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Notation 

Latin symbols 

A (free) cross-sectional area of channel (column) 

Aintra amount of stagnant fluid molecules in intraparticle pore space 

a acceleration of a substance/body/particle 

Bintra mass transfer rate constant 

C constant 

CL longitudinal velocity autocovariance 

c molar concentration 

c speed of light 

cs speed of sound 

c∞ molar concentration in electroneutral solution 

D diameter of particle in lattice units 

D diffusion coefficient 

Dintra intraparticle diffusion coefficient 

DL longitudinal dispersion 

DL
* asymptotic longitudinal dispersion 

Dm free molecular diffusion coefficient 

dc capillary/column diameter 

dp particle diameter 

dpore pore diameter 

E local electric field 

E complex signal in PFG-NMR experiment 

Eext external applied electric field 

eα normalized discrete particle velocity 

F Faraday’s constant 

F acting force 

Fα discrete acting force 



 - ii -

f volume density of acting force (body force) 

F particle distribution function 

Fα discrete particle distribution function 

Feq equilibrium (Maxwell-Boltzmann) particle distribution function  

Fneq non-equilibrium particle distribution function  

G free (or potential) energy 

g acceleration of gravity 

g amplitude of pulsed magnetic field 

g pair-correlation function 

I0 zero-order modified Bessel function

I1 first-order modified Bessel function 

iel electric current density 

[H+]0 surface activity of protons 

H height of packing 

h size of computational cubic cell 

j flux density 

jC convective flux density 

jD diffusive flux density 

jM migration flux density 

K hydraulic permeability 

k dimensionless hydraulic permeability 

Kw dissociation constant of water 

kB Boltzmann constant 

Mm molecular mass 

m mass of a substance/body/particle 

N total number of ions/particles 

Ninter number of particles in interparticle space 

Nintra number of particles in intraparticle space 

Npl number of theoretical plates  

n number concentration 

n)  updated number concentration at current iteration 



 - iii -

n(  number concentration from previous iteration 

ninter number concentration of particles in interparticle space 

nintra number concentration of particles in intraparticle space 

n∞ number concentration in electroneutral solution 

Pav average propagator 

p momentum per unit volume 

p hydrostatic pressure 

Pe Peclet number 

pK logarithmic dissociation constant 

penter entrance probability 

pexit exit probability 

Q volumetric flow rate 

q wavevector 

qe elementary charge 

R dynamic (net) displacement 

R gas constant 

r position vector 

rc capillary radius 

rs sphere diameter 

Re Reynolds number 

S area of plate 

S echo amplitude in PFG-NMR experiment 

T absolute temperature 

t time 

tb characteristic time for boundary-layer dispersion 

th characteristic time for intraparticle holdup 

tr retention time 

u particle velocity 

uα discrete particle velocity 

V volume 

Vsph volume occupied by spheres 

Vv void volume  



 - iv -

<|vx|> root-mean-square axial velocity 

<|vy|> root-mean-square transversal velocity 

<|v|> root-mean-square absolute velocity 

v fluid velocity 

v* modified equlibrium velocity 

v' modified equlibrium velocity 

Wα weight coefficient  

wα normalized weight coefficient 

z distance between plates 

z valency 

 

 

Greek symbols 

α aspect ratio 

β computational grid resolution 

ΓSiOH surface density of silanol groups 

–SiOΓ  surface density of dissociated silanol groups 

Γtot surface density of chargeable silanol groups 

γ global relative error/difference 

γPNP convergence rate of numerical solution for coupled Poisson and Nernst-Planck equations 

γNS convergence rate of numerical solution for Navier-Stokes equation 

∆ time interval 

δ relative difference field 

δij Kronecker delta 

δrD displacement due to molecular diffusion 

δt time step 

δx lattice constant 

ε porosity 

εinter porosity of interparticle pore space  

ε0 permittivity of the vacuum 



 - v -

εr relative permittivity 

εT total porosity 

ζ zeta-potential 

m
~
ζ  Fourier transform of zeta-potential 

η dynamic viscosity 

Θ physical quantity 

Θb boundary layer mass transfer 

Θh intraparticle holdup 

Θm mechanical dispersion 

θ azimuthal coordinate 

κ bulk viscosity 

κ reciprocal of electrical double layer thickness 

λD Debye screening length 

µeo electroosmotic mobility 

ν
r

 outer normal 

ν kinematic viscosity 

Ξ(u) polinom of u  

ξ unit vector 

ξ effective potential 

ρ radial coordinate 

ρ mass density 

ρf fluid density 

ρq electrical charge density 

σ* conductivity of packed column saturated by electrolyte

σ∞ conductivity of equilibrium electrolyte beyond EDL 

σ differential cross section of binary collision 

σ electrical surface charge density 

σ width at half-height of chromatographic peak 

σ variance 

τ stress tensor 



 - vi -

τ relaxation time 

τ dimensionless relaxation time  

τij stress tensor 

υ  modified fluid velocity 

ϒ tortuosity 

Φ local electrical potential 

Φ
)

 updated local electrical potential at current iteration 

Φ
(

 local electrical potential from previous iteration 

φ electrical potential due to applied electric field 

ψ electrical potential due to surface charge 

ψd column-to-particle diameter (aspect) ratio 

ψOHP electrical potential at outer Helmholtz plane due to surface charge 

ψS electrical potential at Stern plane due to surface charge 

χ perturbation parameter  

Ω surface of the solid-liquid interface 

Ωc scattering direction of binary collision 

Ωc collision operator 

ω relaxation parameter of SOR scheme 

 



Chapter 1 

Introduction 

In his “Science of Logic” (“Wissenschaft der Logik”) Georg Wilhelm Friedrich Hegel 

(1770-1831) remarked: “It is said that there are no sudden changes in nature, and it is the 

common view that when we speak of a growth or a destruction, we always imagine a gradual 

growth or disappearance. Yet we have seen cases in which the alteration of existence involves 

not only a transition from one proportion to another, but also a transition, by a sudden leap, 

into a qualitatively different thing; an interruption of a gradual process, differing qualitatively 

from the preceding, the former state.” Nature allows to observe this “transition from 

quantitative changes to qualitative changes” at any moment and in any place. For example, 

the temperature of water has at first no effect on its liquid state; but as the temperature of 

liquid water rises or falls, a moment arrives when this state of cohesion changes and the water 

is converted in one case into steam and in the other into ice. Take oxygen: if the molecule 

contains three atoms instead of the customary two, we get ozone, a body definitely distinct in 

odour and reaction from ordinary oxygen. A similar picture is observed in science and 

engineering. For instance, the gradual growth of speed in aviation resulted in the appearance 

of a jet aircraft, while miniaturization in electronics provoked the transition from vacuum 

tubes to semi-conductor devices and microchips. 

One of the branches of analytical chemistry, chromatography, also did not avoid such 

“evolutional sudden changes”. Striving for further increase of the analysis efficiency 

scientists, engineers, and technicians are stimulated to develop methodology, employ new 

materials, equipment as well as new techniques. A miniaturization in high performance liquid 

chromatography (HPLC) concerning the column inner diameter (i.d.) and associated 

volumetric flow rates has been initiated more than 25 years ago, and it is an ongoing 

development mainly because of the need for handling small amount of complex sample. 

While the typical dimensions in analytical and narrow-bore HPLC include a 2.1-4.6 mm 

column i.d., bed lengths of less than 200 mm and random sphere packings of 5-15 µm average 

diameter particles, the further miniaturization towards nano-LC can offer distinct advantages 

[1-6] including the  
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¾ reduced consumption of stationary phase, solvent and chemicals, facilitating a use 

of expensive stationary phase, exotic mobile phases and minute samples in the 

environmental and biomedical sciences, 

¾ increased mass sensitivity due to a reduced chromatographic dilution, 

¾ use of smaller, but still porous particles (dp = 3-5 µm) leading to higher column 

efficiencies by a significantly reduced contribution of the intraparticle stagnant 

zone to hydrodynamic dispersion, 

¾ compatibility with flow rate requirements of a nano-ESI interface in view of an on-

line coupling to mass spectrometry, and 

¾ application of high electrical fields for the additional (or exclusive) transport of 

bulk liquid and solute molecules through a porous medium by electroosmosis 

and/or electrophoresis. 

Related to the last aspect, in general, mass transport in porous media induced by an externally 

applied electrical field nowadays plays a central role in a number of analytical, technological 

and environmental processes, including the dewatering of waste sludge and soil remediation, 

capillary electrophoresis or electrochromatographic separations in capillaries and microfluidic 

devices [7-23]. Still however, there exists a lack of mechanistic understanding concerning an 

interrelation between external control variables like the electrical field strength or current and 

parameters controlling macroscopic electrokinetic transport like the dispersion coefficient or 

effective mobility. It is intimately related to the physico-chemical nature of the surface and its 

dynamic behaviour, pore space morphology, and properties of the liquid. The characterization 

of these parameters is of a fundamental relevance as it critically guides the performance and 

compelling advantages, as well as design strategies of a particular electrokinetic process with 

respect to any alternative diffusive-convective transport schemes. 

In the present work we are mainly concerned with the dynamics of electroosmotic 

flow (EOF) and solute transport in capillary electrochromatography (CEC). While the column 

efficiencies in HPLC may be increased by a reduction of the particle size this option is limited 

via the maximum operating pressure with conventional instrumentation. A significantly 

improved performance in view of the dispersion and permeability can be achieved in CEC by 

utilizing EOF for transport of bulk mobile phase. In this introduction we give a brief survey of 

some of the most important features of the EOF in porous media (like random sphere 

packings) because it may be a relatively unfamiliar topic to many readers.  
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CEC is a separation technique carried out most commonly in a capillary column 

packed with conventional HPLC adsorbent material by utilizing an electroosmotically driven 

mobile phase at high electrical field strength (50-100 kV/m) in an apparatus similar to that 

used in capillary zone electrophoresis (CZE). Consequently, CEC combines the variety of 

retention mechanisms and stationary phase selectivities popular in HPLC with miniaturization 

potential of CZE. Electrochromatography can be described as an electrophoretic analysis 

where sorptive interactions with the stationary (retentive) phase of the support material are a 

major contribution, i.e., the separation is achieved by differential partitioning and migration.  

In general, the history of electrokinetic effects could be traced back almost 200 years  

when Reuss in 1809 described in the Proceedings of the Imperial Society of Naturalists of 

Moscow his experiments concerning water migration through porous clay under the influence 

of an applied electric field. One of the most influential contributions to the theoretical 

description of electrokinetic transport was the development of the electric double layer (EDL) 

theory by Helmholtz in 1879. An electrical double layer exists at most solid-polar liquid 

interfaces. When solid is in contact with a liquid medium, a solid surface may be charged due 

to various mechanisms and surrounded by the ions of opposite sign (counterions) from the 

liquid phase. The region reached by counterions is referred to as the EDL. Its thickness 

depends on the temperature, electrolyte concentration, and valence number of ions, but 

normally it is of the order 10 nm. Upon application of an axial external electric field the 

uncompensated charges in the EDL give rise to volume forces, and due to a viscous drag the 

resulting EOF is spread beyond of the solid-liquid interface. Although the origin of CEC 

traces back to 1974 when Pretorius et al. [24] have reported the successful electrokinetic 

transport of eluent through a (comparatively large) chromatographic column, it has been 

Jorgenson and Lukacs [25] who demonstrated the feasibility of CEC for a separation of 

neutral compounds by applying a potential gradient across a packed column of capillary 

dimension, before Knox and Grant [26-28] examined more fundamental aspects and the 

advantages of CEC. 

CEC is commonly performed in a 50-150 µm i.d. (fused-silica) capillary column setup 

which is usually composed of a packed bed and open tubular segment, as well as a detection 

window immediately behind the outlet frit of the fixed bed. Compared to pressure-driven flow 

a superior performance of EOF through a single, straight and open capillary originates from 

the fact that in the limit of a thin electrical double layer (EDL) the velocity apparently slips at 

the inner wall of the capillary and, thus, the fluid moves as in plug-flow (assuming isothermal 

conditions) [29-32]. Further, for fixed pressure and potential gradients, the ratio of volumetric 
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EOF to hydraulic flow rates is inversely proportional to the square of the capillary radius [33]. 

The flat "pore-level" velocity profile of EOF observed for a single-pore geometry (as in CZE) 

[34, 35] and permeability criterion also have important implications for the fluid dynamics (an 

improved dispersion behaviour, in particular) in CEC where many pores are connected, as in a 

random particulate fixed bed, including: 

¾ a use of micron- and submicron-sized particles as packing material [36, 37] for 

reduction of band spreading toward the diffusion-limited regime, 

¾ the operation of relatively long packed columns (if needed) or, vice versa, use of 

very short chromatographic beds [38], 

¾ further reduction of the column diameter toward chip format [39-43], 

¾ the generation of a substantial EOF within the porous particles (electroosmotic 

perfusion) which reduces intraparticle mass transfer resistance and associated 

holdup dispersion [44-49], 

¾ a higher separation efficiency based on the superior hydrodynamic dispersion 

characteristics in the interstitial pore space of a sphere packing over a wide range 

of experimental conditions [50], and 

¾ the enhancement of intraparticle transport of charged species by migration and 

surface (electro)diffusion [51, 52]. 

Thus, CEC offers the potential for an implementation into miniaturized systems 

allowing high sample throughput and resolution, speed and sensitivity. Compared to liquid 

chromatography CEC offers a better permeability and efficiency, as well as selectivity (in the 

case of charged analytes), and concerning CZE it operates in systems with far higher surface-

to-volume ratio in view of sample capacity and dynamic changes in surface properties. As in 

capillary HPLC the actual flow rates are inherently compatible with direct mass spectrometric 

detection.  

However, the development of a new technique assumes not only application of new 

hardware and materials. Frequently, its theoretical description requires also new methods for 

the solution of applied problems. As mentioned above the EOF arises due to the electrostatic 

interaction of charges in the EDL with an applied electric field. Whence, volume electrostatic 

forces determining the flow velocity field depend on the distribution of the electrical charge in 

a liquid. This distribution is affected, in turn, by convective transport of ions with the fluid 

flow as well as by diffusion related to the gradient in ion densities. In addition, charge carriers 
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can be driven by the gradient in the local electrical potential, which is defined, in turn, both by 

the external electric field and the actual charge distribution in the liquid. Additional various 

effects can arise due to Joule heating, temperature gradients, modifications of physico-

chemical properties of the solid-liquid interface during the separation process, strong electric 

fields, etc. Finally, one should take into account that all aforementioned phenomena occur in 

porous media with extremely complicated morphology (e.g., monoliths, membranes, sphere 

packings), which defines boundary conditions in the corresponding mathematical description. 

It is obvious that this problem cannot be generally resolved by analytical methods.  

The objective of this Ph.D. thesis is to study how the electric fields couple with the 

hydrodynamics and mass transport using numerical methods. Through recent developments in 

computer hardware it is possible to carry out high-performance numerical simulations of 

hydraulic flows. In this thesis we focus on the expansion of traditional computational fluid 

dynamics (CFD) to mass transport in microfluidic electrokinetic systems and its application to 

computer simulations of the various problems, which can originate in electrochromatographic 

separations. 
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Chapter 2  

Theoretical Background of Mass Transport  

Phenomena in Polar Liquid Systems 

In this chapter a brief theoretical account on mass transport in polar fluids is given. In 

general, classical fluid mass transport phenomena are concerned with two related topics: fluid 

dynamics and mass transfer. Fluid dynamics involves the transport of momentum, whilst 

mass transfer deals with transport of various species. These two types of transport phenomena 

are usually grouped together due to their similar mathematical framework. In contrast to 

electrically neutral liquids, polar liquids, in particular electrolyte solutions, can demonstrate a 

substantially different behaviour when an external electric field is applied. This difference 

arises from electrostatic interactions between the electric field and charges in the liquid. 

2.1. Fluid dynamics 

2.1.1. Newton’s law of viscosity 

We begin our consideration with a simple system consisting of two very long parallel 

plates, each one with area S, separated by a small distance z (Fig. 2.1). The space between 

plates is saturated by a fluid. One plate is set in motion relative to the other in the positive x 

direction at constant velocity V. The force F needed to pull one plate past the other depends 

on the size of the plates S, the distance z, and their relative velocity v. This relation can be 

written as 

zS
F v

η=          (2.1) 

or in a differential form 
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 Figure 2.1.   Shear flow built up between two moving parallel plates. 

 

dzzx η−=τ
d xv

,        (2.2) 

where η is the dynamic viscosity of the fluid and τzx is the force in the x direction per unit area 

perpendicular to the z direction (or stress). τzx may be also interpreted as the flux (flow per 

unit area) of x-momentum in the positive z direction. The minus sign in Eq. 2.2 indicates that 

the momentum flows from higher velocity to the lower velocity. This equation is often called 

Newton’s law of viscosity. The proportionality constant η is defined to be the viscosity and is 

a fluid property. For many fluids the viscosity is constant, i.e. it is independent of the shear 

stress and the velocity gradient. Such fluids are referred to as Newtonian. Often, anther 

quantity  

fρ
η

=ν ,         (2.3) 

called kinematic viscosity is used, where ρf is the fluid density.  

The general, 3D-form of Newton’s law of viscosity is much more complicated. It 

includes nine relations 
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Figure 2.2.   Elementary volume element ∆x∆y∆z. 
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where i, j may be 1, 2, 3; x1, x2, x3 and v1, v2, v3 denote x, y, z and vx, vy, vz respectively, κ is 

called “bulk” or “dilatational” viscosity, and δij is the Kronecker delta. The bulk viscosity is a 

phenomenological coefficient and it is important in the pure expansion or contraction of a 

fluid and arises in explosions and supersonic vibrational and rotational contributions to the 

molecule’s overall energy and momentum [1]. Since these contributions are generally much 

smaller than translational contributions at room temperature and standard pressure, the 

coefficient of bulk viscosity can be neglected. 

2.1.2. Equation of motion 

To derive the equation of motion we consider the volume element ∆x∆y∆z (Fig. 2.2) 

and write the momentum balance that is a statement of Newton’s law of motion F = ma and 

has the form 
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Note that the equation of motion is a vector equation with three components in each of the 

coordinate directions. We consider only the x-component of that equation in detail. 

Momentum may enter and leave a volume element by convection, i.e. by bulk fluid flow, by 

molecular transport, i.e. by velocity gradients, and by external forces acting on the fluid such 

as gravity, pressure, electromagnetic forces, etc. The momentum transport via convection can 

be written as  

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[
( ) ( ) ( ) ( )[ ] yxzzz

zxyyy
zyxxx

zxzx

yxyx

xxxx

∆∆∆+ρ−ρ

+∆∆∆+ρ−ρ ]
+∆∆∆+ρ−ρ

vvvv

vvvv
vvvv

ff

ff

ff

      (2.5) 

Velocity gradients and pressure result in differences in shear and normal stresses across the 

volume element with the flow of momentum from the higher to the lower stress.  

( ) ( )[ ]
( ) ( )[
( ) ( )[ ] yxzzz

zxyyy
zyxxx

zxzx

yxyx

xxxx

∆∆∆+τ−τ

+∆∆∆+τ−τ
+∆∆∆+τ−τ

]       (2.6) 

Pressure gradients, gravity, and other external forces give the following contributions, 

respectively 

( ) ( )[ ] xxxx Fzyxgzyxxpxp +∆∆∆ρ+∆∆∆+− f  .    (2.7) 

The accumulation of momentum within the volume element is a time dependent quantity 

( xt
zyx vfρ

∂
∂

∆∆∆ )  .        (2.8) 
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If we combine Eqs. 2.5-2.8, divide by ∆x∆y∆z, and take the limit as ∆x∆y∆z goes to zero, we 

obtain the following expression for x-component of the momentum balance equation: 

( ) ( )[ ] ( )[ ] ( )[ ]

zyx
F

g
x
p

zyx

zyxt

x
x

zxyxxx

zxyxxxx
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⎩
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⎧

ρ
∂
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+ρ
∂
∂

+ρ
∂
∂

−=ρ
∂
∂

f

ffff vvvvvvv

   (2.9) 

Similar equations can be developed for y- and z-components of momentum balance. Finally, 

Eq. 2.9 can be written in vector form as: 

( ) ( )[ ]
zyx

p
t ∆∆∆

+ρ+∇−⋅∇−ρ⋅∇−=ρ
∂
∂ Fgτvvv fff .   (2.10) 

This form of equation is an exact analogue of Newton’s law of motion. The term on the left-

hand side is the mass per unit volume multiplied by the acceleration, whilst each term on the 

right-hand side has the units of (force)/(unit volume). Equation 2.10 and the equation of 

continuity  

( ) 0f
f =ρ⋅∇+

∂
ρ∂ v
t

        (2.11)  

are often called Navier-Stokes equations. 

2.2. Mass transfer 

From the microscopic point of view any solid, fluid, or gas consists of atoms and 

molecules being in a constant state of motion. This fluctuating state is driven with kinetic 

energy and motion results in about no change in mean composition in a homogeneous system. 

By contrast, in heterogeneous media with a concentration gradient for a chemical species, this 

motion can give rise to a net movement of a particular species. This net molecular motion is 

called diffusion and it presents one mass transfer mechanism. Another mechanism of mass 

transfer can be provided by macroscopic motion or flow in fluids or gases and is often 

referred to as convection. Mass transfer can occur due to a number of other mechanisms as 

well, for example, due to migration of ions or charged solid particles in an electric field.  
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The governing equation for mass transport is the continuity equation. It can be written 

under steady-state conditions and in the absence of reactions in vector form as: 

0=⋅∇ j ,         (2.12) 

where j includes all flux density components concerning different mass transport 

mechanisms. The molecular mass transport is governed with Fick’s first law 

nD∇−=Dj  ,        (2.13) 

where jD is diffusive flux density of some species, D and n are its diffusion coefficient and 

concentration, respectively. Hence, the diffusive flux is proportional to the concentration 

gradient and will stop if the concentration of the species is identical everywhere. The 

convective flux density can be determined as  

jC = nv.         (2.14) 

If the species possesses an electrical charge then it can be driven with an applied electric field. 

The accompanying migration flux is defined by the local electric field  

Φ∇−=
Tk
nzq

D
B

e
Mj ,        (2.15)  

where z, qe, Φ are the species’ valence, the elementary charge, and local electric potential, 

respectively, with kB and T being the Boltzmann constant and absolute temperature. Thus, 

assuming that mass transport is due to the three mechanisms mentioned above Eq. 2.12 can be 

written as 

0
B

e2 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ∇∇+⎟

⎠
⎞

⎜
⎝
⎛∇−∇

Tk
nzq

n
D

n v .      (2.16) 

This equation is called the steady-state Nernst-Planck equation. Thus, the concentration of 

electrically charged species is determined, apart from the velocity field, also by the electric 

potential distribution. This distribution can be obtained from solution of the Poisson equation 
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r0

q2

εε

ρ
−=Φ∇  ,        (2.17) 

where ρq is the electric charge density that, in general, can consist of N species with different 

number concentration ni and valence zi

∑
=

=ρ
N

i
ii nqz

1
eq ,        (2.18) 

and ε0εr is the dielectric permittivity of the solution. It should be noted that transport of each 

individual species in a multi-component solution can be described, as before, with Eq. 2.16. 

However, the electric charge distribution is affected as well by “external” factors. For 

instance, the presence of a surface electric charge at the solid-liquid interface can dramatically 

change the picture of electric charge distribution in a liquid. 

2.3. Electric double layer 

A solid-liquid interface can appear as the source of a number of phenomena that define 

properties of a whole system. One of these phenomena is the formation of the electric double 

layer in a liquid region adjacent to a charged solid wall. Most solids gain an electrical surface 

charge when they are immersed in a polar solvent, e.g. an electrolyte solution. This charge can 

be the result of diverse processes [2]: preferential adsorption of ions in solution; adsorption-

desorption of lattice ions; direct dissociation or ionisation of surface groups; charge defective 

lattice, etc. The excess surface electric charge results in the rearrangement of electrolyte ions 

in close vicinity to the interface and the surface charge is compensated by counterions 

maintaining the electroneutrality of the system. Both the surface charge and its balancing 

countercharge in the liquid form the electrical double layer or EDL (Fig. 2.3). Immediately 

next to the solid-liquid interface, there are ions that undergo very strong electrostatic 

attraction to the interface and are considered immobile. They form the Stern layer (or inner 

part of the double layer) which is normally a few Ångstroms thick. Still further from the 

surface ions are affected less by the electrostatic interaction, are mobile, and can be displaced 

by thermal Brownian motion. These ions form the diffusive layer (or outer part of the double 

layer), which is separated from the inner part by the so-called Stern plane. Because the ions in 

the Stern layer are immobile, the hypothetical dividing plane between a moving solution and 
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Figure 2.3.  Schematic presentation for the distribution of ions near a solid-liquid interface and for the 

variation of electrostatic potential from the solid surface to the liquid (x-direction). 

“fixed” ions can be referred to as the shear plane. The exact location of the shear plane, that is 

actually a very thin region in which viscosity effects change quite rapidly, is difficult to 

determine and is the matter of ongoing investigations. However, the shear plane location is 

usually assumed to be just outside the Stern layer, which implies that the potential at that 

plane, ζ or zeta-potential , will be slightly less than the potential at the Stern plane, ψS. 

Moreover, ψS and ζ (or the Stern and shear plane locations) can be considered identical, since 

any introduced error will be small under ordinary circumstances [3]. The spatial distribution 

of ions in the diffusive layer can be described with the coupled Boltzmann distribution  
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and Coulomb law  

r0

q2

εε

ρ
−=ψ∇ .        (2.20) 
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The former relates the average number concentration n with a free (or potential) energy ∆G 

determined to a specified reference state (with a zero free/potential energy and corresponding 

average number concentration n0). Equation 2.20 describes the relationship between the local 

electrical potential ψ and net charge density ρq, which can be defined for a multi-component 

electrolyte as 

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ψ
−=ρ

i

i
ii Tk

zq
nzq

B

e0
eq exp .      (2.21) 

The combination of Eqs. 2.19, 2.20, and 2.21 results in the Poisson-Boltzmann equation 
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e
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2 exp1 ,     (2.22) 

where ni
0 is the number concentration in an electroneutral region.  

It should be noted that, though there is no general analytical solution to this equation, 

in certain particular cases an approximated solution can be obtained. For example, for a flat 

solid-liquid interface with a low electric potential a solution for Eq. 2.22 can be realized with 

the Debye-Hückel approximation, assuming 
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This allows to rewrite Eq. 2.22 in the following form 

ψκ=ψ∇ 22  ,        (2.24) 

with κ being  
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The parameter λD = κ–1, commonly referred as the “Debye screening length”, is identified as 

the thickness of the electrical double layer near a flat interface. Using the above mentioned 

approximation, the solution for Eq. 2.24 can be written as 

( Dζexp )λ−=ψ x/ ,        (2.26) 

where x is the distance from the solid surface. It should be pointed out that the analytical 

solution to Eq. 2.22 for a flat interface can be obtained, as well for arbitrary potential, in the 

case of a symmetrical electrolyte (z1 = –z2 = z) 
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In Fig. 2.4 the difference between the potential distributions calculated by Eq. 2.26 (the 

Debye-Hückel approximation) and Eq. 2.27 is shown.  
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Figure 2.4.  Electrostatic potential distribution near a flat solid-liquid interface (symmetric monovalent

electrolyte) calculated by using the Debye-Hückel approximation (dashed lines, Eq. 2.26) and full

calculation (solid lines, Eq. 2.27) for different values of ζ. 
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2.4. Electroosmosis and mass transport 

The existence of the electrical charge imbalance in vicinity of a solid-liquid interface 

can result in a number of phenomena under the influence of an applied electric field. Those 

phenomena are collectively defined as electrokinetic phenomena and include, in particular, 

electromigration, electroosmosis, electrophoresis, sedimentation potential, streaming potential 

and streaming current, electrolysis, electrorotation, etc. Hereafter, the attention will be 

focused on the first two effects as main sources of mass transport in an electrolyte solution. 

