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Chapter 1

Introduction

The current speed of magnetic recording is of the order of nanoseconds, i.e. close to a
single precession cycle of the magnetization (Larmor frequency). Achieving a significantly
higher speed will require completely new approaches, such as hybrid or optical record-
ing. In order to overcome the deficiencies of the contemporary computer memories and
read-write heads of hard disks, both permanent and dynamic, new designs like magnetic
random access memories (MRAMs) are under development [1]. They will eliminate the
mechanical motion and the hierarchical structure of the contemporary memories and sim-
plify the design of the CPUs. One of the most important components of these MRAMs are
tunnelling magnetoresistance (TMR) devices, where the read-out current passing through
the device depends on the relative magnetization of two ferromagnetic layers. The central
layer of such a trilayer structure consists of an oxide sandwiched between a soft and a
hard magnetic layer (often a ferro-/antiferromagnetic exchange-bias system). Therefore,
the performance of these future devices depends heavily on the properties of oxides. Be-
sides, one of the ferromagnetic layers is “pinned” by an antiferromagnet (exchange bias).
Thus, the investigation of antiferromagnetic (AF) oxides (also of their spin dynamics) is of
technological importance. As a further development, nano-oxide structures are proposed
in order to replace the whole exchange-biased system of the tunnel junction.

For these applications it is necessary to develop a technique in order to investigate
AF oxide surfaces and buried interfaces. Besides, already the preparation of TM oxide
films is a challenge and requires a method to characterize the structure and magnetism
of these materials. Such a technique can be optical second harmonic generation (SHG),
since conventional linear optics is blind for antiferromagnetism. SHG has already proven
as a versatile technique for the investigation of ferromagnetism at surfaces. The sensitivity
of this technique to volume antiferromagnetism has been shown experimentally [2] and
explained theoretically [3]. The sensitivity of SHG to surface antiferromagnetism has been
predicted theoretically [4, 5].

Excited states in TM oxides have always been difficult to access theoretically due to
the highly correlated 3d electrons. The localized nature of these optically active states
makes them more amenable to theoretical methods usually applied for small clusters rather
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6 CHAPTER 1. INTRODUCTION

than to band-structure approaches commonly used for extended solids. In our approach,
these pronounced local-symmetry features are addressed by allowing for the full spherical
symmetry of the Hamiltonian of a free ion and subsequently lowering the symmetry by the
ligand field of the surface. The correlations are taken into account by coupling two, three,
and four holes in the 3d and 4s shells. This significant extension of our previous results
for the two-hole configuration [4, 6, 7] permits us to compute the electronic many-body
structure of the majority of TMOs, in particular also CoO and FeO and their surfaces,
thus demonstrating the versatility of our theoretical methods. Previous results of our
calculations, allowing already for some technologically important predictions (fast spin
dynamics accompanied by a long lasting coherence, laser-driven remagnetization), were
presented in [6]. The system addressed in that earlier work was a prototypical Ni++ ion on
NiO (001). Now we can address electronic configurations of various materials with similar
structure. In this work, for the sake of consistency, we treat one surface orientation [(001)],
one spin structure of the cubic AF oxides NiO, CoO, and FeO.

The field of nonlinear optics has been attracting a lot of attention from both exper-
imental and theoretical points of view. One of the most intensively studied processes is
the Sum Frequency Generation and in particulary Second Harmonic Generation. The first
observation of Second Harmonic Generation by Franken et al. in 1961 [8] followed the devel-
opment of pulsed lasers having high intensity of the outgoing light. The first experimental
observation of SHG from a metal surface was made by Brown et al. [9].

At the present time, optical SHG promised as a powerful tool which being sensitive to
magnetism may give an information about magnetic ordering of the sample. However, the
investigation of femtosecond spin-dynamics of antiferromagnets is still in its infancy.

Here, we will also describe the electronic theory of a pump-and-SHG-probe experiment
on NiO (001). During such an experiment, the sample is excited by a strong laser pulse,
and then (with a variable delay of several tens to hundreds of femtoseconds) the second -
probe - pulse is issued. The SHG response of the excited sample to this second pulse is
monitored and can reveal the dynamic properties of the sample.

Taking into account the arguments mentioned above, we formulate the main aims of
this work as follows:

• To get the proper description of the electronic structure of the transition metal
monoxides NiO, CoO, and FeO by means of Crystal Field Theory;

• To describe the magnetic states of these systems with the help of magnetic point
groups;

• To compute the optical properties of those systems under the influence of an exter-
nally applied laser light.



Chapter 2

Crystal Field Theory

One of the main features of transition metal oxides, which makes them difficult to describe
theoretically, is the strong localization of their 3d-electrons. There is a powerful method
allowing to deal with such systems is the Ligand Field Theory (LFT) (which is also known
as Crystal Field Theory (CFT) if the surrounding ligands are replaced by the point charges).
This theory helps to find the eigenstates and corresponding energy levels on the basis of
the known symmetry of the system. Although the theory is well described in many of the
textbooks as an example, it is usually restricted to the one-electron case or many-electrons
for low lying levels only and an extension of it to the whole set of many-electron states
for the given electronic configuration is either omitted or just sketched. In this work we
would like to fill this gap and, highlighting the problems arising there, present the way to
overcome those.

The CFT, being a perturbation theory, may be used in different ways. One particular
realization is based on the assumption about the influence of spin-orbit coupling (SOC)
and field of ligands (LF) on the system. The CFT theory describes the following systems:

A Free ion without SOC (spherical symmetry, gas phase)

B Ion with SOC

C Ion with SOC placed in the field of ligands (strong SOC, weak LF)

D Ion surrounded by ligands

E Ion surrounded by ligands with SOC (strong LF, weak SOC)

Depending on the relative strength of an SOC and the LF one may neglect the smaller
interaction and choose between the incomplete schemes A → B or A → D, or implement
one of the complete LFT schemes A→ C or A→ E.

The atomic states may be calculated within either LS- or jj-coupling. In the first case
orbital (l) and spin (s) angular momenta of the electrons are combined independently giving
the state, characterized by the set of quantum numbers L,M, S, Sz, or in spectroscopical

7



8 CHAPTER 2. CRYSTAL FIELD THEORY

notation 2S+1LSz

M . In the second one, the spin momentum s of each electron is coupled to
its own orbital momentum l giving a resultant momentum j = l + s and then all the j-s
are combined to give the state of the atom, which is characterized in this case by the set
of quantum numbers J, Jz.

If symmetry of the system is lowered by some interaction, its state is defined by ir-
reducible representations of angular momenta in the given symmetry. Interaction with
the ligand field does not depend on the spin degree of freedom of electrons. Thus, states
of ions in the media are characterized by the set of quantum numbers Γ, S, Sz, where Γ
denotes irreducible representations of orbital angular momenta in given point symmetry
group (for the Oh group Γ may be A1g(1), A2g(1), Eg(2), T1g(3), T2g(3), A1u(1), A2u(1),
Eu(2), T1u(3), or T2u(3); for the C4v group it is A1(1), A2(1), B1(1), B2(1), or E(2); the
number in parentheses shows the degeneracy of the representation). The changing of de-
generacy of spherically symmetric levels and the occurence of corresponding multiplets are
governed by Group Theory.

Because strong SOC appears to be important for heavy ions only, its impact on transition-
metal ions is assumed to be small compared with LF. However, the inclusion of SOCmatters
in the optical spectra for such systems changing the selection rules.

The flow chart of our realization of CFT is shown on Fig. 2.1. The ionic model was
treated by Racah in his four classic papers [10, 11, 12, 13]. In particular, he defined the
tensor operator and developed an appropriate tensor algebra, which replaces the “diagonal
sum method” (developed by Slater in [14]) for calculating the energy levels. The fractional
parentage coefficients (CFP) introduced by him have been widely used up to the present
time. However, his theory for pure ions is difficult to apply for ions situated in the solid
material. Although both Racah’s and Slater’s methods exactly describe free ions, they
become too complicated for lower symmetries, when states having the same set of quantum
numbers may appear more than once in the configuration. In such cases one may get with
those methods the sum of corresponding energies only; in order to extract the energies
themselves one has to compute the whole Hamiltonian matrix and diagonalize it afterwards.
The wavefunctions of the system have to reflect its symmetry. As a starting point we use
the linear combination of Slater’s determinants (so called cubic harmonics), which allows
to label the levels. However, they are only approximate in the sense, that they give a
block-diagonal form of the Hamiltonian matrix. These blocks have to be diagonalized to
obtain the exact wavefunction of the system, which completely describes metal ions in
different environments.

2.1 Hamiltonian

In CFT one tries to find the solution of the Schrödinger equation with the Hamiltonian

Ĥ = Ĥ0 + ĤC + ĤCF + ĤSO, (2.1)
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where Ĥ0 describes a spherically symmetric interaction, ĤC is the Coulomb interaction,
ĤCF is the interaction with crystal field, and ĤSO is the spin-orbit interaction.

The first term Ĥ0 includes the kinetic energy of the particles and their interaction with
the nucleus and can therefore be omitted

Ĥ0 =
N∑

i=1

−1

2
∆i + V̂N(~ri) (2.2)

since it only shifts the whole configuration (we are not interested in the absolute energies,
rather in their differences, which give the information about allowed optical transitions
between levels formed in the given electronic configurations).

The second term ĤC describes a pair interaction between the electrons and may be
expressed as follows:

ĤC =
N−1∑

i=1

N∑

j>i

1

r12
. (2.3)

The third term is responsible for the interaction of the electrons with surrounding
ligands. It strongly depends on the symmetry of the system. In this work we consider
two symmetries of the crystal, of which the first is Oh and appears in the bulk monoxide,
and the second one is C4v which reflects the symmetry of the (001) surface (perfect bulk
termination is assumed).

The fourth term describes the spin-orbit interaction derived from the Dirac equation
and may be written as

ĤSO = ξ(r)l · s, (2.4)

where ξ(r) is

− eh̄2

2m2c2
1

r

dU(r)

dr
(2.5)

with a spherically symmetric potential U(r) for the electron.
Now let us express the electrostatic potential produced by surrounding oxygen ions for

the MeO (where Me=Ni,Co,Fe) system. For the sake of consistency we treat those oxygen
ions as point charges and consider only one electron with hydrogen-like wavefunctions (see
Fig. 2.2). The extension to many-electron cases will be discussed later.

2.2 Crystal field for different symmetries

In this work we deal with two basic symmetries Oh and C4v which describe bulk and (001)
surface of fcc crystals respectively. Within CFT these symmetries are delineated by one
metal ion and six or five surrounding point charges, as depicted in the Fig. 2.2.

In principle, if we would be interested in the calculations of the radial behavior for the
wavefunction of the system, it is necessary to include spatial distribution of ligand electrons
extended towards the metal ion, which makes the CFT treatment much more complicated.
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Figure 2.2: Metal ion surrounded by point-charges; the left panel represents Oh symmetry,
while the right one reflects the (001) surface of an fcc material. • −Ze point charge. ©
metal ion.

Since in this work we are able to omit the radial parts by fitting the appearing integrals,
this spatial distribution may be omitted (see [15], p.130), which allows to simplify the
treatment without any loss in accuracy (the equivalence of surrounding ligands found in
equivalent directions holds for both cases).

Thus it is the key issue of CFT to find an expression for the field produced by point
charges which possess a given symmetry. The point charges are assumed to be fixed on
equal distances a from the central ion, thus giving an octahedral environment in the bulk
or cut octahedral environment on the (001) surface.

The contribution of the surroundings to the electron potential energy is expressed as

VCF (~r) =
Ns∑

i=1

Ze2

~Ri − ~r
, (2.6)

where ~r is the electron coordinate and ~Ri is the position vector of the i-th point charge,
and summation is made over all the point charges (Ns = 5 or 6).

The perturbation VCF is small compared with electron-nucleus and electron-electron
Couloumb interactions. In what follows (2.6) may be expanded in terms of the Legendre
polynomials:

VCF (~r) = Ze2
Ns∑

i=1

∞∑

k=0

rk<
rk+1
>

Pk(cosωi), (2.7)

in which r< and r> are the lesser and the greater of a and r respectively, and ωi is the
angle between vectors ~Ri and ~r. The strong localization of electronic orbitals in transition
metal oxides allows to replace to a good approximation r> and r< in (2.7) by a and r
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respectively, which gives

VCF (~r) = Ze2
Ns∑

i=1

∞∑

k=0

a−1
(r
a

)k
Pk(cosωi). (2.8)

In the equation above the Legendre polynomials may be expanded using the addition
theorem for spherical harmonics:

Pk(cosωi) =
4π

2k + 1

k∑

m=−k

Ykm(θφ)Y
∗
km(θiφi), (2.9)

where the Ykm(θφ)’s are the spherical harmonics, and (r, θ, φ) and (a, θi, φi) are the polar

coordinates of ~r and ~Ri, respectively. Here, Y
∗
km(θiφi) is the complex conjugate of Ykm(θiφi)

and is equal to (−1)mYk−m(θiφi).
From (2.8) and (2.9), Vc is given as a function of the electron coordinate ~r as follows:

VCF (~r) =
∞∑

k=0

k∑

m=−k

rkqkmC
(k)
m (θφ), (2.10)

where

qkm =

(
4π

2k + 1

)1/2
Ze2

ak+1

Ns∑

i=1

Y ∗km(θiφi), (2.11)

and

C(k)
m (θφ) =

(
4π

2k + 1

)1/2

Ykm(θφ). (2.12)

Since (θ1φ1), (θ2φ2), . . . , (θ6φ6) are known to be (the 6-th point charge is missing on the
surface) (π

2
0
)
,
(π
2

π

2

)
,
(π
2
π
)
,

(
π

2

3π

2

)
, (π0) , (00) ,

respectively, the qkm’s are given as

qk0 =

(
2

2k + 1

)1/2
Ze2

ak+1

[
Θk0(0) + 4Θk0

(π
2

)
+Θk0(π),

]
, (2.13)

qkm =

(
2

2k + 1

)1/2
Ze2

ak+1
Θkm

(π
2

)

×
[
1 + exp(i

mπ

2
) + exp(imπ) + exp

(
i
3mπ

2

)]
, (m : even 6= 0) (2.14)

qkm =0(m : odd), (2.15)
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in which Θkm is defined by

Ykm(θφ) = (2π)−1/2Θkm(θ)e
imφ. (2.16)

The explicit forms of Θkm’s are given in Table 9.3. By inserting the explicit forms of
Θkm into (2.13)-(2.15), the explicit form of Vc(~r) is obtained from (2.13)-(2.15) and (2.10)
for the bulk material as follows:

VCF (~r) =
6Ze2

a
+

7Ze2

2a5
r4

{
C

(4)
0 (θφ) +

(
5

14

)1/2 [
C

(4)
4 (θφ) + C

(4)
−4 (θφ)

]}

+ . . . . (2.17)

In this work we found higher terms in this expression. However, terms with k > 4 are not
important in our case since integrals of the product of three spherical harmonics (which
appear later)

∫∫
Y ∗l1m1

YkmYl2m2
sin θdθdφ (2.18)

which is proportional to the Clebsch-Gordan coefficient C l10
k0l20

vanish if the triangle rule
(|l1 − l2| ≤ k ≤ l1 + l2) is not satisfied. For 3d-electrons l1 = l2 = 2 which restricts the
value of k to 0 - 4; while for 4s-electrons l1 = l2 = 0 leaving k = 0 only.

The first term in (2.17) represents the potential energy of the electron located at the
position of the nucleus and elevates all the energy levels of the atom by the same amount,
6Ze2/a. The other terms split some of the degenerate energy levels as will be shown later.
The field giving rise to the potential energy whose angular dependence is given as (2.17)
is called a cubic field. This angular dependence is due to the geometrical arrangement of
the point charges as shown in Fig. 2.2.

In the case of bulk material each metal ion is surrounded by six oxygen ions positioned
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in the octahedra corners. The field produced by these charges has the following form:

V 0
CFb(r, θ, φ) =

Ze2

a
6C

(0)
0 (θφ), (2.19)

V 4
CFb(r, θ, φ) = r4

Ze2

a5
(
7

2
C

(4)
0 (θ, φ)

+

√
70

4
(C

(4)
−4 (θ, φ) + C

(4)
4 (θ, φ))), (2.20)

V 6
CFb(r, θ, φ) = r6

Ze2

a7
(
3

4
C

(6
0 (θ, φ)

− 3
√
14

8
(C

(6)
−4(θ, φ) + C

(6)
4 (θ, φ))), (2.21)

V 8
CFb(r, θ, φ) = r8

Ze2

a9
(
99

32
C

(8)
0 (θ, φ)

+
3
√
154

32
(C

(8)
−4(θ, φ) + C

(8)
4 (θ, φ))

+
3
√
1430

64
(C

(8)
−8 (θ, φ) + C

(8)
8 (θ, φ))), (2.22)

V 10
CFb(r, θ, φ) = r10

Ze2

a11
(
65

64
C

(10)
0 (θ, φ)

−
√
1430

√
3

64
(C

(10)
−4 (θ, φ) + C

(10)
4 (θ, φ))

−
√
24310

128
(C

(10)
−8 (θ, φ) + C

(10)
8 (θ, φ))), (2.23)

where the coefficients C
(k)
m are defined in (2.12). During the calculation of the energy matrix

integrals over angles θ and φ are computed exactly, while the integration over r leads to
few integrals only and their values may be found if some experimental energies are known.

Because of the highest symmetry of the system (Oh) all terms containing r in odd power
and the term with r2 vanish; the first (in the case of 3d-electrons with l = 2 this is the
only one) term which defines multiplet levels is V 4

CFb. Since the term V 0
CFb does not depend

on r, there is now splitting for s and p electrons. Higher terms might be important for
rare-earth metals when the state of the system is defined by an incomplete 4f -shell with
electrons having l = 3. For these systems the splitting of levels in the cubic field is defined
by both V 4

CFb and V
6
CFb.

