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Introduction 1 

1 Introduction 
Future real-time applications will become large and physically distributed among 
different sites. They will have to work in environments that are so complex that 
it is not possible to specify all possible states and conditions in detail. At the 
same time, the time-to-market from the first idea to the working product de-
creases, especially as real-time technology is no longer restricted to long-living 
embedded applications, like in aircrafts or defense systems, but also penetrates 
business and customer applications. Many of today’s Internet-applications have 
an increasing demand for real-time behavior. This starts from hard real-time 
telemetric-applications and critical trading applications, like stock trading, in-
cludes all kinds of multimedia-applications and ranges to multi-player games. 

1.1 Motivation 
An important issue, that all these applications have in common, is that they do 
not act in a closed environment. They act in environments that are usually not 
controlled by a single principal, like one company that runs an application-server 
or one telecom carrier that manages the whole network. Large scale distributed 
real-time applications (e.g. over the Internet) usually have to use resources from 
different entities. This immediately leads to a need for agreed common inter-
faces, i.e. standards that allow for interaction in a heterogeneous environment. 
Open standards have driven the expansion of the Internet and today it is com-
monly agreed that only applications that use and provide standard interfaces have 
the potential to become successful. Today, even closed applications (e.g. on the 
Intranet) are usually designed and implemented using these standards. However, 
these standards mainly have focused on functional behavior. Specification of 
timing behavior was initially out of scope. This is true for the major Internet 
protocol standards, like e.g. TCP/IP, IEEE 802.x, or HTML, as well as for com-
monly used interface description languages like CORBA or DCOM IDL. Also 
all common implementation languages (ranging from C/C++, Java to SQL) do 
not provide means to express timing behavior. What is needed are open stan-
dards that include timing and cope with the heterogeneity. 

Object-Orientation 

The benefits of object-orientation in system development and for handling het-
erogeneity are well accepted from the software engineering point of view. Today 
nearly all new IT systems emerge from an object-oriented analysis and modeling 
phase, their implementations are based on object-oriented middleware (like 
DCOM or CORBA), they are written in an object-oriented language (like C++ or 
Java), and their APIs are offered in abstractions of classes and objects. The de-
sired properties of object-orientation design and programming are extensibility, 
reusability, understandability, robustness, portability, and efficiency achieved by 
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modularity, implementation hiding, and inheritance [Boo91]. It is common be-
lieve that these benefits also apply to real-time applications. For many real-time 
applications, the object-oriented approach (at least for modeling purposes) seems 
to be quite natural, especially for control applications, which have to handle real-
world objects. 

Timing Requirements 

Only recently, extensions and new standards that can handle timing requirements 
or, more globally, QoS (Quality of Service) parameters have been proposed and 
introduced [OMG99b, OMG01]. QoS typically denotes a combination of many 
non-functional properties, including especially timing and fault-tolerance. While 
the use of QoS guarantees is common in the telecom world (where handling of 
synchronous and thus time-critical data is the core business), it is still a current 
topic of research in distributed computing. Especially the use of dynamic QoS 
guarantees is the challenge. While communication lines are usually leased with 
some static QoS assurances, it is highly inefficient and often infeasible to pro-
vide static guarantees also in a network of interacting services due to the number 
of involved components. Instead dynamic guarantees are negotiated and the 
resulting QoS is dependent on the actual requirements and the currently available 
resources.  

Problem Exposition 

A straightforward approach that combines the benefits of object-orientation and 
dynamic QoS guarantees seems to be a promising approach to tackle the prob-
lems of future real-time applications. A system as depicted in Figure 1.1 seems 
to be the ideal solution for the coexistence and interoperability of real-time and 
non-real-time applications in one common infrastructure. All components inter-
act via a common object-oriented infrastructure and if this infrastructure man-
ages also dynamic QoS guarantees, all problems can be solved.  

