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Abstract

Propositionalization is a process that leads from relational data and background
knowledge to a single-table representation thereof, which serves as the input to
widespread systems for knowledge discovery in databases. Systems for propo-
sitionalization thus support the analyst during the usually costly phase of data
preparation for data mining. Such systems have been applied for more than 15
years, often competitive compared to other approaches to relational learning.

However, the broad range of approaches to propositionalization suffered from
a number of disadvantages. First, the single approaches were not described in
a unified way, which made it difficult for analysts to judge them. Second, the
traditional approaches were largely restricted to produce Boolean features as data
mining input. This restriction was one of the sources for information loss during
propositionalization, which may derogate the quality of learning results. Third,
methods for propositionalization often did not scale well.

In this thesis, we present a formal framework that allows for a unified descrip-
tion of approaches to propositionalization. Within our framework, we systemat-
ically enhance existing approaches with techniques well-known in the area of
relational databases. With the application of aggregate functions during proposi-
tionalization, we achieve results that preserve more of the information contained
in the original representations of learning examples and background knowledge.
Further, we suggest special database schema transformations to ensure high effi-
ciency of the whole process.

We put special emphasis on empirical investigations into the spectrum of ap-
proaches. Here, we use data sets and learning tasks with different characteristics
for our experiments. Some of the learning problems are benchmarks from ma-
chine learning that have been in use for more than 20 years, others are based on
more recent real-life data, which were made available for competitions in the field
of knowledge discovery in databases. Data set sizes vary across different orders
of magnitude, up to several million data points. Also, the domains are diverse,
ranging from biological data sets to financial ones. This way, we demonstrate the
broad applicability of propositionalization.

Our theoretical and empirical results are promising for other applications
as well, in favor of propositionalization for knowledge discovery in relational
databases.
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Zusammenfassung

Propositionalisierung ist ein Prozess, der von relationalen Daten und Hinter-
grundwissen zu deren Darstellung in Form einer Tabelle führt, die als Eingabe
für verbreitete Systeme der Wissensentdeckung in Datenbanken dient. Damit un-
terstützen Systeme für die Propositionalisierung den Analysten in der gewöhnlich
kostenintensiven Phase der Datenvorbereitung für das Data Mining. Solche Sys-
teme werden seit mehr als 15 Jahren wettbewerbsfähig verwendet.

Allerdings zeigten sich auch eine Reihe von Nachteilen. Erstens wurden die
Ansätze nicht einheitlich beschrieben, was Analysten eine Beurteilung erschwer-
te. Zweitens waren die traditionellen Ansätze weitgehend auf die Erstellung von
Booleschen Eingaben für das Data Mining beschränkt. Dadurch konnte ein In-
formationsverlust entstehen, der die Qualität der Lernergebnisse beeinträchtigt.
Drittens skalierten die Algorithmen oft nicht gut.

In dieser Arbeit präsentieren wir einen formalen Rahmen, der eine einheitliche
Beschreibung von Ansätzen für die Propositionalisierung gestattet. Innerhalb
dieses Rahmens erweitern wir existierende Ansätze mit Techniken, die im Ge-
biet der relationalen Datenbanken populär sind. Durch die Anwendung von
Aggregatfunktionen erreichen wir Resultate, die mehr von den Informationen
bewahren, die in den ursprünglichen Darstellungen der Lernbeispiele und des
Hintergrundwissens enthalten sind. Weiterhin schlagen wir spezielle Schema-
Transformationen für Datenbanken vor, um eine hohe Effizienz des Gesamt-
prozesses zu gewährleisten.

Wir legen einen besonderen Schwerpunkt auf die empirische Untersuchung
der Ansätze. Dafür verwenden wir Datenmengen und Lernaufgaben mit un-
terschiedlichen Eigenschaften. Einige Lernprobleme sind Maßstäbe aus dem
Maschinellen Lernen, die seit mehr als 20 Jahren verwendet werden, andere
basieren auf jüngeren Daten, die für Wettbewerbe im Gebiet der Wissensentdeck-
ung verfügbar gemacht wurden. Die Datenmengen variieren hinsichtlich ihrer
Größenordnung, bis zu mehreren Millionen Datenpunkten. Die Domänen sind
ebenfalls verschieden und reichen von der Biologie bis zum Finanzwesen. So
zeigen wir die breite Anwendbarkeit der Propositionalisierung.

Unsere theoretischen und empirischen Ergebnisse sind viel versprechend auch
für andere Anwendungen, zu Gunsten der Propositionalisierung für die Wis-
sensentdeckung in relationalen Datenbanken.
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so wäre ich nichts.

1. Korinther 13, 2

v



Contents

1 Introduction 1
1.1 Subject of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals and Contributions of the Thesis . . . . . . . . . . . . . . . 2
1.3 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Foundations 5
2.1 Knowledge Discovery in Databases . . . . . . . . . . . . . . . . . 5

2.1.1 Data and Knowledge . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Knowledge Discovery as a Process . . . . . . . . . . . . . . 6
2.1.3 Tasks for KDD . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Algorithms for KDD . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 Further Relevant Issues . . . . . . . . . . . . . . . . . . . . 11

2.2 Relational Databases . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Key Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Normal Forms and Universal Relations . . . . . . . . . . . 14
2.2.3 Further Relevant Issues . . . . . . . . . . . . . . . . . . . . 16

2.3 Inductive Logic Programming . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Propositional Logic and Predicate Logic . . . . . . . . . . 17
2.3.2 Basic Concepts of Inductive Logic Programming . . . . . . 21
2.3.3 Prominent Systems for ILP . . . . . . . . . . . . . . . . . 24

2.4 Preparation for Knowledge Discovery . . . . . . . . . . . . . . . . 26
2.4.1 Feature Construction . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.3 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 A General Model for Propositionalization 30
3.1 A Framework for Propositionalization . . . . . . . . . . . . . . . . 32
3.2 Traditional Approaches to Propositionalization . . . . . . . . . . . 36

3.2.1 Linus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Dinus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Propositionalization based on Progol . . . . . . . . . . . 45
3.2.4 Propositionalization based on Warmr . . . . . . . . . . . 46

vi



CONTENTS vii

3.2.5 Stochastic Propositionalization . . . . . . . . . . . . . . . 48

3.2.6 Extended Transformation Approach . . . . . . . . . . . . . 50
3.2.7 Further Approaches . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Aggregation-based Propositionalization 58

4.1 Clause Sets for Propositionalization . . . . . . . . . . . . . . . . . 58
4.1.1 Generation of Clauses . . . . . . . . . . . . . . . . . . . . 58

4.1.2 Elimination of Clauses . . . . . . . . . . . . . . . . . . . . 60
4.2 Query Result Processing . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 An Algorithm for Propositionalization . . . . . . . . . . . . . . . 63
4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 RollUp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.2 Relational Concept Classes . . . . . . . . . . . . . . . . . . 75

4.5 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5.2 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.6 Further Related Work . . . . . . . . . . . . . . . . . . . . 100
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Exploiting Database Technology 102

5.1 Pre-Processing for Propositionalization . . . . . . . . . . . . . . . 103
5.1.1 Idea of New Star Schemas . . . . . . . . . . . . . . . . . . 103

5.1.2 An Algorithm for Schema Transformation . . . . . . . . . 104
5.1.3 Treatment of Cyclic Graphs . . . . . . . . . . . . . . . . . 107

5.1.4 Information Loss and Materialization . . . . . . . . . . . . 108
5.1.5 New Star Schemas vs. Universal Relations . . . . . . . . . 109

5.2 Query Result Processing . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.1 Non-Standard Aggregate Functions . . . . . . . . . . . . . 110

5.2.2 Usage of Key Information . . . . . . . . . . . . . . . . . . 112
5.3 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4.2 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.4.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.6 Further Related Work . . . . . . . . . . . . . . . . . . . . 124
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



viii CONTENTS

6 Conclusions and Future Work 126

A Software 129

B Data Sets and Learning Tasks 135
B.1 Challenge 1994: Trains.bound . . . . . . . . . . . . . . . . . . . . 136
B.2 Chess: KRK.illegal . . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.3 Biochemistry: Mutagenesis042/188.active . . . . . . . . . . . . . . 140
B.4 ECML Challenge 1998: Partner and Household.class . . . . . . . 141
B.5 PKDD Challenge 1999: Loans and Cards . . . . . . . . . . . . . . 143

B.5.1 Predicting Loan.status . . . . . . . . . . . . . . . . . . . . 145
B.5.2 Describing Card.type . . . . . . . . . . . . . . . . . . . . . 148

B.6 KDD Cup 2001: Gene.growth and nucleus . . . . . . . . . . . . . 149
B.7 Further Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

C Example Scripts and Log Files 154
C.1 From Text Files to a MySQL Database . . . . . . . . . . . . . . . 154
C.2 New Star Generation . . . . . . . . . . . . . . . . . . . . . . . . . 160

D Running Example 166



List of Figures

2.1 Table T of the running example in an extended variant . . . . . . 11

2.2 An example decision tree (four nodes incl. three leaf nodes) . . . 11

2.3 An illustration of central concepts of relational databases . . . . . 13

2.4 An example relation in third normal form . . . . . . . . . . . . . 15

2.5 Derived relations in fourth normal form . . . . . . . . . . . . . . . 15

3.1 A daughter family relationship problem in Prolog form . . . . . . 38

3.2 Propositional form of the daughter relationship problem (1 for
true, 0 for false) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 A grandmother family relationship problem in Prolog form . . . . 42

3.4 Propositional form of the grandmother relationship problem (1 for
true, 0 for false; new variables are listed within the literals that
introduce them) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Prolog database with customer information . . . . . . . . . . . . . 47

3.6 A table resulting from propositionalization with Warmr for the
customer database . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 The running example database schema overview (arrows represent
foreign links) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 The result of val(C1, e, B) for body variables . . . . . . . . . . . . 66

4.3 The propositional table based on C1, i. e. τ({C1}, E+, E−, B) . . . 66

4.4 The result of val(C2, e, B) for body variables . . . . . . . . . . . . 66

4.5 The result of val(C3, e, B) for body variables . . . . . . . . . . . . 67

4.6 A relational database schema [96] (arrows represent foreign key
relationships) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 A relational database schema [96] (arrows represent user-defined
foreign links) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 The running example database in a new star schema (arrows rep-
resent foreign key relationships) . . . . . . . . . . . . . . . . . . . 104

5.2 Relations T, A, and D from our running example database . . . . 110

5.3 Natural join of relations T, A, and D . . . . . . . . . . . . . . . . 111

ix



x LIST OF FIGURES

5.4 An extension to the running example database for the demon-
stration of an effect w. r. t. identifiers: H id as an attribute with
predictive power . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.1 The Relaggs window for settings . . . . . . . . . . . . . . . . . 130

A.2 The Relaggs main window part for database inspection and
learning task definition . . . . . . . . . . . . . . . . . . . . . . . . 131

A.3 The Relaggs main window part for aggregate function selection 132

A.4 The Relaggs main window part for the start of propositionaliza-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.5 A tool for exporting a MySQL table into an ARFF file . . . . . . 133

A.6 A tool for partitioning an ARFF file for stratified n-fold cross-
validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.7 A tool for exporting a MySQL table into files with Progol input
format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.1 The ten trains East-West Challenge [81, 77] . . . . . . . . . . . . 136

B.2 A relational database for trains (relations as structured rectangles
with their names in the first lines, attribute names in the second
lines, and attribute values below; arrows represent foreign key re-
lationships) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.3 Two chess situations . . . . . . . . . . . . . . . . . . . . . . . . . 138

B.4 A relational database for chess boards (relations as structured rect-
angles with their names in the first lines, attribute names in the
second lines, and attribute values below; arrow represents foreign
key relationship) . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B.5 The ECML 1998 challenge data set (relations as rectangles with
relation names and tuple numbers in parantheses; arrows represent
foreign key relationships [52]) . . . . . . . . . . . . . . . . . . . . 142

B.6 The PKDD 1999/2000 challenges financial data set (relations as
rectangles with relation names and tuple numbers in parantheses;
arrows represent foreign key relationships [8]) . . . . . . . . . . . 143

B.7 The PKDD 1999/2000 challenges financial data set: reduced to rel-
evant data for loan status prediction (solid arrows represent foreign
links identical to former foreign key relationships, dashed arrows
represent foreign links with a direction different from that of their
basic foreign key relationship) . . . . . . . . . . . . . . . . . . . . 146

B.8 The PKDD 1999/2000 challenges financial data set: after schema
transformation exploiting functional dependencies (arrows repre-
sent foreign links) . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

B.9 The PKDD 1999/2000 challenges financial data set: database in a
new star schema (arrows represent foreign key relationships) . . . 148



LIST OF FIGURES xi

B.10 The KDD Cup 2001 gene data set: database in a new star schema
(arrows represent foreign key relationships) . . . . . . . . . . . . . 150

D.1 A running example database schema and contents (8 tables are
depicted by the rectangles with table names in the first lines,
attribute names in the second lines, and attribute values below;
arrows represent foreign key relationships, conventionally drawn
from foreign key attributes to primary key attributes) . . . . . . . 168



List of Tables

1 Frequently used abbreviations in alphabetic order . . . . . . . . . xiv

3.1 Properties of approaches to propositionalization (grouping for bet-
ter readability) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Relaggs algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Overview of the learning tasks (rels. — relations, vals. — values,
exms. — examples, min. class — minority class) . . . . . . . . . . 86

4.3 Error rate averages and standard deviations (in percent; n. a. as
not applicable for reasons of (1) database schema or (2) running
time; best results in bold, second best in italics) . . . . . . . . . . 89

4.4 Win-loss-tie statistics (row vs. column) . . . . . . . . . . . . . . . 90

4.5 Numbers of columns in results of propositionalization . . . . . . . 90

4.6 Information gain for best-ranked features (best results in bold) . 91

4.7 Tree sizes (number of nodes / number of leaves) . . . . . . . . . . 92

4.8 Numbers of clauses (in parantheses: numbers of uncovered examples) 92

4.9 Running times for Relaggs steps (in seconds) . . . . . . . . . . . 93

4.10 Running times (in seconds; for training runs on all examples, best
results in bold, * — large differences to running times for several
partitions during cross-validation) . . . . . . . . . . . . . . . . . . 93

4.11 RollUp vs. Relaggs: Experimental results for selected learning
tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Identifier propagation algorithm . . . . . . . . . . . . . . . . . . . 106

5.2 Running times for propositionalization and WEKA learning (in
seconds; non-std. — non-standard aggregate functions on new
stars, fea.-sel. — feature selection on non-std.; two lines per learn-
ing task: time for propositionalization in first line, time for WEKA
learning in second line, for training runs on all examples; n. a. cases
explained in the main text) . . . . . . . . . . . . . . . . . . . . . 117

5.3 Running times for database reduction, new star generation, and
feature subset selection (in seconds; n. a. for reasons of database
schema) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xii



LIST OF TABLES xiii

5.4 Overall running times (in seconds; for training runs on all exam-
ples; sums include preparation times and feature selection times,
if applicable) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 Error rate averages and standard deviations (in percent; best re-
sults in bold, second best in italics) . . . . . . . . . . . . . . . . . 119

5.6 Win-loss-tie statistics (row vs. column) . . . . . . . . . . . . . . . 120
5.7 Numbers of columns in results of propositionalization . . . . . . . 120
5.8 Information gain for best-ranked features (best results in bold) . 120
5.9 Tree sizes (number of nodes / number of leaves) . . . . . . . . . . 121

B.1 Relations of the Mutagenicity data set (target relations in bold) . 140
B.2 Relations of the ECML 1998 challenge data set (target relations

in bold, target attributes indicated by “+1”) . . . . . . . . . . . 142
B.3 Relations of the PKDD 1999/2000 challenges financial data set

(target relations in bold) . . . . . . . . . . . . . . . . . . . . . . . 144
B.4 Relations of the KDD Cup 2001 gene data set (target relation in

bold) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149



Abbreviations

The following table lists frequently used abbreviations, for the convenience of the
reader.
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SVM Support Vector Machine
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WH Working Hypothesis

In most cases, abbreviations are explained when they first occur in the text.
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Chapter 1

Introduction

1.1 Subject of the Thesis

The amounts of data stored for many different purposes e. g. in business and
administration are growing rapidly. Technical opportunities and legal necessities
are among the reasons for this development. Knowledge Discovery in Databases
(KDD) represents a chance to exploit those masses of data beyond the original
purposes, for the extraction of valuable patterns. Many institutions regard KDD
as an important factor in the economic competition.

KDD projects have shown that large investments have to be made especially
for data preparation, i. e. before automatic analysis can take place. One of the
reasons is a gap between the formats of data in operational systems and archives
on the one hand, and demands on data formats as used by widespread KDD
systems on the other hand.

Many information systems rely on database management systems (DBMS)
for storing and manipulating data. Especially, relational databases (RDB) have
reached a high maturity and widespread use. Here, data are held in a number of
related tables, together with meta-data that describe tables and other aspects of
a database. Actually, predicate logic or first-order logic is found at the theoretical
and historical roots of relational databases.

Conventional systems for KDD demand for a single table as input, where each
object of interest is described by exactly one row, while columns contain values of
certain types which describe properties of the objects. Here, relationships among
objects are neglected. The expressive power of this representation formalism
for data — and formalisms for the knowledge to be learned from that data —
corresponds to the expressivity of propositional logic.

A group of approaches to bridge the gap described above evolved over the last
years: methods for propositionalization. These approaches transform a multi-
relational representation of data and even knowledge in the form of first-order
theories into a single relation, which can serve as input for conventional KDD

1



2 CHAPTER 1. INTRODUCTION

algorithms. This transition from a representation with the expressive power of
predicate logic to the realms of propositional logic is responsible for the name of
the group of approaches, which are in the focus of this thesis.

Propositionalization quickly turned out to be a valuable approach to learning
from relational data, even compared to more direct approaches to learn first-order
theories as usual in the area of Inductive Logic Programming (ILP). However,
traditional approaches to propositionalization remained complex and subject to
high information loss in the course of the transformation.

In this thesis, we investigate opportunities for both effective and efficient
propositionalization, which should also be easy to achieve for the analyst. This is
done within a new framework for approaches to propositionalization, which also
helps to unify descriptions of the traditional approaches.

The main objective is partly to automatize steps of data preparation for KDD
and partly to enable the analyst to systematically accomplish data preparation.
Ultimately, this is supposed to decrease costs. We work with the assumption
that propositionalization can enrich the spectrum of methods available for data
analysts in a valuable way.

1.2 Goals and Contributions of the Thesis

With this thesis, we aim at answering the following general research questions in
the context of propositionalization:

1. How can approaches to propositionalization be described in a unified way
in a formal framework?

2. How can aggregate functions serve propositionalization to be more effective?

3. How can further database technologies serve propositionalization to be more
efficient?

The relevancy of answers to those questions was already hinted at. Relational
data, especially relational databases, are a widespread means for managing data
in many institutions. Data preparation for relational data mining is costly, since
it has to be accomplished by experts in the domain to be analyzed and in KDD.
Effective, efficient, and easy to use tools such as those for propositionalization
could help here significantly.

Good answers to the questions seem non-trivial, which can already be seen
in the diversity of approaches to propositionalization. Ideas to use universal re-
lations (UR) are not helpful in most cases, since URs show a tendency to grow
exponentially with the number of relations in the database they are derived from.
Moreover, URs would usually contain more than one row for each learning exam-
ple and thus not be suitable as input for conventional data mining algorithms.
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Traditional approaches to propositionalization show high complexity and thus
problems with scalability or high information loss endangering effectivity. We
present an approach developed within our framework that achieves a good point
in the spectrum of quality of learning results, on the one hand, and efficiency of
their computation, on the other hand.

We answer the questions posed above in Chapters 3, 4, and 5. In the latter two
chapters, further more specific questions are derived and developed into working
hypotheses that are finally empirically investigated. All experiments were per-
formed especially for this thesis, largely in a unified way. With this focus on
experimental results, this thesis is in the general tradition of machine learning
research, which provided much of the basis for KDD, and more specifically in the
tradition of the dissertation by Kramer [58].

Similar to Kramer’s work, we propose a new approach to propositionalization.
Differently, we do not develop a new ILP method to learn first-order theories.
Rather, we compare the results of different approaches to propositionalization,
among them our own approach, to several well-known ILP systems from other
sources. We use a larger number of data sets and learning tasks from as different
domains as chess, biochemistry, banking, insurance, and genetics. Data set sizes
are of different orders of magnitude. We further simplify the usage of declarative
bias by using meta-data as provided by the DBMS. We apply ideas suggested
by Kramer for the setup of our empirical work. Ultimately, we can confirm and
enhance Kramer’s positive findings on propositionalization.

1.3 Overview of the Thesis

After this introduction, we provide in Chapter 2 an overview of the basics that
are relevant for the understanding of the kernel chapters of this thesis. Among
those foundations are central ideas from KDD, RDB, and ILP. A focus is also
put on general aspects of data preparation for data mining.

In Chapter 3, we present our framework for the unified description of existing
approaches to propositionalization, especially those that evolved within ILP. We
apply the framework for a detailed investigation into those traditional approaches,
which is supposed to provide the reader with the opportunity to better understand
the original presentations and to compare the approaches at an abstract level.

We continue in Chapter 4 with a new approach as an instance of our frame-
work. The approach is influenced by ideas prominent in the area of RDB appli-
cations, viz. the usage of aggregate functions. We compare our results to those
achieved with the help of popular ILP systems and other systems for proposi-
tionalization.

Chapter 5 explains further measures that we take to enhance our approach,
especially for further improving effectivity, efficiency, and ease of use. Here, we
continue series of experiments from the preceding chapter to complete the picture
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of up-to-date propositionalization.
Finally, Chapter 6 presents conclusions and our ideas for further work. Ap-

pendices provide further details of the software applied in our empirical investiga-
tions, about the data sets and learning tasks used for the experiments, including
example scripts and log files, and an illustrative example database.



Chapter 2

Foundations

This chapter provides a concise introduction — or rather a reminder — to the
basics of the following chapters. We chose a style that we hope is easy to read.
Especially, we did not repeat many of the formal details that may be found in
text books or other introductions to the relevant areas of research. We expect
that for computer scientists, many concepts will be familiar. For people involved
in KDD, most terms will be in their everyday use.

For further convenience of the reader, we provide two means: a running ex-
ample for illustrative purposes, to be found right before the list of references to
the literature at the end of this thesis, and an index pointing to the explanation
of important notions in our text right after the references.

2.1 Knowledge Discovery in Databases

2.1.1 Data and Knowledge

Confronted with the term KDD, it is plausible to ask for the meaning of com-
ponent terms, especially those of “data” and “knowledge”. We do not intend to
provide a philosophical discussion of these concepts here, but rather point to a
view as formulated by Borgelt [15]. There, data are characterized as

• referring to single instances such as single objects, persons, events, points
in time etc.

• describing individual properties

• often available in large quantities, e. g. in databases or archives

• usually cheap to get, e. g. from supermarket cash registers with scanners or
from the Internet

• not allowing us to make predictions

5
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Example 1 In our running example, which we will use throughout this thesis
and which can be found in Appendix D, each row in a table contains data in
the sense of the above characterization. For instance, line 1 in table T refers to
some object and describes it as pos with this value for its attribute T cl. This is
supposed to mean a positive class label, here.

Further, Borgelt describes knowledge as

• referring to classes of instances such as sets of objects, persons, events,
points in time etc.

• describing general patterns, structures, laws, principles etc.

• often desired to be concise

• usually expensive to get, e. g. by education

• allowing us to make predictions

Example 2 In the running example, the observation of the distribution of class
values for the T objects would result in a piece of knowledge. It allows for a
so-called default prediction for T objects that do not show a class label, viz. the
majority class label seen so far.

2.1.2 Knowledge Discovery as a Process

From descriptions of data and knowledge as provided above, it is obvious that
knowledge can be of higher value than data, which clarifies a part of the motiva-
tion for KDD. This concept should be defined now more precisely.

We cite one of the broadly accepted definitions, originally given by Fayyad
and colleagues [32], and in a similar spirit also provided by many other authors,
here a choice in alphabetical order by first author: Berry and Linoff [10], Han
and Kamber [37], Hand and colleagues [38], Witten and Frank [132], and Wrobel
and colleagues [134, 136].

Definition 1 Knowledge Discovery in Databases (KDD) is the non-trivial pro-
cess of identifying valid, novel, potentially useful, and ultimately understandable
patterns in data.

Example 3 Thus, the determination of proportions of class labels for T objects,
cf. Example 2, would not qualify as KDD, since it can be computed in a trivial
way. Positive examples for KDD follow below.



2.1. KNOWLEDGE DISCOVERY IN DATABASES 7

The relevance of the demands put on patterns to be found by KDD seems
self-evident. Further explanations may be found in the literature. Essential for
the definition is the concept of KDD as a process. There are a number of process
models to be found in the literature, among them the CRoss-Industry Standard
Process for Data Mining (CRISP-DM), cf. www.crisp-dm.org. Similarly, Wrobel
[134] distinguishes phases mainly intended to

• understand the application and define objectives

• obtain and integrate data from source systems, including pre-analyses and
visualization

• prepare data for analysis by sampling, transformation, cleaning

• choose methods for analysis

• choose parameter settings and run analyses

• evaluate and clean results, including visualization

• use results, e. g. in reports or operational systems

A typical KDD project will not complete these phases one after the other
but regularly revisit earlier stages for adaptations of the corresponding steps and
results. The central step of actually running the analyses is often called data
mining. In other contexts, data mining is also used as a synonym for the whole
KDD process.

A relevant point is the distribution of costs among the KDD process phases:
the largest part is usually spent here in the first phases, especially for data prepa-
ration. For instance, Pyle [101, p. 11] provides a figure of 60% of the overall
project time to be spent on data preparation. This highlights the relevance of
the central issue of this thesis with its objective to support data preparation for
data mining.

2.1.3 Tasks for KDD

An important part of data preparation is the construction of a suitable input for
data mining systems. Typical data mining algorithms expect their input to be
in the form of a single table. Rows of such a table represent the objects of inter-
est. Columns represent attributes or features of those objects, for which values
are given in the table. Most data mining components of the large commercial
environments for data analysis belong to this group of typical systems.

One may also adopt the view that each object of interest is described here by
a vector of its feature values. Considering independent objects of one kind only,
the expressive power of the representation of examples (data), and also of the
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representation of patterns to be found by KDD (knowledge), remains equivalent
to the expressive power of propositional logic, cf. Subsection 2.3.1. We come to
define a notion to encompass those typical data mining systems, which we also
call conventional data mining systems.

Definition 2 A propositional learning system takes as input a single relation,
i. e. a set of tuples of feature values, where each tuple describes an object of
interest, and on this basis computes and outputs patterns in the sense of the
KDD definition.

The tuples referred to in Definition 2 are called learning examples and denoted
by E in the following. They reside in a so-called target table or target relation.
If the target table includes a special attribute, whose values should be predicted
based on other information in the table, this attribute is often called the target
attribute.

Typical tasks for data mining to be solved with the help of propositional
learning systems are

• classification: learning systems determine patterns from learning examples
with class labels; patterns have the form of classifiers, i. e. structures that
can be applied to unlabeled examples to provide them with class labels

• regression: similarly to classification, unseen examples are equipped by
learned patterns with additional numeric information

• clustering: objects of interest are grouped such that members of a group
are similar, while members of different groups are not similar

• association rule discovery: subsets of objects with certain properties such
as frequency of common occurrence are in the focus here

Especially association rule discovery has been very prominent in the field of
data mining, starting with work by Agrawal and colleagues [2]. A popular field
of application for association rule learning is shopping basket analysis.

However, we concentrate in this thesis on a special case of classification, viz.
for two-class problems, which is also known as concept learning. Since we deal
with a special case of learning functions from examples here, we provide a defi-
nition given by Wrobel and colleagues [136] for the general case.

Definition 3 Let X be a set of possible descriptions of instances (i. e. examples
without function values such as class labels), D a probability distribution on X, and
Y a set of possible target values. Further, let L be a set of admissible functions,
also called hypothesis language. A learning task of type learning functions from
examples is then the following:
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Given: a set E of examples in the form (x, y) ∈ X × Y , for which holds
f(x) = y for an unknown function f .

Find: a function h ∈ L such that the error of h compared to f for instances
drawn from X according to D is as low as possible.

Since f is unknown and may be obscured by noise in the data as well, one
often tries to estimate the true error considering error rates for labeled examples
that were not seen during learning.

A reason for our focus on binary classification problems, i. e. with Y being a
set of two values, are the good opportunities to evaluate learning results in this
scenario. Moreover, it is a basic case, where methods for its solution can also be
generalized to other kinds of learning tasks.

Actually, our proposals are not restricted to concept learning, as we will also
demonstrate. However, some ILP systems that we use for comparisons are re-
stricted to this learning task or equivalents. So, for reasons of comparability and
uniformity, we restrict ourselves to two-valued target attributes here.

Learning for classification and regression usually depends on example descrip-
tions containing target function values. This is also called supervised learning.
Clustering and association rule discovery usually do without class labels or similar
information. They are examples of unsupervised learning.

2.1.4 Algorithms for KDD

A large variety of algorithms for the discovery of knowledge in several forms
has been developed in the last decades. Among them are the very prominent
approaches to decision tree learning, developed in the fields of both statistics,
e. g. by Breiman and colleagues [19], and machine learning as a part of artificial
intelligence / computer science, e. g. by Quinlan and colleagues [102]. Further
methods include rule learning, among others influenced strongly by Michalski
[82].

If demands for the comprehensibility of patterns are relaxed, we can also count
a number of further methods to the spectrum of KDD approaches. For instance,
approaches from the large field of artificial neural networks [111, 39, 16] can be
used for classifier learning. The same holds for the younger field of support-vector
machines, which is based on work in statistics by Vapnik [127], with an excellent
tutorial by Burges [20], and many interesting results, e. g. by Joachims [49, 50].

Further, there are instance-base methods, genetic approaches, and the field of
Bayesian learning to be mentioned, also well-explained by Mitchell [84]. This list
does not even cover the wide range of methods for clustering and other central
tasks of KDD. However, instead of extending the hints to the literature, we
present one of the approaches in more detail and apply it to our running example:
decision tree learning.
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As the name suggests, the intention is to arrive at knowledge in the form
of decision trees here, i. e. induce certain structures from example data. In a
widespread variant of decision trees, such a structure contains zero or more inner
nodes, where questions about attributes of the examples are asked, and edges
corresponding to answers to those questions.

The edges finally lead to leaf nodes, each of which is associated with a class
label. In a first stage of decision tree learning, such trees are built from labeled
examples, considering this class information. In a later stage, these trees can be
used to classify unseen examples. We concentrate in the following on the tree
generation phase.

In essence, a set of examples should be recursively partitioned here such that
the final partitions contain examples for one class only, if possible. Partitioning
is achieved w. r. t. the attributes of the learning examples. Here, it is essential
to use methods for the evaluation of attributes w. r. t. their ability to form the
basis for good partitions. Usually, these methods are heuristic in nature.

One of the prominent criteria is information gain (IG), suggested by Quinlan
[102]. We explain IG in more detail here since we use it in later chapters. Mitchell
[84] gives the following definition for this criterion, here with an adopted nomen-
clature, with E being the set of learning examples and A a nominal attribute
with the set of possible values V (A)

IG(E, A) ≡ H(E)−
∑

v∈V (A)

|Ev|

|E|
H(Ev) (2.1)

Ev is the subset of the learning examples that show value v for attribute A.
H stands for entropy, a measure from information theory, here for the impurity
of a set of examples w. r. t. class membership. It is defined as

H(E) ≡
c
∑

i=1

−pi log2 pi (2.2)

where pi is the proportion of elements of E belonging to class i. In the case
of concept learning, we have i = 2.

Information gain can be regarded as the expected reduction in entropy when
the value for the attribute in focus is known.

Example 4 Imagine an extension of table T from the running example as de-
picted in Figure 2.1.

The entropy of the set E of the 10 examples as given in table T w. r. t. the
class or target attribute T cl amounts to about 0.97. The evaluation of T cat1
shows that for all three values of the attribute, the corresponding subsets Ev are
class pure such that their entropies are zero and thus IG(E, T cat1) ≈ 0.97. Note
that 0 log2 0 is defined to be 0 here.

For T cat2, the entropy of Es amounts to about 0.81, that of Et to about 0.65,
and the weighted sum of these entropies to about 0.71, such that IG(E, T cat2) ≈
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Figure 2.1: Table T of the running example in an extended variant

0.26. This is clearly less than for T cat1, such that the first attribute would be
chosen for partitioning in this step of tree building. Actually, because of the
pureness of the partitions, no further steps are necessary. The small resulting
tree can be depicted as in Figure 2.2.

T_cat1 = ?

m n o

pos neg pos

Figure 2.2: An example decision tree (four nodes incl. three leaf nodes)

Note that if class purity would not have been reached with just one question,
further partitionings of the respective subsets of examples could have been carried
out.

For numeric attributes, information gain can be computed with respect to
certain threshold questions in the inner nodes of decision trees, e. g. greater-than
tests, for partitioning the set of examples. Furthermore, note that information
gain is only one representative of many heuristics in this field.

2.1.5 Further Relevant Issues

An important issue to mention here is overfitting. Decision trees and many other
kinds of patterns can be constructed in a way to perfectly model training data.
However, this often captures aspects that are not in general valid for the whole
population the training data were drawn from. Thus, classifications for unseen
data can suffer from those over-complicated trees.



12 CHAPTER 2. FOUNDATIONS

A prominent method to reduce effects of overfitting with trees is pruning.
Pruning uses test data with known class labels, which were not used for building
a tree, to evaluate branches of the tree and cut them off in case of low value.
Then, leafs assign class labels according to majority votes, i. e. the class label
most prominent among training examples sorted to that leaf, for example.

A final evaluation of such a model can be achieved using validation data.
Again, those data must not have been used for building or pruning the tree, but
include class labels, to compare those labels with the predictions of the tree. For
such a prediction, a validation example is sent from the tree’s root to the leafs,
corresponding to the answers of the example to the questions in the inner nodes.
The prediction is read off from the leaf node where the example arrives. In the
same way, unseen examples with unknown class labels get classified.

The process of the construction of a decision tree as a form of a model or
hypothesis can be regarded as a search in the space of possible hypotheses. Here,
search starts from a tree that poses no restrictions on the examples and thus
predicts them all to belong to the majority class, for instance. Search proceeds
by introducing heuristically chosen conditions on examples, thereby extending
the hypothesis. This way, examples may be differentiated into several classes.

For details on hypothesis spaces with a general-to-specific order, which can
be exploited during search, the reader is referred to Mitchell [84]. We return to
this subject for refinement operators as mentioned in Section 2.3.

Furthermore, sophisticated methods have been developed to deal with imper-
fect data, e. g. containing missing values, within decision tree learning and also
other propositional learning systems.

Moreover, especially in data mining, aspects of efficiency have always played a
predominant role, with suggestions e. g. of special data structures for decision tree
learning by Shafer and colleagues [118]. Overall, propositional learning systems
have reached a high degree of maturity which makes their application to real-life
problems possible and desirable.

2.2 Relational Databases

Relational databases are among the most prominent means for the management
of data, e. g. in business and administration. In this section, we list key concepts
and methods in this area, which are of relevance for our work.

2.2.1 Key Concepts

In the preceding section, there were already concepts of relations or tables men-
tioned, further those of objects and their attributes or features. These are central
concepts for relational databases as well. Here, a basic means for modeling parts
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of our real-world perception are relations as sets of tuples of values from certain
domains.

Figure 2.3 provides an impression of these concepts in the context of our
running example with table T as extended above, following a figure by Heuer
and Saake [41, p. 20]. For more formal descriptions, the reader is also referred
to the book by Abiteboul and colleagues [1].

Relation name Attribute

T
Relation schema

Relation

Tuple

T_clT_cat2T_cat1

pos
neg
pos
neg
pos
pos
neg
neg
neg
neg

s
s
t
t
s
s
t
t
t
t

T_id ...

1 ... m
2 n
3 m
4 n
5 o
6 o
7 n
8 n
9 n

n10

Figure 2.3: An illustration of central concepts of relational databases

On such a relation, a number of operators can be applied. One prominent
operation is selection to produce a subset of the tuples that fulfil certain condi-
tions w. r. t. their attribute values, i. e. to extract rows from the table. Another
prominent operation is projection to reduce tuples to certain elements, i. e. to
extract columns from the table.

Furthermore, arithmetic operations can be applied to one or more numeric
attributes of the table to manipulate existing columns or to produce new ones.
For attributes of different types, e. g. for string or date values, there exist special
operations within most DBMS.

Note that all values for an attribute must be of the same type, a marked
difference from other widespread means for data storage and manipulation such
as spreadsheets. The term feature is often used as a synonym of attribute, which
we also do in this thesis.

So far, we remained in the realms of adequate inputs for KDD with looking
at single tables. Now, we go beyond that and consider systems of tables, as
typical for relational databases. Here, different tables usually describe different
kinds of objects, which can be related in some way. Relationships are modeled
in relational databases with the means of foreign key relationships.

It is common to have at least one attribute (or a combination of attributes)
in each table, the value of which is different for each tuple in the relation. Such
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an attribute can serve as a so-called primary key attribute for that table. An
attribute in a table, which can take on values chosen from those of the primary
key attribute of another table, is a so-called foreign key attribute and constitutes
a foreign key relationship between the two tables involved.

Example 5 In our running example, T id is the primary key attribute for table
T. An attribute with the same name is also contained in table A and is actually
meant to be a foreign key attribute. It constitutes a one-to-many relationship
between T and A. For tables A and C, we observe a foreign key attribute C id
in table A, pointing to the primary key attribute, again with the same name, in
table C. Here, we have a many-to-one relationship between A and C.

Within this scenario, another important operator can be applied: the join. A
join combines tuples from one or more relations, often based on the condition of
the equality of primary key and foreign key attribute values, which is an example
of a so-called natural join.

Conceptually, the Cartesian product of the two relations is formed, i. e. the
concatenation of each tuple from the first relation with each tuple from the second
relation. Then, from this new relation, those tuples are selected that obey the
equality restriction.

In practice, the expensive computation of the Cartesian product is not exe-
cuted. Rather, special data structures such as indexes are used for a fast compu-
tation of joins. Indexes can be used to quickly find rows in a table given values
for a certain attribute, e. g. a primary key value.

Further, there are special joins that are often applied in RDB systems, so-
called outer joins. It may be the case that for a tuple in one of two relations to be
joined there is none in the other relation with a corresponding key attribute value.
With a natural inner join, the tuple from the first relation would be lost. With
an outer join, the resulting relation contains the tuple from the first relation,
extended with an appropriate number of missing values or NULL values in place
of attribute values for a tuple from the second relation. Examples for joins can
be found in later chapters.

2.2.2 Normal Forms and Universal Relations

One of the reasons for multi-relational data representation — besides the obvious
idea to represent different kinds of objects with the help of different tables — is
the desirabilty of compactness, especially the avoidance of redundancies, and with
the latter the avoidance of so-called update anomalies.