Removing one point charge (at the position z) leads to additional terms in the equation
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for the crystal field:

V 0
CFs(r, θ, φ) =

Ze2

a
5C

(0)
0 (θ, φ), (2.24)

V 1
CFs(r, θ, φ) = r

Ze2

a2
(−C(1)

0 (θ, φ)), (2.25)

V 2
CFs(r, θ, φ) = r2

Ze2

a3
(−C(2)

0 (θ, φ)), (2.26)

V 3
CFs(r, θ, φ) = r3

Ze2

a4
(−C(3)

0 (θ, φ)), (2.27)

V 4
CFs(r, θ, φ) = r4

Ze2

a5
(
5

2
C

(4)
0 (θ, φ)

+

√
70

4
(C

(4)
−4 (θ, φ) + C

(4)
4 (θ, φ))), (2.28)

V 5
CFs(r, θ, φ) = r5

Ze2

a6
(−C(5)

0 (θ, φ)), (2.29)

V 6
CFs(r, θ, φ) = r6

Ze2

a7
(−1

4
C

(6)
0 (θ, φ)

− 3
√
14

8
(C

(6)
−4 (θ, φ) + C

(6)
4 (θ, φ))), (2.30)

V 7
CFs(r, θ, φ) = r7

Ze2

a8
(−C(7)

0 (θ, φ)), (2.31)

V 8
CFs(r, θ, φ) = r8

Ze2

a9
(
67

32
C

(8)
0 (θ, φ)

+
3
√
154

32
(C

(8)
−4(θ, φ) + C

(8)
4 )(θ, φ)

+
3
√
1430

64
(C

(8)
−8 (θ, φ) + C

(8)
8 (θ, φ))), (2.32)

V 9
CFs(r, θ, φ) = r9

Ze2

a10
(−C(9)

0 (θ, φ)), (2.33)

V 10
CFs(r, θ, φ) = r10

Ze2

a11
(
1

64
C

(10)(θ,φ)
0

−
√
1430

√
3

64
(C

(10)(θ,φ)
−4 + C

(10)
4 (θ, φ))

−
√
24310

128
(C

(10)
−8 (θ, φ) + C

(10)
8 (θ, φ))). (2.34)

Although the terms having the odd power of r already appear in this symmetry, they do not
contribute to the energy levels in the system (the integral (2.18) vanishes for l1 + l2 + k =
odd). Crystal field splitting in case of C4v symmetry is completely defined by the terms
V 2
CFs and V

4
CFs.
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2.3 Wavefunctions

CFT is based on the assumption that the angular dependence of basis functions is similar
to that for hydrogen wavefunctions. However, radial behavior is not known and may either
be calculated by other theories analytically or integrals which involve this dependence have
to be fitted to give the a priori known energy levels of the system. Such an assumption
makes it possible to split the variables and write the one-electron basis function in the form

ψnlmsz
= Rnl(r)Θlm(θ)Φm(φ)χsz

(s), (2.35)

where n = 0, 1, . . ., l = 0, 1, . . . , n − 1, m = −l, . . . , l, sz = −1/2,+1/2 denote principal,
orbital, magnetic, and spin quantum numbers respectively.

Many-particle wavefunctions may be constructed in two equivalent ways: (1) in the
form of Slater determinants with symmetry-adapted components (linear combinations of
one-electron hydrogen-like wavefunctions), or (2) in the form of linear combinations of
Slater determinants each of them containing pure one-electron hydrogen-like wavefunctions.
In both cases linear combinations describe correlation effects due to the pair Coulomb
interaction between electrons and the interaction with the field of ligands.

The way to construct the wavefunctions consists of three steps: (1) an “approximate”
wavefunction for the spherically symmetric ion is set up by means of LS-algebra, (2) the
projection technique is used to adapt those wavefunctions to the lower symmetry of the
system, and (3) having diagonalized the energy matrix we are able to find the eigenfunctions
of the Hamiltonian. In order to fit the radial integrals the step (3) is repeated to give the
best convergence of the Hamiltonian eigenvalues to the known energies.

Since the one-electron wavefunctions are simple hydrogen-like ones, we begin with the
electronic configuration 3d84s0 (corresponding hole configuration 3d24s2), which is the
ground state configuration of Ni++ in NiO 1. We have to note that the inclusion of a fully
occupied shell (as 4s2 here) only shifts the zero of energy but does neither affect the energies
of the individual states differently nor does it affect the symmetry of the wavefunctions.
Thus it suffices to consider partially occupied shells only.

The correlation of d-electrons couples the two holes in the d-shell of the ion, in the limit
of weak spin-orbit coupling, by an LS coupling (neglecting the spin-orbit coupling (SOC)).
The resulting coupled states have quantum numbers which are expressed as

Lz = lz,1 + lz,2

Sz = sz,1 + sz,2
(2.36)

Here, the lz,i and sz,i (i = 1,2) denote the z-components of orbital and spin momenta of the
i-th hole, respectively. From Eq. (2.36) it becomes clear that the orbital momentum of the
coupled state constructed from two d-holes can be 0, 1, 2, 3, or 4, which is conventionally
labelled by the spectroscopic symbols as S, P , D, F , and G. The resulting spin can be equal

1Throughout this work, we assume a transfer of an integer number of electrons to the oxygen atom.
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to 0 or 1, in other words each of these states can have a singlet or triplet spin multiplicity.
Since the two holes are indistinguishable, the Pauli principle forbids two identical holes
to produce a coupled state. This limitation leaves us with the following set of two-hole
states: 1S, 3P , 1D, 3F , and 1G. These spherical-symmetry adapted states are produced
from simple products of d-holes with the use of Clebsch-Gordan algebra

{dl=2,s=1/2 ⊗ dl=2,s=1/2}L,M,S,Sz

=
∑

m1,m2,sz1,sz2

CLM
2,m1,2,m2

· CSSz

1/2,sz1,1/2,sz2

·d2,m1,1/2,sz1
· d2,m2,1/2,sz2

(2.37)

followed by a Gram-Schmidt orthonormalization procedure. As a result we obtain or-
thonormal wavefunctions for these spherical states, expressed as linear combinations of
simple antisymmetric products of d-hole wavefunctions (Slater’s determinants).

The Hamiltonian commutes with all components of the resultant angular momenta L
and S, therefore there is no matrix component connecting states with different values L2,
S2, Lz, and Sz. Note, that the energy of the 3d24s2 and 3d24s0 configurations does not
depend on the values of Lz and Sz which means that the states are degenerate.

Coming to the states having more than two electrons we use a step-by-step procedure,
in which at each step one nl particle is added to the previously found LS-states and use
of (2.37) provides us with new set of levels. This is employed to find the wavefunctions
for spherically symmetric Co2+ and Fe2+. Note that for these configurations the levels
having the same quantum numbers and eigenfunctions of the Hamiltonian appear by the
diagonalization procedure.

If one goes to the lower symmetry the wavefunctions have to be adapted to this symme-
try. In our case lowering of the system symmetry from spherical to cubic assumes a change
of degeneracy of resultant orbital magnetic momentum L. This is governed by Group
Theory, which gives irreducible representations of angular momentum for each point group
symmetry. In particular, for Oh this changing is incorporated by means of so-called cubic
harmonics. To find them we employ a projection technique, which is given by the operator

P̂λk(j) =
lj
h

∑

R

Γ(j)(R)∗λkP̂R, (2.38)

where: lj - dimension of j-th representation, h - order of the group (for Oh h = 48), sum
over all symmetry operations R in the group, Γ(j)(R)∗λk - complex conjugate to the λk− th
element of the j − th irreducible representation of the R − th symmetry operation, PR -
symmetry operator.

The group Oh contains 10 classes, i.e. we have 10 irreducible representations (A1u, A2u,
Eu, T1u, T2u, A1g, A2g, Eg, T1g and T2g).

Irreducible representations of any point groups are matrices, the traces of are given in
the character tables for corresponding group:



18 CHAPTER 2. CRYSTAL FIELD THEORY

R3 E 3C2 8C3 6C4 6C ′2 I 3σ2 8S3 6S4 6σ′2
S (l = 0) 1 1 1 1 1 1 1 1 1 1
P (l = 1) 3 −1 0 1 −1 −3 1 0 −1 1
D (l = 2) 5 1 −1 −1 1 5 1 −1 −1 1
F (l = 3) 7 −1 1 −1 −1 −7 1 −1 1 1
G (l = 4) 9 1 0 1 1 9 1 0 1 1
H (l = 5) 11 −1 −1 1 −1 −11 1 1 −1 1
I (l = 6) 13 1 1 −1 1 13 1 1 −1 1

Oh E 3C2 8C3 6C4 6C ′2 I 3σ2 8S3 6S4 6σ′2
A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2u 1 1 1 −1 −1 −1 −1 −1 1 1
Eu 2 2 −1 0 0 −2 −2 1 0 0
T1u 3 −1 0 1 −1 −3 1 0 −1 1
T2u 3 −1 0 −1 1 −3 1 0 1 −1
A1g 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 −1 −1 1 1 1 −1 −1
Eg 2 2 −1 0 0 2 2 −1 0 0
T1g 3 −1 0 1 −1 3 −1 0 1 −1
T2g 3 −1 0 −1 1 3 −1 0 −1 1

C4v E 2C4 C2 2σv 2σd
A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E 2 0 −2 0 0

Comparison of these tables gives us the following level splitting for cubic and surface
environments (note that 3d−states are even under space inversion):

R3 Oh

S A1g

P T1g
D Eg + T2g
F A2g + T1g + T2g
G A1g + Eg + T1g + T2g
H Eg + 2T1g + T2g
I A1g + A2g + Eg + T1g + 2T2g
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Oh C4v

A1g A1

A2g B1

Eg A1 +B1

T1g A2 + E
T2g B2 + E
A1u A2

A2u B2

Eu A2 +B2

T1u A1 + E
T2u B1 + E

Applying the projection technique to the wavefunctions gives us basis functions for the
cubic symmetry; only angular parts of wavefunctions are presented, because the projection
operator does not change their radial parts since

P̂ (j)
λkRnlYlm = RnlP̂ (j)

λk Ylm. (2.39)

Having these wavefunctions incorporated into CFT we get the block-diagonal form of
the energy matrix. Diagonalization of these blocks is discussed later.

Cubic harmonics are also applicable in the case of C4v symmetry. If the blocks are
not diagonalized afterwards, one gets an approximate solution (for perturbation due to the
uncompensated field of the point charge at the position −z). If this is followed by the
diagonalization procedure for the blocks (which is the case in this work) the results are
exact (within our model).

We would like to note, that the projection operator (2.38) may be used to get the
wavefunctions for direct splitting R3 → C4v, without calculation of intermediate bulk
states. However, it is not important since we finally get completely diagonal energy matrix
with its eigenfunctions.

2.4 Calculation of matrix elements

Employing CFT requires calculations of matrix elements between wavefunctions in form
of Slater’s determinants for various operators. Since operators considered in this work are
either one- or two-electron operators, we would like to give the expressions for them.

2.4.1 One-electron operator

The simplest case is one-electron operator F̂ =
∑

i f̂(~ri). Action of such an operator is
completely defined by the wavefunction of one electron only. This part of the treatment
concerns the kinetic energy of the electrons

∑N
i=1−1

2
∆, their interaction with the nucleus
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∑N
i=1 Vn(~ri), and crystal-field terms

∑N
i=1 VCF (~ri). Extension of these operator to many-

body wavefunctions is straightforward and gives following results [16]

(ΦA|F̂ |ΦB) = ±
N∑

i=1

(ai|f̂ |ai), (2.40)

(ΦA|F̂ |ΦB) = ±(ak|f̂ |bl), (2.41)

(ΦA|F̂ |ΦB) = 0, (2.42)

of which the first equation describes the case when ΦA and ΦB are the same (except for pos-
sible permutation), the second one is used if two Slater determinants ΦA = a1, a2, . . . , ak, . . . , aN
and ΦB = b1, b2, . . . , bl, . . . , bN have one pair of different particles only (the ± sign is deter-
mined by the number of permutations to bring bj into coincidence with ai, except ak 6= bl);
the integral is zero for Slater determinants ΦA and ΦB which differ by more than one pair
of occupied functions.

2.4.2 Two-electron operator

There are pair electronic interactions, one of them being the Coulomb interaction (2.3). In
the most general form the pair interaction is expressed as Ĝ =

∑
i>j ĝ(i, j) and depends

on the wavefunctions of two electrons. For such operators there are four possible cases:

(ΦA|Ĝ|ΦB) = ±
∑

k>t

{(akat|ĝ|akat)− (akat|ĝ|atak)} (2.43)

(ΦA|Ĝ|ΦB) = ±
∑

t

{(akat|ĝ|blat)− (akat|ĝ|atbl)} (2.44)

(ΦA|Ĝ|ΦB) = ±{(akal|ĝ|bmbn)− (akal|ĝ|bnbm)} (2.45)

(ΦA|Ĝ|ΦB) = 0. (2.46)

Equation (2.43) is valid if the wavefunctions ΦA and ΦB are exactly the same (ai = bi for
all i), equation (2.44) should be used for wavefunctions which differ in one particle only
(ai = bi for all i, except ak 6= bl), the third equation (2.45) is used for wavefunctions ΦA

and ΦB which differ in two particles (ai = bi for all i, except ak 6= bm and al 6= bn); as it is
seen from (2.46) the two-particle operator vanishes for wavefunctions which differ by more
than two pairs of particles. Here again ± sign in front of right-hand side is given by the
parity of the particular permutation which bring ΦA and ΦB into coincidence.

2.4.3 Interaction with Nucleus and Kinetic Energy

The interaction of electrons with nucleus and their kinetic energies are given by the ex-
pression

U(a; b) = δ(ma,mb)δ(s
a
z , s

b
z)I(na, la;nb, lb). (2.47)
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However, this interaction is the same for all the diagonal matrix elements and has no affect
on the individual levels. The only effect is to shift the initial position of the energy. This
allows us to omit this term in the following consideration.

2.4.4 Coulomb Interaction

Coulomb interaction (2.3) in the Hamiltonian matrix describes pair interactions between
the electrons. Strictly speaking, this interaction may be broken up into three parts: (1)
electron pairs within closed shells, (2) electron pairs with one electron in closed shell, and
(3) electron pairs within open shells. Cases (1) and (2) are subject to Unsöld’s theorem
(whenever a sub-shell is filled or half-filled, the total wavefunction squared gives the spher-
ically symmetric spatial probability distribution for the atom’s electrons) and do not lead
to any splitting when summed over all occupied states. This leaves the entire splitting to
be related to the part

(ΦA|ĤC |ΦB) =
N−1∑

i=1

N∑

j>i

1

r12

=
N−1∑

i=1

N∑

j>i

[J(a, b)−K(a, b)]

(2.48)

in which summation is made only over the electrons not in closed shells. Symbols J(a, b) =
(ab|q̂|ab) and K(a, b) = (ab|q̂|ba) denote direct and exchange integrals of the Coulomb in-
teraction respectively. This interaction is an origin of multiplet splitting for the spherically
symmetric ions, but is also required for ions placed in the field of ligands.

As it is already shown each two-electron operator may be reduced to the form (ab|q̂|cd).
Substitutions of (2.35) into (2.48) gives

(ab|q|cd) =
∫∫

a∗(1)b∗(2)

(
e2

r12

)
c(1)d(2) dτ1 dτ2, (2.49)

where a, b, c, and d denote wavefunctions ψna,la,ma,sa
z
. . . ψnd,ld,md,sd

z
respectively; τ1 and τ2

are the integration variables. The integration is performed over six spatial coordinates and
summed over two spin coordinates. The spin sum gives unity if simultaneously saz = scz
and sbz = sdz and zero otherwise.

Conventual expansion of 1/r12 gives

1

r12
=

1

(r21 + r22 − 2r1r2 cosω)1/2
=

∞∑

k=0

rk<
rk+1
>

Pk(cosω) (2.50)

where r< and r> are the lesser and greater of |r1|, |r2| and ω is the angle between ~r1
and ~r2. Next, it is possible to expand Pk(cosω) using the addition theorem for spherical
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harmonics (2.9). Integration of the resulting expression over φ’s merely gives δ functions
which assure conservation of Lz and precludes ma+mb = mc+md. The remaining integral
may be expressed in terms of ck symbols as follows

(a, b|q̂|c, d) = δ(saz , s
c
z)δ(s

b
z, s

d
z)δ(ma +mb,mc +md)

×
∞∑

k=0

ck(la,ma, lc,mc)c
k(ld,md, lb,mb)R

k(na, la, nb, lb, nc, lc, nd, ld).
(2.51)

The quantities Rk are radial integrals which depend on the particular form for the radial
wavefunctions. The definition is just

Rk(na, la, nb, lb, nc, lc, nd, ld)

= e2
∫ ∞

0

∫ ∞

0

rk<
rk+1
>

R1(na, la)R2(nb, lb)R1(nc, lc)R2(nd, ld) dr1 dr2. (2.52)

Since an analytical expression for Rn,l(r) is not known within CFT, these integrals
can not be calculated and their values are fitted to some data available from independent
experiments or theories. However, usually there are few of such integrals (3 for systems
consisting of 3d particles only). Such a simplification is due to the fact that these integrals
appear multiplied by coefficients ck for which the triangle rule must be satisfied as well as
the condition k+ l1 + l2 = even. The linear combinations of these integrals are also known
as Racah parameters, while the integrals themselves are called Slater integrals. Thus it is
possible to find their numerical values without touching the question about the behavior
of Rn,l(r) itself.

2.4.5 Interaction with Crystal Field

Since expressions for the crystal field for both the bulk and (001) surface of an fcc crystal are
already defined (see (2.19) and (2.24)) and their extension to many-electron wavefunctions
is settled (see (2.40)) we may now proceed to find the Hamiltonian matrix elements for the
interaction of the ion with surrounding ligands. For the interaction with the electrostatic
field produced by ligands is a one-particle operator, we derive expressions for 3d− and
4s−particles which form incomplete shells of the system under consideration.

