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Abbreviations

AF1 fcc type I antiferromagnet
AF2 fcc type II antiferromagnet
AO atomic orbital
BIS bremsstrahlung isochromat spectroscopy
CASPT2 complete active space with second-order perturbation theory
CASSCF complete active space self-consistent field method
CC coupled cluster method
CCSD CC calculation including single and double excitations
CCSD(T) CCSD with perturbative treatment of triple excitations
CI configuration interaction approach
CID CI calculation with all double substitutions
CIS CI calculation with all single substitutions
CIS-MP2 CIS with the second-order Møller-Plesset perturbative correction

involving single and double substitutions from the reference state
CISD CI calculation with all single and double substitutions
DHF Dirac-Hartree-Fock equations
DOS density of states
ECP effective core potential
ED electric-dipole
EELS electron energy loss spectroscopy
FM ferromagnet
FWHM full width at half maximum
GGA generalized gradient approximation
GTO Gaussian type orbital
GUGA graphical unitary group approach
GW approximation for the self-energy Σ(12) = iG(12)W (1+2)
HF Hartree-Fock approximation
HOMO highest occupied molecular orbital
LanL2DZ the Los Alamos National Laboratory second Double-Zeta basis set
LCAO linear combination of atomic orbitals
LDA local density approximation
LEED low-energy electron diffraction
LSDA local spin density approximation
LUMO lowest unoccupied molecular orbital
MC-SCF multiconfiguration self-consistent field
MD magnetic-dipole
MO molecular orbital
MP Møller-Plesset perturbation theory
MP2 the second-order Møller-Plesset perturbation theory
MP4 the fourth-order Møller-Plesset perturbation theory
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MRAMs magnetic random access memories
MRCISD multi-reference CI singles and doubles
QCI quadratic configuration interaction approach
QCISD QCI calculation with single and double excitations
QCISD(T) QCISD with perturbative treatment of triple excitations
RAMs random access memories
ROHF restricted open-shell HF approximation
SCF self-consistent field
SIC self-interaction correction
SHG second harmonic generation
STO Slater type orbital
TMs transition metals
TMOs transition metal oxides
TMR tunneling magnetoresistance
UHF unrestricted Hartree-Fock approximation
XAS x-ray absorption spectroscopy
XPS x-ray photoemission spectroscopy



Chapter 1

Introduction

Among the materials, which are of interest for physical science and technology, transition-
metals (TMs) are outstanding for their special characteristics and different and widespread
uses. They have attracted the attention of many researchers for a long time, for their unique
physicochemical properties about the electronic structure. The description of the electronic
structure of TM materials is responsible for their properties. All TMs have the common
properties of metals such as being very hard, possessing high density, retaining high melting
and boiling points, exhibiting high electrical conductivity, etc. Indeed, there are four such
series of TMs which can be distinguished depending on the partially filled d–orbitals. Thus,
for the first TMs series e.g. Scandium (Sc) through Copper (Cu), the electronic configuration
of the outer orbitals is 4s2, while the second outer orbitals (i.e. the 3d shell) are incompletely
occupied. The second series consists of Yttrium (Y) through Silver (Ag), which the 4d orbital
are incompletely filled. Lanthanum (La), Hafnium (Hf) through Gold (Au) are the third series
in which the 5d shell is partially filled, while the incomplete 6d orbitals are found in the
forth transition series (e.g. Actinium (Ac), the 104th element through the 109th element). In
addition, it was discovered that they could easily form complexes with one or more other
elements, e.g. a halogen (F, Cl, . . .) or a chalcogen (O, S, . . .). Furthermore, these compounds
show a variety of properties depending on the composition. Compounds of the TMs can be
paramagnetic or diamagnetic. Paramagnetism in the TMs is caused by unpaired electrons in
the d–orbitals, which can be affected by a magnetic field. Diamagnetism is hardly affected
by a magnetic field since all electrons are paired in the d–orbitals. Some transition metal
compounds form colored characteristics, which enables to absorb specific frequencies of light.
Moreover, the TM compounds even exhibit a wide range of electrical conductivities, from
insulator to superconductor.

The most interesting transition-metal compounds today are the transition-metal oxides.
These materials show rich variety of phenomena, e.g. Mott transition, high-Tc superconductiv-
ity, ferromagnetism, antiferromagnetism, low-spin/high-spin transitions, ferroelectricity, an-
tiferroelectricity, colossal magnetoresistance, charge ordering, and bipolaron formation [1].
These appear to behave as numerous important phenomena in condensed matter physics. The
main actors in these phenomena are the d–orbitals of the TMs ions surrounded by oxygen
ions. The d–orbitals extend to attract the oxygen ions and are subject to the crystal fields.
This manner gives rise to the splitting of the d–orbitals. In the octahedral symmetry, which
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6 Chapter 1. Introduction

corresponds to the three-dimensional rocksalt structure, the five d–orbitals are shifted into two
eg orbitals (x2−y2, 3z2− r2) and three t2g orbitals (xy, yz, xz). When the symmetry is reduced,
the further splitting occurs. These subjects are interesting from both points of view of physics
and chemistry.

Of particular interest in this active research is an optical gap1, which involves the crucial
description of the optical properties. Of course, this optical behavior forms the basis for many
important applications. The gap widths of TMO have been determined by several experimen-
tal methods [2], such as optical absorption spectroscopy, electron energy-loss spectroscopy,
and photoconductivity and electroreflectance measurements. The differences in the published
gap widths arise mainly from different gap definitions, and it seems to be more or less a matter
of taste which is preferred.

In an earlier series of articles [3, 4, 5, 6, 7, 8], it has been shown that the transition metal
oxides such as MnO, FeO, CoO, and NiO are regarded as Mott insulator concept. The def-
inition of a Mott insulator is described by the following notion. For a Mott insulator the
electron-electron interaction leads to the occurrence of (relative) local moments. The gap in
the excitation spectrum for charge excitations may arise either from the long-range order of the
pre-formed moments (Mott-Heisenberg insulator) or by a quantum phase transition induced
by charge and/or spin correlations (Mott-Hubbard insulator) [9].

More recently, the transition metal oxides MnO, FeO, CoO, and NiO are known to reveal
the second kind of antiferromagnetic compounds forming in the rocksalt structure, whose
band gap is specified by charge-transfer excitations (p → d), not d → d transitions [10, 11,
12, 13]. This type of transition is intrinsically much more intense than the d–d kind treated
by the crystal field theory, and may often be important in the optical properties of solids.
Therefore, the electronic structure of TMO can be described as band structure of an ionic
insulator supplied with the local states of d–electrons [14].

1.1 Motivation for a theoretical framework

Future computer memories require a merger between the existing technologies of perma-
nent (magnetic) information storage and random access memories (RAMs). The envisaged
magnetic random access memories (MRAMs) [15] are assumed to be faster and non-volatile
while beating the contemporary designs also in storage density. One of the most success-
ful approaches so far is based on tunneling magnetoresistance (TMR) junctions, where the
relative magnetization direction of two ferromagnetic metallic layers governs the tunneling
rate through an insulator placed between them (reading). The magnetization of one of the
ferromagnetic layers can be adjusted (writing), while the other ferromagnetic layer is usually
pinned by an antiferromagnet. For such a design, transition-metal oxides (TMOs) such as
NiO are of interest since they are both insulating and antiferromagnetic. One of the crucial
elements of the proposed device is the metal-TMO interface. The properties of this interface
can conveniently be assessed by the technique of optical second harmonic generation (SHG),

1 The gap is not describable in term of single-particular band structure calculation or HOMO-LUMO gap
(HOMO and LUMO mean the highest occupied molecular orbital and the lowest unoccupied molecular orbital,
respectively).
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which is highly sensitive to antiferromagnetism occurring at surfaces and interfaces of materi-
als which possess central symmetry [16, 17, 18]. Furthermore, SHG has the unique potential
to become a tool for investigating buried oxide interfaces, where other techniques fail. Un-
til now, it has been proven to be a very useful technique for the study of ferromagnetism at
surfaces. This is the reason why SHG became the subject of intensive experimental and theo-
retical studies [16, 19]. These technological developments require a detailed theoretical under-
standing of the nonlinear optical processes on TMO surfaces. This is, however, a formidable
task for two main reasons: (i) an electronic ab initio theory of the nonlinear magneto-optical
response at solid surfaces has long been in its infancy and is just about to emerge due to the
enormously high-precision requirements for obtaining reliable results and (ii) transition metal
oxides are notorious examples of strongly correlated electron systems that have escaped a
description by even phenomenological many-body theories since the 1960s [20, 21, 22].

In view of these difficulties, any tractable theoretical attempt at the theoretically, experi-
mentally, and technologically interesting problem of a first-principles description of nonlinear
magneto-optics from the surface of NiO(001) has to start at the entry level and to leave aside
a great deal of the sophistication underlying both subproblems individually, viz (i) the consis-
tent many-body description of the electronic properties of transition metal oxide surfaces and
(ii) the ab initio theory of nonlinear optics from a magnetic solid.

1.2 Why Quantum Chemistry

Ab initio quantum chemistry is capable of calculating a wide range of the chemical and
physical phenomena of interest to a chemist or physicist. These methods can be used both
to predict the results of future experiments and to assist in the interpretation of existing ob-
servations. Quantum chemistry calculations can also be a fast and inexpensive guide to the
experiment necessary. Although calculations will never exclude the need for experiment, they
can be a valuable tool to provide insight into chemical and physical problems that may be
unavailable to the experimentalist.

By starting from first-principles and treating the molecule as a collection of positive nuclei
and negative electrons moving under the influence of Coulombic potentials, the computational
ab initio quantum chemistry attempts to solve the electronic Schrödinger equation and seeks
to determine the electronic energies and wave functions. The full Schrödinger equation for
a molecule ĤΨ = EΨ involves the Hamiltonian Ĥ containing the kinetic energies of each
of the N electrons and M nuclei as well as the mutual Coulombic interactions among all of

these particles ( e2

ri j
, i, j = 1,2,3, . . . ,N; ZaZbe2

Rab
,a,b = 1,2,3, . . . ,M; −Zae2

r ja
, j = 1,2,3, . . . ,N,a =

1,2,3, . . . ,M) and Ψ depending on Cartesian and spin coordinates of the component particles.
Such a full Schrödinger equation has never been solved exactly for more than two-particle sys-
tems. Therefore, the essential approximation made in ab initio quantum chemistry is called the
Born-Oppenheimer approximation [23], in which the motions of the nuclei are fixed at a ge-
ometry (denoted R). Then, the Schrödinger equation produces the wave functions ψk (r;R) and
the energy surfaces Ek (R) of the nuclear positions whose gradients give the forces Fk =−∆kV
acting on the atomic centers. Wave functions contain all information needed to compute dipole
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moments, polarizability, and transition properties such as electric dipole transition strengths
among states [24]. They also permit evaluation of system responses with respect to external
perturbations such as geometrical distortions [25], which provides information on vibrational
frequencies and reaction paths.

A point charge cluster embedding technique [26, 27, 28] is developed to model the crys-
talline solids. In principle, one treats quantum mechanically only a small part of the crys-
tal lattice as the cluster. The rest of the crystal will be called the environment. The ac-
tion of the environment on ions in the cluster is represented by an embedding potential,
VMad (r0) = ∑N

k
qk

|rk−r0|
. Many accurate techniques have been developed for calculating the

Madelung potential at any point charges determined by lattice positions [29]. Perhaps, the
best choice of calculating the exact Madelung field is the Ewald summation [30].

In this work we will present some examples of how quantum chemistry can be used to
investigate the electronic and optical properties of significant metals such as NiO. In Chapter
3, section 3.1, readers are provided with an overview2 of the essential concepts of quantum
chemistry and the computational features that differ among commonly used methods. Here,
the Hartree-Fock and configuration interaction methods are introduced. The computational
steps involved in their implementation are given in section 3.2.

1.3 The scope of this work

In this study, we make the first step towards an ab initio theory of SHG from TMO surfaces
and calculate optically active states on the NiO(001) surface. We first perform the computa-
tion of optical properties such as discrete excitations below the gap and continuous excitation
spectra above the gap for NiO(001) within the configuration interaction singles (CIS) frame-
work [31]. In this method, the CIS wave function is expressed as a combination of all deter-
minants obtained by replacing one occupied orbital (from the ground-state determinant) with
a virtual orbital. The single excitations do not only cause a shift of excitation energy but also
allow a proper calculation of optical spectra in the UV and the visible range. In our study,
we do not only perform an ab initio calculation to estimate d–d transitions but we also assess
the relative importance of the different electronic correlations. In order to do so, d–d excita-
tion energies are determined on several correlated levels of theory such as CI (configuration
interaction) and QCI (quadratic configuration interaction) approaches [32, 33].

We now turn our attention to investigate other effects coming from the relativistic part of
Hamiltonian, which describes the spin-orbit coupling. In this study we use COLUMBUS pro-
gram, based on the graphical unitary group approach (GUGA), which provides us the multi-
reference CI singles and doubles (MRCISD) calculations. For multi-reference calculations,
CI is the simplest correlation method to use in a general way. Thus, the spin-orbit interaction
can be included in the correlation step. In this part, the main features of our work are:

• Non-perturbative treatment of spin-orbit matrix elements

2 Excellent overviews of these methods are included in: W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A.
Pople, An initio molecular orbital theory, Wiley, New York, 1986.
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• Calculation on the CIS level of theory

• Using effective spin-orbit interaction operators in the form similar to effective core po-
tentials.

Then, we turn to the second step for developing an ab initio theory of SHG in NiO. We
calculate the nonlinear optical response following an expression developed by Hübner and
Bennemann [34].
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Chapter 2

NiO

As stated before, the first-row transition-metal oxides are among the most interesting series
of materials, exhibiting wide variations in physical properties related to electronic structure.
The optical and magnetic behavior, in particular, forms the basis for the enormous range of
applications. As a result, they have been the subject of extensive experimental and theoretical
investigations for the past several years. In this chapter we will address some features (for a
review) which form an essential background in studying these materials. Such as NiO, one
of the most favored antiferromagnets, is a prototypic system for strong electronic correlations
with high spin AF2 structure at low temperatures and has a simple crystallographic rocksalt
structure with a lattice constant of 0.417 nm (see Fig. 2.1). There are two components of spin
configurations due to the non-local exchange interaction. For the first component, the direct
exchange interaction between the nearest neighbour of Ni ions favors paring of spins to lower
energy. For another one, a very strong interaction comes from the superexchange between the
next-nearest neighbour of Ni ions [35, 36]. This makes the antiferromagnetic spin structure
for the ground state of NiO.

2.1 Experimental and theoretical studies

In the field of solid state physics, many experimental and theoretical attempts have been
made to investigate the interesting physical properties of the 3d transition-metal oxides, which
are characterized by the partially occupied 3d–orbitals. This range of properties also imposes
many difficult problems of scientific understanding. Especially, the insulating behavior of
these materials has been extensively studied for several decades.

Mott and Hubbard have reported that the strong d–d Coulomb interaction is essential to
explain why some of transition metal compounds play a major role as insulators with partially
filled 3d bands, while the others exist as metals [3, 37]. The transport of electrical charge in
the solid state is provided by electrons that are subjected to the Coulomb interaction with the
ions and the other electrons. The importance of a large Coulomb interaction Udd is implicit
in the common Anderson superexchange theory [38], and is fundamental to concept of the
Mott-Hubbard insulator. When the d–d Coulomb interaction is larger than the band width, 3d–
orbitals are localized and the magnitude of the band gap is determined by the d–d Coulomb

11
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0.417 nm

[001]

Ni (spin up)

Ni (spin down)

Oxygen

Fig. 2.1: Structure of NiO showing the AF2 antiferromagnetic spin structure.

interaction.
Later, experimentally the powerful characterizations such as the combination of x-ray pho-

toemission spectroscopy (XPS) and bremsstrahlung isochromat spectroscopy (BIS) measure-
ments of cleaved single crystals of NiO have provided unambiguous evidence that the intrinsic
charge transfer gap is 4.3 eV [39]. In addition, the band gap of ∼4 eV (p → d character) has
been indicated by a range of spectroscopic techniques including optical absorption [40], x-ray
absorption spectroscopy (XAS) at the oxygen K-edge [41], and electron energy loss spec-
troscopy (EELS) [42]. Computationally it has been shown that the band gap of NiO is not
determined by d–d Coulomb interaction, but by ligand-to-d charge transfer energy (∆) by
analyzing the photoemission spectrum with the configuration interaction cluster model ap-
proach [43, 44]. By using this calculation, one predicts the gap of 5 eV whereas the density
functional theory predicts a gap of 0.3 eV [10]. Based on the local-cluster and single-impurity
approach, a classification scheme have been proposed [11], where the TMOs can be classified
into two regimes according to the relative magnitude of ∆ and Udd . For the Mott-Hubbard
regime, ∆ > Udd , the band gap is determined by d–d transition and its magnitude is given by
Udd . For the charge transfer regime, ∆ < Udd , the magnitude of a p → d band gap is ∆.

Alternatively, several theoretical studies have been carried out, to understand the electronic
structure and band gap of NiO. The band structure calculations of TMOs were treated by the
local-spin-density approximation (LSDA) as described in Ref. [10]. This model have been
successfully applied to describe many details of electronic structure, magnetic coupling, and
character of the band gap since a long time. However, the local density approximation (LDA),
which is widely used in solid-state physics, fails to describe the band structure of NiO as an
insulator and predicts it to be as a metal [45]. This deficiency of the LDA is not fully solved by
the generalized gradient approximation (GGA) level of theory, which still provides too small
band gap of NiO, indicating either a metal or a semiconducting character [46, 47]. It has been
suggested that the problem of the LDA (and the GGA) for properly describing a narrow band
gap is related to the insufficient cancellation of the self-interaction correction (SIC) inherent
in the local exchange function. The SIC-LDA introduces a better description of band gap (∼3
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eV) in the spectrum and improves the magnitude of the magnetic moment and the value of
lattice constant in NiO [48, 49]. More recently, density functional calculations have tended to
include modifications, such as self-interaction-corrected (SIC) LSDA [50] and LSDA+U [51].
These studies have offered improved descriptions of the Mott insulators. An analysis of the
electronic and magnetic structure as well as the exchange coupling constants in bulk NiO
and at the NiO(100) surface is also presented by means of SIC-LSDA approach, which im-
proved compared with the LSDA [52]. Another method has included the self-energy in the
GW (Green’s function G times the dynamically screened Coulomb potential W) approxima-
tion [22]. These studies have provided a gap of ∼5.5 eV, which is in reasonable agreement
with the experimental value (∼4 eV). Moreover, the GW approximation also improves the
magnetic moments and density of states relative to LDA. This analysis has clarified some
problems in the attempts of first-principles methods for the electronic structure calculation of
NiO.

