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Abstract of the Dissertation

by

Stephan Al-Zubi

Abstract

This thesis proposes a new shape model called the Active Shape Structural Model
(ASSM). The ASSM combines both statistical and structural a-priori knowledge about
shape variation. The statistical a-priori knowledge models co-variations between two or
more parts of the shape structure (e.g. co-deformation, joint articulation). The struc-
tural a-priori knowledge specifies which structural parts can be statistically related.

The a-priori knowledge enables the ASSM to model a larger class of problems than
structural or statistical models alone. Pure statistical models would have to use a com-
plex distribution function to model shapes consisting of articulated parts like the human
body. Pure structural models can decompose complex shapes into parts but cannot
validate this decomposition against the allowed co-variations between those parts.

Combining both structural and statistical a-priori knowledge results in interesting prop-
erties of ASSM such as multi-resolution of part variation depending on its context,
completing missing structures and resolving conflicting interpretations using the shape’s
largest context.

These properties of ASSM are demonstrated on two applications: Sketch recognition
and ant recognition. Sketches demonstrate ASSM well because they have clearly defined
structures that exhibit statistical variation for a single user, multiple users and depending
on the co-variation with other parts in the sketch. The structural co-variation between
multiple users was used in a new application called biometric recognition algorithm. In
this case the structural relationship between drawing primitives are used as the secret
information between the user and the biometric system. Experiments show that the
ASSM can utilize well it’s prior knowldge in recognizing, and correcting sketches as
well as achieving good discrimination between users in biometric sketches. The ASSM
was compared to a pure statistical represntation and shown to be capable of effeciently
reprsentating valid states of training data. After demonstrating the ASSM framework
within the domain of online sketches, it was next used for ant segmentation. This is
because ants both have articulated parts and different structural templates are needed
to represent different ant types. Experiments show that co-variation between parts can
be succesfully used for both template selection and finding effeciently the articulated
parts. All these applications show that utilizating prior knowledge in the form of co-
variation between shapes templates can lead to a better repersntation, reconstrcution,
recognition, and correction of shapes.
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Kurzfassung

Diese Dissertation stellt ein neues Shape-Modell - ACTIVE SHAPE STRUCTURAL
MODEL (ASSM) genannt - vor. Beide Formen des a priori Wissens über Shape-
Variationen, statistisches und strukturelles, werden in ASSM vereint. Das statistische
a priori Wissen bildet Co-Variationen zwischen zwei oder mehreren Teilen der Shape-
Struktur (d.h. Co-Deformation, Gelenkverbindung) nach. Das strukturelle a priori
Wissen benennt die strukturellen Bestandteile mit statistischem Bezug.

Das a priori Wissen befähigt ASSM zur Bearbeitung einer breiteren Problematik als
lediglich struktureller oder statistischer Modelle. Rein statistische Modelle müssten eine
komplexe Distributionsfunktion verwenden, um Shapes darzustellen, die aus Gelenk-
teilen bestehen wie der menschliche Körper. Rein strukturelle Modelle können kom-
plexe Shapes in Teile zerlegen , nicht aber die Zerlegung gegenüber den gestatteten
Co-Variationen zwischen diesen Teilen bewerten.

Die Kombination von strukturellem und statistischem a priori Wissen führt zu in-
teressanten Eigenschaften von ASSM wie Mehrfachauflösungen von Teilvariationen in
Abhängigkeit vom Kontext, der Vervollständigung fehlender Strukturen und der Anal-
yse widersprüchlicher Interpretationen unter Verwendung des umfangreichsten Shape-
Kontextes.

Diese Eigenschaften des ASSM werden anhand zweier Anwendungen demonstriert:
Skizzenerkennung und Ameisenerkennung. ASSM wird durch Skizzen sehr gut
dargestellt, da diese klar definierte Strukturen besitzen, die statistische Variationen
für einen Einzelnutzer, mehrere Nutzer / Mehrfachnutzer und abhängig von den Co-
Variationen mit anderen Teilen der Skizze aufweisen. Die strukturelle Co-Variation
zwischen mehreren Nutzern fand Anwendung als biometrischer Erkennungsalgorithmus.
In diesem Fall wird das strukturelle Verhältnis zwischen geometrischen Objekten als
Geheiminformation zwischen dem Nutzer und dem biometrischen System verwendet.
Experimente zeigen, dass ASSM sein Vorwissen sowohl zur Erkennung und Korrektur
von Skizzen gut nutzbar machen kann als auch ein gutes Unterscheidungsvermögen zwis-
chen den Nutzern in biometrischen Skizzen erreicht.

ASSM wurde mit einer rein statistischen Darstellung verglichen und erwies sich als
leistungsstark bei der Präsentation gültiger Versuchswerte. Nach der Präsentation des
ASSM - Systems innerhalb der Domain der Online-Skizzen, wurde es als Nächstes bei der
Erkennung von Ameisen eingesetzt. Das ergibt sich, da Ameisen einerseits über Gelenke
verfügen und andererseits unterschiedliche Struktur-Templates erforderlich sind, um ver-
schiedene Kategorien von Ameisen darzustellen. Experimente zeigen, das Co-Variationen
zwischen Teilen erfolgreich zur Auswahl eines Templates und dem rationellen Auffinden
der Gelenkteile genutzt werden können. All diese Anwendungsmöglichkeiten zeigen, dass
die Verwertung von Vorwissen in Form von Co-Variation zwischen Shape-Templates zu
einer verbesserten Präsentation, Rekonstruktion, Erkennung und Korrektur von Shapes
führen kann.
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1 Introduction

Computer vision is an interdisciplinary research field concerned with enabling machines
to understand visual data as humans can. Although a lot of progress has been achieved in
the past decades, this field has fallen short in defining a generally applicable human vision
theory. However, several successful solutions for specific applications have emerged in
various fields such as motion tracking, medical image processing, biometry, robot vision.

Generally the image understanding process consists of two steps as depicted in fig. 1.1:
Feature extraction and analysis [36].

Figure 1.1: Image understanding process

In the feature extraction step, the image is subjected to some transform in order to
extract useful information. This is where various filters can be applied to detect and
enhance specific features such as edges, corners, and texture and to suppress noise.
In addition to image filtering, segmentation methods group connected regions of the
image with some local homogeneity criteria. Both filtering and segmentation enable the
extraction of image features to support image understanding.

After filtering and segmenting the image, the second step of image understanding is the
analysis which is finding semantic interpretations of the extracted features. At this step
prior knowledge about the problem is essential. The prior knowledge is embedded in
two ways:

1. A classifier is applied to extracted features to make a decision about a specific
object in the image. For the classifier to work successfully, a good feature selection
is a necessary condition.

2. A model instance is applied to the image. The model is a 2D or 3D representation
of an image object which defines allowable constraints and variations of that object.

1



2 Chapter 1. Introduction

When applying a model to the image, a fitting process brings the model as close to
the image object as possible. The advantage of models is that they can find relevant
image features and exclude features that result from noise and other artifacts.

Feature extraction is computing relevant features in an image. There are important
image patterns used for feature extraction:

1. Texture: a texture is a repeating pattern within an image region.

2. Shape features: the geometry of an object usually is described as a spatial distri-
bution of landmarks and image attributes. It is the main feature used for object
recognition and comparison [76].

Texture usually describes a connected region in image space with homogeneous proper-
ties. Textures alone cannot convey the information necessary to understand the image.
To get the full information we must look at the complement of textures. These are the
object boundaries where discontinuities occur. The topology of the boundary defines
the shape of an object.

The shape of an object can be either a continuous surface in 3-D space or a continuous
2-D curve. The problem with 3-D objects is that their shapes change according to the
view point when projecting them on a 2-D image plane. This general problem can be
simplified by ignoring the 3rd dimension in some applications like satellite images or
assembly lines [7]. In such cases the object does not change its shape much or a constant
view is always assumed. In these cases the silhouettes of objects contain sufficient
information for recognition. By reducing a 3-D surface to a 2-D boundary we can attain
a simplification that makes modeling of these shapes less complex. This is the approach
used in this thesis.

There were several solutions proposed to model shapes such as: principal warps by
Bookstein [11], hierarchical cylinders by Marr [49], Fourier descriptors [79] and many
other approaches which all have in common that a global measure is defined thought to
be capable of representing a-priori knowledge. Localization is done by multi-resolution
(i.e. frequency decomposition) such as multi-scale medial axis by Pizer [34, 41]. The
main purpose of such approaches is classification (i.e. the approach is successful if
sufficient information is represented for different shape classes). Feature vectors for
classes may also be generated for deterministic shapes (e.g. airplanes), however, model
based approaches offer more advantage because it can fit a set of plausible shapes and
offer a complete characterization of the fitted shapes. Model based approaches imply
classification and not the other way around. The focus of this thesis will be on the model
based approach and not classification.

When looking at shapes in general we can recognize two aspects which we will call
morphology and structure. Morphology is concerned with the degree of shape variations.
These variations can be due to noise, object deformation or change of view point. As
an example of that, consider the variation of rigid shapes like bones between different
individuals. We may also have soft shapes like muscles that change in time.
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The structural aspect of shapes means that a shape can be naturally divided into parts.
This implies an abstraction of shape into a simplified representation, which makes com-
parison between shapes easy. In general shapes can be classified by structure into three
categories:

1. Shapes with non-deterministic structure, for example, cancer lumps in digital mam-
mography.

2. Shapes with a fixed structure, for example, the Corpus Callosum in the human
brain which has basically the same structure across human population.

3. Shapes that have variable structure. This means shapes can vary in types of parts
and the relations between them. For example, mechanical assemblies.

Generally shapes with non-deterministic structure are processed by shape descriptors
which extract feature vectors measuring attributes of the whole shape like area, com-
pactness, fractal dimension, etc. [76, 33]. These vectors are then classified to determine
useful interpretations, for example, if a tumor in a mammogram is malignant or not.
Also, shape models can be applied to those shapes to determine shape boundary. In
such cases the model uses built-in smoothness constraints to constrain the search for the
correct boundary. The smoothness assumption is used to find optimal boundaries in the
presence of noise and to track moving boundaries.

Shapes with a fixed structure are usually processed by an alignment shape model (also
called registration). An alignment shape model assumes that there is a model which has
to be warped onto the image [33, 76]. The warping process can be done using built-
in smoothness constraints or by statistical analysis of shape samples to find the main
modes of shape variation. Statistical analysis of deformation is superior to smoothness
constraints because it fits the shape in the direction of maximum deformation. This
feature of statistical methods results in noise robustness and stability. The problem
with statistical methods is that they require a large sample space to accurately model
the variation depending on complexity of object shape. If no sufficient sample space is
available for fitting, smoothing constraints provide the continuity conditions needed.

Shapes with variable structures [76, 33] are represented with a model which depicts
structure in the form of a graph. Graph theoretic methods can be used to match and
compare shapes. In some models structural constraints are represented using some form
of grammar such as tree or graph grammar. The abstraction of a shape to a graph makes
shape comparison and recognition easy even in cases where certain structures are added
or missing.

To compare objects we need a similarity measure. The similarity measure must uti-
lize both structural and morphological information between shapes. This is because
structural measures alone may not distinguish between shapes of same structure but
different morphology. The opposite is also true. Additionally, structural knowledge can
be used to correct noisy or erroneous morphology and vice versa. This kind of informa-
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tion correction motivates the use of a new shape model that can utilize both types of
information.

When looking at the literature of shape models, we can roughly characterize them into
those that represent morphology and those that represent structure. These models can
also be characterized as those that apply some specific prior knowledge (model) about
the shapes they are trying to find and those that do not.

Morphological shape models can roughly be subdivided by their use of prior knowledge
into statistical and dynamic models. Statistical models can acquire prior knowledge
using representative training samples. They determine the way shapes change from
these samples and then try to fit new shape instances using that knowledge. On the
other side,dynamic models try to fit shapes by a time-evolving boundary that moves
based on some physical model that may not directly be related to the shapes themselves.
The physical model is used in these cases for two purposes: To maintain a noise-robust
smooth boundary and to represent changes in shape in a coarse-to-fine manner.

The main advantage of statistical models is that no assumption about prior knowledge
is needed. All the prior knowledge can be automatically acquired by training samples.

Structural shape models can also be divided by their use of prior knowledge. The
structural models that use prior knowledge are able to describe combinatorial constraints
between shape parts. This means a specification of connectivity relations between part
types. The part connections are represented usually by means of a shape grammar or
a graph. Structural models that do not use prior knowledge of part-connectivity are
usually concerned with abstracting a complex shapes into a set of simple connected
parts. Geons and generalized cylinders [49] are capable of dividing a shape into simple
representations of components.

This thesis tries to look at some interesting and representative shape models in each
category of the mentioned shape models rather than doing a complete survey of all these
models. The reason for doing that is to get a good idea of how these methods generally
work and more importantly in order to understand the role prior knowledge plays in
morphological and structural models. This gives rise to the idea that we can find a shape
representation that can apply prior knowledge both at structural and morphological
levels. The main point is that a shape model that embeds prior knowledge at both
structural and morphological levels can represent shapes that models in either category
cannot do. Some illustrative applications will show and explain this point.

The main questions addressed by this thesis are:

1. Can we find a shape representation capable of modeling both quantitative and
qualitative features? Specifically, can we find a shape model capable of capturing
both statistical deformation and structural aspects of shape?

2. What advantages does such a shape model offer that other models do not?
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3. What class of applications and problems can this shape model be applied to and
to what extent can it be successful?

4. What implications does shape noise have on the correction capabilities of the struc-
tural and statistical representation of shape?

This thesis will introduce a new shape model called Active Shape Structural Model
(ASSM). The main goal of ASSM is to find a shape representation that adds non-
statistical predetermined prior knowledge to statistical knowledge learned automatically.
This addition enables ASSM to generalize the class of shape representations where only
structural knowledge is predefined. The ASSM represents shapes by fusing knowledge
of both structural and statistical shape features. In the ASSM we define structural
features of a shape as the abstraction of the shape to a connected set of sub-shapes. The
structure of a shape can vary by varying the connections between these sub-shapes or
by varying the sub-shapes themselves as depicted in fig. 1.2.

Figure 1.2: Representation of a hierarchical structure of a shape where letters represent some atomic
sub-shape and circles and links represent groupings and relations between them

We define the statistical variations of a shape as the elastic variations of a fixed structured
shape. Having a fixed structure makes it possible to find corresponding landmarks in a
population of shape samples and therefore align them for analysis as depicted in fig. 1.3.

Figure 1.3: Elastic variation modes of a fixed structured shape obtained by principal component
analysis

ASSM represents the elastic covariations between sub-shapes and how they combine
together. This enables the statistical representation of a shape within its context of
connected shapes. Therefore, the ASSM represents shapes in a hierarchical and multi-
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resolution (of deformation) manner. ASSM applies prior knowledge about reconstructed
shapes by testing allowable combinations of sub-shapes and their elastic covariations.
This prior shape knowledge is applied in a bottom up fashion where contextual shape
information is used to eliminate false interpretations and recognize bigger shapes.

This thesis is structured as follows: In Chapter 2 the state of the art in shape mod-
els is surveyed. Following the survey, comparisons between these models are made to
demonstrate the gap that ASSM can fill in shape representation.

Chapter 3 contains the method description and how it can be adapted to various prob-
lems.

Chapter 4 of the thesis will demonstrate applications of ASSM in the domains of sketch
recognition and biometrics. Sketches were chosen as applications because they are rich
in structural and statistical knowledge. We can use this structural knowledge as a secret
information between the user and the computer therefore defining a new authentication
algorithm for biometry.

Chapter 5 will discuss the ASSM model and its properties and it will be compared to
the other models surveyed in chapter 2.

The thesis concludes by a discussion of these experiments and future applications planned.



2 State of The Art

A large number of shape representations has been developed in recent years for different
applications. Some of these applications are:

• Segmentation (e.g., segmentation of blood vessels).

• Registration of medical images (e.g., creating a brain atlas).

• Motion tracking (e.g., tracking lip movement).

• 3D stereo vision (e.g., finding the corresponding edges on the left and right images).

• 3D surface reconstruction and representation (e.g., reconstruction 3D objects from
there 2D projections).

• Content based image retrieval (e.g., image database for retrieval of silhouettes of
marine life).

• Shape similarity (e.g., using medial axes of shapes to compare their structural
similarity).

• Computer graphics and shape synthesis (e.g., L-systems used to generate plant
growth patterns).

• Multi-resolution representation of shape (e.g., progressive meshes that can morph
between different resolutions of a polygonal mesh).

Generally shape models can be divided into four classes as depicted in fig. 2.1:

• Statistical models

• Structural models

• Dynamic models

• Hybrid models

Statistical models use statistical methods on a population of shape samples to derive
variation modes of these shapes. This enables them to predict variations of new samples
which gives them robustness to noise.

Structural models are more concerned with abstracting the shape into a simpler graph
of structural features. This enables easy comparison of shapes.

7
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Dynamic models are used for segmenting and tracking boundaries and have the ability
to evolve in time while maintaining smoothness and continuity constraints which insure
an optimal segmentation.

Finally, hybrid models combine features of two more shape classes.

Figure 2.1: Classification of shape models

In the following sections the most important shape models of each class are summarized.
These models will be compared in the next chapter. This comparison will motivate the
Active Shape Structural Model (ASSM).

2.1 Statistical Models

The main property of this class of shape models is that they statistically describe vari-
ations of shape features and textures. They require a large sample space depending on
the shape which may not be always available in all applications. Given that a sufficient
number of samples are acquired, these samples must be aligned to a standard reference
frame. This alignment eliminates all the extrinsic differences between samples leaving
only the intrinsic variations. The alignment is mainly done manually by marking corre-
sponding shape landmarks. Automatic landmarking is possible by defining a standard
object centered coordinate system for each object [64, 28, 56].

The following sections describe these statistical shape models progressing from the sim-
plest to the most complicated. Active shape Model (ASM) is concerned only with point
distributions of landmarks. Active Appearance Model (AAM) adds texture features to
ASM. Active Appearance Motion Model (AAMM) adds analysis in time to AAM. Prob-
abilistic registration represents the local variation of gray values and shift vectors for
registering brain volumes per each voxel.



2.1. Statistical Models 9

2.1.1 Active Shape Model (ASM)

Cootes [20, 21, 25, 26] describes a statistical model which represents a fixed shape with
a set of landmarks. The landmark coordinates constitute a point distribution model
(PDM). An optimization is performed using gradient decent on principal component
analysis of shape variations. This guides the optimization in direction of maximum
change.

Applications Fitting human faces, 2D images of the knee cartilage, corpus callosum
[25].

