

A Middleware for
Cooperating Mobile Embedded Systems

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von: Diplom-Informatiker Stefan Schemmer
geb. am 8. Oktober 1973 in Koblenz

Gutachter:
Prof. Dr. Edgar Nett
Prof. Dr. Jörg Kaiser

Prof. Dr. Andrea Bondavalli

Ort und Datum des Promotionskolloquiums Magdeburg, 12. Oktober 2004

Zusammenfassung
Die Kooperation mobiler eingebetteter Systeme eröffnet ein Spektrum neuer, vielversprechender Anwen-
dungen in Gebieten wie der industriellen Automatisierung, Logistik, Telematik, und Team Robotik. Solche
Applikationen unterliegen aufgrund der physikalischen Interaktionen zwischen den mobilen Systemen und
ihrer Umwelt Echtzeitanforderungen. Eine zeitlich vorhersagbare Kooperation ist allerdings nicht ohne wei-
teres zu erreichen. Zum einen hängen die Ausführungszeiten lokaler Aufgaben und die Zuverlässigkeit des
Kommunikationsmediums von der dynamisch sich ändernden Umwelt ab und können daher kaum vorherge-
sagt werden. Zum anderen besteht ein inhärenter Tradeoff zwischen einer effizienten Kooperation einerseits
und der Autonomie der kooperierenden Systeme andererseits. Die Abhängigkeiten unter den Aktionen der
mobilen Systeme können zu komplexen Interaktionen zur Laufzeit und damit zu einem schwer analysier-
und vorhersagbaren Verhalten führen.

In dieser Arbeit wird eine Middleware vorgestellt, die Anwendungsentwickler bei der Lösung der oben ge-
nannten Probleme unterstützt. Auf den beiden unteren Schichten bietet sie Dienste zur zeitlich vorhersagba-
ren Multicast-Kommunikation und Ausführung lokaler Aufgaben. Beide Dienste greifen dabei nicht auf
Worst-Case-Annahmen zurück. Um den inhärenten Tradeoff zwischen Kooperation und Autonomie aufzulö-
sen und ein zeitlich vorhersagbares Verhalten auch auf der Ebene der kooperativen Anwendung zu erreichen,
stellen die beiden oberen Schichten der Middleware koordinierte, gemeinsame Sichten für die Applikation
zur Verfügung. Auf Grundlage dieser gemeinsamen Sichten entscheiden die mobilen Systeme lokal über ihr
Verhalten, so dass auf der Applikationsebene eine Koordinierung zur Laufzeit nicht erforderlich ist. Die
gemeinsamen Sichten beziehen sich auf applikationsunabhängige Aspekte des Kontrollsystems, wie etwa die
Gruppenmitgliedschaft, und eher applikationsspezifische Aspekte des kontrollierten Systems, wie etwa die
Position und Geschwindigkeit der mobilen Systeme. Zwei Applikationenszenarien dienten als Leitfaden des
Designs und wurden prototypisch realisiert. Im ersten Szenario koordiniert eine Gruppe mobiler Systeme
ihre Geschwindigkeiten, um einen kollisionsfreien und effizienten Zugriff auf eine räumliche Ressource zu
realisieren, im zweiten fusionieren die Systeme ihre Sensordaten, um eine vollständigere und genauere
Wahrnehmung ihrer Umgebung zu erreichen. Während der erste Prototyp demonstriert wie sich basierend
auf gemeinsamen Sichten ein koordiniertes Verhalten auch mit lokalen Entscheidungen auf der Applikati-
onsebene erreichen lässt, verdeutlicht der zweite Prototyp wie ein zeitlich vorhersagbares Verhalten auch
unter hohen und variable Lasten erreicht werden kann.

Abstract
The cooperation of mobile embedded systems gives rise to new and promising applications in fields such as
industrial automation, logistics, telematics, and team robotics. Such applications are subject to real-time
constraints due to the physical interactions between the mobile systems and their environment. Achieving a
timely predictable cooperation, however, is a challenging task. The execution times of the tasks and the reli-
ability of the communication links depend on the dynamically changing environment and are hence hard to
predict. Moreover, there is an inherent tradeoff between an efficient cooperation and the autonomy of the
mobile systems. Managing the interdependencies between the actions of the mobile systems may result in
complex runtime interactions, thus rendering the timing behavior of the application hard to analyze and pre-
dict, even if the underling services are timely.

In this thesis, we present a middleware supporting the application designers in overcoming the above-
mentioned challenges. On the two lower layers, it provides timely predictable multicast communication and
task execution. Both service are not based on worst-case assumptions. To resolve the cooperation / autonomy
tradeoff and achieve a timely predictable behavior on the level of the cooperative application too, the two
upper layers of the middleware provide common views to the application. Based on these common views, the
mobile systems decide about their actions locally so that runtime coordination in the application can be
avoided. Common views are available for application-independent aspects of the control system, like group
membership, as well as for more the application-specific aspects of the controlled system, such as position
and speed of the mobile systems. Two application scenarios guided the design of the middleware and have
been implemented as prototypes. In the first scenario, a group of mobile systems coordinate their velocities

 i

to achieve collision-free and efficient access to a shared spatial resource; in the second, the systems fuse their
local sensor data to accomplish a more complete and accurate perception of their environment. While the
first prototype shows how a coordinated behavior can be achieved with local decisions on the application
level basing on the common views the middleware provides, the second demonstrates how a timely predict-
able behavior can be achieved even under a high and variable processing load.

 ii

Acknowledgements

I am pleased to have the opportunity to say thank you to at least part of the people who
contributed so much the completion of this thesis. First of all, I would like to thank Prof.
Dr. Edgar Nett. In many fruitful and inspiring discussions, he not only significantly influ-
enced the work presented herein, but also my way of working and thinking. I would like to
thank the people in my working group “Real-Time Systems and Communication” for the
important and the humorous talks, for proofreading this thesis, and most of all for the
friendly atmosphere in our working group. A thankyou also to the students who did a great
job in implementing part of the middleware and the prototypes. I owe thanks to my par-
ents. Without their continuous support from my very first steps, this work would not even
have been started. Most of all, I owe thanks to my wife, Kerstin, and Mira, my little daugh-
ter. There are no words for their patience and their continuous encouriging and inspiring
support. They gave me the greatest gift I ever could wish for and the one thing that really
counts in my life – their love.

Part of the work presented herein was conducted in the project “Middleware für kooperier-
ende mobile Roboter” (Middleware for Cooperating Mobile Robots), which was supported
by the Deutsche Forschungsgemeinschaft1 (DFG) under grant NE 837/2-1.

1 German Research Foundation

 iii

Table of Contents

ZUSAMMENFASSUNG ... I

ABSTRACT.. I

ACKNOWLEDGEMENTS.. III

TABLE OF CONTENTS...IV

1 INTRODUCTION.. 1

1.1 MOTIVATION ... 1

1.2 PROBLEM EXPOSITION ... 2

1.3 APPROACH... 4

1.4 OVERVIEW OF THE MIDDLEWARE .. 5

1.5 APPLICATION SCENARIOS AND PROTOTYPES ... 7

1.6 STRUCTURE OF THE THESIS.. 8

2 ARCHITECTURE OF THE MIDDLEWARE.. 11

2.1 RESOURCE SCHEDULING.. 12

2.2 RELIABLE COMMUNICATION.. 13

2.3 APPLICATION-INDEPENDENT COMMON VIEWS .. 13

2.4 APPLICATION-SPECIFIC COMMON VIEWS .. 14

2.5 MODULARITY .. 15

3 APPLICATION SCENARIOS.. 17

3.1 COORDINATING THE ACCESS TO SHARD SPATIAL RESOURCES .. 17
3.1.1 Description of the Scenario.. 18
3.1.2 Application Architecture .. 19

3.2 DISTRIBUTED SENSOR FUSION... 21
3.2.1 Description of the Scenario.. 22
3.2.2 Application Architecture .. 25

4 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS .. 29

4.1 PRELIMINARIES.. 30

 iv

4.1.1 Concepts and Notions...30
4.1.2 The IEEE 802.11 Standard...38

4.2 SYSTEM MODEL ...51
4.2.1 Process Model ..51
4.2.2 Communication Model ...53
4.2.3 Dynamic Link Properties..57

4.3 DESCRIPTION OF THE PROTOCOLS ..60
4.3.1 The Protocol Stack ...60
4.3.2 Polling ..63
4.3.3 Dynamic Network Scheduling ..66
4.3.4 Reliable Multicast...68
4.3.5 Synchronous Channel...73
4.3.6 Atomic Multicast...78
4.3.7 Membership ..81
4.3.8 Event Service ..85

4.4 RELATED WORK...90
4.4.1 System Modeling...90
4.4.2 Real-Time Communication in Wireless LANs ..93
4.4.3 Reliable Multicast...94
4.4.4 Atomic Multicast...98
4.4.5 Membership ..100
4.4.6 Communication Paradigms for Cooperative Systems ..102

5 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS103

5.1 ENVIRONMENT-DEPENDENT EXECUTION TIMES IN THE DISTRIBUTED SENSOR FUSION105

5.2 TAFT...107

5.3 EXPLOITING APPLICATION-INHERENT REDUNDANCY ..113
5.3.1 Functional Redundancy Through Anytime Algorithms ..114
5.3.2 Spatial and Timing Redundancy...115
5.3.3 Signaling Persistent Overload..117

5.4 APERIODIC REQUESTS..118
5.4.1 Model..119
5.4.2 Scheduling Algorithms for Hybrid Task Sets..120
5.4.3 Realizing TAFT with the IPE Server ..125
5.4.4 Acceptance Test ..134

5.5 PRECEDENCE CONSTRAINTS...137
5.5.1 Model..138
5.5.2 Extending TAFT-IPE..139

6 PROTOTYPES AND IMPLEMENTATIONS ..141

 v

6.1 PROTOTYPE OF THE SHARED SPATIAL RESOURCES SCENARIO ... 141
6.1.1 Description of the Prototype .. 141
6.1.2 Measurements .. 143

6.2 PROTOTYPE OF THE DISTRIBUTED SENSOR FUSION SCENARIO... 144
6.2.1 Description the Prototype .. 144
6.2.2 Measurements .. 147

6.3 MODULAR IMPLEMENTATION OF THE COMMUNICATION HARDCORE... 150
6.3.1 Description of the Implementation... 151
6.3.2 Measurements .. 154

7 CONCLUSION AND FUTURE WORK.. 157

REFERENCES... 163

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE............. 173

A.1 STRUCTURE OF THE FORMAL MODEL .. 173

A.2 POLLING .. 177

A.3 POLLING – DYNAMIC GROUP EXTENSIONS.. 182

A.4 DYNAMIC NETWORK SCHEDULING .. 185

A.5 RELIABLE MULTICAST... 188

A.6 RELIABLE MULTICAST – DYNAMIC GROUP EXTENSIONS... 196

A.7 SYNCHRONOUS CHANNEL.. 199

A.8 SYNCHRONOUS CHANNEL – DYNAMIC GROUP EXTENSIONS ... 203

A.9 ATOMIC MULTICAST.. 207

A.10 ATOMIC MULTICAST – DYNAMIC GROUP EXTENSIONS ... 209

A.11 MEMBERSHIP ... 212

 vi

1 Introduction

The cooperation of mobile embedded systems gives rise to a lot of interesting applications
in many different fields, such as industrial automation, logistics, telematics, and team ro-
botics. However, as is often the case with the most promising objectives, some challenging
problems have to be overcome, before the envisaged applications will be reality. Amongst
them, the following two are particularly pressing: How to achieve a reliable and timely
predictable cooperation while the mobile systems are moving in a dynamically changing
environment using lossy wireless links to communicate; and how to achieve a coordinated
behavior of the cooperating systems while keeping them as autonomous as possible? The
objective of this thesis is to develop a middleware for cooperating mobile embedded sys-
tem that contributes to the solution of both of these problems.

1.1 Motivation

There is a sustained trend to embed computer systems in all kinds of intelligent products,
such as photocopiers, cameras, telephones, cars, planes, and even razors. This trend is fu-
elled, on the one hand, by the miniaturization and cost-reduction of computing hardware
and by the ever increasing demand for new and easier-to-use functionality on the other
hand. Computing devices are becoming ubiquitous and pervasive to our every day live.
Within this general trend there is a development to enhance the functionality of such sys-
tems beyond the provision of easy-of-use and comfort to more safety-critical tasks where
they exert direct control over the intelligent product. This development is particularly in-
teresting and clear for mobile embedded systems, such as robots and cars, in which the
computer systems partially or completely control the motion of the controlled system. The
increasing deployment of mobile embedded systems as well as the rising expectations on
their functionalities, will sooner or later require the cooperation of such systems, e.g. for
the resolution of spatial resource conflicts.

Coincidently with the long ranging trend outlined above, we witness the fast emerging and
rapid deployment of wireless communication technology. The starting signal being given
in 1999 when the IEEE approved its Standard 802.11, vendors soon started shipping inter-

 1

2 INTRODUCTION

operable products. Owing to its manifold appealing advantages ― amongst which are the
reduction of wiring costs, the mobility of users, the flexibility of networks, and the access
to information resources anywhere at anytime ― the technology was readily adopted so
that nowadays wireless communication is a large and still fast growing market segment.
One of its most interesting and promising advantages is its permitting the networking of
mobile embedded systems. Like the networking of general purpose computers, in intranets
and via the Internet, gave rise to a plenty of new applications, so will the networking of
mobile embedded systems. Coming back to what we said above, it is this very possibility
that renders the cooperation of mobile embedded system a true and realistic perspective for
the future.
Today, there are cooperative applications for mobile embedded systems that are subject to
industrial research and development already and others, being more ambitious, are envis-
aged for the future. Industrial automation and logistics represent two fields of application
in which mobile embedded systems – like automated guided vehicles (AGVs) or destina-
tion coded vehicles (DCVs) – are already widely deployed these days. The cooperation of
such systems gains increasing attention because it allows the mobile systems to coordinate
their access to shared spatial resources, like crossings, thus achieving a better utilization of
the resources and reduced waiting times for the mobile systems. In fact, coordinating the
access the shared resources will become inevitable with an increasing number of such mo-
bile systems being deployed. A concrete example being in use today already is a baggage
transport system for airports consisting of a large number of rail-bound DCVs, each carry-
ing a peace of baggage, that achieve collision avoidance cooperatively using wireless
communication links. A more visionary example, with a very similar idea, however, is the
cooperation of cars at hot spots, such as crossings or merging roads, to coordinate their
access to the shared resource. Again, the cooperation promises improved utilization of the
spatial resource and less queuing in front of it.

Another promising field of application is team robotics. That is why part of this work was
supported by DFG within the project “Cooperating Teams of Mobile Robots in Dynamic
Environments”. Teams of robots are expected to fulfill tasks in such areas as factory auto-
mation, fire fighting, de-mining, contaminated areas, etc. The RoboCup, a soccer champi-
onship for robots, has been devised as a testbed for such applications. Every year, a lot of
scientists gather during the contests showing the progress of their work. It turned out that
cooperation of the robots using wireless communication is crucial to be successful in this
arena.

1.2 Problem Exposition

In this thesis, we consider the cooperation of mobile embedded systems. We focus on
groups of mobile systems operating in a common, local environment, using a single wire-
less medium for communication. The locomotion of the mobile systems and their physical
interactions with the environment impose real-time constraints on the cooperation. In par-
ticular, when operating in a common environment, the mobile systems must coordinate
their movements. Furthermore, fulfilling cooperative tasks such as cooperative sensing
(e.g. sensor fusion) or acting (e.g. object transportation or manipulation) in a dynamic en-
vironment requires a timely predictable cooperation.

PROBLEM EXPOSITION 3

Local groups are a natural starting point for research on the cooperation of mobile embed-
ded systems. For one thing, cooperative tasks with tight real-time constraints are typically
performed in local groups, since on the one hand, real-time requirements frequently stem
from the physical interactions of the cooperating system, and on the other hand, stronger
real-time services can be provided to systems connected via a single wireless LAN. More-
over, solutions developed for the cooperation in local groups can serve as building blocks
when considering cooperation in larger-scale networks. In particular, we consider larger-
scale networks to consist of loosely coupled local groups, called cells in infrastructure net-
works and clusters in ad-hoc networks. Scaling the solutions presented herein to larger
networks is subject to ongoing efforts in our working group (more details will be given in
Chapter 7).

We found that the cooperative applications for mobile embedded systems share at least the
following two challenges, which have to be tackled besides the genuine difficulties of the
specific applications.

First, the mobility of the systems imposes real-time and reliability requirements ― referred
to under the common notion Quality of Service (QoS) in the following ― that have to be
met in a dynamically changing environment. For cooperative applications this means that
both the execution of the local tasks as well as the communication must exhibit a timely
predictable and reliable behavior. But, unpredictable, dynamically changing conditions,
namely varying execution times of the tasks, and a varying number of message losses on
the communication links, render this a hard task. It means that the resources required to
completely execute a task or transfer a message to all its recipients are hardly predictable.
As a consequence, the middleware cannot base the provision of QoS guarantees on known
and tight worst-case bounds, as is done in conventional approaches. Doing so would be
extremely inefficient, if possible at all. To free application designers from concerning these
problems, we require the middleware to provide task execution and communication ser-
vices that exhibit a reliable and timely predictable behavior in spite of the above-
mentioned dynamically changing conditions.

Second, the inherent tradeoff between cooperation and autonomy has to be resolved. When
mobile systems cooperate, their actions become mutually dependent. These dependencies
have to be managed to achieve effective cooperation; that is, the actions of the mobile sys-
tems have to be coordinated (Malone and Crowston 1994). This means that the mobile
systems no longer decide about their actions autonomously, but that they have to agree on
a mutually consistent set of actions under time constraints. (Mock 2003) presented a for-
mal framework to express these consistency and timing requirements. Without support
from the middleware coordination must be achieved at the application level. This gives rise
to complex runtime interactions of the mobile systems, which render the overall timing
behavior hard to analyze and predict, even if the underlying communication and task exe-
cution services are timely predictable. The behavior of a mobile system can no longer be
analyzed separately, but may be the outcome of some sophisticated and hardly observable
interactions. It is up to the application designer to ensure that a mutually consistent behav-
ior of the mobile systems is achieved in bounded time. Application designers (from fields
such as logistics, industrial automation, automotive industry, etc.), however, are typically
no communication or distributed systems professionals. So, whereas autonomy is desirable
to keep system development and analysis simple, effective cooperation cannot be achieved
as long as each system makes its own local decisions based on its own local worldview.
Therefore, we require our middleware to support application designers in achieving a co-

4 INTRODUCTION

ordinated behavior while keeping the mobile systems as autonomously as possible on the
application level.

Notwithstanding their above-mentioned commonalties, there is a wide spectrum of coop-
erative mobile applications with quite different demands. Demands differ, for example,
w.r.t the deadlines of messages and tasks, the reliability required for communication and
task execution, and the tightness of coordination that must be achieved. To accommodate
different applications with different requirements, the middleware must be adaptable to
their needs. This means that the set of services the middleware provides should be config-
urable to fit the needs of the application. Furthermore, it should allow tuning the QoS of
these services to the actual demands of the application. This prevents producing overhead
for such services or QoS that the application does not really need.

The objective of the work presented herein is to develop a modular middleware for coop-
erative mobile applications. The middleware is situated above a standard and off-the-shelf
hardware and operating system. It provides services going beyond those of the underlying
off-the-shelf components regarding support for the specific needs of cooperative mobile
applications. In particular, it provides services supporting the application developer in
solving the above-mentioned issues, thus allowing them to concentrate on the application-
specific aspects of their tasks. Nevertheless, the middleware remains generally applicable
for the indented spectrum of applications. To support analyzing the application require-
ments, guide the design process, and allow for evaluations in a real application context, the
middleware is considered in the context of two application scenarios and their prototypical
implementations.

Nowadays, object-oriented middleware, like CORBA and DCOM, is already widely de-
ployed to build distributed applications (Microsoft Corporation 1996,Object Management
Group 2002). This kind of middleware, however, addresses the heterogeneity of
implementations and platforms and provides a location-transparent and object-oriented
programming model. Both these topics are not in the focus of this thesis. On the other
hand, this kind of middleware does not address the problems we address.

1.3 Approach

To address the three problems described above ― the provision of QoS in dynamic envi-
ronments, the autonomy vs. cooperation tradeoff, and the adaptation of the middleware to a
variety of application demands ― we adopt the following three approaches:

First, provision of QoS guarantees in dynamic environments: Facing varying execution
times of the tasks and a varying number of message losses on the network, our approach is
to avoid using worst-case bounds and work with more realistic estimates instead. This im-
plies that there may be tasks instances with insufficient resources to be completed or mes-
sages with insufficient resources to be transferred to all intended recipients. We term this
situation a resource fault. If not detected and handled adequately, a resource fault may lead
to a task being completed or a message being delivered after its deadline. This not only
results in an unpredictable timing behavior of the system, but also means allocating re-
sources to tasks or messages that missed their deadline and will bring about no value (at
best). Additionally, a faulty task or message instance may consume resources allocated to

OVERVIEW OF THE MIDDLEWARE 5

others, which means that the resource fault possibly propagates. Our approach is to guaran-
tee a predictable timing behavior in case of resource faults; that is, the middleware ensures
that no task is executed and no message transferred after its deadline. Furthermore, the
middleware prevents propagation of resource faults so that they do not affect tasks or mes-
sages other than the faulty one. With this approach, there may be task instances not being
completed and messages not received by all intended recipients. To address this problem,
the middleware provides the means to maintain consistency of the system in case of mes-
sage or task abortions. We believe, that with timeliness and consistency being guaranteed,
many applications are able to tolerate aborted task or message instances to a certain de-
gree. This can be achieved by exploiting several kinds of application-inherent redundancy,
which we found to be present in cooperative embedded applications. In fact, knowing that
completing all tasks and message transmissions may not be possible, the designer can pro-
vide these kinds of redundancy explicitly at design time.

Second, resolving the autonomy vs. cooperation tradeoff: Coordination is the key to effec-
tive cooperation, but poses some intricate problems to the application designer. Our ap-
proach is to achieve coordination in the middleware. Rather than coordinating the actions
of the mobile systems on the application layer, we let the middleware coordinate their
worldviews. To this end, the middleware provides agreed-upon common views to the ap-
plication at the mobile systems. This includes common views on application-independent
aspects of the control system as well as more application-specific common views on as-
pects of the controlled system, such as position and speed of the mobile systems. Based on
these common views, the mobile systems decide about their actions locally using a coordi-
nated set of rules. In this approach, the mobile systems act autonomously on the applica-
tion layer. Nevertheless, they exhibit a coordinated behavior because the middleware
achieves a coordination of their worldviews. Thus, complex runtime interactions at the
application-level are avoided. The application designer is enabled to concentrate on the
application-specific optimality of the decision rules and needs not be concerned with
achieving agreement among the systems. Still, the local rules used by the mobile system
must be coordinated. However, this coordination is much simpler to achieve since it is per-
formed statically at design time and does not require any explicit coordination at run-time.
The dynamic, run-time coordination is achieved by the middleware.

Third, adaptation of the middleware: Our approach is to design and build the middleware
in a modular manner so that it is configurable to the demands of different applications.
This can be thought of as a modular assembly concept, where you build your own specific
middleware from a set of modular building blocks. This allows coming to a middleware
that is tailored quite well to the application without designing a new middleware every
time.

1.4 Overview of the Middleware

The middleware is located above a system layer consisting of commercial and off-the-shelf
(COTS) hardware and operating system components. For the wireless network, we decided
to build on the IEEE 802.11 Standard, which is commonly accepted and already widely
deployed. It provides predictable medium access based on polling, which both the original
802.11 Standard as well as the upcoming supplement 802.11e include as an access method.

6 INTRODUCTION

The middleware consists of four layers. The two bottom layers implement our approach to
the provision of QoS in dynamic environments, whereas the two top layers implement our
approach to resolve the autonomy-cooperation tradeoff. We designed the middleware in a
modular manner so that it can be configured to comprise just those layers and services the
application requires. In the following, we present the layers bottom-up.

In the bottom-most layer of the middleware, the scheduling for the CPU and network re-
sources is located. Its main task is achieving timeliness. It comprises a task execution ser-
vice based on the TAFT concept, which guarantees a timely predictable execution of tasks
with unpredictable execution times (Nett and Gergeleit 1997,Gergeleit 2001). The service
schedules the resource demands of the communication protocols of the middleware as ape-
riodic requests and allows for precedence constraints between periodic tasks. Furthermore,
this layer comprises a dynamic network scheduling service. This service maintains the
polling list according to which the underlying layer grants access to the medium. It allows
mobile systems to request to be added to the polling list at runtime and removes system
leaving the range of the wireless medium.

The second layer addresses the reliability of message transmission on the wireless net-
work. It comprises a reliable multicast service. When sending a multicast, the user can
specify an expected-case bound, called resiliency, on the number of message losses. The
service guarantees timely transmission of the multicasts in spite of the varying number of
message losses on the medium. To this end, it possibly aborts transmitting a multicast, in
which case the next layer allows achieving consistency.

The third layer comprises three services providing common views on different application-
independent aspects of the control system. The first service provides a common view on
the global system time. The second is an atomic multicast service. It resides on top of the
reliable multicast service and provides a common view on the multicast messages deliv-
ered. It ensures that all stations observe the same sequence of multicast messages in the
same order, even if the transmission of messages is aborted in the layer below. Finally, the
third service provides a common view on the membership of the group. It ensures that all
group members deliver the same membership views in the same order and between the
same two atomic multicast messages.

The three layers presented so far constitute the hardcore of the middleware. Based on the
QoS and common views the hardcore provides, the Event Service at the highest layer of
the architecture provides common views on the global state of the controlled system. The
global system state consists of the local states of the mobile systems w.r.t to a common
point of time on the global time base. The local states of the mobile systems comprise
those state variables that serve as input for the control application; for example, position
and speed of the mobile systems. The Event Service is part of a larger concept, called the
Cooperative Application Development Interface (CADI) (Nett and Schemmer 2004). The
CADI will comprise a family of services providing common views on different aspects of
the control system’s environment.

The cooperative mobile applications reside on top of the middleware. We consider two
application scenarios, which we shall explain in the next section.

APPLICATION SCENARIOS AND PROTOTYPES 7

1.5 Application Scenarios and Prototypes

We present the middleware in the context of two application scenarios, both with a proto-
typical implementation. As example applications they provide valuable input during the
design process (e.g. concrete requirements) and allow evaluations to be conducted in a
realistic context. Both scenarios represent instances of common tasks to be performed by
cooperating mobile systems so that their prototypical implementations are indeed lab-scale
prototypes of interesting future applications. The scenarios were chosen to highlight differ-
ent parts of the middleware, thus enabling us to present it in two steps. Whereas the first
offers a good context for the presentation of our approach to the coordination among mo-
bile systems and the corresponding parts of the middleware, the second features a high and
varying CPU load so that it can be used to present our approach to the provision of QoS
under unpredictable resource demands.

The first application scenario is a concrete example for a coordination task with tight real-
time constraints. The general problem it addresses is coordinating the access to a shared
spatial resource amongst a group of mobile systems operating in a common environment.
In this application scenario, a group of track-guided mobile systems cooperatively coordi-
nate their velocities at the intersection of two tracks, a so-called hot spot. The term
“tracks” is meant here in a very general sense and may represent such things as rails, roads,
or traces. The group changes dynamically with new systems approaching and group mem-
bers leaving the hot spot. Its stringent requirements w.r.t the coordination of the mobiles
systems and the timeliness and reliability constraints applying to its achievement render
this scenario particularly interesting for our purposes. This application is mostly based on
the communication services of the middleware, which provide the common views to the
mobile systems and perform the dynamic scheduling of the network. It turned out that the
middleware significantly simplifies the design of the application. Using the strong global
state semantics of the Event Service, developing the application layer consisted of
developing a scheduling function that each mobile system computes locally to determine a
schedule of the hot spot from the global state of the group (position and velocity of all sys-
tems w.r.t. the same time on the global clock). Determining the global state, transmitting
events to trigger the scheduling reliably and timely, and handling the dynamically chang-
ing group is accomplished in the middleware transparently for the application. This shows
how our approach to the coordination of mobile systems simplifies application design by
keeping the mobile systems autonomous on the application-level.

The second application scenario is a concrete example of a distributed fusion of sensor
data within a group of mobile robots. We consider a group of mobile systems equipped
with laser scanners that fuse their local worldviews to come to a more complete and accu-
rate perception of their environment. The particular interest of this scenario stems from the
high and variable processing load it puts onto the systems and the inherent redundancy the
application exhibits. Hence, it is used to illustrate and validate our approach to enforcing
QoS in dynamically changing environments. The focus is on the CPU scheduling, which is
particularly important due to the environment-dependent execution times of the application
tasks. The execution service achieves a timely predictable execution of the sensor data
processing tasks in spite of their unpredictable resource demands. According to our ap-
proach, several levels of application-inherent redundancy are exploited to tolerate abor-
tions of the tasks. The application prototype was used to examine how functional and

8 INTRODUCTION

structural redundancy can be exploited and to illustrate the concept of application-level
adaptation under persistent overload.

We built up prototypes for both application scenarios. In the first, a group of trace-guided
mobile robots coordinate their speeds at a hot spot where the traces overlap. The behavior
of the robots at the hot spot shows that basing on the middleware a tightly coordinated be-
havior is achieved. The robots managed to avoid collisions in the running demonstration
adapting their speeds according to the situation at the hot spot. Measurements show that
the middleware provides delays sufficiently small for the intended applications. In the sec-
ond prototype, a fusion of the output of several laser scanners is performed in a RobotCup-
like setting. Measurements show that all instances of the sensor data processing tasks met
their deadlines. Furthermore, it shows how task abortions are tolerated by exploiting the
application-inherent redundancy.

1.6 Structure of the Thesis

In Chapter 2, we present the architecture of the middleware describing its layered architec-
ture and the services it provides. Chapter 3 then takes a more application-oriented perspec-
tive and introduces the two application scenarios we use to present our middleware in an
application context. These applications are chosen such that the middleware can be pre-
sented in two steps. In Chapter 4, we present the communication part of the middleware,
which is used to achieve coordination in the first application scenario, whereas Chapter 5
is concerned with the scheduling of the local CPU resources, which is particularly impor-
tant in the second scenario where complex sensor data are processed.

Chapter 4 describes the protocols implementing the communication services of the mid-
dleware. Before actually presenting the design of the protocols, we have to model the sys-
tem in which the protocols are expected to run. The first sections of this chapter therefore
consider the middleware and its system environment from a modeling perspective. Here,
basic concepts and notions are introduced and a brief overview of the IEEE 802.11 Stan-
dard is given (Section 4.1). As well, a formal system model capturing the characteristics of
groups of mobile systems connected by a wireless network is presented (Section 4.2). Hav-
ing set the stage in sections 4.1 and 4.2, we explain the communication protocols of the
middleware in Section 4.3. After giving an overview of the protocol stack as a whole, we
present the protocols bottom-up, starting with a description of the underlying polling pro-
tocol and moving up the layers to the topmost layer, the Event Service. Formal descrip-
tions of protocols in the communication hardcore are provided in the appendix. Related
work is discussed in Section 4.4.

Chapter 5 is concerned with the scheduling of the local CPU resources. In Section 5.1, we
analyze the problem of environment-dependent execution times in the context of the dis-
tributed sensor fusion prototype. We then describe the TAFT scheduling concept (Section
5.2), which we adopt to achieve a predictable timing behavior for tasks with environment-
dependent execution times. Section 5.3 considers what kinds of application-inherent re-
dundancy can be exploited to tolerate task abortions, using again the distributed sensor
fusion scenario as an example to support our findings. To apply TAFT in our middleware,
the task model underlying the current implementation has to be extended. To schedule the
resource demands of the communication protocols, it must allow for aperiodic requests,

STRUCTURE OF THE THESIS 9

and it must allow for precedence constraints between the task pairs to accommodate the
requirements of the application tasks. Sections 5.4 and 5.5 successively show how this can
be achieved. In Section 5.4, we present a scheduling algorithm, called TAFT-IPE, that
schedules task sets consisting of periodic task pairs and aperiodic requests. We present
acceptance criteria for both the periodic task pairs and the aperiodic requests. Section 5.5
shows how periodic task pairs with precedence constraints can be scheduled with TAFT-
IPE.

In Chapter 6, returning to the application perspective, we describe the application proto-
types we built. They corroborate the feasibility of our approaches as well as of the mid-
dleware that implements them. Additionally, it presents a modular implementation of the
communication hardcore, which shows that a modular yet efficient design and
implementation of the communication services can be achieved. Finally, Chapter 7
concludes this thesis and gives an outlook to future work.

2 Architecture of the Middleware

In this chapter, we present the architecture of the middleware, explaining its layers and
services and how it can be tailored to the needs of a wide spectrum of applications
(Schemmer et al. 2001,Nett and Schemmer 2003b,Nett and Schemmer 2004). Figure 2-1
exhibits the architecture of the middleware. The figure shows the middleware in its con-
text, which consists of the system layer it is based on and the application layer it supports.

The system layer underlying the middleware consists of two sub-layers: the hardware layer
and a basic operating system layer. The latter, among other things, provides basic access
services for the CPU as well as the network resources. Standard and commercial and off-
the-shelf (COTS) components are being used in the system layer. For the wireless network,
we decided to build on the IEEE 802.11 Standard, which is commonly accepted and al-
ready widely deployed. To support the provision of QoS, it specifies an access method in
which a central station, the so-called access point (AP), grants exclusive medium access
through polling. This polling mechanism is part of the original 802.11 Standard as well as
of the upcoming supplement 802.11e. We chose RTLinux as the operating system because
(i) it has support for real-time performance (small, bounded interrupt latencies e.g.); (ii) its
sources are open, so we can extend and modify it at the source code level if required; (iii)
it is free; (iv) it is based on Linux, which comes with a full fledged development environ-
ment.

The middleware is divided into four layers, each with a specific task. The two bottom lay-
ers deal with the provision of QoS, implementing our approach to the provision QoS in
dynamic environments. The lowest layer achieves timeliness for task execution and unreli-
able message transmission; the following layer accomplishes reliable multicast transmis-
sion while still preserving a timely predictable behavior. The two top layers implement our
approach to the coordination of mobile systems. As pointed out above, this approach re-
quires the middleware to achieve dynamic coordination among the mobile systems by pro-
viding common views to the application, the latter controlling the local actions of the mo-
bile systems based on these common views. Both layers provide such common views – the
third layer on general, control system internal aspects, e.g. what message have been deliv-
ered, and the fourth layer on aspects of the controlled system, such as position and speed of
the mobile systems, which are more application-specific.

 11

12 ARCHITECTURE OF THE MIDDLEWARE

CPU

OS

Wireless Network (physical layer)

Wireless Network (MAC layer)

Dynamic Network Scheduling

Inter-Vehicle

Coordination

Distributed

Sensing

Event Service

Reliable Multicast

Clock

Synch.
Atomic

Multicast
Membership

Application-Specific

Common Views

Application Layer

Coopartive Applications

Resource

Scheduling

Reliable

Communication

Application-Independent

Common Views

System Layer

COTS Components

Task

Execution
M

id
d

le
w

a
re

Hardcore
Cooperative Application

Development Interface (CADI)

Figure 2-1. Architecture and context of the middleware

2.1 Resource Scheduling

The first layer of the middleware is the adaptive resource-scheduling layer spanning both
the network and processing resources. It comprises a task execution service that guarantees
a timely predictable execution of tasks. In doing so, it must cope with their widely varying
execution times. Therefore, we apply the TAFT concept to realize this service (Nett and
Gergeleit 1997,Gergeleit 2001). TAFT allows using realistic excepted-case execution times
(ECETs) instead of WCETs, yet still guarantees that no task instance misses its deadline.
As long as a task instance does not exceed the specified ECET, it is completed before its
deadline; if it exceeds the ECET, it may be necessary to abort it before its deadline. In this
case TAFT ensures a timely exception handling, which allows keeping the system in a con-
sistent state. As turned out in the sensor fusion application, we must assume a task model
that allows for precedence constraints between periodic tasks and for aperiodic requests in
addition to the periodic tasks. Dealing with aperiodic requests is necessary to support the
execution of the communication protocols of the middleware, while precedence constraints
arise if data are processed in a sequence of pipelined stages. We developed a scheduling
algorithm for the execution service that implements the TAFT concept for such a task
model. Acceptance criteria are provided for both the periodic tasks as wells as the
aperiodic requests. While for the periodic tasks predictability is achieved on a per task
basis, it is achieved on a per instance basis for the aperiodic requests.

The dynamic network scheduling handles requests for network resources and maintains the
polling list. As the underlying polling mechanism grants medium access according to the
polling list, the polling list represents the schedule of the medium. Mobile systems transmit
their resource requests to the AP, which decides whether or not they are admitted to the

APPLICATION-INDEPENDENT COMMON VIEWS 13

polling list. The layer allows mobile systems to be added to the polling list in bounded
time. Thus, it allows providing predictable medium access to a dynamically changing set
of systems.

2.2 Reliable Communication

This is the second layer concerned with achieving QoS. It addresses the reliability of mes-
sage transmission on the wireless network.

It comprises a service for the reliable transmission of multicast messages. The multicast
semantics facilitates the cooperation in groups of mobile systems; messages are not ad-
dressed to single recipients but to all members of the group. In fact, considering multicast
instead of point-to-point messages is already a first step towards providing common views
on the following layers. To achieve reliability, it uses a dynamic redundancy approach,
where messages are retransmitted when message losses are detected. The service has to
cope with a varying number of message losses on the wireless medium, which means that
the number of necessary retransmissions is hardly predictable. It does, therefore, not re-
quire specifying worst-case bounds on the number of message losses. According to our
approach, the user can specify an expected-case bound, called resiliency, instead. The ser-
vice guarantees timeliness of messages transmission in spite of the varying number of mes-
sage losses. After up to resiliency retransmissions the service aborts the transmission of the
message in order to avoid a later delivery of the message and waste of resources. In this
case, the next layer, which is presented in the following section, allows achieving consis-
tency. Choosing a resiliency allows the application to decide in the tradeoff between reli-
ability and timeliness. Choosing a small resiliency reduces the resource demand so that a
shorter deadline can be met while it also increases the probability of some of the intended
recipients not receiving the message.

2.3 Application-Independent Common Views

This layer in conjunction with the next one realizes our approach to the coordination of
mobile embedded systems. The key issue this layer addresses is providing common views
on application-independent aspects of the distributed control system. It comprises three
services providing such common views.

The first service provides a common view on the global system time. An existing protocol,
developed in our working group and at Fraunhofer AiS, was integrated into the middle-
ware to synchronize the local clocks of the cooperating systems (Mock et al. 2000b,Mock
et al. 2000a). It achieves a high precision and a continuous adjustment of the local clocks.
The second service is the atomic multicast service. It resides on top of the reliable multi-
cast service and provides a common view on the multicast messages delivered. It ensures
that all stations observe the same sequence of multicast messages in the same order. In
particular, it achieves consistency when the reliable multicast service aborts the transmis-
sion of messages in the layer below. An aborted message may have been received by some
of its intended recipients already. The atomic multicast service ensures that none of the
intended recipients delivers the message in such cases. Finally, the third service provides a

14 ARCHITECTURE OF THE MIDDLEWARE

common view on the membership of the group. The service provides up-to-date views on
the current set of correct group members. It ensures that all group members deliver the
same membership views in the same order, so share a common view on the current mem-
bership. Additionally, it ensures that all members deliver a membership view between the
same two atomic multicast messages. So, the members agree on the position of member-
ship changes within the stream of totally ordered multicast message; or, to put it the other
round, they agree on the membership view in the context of which a multicast messages is
delivered.

The three layers presented so far constitute the hardcore of the middleware. In providing
their services, the protocols in the layer above it rely on the QoS and the common views
the hardcore provides.

2.4 Application-Specific Common Views

On the highest layer of the middleware resides the Event Service. The Event Service pro-
vides common views on the global state of the controlled system, that is, the group of co-
operating mobile systems. The global system state consists of the local states of the mobile
systems w.r.t a common reference time on the global clock. The local state comprises those
state variables of the mobile system that serve as input for the control application. For ex-
ample, consider a group of mobile systems coordinating their behavior at a shared spatial
resource. In such a scenario, the local states of the controlled systems are their position and
speed (and maybe others). So, a consistent global state would comprise the positions and
speeds of all participating mobile systems w.r.t the same point of time on the global time
base. Rather than maintaining the global state all of the time, the Event Service determines
the global state when it delivers an event to the application. When the application detects
an event that requires coordinated actions of the mobile systems, it calls the Event Service
to propagate the event to the group. The Event Service associates with each event it deliv-
ers a consistent global state. Thus, when an event is delivered at a mobile system, the con-
trol application can use the global state as input to decide locally about the action of the
mobile system. Yet, the mobile systems in the group will exhibit a coordinated behavior
since all local decisions are based on a common view on the global state. Since there are
no interactions between the mobile systems on the application level following the delivery
of the event, a timely predictable reaction to the event can be achieved basing on the time-
liness properties the execution service provides. The semantics of the Event Service are a
combination of event and state messages. State information is advantageous in dynami-
cally changing groups, as new members frequently lack the context to understand event
information. Global states are a strong abstraction for the application, which actually hides
all communication efforts of the communication hardcore from the application.

The Event Service is part of a larger concept, called the Cooperative Application Devel-
opment Interface (CADI). The CADI is intended to provide common views on the envi-
ronment of the control system, in contrast to the services below it, which provide common
views on control system internal aspects. Further services for the CADI are under devel-
opment in our working group (cf. Chapter 7).

MODULARITY 15

2.5 Modularity

To be adaptable to the demands of a wide spectrum of applications, we designed the mid-
dleware in a modular manner. Applications need not use all the layers and services. The
middleware can be configured to comprise just the bottom-most layer, the two bottom-
most layer etc., up to any of the four layers. As well, it need not comprise all services of
the chosen top layer. For example, if an application only needs timely predictable point-to-
point messages with a varying set of station on the wireless medium, only the dynamic
network scheduling may be used. It is also possible to omit the dynamic network-
scheduling service and still use the communication services on the higher layers if a dy-
namic access to the medium is not required. Additionally, there is a vertical distinction
between the task execution and the communication services. If an application is more
communication centric with only little local computation, the task execution service may
be omitted from the middleware and the pure OS scheduler be used instead. Likewise, one
can imagine using the execution service and omitting the communication services. For the
communication protocols in the hardcore, the modular design not only allows adapting the
middleware, it also renders the protocols simpler and easier to analyze and permits reusing
an existing protocol when realizing new services.

3 Application Scenarios

3.1 Coordinating the Access to Shard Spatial Resources

With several mobile systems operating in a common environment, coordinating the access
to shared spatial resources becomes a general problem that must be solved to avoid colli-
sions and achieve a good utilization of the available space. This is particularly the case
when considering track-guided vehicles, like robots following traces, transport systems
moving on rails, or cars driving on roads. Intersections of the tracks, which we refer to as
hot spots, are critical shared resources that have to be shared efficiently so as to avoid con-
gestion in front of the hot spot. Semaphore-like approaches (e.g. traffic lights) that force
the mobile systems to stop when the hot spot is busy do not achieve this kind of efficient
coordination. In our application scenario, the mobile systems approaching a hot spot form
a group and coordinate their access to the hot spot cooperatively (Schemmer et al.
2001,Nett and Schemmer 2003b). In his formal framework, (Mock 2003) shows that this
scenario requires coordination under tight real-time constraints. Therefore, the scenario is
well suited to exemplify our approach to the coordination of mobile systems and to serve
as a field of application for the communication part of our middleware. We built up a pro-
totype of the application scenario, which will be presented in Section 6.1.

As an example with a real application background, consider a baggage transport system for
airports. In this system, rail-bound vehicles, so-called destination coded vehicles DCVs,
transport the baggage from the check-in desks through several stages of security screening
and finally to the terminal where they are loaded onto the planes. Each DCV carries a sin-
gle piece of baggage to a series of destinations. Knowing its route, it autonomously steers
through the railroad system. One of the key advantages of this system is the high speed of
the DCVs (up to 10m/s), which significantly outperforms traditional conveyer belts. To
avoid collisions, each DCV coordinates with its predecessor using wireless communica-
tion. The predecessor periodically sends its current position to the successor, which is thus
enabled to keep a fixed safety distance. Although a centralized approach is currently being
pursued for the junctions, this example can be directly mapped to the scenario at hand if
each junction is considered as a hot spot requiring coordination of the approaching DCVs.

 17

18 APPLICATION SCENARIOS

According to the approach taken in our application scenario, the DCVs would coordinate
their speeds at the junctions cooperatively. Such a cooperative solution would be more
scalable and achieve a better utilization of the junctions.

More visionary, intelligent driving assistants in cars will cooperate to coordinate their ac-
cess to shared road space such as crossroads and merging roads. Handling the always-
increasing traffic by building new roads and highways will sooner or later meet its natural
limits. Therefore, it is of utmost importance for the economy and the personal mobility that
the existing road space will be used more efficiently. The problem of poorly utilized road
space partly stems from the brute force methods, e.g. traffic lights and stop signs, which
are used to avoid collisions at shared road space, such as crossroads and merging roads.
According to the approach taken in our application scenario, the driving assistants in the
cars form a group and schedule the shared road space cooperatively. As compared to the
semaphore-like approaches mentioned above, scheduling the shared road space does not
force the cars to stop while the resource is busy, but allows them to go on with a possibly
reduced speed. Thus, utilization and throughput of the resource can be increased.

3.1.1 Description of the Scenario

To model the scenario outlined above, we are considering two one-way tracks that merge
and then divide again. The intersection of the tracks is shared by the mobile systems on
both tracks. The hot spot is an area of a given length dm at the beginning of the intersection
(depicted dark gray in Figure 3-1). The hot spot represents the shared resource for which
mutual exclusion is to be achieved; that is, at any time there has to be at most one mobile
system in the hot spot, even if it covers a part of the hot spot only. This ensures that there
is a safety distance of at least dm between a mobile system leaving the hot spot and any
following system. The mobile systems approach the hot spot at different speeds and may
change tracks while in the hot spot. As can be seen in Figure 3-1, this scenario represents
joining as well as crossing tracks. If two mobile systems approach the hot spot on different
tracks and both stay on their own track, the situation corresponds to traversing a crossing
(cf. Figure 3-1.a and Figure 3-1.b). If one of the mobile systems changes the track, the
situation represents two mobile systems driving on merging tracks (cf. Figure 3-1.c and
Figure 3-1.d). On both tracks there is an approaching zone (the light gray zones in Figure
3-1) starting at a distance da in front the hot spot. The maximum speed at which a mobile
system may enter the approaching zone and the length of the latter must be chosen such
that da is greater than the braking distance of the mobile system.

All mobile systems in the approaching zones plus the one in the hot spot cooperatively
determine a schedule for the hot spot. A schedule for the hot spot contains for each of these
systems a tuple (te,tl) ∈ T2 denoting the times at which the system enters and leaves the hot

spot respectively, where T := denotes the set of points of time. Although the system in

the hot spot is not subject to rescheduling, there is a tuple for it in the schedule to express
the time at which it will leave the hot spot. The mobile systems must agree on this sched-
ule; that is, the enter and leave time of each mobile system can be considered as part of the
same global schedule. The main consistency constraint that this schedule must fulfill is
mutual exclusion, which means that the intervals [t

0
+

e,tl] of any two stations do not intersect.

COORDINATING THE ACCESS TO SHARD SPATIAL RESOURCES 19

a) b)

c) d)

Approaching Zone Hot Spot

0 0

-da
-da

Track 1 Track 2

dmdm

Figure 3-1. The scenario and corresponding real life situations

Apart from the consistency constraints, the schedule must be implementable ― it must
comply with the physical limitations of the mobile systems, such as bounded acceleration
and speed, ― and it must meet constraints and objectives the application imposes. As the
mobile systems are approaching the hot spot while determining the schedule, agreement on
a consistent schedule must be achieved in bounded time. In particular, whenever a further
system enters an approaching zone, the last computed schedule is no longer complete since
it does not specify enter and leave times for the new system. Hence, a new schedule must
be computed. The new system must learn its scheduled enter and leave times sufficiently
early so that it is able to implement them.

3.1.2 Application Architecture

Figure 3-2 depicts the architecture of the application. It reflects our approach to the coor-
dination of mobile systems. All processing on the application level is executed locally on
the mobile systems with the Event Service achieving coordination by providing a common
view on the system wide global state.

20 APPLICATION SCENARIOS

Dynamic Network Scheduling

Scheduling

Function

Scheduling

Function

Scheduling

Function

Detec-

tion

Detec-

tion

Detec-

tion

Event Service

Reliable Multicast

Clock

Synch.
Atomic

Multicast
Membership

1 2 2 2

Figure 3-2. Architecture of the shared spatial resource application (system layer
omitted)

In this architecture coordinating the access to the hot spot works as follows. First, the mo-
bile systems must detect that they are approaching a hot spot. This can be accomplished
using a global positioning system or landmarks for example. Detecting that it is entering an
approaching zone, the mobile system knows it has to coordinate with the other approach-
ing systems. It calls the Event Service to propagate this event and trigger the necessary
global rescheduling (Figure 3-2, arrow 1). The Event Service delivers the event to all mo-
bile system in the approaching zones, including the one currently arriving (Figure 3-2, ar-
row 2). Together with the event it delivers a consistent global state to the application. De-
livering the trigger event, all mobile systems compute a schedule for the hot spot based on
the global state associated with the event.

To define in more detail what the global state of the controlled system is in this scenario,
we introduce the following notions. Let S := {si | i ∈ N} be the set of mobile systems. For

each mobile system si we denote its position and velocity at time t ∈ T in the following

way. System si’s position pi(t) is denoted by a tuple pi(t) := (di(t),ri(t)) ∈ R × {1,2}, |di(t)| is

the distance of si to the start of the hot spot, with di(t) < 0 in front of the hot spot and di(t) >
0 within and after the hot spot. ri(t) is the identifier of the track the system is driving on (cf.
Figure 3-1.a). With di(t) defined as above, system si has a non-negative velocity vi(t) =
di'(t) when it is driving towards the hot spot. We assume that si’s velocity is bounded by
vmax. The local state zi(t) := (pi(t),vi(t)) of si at time t consists of position and speed of si at
time t. The group g(t) := contains exactly those mobile systems s),...,(

1 nii ss

),...,(
1

ztz
nii

i for which di(t)

∈ [-da, dm]; that is, those mobile systems that are in an approaching zone or in the hot spot.
The global state z(t) := of this group is the vector of the local states of the
group members.

))((t

Based on this global state, each mobile systems determines a schedule for the shared re-
source by a locally computed function, the so-called scheduling function. The input of the
scheduling function is the global state and its output is a schedule comprising enter and
leave times for all mobile systems that are part of the global state. The scheduling function
is completely local and incurs no runtime interactions between the coordinating systems.

DISTRIBUTED SENSOR FUSION 21

Thus, a timely predictable execution of that function can be achieved by local scheduling.
Furthermore, the application designer can concentrate on developing the scheduling func-
tion such that it fulfills the consistency constraints and the optimization objectives of the
application. A concrete example of a scheduling function has been presented in (Schemmer
et al. 2001). From the schedule, each mobile system knows when to enter the hot spot and
it can adjust its speed accordingly.

A mobile system’s leaving the hot spot works similar. The mobile system either explicitly
calls the Event Service or its leaving is detected by the underlying membership service. In
both cases, the Event Service delivers an event and a consistent global state so that a re-
scheduling can be initiated on the application layer.

It is important to note that detecting the approaching zone, computing the schedule, and
adjusting the speed are all local actions. No coordination is performed on the application
level at runtime. The mobile systems achieve a coordinated behavior nevertheless, because
the dynamic coordination is achieved in the Event Service. As the above description
shows, this scenario lays stress upon the communication part. It requires the mobile sys-
tems to achieve a tightly coordinated behavior in real-time. To this end, it employs all the
communication services the middleware provides. CPU scheduling, on the other hand, is
practically not a problem since neither detecting the approaching zone nor computing the
schedule requires that much processing resources.

3.2 Distributed Sensor Fusion

Perception of the environment is one of the most important skills of mobile systems as it is
the basis for the selection of actions. Wrong or partial perceptions may lead to inappropri-
ate and dangerous actions being taken. Mobile systems use sensors to perceive their envi-
ronment. However, a single system always perceives a situation from a single point of
view, and the data its sensors deliver will not reflect the whole situation in general. Coop-
eration of mobile systems bears the potential to alleviate the problem. In the scenario at
hand, we consider a group of mobile systems performing a distributed fusion of their sen-
sor data (Nett and Schemmer 2003a). Each system multicasts the preprocessed output of its
local sensors and makes it available to the other group members. Afterwards, each robot
locally fuses the data it received. This scenario incurs a significant amount of local sensor
data processing so that in addition to the communications services the task execution ser-
vice plays an essential role here. We designed the application to comprise several kinds of
inherent redundancy, at least part of which we believe are present or can be furnished in
most cooperative mobile applications. Furthermore, it allows analyzing the typical struc-
ture of distributed sensor data processing and hence determining the characteristics of the
task sets to be scheduled. Thus, it is well suited to exemplify our approach to achieving
QoS for the local task execution and to present the scheduling algorithm implementing this
approach.

The RoboCup can be considered as an example application. The RoboCup, a robot soccer
championship, has been devised as a common benchmark for the cooperation of mobile
robots in dynamic environments (Kitano et al. 1997). In particular, it was considered as an
application scenario within the DFG project in the context of which part of the work pre-
sented herein was conducted. As turned out, fusing the worldviews of the teammates is

22 APPLICATION SCENARIOS

crucial for a good team performance. Several RoboCup-Teams already perform a distrib-
uted sensor fusion for the ball and opponent localization (Dietl et al. 2001,Schmitt et al.
2001,Stroupe and Balch,Schmitt et al. 2002). In our work, we focus on the timing and
communication aspects of the distributed sensor fusion.

3.2.1 Description of the Scenario

In our scenario, a group of robots performs a distributed fusion of their laser-scanner data.
Each robot multicasts the preprocessed output of its laser-scanner and makes it available to
all the group members. Each robot fuses the data it receives locally and makes it available
to the application, possibly after some further local processing.

Each robot transform the raw data (a set of points) successively into more abstract repre-
sentations, namely contours, geometric objects, and real world elements. The filters that
perform these trasformations compose a pipeline for the processing of the sensor data. For
each representation, a fusion module has been developed that processes data from multiple
sensors at that level and outputs data at the same level combining all processed input data.
The output of the fusion module can be fed into further filtering stages. Figure 3-3 depicts
the resulting structure. Each robot is able to execute each filtering and fusion module lo-
cally. At runtime, each robot filters the data to the chosen level of abstraction (contours in
Figure 3-3), multicasts it on the network (the bold horizontal line in Figure 3-3), feeds the
data it receives into the fusion module at the chosen level, and filters the output of this
module up to the level of interest.

Figure 3-3. Structure of the sensor fusion (fusion on contour level)

This application contains several kinds of inherent redundancy. First, we developed all
filter and fusion modules as any-time algorithms (Dean and Boddy 1988), which produce
first, vague results as early as possible and then refine them iteratively (see Sub-Section
5.3.1 for more details). Even if being terminated before their completion, they provide
some preliminary results. Thus, there is functional redundancy in the task instances in the
sense that they may provide sufficient results even if not executed completely. Second, this
application contains structural redundancy by its very nature. Whenever several robots

DISTRIBUTED SENSOR FUSION 23

observe the same part of the environment and one of them fails to deliver some informa-
tion, the other robots can provide the missing information. In fact, this is done automati-
cally by multicasting and fusing the local sensor data. Third and finally, the level of ab-
straction at which the fusion is performed can be changed. Changing the level impacts the
amount of data to be transmitted and the input size of the fusion module. Generally, more
abstract representations are more compact and require less processing resources. For ex-
ample, representing a scan by a set of real world elements, such as balls and robots, and
their positions needs by far less data than representing it as a set of points. Therefore, fus-
ing data on a higher level of abstraction reduces the amount of resources the application
requires. However, it typically implies less accurate results also. Thus, by changing the
level of abstraction at which the fusion takes place, the application can adapt its resource
demand at the price of a reduced accuracy. This represents another level of functional re-
dundancy, which, as compared to using any-time algorithms, requires explicit action of the
application at runtime.

In the following, we present the filtering and fusion stages in more detail.

3.2.1.1 Filtering

In the following, we briefly present the representations we use on the different levels of
abstraction and the filters performing the transformations between these representations.
We refer to the set of data representing a set of raw data at whatever level of abstraction as
a scan. For our current implementation, we consider the RoboCup as an application exam-
ple, such that the environment of the robots consists of robots, a ball, and the boards
(which are replaced by white lines and rows of poles according to the latest rules).

Figure 3-4 Representations and filtering

The following representations are used in the scenario (cf. Figure 3-4):

Points. Points are the representation that is delivered by the laser scanner as raw data. The
scan is represented by a sequence P = {p1, …, pk} of points, where each pi is a pair

 of the Cartesian coordinates of the point in the scanner's coordinate frame.),(yx
ii pp

Contours. On the contour level the scan is represented by a set C = {e1, …, em, a1, …, an}
of edges and arcs. Each edge is represented by tuple containing both of its vertices, each
arc by its center point and radius.

The contour filter transforms raw data into contours in three steps:

1. Arcs are extracted. The algorithm we developed allows extracting arcs with known
radii. Basically, the idea is to move a circle of a given radius along the measured
points and count the number of points that are within a tube-like environment of the

24 APPLICATION SCENARIOS

circle. If a certain threshold is exceeded, these points constitute an arc. The width
of the tube accounts for the inaccuracy of the measurements.

2. The points are converted to sequences of segments, each connecting to successive
points. Each such sequence corresponds to a sequence of connected edges. A new
sequence is started whenever the distance between to neighboring points exceeds a
threshold indicating the start of new object contour (similar to anchor point detec-
tion in (Weber et al. 2000)).

3. Segments are combined to edges. The algorithm starts by representing a whole se-
quence of segments by a single edge and then successively partitions the edges un-
til they approximate the segment sequence sufficiently good (The Algorithm is de-
scribed in (Knieriemen 1991).)

Objects. On the object level the scan is represented by a set O = {po1, …, por, c1, …cs} of
r polylines and s circles. Each polyline consists of a sequence (pr1, …,) of points, each
circle of a center point and a radius.

rrnp

The object filter first transforms arcs into circles. In the considered environment, each arc
belongs to a circle. Therefore, the filter needs only check if several arcs correspond to a
single circle, in which case all but one of them are removed, and transform the remaining
arcs into circles.

The second step is to combine adjacent edges to polylines. This is performed by succes-
sively adding edges to a polyline as long as one of the end points of the edge is sufficiently
close the one of the end points of the polyline. If no further edges can be added, a new
polyline is started using the first edge that has not yet been used.

Element Filter. On the element level a scan is represented as a set of elements E =
{e1,...,et} each of which has two components: the element type (robot, ball, or wall) and a
point denoting the elements position.

The filter represents each object by a vector of two features: the object type (circle or poly-
line) and the circumference of its axis-aligned bounding box. The set of all possible vec-
tors constitutes the 2-dimensional feature space. A region in the feature space represents
each element type. The size of a region depends on the maximum and minimum size of the
element's bounding box and of the inaccuracy that should be tolerated. An object can be
classified as being of a certain element type if its feature vector is located in the corre-
sponding region.

3.2.1.2 Fusion

In the following the sensor fusion algorithms for the four levels of abstraction are pre-
sented.

