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Abstract
The objective of this work is inclusion of the Steigmann-Ogden interface in the Method of Conditional Moments to inves-
tigate the influence of surface effects on the effective properties of random particulate composites. The particular focus is 
centered on accounting for the surface bending stiffness. To this end, the notion of the energy-equivalent inhomogeneity 
developed for Gurtin–Murdoch interface is generalized to include the surface bending contribution. The crucial aspect of 
that generalization is identification of the formula defining energy associated with the surface bending. With the help of 
that formula, the real nano-particle and its surface are replaced by equivalent inhomogeneity with properties incorporating 
the surface effects. Closed-form expressions for the effective moduli of a composite with a matrix and randomly distributed 
spherical inhomogeneities are derived. The normalized shear moduli of nanoporous material as a function of void volume 
fraction is analyzed and evaluated in the context of other theoretical predictions.

Keywords  Spherical nanoparticles · Composites of stochastic structure · Size-dependent effective properties · Steigmann-
ogden interface model

1  Introduction

Interphases between the inhomogeneities and the matrix 
may have a very pronounced influence on the overall prop-
erties of composite materials. At the same time, their inclu-
sion in mechanical (thermal, electric, etc.) analysis of those 
materials always entails additional complications whose 
level depends on the complexity of the interphase behav-
ior and on the accuracy, with which that behavior is to be 
captured analytically. The interphases are typically three-
dimensional continua but treating them as such is feasible 
only for simple geometry of the inhomogeneities and for 
simple loading conditions.

To cover more complex situations, most notably com-
posites involving many interacting inhomogeneities, some 

effort has been invested to develop various simplified mod-
els of interphases ([1–10] among other). The most practi-
cal and popular of them are (arguably) the Gurtin–Murdoch 
[11, 12] model and the spring layer model (e.g., [1, 4, 5, 
13–16]. The Gurtin–Murdoch and related models of surface 
elasticity have been used to study beams, plates, and shells, 
e.g. Miller and Shenoy [17], Altenbach and Eremeyev [18] 
among others.

The generalization of Gurtin–Murdoch model was pro-
posed by Steigmann and Ogden [19, 20] who introduced 
the resistance of the surface to both stretch and bending. 
It means that the surface energy in the Steigmann-Ogden 
model includes both the surface strain tensor and the surface 
curvature tensor. The Steigmann–Ogden model has been 
used in Chhapadia et al. [21], Mohammadi and Sharma [22] 
to study bending of nano-sized cantilever beams. In these 
works the Steigmann–Ogden constants are determined by 
using combination of atomistic simulations and a simple 
continuum model.

In Javili et al. [23, 24], dell’Isola and Seppecher [25], 
dell’Isola et al. [26] it is demonstrated that the higher-gra-
dient theories could entail surface tensors of stresses and 
couple stresses, as well as other stress resultants.
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Within the Toupin–Mindlin formulation [27–29] of the 
strain gradient elasticity the mathematical study of static 
and dynamic boundary value problems with surface stresses 
described by Steigmann-Ogden model was presented in Ere-
meyev and Lebedev [30], Eremeev [31]. Similar variational 
formulation was used in the case of statics of classical elas-
ticity with the Steigmann-Ogden model in Zemlyanova 
and Mogilevskaya [32]. The effect of curvature-dependent 
interfacial energy was also studied by Gao et al. [33] for 
finite deformation. The effective moduli of nanocomposites 
were analyzed in Gao et al. [34]. The effective properties of 
the isotropic particulate composites with Steigmann-Ogden 
interface are derived in Zemlyanova and Mogilevskaya [35]. 
Cylinder of finite length with Steigmann-Ogden interface 
was studied in Nazarenko et al. [36].

The main goal of this work is to show that the new con-
cept of energy-equivalent inhomogeneity (EEI), recently 
presented in [37–39], permits direct evaluation of effective 
properties of nanomaterials, which includes Steigmann-
Ogden interface model. In addition, we aim at evaluating the 
effectiveness of the proposed approach by means of numeri-
cal examples and comparisons with results obtained using 
other techniques, also those based on the Lurie solution for 
sphere [40] in which all governing equations in the inhomo-
geneity/interphase system are satisfied exactly. Lurie’s solu-
tion was also used for analysis of the effective behavior of 
the composites with spherical layered particles in [41, 42].

To illustrate that the presented notion of EEI can be used 
in combination with any method of evaluating the effec-
tive properties of composites, our choice is the method of 
conditional moments (MCM) rather than the self-consistent 
approach that is used more commonly.

This article is organized as follows. In the next section the 
governing equations of the problem of effective properties 
of random composites with interface is presented. Section 3 
deals with the notion of energy-equivalent inhomogeneities. 
The main contribution of the proposed approach, which is 
determination of properties of the equivalent spherical inho-
mogeneity with Steigmann-Ogden interface, is presented in 
this Section in general terms, with the development quanti-
fying those contributions relegated to Appendices 1 and 2. 
Even though the choice of the method used to develop the 
effective properties of an entire composite is in this work 
a secondary issue, to make it self-contained in the Sect. 4 
a brief description of the MCM and its application to the 
problems with interphases are provided. The effective prop-
erties of particulate composite with Steigmann-Ogden inter-
face are evaluated. Numerical results and comparisons are 
presented in Sect. 5, while discussion of the approach and 
conclusions are contained in the last Sect. 6.

2 � Governing equations

Consider a representative macro-volume V consisting of a 
matrix with randomly distributed nano-inhomogeneities. 
Under conditions of uniform loading the macroscopic stress 
� and strain � are connected by following relations:

where �∗ is the effective stiffness tensor, and the overbar 
denotes the operation of the statistical averaging.

For linear elastic materials the problem of finding the 
effective stiffness tensor requires the solution of the follow-
ing set of equations.

•	 Equations of equilibrium:

•	 Hooke’s law:

•	 Linear kinematic relation:

where � is the position vector of a micro-point.
In Eqs. (2)–(4) �(�) and �(�) are the stress and strain ten-

sors in the bulk material (matrix or inhomogeneity), �(�) is 
the displacement vector; ∇ is the three dimensional nabla 
operator; “·” identifies the single dot product of two ten-
sors; the fourth-order tensor of elastic parameters �(�) is a 
random, statistically homogeneous function of coordinates 
with a finite scale of correlation and linked to the inclusion 
and to the matrix properties via

where H is the Heaviside function and �1 and �2 denote the 
values of the tensors of elastic moduli in the inhomogenei-
ties and in the matrix, respectively. The function z(�) is any 
function satisfying the following requirements:

where V1 and V2 are the domains of the inhomogenei-
ties and the matrix, respectively and SI is the surface of 
inhomogeneities.

