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Abstract
An accurate prediction of the translational and rotational motion of particles suspended
in a fluid is only possible if a complete set of correlations for the force coefficients of
fluid-particle interaction is known. The present study is thus devoted to the derivation and
validation of a new framework to determine the drag, lift, rotational and pitching torque
coefficients for different non-spherical particles in a fluid flow. The motivation for the study
arises from medical applications, where particles may have an arbitrary and complex shape.
Here, it is usually not possible to derive accurate analytical models for predicting the differ-
ent hydrodynamic forces. The presented model is designed to be applicable to a broad range
of shapes. Another important feature of the suspensions occurring in medical and biologi-
cal applications is the high number of particles. The modelling approach we propose can be
efficiently used for simulations of solid-liquid suspensions with numerous particles. Based
on resolved numerical simulations of prototypical particles we generate data to train a neu-
ral network which allows us to quickly estimate the hydrodynamic forces experienced by a
specific particle immersed in a fluid.
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1 Introduction

The prediction of the motion of non-spherical particles suspended in a fluid is crucial for
the understanding of natural processes and industrial applications. In such processes, parti-
cles can have different shapes and sizes, may be deformed and can interact with each other.
So far, in the majority of scientific studies, particulate flow modelling is investigated with
the hypothesis of perfectly spherical particles, thereby eliminating orientation and shape
effects. This assumption is very convenient due to its simplicity, the fact that the behaviour
of spheres is well known and the availability of a number of models to describe the interac-
tion with fluid flow. The study of suspensions of multiple, irregular-shaped, interacting and
deformable particles has received less attention and still presents a challenge.

Particles come in all sort of shapes and sizes, in fact, due to the arbitrary nature of nat-
urally occurring particles there are an indefinite number of possible shapes. On the other
hand, there is a common understanding that particle shape has a strong influence on the
dynamics of NSPS (non-spherical particulate systems). These two factors combined makes
modelling of NSPS in general way impossible, since for describing the motion of non-
spherical particles, detailed information on the fluid dynamic forces acting on such particles
are necessary, but generally not available. Therefore, particular models place emphasis on
different shapes and types of flow. In our work we focus on medical applications, namely
on modelling of platelets dynamics under blood flow. Platelets play a main role in the pro-
cess of blood coagulation and therefore are of great interest in the modelling of blood flow.
The majority of models characterize platelet motion quantitatively and use approaches such
as immersed boundary method [13], cellular Potts model [40–42] and dissipative parti-
cle dynamics [12, 36], treating platelets as points and thus neglecting entirely their shape.
Some effort has been done to model platelets as rigid two- or three-dimensional spheres or
spheroids [24, 35, 46] but this simplification of shape has been shown to affect processes
in which platelets are involved (e.g. spherical platelets marginate faster than ellipsoidal and
disc forms) [37].

On the other hand, several studies have been performed to model particles of irregular
shapes, but motivation behind them usually arises from engineering applications (dispersion
of pollutant, pulverized coal combustion, pneumatic transport) [48], where particles are
much bigger and usually constitute a significant part of the volume of the suspension [34].
But even under given very specific circumstances there is no set of correlations of the forces
acting on irregular-shaped particles suspended in a fluid (forces arising from fluid-particle
interaction). Furthermore, in these kinds of models interactions between particles become
dominant in terms of determining particle dynamics, whereas platelets are very dilute in
blood and their contact is rather rare.

The motivation behind this work is fourfold and arises from the specificity of the mod-
elled phenomenon. Firstly, platelets, because of their small size (compared to blood vessel),
are often modelled quantitatively, ignoring the importance of shape effects. Secondly,
platelets constitute only a very small volume of blood what makes most of the engineer-
ing applications-driven models, where particles are very dense and often interact with each
other, inappropriate. Thirdly, highly irregular shape of platelets requires new methods for
estimating force coefficients in fluid-particle interaction. Fourthly, platelets are numerous
and the evolution of their movement needs to be evaluated quickly and efficiently.

A common approach to the problem of the modelling of NSPS consists in develop-
ing analytical models for fluid dynamic forces acting on particles, cf. [17, 21, 23, 45, 48].
In this contribution we go a different way and refrain from giving analytical expressions.
Instead, by prototypical simulations we train a neural network model that takes several
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parameters describing the particle shape, size and the flow configuration as input and which
gives hydrodynamical coefficients like drag, lift and torque as output. We demonstrate that
such a model can be efficiently trained in an offline phase for a range of particles. Later on,
the coupling of the flow model with the particle system only requires the evaluation of the
network for getting updates on these coefficients. This two-step approach with an offline
phase for training a network based on the particle classes under consideration allows for a
direct extension to further applications.

A similar approach is considered in [43]. Here, the authors design and train a radial basis
function network to predict the drag coefficient of non-spherical particles in fluidized beds.
Training is based on experimental data and the network input is the particle’s sphericity and
the Reynolds number, covering the Stokes and the intermediate regime. Our approach, based
on training data generated by detailed simulations of prototypical particles for predicting
drag, lift and torque coefficients could by augmented by including experimental data.

In the following section we describe prototypical medical applications where such a het-
erogenous modeling approach can be applied. Then, in Section 3 we detail the general
framework for coupling the Navier–Stokes equation with a discrete particle model. Section 4
introduces the neural network approach for estimating hydrodynamical coefficients and we
describe the procedure for offline training of the network. Then, different numerical test
cases are described in Section 5.1 that show the potential of such a heterogeneous model-
ing approach. Section 5.2 is devoted to a numerical study comprising many particles and
shows the efficiency of the presented approach. We summarize with a short conclusion in
Section 6.

2 Modeling of Suspensions with Non-spherical Particles andMedical
Applications

Platelets are a vital component of the blood clotting mechanism. They are small non-
nucleated cell fragments with the diameter of approximately 2 − 4 μm, the thickness of
0.5 μm, volume of about 7 μm3 and the number density of 1.5 − 4 · 105 μl−1 [11] which
leads to a volume fraction of only about 10−3 : 1. In the rest state platelets shape is dis-
coid, but they have the ability of deforming as a response to various stimuli (chemical
and mechanical). They may become star shaped (rolling over blood vessels wall to inspect
its integrity). During the clotting process they undergo deep morphological changes, from
becoming spherical and emitting protuberances (philopodia or pseudopods) which favour
mutual aggregation, as well as adhesion to other elements constituting the clot to fully flat,
spread stage, to enable wound closure. Thrombocytes constitute approximately less than
1% of the blood volume, therefore individual platelets have a negligible effect on blood
rheology [20].