The first step of all algorithms is to transform the coordinates of the considered entities
(points, edges) to a common coordinate frame, usually, the coordinate frame of one of the
sensors. As we assume that position and orientation of the sensors are known, this is easily
achieved by simple coordinate transforms.

DISTRIBUTED SENSOR FUSION 25

In the following, we describe how the merged representations are processed such that they
appear as being observed by a single virtual sensor.

Points. To resemble the output of a real laser-scanner, the merged set of points must be
sorted by increasing angles (with respect to the abscissa). However, this is not sufficient.
The sequence of points is sorted in several runs to ensure that points belonging to the same
geometrical primitive are neighbors. This is not necessarily true if the output of several
sensors is merged, because points belonging to different arcs or edges may be interleaved,
if one of this primitives is located behind the other in the common coordinate frame.

Contours. For the merged set of contours, it is checked if several primitives can be com-
bined and represented by single primitive. Two arcs are combined if the distance between
their centers and between their radii is sufficiently small. Two edges are combined if they
are sufficiently parallel (the angle between the vectors indicating their direction is less than
a threshold) and sufficiently close. The two edges are replaced by a new edge having the
two end points with the longest distance as its end points.

Objects. Similar to the fusion of contours, in the object fusion, it is checked if several ob-
jects in the merged object set can be replace by a single one. For circles this is achieved in
the same way as for the fusion of arcs. Two polylines are combined if their bounding boxes
touch or overlap. Basically, this is achieved by concatenating the vertex lists of both poly-
lines. There are, however, cases that are more complicated but have been omitted here for
space limitation reasons.

Elements. For the fusion of elements no geometrical computations are necessary. Only
redundant elements, i.e. objects of the same type at about the same place, are eliminated
from the merged element set.

3.2.2 Application Architecture

Figure 3-5 depicts the architecture of the sensor fusion. As compared to the previous sce-
nario, the middleware comprises a reduced set of communication services, namely the
Event Service and the membership service have been omitted, but the task execution ser-
vice is employed this time. The task execution service is particularly important here due to
the widely varying execution times the application tasks exhibit (Measurements showing
these variations will presented in Section 5.1). Representing the mobile systems, the light
gray boxes illustrate that the application tasks (the white boxes) are executed by the task
execution service (Figure 3-5, (1)). In fact, there are more tasks in the system than the fig-
ure displays; all of the filter boxes actually represent a number of filtering stages, each
realized as a separate task pair. As said above, all filtering and fusion stages have been
designed as any time algorithms. When a task pair executing such an algorithm is aborted,
the exception part delivers the results computed so far to the following stage of the proc-
essing pipeline. The data exchange between successive stages of the processing pipeline
implies precedence constraints between the corresponding task pairs. The execution ser-
vice’s being partly located beneath the communication services is intended to illustrate that
the CPU demands of the communication protocols require CPU scheduling as well. The
execution service has been designed to cope with both the demands of the communication

26 APPLICATION SCENARIOS

protocols and the precedence constraints of the task pairs, as will be explained in sections
5.4 and 5.5 respectively.

Dynamic Network Scheduling

FusionFusion

FilterFilter

FilterFilter

execute timestamp delivermulticast

Reliable Multicast

Clock

Synch.
Atomic

Multicast

1
1

1

22

2 43

33

4 4

Task

Execution

Task

Execution

Figure 3-5. Architecture of the sensor fusion (system layer omitted)

The arrows in Figure 3-5 depict the way of the data through the application architecture.
Each set of raw data provided by a scanner is assigned a timestamp from the global clock
(Figure 3-5 (2)). After preprocessing the data, they are exchanged within the group, using
the multicast communication services of the middleware (Figure 3-5 (3)). The timeliness of
the communication services ensures that the data are delivered with a bounded delay
(Figure 3-5 (4)). Each system fuses the data it receives and possibly feds them into some
further filtering stages (called post-processing). Since there are no complex interactions
between the systems in the application layer, the timeliness of the task execution service
and the timeliness of the communication services allow achieving a predictable timing
behavior for the distributed sensor fusion.

There are two possibilities to multicast the data within the group. The first, which is de-
picted in Figure 3-5, is using the atomic multicast service. This ensures that all mobile sys-
tems fuse the same data and allows providing to them a common external worldview. Ac-
cording to our approach to the coordination of mobile systems, the mobile systems can
make local decisions based on such a common worldview and still achieve a coordinated
behavior. However, task abortions in the fusion or post-processing stages still can lead to
the mobile systems’ having different worldviews. For example, if one the systems fuses all
input data while another one only manages to process part of it, say, representing only the
left half of the scene, they obviously come to different worldviews. This means that the
more important common worldviews are for the application, the lower the probability of
task abortions in fusion or the post-processing must be. Thus, if common views are re-
quired, it seems best to perform fusion on the highest layer of abstraction. For one thing,
the mobile systems only have to perform the fusion and no post-processing after receiving
the data. Moreover, fusion on the highest layer has a smaller execution time than on any
layer below.

Another possibility is multicasting data with the reliable multicast service. This should be
done if achieving common worldviews is not required. In this case, the overhead and the

DISTRIBUTED SENSOR FUSION 27

increased delay of the atomic multicast protocol can be avoided (the delays of both ser-
vices are compared in 6.3). Thus, if short delays are more important then providing a
common view to the group members another protocol stack can be configured to match
this requirement.

The global time base provided by the clock synchronization protocol is required to achieve
time coherence for the data to be fused. Two alternative approaches have been imple-
mented in the prototype (Section 6.2): The first approach does not require synchronizing
the observations of the systems. It uses a Kalman filter (Bar-Shalom and Fortmann 1988)
to fuse scans observed at different points of time. The global clock is used to timestamp the
data when they are observed. In the second approach, the clock synchronization is used to
synchronize the times at which the systems observe the environment; that is, the laser
scanners are triggered at common instants on the global time base. This ensures that the
observed data are time coherent so that this approach can be applied when fusion takes
place on lower levels of abstraction where Kalman filter cannot be used.

This sensor fusion scenario illustrates our idea of a configurable middleware. First, com-
pared to the previous scenario, the Event Service was omitted. Whereas the Event Service
provides a common view on the global state of the controlled system, observations of the
external environment of the controlled systems have to be fused in the scenario at hand.
Second, as was explained above, the atomic multicast service may or may not be used in
the architecture, depending on whether or not a common view and coordinated behavior
are requirements. Finally, dynamic network scheduling may be omitted also if fusion takes
place in a static group. This shows how the middleware can be adapted to the scenario at
hand with its different possible requirements.

The distributed sensor fusion scenario comprises application tasks with large and environ-
ment-dependent execution times that communicate using a reduced set of communication
services. As the communication services of the middleware are considered in the context
of the shared spatial resources scenario, the one at hand is mainly used in presenting and
evaluating the task execution service. Besides the load characteristics, it is useful for that
purpose because it was designed to include several kinds of application-inherent redun-
dancy. In combination with the first scenario, it illustrates how the middleware can be
adapted to fit the needs of different applications.

4 Communication in Cooperative Mobile Sys-
tems

Communication is essential for the cooperation of mobile embedded systems, particularly
to achieve a coordinated behavior. In this chapter, we present the communication part of
the middleware, which consists of a modular and configurable family of communication
services. The architecture of the communication part, which extends over four layers, re-
flects the three main problems we address as well as our approaches to tackle them. The
two bottom layers achieve a reliable and timely predictable communication over a wireless
LAN characterized by a widely varying number of message losses. The two top layers pro-
vide common views to the application; while the lower of them achieves consensus about
general aspects of the distributed control system, the Event Service on the highest layer
turns to the more application-specific common views on aspects of the controlled system.
The three bottom layers constitute the communication hardcore, which provides reliable
and timely services with strong, application-independent consensus semantics and serves
as the basis to realize services directly matching the semantics of the application on top of
it. We call the family of protocols that implements the group communication services of
the hardcore the Real-Time Group Communication Protocols (RGCP).

While Chapter 2 gave an architectural overview of the communication services, this chap-
ter presents the communication protocols realizing these services. Our presentation com-
prises a description of the polling mechanism of the IEEE 802.11 Standard also, so as to
describe the basic structure of this mechanism, which is common to both the original
802.11 Standard and the upcoming supplement 802.11e, and to specify those aspects which
the standard leaves open, but which are important for our design. Apart from that, we focus
our presentation on those protocols being developed as part of this thesis and refer to exist-
ing publications regarding the clock synchronization protocol (Mock et al. 2000b,Mock et
al. 2000a).

The design of the protocols is based on a formal system model describing a synchronous
system with omission failures. To match the characteristics of wireless media, this model
does not make a priori assumption about the quality of the communication links; that is to
say, about the number of omission failures they experience. Rather, it uses time-dependent

 29

30 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

link quality predicates to model the dynamically changing link quality. Based on such a
model, the protocols are designed to accomplish a safe operation under the weak a priori
assumptions, namely without assuming a fixed bound on the number of omission failures.
Furthermore, they achieve progress for all those stations and times for which the link qual-
ity is sufficiently good. The atomic multicast and the membership service are fail-aware;
that is, they indicate to their users whether or not they are able to guarantee progress.

This chapter is structured as follows. At first, we have to lay some foundations in sections
4.1 and 4.2. Section 4.1 introduces some preliminaries that help understanding the remain-
der of the chapter. It explains some basic concepts of layered architectures and system
modeling, and gives a summary of the IEEE 802.11 Standard, which constitutes the basic
layer of the communication part and is one of the starting points of the design. Section 4.2
presents the system model underlying the design of the protocols. Section 4.3 first gives an
overview of the protocol stack as a whole, before it explains the protocols composing the
stack. The description starts with the lowest layer where the polling mechanism resides and
then moves up the stack to the highest layer where the Event Service is located. Finally, in
Section 4.4, we discuss how related works addressed the problems this chapter deals with.

4.1 Preliminaries

The objective of this section is to provide the necessary background to understand the
presentation of the system model and the protocols in the following sections. It is com-
posed of two parts: First, in Sub-Section 4.1.1, we introduce some basic notions and termi-
nologies from the fields of layered network architectures and system modeling. Subse-
quently, Sub-Section 4.1.2 gives an overview of the IEEE 802.11 Standard and its up-
coming supplement 802.11e.

4.1.1 Concepts and Notions

4.1.1.1 Layered Architectures and Protocols

This clause introduces notions from the context of layered architectures, which will be
used throughout this chapter. Rather than introducing our own notions, we make use of
standard notions, which are in widespread use already, as far as possible.

Layering is a well-known and commonly accepted architectural principle for the design of
communication protocols. According to this principle, networking hard- and software is
structured as stacks of layers. Each layer provides services to the layer above it ― say
layer n for layer n+1. In doing so, it uses the services of its underlying layer; that is, layer n
uses the layer n-1 services to provide its service to layer n+1. Thus, in a layered network
architecture, complex communication services are realized step-by-step: Each layer starts
off from what the lower layers provide and adds some new services with stronger seman-
tics. Each service has a user and a provider. For a service of layer n, layer n assumes the
role of the provider while layer n+1 assume the user role. Each service has an interface.
The interface of a service is the set of operations the user invokes to access the service. In
this thesis, we will specify interfaces by the signals exchanged between the user and pro-

PRELIMINARIES 31

vider of the service. Services are accessed at services access points (SAPs) where the pro-
vider and the user of a service transfer the corresponding signals.

Layer

Serv ice

Interface

*

access

has

uses

*

implement

provides
*

*

User

User

based on

Provider

Provider

Figure 4-1. Conceptual model of a layered architecture

Figure 4-1 summarizes what we explained so far in a UML class diagram. Each layer, ex-
cept of the lowest, physical layer, is based on another layer. It uses services from lower
layers and provides services to higher layers. Each service has an interface. The provider
of the service must implement the service’s interface while the user accesses this interface.

After considering the layer as a conceptual thing, we now consider how a layer is realized
in the physical system. There, a layer consists of a set of layer entities (or peers), one layer
entity on each node of the network. To realize the services of the layer, the layer entities
communicate among themselves using the communication services of the lower layer;
Figure 4-2 represents these relations in a UML class diagram. The rules that govern the
communication amongst the entities of a layer ― in particular, the format and possible
sequences of messages ― are called the protocol of that layer. As the behavior of a layer
entity is determined by the protocol it executes, layer entities are also called protocol enti-
ties. To denote entities of a certain protocol X, we will talk of X entities; for example, of a
reliable multicast entity.

Each protocol entity is executed on a certain processor, which itself is part of a site or node
in the network (cf. Figure 4-2). Frequently, no distinction is being made between protocol
entities and the processors and nodes they are running on; rather, all these terms are used
interchangeably. This is sensible and convenient, as long as a single protocol with exactly
one protocol entity per node is considered. In this case, it is clear that saying “node x sends
message y” means that the protocol entity of the considered protocol on node x sends mes-
sage y. As we assume too that exactly one protocol entity resides on each node, we adopt

32 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

this convention also: As long as it is clear from the context which protocol is considered
we talk of nodes and the protocol entities running on them interchangeably. If, on the other
hand, it is necessary to distinguish different protocol entities running on the same node, we
will name them explicitly. Instead of the term “node”, we will usually use the term “sta-
tion”, which is more commonly used in the context of wireless networks.

Layer

LayerEntity

Node

1

*

executes on

communicate

peer

peer

Figure 4-2. Physical realization of a layer

In this thesis we consider group communication rather than point-to-point protocols. As
compared to point-to-point protocols, in group communication protocols, messages are
addressed to a group of stations rather than to a single receiver. The set of participants of
the protocol is called the membership of the group. A group typically refers to a set of sta-
tions that use the group communication services to cooperate in the fulfillment of some
application functionality. Consider as an example a group of sensors that together provide
a reliable perception of the environment or a group of vehicles cooperatively sharing a
spatial resource. We distinguish static and dynamic groups. Static groups have a fixed
membership, whereas the membership of dynamic groups may change at runtime. Changes
in the membership are due to the following reasons:

• A further station joins the group and is added to the membership;

• A station explicitly leaves the group requesting to be excluded from the member-
ship;

• A station is excluded from the membership because it is no longer operational
(crashed) or no longer connected to the other group members, in which case the sta-
tion implicitly leaves the group without requesting to be excluded.

In what follows, we will usually not distinguish whether a station explicitly or implicitly
left a group.

PRELIMINARIES 33

The data units the protocol entities exchange are called Protocol Data Units (PDUs). The
protocol entities use the services of the underlying layer to transfer the PDUs to their peers.
Service Data Units (SDUs), on the other, are the data units the protocol entities receive
from their users; that is, those data units they are expected to transfer on behalf of their
users. As a layer n protocol uses the communication services of layer n – 1 to transfer its
PDUs, what is a PDU from layer n’s perspective, becomes a SDU when handed down to
layer n – 1 for transmission. While the structure and meaning of the PDUs is part of a pro-
tocol, the SDUs are considered as a kind of black box, a unit of data the structure and
meaning of which are not known to the protocol.

4.1.1.2 System Models

The very basic prerequisite for the design of a communication protocol is to have a model
of the system in which the protocol is expected to run. Relevant aspects are, for example,
the available communication services and the topology of the underlying network. Since
building system models is a key issue and heavily influences what services a protocol can
provide, it has gained significant attention from researchers. In this section, we present
some basic notions from the field of system modeling in order to lay the foundations for
the presentation of our own system model (Section 4.2) and of related work on system
modeling (Sub-Section 4.4.1).

Protocol design must be based on a model of the environment of the protocol entities. This
means that it has to be considered which other components a protocol entity interacts with
and that a, at best formal, specification of the services of these components must be pro-
vided. Regarding the specification of component services, an essential point is whether
services have timing specifications or not. In the first case, the model is called timed
whereas it is called time-free in the latter. In a time-free model, components are correct as
long as they exhibit functional correct behavior, no matter at what times they provide their
service. In the first part of this clause, we will consider which components have to be part
of the system model.

If the protocol is required to provide reliable services, failures of the components it inter-
acts with must be considered at design time. If this is done, the protocol can be designed to
provide its service correctly in spite of failures of these components. A system model
should therefore not assume that each component always adheres to its specification, but
should take component failures into account. The model must specify in which ways com-
ponents may deviate from their specification; that is, it must comprise failure model for the
components. So, the second part of this clause will deal with failure models.

Elements of system models. The environment of a protocol entity consists of the follow-
ing components (cf. Figure 4-3, the considered protocol entity is colored in gray):

1. The user. The user of a layer n entity is the layer n+1 entity on the same node. This
is represented by the link between the layer n entity L(n)_e1 and the layer n+1 en-
tity L(n+1)_e1 in Figure 4-3.

2. The communication sub-system. It offers communication services to the protocol
and is accessed at the local layer n-1 entity. This is represented by the link between

34 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

the entity L(n)_e1 and the layer n-1 entity L(n-1)_e1 where L(n)_e1 accesses these
services.

3. The local node. The main service of the node is the execution service that runs the
protocol entity. Additionally, it may provide special services, like clocks and per-
manent storage, which are relevant for the design of the protocol. In Figure 4-3, this
is represented by the link from the entity L(n)_e1 to the node N1 it is running on.

4. The peers. The protocol entity interacts with its peers. It does not interface directly
with them, as it does with the other components, but through the communication
sub-system. In Figure 4-3, this is represented by the links from the entity L(n)_e1 to
its peer entity L(n)_e2.

System modeling deals with the points 2. to 4. For the communication sub-system and the
node local services, formal service definitions and failure models must be provided. For
the peers, the formal definition of their behavior is the main task of the protocol design and
hence not part of the system model. The failure model of the peers, however, is part of the
system model.

L(n)_e1:LayerEntity

L(n+1)_e1:LayerEntity

L(n-1)_e1:LayerEntity

L(n)_e2:LayerEntity

N1:Node

communicate with

provide services

use services

execute on / use local services

Figure 4-3. Environment of a layer n protocol entity

System models are usually divided into two parts: the communication model, which mod-
els the communication sub-system (point 2. above), and the process model, which includes
the failure model of the peers and models the node local service (points 3. and 4. above).
The interaction between the protocol entity and its user (point 1. above) is specified by the
definition of the protocol services and their properties and is usually considered as a sepa-
rated aspect not being part of the system model. Nevertheless, the system model and proto-
col service definitions are not at all independent concerns: Which services a protocol is
able to provide heavily depend on the system model. For example, as (Fischer et al. 1985)
pointed out in their seminal paper, it is not possible to design a protocol that achieves con-

PRELIMINARIES 35

sensus in an asynchronous system with crash failures. Actually, it was this work that fueled
a lot of efforts on system modeling.

The process model deals with the protocol entities and the node local services. Accord-
ingly, the process model consists of two parts. The first, called the processor model, com-
prises the definition of the node-local services, their properties, and failure model. Such
services include hardware clocks, persistent storage, or atomic send/receive actions. The
second part is the failure model of the peers. It specifies how the actual behavior of the
peer may deviate from the protocol specification. While it is the task of the protocol de-
signer to provide a specification of the protocol, whether or not the protocol entities are
assumed to adhere to this specification is part of the system model. A Failure of a protocol
entity may have the following reasons:

1. A failure in the execution service that is executing the protocol entity. For example,
it is possible that the node, and hence the execution service, crashes;

2. The implementation, which may deviate from the specification due to implementa-
tion errors;

3. Un-trusted, malevolent peers. Peers that are actually not implementations of the
protocol specification may take part in the protocol and may intentionally misbe-
have in order to disturb the operation of the protocol.

In most cases, the first point is considered the main source of entity failures. In this case,
the distinction between a processor model and a process model vanishes, because proc-
esses simply inherit the failures of the node’s execution service.

The communication model describes the communication subsystem the protocol entities
use to exchange their PDUs. It must contain two things: a specification of the available
communication services and a description of the topology of the network as far as known
at design time. The latter does not mean that a complete description of a fixed topology
must be provided at design time. But, those invariants of the topology that influence the
design of the protocol must be stated in the communication model.

Failure models. When building system models for highly reliable systems, incorrect be-
havior of system components should be taken into account from the very start of the design
process. When a system or component deviates from its service specification, this event is
called a system or component failure respectively. From the systems perspective, the fail-
ure of a component is a fault that causes an erroneous system state and may lead to a fail-
ure of the system (in-depth explanations of the terms failure, fault, and error can be found
in (Nett 1991,Laprie 1992). If component failures are accounted for in the system model,
the system can be designed in such a way that it provides its service according to the speci-
fication in spite of the component failures. This is referred to as fault tolerance and is cru-
cial to accomplish a high reliability of the overall system. Although components may devi-
ate from their specifications, it is usually not assumed that they may exhibit an arbitrary
behavior. Rather, in addition to the service specifications, a failure model is provided for
each component. The failure model describes in which ways the actual service of a com-
ponent may deviate from its specified service. Thus, the behavior of a component falls into
one of the following three classes:

36 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

• It is in accordance with the specification of the component’s service. If this is the
case, the component is called correct.

• It is not in accordance with the specification, but deviates in a way specified in the
failure model. This is a failure from the components perspective and a fault that
must be tolerated from the point of view of the overall system. Correct and faulty
behavior are both described in the system model and together referred to as the
modeled behavior of a component.

• Any kind of behavior that is not in the first two classes. Since this kind of behavior
is not captured in the model and is not considered during system design, it may lead
to critical failures of the overall. Therefore, it is of utmost importance to ensure that
components always exhibit modeled behavior. The probability that this is the case
is called assumption coverage.

The failure model, which is part of the system model, describes how the service of a faulty
component may deviate from its specified service. Several kinds of such deviation, re-
ferred to as failure modes or failure classes, are distinguished and commonly used in fail-
ure models. To define these failure modes we adopt a model presented in (Powell 1992).
The behavior of a component as observed by its user consists of the sequence of signals it
sends. Each signal can be characterized by a pair consisting of the time at which the com-
ponent sent the signal and a value, which comprises the type of signal as well as the values
of signal parameters. These pairs are called “service items” in the cited model. What sig-
nals a component must sent at what times to fulfill its specification generally depends on
the history of its inputs, i.e. the sequence of signals it received and the times of their recep-
tion. We can neglect this fact here, simply assuming that there is an omniscient observer
that perceives the inputs and knows what signals the component must sent at what times;
that is, the sequence of time-value pairs the component must deliver. Now, defining a fail-
ure mode amounts to defining how the actual sequence of time-value pairs may deviate
from the specified one.

A single time-value pair can deviate from its specification in two ways: it may contain an
incorrect value or an incorrect time, referred to as timing error and value error respectively.
The general case of a value error is called arbitrary value error, which means that values
may deviate from the specification in any possible way. There is another, more restricted
kind of value error in that class, called non-code value error. For non-code value errors, an
erroneous value always lays outside a given set of code values so that it is possible to de-
tect the error and omit the affected signals. To realize this kind of error, redundancy tech-
niques such as error detecting codes are applied. Timing errors are distinguished as fol-
lows.

Arbitrary timing error. The signal may be delivered at any time (including infinity).

Early timing error. The signal is delivered before the earliest point of time allowed by the
specification.

Late timing error. The signal is delivered after the latest point of time allowed by the
specification.

Omission error. The signal is never delivered.

PRELIMINARIES 37

In addition, we can consider that a component may deliver a time-value pair, which is not
at all specified in the service of the component. This is called in impromptu error.

If a service has multiple users, the component sends replicas of the same signal to multiple
users. Thus each service item consists of a set of time/value pairs. Consider for example a
multicast service where a message must be delivered to a group of users. This extended
model allows distinguishing errors w.r.t the perception by the group of service users. The
key point is whether users perceive errors consistently. Consistency here means that all
time/value pairs in a service item have the same value and approximately the same time;
that is, all users receive the same signal at about the same time. It is important to note that
a service item can be consistent, even though it is erroneous. For example, a consistent
omission error corresponds to a service item in which all time/value pairs have an omission
error.

Basing on the different kinds of errors in the service items presented above, we now define
the failure modes that are relevant for this thesis. In his model, Powell introduces an addi-
tional intermediate step: At first, he defines assertions on the sequence of service items for
both the time and the value domain. Then, he uses the Cartesian product of the assertions
for the time and the value domain to define a space of possible failure modes. While this is
good approach to define a very general model, we prefer focusing on those failure modes
that will play a role in what follows. We are considering the following failure modes:

Crash failure. Each service item is either correct or the service item and all its successors
have omission failures. This means the component delivers a correct service until a certain
point of time and from then on does not deliver any service item at all.

Omission failures. Each service item is either correct or has an omission error.

Later timing failures / performance failures. Each service item is either correct or has a
late timing error.

Omission failures with bounded omission degree. Each service item is either correct or has
an omission error, in which case one of the following k service items is correct. k is called
the omission degree.

Weak fail silence. Each service item is either correct or has on omission error, in which
case one of the following k service items is correct, or all following service items have
omission errors. This model is a combination of crash failures and omission failures with
bounded omission degree: Up to a certain point a component observes omission failures
with bounded omission degree and then it crashes.

Arbitrary failures. Each service item can have arbitrary timing and value failures.

Each of these failure modes can be considered for multi-user services also. For such ser-
vices, it can further distinguished whether or not failures are perceived consistently.

In the literature there are more failures modes than presented here (for example, non-
cooperative Byzantine failures (Masum 2000)), which are typically defined to represent
some special behavior of a considered systems; yet, we restrain ourselves to those modes
relevant for the thesis.

38 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

Summarizing, a system model provides service specifications and failures mode assump-
tions for the components the protocol entities interact with. A system model consists of
two parts: the process model and the communication model. The process model deals with
the node local services and provides a failure model for the peers, whereas the communica-
tion model deals with the communication services and specifies invariants of the network
topology that are known at design time.

4.1.2 The IEEE 802.11 Standard

In this section, we provide a short description of the IEEE 802.11 Standard. We concen-
trate on those aspects relevant to the system model and the protocols presented in the re-
mainder of this chapter. Hence, this section is not intended to be a detailed description of
the IEEE 802.11 Standard with all its supplements; the interested reader is referred to
(Rappaport 1996,Nett et al. 2001,Tanenbaum 2003) for more complete descriptions.

In 1997, the IEEE published the IEEE 802.11 Standard for wireless local area networks.
This new member in IEEE’s already well-established family of technologies for local area
network essentially provides a kind of Ethernet for wireless networks and leverages inter-
operability for wireless LAN solutions from different vendors. It was a success right from
the start, and it is today the commonly accepted technology for wireless communication. In
fact, the availability of a vendor independent technology to replace or enhance existing
Ethernet installations fuelled a trend to deploy wireless networks such that today wireless
LANs can be considered one of the most rapidly growing segments of the IT market.

The IEEE 802.11 Standard distinguishes two different types of networks: ad-hoc and infra-
structure networks. The basic building block of both is the basic service set (BSS), a set of
stations in a common coverage area (indicated through the bounding lines enclosing the
station sets in Figure 4-4) that coordinate the access to the common medium. The topology
of a BSS may actually be somewhat more complex than the figure suggests. In particular, a
station cannot necessarily communicate with all other stations in the same BSS. An ad-hoc
network is a BSS considered as a self-contained network without connection to external
stations and is referred to as an independent BSS (IBSS) in the Standard. Ad-hoc networks
are usually set up without preplanning by simply having several stations in a common area
communicate among themselves. In infrastructure networks, each BSS contains a special
station, the so-called access point (AP), which provides distribution services to the stations
of the BSS. The distribution services allow stations in one BSS to send frames to stations
in another BSS. They are realized by connecting the AP to a common distribution system
so that several BSS are connected to a larger network (cf. Figure 4-4). All stations in a
BSS route their frames through the AP of the BSS. The AP decides whether the destination
station of a frame is within the same BSS, in which case it forwards the frame within its
own BSS, or the station is in another BSS, in which case it forwards the frame to the dis-
tribution system.

PRELIMINARIES 39

STA1

STA5

STA1

STA2

STA6

STA8

STA2

STA3

STA7

STA3

STA4

STA4

Distribution System

AP AP

AP

ad-hoc network infrastructure network

IBSS

BSS5

BSS4 BSS7

Figure 4-4 Ad-hoc and infrastructure networks (cf. (IEEE 1999))

In infrastructure networks, the source station and the transmitting station of a frame are not
necessarily the same. As well, the destination station and the receiving station of a frame
may be different. The source station is the station where the frame originates and where the
user initiated the frame transmission. When the frame is routed through the distribution
system, an AP will transmit it to its final destination. In this case, the AP is the transmitting
station, but not the source station of the frame. Similarly, the destination station is the final
intended recipient of the frame. Using the distribution system, the source station will first
transmit the frame to an AP, which is the receiving station of the frame, but not the
destination station.

An important concept in infrastructure networks is association. Each station that intends to
send or receive messages must be associated with exactly one AP. This establishes a
unique station to AP mapping, which is essential to forward frames through the distribu-
tion system. The original Standard specifies the protocol by which stations associate with
APs and alter (re-associate) or terminate (disassociate) their associations, but it does not
specify how the association information is propagated and used in the distribution system.
Such aspects are considered in the supplement IEEE 802.11f (IEEE 2003).

The IEEE 802.11 Standard specifies the physical layer and the MAC sub-layer for wireless
local area networks (sub-layers specified in the IEEE 802.11 Standard are colored in gray
in Figure 4-5). Above the MAC layer, still in the data link layer, reside the bridging and
logical link control (LLC) sub-layers that are common to all 802 MAC/PHY specifications
and are specified in the IEEE standards 802.1 and 802.2 respectively. 802.11 itself speci-
fies several physical layers that all operate under the same MAC sub-layer. These physical
layers are characterized by different modulation/coding technologies, different frequency
bands and different raw bandwidths. In the MAC sub-layer, the Standard specifies two
access methods. The basic access method is the distributed coordination function (DCF),
which is based on CSMA and collision avoidance. Above this basic and mandatory access
method the standard specifies an optional method, the point coordination function. The

40 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

PCF is a centralized access method based on polling and intended to provide QoS in wire-
less networks.

802.11

Infrared

2Mbps

802.11

FHSS

2Mbps

802.11

DSSS

2Mbps

802.11a

OFDM

54Mbps

802.11b

DSSS

11Mbps

802.11g

OFDM

54Mbps

Distributed Coordination Function (DCF)

Point Coordination Function (PCF)

Bridging (802.1)

Logical Link Control (LLC) (802.2)

pysical

layer

link

layer

MAC

sublayer
other IEEE

MAC sublayer

and

physical layer

specifications

Figure 4-5 Structure and context of the IEEE standard 802.11 (gray)

In the remainder of this sub-section, we will first give a very brief overview of the different
physical layers available in 802.11, just to present the choices available, the bandwidths
they provide, and a rough idea of their technologies. (More detailed descriptions are pre-
sented in the works cited above.) We will then focus on the two the access methods speci-
fied in the standard, paying particular attention to the PCF and how it is supported by the
underlying DCF. Afterwards, we explain how message losses are addressed in the standard
and how stations associate with the AP. Finally, we point out what new features to support
Quality of Service in wireless LAN can be expected from the upcoming supplement
802.11e.

4.1.2.1 The Physical Layer

This section gives a brief overview of the different physical layers specified in the 802.11
Standard and its supplements. As represented in Figure 4-5, six different physical layers
have been specified by the time of this writing (in fact, 802.11h which is an extension of
802.11a may be considered a seventh physical layer). They will be shortly explained in
turn in the following.

All physical layers, except one infrared physical layer, use radio communication and oper-
ate either in the 2.4GHz ISM band or in a 5GHz band. The 2.4 GHz is unlicensed and can
be freely used for industrial, scientific, and medical (ISM) applications as long as they
bound their sending power to 1W and use spread spectrum technologies to avoid interfer-
ing with other users of the band. In the 5GHz band, the regulation bodies allocated parts of
the spectrum to be used for wireless LANs (HIPERLAN/2, for example, also uses these
frequencies). In the following list gives a brief overview of the physical layers:

1. Infrared. An infrared physical layer operating at 1 or 2 Mbps. It was specified in
the original IEEE Standard, but did not come into widespread use.

2. Frequency Hopping Spread Spectrum. This physical layer operates in the 2.4GHz
ISM band and provides 1 or 2 Mbps of raw bandwidth. It sub-divides the band into
79 channels, each 1 MHz wide. The FHSS physical layer hops from channel to
channel following a pseudo-random sequence. In each channel it spends a certain
amount of time called the dwell time. With all stations using the same pseudo-

PRELIMINARIES 41

random sequence and the same dwell time, they will always be in the same channel
at the same time as long as they keep synchronized. On the other hand, interference
with other station operating in the same band can be limited to small intervals of
time. FHSS physical layers provide good resistance against two common problems
of wireless communication: multi-path fading and radio interference. As compared
to DSSS physical layer, which will be described next, FHSS layers are less expen-
sive to produce and have lower power consumption. Due to these features, it was
commonly used for first IEEE 802.11 Standard compliant products, but it rapidly
lost significance when higher bandwidth technologies based on DSSS came out be-
cause FHSS could not be scaled to offer higher bandwidths also.

3. Direct Sequence Spread Spectrum also operates in the 2.4GHz ISM band. To
spread the signal over a wider spectrum, each bit to be transmitted is XORed with
an 11-chip pseudo-noise (PN) code, a so-called Barker Code. Thus, the small-
bandwidth data signal is spread into a signal of higher bandwidth. The receiver
XORs the chips it receives with the same 11-chip pseudo-noise code to reconstruct
the original signal. The ISM band is divided into 13 channels (11 in the US), each
22MHz wide. The center frequencies of the channels have a distance of 5MHz,
such that adjacent channels overlap. To achieve interference-free coexistence, the
center frequency of two channels must be at least 25MHz apart; so, only 3 LANs
can be operated in a common area without interference. The original IEEE 802.11
Standard provided a DSSS physical layer capable of 1 or 2 Mbps of raw bandwidth.
As stated above, at this data rate the FHSS technology was the more popular
choice.

4. Direct Sequence Spread Spectrum – High Rate (802.11b): In 1999, the IEEE pub-
lished the supplement 802.11b, which specifies an enhancement to the DSSS tech-
nology that allows for data rates of up to 11Mbps. While the technology still oper-
ates with 11MChips/s, another coding is used to achieve higher data rates. In
802.11b physical layers, 8-Chip PN codes , called Complementary Codes, are being
used to represent symbols so that 1.375 MSymbols/s can be transmitted. Each sym-
bol represents 8 data bits. Together this yields a data rate of 8 Bit/Symbol × 1.375
MSymbols/s = 11Mbps. This technology rapidly came into widespread use due to
its increased data rate and soon superseded the old FHSS technology.

5. Orthogonal Frequency Division Multiplexing (OFDM) in the 5GHz band
(802.11a). As the name suggests OFDM uses several frequencies in parallel to
transmit symbols. 802.11a uses 52 small-bandwidth sub-channels – 48 to transmit
data and 4 for synchronization. To achieve the highest data rate of 54 Mbps, 64-
QAM modulation, which uses phase and amplitude of a signal for modulation, is
used in each sub-channel. This allows for 6-bit symbols on each channel and hence
for 48 × 6 = 288 bits per OFDM symbol. To tolerate bit failures in the sub-channels
a redundant coding is used for forward error correction. For a data rates of 54Mbps
3 data bits are coded into 4 bits transmitted in the OFDM symbols. Together with
the symbol rate of 0.25 Msymbols/s this yields a data rate of ¾ × 288 bits/symbols
× 0.25 Msymbols/s = 54 Mbps.

6. Orthogonal Frequency Division Multiplexing in the 2.4 GHz band (802.11g). In
2001, the IEEE standards committee approved another high data rate physical

42 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

layer, which provides 54Mbps in the 2.4GHz ISM band. It uses the same technol-
ogy as 802.11a but in the narrower and more crowded 2.4GHz band.

The technology used for implementations and measurements in the context of this thesis is
802.11b DSSS in the 2.4GHz band and with a maximum data rate of 11Mbps. This was the
prevailing, and for most of the time only available, high data rata physical layer for 802.11
compliant wireless LANs.

4.1.2.2 Coordination Functions

The IEEE Standard specifies two medium arbitration schemes, called coordination func-
tions, which are applied during alternating periods. The basic and mandatory coordination
function, called the distributed coordination function (DCF), is based on carrier sense mul-
tiple access (CSMA) and tries to avoid, yet not completely eliminates, collisions on the
medium. Hence, a period under control of the DCF is called contention period (CP). The
other, optional coordination function is intended to be used for real-time communication.
This so-called Point Coordination Function (DCF) is based on polling and precludes colli-
sions on the medium. A period under control of the PCF is called contention free period
(CFP). In what follows, we describe both the coordination functions and how they alter-
nate in more detail. We will pay special attention to the PCF and how it is supported by the
DCF because we base protocols on the PCF.

4.1.2.2.1 Distributed Coordination Function

The basic access mechanism used in the DCF is carrier sense multiple access with colli-
sion avoidance (CSMA/CA). This is a non-persistent CSMA scheme with additional meas-
ures to reduce the probability of collisions. Collisions are particularly expensive on the
wireless medium since collisions are not detected during the transmission.

A station intending to transmit a frame first determines whether the medium is idle or busy
(carrier sense). If the station determines the medium to be idle for a DCF inter-frame space
(DIFS), it can start transmitting its frame. This is referred to as immediate access. If, on the
other hand, it senses the medium to be busy, it invokes the backoff procedure. In the back-
off procedure, a station randomly chooses a backoff time from the so-called contention
window. After it has determined the medium to be idle for a DIFS, the station starts count-
ing down its backoff time as long as the medium remains idle. In Figure 4-6, stations
STA1 and STA3 invoke the access procedure while STA2 is transmitting; so, they wait for
a DIFS after STA2 stops transmitting and then start counting down their backoffs. As soon
as a station senses a carrier again, it stops decrementing the backoff and resumes only
when the medium is idle again (like STA2 and STA3 in Figure 4-6 when STA1 starts
transmitting). When the backoff time reaches zero the station commences the transmission
(see STA1 in Figure 4-6). This non-persistent CSMA scheme reduces the probability of
several stations accessing the medium at the same time when an ongoing transmission
ceases. Additionally, the contention window, that is, the range from which backoff times
are selected, is increased after unsuccessful transmissions (how the success of a transmis-
sion is determined is explained below). This reduces the probability of several stations
choosing the same backoff time in high load situations where collisions already occurred.

PRELIMINARIES 43

STA1

STA2

STA3

frame
transm.

NAV

NAV

frame
transm.

DIFS DIFS

Back-
off

Back-
off

Back-
off

Back-
off

Back-
off

Back-
off

Figure 4-6. DCF Access procedure (acknowledgments omitted)

There are two additional measures to reduce the probability of collisions besides the ran-
dom backoff mechanism described above. The first is the virtual carrier. The virtual car-
rier is realized through the so-called Network Allocation Vector (NAV). A station marks
times for which it knows the medium is reserved for other stations in its NAV. The NAV
contains the number of time units during which the medium is assumed to be busy starting
from the current instant. A station does not access the medium as long as the NAV indi-
cates that it is busy, even if the station does not detect a physical carrier. The standard
specifies several possibilities for a station to set its NAV. The first is the duration field in
the frame headers. This field allows stations to set a virtual carrier for the length of the
current frame transmission plus the time needed for frames that must follow the current
frame according to the standard (such as an acknowledgement frame, as will be explained
below). For example, in Figure 4-6, STA2 and STA3 set their NAV as soon as they receive
the header of STA1’s frame (Usually the NAV would also include the ACK, but this will
be explained later and has been omitted in this figure.) An additional possibility to set the
NAV is the RTS/CTS mechanism we describe in the following paragraph.

So-called hidden stations constitute a particular problem in wireless communication. Imag-
ine a BSS with three stations A, B, and C, B situated between A and C. Assume that B is in
the communication range of both, A and C, but that A and C are not in the range of one
another (see Figure 4-7). Now, when A is transmitting a frame to B, C cannot sense the
carrier. So, when C itself intends to transmit a frame, it will start transmitting during the
ongoing transmission of A. At B, both these frame will collide, so B receives neither of the
frames. The key problem is that a sender cannot determine whether the receiver is within
the range of an ongoing transmission and it may start transmitting although there is a car-
rier at the receiver.

B CA

Figure 4-7. The hidden station problem

44 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

To alleviate the hidden station problem, the Standard provides the RTS/CTS mechanism.
Before a station transmits a data frame, it transmits a short request to send (RTS) frame to
the intended receiver of the data frame. The intended receiver replies to the RTS frame
with a clear to send (CTS) frame. The duration field of both these frames is set to account
for the transmission length of the following frames. A station that receives a RTS or CTS
frame sets its NAV to the duration field of the frame. Thus, after a successful RTS/CTS
pair, stations within the transmission range of the sender have set their NAV due to the
RTS frame, while stations within transmission range of the receiver have set it due to the
CTS frame. Therefore, no station being in the transmission range of either the sender or
receiver will interfere with the transmission. For example, in the scenario described above,
a CTS frame from B would have told C that a transmission is going on between A and B
and C would have kept silent meanwhile. The RTS/CTS mechanism is not used for all data
frame transmissions, but only if the data frame length exceeds a given threshold. Since
collisions are still possible for RTS and CTS frames it does not totally avoid collisions, but
only reduces their probability. Furthermore, the RTS/CTS mechanism is not applied for
broadcast or multicast frames. So, for these frames, the hidden station problem still is an
issue.

The DCF provides a completely distributed and relatively simple medium access protocol.
It reduces probability of collisions and therefore exhibits a good throughput as long as the
load (particularly the number of stations) is not too high. With increasing load, the number
of collisions and the fraction of bandwidth wasted with unsuccessful transmissions will
increase also. Thus, beyond a certain point, the achieved throughput decreases rather the
increases above an increasing offered load. Due to collisions and the random waiting times
of the backoff procedure, the DCF offers an asynchronous datagram service at best. It is
therefore not well suited for time-critical communication. For such kind of traffic, the PCF,
which we describe next, was provisioned in the standard.

4.1.2.2.2 Point Coordination Function

The IEEE 802.11 Standard specifies the PCF as an optional access method that was in-
tended to accommodate real-time data traffic (such as voice) in the wireless LAN. In the
PCF, a central entity, called the Point Coordinator (PC), grants exclusive medium access
to the stations by sending polling frames to them. The PCF is only available in infrastruc-
ture networks and the PC resides in the AP; so, we will talk of the AP instead of the PC in
what follows. To allow the AP to gain control over the medium during the CFP (the time
periods during which the PCF is executed), special features of the underlying DCF, such as
shorter inter frame spaces and the NAV, are used as will be explained in the following.

Under the PCF, every station remains silent until it receives a polling frame from the AP.
Upon reception of a polling frame (CF-Poll), it is allowed to send a single frame to an arbi-
trary destination station. In fact, a station is obliged to transmit a frame in reply to a polling
frame; if it has no data or acknowledgment to transmit, it transmits a special Null frame.
As the PCF operates in infrastructure mode, each data frame, no matter what its destination
station is, is routed through the AP, which then forwards it towards its destination. Thus,
the immediate receiver of each frame transmitted during the PCF is the AP. During the
CFP, the AP is allowed to transmit data frames itself also in order to relay them to stations
in the BSS. To save polling framing, IEEE 802.11 uses piggybacking. A data frame and a
polling frame intended for the same station can be combined into a single Data+CF-Poll
frame that carries the data and the poll.

PRELIMINARIES 45

There are two ways in which the AP maintains control over the wireless medium during
the CFP: First, it uses inter frames spaces shorter than the DIFS; second, stations are
forced to set their NAV such that the virtual carrier keeps them from sending unsolicited
frames during the whole CFP. We consider the inter frames spaces first. When the AP
transmits a polling frame to a station, it expects the station to start transmitting a frame in
reply after a short inter frame space (SIFS). In Figure 4-8, STA1 replies to a polling frame
(CF-Poll) after a SIFS. As the name suggests, the SIFS is shorter than a DIFS. If the AP
does not receive the frame after a SIFS and the medium remains idle, it starts transmitting
the next frame a PCF inter frame space (PIFS) after the end of its last transmission. For
example, in Figure 4-8, a PIFS after the AP transmitted a Data+CF-Poll frame to STA2, it
polls STA1 because it did not detect the start of a transmission after the poll. The PIFS is
longer than the SIFS, but shorter than the DIFS. With both the SIFS and the PIFS shorter
than the DIFS, the AP is ensured to have a shorter medium access time than any other sta-
tion in the BSS and hence a prioritized medium access.

The second mechanism used to avoid unsolicited frame transmissions during the CFP is
the NAV. At the scheduled start of each CFP, all stations in the BSS set their NAV to the
maximum duration of the CFP. Thus, the stations are forced to consider the medium busy
and are kept from transmitting frames during the PCF unless they receive a polling frame
from the AP. Stations reset their NAV when the AP announces the end of the CFP through
a special control frame (CF-End).

AP

STA 1

STA 2

Data+CF-
Poll

Bea-
con

CF-
Poll

CF-
Poll

Data Data

CF-
End

NAV

NAV (CFP)

CFP

SIFSPIFS PIFS

SIFS

SIFS

SIFS

SIFS

reset NAV on
CF-End frame

NAV set to
maximum CFP
duration

Figure 4-8. Timing of the PCF (acknowledgments omitted) (cf. Nett et al. 2001)

The Standard specifies that the AP shall use a polling list to control in which order stations
are polled. Thus, the polling list represents the schedule of the medium. The standard,
however, intentionally does not specify details regarding

1. How the polling list is established; that is, how the schedule for the medium is de-
termined, and

2. How the AP allocates the medium based on the polling list, which, by our analogy,
corresponds to dispatching in accordance with the schedule.

46 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

Thus, these things are left to the implementations of the Standard and different implemen-
tations may include different realizations of them.

4.1.2.2.3 Alternation of Coordination Periods

When both coordination functions are used in a BSS, they control the medium access in
alternating periods. CFPs are scheduled to start at regular intervals, called the contention-
free repetition interval. Between any two CFPs, there is a CP that allows for at least a sin-
gle frame transmission. The alternation of CFP and CP is under the control of the AP.

Every CFP starts with the AP transmitting a beacon frame. The AP periodically transmits
beacons frames to propagate operational parameters of the BSS. Not every beacon trans-
mission starts a CFP; rather, the contention-free repetition interval is a multiple of the bea-
con period so that each nth beacon starts a CFP (cf. Figure 4-9). The scheduled transmis-
sion time of this beacon is called the target beacon transmission time (TBTT) and coin-
cides with the scheduled start of the CFP. As explained above, all stations set their NAV at
the target beacon transmission to avoid unsolicited frame transmissions during the CFP.
Stations learn the parameters they require to determine the TBTT when they receive a bea-
con frame or when they associate with the AP (see 4.1.2.4)

Although the stations in the BSS know the target beacon transmission time and set their
NAVs, the start of the PCFs may be delayed. It is possible that a frame transmission that
started during the CP is still in progress at the target beacon transmission time and extends
into the CFP. In such a case, the AP cannot transmit the beacon starting the CFP until the
ongoing frame transmission ceases (cf. Figure 4-9 wherein an ongoing frame transmission
is depicted in light gray.) In fact, the delay caused by a frame transmission that extends in
to the CFP may be as large as the maximum frame duration.

Beacon-
Frames

CFP

NAV NAV NAV

CP CPCFP CFP

Beacon-
Intervall

TBTT TBTT TBTTCF-End CF-End

CFP Repetition Interval CFP Repetition Interval

Figure 4-9. CFP/CP alternation (cf. Nett et al. 2001)

After the AP transmitted the beacon that denotes the start of the CFP, it exerts control of
the medium and polls stations as described above. To end the CFP, the AP transmits a spe-
cial frame (CF-End).

4.1.2.3 MAC-Layer Reliability Measures

Wireless media are particularly error prone. First, collisions are not detected during trans-
mission, so every collision inevitably leads to a lost frame. Second, they have no shielding
to prevent interference from distorting the signal. Therefore, the IEEE decided to add error
control to the MAC sub-layer to increase reliability of MAC-SDU transmission as ob-
served by the LLC sub-layer. This clause describes the error control mechanism of the
IEEE 802.11 Standard.

PRELIMINARIES 47

The basic error control mechanism of the standard is positive acknowledgment with re-
transmission (PAR) (also known as automatic repeat request (ARQ)). This is a dynamic
time redundancy approach, in which the sender of a frame expects to receive an acknowl-
edgement from the intended recipient; if it does not get one within a certain interval of
time, it retransmits the frame. The IEEE Standard specifies that each station that receives a
directed data or management frame shall transmit an ACK frame SIFS time units after the
end of the frame transmission2. At the end of a frame transmission that requires acknowl-
edgement, the transmitting station set an ACK timeout. If it does not receive an ACK
frame before the timeout expires, the station retransmits the data or management frame.
Before the station retransmits the frame, it executes the backoff procedure described
above.

The number of re-transmissions of a single frame is bounded. There are two retry limits
specified in the standard, the short and the long retry limit. The short retry limit applies to
frames with a length not greater than a given threshold (the RtsThreshold), whereas the
long retry limit applies to frames longer than that threshold. In can be considered one of
the drawbacks of this standard that it does not allow specifying the retry limit on a per-
message or per-stream basis. In fact, all 802.11 compliant network cards we had in use did
not allow changing the value of the retry limits at all. Thus, messages or streams with dif-
ferent reliability and timeliness requirements are all handled with the same retry limits.

Re-transmitting messages to tolerate message losses can lead to duplication of messages.
When the sending station transmits the same message in several frames and the receiving
station receives more than one of these frames, it receives the same message several times.
If the receiving station delivered the message each time it receives it, the message would
be duplicated. To avoid delivery of duplicates, a receiving station must be able to detect
that different frames carried the same message. For this purpose, the IEEE Standard uses
sequence numbers. Stations attach sequence numbers to the data and management frames
they send. Frames including the same message have the same sequence number, while
frames carrying different message have different sequence number with high probability.
Each station maintains a cache where it stores station address / sequence number pairs for
the frames it received. For each transmitting station only the most recent pair is kept in the
cache. Thus, when a new frame comes in, the receiving station is able to check whether it
already received a frame with the same sequence number from the same sender. In this
case, it does not deliver the included message; otherwise, it delivers it. Of course, the range
of possible sequence numbers is bounded (a modulo 4096 counter is used) so that sending
stations are forced to reuse sequence numbers for different messages. However, since the
time to go through the whole range of sequence number once is significantly longer than
the time between two transmissions of the same message, receiving stations are able to
distinguish these two situations.

During the CFP, acknowledgments are used for point-to-point frames also, yet with two
main differences: stations are not free as to when they retransmit frames, and acknowl-
edgments are not necessarily transmitted in a dedicated ACK frame. Regarding the first

2 A frame is called a “directed” frame if it has a single station address as its receiving station; this includes
broadcast/multicast frames that are addressed to the distribution system and are hence transmitted to the AP
at first.

48 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

point, a station cannot immediately initiate the re-transmission of a message when it de-
tects a loss; rather, the station must wait until the AP polls it the next time. As for the sec-
ond point, the Standard specifies several ways to piggyback acknowledgments so as to
save the explicit ACK frames and increase performance. If the AP receives a frame after
polling a station, it is allowed to piggyback the acknowledgement for that frame on the
next CF-Poll, Data, or CF-Poll+Data frame it sends, no matter if this frame is addressed to
the transmitter of the frame to be acknowledged. A station receiving a Data+CF-Poll frame
from the AP is allowed to piggyback the acknowledgement on the Data frame it sends in
reply if it has data to transmit. Thus, explicit ACK frames are usually not needed during
the CFP. For example, going back to Figure 4-8, the AP would piggyback the acknowl-
edgements for the two data frames on the Data+CF-Poll frame (sending a Data+CF-
Ack+CF-Poll frame) and the CF-End frame (sending a CF-End+CF-Ack frame) respec-
tively.

4.1.2.4 Association

Association is an important concept to support mobility of stations in infrastructure net-
works. Only after associating with an AP, stations are allowed to access the services that
AP offers; in particular, the distribution service and the contention-free medium access.
For the first service, the association establishes a unique station-to-AP mapping that is re-
quired for the distribution of frames over the distribution system. For the second service,
station use the association to request admission to the polling list, that is, to allocate net-
work resources. In this clause, we explain how stations find APs and associate with them.

The process of searching for an AP to associate with is called scanning. There are two
modes of scanning: active and passive. In active scanning, a station transmits probe re-
quest frames on each channel where it searches for an AP. Probe requests may contain an
individual BSS ID to search for a special BSS or a broadcast BSS ID to search for any
BSS. The AP of a BSS is in charge of responding to the probe requests. In its probe reply
the AP provides several important parameters to the scanning station; for example, pa-
rameters of the physical medium, supported data rates etc. One set of parameters provided
in the probe response is the CF Parameter Set. It contains information about the time to
the next CFP, the CFP repetition interval, the maximum CFP duration, and the remaining
CFP duration. Thus, a station that decides to associate with the AP has all information re-
quired to adhere to PCF timing specification presented above. In passive scanning mode, a
station merely listens on each channel where it is searching for an AP. As explained above,
APs transmit beacon frames periodically. Like the probe response frames, beacons contain
important parameters of the BSS. In both modes, the station stays on each channel to be
searched for some specified time to wait for probe response or beacon frames. So, after
going through all the channels, a station has learned which APs are located in its commu-
nication range and what are their key parameters. Using this information, it decides which
AP it associates with.

A station that intends to associate with an AP must first authenticate. We will not explain
here how authentication in 802.11 works. After authenticating, a station is allowed to asso-
ciate with the AP. To this end, it sends an association request frame to the AP. In this
frame, it announces whether it wants to be placed on the polling list. Four choices are pos-
sible: station does not support polling, station supports polling, but does not request to be
polled, station supports polling and requests to be polled, station supports polling, but re-

PRELIMINARIES 49

quests never to be polled. Additionally, the station announces the transmission rates it sup-
ports. The AP sends an association response in reply to the stations request. This frame
contains a status code indicating whether the association was successful and, if it was not,
why the AP did not admit the station. The AP may reject an association request for several
reasons, for example, because it can handle no more stations, the station does not support
all rates required in the BSS, the station requested polling capabilities that the AP does not
provide, etc. When the association response indicates success this means that the station is
now associated with the AP and that it was admitted to the polling list if it requested so.

Besides association, the Standard also allows for reassociation and disassocation of sta-
tions. A station may reassociate for two reasons: it changes from one AP to another one, or
it wants to change the parameters of its associations. The latter is the case if a station al-
ready being associated with an AP wants to request to be added/removed from the polling
list. Disassocation allows stations to abandon their association explicitly instead of simply
stopping to communicate with the AP.

The concept of association provides the necessary information to the distribution system to
accomplish its services. Furthermore, it allows stations to request admission to the polling
list. It is worth noting that the protocol allows stations to give a very rough specification of
their demands only ― if they want to be polled or not. Actually, by the specifications in
the standard, it is not even clear what ― in terms of the bandwidth it gets ― it does mean
for a station to be part of the polling list, because neither the scheduling algorithm nor the
dispatching based on the polling list is specified in detail. Thus, before higher layer proto-
cols build on the PCF to provide timely services, a more detailed specification of the later
aspects must be given.

4.1.2.5 802.11e

As this work is dealing with QoS on wireless 802.11 compliant media, the up-coming sup-
plement 802.11e should not remain unmentioned, even though the IEEE has not yet ap-
proved it. This supplement is intended to extend 802.11’s support for QoS. Avoiding de-
tails, which still may be subject to change, we will give a coarse overview about what is
new in 802.11e and discuss how these new features relate to work presented herein.

Even though there is an increasing interest in industry to provide QoS over wireless LANs
and although the PCF, which was intended for that field, was part of the original 802.11
Standard, it never became reality. The reason why the PCF was never implemented is not
that polling per se was considered a bad technology, but that some of the details specified
in 802.11 led to problems. Amongst these are:

1. The possibility that the start of the CFP is significantly delayed due to ongoing
transmissions at the target beacon transmission time.

2. The fact that a polled station may transmit a frame of arbitrary length

3. The bandwidth a station gets after being admitted to the polling is not exactly
specified.

4. The timing structure with one CFP and one CP during a CFP repetition interval is
not very flexible.

50 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

5. There is no possibility to specify more detailed timing requirements than just re-
questing admission to the polling list.

So, a task group was set up to come up with an extension to resolve these points.

802.11e will support soft-real-time traffic during the DCF by providing prioritized access
for several traffic classes. This enhanced version of the DCF is called Enhanced Distrib-
uted Channel Access (EDCA). Under the EDCA, each of this traffic classes has its own set
of DCF parameters including the inter frame space, minimum contention window, and
maximum contention window. Obviously, these parameters can be chosen such that higher
priority traffic classes have probabilistically shorter access delays. Furthermore, stations
do not content for transmission of a single message, but for transmission opportunities. A
transmission opportunity is an interval of time during which a station is allowed to transmit
frames on the medium. This has two advantages: Stations may transmit several frames
once they seized the medium, which reduces arbitration overhead. Furthermore, the maxi-
mum duration of a frame transmission can be bounded, which allows for a more predict-
able timing behavior.

In the IEEE 802.11e Standard, hard real-time traffic is still supported through polling. The
timing of the coordination function ― which is now called HCF Controlled Channel Ac-
cess (HCCA), where HCF stands for hybrid coordination function ― has become more
flexible. The AP is now free to poll stations at any time, not just during the periodical
CFPs. Like in the PCF, the AP has a shorter access delay (still a PIFS) than the stations so
that polling frames have a higher priority than data frames sent by stations. A station that
receives a polling frame is allocated a transmission opportunity; that is, it has the right to
transmit frames for a time specified in the polling frame. As explained above, transmission
opportunities allow for a tighter control of the medium and improved performance as com-
pared to PCF scheme wherein a station was allowed to transmit a single frame after being
polled.

The enhancements specified in the upcoming 802.11e standard are not a replacement for
the protocols that will be presented below. On the contrary, they can be considered com-
plementary, in a sense that the protocol, with some adaptation, will work even better on an
802.11e MAC. In particular, the following benefits can be expected:

• The increased flexibility of the HCCA allows for a better integration of polling-
based hard real-time traffic (as considered in our protocols) with soft and non-real-
time traffic.

• The priority-based medium access under the EDCA will open up possibilities for
an even more flexible scheduling of the resources. For example, it will allow
transmitting requests for polling-based resource allocation at a higher priority under
the EDCA. Again, this opens up opportunities to enhance the flexibility of the dy-
namic network scheduling layer.

In general, we intent to adapt our protocol stack to exploit these upcoming possibilities so
as to achieve better integration of different kinds of traffic on the WLAN, a better tailoring
of the service provision to the requirements of the different traffic classes, better band-
width utilization, and more flexibility.

SYSTEM MODEL 51

4.2 System Model

The starting point of a good protocol design is a model of the protocol’s environment; that
is, of the system wherein the protocol will run. In this section, we present the system model
underlying the design of our protocols. As explained in Sub-Section 4.1.1, it has two major
parts, the process and the communication model. Whereas the former, presented in Subsec-
tion 4.2.1, defines node local services and the failure model of processes, the latter, pre-
sented in Subsection 4.2.2, defines the topology of the underlying network, the communi-
cation services it offers, and the failure modes the links exhibit.

Since wireless media exhibit a poor and time-varying reliability, the communication model
presented in Subsection 4.2.2 makes no general assumptions about the number of omission
failures. Rather, we use a time and station dependent predicate valid to model the quality
of the links. Whenever the predicate is true for a given station and a given interval of time,
the number of omission failures affecting the communication between the AP and that sta-
tion is bounded. In such a model, protocol design cannot be based on assuming a fixed
number of omission failures. Rather, a safe operation of the protocols must be achieved for
any number of omissions. Furthermore, while the model does not allow guaranteeing reli-
able and timely communication for all stations at any time, we require the protocols to
achieve a reliable and timely communication for all those stations and times for which the
link quality is sufficiently good; that is, for which the valid predicate holds.