Method Given a population of m shape instances where each instance has n landmark
points, we define the shape vector of a shape instance i as xi = (x1, y1, x2, y2 . . . xn, yn)T , 1 ≤
i ≤ m. We align every instance xi to an initial instance x0 that minimizes the distance
D = ‖xi −x0‖. This aligns all instances to a common reference frame eliminating trans-
lation and rotation (also scaling if we set ‖xi‖ = 1). The mean shape x̄ and covariance
matrix S are computed as follows

x̄ =
1

m

m∑

i=1

xi (2.1)

S =
1

m − 1

m∑

i=1

(xi − x̄)(xi − x̄)T (2.2)

The first t eigenvectors φi, i = 1 . . . t and their corresponding eigenvalues λi, i = 1 . . . t
are computed from S. Using the matrix Φ = [φ1, φ2 . . . φt], we can approximate any
shape instance x as

x ≈ x̄ + Φb (2.3)

b is a t-dimensional vector that represents the parameter space of the deformable model.
The number of eigen values t is chosen to explain the desired percentage of shape vari-
ation. The values of b are constrained within a specified valid parameter space. For
example, we can constrain bi ≤ 3

√
λi, 1 ≤ i ≤ t to be the space of values which do not

deviate by more than ± 3 standard deviations along each mode of variation as depicted
in Fig. 2.2.

The measure of fit between the model x and the image y is the gradient image profile
along a line orthogonal to the boundary passing the landmark point as depicted in Fig.
2.3.

The active shape model is a search algorithm that fits the model to a new shape instance.
It is defined as follows:

1. Initialize b to zero.
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Figure 2.2: Effect of varying the first three hand shape parameters between ± 3 standard deviations
(from [19])

Model

Sampled Profile

Cost of Fit

Figure 2.3: Sampled profile of gradient values on an orthogonal line to the landmark boundary (from
[19])

2. Generate the model instance x = x̄ + Φb.

3. Optimize the rigid body transform parameters Θrigid = (∆x,∆y, θ) and scale
parameter s for the best fit between x and y.

4. Find b that makes x best fit the image y satisfying the constraints on b.

5. If not converged return to step 2.

ASM can be adapted for multi-resolution search as follows: A Gaussian pyramid is
constructed from the image y. The active shape model is run from coarse to fine levels
where the model intensity profile of each level is compared with the image at that
resolution. Coarser levels will compare profiles which span more of the original image
thus reducing the likelihood of getting stuck at local minima.
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2.1.2 Active Appearance Model (AAM)

Cootes [42, 23, 30, 24, 22] extended the active shape model to include texture information
of the whole image instead of just the edge profile along landmark.

Applications Segmentation of faces.

Method Initially image instances are landmarked. All instances are aligned to a refer-
ence image by ASM warping the grey level information to a standard frame. The aligned
images are sampled to form a texture vector g. This vector is normalized to zero mean
and 1 standard deviation to eliminate illumination artifacts.

The texture vector g is modeled using principal component analysis as

g = ḡ + Pgbg (2.4)

where Pg are the orthogonal modes of variation and bg are texture parameters.

The shape parameters bs from the active shape model and the texture parameters bg

are concatenated into one vector b as follows

b =

(
Wsbs

bg

)

(2.5)

Ws is a diagonal matrix of weights. It compensates for the difference in weights between
shape and texture parameters. The RMS change in bg per unit change in the shape
parameter bs gives the estimated weight Ws applied to bs. By applying PCA on the
vector b that has zero mean we get

b = Pcc =

(
Pcs

Pcg

)

c (2.6)

This allows us to express shape and texture parameters directly in terms of c as

x = x̄ + PsW
−1
s Pcsc = x̄ + Qsg (2.7)

g = ḡ + PgPcgc = ḡ + Qgc (2.8)

The measure of fit between the model and the sample image is the difference in grey
value between the image Ii and the model Im.

∆ = ‖Ii − Im‖ (2.9)

The active appearance model is a search algorithm that fits the model to the image. It
is derived as follows: Given the model parameters vector p that includes c, rigid body
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and image intensity parameters, define the residual error vector r(p) = gs − gm where
gs is the warped image under the parameter space p. Using Taylor expansion we can
write

r(p + ∂p) = r(p) +
∂r

∂p
∂p (2.10)

where the ijth element of the matrix ∂r
∂p

is ∂ri/∂pj .

By equating r(p + ∂p) to zero we get the RMS solution

∂p = −Rr(p) (2.11)

R =
(

∂r
∂p

T ∂r
∂p

)−1 ∂r

∂p

T

(2.12)

R is assumed to be constant and estimated by averaging its value from a training sample
of several typical images. Using R and the residual error r a gradient descent algorithm
is applied until ∆ falls below a defined threshold.

2.1.3 Active Appearance Motion Model (AAMM)

This is an extension of AAM to which the time dimension is added. This is achieved by
concatenating shape and texture vectors at specific time landmarks.

Applications Time sequences of cardiac images of the left ventricular area (2D) using
MR and ultrasonic sequences (echocardiograms).

Method In [12, 53] a time sequence of the left ventricle area of the heart is normalized
to 16 frames such that the end-systolic and end-diastolic frames map to the same frame
number. The stack of those 2D images is considered to be a single data sample. The
landmark coordinates and grey level vectors for all the time phases are concatenated to
form a single vector used for active shape model.

x = [x11, y11 . . . x1n, y1n
︸ ︷︷ ︸

phase1

, x21, y21 . . . x2n, y2n
︸ ︷︷ ︸

phase2

. . . xN1, yN1 . . . xNn, yNn
︸ ︷︷ ︸

phaseN

] (2.13)

g = [g11 . . . g1n
︸ ︷︷ ︸

phase1

, g21 . . . g2n
︸ ︷︷ ︸

phase2

. . . gN1 . . . gNn
︸ ︷︷ ︸

phaseN

] (2.14)

The Active Appearance Model is applied the usual way to x and g. This results in a
time-continuous segmentation for the complete cardiac cycle.
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2.1.4 Probabilistic Registration

Chen [18] proposes to learn statistically the variation between different brain volumes.
This variance is the a-priori knowledge used to improve future registrations. This goes
beyond the smoothness constraints usually found in other registration algorithms.

Applications Elastic registration of brain volumes.

Method The author eliminates extrinsic (rotation and translation) and intrinsic (elas-
tic) differences between a training set of volumes. He then defines two Gaussian distri-
butions:

• Density variations: For every voxel in the atlas, the gray level distribution is
defined for the corresponding voxel in each registered sample as shown in fig. 2.4

P (∆I | D) =
1√
2πσ

e−
(∆I−µ)2

2σ2 (2.15)

where ∆I = Is − Ia is the voxel intensity difference between the subject and
the atlas respectively. D is the 3-D deformation vector. µ is the mean intensity
difference between the atlas and the subject at that voxel and σ2 is the variance.

• Geometric variations: For every voxel the 3D shift vector is modelled as a multi-
variate Gaussian distribution as depicted in fig. 2.5

P (D) =
1

√

(2π)3 | Φ |
e−

(
−→
∆v−

−→ω )T Φ
−1(

−→
∆v−

−→ω )
2 (2.16)

where
−→
∆v is the 3D displacement between sample and atlas, −→ω is the mean 3D

displacement and Φ is the 3x3 covariance matrix.

Registration is defined as finding D for every voxel that maximizes the posterior proba-
bility P (D|∆I). Using Bayes rule we can write

P (D|∆I) =
P (∆I|D)P (D)

P (∆I)
(2.17)

Maximizing P (D|∆I) is equivalent to minimizing the Mahanalobis distance

(∆I − µ)2

2σ2
+

(
−→
∆v −−→ω )TΦ−1(

−→
∆v −−→ω )

2
(2.18)

By taking the first derivative of eq. 2.18 with respect to 3D displacement we get the
gradient vector for the gradient descent algorithm that tries to predict the direction of
deformation

−→∇ =
∆I − µ

σ2

−→∇I + Φ−1(
−→
∆v −−→ω ) (2.19)
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Figure 2.4: Gray level distribution per voxel (from [18])

where
−→∇I is the image gradient. The use of eq. 2.19 resulted in a 34% error reduction

in comparison with the method not using statistics. Smoothness constraint between one
shift vector and its neighbors leads to an improved and more consistent solution. He
proposes two methods: one to extend eq. 2.15 and eq. 2.16 to a multivariate Gaussian
that involves blocks of N × M × K neighbors which requires large overhead. Another

approach is using a weighted sum of eq. 2.15, 2.19 over a neighborhood
∑

i,j,k wi,j,k
−→∇Ii,j,k

in order to smooth displacements.

2.2 Structural Models

These models represent or extract structural features of shapes. They do that in the
following ways:

• Abstract shapes as a graph of atomic shape substructures.

• Align a predefined model to a given shape using rigid and elastic deformations.

• Represent structure as a feature vector which can be compared to feature vectors
of other shapes.

• Analyze shape structure at multiple levels of resolution.

The following sections summarize these models.

2.2.1 Grammar Models

Grammars can be used to generate and analyze shapes [36, 70, 35]. The main hypothesis
is that shapes can be described as a composition of smaller shape atoms. Shape rules



2.2. Structural Models 15

Figure 2.5: Geometric distribution per voxel (from [18])

define how the shape atoms can combine. The following sections will introduce two
models that successfully employ shape grammars for analysis and synthesis.

Shape Grammars: Tree, Network

High dimensional grammars enable the recursive description of patterns that are spatially
related to each other by higher order relations other than simple concatenation. It is
possible to represent high dimensional grammars by a standard grammars with special
nonterminal denoting positional information between parts. However, it is more compact
and expressive to use high dimensional grammars.

Applications High dimensional grammars can be used to generate patterns used in
the field of art and design [70]. They can also be used to describe structural relations
between components such as an electronic circuit board and shapes of chromosomes
[36, 35]. Another application is in assembly systems in which allowable connectivity
between different part types is described by grammar [7].

In the following paragraphs, a brief description of both web and tree grammars with
examples will be shown.

A web grammar is defined by the tuple G = (N, Σ, P, S) where N is a set of nonterminal
symbols, Σ is a set of terminal symbols, S is the start symbol and P is a set of productions
of the form (α, β, φ) where α represents the sub-web to be replaced by β and φ is the
function which specifies the embedding of β into the web occupied by α. As an example
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Figure 2.6: Productions used by a web grammar (from [36])

consider the web grammar defined by N = {S},Σ = {a, b, c} and P is the set of triples
shown in fig. 2.6.

The embedding function φ states that α = S can be rewritten as β by connecting node a
of β to the neighbors of S labeled a, b. Fig. 2.7 shows an example generated by applying
this grammar.

A tree grammar is a special case of web grammars in which each production spawns a
sub tree form a single non-terminal node. A typical production can be seen in fig. 2.8
where a is a terminal and A1, A2, . . . An are non-terminals.

In the following section we will discuss more specialized types of grammars used in shape
representation.

Shock Grammar

Shape is described by four atomic units called shocks [67, 68]. A shock is the time
evolving medial axis of a shape formed by colliding propagation fronts emitted from the
shape boundary towards its center. Shape grammar describes how these shock types can
combine and used to trim impossible combinations. The robust shock graph facilitates
easy comparison between shapes and also reconstruction of the shape. By blurring the
boundary with a smoothing kernel and observing the effect of that on shock, a multi-
resolution description of shape is possible.
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Figure 2.7: Pattern generated from a web grammar (from [36])

Figure 2.8: A tree grammar production(from [36])

Applications 2D images of simple geometric shapes (like a rectangle or a dumbbell),
more complex shape like a hand and a comparison between different hands shapes and
hand shapes occluded by objects.

Method There are 4 types of shocks defined as depicted in fig. 2.9:

• A first order shock is formed when the colliding fronts originating at the boundaries
form a medial axis propagating with a finite speed in the direction where shape
boundaries are widening. First order shocks correspond to protrusions where op-
posite boundaries form a bottle neck shape.

• A second order shock is a point where two opposite boundaries form a neck (local
minimum) or where propagating fronts collide first and grow in opposite directions.

• A third order shock corresponds to parallel boundaries or where fronts collide
forming the medial axis at the same instant in time.

• A forth order shock corresponds to a circle or when the fronts collide to a single
point.

A shape is described as a sequence of shocks called shock groups. The shock grammar
defines rules which describe the formation of consistent shock groups. The nonterminal
set of the shock grammar is N = {S1, S2, S3, S4, SI , E} where S1, S2, S3, S4 are the shock
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Figure 2.9: Shock types

Figure 2.10: Examples of shock groups

types and SI is the start symbol and E describes the end of a time evolving shock group.
Σ = {ST } is the terminal symbol. The rules of a shock group are

R = {SI → S1E, SI → S2E, SI → S3E, SI → S4, (2.20)

S1E → S1S1E, S1E → S1S3E, S1E → S4,

S2E → S2S1E,

S3E → S3S1E, S3E → S3T,

S4 → S4ST }

For example, fig. 2.10 shows two shapes which can be derived by applying the shock
grammar as follows: The first shape can be derived SI ⇒ S2E ⇒ S2S1E ⇒ . . . ⇒
S2[S1 . . . S1]E ⇒ S2[S1 . . . S1]S4 ⇒ S2[S1 . . . S1]S4ST . The second shape is derived SI ⇒
S3E ⇒ S3S1E . . . S3S1 . . . S1E ⇒ S3S1 . . . S1S3ES3S1 . . . S1E ⇒ S3S1 . . . S1S3ST .

The shock grammar is used to define a procedure to prune impossible shock configura-
tions. The procedure is as follows:

• A first order shock should be appended at the end of an existing first order branch
as long as it both maintains the continuity of orientation and has a finite speed.
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Figure 2.11: An example of a shape described by shocks (from [68])

Otherwise, a new first order shock should be initiated. If a first order shock remains
isolated for a long time it should be terminated.

• A second order shock hypothesis should be discarded if it is not initial (i.e. a first
order shock flows into it).

• A first order shock terminating or emanating from the middle (not the end point)
of a third order shock should be deleted. A first order shock that terminates or
emanates from a third order shock without maintaining continuity of orientation
should be deleted.

• Two third order shocks should be grouped together if they are neighbors and their
orientation is continuous. Groups of third order shocks should never intersect other
groups of third or first order shocks. A third order shock that remains isolated as
a single point should be interpreted as a forth order shock.

• A forth order shock that is connected to a second, third or forth order shock should
be terminated.

Shapes are decomposed as shock groups to facilitate easy comparison with other shapes
(by just comparing topology or shock graphs) and also shape reconstruction (by reversing
the fronts from the medial axis). Fig. 2.11 depicts an example of a hand described by
shock groups.

Multi-resolution (Shape Diffusion)is achieved by a curvature deformation transform
(equivalent to Gaussian smoothing of the shape boundary) being applied on the shape.
The significance of a shock group is proportional to its survival with increasing amounts
of curvature deformation. For example a shape described by a shock group (4 - 1 - 2 -
1 - 4 ) can be shape diffused gradually to (4 - 1 - 3 - 1 - 4 ) and then with increasing
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Figure 2.12: An axial tree (from [61])

diffusion to ( 3 - 2 - 4) which means the right forth shock is more resistant to diffusion
than the left forth shock. Eventually the shape will diffuse to a single forth type shock
(4).

L-Systems in Graphics

L-systems are used in computer graphics to generate branching structures in plants [61,
60]. L-Systems are a parallel context sensitive tree grammar (augmented with geometric
attributes) that can simulate inheritance from ancestor branches to descendants and
signals moving between neighboring branches. Discrete time evolution and probabilities
of selecting multiple productions are also some modelling capabilities of L-Systems. This
facilitates the description and simulation of complex plant growth patterns.

Applications Generation of plant growth patterns (e.g. sequential overlapped growth
of flowering patterns).

Method An axial tree fig. 2.12 is a special type of a rooted tree where each node has
at most one outgoing straight segment. All remaining edges from that node are called
lateral segments. A sequence of segments is called an axis if
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Figure 2.13: Productions (from [61])

1. The first segment is the root of the tree or a lateral segment of some node.

2. Each subsequent segment is a straight segment.

3. The last segment is not followed by a straight segment.

The axis together with its descendants forms a branch. A branch itself is an axial tree.
Axes are given an order number where the axis originating at the root has order zero.
An axis originating at a lateral segment of an n-order parent is of order n + 1.

A context free tree production as depicted in fig. 2.13 replaces a labelled edge called the
predecessor with axial tree called the successor in such a way that the starting nodes of
the predecessor is the same as the starting node of the successor and the same is true
for the end node. A context sensitive production defines the predecessor in three parts:
an axial tree l called the left context, an edge S called the strict predecessor and a right
tree r called the right context.

An L-system G consists of:

1. A set of edge labels called the alphabet denoted by V .

2. An initial axial tree ω called axiom.

3. A set of tree productions P . Given G an axial tree T2 is directly derived from a
tree T1 by simultaneously replacing each edge in T1 by its successor defined by a
production in P . L-systems are parallel rewriting rules.

A string generated by L-systems is rendered into a plant shape by using a logo like 3D
turtle. The turtle has a state consisting of position, orientation and other attributes like
color width etc. The L-systems are extended to generate segments with a set of attributes
attached which are interpreted as commands to move the turtle and draw the object.
For example: The first production in fig. 2.13 can be represented as S → S[−S]S[+S]S
where [. . . ] enclose a nested branch and − means turn left 60◦ and + means turn right
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60◦. The state of the mouse is saved on a stack upon entering a branch and restored
when finished with drawing that branch to its original position and orientation.

2.2.2 Alignment Models and Registration

This class of shape models consists of a single shape A that needs to be aligned to an
image B. The problem is to find a transform T such that the similarity beween T (A)
and B is maximized. There are several types of transformations T possible:

1. Rigid body: In this case the only allowed transform is a combination of translation,
rotation and scale such that the model shape is preserved.

2. Affine: In this case a transform is allowed by optimizing all parameters in affine
space. This allows a greater freedom such as the model can be squashed and
sheared.

3. Elastic: This includes the first transform type and additionally we allow local de-
formations for the model. Generally these models maintain smoothness constraints
between local neighbours.

The techniques used in registration are very diverse and varied. As an example of elastic
registration, consider the alignment of of the 2D figure in fig.2.14. In this case the
space is deformed by B-splines. By placing an equidistant matrix of control points then
displacing them around, we are able to generate a smooth deformation of the model
that fits the image [29]. Generally the deformation space described with 3D objects is
described as

T (x, y, z) = Tglobal(x, y, z) + Tlocal(x, y, z) (2.21)

where Tglobal is the rigid body transform and Tlocal is an elastic transform described as

Tlocal(x, y, z) =
3∑

l=0

3∑

m=0

3∑

n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (2.22)

where Φ is a nx × ny × nz mesh of control points φi,j,k with uniform spacing δ and
i = ⌊ x

nx
⌋ − 1, j = ⌊ y

ny
⌋ − 1, k = ⌊ z

nz
⌋ − 1,

u = x
nx

− ⌊ x
nx

⌋, v = y
ny

− ⌊ y
ny
⌋, w = z

nz
− ⌊ z

nz
⌋

Bl is the lth basis function of a cubic spline

B0(u) = (1 − u3)/6 (2.23)

B1(u) = (3u3 − 6u2 + 4)/6 (2.24)

B2(u) = (−3u3 + 3u2 + 3u + 1)/6 (2.25)

B3(u) = u3/6 (2.26)
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Figure 2.14: Elastic registration using B-splines showing the model before and after displacing the
control points
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The methods for matching similarity measures are also very diverse. A notable example
is normalized mutual information [71] used to match images of different modalities. This
measure is defined as

Y (A, B) =
H(A) + H(B)

H(A, B)
(2.27)

where H(A), H(B) are image entropies and H(A, B) is the mutual entropy defined from
the mutual histogram of A, B obtained from co-occurrence of intensity values of pixels
at the same location.