Due to a significant effect of the particles shape on their motion and their practical
importance in industrial applications, the non-sphericity started attracting attention in the
modelling and simulations of particles transport in fluid flows [18, 23, 45]. Unfortunately,
it is not possible to consider each shape in the implementation of numerical methods
because of non-existence of a single approach describing accurately the sizes and shapes
of non-spherical particles. Spheres can be described by a single characteristic value, i.e.
the diameter, whereas non-spherical particles require more parameters. Even very regular
shapes need at least two parameters. Moreover, the particles may have varying orientation
with respect to the flow, what makes the description of their behaviour even more diffi-
cult. Even though several methods for shape parametrization and measurement have been
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suggested, none has won greater acceptance. One of the most commonly used shape factor
is a sphericity which was firstly introduced in [38] and defined as the ratio between the sur-
face area of a sphere with equal volume as the particle and the surface area of the considered
particle. Then the drag coefficient for non-spherical particle is estimated by using corre-
lations for spherical particles and modified to take into account the sphericity factor [44].
Models using sphericity as a shape factor give promising results when restricted to non-
spherical particles with aspect ratios β less than 1.7 [7], where β = L/D with L and D

being length and diameter of the considered particle. For particles having extreme shapes
and those having little resemblance to a sphere, the sphericity concept fails to produce satis-
fying quantitative results [6]. In general, the lower the sphericity, the poorer is the prediction.
Also, the same value of the sphericity may be obtained for two very varying shapes whose
behaviour in the flow is different. Moreover, the sphericity does not take the orientation into
account. In order to introduce orientation dependency in drag correlations, some researchers
use two additional factors: the crosswise sphericity and lengthwise sphericity [17]. Most of
these correlations employ also dependency on particle Reynolds number defined as

Rep = ρūdeq/μ,

where ρ and μ are the fluid density and the viscosity, ū = uf − up is the velocity of the
particle relative to the fluid velocity and deq is the equivalent particle diameter, i.e., the
diameter of a sphere with the same volume as the considered particle in order to include the
importance of fluid properties.

The shape factor concept may be described as an attempt to define a single correlation
for drag for all shapes and orientations. Another approach appeared as an alternative con-
sisting in obtaining drag coefficient expressions for a fixed shape and any orientations: the
drag coefficient is determined at two extreme angles of incidence (0◦ and 90◦) from existing
correlations which are then linked by some functions resulting in the whole range of angles
of incidence for non-spherical particles [31]. However, besides drag force, non-spherical
particles are associated with orientation and shape induced lift along with pitching and
rotational torques. Hölzer and Sommerfeld [18] investigated a few different shapes of non-
spherical particles at different flow incident angles using the Lattice Boltzmann method to
simulate the flow around the particle. Wachem et al. [45] proposed a new force correlations
(for drag, lift, pitching and rotational torque) for particular shapes of non-spherical particles
(two ellipsoids with different aspect ratio, disc and fibre) from data given by a direct numer-
ical simulation (DNS) carried out with an immersed boundary method. Those correlations
employ particle Reynolds number, angle of incidence and some shape-related coefficients.
Ouchene et al. [26] determined force coefficients depending on particle Reynolds number,
aspect ratio and angle of incidence by fitting the results extracted from DNS computations
of the flow around prolate ellipsoidal particles. Discrete element methods (DEM) coupled
with computational fluid dynamics (CFD) has been recognized as a promising method to
meet the challenges of modelling of NSPS [49, 50]. DEM is a numerical approach for mod-
elling a large number of particles interacting with each other. The simplest computational
sequence for the DEM typically proceeds by solving the equations of motion, while updat-
ing contact force histories as a consequence of contacts between different discrete elements
and/or resulting from contacts with model boundaries. It is designed to deal with very dense
suspensions, where contacts between particles are very common and play a key role in
determining the motion of particles, see [48] for an extensive overview of DEM.

Obviously, for a particle with a specific shape, the general expressions derived from the
first factor shape approach tend to be less accurate than the specialized one for that shape.
However, the efficiency of interpolations/extrapolations to the various shapes to provide
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the general expression is an attractive perspective on engineering applications. On the other
hand, particles occurring in biological processes are usually very numerous. Therefore, an
effective method not only has to be accurate but also efficient in terms of computational
time.

To overcome the aforementioned limitations in modelling of NSPS we employ the
recently trending approach and use machine learning to design a method that enables us to
model the behaviour of suspensions of particles of an arbitrary shape while maintaining the
accuracy of shape-specific models. We also place an emphasis on the computational effi-
ciency as usually there are plenty of particles involved in medical processes and engineering
problems.

3 Model Description

This section describes a general numerical framework for suspensions of particles in a
Navier–Stokes fluid. The discretization of the Navier–Stokes equations is realized in the
finite element toolbox Gascoigne 3D and outlined in Section 3.1. Then, in Section 3.2 we
describe a model for the motion of the particles.

3.1 Fluid Dynamics

Consider a finite time interval I = [0, T ] and a bounded domain Ω ∈ R
d for d ∈ {2, 3}.

We assume incompressibility of fluid, which is modelled by the Navier–Stokes equations
that take the form

ρ
(
∂tv + (v · ∇)v

) − div σ (v, p) = 0,

div v = 0,

where v denotes the fluid velocity, σ is the Cauchy stress tensor

σ (v, p) = ρν(∇v + ∇vT ) − pI,

p the pressure, ρ the fluid mass density and ν the kinematic viscosity. Fluid density and
viscosity are assumed to be nonnegative and constant.

The fluid boundary is split into an inflow boundary Γin, an outflow boundary Γout and
rigid no-slip wall boundaries Γwall . On the inflow and walls we impose Dirichlet boundary
conditions while on the outflow we apply the do-nothing condition (see e.g. [15])

v = vin on Γin × I,

v = 0 on Γwall × I,

(ρν∇v − pI)n = 0 on Γout × I,

where vin is prescribed inflow-profile and n is the outward unit normal vector.

Discretization For temporal discretization of the Navier–Stokes equations we introduce a
uniform partitioning of the interval I = [0, T ] into discrete steps

0 = t0 < t1 < · · · < tN = T , k := tn − tn−1.

By vn := v(tn) and pn := p(tn) we denote the approximations at time tn. We use a shifted
version of the Crank–Nicolson time discretization scheme which is second order accurate
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and which has preferable smoothing properties as compared to the standard version, see [14,
Remark 1], i.e.

ρ

(
vn − vn−1

k
+ θ(vn · ∇)vn + (1 − θ)(vn−1 · ∇)vn−1

)

−θdiv σ (vn, pn) − (1 − θ)div σ (vn, pn) = 0,

where, typically, θ = 1+k
2 . For spatial discretization we denote by Ωh a quadrilateral (or

hexahedral) finite element mesh of the domain Ω that satisfies the usual regularity assump-
tions required for robust interpolation estimates, see [30, Section 4.2]. Adaptive meshes are
realized by introducing at most one hanging node per edge. Discretization is based on sec-
ond order finite elements for pressure and velocity. To cope with the lacking inf-sup stability
of this equal order finite element pair we stabilize with the local projection method [2].
Local projection terms are also added to stabilize dominating transport [3]. Finally, velocity
vn ∈ [Vh]2 and pressure pn ∈ Vh (where we denote by Vh the space of bi-quadratic finite
elements on the quadrilateral mesh) are given as solution to

(ρvn, φh)Ω + kθ(ρ(vn · ∇)vn, φh)Ω + kθ(ρν(∇vn + ∇vT
n ),∇φh)Ω

−k (pn, div φh)Ω + k(ρdiv vn, ξh)Ω

+k
∑

K∈Ωh

αK (∇(pn − πhpn),∇(ξh − πhξh))K

+k
∑

K∈Ωh

αK

(
(vn · ∇)(vn − πhvn), (vn · ∇)(φh − φ

ξ
h)

)

K

= (ρvn−1, φh)Ω − k(1 − θ) (ρ(vn−1 · ∇)vn−1, φh)Ω

−k(1 − θ)
(
ρν(∇vn−1 + ∇vT

n−1),∇φh

)

Ω
∀(φh, ξh) ∈ [Vh]2 × Vh, (1)

where the stabilization parameters are element-wise chosen as [5]

αK = α0

(
ν

h2
K

+ ‖v‖L∞(K)

hK

+ 1

k

)−1

,

where hK = diam(K) is the diameter of the element K . Usually we choose α0 = 0.1. By
πh : Vh → V

(1)
h we denote the interpolation into the space of bi-linear elements on the

same mesh Ωh.