4.2.1 Process Model

We are considering a set of stations, which are the nodes in the wireless
network. According to the IEEE Standard we distinguish two kinds of stations, the AP and
the clients. We first present the node local services available to the protocol entities and
then the failure modes of the stations.

,...},,{: 321 sss=S

4.2.1.1 Node local services

In our model, it is the task of the execution service to execute the protocol entities in re-
sponse to the occurrence of signals. Signals correspond to clock timeouts or to the recep-
tion of a frames on the network. The signals internally exchanged between the protocols of
the stack are not considered here, since the whole stack appears to the execution service as
a single task or process (see Section 6.3). The execution service of the stations allows for a
timely execution of the processes.

Property 4-1 (Timely Execution). There is a known constant δsched such that for each
signal s addressed to a process p and received by the execution service at time t, the corre-
sponding execution of process p is completed by time t + δsched.

The failure model of the execution service will be presented in the following clause.

Stations have hardware clocks that have a bounded drift rate w.r.t real time. These clocks
allow protocols to get readings of the current time and to use timeouts.

52 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

The services of the clock will be defined through a system variable now as is used in the
SDL specifications. nowt denotes the value of the variable at real-time t. For sake of sim-
plicity we assume that nowt is a continuous function and abstract from the granularity of
the clock. The following property establishes a relation between interval lengths measured
by the local clock and the corresponding intervals in real time.

Property 4-2 (Bounded drift rate). There is a known constant ρ ∈ [0,1[such that for all
times t and t', t' > t holds

dr(t,t') :=

nowt' - nowt

t' - t – 1 ≤ ρ ,

where dr(t,t') is called the drift rate of the clocks in the interval [t,t'] and ρ is the maximum
drift rate.

Furthermore the clock provides a timeout service. We use the SDL notions for working
with timeouts to model this service.

Property 4-3 (Timeouts). For all timeouts to, all real times t, and all clock values tt: if a
process calls set(to,tt) at t and tt > nowt and t' denotes the first time such that nowt' ≥ tt
then either the timeout mechanism issues signal to at time t' or the process called can-
cel(to) during]t,t'[.

Property 4-2 ensures the existence of the time t' in the above definition.

Regarding the failure model of the clock, we assume that it operates correctly as long as
the station is operational. This means that the protocol entities will not observe any failures
of the clock. Stations have access to stable storage; that is, a storage that survives a station
crash.

4.2.1.2 Failure Model

In this clause we present the failure model for the protocol entities. We assume that fail-
ures of protocol entities are due to failures of the execution service of the stations or due to
failures of the stations themselves. Implementation failures or malevolent peers are not
considered in the failure model. As explained in Sub-Section 4.1.1 above, in this case, the
difference between the processor and the process model vanishes. Therefore, we will de-
fine the failure model in terms of stations instead of processes.

We assume an asymmetric system model, in which the AP and the clients exhibit different
failure modes. We assume that the AP is not subject to any kind of failure. The IEEE
802.11 Standard, which employs the AP as a central coordinator during the CFP, already
implies the assumption of a stable AP but does not indicate how this is achieved. From our
point of view, a virtual AP provides the coordination functionality. It is implemented with
redundant hardware using well-known fault-tolerance concepts if high reliability is require.
Stations are subject to crash failures and omission failures. The latter means that the execu-
tion service may omit the execution of a process although it received the corresponding
signal. The execution service decides to omit the execution of a process if it cannot ensure
to complete the execution in time. How the execution service makes this decision, will be

SYSTEM MODEL 53

explained in more detail in the following chapter, Sub-Sections 5.4.3 and 5.4.4, which ad-
dress the scheduling of the communication tasks.

Thus, for the stations we assume a synchronous system model with omission failures. This
means our model assumes a timely execution of the protocol entities. This is achieved by
our scheduling approach, which avoids timing failures for aperiodic tasks.

4.2.2 Communication Model

In the communication model we will specify three things

• The communication topology

• The communication service

• The failure model of the service

Before this can be done it is essential to determine on what layer of the architecture the
model is situated because different layers provide different services, exhibit different fail-
ure modes, and have different topologies.

4.2.2.1 Layer of the model

As we are going to present those aspects of the PCF that deal with maintaining and proc-
essing the polling list as part of the protocol stack, our model describes a communication
service within the data link layer. The interface of this service is situated above the DCF
(cf. Figure 4-10). Beneath this interface, framing, addressing, and detection of transmission
errors are provided as services of the underlying sub-layers, while the polling functionality,
recovery from transmission errors, and other services are assumed to be located above this
interface. Also the inter frame timing is assumed to be handled by the underlying DCF
layer, which allows us to focus our model of the PCF to those aspects not addressed in the
standard.

Physical Layer

Framing / Addressing / Error Detection

Distributed Coordination Function

Modeled Interface

Polling / Re-Transmission / other Services

Figure 4-10. Layer of the model

Actually, we are forced to build the physical implementation above a DCF MAC layer
encapsulated in a network interface card (NIC) that does not allow using the special inter
frame spaces for PCF frames. All frames transferred to the NIC for transmission, will be

54 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

sent out with the complete DCF access procedure (including random backoffs) and frames
with individual addresses will incur MAC level re-transmissions. This is because the MAC
functions are time critical and are implemented in the firmware on the NICs. NIC vendors
keep the source code for their firmware under disclosure, so enhancements cannot be
added on that layer, nor can the interfaces be extended. However, this is not too much of a
problem for the implementation. The timing of the protocols presented in the following
only bases on the assumption that frames are not arbitrarily delayed before being transmit-
ted on the MAC and that the probability of message losses does not grow arbitrary due to
collisions. Both assumptions hold even if the PCF is implemented on top of the full DCF
access procedure. The PCF still ensures that stations will not observe a busy medium when
they are allowed to transmit a frame and that no collisions occur because of simultaneous
access.

4.2.2.2 Topology

We model the wireless broadcast medium as a set of virtual point-to-point links that may
have different frame loss rates and observe independent frame losses. This means that a
broadcast frame send simultaneously over all the virtual links may be lost on some links
and received on others. It does not mean a statistical independency of the frame losses.
Assuming virtual point-to-point links is a more realistic model than assuming a homoge-
nous broadcast medium where all stations observe the same link quality and frames losses
are perceived consistently. In wireless communication the probability of frame losses de-
pends on the relative spatial location of sender and receiver and on the kinds of objects in
their surrounding. Hence it is a property that may be different for any pair of stations.

We are considering communication within a single BSS in which the AP controls medium
access through polling. As explained above, in such a structure all communication takes
place between the AP and the clients; clients do not communicate directly among them-
selves. Thus, only the virtual links between the AP and the clients are relevant in our
model, which leads to a virtual star topology being imposed on the BSS (cf. Figure 4-11).
To some extend, this virtual topology is less dynamic than the real, complete topology of
the BSS; yet, links can still go down and have varying loss rate as will be discussed later in
the section. The set of virtual links makes up the communication sub-system, which pro-
vides the communication service to the protocol entities.

AP

STA2

STA1

STA4

STA3

virtual point-to-point link

Figure 4-11. Virtual star topology of the network

SYSTEM MODEL 55

4.2.2.3 The Communication Service

In the following we define the communication service through a sequence of properties
(Schemmer and Nett 2003b). For these definitions, we assume that all frames sent can be
distinguished. Note that this is only assumed for sake of the definitions, but that neither the
service nor its user is required to provide such a unique distinction. We say that a station si
sends frame m if the service user at si requests the communication service to transmit frame
m, and we say that station si receives frame m if the communication service at si sends a
receive indication for m to the service user. We denote by rec(m) the set of intended re-
cipients of m.

Property 4-4 (Validity). There exists a constant δframe such that for all stations si, sj and
all frames m, if si sends m at t and sj ∈ rec(m) and sj is correct throughout [t,t+ δframe],
then sj receives m.

The Validity defines the very basic property of the service; that is, the transmission of
frames. It states that when a station sends a frame, all intended recipients will receive it.

Property 4-5 (Integrity). For all stations si, all messages m, and all times t, if si receives
m at t, there exists a time t' and a station sj such that t' < t and sj sent m at t' and si ∈
rec(m). Furthermore, for all stations si, all messages m, m', and time t, t', if si receives m
and m' at t and t' respectively and t ≠ t', then m ≠ m'.

This property requires that the service does not modify frames, duplicate frames, or for any
other reason indicates frames that were not sent. The following facts render this assump-
tion plausible:

• The modeled sub-layer does not perform re-transmissions. As duplicate frames are
usually caused by re-transmissions, this is not likely to happen here.

• Regarding modification of frames, the IEEE 802.11 Standard provides a CRC-32
(cyclic redundancy checksum) as a frame check sequence to ensure integrity. As-
suming that within the modeled layer only non-code value failures occur, any
modification can be detected and the service will not indicate the erroneous frames
to its user. Thus, each modification that may occur during physical transmission is
detected and results in no frame being delivered. If the integrity provided by the
CRC-32 is not sufficient, further error detecting codes can be added, which how-
ever is not in the scope of this thesis.

Property 4-6 (FIFO). For all stations si, sj and messages m, m': If si sends m before m'
and sj receives m and m', then sj receives m before m'.

The FIFO property requires that frames from the same sender be delivered in the order
they have been sent. On a single LAN, with only a single path from transmitter to receiver,
distortion of the FIFO order only may occur if re-transmissions are used. As the modeled
sub-layer does not perform re-transmissions, the FIFO order is always maintained.

Property 4-7 (Timeliness). There exists a known constant δframe such that for all stations
si, sj, messages m, and times t, t': If si sends m at t and sj receives m at t', t' - t ≤ δframe

56 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

While Validity already requires that correct stations receive frames in time, timeliness en-
sures that no station, even a faulty one, receives a frame late. As explained above arbitrary
delays are unlikely on the sub-layer on which our model resides for the following reasons

• There are no retransmissions, so only the delay of a single physical transmission is
considered

• The medium access delay is bounded since under the PCF stations need not wait
for the medium to become idle.

Obviously, timeliness is only ensured as long as frames are sent at a limited rate. In par-
ticular, if a second frame is sent while the transmission of the first frame is still in pro-
gress, a queuing delay at the local station will be the consequence. We therefore assume
that the communication service sends a status indication to its user whenever the transmis-
sion of a frame ceases. So, the user is able to synchronize with the rate of the communica-
tion service. Figure 4-12 illustrates this idea: when the transmission of m ends, the com-
munication service sends stat_ind. Reacting to this signal and sending the next frame takes
at most δsched time units. The figure also makes clear that the indication is not expected to
be sent at the same time when sj receives frame m; for example, the propagation delay has
to be considered, which we assume to be small however.

Figure 4-12. Timing of the frame transmission

The properties presented in this clause define the service provided by a correct communi-
cation link; in the following clause, we will define how a faulty link may deviate from this
service.

4.2.2.4 Failure Model

For the communication service we assume omission/crash failure semantics. This means
that if a station sends a frame, not all of its intended recipients may receive it. Thus, with
omission failures, the validity property is not always fulfilled by the actual service of the
link. We assume that omission failures may be perceived inconsistently; that is, if a frame
has more than one intended recipient, some of them may receive the frame and some may
not. This corresponds to the idea of modeling the broadcast medium as a set of virtual
point-to-point links where a frame sent simultaneously over several links may be lost on
some links and be received on the others. A crash failure of a link means after certain point
of time on no frame will be received on that link. Link crashes may be due to the mobility

SYSTEM MODEL 57

of the stations; in particular, if a station moves thus far from the AP that no more frames
will be received. Inconsistency of the failures raises another important issue, especially in
cooperative applications. Inconsistent failures leave the intended recipients of the frame in
inconsistent states, which may lead to inconsistent actions of the stations.

Summarizing we assume a synchronous system model with omission failures. This holds
for both the process and the communication model. For both, a timely predictable behavior
is assumed since the services have timing specification and do not exhibit timing failures.
While our CPU scheduling achieves this for the process model, the basic medium proper-
ties under the PCF ensure it for the communication model. We do not assume a limit on the
number of omission failures as part of the basic system model. Thus, the general model
presented so far does not allow realizing a reliable and timely communication between the
stations. In fact, in a wireless network with mobile stations, this cannot be ensured for all
stations and at all times. For which stations such a service can be provided and for which
not depends on the dynamically changing link properties, which will be considered in the
following sub-section.

4.2.3 Dynamic Link Properties

The system model presented so far defines static properties of the communication sub-
system, which are known at design time and are assumed to hold during the systems life-
time. These properties, however, are too weak to implement reliable and timely communi-
cation services above them. In this sub-section, we will explain how the model can be ex-
tended to overcome this problem.

The properties defined so far are safety properties; that is, they require that if a station re-
ceives frames these frames comply with certain requirements (they are timely, unmodified,
ordered), but they do not require that stations receive any frames at all. The sole exception
is the Validity property; but due to the omission failure assumption, Validity is not a static
property of the communication sub-system. The key weakness is that there is no bound on
the number of omission failures. For any given delay bound ∆, a protocol could run into
the following situation: the protocol is trying to transmit a message (SDU) to its peer enti-
ties for ∆ time units already, but every frame carrying the message was omitted. Now, the
protocol can either go on retransmitting the message, in which case the message will be
received late; or stop retransmitting the message, in which case it will be lost. So, to allow
for reliable and timely transmission of messages we have to assume a bounded number of
omission failures.

Wireless media exhibit a poor and time-varying reliability. Thus, we cannot generally as-
sume an upper bound on the number of omission failures (so-called omission degree) even
if such a bound is likely to exist in a certain environment around the AP. For one thing, a
station may move thus far from the AP that the virtual link between the AP and that station
crashes; that is, the station receives no frames at all after the link crash. Furthermore, the
link may be in an intermediate state, where the station still receives some frames but may
not adhere to an upper bound on the number of omission failures. The smaller the assumed
omission degree, the more likely are such intermediate state. Figure 4-13 gives a spatial
impression of what we explained so far. There is an environment around the AP where
stations observe a bounded number of omissions only. Such stations are called valid sta-

58 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

tions (a formal definition will be presented below). Beyond this area, there is an area
wherein stations, may still receive frames from AP, and vice versa, but without any upper
bound on the number of omissions between the receptions of two frames. Such stations are
called partially valid stations. Stations beyond this area, called invalid stations, receive no
frames at all from the AP and the AP receives no frames from these stations. As a matter of
fact, the boundaries between these areas are not as clear as the figure may suggest. More-
over, we should thing of them as being time varying since they depend on environmental
settings, which are subject to change.

AP

bounded

omissions

link

crash
unknown no.

of omissions

invalid

partially valid

valid

Figure 4-13. Omission failures in the AP’s environment

So far, we noticed that reliable and timely communication services can only be provided as
long as the number of omission failures is bounded and that we cannot assume that the
number of omission failures is bounded in general. Nevertheless, as Figure 4-13 suggests,
there are stations that can communicate with the AP with a bounded number of omissions
failures. Now, the idea is to require the protocols to provide their services in time to these
valid stations. Regarding stations that are not valid, it must be ensured that

• The presence of such stations does not prevent the protocols from providing a
timely service to the valid stations, and

• The service provided to these stations fulfills certain safety requirements.

In this approach, the protocols have two kinds of properties: safety and progress properties.
Safety properties require that if a service is provided it adheres to certain safety require-
ments; for example, if messages are delivered they are delivered in the correct order. The
protocols ensure that safety properties hold for all stations at all times, no matter whether
they are valid or not. Progress properties, on the other hand, require that a service is actu-
ally provided and within a given time bound; for example, that a message is delivered to its
intended recipients in bounded time. The protocols ensure progress properties for valid
stations only. Thus, progress properties are conditional properties.

SYSTEM MODEL 59

Validity, invalidity, and partial validity are not static properties of the stations. Mobile
stations are expected to move from area to area and hence to change from invalid to par-
tially valid, from partially valid to valid, and so forth. Moreover, as explained above, the
areas themselves may change dynamically such that even a station at a fixed location may
change its state.

In the following we present a formal definition of validity and invalidity. We will define
two special kinds of validity. One (Polling Validity) considers the poll-reply styled com-
munication that allows clients to transmit messages to the AP. Remember that each client
is expected to transmit a frame, called reply frame in the definitions, to the AP in response
to each polling frame it receives. The other kind of validity considers the transmission of
messages from the AP to the stations. We define the constant δm := δframe + δsched, which
denotes the maximum delay between the time a frame is sent and the time at which it has
been processed at the receiving station.

Given a constant OD we define:

Definition 4-1 (Polling Valid). For all stations si and all times t, t' with t < t', si is polling
valid during [t,t'] if and only if for each sequence of OD+1 consecutive polling frames the
AP sends to si during [t,t'-(δm + δframe)] it receives at least one reply frame from si.

Definition 4-2 (Receive Valid). For all stations si, and all times t, t' with t < t', si is re-
ceive valid during [t,t'] if and only if the following holds: If a protocol entity at the AP
sends a message in at least OD+1 frames to si during [t,t'- δm], si processes at least one of
these frames.

Definition 4-3 (Valid). For all stations si, and all times t, t' with t < t', si is valid during
[t,t'] if and only if it is polling valid and receive valid during [t,t'].

Definition 4-4 (Invalid). For all stations si and times t, t' with t < t', si is invalid during
[t,t'] if and only if each frame si sends during [t,t'-δm] is not processed at the AP and vice
versa.

The definition of “invalid” is not the negation “valid”. There may be intervals, during
which a station is neither valid nor invalid, in which case it is called partially valid. Fur-
thermore, during intervals in which only few frames are transmitted, both predicates may
be true. For example, if less than OD+1 polling frames are sent to si during an interval I, si
could be valid or invalid. However, as long as we know that the protocols ensure certain
properties if a station is valid during an interval of a specified length, it is not of so much
interest that the station could also be viewed as being invalid during a fraction of the inter-
val. In the remainder of the thesis we will usually omit the interval and only talk of valid or
invalid stations where it is clear from the context which intervals are relevant. For exam-
ple, if the transmission of some message is considered, the relevant interval is [t,t'+δm],
being t the time of the first and t' the time of the last transmission of the message.

As will be pointed out in Section 4.4, the presented model is similar to timed asynchronous
system model (Cristian and Schmuck 1995,Cristian 1996,Cristian and Fetzer 1999). In
particular, the ideas of using predicates to describe the connectivity status of stations and
to condition progress properties on these predicates are inspired by this work.

60 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

4.3 Description of the Protocols

In this section, we present the protocols that constitute the communication part of our mid-
dleware. We describe and define the main services of each protocol and explain how the
protocol provides these services. A formal description of the protocols in SDL is provided
in Appendix A.

At first, we give an overview of the protocol stack. We explain the interrelations of the
protocols and how the service oriented architecture presented in Chapter 2 has been
mapped to a stack of micro-protocols. Subsequently, in sub-sections 4.3.2 through 4.3.8
the protocols are presented bottom-up. Every protocol is presented in three steps: First, its
services are defined; second, the operation of the protocol is explained for static groups;
and third, we explain how the protocol is extended to accommodate dynamic groups also.
Dynamic network scheduling, membership, and Event Service are not intended to be ap-
plied in static groups, so the operation of these protocols is presented in a single step. The
protocol presented (Mock et al. 1999,Schemmer 2000) is a predecessor of the multicast
protocols in the protocol stack. It was designed as a monolithic atomic multicast protocol
for static groups and is based on a failure model with stronger, less dynamic assumptions
on the link qualities than those underlying the protocol stack presented herein.

4.3.1 The Protocol Stack

To achieve modularity in the protocol stack, we designed each protocol to implement only
a single communication feature; that is, it either implements some particular service for the
application, like membership, or adds a special property, like atomicity, to an underlying
service. This design makes it possible to realize complex services with strong semantics by
combining several simple protocols. Such protocols are referred to as micro protocols (van
Renesse et al. 1996), in contrast to macro protocols, which combine several services and
properties, such as reliability and atomicity, in a single implementation. Micro protocols
can be configured to form stacks that provide only those services and semantics the appli-
cation actually requires. Besides accomplishing configurability, this kind of modular de-
sign brings about some interesting advantages: it fosters reuse of the micro protocols, re-
duces complexity of the protocols, and eases verification.

Figure 4-14 depicts the structure of the protocol stack including all micro protocols. Since
AP and clients exhibit asymmetric behaviors, each protocol has two roles, a client role
executed at the clients and an AP role executed at the AP. Therefore, the basic structure
consists of two corresponding stacks connected by the wireless medium ― one stack is
composed of the client roles, the other of the AP roles. The figure reveals the user/provider
relationships between the protocols: Each arrow between two protocols means that the
upper protocol uses the services of the lower protocol. Which services the protocols pro-
vide and which services they use in doing so will be explained in detail in the following
sub-sections, where we describe each of the protocols. We give here, however, some gen-
eral remarks on the structure of the stacks.

DESCRIPTION OF THE PROTOCOLS 61

L2 : L2 :RelMul RelMul_ _dyn dyn_AP _AP

L5 : L5 :

L5 :

Mem Mem

Mem

L4 : L4 :AtomMul AtomMul_ _dyn dyn_AP _AP

L1 : L1 :DynMedAcc DynMedAcc_AP _AP

BotPort BotPort

BotPort BotPort

SAP SAP

BotPort BotPort

BotPort

BotPort BotPort

SAP SAP

Reliable Multicast Reliable Multicast

Membership Membership

Event Service

Dynamic NW Scheduling Dynamic NW Scheduling

AP Stack

Client Stack

Polling

Medium

Polling

Synchronous
Channel

Synchronous
Channel

Atomic Multicast Atomic Multicast

Figure 4-14. The protocol stack

In addition to their main communication services, micro protocols may provide stack in-
ternal services as well, which are intended for higher-layer micro protocols, rather than for
the application. Such internal services are efficiently realized in conjunction with the main
service of the protocol, so they can be considered a kind of by-product of the main service.
For example, the poll-reply styled polling structure used to provide contention-free me-
dium access can be exploited to detect stations that became invalid. The synchronous
channel protocol, which conceptually belongs to the reliability layer of the middleware,

62 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

provides only internal services for higher-layer protocols, namely for the atomic multicast
and the membership protocol. It was therefore omitted in the architectural overview pre-
sented in Chapter 2. The synchronous channel protocol allows the reliable and timely
transmission of a small amount of information from the AP to the clients.

Applications run on the clients only so that they access communication services only at the
clients. Therefore, connections between the protocol stack and its environment are only
depicted in the client stack; they represent the service access points (SAPs) where the ap-
plications access the communication services of the middleware. Actually, only protocols
in the communication hardcore have protocols entities at the AP. Above the hardcore, the
existence of an AP is transparently hidden behind the communication services of the hard-
core. Therefore, the entities of the Event Service reside on the clients only. The client stack
provides two SAPs to the application. At one of them, the application accesses the services
of the dynamic network scheduling protocol to join the group if dynamic groups are sup-
ported. At the other, the application accesses the message transmission and membership
services of the protocol stack, such as reliable or atomic multicast.

 1 2 3 4 5 6 7 8

Polling X X X X X X X X
Dyn. NW Scheduling X X X X X

Reliable Multicast X X X X X X
SynchronousChannel X X X X

Atomic Multicast X X X X
Membership X X

Event Service X

Figure 4-15. Configuration options of the protocol stack

Both the membership and the atomic multicast protocol provide application-independent
common views and hence belong to the same layer of the middleware. Nevertheless, we
decided to implement the membership protocol above the atomic multicast protocol in the
protocol stack. This structure allows for a more efficient realization of agreement, total
order, and virtual synchrony in the membership protocol since the agreement and total or-
der properties of the atomic multicast protocol can be exploited.

Figure 4-15 shows possible configurations of the protocol stack. As can be appreciated
from the table, it is possible to successively extent the stack by adding further micro-
protocols on top of it. Usually each protocol is required by all protocols on the following
layers. The dynamic network scheduling protocol, however, is only required if dynamic
groups are to be supported. If static groups are considered, the reliable multicast protocol is
based immediately on the polling protocol. So, using dynamic groups or not is a nearly
orthogonal configuration option. The membership protocol, however, obviously only
makes sense for dynamic groups. As a consequence, the Event Service too is only consid-
ered in conjunction with dynamic groups.

DESCRIPTION OF THE PROTOCOLS 63

4.3.2 Polling

To provide predictable medium access, the original IEEE 802.11 Standard specifies a poll-
ing-based medium access method called the PCF. As well, the upcoming supplement
802.11e will support predictable access through polling (cf. Section 4.1). Thus, we use
polling as the medium access method underlying our protocol stack. In this sub-section, we
present the services of the polling protocol and how they are implemented. The protocol
provides concrete implementations for those aspects that are intentionally left open in the
IEEE 802.11 Standard; for example:

1. How the polling list is constructed from the requests of the clients;

2. How the AP decides which stations to poll and whether to piggyback data on a poll
based on the polling list.

3. How higher layer protocols interface with the polling protocol to maintain the poll-
ing list.

On the other hand, low-level timing aspects, which are specified in the Standard, are not
dealt with.

4.3.2.1 Service and Basic Operation of the Protocol

The basic service of the polling protocol is contention-free frame transmission. Messages
(SDUs) the user passes to the polling protocol will be transmitted on the medium without
collision. Contention-free access is provided according to the so-called the polling list,
which represents the schedule of the medium. Contention-free access is provided to both
the AP and the clients. Therefore, we actually distinguish two basic data transmission ser-
vices: The client data service (CL_DATA), which allows clients to transmit data to the AP,
and the AP data service (AP_DATA), which allows the AP to transmit data to the clients.

The polling list, which is the basic data structure of the protocol, determines the order in
which the users are granted exclusive medium access. It consists of a sequence of entries.
Each entry has an owner and one of two types: poll or relay. The owner of an entry is the
station to which the medium is allocated. The type denotes whether the AP shall send a
polling frame to the owner of the entry (type poll) or shall relay a frame on behalf of the
owner. The polling entity at the AP processes the polling list in a cyclic, round-based man-
ner. After processing all entries in the list, it starts again with the first entry and so forth.
The interval of time during which frames are exchanged on behalf of the owner of an entry
is called a slot. The sequence of slots corresponding to one run through the polling list is
called a polling round or a round for short.

When the AP processes a polling list entry of type poll, its sends a polling frame to the
owner of that entry. The standard requires that stations respond to polling frames, whether
they have a message (SDU) to transmit or not. In the latter case, the station sends a so-
called Null frame, which contains no message. Before sending a polling frame, the AP sets
a timeout of length toPoll. If either the polling frame or the station’s response is lost, the
timeout will expire and the AP will proceed to the next entry in the polling list. Otherwise,
when the AP receives the client’s response, it cancels the timeout and proceeds to the next

64 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

entry in the polling list (cf. Figure 4-16 (a)). The length toPoll of the poll timeout is set such
that the timeout expires only after the latest possible reception time of the client’s re-
sponse. Thus,

toPoll := (δframe + δsched + δframe)(1 + ρ) ,

where the first factor accounts for the transmission and processing delays in real-time and
the second factor accounts for the clock drift. Since the delays and the clock drift are as-
sumed to be small, we will neglect the factor (1 + ρ) in what follows for sake of simplicity.

Figure 4-16. Length of a polling (a) and a request slot (b)

Figure 4-16 (a) shows that the length ∆Poll of a slot corresponding to a polling entry is
∆Poll := 2δm (δm := δframe + δsched, cf. Sub-Section 4.2.3). By time t + δframe + δsched + δframe
the AP receives a frame from si or the poll timeout expires. So, by time t', δsched time units
later, the AP processes the next polling list entry and sends a frame to the corresponding
station.

According to the communication structure the IEEE Standard prescribes for infrastructure
networks, clients send their data frames to the AP, which relays these frames to their desti-
nation station(s). For instance, when a client wants to send a multicast frame, it sends this
frame to the AP as a point-to-point frame and the AP multicasts the frame to the stations in
the BSS. The AP relays frames from a client when it processes a polling list entry of type
relay owned by that client. Figure 4-16 (b) shows that the length of a slot corresponding to
a relay entry is ∆Relay := δm. At time t, the AP sends the relayed frame. By time t + δframe,
the frame transmission ceases and the communication service sends a status indication (cf.
4.2.2.3). δsched time units later, by time t' = t + δm, the AP processes the next entry in the
polling list and sends the corresponding frame.

In a network topology as considered in this thesis, routing messages through the AP tack-
les the reachability problem. As we do not make any assumptions about the link quality
between any pair of clients of the same AP, it may be impossible for one client to transfer a
data frame to another client directly. On the other hand, each valid client is by definition
able to communicate with the AP with a bounded number of omission failures. Thus, it is
possible for a client to transfer its data frame to the AP and for the AP to transfer this data
frame to the destination station. Note that while this approach tackles the reachability prob-
lem it does not solve the problem of unreliable communication links; that is of message
losses.

DESCRIPTION OF THE PROTOCOLS 65

To increase the efficiency of the polling procedure, the IEEE 802.11 Standard specifies
combined data and polling frames (Data+CF-Poll), which enable the AP to piggyback
SDUs on the polling frames it sends. The polling protocol provides a service, called poll
extension (POLL_EXT), which allows the user of the protocol at the AP to request the
transmission of SDUs in the polling frames. Whenever the polling entity at the AP proc-
esses a poll entry, it solicits its user to request the transmission of a SDU. The polling en-
tity transmits this SDU in the polling frame it sends to the owner of the entry.

4.3.2.2 Dynamic Group Extensions

When dynamic groups are considered the polling list is not longer static but may change
when stations join or leave the group. Basically, it is the tasks of the dynamic network
scheduling protocol to maintain the polling list in such cases. The polling protocol, how-
ever, supports it in doing so in the following three ways:

• The polling protocol provides interfaces for reading and setting the polling list so
that the dynamic network scheduling protocol is able to modify the polling list
when the membership changes.

• It provides medium access to stations that are not yet part of the polling list so that
such stations are able to request to be added to the polling list.

• It detects clients that became invalid and sends a corresponding notification to the
higher layers.

A distinguishing aspect in handling dynamic groups is whether the application requires
valid stations to be able to join the group in bounded time. If this is the case, contention-
free medium access must be provided to the joining stations. The shared spatial resources
scenario is such an application. There, it is necessary to enable mobile systems arriving at
a hot spot to communicate with the other approaching systems in bounded time.

Providing contention-free access to a joining station is a hard task (Schemmer and Nett
2003b). In order to request to be added to the polling list, a joining station must transmit
frames to the AP; but, since the station has not yet an entry in the polling list, it has no con-
tention-free bandwidth to transmit these frames. The AP cannot poll stations the addresses
of which are unknown to it, and it cannot poll all stations that are potentially intending to
be added to the polling list as well, as this would mean polling all addresses possibly in
use. To solve the problem, we exploit specific properties of the shared spatial resources
application. In that application, the protocol has to deal with a restricted and known num-
ber of tracks incident to a shared spatial resource. As a newly arriving mobile system is
required to get its own bandwidth allocated in bounded, short time, we can assume that at
each point in time, there is at most one system per track requesting to be added to the poll-
ing list. Each track has an identifier known to the mobile systems driving on it. A mobile
system that wants to join the group provides the identifier of its track to the polling entity.
Now, the basic idea is that the AP not only sends polling frames to stations in the polling
list but also broadcasts for each track a special polling frame, a so-called join poll, contain-
ing the identifier of that track. Whenever a joining system receives a join poll containing
the identifier its track it is allowed to transmit a frame to the AP. Thus, the protocol pro-
vides contention-free access to joining stations (so-called JOIN service). Station use the

66 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

JOIN service only as long as they are not part of the polling list; once they receive normal,
directed polling frames, they stop reacting to join polls.

There are other mobile applications that have less stringent requirements regarding the
dynamic allocation of communication resources. For such applications, the problem is
amenable to a more general solution: Stations can request to be added to the polling list
during the CP using the contention-based DCF. Actually, this is the approach adopted by
the IEEE 802.11 Standard where stations associate with the AP during the contention peri-
ods and request to take part in the contention-free period while associating. The priority-
based medium access procedure of the upcoming supplement 802.11e will open up new
possibilities to realize medium access during the resource request phase. For example, it
will be possible transmit resource requests at a higher priority under the EDCA.

When a client becomes invalid, the AP should free the resources allocated for that client to
make them available for other clients. The polling protocol detects a client’s becoming
invalid and indicates this event to the dynamic network scheduling layer, which changes
the polling list accordingly. To implement this service (called FAIL), the protocol exploits
the communication structure. It considers the clients’ replies to the polling frames as “i am
alive” signs and counts the number of consecutive polling frames that were not followed
by a reply from the client. If the counter assumes a value of OD + 1 the protocol sends an
indication to its user. Thus, the protocol sends an indication whenever a client is invalid
during an interval of length ∆Fail := OD × ∆Round + 2δm, where ∆Round is the maximum
length of one polling round. More formally, this service fulfils the following two proper-
ties:

Property 4-8 (Timeliness of Fail Notifications): There exists a known constant ∆Fail such
that for all stations si and times t: if si is in the polling list at time t and is invalid during
[t,t+ ∆Fail], then the service sends a failure notification for si during [t,t + ∆Fail].

Property 4-9 (Justification of Fail Notifications): For all stations si and all times t', if
the service sends a failure notification for si at t', then there is a time t such that t < t' and
si is in the polling list throughout [t,t'[and not valid during [t,t'[.

4.3.3 Dynamic Network Scheduling

4.3.3.1 Service of the Protocol

It is the job of the dynamic network scheduling (DNS) protocol to maintain the polling list.
As the polling list represents the schedule of the medium, this protocol represents the
scheduler, while the polling protocol represents a kind of dispatcher. Currently, there are
two kinds of events that trigger rescheduling of the medium: (i) an additional station wants
to join the group and requests to be polled and (ii) a client that owns entries in the polling
list becomes invalid. In response to such events, the DNS protocol reads the current polling
list from the polling protocol, modifies it according to the event, and sends the new polling
list back to the polling protocol.

More formally, we say that a station si starts joining when it requests the local DNS entity
to be added to the polling list. The protocol fulfills the following three properties:

DESCRIPTION OF THE PROTOCOLS 67

Property 4-10 (Timeliness of Reservations): There exists a known constant ∆DNS
join such

that for all stations si and times t: if si starts joining at t and si is valid during [t,t+ ∆DNS
join],

then si is added to the polling list by t+ ∆DNS
join .

Property 4-11 (Timeliness of Exclusions): There exists a known constant ∆DNS
excl such that

for all stations si and times t: if si is in the polling list at time t and is invalid during
[t,t+ ∆DNS

excl], then si is excluded from the polling list by t + ∆DNS
excl .

Property 4-12 (Justification of Exclusions): For all stations si and all times t', if si is ex-
cludes from the polling list at t', then there is a time t such that t < t' and si is in the polling
list throughout [t,t'[and not valid during [t,t'[.

4.3.3.2 Operation of the Protocol

Let us first consider clients that are part of the polling list and become invalid. To detect
this kind of event the DNS protocol uses the FAIL service of the polling protocol. When
the FAIL service indicates a client’s being invalid, the DNS protocol removes the client
from the polling list; that is, it removes each entry this client owns from the list. Thus, the
timeliness and justification of exclusions (Property 4-11 and Property 4-12) are conse-
quences of the timeliness and justification of the failure notifications (Property 4-8 and
Property 4-9), and the time bound ∆DNS

excl is equal to ∆Fail. The DNS protocol sends a notifi-
cation to its user whenever it removes clients from the polling list (so-called EXCL ser-
vice). This allows higher-layer protocols to react to these changes. For example, protocols
that expect acknowledgments from that client need no longer wait.

The medium reservation (RESMED) service of the DNS protocol allows clients to allocate
bandwidth at the AP. When the service is invoked at a joining client, the DNS entity uses
the JOIN service of the polling protocol to transmit request PDUs to the AP. Request
PDUs contain the demand specifications of the joining client and, when received, allow the
AP to perform a corresponding reservation. Currently, demand specification is only con-
sidered for clients that want to use the group communication protocols; other kinds of de-
mand specifications can be added if required in the future. When the DNS entity at the AP
receives a request PDU from a client, it first checks if the requesting client already owns
entries in the polling list. If this is the case, the DNS entity simply ignores the request be-
cause in the group communication protocols each member is supposed to own exactly one
pair of polling list entries (see Sub-Section 4.3.4). Other kinds of admission control can be
added if required by the application. If the client is not yet part of the polling list, the pro-
tocol adds two entries to the polling list having the requesting client as their owner: First, a
polling entry such that the client will be polled ones during each round and second a relay
entry, so the AP can send a data frame on behalf of the client after polling it. Why this kind
this particular kind of reservation is performed will be explained in the following sub-
section (4.3.4).

Let us now consider how long it takes a joining station to be added to the polling list. As-
sume a valid station calls the DNS protocol at time t. The DNS protocol invokes the JOIN
services of the polling protocol, so after time t the station responds to the join polls it re-
ceives from the AP. The AP sends a join poll for that client by time t + ∆Round and continu-
ous to poll the client at times t + 2∆Round, t + 3∆Round, etc. Since the client is valid, the AP

68 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

receives a reply for at least one of OD + 1 consecutive polls. Thus, in the worst-case, the
AP receive a frame from the client by time t + (OD + 1)∆Round + 2δm. This frame contains
the DNS PDU of the client and the DNS entity at the AP adds the client to the polling list.
Therefore, ∆Res

join can be computed as:

∆Res
join := (OD + 1)∆Round + 2δm

4.3.4 Reliable Multicast

4.3.4.1 Service of The Protocol

The main service of this protocol is the reliable and timely transmission of multicast mes-
sages within the group. The service (RELMC) ensures that when a valid station sends a
multicast each valid station in the group will deliver it (Validity). The service also ensures
that reliable multicasts originating from the same station are delivered in the order in
which the station sent them (FIFO), that no duplicates are delivered (Integrity), and that no
message is delivered late (Timeliness).

For a more formal definition of the properties we again assume that all messages can be
distinguished. If the user at station si calls the reliable multicast service to multicast a mes-
sage m, we say that si multicasts m. Correspondingly, if the reliable multicast service at
station si delivers message m to its user, we say that si delivers m. We denote by M(t) the
membership view of the AP at time t; that is, the set of stations in the polling list at time t.
A station si is said to be a valid member during [t,t'] if it is valid during [t,t'] and in M(t'')
for each t'' in [t,t'].

Property 4-13 (Integrity). For all stations si, all messages m, and all times t: If si delivers
m at t, there exists a time t' < t and a station sj such that sj multicast m at t'. Furthermore,
for all stations si, all messages m, m', and all times t, t': If si delivers m and m' at t and t'
and t ≠ t', then m ≠ m'.

Property 4-14 (FIFO). For all stations si, sj and all messages m, m': If si multicasts m
before m' and sj delivers m and m', then sj delivers m before m'.

Property 4-15 (Timeliness). There exists a known constant ∆RelMC such that for all sta-
tions si, sj, all messages m, and all times t, t': If si multicasts m at t and sj delivers m at t',
then t' - t ≤ ∆RelMC .

Note that all three properties are very similar to the corresponding properties of the me-
dium (Property 4-5 – Property 4-7). Basically, the reliable multicast protocol has to pre-
serve these properties. This, however, is not trivially the case since retransmissions can
lead to duplicates, distort the original FIFO order, and result in a message’s being late.
According to our model, we define the validity as a conditional property

DESCRIPTION OF THE PROTOCOLS 69

Property 4-16 (Validity): There exists a known constant ∆RelMC such that for all stations
si, sj, all messages m, and all times t: if si multicasts m at t and both si and sj are valid
members during [t,t+ ∆RelMC], then sj delivers m by t+ ∆RelMC.

4.3.4.2 Operation of the Protocol

It is the task of the reliable multicast protocol to deal with message losses; that is, to toler-
ate omission faults of the network. A typical approach to tolerate omission faults in net-
works is using time redundancy. For network protocols, timing redundancy means that the
same message is transmitted several times to ensures that all its intended recipients receive
it. The distinguishing aspect is whether the protocol performs a fixed number of retrans-
missions, which corresponds to a static redundancy approach, or whether it performs re-
transmissions only if message losses actually occur. The latter is a dynamic redundancy
approach basing on error detection and recovery. Static redundancy approaches are not
well suited for environments like ours where the number of message losses to be expected
is by far less than the worst-case number of message losses. In such a setting, the number
of message retransmissions would be far beyond the average number of omission faults
and valuable bandwidth would be wasted. Hence, we are using a dynamic redundancy,
where the number of retransmissions corresponds to the actual number of message losses.
This is in line with our general approach to avoid using worst-case values, which are quite
large and rarely ever reached in dynamic environments.

According to Sub-Section 4.3.2, each message is routed through the AP. For multicast
messages this means, that the source station transmits a point-to-point data frame including
the message it wants to multicast to the AP, which relays the multicast message to its des-
tinations; that is, it sends a broadcast/multicast data frame including the message (see
Figure 4-17). We refer to the point-to-point frames from the clients as request frames or
simply requests and to the broadcast/multicast frames from the AP as mc frames. Because
of this structure, the DNS protocol (cf. Sub-Section 4.3.3) adds a pair of entries to the poll-
ing list for each joining station: the first, of type poll, allows the client to transmit the mes-
sage to the AP after the AP polled it, and the second, of type relay, allows the AP to relay
the message of that client to the group. We will refer to the corresponding pair of succes-
sive slots in each polling round as a RGCP slot or a slot for short. The duration ∆Slot of an
RGCP slot is

∆Slot = ∆Poll + ∆Relay = 3 × δm

In the described two-staged transmission process omissions may occur during both stages
― between client and AP and between AP and group. In what follows, we explain for both
stages how omission faults are tolerated and a reliable transmission is achieved.

70 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

AP

s1

s2

s3

polling frame mc frame

request frame

slot

Figure 4-17. Structure of a RGCP slot

To tolerate message losses between the client and the AP, implicit positive acknowledge-
ments are used. In positive acknowledgement approaches (also known as Automatic Re-
peat request, ARQ), the sending station expects a positive acknowledgment for its mes-
sages. If it does not receive an acknowledgement after a certain interval of time, it retrans-
mits the unacknowledged message. In the reliable multicast protocol, the AP implicitly
acknowledges the reception of a multicast message by sending a mc frame including that
message. When the source station of the message receives this frame, it knows that the AP
received the message. If the station does not receive this implicit acknowledgment, it re-
transmits the message when the AP polls it the next time. This protocol does not require
explicit acknowledgement messages. Furthermore, the AP will receive each multicast mes-
sages of a valid station after at most OD+1 transmission attempts.

AP

s3

s2

s1

poll

rqu

mc

slot 0 slot 1 slot 2 slot 3 slot 4

round 1 round 2

Figure 4-18. Round structure of the protocol

We use sequence numbers to avoid that retransmissions lead to duplicates of a message
being delivered; that is, to ensure that the Integrity property (Property 4-13) holds. Each
station assigns consecutive local sequence numbers to the messages it sends to the AP.
Since the local sequence number together with the source address uniquely identifies the
message, the AP can tell whether it already received the message or not. In the former
case, the AP silently drops the message.

The second part of the protocol is in charge of detecting and handling message losses be-
tween the AP and the group. This part of the protocol also uses positive acknowledgments
to detect message losses. When the AP relays a multicast message on behalf of a client it
expects to receive acknowledgements for this message from all group members. As long as
it has not received these acknowledgements, the AP retransmits the message during the

DESCRIPTION OF THE PROTOCOLS 71

next round when the relay entry of the originator of the message is processed the next time.
As the AP expects acknowledgements from all clients, the design of the acknowledgment
mechanism is a particularly critical point here. Avoiding explicit acknowledgment mes-
sages is the key design challenge. To tackle the problem, we exploit the round structure
imposed by the polling protocol (see Figure 4-18). The communication is structured into a
sequence of rounds. In the reliable multicast protocol, each group member has exactly one
RGCP slot per round and each slot consists of a polling frame, a request frame, and a mc
frame.

To exploit this round structure for efficient detection of lost mc frames, a bit field ack is
provided in the requests. When a member receives a polling frame, it uses the ack field of
its request to acknowledge each mc frame it received since the AP last polled it. To relate
the bits of the ack field to mc frames, the AP assigns consecutive global sequence numbers
to mc frames and polling frames. The polling and the mc frame of the same RGCP slot
have the same global sequence number (corresponding to the slot numbers depicted in
Figure 4-18). A station determines the position in the ack field relating to a mc frame it
receives as the difference between the mc frames’s global sequence number and sequence
number of the last polling frame it received. When the AP receives a request, it knows that
for each mc frame acknowledged therein the sender of the request has received the in-
cluded multicast message. The AP knows that all valid members have received a multicast
message and that it needs no longer transmit it, if either they all have acknowledged the
message or if it has transmitted the message OD+1 times. Both parts of the protocol to-
gether ensure that every valid member will receive each multicast message send by a valid
member. The presented acknowledgement scheme does not need extra frames for error
detection because stations piggyback acknowledgments on the requests they sent anyway.

The reliable multicast service has a bounded worst-case delay ∆RelMC. This essentially has
two reasons: First, the number of omission faults between the AP and a valid client is
bounded by the omission degree OD such that the number of transmission attempts neces-
sary to transfer a multicast message from the source station to the AP and from the AP to
the group is bounded. Secondly, the polling protocol ensures that the required number of
frames can be transmitted within a bounded interval of time. Both these facts together with
the structure of the protocol yield a worst-case delay of

∆RelMC := 2 × OD × ∆Round + 2δm .

According to the round structure described above, in a group with n members, the duration
of a round is

∆Round = n∆Slot = 3nδm .

Figure 4-19 illustrates this result. Assume a station si is polled to multicast a message at
time t1. If si is polling valid, at most OD consecutive polling/request pairs will fail so that
the AP will receive the request frame of si by time t2 := t1 + OD × ∆Round + δm. After the
reception of the request frame, the AP transmits the included message in a mc frame for
the first time. OD rounds later, by time t3, the AP transmits the message for the OD+1st
time ― if the message has not yet been acknowledged by all members. Each member, that

72 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

was receive valid throughout [t2,t3 + δm] received at least one of the transmission attempts
and delivers the message by time t3 + δm.

polling frame request frame mc frame

t1 t2

1 round

t3

mmmmm m

time

Figure 4-19. Delay of the reliable multicast protocol (OD = 2)

Although we are using a dynamic redundancy approach, the worst-case delay still depends
on the worst-case number of message losses between valid members and the AP; that is, on
the omission degree OD. This is because we must consider that in the worst-case a multi-
cast message may need the worst-case number of transmission attempts in both parts of the
protocol. As the omission degree may be quite large due to the unreliability of the medium,
so may be the worst-case delay. But this is the price to be paid to ensure that each valid
group member receives each multicast originating from a valid sender.

In many applications, messages have small deadlines, but no hard reliability requirements;
that is, these applications can tolerate some message losses as long as the frequency is not
too high. For such applications, it would be better to reduce the reliability offered by the
service and provide a smaller worst-case delay instead. To allow for this kind of tradeoff,
the protocol provides the parameter res(m), 0 ≤ res(m) ≤ OD, which allows limiting the
number of retransmissions of a message m to a value smaller than OD. This means that
clients do not transmit a multicast message m to the AP in more than res(m) + 1 rounds and
that the AP does not transmit a message to the group in more than res(m) + 1 rounds. This
results in the following new time bound, which depends on the resiliency of the multicast
message instead of the omission degree. For all messages m with a resiliency res(m) = r
the time bound is

∆RelMC(r) := 2 × r × ∆Round + 2δm .

The price to be paid is a reduced reliability; that is, the conditional Validity property
(Property 4-16) does not hold if a message is multicast with a resiliency smaller than OD;
it still holds for messages with a resiliency of OD. Limiting the number of retransmissions
to a value smaller than OD implies that the number of message losses affecting a multicast
on its way from the client to the AP or from the AP to the group may exceed the number of
retransmissions. Hence, it is possible that not all valid members receive it. Note that omis-
sion failures of the reliable multicast protocol may be inconsistent. That is, it is possible
that some members deliver a multicast message and some do not. Even though there are
applications that can tolerate lost multicast messages, inconsistent message losses may
raise problems. This is particularly the case in our approach to achieve coordinated behav-
ior, where coordination is achieved by providing common views to the application. The
atomic multicast protocol that will be present in Sub-Section 4.3.6 ensures that agreement
is achieved even in case of message losses: When not all members are able to deliver a

DESCRIPTION OF THE PROTOCOLS 73

multicast message, this protocol ensures that no member delivers the message so that the
omission failure is perceived consistently. Thus, the application can trade reliability for
improved timing guarantees while agreement is still guaranteed.

4.3.4.3 Dynamic Group Extensions

Supporting dynamic groups only requires minor changes of the protocol. Yet, changes in
the membership have two implications:

1. The bound ∆Round on the duration of a round can no longer be computed assuming n
to represent the fixed number of group members. Instead, n represents an upper
bound on the number of members.

2. Changes in the membership M(t) imply that the set of stations from which the AP
expects acknowledgments changes also. Stations that are added to M(t) after the
AP transmitted a multicast m for the first time are not guaranteed to deliver m. In
fact, such stations may or may not deliver m. It is the job of the atomic multicast
protocol to achieve agreement in this case.

4.3.5 Synchronous Channel

In this sub-section we describe the synchronous channel protocol. Rather than providing
services directly to the application, it offers an internal service to the higher layers, namely
the atomic multicast and the membership protocol. To these, it offers a small bandwidth
simplex channel from the AP to the clients.

4.3.5.1 Service of the Protocol

The basic service of this protocol is a reliable and timely, small bandwidth simplex chan-
nel, called the synchronous channel, from the AP to the clients. The AP uses the synchro-
nous channel to transmit a very small, yet essential amount of information reliably and
timely to the group members. Whenever the AP sends a mc frame on behalf of a member,
it can make a decision relating to that member and multicast it in the synchronous channel.
The service guarantees that each valid member delivers the decisions in bounded time. It is
important to note that the synchronous channel is not an additional physical communica-
tion channel, but is realized on the same medium that the other protocols use.

In addition to requiring that all valid stations deliver the decisions of the AP, we want the
service to be fail-aware (Fetzer and Cristian 1996). A fail-aware service indicates to its
user whether it is functioning correctly or not. This means that if a station is not valid and
hence cannot deliver the decisions of the AP, the service indicates this fact to its user. To
this end, the service exhibits two states to its users. Either the service indicates that it is
functioning correctly, which we denote as joined in the context of group communication,
or it indicates that it is not functioning correctly, which we denote as stopped. As long as
the service indicates it is functioning correctly (state joined), it must in fact deliver the de-
cisions of the AP in bounded time (Validity, Property 4-17 below). As long as the service

74 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

is stopped, it delivers no decisions at all. We say that a station is joined if it is not crashed
and the service at that station is in state joined. When the service changes from state joined
to state stopped, it sends an indication FAIL_ind to its user. Now, since a stations is only
required to deliver the AP’s decisions while being joined, we define two properties to en-
sure that a station is joined whenever possible. The first property (Bounded Join Delay,
Property 4-18) requires a valid station to become joined in bounded time after it started
joining. The second property (Justification of Fail Notifications, Property 4-19) ensures
that a station does not arbitrarily change its service state to stopped; that is to say, it only
leaves state joined if there has been an interval of time since it became joined during which
it has not been valid.

For the formal definition of the properties, we assume that all decisions the AP multicasts
can be distinguished. There are known constants ∆SynchCh and ε such that the following
properties hold.

Property 4-17 (Validity): For all stations si, all decisions d, and all times t, if the AP mul-
ticasts d at t and si is joined throughout [t, t + ∆SynchCh + ε], then si delivers d by
t + ∆SynchCh.

Property 4-18 (Bounded Join Delay): For all stations si and all times t, if si starts joining
at t and si is valid throughout [t, t + ∆DNS

join + ∆SynchCh], then si is joined by
t + ∆DNS

join + ∆SynchCh.

Property 4-19 (Justification of Fail Notifications): For all stations si and all times t', if si
signals FAIL_ind at t', then there is a time t such that t < t' and si is joined throughout [t,t'[
and not valid during [t,t'[.

To define the ordering property of the protocol, let ≺i denote the transitive reduction of the
delivery order of the decisions as observed by si. That is, for any two decisions d and d',
d ≺i d' if and only if si delivers d before d' and no other decisions in between. The first

decision si delivers after joining the group is defined to have no predecessor in ≺i. Let fur-

thermore dk, k ∈ N, denote the sequence of decisions as the AP multicasts them. Since the

AP multicasts exactly one decision during each slot, dk is the decision the AP multicasts in
slot k.

Property 4-20 (Strong FIFO): For all stations si, all decisions d, d' and all k ∈ N, if

d ≺i d' and d = dk, then d' = dk+1.

We added the adjective “strong” because the property not only requires that if a station
delivers two decisions, it delivers them in the order in which the AP multicast them, but
also that the station delivers all decisions the AP multicast between these two decisions.
This means that this property does not permit gaps within the sequence of delivered deci-
sions at any station. The service fulfills the properties of Integrity and Timeliness too. As
the properties are very similar to the corresponding properties stated in the previous sub-
section, we do not provide a formal definition here. Mainly, the time bound now is ∆SynchCh

instead of ∆RelMC.

DESCRIPTION OF THE PROTOCOLS 75

Additionally, the service delivers an ID denoting the member to which the decision relates
together with each decision.

4.3.5.2 Operation of the Protocol

Each time before the AP sends a mc frame, the synchronous channel protocol solicits its
user to multicast a decision. As the synchronous channel is designed as a small bandwidth
channel, there are only a small number of possible decisions, which can be coded in a few
bits. Each decision relates to the member on behalf of which the mc frame is sent; that is, it
relates to the owner of the corresponding entry in the polling list. The protocol piggybacks
a sequence sy of OD+1 decisions on each mc frame the reliable multicast protocol sends
(cf. Figure 4-20). When the AP multicasts a decision di the protocol inserts it at position 0
in the sy field and piggybacks the sy field on the mc frames. When the next mc frame is
sent during the following slot, the protocol shifts all decisions in the sy field to the next
higher position so that a further decision can be inserted at position 0. Thus, in this mc
frame, decision di is transmitted at position 1 of the sy field. Accordingly, di is transmitted
at position 2 during the next slot and so forth. Therefore, each decision is transmitted at
positions 0,1, …, and OD in the sy field of OD+1 consecutive mc frames. Each valid
member receives and processes at least one of these mc frames no more than
∆SynchCh := OD × ∆Slot + δm time units after the AP multicast the decision.

Figure 4-20. Transmission of decisions in the synchronous channel

Whenever a station receives a sy field piggybacked on a mc frame, it delivers exactly those
decisions the AP multicast since the station received the last mc frame. The station uses the
global sequence numbers in the mc frames to decide which decisions in the sy field it must
deliver. For example, if the last mc frame the station received carried sequence number 25
and the one it currently processes has sequence number 28, the station delivers the deci-
sions at positions 2, 1, and 0 in the sy field. These are the decisions the AP multicast before
sending the mc frames with sequence numbers 26, 27, 28. Note that this protocol not only
ensures that valid members deliver each decision the AP multicast exactly once, but also
that they deliver the decisions in the order in which the AP multicast them. Using the se-
quence numbers, stations can also find out if they lost more than OD mc frames consecu-
tively. This is the case, if the difference between the last received sequence number and the

76 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

current one is greater than OD+1. A station that lost more than OD mc frames consecu-
tively lost some of the APs decisions in the synchronous channel also. To adhere to the
Strong FIFO and Validity properties, such a station stops delivering decisions, changes to
service state stopped, and delivers a failure indication.

For the synchronous channel to be useful, stations must be able to find out which members
the decisions of the AP relate to. This is because the decisions made by the atomic multi-
cast and the membership protocol ― the two users of the service ― either relate to the
members themselves or to their atomic multicast messages. Hence, we require the protocol
to deliver with each decision a member ID that identifies the member the decision relates
to. Let m0, …, mn-1 be the stations in the membership view of the AP in the order in which
they appear in the polling list. When the AP multicasts a decision on behalf of a member
mi, the synchronous channel protocol delivers the ID i of that member together with the
decision. In static groups, stations can easily determine the IDs in the following way: Since
the AP sends mc frames for the members in a round-based manner, the decision dk relates
to member mk mod n. Thus, the clients are able to determine the ID IDk to be delivered with
decision dk iteratively starting with ID0 := 0 and setting IDk := IDk-1 + 1 mod n each time it
has delivered a decision.

In contrast to the reliable multicast protocol where we advocate a dynamic redundancy
approach for sake of efficiency, we use static redundancy for the synchronous channel. The
reason for using two different approaches in the two protocols is the difference in the
amount of data to be transmitted. In particular, the reliable multicast messages (possibly
several hundred bytes), which are the SDUs of the reliable multicast protocol, are by far
larger, than the decisions (currently, only three bits), which are the SDUs of the synchro-
nous channel protocol. While the dynamic redundancy approach allows saving retransmis-
sions of SDUs, it also introduces overhead for the transmission of acknowledgments. Sav-
ing retransmissions of SDUs of several hundreds bytes warrants the overhead of the ack
field. By contrast, saving retransmissions of some three-bit decisions does not warrant ad-
ditional overhead. Hence, we decided to use static redundancy to implement the synchro-
nous channel. With this approach, we efficiently realized a reliable and timely simplex
channel that enables the AP to transmit essential decisions relating to the members. This is
a valuable internal service for higher layers, as will turn out in the following sub-sections.

4.3.5.3 Dynamic Group Extensions

In a dynamic group, determining the ID to be delivered with a decision gets more sophisti-
cated. The size n of the membership, which is used to determine the IDs at the clients, is no
longer fixed but subject to change. Therefore, the stations must be notified when the size of
the membership changes. To this end, the protocol itself uses the synchronous channel.
When a client is added to or removed from the membership view of the AP, the protocol
multicasts a new or exclude decision respectively in the synchronous channel. Each mem-
ber receives this decision and is therefore able to adjust its current view of the membership
size accordingly. As an example, let us consider a situation where the membership size
was 5 right from the start and where the protocol entity at some client is processing deci-
sion d25, which is an exclude decision. The client iteratively updates the member IDs as
described above and hence knows that ID25 = 0. The first thing the member learns is that
the new membership size n' is 4. Furthermore, knowing that the member m0 with ID 0 has
been removed from the membership, the protocol entity can deduce that the successor m1

DESCRIPTION OF THE PROTOCOLS 77

of m0 in the old membership has ID 0 in the new membership m0',…,m3', where mi' = mi+1.
Generally, when a member with ID IDi-1 is excluded the next decision relates to IDi := IDi-1
mod n'. Let us now assume d25 were a new decision. First, the protocol learns that the new
membership size n' is 6. Furthermore, the next decision relates to the member with ID 1
because it is the successor of the new member in the new membership m0',…,m5', where mi'
= mi-1 for i ∈ 1..5 and m0 is the new member. Generally, when a new decision relates to
IDi-1, the next decision will relate to IDi = (IDi-1 + 1) mod n'. Thus, using the synchronous
channel itself, the protocol can determine the member IDs decisions relate to a dynamic
group also.

The protocol provides a notification service at the clients that informs the higher layers of
additions to and exclusions from the membership. Thus, the protocol not only uses the
transmission of new and exclude decisions internally, but also exploits them to offer a noti-
fication service to higher layers.

To determine member IDs in dynamic groups, it is not only necessary to inform current
group members of changes in the membership, but also to provide the information they
need to initialize the protocol to joining stations. In particular, a joining station must learn
the following information to take part in the protocol: (a) the current membership size and
(b) a pair of a decision dk and the corresponding member ID IDk, which together serve as a
starting element for the iterative computation. To initialize joining stations, the AP piggy-
backs the required information on the mc frames it sends. In more detail, when the protocol
entity at the AP learns that a station was added to the membership, it transmits in the fol-
lowing OD+1 mc frames not only the sy field but also the current membership size and
member ID. The joining station will receive at least one of these frames. Suppose it is the
frame with global sequence number k and that it carries the member ID ID and the group
size gs. The joining station knows that the first decision in the sy field of that frame, that is,
dk, relates to the member ID IDk := ID. Once the station knows this starting point and the
corresponding membership size, it can iteratively determine the IDs while processing the
decisions in the synchronous channel. After performing this initialization, the protocol sets
the service state to joined.

