .averaglng
data are summed for two polarizations of the incoming electrorPVerky andk, within a certain range. From E¢p) it follows
beam. The data set was integrated over the whole area of the detdfat this procedure corresponds to an integration in a certain
tors, therefore the emission angles are determined within the rand&dion in the Brillouin zone around tHeé point. It should be
9,=40°+15° and@,=40°+15°. Along the lineL, the two elec- stressed, however, that in the case of a finite angular resolu-
trons escape with equal energies. Along the lines perpendicular to tion the coincident signal cannot be directly related to the
the electron pairs have a constant total enefy=E,+E, sample’s electronic structure since the triplet scattering is
=const. The absolute values of the spectra are not determinddi€n generally finite and the terAt [Eq. (31)] 'Ssn()t simply
whereas the absolute magnitude and the sign of the spin asymmet#y Con_Sta_m(except for,=6,, E;=E, Whe_reA =1). The_
is measured(b) The difference between two spectra obtained whenquantitative shape ofA® away from the highly symmetric

P, is parallel toM andP; is antiparallel toM. points 6, = 6, andE; = E; is strongly dependent on the scat-
tering dynamics(embedded inAgi’gz) whose modeling

Here g is a three-dimensional reciprocal-lattice vector andposes a real challenge, even for simple few-body
the polarization vectorP, is given by P,=[w(A,¢,|) systemg®1’

—W(A,€,M)]/[wo(A,€)]. In this context it should be noted ~ The asymmetryA® has its unity maximum value af,
that, except for some highly symmetric situations, in the=g, andE,=E,. Thus, any angular sampling\) will de-
high-energy regimé® might be very small due to the domi- crease the unity value &®. This argument is, however, not

nance of direct scattering. valid for A, since the angular integration procedure involves
different electronic states of the conduction band whose spin
IV. COMPARATIVE ANALYSIS polarization is not knowra priori and depends on the mate-
OF EXPERIMENTAL AND THEORETICAL RESULTS rial under investigation. For the present case we observed in

the theoretical results that angular integration reduces the
We conducted the experiment for a series of impact enewvalues of the spin asymmetriet.

gies fromEy=20 eV up toEq=37.6 eV in the geometry In Fig. 3 we assess the above statements by contrasting
shown in Fig. 1. The two-dimensional distributions of coin- theoretical with experimental spectra along the linien Fig.
cidence events foE;=22.6 eV are shown in Fig.(8) as a 2. In Figs. 3a)—3(c) the angular integration for each of the
function of the energies of the two electroBs andE,. In  TOF detectors i ,= 15° whereas in Figs. 3(33(c) the
this graph, the two data sets obtained with different electronangular integration is decreasedAg=7.5°. In all cases the
beam polarizations with respect to the sample magnetizatioangular resolution is accounted for by the theory. As stated
are summed up. We recall that the emission anglemndd,  above for the strict condition§,;= 0, andE;=E, the spin
are also measured, however, the data depicted in Fig. 2 aesymmetryA [Eq. (34)] is an image of the spin polarization
integrated over the whole solid angle of detection. The posiP, [cf. Eq.(6)] at the respective point in the Brillouin zone.
tion of the Fermi levelEr is shown as well as the line  Therefore, the value ofl should not depend on the incident
along which the two electrons have equal energies. FigurenergyE, of the beam(sinceP, is independent oE,). For
2(b) shows the difference in the spectrum associated withhe theoretical results we observe the general trend that the
reversal of the spin polarization of the electron beamfinite angular resolution has the effect of decreasing the
Equivalently, one can also plot the electrons’ energy depenvalue A {due to the decreased value Af [Eq. (31)], as
dence of the asymmetupt. The lineL is of a special impor-  explained above Improving on the angular resolutida\ ,
tance as it corresponds to tliepoint for 8, = 6,, as can be =15 in Figs. 3a8)—3(c) andA ,=7.5° in Figs. 3(&4-3(c)]
seen from Eq(2) ko =0ky = —ky]. Different points orlL. increases the averaged valueASfand possibly enhances the
correspond to different binding energiesf the conduction-  value of A. These expectations are basically confirmed by
band electrongcf. Eq. (1)]. On the other hand, in the highly the theoretical results in the region around the Fermi lével
symmetric geometry of the setup shown in Fig. 1 and alongV belowEg) (cf. Fig. 3: The theoreticald increases sub-
the lineL (E;=E;) the complete experiment and in particu- stantially when the angular resolution is improved and the
lar the sample’s properties are invariant under a 180° rotavalue and sign of4 do not depend orE, near the Fermi
tion with respect to theg|k, direction. Such a symmetry energy. While the agreement between theory and experiment
operation is, however, equivalent to an exchang&,0énd  can be regarded as satisfactory up to 2 eV befgw large
k,. Therefore, along the lin¢ in Figs. 2a) and 2b) the  deviations are observed for the electron-pair emission from
triplet scattering vanishdsf. Egs.(20)—(22) and (24)] and  levels deeper in the band. For these levels the experimental
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FIG. 3. With the same geometry as in Figs. 1 and 2 we scan the spin asymigtrhe electron-pair-emission cross section along the
line of equal energies of the electrons, i.e., along the line labeledFig. 2(a). The asymmetry4 is plotted as a function of the energy
e=E,— Eo. According to Eq.(1) e corresponds to the binding energy of the ground-state electrons and hence the Fermi eneegy is at
=0. The setga)—(c) and (&) —(c") show, respectively, the spin asymmetry in the electron-pair spectrum and the spin-averaged spectrum for
three different incident energids, of the incoming electrongEq=20 eV in(a), (a'), and (4), Eq=27.6 eV in(b), (b"), and (), and
Ey=23.6 eV in(c), (c'), and (¢)]. In (a—(c) and (&)—(c") the angular integration for each of the detectorg,;is=(40=15)°, whereas
in (a')—(c’) the solid angle of the integration area was restricted o= (40+7.5)°. Full squares with error bars are experimental data
whereas the solid lines are the theoretical results.

results are also different for different incident energigs  tional shortcoming of the present theory is that we do not
and therefore they cannot be related directly to the groundaccount for a dynamic, multiple inelastic scattering of the
state electronic band structure. To get insight into the origirelectron pair from other electrons in the samfple electron-

of these discrepancies we discuss the main limitations of ouglectron scattering within the electron pair is treated prop-
theoretical approach: In the present theory, when we deriverly). This is justifiable when the emission of the electron
the single-particle Green function, we do not employ apair is from states around the Fermi level, for the energy
proper expression for the self-energy operator which wouldconservation(1) pins down the energetic position of the
generally have the effect df lifetime) broadening and an bound electrorf e=(E;+E,) —Ey]. For states deep in the
energetic shifting of the quasiparticle statB$n our calcu- band this determination of the initial binding energy of the
lations we assume the imaginary part of the self-energy to bejected electrons is no longer unique. This is because, on
merely a spin-independent consté&di02 e\). Therefore, our their way out to the vacuum, the excited electrons may
theory yields an energetic spreading of the bound statescatter inelastically from other target electrons which fur-
which is very narrow. For a given Bloch wave vector, whenther propagate in the sample and remain undetected. This
we energy-scan the Brillouin zone, e.g., as is done in Fig. 3eads to a spin decoherence of the excited electrons since, as
we encounter only narrow states centered around specifivze have shown in this paper, the electron-electron inelastic
energies, and hence we see the spiky structure of the theseattering is strongly spin dependddue to the exchange
retical curves shown in Fig. Gote, however, that in Fig. 3 coupling.

we accounted for the finite experimental angular resolution These statements are in line with the behavior of the ex-
which results in a certain broadening of the pgaks addi-  perimental and theoretical results shown in Fige)-33(c)
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and Figs. 3(8—3(c"). In the latter figures the spin-averaged T T
electron-emission rate corresponding to the geometry of '
Figs. 3a)—3(c) is depicted. In contrast to theory, the experi-
ments show a considerable increase in the coincidence rate
for very low electron energies, i.e., for large negative initial
binding energieg e=(E;,+E,) —Eg]. In fact the extent of

the experimental spectfaot fully shown in Figs. 3(9-3

(c¢")] goes beyond the conduction bandwidth. On the other

Spin Asymmetry

hand these slow electrons might have been originally (st 2 o1l _
the time of their creationand suffered one or more inelastic £ piiitd f
electronic collisions before escaping into the vacuum. This % M
additional channel, not accounted for theoretically, leads to T 0 l¥ T IT
an increase in the cross sections for the emission of two slow & E.=17 eV

electrons(or from levels deep in the bapdDue to the spin -0.1 . L .
decoherence associated with these inelastic processes the ' ‘ '
spin asymmetry, as shown in Figs(aB-3(c), diminishes E.=163eV I
when the contribution of such inelastically scattered electron
pairs becomes a sizable part of the recorded coincidence
spectra. This argument gains support by correlating the
behavior of the experiments in Figs.(ag-3(c) and
Figs. 3(&4)—-3(c"), e.g., with increasing impact energy the _0.2 .
contribution of the inelastic, energy-loss processes of the -08 04 0 04 08
electron pairs increases, while in this case the spin asymme- (E-E)Ew
try decreases. As expected, the theory shows hardly a depen-
dence ork, of the spectra in Figs.(8) and 3(¢).

In Fig. 2 we highlighted the importance of the equal-
energy lineL and showed in Fig. 3 the electron-pair spec-
trum alongL. For events along this line, the binding enekgy

of vqlencg electrpn removec! from tiepoint varies. If we are shown corresponding to three different value€gf as indi-
Cons!der lined., in F_'g' 2 V_Vh'(_:h are perpe_nd_lcular ig We_ cated in the figures. The experimental data are obtained from Fig. 2
consider events at fixed binding energythis is because in  py taking cuts along the lines perpendiculat tdhe position mark-

this caseE,y=E;+E, is constant and due to Eql), € ing equal energies. Theoretical results have been averaged over the
=E i~ Eol- The electron-pair spectrum alohg is an en-  solid angle, as stated in Fig. 2.

ergy pair-correlation function. It is a measure of the probabil-

ity that the first electron will escape with energy and the 1-€., it is more likely that the fast incoming electron will
other electron will emerge with energ§,=E,,—E,. This ~ €S¢ape as the fast electron than it is for it to lose almost all its
o .

probability will strongly depend on the strength of the corre-ENergy and gmerge as the slow one. As deduced above,
lation between these two electrons. In particular, the spi r']m(|9\/|ft\r);°A —(Ift||g|_CO§_é)/(H|d|g| —|f||g|cos_tér)1§0, and g
asymmetry in this spectrum is intimately related to the ence the asymmetry in Fig. 4 decreases with increasing de-

strength of the exchange interaction as quantified by the amv-Iatlon fromE,=E,.