When the surface (interface) effects are described by the 
Steigmann-Ogden model [19, 20], Eqs. (2)–(4) need to be 
supplemented by the equilibrium equations an boundary 
conditions at the interface SI between the matrix and the 
nano-inhomogeneities. These relations are derived within 

(1)� = �∗∶�,

(2)∇ ⋅ �(�) = 0,

(3)�(�) = �(�)∶�(�),

(4)�(�) = sym(∇�(�)),

(5)�(�) = �1H(z(�)) + �2H(−z(�)),

(6)

z(�) > 0, if � ∈ V1

z(�) = 0, if � ∈ SI

z(�) < 0, if � ∈ V2,
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the Toupin–Mindlin formulation of the strain gradient elas-
ticity in Eremeev [31] and have following form:

displacements continuity on SI

Surface equilibrium conditions on SI

The unit vector � is normal to SI . It is assumed, that 
at each interface � points away from the inhomogeneity. 
The square brackets indicate the jump of the field quanti-
ties across the interface, defined as their value on the side 
towards, which vector �  is pointing minus their value on 
the side from which it is pointing;∇SI

 is the surface nabla 
operator; 2H = tr�(�) is main curvature; �(�) = −∇SI

�(�) 
is the curvature tensor; the surface stress tensor �

S
 [12] is 

defined as

where �S is the interface/surface strain tensor, 
2

�S represents 
the second-rank identity tensor in the plane tangent to the 
surface, �

0
 is the magnitude of the deformation-independent 

(residual) surface/interfacial tension (assumed “hydrostatic” 
and constant in Gurtin–Murdoch model), �

S
 , �

S
 are surface 

Lamé constants, while ∇S�(�) denotes the surface gradient 
of the interface displacement field.

The surface couple stress tensor �S , which describes sur-
face bending [19, 20] has following form:

Here �B , �B are additional material parameters describing 
the bending stiffness of the material surface. The surface 
strain tensor �S and the bending strain measure (tensor of 
changes of curvature) �S

in which �(�) is displacement of the end of vector  �(�)  due 
to rotation of the surface

The system of differential Eqs. (2)–(6), (7) can be trans-
formed to the system of integral equations with the help of 

(7)[[�(�)]]SI = �;

(8)

[[�(�)]]
S
I
⋅ �(�) = ∇

S
I
⋅

[
�
S
(�) −

(
∇

S
I
⋅�

S
(�)

)
�(�)

]

− 2H�(�) ⋅
(
∇

S
I
⋅�

S
(�)

)
�(�).

(9)
�S(�) = �0

2

�S +2
[
�S − �0

]
�S(�) +

[
�S + �0

]
tr
(
�S(�)

) 2

�S +�0∇�(�),

(10)�S(�) = 2�B�S(�) + �Btr
(
�S(�)

) 2

�S .

(11)�S(�) = sym

(
2

�S (�) ⋅ ∇S�(�)

)
;

(12)�S = Sym

(
2

�S (�)∇S�(�)

)
,

(13)�(�) = ∇SI
(�(�) ⋅ �(�)) + �(�) ⋅ �(�).

Green’s function �(�) , which is defined by the following 
boundary-value problem

where �c is the constant tensor describing elasticity of the 
selected reference medium, δ(�) denotes the Dirac delta 
function and 

2

� is the identity tensor of rank two. Then the 
fluctuations in the displacement field within the entire region 
V are described by the following formula (see [37, 43]:

where � is an arbitrary constant.
We consider the macro-volumes and macro-surfaces as 

infinite (as in physical experiments, they need to be consid-
erably lager than the dimensions of inhomogeneities) and 
the boundary conditions have the form:

The linear kinematic relations of Eq. (4) combined with 
Eq. (15) and with the Gauss theorem leads to the following 
stochastically non-linear integral equations for the random 
strain field (see Nazarenko et al. [43] for more details)

The operator �(� − �) acts according to

while � and � are mean (expectation) values of �(�) and 
�(�) . �0(�) in Eq. (17) is the fluctuations in elastic constants 
and is defined as

The issues related to selection of the tensor �c were dis-
cussed in [37, 43–45] and the Reader is referred to these 
articles.

The way to account for the surface effects described by 
Eq. (17) is rigorous. However, evaluation of the surface inte-
gral containing 

[
�S(�) + (∇SI

⋅�S(�))�(�)
]
 in the right-hand 

side of Eq. (17) is a rather complex problem for the case of 

(14)div
(
�c∶∇�(�)

)
+ δ(�)

2

� = �…�(�)||∞ = �,

(15)

u0(�) = ∫
Vy

G(x − y) ⋅ div
(
C0(y) ∶ �(y) − �

)
dVy

− ∮
Sy

G(x − y) ⋅ ∇SI
⋅

[
�S(�) +

(
∇SI

⋅MS(�)
)
n(�)

]
dsy,

(16)�0(�)||∞ = 0.

(17)

�(x) = � +�(� − �) ∗
�
�0(�) ∶ �(�)

�

− sum

⎧
⎪⎨⎪⎩
∇x ∮

SI

�(� − �) ⋅ ∇SI
⋅

�
�S(�) +

�
∇SI

⋅�S(�)
�
�(�)

�
dSY

⎫
⎪⎬⎪⎭
.

(18)

�(� − �) ∗ �(�) = ∫
V

sym
(
∇x

(
∇x�(� − �)

))
∶
(
�(�) −�

)
dVy,

(19)�0(�) = �(�) − �c.
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arbitrary loading. In Nazarenko et al. [43], this was done 
only under some approximating assumptions, valid only for 
overall volumetric deformations. To bypass that difficulty 
an approach based on MCM in combination with a notion 
of the EEI was proposed in [37–39]. In this approach the 
contribution of the surface integral in Eq. (17) is accounted 
for by a proper adjustment of the bulk properties of the inho-
mogeneities, and the material is then analyzed as standard 
composite, i.e. involving no surfaces possessing their own 
mechanical characteristics.

According with the above remarks, in the EEI approach 
Eq. (17) is replaced by the equation for the energy-equiva-
lent system (see [37]

in which the surface integral of Eq. (17) is incorporated 
into �̃0(�) as a result of changing properties of the inhomo-
geneities from �1 to �eq . Detailed developments leading to 
�̃0(�) are presented in Sect. 3. Tensor �̃0(�) is defined as:

Equation (20) is solved in an averaged sense by the MCM 
to extract the average strains. As described subsequently, 
this leads to the determination of average stresses and the 
effective elastic constants.