Registration have extensively been used in medicine for example to diagnose abnormal-
ities such as [17, 4, 5] and for matching mammography images [29] and faces [37].

2.2.3 Geons

Biederman [10] proposed a theory of Recognition by Components (RBC). The basic idea
is that a structurally complex 3D object can be decomposed into a set of primitive solids
called Geons. The Geon decomposition is done in two steps:

1. Object decomposition into segments or parts.

2. Geon identification for each part.

Object decomposition can be done in two ways:

1. Region based: They find image regions that correspond to object surface patches.
These patches are then grouped based on Geon surface configurations.

2. Boundary based: The object surface is decomposed at points of high curvature.
Each segment is fitted to the most appropriate Geon.

An example of boundary based segmentation is [78] which uses a physical model of
electric charge density distribution to estimate surface curvature. This is due to the
fact that convex parts have a high charge density and concave parts have a low charge
density. After decomposing the object at points of high concavity, seven parametric
Geon types are fitted to each segment. The most appropriate Geon type is selected for
each segment providing a qualitative description and the Geon parameters provide for
quantitative measurements.

Applications Range data of 3D solids.

Method The decomposition process uses a finite element model to calculate charge
density distribution. The charge density is determined by the electric potential between
all the points on the surface. The electric potential between a point charge q at r′ on
the surface and a reference point r as seen in fig. 2.15 is given by
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Figure 2.15: The observation point r and the charge source point r′ on the surface S of an ellipsoid.
O is the origin (from [78]).

φ(r) =
q

4πǫ0

1

|r − r′| (2.28)

where ǫ0 is a constant.

The object surface is modelled as a set of finite elements of connected triangles Tk, k =
1 . . . N . Each triangle is assumed to have a constant charge density ρk, k = 1 . . . N .
Because of that we may take ri, i = 1 . . . N as the observation point on each surface
element. The potential at each surface element is then

V =
N∑

k=1

ρk

∫

Tk

1

|ri − r′|dS′, i = 1 . . . N (2.29)

V is assumed to be constant. This is because according to physics, all points on a
charged conductor in equilibrium are at the same electric potential. The total charge on
the surface Q is assumed to be known. We write Q as

Q =
N∑

k=1

ρkSk (2.30)

We obtain from eq. 2.29 and eq. 2.30 a set of linear equations with N + 1 unknowns,
ρ1 . . . ρN , V . Solving for the charge densities we get a measure of curvature where convex
points have a high charge density and concave points have a low charge density.

After determining charge density distribution, the decomposition algorithm iteratively
splits the object at closed low charge density boundaries. The tracing of each boundary
begins by selecting a starting triangle as follows:

1. Its charge density must be a local minimum.

2. The charge density must be below a certain threshold.
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ellipsoid

cylinder

cuboid

tapered cylinder tapered cuboid

curved cylinder curved cuboid

Figure 2.16: The seven parametric geons (from [78])

3. The triangle and its neighbors must not have been visited before checking that the
same boundary will not be traced again.

The algorithm begins from the starting triangle by finding the neighbor with the lowest
charge density and marking it so that it will not be visited again. This is repeated until
we return to the starting triangle thus tracing a complete boundary. Boundary tracing
is repeated until the object is fully decomposed into subparts.

After splitting the objects into subparts, the Geon identification algorithm tries to fit
seven parametric shapes shown in fig. 2.16 to each part. Each Geon has a vector
ai, i = 1 . . . 7 of model parameters that describe the size and deformation information
for that Geon. The fitting function used to optimize these parameters is a weighted sum
of the distance between the Geon and object surfaces as well as the difference in normals
between the two surfaces.

2.2.4 Generalized Cylinders

A deformable model for reconstructing 3D surfaces from 2D projections of objects was
developed by Terzopoulos et. al. [74]. This is achieved through a symmetry seeking
deformable cylinder that is shaped both by the silhouette of the object and its internal
symmetry forces. The user also plays a role in shaping the deformable cylinders by
initializing them and interactively modifying them.

Applications 3D reconstruction of objects from a single image, 3D reconstruction of
objects through stereo images, motion tracking.

Method A generalized deformable cylinder consists of a tube and a spine. The spine
and the tube are geometrically represented as a mapping from object coordinates to
cartesian 3D space as depicted in fig. 2.17. The spine is mapped from s ∈ [0, 1] into R

3:
vS(s, t) = (X(s, t), Y (s, t), Z(s, t)). The sheet is defined by the bivariate mapping from
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Figure 2.17: The geometric structure of a deformable cylinder (from [74])

(x, y) ∈ [0, 1]2 into R
3: vT (x, y, t) = (X(x, y, t), Y (x, y, t), Z(x, y, t)). The sheet is folded

into a tube by defining two boundary conditions: vT (0, y, t) = vT (1, y, t), ∂vT

∂x |(0,y,t) =
∂vT

∂x |(1,y,t). The tube and the spine are coupled together by setting y ≡ s.

The geometric structure of a cylinder undergoes dynamic deformation influenced by
intrinsic (symmetry seeking) and extrinsic forces. This dynamic behavior is described
by

µ
∂2v

∂t2
+ γ

∂v

∂t
+

δξ(v)

δv
= f(v) (2.31)

where f(v) is the net extrinsic force acting on the deformable body. µ is the mass density

function of the body and γ is the viscosity function of the ambient medium. δξ(v)
δv is the

variational derivative of the strain energy ξ which expresses the elastic force internal to
the body. The variational derivatives of a spine (ξS) and a tube (ξT ) are expressed as

δξS

δv
=

∂2

∂s2
(w2

∂2v

∂s2
) − ∂

∂s
(w1

∂v

∂s
) (2.32)

δξT

δv
=

∂2

∂x2
(w20

∂2v

∂x2
) + 2

∂2

∂x∂y
(w11

∂2v

∂x∂y
)

+
∂2

∂y2
(w02

∂2v

∂y2
) − ∂

∂x
(w10

∂v

∂x
) − ∂

∂y
(w01

∂v

∂y
) (2.33)

where the weights w1, w2, w01, w10, w20, w02, w11 are functions of material coordinates
and time that control tension and rigidity.
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The extrinsic forces consist of the symmetry seeking forces, user interaction forces and
image forces. The symmetry seeking forces maintain the spine at the center of the tube.
To define these forces we first define the tube’s centroid as

vT (s) =
1

l

∫ l

0
vT |∂vT

∂x
|dx (2.34)

l =

∫ 1

0
|∂vT

∂x
|dx (2.35)

We then define the tube’s radial vector with respect to the spine as r(x, s) = vT (x, s)−
vS(s) and the unit radial vector r̂ = r/|r| and the mean radius as

r̄(s) =
1

l

∫ 1

0
|r||∂vT

∂x
|dx (2.36)

The spine is forced to be in an axial position inside the tube the tube by introducing
the following two forces on the spine and the tube respectively

fS
a (s, t) = a(vT − vS) (2.37)

fT
a (x, s, t) = −(a/l)(vT − vS) (2.38)

where a(s) controls the strength of the force.

To make the tube seek radial symmetry around the spine we define the following force

fT
b (x, s, t) = b(r − |r|)r (2.39)

where b(s) controls the strength of the force.

Finally an expansion/contraction force is introduced around the tube

fT
c (x, s, t) = cr̂ (2.40)

where c(s) controls the strength of the force and if c < 0 then the cylinder deflates and
it inflates when c > 0.

The total force for the spine and tube thus becomes

µ
∂2vS

∂t2
+ γ

∂vS

∂t
+

δξS

δvS
=

δPS

δvS
+ fS

a (2.41)

µ
∂2vT

∂t2
+ γ

∂vT

∂t
+

δξT

δvT
=

δP T

δvT
+ fT

a + fT
b + fT

c (2.42)

where δP S

δvS , δP T

δvT are the variational derivatives of extrinsic image forces acting on the
bodies.

The extrinsic image force of the tube δP T

δvT is computed from the potential function P T .
This potential attracts the tube to single object silhouettes . It defined as

P T (vT ) = β|∇(Gσ ∗ I(Π[vT ]))| (2.43)
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Figure 2.18: 3D reconstruction of a finger from a stereo pair (from [74])

Π[vT ] expresses the projection of the deformable tube vT (x, s) to the image plane.
Gσ ∗ I is the convolution of the image with a Gaussian smoothing filter with σ and ∇ is
the gradient operator. β(x, s) is the weighting function which is nonzero for occluding
boundaries of the tube

β(x, s) =

{
1, if |i.n| < τ
0, otherwise

(2.44)

where n is the unit normal over the surface of the tube and i is the unit vector from the
imaging focal point to any point on the tube.

The image potential defined in eq. 2.43 is used to reconstruct the deformable tube
from a single image. This can be generalized to multiple stereo images by adding a new
potential for each image and just summing them. Fig. 2.18 depicts a finger reconstructed
from a stereo pair. This idea can be carried out further to track moving objects in an
image sequence. This is achieved by initializing the deformable cylinders from the first
image. Subsequent images exert time continues image forces that drive the cylinder to
new deformations.

A disadvantage of deformable generalized cylinders presented here is that they require
initial spines to be set by the user.

2.2.5 Shape Blending

DeCarlo et al. [27] proposed to model a shape as set of primitive surface patches smoothly
interpolated with one another. Holes in the shape are defined as a topological operation.
A top down fitting process begins with an ellipsoid wrapped around the object and end
up with a graph describing the main constituent blended components of the shape.
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Figure 2.19: Shape map (from [27])

Figure 2.20: Glued domains defined by the equivalence ∼ (from [27])

Applications Range data consisting of primitive solids like a box attached to a cylinder,
Simple solids with holes and complex solids like a mannequin.

Method Shape is defined as a function s : Ω → R
3 where Ω is the parametric domain

of the shape mapped by s to a 3D point in space as depicted in fig. 2.19.

Blending two shapes s1 : Ω1 → R
3, s2 : Ω2 → R

3 involves two steps:

• Specifying the retained subsets of each shape’s domain and glueing overlapping
domains together.

• Defining the interpolation function between the two shape surfaces on the glued
domains.

To glue two domains we define closed curves κ1 ⊂ Ω1, κ2 ⊂ Ω2 as depicted in 2.20.
Overlapping neighbors between Ω1, Ω2 are defined around κ1, κ2: ω1 ⊂ Ω1, ω2 ⊂ Ω2. An
equivalence relation maps between ω1, ω2: u1 u2 ⇔ β(u1) = u2,u1 ∈ ω1 andu2 ∈ ω2.
The domain of the blended shape is Ω∗ = (Ω1 ∪ Ω2)/ ∼.

A surface-blending function α : ω1 → [0, 1] performs the smooth join between the two
original shapes as depicted in fig. 2.21. We define the blended shape as follows

s(u) =







s1(u), u ∈ Ω1 − ω1

s2(u), u ∈ Ω2 − ω2

s1(u)α(u) + s2(u)(1 − α(u)), u ∈ ω1

(2.45)

The algorithm begins by fitting an ellipsoid to the object. A blending region is created
along the surface boundary separating outward and inward boundary forces as depicted



2.2. Structural Models 31

Figure 2.21: Geometric blending of two shapes (from [27])

Figure 2.22: A blending surface created along the boundary between outward and inward forces (from
[27])

in fig.2.22. This results in protrusions being separated as blended shape components.
Whenever the surface self-intersects, a hole is created. The fitting process results in
creating a graph describing the main shape components as depicted in fig.2.23

2.2.6 Super Quadric Model

Terzopoulos and Metaxas in [73, 52] propose a mixed model to represent a single object
with no parts, which consists of:

1. A global superquadric which facilitates recognition and comparison between shapes.

2. A local deformation model in the form of a displacement field that fits the finer
details of the object.

The fitting process is modeled as a dynamic system.

Applications Range data from simple objects like an egg, a mug to more complex
shapes like a doll.

Method Fig. 2.24 depicts the super quadric model which is a closed surface with
parametric coordinates u = (u, v) defined on a domain Ω. The positions of points on
the model are given as a time varying function of u

x(u, t) = (x1(u, t), x2(u, t), x3(u, t))T (2.46)
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Figure 2.23: Fitting of a cup and the resulting shape component graph (form [27])
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Figure 2.24: Geometry of a deformable super quadric (from [73])

The transform between the model frame of reference and world coordinates is expressed
using the translation vector c(t) and the rotation matrix R(t)

x = c + Rp (2.47)

The position p is expressed as the sum of the super-quadric shape s(u, t) and a displace-
ment vector d(u, t)

p = s + d (2.48)

The super-quadric ellipsoid s is defined as

s = a





a1C
τ1
u Cτ2

v

a2C
τ1
u Sτ2

v

a3S
τ1
u



 ,−π/2 ≤ u ≤ π/2,−π ≤ v ≤ π (2.49)

Sτ
w = sign(sin(w))|sin(w)|τ (2.50)

Cτ
w = sign(cos(w))|cos(w)|τ (2.51)

The parameter space of s is defined as

qs = (a, a1, a2, a3, τ1, τ2) (2.52)

The displacement field d is expressed as a sum of basis functions bi(u)
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d =
∑

i

biqi (2.53)

The vector qd(t) = (. . . , qi(t), . . .)
T is the vector of generalized coordinates that depend

on time only. The basis functions bi are collected as a diagonal matrix S so we can
rewrite d as

d = Sqd (2.54)

The parameter space is defined by the vector q = (cT , θT ,qT
s ,qT

d )T where θ are rotational
parameters. By assuming no mass to the dynamic system we can write the dynamic
equation of the model as

Cq̇ + Kq = fq (2.55)

where C,K are damping and stiffness matrices and fq are the image forces. This equation
can be expressed as a time step sequence as follows

q(t+∆t) = q(t) + ∆tC−1(f (t)
q − Kq(t)) (2.56)

The displacement field d is kept smooth by maintaining the constraint

ε(d) =

∫

w1(u)((
∂d

∂u
)2 + (

∂d

∂v
)2) + w0(u)d2du (2.57)

The image force is described as a sum of two terms:

1. A short term force resulting from gradient information after convolving the image
with a Gaussian filter P (x, y) = ‖∇(Gσ ∗ I)‖.

2. A long range force that determines the distance between the image surface and
the nearest point on the deformable boundary f(uγ) = β‖r− x(uγ)‖ where r is a
data point and x(uγ) is the nearest point on the model surface.

The importance of this model is its multi-resolution property which enables it to capture
global shape features important for image description and comparison. At the same time,
it has the ability of reconstructing the shape using the local model.

2.2.7 Finite Element Model

Sclaroff [66, 57, 65] describes a deformable finite element model which is fitted dynami-
cally to a single object with no specified structure. Modal analysis finds the coordinates
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of the fitted model in the eigen space of free vibration modes. This representation of
the fitted model enables easily the recognition of objects with great accuracy (e.g. facial
recognition).

Applications Fitting and recognition of human faces. Segmenting and fitting of human
figures.

Method The fitting model (usually an ellipsoid) is modelled as a connected set of (n)
nodes. The energy of the whole shape is described as

MÜ + CU̇ + KU = R (2.58)

where

• U is a 3n × 1 vector of (∆x,∆y, ∆z) displacements of the n nodal points from
their initial positions.

• M,C,K are 3n × 3n matrices describing mass, damping and material stiffness of
the whole system.

• R is the 3n× 1 vector describing the x,y and z components of the forces acting on
the nodes.

The system eventually comes to a state of rest when it satisfies the equilibrium equation

KU = R (2.59)

The purpose is to find an orthogonal transformation matrix that diagonalizes eq. 2.58
which decouples the degrees of freedom, finds a closed form solution, and reduces com-
putation. The transformation matrix Φ is applied as follows

U = ΦŨ (2.60)

Substituting eq. 2.60 into eq. 2.58 yields

M̃
¨̃
U + C̃

˙̃
U + K̃Ũ = R̃ (2.61)

M̃ = ΦTMΦ (2.62)

C̃ = ΦTCΦ (2.63)

K̃ = ΦTKΦ (2.64)

R̃ = ΦTR (2.65)
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The transform Φ is obtained by solving the eigen value problem

Kφi = ω2
i Mφi (2.66)

Solving eq. 2.66 yields 3n eigen solutions such that all eigen vectors φi are orthonormal-
ized

Φ = [φ1, φ2 . . . φ3n] (2.67)

Ω2 =








ω2
1

ω2
2

. . .

ω2
3n








(2.68)

ΦTKΦ = Ω2 = K̃ (2.69)

ΦTMΦ = I = M̃ (2.70)

The damping matrix C is made diagonalizable by restricting it to the form

C = a0M + a1K (2.71)

Using the transform Φ, eq. 2.58 is reduced to 3n individual equations

¨̃ui(t) + (a0 + a1ω
2
i ) ˙̃ui(t) + ω2

i ũi(t) = φT
i R(t), i = 1, . . . , 3n (2.72)

or

¨̃
U + (a0I + a1Ω

2) ˙̃
U + Ω2Ũ = ΦTR(t) (2.73)

The modal coordinate system defines the free vibration modes such that the first 6
modal coordinates correspond to translational and rotational rigid body transforms.
Higher vibration modes convey information about the object’s shape.

The force R is defined as a set of virtual springs between the model node (xk, yk, zk)
and the corresponding point at the object’s surface (xw

k , yw
k , zw

k ) . The magnitude of the
forces is defined as

(γ3k, γ3k+1, γ3k+2)
T = (xw

k , yw
k , zw

k )T − (xk, yk, zk)
T , 1 ≤ k ≤ n (2.74)

The fitting problem is finding the displacement that satisfies the equilibrium condition
in eq. 2.59. This is simply the solution of U = K−1R that requires an iterative method
because K has a high dimension. A direct non-iterative closed form solution exists by
converting the equilibrium into modal coordinates
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Ũ = K̃−1R̃ = (Ω2)−1R̃ (2.75)

To establish the correspondence between the model and the object, an ellipsoidal coor-
dinate system is defined on the object whose origin is the center of mass and whose axes
correspond to the axes of inertia of the object. The springs are then attached to the
model from this object centered coordinate system.

