
SCHWERPUNKTBEITRAG

https://doi.org/10.1007/s13222-021-00384-w
Datenbank Spektrum (2021) 21:133–143

In-Depth Analysis of OLAP Query Performance on Heterogeneous
Hardware

David Broneske1 · Anna Drewes2 · Bala Gurumurthy1 · Imad Hajjar2 · Thilo Pionteck2 · Gunter Saake1

Received: 8 June 2020 / Accepted: 28 May 2021 / Published online: 26 July 2021
© The Author(s) 2021

Abstract
Classical database systems are now facing the challenge of processing high-volume data feeds at unprecedented rates as
efficiently as possible while also minimizing power consumption. Since CPU-only machines hit their limits, co-processors
like GPUs and FPGAs are investigated by database system designers for their distinct capabilities. As a result, database
systems over heterogeneous processing architectures are on the rise. In order to better understand their potentials and
limitations, in-depth performance analyses are vital. This paper provides interesting performance data by benchmarking
a portable operator set for column-based systems on CPU, GPU, and FPGA – all available processing devices within the
same system. We consider TPC-H query Q6 and additionally a hash join to profile the execution across the systems. We
show that system memory access and/or buffer management remains the main bottleneck for device integration, and that
architecture-specific execution engines and operators offer significantly higher performance.

Keywords Heterogeneous database systems · CPU · GPU · FPGA · Overlay architecture

1 Introduction

With the advent of Big Data, the size of generated and
transmitted data has grown exponentially. To exploit hid-
den information in these data, business analysis, graph and
stream processing arose as some of the main application ar-

Authors are in alphabetical order due to equal contributions.

David Broneske
David.Broneske@ovgu.de

Anna Drewes
Anna.Drewes@ovgu.de

� Bala Gurumurthy
Bala.Gurumurthy@ovgu.de

Imad Hajjar
Imad.Hajjar@ovgu.de

Thilo Pionteck
Thilo.Pionteck@ovgu.de

Gunter Saake
Gunter.Saake@ovgu.de

1 Databases and Software Engineering Group, Otto von
Guericke University, Magdeburg, Germany

2 Institute for Information Technology and Communications,
Otto von Guericke University, Magdeburg, Germany

eas for database systems. These applications require a huge
amount of processing power from CPUs [33].

Such trends in data-driven applications and modern hard-
ware devices shape the efforts made by the database com-
munity and divide it into two main groups: The first focuses
on a scaling-out strategy, i.e., on distributing storage and/or
processing over clusters of computers that still use CPUs
as the main processing element [40, 41]. The second group
focuses on scaling-up, i.e., utilizing the advancements made
in hardware architecture, specifically GPUs and FPGAs, to
build heterogeneous machines with the goal to process data
more efficiently than CPU-only machines. The motivation
for this strategy is that GPUs and FPGAs have inherently
parallel execution models. While GPUs are known for their
SIMT model, FPGAs offer spatial parallelism, pipelined
execution, low power consumption and inherently enable
stream processing. Overall, due to increased demands for
efficient processing of large amounts of data, the rise of
heterogeneous database systems seems inevitable.

Several projects are published where GPUs are inte-
grated as co-processors in addition to CPUs into one sys-
tem [10, 16, 30]. Similarly there are other attempts to in-
tegrate FPGAs and CPUs [27, 29, 32]. Since most systems
focus on these two individual pairings, few research groups
investigated systems consisting of all three.

K

https://doi.org/10.1007/s13222-021-00384-w
http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-021-00384-w&domain=pdf


134 Datenbank Spektrum (2021) 21:133–143

In this paper, we focus on analyzing the performance of
all three devices (CPU-GPU-FPGA). In order to draw fair
conclusions, we run the same workload from TPC-H [42]
on all of them using common primitive-based operator im-
plementations. Our performance analysis include an end-to-
end analysis to cover all overheads incurred by the underly-
ing system. We not only compare performance figures, but
also provide insights into portability and potential barriers
and bottlenecks. These insights provide a better understand-
ing of the scale-up strategy.

This paper is structured as follows: In Sect. 2, we discuss
related work. In Sect. 3, we provide background informa-
tion on device characteristics and used primitives. Then in
Sect. 4, we describe how we achieve operator portability
across different hardware architectures, with special focus
on the FPGA architecture. In Sect. 5, we explain our experi-
mental setup and present the experimental results in Sect. 6.
Finally, in Sect. 7, we conclude the paper by pointing out
limitations and future work.

2 RelatedWork

In this section, we discuss a selective list of Online Analyt-
ical Processing (OLAP) systems, which we divide into two
groups: CPU-GPU and CPU-FPGA hybrids.
CPU-GPU Hybrid: GPUQP [16] is one of the first at-
tempts to introduce GPUs as query co-processors in order
to exploit their massive data parallelism. He et al. [22] intro-
duced an in-memory relational query co-processing system
called GDB. This system uses an optimized set of primi-
tives such as split and sort for query processing. Similarly,
CoGaDB [10] is a main memory DBMS targeting a hetero-
geneous CPU-GPU system. It uses two sets of operators,
one for the CPU, and the other for GPU. Further, it uses
a device-aware optimizer – HyPE [9]. HyPE takes advan-
tage of CPUs and GPUs and extends the physical opti-
mization process in a cost-learning-based engine. Alterna-
tive to CoGaDB, a hardware-oblivious processing engine –
Ocelot [23] is developed as an extension of MonetDB. In
contrast to previously mentioned hardware-aware systems,
its operators were developed using OpenCL [25]. Similarly,
OmniDB [48] exploits hardware characteristics in OpenCL
based CPU-GPU DMBSs.

Other than these, few commercial implementation com-
prises of (but not limited to) Kinetica [26], OmniSci (a.k.a.
MapD) [28], SQreamDB [38] and BlazingDB [6].
CPU-FPGAHybrid: Researchers also investigated hetero-
geneous DBMSs combining CPU and FPGA. One example
of such systems is doppioDB [36], an extension of Mon-
etDB that uses Hardware User Defined Functions (HUDFs)
for query acceleration on FPGAs. The system was built
on Intel’s Xeon+FPGA platform showing advantages and

limitations of HUDFs. It is built on specialized hardware,
while our FPGA system is designed for off-the-shelf FPGA
accelerator cards.