Spin Asymmetry
|
=4
- o
—a—
-
—e—
—a—
L 1

FIG. 4. For a fixed total energl,,; and a fixed energg=Ey
—E, of the initially bound electron we measutill square$ and
calculate(solid lineg the spin asymmetry (34) as a function of
the energy sharing dE,,; between the two emitted electrons. The
zero point indicates the position of equal-energy sharing. Three sets

plitude g [Eq. (22)]. If g vanisheqdistinguishable electrons V. CONCLUSIONS
the spin asymmetry diminishes. Therefore it is of interest to
analyze A along the lineL, , as done in Fig. 4 for three In this work we presented a theoretical and experimental

different total energies of the electron pair for a fixed inci- analysis of the correlated electron-pair emission from mag-
dent energyE,=22.6 eV. When the two electrons escapenetic surfaces induced .by the impact of polgrlzed .electrons.
with equal energie&,=E, (the crossing point of the lines We emplloyed a tensorla! symmetry.analy5|s to dlsentangle
L, andL) the triplet scattering(S~1) vanishes, as explained geometrical fro_m dynam_lcal properties and_ to classify the
above. Therefore, fdE,=E, we obtainA®'=1. In this situ- spectra accordmg_to their symmetry properties. We also de-
ation (E,=E,), themagnitudeandsign of the asymmetry4 scribed a calculatlonall model for .the twq—pamcle ;pgctrum
are dictated merely bP,(e). SinceP,(e) may be positive and.performed numerical calculations using a rgahstlc _glec-
or negative,A may have a different sign depending B, tronic band structure of the sample. Under certain c.;on.dmons
(or on e=E—E,). In general, the shape of as depicted worked out in this study, the present two-particle coincidence

in Fig. 4 can be understood from the following argumentstecm'que allows for an insight into the spin-split electronic

emerging from the analysis of our theoretical results: For?and structure of the sample and is also suitable to investi-
E,=E,, the triplet cross section vanishes, and therefdf gate the electrons’ exchange scattering at surfaces.
reaches its highest valuenity). This structure is at a peak
(minimum) when P,>0 (P,<0). The decrease id for
E,>E, or E;<E, is due to a dominance of the direct- The technical assistance of H. Schwabe and A. Wiessner
scattering amplitudef| over the exchange amplitudg|, is gratefully acknowledged.
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Emission of correlated electron pairs following single-photon absorption by solids and surfaces
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The simultaneous emission of two electrons from condensed matter following the absorption of a linearly
polarized photon is studied in the first order-perturbation theory for the radiation field, and within the dipole
approximation. The double emission from localized and delocalized electronic states is considered. It is shown
that spectra of the emitted pairs obey propensity rules expressed by the scalar product of the center-of-mass
vector momentum of the pair and the photon’s polarization vector. Furthermore, it is shown that diffraction of
the pair from the lattice occurs when the pair's center-of-mass wave vector changes by a lattice reciprocal
vector during the photoemission. For semi-infinite solids with delocalized valence electrons, an initial state is
constructed from single-particle orbitals. Following the absorption of the photon the valence-band electron pair
propagates into the vacuum within the screened electron-electron Coulomb potential. Numerical results for a
clean Cu crystal are analyzed for photon polarization parallel and perpendicular to the surface.
[S0163-182698)09439-9

[. INTRODUCTION formed by the electron pair. In addition to the known fea-
tures of ARUPS, the spectra of this photoemitted “quasipar-
Over the last few decades angular- and spin-resolved ulicle” reveal a dependence on the pair's internal degree of
traviolet single-photoemission spectroscopyARUPS  freedom that characterizes the mutual interaction of the two
emerged as a powerful and widely used method to investiemitted electrons. Therefore, DPE experiments are expected
gate the electronic structure of crystalline matertflhis  to provide a direct insight into the influence of electronic
development has been driven by the growing demand for aorrelation on initial and final many-body states.
detailed knowledge of technologically relevant physical In atomic and molecular physics, the explicit dependence
properties of solids and their surfaces, e.g., catalytic reacef DPE on the interelectronic correlation is well established.
tions are mainly controlled by the electronic and geometricThe first experiment of this kind on a H&F) target was
structure of surfaces. performed in 1993 followed by a series of experiments on
Theoretical treatments of ARUPS are of special impor-gifferent targets at a variety of scattering geomet#i¢&The
tance as they provide the linkage between the photocurreRfeoretical treatments stimulated by these experiments re-

measurements and the corresponding band Sttt yeajed the strong dependence of this reaction on the detail of
standard successful scheme for band-structure calculatlor;lﬁutum electronic couplin@“*lf"“*laas well as on properties

relies on density-functional theofpFT),” in which the elec- of the radiation field” 18 Very recently DPE from HEE®)

tronic many-body problem is solved in a one-electron pic- ., circularly polarized photons has been obsertd.
ture. Spatially uncoupledsingle-particlestates are then de-

termined self-consistently using an approximate expressiOIilhDPI.E f_rom N(OOD and CuiOO]_) has just been re_porté&i.
for the exchange and correlation tePriviany aspects of the us It Is appropriate to_ consider DP.E theoretically fro_m
emission process are described within this single-particléonds and surfac_es. Starting f_rom_the first-order pertu_rbatlon
picture, as a transition from an occupied one-electron orbitai€0ry and the dipole approximation for the photon field, a
to a state describing the propagation of the photoelectroformal expression for the cross section of DPE is derived
The complicated many-body nature of the solid is then CO|_(t_ranS|t|on rate normalized to the incoming photon-fqu den-
lectively subsumed in the screening and decay of the photdsity). Subsequently, DPE from localized bulk states is stud-
electron, and the hole left behind. These screened, decayin@d and propensity rules are inferred. DPE from delocalized
quasiparticles can still be described by a single-particle wav&alence electrons is then investigated, and the selection rules
equation. Experimental evidence for many-body effectdn this case are discussed. Numerical examples for DPE from
shows up as subsidiary features in the photoelectron spectra.clean Cu crystal are presented foand s polarizations.

In contrast, and as explicitly shown in the present work, aAtomic units(a.u) are used throughout.
simultaneous two-orbital excitation by one photon is prohib-
ited if spatial coupling between these orbitals is absent.
Therefore, dealing with this process, the description of the Il. THEORETICAL FRAMEWORK
electron-electron interaction must go beyond regarding it as
a collective, spatially independent perturbation of the single- For the derivation of the transition amplitude for simulta-
particle orbitals. Thus it seems worthwhile to employ doubleneous electron ejection, it is instructive to specify the prop-
photoemission(DPE) as an investigative tool for strongly erties of the radiation field. In what follows we assume a
correlated systems, such as Mott insulators, ferromagnetiarge photon density, so that the electromagnetic field can be
materials withd andf levels, and high-temperature supercon-treated classicallyan upper limit for the photon density of
ductors. In fact, as shown in this paper, to some extent DPEoncern here is given belowWe operate in the Coulomb
can be regarded as single photoemission of a “quasiparticlegauge, i.e.V-A=0, so that, in vacuum, we can sét=0,
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2
o(Ef—EpdB.  (7)

where A and ® are the field vector and scalar potentials, By making use of the canonical commutation relations
respectively. It should be noted from the outset, however;—i[rj,H]=p;, and assuming that) and|f) are eigenfunc-
that near a surfac& may change rapidly which invalidates tions of thesameHamiltonianH, the velocity formEg. (5)
the assumptiorV-A=0 unless the dielectric constastis ~ can be converted into tHength form
unity 2223 To avoid this case the photon energies have to be N
well above the plasmon energi#sFor A we assume a 2 .
monochromatic, plane-wave solution with a wave vedtor do=4m a“’; 2 (Flrli)
which is related to the photon frequeney via k=cw, '
wherea is the fine-structure constant. The energy density In practice,|i) and|f) are derived using different approxi-
of the (classical radiation field averaged over the peridd mate procedures foH, and thus the velocity and length
=27lw is given by p=w?A?/(27). Thus the energy-flux forms yield, in general, different predictions. Conversely,
density, i.e., the intensity, is given byl =p/a. For a low-  equivalent cross sections, calculated within the length and
intensity field we can seA?~0 (for A~0.01 and a photon Velocity forms, mean merely that the same approximations
energy of 50 eV we arrive at a maximum intenslty5 have been made in the initial and final channel, but they say,
x 10 W/m?). We assume the unperturbed system to bdhowever nothing about the quality of these approximations.
described by the HamiltoniaH, and to be in the stationary Nevertheless, it is desirable to chodspand|f) as eigen-
state|i) with energye;, i.e., states of the samépproximate Hamiltonian to preclude
spurious transitions in the absence of the perturbafign
(H—¢)]i)=0. (1) Regardless of the form in which the dipole operator is
, ) ) presented, its mathematical structure is always a sum of
Under the time-dependent action of the photon field the Sysgjngie-particle operators. This has the following important
tem performs, W|th|n.a.t|me Igp, a transition into vacuum consequence: If we assurfi¢ and|f) to be written in terms
stateg f) which lay within the intervajg and+dg, where ot rthonormal single-particle orbital;(r;), in the simplest
B stands for collective quantum numbers that specify thgg5e a5
final channel.

In a time-dependent first-order perturbation treatment N
(only photoabsorption is considered hera transition prob- (ry---ryiy=11 &ii(ry),
ability dw;; can be derived® Thus we can define a transition i
rated P;; =dw;; / 7 that can be deduced to

N
|l _ (ry--ralfy=11 &1,i(ri), (8)
dPi=(2m)2 52 [(fIWoli)|28(Es—Ends, (2 :
W then the matrix elemer(®) is finite for single-orbital excita-

tion, only, e.g., single photoemission. In other words, DPE is
prohibited in a single-particle picture. This is readily con-
cluded in the simplest case of two orbital excitatiép, ¢, ,
which is the minimal requirement for DPE:

whereE; is the total energy in the final channel akg= o
+¢;. Equation(2) sums over the unresolved quantum num-

bers a; in the initial state. The perturbatioW, in Eq. (2)

amounts to
N M (i =( bt kbr.il€ DIl i cbi )+ b kbr. i € Pl bi kb )
Wo=AY, exdi(k-r))]e-p;, 3 -
0 121 xdi(k-1))Je-p, @ =( b1l bi ) Drile-pl i)
wherep; are the one-particle momentum operators aris +( el i) brle pil i i)
the polarization vector. B ~ -

As the differential cross sectiodo/dg8 we define the =0.1((Srule Pl b +{(brilepildi ), ©)
transition rate normalized to the incoming flux dendity, whered; ,#i, (¢r,b1) are the participating single par-
1.e., ticle orbitals in the initial(final) channel. From Eq(9) it

follows that DPE is a direct signature of coupling between
do=wdPi¢/l. (4) single-particle orbitals, at least those of the electrons simul-

In this work we consider moderate photon energies taneously detected in the fjna_l state, e, th? two photoelgc—
(<500 eV), and we can thus operate within the dipole alo_trons must be correlated in initial and/or final state. This
proximation. In this case Edd) reduces to conqluspn is also valld_for an antlsymm'etrlzed product of
spatially independent single-particle orbitals. It should be
o stressed that Eq9) and the single-particle nature of the
dg:4772_2 IMi|28(E;—E;)dg, (5) perturbation Eq. (3)] do not mean that the photon can only
@ a; be absorbed by one electron, and the other electron is emitted
by means of coupling or inelastic scattering with the former
one. To see this, let us assume the holes created by the pro-
N cess to be long lived on the scale of the characteristic inter-
MfiZE <f|é. pjli). 6) action timer and neg_lect any phonon excitation. In .this case
] a frozen-core approximation is appropriate. In addition, if the

where the dipole-matrix element is given by
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photoelectrons are represented by the correlated ifiitell) In Eqg. (13) |p,p’) denotes a complete set of plane waves,

statey;(ry,r) [+(r).r) ] we can always canonically trans- and ¢;(k, k) is the double Fourier transform of the initial

form to the coordinate system’ =(r|+r)/2, r”=r—r..  state. Note that Eq$12) and(13) do not factorize in single-

