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1. Introduction

Somatostatin was first identified as a cyclic tetradecapeptide isolated from the ovine

hypothalamus (Brazeau et al., 1973) on the basis of its ability to inhibit the release of growth

hormone from rat pituitary. It was initially termed somatotrophin-release inhibiting factor

(SRIF), and later renamed somatostatin, emphasizing its role as counterpart of somatotrophin.

Two bioactive forms, somatostatin-14 and its N-terminally extended form, somatostatin-28,

were discovered (Pradayrol et al., 1980). Apart from the original identification in the

hypothalamus, high amounts of somatostatin were also detected in the central nervous system

and in most peripheral organs (Hokfelt et al., 1975; Patel and Reichlin, 1978; Reichlin, 1983).

Both central and peripheral actions are mediated by a family of six G-protein-coupled receptors

encoded by five individual genes. All of these receptors bind somatostatin-14 and somatostatin-

28 with comparable affinities except for sst5, which exhibits a slightly higher affinity for

somatostatin-28 than somatostatin-14 (O’Carroll et al., 1992). Within the brain, somatostatin

acts as a neuromodulator with widespread physiological effects on neuroendocrine functions,

cell proliferation, neurotransmission, cognition and locomotor behaviour (Epelbaum, 1986).

Recently, the somatostatinergic system has been extended by the discovery of cortistatin (CST),

a neuropeptide displaying strong structural similarity with somatostatin, but encoded by a

distinct gene (de Lecea et al., 1996). It binds to all somatostatin receptors (Siehler et al., 1998),

and shares many pharmacological and functional properties with somatostatin (de Lecea et al.,

1996; Vasilake et al., 1999). However, cortistatin has also effects on sleep and locomotor

activity, which are distinct from somatostatin (de Lecea et al., 1996; Spier and de Lecea, 2000).

The name cortistatin reflects the predominant expression of this peptide in the cerebral cortex

and its neuronal depressant properties.

1.1 The somatostatin neuropeptide family

Both somatostatin-14 and somatostatin-28 are products of a common gene, preprosomatostatin

(Patel and O’Neil, 1988). Cortistatin is encoded by a different gene, preprocortistatin (de Lecea

et al., 1996). The two genes are mapped to separate chromosomes in rat, mouse and human. In

the human, the gene for somatostatin is mapped to chromosome 3q28, whereas cortistatin is

mapped to 1p36.

The transcriptional units of the rat somatostatin and cortistatin genes share structural similarities

in that both have two exons and one intron (Montminy et al., 1984; Calbet et al., 1999).

Analysis of the regulatory elements for the preprosomatostatin and preprocortistatin genes

indicates that the regulatory elements of both genes share very few similarities. The few
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features which are shared by the somatostatin and the cortistatin promotors include a CREB-

like element in the similar positions and a GATA/homeo/homeo arrangment, which may be

responsible for the coexpression of these genes in certain cortical interneurons (Calbet et al.,

1999; Puebla et al., 1999).

Mammalian prosomatostatin is processed mainly at the C-terminal segment, generating the two

bioactive forms, somatostatin-14 and somatostatin-28 (Patel and O’Neil, 1988). Similarly, the

gene product of preprocortistatin gives rise to two cleavage products, cortistatin-14 and

cortistatin-29 in the rat and cortistatin-17 and cortistatin-29 in human, which are comparable to

somatostatin-14 and somatostatin-28 (Spier and de Lecea, 2000). In mouse, only a putative

cortistatin-14 has been described (de Lecea et al., 1997a; Spier and de Lecea, 2000).

1.2 The somatostatin receptor family

To date, five sst receptor genes have been cloned and termed sst1 through sst5 (Hoyer et al.,

1995; Reisine and Bell, 1995). Whereas the sst1, sst3, sst4 and sst5 genes each generate a single

receptor protein, alternative splicing of the sst2 mRNA gives rise to two protein isoforms, sst2a

and sst2b, which differ only in length and amino acid sequence at the carboxy-terminus

(Vanetti et al., 1992). All sst receptors belong to the family of G-protein-coupled receptors

(GPCRs) and bind the somatostatin peptides as well as the cortistatin peptides with similar

affinity (de Lecea et al., 1996; Fukusumi et al., 1997; Siehler et al., 1998). These receptors were

further classified in two types, SRIF1 (comprising sst2, sst3 and sst5) and SRIF2 (comprising

sst1 and sst4) (Hoyer et al., 1995). The classification was performed according to their affinity

to octreotide and seglitide, which are synthetic peptide analogues of somatostatin. Both peptide

analogues have high affinity to SRIF1, but little or no affinity to SRIF2 (Raynor et al., 1993;

Hoyer et al., 1995). The five receptors range in size from 346-428 amino acid residues. They

display a high degree of structural conservation across species (81-97%) and 45-61% identity

between subtypes (Reisine and Bell, 1995). The nearest relatives of the sst receptors are the

opioid receptors displaying 37% sequence similarity to the mouse sst1 (Reisine and Bell, 1993).

All five sst receptors have been cloned in human, mouse and rat. The sst genes are devoid of

introns within their protein coding region, with the exception of a cryptic intron in the mouse

sst2 gene giving rise to the synthesis of the two receptor variants, sst2a and sst2b (Vanetti et al.,

1993). All five gene-promotors have in common that TATA- and CAAT-boxes are missing.

Another remarkable feature of the sst genes is the high G/C content directly upstream of their

transcriptional start sites (Kraus et al., 1998; Baumeister and Meyerhof, 2000). These are

tissue-specific housekeeping promotors and typical of other G protein-coupled receptors

(GPCR) genes (Patel et al., 1995). Transcription factor binding sites (for instance, AP1, AP2)
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that are important for the regulation of sst receptor gene expression may be shared by

homologous sst genes of different species, and by different sst genes of the same species

(Baumeister and Meyerhof, 2000).

1.3 Agonist-dependent regulation of sst receptors

All sst receptors except for sst4 desensitize after treatment with agonist  (Hipkin et al., 1997;

Roosterman et al., 1997; Beaumont et al., 1998; Hukovic et al., 1998; Kreienkamp et al., 1998;

Liu and Schonbrunn, 2001). Depending on the cell line and sst receptor subtype, desensitization

of sst receptors depends on receptor phosphorylation (Roth et al., 1997a; Beaumont et al., 1998;

Liu and Schonbrunn, 2001). The desensitization and resensitization of GPCRs (Koenig and

Edwardson, 1997a; Bloch et al., 1999) is often influenced by agonist-induced receptor

internalization.

The sst receptors internalize to different degrees after agonist treatment (Hukovic et al., 1996;

Koenig et al., 1997b; Sarret et al., 1999; Nouel et al., 1997; Roth et al., 1997b; Stroh et al.,

2000b). Most studies report efficient ligand-induced internalization for sst2, sst3 and sst5, and

poor internalization for sst1 and sst4 (Hukovic et al., 1996; Hipkin et al., 1997; Nouel et al.,

1997; Roth et al., 1997b; Kreienkamp et al., 1998; Stroh et al., 2000b). In some of the cases,

internalization of the agonist-receptor complex is mediated by the classical clathrin-dependent

endocytotic pathway (Roosterman et al., 1997; Stroh et al., 2000b).

Mechanisms of internalization were best studied for sst2, which was shown to internalize

rapidly in several cell lines (Schwartkop et al., 1999; Hipkin et al., 2000) as well as in primary

neuronal cultures of cortex and hippocampus (Stroh et al., 2000a). After injection of exogenous

sst2 agonists into the brain, sst2a-LIR exhibits a massive redistribution from the plasma

membrane into endosomal compartments (Csaba et al., 2001, 2002, 2003). The observation that

cerebral regions receiving a dense somatostatin innervation display low proportions of plasma

membrane-associated versus intracellular sst2a receptors suggests in vivo internalization of

sst2a by endogenous somatostatin (Dournaud et al., 1998). In the case of the substance P

receptor, the degree of in vivo internalization has been established as a selective index for the

release of endogenous ligands in pathophysiological stimulation (Allen et al., 1997). In vivo

internalization of sst2 in response to endogenously released somatostatin has not been studied

yet.

After internalization, sst2, sst3, sst4 and sst5 have been shown to recycle efficiently to the cell

surface, suggesting that agonist-induced internalization is necessory for functional

resensitization of desensitized receptors (Roth et al., 1997a; Koenig et al., 1998; Stroh et al.,

2000b; Smalley et al., 2001).
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In addition, it has been described previously that the sst2a gene was upregulated upon short- or

long-term exposure to agonist (Bruno et al., 1994; Hukovic et al., 1996; Froidevaux et al.,

1999; Tannenbaum et al., 2001). More recently, regulation of sst2a expression by somatostatin

was studied in detail in brain slices, where application of somatostatin was shown to increase

sst2a mRNA and protein levels (Boudin et al., 2000). This agonist-induced stimulation of sst2a

expression was abolished in the presence of endocytosis inhibitors and hyperosmolar sucrose,

which inhibits internalization of sst2a receptor complexs. Furthermore, in AtT-20 cells which

natively express sst1, sst2, sst4 and sst5, agonist treatment significantly decreased the amount

of growth hormone mRNA, which was again totally abolished in the presence of hyperosmolar

sucrose (Sarret et al., 1999). Taken together, these results suggest that ligand-induced

endocytosis of sst receptors may regulate homologously the expression of the receptor gene

itself as well as of other genes.

1.4 Distribution of somatostatin and cortistatin in the cerebral cortex

Somatostatin mRNA and somatostatin peptides are widely distributed in almost all brain areas

of rat and human. High levels of somatostatin are found in the cerebral cortex, where the

peptides are present in all cortical layers (Epelbaum, 1986; Fitzpatrick-McElligott et al., 1988;

Kiyama and Emson, 1990).

Coexpression analysis indicated that in the rat cerebral cortex, preprosomatostatin mRNA is co-

localized with glutamate decarboxylase (GAD) mRNA, a marker for GABAergic neurons

(Esclapez and Houser 1995). Consistently, the somatostatin peptides are restricted to

GABAergic neurons in the cortex (Schmechel et al., 1984). Since most GABAergic neurons in

the cerebral cortex are interneurons, somatostatin is assumed to function as a co-transmitter in

the GABAergic local cortical circuits. A subset of somatostatin neurons also contains

neuropeptide Y (NPY, Hendry et al., 1984) and NADPH diaphorase (Kowall and Beal 1988).

In contrast to the wide distribution of somatostatin in central and peripheral tissues, cortistatin

mRNA was shown to be essentially restricted to the cerebral cortex and hippocampus (de Lecea

et al., 1996, 1997a, 1997b). Co-localization studies indicate that cortistatin is exclusively

expressed in GABAergic neurons and that expression of cortistatin overlaps partially with

somatostatin. Approximately one fourth of somatostatin-containing cells express cortistatin

mRNA, and less than half of the cortistatin-expressing neurons contain somatostatin (de Lecea

et al., 1997a). Like other neuropeptides, cortistatin is partially co-localized with the calcium

binding proteins, parvalbumin or calbindin (de Lecea et al., 1997a).

GABAergic neurons in the cerebral cortex are heterogeneous, and are subdivided according to

their neurochemical contents and specific innervation tendency on postsynaptic elements
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(Kawaguchi and Kubota, 1997; Somogyi et al., 1998; Kawaguchi and Kondo, 2002). For

instance, the somata of cortical cells are innervated by GABAergic neurons containing

parvalbumin. In contrast, the distal dendrites of cortical neurons are innervated by GABAergic

neurons containing somatostatin (Kawaguchi and Kubota, 1997). Since somatostatin and

cortistatin are present in different interneuron subpopulations, they are likely to exert distinct

functions in the local cortical circuitry.

1.5 Distribution of sst receptors in the cerebral cortex

sst1 mRNA is widely distributed in the rat CNS, particularly concentrated in the hypothalamus,

amygdala, cerebral cortex, and hippocampus (Perez et al., 1994; Senaris et al., 1994). sst1-LIR

was identified presynapically in somatostatin-containing fibres innervating the hypothalamus.

Thus, the sst1 receptor may act as an autoreceptor and inhibit the release of somatostatin in the

hypothalamus (Helboe et al., 1998).

sst2 and sst4 mRNAs are also highly expressed in the cerebral cortex. While sst2 mRNAs

display a laminar pattern in infragranular layers (Breder et al., 1992; Perez et al., 1994; Senaris

et al., 1994), sst4 mRNA is expressed both in supragranular and infragranular layers

(Harrington et al., 1995; Perez and Hoyer, 1995a). The distribution of sst2a-LIR in the rat

cerebral cortex is in agreement with in situ hybridization and ligand binding studies (Dournaud

et al., 1996; Holloway et al., 1996; Schindler et al., 1997; Cole and Schindler, 2000). Ligand

binding studies in sst2 knock out mice revealed that sst2 accounts for the vast majority of

somatostatin-14 binding sites in the cerebral cortex (Videau et al., 2003).

sst3 mRNA exhibits a widespread distribution in brain, and is homogeneously distributed

throughout all cortical layers (Kaupmann et al., 1993; Senaris et al., 1994). sst3-LIR exhibits a

similar distribution as the mRNA (Handel et al., 1999). However, at the subcellular level, sst3

is localized selectively to the plasma membrane of neuronal cilia, where its function is unclear

(Handel et al., 1999).

sst5 mRNA is the least abundant among all sst receptors in the brain. sst5 mRNA expression is

absent from most brain regions. However, some expression of sst5 mRNA has been reported in

hypothalamus and pituitary  (Raulf et al., 1994; Thoss et al., 1995, 1996). Surprisingly, sst5-

LIR was described in many brain areas including basal forebrain, hippocampus and

hypothalamus (Stroh et al., 1999), which is contradictory to the in situ hybridization analysis

(Bruno et al., 1993; Raulf et al., 1994).

Taken together, both somatostatin and cortistatin are abundantly expressed in the cortex, where

they are contained in different GABAergic local circuits and appear to play a role in disorders

involving neuronal hyperexcitability (see below). sst1, sst2, sst3 and sst4 are highly expressed
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in cerebral cortex and hippocampus. According to ligand binding studies, sst2 appears to be the

most important sst receptor in cortex. However, little is known yet about the neuronal types

expressing sst2 in the cerebral cortex.

1.6 Physiological and pathophysiological significance of somatostatin and

cortistatin

The main physiological actions of somatostatin involve endocrine functions, cell proliferation,

animal cognition and behaviour, as well as effects on neuronal excitability and

neurotransmission (Epelbaum, 1986). The antiproliferative effects of somatostatin have been

applied clinically for tumor treatment (De Herder et al., 2003). Early studies indicated that

somatostatin has locomotor effects on animals (Plotnikoff et al., 1974; Cohn and Cohn, 1975;

Rezek et al., 1977). Depletion of somatostatin in the brain to 50% caused an impairment in the

maintenance of learned behaviour (Fitzgerald and Dokla, 1989). More recently, several studies

on somatostatin knock out and sst2 knock out mice have reported impaired spatial learning and

different degrees of behavioural deficits of the animals (Viollet et al., 2000; Zeyda et al., 2001;

Dutar et al., 2002; Allen et al., 2003).

Electrophysiological studies revealed a depressant effect of somatostatin on the excitability of

cerebrocortical pyramidal neurons through membrane hyperpolarization, which is mediated by

the activation of potassium currents and/or the inhibition of Ca
2+ 

currents (Moore et al., 1988;

Schweitzer et al., 1990; Hicks et al., 1998). Similar mechanisms mediate the inhibitory effects

of cortistatin on neuronal activity (de Lecea et al., 1996). In addition, presynaptic inhibition of

excitatory neurotransmission by somatostatin was described in rat hippocampal slices and

cultures (Boehm and Betz, 1997; Tallent and Siggins, 1997). Consistently, electrophysiological

studies using ex vivo hippocampal slice of sst2 knock out mice showed an enhanced

glutamatergic transmission (Dutar et al., 2002)

Various disorders of the CNS like Alzheimer’s, Huntington’s, Parkinson’s disease as well as

depression are associated with altered somatostatin expression (Aronin et al., 1983; Arai et al.,

1984; Beal et al., 1988; Francis et al., 1987; Gabriel et al., 1993; Molchan et al., 1993).

The involvement of the somatostatinergic system has been studied most detailed in epilepsy

models (i.e. kindling and status epilepticus). Microdialysis studies indicate increased release of

somatostatin from rat hippocampal neurons during and after kindling (Vezzani et al., 1992;

Marti et al., 2000). Similarly, increased release of somatostatin was also detected during status

epilepticus (Manfridi et al., 1991; Lahtinen et al., 1992; Perez et al., 1995b). Both, somatostatin

mRNA levels and somatostatin immunoreactivity are increased after kindling (Piwko et al.,
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1996; Schwarzer et al., 1996). After kainate-induced status epilepticus, somatostatin-positive

neurons are selectively lost in the dentate gyrus, with the surviving somatostatinergic neurons

showing increased somatostatin expression (Sperk et al., 1992). Also the human epileptic

tissues exhibit a similar pattern in the somatostatin expression in the dentate gyrus (de Lanerolle

et al., 1989; Robbins et al., 1991). Hippocampal sst3 and sst4 mRNA levels are decreased after

kainate-induced seizures, which is consistent with the decreased binding sites in the same

regions (Perez et al., 1995b). SRIF1 receptor binding sites (comprising sst2, sst3, sst5) decrease

significantly in the dentate gyrus after kindling (Piwko et al., 1996), which was suggested to be

the consequence of increased somatostatin release. In summary, kindling appears to be

associated with the activation of somatostatin-containing neurons and an enhanced release of

somatostatin, which is thought to limit seizure spread. Status epilepticus is associated with the

loss of somatostatinergic neurons, which may contribute to the occurrence of subsequent

spontaneous seizures (Vezzani and Hoyer, 1999).