Centaur [29] is a framework for hybrid CPU-FPGA
databases that allows the dynamic allocation of pipelined
FPGA operators as well as hybrid execution on CPU and
FPGA. Centaur utilizes UDFs and FThreads to allow seam-
less integration of FPGA operators in the database engine.
While our system is designed with Dynamic Partial Re-
configuration (DPR) and portability as main goals, Centaur
builds on the Intel Xeon+FPGA technology, and they aim
to distribute and queue commands to a set of static workers.

In [39], the authors use a PCIe-attached FPGA to offload
predicate evaluation for heavy analytical query processing,
while the CPU handles transaction processing. They stream
compressed row-based data through a configurable accel-
erator over PCIe for executing different queries without
reconfiguration. The reported results indicate the system
offers an order of magnitude speedup in the offloading com-
putations compared to a software baseline.

AxleDB [34] is an FPGA-based database query proces-
sor with SSDs directly attached to the processing units.
Static accelerators are arranged in a streaming-based ring
bus and are operated by a global state machine with host-
generated instruction words. In addition to the accelera-
tors, it implements an index structure. The authors achieve
a speedup of 2x over standard DBMSs by implementing
data parallel accelerators. While being based on standard
FPGA hardware, AxleDB is also a static system, which
limits its flexibility in both allocation of compute resources
and communication compared to a system with DPR and
configurable data-flow routing.

The ReProVide project [4] presents a hybrid system con-
sisting of CPU-FPGA, where the FPGA is connected over
the network. This system uses the dynamic partial recon-
figuration (DPR) capability of modern FPGAs to exchange
large accelerators to do pre-processing of data to be sent
to the host. The authors also propose a model for operator
placement and buffer allocation.

The DPR-based FPGA system presented in [49] cannot
just stream rows through processing modules, but can also
do sort and join operations using heterogeneous reconfig-
urable partitions. The authors focus only on the FPGA: The
host assigns partial queries to the FPGA and manages the
accelerator. In addition to the special function partition for
sort and join, the system consists of 4 banks of 16 small
daisy-chained reconfigurable modules with data flow being
routed only between banks. This work is the closest in de-
sign to our system, but we designed a fully column-based
system and focus on more flexible routing of data-flow be-
tween compute units and a more uniform grid of compute
tiles.

K



Datenbank Spektrum (2021) 21:133–143 135

Fig. 1 OpenMP code of the reduce-add primitive

Overall, in this work, we evaluate query processing over
a heterogeneous processor system containing three different
processor architectures: CPU, GPU and FPGA. For a de-
tailed discussion on integrating FPGAs into DBMSs, we
refer to our previous work [3]. There we present an exten-
sive literature review, identify the challenges and propose
approaches to tackle them. To the best of our knowledge,
there is no existing work that compares query processing
performance on CPU, GPU and FPGA processing from
a single holistic setup.

3 Background

Current processor architectures are branching out into two
broad spectra: (1) homogeneous cores, where multiple CPU
cores are tightly coupled for processing. (2) heterogeneous
cores, where tailor-made compute architectures are used for
specific functions. DBMSs running on top of these archi-
tectures have to be aware of the features of the underlying
hardware to have improved performance [10, 36].

In order to run database operations on different hardware
architectures, an abstract representation of the operations is
necessary to reduce re-implementation work and increase
re-usability [8].

3.1 Primitives

We use primitives as basic building blocks of DBMS oper-
ations. Primitives in this context are atomic functions that
are combined together to form an SQL operator. They can
be parallelized and arranged together to execute partial or
full SQL queries [7, 22]. We surveyed the primitives and
detailed their alternative implementations in our paper [19].
Below are the primitives considered in this work:

� Map: A one-to-one mapping from input to output.
� Scan: Prefix sum on the given input.
� Materialize: Synthesizing selected column values.
� Aggregate: Grouped or single reduction on an array of

inputs.
� Scatter & Gather: Data shuffling operations.

Fig. 2 OpenCL code of the reduce-add primitive

� Hash build: Creating a hash table.
� Hash probe: Hash table look up.
� Sort: Sorting a given input based on some criteria.

Using these primitives, we build a Directed Acyclic
Graph (DAG) for a given SQL query.

3.2 Devices and Characteristics

CPU: the key characteristics of CPUs are instruction
pipelining, hierarchical caches and SIMD [24]. With
pipelining, CPUs provide instruction-level parallelism but
the overall execution in a system is delayed due to data
and control-flow dependencies across instructions. This
delay is hidden using out-of-order execution and branch
prediction strategies. Another improvement in current CPU
generations are the SIMD units i.e., vectorized execution of
a single instruction across multiple values [12, 37]. These
units can execute an instruction on a vector of data instead
of just on a single value.
GPU: A GPU contains thousands of physical cores to sup-
port embarrassingly parallel operations. GPUs use a higher
degree of Thread Level Parallelism (TLP) compared to
CPUs in order to hide memory access latency. A GPU is ca-
pable of executing a large number of simple instructions in
parallel, but does not have the capability of branch predic-
tion. Therefore, control-flow-heavy operations cannot ex-
ploit the full parallelism in a GPU due to the serialization
of diverging branches [21]. Finally, the biggest challenge
in a GPU is the transfer time spent to move data from the
CPU’s main memory to the GPU’s. This transfer overhead
can over-shadow the performance benefits of GPU-acceler-
ation [11].
FPGA: FPGAs are capable of realizing arbitrary logic
circuits by mapping computation, i.e., mathematical (pure,
stateless) functions, to hardware lookup tables (LUT). Ad-
ditionally, modern FPGAs contain specialized hardware for
more efficient processing, including large blocks of SRAM
(BRAM), carry chains connecting neighboring LUTs and
multiply-accumulate units (DSP). Finally, dynamic partial
reconfiguration (DPR) allows the designer to exchange
parts of the circuit at runtime. Traditionally, FPGAs are

K



136 Datenbank Spektrum (2021) 21:133–143

Fig. 3 HLS code of the reduce-add primitive

programmed using hardware description languages (HDL)
that allow for low-level design specification on the register
transfer level (RTL). As compiler technology improved,
the concept of high-level synthesis (HLS) was developed.
Here, the kernel is programmed in a higher-level language
such as C++, and is then transformed automatically into
a circuit. HLS provides a more software-like development
environment, but can sometimes be less flexible and also
incur a slight resource overhead compared to an RTL de-
sign [44].