3 � Energy‑equivalent inhomogeneity

3.1 � The concept of energy‑equivalent 
inhomogeneity

The idea of the EEI is simple: given that the interfaces in 
Steigmann-Ogden [19, 20] model are coherent (no jump in 
displacements across the interface), the surface strains of the 
interface can be related to the strains in the bulk material of 
the nano-inhomogeneity (or of the matrix). Furthermore, 
since the two-point approximation of the MCM—typi-
cally used in analysis based on that approach—effectively 
implies that the strains within the nano-inhomogeneities are 
assumed constant (for details see [43, 38]), it is convenient 
to relate the interface strains to those of the inhomogeneities 
(not those of the matrix, where the strain field is not assumed 
constant). Under those conditions it is reasonable to expect 
that the overall stiffness characteristics of the analyzed nano-
materials should remain essentially the same whether the 
stiffness provided by the interface is treated independently 
(as done in [43] or lumped together with the original stiff-
ness of the nano-ihomogeneity. With such modified stiff-
nesses of all nano-inhomogeneities, combining their original 
properties and those of their interfaces, the composite may 

(20)�(�) = � + K(� − �) ∗
[
�̃0(�) ∶ �(�)

]
,

(21)
�̃0(�) = �̃(�) − �C and �̃(�) = �eqH(z(�)) + �2H(−z(�)).

be considered as standard, in which there is no need for an 
independent inclusion of the surface effects.

The advantage of the approach based on the notion of EEI 
is that it bypasses all the technical difficulties caused by the 
presence of independently treated interfaces, encountered 
for example in Nazarenko et al. [43]. All the formulas for 
the effective properties of standard random heterogeneous 
materials (i.e. those not involving interfaces), that can be 
relatively easily developed using MCM [44, 45], become 
then directly applicable to nano-materials (i.e. involving 
interfaces), as long as the properties of inhomogeneities are 
properly modified to include the surface effects.

To find the modified properties of the EEI it is postulated 
that, for arbitrary—but homogeneous—deformation, those 
modified properties render the elastic energy of the EEI 
that is equal to the sum of the energies of the unmodified 
inhomogeneity and the energy of its interface. The postulate 
made here yields:

Here �eq is the stiffness tensor of the modified inhomogene-
ity to be found, �1 is the stiffness tensor of the original inho-
mogeneity; VI is the volume of the inhomogeneity and SI is 
its surface; �1 is the constant strain tensor within the volume 
of the inhomogeneity; ES is the surface energy.

In the case of Steigmann-Ogden interface Eqs. (7)–(13) 
the surface energy can be represented as

where UT and UB are the energies related to the surface ten-
sion and the surface bending

In Nazarenko et al. [39], it is shown, that for spherical and 
isotropic inhomogeneities, and for isotropic surface proper-
ties described by Gurtin–Murdoch model of material surface 
expressed in Eqs. (7)–(9) if �S(�) = 0 , the stiffness tensor 
�eq of equivalent inhomogeneity is also isotropic and its bulk 
and shear moduli are defined as

where K1 and �1 are the constants (bulk and shear moduli) of 
the original inhomogeneity, while K̂T and 𝜇̂T are (see details 
in [39]

(22)
1

2
V1

(
� ∶ �eq ∶ �1

)
=

1

2
V1

(
� ∶ �1 ∶ �1

)
+ ES.

(23)ES = UT + UB,

(24)

UT =
1

2 ∫
SI

∫
SI

[
2�S�S ∶ �S + �Str

(
�S
)2

+ �0∇S� ∶ ∇S�
]
dS;

(25)UB =
1

2 ∫
S

[
2�b� ∶ � + �Btr(�)

2
]
dS.

(26)Keq = K1 + K̂T ; μeq = μ1 + 𝜇̂T ,
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with �S = �S + �0 , �S = �S − �0 appearing as a result of the 
surface tension contribution in Eq. (22) and Eq. (8); a is 
radius of spherical inhomogeneity. If �S ≠ 0 in Eqs. (7)–(9), 
the tensor �eq should be also isotropic and its bulk and shear 
moduli can be defined as

where 𝜇̂B and K̂B are the additional contribution of the sur-
face bending.

The development, when the term �S of Eq.  (8) is 
neglected, was presented in [39]. Here the focus of evalu-
ation of the properties of EEI is on the contribution of the 
surface bending. Use of the complete Eq. (8) in analysis 
may turn out to be important in some practical applications, 
where bending of surface should be accounted (e.g. [46]. 
Inclusion of the complete Eq. (8) within the framework of 
the EEI is outlined in the next subsection, with some sup-
porting derivations presented in the related "Appendix 1".

3.2 � Contribution of the surface bending 
to the energy of equivalent inhomogeneity

3.2.1 � Evaluation of the surface energy related 
to the bending

The overarching idea pursued here is the same as that 
described in the preceding subsection. The only outstand-
ing issue that needs to be addressed is how to determine the 
surface contribution in Eq. (25) in order to account for the 
presence of the surface bending in Eq. (8). To this end, the 
tensor of curvature changes will be evaluated first.

It is assumed, that the strains �1 that an inhomogeneity is 
subjected to are constant. Under those conditions the dis-
placements in of the surface of that inhomogeneity can be 
expressed as

where �
(
�Λ

)
 is the position vector of a point on that surface 

which is locally parameterized by �Λ , Λ ∈ { 1 , 2} . Conse-
quently, (cf. [47]

Here �Δ = �,Δ are the vectors of the natural basis asso-
ciated with the parametrization �Δ (tangent to the surface) 
and �Δ are the vectors of the dual, or reciprocal, basis also 

(27)K̂T = 2

[
2𝜇S + 2𝜆S + 𝜏0

]

3a
, 𝜇̂T =

7𝜇S + 𝜆S + 5𝜏0

5a
,

(28)Keq = K1 + K̂T + K̂B; 𝜇eq = 𝜇1 + 𝜇̂T + 𝜇̂B,

(29)�
(
�Λ

)
= �1 ⋅ �

(
�Λ

)
,

(30)

∇
S
� =

(
�1 ⋅ �

)
,Δ
⊗�Δ = �1 ⋅

(
�,Δ ⊗�Δ

)

= �1 ⋅
(
�Δ ⊗�Δ

)
= �1 ⋅

2

�
S

.

tangent to the surface) satisfying the condition �Δ ⋅�Λ = �Λ
Δ

 
with �Λ

Δ
 being the “Kronecker delta”.

The tensor of curvature changes is determined as

with

where

Considering Eq. (30) � can be defined as

which gives

The above formula indicate that �1 contracted with the 

first 2 vectors of ∇S

(
�⊗

2

�S

)
 and 

2

�S operate on the third 

vector of dyadic product in ∇S

(
�⊗

2

�S

)
 . This means that 

multiplication by 
2

�S eliminate the �⊗�Λ ⊗ �⊗�Δ 
( �Λ⊥� ) and the remaining two parts are unchanged. So

Evaluation of the components of the tensors BΛΔ and BΠ
Δ
 

is illustrated in "Appendix 1", where curvature tensors for 
spherical inhomogeneity of radius a are given in Table 1.