The involvement of somatostatin in seizure was demonstrated by the seizure-accelerating effect

of the continuous infusion of a somatostatin antibody into the rat hippocampus (Monno et al.,

1993). Conversely, intracerebral application of somatostatin and octreotide exhibits

anticonvulsive effects (Vezzani et al., 1991; Mazarati and Telegdy, 1992). Furthermore, a

recent study revealed that in somatostatin knock out mice, the seizure severity was increased

(Buckmaster et al., 2002). Anticonvulsant properties have also been described for cortistatin

(Braun et al., 1998). sst2 is suggested to mediate the anticonvulsive effects in the rat

hippocampus, since bilateral infusion of RC160, a sst2 selective agonist, into the dentate gyrus

of rats protected against chronic seizure susceptibility resulting from kainate treatment (Perez et

al., 1995b; Vezzani et al., 2000).

Taken together, these data suggest that the somatostatin system plays an important role in

neuronal disorders involving hyperexcitability and neurodegeneration of cerebrocortical

structures.

1.7 Role of neuropeptides in brain ischemia

Middle cerebral artery occlusion (MCAO) in rats, which is an animal model for human stroke,

causes severe neurodegeneration in the parietal cerebral cortex. The mechanisms of

neurodegeneration in experimental stroke involve energy failure, acidosis, loss of calcium

homeostasis, and free radical release. Of particular relevance, however, is the excessive release

of glutamate and other excitatory amino acid neurotransmitters, which leads to an

overactivation of NMDA, AMPA, KA receptors and excitotoxic neuronal death (Siesjo et al.,

1991).
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Recent work suggests that neuromodulatory peptides may be involved in the pathophysiology

of cerebral ischemia. Increased protein levels of neuropeptide Y, leu-enkephalin, dynorphin and

neurotensin are found in the peri-infarct region and subcortical sites following MCAO (Allen et

al., 1995; Cheung and Cechetto, 1995). Expression of tachykinins and tachykinin receptors is

changed in distinct inhibitory and excitatory cerebrocortical circuits after MCAO (Stumm et al.,

2001). Intracerebroventricular injection of a neuropeptide Y-Y1 receptor agonist increased the

infarct volume following transient middle cerebral artery occlussion, while injection of a Y1

antagonist reduced the infarct volume (Chen and Cheung, 2003). Another neuropeptide,

PACAP, has neuroprotective properties when applied before the onset of permanent ischemia

(Reglodi et al., 2002). Intracerebroventricular application of somatostatin, cortistatin and the

sst2 agonist octreotide reduced the extent of damage after MCAO in rats (Rauca et al., 1999).

The sst receptor subtypes mediating the protective effect of these peptides and the signal

transduction pathways involved remained to be characterized. An earlier in vitro study

demonstrated a neuroprotective effect of somatostatin in NMDA-induced nonapoptotic

neuronal death in cortical cells, which was suggested to be mediated by a cGMP pathway

(Forloni et al., 1997). Based on the well established role of the somatostatin system in

cerebrocortical hyperexcitability in seizures and the protective effect of exogenous somatostatin

in focal cerebral ischemia, the endogenous somatostatin system is supposed to be involved in

excitotoxicity following MCAO. Currently, little is known about sst receptor expression in

identified inhibitory or excitatory cortical circuits. Changes in the expression of cortistatin,

somatostatin, and sst receptors as well as receptor internalization have not been analyzed after

focal cerebral ischemia. In addition, somatostatin knock out mice and sst receptor knock out

mice await to be studied in stroke models to test the hypothesis of the involvement of

endogenous somatostatin system in cerebral ischemia.

1.8 Purpose of study

Somatostatin and cortistatin are considered to have the ability to modulate glutamatergic

neurotransmission in the cerebral cortex. In addition, an involvement of the somatostatinergic

system is suggested in neurological disorders which are caused by excitotoxic mechanisms.

Since glutamate overexcitation plays a major role in ischemic brain damage, we hypothesized

that the somatostatinergic system is involved in stroke pathophysiology. Therefore, the changes

in the gene expression patterns of all members of the somatostatinergic system, and the

activation of sst2 was studied in the rat forebrain after experimental stroke.

In particular, the following questions were addressed in normal and ischemic rats:
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ÿ Are there changes in the gene expression of somatostatin, cortistatin, sst1, sst2, sst4 and sst5

in the forebrain during the course of permanent focal ischemia?

ÿ How are sst2, cortistatin, and somatostatin expressed in the cerebral cortex in relation to

glutamatergic excitatory and GABAergic inhibitory neurons? How are these co-expression

patterns influenced by focal cerebral ischemia?

ÿ Is there in vivo internalization of sst2 in ischemic pathophysiology and can it be blocked by a

sst2 antagonist?
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2. Materials and Methods

2.1 Instruments

Microscope AX Zeiss (Germany)

TCS-NT Laser Scanning Confocal Microscope

Leica (Heidelberg, Germany)

Gene Quant RNA/DNA Calculator

Biochrom (England)

PTC 200 Gene Amp PCR System

Biozym Diagnostik (Germany)

DNA sequencer 4000 Li-cor (Germany)

Electrophresis power supply BIO-RAD (USA)

Gel electrophoresis system BIO-RAD (USA)

Gene Pulse II and Pulse Controller Plus

BIO-RAD (USA)

2.2 Kits

RNeasy Tissue Kit QIAGEN (Hilden, Germany)

   Midi Plasmid Purification Kit                  QIAGEN (Hilden, Germany)

QIAquick PCR Purification Kit QIAGEN (Hilden, Germany)

QIAquick Gel Extraction Kit  QIAGEN (Hilden, Germany)

2.3 Enzymes

Ampli Taq DNA Polymerase Promega (Madison, USA)

Restriction endonucleases Biolabs (New England)

RNA Polymerase (SP6, T3, T7) Roche Diagnostics (Mannheim)

RNase A Roche Diagnostics (Mannheim)

RNase T1 Roche Diagnostics  (Mannheim)

Superscript TM II Reverse Transcriptase

Gibco (Eggenstein)

Sequenase Amersham Pharmacia Biotech (USA)
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2.4 Nucleic acids, vectors and probes

Nucleic acids:

tRNA Roche Diagnostics (Mannheim)

0.25-9.5 kb RNA-ladder Gibco (Eggenstein)

1 kb DNA-ladder Gibco (Eggenstein)

100 bp DNA-ladder MBI Fermentas (Vilnius, Lithuania)

Vectors:

pGEM-T Easy Vector Promega (Madison, USA)

pcDNA3 Invitrogen (Karlsruhe, Germany)

2.5 Animals

Male Long-Evans rats (200-300 g) were from Mollegaard (Denmark) and Charles River

(Sulzfeld, Germany). The animals were maintained under controlled light and environmental

conditions (12/12 hr dark/light cycle; 23 ± 1
o
C; 55% relative humidity) and were given food

and water ad libitum.

2.6 Rat permanent focal cerebral ischemia

Permanent unilateral middle cerebral artery occlusion (MCAO) was performed in male Long-

Evans rats (200-300 g) as introduced by Tamura et al. (1981) with modifications (Culmsee et

al., 1999). The rats were anesthetized with 40 mg/kg pentobarbital. An incision of 2 cm was

made perpendicular to the line between the external auditory canal and the lateral canthus of the

left eye. The skull close to the foramen ovale was exposed by removal of the temporal muscle.

A burr hole of 2 mm was made with a handhold drill under the surgical microscope in order to

expose the left middle cerebral artery. After the dura was excised, the left middle cerebral artery

distal to the lenticulostriate branch was occluded by microbipolar electrocoagulation using a

small vessel cauterizer. The occlusion step was omitted in sham-operated animals. After

occlusion or sham operation, the incisions in the left temporal muscle and skin were sutured to

ensure the function of the temporal muscle after surgery. During the surgical procedures, the

body temperature was maintained at 37 ± 0.5
o
C. To prevent a decrease of body temperature, the

animals were kept at an environmental temperature of 30
o
C up to 2 hr after MCAO.

Experimental groups: For quantitative radioactive in situ hybridization, brains were collected

from six decapitated rats at 6 hr, 1 d, 2 d and 4 d after MCAO and four rats 6 hr, 1 d, 2 d and

4 d after sham operation.  For free floating immunocytochemistry, four animals at 3 hr, 6 hr, 1 d

and 2 d after MCAO and four control rats were used. For immunocytochemistry with paraffin
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embedded sections, four animals at 6 hr, 1 d, 2 d and 4 d after sham operation and MCAO were

included.

Intracerebroventricular administration of sst2-selective antagonist BIM-23627: Before

performing MCAO, the rats were prepared for intracerebroventricular injection. The rats were

anesthetized by intraperitoneal injection of 40 mg/kg pentobarbital. A burr hole (coordinates:

0.25 mm posterior, 1.6 mm lateral from bregma) was drilled through the skull.  Two weeks

later, the animals were anesthetized with 40 mg/kg pentobarbital. BIM-23627 (Biomeasure,

USA) was dissolved in saline at a concentration of 0.5 nM. 5 µl solution were injected 30 min

prior to MCAO through the prepared drilled hole to a depth of 4 mm from the skull.  

2.7 Cloning of cDNAs in transcription vectors

Extraction of total RNA: Frozen brain tissue was weighted and homogenized with a ultraturrax

(Janke & Kunkel Inc., Germany) at 13000 rpm in a buffer containing guanidine isothiocyanate

and 1% b-mercaptoethanol. RNA extraction was performed with the RNeasy Tissue Kit

(QIAGEN, Hilden) according to the instructions of the manufacture. A QIAshredder Mini

column (QIAGEN), phenol/chloroform purification as well as on column DNase digestion was

included.

Reverse Transcription: The reverse transcription mix consisted of 250 ng/µl total RNA, 5 nM

oligo(dT)15-18, 10 mM DTT, 500 µM dNTPs, and 20 units/µl superscript II reverse

transcriptase in a 20 µl reacion volume. First, the RNA and the primers were denatured at 70
o
C

for 10 min, cooled on ice and mixed with the rest of the reagents. The reaction mixture was

incubated at 25
o
C for 10 min, followed by 42

o
C for 50 min and 95

o
C for 5 min. For

contamination controls, water was used instead of RNA.

PCR: 2% of the reverse transcription product were used as template in a reaction volume of 50

µl. The PCR reaction mix contained 200 µM dNTPs, 200 µM primers, 0.02 units/µl ampli Taq

DNA polymerase, and 2.5 mM MgCl2. Amplifying steps included: 15-30 s at 94
o
C, 15-30 s at

50-65
o
C; 30-60 s at 72

o
C. Optimal conditions were determined for each primer pair. PCR

products were subsequently cloned into pGEM-T Easy Vector (Promega).

Transformation and culture of Escherichia coli: Competent bacteria XL1 (Promega) and

recombinant plasmid were mixed in precooled cuvette. Electroporation was performed in Gene

Pulse II and Pulse Controller Plus (BIO-RAD, USA). The parameters are: resistance,

400 Ohms; capacitance, 25 µf; voltage, 1 kv; time constance, 7 ms. The bacteria were first

grown in 500 µl non-selective LB medium at 37
o
C for 0.5-1 hr, then spread on selective agar-

plates and grown at 37
o
C overnight. A single colony was picked from the plate to inoculate a
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starter culture of 2-5 ml LB medium with selective antibiotics. The culture was incubated at

37
o
C for 8 hr with vigorous shaking. The starter cultures were further diluted 1:1000 in

selective LB medium, and grown at 37
o
C for 12-16 hr with vigorous shaking.

Extraction of plasmid-DNA from cultures of Escherichia coli: Plasmids from bacteria cultures

(5 ml or 50 ml) were extracted with Mini- or Midi-preparation kits (QIAGEN) according to the

instructions.

2.8 Synthesis of RNA probes for in situ hybridization

For run-off-in-vitro-transcription (Melton et al., 1984), the plasmids were linearized with

restriction endonucleases and purified through phenol/chloroform extraction. Synthesis of [
35

S]-

labelled probes was done in the presence of 100-150 pmol [
35

S]-labeled UTP and/or CTP in a

total reaction volume of 10 µl. The reaction mix further contained 1 µg linearized plasmid-

DNA, 10 mM dithiothreitol (DTT), 0.5 mM unlabeled nucleotides (without UTP and/or CTP).

For digoxigenin-labelled probes, a 1 mM nucleotide mixture containing 0.35 mM digoxigenin-

11-UTP (Roche, Mannheim) was used. The transcription was performed with SP6, T7 or T3

polymerase (Roche, Mannheim). After the transcription, the probes were subjected to mild

alkaline hydrolysis to reduce their size (Angerer et al., 1987). The labelled probes were finally

purified with Micro Bio-Spin columns P-30 (BIO-RAD).

2.9 In situ hybridization

Probes used for in situ hybridization: cDNA frangments of rat pre-procortistatin (de Lecea et

al., nucleotides 4-286) and rat NPY (Allen et al., 1987, nucleotides 89-467) were amplified

from rat brain RNA extracts by RT-PCR. The cDNAs of pre-prosomatostatin (Goodman et al.,

1982, nucleotides 32-307), GFAP (glial fibrillary acidic protein, Cowan et al., 1985,

nucleotides 189-1054), rat C1q (Wood et al., 1988, nucleotides 33-1040), rat BNPI (brain-

specific Na
+
-dependent phosphate transporter, Li and Xie, 1995, nucleotides 1465-2024), and

rat GAD 67 (glutamic acid decarboxylase, Wyborski et al., 1990, nucleotides 1200-2041) were

used previously (Stumm et al., 2001, 2002). All cDNAs were subcloned into the pGEM-T Easy

vector and subjected to double-strand DNA sequencing. cDNAs of rat somstostatin receptors

sst1, sst2, sst3, sst4 and sst5 cloned in the pcDNA3 vector were provided by Dr. H.J.

Kreienkamp (Kreienkamp et al., 1998).

Tissue preparation: Animals were killed by chloral hydrate (10 g/kg body weight, i.p.). The

removed brain was frozen in isopentane at –30
o
C to –40

o
C and cut in a cryostat. Sections were

mounted on adhesive slides, and stored at –70
o
C. Before hybridization, frozen slides were air-
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dried, fixed in 4% paraformaldehyde dissolved in phosphate-buffered saline (PBS) at 4
o
C for

1hr, followed by treatment with 0.4% Triton-X 100 in PBS for 10 min. Next, slides were treated

for 10 min with 1.5% tri-ethanolamine/PBS, containing 0.25% acetic anhydride (Sigma).

Finally, slides were washed in water and dehydrated in isopropanol.

Hybridization and washing: Radioactive probes were diluted at 50000 dpm/µl in hybridizaition

buffer (600 mM NaCl; 10 mM TrisCl pH 7.5; 1 mM di-Na-EDTA; 0.05% (w/v) tRNA; 1x

denhardt’s; 50% dextransulfate; 100 µg/ml sonicated salmon sperm DNA; 50% formamide;

20 mM DTT). To each of the dried slides, 50 µl hybridization mixture was added.

Hybridization was performed overnight at 60
o
C in humid chambers containing 50% formamide.

Posthybridization procedures consisted of a sequence of washes with decreasing salt

concentration. Briefly, the slides were rinsed in 2x SSC and 1x SSC before a 30 min treatment

in RNase-buffer (10 mM TrisCl; pH 8.0; 0.5 M NaCl; 1 mM EDTA; 40 µg/ml RNase A; 1

unit/ml RNase T1) at 37
o
C. Then the slides were transferred to 0.2x SSC and incubatet at 60

o
C

for 1 hr. Subsequently, slides were washed in H2O and dehydrated in isopropanol.

Detection of signals: The dried slides were exposed together with [
14

C]-standards (American

Radiolabelled Chemcals, USA). A sheet of x-ray film (ß-max. Amersham) was laid over the

sections and exposed for 24 to 96 hr. Autoradiography was made by coating the slides with

50% NTB-2 liquid emulsion (Kodak). Exposure times for autoradiography were 1-6 weeks.

Finally, sections were stained with 0.5% cresyl violet  (Fluka, NeuUlm) in 60 mM sodium

acetate and 340 mM acetic acid.

2.10 Quantitative analysis of radioactive in situ hybridization

Quantification of mRNA levels: Quantitative analysis of mRNA levels was performed as

described (Stumm et al., 2001) using a Macintosh computer equipped with NIH 1.62 software.

X-ray autoradiograms were placed on an illuminater screen and captured with a IMAC-CCD

S30 camera (Dresden, Germany). The [
14

C]-based standard on the same film was captured

under the same conditions as the samples. For calibration, a standard curve was generated by

measuring the optical densities of the film background and the [
14

C] standards. The obtained

values were plotted against the tissue radioactivity equivalents of the standard (given in nCi/g

brain tissue cut in 20 µm thick sections). Next, a threshold level was set to exclude pixel values

below background density from the measurement. Areas of interest were selected by a manual

drawing procedure before the tissue radioactivity content was measured. To obtain the mean

value of a region of interest in a single animal, measurements of three sections were averaged.

For statistic analysis, mRNA levels of a selected brain area were compared between animals
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after MCAO (n=6) and the stage-matched sham-operated animals (n=4) using a non-paired

two-way Student’s t test. When naive animals (n=3) were also included, ANOVA and

Newman-Keuls multiple comparison test were used. Values of p < 0,05 were considered

statistically significant.

