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Introduction

It is a well known fact that chemically reacting systems can be described by means of systems
of reaction diffusion equations on the microscopic scale. These kinds of equations have been
studied in great detail by many authors during the last three decades. Although in chemi-
cal engineering the focus is overriding on the macroscopic scale, leading mostly to ordinary
differential equations, in many problems one has to take into account effects of diffusion, con-
vection and dispersion, or physical effects caused by electrical charges (e.g. electromigration).
The mass balance equations then become reaction-diffusion-convection equations which are
coupled with equations arising from considered physical processes. This leads to systems of
partial differential equations in three dimensions which can be very complicated. Therefore,
models have been developed on the macroscopic scale which allow for the essential informa-
tion about the physical processes taking place. However, many chemical processes involve two
or more phases, which typically means, the reacting species flow into the Continuously-flow
Stirred Tank Reactor (CSTR) and at least one of these species must be transferred to another
phase through an interface. In such situations it is of importance to take into consideration
mass transport in order to arrive at reliable models. However, this brings about the coupling
between the macroscopic reactor scale and the microscopic processes.

In the last decades, efforts have been made to account for electrical forces between particles.
This approach seems to be reasonable for the reacting species not being electrically neutral,
and particularly if electrical interactions can not be neglected in the chemical process. This
applies in case that electrical forces are of the same magnitude as the other driving forces, e.g.
diffusion or convection. However this involves a new unknown quantity, namely, the so-called
electrical potential which is caused by the charged particles. Including this item leads to a
strong coupling of the equations for the charged species. One possibility for incorporating
these effects into the model is the assumption of electroneutrality, which demands that the
total charge has to be zero everywhere at any time. This means that, for concentrations ci
of reacting species and corresponding charges zi ∈ Z the following algebraic constraint must
hold

∑

i

zici(t, x) = 0, t ∈ J, x ∈ Ω . (1)

Thus, the reaction diffusion equations are augmented with an algebraic equation. The effect
of electromigration was first taken into account by Henry and Louro [14]. To all appearances
there are only a very few papers about electrochemical systems in the mathematical literature,
e.g. see [2], [6], [15], [23], [38] and [4]. Therefore, it is this physical feature which is to play a
decisive role in our treatise.

In this thesis we are concerned with a mathematical model resulting from a regenerative
ionic exchanger, see [21] or [5] for more chemical background. The model will describe in
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detail the regeneration of the weak acidic cation exchanger-resins Amberlite IRC-86r (called
pellets) charged with Cu2+-ions via hydrochloric acid HCl in a well stirred tank (CSTR). In
fact, the pellets are suspended in a liquid bulk phase, where the acid is fed into the reactor
continuously via a carrying liquid and dissociates into H+ and Cl−. The exchange of cations
H+ and Cu2+ is connected with a subsequent reaction of neutralisation between the moving
protons H+ arising from the acid and the attached ions COO−. The chemical reaction
equation reads as follows:

R(COO−)2Cu
2+ + 2H+ −→ 2RCOOH + Cu2+ . (2)

The model is illustrated schematically by the following figure

V̇ f

HCl

V̇ f

HCl

CuCl2
Reaction in Bulk:
HCl � H+ + Cl−

CuCl2 � Cu2+ + 2Cl−

R(COO−)2Cu
2+

Pellet

Film

H+

H+

Cl−

Reaction in Pellet:
R(COO

−)2Cu
2++2H

+
→2RCOOH+Cu

2+

Cl−

Cu2+

Figure 1: Processes in the CSTR

As visualised above, the underlying chemical system consists of three phases: the almost
perfectly mixed bulk phase, the porous pellet and the film. The balance of each phase has to
take into consideration coupling of mass transport for all species and chemical reactions. The
resulting equations yield systems of heterogeneous reaction diffusion equations in each phase
which are connected to boundary conditions. In the end, a system of parabolic equations for
concentrations in film and pellet is obtained, and ordinary differential equations reproduce
the situation in the bulk phase. As mentioned above, the effect of electromigration caused
by considering charged species is to be involved, which in turn requires the electroneutrality
condition (1).

Now, we shall describe the equations modelling the above situation. Let Ω be a bounded
domain in R

3 which decomposes according to Ω = ΩP ∪ ΩF and their boundaries ΓP := ∂ΩP

and ∂ΩF = ΓP ∪Γ, Γ := ∂Ω, are C2-smooth with dist (ΓP ,Γ) > 0. The domain ΩP represents a
typical pellet and ΩF its surrounding liquid film. For the unknown functions uk : [0, T ]×Ωk →
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R
N , k = P, F , ub : [0, T ] → R

N and φk : [0, T ] × Ωk → R, k = P, F , we are concerned with
the problem

∂tu
P −∇ · (DP∇uP ) −∇ · (MPuP ⊗∇φP ) = RP (t, x, uP ), (t, x) ∈ J × ΩP ,

∂tu
F −∇ · (DF∇uF ) −∇ · (MFuF ⊗∇φF ) = RF (t, x, uF ), (t, x) ∈ J × ΩF ,

DP∂νu
P +MPuP∂νφ

P = DF∂νu
F +MFuF∂νφ

F , (t, x) ∈ J × ΓP ,
[

ln(γPi u
P
i )
]

1≤i≤N
+ λ0φ

P z =
[

ln(γFi u
F
i )
]

1≤i≤N
+ λ0φ

F z, (t, x) ∈ J × ΓP ,

uF = ub, (t, x) ∈ J × Γ,

d

dt
ub =

1

τ

(

uf − ub
)

+Rb(ub) − ab
∫

Γ

DF∂νu
F +MFuF∂νφ

F dσ, t ∈ J,

uP (0, x) = uP0 (x), x ∈ ΩP , uF (0, x) = uF0 (x), x ∈ ΩF , ub(0) = ub0,

(3)

and
zT·uk(t, x) = 0, (t, x) ∈ J × Ωk, k = P, F , zT·ub(t) = 0, t ∈ J . (4)

Let us explain the relevant quantities and constants. The functions uk and φk, k = P, F, b
denote the concentration vectors and electrical potentials, respectively, where the superscripts
indicate the corresponding phase. The diffusion coefficients dki summarised to the matrix Dk

are known functions of (t, x), and the quantity mk
i (t, x) := λ0 · dki (t, x) · zi is the so-called

electrochemical mobility. We set M k = diag[mk
i ]1≤i≤N . Finally, the constant λ0 := F/RT is

positive, where F denotes the Faraday constant, T the absolute temperature and R the gas
constant.

The charge of species i denoted by zi is the same in each phase. The first boundary
condition is caused by the continuity of fluxes on ΓP , whereas the second boundary condition
is due to continuity of chemical potentials. At the outer surface of the film Γ continuity of
concentrations is imposed. The next equation describes the evolution of the bulk concentra-
tions. The feeds ufi are time-dependent non-negative functions and the constant ab comprises
among other things the total number of pellets in the bulk volume. Finally, the functions
Rki , k = P, F, b and i = 1, . . . , N designate the production rate densities of species i due to
the chemical reactions in phase k. The purpose consists in finding functions u = (uP, uF, ub)
and φ = (φP, φF ) satisfying the above problem which possess the regularity

u ∈ ZT := ZTP × ZTF × ZTb , φ ∈ ZT := {(φP, φF ) ∈ ZT
P ×ZT

F : γ|ΓP
(φP − φF ) ∈ Y T

1,ΓP
},

with

ZTk := H1
p(J ; Lp(Ωk; R

N )) ∩ Lp(J ; H2
p(Ωk; R

N )), ZT
k := H1/2

p (J ; H1
p(Ωk)) ∩ Lp(J ; H2

p(Ωk)),

and Y T
1,ΓP

denotes a certain trace space.
The first question which is raised here is: “What are the determining equations for the

electrical potentials φP , φF ?”. It is well known that assumption (1) implies an equation for
the electrical potentials, consequently we obtain a closed model. Taking the inner product
of (3) with z in R

N and accounting for the electroneutrality condition (4) yields the elliptic
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boundary value problem

∇ · (zT·MPuP∇φP ) + ∇ · (zT·DP (t, x)∇uP ) = 0, (t, x) ∈ J × ΩP ,

∇ · (zT·MFuF∇φF ) + ∇ · (zT·DF (t, x)∇uF ) = 0, (t, x) ∈ J × ΩF ,

φP − φF =
1

λ0|z|2

[

∑

i

zi ln
(

γFi (t, x)uFi
)

−
∑

i

zi ln
(

γPi (t, x)uPi
)

]

, (t, x) ∈ J × ΓP ,

zT·MPuP∂νφ
P−zT·MFuF∂νφ

F=zT·DF (t, x)∂νu
F−zT·DP (t, x)∂νu

P, (t, x) ∈ J × ΓP ,

φF = 0, (t, x) ∈ J × Γ .

(5)

It turns out that adding these elliptic equations to problem (3) is an equivalent formulation
of (3) with electroneutrality (4). An important issue of this boundary value problem is the
regularity of (φP, φF ) in regard to the additional dependence on variable t. We will see that
the electrical potentials possess half a time derivative although all terms appearing in the
elliptic equations belong to Lp(J ; Lp(Ωk)).

Now, we want to dwell on the difficulties we have to overcome. We immediately perceive
that the above problem leads to a strongly coupled quasilinear parabolic-elliptic system with
nonlinear boundary condition of Dirichlet type, nonlinear transmission condition, dynamical
boundary conditions and nonlinear reaction rates. The most interesting difficulty of our
problem becomes manifest in the nonlinear transmission condition

DP∂νu
P +MPuP∂νφ

P = DF∂νu
F +MFuF∂νφ

F , (t, x) ∈ J × ΓP . (6)

Almost all quantities are involved in this boundary equation (except for the vector of concen-
tration ub), all coefficients of unknown functions are different and only terms of highest order
occur. Hence, this circumstance naturally leads to a strong coupling between the concentra-
tions and electrical potentials of each phase. Rigorous investigations of multiphase processes
including electroneutrality condition (1) and nonlinear boundary conditions, e.g. transmis-
sion condition (6), are apparently missing. We would like to mention that a one-dimensional
problem (and its modelling), Ω ⊂ R bounded, was treated by Bothe and Prüss [4].

Now, we want to point out where the potential difficulties are hidden. In principle, there
are two approaches to solve a parabolic-elliptic system. Either we take the concentration
vectors (uP, uF, ub) for granted, solve the elliptic problem and gain a solution formula in terms
of the electrical potentials which has to be inserted in the parabolic equations or we consider
the reverse. However, this method has an essential disadvantage which is caused by the multi-
phase situation. In fact, solving the elliptic problem supplies a nonlocal solution operator Φ
which acts on (uP, uF ) linearly and additionally depends on these functions nonlinearly, i.e.
we have

(φP, φF ) = Φ(uP, uF )(uP, uF ) .

This representation does not yet provide an insight into the linear part of the nonlinear
tranmission condition as in contrast to partial differential equations in domains ΩP and ΩF .
Here all nonlinear terms of highest order can be treated by using certain projections which
correspond with replacing electroneutrality condition by the elliptic equations for potentials.
For k = P, F we can define the projections

Πk(t, x, uk) := I − Mk(t, x)uk(t, x) ⊗ z

zT·Mk(t, x)uk(t, x)
.
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Applying these projections to equations in domains ΩP , ΩF and utilising electroneutrality
condition zT·uk = 0 entails

∂tu
k − Πk(t, x, uk)Dk(t, x)∆uk = Πk(t, x, uk)Rk(uk) + Πk(t, x, uk)∇Dk(t, x)∇uk

+ Πk(t, x, uk)∇[Mk(t, x)uk(t, x)]∇φk, (t, x) ∈ J × Ωk .

This shows that only terms of lower order in respect of the nonlocal operator Φ(uP, uF ) =
(φP, φF ) remain, and the quasilinear structure appears. To treat the nonlinear transmission
condition we can not employ this approach since both concentrations and both potentials
appear in this equation. Moreover, the solution operator Φ of the boundary value problem
does not meet with success either. Since the operator Φ is not given analytically, we are
not able to compute the expression ∂νΦ(uP, uF )(uP, uF ) in view of extracting the highest
order terms, i.e. ∂νu

k. This circumstance is revealed by transforming the problem into the
half space via localisation, changing of coordinates and perturbation. In this situation the
transmission can be written as

(ΠFDF )∂yu
F + (Dn + 1)1/2(ΠŨ−1

F )uF − (ΠPDP )∂yu
P = g,

where the operator (Dn + 1)1/2 denotes the square root of the shifted Laplacian in R
n and

ΠŨ−1
F is a certain projection. We perceive that the pseudo-differential operator (Dn + 1)1/2

is responsible for getting into difficulties and, of course, justifies our approach by means
of considering the localised problem. Another difficulty contained in the above equation is
caused by the non-commuting coefficient matrices. To be able to solve this two phase problem
it depends on figuring out the equation

[

∑

k=1,2

((ΠkDk)
−1∂t +Dn + 1)1/2(ΠkDk)

1/2Ũ−1
k + (Dn + 1)1/2Π

]

Ũ−1
F cF = g,

which is linked to the above transmission condition. The purpose consists in determining
the unknown function cF . The difficulty we encounter here are the matrices ΠPDP , ΠFDF ,
Ũ−1
P and Ũ−1

F which do not commute. However, the symbol of the operator satisfies a certain
lower estimate which entails its invertibility.

Now, we present a summary of the contents of this thesis and put across the essential
ideas. In Chapter 1 we derive the model by considering the principle of conservation of mass,
prescribing suggestive boundary conditions and by accounting for mass transport between
bulk and pellets. Here we perceive that the equation for concentration of the exchanger-resin
which makes up the pellet and the equations for the hydrochloric acidHCl and the salt CuCl2
decouple from the remaining system. After introducing the assumptions for given functions
we set about seeking the corresponding linear problem. This proceeding is caused by solving
the nonlinear problem via the contraction mapping principle and the fact that the solution
operator resulting from the linear problem places us in a position to formulate the original
problem (3) as a fixed point equation. With the aid of the contraction mapping principle
and for sufficiently small time-intervalls a unique fixed point is then obtained. The term of
solution space and other important function spaces related to our problem are introduced
here.

The purpose of Chapter 2 is to compile tools needed for solving the linear problem. A large
part of this chapter is devoted to sectorial operators admitting bounded imaginary powers
or a bounded H∞- calculus. Furthermore, we will focus on R-boundedness of operator
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families, Fourier multipliers and maximal Lp-regularity. The Mikhlin multiplier theorem in
the operator-valued version proven recently by Weiss [36] will play an important role for
proving optimal regularity. Another important tool which matters for treating the linear
and the nonlinear problem are embedding theorems. Furthermore, certain function spaces
are shown to form multiplication algebras. Subsequently, we deal with two general model
problems which naturally arise by using techniques of localisation in order to treat the linear
problem.

Chapter 3 is devoted to the linear problem and essentially comprises the proof of maximal
regularity. We start with considering a problem in the full space induced by localisation in
the interior of domain Ωk, and studying a half space problem as a result of the boundary Γ.
These model problems consist of parabolic problems coupled with elliptic equations arising
from the electrical potentials which have to be determined as well. Finally, the boundary
ΓP brings about a so-called two phase problem being the gist of this thesis. The particular
features of this model problem are transmission condition (6) and the jump condition caused
by continuity of the chemical potentials. For solving this intricate problem it boils down
to study a boundary equation which is composed of a sum of operators having bounded
imaginary powers. These operators are quadratic matrices of dimension N × N that are
not commuting. Owing to this circumstance the Dore-Venni Theorem is not applicable,
however, the Mikhlin multiplier theorem in the operator-valued version applies. Maximal
Lp regularity of each model problem supplies a solution operator which will be used for
representing solutions of local problems with variable coefficients.

Thereafter, we make available techniques of localisation needed for proving maximal reg-
ularity of the linear problem in a bounded domain. The process of localisation reduces this
task to the model problems treated before. In the end, with the aid of local solutions we are
able to construct solution of the original problem.

In Chapter 4 we tackle the nonlinear problem by means of the contraction mapping prin-
ciple. As above noted the results of Chapter 3 enter here to attain a fixed point equation
equivalent to the original problem. Theorem 4.1 proves existence and uniqueness of a general
three-phase not including the equations for concentrations of HCl, CuCl2 and the exchanger-
resin. Moreover, we show that a solution (potentials and positive concentrations) has a max-
imal interval of existence, and defines a local semiflow. To achieve a selfmapping we have
to choose a small time interval. To obtain positivity for the concentrations the maximum
principle is utilised. By means of continuation we obtain a maximal interval of existence.
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Chapter 1

The Model

In this chapter we first will introduce the problem and explain the physical-chemical back-
ground. Then, we start with the derivation of a model considering all relevant effects of
physics and chemistry. The resulting conservation equations contain terms to model diffu-
sion, reaction and migration. In literature reaction diffusion systems are often discussed,
whereas the latter effect is disregarded. Thereafter, we introduce all assumptions concerning
coefficients and nonlinearities and introduce our concept of solutions. Since modelling entails
nonlinear equations and we embark on the strategy to solve this problem by linearisation, we
are looking for the corresponding linearised equations. This will be done in Section 1.4.

1.1 Regeneration of Ionic Exchangers

For 60 years ionic exchange processes have been applied to regenerative technologies and
are typically implemented to purify water, e.g. for softening, decarbonation, decolourisation
as well as desalination. A second application playing an important role is the purification
of industrial water as well as sewage. Toxic ionics of heavy metal for instance, non-ferrous
metal, cyanide or metal complexes, which were disposed from rinsing water or effluent of
galvanic industries, can be rendered harmless and partially regained with the aid of ionic
exchangers. This process is also suitable for the decontamination of radioactive sewage arising
in nuclear power plants, nuclear facilities and factories for recycling of nuclear fuel. Although
the technical realisation of ionic exchange processes is not difficult, there is an increased
requirement of researching chemical and physical processes, cp. [19]. This justifies the interest
in mathematical modelling and numerical simulations of ionic exchangers [17].

For our considerations we devote ourselves to studying the organic exchanger resins. These
exchanger particles consist of an irregular, three-dimensional matrix of chained hydrocarbon
molecules which give the resin a hydrophobic character. This water-insoluble matrix can
be commuted into an electrolytic ionic exchanger by integrating hydrophilic groups into the
matrix. These groups, which possess a certain charge, get tied into the three-dimensional
matrix and lead to a positive or negative charge of the entire matrix. Consequently, mobile
ionics with opposite charge can be fixed to these groups. It turns out that this network
polymer was transformed into a reactive polymer due to integrating charged groups. It is
exactly this property that is of interest to various industries as mentioned above.

We now come to phenomena responsible for the ionic exchange process. An ionic exchanger
basically consists of two phases, namely, the electrolyte and the porous polymer matrix which
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is pervaded by the electrolyte. Hence, the liquid phase continues inside the insoluble polymer
matrix. For considering diffusive forces, the irregular structure and variation of pore diameter
of such polymers have to be taken into account, resulting in the micropore diffusion and
macrospore diffusion. According to the hydrodynamic size of an ion and the pore diameter
we have to consider interactions between pore wall and ions. In addition, interionic forces as
repulsion and attraction have an effect on the mobility of ionics, e.g. charge carriers induce
an electrical field affecting the other ionics. Hence, the transport of various charged species in
electrolytes involves electromotive forces, which can become large if the system deviates from
the electroneutrality condition. In other words, these forces quickly bring about the state of
electroneutrality respectively inhibit a variation of electroneutrality. The effect of electrical
fields on diffusion processes of charged particles, which is called “electromigration”, can be
described by means of the “Nernst-Planck Equation” [22]. Models of various ion exchange
processes and membrane processes employing the Nernst-Planck Equation can be found in
[8], [18].

Finally, let us point out that the “Stefan-Maxwell-Equations”, taking into consideration
pressure diffusion and interionic interactions, specify these transport processes in electrolyte
and non-electrolyte systems. These approaches were applied to several ionic exchange pro-
cesses and membrane processes, cf. [11], [37].

1.2 Modelling of an Ionic Exchanger

Now, we consider a concrete ionic exchanger arising in chemistry. The underlying situation
is that a certain irreversible chemical reaction, B + 2H+ = 2P + Cu2+, is to take place inside
a pellet of high porosity, carrying ions of type B := [R(COO−)2Cu2+] which are immobile.
These particles of small size are suspended in a liquid bulk phase. Typically it is assumed
that a stagnant boundary layer is present around the pellets, separating these particles from
the region of turbulent liquid, such that the overall system consists of three different phases:
the porous pellet, the film and the bulk volume. The film alludes to the fact that due to
viscosity there is a transport resistance close to the surface of pellets. The bulk phase reflects
a well stirred tank filled with an acid HCl and a salt CuCl2. These chemicals are fed into
the reactor continuously via a carrying liquid and dissociate into H+, C− and Cu2+. The
reaction equations read as follows

Pellet: B + 2H+ −→ 2P + Cu2+

Bulk: HCl � H+ + Cl−

CuCl2 � Cu2+ + 2Cl−

In the following we will use the abbreviations H := [H+], C := [Cl−], HC := [HCl] and
AC := [CuCl2]. In order that the reaction in the pellet takes place, H has to diffuse through
the stagnant film to the surface of the pellet-core and into its interior. Here the copper ion,
fixed to the polymer matrix, is replaced by two protons so we get two products, a copper ion
and two electric neutral molecules P := [RCOOH]. The latter one does not effect subsequent
reactions and is therefore not needed for further balancing. The reaction proceeds as long
as B is present. After the reaction the mobile copper ion can diffuse into the interior of the
pellets or to the surface and then into the bulk phase. For a realistic model of such processes,
we have to take into consideration interfacial mass transport, diffusion and reactions inside

2



the pellet and in the bulk. The principle of conservation of mass for all species leads to the
conservations laws

∂tu
P
i (t, x) + ∇ · JPi (t, x) = RPi , (t, x) ∈ J × ΩP , (1.1)

∂tu
P
B(t, x) = RPB, (t, x) ∈ J × ΩP , (1.2)

∂tu
F
i (t, x) + ∇ · JFi (t, x) = RFi , (t, x) ∈ J × ΩF , (1.3)

for i = H,A,C. The nonnegative concentration of a species i is denoted by uki and the capital
letters P and F indicate the phase. Here we assume that all pellets including the stagnant
boundary layer are of the same shape given by a certain bounded set Ω ⊂ R

3 with C2-
boundary Γ := ∂Ω. Furthermore, we set ΩP for the pellets and ΩF for the film. This implies
that the boundary of ΩF splits in two parts, namely the boundary of ΩP denoted by ΓP and
the boundary of Ω. These boundaries are supposed to satisfy the condition dist (ΓP ,Γ) > 0.
The following picture makes the underlying situation clear.

Ω = ΩP ∪ ΩF

ΩF

ΩP

ΓP
Γ

B + 2H −→ 2P + A

HC � H + C

AC � A + 2C

Figure 1.1: Pellet

The function Rki designates the production rate density of species i due to the chemical
reactions in phase k. The flux vector of a species i is given by

Jki (t, x) := −dki (t, x)∇uki −mk
i (t, x)u

k
i∇φk .

It consists of a diffusion term according to Fick’s law and a migration term, as we want
to take into account electrical forces between the charged ions as well. Here, the function
φk denotes the electrical potential in phase k, which is generated by the charged ions. All
diffusion coefficients are known functions of (t, x) and the quantity mk

i (t, x) := λ0 ·dki (t, x) ·zi
is the so-called electrochemical mobility. Here zi denotes the charge of species i and it is
clear, that this value is the same in each phase. Finally, the constant λ0 := F/RT is positive,
where F denotes the Faraday constant, T the temperature and R the gas constant.

Now we shall discuss the boundary conditions. We impose continuity of fluxes on ΓP and
continuity of chemical potentials, respectively. The latter boundary condition leads to a jump
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of the concentrations at the surface of pellets. At the outer surface of the film Γ we demand
that the concentration of a specific species i equals to the corresponding bulk concentration,
in other words, continuity of concentrations. Putting together all boundary conditions yields

JPi (t, x) · ν = JFi (t, x) · ν on ΓP , (1.4)

µPi (t, x) = µFi (t, x) on ΓP , (1.5)

uFi (t, x) = ubi(t) on Γ , (1.6)

where ν denotes the outer normal. In (1.6) the function ubi(t) denotes the concentration of
species i in bulk volume V b. Since we consider a perfectly mixed tank, these concentrations
do not depend on space variable x. The chemical potentials in the second boundary condition
are typically modelled by

µki (t, x) := µ0
i +R · T ln(γki (t, x)u

k
i (t, x)) + zi · F · φk(t, x) ,

where the standard potentials are independent of concentrations, i.e. µ0
i := µP,0i = µF,0i , and

the chemical activities γPi , γFi are assumed to be positive. Evolution of the bulk concentra-
tions is described by the system of ordinary differential equations

d

dt
ubi(t) =

1

τ

(

ufi (t) − ubi(t)
)

+ ab
∫

Γ

JFi (t, x) · ν dσ +Rbi , t ∈ J, i = H,A,C (1.7)

d

dt
ubi(t) =

1

τ

(

uf (t) − ub(t)
)

+Rbi , t ∈ J, i = HC,AC (1.8)

where the constant τ denotes residence time, i.e. the ratio Vb/V̇
f
b between the liquid volume

Vb and the liquid flow rate V̇ f
b The feeds ufi are time-dependent nonnegative functions and

the factor ab is the ratio NP /Vb between the total number of pellets NP and the liquid
volume. The integral term reflects mass transport into the pellets and Rbi is the production
rate density of a species i. Of course we have to complete the system by initial data for all
species i in each phase k = P, F, b. If we set for k = P, F, b

uk :=
(

uk1, u
k
2, u

k
3

)

:=
(

ukH, u
k
A, u

k
C

)T
∈ R

N , N = 3, (1.9)

then the unknown functions are the concentrations vectors uP , uF , ub, the concentration uPB
of polymer matrix B, the concentration ubHC of the acid HC, the concentration ubAC of the
salt AC, and finally the electrical potential φ = (φP , φF ). However, these quantities will not
be determined by the evolution system (1.1)-(1.2), (1.7), (1.8), by the boundary conditions
and by the initial data

uPB(0, x) = uPB,0(x) , x ∈ ΩP , ubHC(0) = ubHC,0 , ubAC(0) = ubAC , (1.10)

uk(0, x) = uk0(x) , x ∈ Ωk , k = P, F , ub(0) = ub0 , (1.11)

since the underlying problem is under-determined. The reason for this defect is induced by the
unknown electric potentials φP and φF . By disregarding magnetic fields these quantities are
exactly determined by the Poisson equation ∆φk = F/ε

∑

i ziu
k
i in domain Ωk and certain

boundary conditions, where F denotes again the Faraday constant and ε := ε0 · εr the
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permittivity (or dielectric constant) depending on the material. Owing to the largeness
of factor F/ε, slight charge seperation would give rise to a strong electric field. On the
other hand, charge gradients are counterbalanced very fast leading to the assumption of
electroneutrality as a first approximation. In fact, the total charge of the solute, given by the
sum

∑

i ziu
k
i , has be zero everywhere at any time. So the system should be complemented

by the equations

N
∑

i=1

ziu
k
i (t, x) = 0, (t, x) ∈ J × Ωk, k = P, F , (1.12)

N
∑

i=1

ziu
b
i(t) = 0, t ∈ J . (1.13)

We shall end up with specifying charges zi, the production rates Rki arising in the area Ωk

and Rbi in the bulk volume Vb.

(z1, z2, z3)
T := (zH, zA, zC)T = (+1,+2,−1)T , zB = zHC = zAC = 0 , (1.14)

RP (uP ) := (RP1 , R
P
2 , R

P
3 )T := (RPH, R

P
A, R

P
C)T = rPB · (2,−1, 0)T, rPB = −kBu

P
Bu

P
1 , (1.15)

RF (uF ) := (0, 0, 0)T , (1.16)

Rb(ub) := (Rb1, R
b
2, R

b
3)
T := (RbH, R

b
A, R

b
C)T = (−rbHC,−rbAC,−rbHC − 2rbAC)T , (1.17)

rbHC = kH(ub1u
b
3 −KHu

b
HC) , rbAC = kA(ub2u

b
3 −KAu

b
AC) . (1.18)

Incidentally, it is easy to see that the reaction functions RP and Rb satisfy the electroneu-
trality condition as well. Besides, if we look at evolution equations for the concentrations
uP

B
, ubHC and ubAC, then we pinpoint that these ordinary differential equations can be solved

explicitly. The solution formulae read as follows

uPB(t, x) = exp



−
t
∫

0

kBu2(s, x) ds



uPB,0(0, x) , (1.19)

ubHC(t) = e−( 1
τ
+kHKH)·tubHC,0 +

t
∫

0

[

e−( 1
τ
+kHKH)·(t−s)ufHC(s) + kHu1(s)u3(s)

]

ds , (1.20)

ubAC(t) = e−( 1
τ
+kAKA)·tubAC,0 +

t
∫

0

[

e−( 1
τ
+kAKA)·(t−s)ufAC(s) + kAu2(s)u3(s)

]

ds . (1.21)

That is the reason for omitting these functions in the arguments of nonlinear reaction rates
RP (uP ) and Rb(ub). Therefore it remains to determine the electrical potential φ = (φP, φF )
and the unknown concentration vectors uP , uF and ub satisfying differential equations (1.1),
(1.3), (1.7) with general nonlinear reaction rates, boundary conditions (1.4) - (1.6), initial
data (1.10) and the electroneutrality condition. As a result, we have to solve a three phase
problem, more precisely we are looking for three concentration vectors defined in several
domains and coupled by means of boundary conditions.
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Now, we want to formulate a result of existence and uniqueness for the concentrations and
electrical potentials in case of constant coefficients dki and γki , k = P, F , i = 1, 2, 3. We will
show that the concentration vector (uP, uF, ub, uPB , u

b
HC, u

b
AC) belongs to the class of maximal

regularity

Z(J0) := ZP (J0) × ZF (J0) × H1
p(J0; R

N ) × C3/2(J0; C(ΩP )) × (H1
p(J0))

2

Zk(J0) := H1
p(J0; Lp(Ωk; R

N )) ∩ Lp(J0; H
2
p(Ωk; R

N )).

Furthermore, the natural phase space for this problem is the space

V := B2−2/p
pp (ΩP ;E+) × B2−2/p

pp (ΩF ;E+) × E+ × C(ΩP ; R+) × R+ × R+,

where E+ denotes the positive cone of the hyperplane E = {η ∈ R
N : zT·η = 0}. Hence, by

uniqueness of the solution the map

(uP0 , u
F
0 , u

b
0, u

P
B,0, u

b
HC,0, u

b
AC,0) −→ (uP (t), uF (t), ub(t), uPB (t), ubHC(t), ubAC(t)) (1.22)

defines a local semiflow on V (E+). A version of the main result reads as follows.

Theorem 1.1 Let ΩP , ΩF be bounded domains in R
n with C2- boundary, ΓP := ∂ΩP , ∂ΩF =

ΓP ∪ Γ and dist (ΓP ,Γ) > 0. Assume that n + 2 < p < ∞ and uf ∈ Lp(J ;E+). Suppose that
the initial data (uP0 , u

F
0 , u

b
0, u

P
B,0, u

b
HC,0, u

b
AC,0) belong to V and the following compatibility

conditions are satisfied

1. ln(γPi (0)uPi,0) + λ0ziφ
P
0 = ln(γFi (0)uFi,0) + λ0ziφ

F
0 in B2−3/p

pp (ΓP ) for i ∈ {1, . . . , N};

2. DP (0)∂νu
P
0 +MP (0)uP0 ∂νφ

P
0 = DF (0)∂νu

F
0 +MF (0)uF0 ∂νφ

F
0 in B1−3/p

pp (ΓP ; RN ), where
(φP0 , φ

F
0 ) is given as solution of (4.4).

3. uF0 (x) = ub0 in B2−3/p
pp (Γ;E+).

Then there exists tmax > 0 such that for any T0 < tmax the problem (1.1)-(1.8), (1.10)-(1.13)
admits a unique solution (uP, uF, ub, uPB , u

b
HC, u

b
AC) on J0 := [0, T0] in the maximal regularity

class Z(J0).
Moreover, the concentrations (uP, uF, ub, uPB , u

b
HC, u

b
AC) are positive and the map (1.22) de-

fines a local semiflow in the natural phase space V .

The first open problem concerns global existence (tmax = ∞). Another interesting problem
regards the asymptotic behaviour of concentrations. Furthermore, there are no results on
existence and uniqueness of stationary states and their stability for the evolution problem.

1.3 The Mathematical Formulation

Throughout this thesis let J be a compact time interval of R+ containing 0 and Ω ⊂ R
n+1

be an open bounded domain with C2-boundary denoted by Γ. Furthermore let Ω = ΩP ∪ΩF

be made up of two bounded domains ΩP and ΩF , such that ∂ΩF = Γ ∪ ΓP , ΓP := ∂ΩP , where
we assume a positive distance between the boundaries, i.e. dist (ΓP ,Γ) > 0, see Figure (1.1)
for illustrating the underlying situation.
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Now we come to the assumptions on the coefficients arising in the partial differential
operators and boundary conditions. Concerning the diffusion coefficients dki we assume that

dki ∈ C1/2(J ; C1(Ωk)), i = 1, . . . , N and k = P, F , (1.23)

dki (t, x) > 0, (t, x) ∈ J × Ωk, i = 1, . . . , N and k = P, F . (1.24)

A consequence of these assumptions is that for i = 1, . . . , N and k = P, F we have

mk
i := λ0zid

k
i ∈ C1/2(J ; C1(Ωk)), zim

k
i (t, x) ≥ m0 > 0, (t, x) ∈ J × Ωk . (1.25)

The latter assertion follows by means of (1.23), (1.24), positivity of λ0, and compactness of
Ωk. We now define the diagonal matrices Dk and Mk which inherit the regularity of dki .

Dk := diag[dki ]1≤i≤N ∈ C1/2(J ; C1(Ωk;Lis(RN ))) ,

Mk := diag[mk
i ]1≤i≤N ∈ C1/2(J ; C1(Ωk;L(RN ))) .

(1.26)

Due to positivity of dki we deduce that σ(Dk(t, x)) = {dki (t, x) : 1 ≤ i ≤ N} ⊂ R+ and thus
in particular Dk ∈ Lis(RN ) for all (t, x) ∈ J × Ωk. Moreover, we suppose that γki is positive
for each i = 1, ..., N and k = P, F and lies in a certain trace space.

γki ∈ Y1,ΓP
(R+) := B1−1/2p

pp (J ; Lp(ΓP ; R+)) ∩ Lp(J ; B2−1/p
pp (ΓP ; R+)) (1.27)

In the next chapter, we will explain the choice of this trace space. It remains to impose some
regularity and positivity assumptions of the nonlinearities Rk, k = P, F and Rb.

(R1) Rk : J × Ωk × R
N → R

N is assumed to be a Caratheodory function, i.e.
Rk(·, ·, u) is measurable ∀u ∈ R

N ,
Rk(t, x, ·) is continuous for a.a. (t, x) ∈ J × Ωk;

(R2) For each Lk > 0 there is a function lk ∈ Lp(J ; Lp(Ωk)) such that
|Rk(t, x, u) −Rk(t, x, u)| ≤ lk(t, x)|u− u|, for all (t, x) ∈ J × Ωk,
u, u ∈ R

N , |u|, |u| ≤ Lk;

(R3) Let ui ≥ 0 for all i and uj = 0, then Rkj ≥ 0;

Rk leaves E = {η ∈ R
N : zT ·η = 0} invariant, i.e. zT ·Rk(t, x, uk) = 0 a.a.

(t, x) ∈ J × Ωk, and for all uk ∈ E.

The conditions for nonlinearity Rb are of similar type. We suppose that

(R4) Rb : J × R
N → R

N is a Caratheodory function, i.e.
Rb(·, u) is measurable ∀u ∈ R

N and Rb(t, ·) is continuous for a.a. t ∈ J ;

(R5) For each Lb > 0 there is a function lb ∈ Lp(J) such that
|Rb(t, u) −Rb(t, u)| ≤ lb(t)‖u− u‖, for all t ∈ J , u,u ∈ R

N , |u|, |u| ≤ Lb.

(R6) Let ui ≥ 0 for all i and uk = 0, then Rbk ≥ 0;
Rb leaves E invariant, i.e. zT·Rb(t, ub) = 0 a.a. t ∈ J , and for all ub ∈ E.

In order to avoid writing partial differential operators at full length and be able to use a
vector-valued notation, we shall introduce abbreviations. For this purpose, let (t, x) ∈ J×Ωk,
u : Ωk → R

N and φ : Ωk → R. We then set for k = P, F

Ak1(D)u = Ak1(t, x,D)u := −∇ · (Dk(t, x)∇u),
Ak2(D)φ = Ak2(t, x, u

k, D)φ := −∇ · (Mk(t, x)uk(t, x) ⊗∇φ).
(1.28)
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In the latter definition we have used the symbol ⊗ in order to denote the dyadic product of
two vectors. Recall that for a ∈ R

N and b ∈ R
n, the dyadic product of a and b is defined

by (a ⊗ b)i,j = aibj . Supposing a ∈ C1(Ω; RN ) and b, c ∈ C1(Ω; Rn) then we can verify the
following rules

1. (a⊗ b)T = b⊗ a, (a⊗ b)c = a (bT·c),
2. ∇ · (a(x) ⊗ b(x)) = a(x)(∇ · b(x)) + ∇a(x) · b(x),

where bT denotes the transpose of vector b and bT·c designates the inner product of the vectors
b and c.

Similarly, we define linear boundary operators by

Bk1(D)u = Bk1(t, x,D)u := Dk(t, x)∂νu ,

Bk2(D)φ = Bk2(t, x, uk, D)φ := Mk(t, x)uk(t, x)∂νφ ,
(1.29)

which will be understood in the sense of traces concerning the spatial variable x. Here ν
denotes the outer normal on boundary ΓP or Γ. Using these notations, the system (1.1),
(1.3)-(1.7), (1.11) - (1.13) for concentration vectors uP , uF , ub and electrical potentials φP ,
φF takes the form

∂tu
P + AP1(t, x,D)uP + AP2(t, x, u

P, D)φP = RP (t, x, uP ), (t, x) ∈ J × ΩP ,

∂tu
F + AF1(t, x,D)uF + AF2(t, x, u

F, D)φF = 0, (t, x) ∈ J × ΩF ,

BP1(t, x,D)uP+ BP2(t, x, u
P, D)φP = BF1(t, x,D)uF+ BF2(t, x, u

F, D)φF, (t, x) ∈ J × ΓP ,
[

ln(γPi u
P
i )
]

1≤i≤N
+ λ0φ

P z =
[

ln(γFi u
F
i )
]

1≤i≤N
+ λ0φ

F z, (t, x) ∈ J × ΓP ,

uF = ub, (t, x) ∈ J × Γ,

d

dt
ub =

1

τ

(

uf − ub
)

+Rb(ub) − ab
∫

Γ

[BF1(t, x,D)uF + BF2(t, x, u
F, D)φF ]dσ, t ∈ J,

uP (0, x) = uP0 (x), x ∈ ΩP , uF (0, x) = uF0 (x), x ∈ ΩF , ub(0) = ub0,

zT·uk(t, x) = 0, (t, x) ∈ J × Ωk, k = P, F , zT·ub(t) = 0, t ∈ J .

(1.30)

1.3.1 Solution Spaces

We now address the issue of choosing solution spaces for concentration vectors uk, k = P, F, b
and potentials φP , φF . Beforehand, let us introduce some abbreviations for spaces being
relevant to inhomogeneities and initial data of the evolution problem. Define an (N − 1)
dimensional linear subspace of R

N , the space of electroneutrality, by

E := {η ∈ R
N : zT·η =

N
∑

i=1

ziηi = 0}.