Considering values BΛΔ and BΔ
Λ
 from Table

(31)� = sym

(
2

�S ⋅∇S�

)
,

(32)� = �N ⋅ �,

(33)�N = −
(
� ⋅ ∇S�

)
⊗ �.

(34)𝜗 = −� ⋅ �1 ⋅
2

�S = −�1 ∶ �⊗
2

�S,

(35)∇S𝜗 = −�1 ∶ ∇S

(
�⊗

2

�S

)
;

(36)� = −sym

[
2

�S ⋅

(
�1 ∶ ∇S

(
�⊗

2

�S

))]

� = −sym
[
�S ⋅

(
∇S

(
�⊗ �S

))T
∶ �1

]

(37)

� = − sym
[
�S ⋅

(
∇S

(
�⊗ �S

))T
∶ �1

]

= −sym
[(
−BΠ

Δ
�Π ⊗ �S ⊗�Δ + BΛΔ�⊗ �⊗�Λ ⊗�Δ

)
∶ �1

]
.

Table 1   Curvature tensors for 
sphere of radius a

Λ Δ BΛΔ B
Δ
Λ

1 1 −a sin2 � −1∕a

1 2 0 0
2 2 −a −1∕a

2 1 0 0
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Given that for �Δ ⋅�Λ = 0 if Δ ≠ Λ , the curvilinear coor-
dinates �Λ introduced to parameterize the surface of the 
inhomogeneities are orthogonal, the unit vectors 
�Δ =

�Δ|�Δ| = �
Δ
=

�Δ

|�Δ|  can be substituted for �Δ and �Δ 
in the above equation and it can be rewritten in the form:

Accounting for symmetry of �1 tensor of curvature 
changes can be defined as

Then the surface strain energy in the case of Steigmann-
Ogden model of interface is defined as (see for details [31, 
32])

The first three terms of the above integrand are identi-
cal with the surface strain energy given by Gurtin–Murdoch 
model and properties of equivalent inhomogeneities related 
to these terms are determined in Nazarenko et al. [37–39]. 
The last two terms of Eq. (41) represent the surface strain 

(38)

� = −sym
[
1

a

(
�Λ ⊗�1 ⊗�

1
⊗�Λ +�Λ ⊗�2 ⊗�

2
⊗�Λ

−�1 ⊗�
1
⊗ �⊗ � −�2 ⊗�

2
⊗ �⊗ �

)
∶ �

1

]
.

(39)
� = − sym

[
1

a

( [ (
�1 ⊗�1 ⊗�1 ⊗�1+ �2 ⊗�1 ⊗�1 ⊗�2 +�1 ⊗�2 ⊗�2 ⊗�1+

+�2 ⊗�2 ⊗�2 ⊗�2 −�1 ⊗�1 ⊗ �⊗ � − �2 ⊗�2 ⊗ �⊗ �
)
∶ �1

]
.

(40)

� = −
1

a

[(
�1 ⊗�1 ⊗�1 ⊗�1+

(
�2 ⊗�1 +�1 ⊗�2

)

⊗�1 ⊗�2 +�2 ⊗�2 ⊗�2 ⊗�2

−�1 ⊗�1 ⊗ �⊗ � − �2 ⊗�2 ⊗ �⊗ �
)
∶ �1

]
.

(41)

E
S
=

1

2 ∮
S
I

[
2�

S
�
S
∶ �

S
+ �

S
tr
(
�
S

)2

+�
0
∇

S
� ∶ ∇

S
� + 2�

B
� ∶ � + �

B(tr�)
2
]
dS.

energy related to the surface bending. In the next section, the 
working formula for the properties of the equivalent inho-
mogeneity is presented.

3.2.2 � Constitutive tensor of the energy‑equivalent 
inhomogeneity

Considering Eq. (40) last two terms of Eq. (41) are given as

The surface energy of Eq. (41) is a sum of the surface 
tension and the surface bending Eqs. (23)–(25) and we focus 
only on the latter

where U�B
=

1

2
∮
S

[
2�B� ∶ �

]
dS is defined as

and U�B
= ∮

S

[
�Btr(�)

2
]
dS is

(42)

� ∶ � =
1

a2
�1 ∶

[
�1 ⊗�1 ⊗�1 ⊗�1 +�2 ⊗�2

⊗�2 ⊗�2 + 2�1 ⊗�2 ⊗�1 ⊗�2

−�1 ⊗�1 ⊗ �⊗ � −�2

⊗�2 ⊗ �⊗ � − �⊗ �⊗�1 ⊗�1 − �

⊗�⊗�2 ⊗�2 + 2�⊗ �⊗ �⊗ �
]
∶ �1;

(43)
tr(�)2 =

1

a2
�
1
∶
[
�

1
⊗�

1
⊗�

1
⊗�

1
⊗�

1
+�

2
⊗�

2
⊗�

2
⊗�

2
+�

1
⊗�

1
⊗�

2
⊗�

2
⊗�

2
⊗�

2
⊗�

1
⊗�

1

−2�
1
⊗�

1
⊗ �⊗ � − 2�

2
⊗�

2
�⊗ � − 2�⊗ �⊗�

1
⊗�

1
− 2�⊗ �⊗�

2
⊗�

2
+ 4�⊗ �⊗ �⊗ �

]
∶ �

1

(44)UB =
1

2 ∮
S

[
2�B� ∶ � + �Btr(�)

2
]
dS = U�B

+ U�B
,

(45)

U𝜇B
=

1

2a2 ∮
SI

[
�1 ∶

(
�1⊗ �1 ⊗�1 ⊗�1 +�2 ⊗�2 ⊗�2 ⊗�2

+ 2�1 ⊗�2 ⊗�1 ⊗�2 −�1 ⊗�1 ⊗ �⊗ �

−�2 ⊗�2 ⊗ �⊗ � − �⊗ �⊗�1 ⊗�1 − �⊗ �⊗�2 ⊗�2 + 2�⊗ �⊗ �⊗ �)∶�1
]
d S
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These last formulas Eqs. (45), (46) can be put in Eq. (44) 
and the following form of the surface energy yields

where

The last result for ES and the energy equivalence 
expressed by Eq. (22) leads to the following formula for the 
effective moduli of equivalent inhomogeneity:

Then the problem of properties of equivalent inhomo-
geneities is reduced to evaluation of the components of the 
above tensors ��B

 and ��B
 , which is illustrated in "Appen-

dix 2" Eqs. (98), (99). Contribution of the surface bending 
in this case is

where �B , �B are additional material parameters describing 
the bending stiffness of the material surface Eq. (9). In the 
presence of �S in Eqs. (7)–(13), the tensor �eq is also iso-
tropic and its constants can be defined as

where 𝜇̂T and K̂T are defined in Eq. (26).