4 ExecutionModels

In this section, we discuss the execution model of the three
devices (CPU, GPU and FPGA), i.e. how to execute a prim-
itive on these different devices.

4.1 CPU

For executing primitives on a CPU, we follow the opera-
tor-at-a-time execution model proposed by Boncz et al. [7].
This model executes one primitive at a time for all input
data, in a tight loop. When one primitive in the query plan
finishes execution, the next one starts. Though vectorized

Fig. 4 General structure and
abstraction levels of our FPGA
overlay architecture

execution of these primitives provide performance bene-
fits [50], this is not suitable for a heterogeneous environ-
ment, due to high data transfer delay.

Figure 1 shows an OpenMP implementation of the re-
duce-add primitive to be run on a multi-core CPU.

For data transfer in OpenMP, we simply forward the
input pointer to the target function for execution.

4.2 GPU

Similar to CPUs, GPUs also follows operator-at-a-time ex-
ecution. For each primitive (or kernel in the context of
OpenCL), the runtime loads data as well as creating re-
sult space in the GPU based on the target kernel. The result
space is estimated based on the input size, intents (data pro-
cessed per thread) [31]. Once set, the kernel is executed.

A task sets the number of parallel local items and the
work groups required for parallelizing the task on the GPU.
These values are computed from the input size and parame-
ters present in the task. Note that consecutive operations in
GPU simply forward the data buffer without any expensive
data routing.

In Figure 2, we show an example OpenCL implemen-
tation for the reduce-add primitive. It is worth mentioning,
that the same kernel code can be used to run on a CPU
instead of a GPU. Note the kernel’s additional parameter
INTENT defining the number of inputs processed by a sin-
gle work item.

Data transfer mechanism is different based on the target
OpenCL device. For OpenCL execution on CPU, we simply
forward the host pointer. In case of GPUs, we consider the
case of a cold-store, where initially no data is available
in GPU and data is transferred explicitly according to the
incoming query. However, all intermediate results are stored
in the GPU memory and only the final result is transferred
back to the CPU.

4.3 FPGA

While HLS solves most of the complexities in program-
ming a FPGA, the software integration problem still re-

K



Datenbank Spektrum (2021) 21:133–143 137

Fig. 5 A single tile of our FPGA overlay architecture

mains. To connect FPGAs to a host server, there exist prod-
ucts such as Xillybus over PCIe [46] which provide both
hardware interfaces and OS drivers, but any user program
still has to be adapted specifically to every FPGA design.
Thus, single-function accelerators are common in the in-
dustry [27, 32, 43]. Another option is to implement multi-
ple functions in the same FPGA design, which limits the
amount of resources every functional unit can occupy, and
therefore potentially reduces performance. We have already
analyzed these shortcomings with respect to Intel OpenCL
for FPGAs [15]. To combat this, modern FPGAs allow for
smaller parts of the fabric to be reconfigured with different
circuits during runtime, instead of just loading a complete
design into the FPGA at power up. Dynamic partial recon-
figuration of reconfigurable partitions (RP) allows for func-
tion units (FU) to be exchanged at runtime, and therefore
greatly increases flexibility, but also forces higher complex-
ity upon the designer. One possibility to hide this additional
complexity is to specify the design in such a way that a sim-
pler representation of it can be devised: An overlay archi-
tecture abstracts away the raw image of FPGA hardware
resources into a user representation more specific to their
application.

4.3.1 User Model of the Overlay Architecture

As shown in layer two of Fig. 4, our overlay architecture
consists of an array of locally interconnected FUs, where
each FU performs a set of streaming operations based on
the primitives introduced in Sect. 3.1. These primitives are
implemented using HLS, synthesized for each FU, and then
integrated into the overall design transparently to the pro-
grammer via DPR. Figure 3 shows the reduction primitive
for addition as an example of an HLS primitive: After defin-
ing the data types for the hardware interface using vendor
libraries, we add a stream of 32-bit-integers. The logic for
accessing the stream hardware is generated by the HLS tool
chain.

Fig. 6 Data-flow graph of TPC-H query Q6 mapped onto the FPGA
overlay architecture

Query processing (partially) on FPGA using the recon-
figurable overlay architecture starts with mapping the input
data-flow graph to the graph describing the available FUs.
While finding perfect matchings is complex, efficient ap-
proximative approaches such as simulated annealing [5] are
generally available and effective. Based on the matching,
the user space driver constructs the necessary configuration
data, loads the required primitives via DPR and configures
data-flow routing within the overlay architecture. Finally,
after input data is copied to the DDR memories on the
FPGA card, the user instructs the overlay architecture to
process the required columns and waits for it to finish.

4.3.2 Structure and Infrastructure

We implemented a custom FPGA overlay architecture fo-
cused on hardware-pipelined execution of data-flow graphs
using DPR to provide diverse functionality. As Fig. 4 shows,
the FPGA is divided into a static part (on the right) and

K



138 Datenbank Spektrum (2021) 21:133–143

Fig. 7 Pure execution time of increasing numbers of reduction primi-
tives at 10 million rows

a set of reconfigurable partitions. Only the actual function
units (FUs) are placed inside the reconfigurable partitions
(in green). The generic infrastructure elements of the static
partition are in the second layer (in gray). They consist of
the logic required for PCIe connectivity, a DDR3 controller
and direct memory access (DMA) blocks for data access
and transfer from/to the host.