Since we are interested in non-negative solutions, we have to introduce the positive cone of E
denoted by E+ := {η ∈ E : ηi ≥ 0 , i = 1, ..., N}. Let J = [0, T ] be a compact time interval.
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If we set u := (uP , uF , ub) and φ := (φP , φF ), then (u, φ) is called a strong solution of (1.30),
provided that u belongs to ZTP × ZTF × ZTb , i.e.

uP ∈ ZTP := H1
p(J ; Lp(ΩP ; RN )) ∩ Lp(J ; H2

p(ΩP ; RN )) ,

uF ∈ ZTF := H1
p(J ; Lp(ΩF ; RN )) ∩ Lp(J ; H2

p(ΩF ; RN )) ,

ub ∈ ZTb := H1
p(J ; RN ),

(1.31)

φ lies in ZT :=
{

(φP, φF ) ∈ ZT
P ×ZT

F : γ|ΓP
φP − γ|ΓP

φF ∈ Y T
1,ΓP

}

, where we have set

ZT
P := H1/2

p (J ; H1
p(ΩP )) ∩ Lp(J ; H2

p(ΩP )) ,

ZT
F := H1/2

p (J ; H1
p,Γ(ΩF )) ∩ Lp(J ; H2

p,Γ(ΩF )) ,

Y T
1,ΓP

:= B1−1/2p
pp (J ; Lp(ΓP )) ∩ Lp(J ; B2−1/p

pp (ΓP )),

(1.32)

and (1.30) holds a.e. The function spaces Bs
pp appearing in Y T

1,ΓP
are called Besov spaces and

coincide with the Slobodeckij spaces W s
p for s 6∈ N. These kind of anisotropic spaces arise as

natural regularity classes for inhomogeneities in boundary conditions of parabolic problems,
see chapter two. If the electroneutrality condition is integrated into solution spaces ZTk , then
we write ZTk (E). Furthermore, let uk be a function in ZTk , then in consequence of the mixed
derivative theorem which is due to Sobolevskii [31], see Section (2.2), we deduce that the
gradient of uk belongs to

ZTk,∇ := H1/2
p (J ; Lp(Ωk; R

N )) ∩ Lp(J ; H1
p(Ωk; R

N )). (1.33)

By the definition of ZT
k this result follows for gradients of φP and φF as well, whereas these

functions take values in R. If J = R+ resp. the length of J is not decisive, then we will
omit the index T . The notation γ|Γ arising in the definition of ZT has the meaning of a trace
operator concerning boundary Γ and by means of γ|t we denote the time trace operator, i.e.

γ|tu(t) := u(t)|t=0 = u(0). In the definition of ZT
F we have used the abbreviations

H1
p,Γ(ΩF ) :=

{

φ ∈ H1
p(ΩF ) : γ|Γφ = 0

}

, H2
p,Γ(ΩF ) := H1

p,Γ(ΩF ) ∩ H2
p(ΩF ). (1.34)

In the end, if F is any of the above function spaces then we set 0F := {v ∈ F : γ|tv = v(0) = 0}
whenever traces exist.

Now let us make some remarks about choise of these spaces. For this purpose we consider
the partial differential equation in ΩP

∂tu
P −∇ · (DP∇uP ) −∇ · (MPuP ⊗∇φP ) = RP . (t, x) ∈ J × ΩP .

If we assume that RP belongs to Lp(J ; Lp(ΩP ; RN )) and demand this regularity from each term
on the left-hand side, then we need at least two spatial derivatives and one temporal derivative
of uP in Lp. For the electrical potential it suffices to ask for two spatial derivatives belonging
to Lp. This consideration completely explains that we are looking for the concentration
vectors uP and uF in ZTP and ZTF , respectively. However, it does not illustrate the first space
of ZT

k . To see this regularity we apply zT· to the above equation and take into account the
electroneutrality condition resulting in

−∇ · (zT·DP∇uP ) −∇ · (zT·MPuP∇φP ) = 0, (t, x) ∈ J × ΩP .
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Multiplying with v ∈
◦
H1
p′(ΩP ) and partial integration yields

∫

ΩP

zT·MPuP∇φP∇v dx = −
∫

ΩP

zT·DP∇uP∇v dx ≤ ‖v‖ ◦
H1

p′ (ΩP )
‖zT·DP∇uP ‖Lp(ΩP ).

By the above remarks and continuity assumptions for DP we have zT·DP∇uP∈H1/2
p (J ; Lp(ΩP ))

which implies zT·MPuP∇φP ∈ H1/2
p (J ; Lp(ΩP )) due to duality. Lastly, the vector ub satisfies

an ordinary differential equation and therefore it only seems natural to seek solutions in
H1
p(J ; RN ).

1.4 The Linearisation

Since, metaphorically speaking, one has the perception that nonlinear problems can be ap-
proximated by a linear one, it appears natural to study a corresponding linear problem.
Hence, this section is devoted to looking for an appropriate linearisation of (1.30). First,
we shall attend the jump condition on ΓP which, by the logarithmic terms of uP and uF ,
are nonlinear. In order to linearise this boundary condition, we expand the logarithm func-
tion as follows: Let ũk be a positive function in Zk(E) (ũk ∈ Zk(E+), ũki > 0 ∀i) with
γ|t ũ

k
i := ũki (0, x) = uk0,i > 0, i ∈ {1, . . . , N}, then for every given ε > 0 there exists a

sufficiently small T > 0, such that

C‖uk − ũk‖
0UT

k
≤ ‖uk − ũk‖

0ZT
k
< ε . (1.35)

This is the result of embedding ZTk ↪→ UTk := C1/2(J ; C(Ωk))∩C(J ; C1(Ωk)) proved in Section
2.4 and of uk(0, x) − ũk(0, x) = 0. For expanding the logarithm, we shall use this auxiliary
functions in the following way

ln
(

uki

)

= ln
(

ũki

)

+ ln

(

uki
ũki

)

= ln
(

ũki

)

+
uki − ũki
ũki

+ r

(

uki − ũki
ũki

)

=
uki
ũki

− 1 + ln
(

ũki

)

+ r

(

uki − ũki
ũki

)

,

where the function r(·) belongs to C∞(R+) with r(0) = 0 and r′(0) = 0. It is to be noted
that r is only well-defined for uki > 0. Thus we obtain

ln
(

uPi
)

− ln
(

uFi
)

=
uPi
ũPi

− uFi
ũFi

+ ln

(

ũPi
ũFi

)

+ r

(

uPi − ũPi
ũPi

)

− r

(

uFi − ũFi
ũFi

)

.

We collect the functions r((uki − ũki )/ũ
k
i ) for i ∈ {1, . . . , N} to the vector function

Rũk(uk) :=

[

r

(

uki − ũki
ũki

)]

1≤i≤N

, k = P, F . (1.36)

All properties of r(·) transfer to the vector-valued function R. In fact, we have

Rũk(ũk) = 0, γ|tRũk(uk) = Ruk
0
(uk0) = 0,

R′
ũk(ũk) = 0, γ|tR

′
ũk(uk) = R′

uk
0
(uk0) = 0.
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If we put

γ(t, x) :=

[

ln

(

γFi (t, x)ũFi (t, x)

γPi (t, x)ũPi (t, x)

)]

1≤i≤N

, H(t, x, uP, uF ) := γ(t, x) −RũP (uP ) +RũF (uF )

(1.37)

and

Ũ−1
k (t, x) := diag[(ũki (t, x))

−1]1≤i≤N , for k = P, F ,

then the jump condition (1.5) takes the form

Ũ−1
P (t, x)uP − Ũ−1

F (t, x)uF + λ0(φ
P − φF )z = H(t, x, uP, uF ) . (1.38)

Since the matrices Ũ−1
P and Ũ−1

F are diagonal, and each component is positive, we conclude
Ũ−1
k (t, x) ∈ Lis(RN ) for a.a. (t, x) ∈ J × Ωk.
The quasilinear structure we find in the differential equations and transmission condition

stems from operators acting on potentials φP and φF due to the dependence on unknown
functions uP , uF . Therefore we approximate uk by means of ũk and define

Ak2(D)φ = Ak2(t, x,D)φ := Ak2(t, x, ũ
k, D)φ,

Bk2(D)φ = Bk2(t, x,D)φ := Bk2(t, x, ũk, D)φ.

Now, we can formulate the linear problem associated with nonlinear evolution problem (1.30).
Let the inhomogeneities fP , fF , g, hP , hF , f b be given. Using the above linearisation the
linear problem reads as follows

∂tw
P + AP1(D)wP + AP2(D)ψP = fP (t, x), (t, x) ∈ J × ΩP ,

∂tw
F + AF1(D)wF + AF2(D)ψF = fF (t, x), (t, x) ∈ J × ΩF ,

BP1(D)wP + BP2(D)ψP = BF1(D)wF + BF2(D)ψF + g(t, x), (t, x) ∈ J × ΓP ,

Ũ−1
P wP − Ũ−1

F wF + λ0z(ψ
P − ψF ) = hP (t, x), (t, x) ∈ J × ΓP ,

wF = hF (t, x), (t, x) ∈ J × Γ,

wP (0, x) = uP0 (x), x ∈ ΩP , wF (0, x) = uF0 (x), x ∈ ΩF ,

(1.39)

d

dt
wb +

1

τ
wb =

1

τ
uf (t) + f b(t) − ab

∫

Γ

BF1(D)wF + BF2(D)ψFdσ, t ∈ J,

wb(0) = ub0,

(1.40)

and

zT·wP = 0, (t, x) ∈ J × ΩP , zT·wF = 0, (t, x) ∈ J × ΩF , zT·wb = 0, t ∈ J. (1.41)

At this point one can already realise that the linear problem has an essential advantage, as
compared to the nonlinear case, apart from the linear structure of course. On closer inspection
we perceive that system (1.39) for (wP, wF ), (ψP, ψF ) and evolution equation (1.40) for wb

are decoupled. More precisely, after solving (1.39) the known functions wF , ψF can be put
in the boundary integral over Γ and thus all terms of the right-hand side of (1.40) are given.
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Another question arising here concerns the determination of the electrical potentials. By
applying zT · to the evolution equation (1.39), using electroneutrality condition (1.41) and the
commuting property of zT with all differential operators, we obtain the following equations

∇ · (aP∇ψP ) + ∇ · (zT·DP∇wP ) = −zT·fP , (t, x) ∈ J × ΩP ,

∇ · (aF∇ψF ) + ∇ · (zT·DF∇wF ) = −zT·fF , (t, x) ∈ J × ΩF ,

aP∂νψ
P + zT·DP∂νw

P = aF∂νψ
F + zT·DF∂νw

F + zT·g, (t, x) ∈ J × ΓP ,

ψP− ψF =
1

λ0|z|2
[

zT· Ũ−1
F wF− zT· Ũ−1

P wP
]

+
1

λ0|z|2
zT·hP , (t, x) ∈ J × ΓP ,

ψF = 0, (t, x) ∈ J × Γ .

(1.42)

Here we have used the notations

ak(t, x) := zT·Mk(t, x)ũk(t, x) =
N
∑

i=1

λ0z
2
i d
k
i ũ

k
i , (t, x, ũk) ∈ J × Ωk × Zk(E+) , (1.43)

In view of positivity of dki we conclude that coefficients aP and aF are positive if and only if
ũki > 0 for all (t, x) ∈ J×Ωk and 1 ≤ i ≤ N . This explains the assumption ũk ∈ Zk(E+). The
boundary condition on the outer surface of ΩF can not be obtained by the above procedure,
but it is contained implicitly. Since we consider a perfectly mixed tank, the electrical potential
in the bulk phase has to be constant and by normalising we can assume it as zero. This leads
to the Dirichlet boundary condition on Γ.

The following lemma connects the electroneutrality condition for the concentrations wP ,
wF , wb to the corresponding boundary value problem (1.42). Obviously, the concentration
vector wb does not appear in the elliptic equations, however the right hand side of the ode-
equation (1.40) is involved implicitly. In fact, integrating the above equations over Ωk, using
the divergence theorem and boundary conditions we obtain the identity

∫

ΩP

zT·fPdx+

∫

ΩF

zT·fFdx+

∫

ΓP

zT·g dσ = −
∫

Γ

[aF∂νψ
F + zT·DF∂νw

F ]dσ , t ∈ J . (1.44)

The integral over Γ also occurs in the ode-problem (1.40). Applying the electroneutrality
condition to these equations leads to

zT·f b(t) − ab
∫

Γ

[aF∂νψ
F + zT·DF∂νw

F ]dσ = 0, t ∈ J,

and combining (1.44) with the above indentity yields

∫

ΩP

zT·fP (t, x) dx+

∫

ΩF

zT·fF (t, x) dx+

∫

ΓP

zT·g(t, x) dσ +
1

ab
zT·f b(t) = 0, t ∈ J .

Note that this equation is trivially satisfied in the nonlinear case. The next lemma shows
that the elliptic problem (1.42) and the above equation for fP , fF , g, f b are equivalent to
the electroneutrality condition (1.41).
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Lemma 1.1 Let J be a compact time interval and uf belongs to E. Then (w,ψ) is a strong
solution of (1.39)-(1.41) on J if and only if (w,ψ) is a strong solution of (1.39), (1.40) and
(1.42), with zT ·uk0 = 0 for k = P, F, b and the inhomogenieties fP , fF , g, f b satisfy the
compatibility condition

∫

ΩP

zT·fP (t, x) dx+

∫

ΩF

zT·fF (t, x) dx+

∫

ΓP

zT·g(t, x) dσ +
1

ab
zT·f b(t) = 0, t ∈ J . (1.45)

Proof. Let (w,ψ) be a strong solution of (1.39)-(1.40) on J . As above shown the elliptic
problem (1.42 follows by applying zT· to (1.39) and the compatibility condition (1.45) by
integration this boundary value problem over Ω.

For proving the converse part we assume that (w,ψ) is a strong solution of (1.39), (1.40)
on J with zT·wk(0) = 0 for k = P, F, b and let the compatibility condition (1.45) be satisfied.
By applying zT · to (1.39), taking into account the elliptic equations of (1.42), we find that

d

dt
zT·(wk(t, x)) = 0 , (t, x) ∈ J × Ωk , k = P, F ,

and

d

dt
zT·wb(t) +

1

τ
zT·wb = zT·f b(t) − ab

∫

Γ

[

aF∂νψ
F + zT·DF∂νw

F
]

dσ , t ∈ J .

By integrating the first equation from 0 to t ∈ J and using zT·wk(0, x) = 0, it follows that
zT·wk(t, x) = 0 for (t, x) ∈ J×Ωk. Furthermore the elliptic problem (1.42) implies the relation
(1.44) and in combination with the compatibility condition (1.45) we obtain the ode-problem

d

dt
zT·wb(t) +

1

τ
zT·wb = 0 , t ∈ J , zT·wb(0) = 0 ,

which is solved uniquely by zT·wb(t) = 0 and this means wb ∈ E.
�
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Chapter 2

Preliminaries

In this second chapter we introduce some basic and powerful results needed to tackle the
linear problem (1.39). The chapter consists of three parts. In sections (2.2) and (2.3) below
we present the basic notion of sectorial operators, such as operators with bounded imaginary
powers, operators which admit a bounded H∞-calculus and operators with RH∞-calculus.
Certain properties of these classes are made available. An important reference will be the
paper Denk, Hieber and Prüss [7].

Thereafter we study certain trace spaces and the solution spaces Zk, Zk. We will show that
for p sufficiently large, each space forms a multiplication algebra. We need this property for
example to establish boundedness of multiplication operators Ũ−1

P , Ũ−1
F in space Y1,ΓP

(RN ).
Moreover, we will see that it is satisfactory to demand γki ∈ Y1,ΓP

.
In Section 2.5 we will treat some model problems which are a natural outcome of solving

the linear problem (1.39). For proving maximal regularity of these model problems we will
employ the results supplied in Sections 2.2 and 2.3. Let us begin with some remarks about
notations and conventions.

2.1 Notations and Conventions

Let us start by explaining some of the notations, which will be used throughout this thesis,
and recollect some basic definitions and function spaces.

By N, R, C we denote the sets of natural numbers, real and complex numbers, respectively.
In addition we use the notations R+ = [0,∞), R− = (−∞, 0], C+ = {λ ∈ C : Reλ > 0},
R
n+1
+ = R

n × R+ and R
n+1
− = R

n × R−. X, Y , Z, ... will usually be Banach spaces with
norms ‖ · ‖X , ‖ · ‖Y , ... In a unique context, we will omit the indices or reduce them to index
of the space, e.g. ‖ · ‖Lp(Ω) for ‖ · ‖p or ‖ · ‖C(Ω) := ‖ · ‖∞. Given two Banach spaces X and Y ,
B(X,Y ) will designate the Banach space of all linear and bounded operators from X to Y ,
B(X) = B(X,X). Lis(X,Y ) denotes the space of continuous isomorphisms from X to Y , we
write Lis(X) = Lis(X,X) for short. Furthermore B(X,Y ), if not explicity mentioned, will
always be equipped with the natural norm-topology and ‖A‖B(X,Y ) designates the norm of
an operator A ∈ B(X,Y ). The domain, range and kernel of an operator A in X is denoted
by D(A), R(A) and N(A), respectively. If A is closed, we will denote by DA the domain of
A equipped with the graph norm, ‖x‖D(A) := ‖x‖ + ‖Ax‖.

Given G ⊂ R
n, G open or closed, we let C(G;X) and BUC(G;X) denote the space of

all continuous resp. bounded uniformly continuous functions f : G → X. Also, Cs(G;X)
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denotes the space of all Hölder continuous functions of order s ∈ (0, 1), we write C1−(G;X) for
the space of locally Lipschitz continuous functions. Further, if m ∈ N, Cm(G;X) designates
the space of all functions f : G→ X which admit continuous partial derivatives and ∂αf in G
has continuous extension to G, for each |α| ≤ m. For f ∈ C(G;X) the support of f is defined
by supp f = {x ∈ G : f(x) 6= 0}. As usual C∞

0 (G;X) means the space of test function on G
with values in X.

If (Ω,Σ, µ) is a-measurable space then Lp(Ω;X) := Lp(Ω,Σ, µ;X), denotes the space of
all Bochner-measurable functions f : Ω → X such that ‖f(·)‖pX is integrable. Lp(Ω;X) is
normed by ‖f‖pLp(Ω;X) =

∫

Ω

‖f(x)‖pXdµ(x), 1 ≤ p <∞.

LetX be a Banach space and Ω is Lebesgue measurable subset of R
n, s > 0 and 1 < p <∞,

by Hs
p(Ω;X) and Bs

pp(Ω;X) we signify the vector-valued Bessel potential space resp. Sobolev-

Slobodeckij space of X-valued functions on Ω; see Amann [1], Schmeisser [30], Štrkalj [32],
and Zimmermann [40]. In case X = C we refer to Runst and Sickel [29], and Triebel [33]-[35].
It turns out that most results which are known from the scalar case can be transferred to the
vector-valued case, for the H-scale at least if X is a UMD space. In particular, embeddings
and real interpolation work as in the case X = C.

Finally, by C, M and c we denote various constants which may differ from line to line,
but which are always independent of the free variables.

2.2 The classes S(X), BIP (X) and H∞ (X)

Sectorial operators form an important basic class of unbounded operators appearing in partial
differential equations. Therefore we begin with the definition of these operators.

Definition 2.1 Let X be a complex Banach space, and A a closed linear operator in X. A
is called sectorial if the following two conditions are satisfied

(S1) D(A) = X, N(A) = {0}, R(A) = X, (−∞, 0) ⊂ ρ(A);

(S2) |t(t+A)−1| ≤M for all t > 0, and some M <∞.

The class of sectorial operators in X will be denoted by S(X). If only (S2) holds, then A is
said to be pseudo-sectorial.

Assume that A is a sectorial operator. Then, by using the Neumann series, we can verify
Σθ ⊂ ρ(−A), for some θ > 0, and sup{|λ(λ + A)−1| : | arg λ | < θ} < ∞. Here Σθ ⊂ C

denotes the standard sector, more precisely

Σθ := {λ ∈ C\{0} : | arg λ| < θ}.

Therefore it makes sense to define the spectral angle φA of A ∈ S(A) by

φA := inf{φ : Σπ−φ ⊂ ρ(−A), sup
λ∈Σπ−φ

|λ(λ+A)−1| <∞}.

Obviously, it holds that φA ∈ [0, π) and φA ≥ sup{| arg λ| : λ ∈ σ (A)}.
Now we come to the H∞-calculus. Let φ ∈ (0, π] and define the algebra of holomorphic

functions on Σφ denoted by H(Σφ) = {f : Σφ → Cholomorphic }. The space H∞(Σφ) = {f :
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Σφ → C holomorphic and bounded} equipped with norm |f |φ∞ = sup{|f(λ)| : | arg(λ)| < φ}
is a Banach algebra. Furthermore we set H0(Σφ) =

⋃

α,β<0 Hα,β(Σφ), where

Hα,β(Σφ) = {f ∈ H(Σφ) : |f |∞α,β := sup
|λ|≤1

|λαf(λ)| + sup
|λ|≥1

|λ−βf(λ)| <∞}.

We assume that A is a sectorial operator with φ ∈ (φA, π). Then we choose any ψ ∈ (φA, φ)
and denote by Γ = (∞, 0]eiψ∪[0,∞)e−iψ the integration path surrounding σ(A). The Dunford
integral

f(A) =
1

2πi

∫

Γ

f(λ)(λ−A)−1dλ, for all f ∈ H0(Σφ),

converges in B(X) and defines via ΦA(f) = f(A) a functional calculus ΦA : H0(Σφ) → B(X)
which is a bounded algebra homomorphism.

Definition 2.2 The operator A is said to admit an H∞-calculus if there are φ > φA and a
constant Kφ <∞ such that

|f(A)| ≤ Kφ|f |φ∞ , for all f ∈ H0(Σφ) . (2.1)

The class of sectorial operators A which admit H∞ will be denoted by H∞ (X). The H∞-angle
of A is defined by

φ∞A = inf{φ > φA : (2.1) is valid } .

If this is the case, then the functional calculus for A on H0(Σφ) extends uniquely to H∞(Σφ).
We now consider operators of S (X) having boundary imaginary powers. This class of

operators BIP (X) has been introduced by Prüss and Sohr [28]. Since we can define complex
powers for any operator A in S (X), it makes sense to study such operators.

Definition 2.3 Suppose A ∈ S (X). Then, A is said to admit bounded imaginary powers if
Ais ∈ B(X) for each s ∈ R, and there is a constant C > 0 such that |Ais| ≤ C for |s| ≤ 1.
The class of such operators will be denoted by BIP (X).

Due to the fact that the functions fs(z) = zis belong to H∞(Σφ), for any s ∈ R and φ ∈
(0, π), we evidently have the inclusions H∞(X) ⊂ BIP(X) ⊂ S(X), and the inequalities
φ∞A ≥ θA ≥ φA. Here, θA denotes the growth bound of group {Ais : s ∈ R}, i.e. θA :=
lim|s|→∞|s|−1 log |Ais|; it will be called the power angle of A.

A first application of the class BIP (X) establishes a relationship for the fractional power
spaces

Xα = XAα = (D(Aα), | · |α), |x|α = |Aαx| + |x|, 0 < α < 1,

where A ∈ S (X). If A belongs to BIP (X), a characterisation of Xα in terms of complex
interpolation spaces can be derived.

Theorem 2.1 Assume A ∈ BIP (X). Then

Xα
∼= [X,XA]α, α ∈ (0, 1),

the complex interpolation space between X and XA ↪→ X of order α.
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For a proof we refer to Triebel [34, pp. 103-104] or Yagi [39]. Below we want to study real
interpolation spaces (X,Xα)β,p, 0 < α, β < 1, 1 ≤ p ≤ ∞, defined by the K-method. At first,
we recall that the real interpolation space (X,DA)β,p is isomorphic to the space DA(β, p) for
A ∈ S (X), β ∈ (0, 1) and 1 ≤ p ≤ ∞. The latter space is defined by means of

DA(β, p) := {x ∈ X : [x]β,p := (
∞
∫

0

|tβA(t+A)−1x|pX dt
t )1/p <∞}, 1 ≤ p <∞

DA(β,∞) := {x ∈ X : [x]β,∞ := sup
t>0

|tβA(t+A)−1x|X}.
(2.2)

Assume that A belongs to BIP (X). Employing Theorem (2.1) and the reiteration theorem,
see Triebel [34], we conclude that

(X,Xα)β,p = (X, [X,DA]α)β,p = (X,DA)αβ,p, 0 < α, β < 1, 1 ≤ p ≤ ∞. (2.3)

Another important application for operators belonging to the class BIP (X) concerns sums
of closed operators, which leads us to the concept of maximal regularity. Let X be a Banach
space, A, B closed linear operators in X, and let A+B be defined by

(A+B)x = Ax+Bx, x ∈ D(A+B) = D(A) ∩D(B).

If 0 ∈ ρ(A+B), which implies that A+B is closed, then the equation y = Ax+Bx admits
a unique solution x ∈ D(A+B) for all y ∈ X, i.e. the solution has maximal regularity. The
closed graph theorem shows the a priori estimate

|Ax| + |Bx| ≤ C|Ax+Bx|, for all x ∈ D(A+B).

The Dore-Venni theorem gives conditions for maximal regularity. Before we state a version
of this result we have to remind the meaning of commuting resolvents and Banach spaces of
class HT . Two closed linear operators A,B in X are said to commute, if there exist λ ∈ ρ(A),
µ ∈ ρ(B) such that

(λ−A)−1(µ−B)−1 = (µ−B)−1(λ−A)−1.

A Banach space X is said to be of class HT , if the Hilbert transform is bounded on Lp(R;X)
for some (and then all) p ∈ (1,∞). The Hilbert transform H of function f ∈ S(R;X) is
defined by

(Hf)(t) = lim
ε→0

1

π

∫

|s|≥ε

f(t− s)

s
ds, t ∈ R,

where the limit is to be understood in the Lp-sense. These spaces are often called UMD
Banach spaces, where UMD stands for unconditional martingale differences. It is a well
known theorem that the set of Banach spaces of class HT coincides with the class of UMD
spaces. Let 1 < p <∞ and (Ω,Σ, dµ) a measure space, then Lp(Ω, dµ;X) is a Banach space
of class HT if X ∈ HT .

We are now in position to state a variant of the Dore-Venni Theorem, cf. [9], [24], [25].

Theorem 2.2 Suppose X belongs to the class HT , and assume A,B ∈ BIP (X) commute
and satisfy the strong parabolicity condition θA + θB < π, and let t > 0. Then
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(i) A+ tB is closed and sectorial;

(ii) A+ tB ∈ BIP (X) with θA+tB ≤ max{θA, θB}
(iii) there is a constant C > 0, independent of t > 0, such that

|Ax| + t|Bx| ≤ C|Ax+ tBx| , x ∈ D(A) ∩D(B). (2.4)

In particular, if A or B is invertible, then A+ tB is invertible as well.

If we weaken the assumption on B and in return strengthen the assumption on A, then the
result can be maintained. More precisely, let X be an arbitrary Banach space and assume
that A ∈ H∞(X) and B ∈ RS (X), see [7], with φ∞A +φRB < π. Then the sum A+B is closed
as well. This result has been proved by Kalton and Weis [20].

Some consequences of Theorem 2.2 concerning complex interpolation are contained in the
following corollary, see Prüss [25]. The proof can be found in the forthcoming monograph of
Hieber and Prüss [16].

Corollary 2.1 Suppose X belongs to the class HT , and assume that A, B ∈ BIP (X) are
commuting in the resolvent sense. Further suppose the strong parabolicity condition θA+θB <
π. Let A or B be invertible and α ∈ (0, 1). Then

(i) Aα(A+B)−α and Bα(A+B)−α are bounded in X;

(ii) D((A+B)α) = [X,D(A+B)]α = [X,D(A)]α∩[X,D(B)]α = D(Aα)∩D(Bα).

The next result has been proved by Grisvard [12], in an even more general context. For a
proof we also refer to [16].

Proposition 2.1 Suppose that A, B are sectorial operators in a Banach space X, commuting
in the resolvent sense. Then

(X,D(A) ∩D(B))α,p = (X,D(A))α,p ∩ (X,D(B))α,p ,

for all α ∈ (0, 1), p ∈ [1,∞].

The next result is known as the mixed derivative theorem and is due to Sobolevskii [31]

Proposition 2.2 Suppose A and B are sectorial linear operators in a Banach space X with
spectral angles φA + φB < π, which commute and are coercively positive, i.e. A + tB with
natural domain D(A + tB) = D(A) ∩D(B) is closed for each t > 0 and there is a constant
M > 0 such that

‖Ax‖X + t‖Bx‖X ≤M‖Ax+ tBx‖X , for all x ∈ D(A) ∩D(B), t > 0.

Then there is a constant C > 0 such that

‖AαB1−αx‖X ≤ C‖Ax+Bx‖X , for all x ∈ D(A) ∩D(B), α ∈ [0, 1].
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2.3 Operator-Valued Fourier Multipliers and R-Bounded

Functional Calculus

In this section we will introduce the notion of R-boundedness and we will state some elemen-
tary properties. In order to extend the classical Mikhlin Theorem for the scalar case to an
operator-valued Fourier multiplier theorem, we need the concept of R-boundedness.

We commence with the definition of R-boundedness.

Definition 2.4 Let X and Y be Banach spaces. A family of operators T ⊂ B(X,Y ) is
called R-bounded, if there exists a constant C > 0 and p ∈ [1,∞) such that for each N ∈ N,
Tj ∈ T , xj ∈ X and for all independent, symmetric, {−1, 1}-valued random variables εj on
a probability space (Ω,M, µ) the inequality

|
N
∑

j=1

εjTjxj |Lp(Ω;Y ) ≤ C|
N
∑

j=1

εjxj |Lp(Ω;X)

is valid. The smallest constant C is called R-bound of T , which we denote by R(T ).

One can show that this definition is independent of p ∈ [1,∞), which follows from Kahane’s
inequality.

The next result shows that R-bounds behave like norms.

Proposition 2.3 (a) Let X, Y be Banach spaces, and T , S ⊂ B(X,Y ) be R-bounded. Then

T + S = {T + S : T ∈ T , S ∈ S}

is R-bounded as well, and R(T + S) ≤ R(T ) + R(S).
(b) Let X, Y , Z be Banach spaces, and T ⊂ B(X,Y ) and S ⊂ B(Y,Z) be R-bounded. Then

ST = {ST : T ∈ T , S ∈ S}

is R-bounded, and R(ST ) ≤ R(S)R(T ).

Now, we shall approach the operator-valued Fourier multiplier theorem. Let X be a Banach
space and 1 < p < ∞. We denote by D(R;X) the space of X-valued C∞ functions with
compact support and we let D′(R;X) := B(D(R), X) designate the space of X-valued distri-
butions. The X-valued Schwartz spaces S(R;X) and S ′(R;X) are defined similarly. Let Y
be another Banach space. Then, given M ∈ L1,loc(R;B(X,Y )), we may define an operator
TM : F−1D(R;X) → S ′(R;X) by means of

TMφ := F−1MFφ , for all Fφ ∈ D(R;X) , (2.5)

where F denotes the Fourier transform. Note that F−1D(R;X) is dense in Lp(R;X), conse-
quently the operator TM is well-defined and linear on a dense subspace of Lp(R;X).

Now the question arises on what terms the operator TM is bounded in Lp, i.e. TM ∈
B(Lp(R;X),Lp(R;Y )). The following theorem contains the operator-valued version of the
famous Mikhlin Fourier multiplier theorem in one variable, which is due to Weis [36]. A
shorter proof of this theorem can be found in [7].
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Theorem 2.3 Suppose that X, Y are spaces of class HT and let 1 < p < ∞. Let M ∈
C1(R\{0};B(X,Y )) be such that the following conditions are satisfied

(i) R({M(ρ) : ρ ∈ R\{0}}) =: κ0 <∞;

(ii) R({ρM ′(ρ) : ρ ∈ R\{0}}) =: κ1 <∞.

Then the operator T defined by (2.5) is bounded from Lp(R;X) into Lp(R;Y ) with norm
|T |B(Lp(R;X),Lp(R;Y )) ≤ C(κ0 + κ1), where C > 0 depends only on p, X, Y .

Remark 2.1 This result can be extended to the n-dimensional case, i.e. Mikhlin’s theorem
in n variables. Here we refer to [7] as well.

Now we want to address the issue of verifying R-boundedness conditions as stated in the
above theorem. In applications we often encounter symbols of the formM(ρ,A). That means,
M(ρ,A) ∈ B(X,Y ) is induced by an unbounded operator A. It turns out that conditions as
stated in Theorem 2.3 are easy to verify for operators which admit an R-bounded functional
calculus and functions Mρ(·) := M(ρ, ·) ∈ H∞(Σθ) being uniformly bounded concerning ρ.

We now want to connect R-boundedness to the H∞-calculus.

Definition 2.5 Let X be a Banach space and suppose that A ∈ H∞ (X). The operator A is
said to admit an R-bounded H∞ -calculus if the set

{

h(A) : h ∈ H∞ (Σθ) , |h|θ∞ ≤ 1
}

is R-bounded for some θ > 0. We denote the class of such operators by RH∞ (X) and define
the RH∞-angle φR∞

A of A as the infimum of such angles θ.

The importance of this class of operators is justified by the following proposition.

Proposition 2.4 Let X be a Banach space, A ∈ RH∞(X) and suppose that {hλ}λ∈Λ ⊂
H∞(Σθ) is uniformly bounded, for some θ > φR∞

A , where Λ is an arbitrary index set. Then
{hλ(A) : λ ∈ Λ} is R-bounded.

This result will be useful for proving R-boundedness conditions just like in the Mikhlin
theorem.

2.4 Multiplication Algebras

In this section we shall tackle the mapping properties of partial differential operators Aki and
boundary operators Bki, Ũ−1

k . In order to treat the latter operators we need the definition
of Besov spaces on manifolds. In fact, we will explain the meaning of Lp(∂Ω) and Bs

pp(∂Ω),

where Ω ⊂ R
n+1 is bounded with Ck-boundary Γ := ∂Ω. At first, Lp(Γ) has the usual

meaning where the measure on ∂Ω is the usual surface measure induced by the Lebesgue
measure in R

n. To define Besov spaces on boundaries some preparations are needed. Let
(ϕj)

M
j=0 be a resolution of unity with respect to Ω with following properties:

1. Ω ⊂ ⋃M
j=0 Uj , ϕ0 ∈ C∞

0 (U0), U0 ⊂ Ω;
2. ϕj ∈ C∞

0 (Uj), Uj ∩ ∂Ω 6= for j = 1, . . . ,M .
Further, we denote by hj(x) the Ck-diffeomorphism defined in U j such that y = hj(x) is
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a one-to-one mapping from Uj onto a bounded domain in R
n+1, where the set ∂Ω ∩ Uj is

mapped onto a bounded part of the hyperplane R
n = {y ∈ R

n+1 : yn+1 = 0}. Then one sets

Bs
pq(∂Ω) := {f ∈ Lp(∂Ω) : fj(y) := [Gjϕjf ](y) = (ϕjf)(h−1

j (y)) ∈ Bs
pq(R

n), j = 1, . . . ,M} ,

‖f‖Bs
pq(∂Ω) :=

M
∑

j=1

‖fj(·)‖Bs
pq(Rn) .

Bs
pq(∂Ω) is a Banach space. In the sense of equivalent norms, Bs

pq(∂Ω) is independent of the

choice of covering {Uj}Mj=1 and the choice of partition. For general treatises on Besov spaces
we refer to the books by Triebel [33], [34], [35]. Since we only consider Besov spaces of type
Bs
pp(Ω), which coincide with the Slobodeckij spaces Ws

p(Ω) for s 6∈ N, we can use as norm

‖f‖pBs
pp(Ω) = ‖f‖pLp(Ω) +

∑

|α|=[s]

∫

Ω

∫

Ω

|Dαf(x) −Dαf(y)|
|x− y|(n+1)+{s}p

dx dy .

Note that here we have put s = [s] + {s}, [s] integer and 0 ≤ {s} < 1. With aid of this result
we are able to show the following lemma.

Lemma 2.1 Let Ω ⊂ R
n+1 be a bounded domain with Ck-boundary. Suppose that u and v

belong to Bs
pp(∂Ω), with s = [s] + {s}, [s] integer part and 0 < {s} < 1. Let k ≥ [s] and

{s} − (n+ 1)/p > 0. Then Bs
pp(∂Ω) forms a multiplication algebra and

‖u · v‖Bs
pp(∂Ω) ≤ C

[

‖u‖C[s](∂Ω)‖v‖Bs
pp(∂Ω) + ‖u‖Bs

pp(∂Ω)‖v‖C[s](∂Ω)

]

. (2.6)

Remark 2.2 Of course, the condition {s} − (n+ 1)/p > 0 is more stringent than required.
Actually, in order to prove that Bs

pp(∂Ω) forms a multiplication algebra, s − (n + 1)/p > 0
is needed. However, (2.6) need no longer be valid. Since we have in mind to show that Y1

and Y2, see (2.8), form multiplication algebras and estimation (2.6) plays a decisive role, we
restrict to this case.

Proof. Let u,v in Bs
pp(Ω) be given and {s} − (n + 1)/p > 0. The latter condition implies

the continuous embeddings Bs
pp(Ω) ↪→ C[s](Ω) and B{s}

pp (Ω) ↪→ C(Ω). Now we use the covering
of Ω and the partition of unity as described above. Then, the norm of the product u · v takes
the form

‖uv‖pBs
pp(∂Ω) =

M
∑

j=1







∑

|α|=[s]

∫

Rn

∫

Rn

|Dα(ϕjuv)(h
−1
j (y)) −Dα(ϕjuv)(h

−1
j (z))|p

|y − z|n+{s}p
dy dz

+‖(ϕjuv)(h−1
j (·))‖pLp(Rn)

}

.

This means that the highest derivatives of (ϕjuv)(h
−1
j (y)) have to be in B{s}

pp (∂Ω). Taking

into account the mapping property of hj and the continuous embedding B{s}
pp (Ω) ↪→ C(Ω),

then the Lp-norm can be estimated as follows

‖(ϕjuv)(h−1
j (·))‖pLp(Rn) ≤ max

x∈∂Ω∩Uj

|u(x)|p‖(ϕjv)(h−1
j (·))‖pLp(Rn)

≤ ‖u‖pC(∂Ω)‖(ϕjv)(h
−1
j (·))‖pLp(Rn) .
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To treat the double integral observing that

Dα[(ϕjuv)(h
−1
j (y))] =

∑

1≤|γ|≤|α|

qαγ(y)[D
γ(ϕjuv)](h

−1
j (y)) .

Here the coefficients qαγ(y) are homogeneous polynomials of degree |γ| in derivatives of h−1
j of

order between 1 and |α|−|γ|+1, consequently they are bounded and continuous. Furthermore,
Leibniz’s product formula also supplies lower order terms in u and v, and top order derivatives
for both functions

Dγ(ϕjuv) = [Dγ , ϕj ](uv) + ϕjD
γ(uv) = “lower order” + ϕjvD

γu+ ϕjuD
γv , |γ| = |α| .

On the whole, we obtain

Dα[(ϕjuv)(h
−1
j (y))] −Dα[(ϕjuv)(h

−1
j (z))] = “differences of lower order terms”+

∑

|γ|=|α|

{

qαγ(y)[ϕjv](h
−1
j (y)) [Dγu](h−1

j (y)) − qαγ(z)[ϕjv](h
−1
j (z)) [Dγu](h−1

j (z))

+qαγ(y)[ϕju](h
−1
j (y)) [Dγv](h−1

j (y)) − qαγ(z)[ϕju](h
−1
j (z)) [Dγv](h−1

j (z))
}

. (2.7)

All terms of lower order are at least once continuously differentiable, since they belong to
Bs−|γ|
pp (Rn) for |γ| ≤ |α| − 1 = [s] − 1. Hence these products being made up of lower order

terms can be estimated by

C
∑

|γ|≤|α|−1

{

‖u‖C|γ|(∂Ω)‖v‖B
|γ|+{s}
pp (∂Ω)

+ ‖v‖C|γ|(∂Ω)‖u‖B
|γ|+{s}
pp (∂Ω)

}

≤ C1

{

‖u‖C[s](∂Ω)‖v‖Bs
pp(∂Ω) + ‖v‖C[s](∂Ω)‖u‖Bs

pp(∂Ω)

}

.