4 � Effective properties

4.1 � Basic features of MCM

Details of the evaluation of the effective stiffness tensor for 
composites with randomly distributed spherical particles are 
presented in Nazarenko et al. [38, 44]. Applying the meth-
odology described in those papers, the following expression 
for effective moduli of composite with perfect interphase is 
obtained:

(46)

U𝜆B
=

1

2a2 ∮
SI

[
�1 ∶

(
�1⊗�1 ⊗�1 ⊗�1 +�2 ⊗�2 ⊗�2 ⊗�2 +�1 ⊗�1 ⊗�2 ⊗�2

+�2 ⊗�2 ⊗�1 ⊗�1 − 2�1 ⊗�1 ⊗ �⊗ �

− 2�2 ⊗�2 ⊗ �⊗ � − 2�⊗ �⊗�1 ⊗�1 − 2�⊗ �⊗�2 ⊗�2 + 4�⊗ �⊗ �⊗ �)∶�1
]
d S.

(47)
ES = UT + U�B

+ U�B
= �1 ∶

(
�T +��B

+��B

)
∶ �1,

(48)
UT = �1 ∶ �T ∶ �1; U�B

= �1 ∶ ��B
∶ �1; U�B

= �1 ∶ ��B
∶ �1.

(49)�eq = �1 +
1

VI

(
�T +��B

+��B

)

(50)K̂B = 0, 𝜇̂B =
15𝜇B + 9𝜆B

5a3
,

(51)Keq = K1 + K̂T ; 𝜇eq = 𝜇1 + 𝜇̂T + 𝜇̂B,

where � , �3 and �′ are

while �c is the constitutive tensor for the “reference 
medium” whose selection is specified subsequently. It is 
shown Nazarenko et al. [45] that the tensor � in Eq. (52) 
coincides with the negative classical Hill tensor � 
( � = � ∶ �−1

2
 , with � being the Eshelby tensor; c.f. [48]. The 

difference is that the Hill tensor � is defined using proper-
ties of the matrix material whereas tensor � is related to the 
stiffness of the reference medium �c.

with

and with λc , μc being the Lamé constants of the reference 
medium defined according to the rule Nazarenko et al. [37]

4.2 � Application of MCM to problems with interfaces

The effective properties of the composite with Steig-
mann–Ogden model of interfaces can be obtained by MCM 
from Eqs.  (52)–(57), valid for perfect interfaces, if the 
properties of the spherical particles ( �

1
 ) is replaced with 

those of equivalent inhomogeneity ( �eq ) and, evaluated in 
Sect. 3.2.3. This leads to the following expression

(52)�∗ = � + �1�3∶

[
4

�−�∶ ��

]−1
∶
[
�2�∶ �3

]
,

(53)� =

2∑
k=1

ck�k,�3 = �1 − �2,�
� = c1�2 + c2�1 − �c,

(54)� = 2b
4

�+a
2

�⊗
2

�,

(55)a =
λc + μc

15μc[λc + 2μc]
, b = −

3λc + 8μc

30μc[λc + 2μc]
,

(56)λc =

{
c1λ1 + c2λ2, if λ1 ≤ λ2[
c1
(
λ1
)−1

+ c2
(
λ2
)−1]−1

, if λ1 ≥ λ2
,

(57)μc =

{
c1μ1 + c2μ2, if μ1 ≤ μ2[
c1
(
μ1
)−1

+ c2
(
μ2
)−1]−1

, if μ1 ≥ μ2
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where ̃𝐂 , �̃3 , �̃ , and �̃′ are determined in accordance with 
Eqs. (53)-(55) if �

1
 is replaced by �eq.

The scalar expression for the effective bulk and shear 
moduli of the composite can be obtained from a tensorial 
formula (52), cf. [37, 38]:

where

and K̃c , 𝜇̃c are follows:

In the above formulas K2 and μ2 are the bulk and shear 
moduli of the matrix, whereas Keq and μeq are determined in 
Eqs. (50), (51), (26).

(58)𝐂∗ =
̃
𝐂 + c1𝐂̃3∶

[
4

𝐈−𝐋̃∶ 𝐂̃�

]−1
∶
[
c2𝐋̃∶ 𝐂̃3

]
,

(59)K∗ = c1Keq + c2K2 −
c1c2

[
Keq − K2

] 2

c1K2 + c2Keq +
4∕3𝜇̃c

,

(60)μ∗ = c1μeq + c2μ2 +
4c1c2b̃

[
μeq − μ2

] 2
1 − 4b̃

[
c2μeq + c1μ2 − 𝜇̃c

] ,

(61)b̃ = −
3
[
K̃c + 2𝜇̃c

]

10𝜇̃c[3K̃c + 4𝜇̃c]

(62)K̃c =

{
c1Keq + c2K2, if Keq ≤ K2[
c1
(
Keq

)−1
+ c2

(
K2

)−1]−1
, if Keq ≥ K2

,

(63)𝜇̃c =

{
c1μeq + c2μ2, if μeq ≤ μ2[
c1
(
μeq

)−1
+ c2

(
μ2
)−1]−1

, if μeq ≥ μ2

5 � Numerical comparisons and discussion

As a numerical example, we consider a composite material 
consisting of silver matrix with the properties E2 = 50 GPa 
and �2 = 0.37 containing spherical cavities ( �1 = K1 = 0 ). 
The free surface properties are those presented by Moham-
madi and Sharma [22]. In their article surface properties are 
determined for sur face [100]: �0 = 0.3701 N∕m  ; 
�S = −2.6948 N∕m ; �B = 12.3 ⋅ 10−19Nm . In the article, 
results are presented only for shear moduli. Assuming that 
relationship between Lamé parameters � and � for bulk 
material and Lamé parameters for surface tension and for 
surface bending are the same we added missing parameters 
using relationship between Lamé parameters for bulk silver 
�∕� = 2.85 . So, in our calculation we take hypothetical val-
ues of �S = −7.69 N∕m ; �B = 35 ⋅ 10−19N ⋅m.