2.2 NiO and its low-lying excited states

Magnetic and optical properties of TMOs are governed by the ground state and low-energy
excitation spectrum of the d shell of the central TM ion. These spectra are successfully fit
to the crystal field theory [53]. Thus, it is the strong Coulomb interaction between the 3d
electrons that leads to an energy splitting of the dn and dn+1 states. The low-lying excited
states, so-called dipole-forbidden d–d transitions, appear as weak features in optical spectra.
All d–d transitions violate the parity selection rule ∆l = ±1 (the Laporte forbidden character
in centrosymmetric cases). For the earlier work, Newman and Chrenko measured the d–d
transitions in bulk NiO by using absorption spectroscopy [54]. Only recently, the experimental
data have become available for d–d transitions of the bulk and (001) surface of NiO [55,
56, 57, 58, 59, 60]. These results have been revealed in a range 0.5− 3.0 eV by means of
electron energy-loss spectroscopy (EELS). The great advantage of exciting such transitions
with slow electrons is the possibility of excitation by electron exchange, additionally. The
multiplicity-conserving (∆S = 0), as well as multiplicity-changing transitions (∆S = −1), are
easily observable with EELS if a suitable energy of the incident electrons is chosen [2]. It
has been supposed that the intensity of triplet-singlet d–d transitions in NiO depends on the
antiferromagnetic ordering of the magnetic moments [61, 62, 63], yet an investigation of d–d
transitions above the Néel temperature has not been reported.

The calculated d–d excitation energies of the bulk and (001) surface of NiO were investi-
gated at first-principles unrestricted Hartree-Fock level of theory by Mackrodt and Noguera [64].
These results allow for comparisons with optical absorption and EELS and with the theoretical
works based on first-principles multi-reference CEPA [55] and CASSCF/CASPT2 [65, 66]
calculations of embedded clusters of the type (NiO6)10− and (NiO5)8−. From the results of
these calculations, which have included electron correlation in different ways and at differ-
ent levels of sophistication, it has been concluded [55, 65, 66] that the inclusion of electron
correlation effects is an essential prerequisite for an accurate description of d–d excitations in
NiO. These results suggest that for NiO with its highly localized d–electrons resulting from
strong on-site Coulomb and exchange interaction, the contribution from electron correlation
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is approximately 0.2−0.3 eV for the entire of one- and two-electron excitation.

2.3 Second Harmonic Generation

The second order nonlinear optical technique, second harmonic generation (SHG), deals
with the interactions of applied electromagnetic fields in various materials to generate new
electromagnetic fields, related in frequency, phase, or other physical properties. The reflected
SHG intensity from media, which lack a center of inversion symmetry, is generated by the
harmonic polarization in a layer about one quarter optical wavelength thick in a transparent
dielectric, or in the absorption depth in the case of a strongly absorbing medium. These early
observations are therefore not surface specific. SHG with a center of inversion symmetry was
first observed by Terhune et al. [67] in calcite. They proposed a nonlinear term of quadrupolar
origin in the form of a second harmonic polarization proportional to the fundamental field and
its gradient. Pershan [68] showed that in media with inversion symmetry the second harmonic
polarization source term may be written in the general form, Pi (2ω) = χQ

i jkE j (ω)Ek (ω),
where Q denotes a quadrupolar transition taken into account.

This source term in a non-absorbing dielectric is ninety degrees out of phase with the
nonlinear SH polarization induced in the presence of an applied dc electric field. At such as
interface a discontinuity in the normal component of electric field and in the tensor compo-
nents of the quadrupolar susceptibility occur.

The developments of SHG at interfaces with inversion symmetry during the sixties are
summarized in a fairly comprehensive paper by Bloembergen et al. [69]. Shen [70] has also
reviewed the progress made during the eighties. Refined theoretical analysis carefully exam-
ined the discontinuities in the normal component of the electric field, E, as one passes from
a centrosymmetric medium with dielectric constant ε1 through a dipolar sheet with dielectric
constant ε′ to a centrosymmetric medium with dielectric constant ε2. This review paper de-
fines an effective surface nonlinear susceptibility tensor χS

i jk which clearly delineates the three
effects as:

• The electric dipole term arises from the lack of inversion symmetry at the interface.
This term may be significantly enhanced by absorbed monolayers of polar molecules.

• The non-local electric quadrupolar contribution to the surface nonlinearity is controlled
by the strong gradient in the normal component of the electric field. This contribution is
diminished when the difference in dielectric constants or indices of refraction between
the two media at the interface is small.

• The third term results from the discontinuity in the volume quadrupole moment densi-
ties of two bulk media defining the interface. The gradient operator in this case acts on
χQ. This term, when integrated across the interface, yields the difference of two volume
susceptibilities. It represents a bulk contribution which cannot be separated from the
other two specific surface contributions for one single interface.

The effective nonlinear surface tensor χS
i jk(2ω) must reflect the symmetry characteristic

of the surface. Here the index i refers to the components of the second harmonic field, and
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j and k to the Cartesian components of the fundamental field. For the surface of an isotropic
medium, normal to the z-direction, only three independent elements exist with the following
index combinations: (xxz) = (xzx) = (yzy) = (yyz), (zxx) = (zyy), and (zzz).

For centrosymmetric antiferromagnetic NiO, SHG spectra due to the combined contribu-
tions from magnetic-dipole (MD) and electric-dipole (ED) transitions between the 3d8 levels
of Ni2+ ion were observed by Fiebig and coworkers [17]. In this experiment, the intensity of
the SH signal with distinct spectral features, which is observed in the investigated 1.6− 2.3
eV energy range of 2~ω, is comparable to the intensity measured in noncentrosymmetric
compounds such as antiferromagnetic Cr2O3 or YMnO3 in which the SH process is of the
ED-type [71, 72]. They have shown that an increase of SH intensity from the forbidden ED
transitions occurs due to their resonance enhancement of both the incoming and the outgoing
beams (processes of MD absorption at the frequency ω and ED emission at 2ω are resonant).
A quadratic coupling of nonlinear polarization to the order parameter was also found. Fiebig
et al. [17] reported that the Γ+

3 , Γ+
4 , Γ+

5 , and Γ+
2 states, into which the 3Γ+

5 state was split by
the spin-orbit interaction, were clearly identified both in the absorption spectra and in the low-
temperature SH spectra (in the region of lowest 3d8 electronic transitions with incident and
emitted [001]-polarized light). Then, they presented the energy diagram of the correspond-
ing 3d8 levels of the Ni2+ ion (which were split by the octahedral crystal field, the spin-orbit
interaction, and the exchange field below the Néel temperature). The energy scheme derived
from this experiment serves as a good reference point to our results as documented in section
4.4.2.

From the previous examples, one can conclude that SH generation is a versatile tool that
might have numerously technological and experimental applications. In particular, applying
it to NiO, it can be used for characterization of its magnetic structure. It is known that for
this antiferromagnetic material with a Néel temperature of 523 K, several magnetic-moment
ordering types are possible. However, the observation1 in this material from the linear optical
experiments is more complicated than in ferromagnetic one since the reduction of the spa-
tial symmetry is not linked to an imbalance in the occupation of majority- and minority-spin
states. In recent years, Dähn et al. [18] have shown the symmetry arguments how optical
SHG can be used to detect antiferromagnetic spin arrangements at surfaces and in thin films
and also to separate antiferromagnetic phases from the paramagnetic and ferromagnetic ones.
This is a remarkable fact since paramagnetic structure exhibits an inversion symmetry as the
antiferromagnetic state. However, the two states usually differ in the allowed space transfor-
mations, and this fact can be used to detect different phases by using different polarizations of
incoming light. The full classification of all possible SH responses from the domains of anti-
ferromagnets is presented in Ref. [73]. Theoretically, the SHG response was described in the
paper of Hübner and Bennemann [34]. The expression for the nonlinear optical susceptibility
tensor, χ, was obtained from the corresponding electronic structure of material.

1 Recently, a spatially resolved polarization dependent x-ray absorption spectroscopy was used in order to
fully characterize the AF structure at the surface of NiO. All 12 possible domain types originating from the bulk
termination were distinguished. The measurements also showed an evidence that the magnetic moments have
the same orientation as in the bulk NiO which is in contrast to sputtered surfaces, where magnetic moments lie
within surface plane, forming a magnetically relaxed structure.
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Chapter 3

Materials and methods

Computational Chemistry has existed for half a century, growing from
the province of a small nucleus of theoretical work to a large, signifi-
cant component of scientific research. By virtue of the great flexibility
and power of electronic computers, basic principles of classical and
quantum mechanics are now implemented in a form which can handle
the many-body problems associated with the structure and behavior of
complex molecular systems.

John A. Pople (November 1997)
(Nobel prize for chemistry 1998, together with Walter Kohn)

3.1 Quantum chemistry methods and background

3.1.1 Hartree-Fock method

General method

The ‘ab initio’ approach relies on the closest practicable approximations that can be made
to the true solutions of the Schrödinger equation, i.e. the orbital approximations (Hartree-Fock
method), where a molecular orbital (MO) is expressed by a linear combination of atomic
orbitals (LCAO). In this approach, the molecular probability function is represented by a
Slater determinant. This many-electron function is built up from one-electron spin orbitals,
which describe single electrons in the molecule. The total wave function Ψ of the 2n electrons
in a closed shell system is given, therefore as:

Ψ =
1

(2n)!
1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣

ψ1(1) ψ1(2) . . . ψ1(2n)
ψ2(1) ψ2(2) . . . ψ2(2n)

...
...

. . .
...

ψ2n(1) ψ2n(2) . . . ψ2n(2n)

∣
∣
∣
∣
∣
∣
∣
∣
∣

(3.1)
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This form of wave function guarantees the antisymmetric behavior of electrons, as re-
quired for any type of fermions1. At this point, an expression for the MO’s is needed. A nat-
ural way to present the MO’s (ψi) is by expanding them into a linear combination of atomic
orbitals (AO’s, φµ):

ψi =
N

∑
µ=1

cµiφµ. (3.2)

The choice of the AO’s (φ), in which the MO’s (ψ) are expanded, is called the basis set.
The unrestricted Hartree-Fock (UHF) method treats the α and β spin orbitals separately.

This theory has been commonly used for open-shell systems. Formally, the UHF2 wave func-
tion (ΨUHF ) can be defined by two sets of coefficients,

ψα
i =

N

∑
µ=1

cα
µiφµ; (3.3)

ψβ
i =

N

∑
µ=1

cβ
µiφµ. (3.4)

The best MOs, that is those leading to the best approximation to the actual state of the
molecule, are then obtained by choosing the coefficients cµi to minimize the total energy
(variation principle, E = 〈Ψ |H|Ψ〉). This procedure is incorporated in the Roothaan-Hall
equation [74], forming the basis of all ‘ab initio’ MO calculations,

N

∑
ν=1

(
Fµν − εiSµν

)
cνi = 0 (3.5)

with the normalization condition

N

∑
µ=1

N

∑
ν=1

c∗µiSµνcνi = 1 (3.6)

where εi is the one-electron energy of molecular orbital ψi, Sµν are the elements of an N ×N
matrix termed the overlap matrix, and cµi is the matrix of the expansion coefficients.

The matrix representation of the Fock operator Fµν has the elements

Fµν = Hcore
µν +

N

∑
λ

N

∑
σ

Pλσ

[

(µν | λσ)−
1
2

(µλ | νσ)

]

︸ ︷︷ ︸

Gµν

(3.7)

1 This concept follows the Pauli exclusion, a most important principle, that no two electrons in an atom can
have the same values for all four Quantum numbers.

2 the UHF method is normally used for unpaired electron systems. If cα
µi = cβ

µi for all doubly occupied orbitals,
the method is called the restricted open-shell HF (ROHF). It is clear that ROHF always gives higher energy than
UHF, but has an advantage of being faster and solving the problem of spin contamination in UHF.
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where the first term is the core-hamiltonian matrix element

Hcore
µν =

∫

φµĤcoreφνdτ (3.8)

These elements of the core-Hamiltonian matrix are integrals involving the one-electron
operator Ĥcore describing the electronic kinetic energy and nuclear-electron Coulomb attrac-
tion.

The overlap matrix S has elements

Sµν =
∫

φµφνdτ. (3.9)

The second term of Eq. 3.7 is the two-electron part Gµν which depends on the density
matrix P with the elements for closed shell systems,

Pλσ = 2
occ

∑
i=1

c∗λicσi (3.10)

and a set of two-electron integrals, describing the electron-electron interaction:

(µν | λσ) =

〈

φµ (1)φν (1)

∣
∣
∣
∣

1
r12

∣
∣
∣
∣
φλ (2)φσ (2)

〉

. (3.11)

Due to their large numbers, the evaluation and manipulation of these two-electron integrals
is one of the major time-consuming procedures in a Hartree-Fock calculation.

The electronic energy, Eee, is now given by

Eee =
1
2

N

∑
µ=1

N

∑
ν=1

Pµν
(
Fµν +Hcore

µν
)
. (3.12)

The self-consistent field (SCF) procedure

After specifying a molecule (a set of nuclear coordinates, atomic numbers, multiplicity,
and number of electrons) and a basis set φµ, all required molecular integrals, i.e. Sµν, Hcore

µν
and (µν | λσ) are calculated. The iterative procedure begins by guessing a reasonable set of
linear expansion coefficients cµi and generating the corresponding density Pµν. A first Fock
matrix is then calculated from Hcore

µν and the two-electron part Gµν. Upon diagonalization
a new matrix c is obtained. The whole process is repeated until the difference between the
coefficients become insignificant for the resulting total energy. The solution is then said to be
self-consistent and the method is thus referred to as the self-consistent-field (SCF) method.

Basis set

As mentioned above, the molecular orbitals are synthesized as linear combinations of
atomic orbitals (LCAO). It is apparent that different choices of basis sets produce different
SCF wave functions and energies. The accuracy of the results should improve according to
the choice of larger basis sets. We distinguish three types of basis sets commonly used:
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• Minimal basis sets: one basis function per electron.

• Extended basis set: several basis functions per electron, adding sometimes polarization
functions of higher type (p for H, d- and f-type for C, N, O, etc.).

• Valence basis set: the orbitals of the valence shell of each atom in the system are taken
into account.

Two types of the basis set have come to dominate the area of ab initio molecular calcula-
tions, the Slater type orbital (STO) and Gaussian type orbital (GTO). The STO basis sets are
rather of historic interest nowadays. Gaussian functions consist of an exponential of the form
exp(-αr2) with additional angular part for GTO’s where α is the gaussian exponent and r is the
distance from the center of the function, while the STO basis includes rn−1exp(-αr) plus the
angular part where n defines the principal quantum number. The many integrals encountered
in calculating with STO functions are extremely time consuming to evaluate and due to only
numerical solution possibility, rather inaccurate for larger systems. This problem has led to
the common use of the alternative GTO basis sets.

The 6-31G*, 6-31+G*, and LanL2DZ basis sets. In the 6-31G* basis (sometimes de-
noted as 6-31G(d)) [75, 76], the 1s AO of the first and second rows element is represented by
the fixed combination of 6 GTOs, the 2s (2px etc.) are approximated by a fixed combination
of 3 GTOs and the extra valence orbitals 2s′ (2p′x etc.) are just one GTO plus d–functions for
the first row atoms. The 6-31+G* designates the 6-31G* basis set supplemented by the dif-
fuse function. For heavy atoms with very large nuclei, electrons near the nucleus are treated
in an approximate way, via effective core potentials (ECPs). One pseudopotential basis set
has been used: the Los Alamos National Laboratory second Double-Zeta (LanL2DZ) basis
set [77, 78, 79, 80] with effective core potentials. The double-zeta basis set consists of two
basis functions per atomic orbital, and is thus twice as large as the minimal.

3.1.2 Configuration Interaction (CI) approach

General Method

In ab initio quantum chemistry, the exact level energy E(exact) is given by

E(exact) = E(HF)+E(corr) (3.13)

where E(HF) and E(corr) represent the Hartree-Fock and correlated contributions, respec-
tively.

Nevertheless, this formula shows the relationship between the ‘experimental’ or exact
value and various HF energies. Because in HF calculations electrons are assumed to move in
an average potential, the best HF calculation that could possibly be made (i.e. the HF limit)
would still give an energy higher than the true one.

Thus, we attempt to use CI calculations to improve the ground state wave function by
mixing in single, double, . . . substitutions. A general multi-determinant wave function can



3.1. Quantum chemistry methods and background 21

then be written as a linear combination of all contributions through various levels of excitation

Ψ = a0Ψ0 +
occ

∑
i

vir

∑
a

aa
i Ψa

i +
occ

∑
i< j

vir

∑
a<b

aab
i j Ψab

i j + . . . . (3.14)

Within the spirit of the variation principle, it will be possible to improve wave functions by
solving the matrix eigenvalue problem, to find the best values of the a0,aa

i ,a
ab
i j , . . . coefficients.

A solution with lower energy will give us a better description of the electronic ground state.

Comparison of Hartree-Fock and Configuration Interaction

The main differences between the HF and CI approaches can be deduced as follows:

• CI evaluates the correlation energy beyond the HF level.

• CI scales as N6, while HF method scales as N4 (where N is the number of basis functions
employed).

• CI strongly depends on the choice of the basis set.

• CI is not size consistent.

CI-Singles

The excited-state wave function is written as a linear combination of all possible singly
excited determinants, which leads us to the CIS (configuration interaction singles) method:

ΨCIS = a0Ψ0 +
occ

∑
i

vir

∑
a

aa
i Ψa

i . (3.15)

These CI coefficients can be deduced as normalized eigenvectors of the Hamiltonian ma-
trix,

〈

Ψia |H|Ψ jb
〉

= [EHF + εa − εi]δi jδab − ( ja || ib) . (3.16)

Here, ε represents the one-electron energy of an orbital and ( ja || ib) are the usual two-
electron integrals, transformed to the MO basis. The eigenvalues of this matrix are the CIS
total energies for various excited states. This opens the possibility of studying the excitation of
molecules much larger than can be treated by the other methods such as complete active space
multiconfiguration SCF (MC-SCF), since they involve the evaluation of more complicated
matrix elements than above.

Because of its importance in calculating accurate one-electron properties, the generalized
CIS density matrix deserves a bit more attention. It is a sum of HF and excited state terms:

PCIS
µν = PHF

µν +P∆
µν. (3.17)
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Now, we have introduced P∆, the CIS delta density matrix. This can be a so-called ‘dif-
ference density matrix’, since it represents the changes in the electronic distribution upon the
excitation.

The prediction of oscillator strength f for the excitation requires the calculation of the
transition matrix element

f =
2
3

∆E〈Ψgs
∣

∣d̂
∣

∣Ψes〉
2

(3.18)

where Ψgs and Ψes represent the wave function of ground state and excited state, respectively.
d̂ and ∆E are the transition dipole moment operator and the transition energy.

In general, the CIS wave function does not present an improvement over the HF wave
function, since this approach also neglects correlation effects due to double and higher exci-
tations.