Since KDD conventionally analyses only snapshots of databases, updates are
not in the primary focus here. However, when dealing with data mining in rela-
tional databases, the methods for the design of databases are of interest. Here,
this is especially normalization. Relations can be in a normal form at different
levels.
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For instance, for a first normal form, components of the tuples constituting a
relation must not be any structured values such as list or set but just values
of atomic types such as integer or character. For the second and third normal
forms, certain dependencies of attributes within one relation are in focus. The
elimination of those dependencies leads usually to a larger number of smaller
tables. We do not go into details of these processes here but point to a so-called
fourth normal form [41], which is of special relevance for our purposes.

Example 6 Heuer and colleagues [41, pp. 82–83] provide the following example,
cf. Figure 2.4. The depicted relation means that a person can have a set of
children and a set of toys. These two sets are independent of each other. In
other words, each child may play with each toy.

Note that a table such as this one would not be an appropriate target table for
conventional KDD, at least not for learning models concerning entities such as
James Bond, since those entities are obviously described by more than one row
here.

ChildName

Skyscraper
Skyscraper
Rainbow Hopper
Rainbow Hopper
AirCrusher
AirCrusher

Toy

James Bond
James Bond
James Bond
James Bond
James Bond
James Bond

Hugo
Egon
Hugo
Egon
Hugo
Egon

ACT

Figure 2.4: An example relation in third normal form

The given relation can be transformed to the situation depicted in Figure 2.5
with relations in fourth normal form. Note also that the natural join of those two
relations produces the original one.

For KDD, another table would be necessary with one line to describe James
Bond, with the Name attributes of the other tables as foreign key attributes point-
ing to the Name primary key attribute of that new table.

Child

James Bond
James Bond

Hugo
Egon

Name

AC

Name

Skyscraper
Rainbow Hopper
AirCrusher

Toy

James Bond
James Bond
James Bond

AT

Figure 2.5: Derived relations in fourth normal form
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Exactly such a transformation from third normal form to fourth normal form
was necessary for one of the data sets within our experiments, viz. those for KDD
Cup 2001, cf. Appendix B. If not stated otherwise, we will assume relations in
fourth normal form in the following.

There was also research in the database area aiming at simpler than the multi-
relational situation. The motivation was to achieve simpler query languages,
without the necessity of join operations. Here, ideas of universal relations were
developed, and multiple methods to generate them [40, pp. 319–321]. Basically,
a UR can be imagined as a join of the relations in an originally normalized multi-
relational database. We return to the issue of URs in Chapter 5.

2.2.3 Further Relevant Issues

In the following chapters, we often use graphs induced by relational databases, in
the sense of graph theory. Here, a vertex or node of the graph is constructed for
each relation from the database, while edges can represent foreign key relation-
ships. In this case, edges conventionally point from the foreign key attribute of
a relation to the primary key attribute of another relation. This way, we arrive
at a directed graph. An example is provided with our running example, cf. Ap-
pendix D. Further, we occasionally use undirected graphs, where edges do not
have a direction.

Another prominent feature of relational database systems beyond the ini-
tial definitions of relational algebra [1] is the application of aggregate functions.
Cabibbo and Torlone [21] note that beyond the de facto standard provided with
SQL, which includes functions for the computation of averages, counts, max-
ima, minima, and sums, there are gaps in the common understanding and basic
theoretical work in this area.

However, there are also a number of proposals even for user-defined aggregates
and their implementation / application, e. g. by Wang and Zaniolo [131]. Since
aggregate functions play a crucial role in this thesis, we will return to the subject
later in this chapter.

For a finish of this section, we point to ideas arising out of the database
area, which can be counted to the evolving research domain of multi-relational
data mining (MRDM). For instance, Sattler and Dunemann suggest database
primitives for more efficiently learning decision trees from databases [116]. Shang
and colleagues propose methods for efficient frequent pattern mining in relational
databases [119], which is of central relevance for association rule discovery in
these environments. In general, MRDM has a strong relationship to the domain
of Inductive Logic Programming (ILP), which is the topic of the following section.
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2.3 Inductive Logic Programming

The means of ILP further increase expressive power, compared to RDB. Moreover,
it was historically the first and for several years the only area of science to deal
with learning from multi-relational data. ILP can be seen as the intersection of
machine learning and logic programming [76].

Central ideas from machine learning are the basis for KDD. Relevant issues
were briefly presented above, cf. Section 2.1. This section provides an overview
of the basics of logics and logic programming as needed for this thesis. After
that we turn to several ILP concepts and systems that we use in the following
chapters. A good overview of ILP for KDD was provided by Wrobel [135].

2.3.1 Propositional Logic and Predicate Logic

For this section, we draw on material by Nienhuys-Cheng and Wolf [93] and
Dassow [26]. Details should be looked up there, since we provide an overview
only.

Logics help to formally describe (our models of) parts of the real world and
are intended for automatic reasoning. For these purposes, syntax definitions have
to be provided to state which strings form expressions or formulas allowed in a
logical language. These expressions are usually finite.

Further, semantics have to be defined, in order to allow for truth values to be
associated with those expressions, based on truth values of their atomic building
blocks, w. r. t. some real-world situation.

For reasoning, inference operators can be defined, for instance, to syntactically
derive certain expressions from others in a way that semantic statements can be
made about the results.

Many relevant concepts in logics can be more easily explained for the case of
propositional logic and then carried over to predicate logic. We attempt to do
this in the following.

Propositional Logic

Atomic building blocks or atoms for expressions in propositional logic are so-called
propositional variables such as p and q. They are symbols for propositions, i. e.
sentences e. g. in natural language such as: “The earth is smaller than the sun.”
Propositional variables are associated with truth values true or false, often coded
as 1 and 0, respectively. Truth value assignments depend on the characteristics
of the symbolized proposition.

Usually, recursive definitions are provided for the construction of more com-
plex expressions from simpler expressions. Such a definition would allow for
certain concatenations of propositional variables with symbols for the logical op-
erators for negation ¬, conjunction ∧, disjunction ∨ and possibly more; further
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parantheses or other means to clarify the order of the application of operators.

Given truth values for propositional variables, those for more complex ex-
pressions can be assigned truth values using so-called truth tables, which provide
results for the logical operators for basic cases. An example is the negation of a
propositional variable, which is true iff the variable is associated with value false.
Another example is the disjunction of two propositional variables, which is true
iff at least one of the propositional variables is true.

A literal is an atom with or without a preceding symbol for negation.

A central concept is that of logical consequence or logical entailment: here, an
expression A follows from another expression B iff A is true for all assignments
of truth values to propositional variables that make B true. Since the number of
propositional variables is finite in logical expressions, logical consequence relations
can be investigated, e. g. by using truth tables again. However, these tables have
a size exponential in the number of propositional variables involved.

An interesting point to note is that for any expression, there are expressions
with the same semantics in special forms, so-called normal forms, e. g. conjunc-
tive normal form (CNF). In a CNF expression, literals occur in disjunctions,
which are in turn combined in conjunctions. Normal forms can be constructed
algorithmically from any expression.

Often, expressions in CNF are written as clause sets, with disjunctions as the
basis for clauses. For instance, ((p∨q)∧ (¬p∨¬q)) could be rewritten as a clause
set {{p, q}, {¬p,¬q}}.

Clause sets form the basis for inference methods such as resolution. Resolution
can also answer questions about logical consequence. For efficient resolution,
subsets of possible clause sets have turned out to be favorable, especially Horn
clauses, where a Horn clause contains at most one non-negated propositional
variable.

Clauses can also be written as implications. Often, → is used as a symbol
for implication. Then, (¬p ∨ q) and (p → q) have the same values for the same
assignments of truth values to the propositional variables. This is a case of
semantical equivalence.

In logic programming, implications are often written with the symbol ← in
scientific texts and the symbol :- in code. To the left of those symbols, we find
the so-called head of the implication. To the right, there is the so-called body.

Note that (p ∨ ¬q) and (p ← q) are semantically equivalent. Further we
remind the reader of DeMorgan’s rule that ¬(¬p∨¬q) is semantically equivalent
to (p∧q). These issues provide some background for the following considerations.

For Horn clauses, there are three cases.

1. The Horn clause consists of a single positive literal, e. g. {p}. This can be
written as p ←, also without the arrow. This construct is called a Horn
fact.



2.3. INDUCTIVE LOGIC PROGRAMMING 19

2. The Horn clause consists of a positive literal and a number of negative
literals, e. g. {p,¬q1, ...,¬qn}. This can be written as p← q1∧ ...∧ qn. This
construct is called a Horn rule.

3. The Horn clause consists of a number of negative literals, e. g. {¬q1, ...,¬qn}.
This can be written as← q1∧ ...∧qn. This construct is called a Horn query.

The expressive power of propositional logics is rather restricted. For example,
if two propositions symbolized by p and q are related, e. g. “The earth is smaller
than the sun.” and “The earth is larger than the moon.”, there are no means
within propositional logic to make this relationship explicit and to exploit it for
reasoning. Similarly, a proposition such as “All planets in our system are smaller
than the sun.” would pose difficulties for propositional logic.

Predicate Logic

Predicate logic or first-order logic can help in cases as mentioned above, although
at the cost of larger complexity. Expressions are built here from atomic building
blocks again, which are relation or predicate symbols that take a certain number
of arguments in parantheses, e. g. smaller(earth, sun) or smaller(moon, earth).
The number of arguments is called arity of a predicate. Atoms are true or
false w. r. t. corresponding models of the real world. Interestingly, propositional
variables can be seen as predicate symbols with zero arguments.

The arguments of predicates are terms. Terms can be constants, which are
symbols for some real-world object, e. g. earth in the example above. Terms can
also be function symbols, again with a certain number of arguments in paranthe-
ses. Arguments of functions are terms as well. An example is satellite(earth)
to mean the moon or rather the object symbolized by that constant. Another
kind of terms are variables such as X in smaller(X, moon). Variables can be
associated with real-world objects.

We adopt further conventions from logic programming here, where variable
names are usually written with capital letters at the beginning, other names
starting with lower case letters.

The atoms of predicate logic expressions — predicate symbols with the cor-
responding number of arguments — can again be connected by logical operators
in the same way as in propositional logic. In addition, quantifiers for variables
are possible: ∀ for universal quantification and ∃ for existential quantification.
For instance, it is possible now to have an expression in a predicate logic such
as ∀X(planet(X) → smaller(X, sun)) which is supposed to mean that for all
objects that are planets in our solar system it holds that they are smaller than
the sun.

Logical consequence is not decidable in predicate logic. However, we can again
compute normal forms and thus clause sets for predicate logic expressions. Then,
we can apply resolution to finally arrive at statements about logical consequence
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relations in a number of cases. Here, relevant concepts are substitution and
unification.

A substitution σ replaces all occurrences of a variable in an expression with
a term. For instance, an expression p(X) can be subject to a substitution σ =
{X/a} with p a predicate symbol, X a variable and a a constant, which would
result in an expression p(a).

A unification attempts to make two expressions syntactically the same by
appropriately choosing substitutions. For instance, two expressions p(X) and
p(Y ) can be unified with the help of a substitution such as σ = {X/a, Y/a}.

Prolog

To finish this part, we hint at Prolog [23] which stands for a programming lan-
guage and automatic reasoning environment in the spirit of predicate logic. Here,
it is possible to express recursive structures in an elegant way, contrary to RDB
query languages. This power is exemplified here with the well-known predicate
definition for list membership.

member(X, [X|_]).

member(X, [_|Y]) :- member(X, Y).

We see two Prolog expressions in this example. Dots at their end are a
syntactic specialty of Prolog. Lists are enclosed by brackets in Prolog, and |
separates the list’s head, i. e. the first element of the list, from the list’s rest,
the so-called tail. X and Y are implicitely universally quantified variables here,
with X standing for an element of a list and Y for a list. The first expression is a
so-called fact, the second a so-called rule, cf. their variants in propositional logic
explained above.

The first expression means that an object is an element of a list, if it is to be
found at the head of the list. If not, the second expression comes into play and
means that an element is a member of a list if it can be found in the list’s tail,
which has to be checked by recursively calling the Prolog program made up of the
two expressions again, now with the tail of the original list as second argument.

For instance, if we would like to find out if b is an element of the list [a,b,c],
a query ?-member(b, [a,b,c]). can be asked to the Prolog system. For the first
expression of the above Prolog program, there is no substitution possible, while for
the second, there can be the following substitution applied σ = {X/a, Y/[b, c]}.
So, the query resulting from the body of the rule, i. e. member(X, Y), for a
recursive call would now be ?-member(b, [b,c]). Here, a substitution σ =
{X/b} can be found that makes the first expression succeed. Thus, the system
delivers a positive answer to our original question.

In the following, we often use special subsets of Prolog expressions. Among
these are function-free expressions. Since constants can be regarded as func-
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tions with zero arguments, there can be only variables in argument positions of
predicates here.

Further, we regularly use ground facts which correspond to atoms with no
variables in argument positions. Also, we frequently use non-structured facts
which means that only constants and variables are allowed as arguments. To-
gether, ground and non-structured facts are atoms with constants in all argument
positions. Note the correspondence of the arguments of those facts to tuples in
relations of relational databases, and the correspondence of predicate symbols to
relation names.

2.3.2 Basic Concepts of Inductive Logic Programming

ILP algorithms aim at learning logic programs, i. e. essentially clause sets, often
restricted to Prolog style, from examples that are also represented as logic pro-
grams. For instance, from positive examples such as member(b, [a,b,c]). and
negative examples such as :- member(d, [a,b,c]). the recursive definition of
member/2 (2 means that the membership predicate takes two arguments here,
i. e. the arity of the member predicate) as given in the preceding section should
be learned.

Often, ILP learning tasks thus involve to get from an extensional definition
of a so-called target predicate to a more compact intensional definition; in other
words, from examples in the form of ground facts to non-ground rules. These
rules should then be applicable to unseen examples, for instance, in order to
classify them as positive or negative, i. e. belonging to the target concept or not.

Background Knowledge

A distinctive feature of ILP is the usage of background knowledge beside the
examples. For instance, the member/2 predicate definition might also be provided
as input for learning of other predicates that model aspects of working with lists.
Actually, there are different views on background knowledge to be found in the
ILP literature.

Often, all predicate definitions except that for the target predicate are consid-
ered to be background knowledge [135]. Occasionally, however, only items that
exist independently of the specific learning examples are regarded as background
knowledge [108]. Here, “independent” means that the corresponding piece of
knowledge is not of concern for one example only, as information about exclusive
parts of the example would be, for instance. An example is provided with the
original representation of the KRK.illegal learning task, cf. Appendix B.

We adopt to the first view of background knowledge. Further, we take the
perspective that ILP methods in a wider sense can include those that learn from
multi-relational representations but do not necessarily arrive at knowlege repre-
sented in the form of logic programs.
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Bias

If the aim is learning logic programs, the hypothesis spaces are usually huge.
In order to successfully search here, an appropriate bias is necessary. Bias may
concern the language used as well as search itself. Nedellec and colleagues [92]
further distinguish validation bias from those named before, which is responsible
for decisions about when to stop search. We also find other categorizations in
the literature, e. g. syntactic bias vs. semantic bias [91]. All the authors agree,
however, that it is useful to make bias as explicit as possible, arriving at a declar-
ative bias, which is easy to manipulate by the user and even a basis for reasoning
about and changing of the bias used in a certain learning situation.

We already introduced a kind of language bias with Horn clauses, which are
the basis for Prolog’s facts, rules, and queries.

In Prolog rule bodies, negation is allowed, which is why we deal with program
clauses here.

Definition 4 If argument positions for atoms are typed, we arrive at deductive
database (DDB) clauses. Typing means that for each argument position, an in-
formation is provided which set of values can be associated with those arguments.
Note the resemblance to relational databases in this respect.

Definition 5 Further restrictions can be put on those clauses to arrive at de-
ductive hierarchical database (DHDB) clauses, where recursive structures in both
predicate and type definitions are not allowed.

Other types of clauses that are frequently used in ILP are the following.

Definition 6 A clause is a constrained clause iff all body variables also occur in
the head of the rule.

Definition 7 Determinate clauses have determinate body literals. A literal is
determinate iff all “new” variables have a unique binding given the bindings of
all the other, the “old” variables. Old variables occur earlier in the clause, i. e.
to the left of the literal in focus. Prolog will have found bindings for those old
variables when it comes to considering the current literal.

Binding a variable means here especially substitution with a constant. Thus,
determinacy of a literal is given iff there is either (a) exactly one substitution for
new variables such that the literal can be derived by the Prolog program given,
or (b) no such substitution.

Case (b) is often not emphasized in the literature, but see Nienhuys-Cheng
and Wolf [93, p. 335]. Restricting the definition to case (a) would mean that
information might be lost, similar to a situation with missing outer joins in rela-
tional databases. For further processing, a special constant “?” is often used in
ILP systems to indicate an equivalent for the NULL value in RDBs.
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Example 7 Given two target examples described by Prolog ground and unstruc-
tured facts: p(1,a). and p(2,b)., further a single background knowledge fact, also
ground and unstructured: q(2,c). The Prolog clause p(X,Y) :- q(X,Z). is determi-
nate according to our definition, although there is no q literal for the first example
in the background knowledge.

With a definition restricted to case (a), the clause would not be considered
determinate, and predicate q would be neglected for learning by corresponding
systems.

If a body literal uses variables from the head only, apart from new variables,
those new variables are defined to have depth 1. If a body literal uses old variables
with maximum depth n and introduces new variables, the latter have depth n+1.
A clause is an i-determinate clause if there occur variables in the clause of depth
at most i.

Definition 8 A clause is a linked clause iff there is at least one old variable
among the arguments of each body literal.

Further kinds of language bias, which are often applied, are restrictions to
function-free hypothesis languages and to ground facts for examples, often for
background knowledge as well. There were also methods proposed to transform
non-ground knowledge into ground facts, cf. hints given by Lavrač and Flach [77].
The same authors provide examples for further simple kinds of language bias, e. g.
by restricting the number of literals in clauses, or the number of variables.

Considering search bias, there are many approaches to constructing logic pro-
grams from examples. For instance, in a top-down approach, rules are built by
successively adding literals. The choice of those literals may be made w. r. t.
certain criteria such as information gain, cf. Section 2.1.

Usually, there is a trade-off to be made here. With a very strict bias, efficiency
of learning will be high, but the hypothesis searched for may not be in the chosen
language or missed during search. With a more relaxed bias, more hypotheses
are in the realms of search, which may then take much longer, though.

Subsumption and Coverage

Further basic concepts in ILP are those of subsumption and coverage.
Subsumption, also called θ-subsumption, refers to a relation between clauses.

For two clauses C and D, C subsumes D if there exists a substitution θ such
that Cθ ⊆ D, i. e. every literal in Cθ is also in D. A part of the relevance of
subsumption is expressed in the subsumption theorem, cf. details provided by
Nienhuys-Cheng and Wolf [93], which states important relationships with logical
consequence. Subsumption will also play a role within our approach as presented
in the following chapters.
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Coverage means the following here. Given a first-order hypothesis containing
rules and ground background knowledge B. Then, a ground example e is said
to be covered by the hypothesis, if it contains a rule T ← Q with Tθ = e and
Qθ ⊆ B. This is called extensional coverage by Lavrač and Džeroski [76].

2.3.3 Prominent Systems for ILP

In this part of the thesis, we give short overviews of three systems for ILP, viz.
Foil, Progol, and Tilde, which belong to the most frequently used from a large
number of ILP systems that were introduced within the last 15 years. All three
systems belong to the group of those that search first-order hypothesis spaces
and come up with corresponding models. Also, they are all top-down learning
systems, i. e. they start learning with a most general hypothesis covering all
examples, which is specialized afterwards with the help of a refinement operator
[120] to build a new clause D from a given clause C with Cθ ⊆ D.

However, there are also essential differences between the systems, which make
the consideration of all three seem worthwhile. For instance, Foil uses a covering
approach to rule learning, Progol applies an especially guided A*-like search,
and Tilde upgrades decision tree learning methods to the case of first-order logic.
All three systems are used for our empirical work as presented later in this thesis.

Foil

Foil was first presented by Quinlan in 1990 [103], further advances in 1993 and
1995 [105, 106]. It combines ideas from ILP with approaches from propositional
machine learning.

From ILP, it inherits the usage of clauses with their expressive power up to
learning recursive hypotheses. Positive and negative examples E represent the
target relation. Background knowledge B consists of some other relations. E and
B have the form of tuples of constants and present the input for Foil, together
with schema information.

From propositional machine learning, the system uses typical approaches for
constructing hypotheses built of rules and approaches for the evaluation of parts
of hypotheses.

Basically, Foil consists of two main loops, an outer loop and an inner loop,
as typical for the covering algorithm for learning of rules [82]. The outer loop is
running while there are still positive examples left in the training set, initially E.
An inner loop is started to build a clause that characterizes a part of the target
relation. Starting from a clause with an empty body, literals are added to the
body to avoid the coverage of negative examples. Literal evaluation is achieved
using criteria based on information theory again, cf. Section 2.1. If such a clause
is found, all positive examples that are covered by the clause are removed from
the training set.
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We do not go into further detail here, but just mention that Foil also uses
strategies for overcoming myopia — a single literal may be of not much value when
considered for introduction on its own, but of high value in combination with
others — and for avoiding problems with infinite recursion. Moreover, pruning
strategies are applied and inexact definitions are allowed.

Quinlan states at the end of his early Foil paper [103] that the system will
be adequate for handling learning tasks of practical significance, in the context of
relational databases, partly caused by the correspondence of Foil’s input format
with the format of relational databases. Our experimental results provide support
for Quinlan’s prediction.

Progol

Progol was presented by Muggleton in 1995 [88] as a system that implements
inverse entailment. Muggleton and Firth also provided a good tutorial introduc-
tion to the system [90].

The input for Progol consists of examples and background knowledge, where
especially the latter may include non-ground and structured rules. Furthermore,
mode declarations have to be provided by the user, declaring among others the
target predicate, types of arguments, places for old or new variables or constants.

For each example, Progol constructs a most specific clause within the mode
language that is implied by the mode declarations.

For our purposes, i. e. in our experiments with all relations represented by
ground non-structured facts, a most specific clause has the target predicate literal
corresponding to the learning example in focus as head, and a conjunction of all
facts to be found in the background knowledge which are related to the learning
example as body.

These most specific clauses are then used to guide an A*-like search [94]
through the clauses which subsume the most specific clauses.

Tilde

Tilde was presented by Blockeel and DeRaedt in 1998 [14] and has been further
developed since then. It is now a part of the ACE system, cf. Appendix A.

Tilde is an upgrade of Quinlan’s C4.5 [104] and reuses many of the methods
of propositional decision tree learning as sketched above, cf. Section 2.1. It
uses the same heuristics as C4.5, among others gain ratio for the decision about
questions to ask in nodes. Gain ratio is derived from information gain but does
not have the same unjustified preference for attributes with many distinct values.
Tilde also applies pruning mechanisms as C4.5.

Differences to the propositional case are that nodes contain a conjunction of
literals and different nodes may share variables, with certain restrictions. The
set of tests at a node is computed with the help of a refinement operator under
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θ-subsumption. This operator is specified by the user with the help of mode
declarations similar to those as used by Progol.

The system includes special features for lookahead to overcome myopia of
search, for discretization, and many more, e. g. for dealing with large data sets.

The authors [14] further state that first-order decision trees show higher ex-
pressive power than flat normal logic programs as induced by many other ILP
systems such as Tilde and Progol.

Summary

ILP systems show remarkable abilities, e. g. for learning recursive theories from
few and complex examples. However, they tend to be inefficient for learning from
larger sets of data as in real-life business databases. Further, high efforts may be
necessary to run them appropriately, for instance for producing declaration files
or for setting intricate parameters. We return to these issues in Chapter 4.

2.4 Preparation for Knowledge Discovery

Although data preparation causes the largest part of costs within KDD projects,
research has mainly focused on the more central step of KDD, viz. data mining
algorithms. The need for data preparation, though, is well-known and already
led to many tools. These are also included in commercial environments for KDD,
to be applied by knowledgeable data analysts.

As Pyle puts it [101], the task of data preparation for data mining is two-
fold: the data have to be transformed such that data mining algorithms can be
applied with high prospects for success, and the analyst has to become informed
for mining and for the evaluation and application of the results.

In a multi-relational scenario, e. g. with data from a relational database to
be analyzed, a number of proposals and systems were provided to help the ana-
lyst. Among them are suggestions for combining and modifying data sets [114],
ultimatly by the user with the help of database query languages.

Systems such as MiningMart [30, 87] or Xelopes [125] further support the
user in multi-relational data preparation with means for the easy application of
operators, up to opportunities to archive successful data preprocessing procedures
for later access in similar projects. There is also a tendency towards the usage of
standardized languages such as the Predictive Model Markup Language (PMML).

In the following, we focus on aspects of data preparation that are of special
relevance for the following chapters.

2.4.1 Feature Construction

For KDD with a single table input for the data mining algorithm, feature con-
struction means the creation of new columns for that single table.
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Algorithms for conventional feature construction have also a single table input
and compute new attributes from one or more of the attributes given in that table.
For instance, from two attributes that describe the length and width of an object,
its area may be computed.

In a broader sense, manipulations of single existing attributes can also be
allocated in the realms of conventional feature construction.

An example would be discretization, where a numeric attribute could be re-
placed by a nominal attribute that symbolizes ranges of the former numeric values
with the help of names.

Another example would be range normalization, e. g. by dividing the length
values of all target objects by their maximum in order to arrive at an attribute
for length with values between 0 and 1.

A final example here would be a coding of nominal attributes with n possible
values by n binary attributes that indicate the occurrence of the possible nominal
values.

Propositionalization is also an approach for feature construction. However, an
algorithm for propositionalization takes multiple relations as input and usually
concerns more complex structures than conventional feature construction. Here,
new attributes are computed from specifics of several objects related to a target
object. More details can be found in the following chapters.

2.4.2 Feature Selection

Considering again the conventional case of data mining with a single table input,
it is usually good to have a larger number of rows in such a table. With a
growing number of learning examples as represented by those rows, the statistics
and heuristics that form the basis for learning get more reliable, as a rule.

The situation is different w. r. t. the number of columns, though. Here, larger
numbers mean growing hypothesis spaces, which not only endanger efficiency of
search but also effectivity, e. g. when dangers to arrive at only locally optimal
solutions grow, or other dangers of overfitting.

Perhaps even more contra-intuitive are findings such as the following. For clas-
sification tasks, not only features without a correlation with the target attribute
can have negative effects for learning, but also features with certain predictive
potentials as demonstrated by John [51], among others. Approaches to feature
(subset) selection can improve the situation, for an overview see the book by Liu
and Motoda [79].

Feature selection methods are often classified into filters and wrappers [79,
132]. While filters choose attributes based on general properties of the data
before learning takes place, wrappers intermingle feature selection and learning.
The methods for feature selection are also often subdivided into those that judge
only single attributes at a time and those that evaluate and compare whole sets of
attributes. The former are also called univariate methods, the latter multivariate
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methods. Furthermore, different selection criteria and search strategies can be
applied.

Approaches to dimensionality reduction have also been developed within ILP,
e. g. by Alphonse and Matwin [3]. Especially in the context of propositionaliza-
tion, where unsupervised feature construction may lead to many redundant or
otherwise irrelevant attributes, a selection of the good features seems advisable.
It was in fact investigated on several occasions e. g. by Lavrač and Flach [77] and
by ourselves [72, 73], see Chapter 5.

2.4.3 Aggregation

Cabibbo and Torlone [21] state that aggregate functions have always been consid-
ered an important feature of practical database query languages, but a systematic
study of those has evolved only slowly. In many cases, the aggregate functions as
provided by SQL were in the focus of the investigations. In fact, the same holds
for large parts of our investigations as presented in this thesis.

The authors [21] let {{N}} denote the class of finite multisets of values from
a countably infinite domain N and define an aggregate function over N as a total
function from {{N}} to N , mapping each multiset of values to a value. Our view
largely corresponds to that definition, although N may be a finite set, and the
function values may also come from a set of values different from N , for instance
when counting a certain value of a nominal attribute.

Aggregate functions are often used in statistics to describe properties of sam-
ples of populations, e. g. averages or standard deviations. Categories of such mea-
sures are described by Fahrmeir and colleagues [31] or Hand and colleagues [38],
among others. Properties of aggregate operators are investigated by Detyniecky
[29]. We focus for our work on aggregate functions with close relationships to
SQL as mentioned above, but also on computational complexity, as investigated
by Körnig [57] and further discussed in Chapter 5.

Aggregate functions are widely applied within KDD and related areas, as
exemplified in the following. During data preparation, analysts often investigate
statistical properties such as histograms of nominal attributes, in order to make
decisions about which attributes to use, for instance.

Outlier detection and missing value replacement often rely on aggregate func-
tions as well. Tools for these steps of data preparation can be found in many
KDD environments. Aggregate functions may also be used to integrate [117] or
compress [45] data.

Last not least, domain experts often apply aggregate functions when manu-
ally transforming multi-relational data into inputs for conventional data mining
systems.

In data warehousing and online analytical processing (OLAP), aggregate func-
tions are also typical. Here, users investigate large volumes of data by the interac-
tive use of special operators for navigation, which often involve the computation
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of sums and averages. For efficiency reasons, aggregate function values may also
be pre-computed here. Overviews are given by Inmon and colleagues [47] and
Bauer and colleagues [6], while Gray and colleagues [36] discuss the central data
cube operator.

For our purposes, we focus on a special kind of application of aggregate func-
tions with two relevant aspects.

First, we investigate the automatic application of aggregate functions to mul-
tisets of values of an attribute shared by several objects, which are related to a
target object in the focus of learning. This should be distinguished from usual
applications of aggregate functions in KDD systems, e. g. when an average of a
numeric attribute is computed across all target objects.

Second, the results of aggregation are supposed to be used as input for con-
ventional data mining, i. e. automatic methods for knowledge discovery. This
should be distinguished from what is typical for OLAP systems, where it is the
user’s task to exploit the results of aggregate functions.

2.5 Summary

In this chapter, we reviewed issues from the areas of conventional knowledge dis-
covery in databases, relational databases, and inductive logic programming. This
order reflects the increasing expressive power of the typical means of knowledge
representation in the areas: starting from single tables and propositional mod-
els in KDD, via multiple relations in RDB, to the means of first-order logic in
ILP. Finally, we focused on aspects of data preparation for data mining, where
propositionalization as detailed in the following chapter can be allocated.



Chapter 3

A General Model for
Propositionalization

In this chapter, we present a formal framework for propositionalization. We then
describe prominent traditional approaches to propositionalization with the means
of our framework.

In preparation, we state our demands concerning such a framework and define
our notion of propositionalization. We also point to advantages and disadvantages
of propositionalization.

As early as the concept of propositionalization was formed [58, 60], there was
already a number of approaches following its general idea. However, a general
theory for propositionalization or a formalization of the basics of those approaches
was missing. In the following, we provide such a formalization, with the following
objectives:

• The framework should provide opportunities for a precise description of the
essentials of existing approaches to propositionalization.

• The framework should provide opportunities to unify the various descrip-
tions from the literature and thus allow for an easier understanding, evalu-
ation, and comparison of the approaches.

• The framework should provide opportunities to enhance existing approaches
with new means for propositionalization. Also, the framework should facil-
itate combinations of components of different approaches.

We will return to these criteria for our framework in the appropriate places
later in this thesis.

A number of views on propositionalization can be found in the literature.
They vary in the points what the object of transformations is or if conventional
propositional learning is a part of propositionalization, among others. We define
our notion of propositionalization here.
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Definition 9 Propositionalization is the process of transforming a relational rep-
resentation of data and background knowledge into the format of a single table
that can serve as the input to a propositional learning system.

More precise information about inputs and outputs for propositionalization
and about the transformation of the inputs into the outputs follow in the next
section.

Demands we have to put on an approach to propositionalization are first of
all that for

• effectiveness

• efficiency

• ease of use

By effectiveness, we mean the quality of learning results, e. g. validation error
rates for learned classifiers. A positive effect would be that such an estimate is
significantly lower than those of competing systems.

Efficiency first of all means the time it takes to arrive at the learning results.
In KDD practice, we assume that those times should not exceed a range of several
hours. Of course, less time consumption would be positive. We also compare
efficiency of different approaches.

The criterion of ease of use is more difficult to measure. We do not go beyond
rather general considerations here. We consider essential steps that the user
must take to run the different systems, especially including efforts for a further
preparation of the data and for setting parameters.

We call these three points of effectiveness, efficiency, and ease of use the 3E
criteria. We will consider these properties in this and the following chapters.

De Raedt [107] showed that propositionalization produces an explosive num-
ber of features, if information from the original multi-relational representation of
data is to be preserved completely, i. e. without information loss, in the general
case. Here, information loss means that the original data cannot be recovered
from results of propositionalization. However, acceptance of a certain information
loss caused by heuristic restrictions to propositionalization led to many interest-
ing results.

As a further motivation for the consideration of propositionalization, we see
the following points. The result of propositionalization can be the input to a wide
spectrum of data mining systems, according to the preferences of the user or to
availability. Those conventional data mining systems often show high efficiency
as well.

Moreover, a data mining system can easily be used with different parame-
terizations on a propositionalization result. This is suggested by KDD process
models with the loops contained therein. Such loops are often useful according
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to the experience of the author as well. Experience was gathered during the
CoIL Challenge 2000 [63], KDD Cups 2001, 2002 and 2003 [22, 64, 68, 69, 70],
Data Mining Cups 2002 and 2003 [66] and SAS Mining Challenges 2002 and 2003
[65, 44, 42, 43].

In ILP [77], advantages of propositionalization over traditional approaches
are identified in a more flexible usage of negation, and the opportunity to build
libraries of constructed features for similar types of tasks. The main drawback
of propositionalization is seen here in the inability to learn recursive clauses.

Further disadvantages of the approach can be seen in the extra efforts that
are necessary for managing the results of propositionalization, although it can be
also an advantage to have a well-organized archive of data sets for data mining.

Another, more basic problem of the approach is that of information loss during
the transformation process. This can be at least theoretically so severe that
effectivity cannot be guaranteed. Nevertheless, we will show empirically that
competitive results can be reached despite the problem of information loss.

Still, it might offer a higher flexibility to learn directly from relational data
as originally intended by traditional ILP systems. For these reasons, we include
applications of such systems into our experiments.

3.1 A Framework for Propositionalization

In this section, ideas from our earlier work [71] are further developed into a
framework for propositionalization to accommodate the traditional approaches
and their follow-up systems.

As usual in ILP, we assume here that we are given a set of positive examples
E+, a set of negative examples E−, and background knowledge B. Since we are
mainly dealing with data originating in relational databases, we will assume that
E+ is a set of ground p-atoms, i. e., atoms the predicate of which is the target
predicate p (of arity a). Similarly, E− is a set of ground negated p-atoms, and B
is a set of ground atoms using different background knowledge predicates.

Of course, there can be sources of data and knowledge different from relational
databases. In the more general case of logic programming, there could thus arise
structured facts, possibly non-ground, and rules as well. For these cases, methods
such as flattening were proposed before, e. g. sketched by Lavrač and Flach [77],
or for finding h-easy ground models [89].

Although these methods form a first occasion for the loss of information, we
transform other kinds of representations of examples and background knowledge
into ground facts before propositionalization. This provides a unified starting
point and we will further exemplify the usefulness of this step later on in the
sections on our empirical work.

The learning task can now be adopted from Definition 3. There, E is a set
of tuples or feature vectors. Here, E+ and E− are sets of first-order atoms. So
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we use E with a slight difference here, by defining E = E+ ∪ E−. Differences in
meaning such as this one should be clarified by the context of the usage of our
nomenclature. In addition to E, background knowledge B can now be used for
learning. Thus, Definition 3 is adopted to

• Given: E+, E−, B as described above.

• Find: A hypothesis h from a set of allowed hypotheses L such that the
error of h on future instances is minimized.

Since all examples show the same predicate symbol, we also call this learning
task the single-predicate learning task.1 Actually, we are ultimately not restricted
to concept or classifier learning but could also easily adopt to clustering tasks,
for instance, as will be shown later in this section.

In ILP, h is usually a set of first-order clauses, and a new instance is classified
as positive if and only if it is covered by this set of clauses. In a transformation-
based approach to ILP, on the other hand, we assume we are given a transforma-
tion function τ which transforms the given E+, E−, and B into a single propo-
sitional table. One then uses a propositional learner on this table, producing a
propositional hypothesis h which can then be used to classify future instances,
which of course first need to be transformed by τ as well.

Depending on the transformation and the propositional learner that are used,
in certain cases it is even possible to transform the propositional learning re-
sults back into an equivalent clausal theory [75, 76]. Here, a restriction applies
concerning propositional learners. Their results must have the form of rules or
— as in the case of trees — it must be possible to convert the propositional
learning results into rules. Conventional support vector machines, for instance,
cannot be used since their results cannot be converted into first-order rules in a
straightforward way.

In principle, designers of transformation-based ILP systems are not restricted
to any particular form of τ functions. In practice, it is commonplace to base the
transformation on an implicit first-order hypothesis space L, and use the literals
and variable bindings of the clauses in L to define the transformation.

For example, in the pioneering work on Linus [75], a space of constrained
clauses was used, whereas in its successor system Dinus [76], a space of determi-
nate clauses [89] was used instead. As an alternative, if selected arbitrary clauses
are used, one can apply existential transformations and use the clauses as binary
features [61, 77].

1Note that the information about examples being positive or negative can be contained in
an extra argument of example atoms, rather than expressed by their membership to E

+ or E
−.

In relational databases, the situation with extra arguments seems more common. Such extra
arguments can also contain more than two class labels, or even numeric values.
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In order to better understand the framework, and to allow for an easier de-
scription of our own work, we will now describe this process of defining transfor-
mation functions in more detail.

We will start by assuming that we are given a set C of clauses upon which
feature generation is to be based. Note that C can be a systematically defined
entire hypothesis space, but could also consist of a few selected clauses, so the
following formalization also covers the case of using individual clauses, perhaps
learned by a non-transformation-based ILP learner. As a piece of notation, for a
target predicate p of arity a, let

⊤ := p(X1, ..., Xa) (3.1)

denote the most general p-atom. Since we are considering a single predicate
learning task, we can assume without loss of generality that all C ∈ C have ⊤ as
head.

Let vars(C) denote the ordered set of variables of C. For a clause C with

vars(C) = {Y1, ..., Ym} (3.2)

and a ground p-atom e, let

val(C, e, B) := {(Y1σ, ..., Ymσ) | Cσ ⊆ B ∪ {e}} (3.3)

denote the different value combinations assumed by the variables of C when
matching the clause head against the example and the clause body against the
background knowledge. For determinate clauses as described in Section 2.3,
val(C, e, B) either contains exactly one tuple or is empty.

We can now define a propositionalization function ϕ as follows:

ϕ : C, val(C, e, B) 7→ (v1, ..., vnϕ,C
) . (3.4)

In other words, ϕ produces the tuple of desired feature values for an example e
with respect to the literals and variable bindings of the clause C considering back-
ground knowledge B. C as first argument can be necessary in case val(C, e, B)
is the empty set, e. g. for producing a tuple of nϕ,C symbols for missing values.