However, such an architecture can only be successful in very isolated problem 
domains. For most applications and especially all Internet-based services this 
scenario is too simplistic. Even if all technical problems were solved, it relies 
heavily on the ability and, often even more important, the willingness of all in-
volved entities to negotiate and implement the required QoS guarantees. Even 
with a complete replacement of the network, the operating system, and the mid-
dleware components with new, QoS aware versions, legacy application on top 
will still not be real-time capable. They have to be redesigned, often from 
scratch. With the large base of installed services, the migration process would 
require incredible investments, as the complete existing IT-infrastructure has to 
be replaced or at least updated. This leads to the situation, where real-time appli-
cations wanting to interact with the rest of the world will have to deal with non-
QoS aware services for a very long time. 
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Figure 1.1: The simplistic view of a heterogeneous distributes real-time system  

Another problem with this approach is that object-orientation itself imposes a 
major problem for QoS aware systems. While implementation hiding isolates 
module implementations and eases their integration, it ignores the fact that for 
negotiating timing and other resource-related guarantees detailed knowledge 
about the implementation is required. Implementation does matter! To that ex-
tend object-orientation and real-time computing are even contradicting. These 
observations were the starting points of this work: alternatives to the unrealistic 
scenario of the whole heterogeneous IT-environment being one big object-
oriented real-time system had to be explored.  
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Figure 1.2: The proposed partition in distributed real-time systems 

The idea is to preserve object-orientation as the basic paradigm for system con-
struction and to undermine implementation hiding only where possible and 
where required. Clearly, it is required for objects that operate under strict timing 
constraints. Here, predictability is the most the important property. All other 
desirable features have to be reconsidered under this premise. On the other hand 
implementation hiding cannot be weakened for most of the external non-real-
time objects. Either their code is simply not available or too complex to be ana-
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lyzable in terms of resource requirements, or the administering entity will not 
grant access to it. This idea leads to an approach as depicted in Figure 1.2 where 
the applications are separated in two partitions, a real-time domain and a non-
real-time domain. While the real-time domain itself is likely to be a distributed 
system based on a real-time-capable object-oriented infrastructure, it still has to 
interact with services that are running on top of standard middleware (like 
CORBA or DCOM) that does not handle timing requirements at all. The problem 
with this partitioning occurs as soon as an invocation crosses the boundary from 
the real-time into the non-real-time domain. Without additional measures, the 
real-time property of a computation is lost as soon as one of its components fails 
to meet the timing requirements. Thus, the fundamental question is: how to run 
real-time applications in a predictable manner in such a heterogeneous environ-
ment? 

1.2 Approach and Outline 
The first idea for handling unpredictably in a time-critical environment is the use 
of timeouts. Whenever the real-time system has to initiate an activity with an 
unknown time to completion, e.g. the invocation of a non-real-time component, 
it sets a timeout. If this timeout expires before the activity terminates, it executes 
some kind of exception handling. This mechanism ensures that the real-time 
system can detect the potential violation of timing bounds and react accordingly. 
However, there are two fundamental problems with timeouts: 

1. What to do if the timeout expires? When the timeout expires there is usually 
not much time left to react. Some basic recovery and error reporting can be 
done in most cases, but how to ensure the computational progress? If there 
were an alternative algorithm (with guaranteed execution time) of achieving 
the same result as from the abandoned activity, it would have been applied 
directly. Using old results from prior executions or approximations can be an 
option, but only to a certain extent. If too many successive timeouts happen, 
the use of these increasingly imprecise values will lead to intolerable devia-
tions in the final result. If this is not the case, there is obviously no need for 
the exact (but non-real-time) computation and the applications is over-
specified. 

2. How to choose realistic timeout-values? The worst situation that can happen 
is that a timeout is always a little bit too short. There is no computational 
progress but a lot of valuable resources are spent on computations that are 
abandoned every time shortly before their successful termination. On the 
other hand, if timeouts are chosen too long, the overall maximum execution 
time becomes greater than necessary. This results in a decreased throughput 
and thus a sub-optimal efficiency of the real-time system. The situation be-
comes even more complicated if the timing changes dynamically. Timeouts 
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that were adequate before may become too long or, even worse too short as 
the load characteristics in the non-real-time partition changes. 