The CIS calculation can be improved by the inclusion of some effects of electronic corre-
lation via second order Møller-Plesset perturbation theory,

∆ECIS−MP2 = −
1
4

occ

∑
i< j

vir

∑
a<b

〈ΨCIS |H|Ψab
i j 〉

2

εa + εb − εi − ε j −∆CIS
−

1
36

occ

∑
i< j<k

vir

∑
a<b<c

〈ΨCIS |H|Ψabc
i jk 〉

2

εa + εb + εc − εi − ε j − εk −∆CIS
(3.19)

where ∆CIS is the difference between the CIS excitation and ground-state energies. The
∆ECIS−MP2 can be added to ECIS to define ECIS−MP2 for an excited state. The correspond-
ing eigenvalues are the orbital energies ε1, . . ., εn involving the labels i, j, k, . . . for occupied
spin orbitals and labels a, b, c, . . . for virtual spin orbitals.

CID and CISD

The inclusion of only doubly excited configurations leads to the CID (the configuration
interaction approach with all double substitutions) method,

ΨCID = a0Ψ0 +
occ

∑
i< j

vir

∑
a<b

aab
i j Ψab

i j . (3.20)

When both single and double virtual excitations are included, the CISD (the configuration
interaction approach with all single and double substitutions) wave function is obtained as

ΨCISD = a0Ψ0 +
occ

∑
i

vir

∑
a

aa
i Ψa

i +
occ

∑
i< j

vir

∑
a<b

aab
i j Ψab

i j . (3.21)

Although CID and CISD are well-defined models, given a standard basis set, they suffer
some serious disadvantages. These have to do with size consistency. If a method such as CID
is applied to a pair of completely separated system, the resulting energy is not the sum of the
energies obtained by applying the same theory to the systems separately [81].
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Quadratic Configuration Interaction (QCI) approach

Our main method, the QCISD(T) (the quadratic configuration interaction approach includ-
ing single, double, and triple substitutions) approach, accounts for correlations almost fully
and possesses a large number of advantages compared to lower order CI calculations such as
CIS, CID, and CISD. This method was established by Pople et al. [33] in 1987 and since that
time has successfully been applied to a variety of systems. In the case of simple molecules a
comparison with a full CI calculation is possible and shows good agreement. The results for
larger systems including metal oxide clusters are presented in the literature as well (such as
Ref. [82]). The scaling of the QCISD method with N6 (where N is the number of basis func-
tions in the system) is comparable with the coupled cluster (CC) approach of the same level
(i.e. CCSD) [83]. QCISD and QCISD(T) are similar to CCSD and CCSD(T), respectively, but
some of the terms in CC have been omitted in QCI. The CC method is originally introduced
into quantum chemistry by Cizek [84] and incorporated into Gaussian code [85, 86].

This method expresses the wave function in a fundamental equation

Ψ = eT Ψ0 (3.22)

where Ψ is the exact nonrelativistic ground state wave function, Ψ0 is the normalized ground
state HF wave function, and the operator eT is defined by the Taylor-series expansion. The
single excitation operator T1 and the double excitation operator T2 are

T1 =
occ

∑
i

vir

∑
a

aa
i t̂a

i (3.23)

and

T2 =
1
4

occ

∑
i< j

vir

∑
a<b

aab
i j t̂ab

i j . (3.24)

where t̂a
i , t̂ab

i j ,. . . are elementary substitution operators and the arrays aa
i ,a

ab
i j , . . . involve coef-

ficients to be determined. Various types of antisymmetric wave functions can be obtained by
applying various functions of the T operators to Ψ0,

Ψ = f (T1,T2, . . .)Ψ0 (3.25)

and then determining the coefficients a by an appropriate projection of the Schrödinger func-
tion (H −E)Ψ, where H is the full Hamiltonian, and E the total energy.

Thus

〈Ψ0 |H −E|Ψ〉 = 0, (3.26)

〈Ψa
i |H −E|Ψ〉 = 0, (3.27)

〈

Ψab
i j |H −E|Ψ

〉

= 0, (3.28)
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where Ψa
i is the singly substituted determinant t̂a

i Ψ0 and so forth.
For example, the CISD wave function is written in the form

ΨCISD = (1+T1 +T2)Ψ0. (3.29)

If we define

H = F +V, (3.30)

EHF = 〈Ψ0 |H|Ψ0〉 , (3.31)

E = EHF +Ecorr., (3.32)

H = H −EHF , (3.33)

V = V −〈Ψ0 |V |Ψ0〉 , (3.34)

where F is the Fock Hamiltonian (Eq. 3.7), then the CISD projection equations can be written

〈Ψ0 |H|T2Ψ0〉 = Ecorr, (3.35)

〈

Ψa
i

∣

∣H
∣

∣(T1 +T2)Ψ0
〉

= aa
i Ecorr, (3.36)

〈

Ψab
i j

∣

∣H
∣

∣(1+T1 +T2)Ψ0

〉

= aab
i j Ecorr. (3.37)

In deriving these equations from the projection conditions eq.(3.26) to (3.28), we have re-
placed 〈Ψa

i |H|Ψ0〉 = 0 by zero for all i, a. This is because Ψ0 is the optimized Hartree-Fock
function (Brillouin’s theorem) [33].

An approximation of the effects of triple substitution is available through the QCISD(T),
where three particle excitations are included by means of fourth order perturbation theory
(MP4) [87, 86].

The contribution of triple substitutions (i jk → abc) to the fourth order correlation energy
is evaluated as

∆E(4)
T = −

1
36

occ

∑
i jk

vir

∑
abc

(

εa + εb + εc − εi − ε j − εk
)−1

∣

∣

∣
wabc

i jk

∣

∣

∣

2
(3.38)

where wabc
i jk is the matrix element of perturbation operator (it can be expressed via aab

i j as in
the Eq. 3.21 and electron repulsion integrals as defined in Eq. 3.11).

In fact, the QCISD and CCSD methods have the further advantage of being completely
correct for composite two-electron systems by adding a minimum number of terms to the CI
level to make it size consistent (EAB (rAB → ∞) = EA +EB).

The Møller-Plesset perturbation theory

We mentioned before that perturbation theory could be used to study the effects of electron
correlation. Basically, the Møller-Plesset (MP) method [88] adds corrections to a zeroth-order
Hamiltonian (Ĥ0) by introducing a generalized electronic Hamiltonian, Ĥ (λ), according to

Ĥ (λ) = Ĥ0 +λV̂ , (3.39)
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where λ is some parameter and λV̂ (or Ĥ(1)) is a small perturbed correction applied to the
unpertubed system such as HF or CI.

Then, one can express an exact or full CI wave function as a power series expansion that
may be truncated as desired, viz

Ψk = Ψ(0)
k +λ1Ψ(1)

k +λ2Ψ(2)
k +λ3Ψ(3)

k + . . . (3.40)

For instance, MP2 is truncated after the second order term and so on. The aim of pertur-
bation theory is to seek expansions of the energy E:

Ek = E(0)
k +λ1E(1)

k +λ2E(2)
k +λ3E(3)

k + . . . (3.41)

where E(1) is the first-order correction to E, etc. A special case is the Rayleigh-Schrödinger

method which gives Ψ(0)
k as the state of interest in the absence of the perturbation.

Then, one obtains:

E(1)
k =

∫

Ψ(0)
k Ĥ(1)Ψ(0)

k dτ (3.42)

E(2)
k = − ∑

m6=k

(

∫

Ψ(0)
k Ĥ(1)Ψ(0)

m dτ
)2

Em −Ek
(3.43)

with corresponding results for Ψ(1) and Ψ(2), etc.

3.1.3 Spin-orbit coupling

The atomic Hamiltonian does not involve electron spin. In reality, the existence of spin
adds an additional term (usually small) to the Hamiltonian. This term, called the spin-orbit
interaction, breaks spin rotation invariance and thus lifts the degeneracy of atomic levels (fine
structure splitting). Spin-orbit interaction is a relativistic effect and is properly derived using
Dirac’s relativistic treatment of the electron as

HSO = ξ(r) l · s, (3.44)

where ξ(r) is

−
e~

2

2m2c2

1
r

dU (r)
dr

(3.45)

with a spherically symmetric potential U(r) for the electron. Classically, this interaction may
be viewed as the interaction of the magnetic moment of an electron spin with the magnetic
field induced by the motion of the nucleus around the electron. The nucleus is seen from the
coordinate system fixed on the electron.

For relativistic quantum chemical methods, analytical spin-orbit interaction are now rou-
tinely available for HF, MC-SCF, and CI wave functions. Additionally, the inclusion of spin-
orbit coupling has been successfully implemented with Møller-Plesset perturbation theory as
well as within the CC method. As mentioned, relativistic effects can be characterized by a
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variety of ways. Here, for the underlying theory of spin-orbit coupling effects we refer to the
literature [89, 90].

In recent years, Pitzer et al. [89] have proposed a new technique for calculating the spin-
orbit interaction energy by means of Spin-Orbit Configuration Interaction. This method is
obtained by the GUGA in combination with relativistic core potential and spin-orbit operators,
thus providing an efficient way for treating the electronic structure of molecules containing
heavy atoms. The development of the spin-orbit matrix elements and the implementation of
these methods in the COLUMBUS [91, 92, 93, 94] suite of programs are described.

The relativistic effective core potential (RECP) represents, for the valence electrons, the
repulsion of the core electrons, the spin-orbit interaction with the nucleus, the spin-orbit in-
teraction with the core electrons, and an approximation to the spin-orbit interaction between
the valence electrons [95], especially for heavier element systems.

The potentials obtained directly from relativistic atomic wave functions have the form

UREP =
∞

∑
l=0

|l+1/2|

∑
j=|l−1/2|

UREP
l j (r) Ôl j, (3.46)

where REP denotes the relativistic effective potential, and Ôl j are (spin-dependent) projection
operators as

Ôl j =
j

∑
m=− j

|l jm〉〈l jm| . (3.47)

The REP operators can be expressed in a more readily usable form in terms of the spin-
independent projection operators Ôl

UREP =
∞

∑
l=0

UAREP
l (r) Ôl +

∞

∑
l=1

ξl (r) l̂ · ŝÔl = UAREP +hSO (3.48)

where UAREP
l (r) is an averaged relativistic effective potential and ξl (r) depends on the dif-

ference of Ul,l+1/2 (r) and Ul,l−1/2 (r). These two terms are readily identified [96, 97] as core
potentials and spin-orbit operators, respectively. The U AREP

l (r) are approximately indepen-
dent of l when l ≥ L, where L is one larger than the largest l value of the core electrons. Then
UAREP and hSO can be reduced to

UAREP = UAREP
L (r)+

L−1

∑
l=0

(

UAREP
l (r)−UAREP

L (r)
)

Ôl (3.49)

hSO =
L

∑
l=1

ξl (r) l̂ · ŝÔl. (3.50)

With these forms, existing programs for nonrelativistic calculations can be adapted to include
relativistic effects. The additional integrals of U AREP and hSO are included in the COLUMBUS

programs.
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By using the RECP approximation in order to include the spin-orbit interaction, the total
Hamiltonian is

Htotal = H0 +HSO (3.51)

where the atomic Hamiltonian H0 is given by

H0 =
N

∑
µ=1

h(µ)+
1
2 ∑

µ6=ν
υ(µ,ν) (3.52)

and HSO is given by

HSO =
N

∑
µ=1

hSO (µ) . (3.53)

The Hamiltonian can be written as

Htotal = ∑
i, j

hi jEi j +
1
2 ∑

i, j,k,l

[i j;kl]ei j,kl +∑
i j

∑
στ

hSO
iσ, jτEiσ, jτ. (3.54)

3.2 Method implementation

3.2.1 Ab initio embedded cluster method

The smallest suitable cluster to simulate bulk NiO consists of one Ni2+ ion and six
nearest-neighbour O2− ions forming a cubic crystallographic arrangement with Oh group, [98]
(NiO6)10−. In contrast, the NiO(001) surface has C4v symmetry (considering five-fold crystal
field state), therefore we use a (NiO5)8− cluster. The isolated cluster and embedded cluster
models for the NiO(001) surface are illustrated in Fig. 3.1. The length of the nickel-oxygen
bond has been fixed at 2.0842 Å according to experimental data [99]. This measured value
has been commonly used for theoretical models in the unrelaxed case. In order to be able
to treat materials with larger surface relaxation the geometry of the cluster should be opti-
mized. For the geometry optimization on the QCISD level, one must have a possibility to
compute forces on the same level of theory. Schemes that evaluate the gradient of generic
CI energies have been available for several years [100, 101]. Computation of the forces for
the simplest CIS method is described in Ref. [31]. Formulae for the analytical evaluation of
energy gradients in quadratic configuration interaction theory, such as QCISD are derived in
Ref. [87].

For the relaxed case, we would therefore not expect very strong effects since the (001)
surface of NiO is nonpolar and the most stable geometry is quite close to the truncated bulk
one. An experiment [102] showed that surface relaxations are 0%− 4% for the first spacing
and -4%−4% for the first-layer buckling. This supports our choice of the unrelaxed geometry.
Moreover, the NiO(001) surface has been shown by low-energy electron diffraction (LEED)
studied to be almost perfect bulk termination, with no rumpling and only a 2% relaxation of
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Fig. 3.1: The (NiO5)8− cluster and embedded cluster models of the NiO(001) surface (only
the surface charges are shown).

the outer layer [103, 104]. In the case of Fe2O3 or Al2O3, where surface relaxation may play
a major role, a prior geometry optimization is necessary [105, 106, 107].

In order to correctly account for the electrostatic environment due to the rest of an ionic
solid crystal, the simplest possible way is to embed the bare cluster in a set of point charges
located at the lattice sites representing the Madelung potential in the environment. The point
charges at the edges of the calculated slab are fractional [66]. In the vicinity of the quantum
cluster, the point charges were exchanged by effective core potentials (ECPs) with charge
+2; for that purpose we used magnesium cores 1s22s22p6 deprived of 2 valence electrons in
order to simulate Ni2+ ions. This allows for the proper description of the Pauli repulsion
within the cluster and the nearest-neighbouring point charges and prevents a flow of electrons
from O2− ions to the positive charges [108, 109]. The structure of the NiO(001) surface was
assumed fixed for long-range contributions of the semi-infinite Madelung potential (15×15×7
ions), see Fig. 3.2. For the bulk system, our infinite Madelung potential was represented by
15×15×15 ions (Fig. 3.2).

For the ground state, we employ a single point calculation based on the unrestricted HF
level of theory. As a basis set for the Ni2+ ion, we use the valence Los-Alamos basis plus
double-zeta and effective core potentials (LanL2DZ ECP). The oxygen basis set was a 6-
31G* basis [110]. The first step of our excitation calculation is always the CIS calculation in
order to estimate excitation spectrum, oscillator strength, and band gap. The basis sets used
in these calculations are almost the same as for ground-state calculations, except that we add
one diffuse function into the oxygen basis set (6-31+G* basis) [111], which is necessary for
the excited state calculation.
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Fig. 3.2: The embedded (NiO6)10− and (NiO5)8− clusters modelling the bulk and (001) sur-
face of NiO.

3.2.2 Improvements of electron correlation

This step is to study the electronic correlation effects on the low-lying excited states of NiO
such as d–d transitions. At the correlated level of theory, the correlated increments, namely,
CID, CISD, QCISD, and QCISD(T) were compared with CIS. We perform these calculations
of five triplet states for d–d transitions:

3B1 ((dxz)
2,(dyz)

2,(dxy)
2,(d3z2−r2)1,dx2−y2)1);

3E ((dxz)
1,(dyz)

2,(dxy)
2,(d3z2−r2)2,(dx2−y2)1

and
(dxz)

2,(dyz)
1,(dxy)

2,(d3z2−r2)2,(dx2−y2)1);
3B2 ((dxz)

2,(dyz)
2,(dxy)

1,(d3z2−r2)1,(dx2−y2)2);
3A2 ((dxz)

2,(dyz)
2,(dxy)

1,(d3z2−r2)2,(dx2−y2)1);
3E ((dxz)

1,(dyz)
2,(dxy)

2, (d3z2−r2)1,(dx2−y2)2

and
(dxz)

2,(dyz)
1,(dxy)

2,(d3z2−r2)1,(dx2−y2)2).

These methods allow us to take into account a part of the electronic correlation in both
ground and excited states. All ab initio embedded calculations were done with the GAUS-
SIAN98 package [112].

3.2.3 Treatment of spin-orbit coupling

In order to investigate the low-lying excites states more fully, we consider the effect of
spin-orbit coupling on these energy levels of the bulk NiO and NiO(001) surface using the
spin-orbit configuration interaction approach of Yabushita et al. [89]

Since GAUSSIAN98 is not capable of predicting a property of spin-orbit coupling (except
that MC-SCF approach is only available for spin-orbit coupling for elements through Chlorine
where LS coupling is used), a different program such as COLUMBUS has been used in order to
estimate this relativistic effect. Firstly, we consider the theory of the splitting of atomic energy
levels in crystalline field with the symmetry including the effects of spin-orbit coupling, by
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following a paper by Cracknell (1968) [113]. Then, we use the GUGA-CI programs in the
COLUMBUS code for multi-reference singles and doubles CI calculations including the spin-
orbit interaction in the RECP approximation [89]. The work in this part is divided into three
main steps:

• We verify the triplet excited states without the spin-orbit interaction of the NiO(001)
surface system during the CIS framework and compare these energies with results ob-
tained from GAUSSIAN98.

• We determine the singlet excited states without spin-orbit interaction.

• We generate the triplet excited states including the spin-orbit interaction effect.

In order to analyze the symmetry of each levels of the ground and excited states, we
first address a section of useful explanation how crystal field and spin-orbit splittings can be
obtained from the unified point of view by decomposing the direct product of representations
over the irreducible representations (in Section 4.4.1).

3.3 Nonlinear optical surface response

The electric polarization P can be expanded in terms of the electric field as

P = χ(ω)E +χ(2ω)E2 +χ(3ω)E3 + . . . (3.55)

where χ(ω), χ(2ω), χ(3ω), . . . are tensors of the linear polarizability, the first order and the
second order hyperpolarizabilities, respectively, and so on. In this work, we deal with χ(2ω)

representing a second-harmonic contribution. Within the ED approximation, χ(2ω) vanishes
for bulk NiO due to the inversion symmetry of the crystal, but it is allowed at the surface
where inversion symmetry is broken. Thus, in the electric-dipole approximation, SHG is an
ideal probe of the surface d–d intragap transitions.