Quantitative analysis of the influence of MCAO on the neuronal numbers of specific cell types:

For some of the detected mRNAs, positive cells was counted in chosen cortical areas of

identical size in the MCAO group (n=6) and stage-matched sham-operated group (n=4). Data

analysis between the two groups were made by non-paired Student’s t test. In particular, for

cortistatin mRNA-positive neuron analysis, a naive group (n=3) was also evaluated, and one-

way Anova test followed by Newman-Keuls multiple comparison was applied for the data

analysis among the three groups. Values of p < 0,05 were considered statistically significant.

2.11 Combination of radioactive and non-radioactive in situ hybridization

Digoxigenin-labeled RNA probes were added to the hybridization mixture at a final

concentration of 1 µg/ml. Hybridization and the post-washing were carried out as described

above. After the final wash, the hybridized slides were shortly equilibrated in buffer 1 (100 mM

Tris; 150 mM NaCl; pH7.5), blocked in blocking buffer (buffer 1 + 5% normal sheep serum;

0.05% Tween 20) and incubated overnight with alkaline phosphatase-conjugated anti-

digoxigenin antibody (Roche, Mannheim) diluted 1:500 with blocking buffer. Next, slides were

equilibrated with buffer 1 and buffer 2 (100 mM Tris-HCl; 100 mM NaCl; 0.05% Triton) each

for 15 min before detection with 0.2 mM 5-bromo-4-chloro-3-indolyl-phosphate and 0.2 mM

nitroblue tetrazolium (Boehringer, Mannheim). The colour reaction was stopped by washing the

slides in distilled water. The slides were then dehydrated and coated with 50% K5-emulsion

(Ilford, UK). The exposure time varied between 2 and 4 weeks.

For analysis of proportional co-expression of different interneuron markers, single- and double-

labeled neurons were counted in the undamaged ipsilateral cingulate and frontal cortex of

animals 2 d after MCAO, and in the corresponding areas in four rats after sham operation and

three naive rats. To evaluate the co-expression pattern of sst2 with VGLUT1 (vesicular

glutamate transporter 1, which was originally named as BNPI) or glutamic acid decarboxylase

(GAD) mRNAs, counting was made in chosen areas in laminae II/III and V/VI of the penumbra

6 hr after MCAO and the corresponding areas of the sham group.

2.12 Immunohistochemistry

Antibodies: A rabbit anti-sst2a serum (9304) was used, which is essentially identical with the

previously described antibody 6291 (Schulz et al., 2000). Both antisera have been characterized
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on sst2 knock out mice. Antiserum 9304 was used at a dilution 1:20000 for amplified detection

with free-floating sections and 1:5000 with paraffin-embedded sections (see below). Affinity

purified antiserum 6002 (Schreff et al., 2000) against rat sst4 was used at 2.5 µg/ml with

paraffin-embedded sections (see below). A mouse monoclonal somatostatin antibody

(Biomeda) was diluted 1:50 for detection without amplification. A rabbit polyclonal

somatostatin antibody provided by Dr. Günther Sperk (Sperk et al. 1992) was used at a dilution

of 1:5000 for amplified detection of free-floating sections.

Paraffin-embedded tissue: Rats were deeply anesthetized with chloral hydrate, perfused

transcardiacally with Tyrode’s solution followed by 120 ml Bouin’s fixative consisting of 100

parts 0.04 M copper-II-acetate/6% picric acid, 10 parts 37% formaldehyde and 1 part acetic

acid. The brains were dissected, postfixed in the same fixative overnight and washed with 70%

2-propanol. Brains were dehydrated at 40
o
C in 70%, 80%, 96%, and 3x 100% 2-propanol for 1

hr each, followed by 3x 1 hr in xylol. Paraffin (melting point 56
o
C, Vogel Histo-Comp) was

applied four times at 60
o
C for 1 hr. The brains were cut with a rotating microtome into 7 µm-

thick sections and spread on adhesive slides. The sections were then placed on a heating plate at

43
o
C for full extention, dried at 58

o
C for 6-8 hr, and stored at room temperature for further use.

After deparaffinization in xylol (3x 10 min) and blocking of endogenous peroxidase with

methanol + 0.125% H2O2 (30 min), the slides were hydrated. Then, sections were heated at 92-

95
o
C in citrate buffer (0.01 M natrium citrate; pH 6.0) for 25 min. After incubation for 30 min

in 50 mM PBS containing 5% bovine serum albumin (BSA), the sections were incubated with

primary antibody dissolved in 1% BSA-PBS. On the next day, a biotinylated secondary

antibody diluted 1:200 in 1% BSA-PBS was applied and incubated for 2 hr at room

temperature. Next, the avidin/biotin complex (ABC) linked to peroxidase (Vector laboratories)

was applied. After washing, detection was performed with diaminobenzidine (DAB) and nickel

(12.5 mg DAB-tetrahydrochloride, 75 mg ammoniumnickelsulfate-hexahydrate and 14 µl 30%

H2O2 in 100 ml PBS). The sections were finally dehydrated in alcohol and coverslipped with

DPX.

Free floating sections: Rats were deeply anesthetized with chloral hydrate and transcardially

perfused with Tyrode’s solution followed by Zamboni’s fixative (4% paraformaldehyde; 0.2%

picric acid in 0.1 M phosphate buffer, pH 7.4). Brains were dissected and postfixed in the same

fixative for 2 hr at room temperature. Tissue was cryoprotected by immersion in 30% sucrose

for 48 hr at 4
o
C before being cut with a freezing microtome. Free-floating sections (30-40 µm)

were washed in TPBS (10 mM phosphate buffer; 137 mM NaCl; 0.05% thimerosal; pH 7.4)

before a 30 min treatment with 50% methanol. After washing with TPBS/0.3% Triton, the
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sections were first pre-incubated with TPBS/3% normal goat serum (NGS) for 1 hr, and then

incubated with primary antibodies diluted in TPBS/0.3% Triton/1% NGS for 48-96 hr. The

primary antibody was detected by either anti-mouse or anti-rabbit secondary antibody coupled

with fluorescence cyanine 3.18 for 2 hr or overnight. In some cases amplifacation was included,

in which biotinylated anti-rabbit or anti-mouse secondary antibodies were applied, followed by

sequential application of ABC complex and biotin-tyramin. Cyanine 3.18-conjugated

streptavidin (Amersham) was applied for detection. The sections were dehydrated in increasing

graded series of alcohol and coverslipped with DPX (Sigma).

The sections were imaged with a Leica TCS-NT laser-scanning confocal microscope (Leica

Microsystem, Germany). Cyanine 3.18 was imaged with 568 nm excitation and 570-630 nm

bandpass emission filters, Cyanine 5.18 was imaged with 647 nm excitation and 665 nm

longpass emission filters.

Immunocytochemistry and internalization assay: The wild-type rat sst2a receptor was tagged at

its amino-terminus with the T7 epitope tag sequence MASMTGGQQMG using polymerase

chain reaction and subcloned into a pcDNA3 expression vector (Invitrogen) containing a

neomycin resistance. Human embryonic kidney (HEK) 293 cells were obtained from ATCC

and grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal calf serum in

a humidified atmosphere containing 10% CO2. Transfection was performed using

Lipofectamine 2000 according to the instructions of the manufacturer (Invitrogen). Stable

transfectants were selected in the presence of 500 g/ml G418 (Invitrogen). For

immunocytochemistry, cells were grown on poly-L-lysine-treated coverslips overnight, fixed

with Zamboni’s fixative for 30 min and permeabilized with methanol. Then they were

incubated with affinity-purified anti-T7 antibody at a concentration of 1 µg/ml in TPBS with

1% NGS overnight. Bound primary antibody was detected with biotinylated secondary

antibodies followed by cyanine 3.18-conjugated streptavidin. The cells were then dehydrated,

cleared in xylol, and mounted in DPX.

For internalization assays, HEK 293 cells were preincubated with 1 µg/ml of affinity-purified

rabbit anti-T7 antibody for 2 hr in OPTIMEN 1 (Invitogen) at 4
o
C, then treated with 1 µM

somatostatin-14 (SS-14), or 1 µM BIM-23627, or both 1 µM SS-14 and 1 µM BIM-23627 in

OPTIMEN at 37
o
C for 30 min. Subsequently, the cells were fixed and incubated with

peroxidase-conjugated anti-rabbit antibody (1:1000; Amersham) for 2 hr at room temperature.

After washing, the plates were developed with 250 µl of ABTS solution (Roche). After 10-30

min, 200µl of the substrate solution from each well was transferred to a 96-well plate and

analyzed at 405 nm using a microplate reader (BIO-RAD).



3 Results                                                                                                            - 18 -

3. Results

3.1 Spatiotemporal development of brain infarction after MCAO

In the present study, the involvement of the somatostatinergic system in the cerebral cortex

after ischemic brain damage was studied using male Long-Evans rats that were subjected to

permanent middle cerebral artery occlusion (MCAO). First, the infarction of brain tissue was

verified by the absence of cresyl violet (CV) staining from the lesioned area. Analysis of serial

CV-stained coronal sections was performed along the rostro-caudal axis of the forebrain 6 hr,

1 d, 2 d, and 4 d after MCAO. This procedure identified the temporal and spatial process of

focal degeneration of brain tissue.

Six hours after unilateral MCAO, tissue degeneration was limited to the ipsilateral parietal

cortex in the forebrain (Fig. 1A), extending rostro-caudually from bregma +2.2 mm to bregma

–4.8 mm. At 1 d after onset of focal ischmia, the focus was more developed in comparison to

6 hr, since it included also the ipsilateral forelimb cortex and the dorsal part of insular cortex.

The ipsilateral cingulate and frontal cortex and striatum were intact (Fig. 1B). After 1 d, the

focus extended from bregma +2.7 mm to bregma -4.8 mm in the longitudinal axis. The

panorama of the infarct along the longitudinal axis of the brain 1 d postocclusion is shown in

figure 2. From 2 d to 4 d after focal ischemia, the size of the infarct was not further increased as

compared with 1 d.

Notably, beginning 1 d after sham operation, a small area of infarcted brain tissue was observed

in laminae I-III at the trepanation site (not shown). Degeneration of brain tissue remote to the

lesion site was not observed in sham-operated animals.

Figure 1. The development of the infarct from 6 hr to 1 d after MCAO. Shown are cresyl violet (CV)-stained
coronal sections through rat forebrains at bregma +1.0 mm 6 hr (A) and 1 d (B) after MCAO. Infarcts can be
determined by the absence of CV-staining. A, 6 hr after ischemia, the infarct core is relatively small as compared
with 1 d (B). It includes mainly ipsilateral parietal cortex (Par). Note the cortical areas directly neighbouring the
infarct (penumbra) appear less stained than the normal tissue. B, the penumbral area in A is not detectable any
more at 1 d after MCAO. Delineated by dotted lines is the infracted area, which includes the forelimb area (FL),
parietal cortex and dorsal part of insular cortex (In). The cingulate (Cg) and frontal cortex (Fr) are not infarcted.
CPu: caudate putamen. Scale bar: 3 mm.
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Figure 2. Demonstration of a representative infarct along the longitudinal axis of a rat brain. Depicted is a series of
cresyl violet (CV)-stained sections from a rat subjected to MCAO for 1 d. Rostro-caudally, the infarct extends
from bregma +2.7 to bregma –4.8. The following cerebrocortical areas are infarcted: parietal cortex (Par), forelimb
area (FL), hindlimb area (HL), insular cortex (In), ectorhinal cortex (Ect), temporal area (Te) and occipital cortex
(Oc). Scale bar: 5 mm.

3.2 Astroglial and microglial reaction, macrophage infiltration

To further characterize the applied model of focal brain ischemia, spatial and temporal patterns

of astroglial and microglial reactions after MCAO and sham operation were characterized by

gene expression analysis using the in situ hybridization technique. The astrogliosis was

visualized by hybridizing a [35S]-labeled probe to the mRNA of the intermediate filament glial

fibrillary acidic protein (GFAP), which is synthesized specificially by astroglia and upregulated

after cell activation (Fig. 3E-H,M-P) (Eng, 1985; Belluardo et al., 1996; Yamashita et al.,

1996). Similarly, the expression of the mRNA of the complement component C1q-beta was

studied, which is selectively expressed by cells of the microglia/monocyte/macrophage lineage

(Schwaeble et al., 1995; Haga et al., 1996). Since the C1q-beta mRNA levels are strongly

increased in activated macrophages and microglial cells in the CNS (Schafer et al., 2000), the

patterns of microglial activation and macrophage infiltration after focal ischemia are identified

as strongly stained areas in the autoradiograms of the hybridized sections (Fig. 3A-D,I-L).

6 hr after focal ischemia: In the infarcted area (ipsilateral parietal cortex), both GFAP and C1q

mRNA levels were strongly decreased (Fig. 3A,E, asterisks) as compared with the

corresponding area in sham-operated animals (Fig. 3I,M). Together with the reduced CV-

staining in this area (Fig. 1A), this indicates the early degeneration of both types of glial cells as

well as neurons in the infarct. Outside the primary infarct, both GFAP and C1q expression
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Figure 3. Spatio-temporal patterns of microglial and astroglial activation after focal cerebral ischemia. X-ray film
autoradiographs of coronal sections through the forebrain at the level of bregma +1.2 mm are shown. Gene
expression of C1q (A-D, I-L) and GFAP (E-H, M-P) at different time points after occlusion of the middle cerebral
artery (MCAO, A-H) as well as sham operation (Sham, I-P). 6 hr after ischemia (A,E,I,M): A slight decrease of the
C1q mRNA levels and a strong decrease of GFAP mRNA levels are present in the infarcted region of cerebral
cortex (A,E, asterisks). Both C1q (A) and GFAP (E) expression in the ipsilateral non-infarcted cerebral cortex and
striatum is slightly increased. 1 d after ischemia (B,F,J,N): C1q and GFAP mRNAs decrease strongly inside the
infarct. Both C1q and GFAP mRNAs show a strong increase in the ipsilateral hemisphere (B,F) as compared with
sham operation (J,N). GFAP expression is also increased in the contralateral areas (F ). 2 d after ischemia
(C,G,K,O): Both C1q and GFAP mRNAs reach peak levels in the ipsilateral as well as contralateral hemispheres,
including cerebral cortex, corpus callosum and striatum.  4 d after ischemia (D,H,L,P): C1q mRNA levels are
intensively increased inside the infarct (D, asterisk). Outside the infarct, C1q mRNA levels are almost as low as
those in the sham-operated rat (L); GFAP mRNAs decrease massively in the ipsi- and contralateral hemispheres
except in the perifocal area (H, arrow), where GFAP mRNA signals remain elevated, forming a rim around the
infarct. I-P, comparison of the ipsilateral with the contralateral hemisphere of sham-operated rats [mRNA levels in
the contralateral side are virtually equal to those in the naive brain (not shown)], GFAP and C1q mRNA expression
is moderately increased in a limited cortical area directly at the trepanation site from 1 d to 4 d after sham
operation (J-L, N-P, arrows). Scale bar: 5 mm.

levels were slightly increased in the ipsilateral hemisphere (Fig. 3A,E) as compared with sham-

operated animals (Fig. 3I,M).

1 d after ischemia: In the infarcted area, expression of both GFAP and C1q was very low to

absent (Fig. 3B,F). At this time point, CV staining exhibited virtually no viable cells in the

infarct core (Fig. 2). Together, these results indicate the degeneration of the remaining cells in

this area. Outside the primary lesion, both GFAP and C1q expression levels were strongly

increased, reflecting activation of astroglia and microglia in the nonlesioned ipsilateral
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hemisphere, including cortex, corpus callosum and striatum (Fig. 3B,F). In the contralateral

side, a moderate increase in GFAP mRNA levels was detected (Fig. 3F), indicating a gradual

spreading of astrocyte activation cross to the contralateral hemisphere. Activation of microglial

cells was limited mostly to the ipsilateral hemisphere.

2 d after ischemia: Expression of GFAP and C1q mRNAs remained largely absent from the

focus (Fig. 3C,G). Outside the infarct, almost all regions exhibited signs of microglial and

astroglial activation (Fig. 3C,G). As compared with 1 d and 4 d after MCAO, GFAP and C1q

expression outside the focus reached peak levels. Generally, glial reactions were stronger in the

areas close to the infarct, than the regions distant to the infarct, with the contralateral striatum

showing the weakest signs of glial activation (Fig. 3C,G).

4 d after ischemia: GFAP mRNA levels were decreased in nonlesioned areas as compared with

2 d. Only in the perifocal area, hybridization signals for GFAP remained elevated, forming a

rim around the lesion (Fig. 3H, arrow). In contrast to GFAP, C1q mRNA expression was

massively increased inside the infarct (Fig. 3D, asterisk). In the other areas, levels of C1q

expression were decreased as compared with 2 d after MCAO (Fig. 3C,D).

Sham operation: In sham-operated rats, GFAP- and C1q- mRNA expression was increased in

the brain area directly subjacent to the trepanation site (Fig. 3J-L,N-P arrows). Together with

the absence of CV staining in the same area, this indicates that the sham operation is associated

with a local degeneration of brain tissue and a minor glial activation at the trepanation site.