They can be distinguished from one another as follow: 

 

¾ Electromigration — migration of individual ions induced by an applied electric 

field. 

¾ Electroosmosis — flow of bulk fluid phase induced by electromigration in an 

applied electric field.  

 

Evidently, the former phenomenon is the origin for the latter and, consequently, a theoretical 

model of electroosmosis inherently has to treat electromigration.  

Eext dy

dz

dx

S o l i d

 
    Figure 2.5.  Electroosmotic flow generated by motion of ions due to an applied electric field.  
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The theory of electroosmotic flow was developed by Von Smoluchowski [4]. He 

considered the movement of a liquid adjacent to a flat, uniformly charged surface under the 

influence of an external electric field Eext applied parallel to the interface (Fig. 2.5). 

According to that model, the velocity of the liquid vz in the direction parallel to the wall 

increases from zero in the inner Helmholtz plane to a maximum value vosm at some distance 

(ca. 5λD) from the solid-liquid interface. Consider an unit volume of the liquid dxdydz. In 

steady state the net force generated by the friction of liquid and the applied electrical field 

should be zero 

( ) 0v
2

2

extq =η+ρ
dx

dEx z         (2.28) 

or, using Eq. 2.20, 
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This equation can be integrated from a point far from the solid-liquid interface (x → ∞) up to 

the shear plane (x = 0) with the conditions 
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where v∞ is defined by the Helmholtz-Smoluchowski equation: 
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The result of the integraton is: 
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( ) ( )[ ]
η

ψ−ζεε
−=

x
Exz

r0
extv .      (2.30) 

Since the right-hand side of Eq. 2.30 includes the electrical potential, an explicit expression 

for the electroosmotic velocity distribution requires to solve the Poisson-Boltzmann problem. 

Therefore, the analytical solution for the electroosmotic velocity field is possible only for very 

simple geometries (e.g., a flat homogeneous interface) or can be obtained under certain 

assumptions (e.g., low zeta-potential, large capillary diameter compared to the double-layer 

thickness, etc.). Thus, as well as for the Poisson-Boltzmann problem, the solution for the 

electroosmotic velocity field can be obtained basically only by numerical methods. 
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Chapter 3  

Computational Methods 

3.1. General simulation approach 

As it was mentioned in the Introduction, a comprehensive simulation of electrokinetic 

phenomena and their constitutive part, electroosmotic flow, should include an extensive set of 

different physical and chemical processes. As long as the solution to such simulation problem 

is impracticable at least nowadays, it should be formulated with certain assumptions and 

approximations. It is obvious that the choice of assumptions affects the simulation results and 

some correction should be performed during their translation to an actual system. On the other 

hand, the contribution of the neglected phenomena to the total picture can be very small and 

the behavior of the real system practically will not differ, in such case, from the simulated 

one. Hence, the choice of applied assumptions and the necessity of the correction of simulated 

results during their translating to the description of an actual system depend on the concrete 

situation and, vice versa, the concrete mathematical (or numerical) description of 

electrokinetic phenomena can represent the actual system only under these assumptions.  

The theoretical backgrounds of electrokinetic phenomena presented in Chapter 2 have 

the following general assumptions: 

 

¾ the system is isothermal (in particular, there are no Joule heating effects); 

¾ it is a steady-state system (no transient effects); 

¾ the mean-field approximation is applied for energy calculations (the mean field 

means substituting the interaction among the fields at different locations by the 

interaction of the field at each site with the mean field value at different locations); 

¾ the liquid phase is Newtonian (constant viscosity); 

¾ dielectric constants do not depend on the local electric field (no polarization 

effects); 

¾ dielectric constants do not depend on the liquid density (no electrostriction effects); 
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Figure 3.1. General simulation approach to electroosmotic phenomena. 

 

 

Accepting the aforementioned set of assumptions the simulation of electroosmotic flow can 

be reduced to coupled modeling of the electrical potential distribution, species transport and 

fluid flow (Fig. 3.1). Solutions to these three problems for a Newtonian N-component 

electrolyte can be obtained by resolving of the Poisson, steady-state Nernst-Planck, and 

Navier-Stokes equations (see chapter 2), respectively: 
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It should be pointed out that the presented mathematical description includes hydraulic flow 

problems as a particular case, in the absence of the externally applied electric field. 

The resulting electrical potential, species concentration and flow velocity distributions 

are coupled by a number of phenomena which are indicated in Fig. 3.1 by arrows. In order to 

solve the above set of equations, an iterative numerical procedure based on finite-difference 

(for solution of the Poisson and Nernst-Planck equations) and lattice-Boltzmann (for  solution 

of the Navier-Stokes equation) techniques was developed. While the finite-difference 

methodology is quite traditional for numerical solution of differential equation problems, the 

lattice-Boltzmann approach is a relatively novel method in computational hydrodynamics. 

Therefore, this approach will be regarded in more detail below. The details of the numerical 

implementations of the whole  procedure, in particular the solution of the Poisson and Nernst-

Planck equations, are presented in Section 4.1. of this thesis. 

3.2. Lattice-Boltzmann hydrodynamics 

3.2.1 Methods in Computational Fluid Dynamics 

In the previous chapter of this thesis it has been shown that fluid motion is governed 

by the Navier-Stokes equations which allow analytical solution in only a small number of 

special cases. With the advent of computer technology attempts have been made at simulating 

fluid flow on computers, i.e. Computational Fluid Dynamics (CFD). There are two CFD 

methods that are used to simulate fluid flow: i) the direct numerical solution of Navier-Stokes 

equations, which treats the fluid as continuous matter at the macroscopic level, and ii) the 

particle methods, which retain the physical idea that the fluid is composed of a collection of 

molecules at the microscopic level.  

The numerical solution of Navier-Stokes equations assumes finding a mathematical 

solution for the differential continuum equation after its discretization by means of finite-

difference, finite-element, or other standard numerical techniques. However, the difficulties 

with grid generation for complex boundaries, high computational requirements for memory 

capacity and computational speed, and the problem with numerical stability often restrict the 

use of this approach. 

One of the most known particle methods is the molecular dynamics. Theoretically, 

molecular dynamics simulations are able to provide solutions for any flow problem. However, 

because huge numbers of molecules have to be used to present the fluid being modeled, they 

require large amounts of computer memory and CPU time. Even high performance computers 
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can operate only a very small amount of molecules when compared with the number of those 

found in real fluid-dynamical systems. 

 Over the last 15 years, a new alternative particle method for the computer simulation 

of fluids has been developed. This method is based on a discrete approximation of the 

Boltzmann kinetic equation (the lattice Boltzmann equation) and referred to in the literature as 

the lattice Boltzmann equation method(s) or LBE method. Since then, the LBE method has 

been intensively pursued and has found application in different areas of CFD, including fluid 

flow simulations in porous media. It has recently been shown [1,2] that this discrete-velocity 

model corresponds to the truncation of the Boltzmann equation in an Hermite velocity 

spectrum space or, in other words, that it can be viewed as a special finite-difference 

approximation of the Boltzmann equation. 

3.2.2 The Boltzmann and lattice Boltzmann equations  

Consider a system of N identical classical (in a physical sense) particles. The state of 

this system is described by 6N position coordinates and velocity components. Let us refer to 

the corresponding 6N-dimensional phase space as Γ-space; any point in this space describes a 

state of the system. Further, introduce a six-dimensional space corresponding to the position 

and velocity of an individual particle and call this space γ-space. Each of N particles is 

represented by a single point in γ-space. Hence, the state of the system represented by one 

point in Γ-space gets mapped to a configuration of N points in γ-space and the time evolution 

of the system giving rise to a trajectory in Γ-space gets mapped to N trajectories of N points in 

γ-space. 

Such statistical system can be described with the distribution function F(r,u,t) 

introduced in the γ-space that defines dN(r,u,t) = F(r,u,t)drdu  as the number of molecules at 

time t being positioned at [r, r+dr] and having velocities in the range [u, u+du]. The 

difference between dN(r,u,t) and dN(r+u∆t, u+a∆t, t+∆t), where ∆t is a short time and a is the 

acceleration due to external forces, can result from collisions and it can be written as 

[ ] tdd
t

)t()tttt( ∆⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=−∆+∆+∆+ urururauur
c

dd,,,, FFF ,  (3.1) 



 - 27 -

where (∂F/∂t)c is the time rate of change of F due to collisions. After expanding the first term 

on the left hand side of Eq. 3.1 as a Taylor series about F(r,u,t) and letting ∆t→0 this 

equation can be rewritten: 

( ) ( )
c

ur ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=∇⋅+∇⋅+
∂

∂
tt

FFFF au ,     (3.2) 

with 
r∂

∂
=∇ r  and 

u∂
∂

=∇u .  Equation 3.2 is known as the Boltzmann equation and it 

describes the dynamics of the particle distribution function F(r,u,t). It should be noted that 

the complete form of Eq. 3.2 assumes the collision term on the right hand side has to be 

explicitly specified. In general case, the form of the collision term can be very complex and 

depends on the system. Consider several assumptions [3]: 

¾ Only binary collisions are taken into account (the dilute gas). 

¾ The velocity of a particle is uncorrelated with its position (the molecular chaos 

assumption). 

¾ Wall effects are ignored (the unconfined system). 

¾ The effect of external forces on the collision cross section is neglected. 

Under these assumptions the collision term can be expressed as: 
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where Ωc is the scattering direction of the binary collision  u1 + u2 → u1
' + u2

' and σ is the 

differential cross section of that collision. This collision term can be significantly simplified 

for states close to thermal equilibrium. Since the classical ideal gas relaxes to the Maxwell-

Boltzmann distribution (Maxwellian) 
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where ρ and v are the density and macroscopic (or average) velocity, respectively, this 

function should emerge as an equilibrium solution of the Boltzmann equation for a system at 

temperature T, consisting of particles of mass m, and it can be shown that Maxwellian 
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describes a fraction of the particles in a given small volume undergoing collisions. Hence, the 

collision term can be defined as 
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,       (3.5) 

in the form known as the “BGK collision operator” [4], where τ is a relaxation time.  Thus, 

under the assumption of a local proximity to thermal equilibrium it can be expected that the 

arbitrary distribution function evolves according to the Boltzmann equation and eventually 

relaxes to the equilibrium Maxwellian. The Boltzmann equation with BGK collision operator 

has the following form: 
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Macroscopic quantities of the system such as the density ρ, velocity v, and temperature T (or 

average internal energy), can all be determined from the given distribution function F(r,u,t) 

by calculating its velocity moments:  
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Taking Maxwellian velocity distribution function into the moment equations leads to the 

Euler equations for the velocity v, i.e. Navier-Stokes equations without viscosity.  

Generally, the approximate solutions to the Boltzmann equation can be obtained by 

means of a perturbation technique [5], applying the Chapman-Enskog expansion, which is 

essentially a formal multi-scale expansion and commonly used in statistical physics. This 

method of successive approximations can, in principle, be extended to systems in which 

gradients of thermodynamic quantities are quite large. In the zeroth approximation, the 

distribution function is locally Maxwellian, and we obtain the Euler equations of change. The 
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first-order perturbation leads to the Navier-Stokes equations. It should be realized that the 

Navier-Stokes equations apply to systems in which the gradients in the physical properties are 

small, i.e. in which the physical properties do not change appreciable within a distance of the 

mean free path length. The second-order perturbation gives the Burnett equations. From the 

higher approximations more complicated equations result in which the flux vectors depend 

progressively on higher derivatives of the thermodynamic quantities and higher powers of the 

lower derivatives.  

The series solution to the Boltzmann equation is obtained by introducing a 

perturbation parameter χ into the equation in such way that the frequency of collisions can be 

varied in an arbitrary manner without affecting the relative number of collisions of a 

particular kind. Hence, we can consider a hypothetical problem in which the Boltzmann 

equation with BGK collision operator is 
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ur
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and 1/χ measures the frequency of collisions. If χ was small, collisions would be very 

frequent and the system behave like a continuum in which local equilibrium is everywhere 

maintained. The distribution function, too, is expanded in series in χ 
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Introducing this series into Eq. 3.10 and equating the coefficients of equal powers of χ, one 

can obtain the set of the balance equations for the functions F[0], F[1], F[2], … . In order to 

find consistent and unique solutions for functions F[n], the following constraints must be 

satisfied: 
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The general solution to the (χ–1) order equation is trivial and yields the Maxwellian 

equilibrium distribution function, F[0] = Feq (Eq. 3.4). The solution for the first-order 

perturbation function F[1] is 
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The hydrodynamic equations can be obtained by evaluating the moments of the Boltzmann 

equation: 
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The substitutions F = F[0] and F = F[0] + F[1] in the above expression lead to the Euler and 

Navier-Stokes equations, respectively.  

From the point of view of computational methodology these obtained results indicate 

that distributions of thermodynamic quantities can be obtained besides an immediate 

numerical solution of the Navier-Stokes equations, as well by molecular dynamics 

simulations. However, as it was mentioned in the beginning of this chapter, even high 

performance computer simulations are not able to provide a satisfactory representation of real 

fluid-dynamics systems by modeling of molecular dynamics. Dynamic simulation of many-

body systems in continuous phase space requires a large amount of computational resources 

which exponentially grow with increasing system population. Since the passage from a 

continuous representation to a discrete one is conventional for computational mathematics, it 

was quite logically when the continuous molecular dynamic problem had translated to that in 

discrete phase space and the continuous Boltzmann equation had been transformed to the 

lattice-Boltzmann equation. Although historically the lattice-Boltzmann equation was 

developed empirically, with basic ideas borrowed from the cellular automata fluids [6], in 

1997 it was shown that the lattice-Boltzmann equation can be obtained as a special finite-

difference form of the Boltzmann equation for discrete velocities by a small Mach number 

expansion [1,2]. 

The starting point in those derivations is the Boltzmann BGK equation (Eq. 3.6) 

formally rewritten in the form of an ordinary differential equation: 
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The derivative  cannot be evaluated directly because the dependence of the distribution 

function on the microscopic velocity is unknown. In order to simplify the forcing term of the 

Boltzmann BGK equation, the following assumption can be made [6] (the assumption of 

small deviation from the local equilibrium): 
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that allows to approximate the forcing term:  
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 Hence, formal integration of Eq 3.14 along characteristic line u over a time step δt results in: 
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The first integral is treated explicitly, assuming that the integrand is constant over one time 

step δt, while the second one can be treated using the trapezoidal implicit scheme [7]. With 

these assumptions and approximations, the above equation becomes  
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where τ = τ /δt is the dimensionless relaxation time. In order to numerically evaluate the 

velocity moments of the distribution function, Eqs. 3.7-3.9, the integration in momentum 

space has to be approximated by the Gaussian-type quadrature, that is 
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where Ξ(u) = [1; ui; (uiuj); (uiujuk); …] are polynomials of u, Wα are the weight coefficients of 

the quadrature, and uα are the discrete velocity set or the abscissas of the quadrature. 

Accordingly, Eqs. 3.16 can be considered as approximated analogues of Eqs. 3.7-3.9 and 

serve to calculate the thermodynamic quantities 
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where  

( ) ( tWt  , , , αααα ≡≡ urr FFF . 

Then, assuming constant temperature and low Mach number (the ratio of fluid velocity v to 

the speed of sound), the equilibrium distribution function can be expanded up to O(v2): 
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or for the discrete velocity set: 

( )
( ) ( )

( )
( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡ ⋅
−

⋅
+

⋅
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

π
ρ= ααα

αα Tk
m

Tk
m

Tk
m

Tk
m

Tk
mW

B
2

B

22

BB

2

3
B

eq

22
1

2
exp

2
vvvuvuuF . (3.20) 

Finally, the discrete velocity set or, in other words, the lattice geometry should be 

properly specified. The choice of a lattice geometry {uα} must satisfy an exact preservation of 

the conservation laws, i.e. the used quadrature must be able to compute the thermodynamic 

moments exactly. Hence, Eq. 3.15 after the time and phase space discretizations can be 

rewritten as 
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where eα = uαc = uα(3kBT / m)1/2. The constant c is identified as “the speed of light” in the 

system [1], 
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  Figure 3.2.  Lattice structure (discrete velocity set) of D3Q19 lattice-BGK model. 
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which is usually set to be unity by the coherent discretization of space and time, and where δx 

is the lattice constant. It should be pointed out that values of the weight coefficients Wα will  

as well be determined by the choice of the lattice geometry. 

The most regularly used lattice-Boltzmann models are D2Q7, D2Q9, D3Q15, and D3Q19, 

where D and Q denote the dimensionality of the lattice and the number of links per lattice 

point, respectively. In this thesis the D3Q19 model (Fig. 3.2) is used for fluid flow simulations. 

The D3Q19 model has the following set of discrete velocities 
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Hence, the equilibrium distribution function Fα
eq can be expressed as 
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3.2.3 Lattice-Boltzmann models with body force  

In general, there are two methods available in order to incorporate a body force in the 

lattice-Boltzmann models: 

 

¾ calculating the equilibrium distribution function with an altered velocity and 

¾ adding an additional term to the Boltzmann equation. 

 

The first method [8] introduces a body force by considering the produced momentum change. 

If a body force f acts (i.e. f  = ρa), then at every time-step δt there exists a change of 
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momentum (per a unir volume) δp = f. Concerning the definition of the equilibrium 

distribution function (Eq. 3.22) this results in the use of a modified “equilibrium velocity”  

ρ
δ+=

fvv* t ,        (3.23) 

where v is defined, as before,  by Eq. 3.18. 

The second way [9] assumes the modification of the lattice-Boltzmann-BGK equation 

(Eq. 3.21) by introducing an additional term: 

( ) ( ) ( ) ( )( ) αααααα δ+−−=++ Ftt
τ

tt t
eq  , ,1 ,1 , rrrer FFFF ,  (3.24) 

and reformulating  Fα
eq (Eq. 3.22) through a modified “equilibrium velocity” v'

ρ
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2
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fvv , 

where v is defined by Eq. 3.18. It can be shown [9] that, in order to match the correct Navier-

Stokes hydrodynamics, the body force components in Eq. 3.24 must be defined by 
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where is the modified fluid velocity defined by  υ

ρ
δ+=

2t
fvυ , 

and cs = c / 3  is the speed of sound in the system. 

The first method of introducing of a body force in LBM is more suitable for 

simulations of flows exposed to a constant body force [9]. Since this case is, in general, not 

typical for electrokinetic systems, the second method was chosen to treat the body force in the 

EOF simulations presented in this paper.    
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3.2.4 Numerical implementation 

In order to solve the lattice-Boltzmann-BGK equation the commonly utilized “stream-

and-collide” algorithm was implemented. This algorithm includes two subsequent steps 

reiterated in turn: streaming and collision (see Algorithm 1). In the streaming phase the 

distribution function at each lattice node is determined by the corresponding velocity 

components propagated toward the node from the neighbor nodes. Then, in the collision 

phase, the distribution function at each lattice node is recalculated in accordance with the 

collision rule.  

 

 
Algorithm 1. Stream-and-collide algorithm 

 

Streaming phase: 

� Propagate the distribution function components to the corresponding neighbor lattice nodes  

 

Collision phase: 

� Compute macroscopic quantities using Eqs. 3.17-3.19 

� Determine the equilibrium distribution function using Eq. 3.22 

� Calculate updated distribution functions using Eq. 3.21 or Eq. 3.24 depending on the method of the body force 

incorporation 

 

As it has been mentioned above, the lattice-Boltzmann algorithms possess an inherent ability 

to be easily parallelized. This feature becomes especially significant for an implementation   

at parallel high-performance computers for large-scale simulations. 



 - 37 -

References 
 
1. X. He and L.-S. Luo, J. Stat. Phys. 88, 927 (1997). 

2. T. Abe, J. Comp. Phys. 131, 241 (1997). 

3. R.R. Nourgaliev, T.N. Dinh, T.G. Theofanous, and D. Joseph, Int. J. Multiphase Flow 29, 117 (2003). 

4. P.L. Bhatnagar, E.P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954). 

5. S. Chapman and T.G. Cowling. The Mathematical Theory of Non-uniform Gases. Cambrige University Press, 
1970. 

6. U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett. 56, 1505 (1986). 

7. X. He, X. Shan, and G. Doolen, Phys. Rev. Lett. 57, R13 (1998).  

8. N.S. Martys and H. Chen, Phys. Rev. E 53, 743 (1996). 

9. Z. Guo, C. Zheng, and B. Shi, Phys. Rev. E 65, art. no. 046308 (2002). 



 - 38 -

 



Chapter 4 

Numerical Simulation of Mass Transport in 

Microfluidic Systems  

This chapter is concerned with the application of the approach presented in Chapters 2 

and 3 to the numerical simulation of mass transport in various microfluidic systems. It begins 

with the numerical simulation of  EOF in straight cylindrical microchannels with a non-uniform 

distribution of the ζ-potential (Section 4.1). Two basic patterns with axial and angular 

inhomogeneities in the ζ-potential distribution (that can be employed to construct various, more 

complicated configurations) were investigated. Then, the EOF in a slit microchannel with 

heterogeneous and variable surface charge density at the channel walls is considered in order to 

investigate the effect of possible local surface charge modifications on the generated 

electroosmotic flow field (Section 4.2). Further, electrokinetic microfluidics in periodic 

colloidal systems is numerically simulated and the influence of a number of physical 

parameters, such as the electrical double layer thickness, ζ-potential, applied electric field, as 

well as the computational grid resolution are studied (Section 4.3). The spatially definite and 

periodic structure of colloidal crystals allows to eliminate any stochastic effects that are peculiar 

to random packings and reduces considerably the computational expenses required to involve 

high numerical accuracy. After that, random packings of spherical particles (as model of porous 

media which are contained, e.g., in chromatographic columns or fixed bed reactors) are used for 

numerical simulations of hydraulic flow and hydrodynamic dispersion (Section 4.4). The 

existence of mesopores (of the size of a few tens of nanometers) inside the particles results in 

the necessity to involve different length-scales, and they extremely complicate the direct 

numerical simulation of transport phenomena in such structures. The semi-empirical approach 

presented in Section 4.4 allows to overcome this restriction and incorporate, in addition to the 

simulation of fluid dispersion in the interstitial space between particles caused both by 

convection and diffusion, the purely diffusive mass transport in intraparticle pore spaces. 

Finally, the problem of EOF through confined random packings of spherical particles is 

considered. This kind of random packings represents the fixed bed in actual 
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(electro)chromatographic columns with typically low column-to-particle diameter ratio and 

structural inhomogeneity which can significantly affect the efficiency of chromatographic 

separations due to the imposed complex hydrodynamics. In particular, it was shown that the 

more ordered structure of packing regions adjacent to the confining wall results in reduced 

hydrodynamical resistance, lower local tortuosity and, as a consequence, in a increased local 

velocity of the EOF. 

4.1. Coupled lattice-Boltzmann and finite-difference simulation  

of electroosmosis in microfluidic channels*

In this section we are concerned with an extension of the lattice-Boltzmann method for 

numerical simulation of three-dimensional electroosmotic flow problems in porous media. 

The description is evaluated using simple geometries as those encountered in open-channel 

structures of microfluidic devices. In particular, we consider electroosmosis in straight 

cylindrical capillaries with (non)uniform zeta-potential distribution for ratios of the capillary 

inner radius to a thickness of the electrical double layer from 10 to 100. The general case of 

heterogeneous zeta-potential distributions at the inner surface of a capillary requires solution 

of the following coupled equations in three dimensions: Navier-Stokes equation for liquid 

flow, Poisson equation for electrical potential distribution, and Nernst-Planck equation for the 

distribution of ionic species. The hydrodynamic problem has been treated with high efficiency 

by code parallelization via the lattice-Boltzmann method. For validation the velocity fields 

were simulated in several microcapillary systems and good agreement with results predicted 

either theoretically or obtained by alternative numerical methods could be established. These 

results are also discussed with respect to the use of a slip boundary condition for the velocity 

field at the surface of the solid.  

4.1.1. Introduction 

Rapid recent developments in design, patterning, and utilization of microfluidic devices 

(valves, pumps, mixers, reactors, sensors and actuators, or three-dimensional channel 

networks) have found many applications in the devised bulk transport, separation, 

identification, synthesis, and manipulation of a wide range of chemical and biological species 

[1-6]. It is an advancement that becomes particularly important for the lab-on-a-chip concept 

[7] where transport processes, including the efficient mixing of micro- and nanoliter liquid 
                                                 
*This section is based on a manuscript submitted to Int. J. Num. Meth. Fluids.  
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volumes, control and enhancement of reaction rates, heat and mass transfer, as well as the 

selectivity of chromatographic separations occur on much smaller time and length scale than 

traditional engineering technologies. With channel diameters from several to a few hundred 

micrometers (inherently placing microfluidics in the low-Reynolds number regime of 

hydrodynamics) and channel lengths approaching centimeter dimension, these systems permit 

a miniaturization of chemical processes and large-scale integration of engineering principles 

allowing fast response times at low operational costs [6]. 

A number of scientific issues have been addressed using microstructures to confine 

and also manipulate liquids including the flow through percolation structures or fundamental 

properties of liquids in small geometries where surface forces (surface tension, electrical 

effects, van der Waals interaction, surface roughness) are more important than usual. One of 

the challenges is to tailor these effects and produce functional devices. 

Concerning the bulk transport of liquid through a microfluidic channel electroosmosis 

can offer distinct advantages over pressure-driven flow. Electroosmotic flow (EOF) is 

generated by interaction of an externally applied electrical field with that part of the 

electrolyte solution that has become locally charged at the interface to the stationary and 

oppositely charged solid surface of the confining porous medium [8, 9]. The extension into 

the bulk solution of the fluid-side domain of this electrical double layer can be as small as a 

few nanometers compared to a channel diameter of micrometer dimension, a fact that has 

some important consequences for the EOF dynamics under these conditions [10]. First, from a 

macroscopic point of view, bulk liquid moves as in plug flow, i.e., the velocity apparently 

slips at the wall, which is in contrast to the parabolic velocity profile typical for Poiseuille 

flow. Second, because the ratio of electroosmotic to hydraulic volumetric flow rates (at a 

fixed potential and pressure gradient) is inversely proportional to the squared channel 

diameter, the EOF becomes increasingly effective in liquid transport through the finer 

channels as their size is reduced. Thus the benefit of using EOF is that chemical and 

biological species may be easily transported in microfluidic devices over comparatively long 

distances with negligible mass transfer resistance. Hydrodynamic dispersion can then be 

limited almost to that by longitudinal diffusion alone which has been demonstrated 

experimentally [11, 12]. 

Stimulated by the enormous potential and accompanying need for a detailed 

characterization of electrokinetically driven mass transport in microfabricated (microchip) 

devices, numerical simulation of EOF in microfluidic channels has received increased 

attention over the past few years [13-28]. These investigations have revealed that in good 
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agreement with available experimental data the transport characteristics of flow in 

microchannels clearly depend on properties of the working fluid and the geometrical (and 

physico-chemical) parameters of the surface. For example, the work of Griffiths and Nilson 

[16] which is based on the direct solution of governing transport equations demonstrates that, 

over a wide range of conditions, the coefficient of longitudinal dispersion of a neutral 

nonreacting solute in EOF may be many orders of magnitude smaller than for the parabolic 

(or nearly so) velocity profile in pressure-driven flow. Ermakov et al. [15] used a 2D code to 

address electrokinetic species transport with respect to some basic microfluidic elements: 

They considered sample focusing in a channel cross and sample mixing at a T-junction. 