The protocol uses piggybacking and static redundancy to transmit initialization informa-
tion to joining station. The additional overhead appears to be acceptable since (a) it only
becomes effective when stations join the group and (b) neither the membership size nor the
member ID will incur too much overhead in the frame when efficiently coded. Each join-
ing station that is valid for ∆SynchCh time units after being added to the membership will
receive at least one of the mc frames carrying the initialization information and will there-
fore turn its service state to joined.

Stations are able to detect if they are not able to provide a valid service. As explained
above, by computing the difference of the sequence numbers of two consecutively received
mc frames, a station is able detect if it observed more than OD+1 omissions. Since deliver-
ing decisions in this case would imply gaps in the delivery order of that station, it does not
deliver any decision at all and turns its service state to stopped. Furthermore, the stations
use a timeout to be able to indicate their failure in case they receive no more frames at all.
The length of the timeout is set to ∆SynchCh(1+ρ), where ∆SynchCh is an upper bound on the
inter arrival time of two mc frames at a valid station and (1+ρ) accounts for the drift rate
of the client’s clocks. Since reacting to the timeout may additionally take up to ∆sched time

78 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

units, the duration between the reception of the last mc frame and the time when the station
changes to service state stopped is bounded by

∆'SynchCh := ∆SynchCh(1+ρ) + ∆sched .

Thus, the constant ε in the above definitions can be computed as

ε = ∆'SynchCh - ∆SynchCh = ∆SynchChρ + ∆sched .

4.3.6 Atomic Multicast

4.3.6.1 Service of the Protocol

The atomic multicast protocol provides a fail-aware service, which adds two important
properties to the service of the reliable multicast protocol: agreement and total order. The
property of agreement ensures that whenever a station delivers an atomic multicast, every
joined station delivers the multicast also. The property of total order ensures, that when-
ever two members deliver the same two atomic multicasts, they deliver them in the same
order and deliver the same atomic multicasts in between. Together, these properties ensure
that all members deliver the same sequence of atomic multicasts in the same order, thus
achieving a common view on the atomic multicasts delivered to the group. This is particu-
larly useful when a resiliency of less than OD is chosen for the reliable transmission of a
message. In this case, not all valid members necessarily deliver the message. If some
member does not deliver an atomic multicast, the service ensures that no member delivers
it so that a common view among the group members is still achieved.

More formally, the protocol fulfills the properties of Integrity, FIFO, and Timeliness.
Since, it mostly “inherits” these properties from the underlying reliable multicast protocol
and the definitions remain largely unchanged, we do not state them formally. We note that
the time bound of the Timeliness property changes and is denoted as ∆AtomcMC(r). The pro-
tocol provides a fail-aware Validity property for messages with a resiliency equal to OD.
There is a known constant ∆AtomcMC(OD) such that the following properties hold.

Property 4-21 (Validity): For all stations si, sj, all messages m, and all times t: if si multi-
casts m at t and res(m) = OD and si is a valid member during [t,t+ ∆AtomcMC(OD)] and sj is
joined during [t,t+ ∆AtomcMC(OD) + ε], then sj delivers m by t+∆AtomcMC(OD).

Property 4-22 (Agreement): For all stations si and all messages m, if si delivers m at t,
then there is a time t' such that, t' ≤ t ≤ t' + ∆SynchCh and for all stations sj, if sj is joined
throughout [t', t' + ∆SynchCh + ε], then sj delivers m by t' + ∆SynchCh.

Agreement requires that all joined stations agree on the messages they deliver. Like the
synchronous channel protocol, the atomic multicast protocol fulfills two properties, which
ensure that a station is joined whenever possible. The protocol fulfills the Justification of
Fail Notifications property (Property 4-19) and a Conditional Bounded Join Delay property
analogous to Property 4-18, yet with another time bound.

DESCRIPTION OF THE PROTOCOLS 79

Property 4-23 (Bounded Join Delay): For all stations si, if si starts joining at t and si is
valid throughout [t, t + ∆DNS

join + ∆AtomcMC(OD)], then si is joined by t + ∆DNS
join + ∆AtomcMC(OD).

To define the Total Order property, we define the delivery order of atomic multicasts
analogously to the delivery order of the decisions. Let ≺i denote the transitive reduction of

the delivery order as observed by si. That is, for two messages m and m', m ≺i m' if and
only if si delivers m before m' and no other messages in between. The first message si de-
livers after joining the group is defined to have no predecessor in ≺i.

Property 4-24 (Total Order): For all stations si, sj and all messages m, m', and m''', if
m ≺i m' and m ≺j m'', then m'' = m'.

This property requires that any two stations that have delivered the same message m de-
liver the same sequence of messages afterwards until one of them stops delivering mes-
sages. This means that partially valid or invalid stations either stop delivering messages or
they deliver the same messages in the same order as the valid stations.

4.3.6.2 Operation of the Protocol

If a message has a resiliency smaller than OD, it is not ensured that the reliable multicast
protocol delivers that message at all valid members. Thus, if a station delivers a reliable
multicast it cannot be sure whether all valid members will deliver this message also.
Therefore, the atomic multicast protocol does not immediately deliver the messages it re-
ceives from the reliable multicast protocol to its user. Rather, it delays the delivery until
the protocol entity at the AP decides whether all members shall deliver the message (ac-
cept decision) or not (reject decision). So, it is up to the AP to decide whether all members
received an atomic multicast, in which case it decides to accept the message, or whether
this might not be the case, in which case it decides to reject the message. After making the
decision, the AP multicasts it in the synchronous channel. Upon reception of the decision,
the members either deliver the atomic multicast message if the decision is accept, remove
it if the decision is reject, or wait for another transmission attempt if the decision is
no_dec. With all members acting according to the decisions of the AP, agreement is en-
sured. Furthermore, as all members deliver the atomic multicasts in the order in which the
AP accepts them, total order is accomplished as well.

To decide whether to accept or reject a message, the AP must know whether or not it can
expect all members to have received this message. The acknowledgement mechanism of
the reliable multicast protocol provides this information. Whenever the reliable multicast
protocol stops transmitting a multicast message it indicates to the atomic multicast protocol
whether

1. All group members acknowledged the message;

2. The message was transmitted OD+1 times;

3. The resiliency of the message was exceeded, and the resiliency was smaller than
OD.

80 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

In cases 1. and 2., the AP decides to accept the message; in case 3., it rejects the message.
In case 1., the AP is sure that all members received the message because they all acknowl-
edged it. In case 2., this is ensured because each valid member must have received the
message after OD+1 transmission attempts by definition.

The AP uses the synchronous channel (Sub-section 4.3.5) to multicast its decision to the
members. The properties of the synchronous channel ensure that all valid members receive
the decisions in bounded time. Moreover, the members deliver the decisions according to
the Strong FIFO property (Property 4-20). Thus, the members deliver the atomic multicasts
in the order in which the AP accepts them. When the reliable multicast protocol sends a
status indication for a message of some member (say, with ID IDk) and the atomic multi-
cast protocol makes the corresponding decision (say, dk), the AP is just about to transmit a
mc frame on behalf of the member. Thus, the synchronous channel protocol will solicit the
atomic multicast protocol to multicast a decisions on behalf of that member. The atomic
multicast protocol multicasts decision dk and all valid members will deliver dk together
with the ID IDk. Hence, the members know that they have to accept or reject the last mes-
sage originating from the member with ID IDk.

The delay bound ∆AtomcMC(r) of the atomic multicast protocol can be determined as follows:
If a message with resiliency r is multicast at time t, the latest possible time at which the
message may be received and delivered to the atomic multicast protocol by some station is
t' := t + ∆RelMC(r). The AP receives the acknowledgements for the last transmission of the
message by time t'' := t' + ∆Round – δm. At this time, it multicasts its decision in the syn-
chronous channel. So, each valid station will deliver and process the decision by time
t''' := t'' + ∆SynchCh. Thus, the time bound can be computed as:

∆AtomcMC(r) := ∆RelMC(r) + ∆Round – δm + ∆SynchCh

 = 2 × r × ∆Round + 2 × δm + ∆Round – δm + δm + OD × ∆Slot

 = (2r + 1) × ∆Round + 2δm + OD × ∆Slot

 ≤ (2r + 1) × ∆Round + (OD + 1) × ∆Slot

4.3.6.3 Dynamic Groups Extensions

Now let us consider the new challenges that appear when considering dynamic groups. The
main problem here is that we can no longer assume that a client is a valid group member
right from the start of every atomic multicast transmission. Rather, when the AP adds a
further client to the group, several atomic multicasts may be in progress; that is, for such
atomic multicasts several transmission attempts may already have taken place, such that it
cannot be guaranteed that the newly added client will receive these messages. This is not
so much of a problem for atomic multicasts with a resiliency smaller than OD: If the AP
does not get an acknowledgement for the message from all members (including the newly
added one), it rejects it and no member will deliver it. But, if such a message has a resil-
iency of OD, the AP must decide to deliver it. Thus, for all atomic multicasts with resil-
iency OD that are in progress when a client is added to the group, it could happen that the
message is accepted but the new member cannot deliver it; we call such messages “pend-
ing multicasts” henceforth. In particular, as long as a pending multicast exists, it could
happen that a new member delivers some atomic multicasts and some not. Of course, a
situation in which a new member delivers some atomic multicasts but does not deliver oth-
ers, which all the other members deliver, should be avoided at any rate.

DESCRIPTION OF THE PROTOCOLS 81

To avoid an inconsistent behavior of joining stations as described above, the protocol en-
sures that a station only starts delivering atomic multicasts when it is able to deliver all
atomic multicasts that the other members deliver henceforth, as long as it stays valid. To
achieve this, the AP delays accepting a joining station’s atomic multicast until it has en-
sured that there are no more pending multicasts. The joining station, in its turn, does not
deliver any atomic multicast message before its own one is accepted. When the atomic
multicast of a joining station is accepted, the joining station changes its service state to
joined. To ensure that this will happen whenever the joining station is valid, the first
atomic multicast of the joining station is transmitted with a resiliency of OD. Determining
and maintaining the pending multicasts for a joining station works as follows: When the
DNS protocol signals that a new station was added to the group, the reliable multicasts
exports the current set of pending multicast messages; or, to be more precise, the set of
stations, that have pending multicasts. When the atomic multicast protocol receives the
signal, it imports this set and stores it as the pending multicast set of the joining station.
Thus, each joining station can have its own set associated. The AP changes this set under
two events: First, whenever the joining station acknowledges the multicast of a station, this
station is removed from the pending multicast set of the joining station because now the
joining station is able to deliver the message of this station. Second, whenever the AP de-
cides to accept or reject a message, it removes the originator of the message from the pend-
ing multicast set of all joining stations; none of the joining stations will have to deliver the
message. Note that the pending set of a joining station will be empty when the atomic mul-
ticast of that station has been transmitted OD+1 times. In this case, all pending multicasts
must have been accepted already. Therefore, the multicast of a joining station is never de-
layed beyond the time bound ∆AtomcMC(OD) so that a bounded join delay can be guaranteed.
This protocol not only ensures that a member delivers all messages in agreement with the
other group members starting from the first message it delivers, but also that the members
know they are in agreement with a new member after delivering the first atomic multicast
of that member.

The atomic multicast protocol achieves agreement among the members, even if not all
valid members receive a message. As members process the decisions in the synchronous
channel in the order in which the AP made them, it achieves total order as well. The analy-
sis of the timeliness of the atomic multicast service yields a worst-case delay of
∆AtomcMC(r) = (2r + 1) × ∆Round + (OD + 1) × ∆Slot. To achieve these properties no additional
frames were introduced.

4.3.7 Membership

The membership protocol provides an up-to-date and agreed view on the current group
membership to all group members (Schemmer and Nett 2003b). Furthermore, it ensures
that all member deliver atomic multicasts in the context of the same membership view.
This is a very strong semantics, which significantly facilitates the development of distrib-
uted applications. As the membership protocol is intended for dynamic groups only, this
sub-section directly addresses the dynamic group case.

82 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

4.3.7.1 Service of the Protocol

The fail-ware service of this protocol is to provide an up-to-date and agreed view on the
current membership to the group members. Up-to-date means that there is a known con-
stant ∆Mem

join , such that each station which tries to join the group and is valid for at least ∆Mem
join

time units becomes part of the membership view of every joined member, and a known
constant ∆Mem

excl , such that a member that was invalid for at least the last ∆Mem
excl time units will

not be in the membership view of any joined member. When we say that views are agreed,
we mean that any two joined members deliver the same sequence of membership views.
An additional property of the service, which is defined in conjunction with the atomic mul-
ticast service, is the so-called virtual synchrony. Virtual synchrony ensures that all mem-
bers deliver the membership views at the same position in the sequence of atomic multi-
casts; or, to put it the other way round, it ensures that all members deliver the atomic mul-
ticasts in the context of the same membership view. Together with the Agreement and To-
tal Order properties of the atomic multicast protocol (Property 4-22 and Property 4-24), it
ensures that all members share a common view on the sequence of atomic multicast mes-
sages and membership changes.

For the formal definition of the protocol’s properties, we define that a membership change
message is a pair (n,m), where m is a set of stations representing the membership view and
n is a unique identifier. If the protocol delivers the same membership view several times ―
for example, a station leaves and later rejoins the group ― the identifier allows distin-
guishing the membership change messages. As the atomic multicasts are delivered at the
same interface, the application observes a single sequence of atomic multicast and mem-
bership change messages. We say that a station si delivers a message m if the membership
protocol delivers a membership change or atomic multicast message m and that si delivers
a membership view m if it delivers a membership change message containing m. Let Mi(t)
be the last membership view si delivered by time t. The first two properties define the ser-
vice the protocol provides at joined stations. There exist known constants ∆Mem

excl and ∆Mem
join

such that the following properties hold.

Property 4-25 (Validity): For all stations si, sj and all times t, t' with t' ≥ t, if si is joined
throughout [t, t' + ε] and

(1) sj started joining by t - ∆Mem
join and is valid during [t - ∆Mem

join ,t'], then sj is in Mi(t'') for
each t'' ∈ [t,t'].

(2) sj is invalid during [t - ∆Mem
excl ,t'], then sj is not Mi(t'') for each t'' ∈ [t,t']

Property 4-26 (Agreement): For all stations si, and all membership change messages
(n,m), if si delivers (n,m) at t, then there is a time t' such that, t' ≤ t ≤ t' + ∆SynchCh and for
all station sj, if sj is joined throughout [t', t' + ∆SynchCh + ε], then sj delivers (n,m) by
t' + ∆SynchCh

Like the fail-aware services of the atomic multicast and the membership protocol, the
membership protocol fulfills the Justification of Fail Notifications property (Property 4-19)
and a Conditional Bounded Join Delay property analogous to Property 4-18.

DESCRIPTION OF THE PROTOCOLS 83

Property 4-27 (Bounded Join Delay): For all stations si, if si starts joining at t and si is
valid throughout [t, t + ∆Mem

join], then si is joined by t + ∆Mem
join

Like for the synchronous channel and the atomic multicast protocol, we define the delivery
order of membership change messages. Let ≺i denote the transitive reduction of the deliv-
ery order as observed by si. That is, for any two membership messages (n,m) and (n',m'),
(n,m) ≺i (n',m') if and only if si delivers (n,m) before (n',m') and no other membership
changes messages in between. The first membership change message si delivers after the
membership service becomes joined is defined to have no predecessor in ≺i.

Property 4-28 (Total Order). For all stations si, sj and all membership change messages
(n,m), (n',m'), and (n'',m''): If (n,m) ≺i (n',m') and (n,m) ≺j (n'',m''), then (n',m') = (n'',m'').

Total Order ensures that two stations, once they have delivered membership change mes-
sages with the same identifier, deliver the same sequence of memberships henceforth until
one of them is no longer joined.

Property 4-29 (Virtual Synchrony). For all stations si, sj, and all membership change
messages (n,m), (n',m'): If (n,m) ≺i (n',m') and (n,m) ≺j (n',m'), then si and sj deliver the
same set of atomic multicasts between (n,m) and (n',m').

4.3.7.2 Operation of the Protocol

To explain how the membership protocol accomplishes its service, we first point out how
stations leaving the group are handled and then consider joining stations. There are two
reasons for a station’s no longer being a part of the group. First, the station may voluntarily
decide to leave the group, and second, it may become invalid. In both cases, the protocol
must deliver new membership views at the remaining members. For sake of simplicity, we
do not distinguish between these cases.

To handle leaving members, the main point to be addressed is how the remaining members
learn that a certain station left the membership; then, they are able remove this member
from their local membership view and deliver the changed view to the user. The first sta-
tion that notices that one of the members became invalid is the AP. As described above
(Sub-Section 4.3.3), the dynamic network scheduling entity at the AP provides an exclude
notification whenever the polling entity informs it of a member that became invalid. To
propagate this exclude information from the AP to the clients the membership protocol
uses the synchronous channel. Actually, as explained above (Sub-Section 4.3.5), the syn-
chronous channel protocol itself already distributes these change notifications for its own
purposes and issues corresponding notifications at the clients. Thus, using the synchronous
channel protocol, all that remains to be done for the membership protocol is to change the
membership view whenever it receives an exclude indication from the synchronous chan-
nel protocol and deliver the new membership view to the user. The Validity property of
this protocol is ensured by the timely detection of invalid members (Property 4-8) and by
the Validity of the synchronous channel (Property 4-17). Thus the bound ∆Mem

excl can be de-
termined as follows:

84 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

∆Mem
excl := ∆Fail + ∆SynchCh := OD × ∆Round + (OD + 1) × ∆Slot

Furthermore, since the exclude decisions are transported in the synchronous channel to-
gether with the AP’s accept decisions and since all members process the decisions in the
order in which the AP made them, the protocol ensures virtual synchrony. To achieve
timely and virtual synchronous delivery of exclusions, the membership protocol does not
introduce additional frames.

The second kind of membership change that must be dealt with is the joining of new mem-
bers. To understand how joining works, it is best to think of it in the following way: A sta-
tion joining the group uses the atomic multicast service to multicast a message (with resil-
iency OD) to the current membership plus itself. Its address is transmitted implicitly with
the multicast message. When the atomic multicast service delivers the message of the join-
ing station, all members as well as the joining station add the joining station to their mem-
bership view, deliver a membership change message, and then deliver the atomic multicast
message.

Let us now consider the joining of a new member in more detail. A station that wants to
join the group calls the dynamic network scheduling protocol to allocate bandwidth. Bas-
ing on the JOIN service of the polling protocol the DNS protocol can make this allocation
in bound time (∆Res

join := (OD + 1)∆Round + 2δm, see Sub-Section 4.3.3). Once the AP made
that allocation, it starts polling the joining station. Upon reception of the first polling
frame, the membership at the joining station solicits its user to transmit an atomic multi-
cast. The protocol sets the resiliency of this atomic multicast to OD to ensure that the AP
will accept it and invokes the atomic multicast protocol to transmit it. From then on, every-
thing works as for a normal atomic multicast. Sooner or later, all members plus the joining
station will deliver the atomic multicast together with the address of the originating station.
Now, they add this address to their membership view and deliver it to the application fol-
lowed by the atomic multicast. Thus, the delay bound ∆Mem

join can be computed as follows:

∆Mem
join := ∆Res

join + δm + ∆AtomcMC(OD)
 = (OD + 1)∆Round + 2δm + δm + (2OD + 1) × ∆Round + (OD + 1) × ∆Slot

 = (3OD + 2)∆Round + (OD + 2) × ∆Slot
 .

The term δm accounts for the first regular polling frame the AP sends to the joining station.

When a joining station delivers its own first atomic multicast, it is expected to deliver a
membership view; but, how does a joining station know which other stations are members
of the group. The AP is in charge of providing the necessary membership information to
joining stations. Whenever the AP sends a mc frame on behalf of a joining station, it pig-
gybacks a copy of its current membership view. Thus, when a joining station has acknowl-
edged its own atomic multicast message, the AP knows that the station has received the
membership view together with the atomic multicast. The membership entity at the AP can
stop piggybacking the membership view when it learns that the atomic multicast of a join-
ing station was accepted. This information is provided by the atomic multicast protocol
through a status indication. Once a joining station has received a mc frame including a
current membership view, it can keep this list up-to-date using the decisions it receives in

DESCRIPTION OF THE PROTOCOLS 85

the synchronous channel. Thus, when the station receives the accept decision for its own
atomic multicast, it has an up-to-date membership view, which it can deliver to the user.

The protocol allows valid station to join the group in bounded time. Furthermore, as join-
ing stations are allowed to transmit a first atomic multicast while joining the group, the
protocol needs no additional frames as long as a joining station has indeed some applica-
tion message to transmit. In this case, all information is piggybacked on frames that have
to be sent anyway. Virtual synchrony is efficiently achieved through the total order prop-
erty of the atomic multicast protocol.

4.3.8 Event Service

4.3.8.1 Service of the Protocol

The Event Service allows the reliable, timely, and totally ordered transmission of events
and associates with each event it delivers a global system state (Schemmer et al. 2001).
The global system state of a group of mobile systems consists of the local states of its
members w.r.t the same point of time on the global time base, which is provided by the
clock synchronization protocol. The local state of a mobile system consists of those state
variables of the system that serve as input for the control application. The delivery of
events is either explicitly triggered by the user who requests the transmission of an event
or implicitly triggered by changes in the membership. Thus, the Event Service combines
event and state semantics. According to our approach, the common views on the global
system state allow the mobile systems to decide locally yet achieve a coordinated behavior.
Furthermore, attaching global states to events is well suited for dynamic groups, where a
newly joining station may not have sufficient state information to interpret pure event in-
formation.

Regarding the reliable, timely, and totally ordered transmission of events, the Event Ser-
vice mainly relies the corresponding properties of the atomic multicast and the member-
ship protocol. We therefore focus on the main new feature the Event Service provides ―
the delivery of global states. To explain the notion of global states, we introduce a compu-
tational model for the state of the controlled system. To this end, we define the local state
zi(t) of a mobile system si to include exactly those state variables of si that serve as an input
for the control application. Let g(t) := be a vector comprising the cooperating

mobile systems at time t. The global state z(t) := of this group is the vector
of the local states of the stations in g(t). A concrete example of a global state for the shared
spatial resources scenario was defined in Section 3.1, where the local states of the mobile
systems were defined to consist of their position and speed. The global state changes in
two ways: discretely and continuously. In particular, the joining and leaving of mobile
systems constitute discrete state changes, since they alter the dimension of the global state.
Discrete state changes are represented as events. Since event delivery within the group is
based on the atomic multicast and the membership protocol, we suppose that all members
perceive a totally ordered sequence of events e

),...,(
niss

))(),...,((tztz
1i

1 nii

i, i ∈ N. The time at which event ei is ob-

served will be denoted as ti. Whenever it delivers an event ei, the Event Service determines
the global state z(ti) and delivers it together with the event to the application. When the

86 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

event ei and the global state z(ti) are delivered at mobile system sj, the control application
makes a decision dj(z(ti)), which determines how the local state of sj evolves until the next
event is received. This decision represents the output of the application to the underlying
controllers, such as the scheduled enter time for the hot spot in the shared spatial resources
scenario (Section 3.1). The local states are assumed to evolve continuously during the in-
tervals between two events. We assume that this kind of state changes, which we denote as
the dynamics of the local states, is described by a known function F, which is defined as
follows: For each event ei, i ∈ N, each mobile system sj ∈ g(ti-1), and each time t ∈ [ti-1, ti]

holds:

zj(t) = F()zj(ti-1),dj(z(ti-1)),ti-1,t ,

where z(t0) is the state of the initial group, which is assumed to be empty. Note that the
local state of sj during [ti-1, ti] depends on the global state z(ti-1). This is because, during this
interval the systems exhibit a coordinated behavior, where, according to our approach,
each system decides about its behavior locally based on the last computed global state.
Consider again the shared spatial resources scenario as an example. When a further system
enters an approaching zone, this constitutes an event ei, which is delivered together with
the global state z(ti). Based on this global state, each mobile system decides locally at what
time it will enter the hot spot. This decision is represented by dj(z(ti)) in the computational
model; in the application scenario, this function is called the scheduling function since it
determines the schedule for the hot spot (actually dj is a projection of the scheduling func-
tion comprising only that component of the schedule which corresponds to sj). From then
on, until the next event is delivered, speed and position of sj can be predicted based on its
position and speed at ti and the enter time for the hot spot scheduled at ti.

In this model, it is the task of the Event Service to deliver the global state z(ti) with each
event ei. But, as a matter of fact, the global state z(ti) cannot be observed exactly in a dis-
tributed system. For one thing, stations do not have an exact notion of g(ti) when they de-
liver ei. Rather, a station sj delivers ei in the context of a membership view Mj(ti). How-
ever, due to the Virtual Synchrony property of the membership protocol all stations agree
on the membership view in the context of which they deliver ei so that ei is delivered in a
unique membership view M(ti). Furthermore, due to the Validity of the membership pro-
tocol, M(ti) is an up-to-date approximation of g(ti). Another deviation from the computa-
tional model is that ei is actually not delivered at exactly the same time ti at all stations.
The Agreement properties of the atomic multicast and the membership protocol, however,
ensure that the difference between the delivery times is bounded by ∆SynchCh. Finally, the
global time base is also an approximation so that precision and drift of the global clock
cause deviations from the ideal global state. Again, due to the properties of the clock syn-
chronization protocol, both precision and drift are bounded.

4.3.8.2 Operation of the Protocol

To avoid complex and communication intensive protocols for global state determination,
we exploit the known dynamics F of the local states and base our protocol on local compu-
tations as far as possible. In this approach, event transmission and global state determina-
tion works as follows: To multicast an event, a group member sj sends an atomic multicast

DESCRIPTION OF THE PROTOCOLS 87

containing the event type, its current local state zj(t'), and a timestamp from the global
clock t'. When a member delivers the atomic multicast at global clock time ti, it uses the
last computed global state and the function F to compute
z(t') := (and replaces the
component of z(t') corresponding to s

))',)),((),((),...,',)),((),((tttdtzFtttdtzF zz 111111 11 iiiiiiiiii nn −−−−−−

j with the value zj(t') received in the atomic multicast.
Afterwards, it computes the global state z(ti) based on z(t') and F, and delivers it together
with the event to the application. Thus, the protocol manages to update the global state
with a single atomic multicast. It allows the sender of an event to update its component in
the global state with a more up-to-date value.

Delivering global states when a station leaves the group works similar. When the member-
ship protocol delivers a membership change message at global clock time ti indicating that
a station sj left the group, the Event Service computes the current global state z(ti) based on
z(ti-1) and F. It removes the component corresponding to sj from the global state and deliv-
ers the global state together with the event to the application.

When joining stations are considered the problem gets more complicated. In particular, a
joining station cannot compute the current global state as described above because it does
not know the last computed global state. Hence, it is necessary to provide the last com-
puted global state to the joining station. To this end, we apply the following protocol when
a station is joining the group. While joining the group, a station sj sends an atomic multi-
cast, called a request message, containing its local state zj(t) and a timestamp t from the
global clock (rqu(sj,zj(t),t)). The membership protocol delivers the request message imme-
diately after the first membership view containing sj. A single member is elected to re-
spond to the request message. Each member decides locally whether it is in charge of send-
ing the reply by applying the following common rule: If the member is part of the global
state already, it takes over responsibility if it was the last station added to the global state.
If it is not yet part of the global state, it takes over responsibility if it is the “oldest” station
in the membership view; that is, if all other stations in the membership view joined after it.
Due to the Virtual Synchrony of the membership protocol, a unique member is elected.
The elected member multicasts a so-called “in message” in reply to the request message.
The in message contains the name of the sender of the request message, the local state and
timestamp that have been provided in the request message, and the last computed global
state z(ti-1) together with the timestamp ti-1 (in(sj,zj(t),t,z(ti-1),ti-1)). The reception of the in
message constitutes the event ei corresponding to sj’s becoming part of the group; all three
kinds of messages indicating events that have been discussed so far a referred to under the
common term event messages. When delivering the in message, the joining system learns
the last computed global state z(ti-1) and the timestamp ti-1. With this information it is able
to compute the current global state z(ti) as described above. Likewise, all members that
already knew z(ti-1) are able compute z(ti) when they receive the in message. A joining
station will obviously not deliver an in message if it is the only station in the membership
since there is no member to reply to its request. A joining station detects this situation
when it delivers the first membership view and delivers a global state consisting of its own
local state only.

We now consider the case in which two stations, say sj and sk, start joining at approxi-
mately the same time. Suppose that sj’s request message is received first and that the sys-
tem replying to sj’s request with an in message receives sk’s request before it receives the
in message corresponding to sj’s request. If sj replies to sk’s request immediately, it sends

88 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

the same global state z(ti-1) as in the previous in message, since a new global state z(ti) has
not yet been determined. However, if first the in message for sj and then the in message for
sk was delivered (events ei and ei+1 respectively), sk would compute the current global state
from z(ti-1), not z(ti). Since z(ti-1) does not include the local state of sj, sk would compute a
global state z(ti+1) not including the local state of station sj.

One approach is to prohibit members to reply to request messages between multicasting an
in message and delivering it; that is to say, between reading and updating the global state.
This approach, however, would restrict concurrency and would thus result in increased
delays for event propagation. Furthermore, it would still be possible that other event mes-
sages would be delivered between the request and the corresponding in message. Hence,
we decided to let the members reply to request messages immediately. According to what
was said above, this means that a station cannot be sure that the global state included in the
in message corresponding to its request is the last computed global state of the group.
Rather, it is possible that other in messages have been delivered between multicasting and
delivering this in message and that several new global states have been computed mean-
while as a consequence. However, since request messages and in messages are delivered
totally ordered, the joining system knows which in messages have been delivered between
its request message and the corresponding in message. Likewise, it knows of any other
event message that is delivered between its request message and the corresponding in mes-
sage.

We exploit this fact in the following way. The joining system stores the event messages it
delivers between its request message and the corresponding in message in a FIFO queue.
Together with each message it stores the global time at which it delivered the message.
When it delivers the in message corresponding to its request, it uses the global state pro-
vided therein as an initial global state. Now, it successively computes the global states cor-
responding to the event messages in its FIFO queue. The last event message in this se-
quence is the in message corresponding to its request. After processing this last in mes-
sage, it delivers the global state to the user.

s arrives3

rqu((),)z t t3

s0 sends

in(s z t ,t, (t t3 5 5, ()),)z3

s0 sends

in(,s z t’ ,t’, (t t4 5 5()),)z4

e

s s z t t
6

4 3

delivered

FIFO((in(, (),),))3

s

z t’
4 arrives

rqu(()t’),4

s0

s1

s2

s3

s4

t6

t t’ t’’ t’’’ t6 t7

time

e7 delivered

Figure 4-21. Systems s3 and s4 join the group.

DESCRIPTION OF THE PROTOCOLS 89

Consider, for example, the situation depicted in Figure 4-21. The mobile systems s3 and s4
start joining the group at times t and t' respectively and both multicast a request message
(denoted as rqu(s3,z3(t),t) and rqu(s4,z4(t'),t') in the figure). System s0 replies to both of
these requests at times t'' and t''' respectively. Assume that the last computed global state at
t'' is z(t5), which was delivered together with e5 at some previous global time t5. So, s0 in-
cludes the same global state z(t5) in both in messages. When, at time t6, s3 delivers the in
message corresponding to its request, it uses the global state z(t5) with timestamp t5 and the
local state z3(t) with timestamp t to compute z(t6) and delivers e6 together with z(t6). Sta-
tion s4, on the other hand, stores the information s3, z3(t), and t together with time t6 in its
FIFO queue. At time t7, when it receives the in message corresponding to its request, sta-
tion s4 computes the global state z(t6) using the global state information z(t5) with time-
stamp t5 in the in message and the information (z3(t),t,t6) it stored in its queue. Afterwards,
it uses the information (z4(t'),t') provided in the in message to compute the global state
z(t7), which it delivers together with the e7 to the user.

There are two approaches to deal with situations in which the station elected to respond to
a request becomes invalid before the in message is delivered. First, due to the timeliness of
the underlying atomic multicast protocol a joining station can detect in bounded time when
the in message is not delivered. It indicates this fact to the application, which is able to
perform a timely exception handling; for example, by bringing the mobile system into a
safe state. Second, since the membership protocol notifies the remaining members that
some member left the group, they can react by electing a new member that is in charge of
sending the in message. This approach allows ensuring that each valid joining station will
deliver a global state. The delay, however, depends on the number of stations that become
invalid after being elected to respond to an in message. Which approach is more appropri-
ate depends on the application at hand, particularly on the timing constraints. In fact, a
combination of both approaches can be adopted where a bounded number of responder
failures are tolerated.

Obviously, the actual behavior of a physical system will always deviate marginally from
the behavior specified by its dynamics. As long as the time intervals considered are short
this effects can be neglected; we did this, for example, in the hot spot prototype. To ac-
commodate longer intervals of prediction, it is possible to extend the computational model
so that it captures the increasing uncertainty stemming from increasingly far-ranging state
predictions explicitly. For example, a Kalman filter based approach would allow modeling
this kind of uncertainty through Gaussian distributions with increasing standard deviations.
Furthermore, the Event Service itself can be used to react to local states that deviate from
the model too much. If each station monitors its local state and compares it to the model, it
is able to issue an event in case the deviation between model and reality exceeds a given
threshold. As explained above, this event carries the current local state of the station so
that all group members can update their estimates with the new value.

The presented protocol only needs one or two atomic multicasts for event transmission and
global state determination. Since the Event Service is based on the membership and the
atomic multicast protocol, reliability, timeliness, and total order are achieved by the prop-
erties of those protocols. Not only is the state prediction of the protocol a very efficient
way to determine global state, it also has the following two advantages:

1. When states are transmitted in state messages the temporal consistency achievable
is bounded by the delay of the messages. Using state prediction allows overcoming

90 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

this limitation, because the prediction model accounts for the changes of the ob-
served state during the transmission of the state message (Mock 2003).

2. State prediction is used to relate local states observed at different points of time to
the same reference time so that they can be combined into a time coherent global
state.

4.4 Related Work

The presentation of the related work pursues a bottom up approach. At first, Sub-Section
4.4.1 deals with related works regarding the underlying system modeling. In Sub-Section
4.4.2, we consider approaches to real-time communication over wireless LANs, where our
approach is to use the contention-free access method specified in the IEEE 802.11 Stan-
dard and its up-coming supplement 802.11e. Subsequently, in Sub-Section 4.4.3, we turn
towards reliable multicasts. The main aspect to be considered here is how the problem of
achieving a reliable and timely transmission in the presence of a varying number of mes-
sage losses is addressed. The following sub-section (4.4.4) examines how total order and
agreement is achieved by other protocols, before membership is considered in Sub-Section
4.4.5. In Sub-Section 4.4.6, we compare our Event Service to other communication para-
digms for cooperative systems.

Our work on developing the group communication protocols in a modular manner was
inspired by the Horus system (van Renesse et al. 1996). Horus comprises several micro
protocols that can be stacked on top of each other like “Lego blocks”. Their objective was
a maximum of flexibility; so, different stacks can run concurrently and can be configured
at runtime. Our objective is configurability at compile time and a predictable and perfor-
mant timing behavior at runtime. Other group communication protocol also provide ser-
vices with differently strong semantics; the basic idea was already present in the ISIS tool-
kit (Birman and van Renesse 1994). xAMP (Rodrigues and Verissimo 1992) provides mul-
tiple primitives and Timewheel (Mishra et al. 2002) allows using three different ordering
and three different agreement semantics. Both of these protocols, however, implement all
the services in a single core protocol so that the protocols are not modular.

4.4.1 System Modeling

As explained in Sub-Section 4.1.1, a basic distinction in system modeling is whether ser-
vices or components have timing specifications. System models without timing specifica-
tions are referred to as time-free asynchronous systems3. In time-free asynchronous sys-
tems (Fischer et al. 1985) each component is correct as long as it delivers a functionally
correct service, no matter at what point of time it is delivered. Although this model has
been adopted in many works on group communication, it is not a viable foundation for the
design of the communication protocols in our middleware for the following two reasons:

3 It is frequently just called the asynchronous system model; (Cristian, 1995) added the additional adjective
“time-free” when he introduced the timed asynchronous system model.

RELATED WORK 91

First, as the timing behavior of time-free asynchronous systems is not specified such that
even correct systems may exhibit a completely unpredictable timing behavior, it is not pos-
sible to design protocols observing a predictable timing behavior in this model. Second,
according to a well-known result of (Fischer et al. 1985) consensus cannot be achieved in
such systems if at least one process may be faulty.

Synchronous systems (Cristian 1991,Cristian 1996,Galleni and Powell 1996) can be con-
sidered the reverse end of the spectrum. In synchronous systems, service specifications are
timed. Communication is assumed to be reliable and timely (also called certain (Cristian
and Fetzer 1999)). Obviously, assuming reliable and timely communication is not reason-
able in a wireless environment. Weaker synchronous system models have been proposed
also, in which the communication service may exhibit a bounded number of omission fail-
ures (Verissimo et al. 1991). The upper bound is referred to as the omission degree. In
these models, certain communication can be achieved using timing redundancy (Rodrigues
and Verissimo 1992,Kopetz and Grünsteidl 1993). In our environment we cannot assume
that an upper on the number of omission failures hold for all stations at any time. The qual-
ity of the communication link between two mobile systems changes with their relative po-
sitions and may observe any state between disconnection and nearly reliable communica-
tion. On the other hand, our model is similar to a synchronous model with bounded omis-
sions in the sense that our protocols achieve certain communication as long as an upper
bound holds.

(Cristian and Schmuck 1995,Cristian 1996,Cristian and Fetzer 1999) presented the timed
asynchronous system model, which is situated between the synchronous and the time-free
asynchronous system model. In fact, the model was introduced even earlier (Cristian
1989), however, not explicitly named and distinguished from the time-free asynchronous
system model. In this model processor and communication services have timing specifica-
tions. The timing specifications, however, represent likely time bounds holding most of the
time rather than worst-case bounds. Therefore the components may be subject to timing
failures. In fact, the possibility of timing failures can be considered one of the distinctive
features of this model: Whereas time-free systems have no timing specifications and hence
no timing failures, synchronous systems have a timing specification but are assumed to
meet it. The other distinctive feature of the timed asynchronous system model as compared
to the time-free model is the existence of hardware clocks having a bounded drift w.r.t
real-time. These clocks can be used to detect timing failures of the components.

The timed asynchronous system model, like the time-free asynchronous system model, still
describes a system that exhibits an unpredictable timing behavior in general. Timely pro-
gress can be guaranteed neither for the computation nor for the communication services.
Yet, timing specifications are assumed to be chosen in such a way that the system alter-
nates between long phases during which services adhere their timed specifications and
only short phases where they do not. The basic idea regarding service guarantees is to give
a conditional guarantee for a timely progress of the services instead of giving no guaran-
tees at all: The protocols guarantee a timely progress whenever the underlying communica-
tion and processor services exhibit a “sufficient synchrony”. What “sufficient synchrony”
means is described by stability predicates. So, the protocols guarantee a timely progress
whenever the system, or a part thereof, is stable for a sufficiently long interval of time.
Safety properties, on the other hand, are guaranteed to be met always, whether the system
is stable or not. For example, in the group membership service defined in (Cristian 1996),
agreement on group membership is an unconditional property ― any two stations joined to

92 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

the same group agree on its membership ―, whereas a bounded join delay is a conditional
property ― two processes connected throughout some interval I are guaranteed to be
joined to the same group after I if the system is stable during I. Working with conditional
properties has two advantages

• Even though a general guarantee cannot be given, the protocols provide guarantees
for those times at which the system is sufficiently synchronous, rather than giving
no guarantees at all. In a well tuned system, which is stable most of the time, this
may be sufficient for many applications

• The conditional properties can be converted into unconditional ones by strengthen-
ing the underlying model without changing the protocols. This is achieved by add-
ing progress assumptions, which essentially require that the system eventually be-
comes stable for a sufficiently long time. Obviously, this means that the underlying
system must be designed or tuned to warrant the progress assumptions.

Since a timed asynchronous system alternates between two phases it can also be consid-
ered as a heterogeneous or asymmetric system. There are intervals of time during which it
behaves like a synchronous system and there are intervals of time during which it behaves
like an asynchronous system. Which phases prevail depends on the choice of the timing
specifications and on the runtime conditions of the system.

The timed asynchronous system model is targeted to match most of existing “run-off-the-
mill” distributed systems consisting of workstations without a particular real-time OS con-
nected by networks that exhibit phenomena like congestion and hence a hardly controllable
timing behavior. It models a basically asynchronous system, which provides no guarantee
the any progress is achieved in time and in which any component may be late. Though
generally detectable, timing failures cannot be detected and handled in a timely manner.
Regarding timeliness, a model with stronger guarantees is better suited to match our in-
tended system environment where real-time scheduling of CPU resources is performed
(see Chapter 5) and a contention-free access to a single LAN is provided. This allows
guaranteeing a timely progress for at least part of the computational tasks and giving an
upper bound on the delay of messages on the network. W.r.t timeliness we therefore adopt
a stronger model, which allows focusing the protocol design on the main source of unpre-
dictability in the wireless LAN ― the omission failures.

Using stability predicates and conditional properties is a promising approach to design
protocols for unpredictable environments. It leverages protocols providing safety under a
wide range of conditions and provide progress whenever possible. We adopt this approach
in our system model. In particular, we introduced a valid predicate similar to the notion of
F-connected introduced in (Cristian and Fetzer 1999) and progress properties conditioned
on that predicate. Furthermore, we adopt the idea of making services fail-aware (Fetzer and
Cristian 1996). Fail-awareness allows strengthening the conditional properties in the sense
that if some station does not fulfill the condition (is not valid in our model) and hence is
not able to fulfill its progress properties, it indicates this fact to its user, thus enabling the
user to react to this situation. It should be noted, however, that in a timed asynchronous
system model, a timely reaction to such an exception indication cannot be ensured.

(Verissimo et al. 2000,Casimiro and Verissimo 2001) also present a heterogeneous model,
called the Timely Computing Base (TCB) model, which is a continuation of their previous

RELATED WORK 93

work an the so-called quasi-synchronous system model (Almeida and Verissimo 1996). In
this model the system is statically divided into two parts: a payload part and a control part.
The payload part may have any degree of synchronism, whereas the TCB components to-
gether constitute a synchronous subsystem. The payload part can be modeled by a timed
asynchronous are quasi-synchronous system model. Since the TCB exhibits a synchronous
behavior all of the time and allows executing well-defined functions in bounded time, it
allows for stronger timeliness properties than the timed asynchronous system model. Par-
ticularly, it allows detecting and handling timing failures in time. While regarding the local
task execution, our system would fit to the TCB model, namely the timely exception han-
dling of TAFT already includes a similar idea, we cannot assume a TCB model for the
wireless network. That is, the synchronous control network, which interconnects the com-
ponents of the TCB, cannot be realized on a wireless LAN. The TCB model suggests real-
izing the control network as a small bandwidth dedicated network or by using the highest
priority in the payload network. Both concepts cannot be used to realize a synchronous
network on a wireless LAN. In a wireless network of mobile stations, whether or not a
synchronous communication channel can be established between to stations is a dynamic
property of the network. Yet, we adopted the idea to distinguish between the payload ―
the atomic multicast messages ― and a small bandwidth synchronous channel, which is
used to achieve agreement in case an atomic multicast message cannot be delivered at all
members. In our system model, the synchronous channel does not provide a guaranteed
synchronous service, but a conditional, fail-aware service, which can be implemented in a
dynamically changing wireless network.

Finally, we shortly note, that there is a lot of further work on partial synchrony models
(Dolev and Dwork 1987,Chandra and Toueg 1991,Chandra et al. 1992), which for the most
part aims at adding just enough synchrony to an asynchronous system so that consensus
can be solved, but not sufficient to provide a predictable timing behavior.

4.4.2 Real-Time Communication in Wireless LANs

Our approach is using a standard physical and MAC layer for wireless communication,
namely, we base our protocols on the IEEE 802.11 Standard, which is commonly accepted
and for which off-the-shelf hardware components are widely available. To achieve a con-
trolled, contention-free medium access, we use the polling-based access method introduced
under the name PCF in the original 802.11 Standard and updated in the supplement
802.11e. (Cirrus Logic,Plenge 1995,Ergen et al. 2002,van Hoesel et al. 2003) suggest own,
non-standard physical or MAC layers for wireless real-time communication. We think that
using standard, off-the-shelf components is advantageous because it does not require build-
ing, or using custom-built, hardware components. (Franz et al. 2001) basically employ the
UTRA TDD Mode of UMTS (Haardt et al. 2000), but develop a special ad-hoc mode,
which is not originally part of the technology, for their system.

(Sobrinho and Krishnakumar 1996b,Baldwin et al. 1999) consider using the DCF of the
802.11 Standard for the transmission of real-time messages. Both propose extensions to the
DCF to achieve improved real-time performance. These extensions, however, only imple-
ment a best-effort approach to increase timeliness and do not guarantee a predictable tim-
ing behavior. (Sobrinho and Krishnakumar 1996a,Sobrinho and Krishnakumar 1996b) ad-

94 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

ditionally proposes a negative acknowledgment scheme to tolerate message losses, which,
however, is designed for point-to-point communications only.

(Cavalieri and Panno 1997) consider using an IEEE 802.11 Standard compliant wireless
LAN as backbone for connecting field-busses. They propose using the CFP for periodic
field bus traffic and concentrate on analyzing whether the CP can be used to transfer aperi-
odic field bus traffic. (Coutras et al. 2000) analyze the schedulability of constant bit rate
and variable bit rate traffic during the PCF. (Sharon and Altman 2001) consider the effect
of idle stations on the performance of the PCF. Our work focuses on two other aspects that
the above works do not consider: Basing on the contention-free access provided by the
polling mechanism, how can a reliable and timely transmission of multicast messages be
achieved, and, with our shared resources scenario in mind, how can we enable stations to
request admittance to the polling list in bounded time.

4.4.3 Reliable Multicast

In this sub-section we present related work w.r.t the reliable and timely transmission of
multicast messages. In doing so, our main interest is whether and how the problem of
achieving reliable and timely transmission in spite of varying loss rates is addressed. Gos-
sip-based protocols, like (Sun and Sturman 2000,Kermarrec et al. 2003), are intended to
provide probabilistic properties in large-scale systems and are hence out of the scope of
this discussion.

The first point we are interested in is how message losses are tolerated. Regarding this
point works can be distinguished as follows: (i) they do not consider message losses at all;
(ii) they tolerate message losses using a static redundancy approach; or (iii) they tolerate
message losses using a dynamic redundancy approach. Dynamic redundancy in the context
of communication protocols means detecting message losses by way of acknowledgements
and retransmitting affected messages. For our environment dynamic redundancy appears to
be the most appropriate solution because the number of retransmissions is determined by
the actual, not the worst-case number of messages losses and they allow detecting situation
in which the number of retransmission were not sufficient. Both reasons owe their particu-
lar importance to the fact that tight worst-case bounds on the number of message losses
cannot be assumed for wireless media. The efficiency of the acknowledgement mecha-
nisms is a key factor in dynamic redundancy approaches. It will be important to consider,
if the acknowledgement schemes of the discussed works are suited for the particular poll-
ing-based communication structure of the IEEE Standard.

The second point we are interested in is whether the protocols explicitly allow handling the
inherent tradeoff between reliability and timeliness. We examine whether they provide the
means to relax reliability requirements in order to achieve shorter delays. In the following
sub-section, which deals with atomicity, we will then consider if the protocols provide
agreement in case a message with a reduced number of retransmissions in not received by
all group members. This point is important, since as long as agreement and total order are
guaranteed, common views and hence consistent actions can be achieved even in case of
multicasts being lost. For those protocols that combine ordering and reliability in a single
protocol, we will explain as much of the ordering mechanism as is necessary to understand
how reliability is achieved in the section at hand.

RELATED WORK 95

Reliable communication channels. There are protocols designed assuming that communi-
cation between any pair of connected stations is reliable; that is, communication channels
are either assumed to be stable or exhibit crash failure semantics (Birman et al.
1991,Ezhilchelvan et al. 1995,Chockler et al. 1998). Obviously, these protocols do not deal
with omission failures. They are designed to tackle other problems like agreement in case
of sender crashes, ordering semantics, etc. (Cristian et al. 1985) achieve reliable communi-
cation through spatial redundancy, which ensures that the sub-graph consisting of correct
processes and communication links is always connected. So, they do not address omission
failures of the communication links too. (Kopetz and Grünsteidl 1993,Kopetz 1997) use
spatial redundancy as well, but take message losses into account additionally.

Static time redundancy. Static redundancy can be used to achieve reliable communication
if there is a known bound on the number of omission failures. For example, in TTP
(Grünsteidl and Kopetz 1991,Kopetz and Grünsteidl 1993,Kopetz 1997) each message is
transmitted a fixed number of times on physically redundant channels. Transmitting each
message r+1 times allows tolerating up to r consecutive message losses. (Bar-Joseph et al.
2000) use forward error correction (FEC) techniques to tolerate up to r losses out of k + r
consecutive messages. For each sequence of k original messages, r redundant messages are
constructed in such a way that the receiver can reconstruct the original messages from any
subset of size k of the k + r messages sent. The performance of static redundancy protocols
is determined by the worst-case number of message losses. Since in a wireless network a
very large worst-case bound must be assumed, which significantly exceeds the average
number of losses, adopting this approach would result in a poor average performance of
the protocol. Furthermore, both protocols do not allow choosing a number of transmissions
that is smaller than required by the worst-case number of message losses.

Dynamic time redundancy. The xAMP (Verissimo et al. 1991,Rodrigues and Verissimo
1992) is based on a synchronous system model with a bounded number of message omis-
sion failures. It uses a positive acknowledgement scheme to detect message losses. Each
receiver sends an individual positive acknowledgment for each message it receives. This
means that the number of acknowledgement messages is proportional to the number of
group members, which results in a significant overhead. Furthermore, this mechanism is
not well suited to be used in the CFP, since each receiver would have to wait until the AP
polls it before sending the acknowledgement message. Therefore, after each multicast, the
AP would have to poll each station for the transmission of its acknowledgement message.
Thus, in the best (fault-free) case, at least 2n+2 messages are needed for a single multicast
with n intended recipients (the first polling message, the broadcast message itself, n polling
messages for the acknowledgements, and the acknowledgements). The protocol does not
ensure agreement if the number of retries is not sufficient to ensure that all stations receive
the message. Therefore, if agreement is required, the retry limit must be set to the omission
degree. In our architecture, this is not required, since the atomic multicast protocol
achieves agreement even if a retry limit smaller than the omission degree is chosen.

There are many reliable multicast protocols developed for asynchronous systems that em-
ploy dynamic redundancy to tolerate an a priori unknown number of message losses and
guarantee delivery of multicasts as long as sender an receiver are correct and connected.
(Inoue et al. 1998) enhanced reliability of multicasts in wireless networks using a represen-
tative acknowledgement scheme to reduce the number of acknowledgements. They subdi-
vide the group into subgroups, each of which is assigned a representative. The representa-

96 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

tive is responsible for sending positive or negative acknowledgements when being polled
by the sender after a broadcast.

The protocols presented in (Peterson et al. 1989,Melliar-Smith et al. 1990,Amir et al.
1992) exploit the partial causal order (Lamport 1978) to detect message losses. Stations
piggyback positive acknowledgements on their broadcasts. Together with a message all
causal predecessors of that message are acknowledged. So, this scheme is a kind of a cu-
mulative acknowledgement scheme. Stations are able to detect their missing a message by
detecting gaps in the ordering graph; that is, when they receive a message, but have not yet
received the causal predecessors of that message. In this case, they send negative acknowl-
edgements to explicitly request the retransmission of the messages they missed. Since our
protocols are not intended to provide causal ordered delivery, transferring and maintaining
the necessary context information would introduce an unnecessary overhead.

There are several protocols that impose a logical ring structure on the multicast group
(Chang and Maxemchuck 1984,Cristian and Mishra 1995,Jia et al. 1996,Mishra et al.
1997,Mishra et al. 2002). According to this structure, the group members take turns in as-
suming the role of a central sequencer (or token site). The sequencer is in charge of assign-
ing global sequence number (a.k.a ordinals) to the multicasts messages. Although primar-
ily introduced to order multicasts and to distribute the load associated with being the se-
quencer equally among the group members, all protocols exploit the structure to realize an
efficient acknowledgment mechanism. The following main ideas contribute to this objec-
tive: (i) rotating the right to order messages (i.e. the token) is used as an implicit acknowl-
edgment mechanism. By assuming the role of the sequencer, a station acknowledges multi-
casts that have been ordered so far. (ii) Global sequence numbers are being used to detect
message losses. If the difference between the sequence numbers of two consecutively re-
ceived multicasts is greater than 1, the receiving station knows that it must have lost some
message and it knows the global sequence numbers of these messages also. (iii) Global
sequence numbers can be used as cumulative acknowledgments. By announcing the high-
est in order global sequence number it has received, a station is able to acknowledge all
messages up to that sequence number. The different protocols add specific optimizations to
these basic mechanisms. For example, in the RMP (Jia et al. 1996), stations include a so-
called safe parameter in their messages to support a fast assessment of the stability of a
message (the message has been received by all group members). In the protocol suggested
in (Mishra et al. 2002), the sequencer sends a list with selective acknowledgements for all
messages, which are not deemed stable at that moment. For each such message a bit vector
ack is included where ack[i] = true if the ith member on the ring has acknowledged the
message. This idea is similar to the way stations transmit acknowledgments in our proto-
col. Protocols with a rotating central sequencer have turned out to exhibit a good perform-
ance in settings where the ring is stable most of the time. Their drawback is that a ring ref-
ormation is required when the (implicit) token is lost or the sequencer crashes. They are
not well suited for a wireless environment since message losses are frequent and may trig-
ger ring reformation if the token is affected. Furthermore, dynamic changes in the topology
due to locomotion of the systems may result in two successive stations in the ring no
longer being connected, which would trigger a ring reformation too. Thus, ring reforma-
tions are quite likely and impair the efficiency and the predictability of the protocol.

(Kaashoek and Tanenbaum 1991) also adopt a central sequencer approach, but in their
protocol the role is fixed to a certain station. A station that wants to multicast a message
sends it to the sequencer, which associates a global sequence number with that message

RELATED WORK 97

and multicasts it to the group. We adopted that communication structure with the AP act-
ing as the central sequencer since it fits very well to the structure of the underlying net-
work:

• In a BSS (cell) of an 802.11 Standard infrastructure network all frames have to be
routed through the AP anyway.

• Routing frames through the AP ensures that each stations in the BSS are within the
range of the broadcaster

• Since the centralized communication structure of the PCF already implies the as-
sumption of a stable central station, we can best profit from that fact by making this
station the sequencer also. In particular, this makes dealing with station crashes
easier and allows achieving a more predictable timing behavior in this case.

In this structure, two kinds of message losses have to be considered: (a) request messages
transmitted from the sending station to the sequencer, and (b) broadcast message from the
sequencer to the group. To protocol uses implicit positive acknowledgements to detect the
first kind of message losses. The sequencer acknowledges reception of a message by
broadcasting it (message identifies allow recognizing the message). To deal with the sec-
ond kind of message loss, negative as well as positive acknowledgments are employed. A
station detects that it lost some multicast message if there is a gap between the global se-
quence numbers of the messages it receives (as described above). In this case, it sends an
explicit negative acknowledgement for the missed messages to the sequencer to request a
copy of those messages. Since in this approach the sequencer must store messages it
broadcast for the purpose of later retransmission, there must be some means for the se-
quencer to learn that it need no longer store a message in its buffer. To this end, the proto-
col uses cumulative positive acknowledgments. A station includes in each request message
it sends the highest in order sequence number it received so far. Similar to the safe parame-
ter mentioned above, the sequencer determines the minimum of all sgi, where sgi is the last
acknowledged sequence number the sequencer received from station si. Each message with
a sequence number not greater than that minimum can be safely purged from the se-
quencer’s buffer. While we adopt their approach to dealing with the first kind of message
losses (a), we use another approach for the second kind (b). Instead of explicit negative
acknowledgment message we use piggybacking since each explicit message requires poll-
ing and adds to the overhead of the protocol. Moreover, we use selective acknowledgments
instead of cumulative ones since the former are better suited for environments with a large
number of message losses

The protocols described above, which deal with unbounded message omission failures, are
designed for asynchronous environments and implement eventual termination semantics;
that is, they ensure that messages sent by a correct station are eventually delivered by each
correct intended recipient as long as both are connected. Since timeliness is not an issue
here, none of the protocols provides an explicit parameter to bound the number retransmis-
sion in order to improve timeliness. There typically is an implicit bound in the sense that a
station that continuously fails to acknowledge a message will sooner or later be considered
as having crashed or being disconnected from the group and it will be removed from the
membership. But, even if this means that the message delays will not grow arbitrarily due
to message losses, there is no way to bound message delays independent of the notion of
group membership.

98 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

RTCAST (Abdelzaher et al. 1996) is based on a synchronous model with a finite but not
explicitly bounded number of omission failures. Retransmissions are not handled in the
multicast protocol. Instead, it assumes that a bounded number of retransmissions may be
performed on a lower layer to reduce the probability of message losses on the multicast
layer. The basic idea to deal with message losses is to maintain agreement among the
group members. To achieve this, each station detecting that it missed a message takes itself
out of the group. So, this can be considered as a model with reliable links and stations ob-
serving pseudo receive omission failures. Similar to the protocols discussed above, the
drawback of this approach in the context of our environment is that there is not distinction
between not receiving a message and being excluded from the group. So, either the number
of retransmission must be chosen quite high, even if messages do not have high reliability
requirements, or the station will be excluded from the group frequently. The protocol
therefore does not allow deciding the reliability/timeliness trade-off for messages inde-
pendent of deciding when a station is considered to be disconnected.

4.4.4 Atomic Multicast

Regarding total order, the special communication structure underlying our protocols,
where a stable central station coordinates access to the medium, strongly suggests using a
central coordinator, called sequencer, for ordering messages. Using a fixed sequencer was
already considered in the protocol family proposed by (Chang and Maxemchuck 1984) and
was adopted and optimized by (Kaashoek and Tanenbaum 1991). (Rodrigues et al. 1995)
also suggest using a central sequencer approach within a wireless cell. There is quite a
number of other approaches used to achieve total ordering; for example, approaches in
which the right to be the sequencer, called the token, circulates in a logical ring structure
(Chang and Maxemchuck 1984,Amir et al. 1995,Cristian and Mishra 1995
#691,Abdelzaher et al. 1996,Jia et al. 1996,Mishra et al. 1997,Mishra et al. 2002) or ap-
proaches (Peterson et al. 1989,Melliar-Smith et al. 1990,Amir et al. 1992) in which con-
structing a total order is based on the causal order (Lamport 1978) which constitutes a par-
tial order on the messages. We will not further discuss these approach here, since, as ex-
plained above, the central sequencer approach fits best to the structure of the underlying
network; we refer the interested reader to (Defago et al. 2000) for a comprehensive survey.
What we would like to mention is that our ordering approach exhibits some similarity with
the two-phase approach suggested in (Rodrigues and Verissimo 1992). In this approach,
the position of a message in the delivery order is fixed only after all stations have ac-
knowledged the message. This is similar to the way our protocol works. This approach has
the advantage that messages that have been acknowledged by all group members need not
wait on messages that are still lacking acknowledgements.