The analysis of the spatio-temporal patterns of brain tissue degeneration and glial activation

after MCAO indicated that brain damage was induced in the MCA-related territory shortly after

the onset of ischemia. Astroglial and microglial cells were activated first in the adjacent cortical

area, then the glial activation spreads gradually to the contralateral hemisphere. C1q mRNA

levels increased within the infarcted core 4 d postocclusion, which points to the infiltration of

macrophages/microglia. The persistant increase of GFAP expression in the perifocal area

reflects the formation of an astroglial scar. With consideration of the sham operation-induced

small cortical infarction and local glial activation, stage-matched sham-operated control

animals were included into further analysis, in order to discriminate between sham operation-

and MCAO-induced effects.
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3.3 Constitutive expression of somatostatin, cortistatin, sst1, sst2, and sst4 in

the forebrain

The constitutive gene expression patterns of the somatostatin receptors (sst-receptors) and the

endogenous sst-receptor ligands, somatostatin (SRIF) and cortistatin (CST), were analyzed in

the forebrain of naive rats with the help of in situ hybridization histochemistry. Figure 4 shows

x-ray autoradiograms of coronal sections through the septal areas hybridized with riboprobes

for preprosomatostatin (A), preprocortistatin (E), sst2 (B), sst2a (F), sst1 (C), sst4 (D), and sst5

(H) mRNAs. To control the specificity of the hybridization, the respective sense-strand probes

were used. In figure 4G, the result of the hybridization of the sst1-sense probe is shown, which

is representative for other sense-strand probes. Similar results were obtained, when non-labelled

antisense probe was added in excess to the corresponding radioactively labelled antisense probe

(not shown).

Somatostatin, cortistatin: A high density of somatostatin hybridization signals could be seen

scattered throughout the cerebral cortex. In the striatum, the signal density for somatostatin

mRNA was lower than in the cortex (Fig. 4A). In contrast to the widespread gene expression of

somatostatin, cortistatin mRNA expression was limited to the cerebral cortex. Within the

cortex, cortistatin was expressed at higher levels in the deep layers and at weaker levels in the

superficial layers (Fig. 4E).

sst1: Among all of the somatostatin receptors, sst1 was the most highly expressed receptor in

the cerebral cortex at the mRNA level. sst1 mRNA signals were concentrated in laminae II, V

and VI of the cerebral cortex and in the piriform cortex. No hybridization signal for sst1 mRNA

was detected in the striatum (Fig. 4C).

sst2: The sst2 mRNA exists in two alternatively spliced isoforms (sst2a, sst2b). In the rat, sst2a

mRNA contains an exon, which is not present in sst2b. Here, we used a riboprobe directed

against the entire sst2-coding region, which does not discriminate between sst2a and sst2b (Fig.

4B). In addition, a riboprobe directed against the sst2a-selective exon was used (Fig. 4F). sst2

mRNA was expressed highly and homogeneously in laminae V/VI of the cerebral cortex (Fig

4B). Other regions of the forebrain exhibiting strong sst2 receptor mRNA were the lateral and

medial septum, ventral diagonal band, endopiriform nucleus, claustrum and piriform cortex.

sst2 mRNA levels were close to the detection limit in the striatum (Fig. 4B). Hybridization with

the sst2a-selective probe revealed an identical expression pattern as with the probe for both sst2

isoforms (Fig. 4F).

sst4: Within the cortex, sst4 gene expression was at highest level in laminae V and VIb, and to

a less extent, in lamina II. Strong sst4 gene expression was also observed in the piriform cortex
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and the olfactory tubercle. In the lateral septum, the diagonal band and the striatum, sst4 gene

was expressed at moderate levels (Fig. 4 D).

sst3 and sst5: Diffuse hybridization signals for sst3 mRNA were seen throughout the forebrain

(not shown). Expression levels of the sst5 gene in the forebrain were at or below the detection

limit (Fig. 4H).

In summary, the mRNAs of the peptides somatostatin and cortistatin are highly expressed in the

cerebral cortex. Due to the abundant expression of sst1, sst2, and sst4 in the cortex, these

receptors are expected to be the prevalent sst receptors mediating local neuromodulatory effects

of somatostatin and cortistatin. Gene expression of sst5 was not detected in cortex. With regard

to the involvement of somatostatin and its receptors in excitotoxic neuronal disorders (Vezzani

et al., 2000; Binaschi et al., 2003), we next analyzed the effect of permanent occlusion of the

MCA on gene expression of somatostatin, cortistatin, sst1, sst2, sst4, and sst5 in the forebrain.

The sst3 receptor has been reported to be locolized selectively in the plasma membrane of

neuronal cilia (Handel et al., 1999). Since neuronal functions of this receptor are unknown,

further analysis of sst3 expression was not performed.

Figure 4. X-ray film autoradiographs of coronal sections after in situ hybridization for somatostatin (A), cortistatin
(E), sst2 (B), sst2a (F), sst1 (C), sst4 (D) and sst5 (H) mRNAs of naive rat brains at septal level. In situ
hybridization of sst1 sense probe is shown as representative control (G). A, somatostatin mRNA is highly
expressed by numerous scattered neurons throughout the forebrain. B, F, the distribution of sst2 and sst2a mRNAs
is identically abundant and homogeneous in laminae V/VI. Strong expression of both sst2 and sst2a is also
detected in lateral septum (LS), dorsal endopiriform cortex (DEn), claustrum (Cl) and piriform cortex (Pir). In the
striatum, the sst2/sst2a mRNA levels are low. C, sst1 mRNA is most prominent in laminae V/VI and piriform
cortex, and less abundant in laminae II. sst1 mRNA is absent from striatum. D, sst4 mRNA is mainly concentrated
laminae V/VIb, and to a less extent in lamina II. Moderate sst4 mRNA levels are also localized in piriform cortex,
olfactory tubercle (Tu) and striatum. E, CST mRNA is highly and exclusively expressed in scattered neurons
throughout the cerebral cortex. G, control for (C), hybridized with sense riboprobe for sst1. Faint, non-specific
hybridization signals were present in the corpus callosum (arrow), and occasionally in the meningeal
circumference of the brain (double arrowheads). H, sst5 mRNA is not detected in the forebrain. Scale bar: 3 mm.
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3.4 Gene expression patterns of somatostatin, cortistatin, sst1, sst2, and sst4

in the cerebral cortex after focal cerebral ischemia

In the infarcted area, expression levels of somatostatin, cortistatin, sst1, sst2, and sst4 were

strongly reduced at 6 hr after MCAO (Fig. 5B,G,L,Q,V), as compared with the same region of

sham-operated animals. Expression of those genes in the infarct was undetectable at 1 d after

occlusion of the MCA and at later stages (Fig. 5C-E,H-J,M-O,R-T,W-Y). The reduction of gene

expression of somatostatin, cortistatin, sst1, sst2 and sst4 in the infarct paralleled the gradual

neurodegeneration in this area, which was identified in CV-stained sections of each animal.

Figure 5: Patterns of changes in sst1(A-E), sst2 (F-J), sst4 (K-O), pre-prosomatostatin (SOM, P-T) and pre-
procortistatin (CST, U-Y) mRNAs in the rat forebrain after middle cerebral artery occlusion (MCAO). Low-power
x-ray autoradiographs of hybridized coronal sections from rats 6 hr, 1 d, 2 d and 4 d after focal ischemia, and
representative sham-operated animals for each gene at the time point with the most pronounced change in
expression after MCAO (A, 1 d; F, 6 hr; K, 1 d; P,U 4 d). Borders of the infarct are marked by arrowheads in B. A-
E, sst1 levels are largely unaltered in non-infarcted cortical areas after MCAO (B-E) as compared with A. G, at 6 hr
after MCAO, sst2 levels are increased stongly in perifocal cortical areas (arrow) and moderately in the deep layers
of cingulate and frontal cortex (arrowhead). H-J, sst2 expression levels in the cortex at 1 d, 2 d, and 4 d after focal
ischemia are mostly unchanged as compared with F. Striatal sst2 levels are increased in the ventral part at 6 hr (G,
asterisk) and in both ventral and dorsal parts at 1d after MCAO (H, asterisks). K-O, at 1 d after MCAO, sst4
expression levels are strongly increased in non-infarcted cortical areas in the ipsilateral hemisphere (M, arrow).
The depicted animal exhibits a marked upregulation of sst4 mRNA levels in the ipsilateral striatum (M, asterisk) as
compared with K (changes in sst4 expression the striatum were observed only in a subpopulation of animals after
1 d). sst4 levels at 2 d after focal ischemia are unchanged (N) as compared with K. At 4 d, sst4 mRNA levels are
slightly increased in ipsilateral exofocal area (O, arrow). P-T, somatostatin expression levels are moderately
increased ipsilaterally in non-infarcted brain areas at 2 d and 4 d after focal ischemia (S,T, arrows) as compared
with P. U-Y, CST mRNA levels are strongly reduced in the ipsi- and/or contralateral cortical hemispheres at 1 d,
2 d, and 4 d after MCAO (X,Y, arrows) as compared with U. Note that 4 d after sham operation, CST levels in the
ipsilateral cortical areas (U, arrow) are slightly decreased as compared with the contralateral side. Scale bar: 5 mm.
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Table1. Influence of MCAO on SRIF, sst1, sst2, and sst4 mRNA levels in cerebral cortex and
caudate-putamen

6 hr MCAO 1 d MCAO 2 d MCAO     4 dMCAO
sst1 Penumbra 60±47

Cg/Fr (i) 81±28 128±31 99±23 127±36
Cg/Fr (co) 84±28 73±16 100±25 96±25
Par (co) 61±18 102±12 105±19 101±37

sst2 Penumbra 206±42**
Cg/Fr (i) 137±23* 98±44 103±19 90±15
Cg/Fr (co) 98±11 101±13 97±19 83±15
Par (co) 101±12 112±17 117±9 84±22
dCPu (i) 109±47 299±116* 117±83 62±55
dCPu (co) 50±27 267±137 119±33 73±54
vCPu (i) 363±158* 495±97** 42±11 146±104
vCPu (co) 87±30 230±115 117±27 79±40

sst4 Penumbra 77±35
Cg/Fr (i) 114±17 173±49* 106±18 134±13*
Cg/Fr (co) 89±14 105±9 99±12 115±13
Par (co) 71±18* 87±11 104±22 123±33
dCPu (i) 44±33 160±105 124±69 62±21
dCPu (co) 83±61 43±32 163±160 171±63
vCPu (i) 94±49 186±138 83±66 73±30
vCPu (co) 84±27 53±38 154±93 116±54

SRIF  Penumbra 96±14
Cg/Fr (i) 109±27 98±16 171±32* 161±33*
Cg/Fr (co) 110±27 98±22 160±18* 124±12
Par (co) 112±30 103±28 151±43 125±58
dCPu (i) 112±27 80±19 150±32* 142±32*
dCPu (co) 126±47 92±33 159±38* 147±40
vCPu (i) 104±25 77±12 128±36 127±28
vCPu (co) 103±13 104±17 125±21        114±28

Values express mean mRNA levels ± SD at 6 hr, 1 d, 2 d, and 4 d after middle cerebral artery occlusion (MCAO,
n=6) as percentage of mean mRNA levels at 6 hr, 1 d, 2 d, and 4 d after sham operation (n=4). *p < 0.05; **p <
0.01 versus stage-matched sham-operated groups; Student´s t test. Areas of interest: Cg, cingulate cortex; Fr,
frontal cortex; Par, parietal cortex; dCPu and vCPu, dorsal and ventral caudate putamen; co, contralateral side; i,
ipsilateral side.

In addition to the loss of gene expression in the infarct, distinct changes in the expression

patterns of somatostatin, cortistatin, sst2 and sst4 were observed in non-lesioned brain areas

after MCAO. In order to quantify these changes, quantitative in situ hybridization analysis was

performed in the forebrain. In the brain hemisphereipsilateral to MCAO, mRNA levels were

measured in the cortical penumbra, the cingulate/frontal areas of the cortex, and the dorsal and

ventral striatum (see Fig.1A). Contralaterally, gene expression analysis was made in the parietal

cortex (area corresponding to the infarct), the cingulate/frontal cortex, and the striatum (see Fig.

1A). Measurements of gene expression levels in the penumbra were performed only at 6 hr after

MCAO, all other areas were evaluated at 6 hr, 1 d, 2 d and 4 d after MCAO. Changes in gene
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expression levels were expressed as percent of the levels of the corresponding area in stage-

matched sham-operated animals (Table 1).

3.4.1 Opposite regulation of somatostatin and cortistatin gene expression in

the non-lesioned cerebral cortex

The overall distribution pattern of somatostatin-expressing cells observed in the forebrain of

naive rats (Fig. 4A) was virtually unaltered in non-lesioned areas of the forebrain after MCAO

and sham operation (Fig. 5P-T). However, there was a slight increase in somatostatin mRNA

levels in the ipsilateral side 2 d and 4 d after focal ischemia (Fig. 5S,T, arrows).

Quantitative analysis of the ipsilateral cingulate/frontal cortical areas revealed, that

somatostatin mRNA levels were increased by 71% and 61% (p < 0.05; Table 1) at 2 d and 4 d

after MCAO, respectively, as compared with the corresponding area of the stage-matched sham

groups. Somatostatin mRNA levels were also increased by 60% (p < 0.05; Table 1) at 2 d after

MCAO in the contralateral cingulate/frontal cortex.

Table 2. Influence of MCAO on numbers of SRIF and CST mRNA-positive neuron in the cingulate cortex
Control 2 d Sham 2 d MCAO

SRIF 66±1 61±4 63±3
CST 29±2 18±3**(-38%) 8±2**††(-73%)

Indicated are average numbers of SRIF and CST mRNA-positive neurons per mm
2 

± SD in naive animals (Control,
n=3), 2 d after sham operation (2 d Sham, n=4), and 2d after middle cerebral artery occlusion (2 d MCAO, n=6).
Bold values represent percent change as compared with the control group set as 100%. **p < 0.01 versus control
group; ††p < 0.01 versus sham-operated group; one-way ANOVA followed by Newman-Keuls multiple
comparison.

To identify, whether the increase in somatostatin mRNA levels in the cortex after MCAO was

due to an increase in somatostatin-positive cells or an increase in somatostatin mRNA levels per

neuron, emulsion coating of the hybridized sections was performed (see Fig. 13A-D).

Somatostatin-positive cells were counted in a 1.5 mm
2
 square of the ipsilateral cingulate cortex

of rats 2 d after MCAO and rats 2 d after sham operation. The measured density of

somatostatin-expressing neurons was approximately 60 per mm
2
 in both groups (Table 2).

However, individual neurons in the ipsilateral cingulate/frontal cortex of rats 2 d and 4 d after

MCAO presented stronger hybridization signals (Fig. 13C,D, reflected by the brighter

appearances of scattered neurons) than those in control animals (Fig. 13A), indicating increased

somatostatin mRNA levels in these cells.

In contrast to somatostatin, expression of the cortistatin gene was strongly decreased in non-

lesioned cerebrocortical areas after focal ischemia. Decreased expression of the cortistatin

mRNA occurred first in the penumbra at 6 hr after focal ischemia and propagated in the cortex.

The decrease persisted up to 4 d (Fig. 5V-Y, arrows). Expression of cortistatin was decreased in
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both hemispheres, although the ipsilateral hemisphere was more affected than the contralateral.

Remarkably, cortistatin mRNA expression in the cerebral cortex was reduced also in sham-

operated animals ipsilaterally (Fig. 5U, arrow). This effect was more pronounced at 6 hr in the

penumbra. There was only a minor decrease in cortistatin expression in the cortex contralateral

to the sham-operation (Fig. 5U).

Table 3. Influence of MCAO on cortistatin mRNA levels in cerebral cortex

          Sham               MCAO

6 hr 1 d 2 d 4 d 6 hr 1 d 2 d 4 d

Cg/Fr(i) 60±24 63±33 53±36* 57±21 62±14 34±10** 12±5**† 16±4**†

Cg/Fr(co) 52±26 72±23 78±41 76±27 49±20 26±12** 12±5**†† 57±21

Par(i) 52±18 66±48 87±47 94±24

Par(co) 51±19 54±18 85±35 93±37 42±16 32±14* 23±14*† 78±48

Penumbra 51±8** 40±10**

Values express mean mRNA levels ± SD at 6 hr, 1 d, 2 d, and 4 d after sham operation (Sham, n=4) and middle
cerebral artery occlusion (MCAO, n=6) as percentage of naive animals (n=3). *p < 0.05; **p < 0.01 versus naive
group; †p < 0.05; ††p < 0.01 versus stage-matched sham-operated group; one-way ANOVA followed by Newman-
Keuls multiple comparison test. Areas of interest: Cg, cingulate cortex; Fr, frontal cortex; Par, parietal cortex; co,
contralateral side; i, ipsilateral side.

In order to quantify changes in cortistatin gene-expression after MCAO and sham operation,

cortistatin expression levels were determined in untreated animals and compared to either of the

operated groups. In addition, cortistatin mRNA levels were compared between MCAO-treated

and stage-matched sham-operated groups. The comparison of naive and ischemic animals

revealed that cortistatin mRNA levels were decreased by 60% in the penumbra. In the

ipsilateral non-lesioned cingulate/frontal areas, cortistatin expression was reduced by 66%, 88%

and 84% at 1 d, 2 d, and 4 d postocclusion, respectively (p < 0.01 each; Table 3). In the

corresponding contralateral area, cortistatin mRNA levels were decreased by 74% and 88% (p <

0.01 each; Table 3) at 1 d and 2 d after MCAO, respectively.  In the contralateral parietal

cortex, cortistatin mRNA levels were decreased by 68% and 77%  (p < 0.05; Table 3) at 1 d and

2 d after MCAO. The comparison of naive and sham-operated animals revealed a significant

decrease of cortistatin mRNA levels only ipsilaterally in forelimb area at 6 hr (-49%, p < 0.01)

and in the cingulate/frontal cortex at 2d (-47%, p < 0.05; Table 3) after sham operation. The

comparison of ischemic and sham-operated animals revealed statistically significant differences

between the two groups at 2 d after MCAO in both hemispheres, and at 4 d in the ipsilateral

cingulate/frontal cortex (Table 3).