We consider an expression for the second order polarization

Pi = χ(2ω)
i jk E jEk, (3.56)

where

χ(2ω)
i jk (ω) =

ρ0

ε0
∑
αβγ

[

〈γ|di|α〉〈α|d j|β〉〈β|dk|γ〉×

f (Eγ)− f (Eβ)

Eγ−Eβ−~ω+i~δ −
f (Eβ)− f (Eα)

Eβ−Eα−~ω+i~δ

Eγ −Eα −2~ω+2i~δ

]

,{i, j,k} ∈ {x,y,z} (3.57)

is the second-harmonic susceptibility tensor. It is derived from the second order perturbation
theory for the density matrix and the details are given in Ref. [34]. In this formula f is the
Fermi distribution, which is unity for the ground state, and vanishes otherwise. ρ0 is the
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unperturbed electron density and 〈α|di, j,k|β〉 are the matrix elements of the dipole moment
d =

(

dx, dy, dz
)

. The overline denotes the symmetrization needed to fulfill the symmetry
upon interchanging the two incident photons. The transition dipole matrix elements over two
Slater determinants are computed according to

〈α|d|β〉 = 〈 1√
n!

|χα
1 χα

2 . . .χα
i . . .χα

n | |d|
1√
n!

∣

∣

∣χβ
1χβ

2 . . .χβ
i . . .χβ

n

∣

∣

∣〉

=
n

∑
i, j=1

(−1)i+ j〈χα
i |d|χ

β
j 〉Mi j, (3.58)

where Mi j are the minors of the matrix composed of the overlaps between single-particle
wave-functions

M =













Oαβ
11 Oαβ

12 · · · Oαβ
1n

Oαβ
21 Oαβ

22 · · · Oαβ
2n

...
... · · · ...

Oαβ
n1 Oαβ

n2 · · · Oαβ
nn













.

For the NiO(001) surface, the symmetry analysis gives the only nonvanishing tensor ele-
ments resulting from the crystallographic structure of an undistorted cubic lattice:

χ(2ω)
i jk =







0 0 0 0 χ(2ω)
xxz 0

0 0 0 χ(2ω)
yyz 0 0

χ(2ω)
zxx χ(2ω)

zyy χ(2ω)
zzz 0 0 0






. (3.59)

To calculate χ(2ω) related to surface antiferromagnetism, we need spin-orbit coupling to
be included in the wave function. This however is beyond the scope of this thesis and will be
the subject of a forthcoming work.

Based on the SHG tensor we compute nonlinear optical properties of the system. The
second-harmonic electrical-field projection on the optical plane of the analyzer is given in the
short form notation [114] by:

E(2ω;Θ,Φ,ϕ) = 2iδz
ω
c
|E(ω)

0 |2




ApFc cosΦ
As sinΦ

ApN2Fs cosΦ





T

·







· · · · · ·
· χ(2ω)

i j j · · χ(2ω)
i jk ·

· · · · j 6= k ·






·

















f 2
c t2

p cos2 ϕ
t2
s sin2 ϕ

f 2
s t2

p cos2 ϕ
2 fstpts cosϕsinϕ

2 fc fst2
p cos2 ϕ

2 fctpts cosϕsinϕ

















(3.60)

where Θ, Φ and ϕ are the angle of incidence, polarization of the incident photon and polar-
ization of the output photon, respectively. The nonlinear response depends as well on the
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optical properties of the system. Introducing notations for the frequency dependent refraction
index of the material n =

√

ε(ω) and N =
√

ε(2ω) the other parameters can be expressed
as fs = sinΘ

n , fc =
√

1− f 2
s — projections of the wave vector in the system, tp = 2cosΘ

ncosΘ+ fc

and ts = 2cosΘ
cosΘ+n fc

— linear transmission coefficients, and Ap =
2πTp
cosΘ and As = 2πTs

cosΘ — trans-
mission field amplitudes. δz means the thickness of the system (in our case equal to a lattice
constant of 4.1684 Å).

The intensity of the SHG response can then be obtained from:

I(2ω;Θ,Φ,ϕ) = ε0c|E(2ω;Θ,Φ,ϕ)|2. (3.61)

Using the many-body wave functions and energies resulting from CID and QCISD(T)
calculations, we compute the SHG tensor for the NiO(001) surface. In contrast to bulk NiO,
where the SHG response is forbidden within the ED approximation because of the inversion
symmetry, the C4v symmetry of the surface leads to five non-zero tensor elements. From that
the intensity of the non-linear optical response as a function of photon energy at different
polarizations of the incident and outgoing photons is obtained. This quantity can be directly
measured in experiment, and we suggest possible conditions in order to detect it.



Chapter 4

Results and Discussion

4.1 Ground state properties

First, we consider the ground-state electronic structure of an embedded cluster mod-
elled as a 15×15×7 (seven layers deep) point-charge lattice of the NiO(001) surface. The
3d8 configuration at the NiO(001) surface has the 3B1 electronic state as its ground state
[(dxz)

2,(dyz)
2,(dxy)

2, (d3z2−r2)1,(dx2−y2)1]. In a C4v symmetry, there are four different energy
levels, related to the degenerate dxz(dyz) orbitals, the dxy orbital, the d3z2−r2 orbital, and the
dx2−y2 orbital, respectively. More insight in the electronic structure is obtained from the cal-
culated density of states (DOS) of the ground state following Mulliken population analysis,
which is shown in Fig. 4.1. For the description of the DOS, two different sets of orbitals are
assigned to the two spins based on an UHF calculation.

Figure 4.1 (a) shows the calculated DOS of the majority spin of the ground state. The lower
and upper valence bands predominantly exhibit Ni(3d) and O(2p) characters, respectively.
There are altogether 15 electron states between −11.97 and −8.16 eV and 5 states between
−17.14 and −15.51 eV which correspond to 2p and 3d orbitals, respectively, of the O2−

and Ni2+ ions in the embedded (NiO5)8− cluster. Some of these states are degenerate. The
main character of the localized 3d orbitals consists of four electronic states such as dx2−y2 ,
d3z2−r2 , dxz(dyz) and dxy splitting from the triple degenerate of eg and t2g states in the cubic
Oh symmetry, respectively. The valence band has O(2p) states at the upper edge leading to
a charge-transfer gap in our study. The four lowest unoccupied orbitals are the 4s and 4p
orbitals of the Ni2+ ion.

The DOS of the minority spins is given in Fig. 4.1 (b). The valence band consists of the
O(2p) states in the energy range (−11.70, −8.98) eV. The latter comprise the dxy orbital (about
−13.69 eV) and the degenerate dxz(dyz) orbitals at an energy of −13.66 eV. The lower edge
of the conduction bands also consists of the 4s and 4p orbitals. The vicinity of the unoccupied
Ni(4s, 4p) orbitals is mainly of Ni-3d character in an eg level (d3z2−r2 and dx2−y2).

The detailed Mulliken procedure for this embedded cluster also shows the net atomic
charge and spin values, see Table 4.1. Note, the atomic labels in Table 4.1 are given in Fig. 3.1.
According to this Mulliken population analysis, the Ni and O atoms are not fully ionized, and
have explicit charges of +1.1 and −1.8, respectively. The net atomic spin resulting from our

33
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Fig. 4.1: Density of states broadened by a Lorentzian with the full width at half maximum
(FWHM) of 0.5 eV.

embedded cluster calculation is similar to the data obtained by Towler et al. [115] employing
a different approach.

This work Ref. [115]
Atom q δns Magnetic configuration δns(Ni) δns (O)

Ni 1.1172 1.8922 NiO(AF2) 1.923 0.000
O1-O4 −1.8119 0.0208 NiO(AF1) 1.934 0.024

O5 −1.8697 0.0248 NiO(FM) 1.931 0.069

Tab. 4.1: Calculated net atomic charges (q) and net atomic spin (δns) carried out by Mulliken
population analysis. The results of Ref. [115] for true antiferromagnetic type II (AF2) and
hypothetical ferromagnetic (FM) and antiferromagnetic type I (AF1) configurations of NiO
are given for comparison of the spin density distributions.

4.2 Excited states and optical properties

4.2.1 Madelung field effects

We performed calculations for the ‘slab’ of three sizes, namely 7×7×3 ions, 11×11×5
ions, and 15×15×7 ions of the NiO conventional crystal cells (note that these are defined in
terms of 3×3×1, 5×5×2, and 7×7×3 unit cells). For the largest crystal size used in our
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calculations, the total Madelung potential is represented by 1556 (15×15×7−6−13) point
charges . These various sizes of slabs were chosen to check for size-related effect, to ensure
reproducibility of the results and to assess the effect of electrostatic potentials.

By convention, three optical-gap energies of the bare (NiO5)8− embedding in the various
Madelung field sizes were compared . These results are presented in Table 4.2. In the first
row of Table 4.2, we can estimate the relative performance of these results. The larger envi-
ronmental crystal size can reduce the gap energy. One can see that the gap energy does not
change from the medium size to the largest size. From this we conclude that the size of our
largest model to take into account the long range contribution of electrostatic potential of the
NiO crystal is large enough as to yield sufficiently accurate results.

Spin Embedded cluster size
7×7×3 11×11×5 15×15×7

majority spin 7.99 7.58 7.58
minority spin 8.73 8.33 8.33

Tab. 4.2: Calculated optical gap energy (eV) on NiO(001) for spin-up (majority) and spin-
down (minority). Results for increasing sizes of the embedded cluster models with dimension
n×n×m (m layers deep) are indicated.

4.2.2 CIS results and optical properties

In this section we discuss the ability of the CIS technique to reproduce experimental exci-
tation energies. NiO is a complicated system for understanding excited states. It also serves
as an excellent example to show the strengths, weaknesses, and pitfalls of CIS calculations.
Because of the high symmetry of the crystal, care must be exercised in producing initial guess
vectors for the configuration interaction procedure. All symmetry types must be present for
the systematic search of the lowest excited states. In comparing results to experimental data,
one must be aware of the existence of symmetry-forbidden states as well as diffuse states
observed in optical spectra.

Table 4.3 contains the calculated CIS vertical excitation energies and oscillator strengths
f for the first 20 excited states. In the Table 4.3, let’s consider the properties of the seventh
entry. The transition energy is calculated as 7.5765 eV = 163.64 nm. And, 34A → 35A
(O(2p) → Ni(4s)) shows that the configuration resulting from an electron being excited from
the 34A to 35A MO has a CI coefficient of 0.82059 and it has a dominance of 67.3% (=
(0.82059)2 ∗ 100). This is an example of an excited state expressed as a mixture of excited
configurations. In general, the description of the excited state may require many excited
configurations. Because of this, CI is also called the Configuration Mixing (CM) method.
Note that, in GAUSSIAN98, if we want to determine the specific type of orbital transformation
for a transition, we will need to examine the molecular orbitals for the largest components of
the transition, indicated by the largest wave function coefficients. The 34A MO is the HOMO
and the 35A MO is the LUMO (for the α state). Thus, the tenth entry in the table represents the
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State Excitation energy Main excited configurations f
eV nm MO CI coef. Config.

1 0.5122 2420.69 17B → 37B 0.73301 3B1 → 3E 0.0000
2 0.5122 2420.69 16B → 37B 0.73301 3B1 → 3E 0.0000
3 0.9604 1291.01 15B → 38B 0.83926 3B1 → 3B2 0.0000
4 1.9570 633.53 15B → 37B 0.74153 3B1 → 3A2 0.0000
5 2.8638 432.94 17B → 38B 0.79161 3B1 → 3E 0.0000
6 2.8638 432.94 16B → 38B 0.79161 3B1 → 3E 0.0000
7 7.5765 163.64 34A → 35A 0.82059 3B1 → 3B1 0.0000
8 8.3253 148.92 32B → 33B 0.59458 3B1 → 3E 0.0000
9 8.3283 148.92 31B → 33B 0.58471 3B1 → 3E 0.0009
10 8.4757 146.28 28B → 33B 0.62669 3B1 → 3B1 0.0000
11 8.6962 142.57 30B → 33B 0.70344 3B1 → 3E 0.0021
12 8.6962 142.57 29B → 33B 0.70344 3B1 → 3E 0.0021
13 8.8060 140.79 33A → 35A 0.68267 3B1 → 3A1 0.0000
14 8.8079 140.76 26B → 33B 0.67135 3B1 → 3A2 0.0000
15 8.9114 139.13 32A → 35A 0.56118 3B1 → 3E 0.0063
16 8.9114 139.13 31A → 35A 0.56118 3B1 → 3E 0.0063
17 8.9139 139.09 25B → 33B 0.78769 3B1 → 3B1 0.0000
18 8.9598 138.38 30A → 35A 0.62596 3B1 → 3B1 0.0000
19 9.0011 137.74 27A → 35A 0.68812 3B1 → 3A2 0.0000
20 9.0265 137.35 29A → 35A 0.72358 3B1 → 3E 0.1158

Tab. 4.3: CIS vertical excitation energies (eV) of the NiO(001) surface.

HOMO-LUMO transition. Similarly, the eighth state excitation corresponds to the HOMO-
LUMO transition (for β state).

The twentieth excitation indicates the excited configuration from 29A → 35A. This state
has a relatively large oscillator strength (0.1158) and corresponds to a very intense peak in the
optical absorption spectrum.

4.2.3 Optical gap

Although the CI calculation does not directly provide information about the band gap (the
band gap corresponds to experiments with variable particle number, such as x-ray photoemis-
sion, and must be obtained from a Green-function method such as GW or by identifying the
ionization potential (IP) and electron affinity (EA) that will correspond to the HOMO-LUMO
gap), we estimate it by keeping a track on transitions between ground and excited states from
the CIS calculation possessing the symmetry of the 2p oxygen (HOMO state) and 4s nickel
(LUMO) states, respectively. The lowest excited state, where this transition is strongly ex-
pressed, has an energy of 7.6 eV (the corresponding CIS coefficient is approximately 67.3%).
This is much larger than the experimental value (4.0− 4.3 eV [39, 116] in bulk NiO) or the
result of a GW calculation (5.5 eV) by Aryasetiawan et al. [22]. Such a large discrepancy
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has two origins: the importance of the correlation effects is not accounted for properly on the
CIS level and the fact that the excitation energy can be identified with the HOMO-LUMO
gap only in the case of infinite particle number. Therefore, to improve the gap energy we
include some of the electronic correlation beyond the CIS method via second order Møller-
Plesset perturbation theory called CIS-MP2 calculation. We found a smaller gap of 6.8 eV,
indicating that correlation energy is of importance here. Even though our band gap between
O-2p and Ni-4s state is not in good agreement with experimental data for both Mott-Hubbard
and charge-transfer insulators (d → d and p → d characters, respectively), it provides us with
an appropriate description of the low-lying d–d intragap excitations that are of interest for
magnetic applications.

4.2.4 Excitation spectra of NiO(001) surface

Using a Lorentzian level broadening with 0.5 eV FWHM, we obtain the density of excited
states on the NiO(001) surface from 300 excitation energies (see Fig. 4.2). There are several
important implications of these findings. First, in the CIS calculation, the d–d transitions lie
in the range below 3.0 eV and fall within the band gap of 7.6 eV. These transitions support the
results of high-resolution EELS measurements. Noguera et al. [64] mentioned that the EELS
experiments have revealed a range of weak absorptions within the gap in the range 0.5−3.0
eV, which have been attributed to orbitally forbidden (∆l=0) one- and two-electron bulk and
(100) surface d–d excitations. Second, excitations above the gap consist of a charge-transfer
(O-2p → Ni-4s, O-2p → Ni-4p,5p and O-2p → Ni-3d) and an intra-atomic (Ni-3d → Ni-4s
and Ni-3d → Ni-4p) transitions, while d–d transitions are not found in this region.

4.2.5 Oscillator strengths and optical absorption spectra

In Fig. 4.3, we plot some of the oscillator strengths of allowed transitions from our 300 ver-
tical excited states in the CIS calculation. It is shown that the oscillator strengths of optically
allowed transitions correspond to O(2p) → Ni(4s), O(2p) → Ni(4p), O(2p) → Ni(3d), O(2p)
→ Ni(5p) and Ni(3d) → Ni(4p) transitions labeled as (a) to (e) in Fig. 4.3. As an example,
consider the group of excitations (c) for O(2p) → Ni(3d). It is well known that the exper-
imental band gap results from transitions of type (c), which are expected to occur at lower
energies in a theory beyond the CIS level due to the correlation effects of the d–electrons. In
addition, as is clear from Fig. 4.3, the oscillator strengths of these transitions are sufficiently
large to make them observable. Hence, the optical absorption spectra (allowed transitions)
dominantly arise from the charge-transfer states. However, it should be noted that the d–d
transitions and band gap (in CIS) excitations are forbidden transitions (in linear optics) as the
oscillator strength equals to zero.

4.2.6 Electronic correlation effects on d–d transitions

The partly filled 3d shell in solid transition-metal compounds is quite localized on the
transition metal ion and gives rise to large electron correlation effects [64]. Thus, it is neces-
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Fig. 4.2: UV/Visible spectra obtained for the NiO(001) surface.
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sary to include electronic correlation effects for an accurate description of d–d excitations in
NiO [64, 65, 55].

Our d–d transitions for different levels of correlation, such as CID, CISD, QCISD and
QCISD(T), are compared with those obtained from CIS calculation in both surface and bulk
NiO (see Table 4.4). When the electronic correlation is enhanced from CID to CISD, QCISD
and QCISD(T), the electron correlations significantly decrease the magnitude of excitation
energies, as seen in Table 4.4. It has been clearly demonstrated that electronic correlation
strongly affects the d–d transitions. Only at our highest-level theoretical method such as
QCISD(T), the d–d transition energies are found to compare well with the experimental data,
as shown in Table 4.5. Our bulk d–d transitions (1.13 and 2.1 eV) are somewhat higher than
the SHG lines by Fiebig et al. [17] (1.0 eV and 1.75 eV for 3A2g → 3T2g and 3A2g → 3T1g,
respectively).

System Transition Excitation energy (eV)
CIS CID CISD QCISD QCISD(T)

Ni2+ 3B1 → 3E 0.51 0.51 0.52 0.53 0.53
surface 3B1 → 3B2 0.96 1.02 1.04 1.16 1.17

3B1 → 3A2 1.96 1.64 1.64 1.32 1.21
3B1 → 3E 2.86 2.61 2.63 2.23 1.84

Ni2+ 3A2g → 3T2g 0.90 0.99 1.01 1.11 1.13
bulk 3A2g → 3T1g 2.74 2.53 2.55 2.27 2.10

Tab. 4.4: Calculated d–d excitation energies (eV) of the NiO(001) surface and bulk NiO at
differential levels of ab initio correlated theory (this work).

4.2.7 d–d transitions

In this part, we would like to emphasize our d–d transitions in the more details and discuss
how the electron transfers between 3d–orbitals for both bulk and (001) surface systems of
NiO.

As stated before, our calculation also yields the optically active states within the gap of
NiO, their character depends on the local symmetry: in the clusters which simulate bulk NiO,
the gap states have a charge-transfer character. On the surface, however, a strong contribution
of the optically active d–d transitions can be observed. These excited states have energies
lower than the charge-transfer excitation, which is important in describing the optical proper-
ties of the TMO. An understanding of these transitions is very important for the development
of the theory of surface SHG in NiO(001) [117, 118].