Solution of the discretized problem Discretization by means of (1) gives rise to a large
system of nonlinear algebraic equation which we approximate by a Newton scheme based
on the analytical Jacobian of (1). The resulting linear systems are solved by a GMRES
iteration (Generalized minimal residual method [32]), preconditioned by a geometric multi-
grid solver [1]. As smoother we employ a Vanka-type iteration based on the inversion of
the submatrices belonging to each finite element cell. These local 27 × 27 (108 × 108 in
3d) matrices are inverted exactly. Essential parts of the complete solution framework are
parallelized using OpenMP, see [10].

3.2 Particle Dynamics

The particles suspended in the fluid are described as rigid bodies and their dynamics
is driven by the hydrodynamical forces of the flow. Each particle P with the center of
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mass xP , the velocity VP and the angular velocity ΩP is governed by Newton’s law of
motion

mPX′′
p(t) = F(v, p; P) := −

∫

∂P

σ (v, p)nP ds,

JP Ω ′
P (t) = T(v, p;P) :=

∫

∂P

(x − xP ) × (
σ (v, p)nP

)
ds,

where mP is the particle’s mass, and JP its moment of inertia given by

JP = diag

{
ρP

∫

P

(
|x − xP |2 − (xi − [xP ]i )2

)
dx; i = 1, 2, 3

}
,

with the (uniform) particle density ρP and nP being the unit normal vector on the particle
boundary facing into the fluid.

A resolved simulation is out of bounds due to the large number of platelets and in par-
ticular due to the discrepancy in particle diameter (about 10−6 m) versus vessel diameter
(about 10−3 m). Instead, we consider all platelets to be point-shaped and determine trac-
tion forces F(v, p;P) and torque T(v, p; P) based on previously trained neural networks.
These coefficients will depend on the shape and the size of the particles but also on their
relative orientation and motion in the velocity field of the fluid. Since the relative veloci-
ties (blood vs. particles) are very small the interaction lies within the Stokes regime with a
linear scaling in terms of the velocity. The deep neural network will predict coefficients for
drag Cd , lift Cl , pitching torque Cp and rotational torque Cr . The resulting forces exerted
on each particle P are given by

FP = Cd(P,ψP )(v − Vp) + Cl(P,ψP )(v − Vp)⊥,

TP = Cp(P,ψP )|v − Vp| + Cr(P,ψP )(ω − Ωp),

where P = (Lx, Ly, Lz, αtop, αbot ) describes the particle shape and where ψP is the rela-
tive angle of attack which depends on the particle orientation but also on the relative velocity
vector between blood velocity and particle trajectory, see Fig. 2. The coefficient functions
Cd , Cl , Cp and Cr will be trained based on detailed numerical simulations using random
particles in random configurations. By (v−Vp)⊥ we denote the flow vector in lift-direction,
orthogonal to the main flow direction. In 3d configurations, two such lift coefficients must
be trained. Here we will however only consider 2d simplifications with one drag and one
lift direction. Since we are in the Stokes regime, the representation of the fluid mechanical
components is simplified. The neural network approach described in the next section will
require very little training data, since the Reynolds number does not have to be considered
as a free parameter in the fluid-particle interaction.

4 An Artificial Neural NetworkModel for Predicting Hydrodynamical
Parameters

In this section we describe the neural network model used for coupling the Navier–Stokes
equations with a suspension of non-spherical particles. The different hydrodynamical coef-
ficients will be taken from a neural network, which is trained in an offline phase. Training
data is achieved by resolved Navier–Stokes simulations using prototypical particles with
random parameters.

The setting investigated in this work carries several special characteristics that differ
from industrial applications.
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– The particle density is very small—about 1.04–1.08 · 103 gl−1 and the particle and the
fluid densities are similar (the average density of whole blood for a human is about
1.06 · 103 gl−1). Blood contains about 200 000–400 000 platelets per mm3 summing up
to less than 1% of the overall blood volume [39]. Hence we neglect all effects of the
particles onto the fluid. This simplification is possible since we only model the platelets
as rigid particles. Effects of the red blood cells, much larger and appearing in greater
quantity, can be integrated by means of a non-Newtonian rheology.

– The particle Reynolds numbers are very small (with order of magnitude about 10−4 or
less) such that we are locally in the Stokes regime. This is mainly due to the smallness
of the platelets (diameter approximately 3 μm) and the small flow velocities at (bulk)
Reynolds numbers ranging from 50 to 1 000 depending on the specific vessel under
investigation. We focus on coronary vessels with a diameter around 2 mm and with
Reynolds number about 200.

– The platelets have a strongly non-spherical, disc-like shape. Their shape and size under-
lie a natural variation. Furthermore, under activation, the particles will take a spherical
shape.

Instead of deriving analytical models for the transmission of forces from the fluid to
the particles, we develop a neural network for the identification of drag, lift and torque
coefficients based on several parameters describing the shape and the size of the platelets
and the individual flow configuration.

4.1 Parametrization of the Platelets

We model the platelets as variations of an ellipsoid with major axes Lx × Ly × Lz with
Lx ≈ Lz ≈ 3 μm and Ly ≈ 0.5 μm. In y-direction upper αtop and lower αbot semi-
ellipsoids are modified to give them a more or less concave or convex shape. Altogether,
each particle is described by a set of 5 parameters P = (Lx, Ly, Lz, αtop, αbot ). The surface
of the platelets is given as zero contour of the levelset function

Φ(P ; x, y, z) = 1 − R(P )2 −
(
α + (1 − α)R(P )2

)−2
(

2y

Ly

)2

,

where we define

R(P )2 :=
(

2x

Lx

)2

+
(

2z

Lz

)2

and

α :=
{

αtop, y >= 0,

αbot , y < 0.

We assume that all parameters Lx , Ly , Lz, αtop, αbot are normally distributed with means
indicated above and with standard deviation 0.3 for the lengths Lx , Ly , Lz and 0.4 for the
shape parameters αtop , αbot . We drop particles that exceed the bounds

Lx, Lz ∈ [2.5 μm, 3.5 μm], Ly ∈ [0.15 μm, 1 μm], αtop, αbot ∈ [0.2, 2]. (2)

In Fig. 1 we show some typical shapes of the platelets.
Next, we indicate mass, center of mass and moment of inertia for a parametrized particle

P = (Lx, Ly, Lz, αtop, αbot ). Unless otherwise specified, all quantities are given in μm

and g. The mass of a particle P is approximated by

m(P ) := ρP LxLyLz0.2116
(√

αbot + 0.5313 + √
αtop + 0.5313

)
.
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Fig. 1 Prototypical templates for variations of the parameters Lx,Ly, Lz (length) and αtop , αbot (shape).
Within the blood flow, particles can appear at all angles of attack φ

This approximation is based on a weighted one-point Gaussian quadrature rule. It is accurate
with an error of at most 2% for all α ∈ [0.2, 2].

