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Introduction

It is a well known fact that chemically reacting systems can be described by means of systems
of reaction diffusion equations on the microscopic scale. These kinds of equations have been
studied in great detail by many authors during the last three decades. Although in chemi-
cal engineering the focus is overriding on the macroscopic scale, leading mostly to ordinary
differential equations, in many problems one has to take into account effects of diffusion, con-
vection and dispersion, or physical effects caused by electrical charges (e.g. electromigration).
The mass balance equations then become reaction-diffusion-convection equations which are
coupled with equations arising from considered physical processes. This leads to systems of
partial differential equations in three dimensions which can be very complicated. Therefore,
models have been developed on the macroscopic scale which allow for the essential informa-
tion about the physical processes taking place. However, many chemical processes involve two
or more phases, which typically means, the reacting species flow into the Continuously-flow
Stirred Tank Reactor (CSTR) and at least one of these species must be transferred to another
phase through an interface. In such situations it is of importance to take into consideration
mass transport in order to arrive at reliable models. However, this brings about the coupling
between the macroscopic reactor scale and the microscopic processes.

In the last decades, efforts have been made to account for electrical forces between particles.
This approach seems to be reasonable for the reacting species not being electrically neutral,
and particularly if electrical interactions can not be neglected in the chemical process. This
applies in case that electrical forces are of the same magnitude as the other driving forces, e.g.
diffusion or convection. However this involves a new unknown quantity, namely, the so-called
electrical potential which is caused by the charged particles. Including this item leads to a
strong coupling of the equations for the charged species. One possibility for incorporating
these effects into the model is the assumption of electroneutrality, which demands that the
total charge has to be zero everywhere at any time. This means that, for concentrations c¢;
of reacting species and corresponding charges z; € Z the following algebraic constraint must
hold

Zzici(t,:r) =0, teJ xe€Q. (1)

Thus, the reaction diffusion equations are augmented with an algebraic equation. The effect
of electromigration was first taken into account by Henry and Louro [14]. To all appearances
there are only a very few papers about electrochemical systems in the mathematical literature,
e.g. see [2], [6], [15], [23], [38] and [4]. Therefore, it is this physical feature which is to play a
decisive role in our treatise.

In this thesis we are concerned with a mathematical model resulting from a regenerative
ionic exchanger, see [21] or [5] for more chemical background. The model will describe in
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detail the regeneration of the weak acidic cation exchanger-resins Amberlite IRC-86® (called
pellets) charged with Cu?T-ions via hydrochloric acid HC! in a well stirred tank (CSTR). In
fact, the pellets are suspended in a liquid bulk phase, where the acid is fed into the reactor
continuously via a carrying liquid and dissociates into H' and Cl~. The exchange of cations
H* and Cu®T is connected with a subsequent reaction of neutralisation between the moving
protons H* arising from the acid and the attached ions COO—. The chemical reaction
equation reads as follows:

R(COO™),Cu** + 2H* —s 2RCOOH + Cu**. (2)

The model is illustrated schematically by the following figure

Reaction in Pellet:
v/ R(COO™),Cu?t+2HT -2RCOOH+Cu?t

- HCl

(O

Reaction in Bulk: Cu?*
HCl = H* + Cl~ CuCl,
CuCl, = Cu** + 201- VI

HCl

Figure 1: Processes in the CSTR

As visualised above, the underlying chemical system consists of three phases: the almost
perfectly mixed bulk phase, the porous pellet and the film. The balance of each phase has to
take into consideration coupling of mass transport for all species and chemical reactions. The
resulting equations yield systems of heterogeneous reaction diffusion equations in each phase
which are connected to boundary conditions. In the end, a system of parabolic equations for
concentrations in film and pellet is obtained, and ordinary differential equations reproduce
the situation in the bulk phase. As mentioned above, the effect of electromigration caused
by considering charged species is to be involved, which in turn requires the electroneutrality
condition (1).

Now, we shall describe the equations modelling the above situation. Let {2 be a bounded
domain in R3 which decomposes according to = Qp U Q- and their boundaries I'p := 9
and 0 = T UT, T := 09, are C%-smooth with dist (I'»,I") > 0. The domain ) represents a
typical pellet and Q its surrounding liquid film. For the unknown functions u* : [0, T] x Q;, —
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RN, k=P F,u’:[0,T] - RY and ¢* : [0,T] x Qi — R, k = P, F, we are concerned with
the problem

oul’ = v - (DPVul) = v .- (MPul @ VoT') = RV (t,z,ul), (t,x) € J x Qp,
out’ =V - (DFVu) = v .- (MTul" @ Vo) = RF (¢, z,u),  (t,2) € J x O,
Do uf + MPuld,¢" = DY o ul" + MFur0,6", (t,x) € J x T},
[ln(’yipuf))]lggv + Motz = [ln(fyfuf)]lSiSN +X00"z, (t,x) € J x T,

uf = (t,z) e JxT,

d 1
@U}) == (uf - ub> + RP(u®) — ab/DF(?VuF + MTuFo,¢" do, te J,
T
r

uP(O,a:) = uéj(x), z € Qp, uF(O,az) = ug(:c), z € Qp, ub(O) = ug,

and
Akt x) =0, (t,x)eJxQ, k=P F, 2lu’t)=0, telJ. (4)

Let us explain the relevant quantities and constants. The functions u* and ¢*, k = P, F,b
denote the concentration vectors and electrical potentials, respectively, where the superscripts
indicate the corresponding phase. The diffusion coefficients df summarised to the matrix DF
are known functions of (¢,z), and the quantity m¥(¢,z) := Ao - d¥(¢,) - 2; is the so-called
electrochemical mobility. We set M* = diag[mF];<;<n. Finally, the constant Ao := F/RT is
positive, where F' denotes the Faraday constant, 7' the absolute temperature and R the gas
constant.

The charge of species i denoted by z; is the same in each phase. The first boundary
condition is caused by the continuity of fluxes on I'», whereas the second boundary condition
is due to continuity of chemical potentials. At the outer surface of the film I' continuity of
concentrations is imposed. The next equation describes the evolution of the bulk concentra-
tions. The feeds u{ are time-dependent non-negative functions and the constant a® comprises
among other things the total number of pellets in the bulk volume. Finally, the functions
Rf, k=P F,band i=1,...,N designate the production rate densities of species ¢ due to
the chemical reactions in phase k. The purpose consists in finding functions u = (uf,) uf] ub)
and ¢ = (¢, ¢") satisfying the above problem which possess the regularity

weZl=2ZpxZf x Zy, ¢eZh:={(¢"¢") € Zb x Zf 1 v, (9" - 6") e YL},
with
Z§ = Hy(J; Lp(Q; RY)) N Ly (J3 Hy (Q; RY)), 2 o= HY*(J; Hp, (%)) N Ly (3 Hj (),

and Yfrp denotes a certain trace space.

The first question which is raised here is: “What are the determining equations for the
electrical potentials ¢, ¢ ?”. It is well known that assumption (1) implies an equation for
the electrical potentials, consequently we obtain a closed model. Taking the inner product
of (3) with z in R and accounting for the electroneutrality condition (4) yields the elliptic
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boundary value problem

V- I MPuPVer) + Vv - 1 DP (t,2)Vul) =0, (t,x) € J x Qp,
V- (zT-MFuFngF) + V- IDE(t, x)Vul) =0, (t,z) € J x Qp,
P_ ol = i1 i1 L
o — ¢ )\0\2\2 Zz n % (t,x)u Zz n % (t,z)u ) , (tx)e I xIp, (5)

2L Mo, P — 2T ~M%F8Vq§ =z -DF(t,:U)(?l,u —L.DP(t, x)o ul,  (t,x) € J x T,
pF =0, (t,z)eJxT.

It turns out that adding these elliptic equations to problem (3) is an equivalent formulation
of (3) with electroneutrality (4). An important issue of this boundary value problem is the
regularity of (¢f, ¢*') in regard to the additional dependence on variable t. We will see that
the electrical potentials possess half a time derivative although all terms appearing in the
elliptic equations belong to L, (J; L, ().

Now, we want to dwell on the difficulties we have to overcome. We immediately perceive
that the above problem leads to a strongly coupled quasilinear parabolic-elliptic system with
nonlinear boundary condition of Dirichlet type, nonlinear transmission condition, dynamical
boundary conditions and nonlinear reaction rates. The most interesting difficulty of our
problem becomes manifest in the nonlinear transmission condition

DY u” + MPuld,¢" = DY o ul” + MFul0,0", (t,x) e JxTp. (6)

Almost all quantities are involved in this boundary equation (except for the vector of concen-
tration u), all coefficients of unknown functions are different and only terms of highest order
occur. Hence, this circumstance naturally leads to a strong coupling between the concentra-
tions and electrical potentials of each phase. Rigorous investigations of multiphase processes
including electroneutrality condition (1) and nonlinear boundary conditions, e.g. transmis-
sion condition (6), are apparently missing. We would like to mention that a one-dimensional
problem (and its modelling), 2 C R bounded, was treated by Bothe and Priiss [4].

Now, we want to point out where the potential difficulties are hidden. In principle, there
are two approaches to solve a parabolic-elliptic system. Either we take the concentration
vectors (uf, uf, ub) for granted, solve the elliptic problem and gain a solution formula in terms
of the electrical potentials which has to be inserted in the parabolic equations or we consider
the reverse. However, this method has an essential disadvantage which is caused by the multi-
phase situation. In fact, solving the elliptic problem supplies a nonlocal solution operator ®
which acts on (uf,uf") linearly and additionally depends on these functions nonlinearly, i.e.

we have
(07 ¢") = @(ulu") (uu").
This representation does not yet provide an insight into the linear part of the nonlinear
tranmission condition as in contrast to partial differential equations in domains €2, and €.
Here all nonlinear terms of highest order can be treated by using certain projections which

correspond with replacing electroneutrality condition by the elliptic equations for potentials.
For k = P, F we can define the projections

MFE(t, x)uF(t,z) @ 2
2T ME(t, 2)ub (t,z)

(¢, x,uf) =T —



Applying these projections to equations in domains €, ) and utilising electroneutrality
condition zT-u*F = 0 entails

dyul — ¥ (t, z, u®) D¥(t, x) Aub = T1*(t, 2, u®) RF (u¥) + T1* (¢, =, u*)V D* (t, 2) Vi

+ 118 (¢, o, P )V M (t, 2)u (t, 2)|[VoF,  (tx) e T x Q.
This shows that only terms of lower order in respect of the nonlocal operator @(uP; ul’ ) =
(ng, oF ) remain, and the quasilinear structure appears. To treat the nonlinear transmission
condition we can not employ this approach since both concentrations and both potentials
appear in this equation. Moreover, the solution operator ® of the boundary value problem
does not meet with success either. Since the operator ® is not given analytically, we are
not able to compute the expression 9,®(uf, u)(uf,ul") in view of extracting the highest
order terms, i.e. d,u*. This circumstance is revealed by transforming the problem into the
half space via localisation, changing of coordinates and perturbation. In this situation the
transmission can be written as

M DMou” + (Dn + 1)* (MUY — (IPDP)o,u” = g,

where the operator (D,, + 1)'/? denotes the square root of the shifted Laplacian in R™ and
U r 1 is a certain projection. We perceive that the pseudo-differential operator (D,, 4+ 1)/?
is responsible for getting into difficulties and, of course, justifies our approach by means
of considering the localised problem. Another difficulty contained in the above equation is
caused by the non-commuting coefficient matrices. To be able to solve this two phase problem
it depends on figuring out the equation

[ ) (MDg) ™10, + Dy + 1)*(Ti D) 20 + (D + 1)°I) Up ' ep = 3,
=12

which is linked to the above transmission condition. The purpose consists in determining
the unknown function cp. The difficulty we encounter here are the matrices IT¥ DY II¥ DF',
U P Vand U r 1 which do not commute. However, the symbol of the operator satisfies a certain
lower estimate which entails its invertibility.

Now, we present a summary of the contents of this thesis and put across the essential
ideas. In Chapter 1 we derive the model by considering the principle of conservation of mass,
prescribing suggestive boundary conditions and by accounting for mass transport between
bulk and pellets. Here we perceive that the equation for concentration of the exchanger-resin
which makes up the pellet and the equations for the hydrochloric acid HC'! and the salt CuC',
decouple from the remaining system. After introducing the assumptions for given functions
we set about seeking the corresponding linear problem. This proceeding is caused by solving
the nonlinear problem via the contraction mapping principle and the fact that the solution
operator resulting from the linear problem places us in a position to formulate the original
problem (3) as a fixed point equation. With the aid of the contraction mapping principle
and for sufficiently small time-intervalls a unique fixed point is then obtained. The term of
solution space and other important function spaces related to our problem are introduced
here.

The purpose of Chapter 2is to compile tools needed for solving the linear problem. A large
part of this chapter is devoted to sectorial operators admitting bounded imaginary powers
or a bounded H- calculus. Furthermore, we will focus on R-boundedness of operator
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families, Fourier multipliers and maximal L,-regularity. The Mikhlin multiplier theorem in
the operator-valued version proven recently by Weiss [36] will play an important role for
proving optimal regularity. Amnother important tool which matters for treating the linear
and the nonlinear problem are embedding theorems. Furthermore, certain function spaces
are shown to form multiplication algebras. Subsequently, we deal with two general model
problems which naturally arise by using techniques of localisation in order to treat the linear
problem.

Chapter 3 is devoted to the linear problem and essentially comprises the proof of maximal
regularity. We start with considering a problem in the full space induced by localisation in
the interior of domain €, and studying a half space problem as a result of the boundary I.
These model problems consist of parabolic problems coupled with elliptic equations arising
from the electrical potentials which have to be determined as well. Finally, the boundary
I brings about a so-called two phase problem being the gist of this thesis. The particular
features of this model problem are transmission condition (6) and the jump condition caused
by continuity of the chemical potentials. For solving this intricate problem it boils down
to study a boundary equation which is composed of a sum of operators having bounded
imaginary powers. These operators are quadratic matrices of dimension N x N that are
not commuting. Owing to this circumstance the Dore-Venni Theorem is not applicable,
however, the Mikhlin multiplier theorem in the operator-valued version applies. Maximal
L, regularity of each model problem supplies a solution operator which will be used for
representing solutions of local problems with variable coefficients.

Thereafter, we make available techniques of localisation needed for proving maximal reg-
ularity of the linear problem in a bounded domain. The process of localisation reduces this
task to the model problems treated before. In the end, with the aid of local solutions we are
able to construct solution of the original problem.

In Chapter 4 we tackle the nonlinear problem by means of the contraction mapping prin-
ciple. As above noted the results of Chapter 3 enter here to attain a fixed point equation
equivalent to the original problem. Theorem 4.1 proves existence and uniqueness of a general
three-phase not including the equations for concentrations of HCl, CuCl, and the exchanger-
resin. Moreover, we show that a solution (potentials and positive concentrations) has a max-
imal interval of existence, and defines a local semiflow. To achieve a selfmapping we have
to choose a small time interval. To obtain positivity for the concentrations the maximum
principle is utilised. By means of continuation we obtain a maximal interval of existence.

vil



Acknowlegdment. In the first place, I would like to express my gratitude to my super-
visor, Prof. Dr. Jan Priiss. He alwalys had an open mind and took the time for discussing
problems. He also was, and is, an excellent teacher for me and my fellow students. I also
thank him for participating in numerous workshops and conferences. I am indebted to my
colleagues, Dr. Rico Zacher and PD Dr. Roland Schnaubelt, for the joint, fruitfull discussions
and valuable suggestions. I am deeply grateful to the Deutsche Forschungsgemeinschaft, Prof.
Dr.-Ing. Hans-Joachim Warnecke and PD Dr. Dieter Bothe from University Paderborn for
financially supporting this thesis. For correcting and improving my english, even though I
am solely responsible for any remaining errors, I would like to thank Sandra Anspach and
Klaus Hoch. Sincere thanks also go to all of my friends who shared my path during the last
years. In the end, I would like to thank my parents for supporting me in every conceivable
way.

viii



Chapter 1

The Model

In this chapter we first will introduce the problem and explain the physical-chemical back-
ground. Then, we start with the derivation of a model considering all relevant effects of
physics and chemistry. The resulting conservation equations contain terms to model diffu-
sion, reaction and migration. In literature reaction diffusion systems are often discussed,
whereas the latter effect is disregarded. Thereafter, we introduce all assumptions concerning
coefficients and nonlinearities and introduce our concept of solutions. Since modelling entails
nonlinear equations and we embark on the strategy to solve this problem by linearisation, we
are looking for the corresponding linearised equations. This will be done in Section 1.4.

1.1 Regeneration of Ionic Exchangers

For 60 years ionic exchange processes have been applied to regenerative technologies and
are typically implemented to purify water, e.g. for softening, decarbonation, decolourisation
as well as desalination. A second application playing an important role is the purification
of industrial water as well as sewage. Toxic ionics of heavy metal for instance, non-ferrous
metal, cyanide or metal complexes, which were disposed from rinsing water or effluent of
galvanic industries, can be rendered harmless and partially regained with the aid of ionic
exchangers. This process is also suitable for the decontamination of radioactive sewage arising
in nuclear power plants, nuclear facilities and factories for recycling of nuclear fuel. Although
the technical realisation of ionic exchange processes is not difficult, there is an increased
requirement of researching chemical and physical processes, cp. [19]. This justifies the interest
in mathematical modelling and numerical simulations of ionic exchangers [17].

For our considerations we devote ourselves to studying the organic exchanger resins. These
exchanger particles consist of an irregular, three-dimensional matrix of chained hydrocarbon
molecules which give the resin a hydrophobic character. This water-insoluble matrix can
be commuted into an electrolytic ionic exchanger by integrating hydrophilic groups into the
matrix. These groups, which possess a certain charge, get tied into the three-dimensional
matrix and lead to a positive or negative charge of the entire matrix. Consequently, mobile
ionics with opposite charge can be fixed to these groups. It turns out that this network
polymer was transformed into a reactive polymer due to integrating charged groups. It is
exactly this property that is of interest to various industries as mentioned above.

We now come to phenomena responsible for the ionic exchange process. An ionic exchanger
basically consists of two phases, namely, the electrolyte and the porous polymer matrix which



is pervaded by the electrolyte. Hence, the liquid phase continues inside the insoluble polymer
matrix. For considering diffusive forces, the irregular structure and variation of pore diameter
of such polymers have to be taken into account, resulting in the micropore diffusion and
macrospore diffusion. According to the hydrodynamic size of an ion and the pore diameter
we have to consider interactions between pore wall and ions. In addition, interionic forces as
repulsion and attraction have an effect on the mobility of ionics, e.g. charge carriers induce
an electrical field affecting the other ionics. Hence, the transport of various charged species in
electrolytes involves electromotive forces, which can become large if the system deviates from
the electroneutrality condition. In other words, these forces quickly bring about the state of
electroneutrality respectively inhibit a variation of electroneutrality. The effect of electrical
fields on diffusion processes of charged particles, which is called “electromigration”, can be
described by means of the “Nernst-Planck Equation” [22]. Models of various ion exchange
processes and membrane processes employing the Nernst-Planck Equation can be found in
8], [18].

Finally, let us point out that the “Stefan-Maxwell-Equations”, taking into consideration
pressure diffusion and interionic interactions, specify these transport processes in electrolyte
and non-electrolyte systems. These approaches were applied to several ionic exchange pro-
cesses and membrane processes, cf. [11], [37].

1.2 Modelling of an Ionic Exchanger

Now, we consider a concrete ionic exchanger arising in chemistry. The underlying situation
is that a certain irreversible chemical reaction, B + 2HT = 2P + Cu?*, is to take place inside
a pellet of high porosity, carrying ions of type B := [R(COO™)2Cu?*] which are immobile.
These particles of small size are suspended in a liquid bulk phase. Typically it is assumed
that a stagnant boundary layer is present around the pellets, separating these particles from
the region of turbulent liquid, such that the overall system consists of three different phases:
the porous pellet, the film and the bulk volume. The film alludes to the fact that due to
viscosity there is a transport resistance close to the surface of pellets. The bulk phase reflects
a well stirred tank filled with an acid HCl and a salt CuCls. These chemicals are fed into
the reactor continuously via a carrying liquid and dissociate into HT, C~ and Cu?*. The
reaction equations read as follows

Pellet: B + 2H" — 2P + Cu*t
Bulk: HCI = H" + CI”
CuCl, = Cu*t + 201

In the following we will use the abbreviations H := [H*], C := [Cl7], HC := [HC]| and
AC := [CuCly]. In order that the reaction in the pellet takes place, H has to diffuse through
the stagnant film to the surface of the pellet-core and into its interior. Here the copper ion,
fixed to the polymer matrix, is replaced by two protons so we get two products, a copper ion
and two electric neutral molecules P := [RCOOH]. The latter one does not effect subsequent
reactions and is therefore not needed for further balancing. The reaction proceeds as long
as B is present. After the reaction the mobile copper ion can diffuse into the interior of the
pellets or to the surface and then into the bulk phase. For a realistic model of such processes,
we have to take into consideration interfacial mass transport, diffusion and reactions inside



the pellet and in the bulk. The principle of conservation of mass for all species leads to the
conservations laws

ol (t,x) + V-Jl(t,x) = RE, (t,x) € J x Qp, (1.1)
b (t, x) =RE, (t,x) e JxQp, (1.2)
oul'(t,x) + V-JI(t,x) = RF, (t,x) € J x Qp, (1.3)

for i = H, A, C. The nonnegative concentration of a species i is denoted by uf and the capital
letters P and F indicate the phase. Here we assume that all pellets including the stagnant
boundary layer are of the same shape given by a certain bounded set  C R3 with C?-
boundary T" := 0. Furthermore, we set (), for the pellets and € for the film. This implies
that the boundary of € splits in two parts, namely the boundary of €2, denoted by I and
the boundary of 2. These boundaries are supposed to satisfy the condition dist (I»,I") > 0.
The following picture makes the underlying situation clear.

QZQPUQF

B+ 2H — 2P + A

HC = H + C

AC = A + 2C

Figure 1.1: Pellet

The function Rf designates the production rate density of species ¢ due to the chemical
reactions in phase k. The flux vector of a species ¢ is given by

JE(t, ) = —dF(t, 2)Vul — mE(t, 2)ub vk .

It consists of a diffusion term according to Fick’s law and a migration term, as we want
to take into account electrical forces between the charged ions as well. Here, the function
@* denotes the electrical potential in phase k, which is generated by the charged ions. All
diffusion coefficients are known functions of (¢, z) and the quantity m¥(t,z) := Ao - d¥(t, 2) - 2
is the so-called electrochemical mobility. Here z; denotes the charge of species ¢ and it is
clear, that this value is the same in each phase. Finally, the constant Ao := F/RT is positive,
where F' denotes the Faraday constant, T' the temperature and R the gas constant.

Now we shall discuss the boundary conditions. We impose continuity of fluxes on I'» and
continuity of chemical potentials, respectively. The latter boundary condition leads to a jump



of the concentrations at the surface of pellets. At the outer surface of the film I" we demand
that the concentration of a specific species i equals to the corresponding bulk concentration,
in other words, continuity of concentrations. Putting together all boundary conditions yields

JPtz)-v=JFtz) - v onTp, (1.4)
uf(ta .I') - Mf(t,x) on FP;
ul' (t,z) = b (1) onTI, (1.6)

where v denotes the outer normal. In (1.6) the function u?(t) denotes the concentration of
species i in bulk volume V?. Since we consider a perfectly mixed tank, these concentrations
do not depend on space variable x. The chemical potentials in the second boundary condition
are typically modelled by

where the standard potentials are independent of concentrations, i.e. ,u? = ,uf’o = ,uf’o, and
the chemical activities ’yl-P , %-F are assumed to be positive. Evolution of the bulk concentra-
tions is described by the system of ordinary differential equations

Loy =1 (uf(t) - ug(t)) + ab/Jf(t,x) vdo+ Ry, teJ i=HAC  (L7)

dt T\
I
d b _1 f b b s
Eui(t)—7<u (1) u(t))—kRi, teJ, i=HCAC (1.8)

where the constant 7 denotes residence time, i.e. the ratio V;/ V})f between the liquid volume

V4, and the liquid flow rate %f The feeds u{ are time-dependent nonnegative functions and
the factor a’ is the ratio Np/Vj between the total number of pellets Np and the liquid
volume. The integral term reflects mass transport into the pellets and R%’ is the production
rate density of a species i. Of course we have to complete the system by initial data for all

species 7 in each phase k = P, F,b. If we set for k = P, F,b

T
k k ,k ,k k ,k _k N
u” = (ul,ug,u3) = (uH,uA,uC> eRY, N=23, (1.9)
then the unknown functions are the concentrations vectors u®’, uf’, u?, the concentration ug

of polymer matrix B, the concentration u%c of the acid HC, the concentration “?&C of the
salt AC, and finally the electrical potential ¢ = (¢*, ¢"). However, these quantities will not
be determined by the evolution system (1.1)-(1.2), (1.7), (1.8), by the boundary conditions
and by the initial data

P P el b b b b
up(0,z) =upo(z), =€Qp, uhc(0)=upncp, uac(0)=1uac, (1.10)
uF(0,2) =ul(z), zeQ, k=P F, u’0)=u}, (1.11)
since the underlying problem is under-determined. The reason for this defect is induced by the
unknown electric potentials ¢ and ¢f'. By disregarding magnetic fields these quantities are

exactly determined by the Poisson equation A¢F = F/e > zzuic in domain 2 and certain
boundary conditions, where F' denotes again the Faraday constant and e := ¢g - €, the
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permittivity (or dielectric constant) depending on the material. Owing to the largeness
of factor F/e, slight charge seperation would give rise to a strong electric field. On the
other hand, charge gradients are counterbalanced very fast leading to the assumption of
electroneutrality as a first approximation. In fact, the total charge of the solute, given by the
sum ), ziuf, has be zero everywhere at any time. So the system should be complemented
by the equations

N
> zuf(t,x) =0, (tx)eJxQ, k=PF, (1.12)
=1
N
D zul(t)=0, tel. (1.13)
=1

We shall end up with specifying charges z;, the production rates Rf arising in the area ()
and Ri? in the bulk volume Vj,.

(21,22,23)" := (zm, 28, 2¢)" = (+1,42,-1)7, 2 = zpc = 2ac =0, (1.14)

RP Py .= (RY, R RD)T .= (RE, RY,RE)T =+L - (2,-1,00%, +f = —kpuful, (1.15)

RE (") == (0,0,0)T, (1.16)
Rb(“’b) = (Rliv R87R2)T = (Rb 7RIbAﬂ R%)T = <_TIIiICa _rng _TIIZIC - QTJbAC)Tv (1'17)
ric = kn(uful — Knupc), rhe = ka(ubul — Kaule) . (1.18)

Incidentally, it is easy to see that the reaction functions RY and RP satisfy the electroneu-

trality condition as well. Besides, if we look at evolution equations for the concentrations

uf; , ulﬁc and ubAC, then we pinpoint that these ordinary differential equations can be solved

explicitly. The solution formulae read as follows
¢
ufy (t, ) = exp —/kBuQ(s,x) ds u§70(0,x), (1.19)
0

b (t) :e—(}+kHKH).t b

e ufic o + {e—(%JF’fHKH)'(t_S)u{IC(s) + kHu1(s)u3(s)} ds,  (1.20)

Who(t) = e~ GHRaaKa) iyl o [e—(%kAKA)-(t—S)ugc(s)+kAuQ(s)U3(s)} ds. (1.21)

O O~

That is the reason for omitting these functions in the arguments of nonlinear reaction rates
RP(uf) and R’(u’). Therefore it remains to determine the electrical potential ¢ = (¢f, ¢")
and the unknown concentration vectors u”’, uf" and u® satisfying differential equations (1.1),
(1.3), (1.7) with general nonlinear reaction rates, boundary conditions (1.4) - (1.6), initial
data (1.10) and the electroneutrality condition. As a result, we have to solve a three phase
problem, more precisely we are looking for three concentration vectors defined in several
domains and coupled by means of boundary conditions.



Now, we want to formulate a result of existence and uniqueness for the concentrations and
electrical potentials in case of constant coefficients df and ’yf , k=P F 1=1,2,3. We will
show that the concentration vector (uf,uf,ubul, ul.,u8.) belongs to the class of maximal

regularity

Z(Jo) = Zp(Jo) x Zp(Jo) x Hy(Jo; RY) x C*/2(Jo; C(Qp)) x (H},(Jo))?
Z1(Jo) := Hy(Jo; Lp (S RY)) N Ly (Jo; Hy (s RY)).

Furthermore, the natural phase space for this problem is the space
V=B, " (Qp; By ) X By (Qr; By ) X By x C(Qp;Ry) X Ry X Ry,

where E denotes the positive cone of the hyperplane E = {n € RN : 2Ty = 0}. Hence, by
uniqueness of the solution the map

(u(l]D’ ugv ugv UBP,Ov U%qo; U?XC,O) - (up(t)’ uF(t)v ub(t)v UIBD(t)a u?{c(t)7 ugc(t)) (1'22)

defines a local semiflow on V(Ey). A version of the main result reads as follows.

Theorem 1.1 Let Qp, Qr be bounded domains in R™ with C?- boundary, Ip := 00, 0Q =
I, UT and dist (I,,I') > 0. Assume that n +2 < p < oo and u/ € L,(J; Ey). Suppose that
the initial data (uéj,ug,ug,ugjo,u?{cyo,ugqo) belong to V' and the following compatibility
conditions are satisfied

1. In(vF (0)uly) + Mozidd = In(yf (0)ufy) + Xozidh in B;,""(Ip) forie {1,...,N};

2. DP(0)0,ul’ + MF(0)ul' 0,08 = DF(0)0,ul + MF(0)ul'd, ¢t in By,*" (Tp; RY), where
(oF, o) is given as solution of (4.4).

8. uf (x) = uf in Byp""(T; Ey).

Then there exists tmaz > 0 such that for any Ty < tmmae the problem (1.1)-(1.8), (1.10)-(1.13)
admits a unique solution (uf,uf,ubul,ub.,u8.) on Jy := [0,Ty] in the mazimal regularity
class Z(Jp).

Moreover, the concentrations (uf, uf,ubull ub.,ul.) are positive and the map (1.22) de-

fines a local semiflow in the natural phase space V.

The first open problem concerns global existence (fq4, = 00). Another interesting problem
regards the asymptotic behaviour of concentrations. Furthermore, there are no results on
existence and uniqueness of stationary states and their stability for the evolution problem.

1.3 The Mathematical Formulation

Throughout this thesis let J be a compact time interval of R containing 0 and Q c R"*+!
be an open bounded domain with C?-boundary denoted by I'. Furthermore let Q = Qp U
be made up of two bounded domains €2 and €, such that 0Qz = ' U I}, I := 0€Qp, where
we assume a positive distance between the boundaries, i.e. dist (I»,I"') > 0, see Figure (1.1)
for illustrating the underlying situation.



Now we come to the assumptions on the coefficients arising in the partial differential
operators and boundary conditions. Concerning the diffusion coefficients df we assume that

d* e CV*(J;C (%)), i=1,...,Nandk=P,F, (1.23)
d¥(t,x) >0, (t,x)€JxQ, i=1,...,Nandk=PF. (1.24)

A consequence of these assumptions is that for i = 1,..., N and k = P, F' we have
mP = Nzt € CV2(J;CHW)),  zimE(t,x) >mo >0, (t,x)€Jx Q. (1.25)

The latter assertion follows by means of (1.23), (1.24), positivity of Ao, and compactness of
Q. We now define the diagonal matrices D* and M* which inherit the regularity of df.