In Table 4.5, we compare the d–d excitation energies of Ni2+ ions on the NiO(001) sur-
face in our highest-level calculation with available theoretical and experimental data. The
d–d transitions for bulk NiO are also shown for comparison of surface d–d transitions. These
transitions are only related to triplet-triplet excitations. The last column in Table 4.5 shows
our predicted transitions at energies of 0.53, 1.17, 1.21 and 1.84 eV. The excited states at the
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lowest energy are twofold degenerate dxz(dyz) → d3z2−r2 transitions; the one-electron dxy →
dx2−y2 transition is at higher energy of 1.17 eV. Additionally, the one-electron dxy → d3z2−r2

transition has a relative energy of 1.21 eV and the energetically highest state is the twofold
degenerate dxz(dyz) → dx2−y2 transition at 1.84 eV. In bulk NiO, there are two threefold de-
generate excitations (3T2g and 3T1g excited states). The 3T2g state consists of triple excitations
such as dxz → dx2−y2 , dxy → dx2−y2 and dyz → d3z2−r2 , while the 3T1g state has dyz → dx2−y2 ,
dxz → d3z2−r2 and dxy → d3z2−r2 . The excitation energies of the 3T2g and 3T1g states are about
1.13 and 2.10 eV, respectively. Our calculated excitation energies for d–d transitions are in
good agreement with the experimental observations and with the theoretical calculations in
both surface and bulk NiO. In Sec. 4.5 we will calculate and discuss the SHG spectra.

State Transition Excitation energy (eV) This work
Theory† Experiment† QCISD(T) Transition

Ni2+ 3B1 → 3E 0.65, 0.62, 0.50 0.57, 0.60 0.53 dxz → d3z2−r2

surface dyz → d3z2−r2

3B1 → 3B2 1.00, 0.98, 0.83 1.00 1.17 dxy → dx2−y2

3B1 → 3A2 1.30, 1.21 1.30 1.21 dxy → d3z2−r2

3B1 → 3E 1.44, 1.38, 1.85 1.62 1.84 dxz → dx2−y2

dyz → dx2−y2

Ni2+ 3A2g → 3T2g 1.00, 0.81, 0.86 1.13, 1.08 1.13 dxz → dx2−y2

bulk 1.05 , 1.10 dxy → dx2−y2

dyz → d3z2−r2

3A2g → 3T1g 1.72, 1.81 1.95, 1.86 2.10 dyz → dx2−y2

2.07, 2.21 1.79, 1.87 dxz → d3z2−r2

dxy → d3z2−r2

Tab. 4.5: Calculated d–d excitation energies (eV) of the NiO(001) surface and bulk NiO com-
pared to available experimental and theoretical data.
†Taken from Ref. [64], and references therein.

4.3 Electron density

The pictures below are the electron density1 plotted using the electronic potential calcu-
lated at points of ground and excited states for both the NiO(001) surface and bulk NiO. These
serve two purposes. First, the 2D contour-line pictures are used to discuss the spin density in
term of the deference between alpha and beta spin densities (ρα(r)−ρβ(r)). Second, the 3D
pictures show the electron density contributing to the better understanding of the different
densities obtained at each ground and excited states. The 3D visualization of the electron
density surfaces may provide a more exciting insight than the 2D representation.

1 The electron density function or electron probability distribution function, ρ(r), is a three-dimensional func-
tion defined such that ρ(r)dr is the probability of finding an electron in a small volume element, dr at some point
in space, r.
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4.3.1 NiO(001) surface

Figures 4.4 – 4.8 show the representations of spin densities for ground and excited states
(only d–d transitions) on the NiO(001) surface. The contour lines in the black color cor-
respond to the densities of 0.01, 0.005, 0.001, 0.005, and 0.0001 a.u.−3 and the red lines
represent the same densities for the negative value. By comparing the results, we find signifi-
cant changes as well as rather moderate changes in the spin densities among these ground and
excited states. In contrast, the total electron density remains almost the same for all states.
The spin density is closely related to the distribution of magnetic moments in the cluster, and
can be described by the net atomic spin. The net atomic spin is a scalar quantity that can
be assigned to each nuclei of the cluster and describes excess or lack of spin density on the
atom. In the case of an isolated atom the net atomic spin can be defined unambiguously and
is just a difference between the number of spin-up and spin-down electrons. In the case of a
cluster, there are several approaches for the computation of this quantity. The simplest one
assumes the net atomic spin to be just a sum of molecular orbital coefficients corresponding
to the basis function residing on this atom. A more appropriate definition of this quantity can
be obtained by fitting the electric field created by the electrons (all, spin-up, or spin-down) in
the system to the set of point charges placed at positions of nuclei. These charges are then
called net atomic charges (spins) depending on which electric field is considered. In contrast,
the magnetic moment is a vector quantity that has a quantization direction and is proportional
to the net spin. In order to analyze the distribution of magnetic moments in NiO we use net
spins obtained from the Mulliken population analysis.

X

Y

(a)
Z

(b)
YX

Fig. 4.4: Contour plot of the difference of spin densities between spin-up and spin-down for
the ground state of the (NiO5)8− cluster modelling the NiO(001) surface: (a) top view on the
section in the surface plane; (b) side view on the same section. Black lines show contours
corresponding to the densities of 0.01, 0.005, 0.001, 0.0005, 0.0001 a.u.−3. Red lines show
the same for negative densities.

The spin density of the ground state depicted in Fig. 4.4 demonstrates two effects that:
(i) the electrons along the surface plane are localized within the (NiO5)8− cluster (Fig. 4.4
(a)), which may show that our embedding model works well, otherwise the electrons would
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escape attracted by the positive point charges around the cluster; (ii) the additional spin density
trying to escape the surface, tends to occupy the most diffuse atomic orbitals, which belong
to Ni atom (Fig. 4.4 (b)). The ground state configuration is the most symmetric one and
is characterized by an almost homogeneous distribution of the net atomic spins among the
oxygen atoms (Tab. 4.1).

It is interesting to observe how the difference in symmetry and energy of the states are
reflected by the distribution of the magnetic moments in the cluster. The comparison of the
ground-state spin density to those of the excited states reveals the following features of their
electronic structure. For the lowest 3E excited state (Fig. 4.5), the spin densities of the doubly
degenerate state shows slightly higher net spin on the nickel atom (δns = 1.93) due to the
flowing of the spin density from the apex O atom (δns = 0.004) and its distribution among
in-plane oxygen atoms.

This is the result of the dxz → d3z2
−r2 and dyz → d3z2

−r2 transitions2 giving the major
contribution to the two modes of this state. As can be seen from the visualisation of these
occupied (Fig. 4.10) and virtual orbitals (Fig. 4.11) 3d orbitals, the dxz and dyz states can be
transformed one in another by the π/2 rotation in the x− y plane, while the d3z2

−r2 has the z
axial symmetry. Therefore the net atomic spin is different for the oxygen atom on the x and y
axis (δns = 0.019 and 0.015).

In the second 3B2 state the net spins reside almost completely on the Ni (δns = 1.97) and
vertex O (δns = 0.023), while being vanishing on the rest (Figs. 4.6). This is coursed by the
dxy → dx2

−y2 electronic transition.
The most significant changes in the distribution of net spins compared to the ground state

configuration was observed for the 3A2 excited state (Fig. 4.7). Very high spin density was
found on the in-plane oxygen atoms (δns = 0.027) This is the result of negative net spin
residing on the out of plane oxygen (δns = −0.001) and moderate on the nickel (δns = 1.89).
As before this agrees well with the electronic transition among dxy and d3x2

−r2 orbitals.
The last 3E electronic state is highly asymmetric with in-plane preferable direction (two

modes corresponding to the transitions (dxz → dx2
−y2 and dxz → dx2

−y2 are found). Two of
the O atoms have net spins δns = 0.014, while their counterparts possess only δns = −0.002.
This is understandable in view of the fact that very distorted electronic configurations are only
possible at higher cluster energy. It is also interesting to remark that for none of the excited
states the electron density is distributed symmetrically around the oxygen atoms as would be
expected in the case of an infinitely large cluster. This clearly demonstrates the deficiency
of the embedded cluster model and suggests to perform calculations with a larger number of
atoms in the cluster.

Figures 4.9 – 4.14 illustrate the calculated electron densities of ground and excited states
on the NiO(001) surface. The electron density of the ground state is shown as Fig. 4.9 (a) and
the total electron density corresponding to the majority (alpha-spin) of the electron is depicted
(see Fig. 4.9 (b)). For the ground state properties, again, we also show a series of d–orbitals

2 Here we continue to use a notation for the single-particle states in accordance with spherical symmetry
classification in order to emphasize their geometric structure. In fact for the C4v symmetry, the states dxz(dyz),
d3z2

−r2 , dxy, and dx2
−y2 get their notation according to the irreducible representations of this point group: e, a1,

b1, b2.
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in the electron densities from Figs. 4.10 – 4.11. The Fig. 4.10 (left), (right), and (center) refer
to the occupied d–orbitals of dxz, dyz, and dxy, respectively. For the virtual d–orbitals such as
d3z2

−r2 and dx2
−y2 , the electron densities are carried out (Fig. 4.11 (left) and (right)).
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Fig. 4.5: Contour plot of the difference of spin densities between spin-up and spin-down
for the double degenerate 3E excited state of the (NiO5)8− cluster modelling the NiO(001)
surface: (a) and (b) top view on the section in the surface plane; (c) and (d) side view on the
same section. Black lines show contours corresponding to the densities of 0.01, 0.005, 0.001,
0.0005, 0.0001 a.u.−3. Red lines show the same for negative densities.
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Fig. 4.6: Contour plot of the difference of spin densities between spin-up and spin-down for
the 3B2 excited state of the (NiO5)8− cluster modelling the NiO(001) surface: (a) top view on
the section in the surface plane; (b) side view on the same section. Black lines show contours
corresponding to the densities of 0.01, 0.005, 0.001, 0.0005, 0.0001 a.u.−3. Red lines show
the same for negative densities.
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Fig. 4.7: Contour plot of the difference of spin densities between spin-up and spin-down for
the 3A2 excited state of the (NiO5)8− cluster modelling the NiO(001) surface: (a) top view on
the section in the surface plane; (b) side view on the same section. Black lines show contours
corresponding to the densities of 0.01, 0.005, 0.001, 0.0005, 0.0001 a.u.−3. Red lines show
the same for negative densities.
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Fig. 4.8: Contour plot of the difference of spin densities between spin-up and spin-down
for the double degenerate 3E excited state of the (NiO5)8− cluster modelling the NiO(001)
surface: (a) and (b) top view on the section in the surface plane; (c) and (d) side view on the
same section. Black lines show contours corresponding to the densities of 0.01, 0.005, 0.001,
0.0005, 0.0001 a.u.−3. Red lines show the same for negative densities.
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Fig. 4.9: (a) Left: surface electron density at 0.01 a.u.−3 of the ground state. (b) Right: the
total spin electron density corresponds to the majority spin of the ground state.

Fig. 4.10: Electron density at 0.05 a.u.−3 of the occupied d–orbitals. Spin-down dxz, dyz, and
dxy orbitals are shown.

Fig. 4.11: Electron density at 0.05 a.u.−3 of the virtual d–orbitals. Spin-down d3z2
−r2 and

dx2
−y2 orbitals are shown.
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Fig. 4.12: Surface electron density at 0.01 a.u.−3 of the doubly degenerate 1st excited state.

Fig. 4.13: Surface electron density at 0.01 a.u.−3 of the 2nd and 3rd excited states.

Fig. 4.14: Surface electron density at 0.01 a.u.−3 of the doubly degenerate 4th excited state.
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4.3.2 Bulk NiO

Figures 4.15 - 4.17 show the contour plots of spin-densities for ground and excited states
(d–d transitions) in bulk NiO. For these products, we found the most interesting features on
the ground state (see Fig. 4.15 (a) and (b)). They show the same electron densities at such a
point along with x-, y-, and z-axis reflecting the full (Oh) symmetry of the ground state in bulk
NiO. The areas of positive spin densites are localized around Ni and each of the O atoms. The
negative spin density occupies a narrow interstitial region around the central atom.

Z Y

X

(a)
Z

X Y

(b)

Fig. 4.15: Contour plot of the difference of spin densities between spin-up and spin-down
for the ground state of the (NiO6)10− cluster modelling the bulk NiO: (a) side view along
with x-axis; (b) side view along with z-axis. Black lines show contours corresponding to
the densities of 0.01, 0.005, 0.001, 0.0005, 0.0001 a.u.−3. Red lines show the same for the
negative densities.

The net atomic spin of the Ni atom is δns = 1.866, the rest is equally distributed over
oxygen atoms (δns = 0.022). This is interesting fact showing that the magnetic moment of Ni
atom in the bulk environment is smaller than on the (001) surface3 (Tab. 4.1). Comparison of
the spin density plots for the bulk and surface NiO (Fig. 4.15 and Fig. 4.4) reveals how the
accessing magnetic moment is formed on the surface Ni atom. In this case the termination
of the broken Ni-O bond is expressed as a superfluity of alpha electrons on the diffusive Ni
orbitals.

For the threefold degenerate T2g excited state (Fig. 4.16), the spin-densities contain three
modes corresponding to d–d transitions (dxz → dx2

−y2 , dxy → dx2
−y2 , and dyz → d3z2

−r2). These
transitions course a flow of the spin density from four of the oxygen atoms to the Ni atom

3 As explained before, the net atomic spin is not exactly the magnetic moment of the atom, although these
quantities are closely related. Here, we would like to remark about the orbital moment contribution to the
total magnetic moment of the Ni atom. A recent magnetic x-ray scattering measurement (V. Fernandez et al.,
Phys. Rev. B 57, 7870 (1998)) indicates that the orbital-to-spin angular momentum ratio in NiO is as large as
L/S = 0.34 , far from fully quenched orbital moment. In this experiment was also found that the spin and orbital
moments in NiO are collinear. The importance of orbital magnetic moment was confirmed in recent LSDA+U
calculations (S. K. Kwon and B. I. Min, Phys. Rev. B 62, 73 (2000)) which give the values for the orbital
moment µL = 0.29 and spin moment µS = 1.64.
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increasing its net spin (δns = 1.932). The corresponding O atoms become than less polarized
(δns = 0.006) (see also Fig. 4.21).

Similarly, at the threefold degenerate T1g excited state (Fig. 4.17), three spin densities
corresponding to d–d transitions (dxz → d3z2

−r2 , dxy → d3z2
−r2 , and dyz → dx2

−y2) result in
increase of the net spin of the Ni (δns = 1.913) due to the transition of the spin density from
two of the oxygen atoms (δns = −0.002) (see also Fig. 4.22).

Various 3d–orbitals of bulk NiO are shown in Figures 4.19 - 4.20. The d3z2
−r2 orbital has

two nodal cones. The dx2
−y2 has two nodal planes. The other three d–orbitals have the same

shape but have different orientations, forming three times degenerate t2g state. The dxz and dyz

orbitals have their lobes between the x and z axes and between the y and z axes, while the dxy

orbital has its lobes lying between the x and y axes. Both orbital and magnetic moments are
larger in NiO than in fcc Ni which has µL = 0.06 and µS = 0.63. This suggests that the d–
orbitals in NiO are more localized than in Ni metal. Finally, the calculated electron densities
of ground state (3A2g) and excited states (3T2g and 3T1g) in bulk NiO are shown in Figures 4.18
and 4.21- 4.22.
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Fig. 4.16: Contour plot of the difference of spin densities between spin-up and spin-down
for the triple degenerate 3T2g excited state of the (NiO6)10− cluster modelling the bulk NiO:
(a), (b), and (c) side view along with x-axis; (d), (e), and (f) side view along with z-axis.
Black lines show contours corresponding to the densities of 0.01, 0.005, 0.001, 0.0005, 0.0001
a.u.−3. Red lines show the same for the negative densities.
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Fig. 4.17: Contour plot of the difference of spin densities between spin-up and spin-down
for the triple degenerate 3T1g excited state of the (NiO6)10− cluster modelling the bulk NiO:
(a), (b), and (c) side view along with x-axis; (d), (e), and (f) side view along with z-axis.
Black lines show contours corresponding to the densities of 0.01, 0.005, 0.001, 0.0005, 0.0001
a.u.−3. Red lines show the same for the negative densities.
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Fig. 4.18: Electron density at 0.01 a.u.−3 of the ground state of the (NiO6)10− cluster mod-
elling the bulk NiO.

Fig. 4.19: Electron density at 0.05 a.u.−3 of the occupied d–orbitals. Spin-down dxz, dxy, and
dyz orbitals are shown.
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Fig. 4.20: Electron density at 0.05 a.u.−3 of the virtual d–orbitals. Spin-down d3z2−r2 and
dx2−y2 orbitals are shown.

Fig. 4.21: Electron density at 0.01 a.u.−3 of the triple degenerate 3T2g excited state of the
(NiO6)10− cluster modelling bulk NiO.
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Fig. 4.22: Electron density at 0.01 a.u.−3 of the triple degenerate 3T1g excited state of the
(NiO6)10− cluster modelling bulk NiO.
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4.4 Inclusion of spin-orbit coupling

4.4.1 Crystal field theory and the Shubnikov point groups

Cracknell (1968) [113], presented the methods for determining the splitting of atomic
energy levels for various relative magnitudes of crystal field and spin-orbit coupling, where
the crystal field has the symmetry of one of the magnetic (Shubnikov) point groups. It is based
on the Kramers’ theorem that can therefore state the following modification as below.

Theorem: For an odd number of electrons, in a situation whose symmetry is described by
one of the type III magnetic point groups M,4 every level will be at least twofold degenerate
if the element is contained in the set AG of the anti-unitary elements of M.

In this section we show how this conventional theory is now possible to obtain a complete
picture of the crystal field splitting of energy levels. It is not intended to repeat the complete
theory of the deduction of the magnetic point groups. Rather, we will simply outline the
essential concepts commonly used in this work.

For bulk NiO

We now examine how to systematically split the terms of 3F in m′3m′ symmetry5 in a
crystal field, i.e. L = 3. In Table 4.6 which indicates that the 3F term is split by the crystalline
field into one non-degenerate level (DA2) and two two-fold degenerate levels (DT2 and DT1),
i.e.

DDL = DD3 = DA2 +DT2 +DT1 (4.1)

We are now considering a 3F term, that is when S = 1 (spin multiplicity equals to 1).
The degeneracies of the levels in Fig. 4.23, if spin is included, 1× (2S +1) = 3 for DA2,
3× (2S +1) = 9 for DT2, and 3× (2S +1) = 9 for DT1. If we add weak spin-orbit coupling
to the situation illustrated in Fig. 4.23, we have to reduce the inner Kronecker products:

DD1
⊗DA2 = ∑

k

di j,kDXk, (4.2)

DD1
⊗DT2 = ∑

k

di j,kDXk, (4.3)

DD1
⊗DT1 = ∑

k

di j,kDXk (4.4)

4 The point groups may be classified into three types, which we may call type I, type II, and type III, as
follows: I: the ordinary point groups, of which are 32, II: the ‘grey’ point groups, of which there are also 32, and
III: the ‘black and white’ point groups, of which there are 58. Each of the type II and type III magnetic point
groups can be written as: M = G + AG, where the elements of G are unitary and form a halving subgroup of M
and the elements of the coset AG are anti-unitary.