Sometimes, it will be useful to also have a function which generates not the
individual feature values, but the list of names (and types) of the features that
are the result of propositionalizing based on C:

Φ : C 7→ Att1, ..., Attnϕ,C
. (3.5)

In a propositional table, all examples must have the same attributes. For that
reason, Φ and the width of ϕ must not depend on e. Further, we assume that the
variables of each clause are typed, so ϕ and Φ can make use of this information
when performing the propositionalization.

The following example is the transformation used by Kramer [61] and Lavrač
and Flach [77] on selected (parts of) clauses to transform them into binary fea-
tures.



3.1. A FRAMEWORK FOR PROPOSITIONALIZATION 35

Existential Features This transformation simply records whether C can be
matched against the example e and background knowledge B:

ϕ∃(C, val(C, e, B)) :=

{

(1) if | val(C, e, B) |> 0 ,
(0) otherwise.

(3.6)

Counting Features As a slight generalization of the previous example, the fol-
lowing function counts how often C can be matched against the example e
and background knowledge B:

ϕ#(C, val(C, e, B)) := (| val(C, e, B) |) . (3.7)

In order to define the complete row of features corresponding to a particu-
lar example, we simply concatenate the features generated with respect to each
clause in C with the values of the variables in ⊤. For a p-atom e = ⊤σ, the
propositionalization with respect to C is defined as follows:

prop(C, e, B) := (X1σ, ..., Xaσ)
⊕

C∈C

ϕ(C, val(C, e, B)) , (3.8)

where
⊕

denotes tuple concatenation.
Finally, the propositionalized table of examples is defined as the union of all

example propositionalizations, adding in the class attribute2:

τ(C, E+, E−, B) := {prop(C, e, B)⊕(1) | e ∈ E+}∪{prop(C, e, B)⊕(0) | ¬e ∈ E−} .
(3.9)

Two remarks are in order here. First, the union operator should be applied
only if all example descriptions are different, which would be the case if identifier
values are included. Identifiers could also be produced by simply enumerating the
examples. Otherwise, multisets should be used. Second, in the case of missing
class information, e. g. for clustering tasks, the last step of adding a class attribute
is omitted.

So far, background knowledge B was presented as consisting of non-target
predicate definitions, as found in a relational database as non-target tables, for
instance. This is not supposed to exclude the case where further predicates are
introduced, e. g. special predicates such as =/2 or new relations as materialized
views in a relational database. Such a further relation can even be produced by
propositionalization as suggested above. This accommodates approaches such as
those provided by Knobbe et al. [54]. However, we will show that this additional
complexity should be integrated with care, see Chapter 4.

Our framework presents propositionalization as a process that leads from
originally relational data to a single table representation of those data. In this

2Note that this definition can easily be adapted to the case where one of the arguments of
⊤ is the attribute to be predicted, cf. Footnote 1. Here, adding in the class attribute is simply
left out, since class information is already contained in the corresponding argument.
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section, we have focused on the central steps of propositionalization. In practice,
specific pre-processing of the input and post-processing of the output of those
central steps are useful. We will return to these issues in Chapter 5.

Here, we only mention that the original data should be first prepared such
that the results for certain queries derived from clauses in C can be computed
efficiently. Those query results have then to be condensed by some function ϕ
and joined into a single table as achieved above by prop and τ . This single table
may be further processed e. g. by special feature construction and feature subset
selection methods to arrive at appropriate inputs for conventional KDD systems.
Their output may finally be transformed back into relational knowledge such as
first-order theories.

3.2 Traditional Approaches to Propositionaliza-

tion

There are a number of existing approaches to propositionalization that apply
heuristic restrictions to the process, thus allowing for a certain amount of in-
formation loss. Nevertheless, those approaches arrive in many cases at both
theoretically and practically interesting results.

This section examines such methods. Going beyond the original presentations
of the approaches, they are described here in a unified way within the framework
presented above. We place a special focus on the pioneering systems Linus

and Dinus because they were especially influential for the area of research into
propositionalization. They are also used in our empirical work.

3.2.1 Linus

Linus was first presented in detail by Lavrač [75] in 1990. It generalized ideas
from Bratko and colleagues [18] that were applied for expert system design in a
medical domain, especially the algorithm QuMAS (Qualitative Model Acquisition
System). An introductory presentation of Linus was provided by Lavrač and
Džeroski in Section 5.4 of their book on ILP [76]. In the following, relevant parts
of that presentation are adopted in the sense of our framework.

Examples in E+ and E− are ground facts and may contain structured, but
non-recursive terms. As such, they are DHDB clauses, cf. Definition 5. The
training examples provide an extensional definition of the target predicate p/a.
The learning task is to find an intensional definition of this predicate that can be
applied to unseen instances. Ultimately, this corresponds to the learning task as
defined in our framework.

Background knowledge B can have the form of DDB clauses, cf. Definition 4.
It may be non-ground, i. e. intensional, and possibly recursive. Furthermore, a
symmetric predicate equals =/2 is a built-in predicate in Linus and applicable to
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variables of the same type. It adds both expressivity and complexity. According
to tasks described in the ILP book [76], background knowledge is frequently in
the form of ground facts and non-structured. The same applies to examples. This
form is also suggested as advantageous within our framework.

Clauses for the clause set C in the sense of our framework take the form

p(X1, ..., Xa) : − < Atom > . (3.10)

where < Atom > can be one of the following

1. a positive constrained literal, cf. Definition 6, e. g. q(Xi, Xj) or Xi = Xj

with 1 ≤ i, j ≤ a, or

2. a positive determinate literal, cf. Definition 7, e. g. r(Xi, Xj , Y ) with 1 ≤
i, j ≤ a where Y has a unique binding given bindings of Xi and Xj .

Clause generation for C is typically exhaustive. That means, all possible ap-
plications of background predicates on the arguments of the target relation are
computed, considering types. Each such possible application results in an at-
tribute. For determinate body literals with more than one new variable, the cor-
responding number of new attributes is produced. Tuple construction is achieved
by calling the corresponding predicates for each target relation tuple.

If a call of a constrained clause C ∈ C succeeds for an example, the corre-
sponding feature value is set to true, else to false. This can be seen as an ex-
istential feature in the sense of the framework presented above. More elaborate,
val(C, e, B) contains at most one element, because of the usage of a constrained
clause. With C and val(C, e, B) as argument, ϕ∃ is applied as presented in our
framework.

If a call of a determinate clause C ∈ C succeeds for an example, the corre-
sponding feature value(s) is / are set to the values of the new variable(s) of the
body literal. More elaborate, val(C, e, B) contains at most one element, because
of determinacy. The propositionalization function used here is identity ϕid, i. e.
values of new variables in determinate literals are directly used as new attribute
values.

After propositional rule or tree learning, learning results are converted back
into a first-order theory. Clauses building the final Linus theories have again
p(X1, ..., Xa) as head. The body of a clause in a hypothesis is a conjunction of
literals that can take the following forms.

1. a binding of a variable to a value, e. g. Xi = x with 1 ≤ i ≤ a,

2. an equality of pairs of variables occurring in the head of the clause, e. g.
Xi = Xj with 1 ≤ i, j ≤ a,

3. a positive constrained literal, e. g. q(Xi, Xj) with 1 ≤ i, j ≤ a, and
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4. a positive determinate literal and further literals to bind its new variables,
e. g. f(Xi, Xj, Y ), Y = y with 1 ≤ i, j ≤ a.

Thus, hypotheses take the form of constrained DHDB clauses. For (1) and
numeric X, Xi > x and Xi < x are also allowed, analogous for (4) and numeric
y. For guidance of induction by reducing the search space, any subset of the four
cases can be excluded. For instance, focusing on (1) finally yields an attribute-
value language, i. e. learning from the target relation only. So, the language bias
in Linus is declarative.

In the literature, there is often a restriction to (2) and (3), i. e. function-
free clauses, which causes propositionalization results to be based on constrained
clauses only, and hence such a table is completely Boolean.

Post-processing within Linus especially involves irrelevant literal elimination.
The treatment of irrelevancy is dealt with in this dissertation below.

We now illustrate with an example, which is adopted from Section 5.3.2 in
the ILP book [76].

Example 8 The target relation is daughter(X,Y) and means that person X is
the daughter of person Y. The task is to define the target relation with the help of
the background knowledge relations female, male, and parent. All variables are
of type person = {ann, eve, pat, sue, tom}. Figure 3.1 shows the input data.

Training examples

daughter(sue,eve). pos 
daughter(ann,pat). pos
daughter(tom,ann). neg 
daughter(eve,ann). neg 

male(pat).
male(tom).

female(ann).
female(sue).
female(eve).

parent(eve,sue).
parent(ann,tom).
parent(pat,ann).
parent(tom,sue).

Background knowledge

Figure 3.1: A daughter family relationship problem in Prolog form

C contains the following clauses, here excluding =/2:

1. daughter(X,Y) :- female(X).

2. daughter(X,Y) :- female(Y).

3. daughter(X,Y) :- male(X).

4. daughter(X,Y) :- male(Y).

5. daughter(X,Y) :- parent(X,X).

6. daughter(X,Y) :- parent(X,Y).

7. daughter(X,Y) :- parent(Y,X).
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8. daughter(X,Y) :- parent(Y,Y).

Figure 3.2 shows the results of the application of the background knowledge
predicates in the form of the clauses in C, with f for female, m for male, and p
for parent.

Variables

sue
ann
tom
eve

classf(X)

eve
pat
ann
ann

f(Y) m(X) m(Y) p(X,X) p(X,Y)

0
0
0
0

1
1
1
0

0
0
0
0

0
0
0
0

0
1
0
0

0
0
1
0

1
0
1
1

1
1
0
1

pos
pos
neg
neg

p(Y,Y)p(Y,X)YX

Propositional features

Figure 3.2: Propositional form of the daughter relationship problem (1 for true,
0 for false)

Note that there are examples of redundant features given here, e. g. male
because it is the complement of female, or parent(X,X) because the set of its pos-
sible values is a singleton that cannot differentiate between positive and negative
examples.

From the propositional representation, an attribute value learner may induce
a rule such as the following:

if [female(X) = 1] and [parent(Y,X) = 1] then class = pos

This can be transformed into the following DHDB clause as the output of
Linus:

daughter(X,Y) :- female(X), parent(Y,X).

To demonstrate limitations of the approach, we investigate its application to
our running example.

Example 9 Here, we assume that only two types numeric and nominal are de-
fined for the running example database. Table T is here referred to by the predicate
symbol t. It has three numeric arguments in the first argument positions and one
nominal argument in the last argument position.
C would then contain the following constrained clauses:

t(W,X,Y,Z) :- a(W,W,W,W,Z).

t(W,X,Y,Z) :- a(W,W,W,X,Z).

t(W,X,Y,Z) :- a(W,W,W,Y,Z).

t(W,X,Y,Z) :- a(W,W,X,W,Z).

t(W,X,Y,Z) :- a(W,W,X,X,Z).
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...

t(W,X,Y,Z) :- a(Y,Y,Y,Y,Z).

...

t(W,X,Y,Z) :- b(W,W,W,Z).

...

In the first clause, the variable W for the first numeric argument of t is used to
fill all argument places for a, where numeric values are needed. For the nominal
arguments — the last in both relations — the same variable must be shared, here
Z. In the following clauses, other combinations of shared variables are used.

These clauses are semantically questionable because there are unifications of
unrelated arguments, e. g. for the first clause, the fourth argument of relation a
is a descriptive attribute of objects of kind a, which has nothing to do with the
identifier attribute of relation t in t’s first argument position, but the literals for
t and a share a variable in the corresponding argument positions.

Of course, we could define types differently, e. g. based on the names of at-
tributes. In this case, C would be empty since each non-target relation encom-
passes at least one attribute not contained in the target relation. Thus, no variable
could be shared here between head and body of a clause. Overall, the application
of Linus seems not appropriate here.

We will return to the case of determinate clauses in C in the context of Dinus.

To finish this section, we investigate complexity issues of Linus. This com-
plexity originates strongly from the usage of variable permutations in the con-
strained clauses of C. According to Section 5.5 of the ILP book [76] relevant
aspects are the following. Given

• u as the number of distinct types of arguments of the target predicate p

• ui as the number of distinct types of arguments of a background predicate
qi

• ni,s as the number of arguments of qi of a type Ts

• kArgTs
as the number of arguments of p of type Ts

Then, the number of new attributes derived from qi is computed by the fol-
lowing formula:

kNew,qi
=

ui
∏

s=1

(kArgTs
)ni,s (3.11)

This means that the ni,s places for arguments of qi of type Ts can be filled in
(kArgTs

)ni,s ways independently from choosing the arguments of qi which are of
different types.
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We point to the circumstance that results are the same for the usage of de-
terminate literals in C, considering old variables only. New variables have no
significant influence on the complexity of C generation. The same names of new
variables can be used in clauses that differ in their usage of old variables only.

If the built-in background predicate for equality =/2 is used, its symmetry is
important and thus the number of possible applications amounts to:

kNew,= =
u
∑

s=1

(

kArgTs

2

)

=
u
∑

s=1

kArgTs
· (kArgTs

− 1)

2
(3.12)

Sums over such terms for all background knowledge predicates, i. e. for all
clauses C ∈ C lead to the final number of newly derived attributes, which is
exponential in the number of body literal arguments of the same type. This
demonstrates aspects of the complexity of the generation of clauses for C.

The application of clauses C ∈ C is less complex. Before a constrained clause
is applied for a certain example e, all variables in the clause are instantiated. The
body literal L of C thus becomes ground. It remains to be checked if B contains
L. For a clause C known to be determinate, the first matching fact in B for the
body literal of C can be found with the same complexity, which is polynomial in
the number of old variables in L.

3.2.2 Dinus

Ideas for the Dinus approach were first published in 1992 . The presentation of
Dinus provided here is adopted from Section 5.7 of the ILP book by Lavrač and
Džeroski [76].

The hypothesis language bias of constrained clauses for Linus can be weak-
ened to i-determinate clauses, cf. Section 2.3, as implemented in the system
Dinus.

Dinus accepts the same input as Linus, i. e. examples in the form of DHDB
clauses and background knowledge in the from of DDB clauses. Let us first con-
sider the case of generating function-free hypotheses. These presuppose Boolean
tables as results from propositionalization.

Clauses C ∈ C take a special form for Dinus, viz.

p(X1, . . . , Xn) : − q1(Xa, . . . , Xb, Yc, . . . , Yd),

. . . ,

qm(Xe, . . . , Xf , Yg, . . . , Yh),

qo(Xi, . . . , Xj).

where p is the target predicate and qx are background knowledge predicates.
Literals q1 to qm are determinate literals that deliver the values of new variables Yl
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based on bindings of old variables Xk. Literal qo does not introduce new variables
but just consumes old variables.

Note that m = 0 is not excluded, though unusual: it would produce a con-
strained clause C ∈ C as used for Linus. Further, qo can be left out, though not
in the function-free case. We return to this issue below in this section.

As for Linus, if a call of a clause in C succeeds for an example, the corre-
sponding feature value is set to true, else to false. This can be seen as an exis-
tential feature in the sense of the framework presented above. Again, val(C, e, B)
contains at most one element, because of determinacy. Then, ϕ∃ is applied as
presented in our framework.

The other steps of the Dinus process correspond to those of the Linus al-
gorithm. The Dinus output takes the form of non-recursive determinate DDB
clauses with p(X1, X2, ..., Xn) in the head. Converting propositional rules back
into first-order rules is based on C again. Also, post-processing steps such as
irrelevant literal elimination are analogous to those for Linus.

The following example is adopted from sections 5.6.2 and 5.7.1 in [76].

Example 10 The target relation is grandmother(X,Y) and means that person
X is the grandmother of person Y. The task is to define the target relation with
the help of the background knowledge relations father and mother. All variables
are of type person. To keep the example simple, i-determinacy is used here with
i = 1. Figure 3.3 shows the input data.

Training examples

father(zak,jim).
mother(ann,jim).
father(jim,dave).
mother(jean,dave).

father(pat,ann).
mother(liz,ann).
father(tom,bob).
mother(eve,bob).

father(zak,tom).
mother(ann,tom).
father(tom,sue).
mother(eve,sue).

Background knowledge

grandmother(ann,bob). pos 
grandmother(ann,sue). pos 
grandmother(bob,sue). neg 
grandmother(tom,bob). neg 

Figure 3.3: A grandmother family relationship problem in Prolog form

The literal father(X, A), where X is an old variable, i. e. already bound, while
A is a new variable, i. e. to be bound, is not determinate: a person can be father
of more than one child. However, father(A, X) is determinate, since each person
has exactly one father. This way, there are the following determinate literals f(U,
X), f(V, Y), m(W, X), m(Z, Y) that can be used as a first body literal of a clause
C ∈ C, where f stands for father and m for mother.

Those determinate literals contain the variables X, Y, U, V, W, Z that can be
used in the last literal of a clause C ∈ C. Thus, last literals for bodies are the
following: f(U, U), f(U, V), f(U, W), . . . Here, from the Cartesian product of the
set of variables with itself, only those combinations of variables are missing that
occur as argument pairs in the four determinate literals listed above. An element
from the set of possible last literals can be introduced, subject to the restriction to
contain old variables only.

Thus, C contains clauses:
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1. grandmother(X,Y) :- father(U,X), mother(U,U).

2. grandmother(X,Y) :- father(U,X), mother(U,X).

3. grandmother(X,Y) :- father(U,X), mother(U,Y).

4. grandmother(X,Y) :- father(V,Y), mother(V,V).

5. ...

Figure 3.4 shows the results of first determining the values of the variables
with the help of the determinate literals in the clauses in C and then the truth
values for the final literals of those clauses.

Variables

ann
ann
bob
tom

…

Propositional features

bob
sue
sue
bob

… m(X,V) m(X,Z)f(U,X) f(V,Y)

pat
pat
tom
zak

tom
tom
tom
tom

m(W,X)

New variables

eve
eve
eve
eve

liz
liz
eve
ann

m(Z,Y)

0
0
0
0

1
1
0
0

class

pos
pos
neg
neg

YX

Figure 3.4: Propositional form of the grandmother relationship problem (1 for
true, 0 for false; new variables are listed within the literals that introduce them)

From the propositional representation, an attribute value learner may induce
a rule such as the following:

if [mother(X,V) = 1] then class = pos

This rule is transcribed into the clause:

grandmother(X,Y) :- mother(X,V).

The new variable V must be introduced by a determinate literal, viz. fa-
ther(V,Y). The result is hence:

grandmother(X,Y) :- father(V, Y), mother(X,V).

Obviously, this is not a complete definition of the usual grandmother relation
since the mother’s mother relationship is not included. Since the parts of the
example provided above already illustrate the workings of Dinus sufficiently, we
do not go into more details here.

We demonstrate limitations of Dinus with the help of our running example.
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Example 11 Let us assume that the tables of the running example are completely
specified, i. e. “...” should not be present. Let us further assume two types
numeric and nominal, defined in a way usual for machine learning.

For the construction of C, Dinus would first determine all determinate literals.
The following clauses would be investigated:

t(W,X,Y,Z) :- a(W,A,B,C,D).

t(W,X,Y,Z) :- a(A,W,B,C,D).

...

Remember that the first argument is always an identifier for the elements of the
corresponding relation. While a(W, A, B, C) is determinate, the correspondence
of the identifiers of relation t and relation a is semantically questionable.

On the other hand, a(A, W, B, C) is semantically justified by the correspond-
ing foreign key relationship, but it is not determinate, mirroring the one-to-many-
relationship between t and a.

The only literals which are both semantically justifiable and determinate are
f(X, A, B, C, D) and g(Y, A, B) because of the many-to-one-relationships be-
tween t and f and between t and g.

As a second step, for each clause, a last literal has to be built that consumes
the variables newly introduced by the other literals constructed before. Here, it is
not possible to find any that are semantically justifiable, for the same reasons as
shown above in the process to find determinate literals. Thus, C better remains
empty.

If we define types differently, e. g. based on the names of attributes, C would
again be empty: the last literals of each clause would have to be the same as one of
the literals occurring before in the clause, in order to make type strictness possible.
However, this does not lead to desired results. Overall, the application of Dinus

restricted to function-free clauses as presented above seems not appropriate here.

According to the literature, it seems unusual to drop the restriction to function-
free hypotheses. We drop it for our experimental work. Thus, results of proposi-
tionalization may include non-Boolean features. Here, a clause C ∈ C takes the
form

p(X1, . . . , Xn) : − q1(Xa, . . . , Xb, Yc, . . . , Yd),

. . . ,

qm(Xe, . . . , Xf , Yg, . . . , Yh).

with the same meaning as for the function-free case. Especially, Xk stand
for old variables and Yl for new variables. Note the missing last literal from the
function-free case, qo.
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If a call of a clause C ∈ C succeeds for an example, the corresponding feature
value(s) is / are set to the values of the new variable(s) of the body literal. More
elaborate, val(C, e, B) contains at most one element, because of determinacy.
The propositionalization function used here is identity ϕid, i. e. values of new
variables in determinate literals are directly used as new attribute values.

Thus, this variant corresponds largely to using Linus with determinate clauses
in C. However, Linus is restricted to using only one body literal in each clause
C ∈ C. If this restriction would be alleviated, there would still be the restriction
to 1-determinate clauses in C for Linus.

Example 12 We continue Example 11. If we remove the function-free restric-
tion, we have both the values from t tuples and the values for A, B, C, D from
the application of t(X,Y,Z) :- f(X, A, B, C, D), among others, contained in
the table that results from propositionalization.

The complexity of Dinus originates again strongly from the kind of usage of
variables in the clauses of C. In the general case, C for Dinus is a superset of that
for Linus, such that it is obvious that there is again an exponential behavior of
the number of clauses.

3.2.3 Propositionalization based on Progol

In 1996, Srinivasan and King presented an approach for propositionalization that
uses Progol [88] for propositionalization. Later, an extended description was
provided by the same authors [121]. The authors try to enhance expert provided
features for learning problems in the domain of biochemistry with Boolean fea-
tures constructed from Progol clauses, which are first learned from examples
and background knowledge. Among the learning tasks are some derived from the
Mutagenicity problem [123], cf. Appendix B.

The approach was the first to accommodate arbitrary background knowledge,
i. e. especially the non-determinate case, and it easily extends to other ILP
learning systems and to other domains. Initially, Progol with its usual potential
of inputs, cf. Section 2.3, is used to arrive at clauses that describe properties of
examples in terms of background knowledge. This process is carried out for each
class of examples, with those examples of the focused class as positive examples
and the examples of other classes as negative examples. The clauses do not have
to explain all the examples.

From the clauses learned by Progol, all of which have ⊤ as head, clauses
C ∈ C are derived by using subsets of the body literals, subject to the constraint
that resulting clauses are linked, cf. Definition 8. From those clauses, a sub-
set is selected based on the criterion of compression of the corresponding ILP
clauses. Results of calls of these clauses are again treated with ϕ∃ as shown in
our framework.
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Srinivasan and King provide the following example [121, Fig. 2], here adopted
to our framework.

Example 13 Let us assume, Progol produced the following clause from exam-
ples and background knowledge:

active(A) :- has_rings(A,[R1,R2,R3]), hydrophob(A,H), H > 2.1.

Then, the following clauses are produced as a basis for C.

active(A) :- has_rings(A,[R1,R2,R3]).

active(A) :- hydrophob(A,H).

active(A) :- has_rings(A,[R1,R2,R3]), hydrophob(A,H).

active(A) :- hydrophob(A,H), H > 2.1.

active(A) :- has_rings(A,[R1,R2,R3]), hydrophob(A,H), H > 2.1.

Trivial clauses such as the second, which will usually hold for all molecules, are
discarded by the clause selection procedure mentioned above. The other clauses
are used to compute the corresponding feature values for the examples.

All produced features are Boolean here. Originally, they were used to en-
hance input tables for regression, but they are not limited to that purpose. For
regression, the features turned out to be useful enhancements in some cases.

Complexity of C generation originates mainly from two sources: first, the
application of Progol, to arrive at a set of clauses, which is in a second step
further processed into more clauses used as feature definitions. The user can
restrict especially the size of the latter set of clauses, although finding appropriate
settings might be non-trivial in practice.

Complexity of C application can grow exponentially with the number of back-
ground predicates. More on join complexity will follow in Chapter 5. In practice,
the number of body literals in clauses is restricted by another parameter, which
must be set by the user.

3.2.4 Propositionalization based on Warmr

The approach Warmr for mining association rules in multiple relations was first
presented by Dehaspe and De Raedt in 1997 [27]. More detailed presentations
followed [28].

Different from Progol, Warmr does not intend to learn predictive models
but rather descriptive models. At an early stage of the application of Warmr,
the system constructs queries as conjunctions of literals according to mode and
type declarations similar to those of Progol. Queries that succeed for a suffi-
cient number of examples are further processed, mainly to form so-called query
extensions that correspond to association rules in the single relational case.
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Another way of further processing is taken when those queries are used to
construct Boolean features for the examples. Here, feature values are set to 1
for an example, if the corresponding query succeeds for that example, and to 0
otherwise. The intuition behind the approach lies in the assumption that queries
that succeed with a certain frequency would be a good basis for the construction
of relevant features.

There are hints at the opportunity of this kind of usage of Warmr results in
many papers on that system and also hints at realizations of the approach in the
context of the Predictive Evaluation Challenge [122].

From each query as typical for Warmr, a clause C ∈ C can be constructed
by taking the first literal as head and the remaining literals as body. With such
a construction of C, we have again a correspondence to applying ϕ∃ to results of
calls of the elements of this set as presented in our framework above.

An example provided by Dehaspe and Toivonen [28] is the following.

Example 14 Figure 3.5 shows a Prolog database with customer information.
The headings “training examples” and “background knowledge” are introduced
here to allow for a better comparison with example data provided above in the con-
text of Linus/Dinus. Note that missing class labels would not allow for learning
classifiers here.

Training examples

buys(allen,wine).
buys(bill,cola).
buys(bill,pizza).
buys(diana,pizza).

parent(allen,bill).
parent(allen,carol).
parent(bill,zoe).
parent(carol,diana).

Background knowledge

customer(allen).
customer(bill).
customer(carol).
customer(diana).

Figure 3.5: Prolog database with customer information

From queries that could be produced using appropriate mode and type declara-
tions, we can arrive at the following C.

customer(X) :- parent(X,Y), buys(Y,cola).

customer(X) :- parent(X,Y).

customer(X) :- parent(X,Y), buys(Y,wine).

customer(X) :- buys(X,Y).

Then, the application of our function prop — adopted to the case without
class information — would result in the table as depicted in Fig. 3.6.

Based on results such as the table in the example, learning tasks such as
clustering can be tackled.

The complexity of this method for propositionalization is due to both Warmr

datalog query construction and computing their answers. Especially the latter
might be costly, depending on the number and kind of relations involved. More
information and examples for join complexities follow in Chapter 5.
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Id Q1Attr Q2Attr Q3Attr

1

1

0

1

0

0

0

0

1

1

1

0

Q4Attr

1

0

0

0

allen

bill

carol

diana

Figure 3.6: A table resulting from propositionalization with Warmr for the
customer database

3.2.5 Stochastic Propositionalization

Stochastic Propositionalization (SP) was first presented in 1998 [61]. The pre-
sentation provided here is based on both that paper and the PhD dissertation
by Kramer [58]. SP was the first general-purpose algorithm to deal with non-
determinate background knowledge, without using other ILP systems like Pro-

gol or Warmr.
The algorithm for SP accepts the same kind of inputs as the systems for

propositionalization shown above, and then starts refining the most general clause
⊤ : −true. This is done similar to genetic algorithms. For a good introduction
to genetic algorithms, the reader is referred to the presentation by Mitchell [84].

For a number of steps of SP, a certain percentage of the clauses is removed
probabilistically based on a fitness function and replaced by random refinements
of parent clauses, which are also chosen based on quality considerations.

The refinement operator within SP is defined in terms of schemata, which
declare that certain literals may be added to certain clauses considering variable
bindings and types. For classification, an evaluation of clauses is based on the
Minimum Description Length (MDL) principle as described by Rissanen [110].

The quality of the new generation of clauses is compared to that of the gener-
ation before, to either replace it or not. The fitness of a set of clauses is defined
in a special way.

Note that the clauses handled by SP can be regarded as a set C. Finally, they
are used with ϕ∃ to arrive at Boolean features.

Since there can be a large number of features for a given learning problem,
a selection is proposed to be made based on the following constraints that the
constructed clauses for features should be

C1 not too specific or too general

C2 not too complex

C3 different from one another

C4 different from existing, expert-provided features

The reasons for C3 and C4 seem obvious, viz. the avoidance of redundancy.
However, it is not clear a priori, if C1 and C2 are appropriate constraints in all
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learning situations. They can be regarded as intuitive heuristics that turned out
to be useful in a number of applications.

Those criteria are intended to be fulfilled here by the following measures

C1 parameters control the required minimum and maximum coverage of clauses

C2 the MDL principle is used to evaluate clauses; furthermore, parameters
restrict the maximum number of variables, and no negation is used in the
clauses

C3 the algorithm considers only refinements that yield clauses the extension of
which has to differ in at least one example from the extensions of clauses
in the current population

C4 same measure as for C3

SP was applied, among others, in the Mutagenicity domain [123], for which
the following example was provided.

Example 15 The application of SP resulted in features [58] such as

active(A) :- atm(A, B, _, 27, _),

sym_bond(A, B, C, _),

atm(A, C, _, 29, _).

The corresponding feature is “true” if in compound A there exists a bond
between an atom of type 27 and an atom of type 29.

Note the usage of anonymous variables ” ” here, instead of neglecting values
of new variables, as could be done in other approaches to propositionalization
such as those presented above.

Kramer further points out that a clause C ∈ C should have the ability to
partition the data here, while in usual ILP learning e. g. with Foil, coverage is
the measurement of interest. Further, he shows that SP can be updated to be a
non-propositional ILP learner.

However, in the base version, Kramer [58] mainly applies C4.5rules [104] as
a propositional learner on the result of SP because it outperformed C4.5 as used
before [61]. The learning results are not transformed back into Prolog rules.

The complexity of the algorithm is high as revealed in empirical work. This
could be expected for an approach drawing strongly from ideas in the field of
genetic algorithms.

A positive effect of stochastic refinements can be seen in the potentially deep
features, i. e. those based on clauses from C with many body literals. They would
usually not be produced within other approaches. There, a language bias must
often be chosen that does not allow for clauses with many literals, in order to
achieve any results within an acceptable time at all.
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3.2.6 Extended Transformation Approach

An extension of Linus to allow for learning non-determinate DHDB clauses was
first presented by Flach and Lavrač in 2000 and further elaborated by the same
authors in 2001 [77]. We adopt that presentation here within our framework and
concentrate on the central propositionalization steps.

As input, extended Linus accepts the same kind of descriptions of examples
and background knowledge as the original version of Linus. Those descriptions
can take the form of structured Prolog clauses, usually ground for examples,
possibly non-ground and even recursive for background knowledge.

Usually, the background knowledge predicates take the form of two-place pred-
icates. This cirumstance means no win or loss in expressiveness as we will demon-
strate later in this section.

Clauses C ∈ C then take the following form:

⊤ : − si(X, Y ),

. . . ,

uj(X, a),

. . .

Each clause must be linked, cf. Definition 8. It has ⊤ as head, as formulated
in our framework. Further, the body of each clause C ∈ C contains zero or
more function-free literals, i. e. with two variables as arguments, and one or more
literals with one variable and one constant as arguments.

Literals can also occur in their negated form, which adds to the expressiveness
of the features produced, as emphasized by Lavrač and Flach [77].

Typically, certain syntactic restrictions are put on the clauses C ∈ C, e. g. a
maximum number of literals and/or a maximum number of variables. Within
this bias, the generation of C is usually exhaustive.

As for Linus, if a call of a clause in C succeeds for an example, the correspond-
ing feature value is set to true, else to false. This can be seen as an existential
feature in the sense of the framework presented above. Here, val(C, e, B) will
often be a set of size greater than one because of the allowed non-determinacy.
However, because of the restrictions imposed by the literals containing const-
nants, the set will often be small. In any case, ϕ∃ can be applied here exactly as
presented in our framework.

The following example is provided in section 4.2 of the article by Lavrač and
Flach [77]. It is based on the East-West Challenge [81, 83]. The learning task is to
discover models of low complexity that classify trains as eastbound or westbound.
The problem is illustrated in Figure B.1, cf. Appendix B. The reader can find a
non-flattened representation there, as well.

Example 16 With a flattened representation using non-structured ground facts,
the first train in Figure B.1 can be represented as follows:
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east(t1).

hasCar(t1,c11). hasCar(t1,c12).

cshape(c11,rect). cshape(c12,rect).

clength(c11,short). clength(c12,long).

cwall(c11,single). cwall(c12,single).

croof(c11,none). croof(c12,none).

cwheels(c11,2). cwheels(c12,3).

hasLoad(c11,l11). hasLoad(c12,l12).

lshape(l11,circ). lshape(l12,hexa).

lnumber(l11,1). lnumber(l12,1).

hasCar(t1,c13). hasCar(t1,c14).

cshape(c13,rect). cshape(c14,rect).

clength(c13,short). clength(c14,long).

cwall(c13,single). cwall(c14,single).

croof(c13,peak). croof(c14,none).

cwheels(c13,2). cwheels(c14,2).

hasLoad(c13,l13). hasLoad(c14,l14).

lshape(l13,tria). lshape(l14,rect).

lnumber(l13,1). lnumber(l14,3).

Non-flattened and flattened representations are not equivalent here, since or-
der information is missing in the latter. This is one of the occasions of informa-
tion loss during preparation of the data for propositionalization as pointed to in
the description of our framework.

Literals can be introduced into a clause C ∈ C according to type restrictions
and up to certain numbers of literals and variables. For instance, in such a
bias allowing for 3 literals and 2 variables and with the flattened representation,
clauses for C as the following can be constructed.

east(T) :- hasCar(T,C), clength(C,short).

east(T) :- hasCar(T,C), not croof(C,none).

For the trains example, there are 190 such clauses with up to two literals with
constants, and with up to two body variables that not occur in the head.

Lavrač and Flach [77] report, that they applied CN2 on the Boolean table
resulting from the calls of C ∈ C and finally arrived at the following rule, among
others, where each body line mirrors a clause C ∈ C:

east(T):-

hasCar(T,C1),hasLoad(C1,L1),lshape(L1,tria),lnumber(L1,1),

not (hasCar(T,C2),clength(C2,long),croof(C2,jagged)),

not (hasCar(T,C3),hasLoad(C3,L3),clength(C3,long),lshape(L3,circ)).
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If negation is allowed within features, the following simple rule is induced:

east(T):-

hasCar(T,C),clength(C,short),not croof(C,none).

This means that a train is eastbound if and only if it has a short closed car.
Note the usage of the 10-trains-problem here, in contrast to the 20-trains-problem
as dealt with below in our experimental sections.

In the following, we continue the example, investigating another representa-
tion of the examples and background knowledge, which is accommodated by our
framework.

Example 17 For the trains problem, a typical representation in a relational
database would use two or three relations: train, car, and possibly load, cf.
Appendix B. (The relation for trains contains class information in an extra at-
tribute, here.) Thus, in C there would be the following clauses instead of those
given above, making use of anonymous variables.

train(T,Bound) :- car(_,T,_,short,_,_,_).

train(T,Bound) :- not car(_,T,_,_,_,none,_).

A transformation from the relational database representation to two place
predicates is simple, consider the following example.

hasCar(T,C) :- train(T,_), car(T,C,_,_,_,_,_).

clenght(C,L) :- car(_,C,_,L,_,_,_).

A transformation such as this is discussed by Morik and Brockhausen [85],
there as “mapping 2” of several possible mappings from a relational database to
logical representations. However, this transformation adds to the complexity of
the procedure and maybe forces the user to make the appropriate declarations.

Declarations could be produced automatically though, making use of attribute
name information from the relational database schema, among others, as actually
done for our experiments below, cf. Appendix A.

A non-flattened, term-based representation can also be constructed from a
relational database, when row numbers indicate orders e. g. of cars in trains.

We now demonstrate the special power of extended Linus with the help of
our running example.

Example 18 With the appropriate declarations of types, background knowledge
predicates, and parameter settings for maximum number of literals and variables
in the clauses C ∈ C, extended Linus can build a number of clauses for C from
the running example database, e. g. the following, very much like it treated the
trains problem above, here in the notation favored for the framework.
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t(T,_,_,Class) :- a(A,T,_,_,y), b(_,A,300,_).

This feature definition would — with respect to each example — ask for a
related substructure in relation a to have value y for attribute A cat and to have
a further substructure described in relation b which in turn shows value 300 for
attribute B num.

Meanwhile, there are several implementations of the extended Linus approach
available, e. g. the system Rsd [78], and also the system Sinus [67]. These sys-
tems implement advanced strategies to deal with the complexity of the approach.
For instance, Rsd implements a search for clauses in C that uses class informa-
tion. This allows for the application of pruning strategies. It can be seen as a
form of supervised propositionalization.

In general, apart from the possibly critical number of clauses in C, processing
of those clauses, i. e. their calls, can become expensive, cf. considerations of joins
in Chapter 5.

3.2.7 Further Approaches

RL-ICET

For the East-West Challenge in 1994 [83], cf. Appendix B, Turney developed
a solution that can be seen as a first instance of propositionalization for non-
determinate background knowledge [126], although in a task-specific way. For his
system RL-ICET (Relational Learning with ICET, a hybrid of a genetic algorithm
and a decision tree induction algorithm), Turney preprocesses the trains data with
a strong influence of the challenge task documentation. For instance, he defines
clauses equivalent to a clause C ∈ C as in our framework:

trains(T,Bound) :- has_car(T,C), ellipse(C).

to test for the circumstance that an arbitrary car of a train has elliptical
shape. Again, the application of this clause conforms to our ϕ∃. Turney reports
that he defined at first 28 such clauses or features, respectively, obviously for the
different values the attributes such as shape can take. Then, he combined bodies
of those clauses conjunctively, e. g. for ellipse triangle load to test for a car with
elliptical shape and a load of triangle shape, into 378 more clauses.

In addition, Turney introduced a special predicate infront(T,C1,C2) to form
even more features such as u shaped infront peaked roof, resulting in 784 more
clauses. Finally, he added 9 clauses for general features of trains such as trains 4
to become true iff a train has exactly 4 cars. Overall, 1,199 clauses were used.

The binary features are then input for propositional learning, more precisely
decision tree learning. Learning takes the complexity of the clauses in C into
account as well, in terms of the number of their literals and terms. This is done
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to achieve the final aim of a less complex theory, which in turn is achieved by
building Prolog rules manually from the decision trees that were learned.

In conclusion on RL-ICET, extended Linus as presented above can be seen
as a generalization of Turney’s special purpose approach.

Bottom-up Propositionalization

Bottom-up propositionalization was presented by Kramer and Frank in 2000 [59].
It is tailored for biochemical databases. More specifically, the objective is the
discovery of frequent 2D fragments in molecules. Search proceeds in a domain-
specific way.

The approach is related to both Progol and Warmr. First, because the
generation of fragment features is controlled bottom-up, i. e. example-/data-
driven, as in Progol, to generate only fragments that really exist in the data.
Second, the aim to discover frequent items is also an objective for Warmr,
resulting in specific approaches.