Numbers of cortistatin-positive cells per area were determined 2 d after MCAO and sham

operation in the ipsilateral cingulate/frontal cortex and compared with naive animals. Numbers
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of cortistatin-positive neurons were reduced by 73% (p < 0.01; Table 2) in ischemic animals,

and by 38% (p < 0.01; Table 2) in sham-operated animals, respectively.

3.4.2 Downregulation of cortistatin gene expression in somatostatin-negative

neurons

Expression of cortistatin in the cerebral cortex is known to be present in somatostatin-positive

and somatostatin-negative neurons (de Lecea et al., 1997; this study). A large proportion of the

latter population is characterized by the expression of the calcium-binding protein, parvalbumin

(PV). To evaluate the impact of focal ischemia on the phenotypes of cortistatin-expressing

neurons in the cerebral cortex, simultaneous in situ hybridization with radioactively- and DIG-

labelled riboprobes was performed. Analysis of the co-expression was limited to the ipsilateral

cingulate/frontal cortcal areas of rats 2 d after ischemia, when the changes of cortistatin mRNA

expression were most pronounced, and the corresponding areas of naive animals.

Table 4. Semiquantitative analysis of the influence of MCAO on co-expression patterns of SRIF and CST
 in the cingulate and frontal cortex

SRIF CST co-positive %co-positive/
SRIF-positive

%co-positive/
CST-positive

Control 188±36 74±30 40±14 17%       35%
2 d MCAO 216±5 4±2 21±4       8%       84%

Data express numbers of SRIF-expressing, CST-expressing and SRIF/CST co-positive neurons ± SD in the
cingulate and frontal cortex of naive animals (Control, n=3) and animals 2 d after middle cerebral artery occlusion
(2 d MCAO, n=6), and the percentage proportion of co-positive neurons in both population.

In naive rats, cortistatin mRNA was co-expressed by 17% of the somatostatin mRNA-positive

neurons and by 31% of parvalbumin mRNA-positive neurons (Fig. 6B,C, arrows; Table 4,5).

After ischemia, cortistatin was expressed by 8% of somatostatin mRNA- positive neurons and

only by 1% of parvalbumin mRNA-positive neurons (Fig. 6E,F, arrows; Table 4,5).

Table 5. Semiquantitative analysis of the influence of MCAO on co-expression patterns of CST
 and parvalbumin in the cingulate and frontal cortex

PV CST co-positive %co-positive/
 PV-positive

%co-positive/
 CST-positive

Control 168±17 52±15 77±15      31% 60%
2 d MCAO 250±64 15±6 3±2      1% 17%

Data express numbers of parvalbumin-expressing (PV), CST-expressing (CST) and PV/CST co-positive neurons ±
SD in the cingulate and frontal cortex of naive animals (Control, n=3) and animals 2 d after middle cerebral artery
occlusion (2 d MCAO, n=6), and the percentage proportion of co-positive neurons in both population.
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Figure 6. Phenotypes of neurons expressing cortistatin (CST) mRNA 2 d after middle cerebral artery occlusion
(MCAO). A, D, low-power darkfield micrographs of the cingulate (Cg), frontal (Fr) and forelimb (FL) areas of a
naive rat cortex (CTRL) and the corresponding regions of the ipsilateral cortex of a rat subjected to focal ischemia
(MCAO 2 d) after hybridization with a [35S]-labelled probe for CST mRNA (35SCST). A, CST mRNA is expressed
by numerous neurons throughout all cortical layers. D, the infarcted (asterisk) and non-infarcted areas are
delimited by a dashed line. Note in the non-infarcted cortical areas, the number of CST-expressing cells is strongly
reduced as compared with A , CST-expression is undetectable in the infarct (D ). B,C,E,F, for phenotype
identification of CST-expressing neurons, simultaneous hybridization with a [35S]-labelled probe for CST mRNA
(seen as grains in B,C,E,F) and digoxigenin-labelled probes for parvalbumin (DIGPV, B,E) or somatostatin
(DIGSOM, C,F) mRNAs was performed (DIGPV and DIGSOM are detected by colored enzymatic reaction products in
B,C,E,F). Shown are high-power darkfield micrographs from lamina V of the frontal cortex of an untreated rat
(B,C) and the corresponding area of the cortex ipsilateral to 2 d MCAO (E,F). B, the co-expression analysis reveals
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a PV-positive neuron (arrowhead), CST/PV-copositive neurons (arrows), and CST-positive neurons (asterisks) in
the untreated cortex. E, after focal ischemia, CST-positive (asterisks) and PV-positive neurons (arrowheads), but
no CST/PV-positive neurons are observed. C, detection of SOM-positive neurons (arrowheads), CST-positive
neurons (asterisks), and CST/SOM-copositive neurons (arrows) in the untreated rat cortex. F, presence of SOM-
positive (arrowheads) as well as CST/SOM-copositive neurons (arrows), and absence of CST-positive neurons 2 d
after focal ischemia. cc, corpus callosum. Scale bars: A,D, 1.25 mm; B,C,E,F, 100 µm.

Since the numbers of somatostatin and parvalbumin mRNA-positive neurons per area were

unchanged after focal ischemia, these data indicated that the downregulation of cortistatin gene

expression occurred preferentially in the parvalbumin-positive neuronal population of

cortistatinergic neurons. Expression of the cortistatin gene in the somatostatin-expressing

subpopulation was less affected by focal ischemia.

Neuropeptide Y (NPY) is selectively expressed by a subpopulation of somatostatinergic

neurons in the cerebral cortex, NPY-expressing somatostatin-negative neurons are seen only

rarely (Kawaguchi et al., 1998). To determine, whether somatostatin/cortistatin-neurons overlap

with somatostatin/NPY-neurons, co-expression of neuropeptide Y and cortistatin was analyzed

as well. This revealed, that in naive rats, 36% of NPY-positive neurons contained cortistatin.

Conversely, 18% of cortistatin-expressing neurons were positive for neuropeptide Y mRNA

(Fig. 7).

Taken together, our in situ hybridization analysis of somatostatin and cortistatin mRNAs

showed that the expression of both genes was largely unaffected in the non-lesioned areas at

6 hr postocclusion. However, the expression of both genes was changed 2 d and 4 d after

MCAO. While somatostatin mRNA levels were moderately increased in the ipsilateral cortex,

cortistatin mRNA levels were strongly

Figure 7. Co-expression of NPY and CST in neurons in cingulate cortex. Double in situ hybridization of the CST-
and NPY-mRNA was performed by the use of a [35S]-labelled probe for CST mRNA and a digoxigenin (DIG)-
labelled probe for NPY mRNA. DIG-labelled mRNA is detected by dark-colored reaction products, and [35S]-
labelled CST mRNA is detected by grains. Lower-power darkfield (A) and higher-power brightfield (B) pictures
are taken from lamina V of frontal cortex of a naive rat. NPY/CST-copositive neurons (arrows), NPY-positive
neurons (asterisks) and CST-positive neurons (arrowheads) are detected. Scale bar: A, 50 µm; B, 20 µm.
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decreased in both cortical hemispheres. Since the number of somatostatin-expressing cells per

cortical area was unaltered after MCAO, somatostatin mRNA expression was most likely

increased in neurons constitutively expressing this gene, and not de novo induced in

somatostatin mRNA-negative cortical cells. Our co-expression analysis showed, that cortistatin

was partially co-expressed with somatostatin in the cerebral cortex. The

somatostatin/cortistatin-expressing neuronal population overlaps only partially with the NPY-

containing neuronal population. After focal ischemia, cortistatin mRNA expression remained

detectable in a subpopulation of somatostatin-positive neurons, but was undetectable in the vast

majority of parvalbumin-expressing neurons, which are somatostatin-negative.

3.4.3 Differential regulation of sst1, sst2, sst4, and sst5 receptor mRNA

expression

By quantitative in situ hybridization, we found that no changes in the distribution patterns and

the levels of sst1 mRNA at the evaluated time points after focal ischemia (Fig. 5B-E).

Expression levels of sst5 were still at or below the detection threshold after ischemia (Fig. 8).

Figure 8. Absence of sst5 mRNA in the rat forebrain after focal cerebral ischemia. Depicted are x-ray
autoradiographs of coronal sections after in situ hybridization for sst5 mRNA. sst5 mRNA is not detectable in the
forebrain at 6 hr (A), 1 d (B), 2 d (C) and 4 d (D) after MCAO. Scale bar: 3 mm.
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In contrast, distinct changes in the expression patterns of sst2 and sst4 were observed

subsequent to MCAO.

3.4.3.1 Transient upregulation of sst2 gene expression in the perifocal and

exofocal cortex

Detected with the probe directed to the entire sst2-coding region, a robust increase of sst2

expression was observed in the perifocal cortical area 6 hr after MCAO (Fig. 5G, arrow; for

identification of cortical subregions, see Fig. 1). Less pronounced changes in sst2 expression

were observed ipsilaterally in the cingulate/frontal cortical areas at the same time point (Fig.

5G, arrowhead). No changes were observed in the contralateral side. Similar changes were

detected with the probe selective for sst2a mRNA (not shown). Patterns of sst2 and sst2a

expression were not altered in the cortex of sham-operated rats (Fig. 5F). Measurement of sst2

mRNA levels revealed increases by 106% in the perifocal area (p < 0.01; Table 1), and by 37%

(p < 0,05; Table 1) in the ipsilateral cingulate/frontal cortex as compared with sham-operated

rats. From 1 d to 4 d after MCAO, both the distribution patterns and the mRNA levels of sst2

and sst2a were unchanged in the non-lesioned cortical areas of the brain (Fig. 5H-J).

The distribution of sst2-expressing neurons in the cerebral cortex was analyzed in detail in

emulsion-dipped sections. As demonstrated in darkfield micrographs, sst2 mRNA-positive

neurons were present only occasionally in laminae II/III and very frequently in laminae V/VI in

the cortex of naive and sham-operated rats (Fig. 9A,B).

Pronounced changes in the expression pattern of sst2 were observed 6 hr after MCAO in the

perifocal area of the cortex. In laminae II/III, numerous neurons were positive for sst2 mRNA

(Fig.9D, arrow, E, double arrows). In laminae V/VI, sst2 expression levels were strongly

increased, which was reflected by considerably higher silver grain density in individual neurons

(Fig. 9E, arrow) than in those of the corresponding area of sham-operated animals (Fig. 9B,

arrow). Similar changes were observed, when the sst2a-selective probe or the probe for all sst2-

isoforms were used (Fig. 9C,F).

Cell counting analysis in the perifocal cortex 6 hr after MCAO revealed a 40 fold increase in

the number of sst2-positive cells per area in laminae II/III (p < 0,01), and 1.9 fold in laminae

V/VI as compared with the corresponding areas of sham-operated animals (p < 0,05; Table 6).

Together, these findings suggest, that increased sst2 mRNA levels in the perifocal cortex were

due to an upregulated expression in neurons constitutively synthesizing sst2 mRNA, as well as

induced expression of sst2 in neurons, in which constitutive sst2 mRNA expression levels were

below the detection limit.
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Figure 9. Upregulation of sst2 and sst2a in the perifocal area 6 hr after MCAO. Radioactive in situ hybridization
was performed with a riboprobe detecting all sst2 isoforms (A,B,D,E) and a riboprobe specific for sst2a (C,F). A,
D, Low-power darkfield micrographs of the cingulate, frontal, forelimb and parietal areas of the cerebral cortex
after hybridization for sst2 mRNA were taken from the ipsilateral side of a rat 6 hr after sham operation (A), and a
rat 6 hr after MCAO (D). A, in sham-operated rat, sst2 mRNA is concentrated highly in laminae V/VI. D, sst2
mRNA is greatly induced in laminae II/III and strongly increased in laminae V/VI in the perifocal area (arrow) of
the ischemic rat as compared with sham-operated rat (A). In the exofocal cingulate and frontal cortex, sst2 mRNA
levels are moderately increased in laminae V (asterisk) and unchanged in laminae II/III as compared with A. High-
power darkfield micrographs focus on laminae II/III (B,E) and laminae V/VI (C,F) of the perifocal area of the
ischemic rat and the corresponding region of the sham-operated rat. B, in a sham-operated rat, there are only few
neurons positive for sst2 mRNA in laminae II/III, in contrast to the massive sst2 expression of neurons located in
deep layers (laminae V, arrow). E, 6 hr after ischemia, remarkably more neurons are detected positive for sst2
mRNA in laminae II/III (double arrows) and lamina V (arrow) of the perifocal area, as compared with the sham-
operated rat (B). C, in the sham-operated rat, sst2a mRNA is expressed in many neurons in laminae V/VI. F,
elevated sst2a mRNA levels per neuron as well as increase of the sst2a-positive neuron number are noticed in
laminae V/VI of perifocal area of the 6 hr ischemic rat as compared with corresponding area in the sham-operated
rat (C). Scale bar: A,D, 1 mm, B,C,E,F, 150 µm.

Table 6. Influence of MCAO on numbers of sst2 mRNA-positive neuron in the penumbral cortex
6 hr Sham 6 hr MCAO

Layers 2/3 11±5 57±22** (+420%)
Layers  5/6 95±17 278±133* (+190%)

Indicated are average numbers of sst2 mRNA-positive neurons per mm
2 

± SD 6hr after sham operation (6 hr Sham,
n=4), and 6hr after middle cerebral artery occlusion (6 hr MCAO, n=6). Evaluated were layers 2/3 and 5/6 of the
penumbral cortex after MCAO and the corresponding areas in the sham group. Bold values represent percent
change as compared with the sham group set as 100%. *p < 0.05; **p < 0.01 versus sham-operated group;
Student’s t test.

3.4.3.2 Selective upregulation of sst2 mRNA expression in glutamatergic

neurons

Next, the MCAO-induced sst2 gene upregulation in relation to GABAergic and glutamatergic

neuronal phenotypes was characterized. GABAergic neurons were identified by the detection of

glutamic acid decarboxylase (GAD) mRNA, which is an established marker for GABAergic

interneurons. Since vesicular glutamate transporter 1 (VGLUT1) is known to be present in

almost all excitatory pyramidal neurons in the cerebral cortex, VGLUT1 mRNA was detected

for identifying this excitatory neuronal type (Fremeau et al., 2001; Varoqui et al., 2002). Co-

expression analysis was performed in the perifocal area of the cortex 6 hr after MCAO.

Expression patterns in superficial and deep cortical layers were evaluated individually.

Laminae II/III: Cell counting of double- and single-labelled neurons revealed that 73% of sst2-

positive neurons expressed GAD mRNA in sham-operated rats (Fig. 10A; Table 7). In contrast,

6 hr after MCAO only 13% of the sst2-positive neurons expressed GAD mRNA (Fig. 10B;

Table 7). Because the number of GAD mRNA-expressing neurons per cortical area was

unchanged 6 hr after MCAO, these data indicated that focal ischemia induced sst2 gene

expression in non-GABAergic neurons in laminae II/III. This is supported by the result that in
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Figure 10. Phenotype identification of sst2-expressing neurons in the superficial layer of the perifocal cerebral
cortex. Simultaneous hybridization of a [35S]-labelled probe for sst2 mRNA (seen as grains in A-D) with
digoxigenin-labeled probes for glutamic acid decarboxylase (DIGGAD, A,B) or vesicular glutamate transporter 1
(DIGVGLUT1, C,D) mRNAs was performed (DIGGAD and DIGVGLUT1 mRNAs are detected as colored enzymatic
reaction products in A-D). Shown are high-power brightfield micrographs taken from lamina III of the perifocal
cortex of a rat 6 hr after MCAO and the corresponding region of a rat 6 hr after sham operation. A, in the sham-
operated rat, one neuron co-expressing both sst2- and GAD-mRNAs (arrow), and two GAD mRNA-positive
neurons (asterisks) are detected. B, in the cortex of the 6 hr ischemic rat, a neuron positive for sst2 and GAD
mRNA (arrow), a neuron positive for GAD mRNA (asterisk), and one positive for sst2 mRNA (arrowhead) are
identified. C, in the sham-operated rat, neurons positive for VGLUT1 (asterisks) or sst2 (arrowhead) mRNA are
identified, but sst2/VGLUT1 co-positive neurons are absent. D, in the ischemic rat, sst2 and VGLUT1 mRNAs are
frequently co-expressed (arrows). Note the absence of sst2 mRNA in two neurons that are positive for VGLUT1
mRNA (asterisks). Scale bar: 20 µm.

the rats subjected to MCAO, 86% of sst2-expressing neurons were found to co-express

VGLUT1 mRNA (Fig. 10D; Table 7), whereas only 25% of sst2-positive neurons co-expressed

VGLUT1 in the sham-operated animals (Fig. 10C; Table 7).