This task is reduced to integrals of the form

< ψ1|V̂CF |ψ2 >=

∫
ψ∗n1,l1,m1,s1z

V̂CFψn2,l2,m2,s2z
dτ, (2.53)

where the crystal field is given either by (2.19). . . (2.23) for the bulk environment or
by (2.24). . . (2.34) for the (001) surface.
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Substitution of (2.35) and (2.10) into (2.53) gives the result

< ψ1|V̂ ′CF |ψ2 >= δ(s1z, s
2
z)

∞∑

k=0

k∑

m=−k

qkm

∫
rkR1(n1, l1, r)R2(n2, l2, r) r

2
dr

∫
Y ∗l1,m1

(θφ)C(k)
m (θφ)Yl2,m2

(θφ) sin θdθdφ. (2.54)

This formula contains the threefold integration over spatial coordinates, which may be
easily reduced to the product of two Clebsch-Gordan coefficients for the angular part and
one radial integral. The resulting expression for the interaction with crystal field is

< ψ1|V̂ ′CF |ψ2 >= δ(s1z, s
2
z)

∞∑

k=0

√
4π

2k + 1
qkm

√
(2k + 1)(2l2 + 1)

4π(2l1 + 1)
C l10
k0l20

C l1m1

kml2m2
Rk(n1l1n2l2). (2.55)

Here the expression for integral of product of three spherical harmonics over the solid
angle [17] has been used

∫ 2π

0

dφ

∫ π

0

sin θdθYl1m1
Yl2m2

Y ∗l3m3
=

√
(2l1 + 1)(2l2 + 1)

4π(2l3 + 1)
C l30
l10l20

C l3m3

l1m1l2m2
. (2.56)

Integration over φ gives non-zero only when

m1 +m2 = m3 (2.57)

and in addition the triangle rule must be fulfilled

|l1 − l2| ≤ l3 ≤ l1 + l2 (2.58)

Relation (2.58) tells us that the matrix elements of the bulk crystal field V ′CFb between
the p-states are vanishing (since l1 = l2 = 1 and k = 0, 4, 6, . . .), resulting in the absence
of the cubic filed splitting of the p-levels, while for the surface k = 0, 1, 2, . . . and p-levels
are splitted by the crystal field. Equation (2.58) also shows that, in calculating the matrix
elements of V ′CF between the nd-states, the terms proportional to rk (k > 4) in Vc give a
vanishing contribution, since for 3d−particles l1 = l2 = 2 and n1 = n2. Such restrictions
allow to introduce another notation

ck(l1m1, l2m2) =

∫
dφ sin θdθY ∗l1m1

(θφ)C(k)
m (θφ)Yl2m2

(θφ), (2.59)

where the coefficients ck(l1m1, l2m2) are known as Gaunt’s coefficients and tabulated once
and for all [18]. Some of them are presented in Table 9.1.
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Bulk environment. The non-vanishing integrals for the bulk crystal are given by the
first two terms in the expansion of VCFb, namely

V̂CFb = V̂ 0
CFb + V̂ 4

CFb, (2.60)

which is due to the restrictions imposed by the triangle rule for the coefficients ck(l1m1, l2m2)
as it is just shown. Next, the first term of V̂CFb which is independent of the electron co-
ordinate appears in all the diagonal matrix elements. To make the following arguments
simple we leave out the first term of VCFb and shift the origin of the energy by 6Ze2/a.
Therefore, in what follows, we shall deal with V ′CFb given by

V ′CF = VCF −
6Ze2

a
. (2.61)

This also means that there is no crystal-field splitting of 4s-levels for both bulk and surface
environments and we may restrict our attention to the 3d-levels only.

Now let us calculate the matrix elements in (2.55) with n1 = n2 = 3 and l1 = l2 = 2.
For the bulk environment the electrostatic potential has a form

V ′CFb = V 4
CFb =

7

2

Ze2

a5
r4(C

(4)
0 +

√
5

14
(C

(4)
−4 + C

(4)
4 )), (2.62)

or in a more convenient form

2a5V ′CFb
7Ze2

= r4(C
(4)
0 +

√
5

14
(C

(4)
−4 + C

(4)
4 )). (2.63)

Incorporating the equation (2.19) into (2.55) we make independent integrations over solid
angle

∫∫
sin θdθ dφ and over the radial part

∫
dr. Within CFT method (hydrogen-like

angular behavior of the basis wavefunctions) the angular integrals are calculated exactly
using the expression (2.56) while the integrals over radial parts will be fitted later to the
known energies of the particular system. Note, that first Clebsch-Gordan coefficient C c0

a0b0

vanishes if a+ b+ c = 2g + 1 (odd) and is equal to

Cc0
a0b0 =

(−1)g−c
√
2c+ 1g!

(g − a)!(g − b)!(g − c)!

[
(2g − 2a)!(2g − 2b)!(2g − 2c)!

(2g + 1)!

]1/2
(2.64)

otherwise (the sum a + b + c is even), g is positive integer. From the these equations we
have: C20

0020 = 1, C20
4020 =

√
2/7, C20

2020 = −
√

2/7.
Results of this integration are

m1 m2 < φ3dm1
|V 4

CFb|φ3dm2
>

< r4 >3d
7Ze2

2a5

m1 m2 C20
4020

(
C2m1

402m2
+
√

5
14
(C2m1

4−42m2
C2m1

442m2
)
)

±2 ±2 1/21
±1 ±1 −4/21
0 0 2/7

±2 ∓2 5/21
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Because the dependence < r >k is not known a priori only ratios of these integrals
matter. They can also be presented in the conventual form (this form is used if the cubic
environment only is introduced in the calculations)

< φnd±2|V 0
c |φnd±2 > = Dq, (2.65)

< φnd±1|V 0
c |φnd±1 > = −4Dq, (2.66)

< φnd0|V 0
c |φnd0 > = 6Dq, (2.67)

< φnd±2|V 0
c |φnd∓2 > = 5Dq, (2.68)

where

D = 35Ze2/4a5, (2.69)

q = (2/105)< r4 >3d, (2.70)

and

< rm >nd =

∫
drr2+m|Rnd(r)|2. (2.71)

It should be remarked that D in (2.69) depends upon point-charges, and that q in (2.70)
reflects the properties of the electron of the central atom. The physical meaning of D may
easily be understood if V 4

CFb is reexpressed in the form

V 4
CFb = D(x4 + y4 + z4 − 3

5
r4) + . . . . (2.72)

(001) surface environment. A similar treatment is used to get the matrix elements of
crystal-field interaction for the case of (001) surface. However in this case the electrostatic
environmental potential VCFs has more complicated structure due to the lower symmetry
of the system. Again, omitting 4s-levels and cutting the sum

VCFs = V 0
CFs + V 1

CFs + . . .

at the k = 4 we may write down a simplified form of V ′CFs as follows (keeping in mind that
odd terms do not contribute to the energy due to the restrictions l1 + l2 + k = (even))

V ′CFs = −r2
Ze2

a3
C

(2)
0 + r4

Ze2

a5
(
5

2
C

(4)
0 +

√
70

4
(C

(4)
−4 + C

(4)
4 )). (2.73)

or in more convenient form

V ′CFs
Ze2

= − 1

a3
r2C

(2)
0 +

5

2a5
r4(C

(4)
0 +

√
7

10
(C

(4)
−4 + C

(4)
4 )),

The corresponding angular integrals are calculated in the same way as for the bulk and are
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Table 2.6: Non-zero energy matrix elements for one 3d-particle placed in a field with either
Oh or C4v symmetry

m1 m2
Ze2

a
1
7
Ze2

a3 < r23d >
1
42

Ze2

a5 < r43d >

±2 ±2 bulk 6 0 7
surface 5 2 5

±1 ±1 bulk 6 0 -28
surface 5 -1 -20

0 0
bulk 6 0 42

surface 5 -2 30

±2 ∓2 bulk 0 0 35
surface 0 0 35

m1 m2 < φndm1
|V 2

c |φndm2
> < φndm1

|V 4
c |φndm2

>

< r2 >3d
−Ze2

a3 < r4 >3d
5Ze2

2a5

m1 m2 C20
2020C

2m1

202m2
C20
4020

(
C2m1

402m2
+
√

7
10
(C2m1

4−42m2
C2m1

442m2
)
)

±2 ±2 −2/7 1/21
±1 ±1 1/7 −4/21
0 0 2/7 2/7

±2 ∓2 0 1/3

Is is worth to note that in case of bulk crystal-field splitting is completely defined by one
parameter only, while on the surface one needs two parameters (apart from the zeroth-order
term which is the same for all the terms and shifts the origin of the energy).

Before going further we have to say that zeroth-order terms for bulk and surface envi-
ronments relate to each other with ratio 5/6, which is used in the comparison of these two
symmetries of the same system. The results for both bulk and surface environments may
be summarized and are given in Table 2.6. This result shows a deep interrelation between
bulk and surface splitting of the same material and was not presented before. As we will
show later the values of parameters we got from two independent fits (for bulk and surface)
are very close to each other, confirming the applicability of CFT to transition metal oxides.

2.4.6 Spin-orbit interaction

The spin-orbit interaction is proportional to the l · s which can be expressed as

l · s = lzsz +
l+s− + l−s+

2
, (2.74)
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where the operators are defined for any angular momentum lm (for the spin l = 1/2,
m = ±1/2) as:

lzφlm(~r) = mφlm(~r), (2.75)

l±φlm(~r) = [l(l + 1)−m(m± 1)]1/2φlm±1(~r). (2.76)

For 3d-particles one gets the following matrix of l · s:

ψ↑±2 ψ↑±2 -1

ψ↓±2 ψ↓±2 1

ψ↑±1 ψ↑±1 -0.5

ψ↓±1 ψ↓±1 0.5

ψ↑−2 ψ↓−1 1

ψ↓−1 ψ↑−2 1

ψ↓2 ψ↑1 1

ψ↑1 ψ↓−2 1

ψ↑−1 ψ↓0
√
6/2

ψ↓0 ψ↑−1
√
6/2

ψ↓1 ψ↑0
√
6/2

ψ↑0 ψ↓1
√
6/2

The splitting of the levels resulting from the spin-orbit coupling depends on both the
symmetry of the system and the total spin momentum S. For the symmetries of our
interest (Oh and C4v) the splitting of the triplets (S = 1) in NiO is

Oh Oh with SOC C4v C4v with SOC
3A1g = Γ+

1 Γ4
3A1 = Γ1 Γ2 + Γ5

3A2g = Γ+
2 Γ5

3A2 = Γ2 Γ1 + Γ5
3Eg = Γ+

3 Γ4 + Γ5
3B1 = Γ3 Γ4 + Γ5

3T1g = Γ+
4 Γ1 + Γ3 + Γ4 + Γ5

3B2 = Γ4 Γ3 + Γ5
3T2g = Γ+

5 Γ2 + Γ3 + Γ4 + Γ5
3E = Γ5 Γ1 + Γ2 + Γ3 + Γ4 + Γ5

and may be extended to other symmetries. The way to construct it is: (1) define

the irreducible representations of the orbital momentum ~L in the given point symmetry
group; (2) define the irreducible representations of the spin momentum ~S in the given point
symmetry group; (3) form the direct product D(L) ×D(S).

2.5 One-electron case

The simplest case of CFT is one-particle case, when one electron only is considered. This
starting part does not only give the ideas, which the CFT is based on, but is also required
when one goes to many-particle cases.
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Using results presented before we already may write the Hamiltonian for one 3d-particle
moving in the potential produced by surrounding point charges. Since at this stage the
Coulomb interaction is not present, the energy matrix is formed by the effect of all other
interactions and has a form:




6A+ 7C 0 0 0 35C
0 6A− 28C 0 0 0
0 0 6A+ 42C 0 0
0 0 0 6A− 28C 0

35C 0 0 0 6A+ 7C



,

for the bulk system and




5A+ 2B + 5C 0 0 0 35B
0 5A−B − 20C 0 0 0
0 0 5A− 2B + 30C 0 0
0 0 0 5A−B − 20C 0

35B 0 0 0 5A+ 2B + 5C



,

for the surface, where letters A, B, and C denote zeroth-, second-, and fourth-order con-
tributions of the crystal field to the energy of the electron. The bases of these matrices are
arranged in the ascending order of m.

Since both matrices have off-diagonal terms connecting the states with ma = +2, mb =
−2 we have to solve secular equations in order to find the eigenvalues of the Hamiltonian.
This task is straightforward and leads to the result

Oh C4v

ε1,2,3 = 6A− 28C ε1,2 = 5A−B − 20C
ε4,5 = 6A+ 42C ε3 = 5A− 2B + 30C

ε4 = 5A+ 2B − 30C
ε5 = 5A+ 2B + 40C

The first column represents the well known fact that 3d-particles in a cubic bulk field
form two states - a three-fold degenrate t2g and a doubly degenerate eg. On the surface
we observe further splitting when four different states are formed, of which one is doubly
degenerated (eg) and other three have multiplicity one (a1, b1, and b2).

2.6 Many electrons

The results of the previous section now have to be expanded to case of more than one
particle. There are two equivalent ways doing this.

In the first case one may employ the already calculated one-particle states. Knowing the
energies it is possible to find the eigenfunctions corresponding to them. These one-particle
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eigenfunctions may be arranged in the single Slater determinant to give the many-particle
wavefunctions of the system. For instance, in the case of two 3d-electrons (which form one
of the five states t12g, t

2
2g, t

3
2g, e

1
g, and e

2
g omitting the spin degree of freedom) the following

45 states may be formed (number in parentheses shows the multiplicity of the state): t2gt2g
gives 15 states 1A1g(1),

1Eg(2),
1T2g(3), and

3T1g(9); egeg gives 6 states 1A1g(1),
1Eg(2),

and 3A2g(3); and finally t2geg gives 24 states 1T1g(3),
1T2g(3),

3T1g(9), and
3T2g(9). Such

way of doing this is used in [15]. Although it is possible to derive this scheme for C4v

symmetry, we do not do it here since we use the second method.
The other way of inclusion many-body states is to keep the basis of hydrogen-like

orbitals and implement symmetry-adapted linear combinations of Slater determinants. In
this way the wavefunction has a form

Φ =
∑

k

αkΦk, (2.77)

where Φk’s are the Slater determinants

Φk = (N !)−1/2
∑

P

(−1)pPψ(r1, . . . , rN ), (2.78)

= (N !)−1/2




u1(1) u2(1) . . . uN(1)
u1(2) u2(2) . . . uN(2)
. . . . . . . . . . . .

uN(1) uN(1) . . . uN(N)


 (2.79)

and p denotes the number of binary permutations in the permutation P . The method
is easily expandable to a many-particle electronic configuration using general formulas in
dealing with one- and two-particle operators. Another advantage of this method is that
one-particle matrix elements are already calculated ad may be used directly. However
to form proper linear combinations of Slater determinants it is necessary to derive cubic
harmonics for any level which is accomplished by projection operator.

It is of basic importance that none of these two methods gives energies and eigenfunc-
tions for levels appearing more than once in the configuration. The Hamiltonian matrix
has a block-diagonal form (see chapter 7 section 3) with blocks being formed by the levels
with the same set of quantum numbers. Thus it is critical to diagonalize this matrix to
find the eigenstates of this system. The main problem coming out at this point is the
fitting of the energy levels to given values. For NiO, the Hamiltonian matrix Ei,j has a
size 45 × 45 and the task seems to be trivial (there is a lot of programs which can do it).
However it is not so. Actually the interaction is defined by the rank 3 matrix Ei,j,k of size
45 × 45 × k(number of parameters) which can not be diagonalized analytically. However
once the parameters are fitted the matrix may be given as Ei,j =

∑
k Ei,j,k, where i and j

denote states and k runs over CFT parameters and is diagonalized easily. Thus the diffi-
culty is to modify standard CFT in order to remove off-diagonal elements. This is done by
using Powell’s non-linear least-squares method [19].
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To the best of our knowledge the complete digonalization of block-diagonal matrices of
many-body states in CFT was never done before. Some authors neither computed nor even
mention this point [20]; some other authors neglected their contribution because methods
they use do not allow this (however they found the whole energy matrix for rare-earth
metals and regarded those elements being small) [21].

Off-diagonal elements of the energy matrix appear already for the spherically symmetric
Co2+ ion, when two 2D levels are formed within the 3d7 electronic configuration. It is
possible to construct different wavefunctions on the base of Clebsch-Gordan algebra. For
example, the equation (2.37) gives us wavefunctions c2D and d2D, while a2D2 and b2D2

are taken from [22]:

state [1,9,10] [4,7,9] [3,8,9] [3,7,10] [5,6,9] [5,7,8]

a2D↑2 −1
2

+1
2

−1
2

+1
2

b2D↑2 −
√

25
84

−
√

9
84

−
√

1
84

+
√

16
84

−
√

9
84

−
√

24
84

c2D↑2 +
√

8
15

+
√

2
15

−
√

2
15

+
√

3
15

d2D↑2 +
√

1
70

−
√

25
70

+
√

9
70

+
√

4
70

−
√

25
70

−
√

6
70
.

Both two sets of basis functions are eigenfunctions of operator L̂ and are connected to
each other by the expressions

c2D↑2 = −
√

3

10
a2D↑2 −

√
7

10
b2D↑2,

d2D↑2 = −
√

7

10
a2D↑2 +

√
3

10
b2D↑2.

which simply represent the unitary rotations matrix.
The energy matrices for these two sets have block-diagonal forms with 2×2 blocks: (for

convenience Slater integrals are denoted as A = F0 − 49F4 = F 0 − F 4/9, B = F2 − 5F4 =
(9F 2 − 5F 4)/441, and C = 35F4 = 5F 4/63):

a b

a 3A+ 7B + 7C 3
√
21B

b 3
√
21B 3A+ 3B + 3C

for the first set and

c d

c 3A+ 84
5
B + 21

5
C 8

5

√
21B + 2

5

√
21C

d 8
5

√
21B + 2

5

√
21C 3A− 34

5
B + 29

5
C
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for the second one. It is already seen that diagonal elements are different which means
that eigenfunctions of L̂ are not the eigenfunctions of our Hamiltonian and the diagonal
sum rule con not be used for this configuration. However aa+bb = cc+dd = 6A+10B+10C
e.g. the diagonal sum rule gives the correct sum of energies for two 2D levels, but their
values should be found from the secular equation.

Having calculated the whole blocks of the energy matrix we may now diagonalize them
in order find the eigenfunctions of the Hamiltonian.

Both matrices give the same secular equation with its eigenvalues

ε = 3F0 + 5F2 + 3F4 ±
√

193F 2
2 + 8325F2F4 − 1650F 2

4 ,

ε = 3A+ 5B + 5C ±
√
193B2 + 8BC + 4C2.

The corresponding eigenfunctions can be written as

αa2D↑2 + βb2D↑2,

αc2D↑2 + βd2D↑2,

where coefficients α and β are different for two sets but do give the same final eigenfunctions.

αab =

[(
aa− ε

ab

)2

+ 1

]−1/2
,

βab = −
aa− ε

ab
α,

αcd =

[(
cc− ε

cd

)2

+ 1

]−1/2
,

βab = −
cc− ε

cd
α.

Such a situation always occur for Oh and C4v symmetries for the levels characterized
by the same set of quantum numbers Γ, S, Sz, as will be shown for NiO later. This is
due to the fact that eigenfunctions of orbital angular momenta (cubic harmonics) are
not eigenfunctions of the Hamiltonian, however they are used to reduce the task to the
diagonalization of the blocks instead of the whole matrix.