The main significance of modal analysis is the ability to recognize and compare objects.
This is because high frequency modal vectors are discarded and only a finite low order
frequency eigen vectors are used which characterize the main features of the shape. This
multi-resolution property enables the comparison of two objects simply by taking the dot
product of their modal coordinates under the same model. The closer the dot product
is to 1, the more similar the objects are. Ω is pre-computed once for the model which
enables efficient fitting on many objects. The similarity equation is

ε =
Ũ1 · Ũ2

‖Ũ1‖‖Ũ2‖
(2.76)

2.2.8 Curvature Scale Space

The main idea is to use Gaussian multi-resolution in shape analysis. This is done by
smoothing the boundary of a 2D shape by a Gaussian kernel. A curvature scale space
graph (CSS) is formed from zero crossings of the boundary curve. The longer the zero
crossing survives increasing smoothing the more important it is as a shape feature. This
enables the analysis of shape with high robustness against boundary noise.

Applications Detection of corners of planar curves [62], detection of malignant melanomata
by measuring border irregularity [46] and efficient indexing of marine life silhouettes for
content based image retrieval [54].

Method As depicted in fig. 2.25, a curvature scale space graph is constructed from a
planar curve defined by a parametric curve (x(t), y(t)) where t is normalized to be in
some fixed interval such as [0, 1]. The planar curve is subjected to a Gaussian smoothing
kernel of width σ. A curvature scale space graph consists of u as the horizontal axis
and σ as the vertical axis. A point plotted at some (u, σ) represents the zero crossing
of the curvature of the smoothed boundary. The segments between those zero crossings
represent concave (negative curvature) and convex (positive curvature) parts. If we sort
the local maxima in the CSS graph from the highest down, we end up with main zero
crossings of the shape that represent its most prominent features. The smallest local
maxima represent insignificant or noisy features. This interesting property gives CSS
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Figure 2.25: Curvature scale space graph and curve evolution (from [54])

robustness to noise and ability to measure important features of the shape and compare
shapes.

2.3 Dynamic Models

After the selective survey of structural models, now we begin describing some represen-
tative dynamic models.

2.3.1 Snakes

The model introduced by Kass et. al. [40] defined a dynamic or active contour try-
ing to locally minimize its energy. The snake-energy is defined as the integral sum of
three weighted forces: the snakes internal force, the image forces, and external forces.
The internal forces represent built-in smoothness constraints that try to minimize both
stretching and bending of the active contour. The image forces are the image features
that attract the snake towards edges. The external forces represent high level user
interaction which pulls the snake away from a local minimum.
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Figure 2.26: Tracking lips using snakes (from [40])

Applications Segmentation of medical images, 3D Stereo correspondence analysis and
motion analysis (e.g. mouth movement tracking as depicted in fig. 2.26).

Method Given a parametric representation of a snake as v(s) = (x(s), y(s)), the snake
equation can be written as

E∗
snake =

∫ 1

0
Esnake(v(s))ds =

∫ 1

0
Eint(v(s)) + Eimage(v(s)) + Econ(v(s))ds (2.77)

where Eint, Eimage, Econ are the internal, image, and external energies, respectively.

The internal energy of the snake is written as

Eint = (α(s)|vs(s)|2 + β(s)|vss(s)|2)/2 (2.78)

where α(s) and β(s) are relative weights that control stretching and bending forces,
respectively.

The image force is defined as

Eimage = wlineEline + wedgeEedge + wtermEterm (2.79)

where wline, wedge, wterm are weights and Eline, Eedge, Eterm are energies calculated from
intensity, gradient, and corner image feature, respectively.

User interaction is introduced by defining springs and volcanos. A spring is a force
between the snake point x1 and an external point x2 described as −k1(x1 − x2)

2. A
volcano is a repulsion force described as k2/r2 where r is the distance between an external
point and the snake. User interaction can help the snake correct its solution. This is
because snakes are local optimizers that require a good initialization.

The curve moves using discrete time step Euler equations.
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Figure 2.27: Simplex (ACID) grid with snake nodes sampled from the intersection (from [51])

2.3.2 ACID Snakes and Surfaces

McInnerney and Terzopoulos [51] suggest the use of a particle system snake expanding
by an inflation force. Lagrangian motion equations model the dynamic behavior. The
image space is divided into triangles or simplexes (ACID grid) as depicted in fig. 2.27.
The nodes of the snake are re-parameterized after M time steps by a new set of nodes
computed by intersecting the evolving snake with the edges of the ACID grid. They
generalize this approach to 3D in [50]. The advantages of such an approach are:

1. It simulates the topological adaptivity of propagating fronts.

2. It enables user interaction and smoothness constraints of traditional snakes that
front propagation does not provide.

3. It enables the merging and splitting of different snakes and solves problems like self
intersection using the ACID grid that maintains one intersection point per edge.

Applications Complex topologies considered for segmentation are 2D and 3D images
of blood vessels, corpus callosum, cross sections of vertebra and MR brain images.

Method The snakes nodes are indexed as {xi(t) = (xi(t), yi(t)), i = 1 . . . N − 1} that
form a closed boundary. The equation of motion is described by the balance of internal
and external forces

γi
dxi

dt
+ aαi + bβi = ρi + fi (2.80)

where γi is the internal damping coefficient and αi maintains even distances between
nodes and βi maintains resistance to bending deformations

αi(t) = 2xi(t) − xi−1(t) − xi+1(t) (2.81)

βi(t) = 2αi(t) − αi−1(t) − αi+1(t) (2.82)
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Figure 2.28: T-Snake re-parametrization (a) T-Snakes expands darning deformation step (b) new nodes
are sampled by intersection with ACID grid (c) new T-snake formed (from [51])

The inflation force pushes the boundary outwards until it hits the edges defined by the
direction normal to the node ni(t) and F that maintains the direction within the object
region

ρi(t) = qF (I(xi(t)))ni(t) (2.83)

F (I(x, y)) =

{
+1, I(x, y) ≥ T
−1, otherwise

(2.84)

The external force fi is maintained by a Gaussian smoothed gradient. The discrete time
step equation becomes

x
(t+∆t)
i = x(t) − ∆t

γ
(aα

(t)
i + bβ

(t)
i − ρ

(t)
i − f

(t)
i ) (2.85)

The algorithm alternates between calculating deformations using eq. 2.85 within M-
Time steps then it re-parameterize the T-Snake nodes using the ACID grid as shown
in fig. 2.28 such that the element cannot be moved to make a grid vertex outside the
T-snake when it was inside. By maintaining a list of inside vertices, we keep track of the
interior region of the snake. Self intersections and merging T-snakes are automatically
handled in the ACID grid by maintaining a single intersection point when the T-snake
intersects itself at the edge several times or by deleting the intersection points crossing
the edge that come from colliding T-snakes thus merging them. The re-sampling of
particles by automatically using the grid is an improvement over the dynamic particles
approach.
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2.3.3 Front Propagation Model

Malladi et al. [48] propose to define a closed curve that expands as a moving front where
each point on the surface has a velocity proportional to curvature which gets stopped at
boundaries.

Applications Complex topologies considered for segmentation are 2D images of blood
vessels and other organs like cross sections of liver.

Method Let γ(0) be a closed initial curve in 2D. Let γ(t) be the family of curves
generated by moving γ(0) along its normal vector field with speed F (κ) as a given scalar
function of curvature κ. Let x(s, t) be the position vector which parameterizes γ(t) by
0 ≤ s ≤ S.

A level set Ψ(x, t) = d assigns each point x in space a real value d which represents the
distance to the surface or curve γ(t). A positive d means a point outside the curve and
a negative d means a point inside the curve.

γ(t) = x|Ψ(x, t) = 0 (2.86)

Define x(t) as a point on the front γ(t) and |xt| = F (x(t)) and the vector xt normal to
the front at x(t), then

Ψ(x(t), t) = 0 (2.87)

By differentiating 2.87 with respect to t and applying the chain rule we get

Ψt +
N∑

i=1

∂Ψ

∂xi

dxi

dt
= 0 (2.88)

where xi is the ith component of x, hence

Ψt + F |∇Ψ| = 0 (2.89)

The discrete finite difference form of eq. 2.90 can be evolved in time using a uniform
grid of spacing h where at every location i, j

Ψn+1
i,j − Ψn

i,j

∆t
+ F (∇i,jΨ

n
i,j) = 0 (2.90)
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where ∇i,j is the finite difference approximation of Ψ and F = F0 + F (κ) where F0 is a
constant. The direction of propagation is given by n = ∇Ψ. The curvature is given by

κ = −
ΨxxΨ2

y + 2ΨxΨyΨxy + ΨyyΨ
2
x

(Ψ2
x + Ψ2

y)
3/2

(2.91)

To stop the propagating front at edge boundaries one approach considered is to multiply
F by κI which depends on the image gradient convolved by a Gaussian kernel

FI(x, y) = κI(x, y)F (2.92)

κI(x, y) = e−|∇Gσ∗I(x,y)| (2.93)

2.3.4 Dynamic Particles

Szeliski et al. [72] defines a dynamic system of evolving oriented particles expanding
into the object surface. New particles are added dynamically to the set. Potential
internal forces are defined to maintain an even and smooth distribution of particles on
the surface. A triangulation algorithm then links the particles to form polygon mesh of
object surface.

Applications Complex topologies considered for segmentation are 3D images vertebra
and other solid objects like a mug and toroidal structures.

Method An oriented particle system defines for each particle a state (pi,Ri) where
pi is the position and Ri is the 3 × 3 rotation matrix that defines the orientation of
the particles coordinate frame and the third column defines the normal ni. Given two
particles i, j, we define ri,j = pi −pj . Potentials were defined to maintain the geometric
smoothness between particles and they are:

1. Long range attraction forces and short range repulsion forces

φi,j(ri,j) = A‖ri,j‖−n − B‖ri,j‖−m (2.94)

2. Co-planarity potential

φP (ni, ri,j) = (ni · ri,j)
2ψ(‖ri,j‖) (2.95)

where ψ is a monotone decreasing function.

3. co-normality potential

φN (ni,nj , ri,j) = ‖ni − nj‖ψ(‖ri,j‖) (2.96)
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4. co-circularity potential

φC(ni,nj , ri,j) = ((ni + nj) · ri,j)
2ψ(‖ri,j‖) (2.97)

The overall interaction between two particles is the weighted sum of all the forces

Ei,j = αi,jφi,j(ri,j) + αP φP (ni, ri,j) + αNφN (ni,nj , ri,j) + αCφC(ni,nj , ri,j) (2.98)

The total internal energy is computed by summing over all the inter-particle energies.
Euler’s method is used to model the dynamic behavior of particles. As particles expand
and reach surface boundaries new particles are inserted using two rules:

1. If two neighboring particles have a sufficient distance between them say dmin ≤
d ≤ dmax and the candidate particle midway between them is at least further by
0.5dmin from any other particle.

2. If the number of immediate neighbors of a particle falls with the range nmin ≤
nN ≤ nmax and the angle between two successive neighbors is within a suitable
range θmin ≤ ∆θ ≤ θmax projected into the particles local x, y -plane, then particles
are added to fill the gap.

2.3.5 Re-tiling Polygons

Turk [75] defines a method for computer graphics to reconstruct polygonal meshes of the
same shape at different resolution levels. The method uses a sampling method similar
to dynamic particles with distances weighted by local curvature so that the areas of
higher curvature get more vertices. The number of vertices determines the resolution
level. A local tessellation algorithm constructs a triangular mesh from these vertices for
rendering.

Applications Re-tiling complex 3D objects like molecules, vases.

Method The surface to be re-sampled is randomly sprayed initially with a user spec-
ified number of vertices. A relaxation algorithm is applied to repel each point from its
neighboring points. The basic operation is to project all neighbors of a point to a plane
tangent to that point. The repelling force of each neighbor is calculated and the point is
moved in the direction of total force. The radius of repulsion is adjusted such that they
are reduced at surfaces with high curvatures. This has the effect of concentrating ver-
tices at surface points with high curvature thus preserving the geometry of the samples
shape.

Shape is sampled at different resolutions according to the following procedure as depicted
in fig. 2.29:



2.3. Dynamic Models 45

Figure 2.29: Shape sampled at 3 resolutions where level 1-vertices are the larger points and so on (from
[75]).

1. The user initially places n1 vertices and runs the relaxation algorithm.

2. A new set of n2 vertices are sprayed on the surface and the relaxation algorithm
is run again but fixing the positions of the n1 vertices of the last level.

3. The process is repeated again fixing the location of the vertices of all the previous
levels.

A tessellation is defined which uses the original polygonal surface to construct a trian-
gular mesh that preserves the topology of the shape.

2.3.6 Deformable Organisms

A deformable organism [38] is structured as a muscle-actuated body whose behavior is
controlled by a brain that is capable of making both reactive and deliberate decisions
based on sensory data. This cognitive ability is able to evaluate the relative importance
of image features at each segmentation stage to escape false interpretations that other
methods tend to latch onto.

Applications Segmentation of corpus callosum in MR images of the brain.

Method The deformable organism is a layered architecture which consists of:

• Geometric representation

• Motor system

• Perception system

• Behavioral/Cognitive system.

The geometric representation of a deformable organism specifies its shape and morphol-
ogy. For example, a tapered shape consisting of one medial axis and a border silhouette.
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Figure 2.30: Geometric structure of a deformable organism and its length, orientation, left and right
thickness profiles (from [38])

Figure 2.31: Progression of the deformable organism to segment the CC (from [38])

Such a shape can be specified by many profiles such as length, orientation, right thick-
ness, left thickness and orientation as depicted in fig. 2.30.

The motor system is a set of parameterized procedures that implement complex trans-
forms using deformation actuators. Deformations range from bulging one part, smooth-
ing the boundary, elongation, turning the medial axis etc. These deformations can be
described as

pd = pd +
∑

l

∑

s

[Mdlswdls +
∑

t

αdslstkdlst] (2.99)

where p is the shape profile, d is the transform type, p is the average shape profile, k is
an operator profile, l, s are location and scale of the deformation, t is the operator type
(e.g. Gaussian, triangular), α is operator amplitude, M are the variation modes for a
specific d, l, s and w contains the variation mode weights.

The perception system consists of image sensors placed at medial or boundary points
that can measure anything from intensity, gradient, Hough transform etc.

The behavior/cognitive system is a plan to carry out active search for image features by
collecting information from sensory data and triggering deformation controllers to bring
the organism closer to its target segmentation. An example of this behavior is depicted
in fig. 2.31.
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2.4 Hybrid Models

In the last three sections we discussed the main ways shapes have been modeled. Statis-
tical approaches predict changes in shape based on training data. Structural approaches
divide shapes into smaller components thus enabling comparison and simplification of
representation. Dynamic models can track and segment complex shapes. In certain
problem domains the requirements of a shape model may not be enough to be fulfilled
by either one of these models alone. In such a case, a new representation that combines
one or more of the three representations is needed. Two models will be reviewed in this
section: Pictorial Structures [31] and FORMS [80]. They have elements of both statis-
tical and structural models. But as we shall see Pictorial Structures model deformation
between parts a fixed structure. FORMS models viariable deformable parts but no co-
deformation between them is described. This will gives rise to the ASSM modelwhich
can do both.

2.4.1 Pictorial Structures

The basic idea is to combine statistical and structural models by defining the shape as
a tree of structural components and modeling the relation between each edge connected
pair statistically. The maximum likelihood algorithm computes the optimal parameters
for the model. After building the model, a MAP distribution is used for matching. By
sampling from the MAP distribution the model implements a global search strategy. It
utilizes the relationships between parts to find more plausible and accurate matches.

Applications Finding facial landmarks and pose estimation of articulated human body
[31]. See figures 2.32 & 2.33.

Method The model defines a graph G = (V, E), where the vertices V = {v1, . . . , vn}
correspond to shape parts and every edge (vi, vj) ∈ E indicates a statistical dependency
between parts vi, vj . Specifically, an instance of a shape is given by L = {l1, . . . , ln}
where li is a random variable which indicates the location of part vi in the image I. The
prior distribution over the object configurations p(L|θ) is a Markov Random Field with
the structure specified by the graph G. Using Bayes rule, the prior distribution of an
object configuration given an observed image I is

p(L|I, θ) ∝ p(I|L, θ)p(L|θ) (2.100)

where p(I|L, θ) is the probability of observing an image I given the object configuration
L. θ are the model parameters. Assuming the parts don’t overlap and that each shape
part has appearance parameters u = {ui|vi ∈ V }, we can define p(I|L) as the product
of individual likelihoods
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Figure 2.32: Detection of landmarks in human faces (from [31])

Figure 2.33: Estimating pose for a moving human body (from [31])
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p(I|L, u) ∝
n∏

i=1

p(I|li, ui) (2.101)

Since the dependencies between parts form a tree the prior joint distribution between
parts p(L) is expressed as

p(L) =

∏

(vi,vj)∈E p(li, lj)
∏

vi∈V p(li)deg(vi)−1
(2.102)

where deg(vi) is the degree of vertex vi in the adjacency graph. The prior distribution
between two parts is defined as a normal distribution as follows

p(li, lj |cij) ∝ N(Tij(li) − Tji(lj), 0, Σij) (2.103)

where Tij , Tji and Σi,j are the connection parameters encoded by cij . The functions Tij

and Tji together represent the relative locations between parts vi and vj . Σij measures
the spring stiffness connecting vi and vj .

After specifying the model, we must find the optimal model parameters θ. To do that
a set of training images I1, . . . , Im and corresponding object configurations L1, . . . , Lm

are required. The appearance parameters u are learned using

u∗
i = arg maxui

m∏

k=1

p(Ik|lki , ui) (2.104)

The connection parameters cij are learned using an ML estimate

c∗ij = arg maxcij

m∏

k=1

p(lki , lkj |cij) (2.105)

The last step is to find an optimal connection tree from the completely connected graph
between nodes. This is done by finding the minimum spanning tree where the weight
assigned to every edge is −log q(vi, vj). q(vi, vj) represents the quality of connection
between every node pair. It is defined as

q(vi, vj) =
m∏

k=1

p(lki , lkj |c∗ij) (2.106)
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After adequately estimating model parameters, we can use the model for matching.
Matching is done by both finding the MAP estimate of the object location given the ob-
served image and also by sampling object configurations from the posterior distribution.
The MAP estimate is the object configuration with the highest probability given as

L∗ = arg maxLp(L|I, θ) = arg maxL





n∏

i=1

p(I|li, ui)
∏

(vi,vj)∈E

p(li, lj , cij)



 (2.107)

By sampling the MAP estimate, we implement a global search algorithm that is not
sensitive to initialization and can find object configurations wherever they are in the
image.

This model has been used in two applications with increasing complexity: Facial land-
mark detection and pose estimation of human body movement.

In the case of facial landmarks, the location of each landmark is described only by
an (x, y) position. The appearance parameters around each landmark are a vector of
Gaussian derivatives of different orders, scales and orientations. The model was tested
on both 5 and 9 landmarks.