Thus, sst2 expression was induced in a substantial subpopulation of glutamatergic pyramidal

neurons in laminae II/III after MCAO.
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Laminae V/VI: In sham-operated rats, 95% of sst2-positive neurons expressed VGLUT1

mRNA. Only 6% of sst2-positive neurons expressed GAD (Table 7). In rats subjected to 6hr

MCAO, similar proportion of sst2-positive neurons were GAD-positive (5%, Table 7) and

VGLUT1-positive (96%, Table 7) as in sham-operated rats. Conversely, 59% of VGLUT1-

positive neurons were sst2-positive in sham-operated rats, and 94% of these neurons were sst2-

positive after ischemia. sst2 expression in GAD-positive neurons was 11% 6 hr after sham-

operation and 14% after MCAO (data are not shown).

Table 7. Semiquantitative analysis of the influence of MCAO on co-expression patterns of sst2 with
VGLUT1 and sst2 with GAD in the penumbral cortex

%sst2-VGLUT1 co-positive/
sst2-positive

%sst2-GAD co-positive/
sst2-positive

Layers 2/3 6 hr Sham                  25%      73%
6 hr MCAO                  86%      13%

Layers 5/6 6 hr Sham                  95%        6%
6 hr MCAO                  96%        5%

Data are the proportion of glutamatergic sst2-positive neurons from all sst2-positive neurons (sst2-VGLUT1 co-
positive/ sst2-positive) and the proportion of GABAergic sst2-positive neurons from all sst2-positive neurons
(sst2GAD co-positive/ sst2-positive) in the penumbral cortex 6 hr after middle cerebral artery occlusion (MCAO,
n=6) and in the corresponding area 6 hr after sham operation (Sham, n=4).

Taken together, the co-expression analysis indicated, that although glutamatergic neurons in

laminae II/III are largely sst2-negtive, more than half of these neurons contains sst2 in laminae

V/VI. After MCAO, sst2 was upregulated in many glutamatergic neurons in the perifocal areas

throughout laminae II-VI. In contrast, sst2 was expressed only in a small population of

cerebrocortical GABAergic neurons both in sham-operated and in ischemic rats.

3.4.3.3 Regulation of sst4 expression in the cerebral cortex

6 hr after ischemia: In contrast to sst2, expression of the sst4 gene was largely unchanged in the

perifocal cortex. Surprisingly, sst4 mRNA levels were decreased contralaterally in the parietal

cortex (Fig. 5L, arrow), which corresponds to the infarcted area on the ipsilateral side.

Quantitatively, sst4 mRNA levels were decreased by 29% (p < 0.05) in the contralateral parietal

cortex as compared with the corresponding area 6 hr after sham operation. sst4 expression was

unchanged in the cingulate/frontal areas of the cortex, both ipsilaterally and contralaterally.

1 d-4 d after ischemia: An increase in sst4 gene expression by 73% (p < 0.05, Table 1) was

noticed in the ipsilateral cingulate/frontal cortex (Fig. 5M, arrow) as compared with the sham-

operated group. Changes in sst4 expression in the cerebral cortex on the contralateral side were

not observed. At later stages no changes except a slight increase in ipsilateral cingulate/frontal

cortex was detected at 4 d (+34%, Table 1; Fig 5O, arrow).
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 3.4.3.4 Regulation of somatostatin- and sst2-expression in the striatum

In about 20% of ischemic animals, occlusion of the MCA caused an infarction in the lateral part

of the striatum. In degenerated striatal tissue, mRNA expression of sst receptors, somatostatin

and cortistatin was not detected. In the intact parts of the striatum, MCAO was associated with

strong changes in sst2 expression and subtle changes in somatostatin expression. Changes in the

gene expression levels were determined in the ventral and dorsal parts of the striatum after focal

ischemia in comparison to sham-operated animals, revealing an upregulation of sst2 expression

by 263% (p < 0.05; Table 1) in the ipsilateral ventral striatum after 6 hr (Fig. 5G, asterisk).

After 1 d, the sst2 mRNA levels were increased by 199% (p < 0.05; Table 1) and 395% (p <

0.01; Table 1) in dorsal and ventral parts, ipsilaterally (Fig. 5H, asterisks). Quantification of

somatostatin mRNA levels in the ipsilateral dorsal striatum revealed an increase by 50% and

42% (p  < 0.05 each; Table 1; Fig 5S,T) at 2 d and 4 d, respectively. Contralaterally,

somatostatin expression levels were increased by 59% after 2 d (p < 0.05; Table 1; Fig. 5S).

Statistically, sst4 expression levels in the striatum were not different between sham-operated

and ischemic groups. One animal out of six displayed a strong increase in sst4 mRNA levels 1 d

after ischemia, which is depicted in figure 5M (asterisk). Expression of cortistatin and sst1

mRNAs was not detectable in the striatum of sham-operated or ischemic animals.

3 .5  Constitutive localization of somatostatin, sst2, and sst4-LIR in the

cerebral cortex

Using immunocytochemistry, the distribution of the somatostatin-, sst2- and sst4-like

immunoreactivity (LIR) in the rat forebrain was determined by using specific antibodies.

Somatostatin: The somatostatin-LIR showed similar distribution pattern as somatostatin

mRNA. In the forebrain, strong somatostatin-like immunoreactive (lir) neurons were found in

the cerebral cortex, septum, ventral diagonal band, caudate putamen, accumbens nucleus,

endopiriform nucleus, and claustrum. Detailed analysis under high magnification identified the

presence of somatostatin-LIR in perikarya (Fig. 11A, arrows), dendrites, and long-expanding

axons (Fig. 11A, arrowhead) in the cerebral cortex. In particular, there was a dense network of

somatostatin-lir terminals in lamina I of cerebral cortex in the naive rats, as well as in the

contralateral side of ischemic rats (Fig. 12C, arrow, Fig. 13E, arrow), most likely originating

from somatostatin-positive cortical interneurons.

sst2, sst4: The distribution patterns of the sst2a-LIR and the sst4-LIR were also consistent with

the respective mRNA expression patterns. Strong sst2a-LIR was detected in laminae V/VI of

the cerebral cortex, claustrum, dorsal endopiriform nucleus, medial and lateral septum, and
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ventral diagonal band. Examination under high magnification showed that sst2a-LIR was

distributed diffusely and essentially in laminae V/VI. In laminae II/III, sst2a-LIR was noticed

on the plasma membrane of very few multipolar neurons, presumably GABAergic neurons (not

shown). The sst4-LIR could be clearly assigned to apical and basal dendrites of pyramidal-

shaped neurons, with their perikarya concentrated mainly in laminae II, III and V (Fig. 14).

Other regions in the forebrain exhibiting sst4-LIR were the striatum, septum, piriform cortex

and olfactory tubercle.

Figure 11. Details of the cellular distribution of somatostatin-like immunoreactivity (SRIF-LIR) before and after
focal cerebral ischemia. Shown are high-power brightfield micrographs taken from lamina III of the cingulate
cortex of a control rat (A), and rats 6 hr (B), 2 d (C), and 4 d (D) after focal ischemia. A, presence of strong SRIF-
LIR in two neuronal cell bodies (arrows), the dendrites, as well as the axons (arrow head). Numerous terminal-like
structures with varicosis are also detected. B, 6 hr after MCAO, SRIF-LIR staining in the cell bodies (arrows),
dendrites is largely reduced as compared with control. The stained terminals are very rare (arrowhead). C, 2 d after
MCAO, the SRIF-LIR is greatly enhanced, indicated are strongly stained cell bodies (arrows), dendrites and long-
expanding axons (arrwoheads). D, 4 d after MCAO, SRIF-LIR is greatly reduced as compared with 2 d after
MCAO (C). Scale bar: 20 µm.
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Figure 12. MCAO-induced changes of SRIF-LIR in the ipsilateral cerebral cortex. A, confocal image of
fluorescence-immunostained coronal section through the forebrain of a rat 6 hr after MCAO. Note the markedly
lower staining intensity in lamina I of the ipsilateral hemisphere as compared with contralateral side. B, C,
composite images of micrographs, showing SRIF-positive cell profiles in all layers of the cerebral cortex of
ipsilateral and contralateral cingulate/frontal cortex. Note the strongly stained terminal plexus in lamina I in the
contralateral side (C, arrow), whereas the absence of staining in the corresponding ipsilateral side (B, arrow).
Moreover, stained delicate fibers are decorated between the cell bodies throughout the cerebral cortex of the
contralateral side (C, arrowheads), but are largely absent in the ipsilateral side. D, E, F, confocal images of
sections from a control rat (D), a rat 3 hr (E), and a rat 24 hr after MCAO (F). The SRIF-LIR is identical in lamina
I in both hemispheres in control rat (D). The decrease in SRIF staining intensity ipsilaterally can be easily noticed
in the 3 hr and 24 hr ischemic rats (E,F). Scale bars: A, 2 mm, B,C, 300 µm, D,E,F, 1 mm.
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Figure 13. Demonstration of  the temporal changes in the distribution patterns of SRIF mRNA and SRIF-like
immunoreactivity (SRIF-LIR) in the cingulate and frontal cortex after focal cerebral ischemia. Dark-field (A-D)
and bright-field micrographs (E-F) are taken from bilateral cingulate/frontal cortex of naive rats (control) and rats
at 6 hr, 2 d and 4 d after middle cerebral artery occlusion (MCAO). A, in the untreated rat, SRIF mRNAs are
expressed at high levels by numerous neurons scattered in the cingulate/frontal cortex from laminae II-VI. B, 6 hr
after MCAO, changes of SRIF mRNA are not detected. C,D, 2 d and 4 d after MCAO, SRIF mRNA levels
increase moderately in the ipsilateral cingulate/frontal cortex, reflected by the brighter appearances of individual
neurons on the ipsilateral side. E, SRIF-LIR is detected frequently in the cell bodies throughout cerebral cortex.
Note dense and homogeneous staining in lamina I (E, arrow). F, 6 hr after MCAO, the SRIF-LIR staining is
reduced strongly in the ipsilateral cingulate/frontal cortex as compared with control rat (E), note strongly decreased
staining in lamina I (arrow). G, in the 2 d ischemic rat, the SRIF-LIR staining is more intensive than in the control
rat. Note the heavy staining in lamina I on the ipsilateral side (arrow). H, in the 4 d ischemic rat, the SRIF-LIR
intensity is stronger than the in control, but weaker than in the 2 d ischemic rat (G). Scale bar: A-D, 1 mm, E-H,
500 µm.

Figure 14. Constitutive distribution of sst4-like immuonoreactivity (sst4-LIR) in the cerebral cortex. Low-power
brightfield micrograph shows the laminar pattern of sst4-LIR in the cingulate/frontal cortex (A). Details of cellular
distribution pattern of sst4-LIR are shown under high magnification in B. sst4-LIR is concentrated in cortical
laminae II, III and V (A). At the single cell level, sst4-LIR is detectable predominently in ascending dendrites (B,
arrowheads). Scale bar: A, 100 µm; B, 15 µM.

3.6 Histochemistry for somatostatin and sst2 after focal ischemia

In the infarcted area, immunoreactivity for somatostatin, sst2a and sst4 was strongly reduced

6 hr after MCAO and totally absent at later stages, which is consistent with reduced mRNA

expression and gradual neurodegeneration in this area. In addition, changes in the

immunoreactivity for somatostatin and sst2a were observed in non-lesioned cortical areas after

ischemia.
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3.6.1 Biphasic changes of somatostatin-LIR in the ipsilateral non-lesioned

cerebral cortex

After focal ischemia, a strong decrease in somatostatin-LIR was observed in the

cingulate/frontal cortex, endopiriform nucleus, claustrum, and piriform cortex on the ipsilateral

side. This effect was first detected at 3 hr and persisted up to 24 hr after MCAO (Fig.

12A,B,E,F). The changes were most obvious in lamina I (Fig. 12B, arrow; Fig. 13F arrow),

which is particularly rich of axonal terminals. As demonstrated in figure 12B, somatostatin-LIR

was also decreased in laminae II-VI. In contrast, somatostatin-LIR was not altered in the septal

area and striatum. In the cerebral cortex, endopiriform nucleus and claustrum contralateral to

the lesion, levels of the somatostatin-LIR exhibited only minor changes as compared with naive

rats and rats 6 hr after sham operation. The described ischemia-induced changes of somatostatin

were observed in all animals analyzed (3 hr, n=4; 6 hr, n=4; 24 hr, n=4).

In the cingulate/frontal cortical areas of animals 2 d and 4 d after MCAO (n=4, each),

somatostatin-LIR in neuronal perikarya and processes was restored. The intensity of

somatostatin-LIR at postocclusion even exceeded the levels observed in control rats (Fig.

11C.D; Fig. 13G,H).

Despite the strong decrease of somatostatin-LIR in the non-lesioned cortical areas 3 hr-24 hr

after MCAO, somatostatin mRNA levels were not altered during this interval (Table 1). In

contrast, increased levels of somatostatin-LIR at 2 d and 4 d after MCAO were paralleled to the

slight increase in somatostatin mRNA levels (Fig. 13C,D; Table 1). Reduced somatostatin

peptide content in axonal terminals is possibly due to exhaustive release and insufficient de

novo synthesis of somatostatin during the first 24 hr after MCAO.

3.6.2 Internalization of sst2a after MCAO

To test the hypothesis that ischemia may induce enhanced release of somatostatin, we analyzed

internalization of sst2a by confocal microscopy. In the cortex of controls (not shown) and in the

cortex contralateral to the occluded MCA, sst2a-LIR exhibited a dense but diffuse distribution

in laminae V/VI (shown for an animal 3 hr after MCAO, Fig.15A, contralateral side, D). The

ascending dendrites of pyramidal cells were also weakly stained for sst2a in laminae II/III (Fig.

15D, arrow). Due to the diffuse staining pattern, it was difficult to identify individual sst2a-

positive cell bodies and dendrites (Fig.15F,H). In the cortex ipsilateral to MCAO, a pronounced

accumulation of sst2a-LIR was observed in the cytoplasm of pyramidal neurons and the

dendrites as well (Fig. 15C,E,G, arrowheads and arrows), which is an indication of sst2a

internalization. Strong internalization of sst2a was further seen in ipsilateral claustrum and
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Figure 15.  Ligand-induced internalization of the sst2a receptor. A-K, confocal images of sst2a-LIR in the
ipsilateral (ipsi) and contralateral (ctra) brain hemispheres 3 hr after MCAO. A, in the contralateral hemisphere,
strong sst2a-LIR is present throughout cortical laminae V/VI, claustrum (Cl), dorsal endopiriform nucleus (DEn)
and lateral septum (LS). In the ipsilateral hemisphere, the border of the infarct is marked by arrowheads. Note the
absence of sst2a-LIR from the infarct as compared with the contralateral side. C-H, details of the perifocal cortex
(C,E,G) and the corresponding area on the contralateral side (D,F,H). D, sst2a-LIR is diffusely distributed over the
cortical neuropil in the contralateral cortex. C, perifocally, a strong sst2a-like staining is present in pyramidal-
shaped neuronal cell bodies (arrowheads) and dendrites (arrows). E,G, a neuronal cell body in lamina V (E,
arrowhead) and dendrites in layer IV of the perifocal cortex (G, arrows) show strong cytoplasmic sst2a-LIR. F,H,
Neuronal cell bodies (F, asterisks) and dendrites (H, arrow) in the contralateral hemisphere are diffusely decorated
by sst2a-LIR. I-K, details of the ipsilateral dorsal endopiriform nucleus from a rat treated with sst2-antagonist
BIM-23627 prior to MCAO (K), as well as the ipsilateral (I), and contralateral side (J) of a rat treated with saline;
I´-K´ are magnifications taken from areas in I-K. J,J´ contralaterally, sst2a-LIR diffusely decorates the membrane
and the cytoplasm of perikarya, proximal and distal dendrites of neurons. I,I´, ipsilaterally, a very strong sst2a-like
immunostaining is detected in the cytoplasm of perikarya and proximal dendrites. K,K´, after pretreatment with
BIM-23627, sst2a-LIR is present mostly at the membrane of perikarya, proximal and distal dendrites ipsilaterally.
B, sst2a-like staining in the depicted ipsilateral hemisphere is completely neutralized by the peptide used for
immunization. Scale bars: A,B, 1 mm, C,D,I,J,K, 80 µm, E,F,G,H,I´,J´,K´, 20 µm.

Figure 16. Blockade of somatostatin-14 (SS-14)-induced sst2a internalization by BIM-23627. Depicted are
confocal images of the subcellular distribution of sst2a in HEK 293 cells either untreated (A) or exposed to 1 µM
SS-14 (B), or 1 µM BIM-23627 alone (D), or both compounds together (C). A, sst2a is confined to the plasma
membrane of untreated cultured cells. B, pretreatment with SS-14 induced an accumulation of sst2a receptors in
structures within the cytoplasm, only a small part of sst2a-LIR remains on the plasma membrane. C, after
pretreatment of SS-14 and BIM-23627 together, sst2a-LIR remains largely on the surface of the cells, with only a
small part of the sst2a-LIR localized inside the cell bodies. D, the plasma membrane-associated distribution of
sst2a is not altered by pretreatment of BIM-23627 alone. Quantitative analysis of receptor internalization by
enzyme-linked immunosorbent assay (ELISA) shows that the percentage of internalized sst2a after pretreatment of
SS-14, BIM-23627, and both together (control set as zero). Note the percentage of internalization of sst2a reduces
greatly when SS-14 and BIM-23627 are applied together, as compared with SS-14 application alone. In cells
treated with BIM-23627, internalization was even less than in the non-treated cells. Scale bar: 20 µm.
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dorsal endopiriform nucleus (compare Fig. 15I,I´ and Fig. 15J,J´). This massive intracellular

accumulation of sst2a-LIR was first observed at 3 hr after MCAO and lasted until 24 hr (not

shown). At 2 d and 4 d after MCAO there were no clear differences in the subcellular

distribution of sst2a-LIR between ischemic and control rats (not shown).