All of the reliable multicast protocols presented in the previous sub-section have a seman-
tics requiring that each correct intended recipient receives a multicast as long as the sender
is correct and both remain connected. So, as long as the sender remains correct, all correct
and connected recipients will deliver the message and will therefore be in agreement.
These protocols therefore are mainly concerned with achieving agreement in case of
sender crashes. The basic idea to tackle this problem is to make each station that delivers a
message also responsible for retransmitting that message in addition to originating station.
For schemes with negative acknowledgments, like (Peterson et al. 1989,Melliar-Smith et
al. 1990,Amir et al. 1992,Jia et al. 1996) for example, this means that each receiver is pre-

RELATED WORK 99

pared to answer retransmission requests. For schemes with positive acknowledgments and
automatic retransmission, like (Rodrigues and Verissimo 1992), this means that each re-
ceiver also sets a retransmission timeout and waits for acknowledgements. In (Cristian et
al. 1985), a more static approach is used, where each receiver immediately forwards the
message to all its neighbors. A potential additional problem is that after some stations de-
livered the message, not only the originator but also the receivers of the message crash. In
such a situation additional measures are necessary to ensure uniform agreement; that is, to
ensure that all correct stations deliver a message, if any station, even a faulty one, deliv-
ered the message. The basic approach here is to deliver only stable messages. A message is
said to be stable if all group members have received it. Thus, even if the originator of the
message as well as some stations that delivered it will crash, still, all correct stations have
received the message and will eventually deliver it, so that uniform agreement is achieved.
To determine whether a message is stable the acknowledgment schemes described above
are being used. For example, in a token-based protocol a message is known to be stable
once the token has traveled one round through the ring after the message was broadcast
(Chang and Maxemchuck 1984,Amir et al. 1995,Cristian and Mishra 1995,Jia et al.
1996,Mishra et al. 1997,Mishra et al. 2002). In our protocols problems are different. First,
sender crashes do not impose an agreement problem. If the originator of a message crashes
while trying to send the message to the AP, the AP has either received the message by that
time or not. In both cases, agreement among the station is ensured. The AP, on the other
hand, is assumed to be stable, and therefore does not crash. This also means that stability
of messages is not required to provide uniform agreement in spite of receiver crashes. Re-
ceivers are not in charge of retransmitting messages anyhow; rather does the AP ensure
that all correct group members will receive the message. On the other hand, the protocols
described above do not consider the case in which only part of the correct group members
received a message because the correct sender stopped retransmitting it. There is a similar-
ity between our approach and the notion of stability, since in both approaches stations de-
liver a message only after it has been determined that all correct members are able to de-
liver it. Most similar is the protocol in (Kaashoek and Tanenbaum 1991) since in this pro-
tocol, like in ours, a central station is responsible to establish stability and then inform the
group members by way of an accept message. But remember that (a) in (Kaashoek and
Tanenbaum 1991) stability is used to tolerate crashes of the sequencer, (b) they use differ-
ent mechanisms to transmit the acknowledgements and the accept message, and (c) there is
no idea of rejecting a message.

(Kopetz and Grünsteidl 1993) adopt another approach. They use a static TDMA approach
where each node has a fixed sending slot. Whenever a node does not receive a message
during the sending slot of another one, it removes this node from its membership vector.
Each node transmits it membership vector together with each message it sends. Nodes re-
ceiving a message with a membership vector different from theirs reject the message and
remove the sending node from their membership list. A node that rejects messages from a
majority of the group members puts itself into an inactive mode. This ensures that only
nodes which are in agreement can communicate with each other and that each node which
is not in agreement with the majority removes itself from the group. Similarly, in
(Abdelzaher et al. 1996), each station that misses a message removes itself from the group
to ensure agreement among the remaining group members. In both approaches a message
not being received by part of the group leads to changes in the membership. So, this corre-
sponds to a model where communication is reliable and omissions are either attributed to
the sending or the receiving node.

100 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

Our work on agreement on multicast messages that are not received by all station, is com-
parable to the system presented by (Almeida and Verissimo 1995,Almeida and Verissimo
1996). They also propose an approach that allows group members to agree on the failure of
a message. While we are considering omission failures, their approach is more tailored
towards timing failures. In their system, the stations are connected through a small band-
width synchronous channel, which allows reliable and timely transmission of small
amounts of information. By periodically exchanging status information over the synchro-
nous channel, stations timely detect whether all group members received a multicast mes-
sage in time or not. In the latter case, all stations can agree not to deliver that message.
Generally, this concept also covers cases, in which excessive delays are caused by an ex-
cessive number of retransmissions, so that in this case station can agree not to deliver the
message. However, the underlying multicast layer does not stop transmitting the message
in this case, so that bandwidth may be wasted. Furthermore, there are obviously differ-
ences in realizing the synchronous channel. For one thing, we have to provide reliable and
timely transmission on the same wireless medium used by the payload. To keep the over-
head small we use piggybacking for the messages transferred in the synchronous channel
so that no extra messages are required. Furthermore, stations are not statically connected to
the synchronous channel, but the connection between the AP and a station may crash when
the station moves out of reach.

4.4.5 Membership

There has been quite some work on the specification of membership services. (Hiltunen
and Schlichting 1995a,Hiltunen and Schlichting 1995b,Chockler et al. 2001) provide com-
prehensive overviews based on formal models. Our definitions are most closely related to
those presented in (Cristian 1996). This is because our system model is similar to Cris-
tian’s timed asynchronous system model as was point out above. In particular, we use un-
conditional safety and conditional timeliness properties to define the services and adopt the
concept of fail-aware. The conditions are based on a predicates describing the “amount of
synchronism” in the system. Whereas the properties in (Cristian 1996) are conditioned on
the stability of the system our properties are conditioned on the quality of communication
between individual stations an the AP. In (Killijian et al. 2001) the notion of proximity
groups is suggested, which are defined by specifying an area. In our approach it is up to
the application (or a layer between the application and the membership service) to call the
join procedure when the mobile system enters a certain area. So, the semantics of how the
group is defined remains separated from the communication service.

Membership protocols for synchronous systems that guarantee a bounded join delay use
static bandwidth allocation (Ezhilchelvan and de Lemos 1990,Kopetz 1997). Each station
has a fixed sending slot, which remains reserved for that station even if it is removed from
the membership. Hence, it can use its sending slot to rejoin the group after a restart.
(Cristian 1991) also assumes that each joining station has sufficient bandwidth to send a
synchronous atomic multicast when a membership server sends an invitation message. Our
requirement is that a priori unknown stations may join the group at any time and stations
may leave the group forever so that a fixed allocation of bandwidth cannot be used. The
protocol presented in (Abdelzaher et al. 1996) allocates bandwidth dynamically. However,
the joining stations uncoordinatedly compete for a certain amount of bandwidth allocated
to all joining stations. Therefore, bandwidth allocation to joining stations is not predictable

RELATED WORK 101

and a bounded join delay is not guaranteed. This is similar to using the contention period
of the IEEE 802.11 Standard to request addition to the polling list. The membership proto-
col in (Mishra et al. 1998,Mishra et al. 2002) was designed for the timed asynchronous
system model and provides conditional timeliness guarantees (Cristian 1996). Since the
protocol is required to achieve a bounded join delay only if the joining station can commu-
nicate with the group members in a timely manner, no bandwidth allocation is necessary to
ensure that the joining system is actually able to transmit messages in time. In fact, the
model was devised to match typical networks that do not use bandwidth allocation. Obvi-
ously, the same is true for all those protocols not providing timeliness at all.

Regarding the dissemination of membership change information our protocol is most simi-
lar to those approaches basing on an underlying atomic multicast protocol (Cristian
1991,Moser et al. 1994,Abdelzaher et al. 1996). These approaches exploit the properties of
the underlying atomic multicast protocol to achieve agreement and total order for member-
ship changes. Thus, the mechanisms implemented to achieve these properties for the
atomic multicast protocol are reused to realize the services of the membership protocol.
Since the atomic multicast protocol establishes a total order between the application mes-
sages and the membership change messages virtual synchrony is achieved also. Further-
more, this approach allows transmission of atomic multicasts to continue while member-
ship changes are in progress. This, however, requires that station failures cannot block the
total ordering protocol. Our protocol ensures this through the failure detection provided by
the polling protocol. Our approach is similar to the one presented in (Abdelzaher et al.
1996) where a joining station transmit a request to some group members, which sends a
membership change message on behalf of that station. In our protocol, stations send a re-
quest message to the AP, which starts multicasting the membership on behalf of that sta-
tion. To improve the performance, both the request message of the station and the multi-
casts sent by the AP may contain an application message from the joining station. If this is
the case, it means that the membership change information is piggybacked on the multicast
message of the joining station. Furthermore, no explicit membership change message is
multicast when a station is removed from the membership; rather, the AP uses the syn-
chronous channel to disseminate such change information.

In (Ezhilchelvan and de Lemos 1990,Grünsteidl and Kopetz 1991,Kopetz and Grünsteidl
1993) the synchronous TDMA-based communication structure is used to maintain a con-
sistent and up-to-date view on the membership. In this communication structure, each sta-
tion must regularly transmit a message during its sending slot. Thus, stations are able to
detect the failure of a station if they do not receive the expected message during the send-
ing slot of this station. All correct stations detect the failure of a sending station during the
same slot and hence at the same position in the sequence of messages. Since send omission
failures are assumed to be perceived consistently all correct station will agree on the failure
of the station. If a station is subject to a receive omission it may wrongly suspect other
stations to have failed and disagree with the correct station about the membership. Both
protocols provide mechanism to ensure that such stations will be detected and removed
from the membership. (For (Grünsteidl and Kopetz 1991,Kopetz and Grünsteidl 1993), this
mechanism was sketched in the preceding sub-section.) Since this approach is based on the
assumption of reliable communication and on the consistent perception of send omission
failures we cannot adopt it in our protocol.

Other protocols, like (Chang and Maxemchuck 1984,Amir et al. 1995,Cristian and Mishra
1995,Jia et al. 1996,Mishra et al. 1997,Mishra et al. 2002), which are based on logical ring

102 COMMUNICATION IN COOPERATIVE MOBILE SYSTEMS

structures and are not based on an underlying atomic multicast protocol, typically require
complex reformation protocols. Even if a bounded termination time can be ensure for such
a protocol (Amir et al. 1995,Mishra et al. 2002), they interfere with transmission of the
atomic multicasts and hence add to the delay of the messages.

4.4.6 Communication Paradigms for Cooperative Systems

The synchronous4 communication semantics of the RPC (Bakre and Badrinath
1995,Kümmel et al. 1996) used in the client-server paradigm of contemporary middleware
(Microsoft Corporation 1996,Object Management Group 2002) is not well suited to sup-
port cooperation in groups of mobile systems. (Mock 2003) provided a formal model to
specify the real-time requirements pertaining to the coordination of autonomous systems
and showed in this model that the client-server paradigm does not match the requirements
imposed by the kind of coordination in groups of mobile systems we consider in this the-
sis. In particular, he pointed out that the point-to-point semantics and the distinction be-
tween clients and servers inherent in this paradigm can hardly be mapped to the coopera-
tion in groups of systems. Point-to-point communication does not support the mobile sys-
tems in coordinating their worldviews or their actions. Publisher/Subscriber paradigms
(Oki et al. 1993,Rajkumar et al. 1995,Piaggio et al. 1999,Piaggio and Sgorbissa 2000) pro-
vide many-to-many communication and are therefore better suited. Object-oriented mid-
dleware has been extended to support this paradigm above the underlying client-server
paradigm (Harrison et al. 1997). Publisher/Subscriber paradigms foster scalability, and
their asynchronous, event-based communication semantics allows preserving the local
autonomy of control. Yet, without providing ordering and agreement semantics for the
delivered events, they do not directly support the cooperating systems in achieving coordi-
nation; that is, in fulfilling the consistency constraints that the cooperative application im-
poses on their actions. Furthermore, tight coordination in local groups typically requires
explicit knowledge of the group of cooperating mobile systems ― consider for example
the shared spatial resources scenario. Therefore, our approach is to build event-based
communication services on top of local group communication services. (Verissimo et al.
2003), for example, suggest a similar approach to support the real-time and consensus re-
quirements of tightly cooperating groups. The underlying group communication services
provide a timely and reliable communication as well as ordering and agreement semantics
for the transmission of events. On top of them, event-based communications services are
provided in the CADI layer (see Chapter 2). Their particular feature is the provision of
common views, which allow resolving the autonomy/cooperation tradeoff as explained in
chapters 1 and 2. For tight cooperation in local groups, the Event Service provides com-
mon views on the global system state; so, in fact, it provides a combined event- and state-
based semantics, which is particularly suited for dynamically changing groups where
newly joining systems may not have sufficient context information to interpret pure event
information correctly

4 Here, “synchronous” means that communication implies synchronization between the communicating enti-
ties; it does not refer to the timeliness of the communication as above.

5 Task Scheduling for Mobile Cooperative
Applications

In mobile cooperative applications, all tasks controlling a mobile system’s interactions
with its physical environment must be performed reliably and in real-time. This comprises
such tasks as avoiding collisions with static and moving obstacles, finding and following a
path towards a goal, tracking objects, etc. These real-time and reliability requirements are
not limited to the tasks directly controlling the motion of the mobile system, but apply to
the sensor data processing tasks as well because in a dynamically changing environment
the control tasks depend on online information about the system’s environment.

The main problem in meeting these requirements lies in the hardly predictable execution
times of the application tasks. In our intended application domain, most applications in-
clude tasks, which exhibit environment-dependent and hence widely varying execution
times. Sensor-data processing tasks, for example, which form an essential part of all mo-
bile applications, particularly exhibit this property. Using the prototype of the distributed
sensor fusion as a concrete instance, we analyzed this problem. It turned out that both the
size of the input and its content impact the execution times of the sensor processing tasks
so that they are varying widely in a dynamically changing environment. For tasks with this
characteristic, conventional approaches to real-time scheduling, which rely on known
worst-case execution times (WCETs), cannot be adopted. Assuming known WCETs, if
they can be determined at all, would result in a poor CPU utilization and only a very small
task set being accepted for execution.

We apply the TAFT (time-aware fault-tolerant) scheduling concept to achieve a timely
predictable execution of tasks with hardly predictable execution times (Nett and Gergeleit
1997,Nett et al. 1997,Gergeleit 2001,Becker et al. 2003). TAFT uses realistic expected-
case execution times (ECETs) instead of WCETs to specify the resource demands of the
tasks. This implies that a task instance may need more than the specified resources, which
we refer to as a resource fault of that instance. As a consequence, it possibly cannot be
completed by its deadline. In such cases, TAFT ensures that the task instance is aborted
and an exception handling is performed by the task’s deadline, so as to preserve a timely
predictable behavior. Furthermore, it ensures that the fault does not propagate and affect

 103

104 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS

other task instances. With timeliness, exception handling, and fault isolation ensured by
the scheduler, application-inherent redundancy is exploited to tolerate the abortion of task
instances.

Adopting TAFT for our application domain, we have to consider what kinds of applica-
tion-inherent redundancy can be exploited there. To this end, we used the distributed sen-
sor fusion scenario as an example for our investigation. Although it surely depends on the
specific application at hand how redundancy can be exploited to tolerate task abortions, we
believe that the kinds of application-inherent redundancy we found are typically present in
cooperative mobile applications or can be furnished by a careful design. We will show how
the different kinds of application-inherent redundancy can be used in combination with
TAFT to achieve a reliable execution of the application. In doing so, we use the distributed
sensor fusion scenario as an example to illustrate the suggested solutions. Accordingly, we
use the prototype of the scenario to show the viability of this approach (see Chapter 6).

The second point that needs to be resolved when adopting TAFT for the task execution
service of the middleware is developing a scheduling algorithm that implements the TAFT
concept and supports a task model suitable for our application domain. In (Becker and
Gergeleit 2001,Becker et al. 2003,Gergeleit et al. 2003), a scheduling algorithm was pre-
sented for a task model with sets of independent periodic tasks. For the intended applica-
tion context we have to extend this model to accommodate the following two requirements
also:

1. To schedule the CPU demands of the communication protocols of the middleware,
the model must encompass aperiodic requests in addition to the periodic tasks.

2. To allow using the results of one task pair as input for another one, the model must
allow for precedence constraints between the task pairs.

This chapter is structured as follows. In Sections 5.1 through 5.3 we explain how a timely
predictable and reliable execution of the application tasks is achieved in spite of the unpre-
dictable execution times they exhibit. Sections 5.1 illustrates the problem with measure-
ments from the prototypical implementation of the distributed sensor fusion scenario. The
measurements show that the execution times of the tasks are environment dependent and
widely varying. Section 5.2 then describes the TAFT concept. It makes clear how TAFT
achieves a predictable timing behavior for tasks with hardly predictable execution times.
Furthermore, describing TAFT in sufficient detail is an important prerequisite to under-
stand the extensions of the task model and the scheduling algorithm we present in the re-
mainder of the chapter. In Section 5.3, we examine what kinds of application-inherent re-
dundancy can be found in cooperative mobile applications and how they can be exploited
in conjunction with TAFT to tolerate task abortions. Afterwards, we turn towards develop-
ing a scheduling algorithm that implements TAFT for a task model matching for our appli-
cation context. This is done in two steps. First, in Section 5.4, we develop a scheduling
algorithm, called TAFT-IPE, that implements TAFT and supports the execution on aperi-
odic requests. Second, we extend this scheduling algorithm to allow for precedence con-
straints between periodic task pairs (Section 5.5).

ENVIRONMENT-DEPENDENT EXECUTION TIMES IN THE DISTRIBUTED SENSOR FUSION 105

5.1 Environment-Dependent Execution Times in the Distrib-
uted Sensor Fusion

To analyze the problem of hardly predictable execution times in a real application context,
we measured the execution times of the filter and fusion modules in the prototype of the
distributed sensor fusion. The results we present in this section have been measured on an
AMD Athlon 700MHz CPU with 128MB memory. They show that the execution times
depend on the following two aspects.

The first aspect that impacts the execution times is the amount of input of the module. For
example, Figure 5-1 depicts the execution times of the object filter plotted against the
number of input structures (arcs and edges detected by the contour filter). Despite minor
variations, a clear trend of increasing execution times can be observed for an increasing
number of input structures.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40 50 60 7

no. of input structures

ex
ec

ut
io

n
tim

es
 [µ

s]

0

ean of 21.78 ms.

Figure 5-1. Execution times of the object filter against input size

The second aspect impacting the execution times is the content of the input. Aspects such
as the shape of objects as well as their number and distance are of importance. A good
example is the arc filter (In what follows we go on using the arc filter as an example
because it has by far the largest execution times of all modules). Even though it has a
constant input size, 361 points always, its execution times are varying widely depending
on the environment observed. Figure 5-2 shows how the execution times of the arc filter
vary over a sequence of scans observed by a laser-scanner moving through a scenario with
three rectangular objects and a ball. The measured execution times have a range of
136.62 ms, which is large as compared to a m

106 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180 200

scan no.

ex
ec

ut
io

n
tim

e
[m

s]

Figure 5-2. Execution times of the arc filter

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000 6000 7000 8000

mean distance [mm]

ex
ec

ut
io

n
tim

e
[m

s]

Figure 5-3. Execution times of the arc filter against mean distance

Figure 5-3 makes clear that one parameter of the input’s content that heavily influences the
execution times of the arc filter is the mean distance between the points observed and the
scanner. This can be attributed to the way this filter detects arcs: It constructs circles with a
given diameter for pairs of points with a certain distance. For each such circle, it deter-
mines the points located in a certain environment along the circle. If there are enough such

TAFT 107

points and if the evaluation of their position w.r.t the circle exceeds a given threshold, they
are assumed to belong to an arc. As an optimization, the algorithm does not consider all
points for each circle, but only those lying within a certain sector of the scanner’s field of
view. This sector is lying between two rays starting at the scanner’s origin and being tan-
gent to the constructed circle. Hence, the nearer the circle, the wider the sector, and the
more points have to be considered.

In addition to the causes of the variations in the execution times, their durations must be
distinguished. Figure 5-2 shows that the arc filter usually exhibits short-term peaks in its
execution times. For example, execution times of more than 60ms only occur in a single,
small peak (10 scans only). This shows that situations with exceedingly long execution
times frequently have a short duration. Nevertheless, as execution times are environment
dependent, we must assume that long execution times may also be persistent for extended
intervals of time. For example, consider a situation in which a robot is forced to keep near
to some objects in its environment over an extended period of time.

The results corroborate our point that the execution service must cope with execution times
that vary significantly as the mobile systems are moving in a dynamically changing envi-
ronment. Execution times not only depend on the amount of input but also on its contents.
It turned out, for instance, that the mean distance between the laser scanner and the shapes
it observes is an important parameter for the contour filter’s execution time. In such a set-
ting, it is a hard task to determine WCETs for modules, for they would have to be based on
assumed worst-case environments, which are hardly ever observed. Furthermore, our
measurements indicate, that particularly long execution times frequently prevail for short
intervals of times only. Hence, allocating these excessively high execution times, which
are still not WCETs, would mean reserving resources that are hardly ever needed.

5.2 TAFT

As the measurements in the preceding section illustrate, many tasks in cooperative mobile
applications exhibit environment-dependent and widely varying execution times. Worst-
case execution times (WCETs) are not suitable to specify the resource demands of such
tasks. If they can be determined at all, WCETs are likely to be far beyond any realistic
value. Therefore, the scheduled resources would by far exceed the actual demands of the
tasks. Thus,

• Only few tasks could be scheduled, as compared to what would be possible with
more realistic demands specifications;

• The real resource usage of the accepted tasks would require only a small fraction of
the available CPU resources such that a poor CPU utilization would result.

For these reasons, we aim at providing a task execution service that does not require the
specification of worst-case execution times, but achieves a predictable timing behavior of
the tasks nevertheless. To this end, we adopt the TAFT scheduling concept, which has
been developed with these requirements in mind (Nett and Gergeleit 1997,Nett et al.
1997,Becker and Gergeleit 2001,Becker et al. 2001,Gergeleit 2001,Becker et al.
2003,Gergeleit et al. 2003,Becker et al. to appear). Though working with more realistic

108 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS

ECETs instead of WCETs, it achieves a timely predictable task execution. In this section
we explain the TAFT scheduling concept.

The very basic concept underlying TAFT is the task pair (TP). A task pair consisting of a
main part (MP) and an exception part (EP) represents each task. The main part provides
the intended functionality of the task, whereas the exception part includes exception-
handling code that is executed when the main part cannot be completed before the task
pair’s deadline. The CPU demand of the main part is specified through a so-called ex-
pected-case execution time (ECET). ECETs are determined by sampling actual task execu-
tion times, which can be performed off-line (Schemmer and Nett 2003a) or through online
monitoring (Gergeleit 2001). The ECET models the resource demand of the main part
more realistically than a WCET. In general, it is significantly smaller than the latter. The
exception part, on the other hand, will usually consist of only very few emergency actions
so that a WCET can be used to specify the CPU demand of this part.

As the specified resource demand of the main part does not represent the worst case, the
instances of the main part possibly require more than the specified resources to be com-
pleted. We will refer to this event as a resource fault in what follows. If not handled, a re-
source fault can have the following two severe consequences:

• There may be not enough resources available to complete the main part by its dead-
line, in which case it would terminate at some time after the deadline. At which
point of time the main part actually terminates is not predictable in this case, for it
very much depends on the main part’s unpredictable execution time. Thus, the task
pair would exhibit an unpredictable timing behavior. Considering a task pair exe-
cuting on some CPU as a software component and referring to the failure modes
presented in Sub-Section 4.1.1, we refer to this situation as timing failure of the
task pair.

Figure 5-4 shows an example for a resource fault resulting in a timing failure. In
this figure upward arrow denote the release times and deadlines of the two periodic
task pairs τ1 and τ2. Boxes about the time axis of a task indicate that this task is
running. If the boxes have a white filling the task is still within the specified ECET,
while a light gray filling means that the task exceeds its specified demand. We will
use the same kind of representation also latter. In the depicted situation, task τ2
needs three time units more than allocated. As a result it is completed only after its
deadline.

• If a main part occupies the CPU longer than its specified execution time, these CPU
times may be missing for the execution of other tasks. Thus, the resource fault of
one task may cause other tasks to exhibit timing failures. This is called fault propa-
gation, or domino effect in the context of real-time scheduling. It may even happen
that the faulty task itself is completed before its deadline, but causes timing failures
in a number of other tasks. This kind of implicit dependency between otherwise in-
dependent task makes system behavior particularly complex, unpredictable, and
hard to analyze.

Figure 5-5 shows an example. In the depicted situation, task τ1 is subject to a re-
source fault, yet still completes before its deadline. However, due to τ1’s consum-

TAFT 109

ing more than the allocated resources, there are not enough resources left to com-
plete τ2 in time. So, τ2 is subject to a timing failure caused by the resource fault of
τ1.

TAFT avoids both these problems. It keeps the main part’s resource faults from causing
timing failures of the task pair and from propagating to other task pairs. We call the latter
property fault containment since the resource fault of some task pair does not lead to an-
other task pair’s observing a timing failure or getting less than the specified resources.
How TAFT achieves this is considered in what follows.

Figure 5-4. Resource fault resulting in a timing failure of the same task

Figure 5-5. Resource fault resulting in a timing failure of another task

TAFT prevents timing failures in the presence of resource faults. TAFT monitors the exe-
cution of the main parts and aborts them if it they are about to miss their deadline. So, a
main part is never executed after its deadline. Simply aborting the main part, however, will
frequently not suffice, at least for the following two reasons:

• Tasks frequently have side effects that need to be reset when the task is aborted.
Side effects may be internal to the control system; for example, if the task performs
temporary updates to internal state variables. Side effects may affect the control
system’s environment too; for example, consider a task that starts an actuator, such

110 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS

as a motor. Before the task is aborted, the motor must be stopped to leave the con-
trolled system in a safe state.

• Tasks may have computed valuable results at the time at which they are aborted.
Simply aborting the task may lead to all these result being lost.

To avoid such drawbacks, TAFT executes the exception part when it aborts the main part.
It ensures that the exception part is completed by the task pair’s deadline. This is possible
because the WCET of the exception part is assumed to be known. This assumption is justi-
fied since the exception part only includes a few deterministic actions to avoid the above-
mentioned problems. For example, it may stop a motor, reset some internal variables, or
make available intermediate results.

Figure 5-6. TAFT avoids timing failure of faulty task pair.

Figure 5-6 revisits the scenario depicted in Figure 5-4; this time, however, with TAFT be-
ing used. At time 12, TAFT detects that it cannot complete the main part of τ2 by the dead-
line. So, it triggers the exception part of τ2 (depicted in dark gray). As it does this suffi-
ciently early, the exception part is completed by τ2’s deadline.

To avoid propagation of resource faults, TAFT schedules faulty main parts on a priority
level lower level than that of the non-faulty ones ― which still have not consumed their
specified resources ― and of the exception parts. Hence, faulty main parts can never keep
non-faulty main parts from getting their specified resources. Note that this also means that
a task pair is not necessarily aborted when it becomes faulty. It remains in the pending
queue, but on a lower priority level. So, the scheduler may still assign resources to it and
complete it by its deadline. If this is the case, the resource fault does not cause a failure of
the task pair, which means it is tolerated.

Figure 5-7 revisits the situation depicted in Figure 5-5. This time, however, TAFT avoids
the propagation of the resource fault. At time 3, when τ1 becomes faulty, TAFT sets it to
the lowest priority level. Hence, τ2 gets access to the CPU first and the faulty main part of
τ1 cannot steal resource allocated to τ1. When TAFT detects that it cannot complete τ1 in
time it executes the exception part. Similar at time 9, when TAFT again sets the faulty
main part of τ1 on the lowest priority level. Again, τ1 gets the CPU and this time runs to

TAFT 111

completion. Under the control of TAFT, the faulty main parts in the instances of τ1 do not
cause a timing failure of τ2.

Figure 5-7. TAFT avoids propagation of resource faults

After having explained the basic concepts of TAFT, we now describe more formally the
underlying task model. This serves as a foundation for the presentation of formal results in
the remainder of this chapter. A task pair τi, i ≥ 1, consists of two parts, the main part MPi
and the exception part EPi. It is characterized by the following timing parameters: Ci is the
expected-case execution time of MPi, and Ei the worst-case execution time of EPi. If the
task pair is periodic, Ti denotes its period, whereas Ti represents a minimal inter arrival
time if the task pair is sporadic. According to common terminology we call the instances of
a task pair jobs. Ji,k, k ≥ 1, denotes the kth instance of task pair τi. Each job has a release
time here ri,k and deadline di,k, and consists of two parts MPi,k and EPi,k. For a periodic task
pair τi, the release time of its kth instance is given by ri,k := (k – 1)Ti.

Using a model in which the WCETs of the main parts are not known, it is not possible to
guarantee for a given set of task pairs that each instance MPi,k is completed by its deadline.
This means that the feasibility of the schedules cannot be guaranteed. It does not mean,
however, that TAFT provides no guarantees at all. For a set of task pairs {τi | i ∈ 1..n} that
passed an acceptance test TAFT produces schedules with the following properties: For
each job Ji,k

• The main part MPi,k is guaranteed to be completed unless its actual execution time
exceeds the specified resource demand Ci (completion of correct jobs);

• The exception part is completed if (and only if) the main part MPi,k is not com-
pleted (exception handling);

• Neither the exception nor the main part is ever executed after the deadline di,k
(timeliness).

To capture these properties under a common notion, we say that such a schedule achieves
timely completion of correct jobs and exception handling. The acceptance test can be per-
formed before runtime for a static task set or dynamically at runtime whenever a new task
arrives. In the latter case, the test is applied to the set of already accepted tasks plus the
newly arriving task. If the whole set passes the test the new task is accepted, otherwise it is

112 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS

rejected. How the acceptance test actually works depends on the scheduling algorithm used
to implement TAFT. For example, we will present a utilization-based test for the schedul-
ing algorithm proposed in Section 5.4. As a prerequisite for some formal proves we will
provide in Section 5.4, we now define more formally the property of timely completion of
correct jobs and exception handling. Before doing so in Definition 5-1, we have to intro-
duce some notions:

For a set {τi | i ∈ 1..n} of task pairs, let E := {MPi,k | i ∈ 1..n, k ≥ 1} ∪ {EPi,k | i ∈ 1..n, k ≥
1} be the corresponding set of all scheduled entities. For any given schedule σ for
{τi | i ∈ 1..n}, let completesσ be a predicate over E such that completesσ(e) is true if and

only if e is completed in σ, runningσ a predicate over E × T 5such that runningσ(e,t) is true

if and only if e is running at time t in σ, and cσ be a mapping from E to such that c0
+

σ(e)
is the total amount of processing time assigned to e in σ.

Definition 5-1 A schedule σ achieves timely completion of correct jobs and exception han-
dling for a set {τi | i ∈ 1..n} of task pairs if and only if for all i ∈ 1..n, k ≥ 1, and all times
t:

(1) completesσ(MPi,k) or cσ(MPi,k) ≥ Ci

(2) (runningσ(EPi,k,t) or runningσ(MPi,k,t)) ⇒ t ≤ di,k

(3) (not completesσ(MPi,k) ⇒ completesσ(EPi,k)) and
(runningσ(EPi,k,t) ⇒ not completesσ(MPi,k))

Summarizing the description of TAFT, one can say that TAFT allows scheduling the main
functionality of a task, which is realized in the main part of a task pair, with a realistic re-
source demand instead of a WCET. Even though this implies that main parts may be sub-
ject to resource faults, TAFT ensures that task pairs do not exhibit timing failures and re-
source faults do not propagate to other task pairs. Thus, TAFT achieves a predicable tim-
ing behavior of the tasks.

Nevertheless, TAFT may still have to abort main parts. But without resorting to WCETs
no scheduler is able to guarantee that all jobs are completed by their deadline. According
to the TAFT scheduling concept, application-inherent redundancy is used tolerate task
abortions. The timely exception handling of TAFT provides the means to support this ap-
proach. In the following section, we examine what kinds of application-inherent redun-
dancy are present in cooperative mobile applications and suggest how they can be ex-
ploited to tolerate task abortions.

5 T := represents the set of points of time (cf. Chapter 3) 0
+

EXPLOITING APPLICATION-INHERENT REDUNDANCY 113

5.3 Exploiting Application-Inherent Redundancy

In order to preserve a predictable timing behavior, TAFT may have to abort faulty main
parts. According to the TAFT scheduling concept, application-inherent redundancy is ex-
ploited to tolerate such overload situations in which the scheduler is no longer able to
complete all main parts by their deadlines. Of course, the exploitation of application inher-
ent-redundancy is by its very nature dependent on the application at hand; what kinds of
redundancy are present and how they are best exploited is specific to the application. Nev-
ertheless, there are several kinds of redundancy that are commonly found in cooperative
mobile applications. Actually, knowing that task abortions may be unavoidable, the inher-
ent redundancy can be provided by a careful design so that it can be exploited at runtime.
In this section, we analyze what kinds of application-inherent redundancy can be provided
and how they can be exploited in conjunction with TAFT. We use the distributed sensor
fusion scenario as a concrete example for this analysis. Chapter 6 presents measurement
results from the prototypical implementation of this scenario.

Three kinds of application-inherent redundancy can be exploited to tolerate abortions of
main parts:

• Functional redundancy within the main parts, which refers to the fact that a main
part not necessarily needs to be completed to provide sufficient results;

• Spatial redundancy within the group of cooperating mobile systems, which means
that within a group the same part of the environment is frequently observed by sev-
eral mobile systems; so, even if a main part on one of these systems does not de-
liver sufficient results, the others can provide the missing information; and

• Time redundancy w.r.t to the number of task instances that must provide sufficient
results. If a task pair is scheduled with a frequency higher than required to ensure
the safety of the systems, a certain number of task instances not providing suffi-
cient results can be tolerated.

These kinds of redundancy realize a two-level fault-tolerance approach. Functional redun-
dancy allows tolerating the faults directly within the task pair before they become visible at
the task pair’s interface. This means that an aborted task instance still provides sufficient
results and hence does not exhibit a failure. Spatial and time redundancy allow tolerating
the faults, once they led to failures of the task pair. The former allows tolerating the fault if
other members provide for the missing information, whereas the latter does as long as the
number of faults remains below a certain threshold.

Exploiting the above-mentioned kinds of redundancy does not require explicit runtime
actions on part of the application. As long as they are sufficient, we talk of a transient
overload; otherwise, we call this a persistent overload. This means we are faced with a
persistent overload if the number of consecutive executions of the application that do not
provide sufficient results exceeds some application-specific threshold. Applications being
able to reduce their resource demand by gracefully degrading their service, exhibit another
kind of functional redundancy that can be exploited during persistent overload. As com-
pared to the functional redundancy above, this one requires the application to adapt to the
current load situation explicitly. The exception parts of the task pairs, which are able to
detect and signal persistent overload situations, can trigger this adaptation.

114 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS

5.3.1 Functional Redundancy Through Anytime Algorithms

Functional redundancy within the instances of the main parts is the first kind of applica-
tion-inherent redundancy we consider. As it is known at design time that the main parts
might be aborted at runtime, it is wise to design them in such a way that partly executed
instances are not completely useless. The exception part provides a means to make inter-
mediate results available if the main part was designed in such a way that preliminary re-
sults are available before the task completes. Anytime algorithms are the means to achieve
this goal.

The basic idea of anytime algorithms is to compute some first results as soon as possible
and then iteratively improve these results until the best possible result of the algorithm is
achieved (Dean and Boddy 1988,Boddy and Dean 1989). This way of realizing an algo-
rithm has the advantage that the algorithm may be stopped at any time and always has
some preliminary result to deliver. There are the following measures for the quality of pre-
liminary results (cf. (Russel and Zilberstein 1991)):

• Certainty. This means that the result represents a kind of “first guess” of the algo-
rithm. The result has a certain probability of being correct, though it may not yet
have the highest probability the algorithm can achieve. Other possible solutions
still have to be evaluated, and it may turn out that they have a higher likelihood of
being correct. For example, the arc filter in the distributed sensor fusion succes-
sively evaluates a sequence of estimated arc positions. If it is aborted prematurely,
the estimate with the highest evaluation may not yet have been found.

• Accuracy. This means that the algorithm is still reducing the error of the result,
which refers to the distance (in a general sense) between the result and the real-
world entity it represents. For example, the algorithm may still be able to reduce
the spatial distance between the estimated position of some object and its real posi-
tion.

• Completeness. This means that the algorithm delivers results that only represent a
part of the real world entity they relate to. For example, if the expected result is a
perception of the environment represented by a set of edges, an incomplete result
may contain only some of the edges.

• Specificity. This means that the results, while representing the whole real world en-
tity they relate to, are not yet as detailed as possible.

Despite being preliminary in the above senses, the results delivered by an aborted anytime
algorithm may still prove useful or even be sufficient. If the latter is the case, all computa-
tions the algorithm performs after achieving the sufficient result can be considered as func-
tional redundancy. Anytime algorithms allow exploiting this redundancy. All-or-nothing
algorithms either provide no result at all or the best possible result (including all the re-
dundancy); a sufficient preliminary result is not available. Plotting the value of an algo-
rithm against its execution time, an all-or-nothing algorithm exhibits a single step when it
is completed, whereas an anytime algorithm exhibits a continuously increasing curve or a
number of small steps. With some consideration at design time, many algorithms can be
designed in such a way. For example, all filters in the distributed sensor fusion adopt this

EXPLOITING APPLICATION-INHERENT REDUNDANCY 115

paradigm. Furthermore, (Bade 2003,Herms 2004) show how it can be applied in stereovi-
sion and complex planning applications.

When scheduling anytime algorithms with TAFT, the main part consists of the anytime
algorithm, whereas the exception part delivers the results computed so far when the main
part is aborted. In this approach, the anytime algorithm is automatically stopped and its
results are automatically delivered when it cannot be completed by its deadline. Thus, the
scheduler decides how long the anytime algorithm is run and ensures that it delivers its
results in time.

Using this approach, it is easy for application designers to employ anytime algorithms.
They only need to design the algorithm and provide the deadline and expected-case execu-
tion time to the scheduler, which makes the decisions at runtime. The ECET allows appli-
cation designers to specify a minimum time for the algorithm to be executed. This ensures
that it is not terminated arbitrarily early, in which case it might deliver no or only very-
low-quality results. By contrast, a high probability that sufficient results are delivered can
be achieved. In fact, if a WCET required to compute at least a sufficient result was known
(as is assumed in (Lin et al. 1987,Liu et al. 1994)), the ECET of the main part could be set
to this WCET and the main part would always yield sufficient results.

Realized as anytime algorithms, main parts that have to be aborted may still deliver suffi-
cient results. If so, the task pair exhibits no failure, since it provides a service according to
its specification. The resource fault of the main part, therefore, has been tolerated. Thus,
the approach exploits the functional redundancy within the main parts to tolerate resource
faults. Considering the task pair as a component of the application, one can say that the
approach increases the reliability of this component, for it increases the ratio between the
number of task pair instances providing sufficient results and the number of all released
instances. For example, measurements conducted in the prototype of the distributed sensor
fusion show how using anytime algorithms allows increasing the reliability of the arc filter
(cf. Section 6.2).

The increased reliability notwithstanding, there may be task pair instances not providing
sufficient results to meet their specification. This is unavoidable unless WCETs for a logi-
cal mandatory part are assumed. The following clause will show how such component
failures can be tolerated.

5.3.2 Spatial and Timing Redundancy

When an instance of a main part is aborted without providing sufficient results this repre-
sents a failure of the corresponding component of the application. This constitutes a fault
from the perspective of the overall application. In this sub-section, we consider how such
faults can be tolerated.

116 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS

Figure 5-8. Structural redundancy in the distributed sensor fusion

Spatial redundancy is the first kind of redundancy being exploited to tolerate such faults.
In a group of embedded systems observing some real-world entity in their environment, if
a component on one of the systems fails to deliver an observation, the others may still pro-
vide the missing information in time. The distributed sensor fusion, for example, combines
results from several laser scanners that observe the environment from different perspec-
tives. The fusion automatically tolerates component failures that result in data from one of
the sensors being missing as long as two or more sensors are observing the same part of the
environment. Moreover, incomplete results from a faulty module may still represent a
valuable contribution to the results of the fusion. Figure 5-8 shows an example: Figure

EXPLOITING APPLICATION-INHERENT REDUNDANCY 117

5-8 (a) and (b) depict two incomplete observations from two laser scanners. The scan de-
picted in Figure 5-8 (a) contains edges from only one of the rectangular objects in the
scene, while the scan depicted in Figure 5-8 (b) only contains edges of two other rectangu-
lar objects. The fusion of both of the scans (Figure 5-8 (c)), however, comprises edges of
all three rectangular objects so that they can all be detected in the fused scan.

Timing redundancy is the second kind of redundancy being exploited. In many control
applications, control loops are executed well above their stability criteria. This means that
the corresponding tasks are performed with a period significantly smaller than necessary to
accomplish a stable control of the system. Such applications exhibit redundancy in the
number of task instances that must provide sufficient results. This is because two consid-
erations guide the selection of the period: It must be sufficiently small so that the controller
(i) can react to changes in the environment before the controlled system is damaged (a
safety constraint) and (ii) exhibits a smooth reaction to the changes in the environment (a
quality goal). While being less critical regarding system safety, (ii) implies the more strin-
gent timing requirements. For example, there is a minimum frequency at which motion
planning, and hence the sensor fusion, must be executed to avoid collisions. It depends on
the sensor range, the speed of the robot, and the speed of the surrounding objects. Usually,
motion planning and sensor fusion are performed at a much higher frequency to achieve a
smooth driving.

Thus, when scheduling controllers, frequently only m out of n scheduled task instances are
really hard, while the remaining n – m instances can be considered as timing redundancy,
which can be exploited in overload situations. Systems with such constraints, called ()m

n
constraints, are also known as weakly-hard real-time systems (Hamdaoui and Ramanathan
1995,Koren and Shasha 1995,Bernat and Burns 2001,Bernat and Cayssials 2001,Wang et
al. 2002).

Exploiting the kinds of application-inherent redundancy discussed so far, transient over-
loads can be tolerated without explicit fault treatment on part of the application. In the fol-
lowing subsection we consider what can be done if an overload situation is more persis-
tent.

5.3.3 Signaling Persistent Overload

If the execution times of a main part persistently exceed its ECET such that it observers
faults over some extended period of time, relying on the kinds of redundancy described
above does no longer suffice and we are faced with a persistent overload situation. There
are two ways to address the problem:

• One can adapt the specified resource demand of the main part ― that is, its ECET
― to its actual resource demand so that the scheduler allocates more resources for
executing this task.

• One can adapt the resource demands of the application in order to reduce the sys-
tem load.

118 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS

(Gergeleit 2001) shows how the first approach can be realized. He combines the TAFT
scheduler with an online-monitoring component, which provides execution time statistics
to the scheduler. Using these statistics, the scheduler can adapt the resource allocation to
changing execution times. This approach allows adapting the guarantee the scheduler pro-
vides to the demands of the tasks as long as the task set with the increased resource de-
mands passes the acceptance test. If the latter is no longer the case, the second approach
can be used. This approach has to prerequisites: First, the application must be able to adapt
its resource demand by gracefully degrading its service; second, the middleware must sig-
nal the overload situation to the application. The exception handling of TAFT provides the
means to detect and signal persistent overload situations. To exploit it, the ratio between
the number of aborted instances of the main part and the number of all instances of the
main part is computed in the exception part of a task pair. Actually, according to the kind
of constraint presented in the preceding sub-section, this value is computed over an inter-
val of n released instances, where n is specified by the application. The number k of
aborted instances within this interval is counted. If k exceeds an application-specific
threshold a persistent overload is detected. In this case, the exception part signals the over-
load and thus triggers the adaptation of the application. Thus, the exception handling
TAFT guarantees per task pair instance can be used to trigger a next level of exception
handling if an ()m

n constraint is violated or about to be violated.

The distributed sensor fusion scenario allows for adaptation under overload. As explained
in Section 3.2, performing the fusion on a higher level of abstraction allows adapting the
resource demands of the distributed sensor fusion at the expense of its accuracy. In a per-
sistent overload situation, the sensor fusion is switched to a higher level of abstraction.
Thus, the system load is reduced and the ratio of aborted task instances is reduced also as a
result.

5.4 Aperiodic Requests

So far, we explained how using the TAFT concept and exploiting several kinds of applica-
tion inherent redundancy achieves a timely predictable and reliable execution of applica-
tions. In this section, we present a scheduling algorithm that implements TAFT for a task
model fitting the requirements of our middleware.

The task model underlying the existing implementation of TAFT includes sets of inde-
pendent periodic task pairs (Becker and Gergeleit 2001,Becker et al. 2003,Gergeleit et al.
2003). While periodic task pairs adequately model the application tasks in our application
domain, they are not well suited to model the tasks that execute the communication proto-
cols of the middleware. The latter ― referred to as communication tasks ― are character-
ized by varying inter-arrival times and response time requirements that are much smaller
than the inter-arrival times. They are thus better modeled as aperiodic requests that arrive
in the system at a priori unknown instants and should be served as soon as possible. Actu-
ally, as we assume a bounded scheduling delay in the system model presented in Chapter
4, aperiodic requests have deadlines in our task model. As the unknown inter-arrival times
do not allow giving an a priori guarantee that all aperiodic requests will be completed by
their deadline, a guarantee is given on a per instance basis. To this end, an acceptance test
checks whether an aperiodic request can be completed before its deadline.

APERIODIC REQUESTS 119

In this section, we present a scheduling algorithm that schedules task sets consisting of
periodic independent task pairs and aperiodic tasks. For the aperiodic tasks, a guarantee is
provided on a per instance basis. This means that an aperiodic request is either completed
by its deadline or not executed at all. This section is structured as follows. First, we present
the extended task model that the scheduling algorithm has to accommodate (Sub-Section
5.4.1), before considering existing algorithms for the scheduling of hybrid task sets con-
sisting of periodic tasks and aperiodic requests (Sub-Section 5.4.2). We then present the
scheduling algorithm, which is based on the idea of using an existing aperiodic server al-
gorithm ― the IPE server ― to schedule the task pairs and the aperiodic request (Sub-
Section 5.4.3). We present acceptance tests for both the set of periodic task pairs and the
aperiodic requests (Sub-Section 5.4.4).

5.4.1 Model

The communication tasks or not adequately modeled as periodic tasks. The first reason is
that they are not activated at constant intervals, even tough polling is performed in a round-
based manner. For one thing, whenever the group size changes, so does the length of the
polling list and hence the activation interval of the communication tasks. Furthermore,
aspects like the following ones cause additional jitter:

1. Request frames and mc frames may include application messages or not;

2. Application messages may have varying lengths;

3. Both polling and request frame may be received, or the AP may have to wait for a
timeout.

The second reason for the communication tasks’ not fitting to the periodic task model is
that their deadlines are much smaller than their periods. Consider, for example, the task of
reacting to a poll. Although the period of this task corresponds to one round length, the
deadline obviously does not, for the station must react to the polling frame much earlier
than just before receiving the next poll. In fact, it should response as soon as possible to
keep the idle time of the medium small. In the periodic task model, it is commonly as-
sumed that the relative deadlines of the tasks are equal to their periods and that all possible
completion times of a periodic task are equally well as long as they are not greater than the
deadline.

The communication tasks can be modeled as sporadic tasks. Despite not being constant,
the inter-arrival times of the communication tasks can be characterized by a lower bound.
Using this lower bound for acceptance testing would allow guaranteeing that all instances
of the tasks are completed by their deadline. However, we decided not to pursue this ap-
proach because we do not want to use worst-case inter-arrival times of the communication
tasks for acceptance testing. This would be in contrast to our general approach, which is to
avoid worst-case assumptions for parameters that are hard to predict.

Because of the above arguments, we decided to model the communication tasks as aperi-
odic, event-triggered tasks Ri, i ≥ 1. An aperiodic task Ri is characterized by its execution
time Ci and a relative deadline Di, and is hence represented as a tuple Ri = (Ci,Di), i ≥ 1.

120 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS

We assume that the execution times of the communication tasks are small and predictable.
Therefore, Ci is assumed to be a worst-case bound and significantly smaller than the
ECETs of the application tasks. The kth instance of an aperiodic task Ri is denoted as Ri,k
and called an aperiodic request. The release time of Ri,k is denoted as ri,k and its deadline as
di,k, where di,k := ri,k + Di. We assume that the relative deadlines are smaller than the inter-
arrival times of the requests.

Without resorting to a worst-case arrival pattern, it is not possible to guarantee that all ape-
riodic requests are completed by their deadlines, the known-execution-time assumption
notwithstanding. To achieve a predictable timing behavior in spite of this new kind of un-
predictability in the system load, two things have to be done. First, similar to the concept
of fault containment in TAFT, it must be ensured that the unpredictable load of aperiodic
requests does not compromise the predictability of the periodic tasks. This means that the
timely completion of correct jobs and exception handling guarantee must be preserved for
the periodic tasks, whatever the aperiodic load may be. Second, timely predictable execu-
tion of the aperiodic requests must be accomplished. That is, the execution of a request
should only be started if it will be completed by its deadline. This corresponds to the sys-
tem model underlying our communication protocols (see Chapter 4), which assumes that
the execution service of the stations is not subject to timing failures. Thus, we consider the
aperiodic tasks to be firm tasks for which a guarantee is provided on a per request basis.
This means that an acceptance test checks whether a newly arriving request can be com-
pleted in time. If so, the request is accepted; otherwise it is rejected.

Combining the existing model of periodic independent task pairs with the aperiodic task
model introduced above, we come to the following task model: The task set is the union of
a set of periodic task pairs {τi = (Ti,Ci,Ei) | i ∈ 1..n} and a set of aperiodic tasks {Ri =
(Ci,Di) | i ∈ 1..m}. The timing of the periodic task pairs is characterized by a three parame-
ters Ci, Ei, and Ti, where the former two represent the excepted-case execution time of the
main part and the worst-case execution time of the exception part respectively and the lat-
ter is the period. The relative deadlines of the instances are equal to the period. Analo-
gously to its definition for a set of period tasks, we define the utilization factor for a set of
periodic task pairs {τi = (Ti,Ci,Ei) | i ∈ 1..n} to be

∑
=

+=
n

i i

ii

T
ECU

1
: .

5.4.2 Scheduling Algorithms for Hybrid Task Sets

In this sub-section we consider existing algorithms for the scheduling of hybrid task sets,
which consist of periodic tasks with hard deadlines and aperiodic requests. We will focus
our discussion on works in the context of EDF scheduling for the following two reasons:

• The current implementation uses two earliest deadline scheduling algorithms: EDF
and EDL (earliest deadline as late as possible);

APERIODIC REQUESTS 121

• EDF, and EDL too, has a utilization-based schedulability criterion with an utiliza-
tion bound of 1. Basing the implementation on such an algorithm bears the poten-
tial to achieve a similarly high utilization factor.

The task model underlying the following algorithms deviates from ours. It models aperi-
odic requests as soft, rather than firm tasks. They are not characterized by a common
worst-case execution time or deadline either. Therefore, no acceptance test is performed
for the aperiodic requests; they are served on a best-effort basis, the goal being to minimize
their response times. Furthermore, the periodic jobs are instances of simple, hard tasks, not
task pairs of course. The implication of this latter difference will be discussed in Sub-
Section 5.4.3, where we introduce our approach. These differences notwithstanding, con-
sidering these works is still worthwhile because of the two major analogies with our
model: aperiodic requests must not compromise the guarantees given for periodic tasks and
should be completed as soon as possible. The presentation is based on (Stankovic et al.
1998), which gives a good survey of the field. We do not strive to give a complete over-
view here, but restrain ourselves to those algorithms relating to the scheduling algorithm
we present in the following sub-section (5.4.3). In what follows, conventional periodic
tasks are represented as τi = (Ti,Ci), where Ti is the period and Ci the worst-case execution
time, and the utilization factor of a set of periodic tasks {τi = (Ti,Ci) | i ∈ 1..n} is defined as

∑
=

=
i i

i

T
CU

1
: .

n

5.4.2.1 The Dynamic Priority Exchange (DPE) Server

The DPE server is a periodic server task that handles aperiodic requests; that is, aperiodic
requests are executed during the times allocated for the server task (Spuri and Buttazzo
1996). Without additional measures, the time allocated for the server task is assigned to the
other periodic tasks and is lost for the execution of aperiodic requests whenever no aperi-
odic request is waiting to be served when the server task becomes the highest priority task
in the pending queue. The basic idea of the DPE server is to let the server task exchange its
allocated executions times with lower priority periodic tasks if no aperiodic requests are
pending. This means that the lower priority tasks run at the priority of the server task until
the execution time allocated for the server has been consumed. When an aperiodic request
arrives afterwards, the allocated execution time is exchanged back to the server so that the
server can use it to execute the aperiodic request. Thus, the execution times allocated for
the server task are not lost if no aperiodic request is pending, but they are preserved to be
used later.

In more detail, the DPE server works as follows. So-called aperiodic capacities (or capaci-
ties, for short) are associated with all periodic tasks. Each capacity is assigned a priority
according to the deadline of the last released instance of the corresponding periodic task,
even if that instance has been completed already. In case a task and a capacity have the
same deadline, ties are broken in favor of capacities. Whenever an instance of the server
task is released, the corresponding capacity is set to the execution time allocated for the
server task; all other capacities are initially 0. When an aperiodic capacity Γ is the highest
priority entity ― task or capacity ― the scheduler chooses a task instance to execute in the
following priority order:

122 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS

1. A pending aperiodic request;

2. The periodic task instance with the shortest deadline;

3. The idle task.

The scheduler executes the selected task instance for at most Γ time units and subtracts the
time the instance was running from the capacity Γ. When a periodic instance runs under a
capacity for ∆t time units the capacity associated with that task increases by ∆t. So, if a
periodic instance runs under a capacity, this means that the capacity is exchanged and pre-
served in the system.

Figure 5-9. Example schedule of the DPE server (cf. (Stankovic et al. 1998 p. 171)).

Figure 5-9 shows an example schedule of the DPE server. In the depicted scenario, there
are two periodic tasks, τ1 = (8,2) and τ2 = (12,3), and a DPE server, DPE = (6,3). The bold
lines in the figure visualize the aperiodic capacities of the instances. At time 0, the highest
priority entity is the capacity of the DPE server. The scheduler executes the first instance
of τ1 (J1,1) and, for 1 time unit, the first instance of τ2 (J2,1) under that capacity. Accord-
ingly, both instances accrue a capacity themselves. The remaining 2 time units of J2,1 are
executed under the capacity of J1,1, which is now the highest priority entity. Thus, by time
5, J2,1 has accrued a capacity of 3, which at that time becomes the highest priority entity.
This capacity is exhausted by time 8 with executing the idle task, since there is neither an
aperiodic request nor a periodic task instance pending. So, the initial capacity of 3 time
units, which was preserved until time 5 is lost by time 8. At time 8, J1,2 is released and is
executed under the capacity of the DPE server; so J1,2 accrues a capacity of 2 time units
meanwhile. During times 10 to 12, the capacities of the server and of J1,2 are spent for the
idle task. When J2,2 is released at time 12, it is first executed for one time unit under the
capacity of J1,2 and then, for another time unit, under the capacity of the server. So it has a
total capacity of 2 time units when an aperiodic request is released at time 14. At that time
the highest priority entity is the capacity of the server. Therefore, the aperiodic request is
executed for 2 time units under that capacity and then, for another two time units, under
the capacity of J2,2. At that time (18), the capacity of the server is replenished so that there
are 3 further time units available to execute the request, which is sufficient to complete it.

APERIODIC REQUESTS 123

This example nicely shows, how the capacities initially allocated for the server task are
preserved by exchanging them with the periodic tasks.

5.4.2.2 The Earliest Deadline Late (EDL) Server

The EDL server is an optimal algorithm w.r.t the response times of aperiodic requests
(Spuri and Buttazzo 1996). It works as follows: As long as no aperiodic request is pending
the periodic tasks are executed according to EDF. When an aperiodic request arrives, say
at time t, the scheduler computes the idle times of an EDL schedule for the current job set
J(t). Under EDL scheduling, jobs still have priorities according to their deadlines, a
shorter deadline implying a higher priority, but tasks are executed as late as possible
(Chetto and Chetto 1989). The set J(t) comprises all periodic task instances active at time t
with their remaining allocated processing times ― their WCET minus the processing time
they already received ― and all future periodic instances within the same hyper period
with their WCET. The EDL server assigns the thus computed idle times to the aperiodic
request. Once the request has been completed, the scheduler returns to normal operation;
that is, it schedules the periodic instances according to EDF.

Figure 5-10 gives an example of how the EDL server works. Two periodic tasks have to be
scheduled, τ1 with a period of 6 and a WCET of 3, and τ2 with a period of 8 and a WCET
of 3. The instances of these tasks are scheduled with EDF until time 8 when an aperiodic
request arrives (light gray in the figure). At this time, the scheduler computes an EDL
schedule for the remaining periodic instances in the hyper period (represented by the
dashed boxes in the figure). For the current instance of τ1, only its remaining allocated
processing time of 1 is considered. The lowest graph in Figure 5-10 (a) depicts the idle
times of this schedule (denoted by the function ω(t)). Figure 5-10 (b) shows how the
scheduler proceeds after computing the EDL schedule. First, it executes the aperiodic re-
quest during the idle times of the EDL schedule. After two time units, at time 10, the ape-
riodic request is completed. Afterwards, it returns to EDF scheduling for the periodic in-
stances.

The optimality of this algorithm w.r.t the response times of the aperiodic requests stems
from a result presented in (Chetto and Chetto 1989). They show that for any time t, there is
no other scheduling algorithm providing more idle times during [0,t] than EDL. Thus, a
maximum of idle times is made available whenever an aperiodic request arrives. The main
problem with this algorithm is the time complexity of computing the idle times of the EDL
schedule. As this computation has a complexity of O(Nn), where n is the number of peri-
odic tasks and N is the number of instances within a hyper period, it may not be practically
feasible to use this approach (Stankovic et al. 1998). In particular, N may be quite large if
the tasks do not have harmonic periods. Hence, it is worthwhile looking for a scheduling
algorithm that comes close to the EDL server regarding response times of the aperiodic
requests, but incurs less overhead. The IPE server presented in the following clause is such
an algorithm.

124 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS

Figure 5-10. Example schedule for the EDL server

5.4.2.3 The Improved Priority Exchange (IPE) Server

The IPE server avoids the computational overhead of the EDL server, yet still achieves a
near optimal performance w.r.t the response times of aperiodic requests (Spuri and But-
tazzo 1996). It combines ideas from the DPE and the EDL server. In principle, it works
nearly the same way as the DPE server. What changes is the way in which the capacities of
the server task are replenished. While in the DPE server the initial capacities are replen-
ished periodically by some fixed amount of time allocated for the server task, the IPE
server uses the idle times of an EDL schedule of the periodic tasks to replenish the server
capacities. This means that whenever an idle time interval of the EDL schedule starts, a
capacity equal to the length of the idle time interval is added to the capacity of the server
task. As EDL maximizes those idle times (Chetto and Chetto 1989), it maximizes the ini-
tial capacities of the server tasks.

Exchanging capacities works the same way as in the DPE server. Capacities get priorities
according to their deadlines. The capacity of the server always has the highest priority. If a

APERIODIC REQUESTS 125

capacity is the highest priority entity, a task instance is selected for execution under the
capacity in the following order:

1. A pending aperiodic request;

2. The periodic task instance with the shortest deadline;

3. The idle task.

So, if no aperiodic request is pending, the capacity is exchanged with a periodic instance
so that it is preserved and can be used when an aperiodic request arrives later.