The variation of the normalized shear modulus �∗∕�2 
with the void volume fractions calculated by the MCM in 
combination with EEI approach for the spherical cavities of 
radius a = 5 nm with Steigmann-Ogden model of interface 
is shown in Fig. 1 (black solid line). For comparison, the 
normalized shear modulus for the same material obtained 
accounting only for parameters of Gurtin–Murdoch inter-
face model ( �B = 0 , �B = 0 ) (dash dot line) and for classical 
case without surface energy (short dash line) are also shown 
in Fig. 1. It is seen that difference between the normalized 
shear moduli obtained with accounting for Steigmann-
Ogden and for Gurtin–Murdoch models of interface (when 
bending surface parameters are neglected) differ insignifi-
cantly what is illustrated in Fig. 2, which is a zoomed section 
of Fig. 1. It means that for case of interface whose thickness 
is vanishingly small, the Gurtin–Murdoch model of inter-
face is dominant and influence of the surface bending on 

Fig. 1   Dependence of shear modulus �∗∕�2 for nanoporous silver on 
void volume fraction c1 ; radius of a spherical cavity a = 5(nm)

Fig. 2   Dependence of shear modulus �∗∕�2 for nanoporous silver 
on void volume fraction c1 ; radius of a spherical cavity a = 5 (nm) 
(zoomed section of Fig. 1)
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effective properties is negligibly small. At the same time, 
the normalized shear moduli obtained with accounting only 
for Gurtin–Murdoch and for classical case without surface 
energy differ essentially, especially for high pore volume 
fraction. As expected, this numerical illustration indicates 
that the influence of the additional surface bending param-
eters of the Steigmann-Ogden model is insignificant for the 
shear moduli. It can be explained by the fact, that as shown 
by Benveniste and Miloh [1] the problem of an inhomo-
geneity with a thin interphase layer can be reduced to that 
of an imperfectly bonded inhomogeneity with the interface 
conditions described by one of seven distinct regimes, which 
depend on the elastic properties of the interphase layer and 
the components of composite. The Gurtin–Murdoch model 
corresponds to the membrane type interface regime, while 
the Steigmann-Ogden model corresponds to the inextensible 
shell regime. The surface bending stiffness of the membrane 
type interface is negligible, and the results presented in the 
manuscript support this. However, there may be a special 
case where the bending stiffness of the surface should be 
taken into account (e.g. [46].

As a second numerical result, we consider porous mate-
rial with spherical cavities of radius a = 5 nm and following 
parameters adopted after Zemlyanova and Mogilevskaya 
[35]: v2 = 0.3 , �0 = 0 N∕m ; �S

�2a
= 0.030156 ; �S

�2a
= 0.060312 ; 

5�B+3�B

�2a
3

= 0.00028382.
The variation of the normalized shear modulus  �∗∕�2 

with void volume fractions calculated by the MCM in com-
bination with the EEI approach (MCM EEI black solid line) 
for Steigmann-Ogden model of interface and for classical 
case without surface energy (MCM dash dot line) is shown 
in Fig. 3. For comparison analogical results for the normal-
ized effective shear modulus with Steigmann-Ogden model 

of interface and for the classical case obtained in Zemly-
anova and Mogilevskaya [32, 35] (short dash dot line and 
short dash line) are presented in Fig. 3 as well. The results 
of Zemlyanova and Mogilevskaya [35] were obtained: for 
equivalent inhomogeneity on the base of exact Lurie’s solu-
tion [40] for spherical particle and for effective properties 
of entire composite on the base of Maxwell homogenization 
scheme [49]. As it is seen, tendencies and numerical values 
for the results calculated by different methods demonstrate 
that the effective shear modulus of considered porous mate-
rial presented in Zemlyanova and Mogilevskaya [35] are 
higher than those determined by EEI approach in combina-
tion with MCM. It can be explained by the conceptual differ-
ences in the MCM and Maxwell scheme, which in the case 
of material with spherical cavities is identical to Mori–Tan-
aka method (MTM) [48]. It is known, that for porous mate-
rial MTM shows upper bound for effective moduli. For 
confirmation of this explanation the normalized effective 
shear modulus with Steigmann-Ogden model of interface 
and for the classical case were calculated by EEI approach 
in combination with MTM (MTM EEI short dash dot line 
and MTM dot line). These results and those of Zemlyanova 
and Mogilevskaya [35] are shown in Fig. 4. It is seen that the 
shear moduli calculated by MTM in combination with EEI 
approach are identical with the both obtained on the base of 
Maxwell scheme in combination with exact Lurie’s solution. 
It means, that the contribution of Steigmann-Ogden interface 
to effective properties of entire composite is identical for the 
both cases. It can be considered as additional verification of 
accuracy of EEI approach where properties of equivalent 
inhomogeneity are identical with those obtained on the base 
of Lurie’s solution. This is a very positive sign for the pre-
sent approach given that in the definition of equivalent inho-
mogeneity based on Lurie’s solution all governing equations 

Fig. 3   Dependence of shear modulus �∗∕�2 for nanoporous material 
on void volume fraction c1 (MCM EI and Zemlyanova et  al. [35]); 
radius of a spherical cavity a = 5 (nm)

Fig. 4   Dependence of shear modulus �∗∕�2 for nanoporous material 
on void volume fraction c1c1 (MTM EI and Zemlyanova et al. [35]); 
radius of a spherical cavity a = 5 (nm)
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in the inhomogeneity/interphase system are satisfied exactly. 
At the same time, the effective properties of entire composite 
calculated by MCM are lower than upper bound calculated 
by MTM.

Remark  It should be noted that properties of equivalent 
spherical inhomogeneity with spring layer interphase 
obtained by EEI approach [38] have been compared with 
those calculated using the equivalent inhomogeneity defined 
on the base of Lurie’s solution [38]. It was observed, that 
both solutions are virtually identical for all volume fraction 
of inhomogeneities.

6 � Conclusions

A mathematical model, employing the concept of the EEI 
in combination with the MCM [37, 39, 50], has been gen-
eralized to introduce the surface effects described by the 
Steigmann-Ogden model [19, 20] derived within the strain 
gradient elasticity [31]. A particular focus was centered on 
accounting for the surface bending contribution in the defi-
nition of the EEI. The model was also used in combination 
with MCM to determine the effective properties of materials 
with randomly distributed nano-particles with Steigmann-
Ogden model of interface. Effective shear modulus of spher-
ical EEI with Steigmann-Ogden model of interface is pre-
sented in a closed-form and compared with those obtained 
on the base of Lurie’s solution for sphere.

The properties of the EEI are determined based on the 
derived definition of surface energy, which includes the sur-
face tension and the surface bending, assuming the uniform 
state of strains within the inhomogeneity. This assumption 
is particularly suitable in the context of the MCM used here. 
The restriction of the MCM to the two-point approximation 
adopted here is tantamount to the assumption that deforma-
tion of the inhomogeneities is uniform. This is in perfect 
agreement with the way the EEI is defined in Sect. 3.

As a numerical illustration of the presented approach, 
nanoporous silver is studied. It is shown that the equivalent 
bulk modulus of spherical equivalent inhomogeneity does 
not depend on the surface bending parameters.

Shear moduli of nanoporous silver has been analyzed for 
varying volume content of the nano-cavities for Steigmann-
Ogden model of interface and for classical case without 
accounting for the surface effects. The size effect introduced 
due to contribution of the residual stresses, elasticity and 
bending of the matrix/nanoparticles interface in nanoporous 
silver is accounted for in the expressions for effective bulk 
and shear moduli of the composite. It has been shown that 
the contribution of the surface bending to the shear moduli 
is insignificant.