DF .= diag[df]lgigv e C'2(J; Cl(ﬁk;ﬁis(RN))),

_ 1.26
MFE .= diag[mf]lgiSN € CV2(J; C (s E(RN))) ) ( )

Due to positivity of d¥ we deduce that o(D¥(t,z)) = {d¥(t,z) : 1 <i < N} C Ry and thus
in particular D* € Ez’s(IR{N ) for all (¢,2) € J x Q. Moreover, we suppose that ’yf is positive
for each ¢ =1,..., N and k = P, F and lies in a certain trace space.

7 € Vi (Ry) 1= Bl 2 (J; Ly(In Ry) N Ly (3 B2 (T R 1) (1.27)

In the next chapter, we will explain the choice of this trace space. It remains to impose some
regularity and positivity assumptions of the nonlinearities R¥, k = P, F and R?.

(R1) R*:J x Qp x RN — RY is assumed to be a Caratheodory function, i.e.
RF(-,-,u) is measurable Vu € R,
RF(t,,-) is continuous for a.a. (t,z) € J x Q;
R2) For each Lj > 0 there is a function ¥ € L,(.J: L,()) such that
P p
|RF(t,z,u) — RF(t,z,7)| < I¥(t,z)|u — ], for all (t,z) € J x Q,
u, @€ RY, Jul, [ < Ly;
(R3) Let u; > 0 for all ¢ and u; = 0, then R? > 05
RF leaves E = {n € RY : 2zT.5p = 0} invariant, i.e. 27 RF(t,z,u*) = 0 a.a.
(t,x) € J x Q, and for all u* € E.
The conditions for nonlinearity R® are of similar type. We suppose that
(R4) RY:J xRN — RY is a Caratheodory function, i.e.
R’(-,u) is measurable Yu € RV and RP(t,-) is continuous for a.a. t € J;
(R5) For each Lj, > 0 there is a function I° € L,(.J) such that
|RV(t,u) — RP(t,@)| < 1°(t)||u —@||, for all t € J, u,u € RY, |ul, [a| < L.
(R6) Let u; > 0 for all ¢ and uy = 0, then Rz > 0;
R? leaves E invariant, i.e. zT-Rb(t, ub) =0a.a. te.J,and for all ub € E.

In order to avoid writing partial differential operators at full length and be able to use a
vector-valued notation, we shall introduce abbreviations. For this purpose, let (¢,z) € J x Qy,
w:Qp — RY and ¢ : Q — R. We then set for k = P, F

Api(D)u = A1 (t, 2, D)u = — V - (DF(t, 2)Vu),

Ao (D)o = Akz(t,x,u’f D)p:= —V- (Mk(t,az)uk(t,g;) 2 V). (1.28)



In the latter definition we have used the symbol ® in order to denote the dyadic product of
two vectors. Recall that for ¢ € RY and b € R, the dyadic product of a and b is defined
by (a ®b); j = a;b;. Supposing a € C*(;RY) and b, ¢ € C1(Q;R™) then we can verify the
following rules

L (a@b)l =b®a, (a®b)c=a(b!-c),

2. V- (a(z) © b()) = a(2)(V - b(a)) + Va(x) - b(@),
where b7 denotes the transpose of vector b and b’c designates the inner product of the vectors

b and c.
Similarly, we define linear boundary operators by

Bj1(D)u = By (t, z, D)u := D*(t,2)0,u,

Bia(D)p = Buo(t, z,uf D)o := M*(t, z)ub (¢, 2)0,6 (1.29)

which will be understood in the sense of traces concerning the spatial variable z. Here v
denotes the outer normal on boundary I or I Using these notations, the system (1.1),
(1.3)-(1.7), (1.11) - (1.13) for concentration vectors u’, ", u® and electrical potentials ¢’
o takes the form
ol + Api(t,z, D)ul + Apy(t, z,ul, D)p¥ = R (t,z,ur), (t,x) € J x Qp,
ol + Api(t, z, D)ul” + Apa(t, z,uf, D)o' =0, (t,2) € J x Qp,
Bpi(t, z, D)ul'+ Bpo(t, z,ut D)¢" = Bpi(t, z, D)ul+ Bpa(t, z, ut D)ol (t,x) € J x T,
(v ul)] cien + 20072 = (v ul)] ooy + 20072, (t2) € T x T,
uf =ub  (t,z)e JxT,
1
Cob =1 (uf o) 4 R(u) — o / (Bii (8,2, DYu” + Bis(t,z, uF D)gFldo, te
T
r
uP(0,z) =ul (x), ze€Qp, ul(0,2)=ul(z), zcQ, ub0)=mu,
Lkt a)=0, (tx)eJxQy k=PF, zT-ub(t) =0, teJ.
(1.30)

1.3.1 Solution Spaces

We now address the issue of choosing solution spaces for concentration vectors u¥, k = P, F, b
and potentials ¢¥, ¢¥". Beforehand, let us introduce some abbreviations for spaces being
relevant to inhomogeneities and initial data of the evolution problem. Define an (N — 1)
dimensional linear subspace of RY, the space of electroneutrality, by

N

E:={neR": Ty= szi =0}.
i=1

Since we are interested in non-negative solutions, we have to introduce the positive cone of F
denoted by Ey :={ne€ FE: n;>0,i=1,.... N}. Let J =[0,T] be a compact time interval.



If we set u := (u”,u”,u’) and ¢ := (¢, ¢7"), then (u, ¢) is called a strong solution of (1.30),
provided that u belongs to Z; X Zg X ZbT7 ie.

uf € Zh == H)(J; Lp(Qp; RY)) N Ly (J; H2(Qp; RY))
u € ZE = H)(J; Lp(Q; RY)) N Ly (J; H2 (9 RY)) (1.31)
W’ e Z] = HL(J;RY),

¢ lies in Z7 := {(QSP, ¢ e 2L x 2L . Vi of — Vi ot € Yl:fl“p}’ where we have set

ZE = H?(J; Hy (Qp) NLy(J; HA(Qp))
Zf = W2 (5 H, Q) N Ly (J3 B () (1.32)
Yli,FFP = B;;EI/QP(JS Ly(Ip)) NLy(J; B;;I/p(FP))7

and (1.30) holds a.e. The function spaces B, appearing in Yfrp are called Besov spaces and
coincide with the Slobodeckij spaces W) for s ¢ N. These kind of anisotropic spaces arise as
natural regularity classes for inhomogeneities in boundary conditions of parabolic problems,
see chapter two. If the electroneutrality condition is integrated into solution spaces ZkT, then
we write Z,Z’(E) Furthermore, let ©* be a function in ZkT7 then in consequence of the mizred
derivative theorem which is due to Sobolevskii [31], see Section (2.2), we deduce that the
gradient of u* belongs to

Zly = Hy?(J; Ly(%; RY)) N Ly (J; Hy, (2%; RY)). (1.33)

By the definition of Zg this result follows for gradients of ¢¥ and ¢ as well, whereas these
functions take values in R. If J = Ry resp. the length of J is not decisive, then we will
omit the index T". The notation ;. arising in the definition of ZT has the meaning of a trace
operator concerning boundary I' and by means of 7|, we denote the time trace operator, i.e.
Y,u(t) := u(t)4=o = w(0). In the definition of Z{ we have used the abbreviations

H) r () = {¢ € H) () : yp0 =0}, H? 1 (%) := Hy () NH2 (). (1.34)

In the end, if F is any of the above function spaces then we set o := {v € F : v),v = v(0) = 0}
whenever traces exist.

Now let us make some remarks about choise of these spaces. For this purpose we consider
the partial differential equation in 2p

oul —v - (DPVu’) =V - (MPu” @ Vor') = RY. (t,x) € J x Qp.

If we assume that R” belongs to L,(J; L,(€; RY)) and demand this regularity from each term
on the left-hand side, then we need at least two spatial derivatives and one temporal derivative
of uf’ in L,. For the electrical potential it suffices to ask for two spatial derivatives belonging
to L,. This consideration completely explains that we are looking for the concentration
vectors u! and uf" in Z}g and Z}g, respectively. However, it does not illustrate the first space
of Zg. To see this regularity we apply 2z~ to the above equation and take into account the
electroneutrality condition resulting in

V- (LDPVU) =V - L MPUPVeT) =0, (t,x) € T x Qp.



Multiplying with v € H;,(QP) and partial integration yields

/ZT-MPUPngPVv de = —/zT-DPVuPVU dz < ||v]| - ||zT-DPVuP||Lp(QP).
Hl/(QP)

Qp QP i3

By the above remarks and continuity assumptions for D we have "D Vule Hy/* (J; L, (%))

which implies 27- MPuP Ve € Hy/?(J;L,(Q)) due to duality. Lastly, the vector u’ satisfies

an ordinary differential equation and therefore it only seems natural to seek solutions in

HL(J;RY).

1.4 The Linearisation

Since, metaphorically speaking, one has the perception that nonlinear problems can be ap-
proximated by a linear one, it appears natural to study a corresponding linear problem.
Hence, this section is devoted to looking for an appropriate linearisation of (1.30). First,
we shall attend the jump condition on I» which, by the logarithmic terms of u? and uf,
are nonlinear. In order to linearise this boundary condition, we expand the logarithm func-
tion as follows: Let @* be a positive function in Zy(E) (@* € Zy(E;), @F > 0 Vi) with
y‘tzlf = u¥(0,2) = ulg’i > 0,7 € {1,...,N}, then for every given ¢ > 0 there exists a
sufficiently small T' > 0, such that

Ol = &g < =@, 57 <. (1.3)

This is the result of embedding Z} — Ul := C/?(J; C(Q))NC(J; C*(€)) proved in Section
2.4 and of u*(0,z) — @*(0,2) = 0. For expanding the logarithm, we shall use this auxiliary
functions in the following way

: E_ gk B gk
In (uf) =tn (@) +1n (“—k> = (@) + “ (“ k“)

1
K i
:%—1+ln(ﬂf) +r<ul Nku1>,
ah ah

where the function r(-) belongs to C=(R) with 7(0) = 0 and 7/(0) = 0. It is to be noted
that r is only well-defined for uf > (0. Thus we obtain

P F ~P P_ &P F_&F
ln(uf) —ln(uf) = Z—% — Z—%—Hn (%) +r <7uZ f}ui > —r <7uZ f;,u’ > .
We collect the functions r((u¥ — @¥)/aF) for i € {1,..., N} to the vector function
R (u¥) := [r <uf~;k&f>] , k=PF. (1.36)
U 1<i<N
All properties of r(-) transfer to the vector-valued function R. In fact, we have
Ry(@¥) =0, ), Rae(u®) = R (ug) =0,
Ry (@) =0, 3, R (uh) = Ry (uf) = 0



If we put

(1.37)
and
0, (t, ) o= ding[(@ (£, 2)) icien s for k= P,F,
then the jump condition (1.5) takes the form
Up'(t, o) — Ut (¢, 2)u! + No(¢" — ¢7)z = H(t, z,u"u") . (1.38)

Since the matrices U P Vand U P Uare diagonal, and each component is positive, we conclude
Ut (t,z) € Lis(RN) for a.a. (t,2) € J x Q.

The quasilinear structure we find in the differential equations and transmission condition
stems from operators acting on potentials ¢¥ and ¢ due to the dependence on unknown
functions u”’, u¥". Therefore we approximate u* by means of @* and define

AkQ(D)¢ = Ak?(ta x, D)(b = Ak?(t') x, ﬁk; D>¢7
Bia(D)¢ = Bya(t, x, D)p := Bya(t, x,i" D).
Now, we can formulate the linear problem associated with nonlinear evolution problem (1.30).
Let the inhomogeneities f, ¥, g, k', h¥', f° be given. Using the above linearisation the
linear problem reads as follows
o’ + Ap1(D)w” + Apa(D)Y” = fP(t,z), (t,x) € J x Qp,
" + Ap1(D)w” + Apa(D)WF = fF(t,2), (t,z) € J x Qu,
Bpi(D)w" + Bpa(D)” = Bpy(D)w" + Bra(D)W" + g(t,z), (t,z) € J x I,

(D
(D

- - 1.39
Uptw? — U tw? + Moz(pF — o) = WP (t,2), (t,2) € J x I, (1.39)
wl” =nf'(t,z), (t,z)e JxT,
wP(0,2) =ul(z), 2e€Qp, w!(0,2)=ul(x), zecQ,
d 1 1
—w® 4+ —w® = Zu (t) + fOt) — ab/Bpl(D)wF + Bra (D) do, te J,
dt T T
J (1.40)
wb(o) = Up,
and

dwl =0, (tx)eIxQp, Zwl =0, (tx)eIxQ, Luw’=0 teJ (1.41)

At this point one can already realise that the linear problem has an essential advantage, as
compared to the nonlinear case, apart from the linear structure of course. On closer inspection
we perceive that system (1.39) for (whw!), (45,4 and evolution equation (1.40) for w®
are decoupled. More precisely, after solving (1.39) the known functions w’’, ) can be put
in the boundary integral over I and thus all terms of the right-hand side of (1.40) are given.
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Another question arising here concerns the determination of the electrical potentials. By
applying z”- to the evolution equation (1.39), using electroneutrality condition (1.41) and the
commuting property of 2! with all differential operators, we obtain the following equations

V- (V) + V- T DV’ = =T P, (t,x) € J x Qp,

V- (af V) + V- T DEVw!) = =21 fF . (t,x) € J x Qp,

afo,f + 1. DP o, wt = a¥ o, " + 2. DY o w4 2T-g, (t,x) € J x T}, (1.42)
P_ F _

=0, (t,z)eJxT.

Py

T f7-1, F T 7—1_ P
2z Upw —2-Upw ]+ ,
[ F P Aolz|?

(t,z) € J x Ip,

Here we have used the notations

N
af(t,x) = 2T MR (t, z)a(t, ) = Z)\ozfdfﬁf, (t,z, %) € T x Qp x Zp(Ey),  (1.43)
i=1

In view of positivity of d? we conclude that coefficients a” and a!" are positive if and only if
@k > 0forall (t,z) € JxQ and 1 <i < N. This explains the assumption @* € Z(F,). The
boundary condition on the outer surface of €}z can not be obtained by the above procedure,
but it is contained implicitly. Since we consider a perfectly mixed tank, the electrical potential
in the bulk phase has to be constant and by normalising we can assume it as zero. This leads
to the Dirichlet boundary condition on T

The following lemma connects the electroneutrality condition for the concentrations w?,
w’, w® to the corresponding boundary value problem (1.42). Obviously, the concentration
vector w® does not appear in the elliptic equations, however the right hand side of the ode-
equation (1.40) is involved implicitly. In fact, integrating the above equations over €2, using
the divergence theorem and boundary conditions we obtain the identity

/ZT-dex + /ZT-dex—l— /ZT-ng' = —/[aFaVM +L.DFo wldo, teJ. (1.44)
Qp Qr Ip T

The integral over I' also occurs in the ode-problem (1.40). Applying the electroneutrality
condition to these equations leads to

2L (1) — ab/[aFayle + L. DY wldo =0, teJ,
r
and combining (1.44) with the above indentity yields
1
/zT-fP(t,:r) dx + /zT-fF(t,x) dx ~l—/zT'g(t,x) do + JZT-fb(t) =0, teJ.
Qp QF Ip

Note that this equation is trivially satisfied in the nonlinear case. The next lemma shows
that the elliptic problem (1.42) and the above equation for P, ¥, g, f are equivalent to
the electroneutrality condition (1.41).
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Lemma 1.1 Let J be a compact time interval and uf belongs to E. Then (w,)) is a strong
solution of (1.89)-(1.41) on J if and only if (w,v) is a strong solution of (1.39), (1.40) and
(1.42), with zT-uk = 0 for k = P,F,b and the inhomogenieties f¥, f¥', g, f° satisfy the
compatibility condition

1
/zT-fP(t, x)dx + /zT~fF(t, x)dx + /zTog(t,m) do + —sz-fb(t) =0, teJ. (1.45)
a

Proof. Let (w,1) be a strong solution of (1.39)-(1.40) on J. As above shown the elliptic
problem (1.42 follows by applying 2% to (1.39) and the compatibility condition (1.45) by
integration this boundary value problem over 2.

For proving the converse part we assume that (w, ) is a strong solution of (1.39), (1.40)
on J with z7-w"(0) = 0 for k = P, F,b and let the compatibility condition (1.45) be satisfied.
By applying 27 to (1.39), taking into account the elliptic equations of (1.42), we find that

d
%ZT-(wk(t,:L‘)) =0, (t,e)eJxQp, k=PF,

and

1
%ZT-wb(t) + =Tt = 2T fo(t) — ab/ [aF(‘?l,wF + ZT-DFE)VwF] do, telJ.
T
r

By integrating the first equation from 0 to ¢t € J and using 2T.w(0,2) = 0, it follows that
2Twk(t,x) = 0 for (t,z) € J xQy,. Furthermore the elliptic problem (1.42) implies the relation
(1.44) and in combination with the compatibility condition (1.45) we obtain the ode-problem

d 1
EzT-wb(t) + =2Twb=0, teJg, 2Twb0)=0,
T

which is solved uniquely by z7-w®(¢) = 0 and this means w® € E.
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Chapter 2

Preliminaries

In this second chapter we introduce some basic and powerful results needed to tackle the
linear problem (1.39). The chapter consists of three parts. In sections (2.2) and (2.3) below
we present the basic notion of sectorial operators, such as operators with bounded imaginary
powers, operators which admit a bounded H°°-calculus and operators with RH>-calculus.
Certain properties of these classes are made available. An important reference will be the
paper Denk, Hieber and Priiss [7].

Thereafter we study certain trace spaces and the solution spaces Zy, Z. We will show that
for p sufficiently large, each space forms a multiplication algebra. We need this property for
example to establish boundedness of multiplication operators U P LU r Uin space Yiry (RN ).
Moreover, we will see that it is satisfactory to demand vf € Yirp.

In Section 2.5 we will treat some model problems which are a natural outcome of solving
the linear problem (1.39). For proving maximal regularity of these model problems we will
employ the results supplied in Sections 2.2 and 2.3. Let us begin with some remarks about
notations and conventions.

2.1 Notations and Conventions

Let us start by explaining some of the notations, which will be used throughout this thesis,
and recollect some basic definitions and function spaces.

By N, R, C we denote the sets of natural numbers, real and complex numbers, respectively.
In addition we use the notations Ry = [0,00), R_ = (—00,0], Cx = {A € C: ReX > 0},
R = R" x Ry and R™™ = R" x R_. X, Y, Z, ... will usually be Banach spaces with
norms || - ||x, || - ||y, ... In a unique context, we will omit the indices or reduce them to index
of the space, e.g. || ||, (@) for |||, or || llc(@) := || - [loo- Given two Banach spaces X and Y,
B(X,Y) will designate the Banach space of all linear and bounded operators from X to Y,
B(X) =B(X,X). Lis(X,Y) denotes the space of continuous isomorphisms from X to Y, we
write Lis(X) = Lis(X, X) for short. Furthermore B(X,Y), if not explicity mentioned, will
always be equipped with the natural norm-topology and [|A[|z(x,y) designates the norm of
an operator A € B(X,Y). The domain, range and kernel of an operator A in X is denoted
by D(A), R(A) and N(A), respectively. If A is closed, we will denote by D4 the domain of
A equipped with the graph norm, ||z pay := [|z]| + || Az|.

Given G C R", G open or closed, we let C(G;X) and BUC(G; X) denote the space of
all continuous resp. bounded uniformly continuous functions f : G — X. Also, C*(G; X)
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denotes the space of all Holder continuous functions of order s € (0, 1), we write C'~(G; X) for
the space of locally Lipschitz continuous functions. Further, if m € N, C™(G; X) designates
the space of all functions f : G — X which admit continuous partial derivatives and 0 f in G
has continuous extension to G, for each |a| < m. For f € C(G; X) the support of f is defined
by supp f = {z € G: f(z) # 0}. As usual C¥(G; X) means the space of test function on G
with values in X.

If (Q,%, 1) is a-measurable space then L,(2; X) := L,(Q, %, u; X), denotes the space of
all Bochner-measurable functions f : @ — X such that ||f(-)||% is integrable. L,(Q;X) is

normed by I, o) = [ 1 (@) Pedn(x), 1 < p < oo,

Let X be a Banach space and €2 is Lebesgue measurable subset of R, s > 0 and 1 < p < o0,
by H,(€2; X) and B, (Q2; X) we signify the vector-valued Bessel potential space resp. Sobolev-

Slobodeckij space of X-valued functions on §2; see Amann [1], Schmeisser [30], Strkalj [32],
and Zimmermann [40]. In case X = C we refer to Runst and Sickel [29], and Triebel [33]-[35].
It turns out that most results which are known from the scalar case can be transferred to the
vector-valued case, for the H-scale at least if X is a UMD space. In particular, embeddings
and real interpolation work as in the case X = C.

Finally, by C, M and ¢ we denote various constants which may differ from line to line,
but which are always independent of the free variables.

2.2 The classes S(X), BZP (X) and H*> (X)

Sectorial operators form an important basic class of unbounded operators appearing in partial
differential equations. Therefore we begin with the definition of these operators.

Definition 2.1 Let X be a complex Banach space, and A a closed linear operator in X. A
is called sectorial if the following two conditions are satisfied

(S1) D(A) =X, N(A) ={0}, R(A) = X, (—0,0) C p(A);
(S2) [t(t+ A~ < M for allt >0, and some M < oo.

The class of sectorial operators in X will be denoted by S(X). If only (S2) holds, then A is
said to be pseudo-sectorial.

Assume that A is a sectorial operator. Then, by using the Neumann series, we can verify
Y9 C p(—A), for some § > 0, and sup{|A(A\ + A)7!| : |arg\ | < 0} < oo. Here ¥y C C
denotes the standard sector, more precisely

Yg:={A e C\{0}: |arg\| < 6}.
Therefore it makes sense to define the spectral angle ¢4 of A € S(A) by

$a=int{p: Xpy Cp(=A), sup [AA+A)7!| < oo},
)\EETK-,¢

Obviously, it holds that ¢4 € [0,7) and ¢4 > sup{|argA|: A € o (A)}.
Now we come to the H>-calculus. Let ¢ € (0, 7] and define the algebra of holomorphic
functions on ¥4 denoted by H(X4) = {f : ¥4 — Cholomorphic }. The space H>*(X4) = {f :
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¥4 — C holomorphic and bounded} equipped with norm 1£1% = sup{|f(\)| : |arg(N)| < ¢}
is a Banach algebra. Furthermore we set Ho(2y) = U, g<o Ha,5(Z¢), where

Hap(Se) = {f € H(Zg) 1 |fI205 = sup IO+ sup IATPFN)] < oo}

We assume that A is a sectorial operator with ¢ € (¢4, 7). Then we choose any ¥ € (¢4, @)
and denote by T' = (00, 0]e™U[0, 0c0)e™* the integration path surrounding (A). The Dunford
integral

F) = 5 [ FNO= )TN forall £ € Ho(S,),
I

converges in B(X) and defines via ®4(f) = f(A) a functional calculus ® 4 : Ho(X4) — B(X)
which is a bounded algebra homomorphism.

Definition 2.2 The operator A is said to admit an H*>-calculus if there are ¢ > ¢4 and a
constant Ky < oo such that

(A < KylflS, forall f € Ho(Zg). (2.1)

The class of sectorial operators A which admit H* will be denoted by H* (X). The H*-angle
of A is defined by

X = inf{p > ¢4 : (2.1) is valid } .

If this is the case, then the functional calculus for A on Hy(Xy) extends uniquely to H* ().

We now consider operators of & (X) having boundary imaginary powers. This class of
operators BZP (X) has been introduced by Priiss and Sohr [28]. Since we can define complex
powers for any operator A in S (X), it makes sense to study such operators.

Definition 2.3 Suppose A € §(X). Then, A is said to admit bounded imaginary powers if
A% € B(X) for each s € R, and there is a constant C' > 0 such that |A*| < C for |s| < 1.
The class of such operators will be denoted by BIP (X).

Due to the fact that the functions fs(z) = 2% belong to H*(Z,), for any s € R and ¢ €
(0,7), we evidently have the inclusions H>*(X) C BIP(X) C S(X), and the inequalities
¢ > 04 > ¢pa. Here, 64 denotes the growth bound of group {A% : s € R}, i.e. 04 1=
limy5| o0 |s| " log |A%[; it will be called the power angle of A.

A first application of the class BIP (X) establishes a relationship for the fractional power
spaces

Xo = Xgo = (D(AY), ] |a), |Z|la =]A4%]+ |z, 0<a<l,

where A € §(X). If A belongs to BZP (X), a characterisation of X, in terms of complex
interpolation spaces can be derived.

Theorem 2.1 Assume A € BIP (X). Then
Xo 2 [X, Xala, a€(0,1),

the complex interpolation space between X and X 4 — X of order .
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For a proof we refer to Triebel [34, pp. 103-104] or Yagi [39]. Below we want to study real
interpolation spaces (X, Xo)gp, 0 < o, 3 < 1,1 < p < 00, defined by the K-method. At first,
we recall that the real interpolation space (X, D4)ga,p is isomorphic to the space D 4(3,p) for
AeS(X),5€(0,1)and 1 <p < oo. The latter space is defined by means of

Da(B,p) == {z € X : [z]g, = ([ |PACt+ A) a3 %)/P <00}, 1<p<oo
0 (2.2)
Da(B,00) :={x € X : [2]g00 :=sup [tPA(t + A) " z|x}.
>0
Assume that A belongs to BZP (X). Employing Theorem (2.1) and the reiteration theorem,
see Triebel [34], we conclude that

(X7 Xa)ﬁ,p = (X7 [Xa DA]a)ﬁ,p = (X7 DA)a,@,pv 0 < Ol,ﬁ < ]-7 1 S p S o0. (23)

Another important application for operators belonging to the class BZP (X) concerns sums
of closed operators, which leads us to the concept of maximal regularity. Let X be a Banach
space, A, B closed linear operators in X, and let A + B be defined by

(A+ B)r = Az + Bz, z € D(A+ B)=D(A)ND(B).

If 0 € p(A + B), which implies that A + B is closed, then the equation y = Ax + Bz admits
a unique solution z € D(A + B) for all y € X, i.e. the solution has maximal reqularity. The
closed graph theorem shows the a prior: estimate

|Az| + |Bz| < C|Ax + Bz|, for all z € D(A+ B).

The Dore-Venni theorem gives conditions for maximal regularity. Before we state a version
of this result we have to remind the meaning of commuting resolvents and Banach spaces of
class HT. Two closed linear operators A, B in X are said to commute, if there exist A € p(A),
w € p(B) such that

A=) p-B) " =@p-B) (A=A

A Banach space X is said to be of class H7, if the Hilbert transform is bounded on L, (R; X)
for some (and then all) p € (1,00). The Hilbert transform H of function f € S(R; X) is
defined by

(Hf)(t):lir%% / f(ts)ds, teR,
jsl>e

where the limit is to be understood in the L,-sense. These spaces are often called UM D
Banach spaces, where UM D stands for unconditional martingale differences. It is a well
known theorem that the set of Banach spaces of class H7 coincides with the class of UM D
spaces. Let 1 < p < oo and (€, X, du) a measure space, then L, (€, dy; X) is a Banach space

of class HT if X € HT.
We are now in position to state a variant of the Dore-Venni Theorem, cf. [9], [24], [25].

Theorem 2.2 Suppose X belongs to the class HT, and assume A, B € BIP (X) commute
and satisfy the strong parabolicity condition 04 + 0 < w, and lett > 0. Then
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(i) A+1tB is closed and sectorial;
(i1)) A+tB € BIP (X) with 04415 < max{04,0p}
(iii) there is a constant C > 0, independent of t > 0, such that

|Az| + t|Bz| < C|Az+tBz|, xz€ D(A)ND(B). (2.4)

In particular, if A or B is invertible, then A + tB is invertible as well.

If we weaken the assumption on B and in return strengthen the assumption on A, then the
result can be maintained. More precisely, let X be an arbitrary Banach space and assume
that A € H®(X) and B € RS (X), see [7], with ¢% +¢% < 7. Then the sum A+ B is closed
as well. This result has been proved by Kalton and Weis [20].

Some consequences of Theorem 2.2 concerning complex interpolation are contained in the
following corollary, see Priiss [25]. The proof can be found in the forthcoming monograph of
Hieber and Priiss [16].

Corollary 2.1 Suppose X belongs to the class HT , and assume that A, B € BIP (X) are
commuting in the resolvent sense. Further suppose the strong parabolicity condition 8 4+0p <
. Let A or B be invertible and « € (0,1). Then

(1) A*(A+ B)™ and B*(A+ B)™“ are bounded in X ;
(i) D((A+B)*) = [X, D(A+B)la = [X, D(A)aN[X, D(B)]a = D(A*)ND(B?).

The next result has been proved by Grisvard [12], in an even more general context. For a
proof we also refer to [16].

Proposition 2.1 Suppose that A, B are sectorial operators in a Banach space X, commuting
in the resolvent sense. Then

(X, D(A) N D(B)),,, = (X, D(A))y, N (X, D(B)) gy

for all a € (0,1), p € [1,00].

The next result is known as the mized derivative theorem and is due to Sobolevskii [31]

Proposition 2.2 Suppose A and B are sectorial linear operators in a Banach space X with
spectral angles ¢4 + ¢p < m, which commute and are coercively positive, i.e. A+ tB with
natural domain D(A +tB) = D(A) N D(B) is closed for each t > 0 and there is a constant
M > 0 such that

|Az||x + t||Bx||x < M||Az +tBz||x, for allxz € D(A)ND(B), t> 0.
Then there is a constant C > 0 such that

|A“B~z||x < C||Az + Bz||x, for all x € D(A) N D(B), a € [0,1].
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2.3 Operator-Valued Fourier Multipliers and R-Bounded
Functional Calculus

In this section we will introduce the notion of R-boundedness and we will state some elemen-
tary properties. In order to extend the classical Mikhlin Theorem for the scalar case to an
operator-valued Fourier multiplier theorem, we need the concept of R-boundedness.

We commence with the definition of R-boundedness.

Definition 2.4 Let X and Y be Banach spaces. A family of operators T C B(X,Y) is
called R-bounded, if there exists a constant C > 0 and p € [1,00) such that for each N € N,
T; € T, zj € X and for all independent, symmetric, {—1,1}-valued random variables €; on
a probability space (2, M, 1) the inequality

N N
1D eiTizsli, oy < CIY el @)
=1 i=1

is valid. The smallest constant C' is called R-bound of T, which we denote by R(T).

One can show that this definition is independent of p € [1,00), which follows from Kahane’s
inequality.
The next result shows that R-bounds behave like norms.

Proposition 2.3 (a) Let X, Y be Banach spaces, and T, S C B(X,Y) be R-bounded. Then
T4+S8={T+S:T €¢7,5€S}

is R-bounded as well, and R(T +8) < R(T) + R(S).
(b) Let X, Y, Z be Banach spaces, and T C B(X,Y) and S C B(Y,Z) be R-bounded. Then

ST={ST:Te€T,SeS}

is R-bounded, and R(ST) < R(S)R(T).