The generated fragments can be regarded as clauses C ∈ C that are handled
with ϕ∃ from our framework. It is also interesting to note that support-vector
machines are applied here, because they are supposed to be able to deal with a
large number of moderately relevant features. A conversion of the learning results
back to Prolog form is not intended here.

In 2001, Kramer and De Raedt presented more work on feature construction
in biochemical domains [62]. Here, the user can specify constraints such as on
the frequency of features, also separately for positive and negative examples,
and on the generality of features. The solution space for such constraints is a
version space, cf. Mitchell [84], which makes it possible to apply corresponding
algorithms.

Empirical work shows that models can be found efficiently here, which are
competitive with results of other approaches, e. g. with accuracies of more than
93% on the Mutagenesis data set with 188 examples, cf. Appendix B and our em-
pirical results for this learning task. However, the restriction to the biochemical
domain seems strong for the approach.

Lazy Propositionalization

Alphonse and Rouveirol introduced another kind of propositionalization called
lazy propositionalization [4]. It is different from the approaches presented so
far in several aspects. First, there is usually more than one tuple constructed
from the relational representation of an example. This excludes the application
of conventional data mining systems. Thus, it is not propositionalization in our
sense, cf. Definition 9. Second, not all examples are processed, but decisions are
taken during AQ-like learning, which Boolean examples should be produced to
effectively and efficiently discriminate classes.
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The authors point out that FOL learning problems can be decomposed into
two sub-problems, viz. a relational or structural one and a functional one. While
the first leads to the construction of Boolean features, the second leads to also
otherwise valued features. However, the focus of their research is then put on the
relational part such that we have again an instance of the framework using ϕ∃,
where clauses C ∈ C are constructed from structured examples.

The system Propal implements the ideas of lazy propositionalization. A
result on the Mutagenesis problem (188 instances) is reported, viz. an accuracy
of 83%, which is competitive compared to the general purpose ILP systems Foil,
Progol, and Tilde.

Latest Developments

An approach to propositionalization for clustering is introduced by Bournaud and
colleagues [17]. The authors deal with a graphical formalism and search example
graphs for subgraphs of decreasing abstraction levels. Subgraph descriptions
can be reformulated as clauses, such that we have again a case of a certain
construction of a set C as a basis for propositionalization and ϕ∃ as a main part
of the propositionalization function. Experiments were carried out to cluster
Chinese characters.

Following ideas of Warmr, Blaťák and Popeĺınsky [12] propose a partial
search for maximal queries for propositionalization. They show its applicability
and results for the Mutagenicity problem, among others. The authors focus on the
learning problem with 188 examples, cf. Appendix B and elsewhere in this thesis.
They achieve accuracies of up to almost 88%. However, the algorithm seems
complex considering the long execution times provided here with > 10,000 sec.

Pfahringer and Holmes [98] again work in a graph-oriented formalism and
especially on biochemical learning problems with their approach to proposition-
alization by stochastic discrimination (SD). A construction of subgraphs is guided
by examples, similar to the workings of Progol. Those subgraphs can again be
regarded as a different notation for clauses C ∈ C, and ϕ∃ is applied. Remarkably,
extensive use of counts of subgraphs is also made for the propositionalization re-
sults, i. e. ϕ# as given as an example in the presentation of our framework above.
For the Mutagenicity problem (188 examples), they report better results for us-
ing counts than for using Boolean features only, up to an accuracy of more than
87%. Runtimes are not provided here.

3.3 Summary

As was shown in this chapter, there are a series of different approaches to propo-
sitionalization in the context of Inductive Logic Programming. Still, the variants
are not exhaustively investigated, consider the following example. In a simi-
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Table 3.1: Properties of approaches to propositionalization (grouping for better
readability)

Approach Year Domain Complete Supervised Hypo.-Language
QuMAS 1989 medical n. i. n. i. not investigated
Linus 1990 general possible no constrained
Dinus 1992 general possible no determinate
RL-ICET 1995 trains no no domain-specific
Progol 1996 general no yes arbitrary
Warmr 1997 general possible possible arbitrary
SP 1998 general no yes arbitrary
Ext. Linus 2000 general no no arbitrary
Bottom-up 2000 biochem. no yes domain-specific
Propal 2000 general no yes arbitrary
RSD 2002 general no yes arbitrary
SD 2003 biochem. no no domain-specific

lar way to the usage of Progol and Warmr for propositionalization, other
systems such as Midos [133] could be used for propositionalization. Here, super-
vised learning of local models with descriptive character could be an interesting
starting point.

Table 3.1 gives an overview of properties of approaches to propositionaliza-
tion. We see a continuing effort to develop approaches in the field within the
last nearly 20 years. Originating from special-purpose approaches, general ap-
plicability was achieved for some approaches. Domain-specific systems remain
competitive, though. Usually, systems have to abstain from completeness for
efficiency reasons.

Depending on the supervised or unsupervised character of propositionaliza-
tion, care must be taken of the details of learning, e. g. the moment when to
partition data for cross-validation. This should happen before propositionaliza-
tion for supervised methods. It can be after propositionalization for unsupervised
methods. Finally, the approaches can be distinguished with respect to the differ-
ent expressive power of their inputs and outputs.

We observe for the traditional approaches to propositionalization that they
usually have the potential for producing non-Boolean features. However, this is
rarely used. Exactly this predominant usage of ϕ∃ as mentioned in our framework
leads us to see all those approaches in the Linus tradition, hence the qualification
as “traditional”.

The complexity of the approaches is usually high, often exponential in param-
eters such as the number of variables of the same type or the number of relations,
in at least one of the two phases clause generation or clause application.
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With respect to the 3E criteria, the approaches dealt with in this chapter
have shown remarkable effectiveness. Efficiency was often not in the focus of the
earlier investigations. Observing complexities of the algorithms, efficiency is not
satisfactory yet. The same holds for usability, where some systems cannot be
applied to relevant real-life databases, especially those with high degrees of non-
determinacy in the data, while others demand for partly laborios and ultimately
non-trivial specifications of restrictions for languages and search processes.

Considering the criteria for a framework that were formulated at the begin-
ning of this chapter, our framework largely fulfilled the first two criteria. The
framework allowed for precise and unified descriptions of the essentials of dif-
ferent approaches to propositionalization. Also, a comparison of the approaches
under a series of viewpoints as exemplified by the usage of different kinds of ϕ
for propositionalization was possible.

The third criterion w. r. t. extensibility of existing approaches is the topic of
the following chapter.



Chapter 4

Aggregation-based
Propositionalization

In this chapter, we present our approach to propositionalization, which builds up
on our framework presented in the preceding chapter. The main objective of our
approach is to arrive at better 3E properties.

First, we introduce our ideas for sets of clauses C for propositionalization.
Here, we exploit foreign links as introduced for the system Midos [133]. We
further use functional dependencies between relations or rather their elements
[71]. This topic has a strong influence on efficiency of the approach.

Second, we explain our choices of functions ϕ for propositionalization, which
are influenced by the frequent usage of aggregate functions in database systems.
Based on these components, we describe our algorithm for propositionalization
[71]. This subject is most relevant for effectivity of propositionalization.

Third, two closely related approaches — RollUp [54] and Relational Concept
Classes [96] — are reviewed and compared to our approach.

Finally, we offer an extensive empirical investigation into properties of our ap-
proach and compare to results of both prominent ILP systems and other systems
for propositionalization. The discussion includes views at further related work as
well.

4.1 Clause Sets for Propositionalization

4.1.1 Generation of Clauses

An important aspect of propositionalization is the set of clauses C that forms its
basis. The range of choices is wide, and decisions here have an impact on the
complexity of the whole process, since both clause set generation and its further
usage can be expensive. Let us give some examples for clauses in the view of our
running example, cf. Appendix D.

58
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Example 19 Examples for clauses that could be in C are the following, with
variable names mostly as abbreviations of the original column names:

1. t(T,F,G,Class) :- a(T,T,T,T,Class).

2. t(T,F,G,Class) :- g(G,Gn,Gc).

3. t(T,F,G,Class) :- a(A,T,C,An,Ac), b(B,A,Bn,Bc).

4. t(T,F,G,Class) :- a(A,T,C,An,x), b(B,A,Bn,Bc).

5. t(T,F,G,Class) :- a(A1,T,C1,An1,x), a(A2,T,C2,An2,y).

Clause 1 is an example of a constrained clause as used in LINUS, where vari-
ables in the body must occur in the head of the clause. The foreign key relationship
in the original database is correctly modeled here by variable T occuring in the
second argument position of literal a. However, also sharing this variable in other
argument positions causes the semantics of this clause to be rather questionable.
Similarly, sharing Class between the t and a literals seems not appropriate.

Clause 2 is an example of a determinate clause as typically used in DINUS,
where local variables in the body must have a unique binding given a binding of
the global variables in the head. This is the case here because of the many-to-one
relationship between tables t and g.

The other three example clauses 3 to 5 also share variables corresponding to
foreign key relationships. Sharing variables in this way corresponds to a basis
for computing natural joins. The first clause has variables in all argument places
while the second and third example clauses also contain constants in argument
places which correspond to selection criteria. Note that example clause 5 makes
multiple use of literals derived from relation a.

The intuition behind our approach to clause set generation for proposition-
alization is the following. If possible, all relations should be included in at least
one of the clauses, since their contribution to final models is not known a priori.
Further, inclusion should be kept simple in order to allow for efficiency.

In order to decide which clause set C to use as the basis of our transformation,
consider again the nature of many relational databases such as business databases.
Typically, they will exploit foreign key relationships to structure their data. We
have therefore chosen to generate the set C on the basis of the foreign link bias
language which was first introduced in Midos [133, 135] and allows to easily
model the structure of such databases.

This bias is an ordered set of links L, where each l ∈ L provides information
about the argument positions of literals of two predicates where variables may
be shared.

As an additional level of control, our declarative bias language allows the
specification of an upper limit on the number of literals with which a given literal
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A D

E

F G

CB

T

Figure 4.1: The running example database schema overview (arrows represent
foreign links)

may share variables. This limit effectively controls the branching factor in the
graph of literals generated by the foreign links. We again illustrate with the help
of our running example.

Example 20 Figure 4.1 depicts the tables from database in Figure D.1, without
columns for better readability. Here, arrows represent foreign links. They form
paths in the graph from the target relation to the other relations and can be defined
by the user based on a subset of the foreign key relationships in the database. Note
that the graph is an acyclic directed graph.

A number of further restrictions is implemented in our algorithm for propo-
sitionalization, which is shown in Section 4.3.

The usage of acyclic graphs presents one of the restrictions that we apply.
The user, who has to provide foreign link specifications, must take decisions how
to deal with circles in the undirected graph induced by the relational database.
We will come back to this issue in Chapter 5.

Another restriction we use in order to keep a clause set C small is that we do
not allow for several literals with the same predicate name in a clause C ∈ C.
Also, a literal derived from the target relation is not allowed in clause bodies.

Note that in principle, foreign links are not restricted to model aspects of
foreign key relationships but arbitrary joins of relations or predicates.

Further, we point to the close relationship of foreign links with function-free,
two-place body literals in clauses C ∈ C for extended Linus, and similar con-
structs for several other ILP systems such as special mode declarations for Pro-

gol. Foreign links seem more directly related to work with relational databases,
though.

4.1.2 Elimination of Clauses

An important class of propositionalization functions is the class of local proposi-
tionalization functions which compute propositional features taking into account
only one of the variables at a time.
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ϕ is local iff there is a function ϕ′ such that

ϕ(C, val(C, e, B)) =
⊕

i=1..|vars(C)|

ϕ′(πi(val(C, e, B))) , (4.1)

where πi denotes projection on the i-th column.
This class of propositionalization functions is important because it easily al-

lows the removal of redundant features whenever there are functional dependen-
cies between a single predicate (or set of predicates) and another predicate.

If D is a set of atoms, L an atom, then D � L is a functional dependency iff
for any σ such that

Dσ ⊆ E ∪ B , (4.2)

there is exactly one θ such that

Lσθ ∈ E ∪ B . (4.3)

Note that functional dependencies are closely related to the idea of determinate
literals [89], except that for determinate literals, one often allows at most one sub-
stitution given the preceding literals, whereas a functional dependency requires
that there be exactly one such substitution.1

For local propositionalization functions, we can drop all the features generated
based on one clause if there is another clause which differs from it only in that
it contains an additional functionally dependent literal. The reason for this is
expressed in the following lemma.

Lemma Let C and C ′ be two clauses from C such that

C ′ = C ∪ {L} . (4.4)

If there is a functional dependency D � L with

Dσ ⊆ C (4.5)

(D subsumes C), then for any local ϕ, and any p-atom e,

ϕ(C ′, val(C ′, e, B)) = ϕ(C, val(C, e, B))
⊕

z∈VL

ϕ′(πz(val(C ′, e, B)) , (4.6)

where we assume that VL are the indexes of variables in vars(C ′), restricted
to variables that do not occur in C.

1For RDB, functional dependency denotes relationships of (sets of) attributes within one
relation, which is different from our notion. Further, it may be useful to think of our concept
of functional dependency as strong determinacy, while determinacy as defined in Section 2.3
could be called weak determinacy.
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Proof Clearly, due to the functional dependency, for any variable binding tuple
in val(C, e, B) there will be exactly one completion resulting in a matching
tuple in val(C ′, e, B). This means that val(C, e, B) and val(C ′, e, B) are
different, but since the transformation function is local, the extra columns
in val(C ′, e, B) do not influence the computation of the feature values on
variables contained in both C and C ′, so the feature values computed for
these variables with respect to C and C ′ will be identical.

This means, it suffices to consider C ′ when constructing prop(C, e, B) since
the features constructed based on C will be redundant.

In our approach, we assume that the functional dependencies are explicitly
given by the user. However, it will of course also be possible to use one of the
existing algorithms for functional dependency discovery [7, 46] to automate this
step.

In order to exploit the potential offered by the Lemma above for avoiding
the production of redundant features, we thus allow the user to specify a set
of functional dependencies F . To achieve that, the user can exploit his or her
knowledge about many-to-one relationships between tables in the database along
foreign links.

An illustrative example will follow in Section 4.3.

4.2 Query Result Processing

A challenge in propositionalizing relational data is due to the non-determinacy
of most applications. In the terminology introduced in the preceding chapter,
this means that val(C, e, B) can become quite a large set. This is especially true
in business applications, where it is quite possible, for example, that a company
maintains hundreds of transactions on record for a single customer. Previous
approaches to propositionalization in ILP that were restricted to determinate
clauses thus cannot adequately handle such datasets.

In order to design our approach to transformation-based ILP learning, we have
therefore borrowed the idea of aggregation that is commonplace in the database
area [21] and often used in preprocessing for propositional learners. Aggregation
is an operation that replaces a (multi-)set of values by a suitable single value
that summarizes properties of the set. For numeric values, simple statistical
descriptors such as average, maximum, and minimum can be used, for nominal
values, we can use the mode (the most frequent value) or count the number of
occurrences of the different possible values.

More precisely, in the framework of the preceding chapter, we define a local
propositionalization function ϕ′ as follows. Let C be a clause with vars(C) =
{Y1, . . . , Ym}. Let T := val(C, e, B). Further, if T is not the empty set, let
Ti := πi(T ). If T is the empty set, Ti may be a tuple containing as a single



4.3. AN ALGORITHM FOR PROPOSITIONALIZATION 63

component the symbol for a missing value. We assume aggregate functions to be
defined for missing values. For a numeric variable Yi ∈ vars(C), we define

ϕ′(Ti) := (avg(Ti), max(Ti), min(Ti), sum(Ti)) , (4.7)

where avg(Ti), max(Ti), min(Ti), and sum(Ti) compute the average, maximum,
minimum, and sum of the values in Ti, respectively. For a nominal variable
Yi ∈ vars(C), we define

ϕ′(Ti) :=
⊕

v∈domain(Yi)

(| σ1=v(Ti) |) , (4.8)

where domain(Yi) is the ordered set of possible values for Yi, and σ1=v(Ti) means
the selection of all tuples from Ti where the single component (with index 1) has
value v. Multiset cardinality can be determined with the help of the aggregate
function count.

Again,
⊕

denotes tuple concatenation. In addition, we use the total size
of the set T as a feature, determined by count again. All this results in the
transformation function

ϕ(C, T ) := (| T |)
⊕

i=1..m

ϕ′(Ti) . (4.9)

In the implementation, we apply a further restriction w. r. t. domain(Yi). A
nominal variable Yi is neglected, if its cardinality exceeds a user-provided thresh-
old.

Further, argument positions that are used for foreign link definitions exclude
corresponding variables from aggregation. In other words, identifiers are not used
here.

A function Φ was chosen to produce attribute names for the tuples result-
ing from propositionalization. This function ensures unique attribute names by
including information about the items used in the computation of the attribute
values. These are a short name for the aggregate function applied, a name for
the predicate from E or B concerned, the position/name of the argument, if
applicable, and an identification of C ∈ C.

4.3 An Algorithm for Propositionalization

The components discussed above in this chapter result in an algorithm which is
given in Table 4.1. Step 2 of the algorithm implements the clause construction
process based on foreign links, in step 2a. Also, it removes redundant clauses and
thus the redundant features they would otherwise give rise to, in step 2b. For
further details of the clause generation step, the interested reader is referred to
the presentation by Wrobel [133]. Steps 3 to 5 implement the construction of the
propositional table based on the transformation function ϕ defined above.
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The algorithm as shown here is specific about C, but allows for other ϕ than
those listed in the preceding section. Further, we omit details of parameter
usage (branching factor, maximum cardinality of possible value sets for nominal
attributes) to keep the presentation simple.

We call our approach to propositionalization using aggregate functions Re-

laggs, which stands for RELational AGGregationS. It can also be conveived as
an homage to the idea of relative least general generalization (RLGG), which was
among the early influences in ILP [99, 89], although not used here.

We illustrate the workings of the algorithm with the help of our running
example, cf. Appendix D.

Example 21 Consider tables t, a, b, and c of the running example. The first
record in table t as an element of the set of examples E corresponds to the Prolog
fact

t(1,1,1,pos).

Analogously, Prolog facts can be written down for the entries of tables a, b,
and c. Further, foreign link declarations may obey the following pattern:

link(<rel1>:<pos1>, <rel2>:<pos2>).

with “rel” for relation, and “pos” for argument position. Then, let the ordered
set of foreign links L be

link(t:1,a:2).

link(a:1,b:2).

link(a:3,c:1).

The first definition means that a variable can be shared by a t literal and an a

literal that occur in a clause. That variable must be in the first argument position
for the t literal and in the second argument position for the a literal. Analogous
for the other foreign link definitions.

Note the correspondence with foreign key relationships from the database schema,
apart from direction. With these definitions, the following example clauses C1,
C2, and C3 can be generated and further processed.

Consider
C1 = t(A,B,C,D) :- a(E,A,F,G,H).

In a first step, val(C1, e, B) is determined, which is depicted in Figure 4.2. Here,
we only consider body variables in order to keep the presentation simple. Each
line corresponds to a tuple of values of val(C1, e, B). Body variables from C1 are
ordered here in the same way as in the clause itself.

In a second step, ϕ and τ are applied and result in Figure 4.3, which shows
the propositionalized table of E and B with C = {C1}. Here, count means the
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Table 4.1: Relaggs algorithm

1. Accept as input: examples E, background knowledge B (n predicates),
foreign links L, functional dependencies F

2. Construct clause set C:

(a) Generate all clauses C subject to the following restrictions:

i. all literals L ∈ C have variables in all argument positions

ii. a target predicate literal serves as head

iii. each background knowledge predicate occurs at most once

iv. each body literal shares exactly one variable with a literal occuring
earlier in the clause, according to L

v. each possible set of body literals is used only once to build a clause

(b) Eliminate C if there is C ′ = CLC ′′, with f ∈ F specifying a func-
tional dependency between D ⊆ C and L

3. Generate a new line for TABLE

4. For all C ∈ C

(a) Determine Φ(C)

(b) For all Atti ∈ Φ(C), append Atti to TABLE

5. For all e ∈ E

(a) Generate a new line for TABLE

(b) For all C ∈ C

i. Determine T = val(C, e, B)

ii. Determine ϕ(C, T )

iii. For all v ∈ ϕ(C, T ) append v to TABLE

(c) Append class value of e to TABLE, if applicable

6. Output TABLE
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Figure 4.2: The result of val(C1, e, B) for body variables
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Figure 4.3: The propositional table based on C1, i. e. τ({C1}, E+, E−, B)

size of val(C1, e, B), while count(X=x) means the size of a subset of val(C1, e, B)
where the attribute corresponding to variable X takes on value x.

Let C1 as above,
C2 = t(A,B,C,D) :- a(E,A,F,G,H), c(F,I,J).

Let us assume, the set of functional dependencies F contains a description of
such a dependency between a and c, i. e.

{a( , ,F, , )} � c(F, , ).

Then, val(C2, e, B) produces tuples as depicted in Figure 4.4. The result of
val(C2, e, B) differs from val(C1, e, B) only in the additional columns for I and J.
Especially, the columns for G and H are the same in both tables such that any local
aggregate function applied here would not yield different results for val(C1, e, B)
and val(C2, e, B). Hence, we can decide to not consider C1.
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val(C2,e,B)

Figure 4.4: The result of val(C2, e, B) for body variables

Let now C2 as above,
C3 = t(A,B,C,D) :- a(E,A,F,G,H), b(K,E,L,M).

For this clause, the functional dependency given above does not apply. Figure 4.5
shows val(C3, e, B). Here, there are differences with respect to the columns for G
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and H of val(C2, e, B) and val(C3, e, B). This way, there can be different aggre-
gates as well. For example, the average of G for val(C2, e, B) is 15, while it is
16.6 for val(C3, e, B). This can be viewed as weighting the property G of an item
a in the light of the number of related items b. This illustrates why our algorithm
will consider both C2 and C3 for the computation of the final propositionalized
table.
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val(C3,e,B)

Figure 4.5: The result of val(C3, e, B) for body variables

The weighting effect may also occur for head variables.

Note that aggregation can be seen as an operator orthogonal to other oper-
ators typical for relational database queries: selection, projection, join, and also
other arithmetic operations on single relations as used for conventional feature
construction. This view enables a simpler analysis of algorithms that use aggre-
gation, among others w. r. t. their complexity, and also a simpler design of new
algorithms of this kind such as Relaggs.

4.4 Related Work

In this section, we review two approaches that also use aggregate functions for
propositionalization. The first approach is called RollUp and was developed
and presented by Knobbe and colleagues [54, 53]. Relational concept classes
were presented by Perlich and colleagues [96]. We again take the view of our
framework for the analysis of these two approaches and systems, respectively.
We also compare with relevant aspects of Relaggs.

4.4.1 RollUp

The Approach of RollUp

RollUp [54, 53] considers a relational database as a graph — for central parts
of the algorithm as an undirected graph — with relations as nodes and foreign
key relationships as edges. It performs a depth-first search in this graph up to
a certain, user-defined depth d. On encountering a table s at a current depth
dcur ≤ d, two cases are differentiated.
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First, if there is a one-to-many relationship between tables r and s, with r
at depth dcur − 1 via which s was reached, then s is summarized with the help
of aggregate functions with respect to the foreign key attribute pointing to the
primary key of r. The summary features are then added to r.

Second, if there is a many-to-one relationship between r and s, the attributes
of s can be added to r without the necessity for summarizations. This process is
executed, starting with dcur = d, then recursively with decreasing values for dcur

until summary features of all tables up to a distance d are added to the target
table.

In the framework presented above, RollUp can be described in the following
way.

A set of clauses Base is defined that will serve as a basis for sets C to be used
within the framework described above:

Base := {p(X, . . .) : −q1(Y1, . . .), . . . , qk(Yk, . . .) | 1 ≤ k ≤ d;

p(X, . . . , Y1, . . .) or

q1(Y1, . . . , X, . . .);

∀qi, qi+1(1 ≤ i ≤ k − 1) :

qi(Yi, . . . , Yi+1, . . .) or

qi+1(Yi+1, . . . , Yi, . . .)}

In other words, two neighboring literals share a variable corresponding to the
foreign key relationship of the relations concerned. All these clauses in Base are
most general in the sense that all argument positions are filled with variables.
These clauses can be constructed with a depth-first search algorithm in analogy
to the character of RollUp.

In the following, we differentiate between two variants of RollUp that arise
from our interpretations of the algorithm’s description. First, there is a minimal-
ist variant, which uses clauses of length up to d. There may be shorter clauses
in use because literals of a predicate should occur only once in a clause. Second,
there is a maximalist variant, which uses clauses of exactly length d only, possibly
using more than one literal of a predicate.

Example 22 For the running example and d = 1, Base consists of:

1. t(T,F,G,Class) :- a(A,T,C,An,Ac).

2. t(T,F,G,Class) :- d(D,T,E,Dn,Dc).

3. t(T,F,G,Class) :- f(F,F2,E,Fn,Fc).

4. t(T,F,G,Class) :- g(G,Gn,Gc).
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For d = 2, it consists of the following clauses, assuming a minimalist variant
of RollUp:

1. t(T,F,G,Class) :- a(A,T,C,An,Ac), b(B,A,Bn,Bc).

2. t(T,F,G,Class) :- a(A,T,C,An,Ac), c(C,Cn,Cc).

3. t(T,F,G,Class) :- d(D,T,E,Dn,Dc), e(E,En,Ec).

4. t(T,F,G,Class) :- f(F,F2,E,Fn,Fc), e(E,En,Ec).

5. t(T,F,G,Class) :- g(G,Gn,Gc).

For d = 3, again assuming a minimalist variant:

1. t(T,F,G,Class) :- a(A,T,C,An,Ac), b(B,A,Bn,Bc).

2. t(T,F,G,Class) :- a(A,T,C,An,Ac), c(C,Cn,Cc).

3. t(T,F,G,Class) :- d(D,T,E,Dn,Dc), e(E,En,Ec), f(F,F2,E,Fn,Fc).

4. t(T,F,G,Class) :- f(F,F2,E,Fn,Fc), e(E,En,Ec), d(D,T,E,Dn,Dc).

5. t(T,F,G,Class) :- g(G,Gn,Gc).

For d = 2 and a maximalist variant of RollUp, all clauses in Base would
have two literals in the body such that there are the following clauses, the last
clause replacing the last one given above for d = 2 and the minimalist variant:

• t(T,F,G,Class) :- a(A,T,C,An,Ac), t(T,F,G,Class).

• ...

• t(T,F,G,Class) :- g(G,Gn,Gc), t(T,F,G,Class).

The algorithm as originally presented by Knobbe and colleagues [54] in its
more formal variant indicates this maximalistic variant, while the text also speaks
of “leaf(s) in the graph” as end points for recursive search, which allows the
minimalist interpretation.

Example 23 Note that clauses of the pattern t :- g, t. can lead to interesting
results because of the many-to-one relationship between t and g. Here, for a spe-
cific example from t, information about other examples from t will be aggregated
that have a relationship with the same tuple of g.
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Back to the minimalist case, Base is partitioned into subsets Basei (this
partitioning would not be necessary for the maximalist variant since all clauses
in Base are of the same length d there; the other steps remain the same):

Basei := {C = p(X, . . .) : −q1(Y1, . . .), . . . , qk(Yk, . . .) | C ∈ Base; k = i} (4.10)

For the running example and d = 2, Base2 consists of the first four clauses
from Base as provided above, Base1 consists of the last clause.

Beginning with i = d, each such set Basei is partitioned into subsets Baseij :

Baseij := {C = p(X, . . .) : −q1(Y1, . . .), . . . , qk(Yk, . . .) | C ∈ Basei;

q1, . . . , qk−1 fixed}

In other words, clauses in each set Baseij differ in their last literal only.

Example 24 For the running example, we arrive at three clause sets Base2j,
one of those, say Base21, made up of

1. t(T,F,G,Class) :- a(A,T,C,An,Ac), b(B,A,Bn,Bc).

2. t(T,F,G,Class) :- a(A,T,C,An,Ac), c(C,Cn,Cc).

The other two subsets have only one element each.

For members of such a set Baseij , the last two literals are used to construct
new clauses where the first literal forms the head and the second the body. These
new clauses form clause sets Aij.

Example 25 For the running example, the subset Base21 given above results in
new clauses to form a clause set A21, where a takes over the role of a temporary
target predicate:

1. a(A,T,C,An,Ac) :- b(B,A,Bn,Bc).

2. a(A,T,C,An,Ac) :- c(C,Cn,Cc).

A clause set Aij can now be used as a clause set C as presented in the frame-
work above, apart from the very last step of adding in the class attribute. This
is only possible in case the head literal corresponds to the target relation. The
result of this propositionalization is added to the background knowledge in an
appropriate way. That means, for instance, background knowledge is expanded
by computed tuple values as arguments of a new predicate the name of which
could be derived from the predicate names of clauses in Aij .

The clauses in a subset Baseij are furthermore used to construct a new clause
built from the original literals up to the last two. Those last two are replaced
by a literal that stands for the result of the computations within the framework
with Aij as C. This newly constructed clause is added to Basei−1.
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Example 26 For the running example, this produces as a new member for Base1:

• t(T,F,G,Class) :- a b c(A,T,C,An,Ac,. . . ).

Here, the dots represent summary features originating from b and c.

Finally, the process is repeated with the step of the construction of Basei−1,j .
After d such loops, the head literal of each clause in the single remaining set
of clauses A1,1 used as C corresponds to the target predicate and the algorithm
finishes after the corresponding last propositionalization, now with adding in class
values.

Relevant aspects of Relaggs

Consider again Figure 4.1 above. Acyclicity in such graphs allows Relaggs [71]
to have no parameter for depth as RollUp. The set of clauses C for background
knowledge with n different predicates is defined here as:

C := {p(X, . . .) : −q1(Y1, . . .), . . . , qk(Yk, . . .) | 1 ≤ k ≤ n;

∀qi, qj with 0 ≤ i ≤ k − 1,

i < j, p = q0 : qi <> qj ;

qi(Yi, . . . , Yj, . . .) or

qj(Yj, . . . , Yi, . . .);

only one permutation per

possible set of body literals}

In other words, C consists of all clauses with up to n body literals of different
predicates, with each body literal sharing one variable with a literal anywhere to
its left in the clause.

Example 27 For the running example, Relaggs would determine the following
clauses with one literal in the body for the set of clauses C:

1. t(T,F,G,Class) :- a(A,T,C,An,Ac).

2. t(T,F,G,Class) :- d(D,T,E,Dn,Dc).

3. t(T,F,G,Class) :- f(F,F2,E,Fn,Fc).

4. t(T,F,G,Class) :- g(G,Gn,Gc).

Also, the following clauses with two literals in the body, the first of which is
an a literal, would be added to C:
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• t(T,F,G,Class) :- a(A,T,C,An,Ac), b(B,A,Bn,Bc).

• t(T,F,G,Class) :- a(A,T,C,An,Ac), c(C,Cn,Cc).

• t(T,F,G,Class) :- a(A,T,C,An,Ac), d(D,T,E,Dn,Dc).

• t(T,F,G,Class) :- a(A,T,C,An,Ac), f(F,F2,E,Fn,Fc)

• t(T,F,G,Class) :- a(A,T,C,An,Ac), g(G,Gn,Gc).

Then come other two-literal clauses and clauses with more than two literals in
the body. From the following three-literal clauses, only the first is chosen because
of the condition on permutations:

• t(T,F,G,Class) :- a(A,T,C,An,Ac), b(B,A,Bn,Bc), c(C,Cn,Cc).

• t(T,F,G,Class) :- a(A,T,C,An,Ac), c(C,Cn,Cc), b(B,A,Bn,Bc).

The largest clause for C is the following:

• t(T,F,G,Class) :- a(A,T,C,An,Ac), b(B,A,Bn,Bc), c(C,Cn,Cc),
d(D,T,E,Dn,Dc), e(E,En,Ec), f(F,F2,E,Fn,Fc), g(G,Gn,Gc).

Many of the clauses in C can be discarded based on functional dependencies
without losing information when applying local aggregate functions. Further-
more, with a parameter branching factor set to 0, only paths in the graph are
considered for clause construction, and no more complex subgraphs. For instance,
this would discard the last three clauses with two literals in the body the first of
which is an a literal above.

Example 28 An adequately reduced set C would consist of the following clauses,
sorted first by length, then lexicographically considering predicate names:

1. t(T,F,G,Class) :- g(G,Gn,Gc).

2. t(T,F,G,Class) :- a(A,T,C,An,Ac), b(B,A,Bn,Bc).

3. t(T,F,G,Class) :- a(A,T,C,An,Ac), c(C,Cn,Cc).

4. t(T,F,G,Class) :- d(D,T,E,Dn,Dc), e(E,En,Ec).

5. t(T,F,G,Class) :- f(F,F2,E,Fn,Fc), e(E,En,Ec).

This reduced set C can be used within the framework as such.
To illustrate the reduction, we give the following examples. A clause with

body literals for a, b, and c was dropped because of the zero branching factor.
Clauses with just a d literal or an f literal in the body were dropped because of the
functional dependencies between d and e and between f and e, respectively.
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Comparison of RollUp and Relaggs

Usability Here, we consider parameters that can be set by the user.
For RollUp, the user has to specify the parameter depth d. With increasing

values for d, relations more distant from the target table can thus be included in
the analysis. The largest distance between the target table and another relation
in the schema of the relational database may support a decision about a largest
useful value for d. There may arise difficulties with the maximalist variant of
RollUp though, cf. remarks on complexity below.

For Relaggs, the user has to specify the foreign links. As a starting point,
the schema of the relational database, especially the foreign key relationships
therein, is of help to the user here. Nevertheless, there are degrees of freedom for
the construction of foreign links. First, in the common case of circles in the graph
induced by the relational database, these have to be resolved. Second, other links
not corresponding to foreign key relationships may be defined.

Further, functional dependencies may be specified by the user based on an in-
vestigation of many-to-one relationships according to the database schema. Last
not least, the user may specify the restrictions of a braching factor and of max-
imum cardinalities of the sets of possible values for nominal attributes to be
considered for propositionalization.

For an evaluation of the situation, we see that RollUp demands for less
preparatory work by the user than Relaggs. However, our impression from
empirical work is that this preparatory work is useful, e. g. to avoid explosive
behavior of C’s cardinality.

Complexity This paragraph considers numbers of clauses produced for propo-
sitionalization, numbers of tuples in join results, and numbers of features con-
structed.

For RollUp, the number of clauses in Base can be restricted by the value of
search depth d. With a maximalist variant, however, there can be an exponential
growth of the number of those clauses with increasing d.

The depth-first algorithm avoids complexity problems with join results. It
computes joins of at most two tables. Here, the number of tuples in any single
join result is not larger than the number of tuples in the larger one of the two
relations to be joined.

The number of features produced by RollUp is exponential in d. For in-
stance, if 4 aggregate functions avg, max, min, and sum would be applied to
numeric attributes, such a numeric attribute in a table at distance d from the
target table would result in 4(d/2) summary features in the propositionalization
result because of repeated aggregation. This assumes an average case of half the
relationships on a path from the target relation to the farthest non-target relation
to be one-to-many relationships, and the others many-to-one relationships.

With no parameter for the restriction of the analysis to nominal attributes
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with up to a certain number of possible values, there is another danger for
RollUp to further increase the number of resulting features enormously.

For Relaggs, the number of clauses in C can grow exponentially with the
number of different relations, considering bodies of clauses as arbitrary subsets
of literals from the set of all possible literals as provided by the background
knowledge.

Also, joins involving not directly related tables can produce results larger
than any single original table involved. This case is illustrated by the following
example.

Example 29 For the running example, such a join is represented by

1. t(T,F,G,Class) :- a(A,T,C,An,Ac), d(D,T,E,Dn,Dc).

In the result, each tuple for a is combined with each tuple for d, as long as
they have the same value for variable T.

These effects, for both clause numbers and join result sizes, are avoided by
setting the parameter branching factor to value 0. Moreover, the information
loss from this setting can be remedied by computations from aggregation results
produced with the help of other clauses, as shown in the following example.

Example 30 For the running example, the following two clauses (or clauses
producing identical columns from a and d) would be included in C with branching
factor set to 0:

1. t(T,F,G,Class) :- a(A,T,C,An,Ac).

2. t(T,F,G,Class) :- d(D,T,E,Dn,Dc).

Since the results of a join including a and d would just produce multiples of
entries as in these two joins, those multiples can be produced after propositional-
ization based on counts and other aggregation results, if needed.

The number of features is not as critical as it is for RollUp. Once joins
are computed, it grows linearly with the number of numeric attributes and the
number of possible values of nominal attributes, as long as the setting of the
cardinality parameter allows to consider the latter at all.
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Figure 4.6: A relational database schema [96] (arrows represent foreign key rela-
tionships)

Features In the following, we consider the set of features produced under the
different approaches, under a semantic perspective.

There are overlaps between the RollUp and Relaggs clauses for Base and
C, respectively. However, due to the different usage of those clauses, the final
results are different.

For instance, Relaggs produces summary features for a tuples that are
weighted by related tuples in b, which is not the case with RollUp. On the
other hand, RollUp produces many more summary features for b because of
repeated summarization, cf. subsection on complexity above. The potentials
for expressiveness of those many features should be further investigated. Some
aspects are considered in this chapter’s section on our experimental work below.

Note that there are potential differences by the usage of different aggregate
functions as well. Originally, however, both RollUp and Relaggs used the
same set of functions in the same way, influenced by the SQL standard.

4.4.2 Relational Concept Classes

Ideas and Implementations for Relational Concept Classes

Perlich and Provost [96] provide an example relational database for illustrative
purposes that is depicted in Fig. 4.6 in a form analogous to that of our running
example. In the original paper, arrows are used differently, unfortunately without
explanation. In the following, we will also analyze some of the examples presented
by the authors of that paper that refer to this database.

Aggregation Perlich and Provost [97, 96] adopt the view that a relational
concept is a function Φ that includes as an argument an example from the target
relation t with its target value y and as another argument a fixed number of
aggregates of objects that are related to the target case through keys, as a result
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of a complex aggregation function Ψ applied to the background knowledge RDB,
i. e. all relations in the database except t:

y = Φ(t, Ψ(RDB)) (4.11)

Φ corresponds in our framework to the application of a result from conven-
tional data mining, i. e. a propositional model, to the tuple resulting from the
concatenation of tuple t with that from Ψ(RDB).

Ψ seems to be a concept similar to concatenating the propositionalization
function ϕ results in our framework, cf. function prop there. However, details
as contained in our definition of ϕ, viz. using clauses as queries to the relational
database and their results per target object, are not provided by the authors.

Ψ is called an “aggregation function” by Perlich and Provost [96]. This notion
can be misleading, though, as we will explain below. We see aggregate functions
as a means within a propositionalization function, but do not identify the propo-
sitionalization function with an aggregate function.

Perlich and Provost [96], however, differentiate between

Simple aggregation: a mapping from a bag of zero or more atomic values to a
categorical or numerical value (general examples: mean for a bag of numeric
values, mode for a bag of categorical values, counts of specific values for a
bag of categorical values, ...)