The RPs are arranged in a regular grid pattern across the
FPGA fabric and are grouped together with their supporting
logic into a grid of tiles. The tiles are the fundamental build-
ing block of the overlay architecture and their inner struc-
ture is described in Fig. 5. Each tile has high-bandwidth
data-flow connections to a 4-neighbourhood. Furthermore,
there is a packet-switched configuration and status network
for short message exchanges between the host program and
any FU without the need for a static data-flow route. The
input and output crossbars within each tile enable flexible
data transport and are also set up via these messages. In
addition, to support random memory accesses for example
for the hash table primitives, a few tiles are also attached
to the static memory bus directly, not just through DMA
engines.

Since data-flow graphs are likely to not map perfectly
to a 2D-grid, a special pass-through or bridge FU can be
loaded, which instead of an operation just contains two
FIFOs. This allows forwarding of up to two data streams
through any unused tile. One exemplary use is highlighted
in pink in Fig. 6, where two data streams need to cross over.

The whole design is freely scalable and flexible with re-
spect to the targeted application domain. This is especially
interesting, since the amount of general and specialized
FPGA resources provided is defined one level lower, by the
shape and placement of the reconfigurable partitions. This
allows not only for different designs to set higher or lower
resource limits, but also, the partitions do not necessarily

Fig. 8 Pure execution time of the different hash join primitives at 25
million rows

have to have the same size. Again, all of this is transparent
to the user, who only perceives an array of functional units,
each with its own set of supported operations.

In conclusion, our overlay architecture allows for fast and
dynamic composition of query datapaths. Using small con-
figurable local crossbars allows for higher flexibility than
a statically wired set of RPs while allowing for many more
RPs than a globally interconnected system. This flexibility
in data-flow routing can also help reduce the cost of re-
configuration. Also, the structure of the tiles fits perfectly
to a column-based system, chosen to reduce bandwidth by
accessing only the necessary columns. Finally, the structure
of our overlay architecture enables both functional and data
parallelism since different parts of the system are always
similar.

4.3.3 Physical Design

The connections between the overlay architecture and the
memory subsystem are located along the left and bottom
sides in our FPGA,as shown in Fig. 6. Again, such place-
ment is due to the physical layout of the generic infra-
structure components. The DMA engines are used to scan
or store columns located in the FPGA’s DDR3 DRAM. In
addition, there is one bidirectional connection directly to
the PCIe core, which allows one column to be streamed to
or from the host server directly.

5 Experimental Setup

This section covers the setup of our experiments and de-
scribes the hardware used to gather our results. Since we
focus on analytical query processing instead of transactions,
we choose the TPC-H benchmark [42] for our comparisons.

K



Datenbank Spektrum (2021) 21:133–143 139

Fig. 9 TPC-H Q6: Execution time, including transfer overhead, for all
devices

Due to limited space, we report a detailed analysis of one
query, which we carefully selected. One important goal was
to have a similar query execution plan for CPU and GPU.
Such an operator-oblivious comparison is required to pro-
vide a fair comparison of both performance and system
integration. Our secondary goal was to select either a com-
plete query or a meaningful partial query pipeline that could
be implemented with the finite hardware resources of com-
mon FPGAs. Furthermore, our current evaluation excludes
algorithmic variants and computationally expensive multi-
dimensional sorting operations. Such evaluation is exten-
sively studied on their own already [13, 18, 20, 47].

Fig. 6 shows the data-flow graph of Q6 with its differ-
ent types of operations. The selection primitives, consisting
of three range comparisons, are connected via logical op-
erations. This is shown in orange in the bottom half of
Fig. 6. At the tail end Q6 contains two arithmetic opera-
tions, which are shown in green and violet. After the reduc-
tion, only a scalar result remains. For execution on FPGA,
all primitives are mapped to the tiles of our FPGA over-
lay architecture. After selection, for CPU and GPU, results
are materialized by gathering column values according to
the 1-values in the resulting bitmap. In contrast, the data-
flow processing using hardware-pipelined function units on
the FPGA allows for in-place materialization using the fil-
ter primitive. The filter and post-processing primitives are
shown in violet in Fig. 6. Since this tree-shaped query exe-
cution plan does not neatly fit onto a 2D-grid, non-compute
FIFO-only Bridge FUs are used to allow flexible placement
of the query’s data-flow graph.

Overall Q6 contains enough optimization potential to
allow all of the three architectures to apply their own
strengths, but the execution plans on different devices are
still similar enough to reach comparable results.

5.1 Device Setup

All measurements are taken on a server equipped with an
AMD Epyc 7351P 16-Core Processor, an AMD Radeon RX
Vega 56 with 8GiB HBM and a Xilinx Zynq-7000 ZC706
evaluation card with 2GiB DDR3 DRAM and Debian Linux
as the operating system.

FPGA – Physical Setup: Our FPGA provides 218600
LUTS, 437200 FFs, 545 BRAMs, 900 DSPs [45]. The SoC
comprises of Zynq PS: two ARM9-cores and one DDR
memory controller. Based on the SoC and PCIe endpoint
(i.e. the fixed-function units) layout, we implement the I/O-
pins to DDR memory controller. Similarly based on the lay-
out as well as the locations and number of DSP resources,
we choose a 4 � 7 tiles grid for .

Each FU can at most use 1200 LUTs, 2400 FFs and
20 DSP units. Fig. 6 shows an abstract representation of
both the logical and physical design, the latter of which is
constrained by placement requirements for the PCIe core
and DDR3 memory controller. For the same reason, only
the two leftmost tiles on the bottom row are equipped with
an extended interface, which in addition to the normal data
streaming connections also allows random memory access.
These tiles are sized slightly larger and occupy 1600 LUTs,
3200 FFs, 10 BRAMs, and 20 DSP units, but they still fit
within the regular grid structure. All streaming connections
within the overlay architecture are set to 32 bits. The com-
plete design requires 73949 LUTs, 75203 FFs, 37.5 BRAM
and no DSP units. In relation to the available resources, this
is 34% of LUTs, 17% of FF and 7% of BRAM. Given the
requirements of the DDR3 memory controller, the overlay
architecture is clocked at 200Mhz.