It is also possible to show this numerically. To get values of A, B, and C we use the
least squares method. Some energies for gas phase Co++ are known from experiment [23]:

level energy expression
4F 0.0000 eV 3A-15B
4P 1.8849 eV 3A
2G 2.1051 eV 3A-11B+3C
2H 2.8171 eV 3A-6B+3C

a2D 2.8591 eV 3A+5B+5C±
√
193B2 + 8BC + 4C2
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At the first stage we get the parameters from 4 energies (without the “problematic”
a2D level for which the sign before the square root is not defined), then with sign + in the
equation 2.6, and finally with sign − in it. The results are:

step A B C
∑

(Eexp − Efit)
2

1 0.632485 0.127334 0.548661 0.003153
2 0.485029 0.027679 0.227420 2.313683
3 0.634003 0.125953 0.519724 0.026151

The parameters above produce the following values of the energy for different levels:

level Exp. value Fitted value Efit − Eexp (Eexp − Efit)
2

4F 0.000000 -0.012555 -0.01255 0.000158
4P 1.884900 1.897455 0.01255 0.000158
2G 2.105100 2.142765 0.03766 0.001419
2H 2.817100 2.779435 -0.03766 0.001419
4F 0.000000 1.039903 1.03990 1.081398
4P 1.884900 1.455087 -0.42981 0.184739
2G 2.105100 1.832879 -0.27222 0.074104
2H 2.817100 1.971274 -0.84582 0.715422
a2D 2.859100 3.367057 0.50795 0.258020
4F 0.000000 0.012711 0.01271 0.000162
4P 1.884900 1.902008 0.01710 0.000293
2G 2.105100 2.075697 -0.02940 0.000865
2H 2.817100 2.705463 -0.11163 0.012463
a2D 2.859100 2.970320 0.11122 0.012370

This table clearly shows the validity of 3-rd step of our treatment, which allows to
find the eigenfunctions for two 2D levels. For two different sets of angular momentum
eigenfunctions we get two different sets of α and β parameters

the values of α and β
Set ε α β
ab 2.970320 0.448426 -0.893820
ab 7.290468 0.893820 0.448426
cd 2.970320 0.502211 -0.864745
cd 7.290468 0.864745 0.502211

which do give the same Hamiltonian eigenfunctions

state [1,9,10] [4,7,9] [3,8,9] [3,7,10] [5,6,9] [5,7,8]
EF 1

ab 0.263406 0.516784 -0.126689 -0.390095 0.516784 0.477767
EF 2

ab -0.691546 0.300128 -0.495837 0.195709 0.300128 -0.239694
EF 1

cd 0.263406 0.516784 -0.126689 -0.390095 0.516784 0.477767
EF 2

cd 0.691546 -0.300128 0.495837 -0.195709 -0.300128 0.239694
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As that was expected, the eigenfunctions are the same for both ab and cd sets (except
for the sign in EF 2

ab and EF
2
cd, which does not play a role since it is always squared). Our

results are the same as in [22]2.
The conclusion is: application of the diagonal sum method requires a careful treatment

of levels, which occur more than once in a configuration. For complicated electronic con-
figurations of spherically symmetric ion and for all the states in the lower symmetry the
whole Hamiltonian matrix should be computed and diagonalized.

As the next point, we would like to show the impossibility of analytical diagonalization
of the energy matrix. Let us assume that we have 2 functions fa and fb which are not the
eigenfunctions of the Hamiltonian and produce an energy matrix

(
aa ab
ab bb

)

which has off-diagonal elements ab = ba.
It is possible to introduce two new functions, defined as (α2 + β2 = 1)

f ′a = αfa + βfb (2.80)

f ′b = −βfa + αfb , (2.81)

where α and β may be defined from one variable as α = cosφ and β = sinφ considering
the transformation of functions as a rotation in some virtual space over the angle φ.

Clearly these new function also are the eigenfunctions of the L̂ operator. For these
functions the matrix of an interaction becomes

(
α2aa+ β2bb+ 2αβab αβ(bb− aa) + (α2 − β2)ab

αβ(bb− aa) + (α2 − β2)ab β2aa+ α2bb− 2αβab

)
(2.82)

Suppose that it is possible to find the coefficients α and β which give zero for the
off-diagonal elements a′ and b′. They may be found from the condition

αβ

α2 − β2
=

ab

aa− bb

for f ′a and f ′b to be the Hamiltonian eigenfunctions.
For the case discussed before we have:

a b

a 3A+ 7B + 7C 3
√
21B

b 3
√
21B 3A+ 3B + 3C

2two misprints are found in [22] p.173. Equation α2Da
2,1/2

+ β2Db
2,1/2

should be αDa
2,1/2

+ βDb
2,1/2

.

Equation F4 = (1/144)F 4(nd2) should be F4 = (1/441)F 4(nd2)
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Figure 2.3: Dependence of the off-diagonal element < a′|Ĥ|b′ > on the rotation angle

a′ b′

a′ 3A+ (3 + 4α2 + 6αβ
√
21)B + (3 + 4α2)C (−4αβ + 3

√
21(α2 − β2))B − 4αβC

b′ (−4αβ + 3
√
21(α2 − β2))B − 4αβC 3A+ (3 + 4β2 − 6αβ

√
21)B + (3 + 4β2)C

which give the condition
αβ

α2 − β2
=

3
√
21B

4B + 4C
,

showing that the eigenfunctions depend strongly on the values of B and C which are not
known a-priori.

Figure 2.3 shows the dependence of the < a′D|Ĥ|b′D > matrix element on the rotation
angle for B = 0.125953 and C = 0.519724. It is seen that intersection points of < a′|Ĥ|b′ >
with the x axis correspond to non-zero contributions of B and C separately and only their
sum is zero.



Chapter 3

Crystal Field Theory: Results for
NiO

NiO has been attracting enormous attention of physicists for more than 50 years. This
monoxide has a simple crystalline structure of NaCl type (an fcc lattice with a = 4.18Å
and shortest metal-oxygen distance 2.08Å). In the paramagnetic state above the Néel
temperature TN = 525 K bulk NiO posses a symmetry of the crystallographic point group
Oh, while its undistorted (001) surface is described by C4v one. In the ground state two
4s-electrons of each Ni ion are transferred to the surrounding oxygen ions, thus giving the
ground state electronic configuration 3d84s0 of the Ni2+ ion. The gap of NiO is shown in
an XPS-BIS experiment [24] to be about 4 eV. Although NiO is considered in this work
as being Mott-Hubbard-like insulator, some authors attribute this material to the charge-
transfer insulators [25] or to the intermediate systems [26]. Due to the interaction with the
field of oxygen ligands electronic levels existing in the gas phase become splitted. Because
the interaction with the field of ligands is spin-independent the resulting levels are defined
by the irreducible representations of orbital angular momentum ~L only. Inclusion of spin-
orbit coupling leads to the mixing of ~L and ~S momenta. According to the general theory
the splitted states of the system are defined in this case via the direct product of the ~L and
~S irreducible representations in the given symmetry. The measured magnetic moments of
this system are in range of M = (1.77− 2.2± 0.2)µB [27, 28, 29, 30] which are comparable
to the spin-only moment of an associated Ni2+ ion. However, in the nonresonant magnetic
X-ray scattering the separation of spin and orbital moment densities, which have different
geometrical prefactors in the scattering cross section, can be adjusted by changing either
the scattering geometry or the X-ray polarization. In Ref. [29, 30], the orbital magnetic
moment in NiO is extracted by the polarization analysis of nonresonant magnetic scattering
intensities. A large contribution of the orbital moment to the total magnetic moment was
found by this method. Authors also found that the spin and orbital moments in NiO are
collinear.

Below the Néel temperature these symmetries are lowered due to the antiferromag-
netic ordering of spins of individual metal ions. All possible magnetic symmetries will be

35
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discussed in this work later. Although Group Theory (namely Theory of Corepresenta-
tions for magnetic point groups) is able to give the set of levels for any magnetic point
group [31, 32], the exchange interaction, which produces them, is intra-site one and can
not be incorporated in the CFT where one metal ion only is considered. None of the terms
in the CFT Hamiltonian (2.1) depends on the orientation of the resultant spin of the metal
ion. If this interaction were constructed and included in the Hamiltonian, we would have
complete description of the magnetic state too, but this treatment goes beyond the scope
of this work. The splitting of the levels due to magnetic interaction is relatively small and
would not affect their energies too much, however it changes the selection rules. Thus,
CFT can not be used to get the proper symmetry of magnetic state of the system without
deep modifications. However, as we will show later, CFT does discriminate the tensor
elements of crystallographic and magnetic origin, which allows to use it for the description
of Second Harmonic Generation process.

In this chapter we present the results of our calculations for NiO having symmetries
R(3), Oh, and C4v.

It is quite important to note an improvement of our previous calculations [20, 7, 6],
where we followed the diagonal sum realization of CFT [33]. The off-diagonal elements of
the energy matrix (they appear between different levels, characterized by the same set of
quantum numbers L, M , S, Sz) were omitted, which greatly simplifies the calculations,
allowing the usage of Clebsch-Gordan algebra for getting the wavefunctions. However, this
treatment of CFT is exact only for the levels which appear alone on the given configuration.
For levels, appearing more than once, only the sum of their energies may be calculated. In
the current work the whole energy matrix is computed and completely digonalized. This
realization required the calculation of at most 45×45×5 = 10125 matrix elements (actually
less because the Hamiltonian matrix is symmetric and Hij = Hji) and diagonalization of
this matrix on each step of the least-squares procedure for the (001) surface where each
energy level is defined by 5 parameters. For comparison, in the diagonal sum method only
the diagonal matrix elements Hii have to be computed which gives 45× 3 = 135 elements;
fitting of parameters in this case is a much simpler linear least-squares problem.

To fit the radial integrals which enter the CFT we use already available information
about the energies of low lying states, which have been obtained in experimental and
theoretical works [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. Unfortunately, the careful
analysis of those articles about NiO does not give a unique assignment of energies to
corresponding atomic multiplets. The results of different authors may contradict each
other, as discussed at the end of this chapter.

In the first step of our calculations we have chosen Ni2+ ion to find the values of
parameters, which describe the Coulomb interaction between 3d-electrons in the metal ion.
All input energies of the free Ni2+ ion are taken from the gas phase experiment [23], namely
3F = 0.0000, 1D = 1.7398, 3P = 2.0658, and 1G = 2.8652.

The obtained results for gas phase Ni2+ are presented in Table 3.1. Since each of
the levels appears only once in this configuration, they are completely characterized by
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quantum numbers L, S, which means that L, S are good quantum numbers for the gas
phase of Ni2+ (which becomes violated for both the bulk and surface of NiO).

Table 3.1: Calculated energies for free Ni2+ ion

1S A +14B +126C 7.0677
3P A +7B -84C 2.1276
1D A -3B +36C 1.8370
3F A -8B -9C 0.0000
1G A +4B +C 2.8299
A=1.8933, B=10.8974/49, C=7.1049/441

In order to test the applicability of CFT to NiO we choose three and four sets of energies
for the bulk and (001) surface of NiO respectively, as it is presented in Tab. 3.2. For all of
those cases three parameters describing Coulomb interaction are taken from the previous
step (Ni2+ ion).

When we come to the Ni2+ ion in the bulk NiO, orbital quantum numbers L,M behave
according to the irreducible representations for the given symmetry group (Oh). Use of
cubic harmonics to form symmetry adapted linear combinations of LS-wavefunctions yield
a block-diagonal form of the energy matrix with off-diagonal elements between the levels
having the same quantum numbers Γ, S, Sz. Thus the energy matrix contains blocks with
size 2× 2 for levels 1A1g,

3T1g,
1Eg,

1T2g which appear twice in the configuration and exact
wavefunctions for other levels appearing alone.




1A2×2
1g 0 0 0 0 0 0
0 3T 2×2

1g 0 0 0 0 0
0 0 1E2×2

g 0 0 0 0
0 0 0 1T 2×2

2g 0 0 0
0 0 0 0 3A1×1

2g 0 0
0 0 0 0 0 3T 1×1

2g 0
0 0 0 0 0 0 1T 1×1

1g




The blocks calculated with cubic harmonics are expressed in terms of two CFT param-
eters as follows (the parameter E does not exist in the Oh symmetry, but will appear on
the surface)

1A2×2
1g =

(
12D 68.585713F

68.585713F 12A+ 28D

)

3T 2×2
1g =

(
12D 28D
28F 12D − 42F

)
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Table 3.2: Energies for bulk and (001) surface of NiO, used in fitting procedure

Bulk NiO
[34] [39]

theory experiment
a b c

a3A2g 0.0000 0.0000 0.0000
a3T2g 0.8406 1.0000 1.1000
a3T1g 1.4586 1.7200 1.6000
a1Eg 1.8474
a1T2g 2.5553
b3T1g 2.8186

(001) surface NiO
[34] [39] [41] [43]

theory experiment theory theory
1 2 3 4

a3B1 0.0000 0.0000 0.0000 0.0000
a3E 0.6500 0.6000 0.4900 0.4600
a3B2 1.0000 1.1000 0.8300 0.8300
a3A2 1.3000 1.3000 1.0200
b3E 1.4400 1.8400 1.1700

1E2×2
g =

(
12D + 24F 69.282032F
69.282032F 12D + 4F

)

1T 2×2
2g =

(
12D − 16F 34.641016F
34.641016F 12D − 26F

)

while the single levels are

3A1×1
2g = 12D + 84F

3T 1×1
2g = 12D + 14F

1T 1×1
1g = 12D + 14F

If there were no Coulomb interaction, the equations above might have the following
exact solutions:
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1A2×2
1ga 12D + 84F

1A2×2
1gb 12D − 56F

3T 2×2
1ga 12D + 14F

3T 2×2
1gb 12D − 56F

1E2×2
ga 12D + 84F

1E2×2
gb 12D − 56F

1T 2×2
2ga 12D + 14F

1T 2×2
2gb 12D − 56F

3A1×1
2g 12D + 84F

3T 1×1
2g 12D + 14F

1T 1×1
1g 12D + 14F

. (3.1)

However, bringing in the Coulomb interaction, we have to diagonalize the whole energy
matrix for all the bulk states. In this case both the spherical Coulomb interaction (see
Table 3.1) and the interaction with the crystal field (3.1) lose their simple forms and
take a complicated structure which is quite dependent on the values of CFT parameters,
which themselves are defined during the fitting process and depend on the employed known
energies.

The particular set of the bulk levels energies obtained with CFT is presented in Ta-
ble 3.3. We have to note again that the expressions are different for different energies used

Table 3.3: Calculated energies for Ni2+ ion in the bulk NiO

1A1g A +4.2817B +4.5211C +12D +49.9068F 3.3471
1A1g A +13.7183B +122.4789C +12D -21.9068F 8.1841
3T1g A -7.4659B -11.6706C +12D -30.1270F 1.4075
3T1g A +6.4659B -81.3294C +12D -11.8730F 3.1706
1Eg A -1.6150B +29.0750C +12D +75.2445F 2.1356
1Eg A +2.6150B +7.9250C +12D -47.2445F 4.1649
1T2g A -2.3288B +32.6440C +12D +3.4402F 2.8722
1T2g A +3.3288B +4.3560C +12D -45.4402F 4.2451
3A2g A -8B -9C +12D +84F 0.0000
3T2g A -8B -9C +12D +14F 0.8168
1T1g A +4B +C +12D +14F 3.6467
A=1.8933, B=10.8974/49, C=7.1049/441, D=0.0720, F=-0.0117

as input data in CFT.
The situation for the Ni2+ ion on (001) surface of NiO is similar to the bulk, namely

there are off-diagonal elements in the energy matrix. Here the biggest block has the size
4 × 4 for level 1A1, which appears four times in the 3d8 configuration. The Hamiltonian
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matrix in this case has the form



1A4×4
1 0 0 0 0 0 0 0 0
0 3A2×2

2 0 0 0 0 0 0 0
0 0 3E3×3 0 0 0 0 0 0
0 0 0 1B2×2

1 0 0 0 0 0
0 0 0 0 1B2×2

2 0 0 0 0
0 0 0 0 0 1E3×3 0 0 0
0 0 0 0 0 0 3B1×1

1 0 0
0 0 0 0 0 0 0 3B1×1

2 0
0 0 0 0 0 0 0 0 1A1×1

2




The corresponding blocks contain energies expressed in terms of three parameters D, E,
and F , while the values of parameters A, B, and C are again taken from the first step.

1A4×4
1 =




10D 3.34664E 57.15476F 9.66092F

3.34664E 10D+0.85714E+17.14286F 1.17108E+9.75900F −0.98974E+61.03417F

57.15476F 1.17108E+9.75900F 10D+23.33333F 3.38062E+0.56344F

9.66092F −0.98974E+61.03417F 3.38062E+0.56344F 10D+1.14286E−0.47619F


 ,

3A2×2
2 =

(
10D+2.8E 2.4E+20F

2.4E+20F 10D−0.8E−30F

)
,

3A2×2
2a =10D+4E+10F ,

3A2×2
2b =10D−2E−40F ,

3E3×3
ab =




10D−1.4E 1.2E−25F −1.54919E−3.87298F

1.2E−25F 10D+0.4E−37.5F 0.77460E+1.93649F

−1.54919E−3.87298F 0.77460E+1.93649F 10D+17.5F


 ,

1B2×2
1 =

(
10D−0.85714E+22.85714F 0.98974E+54.43588F

0.98974E+54.43588F 10D−1.14286E+7.14286F

)
,

1B2×2
1a =10D+70F ,

1B2×2
1b =10D−2E−40F ,

1B2×2
2 =

(
10D−0.85714E−17.14286F 0.98974E+19.79487F

0.98974E+19.79487F 10D−1.14286E−22.85714F

)
,

1B2×2
1a =10D,
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1B2×2
1b =10D−2E−40F ,

1E3×3
ab =




10D+0.42857E−11.42857F 1.30931E+3.27327F −0.49487E+33.40384F

1.30931E+3.27327F 10D−2E+12.5F 1.13389E+2.83473F

−0.49487E+33.40384F 1.13389E+2.83473F 10D+0.57143E−21.07143F


 ,

3B1×1
1 =10D+70F ,

3B1×1
2 =10D,

1A1×1
2 =10D+4E+10F .

The diagonalization of the resulting blocks for given values of the parameters is straight-
forward and yields the expressions presented in Table 3.4. Comparing the values of pa-

Table 3.4: Calculated energies for Ni2+ ion on the (001) surface of NiO

1A1 A -0.8495B +26.9966C +10D +2.1604E +68.4115F 1.9575
1A1 A +2.9461B +9.0198C +10D +19.6495F 3.4289
1A1 A +3.2207B +5.5892C +10D +0.1671E -30.4306F 4.1171
1A1 A +13.6827B +122.3943C +10D -0.3275E -17.6304F 8.2003
3A2 A -6.2955B -17.5224C +10D +1.1324E -13.8965F 1.2921
3A2 A +5.2955B -75.4776C +10D +0.8676E -16.1035F 2.9959
3E A -7.8512B -9.7440C +10D +0.5185E +17.9796F 0.6923
3E A -7.8591B -9.7044C +10D -0.1848E -31.4378F 1.4589
3E A +6.7103B -82.5516C +10D -1.3337E -6.5418F 3.3022
1B1 A -1.5368B +28.6841C +10D -0.1120E +63.8410F 2.1428
1B1 A +2.5368B +8.3159C +10D -1.8880E -33.8410F 4.2801
1B2 A -2.3719B +32.8593C +10D -0.3170E -6.3409F 3.0283
1B2 A +3.3719B +4.1407C +10D -1.6830E -33.6591F 4.3737
1E A -1.9887B +30.9433C +10D +0.6919E +9.9930F 2.7445
1E A +3.4484B +3.7580C +10D -1.8671E +4.4950F 3.8709
1E A +3.5403B +3.2987C +10D +0.1751E -34.4880F 4.2071
3B1 A -8B -9C +10D +70F 0.0000
3B2 A -8B -9C +10D 0.9791
1A2 A +4B +C +10D +4E +10F 3.2341
A=1.8933, B=10.8974/49, C=7.1049/441, D=0.1004, E=-0.1087, F=-0.0140

rameters computed for the Ni2+ ion placed inside the bulk and on the (001) surface of NiO
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respectively, we see that they are very close to each other. This fact not only shows the
interrelation between them, but also supports our assumption about the applicability of
CFT to NiO.