5 m′3m′ is the magnetic point group of O symmetry. Note that the bulk NiO has a high symmetry of Oh group
which can be reduced to O⊗Ci (O point group with the inversion symmetry).
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The corep DD1 of the group m′3m′ can be seen from Table 4.6 (single-valued representa-
tions6) to be irreducible and equal to DT1. Equations 4.17 to 4.4 therefore become:

DT1 ⊗DA2 = ∑
k

di j,kDXk, (4.5)

DT1 ⊗DT2 = ∑
k

di j,kDXk, (4.6)

DT1 ⊗DT1 = ∑
k

di j,kDXk (4.7)

L G M
0 A1 DA1,

1(1)
1 T1 DT1,

1(3)
2 E+T2 DE+DT2,

1(2)+1(3)
3 A2+T1+T2 DA2+DT1+DT2,

1(1)+1(3)+1(3)
4 A1+E+T1+T2 DA1+DE+DT1+DT2,

1(1)+1(2)+1(3)+1(3)
5 E+2T1+T2 DE+2DT1+DT2,

1(2)+2(3)+1(3)

Tab. 4.6: The splitting of levels.

By using Table 4.7 we therefore determine the reduction of DT1 ⊗DA2, DT1 ⊗DT2, and
DT1 ⊗DT1, and find that

DT1 ⊗DA2 = DT2, (4.8)

DT1 ⊗DT2 = DA2 +DE +DT1 +DT2, (4.9)

DT1 ⊗DT1 = DA1 +DE +DT1 +DT2 (4.10)

6 The inner Kronecker product will either involve two single-valued representations if S is an integer, or one
single-valued and one doubled-valued representation if S is half an odd integer.
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Therefore, the three levels DA2, DT2, and DT1 split, when weak spin-orbit coupling is
introduced, as shown in Fig. 4.23.

Products
A1 ⊗A1 = A1;
A1 ⊗A2 = A2;
A2 ⊗A2 = A1;
A1 ⊗E = E;
A2 ⊗E = E;

E ⊗E = A1 +A2 +E;
A1 ⊗T1 = T1;
A2 ⊗T1 = T2;

E ⊗T1 = T1 +T2;
A1 ⊗T2 = T2;
A2 ⊗T2 = T1;

E ⊗T2 = T1 +T2;
T1 ⊗T1 = A1 +E +T1 +T2;
T1 ⊗T2 = A2 +E +T1 +T2;
T2 ⊗T2 = A1 +E +T1 +T2;

Tab. 4.7: The inner Kronecker products of reps of G; single-valued ⊗ single-valued.
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Fig. 4.23: The splitting of a 3F term in m′3m′ symmetry, (a) free atom, (b) crystal field, no
spin-orbit coupling, and (c) strong crystal field, weak spin-orbit coupling.
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For the NiO(001) surface

To find the splitting of the 3F term in the magnetic 4/m′mm point group7 is first determined
by the introduction of a strong crystal field. We see from Table 4.8 that; in each of this case
the 3F level splits in M according to:

DD3 = DA2 +DB1 +DB2 +2DE. (4.11)

In this case we can see from Table 4.8 for S = 1 that DS is reducible and is given by:

D1 = A2 +E (4.12)

and

DD1 = DA2 +DE (4.13)

The inner Kronecker products which are to be reduced are therefore:

DD1
⊗DB1 = ∑

k

di j,kDXk, (4.14)

DD1
⊗DE = ∑

k

di j,kDXk, (4.15)

DD1
⊗DB2 = ∑

k

di j,kDXk (4.16)

DD1
⊗DA2 = ∑

k

di j,kDXk, (4.17)

DD1
⊗DE = ∑

k

di j,kDXk (4.18)

which since D1 is reducible can be considered as the ten products: DA2 ⊗DB1, DE ⊗DB1,
DA2 ⊗DE, DE ⊗DE, DA2 ⊗DB2, DE ⊗DB2,DA2 ⊗DA2, DE ⊗DA2, and DA2 ⊗DE, DE ⊗

DE.
Using Table 4.9 we find that

DA2 ⊗DB1 = DB2;DE ⊗DB1 = DE; (4.19)

DA2 ⊗DE = DE;DE ⊗DE = DA1 +DA2 +DB1 +DB2; (4.20)

DA2 ⊗DB2 = DB1;DE ⊗DB2 = DE; (4.21)

DA2 ⊗DA2 = DA1;DE ⊗DA2 = DE; (4.22)

DA2 ⊗DE = DE;DE ⊗DE = DA1 +DA2 +DB1 +DB2; (4.23)

Here, it should be pretty clear, from eq. 4.19 to 4.23, that the splitting of the levels is as
shown in Fig. 4.24.

7 This magnetic point group belongs to the C4V symmetry in the ordinary point group.
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L G M
0 A1 DA1,

1(1)
1 A2 +E DA2+DE,

1(1)+1(2)
2 A1+B1+B2+E DA1+DB1+DB2+DE,

1(1)+1(1)+1(1)+1(2)
3 A2+B1+B2+2E DA2+DB1+DB2+2DE,

1(1)+1(1)+1(1)+2(2)

Tab. 4.8: The splitting of levels.

Products
A1 ⊗A1 = A1; A1 ⊗A2 = A2;
A2 ⊗A2 = A1; A1 ⊗B1 = B1;
A2 ⊗B1 = B2; B1 ⊗B1 = A1;
A1 ⊗B2 = B2; A2 ⊗B2 = B1;
B1 ⊗B2 = A2; B2 ⊗B2 = A1;

A1 ⊗E = E; A2 ⊗E = E;
B1 ⊗E = E; B2 ⊗E = E;

E ⊗E = A1 +A2 +B1 +B2;

Tab. 4.9: The inner Kronecker products of reps of G; single-valued ⊗ single-valued.
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4.4.2 Fine structure of the bulk NiO and NiO(001) surface

Comparison of GAUSSIAN98 and COLUMBUS results

We report in Table 4.10 the comparison of the energies of ground and excited states be-
tween GAUSSIAN98 and COLUMBUS codes.

As the Table indicates, we compare these excited states energies of the NiO(001) surface
for two codes (GAUSSIAN98 and COLUMBUS). For GAUSSIAN98 results, we obtained these
energies for two symmetry systems (C2v and C4v), while COLUMBUS always reduces the high
(C4v) symmetry in the surface case to the lower (C2v) symmetry. All energies were carried out
with the same level of theory (CIS approach) and basis sets (6-31G* for O atom and LanL2DZ
ECP for Ni atom).

Comparing the GAUSSIAN98 and COLUMBUS results for C2v symmetry, it is seen that
the excited states energies of Gaussian98 results are a bit lower than the COLUMBUS ones.
However, if we compare the total energies of ground states for both codes, the COLUMBUS

result in CIS calculation yields basically the slightly lower energy. For the energies in the C2v

case, again, GAUSSIAN98 yields almost the same values compared to the energies from the
higher symmetry (C4v) one.

As the result, we have concluded that how well the corresponding results of COLUM-
BUS compare to the results obtained from GAUSSIAN98 code, and the same trends are also
observed.

C2v C4v

Symmetry COLUMBUS GAUSSIAN98 Symmetry GAUSSIAN 98
A1 Ground state† B1 Ground state†

B1 0.6177 0.5122 E 0.5122
B2 0.6177 0.5122 E 0.5122
A2 1.0166 0.9603 B2 0.9604
A2 2.0251 1.9571 A2 1.9570
B1 2.6461 2.8638 E 2.8638
B2 2.6461 2.8638 E 2.8638
A1 7.0290 7.5766 B1 7.5765

Tab. 4.10: The comparison between GAUSSIAN98 and COLUMBUS results.

†Ground state energy from GAUSSIAN98 (EUHF
0 = −1533.54865 Hr) agrees

well with the same of COLUMBUS (EMC−SCF
0 = −1533.54672 Hr and ECIS

0 =
−1533.55094). We use the first number as a reference point for GAUSSIAN cal-
culations and the last number as a reference point for COLUMBUS calculations.
For Gaussian EUHF

0 = ECIS
0 , but for Columbus CIS gives small improvement to

the ground state because in MC-SCF methods some restriction were imposed.
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Fine structure of the NiO(001) surface

Figure 4.25 shows the calculated fine structure of the NiO(001) surface. The energy di-
agram of the corresponding 3d8 levels of the Ni2+ ion, which are split by the tetragonal-
pyramid crystal field, are reported. We note that our spin-orbit splitting calculation here were
carried out at CIS level of theory in COLUMBUS code. For this model employed, C1 symmetry
(no symmetry) was selected in order to yield more accurate results in this calculation. Thus,
the symmetry of each splitting states is not shown since these contributions can be excluded
in a C1 symmetry calculation.

The 3B1 ground state of Ni2+ is split by spin-orbit coupling into three components, but two
levels corresponding one- and two-fold degeneracies, i.e. 0 meV and 3.1 meV, respectively.
We should note that we take the zero-level of energy at the lowest energy of these splitting
levels. However, this zero-level energy (with spin-orbit interaction) has a slightly different
energy from the 3B1 ground state (the zero-level energy without spin-orbit interaction). When
spin-orbit interaction is included, the lowest energy equals to −22.6 meV compared to the
previous 3B1 ground state (see Fig. 4.25).

The NiO(001) surface has four low-lying excited states such as 3E, 3B2, 3A2, and 3E in the
C4v crystal field as shown in Fig. 4.25. The splitting of the first 3E excited state is contributed
into six components about 602.2, 608.5, 647.1, 665.7, and 689.3 meV for non-degeneracies,
except the third one belongs to the twofold degeneracy. Note that these splitting energies
are referred to the zero-level energy. The splitting energies based on analytical spin-orbit
interaction calculation of the second 3B2 excited state belong to three components of single-
and double-degeneracies (both values about 1072.5 and 1083.3 meV for single and double
degeneracies, respectively). The splitting energy analysis of the third 3A2 excited state shows
three components corresponding to double- and single-degeneracies. Three of them belong
to two values of energies (2087.4 meV for double degeneracies and 2172.8 meV for single
degeneracy). Finally, the six components of splitting of the last 3E excited state are also shown
in Fig. 4.25. Five levels of the splitting energies, about 2947.2, 2967.5, 2968.9, 3005.9, and
3012.9 meV, are found (the first, second, fourth, and fifth values for four non-degeneracies
and the third value for twofold degeneracy).

The total energies of all singlet and triplet excited states (only the first 30 excited states)
for two systems (with and without the inclusion of spin-orbit interaction) are summaries in
Table 4.11.

Of course, we found a good agreement between the calculated fine structure of the NiO(001)
surface (see Fig. 4.25) and the atomic splitting energy diagram as illustrated in Fig. 4.24.
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Multiplicity Total energy (−Eh)
Without spin-orbit coupling With spin-orbit coupling

Triplet 1533.5522161461 1533.5530455435
Triplet 1533.5522161460 1533.5529326128
Triplet 1533.5522161444 1533.5529326127
Triplet 1533.5295070994 1533.5309160967
Triplet 1533.5295070991 1533.5306859632
Triplet 1533.5295070981 1533.5292668109
Triplet 1533.5295070960 1533.5292668082
Triplet 1533.5295070956 1533.5285847371
Triplet 1533.5295070951 1533.5277187495
Triplet 1533.5134442576 1533.5136373714
Triplet 1533.5134442571 1533.5132388544
Triplet 1533.5134442559 1533.5132388534
Singlet 1533.4784139459 1533.4814364350
Triplet 1533.4762914842 1533.4763381014
Triplet 1533.4762914825 1533.4763381013
Triplet 1533.4762914816 1533.4732005499
Singlet 1533.4684593593 1533.4687544444
Triplet 1533.4434107487 1533.4447422659
Triplet 1533.4434107481 1533.4439963855
Triplet 1533.4434107449 1533.4439455107
Triplet 1533.4434106957 1533.4439454762
Triplet 1533.4434106953 1533.4425853798
Triplet 1533.4434106921 1533.4423289269
Singlet 1533.4428606084 1533.4421790127
Singlet 1533.4428605995 1533.4421789980
Singlet 1533.4322371179 1533.4321585998
Singlet 1533.4248860301 1533.4246172709
Singlet 1533.3980478598 1533.3979995534
Singlet 1533.3980478522 1533.3979995470
Singlet 1533.3750945883 1533.3748138969

Tab. 4.11: The computed total energies for 30 singlet and triplet excited states with and with-
out spin-orbit coupling effects.
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Fine structure of bulk NiO

Although the electronic structure of the bulk NiO is much simpler than that of the surface,
the Configuration Interaction calculations are considerably more demanding due to the larger
number of basis function and, thus, higher dimension of the Hamiltonian matrix8. In the
Table 4.12 we compare the parameters of the CIS calculations for both systems.

System Ndocc Nact Nvirt

HCIS size

CISTriplet CISSinglet CIS+SO
(NiO5)8− 32 2 33 3299 4357 20590
(NiO6)10− 37 2 37 5627 4256 26609

Tab. 4.12: Parameters of CIS calculations: Ndocc is the number of double occupied states, Nact

– number of active states, Nvirt – virtual states. Note that the size of Hamiltonian matrix is
proportional to the product of numbers of occupied and virtual states.

Figure 4.26 shows the calculated fine structure of the bulk NiO. For the comparison with
the experimental results of optical properties, the measurements are shown as a reference point
in the Fig. 4.27.

There are several observations about the role of spin-orbit coupling. Firstly, its inclusion
leads to a slight lowering of the ground state energy (E3A2

(without SOC)−ET2(with SOC)=48
meV). We should note that the corresponding symmetry of each level is taken from the ref-
erence scheme (Fig. 4.23). The broadening of the second excited state (∆E3T2

= EE2 −EA2 =

71.3 meV) (3T2) agrees well with the most accurate measurements (around 70 meV) of the
optical absorption and second harmonic generation spectra of NiO (Fig. 4.27). However, the
important differences have been observed. The assignment of the levels to the peaks in the
optical absorption spectra from Fiebig et al. [17] shows almost equal distance among the sub-
levels of the 3T2 state. Very narrow splitting of the first sublevel E2 is approximately 51 meV
and is attributed to the exchange field breaking of the symmetry. In contrast, our calculation
shows very small distance between the second and the first, and forth and third sublevels (7.8
meV, 9.5 meV). Therefore, we argue that two sharp lines in the optical absorption spectra may
also result solely from the spin-orbit coupling.

The computations of the second excited state is clearly less precise due to the importance
of the correlated effects (QCISD(T) lowers its energy by 0.64 eV compared to the CIS). How-
ever, we expect that it should not affect the fine structure of the level much. The experimental
resolution does not allow to clearly distinguish among the participating states, and we restrict
ourselves with the remark that the broadening (∆E3T1

= EA1 −ET2 = 55.4 meV) is in agreement
with the experimental width of 3Γ+

2 → 3Γ+
4 band. However, the relative position of the sub-

levels differs from that proposed in the theoretical work by Ferguson and Guggenheim [119].

8 For the system with two unpaired electrons the size of the CIS Hamiltonian can be expressed as a function
of the number of double occupied states (Ndocc) and virtual states (Nvirt) as : NCISTriplet = 1 + 2(Ndocc + Nvirt)+
3NdoccNvirt, NCISSinglet = 3+2(Ndocc +Nvirt)+4NdoccNvirt, NCISTriplet = 6+8(Ndocc +Nvirt)+19NdoccNvirt It means
that increasing the number of atoms in the system in 2 times leads to the expansion of the CIS matrix in 4 times.
This, in turn, increases computational time for the diagonalization by 43 = 64.
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representations of group Oh (Oh = O ⊗ Ci).
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4.5 SHG intensity

We compute the frequency dependence of the nonlinear susceptibility tensor χ(2ω)
i jk (ω)

based on two different levels of the treatment of correlations: CID and QCISD with a triples
correction. As can be seen from Eq. (3.57), the notion of wave functions as well as the en-
ergies of the states is required. The former give rise to the dipole transition matrix elements,
which control the symmetry properties of the spectrum (selection rules) as well as the mag-
nitude of the peaks. The knowledge of the energies is necessary to get the correct position
of the peaks. In order to avoid divergences of the expression close to the poles and to ensure
the correct symmetry we apply a broadening of δ = 0.27 eV (i.e., 0.01 hartree) to each of the
states. The transition matrix elements 〈α|di|β〉 have been computed based on the Slater deter-
minants corresponding to each of the many-body wave functions Eq. (3.58), thus neglecting
the correction resulting from the virtual transitions (second and third terms in Eq. (3.21)).
This correction is important to describe the energy of excited states and is taken properly into
account, while for the matrix elements it does not play a crucial role. As we do not include
spin-orbit coupling here, the dipole matrix elements contain two independent contributions
from spin-up and spin-down components. Important features of the SHG spectrum (Fig. 4.28)
are the following:

0 1 2 3
Energy (eV)

0

0.0005

0.001

0.0015

0.002

S
H

G
 | 

χ(2
ω

)
 ij

k 
  | (

ar
b.

 u
ni

ts
)

xxz=yyz=xzx=yzy
zxx=zyy

0 1 2 3
Energy (eV)

0

0.0005

0.001

0.0015

0.002
xxz=yyz=xzx=yzy
zxx=zyy

(a) (b)

3
B

1
→3Ε

c,d
hν

(4), (6)

3
B

1
→3Ε

a,b
hν

(2), (5)

3
B

1
→3Ε

c,d
2hν
(3)

3
B

1
→3Ε

a,b
2hν
(1)

3
B

1
→3Ε

c,d
hν

(4), (6)

3
B

1
→3Ε

a,b
hν

(2), (5)

3
B

1
→3Ε

c,d
2hν
(3)

3
B

1
→3Ε

a,b
2hν
(1)
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1. Large difference between the tensor elements: the peaks around 0.35 eV and 0.95 eV are
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rules, is accidentally absent in the present theory because of the small number of excited
states included in our calculation.

2. The SHG spectrum originates from all possible combinations of ED transitions be-
tween the ground state (3B1) and the two doubly degenerate states of 3E symmetry

(see Fig. 4.29). Two peaks in the χ(2ω)
zxx = χ(2ω)

zyy result from the transitions at fundamen-
tal frequency ω from 3B1 to 3Ec,d and from 3Ea,b to the ground state. The second type
of tensor elements has two additional peaks that correspond to 2~ω resonances between
these levels.