In this case the photoabsorption matrix elemi@ttakes on  particle contributions due to the correlated staigr,r’).

the (length form Mg =(y(r*,r7)|er*|gi(r*,r7))/2  From Egs(11)—(13), three important conclusions are drawn.

which means that the photon is absorbed by the center-of- (a) According to the von Laue-like conditions in Ed.1),

mass coordinate™ of the two-electron system. Th@mul-  diffraction of the pair occurs when the center-of-mass mo-

taneousphotoabsorption is fundamentally distinct from the mentum of the pair changes by a reciprocal bulk vector due

process of single photoemission accompanied by secondaty the emission process. Thiand the selection rules stated

vacuum-electron creation. below) is equivalent to assuming the pair as a quasiparticle
with momentumk,+ Kk, (the pair's center-of-mass momen-

Ill. DOUBLE PHOTOEMISSION FROM LOCALIZED tum) and performing single photoemission of this quasipar-

ELECTRONIC STATES ticle. _ atom o
(b) The selection rules foM{;°™ can be summarized in

In the rest of this work we assume a frozen-core approxiype equatione- (k,+k,) =0, i.e., double photoemission is

mation, i.e., only the degrees of freedom of the two emittedorhigden if the momentum of the two-electron center of
electrons are affected by the photoabsorption process. Tg

obtain an insight into the structure of the matrix element 1255 1S perpgndmular to the poINar|zat|on vecetgnr ',f Ka=

M, we consider first the DPE of localized electrons, e.g.,” Ko In addition the structure of;(ka,kp), which is very
core electronic states or valence-band electrons of insulator@Uch dependent on the symmetry of the investigated core
The initial state can then be described by a tight-bindind®€l: imposes additional restrictions on the DPE spectra.
two-electron wave function. whereas the vacuum motion ofl N€se conclusions remain valid if we allow for mutual repul-
the electrons is assumed to be free and characterized by tfion Of the outgoing electrons, but disregard the final-channel
momentak, andk,, as measured in a coincidence eXperi_couplln_g to the cores. This can be deduced in a similar man-
ment (uncorrelated final-state Bloch waves lead basically td'€" @S in Eq(22). In cases where the motion of the vacuum

the same conclusignEquation(6) can be written in the form glectrons is influenced by the core p_otentials_, atomic selec-
tion rules for the double photoionization appligs®1’

(c) If the magnetic sublevels of the two-electron orbitgl

Mfi(ka,kb)=C2 f f d3r,d%ry, are statistically populate@vhich is usually the cagethen
! |M¢;|?, and hence the cross section, shows in genecal-a
% K —iKe- i(k'+Kk)-R cular dichroismwith respect to inversion of the helicity of
X —Tka:ra~Tko-ro)extli(katky) R the incoming radiation. This is readily deduced from the
X[ (Pat+Pp)]bi(ra—R;,Ip—R)). (10) analysis performed in Refs. 17 and 18. Note that, in the

absence of a preferential orientation of the initial state and a
whereR, designates the core sites, apgd describes the lo- spin analysis of the photoelectrons, as assumed in this work,
calized two-electron initial state with Bloch wave vectafs the aforementioned dichroism vanishes identically for single
andk;,. The constanC derives from the normalization of photoemissiort?
the initial- and final-state wave functions. After some el-
ementary manipulation the magnitude Mf;(k, ,k;,) is re-

IV. DOUBLE PHOTOEMISSION OF DELOCALIZED
duced to

ELECTRONIC STATES

|Mfi|2:|C|25E?—qf oIMFoM2, (11 In this section we consider double photoemission from
' s-p bonded(simple metal surfaces like Na and Al. In this
whereq; =k, +k},,qr=k,+k, are the wave vectors of the case the cores scatter the conduction-band electrons only
pair's center of mass in the initial and final states, respecvveakly. The momentum distribution of the conduction-band

tively, andG is a bulk reciprocal-lattice vector. The atomic €lectrons can then, to a good approximation, be simulated by

matrix elementM3°™ is given by jellium states. In the jellium model th(.a. ionic cores are
smeared to a uniform constant positive “background
charge.” The electrons are bound to the metal half-space

M";‘i“’m(ka,kb):f fd3r d3r’exp(—iky-r—ikp-r’) (z<0) by the step-potential barriéf, (at z=0)

X[e (patPp)]i(r,r). (12)

In momentum-space representation

Vo=er+W, (14)

where e¢ is the Fermi energy anw/ is the work function.

M?i“’m(ka,kb)zj f d3p d3p’ (K, kp|€(Pat Pp)|p.p’) Within the metal volumeV the conduction-band electrons
are treated as free particles. The density of statess is
X(p,p’| &) given by that of the free-electron géapart from a factor 2

R _ due to electronic spin stateppos=V/(47°). As the bind-
=e- (kyt+kp) di(ky,Kkp). (13 ing potentialV, is steplike, the single-particle jellium wave
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function ¢Ej(kj,)’kj,(rj), with binding energye; (k/) and wave The final statef) is then obtained by the time-reversed evo-

vector ki, can be represented in terms of reflection ano]lJtlon (back to ﬂje time le abzzqrptu)nﬂemated by the
e - i Mdller operatorQQ™ =(1+G~ V), i.e,,
transmission coefficients:

1 o, fY=[1+G (H—K)]|ky,kp)=(1+G V)|kg.Kp),
¢fj(kj’>,kj’(ri):J_veXp('ki,ll'rj,H) | > [ ( )]| a b> ( )l a b>
" " whereG™ is the resolvantGreen operatgrof total Hamil-
e'iZi+Re .4 z<0, 15 tonianH which satisfies the Dyson equation
Te "4 z>0,

wherek| , andz; are, respectively, the componentskgf,r; G =Gy +Gy VG, (20)
with respect to the normal of the surfa@@ointing into the

vacuum, and kj,r; are the corresponding components anq G, is the Green operator of the noninteracting system
parallel to the surface. The reflection and transmission coef(With outgoing wave boundary conditionsContrasting the
ficientsRand T are given by state vecto(19) with that used in single photoemissibi,
can be said thdf) is the time-reversed low-energy electron-
diffraction (LEED) state of the coupled electron pAfr.

From Egs.(19) and (20), it is evident that, after absorp-
tion of the photon, the two electrons interact with all degrees
of freedom of the system, described lysuch as diffraction
from the lattice, elastic, and inelastic collisions and collec-
and y= \/2Vo—k’j2. tive excitation$ before emerging with the asymptotic mo-

As in the jellium model the electrons are considered to bementak, andk,. These interactions are basically contained
quasifree, for the two-electron initial stafie we employ a in the complex two-particle self-energy that appears in
(singled symmetrized direct product of two jellium single- Egs. (20) and (19).>?"?8 The non-Hermitian character af
particle states, i.e., accounts for damping processes of the photoelectron flux and

energetic shifts in the quasi-particle spectrum. Considering
the difficulties encountered in adequately estimating the

ki —i 2k/
_ J,,z .7, T= : J,.z (16)
kj,Z+|7 kJ,Z+Iy

1 singleparticle self energy,it is obvious that calculating the
|, ;k;,k()(ra:rb»“EH¢ea,k;(ra)>®|¢eb,ké(rb)> two-particle self-energy is a very delicate problem. Hence,
we replace it in the rest of this work by titeeal) potential. In
e, k(1)@ e, r(ra))]. (17)  addition, as the electron-electron interactity is inevitable

for coherent DPE we regard this interaction as the *“strong”
potential with respect to the surface-photoelectron coupling,
The total binding energy ¢ of this state is i.e., we employ the approximatioi~V... ForV,, we as-
€= €a(ky) + ep(k() with parabolic dispersion for theingle  sume a screened Coulomb potential, with the screening con-
particle states. Statél7) is energetically favored with re- stant derived from the Thomas-Fermi moéeUnder these
spect to its antisymmetrigtriplet) counterpart. circumstances Eq19) reduces to
As the initial statg Eq. (17)] does not contain any inter-
electronic coupling, it is essential to incorporate the inter- _
electronic interaction in the final state. To this end we note [F)=(1+GeeVee) ka ko), (2D)
that the asymptotic two-electron vacuum stig, k), that  with G, being the propogator within the potentidle. With
is defined by the measured momeitaandk,, whereE; Egs. (21) and (17), we can now obtain an estimate of the
=E,+E, and E,=kZ/2, E,=kZ/2 are the electrons’ ener- transition probabilityMy;, given by Eq.(6). SinceV,, and
gies, is an eigenstate of the two-electron kinetic-energy opG.. are dependent on interelectronic degrees of freedom
eratorK, i.e., only, properties oM;; are most transparent in the represen-
tationr *®r~ that, as previously mentioned, can be canoni-
cally mapped ontor,®r, [rT=(r +r,)/2r =ra—rg].
Kl ko) = B2+ PDla k) = Erka k). (18 cquationayreads  * " L L e =l

Mﬁ<k:k+>=f fd3q*d3q+<k*,k*|<1+veeG;a<é-p+>|qiq*><qiq*|¢>

—ek*

PO+ [ g IVeBida e K| (22

wherek ™ = (k,—kp)/2, k" =k, +kp,, and|q~,q") is a complete set in the space reciprocat twr ~.
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According to Eq(22) the propensity rules-k* =0, as discussed in Sec. Ill, apply. As itis clear from the derivation of Eq.
(22) these rules do not depend on the structure of the initially bound |stat€They are rather an immediate consequence of
the approximation made to arrive at E§J1).

V. CALCULATION OF THE DIPOLE-MATRIX ELEMENT

In spite of the simple analytical structure of the wave functi@), the evaluation of the transition amplitud22) is
mathematically involved and, till now, only possible within the approxima@p~Gg , i.e., in LEED language, within the
kinematical approximatiof’ The derivation ofMy; is presented in the Appendix. The final result can be written as

Myi(Ka,Kp) :<ka akb|(1+veeGg)[é' (Pa+t pb)]| ‘pei>:Tspe+ poev (23
where
Tspe:<ka -kb|é' (Pat pb)| ‘ﬂei)
R “ 2
= — (&Kot k) 0D (kY — kg ) 62 (K~ kb,|>#[Lk;<ka>Lk,;<kb> FLig (ka)L (kp)] (24)
and

Tape=(Ka Ko VeeGg [€ (Pat Po)] e,

- 1
=e- (Katkp) 6P (kg + ké,\\)—(ka,\\+kb,\|)]—8 V[l (€a,Ki . €n.KpiKa k) +1(en Ky, €a,K: Ka k). (25
T

%

The functionsl (e, ,k; , €y, K, 1 Ka,Kp) andejr(k,-), j=a,b,

are given by Eqgs(A9) and (A4), respectively. Equations
(24) and(25) reflect the basic difference between single and , , , )
simultaneous double photoemission: Tef24) contains no XF (kg T)p(Kp)F(kp, T)[Myi|“6(Ei — Ef)
final-state correlation of the pairs. The DPE is then regarded X d%k 03K ,0%K e (26)
as two independent single photoemission processes. Conse-

quently, the surface components of the wave vectors of th%herek is related to the recoil momentum of the crystal
individual electrons is conserved during the ejection, and for rec Y
free electrons cannot absorb the phgtofhe one-particle

each ab_sor_ptlon process the selection rules for Fhe 5'09' ensity of states at the temperatufeis referred to as
photoemission apply. In contrast, as a result of including

lectroni lation in E425) onlv th ; ; p(k';),j=a,b, andF(k’;,T) is the Fermi distribution. The
electronic correlation in Eq25) only the surface componen initial total energyE; can be estimated assuming the conduc-

of the pair's center-of-mass wave vector is invariant duringtion band of the pair as being formed of independent bands
the reaction. Under this constraint the surface components Q;f the single electrons, i.eE;=w—2W— e, (kL) — en(kL)
LA ] a .