Therefore, it suffices to look at the differences of top order terms. W.l.o.g. we only consider
the first difference of (2.7). By using the triangle inequality, we obtain

∣

∣

∣

∣

∣

∣

∑

|γ|=[s]

qαγ(y)[ϕjv](h
−1
j (y)) [Dγu](h−1

j (y)) − qαγ(z)[ϕjv](h
−1
j (z)) [Dγu](h−1

j (z))

∣

∣

∣

∣

∣

∣

≤

∑

|γ|=[s]

∣

∣

∣
qαγ(y)[ϕjv](h

−1
j (y))

∣

∣

∣

∣

∣

∣
[Dγu](h−1

j (y)) − [Dγu](h−1
j (z))

∣

∣

∣
+

∣

∣

∣
[Dγu](h−1

j (z))
∣

∣

∣

∣

∣

∣
qαγ(y)[ϕjv](h

−1
j (y)) − qαγ(z)[ϕjv](h

−1
j (z))

∣

∣

∣
.

Each function in front of differences is at least continuous and thus they can be estimated
in L∞. Furthermore, the function [Dγu](h−1

j (·)) appearing in first difference belongs exactly

to B{s}
pp (∂Ω) for all j = 1, . . . ,M , whereas the function in the second difference belongs to
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Bs
pp(∂Ω). Keeping all this in mind, we can estimate as follows

M
∑

j=1

∑

|α|=[s]

∫

Rn

∫

Rn

|Dα(ϕjuv)(h
−1
j (y)) −Dα(ϕjuv)(h

−1
j (z))|p

|y − z|n+{s}p
dy dz

≤ C1

(

‖u‖C[s](∂Ω)‖v‖Bs
pp(∂Ω) + ‖v‖C[s](∂Ω)‖u‖Bs

pp(∂Ω)

)

+ C2

(

‖v‖C(∂Ω)‖u‖Bs
pp(∂Ω) + ‖u‖C[s](∂Ω)‖v‖B

{s}
pp (∂Ω)

+‖u‖C(∂Ω)‖v‖Bs
pp(∂Ω) + ‖v‖C[s](∂Ω)‖u‖B

{s}
pp (∂Ω)

)

,

which shows inequality (2.6).
�

Now, we shall investigate a similar result for Bessel potential space which is needed for
proving that Z∇ forms an algebra.

Lemma 2.2 Let Ω be a bounded domain in R
n+1 and J = [0, T ]. Let further 0 < s < 1,

1 < p < ∞ and u, v be arbitrary functions in Hs
p(J ; Lp(Ω)) ∩ C(J ; C(Ω)). Then there exists

a constant C > 0 not depending on T such that

‖uv‖Hs
p(J ;Lp(Ω)) ≤ C

(

‖u‖Hs
p(J ;Lp(Ω))‖v‖C(J ;C(Ω)) + ‖v‖Hs

p(J ;Lp(Ω))‖u‖C(J ;C(Ω))

)

.

Proof. Let u, v be any functions in Hs
p(J ; Lp(Ω))∩C(J ; C(Ω)). The subsequent expressions

define a norm in Hs
p(J ; Lp(Ω)), cf. Triebel [35], as well as Runst and Sickel [29]. We set

[v]Hs
p(J ;Lp(Ω)) :=

(

∫

Ω

T
∫

0

(

1
∫

0

σ−2s
( 1

V (t, σ)

∫

V (t,σ)

|v(t+ h, x) − v(t, x)| dh
)2dσ

σ

)p/2
dt dx

)1/p
,

where V (t, σ) = {h ∈ R : |h| < σ and t+ h ∈ J}, and

‖v‖Hs
p(J ;Lp(Ω)) := [v]Hs

p(J ;Lp(Ω)) + ‖v‖Lp(J ;Lp(Ω)).

With |v|∞ := ‖v‖C(J ;C(Ω)) we have

|v(t+ h, x)u(t+ h, x) − v(t, x)v(t, x)| ≤ |(v(t+ h, x) − v(t, x))u(t, x)|+
|(u(t+ h, x) − u(t, x))v(t, x)| ≤ |u|∞|v(t+ h, x) − v(t, x)| + |v|∞|u(t+ h, x) − u(t, x)|,

for t, t+ h ∈ J and a.a. x ∈ Ω. By using this estimate we obtain

‖uv‖pHs
p(J ;Lp(Ω)) ≤

∫

Ω

T
∫

0

(

1
∫

0

σ−2s
( 1

V (t, σ)

∫

V (t,σ)

|u|∞|v(t+ h, x) − v(t, x)| dh

+
1

V (t, σ)

∫

V (t,σ)

|v|∞|u(t+ h, x) − u(t, x)| dh
)2 dσ

σ

)p/2
dt dx

+ |u|∞‖v‖Lp(J ;Lp(Ω)).
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Employing Minkowski’s inequality leads to the desired result.
�

Before we establish that Z and Z∇ are Banach algebras for p sufficiently large, we want to
characterise traces of functions belonging to Z = H1

p(J ; Lp(Ω))∩Lp(J ; H2
p(Ω)). Furthermore,

we are also interested in continuous embeddings. We define

Uβ,TΩ := Cβ(J ; C(Ω)) ∩ C(J ; C2β(Ω)), 0 < β < 1, UT := U1/2,T
Ω ,

Y T
1,Γ := B1−1/2p

pp (J ; Lp(Γ)) ∩ Lp(J ; B2−1/p
pp (Γ)),

Y T
2,Γ := B1/2−1/2p

pp (J ; Lp(Γ)) ∩ Lp(J ; B1−1/p
pp (Γ)).

(2.8)

If J = R+ resp. the length of J = [0, T ] is not decisive, then we will omit the index T . We
will use the shortened notation Uk, k = P, F , in case of the bounded domains ΩP , ΩF . If F is
any of the above function spaces, then f ∈ F(X) means that f belongs to the corresponding
space with values in X.

Proposition 2.5 Let J be R+ or a compact time interval [0, T ] and Ω ⊂ R
n+1 be a bounded

domain with C2-boundary Γ. Suppose that u belongs to Z and g lies in Y1,Γ. Let 0 ≤ β < 1

and (n+1)+2
2(1−β) < p <∞. Then it holds

1. γ|tu ∈ B2−2/p
pp (Ω), γ|Γu ∈ Y1,Γ, (γ|Γ ∈ B(Z, Y1,Γ)) and ∂νu ∈ Y2,Γ, (γ|Γ ∈ B(Z∇, Y2,Γ));

2. Z ↪→ UβΩ, ‖u‖
Uβ

Ω
≤ C1‖u‖Z ;

3. Y1,Γ ↪→ UβΓ , ‖g‖
Uβ

Γ
≤ C3‖g‖Y1,Γ

.

If γ|tu = 0 on Ω and γ|tg = 0 on Γ, then constants C1 and C2 are independent of the length
of time interval J .

Proof: Step 1. Concerning the first assertion we refer to [24], where various model problems
are treated and traces of functions u ∈ Z are determined.
Step 2. Let u ∈ Z be given and 0 ≤ 2β < 2 − n+3

p , which is equivalent to assumption of p.

Then, by the mixed derivative theorem, we obtain Z ↪→ Hθ
p(J ; H2(1−θ)

p (Ω)) for 0 < θ < 1. To
guarantee the embedding

Hθ
p(J ; H2(1−θ)

p (Ω)) ↪→ Cβ(J ; C(Ω))

we have to impose θ − 1/p > β > 0 and 2(1 − θ) − (n + 1)/p > 0. These conditions are
equivalent to 2 − n+1

p > 2θ > 2β + 2
p . Choosing 2β < 2 − n+3

p , we then find θ ∈ (0, 1)
satisfying the above condition. The second embedding

Hθ
p(J ; H2(1−θ)

p (Ω)) ↪→ C(J ; C2β(Ω))

can be achieved by choosing θ − 1
p > 0 and 2(1 − θ) − n+1

p > 2β. These two inequalities

imply 2(1 − β) − n+1
p > 2θ > 2

p . This condition for θ is satisfied whenever we ensure

2 − n+3
p > 2β. All embeddings have been continuous so that the inequality ‖u‖

Uβ
Ω
≤ C‖u‖Z

holds. Statement 3. follows in the same way. That constant C is independent of T if

24



u ∈ 0Z
T := {u ∈ ZT : u(0) = 0} can be seen from the following. Define operator E+ by

means of

E+u :=







u(t, x) : t ∈ [0, T )
u(2T − t, x) : t ∈ [T, 2T )
0 : t ∈ [2T,∞)

.

After observing that E+ is a bounded extension operator with norm ‖E+‖B(0ZT ,0Z(R+)) ≤ 2
one estimates as follows

‖u‖
0U

β,T
Ω

≤ ‖E+u‖
0U

β
Ω
≤ C‖E+u‖0Z ≤ 2C‖u‖

0ZT = C1‖u‖0ZT .

The constant C comes from the embedding for J = R+ and hence is independent of T .
The last statement can also be proved by means of the mixed derivative theorem. To

detect the independence of T of constant C2 in case g ∈ 0Y
T
1 we consider the problem

∂tu(t, x) − ∆u(t, x) = 0 , (t, x) ∈ R+ × Ω ,

u(t, x) = E+g(t, x) , (t, x) ∈ R+ × Γ ,

u(0, x) = 0 , x ∈ Ω .

Due to [24, Theorem 5] there exists a unique solution u = L(0, E+g, 0) ∈ 0Z, where L denotes
the solution operator. Then, we may estimate as follows

‖g‖
0U

β,T
Γ

≤‖E+g‖
0U

β
Γ

= ‖γ|Γu‖0U
β
Γ
≤ ‖γ|Γ‖B(Uβ

Ω,U
β
Γ )
‖u‖

0U
β
Ω
≤ C‖L(0, E+g, 0)‖0Z

≤C‖L‖B(0Y1,Γ,0Z)‖E+g‖0Y1,Γ
≤ 2C‖L‖B(0Y1,Γ,0Z)‖g‖0Y T

1,Γ
= C2‖g‖0Y T

1,Γ
.

This shows that the constant C2 is independent of T .
�

Proposition 2.6 Let J be a compact time interval or R+ and G ⊂ R
n+1 be a bounded

domain with C2-boundary Γ. Let (n + 1) + 2 < p < ∞. Then Z, Z∇, Y1,Γ and Y2,Γ form
multiplication algebras and the following estimations are valid.

1. ‖u · v‖Z ≤ C1(‖u‖Z‖v‖C(J ;C1(Ω)) + ‖v‖Z‖u‖C(J ;C1(Ω))), ∀ u, v ∈ Z;

2. ‖u · v‖Z∇ ≤ C1(‖u‖Z∇‖v‖C(J ;C(Ω)) + ‖v‖Z∇‖u‖C(J ;C(Ω))), ∀ u, v ∈ Z∇;

3. ‖g · h‖Y1,Γ
≤ C2(‖g‖Y1,Γ

‖h‖C(J ;C1(Γ)) + ‖h‖Y1,Γ
‖g‖C(J ;C1(Γ))), ∀ g, h ∈ Y1,Γ;

4. ‖g · h‖Y2,Γ
≤ C3(‖g‖Y2,Γ

‖h‖C(J ;C(Γ)) + ‖h‖Y2,Γ
‖g‖C(J ;C(Γ))), ∀ g, h ∈ Y2,Γ;

Proof. By assumption (n + 1) + 2 < p < ∞ we may apply Proposition (2.5) with β = 1/2,
which implies the embedding Z ↪→ U . Let u, v ∈ Z be given, we then have

‖uv‖Z :=‖∂t(uv)‖Lp(J ;Lp(G)) + ‖∇2(uv)‖Lp(J ;Lp(G)) + ‖uv‖Lp(J ;Lp(G))

≤‖u‖C(J×G)‖∂tv‖Lp(J ;Lp(G)) + ‖v‖C(J×G)‖∂tv‖Lp(J ;Lp(G))

+ ‖u‖C(J×G)‖∇2v‖Lp(J ;Lp(G)) + ‖v‖C(J×G)‖∇2u‖Lp(J ;Lp(G))

+ 2‖|∇u|‖C(J×G)‖|∇v|‖Lp(J ;Lp(G)) + ‖u‖C(J×G)‖v‖Lp(J ;Lp(G))

≤C(‖u‖Z‖v‖C(J ;C1(Ω)) + ‖v‖Z‖u‖C(J ;C1(Ω))) ≤ C‖u‖Z‖v‖Z .
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To prove the second statement we remind of the embedding Z∇ ↪→ C(J ×Ω) which is needed
to employ Lemma 2.2. Using these facts we can proceed in a similar way as above.

We consider the third statement. Since the space Y1,Γ is an intersection of two Banach
spaces, see definition (2.8), we separately have to attend to each intersection space of Y1,Γ.
For this purpose we employ Lemma 2.1 with n = 0, Ω = [0, T ] to B1−1/2p

pp (J) and obtain for
a.a. x ∈ G an estimation of the form

‖g(·, x) · h(·, x)‖
B

1−1/2p
pp (J)

≤ C
[

‖g(·, x)‖C(J)‖h(·, x)‖B
1−1/2p
pp (J)

+‖h(·, x)‖C(J)‖g(·, x)‖B
1−1/2p
pp (J)

]

.

Due to Proposition 2.5 we even know that g and h are continuous and hence we may deduce

‖g · h‖
B

1−1/2p
pp (J ;Lp(Γ))

≤C
[

‖g‖C(J×Γ)‖h‖B
1−1/2p
pp (J ;Lp(Γ))

+ ‖h‖C(J×Γ)‖g‖B
1−1/2p
pp (J ;Lp(Γ))

]

≤C‖g‖Y1,Γ
‖h‖Y1,Γ

.

For the second space of Y1 we can proceed analogously. Choosing Ω = G ⊂ R
n+1 and applying

once again Lemma 2.1 and Proposition 2.5 leads to

‖g · h‖
Lp(J ;B

2−1/p
pp (Γ))

≤C
[

‖g‖C(J ;C1(Γ))‖h‖Lp(J ;B
2−1/p
pp (Γ))

+ ‖h‖C(J ;C1(Γ))‖g‖Lp(J ;B
2−1/p
pp (Γ))

]

≤C‖g‖Y1,Γ
‖h‖Y1,Γ

.

Combining both inequalities implies the desired result. Statement 3. follows in the same way.
�

Remark 2.3 Now we are in the position to discuss the term γ|ΓP
ln(γki (t, x)u

k
i (t, x)) ap-

pearing in boundary condition of Dirichlet type. Since we are looking for solutions in reg-
ularity class Z and these functions have traces in Y1,ΓP

in virtue of Proposition 2.5, the
boundary condition of Dirichlet type has to be considered in Y1,ΓP

. Therefore we have to
ensure that each term lies in this space. Proposition 2.6 and ln(r) ∈ C∞(0,∞) imply that
γ|ΓP

ln(γki (t, x) · uki (t, x)) ∈ Y1,ΓP
if uki ∈ Z, uki > 0 and γki ∈ Y1,ΓP

, γki > 0.

We now are going to study the mapping properties of the operators Aki and boundary
operators Bki and Ũ−1

k .

Lemma 2.3 Let J be R+ or a compact time interval and ΩP ,ΩF ⊂ R
n+1 be bounded domains

with C2-boundary, ΓP := ∂ΩP , ∂ΩF = ΓP ∪Γ and dist (ΓP ,Γ) > 0. Suppose that the smoothness
assumptions (1.23) and (1.25) for matrices Dk and Mk are satisfied and 2+(n+1) < p <∞.
Assuming that vk ∈ Zk and ũk ∈ Zk(E+) then the following statements are valid for k = P, F .

1. Ak1(·, ·, D) ∈ B(Zk,Xk);

2. [vk → Ak2(·, ·, vk, D)] ∈ C1−(Uk(RN );B(Zk,Xk));

3. Bk1(·, ·, D) ∈ B(Zk, Y2,ΓP
(RN ));

4. [vk → Bk2(·, ·, vk, D)] ∈ C1−(Uk(RN );B(Zk, Y2,ΓP
(RN )));

5. γ|ΓP
Ũ−1
k ∈ B(Zk, Y1,ΓP

(RN )).
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Proof. Since all statements are really plausible we only establish the second and fourth
assertion to see Lipschitz-continuity of operators Ak2 and Bk2, and the last assertion.

Let φ ∈ Zk and vk, vk ∈ Zk be given. Due to Proposition 2.5 we can ensure the embedding
Zk ↪→ Uk(RN ) for p > (n+1)+2 and consequently vk, vk lie in Uk(RN ). Taking into account
the regularity assumption for Dk and that Mk := λ0 diag[zid

k
i ]1≤i≤N , we may estimate as

follows

‖[Ak2(v
k, D)−Ak2(v

k, D)]φ‖Xk
≤ ‖Mk(vk−vk)∆φ‖Xk

+ ‖∇[Mk(vk−vk)]∇φ‖Xk

+ ‖∇ · (zT·Mk(vk−vk))∇φ)‖
H

1/2
p (J ;H−1

p (Ωk))

≤ ‖Mk(vk − vk)‖C(J×Ωk;RN )‖∆φ‖Xk

+ ‖∇[Mk(vk − vk)]‖C(J×Ωk;RN×n+1)‖∇φ‖Xk

+ ‖zT·Mk(vk−vk)∇φ)‖
H

1/2
p (J ;Lp(Ωk))

≤ C
(

‖vk − vk‖Uk(RN )‖∆φ‖Xk
+ ‖vk − vk‖C(J×Ωk;RN )‖∇φ‖Xk

+‖zT·Mk(vk−vk)‖C1/2(J ;C(Ωk))‖∇ψ‖H
1/2
p (J ;Lp(Ωk;Rn+1))

)

≤ C‖vk − vk‖Uk(RN )‖φ‖Zk
.

Before proving the fourth claim, note that ∇φ belongs to Zk,∇, consequently ∂νφ lies in Y2,ΓP

and the following estimation holds.

‖∂νφ‖Y2,ΓP
≤ C‖∇φ‖Zk,∇ ≤ C‖φ‖Zk

Furthermore, the space UΓP
= C1/2(J ; C(ΓP ))∩C(J ; C1(ΓP )) possesses the multiplicator prop-

erty concerning Y2,ΓP
, i.e. there is a constant C such that

‖mu‖Y2,ΓP
≤ C‖m‖UΓP

‖g‖Y2,ΓP
, ∀m ∈ UΓP

, ∀g ∈ Y2,ΓP
.

Thus we have

‖[Bk2(vk, D) − Bk2(vk, D)]φ‖Y2,ΓP
(RN ) = ‖Mk(vk − vk)∂νφ‖Y2,ΓP

(RN )

≤ ‖Mk‖UΓP
(B(RN ))‖vk − vk‖UΓP

(RN )‖∂νφ‖Y2,ΓP

≤ C‖vk − vk‖Uk(RN )‖φ‖Zk
,

which shows the assertion.
For proving the last claim we can first see that ũki > 0 ∈ Zk implies (ũki )

−1 ∈ Zk in case
of p > 2 + (n + 1). Moreover, owing to Proposition 2.5 we have γ|ΓP

∈ B(Zk, Y1,ΓP
) and

Proposition 2.6 provides the multiplication algebra of Zk. This makes possible to estimate
as follows

‖γ|ΓP
Ũ−1
k vk‖Y1,ΓP

(RN ) ≤ ‖γ|ΓP
‖B(Zk,Y1,ΓP

)‖[vki /ũki ]1≤i≤N‖Zk

≤ C
N
∑

i=1

(

‖(ũki )−1‖Zk
‖vki ‖C(J ;C1(Ωk)) + ‖vki ‖Zk

‖(ũki )−1‖C(J ;C1(Ωk))

)

≤ C‖vk‖Zk
.

�
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2.5 Model Problems

In this section we want to study some model problems which arise out of solving linear problem
(1.39 via localisation, changing coordinates and perturbation. At first, we are concerning with

u̇(t) +A(t)u(t) = f(t) , t ∈ J,

u(0) = u0 .
(2.9)

This model problem was considered in Prüss and Schnaubelt [26].

Theorem 2.4 Suppose Y is a Banach space of class HT , 1 < p < ∞ and J = [0, T ].
Suppose that A(·) is continuous in J and D(A(t)) = D(A(0)) =: D(A) for all t ∈ J . Let
A(t) ∈ RS (Y ) be invertible with R-angle φRA < π/2 for all t ∈ J . Then (2.9) has precisely
one solution in ZJ := H1

p(J ;Y ) ∩ Lp(J ;DA) if and only if the following two conditions are
satisfied.

1. f ∈ X := Lp(J ;Y );

2. u0 ∈ DA(1 − 1/p, p).

�

We now consider two abstract second order problems which play an essential role for treat-
ing of parabolic problems with inhomogeneous boundary data. The next theorem concerns
the problem

−u′′
(y) + F 2u(y) = f(y), y > 0,

u(0) = φ,
(2.10)

in Lp(R+;X).

Theorem 2.5 Suppose X is a Banach space of class HT , p ∈ (1,∞). Let F ∈ BIP (X) be
invertible with power angle θF < π/2, and let Dj

F denote the domain D(F j) of F j equipped
with its graph norm, j = 1, 2.

Then (2.10) has unique solution u in Z := H2
p(R+;X) ∩ Lp(R+;D2

F ) if and only if the
following two conditions are satisfied

1. f ∈ Lp(J ;X);

2. φ ∈ DF (2 − 1/p, p).

If this is the case we have in addition u ∈ H1
p(R+;DF ).

This result is due to Prüss, cf. [26, Theorem 3]. Having in mind that DF (2 − 1/p, p) = {g ∈
D(F ) : Fg ∈ DF (1 − 1/p, p)}. There is a corresponding result for the abstract second order
problem with abstract Robin condition

−u′′
(y) + F 2u(y) = f(y), y > 0,

−u′(0) +Du(0) = ψ,
(2.11)

in Lp(R+;X).
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Theorem 2.6 Suppose X is a Banach space of class HT , p ∈ (1,∞). Let F ∈ BIP (X)
be invertible with power angle θF < π/2, and let Dj

F denote the domain D(F j) of F j

equipped with its graph norm, j = 1, 2. Suppose that D is pseudo-sectorial in X, belongs

to BIP
(

R(D)
)

, commutes with F , and is such that θF + θD < π.

Then (2.11) has unique solution u in Z := H2
p(R+;X) ∩ Lp(R+;D2

F ) with u(0) ∈ D(D)
and Du(0) ∈ DF (1 − 1/p, p) if and only if the following two conditions are satisfied

1. f ∈ Lp(J ;X);

2. ψ ∈ DF (1 − 1/p, p).

If this is the case we have in addition u ∈ H1
p(R+;DF ).

This result is also due to Prüss, see [26, Theorem 4].
Our next result concerns the parabolic problem

∂tu− L∂2
yu+Au = f(t, y), t ∈ J, y > 0,

u|y=0
= g(t), t ∈ J,

u|t=0
= u0(y) , y > 0,

(2.12)

in Lp(J ; Lp(R+;Y )). Here again Y is a Banach space of class HT , J = [0, T ] a compact time
interval, A denotes a sectorial operator in Y and L is invertible in Y . We are interested in
solutions u which belong to the maximal regularity space Z, more precisely

u ∈ Z := H1
p(J ; Lp(R+;X)) ∩ Lp(J ; H2

p(R+;Y )) ∩ Lp(J ; Lp(R+;DA)).

The above problem is a variation of a parabolic problem which has been considered by Prüss
in [24]. Therefore we are in need of only a few modifications to show the following result.

Theorem 2.7 Suppose Y is a Banach space of class HT , p ∈ (1,∞), p 6= 3/2 and J = [0, T ].
Let A ∈ BIP (Y ) be invertible with power angle θA < π/2. Assume further L ∈ B(Y ) be
invertible with σ (L) ⊂ ΣθL

, θL < π/2, and commute with A. Then problem (2.12) has
exactly one solution

u ∈ H1
p(J ; Lp(R+;Y )) ∩ Lp(J ; H2

p(R+;Y )) ∩ Lp(J ; Lp(R+;DA))

if and only if the data f, g, u0 satisfy the following conditions.

1. f ∈ Lp(J ; Lp(R+;Y ));

2. g ∈ B1−1/2p
pp (J ;Y ) ∩ Lp(J ;DA(1 − 1/2p, p));

3. u0 ∈ B2−2/p
pp (R+;Y ) ∩ Lp(R+;DA(1 − 1/p, p));

4. g(0) = u0(0) ∈ DA(1 − 3/2p, p) in case p > 3/2.

Proof. The proof of this Theorem runs as in [24, Theorem 5]. Therefore, the necessary
part can be also adopted from there.

At first we solve the corresponding Dirichlet problem, i.e. u|y=0
= 0 for t ∈ J and

u0(0) = 0 due to compatibility. For this purpose we define G = −L∂2
y with domain D(G) =

H2
p(R+;Y ) ∩ 0H

1
p(R+;Y ); then G belongs to BIP (Lp(R+;Y )) with power angle θG < π/2,

since L ∈ B(Y ) and σ (L) ⊂ ΣθL
with θL < π/2. Let B denote the natural extension of A
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to Lp(R+;Y ), with domain D(B) = Lp(R+;DA). Then B is also in BIP (Lp(R+;Y )) with
power angle θB < π/2. Since both operators commute, Theorem 2.2 yields that A = G+ B
with domain D(A) = D(G)∩D(B) belongs to BIP (Lp(R+;Y )) with power angle θA < π/2.
Therefore, by Theorem 2.4, u1(t) = e−Atu0 + e−At ∗ f is the unique solution of the Dirichlet
problem which lies in

H1
p(J ; Lp(R+;Y )) ∩ Lp(J ; H2

p(R+;Y )) ∩ Lp(J ; 0H
1
p(R+;Y )) ∩ Lp(J ; Lp(R+;DA)).

Now, we tackle the case of vanishing initial data, f = 0 and g(0) = 0.

∂tu− L∂2
yu+Au = 0, t ∈ J, y > 0,

u|y=0
= g(t), t ∈ J

u|t=0
= 0, y > 0 .

Define A in Lp(J ;DA) by pointwise extension, and set D = ∂t with domainD(D) = 0H
1
p(J ;Y ).

Both operators are sectorial, they commute and belong to BIP (Lp(J ;Y )) with θD + θA < π.
Hence, by Theorem 2.2, L−1(D + A) with domain D(D) ∩ D(A) is invertible and belongs
to BIP (Lp(J ;Y )) with power angle small than π/2 + θL < π. The above problem can be
written as

−∂2
yu+ F 2u = 0, y > 0,

u|y=0
= g,

with F = L−1/2(D + A)1/2. Now we are in the position to apply Theorem 2.5 to the result,
that u2 = e−Fyg is the unique solution of the above problem which lies in

H2
p(R+; Lp(J ;Y )) ∩ Lp(R+; 0H

1
p(J ;Y )) ∩ Lp(R+; Lp(J ;DA)).

In the end, if the compatibility condition g(0) = u0(0) is valid, the unique solution of (2.12)
can be written as follows

u(t, y) = e−At
[

u0(y) − e−L
−1/2A1/2y/

√
2u0(0)

]

+ (e−At ∗ f)(t, y)

+ e−Fy
[

g(t) − e−A
t
2u0(0)

]

+ e
−L−1/2A1/2 y√

2 e−A
t
2u0(0)

= T (t) [u0(y) − Ξ(y)u0(0)] + (T ∗ f)(t, y)

+ Υ(y) [g(t) − S(t)u0(0)] + Ξ(y)S(t)u0(0) .

(2.13)

Here, we have used the notations T (t) := e−At, S(t) := e−A
t
2 , Ξ(y) :=−L−1/2A1/2y/

√
2 and

Υ(y) := e−Fy. Finally, it is left to check that each term belongs to Z. In view of regularisation
of semigroups T (t) and Υ(y), we have to verify that S(·)u0(0) ∈ DF (2−1/p, p) and Ξ(·)u0(0) ∈
DA(1 − 1/p, p). W.l.o.g. we show

S(t)u0(0) ∈ DF (2 − 1/p, p) = DF 2(1 − 1/2p, p) = DD(1 − 1/2p) ∩DA(1 − 1/2p, p).

Due to assumption u0(0) ∈ DA(1 − 3/2p, p) and 1 − 3/2p < 1 − 1/p we may employ

[13, Theorem 3] which implies e−A
t
2u0(0) ∈ Lp(J ;DA(1 − 1/2p, p)). That means, the tra-

jectory v(t) := e−A·
t
2u0(0) gains 1/p spatial regularity. Moreover, this fact gives rise to
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v ∈ B1−1/2p
pp (J ;X) = DD(1 − 1/2p, p) as well. Considering the norm of DD(1 − 1/2p, p), see

(2.2), and setting θ = 1 − 1/2p, we then obtain

v ∈ DD(1 − 1/2p) ⇔
∞
∫

0

‖τ1−θDT (τ)v‖pLp(R+;X)

dτ

τ
=

∞
∫

0

∞
∫

0

|τ1−θDT (τ)v(t)|pX
dτ

τ
dt <∞

Here T (t) denotes the left translation semigroup. After some evaluations and using Fubini,
we find the relation

∞
∫

0

‖τ1−θDS(τ)v(t)‖pLp(R+;X)

dτ

τ
=

∞
∫

0

∞
∫

0

|τ1−θAT (τ)v(t)|pX
dτ

τ
dt.

However the existence of integral above is equivalent to v ∈ Lp(J ;DA(1 − 1/2p, p)).
�
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Chapter 3

Maximal Lp-Regularity for the

Linear Problem

In this chapter we solve the linear problem (1.39)-(1.41), that means we prove existence and
uniqueness of functions (wP, wF, wb) ∈ ZP ×ZF ×Zb and (ψP, ψF ) ∈ Z satisfying the evolution
equations (1.39) and (1.40). We will first consider a problem on the full space R

n+1. After
this a half space and a two phase problem in R

n+1
+ will be studied. Finally, in section (3.4) we

solve the problem for the domain Ω via localisation, perturbation, and changing coordinates
in order to reduce the problem to related problems on the full and half space. Afterwards,
we sum up all local solutions and have to establish that the so constructed function is the
unique solution of the original problem.

3.1 A Full Space Problem

In this section we study the full space problem

∂tw −D[∆ − 1]w −Mũ[∆ − 1]ψ = f, (t, x) ∈ J × R
n+1,

w(0, x) = u0(x), zT·w = 0, (t, x) ∈ J × R
n+1

(3.1)

in Lp(J ; Lp(R
n+1)), with J = [0, T ]. All coefficients are constant in time and space, where

the denotation indicates to the meaning of the coefficients appearing in the linear problem
(1.39) - (1.41), e.g. we have a := zT ·Mũ > 0. We look for unique solutions (w,ψ) in the
maximal regularity space ZT ×ZT defined by

ZT := H1
p(J ; Lp(R

n+1; RN )) ∩ Lp(J ; H2
p(R

n+1; RN )),

ZT := H1/2
p (J ; H1

p(R
n+1)) ∩ Lp(J ; H2

p(R
n+1)).

To obtain this regularity we have to impose on the inhomogeneity the condition

f ∈ X T := {f ∈ XT := Lp(J ; Lp(R
n+1; RN )) : zT·f ∈ H1/2

p (J ; H−1
p (Rn+1))}

equipped with the norm

‖f‖XT := ‖f‖XT + ‖zT·f‖
H

1/2
p (J ;H−1

p (Rn+1))
.

The goal of this section is to prove the following result.
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Theorem 3.1 Let J = [0, T ], 1 < p < ∞ and assume that di, ũi for i = 1, . . . , N are
positive. Then problem 3.1 has exactly one solution (w,ψ) in the space ZT ×ZT if and only
if the data f(t, x) and u0(x) satisfy the following conditions

1. f ∈ X T ;

2. u0 ∈ V (E) := B2−2/p
pp (Rn+1;E).

Moreover, there exists an isomorphism S between space of data and ZT ×ZT .

Proof. We start with the necessity part. Suppose that (w,ψ) ∈ ZT × ZT solves (3.1).
Then it follows f = ∂tw + A1(D)w + A2(D)ψ ∈ Lp(J ; Lp(R

n+1; RN )), where we have set

A1(D) := −D[∆ − 1], A2(D) := −Mũ[∆ − 1] . (3.2)

To verify zT ·f ∈ H1/2
p (J ; H−1

p (Rn+1)) we use duality for the highest order terms and the
embedding Lp(R

n+1) ↪→ H−1
p (Rn+1) in case of lower order.

‖zT·f‖H−1
p (Rn+1) ≤ ‖zT·D[∆ − 1]w‖H−1

p (Rn+1) + ‖zT·Mũ[∆ − 1]ψ‖H−1
p (Rn+1)

≤ C
(

‖∇w‖Lp(Rn+1) + ‖∇ψ‖Lp(Rn+1) + ‖w‖Lp(Rn+1) + ‖ψ‖Lp(Rn+1)

)

By regularity assumption of w and ψ we deduce that ∇ψ, ∇w belong to the space ZT∇ :=
H1/2
p (J ; Lp(R

n+1)) ∩ Lp(J ; H1
p(R

n+1)) which implies that each term lies in H1/2
p (J). The last

condition is a consequence of Theorem 2.4 and the fact that zT·w(t, x) = 0 for all t ∈ [0, T ]
and x ∈ R

n+1.
Sufficiency. Observe that (3.1) is equivalent to the subsequent problem, whereas the

electroneutrality condition is replaced by the corresponding elliptic equation. Thus, we study
the evolution problem

∂tw −D[∆ − 1]w −Mũ[∆ − 1]ψ = f, (t, x) ∈ J × R
n+1,

w(0, x) = u0(x), x ∈ R
n+1,

−zT·D[∆ − 1]w − a[∆ − 1]ψ = zT·f, (t, x) ∈ J × R
n+1.

Next we introduce an important projection, which map R
N into E. This projection is

needed to solve the above evolution problem. It turns out that we can utilise this projection
to eliminate the expression Mũ[∆ − 1]ψ in the parabolic equation. We define

b :=
Mũ

a
, a := zT·Mũ, Q := b⊗ z, Π := I −Q . (3.3)

Lemma 3.1 Suppose that di, ũi for i = 1, . . . , N are positive. Then ΠD is a mapping from
R
N into E with σ

(

(ΠD)|E
)

⊂ (0,∞).

Proof. 1. im(ΠD) ⊂ E. Let ξ ∈ R
N be given, then we have

zT·ΠDξ = zT·(Dξ −QDξ) = zT·Dξ − zT·bzT·Dξ = 0,

since zT·b = 1.
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2. In case D is diagonal we are able to transform ΠD into a symmetric matrix. To achieve
this, we define multiply ΠD by Ũ1/2 = diag[

√
ũi]1≤i≤N from right and by Ũ−1/2 from left.

Then we obtain

Ũ−1/2 (ΠD) Ũ1/2 = Ũ−1/2DŨ1/2 − Ũ−1/2Mũ⊗ Ũ1/2Dz

zT·Mũ
= D − Ũ−1/2Dλ0Ũz ⊗ Ũ1/2Dz

zT· λ0DŨz

=D − Ũ1/2Dz ⊗ Ũ1/2Dz
∣

∣

∣D1/2Ũ1/2z
∣

∣

∣

2 =: D − b0 ⊗ b0 .

3. There are only positive eigenvalues. Suppose λ is an eigenvalue and η 6= 0 the corre-
sponding eigenvector. Multiplying the eigenvalue-equation by η yields

λ|η|2 =
∣

∣

∣
D1/2η

∣

∣

∣

2
− |〈b0, η〉|2 =

∣

∣

∣
D1/2η

∣

∣

∣

2



1 −
∣

∣

∣

∣

∣

〈D− 1
2 b0,

D1/2η

|D1/2η| 〉
∣

∣

∣

∣

∣

2


 .

The vectors D− 1
2 b0 and D1/2η

|D1/2η|
have norm 1 and so we see λ ≥ 0. Furthermore, if we assume

that λ = 0 is an eigenvalue, then η = αD−1b0 for some α ∈ R. Since η should be in Ũ−1/2E,
this implies

0 = zT· Ũ−1/2η = α zT· Ũ−1/2D−1b0 = α zT· Ũ−1/2D−1DŨ1/2z = α |z|2 .

This relation can only be satisfied for α = 0, however this means that η = 0.
�

Now the projection Π = I − Mũ⊗z
a comes into operation. By applying Π to the above

equation we can eliminate the term Mũ[∆ − 1]ψ due to the fact Mũ ∈ ker(Π), and obtain

∂tw − ΠD[∆ − 1]w = Πf, (t, x) ∈ J × R
n+1,

w(0) = u0, x ∈ R
n+1.

(3.4)

This formulation is equivalent to the original one, whereas now the electroneutrality condition
is incorporated into the solution space. The equivalence results from the identity

A1(D)w + A2(D)ψ − f = ΠA1(D)w − f +QA1(D)w +QA2(D)ψ

= ΠA1(D)w − f + b[zT· A1(D)w + zT· A2(D)ψ]

= ΠA1(D)w − Πf.

At first, we solve the evolution problem (3.4) for w. The given data satisfy all conditions of
Theorem 2.4 so that it remains to check the assumption that A := ΠA1(D) = ΠD[Dn+1 + 1]
belongs to BIP

(

Lp(R
n+1)

)

. Here we denote by Dn+1 the negative Laplacian in R
n+1.

Lemma 3.1 supplies that the constant coefficient matrix ΠD|E has only positive eigenval-
ues, which implies ΠD ∈ BIP

(

Lp(R
n+1;E)

)

with power angle θΠD = 0. Since Dn+1 + 1
belongs to BIP

(

Lp(R
n+1)

)

with power angle θDn+1+1 = 0 we may conclude that A lies in
BIP

(

Lp(R
n+1;E)

)

as well, with power angle θ = θDn+1+1 + θΠD = 0. Hence, we obtain a
unique solution w ∈ ZT (E) := {v ∈ ZT : zT·v = 0} of (3.4) given by

w(t, x) = (T ∗ Πf)(t, x) + T (t)u0(x),
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with T (t) = e−ΠD(Dn+1+1)t. We stress that this function solves (3.1) since all transformations
were equivalent.

Now we want to solve the elliptic problem for ψ. It is clear that

−zT·A1(D)w + zT·f ∈ Lp(J ; Lp(R
n+1)) ∩ H1/2

p (J ; H−1
p (Rn+1)),

where w is given by the above formula. This can be seen by the assumption f ∈ X T , which
implies zT·f ∈ Lp(J ; Lp(R

n+1)) ∩ H1/2
p (J ; H−1

p (Rn+1)), and in the proof of necessity we have

established that zT·A1(D)w possesses this regularity as well.
The elliptic equation for ψ reads as follows

[1 − ∆]ψ = a−1
(

−zT·A1(D)w(t, x) + zT·f(t, x)
)

,

where a > 0 results from the positivity of ũ. The operator Is := (1 − ∆)s/2 with symbol
(1 + |ξ|2)s/2 possesses the lift property, i.e. Is is a continuous one-to-one mapping from
Hs
p(R

n+1) ontoHs−2
p (Rn+1), for s ∈ R and p ∈ (1,∞), see [33, Theorem 2.3.4.]. Consequently,

the solution of (3.4) belongs to ZT and is given by

ψ(t, x) = (1 − ∆)−1
{

a−1
(

−zT·A1(D)w(t, x) + zT·f(t, x)
)}

.

The solution formulae of w and ψ supply the solution operator S. Necessity and sufficiency
of the inhomogeneities entail that S is an isomorphism between space of data and ZT ×ZT ,
i.e.

S ∈ Lis(X T × V (E), ZT ×ZT ).

�

3.2 A Half Space Problem

This paragraph is devoted to a parabolic-elliptic problem of second order in half space, where
the coefficients are again constant and the differential operator consist only of their main
parts. We will deal with

∂tw + A1(D)w +A2(D)ψ = f, (t, y) ∈ J × R
n+1
+ ,

w(t, y′, 0) = h(t, y′), ψ(t, y′, 0) = 0, (t, y′) ∈ J × R
n,

w(0, y) = u0(y), y ∈ R
n+1
+ ,

zT·w(t, y) = 0, (t, y) ∈ J × R
n+1
+ .

(3.5)

Here, we have used the same notations for partial differential operators A1(D), A2(D) as in
Section 3.1. The maximal regularity result of this problem reads as follows.