Both problems lead to the observation that there is an urged need for a precise 
estimation of the time required to execute certain activities and thus of the ap-
propriate timeout values. The monitoring-based approach presented in this thesis 
tackles the problem by observing the timing-behavior of the system components. 
When guarantees are not available it enables the real-time scheduler to make 
decisions based at least on their expected timing. With this knowledge a fault-
tolerant scheduler can determine realistic timeout-values, depending on the cur-
rent system state, and plan online for alternative actions based on up-to-date 
statistical information. 

The remainder of the thesis is organized as follows: In the remainder of the in-
troduction, section 1.3, an overview of the existing approaches to object-
orientation and real-time at the different architectural levels is given. Then chap-
ter 2 describes time-awareness in distributed object-oriented real-time systems. 
Time-awareness reveals timing-related information of object-oriented systems 
from the non-real-time domain. The presented concepts, mechanisms, and im-
plementations for monitoring these systems at the different levels of abstraction 
are the premises for chapter 3, where the main contribution, the monitoring-
based approach is described. In this approach the gathered timing information 
from the running system is used to support efficient scheduling and intelligent 
timeout handling of not (totally) predictable objects. An implementation archi-
tecture is described and performance figures that prove the feasibility of the 
approach are presented. Related work on the specific topics of these chapters will 
be discussed in the concrete contexts. At the end of each of the chapters case 
studies for the application of the introduced mechanisms are given. A summary 
and references conclude the work. 

1.3 Object-Orientation and Real-Time 
As argued before, the traditional object model is insufficient in the context of 
real-time systems. Here a completely new aspect has to be added to the object 
concept, namely time. It has to be investigated how to annotate the functional 
specification of types with timing constraints and how to guarantee and imple-
ment these timing specifications. Also other concepts that were already included 
in the traditional object model have to be reviewed in the context of a real-time 
system, due to the difficulties to obtain deterministic timing behavior. These 
concepts include inheritance, dynamic binding, dynamic memory allocation, 
concurrency, and synchronization. A lot of research has been undertaken in order 
to resolve the inherent contradiction between object-orientation and real-time. In 
the following subsections several different approaches to real-time objects will 
be reviewed. 
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1.3.1 Object-Oriented Languages for Real-Time 
The first attempts to enhance an object-oriented language, namely C++, to be-
come real-time capable were the presentations of FLEX [Lin88, Ken94] and 
RTC++ [Ish90]. These languages contain special constructs for defining dead-
lines, periods, and synchronization conditions. Some of these constructs can be 
mapped to scheduler-level abstractions, like task-deadlines and priorities. The 
expressiveness of these language add-ons is limited (e.g. RTC++ provides no 
language constructs to define an aperiodic real-time task) and some timing con-
straints may be still implicit in the code. Both languages, RTC++ and FLEX, 
provide the basic information for a schedulability analysis, but they do not con-
tain provisions for a static worst-case execution time analysis. Thus, timing vio-
lations still may happen. RTC++ contains an exception-handling mechanism that 
is activated after such a violation has happened. Flex supports computations with 
adjustable execution times by allowing them to return imprecise results [Liu94]. 
In addition, the runtime system can choose a version of a function based on per-
formance constraints; this is called performance polymorphism. 

Real-Time Specification for Java 

A more recent approach to an object-oriented language for real-time is based on 
the Java language. Following the recommendation form the National Institute of 
Standards and Technology (NIST) the Real Time for Java Expert Group 
(RTJEG), a group of representatives from 21 organizations in industry, acade-
mia, and government, proposed a Real-Time Specification for Java (RTSJ) for 
real-time extensions to the Java language [Bol00]. The main underlying design 
principles are: 

• Compatibility: the RTSJ shall not include specifications that restrict its use 
to particular Java environments. It shall not prevent existing, properly writ-
ten, non-real-time Java programs from executing on implementations of the 
RTSJ and the Java idea of "Write once, run anywhere" should be preserved. 

• Predictable execution: the RTSJ shall hold predictable execution as first 
priority in all tradeoffs.  