the wave vectors of the individual electrons may well not be(ln contrast to atomic system

conserveddue to momentum exchangeAs mentioned in - g5p1e due to the collective screening of the electron-electron
the preceding sections, the amplit&®. (24)] must vanish,  inieraction. In Eq. (26) the dependence af on k.. is fixed

for initial- and final-state electronic correlation are disre-py the conservation of linear momentum.

garded. In fact extensive numerical calculations have shown' For the approximate initial staf&q. (17)] which leads to
that | Tg,d is negligible with respect t¢Tqpd (typically six  the matrix element23) and atT=0, Eq.(26) simplifies to
order of magnitudes smaller

d0'=4772%J fd3k;d3kgp(k;)

s, this approximation is reason-

V2
do=
47w

d3k.d3k{|Myi|?
fkésk;:fkésk,: S

In a recent double photoemission experimi&nbn X 5(Ei_Ef)}d3kbd3kar (27)
Cu(001) and Ni001), the coincidence rate has been mea-

sured as function df,, k,, andw. The Bloch wave vectors

of the initially bound electronic states were not specifiedwhere kg is the Fermi momentum for the single-particle
[actually a Bloch wave vector of the electron pair is a moreband. The six-dimensional integral in EQ7) can be ana-
appropriate designation of these statels Eq. (25)]. Thus, Iytically reduced to three-dimensional ones that have been
Eq. (5) yields performed numerically.

Double emission probabilities
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w=45eV,E_=34eV w=45eV,E_=24¢eV
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FIG. 1. The double-photoemission cross secfiin. (27)] as FIG. 3. Same geometry as in Fig. 1, with the same incident
function of the energy sharing of two electrons emitted from a clearphoton energy; however, the total excess energy of the pair is low-
Cu monocrystal upon the absorption of a linearly polarized photonered toE,,;=24 eV.
The photon’s wave vectdr is normal to the surface, whereas the
electron detectors are fixed at 40° to the left and righit ¢fee the . .
insed. The photon incident energy is=45 eV, and the total ex- momentum of the pak, +k;, is perpendicular to the surface,
cess energy of the pair is chosenEs=E,+ E,=34 eV. and hence to the polarization vector, for equal-energy elec-

trons. Consequently, double photoemission is forbidden for

Employing Eq.(27), we consider the energy sharing of kazkt_,, as is obvious fr_om Eq(25). The correspondlng'
the two-photoelectron pair emitted from ©01) for s experimert' shows an evident decrease of ';he cross section
photon polarizatior(see the inset in Fig.)1As the electron atka=k,. However, these data cannot be directly compared
detectors have the same relative angles with respect to ti¥th the predictions of Fig. 1, since another competing chan-
wave vector of the photonghe inset in Fig. 1, the vector neél for the double emission is not considered here, namely,

that of single photoelectron emission followed by electron-

T T T electron inelastic collision. In contrast to gaseous targets,
like in atomic physics, this channel is expected to be quite
strong for metallic samples due to the much higher density of
20.0 4 the active electrons.

In the second example we consider the case of Fig. 1 for
grazing photon incidence, i.e., for neagyolarization. As is

evident from Eq(25), the factore- (kat+Kkp) implies a maxi-
mum intensity when the center-of-mass momentum is paral-
lel to the polarization vector, which is clearly confirmed by
Fig. 2.

For the two-electron band, we define a Fermi endegy
=2eg. In Fig. 1, the double emission occurred from states
just belowEg . For double emission from the bottom of the
two-electron band, we observe a squeezing of the distribu-
tion toward equal energy sharing, as seen in Fig. 3. This
effect has also been experimentally observed. Till now | have
0.0_5 - - == - - no profound explanation for this trend that also showed up in

(E,~E,)/E_, equivalent calculations for Al and Ni targets.

100

Cross Section [10_8 a.u.]

FIG. 2. Same energies as Fig. 1; however, as demonstrated by
the inset, the photon beam is now in grazing incidence (10° with VI. CONCLUSION
respect to the surfageOne of the electron detectofsay detector
a) is fixed right to the surface normal at an angle of 50°, whereas N this work a theory has been presented for the treatment
the other detector is positioned left the surface normal at an angle ¢¥f one-photon—two-electron excitation from solids and sur-
30°. The coordinate system and the geometry are sketched in tfaces. It has been argued that this process is a footprint of
inset. electron-electron coupling in the final and/or initial state.
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From the mathematical analysis, it has been inferred that the s .3 N
pairs’ spectra are subject to certain selection rules that lead to Mfi(kaakb):J J d°0;0%d2(Ka K| (1+ VeGee)
vanishing emission intensity when the vector momentum of

the pair is perpendicular to the polarization vector. In addi- X[é'(pa+ Po)1101,92)(01, 02| e )

tion, it has been shown that the excited pair undergoes a '
diffraction from the lattice when their center-of-mass vector =e- (ka+kp)P(ky,kp)+ M?ib+ M[f)ia7
momentum changes by multiples of a reciprocal vector.

Starting from single-particle jellium states for the delocalized (A2)

conduction electrons, the optical transition amplitude ha%/vhere the double Fourier transfor(k, ky) is easily con-
been derived analytically. Numerical examples for clean Cu . arnb/ y con-

structed from the Fourier transform of the single-particle jel-
crystal have been presented.

lium wave functionsé(k;),j=a,b,
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APPENDIX: ANALYTICAL EVALUATION Ler(ki)= + R]- T]-
OF DIPOLE-TRANSITION AMPLITUDE kAR kj,z_ kj’,z+i5 kj A+ kj, +is kj,z—i)’j
In this appendix | derive an expression for the transition (A4)

?m‘?”tUder‘. [Eqb(6|)5] using tgezfpproxima}telini't:ial ahnd The infinitesimal real variablé>0 has been introduced to
Inal states, given by q(;1_7) and(21), respectively. For the account for the finite extension of the surface in the direction
electron-electron interactiol,. | assume a screened Cou- 7<0, and can be set to zefofinite extensiopin the final

lomb potential with a screening constanti.e., result. Formally, the first term in expressidA2) should

exp(—\|ra—ry)) vanish, since initial and final states are combinations of in-
o= a_ b (Al)  dependent single-particle states. In fact, numerical investiga-
[Fa=Tol tions have shown that magnitude of this term is negligibly
Upon inserting a complete set of plane waygs,q,), M;;  small with respect to the term{"|; m,n=a,b.
can be written in the form The termgM{]"; m#ne{a,b} are defined as
|
1 - ~ ~
M?imzﬁf f d%q10°0a(Ka Kol VeGed € (Pa+ Pp)1101,02) b, k! (G1) b, k/(A2);m#ne{a,b}. (A5)

The two-body Green operat@®_, satisfies an interative integral equation similar to Exf)) with V being replaced by/.

That is, in a perturbative sense, the interelectronic interaction is taken into account to infinite order. Unfortunately, it has not
yet been possible to evaluate BAS5) with the full GJ,. Thus we replac&, by the free Green operat@, , andV,, is

treated to first ordefthis approximation is less severe than in atomic and molecular reactions since the péfehties
screenefl The expressionéA5) are obtained from the integral

J= f f d®0;0%dz(Ka Kol VedGo (€ Pa)|t1,02) be, k/(01) be, i/ (G)

be, K. 1) e, K (d2)

ki+ki—ai—a3—in

=i [ [ 0u0auE aik kol Veda a2

n—0"

lim 0+ ~ _ . _
T | [ adPan@ antia—kn 121 0 - ad-z-im)

X be, k2 (01) Dey k! (A2) 0¥ (A1 + 07— ka—ky). (A6)
Writing e-q;= —i IimB_,O&Bexp@,Béql), and using thes function to perform one of the integration, E@\6) reduces to
_limy g0+ 3 N2y 271 _on2_ o117 ~ -
J= o2 dp | d°AL(A2—kp) "+ A1 [ =207 2Ka- Ky +2q- (Kat kp) =i 7] " e, k/(A) by i (A)EXRI BE-Qy),
(A7)

whereA :=k,+k,—g. Making use of Eq(A3), and upon some elementary algebraic manipulation(£f). is transformed to
the one-dimensional integral on the real axis:
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(A8)

The integrall can be written as the sum of nine one-dimensional integrals

9

|(ea,k;,eb,kg;ka,kb)==2}1 ~da,l1j(d,,€a Ky €n . Kp iKa k),

where

111 =exp(i Bed,) A~ (d,)B™H(d,) (d,— Kk,
1= Rpexpli Be4,) A~ (d,)B () (A~ k
I13=—Tpexp(i Be,d,)A~1(0,)B™ () (A~ Ky, +18) (A~ Ka 2= Ko Hivp)

11 4= Raexpli B&,0,) A~ 1(0,) B 1(0,) (0, + kg, +i18) (0~ ko ,—Kp ki ,—18) 7%,
Il'5=RRyexpli Be,0)A~1(0,)B (0 (dz+ Ky ,+18) (A~ Ka 2~ Ko~ K ,—16) 1,
1 6= — Ry TpeXpli B&,0,) A~ 1(0,) B~ H(0,) (A, K ,+18) (0= Ka ;= Koy Tive) %,
7= —T.expi Be,a,) A~ H(A)B (0. (G —17a) (0~ Kaz—Kp o+ kp,—18) 7%,
1=~ TaRyexpi Be,q,)A"(d,)B(q,)(q

1 o=TaTpexp(i B6,0,)A 2(0,)B 1) (A, i 7a)  2(d—Kaz— Ko +ivp) L

The functionsA(qg,) andB(q,) possess the forms

A(qz):(ka,z_qz)2+(ka,H_ké\,||)2+)\21 (AL19)

B(d,) = qg_ a( ka,z+ kb,z) +Ka Kyt krﬁ\ - k;,“ . (ka,H + kb,||)
+inl2. (A20)

To evaluate the integrald;,j=1,...,9 weconvertg, to a

complex variable, and consider the improper contour inte-

grals

9
= lim 3@ da,l1(qy,). (A21)
1=1 p J 3G,

The compact domai® is chosen as the upper half of the
complex plane, i.e.G={q,|.7(q,)>0,q,/<p}. From the
preceding analytical expressions|éf it is readily deduced

z;,z+ [ 5)_1(QZ_ ka,z_ I(b,z_ kt’),z_ [ 5)_1,

(A9)

+H18) M~ Kaz—Kp Kb ,—16) 77, (A10)
(A11)
(A12)
(A13)
(A14)
(A15)
(A16)
2= 172) (0 Ka = Kp .~k ,—16) 7Y,

(A17)

(A18)

that only isolated singularities of; occur inG, i.e.,11;(q,)
are meromorphic irG. Integral (A9) can thus be evaluated
via calculus of residues.