3. The nonvanishing tensor elements have a nonzero value in the static limit and exhibit
Kleinman symmetry [120] with respect to the permutation of the 2ω and ω photons:
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for ω → 0 (4.24)

4. Comparing SHG spectra from CID and QCISD(T) methods, a shift towards lower ener-
gies resulting from the higher-level treatment of the correlation can be observed.

Using the nonlinear susceptibility tensor, we compute the intensity of the second-harmonic
field (Figs. 4.30, 4.31) according to Eq. (3.61) for different combinations of the polariza-
tion of the incident light at the fundamental frequency (for s-polarization ϕ = π/2 and for
p-polarization ϕ = 0) and outgoing second-harmonic light (for S-polarization Φ = π/2 and
for P-polarization Φ = 0). The input electric field is taken to be 108 V/m, angle of incidence
is π/4, and the complex refractive indices at the frequencies of the fundamental incident and
outgoing second-harmonic are n(ω) and N(2ω), respectively. Although available from the
first-principles calculation on the different levels of theory [121], n(ω) and N(2ω) are taken
from experiment [40] in order to make the results more reliable and to avoid artifacts from lin-
ear optics. According to the symmetry analysis, the second harmonic signals in S-polarization
vanish, and our calculations confirm that, numerically showing a difference in the magnitude
between S- and P-polarizations to be 33 orders of magnitude (Figs. 4.30, 4.31).

It is well known that the SHG response is forbidden for crystals with inversion symmetry
within the ED processes. However, taking into account a combination of the MD and ED
processes, one can indeed obtain a second harmonic response from centrosymmetric NiO in
the energy range 2~ω = 1.6− 2.3 eV [17]. The absence of the SHG signal above the Néel
temperature and selection rules that define the polarization of the observed signal prove that
there is no surface contribution in the experiment. In the ED calculation, no SHG intensity is
found from the (NiO6)10− cluster in the cubic lattice.

Our calculation shows the possibility to obtain second harmonic response from the surface
cluster in the range of energies 2~ω = 1.06− 3.68 eV. This response lies in the region of
energies, where the bulk SHG signal has been detected. Thus, under certain conditions, the
SHG signal from the surface, which is expected to be considerably weaker, as well as from the
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Fig. 4.30: The nonlinear optical response of NiO(001) surface, based on the CID treatment
of the embedded (NiO5)8− cluster as a function of the incident photon energies for the four
possible combinations of the input field and detector.
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Fig. 4.31: The nonlinear optical response of NiO(001) surface, based on the QCISD(T) treat-
ment of the embedded (NiO5)8− cluster as a function of the incident photon energies for the
four possible combinations of the input field and detector.

bulk, can be observed in one experiment. In the recent investigation by Fiebig et al. [17], 3 ns
light pulses with a pulse energy of about 1 mJ were applied to detect SHG response from the
bulk. Although the MD transitions were involved, the intensity is comparable to that observed
in non-centrosymmetric compounds such Cr2O3 or YMnO3 where it is exclusively due to ED
transitions. Therefore, a larger peak intensity of fundamental light is required to detect SHG
response from the surface on the background of the bulk signal. Shorter laser pulses may
enable the detection of both surface and bulk contribution in one experiment.
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Chapter 5

Conclusions

NiO is a very interesting and complicated physical system. The combination of electronic
and magnetic properties makes it a unique material with a wide range of applications, first of
all for magnetic recording and as a building element of memory chips.

The first question about the electronic structure for which solid state physicists would
like to have an answer is the value of the band gap. None of the present ab initio theories
is able to answer this question with a high degree of precision. The problem is electronic
correlations. Common spread density functional theory for the investigation of the electronic
structure of solids fails in this case. It happens because it is by the definition a single-particle
theory that does not fully cover the many-body nature of the problem. It was shown that
two-body effects are important for NiO. Novel methods such as the GW approximation and
numerical solution of the Bethe-Salpeter equation give a promising route for accounting two-
body correlations. But even these methods are not capable to give a complete answer about
the electronic structure. The material possesses a number of intragap states resulting from the
partially filled d–shells of the Ni atom. In our work we have chosen a quite different route to
tackle both of the problems: getting knowledge about the electronic structure and computing
states inside the band gap by means of quantum chemistry methods.

One may wonder how these methods initially developed for predicting properties of small
molecules can be applied for the bulk or surface materials which are translationally invariant
and contain, roughly speaking, an infinite number of atoms. The main idea is to choose a
sufficient large part of the bulk or surface under investigation and consider it as a cluster with
a limited number of atoms for which quantum chemistry theory can already be applied. The
question immediately arises: what we can call sufficiently large cluster. It is realistic to assume
that its size must be big that the addition of few more atoms at the edges of the cluster does
not change the electronic structure significantly. In our work, we found that it is sufficient to
consider the (NiO6)10− cluster (Oh symmetry) embedded in a set of point charges in order to
model bulk NiO, and the embedded (NiO5)8− cluster (C4v symmetry) represents the NiO(001)
surface fairly well. However, to correctly take into account the ionic environment surround-
ing the clusters in real materials we must add more building elements to our construction:
effective core potentials and point charges. Their inclusion helps to describe the interaction
of the electrons of the cluster with neighbouring atoms and corrects for the total charge and
Madelung potential. Experimenting with different number of point charges we built our two
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models for the bulk and surface NiO. The NiO6
10− cluster is embedded into a 15×15×15

slab of point charges while for the NiO5
8− the configuration 15×15×7 is the best choice.

The point charges have values ±2,±1,±0.5 and ±0.25 depending on their position. As more
simple surface models we consider also 11×11×5, 7×7×3 clusters and compare their elec-
tronic properties in order to determine the optimal size. Since our work has as a final target
the optical properties of NiO for the technological application we investigate intra-gap states
by means of a variety of quantum chemistry methods. Two quantum chemistry programs
were used: GAUSSIAN98 and COLUMBUS. Although they are based on the same theoretical
ideas, namely different levels of the Configuration Interaction, the numerical implementation
imposes different routes to compute the properties of excited states. We build our calcula-
tions with GAUSSIAN98 in following way. First the electronic structure of the ground state
is determined by means of unrestricted Hartree-Fock calculation (the ground state is triplet).
A number of electronic properties can be determined already on this level of theory. To this
belongs Mulliken population analysis and the distribution of the magnetic moments among
the atoms. The examination of the molecular orbitals gives hints for the further Configuration
Interaction calculation of the excited states. We obtain the symmetry of the bulk NiO ground
state to be 3A2g and the (001) surface NiO ground state is 3B1. Starting from the ground states,
we compute a large number of triplet excited states on the simplest ‘Configuration Interaction
Singles’ level of theory. By analyzing the symmetry of these states and employing the as-
sumption about the charge transfer character of the gap, we determine the optical surface gap
to be around 7.6 eV. Furthermore the energies of the lowest excited states have to be com-
puted using more sophisticated and precise methods such as CISD and QCISD(T). In contrast
to the COLUMBUS program that allows to find an arbitrary number of states by iteratively
diagonalizing the Hamiltonian matrix on a certain subspace (single and double substitutions)
the GAUSSIAN98 code, although providing an even higher level treatment of correlations par-
tially taking into account triple substitutions and making quadratic corrections, only gives
the possibility to compute one eigenvalue. Therefore, in order to obtain several low-lying
excited states we first build them on the mean field level by exciting an electron from one
of the occupied states to a virtual one and optimizing the electronic configuration by UHF.
The knowledge of orbital symmetry obtained on the prior ground state calculation provides
the information about the presumable electronic configuration of the states of interest. In
this way many excited states can be found provided we know the major single determinant
contribution (which orbitals to exchange) to their electronic structure. On the next step we
improve the energy of these states by accounting electronic correlations by means of config-
uration interaction method. We employ several levels of theory starting from the relatively
simple CID and using QCISD(T) as the most sophisticated and accurate method. Comparison
of energies resulting from each level of theory reveals that the inclusion of the triple exci-
tations gives a superior improvement over the CISD, supports the initial assumption about
the importance of many-body correlations and leads to accurate agreement with experiment.
Thus, by employing the GAUSSIAN98 quantum chemistry program we completely describe
the crystal field splitting of the 3F term of Ni2+ ion in the cubic and C4v environment. This
gives us the possibility to predict non-linear optical properties of the material such as second
harmonic generation. Our SHG spectrum for the (001) surface can be compared with experi-
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ment providing an alternative explanation of the possibility of detecting SHG signal from the
crystal with inversion symmetry (Non-linear response is forbidden for (001) surface of the
centrosymmetric NiO crystal). It was argued that the SHG response in NiO results from the
combination of the magnetic dipole and quadruple transitions. We suggest that this can also
be due to the symmetry breaking on the surface of the crystal. In order to make our knowl-
edge about NiO complete, we also have to consider relativistic effects not taken into account
in GAUSSIAN98 computations. The COLUMBUS code is a convenient tool for that purpose.
Using this program we were able to accurately describe the spin-orbit coupling (the major
relativistic effect) using the CIS level of theory and spin-orbit effective potential for the Ni
atom. For each of the levels originating from the 3F states of the free Ni2+ ion we computed
the spin-orbit splitting.

Thus, in our work we completely describe low-lying triplet states of NiO for both bulk and
surface regions. The material has still a lot to be discovered. Our next target is computation of
the singlet states and states with higher energy and increasing our knowledge about the optical
properties of this material.
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Appendices

A Basis sets and effective core potentials used in calcula-
tions

Here, we describe basis functions and effective core potentials used throughout the work.
Basis functions reside on each of the atom Ra and have a radial part depending on the relative
distance from the atomic center r0 = |r −Ra| and an angular part that depends on the two
angles Θ and φ. There are two possibilities how the angular part can be represented: one
uses spherical or Cartesian basis functions. Spherical Gaussian basis functions of the orbital
moment L containing k contracted gaussians can be represented in the following form:

φ(r) = YL,m(Θ,φ)rL
0

k

∑
i=1

cie
−αir2

0 , (A.1)

while Cartesian Gaussian basis functions are:

φ(r) = xnx
0 y

ny
0 znz

0

k

∑
i=1

cie
−αir2

0 . (A.2)

In these forms, r0 = (x0,y0,z0), nx +ny +nz = L, YL,m(Θ,φ) are spherical harmonics of orbital
momentum L, ci are contraction coefficients, and αi are corresponding exponents.

The simplest polarization basis set, termed 6-31G*, is a representation originally pro-
posed by Hariharan and Pople [75] for the first-row atoms and later extended to second-row
elements. Polarization functions are needed: (a) in order to describe accurately the electron
density in the molecule, where the symmetry is much lower than in atom, and (b) to de-
scribe the response of the electron density to an external field [122]. The 6-31G* basis set is
constructed by the addition of a set of six second order (xx,yy,zz,xy,xz,yz, d–type) gaussian
primitives to the split-valence 6-31G basis set description of each heavy (non-hydrogen) atom.
The 6-31G* basis contains no provision on hydrogen and helium atoms. Thus, a d–exponent,
chosen on the basis of O atom, is a polarization function as given in Table .1.

The 6-31+G* basis set for second-row element are constructed from the underlying 6-
31G* representation by the addition of a single set of diffuse gaussian s- and p-type functions.
The gaussian exponents for both s- and p-functions, which are displayed in Table .1, have
been determined for second-row elements, for example O atom.

75



76 Appendices .

It is important to remark the use of two completely different types of basis sets throughout
this work. In addition, the LanL2DZ basis set utilising a double zeta description for the first-
row elements and an effective core potential (ECP) for heavier atoms has been employed.

It was known for a long time that core (inner) orbitals are in most cases not affected sig-
nificantly by changes in chemical bonding. This prompted the development of Effective Core
Potential (ECP) approach, which allows treatment of inner shell electrons as if they were some
averaged potential rather than actual particles. ECP’s are not orbitals but modifications to a
Hamiltonian, and as such are very efficient computationally. Also, it is very easy to incor-
porate relativistic effects into ECP (this is described in the next section), while all-electron
relativistic computations are very expensive. The relativistic effects are very important in de-
scribing heavier atoms, and luckily ECPs simplify calculations and at the same time make
them more accurate with popular non-relativistic ab initio packages. The core potentials can
only be specified for shells that are filled. For the rest of electrons (i.e. valence electrons), one
has to provide basis functions. These are special basis sets (such as LanL2DZ) optimized for
the use with specific ECPs.

The ECP are tabulated in the literature as parameters of the following expansion:

UECP(r) =
k

∑
i=1

dir
ni
0 e−ζir2

0 , (A.3)

where k is the number of terms in the expansion, di is a coefficient for each term, as before
r0 denotes distance from nucleus, ni is a power of r0 for the i-th term, and ζi represents the
exponent for the i-th term. To specify ECP for a given atomic center, you need to include typi-
cally: the number of core electrons that are substituted by ECP, the largest angular momentum
quantum number included in the potential, and number of terms in the ‘polynomial gaussian
expansion’ shown above.

At present, the ECP methods are extensively used in ab initio calculations on molecules
and crystals containing heavy atoms. One of the reasons for this is the computational saving
associated to the valence-only approximation, but other advantages of the ECP methods are
responsible for this as well. In the Table .1 we collected the information about the 6-31G*
basis functions for the O atom and LanL2DZ basis set for Ni atom.

B The relativistic effective core potentials

Relativistic effects are known to be very important in the physics and chemistry of the
heavy elements. Although they already manifest themselves in some properties of light ele-
ments, when it comes to molecules and solids containing elements of high Z, the relativistic
effects become essentially a must for any property1.

1 The strength of spin-orbit coupling can be estimated using a hydrogen atom as a model. For the case
of a single electron outside the nucleus, the Dirac theory gives ∆T = Rα2Z4

n3
j( j+1)−l(l+1)−s(s+1)

l(2l+1)(l+1) for the spin-
orbit correction to the term. Here n, l, j,s are principle, orbital, total momentum and spin quantum numbers.
α ∼ 1/137 is called the fine structure constant. One sees that the strength of this relativistic effect increases
proportionally to the forth power of nucleus charge.
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The relativistic effective potentials (REPs) were proposed by Christiansen et al. [123]
and subsequently generalized to include relativity using the methodology developed by Lee,
Ermler and Pitzer [124]. Briefly, the basic equation in this framework is the Dirac equation,
which substitutes for the Schrödinger equation. In it, the one-electron wave functions, called
spinors, are vectors made of four components, each complications appear as a consequence
of this. One first solves the Dirac-Hartree-Fock (DHF) equations to obtain four-component
atomic spinors. The four-component valence spinors, φl j, are then transformed to two com-
ponents,

χl j = φl j +Fl j, (B.4)

where Fl j is itself a four-component spinor with large components that cancel the radial core-
like oscillations in the large components of the φl j, but small components that completely
cancel those of the φl j. The two-component pseudospinor, χl j, is then effectively reinserted
into the DHF equation and the equation inverted to obtain the localized relativistic effective
potential, UREP

l j . The total REP could then be written as an infinite expansion of the U REP
l j ,

each with the appropriate projection operators. In practice, of course, the expansion is trun-
cated at the lowest angular momentum value, L, for which there are no longer any core-like
oscillations in the large component of φLJ . That is, the large components of FLJ disappear. Due
to the minimal exchange interaction between the core and higher l spinors and the absence of
the Fl j large components for all l greater than L, this truncation is an excellent approximation.
For use in conventional codes, the REPs are then averaged and differentiated for each l to form
the corresponding averaged relativistic effective potentials (AREP) along with spin-orbit op-
erators (SO).

Averaged relativistic effective potentials with effective spin-orbit operators from Chris-
tiansen and coworkers [125, 126, 127, 128, 129] are derived here as Gaussian expansions,

UAREP(SO)
l = r−2Clir

nliexp
(

−ζlir
2) (B.5)

as originally proposed by Kahn et al. [130]. As such the AREP can be used without modifi-
cation in standard software such as the COLUMBUS program package.

While the molecular small components are not treated explicitly in the shape consistent
REP formalism, the small components, along with the core oscillations, are included in the
effective potential through the pseudospinor transformation and subsequent Fock equation
inversion. Indeed, implicit variation of the small components in subsequent molecular envi-
ronments is allowed by means of the projection operators.
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Atom Name Number Type Exponent Contracted coefficients
O 6-31G* 6 S 5484.67170 0.183110000E-02

825.234950 0.139501000E-01
188.046960 0.684451000E-01
52.9645000 0.232714300
16.8975700 0.470193000
5.79963530 0.358520900

3 SP 15.5396160 -0.110777500 0.708743000E-01
3.59993360 -0.148026300 0.339752800
1.01376180 1.13076700 0.727158600

1 SP 0.270005800 1.00000000 1.00000000
1 D 0.800000000 1.00000000

O 6-31+G* 6 S 5484.67170 0.183110000E-02
825.234950 0.139501000E-01
188.046960 0.684451000E-01
52.9645000 0.232714300
16.8975700 0.470193000
5.79963530 0.358520900

3 SP 15.5396160 -0.110777500 0.708743000E-01
3.59993360 -0.148026300 0.339752800
1.01376180 1.13076700 0.727158600

1 SP 0.270005800 1.00000000 1.00000000
1 SP 0.845000000E-01 1.00000000 1.00000000
1 D 0.800000000 1.00000000

Ni LanL2DZ 3 S 7.62000000 -0.408255000
2.29400000 0.745530800

0.876000000 0.532572100
4 S 7.62000000 0.187259100

2.29400000 -0.396696400
0.876000000 -0.495400300
0.115300000 1.08443430

1 S 0.396000000E-01 1.00000000
3 P 23.6600000 -0.481558000E-01

2.89300000 0.625847300
0.943500000 0.471515800

1 P 0.840000000E-01 1.00000000
1 P 0.240000000E-01 1.00000000
4 D 42.7200000 0.372699000E-01

11.7600000 0.195610300
3.81700000 0.456127300
1.16900000 0.562158700

1 D 0.283600000 1.00000000

Tab. .1: The 6-31G* (also 6-31+G*) and LanL2DZ basis sets for O and Ni atoms, respectively.
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Atom Name Number Type Exponent Contraction
Ni ECP 3 d potential 469.93243310 -10.00000000

85.42364110 -69.40848050
21.26749840 -12.09510200

4 s–d potential 162.16860970 3.00000000
176.53332320 22.02536180
68.95620100 443.01810880
13.57928380 145.56964110

4 p–d potential 69.01815060 5.00000000
275.59555960 4.98828240
47.13154530 256.69458530
12.98740750 78.47544500

Mg ECP 5 d potential 237.54848040 -10.00000000
47.75203670 -55.89939680
10.78378520 -20.13919570
3.19921240 -7.06791070
1.06369530 -0.81331090

5 s–d potential 348.30086310 3.00000000
59.46801330 44.00756600
19.07675820 107.38613440
5.29656130 35.82890880
1.38673730 10.11434350

6 p–d potential 1256.87390850 5.00000000
189.86088390 117.10536720
54.69496310 420.59720730
13.89901370 107.61229590
3.95971810 29.10025760
1.25527870 7.08755700

Ni SO 6 p–d potential 0.265300 0.000768
1.509200 5.356128
1.812800 -11.295932
2.212000 6.144546
5.485600 -0.276856
7.518900 0.024518

5 d potential 0.604700 -0.003842
1.937000 0.012924
5.494600 -0.005573
18.089500 0.021615
53.189400 0.122379

Tab. .2: The effective core potential (ECP) for Ni and Mg atoms and the spin-orbit operator
(SO) suitable for Ni atom in spin-orbit coupling calculation.
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Summary

In this work, we have developed an ab initio theory for the second harmonic generation
(SHG) from the NiO(001) surface. Our interest in this material is stipulated by the signifi-
cant properties of transition metal oxides (TMOs), where the non-trivial magnetic properties
are imposed by the complicated electronic structures of the partially filled 3d–orbitals. The-
se phenomena contain a great potential for the technological applications, in particular, for
intensively developing computer area. Nowadays, NiO with its good insulating behavior (the
band gap according to the experimental data is around 4.3 eV) and its magnetic property (NiO
is a typical antiferromagnet) is a building element of magnetic recording and memory chip
devices. Experimentally, the properties of the TMO surfaces and interfaces can conveniently
be assessed by the technique of optical SHG, which has a unique potential to easily access
antiferromagnetism occurring at surfaces and interfaces of materials which possess inversion
symmetry.