As a second numerical example, the effective shear mod-
uli of the porous material, evaluated on the basis of MCM 
in combination with EEI approach was considered in con-
text of comparison with numerical results available in the 
literature and, is in a good agreement with one calculated 
in Zemlyanova and Mogilevskaya [32, 35]. It is interesting 
to note that, in spite of the difference between expressions 
for the shear modulus of equivalent inhomogeneity based 
on EEI and that obtained on the base of Lurie’s solution for 
sphere, the effective properties of the composite calculated 
using those two definitions of the equivalent inhomogeneity 
are virtually identical for all volume fraction of voids. This 
indicates that the basic assumptions underlying the proposed 
approach are quite sound, as the approach based on Lurie’s 
solution exactly fulfills all governing equations within the 
original inhomogeneity and the interphase.

To conclude it is worth mentioning that the definition of 
the EEI is general and can be used in the case of inhomo-
geneities of other shapes than spherical, e.g., ellipsoidal or 
cylindrical (e.g. [36]. It can be very naturally combined with 
the MCM and appears to be potentially amenable for inclu-
sion of other than Gurtin–Murdoch or Steigmann-Ogden 
interface models. Therefore, the MCM with combination 
of the EEI can be applied for analysis of materials contain-
ing inhomogeneities with more complex geometric and 
mechanical characteristics. The important characteristic of 
the proposed approach is its ability to provide closed-form 
expressions for the effective properties of nano-composites. 
Closed-form results are important, especially if the influence 
of different problem parameters needs to be analyzed.

Appendix 1: Components of curvature 
tensors for sphere

Let’s assume that the surface of interest is locally parameter-
ized by �Λ , Λ ∈ { 1 , 2} , that is the position vector of a point 
on that surface is expressed as �

(
�Λ

)
. Then, one can define 

a couple of vectors �Λ

which forms the vector basis in the linear space tangent to 
the surface S, called the natural basis. Another basis in the 
same tangent space, denoted by �Δ and called dual or recip-
rocal, is defined via the following orthogonality condition

where the “·” represents the “dot” (or “inner”) product of 
vectors and �Δ

Λ
 is the Kronecker “delta”. The bases �Λ and 

�Δ are functions of �Λ and their derivatives can be expressed 
by the well-known Gauss-Weingarten formulas (see Itskov 

(64)�Λ =
��

��Λ
≡ �,Λ ,

(65)�Λ ⋅�Δ = �Δ
Λ
,
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[47], for example). For the natural basis these formulas are 
(cf. Equation (64) for notations)

with a unit vector n normal to the surface. Here (as shown 
in the above equation) an index repeated in the subscript and 
superscript position implies summation, ΓΔ

ΛΣ
= �Λ,Σ ⋅�

Δ are 
the so-called Christoffel symbols (of the second kind) and 
the components of the local curvature tensor are

Equation  (66) together with Eq.  (64) imply that 
BΛΣ = BΣΛ whereas definition of the Christoffel symbols and 
Eq. (64) imply the following symmetry property ΓΩ

ΛΣ
= ΓΩ

ΣΛ
 . 

The analogical formulas for the derivatives of vectors of the 
dual basis are

where BΔ
Σ
 are the so-called mixed components of the local 

curvature tensor.
The curvature tensor B (components of which appear in 

Eqs. (66) and (67)) can be represented in several ways shown 
below (as well as many other ways)

In the above equation double summation is implied and 
the (indexed) coefficients multiplying the dyadic are various 
components of the tensor �. They all can be different, but 
they are related to each other by transformation formulas 
involving the so-called Gram matrices related to the natural 
or dual bases. Those matrices are defined as follows

The relationship between various components of the cur-
vature tensor B one can present the following

In the case of spherical inhomogeneity of radius a , the 
position vector � of a point on the surface of the inhomoge-
neity, and the corresponding unit vector n, normal to that 
surface, may be expressed as follows

(66)
�Λ,Σ = ΓΔ

ΛΣ
�Δ + BΛΣ� ≡ Γ1

ΛΣ
�1 + Γ2

ΛΣ
�2 + BΛΣ�,

(67)BΛΣ = �Λ,Σ ⋅�.

(68)
�Δ,Σ = −ΓΔ

ΛΣ
�Λ − BΔ

Σ
� ≡ −ΓΔ

1Σ
�1 − ΓΔ

2Σ
�2 − BΔ

Σ
�,

(69)
� = BΔΛ�

Δ ⊗�Λ = BΔΛ�Δ ⊗�Λ = BΛ
Δ
�Δ ⊗�Λ = BΔ

Λ
�Δ ⊗�Λ.

(70)GΔΛ = �Δ ⋅�Λ, G
ΔΛ = �Δ

⋅�Λ.

(71)BΛ
Δ
= BΔΣG

ΣΛ.

The natural basis is

The dual basis is defined as

Then the curvature tensors for spherical inhomogeneity 
of radius a are given:

See Table 1

Appendix 2: Properties 
of the energy‑equivalent inhomogeneity 
accounting for surface bending

For illustration of some technical details, ��B
 and ��B

 of 
Eqs. (45)–(49) are evaluated in this Appendix. In addition to 
��B

 and ��B
 , the contribution of surface tension to properties 

of equivalent inhomogeneity includes other term �T present 
in Eq. (49), however evaluation of this term is presented in 
Nazarenko et al. [39].

(72)

� = a

⎡
⎢⎢⎣

cos� sin �

sin� sin �

− cos �

⎤
⎥⎥⎦
, � =

⎡
⎢⎢⎣

cos� sin �

sin � sin �

−cos �

⎤
⎥⎥⎦
, 0 ≤ � ≤ 2�, 0 ≤ � ≤ �.

(73)

�
1
= r

,� = a

⎡
⎢⎢⎣

−sin � sin�

sin � cos�

0

⎤
⎥⎥⎦
,

�
2
= r

,� = a

⎡
⎢⎢⎣

cos � cos �

sin � cos �

sin �

⎤
⎥⎥⎦
,

�
3
= �3 = � =

⎡
⎢⎢⎣

cos� sin �

sin � sin �

−cos �

⎤
⎥⎥⎦
,

(74)