The poles ofll 1(q,) are deduced to

Z51=Ka 1\ (ka — ki) +A2, (A22)
5= —bl2+ \Jp,(cose/2+i sine/2), (A23)
Zy1=Ka Ky, —Kp ,+16, (A24)

where b=k, ,+Kp 2,02 =V b?—4d)%+ 5?/4,d:=k -k,
+Kij—Ka - (Kay+Kp,), and sinp=—7/(2p,)<0. In G the
functionll; possesses the pole§, ,z,,, andz,,. The poles
of I, in G are z;,=2y;, Z,,=2,,, and z,, Where z,,
=Ky, kp ot kp ,+18. The singularities ofl 3 in G arezj,
=z,; and z,;=7,,. The poles ofll, in G are deduced to
Z,=21,, /=25, andz,=2,,. |l 5 possesses G poles
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Z,:=271,, Zy5=25, andz4s=24,. llg, in G, has the poles 9

z/s=17;,, and z,z=2,,. The singularities ofil; in G are |=27Ti2_: > Res,lli(ay). (A25)

2=211, 2,772, Z37=1Ya, and z,;, where z,;=24;. =t

The singularities ofl 14 that occurr inG are zj;=71;, Z3  Upon substitution of Eq(A25) into Eq. (A8), and perform-

=27,1, Z3g=1Za7, andz,g=2z,4,. Finally, the poles oflgin G  ing the derivatives and the limits, an analytical, however

arez|y=2,,, Zy=25;, andzsg=2s. complicated, expression for the dipole-transition amplitude
The integrall can then be written in closed form (A5) is obtained(within the approximatiorG ,~Gg).
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Abstract

A general theoretical approach to double photoemission from solid surfaces is formulated in terms of two-electron Green
functions and two-electron states. By incorporating the screened Coulomb interaction between the two outgoing electrons in a
dynamically screened effective one-electron potential, approximate expressions for the two-photoelectron current are derived,
which essentially consist of elements well-known from one-electron photoemission tled®@0 Elsevier Science Ltd. All
rights reserved.

Keywords:A. Surfaces and interfaces; C. Surface electron diffraction (LEED, RHEED); D. Electron—electron interactions; D. Electronic band
structure; E. Photoelectron spectroscopies

1. Introduction wave functions are taken as products of orthogonal one-
electron wave functions, the transition-matrix element for
Traditionally, the basic conceptual framework for dealing double photoionization vanishes [5]. Thus, the inter-electro-
with many-electron systems is the independent electron nic correlation plays a major role in determining the char-
model. The electronic structure is described mostly by acteristics of doubly excited states. In other words,
means of a self-consistent field, based on the Hartree— quantities used for the theoretical formulation of the
Fock or the Kohn-Sham equations. Although the problem (wave functions, propagators, etc.) have to be of
effective-field approach has long served for the interpreta- at least two-particle nature. On the other hand, realizing that
tion of photoemission spectra [1,2], its central assumption of all features of scattering within a crystal intrinsically
a single-particle wave function is, in general, of limited complicate the problem, it would be essential to seek for
applicability, e.qg. it fails in narrow-band systems with strong an extension of the well-established one-step single-electron
correlation between valence electrons [3]. The basic quan- photoemission (SPE) framework [6—8] to the case of DPE.
tity relevant to the many-body effects is the correlation In the present Paper we follow both of these pathways.
energy which, within density functional theory, is thought In Section 2 we present a general formulation of the DPE
to reach its exact value at the exact ground-state density. in terms of two-particle states and Green functions. Section
However, the main question—to what extent the motion of 3 deals with schemes for calculating correlated two-particle
the electrons is interrelated—is to be addressed by means ofstates in a solid. In particular, the pair interaction is formu-
many-particle wave functions rather than by static proper- lated in terms of dynamical screening. This approximation is
ties such as the correlation energy. On the experimental side,used in Section 4 to derive expressions for the DPE photo:
double photoelectron emission (DPE) from solids and current, which are directly connected with established SPE
surfaces [4] is perfectly suited for the study of the correlated theory.
dynamics. Detecting simultaneously two electrons after the
absorption of one photon, this process is one of the few
known that in principle cannot be described within the 2 General expression for the two-electron photocurrent
single-particle picture. If the initial-state and the final-state
We consider a process in which an incident photon with
* Corresponding author. -
E-mail addressfom@mpi-halle.de (N. Fominykh). ! We use atomic unitsy = m=e= 1.

0038-1098/00/$ - see front matt€r 2000 Elsevier Science Ltd. All rights reserved.
PIl: S0038-1098(99)00568-2
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Fig. 1. Two-electron photoemission. (a) Sketch of the experimental
geometry. A photon with energy impinges onto the surface. Two
outgoing electrons with momentq andk, are detected in coin-
cidence. (b) Diagrammatic representation of the photocurrent
expression (Egs. (1) and (2)). Wavy lines represent the photon,
double straight lines with arrows correspond to retarded and
advanced two-electron Green functioBsand G at the final and
initial state energie& andE — . The double dashed line symbo-
lizes the emitted (and detected) electron pair.

energyw knocks two electrons out of a semi-infinite solid
with periodicity parallel to the surfaceThe subsequent
detection of both outgoing electrons in coincidence allows
the simultaneous determination of their kinetic enerdies
andE; as well as the surface-parallel wave-vector compo-
nentsk! andk! (cf. Fig. 1a). The plane waves at the detec-
tors are fully described by their momentuﬁq =12
since the normal componek}- is related toE; by k' =

V2E — (Kh2. Assuming the sudden approximation for the

N. Fominykh et al. / Solid State Communications 113 (2000) 665—669

two correlated electrons, e.g. it has the (experimentally set)
boundary conditions of plane waviks) and|k,) taken at the
detector positions and is propagated by the advanced Green
function G? from inside the solid towards the detectors,

W) = G¥kyko). @

The kinetic energy of the outgoing electron paiEis= E; +

E,. its surface-parallel momentukd' = k! + kl. In Eq. (1),

A is the two-particle dipole operator, i.e. the sum of two
single-particle dipole operators [5], arelm G'(E — w)/w

is the non-local density of two-particle states.

Eq. (1) can be represented by the diagram in Fig. 1b,
which is the two-particle analogue of the lowest order
diagram of the SPE theory. Interactions between the ‘active’
electron pair and the other electrons of the solid are thus
taken into account to the extent that they are incorporated in
the on-the-total-energy-shell Green functiGn

If the imaginary self-energy part is set to zero, e.g. assum-
ing an infinite two-particle life-time, GE) in Eq. (1) can be
written in terms of two-particle statéd,) with energiesE;
and further quantum numbers denoted by the compound
indexi,

1 r — . — E .
——ImG'(E) = D |DHSE — EXD;

; 3

where the summation ovéiis understood as integration in
the case of continuous quantum numbers. Inserting Eq. (3)
into the DPE expression (1) simplifies this to Fermi's
‘golden rule’,

Ikika) = > (WA B *S(E — 0 — E).

4

The summation over unresolved quantum numbers
contained ini accounts for all initial two-particle states
that are compatible with energy conservation and symmetry
requirements imposed by the dipole transition to the parti-
cular final state. As was shown in Ref. [5], conservation of
the surface-parallel component of the momentum in the SPE
translates in DPE into the same but for the two-particle

DPE process, the photon field affects only those degrees of nomentumK!. This means that the two-particle momenta

freedom of the two electrons, which can be distinguished by

are conserved modulo reciprocal surface-lattice vectors. In

the detection process. We restrict ourselves to the pair inter- Eq. (1),G' can be restricted to these valuesdf Note that

action between these two ‘active’ electrons, thus neglecting
three-body and higher order terms as well as explicit many-
body effects with or between the ‘passive’ (ground state)
electrons.

In analogy to the well-known Green-function formulation
of SPE by Caroli et al. [9], we express the DPE currentin the
dipole approximation in terms of the two-particle Green
function G,

Ik = =~ (VA G' € - @A), &

where|¥) can be viewed as a time-reversed LEED state for

due to the Coulomb interaction, single-particle momenta are
in general not ‘good quantum numbers’ in the DPE process.

In order to evaluate the above DPE current formulae,
ways have to be found to actually calculate the two-particle
Green function or the two-particle states involved. We
address this problem in Section 3.

3. Two-electron states

The HamiltonianH for two electrons inside the semi-
infinite solid consists of the kinetic enerdy, the elec-
tron—electron interaction, and the crystal potential
W,H =K + U + W. Due to the simultaneous occurrence
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of two difficulties—the many-body and the scattering
problem—we have to decide about the sequence of treating
U andW. Paying tribute to the fact that DPE is due to the
electron—electron interactiod, we assign the latter to the
reference Hamiltoniahl;; = K + U. In this way the crystal
potential is kept as a perturbation. In the absencé/athe
operatorG;,;U promotes the uncorrelated two-particle state
|<15°), which is an eigenfunction df, to the correlated one

|®Y) = (1 + G U)| 9, (5)

the latter being an eigenfunction ;.. G, the resolvent of
Hin, is the propagator of the internal motion of the electron
pair. The reference staﬂ@l) is perturbed by the crystal
potential W and evolves into the state

|®) = (1 + G T)|DY). (6)

The transition operator describes the dynamic response of
the system upon the action W and obeys the Lippmann—
Schwinger equatiom =W + WG, T.

Despite the fact tha@l) in Eq. (5) is a quasi-single-
particle subject to the scattering in the crystal, the internal
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respectively, our approximation takes the operator form
1+ GU)A + gw)d + gow) = (1 + G W)(1 + GoWs). (8)

The time-reversed LEED statéf;) can then be written as

;) = (1 + g™wpgllk) = g7k, 9)

in analogy to Eq. (2). They can readily be calculated by
employing W, in standard multiple-scattering computer
codes. The two-particle final state is then simply an anti-
symmetrized product of these single-particle states,

|V) = A1) ® [i2)),

where operatoA is antisymmetrizator.

(10

4. Double photoemission from wide valence bands

In contrast to narrow-band systems, the ground state of
metals with sp-valence bands consists in good approxima-

and external motions are not separable due to the presenceOn Of independent quasi-electrons moving in an effective

of Gix in Eq. (6). IfU is negligible, the problem reduces to
scattering of independent particles. If this is not the case, use
of Eqg. (6) in order to evaluate physically relevant quantities
requires further approximations, e.g. application of the
perturbation expansion o6;; with respect toU. This
would allow for a systematic treatment of correlation
effects. In the above formulation, our scheme is general
and applicable for both initial and final two-particle states
of the DPE process.

As an alternative to the above, we consider an approach
for the calculation of the final two-particle stdt&), which
uses single-particle scattering states of the semi-infinite

external potential. Hence, pair correlation can be neglected
in our initial two-particle state. Since the screening of single
electrons by the ground state electrons decreases with
increasing energy, one can expect non-negligible pair corre-
lation in the final state, which we approximate as described
above.

In order to evaluate the general photocurrent expression
Eqg. (1) we first express the two-particle spectral density
—Im G'/#r in terms of retarded single-particle Green func-
tionsg'. Straightforward calculation yields

ImG'(1212E) = -1 Jd E'(Im ¢'(11;E)

system as reference states for the electron—electron interac-

tion. These states are well-known from LEED and SPE
theories and can be calculated by multiple-scattering meth-
ods (cf. e.g. Ref. [6]). Taking the Coulomb interactidmas a
perturbation]¥) then assumes the form

|¥) = (1 + GU)|11p2). @

|y,) and|ys,) are single-particle time-reversed LEED states
which are plane Wave&l) and |R2>, respectively, at the
detectors.