• No syntactic extension: the RTSJ shall not introduce new keywords or make 
other syntactic extensions to the Java language.  

• Current practice versus advanced features: The RTSJ should address cur-
rent real-time system practice as well as allow for the incorporation of more 
advanced features in the future.  

Unlike most Java specifications that merely define new APIs, the real-time 
specification provides modifications to the Java language specification and the 
Java Virtual Machine (JVM) specification, as well as new APIs. This means, 
Real-Time Java applications will need a special JVM on which to execute, but 
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could use many of the features of the standard Java programming model. The 
RTJEG identified basically five areas for modification:  

• Scheduling: the RTSJ allows the programmatic assignment of parameters 
appropriate for the underlying scheduling mechanism in use in a given real-
time system, as well as providing methods for the creation, management, 
admittance, and termination of real-time Java threads. The RTSJ base 
scheduling mechanism is preemptive priority-based, FIFO within priority, 
with at least 28 unique priority levels. However, the RTSJ is open for future 
extension to load other schedulers as well. 

• Memory management: the RTSJ defines a memory allocation and reclama-
tion specification that is independent of any particular garbage collection al-
gorithm and lets the program precisely characterize the garbage collection 
algorithm’s effect on the execution time, preemption, and dispatching of 
real-time Java threads. The RTSJ defines new types of memory areas, Im-
mortalMemory and ScopedMemory that allow the creation of Java objects 
but do not cause the threads that employ them to incur delays because of the 
execution of the GC algorithm.  

• Synchronization: the RTSJ defines that the semantics of the current Java 
keyword "synchronized" has to be enhanced. Instead of pure mutual exclu-
sion priority inheritance is provided by default. 

• Asynchronous event handling: the RTSJ generalizes the Java language’s 
notion of asynchronous event handling. The AsyncEventHandler class is ex-
tended to run as real-time thread when the event is triggered. 

• Asynchronous transfer of control: the RTSJ specifies that methods that al-
low for being interrupted (receive an exception) by another thread at any 
time. This is an extension to plain Java, where this could happen only in cer-
tain blocking calls. This mechanism can also be used for terminating a tread 
by an external event. 

A Reference implementation of the RTSJ is currently under development. 

Discussion 

While object-oriented languages like FLEX and RTC++ try to exploit the fea-
tures of object-orientation for a simple and flexible programming of real-time 
systems, their applicability is rather limited. They provide the expressiveness to 
define the typical tasks of a real-time system, but both do not support a full 
schedulability analysis as required by a hard real-time system. Both languages 
require their own underlying runtime-system and they are closed in a sense that 
they were not designed for interfacing with external objects. 

Things are a little bit different for the RTSJ. It provides a perfect basis for the 
interoperability of real-time and non-real-time objects and with its powerful 
APIs for scheduling and thread-management it will surely provide an interesting 
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platform also for the concepts presented in chapter 3 below. However, RTSJ 
does not define "real-time objects" but it uses an object-oriented language to 
program a real-time system. It is more an operating system extension than a 
language. Timing specifications are not part of an object’s interface but they are 
implicit in the code. Whether or not a schedulability analysis is supported de-
pends on the actual implementation of the runtime-system, but as the RTSJ does 
not impose any restrictions on the Java language, this is an inherently hard prob-
lem.  

All languages do not address distribution at all. In the case of Java this imposes 
additional problems, as other extensions to the Java-language already have a 
clear orientation towards distribution (e.g. Java RMI and the Java CORBA-
binding). A combination of these different directions in Java evolution is still 
future work. 

1.3.2 Object-Models for Distributed Real-Time 
In the research community a number of extended object-models were proposed 
that try to provide both, distribution and predictability. Two of them will be 
presented in more detail. 