Multi-dimensional aggregation: mapping from a bag of feature vectors de-
scribing objects to a categorical or numerical value (example A: total amount
spent over the last two weeks; example B: Boolean value [as possibly both
categorical and numerical] for a bag of transactions to describe if a customer
is buying increasingly more-expensive products)

Multi-type aggregation: mapping from two or more bags of feature vectors
describing objects to a categorical or numerical value (example C: total
value of products a customer has returned, example D: most recent date on
which a customer bought a product that was commonly returned before)

From the point of view of our framework, both “multi-dimensional aggrega-
tion” and “multi-type aggregation” can be expressed using “simple aggregation”
after appropriate selections from the database:

Example A: first select the amounts spent over the last two weeks, then com-
pute the value for aggregate function sum for the resulting bag of values

Example B: first select identifiers of transactions of a customer such that there
is a transaction with a later date and lower price, then count the values in
the result and map 0 to true, other values to false



4.4. RELATED WORK 77

Example C: first select identifiers of products from ReturnedItems for a cus-
tomer, then the prices for these products for that customer from Transac-
tions, finally sum those prices

Example D: first select ids of products from ReturnedItems that were com-
monly returned (using count), then select dates on which a customer bought
those products, finally determine max of those dates

The differentiation of aggregate functions as done by Perlich and Provost
[96] seems not to clarify the situation, especially because it deviates from the
widespread concept of aggregate functions in the database area corresponding to
the concept of “simple aggregation” here. We see the simple aggregate operators
as favorable not only with respect to comprehensibility, but also as building
blocks to be combined with other operators for joins, selections, projections,
feature construction within one relation, etc.

Actually, there seem to be open issues in the presentation by Perlich and
Provost [96] that maybe arise from their over-complicated view at aggregation:
all three of their types of aggregation output just one value, more clearly to be
seen in [97] than in [96], while Ψ(RDB) in the formula given above is supposed
to return a tuple of aggregates.

Note that in our framework as presented above, there can be other relation-
ships between objects than those established by foreign key relationships.

A Hierarchy of Relational Concept Classes Based on their definitions
of aggregation functions, Perlich and Provost present a hierarchy of relational
concept classes. Here, a concept class M2 is more complex than a concept class
M1 if any concept δ in M1 can be expressed in M2 and there are concepts in M2

that cannot be expressed in M1.
While Perlich and Provost [97] at first defined 8 concept classes, these were

later condensed into 5 [96]. These are presented here in terms of our framework,
in the original order of growing “complexity of the most complex aggregation
used” [96]. We also keep the names for those classes here:

i) Propositional Here, clauses for C are allowed that take the following
form:

• p(X,...,Y,...) :- q(Y, ,...,Z1, ,...,Z2, ,...).

Such a clause exploits a one-to-one or many-to-one relationship between p
and q.

This largly corresponds to the restriction to determinate clauses as used for
Dinus, there without the restriction to function-free clauses. For each target
object described by a p tuple, there is at most one q tuple that can be concate-
nated to the p tuple. By the anonymous variables, we indicate that Perlich and
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Provost suggest the opportunity for projections here, resulting in only specific
components of a q tuple to form a new tuple that is concatenated to the p tuple.
This projection could also be achieved by post-processing of the propositionalized
table, e. g. with conventional feature selectors.

As examples, Perlich and Provost mention the common case where a customer
table can be enriched with data from a demographics table.

Example 31 For the running example, this allows for the usage of the following
C:

1. t(T,F,G,Class) :- f(F, ,E,Fn, ).

2. t(T,F,G,Class) :- g(G,Gn,Gc).

There are many-to-one relationships from the target relation to both f and g,
but not to any other tables in the database.

ii) Independent Attributes This is the least complex relational concept
class, where a one-to-many relationship between p and q should be exploited.
Clauses for C take the following form:

• p(X,...) :- q( ,X, ,...,Z, ,... ).

A single projected attribute Z is treated here by “simple aggregation”.
An example given by Perlich and Provost [96] is “average price of products

bought” by a customer.
A further interesting example provided by the authors is “the proportion of

products returned by the customer”. The authors state that this would demand
for one count on table Transaction and another count on table ReturnedItems.
Then, Φ would compute the proportion. This last step corresponds to conven-
tional feature construction.

Example 32 For the running example, this concept class allows for the usage of
the following C:

1. t(T,F,G,Class) :- a( ,T, ,An, ).

2. t(T,F,G,Class) :- a( ,T, , ,Ac).

3. t(T,F,G,Class) :- d( ,T, ,Dn, ).

4. t(T,F,G,Class) :- d( ,T, , ,Dc).

There are direct one-to-many relationships from the target relation to both a
and d, but not to any other tables in the database.

Note that key attributes are not included in the aggregation here (the first
argument of the body literals is always an anonymous variable) and for the fol-
lowing concept classes. However, this may be to rigid, cf. Section 5.4.
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iii) Dependent Attributes within one Table Here, aggregation is per-
formed for subbags of those used in the concept class before. These subbags are
achieved by specific selection conditions:

• p(X,...) :- q( ,X, ,...,Z, ,...,Cond, ,...), Cond = <value>.

Instead of =, there might also be other relational operators such as >, ≥ etc.
for numerical variables.

Examples by Perlich and Provost are “the number of products bought on
December 22nd” by a customer and, as given above, “slope of price over time”,
i. e. the question if the customer is buying increasingly more-expensive products.

Example 33 For the running example, C consists of clauses such as

1. t(T,F,G,Class) :- a( ,T, ,An,x).

2. t(T,F,G,Class) :- a( ,T, ,An,y).

3. t(T,F,G,Class) :- a( ,T, ,Cond,Ac), Cond > 15.

4. ...

iv) Dependent Attributes across Tables The general form of clauses
for C here is:

• p(X,...) :- q( ,X, ,...,Z1, ,...,Z2, ,...), r( ,X, ,...,Z3, ,...,Z4, ,...).

As an example, Perlich and Provost give “the total amount spent on items
returned” by a customer. This is actually a special case because Transaction
and ReturnedItems have foreign key attributes for both product identifiers and
customer identifiers. So, the corresponding clause would look like:

• customer(C,...) :- returned( ,C,P), transaction( ,C,P, ,Price ).

Note the restrictions of the join of ReturnedItems and Transaction by two
foreign key conditions.

In the general case, where q and r share only the key attribute with p, the
aggregation results can be computed from the aggregated single joins between p
and q and between p and r, respectively, with the help of conventional feature
construction.

Example 34 For the running example, C would contain clauses such as the fol-
lowing:

• t(T,F,G,Class) :- a( ,T, ,An,Ac), d( ,T, ,Dn, ).
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v) Global Graph Features Perlich and Provost state that “multi-type
aggregation” has to be applied here to the transitive closure over a set of pos-
sible joins. Such a global concept could for instance be a function of customer
reputation. This may require the construction of an adjacency matrix and the
calculation of its Eigenvalues and Eigenvectors.

This class of relational concepts needs further investigation. So far, the pre-
sentation in [96] seems underspecified.

Between Levels Perlich and Provost further evaluate their hierarchy as
“coarse”. At sublevels, they see, among others, the usage of autocorrelation with
the help of joins back to the target relation.

Remarks The definitions provided by Perlich and Provost use only relations
that share a key variable with the target relation. They state that the hierarchy
can be extended in a straightforward way to cases of further distant relations.
This seems to be the case for the example provided that encompasses a chain of
joins along one-to-many relationships. It seems also intuitive for a chain of joins
along many-to-one relationships.

However, this deals not yet with more complex situations of sequences of joins
with both one-to-many and many-to-one relationships involved, cf. our concept
of functional dependencies and its exploitation. It neither treats cases of joins not
along paths in the graph induced by the relational database, cf. our comments
on concept class iv above.

The hierarchy seems to be equivalent to restricting C in different ways. Re-
strictions such as these are necessary to achieve efficient implementations of
propositionalization.

New Usage of Aggregate Functions For their paper [96], the authors con-
sider predictive relational learning tasks, i. e. tasks with a target table within a
relational database containing a target variable, either numeric for regression or
categorical for classification. This circumstance is relevant for the new usage of
aggregate functions as presented by Perlich and Provost [96], since it deals with
target-dependent aggregation.

Note that our framework presented above could also be used for descriptive
relational learning tasks by just leaving out the final step of adding in the class
attribute in cases where there is none available.

The new kind of propositionalization functions by Perlich and Provost applies
to their concept class ii and to categorical attributes of the non-target relations.

Unfortunatly, the description of queries equivalent to clauses in C in our frame-
work is rather short [96]. The same applies to the real-life business database that
they use for their experiments. For the latter, foreign key relationships remain
blurred.
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Figure 4.7: A relational database schema [96] (arrows represent user-defined for-
eign links)

For categorical attributes, several vectors are computed. These are case vec-
tors CV that contain counts of possible values per target example, reference
vectors RV that contain especially counts of possible values across all positive
examples and across all negative examples, further so-called variance vectors.

The authors investigate different extracts from CVs. For instance, they only
keep the counts of possible values that occur most often across positive examples
and those that occur most often across negative examples. Another opportunity
is to keep those counts, where the counts for possible values across positives differ
the most from those across negatives.

Further, distances between CVs and RVs are used to produce further features,
using different opportunities to compute vector distances.

Results show that features of increasing complexity have increasing predictive
power in the domain investigated. However, there are no details about runtimes
given.

Relevant aspects of Relaggs

Here, we point to some problems of Relaggs [71] with the RCC example database,
and we describe where Relaggs clauses can be found in the RCC hierarchy.

Fig. 4.7 depicts the example database of Perlich and Provost with just two
foreign links.

For the relational concept class iv, Perlich and Provost gave the example of
“the total price of products returned by a customer”. Using the foreign links as
defined in the figure, there can be a clause C ∈ C:

• customer(C,Gender,Class) :- transaction(T,C,P,Date,Price),
returnedItem(R,C2,P).

Since foreign links as used by Relaggs allow for only one variable to be
shared between a pair of literals there cannot be variable C in the last literal.
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This means, that for each product bought by a certain customer, information
about returns of this product will be included across all customers.

It would not help to declare a different foreign link, say from Transaction.C id
to ReturnedItems.C id: in this case, every transaction record for a certain cus-
tomer is joined with all records on returned items of this customer. So, here the
bias for Relaggs clauses excludes a relational concept.

However, the database schema itself seems to be problematic. Instead of
identifiers for customers and products, those for transactions would have been
more appropriate in the ReturnedItems table. With this new schema, Relaggs

would have no problems.
Another interesting example provided by Perlich and Provost, in the context

of statements on the large expressive power of ILP, corresponds to the following:

• customer(C,Gender,Class) :- transaction(T,C,P,Date,Price),
returnedItem(R,C2,P), transaction(T2,C2,P,Date2,Price2), date2 ≥ 2001.

This identifies customers who bought a product that was returned by another
customer who bought it after 2001. The Relaggs bias excludes a clause such
as this, because it does not allow for multiple occurrences of literals of the same
predicate in a clause C.

Another problem for the Relaggs bias is posed by autocorrelation. As Per-
lich and Provost point out, this can be treated by linking back to the target
relation. However, the Relaggs bias does not allow for a target literal in the
clause body. Moreover, this would introduce circles in the graph induced by the
database. Thus, a parameter for search depth like d for RollUp [54] or a similar
parameter for the RCC-based system [96] would be necessary.

Actually, some of the deficiencies can be remedied by constructing further
tables, for instance, in the case of autocorrelation, by producing copies of the
target relation and possibly further relations, as was already tried successfully in
a biological domain [22].

Finally, which concept class do Relaggs clauses correspond to? Class i is
completely covered, also class ii, if post-processing aggregates is considered a
subsequent step. Relaggs further covers parts of class iv, although just those
that could be replaced by conventional feature construction from results of clauses
for classes i and ii. Other parts of class iv are not covered, cf. the first example
in this section above. Class iii is also not covered here, but partly by extensions,
cf. the following chapter.

Comparison of RCC and Relaggs

Since the description of the system based on RCC and the data used [96] is not
detailed enough, we can not yet compare the sets of clauses used with those of
Relaggs. This situation was not improved with a dissertation overview provided
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by Perlich [95]. The two database schemas used there are small, with three tables
each, although the structure of the second example — a citation graph from the
machine learning community — allows for interesting considerations.

As for the number of features constructed, Perlich and Provost restrict this
figure for categorical attributes by considering not all possible values but only se-
lected values. The selection of these values is based on counting their occurrences
across all examples, across positive examples, and across negative examples in so-
called reference vectors. Then the values that occur most often under the specific
conditions have to be determined. Only for those values, counts per example are
used for the propositionalization result.

It is not obvious if the effort of the conditioned counting pays off compared
to the Relaggs approach of counting the occurrences of all possible values per
example. There could be savings if the computation of reference vectors leads to
counting only a small subset of the possible values.

However, even within the RCC-based approach, the occurrences of all possi-
ble values per example are counted and stored in so-called case vectors for the
computation of distances to the reference vectors, among others.

Thus, the determination of most frequent values seems like a method for
feature selection within the process of propositionalization. First, this may be
costly. Second, restricting the attention to the n most frequent values may also
be responsible for relevant information loss. Also, n would be another parameter
to be set by the user, which is negative for ease of use.

Attributes representing distances of case vectors and reference vectors, includ-
ing difference vectors for reference vectors conditioned by positive and negative
examples, respectively, are not present in Relaggs. Perlich and Provost report
that they contributed to good learning results.

Overall, RCC is an interesting point of comparison for our work although
the presentation by Perlich and Provost was not detailed enough so far to allow
for a more precise analysis than that provided here. We expect that Perlich’s
dissertation will give more details.

4.5 Empirical Evaluation

4.5.1 Objectives

With a series of experiments, we demonstrate properties of the basic variant of
Relaggs as presented in this chapter. We show the 3E characteristics for our
approach. This happens in relation to other systems that are suited for relational
learning. Relaggs in combination with propositional learners is compared to
systems that learn directly from the relational data as well as to systems that
implement traditional approaches to propositionalization.

In more detail, Relaggs is mainly used in combination with the decision tree
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learner J48 as implemented in the WEKA machine learning environment [132],
following many ideas of the well-known learning system C4.5 [104]. On some
occasions, we also use SMO, the WEKA implementation of a support vector
machine learner.

As direct learners from relational data, i. e. ILP systems in the narrow sense,
we choose Foil, Progol, and Tilde. This choice is motivated by the prominent
status that these systems have gained in ILP. Further, they represent different
approaches to relational learning and different stages of the ILP developments
with Tilde as one of the most modern ILP systems.

The first of the other propositionalization systems used in our experiments is
a variant of Dinus, which excludes function-free hypotheses. That means, values
of relations reachable via many-to-one relationships from the target relation are
used as such for the propositionalization result table.

The second of the other propositionalization systems is Rsd as an implemen-
tation of the extended Linus approach, which can also deal with indeterminate
background knowledge.

Both propositionalizers are used with the same propositional learners as Re-

laggs, i. e. mainly J48. The intention of our choice of these two traditional
systems for propositionalization is to include two systems of different complexity
into our investigations.

In the following, we present our working hypotheses (WH) for this section.

WH1A Our working hypothesis 1A is that ILP learners have better opportunities
to reach high quality models, i. e. with best accuracies on the spectrum of
relational learning tasks.

WH1B Also, we assume that models achieved with ILP learners have lower com-
plexity than those resulting from the more indirect learning by proposi-
tionalization, where relational aspects of models have to be simulated with
maybe numerous simpler features.

WH1C However, the inherent complexity of the ILP learners endangers them with
inefficiency, especially in comparison to Relaggs.

WH2A Relaggs has advantages w. r. t. effectivity compared to traditional ap-
proaches to propositionalization because of its treatment of non-determinate
background knowledge in a data type specific way, especially for numeric
data.

WH2B Model complexity will be better for Dinus and worse for Rsd, again be-
cause of the inherent simplicity / complexity of the approaches.

WH2C The same as assumed by WH2B applies to efficiency, analogously.
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WH3A In a subseries of experiments, we compare to another approach to propo-
sitionalization using aggregation, viz. RollUp. (We cannot use an RCC
system here, since it remains unclear how this system should work for more
deeply structured database schemas.) Our working hypotheses for the com-
parison with RollUp is that its style of multiple aggregation scales not
well.

WH3B Further, RollUp does presumably not produce better features. Thus, we
expect about the same performance in terms of predictive accuracy and
model complexity as for Relaggs.

WH4 Another objective of our empirical evaluation is to find out if learners are
really better suited to the scenario of propositionalization that can cope
with a large number of possibly only moderately relevant features. This
should be the case for support vector machines.

4.5.2 Material

As material for our experiments, the central relevance is put on the relational
data sets and the learning tasks defined on those data.

Overall, the choice of learning tasks was motivated by the attempt to cover

• several orders of magnitude in the size of the data sets

• several domains with different characteristics such as predominant nominal
descriptions or predominant numeric data

• different learning situations such as distributions of class values or learning
success in general

Another criterion for our choice of data sets was availability, for obvious rea-
sons. Here, it must be said that it would be desirable to have a larger pool of
relational data sets originating from real-life databases for public access, see also
Appendix B.

In order to allow for a unified treatment of learning tasks including good
opportunities for the evaluation of the learning results, we restricted our attention
to two-class problems, i. e. concept learning. Details about the data sets and
learning tasks can be found in Appendix B. Here, we provide short descriptions
to illustrate the points made above in this subsection.

Table 4.2 shows an overview of the data sets and learning tasks. The first
column provides the names that we use for the learning tasks. Those names
were derived from the names of the target relations and attributes. The second
column indicates the domain where the data originate from. After that, we
provide numbers of relations and values. The latter numbers are the products of
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Table 4.2: Overview of the learning tasks (rels. — relations, vals. — values,
exms. — examples, min. class — minority class)

Target Domain # Rels. # Vals. # Exms. % Min. class
Trains20.bound Artificial 3 796 20 50.0
KRK.illegal 2 340,000 20,000 33.0
Muta042.active Biology/ 17 59,134 42 31.0
Muta188.active Chemistry 17 59,426 188 33.5
Partner.class Insurance 8 4,355,315 13,322 19.5
Household.class 8 2,569,753 7,329 49.4
Loan.status Banking 8 570,588 682 11.1
Card.type 8 2,242,680 892 11.8
Gene.fct growth Genetics 10 66,855 861 31.9
Gene.loc nucleus 10 66,855 861 42.5

the number of rows and the number of columns, summed over all tables in the
data set. Last not least, the number of learning examples and the distribution of
the class attributes are given.

Thus, there are both representatives of classical ILP problems (Trains, KRK,
Mutagenesis) as well other problems, mainly from business domains. The sizes of
the datasets reach challenging dimensions especially for the latter group of data
sets.

Information about software that was used for the experiments can be found
in Appendix A.

4.5.3 Procedure

We ensure comparability of the application of several learning systems and of
their results by a number of measures.

1. We executed all experiments on the same machine such that the same condi-
tions e. g. of main memory, processor speed, and operating system specifics
applied. More specifically, we used a workstation of type Sun-Blade-1000
with 1GB main memory and an UltraSparc-III processor with 750MHz.
For aspects of the software used, e. g. the version of the operating system,
cf. Appendix A.

2. The same point of departure was used for all experiments, viz. our prepa-
rations of the data as MySQL databases. In a number of cases, this meant
for all learners the usage of a reduced variant of the original data where
aspects without relevance for the learning examples or learning task were
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left out. This was especially important for ILP systems that were not able
to directly use MySQL but had to load all given data into main memory.
For more information about the reductions, cf. Appendix B.

3. The input formats for the single learners were produced following conven-
tions for the systems as stated in their documentation or used in earlier
research, preferably by the authors of the systems themselves. Still, we
took great care to use largly equivalent representations of the data across
learning systems. This also applies to the definitions of declarative bias.

4. We applied all learning systems in their respective default schemes. That
means that default settings of the parameters were used, if their application
was reasonable. This also concerns the declarative biases used.

5. We also tried other preparations of the data and other settings for learning
in order to gain a more complete picture of the opportunities of the learning
systems.

In summary, we started for all experiments from MySQL (reduced) databases.
If necessary, the data were exported into the corresponding formats as input for
the learning systems. Bias definitions were also derived from the databases.
These steps were supported by tools that we developed for those purposes, cf.
Appendix A.

After that, systems were applied in conventional ways with their default set-
tings. For Relaggs, we were able to use the same implementation that is also
used in the following chapter. For the applicability of this implementation, we
had to make the exploitation of foreign links and functional dependencies explicit
by precomputing a number of joins of the original or reduced tables. Details are
given in Appendix B. The times taken for these transformations are recorded in
the experimental results section.

We used a setting branching factor = 0 for computing these joins. Fur-
thermore, we set maximum cardinality = 100 for nominal attributes to be con-
sidered for propositionalization. An exception was made for ECML-1998 data,
where we used maximum cardinality = 10. This exception was made mainly
because MySQL tables have a restricted breadth which would have been exceeded
otherwise.

The aggregate functions we applied were the following: average, maximum,
minimum, and sum for numeric attributes, count of possible values for nominal
attributes, and count of related records. In order to unify experiments we did
not use the MySQL functions but implementations within Relaggs. These also
had to be used in other experiments with non-standard aggregate functions that
are not offered by MySQL.

In the following, we present more information about special settings of the
learning systems in our experiments. Progol and Rsd were also used with
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non-default parameter settings and on other preparations of the data. These
experiments are reported separately.

For Tilde, advanced features of the system such as the opportunity for sam-
pling or chunking were not used, and not either discretization or ≥ tests for
numeric variables. The latter was remedied for extra experiments that are re-
ported separately. Furthermore, we consistently used test accuracy after pruning
as provided in cross-validation result files by Tilde, although there was a sec-
ond accuracy given there, called ”after safe pruning”, which was occasionally
different.

RollUp was simulated with Relaggs, parameterized in the same way as
Relaggs in the unified experiments, and with joins directly computed with the
help of MySQL. Because of main memory limits that made the handling of many
Java double variables a high effort for Household.class prediction, we split the
target table in four parts for propositionalization, in order to combine the results
before propositional learning took place.

After propositionalization by Dinus, Rsd, RollUp, or Relaggs, we applied
WEKA learners, especially J48 and SMO, both with default parameterizations
again.

In order to uniformly arrive at interpretable results, we used stratified 10-
fold cross-validation for all experiments. To this end, we developed tools for
partitioning the different kinds of input files for the learning systems in a way
such that the same partitions included the same sets of examples across learning
systems.

Using our own partitionings of the data enabled us to do paired t-tests. Fur-
thermore, advantages with respect to memory usage could be noticed for larger
datasets, where e. g. WEKA had difficulties to execute its default cross-validation.

We did not execute multiple cross-validations, although our tools allow for it
by the opportunity for the user to specify a seed for the randomizer used during
partitioning. Beside the time effort this would have meant e. g. for 10 times
10-fold cross-validation, we rely here on the standard deviations as a means of
information. Especially for larger data sets, these are small enough to indicate
stability of the results.

We measured classification accuracy or equivalently error, including signifi-
cances of differences between learning systems, running times, complexities of
models and further properties of features across the experimental conditions. For
the determination of accuracies or equivalently error rates, we performed strati-
fied 10-fold cross-validation, as stated above.

For running times and complexities of models, we measured training using
all available labeled examples. This is an interesting case, because in practice,
those models will usually be applied as predictors, based on the assumption that
cross-validation results carry over to those models and that learning from more
examples leads to higher quality models in general.
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Table 4.3: Error rate averages and standard deviations (in percent; n. a. as not
applicable for reasons of (1) database schema or (2) running time; best results in
bold, second best in italics)

Target Foil Progol Tilde Dinus Rsd Relaggs

Trains.bound 40.0 30.0 30.0 n. a. (1) 40.0 10.0
± 39.4 ± 35.0 ± 25.8 ± 31.6 ± 31.6

KRK.illegal 2.8 n. a. (2) 24.9 n. a. (1) 23.8 27.7
± 1.1 ± 1.2 ± 1.5 ± 1.1

Muta042.active 22.7 23.3 21.3 18.8 16.3 14.3
± 21.7 ± 14.0 ± 17.4 ± 14.3 ± 15.3 ± 16.0

Muta188.active 10.2 18.4 22.3 20.6 22.3 13.2
± 4.9 ± 11.1 ± 8.2 ± 11.6 ± 8.2 ± 9.1

Partner.class n. a. (2) n. a. (2) n. a. (2) 19.1 n. a. (2) 2.5
± 0.2 ± 0.5

Household.class n. a. (2) n. a. (2) n. a. (2) 42.9 n. a. (2) 7.1
± 2.0 ± 0.8

Loan.status 12.7 n. a. (2) n. a. (2) 11.1 n. a. (2) 7.2
± 3.2 ± 0.6 ± 3.4

Card.type 14.6 n. a. (2) n. a. (2) 11.8 n. a. (2) 11.8
± 2.8 ± 0.5 ± 2.4

Gene.growth 10.6 21.0 19.3 31.9 19.6 17.9
± 2.7 ± 3.3 ± 3.4 ± 0.3 ± 4.2 ± 4.0

Gene.nucleus 12.8 19.4 11.6 37.8 12.6 15.0
± 3.0 ± 4.7 ± 2.2 ± 5.0 ± 2.6 ± 2.5

Note that we do not include times for loading data into main memory as usual
for ILP learners or for producing their input formats in the first place. These
times are roughly constant across the experimental conditions and in lower orders
of magnitudes than the running times of the learners themselves.

4.5.4 Results

In this section, we first present the results obtained in our unified experiments.
Then, we also report results of a series of additional experiments, especially with
the learners that serve as points of comparison for Relaggs, in order to complete
the picture. In the final part of this section, we compare our learner to RollUp.

Table 4.3 shows, for each of the experimental conditions, the average error
across the partitions and the standard deviation. The best results — lowest error,
considering deviation in case of a draw — are marked in bold.
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Table 4.4: Win-loss-tie statistics (row vs. column)

Rsd Dinus Tilde Progol Foil

Relaggs 3–2–1 6–0–2 1–2–3 3–0–2 2–2–4
Rsd 2–0–2 0–1–5 1–0–4 0–3–3
Dinus 0–2–2 0–2–2 1–3–2
Tilde 2–0–3 0–3–3
Progol 0–3–2

Table 4.5: Numbers of columns in results of propositionalization

Target Dinus Rsd Relaggs

Trains20.bound n. a. 247 57
KRK.illegal n. a. 321 13
Mutagenesis042.active 5 154 483
Mutagenesis188.active 5 601 483
Partner.class 50 ≫100,000 1,078
Household.class 43 ≫100,000 1,197
Loan.status 22 ≫100,000 1,021
Card.type 22 ≫100,000 421
Gene.fct growth 3 1,052 200
Gene.loc nucleus 3 1,062 208

Note the partly large standard deviations, especially in cases with relatively
few learning examples, as for Trains.bound and Mutagenesis042.active. This
makes further considerations as a basis for judgements necessary: statistical sig-
nificances should be observed. Win-loss-tie statistics are provided in Table 4.4.
Decisions about a win or loss are taken here on observing a significance of the
differences according to a paired t-test at level α = 0.05. Cases in which at least
one learner of a pair of learners to be compared was not able to arrive at any
model within a day are not counted in this table.

All learning results reported here are based on the usage of J48 after propo-
sitionalization, i. e. for Dinus, Rsd, and Relaggs. For the latter, we also used
SMO but it turned out to be worse in most cases. There was only one case in
which SMO provided significantly better results than J48, viz. for Gene.nucleus
with an error rate of 12.4% ± 2.0%.

In Table 4.5, column numbers resulting from propositionalization are listed.
Those numbers exclude the key attribute, but include the target attribute, i. e.
they correspond to the number of attributes as used by WEKA.
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Table 4.6: Information gain for best-ranked features (best results in bold)

Target Dinus Rsd Relaggs

Trains20.bound n. a. 0.493 0.493
KRK.illegal n. a. 0.005 0.024
Mutagenesis042.active 0.342 0.283 0.474
Mutagenesis188.active 0.303 0.262 0.384
Partner.class 0.081 n. a. 0.293
Household.class 0.208 n. a. 0.570
Loan.status 0.091 n. a. 0.136
Card.type 0.077 n. a. 0.080
Gene.fct growth 0.010 0.151 0.151
Gene.loc nucleus 0.030 0.148 0.148

In Table 4.6, the information gain (IG) is provided for the feature of each ap-
propriate experimental condition that was ranked first by WEKA’s corresponding
attribute selector.

In Table 4.7, tree sizes for trees as learned from all training data are given as
the absolute numbers of nodes they consist of.

In Table 4.8, numbers of clauses as learned from all training data are given,
plus numbers of uncovered examples for Foil and Progol. For Tilde, the
Prolog notation of trees is used. Those trees cover all examples.

Table 4.9 shows running times for Relaggs, together with its preparatory and
propositional learning phases. Preparation means here the computation of joins,
especially exploiting functional dependencies, starting from the same variants of
databases as the other systems. Note that we do not look at times for loading
data, for instance for WEKA open file. The same applies to reports on running
times for other systems such as Progol later on. In general, these times are in
lower orders of magnitude than those for the actual learning.

Table 4.10 shows the running times for learning from the whole set of training
data. For most systems, the times for a single run during cross-validation was in
the same order of magnitude than times given in the table. Only for Foil and
one domain, we observed running times that varied strongly: on Gene.growth
3,732.2 sec ± 4,578.3 sec and on Gene.nucleus: 2,568.0 sec ± 4,171.6 sec.

In the following, we report special results achieved with the systems under
consideration.

Foil. For Foil, we observed partly large differences between learning results
depending on the definition which class label would represent the positive class.
We provide the best results seen, achieved in most cases by taking the minority
class as positive.
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Table 4.7: Tree sizes (number of nodes / number of leaves)

Target Dinus Rsd Relaggs

Trains20.bound n. a. 5 / 3 5 / 3
KRK.illegal n. a. 2,821 / 1,411 957 / 479
Mutagenesis042.active 5 / 3 5 / 3 9 / 5
Mutagenesis188.active 15 / 8 25 / 13 25 / 13
Partner.class 18 / 13 n. a. 167 / 85
Household.class 4,725 / 4,538 n. a. 290 / 175
Loan.status 1 / 1 n. a. 31 / 16
Card.type 1 / 1 n. a. 21 / 11
Gene.fct growth 1 / 1 77 / 39 67 / 35
Gene.loc nucleus 4 / 3 51 / 26 57 / 30

Table 4.8: Numbers of clauses (in parantheses: numbers of uncovered examples)

Target Foil Progol Tilde

Trains20.bound 1 (2) 1 (3) 5 (0)
KRK.illegal 63 (431) n. a. 1538 (0)
Mutagenesis042.active 3 (1) 3 (4) 3 (0)
Mutagenesis188.active 8 (4) 14 (11) 13 (0)
Partner.class n. a. n. a. n. a.
Household.class n. a. n. a. n. a.
Loan.status 11 (16) n. a. n. a.
Card.type 5 (58) n. a. n. a.
Gene.fct growth 14 (41) 32 (106) 49 (0)
Gene.loc nucleus 10 (54) 97 (39) 36 (0)
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Table 4.9: Running times for Relaggs steps (in seconds)

Target Preparation Propositionalization WEKA-J48

Trains20.bound 0 2 0
KRK.illegal n. a. 36 36
Mutagenesis042.active n. a. 8 1
Mutagenesis188.active n. a. 8 1
Partner.class 52 3,577 1,799
Household.class 35 2,198 427
Loan.status 4 190 12
Card.type 14 445 5
Gene.fct growth n. a. 13 6
Gene.loc nucleus n. a. 14 6

Table 4.10: Running times (in seconds; for training runs on all examples, best
results in bold, * — large differences to running times for several partitions
during cross-validation)

Target Foil Progol Tilde Dinus Rsd Relaggs

Trains20.bound 3 3 < 1 n. a. 1 2
KRK.illegal 78,946 > 1 d 3,498 n. a. 4,446 72
Muta042.active 1 5 5 < 1 < 1 9
Muta188.active 3 23 82 < 1 3 9
Partner.class > 1 d > 1 d > 1 d 25 > 1 d 5,428
Household.class > 1 d > 1 d > 1 d 6 > 1 d 2,660
Loan.status 3,307 > 1 d > 1 d < 1 > 1 d 206
Card.type 1,269 > 1 d > 1 d < 1 > 1 d 464
Gene.fct growth 9,385 * 508 1,239 < 1 48 19
Gene.loc nucleus 153 * 369 818 < 1 36 20
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Progol. Here, we tried the system on the original KRK.illegal problem repre-
sentation to find out that Progol provides good rules after about 17 hours.

Tilde. This system is not influenced by switching the definition of positive and
negative classes, as was the case for Foil and Progol. With the bias chosen for
our unified experiments, which was most similar to that of Progol and Rsd,
we did not use many of the potentials of Tilde.

For this reason, we tried some other bias variants. For KRK.illegal, we
achieved with another bias allowing for “old” variables in more argument po-
sitions a number of 808 Prolog rules after 5,473 sec. The first of those rules
corresponds to a specific case of adjacency, which was an explicit predicate in
the original problem representation. We saw an error in stratified ten-fold cross-
validation of 9.3%±0.7%.

For Partner.class and Household.class, we could not achieve any results, not
even after manually dropping nominal attributes with more than 10 distinct val-
ues, while for Loan.status, we at least saw a first rule after about 3 hours, which
asked for a criterion known to be highly relevant in the domain.

With greater-than tests for numeric attributes, Tilde achieved after 82 sec
with a model of 13 Prolog rules an error rate of 14.3±8.0 for Mutagenesis188.active,
which is significantly better than above, and makes significant differences to Foil

and Relaggs disappear. For Loan.status prediction, missing values caused the
system to fault. We only arrived at any results after excluding table trans, which
made a good solution impossible here. For other problems, we observed no sig-
nificant changes.

Rsd. We also tried Rsd on original representations of some of the problems and
reached some notable results. For KRK.illegal, using a special parameter setting
in order to avoid an explosion of the number of features, we even produced an
error rate of 0% with a tree consisting of 153 nodes based on 84 features after
about 4,400 sec. For Mutagenesis188.active, we achieved 12.2% error with a tree
consisting of 11 nodes and based on 26 features after about 15 min.

Back on problem representations as used for our unified experiments, we tried
measures such as manually dropping numeric attributes. This helped only for
Loan.status prediction, where the system reached an error of 7.2% with a tree
consisting of 23 nodes based on 3,058 features after about 1,330 sec. For House-
hold.class, restricted to nominal attributes with at most 10 different values, we
allowed the system to run for longer than a day, and after about 4.5 days, includ-
ing WEKA learning with J48 taking about 11,500 sec for the complete training
set, a tree was produced from 3,499 features that had an error of 32.1%±1,8% in
stratified 10-fold cross-validation.

We now turn to results achieved with RollUp.
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Table 4.11: RollUp vs. Relaggs: Experimental results for selected learning
tasks

Target Approach: RollUp Relaggs

Partner.class Error rate average: 5.2 % 2.5 %
Error rate std. dev.: ± 0.9 % ± 0.5 %
Number of features: 519 1,078
IG of best feature: 0.25 0.29
Size of tree 303 / 161 167 / 85
Running time: 3,377 sec 5,428 sec

Household.class Error rate average: 7.5 % 7.1 %
Error rate std. dev.: ± 0.8 % ± 0.8 %
Number of features: 1,896 1,197
IG of best feature: 0.57 0.57
Size of tree 435 / 345 290 / 175
Running time: 5,531 sec 2,660 sec

RollUp. Table 4.11 shows results for RollUp on two learning tasks, in com-
parison to Relaggs. For the other learning tasks, results of the two systems are
the same. This is due to the absence of multiple one-to-many relationships on
paths induced by the other database schemas. Even if there are these circum-
stances to be met, as is the case for Trains.bound and Loan.status, the actual
data do occasionally obey to a simpler one-to-one relationship, as between cars
and loads, and between loans and accounts.

The difference in accuracy for Partner.class prediction is highly significant,
while it is insignificant for Household.class prediction, according to a t-test in the
same variant as used above.

4.5.5 Discussion

Error rate averages

The results concerning errors of the learning systems used in our experiments as
reported in Table 4.3 offer a number of surprising and remarkable aspects.

The first unexpected circumstance is that Relaggs seems to be the overall
winner here with delivering the best result in 5 cases and the second best in
another 3 cases. In past experiments, we had seen a superiority of Relaggs

on Loan.status, Partner.class, and Household.class prediction compared to vari-
ants of Dinus and Progol [71], and also good performance on Trains.bound,
Gene.growth, and Gene.nucleus prediction compared to Rsd [65].

However, our experiments here included more learning systems, especially
Foil and Tilde, and more learning tasks, especially a new variant of KRK.illegal
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and — last not least — Card.type prediction. Thus, we did not expect such a
clear result in favor of Relaggs.

The second unexpected point is the good appearance of Foil, actually pre-
senting the follow-up for Relaggs with the winning result in 3 cases. Initially,
we thought that Tilde would have better opportunities to reach such results. In
fact, of the many opportunities of Tilde, we restricted ourselves to those com-
parable with the other learners here. Still, our settings are a plausible way to
use Tilde, and to arrive at better settings produces a certain additional search
effort.

We further judge it remarkable that Progol did not arrive at any results in
the amount of time allowed in half of the cases. This is not completely unex-
pected, though, since complexity issues are known to be problematic for Progol.
Further, the kind of learning tasks largely deviates from those that Progol typ-
ically excels at, viz. those with less data points but more complex structures as
in a number of natural language learning problems.

It may also be remarkable that Relaggs did not win on Gene.growth here,
despite of the success in the KDD Cup 2001. So it could well have been the
case that an application of Foil would have beaten our solution. However, there
seems no solution to have been produced yet which is better than our overall
solution, as reported by Atramentov and colleagues in 2003 [5]. This may have
to do with the more complex overall task, where n of m functions had to be
predicted.

Looking at the learning task of KRK.illegal prediction, the good result achieved
by Foil indicates that our preparation of the data was not only plausible but
also appropriate for learning in principle.

Statistical significances

The evaluation of error rates was done so far mainly with respect to their average
values. Of course, this is not conclusive in itself. We have also to consider other
statistical descriptors. Here, we first note partly high standard deviations of
the error rates accross cross-validation folds. This is why we provide statistical
significance results in Table 4.4. This helps to evaluate the results seen so far in
more detail.

As we see from the comparison of Relaggs to Rsd, Tilde, and Foil in
the first line of the body of that table, there can be no overall preference for
Relaggs. In six comparisons, it is significantly better than the competitors, but
in another six comparisons, it is significantly worse.

Still, we see Relaggs as an interesting option to test when high accuracies
are in the primary focus of learning. Moreover, if we would have considered each
case, where another learner did not arrive at any results in a reasonable amount
of time, as predicting the majority class, the results with respect to statistical
significance would have looked much more favorable for Relaggs.
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The last column in the win-loss-tie table confirms the strength of Foil on
the learning tasks of our experiments. Also, the weakness of Progol is con-
firmed, also that of the variant of Dinus, which was expected for this rather
simple approach, while Tilde looks better here, with more significant wins than
losses compared to Relaggs and wins/ties only compared to Rsd, Dinus, and
Progol.