Theorem 3.2 Let J = [0, T ], 1 < p < ∞, p 6= 3/2, J = [0, T ] and assume that di, ũi are
positive for i = 1, . . . , N . Then problem (3.5) has exactly one solution

w ∈ ZT+ := H1
p(J ; Lp(R

n+1
+ ; RN )) ∩ Lp(J ; H2

p(R
n+1
+ ; RN )),

ψ ∈ ZT
+,0 := H1/2

p (J ;
◦
H1
p(R

n+1
+ )) ∩ Lp(J ; H2

p(R
n+1
+ ) ∩

◦
H1
p(R

n+1
+ ))

if and only if the data f , h and u0 satisfy the following conditions
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1. f ∈ X T
+ := {f ∈ Lp(J ; Lp(R

n+1
+ ; RN )) : zT·f ∈ H1/2

p (J ; H−1
p (Rn+1

+ ))};
2. h ∈ Y T

1 (E) := B1−1/2p
pp (J ; Lp(R

n;E)) ∩ Lp(J ; B2−1/p
pp (Rn;E));

3. u0 ∈ V+(E) := B2−2/p
pp (Rn+1

+ ;E);

4. u0|yn+1=0
= h|t=0

∈ B2−3/p
pp (Rn;E) in case p > 3/2.

Furthermore, there exists a solution operator S+ of problem (3.5) with

S+ ∈ Lis(X T
+ ×{(h, u0) ∈ Y T

1 (E)×V+(E) : h|t=0
= u0|yn+1=0

}, ZT+ ×ZT
+,0) .

Proof. We start again with the necessity part. For proving f ∈ X T and u0 ∈ V+(E) we
refer to the proof of Theorem 3.1. So it remains to check h ∈ Y T

1 (E) and the compatibility
condition. According to the trace Theorem 2.5 we see the regularity of h and the compatibility
condition h|t=0

= u0|yn+1=0
∈ B2−3/p

pp (Rn;E) whenever p > 3/2. Due to the linearity of the
boundary condition we conclude h ∈ E.

The sufficiency part. Let the data f , h, u0 be given. Then, as proceeded in the proof of
Theorem 3.1, we replace the electroneutrality condition by the corresponding boundary value
problem and apply the projection Π to the parabolic equation. The latter problem has now
to be considered in E.

∂tw − ΠD∂2
yn+1

w + ΠD[Dn + 1]w = Πf, (t, y) ∈ J × R
n+1
+ ,

w(t, y′, 0) = h(t, y′), (t, y′) ∈ J × R
n,

w(0, y) = u0(y), y ∈ R
n+1
+ .

(3.6)

Here Dn denotes the negative Laplacian on R
n. Lemma 3.1 provides that ΠD is invertible

with σ(ΠD) ⊂ R+ and thus Theorem 2.7 is applicable. We obtain a unique solution of the
above problem in ZT+(E) with the representation

w(t, y) = T (t)
[

u0 − Ξ(yn+1)u0|yn+1=0

]

+ [T ∗ Πf ](t, y) + S(t)Ξ(yn+1)u0|yn+1=0

+ Υ(yn+1)
[

h− S(t)u0|yn+1=0

]

,
(3.7)

where the definitions of semigroups T (t), S(t) and Ξ(y) can be founded in the proof of
Theorem 2.7.

Now, we consider the elliptic problem for ψ which can be reduced to the abstract second
order problem

−∂2
yn+1

ψ +A2ψ = f̃ , yn+1 ∈ R+,

ψ(0) = 0,

with

f̃(t, y) := a−1
[

zT·f(t, y) − zT·A1(D)w
]

,

and A2 = Dn + 1 with domain D(A2) = H2
p(R

n). Let R : Lp(R+;X) → Lp(R;X) denote the
operator of even extension, i.e.

(Rf)(yn+1) :=

{

f(−yn+1) : yn+1 < 0
f(yn+1) : yn+1 ≥ 0

,
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and P+ : Lp(R;X) → Lp(R+;X) the restriction to R+. These operators are bounded. Then,
solutions of the elliptic problem can be written as follows

ψ(t, y) = P+(Dn+1 + 1)−1Rf̃ = P+
1

2
A−1

∞
∫

−∞

e−A|yn+1−s|(Rf̃)(t, s) ds

=
1

2
A−1

∞
∫

0

[

e−A|yn+1−s| − e−A(yn+1+s)
]

f̃(t, s) ds.

(3.8)

Dn+1 denotes the negative Laplacian in R
n+1. Now, we can bring forward the same arguments

used in the previous section to establish the regularity. In fact, (Dn+1 + 1)−1 possesses the
lift property, i.e. (Dn+1 + 1)−1 is a continuous one-to-one mapping from Hs

p(R
n+1) onto

Hs+2
p (Rn+1), for s ∈ R and p ∈ (1,∞). Consequently, P+(Dn+1 +1)−1Rf̃ belongs to ZT due

to the regularity

Rf̃ ∈ Lp(J ; Lp(R
n+1)) ∩ H1/2

p (J ; H−1
p (Rn+1)).

Finally, the solution formulae (3.8) and (3.7) provide a solution operator S. Necessity and
sufficiency of the data entail that S is an continuous one-to-one mapping from

X T
+ × {(h, u0) ∈ Y T

1 (E) × V+(E) : h|t=0
=u0|yn+1=0

}

to ZT+ ×ZT
+,0.

�

3.3 A Two Phase Problem

In this section we study a two phase problem in R
n+1
+ ∪R

n+1
− which arises from the localisation

at the boundary ΓP . Consequently the functions wk and ψk, k = P, F are involved and
coupled by the boundary conditions. In the following all coefficients are constant and bear
again the meaning as in the linear problem (1.39).

∂tw
P −DP [∆y − 1]wP −MP ũP [∆y − 1]ψP = fP , (t, y) ∈ J × R

n+1
+ ,

∂tw
F −DF [∆y − 1]wF −MF ũF [∆y − 1]ψF = fF , (t, y) ∈ J × R

n+1
−

−DP∂yn+1
wP−MPũP∂yn+1

ψP = −DF∂yn+1
wF−MFũF∂yn+1

ψF + g, (t, y) ∈ J × R
n × {0},

Ũ−1
P wP − Ũ−1

F wF + λ0z(ψ
P − ψF ) = h, (t, y) ∈ J × R

n × {0},
wP (0, y) = uP0 (y), y ∈ R

n+1
+ , wF (0, y) = uF0 (y), y ∈ R

n+1
− ,

zT·wP (t, y) = 0, (t, y) ∈ J × R
n+1
+ , zT·wF (t, y) = 0, (t, y) ∈ J × R

n+1
− .

(3.9)

Take into account that the compatibility condition involves the electrical potential ψk0 :=
ψk(0), k = P, F , which have to be determined as well. For this problem the maximal
regularity result in Lp(J ; Lp(R+;Y )) × Lp(J ; Lp(R−;Y )), with Y = Lp(R

n; RN ), reads as
follows.
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Theorem 3.3 Let J = [0, T ] and 1 < p <∞, p 6= 3/2, 3 and assume that di, ũi are positive
for i = 1, . . . , N . Then problem (3.9) has precisely one solution

wP ∈ ZT+ := H1
p(J ; Lp(R

n+1
+ ; RN )) ∩ Lp(J ; H2

p(R
n+1
+ ; RN ))

wF ∈ ZT− := H1
p(J ; Lp(R

n+1
− ; RN )) ∩ Lp(J ; H2

p(R
n+1
− ; RN )),

(ψP, ψF ) ∈ ZT
+,− := {(φP, φF ) ∈ ZT

+ ×ZT
− : γ|Rn (φP − φF ) ∈ Y T

1 },

with the spaces Y T
1 := B1−1/2p

pp (J ; Lp(R
n))∩Lp(J ; B2−1/p

pp (Rn))} and ZT
± := H1/2

p (J ; H1
p(R

n+1
± ))∩

Lp(J ; H2
p(R

n+1
± )), if and only if the data fP , fF , g, h, uP0 , uF0 satisfy the following conditions

1. fP ∈ X T
+ := {f ∈ Lp(J ; Lp(R

n+1
+ ; RN )) : zT ·f ∈ H1/2

p (J ; H−1
p (Rn+1

+ ))};
2. fF ∈ X T

− := {f ∈ Lp(J ; Lp(R
n+1
− ; RN )) : zT ·f ∈ H1/2

p (J ; H−1
p (Rn+1

− ))};
3. g ∈ YT2 := {g ∈ Y T

2 (RN ) := B1/2−1/2p
pp (J ; Lp(R

n; RN ))∩Lp(J ; B1−1/p
pp (Rn; RN )) :

zT·g ∈ H1/2
p (J ; B−1/p

pp (Rn))};
4. h ∈ Y T

1 (RN ) := B1−1/2p
pp (J ; Lp(R

n; RN )) ∩ Lp(J ; B2−1/p
pp (Rn; RN ));

5. uP0 ∈ V+(E) := B2−2/p
pp (Rn+1

+ ;E), uF0 ∈ V−(E) := B2−2/p
pp (Rn+1

− ;E);

6. Ũ−1
P uP0 − Ũ−1

F uF0 + λ0z(ψ
P
0 − ψF0 ) = h|t=0

in B2−3/p
pp (Rn; RN ) if p > 3/2;

7. −DP∂yn+1
uP0 −MPũP∂yn+1

ψP0 = −DF∂yn+1
uF0 −MFũF∂yn+1

ψF0 + g|t=0
,

in B1−3/p
pp (Rn; RN ) if p > 3, where (ψP0 , ψ

F
0 ) solves the elliptic problem (3.10)

after taking trace t = 0, see proof.

Furthermore, there exists a solution operator S+,− of problem (3.9) with

S+,− ∈ Lis
(

X T
+ ×X T

− × { (g, h, uP0 , u
F
0 ) ∈ YT2 × Y T

1 (RN )×V+(E) × V−(E) : (g, h, uP0 , u
F
0 )

enjoy the compatibility conditions 6. & 7.}, ZT+ × ZT− ×ZT
+,−

)

.

Proof. (a) We begin with the necessity part. Suppose (wP , wF ) and (ψP , ψF ) solve (3.9)
and belong to ZT+ × ZT− × ZT

+,−. The regularity of data fk, k = P, F can be established
as in the proof of Theorem 3.1. The regularities of g, h, u0 follow by Theorem 2.5, where
one has to keep in mind that ψP (t, 0) − ψF (t, 0) ∈ Y T

1 and ∇ψP ∈ ZT+,∇, ∇ψF ∈ ZT−,∇
imply Mkũk∂yn+1

ψk(t, 0) ∈ Y T
2 (RN ), k = P, F . We have still to check the condition zT·g ∈

H1/2
p (J ; B−1/p

pp (Rn)). Here, we have to study the weak formulation of the boundary value
problem obtained by applying zT· to (3.9). W.l.o.g. we can set fk = 0. After multiplying

with a test function v ∈
◦
H1
p′(R

n+1), integrating by parts, making use of transmission condition
and accounting for the support of v, we obtain the identity
∫

R
n+1
+

{

v(y)[aPψP (t, y) + zT·DPwP (t, y)] + ∇v(y) · ∇[aPψP (t, y) + zT·DPwP (t, y)]

}

dy

+

∫

R
n+1
−

{

v(y)[aFψF (t, y) + zT·DFwF (t, y)] + ∇v(y) · ∇[aFψF (t, y) + zT·DFwF (t, y)]

}

dy =

∫

Rn

v(y′, 0) zT·g(t, y′) dy′
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for all v ∈
◦
H1
p′(R

n+1) and t ∈ J . With a view to establishing the time regularity H1/2
p (J) of

zT·g we shall consider differences of the above equation respect to the time variable. Moreover,
the left hand side of these differences will be estimated by using Hölder’s inequality, and we
obtain

∫

Rn

ṽ(y′)[zT·g(t+ h, y′) − zT·g(t, y′)] dy′ ≤ C‖v‖ ◦
H1

p′ (R
n+1)

·
{

‖(ψP, ψF )(t+ h) − (ψP, ψF )(t)‖H1
p(Rn+1

+ )×H1
p(Rn+1

− )

+ ‖(wP, wF )(t+ h) − (wP, wF )(t)‖H1
p(Rn+1

+ ;RN )×H1
p(Rn+1

− ;RN )

}

,

with v|Rn = ṽ and t+ h, t ∈ J . By taking the infimum and using

inf{‖v‖ ◦
H1

p′ (R
n+1)

: v|Rn = ṽ} ≤ C‖ṽ‖
B

1−1/p′
p′p′ (Rn)

we get

∫

Rn

ṽ(y′)[zT·g(t+ h, y′) − zT·g(t, y′)] dy′ ≤ C‖ṽ‖
B

1−1/p′
p′p′ (Rn)

·
{

‖(ψP, ψF )(t+ h) − (ψP, ψF )(t)‖H1
p(Rn+1

+ )×H1
p(Rn+1

− )

+ ‖(wP, wF )(t+ h) − (wP, wF )(t)‖H1
p(Rn+1

+ ;RN )×H1
p(Rn+1

− ;RN )

}

,

for all ṽ ∈ B1−1/p′

p′p′ (Rn), which means zT·g(t+ h) − zT·g(t) ∈ B−1/p
pp (Rn) due to duality. In the

end, after employing the norm of H1/2
p (J) being defined by means of differences we gain the

estimate

‖ sup

ṽ∈B
1−1/p′
p′p′ (Rn)

‖ṽ‖≤1

∫

Rn

ṽ(y′)zT·g(·, y′)dy′‖
H

1/2
p (J)

≡ ‖zT·g‖
H

1/2
p (J ;B

−1/p
pp (Rn))

≤ C

{

‖(ψP, ψF )‖
H

1/2
p (J ;H1

p(Rn+1
+ )×H1

p(Rn+1
− ))

+ ‖(wP, wF )‖
H

1/2
p (J ;H1

p(Rn+1
+ ;RN )×H1

p(Rn+1
− ;RN ))

}

.

Last but not least, the compatibility conditions follow from the regularity assumptions
and the embeddings

Y T
1 (RN ) ↪→ C(J ; B2−3/p

pp (Rn; RN )), p > 3/2, Y T
2 (RN ) ↪→ C(J ; B1−3/p

pp (Rn; RN )), p > 3.

(b) We come now to the sufficiency part. The first task consists in solving the elliptic
problem for (ψP, ψF ). Furthermore, we are interested in finding a solution formula which
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provides an insight into the transmission condition, i.e. makes it possible to compute the
normal derivatives of the potentials. Assume that wk are already known.

By applying zT· to all equations of (3.9) and using the electroneutrality we obtain a two
phase boundary value problem, which reads as follows

− aP (∂2
yn+1

− (Dn + 1))ψP − zT·DP (∂2
yn+1

− (Dn + 1))wP = zT·fP , (t, y) ∈ J × R
n+1
+

− aF (∂2
yn+1

− (Dn + 1))ψF − zT·DF (∂2
yn+1

− (Dn + 1))wF = zT·fF , (t, y) ∈ J × R
n+1
−

zT·DP∂yn+1
wP+ aP∂yn+1

ψP =zT·DF∂yn+1
wF+ aF∂yn+1

ψF−zT·g , (t, y) ∈ J × R
n × {0}

ψP − ψF =
1

λ0|z|2
[

zT·Ũ−1
F wF − zT·Ũ−1

P wP
]

+
1

λ0|z|2
zT·h , (t, y) ∈ J × R

n × {0} .

(3.10)

Here we used again the notation ak := zT ·Mkũk for k = P, F . The operator Dn denotes
the negative Laplacian in R

n. For solving the ordinary differential equations concerning
the variable yn+1, we introduce the auxiliary function ρk := akψk + zT ·Dkwk. Hence, the
differential equations and transmission condition takes the form

−∂2
yn+1

ρP + (Dn + 1)ρP = zT·fP , (t, yn+1) ∈ J × R+

−∂2
yn+1

ρF + (Dn + 1)ρF = zT·fF , (t, yn+1) ∈ J × R−

∂yn+1
ρP = ∂yn+1

ρF − zT·g , (t, yn+1) ∈ J × {0}.
Solutions of this system are given by

aPψP (t, y) + zT·DPwP (t, y) =
1

2
(Dn + 1)−1/2

∞
∫

0

[T (|yn+1− s|) + T (yn+1+ s)] zT·fP (t, y′, s)ds

+ T (yn+1)χ
P (t, y′), (t, y) ∈ J × R

n+1
+

aFψF (t, y) + zT·DFwF (t, y) =
1

2
(Dn + 1)−1/2

0
∫

−∞

[T (|yn+1− s|) + T (−yn+1− s)] zT·fF (t, y′, s)ds

+ T (−yn+1)χ
F (t, y′), (t, y) ∈ J × R

n+1
− ,

(3.11)

where the auxiliary functions ρP , ρF were replaced. Further on, T (yn+1), yn+1 ≥ 0 denotes
again the bounded analytic C0-semigroup generated by −(Dn+1)1/2. The unknown functions
χP and χF are determined by transmission condition and boundary condition of Dirichlet
type. Due to the transmission condition ∂yn+1

ρP = ∂yn+1
ρF −zT·g we obtain the first relation

χP (t, y′) + χF (t, y′) = (Dn + 1)−1/2zT·g(t, y′).
The second equation for χP , χF is caused by the boundary condition of Dirichlet type. At
first, observe that

ψP (t, y′, 0)− ψF (t, y′, 0) = −z
T·DPwP (t, y′, 0)

aP
+
zT·DFwF (t, y′, 0)

aF
+
χP (t, y′)

aP
− χF (t, y′)

aF

+
1

aP
(Dn + 1)−1/2

∞
∫

0

T (s)zT·fP (t, y′, s)ds− 1

aF
(Dn + 1)−1/2

0
∫

−∞

T (−s)zT·fF (t, y′, s)ds,
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and substituting the boundary condition in the left hand side gives the second equation for
χP , χF . Solving this linear system of equations yields

χP (t, y′) =
aP

aP + aF
(Dn + 1)−1/2zT·g(t, y′) +

aPaF

aP + aF
χ(t, y′) ,

χF (t, y′) =
aF

aP + aF
(Dn + 1)−1/2zT·g(t, y′) − aPaF

aP + aF
χ(t, y′) ,

with

χ(t, y′) :=

[

zT·DPwP (t, y′, 0)

aP
− zT·DFwF (t, y′, 0)

aF

]

+
1

λ0|z|2
[

zT·Ũ−1
F wF (t, y′, 0) − zT·Ũ−1

P wP (t, y′, 0)
]

+
1

λ0|z|2
zT·h(t, y′)

+ (Dn + 1)−1/2





1

aF

0
∫

−∞

T (−s)zT·fF (t, y′, s) ds− 1

aP

∞
∫

0

T (s)zT·fP (t, y′, s) ds



 .

Note that by formula (3.11) we can compute (ψP0 , ψ
F
0 ) after taking trace t = 0. Furthermore,

we perceive that (ψP0 , ψ
F
0 ) is completely determined by the initial data uk0 ∈ B2−3/p

pp (Rn+1)
and inhomogeneities zT·fk(0) ∈ H−1

p (Rn+1
± ), zT·g(0) ∈ B−1/p

pp (Rn)∩B1−3/p
pp (Rn), and zT·h(0) ∈

B2−3/p
pp (Rn) whenever traces exist.
Now, we want to verify the regularity stated in the theorem. This will be carried out by

means of the solution formula of ψP . Let R : Lp(R+;X) → Lp(R;X) denote the operator of
antisymmetric extension at 0, i.e.

(Rf)(y) :=

{

f(y) : y ≥ 0
−f(−y) : y < 0

,

and P+ : Lp(R;X) → Lp(R+;X) the restriction to R+. These operators are bounded. Fur-
thermore, Dn+1 denotes again the negative Laplacian in R

n+1 and set A := (Dn + 1)1/2. Let
%(t, y) denote the first part of the solution formula, i.e. we put

%(t, y) :=
1

2
A−1

∞
∫

0

[T (|yn+1− s|) + T (yn+1+ s)] zT·fP (t, y′, s)ds.

Then %(t, y) is equal to

P+(Dn+1 + 1)−1(RzT·fP )(t, y) = P+
1

2
A−1

∞
∫

−∞

e−A|yn+1−s|(RzT·fP )(t, y′, s) ds,

and solves the problem

−∂2
yn+1

%+A2% = zT·fP , yn+1 > 0,

−∂yn+1
%(0) = 0.

Here, we see again that % ∈ ZT
+ due to the lift property of (Dn+1 + 1)−1 and RzT·fP ∈

Lp(J ; Lp(R
n+1)) ∩ H1/2

p (J ; H−1
p (Rn+1)).
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The next term we want to discuss is −zT·DPwP . At first glance, we perceive that this
function enjoy the regularity in view of wP ∈ ZT+. Finally, we want to study the func-
tion T (yn+1)χ

P . Since the semigroup T (yn+1) is a continuous mapping from Bs−1/p
pp (Rn) to

Hs
p(R

n+1
+ ) for s > 1/p and 1 < p < ∞, it remains to check that χk belongs to Y T

3 :=

H1/2
p (J ; B1−1/p

pp (Rn)) ∩ Lp(J ; B2−1/p
pp (Rn)) in order to conclude T (yn+1)χ

k ∈ Z±. The function
χk comprises the terms A−1zT· g and χ, except for certain constants. Due to the regularity
assumptions of g we know that zT·g ∈ H1/2

p (J ; B−1/p
pp (Rn)) ∩ Lp(J ; B1−1/p

pp (Rn)) which entails
that A−1zT·g ∈ Y T

3 . To verify that χ lies in Y T
3 we first note that zT·Dkwk(t, y′, 0) and zT·h

belong to Y T
1 . Hence, there are continuous extension of these function which belong to Z.

Using the embedding Z ↪→ H1/2
p (J ; H1

p(R
n+1
+ )) ∩ Lp(J ; H2

p(R
n+1
+ )) and continuity of the trace

operator we see that these functions lie in Y T
3 . As a result of the above considerations we

deduce that the integrals appearing in the definition of χ lie in Y T
3 . Applying the semigroup

T (yn+1) yields the assertion.
Hence, we have established that (ψP , ψF ) belongs to ZT

+,− := {(φP , φF ) ∈ ZT
+ × ZT

− :

γ|Rn (φP − φF ) ∈ Y T
1 }, where the claim γ|Rn (ψP −ψF ) ∈ Y T

1 follows by the regularity of data
of boundary condition.

(c) Now, we determineMkũk∂yn+1
ψk(t, y′, 0) ≡ akbk∂yn+1

ψk(t, y′, 0). By using the solution
formula (3.11) we compute

aP bP ∂yn+1
ψP − aF bF ∂yn+1

ψF = −QPDP∂yn+1
wP +QFDF∂yn+1

wF

− (Dn + 1)1/2
(

bPχP + bFχF
)

,

with

−(Dn + 1)1/2
(

bPχP + bFχF
)

= − 1

aP + aF
(

aPQP + aFQF
)

g

− aPaF

aP + aF
(bP − bF )(Dn + 1)1/2χ .

Using these identities the transmission condition takes the form

(ΠFDF )∂yn+1
wF − (ΠPDP )∂yn+1

wP = g − 1

aP + aF
(

aPQP + aFQF
)

g

− aPaF

aP + aF
(bP − bF )(Dn + 1)1/2χ

= Π1g −
aPaF

aP + aF
(bP − bF )(Dn + 1)1/2χ,

with

Π1 := I − 1

aP + aF
(

aPQP + aFQF
)

= 1
aP +aF

(

aPΠP + aFΠF
)

.

We investigate the last term containing χ. It turns out that this function produces expressions
containing wk which have to be worked into the left-hand side of the transmission condition.
Before simplifying the function χ we want to derive some useful equations. Firstly, we consider
the jump boundary condition. After applying Π0 := I − z⊗z

|z|2
to this equation we obtain

Ũ−1
P wP = Ũ−1

F wF − z

|z|2
(

zT·Ũ−1
F wF − zT·Ũ−1

P wP
)

+ Π0h.
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By taking the inner product of the above equation with λ−1
0 (bP )T we arrive at

λ−1
0 (bP )T·Ũ−1

P wP = λ−1
0 (bP )T · Ũ−1

F wF − 1

λ0|z|2
(

zT·Ũ−1
F wF − zT·Ũ−1

P wP
)

+ λ−1
0 (bP )T·Π0h,

(3.12)

where we have used (bP )T ·z = 1. Evaluation of the left hand side gives

λ−1
0 (bP )T·Ũ−1

P wP =
λ−1

0

∑

i b
P
i (ũPi )−1wPi
aP

=

∑

i zid
P
i ũ

P
i (ũPi )−1wPi
aP

=
zT·DPwP

aP
. (3.13)

Using this identity and

λ−1
0 (bP )T·Π0h = λ−1

0 (bP )T·h− (bP )T·z
λ0|z|2

zT·h = λ−1
0 (bP )T·h− zT·h

λ0|z|2
,

we derive from (3.12) the equation

zT·DPwP

aP
+

1

λ0|z|2
(

zT·Ũ−1
F wF − zT·Ũ−1

P wP
)

+
zT·h
λ0|z|2

= λ−1
0 (bP )T · Ũ−1

F wF+

λ−1
0 (bP )T·h.

(3.14)

The left hand side appears in the function χ, so that substituting the above equation in χ
results in

χ(t, y′) =
1

λ0

[

bP−bF
]T·Ũ−1

F wF (t, y′, 0) + (Dn + 1)−1/2 1

aF

0
∫

−∞

T (−s)zT·fF (t, y′, s) ds

− (Dn + 1)−1/2 1

aP

∞
∫

0

T (s)zT·fP (t, y′, s) ds+
1

λ0

(

bP
)T·h(t, y′) ,

where we have used once more the identity zT ·DFwF /aF = λ−1
0 (bF )T ·Ũ−1

F wF , cp. (3.13).
Now, we shall introduce some new matrices in order to attain a more convenient form of the
transmission condition. We define

Π := 1
λ0

aP aF

aP +aF

(

bP − bF
)

⊗
(

bP − bF
)

, Π2 := 1
λ0|z|2

aP aF

aP +aF

(

bP − bF
)

⊗ bP ,

Π3 := aP aF

aP +aF (bP − bF ) ⊗ z.

All these matrices are projections from R
N to the space of electroneutrality E, where E ⊂

ker(Πj) for j = 1, 2, 3 and Π is symmetric. Together with the above definitions and the
representation of χ we obtain

−(Dn+1)1/2 aPaF

aP+ aF
(

bP− bF
)

χ(t, y′) = −(Dn+1)1/2ΠŨ−1
F wF (t, y′, 0)−(Dn+1)1/2Π2h(t, y

′)

− Π3





1

aF

0
∫

−∞

T (−s)fF (t, y′, s) ds− 1

aP

∞
∫

0

T (s)fP (t, y′, s) ds



 .
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Hence, the transmission condition takes the form

(ΠFDF )∂yn+1
wF + (Dn + 1)1/2(ΠŨ−1

F )wF − (ΠPDP )∂yn+1
wP = g . (3.15)

Of course, this equation has to be considered in E, since the boundary value problem (3.10)
is involved here. Furthermore, the new inhomogeneity g defined by means of

g = Π1g − (Dn + 1)1/2Π2 h− Π3





1

aF

0
∫

−∞

T (−s)fF (s) ds− 1

aP

∞
∫

0

T (s)fP (s) ds



 (3.16)

contains the data fP , fF , g and h. Now, we want to verify that g belongs to Y T
2 (E) := {g ∈

Y T
2 (RN ) : zT·g = 0} as well. We immediately detect that each term of g lies in E due to the

projections Πi, i = 1, 2, 3. Concerning regularity we point out that the first two terms belong
to Y T

2 (E) in view of the postulated regularity of g and h. To reveal the regularity of both
integrals, we will revert to the results obtained by proving the regularity of (ψP, ψF ). There
we have shown

T (yn+1)A
−1

∞
∫

0

T (s)zT·fP ds ∈ ZT
+,

which implies the assertion by taking into account that Π3η = aP aF

aP+aF (bP−bF )zT·η, for η ∈ R
N .

Finally, since all calculations above were equivalent we may replace the transmission condition
by (3.15).

(d) Now, we turn our attention to problem (3.9). The purpose is to find an equivalent
problem in E such that all terms containing the potentials ψP , ψF are eliminated. The first
step has been performed resulting in a new boundary condition. In order to eliminate top
order terms of ψk arising in partial differential equations, we again employ the projections ΠP

and ΠF . To remove potentials in boundary condition of Dirichlet type, we use the projection
Π0. After taking all actions we achieve a model problem for (wP , wF ).

∂tw
P − ΠPDP∂2

yn+1
wP + ΠPDP (Dn + 1)wP = ΠP fP , (t, y) ∈ J × R

n+1
+ ,

∂tw
F − ΠFDF∂2

yn+1
wF + ΠFDF (Dn + 1)wF = ΠF fF , (t, y) ∈ J × R

n+1
− ,

ΠFDF∂yn+1
wF + ΠŨ−1

F (Dn + 1)1/2wF − ΠPDP∂yn+1
wP = g, (t, y) ∈ J × R

n × {0}
Π0Ũ

−1
P uP − Π0Ũ

−1
F uF = Π0h, (t, y) ∈ J × R

n × {0},
wP (0, y) = uP0 (y), y ∈ R

n+1
+ ,

wF (0, y) = uF0 (y), y ∈ R
n+1
− .

(3.17)

The goal is to show maximal regularity of this problem, i.e. we seek solutions (wP , wF )
in the maximal regularity class ZT+(E) × ZT−(E), where the electroneutrality condition is
incorporated into the space. We have seen in the proof of Lemma 3.1 that ΠkDk is related to

a symmetric matrix, which can be obtained by multiplying ΠkDk from left with Ũ
−1/2
k and

from right with Ũ
1/2
k . This fact will be decisive, now subsequently.
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First we consider (3.17) with ΠP fP = ΠF fF = 0, vanishing initial data and inhomo-
geneities Π0h, g satisfying Π0h(0, y

′) = g(0, y′) = 0. This is the most important step of the
proof.

∂tw
P − ΠPDP∂2

yn+1
wP + ΠPDP (Dn + 1)wP = 0, t > 0, y ∈ R

n+1
+ ,

∂tw
F − ΠFDF∂2

yn+1
wF + ΠFDF (Dn + 1)wF = 0, t > 0, y ∈ R

n+1
− ,

ΠFDF∂yn+1
wF + (Dn+1)1/2ΠŨ−1

F wF− ΠPDP∂yn+1
wF = g, t > 0, y ∈ R

n × {0},
Π0Ũ

−1
P wP − Π0Ũ

−1
F wF = Π0h, t > 0, y ∈ R

n × {0}
wP (0, y) = 0 , y ∈ R

n+1
+ , wF (0, y) = 0 , y ∈ R

n+1
− .

(3.18)

By this we define Bk := ΠkDk(Dn+1) in Lp(J ; Lp(R
n;E)) by pointwise extension. Then Bk is

invertible, sectorial, and belongs to BIP (Lp(J ; Lp(R
n;E))) with power angle θBk

= θΠkDk =
0, see Lemma 3.1. Let G := ∂t with domain 0H

1
p(J ; Lp(R

n;E)); then G is also sectorial,
belongs to BIP (Lp(J ; Lp(R

n;E))) with power angle θG ≤ π/2. By Theorem 2.2, G + Bk
with domain D(G) ∩ D(Bk) is invertible, sectorial, and belongs to BIP (Lp(J ; Lp(R

n;E))),

with power angle θ < π/2. Define Fk := (ΠkDk)
−1/2

√
G+Bk =

√

(ΠkDk)−1G+ (Dn + 1)
with domainD(Fk) = 0H

1/2
p (J ; Lp(R

n;E))∩Lp(J ; H1
p(R

n;E)), by Corollary 2.1, then solutions
of (3.18) take the form

wP (t, y) = e−FP yn+1cP , wF (t, y) = e+FF yn+1cF .

Using both boundary conditions to determine cP and cF , we get a linear system of equations

FPΠPDP cP + FFΠFDF cF + (Dn + 1)1/2ΠŨ−1
F cF =g ,

Π0Ũ
−1
P cP − Π0Ũ

−1
F cF =Π0h .

From the second equation we want to derive a new equation. By using Π0 = I − z⊗z
|z|2

and

the fact that ŨP z ∈ R
N lies in ker (ΠPDP ), thus ΠPDP ŨP z = 0, we obtain an equivalent

formulation of the second equation.

ΠPDP cP = ΠPDP ŨP Ũ
−1
F cF + ΠPDP ŨPΠ0h.

Substituting ΠPDP cP in the first equation yields





∑

k=P,F

FkΠ
kDkŨk + (Dn + 1)1/2Π



 Ũ−1
F cF = g(t) − FPΠPDP Ũ−1

P Π0h(t). (3.19)

Looking at the right hand side we realise that this equation has to be considered in Y2(E).
In fact, the matrix ΠPDP Ũ−1

1 leaves E invariant and does not change the regularity, whereas
FP maps DFP

(2 − 1/p, p) = Y1 to DFP
(1 − 1/p, p) = Y2. Consequently, we have g −

FPΠPDP Ũ−1
P Π0h ∈ Y2 due to the regularity assumptions of the data g and Π0h.

Now, we consider the operator L defined by

L(G,Dn) :=
∑

k=P,F

Fk(G,Dn)Π
kDkŨk + (Dn + 1)1/2Π,
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which coincides exactly with the operator we find in the brackets of equation (3.19). We will
see that L satisfies a lower estimate. For this purpose we look at the symbol l(λ, ξ) of L.
Taking the n-dimensional Fourier transform in y′ and the Laplace transform in t we then
obtain

l(λ, ξ) =
∑

k=P,F

(

λ+ (ΠkDk)(|ξ|2 + 1)
)1/2

(ΠkDk)1/2Ũk + (|ξ|2 + 1)1/2Π . (3.20)

We perceive that l(λ, ξ) belongs to B(Ũ−1
F E,E) due to the projections Π and Πk. To achieve

a formulation in which domain and range of l(λ, ξ) are equal, we multiply (3.19) with Ũ
−1/2
F

from left and consider Ũ
−1/2
F l(λ, ξ)Ũ

−1/2
F which now belongs to B(Ẽ), with Ẽ = Ũ

−1/2
F E.

Thus, let η ∈ Ẽ be given with ‖η‖ = 1. Having in mind the fact that Π is symmetric and
nonnegative, we may proceed as follows

‖Ũ−1/2

F l(λ, ξ)Ũ−1/2

F η‖Ẽ ≥Re
〈

η, Ũ−1/2

F l(λ, ξ)Ũ−1/2

F η
〉

Ẽ

=
∑

k=P,F

Re

〈

η, Ũ−1/2

F

(

λ+ (|ξ|2+ 1)(ΠkDk)
)1/2

(ΠkDk)1/2ŨkŨ
−1/2

F η

〉

Ẽ

+Re
〈

η, Ũ
−1/2
F (|ξ| + 1)1/2ΠŨ−1/2

F η
〉

Ẽ

≥
∑

k=P,F

Re

〈

η, Ũ−1/2

F

(

λ+ (|ξ|2+ 1)(ΠkDk)
)1/2

(ΠkDk)1/2ŨkŨ
−1/2

F η

〉

Ẽ

.

In the next step we want to show that both summands are bounded below in Ẽ. For this
purpose we rewrite as

(

λ+ (|ξ|2 + 1)(ΠkDk)
)1/2

(ΠkDk)
1/2Ũk = Ũ

1/2
k

(

Ũ
−1/2
k

(

λ+ (|ξ|2 + 1)(ΠkDk)
)1/2

Ũ
1/2
k

Ũ
−1/2
k (ΠkDk)1/2Ũ

1/2
k

)

Ũ
1/2
k .

After defining Sk := Ũ
−1/2
k (ΠkDk)Ũ

1/2
k and keeping in mind that Sk is selfadjoint, positive

definite on Ẽ by Lemma 3.1, we obtain by using the spectral mapping theorem for normal
operators

∑

k=P,F

Re
〈

η, Ũ
−1/2
F Ũ

1/2
k (λ+ (|ξ|2 + 1)Sk)

1/2S
1/2
k Ũ

1/2
k Ũ

−1/2
F η

〉

Ẽ

≥
∑

k=P,F

min
sk∈σ(Sk)

Re (λ+ (|ξ|2 + 1)sk)
1/2(sk)

1/2‖Ũ−1/2
F Ũ

1/2
k η‖2

Ẽ

≥ c
∑

k=P,F

min
sk∈σ(Sk)

Re (λ+ (|ξ|2 + 1)sk)
1/2(sk)

1/2 > 0.

46



All in all we then get

‖Ũ−1/2

F l(λ, ξ)Ũ−1/2

F ‖B(Ẽ) ≥ c
∑

k=P,F

min
sk∈σ(Sk)

Re (λ+ (|ξ|2 + 1)sk)
1/2(sk)

1/2

≥ c
∑

k=P,F

min
sk∈σ(Sk)

|sk|1/2 cos
(

π
4 +

θSk
2

)

|λ+ (|ξ|2 + 1)sk|1/2

≥ c
∑

k=P,F

min
sk∈σ(Sk)

|sk|1/2 cos
(

π
4 +

θSk
2

)

c(θλ, θsk
)(|λ| + (|ξ|2+ 1)|sk|)1/2

≥ Cl(|λ| + |ξ|2 + 1)1/2,

(3.21)

for θλ + θsk
< π. Note that Sk has only positive eigenvalues which implies θsk

= 0. By

considering the new symbol (λ+ |ξ|2 + 1)−1/2Ũ
−1/2
F l(λ, ξ)Ũ

−1/2
F we arrive at

‖(λ+ |ξ|2 + 1)−1/2Ũ
−1/2
F l(λ, ξ)Ũ

−1/2
F ‖B(Ẽ) ≥ Cl

(|λ| + |ξ|2 + 1)1/2

|λ+ |ξ|2 + 1|1/2
≥ Cl,

for Reλ ≥ 0. This inequality implies that the set {(λ+|·|2+1)1/2[Ũ−1/2

F l(λ, ·)Ũ−1/2

F ]−1}λ∈C+
⊂

H∞(Σθ) is uniformly bounded, for some θ > φR∞
Dn

= 0, i.e. we have

‖(λ+ |ξ|2 + 1)1/2[Ũ−1/2

F l(λ, ξ)Ũ−1/2

F ]−1‖B(Ẽ) ≤ C−1
l , (λ, ξ) ∈ C+ × Σθ . (3.22)

We are now going to show that the operator (G + Dn + 1)1/2[Ũ−1/2

F L(G,Dn)Ũ
−1/2

F ]−1 is
bounded. Employing Proposition 2.4 for (Dn+1) ∈ RH∞(Lp(R

n;E)) provides R-boundedness
of {(iρ+Dn + 1)1/2[Ũ−1/2

F l(iρ,Dn)Ũ
−1/2

F ]−1 : ρ ∈ R+}. We put X0 := Lp(R+; Lp(R
n; Ẽ)) and

define the operator-valued symbol

M(ρ) := (iρ+Dn + 1)1/2l−1

F (iρ,Dn), ρ ∈ R ,

with l−1

F (iρ,Dn) := [Ũ−1/2

F l(iρ,Dn)Ũ
−1/2

F ]−1. To establish that

(G+Dn + 1)1/2[Ũ−1/2

F L(G,Dn)Ũ
−1/2

F ]−1 ∈ B(X0)

we will employ the operator-valued version of the Mikhlin Fourier multiplier Theorem 2.3 to
the symbol M(ρ). Hence, we have to show that the sets M := {M(ρ) : ρ ∈ R\{0}} and
M′ := {ρM ′(ρ) : ρ ∈ R\{0}} are R-bounded. By the remarks above we have seen that the
first of these sets is R-bounded. To check the second condition we have to compute ρM ′(ρ).
By decomposing and factorising, with a view to using R-boundedness of M, we get

ρM ′(ρ) =
1

2
iρ

[

d

d(iρ)
(iρ+Dn + 1)1/2

]

l−1
F (iρ,Dn) − iρ(iρ+Dn + 1)1/2 d

diρ
l−1
F (iρ,Dn)

=
1

2
(iρ)(iρ+Dn + 1)−1(iρ+Dn + 1)1/2l−1

F (iρ,Dn)

− iρ(iρ+Dn + 1)1/2l−1
F (iρ,Dn)

d lF (iρ,Dn)

d(iρ)
l−1
F (iρ,Dn)

=
1

2
(iρ)(iρ+Dn + 1)−1M(ρ) −M(ρ)(iρ)1/2

d lF (iρ,Dn)

d(iρ)
(iρ)1/2l−1

F (iρ,Dn).
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To conclude that M′ is R-bounded, we still have to prove this property for (iρ)1/2l−1
F (iρ,Dn)

and (iρ)1/2 d
d(iρ) lF (iρ,Dn) in order to be able to employ Lemma 2.3. The R-boundedness of

the vector-valued symbol (iρ)1/2l−1
F (iρ,Dn) follows from the lower estimate of lF (λ, ξ).