The results of different fits are shown in Figure 3.1. Summarizing these, we may
conclude that results from [41] deviate from other authors and can not be accepted as
input data for CFT. Although other sets give comparable level schemes, it should be noted
that values from [43] are in generally lower; ones from [39] give higher energies, and values
from [34] lie in between those two. For our further calculation we will employ the states,
which come from the fit to the results of Freitag’s et al. The position of those levels are
visualized in Fig. 3.2 where the energies of the levels are shown for the free ion Ni2+ ion,
the same ion in the bulk NiO and on the (001) surface respectively.

It is worth to note, that the big divergence in results of CFT coming from different
input energies, does not violate any of the available data. The point simply is, that CFT
is based on the assumptions, which being reasonable themselves, describe the real system
to some approximation only (which explains the divergence with experiment), while other
theories are be based on other key points, which deviate from CFT assumptions. Apart
from that there is no unambiguous experimental results even for bulk NiO, for instance the
energy of 3T2g level lies in range from 1.05 eV in [35] to 1.13 in [38]; the energy of 3T1g was
measured to be from 1.6 eV in [39, 40, 44] to 1.87 eV in [34]. Different theoretical works
give even larger ranges for them: from 0.74 eV in [41] to 1.04 in [34] for 3T2g and from 1.40
eV in [42] up to 2.21 eV in [41] for 3T1g. The situation is even worse for the higher levels of
bulk NiO. The same is true for surface energies. The energy of the a3E state was measured
(computed) in the range 0.57-0.60 eV (0.42-0.75 eV), for a3B2 it is 1.10-1.12 eV (0.76-1.09
eV), for a3A2 1.3-1.75 eV (1.00-1.30 eV). Although such an inconsistency prevents us from
providing accurate quantitative data for SHG spectra, it does not change the qualitative
predictions about the ability of SHG to give information about the magnetic structure of
the system. Depending on the levels, used for the calculation of the SHG response of the
system, the nonlinear optical susceptibility tensor may differ in the positions of the peaks,
nevertheless keeping the characteristic features.

Results of our calculations of NiO within Crystal Field Theory clearly show that the
electronic structure of Ni2+ ion is well reproduced in this theory. Although there is no
unambiguous information for the energy levels of this ion in the NiO compound, we showed
that “the truth lies in the middle” of the wide range of available data. The comparison of
data for the Ni ion in the bulk and on the surface validates this model to be an appropriate
tool for the description of this material.

The energy levels as well as the corresponding wavefunctions of Ni ion have been com-
puted. Since the knowledge of the wavefunctions allows to find all the observable quantum
mechanical quantities for the system, we will apply this data to get the values of χ(2ω)

tensor, which gives an information about the SHG process for this material.
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Figure 3.1: Resulting energy levels for NiO fitted to different sets of known energies. The
labels a, b, c and 1, 2, 3, 4 correspond to different input sets presented in Table 3.2.
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Table 3.5: Bulk and (001) Surface energies of NiO

state energy
γ = a γ = b γ = c γ = d
bulk, D = 0.0720, F = −0.0117

γ1A1g 3.3471 8.1841
γ3T1g 1.4075 3.1706
γ1Eg 2.1356 4.1649
γ1T2g 2.8722 4.2451
3A2g 0.0000
3T2g 0.8168
1T1g 3.6467
(001) surface, D = 0.1036, E = 0.1926, F = −0.0146
γ1A1 1.9728 3.3764 4.7614 8.3387
γ3A2 1.2921 3.7000
γ3E 0.6945 1.4615 3.1331
γ1B1 2.1036 3.7821
γ1B2 2.9333 3.9732
γ1E 2.7424 3.4000 4.5158
3B1 0.0000
3B2 1.0208
1A2 4.4751
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Chapter 4

Crystal Field Theory: Results for
CoO

The second transition metal oxide we are interested in is CoO. A strong magnetic Co state
is realized in CoO which is an antiferromagnet with TN = 289K. The crystal structure of
CoO is similar to that of NiO with the lattice parameter a = 4.26Å and the shortest metal-
oxygen distance 2.13Å according to [45]. The magnetic moment of Co measured in [46] is
M = 3.4µB, which indicates that the orbital moment is only partially quenched because
M clearly exceeds the spin magnetic moment alone. Although it was more or less accepted
in early days that the gap around 4 eV of NiO, CoO, and FeO arises from Mott-Hubbard
localization of electrons in partly filled 3d-band, this has not been settled yet. From the
comparison of the data of Powell and Spicer [47] for CoO with that of NiO, it is observed
that the mean position of the strong rise in the CoO absorption edge occurs at an even
higher energy than in NiO which gives the gap more than 4 eV. Shen et al. defined a gap
in this way of about 6 eV. On the other side, J. van Elp et al. calculated [26] the gap
in CoO of 2.5 ± 0.3 eV; the authors assigned this value to the minimum in the (broader
than in NiO) absorption edge. This is also visible in the data of Pratt and Coelho [48],
where the absorption onset occurs between 2.5 and 3.0 eV. Although the gap can not be
calculated within CFT, it is possible to make some statements about its origin. Since CFT
is based on the assumption about the strong localization of the outermost incomplete shell
electrons, this theory anticipates the Mott-Hubbard model to be valid for the material. As
we showed, CFT well describes the NiO thus supporting this assumption. Since the gap in
CoO is of intermediate character, the localization of 3d-electrons is weaker. It is shown in
this chapter that CFT does give an acceptable description of this material, while for FeO,
discussed in the next chapter, CFT fails to even give the proper ground state symmetry.
Thus, we may conclude that CFT results for both NiO and CoO confirm strong localization
of 3d-electrons thus supporting the validity of the Mott-Hubbard model for these systems.

Similarly to nickel, we consider the Co2+ ion as a highly-correlated electron system
in which the outermost incomplete shell consists of seven 3d-electrons. Equivalently, we
treat this system as being composed from three 3d-holes. Wavefunctions for the spherically

47
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Table 4.1: The energy levels for Co2+ ion having 3d34s2 configuration

hole configurations 3d34s0 and 3d34s2

state correction energy
E(2P ) = A −6B +3C 2.6928
E(4P ) = A 1.8893
E(a2D) = A +5B +5C −α 2.9576
E(b2D) = A +5B +5C +α 7.2778
E(2F ) = A +9B +3C 4.5820
E(4F ) = A −15B 0.0000
E(2G) = A −11B +3C 2.0630
E(2H) = A −6B +3C 2.6928

α =
√
193B2 + 4C2 + 8BC

A = 1.9020, B = 0.1260, and C = 0.5197 for CoO

symmetric cobalt ion are constructed from the already calculated Ni2+ wavefunctions by
adding one 3d-particle to the 3d8 LS states by means of Clebsch-Gordan algebra. This
method produces an energy matrix of the 120× 120× 3, so there are 120 LS-states formed
and each of them is expressed in terms of three parameters. Since the symmetry is high
and these levels are degenerate, it is possible to decompose them into 8 allowed LS-terms,
of which the 2D appears twice. The values of the parameters A, B, and C which describe
the Coulomb interaction in CoO have been found from the least-squares fitting to exper-
imentally measured energies 4F = 0.0000, 4P = 1.8849, 2G = 2.1051, 2H = 2.8171, and
a2D = 2.8591 which are taken from [23]. Knowing the parameters we are able to find the
energies of all levels as well as their eigenfunctions, as it is presented in Table 4.1. As we
saw before the wavefunctions of two 2D levels are defined by the values of the parameters
and can be calculated numerically only (there is no analytical solution). Note that three
3d-electrons may form states with spin multiplicity 2 (doublets) or 4 (quartets). As it is
seen from this table the highest value of L = 6, which requires the cubic harmonics for L up
to six to be found. This task is solved by using the projection technique. Although some
of them are already tabulated in [49], they can not be used without modification since we
deal with a basis of spherical harmonics, while the mentioned work contains expressions in
cartesian coordinates.

To make further steps towards the electronic structure of CoO we modify spherically
symmetric wavefunctions according to the expressions for cubic harmonics to get symmetry
adapted wavefunctions. For the case of bulk CoO it produces the set of ΓSSz levels
with Γ = A1g, . . . , T2g. Spin degeneracy of each state is either 2 of 4 which corresponds
to the total spin moment S = 1/2 or S = 3/2 respectively. Next, we may compute
the Hamiltonian matrix with these approximate trial wavefunctions and find two CFT
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parameters, describing the interaction of electrons with the ligand field. The energies
used to fit the parameters for CoO are a4T1g = 0.0000, a4T2g = 0.6800, a2Eg = 1.9000,
a2T1g = 2.5100, a2T2g = 2.5500, and a4A2g = 1.4100 and are taken from [50]. In the same
way as before, substitution of the parameters into the Hamiltonian matrix followed by the
diagonalization procedure provides us with the complete description of the Co2+ ion placed
in the field of six oxygen ions. The biggest block in case bulk CoO has a size 5× 5.

Table 4.2: Bulk and Surface energies of CoO

state energy
γ = a γ = b γ = c γ = d γ = e γ = f γ = g γ = h γ = i γ = j

bulk,D = 0.0328, F = −0.0096
2A1g 2.6310
2A2g 5.1501
4A2g 1.2393
γ2Eg 1.7612 3.3476 3.6851 7.7981
γ2T1g 2.2329 2.8161 3.1293 3.6619 5.0521
γ4T1g 0.0000 2.3541
γ2T2g 2.2354 3.0758 3.6590 4.9821 7.7899
4T2g 0.5681

(001) surface, D = 0.0263, E = 0.3763, F = 0.0093
γ2A1 2.0786 2.5966 3.7509 4.5481 7.3305
γ2A2 2.1402 2.5112 3.4292 4.2767 5.6167
γ4A2 0.0000 2.4542
γ2B1 2.2688 2.5815 3.4476 5.3264 9.1996
4B1 0.3910
γ2B2 2.3464 2.5129 3.2868 5.0355 9.6423
4B2 0.2601
γ2E 1.9290 2.3562 2.6778 2.8383 3.4782 3.8500 4.4766 5.4669 5.8016 7.9234
γ4E 0.1370 0.6539 3.2409

If the Co ion is found on the (001) surface of CoO surrounded by five oxygen ions then
the symmetry is further reduced. Now the orbital moment of the system is characterized by
Γ = A1, A2, B1, B2, E. Using wavefunctions produced with the help of cubic harmonics we
get 120 states of the metal ion. The Hamiltonian matrix again has a block-diagonal form
with a maximum block size of 10×10 for 2E state. The experimentally known energies for
the surface of CoO are a4A2 = 0.0000, a4E = 0.0500, a4B2 = 0.3500, and b4E = 0.7000 and
are taken from [51]. Having the parameters fitted and the Hamiltonian matrix diagonalized
we come to the energy levels and wavefunctions for the (001) surface of CoO. Our results for
CoO are not so good as for NiO, but are nevertheless acceptable. Although the convergence
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of calculated energies to their experimental values is not perfect, it does give the proper
order of levels and acceptable differences between “input” and “output” energies in CFT.
In our opinion, these differences show the limited applicability of CFT to CoO.

Both bulk and surface terms for CoO are presented in Table 4.2, where the levels having
the same quantum numbers Γ and S are given in rows. For levels appearing more than
once in configuration their energies are arranged in columns within the same row.

The multiplet levels of CoO my be visualized in form of the level scheme, as presented
in Fig. 4.1.
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Figure 4.1: Level scheme of Co2+ ion representing the levels for the free ion, bulk, and
(001) surface environments of CoO
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Chapter 5

Crystal Field Theory: Results for
FeO

The last material of our interest is Wustite (FeO). The symmetry of this compound above
TN = 198 K is Fm3m (the point group Oh) with the lattice parameter a = 4.296Å. The
magnetic moment of the metal ion in the FeO is 3.32µB [52]. The ground state electronic
configuration in FeO is 3d64s0, which gives 210 possible electronic states.

Similarly to CoO, we start our treatment with the free ion Fe2+. The wavefunctions
of this system are formed by means of Clebsch-Gordan algebra from the already available
eigenfunctions of ~L for the 3d34s0 configuration (they were calculated for Co2+ ion) by
adding one 3d-particle to them. The resulting states may have the total orbital moment L =
0, . . . , 6 and the total spin moment S = 0, 1, 2 (which corresponds to the spin multiplicity
1, 3, or 5) respectively. In this configuration most of the levels (1S, 3P , 1D, 3F , and 1G)
appear twice, which requires the solution of the secular equations to find their energies.
Using already known energies for the gas phase of Fe2+ ion we are able to compute the
CFT parameters, which describe the Coulomb interaction between the 3d-electrons, and
the wavefunctions of the system. The energies for the free Fe2+ ion are again taken from
gas phase experiments [23], namely (in eV) 5D = 0.0000, a3P = 2.4060, 3H = 2.4861,
a3F = 2.6611, 3G = 3.0450, 1I = 3.7639, 3D = 3.8097, a1G = 3.8296, a1S = 4.3164,
a1D = 4.4393, 1F = 5.3188, b3P = 6.0939, b3F = 6.2224, and b1G = 7.0949. The results
are presented in Table 5.1. The energies provided by CFT are close to the ones found in
experiment, which confirms the validity of our calculations for the free Fe2+ ion.

In order to describe the electronic configuration of the Fe2+ ion in the bulk monoxide
FeO, we form the symmetry adapted linear combinations of the spherically symmetric
wavefunctions. In case of FeO, the total orbital moment of the spherically symmetric
metal ion may be up to L = 6, which requires the cubic harmonics of corresponding
order. Once these approximate wavefunctions are formed and the values of parameters
describing the Coulomb interaction are calculated, we are ready to find the wavefunctions
for bulk FeO. Some of the energies for the bulk FeO are measured in experiment and equal
a5T2g = 0.0000, a5Eg = 1.0400, a3T1g = 1.7200, and a1A1g = 2.0200. Using these energies
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we compute the whole level scheme for the bulk of FeO. The results are presented in
Table 5.2. Unfortunatelly, the computed levels are not comparable with the values found
in experiment. Even the proper symmetry of the ground state cannot be reproduced.
Thus we have reached the point where CFT fails. In our opinion, this is due to the smaller
number of electrons in the outermost shell. Compared with NiO and CoO, in the FeO
the 3d-shell (consisting of six electrons) is far from being closed. In this case electronic
correlations between these electrons in the bulk material may differ from ones for the free
ion. Thus, the parameters describing the Coulomb interaction for the free ion change their
values in the bulk material.

The situation for the (001) surface of FeO is similar to that for the bulk. Following our
standard scheme and using the experimentally measured energies of Fe2+ ion on the (001)
surface (a5E = 0.0000, a5B2 = 0.1300, a5A1 = 0.4700, and a5B1 = 1.1400) we could not
get the proper description of the system.

Table 5.1: The energy levels for Fe2+ ion having 3d44s2 configuration

state correction energy
E(a1S) = A +10B +10C −α1 4.3318
E(b1S) = A +10B +10C +α1 12.2004
E(a3P ) = A −5B +5.5C −α2 2.6397
E(b3P ) = A −5B +5.5C +α2 6.2114
E(a1D) = A +9B +7.5C −α3 4.5766
E(b1D) = A +9B +7.5C +α3 9.3753
E(3D) = A −5B +4C 3.7205
E(5D) = A −21B 0.0000
E(1F ) = A +6C 5.2357
E(a3F ) = A −5B +5.5C −α4 2.6912
E(b3F ) = A −5B +5.5C +α4 6.1600
E(a1G) = A −5B +7.5C −α5 3.7296
E(b1G) = A −5B +7.5C +α5 7.0017
E(3G) = A −12B +4C 2.9154
E(3H) = A −17B +4C 2.3402
E(1I) = A −15B +6C 3.5104

α1 =
√
772B2 + 16C2 + 32BC

α2 =
√
228B2 + 2.25C2 − 6BC

α3 =
√
324B2 + 2.25C2 + 18BC

α4 =
√
153B2 + 2.25C2 + 9BC

α5 =
√
177B2 + 2.25C2 − 3BC

A = 2.4457, B = 0.1150, and C = 0.4700 for Fe2+



55

Table 5.2: The energy levels of the Fe2+ ion in the bulk and on the (001) surface of FeO.
The levels on the (001) surface may be up to 12-fold degenerated, which is denoted by the
second line having no label in the first column. For such states corresponding γ-s should
be taken from the second row (γ = h,. . . ,γ = l).

state energy
γ = a γ = b γ = c γ = d γ = e γ = f γ = g
γ = h γ = i γ = j γ = k γ = l

bulk
γ1A1g 3.6746 4.4086 5.0467 7.0434 12.5232
γ1A2g 3.5883 5.6385
γ1Eg 3.3405 4.1237 4.5732 7.2952 9.8224
γ1T1g 3.7583 4.4938 5.4945 7.1728
γ1T2g 3.3231 3.6620 4.0376 5.0623 5.5738 7.6115 9.5921
3A1g 2.9154
γ3A2g 2.7763 6.5555
γ3Eg 2.4009 3.1371 3.9188
γ3T1g 2.1297 2.5627 2.9154 3.2140 3.4528 6.3101 6.6362
γ3T2g 2.5799 3.0368 3.5077 4.0924 6.5332
5Eg 0.0000
5T2g 0.4807

(001) surface
γ1A1 2.3422 3.7913 4.0657 4.4777 5.1080 5.4704 7.6124

7.8681 9.3361 12.7796
γ1A2 3.0976 4.2110 5.9807 7.5717
γ1B1 3.4613 4.0564 4.5592 5.2987 5.7329 7.6911 9.8059
γ1B2 3.4558 3.6396 4.4016 4.7426 5.8541 7.2361 10.3288
γ1E 2.8484 3.5139 3.9257 4.3398 4.5911 4.8421 5.5207

5.8913 7.1254 7.7652 9.9376
γ3A1 2.8628 3.3103 3.7119 4.5070
γ3A2 2.0447 2.2737 2.8845 3.6621 4.0445 6.7527 6.9618
γ3B1 2.7265 3.2535 3.7285 4.5696 6.4380
γ3B2 1.9895 2.8167 3.3180 3.9018 6.7965
γ3E 1.7334 2.3276 2.4973 2.7291 3.0232 3.2457 3.3251

3.9545 4.2097 6.2927 6.4508 7.2204
5A1 0.5584
5B1 1.1653
5B2 0.2184
5E 0.0000
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Chapter 6

Second harmonic generation

Selective sensitivity of Second Harmonic Generation to the surfaces of centrosymmetric
materials (within the electric-dipole approximation) allows to use this method as a very
powerful non-destructive tool for the investigation of the material structure. In magnetic
materials SHG may also provide information about magnetic ordering of the surface, as
was predicted for ferromagnets by Pan et. al [53] and for antiferromagnets by Dähn et.
al [54]. However, none of the authors presented magnetic point groups in the classical
meaning. At this work the classical treatment of magnetic point groups is used, which
greatly simplifies the discussion.