The second application is pose estimation of the human body. Binary images were
formed by subtracting images containing the background alone from images containing
a moving person. The problem is to estimate the best pose of the articulated body given
these binary images. The model is divided into articulated rectangular parts. Each
rectangle is parameterized by the vector (x, y, s, θ) where (x, y) represent the location
of the centroid, s is the foreshortening scale, and θ is the orientation. The geometry
between parts is captured by two parameters: θij is the relative orientation and the
location of the joint connecting them is (xij , yij). The appearance parameters measure
how much each part covers the foreground pixels. Experiments have shown that the
mutual information derived from the structural model is a strong factor in finding the
pose robustly. Problems still occur for estimating the pose of occluding parts.

2.4.2 FORMS

FORMS [80] divides shape silhouettes into parts from the medial axis transform. Each
part is represented as either a deformable worm or circle. The model stores two data
structures to represent the training data set: Connectivity graphs representing connected
components and a table of parts addressed by the deformation parameters of each part.
When matching a new shape, the model finds the best fitting shape in its database based
on both the similarity of deformation parameters and the nearest matching connectivity
graph. To find similar graphs, a set of graph operators is used to make the graphs
corresponding to each other.
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Figure 2.34: Some skeletons (from [80])

Applications Learning and matching of a database of 35 shape silhouettes [80]. Some
samples are shown in fig. 2.34.

Method FORMS begins training its database in three steps: First it finds the medial
axis transform for each silhouette. Then it divides the shape into parts at points where
the medial axis branches. After that it builds a graph of the shape model and calculates
for each divided part the deformation parameters.

FORMS defines two deformable shape primitives for each part it divides as shown in fig.
2.35: The worm (that represents elongated parts) and the circle (that represents joints
and short ends).

The worm shape consists of both a single axis and the ribs. The axis is uniformly
sampled by n points along its path. The coordinates of the sampled points are stored

as a vector
−→
X = (x1, y1, . . . , xn, yn).

The ribs are represented as the distance to the boundary perpendicular to the axis.
The two sides are symmetric so the deformations are represented as a single vector−→
R = (r1, r2, . . . , rn)

The second shape primitive is the circle. It is represented by dividing its circumference
into equal angular intervals and measuring the length of the ray from the center to the

boundary forming a vector
−→
C = (d1, d2, . . . , dm).

The deformation modes of each shape part are characterized by either finite element
methods in cases where no sufficient training data exist or principal component analysis
otherwise.

When confronted with a new shape, FORMS splits it at junction points where the medial
axis branches as shown in fig. 2.36. It builds a skeleton graph of the model and calculates
the deformation parameters of each part in the skeleton. It decides if each part is a circle



52 Chapter 2. State of The Art

Figure 2.35: Deformable primitives: The worm and the circle (from [80])

Figure 2.36: Segmentation of a dog (from [80])

or a worm based on a shortness measure. The information collected from all the shape
are stored in two databases:

1. A database of skeleton graphs where each model may have several skeletons due
to change of pose or viewpoint.

2. A content addressable memory called the butcher’s shop as shown in fig. 2.37.
Each cell in this data structure is addressed by both the deformation parameters
and a label indicating what part of an object it belongs to (e.g head of a dog).

After storing all model representations in the database, we have to use this information
to match new shapes. The similarity measure between a model M and a shape instance
D is described by first defining a mapping function Φ from the parts of M to the base
parts of D. The similarity of a single part m of M and a part d of D is defined by
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Figure 2.37: The butcher shop (from [80])

Pmatch[m, d] =
1

Z
exp

−∑k
i=0

(αi−βi)

2σ2
i (2.108)

where αi, βi, i = 1 . . . n are the deformation parameters of m, d respectively and σ2
i are

the variances of the deformation parameters of m.

The similarity between the model M and the shape D under the match Φ is defined by
the probability

PΦ[M, D] =
∏

Φ(mi) 6=φ

Pmatch[m, Φ(m)]
∏

Φ(m)=φ

Pmissing[m]
∏

Φ−1(d)=φ

Pextra[d] (2.109)

where Pmissing, Pextra are the penalties of extra parts in M and D respectively. They
are defined as follows

Pmissing[m] =
1

Z1
exp

−λ1
A(m)

1
n

∑n
i=1

A(mi) (2.110)

Pextra[d] =
1

Z2
exp

−λ2
A(d)

1
n

∑n
i=1

A(di) (2.111)

where λ1, λ2 are scaling constants and A(m), A(d) are the relative importance of the
part in model M and data D, respectively.

In addition to the similarity measure defined above, FORMS defines four graph operators
to trim the model graph and bring it closer to the data graph. The operators are :
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Cutting model branches off, merging two connected junctions, concatenating branches
together, and shifting a branch to another.

The experiments show good matching results even in cases of missing parts and occlusion.

2.5 Comparison Between Shape Models

In the previous sections a detailed survey of shape models was conducted. The section
in hand contains a summary of these models, advantages, limitations and application
domains of each model class. From this we draw conclusions about the new shape model.

Table 2.1 shows the comparison between the different shape models. This table leads to
the following observations:

Statistical models require a suitable sample space of similar shapes. The sample space
must be sufficiently large to train the model on all the variations in shape. Once the
training is done, fitting the model to new instances is a very stable and noise-robust
process. All statistical methods require a preprocessing step of landmarking all samples.
This can be time-consuming, specially if landmarking is carried out manually. In terms
of application, statistical models are suitable for deformable shapes which have a fixed
structure and many instances. This is why they are applied in medicine specially for
segmenting specific organs such as corpus callosum in the brain and bone segmentation.
In cases were motion is needed to be tracked, the object of interest must exhibit periodic
motion such as the heart. Statistical models generally have a compact representation of
an object instance making them suitable for data compression in cases where a database
of the same object exists.

Structural shape models can be divided into constrained and unconstrained models. Con-
strained models are those that use structural constraints such as grammars to describe
allowable shape combinations. This prior knowledge can be used to generate plausi-
ble shape structures. In addition to that, the prior knowledge can be used to correct
erroneous results found by segmentation modules (for example, see [7]). The uncon-
strained structural models have no prior knowledge about how shapes combine but they
are capable of abstracting complex structures into either a small set of connected shape
primitives or a representation by a small parameter space. Structural models capable
of multi-resolution shape representation can separate global from local shape features.
Shape abstraction and multi-resolution give structural models the ability to compare
and search different shapes. This is the application domain where structural models are
mainly used. Registration methods were included into structural models because they
describe structural information of a shape even for a fixed template.

Dynamic models define boundaries evolving in time attracted by both internal and exter-
nal forces. Internal forces define the smoothness constraints that regularize the boundary
and help the model to avoid image noise. External forces can be either image features or
user interaction forces that modify the model to the desired fit. Although snakes use local



2.5. Comparison Between Shape Models 55

optimization which makes them sensitive to initialization, dynamic models have evolved
to be more global and less initialization sensitive. This feature enables these models to
find complex shape boundaries. Because of the dynamic nature of those models, they
are suited for motion tracking applications. Another important application domain is
the segmentation of static images when the boundary of the object contains relevant in-
formation. These models do not describe structural information about shape nor explain
deformations of these objects. Because of this they cannot be used to compare shapes
or compactly represent them.

From the previous paragraph, we can now formulate the following hypothesis: A more
general shape model should represent the prior shape knowledge in both how shapes
statistically deform and the structural relations between them. Deformation is no longer
confined to a single shape but to co-deformation between several sub-shapes. This
combination enables noise robustness from statistical models and validation of structure
from structural models. There can be many other implications for such a shape model.
One implication is the ability to verify a shape based on its context of neighboring
shapes. This means that the shape’s neighborhood can provide information on what the
structure type is and how it deforms. Another implication is that co-deformation enables
a multi-resolution representation of shape and specialization of a shape as it becomes
part of a bigger shape hierarchy.

The application domains suited for such a shape model are multi-part objects consisting
of reusable deformable components. This can be found in mechanical assembly systems,
hand drawn sketches and for content based image retrieval for a database of connected
objects such as insects or bones. In such applications multiple samples must be found.

The next chapter will describe how such a hybrid model will be realized.



56 Chapter 2. State of The Art

Table 2.1: Comparison between shape models
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Active Shape Model
√ √ √ √ √

S

Active Appearance Model
√ √ √ √ √

S

Active Appearance Motion Model
√ √ √ √ √

SM

Probabilistic Registration
√ √ √ √

S

Shape Grammars: Network, Tree
√ √

G

Shock Grammar
√ √ √

SC

L-Systems
√ √

G

Semantic Networks
√ √ √

C

Registration
√ √ √

S

Geons
√ √

RC

Generalized Cylinders
√ √ √

RC

Shape Blending
√ √

C

Super Quadrics
√ √ √ √

RC

Finite Element Model
√ √ √

C

Curvature Scale Space
√ √ √ √

CD

Snakes
√ √ √ √

SM

T-Snakes/Surfaces
√ √

S

Front Propagation
√ √

S

Dynamic Particles
√ √

RS

Re-tiling Polygons
√ √ √

RS

Deformable Organisms
√ √ √ √ √ √ √ √

S

Pictorial Structures
√ √ √ √ √ √

S

FORMS
√ √ √ √ √ √ √

CD
∗ S=Segmentation, M=Motion tracking, C=Shape comparison, G=Shape generation,

D=Content based image retrieval, R=3D Surface Reconstruction



3 Active Shape Structural Model

After the survey in the previous chapter and a comparison between shape models, this
chapter will describe in detail the framework for Active Shape Structural Model (ASSM).

The next section will provide a brief informal introduction to ASSM. Section 2 will
explain the mathematical and algorithmic formulation.

3.1 Brief Introduction

The Active Shape Structural Model (ASSM) is used to recognize, segment and recon-
struct shapes [2]. It models shapes as a direct acyclic graph (DAG) of inter- and intra-
connected deformable geometric structures. The deformation of these structures is de-
termined by principal component analysis. The deformable structures used for fitting
can be either atomic shapes or relations. Atomic shapes are deformable shapes of a fixed
structure. Relations can be parts of bigger relations and can overlap as shown in fig.
3.1.

Figure 3.1: Shape representation as a direct acyclic graph of atoms and relations

The ASSM consists of a training module and a recognition module.

In the training module, the structures are specified and their statistical deformations
are computed from several sample shapes. Before the sample shapes undergo statisti-
cal analysis, they must be landmarked and then aligned with each other to eliminate
extrinsic differences. After that, principal component analysis of the aligned samples
determines the deformation modes of the structural unit. After all shape structures
have been specified and analyzed, the training module builds a shape table.

57



58 Chapter 3. Active Shape Structural Model

In the recognition module, the image is searched using the shape table in a bottom up
fashion as depicted in fig. 3.2. The iterative search begins with some initial shape that
has been fitted to the image. This fitted structure spawns new structural candidates
in the image using the shape table. These candidates are fitted to the image and the
best ones are selected. The search is iterated on the newly formed set of structures until
the image is covered. In addition to spawning and fitting structural candidates, existing
structures are grouped to bigger structures.

Figure 3.2: Expanding an existing shape by new structural elements then selecting the best candidate.

The relations specify both how shape atoms can be grouped together and their co-
deformation. The statistical deformation of a shape atom or a relation becomes more
restricted when it becomes part of a bigger relation. This is because it co-varies its
deformation with other shapes within that relation. This is the multi-resolution property
of the ASSM.

As an example of this property, imagine a deformable model of the hand depicted in
fig. 3.3. Assume an atomic shape model of a finger that can vary in length between all
possible finger shapes from the thumb to the index finger. As all five fingers are fitted
to the hand image, the deformable fingers have a mutual covariance which restricts their
deformation such that the thumb cannot be longer than the index. That means every
finger deformable model has become more specific in its deformation by being part of a
relation. Relations not only specify co-deformation within its parts but also structural
constraints between the parts. The structural constraints specify relative orientation,
relative scale and connectivity of these parts.

Another property of ASSM is prior knowledge. This means that prior structural and
statistical knowledge is used to construct a deformable model based on the features
found in image data. This prior knowledge gives ASSM capabilities to:

• Find missing structures when no sufficient evidence exists in the image.

• Find multiple interpretations for the image. After that, eliminate false ones based
on image context.
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Figure 3.3: The deformable model of a finger is more constrained when it becomes part of a hand
relation

To find missing structures, a partially constructed deformable model can be used to
predict possible structural candidates. The deformations of these structural candidates
can be computed using a regression technique which computes the deformation of the
candidate as a function of the partially fitted model. The deformed candidate is accepted
when a sufficient fit is achieved by its context neighbors.

An image can be interpreted by many fitting deformable shapes. If interpretations
conflict with each other, then we can use relations for conflict resolution. This is done by
eliminating shape atoms and their dependent relations by a quality measure. This quality
measure favors larger better fitted relations over smaller badly fitted ones, therefore, a
shape is not only eliminated based on its fitness to data but also with respect to other
related shapes.

To sum up, ASSM is a shape model which binds deformable shapes together to build big-
ger shape structures. The connectivity between these structures and their co-deformations
are statistically analysed. Recognition of images is conducted in a bottom up fashion
where shape context eliminates false interpretations and finds missing structures. The
next section will define the algorithms needed to implement ASSM.

3.2 Method

The previous section stated that the ASSM consists of a training module and a recogni-
tion module. The training module provides prior knowledge to the ASSM. The recogni-
tion module uses the prior knowledge of the ASSM to recognize and reconstruct struc-
tures from images. The next two sections will discuss these modules in detail.
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3.2.1 The Training Module

A shape table of deformable templates is constructed from shape samples by the following
steps:

• Complex shapes have to be subdivided into meaningful structural units. The basic
types of shape units and the relations between them have to be specified.

• Shapes are landmarked either automatically or manually.

• Shapes are sampled as vectors in geometric space.

• Sampled vectors are aligned for statistical analysis.

• Principal component analysis is applied on the aligned samples and relations.

• Shape regression parameters are computed for relations.

Now each step will be discussed in detail.

First, the user must specify the structures that have to be represented with ASSM. This
means the user determines the atomic deformable shape types to be represented. There
are criteria to decide when to separate variations into different atoms:

1. This division usually corresponds to some functional part in the application domain
for example a machine part in an assembly. In general an atomic shape type
must be semantically relevant to the application domain and must have similar
comparable sample space. The variation within an atom is crisp and simple enough
to be represented by a simple Gaussian distribution.

2. There is a combinatorial relation between the atom and other shapes. This means
the atom is reused with different shape types.

3. There is a sufficient number of training samples for this atom otherwise it should
be merged with a similar shape type.

4. The atoms do not overlap too much between each other in their distributions which
leads to misinterpretation.

After this, the user must specify which deformable atomic types have a relationship
between them and how these relationships are modeled. A hierarchy of higher order
relations is then specified in a bottom up fashion.

As an example consider a structure like the human skeleton shown in fig 3.4. The most
natural structural division is to consider every bone as an atomic deformable shape. The
most natural way to define a relationship is to consider any connected set of bones as a
relation. The connectivity relations model the range of rotations between bones and the
conformation and scale of these shapes. For instance, the fibula, tibia and femur is one
relation. A global relation containing the whole skeleton can describe the conformations
between all the bones.
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Figure 3.4: Human skeleton, each bone represents a deformable shape.

After specifying the structure, representative shape samples for every structural com-
ponent is collected. Every shape sample has to be landmarked. Landmarks represent
corresponding features between shapes that make them comparable to each other. Fig.
3.5 depicts a manual landmarking of fish silhouettes at corresponding features like the
mouth, tail and fins. Landmarking can be done either automatically or with user inter-
action. When user interaction is used then the user can specify certain key points and
intermediate land mark points can be automatically generated between them as depicted
in fig. 3.6.

After landmarking we have to represent the geometric features of a shape into a vector.
There are several methods to represent object geometry:

1. By taking the coordinates of the landmarks directly. In this case all samples of
the shape have to be aligned to a common reference frame to eliminate extrinsic
differences due to translation, rotation and scale. After alignment, only intrinsic
differences due to shape variation remain.

2. By taking object centered coordinates. This is done by dividing the object into
triangles and taking the edge lengths of these triangles. This has the advantage
of translation and rotation invariant geometric representation as depicted in fig.
3.7. In fig. 3.8 we see how the variation of some substructures of the mesh can be
modeled independently by varying the lengths of edges. The mesh representation
is also useful in cases when initially insufficient data samples exist. In this case we
can model the mesh variation as spring mass system using finite element methods.
Vibration modes with low modality correspond to low frequency shape variation.
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Figure 3.5: Manually landmarking silhouettes of 3 fishes such that corresponding landmarks represent
the same shape feature

Figure 3.6: Intermediate points placed at equal distancesbetween user specified landmarks

Later, if sufficient samples are provided, the system can switch to statistical vari-
ation.

3. Automatic landmarking of a single elongated shape usually involves finding a me-
dial axis of the shape and spawning ribs from the central axis as depicted in fig.
3.9. This is a generalized cylinder representation of the shape. In such cases we
need to represent the length of ribs, orientation and length between successive me-
dial segments as depicted in fig. 3.10. A special case is when the shape reduces to
a single line then only the coordinates of the medial axis have to be represented.
An example of this is a stroke made by a digital pen.

After landmarking the shapes and selecting a good appropriate representation, the
shapes must be aligned together. The alignment process is not necessary in the case
of geometric representations like the triangular mesh but it is necessary in cases were
coordinates are represented directly. In the following discussion we assume a shape is
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Figure 3.7: Fish divided into a triangular mesh

Figure 3.8: Polygon mesh representation of shape where variations in edge lengths are modelled sta-
tistically

represented as a set of n (x, y) coordinates directly. Specifically, we assume that a sample
vector of landmarks xi, 1 ≤ i ≤ p is represented as (xi,1, xi,2 . . . xi,n, yi,1, yi,2 . . . yi,n)T .

A population of samples S = {x1,x2 . . .xp} is iteratively aligned to an average shape x

by finding the transform parameters θi that minimizes the average Euclidian distance
between the corresponding n points of xi and x. x is initialized as x1 and recalculated
after every realignment of S. The transformation parameters θ are translation and
optionally rotation, scale or all three. The alignment process is described in alg. 1:

Figure 3.9: Fish subdivided into a generalized cylinder
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Figure 3.10: Parameters of a generalized cylinder

Data : a population of samples {x1,x2 . . .xp}
Result : mean shape x, all the samples aligned

x ← x1;
repeat

for i←1 to p do

Find rigid body transform parameters θi which minimize ‖T (xi, θi)− x‖; (where
T is the transform function)
xi ← T (xi, θi);
x ← ∑p

i=1
xi

p ;

end

until x converges;

Algorithm 1: Alignment of training sets

Alg. 1 always converges to the optimal solution no matter what the shapes are. This is
because the optimal rotation and scale parameters are represented as an over-determined
linear system where least square solution is minimized using pseudo inverse. Translation
is easy to find as the difference of shape centroids. Fig. 3.11 shows an example of
aligning 10 strokes with each other. After aligning all samples of S, we apply principal
component analysis to yield a matrix of t principal components Φ = [φ1, φ2 . . . φt]. The
shape parameters are described by a vector b such that x = x + Φb.