Now, we shall approach the operator-valued Fourier multiplier theorem. Let X be a Banach
space and 1 < p < oo. We denote by D(R; X) the space of X-valued C* functions with
compact support and we let D'(R; X) := B(D(R), X) designate the space of X-valued distri-
butions. The X-valued Schwartz spaces S(R; X) and S’(R; X) are defined similarly. Let YV
be another Banach space. Then, given M € Ly ,.(R; B(X,Y)), we may define an operator
Ty : FID(R; X) — S'(R; X) by means of

Tue = F'MF¢, forall F¢ € D(R; X), (2.5)

where F denotes the Fourier transform. Note that F~1D(R; X) is dense in L,(R; X), conse-
quently the operator T is well-defined and linear on a dense subspace of L, (R; X).

Now the question arises on what terms the operator T, is bounded in L, i.e. Ty €
B(L,(R; X),L,(R;Y)). The following theorem contains the operator-valued version of the
famous Mikhlin Fourier multiplier theorem in one variable, which is due to Weis [36]. A
shorter proof of this theorem can be found in [7].
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Theorem 2.3 Suppose that X, Y are spaces of class HT and let 1 < p < oco. Let M €
C'(R\{0}; B(X,Y)) be such that the following conditions are satisfied

(i) RUM(p) : p € R\[0}}) =t kg < o0
(ii) RU{pM'(p) : p € R\{0}}) = k1 < oo,

Then the operator T defined by (2.5) is bounded from L,(R; X) into L,(R;Y") with norm
IT|B(L,®:X),L,(R;y)) < C(ko + k1), where C > 0 depends only on p, X, Y.

Remark 2.1 This result can be extended to the n-dimensional case, i.e. Mikhlin’s theorem
in n variables. Here we refer to [7] as well.

Now we want to address the issue of verifying R-boundedness conditions as stated in the

above theorem. In applications we often encounter symbols of the form M (p, A). That means,

M(p,A) € B(X,Y) is induced by an unbounded operator A. It turns out that conditions as

stated in Theorem 2.3 are easy to verify for operators which admit an R-bounded functional

calculus and functions M,(-) := M(p,-) € H*(¥p) being uniformly bounded concerning p.
We now want to connect R-boundedness to the H>-calculus.

Definition 2.5 Let X be a Banach space and suppose that A € H*> (X). The operator A is
satd to admit an R-bounded H™ -calculus if the set

{hA) e (2g) L hl% <1}

is R-bounded for some 0 > 0. We denote the class of such operators by RH* (X) and define
the RH>-angle ¢, of A as the infimum of such angles 6.

The importance of this class of operators is justified by the following proposition.

Proposition 2.4 Let X be a Banach space, A € RH*(X) and suppose that {h)}ren C
H™(Xg) is uniformly bounded, for some 6 > qﬁfw, where A is an arbitrary index set. Then
{ha(A) : X € A} is R-bounded.

This result will be useful for proving R-boundedness conditions just like in the Mikhlin
theorem.

2.4 Multiplication Algebras

In this section we shall tackle the mapping properties of partial differential operators Ag; and
boundary operators By;, Uk_ ! In order to treat the latter operators we need the definition
of Besov spaces on manifolds. In fact, we will explain the meaning of L, (92) and By, ,(0€2),
where Q C R"*! is bounded with C*-boundary I' := 0. At first, L,(I') has the usual
meaning where the measure on 0f2 is the usual surface measure induced by the Lebesgue
measure in R™®. To define Besov spaces on boundaries some preparations are needed. Let
(goj)jj‘/io be a resolution of unity with respect to Q with following properties:

1. QC Uj]\io Uj, wo € C§(Uo), Up C &

2. pj € CBO(U]), Ujﬁa£27é forj=1,..., M.
Further, we denote by hj(z) the C*-diffeomorphism defined in U; such that y = h;(z) is
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a one-to-one mapping from U; onto a bounded domain in R"™!, where the set 9Q N U; is
mapped onto a bounded part of the hyperplane R" = {y € R"*! : ¢, .1 = 0}. Then one sets

B:,(09) := {f € Lp(99) : fi(y) := [70; fi(y) = (03)(h; ' (y)) € Byg(R™), j =1,..., M},
M
”f”B;q(@ﬂ) = Z Hfj(')HB;q(Rn) .

j=1
B;,(0Q) is a Banach space. In the sense of equivalent norms, By, (02) is independent of the
ch01ce of covering {U; } 7, and the choice of partition. For general treatises on Besov spaces
we refer to the books by Triebel [33], [34], [35]. Since we only consider Besov spaces of type
B;,(€2), which coincide with the Slobodeckij spaces W;,(£2) for s ¢ N, we can use as norm

D~ D~
1918 ) = 11 0 —%Zj//’ il dedy.

lal=

Note that here we have put s = [s] 4+ {s}, [s] integer and 0 < {s} < 1. With aid of this result
we are able to show the following lemma.

Lemma 2.1 Let Q C R™! be a bounded domain with C*-boundary. Suppose that u and v
belong to B, ,(09), with s = [s] + {s}, [s] integer part and 0 < {s} < 1. Let k > [s] and
{s} = (n+1)/p>0. Then B;,,(09) forms a multiplication algebra and

[u-vllps (90) < C [HUHC[S]((?Q)||UHB;p(BQ) + [[ullss, o) llvllcti@aa) | - (2.6)

Remark 2.2 Of course, the condition {s} — (n + 1)/p > 0 is more stringent than required.
Actually, in order to prove that B, (99) forms a multiplication algebra, s — (n +1)/p > 0
is needed. However, (2.6) need no longer be valid. Since we have in mind to show that Y;
and Y3, see (2.8), form multiplication algebras and estimation (2.6) plays a decisive role, we
restrict to this case.

Proof. Let u,v in B; (©2) be given and {s} — (n + 1)/p > 0. The latter condition implies
the continuous embeddings B;,,(22) — CF(Q) and Bf;/ (2) — C(€2). Now we use the covering
of 2 and the partition of unity as described above. Then, the norm of the product u - v takes
the form

- D*(pjuv)(h;? — D(pjuv)(h;(2))|P
ol oy =34 30 [ [P )Rl O

. — y|nt+{s}p
=1 {lal=ls) gngin v ==l

(o) (7 O)IE oy |

This means that the highest derivatives of (c,ojuv)(h;l(y)) have to be in Bl (9Q). Taking

into account the mapping property of h; and the continuous embedding B;;}(Q) — C(Q),
then the L,-norm can be estimated as follows

I(ojuo) (h (IF, max |u(x)["||(2;0)(h5 (DI, @y

zeaﬂﬂU

< Jluliey oy 1250 (A5 (DI, ny
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To treat the double integral observing that

D[(pjun)(h N = D ey (W)[D7 (wju0)](h; ' ()

1<y|<]al

Here the coefficients go~(y) are homogeneous polynomials of degree || in derivatives of h;l of
order between 1 and |a|—|v|+1, consequently they are bounded and continuous. Furthermore,
Leibniz’s product formula also supplies lower order terms in » and v, and top order derivatives
for both functions

D7 (pjuv) = [D7, ¢;](uv) + ¢; D7 (uv) = “lower order” + p;vD"u+ p;uD v, |y =|a].
On the whole, we obtain

Da[(gojuv)(hj_l(y))] - D“[(gojuv)(hj_l(z))] = “differences of lower order terms”+

> {ch(y) [e01(h5 () [DVul (h5 (y)) = don ()] (b7 (2)) [D7ul (k5 (2))

Iv|=led
+aary () esul (0 (1)) [DT0) (RS (1)) = dan (2) [0jul (B} (2)) [D”v](hj_l(Z))} - (2.7)

All terms of lower order are at least once continuously differentiable, since they belong to
B;,"'(R") for |y] < |a] —1 = [s] — 1. Hence these products being made up of lower order
terms can be estimated by

C Z {Hu”clw\(aQ)HU”Ber{S}(aQ)+HUHCM(aQ)HUHBI\%IHS}(QQ)}
Iy|<lel -1

< {HuHc[s](aQ)HUHB;;p(aQ) + HUHc[s](am||UHB;;p(aQ)} :

Therefore, it suffices to look at the differences of top order terms. W.l.o.g. we only consider
the first difference of (2.7). By using the triangle inequality, we obtain

> o 5ol ) [P () = don ()0} (5 () [D 7l (5 (2)) | <
[vI=[s]
> |t @il )| [Pl () — DMl (2))| +
IvI=[s]
D)5 (=)

Gory ()2 01 (B (1)) = dar ()20 (A5 (2)) | -

Each function in front of differences is at least continuous and thus they can be estimated
in L. Furthermore, the function [D’Yu](h;l(-)) appearing in first difference belongs exactly

to B]g;} (0Q) for all j = 1,..., M, whereas the function in the second difference belongs to
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B;,(09). Keeping all this in mind, we can estimate as follows

55 D (pyu)(h7 ' () = D (pu) AT GNP

— znt{slp
1 jal=[s] gn fn [y = 2]
<G (HUHC[Sl(aQ)HvHBf,p((’?Q) + HUHc[sJ(aQ)HUHB;p(aQ)>
+ G (Ivllcollullsg, @0 + lullcon 1l oo

Flulloallvllsg, @0 + Il lcmm lullse o) -

which shows inequality (2.6).
O
Now, we shall investigate a similar result for Bessel potential space which is needed for
proving that Zy forms an algebra.

Lemma 2.2 Let Q be a bounded domain in R"™! and J = [0,T]. Let further 0 < s < 1,

1 <p < oo andu, v be arbitrary functions in Hy,(J; Ly(2)) N C(J; C(Q)). Then there exists
a constant C' > 0 not depending on T such that

lwwlly iy < € (lullngerep@Ivlogoy + Ielg@lulouom) )

Proof. Let u, v be any functions in H(.J; L,(€2))NC(J; C(£2)). The subsequent expressions
define a norm in H;,(J; L,(Q2)), cf. Triebel [35], as well as Runst and Sickel [29]. We set
2do p/2 l/p
[o(t + h,z) — v(t, z)] dh) —)" dt dx)
o

Wiyt 0 / / 0/ o2 y

where V(t,0) ={h€R:|h| <o and t+h € J}, and

[vlls (7, ) = Plas @) + VL, n,@)-
With [v]es := [[v]lc(s.c@)) we have
[v(t + h,z)u(t + h,x) —o(t,2)o(t, )| < [(v(t + h, ) —v(t,2))u(t, )|+
[(u(t + h,x) —u(t,x))v(t, z)| < |Juloo|v(t + hyx) —v(t, 2)| + [v]oo|u(t + h,x) —u(t, )],

for t,t+h € J and a.a. x € Q). By using this estimate we obtain

T 1
el < [ [ ([0 [ teleloti-+ hoa) = ot
Q0 0 V(t,o)
I / 0] oo |u(t + Ry ) — u(t x)|dh)2d—a)”/2dtda:
V(t,o) * ’ ’ o
V(t,o)

+ ’u|00”7}||Lp(J;Lp(Q))'
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Employing Minkowski’s inequality leads to the desired result.
O
Before we establish that Z and Zvy are Banach algebras for p sufficiently large, we want to
characterise traces of functions belonging to Z = H,,(J; L,(£2)) N Ly(J; H3(92)). Furthermore,
we are also interested in continuous embeddings. We define

Uy" = CC@)NCLCP@), 0<p<1, Ul =uy>",
Y = By, (J; Ly(T)) N Ly (J; By, 7 (ID), (2.8)
Yol o= B2 (J; Ly (1)) MLy (J5 BY,/7(D)).

If J = Ry resp. the length of J = [0,77] is not decisive, then we will omit the index 7. We
will use the shortened notation Uy, k = P, F', in case of the bounded domains Qp, Qp. If Fis
any of the above function spaces, then f € F(X) means that f belongs to the corresponding
space with values in X.

Proposition 2.5 Let J be Ry or a compact time interval [0,T] and Q C R™™ be a bounded

domain with C?-boundary T'. Suppose that u belongs to Z and g lies in Yir. Let 0 <8< 1

and (n(—i—l);—)Q < p < oo. Then it holds

1. V) U S Bpp2/p<Q), Vi S YLF, (’)’|F € B(Z, Yl,F)) and 6Vu € YQI, (*y‘r S B(Zv, YQI));

2. 7 = Ug, |lulls < Callullz;

3. Yir = UL, llgllys < Cslgllyi -

If y,u=10 on Q and Y,9 = 0 on T, then constants C1 and Cy are independent of the length
of time interval J.

Proof: Step 1. Concerning the first assertion we refer to [24], where various model problems

are treated and traces of functions v € Z are determined.

Step 2. Let u € Z be given and 0 < 28 < 2 — "—+3, which is equivalent to assumption of p.

Then, by the mized derivative theorem, we obtain Z — HJ(J; H;'~"(Q)) for 0 < 6 < 1. To
guarantee the embedding

HY(J; H20-9(Q)) < C7(J; C(Q))

we have to impose § — 1/p > 8 > 0 and 2(1 — ) — (n+ 1)/p > 0. These conditions are
equivalent to 2 — ”T'fl > 20 > 20 + %. Choosing 20 < 2 — "—"'3, we then find 6 € (0,1)
satisfying the above condition. The second embedding

HY (5 H20-0(Q)) < C(J; C* (@)

can be achieved by choosing 6 — % > 0 and 2(1 —0) — ”T‘fl > 2. These two inequalities
imply 2(1 — 3) — ”Tfl > 20 > %. This condition for 6 is satisfied whenever we ensure
2— "+3 > 2. All embeddings have been continuous so that the inequality ||UHuﬁ < C|lullz

holds Statement 3. follows in the same way. That constant C' is mdependent of T if
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u € oZT == {u € ZT : u(0) = 0} can be seen from the following. Define operator E by
means of

u(t, ) : tel0,7)
Eiu:=<¢ ul2T —t,x) : te[T,27)
0 : te 2T, 0)

After observing that E is a bounded extension operator with norm [[E|[g,z7 z®,)) < 2
one estimates as follows

[ull ggr < 1 Bvull s < CllE+ullyz < 2C|ull,zr = Ciljull,z7-

The constant C' comes from the embedding for J = R, and hence is independent of T
The last statement can also be proved by means of the mixed derivative theorem. To
detect the independence of T of constant Cy in case g € ,Y;! we consider the problem

ou(t,r) — Au(t,z) =0, (t,x) e Ry xQ,
U(t,$) = E+g(t,l‘), (t,$) S R—i— x T,
u(0,2) =0, x€Q.

Due to [24, Theorem 5] there exists a unique solution u = L(0, E4g,0) € ,Z, where L denotes
the solution operator. Then, we may estimate as follows

9l e <NE+l e = Il e < Itelsgga e 1l gz < CILQO, Brg, 0)ly2
<Ol 02 1 gllavir < 205y 029y, = Callgllyr -

This shows that the constant Cs is independent of T
O

Proposition 2.6 Let J be a compact time interval or Ry and G C R"! be a bounded
domain with C?-boundary T. Let (n+1) +2 < p < co. Then Z, Zyg, Yir and Yor form
multiplication algebras and the following estimations are valid.

1 u-vllz < Cilllullzvllo .oy + Il zllulle o @)y) ¥ ws v e Z;
2. flu-vllzg < Crlllullze Vil rom) + IVlzelullo.cmy) ¥ u v e Zv;
3. g hllvir < Collgllvyrlbllcncr @y + 1klIvi pllgllecray)s ¥ g, B € Yir;

4- Mg hllvar < C3(lgllvarllPllcrcmy) + IRlvarllglleucmy): ¥ g, b € Yar;
Proof. By assumption (n+ 1) +2 < p < oo we may apply Proposition (2.5) with 5 = 1/2,
which implies the embedding Z — U. Let u, v € Z be given, we then have
uv]|z =[]0, (wv)|r, (7L, (@) + ||v2(UU)HLp(J;Lp(G)) + [lwvllr, (L, @)
<llullcxey 9l s + Ivllcuxe 9w, (L@
+lullcuxa) IVl @) + Ivllcuxe VUl (1, @)
+2[[IVulllcrxay IV, (i, @) + lellcaxey 1Vl (L)
<C(lullz ol + 01z lullopon@y) < Cllullzlvlz -
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To prove the second statement we remind of the embedding Zy — C(J x Q) which is needed
to employ Lemma 2.2. Using these facts we can proceed in a similar way as above.

We consider the third statement. Since the space Y7 r is an intersection of two Banach
spaces, see definition (2.8), we separately have to attend to each intersection space of Y7 p.
For this purpose we employ Lemma 2.1 with n = 0, Q = [0, 7] to Bp,"/*(J) and obtain for
a.a. * € G an estimation of the form

||g(,$) : h("x)HB;;U%’(J) <C |:Hg(7x)HC(J)||h(7 x)”B;;U?P(J)
kG Do llgt Dl )| -

Due to Proposition 2.5 we even know that g and h are continuous and hence we may deduce

||g . h”le);l/Qp(J;Lp(F)) SC ”g”C(JXF) Hh||B117;1/2p(J;Lp(F)) + HhHC(JXF)||g||B117;1/2P(J;LP(F))
SC”gHYLFHhHYl,F'

For the second space of Y7 we can proceed analogously. Choosing 2 = G ¢ R™*! and applying
once again Lemma 2.1 and Proposition 2.5 leads to

g~ hlly, (yp2=1/mry) <C ”g”C(J;Cl(F))HhHLp(J;B%;l/P(F))+Hh”C(J%CI(F))HgHLp(J;Bf,;l/p(F))}
SC”gHYLFHhHYI,F .

Combining both inequalities implies the desired result. Statement 3. follows in the same way.
O

Remark 2.3 Now we are in the position to discuss the term ). In(v¥(t, z)uk(t, x)) ap-
pearing in boundary condition of Dirichlet type. Since we are looking for solutions in reg-
ularity class Z and these functions have traces in Yjr, in virtue of Proposition 2.5, the
boundary condition of Dirichlet type has to be considered in Y7 1,. Therefore we have to
ensure that each term lies in this space. Proposition 2.6 and In(r) € C*°(0, 00) imply that
Virp In(vE(t, @) -ub(t,2)) € Yir, if uf € Z, uf > 0 and vF € Vi, vF > 0.

We now are going to study the mapping properties of the operators Ay; and boundary
operators By; and Uk_l.

Lemma 2.3 Let J be Ry or a compact time interval and p, Qp C R be bounded domains
with C%-boundary, Tp := 0Qp, O = I, UT and dist (Ip,T') > 0. Suppose that the smoothness
assumptions (1.23) and (1.25) for matrices D* and M* are satisfied and 2+ (n+1) < p < oo.
Assuming that v* € Zy, and " € Zp(Ey) then the following statements are valid for k = P, F.

. Akl('?'aD) S B(Zk,Xk),

~

[Uk - Ak?('? '7Uk>D)] € Cli(uk(RNﬁB(Zk,Xk));
X Bkl(‘, -,D) S B(Zk,YQ,FP(RN));
[Uk - Bk2('a Yy Uk? D)] € Cl_(uk(RN); B(Zkv }/Q,FPGRN)));

SN

YNep Ui ' € B(Zy, Y1 (RY)).
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Proof. Since all statements are really plausible we only establish the second and fourth
assertion to see Lipschitz-continuity of operators Axs and Byo, and the last assertion.

Let ¢ € Z;, and v*, T € Zj, be given. Due to Proposition 2.5 we can ensure the embedding
Zy — Uy, (RN) for p > (n+1) +2 and consequently v*, 7* lie in Uy, (R ). Taking into account
the regularity assumption for D* and that M* := X\ diag[z;d¥]1<;<n, We may estimate as
follows

[ Ak2 (v D) = Ao (% D)]¢ll, < [[M* (0" ~7°) Agllx, + [V [M*(v" ")Vl x,
IV - (MA@ =TV 12 1 )
< [MEF =)o mm 1201,
+ IVIME(" =)o mnon) VOl xe
+ 127 M=) V) sz )

< O (I = P leg e 1881x, + 10 = Pl xmmm IV 9lx,

+H2T'Mk(vk_Ek)HCl/?(J;C(ﬁk)) ||Vw”H;/Z(J;Lp(Qk;RnH)))
< C|lo* = 0" gy vy 19l 2, -

Before proving the fourth claim, note that V¢ belongs to Zj, v, consequently 0,¢ lies in Y5,
and the following estimation holds.

10,0llvzr, < ClIVOllz, o < Clidllz,

Furthermore, the space Ur, = C'/*(J; C(I»))NC(J; C'(I»)) possesses the multiplicator prop-
erty concerning Y5, i.e. there is a constant C' such that

”muHYQ,FP < CHmHUFPHQHY2,FP7 Vm € Urp, Vg€ Yor,.
Thus we have
[[Bra (v D) — B (0 D)oy, r, mY) = [ M* (0 — 5k)3y¢\|Y27pP(RN)
< HMk”Z/{FP(B(IRN))HUk - WkHuFP(RN)|!3u¢||Y2,rP
< CJJo* ="y ey [0l 2,

which shows the assertion.
k

For proving the last claim we can first see that @¥ > 0 € Z; implies (a¥)~! € Z, in case

of p > 2+ (n+1). Moreover, owing to Proposition 2.5 we have Ve, € B(Zy,Y1r,) and
Proposition 2.6 provides the multiplication algebra of Zj. This makes possible to estimate
as follows

rr—1, k k/~k
Ve, Uk 0% v, &) < e, 1820 v o) 107 /U T1<i< N | 22

N
< &Y (1@ Mzl logo@y + 020G owo@y )
=1

< O|[v*|| .-
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2.5 Model Problems

In this section we want to study some model problems which arise out of solving linear problem
(1.39 via localisation, changing coordinates and perturbation. At first, we are concerning with

a(t) + Alt)u(t) = f(t), ted,

u(0) = ug . (2:9)

This model problem was considered in Priiss and Schnaubelt [26].

Theorem 2.4 Suppose Y is a Banach space of class HT, 1 < p < oo and J = [0,T].
Suppose that A(-) is continuous in J and D(A(t)) = D(A(0)) =: D(A) for allt € J. Let
A(t) € RS (Y) be invertible with R-angle ¢% < /2 for all t € J. Then (2.9) has precisely
one solution in Z; = H,(J;Y) N Ly(J; Da) if and only if the following two conditions are
satisfied.

1. fe X =Ly(J;Y);
2. UOGDA(l—l/p,p).

O

We now consider two abstract second order problems which play an essential role for treat-

ing of parabolic problems with inhomogeneous boundary data. The next theorem concerns
the problem

"

—u (y) + F?uly) = f(y), y>0,

u(0) = &, (2.10)

in L,(Ry; X).

Theorem 2.5 Suppose X is a Banach space of class HT, p € (1,00). Let F' € BIP (X) be
invertible with power angle 0 < /2, and let D%, denote the domain D(F7) of FI equipped
with its graph norm, j =1, 2.
Then (2.10) has unique solution u in Z := H2(Ry; X) N Ly(Ry; D% ) if and only if the
following two conditions are satisfied
1. f € Lp(JvX);
If this is the case we have in addition v € H,(R4; Dp).

This result is due to Priiss, cf. [26, Theorem 3]. Having in mind that Dp(2 — 1/p,p) = {g €
D(F):Fge Dp(1—1/p,p)}. There is a corresponding result for the abstract second order
problem with abstract Robin condition

" (/y) + F?u(y) = f(y), v >0, (2.11)

—u(0) + Du(0) = ¢,

in L,(Ry; X).
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Theorem 2.6 Suppose X is a Banach space of class HT, p € (1,00). Let F € BIP (X)
be invertible with power angle 0p < w/2, and let D}, denote the domain D(F7) of FJ
equipped with its graph norm, j = 1,2. Suppose that D is pseudo-sectorial in X, belongs

to BIP (R(D)), commutes with F', and is such that 0p + 0p < 7.
Then (2.11) has unique solution u in Z := H2(Ry; X) N Ly(Ry; D3, ) with u(0) € D(D)
and Du(0) € Dp(1 — 1/p,p) if and only if the following two conditions are satisfied
1. feLy(J;X);
If this is the case we have in addition u € H,(Ry; D).
This result is also due to Priiss, see [26, Theorem 4].
Our next result concerns the parabolic problem
oyu — L8§u+Au =flt,y), ted, y>0,
u,_, =g(t), teJ, (2.12)
Uy = UO(y) , Y> 07
in L,y (J;L,(R4;Y)). Here again Y is a Banach space of class HT, J = [0,T] a compact time

interval, A denotes a sectorial operator in Y and L is invertible in Y. We are interested in
solutions uw which belong to the maximal regularity space Z, more precisely

u€ Z :=Hy(J;Lp(Ry; X)) N Ly(Js Hy(R43Y)) N Lyp(J; Lp(Ry 5 Da)).

The above problem is a variation of a parabolic problem which has been considered by Priiss
in [24]. Therefore we are in need of only a few modifications to show the following result.

Theorem 2.7 SupposeY is a Banach space of class HT , p € (1,00), p # 3/2 and J = [0,T].
Let A € BIP(Y) be invertible with power angle 04 < w/2. Assume further L € B(Y) be
invertible with o (L) C Xy,, 01 < 7/2, and commute with A. Then problem (2.12) has
exactly one solution

u € H;(J; L,(R4;Y))N Lp(J;H;(R_’_; Y))NL,(J;L,(Ry;Dy))
if and only if the data f,g,uq satisfy the following conditions.

1. feLy(J;Ly(Ry;Y));

2.9 € By (J;Y) NLp(J; Da(1 = 1/2p,p));

3. ug € Bpp”"(Ry;Y) N Ly(Ry; Da(l — 1/p,p));
4. 9(0) =up(0) € Da(1 —3/2p,p) in case p > 3/2.

Proof. The proof of this Theorem runs as in [24, Theorem 5]. Therefore, the necessary
part can be also adopted from there.

At first we solve the corresponding Dirichlet problem, ie. w _, = 0 for ¢ € J and
u0(0) = 0 due to compatibility. For this purpose we define G = —L@; with domain D(G) =
HZ (Ry;Y) NoH,(Ry;Y); then G belongs to BIP (L,(R4;Y)) with power angle 0 < 7/2,
since L € B(Y) and o (L) C Xy, with 6, < m/2. Let B denote the natural extension of A
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to Lp(Ry;Y"), with domain D(B) = L,(Ry;D4). Then B is also in BIP (Ly(Ry;Y)) with
power angle fp < 7/2. Since both operators commute, Theorem 2.2 yields that A = G + B
with domain D(A) = D(G)ND(B) belongs to BIP (L,(R4;Y)) with power angle 64 < 7/2.
Therefore, by Theorem 2.4, u;(t) = e *tug 4+ e~ x f is the unique solution of the Dirichlet
problem which lies in

Hy, (J; Lp(Ry5 Y)) N Lp(J HR (R Y)) N Ly (5 0Hy (R4 Y)) N Ly (5 Lyp(R3 Da)).
Now, we tackle the case of vanishing initial data, f = 0 and g(0) = 0.
6tu—L8§u+Au:O, ted, y>0,

u,_,=g(t), teJ
Uj,_ =0, y>0.

Define A in Ly(J; D a) by pointwise extension, and set D = 9, with domain D(D) = H,,(J;Y).
Both operators are sectorial, they commute and belong to BIP (L,(J;Y)) with 6p +604 < 7.
Hence, by Theorem 2.2, L~1(D + A) with domain D(D) N D(A) is invertible and belongs
to BIP (L,(J;Y)) with power angle small than 7/2 4+ 6, < m. The above problem can be
written as

—0ou+ F*u=0, y>0,
up,_y =9

with F = L_I/Q(D + A)1/2. Now we are in the position to apply Theorem 2.5 to the result,
that us = e F¥g is the unique solution of the above problem which lies in

H) (R4 Lyp(J;Y)) NLyp(Ry 5 oH, (J5Y)) N Ly(Ry; Ly(J5 Da)).

In the end, if the compatibility condition g(0) = u(0) is valid, the unique solution of (2.12)
can be written as follows

ult,) = e [uo(y) — =490 (0)] + (A 5 1) (8,1)

TLTRAYE G Ak 0) (2.13)
=T(t) [uo(y) — E(Y)uo(0)] + (T * f)(t,)
+ T (y) [9(t) — S(t)uo(0)] + E(y) S (t)uo(0)
Here, we have used the notations T(t) := e, S(t) := e~4%, E(y) =—L712AV2y) V2 g

Y(y) := e~FY. Finally, it is left to check that each term belongs to Z. In view of regularisation
of semigroups T'(t) and Y (y), we have to verify that S(-)uo(0) € Dp(2—1/p, p) and Z(-)up(0) €
Da(1—1/p,p). W.lo.g. we show

S(t)uo(0) € Dp(2 —1/p,p) = Dp2(1 —1/2p,p) = Dp(1 —1/2p) N Da(1 — 1/2p,p).

Due to assumption ug(0) € Dy(1 — 3/2p,p) and 1 — 3/2p < 1 — 1/p we may employ

[13, Theorem 3] which implies efA%uo(O) € L,(J; Da(1 —1/2p,p)). That means, the tra-

A

jectory v(t) = e~ '%UO(O) gains 1/p spatial regularity. Moreover, this fact gives rise to
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v € Bpp/?(J; X) = Dp(1 —1/2p,p) as well. Considering the norm of Dp(1 — 1/2p, p), see
(2.2), and setting § = 1 — 1/2p, we then obtain

dr
v € Dp(1—1/2p) <:>/\|Tl DT (1) UHLP(R% //\Tl DT (r)o(t) 5 —dt< 00

Here 7 (t) denotes the left translation semigroup. After some evaluations and using Fubini,
we find the relation

/ [P DS O, g, ) = / / [P0 AT (r)o(t) e Lt
+X)
0 0 0

However the existence of integral above is equivalent to v € Ly,(J; Da(1 —1/2p,p)).
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Chapter 3

Maximal L)-Regularity for the
Linear Problem

In this chapter we solve the linear problem (1.39)-(1.41), that means we prove existence and
uniqueness of functions (w’, wf, w®) € Zp x Zp x Zy and (¢5,4F) € Z satisfying the evolution

equations (1.39) and (1.40). We will first consider a problem on the full space R"™!. After

this a half space and a two phase problem in R’}fl will be studied. Finally, in section (3.4) we

solve the problem for the domain 2 via localisation, perturbation, and changing coordinates
in order to reduce the problem to related problems on the full and half space. Afterwards,
we sum up all local solutions and have to establish that the so constructed function is the
unique solution of the original problem.

3.1 A Full Space Problem

In this section we study the full space problem
Ow — DIA — 1w — Ma[A — 1] = f, (t,x) € J x R"1,

T

3.1
w(0,2) = ug(z), 2Tw=0, (tz)eJxR"! (3-1)

in L,(J; Ly(R™1)), with J = [0,7]. All coefficients are constant in time and space, where
the denotation indicates to the meaning of the coeflicients appearing in the linear problem
(1.39) - (1.41), e.g. we have a := z7- M > 0. We look for unique solutions (w,1)) in the
maximal regularity space Z7 x ZT defined by

Z" = Hy(J; Lp(R"TH RY)) N Ly (J; Hy(R™FHRY)),
ZT =HY?(J;H)(R™)) N Ly (J; H (R™)).

To obtain this regularity we have to impose on the inhomogeneity the condition
fext ={fe X" :=Ly(J;L,(R"LRY)) : 2 f € H)/*(J; H (R™T))}
equipped with the norm
HfHXT = HfHXT + ”ZT'fHHIl)/Q(J;H;I(RnJrl)) :

The goal of this section is to prove the following result.
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Theorem 3.1 Let J = [0,7], 1 < p < oo and assume that d;, 4; for i = 1,...,N are
positive. Then problem 3.1 has exactly one solution (w,) in the space ZT x ZT if and only
if the data f(t,z) and ug(x) satisfy the following conditions

1. fex?;

2. up € V(E) := B;,”"(R"1 E).