Patankar and Hu [14] carried out 3D flow field simulations to investigate the EOF behaviour 

at a channel cross, while Bianchi et al. [17] used their finite element-based simulations to 

describe the flow division at a decoupling T-junction, encountering combined electroosmotic 

and pressure-driven flows. Fu et al. [25] presented a physical model (and numerical method) 

for studying geometrical effects on the performance of electrophoresis microchips. Erickson 

and Li [27] utilized 3D finite element-based numerical simulations to resolve the influence of 

heterogeneous surface charge distributions on local flow circulation within the bulk liquid 

(under the aspect of enhanced sample mixing in a T-shaped micromixer). 

While these numerical approaches give valuable insight into the flow behaviour in 

relatively simple channel geometries traditional computational fluid dynamics can face 

drawbacks if higher code flexibility is required, e.g., when dealing with a much more 

complicated pore space morphology (as in random particulate and fractured porous media), 

complex flows (multiphase or close to surfaces with a chemically and/or physically irregular 

pattern), or code parallelization.  

Over the last decade lattice-Boltzmann (LB) methods [29-34] have achieved great 

success as alternative and efficient numerical schemes in the simulation of a variety of 

transport phenomena in porous media, with particular emphasis on the dynamics of pressure-

driven liquid flow through complex porous media [34-50]. Besides their flexibility and 

accuracy in dealing with the confining geometry and actual boundary conditions LB methods 

are inherently parallel and, thus, they are ideally suited for high-performance parallel 

computing. In contrast to the conventional numerical schemes based on a discretization of 

macroscopic continuum equations, the LB method utilizes mesoscopic kinetic equations to 

recover the macroscopic Navier-Stokes equation for fluid motion in a long-time, large-scale 

limit [34]. Further, some early systematic problems of LB methods like the existence of 

velocity-dependent pressures and lack of a Galilean invariance are essentially resolved, and 
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algorithms have been simplified by the single relaxation time scheme of Bhatnagar et al. [51-

53]. 

So far, only a few reports have been published in which LB simulations also touch 

electrokinetic phenomena (and electroosmotic flow, in particular). Quite recently, the LB 

method has been implemented to model high-Reynolds number pressure-driven flow in 

microfluidics, taking into account electroviscous effects that can become important due to the 

finite thickness of the electrical double layer compared to typical channel sizes [54], and a 

good agreement with published experimental data on the friction factor – Reynolds number 

relation in microchannels [55] was obtained. Further, in the work by Nie et al. [56] an 

extension of the LB method was proposed that is based on a density-dependent viscosity 

model and technique for imposing a slip-velocity at the wall. It was demonstrated that this 

approach can capture fundamental characteristics of microchannel flow such as non-linear 

pressure drop along the channel and the behaviour of mass flow rate for varying Kundsen 

numbers. Warren [57] analyzed the electrokinetic transport in a parallel-sided slit with a 

constant electrical charge (or potential) at this solid-liquid interface. The resulting one-

dimensional problem was further restrained by assuming a quite thick electrical double layer 

compared to the width of the slit. While this work addresses special cases of significant 

double layer overlap encountered, for example, with ultrafine capillaries [58], in many 

situations of technological relevance, as for the electrokinetic species transport in (open-

channel) microchip devices, the characteristic channel dimension normal to the local flow 

direction becomes (much) larger than the typical thickness of electrical double layers at the 

solid-liquid interface. It is this condition, in particular, that has to be satisfied in order to gain 

full potential of EOF (as compared to pressure-driven flow) with respect to the longitudinal 

dispersion and permeability [59]. Further many industrial and natural porous media are 

characterized by random or hierarchically-structured, but relatively broad pore size 

distributions, contrasting with the network of uniformly sized and shaped channels on 

microfluidic devices. Thus, in the general case, bulk transport involves conditions for which 

the ratio of a local pore radius to the electrical double layer thickness covers a spectrum from 

below unity up to hundreds [60]. The numerical approach that is presented in this work can 

cope with any geometry and possible surface heterogeneity, and it will be particularly 

efficient in resolving details of the flow field which govern mass transport and the dispersion 

in a transient, as well as long-time (asymptotic) regime. 
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4.1.2. Electrokinetics 

Electroosmotic flow in a microfluidic channel 

Figure 4.1 illustrates, at different length scales, the basic aspects of electroosmosis in a 

microfluidic channel with locally flat, smooth surface. When a dielectric solid (e.g., a fused-

silica capillary) is contacted with a liquid electrolyte (e.g., a dilute aqueous NaCl solution) an 

electrical double layer (EDL) develops at the solid-liquid interface due to ionizable groups of 

the material (dissociation of silanol groups in the above example: ≡Si−OH + H2O ⇔ ≡Si−O– 

+ H3O+) or by ions adsorbing on its surface. The resulting negative charge density of the 

capillary (channel) inner wall affects the distribution of hydrated sodium (counter)ions in the 

solution: In immediate proximity to the surface there exists a layer of ions which are relatively 

strongly fixed by electrostatic forces. It forms the inner or compact part of the fluid-side 

domain of the EDL and its typical thickness is of the order of only one ion diameter (about 

0.5 nm). The outer Helmholtz plane (OHP, Fig. 4.1c) separates inner and diffusive layers 

which, together, constitute the EDL. While the ionic species in the diffusive layer undergo 

Figure 4.1. Illustration of some features of electrokinetically-driven flow of liquid (electroosmosis)

through a straight cylindrical capillary (ζ < 0). (a) Experimental set-up, (b) pore-scale

EOF velocity profile, and (c) distribution of electrical potential in the EDL. 
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Brownian motion, they are also influenced by the local electrostatic potential. At equilibrium 

their accumulation in this region can be described by the Boltzmann equation. The spatial 

dimension of the diffusive layer is typically between a few and hundred nanometres. 

EOF sets in when an external electrical field ( φ−∇=extE ) is applied. It interacts with 

the EDL field to create an electrokinetic body force on the liquid. Consequently, the bulk of 

liquid is driven by a viscous drag via the shear stresses concentrated in the relatively thin EDL 

(compared to a capillary radius rc of micrometer dimension). The potential (ψ) at the so-called 

shear plane separating the mobile and immobile phases is the electrokinetic (or ζ) potential. 

For the case considered here (smooth surface, simple ions) ζ must be close to, if not 

coincident with the diffusive double layer potential ψOHP (cf. Fig.4.1c). The fluid velocity 

rises from zero at the shear plane to a limiting value vmax beyond the EDL where, from a 

macroscopic point of view, the liquid seems to slip past the surface (Fig. 4.1b) 

extr0exteomax  
η
ζ εε µ EEv ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−== .      (4.1) 

µeo denotes the electroosmotic mobility and η is the dynamic viscosity of the fluid. ε0 is the 

permittivity of vacuum and εr the relative permittivity of the electrolyte solution. The minus 

sign in Eq. 4.1 means that vmax and Eext are in the same direction when ζ is negative. Without 

any externally applied pressure forces and uniform distribution of ζ along the channel wall the 

liquid moves as in plug-flow as the gradient in ψ beyond the EDL is negligible. The thickness 

of the EDL is characterized by 
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∑ ∞i i,i czF
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,       (4.2)  

where R is the gas constant, T the absolute temperature and F Faraday’s constant, zi is the 

valency of ionic species i and ci,∞ its molar concentration in the electroneutral solution. λD is 

the Debye screening length and about 10 nm for a 10−3 M 1:1 aqueous electrolyte solution. In 

this case the EDL is much smaller than the radius of micrometer channels (rc/λD > 100) and 

the volumetric EOF rate is approximately given by Q = vmaxA (where A is the cross-sectional 

area of a channel). However, as the channel diameter approaches submicrometer dimension 

and/or as λD increases the EDL cannot be considered as thin any longer (e.g., rc/λD ≈ 10) and 
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the plug-like velocity profile deteriorates towards a parabola, as is known for Poiseuille flow 

(rc/λD = 2), with an accompanying increase in hydrodynamic dispersion evidenced by Fig. 4.2 

[10, 61]. 
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Figure 4.2. Velocity profiles of EOF in an open-straight, cylindrical capillary for different values of rc/λD

obtained by solution of the momentum balance equation [61]. Externally applied electrical field

Eext = 5×10  V⋅m , ζ = –0.1 V, ε4 −1
r = 80, the liquid density and viscosity are 10  kg⋅m an3 −3 d

0.89×10  kg⋅m s , respectively (at T = 298.15 K). The Debye screening length (λ−4 −1 −1
D) is 10 nm. 

 

General mathematical formulation 

The velocity field of an incompressible Newtonian electrolyte solution in low-

Reynolds number flow through a microfluidic channel is governed by the Navier-Stokes 

equation 

fvvvv
+∇+−∇=⎟

⎠
⎞

⎜
⎝
⎛ ∇⋅+

∂
∂

ρ 2
f η)( p

t
,     (4.3) 
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where ρf is the density of the fluid, v represents the divergence-free velocity field ( 0=⋅∇ v ), 

and p denotes hydrostatic pressure. The body force f is related to the volume density of charge 

ρq and the local electrical field ( Φ−∇=E ) by 

∑
=

Φ∇−=ρ=
N

i
iinzq

1
eqEf ,  for i = 1, ... , N,   (4.4) 

where qe stands for the elementary charge, ni is the number concentration of ionic species i in 

the N-component electrolyte solution, and Φ  denotes the local electrostatic potential which is 

governed by the Poisson equation 

r0

q2

εε
ρ

−=Φ∇ .        (4.5) 

The flux density ji (the number of ions per unit area passing through the surface of a volume 

element) is related to the local fluid velocity and gradients in ion density and electrical 

potential by the Nernst-Planck equation 
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where Di is the mass diffusion coefficient and kB is the Boltzmann constant. Each ionic 

species satisfies the following conservation 

0=⋅∇+
∂

∂
i

i

t
n

j .        (4.7) 

Together with appropriate initial and boundary conditions Eqs. 4.3-4.7 describe the mass 

transport in systems with arbitrary geometry, distribution (and magnitude) of ζ, and aspect 

ratio. It is important to note that we consider here (cf. Eqs. 4.4-4.6), without further 

simplification, the local electrostatic potential in the channel which, in general, includes 

contributions from both the EDL and Eext. Further, the presented description does not rely on 

the Boltzmann distribution for electrical charges in the diffusive part of the EDL applicable 

only at thermodynamic equilibrium. It would assume that this distribution remains 

undisturbed by external convective influences which is justified only under certain limiting 
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conditions, e.g., at a low Peclet number in channels of arbitrary geometry and for a uniform 

distribution of ζ [13]. 

In this work we consider fully-developed, steady, isothermal EOF in the microfluidic 

channel. It eliminates the time derivatives in Eqs. 4.3 and 4.7, as well as the need for initial 

conditions. Thus, we remain concerned with the following set of coupled equations. 

∑
=

Φ∇−∇+−∇=∇⋅ρ
N

i
iinzqp

1
e

2
f η)( vvv      (4.8a) 

0=⋅∇ v

2
N

         (4.8b) 

r0
1

e εε∑
=

−=Φ∇
i

ii /nzq        (4.8c) 

( )e2 ii Dzq
0Φ

B
=∇⋅∇−∇−∇ iiii n

Tk
nDnv      (4.8d) 

Boundary conditions 

Because the length of a microfluidic channel is large compared to heterogeneities in 

the fluid flow field and species transport on any length (and associated time) scale we assume 

longitudinal spatial periodicity [62]. Thus, our description reduces to that of a representative 

unit (Fig. 4.3a) with periodic (outer) boundary conditions 

[| |] = C, [|nΦ i|] = 0, [|v|] = 0,         (4.9) 

where C is a constant related to the conditions of an experiment (including pH, the electrolyte 

concentration, Eext, surface adsorption, or the temperature) and [|…|] denotes the difference 

between values of a function at opposite points lying on the corresponding unit boundaries. 

The outer boundary conditions have to be complemented by inner boundary conditions 

which define the values of the electrical potential (or charge), the flow velocity and species 

number concentrations at the solid-liquid interface. The common no-slip and normal-zero-flux 

conditions are recognized at this interface for the fluid flow velocity and number 

concentrations, respectively 
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0  ,0 i =⋅= jv ν ,       (4.10a, b) 

where ν is the outer normal to the solid-liquid interface. In turn, an electrical boundary 

condition can be represented by either the surface charge density or ζ-potential. Since these 

characteristics, in particular, depend on both the nature of contacting media and the local 

environment, e.g., the interfacial space morphology or the local pH, they can be considered, in 

general, as spatially variable quantities. Thus, the electrical boundary conditions at the solid-

liquid interface can be imposed in two alternative ways: by given surface charge density or ζ-

potential distributions, respectively  

Eext

(a)

Representative unit

L-cell

S-cell

(b)

jz,�

jy,+

(c)

jx,�

jz,+

jy,�

jx,+

Figure 4.3.  Discretization and approximation of the solution domain. (a) Capillary scale. Spatial

periodicity reduces the description to that of a representative unit with periodic boundary

conditions. (b) Solid-liquid interface. The solution domain is represented by a set of

uniform cubic cells. (c) Single L-cell. Entry and exit flux density components. 
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).(or      )(
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rr
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εε
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−=Φ∇⋅ν      (4.11a, b) 

The former equation corresponds to the Neumann-type, the latter to the Dirichlet-type 

boundary condition. 

This presentation of inner boundary conditions assumes that the boundary values of all 

quantities (the flow velocity, species flux, surface charge density, and ζ-potential) are related 

to the same location. In fact, while the no-slip and normal-zero-flux conditions, as well as the 

given surface charge density are recognized directly at the solid-liquid interface, the ζ-

potential is defined with respect to the shear plane (cf. Fig. 4.1). However, since this plane is 

located in immediate proximity (≈ 0.5 nm) to the solid-liquid interface, it is assumed that 

these surfaces coincide. 

4.1.3. Computational methods 

General scheme 

To solve the system of time-independent partial differential equations, Eqs. 4.8a-4.8d, 

subject to inner and outer boundary conditions, Eqs. 4.9-4.11, an iterative scheme (Fig. 4.4) 

was implemented. At each iteration first the coupled Nernst-Planck and Poisson equations, 

Eq. 4.8d and Eq. 4.8c, were solved numerically. Then, the Navier-Stokes equation, Eq. 4.8a, 

together with the continuity equation, Eq. 4.8b, were solved. The iterative solution had 

continued until convergence of the flow field was reached. As initial guess zero flow field, as 

well as bulk number concentrations and the electrical potential distribution caused by the 

applied field were used. This contribution to the local electrical potential is assumed to be 

point-wise constant during iterations. Thus, the numerical scheme requires the solution of the 

Poisson, Nernst-Planck, and Navier-Stokes equations (where the last problem is, by far, the 

more difficult computational task). While traditional finite-difference methods were used to 

resolve the first two problems, the lattice-Boltzmann method has been applied for solution of 

the Navier-Stokes problem. 

 

Geometry and discretization of the solution domain 

A uniform mesh has been utilized for numerical solution of all of the above-mentioned 

problems. Thus, the solution domain can be represented by a set of equal cubic cells of size 

∆h (Fig. 4.3b). Cells were divided into two subsets, i.e., cells having their geometrical centre 

in the liquid phase (L-cells) or in the solid phase (S-cells). During a simulation the electrical 
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potential, charge number concentration, and fluid velocity are determined at the centres of 

only the L-cells. S-cells adjacent to L-cells are considered as interface cells and the actual 

values of physical quantities at their centres are used as boundary values. 

 

Numerical solution of the Poisson-Nernst-Planck problem 

The finite-difference scheme for solution of the Nernst-Planck equation is based on the 

total flux density in an L-cell. For steady-state the net flux is zero. This situation can be 

represented by entry and exit components on each of the six cell surfaces (Fig. 4.3c) 

0=+++++ −+−+−+ ,z
m,l,k

,z
m,l,k

,y
m,l,k

,y
m,l,k

,x
m,l,k

,x
m,l,k jjjjjj ,     (4.12) 

where k, l, and m define the discrete coordinates of a cell. If an L-cell is not lying adjacent to 

the interface each of the flux density components is expressed in terms of the flow velocity, 

concentration, and electrical potential at the centre of a given and neighbouring points. For a 

particular species, for example, we have 

Figure 4.4. Flow-chart of the computational scheme employed for our PNP-LB (Poisson-Nernst-

Planck coupled with lattice-Boltzmann) simulations. 
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If a given L-cell is adjacent to the interface and the normal-zero-flux boundary conditions are 

applied, the corresponding term in Eq. 4.12 is eliminated. By assuming that interface and 

boundary values lye on the border between L- and S-cells the distance h/2 (instead of h) 

should be selected. This is consistent with the location of the no-slip wall in LB simulations 

based on the bounce-back boundary condition [63]. 

By using similar expressions for the other flux components, substituting into Eq. 4.13 

and solving the resulting equation for nk,l,m one can obtain an explicit expression for 

calculation of its updated value. It is determined by the concentration values from a previous 

iteration, as well as with the flow velocity and electrical potential values in a given and 

neighbouring cells. An SOR scheme was used to get more rapid convergence 

m,l,km,l,km,l,k nnn ()  )1( ω−+ω= ,      (4.14) 

where m,l,kn)  is the updated number concentration at the current iteration, m,l,kn(  is the number 

concentration from a previous iteration, and ω is the relaxation parameter. Then, updated 

number concentration values for each species in all cells are used for solution of the Poisson 

equation. Its finite-difference representation is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Φ−Φ
−

Φ−Φ
+

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Φ−Φ
−

Φ−Φ
+

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Φ−Φ
−

Φ−Φ
+

=−

−

−

+

+

−+

−

−

+

+

−+

−

−

+

+

−+

∑

21

1

21

1

2121

21

1

21

1

2121

21

1

21

1

2121r0

e

2

2

2
εε

/m

m,l,km,l,k

/m

m,l,km,l,k

/m/m

/l

m,l,km,l,k

/l

m,l,km,l,k

/l/l

/k

m,l,km,l,k

/k

m,l,km,l,k

/k/k

m,l,k

hhhh

hhhh

hhhh
zqn

,  (4.15) 

where, for example, hk+1/2 is the distance between the centers of cells (k+1,l,m) and (k,l,m), 

and a summation should be performed over all ionic species. As for the Nernst-Planck 

equation, this expression needs to be modified if the cell is adjacent to the interface by 
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replacing either the corresponding distance h by h/2 (Dirichlet boundary condition) or the 

corresponding potential difference by 2σ/(hε0εr) (Neumann boundary condition). By applying 

the traditional Gauss-Seidel iterative procedure Eq. 4.15 allows to obtain an explicit 

expression for determination of the updated value of the electrical potential which, in the case 

of the Dirichlet boundary condition, can be written as 
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Calculations of number concentration and electrical potential stop when the convergence rate 
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becomes less than the predefined value δPNP (PNP ≡ Poisson-Nernst-Planck), which is 

typically set to 10–6. 

 

The lattice-Boltzmann algorithm 

The electrolyte solution as a statistical system can be described in terms of a 

distribution function F(r,u,t) defined such that F(r,u,t)drdu provides the number of fluid 

molecules which, at time t, are located between r and (r + dr) and have velocities in the range 

from u to (u + du). Macroscopic quantities like fluid density ρf and velocity v can be 

determined from momentum integration of this distribution function 
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where Mm denotes molecular mass. The evolution of the distribution function can be 

described by the following equation 

( ) ( ) dtddtdddttdtdt urcrurFuur  ,,,
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+++ , (4.20) 

where F is the acting external force and Ωc denotes the collision operator. It is well known 

that macroscopic properties are not directly dependent on the details of microscopic 

behaviour, but are mainly defined by the interactions between molecules expressed, for 

example, by an appropriate collision operator. Therefore, a transition toward a simplified 

dynamics with discrete space, time, and molecular velocities becomes feasible. The discrete 

analogy of Eq. 4.20 is 

( ) ( ) ( ) αααααα +Ω+=++ FFFF ttttt ∆,∆,∆ rer ,    (4.21) 

where Fα is the distribution function for the α-th discrete velocity eα at position r and time t, 

and ∆t is the time step. In this work we are concerned with a modification of the LB approach, 

the so-called lattice-BGK (Bhatnagar-Gross-Krook) model [34, 52], described by the discrete 

Boltzmann equation with a single-time relaxation collision operator 

( ) ( ) ( )[ ]αααααα +−+=++ Frrrer ttt
τ

tttt ∆,,1),(∆,∆ eq FFFF ,  (4.22) 

where Fα
eq represents the equilibrium distribution function and τ is a dimensionless 

relaxation time. For the D3Q19 lattice-BGK model [32] Fα
eq can be expressed by 

( ) ,
2

3
2
931ρ 2

s

2
4
s

2
s

f
eq

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅−⋅+⋅+= αααα vvveve

ccc
wF    (4.23) 

where cs is the speed of sound and wα is a weighting factor depending on the length of the 

vector eα given by [52] 
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The incorporation of a body force term caused by the interaction of the EDL field with the 

externally applied electrical field into the discrete Boltzmann equation has been performed 

using the method described by Guo et al. [64] 
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After each iteration the divergence rate  
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is calculated and compared with a predefined value of δNS (NS ≡ Navier-Stokes). The 

simulation stops when the condition γNS < δNS (its typical value was 10–4) is satisfied. It 

should be noted that the overwhelming majority of real electrokinetic systems operates in the 

low-Mach number limit which is a necessary condition for application of the lattice-

Boltzmann method. Typical EOF velocities are of the order of a few millimetres per second 

which is significantly less than the speed of sound in liquid media. 

4.1.4. Results of simulations 

Although the presented model is capable of dealing with both arbitrary zeta-potential 

distribution and geometrical configurations of the solid-liquid interface, we start from the 

EOF simulation in relatively simple systems for which either an analytical solution to the 

problem exists or results of other numerical simulations are available for comparison. 

Quantitative analysis of the computed fields of a physical quantity Θ (e.g., the species number 

concentration or flow velocity components) is based on the global relative error γ defined with 

respect to some appropriate reference value 
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In particular, for the lattice-Boltzmann EOF velocity field in a homogeneous capillary, 

reference values may be obtained by numerical solution of the momentum balance equation 

using the Runge-Kutta method. To test the adequacy of the model for simulating electrical 

charge distribution in the diffusive part of the EDL (cf. Fig. 4.1c) we begin with an isolated, 

homogeneous solid-liquid interface for which the typical dimension of surface roughness is 

smaller than the EDL thickness, and simulate the ionic number concentration in the 

electrolyte in contact with the surface by solving the Poisson and Nernst-Planck problems. At 

equilibrium, without any concentration gradients and in the absence of an externally applied 

field, the electrical potential distribution can be obtained from the Poisson-Boltzmann 

equation 
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where the local concentration is determined by the Boltzmann distribution 
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The analytical solution of Eq. 4.28 (this equation presents the starting point of the Gouy-

Chapman description [65] of a diffusive electrical double layer) for a charged flat surface, 

symmetrical 1:1 electrolyte such as NaCl (z1 = –z2 = z) and an arbitrary magnitude, but 

uniform distribution of the zeta-potential is [66] 
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Figure 4.5.  Distribution of net electrical charge in the EDL at a flat solid-liquid interface (open circles are

results of the numerical solution, solid line: analytical solution) and dependence of the global

relative error (γcd) on grid resolution with respect to the double layer thickness (inset). 
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where x gives the distance from the surface. For values of ζ low enough (below about 25 mV) 

Equation (4.30) reduces to the so-called Debye-Hückel equation, . Results for 

the distribution of net electrical charge density based on the analytical solution (Eqs. 4.29 and 

4.30) and the numerical treatment are shown in Fig. 4.5. Because λ

D/ ζ  )(ψ λ−= xex

D appears as characteristic 

decay length for the potential, we analyzed the global relative error in dependence of the grid 

resolution with respect to λD (see inset). As electrolyte we considered an aqueous solution of 

NaCl at 298.15 K with a concentration (9.43 × 10–4 M) adjusted such that λD is 10 nm (Eq. 

4.2), while the surface is characterized by ζ = –100 mV. The main conclusion to be drawn 

from Fig. 4.5 is that the net charge density (cd) away from a charged surface can be computed 

with global relative errors (γcd) better than 2% for a grid resolution λD/∆x of 1 and higher (γcd 

= 0.59% for λD/∆x = 30) by using the Poisson-Nernst-Planck solver described above. Further, 
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a) b) 

Figure 4.6. The EOF velocity field in an open-straight, cylindrical capillary with homogeneous and smooth

surface: Solution of the momentum balance equation (top) vs. the PNP-LB approach (bottom) for 

a) rc/λD = 10 and b) rc/λD = 100. The same conditions as in Fig. 2 have been used here. 

it is evident that after a distance of about 5λD from the surface the solution is practically 

electroneutral. Recalling that this distance is about 50 nm under the present set of conditions, 

it is only a thin liquid layer close to the interface that becomes locally charged, in general, 

when considering electrolytes confined by pores of micrometer dimension. 

As the next step the EOF in a straight, homogeneous, cylindrical capillary was 

simulated. The spatial homogeneity of this system alleviates the use of an iterative procedure 

for obtaining a steady-state flow velocity field. Ionic number concentrations are not disturbed 

by the forced convection. Thus, the Poisson-Nernst-Planck solver and LB-code are run only 

once. Because there is no general analytical solution available for the EOF problem in a 
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Figure 4.7. Global relative error of a simulated velocity field (γvf) relative to the solution of the momentum

balance equation: Accuracy of the PNP-LB approach depending on spatial resolution with

respect to the capillary radius at various aspect ratios (rc/λD).  

cylindrical capillary, the simulated velocity field was compared with another one obtained by 

numerical solution of the one-dimensional momentum balance equation [61] 
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The solution of this equation provides the radial distribution of the axial velocity 

component of EOF in the cylindrical capillary. Equation 4.31 was solved with a very fine 

resolution (2 × 105 points per channel diameter). Further, the use of different capillary radii 

allowed to realize aspect ratios rc/λD from 10 to 100. Fig. 4.6 compares the velocity profiles 

obtained via both procedures. As was already emanating from Fig. 4.5, an applied electrical 

field will be interacting with the electrolyte solution only in the EDL where the liquid phase 

has acquired a net charge. Thus, the driving force for EOF is not constant over the capillary 

diameter: it dominates in vicinity of the capillary wall, but soon becomes zero in the central 

region of the capillary lumen. There, motion of bulk liquid is caused by a viscous drag force, 

leading to the plug-like velocity profile beyond the slipping plane (Fig. 4.1b). The dependence 

of the global relative error γvf of the axial component in a velocity field (vf) on spatial 

resolution (with respect to the capillary inner diameter rc) for different aspect ratios is 
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demonstrated in Fig. 4.7. The error related to spatial resolution manifests itself in an 

inaccuracy of both the calculated electrical charge distribution and velocity field. Grid 

refinement can achieve higher accuracy, e.g., the use of 100 grid points over one capillary 

diameter results in γvf of less than 6% for all aspect ratios. On the other hand, computation 

time grows with the third power of spatial resolution.  

Figure 4.8. Inhomogeneous charge distributions (discrete patterns) at the inner wall of a cylindrical

capillary. a) Surface charge pattern 1 (P1): Step changes of ζ in the axial direction, angular 

uniformity. b) P2: Step changes of ζ in the angular direction, axial uniformity. 

The complete simulation of EOF in a cylindrical capillary (using rc/h = 50) took about 

15 CPU minutes per cross-sectional layer for one computer node. In general, all EOF 

simulations were run on a Hewlett-Packard Superdome at the Otto-von-Guericke-Universität 

Magdeburg (Germany). 