Overall, the error rate results show that our learner Relaggs is competitive
w. r. t. both prominent ILP learners and typical traditional approaches to propo-
sitionalization. Thus, the system seems to be sufficient in a number of cases. In
some other cases, however, ILP approaches seem to have the more appropriate
means for high quality models. The latter indicates a confirmation of WH1A,
i. e. superiority of ILP approaches. Our working hypothesis can be extended,
however, to also state that Relaggs is in fact sufficient to reach low error rates
in many cases.

WH2A can not be completely confirmed in the light of the comparison of Re-

laggs and RSD. Traditional approaches to propositionalization as represented
by RSD can obviously produce better models in a number of cases. However,
it is true that difficulties with numeric data limit their applicability, in favor of
Relaggs.

Feature sets

An important factor for the approaches to propositionalization are the feature
sets produced, especially the numbers of features and an indicator of their quality.
Table 4.5 shows the numbers of features produced by Dinus, Rsd, and Relaggs

that serve as input for propositional learners. As expected, Dinus produces
comparatively low numbers of features, because it makes only restricted use of
the tables in the databases.

A more interesting comparison is possible for the latter two systems. In
most cases, Rsd produces more features here than Relaggs, occasionally even
a number considered too high for further consideration, viz. >100,000. This is
due to the lack of an appropriate handling for numeric attributes. Leaving them
out was in some cases able to change the number of features down to the same
order of magnitude as that of Relaggs.

However, the error rates remained relatively high, which is probably due to
leaving out numeric attributes. Also, efficiency was still not convincing. In
general, it is interesting to note that Rsd produces higher numbers of features
than Relaggs although Rsd uses class information in the process of feature
construction: Rsd produces more complex features than Relaggs that ask for
the occurrence of certain combinations of values for different attributes.

This complexity seems not sufficient here for the construction of high-quality
features, though. Instead, Relaggs shows consistently the best attributes in
its results according to the information gain criterion. First of all, this seems



98 CHAPTER 4. AGGREGATION-BASED PROPOSITIONALIZATION

to be a confirmation that aggregation as applied by Relaggs is a good idea.
Further, better features raise hopes for better models. Of course, looking at the
best feature only can at best be a rough indicator for other features in the sets.
Still, we think it is an illustrative point.

Model complexities

We now turn to model complexity and thus our WH1B/WH2B. For the proposi-
tionalization systems as reported in Table 4.7, Dinus delivers the smallest trees,
with the exception of Household.class prediction, where a giant but flat tree is
produced because of the lack of simple and strongly predictive features.

The tree sizes for Rsd and Relaggs are in the same order of magnitude.
Further, with node numbers below 100, trees have a chance to be comprehensible
for human experts in a majority of cases here.

For the ILP systems as documented in Table 4.8, the situation is similar. In
most cases, rule set sizes are in the same order of magnitude across systems per
learning task.

A notable exception is the comparatively small rule set created by Foil for
KRK.illegal prediction, which signals also the model’s quality w. r. t. accuracy.
Further, the uncovered examples can be regarded as treated by another clause
or rule that predicts their majority class. Precise figures are provided just for a
more detailed impression of the models.

Trees resulting from propositional learning can be translated into a number
of rules corresponding to the number of their leaves. Based on such translations,
we gain the following picture.

While the numbers of rules are in most cases in the same order of magnitude,
Foil produces often models distinctly smaller than those by Progol, Tilde,
Rsd, and Relaggs, with less than half of their sizes. Having also in mind the
strong results of Foil w. r. t. model accuracy, this enforces the suspicion that
Foil’s mechanisms to create good rules and to control model complexity are
effective here.

Those observations for Foil seem to confirm our WH1B, while results for
Progol and Tilde show that the assumption is not true in general. Also,
we must differentiate for WH2B: Dinus shows the expected small models but
Relaggs is not distinctly superior to Rsd w. r. t. model complexity.

Efficiency

We find our WH1C/WH2C fully confirmed by the experimental data. With a
growing data set size and complexity, Relaggs is the only well-scaling approach
beside the restricted variant of Dinus, as expected. During experiments, we ob-
served that main memory limitations were not responsible for the longer running
times of the other systems.
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Instead, search in large hypothesis spaces caused high costs here, while Re-

laggs avoids such search processes altogether. Thus, the bias of Relaggs is
useful and — in the light of results for model accuracy and complexity — sug-
gests a preference for the application of our approach or well-designed aggregation
approaches in general.

RollUp vs. Relaggs

For most of our learning tasks, results of RollUp and Relaggs are equivalent.
Effects occur only for databases with deeper structure, i. e. longer paths in the
induced graphs from the target relation node to other nodes. This is exemplified
with the Partner.class and Household.class data.

For Partner.class, the farthest node tfkomp can be reached from the target
relation node part by exploiting 3 foreign key relationships including 2 one-to-
many relationships, cf. Figure B.5 in Appendix B. It takes 4 such steps including
3 one-to-many relationships from hhold to tfkomp for Household.class predic-
tion. This difference is responsible for the change from less time consumption
by RollUp for Partner.class prediction to more time consumption for House-
hold.class prediction, compared to Relaggs. This indicates a confirmation for
WH3A.

WH3B is also confirmed by our results: RollUp does not produce better
models here than Relaggs. There is even a statistically significant difference in
performance to be observed for Partner.class prediction in favor of Relaggs.

Trees vs. SVMs

We have to reject our final WH4 concerning expectations w. r. t. support-vector
machine learning. Most results of the application of WEKA’s SMO to outputs
of Relaggs were not better than those reached with J48. Only in one case, a
statistically significantly better result was produced. Even that was not an overall
winning solution. Thus, we can not confirm that the application of SMO was a
valueable venture in our experiments, although support-vector machine learners
are supposed to be able to deal well with large numbers of moderately relevant
features.

Furthermore, the application of J48 can be recommended because of the inter-
pretability of the results, which may be essential especially in cases of semantics-
blind feature construction as performed by Relaggs. Nevertheless, experiments
reported in the following chapter show that the application of SMO can be fruitful
under certain conditions in the context of propositionalization as well.

Ease of use

Finally, we discuss aspects of ease of use. Clearly, this topic is more diffult to
judge than effectivity and efficiency of learning, since it depends on the user.



100 CHAPTER 4. AGGREGATION-BASED PROPOSITIONALIZATION

However, a general impression that we gained during our experiments was that
there are two circumstances favorable for Relaggs.

First, working directly with DBMS makes the construction of mode declara-
tion files unnecessary. The production of those files can cause a high effort for
the user.

Second, we use comparatively few parameters for propositionalization. Here,
there were in fact only two of them: for setting the branching factor and the
maximum allowed cardinality of nominal attributes. Effects especially of the
latter parameter setting are also easy to understand.

4.5.6 Further Related Work

Blockeel and Bruynooghe [13] observed that relational learners handle (multi-)
sets of values either by aggregation or by selecting specific elements, the latter of
which is comparable to existence checks. Although this was not completely true
— for instance, even the basic variant of Relaggs as used in this chapter includes
counting of possible values for nominal attributes, which means effectively to first
select, then aggregate — the authors make a number of interesting proposals for
a combination of aggregation and selection. Especially, they introduce the idea
to apply recurrent neural networks for learning aggregate functions.

Knobbe and colleagues [55] took their approach to the application of aggregate
functions further by including them into the construction of the final hypothesis.
The authors describe relevant aspects of aggregate functions for this purpose, e. g.
monotonicity, where e. g. minimima can only get smaller when new values are
added to the summarized (multi-)set. However, this kind of dynamic aggregation
seems to involve search problems that may affect efficiency.

Jensen and Neville [48] describe an interesting phenomenon in the context
of aggregation: degree disparity. This notion means that the number of objects
related to target objects may correlate with class labels. This affects certain
results of aggregate functions. The authors provide the example of movies, which
may be the more successful the more actors participate. Then, aggregate function
results such as sums of the actors’ ages will show some correlation with class labels
as well, although age as such may have nothing to do with a movie’s success.

The authors [48] observe overcomplex models resulting from the occurrence
of degree disparity, beside possible irritations of analysts. In our experiments,
we did not control for degree disparity, such that models may be too complex.
However, our model evaluation included checks of the features in the rules and
trees, at least of those near the roots, which did not hint at problems here.
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4.6 Summary

In this section, we explained our choice of clause sets C on which proposition-
alization should be based. Ideas of foreign links and of functional dependencies
ensured that such sets C remained comparatively small and thus efficiently to
handle.

We introduced the application of aggregate functions for propositionalization
and provided an algorithm for propositionalization in this spirit. We illustrated
the workings of the algorithm with a number of examples drawing on our running
example.

For closely related work, we then discussed common aspects and differences
in detail. We believe that the different approaches can promote each other in the
future and be combined in favorable ways.

Finally, we presented an exhaustive empirical investigation, which compares
prominent ILP learners and several approaches to propositionalization including
different propositional learners. The results of our experiments show that our
approach to propositionalization reached a good point in the spectrum of effec-
tivity vs. efficiency. Relaggs turned out to be competitive with other current
approaches to relational learning.



Chapter 5

Exploiting Database Technology

In the preceding chapter, we already began to exploit ideas that are common
in the database area, first of all with the application of the standard aggregate
functions that can be found included in DBMS. Moreover, their usage in a data-
type specific way was supported by information contained in database schemas.
Schema information was also relevant for foreign links and functional dependen-
cies.

In this chapter, we take the approach even further. The first central issue
here is based on the observation of computation costs of the algorithm as applied
so far. Here, a crucial factor is the same as noted often before, also in the context
of ILP [133, 135]: the computation of joins of several relations. We suggest a
method to replace expensive joins by comparatively cheap ones, which results
in considerable efficiency gains. This concerns the whole process of learning,
not only in the context of propositionalization, but also for other approaches to
multi-relational learning.

The second important point is the extension of the spectrum of aggregate
functions to be applied. Here, the consideration of types becomes more differen-
tiated, influenced by typical atomic types as found in relational databases. So
far, we distinguished numeric and nominal attributes, as usual in KDD. Now,
we further distinguish numeric into integer and real-valued with different sets of
aggregate functions to be applied. This indicates only a range of opportunities
for further enhancements, e. g. including special aggregate functions for date and
time attributes.

A third topic is related to the usage of key attributes. For RDB, the concept
of keys is of highest relevance. In conventional KDD with a one-table input,
identifiers are often neglected. Of course, if identifiers do not contain any infor-
mation except that necessary for keeping objects apart, they do not have any
predictive value. However, key attributes often carry more information, even in
the conventional case. In the multi-relational scenario, there can be even more
situations when it seems advisable not to completely ignore identifying values for
learning.

102
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Fourth, we consider aspects of results of propositionalization such as the ex-
tent and further handling of redundant and otherwise irrelevant features. This is
not directly related to database-specific issues, however, extends the basic variant
of our approach as introduced in the preceding chapter.

A thourough empirical investigation into the issues mentioned above and fur-
ther elaborated in the following sections is a further main part of this chapter.

5.1 Pre-Processing for Propositionalization

5.1.1 Idea of New Star Schemas

Join costs are a major component in multi-relational learning. Consider a target
table that has one-to-many relationships to n other tables, each with m rows.
Then, the computation of a natural join has complexity of mn, if for each record
in the target table, each record in the second table has to be checked, then each
record in the third table, and so forth. For Relaggs, this case can be excluded
by setting the branching factor to zero.

However, the situation is the same for a join of several tables, starting from
the target relation, with a chain of n one-to-many relationships from one table
to the other. Here, Relaggs in its basic variant as introduced in the preceding
chapter would be inefficient.

Furthermore, there are usually different paths in the relational database graph
from the target relation to other relations, which takes the number of possible
joins to infinity — even with the restriction to natural joins as used here. And
beside join computation complexity, the resulting relations can become large as
well, w. r. t. not only row numbers but also column numbers, as roughly the sums
of column numbers of all relations involved.

Our analysis of the RollUp algorithm by Knobbe and colleagues [54], cf.
Chapter 4, showed that those aspects of complexity were dealt with there in
a favorable way. By recursively aggregating and joining tables at the current
distance dcur from the target relation to related tables at distance dcur − 1, some
complex joins are avoided.

This inspired us to have the following idea. Instead of getting distant tables
successively closer to the target relation by the RollUp mechanisms, we bring
information from the target relation to the distant tables such that they can be
aggregated in their near-original form and then cheaply joined directly to the
target table.

The information to be conveyed for this purpose are obviously the target
identifiers, such that they can serve as criteria for grouping rows of other tables
before aggregation. Thus, we proposed to propagate target object identifiers to
the other relations such that finally all other relations have a foreign key attribute
pointing to the primary key attribute of the target relation [74]. We applied this
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idea successfully in several learning situations before [67]. We present more details
about new star generation and properties in the following.

Note that the schema resulting from target identifier propagation is different
from the well-known star schema in typical data warehouses [6], where it is the
central facts table that contains foreign key attributes pointing to the primary
key attributes of the surrounding dimension tables. Still, the overall star shape
of the schema is predominant, so we chose to give ours the working title “new
star” schema. Figure 5.1 presents the running example database in such a new
star schema.

T

A

D

E

G

C

F

B

Figure 5.1: The running example database in a new star schema (arrows represent
foreign key relationships)

Note that RollUp, with the obvious setting of d = 1, and Relaggs, with a
setting of the branching factor to zero, behave largely in the same way when the
input is in the form of such a new star schema.

5.1.2 An Algorithm for Schema Transformation

In the following, we describe a way to derive new star schema databases from
original relational databases. It ultimately relies on a combination of automatic
measures with human decisions and control.

We expect as input a relational database with single-attribute primary keys
for all tables. This corresponds to recommendations for efficient database design,
often taken further to the suggestion to use integer key attributes. If this situation
is not given, it can be achieved by enumerating objects represented in tables, if
each object is represented by exactly one row there. If not, normalization steps
could help.

We further expect primary key attributes in the original database to be in-
dexed for efficient retrieval of selected rows of tables. This again is usual in
database design. We do not expect foreign key attributes to be indexed, as might
not be the case for relational databases because of the management cost for in-
dexes.
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Basically, we now intend to generate a new database with a new star schema
with read-only access to the original database. We assume this intention to be
in line with practical demands for KDD processes not to increase work loads on
databases that are first of all in use for other purposes.

For the expected situation, it is implicit that we have only two basic types of
relationships between tables: one-to-many and many-to-one. Many-to-many rela-
tionships are modeled with the help of two appropriate relationships of those other
two types. Further, one may further elaborate on zero-or-one-to-zero-or-more re-
lationships. We abstain from doing that here and only hint at the opportunities
of dealing with these issues with the help of appropiate outer joins.

Then, starting from a copy of the target table in the new database with its
primary key attribute kept, the relationships of the original target table to the
surrounding tables in the original database are checked. For each relationship,
if it is one-to-many, the non-target table contains target identifiers already in a
corresponding foreign key attribute. Thus, a simple copy can be made for the new
database. If it is a many-to-one relationship, an additional foreign key attribute
can be produced and filled appropriately for a derived table in the new database.

The situation is more complex when we get further away from the target
relation. The first of two tables considered in each propagation step can be
assumed to be situated in the new database and already equipped with a target
identifier attribute.

Further, before propagation, the first and the second table in the original
database must have been in either (a) a one-to-many or (b) many-to-one rela-
tionship. Exploiting these relationships, the target identifiers can now be further
propagated. For (a), an index should be created for the former primary key at-
tribute of the first table in the new database that can speed up the join. For (b),
there is the primary key index in the second table in the original database that
can serve the same purpose. Table 5.1 provides an algorithm for target identifier
propagation.

Example 35 For our running example, the first steps according to the algorithm
would work in the following way.

Copies of all relations in the original database form R1. The target relation
t is moved from R1 to M1. Since it is the only relation in M1, it is chosen for
further expansion of the new database. Directly related tables are a, d, f, and g.
These relations are stored in M2. For a, target identifiers need not be propagated,
because there is a corresponding foreign key attribute already, similar for d. For
f, target identifier propagation can be achieved with a MySQL statement such as
the following, assuming the original data are hold in a database test we, and the
current database is a new one:

create table f (key (t_id), key (f_id))

select t.t_id, f.*
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Table 5.1: Identifier propagation algorithm

1. Accept as input: a set of relations R1 (copy of the original database) with
schema information (keys, types, ...), with one of the relations marked as
target; initially empty sets M1, M2, and R2

2. Move target relation from R1 to M1

3. While M1 is not empty do

(a) Choose a relation r ∈M1

(b) Determine all relations {q | q ∈ R1} reachable from r using a foreign
key relationship and move those relations from R1 to M2

(c) While M2 is not empty do

i. Choose a relation q ∈M2

ii. Propagate target identifiers from r to q (details in the main text)

iii. Move q from M2 to M1

(d) Move r from M1 to R2

4. Output R2 (database in new star schema)
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from t, test_we.f

where t.f_id = f.f_id;

Identifier propagation works similarly for table g. After propagation, the four
tables are moved from M2 to M1, while the target table leaves M1 for the result
database R2.

In a second iteration, say, a is chosen from M1 first. Then, M2 is formed by
b and c, which will get the target identifiers from a with the help of statements
similar to the one shown for f, and so forth.

5.1.3 Treatment of Cyclic Graphs

The identifier propagation algorithm as provided in Table 5.1 works — with
the same results independently of the implementation of “choose” procedures —
for databases with acyclic undirected graphs induced by the original relational
database schema. For the general case, i. e. with circles in that graph, we see
human intervention as favorable. Based on considerations of complexity and
semantics, the user may decide in favor of one of a series of opportunities here.
A collection is enumerated in the following.

1. For instance, the user may decide to only use the resulting table from iden-
tifier propagation on (one of) the shortest path(s) from the target relation
to the original table.

2. Alternatively, results of identifier propagation on different paths through
the relational database graph may be combined by a (multi-)set operator
such as for union or the RDB-typical union all.

3. As a further alternative, result tables from using different paths may be
kept and used separately in subsequent steps.

In our experiments, we see examples of those different treatments of the orig-
inal data.

1. For Partner.class prediction, we used only the result of one path to table
tfkomp, viz. via vvert, since more would have further increased cost.
Moreover, this result was a superset of the tfkomp rows reachable via tfrol.

2. For Loan.status prediction, we united the data describing districts for cus-
tomers and for bank branches.

3. For Gene.growth prediction, on the other hand, we kept information about
the gene in the current focus of learning and about its neighbors apart,
assuming a higher relevance of the former and that those data could be
hidden in the neighbors’ data if united with them.
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There are automatic approaches to dealing with circles in the RDB graph
as well, e. g. with RollUp’s depth parameter. However, corresponding to our
experience with KDD projects, it is valuable for the analyst to closely observe
processes such as those for identifier propagation. It provides an appropriate level
of control for the user. Moreover, the user can develop a better understanding
for the data and even intuitions about how to best deal with them.

The sketch of the algorithm above corresponds largely to our approach taken
for the experiments reported later in this chapter, cf. also Appendix C. However,
there may be even more efficient ways for propagation, e. g. using extra tables that
consist of the relevant key columns only. Also, class labels could be propagated
along with target identifiers to allow for supervised aggregation in the style of
Rcc based systems [96]. These further approaches were considered to be beyond
the scope of this dissertation.

5.1.4 Information Loss and Materialization

An important property of the process of target identifier propagation as presented
above is the circumstance that no information is lost here. Since all columns of
the original relations are kept and there is at maximum an enrichment with
the target identifier column and a possible multiplication of the original rows
corresponding to the relationships with target objects, the original relations can
be reconstructed completely from a database in the new star schema.

Data may be left out during the process, if data items in non-target tables
are in no way related to the target objects. This was done for our experiments,
but if reconstruction of the whole original database is of interest, the application
of appropriate outer joins to build new stars is the method of choice.

At this point, we discuss advantages and disadvantages of materializing new
star databases as suggested above, contrary to opportunities to read the data for
propositionalization or for other kinds of multi-relational learning directly from
the original databases on demand.

As advantages, we see the following:

• The cost of materializing new stars is about the same as that of selecting the
relevant data from the relational database for further processing. However,
if multiple runs of propositionalization, say with different parameter set-
tings, should be performed, cost of materialization occurs only once, while
that of data extraction from the original database would arise for each run
of propositionalization.

• If ordering of rows by target identifiers is included in new star generation,
this can be favorably executed during materialization.

• There is no repeated work load put on the original databases, when new
star computation results are materialized.
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• Archiving new stars as the starting points for further data analyses can be
favorable.

• In the course of building new stars, other data preparation tasks can be
performed as well, e. g. the choice of minimum sufficient data types, codings
for nominal values, projections w. r. t. relevancy of columns, and many
more.

A special example of feature construction hand in hand with new star gener-
ation can be observed within the preparation for Loan.status prediction. There,
table client contained an attribute combining information about gender and birth-
day of the client. We decided to prefer two separate attributes for these pieces
of information. The split is also documented in Appendix C. In that appendix,
the reader can also find the restriction of considered transactions to those that
occurred before the corresponding loans were granted. Another example was our
approach to deal with interaction information in the Gene data [22] that in effect
led to a new star schema.

Disadvantages of new star materialization may be posed by the extra effort
for managing the new star databases, similarly to the results of propositional-
ization as mentioned at the beginning of Chapter 3. Also, care has to be taken
with changing original databases: dynamic adaptations of new stars and learning
results are not yet dealt with in our proposals.

5.1.5 New Star Schemas vs. Universal Relations

In the following, we investigate issues of universal relations that are occasionally
suggested as a simple way to deal with problems of multi-relational learning.
We do not focus here on the problem that a learning example would usually be
represented by several rows in a universal relation. This could be handled exactly
by aggregation, again. However, universal relations show a tendency to quickly
explode, contrary to new stars, as we illustrate with an example.

Example 36 Figure 5.2 repeats a part of our running example database schema,
for the convenience of the reader. The schema already fulfills demands for new
stars, such that no further steps are necessary before applying Relaggs.

The natural join of relations T, A, and D is depicted in Figure 5.3. Such
joins would be used to produce a UR for our running example database. Even for
this small example, there are notable size differences: before the join, there are 58
data values in the database extract. After the join, there are 156 values, because
of the introduction of redundancies, even though redundant foreign key attributes
were omitted here. In the general case, it can easily be imagined that the size of
the join results is explosive with the number of tables related to each other in the
same way as it is the case here.



110 CHAPTER 5. EXPLOITING DATABASE TECHNOLOGY

T

F_idT_id T_cl

1
2
...

G_id

pos
neg
...

1
2
...

1
2
...

T_idA_id

1
1
2
2
2
...

1
2
3
4
5
...

A_num

1
1
1
2
3
...

C_id

10
20
30
40
50
...

x
y
x
x
y
...

D

E_idT_id D_num

p
p
p
p
q
...

D_cat

60
70
80
80
90
...

1
1
2
2
2
...

1
2
3
4
5
...

D_id

1
2
1
1
3
...

A_cat

A

Figure 5.2: Relations T, A, and D from our running example database

There are joins for identifier propagation involved in new star generation in
the order of the number of relations in the original database, usually. In each
of these joins, there are only two relations concerned, which makes the process
rather efficient.

However, the number of rows in relations with propagated identifiers can grow
large such that the user should watch the process and take appropriate measures.

Aggregation can then be executed on single tables, which is also possible in
an efficient way, especially if rows are ordered by target identifiers. Finally, the
aggregated tables have to be joined to the target relation. This means n−1 joins
with n as the number of relations in the new star schema. Moreover, the target
relation is in a one-to-one relationship with each aggregated table from the new
star database, such that these joins are cheap, again, especially for ordered data.

5.2 Query Result Processing

5.2.1 Non-Standard Aggregate Functions

Within the term project by Streuer [124] and for the diploma thesis by Körnig
[57], Relaggs was extended by a number of aggregate functions that are non-
standard in the sense that they are not provided by SQL as such. The extensions
were made hoping for positive effects for learning by the production of further
predictive features.

Those non-standard aggregate functions include standard deviations and ranges,
i. e. the difference of maximum and minimum values, for numeric attributes.
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Figure 5.3: Natural join of relations T, A, and D

Standard deviations are actually often offered by DBMS, although not contained
in the SQL standard. Range information seemed to be possibly useful, and at
least easy to compute.

Further, medians, 1-quartiles and 3-quartiles are computed for integer at-
tributes. They were expected to be more stable against outliers in the data
than the usual average used so far. For integer attributes as well as for nominal
attributes, the number of different values is counted.

For nominal attributes only, the mode is considered, as well as relative fre-
quencies of possible values and exists tests for possible values. The two latter
functions were chosen in order to allow for a comparison with the usage of abso-
lute frequencies of possible values as done before, as a partial result of Körnig’s
thesis. For more details, the reader is referred to Appendix A.

A further extension was made with the introduction of conditional aggrega-
tion. Here, we use an additional restriction before aggregation, viz. on the value
of one of the nominal attributes that describe the objects in focus of aggrega-
tion. For example, using the Trains.bound data, a feature could now express the
average number of wheels of a train’s long cars only.

As it turned out, this extension often results in explosive sizes of resulting
feature sets. That is why additional parameters were introduced for Relaggs.
First, the number of possible values for the nominal attribute that forms the
conditions can be restricted. Second, the number of missing values in the resulting
feature can be restricted.

Körnig [57] also introduced a further global parameter to constrain the usage
of nominal values. Here, not all possible values are counted as before but only
those that occur for a certain percentage of the learning examples. While this
seems a good way to avoid the creation of irrelevant or weak features, we did not
use this option in our experiments in order to ensure comparability with former
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results.
Considering the wide range of possible aggregate functions, our choice is moti-

vated by considerations of simple computation and certain relationships to stan-
dard aggregate functions, as mentioned at the beginning of this subsection. Do-
main experts may often be in the position to design further aggregate functions
that are promising for the solution of learning tasks at hand. However, one of our
intentions here is to investigate the results that can be achieved without possibly
expensive experts’ advice but based on rather simple aggregate functions only.

5.2.2 Usage of Key Information

In a usual scenario for KDD, identifiers of learning examples are not used for
learning. When it comes to learning aspects common to the examples, identifiers
can not be of help, being different for the examples by their very nature. More-
over, new test examples will have different identifiers as well, such that models
that take decisions based on identifier values of the old training examples may
not be applicable in a reasonable way.

Contrary to that usual scenario, values for primary key attributes are in prac-
tice often computed in a way such that identifiers do carry additional information
beyond their ability to distinguish the represented objects. For instance, by draw-
ing subsequent numbers on demand, i. e. inserts into database tables, to form
the primary key values, there is order information about inserts encoded in those
identifiers, maybe even information about insertion time and aspects dependent
on that. If used with care, such information can be useful for learning and the
application of its results.

In a multi-relational learning scenario, there are even further opportunities
for useful identifiers, viz. those in tables different from the target relation. Those
values may even be the only values present to distinguish between positive and
negative examples, as illustrated with the following example.

Example 37 Figure 5.4 presents an extension of our running example in order
to illustrate an effect possible w. r. t. identifiers.

...T_id T_cl

pos
neg
pos
neg
...

1
2
1
2
...

H_id

1
2
3
4
...

...

T

H_numH_id

1
2
...

+
+
...

H_cat

0
0
...

H

Figure 5.4: An extension to the running example database for the demonstration
of an effect w. r. t. identifiers: H id as an attribute with predictive power
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Here, table H shows constant values for its attributes apart from the key at-
tribute. Exactly those key values, however, are perfect predictors for the training
examples. If a test example from the same population should be classified, this
can be done based on those identifiers, with the same optimism as usual in KDD.

5.3 Post-Processing

In unsupervised propositionalization, it is plausible to assume that many features
are produced which can not contribute to good models to be learned. There may
be irrelevant features, e. g. trivial cases of attributes with only one value occurring
or the somewhat more complicated case of attributes with no relationship to the
target attribute at all. Also, there may be pairwise redundant features, e. g.
showing the same values for the same learning examples.

Relevant questions in this context are: What is the extent of those counter-
productive features in propositionalization results? What should be done against
this phenomenon?

In traditional propositionalization, there were methods developed for irrele-
vancy treatment that are tailored to Boolean result tables from propositionaliza-
tion [77]. For Relaggs, we deal with the more demanding case of result tables
from propositionalization that contain numeric and nominal values. We inves-
tigated issues about irrelevancy treatment in this situation on several occasions
[72, 73]. We experimented with fast detection of redundancy and opportunities
to select features accordingly. Best results, however, could be achieved by apply-
ing simple filters for feature subset selection. These methods are also part of the
empirical studies reported on below.

Here, we drop features before propositional learning, which do not show an
information gain above zero considering the whole training data set. Obviously,
this is a heuristic approach, since an attribute that shows no information gain
for the complete training set may well do so for some subset. We still hope for
positive effects not only with respect to efficiency of the whole process but also
for effectivity of learning, since smaller hypothesis spaces can be favorable as is
well-known in KDD.

Of course, the best way would be to avoid the production of irrelevant fea-
tures. This could be achieved by two-phase propositionalization: first in a su-
pervised way based on a sample of the training data, including the evaluation
of produced features, and following in an unsupervised way to produce only the
highly-evaluated features. This approach, however, is not in the scope of this
thesis.

Another issue of post-processing is that of specific feature construction for
results from propositionalization. Beside conventional feature construction, we
might apply some functions here that use knowledge about the origin of the
attributes in the propositionalization result, for instance to produce averages
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from counts and sums only after the main aggregation process, or ranges from
maxima and minima.

It remains for further investigations if decisions about when to compute which
aggregate function values could lead to higher efficiency. The same applies to
functions that would consider not only one original attribute and its descendants
but even features originating from different original tables. Here, results of ag-
gregating expensive join results such as the T-A-D join in Example 36 could be
produced in a way avoiding that join, basically by taking the appropriate counts
from one table as multipliers for aggregates of the other table.

Example 38 Regarding counts for possible values of A cat grouped by T id, we
see from the original table A for T id = 1 a value of 1 for x (1) and a value of
1 for y (2), for T id = 2 a value of 2 for x (3) and again a value of 1 for y

(4). For the expensive join of table T, A, and D, those counts are 2 (1), 2 (2), 6
(3), and 3 (4). So, the proportions between those values across learning examples
have changed, which may be a source for interesting learning results. Moreover,
the change can be seen as a weighting of A cat by the number of entries in table
D. The T-A-D values can be produced from the T-A values by multiplication with
the counts of related records in D.

5.4 Empirical Evaluation

5.4.1 Objectives

We conduct a series of experiments to find out about effects of the usage of
databases in a new star schema compared to the original data, mainly for our
Relaggs approach, but also for other learners. Further, we study effects of using
more aggregate functions, of considering identifier attributes during proposition-
alization and of applying simple feature subset selection techniques.

Our working hypotheses are the following.

WH5.1A From using databases in a new star schema, we expect further efficiency
gains. Relaggs, although comparatively well-scaling already, cf. Sec-
tion 4.5, can even be accelerated in this way.

WH5.1B At the same time, we hope for the information loss not to enlarge error rates
significantly. This information loss originates from leaving out joins involv-
ing more than two tables. Actually, there might be even positive effects
caused by the implicit kind of feature selection and redundancy avoidance.

WH5.1C Model complexity should be lower based on narrower results of proposition-
alization.
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WH5.2A The introduction of more aggregate functions into the process of propo-
sitionalization bears potentials for higher quality features. We hope for
them to be useful during learning, instead of the attribute space of higher
dimensionality to misguide learning.

WH5.2B Compared to the usage of original database schemas, there should be ef-
ficiency gains from using new stars, even with enlarged sets of aggregate
functions applied to new stars.

WH5.2C Model complexity might even be lowered compared to the usage of purely
standard aggregate functions on new star schema databases, caused by more
valuable features.

WH5.3 The consideration of identifier attributes can have positive effects for error
rates and model complexity.

WH5.4 Simple feature subset selection techniques can help to further accelerate
learning after propositionalization and even improve accuracy. This po-
tential originates from the opportunity that semantic-blind propositional-
ization produces many low-value features, which bear the danger to be
misleading for learning.

WH5.5 Based on experience gained from earlier experiments, cf. Section 4.5, support-
vector machine learning is expected to be not better than decision tree
learning after propositionalization w. r. t. error rates and runtimes. Com-
prehensibility of the models is not a demand on support-vector machine
learning, thus we do not focus on model complexity for SVMs here.

WH5.6 More complex features, here especially those based on conditional aggrega-
tion, cost more than learning from them returns.

5.4.2 Material

The material — data sets and learning tasks — are essentially the same as used
above, cf. Section 4.5. For more details, including information about the new
star schemas for those data, the reader is referred to Appendix B. For aspects of
the software, please see Appendix A.

5.4.3 Procedure

We start from the same databases for the experiments with different proposition-
alizers and learners. Contrary to Section 4.5, these are not the reduced databases
but the original databases in all cases. This is why we also report times for re-
ducing databases here. All experiments are performed on the same platform for
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comparability especially of running times. We systematically vary the settings
for the application of Relaggs in the following way.

First, for the convenience of the reader, we repeat results achieved with Re-

laggs earlier, cf. Section 4.5, now including database reduction times.

Second, we apply Relaggs with the very same parameter settings, i. e. es-
pecially a restriction on the maximum cardinality of the sets of possible values
of nominal attributes, to the same data, now in new star schemas. Aspects of
the creation of new star schemas are also reported. Note that the feature sets
produced here are subsets of those from the first experimental condition.

Third, we again apply Relaggs with the same settings to the new star data,
however, including the computation of more aggregate functions. For numeric
data, we also consider standard deviations and ranges. For integer columns, we
add counts of distinct values, median, and 1-/3-quartiles. For nominal attributes,
we also compute counts of distinct values, relative frequencies of values, and
modes. Note that results of this kind of propositionalization are supersets of
those from the second exerimental strain. There are overlaps with feature sets
from the first part of the experiments. More exactly, the intersection of feature
sets from series 1 and series 3 are exactly those from series 2.

Fourth, we apply Relaggs as in step 3, but also consider identifier attributes,
which were excluded so far. More precisely, in a well-controlled way, we include
identifier attributes from other relations than the target relation. Those from
the target relation could also be useful, but we focus on multi-relational learning
and thus restrict our attention to the effect of identifiers from other relations. By
“well-controlled”, we mean that we investigate identifier attributes beforehand,
if they have predictive potential in principle. So, the feature sets produced here
are supersets of those created in step 3.

Fifth, to the Relaggs results from step 3, we apply a WEKA attribute
selector that ranks features by their information gain (IG). We then use only
those features with an IG > 0 for propositional learning with both J48, a decision
tree learning algorithm, and SMO, a support-vector machine learner. Obviously,
feature sets here are subsets of those created in step 3. We use the IG attribute
selector as a filter, because we had found it most efficient for our purposes in
former experiments [72].

Last not least, we also conduct conditional aggregation. Here, data are
grouped according to values of certain nominal attributes, before all the aggre-
gate functions mentioned in step 3 are applied. This restricted aggregation is
kept local to tables. That is why it has no effect for the narrow tables of the
KRK, Mutagenesis and Gene problems. For the other learning tasks, special pa-
rameter settings are necessary in most cases in order to avoid the construction of
tables that are too broad to be handled by MySQL. Hence, comparability with
the other experiments is restricted. Nevertheless, we report a number of special
results.
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Table 5.2: Running times for propositionalization and WEKA learning (in sec-
onds; non-std. — non-standard aggregate functions on new stars, fea.-sel. —
feature selection on non-std.; two lines per learning task: time for propositional-
ization in first line, time for WEKA learning in second line, for training runs on
all examples; n. a. cases explained in the main text)

Target Relaggs New star Non-std. IDs Fea.-sel. SMO
Trains.bound 2 1 1 n. a. 1 1

0 0 0 0 1
KRK.illegal 36 n. a. 45 n. a. 45 45

36 39 29 537
Muta042.active 8 n. a. 11 n. a. 11 11

1 1 0 1
Muta188.active 8 n. a. 12 n. a. 12 12

1 2 1 2
Partner.class 3,577 228 352 459 352 352

1,799 315 566 846 496 > 1 d
Household.class 2,198 139 218 310 218 218

427 40 108 173 80 > 1 d
Loan.status 190 22 28 40 28 28

12 3 5 7 1 4
Card.type 445 47 65 78 65 65

5 1 2 3 0 7
Gene.growth 13 n. a. 18 n. a. 18 18

6 21 6 18
Gene.nucleus 14 n. a. 17 n. a. 17 17

6 23 9 15

5.4.4 Results

Table 5.2 shows the running times for the central parts of learning. For all
columns, the propositional learner J48 is applied, except for the last column,
where SMO is applied after feature selection, i. e. to the same input as that for
J48 in the last column but one.

The meanings of “n. a.” are the following here. Those in the new star column
mean that the original database was already in this schema. Those in the IDs
column for Trains.bound and KRK.prediction mean that the identifiers there
were artificially introduced not independent of the target objects’ class labels,
while the nominal IDs for Gene problems are too many to be considered in the
usual way here. Those in the SMO column mean that running times were too
long with more than a day.
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Table 5.3: Running times for database reduction, new star generation, and feature
subset selection (in seconds; n. a. for reasons of database schema)

Target RDB reduction New star creation Feature selection
Trains20.bound n. a. 0 0
KRK.illegal n. a. n. a. 8
Muta042.active n. a. n. a. 1
Muta188.active n. a. n. a. 2
Partner.class 15 20 72
Household.class 8 13 40
Loan.status 16 15 2
Card.type 16 21 1
Gene.growth n. a. n. a. 2
Gene.nucleus n. a. n. a. 2

Table 5.3 shows running times for specific preparations of learning. Database
reduction is applied as in Section 4.5, to include only data with relationships to
the target objects. New star generation is applied to the original data in the way
described above. Feature subset selection refers to the application of WEKA’s
attribute selector that used IG to rank features.

Table 5.4 shows the overall running times for learning, i. e. sums of times for
database reduction or new star generation, if applicable, propositionalization and
the application of WEKA tools, i. e. attribute selectors and learners.

Table 5.5 shows, for each of the experimental conditions, the average error
across the partitions and the standard deviation. The best results are marked in
bold.

Win-loss-tie statistics are provided in Table 5.6. Significance is determined
according to a paired t-test at level α = 0.05.

In Table 5.7, column numbers resulting from propositionalization are listed.
They correspond to the number of attributes as used by WEKA.

In Table 5.8, the information gain is provided for the feature of each appro-
priate experimental condition that was ranked first by WEKA’s corresponding
attribute selector. The condition with feature selection is not mentioned here,
because best features there are by design of the experiment the same as for the
condition “Non-std.”.

In Table 5.9, tree sizes for trees as learned from all training data are given as
the numbers of all their nodes and the numbers of their leaf nodes.