To illustrate whether the internalization of sst2a followed by focal cerebral ischemia can be

blocked pharmacologically, we first checked the effect of the sst2-selective antagonist BIM-

23627 on somatostatin-induced internalization in HEK293 cells stably transfected with T7

epitope-tagged sst2a. In untreated cells, sst2a was localized predominantly at the plasma

membrane (Fig. 16A). Within 30 min, application of 1 µM somatostatin-14 (SS-14) triggered

internalization of sst2a receptors (Fig. 16B). BIM-23627 blocked agonist- induced

internalization of sst2a when applied together with somatostatin-14 (Fig. 16C), but did not

provide internalization effect of sst2a when administrated alone (Fig. 16D). Quantitative

analysis of receptor internalization by enzyme-linked immunosorbent assay indicated, that in

cells exposed to somatostatin alone, the sst2a internalization reached 60% (control set as zero).

In contrast, in cells exposed to both somatostatin-14 and BIM-23627, the internalization of

sst2a was reduced to 16% (p < 0.01, Fig. 16 scheme). These in vitro data show that BIM-23627

is a suitable compound to block ligand-induced internalization of sst2a.

Next, we studied the effect of the compound in vivo. Either 5 µl saline or BIM-23627 (0.5 nM)

was injected intracerebroventricularly 30 min prior to occlusion of the MCA. The animals were

sacrificed 3 hr after MCAO. As described above, in the rats pretreated with saline, there was a

redistribution of sst2a-LIR ipsilaterally (Fig. 15 I,I´), but not contralaterally (Fig. 15, J,J´). In

the rats pretreated with BIM-23627, sst2a-LIR remained on the plasma membrane of neuronal

cell bodies and dendrites in the penumbra (not shown), ipsilateral claustrum, and dorsal

endopiriform nucleus (Fig. 15 K,K´).

Taken together, these immunohistochemical analysis provided direct evidence for ligand-

induced internalization of sst2a in cortex, claustrum as well as dorsal endopiriform nucleus

during the first 24 hr after focal cerebral ischemia, suggesting a massive release of endogenous

ligands.
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4. Discussion

Based on previous studies suggesting a role for somatostatin and cortistatin peptides in

modulating glutamatergic neurotransmission, seizure, and focal ischemic brain damage in the

cerebral cortex (Braun et al., 1998; Rauca et al., 1999; Vezzani and Hoyer, 1999), this study

aimed to provide a comprehensive characterization of the expression of the somatostatinergic

system in the cerebral cortex suffering from unilateral focal ischemia.

In particular, gene expression of somatostatin, cortistatin as well as the sst1, sst2, sst4 and sst5

receptors was analyzed at the end of the acute phase of ischemic damage (6 hr after onset) and

in the ensuing phases (1 d-4 d after ischemia onset) in the primary infarct, the penumbra, and in

permanently surviving cortical areas. To further explore cortical circuits which may be

modulated by endogenous cortistatin and somatostatin peptides, neuronal types expressing

these peptides and sst2 were determined. Internalization of sst2-LIR in cortical neurons was

also investigated for the purpose of identifying the sites of receptor activation after focal

ischemia.

The major findings include, that sst2 is constitutively expressed mainly in excitatory pyramidal

cells and strongly up-regulated in this neuron population in penumbral areas during the acute

phase of brain ischemia. Internalized sst2 receptors were observed in perifocal and exofocal

areas from 3 hr to 24 hr after ischemia onset, which was accompanied by the reduced

somatostatin-LIR. We further showed that the expression levels of the somatostatin and

cortistatin genes were oppositely regulated between 2 d and 4 d after focal ischemia, pointing to

different functions of these peptides in the cortex. This was corroborated by the observation,

that somatostatin and cortistatin are expressed mostly in non-overlapping populations of

inhibitory cortical neurons.

4.1 Analysis of the animal model of focal ischemia

Throughout this study, the permanent middle cerebral artery occlusion (MCAO) model in the

inbred Long-Evans rat was used, which is an established model of focal brain ischemia

(Tamura et al., 1981; Ginsberg and Busto, 1989; Wolz and Krieglstein, 1996; Culmsee et al.,

1999). Rat MCAO models are the most frequently used stroke models in preclinical studies

because of their simplicity and reproducibility. In order to evaluate our stroke model, the
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MCAO-induced cellular degeneration and glial activation profiles were characterized using

histological, in situ hybridization and immunohistochemical methods. In this model, the

unilateral occlusion of the MCA generated an expanding focus of degenerating brain

parenchyma in the temporoparietal cortex. As indicated by nissl staining, cell degeneration

happened during the first 24 hr after ischemia onset. Rostrally, the focus always included the

forelimb area of the cortex, the parietal cortex and the dorsal insular cortex. Along the

longitudinal axis, the lesion typically extended from bregma   +2.7 mm to bregma -4.8 mm. In

order to characterize patterns of astroglial and microglial activation, which are associated with

brain damage, inflammation and repair, in situ hybridization for GFAP and C1q was applied,

which are established markers of astrocytes and microglia/macrophages in the brain (Eng,

1985; Walker et al., 1995, 1998; Haga et al., 1996). Since expression of both genes is up-

regulated upon cellular activation, in situ hybridization for both mRNAs is a sensitive tool for

the detection of gliosis (Belluardo et al., 1996; Yamashita et al., 1996; Schafer et al., 2000;

Lynch et al., 2004). This showed a pronounced astrocytosis and microgliosis, which was

initiated at 6 hr, peaked at 2 d after MCAO and subsided afterwards. In 4 d ischemic animals,

the infarct was characterized by massive infiltration of macrophages/microglia and a

surrounding astroglial scar. Both, the kinetics of tissue degeneration and the spatiotemporal

patterns of glial activation in our animal model are consistant with other studies on mouse and

rat MCAO models (Yamashita et al., 1996; Van Beek et al., 2000).

4.2 Constitutive somatostatin, cortistatin, and somatostatin receptor

expression in the cerebral cortex

Our in situ hybridization results showed that somatostatin and cortistatin mRNAs were present

with high abundance and similar distribution patterns in the cerebral cortex of control rats,

which is in good concordance with previous findings (Fitzpatrick-McElligott et al., 1988;

Kiyama and Emson, 1990; de Lecea et al., 1997a). In the cortex, both peptides were found to be

synthesized exclusively by GABAergic neurons (Schmechel et al., 1984; Esclapez and Houser,

1995; de Lecea et al., 1997a).

Previous pharmacological studies showed, that somatostatin and cortistatin peptides bind to all

somatostatin receptors with high affinity (de Lecea et al., 1996; Fukusumi et al., 1997; Siehler

et al., 1998). Because of the pharmacological similarities, structural homologies and
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overlapping distribution of the two peptides, the question arises whether they both exert

identical functions in the cerebral cortex. To address this question, we analyzed the phenotypes

of the peptide-synthesizing cells in the cingulate and frontal cortex in detail.

4.2.1 Neuronal types expressing cortistatin mRNA in the cerebral cortex. First, we performed

co-expression analysis for cortistatin and somatostatin in relation to each other. In addition,

their co-expression with parvalbumin and neuropeptide Y was evaluated, which are selective

markers for distinct subpopulations of cerebrocortical GABAergic neurons. We found that 17%

of somatostatin mRNA positive neurons expressed cortistatin. Conversely, 35% of cortistatin-

expressing neurons were positive for somatostatin mRNA. Co-localization of somatostatin and

parvalbumin in the same neuron was never observed. In contrast, cortistatin/parvalbumin-

positive cells represented more than half of the cortistatin population, and one-third of the

parvalbumin population. Previous studies showed that neuropeptide Y-positive neurons are a

subpopulation of somatostatin-positive neurons, with neuropeptide Y expressed in non-

somatostatinergic cells being very exceptional (Kawaguchi and Kubota, 1997). Here we

showed for the first time that cortistatin/neuropeptide Y-positive neurons accounted for 18% of

cortistatin neurons and approximately 36% of the neuropeptide Y-positive population. Based on

these data and those of de Lecea et al. (de Lecea et al., 1997a), it can be concluded that

cortistatin and somatostatin are expressed by distinct although partially overlapping subsets of

GABAergic neurons. We suggest that cortistatin-expressing GABAergic neurons in the cortex

comprise two major populations: (1) somatostatin-positive neurons (35% of all cortistatin-

neurons, half of which are also positive for neuropeptide Y), and (2) parvalbumin-positive

neurons. (>50% of all cortistatin-neurons).

4.2.2 Possible consequences of the distinct expression of cortistatin and somatostatin in

GABAergic neurons. It is well established that GABAergic neurons in the cortex are

heterogeneous, and can be subdivided into distinct classes by their neurochemical properties

(Kawaguchi and Kubota, 1997; Kawaguchi and Kondo, 2002). Each subtype has a different

firing pattern and a characteristic innervation tendency of postsynaptic elements. The

segregation of axons of inhibitory neurons is thought to permit different patterns of

postsynaptic inhibition (Kawaguchi and Kubota, 1997; Somogyi et al., 1998). The

parvalbumin-positive GABAergic neurons, which are known as fast-spiking neurons, have their

post-synaptic targets mainly surrounding the soma or axon initial segment. In contrast,

somatostatin neurons are either regular-spiking or burst-spiking and form synapse with
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dendritic spines and shafts of small or medium-sized dendrites (De Lima and Morrison, 1989;

Kawaguchi and Kubota, 1997). Interneurons targeting the perisomatic area tend to inhibit the

output of other neurons by interfering with the generation of action potentials. Interneurons

with their terminals on the distal dendrites are most likely responsible for controlling the

afferent input, thus decrease the flow of information into other neurons (Miles et al., 1996;

Somogyi et al., 1998). Hence, cortistatin contained in parvalbumin-positive neurons is likely to

modulate the perisomatic region of postsynaptic cells, while cortistatin in somatostatin-positive

neurons may predominantly target the dendritic spine-bearing areas of neurons. Thus,

functional differences between somatostatin and cortistatin in cortex are very likely.

4.2.3 Glutamatergic neuron type-selective gene expression of somatostatin receptors in the

cerebral cortex. Most GABAergic neurons in the cerebral cortex are thought to exclusively

target neurons within the cortex in an interneuron-like manner. To identify the postsynaptic

targets of the cortistatin- and somatostatin-expressing GABAergic cells, we studied the mRNA

expression of sst1, sst2 and sst4 in the cortex. Our results revealed that sst1 mRNAs distributed

predominantly in laminae II, V and VI of the cerebral cortex, sst2 mRNAs were concentrated in

infragranular layers, and sst4 mRNAs were mainly detected in laminae II, V and VIb. The

partially overlapping distribution of sst1, sst2, and sst4 mRNAs in discrete cortical layers were

observed in agreement with previous studies (Breder et al., 1992; Kaupmann et al., 1993; Perez

et al., 1994; Senaris et al., 1994; Hervieu and Emson, 1998). Since sst2 and (to a much less

extent) sst4 are the preponderant binding sites for cortistatin and somatostatin in cortex (Videau

C et al., 2003), we analyzed neuronal type-selective expression and subcellular localization of

sst2 and sst4 in detail. Our phenotype-analysis by double in situ hybridization revealed that sst2

was preferentially expressed by excitatory neurons in the cortex. sst4-LIR neurons clearly were

of the glutamatergic pyramidal cell type; the presence of sst4-LIR in multipolar non-pyramidal

cells was very rare. In addition, we identified postsynaptic localization of sst2 as well as sst4 in

cortical neurons in agreement with previous works (Schindler et al., 1997; Schreff et al., 2000;

Schulz et al., 2000). Taken together, our findings indicate that under physiological conditions,

sst2- and sst4-mediated effects of somatostatin and cortistatin are mainly directed towards

excitatory neurons in the cortex. This assumption is supported by the concept that excitatory
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neurons are the predominant targets of GABAergic neurons in the cortex (Cobb et al., 1997;

Somogyi et al., 1998) and by the in vitro observation that somatostatin induced

hyperpolarization of pyramidal cells in the rat anterior cingulate cortex via sst2 (Hicks et al.,

1998).

4.3 Stage-specific changes in somatostatin, cortistatin, and sst2 receptor

expression

Given that somatostatin may selectively inhibit glutamatergic transmission in the cortex

(Boehm and Betz, 1997; Tallent and Siggin, 1997), the endogenous somatostatin system might

be of particular relevance in neurological disorders involving excitotoxic neuronal death. In

stroke models, excessive glutamate release from neurons in the penumbral cortical area is a

major cause for the enlargement of the primary infarct during the first hours after ischemia

(Choi and Rothman, 1990; Siesjo et al., 1992, 1995). Therefore, we next addressed, whether the

somatostatin system may be involved in the pathophysiology of cerebral ischemia.

Activation of many GPCRs in vitro and in vivo can be detected by showing redistribution of the

receptors from the membrane to intracellular compartments (Allen et al., 1997). Here, we

analyzed the effect of focal ischemia on sst2a internalization in perifocal and exofocal areas of

the cortex at various time points after MCAO. This was accompanied by the

immunohistochemical analysis of the somatostatin-content in the brain.

From 3 hr to 24 hr after MCAO, sst2a was found to internalize in the perifocal and ipsilateral

exofocal cortical areas, but not in the contralateral hemisphere. Regions exhibiting sst2a

internalization showed a strong decrease in somatostatin-LIR in axon terminals whereas

somatostatin-LIR was largely unaltered in the contralateral hemisphere. To illustrate whether

sst2a receptor internalization was driven by endogenous ligands, we attempted to block

internalization by a sst2a-selective compound. Quantitative internalization studies in vitro

indicated that the synthetic sst2-selective antagonist BIM-23627 was capable of blocking

somatostatin-14-induced internalization of sst2a. Application of BIM-23627 into the

cerebroventricle immediately before MCAO prevented internalization of sst2a-LIR in the

ipsilateral ischemic hemisphere. In animals receiving BIM-23627 but no MCAO, sst2-LIR was

even slightly enriched at the neuronal plasma membrane as compared with animals not treated
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with the compound. Taken together, these data strongly suggest that sst2a receptors are indeed

activated by endogenous ligands in the ipsilateral hemisphere after focal ischemia.

Previous studies showed that application of octreotide, a synthetic sst2-agonist, into the brain

evoked massive local sst2-internalization (Csaba et al., 2001, 2002, 2003). Constitutive

activation and internalization of sst2 in brain was suggested, based on the observation that sst2-

LIR is present in intracellular neuronal compartments in regions with abundant

somatostatinergic innervation, whereas sst2-LIR is more often associated with the plasma

membrane in regions exhibiting sparse somatostatin-LIR (Dournaud et al., 1998). Reduced

binding sites of SRIF1-type receptors (sst2,3,5) in the molecular layer of the dentate gyrus of

kindled rats were interpreted as sign for sst-receptor (mainly sst2) internalization driven by

enhanced release of somatostatin (Piwko et al., 1996). However, none of these studies proved

activation and internalization of sst receptors by endogenous ligands under neuropathological

status. Thus, our study is the first to provide direct evidence for in vivo internalization of sst2a

in stroke pathophysiology.

Internalization of sst2a after focal ischemia was always paralleled by strongly reduced levels of

somatostatin-LIR in axon terminals. This decrease could be the consequence of impaired

synthesis or increased release of the peptide. Somatostatin synthesis appeared to be undisturbed

at the transcriptional level, since in situ hybridization histochemistry indicated no changes in

somatostatin mRNA levels in non-infarcted areas during the first 24 hr after MCAO. Due to

energy failure, cerebral protein synthesis is known to be impaired in the penumbra during the

first 2 hr after brain ischemia which may partially account for the observed reduction in

somatostatin peptide levels (Hossmann, 1994; Christensen et al., 1996). In the ipsilateral

exofocal area, however, supression of protein synthesis was not reported, but strongly reduced

somatostatin-levels were observed. Thus, release of somatostatin from axonal terminals is a

possible explanation for this finding. This assumption is further supported by the spatial and

temporal overlap between sst2a-internalization and decreased somatostatin peptide levels.

Studies of cortical, striatal and hippocampal neuronal primary cultures indicated that excitatory

amino acids (EAA) increase somatostatin release mainly via NMDA-receptor and Ca
2+

-

dependent mechanisms (Tapia-Arancibia and Astier, 1989; Williams et al., 1991; Fontana et
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al., 1996). More recently, Hathway and co-workers demonstrated by in vivo microdialysis that

application of the ionotropic glutamate receptor agonists AMPA and NMDA increases

somatostatin release in the striatum (Hathway et al., 1999). Furthermore, enhanced release of

somatostatin from rat hippocampal neurons during and after kindling was described by several

authors (Vezzani et al., 1992; Marti et al., 2000), providing strong evidence for EAA-driven

somatostatin release in neuropathology. Since it is well established that glutamatergic

transmission is increased after focal ischemia in perifocal and exofocal areas of the ipsilateral

brain hemisphere (Choi and Rothman, 1990; Siesjo et al., 1995), depletion of somatostatin-LIR

from axon terminals during the acute phase of focal ischemia is likely to be triggered by

glutamate.