The IPE server has been shown to exhibit a performance, which is comparable to that of
the EDL server and hence nearly optimal w.r.t the response times of aperiodic requests
(Spuri and Buttazzo 1996). Furthermore, it feasibly schedules each periodic task set with a
processor utilization not greater than one. Expressed more formally, this means: For each
set T := {τj = (Tj,Cj) | j ∈ 1..n} of periodic tasks, the IPE server feasibly schedules T if and
only if

1:
1

≤=∑
=

n

i i

i

T
CU

The drawbacks of the IPE server as compared to the DPE server, or other periodic server
approaches, is that it is based on the idle times of an EDL schedule of the periodic task set,
which is computed offline. Storing the idle times incurs a certain memory overhead, in
particular if the periods of the periodic tasks are not harmonic. The current implementation
of TAFT (Becker and Gergeleit 2001,Becker et al. 2003), which is also based an EDL
schedule for a periodic task set (for the exception parts in this case), shows that using an
EDL schedule for the periodic tasks is a viable solution. We therefore decided to base our
implementation on the IPE server due to the advantages stated above.

5.4.3 Realizing TAFT with the IPE Server

In our discussion of existing scheduling algorithms for hybrid task sets, the IPE server
turned out to be a promising candidate for scheduling aperiodic requests together with pe-
riodic tasks. The main requirement for the scheduling algorithm to be used in the execution
service, however, is that it implements the TAFT concept. This means it must be able to
schedule task pairs and achieve a timely completion of correct jobs and exception han-
dling. In this sub-section, we therefore consider how the IPE server can be extended to
schedule periodic task pairs instead of conventional periodic tasks. We present the solution
in two steps. In the first step, we modify the IPE server such that it guarantees timely com-
pletion of correct jobs and exception handling for a set of periodic task pairs and hence
fulfills the basic requirement. In the second step, we extend this algorithm in order to allow
the scheduler to keep faulty main parts in its pending queue and complete them if possible;
that is, we enhance the performance of the algorithm w.r.t to the completion of faulty main
parts. After explaining both steps, we present a formal description of the resulting algo-
rithm, which is called TAFT-IPE. TAFT-IPE combines the following three advantages:

126 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS

• It guarantees timely completion of correct jobs and exception handling for each set
of periodic task pairs with a utilization factor not greater than one;

• It achieves a nearly optimal performance w.r.t to the response times of the commu-
nication tasks;

• It makes use of remaining processor idle times to complete faulty main parts.

5.4.3.1 The Basic Algorithm

We present here an extended version of the IPE server, called TAFT-IPE(basic), which is
able to schedule periodic task pairs. TAFT-IPE(basic) works as follows: Whenever an in-
stance Ji,k of task pair τi = (Ti,Ci,Ei) is released, the scheduler adds the main part MPi,k to
the pending queue and schedules it the same way as the IPE server schedules a conven-
tional periodic task. Scheduling the main part like a periodic task under the IPE server en-
sures that aperiodic requests cannot prevent it from getting up to the specified amount of
resources (Ci) by its deadline. However, while a conventional task never exceeds its speci-
fied resource demand, the main part MPi,k may do so. Therefore, TAFT-IPE(basic) per-
forms an accounting of the actual execution time of the main part. As soon as it is equal to
the specified resource demand Ci, the scheduler aborts the main part and continues with the
execution of the exception part EPi,k instead. The exception part too is scheduled in the
same way as the IPE server would schedule a conventional periodic task. Again, schedul-
ing the exception part like a periodic task under the IPE server ensures that aperiodic re-
quests cannot prevent the exception part’s getting up to the specified amount of resources
(Ei) by its deadline.

In this algorithm, the amount of resources assigned to any job Ji,k is limited by Ci' := Ci +
Ei. Therefore, the resources consumed by a task pair τi = (Ti,Ci,Ei) under this algorithm can
be represented by a virtual periodic task τ'i with a specified resource demand of Ci' and a
period Ti' = Ti. If the IPE server is able to complete each instance of τ'i by its deadline, this
means TAFT-IPE(basic) is able to allocate up to Ci + Ei time units to each instance of τi by
the deadline of that instance. Therefore, TAFT-IPE(basic) is able to complete MPi,k as long
as it has an actual execution time not greater than Ci. If this is not the case, TAFT-
IPE(basic) is still able complete EPi,k by its deadline using the remaining specified re-
source demand. Therefore, TAFT-IPE(basic) guarantees a timely completion of correct
jobs and exception handling for a set of periodic task pairs T := {τj | j ∈ 1..n} whenever
the IPE server feasibly schedules the corresponding set T ' := {τj' | j ∈ 1..n} of virtual peri-
odic tasks. Together with the IPE schedulability criterion presented in Clause 5.4.2.3, this
implies that TAFT-IPE(basic) achieves a timely completion of correct jobs and exception
handling for a set T := {τj | j ∈ 1..n} of periodic task pairs as long as

1
1

≤
+

=∑
=

n

i i

ii

T
EC

U .

We do not prove this conclusion here; a prove will be provided for the complete TAFT-
IPE algorithm in Sub-Section 5.4.4.

APERIODIC REQUESTS 127

TAFT-IPE(basic) aborts main parts directly after they consumed their specified resource
demand Ci although there may still be a chance to complete them in time. The current im-
plementation of TAFT exploits remaining processor idle times to try to complete faulty
main parts. Since this feature increases the reliability of task execution, we strive to pre-
serve it while extending the supported task model. In the following clause, we show how
the basic algorithm can be extended for this purpose.

5.4.3.2 Executing Faulty Main Parts

Our objective in extending TAFT-IPE(basic) is to use remaining processor idle times to
complete faulty main parts instead of aborting them directly. According to the TAFT con-
cept, faulty main parts are scheduled on a priority level lower than that of the correct main
and exception parts, so as to ensure that the guarantees provided to the latter are not com-
promised by the faulty main parts; that is, to provide fault containment. Our approach to
achieve this is inspired by the following observation: The way aperiodic requests are han-
dled by aperiodic servers is analogous to the lower level of priority of faulty main parts in
TAFT: Aperiodic servers try to complete the aperiodic requests, but only as long as the
guarantees provided to periodic tasks are not compromised. So, the fact that faulty main
parts are scheduled on a lower priority level than correct main parts and exception parts in
TAFT can be mapped to the distinction between aperiodic requests and periodic instances
in the server approaches. Therefore, the basic idea of the extension is mapping faulty main
parts to aperiodic requests.

TAFT-IPE(basic) is extended in the following way: Each time a main part has been exe-
cuted for Ci time units and is still not completed, the scheduler turns it into an aperiodic
request instead of aborting it directly. At the same time, the scheduler adds the exception
part to the pending queue. So, a main part’s getting faulty corresponds to the arrival of an
aperiodic request, while executing the exception part corresponds to continuing the execu-
tion of the virtual periodic task. Correct main parts and exception parts are conceptually
scheduled on a higher priority level: For both, guarantees are provided, while the faulty
main parts are served on a best-effort basis. In particular, this means that the exception part
of the faulty task pair is guaranteed to be completed by its deadline unless the faulty main
part is completed. Nevertheless, like the IPE server defers executing periodic instances to
improve responsiveness of aperiodic requests, TAFT-IPE defers the execution of exception
parts to serve the faulty main parts first. So, the scheduler first tries to complete the faulty
main parts and executes the exception handling only if required. If the scheduler is able to
complete the faulty main part, it removes the exception part from the pending queue. De-
ferring the execution of the exception parts does not compromise the guaranteed exception
handling: As soon as there are no more aperiodic capacities available, the scheduler will
stop executing faulty main parts. Therefore, as soon as further delaying the execution of
the exception part would result in the exception part’s missing its deadline, the scheduler
starts executing it. In this case, the faulty main part is removed from the pending queue;
that is, the main part is aborted.

In spite of the analogy between handling faulty main parts in TAFT and handling aperiodic
requests in the IPE server, there are also the following differences:

1. In the IPE server, delaying the execution of a periodic instance does not impact its
chance of being completed because its WCET is known and it is completed by its

128 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS

deadline in any case. While this is also the case for the exception parts in TAFT-
IPE, it is not for the main parts. Here, delaying the execution of a main part means
reducing its chance of being completed if it should become faulty.

2. While responsiveness is the main issue for aperiodic requests in the IPE server, it is
not per se an issue for the execution of faulty main parts. For them, early execution
is only an advantage if it increases the probability of being completed.

Together, points 1. and 2. raise the question whether it is reasonable to defer the execution
of a correct main part in order to execute aperiodic requests. Deferring the exception parts
is not a problem since it does not affect their probability of being completed; rather, they
are guaranteed to be completed whether deferred or not.

In answering this question, we must distinguish between communication tasks and faulty
main parts, which are both scheduled as aperiodic requests. We deem it reasonable to defer
the execution of correct main parts in order to execute communication tasks. For one thing,
communication tasks have small execution times, so they do not delay the execution of the
main parts too much. Furthermore, they have strong response time requirements, which
warrant their early execution. Therefore, if a capacity is available, communication tasks
have the highest priority in using it.

Things are not as clear regarding the execution of faulty main parts. Deferring correct main
parts to execute a faulty one allows the first faulty main part to consume all available ca-
pacities. Thus, if one of the deferred main parts becomes faulty also, there may be no more
capacities available so that it may have to be aborted. Therefore, the first faulty main part
would have the best chance to be completed, and furthermore, it would reduce the chance
of the following ones. For these reasons, it seems fairer to delay the execution of faulty
main parts and execute the correct ones first. Besides increasing the fairness, this keeps the
capacities longer in the system, which is of advantage when instance of a communication
task arrive. On the other hand, faulty main parts have deadlines. Sooner or later, a faulty
main part will be aborted by the corresponding exception part. Always favoring correct
main parts may delay the execution of faulty ones until the moment at which the corre-
sponding exception part is started.

Summarizing the discussion above, the following three points can be settled:

• Deferring exception parts is not a problem since they are completed at any rate if
required. Therefore, they are never executed under a capacity.

• If a communication task is pending, it is run under the capacity.

• Amongst several faulty main parts, priorities are assigned according to deadlines.

The question remains whether a faulty or a correct main part should be executed under a
capacity if both kinds of instances are pending. Two strategies appear to be plausible:

1. Allocate the capacities to the main part with the shortest deadline, whether it is
faulty or not; ties are broken in favor of correct main parts. This means that dead-
lines are the first criterion and the distinction between correct and faulty main parts
is the second.

APERIODIC REQUESTS 129

2. Allocate the capacities to a correct main part; among the correct main parts, priori-
ties are assigned based on deadlines. This means that the distinction between faulty
and correct main parts is the first criterion and the deadlines are the second.

Both strategies are possible and easily implemented; the first gives focus on trying to com-
plete faulty main parts and not wasting capacities, while the latter stresses fairness. We
decided to apply the first approach, because it works better for task having precedence
constraints. In a pair of jobs with a precedence constraint, the successor cannot be started
before the predecessor is terminated. Therefore, if the predecessor becomes faulty, it is not
possible to execute the successor first and then try to complete the faulty predecessor. Fur-
thermore, using deadlines as the first criterion allows using a simple approach to enforce
precedence amongst tasks, as we shall explain in Section 5.5.

5.4.3.3 Formal Description of TAFT-IPE

We now present a formal description of TAFT-IPE. For this purpose, we use an SDL-like
syntax enhanced by some common mathematical notions to keep the description simple. At
the heart of the description is the procedure schedule, which determines the task instance
to be executed (cur_task). It is assumed that when schedule returns, the task referenced by
cur_task is dispatched on the CPU. We assume that a set {τi = (Ti,Ci,Ei) | i ∈ 1..n} of peri-
odic task pairs has been accepted and an EDL schedule for this set been computed offline.
The acceptance criterion for the task pairs will be presented in Sub-Section 5.4.4. Two
vectors describe the idle times of the EDL schedule for a single hyper period of length H
:= lcm({Ti | i ∈ 1..n})6: The vector = (e0,e1,…ep) denotes the starting times of the idle time
intervals, whereas the vector ∆ = (∆0,∆1,…,∆p) denotes their lengths, where p is the number
of idle times in the hyper period. As EDL schedules are cyclic, these two vectors are suffi-
cient to describe all idle times in the whole schedule. We use the following notions in the
formal description:

• Γ S: the capacity of the server; for i ∈ 1..n, Γi is the capacity associated with τi; and
C := {ΓS} ∪ {Γi | i ∈ 1..n} is the set of all capacities;

• periodics, comms, aperiodics: the set of ready instances of correct main and excep-
tion parts, communication tasks, and faulty main parts respectively waiting to be
executed;

• cur_ent: a reference to the current entity (task or capacity);

• cur_task: a reference to the currently running task;

• ed(S): returns the entity with the shortest deadline in a set S of entities. Each capac-
ity Γi > 0 is assigned a deadline di,k during [ri,k,di.k], where ri,k and di.k are the release
time and deadline of the kth instance of τi. Ties are broken in the following order:

6 “lcm” denotes the least common multiple of a set of numbers.

130 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS

capacity, correct main part, faulty main part, and exception part. When S is empty,
the function returns the idle task;

• remi: the remaining allocated execution time of the current instance MPi,k of τi’s
main part; it represents the difference between the specified execution time Ci and
the processing time already assigned to MPi,k. When remi = 0 and MPi,k is not com-
pleted it has become faulty;

• cur_rem: remaining execution time of the current entity cur_ent. If cur_ent is a ca-
pacity, cur_rem corresponds to the value of that capacity;

• rnext: the next time at which a periodic instance will be released;

• request: a signal arriving in the scheduler whenever an instance of a communica-
tion task is released;

• completed: a signal arriving in the scheduler whenever an instance completes;

• accept: the acceptance test for instances of the communication tasks, which will be
presented in Sub-Section 5.4.4;

• dispatch_time: the time when the current task was dispatched to the CPU;

• sched_timer: the scheduling timer;

• now: the current clock time;

We organized the explanation of the formal description according the different themes of
the algorithms:

Maintaining Capacities. During the start transition all capacities are initially set to zero
(lines 2-3). The server capacity ΓS is replenished whenever an idle time of the underlying
EDL schedule starts (lines 13-14). Each such point of time coincides with the release time
of a task instance. To replenish the server capacity, the length of the idle time is added to
the server capacity. Whenever some instance has been executing under a capacity for ∆t
time units, the capacity is reduced by that amount of time during the accounting (line 62-
63). If it was an instance of a main part, the capacity associated with that main part is in-
creased accordingly (line 64-65). This means that the capacity is exchanged from cur_ent
to Γi.

Monitoring the execution of main parts. Whenever a main part is released, the remaining
execution time remi is initialized with the resource demand specified for that main part
(line 10). The scheduler uses this variable to detect when a main part becomes faulty. All
execution times of the main part are subtracted from the remaining execution time during
the accounting (line 67-68). When remi reaches zero, the main part is converted into an
aperiodic request and the exception part EPi is added to the pending queue (lines 69-73).
Before a main part is dispatched to the CPU, the scheduling timer is set to ensure that the
execution of the main part is interrupted when the remaining execution time has been con-
sumed (lines 42-43 and 48).

APERIODIC REQUESTS 131

Figure 5-11. Formal description of the TAFT-IPE algorithm (part 1)

132 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS

Figure 5-12. Formal description of the TAFT-IPE algorithm (part 2)

Scheduling. Deciding which task to execute is performed in two steps. First, the set of ca-
pacities and periodic instances is considered, and the highest priority entity is chosen as the
current entity (lines 34-35). If this entity is a task instance, it is selected for execution
(lines 40-44). Otherwise, it is a capacity and a task has to be selected to run under this ca-
pacity (lines 36-39). If a communication task is pending, it is selected. Else, the instance
with the shortest deadline is chosen. This means that regarding execution under a capacity,
the highest priority is given to the communication tasks. Among correct and faulty main
parts with a common deadline, ties are broken in favor of correct ones for fairness reasons.
If a main part and an exception part have the same deadline ties are broken in favor of the
main part in order to increase the probability that the main part can be completed by its
deadline. In fact, the exception part will not be executed under a capacity because each
exception part is released together with an aperiodic request (the faulty main part) having
the same deadline. So, the scheduler defers executing the exception part and tries to com-
plete the main part first. If a faulty main part can be completed, the exception part is re-
moved from the pending queue (lines 27-28). If, however, the scheduler starts executing
the exception part, it aborts the main part (line 45-46).

Reclaiming Resources. To have even more capacities for executing aperiodic requests, we
use a mechanism that converts resources that have been allocated for main parts and
exception parts, but have not been used into aperiodic capacities. So, resources of main
parts that do not need the full Ci and of exception parts that are not executed can be used to
execute aperiodic requests. When a main part is completed, its remaining execution time
and the time allocated for the corresponding exception part are transferred to its aperiodic
capacity (line 26). This mechanism for reclaiming resources nearly adds no overhead to the
scheduler.

APERIODIC REQUESTS 133

Figure 5-13 Example of a TAFT-IPE schedule

Figure 5-13 shows an example of a TAFT-IPE schedule. The example contains two peri-
odic task pairs τ1 := (6,3,1) and τ2 := (24,4,1) and a communication task R1 := (1,3). From
top to bottom, the graphs depict the idle times of the underlying EDL schedule (ωEDL), the
capacity of the IPE server (ΓS), and the states and capacities of both tasks. In the example,
the execution times of the exception parts and of the communication task are not that much
shorter than the execution time of the main parts as we suppose they would be in reality;
yet, we decided not to make them to small so that the figure remains easy to comprehend.
The actual required execution times of the periodic task instance are assumed to be C1,1 =
4, C1,2 = 3, C1,3 = 4, C1,4 = 5, and C2,1 = 7. At the start, the initial capacity ΓS = 2 is the
highest priority entity and the task with the shortest deadline (τ1) is selected to run under
that capacity, meanwhile accruing a capacity Γ1. At time 2, ΓS is exhausted and Γ1 be-
comes the highest priority entity. Task τ1 runs under that capacity until time 3 when it be-
comes faulty and is turned into an aperiodic request. This request is selected for execution

134 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS

under the capacity, for it is the task instance with the shortest deadline. At time 4, it is
completed and the time allocated for its exception part is added to Γ1, which is still the
highest priority entity. Task τ2 runs under that capacity until time 6 and accrues a capacity
Γ2 = 2. At time 6, the server capacity ΓS is replenished, another instance of τ1 is released,
and an instance of the communication task arrives. ΓS is the highest priority entity at that
time, and according to our policy, the communication task is selected to run under that
capacity. So, by time 7, ΓS is exhausted and the communication task completed. Now, the
highest priority entity is τ1, which is executed consequently. When τ1 is completed at time
10, the time allocated for its exception part is added to capacity Γ1, which at once becomes
the highest priority entity. The execution of τ2 is continued for 1 time unit under Γ1 so that
Γ2 increases to 3. From time 11 to 12, Γ2 is the highest priority entity and τ2 is executed
under it until it becomes faulty. At the same time, the next instance of τ1 is released. This
instance is now the highest priority entity and is executed until time 15, when it becomes
faulty. Its exception part, which is added to the pending queue at that moment, immedi-
ately becomes the highest priority entity and is executed accordingly. After the exception
part is completed, Γ2 becomes the highest priority entity again. The only pending task in-
stance is the faulty main part of τ2, which is executed under the capacity until time 17. At
that time, the next instance of τ1 is released and another aperiodic request arrives. As Γ2 is
still the highest priority entity, the aperiodic request is executed under it and completed by
time 19. After Γ2’s being exhausted, τ1 is selected for execution. At time 22, when it be-
comes faulty, its exception part is added to the pending and immediately executed. After
the exception part is completed, the exception part of τ2 is run.

This example illustrates how the mechanism of priority exchange allows preserving the
capacities in the system: The last time a new capacity is added is at time10, when τ1 is
completed and the time allocated for the execution of its exception part is turned into a
capacity. The capacities are still available from time 16 to 18 to execute the faulty main
part of τ1 and at time 18 to execute the communication task. This instance of the communi-
cation task is served immediately, even though the last capacity was added at time 10. Ac-
tually, the last replenishment of the server capacity occurred even earlier at time 6.

5.4.4 Acceptance Test

In this sub-section we provide acceptance tests for both periodic task pairs and aperiodic
requests. For periodic task pairs, acceptance testing is performed offline for the whole task
set. For aperiodic requests, acceptance testing is performed online on a per instance basis.

5.4.4.1 Acceptance Test for Periodic Task Pairs

Lemma 5-1 TAFT-IPE guarantees timely completion of correct jobs and exception han-
dling for a set T := {τi = (Ti,Ci,Ei) | i ∈ 1..n} of periodic task pairs if the set
T ' := {τ'i := (Ti,Ci + Ei) | i ∈ 1..n} is schedulable with the IPE server.

Proof. Let T := {τi = (Ti,Ci,Ei) | i ∈ 1..n} be an arbitrary set of periodic task pairs for
which the IPE server feasibly schedules T ' := {τ'i := (Ti,Ci + Ei) | i ∈ 1..n}, and let

APERIODIC REQUESTS 135

{Ji,k | i ∈ 1..n, k ≥ 1} be an arbitrary set of instances of the task pairs in T. We define for
each i ∈ 1..n and k ≥ 1 a job J'i,k that has the same release time and deadline as Ji,k and an
actual execution time C'i,k defined as follows:

>+
≤

=
ikikii

ikiki
ki CCEC

CCC
C

,,

,,
, ,

,
:' ,

where Ci,k > 0 and Ei,k > 0 are the actual execution times of the main part and exception
part of Ji,k respectively. Since for all J'i,k, C'i,k ≤ Ci + Ei, they can be considered as the in-
stances of the tasks τ'i ∈ T '. Hence, the IPE server feasibly schedules the job set {J'i,k | i ∈
1..n, k ≥ 1} for any additional load of aperiodic requests. Let σ' denote the schedule that
the IPE server produces for that job set and σ be the schedule produced by TAFT-IPE,
both for the same aperiodic load. We show that σ meets each of the three conditions of
Definition 5-1.

First, note that at the same time when EPi,k is added to the pending queue, MPi,k is turned
into an aperiodic request (lines 70-72) so that throughout the ready time of Ji,k exactly one
of both is part of the pending queue as a periodic instance. As furthermore Ji,k and J'i,k have
the same release time and deadline by construction, it follows that MPP

i,k (denoting MPi,k
as long as it is periodic) and EPi,k get as much resources in σ as J'i,k in σ', and get them by
the same time as well. Actually, since we do not generally give highest priority to aperi-
odic requests under capacities, periodic instances may be served even earlier in σ than in
σ'. Therefore we state that for each time t prior to the completion of either EPi,k or MPi,k

cσ(MPP
i,k,t) + cσ(EPi,k,t) ≥ cσ'(J'i,k,t) (1)

where for a schedule σ an entity e and a time t, cσ(e,t) denotes the time allocated to e in σ
by time t. Furthermore, since EPi,k is inserted into the pending queue and MPi,k turned into
an aperiodic request immediately after running MPi,k for Ci, we observe that

∀ t cσ(MPP
i,k,t) + cσ(EPi,k,t) ≥ Ci ⇒ cσ(MPP

i,k,t) = Ci (2)

For each instance Ji,k, we distinguish two cases:

1. Ci,k ≤ Ci. It follows that C'i,k = Ci,k. Due to the feasibility of σ', ∃ t ≤ di,k : cσ'(J'i,k,t) =
C'i,k. Together with (1) and (2), this implies that MPi,k completes no later than t in
σ. Furthermore, this implies that EPi,k is never put into the pending queue. So, the
conditions (1) – (3) of Definition 5-1 are fulfilled.

2. Ci,k > Ci. It follows that C'i,k > Ci. Due to the feasibility of σ', ∃ t ≤ di,k: cσ'(J'i,k,t) =
Ci. Together with (1) and (2), this implies that ∃ t' ≤ t: cσ(MPi,k,t') = Ci. At t', MPi,k is
turned into an aperiodic request and EPi,k is added to the pending queue. Due to the
feasibility of σ', there is a first time t'' < di,k: cσ'(J'i,k,t) > Ci. Due to (1) and (2), ∃ t+ ≤
t'' such that either MPi,k is completed before t+ or cσ(EPi,k,t+) > 0.

a. In the first case, MPi,k is completed before t+ < t'' < di,k. Furthermore, at that
time, EPi,k is removed from the pending queue, so that ∀ x > t+: not run-
ning(EPi,k,x).

136 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS

b. In the second case, t+ is the start time of EPi,k. Since MPi,k is aborted when EPi,k
starts running, it follows that not completes(MPi,k) and ∀ x > t+: not run-
ning(MPi,k, x). Furthermore, due to the feasibility of σ', ∃ t* ≤ di,k : cσ'(J'i,k,t*) =
C'i,k = Ci + Ei,k, which together with (1) and (2) implies that EPi,k is completed
by t*.

In both cases, a. and b., the condition (1) – (3) of Definition 5-1 are fulfilled.

Theorem 5-2 TAFT-IPE guarantees timely completion of correct jobs and exception han-
dling for a set T := {τi = (Ti,Ci,Ei) | i ∈ 1..n} of periodic task pairs if the utilization factor

1:
1

≤+=∑
=

n

i i

ii

T
ECU .

Proof The theorem is a direct implication of Lemma 5-1 and the schedulability condition
of the IPE server (Stankovic et al. 1998 p. 189).

5.4.4.2 Acceptance Test for Aperiodic Requests

The acceptance test is performed for each instance of a communication task to provide
predictability on a per request basis. After passing the acceptance test, a request is guaran-
teed to be completed by its deadline; requests that do not pass the acceptance test are not
executed. This ensures that the execution service does not exhibit timing failures, thus
meeting the assumptions of our system model (cf. Section 4.2).

As the acceptance test is performed for every instance of a communication task it must be
efficient. Therefore, instead of devising a complex exact test, we provide a sequence of
simple sufficient criteria. These criteria are evaluated in order of increasing complexity. As
soon as the first sufficient criterion is true, the request is accepted. If none of the criteria
evaluates to true, the request must be rejected, since its timely completion cannot be guar-
anteed based on the acceptance test.

In the presentation of the criteria, C and D are the worst-case execution time and relative
deadline of the request respectively, and d := t + D is its absolute deadline, where t is the
time at which the test is performed. Each of the following tests decrements the value of C.
They require that C after being decrementing is less than or equal to zero, which means
that there are sufficient capacities in the system to complete the request by its deadline.

1. If the current entity 'cur_ent' is a capacity Γ and C – min(Γ,rnext – t) ≤ 0;

If the current entity is a capacity, it is allocated to the request, at least until either
the next task instance is released (rnext – t) or the capacity is exhausted (Γ).

PRECEDENCE CONSTRAINTS 137

2. C'1 := C – ΓS ≤ 0;

If the server has a capacity at time t, it can be allocated to the request immediately.

3. C'2 := C'1 – ∑ ≤
Γdd i

i
≤ 0 , where di is the deadline associated with Γi;

All capacities with deadlines not greater than d can be allocated to the request.

4. C'3 := C'2 –∑ <+<
−−∆deHt ii

i
eHd')',min(≤ 0, where HtHH /:' = is the starting

time of the current hyper period;

The request can use all server capacity replenishments that take place during [t,d],
but only during [,d], where is the time at which the replenishment oc-
curs.

ieH +' ieH +'

In the actual implementation, rather than computing the sum first and then subtracting it
from C, it is better to iteratively decrement C and stop as soon as the criterion is verified.
As we assume that C is small as compared to the execution times and periods of the peri-
odic tasks, we suppose that one of the first criteria will yield a decision in many cases.

A practical approach to increase the probability that a request can be accepted is to give
the communication tasks a higher priority than the main parts, but a lower priority than the
exception parts. This means that the communication tasks can run not only under capaci-
ties, but also during the times allocated for the main parts. The price to be paid for this
improvement is losing the guarantee that main parts are completed as long as they do not
exceed their specified resource demand. This may be acceptable for certain applications for
the following reasons:

• The fact that main parts may not be completed does not raise a new systematic
problem, but is already part of the underlying concept. So, the suggested approach
has mainly a quantitative impact in that it reduces the probability that main parts
are completed. In particular, a timely completion of the exception parts would still
be guaranteed.

• The execution times of the communication tasks are small as compared to those of
the application tasks. Hence, even if the same main part is preempted several times,
this will not lead to a significant reduction of its allocated execution time. There-
fore, the mentioned quantitative impact appears to be limited.

5.5 Precedence Constraints

In our sensor fusion scenario (Section 3.2), the processing of the sensor data is structured
as a pipeline of filtering stages. We believe this will be frequently the case for applications
dealing with complex sensor data, like scan or images. The tasks executing the stages of
such a pipeline are subject to precedence constraints, which means that a successor stage
must not start executing before its predecessor has delivered its results. For example, in the

138 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS

sensor fusion, the element filter should not start executing before the object filter has de-
livered its results. The whole pipeline has a common period and deadline by which the
final stage of the pipeline must have been finished and deliver its results.

One may question why not realizing all the stages in a single task, thus eliminating the
dependencies from the task set. To understand why this is not appropriate for the kind of
processing we consider, imagine that one of the first processing stages required signifi-
cantly more execution time than was expected. It would consume the resources actually
meant to execute its successor stages, and the scheduler would have no chance to prevent it
from doing so. In the end, when the execution time allocated to the whole pipeline is con-
sumed, processing may not have proceeded to the final stage so that no result may be
available. Structuring the pipeline as a sequence of task pair’s, the expected-case execution
time of the pipeline is distributed among the stages. TAFT ensures that each stage, from
the first to the last, gets at least its allocated ECET. Thus, an intermediate stage requiring
more than the allocated resources cannot “steal” the execution times allocated for the other
stages in the pipeline.

In what follows, precedence constraints can be accommodated in TAFT-IPE. At first, we
explain how precedence constraints are modeled and then show how task pairs with prece-
dence constraints are scheduled.

5.5.1 Model

To model sets of task pairs with precedence constraints, we adapt a model presented in
(Stankovic et al. 1998). We model the precedence constraints between instances of task
pairs as an ordering relation ≺ on the set of instances, where for two task pair instances I

and J, I ≺ J means that I must be finished before J is started. The conditions that a sched-
ule must fulfill to be compliant with a precedence constraint are formalized in the follow-
ing definition.

Definition 5-2. A schedule σ for a set I of task pair instances is compliant with the prece-

dence constraint ≺ ⊆ I × I if and only if for any two instances Ji, Jj ∈ I, Ji ≺ Jj ⇒ fσ(Ji) <
sσ(Jj), where fσ(Ji) is the last point of time t at which runningσ(MPi,t) or runningσ(EPi,t),
and sσ(Jj) is the first point of time t at which runningσ(MPj,t) or runningσ(EPj,t)

A pipeline Pi is modeled as a 3-tuple Pi = (Ti,≺i,Ti), where Ti is a set of periodic task pairs

{τi,j = (Ti,Ci,j,Ei,j)}, ≺i a total order on Ti, and Ti the period of Pi. This means that

• At each time t = (k-1)Ti, k ≥ 1, and for each task τi,j in Ti, an instance τi,j,k is re-
leased;

• The instances must be executed according to ≺'i := {(Ji,l,k,Ji,m,k) | k ≥ 1, τi,l ≺i τ i,m};

• All instances must finish by kTi.

PRECEDENCE CONSTRAINTS 139

Definition 5-3. A schedule σ for a set of n pipelines {Pi = (Ti,≺i,Ti) | i ∈ 1..n} is compliant

with ≺i, i ∈ 1..n, if it is compliant with the precedence constraint

≺' := {(Ji,l,k, Ji,m,k) | i ∈ 1..n, τi,l ≺i τi,m, k ≥ 1}.

5.5.2 Extending TAFT-IPE

To ensure that TAFT-IPE produces schedules that are compliant with the precedence con-
straint of a pipeline Pi, we assign priorities to the tasks of that pipeline according to the
relation ≺i; that is, the highest priority is assigned to the first and the lowest priority to the

last task w.r.t ≺i. These priorities are pipeline internal in that they are used only to dis-
criminate between tasks belonging to the same pipeline. In TAFT-IPE, the pipeline-
internal priorities impact how the highest priority entity and the task instance to run under
a capacity are determined. For both, the pipeline-internal priorities of the instances are
added as last criterion. As all pending task instances belonging to the same pipeline Pi
have the same deadline, this ensures that among these instances, the first instance w.r.t ≺i
takes precedence over all its successors. The schedulability for the resulting, modified
TAFT-IPE is stated in the following theorem:

Theorem 5-3. For a given set {Pi = (Ti,≺i,Ti) | i ∈ 1..n} of pipelines, TAFT-IPE produces

a schedule σ that is compliant with ≺i, i ∈ 1..n, and achieves timely completion of correct
jobs and exception handling if

∑
=

≤
n

i i

i

T
C

1

1, where ∑
∈

+=
ij

jijii EC
Tτ

,,C

Proof Neglecting the precedence constraints, TAFT-IPE produces a schedule that achieves
timely completion of correct jobs and exception handling if the above condition holds be-
cause

∑∑ ∑
== ∈

≤=
+

=
n

i i

i
n

i i

jiji

T
C

T
EC

U
ji 11

,, 1
i, Tτ

 .

Let σ' be this schedule. The schedule σ' can be transformed into the schedule σ produced
by TAFT-IPE with precedence constraints by just exchanging the execution times of re-
leased instances having the same deadline. Note furthermore, that the suggested priority
assignment does not effect the ordering of the main and exception part of a single task pair.
Hence, the resulting schedule still guarantees completion of correct jobs and exception
handling. It remains to show that σ is compliant with the precedence constraint. Consider
two instances Ji,l,k ≺' Ji,m,k. At their release time, the main parts MPi,l,k and MPi,m,k of both
instances are added to the pending queue for periodic instances. Since both have the same
deadline, and MPi,l,k has the higher pipeline-internal priority, MPi,m,k is not started as long

140 TASK SCHEDULING FOR MOBILE COOPERATIVE APPLICATIONS

as MPi,l,k is in the pending queue for periodic instances. If the scheduler removes MPi,l,k
from this queue, this has one of the following reasons:

1. MPi,l,k completed. In this case, the finishing time of Ji,l,k is smaller than the starting
time of Ji,m,k, and the constraint is fulfilled.

2. MPi,l,k became faulty. In this case, the exception part EPi,l,k of Ji,l,k is added to the
pending queue for periodic instances. Following the same reasoning as above,
MPi,m,k is not executed as long as EPi,l,k is pending. When EPi,l,k is removed from
the pending queue, it follows that either EPi,l,k or the faulty main part MPi,l,k com-
pleted. In both cases, the finishing time of Ji,l,k is smaller than the starting time of
Ji,m,k and the constraint is fulfilled.

Actually, the algorithm can handle more general precedence relations than just total orders,
but for the time being, we focus on those kinds of precedence constraints which are re-
quired to model the kind of pipelined processing we have in mind. Furthermore, it is possi-
ble to transform the combined deadline- and priority-based scheduling back to a pure dead-
line-based scheduling (Stankovic et al. 1998).

6 Prototypes and Implementations

In this chapter, we present the prototypes of our two application scenarios. The first is a
prototype of the shared spatial resource scenario and is intended to show the viability of
our approach to the coordination of mobile embedded system. Furthermore, it allows gain-
ing some first indications about the response times that can be achieved using the commu-
nication services of the middleware. The second is a prototype of the distributed sensor
fusion scenario. As compared to the first prototype, it has the more demanding CPU load
and hence was used to show the viability of our approach to the provision QoS in dynamic
environments. It allows applying and evaluating TAFT in a real application, which exhibits
unpredictable execution times and several kinds of application-inherent redundancy. Fi-
nally, we present a modular implementation of the communication hardcore, which allows
configuring protocol stacks at compile time. With this implementation, we want to show
that the concept of modularity, which guided our architectural design and formal modeling,
can be transformed into a modular, yet highly performant implementation.

6.1 Prototype of the Shared Spatial Resources Scenario

In order to demonstrate the viability of our approach to the coordination of mobile systems
in a real application, we build up an application prototype of the shared spatial resources
scenario (Nett and Schemmer 2003b). In this prototype, a group of mobile robots coordi-
nate their speeds at a shared resource based on the common views the middleware provides
and on a scheduling function that each robot computes locally. Furthermore, the prototype
allows measuring the response times of a cooperative application that uses the communica-
tion services of the middleware under realistic traffic patterns and assessing the results
against the timing constraints the prototype imposes.

6.1.1 Description of the Prototype

The application prototype was realized according the application architecture presented in
Chapter 3. In the prototype, a group of mobile robots uses the communication services of

 141

142 PROTOTYPES AND IMPLEMENTATIONS

the middleware to coordinate their access to a shared spatial resource. The robots are driv-
ing along traces that form two overlapping loops (see Figure 6-1). The front part of the
intersection of the two loops represents the hot spot. The length of the hot spot was chosen
in such a way that a given safety distance was maintained between the robots. This setup
corresponds to the model described in Section 3.1; we only placed one of the loops inside
the other to use the space available in our laboratory more efficiently. On each loop, there
is an approaching zone starting at a certain distance in front of the hot spot. Robots detect
their entering an approaching zone through markings. When a robot passes a marking, it
calls the Event Service to trigger a global rescheduling of the shared resource. As parame-
ters of the call, it provides its current position and velocity to the Event Service. The Event
Service propagates the event to all robots that are approaching the hot spot plus the single
robot possibly located within it. Associated with the event, the Event Service delivers the
global state, which consists of the positions and velocities of all the robots w.r.t the same
point of time. Upon delivery of the event, the robots compute the scheduling function
based on the global state.

Figure 6-1. Picture of the application prototype

The prototype demonstrates the feasibility of our approach to the coordination of mobile
systems. There are no interactions between the robots on the application level. Rather, the
schedule for the hot spot is computed locally at each robot as a function of the global state.
In designing this scheduling function, we were able to concentrate on the application-
specific optimization objectives, such as achieving a smooth driving of the robots and high
utilization of the hot spot. The concrete scheduling function we used was presented in
(Schemmer and Nett 2001). Still, the robots demonstrate a coordinated behavior at the hot

PROTOTYPE OF THE SHARED SPATIAL RESOURCES SCENARIO 143

spot. During extended experiments with the prototype, the mobile systems passed the hot
spot without collisions by adapting their speeds in the approaching zones.

6.1.2 Measurements

We measured the end-to-end response times of the application architecture; this is to say,
the time that elapses from the moment in which a marking has been detected to the mo-
ment in which the new schedule has been computed. To measure the response times, a ro-
bot takes a timestamp when it detects a marking and a second timestamp when it has com-
puted the new schedule. The difference of the two timestamps yields the response time.
Figure 6-2 shows the results of our measurements. The response times have been measured
in a group of three mobile robots equipped with PC104 computers (AMD K6-266, Win-
dows NT) and connected by an IEEE 802.11 Standard wireless LAN (2 Mbit/s for broad-
cast transmission). The parameters of the communication protocols were set as follows:
OD was set to 15, the resiliency equal to OD, and the poll timeout toPoll to 20ms. Because
of the limited physical extend of the prototype, a static group has been considered.

0

10

20

30

40

50

60

70

80

90

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84

Response Time [ms]

Fr
eq

ue
nc

y

Figure 6-2. Measured delay distribution of the architecture.

The measured response times are distributed around a mean value of 42.76ms with a maxi-
mum of 81.90ms. It appears that the measured response times are acceptably small. For
example, assume that a robot is driving at 3m/s and that the approaching zones have a
length of 3m. In this setting, the robot must start braking no later than 0.6s after entering
the approaching zone to be able to stop in front of the hot spot (considering a brake retar-
dation of 3.79m/s2). The measured response times are much smaller than this latest reac-
tion time. How the response times scale with an increasing number of mobile systems in
the approaching zones can be approximated as follows. The delay of the atomic multicast
service is approximately proportional to the duration of a communication round and hence
to the number of polled stations (cf. Sub-Section 4.3.6). This also applies to the response
times of the whole application, which are mainly determined by the delay of that service.

144 PROTOTYPES AND IMPLEMENTATIONS

To give an idea, for a number of 5, 10, or 20 robots scaling the maximum (mean) measured
response time yields an approximated response time of 136.5ms (71.25ms), 273ms
(142ms), or 546ms (285ms) respectively. All these values are still under the above stated
bound of 0.6s. Additionally, it should be taken into account that with a number of 20 ro-
bots, the approaching zones would be a good deal larger. This indicates that the communi-
cation services of the middleware are able to meet the performance requirements of the
prototype, even with their first, WindowsNT-based implementation. It can be expected that
with the current, RTLinux-based implementation (see Section 6.3) an even better perform-
ance can be achieved in the next version of the prototype.

6.2 Prototype of the Distributed Sensor Fusion Scenario

In order to evaluate our approach to the provision of QoS in a dynamically changing envi-
ronment, we build up an application prototype of the distributed sensor fusion scenario
(Feist 2002,Nett and Schemmer 2003a,Schemmer and Nett 2003a). The prototype com-
prises several sensor data processing tasks, each with environment-dependent execution
times. So, in this prototype, we can apply and evaluate the TAFT concept in an application
with unpredictable resource demands of the tasks. Furthermore, the application prototype
allows examining how application-inherent redundancy can be exploited to tolerate task
abortions (Section 5.3).

6.2.1 Description the Prototype

The application prototype was implemented according to the application architecture pre-
sented in Section 3.2. In the prototype, three laser scanners observe a dynamically chang-
ing scene from different angles. A RoboCup-like scenario was chosen as an example for
the prototype. It consists of a rectangular field enclosed by four boards. Within the field,
there is a ball and rectangular objects representing the robots. The data delivered by the
laser scanners are filtered to a certain level of abstraction, exchanged within the group us-
ing the atomic multicast service, fused, and then possibly filtered again until they reach the
element level where they are represented as real world elements; that is, robots, boards,
and balls with their positions. The rectangular objects and the ball are being moved within
the boards so that the observed scene is dynamically changing. A visualization tool has
been developed that allows monitoring the results of the distributed fusion online on dif-
ferent levels of abstraction (see Figure 6-3). As well, the results can be stored for purpose
of offline analysis. Whereas the non-time-critical visualization tool is running as a Linux
user-space application, the time-critical parts ― that is to say, the filter and fusion stages
― have been implemented in an RTLinux kernel module.

PROTOTYPE OF THE DISTRIBUTED SENSOR FUSION SCENARIO 145

Figure 6-3. Screenshots from the distributed sensor fusion application

Figure 6-3 shows screenshots from the visualization tool. Each screenshot shows the same
scene represented on a different levels of abstraction. Proceeding from the top left to the
bottom right screenshot, the levels of abstraction are raw data, contours, objects, and ele-
ments. In its current status, the prototype allows fusion on any level of abstraction. So,
execution time measurements and fusion results could be obtained for sensor fusion on
different levels of abstraction. Dynamically changing the level at runtime has not yet been
implemented.

Each filtering and fusion stage has been implemented as a separate task pair. The task pairs
exchange data locally through a common buffer, which can be accessed by all task pairs.
To communicate the data over the network, an additional stage was added to the pipeline.
It reads the data from the buffer, encapsulates them in a message, and multicasts the mes-
sage using the atomic multicast service. Since an implementation of TAFT-IPE was not yet
available when the first version of the prototype was built up, we used the existing TAFT
implementation to schedule the task pairs. To accommodate the precedence constraints in
this implementation, executing the pipeline has been divided into a sequence of phases
with fixed lengths (see Figure 6-4). Each task pair realizing a stage of the pipeline is exe-

146 PROTOTYPES AND IMPLEMENTATIONS

cuted during the corresponding phase. Its release time is equal to the starting time of the
phase and its deadline is equal to the finishing time of the phase. Thus, the release time of
the successor stage is equal to the deadline of its predecessor. To accomplish this setting of
the release times, all task pairs have the same period but a different initial starting time;
that is, the task pairs are started successively, each task pair at the deadline of the first in-
stance of its predecessor. Once the task pairs have been phased this way, they can be re-
leased periodically.

Figure 6-4. Phase structure of the distributed sensor fusion

Two approaches to achieve time coherence of the data to be fused have been implemented.
The first approach is using a Kalman filter (Bar-Shalom and Fortmann 1988) to fuse data
observed at different points of time. To give an idea how this works, let us consider fusion
on the element level. Assume a mobile system already has a position estimate of some ele-
ment in its environment, say the ball, which was determined at time t. When receiving a
scan with timestamp t' that contains a new position estimate for the ball, the system fuses
the received data with the existing position estimate in two steps. First, the filter uses a
model to predict the position of the ball at time t' based on the old position estimate. A
Gaussian distribution models the uncertainty of this prediction. Since after the prediction
step both position estimates relate to the same time t', they can be fused into a single, more
accurate position estimate. As in our scenario, a system receives scans from several other
systems, it sorts the scans it receives in order of increasing timestamps and successively
fuses them with its current world model. This approach does not require all the scans to be
recorded at the same point of time. However, it cannot be used on all levels of abstraction.
Using the Kalman filter requires finding for each element in the current scan the corre-
sponding element in the current world model. For example, if a mobile system receives a
scan including position estimates for five robots and there are five robots in its current
world model, each robot in the scan must be associated with a robot in the world model so
that the position estimates of the associated robots can be fused as described above. While
finding these associations is typically possible on the element level, it surely is not on the
point level. In the second approach, the starting times of the periods of the above-
mentioned phase structure (Figure 6-4) are synchronized at all systems using the clock

PROTOTYPE OF THE DISTRIBUTED SENSOR FUSION SCENARIO 147

synchronization service. This ensures that the data to be fused are time coherent right from
their observation. Furthermore, it ensures that all scans a fusion stage receives are from the
same period. This approach is used for fusion on low levels of abstraction ― points and
contours ― where Kalman filters cannot be applied.

6.2.2 Measurements

First, we conducted measurements to analyze the execution times of the filtering and fu-
sion stages (we use the common term module in the following) and how they depend on
the environment. We already presented these measurements in Chapter 5, where they
served to corroborate our problem exposition. We then analyzed the timing behavior TAFT
achieves for such loads (Clause 6.2.2.1) and how task abortions can be tolerated by ex-
ploiting the application-inherent redundancy (Clause 6.2.2.2). Finally, we conducted
measurements to illustrate the concept of application-level adaptation in case of persistent
overloads (Clause 6.2.2.3).

6.2.2.1 Timely Predictable Execution

Figure 6-5 shows the response times of the arc filter under TAFT scheduling. The response
times were measured in the same setting that was used for measuring the execution times
presented in Section 5.1; that is, the same sequence of scans and the same hardware was
used (AMD Athlon 700MHz CPU with 128MB memory). The arc filter was executed at a
frequency which was two times the frequency used during the execution time measure-
ments, so each scan was processed twice.

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250 300 350 400

scan no.

re
sp

on
se

 ti
m

e
[m

s]

Figure 6-5. Response times of the arc filter

148 PROTOTYPES AND IMPLEMENTATIONS

As can be seen in Figure 6-5, TAFT ensured that no instance of the arc filter missed its
deadline (depicted by the dashed, straight line) during the measurements. The relative
deadline of the task pair set to 35,82ms, the ECET of the main part to 30ms, and the
WCET of the exception part to 0,2ms. The values were intentionally chosen to be quite
small as compared to the measured execution times, so as to have many situations in which
the main part cannot be completed before its deadline and the TAFT scheduler has to take
action to prevent timing failures. The measured maximum response time of 35,70ms is
smaller than the task pair’s deadline. So, during the whole run no timing failures occurred
although the specified resource demand of the main part and the relative deadline were
significantly shorter than the measured maximum execution time of the arc filter.

6.2.2.2 Exploiting Functional Redundancy

We conducted measurements to assess the impact of using anytime algorithms on the reli-
ability of the arc filter. The arc filter is in charge of detecting arcs in the raw data delivered
by a laser scanner (cf. Section 3.2). To this end, the arc filter successively evaluates tenta-
tive arc positions and, if stopped, delivers those positions with an evaluation above a given
threshold. Since, at this point, we are particularly interested in situations in which the main
part becomes faulty, we considered a scenario with large and increasing execution times
(cf. the execution times plotted in Figure 6-6). Furthermore, we chose the scenario such
that there actually was an arc in the field of view of the laser scanner so that the arc filter
was expected to deliver the position of that arc. Thus, we were able to analyze the results
of the arc filter in cases in which its execution time exceeded the allocated ECET. The
ECET was set to 58.36ms (cf. Figure 6-6) corresponding to the 95%-quantile of the meas-
urements presented in Section 5.1. To assess the impact of using an anytime algorithm for
the arc filter, we compare for each set of input points the results delivered by a completed
instance to the results delivered by an aborted instance. The most important part of the
result is the estimated arc position with the highest evaluation because in a RoboCup-like
context, where a single round object is to be detected, this would be considered the esti-
mated position of the ball. Thus, our criterion in comparing the results was whether the
estimated position with the highest evaluation in the completed instance was also present
in the output of the aborted instance. As long as this was case, the output was considered to
be sufficient.

Figure 6-6 presents the results. It shows that in the considered situation, there are a large
number of instances that exceed their ECET; that is, a large number of faulty main parts.
The detection time plotted in the figure is the time at which the arc filter found the tenta-
tive arc position with the highest evaluation. All the detection times are smaller than the
ECET. This makes clear that each instance of the arc filter that delivered a position esti-
mate at all, detected the best position estimate before the ECET. This means that all in-
stances, even if aborted at their ECET, would have had the best position estimate in their
output and therefore would have delivered sufficient results. Thus, in the measurement, the
fact that task instances had to be aborted did not affect the reliability of the task pair. An
example situation from the application prototype that shows how spatial redundancy can
be exploited has been presented in Sub-Section 5.3.2.

PROTOTYPE OF THE DISTRIBUTED SENSOR FUSION SCENARIO 149

Figure 6-6. Execution times and detection times of the arc filter

6.2.2.3 Application-Level Adaptation

In this clause, we present measurements illustrating the idea of application-level adaptation
in the distributed sensor fusion scenario. On the one hand, we show that performing the
fusion on a higher level of abstraction reduces the load on the CPU. On the other hand, we
present an example situation where fusion on a higher level of abstraction produced less
complete results than fusion on a lower level.

Figure 6-7 shows the measured execution times of the modules for sensor fusion on differ-
ent levels, each column corresponding to one of the levels. The measurements have been
conducted on an AMD Athlon 700, 128MB RAM, with three rectangular objects and a ball
situated within the field (Figure 6-8). Filtering stages before the fusion are executed for
both scans so that two times appear in the table.

 Point level Contour level Object level Element level
Point fusion 181.5 - - -
Contour filter 714.3 180.0 / 180.1 177.3 / 180.7 180.0 / 180.1
Contour fusion - 1.1 - -
Object filter 0.9 0.6 0.2 / 0.2 0.3 / 0.2
Object fusion - - 2.8 -
Element filter 0.1 0.1 0.1 0.06 / 0.04
Element fusion - - - 0.02
Sum 896.8 181.9 183.8 180.38

Figure 6-7. Comparison of execution times [ms] for different fusion levels

The results show that performing the sensor fusion on the point level has by far the longest
delay. Most of the time is spent for the point level fusion and for filtering the fused data,

150 PROTOTYPES AND IMPLEMENTATIONS

because both modules have two complete sets of points (or the union thereof) as input. If
fusion is performed on higher levels, filtering the raw data consumes the largest part of the
overall time as well. Therefore, even if fusing data on the object or element level saves
some time in the corresponding modules, this effect is not significant compared to the exe-
cution time of the contour filter. Hence, the contour-, object-, and element-level fusion all
have about the same overall execution time.

Figure 6-8 presents an example scenario from the prototype where three rectangular ob-
jects and a ball are located in the field. The pictures (a) and (b) show the raw data of two
laser scanners observing the scene. Picture (c) shows the results obtained by fusing the
data of the two scanners on the element level. The boxes represent the bounding boxes
computed by the element filter. The fused set of elements contains only two of the three
robots. This is because none of the scanners has sufficient data on its own to recognize the
missing robot. This shows that the local view of a single sensor might not suffice to recog-
nize all objects in the environment and that fusion on the element level does not always
solve this problem. Element level fusion yields complete results only if for each element at
least one scanner has sufficient data to classify it. Figure 6-8 (d) depicts the results (on the
element level) for contour level fusion. Here, all elements have been detected. Both scan-
ners together perceive a sufficient fraction of the robot missing in Figure 6-8 (c) to classify
it.

Figure 6-8. Raw data (a,b) and results on the element level for fusion on the element
(c) and the contour level (d).

Taking both results presented above together, we see that switching to a higher level of
abstraction under persistent overload can reduce the system load significantly and thus is a
promising approach to prevent task abortions. On the other hand, the price to be paid is a
possibly reduced accuracy or completeness of the results; that is, a degradation of the de-
livered service.

6.3 Modular Implementation of the Communication Hardcore

An implementation of the protocol stack was conducted under RTLinux (Vandersee 2004).
The goal of this implementation was twofold: First, the implementation has to observe
small and predictable delays to be applicable in real-time applications with tight time con-
straints; second, we want the implementation to maintain the modular structure of the for-
mal specification so that application-specific protocol stacks can be configured at compile
time (the formal specification is presented in the Appendix). The particular problem in
implementing the protocols lies in the relation of the goals. In modular implementations
the communication between modules soon becomes a performance bottleneck. If it is not

MODULAR IMPLEMENTATION OF THE COMMUNICATION HARDCORE 151

handled efficiently, the implementation will exhibit a poor performance. Thus, a crucial
aspect of this implementation is to find concepts for an efficient communication among the
micro protocols within the protocol stack as well as between the protocol stack and both
the drive below it and the application above it.

6.3.1 Description of the Implementation

The implementation was conducted under RTlinux versions 3.1 and 3.2pre. It is based on
Orinoco 802.11b Standard wireless cards for which an RTLinux driver had to be written.
The driver was implemented as a separate kernel module. The protocol stack itself was
implemented as a kernel module too. Most of the source code was written in C++; only
some particularly time-critical parts were programmed in C.

6.3.1.1 Object Structure of the Implementation

Each process of the formal specification has been implement as a separate class. All these
classes are derived from a common base class SDLProcess (cf. Figure 6-9). This base class
has two virtual methods Init and DispatchSignal, which each derived process class must
implement. Furthermore, it has two attributes State and PId, the former being the explicit
state of the process’ state machine and the later its process ID. Each derived process class
adds its own attributes corresponding the data in the SDL process it implements. The Init
method mainly implements the initial transition of the process’s state machine and is called
at startup of the protocol stack. The DispatchSignal method is the core of the class. It im-
plants the transitions of the state machine. Whenever a process consumes a signal in the
formal model, this means the DispatchSignal method of the corresponding class is called
in the implementation with the signal being provided as a parameter. Within this method,
the transition to be performed is selected based on the actual parameters of the method and
the State attribute of the object.

Polling_AP

pl : PollingList

DispatchSignal()

Init()

SDLProcess

PId : PIdSort

DispatchSignal()

State : StateSort

Init()

PId : PIdSort

DispatchSignal()

State : StateSort

Init()

pl : PollingList

DispatchSignal()

Init()

Figure 6-9. The implementation base class and an example of a derived class

Figure 6-9 shows the base class and the class Polling_AP as an example of a derived class.
The class Polling_AP overwrites both abstract methods and adds the polling list, which is a
data item in the formal specification, as an attribute.

152 PROTOTYPES AND IMPLEMENTATIONS

The classes communicate via a global signal queue. When a class outputs a signal, it adds
the signal to the global queue. The global signal queue is an active object. It reads signals
from the queue, determines the receiving process, and calls the dispatch method of the cor-
responding object. Using a centrally maintained signal queue rather than a separate queue
for each process is more efficient because the central signal scheduler calls the dispatch
method only if there is actually a signal to process for the object. Figure 6-10 illustrates the
signal exchanging between the global queue and the process objects. It shows an object of
the class QScheduler that is connected to several process objects. In the figure, object Poll-
ing_dyn_AP outputs a signal to the global queue. The scheduler dispatches this signal to
the object DynMedAcc_AP by calling the method DispatchSignal of DynMedAcc_AP. Dur-
ing the execution of the transition the object outputs another signal by adding it to the
global signal queue.

:QScheduler

:RM_AP2CL_dyn_AP

:RM_CL2AP_dyn_AP

:DynMedAcc_AP

:Poll ing_dyn_AP

2:DispatchSignal

3:Output

1:Output

Figure 6-10. Signal exchange between the process objects and the central signal queue

6.3.1.2 Achieving Efficiency

As explained above, it is crucial to keep the time overhead of the communication between
the processes small. To accomplish this, two problems have to be tackled:

1. Avoid copying of the application messages, which usually constitute the largest
part of the PDUs the protocols send. The protocols themselves typically add some
header information only.

2. Avoid scheduling delays between executing the sender and the receiver of a signal.

MODULAR IMPLEMENTATION OF THE COMMUNICATION HARDCORE 153

To address the first point, a shared memory module was developed. When the application
wants to transmit a message, it requests a buffer from the shared memory module. All buff-
ers have a fixed size, which is sufficient for a maximum application message plus all head-
ers possibly added by the micro protocols. The application copies its message at the end of
the buffer and passes a handle to that buffer to the protocol stack. Within the protocol stack
the content of the buffer is never copied. Rather, each micro protocol adds its header in
front of the headers added by the higher layers. This means that only the pointer to the start
of the frame is moved. Thus, the frame is successively extended from the end of the buffer
towards its beginning. When the buffer has been passed through the whole stack, all head-
ers have been added and the complete frame has been constructed within the buffer. The
protocol stack then passes the handle to the driver, which copies the frame into the network
interface card. In this approach, the user data are never copied; only the handle is passed
from protocol to protocol. Note that this holds also for the communication between the
application and the protocol stack as well as between the protocol stack and the driver.

Communication in the other direction works very much the same way. In this case the
driver requests the buffer. It reads the frame from the network interface card into the buffer
and passes the handle to the protocol stack. In the protocol stack, the micro protocols suc-
cessively remove their headers; that is, they move the pointer indicating the start of the
frame towards the end of the buffer. Thus, the frame is successively shrunk until only the
application message remains in the buffer. At the end, the protocol stack passes the handle
to the application, which can then read the message.

To avoid scheduling delays between executing successive micro protocols, a single thread
executes all the protocols. This thread waits for messages to arrive from either the driver or
the application. Whenever this happens, it puts a corresponding signal into the signal
queue and then starts processing the signal as described above. When the queue is empty,
the thread again waits for the next message to arrive.

The thread waits for message arrivals passively. A single semaphore is used to signal mes-
sage arrivals from both the application and the driver. If one of both passes a buffer to the
protocol stack, it increments the semaphore. The thread in the protocol stack, in its turn,
decrements the semaphore whenever it receives a buffer and hence blocks when it has
processed all buffers passed by the application or the driver.

6.3.1.3 Configuration and API

Configuring stacks is done at compile time. To change the configuration of the protocol
stack, a single header file has to be edited. The user decides which protocols are part of the
stack in which order by defining their process IDs in this header filer. Additionally, there is
a single flag determining whether dynamic network scheduling is used or not. From this
header file, a script generates all the configuration specific code to initialize the protocols
and establish a matching between the protocol IDs and the corresponding objects. This
script also modifies the makefiles controlling the compilation of the protocols. Figure 6-11
shows how the module size varies with the chosen configuration. Obviously, the fewer
services are part of the configuration, the smaller is the memory footprint of the resulting
module.