Moreover, there exists an isomorphism S between space of data and Z* x ZT.

Proof. We start with the necessity part. Suppose that (w,v) € ZT x ZT solves (3.1).
Then it follows f = d,w + A;(D)w + Az(D)y € L, (J; L,(R*™L1; RY)), where we have set

Ay (D) = —D[A —1], Ay(D):= —Ma[A —1]. (3.2)

To verify 2T f € Hy*(J ;H,'(R™T1)) we use duality for the highest order terms and the
embedding L,(R"*!) — H,'(R"*!) in case of lower order.

||ZT'f||H;1(Rn+1) < ||ZT' D[A - 1]w||H;1(Rn+1) + HZT Mau[A — 1]¢HH;1(R”+1)
< C (IVwlly, @ty + IVl ®at1y + lwlly, @y + 191, @er1))
By regularity assumption of w and i we deduce that Vi, Vw belong to the space Z% =
Hy/?(J; Lp(R™1)) N Ly (J; HL(R™ 1)) which implies that each term lies in Hy/*(J). The last
condition is a consequence of Theorem 2.4 and the fact that z7-w(t,z) = 0 for all ¢t € [0, 7]
and z € R*L,

Sufficiency. Observe that (3.1) is equivalent to the subsequent problem, whereas the
electroneutrality condition is replaced by the corresponding elliptic equation. Thus, we study
the evolution problem

duw — DA — 1Jw — Ma[A = 1)y = f, (t,z) € J x R*TL,
w(0,2) =ug(x), xcR"
—2T.DIA = 1w —a[A = 1]y =2T-f, (t,x) € J x R™.
Next we introduce an important projection, which map R¥ into E. This projection is

needed to solve the above evolution problem. It turns out that we can utilise this projection
to eliminate the expression Ma[A — 1] in the parabolic equation. We define

Vi
b::Tu, a:=zIMt, Q:=bxz, HO:=1-Q. (3.3)

Lemma 3.1 Suppose that d;, u; fori=1,...,N are positive. Then I1D is a mapping from
RN into E with o ((ILD)g) C (0, 00).

Proof. 1. im(IID) C E. Let £ € RY be given, then we have
L IIDE = 2T (DE — QDe) = 2T-D¢ — 2T-b2T-De = 0,

since z1-p = 1.
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2. In case D is diagonal we are able to transform IID into a symmetric matrix. To achieve
this, we define multiply IID by UY/? = diag[v/@i;]1<i<n from right and by U~/? from left.
Then we obtain

Fr—1/2 7 [ o JT71/2 Fr—1/2 F F71/2
U’I/Q(HD)Ulﬂz -12pgi/e _ U /MTU®~U/D2 _p_ U /D)\OUz(giU/Dz
2t Mu 2T \oDU 2
~1/2D ~1/2D
:D—U z@U Zz:D—bg@bg.

~ 2
‘DI/QUI/QZ‘

3. There are only positive eigenvalues. Suppose A is an eigenvalue and 1 # 0 the corre-
sponding eigenvector. Multiplying the eigenvalue-equation by 7 yields

D1/2

2 2 1
Al? =[DY2n|” = [{bo,m)” = | D'/ 1—‘<D ‘b, ,Dl/zm‘

The vectors D~ 3 bo and 2 have norm 1 and so we see A > 0. Furthermore, if we assume

IDl/2 |
that A = 0 is an eigenvalue, then n = aD by for some o € R. Since 7 should be in U~/2E,
this implies

0=2" U Y2p=a"U'"?D by =a - UV?D'DU?z = o |2]?.

This relation can only be satisfied for @ = 0, however this means that n = 0.
O
Now the projection II = I — comes into operation. By applying II to the above
equation we can eliminate the term Mu[A — 1]y due to the fact Mu € ker(II), and obtain

Mu®z
a

duw —TIID[A — 1w =1If, (t,z) € J x R,

3.4
w(0) =ug, x€ R 34

This formulation is equivalent to the original one, whereas now the electroneutrality condition
is incorporated into the solution space. The equivalence results from the identity

A1(D)w + A2(D)yp — f = HA1(D)w — f + QA1 (D)w + QA2(D)yp
=ITA (D)w — f + b[z"- Ay (D)w + 2T+ Ay (D))
= 1A, (D)w — I1f.

At first, we solve the evolution problem (3.4) for w. The given data satisfy all conditions of
Theorem 2.4 so that it remains to check the assumption that A :=II.4;(D) = IID[Dy,41 + 1]
belongs to BZP (LP(R”“)). Here we denote by D, ; the negative Laplacian in R"*!.
Lemma 3.1 supplies that the constant coefficient matrix IID|g has only positive eigenval-
ues, which implies IID € BIP (Lp(]R"“;E)) with power angle Opp = 0. Since Djqq + 1
belongs to BIP (LP(R"‘H)) with power angle p,,,+1 = 0 we may conclude that A lies in
BIP (LP(R”H; E)) as well, with power angle 6 = 0p,_,, 11 + 6np = 0. Hence, we obtain a
unique solution w € ZT(E) := {v € ZT : 2T.v = 0} of (3.4) given by

w(t,x) = (T L)t 2) + T(t)uo(2),
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with T'(t) = e TP(Pnt1+Dt We stress that this function solves (3.1) since all transformations
were equivalent.
Now we want to solve the elliptic problem for . It is clear that

—2L Ai(Dyw + 27 f € Ly(J; Ly (R™H) N H/*(J5 1, (R™F),
where w is given by the above formula. This can be seen by the assumption f € X7, which
implies 27 f € Ly(J; Ly(R™1)) N Hy*(J; H; ' (R™)), and in the proof of necessity we have

established that z7- A;(D)w possesses this regularity as well.
The elliptic equation for 1 reads as follows
1Ay =a ! (=" A(D)w(t,z) + 2" (¢, 2))
where a > 0 results from the positivity of . The operator Iy := (1 — A)*/2 with symbol
(1 + |€]?)%/? possesses the lift property, i.e. I, is a continuous one-to-one mapping from
H;(R"H) onto H;*Z(R”“), for s € Rand p € (1,00), see [33, Theorem 2.3.4.]. Consequently,
the solution of (3.4) belongs to Z” and is given by

Y(t,r)=(1—-A)"! {a_l (—ZT-.Al(D)w(t, x) + ZT-f(t,a:))} .

The solution formulae of w and v supply the solution operator S. Necessity and sufficiency
of the inhomogeneities entail that S is an isomorphism between space of data and Z7 x 27T,
i.e.

S e Lis(XT xV(E), Z" x 2T).

3.2 A Half Space Problem

This paragraph is devoted to a parabolic-elliptic problem of second order in half space, where
the coefficients are again constant and the differential operator consist only of their main
parts. We will deal with
dpw + Ai(Dyw + As(D)y = £, (t,y) € J x R,
w(t,y',0) = h(t,y), »(t,y,0)=0, (t,y)eJxR",
w(0,y) = uo(y), yeRY,
ZLaw(t,y) =0, (ty)eJx R

(3.5)

Here, we have used the same notations for partial differential operators A;(D), A2(D) as in
Section 3.1. The maximal regularity result of this problem reads as follows.

Theorem 3.2 Let J =1[0,T], 1 <p < oo, p#3/2, J=10,T] and assume that d;, U; are
positive for i =1,...,N. Then problem (3.5) has exactly one solution

w e 7% 1= Hy(J; Ly(REH RY)) N Ly (J; H2 (REFLRY)),
¢ € 21 =H/(J;Hy(RT™)) NLy(J; K2 (R nHL(RTH)

if and only if the data f, h and ug satisfy the following conditions
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fe Xl ={f e Ly(;L,RTHRYN)) : 2T f € B (L, (RE) )
h € Y'(E) := By, " (J; Ly(R™; E)) N Ly(J; By /" (R™; E));

ug € Vi (E) == B, " (R E);

4- Yol o = Njg € B;,*"(R™; E) in case p > 3/2.

Lo o =

Furthermore, there exists a solution operator Si of problem (3.5) with

Sy € Lis(XT x{(h,ug) € Y (E)x Vi (E): hy,_, L2 x 214).

= U0|yn+1=0

Proof. We start again with the necessity part. For proving f € X7 and ug € V,.(E) we
refer to the proof of Theorem 3.1. So it remains to check h € Y (E) and the compatibility
condition. According to the trace Theorem 2.5 we see the regularity of h and the compatibility
condition h),_, = Uol,, .o € B;,”?(R"; E) whenever p > 3/2. Due to the linearity of the
boundary condition we conclude h € E.

The sufficiency part. Let the data f, h, ug be given. Then, as proceeded in the proof of
Theorem 3.1, we replace the electroneutrality condition by the corresponding boundary value
problem and apply the projection II to the parabolic equation. The latter problem has now
to be considered in FE.

Oyw — DO, w+ID[D, + 1w =11f, (t,y) € J x R,
w(t,y',0) =h(t,y), (ty)eJxR", (3.6)
w(0,y) =uo(y), yeR.
Here D,, denotes the negative Laplacian on R". Lemma 3.1 provides that IID is invertible

with o(IID) C R4 and thus Theorem 2.7 is applicable. We obtain a unique solution of the
above problem in ZI(E) with the representation

w(t,y) = T(®) [0 = E@si)y,, ., o] + T+ T Y) + SOEGai )0,

(3.7)
T (o) b= S()uo, o]

where the definitions of semigroups T'(t), S(t) and Z(y) can be founded in the proof of
Theorem 2.7.

Now, we consider the elliptic problem for v which can be reduced to the abstract second
order problem

—0 W+ A =Ff y.. €Ry,
$(0) =0,
with
ftyy) =a™t [7f(t,y) — 2" A(D)w]
and A% = D,, + 1 with domain D(A?) = H2(R"). Let R : L,(R;; X) — L,(R; X) denote the

operator of even extension, i.e.

(Rf)(Ynsa) = { f(;(ly/::; Yni1 <0

yn+1 Z 0 ’
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and Py : Ly(R; X) — L,(Ry; X) the restriction to Ry. These operators are bounded. Then,
solutions of the elliptic problem can be written as follows

[e.9]

U(t,y) = Py (Dps1 +1)7'Rf = P+%A71 / e~ Al =s(Rf)(t,5) ds
o - (3.8)
%A 1/ —Alynt+1—s| _ e —A(Yyn+1-+s) } ,]E( )
0

D,, ;1 denotes the negative Laplacian in R"*!. Now, we can bring forward the same arguments
used in the previous section to establish the regularity. In fact, (D,.1 + 1)~! possesses the
lift property, i.e. (Dpi1 + 1)~! is a continuous one-to-one mapping from Hg(R”H) onto
Hg*z(R”“), for s € R and p € (1,00). Consequently, Py (Dy41+1)"'Rf belongs to Z7 due
to the regularity

Rf € Ly(J; Ly(R"™)) N H2(J; B, (R™H)).

Finally, the solution formulae (3.8) and (3.7) provide a solution operator S. Necessity and
sufficiency of the data entail that S is an continuous one-to-one mapping from

XL < {(hyuo) € Yy (B) x Vi(B) : Iy, _,=

0|ynJrl 0}

T T
to Zy XZ+,0~

3.3 A Two Phase Problem

In this section we study a two phase problem in R’}fl UR™"! which arises from the localisation
at the boundary I'p. Consequently the functions w* and ¥*, k = P, F are involved and
coupled by the boundary conditions. In the following all coefficients are constant and bear
again the meaning as in the linear problem (1.39).

gy’ — DY[A, — 1w — MPaP[A, 1)o7 = f7, (ty) € J xR,

dwt — DFIA, — 1w —MF Fla, —19f = 7 (t,y) € T x R*H?

-p*o, w"—-M""0, " =-D"0, w"-M"u"0, F+g, (ty)eJxR"x{0},
Up'w” — Ug'w® + Xoz(p” — 7)) =h, (t.y) € J x R x {0},

wh(0.9) = ug), yeRY, wf(0,y) =uf(y). yeR™,

TwP(ty) =0, (t,y)€Jx Riﬁ“, Ll (ty) =0, (ty) e J xR
(3.9)

Take into account that the compatibility condition involves the electrical potential 1%“ =
Y*(0), k = P,F, which have to be determined as well. For this problem the maximal
regularity result in Ly,(J;L,(Ry;Y)) x Ly(J;Ly(R-;Y)), with Y = L,(R*;RY), reads as
follows.
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Theorem 3.3 Let J =[0,7] and 1 < p < 0o, p # 3/2, 3 and assume that d;, u; are positive
fori=1,...,N. Then problem (3.9) has precisely one solution

w’ € Z{ = H)(J; LR RY)) N L, (J; H2 (RS RY))
wh € ZT = Hy(J; Ly(RMTS RY)) N Ly(J; Hy(REFHRY)),
Whot) e 27 = {(¢"¢") € Z¥ x ZL 1 4. (0" = ¢") e Y/},
with the spaces YiI 1= By,"*" (J; Ly(R™)) MLy (J; By, /" (R™)} and 21 = Hy*(J; HL(RE™))N
L,(J; H;(]Riﬂ)), if and only if the data ¥, f¥', g, h, ul’, ul satisfy the following conditions

1. fPexl = {f e Ly(J;L,(RUTLRYN)) 27 f € HY?(J;H U (RYH) )

2. fF e XT = {f e Ly(L;Ly(R™RY)) : 2T - f € H*(J; H Y (RMT)

5. g€ Y3 i={g €Yy (RY):= By (J L (R™ RY)NL,(; By " (R RY))
29 € By (J; By (R™))};

h € YIT(RY) = By, (J; Ly(R™ RY)) MLy (J3 B, " (R RY));

ul’ € Vi(E) :==B,"(RTH E), uf € VL(E) =By, " (R* E);

Uptul’ — Uptul + Xoz (0 — o) = hy,_, in Bp* P (R RY) if p > 3/2;
P P PP P F F FrF F
-D 5’yn+1u0 — Mt 8yn+11/10 =-D 8yn+1u0 — M*u ayn+1w0 + 9,0
in Bpp” P (R RN if p > 3, where (YL, 4" solves the elliptic problem (3.10)
after taking trace t = 0, see proof.

NS G

Furthermore, there exists a solution operator S, _ of problem (3.9) with

S._¢ as<x$xxT x { (g,h,ul,ul) € VI x YTRN)xV(E) x V_(E): (g, h,ul , ul’)
enjoy the compatibility conditions 6. & 7.}, ZI x 71 x Z:ﬂ_) .

Proof. (a) We begin with the necessity part. Suppose (wf,wf) and (¢, ") solve (3.9)
and belong to ZI x 7T x Z};_. The regularity of data f*, k = P,F can be established
as in the proof of Theorem 3.1. The regularities of g, h, ug follow by Theorem 2.5, where
one has to keep in mind that % (¢,0) — ¢ (¢,0) € Y{! and Vo € Z};V, vyl e ZT,V
imply Mkﬂkﬁyn+l¢k(t, 0) € YJJ(RY), k = P,F. We have still to check the condition z7-g €
H,/*(J;Bppy/P(R™)). Here, we have to study the weak formulation of the boundary value
problem obtained by applying 2% to (3.9). W.lo.g. we can set f*¥ = 0. After multiplying

with a test function v € H;D, (R"*1), integrating by parts, making use of transmission condition
and accounting for the support of v, we obtain the identity

/ {v(y)[apwp(t, y) + 27 DPw”(t,y)] + Vo(y) - Vi " (t,y) + zT-DPwP(t,y)]}dy

n+1
R+

+ [ {v@)[a%F(t,w+zT-DFwF<t,y>]+w<y>-V[a%%y)+zT-DFwF<t,y>1}dy=

Rn«l»l

/v(yﬁ 0)z"g(t,y) dy’

R
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for all v € H, (R™1) and t € J. With a view to establishing the time regularity Hy/*(.J) of
21 g we shall consider differences of the above equation respect to the time variable. Moreover,
the left hand side of these differences will be estimated by using Holder’s inequality, and we
obtain

/ () g(t + hy) — gty dyf < Ol
J

H!, (Re+1)
AR+ ) = IOyt e
+ [|(wh wt) (t + h) — (w?, wF)(t)HH;(RT;H;RN)xH}J(R"“;RN)}’
with vy, =0 and t + h, ¢t € J. By taking the infimum and using

I gy e =S Wl e
P

we get,

J A" ) = Lt N < Ol
R"

A0+ 1) = 07O e gy
+ | (wh w™) (t + h) — (waF)(t)||H11,(R1+1;RN)xH;,(R"“;RN)}’

for all v € B1 el (R™), which means z7-g(t + h) — 2T-g(t) € B,p/"(R™) due to duality. In the
end, after employlng the norm of Hl/ *(J) being defined by means of differences we gain the
estimate

~c N\ T / / _ T
.al- d = R B
| s [ gy = 17 iy
UEBplp, (Rn)Rn
loll<1
{H(d’ ’lz[) )H 1/2 JHl(Rn+1)XH1(Rn+1))

P, F
+ ”(’U} , W )||H11,/2(.];H117(Ri+1;RN)XH;(RnJrl;RN))}'

Last but not least, the compatibility conditions follow from the regularity assumptions
and the embeddings

YI(RY) — C(J; B2 *(RMRY)), p>3/2, YL (RY)— C(J;B"(R%RY)), p>3.

(b) We come now to the sufficiency part. The first task consists in solving the elliptic
problem for (%, 4%). Furthermore, we are interested in finding a solution formula which
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provides an insight into the transmission condition, i.e. makes it possible to compute the
normal derivatives of the potentials. Assume that w* are already known.

By applying 2z~ to all equations of (3.9) and using the electroneutrality we obtain a two
phase boundary value problem, which reads as follows

—a(22 | — (D, +1)W" =L DP(2  — (D, +1))wh =21 P (ty) e JxREH

Yn+1 Yn+1
F(a2 F _ T nF(a2 F _ T (F n+1
—a"(0y,,, —(Dn+1))p" —27-D" (0, . —(Dn+1)w" =z"-f", (t,y) € JxRE
zT-Dpﬁyn+le+ aPayanﬁP:zT- DFﬁyn+1wF+ aF(?yanbF—zT-g, (t,y) € J x R" x {0}
1 . .
P_ F _ T -1, F_ Tf—1, P T n
R vl G e }+)\O|Z|2Z b, (ty) € J x R x {0}.

(3.10)

Here we used again the notation a* := 27 M*@* for k = P,F. The operator D,, denotes
the negative Laplacian in R”. For solving the ordinary differential equations concerning
the variable y,.,, we introduce the auxiliary function p* := aFy* + 2. DFw*. Hence, the
differential equations and transmission condition takes the form

_8§n+1pP+(Dn+1)pP :ZT'fP7 (t,yn+1) S JXR+
_a§n+1pF+(Dn+1)pF :ZT'fF’ (tayn+1) cJxR_
ayanP = 8yn+1pF - ZT'gv (t,Yns1) € J x {0}.

Solutions of this system are given by

1 oo
a" PP (t,y) + 2" DPwP(t,y) = §(Dn + 1)1/2/[T(\yn+1— S) + T (Ynsat 8)] 27 fF (1), 8)ds
0
+ T (o)X 4y,  (ty) € x RYH!
0
1
an/JF(t,y) + zT-DFwF(t, y) = §(Dn + 1)1/2/[T(]yn+1— s|)+ T(=Yni1— 9)] zT~fF(t,y’, s)ds

+ T(_y”+1)XF(tv y/)? (ta y) cJx R’fl—&-l R
(3.11)

where the auxiliary functions p”, p!" were replaced. Further on, T(¥,,1), ¥ns1 > 0 denotes
again the bounded analytic Cp-semigroup generated by —(D,,+1)*/2. The unknown functions
¥ and x! are determined by transmission condition and boundary condition of Dirichlet

type. Due to the transmission condition 9,

xF )+ xF(ty) = (Do +1)722 - g(t,y).

The second equation for x©, x" is caused by the boundary condition of Dirichlet type. At
first, observe that

anP = ayanF — 2T.g we obtain the first relation

T n~P,, P / T nF, F / P / F !
P / F ! _ % D7 w (t,y,O) z'-DMw (t,y,O) X (t,y) X (t7y)
¢ (tayao)_w (t,y,O)—— ap + QF + CLP - CLF
[e%S) 0
1 1
+ —p(Dn+ 1) [ T(s)2" f2 (1, g 5)ds — —5 (Do + 1)‘”2/T(—8)ZT-fF(t,y’, s)ds,
0 —o0
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and substituting the boundary condition in the left hand side gives the second equation for
7, x¥'. Solving this linear system of equations yields

P , (LP Lo T , P F
X (ty) = pp(Pnt 1) 2z g(t,y)+wx(t y),
Frp oo r 12,1, , afat’ ,
X (6y) =g (Da + 17220t y) = —pp X(6Y)
with
, ZL.DPwP(t,y,0)  2T-DFwf(t,y,0)
x(t,y') :=[ P - 7 ]
| /\o|1212 [zT-Ugle(t,y’,o) — zT-UISle(t,y',O)] + ﬁth(t,y’)
0 0o
+ (D + 1) aiF/T( 92" F (b)) ds — / TPy ) ds
% 0

Note that by formula (3.11) we can compute (1§, 1{") after taking trace t = 0. Furthermore,
we perceive that (wéj ,¢g ) is completely determined by the initial data uo € B2 &/p (R”H)
and inhomogeneities z”- f*(0) € H,* R, 2T.g(0) € B,/ (R™) N By ™7 (R™), and ZT'h(O)
B;,*/”(R") whenever traces exist.

Now, we want to verify the regularity stated in the theorem. This will be carried out by
means of the solution formula of ¥*. Let R : L,(Ry; X) — L,(R; X) denote the operator of
antisymmetric extension at 0, i.e.

mpw={ =0

and Py : L,(R; X) — L,y(Ry; X) the restriction to Ry. These operators are bounded. Fur-
thermore, D, 1 denotes again the negative Laplacian in R"™! and set A := (D,, +1)"/2. Let
o(t,y) denote the first part of the solution formula, i.e. we put

A 1/ ’yn-H + T(yn+1+ 3)] ZT'fP(t7 y/a S)ds'
0

Then o(t,y) is equal to
1 o0
Pi(Dny1 + 1) (R2"7)(ty) = ProAT! / e~ A= W(RTFP) (8, 5) ds,

and solves the problem

_85 0T AQQ = ZT‘fPa Yni1 > 0,

=0y, 0(0) =0.

Here, we see again that p € ZI due to the lift property of (D,y1 + 1)7! and RzT-fF €
Lp(J; Lp(R™1) N Hy” (J3 H, ' (R™).
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The next term we want to discuss is —zT7- DPw?. At first glance, we perceive that this
function enjoy the regularity in view of wf € ZEC. Finally, we want to study the func-
tion T'(y,.1)x". Since the semigroup T(y,.,) is a continuous mapping from Bj,"/”(R™) to
H;(Rﬁ“) for s > 1/p and 1 < p < oo, it remains to check that x* belongs to Yy :=
Hy/?(J; Bpp /" (R™)) N Ly(J; Byp /" (R™)) in order to conclude T'(y,.,)x* € Z+. The function
x* comprises the terms A~'27- g and , except for certain constants. Due to the regularity
assumptions of g we know that 27-g € H,/?(J; Bpp/”(R™)) N Ly(J; Bpp /" (R™)) which entails
that A=12T.g € YJI'. To verify that y lies in Y3 we first note that 27- D*w*(t,v’,0) and 27 h
belong to Y{'. Hence, there are continuous extension of these function which belong to Z.
Using the embedding Z — H,/*(J; H;,(erfl)) N Ly (J; Hi(RﬁH)) and continuity of the trace
operator we see that these functions lie in Y3T. As a result of the above considerations we
deduce that the integrals appearing in the definition of y lie in Y3T. Applying the semigroup
T (Y1) yields the assertion.

Hence, we have established that (¢*,4!) belongs to ZT7_ = {(¢F,0") € Zf x ZT .
Vign (¢ — ¢f") € Y{I'}, where the claim Vign (P — ) € Y{ follows by the regularity of data
of boundary condition.

(c) Now, we determine Mkﬂkaynﬂi/)k(t, y',0) = akbkaymllbk(t, y’,0). By using the solution
formula (3.11) we compute

a0, W’ —ad"o, F=-Q"D"o,  w"+Q"D",  w"

o (Dn 4 1)1/2 (bPXP + bFXF) ’

with
1
—(Dn+ )2 (X7 +6XT) = = — taf ("R +a"Q") g
P F
a a
TP faf (b7 = b") (Do + 1)y

Using these identities the transmission condition takes the form

1
(oMo, w" —M"DMY, W =g- Pt af (a"Q" +a"Q") g
P, F
. a a P 1 F 1/2
4ap+ap(b b")(Dy +1)*x
aPaF P F 1/2
:ng—m(b —0")(Dn +1)"?x,
with
1 PAP | FAF 1 PyP |,  FpF
Hlizl_aP—i—aF (a"Q" +a"Q") = g (@ TV +a"117) .

We investigate the last term containing y. It turns out that this function produces expressions
containing w¥ which have to be worked into the left-hand side of the transmission condition.

Before simplifying the function x we want to derive some useful equations. Firstly, we consider

the jump boundary condition. After applying IIy:=1 — % to this equation we obtain

U];le — UEIwF

— W (zT-UEIwF — zT-UISIwP> + Igh.
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By taking the inner product of the above equation with A 1(bP )T we arrive at

Agl(bP)T'Ugle = A7 0P)T - ﬁE1wF _ (ZT_(}?U]F _ T U;lwp>

Aol 2[? (3.12)
+ 2,17 TIgh,
where we have used (b"')T -z = 1. Evaluation of the left hand side gives
- MNP @)y wP S gdPal (@) twf 2T DPwP
-1/ P\T 771, P 10 3 i 17V T \ M i
AU " = 2 vz = gz =—7— (13
Using this identity and
b2 2T.h
/\—1 bPT'H h:/\_l bPT'h—( T'h:A_l bP T'h——
0 ( ) 0 0 ( ) )\0’2‘2 z 0 ( ) )\O|Z’27
we derive from (3.12) the equation
2" DPw” 1 T-1, F T g5r—1, P ZTh 7
US _ A= —:)\—leT_ -1 F
7T SWEE (z Upw' —z-Upw >—|— IWEE o ) U w"+ (3.14)

Ao HP) .

The left hand side appears in the function y, so that substituting the above equation in x
results in

0
1 - 1
€(ty) = 3o =) Tt (00 (D4 1) [ Ts)n () d
_ 71/2i T ¢P / i P T_ /
(D, + 1) P T(s)z"-f (t,y,s)ds—i—/\ (b ) h(t,y'),
0
0

where we have used once more the identity z7- DFw!/at" = )\al(bF)T- [Nfgle, cp. (3.13).
Now, we shall introduce some new matrices in order to attain a more convenient form of the
transmission condition. We define

= L5t (b7 = 07) @ (07 = 07), 1= o St (07 - 07) @”,
Iy = Lo b =) ® 2.

af +al

All these matrices are projections from RY to the space of electroneutrality E, where E C
ker(II;) for j = 1,2,3 and II is symmetric. Together with the above definitions and the
representation of xy we obtain

P F _
~(Dat ) (07— 0) x(1y) = (Dt 1) T " (1., 0) = (D 1) Tzt o)
1 / 1 7
—3 | — [ T(- Ft’,d—/T Py, s)d
s |op [T ) ds— o [T 0 ) ds
—00 0
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Hence, the transmission condition takes the form

Moo, w4+ (D, + 1)U HYw” — (P D)o,  wP =73. (3.15)

Yn+1 Yn+1

Of course, this equation has to be considered in F, since the boundary value problem (3.10)
is involved here. Furthermore, the new inhomogeneity g defined by means of

0 [e)
G = Thg — (Dy + 1)"T0y h — T aiF/T(—s)fF(s)ds—aiP/T(s)fP(s)ds (3.16)
—00 0

contains the data ¥, f¥, g and h. Now, we want to verify that g belongs to Yy (E) := {g €
Y (RN) @ 2T.g = 0} as well. We immediately detect that each term of g lies in E due to the
projections II;, ¢ = 1,2, 3. Concerning regularity we point out that the first two terms belong
to Y5/ (E) in view of the postulated regularity of g and h. To reveal the regularity of both
integrals, we will revert to the results obtained by proving the regularity of (1%, +f). There
we have shown

T(ynJrl)A_l /T(S)ZT'fP ds € ZTa
0

which implies the assertion by taking into account that II3n = a“,i“ai (bP—b)21n, for n € RV,

Finally, since all calculations above were equivalent we may replace the transmission condition
by (3.15).

(d) Now, we turn our attention to problem (3.9). The purpose is to find an equivalent
problem in E such that all terms containing the potentials ¥*, ¥f" are eliminated. The first
step has been performed resulting in a new boundary condition. In order to eliminate top
order terms of ¥ arising in partial differential equations, we again employ the projections I1¥
and IT¥". To remove potentials in boundary condition of Dirichlet type, we use the projection

IIy. After taking all actions we achieve a model problem for (w?, w’).

O’ —1FDFP2  wP + 1P DY (D, + Dw” =17 P, (t,y) € J x R,
O™ —1"DFo; W' + T DF (D, + D" =T f7, (t,y) € T x RM,

n"Dro,  w' + MU (D, +1)?0" —1"D"0, w" =7, (t.y)eJxR"x {0}
Hoff;luP _ HOﬁEIUF — Hoh, (t’y) e JxR" x {0}’
wP(0,y) =uf (y), yeRT,
w?(0,y) = uf (y), yeR™™.
(3.17)

The goal is to show maximal regularity of this problem, i.e. we seek solutions (w’,w?)
in the maximal regularity class Z7(E) x ZZ(E), where the electroneutrality condition is
incorporated into the space. We have seen in the proof of Lemma 3.1 that II; Dy, is related to

a symmetric matrix, which can be obtained by multiplying Iz D}, from left with U, /2 and
from right with U, ,1/ 2. This fact will be decisive, now subsequently.
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First we consider (3.17) with II” f¥ = II¥ f¥ = 0, vanishing initial data and inhomo-
geneities Ilgh, g satisfying Iph(0,y’) = g(0,3') = 0. This is the most important step of the
proof.

g’ -~ DP?  w” + DY (D, + 1w’ =0, t>0, yeRT,

Yn+1
o’ —TFDFo; W'+ DF(D, + 1w =0, t>0, yeR™,
nDro, w" +(D,+1)* UL 'w"—1"DP0,  wi=g, t>0, yeR"x{0}, (3.18)

MoUp w? — MUy w? =Tloh, t>0, yeR"x {0}
w”(0,9) =0, yeRT, wf(0,y)=0, yeR",

By this we define By, := II*D*(D,,+1) in L, (J; L,(R"; E)) by pointwise extension. Then By, is
invertible, sectorial, and belongs to BZP (L,(J; L,(R"; E))) with power angle 0p, = Opxpr =
0, see Lemma 3.1. Let G := 0, with domain ,H,(/J;L,(R"; E)); then G is also sectorial,
belongs to BZP (L,(J;L,(R™; E))) with power angle g < m/2. By Theorem 2.2, G + By,
with domain D(G) N D(By) is invertible, sectorial, and belongs to BZP (L,(J; L,(R"; E))),
with power angle § < 7/2. Define Fy := (I Dy)~ /%G + B = /(ITIFD*)~1G + (D, + 1)
with domain D(F},) = (H,*(J; Ly,(R"; E))NL,(J; H,(R™; E)), by Corollary 2.1, then solutions
of (3.18) take the form

'LUP(t’ y) = eiFPyn-ﬁ»lcP, wF(t, y) — €+FFy"+1CF.
Using both boundary conditions to determine P and , we get a linear system of equations
FPHPDPCP 4 FFHFDFCF + (-Dn + 1)1/2HUF_16F -7,
HOUJ;ICP - H()UEICF =IIph.
2Rz

From the second equation we want to derive a new equation. By using Il = I — T and
the fact that Upz € RY lies in ker (I DF), thus I” D Upz = 0, we obtain an equivalent

formulation of the second equation.
n”prc? =P DPUpUL ! + 1P DY UpTIh.