TMO 

The TMO (Time-triggered Message-triggered Object) [Sho99] scheme is a good 
example for this approach. It has been first published in the early 1990’s, previ-
ously named RTO.k. The TMO structuring is intended to support the design of 
all types of components including heterogeneous systems with real-time and 
non-real-time objects within one general structure. The basic TMO structure is 
depicted in Figure 1.3. The significant extensions of TMO compared to the tradi-
tional object model are: 

1. Distribution: A TMO is a distributed computing component. TMOs are dis-
tributed over multiple nodes and interact via remote method calls. To maxi-
mize the concurrency in execution of client methods and server methods, cli-
ent methods are allowed to make non-blocking types of service requests to 
server methods. 

2. Time-triggered and method-triggered methods: The TMO may contain two 
types of methods, time-triggered (TT-) methods (also called spontaneous 
methods, SpMs) and the conventional message-triggered (MT-) methods (also 
called service methods, SvMs). The TT-method executions are triggered upon 
reaching of the real-time clock at specific values determined at the design 
time. Each TT-method is associated with an autonomous activation condition 
(AAC) that specifies the times at which the associated method should be acti-
vated. The MT-method executions are triggered by service request messages 
from clients. 
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3. Concurrency constraints: A fundamental concurrency constraint prevents 
potential conflicts between TT-methods and MT-methods and reduces the 
designer’s efforts in guaranteeing timely service capabilities of TMOs. Acti-
vation of an MT-method triggered by a message from an external client is al-
lowed only, when potentially conflicting executions are not in place. An MT-
method is allowed to execute only if no TT-method that accesses the same set 
of resources within the object will overlap with the execution time-window 
of this MT-method.  

4. Guaranteed completion time and deadline: As in other RT object models, the 
TMO incorporates deadlines and it does in the most general form. Basically, 
for output actions and method completions of a TMO, the designer guaran-
tees and advertises execution time-windows bounded by start times and com-
pletion times. Triggering times for TT-methods must be fully specified as 
constants during the design time. It is also possible to specify so-called can-
didate triggering times in contrast to the actual triggering times. A subset of 
the candidate triggering times may be dynamically chosen for actual trigger-
ing. Such a dynamic selection occurs when an MT-method within the same 
TMO object requests future executions of a specific TT-method.  

 

Figure 1.3: Structure of a TMO object 

 

TMOs interact via invocations of service methods in server objects from client 
objects. The caller may be a TT- or an MT-method in the client object. It is up to 
the designer of each TMO to provide a guarantee of timely service capabilities of 
the object. The designer does so by indicating the guaranteed execution time-
window for every output produced by each MT-method as well as by each TT-
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method executed on requests from the and the guaranteed completion time for 
the in the specification of the MT-method. These specifications are advertised to 
the designers of potential client objects. A middleware that supports the TMO 
model and that is based on the standard CORBA API has been implemented on 
Windows NT. 

Real-Time CORBA 

The Real-Time CORBA (RT CORBA) specification [OMG99b, Sch00] adopts a 
similar approach. It extends the CORBA standard by interfaces and QoS policies 
that allow applications to configure and control the various resources: 

1. Processor resources: RT CORBA defines thread pools that allow to control 
the mapping of multiple treads to certain interfaces. It also introduces activi-
ties as a kind of distributed threads (as described later in more detail) and 
global priorities that enforce a fixed priority scheduling throughout the dis-
tributed system. Priority inheritance and priority ceiling protocols are pro-
vided by new intra-process mutexes and a global scheduling service hides the 
platform-specific details of low-level resource management under a common 
API.  

2. Communication resources: RT CORBA allows to specify required protocol 
properties explicitly and and it adds APIs to perform explicit binding of 
communication streams to certain interfaces.  

3. Memory resources:  Management of memory resources is made explicit by 
RT CORBA as it allows to manipulate the buffering policies in queues and to 
limit the size of thread pools. 

RT CORBA has been implemented first by the TAO ORB [Sch97], but other 
vendors are following soon after. 

Discussion 

The TMO model provides a rather strict framework for the development of dis-
tributed hard real-time applications. Because of its restrictions it simplifies 
schedulability analysis. It extends the object-oriented model by adding timing 
specifications to the interface. However, even if TMO now supports CORBA 
interfaces and can interact with external objects, it still can not preserve predict-
ability when leaving the real-time system that consists of a homogenous network 
of TMOs. 