Next, the EOF in cylindrical capillaries with destinated axial and angular distribution 

of the ζ-potential (Fig. 4.8) was modelled. This configuration can be considered as simplified 

approach for dealing with a heterogeneous surface charge distribution in porous media under 

more general conditions. In fact, the spatial scale of locally varying electrical potential is 

often significant with respect to the thickness of the EDL, and it can have a number of 

reasons. For example, it may already be introduced by the inherent manufacturing process of 

a material, specific aging, storage conditions, chemical reactions, or the (eventually 

irreversible) adsorption of molecular or colloidal species on the surface, with a concomitant 
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change of the local roughness and electrokinetic properties [61, 67-73]. Consequently, the 

favourable (i.e., plug-like) EOF velocity profile becomes disturbed by (induced) pressure 

gradients resulting from an axial variation of the surface charge at the inner wall of a 

microfluidic channel [71-74]. In turn, this necessarily leads to additional hydrodynamic 

dispersion. The problem is especially severe for the transport of sample mixtures containing 

large biomolecules such as proteins, peptides or DNA [75] which are charged and, thus, can 

interact strongly with the (in most cases) oppositely charged surfaces by hydrophobic and 

electrostatic mechanisms. As their adsorption progresses in time, it continues to cause 

unreproducible local, as well as average EOF velocities and significant loss of resolution in 

the separation of individual components due to an increased axial dispersion coefficient and a 

strong tailing in the residence-time distributions (characterized by non-Gaussian shape). 

In general, the local variations in electrical potential produce a nonuniform 

electrokinetic driving force that requires a local (positive or negative) pore pressure for 

compensating the associated momentum in an incompressible fluid [71-74]. Unfortunately, 

the actual spatial and temporal distribution of electrical potential in a real porous medium is 

usually unknown making it difficult to study on quantitative basis. On the other hand, this 

effect may be taylored, e.g., for enhanced microfluidic mixing, by employing surfaces with a 

patterned charge distribution [27, 76]. For example, Stroock et al. [76] studied the EOF driven 

by two patterned geometries in rectangular microchannels for the limit of thin double layers. 

They considered the variation of surface charge both parallel and perpendicular to the applied 

Figure 4.9. Local flow profiles in the capillary with surface charge pattern P1 (cf. Fig. 4.8a).

Velocity distributions in the center cross-section of each segment for segment A, ζ = 

−100 mV (left) and segment B, ζ = 0 mV (right). The Debye screening length (λD) is 10 

nm and rc/λD = 100. Conditions: E = 5×104 Vm−1, density and viscosity of liquid: 103

kg⋅m-3 and 0.89×10−4 kg⋅m-1s-1, respectively, ε  = 80, T = 298.15 K. r
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electrical field: While a recirculating flow develops in the former case, multidirectional flow 

along the field (and channel axis) results in the latter [76]. Because these types of pattern act 

as a basis from which more general three-dimensional flows may be constructed and the fluid 

mechanical consequences of (non)intended surface charge distributions in microfluidic 

environments be evaluated [77], we also treated similar zeta-potential distributions in 

cylindrical capillaries (Fig. 4.8). The first pattern (P1) consists of cylindrical segments with a 

(spatially constant) nonzero and zero zeta-potential, alternating in the axial direction and 

having the length l = 2rc. The second pattern (P2) contains half-cylinders with zeta-potentials 

of opposite sign, but identical magnitude. The EOF simulations were carried out with a 

computational resolution of rc/h = 100 (λD/h = 2). Characteristic local velocity distributions 

for steady, fully-developed flow resulting when an external electrical field is superimposed on 

the EDL field in a general electrolyte solution in contact with surface pattern P1 and P2 are 

shown in Figs. 4.9 and 4.10, respectively. 

The EOF in capillaries with heterogeneous distribution of surface charge (or value of 

ζ) has been the topic of several previous studies. Anderson and Idol [67] have developed an 

infinite-series analytical solution for EOF through a cylindrical capillary with the ζ-potential 

varying periodically (and solely) in the axial direction. By using a similar approach, Long et 

al. [74] obtained an explicit solution for specific surface charge defects. Herr et al. [71] 

considered the EOF in a cylindrical capillary with a step-change of the ζ-potential in the axial 

direction and obtained good agreement with their experimental data. Potoček et al. [68] and 

Figure 4.10. Simulated axial velocity distribution in a cross-section of the open cylindrical capillary

with surface charge pattern P2 (cf. Fig. 4.8b) for rc/λD = 100 (rc = 1 µm) and the same

conditions as in Fig. 4.9. 
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Ren and Li [61] have numerically studied the velocity distributions for EOF in circular 

microchannels for various non-uniform distributions of ζ. More recently, Gleeson [78] 

developed an analytical solution for the EOF problem in a cylindrical capillary with random 

ζ-potential distribution. It should be emphasized that all of the above-mentioned studies were 

dealing with an axisymmetrical heterogeneity only. Moreover, except for the work of Ren and 

Li [61], they assumed a negligibly small EDL thickness which allowed to replace the no-slip 

boundary condition for the fluid velocity at the solid-liquid interface by the Helmholtz-

Smoluchowski apparent-slip velocity, Eq. 4.1 and simplify the analytical solution. Ghosal 

[72] presented a theory for EOF in channels of arbitrary cross-sectional geometry (and 

distribution of the ζ-potential) in the lubrication-limit where all axial variations exist on 

length scales which are large with respect to a characteristic microchannel width, but the  

assumption of a thin EDL has been involved also in that theory. Thus, reference values for a 

quantitative analysis of accuracy with which LB flow fields were computed can be obtained 

only on the basis of this approximation. It should be pointed out that the "slip" boundary 

condition eliminates a fluid region close to the surface where velocity rises from zero to some 

bulk value at the slipping plane. Since the thickness of this region does not depend on channel 

geometry, the relative contribution of that simplification to the total error decreases with 

increasing channel diameter or characteristic transverse dimension. For a thin EDL the 

relation between local flow velocity and radial position in capillary segments A or B of P1 

(Fig. 4.8a) can be expressed by [71] 
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where ζav is the average value of ζ at the capillary inner wall (for P1 ζav = –50 mV) and rc is 

the capillary radius (the subscript "seg" refers to ζ = 0 mV or ζ = –100 mV, respectively). The 

velocity profiles calculated by using Eq. 4.32 and compared to those obtained from simulated 

LB flow fields are shown in Fig. 4.11. The low-velocity region close to the capillary wall in 

the computed flow field reduces the average velocity relative to that value defined by the 

integration of Eq. 4.32 along the radial direction. However, as mentioned above, the 

discrepancy decreases with increasing aspect ratio, e.g., the difference between simulated and 

calculated mean velocities for rc/λD = 100 is only 0.45%, while it is 9.7% for rc/λD = 20 and 

16.7% for rc/λD = 10. 
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Figure 4.11. Capillary with surface charge pattern P1. Comparison of simulated intrasegmental

velocity profiles with the analytical solution [71].  a) Center cross-section of segment

A (ζ = − 100mV) and the same for the segment B (ζ = 0 mV). 

In contrast to the discrete axial heterogeneity of P1, the second pattern (Fig. 4.8b) is 

characterized by an azimuthal inhomogeneity. The velocity field for P2 can be obtained in the 

lubrication limit [72] by numerical solution of the boundary-value problem in polar 

coordinates for an effective potential ξ(ρ,θ) (ρ and θ are radial and azimuthal coordinates) 
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The flow velocity then can be determined from Eq. 4.1 by replacing the local electrical 

potential ψ by the effective potential ξ, and a solution to Eq. 4.33 may be obtained via the 

following expansion [72] 
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where mζ
~  (m = 0, 1, …, ∞) is the complex Fourier transform 
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It should be pointed out that a quantitative evaluation of the differences between the 

two discrete velocity fields obtained i) by numerical solution of this problem, Eqs. 4.33-4.35, 

and ii) from computer simulation becomes difficult due to the different coordinate systems. 

While numerical solution requires a utilization of the polar (or, at least, cylindrical) system, 

PNP-LB computer simulations are realized in the cartesian coordinate system. As a result we 

have two sets of points corresponding to the polar mesh and rectangular grid. Therefore, we 

analyzed the two velocity fields by using some of their characteristic properties. It is obvious 

that due to the antisymmetry of the ζ-potential distribution in P2 (with respect to a center 

plane passing through the wall points where the sign of ζ changes) the velocity distribution 

should possess a similar antisymmetry and (net) volumetric flow through the capillary should 

vanish. Indeed, the simulated velocity field demonstrates such a "self-compensation" (Fig. 

4.10) by a deviation of the average velocity from zero of less than 10–6 % as compared to the 

average velocity in the capillary with uniform zeta-potential (ζ = –100 mV). The velocity 

profiles in the plane [θ = π/2, θ = 3π/2], which is perpendicular to the antisymmetry plane, 

obtained by solution of the problem in Eqs. 4.33-4.35 and by computer simulation are shown 

in Fig. 4.12. Since the electromotive forces are effective only in a small region close to the 

wall of the capillary, actual differences in velocity profiles should be explained by the 
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Figure 4.12. Comparison of velocity distributions in the plane [θ = π/2, θ = 3π/2] for the open capillary 

with surface charge pattern P2. 
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respective velocity boundary conditions. While the slip-condition assumes a discontinuous 

change of the flow velocity at points where ζ changes its sign (Fig. 4.13) our simulated 

velocity field (Fig. 4.10) here demonstrates a more realistic, smooth transition. As already 

shown for surface charge pattern P1, the global relative error in the flow field associated with 

the "no-slip violation" soon becomes significant as the aspect ratio (rc/λD) is reduced below 

50. In this domain, for rc/λD < 100, the slip-condition should be used with care concerning a 

numerical investigation of the EOF and resulting hydrodynamic dispersion. Consequently, 

this approximation does not appear useful in simulating flow through complex porous media 

with a broad range of aspect ratios (1 ≈ rc/λD » 1), and the more general approach described in 

this work could be followed. 

 

4.1.5. Conclusions and outlook 

A numerical method for three-dimensional simulation of EOF in microfluidic channels 

was presented. It is applicable to structures with arbitrary pore space morphology (including 

their geometry, as well as topology) and an arbitrary distribution of the electrokinetic 
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Figure 4.13. Velocity profile in a cross-section of the open cylindrical capillary (rc = 1 µm) with surface

charge pattern P2 according to the approach of Ghosal [72]. The same conditions as in Figs.

4.9 and 4.10 have been used here. 
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potential at the solid-liquid interface. This also covers the existence of random pore size 

distributions and, as a consequence, the possibility of finding any range of aspect ratios in a 

particular medium. Coupled hydrodynamic, electrostatic, and mass transport problems were 

solved. In this work, the hydrodynamic problem has been treated with the lattice-Boltzmann 

method. Straight capillaries were chosen as model systems due to the possibility of comparing 

our simulated data with the analytical solution and results of other numerical simulations for 

simple system configurations in the effort to present the basis for an efficient modelling of 

electrokinetic transport phenomena in more complex porous media. Good agreement was 

obtained for different benchmark cases. 

A low-Reynolds number EOF dynamics on micrometer dimension is not only 

encountered in the open-channel structures of microchip supports, but also in the pore space 

of microscopically disordered media like random sphere packings or monolithic devices [59]. 

For example, in capillary electrochromatography, as for most of the microchip applications, 

the EOF is employed for achieving a significantly less dispersive transport (compared to 

pressure-driven flow) of complex mixtures of (bio)molecular species which are separated on 

these high-surface area materials to become identified afterwards by post-column, preferably 

on-line detection (e.g., via mass spectrometry). Our numerical approach based on the lattice-

Boltzmann flow field under most general conditions can cope with any geometry and possible 

surface heterogeneity, and it will be particularly efficient in resolving details of the flow field 

which govern mass transport and dispersion in a transient, as well as long-time asymptotic 

regime. For complex porous media and flow patterns the presented approach can contribute to 

the derivation of scaling laws for EOF involving parameters such as the Reynolds and Peclet 

numbers, mass diffusivity, medium morphology or electrical double layer thickness. 

However, this also needs further investigation of double layer resolution effects and of the 

limits when employing a slip-velocity boundary condition, in particular with respect to the 

characteristic lengths in a porous medium (e.g., the sphere or intraparticle pore diameter in a 

bed of porous spherical particles), continuously changing channel dimensions and varying 

shape, or the spatio-temporal heterogeneity of a local surface charge distribution. Another 

subject of research, the effect of the EOF on an electrical surface charge density at a 

heterogeneous solid-liquid interface, is considered in the next section. 
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4.2. Numerical Simulation of Electroosmotic Flow in Heterogeneous  

       Slit Microchannels with Non-Equilibrium Electric Double Layer 

4.2.1. Introduction 

In the last years the study of electroosmotic flow (EOF) in microfluidic channels has 

received much attention in the scientific community since many applications in emerging 

microfluidic device technology and analytical (bio-)chemistry, e.g. microelectronic cooling 

systems, “lab-on-a-chip”, capillary electrophoresis and capillary electrochromatography 

(CEC), involve the manipulation of fluid transport on micro- and nanoscales. Electroosmosis 

offers a number of distinct advantages for fluid motion control in fine channels. First, the 

EOF becomes an increasingly effective means for liquid transport in channels with transversal 

dimensions on the order of a few micrometers and less, since to propel and control fluids 

inside such microchannels, a very high pressure gradient is required. Another benefit of the 

employment of EOF for fluid transport is reduced hydrodynamic dispersion, which can be 

limited almost to that by diffusion. This fact is of particular importance for use of EOF in 

separation techniques and critically influences the (high) efficiency of a process. 

The electroosmosis phenomenon is directly related to formation of the electrical 

double layer (EDL) near a solid-liquid interface. Most solid surfaces obtain an electrical 

surface charge when they are brought in contact with a polar solvent, for instance, with an 

electrolyte solution. The origins of this charge can be diverse, for example, dissociation of 

surface groups, structural crystal defects or adsorption of ions. The surface charge, in turn, 

influences the ion distribution in a liquid and is compensated by the accumulation of counter-

ions and depletion of co-ions in a thin liquid layer (in the EDL) next to the solid-liquid 

interface. At some distance away from the solid surface (this distance depends on the ionic 

strength of a solution), the liquid becomes neutral. At equilibrium, when neither an external 

electric field, nor a pressure gradient is present, ion distributions are governed only by thermal 

diffusion and electrostatic forces arising from the surface charge and obey the Boltzmann 

equation. The application of an external electric field exerts a body force on liquid in the EDL 

and results in fluid motion (electrokinetic flow). It should be mentioned that close to the 

interface counter-ions are undergoing very strong interactions with the interface by short-

range attractive forces and can be regarded as immobile. The electrical potential existing at 

the boundary between the mobile and immobile phases of a liquid (at the so-called shear 

plane) is known as electrokinetic or zeta (ζ) potential. Hence, the EOF phenomenon is a 
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complex function, in general, of the local net charge density, local electrical potential, as well 

as the local physical characteristics of the microchannel, its walls and saturating liquid.  

Most of the experimental, theoretical, and numerical studies to date have focused on 

EOF in an axially homogeneous channels. This assumes a uniform zeta potential distribution 

along the channel walls. Moreover, in straight homogeneous channels the equilibrium 

distribution of ions is not disturbed by steady-state fluid flow after an external electrical field 

or pressure gradient has been applied. This allows to describe the EOF problem in such a 

system by the coupled Poisson-Boltzmann and momentum balance equations [8]. Since the 

Poisson-Boltzmann equation has no general analytical solution, the abovementioned  problem 

has been extensively studied by numerical methods or under the linearization (Debye-Hückel) 

approximation for slit, rectangular, cylindrical, annular, and trapezoidal channels [13, 22, 27, 

74, 79-84]. However, the actual physico-chemical properties of the channel walls must be 

considered as inhomogeneous under more general conditions. Besides spatial inhomogeneities 

prepared intentionally during the fabrication of microfluidic devices, e.g. in electroosmotic 

stirrers, heterogeneous properties of microchannel walls can also arise accidentally due to, for 

instance, their chemical modification during operation or adsorption of transported species. 

Whether a surface inhomogeneity is intended or unavoidable, it affects the EOF and 

introduces additional heterogeneities in fluid flow. The effect of a non-uniform zeta-potential 

distribution on properties of EOF in planar, rectangular, and cylindrical microchannels has 

been investigated by a number of researchers [27, 72, 74, 76, 78, 167]. However, all of these 

studies have been limited by assumptions of a thin double layer (TDL) and/or an equilibrium 

distribution for the net charge density. The TDL approximation assumes the EDL to be 

infinitely thin (y/λD >> 1, with y being the characteristic transversal dimension of a channel) 

and the effect of an external electric field on EOF velocity reduces to that represented by the 

Helmholtz-Smoluchowski equation [8] 

η
ζεε ext0r

eo
E

v −=         (4.36) 

as the boundary condition at a solid-liquid interface. Thus, this approximation replaces the 

original problem by a simplified, hydrodynamic one with “slip boundary conditions”. The 

detailed analysis of conditions required for the applicability of this “slip velocity model” has 

been performed by Santiago [20] and MacInnes [85]. It has been shown that a number of 

conditions for channel dimensions in relation to the EDL thickness must be satisfied. Though 

involving the solution of the Poisson-Boltzmann equation allows to exclude the restriction 
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y/λD >> 1, the effect of fluid flow and ion electromigration due to the external electric field on 

the distributions of the electrical net charge and potential within the EDL has not yet been 

taken into account. In the case of a heterogeneous channel, advection and the applied electric 

field may affect the net charge density which does not then conform to the equilibrium 

distribution. Fu et al. [86] shown that results provided by the Poisson-Boltzmann model can 

differ significantly from that obtained by adopting the Nernst-Planck equation to describe the 

charge transport along the microchannel with step-wise change in ζ-potential. Their 

developed model was based on the numerical solution of the coupled Poisson, Nernst-Planck, 

and modified Navier-Stokes equations. Although the local electric potential and ion 

distributions within the EDL have been determined as non-equilibrium values, the 

aforementioned set of coupled equations has been resolved subject to boundary conditions 

which were assumed to be not affected by fluid motion and ion transport. Indeed, variations in 

the spatial gradient of surface charge density can also arise due to changes in the local 

chemical environment at solid surfaces caused by fluid flow or electromigration of ions. For 

example, adsorption of charged species from the electrolyte at the capillary walls during the 

sample elution in CEC can significantly change the local surface charge and electrokinetic 

properties of the whole system [73]. On the other hand, it is known that surface charge density 

and consequently the ζ-potential of an inorganic oxides-aqueous solution interface, for 

instance silica—KCl electrolyte, depend particularly on the pH of the solution [87]. Hence, 

any local variation of pH in vicinity to the solid-liquid interface results in a local deviation of 

surface charge density (and ζ-potential) due to variations in the dissociation rate of surface 

functional (e.g., silanol) groups which are involved in pH-dependent dissociation equilibria. 

Thus, a more satisfactory description of the EOF problem in microchannels with non-uniform 

surface charge density (or ζ-potential) must involve an interdependence of the EOF and 

electrical boundary conditions. In other words, the whole EDL must be considered as being a 

non-equilibrium domain. 

The current paper presents an analysis of the EOF in a slit microchannel with 

heterogeneous wall properties which are manifested in a spatially variable rate of dissociation 

of surface silanol groups at the “silica—aqueous solution” interface. All physical quantities 

such as flow velocity, local electrical potential and ion concentrations, as well as the electrical 

boundary conditions (the surface charge density or ζ-potential) are assumed to be 

interdependent. The case of the fixed surface charge density (ζ-potential) distribution, which 

implies possible spatial variations, but does not allow variations due to local changes of the 

chemical environment of the solid-liquid interface, can be considered as the limiting case. 
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Also results of the EOF simulations in a slit microchannel with the fixed surface charge 

density distribution are compared to those which are obtained by the model of the non-

equilibrium EDL with a consequently variable surface charge.  

4.2.2. Mathematical description 

General formulation 

Consider steady-state low-Reynolds number flow of a Newtonian incompressible N-

component electrolyte solution. When an external electric field Eext is applied, the EDL 

interacts with it and an electrostatic body force f is imposed which results in electroosmotic 

flow. If the viscosity of the solution η is assumed to be constant, the EOF velocity field v is 

governed by the following Navier-Stokes equation  

( ) Φ∇ρ+∇ηρ+−∇=∇⋅ρ q
2

ff vvv p ,     (4.37) 

where ρf is the fluid density, p is the pressure, and ρq is the volume net electric charge density. 

The distribution of the local electrical potential Φ is described by the Poisson equation 
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where εr is the dielectric constant of the solution, ε0 is the permittivity of vacuum, qe stands 

for the elementary charge, zi and ni are the valency and the number concentration of ionic 

species i, respectively.  In turn, the flux of each ionic species ji in dilute solutions consists of 

three linearly superimposed contributions: convection, electromigration, and diffusion. They 

can be written in form of the Nernst-Planck equation  
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where Di is the mass diffusion coefficient, kB the Boltzmann constant and T the absolute 

temperature. Under steady-state conditions the species conservation leads to  

0=⋅∇ ij .         (4.40) 



 - 73 -

Coupled partial (in general case, three-dimensional) differential equations 4.37, 4.38 and 4.39 

expressing the functional relations between flow velocity, electrical potential, and species 

number concentrations in the fluid should be complemented by boundary conditions which 

determine the value of these physical quantities at the solid-liquid interface Ω. Since the 

mathematical solution of such a problem is generally very difficult, it will invoke a number of 

assumptions mentioned in the Introduction in order to simplify the problem and reduce it to a 

form that can be more readily solved. For tracing back how the simplifications modify the 

original problem, we formulate the latter in a symbolic form  

( )(n)(F i rrv ,1 Φ= )

( ))(nF i r2=Φ

( ))()(Fni rrv

       ( Navier-Stokes equation),   (4.41) 

                (Poisson equation),    (4.42) 

Φ= ,3        (Nernst-Planck equations),   (4.43) 
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Φ= )(n)(B i rrv ,1 ,       (4.44) 

( )
ΩΩ

=Φ )(n)(B i rrv ,2 ,       (4.45) 

( )
ΩΩ

Φ= )()(Bni rrv ,3 ,       (4.46) 

where F1, F2, F3 and B1, B2, B3 are symbolic designations of the functional relations between 

the physical quantities in the fluid and at the solid-liquid interface, respectively. It should be 

realized that fluid flow over most solid-liquid interfaces can be characterized by the no-slip 

condition, although the correctness of its applicability on micro- and nanoscales remains to be 

evaluated more exactly [88, 89]. The no-slip boundary condition for the velocity field allows 

to replace Eq. 4.44 by  

.0=
Ω

v          (4.47) 

Then, assuming the impermeability of the solid surface the distributions of the species number 

concentrations must satisfy the normal-zero-flux condition 
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0=⋅
Ωiν jr ,         (4.48) 

where  is the outer normal to the solid-liquid interface. Below in the present paper, the 

boundary conditions for the velocity field and species concentrations are always assumed to 

be expressed by Eqs. 4.47 and 4.48 independently of other assumptions and approximations 

related to the electrical boundary conditions. 

ν
r

 

Thin double layer (TDL) approximation  

The imposition of this approximation replaces the original electrohydrodynamic 

problem by a simplified hydrodynamical one. Since only bulk (neutral) fluid is considered, 

the conventional Navier-Stokes equation without the term related to electrostatic forces is 

solved, i.e. the velocity field does not depend explicitly on the electrical potential distribution. 

The Navier-Stokes equation must be subject to the slip velocity boundary condition that is 

determined by the Helmholtz-Smoluchowski equation (Eq. 4.36)  

),(1 rv F=          (4.49) 

( )
ΓΓ

= )ζ(1 rv B .        (4.50) 

Non-uniform ζ-potential reveals itself through the non-uniform slip boundary conditions. If 

all deviations from the equilibrium state in the EDL can be neglected (the small perturbation 

assumption), this approach can be effectively applied to study the EOF in heterogeneous 

channels, especially when channel properties vary very slowly in longitudinal direction [72] 

or they can be considered as locally uniform [71, 74]. 

 

 Equilibrium EDL 

If transversal dimensions of the channel are not much bigger than the EDL thickness, 

the TDL approximation yet cannot be applied, since the effect of the EDL field and its 

variations on the flow field can be quite significant. Assuming that ionic concentrations in the 

EDL are affected only by thermal diffusion and electrostatic forces due to the surface charge, 

i.e., the equilibrium EDL, the species density distribution should obey the Boltzmann 

equation. Hence, Eqs. 4.41-4.43 can be rewritten in the following manner: 
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( ) ( )( rrv inF ,1 Φ= )

( )( )rinF2=Φ

( )( )rΦ= 3Fni

,        (4.51) 

,        (4.52) 

,        (4.53) 

where Eq. 4.53 is the Boltzmann equation. By putting Eq. 4.52 into Eq. 4.53 this leads to the 

so-called Poisson-Boltzmann equation and, then, the decoupled Eq. 4.51 is solved as a 

separate problem with the given electrical potential and species concentration distributions. 

The corresponding electrical boundary conditions are 

( )
ΩΩ

=Φ )ζ(rr       or       (4.54) 

( )
Ω

Ω
−=Φ∇

0rεε
r )σ(r .       (4.55) 

This approach has been applied to study the EOF in channels with step-wise changes in the ζ-

potential [27, 61]. It should be pointed out that such approximation neglects transition regions 

for EOF near the locations of the ζ-potential changes. 

 

Non-equilibrium EDL 

Since convection and electromigration due to an external electric field can affect the 

species concentrations in the EDL of heterogeneous channels, the ionic distributions rather 

must be described by the Nernst-Planck equation than the Boltzmann equation. The symbolic 

problem formulation can be presented by  

( ) ( )( rrv inF ,1 Φ= )

( )( )rinF2=Φ

( ) ( )( )rrv

       (Navier-Stokes equation),    (4.56) 

                (Poisson equation),    (4.57) 

Φ= ,3Fni        (Nernst-Planck equations),   (4.58) 
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ΩΩ
=Φ )ζ()( rr       or     

Ω
Ω

−=Φ
0rεε

)(r )σ(r .    (4.59, 4.60) 

Fu et al. [86] compared results of EOF simulations in a microchannel with step-wise change 

in the ζ-potential (predicted by this model) with those obtained under the approximation of an 

equilibrium EDL and found that significant differences can exist, especially near the locations 

subjected to ζ-potential changes. 

 

Non-equilibrium EDL with variable surface charge 

All aforementioned approaches assume that the surface charge and, consequently, the 

ζ-potential do not depend on the local chemical environment and that they are only spatially 

dependent quantities. In fact, properties of solid surfaces can change due to fluid and ion 

transport in the adjacent liquid. The explicit form of the relationship between the surface 

charge and properties of the local chemical environment is defined by the nature of the solid-

liquid interface. To become more concrete we will consider the EDL formed due to 

dissociation of surface silanol groups:  

SiOH + H2O ⇔ SiO– + H3O+.      (4.61)  

This mechanism of the surface charge development is peculiar to “silica—water” (or “silica—

aqueous solution”) interfaces. Under extremely acidic conditions further protonation of silanol 

groups can take place [90], however, we disregard this case as anomalous.  

If the silica surface is in contact with an aqueous solution, surface silanol groups are 

dissociated, giving rise to surface charge density 

–SiOeσ Γ−= q  ,        (4.62) 

where  is the surface density of dissociated silanol groups, which, in turn, follows the 

relevant mass action law for the deprotonation reaction 

–SiOΓ

pK

SiOH

SiO0 10
][H – −

+

=
Γ

Γ
,       (4.63) 
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where [H+]0 is the surface activity of protons and pK is the logarithmic dissociation constant. 