Substituting II” D¥ ¢’ in the first equation yields

> RI'DMUL + (D, + 1)1 | Up'ed = g(t) — FpII" DPUL Toh(t). (3.19)
k=PF

Looking at the right hand side we realise that this equation has to be considered in Y2(E).
In fact, the matrix II” DP Ul_ ! leaves E invariant and does not change the regularity, whereas
Fp maps Dp,(2 — 1/p,p) = Y1 to Dp.(1 —1/p,p) = Y. Consequently, we have g —
FplI”’DP U;lﬂoh € Y, due to the regularity assumptions of the data g and Ilgh.

Now, we consider the operator L defined by

L(G, Dy) = Z Fy(G, Dn)Hkaﬁk + (D, + 1)1,
k=P,F
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which coincides exactly with the operator we find in the brackets of equation (3.19). We will
see that L satisfies a lower estimate. For this purpose we look at the symbol I(),§) of L.
Taking the n-dimensional Fourier transform in gy’ and the Laplace transform in ¢ we then
obtain

0= 3 (A+ @M el + ) D201 (g2 4+ )L (5
k=PF

We perceive that [(), £) belongs to B(f]flE E) due to the projections IT and II*. To achieve
a formulation in which domain and range of (), §) are equal, we multlply (3.19) with U 1/2

from left and consider UFl/2 ()\,f)UFl/2 which now belongs to B(E), with E = UFI/2
Thus, let n € E be given with ||| = 1. Having in mind the fact that II is symmetric and
nonnegative, we may proceed as follows

10510, 05 0l = Re (. 05 10, )05 *n)

7 1/2 o~
= Z Re <777 Ugl/2()\ + (‘£|2+ 1)(]:[ka)) (Hka)l/2UkUF1/277>~
k=P, F B

+Re< U712 (1] + 1) /21105 >E

> Z Re <77, 1/2(>\ + (‘£|2 )(Hka))1/2(Hka)1/20kUI;1/zn> .

k=P.F 5

In the next step we want to show that both summands are bounded below in E. For this
purpose we rewrite as

1/2 s . -
(A (g2 + D D*)) ™ ([WeDy) 20, = 0/ (02 (A + (1€ + 1) (1 Dy)) 2 04
—1/2 ~1/2\ 771/2
0, / (Hka:)l/QUk/ )Uk/ '
After defining Sy = (~]k_ Y Q(Hka)U;/ % and keeping in mind that Sy is selfadjoint, positive

definite on E by Lemma 3.1, we obtain by using the spectral mapping theorem for normal
operators

Z Re <77, 1/2U1/2()\+(|£|2+1)Sk)1/25;/2U’i/zﬁgl/277>~

k=P, F E
> > min Re(A+ (€ + Ds) (o) 0 20 Pl
g p S0 €7 (k)
>e Y min Re(A+ (67 4+ Dsi)(s) % > 0.
kp.F S# €7 (k)
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All in all we then get

IO UNOUR gy = ¢ D, min Re(A+ (€7 +1)si)"(si) "2
k—p.p k€7 (Sk)

>c Z min |sg|"? cos (% + 9%) A+ (J€]2 + 1)sg|/2
k*PFSkEO’(Sk)

0
>c) gllg |sk|"/? cos (% + —3’“>C(9»95k)(!/\\ + ([P + 1)[sk)?
kep.F *E€7 ()

> Ci(|A| + €7 + 1)1,
(3.21)

for 6 + 65, < m. Note that S, has only positive eigenvalues which implies 0, = 0. By
considering the new symbol (\ + |€[2 + 1)*1/2[7;1/2“)\,{)[7;1/2 we arrive at

(AL + [P+ 1)
A IEP 1Pz =

IO+ 1P + 1) 720 2100, )T gy > € ’

for ReX > 0. This inequality implies that the set {(A+]-|2+1)/2[U,"*I(), -)[71;1/2]*1})&@r C
H>(Xy) is uniformly bounded, for some 6 > ¢p> =0, i.e. we have

IO+ 1617 + D202 10 QT gy < Gty (M €) €Ty x g (3.22)

We are now going to show that the operator (G + D, + 1)V2[U."°L(G, D,)U,"*]~" is
bounded. Employing Proposition 2.4 for (D, +1) € RH*°(L,(R™;E)) provides R-boundedness
of {(ip + Dy + 1)2[U"*1(ip, Dp)U"?7": p € Ry} We put Xg := Ly(Ry; L,(R™ F)) and
define the operator-valued symbol

M(p) := (ip + Dy, + 1) (ip, Dy), p €R,
with 13! (ip, D) := [Up"*1(ip, Dn)UR"?]7*. To establish that
(G+ D + 1)U’ L(G, D) UL € B(Xo)

we will employ the operator-valued version of the Mikhlin Fourier multiplier Theorem 2.3 to
the symbol M (p). Hence, we have to show that the sets M := {M(p) : p € R\{0}} and
M= {pM'(p) : p € R\{0}} are R-bounded. By the remarks above we have seen that the
first of these sets is R-bounded. To check the second condition we have to compute pM’'(p).
By decomposing and factorising, with a view to using R-boundedness of M, we get

1 d d
M’ = Dy, + 1)?| 151 (ip, D ip(ip + Dy + 1)*—13" (ip, D
pM (p) = 5ip a0ip) (ip+ Dy +1) (ip, Dn) —ip(ip + Dy + 1) dip'F "(ip, Dn)

1
= ~(ip)(ip + Dn + 1)L (ip + D, + 1)Y215 (ip, Dyy)

2

o 1. dlp(ip, Dy)

—ip(ip + Dy, + 1)V  (ip, D) ——2—12
( )P ( ) (i)

:%(ip)(ip + Dy, + 1) M (p) — M(p)@p)lﬂ%

I (ip, D)

(ip) 21551 (ip, D).
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To conclude that M’ is R-bounded, we still have to prove this property for (ip)/2* (ip, Dy,)
and (z’p)lmﬁlp(ip, D,,) in order to be able to employ Lemma 2.3. The R-boundedness of

the vector-valued symbol (ip)/21!(ip, Dy,) follows from the lower estimate of Iz(, €).

(IA] + €2 4+ 1)172
|/\|1/2

H()‘)il/QlF()Hg)HB(E) > Cl > Cl,, ()\,f) S E+ X 29

To treat (i )I/Qﬁlp(zp, D,,) we again look at the symbol.

d d -
O = X 0 (L0 6+ DT DR ) (D 00,
k=P,F
First we set H(\) := (A + (|¢|? + 1)(IT* D¥))'/2. By using the identity

d d
— T HO) = H) [JH (A)] H(X)

it remains to compute d)\H L(X). Since differentiation is a local property we consider a
neighbourhood of A € ¥, /5. Consequently, the spectrum of o(X 4 (|¢[* + 1)(ITFD*)) is a
compact subset of 34, 0 < ¢ < m/2, and there exists a simple closed path I in 34 surrounding
o(A+ (|€)? + 1)(ITFD*)) counterclockwise. Then, by the Functional calculus we have

d d
FHTO) = g [ a6+ D DY) g
r
d
- EQLM /(u = N2+ (€7 + DA D*)) " du,
'

where I') denotes the transformed path caused by changing variables. Using Cauchy’s the-
orem we deform the integration path I'y into I'g in X4 not depending on M. Differentiating
under the integral sign yields

DH0) = g (= 0P (62 4 1)1 DY)

T
(/\ + ([€ + 1)(IFDR)) 72,

which is justified by boundedness of the integrand. This implies

— R HO) = HO) 0| HO) = S0+ (16 + D@04 2

and thus we have Shown

d 1/2
P06 = kzpj O (A (g2 + *nh) )

1/2 -~
(II* D)2 0, U 2

1 . N L
=3 Z "2 (11F DRY 2, [()H— (1€[2+1) (ITF DFY)V2 (1T DY /2,
k=P,F
. (Hka)1/2Uka;1/2
1 7 & —_— ~ ~
=3 > U S [+ (P + 0S8 %) 500
k=P,F
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Observe that each summand belongs to B(E) and satisfies an estimate of the form (3.21), i.e
the operator %lp()\, D,,) behaves as I (ip, D,,). Consequently the set

. d .
{Wﬂmzm, Du): pe R\{O}}

is R-bounded as well. After employing Lemma (2.3) to M’ we arrive at

R(M) <

DO | =

ROIR(M) + RMIR (10602 Coiri. D)+ € R\(0}})
R ({(i0) 215 i, D)+ p € RV[0}}),
with D := {ip(ip+ D, + 1)1 : p € R\{0}}. On the whole we have proved
(G + D, + 1)"2[U°L(G, Dp)UR?7! € B(Xo). (3.23)

If we define the operator ¥ = /G + D,, + 1 with natural domain D(F) = D(G'*)n D(DI/Q)
then the operators F and L' := [Un l/2L(G D)U5"?]7 commute and (3.23) implies L' €
B(D(F;E),D(F%E)). Here D(F; E) denotes the space of all E-valued functions which
belong to D(F). After using real interpolation we get

L:=U LU € B(DF(1—1/p,p), D(2 — 1/p,p)) = B(Y1(E), Y2(E)). (3.24)
Turning to equation 3.19 and using the above results yields
F=r (g(t) — FpII’DP U;lnoh(t)) ,

this means that the unknown functions ¢ and ¢ are determined uniquely.
(e) Now we turn to complete problem, i.e. we consider non-vanishing initial data and
inhomogeneities enjoying the compatibility conditions. If we set

Tk(t) = einDk( % +1+D”+1)t, Sk( t) = ¢~ 11" D*(Dn 'H)t, t>0, fork=PF,
=P () 1= ¢ PTG Py ) m e ey > 0,
EF(%H) = 6+(HFDF)71/2(D71+1)1/2 y%lv TF(yn+1) = 6+FFyn+17 Yns1 <0,

T(t) := diag[TT (t), T¥(t)], S(t) := diag[ST (), ST (t)], t>0,

(yn+1)7 = (yn+1)], T(yn-H) = diag[TP<yn+l)7 TF(yn-‘rl)] )

then the solution can be written in the form

(w'(t, ), w"(t.y)) = T(#)(@"(y), a" () + [T+ (FTIFO))(E, y)

+ S(OEWa) (g (4',0), ug (4'0)) (3.25)
+ T(yn+1)(ﬁp(t7 Y )7 ﬁF(ta Yy )) + T(yn+1)(’yp(ta y/)> ’YF(tv y,))
If we restrict the above function to J = [0,7] and take into account that the convolution

operator and L are causal, we perceive that the so-constructed function solves the original
problem (3.17). For a better understanding, we now shall explain all terms contained in the
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formula (3.25). The first and second function of the above decomposition solve the parabolic
problem

ow” —1"DPo; WP +TPDP (D, + D =1T"f7, t>0, yeR,

o' - DFo; W' +TFDF (D, + D" =177, t>0, yeR™M,

w”(t,y,0) =w"(t,y,0)=0, t>0, ¢ eR",
wf(0,y) =af(y), yeR, w(0,y)=a"(y), yeR,

with the initial data
o"(y) = ug(y) — = (y)us(y,0), k=PF. (3.26)

The third function is a special solution which satisfies 9,v* —Hkaajn - VP +TIFD¥ (D, +1)0F =
0 and certain boundary conditions which can be computed explicitly. The second last function
solves (3.18) with the inhomogeneity ITgh in the boundary condition of Dirichlet type and 0
in the transmission condition, where we have set

oh(t,y') := Mo |h(t,y') — Up ST (t)ul (v, 0) + Uz ST (t)ul (v, 0)} :
At first glance, we realise that HgiL(O,y’ ) = 0 in view of compatibility condition 6. The
functions 3F(t,5') and B¥ (t,y') are given by
("D)B" (t,y') = (MDY UpUL' 67 (t,y') + (M"D7)Uplloh(t, y'),
88(t,y') = — LEp(I”DP)UR Toh(t,y/).

Note that II¥ D is invertible in E. Last but not least Y (y,.1)(v"(t,3/),¥F(t,y')) solves
(3.18) with the inhomogeneity

1
V2

[T7 % (7 DP) 7 + TP a”|(t,y/, 0)

go(t.y) ==3(t,y') — (Dn+1)"/? [Hff; LSty (i, 0) + —= (" DP) ST (t)ud (v, 0)+

%(HFDF)SF(t)ug(y’,O)] +0

Yn+1

-0

yn+1[

T (M DF) 7 + T a"(t,y', 0)

in the transmission condition and 0 in the jump condition. It is easy to check that go(0,3’) =0
is caused by the compatibility condition 7. The functions v*(¢,4’) and ¥ (¢,%/) are given by

MPDPYE(t,y) = (MPDP)YURpULAE (t,y), T (1) = Lgo(t,y).

Finally, formula (3.25) is written for the case p > 3, in which the compatibility conditions are
involved. In case 3/2 < p < 3 simply set go(t,y') = g(t,y) and for p < 3/2 set uk(y’,0) = 0.
Hence, it remains to verify the regularity of each function. According to Theorem 2.4 the
first and second term of formula (3.25) belong to Z5(E) x ZL(E). The last both functions
possess this regularity as well in view of the assumptions for data, the mapping property £ €
B(Y,(E),Y{(E)) and Theorem 2.7. We now come to the third function (v? (¢, ), v¥'(t,y)) :=
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(SEO)ZF (y,)ul (v, 0), SE()ZF (y,.1)ul (v, 0)). Observe that each component satisfies the
parabolic problem

Ot —T*DFe2 W+ TI"D¥(Dp+1)0% =0, t>0, ye R if k=P, y e R ifk=F,
vk(t,y’,O) = Sk(t)ulg(y’,O), t>0, y €¢R”
vk(an) = Ek(yn+1)u,8(y,)0)a y, € Rna Ynt+1 Z 0 lf k = Pv
Ypir <0if k= F.

We know that uf(y) € Dp, (1 —1/p,p) due to condition four and consequently after taking
trace in y,., we have uf(y’,0) € Dp, (1 — 3/2p,p). As in the proof of the previous theorem
we are able to show S*(t)uk(y’,0) € Dp(2 — 1/p,p) and Z*(y,,,)uk(y/,0) € Dp, (1 —1/p, p),
which provides v* € ZF'(E).

Finally, the solution formulae (3.25) and (3.11) provide a solution operator S. Necessity
and sufficiency of the data entail that S is an continuous one-to-one mapping from

XI x X1 % {(g,h, uOP,ug) e VI x vl x Vi xV_:(g,h, uOP,ug) enjoy the compatibility
conditions 5. and 6. stated in Theorem 3.9}

to ZI x ZT x Z{_. Thus the proof is complete.

3.4 The linear problem in domain

Before we are going to approach the linear problem on the domain, we make available the
method of localisation.

3.4.1 Localisation Techniques for Bounded Domains

In the following, let @ C R™! be an open connected domain with compact C?-boundary
0€). Now we want to comment on variable transformations. Let x; € 9 and consider
local coordinates corresponding to ; (which) are defined as coordinates obtained by rotation
and shifting, which moves z; to the origin such that the exterior normal at x; has the
direction of the negative x,1-axis. By definition of a C2-boundary an open neighbourhood
U; = Ul x Uf C R™! exists containing x; with Ul c R" and U{ C R! open and a function
h; € C?(U;;R) satisfying

QnU; ={z=(2",2n41) € Uj : 1 > hj(2')},

Setting

. - ! . . n+1
g;(x) = ( B > L U;jNQ — RY (3.28)

we obtain an injection g; € C?(Uj; R™"!) where relations (3.27) can be written as QN U; =
{z €Uj: gnt1(x) > 0} and 92 NU; = {x € Uj : gn+1(x) = 0}. By compactness of 052, all
derivatives of g; and gj_l, defined on U; := g;(Uj), up to order 2 are bounded by a constant

independent of z;. Now we need an extension of g;. For this we extend h; € C%Ui;R)
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to a function ﬁj € C?(R™R) with compact support and set, further on using coordinates
corresponding to z;,

J

Q. = {x eR"™ g, > B](x/)} C ]RQL_'H .

Defining g; again by (3.28) with l~1j instead of h; and we obtain a C?-diffeomorphism §; :

Qg — Rﬁ“ with gj,, = g;. It is easily seen that Dg;(z;) = In+1, due to the special choice
J ~

of local coordinates corresponding x; which implies V,/h; (l‘;) =0.

For a function u : 2N U; — E consider the push-forward operator defined on Uj N RTFI
by v(y) = (Gju)(y) = u(g}l(y)) If w € H3 (2N Uj; E) then the classical formula for the
derivatives of v holds,

(D) (y) = Z qa,y(y)(D'yu)(gj_l(y)) for almost all y € U; N R} .
1<y|<]ef

Here ¢, are homogeneous polynomials of degree || in derivatives of gj_1 of order between 1
and |a|—|y|+1. Owing to boundedness of derivatives for g; and gj_1 we have that G, induces
isomorphisms between Hy(Q2 N Uy; E) and H;;(RTFI N Uj;E) for k =0,1,2 and p € [1, 0]
The same holds for the linear transformation given by g, which induces isomorphisms G; :
HE(Q,5 B) — HE(RTE E).

Now let us consider an open covering of the form

oac | g (B )
:ch€8Q

with y; = gj(x;). By compactness we can choose a finite sub-covering
M/
oac|Ju;
j=1
where we have set U; := gj_1 (Br]. (yj)) for j = 1,...,M’. We cover the compact set
O\ UL, U; by finitely many Uj = By(x;), j = M’ +1,...,M with z; € Q. We get a
finite covering for our domain 2 of the form

M’ M
Qc g By U Brle).

J=1 J=M'+1
Now we consider a general partial differential operator A(z,D) := 37, /<o ta()D® act-
ing on Q which is transformed into operator A% (y, D) = QjA(a?,D)Qj_l for j =1,...,M".
In the same way we can define transformed boundary differential operators Blgj (y,D) =
ngl(:E,D)g;l for j = 1,...,M’, where Bi(z, D) = 3 5<, ba(z)DP, 1 =1,...,m. Obvi-
ously A% and Blgj are partial differential operators of order 2 and mj, respectively and act

on functions defined on Uj N RIH. By splitting these operators in main part and terms of
lower derivatives we may write

A9 = A A = 3" G0 (y) D + Y | aa(y)D”

|ar|=2 la]<2
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and
BY =Bl +B/*" = Y ba(y)D’+ > buly)D’.
[B]=mu 1B]<my
We can extend the main parts A’ and Blj to the half space ]R?_H by extension of the co-

efficients. In fact, for the coefficients of A7 we can use e.g. the reflection method, i.e., we
define

. o (y) € B, (y;) NR™H!
al(y) == {a ) y A% +

- s T\ 55—~
aa(yj + 7”]2‘|yy_?z.]|2) , Y€ R1+ \B'/'j (yj)

For the coefficients of the boundary operators Blj we fix y € Cg(R" ) with xy = 1 for || < 1
and x(x) =0 for |x| > 2 and set for j =1,...,M’, I =1,...,m and all |3] = my

Vlaly) = bau <yj +X (y T,yj> : (y—yj)> , y R

J

For j = M’ +1,..., M boundary conditions do not appear, and we only need an extension
to the whole space R"*! for the main part of A. Hence we define coefficients a? of local
operators A7 again by reflection, in fact

{aa(m) r € By, (x5), ‘ (3.20)

al (x) = s
@ Qo (xj + m%) , X € ]R”‘H\Brj (x5)

By the smoothness properties of the functions an(z), |a| = 2, there exists r;(¢) > 0 such that

S Jah(y) —ah(y)| <e,y e R j=1,..., M

lo|=2 '

|\22’“é(x)—a£(wj)l <e,weRM™L j=M+1,... .M (3.30)
al=

| ‘Z b (y) = b (y)| <&,y eRYT =1, M

Bl=m;

for any prescribed € > 0.

3.4.2 Existence and Uniqueness

The purpose of this section is to establish maximal regularity for the linear problem in
domain Q = Qp U Q. By using operators Ag;(D) and By;(D) defined in (1.28), (1.29) the
linear problem reads as follows

8th + Apl(D)wP + AP2<D)¢P = fP<t, x), (t,x) € J x Qp,

Opw" + Ap1(D)w" + Apa(DY" = fF(t,2), (t,2) € J x Qp,

Bpi(D)w? + Bpy(D)YF = Bri(D)w 4 Bpa(D)YF + g(t,z), (t,x) € J x T,

Uat(t,x)w” — Ut (t, 2)w” + Noz(v? — o) = WP (t,2), (t,x) € J x I,

wl :hF(t,x), P =0, (t,z) e J x T,

wP(0,2) =ul'(z), e, w0,2)=ul(z), ze,

(3.31)
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d 1 1
Ew + w =_u —i—fb —a/BF1 Jw F 4 Bro(D)YFdo, teJ
(3.32)

w’(0) = uf,

and
dwl =0, (tx)eJxQp, Zwl=0, (tx)eJxQ, zLuw®=0 teJ (3.33)

Before we turn to existence and uniqueness of the whole problem we want to study the
ode-equation (3.32), since the concentrations (w’, w’’) and the electrical potentials (%, 1F)
are not determined by w?. Therefore, we are able to compute w® with aid of these functions.
Assume that (w’,w®) and (%, ") are known then the function w® is given uniquely by the
following solution formula

t

wb(t) = e 7 uo ab/ —r(t=s) /BF1(5,$,D)U)F(S,$) + Bra(s,z, D) (s, ) do ds
0 T

t —r(t=s lu s s s. .
+O/e ( >[T f()+fb()]d (3.34)

Lemma 3.2 Let (n+1)+2 < p < oo and u/ € Ly(J; E). Suppose that (wk; ") belongs to
Zp x Zp. Then the problem (3.32) with the condition zT-w®(t) = 0 has precisely one solution
wl € Zy = H}D(J;]RN) if and only if the data f°, ul satisfy the following conditions

1. fP e Ly(J;RY) and fo(t —abeFQ Yo' + Bp(D)w! do € E;

2. uf € E.

Proof. Suppose that w® € Zj is given. Let us consider the boundary integral over I'

appearing in the right hand side of (3.32). The integrand belongs to Yo — L,(J;C(I"))
for p > n, and thus the integral exists a.e. Furthermore, the temporal regularity does not
change, resulting in

ab/[)’pl(t,x, D)w" + Bra(t,z, D)Fdo € Ly(J;RY) .

Consequently, we see f* € L,(J;RY). Applying 2% to (3.32) we get
21— ab/ 2L-Bpi(t, x, D)w + 21 Bpo(t, x, D)y do = 0.
r

Due to the regularity of w® and electroneutrality for all ¢+ € [0,7], we may take trace and
obtain w?(0) € E. Conversely, let u} € F and f* € L,(J;R™) be given. Then, the unique
solution of (3.32) is given by formula (3.34), and here one can verify that w® belongs to Z,
with zT-w?(t) = 0.
O
Now, we shall prove the main result which reads as follows.
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Theorem 3.4 Let Qp, ) be open bounded domains in R* T with C?- boundary, Iy := 0,
O =T, UT and dist (I, I') > 0. Let J =[0,T] and 2+ (n+ 1) < p < co. Suppose that the
assumptions (1.23)-(1.25) are satisfied. Then problem (1.39-(1.41) has exactly one solution

(whwhwb) € 25 x 75 x 7],

Whoh) € Z0 = {(070") € Zf x ZE: 4, (67 — ") e Y.}
if and only if the data f¥, f¥, g, b, hE, o, ul, ul', ul satisfy the following conditions
P e Xl ={f e Lp(J;iLp(Q; RY)) : 2T f € Hy*(J; H, ()}
e X = {f e Ly(J; Ly RY)) : 2T f € Hy*(J;H, ' (Q0)) )5
fb c XT =L (J'RN)'
geyy = {9 € Y2TFP(RN) = By (J; LT RY)) N Ly (J; By /7 (T RY))

2Fg € By (J;Bpp"(Ip) }
WP € Y (RY) i= Bl (J; Ly(Tps BY)) N Ly (J; B 7 (T RY)):
6. WP € Y{L(E) = Bl (J; Ly(T's ) N Ly(J; BE, /7 (T E));
7. uy € Vp(Ey) == Bp"" (i By), uf € Vi(Ey) = By (O Ey), uf € Ey, and
uf >0, k=P, F,b;

8. Xoz(Wf — ) = hT(0) in By, (Tp; RY) and uf = hF(0,2) in By,»?(T; Ey);
9. Bp1(0, D)ul + Bpa(0,ul’, D) — Bp1(0, D)ul’ — Bp2(0,ud’, D)y{ = 9(0)

in Bpp? (Tp; RY), where (W, 48 is the unique solution of the elliptic problem (3.35)
(see Remark 3.1);

10. fF, fF, g and f° fulfil the compatibility condition

e o~

R

/ZT-fP(t,J:)dx+/ZT-fF(t,x)dx+/ g(t, x)d0+ —Z Trb) = teJ.

Moreover, there exists an isomorphism between the space of data including the compatibility
conditions and the regularity class Zg X Z;C X ZbT x ZT,

Remark 3.1 1. We want to discuss the compatibility conditions on the boundary I». Tak-
ing trace t = 0 in the boundary conditions on I involves the new functions (wé) ,1/15 ) =
(¥7(0),4(0)). In fact, ¥* does not make for a known function as in contrast to w®. The
resource is to consider the elliptic problem after taking trace in ¢ = 0, where the function
(4F(0),1%(0)) is accounted the weak solution of this problem. Note that this procedure is
justified by the time regularity of the data. The problem reads as follows

V- (ad Vo (0) + V- T-DP(0)Vul) = =2T-f2(0), =€ Qp,
V- (ag VYT (0)) + V- (T-DF(0)Vuy) = =2 f7(0), @ € Qp,
ab 0,0 (0) + 21-DP(0)0,ul = al'0,4F (0) + 2T-DF(0)0,ud + 27-g(0), =z €Tp, (3.35)

BP(0)— P (0) = —

Aolz[?
vE(0)=0, zeJxT,

2P (0), x €l
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with af = 27 M*(0,z)uf(x) € C'(Q) due to the embedding B;,*"(Q) — C'(Q) for
p>(n+1)+2.

Furthermore, for solving this problem we have to ensure that a’(‘j is positive which is
accomplished by the condition uf(z) > 0. This elliptic problem is solved implicitly during
the proof, cp. to the proof of Theorem 3.3.

2. Note that the compatibility condition 10. is only needed to ensure that 2z w? = 0 for
t € J, cf. Lemma 3.2 and 1.1.

Proof. Step 1 - the necessary part. Let (w, ) := (wh,wh ¢, ) be a strong solution of
(3.31)-(3.33) with the regularity stated above. Then it follows f*¥ = 9,w* + Ap w* 4+ Apatp® €
Ly(J; Ly (Qk; RY)) for k = P, F. To show that f° belongs to L,(J;RY) we refer to the proof
of Lemma 3.2. Furthermore, we have to verify that z”- f* belongs to H;/Q(J;H;(Qk)). In
view of the divergence form we obtain by using duality

T rk T Nk k k k
HZ f HHZI,/Q(J;HF(Q;C)) < HZ -D*Vw HHII,/Q ))+ Ha Vw HHII,/Q

(J;Lp(Qp; R H1L
k k
<C (lo*ll 7 + 14" )27 ) -

Thereby, have in mind the regularity assumption (1.23) for D¥ and @* € Z,(E.), which
imply a* € CV2(J; C(Qk)).

Now, we prove the fourth condition. By Proposition 2.3 we know that By (D)w* € YQF"FFP
and Ba(D)y* € Y2:,FFP which entails g € Yar,. To prove 27~ g € Hy/*(J; B,p/"(Ip)) we have
to study the weak formulation of the elliptic boundary value problem obtained by employing
2T to (3.31). The space B,,/"(T;) is interpreted as the dual space of B;;;/ 4 (I») where the
measure on I, is the usual surface measure induced by the Lebesgue measure in R", see
Section 2.1. Further on, we set f*¥ = 0. Before studying the weak formulation, let us make
some preparations. Given p € (1,00), we denote p’ the dual exponent, that is p’ := p/(p — 1)
and by (,)q the duality pairing

(J5Lp (Qp; R 1))

a0 Ly (R x Ly(Q;RYH - R, v,v)— [V -vdr,
() p p
Q

where it will always be clear from the context which I € N\{0} has to be chosen. As usual, we
get the weak formulation by multiplying the differential equation in Qj with a test function

v E H;,(Q), ie. U € H;,(Q) with compact support in Q. Integrating by parts, and making
use of o = 0 on I' := 02 we obtain

> / Vio(z) - [a®(t, 2)VoF (t, )dx + 21 - D*(t, )V (t, 2)] do = / o(z)2l-g(t, x) do .
k=P, F O Ip

From the above identity we derive

/’U(.%')[ZTg(t + h7$) - ZT'g(ta x)] do < HVQNJHLP(Q;R"JFI)
Ip

Y {Ha’“<t+h>w’“<t+h> — " (t)VY* (1) ||y, (o) +
k=P,F

|27 D*(t + h)Vw"(t + h) — ZT‘Dk(t)vwk(t)||LP(Q}C;RTL+1)},
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with G‘FP =w, forall v € IO-I;,(Q) and t + h, t € J. By taking the infimum and using

inf {|9]| -
i,

/

:0=vonlp} < C”UHBl,_,l/”/(Fp)
pp

P

we get

/v(x) [zT-g(t +h,z)— zT-g(t,x)] do < C’Hv||B171/p,
p/p/
Ip

(Ip)

5 {rrak<t+h>vwk<t+h> a0 | —
k=P,F

|2T-D*(t + h)Vw"(t + h) — ZT‘Dk(t)vwk(t)”LP(Qk;Rrrkl)}7

for all v € B;;,}/p, (Tp). This inequality implies 27-g(t + h) — 27-g(t) € Bp,/?(I») owing to
duality. Finally, applying the norm of HII,/ *(.J), which incorporates the above differences, and
taking into account the higher regularity of the coefficients a* and DF we obtain

HZT'gHH;/?(J;B;pl/P(FP)) < C Z {Ha’k‘Cl/Q(J;C(Qk))Hwk”H;/Q(J;H;(Qk))
k=P, F

k k
D v (gic@nmy v ”H,l,/Q(J;H;,(Qk;RN))}'

The conditions 5. - 7. are consequences of Theorem 2.5, Vi)* € ZkTv, PP —yFf € YEFP
and the embedding H,,(J) < C(J). The compatibility conditions 8. and 9. follow from the
embeddings

Vi, (RY) = C(J; By, (I RY)), Yyl (RY) — C(J; By, *"(R™)).

Finally, the condition 10. results from the boundary value problem, see proof of the Lemma
1.1.