RT CORBA can be seen more as an abstract distributed operating system than a 
new object model. It encapsulates many features of operating systems and maps 
them to a heterogeneous, distributed environment. To that extend it supports 
heterogeneity of platforms, but it also does not foresee any mechanism for inte-
grating non-real-time services, other than the plain possibility to call them via the 
standard CORBA APIs. 
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1.3.3 Object-Oriented Modeling for Real-Time 
A different approach to object-orientation than object-oriented languages or 
middleware layers has evolved over the last ten years from the community that 
developed and promoted general-purpose object-oriented design and modeling 
methodologies. Two of them will be presented in more detail: SIMOO-RT, be-
cause it has been enhanced in a joint work with the Federal University of Rio 
Grande do Sul, Brazil with the monitoring components described below in chap-
ter 2 [Bec99] and Real-Time UML, because UML is now the well-accepted 
standard for object-oriented design. 

SIMOO-RT 

The SIMOO-RT environment [Bec00] is a modeling, design, and simulation 
framework. The extensions to the standard features of object-oriented modeling 
tools comprise the explicit representation of timing requirements like deadlines, 
timeouts and periodic operations. 

 

Figure 1.4: SIMOO-RT Model Editing Tool (MET) 

The first step in the development process with SIMOO-RT is the definition of an 
object-oriented model for the problem under analysis. The Model Editing Tool 
(MET) provides support for the construction of two different diagrams: the class 
diagram that depicts important problem domain concepts and their relationships, 
and the instance diagram that represents the specific elements that take part in a 
specific application. Figure 1.4 depicts a screenshot of the MET, where the most 
left part represents the class diagram and the right one represents the instance 
diagram. 

For modeling the internal object behavior, the environment encourages the use of 
state-transition diagrams. Incoming messages are associated to actions that ob-
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jects have to convert in reaction. These actions can be executed either during the 
state transition as well as while the object remain in a given state. Temporal 
constraints can be imposed to the model by specifying cyclic operations and 
deadlines. Also, a pre-defined timeout exception handler can be specified. This 
operation is only activated when the given operation doesn’t accomplish its dead-
line. In the SIMOO-RT environment timing properties are attached to the 
classes. 

 

Figure 1.5: A SIMOO-RT Message-Sequence Diagram 

For specifying the model global interaction SIMOO-RT allows users to state the 
whole set of a system’s functionality by means of UML use-cases. Furthermore, 
each use-case can be detailed into a Message-Sequence Diagram (MSD) or into a 
data-flow diagram (DFD). Through the MSDs, the user can establish the object 
interactions, as well as timing-marks that represent the overall systems timing 
behavior. An example of a MSD is depicted in Figure 1.5. Once a design is ready 
for execution it can be tested in an internal simulator or it can be send to an 
automatic code generator for executable code. The resulting implementation than 
can be executed in a distributed environment using the QNX real-time operating 
system as underlying platform. 

Real-Time UML 

The UML (Unified Modeling Language), an OMG standard, is a language for 
specifying, visualizing, constructing, and documenting software systems [Boo99, 
OMG99]. UML fuses the concepts of Booch, OMT, and OOSE (all three older 
OO modeling techniques). The UML focuses on a standard modeling language, 
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not a standard process. Therefore, the efforts concentrated first on a common 
meta-model (which unifies semantics) and second on a common notation (which 
provides a human rendering of these semantics). The UML authors promote a 
development process that is use-case driven, architecture centric, iterative and 
incremental. The UML is intended to be a visual modeling language, not a visual 
programming language, in the sense of having all the necessary visual and se-
mantic support to replace programming languages. However, the UML has a 
tight mapping to a family of object-oriented languages and many tools support 
C++ as their primary language. 