Contrary to other techniques as two-photon photoemission (TPPE) or neutron diffrac-
tion, SHG allows to extract structural information at different points in the Brillouin’s zone
of the material. The appropriate choice of the experimental geometry enhances the selec-
tivity of this method. One may choose different incoming-outgoing angle combinations,
polarization of photons . . . .

6.1 Macroscopic theory

The broadest area of different electromagnetic phenomena is completely covered by Maxwell’s
equations

∇ ·D = 0 (6.1a)

∇ ·B = 0 (6.1b)

∇×B = −1

c

∂B

∂t
(6.1c)

∇×H =
1

c

∂D

∂t
(6.1d)
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In the media possessing spontaneous dielectric and magnetic moments the fields which
enter Maxwell’s equations relate to each other as

D = E + 4πP (6.2a)

B = H + 4πM (6.2b)

Since the largest electric filed encountered in practice (106 V/cm) is much smaller then
typical value of the internal field in the crystal (109 V/cm), it is possible to decompose P
in power of E which gives a Taylor’s series

Pα(r, t) = P (0)
α +

∑

β

(
∂Pα
∂Eβ

)

0

Eβ +
1

2!

∑

βγ

(
∂2Pα

∂Eβ∂Eγ

)

0

EβEγ

+
1

3!

∑

βγδ

(
∂3Pα

∂Eβ∂Eγ∂Eδ

)

0

EβEγEδ + · · · .
(6.3)

If E becomes comparable with a typical intra-atomic field, the non-linear terms start to
play a role. In particular, second harmonic generation has its origin in the non-linear
dielectric polarization P(2ω), which is expressed as

P
(2ω)
i = χ

(2ω)
ijk EjEk. (6.4)

The non-linear second-order susceptibility tensor χ
(2ω)
ijk may have additional symmetry due

to the ordered crystalline structure. Thus we have to apply symmetry analysis to this
tensor. Such a task is solved by applying the Neumann principle as will be discussed later.

Second-harmonic generation is a non-linear second-order effect. It resides in the non-
linear susceptibility tensor χ

(2ω)
ijk , defined in (6.4) and therefore does not occur in media

which allow spatial inversion.
If there is no absorption in the medium then the tensor elements χ

(2ω)
ijk are real quantities.

In addition they satisfy the permutation symmetry relation [55]

χ
′(2)
ijk (−ω3;ω1, ω2) = χ

′(2)
jik (ω1;−ω3, ω2), etc. (6.5)

These relations follow from the existence of a thermodynamic potential energy cubic in the
electric field amplitude. The order of the indices may be interchanged if the corresponding
frequencies are interchanged with them.

In general the χ
(2ω)
ijk tensor is represented in the form of a 6 × 3 matrix, taking into

account the fact that two incoming photons are indistinguishable:



xxx xyy xzz xyz=xzy xzx=xxz xyx=xxy
yxx yyy yzz yzy=yyz yzx=yxz yxy=yyx
zxx zyy zzz zyz=zzy zxz=zzx zxy=zyx


 (6.6)

Considering the magnetic crystals, one has to augment the usual space symmetry op-
erations by time-reversal operator. As one of its consequences, there is a change (flip) of
magnetic moments [56].
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6.2 Magnetic symmetry

Above the Néel temperature transition metal oxides have the sodium chloride (NaCl) struc-
ture. The non-magnetic unit cell has the face-centered cubic Bravais lattice, which consists
of two interpenetrating fcc sublattices. In the bulk material each Ni ion is surrounded by
six oxygen ions and vice versa. Oxygen ions occupy octahedral sites in the nickel sublattice.

The (001) surface of NiO, as was observed in LEED experiment [57], has almost perfect
bulk termination with only 2% relaxation of the outermost layer.

Thus the space symmetry group of paramagnetic NiO is O5
h (F 4

m
3 2
m

or Fm3m), which
gives point symmetry groups Oh (m3m) and C4v (4mm) for bulk and (001) surface respec-
tively.

6.2.1 Magnetic point groups

It is of major importance in the systematic classification and discussion of magnetically
ordered crystals that there must exist a symmetry operation which reverts magnetic mo-
ments. The physical meaning of this symmetry operation is time-reversal, as that was
shown by Landau and Lifschitz [56]. Reversal of magnetic moments under the inversion
of time follows from different behaviors of microscopic charges and currents (integration of
which gives dielectric polarization and magnetization respectively). Time-reversal opera-
tion is denoted throughout as 1. Notations R means R × 1 - usual (proper or improper)
symmetry operation R is followed by the time-reversal 1. All the symmetry operations,
which belong to any magnetic point group, may be accommodated to one of four classes:

• proper rotation, denoted as R

• improper rotation R

• proper rotation, followed by time-reversal R

• improper rotation, followed by time-reversal R

This additional symmetry operation allows the complete classification of any magnetic
crystal. Similarly to the 230 crystallographic space groups there are 1651 magnetic space
groups.

The symmetry of the magnetic crystal is completely defined by its magnetic space
group. The 1651 magnetic space groups can be classified as follows[58]:

• 230 colorless groups (M). These are the 230 ordinary (Federov) groups for non-
magnetic crystals which do not involve the time reversal operator 1. If G is any
Federov group then the corresponding colorless (non-magnetic) group is given by

M = G.
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• 230 grey groups (Mg). These are obtained by associating 1 with each element of the
Federov group G, that is

Mg = G+G.

• 674 black and white groups associated with 14 uncolored or ordinary Bravais lattices
(MbwOL

). A black and white magnetic space group belonging to this class is defined
by

MbwOL
= H + (G−H).

The unit cell of magnetic structure is the same as the purely crystallographic one.

• 517 black and white groups associated with the 22 colored Bravais lattices(MbwCL
). A

group belonging to this class is defined by

MbwCL
= G+ τG

where τ is the extra translation operation introduced when dealing with colored
lattices. The unit cell of the magnetic structure has a volume twice that of the
crystallographic unit cell.

However, taking into account the historical digression on magnetic groups (presented
in [59]), we would like to mention another classification (presented in [60]):

• 230 uncolored patterns , which correspond to the 230 grey groups in the classification
above. These groups are appropriate to diamagnetic and paramagnetic crystals and
to some non-pyromagnetic antiferromagnetic crystalls;

• 230 monocolored patterns , which correspond to the 230 colorless groups in the clas-
sification above.

• 1191 bicolored patterns , which correspond to the cases 3 and 4 in the classification
above.

The patterns from the second and third classes are appropriate to ferromagnetic and ferri-
magnetic crystalls, to pyromagnetic antiferromagnetic crystals (i.e. those that can exhibit
parasitic ferromagnetism) and to some non-pyromagnetic antiferromagnetic crystalls. Such
a naming is based on the definition of the time-inversion operation as the operation which
changes the colors. With such a definition the difference between grey and uncolored in the
Joshua classification is not clear, because both should not be affected by this operation.

6.2.2 Magnetic point groups. Bulk fcc.

In the paramagnetic state the undistorted fcc crystal is described by the magnetic point
group m3m (Oh), which contains 48 symmetry operations.
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Table 6.1: Magnetic symmetry point groups, bulk fcc crystal

Ferro-/ferrimagnet Antiferromagnet
~M Symmetry group Symmetry group
~L International Schoenflies International Schoenflies

< 100 > 4/mmm D4h(C4h) 4/mmm D4h

< 110 > mmm D2h(C2h) mmm D2h

< 111 > 3m D3d(S6) 3m D3d

< hk0 > 2/m C2h(Ci) 2/m C2h

< hhk > 2/m C2h(Ci) 2/m C2h

< hkl > 1 Ci(Ci) 1 Ci

This symmetry is necessarily lower if metal ions possess magnetic moments, aligned
parallel to each other. If those magnetic moments oriented along one of four < 100 >
directions (cube edges), then the point symmetry group becomes 4/mmm. For magnetic
moments oriented along cube-face diagonal (< 110 > direction) or cube-body diagonal

(< 111 >) directions the magnetic point groups are mmm and 3m respectively. If ~M is
perpendicular to a cube-edge or to a cube-face diagonal (i.e. for < hk0 > or < hhk >
directions) the magnetic point group is 2/m. Clearly, there is a primitive case of magnetic
point group 1 for all the others directions.

Antiferromagnetic configurations for the bulk of an fcc crystal are similar to those
defined above for ferro-/ferrimagnetic configurations. The only difference is that antifer-
romagnetic bulk fcc crystals are symmetric under time-reversal, which means that each
symmetry group contains twice as many symmetry operations, as ferromagnetic ones, each
of them being augmented by the time-reversal operator. For instance the ferromagnetic
configuration with ~M ‖< hk0 > has a symmetry group C2h(Ci), which contains 4 symmetry

operations E, C2, I, and σh, while the antiferromagnetic configuration with ~L ‖< hk0 >
has a point symmetry group C2h, which contain 8 symmetry operations E, E, C2, C2, I,
I, σh and σh.

Note that all the symmetry groups, presented in Table 6.1 contain space inversion.

6.2.3 Magnetic point groups. (001) surface fcc.

Similar treatment may be applied to the (001) surface of an fcc crystal.

In the paramagnetic state the (001) surface of an fcc crystal, presented on Fig. 6.1 (only
Ni ions are shown), is described by the non-magnetic point-group 4mm.

This group contains 16 symmetry operations, which are presented in the table 6.3 (for
this uncolored group each of them appears twice with and without time-reversal operator).

In the ferromagnetic state the presence of uniform magnetization ~M lowers the symme-
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Table 6.2: Symmetry operations allowed for bulk fcc crystal

Oh D4h(C4h) D2h(C2h) D3d(S6) C2h(Ci) C2h(Ci) Ci(Ci)
~M = 0 ~M ‖ [001] ~M ‖ [110] ~M ‖ [111] ~M ‖ [120] ~M ‖ [112] ~M ‖ [hkl]
E E E E E E E
3C2 C2x C2y C2z C2z C2z

8C3 C+
3xyz C

−
3xyz

6C4 C+
4z C

−
4z

6C ′2 C2xy C2xy C2xy C2xy C2xy C2yz C2zx C2xy

I I I I I I I
3σh σx σy σz σz σz
8S6 S+

61 S
−
61

6S4 S+
4z S

−
4z

6σd σxy σxy σxy σxy σxy σyz σzx σxy
S+
61 = C−3xyz × i, S−61 = C+

3xyz × i

try. There are three non-primitive cases, namely ~M ‖ [001], ~M ‖< 100 >, and ~M ‖< 110 >.

If case ~M ‖ [001] the point symmetry group is 4mm, two other cases give rise to the same
magnetic point symmetry group 2mm.

The antiferromagnetic state on the (001) surface may

xc

yc

zc

Figure 6.1: fcc (001) surface,
paramagnetic state

be described by two parameters: the orientation ~L of
the antiferromagnetic order parameter and the additional
vector ~A which denotes the orientation of ferromagnetic
”lines”. Totally there are 6 possible magnetic symmetries
for an (001) antiferromagnetically ordered surface.

6.2.4 Symmetry of the tensors

Once the magnetic point group of the system is defined, it is possible to simplify the form
of different tensors, which describe physical characteristics of this system. Such an analysis
is based on the use of the Neumann principle, which assumes equality of tensor elements
corresponding to equivalent directions in the crystal. Mathematically this is formulated by
the following set of equations

dijk...n = σipσjqσkr . . . σnudpqr...u (6.7a)

dijk...n = |σ|σipσjqσkr . . . σnudpqr...u (6.7b)

dijk...n = (−1)σipσjqσkr . . . σnudpqr...u (6.7c)

dijk...n = (−1)|σ|σipσjqσkr . . . σnudpqr...u, (6.7d)
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Table 6.3: Symmetry operations allowed for ferromagnetic (001) surface of fcc crystal.

~M = 0 ~M ‖ [001] ~M ‖ [100] ~M ‖ [110] ~M ‖ [hk0]

pm a) b) c) d)

C4v C4v(C4) C2v(C1h) C2v(C1h) C1h(C1)
4mm 4mm 2mm 2mm m
E E E E E
C2z C2z C2z C2z C2z

C+
4z C+

4z

C−4z C−4z
σx σx σx
σy σy σy
σxy σxy σxy
σxy σxy σxy

where σ is the matrix corresponding to a particular permissible symmetry operation for
the crystal class.

It is worth to note that in non-magnetic crystallography one considers only the first
two equations (6.7a) and (6.7b), where the latter one is used for improper rotations and
axial tensors, and the former is valid otherwise. This is due to the fact that some tensors
do not change sign under the space inversion (polar tensors, true tensors), while other do
(axial tensors, pseudotensors). In particular it says, that the magnetization vector being
an axial tensor of first rank (true vector) is not influenced by space inversion, which means
that the SHG process is forbidden within the electric-dipole approximation (described by
a polar tensor of 3-rd rank χ(2ω)) in the systems possessing a center of inversion (element 1
is in the point group) and this process becomes allowed if this symmetry is broken, giving
rise to the sensitivity of SHG to surfaces.

The situation is changed if we consider magnetically ordered crystals. In this case
an additional symmetry operation (reversal of magnetic moments) appears. Keeping in
mind the special meaning of this operation (time-reversal) we may classify all tensors as
being either even or odd in respect to the time-reversal. Following Birss [60] each tensor
is either an i-tensor and keeps its sign under time-reversal or a c-tensor which changes
it. Additionally, with respect to time-reversal all the processes may be divided into two
classes: static processes, for which two directions of time are equivalent and Neumann’s
principle keeps its validity in four-dimensional space-time (all the symmetry operations
present in the magnetic point group may be used to simplify the tensors); and dynamical
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Table 6.4: Symmetry operations allowed for AF (001) surface of fcc crystal. Each symmetry
operation is present in the group twice with and without time-inversion (C2 means both
C2 and C2).

~L = 0 ~L ‖ [001] ~L ‖ [001] ~L ‖ [100] ~L ‖ [100] ~L ‖ [110] ~L ‖ [110]
~A = 0 ~A ‖ [110] ~A ‖ [100] ~A ‖ [110] ~A ‖ [100] ~A ‖ [110] ~A ‖ [100]

pm a) b) c) d) e) f)

C4v C2v C4v C2 C2v C2v C2

4mm 2mm 4mm 2 2mm 2mm 2
E E E E E E E
C2z C2z C2z C2z C2z C2z C2z

C+
4z C+

4z

C−4z C−4z
σx σx σx
σy σy σy
σxy σxy σxy σxy
σxy σxy σxy σxy
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Table 6.5: Form of the third rank polar tensors for different symmetries

Magnetic Unitary Orientation Generating Form Example
symmetry subgroup of reference matrices of of

group axis χ
(2ω)
ijk configuration

4mm 4mm 4//z, 2//y σ(4), σ(7) I3

y

xz

4mm 4 4//z σ(7) F3
z

2mm m 2//z σ(5) C3
z

2mm mm2 2//x, 2//y σ(3), σ(4) E3

y

x

2 2 2//z σ(3) B3
z

processes, in which a unique flow of time is assumed. For the latter case only the unitary
subgroup of the corresponding magnetic point group has to be employed in the symmetry
analysis. At this point it is important to note that quantum mechanical models are time-
symmetric, however this symmetry is broken by the presence of an externally applied
magnetic field. The only physical principle which breaks this symmetry is the second law
of thermodynamics (unique flow of entropy in the system).

Time- and space-reversal properties of (6.4) yields for χ(2ω) being the polar i-tensor of
3-rd rank. The particularaziation of matrices, given in [60] for the polar tensor of 3-rd rank
is presented in Table 9.6

For the material under consideration the form of different third rank tensors is summa-
rized in Table 6.5. This table also shows the generating matrices for each of the groups.
These matrices (used in the Neumann equations) give the simplest form of any tensor.
Thus, it is possible to simplify a tensor with the help of the few only generating matrices,
which is sometimes done with the help of the excessive direct inspection method (in which
all the symmetry operations are substituted in the Neumann equations).
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In order to make it more clear we have to note that each magnetic point group has its
own orientation of axis, and those orientations do not necessarily correspond to the crystal-
lographic axis, defined for paramagnetic configuration. To find the form of tensors in the
crystallographic coordinate system one has to define a coordinate system transformation
which transforms the magnetic coordinate system (xm, ym, zm) into the crystallographic
one (xc, yc, zc), and use the relations

d′ijk...n = σipσjqσkr . . . σnudpqr...u (6.8a)

d′ijk...n = |σ|σipσjqσkr . . . σnudpqr...u (6.8b)

d′ijk...n = (−1)σipσjqσkr . . . σnudpqr...u (6.8c)

d′ijk...n = (−1)|σ|σipσjqσkr . . . σnudpqr...u, (6.8d)

where the tensor dpqr...u is defined in the magnetic coordinate system (its form for different
symmetries is presented in Table 6.5), tensor d′ijk...n is defined in the crystallographic one
and σ is the matrix of the symmetry operation transforming the magnetic coordinate
system to the crystallographic one.