A rigorous evaluation of Eq. (7) is however complicated.
A computationally viable approximation has recently been
proposed in the context of pair emission by electron impact,
(e,2e) [10,11]. Takind) as a Thomas—Fermi-like screened
Coulomb interaction, this two-particle potential was
approximated by a sum of two single-particle potentials.
This amounts to a dynamical screening. Each electron
moves in an effective single-particle potentigl j = 1,2,
which is the usual quasi-particle potentiabf LEED theory
augmented by a dynamical screening term depending on the
other electron. Denoting bg; and g; the single-particle
Green functions for electrojpin the potentialsv and w;,,

xImdg@22;E—E)—Imdg12;E)Imd@21;E - E)).
(11

We thus have a convolution involving a direct product plus
an exchange product, in which the co-ordinatearid 2 are
interchanged. Note that by taking the trace of Eq. (1) the
density of two-particle states N is obtained as a convolution
of single-particle densities,
N(E) = Jd E'n(E"nE — E). (12

We now substitute Eq. (11) and the final two-particle
state, Eq. (10), into Eq. (1). Using the decomposition of
the two-particle dipole operator into two single-particle
operators, we eventually obtain the DPE current as

.. 1 (Fr
Ikor— jE dE(I4E) — 14E) (13

where E,;, = E — o — E¢ is the lowest occupied single-
particle level allowed by energy conservatidgE) is the
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Fig. 2. Diagrammatic representation of the approximate two-elec-
tron photocurrent in terms of one-electron Green functgpasdg.

The upper (lower) two diagrams correspond to the first two direct
(exchange) terms given in Eq. (14) (its analogue Wjth) and|J ,)
interchanged). The symbols are as in Fig. 1b except that single
straight lines with arrows represent one-electron Green functions.

E

E,

¢ E,
EVaC
Er

ofk

of1

Emin

Fig. 3. Energy diagram of the approximate DPE process as depicted
in Fig. 2. Initial states with energies and ¢, are excited to time-
reversed LEED states with kinetic energigsandE, (relative to the
vacuum leveE,,J), respectively. The energy region available for the
initial states (grey area) is given by the Fermi enekgyand E;,

(see text).
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direct intensity term defined as

14(E") = (1] AIm g"(E A" 1) olIm g (E")|ir2)
+ (1| AIm g" D] 1) 2]im " (E") A" 2)
+(P1im g"(ENATI X ol AIm g (E")|2)

+ (@a|lm g"(EN|F )X o|AIm g (ENAT|F,) (14)

where E” = E — v — E'. The exchange contributior,
consists of four terms like those df but in each term
|/ 1) 2| is exchanged by o)1 4.

Expressing the single-particle final states in terms of
Green functions, cf. Eq. (9), the four individual parts|gf
and those of, can be represented by eight diagrams, four
typical ones of which are shown in Fig. 2. The exchange
terms in the lower row are seen to arise from the direct terms
in the upper row by ‘crossing’ the two Green functions
associated with the single-particle initial states.

In order to recover the ‘golden rule’ form of the DPE
current, we assume infinite life-time of the particles and
express the retarded Green functignsn terms of eigen-
states of the single-particle Hamiltonian,

[T= : |¢’k><¢’k|
EH=I
9'(E) = lim, ;

E' — € — |T) ’

In other words, the two-particle initial stateB; with
energiesk; are replaced by anti-symmetrized products of
single-particle stateg, and ¢, with energiese, + € = E;
cf. Eq. (11). Note that for a givelg the energies, ande are
not fixed but range fror&,, = E — Eg to the Fermi energy

Er. Eventually applying Dirac’s identity, we arrive at

15

occ
Ikikp) = > M + MP — M — MPPSE — o — & — &),
ki

(16)

where the matrix elementd;’ andM? are defined as

M = (1| Al 1l arn

MP = (2| Al g X 1] ).

The single-particle energy levels involved in Eq. (16) are
illustrated by Fig. 3, in which the grey region depicts the
initial state energy integration range contained inklaad|
summations.

Each matrix elemen is a product of a single-particle
transition-matrix element and an overlap integral between
‘the other’ single-particle initial and final states. These over-
lap integrals do not vanish in general because the effective
single-particle Hamiltonian is different for initial and final
states due to the electron—electron interaction. This allows
the following interpretation: when one electron absorbs the
photon, the effective potential changes such that the ‘shake-
up’ of the other one becomes possible. We further note that
in the present approximation the individual surface-parallel
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The spectrum of a photoexcited electron pair carries detailed information on the electron-electron
interaction in metals. This is deduced from the results of a theoretical model presented here for the
treatment of the double-photoelectron emission from surfaces. Main features in the two-particle spectra
are assigned to (a) the exchange-correlation interaction, (b) the electronic band structure, (c) the photo-
electron diffraction, and (d) the specific experimental setup. Comparison with experiments is made and
common features and differences to the atomic case are pointed out.
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In recent years, angular and spin-resolved ultraviolet
(UV) single-photoelectron spectroscopy [1] has witnessed
an impressive refinement in resolution, allowing for a yet
more detailed study of material properties. Currently this
technique is intensively applied to unravel features gov-
erned by many-body effects, such as superconductivity
[2,3], correlated excitations in low-dimensional systems
[4-6], and the influence of electronic correlation on the
spectrum [7,8]. Single-particle techniques have, however, a
principle limitation in exposing the details of electronic
correlation: An external perturbation introduced to probe
the sample may excite simultaneously many degrees of
freedom of the specimen; e.g., interacting electrons share
the energy of a UV photon and the compound as a whole is
then excited. Resolving the excited state of one of the
electrons, as in single-photoelectron emission (SPE),
yields integral information on the influence of the coupling
to the surrounding medium. Obviously, more details are
revealed on how and whether the particles are interacting if
the states of two photoexcited particles are measured. For
example, the double-photoelectron emission (DPE) is for-
bidden in the absence of correlation [9]; in case the DPE
reaction may take place, the measured two-particle spectra
provide direct insight into the energy and the angular
dependence of the pair-correlation functions (cf. below).

In atomic and molecular physics, this kind of correlation
spectroscopy has recently been realized and is currently
under intensive experimental and theoretical research (cf.
[10-12] for earlier references). While electronic correla-
tion has some striking manifestations in solids [13], it is
only recently that fully resolved DPE measurements from
surfaces have been conducted [14]. The main experimental
obstacle in this case are the low-counting coincidence rates
of two correlated electrons as compared to the large
amount of (background) uncorrelated secondary electrons.
With the development of a new generation of detectors
[15], it is, however, conceivable that the DPE technique for
solids will undergo major advances in the near future.

On the theoretical side, an adequate treatment of elec-
tronic correlation, in particular, of the interaction between
the photoexcited electron pair, is a prerequisite for the
description of DPE [9,16,17]. An important step in this
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direction is the recent development of a version of the
density-functional theory (DFT) that describes the ground
state in terms of correlated many-particle densities [18,19].
For the calculation of DPE spectra, one needs, however, in
addition to the correlated ground state, an expression for
the correlated two-particle state.

This Letter provides the first theory for DPE from solids
with a realistic ab initio calculation of the (single-particle)
electronic structure of the sample. Correlated two-particle
states are generated upon the coupling of two single-
particle states via a model potential of the screened
Coulomb type. The goals of this work are (i) the calcula-
tion of both SPE and DPE spectra within the same ap-
proach to contrast conclusively the information obtained
from both techniques and to assess the reliability of the
single-particle part of the DPE theory, (ii) the analysis of
how the electron-electron interaction manifests itself in the
DPE spectra, (iii) the study of the DPE surface sensitivity
(compared to SPE) and of the dependence of DPE on the
photoelectron energies and emission angles, (iv) the com-
parison of theory with available experiments, and (v) the
analysis of differences and similarities to DPE from single
atoms.

Theory.—Within the one-step model of SPE, the current
JW [20] of photoelectrons emitted with a surface-parallel
wave vector k| and an energy €, upon the absorption of a
UV photon with energy w, is given by

JW o —Im(W|Ag (e — w)AT[WD), (1)

The final state |¥'V) = g¢|k, €) is obtained by propagat-
ing (back) the detector state |k||, €) using the advanced
Green function g“. The photohole state is described by
the retarded Green function g”, and A is the dipole operator
of the incident radiation. In the one-step DPE process, one
photon ejects two electrons with wave vectors kyj and ky
and energies E;| and E, from the occupied states of a metal
surface. The double-photoelectron current J? can be ap-
proximated by [16]

Ex
J? o f (PO |AImg’" (e)Img’(E — w — €)AT|¥P)de,

Ernin
(2)
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where Ef is the Fermi energy, E = E; + E,, and E;, =
E — w — Er. The correlated two-particle final state
|W®) = Gk, Ey; kyy, E,) is obtained from the uncorre-
lated detector states |k, Eyskyy, Eo) = |kyy, Eq) ®
|kyy, E,) via the two-particle Green function G“. The oc-
cupied nonlocal density related to electron j is determined
by Img”(k;, €;), j = 1,2.

To elucidate the features of DPE as compared to SPE,
we employ a calculational scheme for the currents J!) and
J@ in which the single-particle states are evaluated simul-
taneously. The ground-state single-particle electronic
structure is obtained from an ab initio linear muffin-tin
orbital method based on the local density approximation of
DFT. For the photoemission calculations, we utilize the
layer Korringa-Kohn-Rostoker (LKKR) method [21].

The explicit incorporation of the mutual interaction U
between the two excited photoelectrons is indispensable
for an adequate description of DPE [9]. Here, this is
achieved as follows: For a nearly free electron metal, U
is screened with a screening length A dependent on the
density of states N(Eg) [A = 1/{/47N(ER); for Cu, A =
2.66 Bohr]. In the long-wavelength limit, U depends only
on the coordinate difference r; — r,, namely, U(r, r,) =
e=In=nl/Y) /|p — p,|. To determine the two-particle state
| W), we first employ the LKKR method and obtain the
single-particle states [¢;(k;)) = g'lk;. €,), j=1,2.
Using the procedure developed in [22], |¢(k,)) and
|44, (k,)) are then coupled to each other via U to determine
the state | ¥?)) [and subsequently the current J?, Eq. (2)].
In this way, single-particle and two-particle photocurrents
are calculated within the same scheme allowing a sensible
comparison. From the functional form of U, it is clear that
J@ depends not only on the energies and emission direc-
tions of the photoelectrons, as in the SPE case, but also on
the mutual angle between the photoelectrons: If the elec-
trons are close to each other, U provides a strong coupling,
whereas U (and, hence, the DPE signal [9]) is strongly
suppressed when the photoelectrons are separated at dis-
tances larger than A. This general statement is quantified
below by numerical results.

Reliability of the SPE part.—Figure 1(a) shows a meas-
ured angular distribution of the SPE intensity from
Cu(001) [23]. Our calculations for JO [Fig. 1(b)] agrees
with the experiments which indicates an adequate treat-
ment of the single-particle part of the problem.