We further achieved the following results with conditional aggregation.
We applied Relaggs with the same parameter settings as above on new star

data including non-standard aggregate functions. Now, we additionally used con-
ditional aggregation for both numeric and nominal attributes. Thus the resulting
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Table 5.4: Overall running times (in seconds; for training runs on all examples;
sums include preparation times and feature selection times, if applicable)

Target Relaggs New star Non-std. IDs Fea.-sel. SMO
Trains.bound 2 1 1 n. a. 1 2
KRK.illegal 72 n. a. 84 n. a. 82 590
Muta042.active 9 n. a. 12 n. a. 12 13
Muta188.active 9 n. a. 14 n. a. 15 16
Partner.class 5,443 553 938 1,325 940 > 1 d
Household.class 2,668 192 339 496 351 > 1 d
Loan.status 222 40 48 62 46 49
Card.type 480 69 88 102 87 94
Gene.growth 19 n. a. 39 n. a. 26 38
Gene.nucleus 20 n. a. 40 n. a. 28 34

Table 5.5: Error rate averages and standard deviations (in percent; best results
in bold, second best in italics)

Target Relaggs New star Non-std. IDs Fea.-sel. SMO
Trains.bound 10.0 10.0 10.0 n. a. 10.0 20.0

± 31.6 ± 31.6 ± 31.6 ± 31.6 ± 25.8
KRK.illegal 27.7 n. a. 23.1 n. a. 23.1 22.5

± 1.1 ± 1.0 ± 1.0 ± 1.0
Muta042.active 14.3 n. a. 23.8 n. a. 19.3 21.8

± 16.0 ± 18.3 ± 18.6 ± 17.4
Muta188.active 13.2 n. a. 15.5 n. a. 13.3 10.1

± 9.1 ± 9.6 ± 8.1 ± 4.0
Partner.class 2.5 4.5 4.4 5.0 4.5 n. a.

± 0.5 ± 0.8 ± 0.8 ± 0.7 ± 0.7
Household.class 7.1 6.2 7.9 8.0 7.6 n. a.

± 0.8 ± 0.6 ± 1.0 ± 1.1 ± 0.8
Loan.status 7.2 8.6 7.3 4.0 5.9 8.8

± 3.4 ± 3.1 ± 2.8 ± 1.2 ± 2.2 ± 3.1
Card.type 11.8 11.1 11.1 11.0 11.8 12.8

± 2.4 ± 2.6 ± 2.9 ± 2.5 ± 0.5 ± 1.6
Gene.growth 17.9 n. a. 18.7 n. a. 18.4 17.4

± 4.0 ± 3.1 ± 5.2 ± 6.5
Gene.nucleus 15.0 n. a. 14.6 n. a. 15.0 12.4

± 2.5 ± 2.3 ± 2.3 ± 2.6
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Table 5.6: Win-loss-tie statistics (row vs. column)

New star Non-std. IDs Fea.-sel. SMO
Relaggs 1–1–3 1–1–8 1–1–2 1–1–8 0–2–6
New star 1–0–3 1–1–2 1–1–3 0–0–3
Non-std. aggr. 0–1–3 0–1–9 0–0–8
Identifiers 1–0–3 1–0–1
Feature selection 2–1–5

Table 5.7: Numbers of columns in results of propositionalization

Target Relaggs New star Non-std. IDs Fea.-sel.
Trains.bound 57 35 83 n. a. 23
KRK.illegal 13 n. a. 30 n. a. 21
Muta042.active 483 n. a. 977 n. a. 51
Muta188.active 483 n. a. 977 n. a. 337
Partner.class 1,078 223 430 532 362
Household.class 1,197 232 466 606 349
Loan.status 1,021 217 452 557 74
Card.type 421 90 159 210 25
Gene.growth 200 n. a. 405 n. a. 120
Gene.nucleus 208 n. a. 421 n. a. 174

Table 5.8: Information gain for best-ranked features (best results in bold)

Target Relaggs New star Non-std. IDs
Trains.bound 0.493 0.493 0.698 n. a.
KRK.illegal 0.024 n. a. 0.135 n. a.
Muta042.active 0.474 n. a. 0.474 n. a.
Muta188.active 0.384 n. a. 0.384 n. a.
Partner.class 0.293 0.198 0.201 0.303
Household.class 0.570 0.570 0.570 0.570
Loan.status 0.136 0.136 0.136 0.258
Card.type 0.080 0.080 0.080 0.080
Gene.growth 0.151 n. a. 0.151 n. a.
Gene.nucleus 0.148 n. a. 0.199 n. a.
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Table 5.9: Tree sizes (number of nodes / number of leaves)

Target Relaggs New star Non-std. IDs Fea.-sel.
Trains.bound 5/3 5/3 5/3 n. a. 5/3
KRK.illegal 957/479 n. a. 231/116 n. a. 217/109
Muta042.active 9/5 n. a. 9/5 n. a. 5/3
Muta188.active 25/13 n. a. 17/9 n. a. 17/9
Partner.class 167/85 316/173 300/162 184/97 276/150
Household.class 290/175 375/302 284/211 301/217 280/206
Loan.status 31/16 20/11 33/17 15/8 25/13
Card.type 21/11 23/12 34/18 34/18 1/1
Gene.growth 67/35 n. a. 54/32 n. a. 23/12
Gene.nucleus 57/30 n. a. 32/17 n. a. 32/17

feature set is a superset for that of the third experimental condition above. Re-

laggs produced here for the Trains.bound problem a number of 493 features in
5 seconds, resulting in a 5/3 tree with an error rate of 15.0% ± 24.2%. Although
the average is below the best seen above, the standard deviation is reduced here,
which can be seen as a favorable effect. Feature selection found 74 features with
IG > 0, producing the same tree as above. SMO learning resulted in an error
rate of 20.0% ± 25.8%. All learning processes took less than 0.5 sec.

For Loan.status prediction, we had to lower the maximum allowed number of
possible values of nominal attributes down to 10 in order to arrive at result tables
from propositionalization that could be handled by MySQL. With this restriction,
Relaggs produced a number of 773 features in 124 seconds, resulting in a 19/11
tree with an error rate of 7.3% ± 3.7%. Feature selection extracted 186 features
with IG > 0. After that, J48 learned a tree with 30/16 nodes in 3 sec, with an
error rate 6.2% ± 2.3%. After 43 sec, SMO learning resulted in an error rate
of 8.1% ± 2.9%, which is the best performance of SMO on this problem seen in
our experiments.

For Household.class prediction, the parameters had to be further adopted. On
the one hand, the same parameter settings could be applied as before, including
a value of 10 for the maximum allowed cardinality of sets of possible values
for nominal attributes. On the other hand, conditional aggregation could not
include aggregation of nominal attributes without producing too large tables and
exceeding main memory resources too much.

Furthermore, we had to restrict our attention to the 6 standard aggregate
functions as used for experiments in strains 1 and 2 above. The feature set
produced here is thus a superset of those produced under the second experimental
condition above. Results were the following. Without feature selection, J48
arrived at a 629/548 tree after 253 sec based on 1,100 features. The error rate
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from stratified 10-fold cross-validation was 7.9% ± 1.0%, significantly worse than
for the simple new star application.

With feature selection, 796 features remained, from which J48 learned a
404/319 tree within 197 sec, showing an error rate of 7.4% ± 1.0%, which is
still significantly worse than in example strain 2 above, but significantly bet-
ter than without feature selection. Feature selection took 99 sec, and the best
ranked feature showed an IG of 0.57. The same feature was also produced in the
other experiments. Follow-up features were produced by conditional aggregation,
though.

Finally, we were able to reproduce results for Rsd as reported in a paper
on comparisons of approaches to propositionalization [65]. Especially, the short
running time of only a couple of seconds using new star data should be mentioned,
compared to more than 20 min as reported above, cf. special results for Rsd in
Section 4.5.

5.4.5 Discussion

From Table 5.2, we can see that the usage of data in a new star format is es-
pecially favorable for the efficiency of propositionalization. In many cases, the
performance gain amounts to one order of magnitude. The gains for propositional
learning are not as high, but distinct in a number of cases, resulting from the
lower number of features that were produced. Thus, we can confirm WH5.1A
from our experiments.

WH5.1B can also be confirmed, especially when considering Table 5.6. Here,
most of the time differences in accuracy are marked as not significant.

However, WH5.1C can not be confirmed. As shown in Table 5.9, trees even
grow occasionally for new star data. This may have to do with the information
loss, i. e. loss of high-value features from joins including more than two tables,
which have now to be replaced by more low-value features to arrive at a compa-
rable tree performance.

When more aggregate functions are used, time gains reached with the usage
of new star data get smaller. Although we see from Table 5.8, that some of the
new features have occasionally higher IGs, the overall error rate after extended
aggregation is not better than under the experimental conditions before. Tree
sizes remain in the same order of magnitude. Overall, we do not see strong
indicators for WH5.2A here.

WH5.2B is confirmed. There are still efficiency gains compared to not using
new star data.

WH5.2C is not confirmed by our experiments. A reason for these results
might be that the new aggregate functions are mostly similar in spirit to standard
aggregate functions, such as the median compared to the average or the relative
frequency of a nominal value compared to its absolute frequency.
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Considering identifiers, we see just one favorable case, cf. Table 5.5. On closer
inspection, the transaction identifiers for the PKDD financial data seem to encode
both dates and certain types of transactions, which makes them expressive for
the problem at hand. Note that the resulting models should be applied only to
the other customers described in the database, i. e. those that have not yet a
loan project running but might apply for it. However, the problem of applying
data mining results to new data is a general one. We do not put it in our special
focus here. We see WH5.3 as confirmed, but we are aware of the fact that results
have to be handled with special care.

WH5.4 is not confirmed by our experiments, overall. Direct learning with
WEKA tools is about as fast as first selecting features with IG > 0 and learning
on the reduced feature sets. Also, occasional statistically significant wins are
contrasted by about the same number of losses, which makes a general statement
difficult. Remarkably, the number of features with IG > 0 is not as low as
expected but in most cases in the same order of magnitude as the number of the
features in the sets that were input to the selectors, cf. Table 5.7.

A surprise were the good results for SMO learning with 4 wins and 1 second
rank, cf. Table 5.5. For Mutagenesis188, it is even the best result seen overall
in our experiments, even slightly better than Foil, although not significantly, cf.
Section 4.5. As a rule, results for SMO after feature selection were the best seen
for that learner.

Under a certain perspective, this even confirms the evaluation of SVM learn-
ing as strong in the presence of larger numbers of moderately relevant features
[59]. Exactly selecting features with a certain correlation with the class labels
might have produced such sets of moderately relevant features. Considering sig-
nificances and running times, though, WH5.5 is confirmed.

WH5.6 is weakly confirmed. The effort to produce features by conditional
aggregation is not outweighed by the occasionally interesting results. Still the low
number of experiments and their diversity does not allow for a final judgement.

Especially, we mention the advantages of using databases in a new star schema
for other ILP learners. For Rsd, we saw efficiency gains exemplified before [65].
Similar effects can be expected for other ILP learners, e. g. for Progol.

We can also observe this as gains in effectivity: with the default parameter
settings e. g. of Rsd or Progol, all relations can be considered, which was
frequently not the case without using new stars. Also, more relations can be
considered within one clause of a certain length. Last not least, ease of use is
improved with simpler mode declarations that are sufficient for learning here.

Finally, we emphasize ease of use of Relaggs. In a base case, the user has
only to specify the target relation or attribute, which he or she can see in a tree
directly produced from relational database schema information, cf. Appendix A.
There are few parameters to be set, which should be comprehensible for many
analysts. An open problem for further work is an appropriate support for users
in their choice of aggregate functions.
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5.4.6 Further Related Work

Some related work was already mentioned in the early sections of this chapter,
e. g. by Lavrač and Flach [77] on irrelevancy treatment. Here, we point to further
related work.

Vens and colleagues [128] build up on ideas by Blockeel and Bruynooghe [13]
and by Knobbe and colleagues [55], cf. Subsection 4.5.6. The authors present
an approach to learn special first-order trees, including the usage of aggregate
functions of different kinds.

Interestingly, the authors [128] find simple aggregate functions as used within
the basic variant of Relaggs as almost as useful as more complex aggregate
functions, which include selections in the spirit of conditional aggregation as
presented in this chapter. Our results support these findings w. r. t. effectiveness.
Concerning efficiency, the authors aim at improvements by future work.

Similar ideas as ours for new star schemas can be found in different resources.
For instance, Dehaspe and De Raedt [27] assume a database where all relations
have exactly one attribute that corresponds to the key of examples, i. e. each
non-target table has a foreign key attribute pointing to the primary key attribute
of the target table. However, the authors do not focus on the generation of such
databases.

Yin and colleagues [137] report on their system CrossMine, which also ex-
ploits propagated identifiers of target objects. Different from our approach, prop-
agation is done here during relational rule learning in the spirit of Foil. More-
over, class labels are propagated along with identifiers. First experimental results
are promising.

For his Master’s thesis, Reutemann [109] adopted Relaggs as a preprocessing
tool for WEKA and applied it to a number of learning tasks and in comparison to
other approaches for relational learning. Overall, Relaggs turned out to have
favorable characteristics in those experiments.

Finally, we would like to point the interested reader to other current research
in the field of propositionalization, initiated by Železný. He provides further per-
spectives on issues of propositionalization and more detailed complexity analyses,
especially for further developments of the traditional approaches [129, 130].

5.5 Summary

We presented an approach for transforming usual RDB schemas into new star
schemas, which can serve as a basis for efficient propositionalization and other
methods of relational learning. We discussed the treatment of RDB that induce
cyclic undirected graphs, where human intervention seems advisable. Further,
we showed that there is no information loss involved in new star generation, and
that materialized views are a good option for the implementation of new star
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databases. Moreover, we demonstrated that new star databases are superior to
universal relations for our purposes.

We then introduced more aggregate functions into our method for proposi-
tionalization and motivated the inclusion of primary key attributes of non-target
tables into analyses. As post-processing for results of propositionalization, we
considered different approaches to both feature selection and feature construc-
tion.

Our empirical evaluation showed significant gains in efficiency from using
databases in a new star schema. Positive effects of new aggregate functions,
especially more complex functions using selections, were not as large as expected.
Simple feature selection methods had favorable effects on error rates and model
complexity in a number of cases.



Chapter 6

Conclusions and Future Work

In conclusion, we condense the answers to the general research questions posed
in the introductory chapter of this thesis.

1. Approaches to propositionalization can be described in a unified way within
a formal framework. We showed that with our presentation of transforma-
tion functions on results of clauses as queries to relational data including
background knowledge.

2. Aggregate functions tailored to data types of attributes can serve as a part
of such transformations in an especially favorable way. Their results are not
only a basis for effective KDD in many cases, but also efficient to compute
and easy to apply.

3. Further measures building up on database technologies, e. g. special schema
transformations of databases using indexing, can further increase efficiency
significantly, while not sacrificing the quality of learning results.

Overall, propositionalization was shown to be a valuable approach to re-
lational data mining and competitive with prominent systems from Inductive
Logic Programming. Being often similarly effective but much more efficient, and
furthermore easy to use, propositionalization could be the preferred approach,
especially for the analysis of larger business data sets.

During our work presented in this thesis, there remained or appeared a number
of open questions that could be dealt with in future work.

Although our framework was shown to largely fulfil the expectations formu-
lated for them, also for extensions of existing approaches to propositionalization
in a systematic way, we see opportunities to further refine the framework. Build-
ing blocks for propositionalization could be elaborated and serve as a basis for
more concise descriptions of the single approaches, thus also enabling a faster
comparison during human inspection and more detailed analyses of computa-
tional complexities.
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Beside this more general issue, there are many more special research questions,
some of which we enumerate in the following.

• Could a search procedure in the space of aggregate functions, which should
be applied during propositionalization, be designed and implemented suc-
cessfully? Which aggregate functions reach good points in the effectivity
vs. efficiency spectrum, e. g. counts of possible nominal value v vs. exists
possible value v?

• Would it be favorable to compute estimates of cost vs. benefit for the in-
clusion of non-target relations into propositionalization? Should the gran-
ularity for these considerations be increased to evaluate attributes or even
single values of attributes within those relations?

• Can intuitions be confirmed that the relevance of non-target relations for
the quality of learning task solutions depends on their distance to the target
relation? Would that allow for strategies such as “breadth-first proposition-
alization”?

• If there are several paths in the graph induced by an RDB leading from
the target relation to another relation: can recommendations be made to
choose from the different opportunities to deal with such a situation? One
may assume that simple options should be tried first, e. g. using (one of)
the shortest path(s) only.

• Are there more efficient ways to compute aggregate function values? For
instance, should certain values such as ranges be computed only after propo-
sitionalization, which included the computation of maxima and minima as
a basis for range computation in the style of conventional feature construc-
tion? Which functions would be appropriate here?

• How can irrelevant features be treated efficiently, i. e. at best their genera-
tion avoided?

• Which features resulting from complex propositionalization operators could
be simulated by simpler ones? Which propositional learners should be
preferred and why? Are there dependencies on characteristics of original
data sets, learning tasks, or results of propositionalization?

• How should imperfect input data be dealt with, such as wrong data, outliers,
missing values, too few data points? Some aggregate functions such as
median seem appropriate to avoid or at least alleviate some effects, e. g. of
outliers.



128 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

• Are there promising features that can be produced exclusively within cer-
tain approaches to propositionalization, e. g. traditional or supervised propo-
sitionalization? Are there features that can be computed especially effi-
ciently within one kind of approaches compared to others? Could there be
thus opportunities to favorably combine approaches? Could good features
from propositionalization be used to enrich hypotheses determined with
ILP systems?

• There were investigations if ILP systems such as Progol can cope without
attributes developed by domain experts, by using complex and intensional
background knowledge instead. Similarly, one might ask if propositional-
ization in the style of Relaggs can cope without Progol’s kind of back-
ground knowledge, by using simpler structured and extensional background
knowledge.

With more, more diverse and larger relational databases for analyses to be
expected available in the future, we hope for interesting further developments in
the area of research, both in general for relational data mining, and especially for
propositionalization.



Appendix A

Software

In this appendix, we provide short descriptions of software tools that were used
for our experiments. All software tools developed by the author and colleagues
are available on request for non-commercial purposes from the author. Other
software that we used is also freely available in many cases, most under GNU
public license. For a description of the hardware, cf. Section 4.5.

The central program for our experiments is Relaggs. We applied the latest
version which was implemented by Körnig for his diploma thesis [57] under the
author’s supervision in autumn 2004. It is an extended reimplementation of
the program that was developed by Streuer [124] as part of her term project in
2002/2003, which was used for earlier experiments [65, 74].

That program in turn was based on other work by our students, which was
the first implementation using Java for the application program and MySQL for
the management of the databases [112, 113] . The original version was developed
by the author in a Prolog environment and used for our first experiments in the
field [71] as well as for KDD Cup 2001 [22].

The latest version of Relaggs is illustrated in the following with a number of
screenshots. These are taken in a Windows environment because of their better
appearance there. Figure A.1 shows the window for parameter settings that can
be modified before connecting to a database for propositionalization. The figure
shows the default settings which were used in most of the experiments here,
except that we did not demand nominal values to occur for a certain percentage
of the learning examples. Further explanations may be found in the system’s
documentation.

Figure A.2 shows the main window of Relaggs displaying a selected database
with its table and attribute names. Color codes indicate primary keys, targets,
as well as objects excluded from propositionalization by the user. Also, numeric
or nominal attributes may be excluded from the investigations separately.

Figure A.3 presents the part of the main window of Relaggs where a subset
of aggregate functions can be selected by the user. The selections made for our
experiments can be found in the main text of Sections 4.5 and 5.4.
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Figure A.1: The Relaggs window for settings

Figure A.4 depicts the part of the main window of Relaggs where a name
for the result table, which will be stored in the same database, can be provided by
the user and propositionalization can be started. A progress bar informs about
the state of the process.

With these means, a tool for propositionalization is given which we found
comfortable to use.

For the export of propositionalization result tables from MySQL to the for-
mat used by WEKA, the author implemented a tool called Arffer, again in Java.
Figure A.5 shows a screenshot. Arffer offers options that go beyond the corre-
sponding export function within Relaggs. Documentation is included in the
release version.

Another tool called CVPartiNicer was implemented by the author, among
others based on ideas by our students from their term projects under the au-
thor’s supervision. It splits ARFF data files into partitions for stratified cross-
validation, cf. Figure A.6. Both the number of partitions and a seed for the
random number generator can be provided by the user. We worked with the
default settings as shown in the figure.

We simulated Dinus with the help of Relaggs by simply excluding all re-
lations different from the target relation and those tables with a many-to-one
relationship from the target relation to them. The simulation of RollUp was
also achieved with Relaggs by iteratively propositionalizing along one-to-many
relationships and simple joins along many-to-one relationships, starting from the
relation(s) most distant from the target relation.

For Progol, inputs were produced from MySQL database tables with the
help of one more tool written by the author and called Progoler, cf. Figure A.7.
Since it deals only with single tables, a certain amount of manual adaptations of
the Progol input files has to be carried out by the user. Also, a program for the
support of cross-validation was derived from the one mentioned above and called
CVPartiNicerP.

For the application of Rsd, we used our tool ProgolToRSD for a rewrite of
the examples, and ProgolToRSDb for a rewrite of the mode declarations. This
rewrite seemed a good idea considering the minor differences between the input
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Figure A.2: The Relaggs main window part for database inspection and learn-
ing task definition

formats of the two systems in question.
Analogous to Progol, we created and applied tools in preparation of the runs

of Foil and Tilde, viz. tools called Foiler and Tilder, and CVPartiNicerF and
CVPartiNicerT. Again, all our tools are available on request for non-commercial
use from the author.

Finally, we provide the version numbers of software from other sources that
we used. Current versions should be easily located on the Web.

• Solaris 9 (SunOS 5.9)

• Java 1.4.2

• JDBC mysql-connector-java-3

• MySQL 4.0.21

• YAP 4.4

• WEKA 3.4

• Foil 6

• Progol 5.0 (CProgol)
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Figure A.3: The Relaggs main window part for aggregate function selection

• Tilde 2.2 within ACE-ilProlog 1.2.6-huge

• Rsd 1.0
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Figure A.4: The Relaggs main window part for the start of propositionalization

Figure A.5: A tool for exporting a MySQL table into an ARFF file
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Figure A.6: A tool for partitioning an ARFF file for stratified n-fold cross-
validation

Figure A.7: A tool for exporting a MySQL table into files with Progol input
format



Appendix B

Data Sets and Learning Tasks

The main objective of this appendix is to enable the reader to repeat the exper-
iments as easily as possible. For this reason, we provide

• information about the sources of the data sets for our experiments

• short descriptions of the data sets

• short descriptions of the learning tasks for the experiments

• descriptions of details of the preparation of the data sets for the usage of
the different systems applied for the experiments

• short descriptions of special circumstances, if applicable

Files documenting the single steps of the procedure, SQL scripts, their log files,
and tools such as for producing different formats of the data set from MySQL
tables or for the preparation of stratified cross-validation are available from the
author on request. We can also provide the databases, inputs, logs, and outputs
of the experiments.

Certain restrictions apply w. r. t. ECML and PKDD challenge data, though.
For ECML data, third parties have to be asked for permission. For PKDD data,
challenge organizers should be informed.

Note that most of the learning problems were subjects of earlier experiments
of ours [71, 67]. However, specifics in the preparation of the data sets and in
the settings for the learning systems cause differences between the results. We
worked with the learning task for Card.type here for the first time.

We describe the preparation of the data for the application of the different
learning systems in most detail for the PKDD 1999/2000 Challenge financial
data set, especially for task Loan.status. This has to do with the specifics of
these data and task. For instance, the number of tables and their relationships
allows for observing interesting aspects not to be seen for less complex tasks such
as for Trains.bound or KRK.illegal, on the one hand. Loan.status also allows
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for describing preparations rather completely, which would be difficult here for
more complex problems such as for Partner.class or Household.class, on the other
hand.

B.1 Challenge 1994: Trains.bound

Trains data sets and learning tasks belong to the standard problems in Machine
Learning and Inductive Logic Programming.

The data source we used is

ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Trains/20trains.pl

This data set was used for competition 1 in the East-West Challenge [83]. A
subset of the 20 trains, which is the original 10 trains problem as formulated by
Michalski [81] is depicted in Figure B.1.

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Figure B.1: The ten trains East-West Challenge [81, 77]

The original data are structured facts such that identifier attributes are not
necessary. For instance, the first train is described as follows:

eastbound([c(1,rectangle,short,not_double,none,2,l(circle,1)),

c(2,rectangle,long,not_double,none,3,l(hexagon,1)),

c(3,rectangle,short,not_double,peaked,2,l(triangle,1)),

c(4,rectangle,long,not_double,none,2,l(rectangle,3))]).

This means, according to the documentation for the East-West Challenge,
that the first train is eastbound and has four cars, the first of which is in position
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1, of rectangular shape and short length, has “not-double” walls, no roof and two
(times two) wheels, further a load of circle shape, one piece.

From those data, we produced a relational database with three tables, where
each train, car, and load has an integer identifier. Actually, load information
could have been added directly to the car relation because of the one-to-one
relationship between cars and loads in the data. However, we decided to remain
close to the original representation here.

For the same reason, we did not use a different schema for the loads table, e. g.
with one entry per piece, which would have allowed for load pieces of different
shape within one car. Actually, preliminary experiments in this scenario showed
good results.

Choices of types numeric and nominal for the attributes are obvious here.

car

c_id t_id

1
2
...

1
1
...

train

t_id bound

east
east
...

shapec_id

1
1
...

number

1
2
...

l_id

1
2
...

shape

rect
rect
...

length wall

short
long
...

single
single
...

roof wheels

none
none
...

2
3
...

1
2
...

posi

circle
hexa
...

load

1
2
...

Figure B.2: A relational database for trains (relations as structured rectangles
with their names in the first lines, attribute names in the second lines, and
attribute values below; arrows represent foreign key relationships)

The learning task asks for a model to classify trains into those bound east
and those bound west. There are 50 % representatives of each class in the data.

The systems Foil, Progol, Tilde, and Rsd use the database in their cor-
responding formats. For Relaggs in its base version, cf. Chapter 4, a join of
the car and load relations was precomputed. For the new star version, the trains
identifiers were propagated to the loans relation.

A minor issue that could be observed during data preparation was the fact
that some inconsistencies appeared even in this small data set. In a small number
of cases, the number of loads was given in the original data as 0, while there was
still a shape for this “non-load” provided. We did not change these aspects,
though, in order to arrive at results that can be better compared with those of
other research.

A variant of the data set can be found in the UCI Machine Learning Repos-
itory [11], occasionally named INDUCE Trains Data set. Interestingly, this is a
manually propositionalized variant including Boolean attributes such as rectan-
gle next to rectangle, thus demonstrating the wide range of propositionalization
functions.
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B.2 Chess: KRK.illegal

The King-Rook-King (KRK) problem of classifying chess endgame situations is
one of the ILP standard problems and was originally used for investigations with
the system Golem [89].

We used as the source for the data

ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Datasets/chess/

According to the file Readme.ps to be found there, examples are described
with the help of the predicate illegal/6, where the arguments stand for the file
and rank of the white king, the white rook, and the black king, respectively.
Figure B.3 shows two examples from the data set documentation. The example
on the left would be described by illegal(e,3,a,1,e,1), while the example on the
right would be described by not(illegal(d,4,g,3,b,5)).

1

2

3

4

5

6

7

8

a b c d e f g h

1

2

3

4

5

6

7

8

a b c d e f g h

Figure B.3: Two chess situations

Further, two predicates are provided as background knowledge: lt/2, which
contains facts to describe which file/rank is less than another, and adj/2, which
records pairs of adjacent file/rank values. Note that this is background knowledge
in a narrow sense: it is independent of the learning examples, i. e. positions of
the three figures on the board.

However, it seems not obvious that exactly these two predicates are necessary
and sufficient to solve learning tasks here. Moreover, it seems questionable if
relations such as these would usually be found in relational databases in the form
of explicit relations, instead of being computed on demand by the application
program, for instance.

The learning task aims at a classifier to distinguish illegal from legal situations.
There are 20,000 examples, among them 6,601 positive for the illegal case.
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Actually, in the original data letters for file values are also replaced by num-
bers. Still, the original problem shows limits of the Relaggs approach.

First, the construction of a normalized database seems not straightforward.
It could be imagined by introducing a table that contains the distinct file/rank
values as a primary key, with the columns from illegal, adj and lt as foreign key
attributes. We did not use this somewhat artificial variant.

Second, for simulating the effect of, say, adj directly on illegal, Relaggs would
have to include literals for X = Y , X = Y − 1, and X = Y + 1 in its clauses for
C. However, this would cause an explosion of C in the general case, at least as
long as only numeric and nominal types are differentiated. This differentiation
is typical and intended for Relaggs. For these reasons, we designed a new
database schema as described in the following.

For our experiments, we designed a database following the considerations on
the kind of background knowledge above. Here, we use a target table called
situation with two columns: an identifier for a situation and a class attribute.
Further, we define a second table describing parts of the situation. More precisely,
this table has an identifier for the part, a foreign key to the situation identifier,
an attribute for the name of the figure concerned, one attribute for its file, and
one attribute for its rank, cf. Figure B.4. Thus there are three rows in the part
table for each situation.

With this schema, it is simple to describe any chess situation, not only those
involving the kings and a white rook. The information from the original illegal
predicate is preserved completely this way, while we do not use adj and lt. This
schema also fulfills the new star schema demands, cf. Chapter 5. Thus, there
is no further special preprocessing necessary for the application of both the base
variant and the extended variants of Relaggs. The database was also directly
used to derive the input files for the other systems we experimented with.

part

p_id s_id

1
20001
40001
2
...

1
1
1
2
...

s_id class rank

WK
WR
BK
WK
...

who

5
7
7
2
...

file

1
5
5
4
...

p
p
...

1
2
...

situation

Figure B.4: A relational database for chess boards (relations as structured rect-
angles with their names in the first lines, attribute names in the second lines, and
attribute values below; arrow represents foreign key relationship)
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Table B.1: Relations of the Mutagenicity data set (target relations in bold)

No. Relation # ID attr. # nominal attr. # numeric attr.
1 anthracene 1 1 0
2 atm 1 3 1
3 ball3 1 1 0
4 benzene 1 1 0
5 bond 1 3 0
6 carbon 5 aromatic ring 1 1 0
7 carbon 6 ring 1 1 0
8 drug042/drug188 1 1 0
9 hetero aromatic 5 ring 1 1 0

10 hetero aromatic 6 ring 1 1 0
11 logp 1 0 1
12 lumo 1 0 1
13 methyl 1 1 0
14 nitro 1 1 0
15 methyl 1 1 0
16 phenanthrene 1 1 0
17 ring size 5 1 1 0
18 ring size 6 1 1 0

B.3 Biochemistry: Mutagenesis042/188.active

Learning tasks in the field of mutagenicity modelling belong to the ILP standard
problems. We used as a source for the data:

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/mutagenesis.html

The data describe certain molecules. Table B.1 shows the predicates or rela-
tions the facts of which were used for our experiments. The first column enumer-
ates the predicates, the second provides their names. The numbers of identifier
attributes, of nominal attributes, and of numeric attributes follow in columns 3,
4, and 5, respectively.

The relations drug042/drug188 are derived from the original predicate active
for 42 regression-unfriendly and 188 regression-friendly example descriptions, cf.
descriptions of the data set [123]. The constellation given here corresponds largely
to the usage of non-structural attributes (logp and lumo) and the structural
attribute set S2 from experiments with Progol [123], also known in the literature
as the variant with background knowledge B4 [54]. Indicator attributes, also
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called PS (ind1, inda), are not used here in correspondence with other work
[123].

We use two learning tasks as indicated by the two names for target relations,
also in correspondence with other work in the field. The objective is to arrive at
models for the mutagenicity of drugs.

There are occasionally one-to-one relationships between the target relation
and other relations, though in most cases there are one-to-many (many includes
zero) relationships.

The identifier attributes are primary keys for the target relations, and foreign
keys pointing to the target relation in all other cases. Thus, the database fulfills
the demands of a new star schema.

The nominal attributes often consist of lists of (lists of) Prolog constants to
describe certain structures of the molecules. We excluded drug identifiers here
such that several drugs may share nominal values.

The transformation of the original Prolog facts to MySQL database tables
was partly achieved with a Java tool named PL2SQL written by the author and
available on request.

B.4 ECML Challenge 1998: Partner and House-

hold.class

The data set as used for our experiments is not available in the Internet. We
received it from Jörg-Uwe Kietz, who also distributed the data with a descrip-
tion of the data set in preparation of the Sisyphus-I workshop at the European
Conference on Machine Learning (ECML) in 1998. Originally, the data were an
excerpt of a data warehouse at the SwissLife insurance company. A new variant
of the data was dealt with lately [86], conditions for the availability of those data
is not known to the author.

Figure B.5 depicts parts of a relational database schema provided for the
ECML 1998 challenge [52]. For the original tasks A and B of the challenge, there
were two more tables included, both with a one-to-one-relationship to table part
and to table hhold, respectively. They only contained partner and household
identifiers, respectively, plus class labels. These were directly integrated into the
tables part and hhold, respectively, for our experiments.

Table B.2 shows more details of the original relations.

The data describe partners (part) of the insurance companies, most of them
customers, with their households (hhold) and addresses (eadr and padr), and their
insurance contracts (parrol, tfkomp, tfrol, vvert).

For both learning tasks, the documentation explained that a value of 1 would
be a positive class label, and 2 a negative class label, while a value of 0 would
indicate an irrelevant case. The meaning of the learning tasks was not provided.
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Part (17,267) Vvert (34,986)

Hhold (12,934)

Eadr (505) Tfkomp (73,502)

Tfrol (73,332)

Parrol (111,077)

Padr (17,970)

Figure B.5: The ECML 1998 challenge data set (relations as rectangles with
relation names and tuple numbers in parantheses; arrows represent foreign key
relationships [52])

Table B.2: Relations of the ECML 1998 challenge data set (target relations in
bold, target attributes indicated by “+1”)

No. Relation # ID attr. # nominal attr. # numeric attr.
1 eadr 1 2 0
2 hhold 1 42+1 0
3 padr 1 3 0
4 parrol 3 2 0
5 part 2 6+1 1
6 tfkomp 3 10 13
7 tfrol 3 4 1
8 vvert 2 11 5

The focus of the challenge was on data preparation, and the small number of
contributions seems to indicate that the task was hard [9, 34, 52]. It is still
challenging as our experiments show.

We built a reduced database by dropping examples with class label 0. Further
preprocessing steps were analogous to those described in more detail for the
PKDD 1999/2000 Challenges below. Some special cirumstances here were the
following.

Many integer attributes were in fact nominal attributes, viz. codes for other
strings that are kept in other tables of the original data warehouse in several
languages used in Switzerland (French, German, Italian).

The many-to-many relationship between part and vvert via parrol included
several occurrences of the same part-vvert-pairs and thus made a select distinct

statement favorable when propagating target identifiers.

Further, tfkomp entries that can be reached via vvert are a real superset
of those reachable via tfrol, hence the decision to use only the first path for
propositionalization.
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Last not least, there were a number of small deviations observed between
the documentation of the data set and the actual state of it. Also, there were
some attributes included showing only one value. Date values were taken here as
integers in order to be included in the data mining process.

B.5 PKDD Challenge 1999: Loans and Cards

One of the two data sets provided for the PKDD Challenge in 1999 and also that
in 2000 originates from a Czech bank and is also referred to in the literature as
“financial data set”. An introduction [8] and many interesting papers written by
participants can be found in the internet, as well as the data:

http://lisp.vse.cz/challenge/

The data describe customers of the bank with their accounts, loans, orders
and other transactions on those accounts, also their credit cards and aspects of
the regions where customers and bank branches are situated.

Figure B.6 depicts parts of the relational database schema provided for the
PKDD 1999/2000 challenges [8].

Loan (682)

Client (5,369) 

Order (6,471)

Account (4,500) 

Card (892)

Disp (5,369) 

District (77)

Trans (1,056,320)

Figure B.6: The PKDD 1999/2000 challenges financial data set (relations as rect-
angles with relation names and tuple numbers in parantheses; arrows represent
foreign key relationships [8])

Table B.3 shows more details of the original relations.
For the Challenge, learning tasks were not specified. However, several tasks

turned out to be popular among the participants. Among those tasks were the
prediction of the status of loan projects. Also, descriptions of phenomena w. r. t.
the usage of credit cards were often an objective of data mining, e. g. for different
types of credit cards. We concentrate on exactly these two tasks. Loan.status
prediction is motivated by the hope to enable better decisions on granting loans.
Card.type descriptions may help to upgrade some customers, ultimatly for better
profit.
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Table B.3: Relations of the PKDD 1999/2000 challenges financial data set (target
relations in bold)

No. Relation # ID attr. # nominal attr. # numeric attr.
1 account 2 1 1
2 card 2 1 1
3 client 2 0 1
4 disp 3 1 0
5 district 1 2 13
6 loan 2 1 4
7 order 2 3 1
8 trans 2 5 3

As a first step for us to take, original data were imported into a MySQL
database. Here, there are a number of choice points. For instance, data types
have to be chosen, which is flexible within certain limits. Also, there is usually
more than one way of defining key attributes, e. g. with or without explicit
declarations of foreign key attributes, to allow for missing values or not, and for
several other aspects of the database schema.

Many of these issues are related to efficiency, which is in general better for not
nullable attributes, further for attributes of minimum type, say char(2) instead
of varchar(8) or tinyint instead of bigint. However, determination of the
applicability of restrictions can also be costly here. We decided the issues in
pragmatic ways, aiming at simple and unified schemas.

We tried to keep the original names for tables and attributes to simplify
handling of the databases, although occasionally deviations from this principle
were necessary, e. g. for table order , where order is a reserved word in MySQL.

Also, we observed small differences between the documentation of the data
and the actual data, e. g. incomplete listings of possible values in the documen-
tation, but also probably typos in the database. One attribute in the original
customer table contained an attribute which combined information about birth-
day and gender. Here, we separated this information into two attributes.

Moreover, we had to manipulate values such as for Card.issued, which pro-
vided integers in strings for dates, but followed by 00:00:00. We removed the
latter. Another observation concerned a deviation from the principle to have the
same names for primary key attributes and their foreign key attributes in the
original data. While foreign keys to the district table were named district id,
obviously following certain naming conventions here, the primary key attribute
in the district table was named A1. These aspects exemplify the necessity for
human intervention in the data preparation phase.
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Data import into MySQL was achieved mainly with MySQL’s load data

infile command. It was highly efficient. For instance, more than one million
transaction records could be imported from a text file into a MySQL table in less
than a minute with that command, cf. Appendix C. Replacing empty strings or
strings of spaces in the database by NULL values was also a fast achievement.
Using text editors, the same task took three times as long.

Since further steps of data preparation were task specific, we present these
separately in the following subsections.

B.5.1 Predicting Loan.status

For the first learning task considered here, table loan served as the target relation
and its attribute status as the target attribute. This attribute has originally four
different values with the following meanings.

• value A: loan project finished without problems

• value B: loan project finished with problems

• value C: loan project running, without problems so far

• value D: loan project running, with problems already

Problems could be delays or incomplete payback.
Following ideas of participants in the challenge, we combined examples of

classes A and C into a positive class and those of classes B and D into a negative
class. This way, we arrived not only at a two-class problem, but also at a moderate
number of examples of 682. 606 of those loan projects had shown no problems.
The models to be learned can be applied to each of those customers described by
the database without a loan project at the point of time the database snapshot
was taken.