As an example, fig. 3.12 shows the first three variation modes of a complex two-stroke
signature analyzed from 20 samples taken from the same user. Each stroke is automat-
ically landmarked by setting the first and last points as main landmarks and placing
n intermediate points between them. Even with 20 samples we see a clear pattern of
variation. For instance, the first variation mode depicts the position variation of the first
stroke with respect to the second. The second depicts the double loop variation of the
second stroke and so on.

Relations between structural components can model many mutual attributes. These
attributes are:
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Figure 3.11: Alignment of 10 spring samples

Figure 3.12: First three variation modes of a signature

• Co-deformation happens if the deformation of one part is correlated with the de-
formation of another part. For example, if we model the variations of skeletons of
different vertebrate animals, the shape of corresponding bones is highly correlated
with other bone types such that the identification of one bone as belonging to
a certain species will determine the deformation of the remaining corresponding
bones.

• Connectivity tells which parts connect and at how and what are the connection
points. This is specially appropriate for objects connecting at joints. An example
of this are bones.

• Relative scale is the ratio of sizes between different parts. For example children
have skulls that are relatively larger than the rest of the body in comparison with
adults.

• Relative orientation: If parts are connected at joints then the relative orientation
reflects the degree of freedom of these parts. As an example, the degree of freedom
of an elbow joint is more constrained than the range of angles the shoulder can
make.

Given those types of relations we can represent relations at many levels of complexity.
The simplest representation of a relation between objects is obtained by landmarking and
then aligning group of objects by their coordinates using algorithm 1. The sample vector
for the object group {x1, . . .xn} is formed by simply concatenating their coordinates into
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Figure 3.13: 2-Level PCA applied on three shapes

Figure 3.14: left: Variation modes of a rectangle, right: a chair consisting of five rectangles that have
more constrained co-deformations with each other

one column vector








x1

x2
...
xn








. This representation is suitable for cases where there is little

rotational variation between the objects of one group.

If we want to model more complex orientational relations like joints between n shape
atoms then we can no longer use a linear model to represent rotation . In this case we
can define a 2-Level PCA on objects to decouple deformation and connectivity attributes
and model each linearly as depicted in fig. 3.13 . This is done in three steps: First,
deformation parameters of each shape atom is extracted bi = ΦT (xi − x), i = 1 . . . n.

The next step is to specify the binary features between each pair of shape atoms i, j,
specifically, the relative scale si,j (ratio of sizes) and orientation Θi,j between atoms i, j.
Θi,j = (θi,j , ∆xi,j , ∆yi,j) specifies the diplacement ∆xi,j , ∆yi,j of the joint between them
and the rotation angles θi,j around this joint.
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After that we collect all shape parameters and binary features into a sample vector
r = (b1 . . .bn,Θ1,2,Θ1,3 . . .Θi,j . . .Θn−1,n, s1,2, s1,3 . . . si,j . . . sn−1,n).

Given p samples for a relation, we can convert all these samples to the vector repre-
sentation as described in the previous paragraph: {r1 . . . rp}. After that, we form a
data matrix R from these samples and apply again principal component analysis. In
this case, the variables used for principal component analysis represent different units
of magnitude. For example, they represent rotation angle in radians coupled with x, y
device coordinates of a landmark. In such a case, all variables have to be normalized to
form a correlation matrix. The normal form of a variable x with mean µ and standard
deviation σ is x−µ

σ . To normalize eigen coordinates we have to simply divide each eigen
variable xi by the square root of its corresponding eigenvalue λi : xi√

λi
.

The variation modes extracted from the second level PCA will find deformation and
connectivity correlations between the objects. This is specially suitable in cases where
elastic shapes interact with each other. As an example, deformation of arm muscles
(contraction) is correlated with the elbow joint as shown in fig. 3.13.

After applying the principal component analysis on structural hierarchies, we observe
that the variation of an object becomes more specific as it becomes a part of a relation.
Fig. 3.14 shows how the variation of a rectangle is more constrained when it is part
of a shape group. The significance of this is that a sub-shape changes its variation
modes according to its context. This is the shape multi-resolution property of ASSM.
Specifically, the variation of a deformable shape is more constrained when it is a part
of bigger structural groups. This implies that as more structural parts of the shape are
recognized, the more they are able to give information about each other. This feature
will be explored next.

Relations can be used to predict new shapes when only some are given using a regression
technique. This speeds up searching for relations and also completes missing structures
in the image. Principal component regression (PCR) uses the Eigen space or the shape
parameter space b as regression and observation variables. Shape coordinates x are not
directly used because they have a high linear correlation. The necessary condition for
regression is that the regressor objects can successfully predict the variation of observa-
tion objects. If there is no linear correlation between them then linear regression does
not make sense.

Given a relation R = {a1, a2 . . . an} between n atoms of which A ⊂ R are regression
objects and B ⊂ R, A ∩ B = φ are observation objects and given a population of p
samples, we compute a regression matrix B as follows:

• We align the p samples and compute the latent vectors and roots of the regressors
and similarly the latent vectors and roots of the observation objects.

• For every sample xi, 1 ≤ i ≤ p, we compute the shape coordinates of regressors
bi,A = ΦT (xi,A − xA) and observation objects bi,B = ΦT (xi,B − xB).
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Figure 3.15: A chair modeled as a relation between rectangular single-stroke objects. PCR constructs
the expected shape given 1, 2 and 3 regressor objects from left to right respectively. As we can see
regression improves its fit to the original data the more regression objects are used.

• We form a regression matrix from shape parameters R = [bT
1,A, . . . ,bT

p,A]T and an

observation matrix of shape parameters S = [bT
1,B, . . . ,bT

q,B]T . Then we compute

the regression matrix B = (RTR)−1RTS. Let θA/B = (x,Φx,Φy, λx, λy,B) be
the regression parameters of A to B.

• For a relation R which consists of n objects or relations {r1, . . . , rn} we compute
all the regression parameters θA/B,∀A ⊂ R, A 6= φ, B = R − A.

Fig. 3.15 shows how PCR is used to predict parts of a chair. We see the match
between actual and predicted shapes increase with the number of shapes that are
used for regression.

The recognition module builds a shape table that specifies all deformations and re-
gressions of each structural element and the specific relations between these structural
elements. Table 3.1 shows the data structure of the shape table. This table represents
both shape atoms and relations. The first column represents an identification number
for a structural element. The second and third columns list the sub and super structures
to which this structural element belongs. The fourth column represents the variation
modes of this shape structure. The fifth column represents regression matrices of this
shape where the subscripts indicate what sub-structures map to which super-structures.
The last column represents the parameters used to weight the relative importance of a
given structure and also various thresholds and parameters to place on the structural
element.

This shape table is used as prior knowledge to search, reconstruct and group new shapes.
This is the task of the recognition module that will be presented next.

3.2.2 The Recognition Module

After constructing the shape table, we can use it to recognize and reconstruct new shapes.
This is depicted in algorithm 2. The shape interpretation consists of the following steps:
Finding some initial atomic shapes. Then, relations are recognized in the image by using
the structural prior knowledge. Relations are also used to generate new structures. The
image is then searched for evidence which supports the generated structures. When
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Table 3.1: Data structure of a shape table
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there is sufficient data to support the relation then it gets accepted. Finally, conflicting
interpretations between candidate atoms are resolved using the atom’s largest context
principle. This means that candidate shapes that belong to bigger relations are favored to
single atoms or atoms that belong to smaller relations. Once a candidate atom is selected
for removal, all the relations it belongs to are removed. After this brief overview, the
details of each step will be presented next.

Figure 3.16 shows a demonstration of the recognition algorithm which will be used to
explain the algorithm as we go along each step.

Initialization: The first step of recognition is to find one or more atomic shapes can-
didates on the image to initialize the recognition process. This is achieved by user
interaction or by placing one or more atomic shapes on the image at a position near
their intended location. These initial shapes then deform into their correct positions on
the image using their features.

Another way is to replace user interaction by using another algorithm to find some
atomic shapes such as throwing random templates on the image and finding the largest
shape from the best fitting template[8].

The third way is to look for prominent sub-shapes by throwing randomly an atomic shape
template on the image. The templates are thrown in different positions, orientations and
scales onto the image. These shape atoms are allowed to deform to search for matching
image features. Those deformed templates that have a good fit to the image are taken
as initial candidates to the image. It is not necessary initially that all the candidates
are correct matches because subsequent steps will eliminate false candidates based on
the matching algorithm.
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Data : Shape Table (ST ), Input Image (I)

Result : Recognized shape Instances (RS)

Find some initial atomic shape candidates C0 and fit them to I;
RS ← C0;
repeat

Find all Relations C1 that can be formed from grouping candidates in RS ;
for ∀r ∈ C1 do

Fit r to I;
if r fits then

Add r to RS;

end

end

Generate all potential shapes C2 from RS using regression for relations in ST ;
for ∀r ∈ C2 do

Fit r to I;
if r fits then

Add r to RS;

end

end

until no more shapes are added to RS;
Find all atoms in RS that have a conflict and put it in C3;
while C3 has conflicting atoms do

Find a ∈ C3 with minimum cost of removal;
Delete a from C3;

end

Algorithm 2: Recognition algorithm
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In the case of fig. 3.16 the triangle atom was initialized on the image.

Finding subsequent shapes: The next step is to utilize relations between shapes to
find new candidates and eliminate the unlikely ones. This is done by finding sub-shape
candidates that can be grouped with each other or by generating new shape candidates
and trying to fit them to the image. The sub-shapes are grouped together by finding
atomic shape candidates that are both spatially near each other and have the shape
types that constitute a candidate relation. A candidate relation is formed when the
constituent sub-shapes pass the deformation test. This means if the deformation of
the relation is within a specified threshold, then the relation is accepted as a candidate
relation. The candidate relation can then be fitted to image using the more specific
deformation modes. The deformation modes of a relation contain more information
about how individual atoms are related to each other and therefore provides better prior
knowledge for fitting better to the image data.

The other way relations can be used is to generate and validate the existence of new
shapes and even complete shapes that are missing in the image. This is done by taking
an existing candidate subset of shapes and using the relation’s regression matrix to
generate a new shape candidate. The newly generated shape candidate utilizes the
deformation and position information of its neighbors to construct a good initial guess
of its deformation and location on the image. After that the generated shape can be
locally fitted to the image. There are three possible outcomes of fitting the generated
shape:

• The generated shape fits the image. In this case the generated shape is taken as a
candidate to be used for further processing.

• The generated shape does not fit the image well but there is strong evidence from
the generating relation that it must exist. In this case we accept the generated
shape as a candidate for further processing. Strong evidence means that there is
high confidence in the relation and that its existing parts fit well with the image.
In this case we must set the criteria for accepting a relation where some atoms fit
partially. We have to specify for each relation the minimum number of atoms for
it to be accepted as a candidate.

• The generated shape and the neighborhood that generated it do not fit well the
image. In this case we drop the generated shape from further processing.

In fig. 3.16, 3 potential candidates are shown. The bottom triangle is then merged with
the two leg rectangles that matches a relation in the shape table.

Candidate selection: After looping the algorithm and iterating the generation and
merging steps for relations, a large set of candidate sets and relations are generated. At
this point a decision has to be made which candidates to keep and which to discard. This
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is done by determining conflicting shape atoms candidates. A conflict occurs between
two shape atoms ai and aj if they try to segment the same image region. In other words,
if they represent two interpretations for the same part of the image. Let us define the
context of a shape atom a as the set of all the super relations containing this atom such
that no relation is contained within another relation context(a) = {r1, r2 . . . rk}. The
next step is to compute the cost of removing an atomic object a and all the relations of
which it is part of. The cost function must take into account two factors: the size of the
relation and the fitting cost.

The size factor means that bigger relations that contain more objects are favored to
smaller relations. This is because bigger relations receive more support from their atoms.
One possible way to define size is to assign weights to every atom type w(a) that char-
acterizes its importance with respect to other atomic types. The size of the relation r is
simply the sum of the weights of its atoms size(r) =

∑

ai∈r w(ai).

The second factor favors relations that fit better to the image I. We can describe the
total cost for removing an atomic object a as

cost(a) =
∑

r∈context(a)

size(r)/dissimilarity(r, I) (3.1)

The conflict resolution algorithm is an iterative algorithm which consists of two steps:
determining all conflicting atoms then removing the atom with the minimum cost and
all its dependent relations. The algorithm terminates when all conflicts are resolved.

Every atom or relation generated has to be fitted to the image. The fitting function
uses a similarity measure which is a weighted sum of two factors. The first factor is the
image force that pulls the deformable template to the correct image feature. The image
features used are application dependent. They can be edge,corner or texture features.
The template can utilize [8] a number of these features at different positions.

The other factor is a measure of deformation. If too much deformation is needed to
bring the shape to fit the image, then probably it is a false fit.

We define the similarity function as the weighted sum of these two factors:

dissimilarity(x,x,Φ, λ, I) = fdeformation(x,x,Φ, λ) + α · fimage(x, I) (3.2)

fdeformation(x,x,Φ, λ) =

√
√
√
√

t∑

i=1

b2
i

λi
(3.3)

where (b1, b2 . . . bt) = b = ΦT (xaligned − x) and xaligned is rigid body alignment of x

to the mean shape x. The dissimilarity function used to fit both relations and atoms
to the image. If the final value of the fitting process is more than a threshold τ , then
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the atom or relation is accepted as a candidate otherwise it is rejected. The fitting
process is a minimization process on the shape parameter space b and the rigid body
transform parameters Θ = (θ, s, ∆x,∆y) where θ are the rotation parameters, s is the
scale, (∆x,∆y) are the translation parameters.

In fig. 3.16 we see that the circle primitive which is in conflict with the arch relation is
removed. The same is true for the other circle primitive. Finally after removing false
candidates we end up with the two relations shown in the figure.
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Figure 3.16: The recognition algorithm



4 Applications of ASSM

In the previous chapter a framework for ASSM was defined. This chapter demonstrates
this framework on specific applications. The domain of application considered here is
hand drawn sketches using digital ink and recognition of ants.

This chapter will is structured as follows: first, the reasons for choosing sketches will be
explained. Subsequently, literature pertaining to sketches will be briefly surveyed. The
ASSM framework will be adapted specifically to sketches. After this two applications of
sketches are considered: recognition of sketches of mechanical systems and using sketches
for security and authentication systems. After this, a comparison between ASSM and
ASM in using sketches is made. This will demonstrate the representational abilities
of ASSM. The next application demonstrates the use of ASSM framework in a more
realistic application, namely, the recognition of ant images for biological classification.
This is because different ant types have different structural representations. In addition
to that an ant’s body has a well segmented articulated structure.

The main reason why these applications were chosen is to demonstrate the hypothesis
of how the prior knowledge of ASSM of both structure and morphology can help us
achieve solutions to problems that the models surveyed cannot do easily. Sketches are
an example where both types of knowledge are needed. Using a statistical model alone
such as ASM will not represent variation and covariation between structural parts of a
sketch as a single distribution.

The use of structural models alone may not be able to capture the morphology with suf-
ficient precision as will be demonstrated in biometric sketches. This precision determines
the quality of authentication.

The reconstructive abilities of ASSM both at structure and morphology enables it to find
missing or bad parts of a sketch that neither a pure statistical or structural model can
do. A statistical model would have to perceive missing parts as a part of its distribution
rather than recognizing it as a discrete part. A structural model will not be able to
reconstruct the morphology of the bad or missing part based on its surrounding shapes.

In the case of ants, a model with prior knowledge of both structure and morphology
is needed. The precise knowledge of both different shape templates and how they are
aligned with respect to each other is crucial to segmenting and recognizing an ant. If
either component is missing as would be the case for the models surveyed, then this will
not be be done easily.

75
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Figure 4.1: A child’s drawing representing a simple sketch

After explaining the reasons why these applications are chosen, we we need next to define
what is a sketch. A sketch is a set of structurally variable and statistically correlated
drawing primitives of different complexity.

The structural variability comes from the tendency of humans to represent objects of
the real world with simple drawings. The shapes drawn usually have a simple enough
representation that falls within template types. As an example consider fig. 4.1. In this
case we see that the head and the eyes are represented as a circle and the upper body
has a characteristic shape which is a square. Also the shape of feet is characteristic as
hooks turning to the right. In general we observe that semantically similar objects in
the real world have similar shape representations in the 2D sketch space.

The statistical correlation means that drawings do not consist of just simple shape
templates but also that these templates are strongly related to each other. For example,
we observe in fig. 4.1 the spatial positioning of different body parts and the relative
scale of these parts to each other. We also see a representation of touching hands which
is another relation between the persons represented here.

The shape primitives vary in complexity in fig. 4.1. This can be seen from very simple
shapes like the arms to more complicated ones like the two flowers.

Hand drawn sketches were chosen to demonstrate the ASSM because they have the
following properties:

1. Sketches are more suitable for shape oriented models as opposed to feature oriented
models such as for cursive hand writing recognition.

2. Training and testing data are easy to generate and no special pre or post processing
steps are required.

3. If we impose the constraint that no structure is smaller than a stroke, we can easily
separate shape sub-structures from each other.

4. Strokes are suitable for statistical analysis because they vary shape in relationship
to each other or when drawn by the same user or different users.
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5. Sketches can contain missing structures or incomplete information because users
tend to use them as an informal way to communicate ideas before committing
to them. This means that a sketch model must be able to infer using its prior
knowledge what the user means and complete the missing information.

Sketches are gaining increasing importance with the shift to pen based interface as
palm and tablet computers are proliferating. Currently sketching systems are employed
in the field of design such as: design of user interfaces [47], recognizing mechanical
designs [6] and content based image retrieval [77]. Many sketching systems restrict
sketch recognition to simple shape primitives like squares, circles, polygons or specific
shapes [6, 32]. ASSM describes sketches statistically allowing complex and uniform shape
description.

The application of ASSM on sketches will be demonstrated in three ways:

• Qualitatively: As a recognition algorithm for mechanical systems. This is where
the ability of ASSM to construct and characterize complex relations is illustrated.
All the sketches are generated by a single user.

• Quantitatively: As a biometric recognition system. This is where the structural
component of sketches is applied to authenticate different users.

• Comparatively: The active shape model and ASSM will be compared. This is done
by embedding all structural and relational variations in a single normal distribu-
tion. This distribution is demonstrated on an example that shows the inadequacy
and complexity of this representation.

The next section demonstrates the qualitative aspect of sketches.

4.1 Sketch Recognition

In this section the adaptation of ASSM framework on sketches will be explained followed
by experimental results and a discussion [3].

Sketches are represented as a sequence of strokes. A stroke is created from the moment
the user puts the pen down on the drawing surface until the pen is lifted. Given this
representation we make an important simplifying assumption for ASSM: No atomic
shape is smaller than one stroke. This simplification avoids connectivity problems when
the user connects one stroke with the next one. For example, fig. 4.1 shows two persons
with the arms drawn as separate strokes and they are connected with the upper body
in the third person.