6 Evaluation

In this section, we compare execution of the same TPC-H
workload on different devices in our system. At first we
present performance results for a micro-benchmark fol-
lowed by a detailed end-to-end comparison of query 6 and
hash join. To ensure comparable performance, we run our
experiments on CPU, GPU and FPGA, all of which are
available in the same environment and share the same sys-
tem resources.

6.1 Micro-benchmark

We test the devices’ general processing throughput by
launching an increasing number of aggregate operators,
with each input column consisting of 10 million integers.
CPU and GPU process the aggregates sequentially, but
with wide data parallelism within each primitive, while on
the FPGA, functional parallelism between the aggregates

K



140 Datenbank Spektrum (2021) 21:133–143

Fig. 10 TPC-H Q6: Pure execution time, showing details for smaller
data sizes

is employed. The resulting execution times for the four
primitive implementations on our three devices are shown
in Fig. 7. The data shows that GPU, just as expected, by
far outperforms CPU and FPGA due to its high memory
bandwidth and optimized atomic operations. With its lower
clock rate and limited throughput per DMA channel, the
FPGA is much slower for a single aggregate than the other
devices. However since all FUs can run completely inde-
pendently from each other (or in a hardware pipeline), with
statically allocated bandwidth per connection, the FPGA
handles functional parallelism efficiently: Performance is
nearly constant when increasing the number of concurrent
reduce operations until memory controller, or rather, system
interconnect bandwidth limits are reached. The step down
in performance after three concurrent aggregates happens
because at that point, the faster memory controller becomes
saturated and additional aggregates have to fall-back to the
slower memory. Finally, the grey line in Fig. 7 shows the
theoretical maximum throughput for the FPGA, which is
almost reached.

Due to their operator-at-a-time execution, performance
of both CPU and GPU degrades linearly with increasing
numbers of concurrent reduce operations. In case of the
single aggregation, the runtime is less than 1ms for CPU
OpenMP and GPU OpenCL versions. Hence, they are not
vidible in the Fig. 7. The GPU shows a near linear growth
in execution time, as it executes one reduce after another.
Still, the GPU performs well for reduce compared to other
implementations. Even with the OpenMP variant of CPU
being nearly twice as fast as the OpenCL version, they are
slower compared to GPU.

6.2 Hash Joins

Unlike the primitives of query 6, a hash join implementation
requires large amounts of intermediate data to be stored in
order to determine the join pairs. Such random memory
accesses are particularly expensive in FPGAs. To analyse
the performance of joins, we can limit ourselves to just the
primitives required for them, since they will be the most
expensive primitives in the overall query pipeline.

We split the hash join into its two primitives: hash-ta-
ble build and hash-table probe. We use linear probing for
collision resolution and multiplicative hashing as hash func-
tion. On the FPGA, the join primitives can be loaded into
the extended tiles equipped with random memory access.
Since these tiles still need to fit within the regular grid of
the physical design, their resources are constrained in sim-
ilar ways as the pure streaming tiles. To circumvent these
limitations, we could break these primitives out of the grid
or implementing them in the static part. This would allow
for higher-performance implementations at the cost of flex-
ibility, for example by implementing large domain-specific
caches. Another performance limitation is that the mem-
ory interface generated by the HLS compiler is not well-
optimized for concurrent random memory access.

The execution time for hash join is given in Fig. 8. Due
to the given limitations, we see a larger performance penalty
for FPGA in comparison to the other devices.

Based on our results, the performance of OpenCL-
based CPU hash-build is comparatively slower than that
of OpenMP based implementation (cf. Fig. 11). However
the OpenCL hash-build in CPU is faster than that of the
OpenMP implementation. Such performance difference
comes from threading strategies present in the imple-
mentations – OpenMP is coarse grained and OpenCL is
fine grained [35]. Such performance from OpenCL and
OpenMP are still worse compared to the GPU. Here, the
massive parallel nature of the GPU is useful in probing
multiple input values thereby having better performance
than CPU.

6.3 Query 6

We report performance measurements for table sizes from
1000 rows up to 128 million rows which almost fills up the
entire memory on the smallest device.

The communication overhead to start computation in
non-CPU devices is included in the results. Looking at the
data from this angle allows us to analyze end-to-end latency
from the database system optimizer’s point of view, includ-
ing performance and quality of the host drivers. The figures
detailing query execution time, including data transfer to
PCIe devices, are organized as follows: Fig. 9 covers the
whole range of input rows and includes all transfer times

K



Datenbank Spektrum (2021) 21:133–143 141

Fig. 11 TPC-H query 6: Pure execution time of the different primitives
at 25 million rows

and extra overhead, in this case just the reconfiguration time
for the FPGA. To facilitate a comparison focused on pure
compute performance, Fig. 10 shows execution time only.

Finally, Fig. 11 shows the execution time of the single
primitives for the platforms that do operator-at-a-time ex-
ecution. Since the FPGA overlay architecture executes all
primitives in parallel in a hardware pipeline, it is not in-
cluded. This data shows strong evidence for implementing
architecture-specific primitives. This is especially clear for
the materialization primitive, which underperforms on GPU
due to architectural disadvantages. In contrast, for the re-
duction, the GPU can bring its specialized hardware for
atomic operations to bear.

6.4 Discussion

6.4.1 Access Bottleneck

Comparing the results shown in Fig. 9 and Fig. 10 it is clear
that devices without direct access to system memory are at
a disadvantage. In the case of a cold-start without most
required data already present in the device-local memory,
transfer times over PCIe are the dominating factor in exe-
cution time for both GPU and FPGA, something which can
only be improved with newer system interconnects such
as NVLink [17]. This effect is exacerbated for the FPGA
card used, as both its internal memory bandwidth and PCIe
throughput are fairly low compared to GPUs. Improving
this with more powerful logic cores is possible, but requires
a much higher amount of FPGA resources. However, if de-
vice-resident data is used, the situation is improved. For Q6,
OpenCL on GPU is faster than the CPU OpenCL driver for
more than 20 million rows, see Fig. 10.