154 PROTOTYPES AND IMPLEMENTATIONS

Configuration
Size of the AP
module [KB]

Size of the client
module [KB]

All services 62 50
Polling, Reliable Multicast,
Atomic Multicast 52 41
Polling, Reliable Multicast 49 35
Polling 42 31

Figure 6-11. Sizes of the client and AP modules depending on configuration

Applications can access the services of the protocol stack through a simple API. To send a
message, an application program first requests a buffer from the shared memory module
(shm_alloc). It copies the message it wants to transmit into the buffer, putting parameters,
such as the resiliency, in front of it. It then notifies the shared memory module of the
buffer’s being ready for transmission (shm_done). After this call, the shared memory mod-
ule wakes-up the thread in the protocol stack so that it can process the message. The appli-
cation program has two possibilities to receive messages. For a non-blocking receive, the
program just checks if there has been any buffer delivered for it (shm_getnextbuf). As long
as no message is waiting to be received, this call returns a null handle. The second method
blocks the program while waiting for messages. To use this method, the program calls
sem_wait on a semaphore the shared memory module provides. When the semaphore is
open, the next call to shm_getnextbuf is ensured to deliver a handle to a buffer containing a
message for the application.

6.3.2 Measurements

To evaluate the performance of the modular implementation we measured the delays of the
communication services under varying configurations. The measurements were conducted
on three machines, namely a Pentium P266 mobile, 128 MB RAM, acting as the AP, a
Pentium III 450MHz, 256MB RAM, acting as the first client, and an AMD Duron 850, 512
MB RAM, acting as the second client. All three machines had RTLinux running as the
operating system with the standard scheduler. The protocol parameters were set as follows:
omission degree OD = 3, resiliency res = 0, and the poll timeout 30ms. We chose a resil-
iency of zero to reduce the impact of message losses on the delays. So, the results for dif-
ferent configurations can be better compared against one another. The measurements were
carried out for groups with one and two clients; in both cases, one client sent 100Byte mes-
sages at a rate of 1/15ms.

 Polling Reliable Multicast Atomic Multicast
Group Size 1 2 1 2 1 2
Min 2273 2268 2377 2392 4386 7078
Max 5916 8065 5779 8721 8570 14616
Avg. 3412 4441 3518 4644 5806 10074
Std. Dev. 659 1296 700 1337 734 1531

Figure 6-12. Delays of the communication services in µs

Figure 6-12 displays the results of the measurement. For one thing, they reveal the per-
formance costs associated with choosing a stronger communication service. The lowest

MODULAR IMPLEMENTATION OF THE COMMUNICATION HARDCORE 155

delays are obtained if only polling is used. It is remarkable that adding reliable multicast
only slightly increases the delays. This shows that the reliable multicast protocol only adds
a very little fixed overhead. The difference between the delays of the two services will
grow as soon as a resiliency greater than zero is chosen and an increasing number of mes-
sage losses are considered. In this case, however, the larger delays are the price of higher
reliability. The difference between the delays of the reliable and the atomic multicast ser-
vice is more significant. This has two reasons: First, after the stations received a message,
it takes at least one round until the APs decides whether to deliver it or not. Second, the AP
has to transfer its decision to the stations, which takes at least another slot if no message
losses occur. The difference between these two services, however, will not grow with the
resiliency and only gradually with the number of message losses. Rather, it will reduce as
compared to the overall delay. These measurements show that services with stronger se-
mantics incur a performance cost so that it is better to include only those services in the
hardcore that are actually needed.

To give an idea of how the presented results are to be rated, we compare them with the
mean delays of an earlier, RTLinux-based monolithic implementation, which exhibits the
best performance among the earlier implementations. The delays were measured in a simi-
lar setting: Intel Celeron 400 MHz, 128MB RAM, acting as AP, two AMD Athlon 700,
128MB RAM, acting as clients, and the following protocol parameters: omission degree
OD = 15, resiliency res = 0, and the poll timeout 20ms. Note that the difference in the
omission degree and the poll timeout are not very significant for the average values be-
cause the measurements took place under good link conditions. The results presented in
Figure 6-13 show that the modular implementation achieves about the same performance
as the monolithic one. Obviously, we can compare the delays for the atomic multicast ser-
vice only, since in the monolithic implementation only this service can be accessed.

 Atomic Multicast
Group Size 1 2
Monolithic
Implementation

6716 11441

Modular
Implementation

5806 10074

Figure 6-13. Mean delays of the modular and a monolithic implementation in µs.

7 Conclusion and Future Work

The cooperation of mobile embedded systems gives rise to a lot of new and fascinating
applications. The ever increasing number of embedded computer devices pervading our
every day live and the rapid deployment of wireless communication technology provide a
technological context which strongly fosters the trend to develop and deploy cooperative
applications for mobile embedded systems. Such applications already gained a significant
attention in today’s industrial research and development. In this thesis, a middleware was
presented that supports the development of cooperative applications for mobile embedded
systems beyond the services that today’s COTS operating systems offer. In particular, the
middleware contributes to the solution of the following two challenges:

• The real-time requirements stemming from the locomotion of the mobile systems
and their interactions with the physical environment require achieving a timely
predictable behavior. A timely predictable behavior, however, is hard to achieve
because the execution times of the tasks depend on a dynamically changing envi-
ronment, as does the number of message losses on the links.

• Achieving efficient cooperation requires managing the interactions between the co-
operating systems. If this, however, results in complex runtime interactions within
the application, a predictable timing behavior is hard to achieve. Therefore, coop-
eration should be supported in such a way that autonomy of the cooperating sys-
tems is maintained on the application level.

As a prerequisite for the design of the middleware we developed a formal system model
that captures the characteristics of a dynamically changing group of mobile systems con-
nected by a wireless LAN. The key aspect to be modeled is the varying quality of the
communication links in terms of the number of message losses. As the basic underlying
model we adopted a synchronous system model with an unknown number of omission fail-
ures of the network. Following an idea introduced by (Cristian 1996), we defined time-
dependent predicates to describe the varying quality of the links between the mobile sys-
tems. Such a model allows the design of protocols that provide safety properties under a
wide range of environmental conditions, in particular without resorting to worst-case as-
sumptions about the number of message losses. Furthermore, the protocols can be designed

 157

158 CONCLUSION AND FUTURE WORK

such that they provide reliable and timely services whenever the link quality is sufficiently
good.

The two bottom layers of the middleware deal with the first of the above-mentioned chal-
lenges. They provide a timely predictable execution of tasks with unpredictable execution
times and a timely predictable transmission of reliable multicast messages. For the task
execution service we adopt the TAFT approach. This thesis adds the following two contri-
butions to this approach:

1. To use TAFT in the task execution service of the middleware, the task model un-
derlying the current implementation of TAFT had to be extended. First, the com-
munication protocols, which are part of the middleware, require CPU resources and
hence have to be scheduled in addition to the application tasks. The corresponding
tasks are not adequately modeled as periodic tasks so that the model was extended
to include aperiodic requests also. Furthermore, as turned out in our application
scenario, application tasks in our intended application context typically exhibit
precedence constraints, especially if they process sensor data. So, precedence con-
straints between periodic task pairs were included in the task model too. We pre-
sented a scheduling algorithm, called TAFT-IPE, which schedules aperiodic tasks
and periodic task pairs in the extended model. It schedules each set of periodic task
pairs with a processor utilization not greater than one. For aperiodic requests a
guarantee is given on a per instance basis; that is, an aperiodic request is either fin-
ished in time or not executed at all. This fits to the underlying system model, where
the execution service exhibits omission failure semantics. A set of simple sufficient
and necessary conditions has been developed to allow for a fast acceptance test for
the aperiodic requests.

2. The TAFT concept proposes to use redundancy to tolerate task abortions caused by
resource faults. In the distributed sensor fusion scenario, we examined how
application-inherent redundancy can be provided and how it can be exploited to
tolerate task abortions. Experiments in the prototype show that exploiting
application-inherent redundancy allows achieving a reliable task execution even if
worst-case bounds on task execution times are not provided.

Regarding communication, the IEEE 802.11 Standard already provides basic support for
predictable timing behavior through the polling mechanism. To add support for dynamic
groups we suggested a solution to provide predictable access to joining stations, which are
not yet part of the polling list. Since there is no general solution to that problem, we exploit
application semantics here. We believe that the solution is applicable in many applications
nevertheless. In particular, all those applications in the area of traffic control and logistics
that motivated our first application scenario can adopt this solution. The key problem in
achieving predictability for the communication services stems from unpredictable loss
rates of the wireless medium. We presented a reliable multicast protocol, which adopts a
dynamic timing redundancy approach to tolerate message losses and comprises an efficient
acknowledgement mechanism. Instead of working with worst-case bounds, the protocol
allows the user to specify for each message a resiliency, which is a bound on the number of
retransmissions of that message. The protocol guarantees that the transmission delays of
the messages are bounded, with the delay bound depending on the resiliency of the mes-
sage. Thus, the protocol allows trading reliability for smaller time-bounds. Without using
worst-case bounds, it may happen that not all stations are able to deliver a multicast mes-

CONCLUSION AND FUTURE WORK 159

sage. In this case, the atomic multicast protocol on the next layer achieves agreement
among the valid members.

In this thesis, we proposed an approach to achieve a coordinated behavior while preserving
the autonomy of the mobile systems. Thus, complex runtime interactions on the applica-
tion level are avoided. According to this approach, the two upper layers provide common
views to the application. Based on these common views, the mobile systems make deci-
sions locally at runtime. Thus, rather than explicitly coordinating the actions of the mobile
systems on the application level, the middleware coordinates their worldviews. Since both
the communication services of the middleware as well as the execution of the local appli-
cation tasks are timely predictable, this approach achieves a timely predictable coopera-
tion.

The two upper layers of the middleware implement this approach. The lower of these two
layers provides common views on application-independent aspects of the control system.
Namely, it provides a common global time base, group membership, and atomic multi-
casts. The protocols implementing membership and atomic multicasts have been presented
as part of this thesis. The atomic multicast protocol ensures that all stations, valid or not,
perceive infixes of the same totally ordered sequence of messages. Valid stations agree on
the messages they deliver in bounded time. In particular, this is ensured if the underlying
reliable multicast protocol does not deliver a message at all valid stations. In conjunction
with the atomic multicast protocol, the membership protocol ensures that all stations de-
liver infixes of the same totally ordered sequence of membership changes and multicast
messages. Every change in the group membership is reflected in a membership change
message and delivered to all valid stations in bounded time. Both the atomic multicast and
the membership protocol provide fail-awareness. This means that these protocols indicate
to their users whether they are currently providing a valid service or not. When the proto-
col entity at some station is no longer able to guarantee agreement with the valid stations
or an up-to-date view on the membership, it indicates this fact to its user. Thus, the user is
enabled to react to this situation in bounded time.

The Event Service, on the highest layer, provides common views on the global state of the
controlled system. The global state comprises the local states of the mobile system w.r.t to
the same point of time on the global time base. The Event Service associates global states
to the events, which are delivered totally ordered and with bounded delay based on the
services of the underlying group communication protocols. Determination of the global
states is based on a model of the local states, which describes how the local states evolve
between the deliveries of two events. Using such a model, we obtained the following ad-
vantages:

• Time coherence of the global states is achieved without synchronizing the observa-
tion of the local states.

• The temporal consistency of the local states is improved, since the error caused by
communication delays can be compensated.

• The message overhead required to determine the global states is significantly re-
duced.

160 CONCLUSION AND FUTURE WORK

The modular design of the middleware allows adapting it to the requirements of a variety
of different applications. In particular, the modular design of the communication protocols
in the hardcore was a challenging task. These protocols have been designed as a family of
micro protocols, each with a well-defined service and interface. This involved resolving or
balancing the tradeoff between modularity and efficiency, both during the design and the
implementation of the protocols. The implementation allows configuring protocol stacks at
runtime. Measurement show that the modular implementation achieves a high performance
and it allowed assessing the performance costs associated with choosing stronger commu-
nication semantics.

Two prototypes were built up. The first shows the feasibility of our approach to the timely
predictable coordination of mobile systems. In this prototype, a group of robots coordinate
their speeds while approaching a shared spatial resource. According to our approach, the
Event Service is used to determine the global state of the group whenever a rescheduling
of the shared resource is required. At the application level, a locally executed function, the
so-called scheduling function, determines the schedule for the shared resource based on the
global state. Since both the determination of the global state in the middleware, as well as
the computation of the scheduling function is timely predictable, a timely predictable be-
havior can be achieved. The second prototype illustrates and validates our approach to en-
forcing QoS in dynamically changing environments. It is a concrete example of a distrib-
uted fusion of sensor data within a group of mobile robots. Our analysis of the execution
times revealed that the execution times of the sensor processing tasks not only depend on
the amount of input but also on its content. So, the execution times of these tasks are in
fact environment dependent and widely varying. TAFT has been applied to achieve a
timely predictable behavior for these tasks, and our measurements show that no task in-
stance missed its deadline. Furthermore, the prototype served to show that application-
inherent redundancy allows tolerating task abortions and increasing the reliability of task
execution.

The work presented in this thesis will be carried on along different lines of development.
One line is to consider how other kinds of message traffic can be integrated with the pre-
sented communication protocols on the same wireless LAN. Other traffic classes may dif-
fer in the kinds of protocols they use, for example, point-to-point instead of multicast pro-
tocols, in their resource demands, and in the kinds of deadlines they have. Integrating dif-
ferent kinds of traffic on a single LAN will particularly affect the MAC and the dynamic
network-scheduling layer. Here, it will be interesting to consider how the new and im-
proved features of the supplement 802.11e can be best exploited and integrated into the
middleware. We believe that the priority-based access during the DCF (EDCA in 802.11e),
the more flexible polling mechanism (HCCA in 802.11e), and the extensions that support
demand specification and negotiation, will afford interesting opportunities to accommodate
different traffic classes in an integrated and flexible manner.

Another line of development is considering scalability in terms of both the spatial extent of
the network and the number of stations it comprises. This thesis focused on the cooperation
in local groups, but there are interesting cooperative applications for larger scale wireless
networks as well. For example, consider an extended sensor network of small sensing de-
vices that interacts with mobile systems like robots, or humans carrying portable comput-
ing equipment. One may imagine that this kind of structure will be used to help fire fight-

CONCLUSION AND FUTURE WORK 161

ers in fulfilling their tasks. Works considering such kinds of larger networks are ongoing in
our working group in the context of a project supported by the DFG7 (Trikaliotis 2004).
We consider large-scale networks to consist of clusters, each of which corresponds to a
local group. While cooperation under tight real-time constraints is performed within the
clusters, the clusters are connected to a large-scale network more loosely. For one thing,
this requires adding new inter-cluster communication services to the intra-cluster services
presented herein. In particular, routing messages through a network of clusters becomes an
important issue. Furthermore, new services have to be added on the highest layer of the
architecture, the CADI, which still follow the common view paradigm but are more tai-
lored to the kind of cooperation and interaction found in large-scale networks. In particu-
lar, anonymous communication with content-based addressing fosters scalability and al-
lows the mobile systems to access a distributed service infrastructure, like the sensor net-
work in the example above, transparently without explicitly searching and contacting the
nodes providing the services. Still, common views on the events this transparent service
infrastructure delivers allow achieving a coordinated behavior of the mobile systems with-
out explicit coordination on the application level.

7 Deutsche Forschungsgemeinschaft (German Research Foundation)

References

Abdelzaher, T. F., A. Shaikh, et al. (1996). RTCAST: Lightweight Multicast for Real-
Time Process Groups. In Proc. 2nd IEEE Real-Time Technology and Applications
Symposium, Boston, Mass.

Almeida, C. and P. Verissimo (1995). An Adaptive Real-Time Group Communication Pro-
tocol. In Proc. 1st IEEE Workshop on Factory Communication Systems, Lausanne,
Switzerland.

Almeida, C. and P. Verissimo (1996). Timing Failure Detection and Real-Time Group
Communication in Quasi-Synchronous Systems. In Proc. 8th Euromicro Workshop
on Real-Time Systems, L'Aquila, Italy.

Amir, Y., D. Dolev, et al. (1992). Transis. A communication subsystem for high availabil-
ity. In Proc. 22nd Int'l Symp. on Fault-Tolerant Compting, Boston, Mass.

Amir, Y., L. E. Moser, et al. (1995). The Totem Single-Ring Ordering and Membership
Protocol. ACM Transactions on Computer Systems 13(4): 311-342.

Bade, R. (2003). Modifikation einer Stereobildverarbeitungsmethode für die Anwendung
in einer Echtzeitumgebung. Diploma Thesis, Institute for Distributed Systems,
Otto-von-Guericke-University: Magdeburg, Germany.

Bakre, A. and B. R. Badrinath. M-RPC: A Remote Procedure Call Service for Mobile Cli-
ents. Technical Report WINLAB TR-98, Department of Computer Science, Rutger
University, 1995.

Baldwin, R. O., N. J. I. Davis, et al. (1999). A Real-Time Medium Access Control Protocol
for Ad Hoc Wireless Local Area Networks. Mobile Computing and Communica-
tions Review 3(2): 20-27.

Bar-Joseph, Z., I. Keidar, et al. (2000). QoS Preserving Totally Ordered Multicast. In Proc.
5th Int'l Conf. on Principles of Distributed Systems.

 163

164 REFERENCES

Bar-Shalom, Y. and T. E. Fortmann (1988). Tracking and Data Association. Boston, Aca-
demic Press.

Becker, L. B. and M. Gergeleit (2001). Execution Environment for Dynamically Schedul-
ing Real-Time Tasks. In Proc. 22nd IEEE Real-Time Systems Symposium (RTSS
2001), London.

Becker, L. B., M. Gergeleit, et al. (2001). An Approach for Implementing Object-Orientet
Real-Time Models on Top of Embedded Targets. In Proc. OMER-2 - Workshop on
Object-oriented Modelling of Embedded Real-time Systems, Herrsching am Am-
mersee, Germany.

Becker, L. B., M. Gergeleit, et al. (2003). Using a Flexible Real-Time Scheduling Strategy
in a Distributed Embedded Applications. In Proc. 9th IEEE International Confer-
ence on Emerging Technologies and Factory Automation (ETFA), Lisbon, Portu-
gal.

Becker, L. B., E. Nett, et al. (to appear). Robust Scheduling in Team-Robotics. Journal of
Systems and Software.

Bernat, G. and A. Burns (2001). Weakly-Hard Real-Time Systems. IEEE Transactions on
Computers 50(4): 308-321.

Bernat, G. and R. Cayssials (2001). Guaranteed On-Line Weakly-Hard Real-Time Sys-
tems. In Proc. Proc. of 22nd IEEE Real-Time Systems Symposium, London.

Birman, K. P., A. Schiper, et al. (1991). Lightweight Causal and Atomic Group Multicast.
ACM Transactions on Computer Systems 9(3): 272-314.

Birman, K. P. and R. van Renesse (1994). Reliable Distributed Computing with the ISIS
Toolkit. Los Alamitos, Calif., IEEE Computer Society Press.

Boddy, M. and T. Dean (1989). Solving Time-Dependent Planning Problems. In Proc.
IJCAI.

Braek, R. and O. Haugen (1993). Engineering Real Time Systems - An object-oriented
methodology using SDL. New York, London, Prentice Hall.

Casimiro, A. and P. Verissimo (2001). Using the Timely Computing Base for Dependable
QoS Adaption. In Proc. Symposium on Reliable Distributed Systems, New Orleans,
USA.

Cavalieri, S. and D. Panno (1997). On the Integration of Fieldbus Traffic within IEEE
802.11 Wireless LAN. In Proc. IEEE International Workshop on Factory Commu-
nication Systems, Barcelona, Spain.

Chandra, T. D., V. Hadzilacos, et al. (1992). The Weakest Failure Detector for Solving
Consensus. In Proc. ACM Symp. on Principles of Distributed Computing, Vancou-
ver, Canada.

REFERENCES 165

Chandra, T. D. and S. Toueg (1991). Unreliable Failure Detectors for Asynchronous Sys-
tems. In Proc. 11th ACM Symp. on Principles of Distributed Computing, Montreal,
Canada.

Chang, J.-M. and N. F. Maxemchuck (1984). Reliable Broadcast Protocols. ACM Transac-
tions on Computer Systems 2(3): 251-273.

Chetto, H. and M. Chetto (1989). Some Results of the Earliest Deadline Scheduling Algo-
rithm. IEEE Transactions on Software Engineering 15(10): 1261-1269.

Chockler, G. V., N. Huleihel, et al. (1998). An Adaptive Total Ordering Multicast Protocol
That Tolerates Partitions. In Proc. 17th ACM Symp. on Principles of Distributed
Computing, Puerto Vallarta, Mexica.

Chockler, G. V., I. Keidar, et al. (2001). Group Communication Sepcifications: A Com-
prehensive Study. ACM Computing Surveys 33(4): 1-43.

Cirrus Logic. Whitecap 2 Wireless Network Protocol. Whitepaper, Cirrus Logic.

Coutras, C., S. Gupta, et al. (2000). Scheduling of Real-Time Traffic in 802.11 Wireless
LANs. Wireless Networks 6: 457-466.

Cristian, F. (1989). Probabilistic Clock Synchronization. Distributed Computing 3: 146-
156.

Cristian, F. (1991). Reaching Agreement on Processor-Group Membership in Synchronous
Distributed Systems. Distributed Computing 4: 175-187.

Cristian, F. (1996). Synchronous and Asynchronous Group Communication. Communica-
tions of the ACM 39(4): 88-97.

Cristian, F., H. Aghili, et al. (1985). Atomic Broadcast: From Simple Message Diffusion to
Byzantine Agreement. In Proc. 15th Int'l Symp. on Fault-Tolerant Computing, Ann
Arbor, Mich.

Cristian, F. and C. Fetzer (1999). The Timed Asynchronous Distributed System Model.
IEEE Transactions on Parallel and Distributed Systems 10(6): 642ff.

Cristian, F. and S. Mishra (1995). The Pinwheel Asynchronous Atomic Broadcast Proto-
cols. In Proc. 2nd Int'l Symp. on Autonomous Decentralized Systems, Phoenix, Ari-
zona.

Cristian, F. and F. Schmuck. Agreeing on Processor Group Membership in Timed Asyn-
chronous Distributed Systems. Technical Report CSE95-428, UCSD: San Diego,
1995.

Dean, T. and M. Boddy (1988). An Analysis of Time-dependent Planning. In Proc. AAAI-
88.

166 REFERENCES

Defago, X., A. Schiper, et al. Totally Ordered Broadcast and Multicast Algorithms: A
Comprehensive Survey. Technichal Report DSC/2000/036, Swiss Federal Institute
of Technology: Lausanne, Switzerland, 2000.

Dietl, M., J.-S. Gutmann, et al. (2001). Cooperative Sensing in Dynamic Environemts. In
Proc. IEEE/RSJ Int'l Conf. on Intelligent Robots and Systems (IROS'01), Maui,
Hawaii.

Dolev, D. and C. Dwork (1987). On the Minimal Synchronism for Distributed Consensus.
Journal of the ACM 34(1): 77-97.

Ergen, M., D. Lee, et al. (2002). Wireless Token Ring Protocol. In Proc. 6th World Multi-
conference on Systemics, Cybernatics and Informatics (SCI), Orlando, Fla.

Ezhilchelvan, P. D. and R. de Lemos (1990). A Robust Group Membership Algorithm for
Distributed Real-Time Systems. In Proc. Real-Time Systems Symposium, Lake
Buena Vista, Fla.

Ezhilchelvan, P. D., R. A. Macêdo, et al. (1995). Newtop: A Fault-Tolerant Group Com-
munication Protocol. In Proc. 15. Int. Conf. on Distributed Computing Systems,
Vancouver, Canada.

Feist, M. (2002). Mehrstufige, verteilte Sensorfusion von Laserscandaten. Diploma Thesis,
Institute for Distributed Systems, Otto-von-Guericke-University: Magdeburg, Ger-
many.

Fetzer, C. and F. Cristian (1996). Fail-Awareness in Time Asynchronous Systems. In Proc.
15th ACM Symposium on Principles of Distributed Computing, Philadelphia.

Fischer, M. J., N. Lynch, et al. (1985). Impossibility of Distributed Consensus with on
Faulty Process. Journal of the ACM 32(2): 374-382.

Franz, W. J., H. Hartenstein, et al. (2001). Internet on the Road via Inter-Vehicle Commu-
nications. In Proc. Workshop on Mobile Communication over Wireless LAN: Re-
search and Applications, Vienna, Austria.

Galleni, A. and D. Powell. Consensus and Membership in Synchronous and Asynchronous
Distributed Systems. Technical Report LAAS No96104, LAAS-CNRS, 1996.

Gergeleit, M. (2001). A Monitoring-based Approach to Object-Oriented Real-Time Com-
puting. PhD Thesis, Institute for Distributed Systems, Otto-von-Guericke-
Universität Magdeburg: Magdeburg, Germany.

Gergeleit, M., L. Buss Becker, et al. (2003). Robust Scheduling in Team-Robotics. In
Proc. WPDRTS'03, Nice, France.

Grünsteidl, G. and H. Kopetz (1991). A Reliable Multicast Protocol for Distributed Real-
Time Systems. In Proc. 8th IEEE Workshop on Real-Time Operating Systems and
Software, Atlanta, Georgia, USA.

REFERENCES 167

Haardt, M., A. Klein, et al. (2000). The TD-CDMA Based UTRA TDD Mode. IEEE Jour-
nal on Selected Areas in Communications 18(8): 1375-1385.

Hamdaoui, M. and P. Ramanathan (1995). A Dynamic Priority Assignment Technique for
Streams with (m,k)-firm Deadlines. IEEE Transactions on Computers.

Harrison, T. H., D. L. Levine, et al. (1997). The Design and Performance of a Real-time
CORBA Event Service. In Proc. OOPSLA '97, Atlanta, GA.

Herms, A. (2004). Entwurf eines verteilten Laufplaners basierend auf heuristischen Opti-
mierungsverfahren. Diploma Thesis, Institute for Distributed Systems, Otto-von-
Guericke-University: Magdeburg, Germany.

Hiltunen, M. A. and R. D. Schlichting (1995a). Properties of Membership. In Proc. 2nd
IEEE Symposium on Autonomous Decentralized Systems.

Hiltunen, M. A. and R. D. Schlichting. Understanding Membership. Technical Report 95-
07, Department of Computer Science, University of Arizona: Tuscon, Ariz., 1995b.

IEEE. IEEE Std. 802.11b, Higher-Speed Physical Layer Extension in the 2.4 GHz Band.
Standard, IEEE: New York, 1999.

IEEE. IEEE 802.11F - IEEE Trial-Use Recommended Practice for Multi-Vendor Access
Point Interoperability via an Inter-Access Point Protocol Across Distribution Sys-
tems Supporting IEEE 802.11™ Operation. Standard, IEEE: New York, 2003.

Inoue, Y., M. Iizuka, et al. (1998). A Reliable Multicast Protocol for Wireless Systems
with Representative Acknowledgement Scheme. In Proc. 5th International Work-
shop on Mobile Multimedia Communication, Berlin, Germany.

ITU-T. CCITT Specification and Description Language (SDL). ITU-T Recommendation
Z.100 (03/93), ITU-T, 1993.

ITU-T. Specification and Description Language (SDL). ITU-T Recommendation Z.100
(11/99), ITU-T, 1999.

Jia, W., J. Kaiser, et al. (1996). RMP: Fault-Tolerant Group Communication. IEEE Micro
16(2): 59-67.

Kaashoek, M. F. and A. S. Tanenbaum (1991). Group Communication in the Amoeba Dis-
tributed Operating System. In Proc. 11th International Conference on Distributed
Computing Systems, Arlington, Texas, USA.

Kermarrec, A.-M., L. Massoulié, et al. (2003). Probabilistic Reliable Dissemination in
Large-Scale Systems. IEEE Transactions on Parallel and Distributed Systems
14(3): 248-258.

Killijian, M., R. Cunningham, et al. (2001). Towards Group Communication for Mobile
Participants. In Proc. Principles of Mobile Computing, Newport, Rhode Island.

168 REFERENCES

Kitano, H., M. Asada, et al. (1997). RoboCup: The Robot World Cup. In Proc. Agents
1997.

Knieriemen, T. (1991). Autonome mobile Roboter – Sensordateninterpretation und Welt-
modellierung zur Navigation in unbekannter Umgebung, B. I. Wis-
senschaftsverlag.

Kopetz, H. (1997). Real-Time Systems. Boston, Kluwer Academic Press.

Kopetz, H. and G. Grünsteidl (1993). TTP - A Time Triggered Protocol for Fault-Tolerant
Real-Time Systems. In Proc. 23rd International Symposium on Fault-Tolerant
Computing, Toulouse, France.

Koren, G. and D. Shasha (1995). Skip-over: Algorithms and Complexity for Overloaded
Real-Times Systems. In Proc. IEEE Real-Time Systems Symp.

Kümmel, S., A. Schill, et al. (1996). RPC over Advance Network Technologies: Evalua-
tion and Experiences. In Proc. 3rd Int'l Workshop on Services in Distributed Net-
worked Environments, Macua, China.

Lamport, L. (1978). Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM 21(7): 558-565.

Laprie, J. C., Ed. (1992). Dependability: Basic Concepts and Terminology, Springer.

Lin, K.-J., S. Natarajan, et al. (1987). Imprecise Results: Utilizing Partial Computations in
Real-Time Systems. In Proc. IEEE 8th Real-Time Systems Symposium, San Jose.

Liu, J. W.-S., W.-K. Shih, et al. (1994). Imprecise Computations. Proceedings of the IEEE
82(1): 83-94.

Malone, T. W. and K. Crowston (1994). The Interdisciplinary Study of Coordination. ACM
Computing Surveys 26(1): 87-119.

Masum, A. (2000). Non-Cooperative Byzantine Failures - A New Framework for the De-
sign of Efficient Fault Tolerant Protocols. Dissertation, Fachbereich Mathematik
und Informatik, Universität-GH Essen: Essen.

Melliar-Smith, P. M., L. E. Moser, et al. (1990). Broadcast Protocols for Distributed Sys-
tems. IEEE Transactions on Parallel and Distributed Systems 1(1): 17-25.

Microsoft Corporation. DCOM Technical Overview. Mirosoft Windows NT Server White
Paper, 1996.

Mishra, S., C. Fetzer, et al. (1997). The Timewheel Asynchronous Atomic Broadcast Pro-
tocol. In Proc. Int'l Conf. on Parallel and Distributed Processing Techniques and
Applications, Las Vegas, Nev.

Mishra, S., C. Fetzer, et al. (1998). The Timewheel Group Communication Protocol. In
Proc. Workshop on Fault Tolerant Parallel and Distributed Systems, Orlando, Flor.

REFERENCES 169

Mishra, S., C. Fetzer, et al. (2002). The Timewheel Group Communication System. IEEE
Transactions on Computers 51(8).

Mitschele-Thiel, A. (2001). Systems Engineering with SDL - Developing Performance
Critical Communication Systems. Chichester, New York, John Wiley & Sons, Ltd.

Mock, M. (2003). On the Coordination of Autonomous Systems. habilitation thesis, Fac-
ulty of Computer Science, Otto-von-Guericke-University: Magdeburg.

Mock, M., R. Frings, et al. (2000a). Clock Synchronization for Wireless Local Area Net-
works. In Proc. 12th Euromicro Conference on Real-Time Systems, Stockholm,
Sweden.

Mock, M., R. Frings, et al. (2000b). Continuous Clock Synchronization in Wireless Real-
Time Applications. In Proc. 19th IEEE Symposium on Reliable Distributed Sys-
tems, Nuremberg, Germany.

Mock, M., E. Nett, et al. (1999). Efficient Reliable Real-Time Group Communication for
Wireless Local Area Networks. In Proc. 3rd European Dependable Computing
Conference, Prague, Czech Republic, Springer.

Moser, L. E., P. M. Melliar-Smith, et al. (1994). Processor Mebership in Asynchronous
Distributed Systems. IEEE Transactions on Parallel and Distributed Systems 5(5):
459-473.

Nett, E. (1991). Supporting Fault Tolerant Distributed Computations. Habilitationsschrift,
Universität Bonn.

Nett, E. and M. Gergeleit (1997). Preserving Real-Time Behavior in Dynamic Distributed
Systems. In Proc. IASTED International Conference on Intelligent Information
Systems, The Bahamas.

Nett, E., M. Gergeleit, et al. (1997). Flexible Resource Scheduling and Control in an Adap-
tive Real-Time Environment. In Proc. IASTED International Conference on Artifi-
cial Intelligence and Soft Computing, Banff, Canada.

Nett, E., M. Mock, et al. (2001). Das drahtlose Ethernet - Der IEEE 802.11-Standard:
Grundlagen und Anwendung, Addison-Wesley.

Nett, E. and S. Schemmer (2003a). Realizing Virtual Sensors by Distributed Multi-Level
Sensor Fusion. In Proc. 2003 International Workshop on Multi-Robot Systems,
Washington, D.C, Kluwever Academic Publishers.

Nett, E. and S. Schemmer (2003b). Reliable Real-Time Communication in Cooperative
Mobile Applications. IEEE Transactions on Computers 52(2): 166-180.

Nett, E. and S. Schemmer (2004). An Architecture to Support Cooperating Mobile Em-
bedded Systems. In Proc. 2004 ACM Computing Frontiers Conference, Ischia, It-
aly.

170 REFERENCES

Object Management Group. The Common Object Request Broker: Architecture and Speci-
fication, 2.6.1. Object Management Group, 2002.

Oki, B., M. Pfluegel, et al. (1993). The Information Bus - An Architecture for Extensible
Distributed Systems. In Proc. ACM Symposium on Operating System Principles.

Peterson, L. L., N. C. Buchholz, et al. (1989). Preserving and Using Context Information in
Interprocess Communication. ACM Transactions on Computer Systems 7(3): 217-
246.

Piaggio, M. and A. Sgorbissa (2000). Exploiting ethnos for communication and coordina-
tion of heterogenous soccer robots in the art team. In Proc. European Workshop on
RoboCup, Amsterdam, Netherlands.

Piaggio, M., A. Sgorbissa, et al. (1999). Programing Real Time Distrubuted Multiple Ro-
botic Systems. In Proc. RoboCup-99 Workshop, Stockholm, Sweden.

Plenge, C. (1995). The Performance of Medium Access Protocols for Inter-Vehicle Com-
munication Systems. In Proc. Mobile Kommunikation, Neu-Ulm, Germany.

Powell, D. (1992). Failure Mode Assumptions and Assumptions Coverage. In Proc. 22nd
Int'l Symp. on Fault-Tolerant Computing, Boston, Mass., IEEE.

Rajkumar, R., M. Gagliardi, et al. (1995). The Real-Time Publisher/Subscriber Inter-
Process Communication Model for Distributed Real-Time Systems: Design and
Implementation. In Proc. First IEEE Real-Time Technology and Applications Sym-
posium.

Rappaport, T. S. (1996). Wireless Communications - Principles & Practice. Upper Saddle
River, New Jersey, Prentice Hall PTR.

Rodrigues, L., H. Fonseca, et al. (1995). Reliable Computing over Mobile Networks. In
Proc. 5th International Workshop on Future Trends of Distributed Computing Sys-
tems, Ceju Island, Korea.

Rodrigues, L. and P. Verissimo (1992). xAMP: a Multi-Primitive Group Commuication
Service. In Proc. 11th Symposium on Reliable Distributed Systems, Houson, Texas,
USA.

Russel, S. J. and S. Zilberstein (1991). Composing Real-Time Systems. In Proc. 12th Int'l
Joint Conf. on Artificial Intelligence, Sydney, Australia.

Schemmer, S. (2000). Zuverlässige Echtzeit-Gruppenkommunikation auf einem lokalen
Funknetz. Diploma, Rheinische Friedrich-Wilhelms-Universität: Bonn.

Schemmer, S. and E. Nett (2003a). Achieving Reliable and Timely Task Execution in Mo-
bile Embedded Applications. In Proc. 9th IEEE International Workshop on Object-
oriented Real-time Dependable Systems (WORDS 2003F), Capri Island, Italy.

REFERENCES 171

Schemmer, S. and E. Nett (2003b). Managing Dynamic Groups of Mobile Systems. In
Proc. 6th International Symposium on Autonomous Decentralized Systems, Pisa, It-
aly.

Schemmer, S., E. Nett, et al. (2001). Reliable Real-Time Cooperation of Mobile Autono-
mous Systems. In Proc. 20th Symp. on Reliable Distributed Systems, New Orleans,
La.

Schmitt, T., S. Buck, et al. (2001). Cooperative Probabilistic State Estimation for Vision-
based Autonomous Mobile Robots. In Proc. IEEE Int'l Conf. on Intelligent Robots
and Systems.

Schmitt, T., R. Hanek, et al. (2002). Watch their Moves: Applying Probabilistic Multiple
Object Tracking to Autonomous Robot Soccer. In Proc. The Eighteenth National
Conference on Artificial Intelligence, Edmonton, Canada.

Sharon, O. and E. Altman (2001). An Effficient Polling MAC for Wireless LANs.
IEEE/ACM Transactions on Networking 9(4).

Sobrinho, J. L. and A. S. Krishnakumar (1996a). Distributed multiple access procedures to
provide voice communication over IEEE 802.11 wireless networks. In Proc. IEEE
Global Telecommunications Conference (GLOBECOM): Communications: The key
to global prosperty, London, England.

Sobrinho, J. L. and A. S. Krishnakumar (1996b). Real-Time Traffic over the IEEE 802.11
Medium Access Control Layer. Bell Labs Technical Journal 1(2): 172-187.

Spuri, M. and G. Buttazzo (1996). Scheduling Aperiodic Tasks in Dynamic Priority Sys-
tems. Real-Time Systems 10(2): 179-210.

Stankovic, J. A., M. Spuri, et al. (1998). Deadline Scheduling for Real-Time Systems: EDF
and Related Algorithms. Boston, Kluwer Academic Publishers.

Stroupe, M. M. and T. Balch (2001). Distributed sensor fusion for object position estima-
tion by multi-robot systems. In Proc. Int. Conf. on Robotics and Automation
(ICRA'01).

Sun, Q. and D. Sturman (2000). A Gossip-Based Reliable Multicast for Large-Scale High-
Throughput Applications. In Proc. Int'l Conf. on Dependable Systems and Net-
works, New York, N.Y.

Tanenbaum, A. S. (2003). Computer Networks. Upper Saddle River, Pearson Education
International.

Trikaliotis, S. (2004). Utilizing Fault-Tolerance for Achieving QoS in Ad-hoc Networks.
In Proc. Int'l Conf. on Architecture of Computing Systems, Augsburg, Germany.

van Hoesel, L. F. W., L. Dal Pont, et al. (2003). Design of an autonomous decentralized
MAC protocol for wireless sensor networks (fast abstract). In Proc. Sixth Int'l
Symp. on Autonomous Decentralized Systems, Pisa, Italy.

172 REFERENCES

van Renesse, R., K. P. Birman, et al. (1996). HORUS: A Flexible Group Communication
System. Communications of the ACM 39(4): 76-83.

Vandersee, S. (2004). Effiziente Realisierung in SDL spezifizierter Mikroprotokoll-
Architekturen. Diploma Thesis, Institute for Distributed Systems, Otto-von-
Guericke-University: Magdeburg, Germany.

Verissimo, P., V. Cahill, et al. (2003). CORTEX: Towards Supporting Autonomous and
Cooperating Sentient Entities. In Proc. European Research on Middleware and Ar-
chitectures for Complex and Embedded Cooperative Systems (held in conjunction
with ISADS'03), Pisa, Italy.

Verissimo, P., A. Casimiro, et al. (2000). The timely computing base: Timely actions in the
presence of uncertain timeliness. In Proc. Int'l Conf. on Dependable Systems and
Networks, New York City, USA.

Verissimo, P., J. Rufino, et al. (1991). Enforcing Real-Time Behavior on LAN-Based Pro-
tocols. In Proc. 10th IFAC Workshop on Distributed Computer Control Systems,
Semmering, Austria, IFAC.

Wang, Z., Y.-Q. Song, et al. (2002). Survey of Weakly-Hard Real Time Schedule Theory
and Its Application. In Proc. Int'l Symp. on Distributed Computing and Applica-
tions to Business, Engineering and Science, Wuxi, China.

Weber, J., K.-W. Jörg, et al. (2000). APR – Global Scan Matching Using An-chor Point
Relationships. In Proc. 6th Int'l Conf. on Intelligent Autonomous Systems.

Appendix A ― Formal Description of the
Communication Hardcore

We present here a formal specification of the communication hardcore. We use SDL
(Specification Description Language) as the formal language for the specification. SDL is
a standard of the International Telecommunication Union (ITU) (ITU-T 1993,ITU-T 1999)
and widely employed for the specification of communication systems, for which purpose it
was originally developed. For example, the IEEE 802.11 Standard includes a formal speci-
fication in SDL. For descriptions of the SDL the reader is referred to (Braek and Haugen
1993,Mitschele-Thiel 2001).

In an introductory sub-section, the structure of the specification is explained. Subse-
quently, the specifications of the protocols are presented bottom-up. For each protocol,
specifications of the services and interfaces, the PDUs, the AP entity, and the client entity
are provided. The presentation of each protocol is split into two parts. The first part pre-
sents a version working with static groups, whereas the second part presents the extensions
required to accommodate dynamic groups. The dynamic network scheduling and the mem-
bership protocol are presented in a single step, as they are not intended to be used in static
groups.

A.1 Structure of the Formal Model

In this section, we introduce the common structure of the following sections. Each section
comprises the same sequence of sub-sections. Following the approach we adopted in Chap-
ter 4, we present the protocols in two steps: First, a version for static groups, and subse-
quently, the extensions required to support dynamic groups will be presented. Hence, there
will be two sections for most of the protocols. Protocols that are only used in dynamic
groups ― that is to say, the dynamic network scheduling and the membership protocol ―
will be presented in a single section.

As explained above, there are two kinds of stations: the AP and the clients. The AP and the
clients exhibit asymmetric behaviors during the execution of the protocol. Accordingly,

 173

174 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

each protocol has two roles; that is, each layer consists of two kinds of layer entities, each
with its own behavioral specification. Therefore, we specify an AP and a client role for
each protocol.

All specifications belonging to the same layer are combined in an SDL package. Such a
package contains:

1. The specifications of the signals that are the service primitives of that layer. This
includes also those data types that are used to declare the parameters of the signals;

2. The specification of the PDUs;

3. The specification of the AP role;

4. The specification of the Client role.

Correspondingly, each of the following sections has four sub-sections, named “Services
and Interfaces”, “PDUs”, Specification of the AP Role”, and “Specification of the Client
Role”. Some of the sub-sections may be omitted in sections presenting the dynamic group
extensions of some protocol if there are no extensions to be presented in that sub-section.
For example, if no new PDUs need to be introduced to support dynamic groups, sub-
section “PDUs” will be omitted.

In the “Services and Interfaces” sub-section, the signals exchanged between the user and
the provider of the service are specified. The signal names observe the following naming
convention: <service_name>_<kind_of_signal>. We distinguish five kinds of signals poll,
rqu, ind, rsp, cnf. To request a service X the user sends a signal X_rqu to the service pro-
vider. There are services, called polled services, where the user is not free to send the
X_rqu at any time but only after receiving a polling signal X_poll from the service pro-
vider. For example, the AP_DATA service of the polling protocol is a polled service, where
the AP role sends an AP_DATA_poll signal to its user to solicit an AP_DATA_rqu. The
provider of a service X sends the signal X_ind to its user to indicate that a relevant event
w.r.t to that service has occured; for example, the client role of the polling protocol sends
an AP_DATA_ind to its user when it receives a data frame from the AP. We call a service a
responded service if the provider expects a signal X_rsp in response to the indication. Con-
sider as an example the service FAIL of the polling protocol: After indicating that a client
became invalid, the AP role waits until it receives a FAIL_rsp signal from the user in order
to give the user the chance to change the polling list in reaction to the indication. Finally, a
service is called a confirmed service if the provider sends a signal X_cnf to indicate
whether or not the requested services has been executed successfully. For example, a user
that initiates the JOIN service at the client role of the polling protocol gets a JOIN_cnf sig-
nal from the client role, when the client has been added to the polling list at the AP.

In the architecture, there is the concept of service “forwarding” or “inheriting” between
successive layers. A layer inherits a service from the lower layer if it uses that service and
also provides it to the following layer. This allows using a service initially realized on a
low layer of the architecture on all the following layers. Consider, for example, the
EXT_POLL service of the polling protocol. Not only the layer above the polling layer may
be interested in piggybacking data on the polling frames but also the layers above. This
kind of “forwarding” or “inheriting” a service allows stacking layers above each other that

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 175

all depend on the same service. If a layer inherits a service from a lower layer, the corre-
sponding signals need not be defined a second time in the specification of the higher layer.

Following the external, service-oriented view, the following sub-sections turn to the inter-
nals of the layer. Sub-section “PDUs” presents the definition of PDUs the protocol entities
exchange. There are typically several types of PDUs each with its own internal structure.
Each PDU type is defined as a SDL data type. For example, in the polling protocol the
peers exchange poll, data, and null PDUs.

The next two sub-sections present the specifications of the protocol roles. Each protocol
role is modeled as a SDL block type. The block type definitions of the protocol roles typi-
cally have a structure as depicted in Figure A-1.

Figure A-1. Example of the block type definition of a protocol role

The block type definition diagram reveals the internal structure of the protocol role. It de-
picts the SDL processes running in each instance of the protocol role (the single-lined six-
cornered box in Figure A-1), the signal flows between these processes, and the signal
flows between the processes and the environment of the protocol role. Most of the protocol
roles encompass a single process, like in the example above, but there are also roles that
comprise two processes ― like, for example, the reliable multicast protocol. For sake of
brevity, we omit block type diagrams that include only a single process and exhibit the
same structure as the example in Figure A-1.

176 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

Each process in a protocol role is the instance of a process type. For example, in Figure A-
1, the process p is an instance of the process type Polling_AP; the douple-lined six-
cornered box in the diagram represents a reference to the definition of the process type.
The specification of the behavior of a process is provided in the definition of its process
types. For each process type used in a protocol role its definition will be presented in the
SDL Textual Phrase Representation (SDL/PR). The definitions of the process types there-
fore represent the definition of the protocol’s behavior. The SDL/PR representation style is
somewhat more space efficient than the graphical representation, and since the single proc-
ess type definitions are not too complex, it should be similarly comprehendible as the
graphical representation. Each process type definition describes an extended finite state
machine (EFSM). An EFSM has a finite number of explicit, discrete states. Additionally,
EFSMs are allowed to contain variables as well, so that the values of these variables are
part of the state of the machine too. EFSMs communicate via signals. When an EFSM re-
ceives a signal it performs a state transition. During a transition, the EFSM can output sig-
nals or change the values of its variables.

The points where the instances of a process type connect with their environment are called
gates. For example, process p in Figure A-1 has three gates: SAP, BotPort, and MIB. If a
protocol role contains a single process, the gates of that process are connected to the corre-
sponding gates of the block type representing the protocol role (In Figure A-1, the arrows
outside of the box denote the gates of the block type). Thus, each instance of the protocol
role has the same three connection points SAP, BotPort, and MIB. The gate SAP represents
the service access point (SAP) of the protocol where it exchanges signals with its user. At
the gate BotPort, the protocol role accesses the services of the lower layer. Thus, in a
stack, the BotPort of a layer n entity is connected to SAP of the layer n-1 entity. Addition-
ally, a protocol role may have a MIB gate where it accesses the services of the Manage-
ment Information Base (MIB), which is a common information repository for the stack. For
each process type it is specified what signals it sends or receives across the gates.

In the presentation of the dynamic group extensions of a protocol, the first two sub-
sections introduce new services and signals and new PDU types respectively, which have
been added to support dynamic groups. To add dynamic group support in the specifications
of the protocol roles, we use inheritance. To extend a protocol role, we define a sub-type of
the block type representing that role. The new block type may add new structural elements
such as processes and gates to its super-type or redefine the properties of existing ele-
ments. The most important kind of specialization usually performed is to redefine the
process types within the protocol roles. Consider, for example, the polling protocol. In the
extended version of the AP role, the process type Polling_AP, which describes the behav-
ior of the AP role, is redefined to change the behavior of the role. The redefined process
type inherits the specification of the process type it refines. When redefining a process
type, one can add new states, new variables, and new transitions, or change transitions of
the refined type. Using the inheritance/redefinition facility of the SDL, we are able focus
on those aspects that need to be added to or changed in the protocol to support dynamic
groups.

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 177

A.2 Polling

Services and Interfaces

/* --

 SERVICE: AP_DATA, AP initiated

 Transmit data from the AP to the clients. Data is transmited on behalf of the
 owner of the current polling list entry. Polled service

 SIGNALS

 AP_DATA_poll(s), AP
 's' station on behalf of which frame transmission may be requested

 AP_DATA_rqu(a,s), AP
 AP requests transmission of SDU 's' to destination 'a'. Source address is
 the station mentioned in the correspoding AP_DATA_poll

 AP_DATA_ind(SA,s), Client
 Indicates SDU 's' from the AP. 'SA' is the source address

 ------–---*/

signal /* SERVICE AP_DATA */
 AP_DATA_ind(AddressType,SDU),
 AP_DATA_rqu(AddressType,SDU),
 AP_DATA_poll(StationId);

/* --

 SERVICE: CL_DATA, Client initiated

 SIGNALS:

 CL_DATA_poll(s), Client
 Poll for transmission of a frame to the AP. 's' is an SDU that was
 provided at the AP over the POLL_EXT service (see SERVICE POLL_EXT).

 CL_DATA_rqu(DA,s), Client
 Request to transmit SDU 's' to the AP. 'DA' is the destination address.

 CL_DATA_ind(sid,s), AP
 Indicates that SDU 's' was received. 'sid' is the StationID of the source
 station.

 ---*/

signal /* SERVICE CL_DATA */
 CL_DATA_rqu(AddressType,SDU),
 CL_DATA_poll(SDU),
 CL_DATA_ind(StationId,SDU);

/* ---

 SERVICE POLL_EXT, AP initiated

 Allows the user to transmit SDUs in the polling frames. At the client, the

178 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

 SDU will be indicated in the CL_DATA_poll primitiv.

 SIGNALS:

 POLL_EXT_poll(sid)
 Poll for an SDU to be transmitted in the following poll to station 'sid'.

 POLL_EXT_rqu(s)
 Request transmission of SDU 's' in the following poll.

 --*/

signal /* SERVICE POLL_EXT */
 POLL_EXT_poll(StationId),
 POLL_EXT_rqu(SDU);

/* --

 SERVICE FAIL, AP only

 Notify that station has became invalid

 SIGNALS:
 FAIL_ind(sid)
 'sid' ID of the failed station

 FAIL_rsp.

 --*/

signal /* SERVICE FAIL */
 FAIL_ind(StationId),
 FAIL_rsp;

/* --

 SERVICE PL_SET, AP only

 Set the polling list

 SIGNALS:

 PL_SET_rqu(pl)
 Request to set the polling list to 'pl'.

 --*/

signal /* SERVICE PL_SET */
 PL_SET_rqu(PollingList);

/*--

 PollingListEntry

 The polling list consists of polling list entries. Each entry corresponds to
 a reservation of the medium. Attributes:

 owner: station ID of the client who owns the reservation
 entry_type:
 - poll: poll a client
 - relay: AP is allowed to transmit a message on behalf of a certain
 client
 - jpoll: Broadcast a polling message including a station ID
 stack: PID of the protocol stack that this reservation belongs to.
 pePeriodic: Slot is periodic/sporadic

 -- */

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 179

value type PollingListEntryType;
 literals poll,relay,jpoll;
endvalue type;

value type PollingListEntry
 struct
 peType PollingListEntryType,
 peOwner StationId,
 peStack PId,
 pePeriodic Boolean
endvalue type;

value type PollingString inherits MyString<PollingListEntry>;

value type PollingList;
 struct
 list PollingString;
 cur Integer;

 operators

 /* get current polling list entry */
 cur(this PollingList) -> PollingListEntry;

 /* get address of the current slot owner */
 cur(this PollingList) -> AddressType;

 /* remove all entries with owner station id */
 remove(this PollingList,StationId) -> this PollingList;

 /* remove the current entry from the polling list */
 remove_cur(this PollingList) -> this PollingList;

 /* add entry of given type and owner after the current position
 increment current position */
 add(this PollingList,PollingListEntryType,StationId,PId) -> this PollingList;

 /* add polling list entry after given position */
 add(this PollingList,Natural,PollingListEntry) -> this PollingList;

 /* next entry becomes current entry */
 iterate(this PollingList) -> this PollingList;

 /* true if StationId has an entry in the polling list */
 has_rgcp_slot(this PollingList, StationId) -> Boolean;

endvalue type PollingList;

PDUs

value type Poll_PDUTypes;
 literals null,poll,data,jpoll,jrqu;
endvalue type;

value type Poll_PDU inherits PDU;
 struct
 pduType Poll_PDUTypes;
endvalue type Poll_PDU;

value type Poll_PDU_poll inherits Poll_PDU;
 struct
 sdu SDU;
endvalue type Poll_PDU_poll;

value type Poll_PDU_data inherits Poll_PDU ;
 struct

180 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

 sdu SDU;
endvalue type Poll_PDU_data;

Specification of the AP Role

virtual process type Polling_AP ;

 gate SAP
 in with AP_DATA_rqu, POLL_EXT_rqu;
 out with CL_DATA_ind,
 AP_DATA_poll,
 POLL_EXT_poll;

 gate BotPort
 in with MDAT_ind, MDAT_STATUS_ind;
 out with MDAT_rqu;

 gate MIB
 out with remote INIT_PL;

 /* constants */
 synonym
 toValPoll Duration = 2*messageDelay;

 /* state */
 dcl
 exported pl PollingList :=
 (. emptystring,0 .);
 timer toPoll := toValPoll;

 /* temp vars */
 dcl
 s AddressType,
 SA,DA,RA AddressType,
 msg SDU,
 p Poll_PDU;

 virtual procedure pollNext;

 dcl
 sdu SDU;

 start virtual;
 decision cur(pl).pePeriodic;
 (false):
 task pl := remove_cur(pl);
 enddecision;

 task pl := iterate(pl);
 decision cur(pl).peType;
 (relay):
 output AP_DATA_poll(
 cur(pl).peOwner)
 to cur(pl).peStack;
 return;
 (poll):
 output POLL_EXT_poll(
 cur(pl).peOwner)

 to cur(pl).peStack;
 nextstate wait_rqu_ext;
 enddecision;

 state wait_rqu_ext;
 input POLL_EXT_rqu(sdu);
 output MDAT_rqu(
 APAddress,cur(pl),
 SDU(mk_poll(msg)));
 set(toPoll);
 return;
 endstate wait_rqu_ext;

 endprocedure pollNext;

 start;
 task pl := import(INIT_PL),
 output SET_PL_rqu(pl);
 call pollNext ;
 nextstate normal ;

 state normal ;
 input AP_DATA_rqu(DA,msg);
 output MDAT_rqu(DA,cur(pl),msg);
 nextstate wait_ind;

 input virtual MDAT_ind(SA,DA,msg) ;
 l1 : reset(toPoll),
 p := Poll_PDU(msg);
 decision p.pduType;
 (null) : join go_on;
 else:
 output CL_DATA_ind(
 cur(pl).peOwner,msg);
 join go_on;
 enddecision;
 go_on:
 call pollNext;
 nextstate normal ;

 input virtual toPoll ;
 call pollNext;
 nextstate normal ;
 endstate;

 state wait_ind;
 input MDAT_STATUS_ind;
 call pollNext;
 nextstate normal ;
 endstate wait_ind;

endprocess type;

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 181

Specification of the Client Role

process type Polling_CL;

 gate SAP
 in with CL_DATA_rqu ;
 out with AP_DATA_ind,CL_DATA_poll ;

 gate BotPort
 in with MDAT_ind ;
 out with MDAT_rqu ;

 gate MIB
 out with remote OWNADDR ;

 /* input vars */
 dcl
 SA,DA AddressType,
 OA AddressType, /* own address */
 sdu SDU;

 /* tmp vars */
 dcl
 p Poll_PDU,
 p_data Poll_PDU_data;

 start;
 task OA := import(OWNADDR) ;
 nextstate WaitPoll;

 state WaitRqu ;
 input CL_DATA_rqu(DA,sdu);
 decision sdu;

 (''B) :
 output MDAT_rqu(
 OA,DA,SDU(mk_null));
 nextstate - ;
 else:
 output MDAT_rqu(OA,DA,
 SDU(mk_data(sdu)));
 nextstate - ;
 enddecision;
 endstate;

 state WaitPoll ;
 input MDAT_ind(SA,DA,sdu);
 task p := Poll_PDU(sdu);
 decision p.pduType ;
 (data) :
 data :
 output AP_DATA_ind(
 SA,Poll_PDU_data(sdu).sdu);
 nextstate - ;
 (poll) :
 poll :
 output CL_DATA_poll(sdu);
 nextstate WaitRqu ;
 else:
 nextstate - ;
 enddecision;
 endstate;
endprocess type;

182 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

A.3 Polling – Dynamic Group Extensions

Services and Interfaces

/* ---

 SERVICE JOIN

 Allows a station that is not yet part of the APs polling list to transmit
 data.

 SIGNALS:

 JOIN_init(sid), Client
 Initiate the service. 'sid' is the identifier (track identifier, e.g.) to
 react to.

 JOIN_poll, Client
 Poll for SDU

 JOIN_rqu(s), Client
 Request SDU 's' be transmitted to the AP.

 JOIN_ind(SA,s), AP
 Indicates that a SDU 's' was received after a jpoll. 'SA' is the
 address of the source station.

 JOIN_rsp, AP
 User signals it has reacted to JOIN_ind.

 JOIN_cnf, Client
 Confirms that the station's being added to APs polling list.