The center of mass for a particle P is given by

mx(P ) = mz(P ) = 0, my(P ) = LxL
2
yLzπ

96m(P )

(
αtop − αbot

)
.

The moment of inertia in the x/y plane (the only axis of rotation that we will consider in
the 2d simplification within this work) is given by

Iz(P ) = ρP

∫

P

(x2 + y2) d(xyz)

≈ LxLyLzρP π

8

(
0.24 + 0.12

(
αtop + αbot

) + 0.0236
(
α2

top + α2
bot

))
,

which is accurate up to an error of at most 1% for all α ∈ [0.2, 2]. These coefficients are
computed once for each particle and stored as additional parameters.

Fig. 2 Left: typical configuration of one platelet (in red) within velocity field of the blood (blue arrows). The
angle ϕ is the orientation of the platelet relative to its standard orientation. Right: the black arrow δv = v−V
is the velocity acting on the platelet. By ψ := ∠(δv, ex) − ϕ we denote the effective angle of attack
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Fig. 3 Approximation of the rotational velocity on an element T

2d Simplification To start with, we apply a two dimensional simplification of the problem
by assuming that the blood vessel is a layer of infinite depth (in z-direction) and that it holds
v3 = 0 for the blood velocity and V3 = 0 for all particles. Further, given the symmetry
of the particles w.r.t. rotation in the x/y-plane, no traction forces in z-direction will appear.
Besides that, rotation is restricted to rotation around the x/y-plane. Hence, Ω = (0, 0, ω)

is described by a scalar component. A complete particle is then described by

P = (
Lx, Ly, Lz, αtop, αbot ;X, ϕ,V,Ω

)
,

where Lx , Ly , Lz, αtop, αbot are the shape parameters and, X is the (2d) position, ϕ the
orientation w.r.t. the z-axis, V the (2d) velocity and Ω the angular velocity w.r.t. the z-axis
rotation.

The two dimensional simplification is used in Section 5 to validate the effects of non-
sphericity in a coupled Navier–Stokes particle simulation based on the neural network
output. The training and testing of the neural network is however completely based on the
full three dimensional Navier–Stokes problem.

To describe the forces acting on the particle suspended in the Navier–Stokes fluid we
denote by δv := v − V the effective velocity vector, i.e., the relative velocity that is acting
on the platelets. By ψ := ∠(ex, v−V) − ϕ we denote the effective angle of attack which is
the angle between relative velocity δv and the current orientation of the platelet, see Fig. 2
(right) and (2). It is computed as

ψ := ∠(ex, v − V) − ϕ. (3)

Furthermore, denote by δω := ω(v)−ω the relative angular velocity. The angular part of
the Navier–Stokes velocity is locally reconstructed from the velocity field in every lattice,
i.e., in every finite element cell T , by means of

ωT = 1

2dT

4∑

i=1

〈v(xi ), ti〉2, (4)

where xi and ti , for i = 1, 2, 3, 4 are the four nodes and the tangential vectors on the circle
passing through all four lattice nodes. By dT = √

2hT we denote the diameter of the lattice,
see also Fig. 3.
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4.2 Design of the Artificial Neural Network

We will train a deep neural networks for determining the coefficients Cd , Cl , Cp , and
Cr . We use two separate neural networks since the input data for Cd , Cl and Cp depends
on the angle of attack ψ , while that of Cr is invariant to the orientation of the parti-
cle. We call these artificial neural networks N and Nr . Both take the platelet parameters
(Lx, Ly, Lz, αtop, αbot ) as input. N further depends on the effective angle of attack ψP .
Altogether

Both neural networks are fully connected feedforward networks with three hidden layers
consisting of 50, 20 and 20 neurons in the case of the drag/lift network and 20 neurons
each in the case of the rotational torque network. All neurons apart from the output layer
are of ReLU type, i.e. using the activation function f (x) = max{x, 0}. Figure 4 shows the
general configuration. The network was designed by simple parameter studies. Different
depths and layer widths have been tested. Further, we investigated whether a combination
of coefficients or separate networks for drag, lift and torque are more advantageous. The
architectures presented here have proven to be a good compromise between network size
and accuracy. The two networks for drag, lift, (pitching) torque and rotational torque are
based on different types of input data: while the first larger network takes the angle as
configuration-dependent parameter, the second smaller network is invariant to the angle. A
combination of both networks could not give satisfactory accuracies.

4.3 Generation of the Training Data

Training and test data is obtained by resolved simulations with random sampling of proto-
typical platelet shapes. Let be the open ball with radius
R = 50 μm around a platelet P . Each platelet P is constructed by taking normally dis-
tributed values for (Lx, Ly, Lz, αtop, αbot ) as indicated in Section 4.1. Since only relative
velocity and relative orientation matter, the platelets are fixed in the origin with V = 0 and
Ω = 0 at angle ϕ = 0.

Fig. 4 Architecture for the neural networks N (left) for predicting drag, lift and pitching torque and Nr

(right) for predicting the rotational torque. Both networks are fully connected feedforward networks with 3
hidden layers, having 50/20/20 and 20/20/20 neurons each
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For training, the Stokes equations are formulated in the units μm for length, μm · s−1 for
the velocity and μg for mass. With the blood viscosity μ = 3 μg · μm−1 · s−1 the Stokes
equations

−μΔv + ∇p = 0, div v = 0,

are considered. We prescribe zero Dirichlet data on the platelet, v = 0 on ∂P , and set a
freestream velocity on the outer boundary ∂Ω \ ∂P . This is either a uniform parallel flow
field or a uniform rotational flow field that corresponds to the rotational velocity ω = 2π ,
both given as Dirichlet data

v = 0 on ∂P, vd
ψ :=

⎛

⎝
cos(ψ)

sin(ψ)

0

⎞

⎠ or vr
ω := 2π

⎛

⎝
−y

x

0

⎞

⎠ on ∂Ω \ ∂P,

where ψ ∈ [0, 2π ] is the relative angle of attack. For vd it holds |vd
ψ | = 1 μm · s−1 and

in case of the rotational flow it holds |vr
ω| = 2πR μm · s−1, such that it corresponds to a

angular velocity of magnitude 2π in counter-clockwise direction around the z-axis.
The training data is generated as follows

Hereby, a set of 4N training data sets (Pn, ψn,i;Tn,i) and N data sets for the rotational
configuration (Pn;Tn,r ) are generated in an offline phase. Two different networks will be
used for these two different settings.

The domain Ω is meshed with hexahedral elements and the finite element discretization
is build on equal-order tri-quadratic finite elements for velocity and pressure. The curved
boundaries (both the outer boundary and the platelet boundary) are approximated in an
isoparametric setup to avoid dominating geometry errors see [30, Sec. 4.2.3]. A very coarse
mesh with initially only 12 hexahedras is refined twice around the platelet boundary and
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once globally. The resulting discretization has about 2 000 elements and 60 000 degrees
of freedom. Details on the discretization are given in Section 3. The resulting (stationary)
discrete finite element formulation is given by

ρν(∇v,∇φ) − (p, div φ) = 0 ∀φ ∈ [Vh]2,

(div v, ξ) +
∑

T ∈Ωh

h2
T

ν

(∇(p − πhp),∇(ξ − πhξ)
)
T

= 0 ∀ξ ∈ Vh.