6.4.2 Hardware-Sensitive vs. Hardware-Oblivious
Primitives

A surprise is that for query execution on CPU, there is a big
difference between the OpenCL primitives and OpenMP
parallelized versions, despite using zero-copy buffer man-
agement for the OpenCL variant. This is due to the fact that
OpenCL code written for massively parallel execution on
a GPU does not translate to an optimal execution on a multi-
core CPU. So even with the current state of OpenCL pack-
ages, the effort of implementing native primitives for CPU
remains a sensible investment. Our evaluation supports ex-
isting evidence, that OpenCL is in a disadvantage compared
to OpenMP for multi-core CPUs [35].

Due to the limited throughput and low memory band-
width of the resource-efficient generic infrastructure com-
ponents on the FPGA, the DMA interfaces into the over-
lay architecture reach only roughly half of their maximum
bandwidth. Still, the FPGA processes query 6 at an in-
put throughput of about 1.75 GB/s. Such execution perfor-
mance can be improved by fusing multiple operator kernels
together for FPGAs [14]. Finally, the stepping observed for
small table sizes during data transfer onto the FPGA card
are due to kernel-level I/O scheduling.

6.4.3 Power Comparison

While the overlay architecture is flexible and scalable, it
must be emphasized that limited performance in system in-
tegration components is the major bottleneck for the FPGA.
For a fair comparison, the power consumption differences
should be minded: While the CPU generates up to 155W of
waste heat and the GPU has a heat output of up to 210W, the
FPGA evaluation card only draws about 12W. These num-
bers are based on the original equipment manufacturer’s
specifications [1, 2] and in addition for the FPGA, power
estimates from the vendor design tools. For Query 6 with
128 million input rows, these power requirements translate
to ca. 12J on the CPU using OpenMP-based primitives, 37J
for the CPU OpenCL implementation, 32J for OpenCL on
the GPU and finally, 14J for the FPGA. Even without data-
parallel processing, the FPGA is competitive with the near-
optimal CPU-based primitive implementation, while both
OpenCL-based sets of primitives require a lot more energy.

6.4.4 Data-Parallelism on the FPGA

Setting the processing capabilities on the FPGA into con-
text, the performance measurements reported are for hard-
ware-pipelined tuple-at-a-time processing. On a card with
higher memory bandwidth only �2 or �4 SIMD parallelism
would be required to reach parity with CPU and GPU.

K



142 Datenbank Spektrum (2021) 21:133–143

7 Conclusion

In this paper, we present an in-depth analysis of running
OLAP queries on CPU, GPU and FPGA. We consider not
only execution time alone, but also the overhead incurred
by I/O and scheduling.

Our experiments consist of running the same micro-
benchmark using aggregation, hash joins and Q6 from
TPC-H on all three devices using portable operators (prim-
itives) to obtain fair and comparable results. With our
experiments, we observed that architecture-specific primi-
tive implementations and execution engines are needed to
better exploit the underlying architectures of CPUs, GPUs,
and FPGAs. While direct access to main memory gives
CPUs in general a large advantage over coprocessors, we
again confirm the related work that OpenMP primitive
implementations still outperform OpenCL on CPUs.

Regarding FPGAs, our overlay architecture offers a high
scalability for analytical query processing, but the low
memory bandwidth of the FPGA card’s memory controller
and system interconnect limit real-world performance. We
argue that FPGAs are still to be considered for query pro-
cessing due to its low power consumption compared to
CPUs and GPUs.

Finally, with recent advancements in system intercon-
nect technologies (e.g., NVLink), we argue that hetero-
geneous coprocessor-based database systems can become
more competitive with CPU-only systems for general ana-
lytical database query processing.

Acknowledgements This work was partially funded by the DFG
(grant no.: SA 465/51-1 and PI 447/9)

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. AMD: EPYC 7351P. https://www.amd.com/en/products/cpu/amd-
epyc-7351p. Accessed 25 May 2021

2. AMD: Radeon RX Vega 56. https://www.amd.com/en/products/
graphics/radeon-rx-vega-56. Accessed 25 May 2021

3. Becher A et al (2018) Integration of FPGAs in database man-
agement systems: challenges and opportunities. DB Spektrum
18(3):145–156

4. Becher A et al (2019) ReProVide: towards utilizing heterogeneous
partially reconfigurable architectures for near-memory data pro-
cessing. BTWWorkshops, p 51

5. Betz V, Rose J (1997) VPR: a new packing, placement and rout-
ing tool for FPGA research. Proceedings of the 7th International
Conference on Field-Programmable Logic and Applications, pp
213–222

6. BlazingDB (2020) BlazingSQL: high performance SQL engine on
RAPIDS AI. https://blazingsql.com/. Accessed 28 May 2020

7. Boncz PA et al (1999) MIL primitives for querying a fragmented
world. VLDB J 8(2):101–119

8. Boncz PA et al (2019) Database architectures for modern hardware.
Dagstuhl Seminar, vol 18251. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern

9. Breß S (2013) Why it is time for a HyPE: a hybrid query process-
ing engine for efficient GPU coprocessing in DBMS. Proc VLDB
Endow 6(12):1398–1403

10. Breß S (2014) The design and implementation of CoGaDB: a
column-oriented GPU-accelerated DBMS. Datenbank Spektrum
14(3):199–209

11. Breß S et al (2014) GPU-accelerated database systems: survey and
open challenges. In: Transactions on large-scale data- and knowl-
edge-centered systems XV. Springer, Berlin, Heidelberg https://doi.
org/10.1007/978-3-662-45761-0_1

12. Broneske D, Breß S, Heimel M, Saake G (2014) Toward hardware-
sensitive database operations. Proceedings 17th International Con-
ference on Extending Database Technology (EDBT), pp 229–234