 JOIN_START_ind, Client
 Indicate that joining started

 ---*/

signal /* SERVICE JOIN */
 JOIN_init(StationId),
 JOIN_poll,
 JOIN_rqu(SDU),
 JOIN_cnf,
 JOIN_ind(AddressType,SDU),
 JOIN_rsp,
 JOIN_START_ind;

PDUs

value type Poll_PDU_jpoll inherits Poll_PDU ;
 struct
 st StationId;
 sdu SDU;
endvalue type Poll_PDU_jpoll;

value type Poll_PDU_jrqu inherits Poll_PDU;
 struct
 sdu SDU;

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 183

endvalue type Poll_PDU_jrqu;

Specification of the AP Role

redefined process type Polling_AP ;

 gate SAP adding
 in with JOIN_rsp, FAIL_rsp,
 PL_SET_rqu ;
 out with JOIN_ind,
 FAIL_ind,SET_PL_rqu ;

 redefined procedure pollNext;

 start redefined;
 task
 pl := iterate(pl);
 output SET_PL_rqu(pl);
 decision cur(pl).peType;
 (relay):
 output AP_DATA_poll(
 cur(pl).peOwner)
 to cur(pl).peStack;
 return;
 (poll):
 output POLL_EXT_poll(
 cur(pl).peOwner)
 to cur(pl).peStack;
 nextstate wait_rqu_ext;
 (jpoll):
 output MDAT_rqu(
 APAddress,bcAddress,
 SDU(
 mk_jpoll(cur(pl).peOwner)));
 set(toPoll);
 return;
 enddecision;

 endprocedure pollNext;

 value type StationType
 struct
 nl Natural = 0;
 endvalue type StationType;
 synonym StationNull StationType =
 (. 0 .);

 value type StationString
 inherits MyString<StationType>;
 endvalue type;

 dcl
 station StationString;

 state wait_new_rsp ;
 input JOIN_rsp ;

 join_rsp:
 call pollNext ;
 nextstate normal ;
 endstate;

 state wait_PF_rsp ;
 input FAIL_rsp ;
 join join_rsp:
 endstate;

 state normal ;
 input redefined MDAT_ind(
 SA,DA,msg);
 decision cur(pl).peType;
 (jpoll) :
 reset(toPoll) ;
 output JOIN_ind(SA,msg);
 nextstate wait_new_rsp;
 else:
 task station(
 cur(pl).peOwner).nl := 0 ;
 join l1 ;
 enddecision;

 input redefined toPoll ;
 decision cur(pl).peType;
 (jpoll) : join join_rsp;
 else:
 task station(
 cur(pl).peOwner).nl :=
 station(cur(pl).peOwner).nl
 +1;
 decision station(
 cur(pl).peOwner).nl ;
 (> OD) :
 output FAIL_ind(
 cur(pl).peOwner);
 nextstate wait_PF_rsp ;
 else:
 join join_rsp;
 enddecision;
 enddecision;

 endstate;

 state*;
 input PL_SET_rqu(pl) ;
 SET_PL_rqu(pl) ;
 nextstate - ;
 endstate;

endprocess type Polling_AP;

184 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

Specification of the Client Role

redefined
process type Polling_CL ;

 gate SAP adding
 in with JOIN_init,JOIN_rqu ;
 out with JOIN_cnf,JOIN_poll ;
 JOIN_START_ind;
 /* state vars */
 dcl
 st StationId := 0;

 /* temp vars */
 dcl
 jp Poll_PDU;

 state wait_JOIN_rqu;
 input JOIN_rqu(sdu);
 output MDAT_rqu(OA,
 APAddress,SDU((. jrqu,sdu .)));
 nextstate joining ;
 endstate;

 state WaitPoll ;
 input JOIN_init(st) ;
 output JOIN_START_ind;

 nextstate joining ;
 endstate;

 state joining ;
 input MDAT_ind(SA,DA,sdu);
 task p := Poll_PDU(sdu);
 decision p.pduType;
 (jpoll) :
 decision Poll_PDU_jpoll(
 sdu).st = st;
 (true) :
 output JOIN_poll ;
 nextstate wait_JOIN_rqu;
 (false) :
 nextstate joining ;
 enddecision;
 (data) :
 join data ;
 (poll) :
 output JOIN_cnf ;
 join poll ;
 enddecision;
 endstate;

endprocess type Polling_CL;

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 185

A.4 Dynamic Network Scheduling

Services and Interfaces

/* --

 SERIVCE: EXCL, AP only, responded service

 Exclude clients invalid clients.

 SIGNALS:

 EXCL_ind(s):
 Indicates that client with StationId 's' has been excluded.

 EXCL_rsp:
 --- */

signal /* SERVICE EXCL */
 EXCL_ind(StationId),
 EXCL_rsp

/* --

 SERVICE: RESMED, Client initiated, confirmed service

 Reserve bandwidth by requesting to be added to the polling list. For the time
 being only reservation for the RGCP are supported.

 SIGNALS:

 RESMED_rqu(id, type), Client
 request to be added to the polling list. 'id' is the track id used for
 the 'JOIN' service of the polling protocol. 'type' indicates the type
 of reservation requested.

 RESMED_cnf, Client

 --- */

signal /* SERVICE RESMED */
 RESMED_rqu(StationId,ResType),
 RESMED_cnf;

value type ResType;
 literals rgcp;
endvalue type;

/* --

 SERVICE: NEW, AP only, responded service

 Notification that new member has been added.

 SIGNALS

 NEW_ind(s)
 's': StationID of the client.

 NEW_rsp

186 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

 --- */

signal /* SERVICE NEW */
 NEW_ind(StationId),
 NEW_rsp;

PDUs

value type DMA_PDU;
 struct
 res_type ResType;
 sdu SDU;
endvalue type;

Specification of the AP Role

process type DynMedAcc_AP;

 /* signature */

 gate BotPort
 in with FAIL_ind,JOIN_ind;
 out with FAIL_rsp,JOIN_rsp,
 PL_SET_rqu, remote PL;

 gate MIB
 out with procedure IDADDR_SET,
 remote IDADDR,
 remote STACKPID,
 remote EXCL_NOT;

 gate SAP
 in with EXCL_rsp, NEW_rsp;
 out with EXCL_ind, NEW_ind,
 CL_DATA_ind;

 /* tmp vars */
 dcl
 s StationId,
 a AddressType,
 sdu SDU,
 p DMA_PDU,
 id2addr AddrIdArray,
 allocated Boolean;

 procedure allocate_rgcp;
 returns Boolean;

 dcl
 sp PId ,
 pl PollingList;

 start;
 decision s = no_id;
 (true): task
 id2addr := add(id2addr,a),
 s := id(id2addr,a);
 call IDADDR_SET(id2addr);

 (false):
 enddecision;
 task
 sp := import(STACKPID)(rgcp),
 pl := import(PL);
 decision has_rgcp_slot(pl,s);
 (true): return false;
 (false):
 output PL_SET_rqu(
 add(add(pl,poll,s,sp),
 relay,s,sp));
 return true;
 enddecision;

 endprocedure allocate_rgcp;

 procedure free_rgcp;

 dcl
 sp PId ,
 pl PollingList,
 j Natural;

 start;
 task
 pl := import(PL),
 sp := import(STACKPID)(rgcp);
 output EXCL_ind(s) to sp;
 nextstate wait_EXCL_rsp;

 state wait_EXCL_rsp;

 input EXCL_rsp;
 task 'let j be the position of
 the rgcp polling slot of s';
 decision import(EXCL_NOT);
 (true):
 task pl :=
 add(pl,j,
 (. relay,s,sp,false .));
 (false):
 enddecision;
 task pl :=

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 187

 remove(remove(pl,j+1),j+1),
 pl.cur := if j = pl.cur
 then (pl.cur - 1) mod
 length(pl.list)
 else pl.cur fi;
 output PL_SET_rqu(pl);
 return;

 endstate wait_EXCL_rsp;

 endprocedure free_rgcp;

 start;
 nextstate normal;

 state normal;

 input JOIN_ind(a,sdu);
 task
 p := DMA_PDU(sdu),
 id2addr := import(IDADDR),
 s := id(id2addr,a);
 decision p.res_type;
 (rgcp):
 task allocated :=
 call allocate_rgcp;

 else:
 /* other types are not yet
 handled */
 enddecision;

 decision allocated;
 (true): output NEW_ind(s);
 (false): output JOIN_rsp;
 enddecision;
 nextstate -;

 input NEW_rsp;
 output CL_DATA_ind(s,p.sdu);
 output JOIN_rsp;
 nextstate normal;

 input FAIL_ind(s);
 call free_rgcp;
 output FAIL_rsp;
 nextstate normal;

 endstate normal;

endprocess type DynMedAcc_AP;

Specification of the Client Role

process type DynMedAcc_CL;

 /* signature */

 gate SAP
 in with RESMED_rqu;
 out with RESMED_cnf;

 gate BotPort
 in with JOIN_poll, JOIN_cnf;
 out with JOIN_rqu, JOIN_init;

 /* state */

 dcl
 t ResType; /* reservation type */

 /* tmp vars */
 dcl
 rid StationId;

 start;
 nextstate idle;

 state idle;

 input RESMED_rqu(rid,t);
 output JOIN_init(rid);
 nextstate reserving;

 endstate idle;

 state reserving;

 input JOIN_poll;
 output JOIN_rqu(SDU(
 (. t,''B .)));
 nextstate reserving;

 input JOIN_cnf;
 output RESMED_cnf;
 nextstate idle;

 endstate reserving;

endprocess type DynMedAcc_CL;

188 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

A.5 Reliable Multicast

Services and Interfaces

/* --

PROTOCOL: RelMul

SERVICE RELMC, Client only

Transmission of reliable multicasts.

SIGNALS

RELMC_poll: poll for RELMC_rqu.
RELMC_rqu(r,sdu): Request transmission of sdu. 'r' is the resiliency of the
 message.
RELMC_ind(a,sdu): Deliver reliable multicast 'sdu'. Source station's address
 is a.

 --- */

signal /* SERVICE RELMC, client only */
 RELMC_poll,
 RELMC_rqu(Natural, SDU),
 RELMC_ind(AddressType,SDU);

/* --

SERVICE PB_BC, AP initiated

Allows a user at the AP to transmit data via piggy-backing in the mc frames the
AP sends for reliable multicast transmission. The service deliver a global
sequence number at the receiver user together with the piggy-backed SDU.

SIGNALS

PB_BC_poll(sg): AP. Poll for PB_BC_rqu. The SDU provided in the rqu will be
transmitted on the mc frame with global sequence no. 'sg'.

PB_BC_rqu(sdu): AP. Request transmission of SDU via piggy-backing. sdu should
be small.

PB_BC_ind(sdu,sg): Client. Piggy-bagged data received in a mc frame. 'sg' global
seq. no. of the mc frame

 --- */

signal /* SERVICE PB_BC */
 PB_BC_poll(StationId,Natural),
 PB_BC_rqu(SDU),
 PB_BC_ind(SDU,Natural);

/* --

SERVICE RELMC_STAT, AP only

Indicates the status of multicast messages when the protocol terminates their
transmission.

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 189

SIGNALS

RELMC_STAT_ind(s,stat) indicates the status of a multicast message send on
behalf of client with station ID s, when the protocol terminates the
transmission.

RELMC_STAT_rsp(b)

 --- */

/* SERVICE RELMC_STAT, AP only */

value type StatusEnum;
 literals acked, ODretries, resretries;
endvalue type;

signal
 RELMC_STAT_ind(StationId,StatusEnum),
 RELMC_STAT_rsp(Boolean);

/* --

SERVICE ACKS, AP only

Delivers the acks of clients.

SIGNALS

ACKS_ind(s,a): Indicates that client with station ID 's' has sent acknowledgments
for all stations in StationIDSet 'a'.

 --- */

signal /* SERVICE ACKS, AP only */
 ACKS_ind(StationId,StationIdSet);

PDUs

/* --

 PDUs

 ---*/

value type BooleanString inherits MyString<Boolean>;
 operators
 Octetstring : this BooleanString -> Octetstring;
endvalue type BooleanString;

value type RM_Poll_PDU inherits PDU;
 struct
 r Natural;
 sg Natural;
 sdu SDU;
endvalue type RM_Poll_PDU;

value type RM_Rqu_PDU inherits PDU;
 struct
 sl Natural;
 res Natural;
 acks BooleanString;
 sdu SDU;
endvalue type RM_Rqu_PDU;

value type RM_Bc_PDU inherits PDU;
 struct
 sl Natural;

190 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

 sg Natural;
 piggyLoad SDU;
 sdu SDU;
endvalue type RM_Bc_PDU;

/* --

 INTERNAL SERVICES

 INT SERVICE RELMC_RQU_ind, AP only

 indicates that the client has transmitted a request to multicast a sdu.

 SIGNALS

 RELMC_RQU_ind(s,sl,r,sdu): 's' the station ID of the source station, 'sl' the
 local seq. no. of the SDU, 'r' the resiliency of the SDU, 'sdu' the SDU.

 ---*/

signal /* SERVICE RELMC_RQU_ind */
 RELMC_RQU_ind(StationId, Natural, Natural, SDU);

/* ---

 package global classes

 --*/

value type Tuple;
 struct
 ad AddressType;
 sl Natural;
endvalue type Tuple;

value type TupleCache inherits MyString<Tuple>;
 operators
 search : this TupleCache, AddressType -> Natural;
 update : this TupleCache, Natural, Tuple -> this TupleCache;
 insert : this TupleCache, Tuple -> this TupleCache;
endvalue type TupleCache;

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 191

Specification of the AP Role

[remote INIT_G]

[POLL_EXT_rqu,PB_BC_rqu]

[POLL_EXT_poll,PB_BC_poll,

ACKS_ind,RELMC_STAT_ ind]

[AP_DATA_pol]l

[AP_DATA_rqu]

ap2c :

RM_AP2CL_AP

c2ap :

RM_CL2AP_AP

[AP_DATA_poll,CL_DATA_ ind, POLL_EXT_poll]

[AP_DATA_rqu, POLL_EXT_rqu]

1(2)Block Type ReliableMulticast_AP

BotPort

BotPort

SAP

BotPort

SAP

SAP

MIB MIB

MIB

[remote INIT_G]

[POLL_EXT_rqu,PB_BC_rqu]

[POLL_EXT_poll,PB_BC_poll,

ACKS_ind,RELMC_STAT_ ind]

[AP_DATA_pol]l

[AP_DATA_rqu]

ap2c :

RM_AP2CL_AP

c2ap :

RM_CL2AP_AP

[AP_DATA_poll,CL_DATA_ ind, POLL_EXT_poll]

[AP_DATA_rqu, POLL_EXT_rqu]

1(2)Block Type ReliableMulticast_AP

BotPort

BotPort

SAP

BotPort

SAP

SAP

MIB MIB

MIB

Figure A-2. Reliable multicast protocol, AP role

virtual process type RM_CL2AP_AP;

 gate SAP
 in with POLL_EXT_rqu;
 out with POLL_EXT_poll, CL_DATA_ind,
 RELMC_RQU_ind;

 gate BotPort
 in with POLL_EXT_poll,CL_DATA_ind;
 out with POLL_EXT_rqu;

 gate MIB
 out with remote INIT_G;

 /* types */
 value type Station;
 struct
 r Natural := 0;
 sl Natural := 0;
 endvalue type Station;
 synonym StationNull = (. 0,0 .);

 value type StationList
 inherits MyString<Station>;

 endvalue type StationList;

 /* state */
 dcl
 station StationList,
 s StationId;

 /* tmp vars */
 dcl
 p RM_Rqu_PDU,
 RA,TA AddressType,
 sdu SDU;
 pp RM_Poll_PDU;

 start;
 task station := mkstr(StationNull,
 setsize(import(INIT_G)));
 nextstate normal;

 state normal;

 /* Eliminate duplicates */
 input CL_DATA_ind(s,sdu);
 task p := RM_Rqu_PDU(sdu);
 decision station(s).sl = 0 or

192 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

 p.sl > station(s).sl;
 (true):
 output RELMC_RQU_ind(
 s,p.sl,p.res,sdu);
 task station(s).sl := p.sl;
 else:
 enddecision;
 output CL_DATA_ind(s,sdu);
 nextstate -;

 input POLL_EXT_poll(s);
 output POLL_EXT_poll(s);
 nextstate -;

 /* Add round no. */
 input POLL_EXT_rqu(sdu);
 task
 pp := RM_Poll_PDU(sdu),
 station(s).r := station(s).r+1,
 pp.r := station(s).r;
 output POLL_EXT_rqu(SDU(pp));
 nextstate -;

 endstate normal;

endprocess type RM_CL2AP_AP;

virtual process type RM_AP2CL_AP;

 gate BotPort
 in with AP_DATA_poll, POLL_EXT_poll,
 CL_DATA_ind,RELMC_RQU_ind;
 out with AP_DATA_rqu,POLL_EXT_rqu;

 gate SAP
 out with POLL_EXT_poll,PB_BC_poll,
 RELMC_STAT_ind, ACKS_ind;
 in with POLL_EXT_rqu,PB_BC_rqu;

 gate MIB
 out with remote INIT_G;

 /* types */
 value type QueueItem;
 struct
 sl Natural;
 res Natural;
 sdu SDU;
 tr Natural;
 endvalue type QueueItem;
 value type WaitQueue
 inherits MyString<QueueItem>;
 endvalue type WaitQueue;
 value type TransmState;
 literals idle,wait4ack;
 endvalue type TransmState;

 value type Station;
 struct
 wQ WaitQueue;
 lp Natural;
 acked StationIdSet;
 trstate TransmState;
 endvalue type Station;
 synonym StationNull Station
 = (. emptystring,0,empty,idle .);

 value type StationList
 inherits MyString<Station>;
 endvalue type StationList;

 value type StationIDList
 inherits MyString<StationId>;
 endvalue type StationIDList;

 /* state */
 dcl
 g StationIdSet,
 station StationList,
 polled_stations StationIDList
 := emptystring,
 sg Natural := 0,
 s StationId;

 /* tmp vars */
 dcl
 o Natural,
 SA AddressType,
 sdu SDU,
 res, sl Natural,
 p RM_Rqu_PDU,
 l Natural,
 ackedIds StationIdSet;

 start;
 task
 g := import(INIT_G),
 station := mkstr(StationNull,
 setsize(g));
 nextstate normal;

 state normal;

 input virtual AP_DATA_poll(s);
 decision station(s).trstate;
 (wait4ack):
 decision g <= station(s).acked;
 (true):
 output RELMC_STAT_ind(
 s,acked);
 task
 station(s).wQ :=
 tail(station(s).wQ),
 station(s).acked := empty;
 (false):
 not_acked:
 decision
 first(station(s).wQ).tr =
 first(station(s).wQ).res+1;
 (true):
 decision
 first(station(s).wQ).res
 = OD;
 (true):
 output RELMC_STAT_ind(
 s,ODretries);
 (false):
 output RELMC_STAT_ind(
 s,resretries);
 enddecision;
 task
 station(s).wQ :=
 tail(station(s).wQ),
 station(s).acked :=
 empty;
 (false):
 enddecision;

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 193

 enddecision;
 (idle):
 enddecision;

 output PB_BC_poll(s,sg);
 nextstate -;

 input PB_BC_rqu(sdu);
 decision station(s).wQ
 /= emptystring;
 (true):
 output AP_DATA_rqu(bcAddress,
 SDU ((.
 first(station(s).wQ).sl,
 sg,sdu,
 first(
 station(s).wQ).sdu .)));
 task
 station(s).wQ(1).tr
 := station(s).wQ(1).tr+1,
 station(s).trstate :=
 wait4ack;
 else:
 output AP_DATA_rqu(bcAddress,
 SDU((. 0,sg,sdu,''B .)));
 task
 station(s).trstate := idle;
 enddecision;
 nextstate -;

 /* eval acks */
 input CL_DATA_ind(s,sdu);
 task
 p := RM_Rqu_PDU(sdu),
 ackedIds := empty;
 task '{
 for(dcl i := 0,
 i < length(polled_stations)-1,
 i := i+1)
 {
 if (p.acks(i) = true) {
 station(
 polled_stations(i+1)).sacked

 := incl(s,
 station(
 polled_stations(i+1)
).sacked);
 ackedIds := incl(
 polled_stations(i+1),
 ackedIds);
 }
 }
 }';
 output ACKS_ind(s,ackedIds);
 nextstate -;

 input RELMC_RQU_ind(s,sl,res,sdu);
 task
 p := RM_Rqu_PDU(sdu),
 station(s).wQ := station(s).wQ
 // mkstring(
 (. sl,res,sdu,0 .));
 nextstate -;

 input POLL_EXT_poll(s);
 task
 sg := sg + 1,
 polled_stations := mkstring(s)
 // polled_stations,
 l := sg - station(s).lp+1,
 polled_stations := substring(
 polled_stations,
 length(polled_stations)-l,l);
 station(s).lp := sg;
 output POLL_EXT_poll(s);
 nextstate -;

 input POLL_EXT_rqu(sdu);
 output POLL_EXT_rqu(
 SDU((. 0,sg,sdu .)));
 nextstate -;

 endstate normal;

endprocess type RM_AP2CL_AP;

194 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

Specification of the Client Role

[remote OWNADDR]

[PB_BC_ind]

[CL_DATA_ rqu]

[CL_DATA_poll,

AP_DATA_ ind]

a2c : RM_AP2CL_CL

[CL_DATA_poll,AP_DATA_ ind]

[CL_DATA_ rqu]

[RELMC_rqu]

[RELMC_poll,RELMC_ind] [PB_BC_ind]

RM_c2a :

RM_CL2AP_CL

1(2)Block Type ReliableMulticast_CL

SAPMC_SAP

SAP

BotPort

BotPort

intSAP

BotPort

SAP

MIBMIB

[remote OWNADDR]

[PB_BC_ind]

[CL_DATA_ rqu]

[CL_DATA_poll,

AP_DATA_ ind]

a2c : RM_AP2CL_CL

[CL_DATA_poll,AP_DATA_ ind]

[CL_DATA_ rqu]

[RELMC_rqu]

[RELMC_poll,RELMC_ind] [PB_BC_ind]

RM_c2a :

RM_CL2AP_CL

1(2)Block Type ReliableMulticast_CL

SAPMC_SAP

SAP

BotPort

BotPort

intSAP

BotPort

SAP

MIBMIB

Figure A-3. Reliable multicast protocol, client role

virtual process type RM_CL2AP_CL;

 gate BotPort
 in with CL_DATA_poll, AP_DATA_ind;
 out with CL_DATA_rqu;

 gate SAP
 in with RELMC_rqu;
 out with RELMC_poll;

 gate intSAP
 in with CL_DATA_rqu;
 out with CL_DATA_poll, AP_DATA_ind;

 gate MIB
 out with remote OWNADDR;

 dcl /* state */
 curSDU SDU := ''B,
 curSeq Natural := 0,
 curRes Natural := 0,
 lrts Natural := 0,
 lr Natural := 0,
 OA AddressType;

 dcl /* input vars */
 p RM_Poll_PDU,
 rqu RM_Rqu_PDU,
 sdu SDU,
 SA,DA AddressType;

 start;

 task OA := import(OWNADDR);
 nextstate normal;

 state normal;

 input RELMC_rqu(curRes, sdu);
 task
 curSDU := sdu,
 curSeq := curSeq + 1;
 lrts := lr + curRes;
 nextstate -;

 input CL_DATA_rqu(DA,sdu);
 task rqu := RM_Rqu_PDU(sdu),
 rqu.sl := curSeq, rqu.res :=
 curRes, rqu.sdu := curSDU;
 output CL_DATA_rqu(
 bcAddress,SDU(rqu));
 nextstate -;

 input CL_DATA_poll(sdu);
 task p := RM_Poll_PDU(sdu),
 lr := p.r;
 decision lr > lrts
 or curSDU = ''B;
 (true):
 task curSDU := ''B;
 output RELMC_poll;
 else:
 enddecision;
 output CL_DATA_poll(sdu);
 nextstate -;

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 195

 input AP_DATA_ind(SA,sdu);

 decision SA = OA
 and RM_Bc_PDU(sdu).sl =
 curSeq;
 (true): task curSDU := ''B;
 else:
 enddecision;
 output AP_DATA_ind(SA,sdu);
 nextstate -;

 endstate normal;

endprocess type RM_CL2AP_CL;

virtual process type RM_AP2CL_CL;

 gate SAP
 out with RELMC_ind, PB_BC_ind;

 gate BotPort
 in with CL_DATA_poll, AP_DATA_ind;
 out with CL_DATA_rqu;

 dcl /* state */
 ack BooleanString := emptystring,
 tc TupleCache := emptystring,
 lr Natural := 0,
 lp Natural := 0;

 dcl /* inp. vars */
 dst,SA AddressType,
 res Natural,
 r Natural,
 sdu SDU;

 dcl /* tmp vars */
 p RM_Poll_PDU,
 pBC RM_Bc_PDU,
 ind Natural;

 start virtual;
 nextstate normal;

 state normal;

 input CL_DATA_poll(sdu);
 task
 p := RM_Poll_PDU(sdu),
 ack := mkstr(false,
 p.sg - lp - length(ack))
 // ack,
 ack := substring(ack,0,
 MAX_STATIONS),
 lp := p.sg;
 output CL_DATA_rqu(bcAddress,
 SDU((. 0,0,ack,''B .)));
 task ack := emptystring;
 nextstate -;

 input AP_DATA_ind(SA,sdu);
 task
 pBC := RM_Bc_PDU(sdu);
 ack := mkstring(true)
 // mkstr(false,
 pBC.sg - lp - length(ack))
 // ack;
 join ElemDupAndDeliver;

 endstate normal;

 connection ElemDupAndDeliver:
 task ind := search(tc,SA);
 decision ind = 0
 or pBC.sl > tc(ind).sl;
 (true):
 output RELMC_ind(SA,pBC.sdu);
 task tc :=
 if ind = 0
 then update(
 tc,ind,(. SA, pBC.sl .))
 else insert(
 tc,(. SA,pBC.sl .)) fi;
 else:
 enddecision;
 output PB_BC_ind(
 pBC.piggyLoad,pBC.sg);
 nextstate -;
 endconnection ElemDupAndDeliver;

endprocess type RM_AP2CL_CL;

196 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

A.6 Reliable Multicast – Dynamic Group Extensions

Services and Interfaces

/* --

SERVICE PEND_GET

exports the set of pending multicasts when a new
station joins the group

SIGNALS

realized as remote variable PEND

 -- */

remote /* SERVICE PEND, AP only */
 PEND StationIdSet;

/* --

SERVICE: NEW,EXCL, AP only
inherited from DynMedAcc

SERVICE: JOIN_START_ind, CL only
inherited from Polling

 --- */

Specification of the AP Role

redefined process type RM_CL2AP_AP;

 gate BotPort adding
 in with NEW_ind, EXCL_ind;
 out with NEW_rsp, EXCL_rsp;

 gate SAP adding
 in with NEW_rsp, EXCL_rsp;
 out with NEW_ind, EXCL_ind;

 state *;

 input NEW_ind(s);
 task
 station := station //
 if s > length(station)
 then
 mkstr(StationNull,
 s-length(station))
 else emptystring fi;
 output NEW_ind(s);
 nextstate -;

 input NEW_rsp;
 output NEW_rsp;
 nextstate -;

 input EXCL_ind(s);
 task
 'shorten "station" if necessary';
 output EXCL_ind(s);
 nextstate -;

 input EXCL_rsp;
 output EXCL_rsp;
 nextstate -;

 endstate;

endprocess type RM_CL2AP_AP;

redefined process type RM_AP2CL_AP;

 gate BotPort adding
 in with NEW_ind, EXCL_ind;

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 197

 out with NEW_rsp, EXCL_rsp;

 gate SAP adding
 in with NEW_rsp, EXCL_rsp,
 RELMC_STAT_rsp;
 out with NEW_ind, EXCL_ind,
 remote PEND;

 dcl /* tmp var */
 accepted Boolean;
 dcl
 exported pend as PEND StationIdSet;

 state *;

 input NEW_ind(s);
 task
 g := incl(s,g),
 station := station //
 if s > length(station)
 then
 mkstr(StationNull,
 s-length(station))
 else emptystring fi;
 task
 'pend := set of all station Ids
 s for which station(s).wQ /=
 emptystring and
 first(station(s).wQ).res = OD';
 task export(pend);
 output NEW_ind(s);
 nextstate -;

 input NEW_rsp;
 output NEW_rsp;
 nextstate -;

 input EXCL_ind(s);
 task
 g := del(s,g);

 task 'shorten "station" if
 necessary';
 output EXCL_ind(s);
 nextstate -;

 input EXCL_rsp;
 output EXCL_rsp;
 nextstate -;

 endstate;

 state normal;

 input redefined AP_DATA_poll(s);
 decision g <= station(s).acked;
 (true):
 output RELMC_STAT_ind(s,acked);
 nextstate wait4STAT_cnf;
 (false):
 join not_acked;
 enddecision;

 endstate normal;

 state wait4STAT_cnf;

 input RELMC_STAT_rsp(accepted);
 task station(s).wQ :=
 if accepted
 then tail(station(s).wQ)
 else station(s).wQ fi;
 output PB_BC_poll(s,sg);
 nextstate normal;

 endstate wait4STAT_cnf;

endprocess type RM_AP2CL_AP;

Specification of the Client Role

redefined process type RM_CL2AP_CL;

 gate SAP adding
 out with JOIN_START_ind;

 gate BotPort adding
 in with JOIN_START_ind;

 state normal;

 input JOIN_START_ind;
 output JOIN_START_ind;
 nextstate normal;

 endstate normal;

endprocess type RM_CL2AP_CL;

redefined process type RM_AP2CL_CL;

 start redefined ;
 nextstate joining;

 state joining;

 input CL_DATA_poll(sdu);
 task
 p := RM_Poll_PDU(sdu),
 ack := emptystring,
 lr := p.r,
 lp := p.sg;
 output CL_DATA_rqu(bcAddress,
 SDU((. 0,0,''B,''B .)));
 nextstate normal;

 input AP_DATA_ind(SA,sdu);
 task pBC := RM_Bc_PDU(sdu);
 join ElemDupAndDeliver;

198 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

 endstate joining;

endprocess type RM_AP2CL_CL;

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 199

A.7 Synchronous Channel

Services and Interfaces

/* --

SERVICE: DEC, AP initiated, polled service

Transmission of decisions from the AP to the clients.

SIGNALS

DEC_poll(s): Polls for decision on behalf of 's'.
DEC_rqu(d): Request transmission of 'd'
DEC_ind(d,i): Indicates reception of a decision 'd'. 'i' is the ID of the station
which 'd' relates to.

 ---*/

value type DecType;
 literals accept,reject,nodec, excl, newcl;
endvalue type;

signal /* SERVICE DEC */
 DEC_poll(StationId),
 DEC_rqu(DecType),
 DEC_ind(DecType,StationId);

/* --

SERVICE: FRAME_OWNER

Delivers the member ID of the owner of the last frame received.

FRAME_OWNER_ind(m): 'm' is the member ID of the frame's owner

 ---*/

signal /* SERVICE FRAME_OWNER */
 FRAME_OWNER_ind(StationId);

/* --

 INTERNAL SIGNALS

 ---*/

signal /* SERVICE DEC_int */
 DEC_int_ind(DecType,Natural);

signal /* SERVICE PB_BC_int */
 PB_BC_int_rqu(Natural, Natural, SDU),
 PB_BC_int_ind(Natural, Natural, SDU, Natural);

PDUs

value type DecString inherits MyString<DecType>;

200 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

endvalue type;

value type PDUTypes;
 literals init,normal;
endvalue type;

value type SC_normalPDU;
struct
 ptype PDUTypes;
 synchCh DecString;
 piggyLoad SDU;
endvalue type;

Specification of the AP Role

process type SC_AP;

 /* signature */

 gate SAP
 in with PB_BC_rqu,DEC_rqu;
 out with PB_BC_poll,DEC_poll;

 gate SAP_int
 in with PB_BC_int_rqu;

 gate BotPort
 in with PB_BC_poll;
 out with PB_BC_rqu;

 /* state */

 dcl
 sy DecString := mkstr(nodec,OD+1);

 /* tmp vars */
 dcl d DecType,
 sdu SDU,
 mid Natural,
 gs Natural;

 dcl /* state */
 s StationId,
 sg Natural;

 start;
 nextstate normal;

 state normal;

 input PB_BC_poll(s,sg);
 output DEC_poll;
 nextstate normal;

 input DEC_rqu(d);
 task sy := sub
 string(sy,1,length(sy)-1),
 sy := mkstring(d) // sy;
 output PB_BC_poll(s,sg);
 nextstate normal;

 input PB_BC_rqu(sdu);
 output PB_BC_rqu(
 SDU((. normal,sy,sdu .)));
 nextstate normal;

 input PB_BC_int_rqu(gs,mid,sdu);
 decision gs;
 (0): output PB_BC_rqu(
 SDU((. normal,sy,sdu .)));
 else: output PB_BC_rqu(
 SDU((. init,sy,gs,mid,sdu .)));
 enddecision;
 nextstate normal;

 endstate normal;

endprocess type SC_AP;

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 201

Specification of the Client Role

[PB_BC_ind]

[remote

INIT_GSIZE]

[PB_BC_ind, DEC_ind]

[PB_BC_ind, DEC_int_ind]

i : ID_CL

s : SC_CL

1(2)Block Type SynchCh_CL

SAP

BotPort

SAP

SAP

MIB
MIB

BotPort

BotPort

Figure A-4. Synchronous channel, client role.

virtual process type SC_CL;

 /* signature */

 gate SAP
 out with PB_BC_ind, DEC_int_ind;

 gate BotPort
 in with PB_BC_ind;

 /* state */
 dcl
 last_sg Natural := 0;

 /* tmp vars */
 dcl
 p SC_normalPDU,
 sg Natural,
 sdu SDU;

 start virtual;
 nextstate normal;

 state normal;

 input virtual PB_BC_ind(sdu,sg);
 task p := SC_normalPDU(sdu);
 task '{
 for(dcl i:=sg-last_sg,
 i>0,i := i-1)
 output(DEC_ind(p.synchCh[i],
 sg-i+1);
 }';
 task last_sg := sg;
 output PB_BC_ind(p.piggyLoad,sg);
 nextstate -;

 endstate normal;

endprocess type SC_CL;

202 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

virtual process type ID_CL;

 /* signature */

 gate SAP
 out with PB_BC_ind, DEC_ind,
 FRAME_OWNER_ind;

 gate BotPort
 in with PB_BC_ind, DEC_int_ind;

 gate MIB
 out with remote INIT_GSIZE;

 /* state */
 dcl
 cur,cur_old Natural := 0,
 gs Natural := 0;

 /* tmp vars */
 dcl
 d DecType,
 sg Natural,
 sdu SDU;

 start virtual;
 task
 gs := import(INIT_GSIZE),
 cur := 0;
 nextstate normal;

 state normal;

 input virtual DEC_int_ind(d,sg);
 output DEC_ind(d,cur);
 task
 cur_old := cur,
 cur := (cur + 1) mod gs;
 nextstate -;

 input PB_BC_ind(sdu,sg);
 output FRAME_OWNER_ind(cur_old);
 output PB_BC_ind(sdu,sg);
 nextstate -;

 endstate normal;

endprocess type ID_CL;

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 203

A.8 Synchronous Channel – Dynamic Group Extensions

Services and Interfaces

/* --

SERVICE STATES

 ---*/

value type ServiceState;
 literals joined, stopped;
endvalue type;

remote SynchChState ServiceState;

/* --

SERVICE: NEW_CL, Client only

New notification at the client

SIGNALS

NEW_CL_ind(s): Indicates that the AP has added a new RGCP
station to the polling list. 's' is the ID of that station

 ---*/

signal /* SERVICE NEW_CL */
 NEW_CL_ind(StationId);

/* --

SERVICE: EXCL_CL, Client only

Exclude notification at the client

SIGNALS

EXCL_CL_ind(s): Indicates that the AP has removed 's'

 ---*/

signal /* SERVICE EXCL_CL */
 EXCL_CL_ind(StationId);

/* --

SERVICE: FAIL, Client only

Indicate protocol stopped

SIGNALS

FAIL_ind

 ---*/

204 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

signal /* SERVICE FAIL */
 FAIL_ind;

/* --

SERVICE: JOIN_START, inherited

 ---*/

signal /* SERVICE JOIN_START */
 JOIN_START_ind;

PDUs

value type SC_initPDU;
struct
 ptype PDUTypes;
 synchCh DecString;
 gsize Natural;
 mid Natural;
 piggyLoad SDU;
endvalue type SC_initPDU;

Specification of the AP Role

process type SC_Not_AP;

 /* signature */

 gate SAP
 in with DEC_rqu, EXCL_rsp, NEW_rsp,
 PB_BC_rqu;
 out with DEC_poll, EXCL_ind, NEW_ind,
 PB_BC_poll;

 gate BotPort
 in with DEC_poll, EXCL_ind, NEW_ind,
 PB_BC_poll;
 out with DEC_rqu, EXCL_rsp, NEW_rsp,
 PB_BC_int_rqu;

 gate MIB
 out with remote INIT_G;

 /* types */
 value type Station;
 struct
 sDec DecType;
 endvalue type Station;
 synonym StationNull Station =
 (. nodec .);

 value type StationList
 inherits MyString<Station>;
 endvalue type StationList;

 /* state */
 dcl
 station StationList,
 trycnt Natural := 0,
 mid Natural := 0,

 gs Natural;

 /* tmp vars */
 dcl
 d DecType,
 sg Natural,
 s StationId,
 sdu SDU;

 start;
 task
 gs := setsize(import(INIT_G)),
 station := mkstr(StationNull,gs);
 nextstate normal;

 state normal;

 input EXCL_ind(s);
 task station(s).sDec := excl;
 output EXCL_ind(s);
 nextstate normal;

 input EXCL_rsp;
 output EXCL_rsp;
 nextstate normal;

 input NEW_ind(s);
 task
 station := station //
 if s > length(station)
 then mkstr(StationNull,s-
length(station))
 else emptystring fi,
 station(s).sDec := newcl,
 trycnt := OD+1;
 output NEW_ind(s);

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 205

 nextstate normal;

 input NEW_rsp;
 output NEW_rsp;
 nextstate normal;

 input DEC_rqu(d);
 output DEC_rqu(d);
 nextstate normal;

 input DEC_poll(s);
 decision station(s).sDec;
 (excl):
 output DEC_rqu(excl);
 task
 station(s) := StationNull,
 gs := gs - 1;
 task 'shrink station list';
 (newcl):
 task gs := gs + 1,
 mid := mid + 1;
 station(s).sDec := nodec;
 output DEC_rqu(newcl);
 else:
 task mid := mid + 1;

 output DEC_poll(s);
 enddecision;
 task mid := mid mod gs;
 nextstate normal;

 input PB_BC_poll(s,sg);
 output PB_BC_poll(s,sg);
 nextstate normal;

 input PB_BC_rqu(sdu);
 decision trycnt;
 (>0):
 output PB_BC_int_rqu(
 gs,mid,sdu);
 task trycnt := trycnt - 1;
 else:
 output PB_BC_int_rqu(
 0,mid,sdu);
 enddecision;
 nextstate normal;

 endstate normal;

endprocess type SC_Not_AP;

Specification of the Client Role

redefined process type SC_CL;

 gate SAP adding
 out with FAIL_ind, JOIN_START_ind;

 gate BotPort adding
 in with JOIN_START_ind;

 gate SAP_int
 out with PB_BC_int_ind;

 /* tmp vars */
 dcl
 pi SC_initPDU;

 /* state */
 timer toSynchCh :=
 DeltaSynchCh*(1+rho);

 start redefined;
 nextstate stopped;

 state stopped;

 input JOIN_START_ind;
 output JOIN_START_ind;
 nextstate joining;

 endstate stopped;

 state joining;

 input PB_BC_ind(sdu,sg);
 task last_sg := sg;
 join forward_PB;

 endstate joining;

 state normal;

 input redefined PB_BC_ind(sdu,sg);
 set(toSynchCh);
 task p := SC_normalPDU(sdu);
 decision sg - last_sg;
 (> OD+1):
 output FAIL_ind;
 nextstate stopped;
 else:
 enddecision;
 task '{
 for(dcl i:=sg-last_sg-1,i >= 0,
 i := i-1)
 {
 output(DEC_ind(p.synchCh[i],
 sg-i);
 } }';
 task last_sg := sg;
 join forward_PB;

 input toSynchCh;
 output FAIL_ind;
 nextstate stopped;

 endstate normal;

 connection forward_PB:
 decision p.ptype;
 (normal):
 output PB_BC_ind(p.piggyLoad,sg);
 (init):
 task pi := SC_initPDU(sdu);

206 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

 output PB_BC_int_ind(
 pi.gsize,pi.mid,
 pi.piggyLoad,sg);
 enddecision;
 set(toSynchCh);
 nextstate normal;
 endconnection forward_PB;

endprocess type SC_CL;

redefined process type ID_CL;

 gate SAP adding
 in with remote SynchChState;
 out with EXCL_CL_ind, NEW_CL_ind,
 FAIL_ind, JOIN_START_ind;

 gate BotPort adding
 in with PB_BC_int_ind,
 FAIL_ind, JOIN_START_ind;

 /* state */
 dcl
 exported SynchChState
 ServiceState := stopped;

 start redefined;
 task cur := 0;
 export(SynchChState);
 nextstate stopped;

 state stopped;

 input JOIN_START_ind;
 output JOIN_START_ind;
 nextstate joining;

 endstate;

 state joining;

 input PB_BC_int_ind(gs,cur,sdu,sg);
 output FRAME_OWNER_ind(cur);
 output PB_BC_ind(sdu,sg);

 task SynchChState := joined;
 export(SynchChState);
 nextstate normal;

 input FAIL_ind;
 output FAIL_ind;
 task SynchChState := stopped;
 export(SynchChState);
 nextstate stopped;

 endstate joining;

 state normal;

 input redefined DEC_int_ind(d,sg);
 task cur_old := cur;
 decision d;
 (excl):
 output EXCL_CL_ind(cur);
 task
 gs := gs -1;
 cur := cur mod gs;
 (newcl):
 output NEW_CL_ind(cur);
 task
 gs := gs + 1,
 cur := (cur + 1) mod gs;
 else:
 output DEC_ind(d,cur);
 task cur := (cur + 1) mod gs;
 enddecision;
 nextstate -;

 input FAIL_ind;
 output FAIL_ind;
 task SynchChState := stopped;
 export(SynchChState);
 nextstate stopped;

 endstate normal;

endprocess type ID_CL;

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 207

A.9 Atomic Multicast

Services and Interfaces

/* --

SERVICE: AMC, inherits RELMC, Client Only

Transmission of atomic multicasts.

SIGNALS

AMC_poll, see RELMC_poll
AMC_rqu, see RELMC_rqu
AMC_ind, see RELMC_ind, adds 'sid'.

 ---*/

signal /* SERVICE AMC, client only */
 AMC_poll inherits RELMC_poll,
 AMC_rqu inherits RELMC_rqu,
 AMC_ind inherits RELMC_ind adding (StationId);

/* --

SERVICE: NEW, from DynMedAcc
SERVICE: EXCL, from DynMedAcc

 ---*/

Specification of the AP Role

virtual process type AMC_AP;

 /* signature */

 gate SAP
 in with DEC_rqu;
 out with DEC_poll;

 gate BotPort
 in with DEC_poll,RELMC_STAT_ind;
 out with DEC_rqu;

 /* state */
 dcl
 d DecType := nodec;

 /* tmp vars */
 dcl
 dt DecType,
 st StatusEnum,
 s StationId;

 start virtual;
 nextstate normal;

 state normal;

 input virtual
 RELMC_STAT_ind(s,st);
 decision st;
 (acked, ODretries):
 task d := accept;
 (resretries):
 task d := reject;
 enddecision;
 nextstate -;

 input DEC_poll;
 output DEC_poll;
 nextstate -;

 input DEC_rqu(dt);
 output DEC_rqu(d);
 task d := nodec;
 nextstate -;

208 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

 endstate normal;

endprocess type AMC_AP;

Specification of the Client Role

virtual process type AMC_CL;

 /* signature */

 gate SAP
 out with DEC_ind,
 AMC_ind, AMC_poll;
 in with AMC_rqu;

 gate BotPort
 in with DEC_ind, FRAME_OWNER_ind,
 RELMC_ind, RELMC_poll;
 out with RELMC_rqu;

 gate MIB
 out with remote INIT_GSIZE;

 /* types */
 value type Station;
 struct
 sdu SDU;
 src AddressType;
 endvalue type Station;
 synonym StationNull Station =
 (. ''B, ''B .);
 value type StationList
 inherits MyString<Station>;
 endvalue type;

 dcl /* state */
 cSDU SDU := ''B,
 cSrc AddressType := ''B,
 station StationList := emptystring;

 /* tmp vars */
 dcl
 d DecType,
 src AddressType,
 sdu SDU,
 r Natural,
 mid StationId;

 start virtual;
 task station := mkstr(StationNull,
 import(INIT_GSIZE));
 nextstate idle;

 state idle;

 input RELMC_ind(src,sdu);
 task
 cSDU := sdu,
 cSrc := src;
 nextstate haveRM;

 endstate idle;

 state haveRM;

 input FRAME_OWNER_ind(mid);
 task
 station(mid).sdu := cSDU,
 station(mid).src := cSrc;
 nextstate idle;

 endstate haveRM;

 state idle,haveRM;

 input RELMC_poll;
 output AMC_poll;
 nextstate -;

 input AMC_rqu(r, sdu);
 output RELMC_rqu(r, sdu);
 nextstate -;

 input virtual DEC_ind(d,mid);
 decision d;
 (accept):
 output AMC_ind(
 station(mid).src,
 station(mid).sdu,mid);
 task station(mid) :=
 StationNull;
 (reject):
 task station(mid) :=
 StationNull;
 else:
 output DEC_ind(d,mid);
 enddecision;
 nextstate -;

 endstate;

endprocess type AMC_CL;

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 209

A.10 Atomic Multicast – Dynamic Group Extensions

Services and Interfaces

/* --

SERVICE STATES

 ---*/

remote AtomMCState ServiceState;

/* --

SERVICE: ATOMMC_STAT

SIGNALS

ATOMMC_STAT_ind(s, st): indicates that an atomic multicast of station with ID
's' was accepted ('st' = false) or rejected ('st' = true).

 ---*/

signal /* SERVICE ATOMMC_STAT */
 ATOMMC_STAT_ind(StationId, Boolean);

/* --

SERVICE: NEW, from DynMedAcc
SERVICE: EXCL, from DynMedAcc
SERVICE: FAIL_ind, from SynchCh
SERVICE: JOIN_START_ind, from SynchCh

 -- */

Specification of the AP Role

redefined process type AMC_AP;

 gate SAP adding
 out with EXCL_ind,
 NEW_ind, ATOMMC_STAT_ind;
 in with EXCL_rsp, NEW_rsp;

 gate BotPort adding
 in with NEW_ind, EXCL_ind,ACKS_ind;
 out with NEW_rsp,
 EXCL_rsp, RELMC_STAT_rsp,
 remote PEND;

 gate MIB
 out with remote INIT_G;

 /* state */
 value type Station;
 struct
 pend StationIdSet;
 endvalue type Station;
 synonym StationNull Station =
 (. empty .);

 value type StationList
 inherits MyString<Station>;
 endvalue type StationList;

 dcl
 station StationList;

 /* tmp vars */
 dcl

210 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

 a StationIdSet;

 start redefined;
 task
 station := mkstr(StationNull,
 setsize(import(INIT_G)));
 nextstate normal;

 state normal;

 input redefined
 RELMC_STAT_ind(s,st);
 decision st;
 (acked):
 decision station(s).pend;
 (empty):
 task d := accept;
 output RELMC_STAT_rsp(true);
 else:
 task d := nodec;
 output RELMC_STAT_rsp(
 false);
 enddecision;
 (ODretries): task d := accept;
 (resretries): task d := reject;
 enddecision;
 decision d;
 (accept):
 task '{
 for(dcl i := 0;
 i < length(station); i := i+1)
 station(i).pend :=
 del(s,station(i).pend); }';
 output ATOMMC_STAT_ind(
 s,true);
 (reject):
 output ATOMMC_STAT_ind(
 s,false);
 else:
 enddecision;
 nextstate -;

 input ACKS_ind(s,a);
 task station(s).pend :=
 station(s).pend - a ;
 nextstate normal;

 endstate normal;

 state *;

 input NEW_ind(s);
 task
 station := station //
 if s > length(station)
 then mkstr(StationNull,
 s-length(station))
 else emptystring fi,
 station(s).pend := import(PEND);
 output NEW_ind(s);
 nextstate -;

 input EXCL_ind(s);
 task station(s) := StationNull;
 task 'shorten "station" if
 necessary';
 output EXCL_ind(s);
 nextstate -;

 input NEW_rsp;
 output NEW_rsp;
 nextstate -;

 input EXCL_rsp;
 output EXCL_rsp;
 nextstate -;

 endstate;

endprocess type AMC_AP;

Specification of the Client Role

redefined process type AMC_CL;

 gate SAP adding
 out with EXCL_CL_ind, NEW_CL_ind,
 JOIN_START_ind, FAIL_ind,
 remote AtomMCState;

 gate BotPort adding
 in with EXCL_CL_ind, NEW_CL_ind,
 JOIN_START_ind, FAIL_ind;

 gate MIB adding
 out with remote OWNADDR;

 dcl /* tmp vars */
 s StationId,
 OA AddressType;

 /* state */

 dcl
 exported AtomMCState ServiceState
 := stopped;

 start redefined;
 task
 station := mkstr(StationNull,
 import(INIT_GSIZE)),
 OA := import(OWNADDR);
 export(AtomMCState);
 nextstate stopped;

 state stopped;

 input JOIN_START_ind;
 task station := mkstr(
 StationNull,
 import(INIT_GSIZE));
 output JOIN_START_ind;
 nextstate join_idle;

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 211

 endstate stopped;

 state join_idle;

 input RELMC_ind(src,sdu);
 task
 cSDU := sdu,
 cSrc := src;
 nextstate join_haveRM;

 endstate join_idle;

 state join_haveRM;

 input FRAME_OWNER_ind(mid);
 task
 station(mid).sdu := cSDU,
 station(mid).src := cSrc;
 nextstate join_idle;

 endstate join_haveRM;

 state join_idle,join_haveRM;

 input RELMC_poll;
 output AMC_poll;
 nextstate -;

 input AMC_rqu(r, sdu);
 output RELMC_rqu(OD, sdu);
 nextstate -;

 input DEC_ind(d,mid);
 decision d = accept
 and station(mid).src = OA;
 (true):
 output AMC_ind(
 station(mid).src,
 station(mid).sdu,mid);
 task
 station(mid) :=
 StationNull,
 AtomMCState := joined;
 export(AtomMCState);
 decision state;
 (join_idle):
 nextstate idle;
 (join_haveRM):
 nextstate haveRM;
 enddecision;
 (false):
 nextstate -;
 enddecision;

 endstate;

 state idle,haveRM;

 input redefined DEC_ind(d,mid);
 decision d;
 (accept):
 decision station(mid).sdu;
 (''B):
 task
 AtomMCState := stopped;
 export(AtomMCState);
 output FAIL_ind;
 nextstate stopped;
 else:
 output AMC_ind(
 station(mid).src,
 station(mid).sdu,mid);
 task
 station(mid)
 := StationNull;
 enddecision;
 (reject):
 task
 station(mid) := StationNull;
 else:
 output DEC_ind(d,mid);
 enddecision;
 nextstate -;

 endstate;

 state *;

 input FAIL_ind;
 task AtomMCState := stopped;
 export(AtomMCState);
 output FAIL_ind;
 nextstate stopped;

 input EXCL_CL_ind(s);
 task station(s) :=
 StationNull;
 task 'shrink station';
 output EXCL_CL_ind(s);
 nextstate -;

 input NEW_CL_ind(s);
 task station := station //
 if s > length(station)
 then mkstr(StationNull,
 s-length(station))
 else emptystring fi;
 output NEW_CL_ind;
 nextstate -;

 endstate;

endprocess type AMC_CL;

212 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

A.11 Membership

Services and Interfaces

/* --

SERVICE STATES

 ---*/

remote MemState ServiceState;

/* --

SERVICE: JOIN_MEM

allows transmission of a atomic multicast with resiliency OD while joining

SIGNALS

JOIN_MEM_poll: inherits AMC_poll, poll for SDU.

JOIN_MEM_rqu(sdu): request
transmission of atomic multicast sdu. Resiliency is always OD.

 ---*/

signal /* SERVICE: JOIN_MEM */
 JOIN_MEM_poll inherits AMC_poll,
 JOIN_MEM_rqu(SDU);

/* --

SERVICE: MEM

Indicate membership changes

SIGNALS

MEM_ind(m): indicate that membership has changed and new membership is m.

 ---*/

signal /* SERVICE: MEM */
 MEM_ind(AddressSet);

/* --

SERVICE: FAIL_ind, from AtomMul

 ---*/

PDUs

value type StationState;
 literals joining, normal;
endvalue type;

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 213

value type MemElemType;
 struct
 addr AddressType;
 mstate StationState;
endvalue type;

value type MemArray inherits MyArray<StationId,MemElemType>;
 operators
 memset: this MemArray -> AddressSet;
endvalue type;

value type Mem_PDU;
 struct
 m MemArray;
endvalue type Mem_PDU;

Specification of the AP Role

process type Mem_AP;

 gate BotPort
 in with NEW_ind, EXCL_ind,
PB_BC_poll, ATOMMC_STAT_ind;
 out with NEW_rsp, EXCL_rsp,
PB_BC_rqu;

 gate MIB
 out with remote IDADDR, remote STACK-
PID, remote PL;

 dcl /* tmp var */
 pl PollingList,
 id2addr AddressArray,
 s StationId,
 p Mem_PDU,
 st Boolean;

 /* state */

 /* required type of class
 'Station' */

 value type Station;
 struct
 sState StationState;
 endvalue type Station;
 synonym StationNull Station =
 (. normal .);
 value type StationList
 inherits MyString<Station>;
 endvalue type StationList;

 dcl
 m AddressArray,
 station StationList :=
 mkstr(StationNull,MAX_STATIONS);

 /* Transistions */

 start;
 nextstate normal;

 state normal;

 input NEW_ind(s);
 task
 station(s).sState := joining;
 output NEW_rsp;
 nextstate normal;

 input PB_BC_poll(s);
 decision station(s).sState;
 (joining):
 task pl := import(PL);
 task
 'for(dcl i := 0,j := 0,pos :=
 0; i < length(pl.list);
 i := i +1)
 {
 pos := pl.cur + i mod
 length(pl.list);
 pe := pl.list(pos);
 if (pe.peStack =
 import(STACKPID(rgcp)))
 {
 p.m(j).addr :=
 import(IDADDR(pe.peOwner));
 p.m(j).mstate :=
 stations.sState(
 pe.peOwner);
 j := j+1;
 }
 }';
 output PB_BC_rqu(SDU(p));
 (normal):
 output PB_BC_rqu(''B);
 enddecision;
 nextstate normal;

 input ATOMMC_STAT_ind(s,st);
 decision st;
 (true):
 task
 station(s).sState := normal;
 (false):
 enddecision;
 nextstate normal;

214 APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE

endprocess type Mem_AP;

Specification of the Client Role

process type Mem_CL;

 gate SAP
 in with JOIN_MEM_rqu, AMC_rqu,
 remote MemState;
 out with JOIN_MEM_poll, AMC_poll,
 AMC_ind, MEM_ind, FAIL_ind;

 gate BotPort
 in with AMC_poll, AMC_ind,
 PB_BC_ind,
 EXCL_CL_ind,NEW_CL_ind,
 JOIN_START_ind, FAIL_ind;
 out with AMC_rqu;

 gate MIB
 out with remote OWNADDR;

 /* state */
 dcl
 exported MemState ServiceState,
 m MemArray,
 s StationId;

 /* tmp vars */
 dcl
 p Mem_PDU,
 src,OA AddressType,
 r Natural,
 sdu SDU;

 start;
 task OA := import(OWNADDR),
 MemState := stopped;
 export(MemState);
 nextstate Stopped;

 state Stopped;

 input JOIN_START_ind;
 nextstate Joining1;

 endstate Stopped;

 state Joining1, Joining2;

 input PB_BC_ind(sdu);
 decision sdu;
 (''B):
 nextstate -;
 else:
 task
 p := Mem_PDU(sdu),
 m := p.m;
 nextstate Joining2;
 enddecision;

 input AMC_poll;
 output JOIN_MEM_poll;
 nextstate -;

 input JOIN_MEM_rqu(sdu);
 output AMC_rqu(OD,sdu);
 nextstate -;

 endstate;

 state Joining2;

 input EXCL_CL_ind(s);
 task m := del(m,s);
 nextstate -;

 input NEW_CL_ind(s);
 task m := ins(m,s,
 (. ''B,joining .));
 nextstate -;

 input AMC_ind(src,sdu,s);
 decision m(s).mstate;
 (normal):
 (joining):
 task m(s) := (. src,normal .);
 enddecision;

 decision src = OA;
 (true):
 task MemState := joined;
 export(MemState);
 output MEM_ind(memset(m));
 output AMC_ind(src,sdu);
 nextstate normal;
 (false):
 nextstate -;
 enddecision;

 endstate Joining2;

 state normal;

 input NEW_CL_ind(s);
 task m := ins(m,s,(. ''B,joining
 .));
 nextstate -;

 input AMC_ind(src,sdu,s);
 decision m(s).mstate = joining;
 (true):
 (false):
 task m(s) := (. src,normal .);
 enddecision;

 output MEM_ind(memset(m));
 output AMC_ind(src,sdu);
 nextstate normal;

 input AMC_poll;
 output AMC_poll;
 nextstate normal;

APPENDIX A ― FORMAL DESCRIPTION OF THE COMMUNICATION HARDCORE 215

 input AMC_rqu(r,sdu);
 output AMC_rqu(r,sdu);
 nextstate normal;

 input EXCL_CL_ind(s);
 task m := del(m,s);
 output MEM_ind(memset(m));
 nextstate -;

 endstate normal;

 state *;

 input FAIL_ind;
 task MemState := stopped;
 export(MemState);
 nextstate Stopped;

 endstate;

endprocess type Mem_CL;

	Acknowledgements
	Table of Contents
	Introduction
	Motivation
	Problem Exposition
	Approach
	Overview of the Middleware
	Application Scenarios and Prototypes
	Structure of the Thesis

	Architecture of the Middleware
	Resource Scheduling
	Reliable Communication
	Application-Independent Common Views
	Application-Specific Common Views
	Modularity

	Application Scenarios
	Coordinating the Access to Shard Spatial Resources
	Description of the Scenario
	Application Architecture

	Distributed Sensor Fusion
	Description of the Scenario
	Filtering
	Fusion

	Application Architecture

	Communication in Cooperative Mobile Systems
	Preliminaries
	Concepts and Notions
	Layered Architectures and Protocols
	System Models

	The IEEE 802.11 Standard
	The Physical Layer
	Coordination Functions
	Distributed Coordination Function
	Point Coordination Function
	Alternation of Coordination Periods

	MAC-Layer Reliability Measures
	Association
	802.11e

	System Model
	Process Model
	Node local services
	Failure Model

	Communication Model
	Layer of the model
	Topology
	The Communication Service
	Failure Model

	Dynamic Link Properties

	Description of the Protocols
	The Protocol Stack
	Polling
	Service and Basic Operation of the Protocol
	Dynamic Group Extensions

	Dynamic Network Scheduling
	Service of the Protocol
	Operation of the Protocol

	Reliable Multicast
	Service of The Protocol
	Operation of the Protocol
	Dynamic Group Extensions

	Synchronous Channel
	Service of the Protocol
	Operation of the Protocol
	Dynamic Group Extensions

	Atomic Multicast
	Service of the Protocol
	Operation of the Protocol
	Dynamic Groups Extensions

	Membership
	Service of the Protocol
	Operation of the Protocol

	Event Service
	Service of the Protocol
	Operation of the Protocol

	Related Work
	System Modeling
	Real-Time Communication in Wireless LANs
	Reliable Multicast
	Atomic Multicast
	Membership
	Communication Paradigms for Cooperative Systems

	Task Scheduling for Mobile Cooperative Applications
	Environment-Dependent Execution Times in the Distributed Sensor Fusion
	TAFT
	Exploiting Application-Inherent Redundancy
	Functional Redundancy Through Anytime Algorithms
	Spatial and Timing Redundancy
	Signaling Persistent Overload

	Aperiodic Requests
	Model
	Scheduling Algorithms for Hybrid Task Sets
	The Dynamic Priority Exchange (DPE) Server
	The Earliest Deadline Late (EDL) Server
	The Improved Priority Exchange (IPE) Server

	Realizing TAFT with the IPE Server
	The Basic Algorithm
	Executing Faulty Main Parts
	Formal Description of TAFT-IPE

	Acceptance Test
	Acceptance Test for Periodic Task Pairs
	Acceptance Test for Aperiodic Requests

	Precedence Constraints
	Model
	Extending TAFT-IPE

	Prototypes and Implementations
	Prototype of the Shared Spatial Resources Scenario
	Description of the Prototype
	Measurements

	Prototype of the Distributed Sensor Fusion Scenario
	Description the Prototype
	Measurements
	Timely Predictable Execution
	Exploiting Functional Redundancy
	Application-Level Adaptation

	Modular Implementation of the Communication Hardcore
	Description of the Implementation
	Object Structure of the Implementation
	Achieving Efficiency
	Configuration and API

	Measurements

	Conclusion and Future Work
	References
	Appendix A ? Formal Description of the Communication Hardcore