For the Stokes equation no transport stabilization must be added.
Given v, p the resulting forces are computed by

F =
∫

∂P

(μ∇v − pI)n do, T =
∫

∂P

(x − xP )⊥ · (μ∇v − pI)n do.

The units of F and T are

[F] = μm · μg

s2
, [T ] = μm2 · μg

s2
. (5)

Training and test data is computed on an Intel Xeon E5-2640 CPU at 2.40 GHz using 20
parallel threads. A total of 58 500 data sets (46 600 for drag and lift, 11 900 for measuring
the torque) have been generated. The overall computational time for all these 3d simulations
was about 9 hours (less than one second for each simulation). All computations are done in
Gascoigne 3D. In Fig. 5 we show snapshots of three such simulations.

4.3.1 Preparation and Normalization of Data/Training of the Neural Network

We produce a data set with N entries with random particles. We start by extracting drag, lift
and torque according to Algorithm 1. To prepare the input data we encode as much model
knowledge as possible. Assume that D, L, T, Tr are the vectors containing drag, lift and
pitching torque and rotational torque. Then, we define the input data as (component-wise)

d := D
70 − 10 cos(2ϕ)

, l := L
10 sin(2ϕ)

, tp := T
2 cos(ϕ)

, tr := Tr

800
. (6)

Fig. 5 Visualization of the resolved flow pattern around randomly created particles. The platelets vary in
size (Lx × Ly × Lz) and in their convexity, further we vary the angle of attack. The upper row shows three
simulations with random particle using different angles of attack. In the lower row, we consider the same
particle for each of the three simulations. The two figures on the left correspond to the directional inflow at
different angles of attack while the plot on the right corresponds to a simulation with the rotational Dirichlet
pattern on the outer boundary of the domain
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Fig. 6 Visualization of the training data. Left: raw values coming from 5 000 experiments (plotted along the
x-axis) with randomly generated platelets and random variation of the angle of attack. Right: scaled input
data for the neural network according to (6). By pre-scaling the forces we can reduce the variation to about
20 − 40%. This remaining dependency of the quantities on the platelet- and flow-parameters will be learned
in the artificial neural network

These simple relations have been found manually by analyzing the relation of the functional
outputs on the different parameters. This scaling reduces the variation of the forces over
all experiments to about 10 − 40% in the case of drag, lift and rotational force, see Fig. 6.
A rescaling of the pitching torque (which has a rather low value) is more difficult since
it depends on slight variations of the particle symmetry. The normalization of the data is
required to equilibrate the inputs of the mean squares loss function and yields in better
approximation results. Furthermore, the consideration of simple angle-dependent effects
helped to speed up training process.

The neural network is implemented in PyTorch [28], using the PyTorch C++ API which
has already been linked to our finite element framework Gascoigne 3D [4] in a neural
network multigrid approach [16]. The randomly generated data sets originating from the
detailed Navier–Stokes simulations are split into 80% serving as training data and the
remaining 20% as test data. As loss function we consider square l2 norm of the error. The
training of the two very small networks is accomplished in a few minutes.

4.3.2 Testing

To test the accuracy of the trained network we apply it to a set of testing data that was not
used in the training of the network. In Fig. 7 we show for drag, lift and torque, 250 data
points each that have been randomly taken from the test data set such that these data pairs
have not been used in training. In the figure, we indicate the exact values as taken from
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Fig. 7 Performance of the neural network in predicting drag, lift and torque coefficients for the flow around
randomly created platelets. For 250 random particles each (all have not been used in training the network) we
compare the prediction (blue bullets) with the coefficients obtained in a resolved finite element simulation.
The coefficients are given in the units of the test reference system described in (5)

detailed finite element simulations that resolve the particle as large circles and the predicted
DNN output as smaller bullets. We observe very good agreement in all three coefficients,
best performance in the lift coefficient and highest deviation in the drag.

In Table 1 we indicate the mean (measured in the l2-norm) and the maximum error of
the network applied to the training data and to the test data. Further, for getting an idea on
the generalizability of the approach we also apply the network to additional testing data
with random platelets, where at least one of the coefficients (Lx, Ly, Lz, αtop, αnot ) does
not satisfy the bounds specified in (2). We note that such particles are not appearing in the
coupled Navier–Stokes particle simulation framework. The average errors appearing in all
training and testing data is less than 1%. Maximum relative errors for few single particles
reach values up to 4% in the case of the pitching torque, which is most sensitive with values
close to zero. Even if we consider data points that are not within the bounds, as shown in the
generalization test, average errors are still small, although substantial errors are found for

Table 1 Accuracy of the neural network model for predicting drag, lift and pitching and rotational torque in
percent

training data test data generalization

avg max avg max avg max

Drag 0.40% 1.44% 0.40% 1.43% 0.87% 5.81%

Lift 0.34% 1.32% 0.34% 1.33% 0.65% 7.40%

Pitching torque 0.93% 3.75% 0.95% 3.87% 2.39% 12.76%

Rotational torque 0.45% 1.57% 0.45% 1.50% 1.03% 4.12%

We indicate the values for the training data, the test data and the hard test data that consists of data points
outside the bounds (2)
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single particles. Largest error are given for large values of the shape parameters αtop, αbot ,
in particular for αtop > 2 or αbot > 2. Less than 0.5% of the training data exceeds this
threshold.

4.4 Application of the Neural Network

The neural network predicts the coefficients for drag d, lift l, pitching torque tp and rota-
tional torque tr , which are scaled according to (6). While drag, lift and pitching torque
depend on the effective angle of attack, the rotational torque is a fixed value that must be
predicted only once for each particle. The former three values are recomputed whenever the
configuration is changing, i.e., before every advection step.

Remark 1 (Collisions) In order to detect and perform collisions we treat particles as spheres
with radius Lx and use model described in [22]. Since platelets constitutes only small part
of the blood volume (less than 1%) collisions between them happen very rarely and this
simplification does not affect validity of presented approach.

Usually we choose Mp = 100 subcycling iterations within each macro step. For further
acceleration, steps 3(a)–3(c) of the inner loop can be skipped in most of these inner itera-
tions and it will be sufficient to recalculate the coupling coefficients in approximately every
tenth step.

Remark 2 (Parallelization) Steps 2, 3(a)–3(d) are parallelized using OpenMP. Particles are
organized on a lattice mesh. The dimensions of the lattice are generated such that a small
number of particles reside in each lattice. This gives a natural way for parallelization and
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Table 2 Shape and parameters of 5 test particles. The spatial dimensions are given in μm

it also helps to keep the communication for performing particle-particle interactions local,
compare [25] for details on this approach and for a review on further realization techniques.

Step 3(b) of the algorithm involves the evaluation of the deep neural network. Here,
we integrate C++ bindings of the library PyTorch [28] into Gascoigne [4]. All particles
are processed at once, such that the evaluation can be performed efficiently in the core of
PyTorch. Considering larger networks or a larger number of particles, the use of a CUDA
implementation is possible without further effort.

Finally, Step 1 of the algorithm requires to solve the Navier–Stokes equations in a finite
element framework. The parallel framework that is used in Gascoigne 3D is described
in [10, 19].