Without loss of generality, we assume the liquid to be an aqueous solution with simple 

symmetric 1:1 indifferent electrolyte ions such as NaCl. In this case, the surface charge 

density is completely determined by the surface density of dissociated silanol groups and can 

be expressed by combining of Eqs. 4.62 and 4.63  

pK
0

pK
tote

10][H
10

−+

−

+
⋅Γ

−=σ
q

,       (4.64) 

where Γtot = ΓSiOH + ΓSiO
–  is the total surface density of chargeable silanol groups. Equation 

4.64 can be considered as the explicit form of Eq. 4.45, which relates the electrical boundary 

condition to the species concentrations.  

 

4.2.3. EOF in a slit heterogeneous microchannel 

We consider the problem of EOF in a slit heterogeneous microchannel (Fig. 4.13a) 

using the mathematical formulation presented in the previous section. The channel consists of 

two identical, infinitely large, parallel and impermeable plates, and these gap between the 

plates is filled with an electrolyte solution. Then, we assume that the heterogeneity of the 

inner surface is manifested in the total surface density of chargeable silanol groups Γtot, which 

characterizes the surface charge density formed due to the dissociation of surface silanol 

groups (see Eq. 4.64). If the non-uniformity exists only along one direction, for instance along 

the x-axis, the problem can be reduced to the two-dimensional case (x, y). In addition, we 

assume spatial periodicity along the x-direction which allows to reduce the problem 

description to that of the unit cell (Fig. 4.13b).  

Below in the present paper we assume also that a strong acid (e.g., HCl) or a strong 

base (e.g., NaOH) is added to the aqueous solution of a 1:1 electrolyte (e.g., NaCl), in order to 

adjust its pH. Then, the ionic structure of a liquid phase can be assumed to consist of the 

following four components (species): 

 • Cations: Na+, H3O+

 • Anions: OH–, Cl–

The governing equations have to be solved subject to the periodic conditions at the entry and 

outlet boundaries of the unit cell 
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a) 

b) 

Figure 4.13. Schematics of a slit microchannel. (a) The unit cell, (b) periodic sequence of unit cells

forming an infinite structure.  

[| |] = C, [|nΦ i|] = 0, [|v|] = 0,      (4.65) 

as well as to the lateral boundary conditions at the solid-liquid interface at the walls 

,
εε

)σ(

0 Ω
Ω

−=Φ∇
r

)( rr   ,0i =⋅ν
Ω

jr
 ,0=

Ω
v     (4.66) 

where C is a constant related to the conditions of an experiment (including pH, the electrolyte 

concentration, Eext, surface adsorption, or temperature) and [|…|] denotes the difference 

between values of a function at opposite points lying on the corresponding unit boundaries. In 

addition, since the present model does not include buffer reservoirs, the species density 

distribution must satisfy the mass conservation principle within the unit cell 

i
V

i NdVn =∫ ,         (4.67) 

where V is the volume of the unit cell and Ni is the total number of ions of the ith species. 



 - 79 -

The total numbers of Na+ and Cl– ions (NNa and NCl) are constants determined only by 

the amount of the dissolved solute (  and )  and the added acid/base (  and 

), or in terms of molarities: 

salt
NaN salt

ClN base
NaN

acid
ClN

base
Na

salt
NaNa ccc += ,        (4.68) 

acid
Cl

salt
ClCl ccc +=

basewater ccc +=

wOHOH Kcc =

,        (4.69) 

while the total concentrations of hydrogen (hydronium) and hydroxyl ions,  and , 

depend on the amount of added acid/base and are regulated also by the autodissociation of 

water,  

OH3
c OHc

-
32 OHOHOH2 +⇔ +

acid
OH

water
OHOH 333

ccc += ,        (4.70) 

OHOHOH ,        (4.71) 

3
,        (4.72) 

 where Kw, the dissociation constant of water, has the value of 1.0 × 10–14 at 25°C. Addition of 

acid or base compounds causes an increase, respectively, in the hydronium or hydroxyl ion 

concentrations, but does not change their product. Since ,  and 

recalling the relation between pH and , Eqs. 4.48-4.72 allow to determine the ionic 

composition of the solution that can be used for the species density normalization in 

accordance with Eq. 4.67. 

base
OH

base
Na cc = acid

OH
acid
Cl 3

cc =

OH3
c

 

4.2.4. Implementation and results of the simulations  

 The presented approach to the EOF flow simulation in a heterogeneous slit 

microchannel (Fig. 4.13) with variable surface charge density was implemented as parallel 

computer code and employed to analyse the simulated EOF velocity fields. The details of the 

numerical implementation were described in Section 4.1, therefore only a brief account is 

given below. As compared to the numerical scheme presented in Section 4.1, only one 
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modification was made. After each iterative solution of the Nernst-Planck equation, the local 

concentrations of hydronium and hydroxyl ions were normalized in accordance with the water 

dissociation equilibrium (Eq. 4.72). Then, the updated distribution of the hydronium ion 

concentration was used to calculate the current local surface charge density by Eq. 4.64. 

EOF was modelled by the iterative numerical solution of the coupled Poisson, Nernst-

Planck, and Navier-Stokes equations using a uniform 3-D grid. While the traditional finite-

difference schemes were used to solve the first two equations, the Navier-Stokes problem was 

resolved by the lattice Boltzmann algorithm. The boundary conditions at a solid-liquid 

interface for the flow velocity and ionic flux were the no-slip and normal-zero-flux 

conditions, respectively. The electrical boundary condition was formulated in terms of the 

local surface charge density which depends on the local hydronium ion concentration, as well 

as on the local total surface density of chargeable silanol groups (Eq. 4.64). The iterative 

solution stopped as the divergence rate for the velocity field  

( )

∑

∑ −
=γ

k,l,m
k,l,m

k,l,m
k,l,mk,l,m

2

2

v

vv

(

()

 

became less than the predefined value (in this paper we used 10–4 as that value). k,l,mv)  and 

k,l,mv(  correspond to velocity at the (k,l,m)-node for the current and previous iterations, 

respectively. The summation in the above equation was performed over all computational grid 

nodes. The computational grid resolution was 400 × 200 nodes along the x- and y-directions, 

respectively.  

First, we verified the ability of the model to simulate adequately EOF in systems with 

various values of pH and ionic concentration of the solution. For that purpose EOF through a 

homogeneous slit microchannel with three different 1:1 electrolyte concentrations, 0.1 mM, 

1.0 mM, and 10 mM was modelled. The microchannel wall material was assumed to be glass 

with a total surface density of chargeable silanol groups of  Γtot = 4.6 × 1018 m–2 [91] and an 

intrinsic equilibrium constant for silanol dissociation of pK = 6.37 [92]. For each 

concentration, the pH was varied in the range from 5.0 to 7.0 by adding strong (monoprotic) 

acid or strong base. The transversal dimension of the microchannel (Y) was adjusted to keep 

constant the ratio α with respect to the electrical double layer thickness (λD), α = Y/λD  = 100. 

This precluded an overlap of the electrical double layers from opposite walls and allowed to 

involve the thin double layer approximation in order to calculate the ζ-potential by the 
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Helmholtz-Smoluchowski equation (Eq. 4.36) for each value of the electrolyte concentration 

and pH. Then, these calculated values were compared with selected values obtained for silica-

solution interfaces by streaming potential measurements [87], as well as with results of a direct

numerical simulation of the equilibrium ζ-potential of silica capillaries [93]. In Figure 4.14 

Figure 4.14. ζ-potential of the silica surface as a function of pH for different concentrations of a 

(1:1) electrolyte. Symbols are experimental data from Scales et al. [87] (solid

circles) and results of simulations from Berli et al. [93] (solid squares). Dashed

lines correspond to the results obtained with the presented numerical approach. 
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the results of both involved studies are compared with data obtained by our presented 

approach. Although the simulated results suggest a certain overestimation for 0.1 mM at 

higher pH, the overall agreement with  the referenced data is good and one can conclude that 

the model describes with sufficient accuracy the electrokinetic behaviour of the simulated 

systems when the species concentrations, pH and, as a consequence, surface charge density 

have to be considered as locally variable. 

In the next step we modelled electroosmotic flow in a microchannel with 

inhomogeneous wall properties concerning the aforementioned parameters. The simulation 

domain was reduced to the unit cell due to the assumed homogeneity in transversal directions 

and axial periodicity. The axial wall inhomogeneity was manifested in an alternation of stripe-

like zones with different values of Γtot. As it was supposed above, these zones are assumed to 

be oriented perpendicularly to the applied electric field, whence the problem can be reduced 

to a two-dimensional one (Fig. 4.13b). It should be realized that such a reduction pursued 

exclusively the possibility to present more clearly the results of our simulations, since the 

presented approach was implemented in three dimensions. Further, the stripe-like pattern was 

assumed to result from the alteration of only two types of zones, with Γtot = 4.6 × 1018 m−2 and 

Γtot = 0, i.e., the latter corresponds to regions without surface electrical charges. Both types of 

zones had the same width l. As before, the liquid phase was represented by a 1:1 electrolyte, 

and acid or base was allowed to be added as pH-regulating compounds. The microchannel 

geometrical dimensions, L and l, were adjusted for each simulation to maintain a constant 

ratio with respect to the EDL thickness, L = l = 100λD, which was determined by 

( )regsalt2
e

B0r
D

∞∞ +

εε
=λ

nnq
Tk

, 

where  and  are bulk number concentrations of a dissolved salt and a pH-regulating 

compound. For each value of the electrolyte concentration and applied electric field a 

numerical simulation of the EOF was performed three times reproducing A) the case of the 

equilibrium EDL, B) the non-equilibrium EDL and case of non-variable surface charge 

density, and C) the case of the non-equilibrium EDL with variable surface charge density. 

Results of these simulations contained the complete distributions of the EOF velocity, 

electrical potential, number concentration of each species, as well as surface charge density at 

the channel walls. 

salt
∞n reg

∞n
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Figure 4.15. Distributions of the variable surface charge density along the channel wall for

different values of the applied electric field (colour lines) compared to the case of 

non-variable charge density (black line). The electrolyte concentration is 10 mM

(top), 1.0 mM (middle), and 0.1 mM (bottom). The applied electric field is

directed from left to right, pH = 5.0. 
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We start from the analysis of the surface charge distributions, since this quantity is 

immediately related to the electrokinetic characteristics of any microfluidic system. In 

Figure 4.15 the surface charge density distributions along the axial direction for different 

values of electrolyte concentration and applied electric field are shown. The non-variable 

charge density cases A and B possess identical piece-wise constant distributions with step 

changes at positions 100 and 300 pixels. The magnitude of σ in the middle regions (between 

pixels 100 and 300) was dependent on only the electrolyte concentration, increasing with the 

latter in agreement with predictions of the Gouy-Chapman model. Ion transport due to 

convection and diffusion does not affect the surface charge density. The new condition that 
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Figure 4.16. The hydronium ion concentration (normalized by the Avogadro number, NA =

6.02214 × 1022 mol−1) in the near-wall region for the case of variable surface charge

density. The electric field is directed from left to right, E = 10 kV/m (top) and

1000 kV/m (bottom), c = 0.1 mM, pH = 5.0. 
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the surface charge density depends on the local ionic concentration which is affected by 

convective and diffusive transport changes the picture substantially. Near the locations of the 

changes in Γtot the absolute value of σ sharply increases. This can be explained by the 

decreased concentration of hydronium ions in the vicinity of the boundary between two 

different zones of the wall. Hydronium ions diffuse from the EDL region adjacent to the zone 

border toward a neighbouring near-wall region with zero surface charge density. A decrease 

in the local hydronium ion concentration induces dissociation of surface silanol groups and 

results in an increasing surface charge density in the boundary regions. The imposition of the 

external electric field destroyed the symmetry of the above picture, since the induced EOF 

and associated convective transport deplete additionally the hydronium ion concentration in 

the upstream (left) EDL boundary region and particularly accumulate hydronium ions in the 

downstream (right) boundary region. This distribution is proportional to the velocity of the 

EOF and applied electric field (Fig. 4.16). The contribution of the hydronium ion in the total 

ion redistribution is inversely proportional to the electrolyte concentrations. In the limit when 

the liquid phase consists of pure water and the ionic structure is represented only by 

hydronium and hydroxyl ions, the above distribution effect will be most pronounced. 

Therefore, the strongest differences between the left and right boundary regions in Figure 4.15 

are realized with the lowest electrolyte concentration (bottom figure). 

The distinctions in the surface charge distributions corresponding to cases A, B, and C 

result properly in different EOF velocities. Table 4.1 contains a summary of the comparison 

of EOF velocity fields computed for various electrolyte concentrations and external applied 

electric fields between cases A and C, as well as B and C. The analysed quantities were the 

root-mean-square axial, transversal and absolute velocities, <|vx|>,  <|vy|> and <|v|> = <(vx
2 + 

vy
2)1/2>, respectively, as well as their variances, σ2

vx, σ2
vy, and σ2

v. The latter three quantities 

characterise the nonuniformity of the velocity field and can be related to hydrodynamic 

dispersion. All tabulated quantities were normalized by the value of the corresponding 

quantity for case C, e.g., the table cell marked off by the grey colour contains the following 

value 

C
x

A
x vv1− ,  

where A
xv  and C

xv  denote the root-mean-square axial velocities for cases A and C, 

respectively.
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Table 4.1.  Relative differences in EOF velocity fields between cases A and C, and B and C. 

c = 10 mM 

Eext = 1000 kV/m Eext = 100 kV/m Eext = 10 kV/m 
  

Equilibrium 
EDL  

(case A) 

Non-variable 
charge density

 ( case B) 

Equilibrium 
EDL  

(case A) 

Non-variable 
charge density 

(case B) 

Equilibrium 
EDL  

(case A) 

Non-variable 
charge density 

(case B) 

<|vx|> 0.033 0.011 0.009 0.012 0.047 0.016 
<|vy|> 0.024 0.020 0.008 0.048 0.196 0.033 
<|v|> 0.033 0.011 0.009 0.012 0.040 0.016 
σ2

vx 0.025 0.019 0.009 0.026 0.116 0.005 
σ2

vy 0.043 0.020 0.015 0.007 0.099 0.050 
σ2

v 0.025 0.019 0.009 0.026 0.113 0.005 

 
c = 1 mM 

Eext = 1000 kV/m Eext = 100 kV/m Eext = 10 kV/m 
  

Equilibrium 
EDL 

(case A) 

Non-variable 
charge density 

(case B) 

Equilibrium 
EDL 

 (case A) 

Non-variable 
charge density 

(case B) 

Equilibrium 
EDL  

(case A) 

Non-variable 
charge density 

(case B) 
<|vx|> 0.120 0.023 0.002 0.003 0.009 0.008 
<|vy|> 0.069 0.016 0.013 0.003 0.011 0.020 
<|v|> 0.116 0.023 0.003 0.003 0.009 0.008 
σ2

vx 0.063 0.005 0.017 0.004 0.007 0.010 
σ2

vy 0.143 0.004 0.032 0.006 0.035 0.020 
σ2

v 0.066 0.008 0.016 0.004 0.007 0.010 

 
c = 0.1 mM 

Eext = 1000 kV/m Eext = 100 kV/m Eext = 10 kV/m 
  Equilibrium 

EDL  
(case A) 

Non-variable 
charge density 

(case B) 

Equilibrium 
EDL 

 (case A) 

Non-variable 
charge density 

(case B) 

Equilibrium 
EDL  

(case A) 

Non-variable 
charge density 

(case B) 
<|vx|> 0.482 0.035 0.070 0.001 0.063 0.008 
<|vy|> 0.454 0.012 0.076 0.002 0.050 0.021 
<|v|> 0.481 0.035 0.070 0.001 0.063 0.008 
σ2

vx 0.222 0.006 0.080 0.002 0.063 0.026 
σ2

vy 0.404 0.057 0.123 0.000 0.106 0.017 
σ2

v 0.225 0.009 0.079 0.002 0.063 0.025 
 

As it was expected, the largest relative differences between cases A and C for all analysed 

quantities occurred with the lowest electrolyte concentration, 0.1 mM, and the strongest electric 

field. This fact agrees with the conclusions made after analysis of the differences in surface charge 

distributions. A similar picture was found for relative differences between the quantities simulated 

for cases B and C, except for a smaller magnitude of these differences. While the largest relative 
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distinction between cases A and C has reached almost 50%, the corresponding maximum during 

comparison between cases B and C did not exceed 6%.  

 Besides the integral estimation of relative differences between EOF fields simulated 

according to different approaches, an analysis of the spatial distribution of these differences 

was carried out. For each pair of the velocity fields (A-C and B-C) the following relative 

difference field was computed 

C
1

Θ
Θ

−=δ α ,  α = A or B, 

where Θ represents axial, transversal or absolute velocity. In Figures 4.17-4.19 the colour maps 

of δ-fields computed concerning vx for different values of  c and Eext are shown. In general, 

these maps contain information concerning the divergence between solution for the EOF 

problem obtained by the different approaches. It is evident that the location of the largest 

discrepancies between results obtained by different approaches is mainly associated with the 

near-wall regions in the vicinity to the location of the change in the surface charge density. 

However, when c = 0.1 mM and Eext = 1000 kV/m the solutions obtained by different 

approaches demonstrate significant distinctions even for the bulk region. Overall discrepancy 

decreases with the increase of the electrolyte concentration that can be again explained by 

reduction of the hydronium ion contribution in the general picture of ion redistribution caused 

by non-equilibrium convective and diffusive ionic transport. Surprisingly, when the applied 

electric field is relatively weak (Eext = 10 kV/m) the equilibrium EDL approach (case A) gives a 

smaller divergence of the axial velocity with the variable surface charge density approach (case 

C) compared to the pair B-C. For the stronger field, results obtained by the non-variable and 

variable surface charge density (cases B and C) become more similar. 

 The results of the simulations demonstrate that the EOF in heterogeneous 

microchannels can be affected by the changes in the surface charge density caused by local 

variations in the physicochemical properties of a liquid electrolyte, for instance, when surface 

charge is formed by dissociation of surface silanol groups and depends on the local 

hydronium ion concentration. This effect becomes more significant at lower electrolyte 

concentrations, when the hydronium ions have a more important contribution in the total ionic 

structure of the solution. Since the problem of the analytical estimation of errors associated 

with the ignorance of surface charge density modifications seems to remain unresolved also in 

the near future, the numerical simulations of the EOF taking into account the possibility of 
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having variable boundary conditions is the only way to reach a more satisfactory information 

concerning the actual velocity distributions in view of the design of electrokinetic 

microfluidic systems. 

 In summary, the results of simulations (Fig. 4.17-4.19) indicate that solution of the 

EOF problem in heterogeneous systems has to be performed considering the possibility of  

variations in the surface charge density at the solid surface. For instance, the dissociation rate 

of surface silanol groups at the silica-water (aqueous solution) interface and, as a 

consequence, the surface charge density is affected by the local value of the pH which, in 

turn, depends on the EOF. Mathematically this is expressed as an interdependence of the EOF 

and electrical boundary conditions. The developed numerical method allows to quantify the 

discrepancy between the EOF velocity fields obtained by the different theoretical approaches 

in order to optimise the computational expenses for the required numerical accuracy. 

  The two last sections of this thesis will concern the modelling of electroosmotic and 

hydraulic flows through regular and random packings of spherical particles which can be 

considered as a geometrical model of fixed beds, e.g., encountered in chromatographic 

capillary columns. 
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Figure 4.17. Сolor map of the δ-field computed for the axial component of the EOF velocity,

c = 10 mM and pH = 5.0. The electric field is directed from left to right. 
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Figure 4.18. Color map of the δ-field computed for the axial component of the EOF velocity,

c = 1.0 mM and pH = 5.0. Electric field is directed from left to right. 
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Figure 4.19. Color map of the δ-field computed for the axial component of the EOF velocity,

c = 0.1 mM and pH = 5.0. Electric field is directed from left to right. 
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4.3. Numerical simulation of electrokinetic microfluidics in colloidal systems*

A numerical scheme for simulating electrokinetic microfluidicss in systems with an 

arbitrary geometry is developed. This scheme is based on numerical solution of the coupled 

Poisson, Nernst-Planck, and Navier-Stokes equations. While traditional finite difference 

methods are used to resolve the first two problems, the lattice-Boltzmann method is applied to 

the latter. The developed numerical scheme has been applied to computer simulations of 

electroosmotic flow through a simple-cubic array of micro-sized hard spheres. Volumetric 

electroosmotic flow has been studied as a function of the applied electrical field, ζ-potential 

of the sphere surface, and ionic strength. The investigation of colloidal stability and the 

electrokinetics in microchip devices containing fixed bed segments (particulate or monolithic 

structures) represent two potential applications of this work. 

4.3.1. Introduction 

 Electrokinetic microfluidic phenomena are currently of fundamental and practical 

interest in various fields of science and engineering. This interest is stimulated, on one hand, 

by rapid recent developments in microfabrication technologies and, on the other hand, by the 

fact that electrokinetic transport can offer distinct advantages over pressure-driven flow, e.g., 

reduced hydrodynamic dispersion and mass transfer resistance, as the characteristic 

dimensions of devices decrease to (sub)micrometer dimensions. One of the important 

applications of  electrokinetic transport is capillary electrochromatography (CEC), where 

electroosmotic flow (EOF) is used as a mechanism for transporting solvent and solutes 

through a chromatographic column. Compared to pressure-driven liquid chromatography, 

CEC can provide substantially higher separation efficiency. This feature mainly results from 

i) the absence of applied pressure drop, allowing to use of very small particles packed in the 

chromatographic (capillary) columns and so to increase the total separation performance, and 

ii) reduced hydrodynamic dispersion, that decreases chromatographic band broadening. 

                                                 
* This section is based on the following publication: 

D. Hlushkou, D. Kandhai, A. Seidel-Morgenstern, and U. Tallarek, Simulation of Electrokinetic Microfluidics in 

Colloidal Systems, Proc. AIChE Annual Meeting 2003, San Francisco, CA, USA, November 16-21.  
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Figure 4.20. Separation efficiency at similar mobile phase average velocity. a) Capillary HPLC, packed 

bed of 150 mm length in a 100 µm i.d. capillary, in-column detection (215 nm); analytes: (1) 

thiourea, (2) methylbenzoate, (3) ethylbenzoate, (4) propylbenzoate, and (5) butylbenzoate. 

b) CEC, 325 mm long capillary setup (effective packed bed length of 240 mm) × 100 µm i.d., 

applied voltage: 20 kV. Stationary phase: Porous C18-silica particles (dp = 2.45 µm and dpore 

= 14 nm). The mobile phase is a 5 mM aqueous Tris (pH-8.3)/acetonitrile 20:80 (v/v) buffer 

solution. The separation efficiency in CEC is about 2 × 104 Npl/m. 
Figure 4.20 illustrates the difference between two chromatograms obtained 

xperimentally during the separation process for the same sample and similar Peclet-number 

ut with (a) pressure-driven and (b) electroosmotic flows. The narrower peaks in the second 

hromatogram indicate the possibility to perform the analysis at higher resolving power 

ranslating it to an increased sensitivity and lower operation costs. The efficiency in Fig. 4.20 

an be estimated by the number of theoretical plates, Npl determined by the following 

xpression [94] 
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σ
=

t.N , 

here tr and σ are the retention time and width at half-height of the corresponding 

hromatographic peak, respectively. As the data in the figure indicate, the efficiency of the 

lectrochromatographic analysis is several times higher than of that obtained with pressure-
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driven flow. Since packed chromatographic columns can be represented by an open 

capillary packed with spherical particles, the computer simulation of EOF through colloidal 

structures can provide complementary insight into the complex transport processes within 

such devices. 

4.3.2. Mathematical model and implementation 

 The general mathematical description of the steady-state electrokinetic transport 

problem in an N-component incompressible electrolyte consists of the set of  coupled Nernst-

Planck, Navier-Stokes, and Poisson equations  

( ) 0Φ
B

e2 =∇⋅∇−∇−∇ i
ii

iii n
Tk
Dzq

nDnv ,     (4.73) 

∑
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ef η)(ρ vvv
N

2

2
N

,     (4.74) 
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1

e εε∑
=

−=Φ∇
i

ii /nzq ,       (4.75) 

where v represents the divergence-free velocity field (∇⋅v = 0); ρf, η, p, ε0 and εr denote the 

density of the fluid, its dynamic viscosity, hydrostatic pressure, the permittivity of vacuum 

and relative permittivity, respectively, ni, Di, zi  are the number concentration, diffusion 

coefficient and valency of ionic species i, respectively; Φ is the local electrical potential, qe, 

kB and T represent the elementary charge, Boltzmann constant and temperature, respectively.  

An iterative numerical scheme was developed for solving the aforementioned set of Eqs. 4.73-

4.75 subject to the following boundary conditions (see Section 4.1) 

φ+ζ=Φ==ν⋅  ,0 ,0 vj r
i  at the solid-liquid interface,   (4.76) 

where ji and ν are the flux density and the normal to the interface, respectively. ζ and φ  

represent the electrical potential contributions due to the surface charge at the solid-liquid 

interface and applied external electric field. It should be pointed out that the presented electric 

boundary condition assumes negligible ion-convective effects on the ζ-potential distribution 

as compared to ion-diffusion or small perturbations with respect to the equilibrium state.  
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 At each iteration the coupled Nernst-Planck, Poisson, and Navier-Stokes equations 

are solved by turns using a uniform cubic lattice. While conventional finite difference 

methods have been employed to resolve the first two problems, the lattice-Boltzmann 

algorithm has been applied for solution of the latter. This allowed to treat this hydrodynamic 

problem with high computational efficiency for systems characterized by a complex solid-

liquid interface. 

4.3.3. Results of simulation 

 The implementation of the presented numerical scheme has been performed at a 

parallel computer (Hewlett-Packard Superdome). A number of EOF simulations for various 

capillary and colloidal systems has been carried out.  

 Initially, this computer model was tested by calculating the electric charge 

distribution around a single sphere immersed in an electrolyte solution. The charge 

distribution determines the electromotive forces which act on a liquid leading to the specific 

fluid velocity distribution. The simulated charge density distribution in a symmetric 1:1 

electrolyte has been compared (Fig. 4.21) with the data of Loeb, Overbeek, and Wiersema, the 

so-called LOW-tables [95], which contain the results of a one-dimensional numerical solution 

for the Poisson-Boltzmann equation describing, in particular, the equilibrium distributions of 

the net electrical charge for a single sphere system of radius rs. This comparison demonstrates 

good agreement between the two sets of data over a wide range of the net charge magnitude.  

 In the next step, we simulated the EOF through a simple cubic (SC) array of spheres. 

Although real packed chromatographic columns are represented more realistically by random 

sphere packings, we have chosen the regular structure in order to eliminate any effects related 

to the random nature of the medium model and to investigate clearly the relationship between 

simulated mean velocity and experimental conditions, for instance, ζ-potential, ionic strength, 

and applied electric field Eext. As it was mentioned above, we have assumed that the ζ-

potential is not affected by the applied electric field or liquid convection. A collection of EOF 

simulations has been carried out for various values of ζ-potential, applied electric field, 

computational grid resolutions and aspect ratio α (concerning sphere diameter to electric 

double layer thickness λD), that can be easily translated to any ionic strength. All values of 

variable quantities which have been used in the aforementioned collection of simulations are 

given in Table 4.2. The complete collection consists of 512 simulations. 
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Figure 4.21. Point-wise comparison of the simulated electric charge distribution around a single sphere

(•) with the data of Loeb, Overbeek, and Wiersema (LOW-tables) [95] (○) for a 1:1 

electrolyte. ζ = −102.77 mV, the aspect ratio of sphere diameter to electric double layer

thickness ds/λD = 10, bulk concentration n∞ = 5.678 × 1023 m−3.  