13. Chen R, Prasanna VK (2016) Accelerating equi-join on a CPU-
FPGA heterogeneous platform. 2016 IEEE 24th Annual Interna-
tional Symposium on Field-Programmable Custom ComputingMa-
chines (FCCM), pp 212–219 https://doi.org/10.1109/fccm.2016.62

14. Drewes A, Joseph JM, Gurumurthy B, Broneske D, Saake G, Pi-
onteck T (2020) Optimising operator sets for analytical database
processing on FPGAs. In: Rincón F, Barba J, So H, Diniz P, Caba J
(eds) Applied reconfigurable computing. Architectures, tools, and
applications ARC 2020. Lecture notes in computer science, vol
12083. Springer, Cham, pp 30–44 https://doi.org/10.1007/978-3-
030-44534-8_3

15. Drewes T, Joseph JM, Gurumurthy B, Broneske D, Saake G, Pi-
onteck T (2018) Efficient inter-kernel communication for opencl
database operators on FPGAs. 2018 International Conference on
Field-Programmable Technology (FPT), pp 266–269 https://doi.
org/10.1109/fpt.2018.00050

16. Fang R, He B, Lu M, Yang K, Govindaraju NK, Luo Q, Sander
PV (2007) GPUQP: query co-processing using graphics processors.
Proceedings of the 2007 ACM SIGMOD International Conference
on Management of Data - SIGMOD ’07, pp 1061–1063 https://doi.
org/10.1145/1247480.1247606

17. Foley D et al (2017) Ultra-performance pascal GPU and NVLink
interconnect. IEEE Micro 37(2):7–17

18. Grozea C, Bankovic Z, Laskov P (2010) FPGA vs. multi-core CPus
vs. GPus: hands-on experience with a sorting application. In: Keller
R, Kramer D, Weiss JP (eds) Facing the multicore-challenge. Lec-
ture notes in computer science, vol 6310. Springer, Berlin, Heidel-
berg, pp 105–117 https://doi.org/10.1007/978-3-642-16233-6_12

19. Gurumurthy B et al (2018) Cooking DBMS operations using gran-
ular primitives. Datenbank Spektrum 18(3):183–193

20. Halstead RJ, Absalyamov I, Najjar WA, Tsotras VJ (2015) FPGA-
based multithreading for in-memory hash joins. 7th Biennial Con-
ference on Innovative Data Systems Research (CIDR ’15).

21. Han TD, Abdelrahman TS (2011) Reducing branch divergence in
GPU programs. Proceedings of the Fourth Workshop on General

K

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.amd.com/en/products/cpu/amd-epyc-7351p
https://www.amd.com/en/products/cpu/amd-epyc-7351p
https://www.amd.com/en/products/graphics/radeon-rx-vega-56
https://www.amd.com/en/products/graphics/radeon-rx-vega-56
https://blazingsql.com/
https://doi.org/10.1007/978-3-662-45761-0_1
https://doi.org/10.1007/978-3-662-45761-0_1
https://doi.org/10.1109/fccm.2016.62
https://doi.org/10.1007/978-3-030-44534-8_3
https://doi.org/10.1007/978-3-030-44534-8_3
https://doi.org/10.1109/fpt.2018.00050
https://doi.org/10.1109/fpt.2018.00050
https://doi.org/10.1145/1247480.1247606
https://doi.org/10.1145/1247480.1247606
https://doi.org/10.1007/978-3-642-16233-6_12


Datenbank Spektrum (2021) 21:133–143 143

Purpose Processing on Graphics Processing Units - GPGPU-4.
https://doi.org/10.1145/1964179.1964184

22. He B et al (2009) Relational query coprocessing on graphics pro-
cessors. ACM Trans Database Syst 34(4):1–39

23. Heimel M et al (2013) Hardware-oblivious parallelism for in-mem-
ory column-stores. Proc VLDB Endow 6(9):709–720

24. Hennessy JL, Patterson DA (2011) Computer architecture: a quan-
titative approach. Elsevier

25. Khronos Group (2020) OpenCL. https://www.khronos.org/opencl/.
Accessed 25 May 2020

26. Kinetica (2020) Kinetica high performance analytics database.
http://www.kinetica.com/. Accessed 28 May 2020

27. Hemsoth N (2016) Baidu takes FPGA approach to accelerating
SQL at scale. https://www.nextplatform.com/2016/08/24/baidu-
takes-fpga-approach-accelerating-big-sql/. Accessed 28 May 2020

28. OmniSci (2020) Accelerated analytics platform. http://www.
omnisci.com/. Accessed 28 May 2020

29. Owaida M, Sidler D, Kara K, Alonso G (2017) Centaur: a frame-
work for hybrid CPU-FPGA databases. 2017 IEEE 25th Annual In-
ternational Symposium on Field-Programmable Custom Comput-
ing Machines (FCCM), pp 211–218 https://doi.org/10.1109/fccm.
2017.37

30. Pinnecke M et al (2017) Are Databases Fit for Hybrid Workloads
on GPUs? A Storage Engine’s Perspective. Proceedings of the 33rd
International Conference on Data Engineering, pp. 1599–1606.
https://doi.org/10.1109/ICDE.2017.237.

31. Pirk H, Moll O, Zaharia M, Madden S (2016) Voodoo – a vector
algebra for portable database performance on modern hardware.
Proc VLDB Endow 9(14):1707–1718. https://doi.org/10.14778/
3007328.3007336

32. Putnam A, Caulfield AM, Chung ES, Chiou D, Constantinides
K, Demme J et al (2014) A reconfigurable fabric for accelerating
large-scale datacenter. 2014 ACM/IEEE 41st International Sympo-
sium on Computer Architecture (ISCA), pp 13–24 https://doi.org/
10.1109/isca.2014.6853195

33. Saecker M, Markl V (2013) Big data analytics on modern hard-
ware architectures: a technology survey. In: Aufaure MA, Zimányi
E (eds) Business intelligence eBISS 2012. Lecture notes in busi-
ness information processing, vol 138. Springer, Berlin, Heidelberg
https://doi.org/10.1007/978-3-642-36318-4_6