5 Numerical Examples

5.1 Evaluation of the Navier–Stokes/DNN Particle Coupling

We study how the different shapes of the particles affect their movement and whether
the neural network model is able to give distinguished responses for different particle
types, even if the variations of the considered particles are small. In order to do that we
examine hydrodynamic forces acting on differently shaped particles. Simulations were per-
formed for five particles (shown in Table 2) representing various shape features (symmetric,
asymmetric, convex, convey and combinations).

Fig. 8 Spatial configuration of the considered model
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Our domain is a channel of diameter L = 2 mm and infinite length. The schematic
geometry of the domain is described in Fig. 8. Platelets are variations of ellipsoids with
major axes Lx × Ly × Lz with Lx ≈ Lz ≈ 3 μm and Ly ≈ 0.5 μm, for more details see
Section 4.1. The inflow data is defined by a time dependent parabolic inflow profile with
inflow speed vmax = 5 mm/s, namely

vin(t) := y
2 − y

2
t · vmax .

All five particles are initially located at y = 0.5176, below the symmetry axis of the velocity
profile such that a rotational velocity field attacks the particles. The fluid viscosity is set
to μ = 3 mg/mm · s, and particle and fluid density equal ρ = ρp = 1.06 mg/mm3. The
parameters have been chosen so as to reflect a typical vessel, and realistic blood and platelet
properties.

The simulations are carried out with the coupled interaction loop described in Algo-
rithm 2. This means that after each Navier–Stokes step, the fluid velocity is transferred to
the particle model and the coupling coefficients drag, lift and torques are updated based on
the previously trained neural network. Detailed simulations around different particle shapes
only enter the training phase by generating random data sets.

5.1.1 Drag

Drag is a force acting opposite to the relative motion of the particle moving with respect
to a surrounding fluid. Shape-specific drag coefficients present in the literature are usually
functions of the particle Reynolds number, angle of incidence and some shape parameters
[17, 23, 45], while drag force itself usually depends on the properties of the fluid and on the
size, shape, and speed of the particle.

In Fig. 9 the drag coefficient is plotted as a function of the angle of incidence (effective
angle of attack) for five considered particles. The first main observation lies in the increase

Fig. 9 Drag coefficient as a function of angle of incidence for the five particles defined in Table 2
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of the drag values when the angle of incidence approaches ψ = π
2 and ψ = 3π

2 so when
particle is perpendicular to the flow, which means the biggest cross sectional area with
respect to the flow. Correspondingly, the drag decreases when the angle of incidence reaches
φ = 0 or φ = 2π so when the cross sectional area gets smaller. Qualitatively, the present
results are in good agreement with those reported in the literature since a similar trend is
observed (see e.g. [33]).

Furthermore, Fig. 9 shows various drag coefficient values for different particles. Parti-
cle 2 is characterized by the highest value of the drag. Reasons may be threefold: big size of
the particle in comparison to others and hence bigger cross sectional area and higher parti-
cle Reynolds number. In contrast, particle 3 is characterized by the lowest value of the drag,
which is a result of its small size in comparison to other particles. Particle 1 is an ellipse and
serves as a reference. Its drag coefficient is in the middle which is in the line with intuition
- particle 1 has intermediate values both in terms of size and convexity/concavity.

5.1.2 Lift

Lift force on a particle is a result of non-axisymmetric flow field. The pressure distribution
on the surface of a particle inclined to the flow direction no longer follows the symmetry of
that particle. This gives rise to a lift force due to the displacement of the center of pressure.
Lift acts in the direction perpendicular to the fluid velocity and is present when the particles
principle axis is inclined to the main flow direction. As in the case of drag, lift coefficient
is usually a function of the particle Reynolds number, angle of incidence and some shape
parameters [18, 26, 45], while lift force itself usually depends on the properties of the fluid
and on the size, shape, and speed of the particle.

The lift coefficient behaviour at various angles of incidence for five studied particles is
presented in Fig. 10. The figure shows that the lift coefficient reaches its maximum when the
angle of incidence reaches ψ = π

4 or ψ = 5π
4 and its minimum when ψ = 3π

4 or ψ = 7π
4

Fig. 10 Lift coefficient as a function of angle of incidence for the five particles defined in Table 2
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and is equal to 0 for ψ ∈ {0, π
2 , π, 3π

2 }. These results are consistent with the definition of
the lift force and are similar to other studies (see e.g. [27, 33]).

Moreover, one can notice that the lift coefficient takes the lowest value for particle 3 and
the highest value for particle 2. It results from the difference in surface area, which is small
for particle 3 and big for particle 2. Similarly to the drag, the lift of the reference particle 1
is in the middle which also corresponds to the intermediate value of its surface area.

5.1.3 Rotational Torque

There are two contributions to the rotational motion of the particle. The first is the inherent
fluid vorticity, which acts on the particle as a torque due to the resistance on a rotating body.

Figure 11 illustrates the rotational torque coefficient plotted as a function of the angle of
incidence for five examined particles. One can notice that the magnitude of the coefficients
corresponds to the surface area of particle, with particle 2’s rotational torque coefficient
being the largest, while particle 3 experiencing the smallest rotational torque.

These results are consistent with the definition of the rotational torque and qualitatively
are similar to those obtained in the literature (see e.g. [45]).

5.1.4 Pitching Torque

Since the center of pressure of the total aerodynamic force acting on each particle does
not coincide with the particle’s center of mass, a pitching torque is generated. This is the
second factor that contributes to rotational motion. It accounts for the periodic rotation of
the particle around an axis parallel to the flow direction.

In Fig. 12 the pitching torque coefficient is plotted as a function of the angle of incidence
for all five considered particles. One can notice that the pitching torque coefficient is equal

Fig. 11 Rotational torque coefficient as a function of angle of incidence for the five particles defined in
Table 2. The rotational torque does not depend on the orientation of the particles since it is triggered by the
symmetric rotational flow around the particle
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Fig. 12 Pitching torque coefficient as a function of angle of incidence for the five particles defined in Table 2

to 0 for ψ = π
2 and ψ = 3π

2 for all five particles, so when particles are perpendicular to
the flow. It means that for asymmetric particles, i.e., particles 4 and 5, the pitching torque
is 0 when they are set symmetrically with respect to the flow. It may imply that this is
their preferred orientation. In case of particle 4 the pitching torque coefficient reaches its
minimum when the angle of incidence is ψ = π and its maximum when ψ = 0 or ψ = 2π

are reached. It is caused by its asymmetric shape and setting with respect to the direction of
the local fluid vorticity, namely particle 4 is convex “at the bottom” and concave “at the top”
(for angle of incidence ψ = 0 or ψ = 2π ), while the fluid around it is moving clockwise
(see Fig. 13). For particle 5 the situation is analogous, however it is convex “at the bottom”
and concave “at the top”. This is consistent with what happens for particle 4 and is reflected
on the plot. For the remaining particles 1, 2, 3, the pitching torque is equal or close to 0,
which results from their symmetry.