 

 

 

 

Table 4.2. The values of variable parameters used in the simulations 

ζ, mV −25.69, −51.39, −77.07, −102.77 

Eext, kV/m 10, 25, 50, 100 

Aspect ratio, α = ds / λD 2.272, 22.72, 50, 100 

Grid resolution (points per sphere 
diameter), β 25, 30, 40, 50, 75, 100, 150, 200 
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The lowest value of employed ζ-potential (−25.69 mV = kBT / qe) corresponds to the upper 

limit for the conventional use of the Debye-Hückel approximation, while the highest value 

(−102.77 mV = 4kB / qe ) can be considered as the upper limit of ζ-potential for many realistic 

solid-liquid interfaces. The smallest value of α implies an overlap of EDL's of neighbouring 

spheres over a quite extended area, while in the case of α = 100 this overlap is relatively 

small. 

 The mean velocity of electroosmotic flow in the direction of the applied electric field 

was calculated for each set of variable parameters. Since there is no analytical solution and 

only a few results of other numerical simulations are published concerning EOF through a SC 

array that could be used for comparison the convergence of the mean velocity by further 

refinement of the computational grid was considered as sufficient proof of the computational 

accuracy. A brief presentation of the information contained in the complete collection is 

difficult, therefore only some results will be provided in this paper.  

43210
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Figure 4.22. Point-wise comparison of simulated (○ and  □) mean EOF velocities through SC array of

spheres with published data in Ref. [62] (✳ and ★). α = 2.272 for the lower data sets and

22.72 for the upper data sets, Eext = 10 kV/m, β = 200. 
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 First, we compared the simulated mean longitudinal velocity with that obtained by 

Coelho et al. [62]. They developed a model of electrokinetic phenomena in finely dispersed 

porous media under the assumptions of low ζ-potential and small perturbations from the 

equilibrium state and simulated EOF, in particular, through SC array of spheres. The biggest 

absolute values of ζ and aspect ratio, α, in their simulations were 51.385 mV and 22.72, 

respectively. Figure 4.22 indicates good agreement between our simulated data and the results 

presented in Ref. [62]. 

 Then, we carried out an analysis of discretization effects on the simulated velocity. Its 

dependence on the computational grid resolution for  Eext = 10 kV/m and two limiting values 

of  the ζ-potential, ζ = −25.69 and  ζ = −102.77 mV, is shown in Figure 4.23. While for  ζ = 

−25.69 mV mean velocity decreases monotonically and independent of the aspect ratio α 

toward some asymtotic value at finer resolutions, the velocity behaviour is quite different for 

small and large values of α when ζ = −102.77 mV. The dip at coarser resolution for the larger 

values of α can be explained by the error in the simulation of electrical charge distribution. The 

net electric charge demonstrates its locally highest density at the solid-liquid interface and then 

decays to zero in the bulk region. When the spatial discretization step is large with respect to 

the EDL thickness, even the grid point closest to the solid-liquid interface is located in a region 

of a relatively low electric charge density. Thus, the electromotive force is underestimated and 

the overall EOF is reduced. The total computational time varied from approximately 160 

processor×hours (β = 200) up to few processor×milliseconds (β = 25). 
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Figure 4.23. The mean longitudinal velocity of EOF through SC-array of spheres as a function of the 

computational grid resolution β. Eext = 10 kV/m, ζ = −25.69 mV (a) and −102.77 mV (b), 

α = 2.272 (▲), 22.72 (♦), 50 (■) and 100 (●).  
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Figure 4.24. Simulated mean velocity as a function of  ζ-potential. Eext = 10 kV/m, α = 2.272 (▲),  

  22.72 (♦), 50 (■) and 100 (●), β = 200. 
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Figure 4.25. Simulated mean velocity as a function of α. Eext = 10 kV/m, ζ = −25.69 mV(△),  

  −51.385 mV(◇), −75.07(□) and −102.77 mV (○), β = 200. 
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The effect of the value of the ζ-potential on the simulated velocity is illustrated in 

Figure 4.24. With increasing aspect ratio α the relation between mean velocity and ζ-potential 

tends towards linear behaviour. This observation agrees with the “so-called” thin double layer 

(TDL) approximation when the electroosmotic (“slip”) velocity can be defined by the 

Helmholtz-Smoluchowski equation (Eq. 4.36) with a linear dependence on ζ-potential. The 

behaviour of the simulated mean velocity with changing aspect ratio (see Fig. 4.25) for 

different ζ-potentials can be explained along the same lines. The mean EOF velocity becomes 

unaffected by α and tends to dependent on only the ζ-potential (if the all other parameters are 

fixed) at the larger aspect ratio that is in agreement with the TDL approximation. 

 Finally, the dependence of simulated mean velocity on applied electric field has been 

examined. In Figure 4.26 the data for ζ = −25.69 mV are presented. The relation between 

electroosmotic velocity and applied electric field is practically linear for any value of α. 

Moreover, the effect of “saturation” (when the electroosmotic velocity ceases to vary with the 

further increasing aspect ratio) is observed for each value of applied electric field. This 
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Figure 4.26. Simulated mean velocity as a function of  Eext, ζ = −25.69 mV, α = 2.272 (▲), 22.72 (♦),

50 (■) and 100 (●), β = 200.  The doted lines correspond to the linear approximation of our

simulated data, the dashed lines represent results obtained by the capillary model for

α = 2.272 (bottom) and 100 (top).   
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corroborates the validity of the representation of a porous medium as an assembly of parallel 

cylindrical microcapillaries (the so-called “capillary model”) [8]. The actual sinuous nature of 

a porous medium can be accounted for by the introduction of the tortuosity ϒ. According with 

that approach, the mean axial EOF velocity through the SC array of spheres can be 

determined by [10, 167] 
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where I1 and I0 are first-order and zero-order modified Bessel function, respectively, κ is the 

reciprocal of the EDL thickness, and d is the mean diameter of the pores between the spheres.  

In Figure 4.26 the results obtained by the above approach for α = 2.272 and 100 are presented 

by the dashed lines. For those calculation the diameter of sphere inscribed in the throat of the 

SC array of spheres was utilized as the mean diameter of the pores (i.e., dpore = 0.414ds), while 

the tortuosity factor was defined as the ratio of the diffusion coefficient of the fluid in bulk to 

the steady-state diffusion coefficient of a fluid in the SC array of spheres (i.e., ϒ2 = 1.918 

[168]). For the both values of α the mean simulated EOF velocity is slightly underestimated 

compared to that obtained by the capillary model. This discrepancy can be caused by the not 

adequate representation of the interstitial pore space between spheres by capillaries with the 

constant cross-section and (mean) diameter. Obviously, since the representation of a porous 

medium by a collection of parallel microcapillaries ignores the interconnectivity of an actual 

pore network, the capillary model is limited to an equality of mean velocities and can become 

unrealistic if, for instance, hydrodynamic dispersion is evaluated. 

4.3.4. Conclusion and outlook 

 EOF through SC sphere array has been simulated by an iterative numerical solution 

of the coupled Navier-Stokes, Nernst-Planck and Poisson equations assuming that the ζ-

potential distribution at the solid-liquid interface is neither affected by convection, nor by the 

applied electric field. This novel applied combination of two different numerical techniques 

for the solution of the complex problem has proven to be applicable and reliable. It can be 

recommended to be used in further studies, including, e.g., random sphere packings.  

 The collection of simulations of EOF through SC sphere array has been performed 

for various values of applied electric field, ζ-potential and the aspect ratio of sphere diameter 

to double layer thickness. The dependence of mean electroosmotic velocity on those variable 
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parameters has been examined and has demonstrated good agreement with a number of 

frequently used and limiting approximations. At the same time the developed model can assist 

in resolving difficult problems requiring to hold the complete information concerning the flow 

velocity distribution in systems with a complex morphology, as in the evaluation of 

hydrodynamic dispersion in electroosmotic flow through porous media. The obtained data can 

be used for an optimized spatial resolution in large-scale simulations relative to computational 

expenses and resulting accuracy.   

 The possible further development of the presented model can include the dissociation 

of surface groups or adsorption processes which can be responsible for changes in ζ-potential 

or surface electric charge due to alterations in the local chemical environment caused by 

convection or electromigration phenomena [73]. 
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4.4. Simulation of Transport Phenomena in Porous Media 

4.4.1. Computer generation of sphere packings 

 A random array of hard spherical particles has long been of interest because of its 

technological importance and significance in applications throughout science and engineering 

including colloidal systems, ideal liquids, granular materials, and biological membranes. In 

particular, random sphere packings are used as a model of many types of porous media. The 

primary reason for its attractiveness as a model system is that the highly complex topology 

associated with disorder can be completely described in simple geometric terms, such as the 

radius and position of each sphere. Chromatographic columns are most frequently packed 

with spherical or spheroidal particles, therefore random sphere packings can be regarded as a 

quite adequate representation of various fixed beds. Since it is not simple to obtain a complete 

geometrical description of real packings, computer generation of such structures can serve as 

a good and often the only possible alternative. 

 

Stratification of computer algorithms for the generation of random sphere packings

 All known sphere packing algorithms can be grouped into two general categories (Fig. 

4.27). Sequential-settlement or “rain” algorithms begin with a seed sphere [96-99]. Growth of 

the packing then occurs by the successive placement of new spheres in accordance with 

determined rules. As such rules we can use the criterion of  minimal total potential energy of 

the packing in the gravitational field, the presence at least three-point contacts for each 

sphere, maximum of packing entropy, etc. An example of this algorithm group is the so-called 

“drop-and-roll” algorithm. It supposes that each sphere is introduced at a random position 

above the bed of spheres already deposited and is allowed to fall until it reaches the first 

contact with another sphere or container walls. Then, this sphere can be rolled down on a 

particle surface until it deposits on a stable location. The generation is finished as soon as the 

container is full. An advantage of this algorithm type is the high speed of running. But the 

properties of the generated packing are difficult to control. Moreover, by using this method it 

is very difficult to create structures with porosity ε (ratio of the total void volume to total 

packing volume) of less than 0.4. 
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Collective-rearrangement 
algorithms: 

 
1) Monte-Carlo densification 

2) Sequential swelling up 

 

Advantages: 

- “unlimited porosity” 

- a priori setting of packing properties 

Disadvantage:

- low speed of generation 

Sequential-settlement algorithms:

1) Random settlement 

2) Random probability settlement 

3) Specific sphere placement 

4) Preferential sphere placement 

5) Preferred packing placement 

Advantage: 

- high speed of generation 

Disadvantages:

- relatively low porosity of packings 

- packing properties are not controlled 

Algorithms for computer generation of random packing of 
spheres 

Figure 4.27. Schematic classification of computer algorithms for the generation of random sphere

packings. 

An alternative group is composed of collective rearrangement algorithms. Techniques 

in which spheres are randomly moved in an effort to either remove overlaps (if spheres are 

initially overlapped) or decrease porosity (if spheres are initially non-overlapped) are lumped 

into this category. Typical examples of collective rearrangement methods are the Monte-Carlo 

densification [100-102] and sequential swelling up [103], or Jodrey-Tory [104] algorithms. 

The former algorithm starts from an arbitrary “no-overlapping-configuration” of uniformly 

distributed hard spheres within a confining container. In order to facilitate creation of the 

starting configuration, the dimensions of the container are on forehand increased relative to 

the required size of the final packing. Further, at each iterative time step sphere coordinates 

are randomised and then an attempt is made to decrease the container volume by a small 

increment. The generation can be finished as the required porosity is reached. In contrast, the 

Jodrey-Tory algorithm starts from an arbitrary configuration of points uniformly distributed in 

the container, which corresponds already to the final packing volume. At each iteration a pair 

of the nearest points is determined and they are spread apart for a certain distance variable 

through the generation procedure. If one associates points with sphere centres, the distance 

between two closest points can be considered as a sphere diameter, which ensures a 
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configuration without overlap. A sequential growth of the sphere diameter provides the 

decrease of the packing porosity. Advantages of this type of algorithms are the possibility of 

an a priori complete setting of the packing properties and low porosities of generated 

structures (less than 0.4). However, these methods are more extensive from the point of view 

of computational time as compared with the first group of algorithms.  

 

Modified Jory-Tory algorithm 

Since packed chromatographic columns (fixed beds) are characterized by a relatively 

low porosity (commonly less than or of the order of 0.4), the Jodrey-Tory algorithm has been 

chosen in order to realize an adequate representation of real random-close sphere packings. 

To reduce the computational expense, which is becoming particularly high for low porosity 

and large scale packings, the generating algorithm has been implemented as parallel code at a 

high-performance computer. Analysis of the computational time requirements for different 

procedures within the Jodrey-Tory algorithm indicates that the determination of the pair of the 

closest points is most expensive (from the point of view of the required computational time) 

is. This operation consists of searching the minimal element in a square matrix which 

represents the distance between each pair of spheres. The parallel implementation of the 

Jodrey-Tory algorithm divides this matrix into several submatrices. Then, the search of the 

minimal distance is performed within each submatrix by an individual processor and, finally, 

the global minimum distance is determined using the smallest element of each submatrix. 

Another modification of the original Jodrey-Tory algorithm is due to the specificity of  

chromatographic columns. The original algorithm deals with the generation of unconfined 

packings, which assumes the imposition of periodic boundaries. Actual packed columns 

demonstrate evident inhomogeneities introduced by the presence of (confining) column walls 

[105]. This structural nonuniformity results in variations of mass transport characteristics in 

wall regions and must be taken into account to arrive at an adequate representation of 

transport phenomena. Hence, the generation of confined packings should be considered as an 

important contribution to the realistic simulation of mass transport through packed 

chromatographic columns. The adaptation of the original Jodrey-Tory algorithm to the 

generation of confined random packings was mainly performed by revision of the procedure  

searching for the minimal element in the distance matrix. The modified algorithm carries out 

this search not only for each pair of spheres, but as well for the distances between sphere and 

the container wall. This allows to use a confining container of any arbitrary shape if the latter 

can be expressed in an analytical form, such as tubular geometry with cylindrical, quadratic, 
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rectangular, elliptical or trapezoidal cross-section. Figure 4.28 shows two examples of 

confined packings generated by the presented modification of the Jodrey-Tory algorithm. 

One other modification of the original algorithm was stimulated by the necessity to 

take into account a distribution of sphere diameters. Particles used for the chromatographic 

column fabrication may possess both discrete (e.g., mono-, bi- or multisized) and continuous 

(e.g., normal or lognormal) distributions of their diameters. To satisfy this requirement the 

growth rate of an individual sphere during the generation was set in proportion to its final 

diameter, which was defined in advance in accordance with a given distribution. In Figure 

4.29 two cylindrical packings with bimodal and normal (Gaussian) distribution of sphere 

diameters are shown. 

 

Figure 4.28. Random sphere packings generated by the modified Jodrey-Tory algorithm and confined

by cylindrical (left) and quadratic (right) containers. Periodic boundary conditions are

imposed along the longitudinal direction. The interparticle porosity of both packings is

0.4, the total number of spheres is 3600 (cylindrical packing) and 4500 (quadratic

packing). 
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Figure 4.29.  Top views (from the base plane) of the random cylindrical packings generated by the

modified Jodrey-Tory algorithm with the bisized (left) and Gaussian (right) sphere

diameter distribution.  

Quantitative evaluation of random sphere packings 

 The problem of a quantitative evaluation of random packings originates from, at least, 

two other problems i) the aimed identity of different packings (e.g., real and computer 

generated) and ii) establishing of the functional relationship between geometrical properties of 

the packing and the description of various phenomena taking place within it (e.g., mass and 

heat transport). The simplest way to characterize quantitatively a packing is to define its 

porosity or void volume fraction, ε  

V
Vv1−=ε ,         (4.78) 

where Vv and V are the total void volume and total packing volume, respectively. However, 

with this averaged geometrical characteristic it is frequently not possible to distinguish 

packings with obviously different properties. For instance, it is well known that fluid flow 

through a simple cubic (SC) array of spheres with εsc = 1 − π/6 ≈ 0.476 differs substantially 

from fluid flow through a random packing of spheres with the same porosity. This fact is 

explained by the presence of through channels in the SC-packing, which reduce the 
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Figure 4.30. The Voronoi diagram (blue dashed lines) and Delaunay tessellation (red solid

lines) for 2D-dimensional packing of discs. 

hydrodynamic resistance along the SC-array primary axes. Hence, a characteristic which 

evaluates local microstructure of packings should be introduced.     

 In contrast to packings with crystalline order which can be relatively easy described in 

terms of group theory, the structure of random packings has to be characterized statistically 

and its numerical evaluation presents a real challenge because any reasonable compact 

description of such structures will be necessarily statistical in nature. This detailed statistical 

information can be written down exactly only for completely random or spatially uncorrelated 

systems, such as ideal gases. However in actual packings, interactions with other particles and 

container walls may cause significant deviations from randomness, which ultimately manifest 

themselves in the form of spatial correlations. Several approaches are commonly applied to 

analyse quantitatively the microstructure of random media as well as their macroscopic (or 

averaged) properties. These approaches can be roughly divided into the following three 

categories: 
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¾ Tensorial: fabric and configuration tensors [106-108]; 

¾ Topological: Voronoi diagrams and Delaunay tessellations [109-112]; 

¾ Probabilistic: correlation (distribution) functions [113,114]. 

Tensorial methods characterize disorder in packings of particles in terms of the tensors which  

describe the position of particles with respect to their nearest neighbours. The Delaunay 

tessellation and the Voronoi diagram are dual structures — each contains the same 

“information” in some sense, but it is represented in a different form. For a packing of 

spherical particles, the Voronoi diagram is derived by tracing the mediator plane between two 

neighbouring spheres (Fig. 4.30). Thus, each particle is contained by a polyhedron. Then, the 

polyhedrons are classified with respect to different types based on the number and size of 

their faces. Further statistic analysis of the distribution of the polyhedron types is carried out 

to derive structural information about the packing. The Delaunay tessellation represents a 

triangular network which is built up by tracing the centre-to-centre lines between two 

neighbouring particles. The centres of three neighbouring particles form a triangle. The results 

of statistic analysis of the distribution of angles and side lengths of the triangles can be used 

to describe the structure of the random packing. Finally, the pair- and high-order correlation 

functions related to the probability to find one or more sphere centres in a thin spherical layer 

can give a complete statistical description of local and long-range correlations. However, 

none of the abovementioned approaches can be considered as satisfactory concerning the 

characterization of confined packings. The tensorial formulation of the statistical-geometrical 

theory requires additional research to transform that theory into a tool, which can be used in 

analytical calculations, and to establish links between configuration tensors and 

experimentally measurable characteristics of random packings, such as correlation functions. 

Voronoi diagrams, Delaunay tessellations and pair-correlation functions are applicable only to 

infinite packings or those with periodic boundaries. Hence, confined packings are generally 

excluded as an object of investigations by these approaches. In other words, up to date the 

theory of a quantification of confined packings is a matter of ongoing investigations. 

Nevertheless, since a random packing of spherical particles confined by a cylindrical 

container is widely employed as a model of actual packing structures and has a large 

industrial relevance, the problem of the numerical characterization of this kind of packings 

requires a solution, even if this solution is only particularly satisfactory. At present, the most 

popular (if not only) method to evaluate the randomness or disorder of cylindrical packings of 

spheres is the analysis of the radial porosity distribution function ε(r) that can be defined as 
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Figure 4.31.  Radial porosity distribution functions for experimental (symbols: ○ dc/dp = 14.1 [165], □
dc/dp = 9.3 [166]) and computer generated (solid line dc/dp = 10.0) cylindrical packings of

spheres. 

 

 ( )
( )

Hrdr

rdV
r

H drr

r

π
−=ε

∫ ∫ ∫
π +

2

   
1 0

2

0
sph

, 

 

where H is the height of the evaluated packing. The radial porosity distribution for real 

packings can be relatively easily obtained by experimental techniques (see Ref. [115] and 

references therein). It is accepted to assume that two different cylindrical packings of equal 

mean porosities ε, with the same ratio of container diameter to particle diameter dc/dp, and 

identical radial porosity distribution (RPD)-functions possess identical microstructure, 

whence, they are invariant and vice versa. Naturally, the term “identical” should be 

interpreted from the statistical point of view.  

 It is known, that in a random sphere packing formed in a cylindrical container, the 

layers of spheres nearest to the wall tend to be highly ordered, with most of the spheres 

touching the wall. The next layer builds up on the surface of the first, in a less ordered 
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fashion. The successive layers are less and less ordered until a fully randomised arrangement 

is achieved in regions far enough from the wall, and the term “layer” ceases to be applicable 

at all. Thus, the RPD-function is an oscillatory function with deceasing oscillations in a bulk 

region. In Figure 4.31 the experimentally measured RPD functions for packings with different 

ratios dc/dp [165, 166] (as well as the RPD function of the generated cylindrical packing 

presented in Fig. 4.28) are shown. Though the validity of the RPD function to reveal small 

amounts of crystallization in bulk regions of packings is still in doubt, this characteristic is 

widely practised, in particular, to establish relationships between radial geometrical 

inhomogeneity of cylindrical packings and nonuniformity of axial flow velocity or 

hydrodynamic dispersion (e.g., see [116, 117]). 

4.4.2. Numerical simulation of liquid hold-up and longitudinal dispersion in biporous media 

with discrete stagnant zones*. 

In this section the results of our study of hydrodynamic dispersion in single-phase 

incompressible liquid flow through a fixed bed made of spherical, permeable (porous) 

particles are presented. The observed behaviour was contrasted to the corresponding fluid 

dynamics in a random packing of impermeable (nonporous) spheres with interparticle void 

fraction of 0.37. Experimental data were obtained in the laminar flow regime by pulsed field 

gradient nuclear magnetic resonance and were complemented by numerical simulations 

employing a hierarchical transport model with a discrete (lattice-Boltzmann) interparticle 

flow field. Finite-size effects in the simulation associated with the spatial discretization of 

support particles or dimension and boundaries of the bed were minimized and the simulation 

results are in reasonable agreement with experiment.  

 

Introduction  

An understanding of transport phenomena in porous media is important for many 

technological and environmental processes such as enhanced oil recovery, paper manufacturing, 

subterranean transport of hazardous wastes, filtration, or fixed-bed operations in catalysis and 

                                                 
* This section is based on the following publications 

D. Kandhai, U. Tallarek, D. Hlushkou, A. Hoekstra, P.M.A. Sloot and H. Van As. “Numerical simulation and 
measurement of liquid hold-up in biporous media containing discrete stagnant zones”. Phil. Trans. R. Soc. Lond. 
A, 360, 521-534 (2002). 

D. Kandhai, D. Hlushkou, A. Hoekstra, P.M.A. Sloot, H. Van As, and U. Tallarek. “Influence of stagnant zones 
on transient and asymptotic dispersion in macroscopically homogeneous porous media”. Phys. Rev. Lett. 88, art. 
no. 234501 (2002). 
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separation science (e.g., [118-120]). In the past several approaches have been developed to 

study transport phenomena in porous media and numerical simulations, in particular, were often 

employed to connect the theoretical analysis with experimental measurements. The extremely 

complex geometry inherent to porous media, however, has always been one of the major 

difficulties in these studies. Several simplifications in pore structure or transport mechanisms 

have been introduced to allow more efficient computer simulations. In the last decade lattice-

gas and lattice-Boltzmann simulations (e.g., [34, 121, 122]) have proven to be versatile tools in 

simulating a wide variety of applications related to transport in porous media. Examples of such 

applications are diffusion and flow, including multi-component or multi-phase flows in several 

models of porous media such as spherical bead packings [123], fibrous media [40, 124], and 

even digitized samples of real porous media [125].  

In this section we are interested in the hydrodynamic dispersion in porous media, i.e., 

transport of tracer particles in a solvent by flow and molecular diffusion within a complex 

pore network. This problem, also known as pore-scale dispersion, has been the subject of 

many studies (e.g., [36, 37, 102, 123, 126-135]). In these studies a wide variety of techniques 

have been applied to probe the motion of tracer particles in a porous medium. Significant 

progress has been obtained by using theoretical methods, experimental measurements based 

on Pulsed Field Gradient Nuclear Magnetic Resonance (PFG-NMR) and numerical 

simulations based on traditional finite-difference schemes and lattice-Boltzmann algorithms in 

combination with Monte-Carlo methods. 

To the best of our knowledge all the numerical modelling efforts conducted so far 

have focused on porous media composed of impermeable spherical beads. Therefore transport 

is solely restricted to the void space between the bead particles or the so-called interparticle 

transport. Here we consider porous materials with additional purely diffusive stagnant regions 

inside the beads, thus allowing for intraparticle mass transport. Our model porous medium is 

composed of permeable spherical beads with rather complex tortuous network. These extra 

stagnant zones have a substantial influence on dispersion, since fluid molecules entrained in 

the deep diffusive pools of the particles give rise to a holdup contribution and affect both the 

timescale of (transient) dispersion and the value of the asymptotic dispersion coefficient [129, 

132, 136].  

From a computational point of view the main difference between our system and those 

studied previously is that characteristic time and length scales associated with an exchange of 

fluid molecules moving in velocity extremes of the flow field may differ by several orders of 

magnitude. Therefore, a direct numerical simulation that resolves transport processes 
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including geometrical details of the tortuous pore network inside the permeable beads is not 

feasible, even with current state-of-the-art high performance computer systems. Instead we 

followed a hierarchical and semi-empirical modelling approach. The flow field in a computer-

generated model of the interparticle pore space was computed by means of a lattice-

Boltzmann algorithm. A particle tracking method was then used to record tracer dispersion in 

the entire interconnected (inter- and intraparticle) pore network. The actual morphology of the 

intraparticle pore space is lumped into the model by an effective intraparticle diffusion 

coefficient Dintra, itself obtained from the PFG-NMR measurements. Mass transfer through the 

inter/intraparticle interface is accounted for by a stochastic approach.  

 

Simulation methods 

It has already been indicated in the introduction that fluid transport through the packed 

bed involves a hierarchy of time and length scales. In the measurements, for example, we 

used spherical, totally porous particles with average diameter of 50 µm packed into a 4.6 mm 

i.d. (dc) cylindrical column. Pores inside the particles have a mean diameter (dpore) of only 

12 nm. The size of interparticle voids is about 25-40% of the particle size [119] and exceeds 

the intraparticle pore size by a factor of more than 103. Mainly due to this variety of spatial 

and corresponding temporal scales with respect to the flow heterogeneity and mass transfer 

(see Figure 4.32) we did not attempt a model which simultaneously resolves details at all 

scales, but exploited a hierarchical approach.  

 
(a) Interparticle transport 

Fluid transport in the voids between bead particles is due to a combination of pressure-

driven convection and molecular diffusion. Similar to the detailed work reported by Maier et. 

al. [123] we used a lattice-Boltzmann (LB) algorithm for the computation of the fluid flow 

field and a particle tracking method to calculate tracer motion in the LB velocities. In LB 

methods local streaming and collision rules define a mesoscopic world from which the correct 

hydrodynamic behaviour in certain flow regimes emerges at a macroscopic level [34, 122]. In 

this paper we used the D3Q19 lattice BGK model where the collision operator is based on a 

single-time relaxation to the local equilibrium distribution [53, 122]. To define the 

displacement probability distributions or averaged propagators Pav(R,∆) a large number of 

tracer molecules has been distributed in the computational domain. Since interparticle 

transport is driven by flow and diffusion the position of each tracer particle during an 
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Figure 4.32. Illustration of different spatio-temporal scales concerning possible velocity extremes in the

mobile phase (and associated mass transfer phenomena based on molecular diffusion or

lateral dispersion) in a packed bed.  

elementary time step δt is determined by convective and diffusive contributions and its time 

evolution can be described by [123]  

( ) D
tt )()()( rrvrr δ+δ+=δ+ ttt        (4.79)  

where v(r) is the local velocity at r approximated with the computed flow field by a linear 

interpolation of velocities at neighbouring lattice nodes. δrD is the displacement due to 

molecular diffusion and can be modelled by a random-walk process 

 tm
D 6 δ=δ Dξr  ,       (4.80) 
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where Dm is the free molecular diffusion coefficient (Dm = 2.15 × 10-9 m2s-1 for water at 25ºC) 

and ξ is the unit vector with a random orientation in space. Pav(R,∆) is then determined by 

calculating the number of particles with a net displacement R after time ∆. The total number 

of tracer particles is chosen such that statistical fluctuations in Pav(R,∆) are small, and the 

time step in these simulations is constrained by the maximum net displacement and the lattice 

spacing [123].  