‖(λ)−1/2lF (λ, ξ)‖B(Ẽ) ≥ Cl
(|λ| + |ξ|2 + 1)1/2

|λ|1/2
≥ Cl, , (λ, ξ) ∈ C+ × Σθ

To treat (iρ)1/2 d
d(iρ) lF (iρ,Dn) we again look at the symbol.

d

dλ
lF (λ, ξ) =

∑

k=P,F

Ũ−1/2

F

(

d

dλ
(λ+ (|ξ|2 + 1)(ΠkDk))1/2

)

(ΠkDk)1/2ŨkŨ
−1/2

F

First we set H(λ) := (λ+ (|ξ|2 + 1)(ΠkDk))1/2. By using the identity

− d

dλ
H(λ) = H(λ)

[

d

dλ
H−1(λ)

]

H(λ)

it remains to compute d
dλH

−1(λ). Since differentiation is a local property we consider a
neighbourhood of λ ∈ Σπ/2. Consequently, the spectrum of σ(λ + (|ξ|2 + 1)(ΠkDk)) is a
compact subset of Σφ, 0 < φ < π/2, and there exists a simple closed path Γ in Σφ surrounding
σ(λ+ (|ξ|2 + 1)(ΠkDk)) counterclockwise. Then, by the Functional calculus we have

d

dλ
H−1(λ) =

d

dλ

1

2πi

∫

Γ

µ−1/2(µ+ λ+ (|ξ|2 + 1)(ΠkDk))−1dµ

=
d

dλ

1

2πi

∫

Γλ

(µ− λ)−1/2(µ+ (|ξ|2 + 1)(ΠkDk))−1dµ,

where Γλ denotes the transformed path caused by changing variables. Using Cauchy’s the-
orem we deform the integration path Γλ into Γ0 in Σφ not depending on λ. Differentiating
under the integral sign yields

d

dλ
H−1(λ) =

1

2

1

2πi

∫

Γλ

(µ− λ)−3/2(µ+ (|ξ|2 + 1)(ΠkDk))−1dµ

=
1

2
(λ+ (|ξ|2 + 1)(ΠkDk))−3/2,

which is justified by boundedness of the integrand. This implies

− d

dλ
H(λ) = H(λ)

[

d

dλ
H−1(λ)

]

H(λ) =
1

2
(λ+ (|ξ|2 + 1)(ΠkDk))−1/2,

and thus we have shown

d

dλ
lF (λ, ξ) =

1

2

∑

k=P,F

Ũ−1/2

F

(

λ+ (|ξ|2 + 1)(ΠkDk)
)−1/2

(ΠkDk)1/2ŨkŨ
−1/2

F

=
1

2

∑

k=P,F

Ũ−1/2

F (ΠkDk)1/2Ũk

[

(λ+ (|ξ|2+1)(ΠkDk))1/2(ΠkDk)1/2Ũk

]−1

· (ΠkDk)1/2ŨkŨ
−1/2

F

=
1

2

∑

k=P,F

Ũ−1/2

F Ũ 1/2

k S1/2

k

[

(λ+ (|ξ|2+1)Sk)
1/2S1/2

k

]−1
S1/2

k Ũ 1/2

k Ũ−1/2

F .
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Observe that each summand belongs to B(Ẽ) and satisfies an estimate of the form (3.21), i.e.
the operator d

dλ lF (λ,Dn) behaves as l−1
F (iρ,Dn). Consequently the set

{

(iρ)1/2
d

d(iρ)
lF (iρ,Dn) : ρ ∈ R\{0}

}

is R-bounded as well. After employing Lemma (2.3) to M′ we arrive at

R(M′) ≤ 1

2
R(D)R(M) + R(M)R

(

{(iρ)1/2 d

d(iρ)
lF (iρ,Dn) : ρ ∈ R\{0}}

)

· R
(

{(iρ)1/2l−1
F (iρ,Dn) : ρ ∈ R\{0}}

)

,

with D := {iρ(iρ+Dn + 1)−1 : ρ ∈ R\{0}}. On the whole we have proved

(G+Dn + 1)1/2[Ũ−1/2

F L(G,Dn)Ũ
−1/2

F ]−1 ∈ B(X0). (3.23)

If we define the operator F =
√
G+Dn + 1 with natural domain D(F) = D(G1/2)∩D(D1/2

n )
then the operators F and L−1

F := [Ũ−1/2

F L(G,Dn)Ũ
−1/2

F ]−1 commute and (3.23) implies L−1
F ∈

B(D(F ; Ẽ), D(F2; Ẽ)). Here, D(F ; Ẽ) denotes the space of all Ẽ-valued functions which
belong to D(F). After using real interpolation we get

L := Ũ 1/2

F L−1
F Ũ−1/2

F ∈ B(DF (1 − 1/p, p), DF (2 − 1/p, p)) = B(Y1(E), Y2(E)). (3.24)

Turning to equation 3.19 and using the above results yields

cF = L
(

g(t) − FPΠPDP Ũ−1
P Π0h(t)

)

,

this means that the unknown functions cP and cF are determined uniquely.
(e) Now we turn to complete problem, i.e. we consider non-vanishing initial data and

inhomogeneities enjoying the compatibility conditions. If we set

T k(t) := e
−ΠkDk(−∂2

yn+1
+Dn+1)t

, Sk(t) := e−ΠkDk(Dn+1) t
2 , t ≥ 0, for k = P, F ,

ΞP (yn+1) := e
−(ΠPDP )−1/2(Dn+1)1/2 yn+1√

2 , ΥP (yn+1) := e−FP yn+1 , yn+1 ≥ 0 ,

ΞF (yn+1) := e
+(ΠFDF )−1/2(Dn+1)1/2 yn+1√

2 , ΥF (yn+1) := e+FF yn+1 , yn+1 ≤ 0 ,

T (t) := diag[TP (t), TF (t)], S(t) := diag[SP (t), SF (t)], t ≥ 0 ,

Ξ(yn+1) := diag[ΞP (yn+1),Ξ
F (yn+1)], Υ(yn+1) := diag[ΥP (yn+1),Υ

F (yn+1)] ,

then the solution can be written in the form

(wP(t, y), wF(t, y)) = T (t)(αP(y), αF(y)) + [T ∗ (ΠPfP,ΠFfF )](t, y)

+ S(t)Ξ(yn+1)(u
P
0 (y′, 0), uF0 (y′0))

+ Υ(yn+1)(β
P(t, y′), βF(t, y′)) + Υ(yn+1)(γ

P (t, y′), γF (t, y′)).

(3.25)

If we restrict the above function to J = [0, T ] and take into account that the convolution
operator and L are causal, we perceive that the so-constructed function solves the original
problem (3.17). For a better understanding, we now shall explain all terms contained in the
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formula (3.25). The first and second function of the above decomposition solve the parabolic
problem

∂tw
P − ΠPDP∂2

yn+1
wP + ΠPDP (Dn + 1)wP = ΠP fP , t > 0, y ∈ R

n+1
+ ,

∂tw
F − ΠFDF∂2

yn+1
wF + ΠFDF (Dn + 1)wF = ΠP fP , t > 0, y ∈ R

n+1
− ,

wP (t, y′, 0) = wF (t, y′, 0) = 0, t > 0, y′ ∈ R
n,

wP (0, y) = αP (y) , y ∈ R
n+1
+ , wF (0, y) = αF (y) , y ∈ R

n+1
− ,

with the initial data

αk(y) = uk0(y) − Ξk(y)uk0(y
′, 0) , k = P, F . (3.26)

The third function is a special solution which satisfies ∂tv
k−ΠkDk∂2

yn+1
vk+ΠkDk(Dn+1)vk =

0 and certain boundary conditions which can be computed explicitly. The second last function
solves (3.18) with the inhomogeneity Π0h̃ in the boundary condition of Dirichlet type and 0
in the transmission condition, where we have set

Π0h̃(t, y
′) := Π0

[

h(t, y′) − Ũ−1
P SP (t)uP0 (y′, 0) + Ũ−1

F SF (t)uF0 (y′, 0)
]

.

At first glance, we realise that Π0h̃(0, y
′) = 0 in view of compatibility condition 6. The

functions βP (t, y′) and βF (t, y′) are given by

(ΠPDP )βP (t, y′) = (ΠPDP )ŨP Ũ
−1
F βF (t, y′) + (ΠPDP )ŨPΠ0h̃(t, y

′),

βF (t, y′) = − LFP (ΠPDP )Ũ−1
P Π0h̃(t, y

′).

Note that ΠPDP is invertible in E. Last but not least Υ(yn+1)(γ
P (t, y′), γF (t, y′)) solves

(3.18) with the inhomogeneity

g0(t, y
′) := g(t, y′) − (Dn + 1)1/2

[

ΠŨ−1
F SF (t)uF0 (y′, 0) +

1√
2
(ΠPDP )SP (t)uP0 (y′, 0)+

1√
2
(ΠFDF )SF (t)uF0 (y′, 0)

]

+ ∂yn+1
[TP ∗ (ΠPDP )fP + TPαP ](t, y′, 0)

− ∂yn+1
[TF ∗ (ΠFDF )fF + TFαF ](t, y′, 0)

in the transmission condition and 0 in the jump condition. It is easy to check that g0(0, y
′) = 0

is caused by the compatibility condition 7. The functions γP (t, y′) and γF (t, y′) are given by

(ΠPDP )γP (t, y′) = (ΠPDP )ŨP Ũ
−1
F γF (t, y′), γF (t, y′) = Lg0(t, y′).

Finally, formula (3.25) is written for the case p > 3, in which the compatibility conditions are
involved. In case 3/2 < p < 3 simply set g0(t, y

′) = g(t, y′) and for p < 3/2 set uk0(y
′, 0) = 0.

Hence, it remains to verify the regularity of each function. According to Theorem 2.4 the
first and second term of formula (3.25) belong to ZTP (E) × ZTF (E). The last both functions
possess this regularity as well in view of the assumptions for data, the mapping property L ∈
B(Y T

2 (E), Y T
1 (E)) and Theorem 2.7. We now come to the third function (vP (t, y), vF (t, y)) :=
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(SP (t)ΞP (yn+1)u
P
0 (y′, 0), SF (t)ΞF (yn+1)u

F
0 (y′, 0)). Observe that each component satisfies the

parabolic problem

∂tv
k− ΠkDk∂2

yn+1
vk+ ΠkDk(Dn+1)vk = 0, t > 0, y ∈ R

n+1
+ , if k = P, y ∈ R

n+1
− , if k = F,

vk(t, y′, 0) = Sk(t)uk0(y
′, 0), t > 0, y′ ∈ R

n

vk(0, y) = Ξk(yn+1)u
k
0(y

′, 0), y′ ∈ R
n, yn+1 ≥ 0 if k = P,

yn+1 ≤ 0 if k = F.

We know that uk0(y) ∈ DDn(1 − 1/p, p) due to condition four and consequently after taking
trace in yn+1 we have uk0(y

′, 0) ∈ DDn(1 − 3/2p, p). As in the proof of the previous theorem
we are able to show Sk(t)uk0(y

′, 0) ∈ DF (2 − 1/p, p) and Ξk(yn+1)u
k
0(y

′, 0) ∈ DBk
(1 − 1/p, p),

which provides vk ∈ ZTk (E).
Finally, the solution formulae (3.25) and (3.11) provide a solution operator S. Necessity

and sufficiency of the data entail that S is an continuous one-to-one mapping from

X T
+ ×X T

− × { (g, h, uP0 , u
F
0 ) ∈ YT2 × Y T

1 × V+ × V− : (g, h, uP0 , u
F
0 ) enjoy the compatibility

conditions 5. and 6. stated in Theorem 3.9}

to ZT+ × ZT− ×ZT
+,−. Thus the proof is complete.

�

3.4 The linear problem in domain

Before we are going to approach the linear problem on the domain, we make available the
method of localisation.

3.4.1 Localisation Techniques for Bounded Domains

In the following, let Ω ⊂ R
n+1 be an open connected domain with compact C2-boundary

∂Ω. Now we want to comment on variable transformations. Let xj ∈ ∂Ω and consider
local coordinates corresponding to xj (which) are defined as coordinates obtained by rotation
and shifting, which moves xj to the origin such that the exterior normal at xj has the
direction of the negative xn+1-axis. By definition of a C2-boundary an open neighbourhood
Uj = U jn × U j1 ⊂ Rn+1 exists containing xj with U jn ⊂ R

n and U j1 ⊂ R
1 open and a function

hj ∈ C2(U
j
n; R) satisfying

Ω ∩ Uj = {x = (x′, xn+1) ∈ Uj : xn+1 > hj(x
′)} ,

∂Ω ∩ Uj = {x ∈ Uj : xn+1 = hj(x
′)} . (3.27)

Setting

gj(x) :=

(

x′

xn+1 − hj(x
′)

)

: Uj ∩ Ω → R
n+1
+ (3.28)

we obtain an injection gj ∈ C2(U j ; R
n+1) where relations (3.27) can be written as Ω ∩ Uj =

{x ∈ Uj : gn+1(x) > 0} and ∂Ω ∩ Uj = {x ∈ Uj : gn+1(x) = 0}. By compactness of ∂Ω, all
derivatives of gj and g−1

j , defined on Ũj := gj(Uj), up to order 2 are bounded by a constant

independent of xj . Now we need an extension of gj . For this we extend hj ∈ C2(U
j
n; R)

51



to a function h̃j ∈ C2(Rn; R) with compact support and set, further on using coordinates
corresponding to xj ,

Ωxj :=
{

x ∈ R
n+1 : xn+1 > h̃j(x

′)
}

⊂ R
n+1
+ .

Defining g̃j again by (3.28) with h̃j instead of hj and we obtain a C2-diffeomorphism g̃j :
Ωxj → R

n+1
+ with g̃j|Uj

= gj . It is easily seen that Dg̃j(xj) = In+1, due to the special choice

of local coordinates corresponding xj which implies ∇x′ h̃j(x
′
j) = 0.

For a function u : Ω ∩ Uj → E consider the push-forward operator defined on Ũj ∩ R
n+1
+

by v(y) := (Gju)(y) = u(g−1
j (y)). If u ∈ H2

p(Ω ∩ Uj ;E) then the classical formula for the
derivatives of v holds,

(Dαv)(y) =
∑

1≤|γ|≤|α|

qαγ(y)(D
γu)(g−1

j (y)) for almost all y ∈ Uj ∩ R
n+1
+ .

Here qαγ are homogeneous polynomials of degree |γ| in derivatives of g−1
j of order between 1

and |α|−|γ|+1. Owing to boundedness of derivatives for gj and g−1
j we have that Gk induces

isomorphisms between Hk
p(Ω ∩ Uj ;E) and Hk

p(R
n+1
+ ∩ Ũj ;E) for k = 0, 1, 2 and p ∈ [1,∞].

The same holds for the linear transformation given by g̃k which induces isomorphisms G̃j :
Hk
p(Ωxj ;E) → Hk

p(R
n+1
+ ;E).

Now let us consider an open covering of the form

∂Ω ⊂
⋃

xj∈∂Ω

g−1
j

(

Brj (yj)
)

with yj = gj(xj). By compactness we can choose a finite sub-covering

∂Ω ⊂
M ′
⋃

j=1

Uj

where we have set Uj := g−1
j

(

Brj (yj)
)

for j = 1, . . . ,M ′. We cover the compact set

Ω\⋃M ′
j=1 Uj by finitely many Uj = Brj (xj), j = M ′ + 1, . . . ,M with xj ∈ Ω. We get a

finite covering for our domain Ω of the form

Ω ⊂
M ′
⋃

j=1

g−1
j

(

Brj (yj)
)

∪
M
⋃

j=M ′+1

Brj (xj) .

Now we consider a general partial differential operator A(x,D) :=
∑

|α|≤2 aα(x)Dα act-

ing on Ω which is transformed into operator Agj (y,D) = GjA(x,D)G−1
j for j = 1, . . . ,M ′.

In the same way we can define transformed boundary differential operators Bgj

l (y,D) =
GjBl(x,D)G−1

j for j = 1, . . . ,M ′, where Bl(x,D) =
∑

|β|≤ml
bβl(x)D

β, l = 1, . . . ,m. Obvi-

ously Agj and Bgj

l are partial differential operators of order 2 and mj , respectively and act

on functions defined on Ũj ∩ R
n+1
+ . By splitting these operators in main part and terms of

lower derivatives we may write

Agj = Aj + Alow =
∑

|α|=2

ãα(y)Dα +
∑

|α|<2

ãα(y)Dα
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and
Bgj

l = Bjl + Blowl =
∑

|β|=ml

b̃βl(y)D
β +

∑

|β|<ml

b̃βl(y)D
β .

We can extend the main parts Aj and Bjl to the half space R
n+1
+ by extension of the co-

efficients. In fact, for the coefficients of Aj we can use e.g. the reflection method, i.e., we
define

ajα(y) :=

{

ãα(y) , y ∈ Brj (yj) ∩ R
n+1
+

ãα(yj + r2j
y−yj

|y−yj |2
) , y ∈ R

n+1
+ \Brj (yj)

For the coefficients of the boundary operators Bjl we fix χ ∈ C∞
0 (Rn+1) with χ ≡ 1 for |x| ≤ 1

and χ(x) ≡ 0 for |x| ≥ 2 and set for j = 1, . . . ,M ′, l = 1, . . . ,m and all |β| = ml

bjβl(y) := b̃βl

(

yj + χ

(

y − yj
rj

)

· (y − yj)

)

, y ∈ R
n+1
+ .

For j = M ′ + 1, . . . ,M boundary conditions do not appear, and we only need an extension
to the whole space R

n+1 for the main part of A. Hence we define coefficients ajα of local
operators Aj again by reflection, in fact

ajα(x) =

{

aα(x) x ∈ Brj (xj) ,

aα

(

xj + rj
x−xj

|x−xj |2

)

, x ∈ R
n+1\Brj (xj)

. (3.29)

By the smoothness properties of the functions aα(x), |α| = 2, there exists rj(ε) > 0 such that

∑

|α|=2

|ajα(y) − ajα(yj)| < ε , y ∈ R
n+1
+ , j = 1, . . . ,M ′

∑

|α|=2

|ajα(x) − ajα(xj)| < ε , x ∈ R
n+1 , j = M ′ + 1, . . . ,M

∑

|β|=mj

|bjβl(y) − bjβj(yj)| < ε , y ∈ R
n+1
+ , j = 1, . . . ,M ′

(3.30)

for any prescribed ε > 0.

3.4.2 Existence and Uniqueness

The purpose of this section is to establish maximal regularity for the linear problem in
domain Ω = ΩP ∪ ΩF . By using operators Aki(D) and Bki(D) defined in (1.28), (1.29) the
linear problem reads as follows

∂tw
P + AP1(D)wP + AP2(D)ψP = fP (t, x), (t, x) ∈ J × ΩP ,

∂tw
F + AF1(D)wF + AF2(D)ψF = fF (t, x), (t, x) ∈ J × ΩF ,

BP1(D)wP + BP2(D)ψP = BF1(D)wF + BF2(D)ψF + g(t, x), (t, x) ∈ J × ΓP ,

Ũ−1
P (t, x)wP − Ũ−1

F (t, x)wF + λ0z(ψ
P − ψF ) = hP (t, x), (t, x) ∈ J × ΓP ,

wF = hF (t, x), ψF = 0, (t, x) ∈ J × Γ,

wP (0, x) = uP0 (x), x ∈ ΩP , wF (0, x) = uF0 (x), x ∈ ΩF ,

(3.31)
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d

dt
wb +

1

τ
wb =

1

τ
uf + f b(t) − ab

∫

Γ

BF1(D)wF + BF2(D)ψFdσ, t ∈ J

wb(0) = ub0,

(3.32)

and

zT·wP = 0, (t, x) ∈ J × ΩP , zT·wF = 0, (t, x) ∈ J × ΩF , zT·wb = 0, t ∈ J. (3.33)

Before we turn to existence and uniqueness of the whole problem we want to study the
ode-equation (3.32), since the concentrations (wP, wF ) and the electrical potentials (ψP, ψF )
are not determined by wb. Therefore, we are able to compute wb with aid of these functions.
Assume that (wP, wF ) and (ψP, ψF ) are known then the function wb is given uniquely by the
following solution formula

wb(t) = e−
1
τ
tub0 − ab

t
∫

0

e−
1
τ
(t−s)

∫

Γ

BF1(s, x,D)wF (s, x) + BF2(s, x,D)ψF (s, x) dσ ds

+

t
∫

0

e−
1
τ
(t−s)

[

1

τ
uf (s) + f b(s)

]

ds. (3.34)

Lemma 3.2 Let (n+ 1) + 2 < p < ∞ and uf ∈ Lp(J ;E). Suppose that (wF, ψF ) belongs to
ZF ×ZF . Then the problem (3.32) with the condition zT·wb(t) = 0 has precisely one solution
wb ∈ Zb = H1

p(J ; RN ) if and only if the data f b, ub0 satisfy the following conditions

1. f b ∈ Lp(J ; RN ) and f b(t) − ab
∫

Γ

BF2(D)ψF + BF1(D)wF dσ ∈ E;

2. ub0 ∈ E.

Proof. Suppose that wb ∈ Zb is given. Let us consider the boundary integral over Γ
appearing in the right hand side of (3.32). The integrand belongs to Y2,Γ ↪→ Lp(J ; C(Γ))
for p > n, and thus the integral exists a.e. Furthermore, the temporal regularity does not
change, resulting in

ab
∫

Γ

BF1(t, x,D)wF + BF2(t, x,D)ψFdσ ∈ Lp(J ; RN ) .

Consequently, we see f b ∈ Lp(J ; RN ). Applying zT· to (3.32) we get

zT·f b − ab
∫

Γ
zT·BF1(t, x,D)wF + zT·BF2(t, x,D)ψFdσ = 0.

Due to the regularity of wb and electroneutrality for all t ∈ [0, T ], we may take trace and
obtain wb(0) ∈ E. Conversely, let ub0 ∈ E and f b ∈ Lp(J ; RN ) be given. Then, the unique
solution of (3.32) is given by formula (3.34), and here one can verify that wb belongs to Zb
with zT·wb(t) = 0.

�

Now, we shall prove the main result which reads as follows.
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Theorem 3.4 Let ΩP , ΩF be open bounded domains in R
n+1 with C2- boundary, ΓP := ∂ΩP ,

∂ΩF = ΓP ∪ Γ and dist (ΓP ,Γ) > 0. Let J = [0, T ] and 2 + (n+ 1) < p <∞. Suppose that the
assumptions (1.23)-(1.25) are satisfied. Then problem (1.39-(1.41) has exactly one solution

(wP, wF, wb) ∈ ZTP × ZTF × ZTb ,

(ψP, ψF ) ∈ ZT := {(φP, φF ) ∈ ZT
P ×ZT

F : γ|ΓP
(φP − φF ) ∈ Y T

1,ΓP
}

if and only if the data fP , fF , g, hP , hF , f b, uP0 , uF0 , ub0 satisfy the following conditions

1. fP ∈ X T
P := {f ∈ Lp(J ; Lp(ΩP ; RN )) : zT·f ∈ H1/2

p (J ; H−1
p (ΩP ))};

2. fF ∈ X T
F := {f ∈ Lp(J ; Lp(ΩF ; RN )) : zT·f ∈ H1/2

p (J ; H−1
p (ΩF ))};

3. f b ∈ XT
b := Lp(J ; RN );

4. g ∈ YT2 := {g ∈ Y T
2,ΓP

(RN ) := B1/2−1/2p
pp (J ; Lp(ΓP ; RN )) ∩ Lp(J ; B1−1/p

pp (ΓP ; RN )) :

zT· g ∈ H1/2
p (J ; B−1/p

pp (ΓP ))};
5. hP ∈ Y T

1,ΓP
(RN ) := B1−1/2p

pp (J ; Lp(ΓP ; RN )) ∩ Lp(J ; B2−1/p
pp (ΓP ; RN ));

6. hF ∈ Y T
1,Γ(E) := B1−1/2p

pp (J ; Lp(Γ;E)) ∩ Lp(J ; B2−1/p
pp (Γ;E));

7. uP0 ∈ VP (E+) := B2−2/p
pp (ΩP ;E+), uF0 ∈ VF (E+) := B2−2/p

pp (ΩF ;E+), ub0 ∈ E+, and
uk0 > 0, k = P, F, b;

8. λ0z(ψ
P
0 − ψF0 ) = hP (0) in B2−3/p

pp (ΓP ; RN ) and uF0 = hF (0, x) in B2−3/p
pp (Γ;E+);

9. BP1(0, D)uP0 + BP2(0, u
P
0 , D)ψP0 − BF1(0, D)uF0 − BF2(0, u

F
0 , D)ψF0 = g(0)

in B1−3/p
pp (ΓP ; RN ), where (ψP0 , ψ

F
0 ) is the unique solution of the elliptic problem (3.35)

(see Remark 3.1);

10. fP , fF , g and f b fulfil the compatibility condition
∫

ΩP

zT·fP (t, x) dx+

∫

ΩF

zT·fF (t, x) dx+

∫

ΓP

zT·g(t, x) dσ +
1

ab
zT·f b(t) = 0, t ∈ J .

Moreover, there exists an isomorphism between the space of data including the compatibility
conditions and the regularity class ZTP × ZTF × ZTb ×ZT .

Remark 3.1 1. We want to discuss the compatibility conditions on the boundary ΓP . Tak-
ing trace t = 0 in the boundary conditions on ΓP involves the new functions (ψP0 , ψ

F
0 ) :=

(ψP (0), ψF (0)). In fact, ψk does not make for a known function as in contrast to wk. The
resource is to consider the elliptic problem after taking trace in t = 0, where the function
(ψP (0), ψF (0)) is accounted the weak solution of this problem. Note that this procedure is
justified by the time regularity of the data. The problem reads as follows

∇ · (aP0 ∇ψP (0)) + ∇ · (zT·DP (0)∇uP0 ) = −zT·fP (0), x ∈ ΩP ,

∇ · (aF0 ∇ψF (0)) + ∇ · (zT·DF (0)∇uF0 ) = −zT·fF (0), x ∈ ΩF ,

aP0 ∂νψ
P (0) + zT·DP (0)∂νu

P
0 = aF0 ∂νψ

F (0) + zT·DF (0)∂νu
F
0 + zT·g(0), x ∈ ΓP ,

ψP (0)− ψF (0) =
1

λ0|z|2
zT·hP (0), x ∈ ΓP ,

ψF (0) = 0, x ∈ J × Γ,

(3.35)
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with ak0 = zT ·Mk(0, x)uk0(x) ∈ C1(Ωk) due to the embedding B2−2/p
pp (Ωk) ↪→ C1(Ωk) for

p > (n+ 1) + 2.
Furthermore, for solving this problem we have to ensure that ak0 is positive which is

accomplished by the condition uk0(x) > 0. This elliptic problem is solved implicitly during
the proof, cp. to the proof of Theorem 3.3.

2. Note that the compatibility condition 10. is only needed to ensure that zT· wb = 0 for
t ∈ J , cf. Lemma 3.2 and 1.1.

Proof. Step 1 - the necessary part. Let (w,ψ) := (wP, wF, ψP, ψF ) be a strong solution of
(3.31)-(3.33) with the regularity stated above. Then it follows f k = ∂tw

k+Ak1w
k+Ak2ψ

k ∈
Lp(J ; Lp(Ωk; R

N )) for k = P, F . To show that f b belongs to Lp(J ; RN ) we refer to the proof
of Lemma 3.2. Furthermore, we have to verify that zT·fk belongs to H1/2

p (J ; H−1
p (Ωk)). In

view of the divergence form we obtain by using duality

‖zT·fk‖
H

1/2
p (J ;H−1

p (Ωk))
≤ ‖zT·Dk∇wk‖

H
1/2
p (J ;Lp(Ωk;Rn+1))

+ ‖ak∇ψk‖
H

1/2
p (J ;Lp(Ωk;Rn+1))

≤C
(

‖wk‖ZT
k

+ ‖ψk‖ZT
k

)

.

Thereby, have in mind the regularity assumption (1.23) for Dk and ũk ∈ Zk(E+), which
imply ak ∈ C1/2(J ; C(Ωk)).

Now, we prove the fourth condition. By Proposition 2.3 we know that Bk1(D)wk ∈ Y T
2,ΓP

and Bk2(D)ψk ∈ Y T
2,ΓP

which entails g ∈ Y2,ΓP
. To prove zT· g ∈ H1/2

p (J ; B−1/p
pp (ΓP )) we have

to study the weak formulation of the elliptic boundary value problem obtained by employing
zT· to (3.31). The space B−1/p

pp (ΓP ) is interpreted as the dual space of B1−1/p′

p′p′ (ΓP ) where the
measure on ΓP is the usual surface measure induced by the Lebesgue measure in R

n, see
Section 2.1. Further on, we set fk = 0. Before studying the weak formulation, let us make
some preparations. Given p ∈ (1,∞), we denote p′ the dual exponent, that is p′ := p/(p− 1)
and by 〈, 〉Ω the duality pairing

〈·, ·〉Ω : Lp′(Ω; Rl) × Lp(Ω; Rl) → R , (v′, v) →
∫

Ω

v′ · v dx ,

where it will always be clear from the context which l ∈ N\{0} has to be chosen. As usual, we
get the weak formulation by multiplying the differential equation in Ωk with a test function

ṽ ∈
◦
H1
p′(Ω), i.e. ṽ ∈ H1

p′(Ω) with compact support in Ω. Integrating by parts, and making
use of ṽ = 0 on Γ := ∂Ω we obtain

∑

k=P,F

∫

Ωk

∇ṽ(x) · [ak(t, x)∇ψk(t, x)dx+ zT·Dk(t, x)∇wk(t, x)] dx =

∫

ΓP

ṽ(x)zT·g(t, x) dσ .

From the above identity we derive
∫

ΓP

v(x)[zT·g(t+ h, x) − zT·g(t, x)] dσ ≤ ‖∇ṽ‖Lp(Ω;Rn+1)

·
∑

k=P,F

{

‖ak(t+ h)∇ψk(t+ h) − ak(t)∇ψk(t)‖Lp(Ωk;Rn+1)+

‖zT·Dk(t+ h)∇wk(t+ h) − zT·Dk(t)∇wk(t)‖Lp(Ωk;Rn+1)

}

,
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with ṽ|ΓP
= v, for all ṽ ∈

◦
H1
p′(Ω) and t+ h, t ∈ J . By taking the infimum and using

inf
{

‖ṽ‖ ◦
H1

p′ (Ω)
: ṽ = v on ΓP

}

≤ C‖v‖
B

1−1/p′
p′p′ (ΓP )

we get

∫

ΓP

v(x) [zT·g(t+ h, x) − zT·g(t, x)] dσ ≤ C‖v‖
B

1−1/p′
p′p′ (ΓP )

·
∑

k=P,F

{

‖ak(t+ h)∇ψk(t+ h) − ak(t)∇ψk(t)‖Lp(Ωk;Rn+1)+

‖zT·Dk(t+ h)∇wk(t+ h) − zT·Dk(t)∇wk(t)‖Lp(Ωk;Rn+1)

}

,

for all v ∈ B1−1/p′

p′p′ (ΓP ). This inequality implies zT ·g(t + h) − zT ·g(t) ∈ B−1/p
pp (ΓP ) owing to

duality. Finally, applying the norm of H1/2
p (J), which incorporates the above differences, and

taking into account the higher regularity of the coefficients ak and Dk we obtain

‖zT·g‖
H

1/2
p (J ;B

−1/p
pp (ΓP ))

≤ C
∑

k=P,F

{

‖ak‖C1/2(J ;C(Ωk))‖ψk‖H
1/2
p (J ;H1

p(Ωk))

+ ‖Dk‖C1/2(J ;C(Ωk;B(RN ,)))‖wk‖H
1/2
p (J ;H1

p(Ωk;RN ))

}

.

The conditions 5. - 7. are consequences of Theorem 2.5, ∇ψk ∈ ZTk,∇, ψP − ψF ∈ Y T
1,ΓP

and the embedding H1
p(J) ↪→ C(J). The compatibility conditions 8. and 9. follow from the

embeddings

Y T
1,ΓP

(RN ) ↪→ C(J ; B2−3/p
pp (ΓP ; RN )), Y T

2,ΓP
(RN ) ↪→ C(J ; B1−3/p

pp (RN )).

Finally, the condition 10. results from the boundary value problem, see proof of the Lemma
1.1.

Step 2 - the sufficiency part. Let the data f k, uk0, for k = P, F, b and g, hP , hF be given.
Assume that we have already determined the functions (wP, wF ) and (ψP, ψF ). Then we may
employ Lemma 3.2 to the ode-equation resulting in wb ∈ ZTb . To get wb ∈ E we have still
to check that f b(t) − ab

∫

Γ BF1(D)wF+BF2(D)ψFdσ lies in E. This can be seen by using
compatibility condition 10. and identity (1.44) derived in the proof of Lemma 1.1.

Now, we will solve the linear problem (3.31) for a small time interval, that means, we
choose an appropriate T such that all arguments work, which use this fact. This can be
always reached by decomposing J into finitely many intervals [ih, (i + 1)h], i = 0, . . . , I,
with h being sufficiently small. Then, we solve (3.31) in each of these intervals, as it is
carried out for the time interval [0, h]. Every solution w[ih,(i+1)h](t, x) belongs to the space
of maximal regularity, since the function w[ih,(i+1)h](ih, x) lies again in the space of initial
data VP (E) × VF (E). Consequently, w belongs to ZP ([0, T ]) × ZF ([0, T ]). The electrical
potentials ψ[ih,(i+1)h](t, x), i = 0, . . . , I belong to Z on this interval and ψ[ih,(i+1)h](ih, x) lies

in B2−2/p
pp (ΩP ) × B2−2/p

pp (ΩF ). This can be seen by the embedding

Zk,∇ = H1/2
p (J ; Lp(Ωk)) ∩ Lp(J ; H1

p(Ωk)) ↪→ C(J ;DDn+1(1/2 − 1/p, p)) = C(J ; B1−2/p
pp (Ωk)) ,
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where Dn+1 denotes the negative Laplacian in Lp(Ωk). Since ∇ψk belongs to Zk,∇ and the
differential operator ∇ is a bounded mapping from B2−2/p

pp (Ωk) into B1−2/p
pp (Ωk), we may deduce

ψk0 ∈ Vk := B2−2/p
pp (Ωk). Consequently, ψ belongs to Z([0, T ]) due to connecting conditions.

(a) Localisation. Now, we will localise the problem as in Section 3.4.1. We choose a
partition of unity ϕj ∈ C∞

0 (Rn+1), j = 1, . . . ,M4, with 0 ≤ ϕj ≤ 1 and suppϕj ⊂ Uj , such
that the domain is covered in the following way

Ω ⊂
M4
⋃

j=1

Uj , ΓP ⊂
M2
⋃

j=M1+1

Uj , Γ ⊂
M4
⋃

j=M3+1

Uj

ΩP\





M2
⋃

j=M1+1

Uj



 ⊂
M1
⋃

j=1

Uj , ΩF\





M2
⋃

j=M1+1

Uj ∪
M4
⋃

j=M3+1

Uj



 ⊂
M3
⋃

j=M2+1

Uj .

Uj are chosen as described in Section 3.4.1. Then (w,ψ) is a solution of (3.31) if and only if
for j = 1, . . . ,M4 they satisfy parabolic equations in domain Ωk

∂t(ϕjw
P ) + ϕjAP1(D)wP + ϕjAP2(D)ψP = ϕjf

P , (t, x) ∈ J × ΩP ∩ Uj , (3.36)

∂t(ϕjw
F ) + ϕjAF1(D)wF + ϕjAF2(D)ψF = ϕjf

F , (t, x) ∈ J × ΩF ∩ Uj , (3.37)

transmission condition on ΓP

ϕjBP1(D)wP+ϕjBP2(D)ψP=ϕjBF1(D)wF+ϕjBF2(D)ψF+ϕjg, (t, x) ∈ J × ΓP ∩ Uj ,
(3.38)

jump condition on ΓP and boundary condition of Dirichlet type on Γ

Ũ−1
P (ϕjw

P ) − Ũ−1
F (ϕjw

F ) + λz
[

ϕjψ
P − ϕjψ

F
]

= ϕjh
P , (t, x) ∈ J × ΓP ∩ Uj , (3.39)

ϕjw
F = ϕjh

F , ϕjψ
F = 0, (t, x) ∈ J × Γ ∩ Uj , (3.40)

and (wP, wF ) satisfy the initial data

ϕjw
P (0, x) = ϕju

P
0 (x), x ∈ ΩP ∩ Uj , ϕjw

F (0, x) = ϕju
F
0 (x), x ∈ ΩF ∩ Uj , (3.41)

and enjoys the electroneutrality condition

zT·ϕjwP (0, x) = 0, x ∈ ΩP ∩ Uj , zT·ϕjwF (0, x) = 0, x ∈ ΩF ∩ Uj . (3.42)

For the case j = 1, . . . ,M1 and j = M2 + 1, . . . ,M3 boundary conditions do not appear, and
we rewrite (3.36), (3.37) by commuting ϕj with differential operators in the form

∂t(ϕjw
k) + Ak1(D)(ϕjw

k) + Ak2(D)(ϕjψ
k) = ϕjf

k + Ckj (w
k, ψk), (t, x) ∈ J × Ωk ∩ Uj ,

ϕjw
k(0, x) = ϕju

k
0(x), x ∈ Ωk ∩ Uj ,

zT·ϕjwk(0, x) = 0, x ∈ Ωk ∩ Uj .
(3.43)

Here one has to set k = P for the case j = 1, . . . ,M1 and k = F for j = M2 + 1, . . . ,M3.
The differential operators Ak1 and Ak2 are not yet split in a main part and lower terms
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Furthermore, with a view to getting the invertibility of −∆ in the full space, we have shifted
this operator by 1. In fact, we set

Ak1(t, x,D)w = −∇ · (Dk∇w) +Dkw

Ak2(t, x,D)ψ = −∇ · (Mkũk ⊗∇ψ) +Mkũkψ

All terms of lower order are combined as

Ckj (t, x, w
k, ψk) := Ckj,1(t, x, w

k) + Ckj,2(t, x, ψ
k)

:= [Ak1(t, x,D), ϕj ]w
k + ϕjD

kwk

+ [Ak2(t, x,D), ϕj ]ψ
k + ϕjM

kũkψk

= ∇ · (Dkwk∇ϕj) +Dk∇wk · ∇ϕj + ϕjD
kwk

+ ∇ · (Mkũkψk∇ϕj) +Mkũk∇ψk · ∇ϕj + ϕjM
kũkψk.