The reason this simplification is made is to focus on the structuring capabilities of ASSM
rather than shape morphology. Another reason is that if the user has the tendency to
frequently connect two shapes adjacent in time, they can be modeled as a separate shape
template.
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Figure 4.2: Levels of a sketch: (1) Strokes A1 A4, B1, B2 (2) Atoms: Cart, spring (3) Relations:
Correlation between the length of the spring and the distance between the cart and the wall.

The sketch is represented at three levels: Stroke, object and relation as depicted on fig.
4.2. The stroke is the most basic unit of shape. An ordered list of strokes representing
a single object is a shape atom. The reason for assuming stroke is that users tend
to draw the same multi-stroke object in the same order. Groups of atoms, that are
statistically correlated together, are combined by relations. A relation may also include
other relations. The components of a relation are not drawn in any predefined order.

After defining the structure of a sketch, the training and recognition modules have to
be adapted to these structures. The training module is described next.

To collect samples for the training module, we must define how to capture and landmark
strokes. A stroke is captured using a digital pen. The pen’s device sampled coordinates
are stored as a sequence of triplets s = ((x1, y1, t1), (x2, y2, t2), . . . , (xp, yp, tp)) where
(xi, yi), i = 1 . . . p are the device coordinates of a stroke-point and ti, i = 1 . . . p is the
time in milliseconds from a specified time point (e.g. start of the program).

After storing the stroke’s points, we use a B-spline function to interpolate between them
with the time t as the parametric variable: p(t) = (x(t), y(t)), t1 ≤ t ≤ tp. Time is
used as the interpolating variable because it samples more of the curve at points of high
curvature and high detail.

Using time for interpolation enables a simple solution for automatically landmarking a
stroke. We use the stroke’s first and last points as main landmark points and we generate
a fixed number of intermediate points. Experiments have shown this to be adequate even
for very complicated strokes consisting of many corners and curves. The errors resulting
from displacements of corners are reduced because many landmarks concentrate around
them as depicted in fig. 4.3. This is the case also when the same stroke is drawn with
different speeds, scales and orientations. To generate a sample vector of n points x =

(x1, x2, . . . , xn, y1, y2, . . . , yn)T from the stroke p we set (xi, yi) = p(t1 +
(tp−t1)

n−1 (i − 1)),
i=1. . . n.

When an atom or relation sample consists of multiple stroke s1, s2, . . . , sq, we can create
a sample vector by concatenating the corresponding landmarked vectors of these strokes
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Figure 4.3: Distribution of landmarks around corners in a stroke.

(xT
1 ,xT

2 , . . . ,xT
q )T . As a amall note we have to mention that this stroke ordering is done

only at training but is not required for recognition.

A more complicated representation of the relation is obtained by specifying joints where
parts can rotate. This is modeled using the two level PCA representation described in
chapter 3. In this case the second level represents the angle alone when rigid motion
is assumed or else the normalized angle and the normalized deformation parameters
when nonrigid rotation is assumed. For this application, the one-level representation is
assumed.

Training samples for atoms and relations are collected for a given user. Algorithm 1 can
be then used to align training samples and the PCA is applied to find variation modes.

After finding the variation modes for every atom and relation, we have to compute the
regression parameters for each relation. In this case if a relation R consists of atoms
R = {a1, a2, . . . , an}, we compute regression parameters for every proper subset of atoms
X ⊂ R, X 6= φ to the rest of the relation Y = R − X.

When all regression parameters are computed, all the information to build the shape
table in the training phase is complete.

Data : Φ, x̄, data x

Result : Elastic fitting xelastic, rigid fitting xrigid

x0 ← x̄;
repeat

find a rigid body transform T that minimizes ‖T(x) − x0‖;
x1 ← T(x);
b = ΦT (x1 − x̄);
x2 ← x0;
x0 ← x̄ + Φb;

until ‖x2 − x0‖ < ε; ;
xelastic ← x0,xrigid ← x1;

Algorithm 3: Deformable shape alignment algorithm
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After constructing the shape table, we must use it to recognize new sketch instances.
Recognition requires the definition of an appropriate similarity function. The similarity
function is defined between a shape template consisting of n strokes described by the
parameters: (x,Φ, λ) and a sequence of n data strokes in the sketch. The n data
strokes are first interpolated by a B-spline for each stroke and then landmarked the
same way used in the training module. When landmarking the sketch stroke sequence
x, we must use the same number of landmarks as the corresponding strokes in the shape
template. This facilitates comparison between the two shapes. After sampling x, an
elastic alignment algorithm described in algorithm 3 is used. This algorithm tries to
minimize the distance between the corresponding landmarks of the shape template and
x. The result of the algorithm is to compute a rigid body transform of x fitted to a shape
template deformed from x. After fitting, the similarity function (actually dissimilarity
as defined here) is defined as the weighted sum of both the deformation parameters and
the maximum distance between corresponding landmark co-ordinates:

dissimilarity(x, x̄,Φ, λ) = deformation(x, x̄,Φ, λ) + α · distance(x, x̄,Φ, λ), (4.1)

deformation =

√
√
√
√

t∑

i=1

(
bi

λi
)2 where b = Φt(xelastic − x̄) = (b1, b2, ..., bt),

distance = maxp
i=1‖ui − vi‖ where xelastic = (u1, ..., up),xrigid = (v1, ..., vp)

The specification of both the fitting and dissimilarity enables candidate relations and
atoms to be accepted or rejected based on some threshold value τ . This threshold can
be set to accept a high number of candidates because the conflict resolution step of the
ASSM algorithm will be set to reject most false candidates that do not receive sufficient
support from their neighbors.

4.1.1 Experimental Results

The goal of the experiments is to demonstrate the abilities of ASSM on sketches of
complex mechanical systems. They demonstrate the ASSM model because objects cor-
respond to machine parts and relations represent scale and connectivity constraints. The
experiments will demonstrate:

1. fitting of atoms and finding relations.

2. resolving conflicting interpretations using context information from structure.

3. finding missing or incomplete structural elements using the context information.

Fig. 4.4 shows objects used in constructing the sketches. Binary and higher order
relations analyze spatial and scale covariance between machine parts as seen in Fig. 4.5.

The ASSM model was trained with 10 − 30 samples per object or relation drawn by a
single person. 10 samples are sufficient to learn the variation modes if the user selects
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Figure 4.4: Deformable Objects: Spring, Weight, Wheel, Joint, Force, Pivot, Bar and Rope.

Figure 4.5: Relations: Arm, crane, lever, corner, pulley. The last relation ShockAbsorber consists of a
pulley, lever and corner.
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a representative training set that captures all the variability. In order to guarantee a
smooth probability distribution and a smooth mean 30 samples were used. This number
is also a reasonable effort for the user. The number of principal components ranged
between 3 for simple shapes up to 12 for the most complex shape. The number of
principal components was set to explain 95% of the variation in samples. This number
was chosen because it captures the variation accurately but still retaining a low number of
principal components. If 98% was chosen then the number of principal components will
double and most of the higher order components do not represent significant variation
but are noise artifacts. On the other hand, choosing 90% sometimes excludes some
components that are relevant to the variation. Fig. 4.6 shows some training data used
for machine parts. The samples’ variations must reflect some functional aspect for each
machine part. For example, the size and orientation of the bar object can vary. The
distance between the weight and the pulley can vary in the crane relation and the position
of the pivot with respect to the bar can vary in the lever.

Fig. 4.7 shows the results for interpreting a sketch. The left image shows the individual
objects with the best fitting shape overlaid and the latent coordinates of each object.
The right image shows relations binding these objects. The shock absorber is the largest
relation binding three smaller relations.

The algorithm is well conditioned because the dissimilarity threshold could be set high
without compromising the result. Specifically, the total variation can be set to unto 15
standard deviations from the mean and about half the length of the major shape axis
without affecting the result too much. This is because most conflicting interpretations
were eliminated using the shape’s largest context as depicted in Fig. 4.8. In cases where
no relations exist to correct false interpretations, the algorithm will have no solution but
to accept the false candidates. This also applies to cases when two fitting interpretations
have nearly equal costs and the false one is selected. Experiments on 5 sketch variations
similar to fig. 4.7 with a total of 17 relations and 90 atoms showed that using context
knowledge was able to eliminate 94% of false candidates.

Fig. 4.9 shows how shape regression can predict plausible candidates from their context
for some of the relations shown in fig. 4.7. In all these cases, the relation is found
by generating a shape candidate from its found set and then matching this candidate
against the data. When a sufficient match exists the next candidate is generated and
tested until the whole relation is found. Experiments showed that when up to 3 strokes
are deleted from the original sketch of a shock absorber, the ASSM was able to find this
relation and reconstruct the missing strokes. This was tested for 35 sketches of shock
absorbers and only in two cases the ASSM was unable to recognize the relation. For
smaller relations like the arm, the ASSM was able to find and reconstruct the relation
when only one stroke is missing. This was done for a sample space of 45 arms and 4
were not recognized. Similar results hold for the other relations. This demonstrates
that ASSM can generate candidate relations when sufficient support exists from the
data. The decision of how many strokes must be in the sketch before a reconstruction
is carried out rests with the user. If he sets too few support strokes , the algorithm
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Figure 4.6: Training sample for bar, crane and pulley
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Figure 4.7: Example sketch with the overlaid fitted model (dotted lines). Left: Objects, Right: Rela-
tions. Each object or relation is characterized by its shape parameters where the first two are shown.

Figure 4.8: Conflicting interpretations (dotted lines) like the pivot and rope objects above are resolved
using the fact that the bars and the joint are part of an arm relation which represents a larger shape
context with higher confidence.
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Figure 4.9: Reconstructing shapes from their context by regression. Each row shows the step by step
generation and matching of relations. Each step shows the generated shape candidates (dotted curves)
which is matched with the best stroke (thick curve). The remainder are the regression strokes. The last
row shows how the shock absorber is generated and matches with its three subrelations
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Figure 4.10: Two representations for a spring object drawn by two different users.

will generate many false candidates that fit badly to the data. For these experiments 3
missing strokes for the bigger relations of more than 10 strokes and 1 or 2 for smaller
relations was adequate.

In this implementation, training took most of the processing time ,e.g., about 10 minuets
on a pentium III processor with 128MB memory. Recognizing new sketches takes only
a few seconds.

These experiments demonstrate the use of ASSM to characterize shape variability due
to both statistical variations made by a single user and more importantly structural
variations due to functionalities between machine parts drawn in no particular order.

In the next section, the extension to variations between multiple users will be studied.

4.2 Biometric Sketch Recognition

Statistical methods are becoming more important in all biological fields of study. Biom-
etry deals with the application of mathematical techniques to the quantitative study
of varying characteristics of organisms, populations and species [39, 69]. Examples of
using biometry are finger print, retinal and face recognition. Biometry can be used in
hand drawn data because they are rich in quantitative features. This raises the potential
to extend the use of sketches in biometry and use ASSM to find the relevant features.
In the previous section the adaptation of ASSM on sketches has been demonstrated on
drawings of mechanical systems. All the training samples were drawn from a single user.
In the case of multiple users, there are many aspects to consider when examining inter-
user variability. One aspect is the characteristic ways users draw the same object as can
be seen in fig. 4.8. This is the dynamic aspect of user variability. A more important
difference pertaining to ASSM is about structural inter-user variation. This variation
has two forms:

1. Users tend to use different drawing primitives to represent the same object as
shown in fig. 4.10. In this case different shape templates are used to represent the
same semantic object.

2. If the drawing primitives are the same between two users, they must differ in the
relationship between these structures (inter-class variation).



4.2. Biometric Sketch Recognition 87

Figure 4.11: Classification of biometric sketch authentication applications

These types of variations between users enable the use of this information for user
identification. This is the idea behind the application being proposed here [39, 1, 16]. The
structural variation enables to apply a biometric algorithm on sketches to authenticate
users. As depicted in fig. 4.11, the structural component of a sketch (containing rich
information in how the shapes relate to each other) is what differentiates sketches from
handwritten signatures and symbols (simple fixed drawing) [45]. To understand how this
application relates to biometry, we must define what a biometric authentication system
is.

The following text is quoted from [15]: ”A biometric authentication system can be
considered as a part of an IT infrastructure where a person is subjected to a general
authentication process for receiving e.g. access rights to IT system resources, activity
regulations and information non-repudiation within electronic business processes, or the
permission to pass a gate or to enter a place or room. The general authentication process
can be divided into the five subsequent phases: enrollment, (biometric) authentication,
authorization, access control, and derollment and authorization withdrawal. During the
phase of enrollment appropriate biometric raw data of a person is captured, the biomet-
ric signature (template) for the biometric authentication is computed, and the relevant
biometric and personal data is stored in a biometric database [14]. A person’s authen-
ticity is checked by an identification (1:c) or verification (1:1) comparison of the actually
computed biometric signature with the biometric signature class in the phase of biomet-
ric authentication potentially being combined with authentication methods based on a
person’s knowledge, possessions, location, and time. Implicit and explicit authorizations
are given to the person in the authorization phase with respect to strong and weak
authorizations. In the access control phase the access to e.g. IT system resources or
activity control within electronic business processes is granted by an access management
system. In the phase of derollment and authorization withdrawal a person is derolled
and the person’s access rights are removed”.

Sketches were chosen for the biometric authentication system because they are a very
simple and intuitive way to represent secret information. They are easy to remember
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and draw. The structural information of sketches will be used for authentication the
following way:

1. All users will be trained to draw a predefined set of shape primitives as shown in
fig. 4.14.

2. They will be asked to construct a simple sketch consisting of a given number
of these primitives. The way the user decides to connect, scale and orient these
primitives will be the secret structural information he conveys to the authentication
system.

3. The user is asked to enroll the sketch he drew several times. When he is authen-
ticated, he has to draw the same sketch.

The enrollment process collects sketch samples from the user. These samples are aligned
using alg. 1 and then PCA is applied. For each user i = 1 . . . p, we construct a biometric
signature. This signature consists of all the parameters resulting from principal compo-
nent analysis (xi,Φi, λi) and a threshold value τi for the dissimilarity measure in eq. 4.1
which minimizes the overlap between users. The output of the enrollment process is a
biometric signature table T = {(xi,Φi, λi, τi) : i = 1 . . . p}. A problem that can occur
when enrolling a new user is that his signature might be closer to one or more existing
user signatures. In such a case one of two solutions can be applied:

1. Clustering/classifying without accepting a decrease of the authentication system
recognition performance. Once the user i is enrolled to the already (i−1) enrolled
users, his biometric signature (xi,Φi, λi) is compared with all enrollment samples
of the previous (i − 1) users. If the mean dissimilarity is less than three standard
deviations from another users samples, user n has to re-enroll with a new sketch
(pattern).

2. Clustering/classifying with accepting a decrease of the authentication system recog-
nition performance. If the user needs to be enrolled with a fixed set of samples
and the dissimilarity is less then three standard deviations, a higher false match
rate can be used to enroll the new user by adjusting τi. To maintain the algo-
rithms performance an additional sketch can be enrolled for user i to increase his
discrimination distance from other users.

The authentication process consists of validating a user i’s drawing x with his signa-
ture (xi,Φi, λi, τi). This is done by fitting x to the shape template using alg. 3 and
then calculating the dissimilarity measure d using eq. 4.1. If d < τi then the user is
authenticated otherwise he is rejected.

In the following section both dynamic and structural aspects will be evaluated with a
number of experiments.
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Figure 4.12: Pin samples taken from four different users.

4.2.1 Evaluation and Tests of the Biometric Sketch Recognition Algorithm

The biometric signatures are used to characterize the input of users in two ways:

1. Statistically (quantitative features): If a population of users is asked to draw ex-
actly the same shape, the set of biometric signatures can be used to some extent for
identification of users based on the characteristic way they draw these shapes. By
increasing the complexity of the shape, the identification performance increases.

2. Structurally (qualitative features): A sketch additionally contains connectivity,
scale and orientation relations between shapes. These relationships are represented
in the biometric templates of single users and substantially improve discrimination
performance in comparison to statistical features only.

Three types of experiments were done to examine these two claims:

1. Handwritten PIN number tests: For testing the statistical claim.

2. Sketch tests: For testing the structural claim.

3. Imposter tests: Test to what extent an intruder with no, partial or full knowledge
about user sketches can be falsely authenticated.

Handwritten 4 digit PIN numbers tests: A population of 10 users was asked to draw
30 times the PIN number (0123). Some samples are shown in fig. 4.12. Each test used
20 randomly selected samples for training and the remaining 10 for testing. Each test
was cross validated 10 times and the average error rate was computed. Each stroke
was sampled by 32 points. The number of principle components was set to represent
(explain) 98% of the samples and ranged between 11 to 15 principal components.
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Figure 4.13: Recognition error rates decrease as more digits are combined

Figure 4.14: Shape types used to construct sketches: bar, wheel, base, and knot

Figure 4.13 depicts how the recognition error rate drops from worst case 25.7% for digit
1 to 3.9% for the complete PIN. The conclusion is that the error rate of a combined
structure is less than the error rates of its substructures.

Sketch tests: Four basic shape types were given to 10 users as shown in fig. 4.14. Each
user was given four tasks of increasing complexity to complete in his way as shown in
table 4.1. Figure 4.15 shows some mean sketches drawn.

Each stroke was sampled by 16 points. For every sketch, the number of principal com-
ponents was set to explain 95% of the samples. The number of principal components
ranges between 10 for task 1 and 15 for task 4. The experiments were conducted on 10
users. Each user sketched each task 30 times. For every user task, 20 randomly selected
samples were used for training and the remaining 10 were used for testing. The tests
were cross validated 10 times and averaged.

As depicted in table 4.1, the average recognition error decreases as the complexity of the
structures increases. Task 4 consisting of 11 objects had 0% error.

Imposter tests: These tests verify how often a correct user is falsely rejected for au-
thentication and an imposter is falsely accepted. Three kinds of tests were considered:

1. The imposters have full knowledge of the sketch and trying to copy it.

2. They have partial knowledge of the sketch structure.

3. They have no knowledge of the sketch structure at all.

The full knowledge test was conducted with two imposters who tried to copy 20 times
task 4 of user 8 (see fig. 4.15). The results were compared with 10 user samples and



4.2. Biometric Sketch Recognition 91

task 1 task 2 task 3 task 4

user 1

user 2

user 3

user 4

user 5

user 6

user 7

user 8

user 9

user 10

Figure 4.15: Mean sketches drawn by some users
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Table 4.1: Sketching tasks given to users and their recognition errors

task description objects error %

1 Draw three connected 3 1.3%
wheels of different sizes

2 Draw 3 connected bars 6 0.9%
one bar is bigger than the others
Connect the bars to 3 knots

3 Draw 2 connected wheels 4 0.7%
one wheel is bigger than the other
Connect the wheels to a small bar
Connect bar to a big base

4 Draw Task 2 and task 3 11 0.0%
connect them with a knot
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Figure 4.16: Imposter tests left: direct copying (task 4) right: last knot unknown (task 4)

cross validated 50 times. Figure 4.16 left shows the false acceptance and rejection rate
graph that resulted by adjusting the threshold on the dissimilarity measure in eq. 1.
As we see the point of equal error rate is about 7.2% which is due to the statistical
properties which differentiate the user from imposters. For the partial knowledge test
two imposters where given all the knowledge about task 4 of user 8 except the position
of the last knot which has to be guessed. 20 samples were drawn and the results are
depicted in figure 4.16 right. The point of equal error decreases to about 1%. Further
tests with even less knowledge showed no error for this small sample set which to some
extent validates the assumption that structural knowledge is unlikely to be duplicated
by an imposter when he has no knowledge about it.