 
(b) Intraparticle transport 

 Transport inside the bead is purely diffusive because the mean velocity through a 

network of interconnected pores increases with the square of the pore diameter [118]. Thus, 

intraparticle pores (assuming that they are well interconnected like interparticle pores in a bed 

of uniform hard spheres – which is even not guaranteed) restrain fluid motion to a velocity 

approximately a factor of 106 less than the interparticle average. Intraparticle diffusion is 

incorporated in the simulation semi-empirically, i.e., we use Dintra = 7.3 × 10−6 cm2s−1 

obtained experimentally for this packing material by PFG-NMR [135]. The motion of tracer 

particles is modelled by Eq. 4.79, neglecting the convective term.  

 
(c) Mass transfer between intra- and interparticle pore space 

Close to the particles external surface, in the thin hydrodynamic boundary layer, 

transport normal to the solid-liquid interface is dominated by diffusion.  In the case of porous 

beads molecules can enter or leave the deep pools of stagnant fluid only through pores that 

lead from the particles interior to the external surface. Initially, tracer molecules are 

distributed uniformly in the interconnected pore space. In dealing with the geometrical 

restrictions for the tracer flux through the spheres external surface we follow a probabilistic 

approach. Close to this interface fluid transport is diffusive in both the inner (Dintra) and outer 

(≈ Dm) pore space. Corresponding differences in diffusive displacements within the inter- and 

intraparticle pore space become apparent in different probabilities for entering or leaving a 

sphere. By using mass balance arguments the following relation can be derived for the 

entrance and exit probabilities penter and pexit  
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Here εinter is the porosity of the interparticle pore space and Ninter and Nintra are the number of 

particles in the inter- and intraparticle pore space, respectively. nintra = Nintra/(1 – εinter)V and 

ninter = Ninter/εinterV are the intraparticle and interparticle tracer concentrations, and V is the 

total volume of the porous medium. 

In the simulations, we assume the probability for leaving a particle is 1. This choice is 

optional because the important aspect is the ratio of entrance and exit probabilities.  

 

Experimental setup and measurements 

 
(a) Packed column 

A 4.6 × 150 mm poly(arylether-ether-ketone) column was packed and consolidated 

using the slurry technique (e.g., [137]). We used conventional silica-based particles as 

packing material. These spherical particles have a relatively narrow and Gaussian size 

distribution which has been measured on a Coulter LS 130 particle size analyzer (Beckman 

Coulter, Fullerton, CA). Particles are porous (by 50 %) and intraparticle pores have an 

average size of 120 ± 15 Å. The mean particle diameter (dp) is 50.2 µm, with a standard 

deviation of 10.6 µm. In general, the interparticle porosity εinter in columns packed by using 

slurry technology (as in our case) ranges between 0.38-0.4 [138], but can be smaller (about 

0.35) when compression techniques like hydraulic axial or radial compression are applied 

[137, 139]).  

 
(b) Displacement probability distributions by PFG-NMR 

In an ideal PFG-NMR experiment [140] without spatial localization gradients the 

complex signal, E(q,∆), bears a direct Fourier relation with the Lagrangian averaged 

propagator, Pav(R,∆), of the fluid molecules [141-143] 

∫ •π∆=
∆
∆

=∆ RRqRqq diP
S
SE  )2exp( ),(

)(0,
),(),( av .   (4.82)  

Pav(R,∆) gives the average probability for any particle to travel a dynamic (net) displacement 

R over time ∆ in the direction of the pulsed magnetic field gradients of amplitude g  and 

duration δ [142]. This gradient area defines a wavevector q = (2π)−1γδg in q-space which is 

space reciprocal to the dynamic displacement R [144, 145]. Thus Pav(R,∆) can be 



 - 119 -

reconstructed from the PFG-NMR signal by Fourier transformation of E(q,∆) with respect to 

q. Due to the inherent timescale (including values for ∆ from a few milliseconds up to a few 

seconds) it is possible to recover convective and stagnant fluid in Pav(R,∆) and study the 

associated mass transfer kinetics if, in general, ∆ « lstag
2/2Dstag where lstag is a characteristic 

dimension of the stagnant zone and Dstag the diffusion coefficient. In this way PFG-NMR has 

been used to measure the intraparticle effective diffusion coefficient Dintra that we 

subsequently employ in the simulation to account for the actual morphology of the 

intraparticle pore space [135, 146]. Experiments were performed with a constant gradient 

pulse duration (δ = 2.5 ms), but incremented gradient amplitude using the stimulated echo 

sequence [147], taking 64 q-steps in the range of ±qmax and 56 phase-alternated signal 

averages at each value of q. Details of the NMR hardware configuration can be found in an 

earlier publication [146].  

 

Results and discussion 
(a) Porous medium 

Prior to a presentation of the actual results concerning the inherent dispersion process 

we briefly discuss some important aspects of our model porous medium. The packed bed used 

in the NMR experiments is characterized by a column-to-particle diameter (aspect) ratio, 

ψd = dc/dp, of the order of 100. For the simulations, however, we needed to restrict ourselves 

to a much smaller system (ψd = 10 and a length of 40 dp) because of computational 

limitations. In this respect it is well known that for beds of identical spheres the interstitial 

porosity (εinter) starts with a maximum value of unity at the column wall and displays damped 

oscillations with a period close to dp over a distance of up to 5 dp into the bulk until the void 

fraction reaches values which are typical for random packings (εinter = 0.38-0.40) [117, 148]. 

It is caused by a decrease of packing order as the distance from the wall increases.  

The consequences of this geometrical wall effect for macroscopic flow heterogeneity 

on a column-scale (see Figure 4.32), axial dispersion, and particle-to-fluid heat and mass 

transfer are particularly severe at aspect ratios below 15 where the critical “wall annulus” 

occupies a substantial fraction of the beds cross-section [149-152]. For systems with a larger 

ψd, however, these effects become smaller and it was found that, e.g., the dispersion in beds 

of spheres is then independent of ψd [126]. To represent closer the column cross-sectional 

average of fluid transport in the PFG-NMR measurements (ψd ≈ 100) we considered periodic 

packings in the simulations (ψd = 10). 
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There exists a number of algorithms which may be used to generate a random packing 

of spheres even though the expression of actual randomness in such a system still poses 

challenges [154]. In particular, Monte-Carlo schemes [153] and drop-and-roll methods [102, 

155] have been used. To obtain an adequate representation of our porous medium a random 

packing of identical hard spheres has been simulated using the Jodrey-Tory algorithm [104]. 

This method was chosen because of its efficiency and the dense bed that we actually required 

(εinter = 0.37). Since we have reproduced this algorithm with only slight differences we will 

not discuss it. One of the most widely known tools for investigating “randomness” of a bed 

structure is an analysis of the pair-correlation function g(r). g(r)dp
3r is proportional to the 

probability of finding a sphere with its center in a volume dp
3r at distance r from a given 

point. It is normalized to unity when r goes to infinity. We checked whether g(r) of the bed 

exhibits features well known for random structures [156]. In particular, a double-peak 

characteristic for close packing appears in the range 1.7-2.0, and oscillations decay to unity at 

larger r (Fig. 4.33).  

 
(b) Finite-size effects 

LB methods have proven to be versatile tools in the simulation of fluid flow through 

Figure 4.33. Pair-correlation function for a sphere packing of dimension 10D × 10D × 10D.  
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porous

Commonly, the no-slip condition at the solid-liquid interface is implemented by a simple 

bounce-back formalism. However, it has been pointed out that problems related to this 

bounce-back boundary condition may lead to a significant error in the flow field (e.g., [63]. In 

practice, a sufficiently large computational grid is often required to reduce these effects. To 

gain more insight into this artifact we performed preliminary simulations for flow in a 

periodic box of dimension 10D × 10D × 10D (with D equal to the diameter of the beads in 

lattice units) and εinter = 0.37. The BGK relaxation parameter is unity and viscous flow is 

driven by a constant body force. From the flow field we computed the hydraulic permeability, 

K, using sphere diameters of 10, 15, 20, 25 and 30 lattice points. K is often used to 

characterize flow through porous media and expresses the flow resistance by the solid phase 

[118]. Figure 4.34a shows computed values of dimensionless permeability k = 4K/dp
2 for a 

different sphere discretization. It is obvious that as the resolution is increased k approaches a 

constant value and the difference between results obtained with a diameter of 20 lattice points 

is less than 11% compared to 25 lattice points. A further increase does not significantly 

improve the results.  

Besides numerical errors associated with the boundary conditions, recorrelation effects 

due to the periodic boundaries may also influence dispersion. These effects were studied in 

detail by Maier et al. [123] and can be analysed 

function (VACF) for a simulation box and Peclet number while changing dimensions. The 

 media [34, 40, 124], mainly due to their flexibility in dealing with arbitrary and 

complex geometries. Further, the inherent spatial and temporal locality of the simulation 

algorithm makes it ideal for parallel processing, facilitating large-scale simulations [157]. 

VACF measures the decay of the velocity autocovariance from its initial value. The 

longitudinal velocity autocovariance C

to some extent via the velocity autocorrelation 

L(t) is defined as  

∑
=

VACF is given by C (t)/C (0). Figure 4.34b compares the behaviour of systems with 
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with vi(t), the velocity of tracer particle i at time t, vav is the mean velocity of tracers and the 

L L

dimension 10D × 10D × 10D and 40D × 10D × 10D. It is clear that stronger recorrelation  
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Figure 4.34. Finite-size effects. a) Dimensionless bed permeability (k = 4K/dp
2) vs. the spatial discretization 

of a particle. b) Velocity autocorrelation function CL(t)/CL(0) (cf. Eq. 4.83) vs. the 

dimensionless convective time in random sphere packings of different length, εinter = 0.37.  
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effects are present in the smaller system. They tend to slow down the decay of the VACF, 

thereby increasing the longitudinal dispersion coefficient by an artificial contribution [123]. 

Based on these observations we used the system with 40D × 10D × 10D, D = 20 lattice points 

and, thus, a grid size of 800 × 200 × 200 in our final simulations. 

 
(c) Propagator distributions 

Figure 4.35 begins with a comparison of simulated propagator distributions for the 

random packings of nonporous (impermeable) and porous (permeable) uniform spheres. The 

characteristic differences in propagator position and shape for the otherwise identical sphere 

packings originate in the existence of a pronounced intraparticle stagnant zone in the case of 

porous particles. The volumetric flow rate (Q) is the same in both cases, but it results in 

different averaged linear velocities through the bed (vav = Q/εTA with A, the columns free 

cross-sectional area) according to the total porosity εT of the respective pore space: εT = εinter 

= 0.37 for nonporous spheres and εT = εinter + (1 – εinter)εintra = 0.68 for porous spheres (εintra = 

0.5 Vsph). Consequently, at observation times ∆ < dp
2/8Dintra we observe a stagnant, i.e., 

diffusion-limited fluid fraction in Pav(R,∆) very close to zero net displacement (Fig. 4.35). 

It contains molecules that have remained only inside the particles over time ∆ 

(diffusive ensemble) while those molecules leaving or entering the sphere gain a net 

displacement due to interparticle flow. By contrast, Pav(R,∆) for the random packing of 

nonporous spheres does not reveal any diffusion-limited fluid, i.e., molecules which 

temporarily experience the no-slip condition at the solid-liquid interface exchange rapidly 

with downstream velocities in the interparticle channels of only a few micrometers in 

dimension. Thus, boundary layer mass transfer is already in a steady-state (achieved by 

diffusion normal to the interface) at the shortest observation time realized in our study 

(∆ = 15 ms). Intraparticle motion of tracer molecules is computed via Eqs. 4.79 and 4.80 with 

zero velocity field and by using the experimental Dintra = 7.3 × 10−6 cm2s−1 for water inside 

these particles [135] instead of Dm to represent tortuosity-limited effective diffusion. When 

com ula  

results of our PF

reproduction and cle 

stagnant fluid (cf. Fig. 4.36).  

paring sim ted bimodal propagator distributions obtained for porous particles with the

G-NMR measurements we observe a reasonable agreement regarding the 

 scaling with time of interparticle convective-diffusive and intraparti
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Figure 4.35. Simulated displacement probability distributions for pressure-driven flow of water 

through a random packing of spheres. The system size is 40D × 10D × 10D with D = 20 

lattice points. a) ∆ = 25 ms, b) ∆ = 90 ms. 
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Figure 4.36. Comparison of the simulated and measured displacement probability distributions for

liquid flow through a bed of porous particles (dp = 50 µm, εT = 0.68). Pe = uavdp/Dm = 274,

Re = vavdp/ν = 0.66, kinematic viscosity: ν = 8.9 × 10-3 cm2s-1 at 25°C. a) ∆ = 45 ms,

 ∆ = 90 ms.   b)
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(d) Transient and asymptotic longitudinal dispersion 

Natural and industrial materials such as soil, rock, filter cakes, or catalyst pellets often 

contain low-permeability zones with respect to hydraulic flow of liquid through the medium 

or even stagnant regions which then remain purely diffusive. The relevance of stagnant zones 

stems from their influence on dispersion: Fluid molecules entrained in the deep diffusive 

pools cause a substantial holdup contribution and thereby affect the time scale of transient 

dispersion, as well as the value of the asymptotic dispersion coefficient (if the asymptotic 

long-time limit can be reached at all) [129, 132, 136]. Consequently, the associated kinetics of 

mass transfer between fluid percolating through the medium and stagnant fluid becomes rate 

limiting in a number of dynamic processes, including the separation and reaction efficiency of 

chromatographic columns and reactors. 

In this respect, transport phenomena observed in model systems such as random 

packings of spheres may help to characterize materials with a higher disorder [120]. 

Compared to nonporous (impermeable) spheres a fixed bed of porous (permeable) particles 

contains an additional contribution to the dispersion which arises from liquid holdup 

(diffusion-limited mass transfer) in the particles. Both our PFG-NMR measurements and 

numerical simulations characterizing diffusion and convection on a timescale short enough to 

capture the disequilibrium of intraparticle fluid transport indicate in an encouraging 

agreement that liquid holdup strongly affects longitudinal dispersion. Thus, the hierarchical 

simulation approach presented and validated above in our work enables us to study in more 

detail the associated (diffusion-limited) mass transfer kinetics and influence of stagnant zones 

on both transient and asymptotic longitudinal and transverse dispersion. This, in turn, will 

allow us to discriminate directly between dispersion mechanisms that originate in flowing and 

stagnant regions of the medium and helps to determine whether an inequality of the 

macroscopic flow pattern or mobile phase stagnation contributes most persistently to transient 

dispersion at a given Peclet and Reynolds number. 

Despite numerous theoretical, experimental, and numerical studies (e.g., [102, 118, 

120, 123, 128, 133]), the transient and asymptotic behavior of dispersion in porous media is 

no o 

the actual meso d 

little attention in e 

associated with transpo ant regions complicates numerical simulations. Therefore it 

aves the controversy about the dominating contribution to dispersion and the origin of long-

me tails in residence-time distributions unresolved [120, 132], let alone the question whether 

t completely understood [131]. In particular, the influence of stagnant zones with respect t

scopic and macroscopic flow field heterogeneity of the medium has foun

 theory and experiment, and furthermore, the additional length and time scal

rt in stagn
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hydrodynamic dispersi e able to resolve this 

issue e

of 12 nm packed into a 4.6 mm internal diameter (dc) 

cylindr

on coefficients exist at all [131]. Below, we ar

xperimentally and numerically for a macroscopically homogeneous medium by 

considering transient and asymptotic dispersion in a random packing of porous spheres, i.e., 

in a medium with bimodal porosity and associated length scales that differ by orders of 

magnitude. The results are contrasted to the behavior observed in packed beds of nonporous 

spheres.  

In the experiments we used pulsed field gradient nuclear magnetic resonance (PFG-

NMR) [143] to measure over discrete temporal and spatial domains longitudinal nuclear spin 

(hence, molecular) displacement probability distributions of the fluid molecules in single-

phase incompressible flow through beds of porous particles with average diameter (dp) of 50 

and 34 µm and average pore size (dpore) 

ical column. The abovementioned hierarchical approach was used for the numerical 

simulations: A lattice-Boltzmann algorithm was implemented for computing the flow field in 

the interparticle pore space, and a particle tracking method was then used to record tracer 

dispersion in the total interconnected pore network (between and inside particles). 

Figure 4.37. Intraparticle stagnant mobile phase mass transfer kinetics (dp = 50 µm, Pe = 274). 
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By recording the amount of stagnant fluid molecules at the increasing observation time 

∆ that remain unexchanged with the interparticle velocities, Aintra (∆),  we can monitor a 

(fictitious) emptying of the spherical particles characterized by the classical mass transfer rate 

constant Bintra = 4π2Dintra / dp
2 [135] 

 

( )
( ) ( ).Bn

nA n
∑A

=

∆ inf
2intra 16

∆−
π

=
1

intra22
intra

exp
0

     (4.84) 

 

Figure 4.37 demonstrates that the experimental and simulated intraparticle mass transfer 

kinetics match satisfactory (within 3%) using Dintra = 7.3 × 10–6 cm2s–1 and dp = 5.0 × 10–5 m 

in both cases. As mentioned, this value for Dintra is obtained from the experimental data (Bintra  

= 11.52 s–1) [135] and is then used in the simulations to reconstruct diffusion-limited mass 

transfer. The results in Fig. 4.37 demonstrate that the semiempirical simulation procedure 

followed in this section works well, as does Eq. 4.84 in describing both data sets. 

Figure 4.38. Time-dependent longitudinal dispersion for flow through random packings of po  rous and

nonporous spheres.  In both cases dp = 34 µm, εinter = 0.37, Pe = 54 and Re = 0.13. 
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 ,        (4.85) 

 

where L is defined by Eq. 4.83. Figure 4.38 compares transient behavior at constant Pe (dp = 

es in the LB 

Thus, mass transfer in these spatially discrete stagnant zones (uniform spheres) has 

been adequately accounted for and allows us to focus now on its influence on longitudinal 

dispersion which we analyze by [133] 

 

( ) ( )∫=
t

'dt'tCtD
0

LL

C

50 µm, dc = 4.6 mm). In both experiment and simulation DL(t) for the nonporous particles 

reaches its asymptotic value (DL
*) in a much shorter time (after approximately 50 ms) than 

with the porous particles (ca. 160 ms). While we observe a good agreement between 

simulation and experiment concerning this time scale, DL
* itself is underestimated by the 

simulation in either case (by up to 25%). This effect seems to be systematic as it appears for 

packings of porous and non-porous particles and is probably caused by inaccuraci

Figure 4.39. Dependence of asymptotic longitudinal dispersion on Peclet number in fixed beds of porous

and nonporous particles (dp = 34 mm, dc = 4.6 mm). Liquid phase: water. The experimental

data in Figs. 4.38 and 4.39 were obtained with an accuracy of better than 5%. 
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fl eld (notice that the relative error in the hydraulic permeability, a measure of the flow 

resistance by the solid phase, is around 11%). Other possible explanations are related to the 

influence of the column wall confinin

ow fi

g the sphere packing [44], bead particles not being 

erfectly monodisperse (as evident from Fig. 2, cf. [135]), and the fact that the nonporous 

particles actually have small (micro)pores at the surface which contribute to a finite but small 

ldup. With the independently m intra p

an be identified as the most persistent contribution to transient dispersion in the random 

2

 Figure 4.39 compares the velocity dependence of asymptotic dispersion coefficients 

for random packings of porous and nonporous spheres in the range 0.1 < Pe < 100. When 

analyzing the dependence of DL
* on Pe we have to account for longitudinal diffusion, 

mechanical dispersion (Θm), the boundary layer mass transfer (Θb) and, of course, the 

intraparticle holdup (Θh ) [120, 128] 

 

 

p

particle ho easured D  and known d , intraparticle diffusion 

c

packing of porous spheres, i.e., the holdup dispersion mechanism reaches its long-time 

behavior after th = d p / 8Dintra [135]. For nonporous particles, on the other hand, we find a 

qualitative agreement between the corresponding time scale (about 50 ms, Fig. 4.38) and 

characteristic time for boundary-layer dispersion (tb = 40 ms) based on the nonlocal 

dispersion theory of Koch and Brady [129]. This transient behavior may be also due to 

mechanical dispersion [34, 123]. Further work is needed to resolve these contributions in 

macroscopically homogeneous beds of nonporous particles. 

=
m

L

D
D *

ϒ .     (4.86) 

 

For Pe → 0 DL
*/Dm approaches the packed beds tortuosity factor ϒ which represents the long-

time diffusion coefficient in the interconnected pore space. This value has been measured 

independently by PFG-NMR (without flow) and is subsequently used in the analysis. We then 

fitted the experimental data, DL vs Pe (Fig. 4.39), to Eq. 4.86 and the values of the parameters 

(ϒ, Θm, Θb, Θh) thus obtained are (0.51, 0.153 ± 9 × 10–3, 0.080 ± 5 × 10–3, 1.65 × 10–3 ± 2 × 

10–4) and (0.74, 0.144 ± 0.016, 0.101 ± 0.011, 0.020 ± 6 × 10–4)  for the packings of 

nonporous and porous spheres, respectively. The most striking feature of this analysis is the 

substantial difference in Θh characterizing holdup dispersion by more than one decade. 

Further, mechanical dispersion is very similar in both columns which were packed and 

consolidated by  

order as Θm = 0 n in random 

( ) 2
hbm ln PePePePe Θ+Θ+Θ+

 the same procedure. Values for Θm (0.153 and 0.144) are actually of the same

.25 reported by Maier et al. [123] for their simulation of dispersio
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packings of nonporous spheres, in the range 1 < Pe < 5000 and with εinter = 0.44. As has 

already been pointed out by these authors, values for Θb found in our work (0.08 and 0.101), 

together with their own value (0.03) suggest that boundary layer dispersion is much lower 

than predicted by the theory of Koch and Brady [128]. A possible explanation for this 

discrepancy may be found in the significantly different porosities considered in that theory, on 

one hand, and the simulations and experiment on the other. Even the relatively small 

difference in particle volume fractions of the systems used by Maier et al. [123] (εinter = 0.44 ) 

and in this work ((εinter = 0.37 ) may contribute significantly to the observed differences in Θm 

and Θb.  

To conclude, the present work combines experimental and numerical elements to 

differentiate between dispersion mechanisms that originate in stagnant and flowing regions of 

a macroscopically homogeneous porous medium. The numerical simulations employ a 

semiempirical hierarchical model with a single free parameter to cope with the large variety 

of temporal and spatial scales. The results are in good agreement with our experimental data 

diffusive time of this nonmechanical contribution. These 

ndings also suggest that holdup dispersion in porous media may be more important than 

ssumed in ma  cases [120, 131, 132]. One of t

relative importance of mechanical and nonmechanical dispersion mechanisms when the 

eterogeneity length scale is increased, e.g., in a confined random sphere packing with 

and clearly demonstrate the dominating contribution of liquid holdup to transient (Fig. 4.38) 

and asymptotic (Fig. 4.39) longitudinal dispersion in a random packing of porous spheres 

with column-to-particle diameter ratio above 100. Persistent effects due to flow field 

nonuniformities were not identified which suggests that characteristic times for mechanical 

dispersion are short compared to the 

fi

a ny he remaining challenges is to characterize the 

h

smaller column-to-particle diameter ratio. Then, the macroscopic flow profile may start to 

dominate dispersion and prevent an observation of Gaussian residence-time distributions [44]. 

4.4.3. Numerical simulation of electroosmotic flow in porous media 

Theoretical approaches 

Capillary electrochromatography (CEC) is a high-performance liquid chromatographic 

(HPLC) separation technique that employs packed capillary columns and an applied electric 

field to drive the mobile phase by electroosmotic flow. The use of high electric fields instead 

of the high column inlet pressure utilized traditionally in HPLC allows to realize capillary 

columns packed with very small particles and flow rates that would require a prohibitively 

high pressure drop in HPLC. In order to exploit this advantage of CEC, control and 
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optimisation of electrochromatographic conditions are of great importance. As it has been 

mentioned above, even an incomplete theoretical description of the EOF and the 

accompanying mass transport requires the solution for the coupled Navier-Stokes, Nernst-

Planck, and Poisson equations, a daunting task for porous media with their tangled pore 

networks. Therefore, in the majority of cases the original problem of the EOF through porous 

media is replaced by a simplified one, where the fluid flow is assumed to be generated by the 

network compounded of “primary pores”, i.e., microchannels with a geometry that allows to 

get an analytical sol on for the EOF through the pore space. As such a “primary pore” a flat 

solid-liqu

uti

id interface or tubular channel is most frequently employed (see, e.g. [158-160], 

although other geometries were also investigated [161].  

Let us consider a random-close packing of spherical-shaped, solid and dielectric (i.e., 

impermeable and nonconducting) particles with a uniform distribution of the ζ-potential at 

their external surface and an EDL thickness λD much smaller than the particle diameter dp. In 

this thin EDL limit (dp/λD » 1) the average EOF velocity through a column of volume V is 

obtained by integration over the interparticle bed volume Vv [162] 

 

∫∫ η
ζεε

−==〉〈
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Evv ,     (4.87) 

 

where veo is the local slip velocity along the particles surface just outside the thin EDL which 

results from the lines of force (in the EDL) due to interaction of the electrical field of local 

strength Φext −∇=E with a locally charged fluid and defined by the Helmholtz-

Smoluchowski equation (Eq. 4.36). Because the incompressible flows of electricity and fluid 

are parallel and proportional to each other at the solid-liquid interface, Eq. 4.87 is supposed to 

hold also throughout the whole liquid phase [163]. For the macroscopic electrical current 

 

density we have 
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where σ∞ is the conductivity of the equilibrium electrolyte beyond the EDL and σ* stands for 

the conductivity of the packed column. By combining Eqs. 4.87 and 4.88 we obtain 
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Thus, the EOF velocity averaged over the column cross-section can be expressed by means of 

the conductivity ratio σ*/σ∞ which becomes accessible experimentally via conductivities of a 

packed column and an identical, but open tube saturated with the same electrolyte solution. 

The above model (Overbeek’s model) is valid for beds of nonporous (and porous) particles 

with arbitrary shape and size distribution. 

Though the aforementioned approach is valid for beds of nonporous (and porous) 

particles with arbitrary shape and size distribution, may involve a pore diameter distribution 

and provides a sufficiently accurate approximation for the averaged velocity of the EOF, it 

does not provide any information on velocity profiles or velocity distributions which is of the 

utmost importance for an evaluation of hydrodynamic dispersion in porous media.    

  

Numerical approaches 

As it was mentioned above, the analytical resolution for the electroosmotic flow and 

associated transport phenomena in porous media, in particular concerning packed 

chromatographic columns, is impossible, excep

under an extensive set of assumptions. Therefore, up to date the numerical solution or 

numerical simulation of electroosmotic flow in porous media is frequently the only way to 

 concerning 

ovides an aspect ratio dc/λD ≈ 15000. Then, the use of a uniform 

omputational grid based on the lattice space ∆x = λD (which cannot generally guarantee  high 

umerical accuracy) requires a numerical treatment of about 2 × 108 grid oints r two 

transversal dimensions (relative to the mean EOF direction). Since frequently the asymptotic 

ehaviour of the dispersion is of interest, the longitudinal dimension of the simulated domain 

t for a simplified formulation of this problem 

obtain detailed a priori information on relevant phenomena. However, numerical simulations 

of the EOF and associated transport phenomena in actual porous structures are often very 

extensive computational time. This fact is mainly caused by the difference in the 

length scales based on the EDL thickness and characteristic length of actual porous media. 