34. Salami B, Malazgirt GA, Arcas-Abella O, Yurdakul A, Sonmez N
(2017) AxleDB: a novel programmable query processing platform
on FPGA. Microprocess Microsyst 51:142–164. https://doi.org/10.
1016/j.micpro.2017.04.018

35. Shen J, Fang J, Sips H, Varbanescu AL (2012) Performance gaps
between OpenMP and OpenCL for multi-core CPUs. 2012 41st
International Conference on Parallel Processing Workshops, pp
116–125 https://doi.org/10.1109/icppw.2012.18pp

36. Sidler D, Owaida M, Istvan Z, Kara K, Alonso G (2017) doppioDB:
a hardware accelerated database. 2017 27th International Confer-
ence on Field Programmable Logic and Applications (FPL), pp
1659–1662 https://doi.org/10.23919/fpl.2017.8056864

37. Siewert S (2009) Using intel streaming SIMD extensions and intel
integrated performance primitives to accelerate algorithms

38. SQreamDB (2020) SQream – GPU Data Warehouse. https://
sqream.com/product/. Accessed 28 May 2020

39. Sukhwani B, Min H, Thoennes M, Dube P, Iyer B, Brezzo B et al
(2012) Database analytics acceleration using FPGAs. Proceedings
of the 21st International Conference on Parallel Architectures and
Compilation Techniques - PACT ’12, pp 411–420 https://doi.org/
10.1145/2370816.2370874

40. The Apache Software Foundation (2018) ApacheSpark. https://
spark.apache.org/. Accessed 14 May 2020

41. The Apache Software Foundation (2019) ApacheStorm. https://
storm.apache.org/. Accessed 14 May 2020

42. Transaction Processing Performance Council (2014) TPC bench-
mark H (decision support). Tech. Rep. 2.17.1

43. Turan F, Roy SS, Verbauwhede I (2020) HEAWS: an accelerator for
homomorphic encryption on the Amazon AWS FPGA. IEEE Trans
Comput. https://doi.org/10.1109/tc.2020.2988765

44. Xilinx (2014) SDAccel development environment backgrounder.
https://www.xilinx.com/support/documentation/backgrounders/
sdaccel-backgrounder.pdf. Accessed 3 June 2020

45. Xilinx (2018) Zynq 7000 SoC data sheet: overview. https://www.
xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-
Overview.pdf. Accessed 3 June 2020

46. Xillybus (2020) An FPGA IP core for easy DMA over PCIe with
Windows and Linux. http://xillybus.com/. Accessed 4 June 2020

47. Zhang C, Chen R, Prasanna V (2016) High throughput large scale
sorting on a CPU-FPGA heterogeneous platform. 2016 IEEE In-
ternational Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), pp 148–155 https://doi.org/10.1109/ipdpsw.
2016.117

48. Zhang S, He J, He B, Lu M (2013) OmniDB: towards portable
and efficient query processing on parallel CPU/GPU architectures.
Proc VLDB Endow 6(12):1374–1377. https://doi.org/10.14778/
2536274.2536319

49. Ziener D et al (2016) FPGA-based dynamically reconfigurable
SQL query processing. ACM Trans Reconfigurable Technol Syst
9(4):25:1–25

50. Zukowski M, van de Wiel M, Boncz P (2012) Vectorwise: a vector-
ized analytical DBMS. 2012 IEEE 28th International Conference
on Data Engineering, pp 1349–1350 https://doi.org/10.1109/icde.
2012.148

K

https://doi.org/10.1145/1964179.1964184
https://www.khronos.org/opencl/
http://www.kinetica.com/
https://www.nextplatform.com/2016/08/24/baidu-takes-fpga-approach-accelerating-big-sql/
https://www.nextplatform.com/2016/08/24/baidu-takes-fpga-approach-accelerating-big-sql/
http://www.omnisci.com/
http://www.omnisci.com/
https://doi.org/10.1109/fccm.2017.37
https://doi.org/10.1109/fccm.2017.37
https://doi.org/10.1109/ICDE.2017.237
https://doi.org/10.14778/3007328.3007336
https://doi.org/10.14778/3007328.3007336
https://doi.org/10.1109/isca.2014.6853195
https://doi.org/10.1109/isca.2014.6853195
https://doi.org/10.1007/978-3-642-36318-4_6
https://doi.org/10.1016/j.micpro.2017.04.018
https://doi.org/10.1016/j.micpro.2017.04.018
https://doi.org/10.1109/icppw.2012.18pp
https://doi.org/10.23919/fpl.2017.8056864
https://sqream.com/product/
https://sqream.com/product/
https://doi.org/10.1145/2370816.2370874
https://doi.org/10.1145/2370816.2370874
https://spark.apache.org/
https://spark.apache.org/
https://storm.apache.org/
https://storm.apache.org/
https://doi.org/10.1109/tc.2020.2988765
https://www.xilinx.com/support/documentation/backgrounders/sdaccel-backgrounder.pdf
https://www.xilinx.com/support/documentation/backgrounders/sdaccel-backgrounder.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://xillybus.com/
https://doi.org/10.1109/ipdpsw.2016.117
https://doi.org/10.1109/ipdpsw.2016.117
https://doi.org/10.14778/2536274.2536319
https://doi.org/10.14778/2536274.2536319
https://doi.org/10.1109/icde.2012.148
https://doi.org/10.1109/icde.2012.148

	In-Depth Analysis of OLAP Query Performance on Heterogeneous Hardware
	Abstract
	Introduction
	Related Work
	Background
	Primitives
	Devices and Characteristics

	Execution Models
	CPU
	GPU
	FPGA
	User Model of the Overlay Architecture
	Structure and Infrastructure
	Physical Design


	Experimental Setup
	Device Setup

	Evaluation
	Micro-benchmark
	Hash Joins
	Query 6
	Discussion
	Access Bottleneck
	Hardware-Sensitive vs. Hardware-Oblivious Primitives
	Power Comparison
	Data-Parallelism on the FPGA


	Conclusion
	References