In the paramagnetic state the form of third rank polar i-tensor is (existence of c-tensors
is forbidden by the presence of 1 in the group)




0 0 0 0 xzx 0
0 0 0 xzx 0 0
zxx zxx zzz 0 0 0


 . (6.9)

In the ferromagnetic configuration with ~M ‖ z third rank polar i-tensor has the form




0 0 0 xyz xzx 0
0 0 0 xzx −xyz 0
zxx zxx zzz 0 0 0


 . (6.10)

Such an orientation of ~M allows two domains with ~M ↑↑ z and ~M ↓↓ z, which gives
parity of tensors under the domain operation




0 0 0 xyz− xzx+ 0
0 0 0 xzx+ −xyz− 0

zxx+ zxx+ zzz+ 0 0 0


 (6.11)

6.3 Microscopic theory

For the calculation of SHG on the microscopic level we use the theory presented in [61].
Authors derived an expression for calculating the electric-dipole non-linear optical suscep-
tibility tensor χ

(2ω)
ijk , based on the quantum mechanical characteristics of the system. The
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general formula is

χ
(2ω)
ijk (2q, 2ω) = −ie3

2q3Ω
·∑k,l,l′,l′′ < k + 2q, l′′|e2iq·r|k, l >< k, l|e−iq·r|k + q, l′ >

< k + q, l′|e−iq·r|k + 2q, l′′ >

×
f(Ek+2q,l′′ ,t)−f(Ek+q,l′ ,t)

Ek+2q,l′′−Ek+q,l′−h̄ω+ih̄α
− f(Ek+q,l′ ,t)−f(Ek,l,t)

Ek+q,l′−Ek,l−h̄ω+ih̄α

Ek+2q,l′′ − Ek,l − 2h̄ω + 2ih̄α

It is clearly seen from this equation that incident laser light should be adjusted to the
energy levels presented in the system (denominators El′′ − El′ − h̄ω and El′ − El − h̄ω
require the resonance between the incoming photons energy and energies of the electronic
states). Transition matrix elements < l|d|l′ > describe electric-dipole transitions between
the one-particle states. The quantity α in the denominators describes life-time of excited
levels and corresponds to the instrumental resolution in the experiment.

All the values which enter the equation (6.12) are provided by our Crystal Field Cal-
culations, except the transition matrix elements, which are taken from [62].

This equation is modified towards a CFT basis set. Summation over one-particle states
is replaced by the summation over many-particle states and corresponding transition matrix
elements are expressed in the new basis set as follows

< l1|d̂|l2 >=
∑

r,s

crcs < Φ1r|d̂|Φ2s > (6.12)

where Φr and Φs are Slater determinants corresponding to many-particle states r and s
respectively. The element < Φr|d̂|Φs > may be easily expressed using standard form of
one-particle operators in many-particle basis sets.
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Chapter 7

SHG Results

At this point we are ready with the quantum-mechanical description of the system and
the way to apply it for computation of its optical properties. The wavefunctions and
the energy levels for NiO, CoO, and FeO are provided by CFT. Because CFT fails to
give acceptable results for FeO, we concetrate here on both the NiO and CoO. In the
paramagnetic states both TMMO have symmetry Oh and C4v for the metal ion in the
bulk and surface environments respectively. The tensor χ(2ω) which describes SHG within
electric-dipole approximation being a polar tensor of 3-rd rank vanishes for system hiving
space inversion in the group (Oh in our case), while on the surface the space-inversion
symmetry is borken which leads to the form of this tensor




0 0 0 0 xzx 0
0 0 0 xzx 0 0
zxx zxx zzz 0 0 0


 (7.1)

Since on the paramagnetic surface the directions x and y are equivalent some of the tensor
elements are equal (zxx = zyy and xzx = yzy). All the elements of this tensor have a
crystallographic origin and are also allowed if the symmetry is lowered by the presence of
magnetization.

The symmetry of these systems in the antiferromagnetic state (below the Néel temper-
ature) is necessarily lower than in the paramagnetic one. Even the lowest symmetry of
the bulk NiO (described by Ci symmetry group) does contain the space-inversion, which
forbids the existence of χ(2ω) tensor within the electric-dipole approxiamtion. However,
for the (001) surface this symmetry is broken even in the paramagnetic state. Depending
on the orientation of magnetic moments there are (except the trivial symmetry group C1

which corresponds to the arbitrary direction of ~L) two possible magnetic point groups for

out-of-plane orientation of magnetic moments and four ones for ~L lying in the xy-plane.
Setting the time t equal to zero and choosing ground state occupancies in Eq. (6.12) we

are able to study the frequency-dependent response of the sample. According to Eq. (6.12),
there are three components needed for our calculations of the nonlinear susceptibility tensor
elements: the wavefunctions of the NiO many-body eigenstates, the transition matrix
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Figure 7.1: Static dependence of χ
(2ω)
ijk on the frequency of the incident laser for the

NiO(001) surface

elements between these states, and the energy levels of these states. The wavefunctions
and the corresponding energies were derived in the previous sections. However, a reliable
calculation of the transition matrix elements would require an ab initio theory of static and
dynamic optical phenomena, which is unfeasible so far (transition metal oxides constitute
the most difficult case due to their strong electronic correlations). Instead, we will use the
approximations for the transition matrix elements obtained by Hübner et al. [62], which
constitute simple selection rules allowing for distinguishing the tensor elements.

Here, we present the spectra of two tensor elements: the prototypic paramagnetic tensor
element χ

(2ω)
zzz and the prototypic antiferromagnetic (AF) tensor element χ

(2ω)
zxy in Fig. 7.1. In

both spectra, all the features fall within the gap, which we assume at 4.0 eV. The dominant
structure in both spectra corresponds to the transitions from the ground state to the states
located near 3.0 eV, see Tab. 3.5. The position of the peak around 1.5 eV corresponds to
the fact that the tensor describes SHG. Other, smaller peaks related to transitions between
various states are also present. Another feature of the calculated spectra is that the tensor
elements are complex and their phases vary. This has important consequences for the AF
domain imaging using SHG.

The main distinctive features of the spectrum of the AF tensor element χ
(2ω)
zxy are addi-

tional peaks at 1.02 eV, 1.73 eV, and 2.46 eV where at best shoulders exist in the spectrum
of the paramagnetic tensor element χ

(2ω)
zzz . Consequently, this is an “antiferromagnetic”
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spectral line which we suppose is especially suitable for nonlinear magneto-optics. Note
that the AF SHG tensor element χ

(2ω)
zxy is linear in the AF order parameter. Another in-

teresting result is that both tensor elements are of similar magnitude. This is a favorable
condition for AF domain imaging. Taking into account the magnitudes of both tensor
elements presented in this section, the domain contrast should be as large as in ferromag-
nets (where it is of the order of unity in SHG, as opposed to the small domain contrast in
MOKE). This large contrast provides a large driving force for the dynamics of the nonlinear
magneto-optical response.

Using the results provided by CFT for the CoO we have computed in the same way
the prototypical paramagnetic and antiferromagnetic tensor elements for this system. The
results are shown in Fig. 7.2. Due to the bigger number of levels within the gap the
structure of these tensors elements is more complicated. However, there are characteristic
features which allows to distinguish the contributions of χzzz from those of χzxy. Most of
these features appear above the main peak (around 1 eV) which make them more difficult
to access them experimentally.

Next, we turn to the calculation of the AF spin dynamics on the femtosecond time
scale for the NiO. The initial excitation is assumed to be infinitesimally short in time (the
excitation pulse is already completed when our dynamics starts) but its energy distribution
follows a Gaussian profile, centered at 2 eV and 20 eV wide (truncated at 0 eV, so that no
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Figure 7.3: Time evolution of the tensor element χ
(2ω)
zyx within the first 50 fs after the

excitation. The inset shows the evolution of the same tensor element within the first 500
fs.

negative energies appear). Such a strong excitation will be distributed in a real experiment
among many atoms, but here we confine it to one atom without any loss of generality. The
chosen width of excitation allows us to probe the fast limit of the dynamics, since all
the energy levels (including the highest) are populated and consequently all de-excitation
channels are open. Restricting the Hamiltonian to electronic on-site interactions complies
with this limit. The initial excitation causes a strong redistribution of charges among the
energy levels, visible as a drop (to a value close to zero at time t = 0, because all the
states are nearly equally populated) of the observed signal compared to its value in a static
experiment. The time evolution of the excited system then results from the quantum phase
factors and has no classical analogue.

Fig. 7.3 shows the dynamics of the AF tensor element χ
(2ω)
zxy (t) within the first 50 fs.

Such a dynamics can be probed in an interferometric SHG experiment. The inset shows
its evolution up to 500 fs, at the fundamental photon energy 0.64 eV (This frequency
corresponds to the low lying AF line in the SHG spectrum of NiO (001)). There is no decay

of the envelope of χ
(2ω)
zxy (t), unlike for metallic systems [63]. The coherence is preserved for

a long time (until phenomena neglected here, such as electron-phonon coupling that is
of particular relevance in dielectrics take place), which manifests itself by beats repeated
regularly every 20 fs. The spin dynamics takes place within femtoseconds, thus being
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as fast as in metals. Consequently, we predict coherence times that are four orders of
magnitude longer than the ultimate speed of the spin and charge dynamics. This allows
for many read-write cycles during the intrinsic life-time of the excitation. Besides, it fulfills
one of the important conditions for quantum information [64]. This finding is in line with
the experimentally determined widths of spectral lines in oxides [2] (tens of µeV, which
corresponds to tens of picoseconds coherence times) and bears a similarity to the optical
effects used for coherent control in semiconductor quantum dots [65].
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Chapter 8

Conclusions

This work is devoted to the investigations of electronic and magnetic properties of transition
metal ions positioned in bulk and within interfacial layers of transtion metal monoxides
(TMMO). The description of the electronic structure is based on Crystal Field Theory
(CFT), which efficiently handles the systems whose behavior is mostly determined by
strongly correlated electrons of the outermost incomplete shell, in our case 3d-electrons.
These electrons do not only define the electronic structure of the system, but are also
responsible for its magnetic properties, being an origin of the fact that transition metals
exist in the ferromagnetic state below the Curie temperature while their oxides usually have
antiferromagnetic ordering below the Néel temperature. There are two basic approaches
to account for magnetism, the method of localized magnetic moments and the method of
itinerant magnetic moments. The choice of a particular approach depends on the nature
of the material and in many cases is a difficult one to make. The first method is based on
the current distributions which are localized within a lattice cell. Well pronounced states
of ionic character found in different kinds of experiment on TMMO assume this method to
be appropriate for insulating TMMO. However, ferromagnetic metals are usually described
by the second method, in which the current distributions are those associated with free
electrons.

Although CFT is sketched in many of the textbooks as an example to show multiplet
splitting due to the interaction with the field of ligands, its complete many-particle real-
ization is rather complicated and requires a careful treatment. In this work we completely
take into account all the crystal field effects. Three materials of interest (NiO, CoO, and
FeO) are described and their electronic states have been computed within this theory. Ex-
pressions for the field produced by surrounding ligands for both bulk and (001) surface
symmetries are derived. Approximate eigenfunctions of the angular momentum operator
L̂ (cubic harmonics) are replaced by the exact wavefunctions which completely diagonalize
the Hamiltonian matrix. Angular parts of the wavefunctions for different states of the
system assumed to be defined by ligands are found in the equivalent directions, and are
calculated exactly. Localization of the electrons on the metal site allows to reduce the
task of finding the radial parts of the wavefunctions to the one of fitting few contributing
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integrals to get the best convergence to the already known energies of the system. In case
of “true” eigenfunctions of the Hamiltonian this is a task of non-linear least-squares fitting
in many dimensions (dimension for each energy level is equal to the number of times it ap-
pears in the given symmetry for a given electronic configuration). This task is successfully
solved by employing the Powell’s method of minimization in multidimensions. The way to
include spin-orbit coupling effects and label the resulting levels is presented.

The description of the system, provided by CFT gives a possibility to compute its
characteristics which can be measured in experiment allowing to confirm the applicability
of the theory and make some predictions. In order to prove our results we applied CFT
data to compute the response of the system to the external laser light. The interaction
of ions with the light created in the medium by the initial laser field gives rise to many
physical phenomena, of which one considered here is Second Harmonic Generation (SHG).
The effect of Sum Frequency Generation (and in particulary SHG) represents one of a broad
variety of non-linear optical effects, which start to appear if the laser field is strong enough.
The definition of the field strength depends on the particular process and may be stated as
follows: a field can be called strong when, during the time of its action, processes involving
more than one photon become significant. Already from this definition, it becomes clear
that the non-linear optical effects, although require special experimental conditions, may
give information about the system which is not accessible in other methods. Although some
experiments are able to detect the magnetism of the sample, it is often difficult to identify
the domains or determine the orientations of magnetic moments in the material. We have
chosen the Second Harmonic Generation as an exemplary method to give such information.
SHG is a non-destructive method which can be used to control the state of the system in
situ. Moreover, a typical SHG experiment has tunable parameters which allow to precisely
extract the information about microscopic properties. Choosing an appropriate geometry
one may assure the output signal to be defined by one or another tensor χ(2ω) element (this
tensor is an origin of SHG). Optical SHG is clearly sensitive to the interfaces. Additionally,
an elementary process of SHG includes two photons; this extends the ability of this method
to extract the structural information. Taking into account magnetic ordering one may try
to use this technique to detect the magnetic structure. Symmetry analysis of optical
SHG for different magnetic states of the same system shows a strong dependence of the
output SHG signal on the particular magnetic structure of the system. Magnetic optical
SHG experiments discriminate different types of magnetism and in many cases visualize
magnetic domains existing in the sample which are not seen in other experiments.

The symmetry of the SHG process for materials having different crystal structures
and/or set of domains follows from the well known Neumann’s principle. There are two
basic approaches to account for magnetism. In the first approach the tensor χ(2ω) is ex-
panded in the series of powers of the order parameter, while in the second one the magnetic
point group of the sample has to be identified. The existence of the magnetic order param-
eter is defined in the Landau theory of phase transitions. This is a quantity which: (1) is
invariant under all symmetry operations from the corresponding magnetic point group, and
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(2) has different values for equivalent orderings of individual magnetic moments. Although
the order parameter is unambiguously defined for ferromagnets, its form for antiferromag-
netic configurations is complicated. In such cases the second approach of magnetic point
groups seems to be simpler. The extension of Neumann’s principle to the 90 magnetic
point groups has been performed by R. Birss. Due to the existence of time-reversal in
these groups the mathematical formulation of Neumann’s principle is different for c- and
i-tensors and for unitary and antiunitary symmetry operations. Special attention should
be paid to the process itself which may be a static or dynamical one. In the second case
time-reversal symmetry of the process is broken and the unitary subgroup only of the
corresponding magnetic point group has to be considered.

Since the metal ions in TMMO are ordered antiferromagnetically, we use the magnetic
point groups to find the symmetry of the tensor χ(2ω) for the materials under consideration.
Although such an analysis for (001), (110), and (111) surfaces of fcc materials was done
before by M. Trzeciecki et al., magnetic point groups were not identified because the time-
reversal operation was not included. It is worth to note that the definition of magnetic
space groups is based on time-reversal and each such group contains an even number of
symmetry operations of which half is unitary symmetry operations and the other half is
operations augmented by the time-reversal. The antiunitary subgroup should be removed
from the analysis of the tensors for dynamical (as SHG) processes, but it must be used
in the symmetry (structural) analysis of magnetic media. Inclusion of the time-reversal in
the symmetry analysis allows to replace excessive direct inspection method (matrices for
each symmetry operations sequentially substituted in the Neumann formula) by the very
elegant concept of generating matrices (for each point group only one or two symmetry
operations define the form of any tensor) and greatly simplify the analysis. The form of
any other tensor (describing magnetic-dipole, quadrupole, . . . contributions) may be easily
found. Thus, the symmetry analysis of magnetic (001) surface is generalized. Because
antiunitary symmetry operations play no role in the dynamical processes, this does not
change the results obtained before. Different concepts of symmetry analysis of SHG process
are compared and a comprehensive overview is presented.

The microscopic theory of SHG derived by W. Hübner et al. is used in this work to
compute the elements of the tensor χ(2ω). Because TMMO have discrete energy levels, the
laser pulse parameters have to fit the energy differences between them. In order to find
the appropriate laser frequency we compute dependence of typical magnetic and crystal-
lographic elements of χ(2ω) on the frequency of the incident light. There exist frequencies
for which these tensor elements have different behaviors, which means that the laser pulse
of a specially chosen frequency allows to identify the magnetic state of the surface.

Another intriguing feature of TMMO is their dynamical behavior. Based on the results
of CFT, we tried to find dynamics of the system after applying the pump laser pulse.
In this case levels are simultaneously excited and these excitations propagate in time.
Dynamical SHG of antiferromagnetic spectral lines shows ultrafast spin dynamics. Long
lasting coherence together with the possibility of ultrafast (of the order of femtoseconds)
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spin switching makes these materials very promising for technological applications, such as
permanent magnetic storage devices and quantum computing. Until now, among solids,
only semiconductors and nuclear spins have been known to exhibit the combination of
these features, suffering however from a much slower dynamics. Moreover, NiO possesses
a high density of permanent magnetic moments (like metals) which is an option for device
size reduction.
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Supplementary materials

Table 9.1: Numerical values of ck(lm, l′m′) = (−1)m−m′ck(l′m′, lm) for l ≤ 3, l′ ≤ 3

l l′ m m′ k = 0 k = 2 k = 4
l + l′ = even
s s 0 0 +1

s d 0 ±2 +1/
√
5

0 ±1 −1/
√
5

0 0 +1/
√
5

p p ±1 ±1 +1 −1/5
±1 0 +

√
3/5

0 0 +1 +2/5

±1 ∓1 −
√
6/5

d d ±2 ±2 +1 −2/7 +1/21

±2 ±1 +
√
6/7 −

√
5/21

±2 0 −2/7 +
√
15/21

±1 ±1 +1 +1/7 −4/21
±1 0 +1/7 +

√
30/21

0 0 +1 +2/7 +6/21

±2 ∓2 +
√
70/21

±2 ∓1 −
√
35/21

±1 ∓1 −
√
6/7 −2

√
10/21
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Table 9.3: Explicit Forms of the Θlm(θ)

Θlm(θ) = (−1)m
(
(2l+1)(l−m)

2(l+m)!