For an illustration, consider a typical chromatographic column of 150 µm i.d. filled with a 

1 mM aqueous electrolyte solution. The corresponding EDL thickness λD is approximately 

10 nm which pr

c

n  p  only fo

b

will be determined by the mean displacement due to the EOF, ∆l = eov ∆t during time ∆t 

which corresponds to a mean diffusion displacement across the whole column, ∆ldiff = 
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, where Dm is the diffusion coefficient. −9 2tD ∆m2 Assuming Dm = 2.25 × 10  m /s,  eov  = 

0.2 mm/s and ∆ldiff = 150 µm, the simple calculation results in ∆l = 1.0 mm or (in terms of the 

putational grid) 106 points. It is obvious, that a numerical solution of the problem with a  

istinctly decreases for porous media with  ramified 

morpho

the latter 

is more applicable to simulation of the transient behaviour in evolving systems.  

 to reduce the total computational expenses is to eliminate from the 

simulat

com

computational grid consisting of 1014 points is unrealistic even for high-performance 

computers. The use of nonuniform computational grids with finer resolution in the EDL, 

where large gradients in physical quantities exist, and coarser resolution in bulk fluid regions, 

where those quantities vary much more slowly, can reduce the total computational expenses. 

However, the efficiency of this approach d

logy and relatively large surface-to-volume ratio. Therefore, modern numerical 

simulations of the EOF through porous media are still confronted with the following 

dilemma: whether to restrict the simulated domain, but obtain a more detailed and accurate 

solution; or to sacrifice accuracy, but resolve the problem at both bigger spatial and temporal 

domains. The former approach is usually applied to steady-state simulations, while 

One of the ways

ion the length scale associated with the EDL thickness. This can be carried out by 

dividing the flow field into two regions, the “inner” region comprising flow within the EDL 

adjacent to the solid-liquid interface and the “outer” region beyond the EDL [20]. It can be 

shown by an order of magnitude analysis [20, 85] that under the assumptions of a thin double 

layer and uniform ζ-potential, the EOF in arbitrary shaped microchannels can be presented by 

the flow in an “outer” region and by the slip boundary conditions at the shear plane expressed 

by the “local” Helmholtz-Smouluchowski equation (Eq. 4.36). This approach assumes the 

“inner” region be locally flat, with the dominating viscous drag force and electrostatic body 

force associated with electrical charges at the solid surface. In the same time, the “outer” 

region is characterized by a domination of inertial and pressure forces. This allows to 

decouple completely the electrostatic and hydrodynamic problems for the “outer” region, 

except for the slip velocity at the shear plane. It is obvious, that the accuracy of the above 

approach is determined by the validity of  the flow division into two regions and depends on 

the aspect ratios between different length scales. It can be shown that in the two-dimensional 

channel with hydraulic diameter d the following approximate conditions provide an accuracy 

of the slip velocity model for the EOF within 2% [20]: d/λD > 103; Red (the Reynolds number 

based on d) < 10; ∆x > 4λD.  
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The aforementioned approach was realized for numerical simulations of EOF in 

porous media. In particular, below we present the results of simulations concerned with EOF 

in random packings of spherical particles confined by a cylindrical container. 

  

Computer simulation of EOF through confined random packings   

Three random packings of uniform spheres of dimensionless diameter d  = 1 with the 

same average porosity ε = 0.40 and identical geometrical dimensions, d  = 10d  and height H 

= 5d , were generated by the algorithm described above (see Section 4.4.1) using three 

different configurations of the start points. The periodic boundary condition along the axial 

direction was imposed. In Figure 4.40 the top views (i.e. the views directed along the 

container axis) of all packings are shown. 

The structures of the packings were analysed by the corresponding radial porosity 

distribution functions (Fig. 4.41). It should be pointed out that Packing 3 possesses a more 

ordered structure near the wall than the others two, but this fact can be explaine

p

c p

p

d exclusively 

with the random nature of the generating algorithm. The generated packings were discretised 

by a three-dimensional uniform grid with a resolution of β = dp/∆x = 40. Then, it was 

supposed that the interparticle space is filled with the electrolyte solution. In order to satisfy 

the thin double layer assumption, the aspect ratio dp/λD was chosen to be 1000, with λD = 

10 nm (c = 1 mM), dp = 10 µm and dc = 100 µm. Further, for each spatial matrix the Laplace 

Figure 4.40. Top views of the generated cylindrical random packings (from left to right: Packing 1,

Packing 2, and Packing 3). The interparticle porosity of packings is 0.40, height H = 5dp

and diameter dc=10dp, where dp is the diameter of particles consisting the packings. 
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equation was solved subject to the following boundary conditions: a perfectly insulating solid-

liquid interface (including the container wall) and the periodic condition along the axial 

direction 

[ ] HEext=Φ , 

where [|Φ|] denotes the potential difference between two opposite points lying at the “top” 

and “bottom” boundaries. The calculated distribution of the electrical potential was used to 

determine the local electric field and slip velocity at the solid-liquid interface by Eq. 4.36. 

Finally, the slip velocity distribution was incorporated into the solution for the Navier-Stokes 

equation as boundary condition. The complete simulation of the EOF was repeated for each 

packing for four values of the electric field, Eext = 10, 25, 50, and 100 kV/m, which was 

applied along the axial direction. The ζ-potential is assumed to be uniformly distributed at the 

particles surface. The dielectric constant, viscosity and temperature of the liquid phase, were 

80, 8.9 × 10−7 m2/s and 297 K, respectively.  
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Figure 4.41.  R iadial porosity distribution functions for the three random packings of spheres presented n

Figure 4.37. 
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In Figure 4.42 the dependence of the average axial EOF velocity eov  on the applied 

electric field is shown for all packings and ζ = 50 mV. All three structures demonstrate a 

similar, linear dependence of the mean EOF velocity on the electric field strength. This agrees 

with Overbeek’s model (Eq. 4.89) that implies the following proportionality coefficient 

relating the mean EOF velocity and electric field 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

σ
σ

η
ζεε

−==µ
∞

*
r0

ext
eo

v
E

,      (4.90) 

The conductivity ratio (σ

eo

*/σ∞) for packed chromatographic columns it is approximately 0.3 

[164], whence Eq. 4.90 results in µeo = 1.195 × 10–5 m2/Vs. The simulated EOF data give µeo 

= 1.333 × 10–5, 1.289 × 10–5, and 1.135 × 10–5 m2/Vs for Packing 1, 2, and 3, respectively, 

demonstrating good agreement with the theoretical approach. The difference in µeo obtained 

for different packings can be explained by their statistical nature. It should be pointed out that 

Figure 4.42.  he average axial EOF velocity for Packings 1, 2, and 3 as a function of the applied electric

eld. ζ = 50 mV

T

fi , εr = 80, η = 8.9×10−7 m2/s and T = 297 K.  
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Packin

ping toward positive values), Packing 3 can be 

again distinguished by its specificity in the velocity distribution near zero. While for both Packing 1 

and 2 the most probable value of the velocity is very close to zero, the mode of the velocity 

distribution for Packing 3 is shifted to

packings the negative velocities represent a noticeable fraction in the general distributions.  

local n

histogram does not vary with chang  the e tr  field strength from 10 to 50 kV/m which 

loci

g 3 which is characterized as the most ordered structure (see Fig. 4.41) provides the 

smallest mean velocity.  

 Figure 4.43 shows histograms for the axial velocity distributions in the three packings. 

Though all of the structures generate similar velocity distributions (unimodal, with sharp left edges 

in direction toward negative values and gradual dam

ward higher velocity. It should be noted that in all three 

A linear dependence of the mean velocity on the applied electric field is also preserved for 

all values of the  velocity. Figure 4.44 demonstrates that the shape of the velocity distributio  

es in lec ic

results only in a corresponding rescaling of the ve ty axis (in this case, by factor of 5).  

Figure 4. 1 (top), Packing 2 (middle), an43. Axial velocity distribution histograms for Packing d

Packing 3 (bottom).   
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Figure 4.44. Velocity distribution histograms for Packing 3 with an electric field, Eext of 10 (top) and 

50 (bottom) kV/m. 
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It should be noted that all of the aforementioned differences in the velocity fields 

corresponding to the different packings (especially with respect to Packing 3) have a 

stochastic character related to the random nature of the packings. The possible increase of the 

axial dimension of the random packings will reduce variations in their mean characteristics 

due to more satisfactory averaging. In contrast, the local inhomogeneity is an inherent 

property of random packings which does not disappear with an increasing size of the porous 

medium. As it has been mentioned above, the presented numerical approach gives the 

possibility to obtain complete information concerning the velocity distribution. This 

capability is illustrated by Figure 4.45 which shows a colour map of the velocity profile for a 

slice located in the middle (with respect to the height) of Packing 1. It is interesting to note 

the small dark region in the upper-left quarter of the map that corresponds to negative velocity 

in the interfacial void formed by three particles. This fact indicates that, in contrast to the 

electric field, the velocity field in a porous medium can show a non-zero vorticity. The 

vorticity can originate in the morphological complexity of porous media. It is evident that, 

although the overall velocity distribution is nonuniform, regions near the wall are 

characterized, in general, by higher velocity (light-yellow colours) than the bulk region (dark-

red c s f  

locally more permeable structure of random packings in proximity to the confining wall 

olours). Thi act is directly related to the local porosity distribution, which indicates a
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Figure 4.45. Colour map of the axial velocity profile for the half-height slice of Packing 1.  

Eext = 100 kV/m. 

(Fig. 4.41). The increased permeability of this region results in a local decrease of its 

hydrodynamic resistance and an increase of the axial component of the local electric field. 

Both effects lead to a local velocity augmentation. 

Our simulation results obtained with the presented approach confirm the general 

opinion that in confined random packings an additional source of fluid dispersion can arise 

due to fluctuations in packing density and permeability caused, in particular, by the structural 

inhomogeneity of regions close to the wall. This phenomenon can significantly reduce the 

separation efficiency achievable with packed chromatographic columns due to the engendered 

additional dispersion. One of the possible ways to attenuate this undesirable effect is the use 

of packed columns of particles with nonuniform size distributions, when smaller particles 

better fill the voids between larger ones, thereby reducing the amplitudes of local density 

fluctuations across whole column cross-sectional area. 
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Chapter 5 

Summary and conclusion 

 In this work, the great potential of numerical simulations for the study of mass 

transport in electrochromatographic systems has been demonstrated. The problem of the 

electroosmotic flow and associated transport is a very complicated one from the mathematical 

point of view. Its complexity originates, first of all, in the interdependence of various 

phenomena of different nature which define jointly temporal and spatial variations in 

electrokinetic systems. In addition, actual chromatographic columns possess a very intricate 

morphology, that is engendered by the porous structure of the adsorbent materials, such as a 

packing of (porous) particles or monolithic porous media. These circumstances frequently 

mean that the problem of mass transport in an electrokinetic system cannot, in principle, be 

solved analytically and numerical solution is the only way to obtain information on the system 

without direct experimental measurements. 

 The numerical approach presented in this Ph.D. thesis combines the coupled numerical 

treatment of the Poisson and Nernst-Planck problems by traditional finite-difference 

techniques, as well as the Navier-Stokes problem by the relatively novel lattice-Boltzmann 

equation (LBE) method. The latter presents an alternative, yet promising method in the 

computational fluid dynamics (CFD). It has emerged with the promise to become a superior 

modelling approach, both computationally and conceptually as compared to the existing 

arsenal of continuum-based CFD methods. The lattice-Boltzmann equation method has been 

used successfully to simulate various problems including multiphase and turbulent flow, 

colloidal suspensions, magnetohydrodynamics, etc. Among the principal advantages of this 

method are the possibility to easily treat geometrically complex boundaries and its inherent 

parallelism, which allows to implement the codes at modern (high-performance) parallel 

computers.  

In this thesis the development and use of the LBE method for microfluidic 

electrohydrodynamics is presented. The electromotive forces originating in interactions of the 

external electric field with ions in a liquid are incorporated in the hydrodynamic problem and 

determine the flow velocity field. Since the charge distribution in a liquid depends, in turn, on 
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the fluid flow, the problem was solved through a numerical iterative procedure which, in 

general, includes the solution for the Poisson, Nernst-Planck, and Navier-Stokes equations. 

The developed approach has been applied to the original simulation of various electrokinetic 

problems taking place in actual electrochromatographic and microfluidic systems. In this 

thesis the results of the following problem simulations are presented and discussed:   

¾ EOF in a straight open capillary with nonuniform distribution of the ζ-potential; 

¾ EOF in slit microchannels with nonuniform surface charge density which depends 

on the local chemical environment; 

¾ EOF through a simple cubic array of spherical particles; 

¾ Hydrodynamic dispersion in random-close packings of porous particles; 

¾ EOF through confined random packings of spherical nonporous particles. 

In each case, the primary simulated data for a simplified or approximated problem were, first 

and foremost, compared to the published one and good agreement has been found. Then, the 

presented approach has been applied to the simulation of more complex problems. The 

obtained results help to get a detailed insight into hydrodynamic processes taking place during 

the electrochromatographic separation, as well as to control existing processes and to improve 

the design of electrochromatographic systems.    

One question may occur to the reader: “Why did not you simulate EOF and dispersion 

in a confined random packing of particles with the nonuniform ζ-potential or surface charge 

density that both depend on the local chemical environment? It is the most general case.” Yes, 

it is true. However, there is no ideal computational method and each approach has advantages 

and limitations for a certain class of problems. Actual electrokinetic systems are characterized 

by different time and length scales of relevant phenomena. The distribution of the electrical 

charge and potential within the EDL occurs over a distance of the order of 10 nm from the 

solid surface, while the typical axial displacement due to fluid flow requiring to reach the 

asymptotic dispersion is of the order of 1 mm. These large differences in length scales 

involving the simulation makes unrealistic the implementation of a numerical model even 

with modern high-performance computers. Therefore, in each particular case and problem the 

following dilemma was considered: whether to choose a fine computational resolution and 

obtain good accuracy at the small length scale associated with the EDL thickness, or to carry 

out the simulation with a coarser computational grid, with larger inaccuracy, but to be able to 

cover a larger region of the investigated system.  
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The development of the presented approach in a direction toward the combination of 

high computational accuracy and the ability to perform large-scale simulations is one of the 

keys to improve the approach. Another development direction is the incorporation of the 

solution for the Nernst-Planck equation into the LBE algorithm to reduce the computational 

time expenses. Finally, the presented numerical model can be improved for the transition to 

nanoscale microfluidic simulations, when the continuum approach is not valid any longer. 

Such length scale seems to become typical for a number of porous media employed in modern 

electrochromatographic systems using fixed particulate or monolithic beds, as well as open-

channel structures or chip devices. 

In summary, the application of numerical methods to investigate the hydrodynamic 

aspects and transport phenomena in (electro)chromatographic systems was proved very 

successful. The electroosmotic flow and associated mass transport in various microfluidic 

systems were studied and a number of relevant results were obtained. The work in immediate 

future will be focused on several topics that were not treated in this thesis. In particular, the 

analysis of the velocity distribution will be carried out for EOF through confined random 

packings with various particle size distributions and the effects on resulting hydrodynamic 

dispersion be evaluated. 
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Resume 

 The main goal of this Ph.D. thesis was the development of an advanced numerical 

approach to simulate mass transport in microfluidic electrokinetic systems. Understanding of 

the electrokinetic aspects of mass transport in microfluidic systems has a great importance for 

a relatively new technique in separation science: capillary and microchip 

electrochromatography. This technique combines the advantages of high-performance liquid 

chromatography and capillary electrophoresis. Capillary electrochromatography uses the 

electroosmotic flow generated by a high, external voltage applied to drive the liquid phase 

through a porous medium. The general mathematical formulation of the problem of the 

electroosmotic flow includes the description of various phenomena of different nature: 

hydrodynamics, electrostatics, ion transport, adsorption and dissociation. In addition, actual 

microfluidic systems employed in electrochromatography demonstrate frequently the 

extremely intricate morphology associated with their porous structure impeding the numerical 

treatment.  

 In this work, the electroosmotic flow is modelled by the iterative numerical solution of 

the coupled Poisson, Nernst-Planck, and Navier-Stokes equations. In order to realize a 

computational time required for large-scale simulations of mass transport in actual 

electrochromatographic systems, the developed numerical model was implemented at a 

parallel high-performance computer and then used to simulate various electrokinetic 

problems. 

 Chapter 2 contains a brief general theoretical description of mass transport problems in 

polar liquids, which are typical for applications in electrochromatographic analysis. The 

behaviour of such liquids can drastically change when an external electric field is applied due 

to the presence of the electrical double layer at the solid-liquid interface. 

 Chapter 3 describes mainly the lattice-Boltzmann formalism, an alternative approach 

in computational fluid dynamics, which allows easily to treat geometrically complex 

boundaries and which is inherently parallel. In this approach the fluid is modelled by particles 

moving on a regular lattice. At each time step the particles propagate to neighbouring lattice 

points and re-distribute their velocities in a local collision phase. This method is extended to  

electrohydrodynamic problems by incorporating in the model the Lorentz force arising from 

the interaction of electrical charges in the liquid with the applied electric field. 
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 In Chapter 4 the results of a number of simulations concerning various aspects of 

microfluidic electrokinetics are presented and discussed. They follow the description of the 

algorithm employed for the computer generation of confined random packings of spherical 

particles. That algorithm is based on an improved Jodrey-Tory procedure and allows to 

generate fixed beds of spheres with an arbitrary size distribution confined by an arbitrary 

container, as well as with periodic boundaries. The random sphere packings are further used  

as a model of particulate packed chromatographic columns. 

 The presented numerical approach allows to obtain complete information concerning 

the spatial distribution in a modelled system of the flow velocity, electrical potential and 

species concentrations. In particular, the developed approach permits to evaluate the error 

related to the application of the apparent slip velocity boundary conditions to quantify 

differences between velocity fields obtained under different approximations concerning 

electrical boundary conditions, to study the effect of local variations in the chemical 

environment (caused by convection) on the surface charge density and final flow velocity 

field, to investigate the relation between the electroosmotic flow velocity and parameters of 

an electrokinetic system, such as the ζ-potential, solution concentration and applied electric 

field. In addition, the presented approach can be used to investigate the transient behaviour of 

simulated systems, such as the transient hydrodynamic dispersion in packed beds.  



Zusammenfassung 

 Das Hauptanliegen der Dissertation bestand in der Entwicklung und Implementierung 

eines sehr leistungsfähigen Ansatzes zur numerischen Simulation der Fluiddynamik und des 

Massentransports in komplexen porösen Materialien wie partikulären Festbetten oder (Chip-) 

Kanalstrukturen, mit besonderem Augenmerk auf der Elektrokinetik in mikrofluidischen 

Systemen. Lokal und makroskopisch wirkende elektrische Felder sind für eine ganze Reihe 

von heutzutage wichtigen Transportprozessen in porösen Materialien (etwa beim 

Ionenaustausch, der Elektrophorese, Sedimentation, Filtration/Pressung, Rheologie 

konzentrierter Suspensionen oder Elektroosmose) von sehr großer, wenn nicht gar essentieller 

Bedeutung. Sei es, daß interne elektrische Potentialverläufe in Festbetten aus porösen 

Partikeln die Permselektivität und Retention von geladenen Analyten beeinflussen (z.B. in der 

Nanofiltration genutzt), oder aber extern angelegte elektrische Felder gezielt eingesetzt 

werden, um effizienten Transport von flüssiger Phase und Analyten durch sehr feine Poren 

(z.B. in den Mikrofluidik-Strukturen oder wenig permeablen konsolidierten natürlichen 

Materialien) zu bewirken: Das unter Umständen nicht-lineare, dynamische Wechselspiel aus 

Adsorption geladener Analyten an geladenen Grenzflächen im internen und ggfs. 

überlagerten, externen elektrischen Potentialgradienten mit lokal resultierendem und 

veränderlichem Transport gestaltet sich äußerst komplex und ist noch nicht ausreichend 

verstanden, um auf der Basis momentanen Wissens die entkoppelte Optimierung der 

einzelnen Parameter (wie Diffusion, Konvektion, Adsorption oder Elektrokinetik) 

systematisch zu betreiben. Insbesondere ist eine Entflechtung der Transportphänomene und 

selektive Untersuchung von einzelnen Beiträgen bei kostspieligen präparativen Verfahren im 

downstream-processing oder bei auf Effizienz angewiesenen Analysen von Geringstmengen 

in der Bioanalytik erforderlich. 

Das Verständnis elektrostatischer und elektrokinetischer Aspekte des Stofftransports 

in mikrofluidischen Strukturen und Festbetten hat besonders große Bedeutung für eine relativ 

junge analytische Trenntechnik, die Kapillarelektrochromatographie (KEC). Sie vereinigt die 

Vorteile der Hochleistungsflüssigkeitschromatographie und Kapillarelektrophorese. Anfang 

der 90‘er Jahre sind zahlreiche Publikationen zur KEC erschienen, die diesem Hybrid 

zwischen Kapillarelektrophorese und mikro-HPLC außerordentliche und, verglichen mit der 

klassischen HPLC, stark verbesserte Trennleistungen bescheinigten. In der KEC wird der 
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Eluent (eine Pufferlösung) durch das Anlegen hoher elektrischer Felder (bis 100 kV/m) durch 

Kapillarsäulen (Innendurchmesser: 75-250 µm) bewegt, die mit kleinen, porösen Teilchen 

(Durchmesser 3-10 µm) gepackt sind. Ein für Trennungen attraktives Merkmal des erzeugten 

elektroosmotischen Flusses (EOF) ist die Tatsache, daß die Geschwindigkeiten im 

Zwischenkornvolumen, in Anlehnung an die Charakteristik des EOFs in ungepackten 

zylindrischen Kapillaren, weitgehend konstant sind (plug-flow-Verhalten, kaum Eddy-

Diffusion). Es bietet sich an, diesen Vorteil in Verbindung mit der Retentionsvielfalt der für 

die HPLC entwickelten und bereits ausgiebig charakterisierten stationären Phasen zu nutzen. 

Die allgemeine mathematische Formulierung des Transports durch den EOF schließt die 

Beschreibung von Phänomenen unterschiedlicher Natur ein wie Hydrodynamik, Elektrostatik, 

Ionentransport, Adsorption und Stofftrennung, etc. Außerdem kommt für eine realitätsnahe 

Beschreibung der Elektrokinetik in porösen Materialien die oft äußerst komplexe 

Morphologie dieser Systeme als erschwerender Faktor hinzu. 

 In dieser Arbeit wird der elektroosmotische Fluss in einfachen Kanalstrukturen und 

Festbetten aus sphärischen Partikeln durch die numerische Lösung der gekoppelten Poisson-, 

Nernst-Planck- und Navier-Stokes-Gleichungen modelliert. Um zu vertretbaren Rechenzeiten 

für die großangelegte Simulation des Massentransports in realen elektrochromatographischen 

Systemen zu gelangen, wurde das entwickelte numerische Modell an einem parallelen 

Hochleistungsrechner implementiert und dann verwendet, um gezielt ausgewählte 

elektrokinetische Probleme von großer Reichweite zu bearbeiten. 

Kapitel 2 enthält eine kurze, allgemein gehaltene theoretische Beschreibung des 

Massentransports in polaren Flüssigkeiten, die für die weitere Betrachtung von 

elektrochromatographischen Systemen notwendig ist. Das hydrodynamische Verhalten 

derartiger Flüssigkeit kann sich wesentlich ändern, wenn ein externes elektrisches Feld auf die 

lösungsseitige Region der elektrischen Doppelschicht an der fest-flüssig Phasengrenze 

einwirkt und dadurch dann elektrokinetischen Fluß in dem System induziert. Die 

Hydrodynamik hängt stark ab von den physiko-chemischen Eigenschaften der Oberfläche und 

Elektrolytlösung. 

Kapitel 3 beschreibt hauptsächlich den lattice-Boltzmann Formalismus, der eine 

vielversprechende Alternative (basierend auf einem von Natur aus parallelen Algorithmus) für 

die Modellierung von rechenintensiver Hydrodynamik, insbesondere in sehr komplexen 

Geometrien, darstellt. Beim lattice-Boltzmann Verfahren wird die Flüssigkeit durch diskrete 

Partikel modelliert, die sich (im mesoskopischen Sinne) auf einem regelmäßigen Gitter 

befinden. Sie bewegen sich schrittweise auf benachbarte Gitterpunkte zu und verteilen Impuls 
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und ihre Geschwindigkeiten in einer lokalen Kollisionsphase neu, um damit auf 

makroskopischer Ebene den Navier-Stokes-Gleichen zu gehorchen. Die Methode wird durch 

Berücksichtigung der Lorentzkraft, welche die Wechselwirkung von elektrischer Raumladung 

in der Flüssigkeit mit dem externen elektrischen Feld beschreibt, auf elektrohydrodynamische 

Probleme erweitert. 

 Im Kapitel 4 werden die Ergebnisse mehrerer Simulationen bezüglich verschiedener 

Aspekte einer mikrofluidischen Elektrokinetik präsentiert und analysiert. Für die betrachteten 

Festbetten basieren die Ergebnisse auf einem Algorithmus, der es erlaubt, statistisch dichte 

Packungen von kugelförmigen Partikeln zu erzeugen. Er beruht auf dem verbesserten Jodrey-

Tory Algorithmus und erlaubt, diese Packungen in beliebig geformten Behältern für beliebige 

Säulen/Partikel-Durchmesserverhältnisse zu generieren. Die zufälligen Packungen von 

kugelförmigen Partikeln werden als Modell für reale Festbetten z.B. in chromatographischen 

Säulen betrachtet. In diesen Geometrien werden dann transiente und stationäre Dispersion 

simuliert und analysiert, wobei die Porosität der Kugeln selbst im Vordergrund steht, sowie 

der Unterschied zwischen hydraulischem und elektroosmotischem Fluß. 

Der entwickelte numerische Ansatz erlaubt es, quantitative Information bezüglich der 

räumlichen Verteilung des elektrischen Potentials, Fließgeschwindigkeit und Konzentrationen 

der Elektrolyten zu erhalten. Insbesondere ermöglicht das präsentierte Modell, den mit der 

Annahme von Slip-Geschwindigkeiten verbundenen Fehler und Unterschiede in den 

Geschwindigkeitsfeldern zu quantifizieren, die auf verschiedenen Annahmen elektrischer 

Randbedingungen beruhen, sowie die Wirkung lokaler Variation in physiko-chemischen 

Eigenschaften der Oberfläche (z.B. durch Konvektion verursacht) auf die 

Oberflächenladungsdichte und das resultierende Geschwindigkeitsfeld (inklusive dispersiver 

Effekte) zu analysieren, oder aber die Beziehung zwischen (lokalem und volumetrischem) 

EOF und elektrokinetischen Systemparametern wie zeta-Potential, Elektrolytkonzentration 

und dem angelegten elektrischen Feld systematisch zu herauszuarbeiten. Außerdem ist der in 

dieser Arbeit vorgestellte numerische Ansatz sehr geeignet für die Untersuchung des 

transienten Verhaltens (z.B. einzelner Dispersionsbeiträge) in mikrofluidischen Kanal- und 

Festbettstrukturen, gerade im Zusammenhang mit einer elektrischen Doppelschicht unter 

nicht-Gleichgewichtsbedingungen. 
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