In the case of the pitching torque coefficient it is not straightforward to make a com-
parison between presented trends and those obtained in literature (e.g. [18, 26, 45]).
Most simulations are performed for non-spherical but symmetric particles. Therefore, the
discrepancy cannot be easily explained.

a b

Fig. 13 The pitching torque coefficient Cp depends on particle settings
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Fig. 14 Position in y direction for the five particles defined in Table 2

5.1.5 Oscillatory Translational Motion

The translational motion of non-spherical particles is characterized by an oscillatory motion.
This is due to the fact that the pressure distribution causes the hydrodynamic forces to work
at the center of pressure rather than at the center of mass. The non-coincidence of the center
of pressure and center of mass causes the sustained oscillations (in y direction), see Fig. 14.
The dominant factor of the movement in x direction is by the main flow profile. We did not
observe oscillatory behaviour or variations of the horizontal velocity between the particles.
Moreover, it is observed that every particle is also slowly moving up towards the horizontal
axis of symmetry of the domain (all particles start below the axis, see Fig. 8). In Fig. 15
evolution in time of the aggregated lift of five studied particles is plotted together with the
evolution in time of their lift coefficients. One can easily see that the oscillatory motion
shown in Fig. 14 is a direct consequence of the lift force acting on the particles, while

Fig. 15 Comparison of the lift coefficient for the different particles. In bold lines we show the aggregated
lift over time
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upward motion results from the aggregated lift being positive all the time. The behaviour of
the y-velocity is also worth noting (see Fig. 16). One can notice that some particles (i.e., 1, 3,
5) decelerate when they are reaching local minimum or maximum. Those local maxima and
minima appear for angle of incidence ψ ∈ {π

4 , 3π
4 , 5π

4 , 7π
4 }, so when particles are inclined

to the flow direction. Particle 3, the thinnest one, is subjected to the highest deceleration,
whereas particles 2 and 4 move more smoothly.

5.2 Performance of the CoupledModel for Many Particles

In this section, we demonstrate the efficiency of the finite element/neural network approach
and present numerical results with a multitude of particles. We test the computational effort
for the particle model in comparison to the finite element Navier–Stokes discretization.
Although some effort has been spent on the multicore implementation based on OpenMP,
our implementation is by no means a high performance code. In particular, no use of GPU
acceleration within the particle model is applied, neither in the coupling to the neural net-
work model nor in the particle dynamics itself. Both is possible and in parts already standard
in available software packages such like PyTorch C++ [28] or particle dynamics libraries
such as LAMMPS [29].

All computations have been carried out on a two-socket system with Intel Xeon E5-
2699A v4 processors running at 2.40 Ghz.

We will describe a prototypical blood-flow configuration and discuss the scaling of the
implementation with respect to the number of cores. In particular we will investigate the
relation between computational effort used in the particle model and in the Navier–Stokes
solver. As in Section 5.1 all the parameters have been chosen so as to resemble vessel, blood
and platelet properties.

5.2.1 Parallelization

The finite element model is implemented in Gascoigne 3D and outlined in Section 3.1, the
discrete systems are approximated with a Newton–Krylow solver using geometric multi-
grid preconditioning. Basic finite element routines and the linear algebra workflow is

Fig. 16 Velocity in y direction for the five particles defined in Table 2
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partially parallelized using OpenMP, see [10] for details. Since the mesh handling and i/o
are not parallelized, substantial speedups are only reached for complex three dimensionals
problems.

The particle model is based on a regular lattice mesh that covers the computational
domain. The lattice elements of size Lh × Lh contain the individual particles. Detection of
particle-particle collision is limited to those particles that reside in the same lattice element
or that belong to directly adjacent elements. This substantially helps to reduce the compu-
tational effort which scales quadratically with the number of particles within each lattice
element. Hence, we keep Lh > 0 small, such that an average of less than 100 particles
resides in each element. On the other hand, Lh must be chosen large enough to avoid motion
of particles across multiple elements in one time step, i.e. kpdVp ≤ Lh, where kpd > 0 is
the time step size of the particle model and Vp the maximum velocity of the particles. Fur-
ther, the lattice mesh is basis for parallelization since we can guarantee that no interaction
between lattice elements which are separated by a complete layer can take place.

5.2.2 Configuration of the Test Case

We run simulations for the 2D flow in a channel with a local narrowing of 25% which
should mimic a stenosed region of a blood channel. Figure 17 displays schematic geometry
of the flow domain. The size of the domain, 2 mm × 12 mm, is similar to the dimension of
small arteries. The flow is driven by a Dirichlet profile on the inflow boundary Γin given by

vin(x, y, t) = y
2 − y

2
· vmax

with vmax = 5 mm/s. On the wall boundary Γwall we prescribe no-slip boundary conditions
v = 0 and on the outflow boundary Γout we use the do-nothing outflow condition μ∂nv −
pn = 0, see [14].

The fluid viscosity is set to μ = 3 mg/mm · s. Particle and fluid densities are equal
ρ = ρp = 1.06 mg/mm3. Due to the fact that platelets constitute less than 1% of the blood
volume [20] and the size of the domain we perform simulations with 165 000 particles.

In all numerical examples the temporal step size for solving Navier—Stokes equations
is kns = 0.005 s, while time sub-step for particle advection is kpd = 0.00025 s such that
20 subcycles are computed in each Navier–Stokes step. We update the force coefficients by
evaluating the neural network every 10th step (i.e., twice in each Navier–Stokes step). The
spatial finite element discretization is based on quadratic elements, with a total of 12819
degrees of freedom.

At the first time step we randomly seed about 165 000 particles distributed over the
complete computational domain. Each particle is generated with random properties, i.e.,
specifying P = (Lx, Ly, Lz, αtop, αbot ) by means of the limits indicated in (2) such that the

Fig. 17 Geometry of the numerical examples
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Fig. 18 Left: runtime (in seconds) for the coupled Navier–Stokes particle dynamics simulation for an increas-
ing number of cores. Right: parallel speedup for the complete simulation and for the Navier–Stokes finite
element simulation and the particle dynamics simulation separately

full variety of dimensions and shape is present. Details on the procedure for parametrization
of the particles are given in Section 4.1. Then, 10 iterations of the interaction loop shown
in Algorithm 2 are performed. Hence, 10 time steps of the Navier–Stokes problem and 200
particle dynamics substeps are performed. Figure 18 shows the runtime for all 200 itera-
tions. Furthermore we indicate the parallel speedup. These results show that the allocation
of computational time to the Navier–Stokes finite element solver and the particle dynam-
ics system is rather balanced. While it is non-trivial to get a reasonable parallel speedup for
highly efficient multigrid based finite element simulations (at least for simple 2d problems
like this Navier–Stokes testcase), the scaling of the particle dynamics system is superior.
These results demonstrate that the number of particles is not the limiting factor for such
coupled simulations.

The key feature of our coupled Navier–Stokes particle dynamics scheme is the predic-
tion of the hemodynamical coefficients by means of the previously trained neural network
instead of using analytical models, which are not available, or running resolved simulations,
which is not feasible for such a large number of particles. In Fig. 19 we give details on the

Fig. 19 Left: runtime (in seconds) for the particle dynamics simulation (all 200 substeps). Right: parallel
speedup for the particle advection, handling of particle collisions and the neural network access for predicting
the hemodynamical coefficients
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computational time spend in the different parts of the particle dynamics system. Besides
advection of the particles, the evaluation of the neural network is dominant, although we
update the coefficients in every 10th step only. Here, a more systematic study of the impact
of the update frequency should be performed. A further acceleration of the neural network
evaluation is possible by using the GPU implementation of PyTorch.