)1/2

sinm θ dm

(d cos θ)m
Pl(cos θ),

Θlm(θ) = (−1)mΘlm(θ), m ≥ 0

Θ00 1/
√
2

Θ10 (
√
3/
√
2) cos θ

Θ1±1 ∓(
√
3/2) sin θ

Θ20 (
√
5/2
√
2)(2 cos2 θ − sin2 θ)

Θ2±1 ∓(
√
15/2) cos θ sin θ

Θ2±2 (
√
15/4) sin2 θ

Θ30 (
√
7/2
√
2)(2 cos3 θ − 3 cos θ sin2 θ)

Θ3±1 ∓(
√
21/4

√
2) sin θ(4 cos2 θ − sin2 θ)

Θ3±2 (
√
105/4) cos θ sin2 θ

Θ3±3 ∓(
√
35/4

√
2) sin3 θ

Θ40 (3/8
√
2)(8 cos4 θ − 24 cos2 θ sin2 θ + 3 sin4 θ)

Θ4±1 ∓(3
√
5/4
√
2) cos θ sin θ(4 cos2 θ − 3 sin2 θ)

Θ4±2 (3
√
5/8) sin2 θ(6 cos2 θ − sin2 θ)

Θ4±3 ∓(3
√
35/4

√
2) cos θ sin3 θ

Θ4±4 (3
√
35/16) sin4 θ
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Table 9.4: Cubic harmonics
free cubic cubic
ion state harmonics
S A1g S0

P T1g P−1 P0 P1

D Eg D0

√
1

2
(D−2+D2)

T2g

√
1

2
(D−2−D2) D−1 D1

F A2g

√
1

2
(F−2−F2)

T1g F0

√
5

8
F−3+

√
3

8
F1

√
5

8
F3+
√

3

8
F−1

T2g

√
1

2
(F−2+F2)

√
3

8
F−3−

√
5

8
F1

√
3

8
F3−
√

5

8
F−1

G A1g

√
5

24
(G−4+G4)+

√
7

12
G0

Eg

√
7

24
(G−4+G4)−

√
5

12
G0

√
1

2
(G−2+G2)

T1g

√
1

2
(G−4−G4)

√
1

8
G−3+

√
7

8
G1

√
1

8
G3+
√

7

8
G−1

T2g

√
1

2
(G−2−G2)

√
7

8
G−3−

√
1

8
G1

√
7

8
G3−
√

1

8
G−1

H Eg

√
1

2
(H−2−H2)

√
1

2
(H−4−H4)

T1g H0

√
63

128
H−5+

√
35

128
H3+
√

15

64
H−1

√
63

128
H5+
√

35

128
H−3+

√
15

64
H1

T1g

√
1

2
(H−4+H4)

√
5

128
H−5−

√
81

128
H3+
√

21

64
H−1

√
5

128
H5−
√

81

128
H−3+

√
21

64
H1

T2g

√
1

2
(H−2+H2)

√
15

32
H−5−

√
3

32
H3−
√

7

16
H−1

√
15

32
H5−
√

3

32
H−3−

√
7

16
H1

I A1g

√
7

16
(I−4+I4)−

√
1

8
I0

A2g

√
5

32
(I−6+I6)−

√
11

32
(I−2+I2)

Eg

√
1

16
(I−4+I4)+

√
7

8
I0

√
11

32
(I−6+I6)+

√
5

32
(I−2+I2)

T1g

√
1

2
(I−4−I4)

√
11

32
I−5+

√
15

32
I3−
√

3

16
I−1

√
11

32
I5+
√

15

32
I−3−

√
3

16
I1

T2g

√
1

2
(I−2−I2)

√
165

256
I−5−

√
81

256
I3+
√

5

128
I−1

√
165

256
I5−
√

81

256
I−3+

√
5

128
I1

T2g

√
1

2
(I−6−I6)

√
3

256
I−5+

√
55

256
I3+
√

99

128
I−1

√
3

256
I5+
√

55

256
I−3+

√
99

128
I1
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Table 9.5: Generating matrices

σ(0) = [1] =



1 0 0
0 1 0
0 0 1


 σ(1) = [1] =



−1 0 0
0 −1 0
0 0 −1




σ(2) = [2y] =



−1 0 0
0 1 0
0 0 −1


 σ(3) = [2z] =



−1 0 0
0 −1 0
0 0 1




σ(4) = [2y] =



1 0 0
0 −1 0
0 0 1


 σ(5) = [2z] =



1 0 0
0 1 0
0 0 −1




σ(6) = [3z] =
1
2



−1

√
3 0

−
√
3 −1 0

0 0 1


 σ(7) = [4z] =




0 1 0
−1 0 0
0 0 1




σ(8) = [4z] =



0 −1 0
1 0 0
0 0 −1


 σ(9) =



0 1 0
0 0 1
1 0 0



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Table 9.6: Possible tensors of 3-rd rank (T3 = 0)

A3




xxx xyy xzz xyz xzx xyx

yxx yyy yzz yzy yzx yxy

zxx zyy zzz zyz zxz zxy


 I3 = Q3




0 0 0 0 xzx 0

0 0 0 xzx 0 0

zxx zxx zzz 0 0 0




B3




0 0 0 xyz xzx 0

0 0 0 yzy yzx 0

zxx zyy zzz 0 0 zxy


 J3




0 0 0 xyz 0 0

0 0 0 0 xyz 0

0 0 0 0 0 zxy




C3




xxx xyy xzz 0 0 xyx

yxx yyy yzz 0 0 yxy

0 0 0 zyz zxz 0


 K3




xxx −xxx 0 xyz xzx −yyy

−yyy yyy 0 xzx −xyz −xxx

zxx zxx zzz 0 0 0




D3




0 0 0 xyz 0 0

0 0 0 0 yzx 0

0 0 0 0 0 zxy


 L3




0 0 0 xyz 0 −yyy

−yyy yyy 0 0 −xyz 0

0 0 0 0 0 0




E3




0 0 0 0 xzx 0

0 0 0 yzy 0 0

zxx zyy zzz 0 0 0


 M3




xxx −xxx 0 0 xzx 0

0 0 0 xzx 0 −xxx

zxx zxx zzz 0 0 0




F3 = N3




0 0 0 xyz xzx 0

0 0 0 xzx −xyz 0

zxx zxx zzz 0 0 0


 O3




xxx −xxx 0 0 0 −yyy

−yyy yyy 0 0 0 −xxx

0 0 0 0 0 0




G3




0 0 0 xyz xzx 0

0 0 0 −xzx xyz 0

zxx −zxx 0 0 0 zxy


 R3




xxx −xxx 0 0 0 0

0 0 0 0 0 −xxx

0 0 0 0 0 0




H3 = P3




0 0 0 xyz 0 0

0 0 0 0 −xyz 0

0 0 0 0 0 0


 S3 = U3




0 0 0 xyz 0 0

0 0 0 0 xyz 0

0 0 0 0 0 xyz






84 CHAPTER 9. SUPPLEMENTARY MATERIALS



Bibliography

[1] J. de Boeck and G. Borghs, “Magnetoelectronics,” Phys. World, vol. April, p. 27,
1999.
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[61] W. Hübner and K.-H. Bennemann, “Nonlinear magneto-optical Kerr effect on a nickel
surface,” Phys. Rev. B, vol. 40, no. 9, pp. 5973–5979, 1989.
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Zusammenfassung
Diese Arbeit ist den Erforschungen von elektronischen und magnetischen Eigenschaften

der Metall-Ionen, die im Inneren und an der Oberfläche der Monoxide der Übergangsmetallen
liegen, gewidmet. Die Beschreibung der Elektronenstruktur solcher Ionen basiert auf der
Kristallfeldtheorie (KFT). Diese Theorie beschreibt effektiv die Systeme, dessen Verhal-
ten sich hauptsächlich durch die stark korrelierten Elektronen der äußeren unvollständigen
Schale, in diesem Fall 3d-Elektronen, definieren lässt. Diese Elektronen definieren nicht nur
die Elektronenstruktur des Systems, sondern auch ihre magnetische Eigenschaften. Sie sind
die Ursache dafür, dass die Übergangsmetalle im ferromagnetischen Zustand unterhalb der
Curie-Temperatur existieren, wärend deren Oxide gewöhnlich eine antiferromagnetische
Ordnung unterhalb der Néel-Temperatur besitzen. Es gibt zwei grundlegende Ansätze für
die Beschreibung des Magnetismus: die Methode der lokalisierten magnetischen Momente
und die Methode der itineranten magnetischen Momente. Die Wahl des Ansatzes hängt
von der Beschaffenheit des Materials ab und ist in vielen Fällen schwer zu treffen. Die er-
ste Methode basiert auf der Verteilung der in der Gitterzelle lokalisierten Ströme. Die gut
ausgeprägten Zustände ionischen Zustände, die in vielen Experimenten gefunden wurden,
gestatten uns diese Methode auf die isolierenden Übergangsmetallmonoxide anzumercken.
Allerdings wurden gewöhnlich die ferromagnetischen Metalle durch die zweite Methode
beschrieben, worin die Ströme von freien Elektronen getragen werden.

Die KFT wurde in vielen Lehrbüchern als Beispiel, das die Spaltung der durch Zu-
sammenwirkung mit dem Ligandenfeld entstandenen Schichten zeigt, angesprochen. Ihre
vollendete Verwirklichung ist eine komplizierte Aufgabe und erfordert ein spezielles Her-
angehen. In dieser Arbeit berücksichtigen wir alle Wirkungen des Kristallfeldes. Drei uns
interessierte Stoffe NiO, CoO und FeO wurden im Rahmen dieser Theorie beschrieben und
deren Elektronenzustände berechnet. Es werden die Ausdrücke für das durch die umge-
bendenden Liganden gebildete Feld für die Volumen- und für die Oberflächensymmetrie
ermittelt. Die Verwendung der annähernden Wellenfunktionen (Eigenfunktionen des Bahn-
drehimpulsoperators L̂ - kubische Harmonische) wurde durch die genauen Wellenfunktio-
nen, die komplett die Hamilton′sche Matrix diagonalisieren, ersetzt. Die Winkel-Anteile der
Wellenfunktionen für verschiedene Zustände sind durch die sich in äquivalenten Richtun-
gen befindenden Liganden definiert und werden exakt berechnet. Die Elektronenlokalisation
auf den Metall-Ionen erlaubt uns die Aufgabe der Ermittlung der Radialteile von Wellen-
funktionen auf die Berechnung nur weniger Integrale zu reduzieren und so die optimale
Konvergenz zu den schon bekannten Energien des Systems zu erhalten. Im Fall der “wah-
ren” Eigenfunktionen des Hamilton-Operators wird eine nichtlineare Fit-Prozedur in vielen
Dimensionen erforderlich (die Dimension für jede Energieniveau ist mit der Häufigkeit des
Vorkommens des Energieniveaus in der gegebenen Symmetrie für die gegebene Elektronen-
konfiguration identisch). Diese Aufgabe wurde dank der Powell-Methode erfolgreich gelöst,
was uns die Möglichkeit gibt, die Mehrelektronenzustände , die durch die Außenelektronen
der Ionen geprägt sind, für das Volumen sowie für die Oberfläche zu berechnen. In der
vorliegenden Arbeit stellen wir die Methode dar, die die Effekte der Spin-Bahn Kopplung



umfasst und die resultierende Zustände bezeichnet.

Die KFT-Beschreibung der Systeme gibt uns die Möglichkeit, experimentell zugängliche
Größen zu Berechnen, was die Anwendbarkeit der Theorie bestätigt und uns einige Vor-
hersagen erlaubt. Um unsere Ergebnisse zu kontrollieren, verwenden wir die Resultate von
KFT für die Berechnung der Antwort des Systems auf das äußere Laserfeld. Die Zusammen-
wirkung von Ionen mit dem Laserfeld führt zu verschiedenen physikalischen Phänomenen.
Wir konzentrieren uns nur auf einer, auf die Frequenzverdopplung (SHG - Second Harmo-
nic Generation). Der Effekt der SHG ist einer der vielen nichtlinearen Effekte, die nur im
ausreichend Laserfeld entstehen. Die Bestimmung der Stärke des Feldes hängt vom Prozess
ab und kann auf folgende Weise definiert sein: Ein Feld heißt stark, wenn die Prozesse, die
mehr als ein Photon enthalten, während der Feldwirkung bedeutend werden. Schon aus der
Definition ist klar, dass die nichtlinearen optische Effekte Informationen über das System
geben, die man durch andere Methoden nicht erhält, obwohl jene spezielle experimentelle
Bedinungen benötigen. So sind viele Experimente in der Lage die magnetische Phase zu
bestimmen. Jedoch ist es oft unmöglich die Domänen zu identifizieren oder die Orientie-
rung der magnetischen Momente zu bestimmen. Wir haben die Frequenzverdopplung als
Beispiel, das uns solche Informationen liefert und viele Vorteile hat, ausgewählt. Erstens
ist SHG eine nichtdestruktive Methode, die zur Kontrolle des Systemzustandes in situ be-
nutzt werden kann. Zweitens hat ein typisches SHG-Experiment einstellbare Parameter,
was genaue Informationen über die mikroskopische Eigenschaften zu erhalten ermöglicht.
Je nach der Geometrie kann das ausgehende Signal durch verschiedene Tensorelemente von
χ(2ω) bestimmt werden. Die optische SHG ist grenzflächenempfindlich, da in jedem Elemen-
tarprozess eine ungerade Anzahl von Photonen involviert ist. Dieses Verfahren kann auch
für die Bestimmung der magnetischen Ordnung auf der Oberfläche verwendet werden. Die
Symmetrie-Analyse der optischen SHG für die verschiedenen magnetischen Zustände eines
Systems zeigt die starke Abhängigkeit des ausgehenden SHG-Signals von der magnetischen
Struktur des Systems. Ein optisches SHG-Experiment unterscheidet verschiedene Arten des
Magnetismus und in mehreren Fällen kann es magnetische Domänen sichtbar machen.

Die Symmetrie des SHG-Prozesses für die Stoffe, die unterschiedliche Kristall- und
Domänenstruktur haben, lässt sich durch das wohlbekannten Neumannprinzip ermitteln.
Es gibt hauptsächlich zwei Wege zur Berücksichtigung des Magnetismus. Im ersten Fall wird
der Tensor in die Ordnungsparameter zerlegt, im zweiten muss die magnetische Punktgrup-
pe gefunden werden. Die Existenz der Ordnungsparameter wurde in der Landau-Theorie
der Phasenübergange bewiesen. Diese Größe muss (1) unverändert bei allen Symmetrie-
operationen aus der entsprechenden magnetischen Gruppe sein und (2) verschiedene Werte
für die äquivalenten Domänen haben. Der Ordnungsparameter wurde eindeutig für die Fer-
romagnetika definiert, für die Antiferromagnetika allerdings hat er eine sehr komplizierte
Form. In solchen Fällen ist der zweite Weg wesentlich einfacher. Die Erweiterung des Neu-
mannprinzips auf 90 magnetische Punktgruppen gelang R. Birss. Die Existenz der Zeitre-
version in diesen Gruppen führt zu den verschiedenen mathematischen Formulierungen des
Neumannsprinzips für c- und i-Tensoren und für die unitäre und antiunitäre Symmetrie-



operationen. Eine spezielle Aufmerksamkeit soll auf den Prozess selbst gerichtet werden,
welcher statisch oder dynamisch sein kann. Im zweiten Fall wird die Zeitumkehrsymmetrie
des Prozesses gebrochen und nur die unitäre Subgruppe betrachtet.

Weil die Metall-Ionen im Übergangsmetallmonoxid antiferromagnetisch geordnet sind,
verwenden wir für die Ermittlung der Symmetrie des Tensors χ(2ω) magnetische Punktgrup-
pen. Abgesehen davon, dass eine solche Analyse für die (001), (110) und (111) Oberflächen
der fcc-Festkörper von M. Trzeciecki schon durchgeführt wurde, wurden die magnetischen
Punktgruppen nicht ermittelt, da die Zeitumkehr-Operation nicht mitbetrachtet war. Man
muss sagen, dass die Definition der magnetischen räumlichen Gruppen auf der Zeitinversi-
on basiert und jede solche Gruppe eine gerade Anzahl der Symmetrieoperationen enthält,
von denen eine Hälfte unitäre Symmetrieoperationen und die andere antiunitäre mit der
Zeitumkehr beinhaltet. Die antiunitäre Subgruppe wird in der Analyse der Tensoren für
die dynamischen SHG-Prozesse nicht betrachtet, aber sie muss bei der Strukturanalyse des
Kristalls verwendet werden. Die Einbeziehung der Zeitumkehr in die Symmetrieanalyse
erlaubt uns, die exzessive Methode der direkten Inspektion gegen die elegante Konzeption
der generierten Matrizen auszutauschen. Die Formen der anderen Tensoren können leicht
gefunden werden. So ist die Symmetrieanalyse der (001)-Oberfläche verallgemeinert. Da
die antiunitäe Symmetrieoperationen bei den dynamischen Prozessen keine Rolle spielen,
bleiben die früher erhaltenen Ergebnisse unverändert. Die unterschiedliche Konzeptionen
der Symmetrieanalyse der SHG sind verglichen und in einem ausführlichen Überblick dar-
gestellt.

Es wurde die mikroskopische Theorie der SHG (ausgearbeitet von W. Hübner und ande-
ren) für die Ermittlung der Tensorelemente χ(2ω) benutzt. Da die Übergangsmetallmonoxide
diskrete Energiezustände haben, müssen die Parameter des Lasers dem entsprechend aus-
gewählt werden. Dafür haben wir die Abhängigkeit der typischen magnetischen und kri-
stallographischen Elemente der Tensoren χ(2ω) von der Frequenz des fallenden Lichtes be-
rechnet. Wir haben festgestellt, dass die Tensorelemente für bestimmte Frequenzen un-
terschiedliche Charakteristiken haben, was uns erlaubt, die SHG für die Bestimmung des
magnetischen Zustandes der Oberfläche zu verwenden.

Noch eine tiefliegende Besonderheit der Übergangsmetallmonoxide ist ihr dynamisches
Verhalten. Wir haben die in der KFT erhaltenen Resultate verwendet und haben versucht,
die Dynamik des Systems nach der Einwirkung des Laserimpulses zu finden. In diesem Fall
werden die Zustände angeregt und diese Anregungen sind zeitabhähgig. Die dynamische
SHG der antiferromagnetischen spektralen Linien zeigt die ultraschnelle Spindynamik. Die
langanhaltende Kohärenz und die Möglichkeit der ultraschnellen (im Bereich von Femtose-
kunden) Änderung der Spinorientierung macht diese Materialklasse für die technologische
Anwendungen (z.B. magnetische Bauelemente für eine permanente Datenspeicherung und
Quantencomputer) sehr vielversprechend. Bis heute waren unter den harten Stoffen nur
Halbleiter und Kernspins als Träger solcher Besonderheiten bekannt, dabei zeigten sie ei-
ne wesentlich langsamere Dynamik. Überdies besitzen die Übergangsmetallmonoxide eine
hohe Dichte von permanenten magnetischen Momenten (wie auch Metalle), was die Ver-



kleinerung der Bauelementgröße ermöglicht.
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Grenzflächen”(project number 404) and Deutsche Forschungsgemeinschaft.



Publikationsliste

• M. Trzeciecki, O. Ney, G. P. Zhang, and W. Hübner, Laser-Control of Ferro- and
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Hiermit erkläre ich, dass ich diese Dissertation selbstständig und ohne fremde Hilfe
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