(3.44)

(b) Full space problems. We turn to the localised evolution problem (3.43). By extension
of partial differential operators to the whole space R

n+1 as performed in (3.29), we obtain
local operators Aj

k1(t, x,D), Aj
k2(t, x,D). After putting wkj := ϕjw

k, ψkj := ϕjψ
k and fkj =

ϕjf
k + Ckj (w

k, ψk) we can write

∂tw
k
j + Aj

k1(t, x,D)wkj + Aj
k2(t, x,D)ψkj = fkj , (t, x) ∈ J × R

n+1,

wkj (0, x) = ϕju
k
0(x), zT·wkj = 0 , (t, x) ∈ J × R

n+1 .
(3.45)

By using arguments of perturbation, this problem is solved by the full space problem consid-
ered in Section 3.1. In fact, employing Theorem 3.1 to the perturbed problem of (3.45) leads
to

(wkj , ψ
k
j ) = S(fkj , ϕju

k
0) +Kk

j (w
k
j , ψ

k
j ),

with

Kk
j (w

k
j , ψ

k
j ) := S

(

∇ ·
(

[Dk
j (t, x) −Dk

j (0, xj)]∇wkj
)

+ [Dk
j (t, x) −Dk

j (0, xj)]w
k
j

+ ∇ ·
(

[(Mk
j ũ

k
j )(t, x) − (Mk

j ũ
k
j )(0, xj)]∇ψkj

)

+ [(Mk
j ũ

k
j )(t, x) − (Mk

j ũ
k
j )(0, xj)]ψ

k
j , 0

)

and S ∈ Lis(X T × V (E+), ZT × ZT ). It is easily seen that I −Kk
j ∈ B(0Z

T × 0ZT ). The

task consists in estimating Kk
j to aim at ‖Kk

j ‖ ≤ k < 1. By using maximal regularity of

S it depends on estimating terms of perturbation in X T . The smallness of these terms can
be obtained by continuity assumptions of the coefficients combined with the techniques of
localisation. At first, we consider the perturbation in ψk. In the following, for the sake of
simplicity we suppress the indices k and j, where it is possible. Having in mind the embedding
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ZT ↪→ C(J ; C1(Rn+1)) we obtain

‖∇ · ([(Mũ)(0, xj) − (Mũ)(·, ·)]∇ψ)‖
0XT := ‖∇ · ([(Mũ)(0, xj) − (Mũ)(·, ·)]∇ψ)‖XT +

‖∇ · ([a(0, xj) − a(·, ·)]∇ψ)‖
0H

1/2
p (J ;H−1

p (Rn+1))

≤ C
(

‖(Mũ)(0, xj) − (Mũ)(·, ·)‖C(J ;C(Rn+1;RN ))‖∆ψ‖Lp(J ;Lp(Rn+1))

+ T 1/2‖∇(Mũ)‖C(J ;C(Rn+1;RN×n+1))‖∇ψ‖H
1/2
p (J ;Lp(Rn+1;Rn+1))

)

+ ‖∇ · ([a(0, xj) − a(·, ·)]∇ψ)‖
0H

1/2
p (J ;H−1

p (Rn+1))

By using duality the last norm can be estimated by

‖∇ · ([a(0, xj) − a(·, ·)]∇ψ)‖
0H

1/2
p (J ;H−1

p (Rn+1))
≤ ‖a(0, yj) − a(·, ·)‖C1/2(J ;C(Rn+1))

· ‖∇ψ‖
0H

1/2
p (J ;Lp(Rn+1;Rn+1))

≤ ‖a(0, yj) − a(·, ·)‖C1/2(J ;C(Rn+1))‖ψ‖0ZT .

On the same lines the other terms of Kk
j can be treated, so that we obtain an estimation of

the form

‖Kk
j (w

k
j , ψ

k
j )‖0ZT×0ZT ≤ C(ε, T )‖(wkj , ψkj )‖0ZT×0ZT .

Choosing ε, T sufficiently small we achieve C(ε, T ) < 1 and consequently ‖Kk
j ‖ ≤ k < 1.

Applying the Neumann series leads to the invertibility of I−Kk
j in 0Z

T × 0ZT . The operator

Skj := (I −Kk
j )

−1S defines again an isomorphism between space of data and ZT × ZT , i.e.
we have

Skj ∈ Lis(X T × V (E+), ZT ×ZT ),

where (wkj , ψ
k
j ) = Skj (ϕju

k
0, f

k
j ) solves the problem (3.45). In order to enable a more conve-

nient notation for writing the entire solution (w,ψ) we set

Sj := (SPj , 0), j = 1, . . . ,M1 ,

Sj := (0,SFj ), j = M2 + 1, . . . ,M3 .

(c) Half space problems. Next, we turn to j = M3 + 1, . . . ,M4. Here we have to solve a
parabolic problem with boundary condition of Dirichlet type. In fact, the equations (3.37),
(3.40), (3.41) and (3.42) are left from system (3.31). After commuting ϕj with differential
operators, using local coordinates as defined in Subsection 3.4.1 and perturbation, we obtain

∂tw
F
j −DF

j (0, yj)[∆ − 1]wFj − (MF
j ũ

F
j )(0, yj)ψ

F
j = f̃Fj , (t, y) ∈ J × R

n+1
+ ,

wFj (t, y′, 0) = hFj (t, y′), ψFj (t, y′, 0) = 0, (t, y′) ∈ J × R
n,

wFj (0, y) = uF0,j(y), y ∈ R
n+1
+ ,

zT·wFj (t, y) = 0, (t, y) ∈ J × R
n+1
+ .

(3.46)

Here, we used the notations wFj := Gjϕjw
F , uF0,j := Gjϕju

F
0 , hFj := Gjϕjh

F and

f̃Fj := fFj + Aj,ε
F (D)(wFj , ψ

F
j ) := Gjϕjf

F +GjCFj + Aj,ε
F (D)(wFj , ψ

F
j ).
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The operator of perturbation CF
j containing the commutators [AFi(D), ϕj ], i = 1, 2, is de-

fined by (3.44). The partial differential operator Aj,ε
F (D) comprises all terms of perturbation

caused by changing coordinates and passing into constant coefficients. In order to specify this
perturbation we are going to compute the transformation of an operator having a divergence
form. It is easily verified that

−Gj∇x ·
(

a∇xu
)

= −∇y ·
(

a∇yu
)

−∇y′ ·
(

a ∂yn+1
u∇y′h(y

′)
)

− ∂yn+1

(

a∇y′u · ∇y′h(y
′) + a ∂yn+1

u |∇y′h(y
′)|2
)

where a denotes any coefficient. After putting

Aj,sm(a,D)u := − ∂yn+1

(

a∇y′u · ∇y′h(y
′) + a ∂yn+1

u |∇y′h(y
′)|2
)

−∇y′ ·
(

a ∂yn+1
u∇y′h(y

′)
) (3.47)

the operator Aj,ε
F (D) can be written as follows

Aj,ε
F (D)(w,ψ) := −∇ · ([DF

j (0, yj) −DF
j (t, y)]∇w) + [DF

j (0, yj) −DF
j (t, y)]w

−Aj,sm(DF
j , D)w −∇ · ([(MF

j ũ
F
j )(0, yj) − (MF

j ũ
F
j )(t, y)] ⊗∇ψ)

+ [(MF
j ũ

F
j )(0, yj) − (MF

j ũ
F
j )(t, y)]ψ −Aj,sm(MF

j ũ
F
j , D)ψ.

(3.48)

At first glance, we perceive that the divergence structure is maintained which is going to play
an important role for studying these terms in X T

+ . Employing Theorem 3.2 to this evolution
problem leads to the equivalent formulation

(wFj , ψ
F
j ) = S+(fFj , h

F
j , u

F
0,j) + S+(Aj,ε

F (D)(wFj , ψ
F
j ), 0, 0).

Note that the data (hFj , u
F
0,j) and (0, 0) satisfy the compatibility condition. As in case of the

full space we define the operator KF
j by means of

KF
j (wFj , ψ

F
j ) := S+

(

(Aj,ε
F (D)(wFj , ψ

F
j ), 0, 0)

)

,

with S+ ∈ Lis(X T
+ ×{(h, u0) ∈ Y T

1 (E)×V+(E) : h|t=0
= u0|yn+1=0

}, ZT+ × ZT
+,0), and have to

verify the smallness of ‖KF
j ‖. All second order terms of Aj,ε

F (D)w having differences become
small by applying the same arguments used in the full space problem. The perturbation
operator Aj,sm(D) contains the function hj picturing the manifold Γ. By the construction of
transformation Gj , we have arranged that hj ∈ C2(Rn), supphj ⊂ suppϕj and ∇hj(y′j) = 0.

The latter property gives rise to the smallness of Aj,sm(D) in X T , where we have to exploit
the divergence structure for estimating in H1/2

p (J ; H−1
p (Rn+1

+ )). At first, we consider the space

XT
+ := Lp(J ; Lp(R

n+1
+ ; RN )).

‖Aj,sm(MFũF, D)ψF ‖XT
+
≤ ‖∇y′h‖C(Rn;Rn)‖∂yn+1

(MFũF ⊗∇y′ψ
F )‖XT

+

+ ‖∇y′h‖2
C(Rn;Rn)‖∂yn+1

(MFũF∂yn+1
ψF )‖XT

+

+ ‖∇y′h‖C(Rn;Rn)‖∇y′(M
FũF∂yn+1

ψF )‖XT
+

+ ‖∆y′h‖C(Rn;Rn)‖MFũF∂yn+1
ψF ‖XT

+

≤ c(‖∇y′h‖C(Rn;Rn))‖ψF ‖ZT
F

+ C‖∆y′h‖C(Rn;Rn)T
1/2‖ψF ‖ZT

F

= c(ε, T )‖ψF ‖ZT
F
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In order to estimate zT · Aj,sm(MFũF, D)ψF in H1/2
p (J ; H−1

p (Rn+1
+ )) we make use of duality

arguments due to the divergence structure of this term. By doing so we obtain

‖zT·Aj,sm(MFũF, D)ψF ‖
H

1/2
p (J ;H−1

p (Rn+1
+ ))

≤ ‖∇y′h‖C(Rn;Rn)‖aF ‖C1/2(J ;C(Rn+1
+ ))

· (‖∂yn+1
ψF ‖

H
1/2
p (J ;Lp(Rn+1

+ ))
+ ‖∇y′ψ

F ‖
H

1/2
p (J ;Lp(Rn+1

+ ;Rn))
)

+ ‖∇y′h‖2
C(Rn;Rn)‖aF ‖C1/2(J ;C(Rn+1

+ ))‖∂yn+1
ψF ‖

H
1/2
p (J ;Lp(Rn+1

+ ))
≤ c(ε)‖ψF ‖ZT

F
.

Hence, we obtain an estimation of the form

‖Aj,sm(DF
j , D)wFj +Aj,sm(MF

j ũ
F
j , D)ψFj ‖0XT

+
≤ c(ε, T )‖(wFj , ψFj )‖

0ZT
+×0ZT

+
,

and after summarising all estimations we attain

‖KF
j (wFj , ψ

F
j )‖

0ZT
+×0ZT

+
≤ C(ε, T )‖(wFj , ψFj )‖

0ZT
+×0ZT

+
,

with C(ε, T ) < 1 for sufficiently small ε and T . Applying the Neumann series yields

(wFj , ψ
F
j ) = (I −KF

j )−1S+(fFj , h
F
j , u

F
0,j).

We set SFj := (I−KF
j )−1S+ and this operator defines an isomorphism between space of data

and ZT+ ×ZT
+,0, i.e. we have

SFj ∈ Lis(X T
+ × {(h, u0) ∈ Y T

1 (E)×V+(E+) : h|t=0
= u0|yn+1=0

}, ZT+ ×ZT
+,0),

for j = M3 + 1, . . . ,M4; putting again Sj := (0,SFj ).
(d) Two phase problems. We are now concerned with the last case j = M1 + 1, . . . ,M2.

For this we have to study a system for (wP, wF ) and (ψP, ψF ) coupled by boundary conditions
on ΓP . After proceeding as before, i.e. commuting again ϕj with differential operators and
matrices, applying transformations Gj and perturbation, we obtain

∂tw
P
j −DP

j (0, yj)[∆ − 1]wPj − (MP
j ũ

P
j )(0, yj)[∆ − 1]ψPj = f̃Pj , (t, y) ∈ J × R

n+1
+

∂tw
F
j −DF

j (0, yj)[∆ − 1]wFj − (MF
j ũ

F
j )(0, yj)[∆ − 1]ψFj = f̃Fj , (t, y) ∈ J × R

n+1
−

−DP
j (0, yj)∂yn+1

wPj − (MP
j ũ

P
j )(0, yj)∂yn+1

ψPj = −DF
j (0, yj)∂yn+1

wFj

− (MF
j ũ

F
j )(0, yj)∂yn+1

ψFj + g̃j , (t, y) ∈ J × R
n × {0}

Ũ−1
P,j(0, yj)w

P
j − Ũ−1

F,j(0, yj)w
F
j + λ0z(ψ

P
j − ψFj ) = h̃Pj , (t, y) ∈ J × R

n × {0}
wPj (0) = uP0,j , y ∈ R

n+1
+ , wFj (0) = uF0,j , y ∈ R

n+1
−

zT·wPj = 0, (t, y) ∈ J × R
n+1
+ , zT·wFj = 0, (t, y) ∈ J × R

n+1
−

(3.49)

The support of ϕj was transformed onto R
n+1, where the boundary ΓP turns into the hyper-

plane {(y′, 0) : y′ ∈ R
n}. The functions wPj = Gjϕjw

P and ψPj = Gjϕjψ
P live in the upper

half space R
n+1
+ , whereas wFj = Gjϕjw

F and ψFj = Gjϕjψ
F live in the lower half space R

n+1
− .

Furthermore, we have set Ũ−1
k,j (t, y) := GjŨ−1

k (t, x) and hPj := Gjϕjh
P . The right hand sides
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are defined by

f̃kj := fkj + Aj,ε
k (D)(wkj , ψ

k
j ) := Gjϕjf

k +GjCkj (w
k, ψk) + Aj,ε

k (D)(wkj , ψ
k
j ).

g̃j := gj + Bj,ε(D)(wPj , ψ
P
j , w

F
j , ψ

F
j ) := Gjϕjg +GjCj(w

P, ψP, wF, ψF )

− Bj,ε(D)(wPj , ψ
P
j , w

F
j , ψ

F
j )

h̃Pj := hPj +
(

Ũ−1
P,j(0, yj) − Ũ−1

P,j(t, y
′, 0)

)

wPj −
(

Ũ−1
F,j(0, yj) − Ũ−1

F,j(t, y
′, 0)

)

wFj .

(3.50)

By Cj we have summarised all terms arising from interchanging ϕj with boundary operators
Bk1(D), k = P, F and i = 1, 2.

Cj(t, x, w
P, ψP, wF, ψF ) := Cj,1(t, x, w

P, wF ) + Cj,2(t, x, ψ
P, ψF )

:= [BP1(t, x,D), ϕj ]w
P + [BP2(t, x,D), ϕj ]ψ

P

− [BF1(t, x,D), ϕj ]w
F − [BF2(t, x,D), ϕj ]ψ

F .

The operators Aj,ε
k , k = P, F are defined in (3.48). So, it remains to explain the operator

of perturbation Bj,ε(D) appearing in the transmission condition. The normal derivative
Gj∇u(x) · ν(x) transforms to −∂yn+1

(Gju) +Bj,sm(D)(Gju), with

Bj,sm(D)u := ∇y′u · ∇y′hj(y
′) − |∇y′hj(y

′)|2∂yn+1
u.

Hence, Bj,ε(D) can be written in the form

Bj,ε(D)(wP, ψP, wF, ψF ) :=
∑

k=P,F

δk

{

[Dk
j (0, yj) −Dk

j (t, y
′, 0)]∂n+1w

k + [(Mk
j ũ

k
j )(0, yj)−

(Mk
j ũ

k
j )(t, y

′, 0)]∂n+1ψ
k −Dk

j (t, y
′, 0)Bj,sm(D)wk − (Mk

j ũ
k
j )(t, y

′, 0)Bj,sm(D)ψk
}

, (3.51)

with δP = 1 and δF = −1.
Now, we turn our attention to problem (3.49). So according to Theorem 3.2 this evolution

problem can be solved in the maximal regularity class ZT+ × ZT+ × ZT
+,−. Using the solution

operator S+,− we obtain the equivalent formulation

(wPj , ψ
P
j , w

F
j , ψ

F
j ) = S+,−

(

fPj , f
F
j , gj , h

P
j , u

P
0,j , u

F
0,j

)

+Kj(w
P
j , ψ

P
j , w

F
j , ψ

F
j ),

with

Kj(w
P
j , ψ

P
j , w

F
j , ψ

F
j ) := S+,−

(

Aj,ε
P (wPj , ψ

P
j ),Aj,ε

F (wFj , ψ
F
j ),Bj,ε(wPj , ψPj , wFj , ψFj ),

[Ũ−1
P,j(0, yj) − Ũ−1

P,j(t, y
′, 0)]wPj − [Ũ−1

F,j(0, yj) − Ũ−1
F,j(t, y

′, 0)]wFj , 0, 0
)

,

and

S+,− ∈ Lis(X T
+ ×X T

− × { (g, h, uP0 , u
F
0 ) ∈ YT2 × Y T

1 (RN )×V+(E) × V−(E) : (g, h, uP0 , u
F
0 )

enjoy the compatibility conditions 6. & 7.}, ZT+ × ZT− ×ZT
+,−) .

Note that the data enjoy the compatibility conditions of Theorem 3.3 as well as the perturbed
data due to considering null initial data. The perturbation will be treated via a Neumann

63



series. The smallness of operators Aj,ε
k (D) were already discussed when considering the full

and half space problem. We now investigate the perturbation in the boundary condition of
Dirichlet type. The postulated regularity of ũkj entails that Ũ−1

k,j is a linear bounded operator

in Y T
1 (RN ) as well as in ZT+, ZT− for p > 2 + (n + 1), see Proposition 2.3. Further on, using

the continuity of the trace operator leads to

∑

k=P,F

‖[Ũ−1
k,j (0, yj) − Ũ−1

k,j (·, ·)]wkj ‖0Y T
2 (RN ) ≤ C(‖[Ũ−1

P,j(0, yj) − Ũ−1
P,j(·, ·)]wPj ‖0ZT

+

+ ‖[Ũ−1
F,j(0, yj) − Ũ−1

F,j(·, ·)]wFj ‖0ZT
−
).

In the following we consider the case k = P and do without any indications. Proceeding as
in the proof of Lemma 2.6 yields

‖[Ũ−1(0, yj) − Ũ−1]w‖
0ZT

+
≤ C(‖Ũ−1(0, yj) − Ũ−1‖C(J ;C(Rn+1

+ ;B(RN )))‖∂tw‖Lp(J ;Lp(Rn+1
+ ;RN ))

+ ‖w‖
0C(J ;C(Rn+1

+ ;RN ))‖∂tŨ−1‖Lp(J ;Lp(Rn+1
+ ;B(RN )))

+ ‖w‖Lp(J ;H2
p(Rn+1

+ ;RN ))‖Ũ−1(0, yj) − Ũ−1‖C(J ;C(Rn+1
+ ;B(RN )))

+ ‖w‖
0C(J ;C(Rn+1

+ ;RN ))‖Ũ−1‖Lp(J ;H2
p(Rn+1

+ ;B(RN )))

+ ‖Ũ−1‖C(J ;C1(Rn+1
+ ;B(RN )))‖w‖Lp(J ;H1

p(Rn+1
+ ;RN )))

≤ C(‖Ũ−1(0, yj) − Ũ−1‖C(J ;C(Rn+1;B(RN ))) + T 1/2)‖w‖
0ZT

+
.

Lastly, it remains to examine the perturbation of boundary operators in the space YT
2 .

At first, we have to ascertain the smallness of Bj,ε(D)(w,ψ) in Y T
2 (RN ). In view of conti-

nuity of the trace operator, i.e. γ|Rn ∈ B(ZT∇, Y
T
2 ), it suffices to study these terms in ZT∇.

Terms containing differences are treated in a similar way as above, where the estimations in
H1/2
p (J ; Lp(R

n+1
± )) are coped with Lemma 2.6. Furthermore, by making use of the fact that

|∇y′hj(y
′)| tends to zero in view of ∇y′hj(y

′
j) = 0 we can control the operator Bj,sm(D) in

Y T
2 (RN ). Exploiting these facts we accomplish the desired result.

Now, we deal with the estimation of zT · Bj,ε(D)(w,ψ) in H1/2
p (J ; B−1/p

pp (R)), whereas in
contrast to the above approaches we have not direct access. The purpose consists in deriv-
ing a relation between the perturbations Aj,ε

k (D) and Bj,ε(D). The idea bases on the fact

that the perturbation Aj,ε
k (D) has divergence structure and in a way is compatible with the

perturbation of transmission condition. At first, we examine the expression

∫

R
n+1
+

zT·Aj,ε
P (D)(wPj , ψ

P
j )ṽ dy +

∫

R
n+1
−

zT·Aj,ε
F (D)(wFj , ψ

F
j )ṽ dy,

where ṽ denotes a test function belonging to the space
◦
H1
p′(R

n+1). In the following we will
suppress subscript j for the sake of simplicity. By means of the case k = P we shall compute
the above integral, see (3.48) for the definition of Aj,ε

P (D). Due to the divergence structure
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of this perturbation we can integrate by parts which entails

∫

R
n+1
+

zT·Aj,ε
P (D)(wP, ψP )ṽ dy =

∫

R
n+1
+

[

zT·(DP(0, yj)−DP(t, y))wP+ (aP(0, yj)−aP(t, y))ψP
]

ṽ dy

+

∫

Rn

(

zT·(DP (0, yj) −DP (t, y′, 0))∂yn+1
wP + (aP (0, yj) − aP (t, y′, 0))∂yn+1

ψP
)

ṽ dy′

+

∫

R
n+1
+

(

zT·(DP (0, yj) −DP (t, y))∇wP + (aP (0, yj) − aP (t, y))∇ψP
)

· ∇ṽ dy

+

∫

Rn

(

zT·DP (t, y′, 0)∇y′w
P · ∇y′h(y

′) + zT·DP (t, y′, 0)∂yn+1
wP |∇y′h(y

′)|2
)

ṽdy′

+

∫

R
n+1
+

(

zT·DP (t, y)∇y′w
P · ∇y′h(y

′) + zT·DP (t, y)∂yn+1
wP |∇y′h(y

′)|2
)

∂yn+1
ṽdy′

+

∫

Rn

(

aP (t, y′, 0)∇y′ψ
P · ∇y′h(y

′) + aP (t, y′, 0)∂yn+1
ψP |∇y′h(y

′)|2
)

ṽdy′

+

∫

R
n+1
+

(

aP (t, y)∇y′ψ
P · ∇y′h(y

′) + aP (t, y)∂yn+1
ψP |∇y′h(y

′)|2
)

∂yn+1
ṽdy′

+

∫

R
n+1
+

(

zT·DP (t, y)∂yn+1
wP ∇y′h(y

′)
)

·∇y′ ṽ dy+

∫

R
n+1
+

(

aP (t, y)∂yn+1
ψP ∇y′h(y

′)
)

·∇y′ ṽ dy.

On closer inspection it turns out that the perturbation Bj,ε(D)(wPj , ψ
P
j , w

F
j , ψ

F
j ) exactly co-

incides with functions of the above boundary integrals, of course by adding the case k = F .
This fact results in the identity
∫

R
n+1
+

zT·Aj,ε
P (D)(wPj , ψ

P
j )ṽ dy +

∫

R
n+1
−

zT·Aj,ε
F (D)(wFj , ψ

F
j )ṽ dy =

∫

Rn

zT·Bj,ε(D)(wPj , ψ
P
j , w

F
j , ψ

F
j )ṽ dy′

+ Iε(w
P
j , ψ

P
j , w

F
j , ψ

F
j , ṽ),

where Iε comprises the above integrals over half space R
n+1
+ and in case k = F over R

n+1
− .

The latter perturbation can be estimated by using Hölder’s inequality as follows

Iε(w
P
j , ψ

P
j , w

F
j , ψ

F
j , ṽ) ≤ ‖ṽ‖ ◦

H1
p′ (R

n+1)

∑

k=P,F

{

[

‖zT·(Dk
j (0, yj) −Dk

j (t, ·))‖C(Rn+1
± ;RN )

+‖zT·Dk
j (t)‖C(Rn+1

± ;RN )(‖∇y′hj‖C(Rn;Rn) + ‖∇y′hj‖2
C(Rn;Rn))

]

‖wkj (t)‖H1
p(Rn+1

± ;RN )

+
[

‖akj (0, yj) − akj (t, ·)‖C(Rn+1
± ) + ‖akj (t)‖C(Rn+1

± )(‖∇y′hj‖C(Rn;Rn) + ‖∇y′hj‖2
C(Rn;Rn))

]

·

‖ψkj ‖H1
p(Rn+1

± )

}

,
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and thus

‖Iε(wPj , ψPj , wFj , ψFj , ṽ)‖H
1/2
p (J)

≤ c(ε)‖ṽ‖ ◦
H1

p′ (R
n+1)

‖(wPj , wFj , ψPj , ψFj )‖ZT
P ×ZT

F ×ZT .

By using duality concerning the perturbations Aj,ε
k (D)(wkj , ψ

k
j ) we get

∫

Rn

zT·Bj,ε(wPj , ψPj , wFj , ψFj )vdy′ ≤ ‖ṽ‖ ◦
H1

p′ (R
n+1)

{

‖zT·Aj,ε
P (D)(wPj , ψ

P
j )‖H−1

p (Rn+1
+ )

+ ‖zT·Aj,ε
F (D)(wFj , ψ

F
j )‖H−1

p (Rn+1
− ) + c(ε)

[

‖(wPj , wFj )‖H1
p(Rn+1

+ ;RN )×H1
p(Rn+1

− ;RN )+

‖(ψPj , ψFj )‖H1
p(Rn+1

+ )×H1
p(Rn+1

− )

]

}

,

where we set ṽ|Rn = v. As in the necessary part of this proof the above calculations can
be carried out for the times t + h, t ∈ J , and we can again consider the difference of both
expressions. After taking the infimum over ‖ṽ‖ ◦

H1
p′ (R

n+1)
and using duality we obtain

‖zT·Bj,ε(wPj , ψPj , wFj , ψFj )(t+ h) − zT·Bj,ε(wPj , ψPj , wFj , ψFj )(t)‖
B

−1/p
pp (Rn)

≤

‖zT·Aj,ε
P (D)(wPj , ψ

P
j )(t+ h) − zT·Aj,ε

P (D)(wPj , ψ
P
j )(t)‖H−1

p (Rn+1
+ )

+ ‖zT·Aj,ε
F (D)(wFj , ψ

F
j )(t+ h) − zT·Aj,ε

F (D)(wFj , ψ
F
j )(t)‖H−1

p (Rn+1
− )

+ c(ε)
{

‖(wPj , wFj )(t+ h) − (wPj , w
F
j )(t)‖H1

p(Rn+1
+ ;RN )×H1

p(Rn+1
− ;RN )+

‖(ψPj , ψFj )(t+ h) − (ψPj , ψ
F
j )(t)‖H1

p(Rn+1
+ )×H1

p(Rn+1
− )

}

.

We now employ that equivalent norm of H1/2
p (J) which is characterised by differences. Thus

we attain Bj,ε(wPj , ψPj , wFj , ψFj ) ∈ 0H
1/2
p (J ; B−1/p

pp (Rn)), and this operator can be compared

with perturbations coming from the half spaces R
n+1
+ and R

n+1
− . In fact, we have shown the

following estimate

‖zT·Bj,ε(wPj , ψPj , wFj , ψFj )‖
0H

1/2
p (J ;B

−1/p
pp (Rn))

≤ ‖zT·Aj,ε
P (D)(wPj , ψ

P
j )‖

0H
1/2
p (J ;H−1

p (Rn+1
+ ))

+

‖zT·Aj,ε
F (D)(wFj , ψ

F
j )‖

0H
1/2
p (J ;H−1

p (Rn+1
− ))

+ c(ε)
{

‖(wPj , wFj )‖
0H

1/2
p (J ;H1

p(Rn+1
+ ;RN )×H1

p(Rn+1
− ;RN ))

+ ‖(ψPj , ψFj )‖
0H

1/2
p (J ;H1

p(Rn+1
+ )×H1

p(Rn+1
− ))

}

≤ C(T, ε)‖(wPj , wFj , ψPj , ψFj ) ‖
0ZT

+×0ZT
−×0ZT

+,−
.

All things considered, we have achieved an estimation of the form ‖Kj‖ ≤ k0 < 1. After
employing the Neumann series, we obtain a unique solution (wPj , ψ

P
j , w

F
j , ψ

F
j ) of (3.49) given

by

(wPj, ψ
P
j , w

F
j , ψ

F
j ) = Sj

(

fPj , f
F
j , gj , h

P
j , u

P
0,j , u

F
0,j

)

,

with Sj := [I −Kj ]
−1S+,− and

Sj ∈ Lis(X T
+ ×X T

− × { (g, h, uP0 , u
F
0 ) ∈ YT2 × Y T

1 (RN ) × V+(E+) × V−(E+) : (g, h, uP0 , u
F
0 )

enjoy the compatibility conditions }, ZT+ × ZT− ×ZT
+,−).
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(e) Problem in domain. Now we address the issue of constructing a function with the aid
of local solutions. Subsequently, we have to check that the so designed function solves (3.31)
and is unique. For this purpose we choose another partition of unity ϕ̃j ∈ C∞

0 (Rn) such that
ϕ̃j ≡ 1 on suppϕj and supp ϕ̃j ⊂ Uj . Summing over j we receive a solution formula of the
linear problem.

(w,ψ) =

M4
∑

j=1

ϕ̃j(G
j)−1SjGjϕjρ+

M4
∑

j=1

ϕ̃j(G
j)−1SjGjCj(w,ψ) := S0%+ S1(w,ψ) (3.52)

The inhomogeneities and initial data data were summarised to % := (fP, fF, g, hP, hF, uP0 , u
F
0 ),

whereas Cj comprises all terms of lower order, i.e. we set

Cj(w,ψ) :=















(CPj (wP , ψP ), 0) : j = 1, . . . ,M1

(CPj (wP, ψP ), CFj (wF, ψF ), Cj(w
P, ψP, wF, ψF ), 0, 0, 0) : j = M1 + 1, . . . ,M2

(CFj (wF, ψF ), 0) : j = M2 + 1, . . . ,M3

(CFj (wF, ψF ), 0, 0) : j = M3 + 1, . . . ,M4

(3.53)

Furthermore, we want to remind of the mapping properties of solution operators Sj .

Sj ∈ Lis(X T × V (E+), ZT ×ZT ), j = 1, . . . ,M1 and j = M2 + 1, . . . ,M3,

Sj ∈ Lis
(

X T
+ ×X T

−×{(g, h, uP0 , uF0 ) ∈ YT2 × Y T
1 (RN ) × V+(E+) × V−(E+) : (g, h, uP0 , u

F
0 )

enjoy the compatibility conditions }, ZT+×ZT−×ZT
+,−

)

, j = M1+1, . . . ,M2,

Sj ∈ Lis(X T
+ × {(h, u0) ∈ Y T

1 (E) × V+(E+) : h|t=0
= u0|yn+1=0

}, ZT+ ×ZT
+,0),

j = M3 + 1, . . . ,M4 .

The two-phase problem (3.3) can be written abstractly as

L(w,ψ) := % . (3.54)

We have to establish that solution formula (3.52) leads to the inverse operator of L. Firstly,
we prove the existence of a left inverse, i.e. the only solution of (w,ψ) = S0% + S1(w,ψ)
has to vanish for zero data. The goal consists in establishing that I − S1 is invertible in

0Z
T
P × 0Z

T
F × 0ZT . We are going to see that the operator of perturbation S1 can not treated

as before, namely by applying the Neumann series. It turns out that not all lower order terms
become small for T tending to zero. This circumstance is caused by the elliptic problem for
ψ which is involved due to the electroneutrality condition. Therefore we have to study this
problem separately. In spite of this fact we want to estimate S1 in order to which terms do
not become small. By using the mapping properties of solution operators Sj we have

‖S1(w,ψ)‖
0ZT

P ×0ZT
F ×0ZT ≤ C





M1
∑

j=1

‖CPj ‖0XT
P

+

M2
∑

j=M1+1

∑

k=P,F

‖Ckj ‖0XT
k

+ ‖Cj‖0YT
2

+

M4
∑

j=M2+1

‖CFj ‖0XT
F



 .
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We start considering Cj(w,ψ) in 0Y
T
2,ΓP

. Lower order terms with respect to the transmission

condition are the functions wk and ψk with certain coefficients. In fact, we have set

Cj(w,ψ) := Cj,1(w
P, wF ) + Cj,2(ψ

P, ψF )

:=DPwP∂νϕj +MP ũPψP∂νϕj −DFwF∂νϕj −MF ũFψF∂νϕj .

Due to the continuity of the trace operator γ|ΓP
we are able to carry out the estimations in

ZT∇ resulting in

‖Dkwk∂νϕj‖0Y T
2,ΓP

(RN ) ≤ C‖wk‖
0ZT

k,∇
≤ CT 1/2‖wk‖

0ZT
k
.

To treat lower order terms of ψk, we have to take into account γ|ΓP
ψk ∈ 0H

1/2
p (J ; B1−1/p

pp (ΓP ))
and the continuous embeddings

H1/2
p (J) ↪→ B1/2

pp (J) ↪→ B1/2−1/2p
pp (J), p ≥ 2.

We thus get

‖Mkũkψk∂νϕj‖0Y T
2,ΓP

(RN ) ≤ C‖Mkũk‖UT
k (RN )

(

‖ψk‖
0B

1/2−1/2p
pp (J ;Lp(ΓP ))

+ ‖ψk‖
Lp(J ;B

1−1/p
pp (ΓP ))

)

≤ C(T 1/2p‖ψk‖
0H

1/2
p (J ;Lp(ΓP ))

+ T 1/2‖ψk‖
0H

1/2
p (J ;B

1−1/p
pp (ΓP ))

)

≤ C(T 1/2p + T 1/2)‖ψk‖
0ZT

k
.

Now, we want to tackle the estimation of zT·Cj(w,ψ) in H1/2
p (J ; B−1/p

pp (ΓP )). Observe that the
estimate

‖zT·Dkwk∂νϕj‖H
1/2
p (J ;B

−1/p
pp (ΓP ))

≤ C‖zT·Dkwk‖
H

1/2
p (J ;B

2−2θ−1/p
pp (ΓP ))

holds for 1 > 2 − 2θ − 1/p > 0 and θ > 1/2. Then, we continue with

‖zT·Dkwk‖
0H

1/2
p (J ;B

2−2θ−1/p
pp (ΓP ))

≤ C‖Dk‖C1/2(J ;C1(Ωk;B(RN )))‖wk‖0H
1/2
p (J ;H2−2θ

p (Ωk))

≤ CT θ−1/2‖wk‖
0Hθ

p(J ;H2−2θ
p (Ωk)) ≤ CT θ−1/2‖wk‖

0ZT
k
,

where 1 − 1/2p > θ > 1/2. Carrying out this estimation for ψk does not lead to a factor
involving a power of T . In fact, we obtain

‖zT·Mkũkψk∂νϕj‖
0H

1/2
p (J ;B

−1/p
pp (ΓP ))

≤ C‖akψk‖
0H

1/2
p (J ;Lp(ΓP ))

≤ C‖ψk‖
0H

1/2
p (J ;Lp(ΓP ))

≤ C‖ψk‖
0H

1/2
p (J ;Hs

p(Ωk))
,

for 1/p < s ≤ 1. Since ψ has not additional time regularity we can not follow up the above
estimation. Now, we want to discuss Ck

j (w
k, ψk) in X T

k to aim at gaining a constant tending
to zero for T → 0. Observe that

Ckj = ∇ · (Dkwk∇ϕj) +Dk∇wk · ∇ϕj + ϕjD
kwk

+ ∇ · (Mkũkψk∇ϕj) +Mkũk∇ψk · ∇ϕj + ϕjM
kũkψk.

68



In the following we use the embedding ZTk ,ZT
k ↪→ C(J ; C1(Ωk)), cf. Lemma 2.5, regularity

of the coefficients, and the additional temporal regularity which provides the constant T 1/2.

‖Ckj ‖XT
k
≤ C

(

‖wk‖XT
k

+ ‖∇wk‖XT
k

+ ‖ψk‖XT
k

+ ‖∇ψk‖XT
k

)

≤ CT 1/2
(

‖∇wk‖
0H

1/2
p (J ;Lp(Ωk))

+ ‖ψk‖
0H

1/2
p (J ;Lp(Ωk))

+ ‖∇ψk‖
0H

1/2
p (J ;Lp(Ωk))

)

+ CT‖wk‖
0H1

p(J ;Lp(Ωk))

≤ CT 1/2
(

‖wk‖
0ZT

k
+ ‖ψk‖

0ZT
k

)

For estimating zT·Ckj in H1/2
p (J ; H−1

p (Ωk)) with intent to provide a small constant we will use
the duality pairing. In order to keep the effort small, we pick the “worst terms” concerning
regularity. We shall consider (zT ·Dk∇wk + ak∇ψk)∇ϕj and ∇ · [(zT ·Dkwk + akψk)∇ϕj ].
Taking into account the smoothness assumption of dki , a

k = zTMkũk, using Lemma 2.2 and
ũk ∈ Zk(E+) ↪→ UTk (E+) which imply ak ∈ UTk , we obtain

‖∇ · [(zT·Dkwk + akψk)∇ϕj ]‖
0H

1/2
p (J ;H−1

p (Ωk))
≤ C‖zT·Dkwk + akψk‖

H
1/2
p (J ;Lp(Ωk))

≤ C
(

‖Dk‖C1/2(J ;C(Ωk))‖wk‖0H
1/2
p (J ;Lp(Ωk))

+ ‖ak‖C1/2(J ;C(Ωk))‖ψk‖0H
1/2
p (J ;Lp(Ωk))

)

≤ CT 1/2‖wk‖
0H1

p(J ;Lp(Ωk)) + C‖ψk‖
0H

1/2
p (J ;Lp(Ωk))

.

Now, we are going to treat (zT·Dk∇wk + ak∇ψk)∇ϕj , where we use the above arguments.

‖zTDk∇wk∇ϕj + ak∇ψk∇ϕj‖
0H

1/2
p (J ;H−1

p (Ωk))
≤ C‖Dk‖C1/2(J ;C1(Ωk))‖wk‖H

1/2
p (J ;Lp(Ωk))

+ C‖‖ak‖H1
p(Ωk)‖ψk‖Lp(Ωk)‖

0H
1/2
p (J)

≤ CT 1/2‖wk‖
0H1

p(J ;Lp(Ωk))

+ ‖ak‖C(J ;H1
p(Ωk))‖ψk‖

0H
1/2
p (J ;Lp(Ωk))

+ ‖ak‖
H

1/2
p (J ;H1

p(Ωk))
‖ψk‖

0C(J ;Lp(Ωk))

≤ C
(

T 1/2‖wk‖
0ZT

k
+ T 1/2−1/p‖ψk‖

0ZT
k

+ ‖ψk‖
0H

1/2
p (J ;Lp(Ωk))

)

.

The above inequalities lead to

‖Ckj ‖XT
k
≤ c(T )‖(wk, ψk)‖

0ZT
k ×0ZT

k
+ C‖ψk‖

0H
1/2
p (J ;Lp(Ωk))

,

with c(T ) → 0 for T → 0. Finally, summarising all estimations yields

‖S1(w,ψ)‖
0ZT

P ×0ZT
F ×0ZT ≤ c(T )‖(w,ψ)‖

0ZT
P ×0ZT

F ×0ZT + C‖ψ‖
0H

1/2
p (J ;Hs

p(ΩP )×Hs
p(ΩF ))

,

which shows that not all terms become small for T tending to zero. This fact is a natural
consequence of the elliptic problem caused by the electroneutrality condition. More precisely,
up to now we have not checked on solvability of the boundary value problem in domain Ω
for the electrical potentials (ψP, ψF ). Therefore we have to study this problem separately.

(f) An elliptic problem. We shall consider the following two phase problem

λψP −∇ · (aP∇ψP ) = gP , (t, x) ∈ J × ΩP ,

λψF −∇ · (aF∇ψF ) = gF , (t, x) ∈ J × ΩF ,

aP∂νψ
P − aF∂νψ

F = hN , (t, x) ∈ J × ΓP ,

ψP − ψF = hD, (t, x) ∈ J × ΓP ,

ψF = hFD, (t, x) ∈ J × Γ,

(3.55)
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where λ > 0, and the variable t ∈ J can be seen as a parameter. We are looking for solutions
in space ZP ×ZF which is to be equipped with the norm

‖(ψP, ψF )‖λ :=
∑

k=P,F

‖ψk‖Zk
+ λ‖ψk‖

H
1/2
p (J ;H−1

p (Ωk))∩Lp(J ;Lp(Ωk))
.

The inhomogeneities are summarised to σ belonging to H1/2
p (J ;Xω)∩ Lp(J ;X ), where we set

Xω := H−1
p (ΩP ) × H−1

p (ΩF ) × B−1/p
pp (ΓP ) × B1−1/p

pp (ΓP ) × B1−1/p
pp (Γ),

X := Lp(ΩP ) × Lp(ΩF ) × B1−1/p
pp (ΓP ) × B2−1/p

pp (ΓP ) × B2−1/p
pp (Γ).

We shall associate this two phase problem with the abstract equation

λJ (ψP, ψF ) + E(t,D)(ψP, ψF ) = σ,

with

J :=

(

1 0 0 0 0
0 1 0 0 0

)T

.