Therefore, the work presented here has two main implications: first, we investigate the
electronic structure and excitations of NiO by means of ab initio calculations. This part treats
some aspects of optical spectra in a UV/visible range from the solid state material by using
first-principles. Second, using many-body wave functions and energies resulting from the pre-
vious assignments, we compute the non-linear optical response of the NiO(001) surface. Fi-
nally, this allows us to obtain the intensity of SHG from the NiO(001) surface.

According to these objectives, we state our work as follows.
For the extensive investigations of the electronic structure and excitations needed, several

approaches are possible to build a theory:

• Time dependent density functional theory: for example, the time dependent local den-
sity approximation (TDLDA), which has been widely applied in physics and quantum
chemistry.

• Correlation methods such as the local density approximation (LDA) with gradient cor-
rections (necessary to correctly account and predict magnetic phenomena): Green’s
function (GW) calculations for the improvement of the band gaps (the band gaps are
poorly described by the LDA) and numerical solution of the Bethe-Salpeter equation
(necessary for the optical properties).

• Density functional calculations have tended to include modifications, such as self inter-
action corrected (SIC) LSDA which offers an improved description of band gap com-
pared with the LSDA.



• Correlation methods originated from the quantum chemistry calculations: in particular,
the configuration interaction (CI) approach.

On the first stage of our work, we follow the last route, which is the most flexible in our
opinion, allowing us to use the highly advanced methods for the investigation of ground and
excited states properties, in solid-state physics.

Using ab initio quantum chemistry calculations, the small (NiO5)8− and (NiO6)10− clu-
sters were embedded in a set of point charges to model the NiO(001) surface and bulk NiO,
respectively. Special care is attributed to a set of point charges surrounding the bare cluster in
order to correctly account for the electrostatic environment due to the rest of crystal frame-
work. In our work, we set all distances between Ni and O atoms according to the experimental
data without performing the geometric optimization. By comparing the results of different si-
zes of embedded cluster models, the optimum configurations are found: 15×15×15 ions and
15×15×7 ions for the bulk NiO and NiO(001) surface, respectively.

Starting from the unrestricted Hartree-Fock (UHF) level of theory, we calculate ground-
state properties to provide some insight of electronic structure and excitation. We estimate the
excitation energies and oscillator strengths using the single excitation configuration interacti-
on (CIS) technique. We then demonstrate the electron correlation effects on the d–d transitions
at several levels of ab initio correlated theory such as CI calculation with all double substi-
tutions (CID) and CI calculation with all single and double substitutions (CISD). Our main
method, the quadratic configuration interaction with all single, double, and triple substitutions
(QCISD(T)) approach, more fully includes electronic correlation effects by building the con-
figuration space of many-body wave functions as a combination of excitations. This method
is the most accurate approximation used by us. We note that all ab initio embedded cluster
calculations were done with the GAUSSIAN98 package.

Our main results for the optical properties of the bulk NiO and NiO(001) surface are
summarized below:

• We obtain an estimated optical band gap of 7.6 eV resulting from charge-transfer ex-
citations between O(2p) and Ni(4s) states by employing the CIS calculation, which is
much higher than the experimental value of bulk NiO (4.3 eV) but yet can be a good
starting point to allow for the investigation of the low-lying d–d excitations.

• We predict optical absorption spectra arising from charge-transfer excitations.

• We find d–d transitions in a range of 0− 3 eV (for both the bulk NiO and NiO(001)
surface models), which are in an excellent agreement with available experimental and
theoretical data.

• We also find large electronic correlation effects on the d–d excitations.

On the second stage of our work, the non-linear optical properties of the NiO(001) sur-
face are computed by using the energies and wave functions from the former calculations.
It is well known that the systems with inversion symmetry yield no response on the double
frequency (no SHG tensor within the electric dipole transition approximation). This contra-
dicts the experimental situation where SHG signal from NiO has been detected. There are two



possible explanations (different between bulk and surface resonances). First, SHG can result
from the combination of the magnetic dipole and electric quadrupole transitions. In this case,
the intensity of the response is quite low as a consequence of very small corresponding matrix
elements. Second, the inversion symmetry breaking on the surface can be a source of SHG
response from centrosymmetric NiO crystal. We advocate this possibility by computing the
SHG intensity as a function of photon energy at different configurations of the light source
and detector, and compare this with available experimental data. In addition, the contribu-
tions of each involved electronic transition to the (XXZ=XZX), (YYZ=YZY), (ZXX), and
(ZYY) non-linear susceptibility tensor are shown. This allows us to obtain the SHG intensity,
which has been demonstrated to be a particularly versatile probe of magnetic interfaces and is
expected to reveal new information on antiferromagnets.

We note that, for the optical spin manipulation, it is important to include spin-orbit coup-
ling in the electronic theory. It is a new area of research, which still requires the development
of new or extension of already existing methods. The lack of these methods is confirmed by the
small effects of relativistic corrections. The strength of spin-orbit coupling, which is extreme-
ly important for transition-metals, rises with the increasing of atomic number. This imposes
the third complication; the spin-orbit coupling must be incorporated in the computation of
excited states.

Therefore, we consider the response of the relativistic part of Hamiltonian, which des-
cribes the spin-orbit coupling by using the CIS scheme implemented within the COLUMBUS

package. These effects result in the splitting of the d–d excited states. These fine structures of
low-lying excitations for both bulk NiO and the NiO(001) surface form an essential part of
our work and have been obtained for the first time.

A number of the other problems of great interest, still remain and will be a subject of
further work.

• So far, embedded clusters that consist of only one Ni atom have been used. The fast
development of the computational equipment and numerical algorithms will enable an
exploration of a large cluster that better represents the bulk NiO or NiO(001) surface.

• A highly interesting point is a computation of excited states with different spin multi-
plicity (singlets) and with different orbital angular momentum.

• Although the inclusion of electron correlations weakly affects the spin-orbit splitting, it
is interesting to repeat the relativistic calculations on the CISD or higher level of theory.

• The knowledge of a larger number of states will enable a computation of optical pro-
perties in a larger energy interval and thus lead to a better comparison with experiment.



 



Zusammenfassung

In dieser Arbeit haben wir eine ab initio Theorie für die optische Frequenzverdopplung
(optical second harmonic generation, SHG) der NiO(001) Oberfläche konstruiert. Unser Inter-
esse an diesem Material wird durch die bedeutenden Eigenschaften der Übergangsmetalloxide
(transition-metal oxides, TMOs) begründet, deren nicht-triviale magnetische Eigenschaften
durch die komplizierten, elektronischen Strukturen der teilweise gefüllten 3d–Orbitale verur-
sacht werden. Diese Phänomene enthalten ein großes Potential für die technologischen An-
wendungen, insbesondere für den sich intensiv entwickelnden Computerbereich. Heutzutage
ist NiO mit seinem guten, isolierenden Verhalten (der Bandabstand entsprechend den expe-
rimentellen Daten beträgt etwa 4,3 eV) und seiner magnetischen Eigenschaft (NiO ist ein
typischer Antiferromagnet) ein Bauelement für magnetische Lese- und Schreibköpfe. Experi-
mentell können die Eigenschaften der TMO-Oberflächen und -grenzflächen durch die Technik
der optischen SHG bequem betimmt werden. Diese bietet ein einzigartiges Potential, den An-
tiferromagnetismus leicht zugänglich zu machen, der an den Oberflächen und an den Grenz-
flächen der Materialien auftritt, die eine Zentral-Symmetrie besitzen.

Folglich hat die Arbeit, die hier vorgestellt wird, zwei Hauptimplikationen: Zunächst un-
tersuchen wir die elektronische Struktur und Anregung von NiO mittels ab initio-Berechnun-
gen. Dieser Teil behandelt einige Aspekte der optischen Spektren im ultravioletten/sichtbaren
Bereich im Festkörper mittels first-principle Theorie. Zweitens berechnen wir mit Hilfe der
Vielkörperwellenfunktionen und Energien, die aus den vorhergehenden Zuweisungen resul-
tieren, die nicht lineare, optische Antwort der NiO(001) Oberfläche. Dies erlaubt es uns letzt-
endlich, die Intensität der SHG für die die NiO(001) Oberfläche zu erhalten.

Entsprechend diesen Zielsetzungen gliedern wir unsere Arbeit wie folgt:
Für die umfangreichen Untersuchungen der benötigten elektronischen Struktur und Anre-

gungen, sind mehrere Ansätze zum Aufbau einer Theorie möglich:

• zeitabhängige Dichtefunktionaltheorie: z.B. zeitabhängige, lokale Dichtenäherung (TD-
LDA), die weitgehend in der Physik und der Quantenchemie angewendet wird.

• Korrelationsmethoden wie z.B die lokale Dichtenäherung (LDA) mit einer Gradienten-
korrektur (notwendig, um magnetische Phänomene richtig zu erklären und vorauszusa-
gen): Greenfunktionsberechnungen (GW) für die Verbesserung der Übereinstimmung
der theoretisch und experimentell bestimmten Bandlücke (Bandlücken werden schlecht
durch die LDA beschrieben) und die numerische Lösung der Bethe-Salpeter-Gleichung
(notwendig für die optischen Eigenschaften).



• Dichtefunktional-Berechnungen beinhalten in zunehmendem Maße Abänderungen, wie
z.B. die Selbst-Wechselwirkungs korrigierte, sogenannte (SIC) LSDA, welche, vergli-
chen mit der LSDA, eine verbesserte Beschreibung der Bandlücke liefert.

• Korrelationsmethoden, die aus Quantenchemieberechnungen erzeugt werden: insbeson-
dere der Konfigurationswechselwirkungsansatz (CI).

Im ersten Stadium unserer Arbeit, folgen wir dem letzten Weg, der unserer Meinung nach
der flexibelste ist. Er erlaubt uns die Anwendung von sehr fortgeschrittenen Methoden zur Un-
tersuchung der Eigenschaften der angeregten und der Grundzustände in der Festkörperphysik.

Mit Hilfe von ab initio Quantenchemieberechnungen, wurden die kleinen (NiO5)8−- und
(NiO6)10−-Cluster in einer Anordnung von Punktladungen eingebettet, um die NiO(001)-
Oberfläche bzw. den NiO-Festkörper zu modellieren. Besondere Aufmerksamkeit gilt der An-
ordnung von Punktladungen, die den freiliegenden Cluster umgeben, um die elektrostatische
Umgebung, die durch das restliche Kristallgitter erzeugt wird, korrekt wiederzugeben.

In unserer Arbeit setzen wir alle Abstände zwischen Ni- und O-Atome auf den entspre-
chenden experimentellen Wert, ohne die Geometrieoptimierung durchzuführen. Durch den
Vergleich der Resultate der unterschiedlichen Größen der eingebetteten Clustermodelle könn-
ten die optimalen Größen gefunden werden: 15×15×15 Ionen und 15×15×7 Ionen für den
NiO-Festkörper bzw. die NiO(001)-Oberfläche.

Beginnend vom theoretischen, uneingeschränkten Hartree-Fock (unrestricted HF) Niveau
errechnen wir die Eigenschaften des Grundzustands, um Einblicke in die elektronische Struk-
tur und Anregung zu erhalten. Wir schätzen die Anregungenergien und die Oszillatorstärken
mit Hilfe der Einzelanregungskonfigurationswechselwirkungstechnik (configuration interac-
tion with single virtual excitations, CIS). Anschließend demonstrieren wir die Elektronen-
korrelationseffekte anhand der d–d Übergänge auf verschiedenen Niveaus der korrelierten ab
initio Theorie, wie z.B. die CI-Berechnung mit allen Doppelsubstitutionen (configuration in-
teraction with double virtual excitations, CID) und CI-Berechnung mit allen Einzel- und Dop-
pelsubstitutionen (configuration interaction with single and double virtual excitations, CISD).
Unsere Hauptmethode, die quadratische Konfigurationswechselwirkungsnäherung mit allen
Einzel-, Doppel- und Dreifachanregungen (QCISD(T)) erklärt die elektronischen Korrela-
tionseffekte besser, indem sie den Konfigurationsraum der Vielkörperwellenfunktionen als
Kombination von Anregungen betrachtet. Diese von uns verwendete Methode ist die genaue-
ste Näherung. Wir merken an, daß alle Berechnungen der ab initio eingebetteten Cluster mit
dem GAUSSIAN98 Paket erfolgten.

Unsere Hauptresultate für die optischen Eigenschaften des NiO-Festkörpers und der NiO
(001)-Oberfläche werden folgendermaßen zusammengefaßt:

• Wir erhalten durch CIS-Berechnungen einen geschätzten Bandabstand von 7,6 eV, re-
sultierend aus Ladungstransferanregung zwischen O(2p) und Ni(4s) Zuständen. Das ist
viel höher als der experimentelle Wert des NiO-Festkörpers (4,3 eV), kann aber ein
guter Ausgangspunkt die Untersuchung tiefliegender d–d Anregungen sein.

• Wir sagen die optischen Absorptionsspektren voraus, die aus den Ladungstransferanre-
gungen resultieren.



• Wir finden d–d-Übergänge in einem Bereich von 0–3 eV (für die NiO-Festkörper- und
die NiO(001)-Oberflächenmodelle), die gut mit den verfügbaren theoretischen und ex-
perimentellen Daten übereinstimmen.

• Wir finden außerdem große elektronische Korrelationseffekte bei d–d-Anregungen.

Im zweiten Stadium unserer Arbeit, werden die nicht linearen, optischen Eigenschaften
der NiO(001) Oberfläche unter Verwendung der Energien und Wellenfunktionen aus frühe-
ren Berechnungen bestimmt. Es ist bekannt, daß Systeme mit Inversionssymmetrie keine
Antwort bei der doppelter Frequenz abgeben (kein SHG-Tensor für die elektrische Dipol-
übergangsnäherung). Das widerspricht jedoch den Experimenten, in denen SHG-Signale von
NiO detektiert wurden. Dafür gibt es zwei mögliche Erklärungen. Erstens kann SHG aus ei-
ner Kombination von magnetischen und der elektrischen Quadrupolübergängen resultieren.
In diesem Fall ist die Intensität der Antwort als Folge der sehr kleinen korrespondirenden
Matrixelemente ziemlich niedrig. Zweitens kann eine an der Oberfläche gebrochene Inversi-
onssymmetrie eine Quelle der SHG-Antwort eines zentralsymmetrischen NiO-Kristalls sein.
Wir unterstützen diese Erklärungsmöglichkeit, indem wir die SHG-Intensität als Funktion der
Photonenergie bei unterschiedlichen Konfigurationen von Lichtquelle und Detektor berech-
nen und diese mit den vorhandenen experimentellen Daten vergleichen. Zusätzlich werden
die Beiträge aller beteiligten elektronischen Übergänge zu den nicht-linearen Suszeptibili-
tätstensoren (XXZ=XZX), (YYZ=YZY), (ZXX) und (ZYY) gezeigt. Dieses erlaubt uns, die
SHG-Intensität zu erhalten, welche sich als ein besonders vielseitiger Sensor für magnetische
Grenzflächen erwiesen hat, und von welcher man sich neue Informationen über Antiferroma-
gneten erhofft.

Wir merken an, dass es für die optische Spinmanipulation wichtig ist, die Spinbahnkopp-
lung in die elektronische Theorie einzubeziehen. Es ist ein neues Forschungsgebiet, das die
Entwicklung von neuen oder die Erweiterung bereits vorhandener Methoden erfordert. Der
Mangel an solchen Methoden wird durch die kleinen Effekte der relativistischen Korrekturen
betätigt. Die Stärke der Spinbahnkopplung, welche für die Übergangsmetalle extrem wich-
tig ist, steigt mit wachsender Atomzahl an. Das bürdet uns eine dritte Schwierigkeit auf; die
Spinbahnkopplung muß in die Berechnung der angeregten Zustände eingebunden werden.

Innerhalb des COLUMBUS-Programms nutzen wir das CIS-Schema, um die relativistische
Antwort des Hamilton-Operators zu betrachten, welcher die Spinbahnkopplung beschreibt.
Diese Effekte resultieren aus der Aufspaltung der angeregten d–d-Zustände. Diese Feinstruk-
turen der tiefliegenden Anregung für den NiO-Festkörper und die NiO(001)-Oberfläche bilden
einen wesentlichen Teil unserer Arbeit und sind zum ersten Mal berechnet worden.

Uns bleiben eine Reihe von anderen Problemen von großem Interesse, die Thema weiterer
Arbeit sein werden:

• Bis jetzt bestanden die eingebetteten Cluster, die wir verwendet haben, aus nur einem
Ni-Atom. Die schnelle Entwicklung der Computerausrüstung und der numerischen Al-
gorithmen ermöglicht eine Erforschung von größeren Clustern, die den NiO-Festkörper
oder die NiO(001)-Oberfläche besser repräsentieren.



• Ein sehr interessanter Punkt ist die Berechnung der angeregten Zustände mit einer an-
deren Spinmultiplizität (Singlet) und mit einem anderen Drehimpuls.

• Obgleich die Einbeziehung der elektronischen Wechselwirkungen nur schwach die auf-
gespaltenen Spinbahnorbitale beeinflußt, ist es interessant, die relativistischen Berech-
nungen mit Hilfe der CISD oder einer höheren Theorie zu wiederholen.

• Das Wissen über eine größere Anzahl von Zustände ermöglicht eine Berechnung der
optischen Eigenschaften in einem größeren Energiebereich und führt folglich zu einer
besseren Vergleichbarkeit mit dem Experiment.
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