Step 2 - the sufficiency part. Let the data f*, uk, for k = P,F,b and g, h*', h¥ be given.
Assume that we have already determined the functions (w!, w!) and (¢f,F). Then we may
employ Lemma 3.2 to the ode-equation resulting in w® € ZZT . To get w® € E we have still
to check that f°(t) — a® [ Br1(D)w"+ Bra(D)!do lies in E. This can be seen by using
compatibility condition 10. and identity (1.44) derived in the proof of Lemma 1.1.

Now, we will solve the linear problem (3.31) for a small time interval, that means, we
choose an appropriate T' such that all arguments work, which use this fact. This can be
always reached by decomposing J into finitely many intervals [ih, (i + 1)h], i = 0,...,1,
with h being sufficiently small. Then, we solve (3.31) in each of these intervals, as it is
carried out for the time interval [0, h]. Every solution wy (i+1)s) (%, ) belongs to the space
of maximal regularity, since the function wyy, i11)y)(ih, z) lies again in the space of initial
data Vp(E) x Vp(E). Consequently, w belongs to Zp([0,7]) x Zp([0,T]). The electrical
potentials ¥y (i4-1)8) (£, 2), 4 = 0,..., I belong to Z on this interval and Yy, (i41)p) (ih, ) lies
in Byp”? () x Byp”?(Q). This can be seen by the embedding

Zyy =W, (J; Lp()) N Lp(J: Hy () = C(J; Dp,,, (1/2 = 1/p,p)) = C(J; B, () ,
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where D), 11 denotes the negative Laplacian in L, (). Since V4* belongs to Zy v and the
differential operator V is a bounded mapping from Bj,*?(Q) into B,,*'" (), we may deduce
Yk € Vi := Byp /" (). Consequently, 1 belongs to Z([0,7T]) due to connecting conditions.

(a) Localisation. Now, we will localise the problem as in Section 3.4.1. We choose a
partition of unity ¢; € Ca"(R”“), Jj=1,..., My, with 0 < ¢; <1 and suppy; C Uj, such
that the domain is covered in the following way

My Mo My
oclu, e Y Uy, Tc Y Uy
Jj=1 Jj=Mi+1 Jj=M3z+1
Mo My Mo My M3
o\ U ulcUu, ol U v U Uulc U U
Jj=Mi+1 Jj=1 Jj=Mi+1 Jj=M3z+1 J=M2+1

U; are chosen as described in Section 3.4.1. Then (w,) is a solution of (3.31) if and only if

for j =1,..., My they satisfy parabolic equations in domain £
9,(pjwh) + 0 Ap1 (D)W’ + @i Apa(D)W = ¢, fF,  (t,x) € J x QN U, (3.36)
O, (pj0™) + ;A1 (D)w 4+ p; Apa(D)T = @i fF,  (t,x) € T x Q0 NUj, (3.37)

transmission condition on I}

©;Bp1(D)w 49 Bpa(D) = p;Bri (D)w +¢;Bra(D)b +pig, (t,z) € J x TN U,
(3.38)

jump condition on I» and boundary condition of Dirichlet type on I’

Ugl(cpjwp) — Ugl(goij) + Az [gojwp — goij] = goth, (t,x) € J x I NU;, (3.39)
goij = nghF, ijl/}F =0, (t,x)eJxI'n Uj, (3.40)

and (w!, w!) satisfy the initial data
pw’ (0,2) = pjul’ (z), z€QpnUj, @wh(0,2) =pjul(x), z€QprnU; (3.41)
and enjoys the electroneutrality condition
Lopwl(0,2) =0, 2€QpnU;, 20w (0,2)=0, 2€QrnU;. (3.42)

For the case j =1,...,M; and j = My +1,..., M3 boundary conditions do not appear, and
we rewrite (3.36), (3.37) by commuting ¢; with differential operators in the form
0,(pjw") + A (D) (pju") + Ara (D) (09%) = 0 f* + CF(wh ¢%),  (t,2) € T x QN U,
pjuw™(0,2) = pjui(x), =€ QUNUj,
Lopiuwb(0,2) =0, =€ QpnUj.
(3.43)

Here one has to set k = P for the case j = 1,...,M; and k = F for j = Ms+1,..., Ms.
The differential operators Ag; and Ago are not yet split in a main part and lower terms
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Furthermore, with a view to getting the invertibility of —A in the full space, we have shifted
this operator by 1. In fact, we set

Api(t,z, D)w = — V - (D*Vw) + DFw

Apa(t,z, D)) = — V - (M*a*F @ V) + MFakqy

All terms of lower order are combined as

Cjk(ta Zz, wkv ¢k) = C]k,l (ta Z, wk) + CJk,Q (ta Z, 1/)k)
= [Ap1(t, z, D), goj]wk + cijkwk
+ [Akz(t @, D), J0" + o MFat (3.44)
=V - (D*wkV ;) + D*Vuw - Ve, + p; DFwk
+ V- (MFaFpPV ;) + MEaRVR - Vi + o MEaFyR.

(b) Full space problems. We turn to the localised evolution problem (3.43). By extension
of partial differential operators to the whole space R"*! as performed in (3.29), we obtain
local operators Aj, (t,z, D), Al,(t,z,D). After putting wf = pjuwk, @b}“ = @;9F and fj'»C =
o fF+ C]’?(wk, Y*) we can write

Opwh + AL (t, 2, D)l + AL, (t, 2, D)k = fF, (t,2) € T x R"H,

3.45
w;?(o,x) = gojulg(a:)7 zT.wf =0, (tz)eJxRM, ( )

By using arguments of perturbation, this problem is solved by the full space problem consid-
ered in Section 3.1. In fact, employing Theorem 3.1 to the perturbed problem of (3.45) leads
to

(Wi, %) = S(fF, ojuf) + K (wh, ¢F),

with

KFwh, ¢f) = S<v - ([DF(t, ) — Dy (0, 2)] Vw§) + [Df (t,2) — D5(0, ;)] w

M) ) — (MFab) (0, 2,)] o, o)

and S € Lis(XT x V(E,),Z" x ZT). Tt is easily seen that I — K € B(,Z7 x ,ZT). The
task consists in estimating K Jk to aim at | K jk’H < k < 1. By using maximal regularity of

S it depends on estimating terms of perturbation in X”. The smallness of these terms can
be obtained by continuity assumptions of the coefficients combined with the techniques of
localisation. At first, we consider the perturbation in ¥*. In the following, for the sake of
simplicity we suppress the indices k and j, where it is possible. Having in mind the embedding
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ZT — C(J; CY(R™*1)) we obtain

IV - ([(Mu)(0,z5) — (Ma)(-, )]V [y == IV - ((M@)(0,25) — (Ma)(-,)]VY)| xr+
IV - ([a(0, 25) = aC, )V vy gt sy
< C(I(Ma)(0,25) = (Ma)(-,)llciromrr miy AV, (L, ®e+1y)
+ T2 |V (M) | ¢ (g0 mntrmn sy [V 1210 (R Rn+1)))
IV - ([a(0,25) = al, )V 12y gt @y

By using duality the last norm can be estimated by

19 - (a0, 25) = - NTO, 172 o oy < 10(0,35) = 0l cararonsn
HVW 1/2 (J;Lp(R+1;Rn+1Y)
< a(0,y5) = a(:, Mcrz(rc@ey vl zr-

On the same lines the other terms of K ]k: can be treated, so that we obtain an estimation of
the form

1K (wf, )l 27 o zr < Cle, T (] 05l 27 o 27

Choosing ¢, T sufficiently small we achieve C(e,T) < 1 and consequently ||K fH <k<L
Applying the Neumann series leads to the invertibility of I — K Jk in oZT x ,ZT. The operator
Sk (I - K k) 1S defines again an isomorphism between space of data and Z7 x Z7T i.e.
we have

Sy e Lis(XT x V(Ey), 2" x 27),

where (wf, wf) = S]’?(gojulg, f]k) solves the problem (3.45). In order to enable a more conve-
nient notation for writing the entire solution (w, ) we set
Sj=(8,0), j=1,...,M,

Sj=(0,8f), j=My+1,...,Ms.

(¢) Half space problems. Next, we turn to j = Mg+ 1,..., My. Here we have to solve a
parabolic problem with boundary condition of Dirichlet type. In fact, the equations (3.37),
(3.40), (3.41) and (3.42) are left from system (3.31). After commuting ¢; with differential
operators, using local coordinates as defined in Subsection 3.4.1 and perturbation, we obtain

Ol — DF(0,y;)[A — 1wl — (MFal)(0,y;)0f = fF, (t.y) € J x Ry,
wy (t,y',0) = hj (t,y), wj(t,y,m:o, (t.y') € J x R",
(Oy)—uOJ() y € R,

j (tvy) = 07 (t7y) €Jx Rr—fl—-i_l :

(3.46)

Here, we used the notations w G]cp] , = ngojuo , h- = Glyp; hE and

fF=fr+ AJ';(D)(w]F, oF) = ngoij +GICE + A (D) (wl 1.
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The operator of perturbation CJF containing the commutators [Ap;(D), ¢;], ¢ = 1,2, is de-

fined by (3.44). The partial differential operator .A;f (D) comprises all terms of perturbation
caused by changing coordinates and passing into constant coefficients. In order to specify this
perturbation we are going to compute the transformation of an operator having a divergence
form. It is easily verified that

~G'V, - (aVau) = = V- (aVyu) = Vy - (ad,  uV,h(y))

Yn+1
=8y, (aVyu-Vyh(y') +ad, , u|Vyh(y)?)

Yn+1

where a denotes any coefficient. After putting

APS™(q, D)u = — 9, _ (aVyu-Vyh(y)+ ad, . u IVyh(y)?)

Yn+1

(3.47)
—Vy - (a ayn+1u Vy/h(y’))

the operator A%’E(D) can be written as follows

— APMD] Dyw =V - ([(M]55)(0, ) — (M@ )(t,9)] @ Vo) (3.48)
+ (M) (0,5) — (M a7 ) (8, y)lp — A" (M a5, D).
At first glance, we perceive that the divergence structure is maintained which is going to play

an important role for studying these terms in XI. Employing Theorem 3.2 to this evolution
problem leads to the equivalent formulation

(wh ) = S (fF W ul ) + S (A (D) (wh 4, 0,0).

Note that the data (hf , ug ;) and (0,0) satisfy the compatibility condition. As in case of the
full space we define the operator K JF by means of

KF (wf 4 = St (45 (D)(w] ), 0.0)).

with 81 € Lis(XT x{(h,up) € Y] (E)xVL(E): hy,_, 12T x Zﬂo), and have to

verify the smallness of || K JF |. All second order terms of A% (D)w having differences become
small by applying the same arguments used in the full space problem. The perturbation
operator A7 (D) contains the function h; picturing the manifold I'. By the construction of
transformation G7, we have arranged that h; € C?(R"), supp h; C supp p; and Vh; (y;) = 0.

= Uq|yn+1=o

The latter property gives rise to the smallness of A7*™(D) in X, where we have to exploit
the divergence structure for estimating in Hy/*(.J; H, L(R”T1)). At first, we consider the space
1.pN
XT = Ly(J: L(RTT BY)).
|AP (M F@E DYy | r < [Vyhllogngn 10y, ., (MG © Vi) xr
F~F F
+ Hvy’hHQC(R";R")”ayn+1(M u 8yn+1¢ )HXI

+IVy hlloqemn [Vy (MFEE,, 7l xr

+ 1Ay Allo@ngn M@0, " | xr
< c(IVyhllognam) 19" [l 2z + ClAy Rl c@nan T2 147 )| 2z
— (e, T)[[6" | 2z
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In order to estimate z7- A7™(MFaf, D)y in Hy/*(J; szl(RTfr“)) we make use of duality
arguments due to the divergence structure of this term. By doing so we obtain
T Aj F~F F F
|25 AP (M a", D)y HH;/z(J;H;l(RiH)) < IVyhllo@nzmlla® oz oy
F F
’ (||ayn+1w HH117/2(J7LP(Ri+1)) + ”vy’w |’H11,/2(J;LP(R1+1;RW‘)))

2 F F F
+ Hvy/hHC(R”;R")Ha ”Cl/Q(J;C(Ri+1))”ayn_Hw HHII,/2(J;LP(R1+1)) < C(g)”w HZ};
Hence, we obtain an estimation of the form
j F F j F~F F F . F
HAJ’S””‘(D].,D)wj +Aj’sm(Mj uj7D)1/}j HOXI < C<E=T)H(wj UK )Hoz?gxoz{’
and after summarising all estimations we attain
F( F F F . F
”Kj (wj ﬂ/’j )HOZIXOZI < C(EvT)H(wj ,wj )HOZIXOZI7
with C'(e,T) < 1 for sufficiently small € and T. Applying the Neumann series yields

(wi' o)) = (I = K] ) 7' Se(f], by yuf ).

Jogo

We set SF (I— K; =18, and this operator defines an isomorphism between space of data
and ZT x Z+70, i.e. we have

S € Lis(X] x {(h,uo) € Y{ (B)x Vi (Ey): hy_y =gy, o}, 2% x 25 ),

for j = M3 +1,..., My; putting again S; := (O,SJF).

(d) Two phase problems. We are now concerned with the last case j = M; + 1,..., Mo.
For this we have to study a system for (w’, w*') and (¥, %) coupled by boundary conditions
on I'x. After proceeding as before, i.e. commuting again ¢; with differential operators and
matrices, applying transformations G’ and perturbation, we obtain

Jwf — (MFal)(0,y)[A = 1wl = 7, (¢,
Jwi — (Mfaf)(0,y)[A =1 = ff, (¢,
— D (0,y;)9,,,, w} — (MPﬂf)(O,yg) 8,,., %) =—DJ(0,y;)0,  wi

— (M@f)(0,9;)0,, WF + 3, (ty) €JxR" x {0} (3.49)
O,yj)w;D - UE}(O,yj)wF + )\oz(wj — wj ) = hf, (t,y) € J x R" x {0}
)

+1
EJ><IR’}F
e Jx R

atwf - Df((),yj) A— Y)
Y)

J

P 1 F F 1
= U, Y GR:L»JF ,  Wj (0) = U, Y € RCLJF

U,
dwl =0, (ty)eJ xR lwl =0, (ty) eJ xR

The support of 90] was transformed onto R”H, where the boundary I}, turns into the hyper-
plane {(v/,0) : ' € R"}. The functions w = GIpw? and 1/)P GI ;9" live in the upper
half space R"+ , whereas w =G gojw and wF GI gojzpF live in the lower half space R™*1.
Furthermore, we have set U/w( Y) = GJUk Y(t, ) and hf := GY¢;hP. The right hand sides
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are defined by
¥ o= fE o A (D) (w ],%) G f* + GIOF (b, F) + AL (D) (wh, 0.
gi = g5 + BE(D)(w],v7 ,wi 0)) = Glpjg + GIC(w o w wh)
— Bj’a(D)(wfa f? ija %F)
Ry =+ (0.0 = Opj6,9/,0)) w] = (U5 0,5) = U/, 0)) )

(3.50)

By C) we have summarised all terms arising from interchanging ¢; with boundary operators
Br1(D), k=P, F and i =1, 2.
Cj(t, z, wh pfwh ) .= Cj 1 (t, x, wh, w!) + Cja(t, z, 0 F T)
= [BPl(t, z, D)u @]]w + [BPQ(ta z, D)u @]]djp
- [BFl (t) €z, D)’ @]]wF - [BFQ(t) xz, D)7 @]]wF
The operators Aj’g, k = P,F are defined in (3.48). So, it remains to explain the operator

of perturbation B7¢(D) appearing in the transmission condition. The normal derivative

GIVu(x) - v(z) transforms to —a, . (G7u) + B»*™(D)(G7u), with

B»™(D)u := Vyu - Vyhi(y') — [Vyhi(y)*0,,  u.
Hence, B¢(D) can be written in the form

B(D) (g wp") = 37 8 {[D5(0,y5) — DYt o/, 0010, . w" + [(MFa)(0, ;)
k=P,F

(MFaE)(E o/, 010, v — Di(t,y/, 0) B (D)w* — (MFif)(t,y/,0)BF"™(D)wk}, (3.51)

with 6p =1 and 6p = —

Now, we turn our attention to problem (3.49). So according to Theorem 3.2 this evolution
problem can be solved in the maximal regularity class Z:‘C X ZSC X Z}:_. Using the solution
operator S, _ we obtain the equivalent formulation

(w J’wj’ J’w]) +,(fj,fj,g], ugij’ué:,j)+Kj(wf7¢f’wf’wf)’
with
Ky (wf f wf wf) = 8. (A wf o), A ] of), B (w] of wf ),
[U550,y5) — Ug}(t,y’,O)]wf—[UE}(O,%)—Uﬁ}(t,y’,O)]wf,O,O),
and

S, € Lis(XIxxT x { (g, h,ul ,ul) € V5 x YT (RY)XV(E) x V_(E): (g, hyuf ,u)
enjoy the compatibility conditions 6. & 7.}, Z}C x 71 x Z:ﬂ_) :

Note that the data enjoy the compatibility conditions of Theorem 3.3 as well as the perturbed
data due to considering null initial data. The perturbation will be treated via a Neumann
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series. The smallness of operators A{;‘E(D) were already discussed when considering the full
and half space problem. We now investigate the perturbation in the boundary condition of
Dirichlet type. The postulated regularity of ﬂf entails that U, jl is a linear bounded operator

in Y{'(RY) as well as in Z7, ZT for p > 2+ (n+ 1), see Proposition 2.3. Further on, using
the continuity of the trace operator leads to

> 00,95 = T G N llyyz @y < CUINTR0,95) = UpS(-, Mwi llyzz
k=P,F

+ 10750, y3) = Up i (o )wy Il z7)-

In the following we consider the case kK = P and do without any indications. Proceeding as
in the proof of Lemma 2.6 yields

O10,95) = U™ Nwllyzr < CUTTH0,9) = U oo @rttisenm 10l (g, etz
+ ol owcmy @l l, ey sevy)
+ HwIILp(J;H%(RTI;RN))||U_1(0’ Yi) — U_IHC(J;C(RTLl;B(RN)))
+ HwHOC(J;C(]Rfrl;RN))HU?l”LP(J;H%(R1+1QB(RN)))
+ Hf]_lHC(J;cl(Ri“;B(RN)))Hw”Lp(J;H};(Ri“;RN)))

<C(IU710,55) = U lo(r.cmmr,5@yy) + *)|wll,zz-

Lastly, it remains to examine the perturbation of boundary operators in the space y2T .
At first, we have to ascertain the smallness of B7(D)(w,) in Y5L (RY). In view of conti-
nuity of the trace operator, i.e. 7, € B(Z%,YQT), it suffices to study these terms in Z%.
Terms containing differences are treated in a similar way as above, where the estimations in
H,/*(J; LP(R?EH)) are coped with Lemma 2.6. Furthermore, by making use of the fact that
|Vyhi(y')| tends to zero in view of V,/h;(y;) = 0 we can control the operator B7™(D) in
Y3 (RY). Exploiting these facts we accomplish the desired result.

Now, we deal with the estimation of 2T+ B(D)(w,v) in H,*(J;B,y/"(R)), whereas in
contrast to the above approaches we have not direct access. The purpose consists in deriv-
ing a relation between the perturbations .A7°(D) and B7¢(D). The idea bases on the fact
that the perturbation Ai’a(D) has divergence structure and in a way is compatible with the
perturbation of transmission condition. At first, we examine the expression

[ Ay [ A vy,

n+1 n+1
R R™

where 0 denotes a test function belonging to the space H, (R"*1). In the following we will
suppress subscript j for the sake of simplicity. By means of the case k = P we shall compute
the above integral, see (3.48) for the definition of A%’ (D). Due to the divergence structure
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of this perturbation we can integrate by parts which entails
ST A3 (D) (wh P )5 dy = / (=7 (DP(0, y;)— DF(t, y) P+ (a0, ;) —aP(t, )] B dy
Ri+l Ri+1

+/(2T'(DP(0,yj) - DP(t,4/,0))9,,,,w"” + (a”(0,y;) —aP<t7y’,0>>ayn+le) ¥ dy’

Yn+1
Rn
+ / (z7-(DF(0,;) — DP(t,y))Vw"” + (a”(0,4;) — a” (t,y)) V") - Vidy
R’_f_“

- / (zT-DP(t,y’,O)Vy/wP-Vy/h(y/)+ZT~DP(t,y’,0)8yn+1wP]Vy/h(y’)|2> ody'

Rn

/

+ / (ZT-DP(t,y)Vy/wP -Vyh(y') + ZT-DP(t,y)ayn+lwp\vy/h(y')|2> 0y, 0y
R+
+ / (a%, Y, 0)Vy " - Vyh(y') +a” (8,9, 0>ayn+1wpivyfh<y’>\2) vdy
R"

+ / (a” (. )V Vyhly) + a” (6,90, 7 IVyh(y)?) 0, dy

R
+ / (zT-DP(t,y)ayn+lwpvy/h(y’)).Vyxﬁdy—i— / <aP(t,y)8yn+leVy/h(y’)).Vy,f)dy.
Ri+1 R7J1r+1

On closer inspection it turns out that the perturbation Bj’E(D)(wf, JP, wf, ij) exactly co-

incides with functions of the above boundary integrals, of course by adding the case k = F.
This fact results in the identity

[ A @l ey + [ A OVl )ody = [BED)wf vl v dy
R+ R R

P P F F ~
+Is(wj7 7 7wj 7¢J ,’U),

where I. comprises the above integrals over half space RTFI and in case k = F over R™".
The latter perturbation can be estimated by using Hélder’s inequality as follows

P P wf F ) < ||9]- T(DE(0,y;) — DE(t, ) esgien
Ia(wj,d)],wj,wj,U)_HUHH;,(RHIMZP:’F{[]Z (D5(0,y5) = Dj(t; Ny mmy

HI2T DS Ol ognt gy IV hillo@ngny + IVy hille @) | 105 @)l nt ey

[0 (0,57) = a5t Moy + 15O ooy (1955 ez + 1Yy h B )] -

rw;-anmﬂ)},
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and thus
P P _ F ,F ~
1] 0F wf ol 0y, < @l

Hl & )H(wf’w ’1/}] ’d)g )HZTXZTXZT

By using duality concerning the perturbations A{C"E(D)(w;.f , wf) we get

Bl ooy <ol 1A R g ey
p/

in (Rr+1)
+HZT'A%E(D)( Jﬂp] )HH LR +c(e )[”( f)HHZI,(RKH;RN)XH;(RT_L“;RN)"’"

H(%Pa wf)HHzl)(Ri+l)><Hzl7(Rﬁ+l)] }’

where we set 0, = v. As in the necessary part of this proof the above calculations can
be carried out for the times ¢t + h, t € J, and we can again consider the difference of both

expressions. After taking the infimum over HUHH and using duality we obtain
1 (Rn+1)

HZTB]’E(U]JP,?,ZJP )(t+h)_z BJE( fvwfawfv ]F>(t)|| _l/p(R") S
1T AR (D) (wf ) (¢ + h) = 2T AR (D) (w] ]) (Ol oy

+ Hz T. A <D><wj,wf )(t + h) = 2T AL (D) (w9 ) (Ol ey

@y, wi )+ h) = (wi’, wi)(¢ )”H1 (RIHRN) xHL (R RN) T

I )+ ) = @F D) Olly @y ey )

We now employ that equlvalent norm of Hl/ *(J) which is characterised by differences. Thus
we attain B7€(w f, i W; ,wJF) OHI/Q(J, B,,/"(R™)), and this operator can be compared
with perturbations coming from the half spaces RZ‘;H RH
following estimate

and . In fact, we have shown the

2Bl 6wl 6 oy < 12T AE DN @E DN /2 sy
B ‘-A%«f( )(wjﬂ/’f)”oH;NU;H;l(RgH))+C(5){H(wj )H HL/? (J3HL (R7RN) < HL (R™HLRN))
(G DI RnH)XHI(Rm))}
< O(T,e)|(wy wil, v 07 ) 27 o 27 ozt

All things considered, we have achieved an estimation of the form [|K; || < ko < 1. After
employing the Neumann series, we obtain a unique solution (wjD , 1/131-3 , f , ) of (3.49) given
by

(w; %7 ]’wj) (JP’ J’gJ’hP uOJ?“&)
with S; := [I — K;]7'S, _ and
Sj € Lis(XL x XTI x { (g, hyug uf) € V3 x YT (RY) x Vi (EL) x Vo(Ey) : (g, hug s ug)
enjoy the compatibility conditions }, ZI x ZT x Zf_).
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(e) Problem in domain. Now we address the issue of constructing a function with the aid
of local solutions. Subsequently, we have to check that the so designed function solves (3.31)
and is unique. For this purpose we choose another partition of unity ¢; € Cg(R™) such that
¢j = 1 on supp ¢; and supp ¢; C U;. Summing over j we receive a solution formula of the
linear problem.

M4 M4
(w, ) =D (G 718;GFpip+ > ¢5(G7) 1 S;GICi(w, ) = Soo+ Si(w,¥)  (3.52)
=1 =1

The inhomogeneities and initial data data were summarised to o := (f PfE g hhnE uOP , ug )
whereas C; comprises all terms of lower order, i.e. we set

(Cf(wP’¢P)’O)_ jzl,...,Ml
) (Cf (wh4"),0) : j=My+1,..., Ms
(C]F(wI: F)7O7O>: j:M3+1,...’M4

(3.53)

Furthermore, we want to remind of the mapping properties of solution operators S;.

S; € Lis(XT xV(B),Z" x 2T), j=1,...,Myand j = My +1,..., Ms,

Sj € Lis(XTxXT x{(g,h,ul ,ul) € VI x ' (RN) x Vi (E1) x V_(B4) : (g, hyud,uf)
enjoy the compatibility conditions }, ZIXZTXZ{?), J=M+1,..., Mo,

Sj € Lis(XT x {(h,uo) € Y (E) x Vi(Ey) : hy,_, L ZE % 21 ),
j=Ms+1,..., M.

= U0|yn+1:0

The two-phase problem (3.3) can be written abstractly as
L(w, ) :=p. (3.54)

We have to establish that solution formula (3.52) leads to the inverse operator of L. Firstly,
we prove the existence of a left inverse, i.e. the only solution of (w,v) = Spo + Si(w,))
has to vanish for zero data. The goal consists in establishing that I — &; is invertible in
OZ}; X OZ}; x oZT. We are going to see that the operator of perturbation S; can not treated
as before, namely by applying the Neumann series. It turns out that not all lower order terms
become small for T tending to zero. This circumstance is caused by the elliptic problem for
1 which is involved due to the electroneutrality condition. Therefore we have to study this
problem separately. In spite of this fact we want to estimate S; in order to which terms do
not become small. By using the mapping properties of solution operators §; we have

M1 M2
k
181w, )l 750 220zr <C [ S NC Iar + S S0 K r + 1€ 3
7=1 j=Mi1+1 k=P,F
My
F
> 1 N

j=Ms>+1
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We start considering Cj(w, w) in oYy F . Lower order terms with respect to the transmission
condition are the functions w* and W“ with certain coefficients. In fact, we have set

Cj(w, ¥) := Cja(wfw™) + Cja(p' 9"
.= DPw’8,p0; + MY a" P o,p; — DFwhd,0; — MEal T 0,p;.
Due to the continuity of the trace operator V|, We are able to carry out the estimations in
Z% resulting in
k, k k 1/2 k
1D 0,05l gy < Cllwtllzr < CTV2 ] g

To treat lower order terms of ¢*, we have to take into account Ve Yk € JHY(J;Bpp P (I1))
and the continuous embeddings

H;/Q(J) s B;;f(J) — B;;DQ*l/QP(J), p>2.
We thus get

IR0, 050, @y < COMF gy (I8 gagaavon g iy + 08T, i)
< C(Tl/Qpr ||0H;1;/2(J§Lp(rp)) +T1/2|WJ HQH;/Q(J;B},;””(FP)))
<O 4 T2) 9| 2

Now, we want to tackle the estimation of 27-C;(w, ) in Hy*(J; B,p/"(I)). Observe that the
estimate

12" D", 04 /2 ) <Cll" Dt gz

(J:Bpy /P (1) By, 2P (1p))

holds for 1 >2—20 —1/p > 0 and 6 > 1/2. Then, we continue with

|27 D*w kH Y2822V ))SCHDkHCl/Q(J;Cl(Qk;B(RN)))HwkHOH;ﬂ(J;H?;%(Qk))

0— k 60— k
< CT 2wt gz < CT' 2wtz

where 1 — 1/2p > 6 > 1/2. Carrying out this estimation for ¢* does not lead to a factor
involving a power of T'. In fact, we obtain

< Clla* ¢l 2
< Ollv¥l,

T k~k 1k .
||Z -M"u ¢ OVSD]HOH;/Q (J;Lp(F C||¢ ” 1/2 (JiL (FP))

(JBpp /P (Tp))
Hy/? (JHs ()

for 1/p < s < 1. Since 1 has not additional time regularity we can not follow up the above
estimation. Now, we want to discuss C']’?(w’€ , %) in X! to aim at gaining a constant tending
to zero for T — 0. Observe that

CJ]? =V - (D*w*V ;) + D*Vu® - Vo, + ¢ DFuw*
+ V- (MFaFYFV @;) + MEaEVYP - Vs + o MPaRYE
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In the following we use the embedding Z!', ZI' — C(J;C'(Q)), cf. Lemma 2.5, regularity
of the coefficients, and the additional temporal regularity which provides the constant 7'*/2.

ICHlxr <C (Hwk\lxg +IVllxr + 95| xr + IIVwkaT)

<oTH? (Hw’fuoHyz + VR

sy T 2, 0 H,'? Jmek)))
k
+ CT||w™|gmy (gL, 00))
k k
<1 (| gz + 10,27 )

For estimating z7- C;? in Hy*(J; H, (%)) with intent to provide a small constant we will use
the duality pairing. In order to keep the effort small, we pick the “worst terms” concerning
regularity. We shall consider (z7- D¥Vw* + a*Vy¥)Vp,; and V - [(z1- DFwk + aky*)V,].
Taking into account the smoothness assumption of df , af = ZIM*Fa* | using Lemma 2.2 and
@* € Zy(Ey) — UL (EL) which imply a* € U], we obtain

HV . [(zT.Dk’wk + akq/)k)V(pj]”OH;)/z < CHzT.Dkwk + akwkHHé/z

(JH, 1 (%)) (J5Lp(Q))

k k k k
<C (HD ||C1/2(J;C(ﬁk))”w HOH;/Z(J;LP(QIC)) + lla ||cl/2(J;c(§k))”7f) HoH;/z(J;Lp(Qk)))

< CTl/QHwkHQH}D(J;Lp(Qk)) + CHwkHOH;/Q(J Ly(Q%))"

Now, we are going to treat (z7- DF¥Vw* + akvwk)Vng, where we use the above arguments.