The existence and uniqueness result reads as follows.

Proposition 3.1 Let ΩP , ΩF be open bounded domains in R
n+1 with C2- boundary, ΓP :=

∂ΩP , ∂ΩF = ΓP ∪Γ and dist (ΓP ,Γ) > 0. Let J = [0, T ] and 2+(n+1) < p <∞. Suppose that
the assumptions (1.23)-(1.25) are satisfied and ũ belongs to ZTP × ZTF . Then the boundary
value problem (3.55), for λ = 0, has exactly one solution (ψP, ψF ) ∈ ZT

P × ZT
F if and only if

the data σ := (gP, gF, hN , hD, h
F
D) belongs to H1/2

p (J ;Xω) ∩ Lp(J ;X ). Moreover, if σ even lies
in H1/2

p (J ;X ) then the unique solution (ψP, ψF ) belongs to

H1/2
p (J ; H2

p(ΩP )) × H1/2
p (J ; H2

p,Γ(ΩF )).

Proof of the Proposition. Since the necessary part of the proof is obviously, we directly
address the sufficiency part. The problem (3.55) can be localised as at the beginning of
this section, so that we obtain full and half space problems. Proceeding as in the proofs of
Theorems (3.1)-(3.3) yields solution formulae for the local functions (ψPj, ψ

F
j ). Note that all

coefficients contained in the operator E(t,D) possess enough time regularity for considering
the parameter t in spaces Hθ

p(J), θ ∈ [0, 1/2]. More precisely, it follows that

E(·, D) ∈ H1/2
p (J ;B(H2

p(ΩP ) × H2
p,Γ(ΩF ),X )),

E(·, D) ∈ C1/2(J ;B(H1
p(ΩP ) × H1

p,Γ(ΩF ),Xω)).
(3.56)

Consequences of these properties are

E ∈ B(Hθ
p(J ; H2

p(ΩP ) × H2
p,Γ(ΩF )),Hθ

p(J ;X )), θ ∈ [0, 1/2]

E ∈ B(H1/2
p (J ; H1

p(ΩP ) × H1
p,Γ(ΩF )),H1/2

p (J ;Xω)),
(3.57)

where the first assertion results from Lemma 2.2. In fact, we have by interpolation

‖Eψ‖Hθ
p(J ;X ) ≤ ‖‖E(·)‖B(H2

p(ΩP )×H2
p,Γ(ΩF ),X )‖ψ(·)‖H2

p(ΩP )×H2
p,Γ(ΩF )‖Hθ

p(J)

≤ C(‖E‖
H

1/2
p (J ;B(H2

p(ΩP )×H2
p,Γ(ΩF ),X ))

‖ψ‖C(J ;H2
p(ΩP )×H2

p,Γ(ΩF ))

+ ‖E‖C(J ;B(H2
p(ΩP )×H2

p,Γ(ΩF ),X ))‖ψ‖H
1/2
p (J ;H2

p(ΩP )×H2
p,Γ(ΩF ))

).
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We shall prove the first assertion of (3.56). We remind of the regularity assumption of the
coefficient ak, i.e. we have ak ∈ ZTk and ak ∈ H1/2

p (J ; H1
p(Ωk)). Let ψ ∈ H1/2

p (J ; H2
p(ΩP ) ×

H2
p,Γ(ΩF )) be given. By using Lemma 2.2 we may estimate as follows

‖Eψ‖
H

1/2
p (J ;X )

≤
∑

k=P,F

(‖zT·Ak2(D)ψk‖
H

1/2
p (J ;Lp(Ωk))

+ ‖zT·Bk2(D)ψk‖
H

1/2
p (J ;B

1−1/p
pp (ΓP ))

)

+ ‖ψP − ψF ‖
H

1/2
p (J ;B

2−1/p
pp (ΓP ))

≤
∑

k=P,F

‖ak‖C1/2(J ;C(Ωk))‖ ∆ψk‖
H

1/2
p (J ;Lp(Ωk))

+ ‖∇ak‖
H

1/2
p (J ;Lp(Ωk))

‖∇ψk‖C(J×Ωk) + ‖∇ak‖C(J×Ωk)‖∇ψk‖H
1/2
p (J ;Lp(Ωk))

‖ak‖
H

1/2
p (J ;B

1−1/p
pp (ΓP ))

‖∂νψk‖C(J×ΓP ) + ‖ak‖C(J×ΓP )‖ψk‖H
1/2
p (J ;B

1−1/p
pp (ΓP ))

+ ‖ψP ‖
H

1/2
p (J ;B

2−1/p
pp (ΓP ))

+ ‖ψF ‖
H

1/2
p (J ;B

2−1/p
pp (ΓP ))

≤ C‖ψ‖
H

1/2
p (J ;H2

p(ΩP )×H2
p(ΩF ))

.

We turn to the local problems. The perturbed problems can be treated as it was carried
out for the primary problem. By doing so we attain the presentation

ψ =
∑

j

ϕ̃j(G
j)−1SejGjϕjσ +

∑

j

ϕ̃j(G
j)−1SejGjCej (ψ) =: Lσ + Lεψ,

where Sej denotes the local solution operators ( the local resolvents). The lower order terms
Cej (ψ) are given by

Cej (ψ) :=























[zT·AP2(t,D), ϕj ]ψ
P : j = 1, . . . ,M1

(

[zT·AP2(t,D), ϕj ]ψ
P , [zT·AF2(t,D), ϕj ]ψ

F ,
[zT·BP2(t,D), ϕj ]ψ

P − [zT·BF2(t,D), ϕj ]ψ
F , 0, 0

)

: j = M1 + 1, . . . ,M2

[zT·AF2(t,D), ϕj ]ψ
F : j = M2 + 1, . . . ,M3

([zT·AF2(t,D), ϕj ]ψ
F , 0) : j = M3 + 1, . . . ,M4

,

which coincide with the perturbations zT·Ckj,2(ψk) and zT·Cj,2(ψP, ψF ) (!). Now, we have to
establish that the above solution formula leads to the inverse operator of λJ + E . Firstly, we
prove the existence of a left inverse. The goal consists in establishing that I−Lε is invertible
in ZP ×ZF by means of Neumann’s series. By using the mapping properties of the resolvents
Sej we obtain

‖Lεψ‖λ = ‖Lεψ‖ZP×ZF
+ λ‖Lεψ‖

H
1/2
p (J ;H−1

p (ΩP )×H−1
p (ΩF ))∩Lp(J ;Lp(ΩP )×Lp(ΩF ))

≤ C

M4
∑

j=1

‖Cej (ψ)‖
H

1/2
p (J ;Xω)∩Lp(J ;X )

,
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and continue with

M4
∑

j=1

‖Cej (ψ)‖
H

1/2
p (J ;Xω)∩Lp(J ;X )

≤ C
{

M1
∑

j=1

‖[zT·AP2(D), ϕj ]ψ
P ‖

H
1/2
p (J ;H−1

p (ΩP ))∩Lp(J ;Lp(ΩP ))

+

M2
∑

j=M1+1

[

∑

k=P,F

‖[zT·Ak2(D), ϕj ]ψ
k‖

H
1/2
p (J ;H−1

p (Ωk))∩Lp(J ;Lp(Ωk))

+ ‖[zT· Bk2(D), ϕj ]ψ
k‖

H
1/2
p (J ;B

−1/p
pp (ΓP ))∩Lp(J ;B

1−1/p
pp (ΓP ))

]

+

M4
∑

j=M2+1

‖[zT·AF2(D), ϕj ]ψ
F ‖

H
1/2
p (J ;H−1

p (ΩF ))

}

≤ C1‖(ψP, ψF )‖
H

1/2
p (J ;Hs

p(ΩP )×Hs
p(ΩF ))

+ C2‖(ψP, ψF )‖Lp(J ;H1
p(ΩP )×H1

p(ΩF )),

with s−1/p > 0, cf. the estimation of Ck
j (w,ψ) and Cj(w,ψ). Furthermore, there is θ ∈ (0, 1)

so that Hs
p(Ωk) = [H−1

p (Ωk),H
1
p(Ωk)]θ, H1

p(Ωk) = [Lp(Ωk),H
2
p(Ωk)]1/2, and the interpolation

inequalities

‖ψk‖Hs
p(Ωk) ≤ cθ‖ψk‖1−θ

H−1
p (Ωk)

‖ψk‖θH1
p(Ωk), ‖ψk‖H1

p(Ωk) ≤ c‖ψk‖1/2
Lp(Ωk)‖ψ

k‖1/2
H2

p(Ωk)

hold. Hence, by means of Young’s inequality we obtain

‖ψk‖Hs
p(Ωk) ≤ Cε‖ψk‖H−1

p (Ωk) + ε‖ψk‖H1
p(Ωk),

‖ψk‖H1
p(Ωk) ≤ Cε‖ψk‖Lp(Ωk) + ε‖ψk‖H2

p(Ωk),

and consequently

‖Lεψ‖ZP×ZF
≤ C

[

ε‖(ψP, ψF )‖ZP×ZF
+ Cε(‖(ψP, ψF )‖

H
1/2
p (J ;H−1

p (ΩP )×H−1
p (ΩF ))

+‖(ψP, ψF )‖Lp(J ;Lp(ΩP ))×Lp(J ;Lp(ΩF )))
]

≤ Cmax{ε, Cε
λ
}‖ψ‖Zλ

.

Choosing ε sufficiently small and λ > 0 large enough we may invert I−Lε due to Neumann’s
series and thus ψ has to vanish for data σ = 0.

To show that λJ + E(t,D) is surjective, i.e. there also exists a right inverse, we have to
establish that the function ψ = (I − Lε)−1Lσ satisfying ψ = Lσ + Lεψ solves the problem
(3.55). Applying λJ +E(D) to solution formula and commuting ϕ̃j with λJ +E(t,D) yields

(λJ + E(t,D))ψ =
∑

j

ϕ̃j(G
j)−1(λJ + Ej(t,D))Sej {Gjϕjσ +GjCej (ψ)}

+
∑

j

[E(t,D), ϕ̃j ](G
j)−1Sej {Gjϕjσ +GjCej (ψ)},

where Ej(t,D) denotes the localised operator of E(t,D). Since ψj = Sej {Gjϕjσ + GjCej (ψ)}
solves the problem (λJ + Ej(t,D))ψj = Gjϕjσ +GjCej (ψ) we obtain

(λJ + E(t,D))ψ = σ +
∑

j

[E(t,D), ϕ̃j ](G
j)−1Sej {Gjϕjσ +GjCej (ψ)} +

∑

j

ϕ̃jCej (ψ).
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Furthermore, the operator of perturbation Cej inherits the compact support of ϕj which entails

∑

j

ϕ̃jCejψ =
∑

j

Cejψ =
∑

j

[E(t,D), ϕj ]ψ = 0.

By using the left inverse resp. the representation ψ = (I − Lε)−1Lσ, we get the identity

(λJ + E(t,D))(I − Lε)−1Lσ = σ +
∑

j

[E(t,D), ϕ̃j ](G
j)−1Sej {Gjϕj +GjCej (I − Lε)−1L}σ.

Now, we set K(t)σ :=
∑

j [E(t,D), ϕ̃j ](G
j)−1Sej

{

Gjϕj + Cej (I − Lε)−1L
}

σ and define σ :=

σ+K(t)σ. The operator K only contains lower order terms so that we achieve ‖K‖ ≤ k < 1
by choosing λ large enough. Employing the Neumann’s series we are able to rewrite the
above problem as follows

(λJ + E(t,D))(I − Lε)−1L(I +K(t))−1σ = σ, (3.58)

which shows that (3.58) gives rise to a right inverse (I−Lε)−1L(I+K(t))−1 of λJ +E(t,D),
i.e. we have surjectivity. Since right and left inverse have to be equal, it must hold that
K(t) = 0. We have proved that there is λ > 0 so that problem (3.55) has a unique solution,
i.e. λ ∈ ρJ (E(t,D)) for all t ∈ J .

Now, we are going to show that 0 ∈ ρJ (E(t,D)). It suffices to establish the injectivity
in L2 in view of the embedding Lp ⊂ L2, for p > 2 and bounded domains. For this, let
(ψP , ψF ) ∈ D(E(t,D)) be given with E(t,D)(ψP , ψF ) = 0. We multiply the first differential
equation by ψP and the second one by ψF . Integrating and summing up of both equations
yields

∫

ΩP

∇ · (aP∇ψP )ψP dx+

∫

ΩF

∇ · (aF∇ψF )ψF dx = 0 .

By using the Gaussian divergence theorem we then obtain

∑

k=P,F

∫

Ωk

ak|∇ψk|2 dx =

∫

ΓP

aP∂νψ
PψP − aF∂νψ

F · ψF dσ +

∫

Γ

aF∂νψ
F · ψF dσ .

Taking into account boundary conditions of E(t,D) we see

∫

ΩP

aP |∇ψP |2 dx+

∫

ΩF

aF |∇ψF |2 dx = 0 .

Thus, it follows that ψP = cP and ψF2 = cF . If we once again use the boundary condition
ψP − ψF = 0 for x ∈ ΓP and ψF = 0 for x ∈ Γ, we deduce cP = cF = 0. Hence the operator
E(t,D) is injective. The idea of establishing surjectivity bases on the following facts.

Claim 1. Let X, Y and Z be three Banach spaces. Let A be a bounded operator from Z
to X. Supposing that B ∈ B(Z, Y ) is a retraction, i.e. there exists an operator (corretraction)
Bc ∈ B(Y,Z) so that BBc = id, it follows that the operator A := (A,B) is an isomorphism
from Z onto X×Y if and only if AB := A with D(AB) = {u ∈ Z : Bu = 0} is an isomorphism
from D(AB) onto X.
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Proof of the claim. The equivalence of both problems arises from the existence of a
corretraction Bc which implies surjectivity of B. Thus the problem (A,B)w = (f, g) is
equivalent to Av = f −ABcg =: f̃ , Bv = 0, and w = v +Bcg.

Claim 2. Let A : XA ⊂ X → X be linear and injective, where XA denotes the domain
D(A) equipped with the graph norm of A. Assume that ρ(A) 6= ∅ and XA is compactly
embedded into X. Then the operator A is surjective, i.e. R(A) = X.

Proof of the claim. Let λ ∈ ρ(A). Then we can write A in the following way

A = λ+A− λ = (λ+A)
[

I − λ(λ+A)−1
]

=: (λ+A)(I +K) .

The operator K defined by K := −λ(λ+ A)−1 belongs to K(XA), the set of compact linear
operators of XA into XA, due to compact embedding XA ↪→↪→ X. The Fredholm alternative
states that R(I + K) is closed and ind(K) = 0, i.e. dimN(I + K) = codim(I + K). If we
can show dimN(I +K) = 0, then in virtue of R(I +K) = R(I +K) we obtain that I +K
is surjective. Let x ∈ XA, x 6= 0 and satisfy x+Kx = 0. By definition of K this equation is
equivalent to Ax = 0, but injectivity of A implies x = 0. Since λ belongs to the resolvent set,
we know that λ + A is surjective, in fact (λ + A)XA = X. The remarks above also showed
that (I +K)XA = XA, consequently we may conclude

AXA = (λ+A)(I +K)XA = (λ+A)XA = X ,

which means that A is surjective.
�

By studying the problem (3.55) we have seen that ρJ (E(t,D)) 6= ∅ which in particular
implies that the boundary operators are retractions. Hence, by Claim 1 it suffices to consider
the elliptic problem with homogeneous boundary conditions. Furthermore, the solution spaces
H1
p(ΩP )×H1

p,Γ(ΩF ) and H2
p(ΩP )×H2

p,Γ(ΩF ) are compactly embedded into H−1
p (ΩP )×H−1

p (ΩF )
and Lp(ΩP ) × Lp(ΩF ), respectively. According to the second claim we may conclude that
0 ∈ ρ(E(t,D)) for all t ∈ J which is equivalent to 0 ∈ ρJ (E(t,D)) due to the first claim.
Combining these results with (3.57) yields

E ∈ Lis(Hθ
p(J ; H2

p(ΩP ) × H2
p,Γ(ΩF )),Hθ

p(J ;X )), θ ∈ [0, 1/2],

E ∈ Lis(H1/2
p (J ; H1

p(ΩP ) × H1
p,Γ(ΩF )),H1/2

p (J ;Xω)),

which shows (ψP, ψF ) ∈ ZP × ZF by choosing θ = 0, whereas the choice θ = 1/2 implies the
second statement of the proposition.

�

Let us return to the solution formula (3.52). We shall split the lower order termsGjCj(w,ψ)
in three parts.

GjCj(w,ψ) = GjCj,1(w) + [GjCj,2(ψ) − Tjψ̃j ] + Tjψ̃j

The first part comprises only terms of w = (wP, wF ), which become small due to the more
temporal regularity, cp. the estimation of Cj(w,ψ). The second part is composed of all lower
order terms of ψ = (ψP, ψF ) denoted by Cj,2(ψ) and a suitable function ψ̃j , so that this
expression belongs to the space of electroneutrality E. This has the advantage that we only
need to estimate this term in space XT

P ×XT
F × Y T

2 . Note that the lower order terms of ψ
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become small in this spaces. Now, we comment on the function ψ̃j and the operator Tj . We
put

Tjψ̃Pj := Aj
P2(t,D)ψ̃Pj : j = 1, . . . ,M1

Tj(ψ̃Pj , ψ̃Fj ) :=
(

Aj
P2(t,D)ψ̃Pj , Aj

F2(t,D)ψ̃Fj ,

BjP2(t,D)ψ̃Pj − BjF2(t,D)ψ̃Fj , λ0zγ|Rn (ψ̃Pj − ψ̃Fj )
)

: j = M1 + 1, . . . ,M2

Tjψ̃Fj := Aj
F2(t,D)ψ̃Fj : j = M2 + 1, . . . ,M3

Tjψ̃Fj :=
(

Aj
F2(t,D)ψ̃Fj , γ|Rn ψ̃

F
j

)

: j = M3 + 1, . . . ,M4.

To ensure that GjCj,2(ψ) − Tjψ̃j lies in E the function ψ̃j has to solve the local elliptic
problems zT·Tjψ̃j = GjzT·Cj,2(ψ), i.e.

zT·Aj
P2(t,D)ψ̃Pj =GjzT·CPj,2(ψP ), (t, y) ∈ J × R

n+1 : j = 1, . . . ,M1

zT·Aj
F2(t,D)ψ̃Fj =GjzT·CFj,2(ψF ), (t, y) ∈ J × R

n+1 : j = M2 + 1, . . . ,M3

zT·Aj
F2(t,D)ψ̃Fj =GjzT·CFj,2(ψF ), (t, y) ∈ J × R

n+1
+ ,

ψ̃Fj = 0, (t, y) ∈ J × R
n × {0} : j = M3 + 1, . . . ,M4

and for j = M1 + 1, . . . ,M2

zT·Aj
P2(t,D)ψ̃Pj =GjzT·CPj,2(ψP ), (t, y) ∈ J × R

n+1
+ ,

zT·Aj
F2(t,D)ψ̃Fj =GjzT·CFj,2(ψF ), (t, y) ∈ J × R

n+1
−

zT·BjP2(t,D)ψ̃Pj − zT·BjF2(t,D)ψ̃Fj =GjzT·Cj,2(ψP, ψF ), (t, y) ∈ J × R
n × {0},

ψ̃Pj − ψ̃Fj = 0, (t, y) ∈ J × R
n × {0}.

Observe that the inhomogeneities GjCkj,2(ψ
k) belong to H1/2

p (J ; Lp(R
n+1)) respectively in the

half spaces H1/2
p (J ; Lp(R

n+1
± )), and GjCj,2(ψ

P, ψF ) ∈ H1/2
p (J ; B1−1/p

pp (Rn)). According to the

second statement of Proposition 3.1, the unique solutions ψ̃j of these local problems belong
to

H1/2
p (J ; H2

p(R
n+1)), for j = 1, . . . ,M1,M2 + 1, . . . ,M3,

H1/2
p (J ; H2

p(R
n+1
+ ) × H2

p(R
n+1
− )), for j = M1 + 1, . . . ,M2,

H1/2
p (J ; H2

p(R
n+1
+ ) ∩

◦
H1
p(R

n+1
+ )), for j = M3 + 1, . . . ,M4.

Now, we are in the position to treat the solution formula (3.52), i.e. to show injectivity.
Considering vanishing data, ρ = 0, and using the above decomposition of Cj(w,ψ) leads to
the representation

(w,ψ) =

M4
∑

j=1

ϕ̃j(G
j)−1SjGjCj,1(w) +

M4
∑

j=1

ϕ̃j(G
j)−1Sj [GjCj,2(ψ)−Tjψ̃j ] +

M4
∑

j=1

ϕ̃j(G
j)−1SjTjψ̃j .

At first, we want to delve into the last sum. The functions (wj , ψj) = SjTjψ̃j solve local
full, half and two phase problems arising from the localisation, where the inhomogeneities
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are given by Tjψ̃j . If we decompose the local electrical potentials as follows ψj = ψj + ψ̃j

then we see that (wj , ψj) = SjTjψ̃j is equivalent to

(wj , ψj) = Sj0 ≡ 0 and ψ̃j = SejG
jzT·Cj,2(ψ).

Here Sej ≡ (zT·Tj)−1, j = 1, . . . ,M4, denote the local solution operators (resolvents) of the
local elliptic problems. Consequently, we obtain

M4
∑

j=1

ϕ̃j(G
j)−1SjTjψ̃j =

(

0,

M4
∑

j=1

ϕ̃j(G
j)−1SejGjzT·Cj,2(ψ)

)

=: (0,K(t)ψ),

and thus

(w,ψ −K(t)ψ) =

M4
∑

j=1

ϕ̃j(G
j)−1SjGjCj,1(w) +

M4
∑

j=1

ϕ̃j(G
j)−1Sj [GjCj,2(ψ)−Tjψ̃j ].

It is obvious that K(t) is a compact operator for all t ∈ J in view of the lower order terms
Cj,2(ψ). More precisely, we have

K(·) ∈ C(J ;K(H2
p(ΩP ) × H2

p,Γ(ΩF ))) ∩ C1/2(J ;K(H1
p(ΩP ) × H1

p,Γ(ΩF ))),

where K(X) denotes the set of all compact operators from X into X. The time regularity of
K(t) arises from the regularity of the coefficients ak. In Proposition 3.1 we have seen that
these coefficients have enough time regularity in order to study the elliptic problem in Hθ

p(J),
θ ∈ [0, 1/2]. This fact implies the above property of K(t).

Thus, the goal consists in using the Fredholm alternative in order to invert I −K(t) and
by the above time regularity to conclude that (I−K(·))−1 is bounded in ZP ×ZF . Therefore,
we have to establish that I −K(t) is injective, i.e. ψ −K(t)ψ = 0 implies ψ = 0. However,
this property is also an trivial consequence of 0 ∈ ρJ (E(t,D)). Observe that E(t,D)ψ = 0 is
equivalent to

Ej(t,D)Gjϕjψ = GjCej (ψ) ≡ GjzT·Cj,2(ψ).

After employing the resolvent Sej and summing up we obtain

ψ =
∑

j

ϕj(G
j)−1SejGjzT·Cj,2(ψ) ≡ K(t)ψ.

The equivalence of the latter action arises from 0 ∈ ρJ (E(t,D)). Since E(t,D)ψ = 0 is only
satisfied for ψ = 0 we deduce that I −K(t) is injective for all t ∈ J . We have achieved

(w,ψ) = (I, (I −K(t))−1)







M4
∑

j=1

ϕ̃j(G
j)−1SjGjCj,1(w) +

M4
∑

j=1

ϕ̃j(G
j)−1Sj [GjCj,2(ψ)−Tjψ̃j ]







=: Sε(w,ψ).

76



Now, we are able to estimate the right hand side so that all terms become small for T tending
to zero.

‖Sε(w,ψ)‖
0ZT

P ×0ZT
F ×0ZT ≤ C‖(I −K)−1‖B(ZP×ZF )

{ M4
∑

j=1

[

‖Cj,1(w)‖XT
P ×XT

F ×YT
2

+ ‖Cj,2(ψ) ‖XT
P ×XT

F ×Y T
2,ΓP

]

+

M1
∑

j=1

‖Tjψ̃Pj ‖Lp(J ;Lp(Rn+1;RN ))

+

M2
∑

j=M1+1

‖Tjψ̃j‖Lp(J ;Lp(Rn+1
+ ;RN ))×Lp(J ;Lp(Rn+1

− ;RN ))×Y T
2 (Rn)

+

M3
∑

j=M2+1

‖Tjψ̃Fj ‖Lp(J ;Lp(Rn+1;RN )) +

M4
∑

j=M3+1

‖Tjψ̃Fj ‖Lp(J ;Lp(Rn+1
+ ;RN ))

}

Here, we have already used that the term Cj,2(ψ) − Tjψ̃j lies in E, and thus we only need to
carry out the estimation in XT

P ×XT
F × Y T

2,ΓP
. By estimating S1(w,ψ) we have seen that the

lower order terms of w gives rise to a constant c(T ) getting small for T → 0 as well as the
lower order terms of ψ in spaces XT

P , XT
F and Y T

2,ΓP
, i.e. we have

‖Cj,1(w)‖XT
P ×XT

F ×YT
2

+ ‖Cj,2(ψ) ‖XT
P ×XT

F ×Y T
2,ΓP

≤ c(T )‖(w,ψ)‖ZT
P ×ZT

F ×ZT .

Therefore, it remains to show the smallness of the norms ‖Tjψ̃j‖. For discussing these
terms we restrict to the second sum in order to take the effort low. In virtue of Propo-
sition 3.55, we know that the local functions ψ̃j = SejGjzT·Cj,2(ψ) belong to the regularity

class H1/2
p (J ; H2

p(R
n+1
+ ) × H2

p(R
n+1
− )) due to the fact that GjzT · Cj,2(ψ) possess the regular-

ity H1/2
p (J ; Lp(R

n+1
+ ) × Lp(R

n+1
− ) × B1−1/p

pp (Rn)). Using this extra time regularity gives the
estimate

‖Tjψ̃j‖Lp(J ;Lp(Rn+1
+ ;RN ))×Lp(J ;Lp(Rn+1

− ;RN ))×Y T
2 (Rn) ≤ C(‖(ψ̃Pj , ψ̃Fj )‖Lp(J ;H2

p(Rn+1
+ )×H2

p(Rn+1
− ))

+
∑

k=P,F

‖∂yn+1
ψ̃kj ‖B

1/2−1/2p
pp (J ;Lp(Rn))∩Lp(J ;B

1−1/p
pp (Rn))

)

≤ C(T 1/2‖(ψ̃Pj , ψ̃Fj )‖
H

1/2
p (J ;H2

p(Rn+1
+ )×H2

p(Rn+1
− ))

+ (T 1/2p + T 1/2)
∑

k=P,F

‖∂yn+1
ψ̃kj ‖H

1/2
p (J ;B

1−1/p
pp (Rn))

)

≤ Cmax{T 1/2, T 1/2p}‖(ψ̃Pj , ψ̃Fj )‖
H

1/2
p (J ;H2

p(Rn+1
+ )×H2

p(Rn+1
− ))

.

Continuity of the solution operator Sej entails

‖(ψ̃j , ψ̃j)‖H
1/2
p (J ;H2

p(Rn+1
+ )×H2

p(Rn+1
− ))

= ‖SejGjzT·Cj,2(ψ)‖
H

1/2
p (J ;H2

p(Rn+1
+ )×H2

p(Rn+1
− ))

≤ C‖zT·Cj,2(ψ)‖
H

1/2
p (J ;Lp(ΩP )×Lp(ΩF )×B

1−1/p
pp (ΓP ))

≤ C‖ψ‖ZP×ZF
,

and in the end

‖Tjψ̃j‖Lp(J ;Lp(Rn+1
+ ;RN ))×Lp(J ;Lp(Rn+1

− ;RN ))×Y T
2 (Rn) ≤ c(T )‖ψ‖ZP×ZF

.
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Finally, all estimations imply that Sε becomes small for T → 0 such that the Neumann’s
series results in (I + Sε)−1 ∈ B(0Z

T
P × 0Z

T
F × 0ZT ). This shows that (w,ψ) is equal zero if

% = 0, i.e. there is a left inverse of L denoted by SL.
To show that SL is surjective, i.e. there also exists a right inverse of L, we have to establish

that the function (w,ψ) = SL% satisfying (w,ψ) = S0ρ + Sε(w,ψ) solves (3.31). To make
use of local problems we have to create the operator which implicates the left hand sides
of the local problems. Therefore, we introduce the operator Ls(w,ψ) with Ak1(D), Ak2(D)
replaced by

As
k1(D) := Ak1(D) +Dk, As

k2(D) := Ak2(D) +Mkũk.

By this means we have shifted the operators Ak1(D) and Ak2(D), cp. with the local problems.
We further set Llow := Ls − L.

We turn to the surjectivity respectively (w,ψ) given by (3.52) solves the problem L(w,ψ) =
%. The main idea consists in commuting ϕ̃j with L in order to exploit that (wj , ψj) = SjGjϕjρ
solves a local problem. After applying Ls to S0ρ we get

M4
∑

j=1

Lsϕ̃j(Gj)−1(wj , ψj) =

M4
∑

j=1

ϕ̃j(G
j)−1Lj(wj , ψj) + [Ls, ϕ̃j ](Gj)−1(wj , ψj) .

The local transformed operator Lj coincides exactly with the left hand side of each local
problem, so that we may deduce Lj(wj , ψj) = Gjϕjρ+GjCj(w,ψ). However, this implies

M4
∑

j=1

ϕ̃j(G
j)−1Lj(wj , ψj) = ρ+

M4
∑

j=1

ϕ̃jCj(w,ψ)

due to ϕ̃j ≡ 1 on suppϕj . Furthermore, the operator of perturbation Cj , see (3.53), equals
[Ls, ϕj ]−ϕjLlow. This can be traced back to the fact that all equations without any differential
operators do not generate terms of lower order.

By combining these facts with
∑

j ϕj = 1 and
∑

j [Ls, ϕj ] = 0 leads to the relation

∑

j

ϕ̃jCj(w,ψ) =
∑

j

[Ls, ϕj ](w,ψ) −
∑

j

ϕjLlow(w,ψ) = −Llow(w,ψ).

Finally, the above evaluations imply the identity

Ls(w,ψ) = ρ− Llow(w,ψ) +

M4
∑

j=1

[Ls, ϕ̃j ](Gj)−1(wj , ψj)

and consequently

L(w,ψ) = ρ+

M4
∑

j=1

[Ls, ϕ̃j ](Gj)−1(wj , ψj).

By using (w,ψ) = SL% and keeping in mind that (wj , ψj) = SjGjϕj% + SjCjSL%, we have
shown

LSL% = %+

M4
∑

j=1

[Ls, ϕ̃j ](Gj)−1Sj
{

Gjϕj + CjSL
}

%.
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Now, we set K% :=
∑M4

j=1[Ls, ϕ̃j ](Gj)−1Sj
{

Gjϕj + CjSL
}

% and define ρ := ρ + Kρ. The
operator K only contains lower order terms so that we can achieve ‖K‖ ≤ k < 1 by choosing
T small. Since this procedure was frequently carried out we want to spare ourself of repeating
it. Hence, the above problem can be rewritten as follows

LSL(I + K)−1% = %, (3.59)

which shows that (3.59) gives rise to a right inverse SL(I+K)−1 of L, i.e. we have surjectivity.
Since right and left inverse have to be equal, it must hold that SL = SL(I + K)−1, but this
means K = 0. The inverse operator of L may be written as the Neumann series

L−1 =
∞
∑

l=0

S lεS0 , (3.60)

which completes the proof.
�
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Chapter 4

The Nonlinear Problem

In this chapter we intend to solve the nonlinear problem (1.30). To achieve this, we apply
the maximal Lp regularity result of the linear problems (1.39), (1.40) via the contraction
mapping principle. The latter technique prompts us to derive a fixed point equation which is
associated with the original problem. At this point the linearisation (1.39), (1.40) will enter.
Strictly speaking, we make use of the bijectivity of the solution operator defined by the linear
problem (1.39), (1.40). After rewriting the nonlinear system into this fix point equation, it
boils down to carry out the estimations which are required for establishing contraction and
self-mapping.

4.1 Reformulation

The reformulation of the nonlinear problem (1.30) is carried out in two steps. On the one
hand we use the linearisation developed in Section 1.4 in an appropriate manner, and on the
other hand we invert the operator arising from this procedure. The latter action is justified
by the main result of Chapter 3, Theorem 3.4, which provides invertibility. In other words,
the main idea consists in creating the left hand-side of linear problem (1.39), (1.40). Of
course, this approach produces new terms on the right hand side.

Let J0 = [0, T0] be a compact time interval and set (u, φ) := (uP, uF, ub, φP, φF ). Then the
rewritten problem for (u, φ) reads as follows

∂tu
P + AP1(D)uP + AP2(D)φP = FP (t, x, uP, φP ), (t, x) ∈ J0 × ΩP

∂tu
F + AF1(D)uF + AF2(D)φF = FP (t, x, uF, φF ), (t, x) ∈ J0 × ΩF

BP1(D)uP+ BP2(D)φP= BF1(D)uF+ BF2(D)φF+G(t, x, uP, uF, φ), (t, x) ∈ J0 × ΓP

Ũ−1
P (t, x)uP − Ũ−1

F (t, x)uF + λ0z(φ
P − φF ) = H(t, x, uP, uF ), (t, x) ∈ J0 × ΓP

uF = ub, (t, x) ∈ J0 × Γ

uP (0, x) = uP0 (x), x ∈ ΩP , uF (0, x) = uF0 (x), x ∈ ΩF ,

zT·uP (t, x) = 0, (t, x) ∈ J0 × ΩP , zT·uF (t, x) = 0, (t, x) ∈ J0 × ΩF ,

(4.1)

and

d

dt
ub(t) +

1

τ
ub(t) + ab

∫

Γ

BF1(D)uF+ BF2(D)φFdσ = F b(t, ub, uF, φF ), t ∈ J0

ub(0) = ub0, zT·ub(t) = 0, t ∈ J0.

(4.2)
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The right-hand side terms F P , FF , G, H, F b are defined by

F k(t, x, uk, φk) := [Ak2(t, x, ũ
k, D) −Ak2(t, x, u

k, D)]φk +Rk(t, x, uk), k = P, F

G(t, x, uP, uF, φ) := [BP2(t, x, ũ
P, D) − BP2(t, x, u

P, D)]φP

− [BF2(t, x, ũ
F, D) − BF2(t, x, u

F, D)]φF ,

H(t, x, uP, uF ) := γ(t, x, ũP, ũF ) −RũP (t, uP ) +RũF (t, uF ),

F b(t, ub, uF, φF ) :=
1

τ
uf (t) +Rb(t, ub(t)) + ab

∫

Γ

[BF2(t, x, u
F, D) − BF2(t, x, ũ

F, D)]φFdσ.

(4.3)

Call to mind that ũk plays the part of an approximation of uk, i.e. ũk belongs to Zk(E+) with
γ|t ũ

k := uk0 > 0, see Section 1.4. We shall remind of the definitions of γ(t, x) and Rũk(t, uk).
We have set

γ(t, x, ũP, ũF ) :=

[

ln

(

γFi (t, x)ũFi
γPi (t, x)ũPi

)]

1≤i≤N

, Rũk(uk) :=

[

r

(

uki − ũki
ũki

)]

1≤i≤N

, k = P, F ,

where r comes from expanding the logarithm, see (1.36), (1.37). Our next task will consist
in finding an abstract formulation of the equations above with the aim of putting it into a
fixed point problem. For this, we put together the initial data uk0 for k = P, F, b to the vector
u0 := (uP0 , u

F
0 , u

b
0) belonging to

V (E+) := B2−2/p
pp (ΩP ;E+) × B2−2/p

pp (ΩF ;E+) × E+

and set

ZT0 := ZT0
P × ZT0

F × ZT0
b ,

ZT0 :=
{

(φP, φF ) ∈ ZT0
P ×ZT0

F : γ|ΓP
φP − γ|ΓP

φF ∈ Y T0
1,ΓP

}

,

MT0 := X T0
P ×X T0

F ×XT0
b × {(g, hP, hF, u0) ∈ YT0

2 × Y T0
1,ΓP

(RN ) × Y T0
1,Γ(E+) × V (E+) :

(g, hP, hF, u0) enjoy the compatibility conditions } ,
UT0 := UT0

P (E) × UT0
F (E) × C(J0;E), UT0

k (E) := C1/2(J0; C(Ωk;E)) ∩ C(J0; C
1(Ωk;E)).

Now, we comment on the compatibility conditions stated in the space MT0 . As in the
linear problem compatibility conditions are obtained by taking trace t = 0 in the boundary
conditions. In doing so, the condition uF0 (x) = ub0 has to be satisfied on boundary Γ. The
compatibility conditions on boundary ΓP take the form

dPi (0, x)∂νu
P
0,i(x) +mP

i (0, x)u
P
0,i(x)∂νφ

P(0, x) = dFi (0, x)∂νu
F
0,i(x) +mF

i (0, x)u
F
0,i(x)∂νφ

F(0, x),

λ0zi(φ
P (0, x) − φF (0, x)) = ln

(

γFi (0, x)uF0,i(x)

γPi (0, x)uP0,i(x)

)

, x ∈ ΓP , i = 1, . . . , N.

where the latter equation is equivalent to

uP0,i(x) = uF0,i(x)
γF

i (0,x)

γP
i (0,x)

eλ0zi(φ
F (0,x)−φP (0,x)), x ∈ ΓP , i = 1, . . . , N.
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In compatibility conditions on boundary ΓP the electrical potentials φP (0, x), φF (0, x) are
involved making up one degree of freedom. More precisely, each condition comprises N
equations due to N species, whereas the electrical potentials satisfy a scalar-valued elliptic
problem including these quantities. The potentials at t = 0 can be interpreted as the weak
solution of the following elliptic problem

zT·AP2(0, u
P
0 , D)φP0 + zT·AP1(0, D)uP0 = 0, x ∈ ΩP ,

zT·AF2(0, u
F
0 , D)φF0 + zT·AF1(0, D)uF0 = 0, x ∈ ΩF ,

zT·BP2(0, u
P
0 , D)φP0 + zT·BP1(0, D)uP0 =zT·BF2(0, u

F
0 , D)φF0 + zT·BF1(0, D)uF0 , x ∈ ΓP ,

λ0|z|2(φP0 − φF0 ) = zT·γ(0, x, uP0 , uF0 ), x ∈ ΓP ,

φF0 = 0, x ∈ Γ,

(4.4)

which can be obtained from (1.30) after applying zT · and taking traces in t = 0 .
We now define the nonlinear operator Fũ(u, φ) being composed of the new right-hand side

of (4.1) by means of

Fũ(u, φ) :=
(

FP, FF, F b, G,H, ub
)

.

It is an immediate consequence of definitions stated in (4.3) that the nonlinear operator
Fũ(u, φ) is a mapping from ZT0 × ZT0 to X T0

P × X T0
F ×XT0

b × YT0
2 × Y T0

1,ΓP
(RN ) × Y T0

1,Γ(E+).

In fact, if (u, φ) ∈ ZT0 × ZT0 , then this corresponds, as we know from Theorem 3.4, to the
regularity classes

Ak2φ
k ∈ X T0

k , Bk2(D)φk ∈ Y T0
2,ΓP

(RN ), γ|ΓP
uk ∈ Y T0

1,ΓP
(E), γ|tu

k ∈ B2−2/p
pp (Ωk;E).

In the following we associate (4.1) and (4.2) with the abstract equation

L(u, φ) = (Fũ(u, φ), u0) in MT0 . (4.5)

The goal consists in inverting the operator L so that we obtain a fixed point equation. In
Section 3.3 maximal regularity has been proved, i.e. L is a continuous one-to-one mapping
from the space of data MT0 to the class of maximal regularity ZT0 ×ZT0 , i.e

L−1 ∈ Lis(MT0 , ZT0 ×ZT0). (4.6)

Now, we focus on the operator norm of L−1, in particular on independence from the length
of time interval J0 = [0, T0]. This fact is needed since we want to obtain contraction and
self-mapping by choosing T ∈ (0, T0] sufficiently small. Therefore, we have to guarantee that
all constants coming from estimations of L−1 are independent of T . In general one can not
prove this assertion, except in case of null initial data. Thus we introduce the spaces

ZT0 := {w ∈ ZT0 : w(0) = 0}, ZT0
0 :=

{

φ ∈ ZT0 : φ(0) = 0
}

,

MT0
0 :=

{

(ρ, u0) ∈ MT0 : ρ(0) = 0, u0 = 0}, UT0
0 := {v ∈ UT0 : v(0) = 0}.