The previous results show that structural semantics can be used with some accuracy
within an authentication system. In cases where the users draw similar structures,
dynamic features can be used for discrimination. The intra-user variation of structure
over time will be tested in future work. In this case the question posed will be how
well do users remember the pattern they decided to enroll with after a week, month or
a year. And more importantly if they do remember, how much will the patterns they
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draw change over time. Another factor that has to be considered is testing on a larger
set of users say 100, 1000 and more. The limited test set of 10 users presented here only
shows the potential of such a system but not a full evaluation of its performance.

In the following section, ASSM and a pure statistical model will be compared in terms
of shape representation.

4.3 ASM versus ASSM

This section demonstrates what happens if we do not use structural knowledge as part
of ASSM and instead use only an active shape model as the shape representation. In
this case all probability distributions of each structural variant in the shape have to be
merged into a single probability distribution. This is because all types of shape variation
have to be modeled statistically. There are three types of variation captured by ASSM:
Variation of shape class, deformation modes within one shape class and covariations
between shape classes. The active shape model can only model deformations of a single
shape class. When including the other two variation types in ASM, a complex non-
normal probability distribution is formed. If this distribution is approximated using a
single principal component analysis, we end up with a model that generates and fits
invalid intermediate states. Otherwise, a complex nonlinear distribution is needed to
specifically capture valid states such as using a Gaussian mixture or hierarchical point
distribution models [13]. The non-linear distribution however requires a large number
of samples to separate valid from invalid states. The alternative is to allow too many
invalid or to exclude many valid states. This problem will be illustrated on sketches
similar to the ones presented in the last two sections.

Fig. 4.17 shows an example sketch consisting of 5 structural components. Sketch A is
the basis and sketches B and C are structural variants of A different by two structural
classes. Sketches D and E have the same structural classes as A but different covariation
of parts. In this case it is simply the positions of these parts relative to each other.

Fig. 4.18 shows a scatter plot of 30 samples on the first two eigen coordinates normalized
by their standard deviations. The figure shows an even distribution within two standard
deviations from the mean. Subsequently we can use this distribution to generate random
instances within 3 standard deviations from the mean, we get the result shown in fig.
4.19. All instances are valid variations of the same shape class.

To demonstrate what happens when varying the class type, we use instances of sketch
A,B and C as training samples to principal component analysis. Fig. 4.20 shows the
scatter plot of the first two normalized eigen coordinates of these samples. In this case,
the distribution is clearly non-linear with three distinct clusters. Any state generated
between those clusters is an improbable state as seen in fig. 4.21. Similar results are
shown for positional variation by taking random instances of sketch A,D and E as shown
in fig. 4.22 and fig. 4.23. Finally, fig. 4.24 and fig. 4.25 show the cases when both types
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of variations are combined. The scatter plots reveal several potential problems to learn
the nonlinear distribution:

1. If a cluster contains too few points, it is difficult to determine if they represent a
cluster or outliers.

2. The complexity of the distribution increases with more added cases. This makes
learning the nonlinear distribution increasingly difficult because it would require
more training samples to crisply separate different cases.

In contrast to the non-linear distribution approach, the structural model of ASSM pro-
vides the prior knowledge that enables us to separate the non-linear distribution into
smaller linear distributions. Each linear distribution requires a small set of representa-
tive training samples. The structural model specifies linearly correlated shape groups
eliminating the need to learn the non-linear model.

4.4 Recognition of Ant Images

In the previous sections ASSM was described and applied to sketches. In this section,
the ASSM framework will be demonstrated on other application domains. The applica-
tion presented here is the recognition and classification of ants in ant image databases
[8, 9]. The ant body can be subdivided naturally into parts and there is no need to
create artificial structures. Another interesting thing about ants is that they can be
classified by morphology into family trees. This means that some ant types are more
similar to other ants the closer they are in the family tree. This feature corresponds to
the multi-resolution representation of ASSM. The ant body is an articulated structure
which consists of several clear segments. The shapes and number of these segments
changes between species. This implies that the ant variations cannot be described by a
single structural prototype but with several variants where some components are reused
between these prototypes. An example is depicted fig. 4.27 where the first two ant
classes share the same head prototype. Because of these two properties, we can apply an
ASSM frame work that starts with a multi-shape generic ant. As the recognition process
proceeds these structures begin to specialize to more specific shape types as determined
by the ant type. Using the structural and statistical constraints between shapes, the
best fitting shape is found and used to segment and classify the ant.

In the implementation shown here, ant images are used which are taken form a stan-
dardized side view position. This view captures best the ant shape because no body
part occludes another. The ants are separated from the background image using a color
feature classifier. The silhouette of the ant body is then used in subsequent analysis.

The shape representation used here is similar to deformable organisms [38] as depicted
in fig. 4.26. At the base level there is the actual image data. Various filters are then
applied at the next level to extract the ant silhouette from it’s background and then
smooth it with a Gaussian filter. The shape templates in the next level are modeled as
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Figure 4.17: A group of sketches depicting both structural and positional variability. (A) is the Basis
sketch and (B,C) are structural variants with 3 common parts. (D,E) are variants of (A) which have the
same structural parts but at different positions.

Figure 4.18: Scatter plot of the first two normalized eigen coordinates of Case A in fig 4.17 for 30
samples.
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Figure 4.19: Some generated samples of Case A in fig 4.17. All samples show valid states within three
standard deviation for each eigen coordinate.

Figure 4.20: Scatter plot of the first two normalized eigen coordinates learned from structural combi-
nations (A,B,C) in fig 4.17. The plot clearly shows a non-normal distribution with three distinct clusters.
The empty space between the blobs are improbable states.
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Figure 4.21: Generated samples from the distribution which is learned from structural combinations
(A,B,C) shown in fig 4.17. Many intermediate invalid states appear.

Figure 4.22: Scatter plot of the first two normalized eigen coordinates learned from positional combi-
nations (A,D,E) in fig 4.17. The plot clearly shows a non-normal distribution with three distinct blobs.
The empty space between the blobs are improbable states.
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Figure 4.23: Generated samples from the distribution which is learned from positional combinations
(A,D,E) shown in fig 4.17. Many intermediate invalid states appear.
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Figure 4.24: Scatter plot of the first two normalized eigen coordinates learned from combinations
(A,B,C,D,E) in fig 4.17. The plot clearly shows a non-normal distribution with 5 distinct blobs. The
empty space between the blobs are improbable states.

Figure 4.25: Generated samples from the distribution which is learned from combinations (A,B,C,D,E)
shown in fig 4.17. Many intermediate invalid states appear.



100 Chapter 4. Applications of ASSM

Figure 4.26: Model for recognizing images of ants (from [8])

spring mass systems moving using Euler equations in discrete time steps. Each node
is assigned a mass which is affected by two kinds of forces: Sensory image forces such
as edges and color information and internal spring forces. Each spring is given a rest
length l0 and a stiffness constant k. When the spring is displaced from the rest length
by u, that spring will exert an opposing force −ku. The stiffness constant k is defined
as the inverse of the variance 1

σ2 of previously fitted training samples. The template is
designed with many internal nodes and springs that maintain the stability of its form.
The total force affecting any given node is

f =
n∑

i=1

−kiui + α
∑

j

fimagej
(4.2)

where α is a weighting constant.

The next level in fig. 4.26 is the search algorithm. The search algorithm is done both
globally and locally. Local search is used when each template is allowed to evolve in
time to seek a steady state solution guided by local deformation and image forces. To
overcome local minima solutions, a global search algorithm throws hundreds of such
templates onto the image with different scales, orientations and positions as depicted in
fig. 4.29. Each template is allowed to deform to reach a local solution. The template
selected as the optimal solution is the one which fits best the image. The fitting function
is measured as the weighted summation of sensor and deformation energies. In this
implementation, the search algorithm begins by throwing thousands of instances of the
head template on the image and selecting the best fitting template. This is because the
head is the biggest component which is common to all the ants.
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Figure 4.27: Three species of ants with different structural components. The first two types share the
same head template (from [8])

The next level in fig. 4.26 is the use of structural relationships between those templates.
This is achieved by a probability distribution function that defines the relative orienta-
tions, scales and positions between parts. Fig. 4.28 shows the distribution map of the
thorax area relative to the head.

This means that every part is labeled by once the head atom is found, the searcher begins
by throwing templates on the image according to the probability distribution specified
by the head location. An example is depicted in fig. 4.28. The position distribution
enables the searcher to throw random templates not evenly sampled all over the image
but sampled from the probability distribution of the existing found shapes. This is
depicted in fig: 4.30. In this case we see that a global uniform search in the left image
found the best match at the wrong location but using the fitted head on the right the
correct fit was found.

The structural variants were tested on three ant types as shown in fig. 4.27: Pheidole,
anochetus and cerapachys. The first two ants share the same head and the third is the
most complex consisting of five segments.

Experiments show the classification ability using these templates to recognize some ant
samples. Fig. 4.31 shows generated candidates and best fitting candidate for all three
template classes as applied to some samples. The probability of correct classification
for the sample on the first row (Pheidole fervens) is 81% pheidole, anochetus 77%,
cerapachys 55%. For the second sample pheidole subermata it is pheidole 82%, anochetus
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Figure 4.28: The covariance between the head and middle part enables the creation of spatial proba-
bility distribution depicted as a fuzzy cloud over the middle that enables the allocation of the chest area
(from [8]).

Figure 4.29: Thousands of templates are thrown on the image by applying the structural constraints
between parts until the best candidate wins (from [8]).

Figure 4.30: The global search for the thorax as guided without structural knowledge (left) and using
the head matched (right) (from [8]).
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76%, cerapachys 62%. The third sample anochetus cato is classified with probabilities
pheidole 74%, anochetus 81%, cerapachys 65%.

Tests were also conducted on 75 samples of class pheidole to see if they are classified
correctly. 12 samples were misclassified giving a rate of 84%.

These preliminary results show how the structural-statistical framework of ASSM can
be used with some success for image classification based on the shape model coupled
with sensory information and reusable structural components.

In the next chapter, the ASSM model will be compared to all the other shape models
surveyed in chapter 2.
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Figure 4.31: Recognition and classification results for some ant samples showing generated candidates
and best fitting result. From top to bottom: Pheidole fervens, pheidole subermata, anochetus cato,
Cerapachys vitiensis (from [8]).



5 Discussion

After having explained the framework for ASSM and showing some of its applications
in the previous chapters, it is time now to evaluate the ASSM model with respect to the
other shape models presented in Chapter 2.

Table 2.1 shows a comparison between various shape models. The following is a discus-
sion of ASSM features with respect to some properties listed in this table.

Statistical analysis of shape: Statistical models are representation models for a single
shape class. If a complex multi-part shape is modeled using a single statistical dis-
tribution, then either one obtains a simple flat distribution which allows many invalid
variations of objects or one has to find a distribution which is very complicated to reflect
all the valid states. The complexity of this distribution to be learned requires more
training samples to reflect the true distribution; otherwise, the variations learned would
not cover all the valid states. The ASSM solves this problem by dividing complex shape
to a group of smaller linear distributions. This enables both complexity reduction of the
distribution and accurate modeling of valid states.

Structural description of shape: Structural deformable models allowing variation modes
such as geons and generalized cylinders define generic shape templates that fit a large
range of shapes. These templates allow a lot of variation and can fit any configuration of
shapes. This may lead to ambiguity because there can be several solutions to the fitting
process. In addition to that, these templates cannot specially classify the actual struc-
ture type they segment. ASSM defines a set of more problem-specific atomic shapes.
The variations of these atoms are more crisp and can therefore fit better the image. The
stored shape graphs enable ASSM to find missing and extraneous structures.

Representation by a small feature space: ASSM is able to abstract any complex scene
into a graph of few relations and attach a small feature vector at each relation. This is
sufficient to compress the shapes scene and later reconstruct it with this representation.
It also enables efficient indexing and comparison between scenes making it suitable for
image databases.

Multi-resolution shape representation: Multi-resolution is a very important feature
for some shape models. It represents shapes from coarse to fine levels of detail. This

105



106 Chapter 5. Discussion

representation enables the separation of macro from micro features of shape. Macro
features abstract shapes to a simple, noise robust form. This facilitates easy comparison
between shapes tolerant to various noise artifacts. Generally, shape models that apply
multi-resolution can be divided into two categories: Those that apply a smoothing op-
eration and those that use a hierarchical description of shapes. Examples of the first
category can be seen using a curvature scale space for example [55] for matching silhou-
ettes of fish databases. Gaussian smoothing is not the only operation that can be used.
For example, Latecki [44, 43] uses discrete curve evolution which is basically removing
line segments one at a time based on a cost function.

The other type of multi-resolution uses hierarchical description. This means that we
divide the shape into two or more different models which when used together can re-
construct the original shape. An example of that is superquadrics by Terzopoulos [73]
which uses a global superelastic to describe the global boundary of the shape then a local
displacement field adjusts the boundary to represent micro features. Another example
is the object shape by Pizer [58]. In this case the shape is divided into a network of
medial primitives called figures. The shape is described in four levels: the object as a
whole, each figure, inter-figural relations and boundary displacement for each figure.

Both multi-resolution representations of shape use no problem specific prior knowledge.
This means that different levels of detail may ignore important information about the
shape (e.g. smoothing may delete an important feature of a boundary as noise such as
figures in a human body silhouette). Also, certain irrelevant features may be retained
at low levels of detail (e.g. a shape occluded by another).

In both these cases ASSM can solve this problem by coupling predefined structure with
morphology. In this case, the level of detail is represented by the degree of variation which
is large for a structural element and then becomes more constrained as more structures
come into play with it. This means that fine details will not be ignored as there is
sufficient evidence that supports it and also irrelevant features are ignored because there
is not enough context information to support it. In short multi-scale fitting in ASSM is
semantically dependent on the specific shape and can be refined with more fitted shapes.

Initialization sensitivity : If a good fit is found to some initial shape, the relations can
generate and correct the remaining parts. The statistical knowledge can validate the
initial fitting. Finding these initial structural elements is crucial for matching.

Robustness to noise: ASSM has the ability to infer missing structures and correct
existing ones based on shape context. In addition to that, ASSM has the usual robustness
to noise derived from statistical models. In the case of shock grammars, the correction
rules to shock graphs are restricted to the connectivity of few shape classes. This trims
errors in shock graphs. Similarly ASSM can trim a wider range of erroneous shape types
and find a suitable interpretation based on contextual relations.
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Applications: ASSM can be used for segmentation, shape comparison, shape genera-
tion, content based image retrieval and reconstruction and compression of shape scenes.

After a general comparison of ASSM with respect to the other model features, it is
necessary to compare it to the other more similar hybrid models. Pictorial structures
[31] statistically model the relations between shape parts. The shape structure however
remains invariable. The relations in between are constrained to be binary between parts
and the shape graph is constrained to be a tree. This means there is no provision
for shape multi-resolution. ASSM can both vary shapes structurally and allow a multi-
resolution hierarchy of relations between them. The pictorial structures model only rigid
body relations between structures like translation rotation and scale. It did not address
how deformation is handled between those objects. This is because it used simple rigid
shape templates like the rectangle.

FORMS [80] is the opposite to pictorial structures. It does allow structural variation of
parts using skeletal graphs. The statistical model is used only to represent the variation
of single parts and not the relation between them. This means FORMS matches only
based on connectivity graphs and degree of fit of each part individually. In addition to
that FORMS can describe only two basic deformable shape templates. This makes the
shape distribution more flat and allows for ambiguity in matching. Another inherent
problem with FORMS is that it relies on the medial axis transform to device the object to
parts. The medial axis is inherently unstable and may easily generate extra structures
because of noise. The division to parts by medial axis also may not be semantically
meaningful to some applications. For example, the tail of a fish may be modeled better as
a single deformable shape rather than two independent templates. The ASSM framework
provides more problem-specific shape templates that rely on domain knowledge rather
than the medial axis.

In addition to pictorial structures and FORMS, there are other shape models that rep-
resent soft articulated shapes such as [59] which were not listed in chapter 2. These
models work by fitting deformable objects to a fixed structure. The fitting is done on
each shape individually without using any explicit co-deformation information or higher
order relations between more than two objects. ASSM is able to represent these kinds
of relations explicitly which can guarantee a better more robust fit.





6 Conclusion and Future work

This thesis has presented a shape model framework that does not view single shapes as
deformable entities but as a collective of interdependent shapes. The ASSM framework
can model a broader range of problem-specific shape templates and allows structural
variation of shape. It models both deformation and co-deformation of shapes and allows
multi-resolution relations.

The main drawbacks of ASSM are:

• The need for a sufficient number of representative training samples. This may not
always be available.

• The structural model have to be fully specified beforehand by the user and cannot
be learned from training samples.

Future work will concentrate on finding solutions for those two problems. The first
problem can be addressed by extending ASSM to use a dynamic model when insufficient
samples exist and then gradually as more samples are collected, the model converges to
statistical aspects. This is depicted in fig. 6.1.

The second problem is can ASSM learn from training samples the structural relation-
ships. This can be done in several steps: Learn the atomic shapes and then check if
these shape have connections to each other, then learn the statistics of these relations.
This can be solved by finding a uniform representation for morphology and structure and
not separated as they are now in ASSM. Some preliminary tests were conducted using
both clustering and inductive learning systems. Clustering was used to group atoms
into classes. The main problem was that atoms with similar morphology but different
semantics were merged and also the same atom but with a large change in morphology

Figure 6.1: The possible overlaps of shape models
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were separated into serial classes. To learn complex relations between these atoms, an
inductive logic system was tried. This revealed that even in simple cases where two
atoms are structurally related, the limitations were obvious. This is because in these
cases predicates that describe morphology substitute exact statistical deformable models
resulting in a large false acceptance rate. For more complex relations consisting of three
or more atoms, the results look too bad to be useful. The conclusion is that learning a
complex structure automatically is a difficult problem which is open to further research.

Another aspect of the ASSM framework is to apply it to the domain of image databases
along the lines outlined in the ant database application. In the future texture aspects
have to be integrated into ASSM to make it a full model that uses more image features to
find a good fit. In this case ASSM will begin as a dynamic structural model and gradually
shift to a statistical dynamic model as more representative samples are available. As an
example [63] uses local partial AAM models linked via global constraints to avoid the
under training problem. The templates considered are triplets of vertebra that overlap
each other. Global constraints make local AAM templates fit with each other.
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