�
1,1

= r
,�� = a

⎡
⎢⎢⎣

−sin � cos �

- sin � sin

0

⎤
⎥⎥⎦
,

�
2,1

= r
,�� = a

⎡⎢⎢⎣

− sin � cos �

cos � cos �

sin �

⎤⎥⎥⎦
,

�
2,2

= r
,�� = a

⎡⎢⎢⎣

− cos � sin �

− sin � sin �

cos�

⎤⎥⎥⎦

(75)�1 =
1

a

⎡⎢⎢⎣

−sin�∕sin �

cos�∕sin �

0

⎤⎥⎥⎦
, �2 =

1

a

⎡⎢⎢⎣

cos � cos �

sin � cos �

sin �

⎤⎥⎥⎦
, �3 = �3 = � =

⎡⎢⎢⎣

cos� sin �

sin � sin �

−cos �

⎤⎥⎥⎦
.
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Assuming that inhomogeneities are spheres of radius 
a and using spherical coordinate system Eq. (72), ��B

 of 
Eqs. (45), (47), (48) is described by

Consequently, the contribution of ��B
 to bulk and shear 

moduli of the equivalent inhomogeneity are

(76)
K𝜇B

=
3𝜇B

2𝜋a3

𝜋

∫
0

2𝜋

∫
0

[
�1⊗ �1 ⊗�1 ⊗�1 +�2 ⊗�2 ⊗�2 ⊗�2 + 2�1 ⊗�2 ⊗�1 ⊗�2 −�1 ⊗�1 ⊗ �⊗ �

−�2 ⊗�2 ⊗ �⊗ � − �⊗ �⊗�1 ⊗�1 − �⊗ �⊗�2 ⊗�2 + 2�⊗ �⊗ �⊗ �] sin 𝜃 d𝜙 d𝜃;

(77)

K�b[1111]
=

3�
B

2�r3

�

∫
0

2�

∫
0

[
sin�4+ cos �4

cos �4

+ 2sin�2
cos �2

cos �2 − 2sin�2
cos �2

sin �2

− 2 cos �4
cos �2 sin �2

+ 2 cos �4
sin �4

]
sin � d� d� = 4

�
B

a3
;

(78)K�B[2222]
= K�B[3333]

= 4
�B

�a3
;

(79)
K�B[1122]

=
3�B

2�a3

�

∫
0

2�

∫
0

[
sin�2 cos �2+sin�2 cos �2 cos �4 − 2sin�2 cos �2 cos �2 − sin�4 sin �2

− cos �4 sin �2 − 2 sin �2 cos �2 cos �2 sin �2 + 2 sin �2 cos �2 sin �4
]
sin � d� d� = −2

�B

a3

(80)K�B[1133]
= K�B[2233]

= −2
�B

a3
;

(81)
K�B[1212]

=
3�B

2�a3

�

∫
0

2�

∫
0

[
sin�2 cos �2+sin�2 cos �2 cos �4 + 2sin�4 cos �2 + 2sin�2 cos �2 sin �2

− 2 sin �2 cos �2 cos �2 sin �2 + 2 sin �2 cos �2 sin �4
]
sin � d� d� = 4

�B

a3

(82)K�B[1313]
= K�B[2323]

= 4
�B

a3
;

(83)
K�B[2112]

=
3�B

2�a3

�

∫
0

2�

∫
0

[
sin�2 cos �2+sin�2 cos �2 cos �4 − 2sin�2 cos �2 cos �2 + 2sin�2 cos �2 sin �2

− 2 sin �2 cos �2 cos �2 sin �2 + 2 sin �2 cos �2 sin �4
]
sin � d� d� = 2

�B

a3

(84)K�B[3113]
= K�B[3223]

= 2
�B

a3
.

��B
 of Eqs. (46), (47), (48) is described by

(85)
K̂𝜇B

= K𝜇B[1111]
+ K𝜇B[1122]

+ K𝜇B[1133]
= 4

𝜇B

a3
− 2

𝜇B

a3
− 2

𝜇B

a3
= 0;

(86)𝜇̂B =
1

2

[
K𝜇B[1212]

+ K𝜇B[2112]

]
= 3

𝜇B

a3
.



663Computational Mechanics (2021) 68:651–665	

1 3

(87)

K𝜆
B
=

3𝜆
B

4𝜋a3

𝜋

∫
0

2𝜋

∫
0

[
�

1
⊗ �

1
⊗�

1
⊗�

1

+�
2
⊗�

2
⊗�

2
⊗�

2
+�

1
⊗�

1
⊗�

2
⊗�

2

+�
2
⊗�

2
⊗�

1
⊗�

1

− 2�
1
⊗�

1
⊗ �⊗ � − 2�

2
⊗�

2
⊗ �⊗ �

− 2�⊗ �⊗�
1
⊗�

1
− 2�⊗ �⊗�

2
⊗�

2

+ 4�⊗ �⊗ �⊗ �] sin 𝜃 d𝜙 d𝜃

(88)
K�B[1111]

=
3�B

4�a3

�

∫
0

2�

∫
0

[
sin�4+ cos �4 cos �4 + 2sin�2 cos �2 cos �2 − 4sin�2 cos �2 sin �2

− 4 cos �4 cos �2 sin �2 + 4 cos �4 sin �4
]
sin � d� d� =

12

5

�B

a3
;

(89)K�B[2222]
= K�B[3333]

=
12

5

�B

a3
;

(90)

K�B[1122]
=

3�B

4�a3

�

∫
0

2�

∫
0

[
sin�2 cos �2+sin�2 cos �2 cos �4 + sin�4 cos �2

+ cos �4 cos �2 − 2sin�4 sin �2 − 2 cos �4 sin �2

− 4 cos �2 sin �2 cos �2 sin �2 + 4 cos �2 sin �2 sin �4
]
sin � d� d� = −

6

5

�B

a3
;

(91)K�B[1133]
= K�B[2233]

= −
6

5

�B

a3
;

(92)

K�b[1212]
=

3�b

4�r3

�

∫
0

2�

∫
0

[
sin�2 cos �2+sin�2 cos �2 cos �4

− 2sin�2 cos �2 cos �2 + 4sin�2 cos �2 sin �2

− 4 cos �2 sin �2 cos �2 sin �2 + 4 cos �2 sin �2 sin �4
]
sin � d� d� =

9

5

�B

a3
;

(93)K�B[1313]
= K�B[2323]

=
9

5

�B

a3
;

(94)

K�B[2112]
=

3�B

4�a3

�

∫
0

2�

∫
0

[
sin�2 cos �2+sin�2 cos �2 cos �4

− 2sin�2 cos �2 cos �2 + 4sin�2 cos �2 sin �2

− 4 cos �2 sin �2 cos �2 sin �2 + 4 cos �2 sin �2 sin �4
]
sin � d� d� =

9

5

�B

a3
;

The contribution of ��B
 to bulk and shear moduli of the 

equivalent inhomogeneity are

The contribution of surface bending to bulk and shear 
moduli of the equivalent inhomogeneity Eq. (28) is

(95)K�B[3113]
= K�B[3223]

=
9

5

�B

a3
.

(96)
K̂𝜆B

= K𝜆B[1111]
+ K𝜆B[1122]

+ K𝜆B[1133]
=

12

5

𝜆B

a3
−

6

5

𝜆B

a3
−

6

5

𝜆B

a3
= 0;

(97)𝜇̂B =
1

2

[
K𝜆B[1212]

+ K𝜆B[2112]

]
=

9

5

𝜆B

a3
.

(98)K̂B = K̂B + K̂B = 0;
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