We mean ρ(0) by all components of ρ having trace in t. We consider the linear problem
(3.31), (3.33) with initial data u0 = 0 and ρ ∈ X T0

P ×X T0
F ×XT0

b ×YT0
2 ×Y T0

1,ΓP
(RN )×Y T0

1,Γ(E+)
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satisfying compatibility conditions. Observe that the latter assumption implies (ρ, 0) ∈ MT0
0 .

This circumstance enables us to extend the data ρ as follows. If a component ρi(t) of ρ only
possesses Hα

p -regularity in time with α < 1/p then we set

ER+ρi(t) =

{

ρi(t) : t ∈ [0, T0]
0 : t ∈ [T0,∞)

,

otherwise we put

ER+ρi(t) =







ρi(t) : t ∈ [0, T0]
ρi(2T0 − t) : t ∈ [T0, 2T0]
0 : t ∈ [2T0,∞)

.

It is easily seen that ER+ is an admissible extension for each space appearing in MT0 . That
means ER+ is bounded and the norm does not depend on T , e.g. we have ‖ER+ρ‖ ≤ 2‖ρ‖.
Having this in mind and employing Theorem 3.4 we obtain a unique solution (w,ψ) ∈ Z0×Z0

and the following estimation is valid.

‖(w,ψ)‖
Z

T0
0 ×Z

T0
0

≤ ‖(w,ψ)‖Z0×Z0 ≤ ‖L−1‖B(M0,Z0×Z0)‖(ER+ρ, 0)‖M0

=: ‖L−1
R+

‖‖(ER+ρ, 0)‖M0 ≤ 2‖L−1
R+

‖‖(ρ, 0)‖
M

T0
0

The solution operator has been subscripted with R+ in order to refer to the interval being
considered here. The above estimation provides ‖L−1

[0,T0]‖ ≤ 2‖L−1
R+

‖ =: Cmax which shows
the desirable result.

4.2 Existence and Uniqueness

We now come to the result which ensures existence and uniqueness on a maximal interval of
existence [0, tmax(u0)). This interval is characterised by the condition that limt→tmax(u0) u(t)
does not exist in V (E+), since otherwise we may apply Theorem 3.4 with initial value
u(tmax(u0)) = limt→tmax(u0) u(t) to obtain a contradiction to maximality. Moreover, we

can show positivity of u = (uP, uF, ub) if the initial data are positive, that means, for all
i ∈ {1, . . . , N} and k = P, F, b we have uki > 0 whenever uk0,i > 0.

Theorem 4.1 Let ΩP , ΩF be bounded domains in R
n+1 with C2- boundary, ΓP := ∂ΩP ,

∂ΩF = ΓP ∪ Γ and dist (ΓP ,Γ) > 0. Let (n+ 1) + 2 < p <∞ and suppose that

1. dki ∈ C1/2(J0; C
1(Ωk)), d

k
i (t, x) > 0 for (t, x) ∈ J0 × Ωk, i ∈ {1, . . . , N}, k = P, F ;

2. γki ∈ B1−1/2p
pp (J0; Lp(ΓP ; R+)) ∩ Lp(J0; B

2−1/p
pp (ΓP ; R+)), i ∈ {1, . . . , N}, k = P, F ;

3. u0 = (uP0 , u
F
0 , u

b
0) ∈ B2−2/p

pp (ΩP ;E+) × B2−2/p
pp (ΩF ;E+) × E+, uk0,i > 0, k = P, F, b, ∀i;

4. uf ∈ Lp(J0;E+); Rk, k = P, F and Rb satisfy (R1)-R(3) and (R4)-(R6), respectively;

5. compatibility conditions:

(a) ln(γPi (0, x)uPi,0(x)) + λ0ziφ
P
0 (x) = ln(γFi (0, x)uFi,0(x)) + λ0ziφ

F
0 (x) in B2−3/p

pp (ΓP )
for i ∈ {1, . . . , N);
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(b) DP (0, x)∂νu
P
0 +MP (0, x)uP0 ∂νφ

P
0 = DF (0, x)∂νu

F
0 +MF (0, x)uF0 ∂νφ

F
0

in B1−3/p
pp (ΓP ; RN ), where (φP0 , φ

F
0 ) is given as solution of (4.4).

(c) uF0 (x) = ub0.

Then there exists tmax > 0 such that for any T0 < tmax the nonlinear problem (4.1), (4.2)
admits a unique solution (uP, uF, ub, φP, φF ) on J0 = [0, T0] in the maximal regularity class
Z(J0) ×Z(J0). In particular, we have

uk ∈ C1((0, tmax); C(Ωk)) ∩ C((0, tmax); C
2(Ωk)), k = P, F,

φk ∈ C1/2((0, tmax); C(Ωk)) ∩ C((0, tmax); C
2(Ωk)), k = P, F .

Moreover, the solution (uP , uF , ub) is positive and the map

(uP0 , u
F
0 , u

b
0) −→ (uP (t), uF (t), ub(t)) (4.7)

defines a local semiflow on the natural phase space V (E+) in the autonomous case.

Proof. (a) Unique existence on [0, T ] for T sufficiently small. By the above considerations
we have seen that the evolution problem (1.30) can be converted into the equivalent problem
(4.5). This equation is solved locally via the contraction mapping theorem. For this purpose
we introduce a reference function (w,ψ) defined as the solution of the linear problem

L(w,ψ) = (Fũ(ũ, 0), u0), in MT . (4.8)

The choice ũ ∈ ZT (E+), with ũ(0) = u0 and φ = 0 entail that the functions RũP , RũF and
all terms containing an electrical potential disappear. In fact, one computes

Fũ(ũ, 0) =
(

RP (t, x, ũP ), RF (t, x, ũF ), 0, γ(t, x, ũP, ũF ), 1
τ
uf (t) +R(t, ũb)

)

.

Note that this right hand side belongs to MT , in particular, the compatibility conditions are
satisfied. So according to Theorem 3.4 we obtain a unique solution (w,ψ) which belongs to
the space of maximal regularity. Next we introduce a ball ZT ×ZT with radius δ and center
point (w,ψ) as follows

Σδ,T :=
{

(v, ϕ) ∈ ZT ×ZT : (v(0), ϕ(0)) = (u0, φ0) , ‖(v, ϕ) − (w,ψ)‖ZT×ZT ≤ δ
}

,

which is a closed subset of ZT × ZT . We want to show that L−1Fũ(Σδ,T ) ⊂ Σδ,T and
that L−1Fũ is a contraction in the norm of ZT × ZT . These two properties can be shown,
provided the parameters T ∈ (0, T0] and δ ∈ (0, 1] are chosen properly. Before we will
introduce some auxiliary functions depending on parameter T . These will be useful for the
upcoming estimates. We set

ψ1(T ) := ‖(w,ψ)‖ZT×ZT := ‖w‖ZT + ‖ψ‖ZT , ψ2(T ) := ‖w − ũ‖UT
0
≤ C‖w − ũ‖ZT

0
,

ψ3(T ) := max







∑

k=P,F

max
v∈Σδ,T

‖R′
ũk(v)‖

0Y T
1,ΓP

(B(E)),

∑

k=P,F

max
s∈[0,1]

‖R′
ũk(wk+s(ũk−wk))‖

0Y T
1,ΓP

(B(E))







,

ψk4 (T ) := ‖lk‖Lp([0,T ];Lp(Ωk;RN )), k = P, F , ψb4(T ) := ‖lb‖Lp(0,T ).
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Apparently, ψ2(T ) → 0 as T → 0 due to w|t=0
− ũ|t=0

= 0. Observe that ψi(T ), ψk4 (T ) → 0,
i = 1, 3, k = P, F, b as T → 0 by virtue “integral norms” concerning the time variable
t ∈ [0, T ]. Now, we come to self-mapping and contraction. Let (u, φ), (u, φ) ∈ Σδ,T be given.
By using the result of maximal regularity L−1 ∈ Lis(MT , ZT × ZT ) we may estimate as
follows

‖L−1(Fũ(u, φ), u0) − (w,ψ)‖ZT
0 ×ZT

0
= ‖L−1(Fũ(u, φ) −Fũ(ũ, 0), 0)‖ZT

0 ×ZT
0

≤ ‖L−1
R+

‖‖(Fũ(u, φ) −Fũ(ũ, 0), 0)‖MT
0
.

In a similar way we obtain for the contraction

‖L−1(Fũ(u, φ), u0)−L−1(Fũ(u, φ), u0)‖ZT
0 ×ZT

0
≤ ‖L−1

R+
‖‖(Fũ(u, φ)−Fũ(u, φ), 0)‖MT

0
.

With a view of both estimations we perceive that it remains to consider differences of functions
(Fũ, 0) in MT

0 . In case of self-mapping we find

‖(Fũ(u, φ) −Fũ(ũ, 0), 0)‖MT
0
≤
∑

k=P,F

‖Rk(·, ·, uk) −Rk(·, ·, ũk)‖XT
k

‖Rb(·, ub)−Rb(·, ũb)‖XT
b

+
∑

k=P,F

{

‖[Ak2(·, ·, ũk, D) −Ak2(·, ·, uk, D)]φk‖
0XT

k

+‖[Bk2(·, ·, ũk, D) − Bk2(·, ·, uk, D)]φk‖
0YT

2
+ ‖Rũk(uk)‖

0Y T
1,ΓP

(RN )

}

+ ab‖
∫

Γ

[

BF2(·, x, uF, D) − BF2(·, x, ũF, D)
]

φFdσ‖XT
b
. (4.9)

We are now going to estimate the term ‖Rũk(uk)‖. Due to R′
ũk(ũk) = 0 we have

∣

∣

∣Rũk(uk)
∣

∣

∣ ≤
∣

∣

∣Rũk(uk) −Rũk(wk)
∣

∣

∣+
∣

∣

∣Rũk(wk) −Rũk(ũk)
∣

∣

∣

≤ max
s∈[0,1]

∣

∣

∣
R′
ũk(wk + s(uk − wk))

∣

∣

∣

∣

∣

∣
uk − wk

∣

∣

∣

+ max
s∈[0,1]

∣

∣

∣R′
ũk(wk + s(ũk − wk))

∣

∣

∣

∣

∣

∣wk − ũk
∣

∣

∣ ,

and this relation implies
∑

k=P,F

‖Rũk(uk)‖
0Y T

1,ΓP
(RN ) ≤ C3ψ3(T )

[

δ + ψ2(T )
]

.

The last term of (4.9) can be treated as follows

‖
∫

Γ

[

BF2(·, x,ũF,D)−BF2(·, x,uF,D)
]

φFdσ‖XT
b
≤ |Γ|‖MF (ũF−uF )‖

0C(J ;C(Γ;RN ))‖∂νφF ‖Lp(J ;C(Γ))

≤ CT 1/2‖ũF − uF ‖
0C1/2(J ;C(ΩF ;RN ))‖φF ‖ZT

F
≤ CT 1/2(δ + ψ2(T ))(δ + ψ1(T )).

Due to the assumptions (R3) and (R7) for nonlinearities Rk, k = P, F and Rb, respectively,
we achieve
∑

k=P,F

‖Rk(·, ·, uk) −Rk(·, ·, ũk)‖XT
k

+ ‖Rb(·, ub)−Rb(·, ũb)‖XT
b
≤ C1(δ + ψ2(T ))

∑

k=P,F,b

ψk4 (T ).
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Taking into account the mapping properties of operators Ak2 stated in Lemma 2.3 we bring
off

∑

k=P,F

‖[Ak2(·, ·, ũk, D) −Ak2(·, ·, uk, D)]φk‖
0XT

k
≤ C‖ũk − uk‖

0UT
k
‖φk‖ZT

k

≤ C(δ + ψ2(T ))(δ + ψ1(T ))

In the long run we have to study BP2 in YT2 . The estimation in the space 0Y
T
2,ΓP

(RN ) can be
obtained by Lemma 2.3 resulting in

∑

k=P,F

‖[Bk2(·, ·, ũk, D) − Bk2(·, ·, uk, D)]φk‖
0Y T

2,ΓP
(RN ) ≤ C

∑

k=P,F

‖ũk − uk‖
0UT

k
‖∂νφk‖Y T

2,ΓP

≤ C(δ + ψ2(T ))(δ + ψ1(T ))

To get over the estimation in H1/2
p (J ; B−1/p

pp (ΓP )) we are going to derive a relation between the
data zT·G(t, x, uP, uF, φ) and zT·F k(t, x, uk, φk), which is similar to the estimation of Bj,ε(D)
in the proof of Theorem 3.4. At first, we compute the expression

∑

k=P,F

∫

Ωk

zT·F k(t, x, uk, φk)ṽ dx = −
∑

k=P,F

∫

Ωk

∇ · ([ak(t, x, ũk) − ak(t, x, uk)]∇φk)ṽ dx,

with ṽ ∈
◦
H1
p′(Ω). Integrating by parts and using ṽ = 0 on Γ yields

∑

k=P,F

∫

Ωk

zT·F k(t, x, uk, φk)ṽ dx = −
∫

ΓP

(

[aP (t, x, ũP ) − aP (t, x, uP )]∂νφ
P

− [aF (t, x, ũF ) − aF (t, x, uF )]∂νφ
F
)

ṽ dσ +
∑

k=P,F

∫

Ωk

(

[ak(t, x, ũk) − ak(t, x, uk)]∇φk
)

∇ũ dx

≡ −
∫

ΓP

zT·G(t, x, uP, uF, φ)ṽ dσ +
∑

k=P,F

∫

Ωk

(

[ak(t, x, ũk) − ak(t, x, uk)]∇φk
)

∇ũ dx.

We again consider the above identity for the times t+ h, t ∈ J and take the difference from
each other. By using duality and Hölder’s inequality we obtain

∫

ΓP

[zT·G(t+h, x)−zT·G(t, x)]v(x) dσ ≤ ‖ṽ‖ ◦
H1

p′ (Ω)

{

∑

k=P,F

‖zT·F k(t+h)−zT·F k(t)‖H−1
p (Ωk)+

‖[ak(t+h, ũk(t+h))−ak(t+h, uk(t+h))]∇φk(t+h)−[ak(t, ũk(t))−ak(t, uk(t))]∇φk(t)‖Lp(Ωk)

}

,

for all ṽ ∈ H1
p′(Ω), with ṽ|ΓP

= v. Taking the infimum over ‖ṽ‖
0H1

p′ (Ω) and using

inf{‖ṽ‖
0H1

p′ (Ω) : ṽ|ΓP
= v} ≤ C‖v‖

B
1−1/p′
p′p′ (ΓP )
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gives

‖zT·G(t+ h) − zT·G(t)‖
B

−1/p
pp (ΓP )

≤ C

{

∑

k=P,F

‖zT·F k(t+ h) − zT·F k(t)‖
0H−1

p (Ωk)+

‖[ak(t+h, ũk(t+h))−ak(t+h, uk(t+h))]∇φk(t+h)−[ak(t, ũk(t))−ak(t, uk(t))]∇φk(t)‖Lp(Ωk)

}

.

Finally, after applying that norm of H1/2
p (J) which is characterised by means of differences

and taking account that the coefficients aP , aF belong to C1/2(J ; C(Ωk)) we may estimate as
follows

‖zT·G‖
0H

1/2
p (J ;B

−1/p
pp (ΓP ))

≤ C

{

‖zT·F k(uk, φk)‖
0H

1/2
p (J ;H−1

p (Ωk))

+ ‖ak(uk)−ak(ũk)‖
0C1/2(J ;C(Ωk))‖φk‖H

1/2
p (J ;H1

p(Ωk))

≤ C

{

‖zT·F k(uk, φk)‖
0H

1/2
p (J ;H−1

p (Ωk))
+
(

‖uk − wk‖
0C1/2(J ;C(Ωk))

+ ‖wk − ũk‖
0C1/2(J ;C(Ωk))

)

·
(

‖φk − ψk‖
0ZT

k
+ ‖ψk‖ZT

k

)

}

≤ C

{

∑

k=P,F

‖zT·F k(uk, φk)‖
0H

1/2
p (J ;H−1

p (Ωk))

+ (δ + ψ2(T ))(δ + ψ1(T ))

}

.

Thus the desired result is achieved in view of having estimates of F k in X T
k . By taking

account all estimates above we accomplish

‖(Fũ(u, φ) − Fũ(ũ, 0), 0)‖MT
0

≤ M1(δ + ψ2(T ))[δ + ψ1(T ) + ψ3(T ) +
∑

k=P,F,b

ψk4 (T )].

Note that all constants appearing in the above estimations are independent of T . In case of
contraction we proceed in the same line. By using the triangle inequality we get

‖(Fũ(u, φ)−Fũ(u, φ), 0)‖MT
0
≤
∑

k=P,F

‖Rk(·, ·, uk) −Rk(·, ·, uk)‖XT
k
+

‖Rb(·, ub) −Rb(·, ũb)‖XT
b

+
∑

k=P,F

{

‖[Ak2(·, ·, ũk, D) −Ak2(·, ·, uk, D)](φk − φ
k
)‖

0XT
k

+ ‖[Ak2(·, ·, uk, D)φk−Ak2(·, ·, uk, D)]φ
k‖

0XT
k

+ ‖[Bk2(·, ·, ũk, D) − Bk2(·, ·, uk, D)](φk − φ
k
)‖

0YT
2

+‖[Bk2(·, ·, uk, D) − Bk2(·, ·, uk, D)]φ
P ‖

0YT
2

+ ‖Rũk(uk) −Rũk(uk)‖
0Y T

1,ΓP
(RN )

}

+ ‖ub − ub‖
0Y T

1,Γ(E) + ab‖
∫

Γ

[

BF2(·, x, ũF, D) − BF2(·, x, uF, D)
]

(φF − φ
F
)dσ‖XT

b

+ ab‖
∫

Γ

[

BF2(·, x, uF, D) − BF2(·, x, uF, D)
]

φ
F
dσ‖XT

b
.
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We continue with

‖ub − ub‖
0Y T

1,Γ(E) ≤C‖ub − ub‖
0B

1−1/2p
pp (J ;E)

≤ CTα‖ub − ub‖
0B

1−1/2p+α
pp (J ;E)

≤CTα‖ub − ub‖ZT
b
,

where we have to demand 0 < α < 1/2p to ensure the embedding H1
p(J) ↪→ B1−1/2p+α

pp (J).
comparing the norms of self-mapping with the above terms we perceive that this difference
is the sole new expression which is added. By treating the other norms as in the case of
self-mapping we thus get

‖(Fũ(u, φ)−Fũ(u, φ), 0)‖MT
0
≤M2[

3
∑

i=1

ψi(T ) +
∑

k=P,F,b

ψk4 (T ) + δ + Tα]‖(u, φ) − (u, φ)‖
0ZT×0ZT .

If we choose (δ, T ) ∈ (0, 1] × (0, T0] sufficiently small, then we succeed in estimating (4.9) by
δ, i.e. L−1Fũ is a self-mapping. Moreover, by a possibly smaller choice of δ and T we attain
∑3

i=1 ψi(T ) +
∑

k=P,F,b ψ
k
4 (T ) + δ + Tα ≤ 1/(2M2) which implies contraction. Hence, the

contraction mapping principle yields a unique fixed point of equation (4.5) in Σδ,T which is
the unique strong solution on J = [0, T ] in the regularity space ZT ×ZT .

(b) Continuation, positivity and regularity. In order to carry out the continuation of the
solution (u, φ), we have to ensure that u(T ) belongs to V (E+). Note that the regularity
follows directly from the trace theorem. On the one hand, the positivity of u(T ) is required
for applying Theorem 3.4 to the linear problem. In fact, the function uk, which is incorporated
in the coefficient ak = zT·Mkuk of differential operator zT·Ak2(D), must not vanish in order
to guarantee that the elliptic problem for the potentials is regular. On the other hand,
uk is inserted in the logarithm appearing in boundary condition of Dirichlet type on ΓP .
Nevertheless, we can perform the continuation as long as u is positive.

If the right hand sides of parabolic equations have more regularity, e.g. Rk ∈ C1, then we
can establish more regularity of (u, φ) in the interior of domain resp. in the open time interval,
see e.g. Escher, Prüss and Simonett [10] or Prüss [27]. Employing these methods entails
classical solutions in (0, T )×Ωk. This places us in a position to apply the maximum principle.
In fact, assume that there exists an index i ∈ {1, . . . , N} and a point (t0, x0) ∈ (0, T )×Ωk so
that uki (t0, x0) = 0, uki (t, x) > 0 for all x ∈ Ωk and t < t0, and uki (t0, x) ≥ 0 for x ∈ Ωk. This
assumption implies ∇uki (t0, x0) = 0 and ∆uki (t0, x0) ≥ 0. Keeping in mind the assumptions
and conclusions we derive the inequality

∂tu
k
i (t0, x0) = dki (t0, x0)∆u

k
i (t0, x0) + ∇dki (t0, x0)∇uki (t0, x0)+

mk
i (t0, x0)u

k
i (t0, x0)∆φ

k(t0, x0) + ∇(mk
i (t0, x0)u

k
i (t0, x0))∇φk

+Rki (t0, x0, u
k) ≥ Rki (t0, x0, u

k) ≥ 0,

where the latter inequality is a result from assumption (R3). We achieve

uki (t0, x0) ≥ uki (0, x0) = uki,0(x0) > 0,

which contradicts to the assumption. Hence, we have shown that uP and uF are positive in
Ωk. The next purpose is targeted on positivity on boundary ΓP . Thus, suppose that there
exists an index i ∈ {1, . . . , N} and a point (t0, x0) ∈ (0, T ]×ΓP so that w.l.o.g. uPi (t0, x0) = 0,
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uPi (t, x) > 0 for all x ∈ ΩP and t < t0, and uPi (t0, x) ≥ 0 for x ∈ ΓP . Due to the boundary
condition of Dirichlet type we can deduce that uFi vanishes in (t0, x0) as well. This can be
seen by the following identity

uPi (t, x) =
γFi (t, x)

γPi (t, x)
uFi (t, x)eλ0zi(φ

F (t,x)−φP (t,x)), (t, x) ∈ [0, T ] × ΓP ,

which is equivalent to the original boundary condition. Consequently, the transmission con-
dition takes the form in the point (t0, x0)

dPi (t0, x0)∂νu
P
i (t0, x0) = dFi (t0, x0)∂νu

F
i (t0, x0).

Note that the embedding ZTk ↪→ C(J ; C1(Ωk; R
N )) admits traces in t and x in the above equa-

tion. Now, we want to apply Hopf’s Lemma to produce a contradiction. In view of the fact
that uPi (t0, x) > uPi (t0, x0) = 0 for all x ∈ ΩP we conclude by Hopf’s Lemma ∂νu

P
i (t0, x0) <

0 and thus dPi (t0, x0)∂νu
P
i (t0, x0) < 0. On the other hand we know that uFi (t0, x) >

uFi (t0, x0) = 0 for all x ∈ ΩF . Keeping in mind that the outer normal on ΓP concerning
the domain ΩF points to the opposite direction, we then deduce dFi (t0, x0)∂νu

F
i (t0, x0) > 0.

Combining these inequalities with the above boundary condition leads to a contradiction in
view of the assumption.

Now, we discuss the other boundary segment of ΩF . As above we suppose that there exists
an index i ∈ {1, . . . , N} and a point (t0, x0) ∈ (0, T ]×Γ so that uFi (t0, x0) = 0. On the other
hand, the boundary condition uFi (t, x) = ubi(t) on Γ gives rise to

uFi (t0, x) = ubi(t0) = uFi (t, x0) = 0, ∀x ∈ Γ,

i.e. uFi (t0, x) vanishes on the whole boundary Γ. To derive a contradiction we consider the
bulk equation of ubi evaluated in t0. By using the above results, positivity assumption (R6)
for Rb and ∂νu

F
i ≤ 0 we obtain

d

dt
ubi(t0) =

1

τ
(ufi (t0) − ubi(t0)) − ab

∫

Γ

dFi (t0, x)∂νu
F
i (t0, x)+m

F
i (t0, x)u

F
i (t0, x)∂νφ

F (t0, x) dσ

+Rbi (t0, u(t0))

=
1

τ
ufi (t0) − ab

∫

Γ

dFi (t0, x)∂νu
F
i (t0, x) dσ +Rbi (t0, u(t0)) ≥

1

τ
ufi (t0) ≥ 0,

which shows positivity of ubi(t0) due to positive initial data, and thus provides a contradiction
to uFi (t0, x0) = ubi(t0) = 0.

Now, we turn to the process of continuation. In fact, the nonlinear problem was solved in
[0, T ] and due to the above considerations the solution u(t) keeps positive, i.e. in particular
u(T ) > 0. Consequently, we can carry on solving the nonlinear problem with the new initial
data u(T ) > 0. This process results in a maximal interval of existence [0, tmax(u0)) which
is characterised by the condition that limt→Tmax u(t) does not exist in V (E+). In turn, this
condition is equivalent to ‖u‖Ztmax = ∞. Due to the embedding ZT ↪→ C(J ;V (E+)) the
map u0 → u(t) defines a local semiflow on the natural phase space V (E+) in the autonomous
case. Thus the proof is complete.

�

Now we are in the position to treat the example problem as introduced in Chapter 1.
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Corollary 4.1 Let ΩP , ΩF be bounded domains in R
n+1 with C2- boundary, ΓP := ∂ΩP ,

∂ΩF = ΓP ∪ Γ and dist (ΓP ,Γ) > 0. Let (n+ 1) + 2 < p <∞ and suppose that

1. dki ∈ C1/2(J ; C1(Ωk)), d
k
i (t, x) > 0 for (t, x) ∈ J × Ωk, i ∈ {1, 2, 3}, k = P, F ;

2. γki ∈ B1−1/2p
pp (J ; Lp(ΓP ; R+)) ∩ Lp(J ; B2−1/p

pp (ΓP ; R+)), i ∈ {1, 2, 3}, k = P, F ;

3. u0 = (uP0 , u
F
0 , u

b
0) ∈ V (E+), uPB,0 ∈ C(ΩP ), uki,0 > 0 for k = P, F, b, i = 1, 2, 3, B,

uPAC,0 > 0, ubHC,0 > 0, uf ∈ Lp(J ;E+);

4. the compatibility conditions of Theorem 4.1 are valid.

Then there exists tmax > 0 such that for any T0 < tmax the problem (1.1)-(1.8), (1.10)-(1.13)
admits a unique solution (uP, uF, ub, φP, φF ), (uPB , u

b
HC, u

b
AC) on J = [0, T0] in the regularity class

ZT0(E+) ×ZT0 × C3/2([0, T0]; C(ΩP ; R+)) × H1
p([0, T0]; R+) × H1

p([0, T0]; R+) .

In particular, we have

uk ∈ C1((0, tmax); C(Ωk)) ∩ C((0, tmax); C
2(Ωk)), k = P, F,

φk ∈ C1/2((0, tmax); C(Ωk)) ∩ C((0, tmax); C
2(Ωk)), k = P, F .

(4.10)

Moreover, the vector of concentrations (uP, uF, ub, uPB, u
b
HC, u

b
AC) is positive and the map

(uP0 , u
F
0 , u

b
0, u

P
B,0, u

b
HC,0, u

b
AC,0) −→ (uP(t), uF(t), ub(t), uPB (t), ubHC(t), ubAC(t)) (4.11)

defines a local semiflow on the natural phase space V (E+)×R+×R+×R+ in the autonomous
case.

Proof. We have seen in Section 1.2 that the ordinary differential equations for concentra-
tions uPB , ubHC, and ubAC can be solved via variation of constants formula. We also perceived
that only the functions uP1 and ub = (ub1, u

b
2, u

b
3) come in. Consequently, this presentation

can be used to eliminate uPB , ubHC, ubAC in reaction rates RP , Rb in order to achieve a problem
treated in Theorem 4.1. Therfore, we have to check if RP and Rb satisfy the assumptions
(R1)-(R6). First, we recall the definition of RP and the solution formula for uPB .

RP (t, x, uP ) = rPB (t, x, uP )(2,−1, 0)T ,

rPB (t, x, uP ) = −kBu
P
B (t, x)uP1 (t, x), uPB (t, x) = e

−kB
t
∫

0

uP
1 (s,x)ds

uPB,0(x).

(4.12)

It is easy to verify that each RP satisfies the assumptions (R1) and (R3). To see (R2) we
estimate as follows

‖RP (uP ) −RP (uP )‖Lp(J ;Lp(ΩP ;RN )) ≤ C‖uPB,0‖C(ΩP )‖uP1 − uP1 ‖Lp(J ;Lp(ΩP ))+

C‖uP ‖C(J×ΩP )‖uPB − uPB ‖Lp(J ;Lp(ΩP )) ≤ CT‖uPB,0‖C(ΩP )‖uP − uP ‖ZT
P
+

C‖uP ‖C(J×ΩP )T
1+1/p‖uP − uP ‖ZT

P
≤ C(T‖uPB,0‖C(ΩP ) + LPT

1+1/p)‖uP − uP ‖ZT
P

In doing so, we have exploited the presentation of uPB , positivity of u1, and the condition
|uP1 |∞ ≤ LP . Thus, from the above estimate we can read off that ‖lP ‖Lp(J) = C(T‖uPB,0‖∞ +

LPT
1+1/p) which becomes small due to the parameter T .
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Regularity and positivity of uPB can immediately be seen by solution formula, uPB,0 ∈
C(ΩP ; R+), and the fact that uP1 ∈ ZTP ↪→ C1/2(J ; C(ΩP )) ∩ C(J ; C1(ΩP )).

We now come to the bulk reaction rate Rb given by

Rb(t, ub) = (−rbHC(t, ub),−rbAC(t, ub),−rbHC(t, ub) − 2rbAC(t, ub))T ,

rbHC(t, ub) = kH(ub1u
b
3 −KHu

b
HC) , rbAC(t, ub) = kA(ub2u

b
3 −KAu

b
AC) ,

and solution formulae for concentrations of species HC and AC

ubHC(t) = e−( 1
τ
+kHKH)·tubHC,0 +

t
∫

0

e−( 1
τ
+kHKH)·(t−s)ufHC(s) + kHu

b
1(s)u

b
3(s) ds ,

ubAC(t) = e−( 1
τ
+kAKA)·tubAC,0 +

t
∫

0

e−( 1
τ
+kAKA)·(t−s)ufAC(s) + kAu

b
2(s)u

b
3(s) ds .

We only prove assumption (R5) since the other conditions are trivial. Further on, it suffices
to show this condition for rbHC and rbAC since each component of Rb is composed of a linear
combination of these functions. Let ub, ub ∈ H1

p(J ;E+) be given with ‖ub‖∞, ‖ub‖∞ ≤ Lb.
By using the above solution formulae we then obtain

‖rbHC(ub) − rbHC(ub)‖Lp(J) ≤ C(‖ub1ub3 − ub1u
b
3‖Lp(J) + ‖ubHC − ubHC‖Lp(J))

≤ CLb‖ub − ub‖Lp(J ;E) + ‖
t
∫

0

e−( 1
τ
+kHKH)·(t−s)kH[u1(s)u3(s) − u1(s)u3(s)] ds

∥

∥

Lp(J)

≤ CLb(T + T 1+1/p)‖ub − ub‖ZT
b
,

and in the same way we get

‖rbAC(ub) − rbAC(ub)‖Lp(J) ≤ CLb(T + T 1+1/p)‖ub − ub‖ZT
b
.

We see from the solution formulae that ubHC and ubAC are positive, and that the regularity is
determined by ufi since this function possesses the least regularity. In fact, ufi belongs to

Lp(J) and thus the convolution of e−( 1
τ
+kiKi) with ufi lies in H1

p(J).
In the end, in order to make use of the regularity theory yielding classical solutions in

(0, tmax) × Ωk, we have to ensure that the right hand sides belong to C1(J × Ωk × R
N ) as

well. Since in domain ΩF chemical reactions do not take place we have RF ≡ 0 which is real
analytic. In case k = P the right hand side RPi (t, x, uP ) is given by 4.12 and it is easy to see
that RP belongs to the class C1. So according to Theorem 4.1 we obtain the results stated
in the above corollary and the proof is complete.

�
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Matthias Kotschote: Strong Well-Posedness of a Model for an Ionic Exchange Pro-
cess (Zusammenfassung)

Gegenstand dieser Arbeit ist ein mathematisches Modell zur Beschreibung eines Ionenaus-
tauschers. Bei der Modellierung dieses Problems werden, neben den chemischen Reaktionen,
die Transportprozesse der ionischen Spezies und der Einfluss elektrischer Felder auf diesen
Stofftransport berücksichtigt.

Im folgenden sei Ω ein beschränktes Gebiet im R
n, welches sich zusammensetzt aus einem

Kerngebiet ΩP (Pellet) und einem Streifengebiet ΩF (Film). Das Gebiet ΩF umschließt
vollständig ΩP und besitzt dadurch zwei disjunkte Ränder, einen äußeren Rand Γ = ∂Ω and
einen inneren Rand ΓP = ∂ΩP . Diese Ränder sollen zur Klasse C2 gehören und einen positiven
Abstand besitzen. Für die unbekannten Stoffkonzentrationen uki : J = [0, T ] × Ωk → R+,
i = 1, . . . , N , und elektrischen Potenziale φk : J = [0, T ]×Ωk → R betrachten wir das System
von Differentialgleichungen

(1)























∂tu
P
i −∇ · (dPi ∇uPi ) −∇ · (mP

i u
P
i ∇φP ) = RPi , (t, x) ∈ J × ΩP ,

∂tu
F
i −∇ · (dFi ∇uFi ) −∇ · (mF

i u
F
i ∇φF ) = RFi , (t, x) ∈ J × ΩF ,

d
dtu

b
i(t) = −ab

∫

Γ

[dFi ∂νu
F
i +mF

i u
F
i ∂νφ

F ] dσ + 1
τ

(

ufi (t) − ubi(t)
)

+Rbi (t), t ∈ J,

mit den Randbedingungen und den Anfangswerten

(2)



















































dPi ∂νu
P
i +mP

i u
P
i ∂νφ

P = dFi ∂νu
F
i +mF

i u
F
i ∂νφ

F , (t, x) ∈ J × ΓP ,

ln(γPi u
P
i ) + λ0ziφ

P = ln(γFi u
F
i ) + λ0ziφ

F , (t, x) ∈ J × ΓP ,

uFi (t, x) = ubi(t), (t, x) ∈ J × Γ,

uPi (0, x) = uP0,i(x), x ∈ ΩP ,

uFi (0, x) = uF0,i(x), x ∈ ΩF ,

ubi(0) = ub0,i.

Das obige System wird durch die Elektroneutralitätsbedingung, welche eine algebraische Gle-
ichung ist, vervollständigt:

(3)

{

N
∑

i=1

ziu
k
i (t, x) = 0, (t, x) ∈ J × Ωk, k = P, F,

N
∑

i=1

ziu
b
i(t) = 0, t ∈ J .

Hierbei bezeichnet ∂tu
k
i die partielle Ableitung der Konzentration uki nach t, ∇uki (∇φk) deN

Gradient von uki (φk) bezüglich der räumlichen Variablen und ∇· den Divergenzoperator.
Ferner werden die Diffusionskoeffizienten dki (t, x) und die chemischen Aktivitäten γki (t, x)
als bekannt vorausgestzt. Die sogenannte elektrochemische Mobilität mk

i ist definiert durch
mk
i (t, x) := λ0d

k
i (t, x)zi, wobei zi die elektrische Ladungszahl der Spezie i ist. Die Konstante

λ0 = F/RT setzt sich zusammen aus der Faraday Konstante F , der allgemeinen Gaskon-
stante R und der absoluten Temperatur T . Desweiteren bezeichnet τ die hydrodynamische
Verweilzeit und ab = N b/V b die Anzahl der Pellets pro Bulkvolumen. Die nichlineare Funk-
tion Rki ist die Produktionsrate der Spezie i in der Phase k.



Das betrachtete Problem kann als ein System von parabolischen Differentialgleichungen
angesehen werden, welches aufgrund der Elektroneutralitätsbedingung mit einem elliptischen
Randwertproblem gekoppelt ist. Die Konzentrationen verschiedener Phasen werden durch
die Randbedingungen miteinander in Beziehung gebracht, wobei die elliptischen Gleichun-
gen eine Kopplung aller Transportgleichungen bewirken. Diese Kopplung ist verantwortlich
für die Nichtlinearität der Transmissionsrandbedingung, welche eine besondere Schwierigkeit
darstellt und bisher nicht in der Literatur analytisch behandelt wurde.

Aufgrund der allgemeinen Form der Gleichungen (1)-(3) stehen diese stellvertretend für
eine ganze Klasse von Problemen, die in der technischen Chemie anzutreffen sind. Insbeson-
dere lässt sich der Ionenaustauscher damit beschreiben.

Unter geeigneten Voraussetzungen an die Systemgrößen dki und γki , die Nichlinearitäten
Rki und Anfangswerte uki,0 wird in der Arbeit nachgewiesen, dass das vorliegende Problem
eine eindeutige starke Lösung im Lp-Sinn besitzt. Sei n + 2 < p < ∞. Dann gibt es ein
tmax > 0, so dass für alle T < tmax genau eine Funktion (uP , uF , ub) im Raum

ZT := ZTP × ZTF × H1
p([0, T ]; RN

+ )

und genau ein Potenzial (φP, φF ) in

ZT := {(ϕP, ϕF ) ∈ ZT
P ×ZT

F : γ|ΓP
(φP − φF ) ∈ Y T

1,ΓP
}.

existieren, die das System (1)-(3) lösen. Dabei sind uk := (uk1, . . . , u
k
N ) für k = P, F, b,

ZTk := H1
p([0, T ]; Lp(Ωk; R

N
+ )) ∩ Lp([0, T ]; H2

p(Ωk; R
N
+ )),

ZT
k := H1/2

p ([0, T ]; H1
p(Ωk)) ∩ Lp([0, T ]; H2

p(Ωk)),

für k = P, F , sowie

Y T
1,ΓP

:= B1−1/2p
pp ([0, T ]; Lp(ΓP )) ∩ Lp([0, T ]; B2−1/p

pp (ΓP )).

Hierbei bezeichnet Bs
pp(J ; Lp(ΓP )) den vektorwertigen Sobolev-Slobodeckijraum von Funk-

tionen auf J = [0, T ] mit Werten im Lebesgueraum Lp(ΓP ). Darüberhinaus definiert die
Abbildung

(uP0 , u
F
0 , u

b
0) → (uP (t), uF (t), ub(t))

einen lokalen Halbfluss im autonomen Fall. Die Idee des Beweises besteht darin, für das
nichtlineare Problem (1)-(3) ein verwandtes lineares Problem mit inhomogenen Randdaten
herzuleiten und für dieses maximale Lp-Regularität nachzuweisen. Diese Eigenschaft ermög-
licht die Umformulierung des nichtlinearen Problemes in eine Fixpunktgleichung im Raum
ZT × ZT , die dann mit Hilfe des Kontraktionsprinzips gelöst werden kann. Die Vorausset-
zung an p stellt dabei sicher, dass die Einbettung ZTk ↪→ C1/2(J ; C(Ωk)) ∩ C(J ; C1(Ωk)) gilt.
Entscheidend für dieses Vorgehen ist das Finden der Regularitäten der rechten Seiten, die
notwendig und hinreichend sind für die Existenz und Eindeutigkeit einer Lösung im Raum
der maximalen Regularität. Um die Notwendigkeit der Bedingungen an die Inhomogenitäten
einzusehen, werden bekannte Spurensätzen verwendet. Für die Hinlänglichkeit benutzen wir
die Methoden der Lokalisierung und Störung, welche das Ausgangsproblem auf Ganz- und
Halbraumprobleme mit konstanten Koeffizienten zurückführen. Das Lösen dieser Gleichungen
wird mit Hilfe von Sätzen über Operatorsummen (Dore-Venni-Theorie), reeller Interpolation,
sowie dem vektorwertigen Multiplikatorensatz von Michlin gewährleistet.
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