HZTD’CV’ka@j + akVkaV(Pj”OH;/Q(J;H;l(Qk)) < CHDkHcl/2(J§Cl(Qk)) HwkHH;,/Q(J Ly (%))

k
+ Clllla* ez o 19" 1L, @) sz < CTY? w13 (1,1, (20)
+lla"llom o) \|1/1kH0H1/2(JL @ T la®|] HY2(JHL(00) W loc(FiLy(20))

gﬂﬁﬂmmﬁ+Tm1WWM4+WWﬁwMMmM-

The above inequalities lead to
¥l < TN g ez + OO g
with ¢(T') — 0 for T'— 0. Finally, summarising all estimations yields
11,60, 28027 02 S AN 220270z + CNEl 13y

which shows that not all terms become small for T tending to zero. This fact is a natural

consequence of the elliptic problem caused by the electroneutrality condition. More precisely,

up to now we have not checked on solvability of the boundary value problem in domain €2

for the electrical potentials (1%, ¢"). Therefore we have to study this problem separately.
(f) An elliptic problem. We shall consider the following two phase problem

P =V (@) =g, (tw) € T x

MF =V (@F V) =g, (tw) € T x s,

ao,pr — a0t = hy, (t,x) e J xTp, (3.55)
WP —pF =hp, (t,z) € J x Ty,

wF =nb, (t,z) € J xT,
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where A\ > 0, and the variable ¢t € J can be seen as a parameter. We are looking for solutions
in space Zp X Zr which is to be equipped with the norm

P | F o k k
||(71Z) aw )H)\ e kZPF HQ,Z) ||Zk + )\||¢ HH;/2(J§H;I(Qk))ﬁLp(J§Lp(Qk)).

The inhomogeneities are summarised to o belonging to H,*(J; &) N L,(J; X), where we set
X, = H, (%) x H,' (%) x B,)/"(Tp) x B, V*(I) x B,,"/?(T),
X = Lp(Qp) x Ly(Q) x B, 7(I) x B V7 (Tp) x By V#(T).
We shall associate this two phase problem with the abstract equation
AT (@) + £t D)W w") = o,
with

7 1000 0Y)"
“\o1000)"

The existence and uniqueness result reads as follows.

Proposition 3.1 Let Qp, Qp be open bounded domains in R* with C?- boundary, Tp =
0Qp, 00 = I, UT and dist (I, T') > 0. Let J =[0,T] and 2+ (n+1) < p < oo. Suppose that
the assumptions (1.23)-(1.25) are satisfied and @ belongs to ZL x ZL. Then the boundary
value problem (3.55), for A = 0, has ezactly one solution (W5 ¢ € ZL x ZL if and only if
the data o = (g%, g5, hy, hp, hE) belongs to H},m(J; X,) NLy(J; X). Moreover, if o even lies
in Hy*(J; X) then the unique solution (YT, yT) belongs to

H?(J; H () < HY* (T, HD 0 (QF)).

Proof of the Proposition. Since the necessary part of the proof is obviously, we directly
address the sufficiency part. The problem (3.55) can be localised as at the beginning of
this section, so that we obtain full and half space problems. Proceeding as in the proofs of
Theorems (3.1)-(3.3) yields solution formulae for the local functions ( f, ¢JF ). Note that all
coefficients contained in the operator £(t, D) possess enough time regularity for considering
the parameter ¢ in spaces H},(J), 6 € [0,1/2]. More precisely, it follows that

E(-, D) € Hy*(J; B(H, () x H (%), X)),

(3.56)
£(-,D) € C"2(J; B(H)() x H) (), X,.))-
Consequences of these properties are
€ € B{H)(JiH(0p) X Hy p (), Hy(J5 X)), 0 € [0.1/2 -

e B(H;,/Q(J;H;,(QP) X H;F(QF)),H;)/Q(J; XL)),
where the first assertion results from Lemma 2.2. In fact, we have by interpolation
1€ 1y (r520) < NEC w2090 0112 (020, 0 10 ) 112 (02 ) <182 02y 18 ()
< C(HSHH;/Q(J;B(Hg(Qp)xH;F(QF),X))”w”C(J;H%(QP)XHﬁ,r(QF))

+ ||gHC(J,B(H%(QP)XHZI(QF),X)) ”/l/)”H;/Z(J,H%(QP)XH;F(QF)))
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We shall prove the first assertion of (3.56). We remind of the regularity assumption of the
coefficient a¥, i.e. we have a* € ZF' and o* € H,*(J; H,(€%)). Let ¢ € H,/*(J; H2 ()
H? +(2)) be given. By using Lemma 2.2 we may estimate as follows

0y < 32 U AP s, ) 1T Bia DI i)

P F
+ Hw - w HHII,/Q(J;B?,;UP(FP))

i k
E lla HCl/?(J;C(ﬁk))H At ”H;”(J;Lp(ﬂk))
k=P,F

k k k k
+ ||va ||H;/2(J;LP(Q;€))HV’¢ ||C(J><§k) + Hva HC(JXQ;C)”vw ||H;1;/2(J;Lp(ﬂk))

IN

k k k k
P F
+ ||¢ HHZI,/2(J;B12,;1/Z7(FP)) + ||¢ HH;/2(J;B,2,;1/?(FP))

< C‘WHH;/?(J;Hg(Qp)xH;%(QF))'

We turn to the local problems. The perturbed problems can be treated as it was carried
out for the primary problem. By doing so we attain the presentation

b= GG IS G0+ Gi(GI)TISSGICS (¢) =: Lo + LY,
J J

where S denotes the local solution operators ( the local resolvents). The lower order terms
C5(v) are given by

(2T Apa(t, D), p;]" : j=1,...,M
([7Ap2(t, D), 910", [27- Apa(t, D), 50",

C5(p) == [21-Bpa(t, D), p;]p” — [21-Bra(t, D), ¢;]¢",0,0) : j =M +1,..., M ,
(21 Apa(t, D), ;10" - j=My+1,..., Ms
([z"-Apa(t, D), @], 0) : j=Ms+1,..., M

which coincide with the perturbations z7- C'j’fQ(wk) and 2T Cj2(¢F9F) (1). Now, we have to
establish that the above solution formula leads to the inverse operator of AJ + £. Firstly, we
prove the existence of a left inverse. The goal consists in establishing that I — L is invertible
in Zp X Zr by means of Neumann'’s series. By using the mapping properties of the resolvents
S5 we obtain

IL=lx = IL50lzpxze + ALVl 172 o121 ) btz (@)L (1L (90) L ()

<(JZ:||C6 D252 0n, (20)
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and continue with

P
ZHC Il HY/? (J;2,) MLy (J5X) <C{Z;H ~Apa(D), ¢t HH;/Q(J;H;l(Qp))mLp(J;L,,(Qp))
J

2
k
2 [ 2 " Awa(D),eslv 272 (ot @)Ly (L (©0)
j=Mi1+1 k=P/F
TN Bia (D), il lygyrz o ooyl 7 1)
+ Z T-Apa2(D %WF”H;/2<J;H51(QF>>}

j=Ms2+1

< Cl”WPJ/JF)||H}17/2(J;H§(QP)XH;(QF)) + Col|("] 1/)F)HLP(J;H;,(Qp)xH;(QF)),

with s—1/p > 0, cf. the estimation of Cj’»“(w, 1Y) and Cj(w,1)). Furthermore, thereis 6 € (0, 1)
so that Hy,(€2%) = [H,'(Q), H,(Q%)]e, H,(Q) = [Lp(Q%), H5(2k)]1/2, and the interpolation
inequalities

1/2 1/2
14 I ) < eoll® 158 o 108 By 198 Iy < el oy 19* itz
hold. Hence, by means of Young’s inequality we obtain
H@bk”Hg(Qk) < CEHwk”Hgl(Qk) + 5||7f’k||H},(Qk)7
19 k30 < Cellv I, @) + elF 20
and consequently
Hst”ZpXZF S C |:€”(,(7Z}P7wF)||ZP><ZF + CE(||(Q;Z)Pa’QZ)F)||H117/2(J7H;1(QP)XH;1(QF))
T, (751 @) % (L ()]
C:
< Cmax{e, £} [9lz,.

Choosing ¢ sufficiently small and A > 0 large enough we may invert I — L® due to Neumann’s
series and thus 1 has to vanish for data ¢ = 0.

To show that A\J + E(t, D) is surjective, i.e. there also exists a right inverse, we have to
establish that the function ¢ = (I — Lf)~!Lo satisfying ¢ = Lo + L% solves the problem
(3.55). Applying AT + &£(D) to solution formula and commuting ¢; with A7 +&(t, D) yields

(AT + E(t, D)) = Z Bi(G) AT + &(t, D)SHGI pjo + GICS ()}
+ Z (t, D), §)(G7) T SHG g0 + GIC5 (1)},

where &;(t, D) denotes the localised operator of £(t, D). Since ¢; = S;{ngoja + GjCJ"f(w)}
solves the problem (AT + &;(t, D))y; = G/pjo + GjC;(ﬂ)) we obtain

(AT +E(t D) =0+ Y [E(t, D), §)(G7) ' SHGIpjo + GICH)} + Y GCE (1)
j J
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Furthermore, the operator of perturbation Cf inherits the compact support of ¢; which entails

Y giCiu=> Civ=> [E(t, D), ¢l =0.
J J

J
By using the left inverse resp. the representation ¢ = (I — L?)~'Lo, we get the identity

AT +EtD)I - L) 'Lo =0+ Y _[E(t, D), §;|(GV)'SH{Gp; + GIC(T — LF) ' L}o.

Now, we set K(t)o := Zj[é’(t,D),c,?Jj](Gj)*lgS'j‘fi {ngoj +C5(1 — LE)*lL} o and define 7 :=
o+ K(t)o. The operator K only contains lower order terms so that we achieve | K| <k <1

by choosing A large enough. Employing the Neumann’s series we are able to rewrite the
above problem as follows

AT + &, D)I — L5 'L(I + K(t)) ' =7, (3.58)

which shows that (3.58) gives rise to a right inverse (I — L) "'L(I+ K(t))~! of AT +&(t, D),
i.e. we have surjectivity. Since right and left inverse have to be equal, it must hold that
K(t) = 0. We have proved that there is A > 0 so that problem (3.55) has a unique solution,
ie. A€ pg(E(t,D)) forall t € J.

Now, we are going to show that 0 € ps(E(t,D)). It suffices to establish the injectivity
in Lo in view of the embedding L, C Lg, for p > 2 and bounded domains. For this, let
(v, ) € D(E(t, D)) be given with £(t, D)(¢F,4F) = 0. We multiply the first differential
equation by ¢! and the second one by . Integrating and summing up of both equations
yields

V- (P VYt da + / V- (' VYt de = 0.
Qp Qp

By using the Gaussian divergence theorem we then obtain

k:P7F Qk FP T

Taking into account boundary conditions of £(t, D) we see

/ af’ | VT2 dx—i—/ o' | VTP de =0.
Qp

Qp

Thus, it follows that ¥/ = ¢p and 1/15 = cp. If we once again use the boundary condition
P —ypF =0 for x € Tp and ¥ =0 for x € T', we deduce cp = ¢r = 0. Hence the operator
E(t, D) is injective. The idea of establishing surjectivity bases on the following facts.

Claim 1. Let X, Y and Z be three Banach spaces. Let A be a bounded operator from Z
to X. Supposing that B € B(Z,Y) is a retraction, i.e. there exists an operator (corretraction)
B¢ € B(Y, Z) so that BB = id, it follows that the operator A := (A, B) is an isomorphism
from Z onto X xY if and only if Ap := A with D(Ap) = {u € Z : Bu = 0} is an isomorphism
from D(Ap) onto X.
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Proof of the claim. The equivalence of both problems arises from the existence of a
corretraction B¢ which implies surjectivity of B. Thus the problem (A, B)w = (f,g) is
equivalent to Av = f — AB°g =: f, Bv =0, and w = v + B¢g.

Claim 2. Let A: X4 C X — X be linear and injective, where X4 denotes the domain
D(A) equipped with the graph norm of A. Assume that p(A) # @ and X4 is compactly
embedded into X. Then the operator A is surjective, i.e. R(A) = X.

Proof of the claim. Let A € p(A). Then we can write A in the following way

A=A+ A-A=Q+A)[I-A A+ =A+A)I+K).

The operator K defined by K := —A(XA + A)~! belongs to K(X4), the set of compact linear
operators of X 4 into X 4, due to compact embedding X 4 << X. The Fredholm alternative
states that R(I + K) is closed and ind(K) = 0, i.e. dimN(I + K) = codim(I + K). If we
can show dimN (I + K) = 0, then in virtue of R(I + K) = R(I + K) we obtain that [ + K
is surjective. Let x € X 4,  # 0 and satisfy x + Kz = 0. By definition of K this equation is
equivalent to Az = 0, but injectivity of A implies x = 0. Since A belongs to the resolvent set,
we know that A + A is surjective, in fact (A + A)X4 = X. The remarks above also showed
that (I + K)X 4 = X4, consequently we may conclude

AX =AM+ A) I+ K)Xa=N+A)X1=X,

which means that A is surjective.
U
By studying the problem (3.55) we have seen that p7(E(t, D)) # @ which in particular
implies that the boundary operators are retractions. Hence, by Claim 1 it suffices to consider
the elliptic problem with homogeneous boundary conditions. Furthermore, the solution spaces
H,(Q2p) xH), (2r) and H (2p) xH? 1(€2p) are compactly embedded into H; " (€2p) x H, ' (Q2F)
and L,(Qp) x L,(QF), respectively. According to the second claim we may conclude that
0 € p(&(t,D)) for all t € J which is equivalent to 0 € p7(E(t, D)) due to the first claim.
Combining these results with (3.57) yields

£ € Lis(H)(J:Hy(Qp) x H3p(Qp), HY(J: X)), 6 € [0,1/2],
£ € Lis(HY2(J;HY(Qp) x HY 1 (Qp), HY2(J; X)),

which shows (¢1,¢f") € Zp x Zr by choosing § = 0, whereas the choice § = 1/2 implies the
second statement of the proposition.
O
Let us return to the solution formula (3.52). We shall split the lower order terms G7C;(w 1))
in three parts.

G'Cj(w, ) = GCja(w) + [Cja(v) — Tjvs] + Tjnh
The first part comprises only terms of w = (w’, w!"), which become small due to the more
temporal regularity, cp. the estimation of Cj(w, ). The second part is composed of all lower
order terms of ¢ = (¥, 4) denoted by Cja(1)) and a suitable function 1;3', so that this
expression belongs to the space of electroneutrality E. This has the advantage that we only
need to estimate this term in space X% x XL x Y;/. Note that the lower order terms of
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become small in this spaces. Now, we comment on the function 1/;]- and the operator 7;. We
put
Tjh) o= Ay (t, D)UY j=1,..., M,
Ti(0F, &f) = (Apy(t, DYYT ) Apno(t, D)
J VIR . P2\" J F2\% 70
BgDQ(t7 D)wjp - 8%2@? D)U}f, )‘027|Rn (d}f - w]F)) o J=Mi+1,..., M
T]wf ::A]FQ(t7D)1/}jF: j=M2+1,...,M3
Ty = (Apo(t. DO, Yput] ) - j=Ms+1,..., M,

To ensure that ~GjCj,z(q/J) — 7}1/;] lies in E the function ﬁj has to solve the local elliptic
problems 2T T;9; = GI21-C;2(1), i.e.

T ALy (t, DYPF = GIT.Ch (W), (ty) € J x R j=1,...,M
AL (6, D)F = G021 Ol (wh),  (ty) € Jx R j=My+1,..., My
2T Ao (8, DYYF = GIZT-CE (T, (ty) € J x R,

P =0, (t,y) € J x R x {0} : j=Ms+1,..., M,

and for j = M7 +1,...,M;

2 ALy (t, D)YF = GI2TCF(yh),  (ty) € T x RY,
Ao (8, DY = GIT.CE (9T, (ty) € J x R™!
2By (t, DYOT — 2T By (t, D) = GI2T-Cia (b0,  (t,y) € J x R™ x {0},
@f—&f =0, (t,y)eJxR"x{0}.

Observe that the inhomogeneities G7 CﬁQ(wk) belong to Hy/*(J; L,(R™1)) respectively in the
half spaces H,,/*(J; L,(RE™)), and GIC;2(F¢F) € HY*(J; By /P (R™)). According to the
second statement of Proposition 3.1, the unique solutions @Zj of these local problems belong
to

H;/2(J7 H;(Rn+l))7 fOI‘j = 17 ey M17 M2 + 17 e 7M37
HY?(JH (R < H2(RPTY)), forj = My+1,..., My,
HY?(JH (R N HL(RYTY)), forj = Ms+1,..., My

Now, we are in the position to treat the solution formula (3.52), i.e. to show injectivity.
Considering vanishing data, p = 0, and using the above decomposition of C;(w, 1) leads to
the representation

My My My
(w, ) = &(G) 718G 1 (w) + Y 35(GF) T S(GICha(0) = Tyahs) + Y 5(GF) ' STy
j=1 Jj=1 J=1

At first, we want to delve into the last sum. The functions (wj, ;) = Sﬂ}zﬂj solve local
full, half and two phase problems arising from the localisation, where the inhomogeneities
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are given by ’Z}% If we decompose the local electrical potentials as follows 1); = E]’ + 1/;]-
then we see that (wj, ;) = Sﬂ}lzj is equivalent to

(wj,Ej) = SjO =0 and 1%‘ == S;GjZT-ijg(ﬂ)).

Here S5 = (zT-’Z})*l, j=1,..., My, denote the local solution operators (resolvents) of the
local elliptic problems. Consequently, we obtain

M4 M4
N (G LS Ty = (0,Zsaj(Gj)—lS;szT-cj,z(w)) = (0, K(t))),
j=1

j=1
and thus
(w0 — K(t)p) = Y ;(G)71S;G7C 1 (w) + Y (G771 S;(GIC;a(1h) — Tjahy).
j=1 j=1

It is obvious that K(t) is a compact operator for all t € J in view of the lower order terms
Cj2(¥). More precisely, we have

K(-) € C(J; K(H(Qp) x Hp p(QF))) N C2(J; K(H,(Qp) x Hy, p(Qr))),

where IC(X) denotes the set of all compact operators from X into X. The time regularity of
K(t) arises from the regularity of the coefficients a*. In Proposition 3.1 we have seen that
these coefficients have enough time regularity in order to study the elliptic problem in H7(.J),
6 € ]0,1/2]. This fact implies the above property of K (t).

Thus, the goal consists in using the Fredholm alternative in order to invert I — K (t) and
by the above time regularity to conclude that (I — K (-))~! is bounded in Zp x Zp. Therefore,
we have to establish that I — K(¢) is injective, i.e. 1) — K(t)y) = 0 implies ¢ = 0. However,
this property is also an trivial consequence of 0 € p7(E(t, D)). Observe that E(t, D)y =0 is
equivalent to

Ej(t, D) g0 = GIC5 () = G72"-Ca(¥).
After employing the resolvent S7 and summing up we obtain

=Y (G TISSGIETCra(v) = K ().

J

The equivalence of the latter action arises from 0 € p7(E(t, D)). Since £(¢, D)y = 0 is only
satisfied for ¢ = 0 we deduce that I — K (¢) is injective for all ¢ € J. We have achieved

My My
(w, ) = (I, T = K(£)7) ¢ Y 35(G) 7'S;GIC 1 (w) + > 35(G7) 185G Ci2(v) — Ti)j]
=1 =1

=: S (w, ).
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Now, we are able to estimate the right hand side so that all terms become small for T" tending
to zero.

My

182w, )l 7007 gz < CINT — K)lumpxzm{ S € @)z e
j=1

My
+11Cj2(v) ngxxng{FP] + Z 1T |1, (L 1 1)

i=1
Mo
+ D 1T, @ ) XLy (L (B RN s (R
j=Mi+1
M3 M4
TF TF
30 T3 oy + 2 1708 e, mgam |
j=Ms+1 Jj=M3+1

Here, we have already used that the term C;2(1)) — ’231;] lies in E, and thus we only need to
carry out the estimation in XIZ X X% X }/QTFP' By estimating Sy (w, 1) we have seen that the
lower order terms of w gives rise to a constant ¢(7") getting small for 7' — 0 as well as the
lower order terms of v in spaces X}g, X}:,C and YQ?FP, i.e. we have

1€ (Wlxz g g +1Ci2(W) lxzuxzxyvg, < dDw, V)l 2z zzxzr-

Therefore, it remains to show the smallness of the norms | Zj¢;||. For discussing these
terms we restrict to the second sum in order to take the effort low. In virtue of Propo-
sition 3.55, we know that the local functions ¢; = S7G 2T-C;2(1) belong to the regularity

class Hy'*(J; H;(R’}fl) X H;(R’l“)) due to the fact that G727 C;2(1)) possess the regular-
ity Hy*(J; Lp(RTT) x Ly(R™™) x By, "/”(R™)). Using this extra time regularity gives the
estimate

7 TP TF
HZ’%’||L,,(J;LP(R1+1;RN))pr(J;Lp(JRﬁ“;RN))xYQT(Rn) < C(H(d’j 71/1]' )”LP(J;HI%(R1+1)xH%(R’i*’l))

7k
2 10y hgygasrmn s oy, ity o))
k=P,F

< O(T1/2 H (&JP’ %F) ”Hé/Q(J;H%(Riﬂ)XH%(RZ+1))

(T 4 TV?) Z ]|8yn+17zf||H113/2(J;B},;1/”(R")))
k=PF
< Cmax{ T2, TV WF ) g1/2 ap e persz iy

Continuity of the solution operator S¥ entails

H(&Jv '&j)HHZI,/Q(J;H%(R:L_"'I)XH%(RTH)) = ‘|S;GjZT'Cj’2(¢)”H;,/Q(J;HI%(Rfﬁ'l)XH%(RZ+1))

S CHZT‘Cj’Q(w)HH;/2(J;LP(QP)XLP(QF)Xle,;l/p(Fp)) S CH¢‘|ZPXZF7
and in the end

103l (ot @m0y L i (2 g ey < D] 200 25

7



Finally, all estimations imply that S becomes small for 7' — 0 such that the Neumann’s
series results in (I +S.)~! € B(OZg X OZg x oZT). This shows that (w,) is equal zero if
0 =0, i.e. there is a left inverse of £ denoted by Sf.

To show that Sy, is surjective, i.e. there also exists a right inverse of £, we have to establish
that the function (w,v) = Spo satisfying (w,v) = Sop + Sz(w, 1) solves (3.31). To make
use of local problems we have to create the operator which implicates the left hand sides
of the local problems. Therefore, we introduce the operator £5(w, ) with Ag1(D), Aga(D)
replaced by

(D) = A (D) + D¥,  Ajy(D) := Apa(D) + M*a".

By this means we have shifted the operators Ax1 (D) and Ag2(D), cp. with the local problems.
We further set £V := £ — L.

We turn to the surjectivity respectively (w, ) given by (3.52) solves the problem £L(w,9) =
0. The main idea consists in commuting ; with £ in order to exploit that (w;, ¢;) = S;Gp;p
solves a local problem. After applying £° to Syp we get

M4 M4
> LG wj ) = G(GI) L (wyy 1) + L7, 351(GF) T (wy, )
— st
The local transformed operator £/ coincides exactly with the left hand side of each local
problem, so that we may deduce £7(w;,v;) = G'pjp + G'Cj(w,). However, this implies

My ) My
D GG (i) = p+ ) 3iCi(w, )
j=1 j=1

due to ¢; = 1 on supp ;. Furthermore, the operator of perturbation Cj, see (3.53), equals
(L2, p;]—p; L. This can be traced back to the fact that all equations without any differential
operators do not generate terms of lower order.

By combining these facts with 3, ¢; =1 and > _,[L%, ¢;] = 0 leads to the relation

Zéjcj(w,lb) = Z[E ,gﬁ‘] w w ng £l0w w w) ﬁlow(w’w).
J J
Finally, the above evaluations imply the identity

My
L5 (w, ) = p— L9 (w, ) + Y [L£°,3)(GT) " (wj, )

J=1

and consequently
wlb _p+z a(p] (wjij)'

By using (w, 1) = Spo and keeping in mind that (wj,v;) = S;Gip,0 + S;C;jSLo, we have
shown

ang—ngZ oGNS {GIp; + €S} o
j=1
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Now, we set Ko := Eyz“l[ﬁs,gbj](Gj)_lSj {Gip; +C;SL} 0 and define p := p + Kp. The
operator K only contains lower order terms so that we can achieve ||| < k < 1 by choosing
T small. Since this procedure was frequently carried out we want to spare ourself of repeating
it. Hence, the above problem can be rewritten as follows

LS(I+K)'o=07, (3.59)

which shows that (3.59) gives rise to a right inverse Sy, (I+/K)~! of £, i.e. we have surjectivity.
Since right and left inverse have to be equal, it must hold that S; = Sy (I + K)~!, but this
means K = 0. The inverse operator of £ may be written as the Neumann series

L= "85, (3.60)
=0

which completes the proof.
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Chapter 4

The Nonlinear Problem

In this chapter we intend to solve the nonlinear problem (1.30). To achieve this, we apply
the maximal L, regularity result of the linear problems (1.39), (1.40) via the contraction
mapping principle. The latter technique prompts us to derive a fixed point equation which is
associated with the original problem. At this point the linearisation (1.39), (1.40) will enter.
Strictly speaking, we make use of the bijectivity of the solution operator defined by the linear
problem (1.39), (1.40). After rewriting the nonlinear system into this fix point equation, it
boils down to carry out the estimations which are required for establishing contraction and
self-mapping.

4.1 Reformulation

The reformulation of the nonlinear problem (1.30) is carried out in two steps. On the one
hand we use the linearisation developed in Section 1.4 in an appropriate manner, and on the
other hand we invert the operator arising from this procedure. The latter action is justified
by the main result of Chapter 3, Theorem 3.4, which provides invertibility. In other words,
the main idea consists in creating the left hand-side of linear problem (1.39), (1.40). Of
course, this approach produces new terms on the right hand side.

Let Jo = [0, Tp] be a compact time interval and set (u, $) := (uf, uf, ub ¢, o). Then the
rewritten problem for (u, ¢) reads as follows

oul’ + Ap1(D)ulf’ + Apy(D)opT = FP(t,z,u%, ¢T), (t,x) € Jo x Qp

@uF + Ap1(D)u” + Apa(D)o" = FP(t,z, 05 6"),  (t,2) € Jo x Qp
()u+mﬂ)wéBmwmﬁﬁmwm%G@xuu%o (t,x) € Jo x Tp
St a)yu — Ut 2)ul” + Xoz(¢F — ¢7) = H(t, z,uF u"), (t,x) € Jo x Tp (4.1)

uF =’ (t,z) e JoxT

uf(0,2) =ul (x), =€, uf(0,2)=ul(z), z€Q,

daul(t,z) =0, (tz)eJyx U, 2Luf(t,z)=0, (t,z2)€ Jyx Qp,

and

d

1
Cal(t) + Tt +a/zs’F1 YuF + Bo (D)o do = F(t,ub,uF, 67), € Jy

T (4.2)
u?(0) =, ZLubt)=0, te.
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The right-hand side terms F¥, FF, G, H, F? are defined by

Fk(tax7ulf¢k) = ['Ak2<t7x7'&]fD) - AkQ(t,.fC,’U,IED)](ﬁk +Rk(tax7uk)7 k= PvF
G(t,z,u"ul, ¢) == [Bpa(t, z, 0", D) — Bps(t, z,u’, D)|¢"”
- [BFQ(t,l','EL}:D) - BF?(t7$7uF;D>]¢F7

4.3
H(t 0" ) = (b, 57 57) — Ryo (6, 0”) + Ry (1, u), (43)

Fot,ubuf) ¢F) = %uf (t) + RP(t,u®(t)) + a® / [Bra(t, z,u’, D) — Bps(t, z, 4", D))¢" do.

T

Call to mind that @* plays the part of an approximation of u*, i.e. @* belongs to Zj(FE. ) with
V‘tﬁk = uf > 0, see Section 1.4. We shall remind of the definitions of y(t,z) and R (¢, u").
We have set

F ~F k ~k

F(t ] .

vﬁxﬁWW=h<%Lﬁ%ﬂ : %mﬂ:PK”%%ﬂ . k=PF,
Vi (tv‘r)ui 1<i<N Uy 1<i<N

where 7 comes from expanding the logarithm, see (1.36), (1.37). Our next task will consist
in finding an abstract formulation of the equations above with the aim of putting it into a
fixed point problem. For this, we put together the initial data ulg for kK = P, F,b to the vector
ug := (ud’,ul’, uf) belonging to

V(Ey) =B, (e B4 ) x By 27 (Qus Ey) x By
and set
70 .= 700 x 750 x 70|
27 = {(676") € ZP x ZP ¢ 3, 0 — 56" €V}
MT = X[ x A0 5 X0 x {(g, hF hFu) € V30 x YT (RY) x YR(Ey) x V(Ey) :
(9, hf, hE up) enjoy the compatibility conditions },

U = U (E) x U (E) x C(Jo; E), U (E) := C*(Jo; C(Q; E)) N C(Jo; C' (3 E)).
Now, we comment on the compatibility conditions stated in the space M7T0. As in the
linear problem compatibility conditions are obtained by taking trace ¢ = 0 in the boundary

conditions. In doing so, the condition u{(z) = u has to be satisfied on boundary T'. The
compatibility conditions on boundary I}, take the form

7 (0, 2)uf;(x)

Mozi(#"(0,2) = ¢7(0,2)) = In (wP(Ow)u{i@:)

>, CL‘GFP, izl,...,N.

where the latter equation is equivalent to

F
ub () = ugl.(g:)Mexm(q&F(o,x)—M(o,x))7 cel,, i=1,.

'77;P (0@) N.

ey
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In compatibility conditions on boundary I}, the electrical potentials ¢*(0,z), ¢ (0, ) are
involved making up one degree of freedom. More precisely, each condition comprises N
equations due to N species, whereas the electrical potentials satisfy a scalar-valued elliptic
problem including these quantities. The potentials at ¢ = 0 can be interpreted as the weak
solution of the following elliptic problem

2 Apa(0,uf, D)oy + 2HAp1(0, D)yug =0,z € Qp,

2L Apa (0,4l DY 4+ 2T Ap1(0, D)uf =0, =€ Qp,

ZTBPQ(Oa UOP? D)(}S(}; + ZT'Bpl (O? D)UOP :ZTBF2(05 uOFa D)¢g + ZTBFI(Oa D)uga HAS FPv

Molzl(86 — ¢5) = 2770, 2, ug uh), @ € T,
ph =0, zeTl,
(4.4)

which can be obtained from (1.30) after applying z7- and taking traces in t = 0 .
We now define the nonlinear operator Fy(u, ¢) being composed of the new right-hand side
of (4.1) by means of

Fulu, @) = (FP, FF F* G, H, ub> .

It is an immediate consequence of definitions stated in (4.3) that the nonlinear operator
Fa(u, ¢) is a mapping from Z70 x 270 to X0 x X0 x X0 x YJ° x Y2 (RV) x Y{'R(Ey).
In fact, if (u,¢) € ZT0 x ZT0 then this corresponds, as we know from Theorem 3.4, to the
regularity classes
Apag® € X0, Bio(D)gh € V) RY), 4 uF € YL (B), y,u* € B (; B).
In the following we associate (4.1) and (4.2) with the abstract equation
[,(U, ¢) = (fﬁ(uu (;5)7 UO) in MTO : (45)

The goal consists in inverting the operator £ so that we obtain a fixed point equation. In
Section 3.3 maximal regularity has been proved, i.e. £ is a continuous one-to-one mapping
from the space of data M0 to the class of maximal regularity Z70 x 270, i.e

£t e Lis(MmTo, zT0 x zToy, (4.6)

Now, we focus on the operator norm of £7!, in particular on independence from the length
of time interval Jy = [0,7p]. This fact is needed since we want to obtain contraction and
self-mapping by choosing T" € (0, Tp| sufficiently small. Therefore, we have to guarantee that
all constants coming from estimations of £~! are independent of 7. In general one can not
prove this assertion, except in case of null initial data. Thus we introduce the spaces

28 = {we Z™: w0)=0}, ZI:={pe 2™ ¢(0) =0},
Mg = {(p,uo) € M p(0) = 0,ug =0}, Ug" :={v U™ : v(0) = 0}.