Symmetry of the angular distribution.—The SPE angu-
lar distributions reflect the 4mm symmetry of the Cu(001)
surface [Figs. 1(a) and 1(b)]. In contrast, the presence of a
second photoelectron in DPE dictates a different symmetry
of the angular distribution. In Figs. 1(c) and 1(d), the DPE
current is depicted as a function of k|| of one electron,
while k| of the other electron is fixed. If this “fixed”
electron is detected in off-normal emission, the symmetry
isreduced [to m in Fig. 1(d)]. However, if the fixed electron
is detected with k) = 0, the distributions of DPE and SPE
show the same symmetry [4mm in Fig. 1(c)].
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FIG. 1 (color online). Angular distribution of photoemission
from the Fermi level of Cu(001). (a) Experimental single-photo-
electron emission (SPE) intensity vs surface-parallel wave vector
ky = (ky, k). The photon energy of the unpolarized light is
o = 21.2 eV. (b) Theoretical results corresponding to case (a)
with light incident normally to the surface. (c) and (d) Double-
photoemission (DPE) intensities for photoelectrons having equal
energies of 16 eVand w = 42.4 eV. One electron is detected at a
fixed direction marked by the white dot [at 0° (c) and 30° (d)
polar angle]. The DPE intensity is then scanned as a function of
k) of the other photoelectron.

Exchange-correlation hole—The most notable struc-
ture in the DPE angular distributions is the intensity mini-
mum centered at k|| of the fixed electron [Figs. 1(c) and
1(d)]. This “hole” is a direct manifestation of exchange
and correlation between the two photoelectrons. The for-
mer is accounted for by the antisymmetry of the two-
particle state, whereas the latter is mediated by the poten-
tial U. The high intensity surrounding the hole can be
explained by the competition of two factors: (i) the elec-
tron-electron repulsion and the exchange interaction pre-
vent the two electrons from escaping with comparable
wave vectors within a proximity determined by the screen-
ing length. Therefore, the extent of the hole is a qualitative
measure of the strength of the electron-electron interaction
[for specified (ky, E;; ko), E)]. (ii) If the two electrons are
well separated from each other, the electron-electron inter-
action U becomes negligible and the DPE signal dimin-
ishes, for the DPE process is forbidden in the absence of U
[9]. Combining these two effects, the distribution of the
intensity around the direction of the fixed electron becomes
comprehensible.

Both the shape and the extent of the correlation hole
depend on the photoelectron energies: At low energies, it is
large and dominates the distribution, whereas at higher
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ones, it is limited to a small region [cf. Figs. 1(d) and 2(d)].
This behavior can be understood from the properties of U
as reflected in the transition-matrix elements [Eq. (2)].

In those regions where the two electrons are far away
from each other (U is then weak), one observes a remote
reminiscence of the DPE spectra to the corresponding SPE
distributions; e.g., the influence of the single-electron dif-
fraction is observable, slightly distorted due to the presence
of the second (fixed) electron (Fig. 2).

Surface sensitivity.—Since two electrons have to escape
the surface, DPE is expected to be more surface sensitive
than SPE. In a crude model, the escape probability p for
a single electron decays exponentially with the distance
from the surface, p ~ exp(—z/€), where € is the escape
depth. The escape probability for two electrons is then
exp(—2z/¢€); i.e., the escape depth is effectively halved.
Hence, in SPE theory one has to sum up contributions from
deep layers (typically from the first 15 surface layers) to
obtain J, as is evident from Figs. 2(a) and 2(c). In DPE,
both the shape and the magnitude of the photocurrent are
determined by including contributions from the first two to
four surface layers [Figs. 2(b) and 2(d)].

Photoelectron diffraction.—DPE experiments from
crystal surfaces reported in Refs. [14] show pronounced
features in the distributions of the electron-pair total en-
ergy (E = E| + E,) between the two electrons [Fig. 3(a)].
To uncover the origin of structures occurring in the corre-
sponding theoretical spectra [Fig. 3(b)], it is constructive to
contrast with the results of the present theory for the double
photoionization of the ground state [He(' $¢)] of the helium
atom [Fig. 3(c)]. For the ‘‘single-site”” DPE from atomic
He, the cross section vanishes if k; + k, is perpendicular to

SPE
1.5 L 4
0.0 x
0.5 1 .

—-1.04
3 ) &

45 -1.0-0.5 0.0 05 1.0 1.5

kg lau]

FIG. 2 (color online). Surface sensitivity of SPE [(a) and (c)]
and DPE [(b) and (d)] from Cu(001). The setups are chosen as in
Figs. 1(b) and 1(d), respectively, but the photoelectron energies
are increased to 36 eV. The photon energy is 41 eV for SPE and
82 eV for DPE. In (a) and (b) [(c) and (d)] the contributions to
the photocurrent from the two (five) outermost surface layers are
depicted.
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the polarization vector of the incoming photon [12], which
occurs in Fig. 3(c) at E; = E,. This propensity rule holds
for solids, too, but in the absence of photoelectron diffrac-
tion [9]. Indeed, we argue here that the photoelectron
diffraction is the reason for the finite photocurrent J@ at
E, = E, found for Ni(001) in Figs. 3(a) and 3(b): For a
periodic surface, the electronic states are eigenstates of the
lattice translations; i.e., they can be expanded into plane
waves. Hence, the effect of the lattice can be investigated
by varying the number n of plane waves included in the
expansion of the photoelectron states. The inset of Fig. 3(b)
shows the DPE current for E; = E, and 6, = 6, vs n.
Indeed, J® decreases rapidly with decreasing n and
saturates at about n = 20. This behavior corroborates
both the propensity rule and the explanation of the finite
DPE photocurrent at E; = E,.

Experiment E.+E =34 aV] =43 eV .-:-é (dH
m=435 eV © . B=40+157 | 10 {]'. k2 8,8 ko o
— . 8 T + [Cu(111) Rt
£08—4 LN k, — L A
c | | ) ||
= . L . _
o : . - )
T —f vl b 1 e - 5 Experiments | B=4( 154
= H [ pﬂf’ \ 1 Theory (CU) | B=50° (&)
I ’ o 7 =
047 T (a)]
Theory (Ni} (b) 4 L i
';:' 2
L]
" | | |
',D 0 __heu'y'iC..] TET
= 2
[ L 1
5 L i
5]
2
_8 —t -
ol Fheony (Gu) 305 (o)
=
£ 4
©
@
¢
2
= L i L

L 1 " L
-1 05 0 05 1
(E, - EJIE, + E})

FIG. 3 (color online). (a) Experimental DPE intensity from
Ni(001) [14]. The wave vectors k; and k, of the emitted
electrons and the linear polarization vector of the light é are
coplanar (cf. inset). The total energy of the electron-pair is fixed
as E=E,+E,=34%*1¢eV with o =45 eV. The DPE cur-
rent is scanned as a function of the energy sharing (E; — E,)/E.
The electron detectors are fixed at symmetric positions (40°
polar angle) and have an angular resolution of =*15°.
(b) Theoretical results corresponding to case (a), with account
for the experimental angular resolution. Inset: DPE current J
(at E; = E;) vs number n of plane waves included in the
expansion of the photoelectron wave. (c) As in (b), but for a
single He atom in state ! S¢; w is adjusted to compensate for the
double ionization threshold of He. For the ground state the two-
electron wave function of Ref. [24] is employed. (d) As in (a),
but for Cu(111). (e)—(g) Theoretical results corresponding to (d)
but with varying escape angles 8; = 6 = 6, [0 = 50° (e), § =
40° (f), 6 = 30° ()]
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Density-of-states effect.—Assuming parabolic disper-
sion of the photoelectron states in the vacuum (which
means dE; = k;dk;; j=1,2), one obtains for the
fully resolved DPE current in spherical coordinates
JOO, @1, 11 0, ¢, Ey) = CIP(ky, kp),  where  C =
kik,, and ¢, as well as ¢, are azimuthal angles [9,12].
In the atomic case, the density of states (DOS) for one
photoelectron in the field of the residual ion behaves as
l/kj for k; — 0 (and k; > k;) [25]; i.e., for one electron
the DOS diverges at the ionization threshold. This DOS
effect combined with the kinematical factor C = k;k,
leads, in general, to a finite DPE current from atoms
when the energy of one of the electrons diminishes. In
contrast, for surfaces, the DOS is finite at the vacuum level
(k; ~ 0) and, hence, the DPE current [k k, J? (k, k)]
vanishes if E; or E, is very small. This profound difference
between atoms and solids is confirmed by our calculations:
In contrast to DPE from surfaces (Fig. 3), for He(!S¢) the
DPE current is finite for £; — 0 or E, — 0 [Fig. 3(¢)].

Band-structure effect.—In Fig. 3, both the photon en-
ergy o and the electron-pair energy E = E; + E, are
fixed. This specifies the initial binding energy of the elec-
tron pair as € = w — E. For atoms, € pins down the initial
state to a specific, discrete level. For surfaces, the elec-
tronic structure is dependent not only on the energy ¢;, but
also on the Bloch wave vectors ¢;. When varying (E; —
E,)/E (for fixed E, w, and hence fixed €), one scans
through different k; [Figs. 3(e)-3(g)]. Therefore, the rele-
vant g, and the associated electronic levels appear as sharp
peaks in J@ at certain (E, — E,)/E [16]. A similar effect
arises due to the energy integration in Eq. (2) which
involves several single-particle levels. In consequence,
the structure of the initial-state spectral density is reflected
as pronounced maxima and minima in the DPE spectra. In
contrast, the smooth spectral density of the jellium model
results in smooth DPE spectra [9].

Concerning the comparison with experiments, it should
be remarked that the shape of the DPE spectrum changes
substantially within the experimental angular resolution
[Figs. 3(e)-3(g)]. This is due to the fact that, with increas-
ing polar angles, the allowed range for the initial k; is
stretched and different initial states contribute to the photo-
current. For § — 0, the DPE current vanishes at E; = E,
due to the electron-electron repulsion, whereas for 6 —
7r/2, it decreases due to the weakening of the electron-
electron interaction [cf. also Figs. 1(c) and 1(d)].

In conclusion, we present pilot results to highlight the
general aspects and the power of DPE from surfaces as a
novel tool for electronic-correlation imaging.
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Abstract

We calculate the double photoemission spectra from the occupied surface state of Cu(111). We present and discuss
the regularities in the angular and energy distributions of the process. For the emission from the d-band of Cu(1 1 1), the
depth of generation of correlated photoelectron pairs is estimated. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Surface electronic phenomena (work function, surface potential, surface states, etc.); Photoelectron spectroscopy; Green’s

function methods; Many body and quasi-particle theories

1. Introduction

Surface states (SS) of metals are recognized as
an interesting candidate for the investigation of
electronic correlations. Considerable attention is
paid to the electron—electron interaction in the
occupied and unoccupied SS [1,2], where the scat-
tering happens between the SS electron and the
ground state electrons of the system. In the present
paper we discuss the application of the new type
of correlation-accented techniques: the double
photoemission (DPE). In this process the absorp-
tion of a single photon leads to the simultaneous
excitation and emission of two photoelectrons. The
distinct feature of DPE is that the spectra of the
photoelectron pairs are strongly dependent on
the interaction between these two excited particles
[4]. In fact, the DPE process is merely inhibited in
the independent-electron approximation.

* Corresponding author. Fax: +49-345-5511223.
E-mail address: fom@mpi-halle.de (N. Fominykh).