The transition to more realistic three dimensional problems will substantially increase the
effort in both parts, finite elements and particle dynamics. For the Navier–Stokes simulation
it has been demonstrated that realistic 3d blood flow situations can be handled in reasonable
time, see [8–10]. In case of substantially increased number of particles, the neural network
coupling for estimating hemodynamic coefficients should be realized in a high performance
package such as LAMMPS [29] that allows for an efficient GPU implementation.

6 Conclusions

Suspensions of arbitrarily-shaped particles in a fluid are of great importance both in engi-
neering and medical applications. However, the interaction of the non-spherical particles
with a fluid flow is a complex phenomenon, even for regularly-shaped particles in the simple
fluid flows. The main difficulty lies in determining hydrodynamic forces acting on a parti-
cle due to their strong dependence on both particle shape and its orientation with respect to
the fluid flow.

In this paper, a model is successfully derived to simulate the motion of non-spherical
particles in a non-uniform flow field, including translation and rotation aspects. The model
is designed to reflect platelets in a blood flow, both in terms of particle parameters and fluid
configuration. The very good agreement of these results obtained by the coupled finite ele-
ment/neural network/particle dynamics simulation with state of the art documentations in
literature indicates an effectiveness of the presented approach and hence an encouraging
potential toward medical applications. Furthermore, the big improvement over usual analyt-
ical interaction models is clearly seen as the neural network based model holds for a broad
range of different shapes at any orientation. Moreover, using neural network to identify the
transmission of forces from fluid to the particles provides a possibility to adopt the model
to any desired shape of particle, making this method very promising.

We have further documented details on the scaling of the approach to many parti-
cles, which, in 2d blood flow simplifications, matches the typical particle density found
for thrombocytes in blood flows. The computational effort is well balanced into the
Navier–Stokes finite element part, the particle advection and the evaluation of the neural
network.

The validation of the finite element/particle approach based on the neural network for
identifying the coefficients by resolved simulations is still an open point. Due to the large
range of spatial scales to be bridged (from the vessel to the particle scale) this will require
the use of adaptive and dynamic meshes. Furthermore, since we consider non-spherical
particles a Eulerian description based on, e.g., cut finite elements [47] will be required.
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Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc (2019)

29. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19
(1995)

30. Richter, T.: Fluid-structure Interactions. Models, Analysis and Finite Elements. Lecture Notes in
Computational Science and Engineering, vol. 118. Springer, Cham, Berlin (2017)

31. Rosendahl, L.: Using a multi-parameter particle shape description to predict the motion of non-spherical
particle shapes in swirling flow. Appl. Math. Model. 24, 11–25 (2000)

32. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company (1996)
33. Sanjeevi, S., Kuipers, J., Padding, J.: Drag, lift and torque correlations for non-spherical particles from

Stokes limit to high Reynolds numbers. Int. J. Multiph. Flow 106, 325–337 (2018)
34. Shardt, O., Derksen, J.: Direct simulations of dense suspensions of non-spherical particles. Int. J.

Multiph. Flow 47, 25–36 (2012)
35. Sweet, C.R., Chatterjee, S., Xu, Z., Bisordi, K., Rosen, E.D., Alber, M.: Modelling platelet-blood

flow interaction using the subcellular element Langevin method. J. R. Soc. Interface 8, 1760–1771
(2011)

36. Tosenberger, A., Ataullakhanov, F., Bessonov, N., Panteleev, M., Tokarev, A., Volpert, V.: Modelling of
thrombus growth in flow with a DPD-PDE method. J. Theor. Bio. 337, 30–41 (2013)

37. Viallat, A., Abkarian, M.: Dynamics of Blood Cell Suspensions in Microflows. CRC Press, Boca Raton
(2019)

38. Wadell, H.: The coefficient of resistance as a function of Reynolds number for solids of various shapes.
J. Franklin Inst. 217, 459–490 (1934)

39. Wiwanitkit, V.: Plateletcrit, mean platelet volume, platelet distribution width: Its expected values
and correlation with parallel red blood cell parameters. Clin. Appl. Thromb./Hemost. 10, 175–178
(2004)

40. Xu, Z., Chen, N., Kamocka, M., Rosen, E., Alber, M.: A multiscale model of thrombus development. J.
R. Soc. Interface 5, 705–22 (2008)

41. Xu, Z., Chen, N., Shadden, S.C., Marsden, J.E., Kamocka, M.M., Rosen, E.D., Alber, M.: Study of blood
flow impact on growth of thrombi using a multiscale model. Soft Matter 5, 769–779 (2009)

42. Xu, Z., Lioi, J., Mu, J., Kamocka, M.M., Liu, X., Chen, D.Z., Rosen, E.D., Alber, M.: A multiscale model
of venous thrombus formation with surface-mediated control of blood coagulation cascade. Biophys. J.
98, 1723–1732 (2010)

43. Yan, S., He, Y., Tang, T., Wang, T.: Drag coefficient prediction for non-spherical particles in dense
gas–solid two-phase flow using artificial neural network. Powder Technol. 354, 115–124 (2019)



Non-spherical Particles in Medical Flow Problems

44. Yow, H., Pitt, M., Salman, A.: Drag correlations for particles of regular shape. Adv. Powder Technol. 16,
363–372 (2005)

45. Zastawny, M., Mallouppas, G., Zhao, F., van Wachem, B.: Derivation of drag and lift force and torque
coefficients for non-spherical particles in flows. Int. J. Multiph. Flow 39, 227–239 (2012)

46. Zhang, P., Gao, C., Zhang, N., Slepian, M., Deng, Y., Bluestein, D.: Multiscale particle-based modeling
of flowing platelets in blood plasma using dissipative particle dynamics and coarse grained molecular
dynamics. Cel. Mol. Bioeng. 7, 552–574 (2014)

47. von Wahl, H., Richter, T., Frei, S., Hagemeier, T.: Falling balls in a viscous fluid with contact: Comparing
numerical simulations with experimental data. arXiv:2011.08691 (2020)

48. Zhong, W., Yu, A., Liu, X., Tong, Z., Zhang, H.: DEM/CFD-DEM Modelling of non-spherical particulate
systems: Theoretical developments and applications. Powder Technol. 302, 108–152 (2016)

49. Zhu, H., Zhou, Z., Yang, R., Yu, A.: Discrete particle simulation of particulate systems: Theoretical
developments. Chem. Eng. Sci. 62, 3378–3396 (2007)

50. Zhu, H., Zhou, Z., Yang, R., Yu, A.: Discrete particle simulation of particulate systems: a review of major
applications and findings. Chem. Eng. Sci. 63, 5728–5770 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/2011.08691

	Non-spherical Particles in Medical Flow Problems
	Abstract
	Introduction
	Modeling of Suspensions with Non-spherical Particles and Medical Applications
	Model Description
	Fluid Dynamics
	Discretization
	Solution of the discretized problem


	Particle Dynamics

	An Artificial Neural Network Model for Predicting Hydrodynamical Parameters
	Parametrization of the Platelets
	2d Simplification

	Design of the Artificial Neural Network
	Generation of the Training Data
	Preparation and Normalization of Data/Training of the Neural Network
	Testing

	Application of the Neural Network

	Numerical Examples
	Evaluation of the Navier–Stokes/DNN Particle Coupling
	Drag
	Lift
	Rotational Torque
	Pitching Torque
	Oscillatory Translational Motion

	Performance of the Coupled Model for Many Particles
	Parallelization
	Configuration of the Test Case


	Conclusions
	References