Preprocessing Variant: Basic

In order to arrive at a reduced variant of the database, we deleted all entries
without a relation to loans from the tables different from the target table. Fur-
thermore, it was very important within the context of our prediction task to also
leave out all data that dated after loan grantings, e. g. “late” transaction records.
These data were not known at the time of granting loans such that comparable
data would not be known for other customers who apply for a loan either.

This reduced variant of the database was taken as the basis for input produc-
tion for the learning systems Foil, Progol, Tilde, and Rsd. It was also the
starting point for further preparations of the data for the application of the basic
variant of Relaggs. For the latter, we defined foreign links in the usual way
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as first shown for Midos [133]. They correspond to foreign key relationships,
but their direction may differ because foreign links always form directed paths
from the target relation to the other relations. Furthermore, in the graph of the
database with its foreign links, no circles are allowed. Figure B.7 depicts the
database after reductions and with foreign link definitions. Note especially the
reduction achieved for table trans.

Loan (682)

Client (827) 

Order (1,513)

Account (682) 

Card (36)

Disp (827) 

District (77)

Trans (54,694)

Figure B.7: The PKDD 1999/2000 challenges financial data set: reduced to rele-
vant data for loan status prediction (solid arrows represent foreign links identical
to former foreign key relationships, dashed arrows represent foreign links with a
direction different from that of their basic foreign key relationship)

Following our ideas of exploiting functional dependencies between entries in
different relations, we combined tables along many-to-one relationships. The
resulting database is sketched in Fig. B.7

Disp_Client_District (827) 

Order (1,513)

Loan_Account_District (682) 

Card (36)Trans (54,694)

Figure B.8: The PKDD 1999/2000 challenges financial data set: after schema
transformation exploiting functional dependencies (arrows represent foreign links)

In this situation, there are 12 clauses resulting to form C, here represented by
the predicate names of the literals only, i. e. without arguments.

1. loan account district

2. loan account district, disp client district

3. loan account district, order

4. loan account district, trans
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5. loan account district, disp client district, card

6. loan account district, disp client district, order

7. loan account district, disp client district, trans

8. loan account district, order, trans

9. loan account district, disp client district, card, order

10. loan account district, disp client district, card, trans

11. loan account district, disp client district, order, trans

12. loan account district, disp client district, card, order, trans

A clause consisting of three literals for loan account district, order, and card
is not included, since there would be no link to card; similar for some other cases.

With parameter branching factor set to 0, the subset of the first five clauses
named above remains for C. In our experiments for the basic variant of Relaggs,
we used exactly this set of clauses, where we produced their result sets in the
database. This way, we arrived at new star formats, which enabled the simulation
of the basic approach with the help of the same system as used for the extended
variants. Running times for the transformations are included in the report on
the empirical results, cf. Section 5.4.

Preprocessing Variant: New Star Schema

The propagation of loan identifiers was achieved corresponding to our suggestions
for a general procedure for identifier propagation. This process also reduced the
data in a similar way to that taken for the basic variant. Database entries dating
after loan grantings had to be deleted in addition to the usual procedure, cf.
Appendix C.

Figure B.9 depicts the database in a new star schema. Note that table district
has grown here. This is caused by two reasons. First, we use the union of results
from using two paths to the district table from the loan table: directly via account,
and in addition via client. Second, denormalization introduced redundancies, e. g.
when for two loans on accounts in the same district, district information is stored
twice.

During new star generation, an order by target identifiers could have been
produced, which could have been later exploited by Relaggs. However, this
step was not taken yet. Instead, Relaggs produces the corresponding orders. It
would be favorable to precompute those orders in cases of repeated proposition-
alization, say with different parameter settings or using different subsets of the
aggregate functions available.

Also, we did not yet propagate class labels along with identifiers, which would
allow for supervised propositionalization of the single tables involved.
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Loan (682)

Client (827) 

Order (1,513)

Account (682) Card (36)

Disp (827) District (1,509) 

Trans (54,694)

Figure B.9: The PKDD 1999/2000 challenges financial data set: database in a
new star schema (arrows represent foreign key relationships)

B.5.2 Describing Card.type

For the second learning task derived from the PKDD 1999/2000 Challenges fi-
nancial data set, we use table card as target relation and its attribute type as
target attribute. Originally, this attribute has three values: classic, gold, and
junior. Since junior was observed for a small group of young customers only, we
left those credit cards out of our considerations.

A description of card usage may especially enable marketing attempts to
upgrade classic card users with a similar profile as gold card users. There were
659 classic cards and 88 gold cards described in the target table, i. e. 747 examples
overall to be considered.

The procedure for preprocessing was mainly analogous to the one described for
the Loan.status learning task. We produced a reduced version of the database
by leaving out those with no relationship to cards. This time, there are not
any further restrictions such as those induced by dates, since we do not aim at
predictive models but descriptive ones. We defined foreign links and exploited
functional dependencies. This way, 8 clauses resulted for C:

1. card disp account district client

2. card disp account district client, loan

3. card disp account district client, order

4. card disp account district client, trans

5. card disp account district client, loan, order

6. card disp account district client, loan, trans

7. card disp account district client, order, trans

8. card disp account district client, loan, order, trans
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Table B.4: Relations of the KDD Cup 2001 gene data set (target relation in
bold)

No. Relation # ID attr. # nominal attr. # numeric attr.
1 gene 1 6+2 0
2 interaction 2 1 1

With branching factor set to 0, the first 4 of those clauses were finally used
for the application of Relaggs in the basic scheme.

Preprocessing for the new star schema variant was done according to the
general procedure.

B.6 KDD Cup 2001: Gene.growth and nucleus

For the KDD Cup 2001 [22, 70], three tasks were provided, the two latter of
which dealt with yeast genes and the proteins they code for, respectively. Data,
tasks and further documentation can be downloaded from

http://www.cs.wisc.edu/~dpage/kddcup2001/

The data describe genes/proteins: if they are essential for life of the cell or
organism, on which chromosome the gene can be found, the protein’s function(s)
and localization. Further, protein class, complex, phenotype and motif informa-
tion is provided. Moreover, interactions between proteins are recorded with their
kind and strength. Table B.4 shows more details of the original relations.

The two tables per training and test data set in the original data were pro-
duced by denormalizing an unpublished database with more tables.

Task 2 of the KDD Cup 2001 asked for models to predict n functions out of
13 contained in the training data, for each protein. Task 3 demanded for models
to predict one localization out of 15 contained in the training data, for each
protein. There were 861 training examples given, with function and localization
information, and 381 test examples without that information.

We decided to remain close to the original tasks with our experiments here.
However, we concentrated on predicting just one specific function and one spe-
cific localization. For these, we chose the function and localization values that
were closest to a fifty-fifty distribution among the examples. We expected to see
the effects of learning most clearly here. The function value of interest included
responsibility for cell growth, given for 275 of 861 training examples. The lo-
calization of interest was the nucleus, where 366 of the 861 training examples
resided.
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To build a database for analyses, we renormalized the tables to arrive at
a target table with one record per example. We decided to keep information
about the genes/proteins themselves and those about their interaction partners
separate. Interaction partners are also called neighbors, hence the extension
n in the corresponding table names. We kept the separation because of the
different relevance of the data to be assumed for the learning problem and because
gene/protein information should not be obscured by the overwhelming amount
of such information about their neighbors.

With respect to interactions, we included only those of a certain strength.
Furthermore, we made symmetry explicit. That means, we introduced an entry
for a relationship between genes/proteins B and A, if there was an interaction be-
tween A and B in the original data. We also exploited assumptions on transitivity
of the interaction relation, up to a certain number of steps from one gene/protein
to the other. Systems such as Progol could have used rules for issues such as
symmetry. However, producing explicit entries in the interaction table was useful
for deciding about when to stop this potentially explosive process.

Test examples were included in the considerations via their interactions with
training examples. The resulting schema of our database can be seen in Fig. B.10.

gene (861)

motif (470) 

class (273) interaction (6,359)

complex (485)

motif_n (1,943)

complex_n (3,233)

phenotype_n (5,591)

class_n (1,327) 

gene_n (4,577)phenotype (894)

Figure B.10: The KDD Cup 2001 gene data set: database in a new star schema
(arrows represent foreign key relationships)

This database was produced directly from the original data set or rather their
import into MySQL tables. It is already in a new star schema. This database
was the starting point for the application of all learning systems used in our
experiments.

A minor issue to note is that many attributes contain rather unusual nominal
values here, especially w. r. t. their length. Also, special characters can be found
here that caused difficulties for the usage of the data not only when it came to
their import into MySQL tables, but also with some learning systems like Foil.
Commas within strings — even when strings were enclosed by apostrophes —
caused Foil to fault. Moreover, original data values such as “?” or “Unknown”
had to be replaced by NULL values in the database.
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Another minor point was that contrary to the intention of task 3, there were
two localizations provided for one of the genes/proteins in the training set. We
removed this example from our analyses.

These issues again point to the necessity of human intervention during prepro-
cessing and the opportunity to combine these interventions with the construction
of a database in a new star schema.

B.7 Further Data Sets

We investigated several other data sets w. r. t. applicability of Relaggs and
usability for experiments reported on in this dissertation. In this section, we give
an overview in order to provide pointers to those data sets and learning tasks for
the interested reader. We also explain why certain tasks were not considered for
our experiments here.

For the KDD Cup 2002 task 2, another data set was provided describing yeast
genes [25]. It can be found in the internet at

http://www.biostat.wisc.edu/~craven/kddcup/

We were able to use similar preparations of the data here as those reported
for the KDD Cup 2001 data above. We reached comparatively good results
[64, 68, 69, 70]. However, the distribution of the class attribute was very skewed
here, hence the application of ROC analyses. Since we chose to present overall
accuracy or error rates, respectively, for our experiments in a unified way, we
made no use of this learning task here.

Nevertheless, we would like to hint at special aspects of data preparation, viz.
the enrichment of the tables by values extracted from abstracts of contributions in
the domain of yeast gene research. We were motivated to try those extractions by
the many missing values in the original data. It turned out that simple methods
for information extraction following ideas from the literature [24, 80, 100] were
effective w. r. t. improvements of the ROC areas.

For the KDD Cup 2003, analyses in the domain of publications of physics
research literature was chosen. Data and tasks can be found on the web:

http://www.cs.cornell.edu/projects/kddcup/

For task 1, we again applied Relaggs to enable a type of time-series analyses
rather successfully, reaching the fourth best result (personal communication with
Johannes Gehrke by e-mail on Aug-21-2003). However, this kind of experiment
was rather different from those reported in this thesis.

For the PKDD Challenges from 1999 to 2001, a medical data set [138] was
issued beside the financial one that we dealt with above. We also worked with
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those data [72, 73] and observed interesting circumstances. We chose as a learn-
ing task to predict the occurrence of a certain disease. The first results of the
application of Relaggs achieved very high accuracies.

However, an inspection of the model, a decision tree, showed that it was not
applicable for prediction. In its root node it asked for the number of visits of a
patient. It positively predicted the patient to have the disease in question, if it
was his or her first visit to the hospital. Clearly, the number of visits was one of
the aggregate function values computed by Relaggs.

The good performance of this model was caused by the fact that the hospital
had specialized in the diagnosis and treatment of the disease in question such that
patients were sent here by other physicians who had developed the corresponding
suspicion. Obviously, this points to traps that can be connected to the blind
usage of data mining results and shows the usefulness of comprehensible models.

Applying support vector machines, we would probably not have detected this
issue. This is also one of the reasons for using mainly decision trees for our
experiments reported in this thesis.

More relational data sets can be found on the web, e. g. at or via

http://kdd.ics.uci.edu/

http://www-ai.ijs.si/~ilpnet2/apps/index.html

http://www.mlnet.org/

We also investigated a number of propositional data sets, among them from
the CoIL 2000 Challenge [63], from the Data Mining Cups [66], from the SAS
Mining Challenges [115, 65, 42, 43, 44], and other KDD Cups than those men-
tioned above [56], and also from the UCI ML archive [11]. Working with those
data sets, we usually applied conventional feature construction as opposed to
aggregate functions for feature construction as used by Relaggs.

Often, we could observe the application of aggregate functions for the con-
struction of the data sets provided for the competitions, since attributes were
usually described in sufficient detail. However, it was in general difficult, if not
impossible, to rebuild the original relational databases in order to use them in
the scheme of our experiments described in this dissertation. More details about
the investigations can be found in the diploma thesis by Körnig [57].

Further real-life datasets were investigated in a number of student research
projects. These data are mostly from German car manufacturers, but the orig-
inal data sets had to remain at their owners for reasons of their relevance for
the companies. That is why we could not make favorable use of them for our
experiments here. We can only mention some preliminary results.

Following the student research project by Gerdelbracht [35], he also inves-
tigated opportunities to apply Relaggs to predict damages in cars, especially
based on the special equipment of the cars. For example learning tasks concerning
20,000 cases of damages for a special type of cars, Relaggs and WEKA’s J48
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were able arrive at trees with a few thousand nodes, in a few hours, to improve
error rates significantly compared to default error rates. However, the economic
relevance of the models learned has not yet been evaluated.

In the diploma thesis by Flach [33], there is an example of a real-life data
set analysis in the domain of logistics. The basis for the investigations is a
relational database for the management of transport capacities. Troublesome
cases of transport should be described by KDD models.

The database is essentially in a star schema as known from data warehouses,
such that non-target tables can be joined to the target relation directly, without
the application of aggregate functions or other means of propositionalization. Ex-
actly those joins would also be performed by Relaggs in this situation. Learning
results showed slight improvements over default error rates.



Appendix C

Example Scripts and Log Files

In this appendix, we provide further details about the process of the creation of a
MySQL database from the original text file data and its transformation into a new
star. We chose the Loan.status prediction learning task data as an illustrative
example.

C.1 From Text Files to a MySQL Database

The data are provided as text files in the style of the following excerpt, taken
from the loan.asc file.

"loan_id";"account_id";"date";"amount";"duration";"payments";"status"

5314;1787;930705;96396;12;8033.00;"B"

5316;1801;930711;165960;36;4610.00;"A"

6863;9188;930728;127080;60;2118.00;"A"

5325;1843;930803;105804;36;2939.00;"A"

7240;11013;930906;274740;60;4579.00;"A"

6687;8261;930913;87840;24;3660.00;"A"

7284;11265;930915;52788;12;4399.00;"A"

6111;5428;930924;174744;24;7281.00;"B"

7235;10973;931013;154416;48;3217.00;"A"

5997;4894;931104;117024;24;4876.00;"A"

The following statements were used to create a relational database. Tables
are created and filled from the original text file data. Statements for one table
are grouped and separated from others by double empty lines. Note the speed of
the process: the import of more than one million records for transactions takes
only 42.3 sec, for example.

We further point the interested reader to some special treatment of the data,
e. g. replacing empty strings with more appropriate NULL values in table trans.
For some other tables, similar editing was executed for the original text files.
These and other minor preparation steps, which led from the asc files as provided
by the organizers of the Challenge to the txt files as used here, are described in
a separate report that is available on request.

154
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create database test_pkdd_1999_finance_original;

use test_pkdd_1999_finance_original;

create table loan (

loan_id integer not null,

account_id integer not null,

date integer,

amount integer,

duration integer,

payments integer,

status char,

primary key (loan_id));

desc loan;

load data local infile ’loan.txt’ into table loan

fields terminated by ’;’ optionally enclosed by ’"’

lines terminated by ’\r\n’ ignore 1 lines;

select * from loan limit 10;

select count(distinct status) from loan;

select status, count(*) from loan group by status;

create table account (

account_id integer not null,

district_id integer not null,

frequency varchar(32),

date integer,

primary key (account_id));

desc account;

load data local infile ’account.txt’ into table account

fields terminated by ’;’ optionally enclosed by ’"’

lines terminated by ’\r\n’ ignore 1 lines;

create table order_ (

order_id integer not null,

account_id integer not null,

bank_to char(2),

account_to varchar(32),

amount double,

k_symbol varchar(32),

primary key (order_id));

desc order_;

load data local infile ’order.txt’ into table order_

fields terminated by ’;’ optionally enclosed by ’"’

lines terminated by ’\r\n’ ignore 1 lines;

create table trans (

trans_id integer not null,

account_id integer not null,

date integer,

type varchar(32),

operation varchar(32),
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amount double,

balance double,

k_symbol varchar(32),

bank char(2),

account varchar(32),

primary key (trans_id));

desc trans;

load data local infile ’trans.txt’ into table trans

fields terminated by ’;’ optionally enclosed by ’"’

lines terminated by ’\r\n’ ignore 1 lines;

update trans set k_symbol = NULL where k_symbol = "";

update trans set account = NULL where account = "";

create table disp (

disp_id integer not null,

client_id integer not null,

account_id integer not null,

type varchar(32),

primary key (disp_id));

desc disp;

load data local infile ’disp.txt’ into table disp

fields terminated by ’;’ optionally enclosed by ’"’

lines terminated by ’\r\n’ ignore 1 lines;

create table card (

card_id integer not null,

disp_id integer not null,

type varchar(32),

issued integer,

primary key (card_id));

desc card;

load data local infile ’card.txt’ into table card

fields terminated by ’;’ optionally enclosed by ’"’

lines terminated by ’\r\n’ ignore 1 lines;

create table client (

client_id integer not null,

birth_number integer,

district_id integer not null,

primary key (client_id));

desc client;

load data local infile ’client.txt’ into table client

fields terminated by ’;’ optionally enclosed by ’"’

lines terminated by ’\r\n’ ignore 1 lines;

create table district (

A1 integer not null,

A2 varchar(32),

A3 varchar(32),

A4 integer,

A5 integer,
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A6 integer,

A7 integer,

A8 integer,

A9 integer,

A10 double,

A11 integer,

A12 double,

A13 double,

A14 integer,

A15 integer,

A16 integer,

primary key (A1));

desc district;

load data local infile ’district.txt’ into table district

fields terminated by ’;’ optionally enclosed by ’"’

lines terminated by ’\r\n’ ignore 1 lines;

show tables;

The log file that was produced by MySQL with the tee command for run-
ning the statements shown above follows. Unfortunately, the statements are not
repeated by tee. However, the reader may simply find the relationships to desc

statements from the script above, focusing on the primary key attribute names
(Key = PRI) in table descriptions, for an orientation.

mysql> source ALL.sql

Query OK, 1 row affected (0.13 sec)

Database changed

Query OK, 0 rows affected (0.15 sec)

+------------+---------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+---------+------+-----+---------+-------+

| loan_id | int(11) | | PRI | 0 | |

| account_id | int(11) | | | 0 | |

| date | int(11) | YES | | NULL | |

| amount | int(11) | YES | | NULL | |

| duration | int(11) | YES | | NULL | |

| payments | int(11) | YES | | NULL | |

| status | char(1) | YES | | NULL | |

+------------+---------+------+-----+---------+-------+

7 rows in set (0.03 sec)

Query OK, 682 rows affected (0.16 sec)

Records: 682 Deleted: 0 Skipped: 0 Warnings: 0

+---------+------------+--------+--------+----------+----------+--------+

| loan_id | account_id | date | amount | duration | payments | status |

+---------+------------+--------+--------+----------+----------+--------+

| 5314 | 1787 | 930705 | 96396 | 12 | 8033 | B |

| 5316 | 1801 | 930711 | 165960 | 36 | 4610 | A |

| 6863 | 9188 | 930728 | 127080 | 60 | 2118 | A |

| 5325 | 1843 | 930803 | 105804 | 36 | 2939 | A |

| 7240 | 11013 | 930906 | 274740 | 60 | 4579 | A |

| 6687 | 8261 | 930913 | 87840 | 24 | 3660 | A |

| 7284 | 11265 | 930915 | 52788 | 12 | 4399 | A |
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| 6111 | 5428 | 930924 | 174744 | 24 | 7281 | B |

| 7235 | 10973 | 931013 | 154416 | 48 | 3217 | A |

| 5997 | 4894 | 931104 | 117024 | 24 | 4876 | A |

+---------+------------+--------+--------+----------+----------+--------+

10 rows in set (0.04 sec)

+------------------------+

| count(distinct status) |

+------------------------+

| 4 |

+------------------------+

1 row in set (0.03 sec)

+--------+----------+

| status | count(*) |

+--------+----------+

| A | 203 |

| B | 31 |

| C | 403 |

| D | 45 |

+--------+----------+

4 rows in set (0.01 sec)

Query OK, 0 rows affected (0.05 sec)

+-------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------------+-------------+------+-----+---------+-------+

| account_id | int(11) | | PRI | 0 | |

| district_id | int(11) | | | 0 | |

| frequency | varchar(32) | YES | | NULL | |

| date | int(11) | YES | | NULL | |

+-------------+-------------+------+-----+---------+-------+

4 rows in set (0.00 sec)

Query OK, 4500 rows affected (0.16 sec)

Records: 4500 Deleted: 0 Skipped: 0 Warnings: 0

Query OK, 0 rows affected (0.05 sec)

+------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+-------------+------+-----+---------+-------+

| order_id | int(11) | | PRI | 0 | |

| account_id | int(11) | | | 0 | |

| bank_to | char(2) | YES | | NULL | |

| account_to | varchar(32) | YES | | NULL | |

| amount | double | YES | | NULL | |

| k_symbol | varchar(32) | YES | | NULL | |

+------------+-------------+------+-----+---------+-------+

6 rows in set (0.00 sec)

Query OK, 6471 rows affected (0.30 sec)

Records: 6471 Deleted: 0 Skipped: 0 Warnings: 0

Query OK, 0 rows affected (0.06 sec)

+------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+-------------+------+-----+---------+-------+

| trans_id | int(11) | | PRI | 0 | |

| account_id | int(11) | | | 0 | |

| date | int(11) | YES | | NULL | |

| type | varchar(32) | YES | | NULL | |

| operation | varchar(32) | YES | | NULL | |
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| amount | double | YES | | NULL | |

| balance | double | YES | | NULL | |

| k_symbol | varchar(32) | YES | | NULL | |

| bank | char(2) | YES | | NULL | |

| account | varchar(32) | YES | | NULL | |

+------------+-------------+------+-----+---------+-------+

10 rows in set (0.01 sec)

Query OK, 1056320 rows affected (41.26 sec)

Records: 1056320 Deleted: 0 Skipped: 0 Warnings: 0

Query OK, 53433 rows affected (21.52 sec)

Rows matched: 53433 Changed: 53433 Warnings: 0

Query OK, 10 rows affected (17.96 sec)

Rows matched: 10 Changed: 10 Warnings: 0

Query OK, 0 rows affected (0.05 sec)

+------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+-------------+------+-----+---------+-------+

| disp_id | int(11) | | PRI | 0 | |

| client_id | int(11) | | | 0 | |

| account_id | int(11) | | | 0 | |

| type | varchar(32) | YES | | NULL | |

+------------+-------------+------+-----+---------+-------+

4 rows in set (0.00 sec)

Query OK, 5369 rows affected (0.09 sec)

Records: 5369 Deleted: 0 Skipped: 0 Warnings: 0

Query OK, 0 rows affected (0.05 sec)

+---------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+---------+-------------+------+-----+---------+-------+

| card_id | int(11) | | PRI | 0 | |

| disp_id | int(11) | | | 0 | |

| type | varchar(32) | YES | | NULL | |

| issued | int(11) | YES | | NULL | |

+---------+-------------+------+-----+---------+-------+

4 rows in set (0.00 sec)

Query OK, 892 rows affected (0.02 sec)

Records: 892 Deleted: 0 Skipped: 0 Warnings: 0

Query OK, 0 rows affected (0.05 sec)

+--------------+---------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------------+---------+------+-----+---------+-------+

| client_id | int(11) | | PRI | 0 | |

| birth_number | int(11) | YES | | NULL | |

| district_id | int(11) | | | 0 | |

+--------------+---------+------+-----+---------+-------+

3 rows in set (0.00 sec)

Query OK, 5369 rows affected (0.05 sec)

Records: 5369 Deleted: 0 Skipped: 0 Warnings: 0

Query OK, 0 rows affected (0.06 sec)

+-------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |
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+-------+-------------+------+-----+---------+-------+

| A1 | int(11) | | PRI | 0 | |

| A2 | varchar(32) | YES | | NULL | |

| A3 | varchar(32) | YES | | NULL | |

| A4 | int(11) | YES | | NULL | |

| A5 | int(11) | YES | | NULL | |

| A6 | int(11) | YES | | NULL | |

| A7 | int(11) | YES | | NULL | |

| A8 | int(11) | YES | | NULL | |

| A9 | int(11) | YES | | NULL | |

| A10 | double | YES | | NULL | |

| A11 | int(11) | YES | | NULL | |

| A12 | double | YES | | NULL | |

| A13 | double | YES | | NULL | |

| A14 | int(11) | YES | | NULL | |

| A15 | int(11) | YES | | NULL | |

| A16 | int(11) | YES | | NULL | |

+-------+-------------+------+-----+---------+-------+

16 rows in set (0.00 sec)

Query OK, 77 rows affected (0.01 sec)

Records: 77 Deleted: 0 Skipped: 0 Warnings: 0

+-------------------------------------------+

| Tables_in_test_pkdd_1999_finance_original |

+-------------------------------------------+

| account |

| card |

| client |

| disp |

| district |

| loan |

| order_ |

| trans |

+-------------------------------------------+

8 rows in set (0.00 sec)

mysql> exit

C.2 New Star Generation

The following statements were used to produce a database in a new star schema
for Loan.status prediction, from the database described in the preceding section.
For each table, there is an explain statement to indicate prospective perfor-
mance of the select statement, which is afterwards used in the create table

statement. Index creation is also listed. Statements for one table are grouped
and separated from others by double empty lines. Note special treatments for
table trans with the date restrictions, and of table client with an attribute
split.

create database test_pkdd_1999_finance_new_star;

use test_pkdd_1999_finance_new_star;

explain
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select *

from test_pkdd_1999_finance_original.loan;

create table loan (primary key (loan_id))

select *

from test_pkdd_1999_finance_original.loan;

create index account_id on loan (account_id);

explain

select l.loan_id, a.*

from loan l,

test_pkdd_1999_finance_original.account a

where l.account_id = a.account_id;

create table account (primary key (loan_id))

select l.loan_id, a.*

from loan l,

test_pkdd_1999_finance_original.account a

where l.account_id = a.account_id;

explain

select l.loan_id, o.*

from loan l,

test_pkdd_1999_finance_original.order_ o

where l.account_id = o.account_id;

create table order_ (key (loan_id))

select l.loan_id, o.*

from loan l,

test_pkdd_1999_finance_original.order_ o

where l.account_id = o.account_id;

explain

select l.loan_id, t.*

from loan l,

test_pkdd_1999_finance_original.trans t

where l.account_id = t.account_id and

l.date > t.date;

create table trans (key (loan_id))

select l.loan_id, t.*

from loan l,

test_pkdd_1999_finance_original.trans t

where l.account_id = t.account_id and

l.date > t.date;

explain

select l.loan_id, d.*

from loan l,

test_pkdd_1999_finance_original.disp d

where l.account_id = d.account_id;

create table disp (key (loan_id))

select l.loan_id, d.*

from loan l,

test_pkdd_1999_finance_original.disp d

where l.account_id = d.account_id;

explain
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select l.loan_id, c.*

from loan l,

disp d,

test_pkdd_1999_finance_original.card c

where l.account_id = d.account_id and

d.disp_id = c.disp_id and

l.date > c.issued;

create table card (key (loan_id))

select l.loan_id, c.*

from loan l,

disp d,

test_pkdd_1999_finance_original.card c

where l.account_id = d.account_id and

d.disp_id = c.disp_id and

l.date > c.issued;

explain

select d.loan_id, c.*

from disp d,

test_pkdd_1999_finance_original.client c

where d.client_id = c.client_id;

create table client (key (loan_id))

select d.loan_id, c.*

from disp d,

test_pkdd_1999_finance_original.client c

where d.client_id = c.client_id;

alter table client add column (gender char);

update client set gender = ’m’

where birth_number % 10000 < 1300;

update client set gender = ’f’, birth_number = birth_number - 5000

where birth_number % 10000 > 1300;

alter table client change birth_number birthday integer;

explain

select a.loan_id, d.*

from account a,

test_pkdd_1999_finance_original.district d

where a.district_id = d.a1

union all

select c.loan_id, d.*

from client c,

test_pkdd_1999_finance_original.district d

where c.district_id = d.a1;

create table district (key (loan_id))

select a.loan_id, d.*

from account a,

test_pkdd_1999_finance_original.district d

where a.district_id = d.a1

union all

select c.loan_id, d.*

from client c,

test_pkdd_1999_finance_original.district d

where c.district_id = d.a1;

show tables;
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Here is the log file that was produced by MySQL for running the statements
shown above. Short names of tables in the results of explain statements may
enable a reference to those explain statements in the script above, for an orien-
tation.

mysql> source ALL_SQL.txt

Query OK, 1 row affected (0.04 sec)

Database changed

+-------+------+---------------+------+---------+------+------+-------+

| table | type | possible_keys | key | key_len | ref | rows | Extra |

+-------+------+---------------+------+---------+------+------+-------+

| loan | ALL | NULL | NULL | NULL | NULL | 682 | |

+-------+------+---------------+------+---------+------+------+-------+

1 row in set (0.00 sec)

Query OK, 682 rows affected (0.07 sec)

Records: 682 Duplicates: 0 Warnings: 0

Query OK, 682 rows affected (0.22 sec)

Records: 682 Duplicates: 0 Warnings: 0

+-------+--------+---------------+---------+---------+--------------+------+-------+

| table | type | possible_keys | key | key_len | ref | rows | Extra |

+-------+--------+---------------+---------+---------+--------------+------+-------+

| l | ALL | account_id | NULL | NULL | NULL | 682 | |

| a | eq_ref | PRIMARY | PRIMARY | 4 | l.account_id | 1 | |

+-------+--------+---------------+---------+---------+--------------+------+-------+

2 rows in set (0.01 sec)

Query OK, 682 rows affected (0.10 sec)

Records: 682 Duplicates: 0 Warnings: 0

+-------+------+---------------+------------+---------+--------------+------+-------+

| table | type | possible_keys | key | key_len | ref | rows | Extra |

+-------+------+---------------+------------+---------+--------------+------+-------+

| o | ALL | NULL | NULL | NULL | NULL | 6471 | |

| l | ref | account_id | account_id | 4 | o.account_id | 1 | |

+-------+------+---------------+------------+---------+--------------+------+-------+

2 rows in set (0.00 sec)

Query OK, 1513 rows affected (0.22 sec)

Records: 1513 Duplicates: 0 Warnings: 0

+-------+------+---------------+------------+---------+--------------+---------+-------------+

| table | type | possible_keys | key | key_len | ref | rows | Extra |

+-------+------+---------------+------------+---------+--------------+---------+-------------+

| t | ALL | NULL | NULL | NULL | NULL | 1056320 | |

| l | ref | account_id | account_id | 4 | t.account_id | 1 | Using where |

+-------+------+---------------+------------+---------+--------------+---------+-------------+

2 rows in set (0.00 sec)

Query OK, 54694 rows affected (12.84 sec)

Records: 54694 Duplicates: 0 Warnings: 0

+-------+------+---------------+------------+---------+--------------+------+-------+

| table | type | possible_keys | key | key_len | ref | rows | Extra |

+-------+------+---------------+------------+---------+--------------+------+-------+

| d | ALL | NULL | NULL | NULL | NULL | 5369 | |
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| l | ref | account_id | account_id | 4 | d.account_id | 1 | |

+-------+------+---------------+------------+---------+--------------+------+-------+

2 rows in set (0.00 sec)

Query OK, 827 rows affected (0.12 sec)

Records: 827 Duplicates: 0 Warnings: 0

+-------+------+---------------+------------+---------+--------------+------+-------------+

| table | type | possible_keys | key | key_len | ref | rows | Extra |

+-------+------+---------------+------------+---------+--------------+------+-------------+

| d | ALL | NULL | NULL | NULL | NULL | 827 | |

| l | ref | account_id | account_id | 4 | d.account_id | 1 | |

| c | ALL | NULL | NULL | NULL | NULL | 892 | Using where |

+-------+------+---------------+------------+---------+--------------+------+-------------+

3 rows in set (0.00 sec)

Query OK, 36 rows affected (0.61 sec)

Records: 36 Duplicates: 0 Warnings: 0

+-------+--------+---------------+---------+---------+-------------+------+-------+

| table | type | possible_keys | key | key_len | ref | rows | Extra |

+-------+--------+---------------+---------+---------+-------------+------+-------+

| d | ALL | NULL | NULL | NULL | NULL | 827 | |

| c | eq_ref | PRIMARY | PRIMARY | 4 | d.client_id | 1 | |

+-------+--------+---------------+---------+---------+-------------+------+-------+

2 rows in set (0.00 sec)

Query OK, 827 rows affected (0.06 sec)

Records: 827 Duplicates: 0 Warnings: 0

Query OK, 827 rows affected (0.21 sec)

Records: 827 Duplicates: 0 Warnings: 0

Query OK, 410 rows affected (0.00 sec)

Rows matched: 410 Changed: 410 Warnings: 0

Query OK, 417 rows affected (0.01 sec)

Rows matched: 417 Changed: 417 Warnings: 0

Query OK, 827 rows affected (0.18 sec)

Records: 827 Duplicates: 0 Warnings: 0

+-------+--------+---------------+---------+---------+---------------+------+-------+

| table | type | possible_keys | key | key_len | ref | rows | Extra |

+-------+--------+---------------+---------+---------+---------------+------+-------+

| a | ALL | NULL | NULL | NULL | NULL | 682 | |

| d | eq_ref | PRIMARY | PRIMARY | 4 | a.district_id | 1 | |

| c | ALL | NULL | NULL | NULL | NULL | 827 | |

| d | eq_ref | PRIMARY | PRIMARY | 4 | c.district_id | 1 | |

+-------+--------+---------------+---------+---------+---------------+------+-------+

4 rows in set (0.03 sec)

Query OK, 1509 rows affected (0.15 sec)

Records: 1509 Duplicates: 0 Warnings: 0

+-------------------------------------------+

| Tables_in_test_pkdd_1999_finance_new_star |

+-------------------------------------------+

| account |

| card |

| client |

| disp |

| district |

| loan |

| order_ |
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| trans |

+-------------------------------------------+

8 rows in set (0.01 sec)

mysql> exit

Direct propagation of loan id to tables trans and card is a deviation from the
general procedure for new star generation. Here, it was preferred as a simple op-
portunity for the exclusion of transactions and cards dating after loan grantings,
cf. Appendix B.

Scripts and log files such as those listed above as well as other material from
our experiments are available from the author on request.



Appendix D

Running Example

For the illustration of many facets of relational learning, we introduce an exam-
ple database in this appendix. However, we also use other, especially tailored
examples in certain cases, in order not to overcomplicate our running example
database.

Figure D.1 shows the relational database for our running example. We adopt
to the case that all tables have a primary key consisting of a single integer at-
tribute. This corresponds to rules for efficient database design.

Even if such an attribute is not available in an original table, it can be easily
constructed by enumerating its rows. The basic assumption here is that within
one table, different rows describe different objects. If this is not the case, nor-
malization can remedy the situation.

The schema contains several relevant situations that often occur in real-life
databases.

For instance, there are one-to-many relationships, e. g. between elements in
tables T and A, similarly those in T and B.

There are also many-to-many relationships, e. g. between elements in T and
E via D.

Furthermore, we included examples of reachability of relations via several
paths in the induced undirected graph, e. g. E can be reached from T via D and
via F.

The running example is not intended to illustrate issues such as the usage
of views or rules as part of the database. Neither does it contain any data that
are meant to show any meaning beyond the demonstration of the existence of
numeric and nominal types.

We are aware of the circumstance that examples with meaningful data can be
easier to read. However, we think that the example data favorably demonstrate
the largely semantics-blind perspective of data mining systems and also of our
variant of propositionalization.

Of course, in real-life data mining projects, an evaluation of the learning re-
sults should include a check of plausibility by domain experts. Such investigations
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were accomplished as far as possible in our empirical work, but are not in the
focus of the usage of our running example.

The relations from the database can be written down as Prolog clauses, e. g.
in the following way:

t(1,1,1,pos).

t(2,2,2,neg).

...

a(1,1,1,10,x).

...

f(1,1,1,1000,?).

f(2,1,1,,2000,?).

...

Type information for the arguments of the predicates is not explicitely given
here, but may be provided with the help of extra predicates as usual in mode
declarations used for many up-to-date ILP systems.

Further, the question mark constant is used in many ILP systems to denote
missing values or NULL values as known from relational databases.

Predicate symbols start with a small letter, by Prolog conventions. Table
names begin with a capital letter. Table names should not be confused with
variable names in Prolog statements or other symbols used in the text. Context
information is supposed to avoid misunderstandings.
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T

F_idT_id

1
2
...

1
2
...

A

T_idA_id

1
1
2
2
2
...

1
2
3
4
5
...

A_num

10
20
30
40
50
...

A_cat

x
y
x
x
y
...

A_idB_id

1
2
2
3
4
4
...

1
2
3
4
5
6
...

B_num

100
200
300
400
500
600
...

B_cat

X
X
Y
X
Y
Y
...

D

E_idT_id

1
2
1
1
3
...

1
1
2
2
2
...

D_num

60
70
80
80
90
...

D_cat

p
p
p
p
q
...

E

E_id

1
2
3
...

E_num

600
700
800
...

E_cat

P
Q
P
...

D_id

1
2
3
4
5
...

T_cl

pos
neg
...

F

E_id

1
1
...

F_num

1000
2000
...

F_cat

NULL
NULL
...

1
2
...

F_id

G_id

1
2
...

1
1
1
2
3
...

C

C_id C_num

xx
xy
yy
...

C_cat

1.1
2.2
3.3
...

1
2
3
...

F_id2

1
1
...

G_numG_id

1
2
...

pp
qq
...

G_cat

0.1
0.2
...

G

C_id

B

Figure D.1: A running example database schema and contents (8 tables are
depicted by the rectangles with table names in the first lines, attribute names
in the second lines, and attribute values below; arrows represent foreign key
relationships, conventionally drawn from foreign key attributes to primary key
attributes)
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Rules. In Nada Lavrač and Sašo Džeroski, editors, Relational Data Mining.
Springer-Verlag, 2001.

[29] Marcin Detyniecki. Mathematical aggregation operators and their applica-
tion to video querying. PhD thesis, Laboratoire d’Informatique de Paris 6,
France, 2000.

[30] Timm Euler, Detlef Geppert, Olaf Rem, and Martin Scholz. The Mining-
Mart User Guide. Universität Dortmund, 2004.

[31] Ludwig Fahrmeir, Rita Künstler, Iris Pigeot, and Gerhard Tutz. Statistik:
Der Weg zur Datenanalyse. Springer-Verlag, 3rd edition, 2001.

[32] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From
Data Mining to Knowledge Discovery: An Overview. In Usama M. Fayyad,
Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy,
editors, Advances in Knowledge Discovery and Data Mining. AAAI/MIT
Press, 1996.



172 BIBLIOGRAPHY

[33] Aicke Flach. Vergleich von Verfahren zur Klassifikation von multirelational
gespeicherten Daten. Diplomarbeit, Otto-von-Guericke-Universität Magde-
burg, Fakultät für Informatik, Institut für Technische und Betriebliche In-
formationssysteme, 2005.
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