DPE has been recently investigated experimen-
tally [3]: photoelectrons were detected with energy
and momentum resolution, the simultaneity of
their creation was controlled by the time-of-flight
technique. In previous works [7,8] we investigated
the DPE from the conduction band of Cu and
showed, in particular, that the density of the initial
states has a profound influence in these kind of
experiments. In the present work we envisage the
application of the DPE technique for the investi-
gation of the occupied surface state of Cu(111).
Using the approximation for the two-particle
photocurrent [5,8] we calculate the two-photoelec-
tron emission spectra and compare them with the
results of a simple model. In addition, to reveal the
surface sensitivity of the DPE process, we calculate
the layer-dependent DPE patterns from the d-band
of the same face of copper in order to estimate the
depth of generation of the photoelectron pairs.

2. Approximations and numerical realization

In single photoemission the single-parti-
cle Green function (1GF) is needed for the

0039-6028/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.
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description of the ground and excited states of the
surface. The ground states are provided ade-
quately by the density functional theory within
the local-density approximation whereas the
treatment of excited states is a more involved task
[9]. In DPE the two-particle Green function
(2GF) [10] is required which is a much more
complicated object than its one-particle counter-
part. Our approach towards the derivation of a
correlated two-particle Green function that can be
implemented numerically can be summarized as
follows (for the details cf. [5-8]): To a zero order
approximation the 2GF is an antisymmetrized
product of two 1GF, each of them describes the
motion of the individual photoelectrons as mov-
ing independently in the crystal potential but
obeying the Pauli exclusion principle. In the lad-
der approximation one goes beyond this zero
order approximation by allowing the interaction
between the photoelectrons. In this study we as-
sume the coupling to be mediated by a Coulomb
screened potential with the screening length 7
being derived from a Thomas-Fermi type ap-
proach, i.e. it depends on the density of states at
the Fermi level [11]. Evaluating the terms in the
ladder approximation within a realistic model of
electronic band structure of the surface is difficult
numerically. Therefore we designed a method in
which the screened interaction potential is incor-
porated in an non-perturbative way into the 1GF
[5-8]). As a result, the 2GF becomes an anti-
symmetrized product of two ‘effective’ 1GFs.
Each of the 1GFs depends dynamically on the
properties of the two photoelectrons.

This procedure allows to express the two-
electron photocurrent through certain types of
single-particle matrix elements [5-8] that resemble
formally the ones encountered in single photo-
emission. Finally, we utilize the ab initio computer
code for electron spectroscopies [12] and extend it
to end up with the DPE mode.

3. Single-particle properties

In general, the Coulomb interaction is accom-
panied by the energy and momentum transfer

-9 -7 -5
energy (eV)

Fig. 1. Layer-resolved density of states (LDOS) of Cu(111) at
k! = 0. Dashed lines depict the integration range over the initial
states for the DPE calculations (see text), arrow marks the
position of the surface state.

within the photoelectron pair. Contrary to single
photoemission process, individual surface-parallel
momenta of the electrons k!yz are not conserved in
the DPE event. However, one of the consequences
of the approximations of our model is that the
final state surface-parallel momenta of emitted
electrons remain good quantum numbers. Namely,
only those initial states are participating in the
optical transition, which are characterized by the
same irreducible representation of the translation
group, as the asymptotic final states. In particular,
this means that kl-resolved density of states is a
meaningful quantity for the rough analysis of the
calculated DPE spectra.

So, first, we ensure that SS on Cu(111) is re-
produced correctly in our single-electron calcula-
tions. This is a Shockley-type state originating
from the sp-band of copper and situated at ~0.4
eV below the Fermi level [13]. Fig. 1 demonstrates
the calculated Bloch spectral functions for the
uppermost and few next layers of Cu(111), the SS
is marked by the arrow. It decays at a depth of
~3-4 monolayers. The dispersion of the SS (Fig.
2), to a good approximation, shows a quadratic
behaviour as a function of k.
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Fig. 2. Theoretical dispersion curve E(k!) for the surface state
of Cu(111).

4. DPE energy and angular spectra

Six independent variables (energies E,, E,, and
four angles of emission), characterizing asymptotic
two-electron final state, can be combined in dif-
ferent ways to visualize the DPE process. Two
particular situations will be considered here. At
given energy and (linear) polarization of the pho-
ton DPE probability will be given: (i) as a function
of the energy difference (E|, — E,) at fixed total
energy (E| + E,) and fixed angles (01, ¢,), (02, ¢,),
or (ii) as a function of (0,, ¢,) for fixed (0, ¢,) and
E\, E.

First mode is referred to as energy sharing dis-
tribution (ESD). It shows, how favourable for
photoemission is one or another partition of the
total energy between two electrons. Fig. 3 shows
the examples of the ESD’s from the Cu(111) SS
for the energies iw = 41 eV, E; + E; = 30 eV, and
light polarization in the plane of the surface along
y-axis. In this case the initial state energies £, EiM
are picked out of the narrow range of approxi-
mately 1 eV width around the location of the SS,
according to the energy conservation

E| +E,=E™ + EM 1 foo. (1)

T T
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DPE ESD [arb.u.]
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Fig. 3. (A)—~(C), left column: DPE ESD from the surface state
of Cu(111) for the energies 7w = 41 eV, E, + E; = 30 eV and
angles ¢, = ¢, =0, 0, = —0, = 30°, 40°, 50°, respectively; (a)—
(c), right column: corresponding convolution of the k!-depen-
dent densities of initial states of two electrons.

This energy range is boundaried by the Fermi
energy from above, and by E;, = E| + E; — Ep —
hw from below (shown by two dashed lines on
Fig. 1). The DPE cross section is then obtained by
the integration over this range. Directions of
emission are set by the angles ¢, = ¢, =0, 0, =
—0, = 30°, 40°, 50°. The final state energy sharing
is formed, particularly, as a result of momentum
transfer between electrons due to Coulomb
interaction. ESD also reflects single-electron char-
acteristics, namely, the momentum-resolved den-
sity of initial states. Finally, being the optically
excited flux, it reflects the features of the dipole
transition and contains a kinematical factor
K = \/E, - E,. The latter leads to the zero value of
the ESD at the edges, where E, or E, is equal to
zero. So, each point of the ESD is related to
certain E;, E,, corresponding k‘ll, k! and k/l-re-
solved densities of initial states, and factor K. We
compare our results with the auxiliary function
B(k!,k}) that simulate only the effect of the initial
state single-particle densities. It is defined as a
convolution of the corresponding k!-resolved
densities of initial states (let’s denote them
A(E™:K)), i = 1,2):
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Eg
:/ A(E;K)) - A(Ey + E> — E — Tio; L) dE.
E

(2)

For simplicity, A(E; k,”) are simulated by
Gaussians, whose position move towards lower
energies as a function of k!-‘ according to the dis-
persion curve, Fig. 2. Comparing the results, one
can conclude (within the approximations made
above), that the initial state densities shape the
general profile of the ESD, while the fine structure
should be attributed to another abovementioned
aspects. For example, the minimum in the middle
of ESDs, where the total energy is shared equally
between the electrons, is due to the fact that the
total asymptotic wave vector is then directed per-
pendicular to the vector of light polarization—in
this situation the propensity rule [4] applies, which
suppresses the dipole transition.

While ESDs are not straightforward in inter-
pretation, DPE angular distributions (ADs) have
more transparent appearance. Energies of emitted
electrons are fixed there, the direction of emission
of the first electron is fixed too. One should trace
the DPE current as a function of emission direc-
tion of the second electron in the upper hemi-
sphere above the surface. On the Fig. 4 we present
the SPE and DPE ADs in the form of stereo-
graphic projections, where the direction perpen-
dicular to the surface (z-axis) is a center of each
circle. The energies are i =45 eV, E; = E; =15
eV, light is polarized along the normal to the
surface. At these energies the range of integration
over the initial states includes the region of the d-
band, where the density of states is ~2.5 times
higher, than that of the SS (we do not illustrate
this detailedly, but only mention that the DPE
intensity from the SS is approximately factor 6
lower than that from the d-band). Black-to-white
scale shows the normalized intensity from zero to
one, respectively. Three pictures in the left column
correspond to SPE, in the right column—to DPE
ADs from 2, 3 and 10 monolayers of Cu(111). In
DPE ADs the first electron is emitted normally to
the surface plane. Two competiting features de-
termine the angular behaviour of the process: (i)

DPE
o\
Y €IV 1)

2 layers

3 layers o

10 layers

Fig. 4. Stereographically projected SPE and DPE angular
patterns from the d-band of Cu(l11). SPE (left column):
hw = 22.5 eV, Ey, = 15 eV; DPE (right column): o = 45 eV,
E; = E, =15 ¢V, the ‘fixed’ electron is emitted normally to the
surface, photon polarization vector along z-axis.

Coulomb repulsion prevents the closely lying emis-
sion directions of two electrons, (il) far-away
directions are ‘suppressed’ by the fact that the in-
teraction between electrons becomes small, and so
does the DPE probability, which relies entirely on
the strength of this interaction. So, in Fig. 4 one
can observe the dark spot around the direction of
emission of first electron, which is explained by the
Coulomb repulsion. Then comes the ‘ring’ of high
intensity, where actually the most of the DPE
photocurrent occurs. Towards the boundaries the
intensity falls down again. This general pattern is
mixed with the diffraction effects due to scattering
of the electrons from the lattice. In the given ge-
ometry (the photon polarization vector and the
emission direction of the “fixed’ electron are normal



N. Fominykh et al. | Surface Science 507-510 (2002) 229-233 233

to the surface), the symmetry of the presented
DPE ADs coincide with the symmetry of the
copper face. However, this would be generally not
true, if the emission direction of the ‘fixed’ electron
would not coincide with the high-symmetry di-
rection of the lattice point group (c.f. [8]). The
mean angle with respect to the first electron, at
which the second electron is preferentially emitted,
depends on the value of the screening length A and,
hence, on the material. The larger is the screening
length, the wider is the space where the electrons
can interact and decline their trajectories, so the
wider will be the ‘ring’ of high intensity. The depth
of generation of correlated pairs as compared to
the depth of generation of a photoelectron in SPE
process is illustrated in Fig. 4. The rapidly decay-
ing density of states of the SS does not effect much
the depth of generation, since at these energies the
contribution from the d-band is overwhelming.
The photocurrent of both processes is calculated
for different number of monolayers (n = 2, 3 and
10). Intensities in SPE and DPE columns (nor-
malized in the same way within each column) differ
roughly by five orders of magnitude, which is in
agreement with experimental observation [14], and
is in line with the knowledge on double photo-
ionization of atomic and molecular targets [15].
Within a simple model, the probability for two
electrons to escape from the surface can be esti-
mated as a square of the single-clectron escape
probability. The latter, being connected to the
mean free path d by exponential law exp(—z/d),
gives the effective two-electron mean free path
equal to d/2. From Fig. 4 one can indeed see that
the most of the DPE signal is formed up to the
third monolayer, while in the case of SPE there is
still no saturation at this depth.

5. Conclusions
We have presented the results of DPE calcula-

tions from the surface state and the d-band of
Cu(111). The role of initial state densities, Cou-

lomb interaction, screening length, dipole transi-
tions in the formation of angular and energy DPE
spectra is illustrated and discussed. We perform
calculations from the narrow energy band around
the surface state and from the broader range, in-
cluding the d-band. The nearly analytical behav-
iour of the SS dispersion allows to approximately
single out the effect of the density of initial states
on DPE energy sharing distributions. Emission
from the d-band is used to illustrate the high sur-
face sensitivity of DPE process: the depth of gen-
eration of correlated pairs is estimated to not
exceed 3 monolayers.
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