In contrast to the unchanged gene expression of somatostatin in the peri- and exofocal areas at

early stages, a slight upregulation of the somatostatin gene was detected in non-lesioned cortical

areas from 2 d to 4 d after MCAO. In addition, we detected a massive downregulation of

cortistatin gene expression in the same areas from 1 d to 4 d postischemia. Previously, Calbet

and co-workers demonstrated that expression of the two genes was differentially regulated in

hippocampal interneurons after i.c.v. application of kainate acid (Calbet et al., 1999) and

described the lack of any similarities in putative regulatory response elements of the two genes.

Under physiological conditions, cortistatin is expressed in somatostatin-positive and

parvalbumin-positive GABAergic neurons, which constitute segregated local circuits in cortex

(Kawaguchi and Kubota, 1997). To address, whether cortistatin-expression is differentially

affected in these two inhibitory circuits after focal ischemia, we performed double in situ

hybridization for cortistatin mRNA in relation to somatostatin- and parvalbumin-mRNA. This

showed that the cortistatin mRNA levels were decreased in both populations. Although

cortistatin was still detectable after ischemia in some somatostatin-expressing neurons,

cortistatin-expression in parvalbumin-positive neurons was largely undetectable. Thus, after

focal ischemia, cortistatin-expression is almost absent in the parvalbumin-positive GABAergic

cortical circuits. In the somatostatin-positive GABAergic local circuit, cortistatin-expression is

unchanged or decreased, while somatostatin-expression is slightly increased both at mRNA and

protein levels.
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Several lines of evidences indicated recently that somatostatin-induced endocytosis of sst

receptors has transcriptional effects. In particular, ligand-induced receptor (mainly sst2)

internalization was supposed to be critical for the inhibition of growth hormone expression by

somatostatin in AtT-20 cells (Sarret et al., 1999). More recently, Boudin et al. have

demonstrated that somatostatin-induced endocytosis of sst-receptors is responsible for transient

transcriptional activation events of the sst2a gene in brain slices (Boudin et al., 2000).

Moreover, homologous regulation of the expression of a G-protein-coupled receptor by its own

agonist has been described previously for the high affinity neurotensin receptor, which is

dependent on the receptor internalization (Souaze et al., 1997).

To address in vivo, whether internalization of sst2a after focal ischemia correlates with altered

sst2 gene expression, we analyzed the gene expression of sst2 in our MCAO model. We

showed that sst2 mRNA was upregulated throughout the cortical penumbra at 6 hr after

MCAO. Increased sst2 gene expression was also detected in the deep cortical layers in the

exofocal cingulate and frontal cortex at same time. Thus, enhanced gene expression of sst2a

indeed paralleled areas exhibiting sst2a-internalization. To provide direct evidence whether

internalization of sst2a is required for activation of sst2a gene expression, expression of lacZ

mRNA will be studied in mice with a sst2 knock out/lacZ knock in before and after MCAO.

Given, that internalization of sst2a after focal ischemia is required for enhanced transcription of

sst2 gene, upregulation of the lacZ mRNA is not expected to occur.

Using double in situ hybridization, we determined whether the upregulation of sst2 occurred in

GABAergic and glutamatergic neuronal types. We found that sst2 expression was preferentially

upregulated in the glutamatergic neuronal population, but mostly unchanged in GABAergic

neurons. Since glutamatergic neurons in laminae II/III and VI mainly form synapses with other

neurons in the same or other cortical layers, the selective upregulation of sst2 in these neurons

may affect neuronal excitability predominantly in intracortical glutamatergic circuits. With

regard to the inhibitory effect of sst2-activation in the cortical neurons (Hicks et al., 1998), this

may represent a mechanism of autoprotection from ischemia-induced cerebrocortical

hyperexcitability.
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4.4 Implications for the somatostatinergic system in the pathophysiology of

focal brain ischemia

Following MCAO, the ischemic focus is completely devoid of blood supply, while the

surrounding tissues (penumbra) are less ischemic due to collateral blood supply from

undamaged blood vessels. The penumbra zone is compromised to damages caused by both the

reduction in blood supply and the exposure to chemical mediators such as nitric oxide and free

radicals released from cells in the ischemic focus. In this series of events, neuronal

depolarization, the release of excitatory amino acids from presynaptic endings and activation of

postsynaptic glutamate receptors play a crucial role (Choi and Rothman 1990; Siesjo et al.,

1992, 1995). Neurons exposed to the glutamatergic hyperactivation suffer from perturbed

intracellular signal transduction pathways, which finally lead to neuronal necrosis and

apoptosis. In animal models, it was suggested that excitotoxicity has the tendency to propagate

from the infarct-adjacent areas to more distant regions (Ruppin et al., 1999). Somatostatin is

known to inhibit glutamatergic transmission in cortex and to inhibit neuronal excitability

mainly through sst2 receptors (Boehm and Betz, 1997; Tallent and Siggins, 1997; Hicks et al.,

1998). Hence, activation of sst2 gene expression and increased somatostatinergic transmission

in the penumbral area during the excitotoxic phase of focal brain ischemia provide evidence for

the involvement of this system in the pathophysiology of stroke.

4.5 Is the somatostatinergic system a promising target in ischemic

cerebrovascular disease?

Upregulation of sst2 gene expression in the penumbra zone, increased somatostatin release as

well as internalization of sst2a in the perifocal cortical area point to enhanced somatostatinergic

transmission, which may contribute to enhanced inhibition in the cortex surrounding the

primary infarct. This in turn may limit the spread of hyperexcitation. Hence, neuroprotective

effects of the endogenous somatostatin system are possible. However, pharmacological

evidence supporting this idea is sparse. Until now only Rauca et al. have demonstrated that

exogenous application of somatostatin-14, octreotide and cortistatin-14 five minutes after

MCAO can reduce infarct size (Rauca et al., 1999). In addition, neuroprotective effect of

somatostatin in neuronal culture has been reported (Forloni et al., 1997). To test the hypothesis
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that somatostatinergic transmission via sst2 plays a role in reducing focal ischemic brain

damage, future studies will examine ischemic brain damage in mice lacking the sst2 receptor.
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5. Summary

Somatostatin and its structurally related neuropeptide cortistatin exert their physiological

actions via a family of six G-protein-coupled receptors (sst1, sst2a, sst2b, sst3, sst4, sst5).

Activation of somatostatin receptors has predominantly inhibitory effects on neurotransmission

in the central nervous system. Somatostatinergic transmission in the central nervous system is

affected in several neurological disorders including Alzheimer’s disease, Huntington’s disease

and epilepsy. Somatostatin, cortistatin and sst receptors are abundantly expressed in the cerebral

cortex, where this system is thought to inhibit glutamatergic transmission.

In the present study, the distribution of somatostatin, cortistatin, sst1, sst2 and sst4 receptors

was analyzed in the cerebral cortex at the mRNA and protein levels under both physiological

conditions and after permanent unilateral occlusion of the middle cerebral artery (MCAO).

Using double-labelling strategies, neurochemical phenotypes of neurons expressing

somatostatin, cortistatin and sst2 receptors were identified. Spatial and temporal patterns of

sst2a internalization after MCAO were analyzed to identify the sites of sst2a activation.

Our results revealed that somatostatin and cortistatin mRNAs are constitutively expressed in the

cortex, where they exhibit a partially overlapping distribution. In particular, cortistatin is co-

expressed in 17% of somatostatinergic neurons and 31% of parvalbumin-positive neurons,

which comprise distinct subsets of GABAergic local circuit neurons in the cortex. At the

mRNA level, sst1, sst2 and sst4 are abundantly expressed in the cerebral cortex, each of which

has a characteristic laminar distribution. Analysis of the phenotype of sst2-and sst4-expressing

neurons showed that the vast majority of these neurons are glutamatergic pyramidal cells.

Furthermore, immunohistochemistry identified the somato-dendritic localization of both

receptors, indicating postsynaptic functions. Therefore, cortistatin and somatostatin may

predominantly regulate the excitability of pyramidal cells via postsynaptic sst receptors.

For the first time we demonstrated changes in the expression of cortistatin, somatostatin, sst1,

sst2, and sst4 after MCAO. From 3 hr to 24 hr, a decrease in somatostatin-LIR and

internalization of sst2a in the peri- and exofocal areas were observed, indicating activation of

sst2a after ischemic brain damage. In addition, a robust increase in sst2 mRNA levels was

shown in the cortical penumbra at 6 hr after MCAO. sst2 mRNA was upregulated selectively in

glutamatergic neurons. From 2 d to 4 d after focal ischemia, opposite gene regulation of

somatostatin and cortistatin was seen in non-lesioned areas of the cortex. In particular, levels of

somatostatin mRNA were slightly increased, while cortistatin mRNA levels were massively

decreased. Co-expression analysis after MCAO showed that cortistatin mRNA levels were
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below the detection limit in the vast majority of parvalbumin-positive GABAergic neurons,

while cortistatin expression was still detectable in numerous somatostatin-positive neurons.

Taken together, our data provide evidence for the presence of somatostatin and cortistatin in

distinct but overlapping GABAergic circuits of the cerebral cortex. Somatostatin and cortistatin

are suggested to have different effects on other neurons due to their different selectivity on

postsynaptic elements. We further provide evidence for the activation of somatostatinergic

transmission in peri- and exofocal areas of the cerebral cortex during early stages of focal

ischemic brain damage. Since somatostatin is known to inhibit glutamatergic neurotransmission

in cortex, these data suggest that the endogenous somatostatin system may counteract

hyperexcitability after stroke. Since sst2 and sst4 are expressed selectively in glutamatergic

neurons of the cerebral cortex, they are interesting targets to interfere with hyperexcitability

after brain ischemia. Possible neuroprotective effects of sst2 receptors will be further

investigated using mice lacking of sst2. Moreover, the development of highly selective

somatostatin receptor ligands will permit functional analysis of individual receptors in stroke

pathphysiology.
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7.Abbreviations

ABC avidin/biotin complex

AMPA a-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid

BNPI brain-specific Na
+ 

-dependent phosphate transporter

BSA bovine serum albumin

C1q complement C1q

cDNA complementary deoxyribonucleic acid

cm centimeter

CNS central nervous system

CST cortistatin

CTP cytidine triphosphate

CV cresyl violet

DAB diaminobenzidine

DIG digoxigenin

DNA deoxyribonucleic acid

dNTP 2´-deoxyribonucleoside triphosphate

DTT dithiothreitol

EAA excitatory amino acid

EDTA ethylene diaminetetraacetic acid

et al. and colleagues

G gram

G418 geneticin

GABA g-aminobutyric acid

GAD glutamic acid decarboxydase

G Protein guanine nucleotide-binding protein

GFAP glial fibrillary acidic protein

GPCR G protein-coupled receptor

HEK 293 human embryonic kidney 293

i.c.v. intracerebroventrically

i.p. intraperitoneally

ISH in situ hybridization

KA kainic acid

Kb kilobase
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L liter

M molar

MCAO middle cerebral artery occlusion

mg milligram

ml milliliter

mM millimolar

mRNA messenger ribonucleic acid

ms millisecond

NADPH reductive nicotinamide adenine dinucleotide phosphate

nCi/g nanocuries/gram

NGS normal goat serum

nM nanomolar

NMDA N-methyl-D-aspartate glutamate receptors

NPY neuropeptide Y

PBS phosphate-buffered saline

PCR Polymerase Chain Reaction

pmol picomol

PV parvalbumin

RT-PCR reverse transcriptional PCR

SRIF somatostatin

SS-14 somatostatin-14

sst1-5 somatostatin receptors 1-5

sst2a-lir sst2a-like immunoreactive

sst2a-LIR sst2a-like immunoreactivity

Tris tris(hydroxymethyl)aminomethane

tRNA transfer RNA

µM micromolar

UTP uridine triphosphate

V volt

VGLUT1 vesicular glutamate transporter 1

w/v weight/volume

XL-1 stem of Escherichia coli
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9. Zusammenfassung

Somatostatin und das strukturell verwandte Neuropeptid Cortistatin vermitteln ihre
physiologischen Wirkungen über eine Familie von sechs G-Protein gekoppelten Rezeptoren

(sst1, sst2a, sst3, sst4, sst5). In den meisten Strukturen des Zentralnervensystems hat die

Aktivierung dieser Rezeptoren eine Inhibition der Neurotransmission zur Folge. Die
somatostatinerge Neurotransmission selbst ist in mehreren neurologischen Störungen des

Zentralnervensystem wie der Alzheimerschen Erkrankung, der Huntingtonschen Erkrankung
und in Epilepsien betroffen. Im Zentralnervensystem werden Somatostatin, Cortistatin und die

sst-Rezeptoren im zerebralen Kortex am stärksten exprimiert. Hier scheinen sst-Rezeptoren

insbesondere die glutamaterge Signalübertragung zu beeinflussen.
In der vorliegenden Arbeit wurde die Verteilung des Somatostatins, des Cortistatins und der

sst-Rezeptoren sst1, sst2 und sst4 im zerebralen Kortex auf mRNA- und Proteinebene unter

physiologischen Bedingungen und nach einer fokalen Hirnischämie (induziert durch den
permanenten unilateralen Verschluss der Arteria cerebri media, MCAO) untersucht. Mit Hilfe

von Doppelmarkierungsstrategien wurden die neurochemischen Phänotypen von Neuronen
identifiziert, die Somatostatin, Cortistatin und den sst2-Rezeptor exprimieren. Nach der

MCAO wurden die räumlichen und zeitlichen Muster der sst2a-Rezeptorinternalisierung

untersucht, um Strukuren zu identifizieren, in denen der sst2a-Rezeptor nach einer
Hirnischämie aktiviert wird.

Unsere Ergebnisse zeigen, dass die Somatostatin- und Cortistatin-mRNAs konstitutiv im
zerebralen Kortex exprimiert werden, wo sie eine partiell überlappende Verteilung aufweisen.

Im Einzelnen ist Cortistatin in 17% der somatostatinergen Neurone und 31% der

parvalbuminhaltigen Neurone koexprimiert, welche unterschiedliche Klassen der GABAergen
kortikalen Interneurone bilden. Auf mRNA-Ebene werden sst1, sst2 und sst4 abundant im

zerebralen Kortex gebildet, wo ihre Verteilung jeweils eine charakteristische Schichtung
aufweist. Die Typisierung der sst2- und sst4-exprimierenden Neurone zeigte, dass die

überwiegende Mehrheit dieser Zellen glutamaterge Pyramiedenneurone sind. Zudem konnten

wir immunhistochemisch die vorwiegend somatodendritische Lokalisation der sst2- und sst4-
Rezeptoren zeigen, was auf postsynaptische Funktionen hinweist. Zusammengenommen

unterstützen diese Ergebnisse, dass Cortistatin und Somatostatin im zerebralen Kortex über
postsynaptische Rezeptoren Einfluss auf glutamaterge Pyramidenzellen nehmen.

Erstmals zeigen wir Veränderungen in der Expression der Cortistatin-, Somatostatin-, sst1-,

sst2- und sst4-Gene nach der fokalen Hirnischämie. Im Zeitraum von 3h bis 24h nach der
MCAO war die Somatostatinimmunreaktivität in peri- und exofokalen Regionen des Infarkts
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reduziert. Zeitlich und räumlich überlappend war der sst2a-Rezeptor in Neuronen verstärkt

internalisiert, was eine sst2a-Rezeptoraktivierung anzeigt. Zudem konnten wir eine deutliche

Erhöhung der sst2-mRNA-Spiegel in glutamatergen Neuronen der kortikalen Penumbrazone
6h nach der MCAO zeigen. Im Zeitraum von 2d bis 4d nach der fokalen Ischämie waren die

Somatostatin- und Cortistatin-mRNAs in nicht geschädigten kortikalen Arealen gegenläufig
reguliert. Während die Somatostatin-mRNA-Spiegel leicht erhöht waren, waren die

Cortistatin-Expressionsspiegel drastisch reduziert. Koexpressionsanalysen nach der MCAO

zeigten, dass die Cortistatin-mRNA-Spiegel in parvalbuminhaltigen Neuronen unter die
Detektionsgrenze absanken, wohingegen Cortistatin in zahlreichen somatostatinhaltigen

Neuronen detektierbar blieb.

Zusammengenommen zeigen unsere Ergebnisse Somatostatin und Cortistatin sowohl in
getrennten als auch in überlappenden GABAergen Verbindungen des zerebralen Kortex.

Wegen der unterschiedlichen Konnektivität von somatostatin- bzw. cortistatinhaltigen
Interneuronen dürften die beiden Neuropeptide unterschiedliche Funktionen innerhalb des

kortikalen Netzwerks ausüben. Weiterhin weisen wir die Aktivierung der somatostatinergen

Transmission in peri- und exofokalen Arealen des Kortex während der Frühphase einer
Hirnischämie nach. Da Somatostatin die glutamaterge Übertragung im Kortex inhibiert,

weisen unsere Ergebnisse darauf hin, dass das Somatostatinsystem nach einem Schlaganfall
Übererregungsprozessen entgegen wirken könnte. Da sst2 und sst4 selektiv in glutamatergen

Neuronen des Kortex exprimiert werden, stellen diese Rezeptoren interessante Zielstrukturen

dar, um die Übererregung im zerebralen Kortex nach einem Schlaganfall zu beeinflussen.
Mögliche neuroprotektive Effekte des sst2-Rezeptors werden von uns gegenwärtig in sst2-

defizienten Mäusen geprüft. Zudem wird die Entwicklung selektiver
Somatostatinrezeptorliganden die Analyse individueller sst-Rezeptorfunktionen in der

Schlaganfallpathobiologie erlauben.
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