We mean p(0) by all components of p having trace in t. We consider the linear problem
(3.31), (3.33) with initial data ug = 0 and p € XZ® x X[ x X,/ x YJ° x V'8 (RV) x Y2 (E)
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satisfying compatibility conditions. Observe that the latter assumption implies (p,0) € ./\/lgo.
This circumstance enables us to extend the data p as follows. If a component p;(t) of p only
possesses H'-regularity in time with v <1 /p then we set

Er_ pi(t) = { gi(t) ii %%O,Tg}o) ’

otherwise we put

it te (0,7
ER+p’i (t) = pi(QT() — t) 1 te [To, 2T0]
0 1t e [2T0, OO)

It is easily seen that Er, is an admissible extension for each space appearing in MTo. That
means Eg, is bounded and the norm does not depend on 7, e.g. we have ||Eg, p| < 2|p]|-
Having this in mind and employing Theorem 3.4 we obtain a unique solution (w, 1) € Zyx Zy
and the following estimation is valid.

||(w7 w)HZOTO ><ZOTO < H(w’ w)HZOXZO < Hﬁil HB(MOZOXZO) ”(E]R-Hov O)HMO
—1 -1
=1L, I (Br 2, 0)llato < 2[L [ os O] o
The solution operator has been subscripted with R, in order to refer to the interval being

considered here. The above estimation provides ||L'[61TO]|| < 2||£ﬂ§i\| =: Cpaz which shows
the desirable result.

4.2 Existence and Uniqueness

We now come to the result which ensures existence and uniqueness on a maximal interval of
existence [0, t;qz(uo)). This interval is characterised by the condition that lim; ;. (ue) u(t)
does not exist in V(F;), since otherwise we may apply Theorem 3.4 with initial value
U(tmax(uo)) = limy_y . (4) u(t) to obtain a contradiction to maximality. Moreover, we
can show positivity of u = (uf, uf,ub) if the initial data are positive, that means, for all

i €{l,...,N} and k = P, F,b we have u¥ > 0 whenever u’&i > 0.

Theorem 4.1 Let Qp, O be bounded domains in R™ ™ with C?- boundary, Tp = 0,
0 =TI, UT and dist (Ip,I") > 0. Let (n+ 1) +2 < p < 0o and suppose that

1. d¥ € CV2(Jo; CY(Q)), di(t,z) > 0 for (t,x) € Jo x O, i € {1,...,N}, k=P, F;
2. 9F € By (Jo; Lp(Tpi Ry)) N Ly(Jo; By "(Tps Ry)), i € {1,... N}, k= P, F;
3. up = (uf, uf, uf) € Bpp™"(Qp; By ) X Byp™" (s Ey) X Ey, uf; >0, k = P,F,b, Vi;

uf € Ly(Jo; BEy); R¥, k= P,F and R? satisfy (R1)-R(3) and (R4)-(R6), respectively;

G

compatibility conditions:

(a) In(~f (0, x)ufy(@)) + Mozigh (2) = In(3f (0, 2)ufy(x)) + Nozigg () in Bp,™" (Ip)
forie{l,...,N);
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(b) DF(0,2)0,ul + MF(0,z)ul 0,08 = DF(0,2)0,ul” + MF¥ (0, 2)ul' 0,68
in Bpp™? (Tp; RY), where (¢F, o) is given as solution of (4.4).
(¢) uf (z) = uf.
Then there exists tmqr > 0 such that for any Ty < tymas the nonlinear problem (4.1), (4.2)
admits a unique solution (uf,uf;ub¢l, ¢ on Jy = [0,Ty] in the mazimal regularity class
Z(Jo) x Z(Jo). In particular, we have
u® € CH(0, tmaz); C(Q%)) N C((0, taz); C2(W)), k= P,F,
¢" € C2((0, timaz); C()) N C((0, timax); C* (), k=P, F.

Moreover, the solution (uP,uF, ub) 1s positive and the map

(ug ug s ug) — (u” (), u” (8),u"(1)) (4.7)
defines a local semiflow on the natural phase space V(E,) in the autonomous case.

Proof. (a) Unique existence on [0,T] for T sufficiently small. By the above considerations
we have seen that the evolution problem (1.30) can be converted into the equivalent problem
(4.5). This equation is solved locally via the contraction mapping theorem. For this purpose
we introduce a reference function (w, ) defined as the solution of the linear problem

L(w, ) = (Fa(@,0),up), in M. (4.8)

The choice @ € ZT(E,), with @(0) = ug and ¢ = 0 entail that the functions R;r, Rzr and
all terms containing an electrical potential disappear. In fact, one computes

Fa(@,0) = (RP(t, z, @), RE(t, 2, aF),0,~(t, x, al "), 1uf (t) + R(¢, ab)> .

Note that this right hand side belongs to M7, in particular, the compatibility conditions are
satisfied. So according to Theorem 3.4 we obtain a unique solution (w, 1)) which belongs to
the space of maximal regularity. Next we introduce a ball Z7 x Z7 with radius ¢ and center
point (w, ) as follows

Ssr = {(v,0) € ZT x 2T+ (v(0),9(0)) = (uo, $0) , [I(v, ) = (w,¥)l| g7z < 5},

which is a closed subset of Z7 x ZT. We want to show that LY Fa(3s7) C Zsr and
that £71F; is a contraction in the norm of Z7 x ZT. These two properties can be shown,
provided the parameters 7" € (0,7p] and 0 € (0,1] are chosen properly. Before we will
introduce some auxiliary functions depending on parameter T'. These will be useful for the
upcoming estimates. We set

Vi(T) = [[(w, V)l zrwzr = lwllzr + [$llzr,  $2(T) = [[w —dllyr < Cllw =l 7,
T) := R ,
¥3(T) := max 2 e 1R () lovyr, B(By)
B (- s(ik—
k:ZRF e 1R (w +s(@ = w) gy, se)) (-

GE(T) = ¥l 0.y Ny K =PF, 5T =y, 0m)-
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Apparently, ¥2(T) — 0 as T — 0 due to wy,_, — %,_, = 0. Observe that 1;(T), YK(T) — 0
, = 1,3, k = P,F,b as T — 0 by virtue “integral norms” concerning the time variable
t € [0,7]. Now, we come to self-mapping and contraction. Let (u, ¢), (W, ¢) € 57 be given.
By using the result of maximal regularity £=! € Lis(MT,ZT x ZT) we may estimate as
follows

1£7H (Falu, @), u0) = (w, )| g7« 2= 1£7H (Falu, ¢) — Fa(i@, 0),0)|| gz 2
< 1Cx; NI(Falu, ¢) — Fa(@,0),0)| -
In a similar way we obtain for the contraction
1£7 (Falu, ), uo) =L (Fa(@, ¢), uo) | g7 w2 < L5 I (Falu, @)= Fa(@, 6),0)l| pqr -

With a view of both estimations we perceive that it remains to consider differences of functions
(Fz,0) in MZ. In case of self-mapping we find

I(Fa(u, @) = Fa(@,0),0) | pr < D IRFC,uf) = REC, @) xr
k=P,F
IR ul) =R )y + Y { Ak @ D) = Aga(, -, wh D)6
k=P,F

B+, @ D) = Beas vy s D6 g + 1R (W)l pyr, vy

+ )| [ [Brat.u8D) - Bral-,,0% D) o do] (4.9)

We are now going to estimate the term || Rz (u*)|. Due to R, (@) = 0 we have

| Rop ()| < [Row () = R (") + [ Rga () = R ()|
< max ‘R%k(wk + s(uf — wk))) ‘uk - wk‘
s€[0,1]
+ max ‘R;k(wk + s(ak — wk))‘ ‘wk —akl,
s€[0,1]

and this relation implies

Y IRa(u Moy, @) < Csus(T )[8 + o (T)].

k=P, F

The last term of (4.9) can be treated as follows
||/[BF2(', 2,@5D)—Bps (-, z,u'D)] ¢Fd0||XbT < M@= u") ooy oo I, (r.om)
r

< OT' " | o icap sy 167 |z < CTY2(6 4+ 9a(T))(6 4 1 (T)).

Due to the assumptions (R3) and (R7) for nonlinearities R*, k = P, F' and R’, respectively,
we achieve

S IREC, ) = REC @)r + IR~ RO )| < Ci(6 4+ 4a(T)) 3 v (T)

k=P,F k=P,F\b
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Taking into account the mapping properties of operators Ao stated in Lemma 2.3 we bring
off

S a8 D) = Agale, -yt D) r < Ol — bl g 6%

k=P,F

< C(6+4a(T)) (6 + ¢ (T))

In the long run we have to study Bps in ygT . The estimation in the space DYQTFP (RN ) can be
obtained by Lemma 2.3 resulting in

> Bl 35 D) = Bro(y s ws DN gy vy <C 3 18" = llggr 10,6 vz,

k=P,F k=P,F

< OO0+ (1)) (0 +91(T))

To get over the estimation in H,/*(.J; B,,’"(Ip)) we are going to derive a relation between the
data 2T-G(t,z,uf, uf, ¢) and 2z Fk(t x,u® ¢*), which is similar to the estimation of B7¢(D)
in the proof of Theorem 3.4. At first, we compute the expression

Z /z FR(t b, oo de = — Z /V Rt x, 0 — af(t, z,u?)|Vr) o da

k= PFQ k= PFQ

with 0 € H),(€2). Integrating by parts and using & =0 on I yields

Z /ZT-Fk(t,m,uk,gbk)f) dx = — / ([aP(t,:c,ﬂP) —af(t,z,u"))0, 6"

k=P,Fgy, I
— [af'(t, z,aF) — aF' (¢, 2, u")] V(;SF vdo + Z / (t, z,a" k(t,x,uk)]V(;Sk)V&dx
k=PFgy,
= —/z -G(t, z,ul uf, ¢)v do + Z / (t,z,a* k(t,x,uk)]Vqﬁk)Vﬂdx.
b k= PFQ

We again consider the above identity for the times ¢ 4+ h, t € J and take the difference from
each other. By using duality and Holder’s inequality we obtain

/[ZT-G(t+h,:U)zT-G’(t,x)]v(a:) do < H1~J||Io{1 { Z HzT-Fk(t+h)—zT-Fk(t)|]H51(Qk)+
/()
P

Ip k=P F

[a"(t+h, @¥(t+h)) —aM(t+h, uNt+ 1)) Vo (E+h) —[a(t, a(2)) — a'(t, u" () [V (1) I, () }
for all o € H, (), with ¢, = v. Taking the infimum over ||17||0H;/(Q) and using

lnf{Hi}H()Hzl),(Q) : 6|FP - 'U} < CHUH 1 I/P (F )
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gives

|27-G(t + h) = =TG- vim <c{ S TR+ ) = ST FE )]y 0,
k=P, F

a(t+h, @t +h)) —aM(t+h, u(t+h))] Vet +h) — [a¥(t, a(t) — a(t, u" () [V (D) [, 0 }

Finally, after applying that norm of Hll,/ *(J) which is characterised by means of differences
and taking account that the coefficients a”, a’ belong to C'/?(.J; C()) we may estimate as
follows

Hz GH HY2(J:B;,1/7 (1) ))SC{|’3T'Fk(uk7¢k)’OH;)/Q(J;H;I(Q,C))
N k
+ HCL (U )*CL (u )HOC1/2(J;C(§,€))||¢ ||H11,/2(J,H117(Qk))
< O 1P )y + (19 = Mooy
+ [[w” — @ ||Ocl/2 JiC(Q)) ) - (Ilg" —¢k||ozT + ||¢k|zT)}
<0{ X 1O
k=P,F

n <6+w2<T>><6+w1<T>>}.

Thus the desired result is achieved in view of having estimates of F* in Xl;f . By taking
account all estimates above we accomplish

1(Fa(u, @) — Fa(w,0),0)[|pgr < Mi(6 + ¢2(T))[6 + 1(T) + o3(T Z Vi (T

k=P,F,b

Note that all constants appearing in the above estimations are independent of T". In case of
contraction we proceed in the same line. By using the triangle inequality we get

|(Fa(u, &)= Fa(@,6),0) |z < D IRE (-, u®) = RE (@) |+

k=P,F

IRY (-, u? P)lxr+ D {IAk @ D) = A dt D" = &)l ar

k=P, F
+ [ Aga(, -, uf D) — Ao -,a’fm]a’“noxg
+ 1Bra(-, -, @ D) = Bial-, -, uh DY(6F — 6|,y
+[|[Bra (-, -, uk D) — Bio (-, -, @ D)]EPHOJ;QT + || Ry (uF) — Rak(ﬂk)"oylfqg(RN)}

_ ~ —F
+ Hub - ubHOYEF(E) + abH /[BFQ(',.’I?,UF;D) - BFQ(',.’E,’LLF;D)] (¢F - ¢ )dUHXZT

+ ab|| /[BF2(~,x,ulfD) — BFQ(',Q’J,EF;D)] EFdUHXbT.
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We continue with

Hub _ HbHOYEF(E) SCHub _ ﬂbH()BIl);I/Qp < CTO‘Hub _ ﬂbHOBégl/Zp-&-a

(J;E) (J;E)

<CTu’ | o

where we have to demand 0 < a < 1/2p to ensure the embedding H,,(J) — By, /().
comparing the norms of self-mapping with the above terms we perceive that this difference
is the sole new expression which is added. By treating the other norms as in the case of
self-mapping we thus get

3

1(Fa(u, ) = Fa(@, ), 0)lLpz < Ma[d_ i) + Y Wi(T) +6 + T°|(u, 8) — (@, §) ||, 77 2

i=1 k=P,F,b

If we choose (4,T") € (0, 1] x (0, Tp] sufficiently small, then we succeed in estimating (4.9) by
8, i.e. L71F; is a self-mapping. Moreover, by a possibly smaller choice of § and T we attain
S5 (T + D k=P.Fb Y¥(T) + 6 + T < 1/(2M3) which implies contraction. Hence, the
contraction mapping principle yields a unique fixed point of equation (4.5) in ¥57 which is
the unique strong solution on .J = [0, 7] in the regularity space Z7 x Z7.

(b) Continuation, positivity and regularity. In order to carry out the continuation of the
solution (u, @), we have to ensure that u(7T) belongs to V(F;). Note that the regularity
follows directly from the trace theorem. On the one hand, the positivity of w(7) is required
for applying Theorem 3.4 to the linear problem. In fact, the function «*, which is incorporated
in the coefficient a* = 2T-M*u* of differential operator z7- Ayy(D), must not vanish in order
to guarantee that the elliptic problem for the potentials is regular. On the other hand,
u® is inserted in the logarithm appearing in boundary condition of Dirichlet type on Tp.
Nevertheless, we can perform the continuation as long as w is positive.

If the right hand sides of parabolic equations have more regularity, e.g. R* € C!, then we
can establish more regularity of (u, ¢) in the interior of domain resp. in the open time interval,
see e.g. Escher, Priiss and Simonett [10] or Priiss [27]. Employing these methods entails
classical solutions in (0,7") x . This places us in a position to apply the maximum principle.
In fact, assume that there exists an index ¢ € {1,..., N} and a point (g, z¢) € (0,T) x Q so
that uf(tg,z0) = 0, uF(t,z) > 0 for all z € Q and t < tg, and uf(to,z) > 0 for x € Q. This
assumption implies Vu¥(tg, z9) = 0 and Au¥(tg,z0) > 0. Keeping in mind the assumptions
and conclusions we derive the inequality

Byug (to, o) = dj (to, mo) Auf (to, o) + Vdj (to, w0) Vuj (to, 7o)+
m (to, z0)uk (to, 20) AG* (to, z0) + V(mE (to, mo)ul (to, 70)) V"
+ R (tg, zg, uF) > RF(to, 2o, u*) > 0,

where the latter inequality is a result from assumption (R3). We achieve
uf(to,:ﬂo) > uf(O,xo) = uﬁo(wo) >0,

which contradicts to the assumption. Hence, we have shown that u” and u!" are positive in
Q. The next purpose is targeted on positivity on boundary I'». Thus, suppose that there
exists an index i € {1,..., N} and a point (to, o) € (0,T] x I;» so that w.l.o.g. ul’ (tg,z0) =0,

88



uf(t,z) > 0 for all x € O and t < tg, and u! (tg, x) > 0 for z € I. Due to the boundary
condltlon of Dirichlet type we can deduce that ui vanishes in (to,zo) as well. This can be
seen by the following identity

F(4
uf (t, @) = 7% (t,@ )uf(t,x)e/\ozi(‘?F(t’””)_‘bP(t’w)), (t,z) € [0,T] x Ip,
% (¢, )
which is equivalent to the original boundary condition. Consequently, the transmission con-
dition takes the form in the point (to,x0)

df (to, 20)0,u; (to, x0) = dj (to,0)d,u; (to,xo).

Note that the embedding Z! < C(J; C*(Q; RY)) admits traces in ¢ and x in the above equa-
tion. Now, we want to apply Hopf’s Lemma to produce a contradiction. In view of the fact
that ul (to, z) > ul (to, xo) =0 for all € Q» we conclude by Hopf’s Lemma 0, u; (to, xg) <
0 and thus df (to,xo)a uf (to,z0) < 0. On the other hand we know that uf (tp,z) >

(to,xo) = 0 for all x € Q. Keeping in mind that the outer normal on I‘P concerning
the domain Q points to the opposite direction, we then deduce df (to, 29)d,ul (to,z0) > 0.
Combining these inequalities with the above boundary condition leads to a contradlctlon in
view of the assumption.

Now, we discuss the other boundary segment of 2. As above we suppose that there exists
an index i € {1,...,N} and a point (to, o) € (0,T] x T so that uf (tg, z9) = 0. On the other
hand, the boundary condition uf’(t,z) = ub(t) on T gives rise to

u; (to,ac) = u?(to) = uf(t,xo) =0, Vzxel,

i.e. ul'(tg,x) vanishes on the whole boundary I'. To derive a contradiction we consider the
bulk equatlon of ui-’ evaluated in tg. By using the above results, positivity assumption (R6)
for R® and 0,ul” < 0 we obtain
Srut0) = 2wl (t0) = ul(t0)) — @ [l (t0, )0, t0, )+ (10, 2)u 10,210, (t0, ) do
r
+ R? (to, u(to

(o))
= %u{(to) — ab/df(to, )8 Uu; (t[), )dO'—i- R?(to,u(to)) > %u{(to) >0,
T

which shows positivity of u?(to) due to positive initial data, and thus provides a contradiction
to ul’(to, m0) = ul(tg) = 0.

Now, we turn to the process of continuation. In fact, the nonlinear problem was solved in
[0,T] and due to the above considerations the solution u(t) keeps positive, i.e. in particular
u(T) > 0. Consequently, we can carry on solving the nonlinear problem with the new initial
data u(T") > 0. This process results in a maximal interval of existence [0, ¢nqz(uo)) which
is characterised by the condition that lim; .7,  u(t) does not exist in V(£ ). In turn, this
condition is equivalent to ||u|| tmez = 00. Due to the embedding Z7 < C(J;V(E,)) the
map ug — u(t) defines a local semiflow on the natural phase space V(E_ ) in the autonomous
case. Thus the proof is complete.

([

Now we are in the position to treat the example problem as introduced in Chapter 1.
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Corollary 4.1 Let Qp, Qp be bounded domains in R with C?- boundary, Tp = 0,
0 =T, UT and dist (Ip,I") > 0. Let (n+ 1) +2 < p < 0o and suppose that

1. d¥F € CY2(J;CH()), d¥(t,x) > 0 for (t,x) € J x Q, i € {1,2,3}, k=P, F;
2. vF € By (J; Lp(Tp; Ry ) N Ly (5 Byp (o Ry ), i € {1,2,3}, k= P, F;

3wy = (ud,ul,ul) € V(EL), ugo e C(), u,ﬁo >0 for k = P,F,b, i = 1,2,3, B,
ukeo >0, ubey >0, ul € Ly(J; Ey);

4. the compatibility conditions of Theorem 4.1 are valid.

Then there exists tmae > 0 such that for any Ty < timmag the problem (1.1)-(1.8), (1.10)-(1.13)

admits a unique solution (uf, uf,ub ¢t, ¢t), (ul,ub, ul.) on J = [0,Tp] in the reqularity class

ZT(Ey) x 210 % C**([0, Tol; C (5 Ry)) x Hy,([0, Tol; Ry) x Hy([0, To); Ry) -
In particular, we have

uk € Cl(<07tmam>; C(Qk)) N C((O7tmam);C2(Qk))7 k= P, F7

(4.10)
* € CV2((0, tmaz); C(%)) N C>(0, tmaz); C* (), k=P, F.
Moreover, the vector of concentrations (uP, uf ub uBP, ugc, ugc) is positive and the map
(U(I)D, U(I;, u87 UIBD,O7 Ugc,m uZC,O) - (up(t)7 uF(t)a ub(t)v UIBD(t)> ul})IC (t)a Uzc (t)) (411)

defines a local semiflow on the natural phase space V(EL) xRy xRy xRy in the autonomous
case.

Proof. We have seen in Section 1.2 that the ordinary differential equations for concentra-
tions uf, ub, and u§ can be solved via variation of constants formula. We also perceived

that only the functions uf and u’ = (u?,ug,ug) come in. Consequently, this presentation

can be used to eliminate u%, u%., u%. in reaction rates R”, R in order to achieve a problem
treated in Theorem 4.1. Therfore, we have to check if RY and R satisfy the assumptions

(R1)-(R6). First, we recall the definition of R and the solution formula for u?% .

RP(t,z,u”) = rf (t,z,u")(2,-1,0)7,
¢ 4.12)
—kg [uP (s,x)ds (
Pt e, ul) = —kgul (o)l (t2), ubta)=e o uly(x).

It is easy to verify that each R satisfies the assumptions (R1) and (R3). To see (R2) we
estimate as follows

IR (u”) - RP(EP)HLP(J;LP(QP;RN)) < Cllufy

c@mled = a0 L, (s, @0+
C||UP||C(Jx§P)HU}B) — T |, (7L, p)) < CTHU}B),()HC@P)HUP - ﬂp”ngF
Cla?llogywamT PN’ ="l 5z < C(Tlufollogy + LpT VP [u” —a”| 42
In doing so, we have exploited the presentation of uf, positivity of u;, and the condition

[uf’|sc < Lp. Thus, from the above estimate we can read off that [|I”[|, ) = C(T[uf olloc +
LpT'*+1/P) which becomes small due to the parameter T.
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Regularity and positivity of u can immediately be seen by solution formula, uf; 0 €
C(Qp; Ry ), and the fact that ul’ € ZL — CY2(J;C(Qp)) N C(J; CH(Qp)).
We now come to the bulk reaction rate R® given by

Rb( ) (— T (t u ) _Tzc(ta ub) _THC( )_ 2rAc(t u ))T
Té{c( ) = ku ( KHu%c)a TAc(t u ) ka (U2u3 KAUAC)

and solution formulae for concentrations of species HC and AC

1
who(t) = e~ (FHhmku)tyb

6—(%+/€HKH)‘(t_S)uI{IC(S) + kb (s)ul(s) ds

who(t) = e (FHRaka)tyb 4

e (KN O] () 4 s (s)uy(s) ds.

o o .

We only prove assumption (R5) since the other conditions are trivial. Further on, it suffices
to show this condition for r%. and %, since each component of R’ is composed of a linear
combination of these functions. Let u’, u’ € H}(J; Ey) be given with [[u®(|o, [|u°[|cc < Ly.
By using the above solution formulae we then obtain

Hrgc(ub) - Tf{c(ﬂb)”Lp(J) < C(”u?ug - ﬂ?ﬂg”Lp(J) + HUIIZIC - ﬂ%CHLP(J))
< OL @ty + 1| [ RNt s ohus(s) — oy (5)] s,

< OLy(T + TP |u” =) 5,
and in the same way we get
e (u”) = e (@)L, ) < CLo(T + TVP)|[u — || 5z

We see from the solution formulae that u%, and . are positive, and that the regularity is
determined by uf since this function possesses the least regularity. In fact, u{ belongs to
L,(J) and thus the convolution of e~ HRiKD) with u{ lies in Hj(J).

In the end, in order to make use of the regularity theory yielding classical solutions in
(0, tmaz) X 4k, we have to ensure that the right hand sides belong to C'(J x € x RY) as
well. Since in domain € chemical reactions do not take place we have R = 0 which is real
analytic. In case k = P the right hand side RZP(t, z,u’) is given by 4.12 and it is easy to see
that R belongs to the class C'. So according to Theorem 4.1 we obtain the results stated
in the above corollary and the proof is complete.

O
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Matthias Kotschote: Strong Well-Posedness of a Model for an Ionic Exchange Pro-
cess (Zusammenfassung)

Gegenstand dieser Arbeit ist ein mathematisches Modell zur Beschreibung eines Ionenaus-
tauschers. Bei der Modellierung dieses Problems werden, neben den chemischen Reaktionen,
die Transportprozesse der ionischen Spezies und der Einfluss elektrischer Felder auf diesen
Stofftransport beriicksichtigt.

Im folgenden sei €2 ein beschranktes Gebiet im R™, welches sich zusammensetzt aus einem
Kerngebiet Qp (Pellet) und einem Streifengebiet € (Film). Das Gebiet 2 umschliefit
vollsténdig € und besitzt dadurch zwei disjunkte Rénder, einen &ufleren Rand I' = 92 and
einen inneren Rand I = 0p. Diese Rénder sollen zur Klasse C? gehoren und einen positiven
Abstand besitzen. Fiir die unbekannten Stoffkonzentrationen uf : J = [0,T] x Q) — Ry,
i=1,...,N, und elektrischen Potenziale ¢* : J = [0, T] x Q;, — R betrachten wir das System
von Differentialgleichungen

Gtuf—v-(deuf)—V-(m

PVoP) =R, (t,x) € J x Qp,

t,z) € J X Qp,

7

Lul(t) = —a [1aF Ol +mEul 0,07 do+ L (uf () —ul(t)) + (D), te
r

mit den Randbedingungen und den Anfangswerten

( dPoul’ + mPulo,0f = droul” + mFul'o,0t, (t,x) € J x Ty,
(v ul’) + Mozio? = In(vful’) + Nzidt, (t,x) € J x L,

uf (t,z) =ul(t), (t,z)€ JxT,

Das obige System wird durch die Elektroneutralitdtsbedingung, welche eine algebraische Gle-
ichung ist, vervollstandigt:

N N
(3) { > zuf(t,a) =0, (ta)eJxQ, k=PF > zul(t)=0, teclJ.
=1 =1

Hierbei bezeichnet 8tuf die partielle Ableitung der Konzentration uf nach ¢, Vu’zl-C (Vor) deN
Gradient von u¥ (¢¥) beziiglich der riumlichen Variablen und V- den Divergenzoperator.
Ferner werden die Diffusionskoeffizienten d¥(¢,r) und die chemischen Aktivititen ¥ (¢, z)
als bekannt vorausgestzt. Die sogenannte elektrochemische Mobilitat mf ist definiert durch
m¥(t,x) := \od¥(t, z)2;, wobei z; die elektrische Ladungszahl der Spezie 4 ist. Die Konstante
Mo = F/RT setzt sich zusammen aus der Faraday Konstante F', der allgemeinen Gaskon-
stante R und der absoluten Temperatur 7. Desweiteren bezeichnet 7 die hydrodynamische
Verweilzeit und a® = N?/V? die Anzahl der Pellets pro Bulkvolumen. Die nichlineare Funk-
tion R¥ ist die Produktionsrate der Spezie i in der Phase k.



Das betrachtete Problem kann als ein System von parabolischen Differentialgleichungen
angesehen werden, welches aufgrund der Elektroneutralitdatsbedingung mit einem elliptischen
Randwertproblem gekoppelt ist. Die Konzentrationen verschiedener Phasen werden durch
die Randbedingungen miteinander in Beziehung gebracht, wobei die elliptischen Gleichun-
gen eine Kopplung aller Transportgleichungen bewirken. Diese Kopplung ist verantwortlich
flir die Nichtlinearitdt der Transmissionsrandbedingung, welche eine besondere Schwierigkeit
darstellt und bisher nicht in der Literatur analytisch behandelt wurde.

Aufgrund der allgemeinen Form der Gleichungen (1)-(3) stehen diese stellvertretend fiir
eine ganze Klasse von Problemen, die in der technischen Chemie anzutreffen sind. Insbeson-
dere lasst sich der Ionenaustauscher damit beschreiben.

Unter geeigneten Voraussetzungen an die Systemgréfien df und fyf, die Nichlinearitaten
Rf und Anfangswerte uﬁo wird in der Arbeit nachgewiesen, dass das vorliegende Problem
eine eindeutige starke Losung im L,-Sinn besitzt. Sei n +2 < p < oco. Dann gibt es ein

tmaz > 0, so dass fiir alle T < t,,4, genau eine Funktion (u”, u”,u?) im Raum

Z" = Zp x ZE x Hy([0,T]; RY)
und genau ein Potenzial (¢f, ¢') in
BT = (") € 25 x ZE iy, (6 — 97) € Vi ).
existieren, die das System (1)-(3) 16sen. Dabei sind u* := (uf, ..., uk)) fiir k = P, F,b,
ZE = Hy([0, T]; Ly(%; RY)) N Ly ([0, T]; Hy (5 RY)),
2= HY*([0, T]; Hy (%)) N Ly ([0, T); H2 (),

fir k = P, F, sowie
Vi = By, /*([0, T} Ly(Ly)) N Ly([0, T); By, V7 (1))

Hierbei bezeichnet By, (J;Ly(I»)) den vektorwertigen Sobolev-Slobodeckijraum von Funk-
tionen auf J = [0,7] mit Werten im Lebesgueraum L,(I»). Dariiberhinaus definiert die
Abbildung

(ug »uf , ug) — (W (), u” (1), u’ (1))

einen lokalen Halbfluss im autonomen Fall. Die Idee des Beweises besteht darin, flir das
nichtlineare Problem (1)-(3) ein verwandtes lineares Problem mit inhomogenen Randdaten
herzuleiten und fiir dieses maximale L,-Regularitat nachzuweisen. Diese Eigenschaft ermaog-
licht die Umformulierung des nichtlinearen Problemes in eine Fixpunktgleichung im Raum
ZT x 2T, die dann mit Hilfe des Kontraktionsprinzips gelést werden kann. Die Vorausset-
zung an p stellt dabei sicher, dass die Einbettung Z] < CY2(.J; C(Q)) N C(J; C*(Q)) gilt.
Entscheidend fiir dieses Vorgehen ist das Finden der Regularitdten der rechten Seiten, die
notwendig und hinreichend sind fiir die Existenz und Eindeutigkeit einer Losung im Raum
der maximalen Regularitdt. Um die Notwendigkeit der Bedingungen an die Inhomogenitéten
einzusehen, werden bekannte Spurensétzen verwendet. Fiir die Hinlanglichkeit benutzen wir
die Methoden der Lokalisierung und Storung, welche das Ausgangsproblem auf Ganz- und
Halbraumprobleme mit konstanten Koeffizienten zuriickfiihren. Das Losen dieser Gleichungen
wird mit Hilfe von Sétzen iiber Operatorsummen (Dore-Venni-Theorie), reeller Interpolation,
sowie dem vektorwertigen Multiplikatorensatz von Michlin gewé&hrleistet.
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