Currently the UML Profile for Schedulability, Performance, and Time is being 
in the OMG standardization process [OMG01]. It proposes "standard paradigms 
of use for modeling of time-, schedulability-, and performance-related aspects of 
real-time systems that enables the construction of models that could be used to 
make quantitative predictions regarding these characteristics". It tries to unify the 
various different approaches that have evolved for modeling real-time applica-
tion in UML. These are namely the approaches from Douglass [Dou98] that uses 
mainly the existing predefined UML diagrams, and the work from Selic that uses 
extensively the option of UML to define stereotypes (a kind of visual macros in 
diagrams) to impose a notation similar to ROOM (Real-Time Object-Oriented 
Modeling) [Sel94]  his prior modeling environment onto UML. 

The abstractions and diagrams specified by UML are similar to those of SIMOO-
RT, while partially more elaborated. The fundamental notation for expressing 
object-timing relations is again the message sequence diagram. In RT-UML it 
has been extended and it can be annotated with expressions in a constraints lan-
guage that allow to define exactly the relation between the occurrence of events 
and messages. The various tools from the different vendors that promote UML 
for real-time can automatically generate code that runs on a number of real-time 
operating systems. 

Discussion 

While the expressiveness of UML and similar modeling tools is powerful and 
with UML it is possible to describe all kinds of distributed object-oriented com-
puting in a standardized manner, it also cannot solve all problems in the real-
time domain. The available methodologies (as manifested e.g. in the products 
from Rational and I-Logix) are a step towards a more formal, partially automated 
development process of distributed real-time control systems. However, they are 
far away from providing a proof for the correctness of the synthesized code. Still 
it is possible that the specification of the system is correct and complete and the 
synthesized code is simply not able to fulfill the timing requirements (due to 
errors in the design or insufficient resources of the executing system). 
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1.3.4 Summary 
Basically, the different approaches to real-time objects can be clustered in two 
categories: the operational and the specificational approaches.  

The real-time languages (especially RTSJ) and RT-CORBA are focused on pro-
viding access to and control over the resources of the underlying machine, not on 
an extended object-model. In these operational environments it is the believe 
that the programmers will be clever enough to use the enhanced control correctly 
to achieve what they want and deploy the created objects in the right manner. 
Implementation hiding is not weakened by the object-model but by the people 
that use the real-time programming environment and document their created 
classes. Schedulability analysis is not an issue here.  

The specificational approach lead by UML allows to define exactly the timing 
(and the functional) behavior of the implementation. This is indeed a step to-
wards a special object-model for real-time. However, the modeling and design 
environments do not care to much about how to achieve this correct behavior. 
The high level abstractions they use during design need to be mapped without 
losses down to the real implementation. Especially in a heterogeneous environ-
ment, where not all components can be simply synthesized from a specification, 
this clean approach reaches its limits. 

The TMO-approach can be seen in the middle: while it deals with low-level 
abstractions, it allows to specify timing at the interface. With its strict design 
rules it supports schedulability analysis. Another combination of both ap-
proaches is surely on the way, e.g. a Real-Time UML design environment with 
RTSJ or RT-CORBA back-end (all (future) OMG standards). This will probably 
lead soon to a satisfying result for objects in the real-time domain. However, it 
has to be stated that none of these approaches has a convincing solution, how to 
integrate the rest of the IT-world, like Internet-based services, into real-time 
computations. The question mark on predictability from Figure 1.2 is still in 
place.  
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2 Time-Aware Systems 
The first step in a monitoring-based approach to object-oriented real-time com-
puting is a time-aware system. A system is time-aware if it is able to get infor-
mation about its own timing, e.g. to monitor execution times or to check whether 
the actual timing conforms to the specification. Even a non-real-time system, i.e. 
a system that provides no time-related guarantees, can be time-aware. Time-
awareness enables a system to react on timing-related problems and to adapt to 
an actual, but previously unknown, timing behavior in a concrete application 
environment. This in turn is the basis for active QoS-management and a key to 
handle the inherent problems of heterogeneous object-oriented real-time systems 
that were outlined in the introduction. If it is not possible to provide guarantees 
when non-real-time object are invoked from the real-time domain, it is at least 
helpful to get an idea of what is going on and what might be the problem. 

However, the typical time-awareness of today’s systems is poor and limited to an 
API that allows an application to read a global clock or a thread-relative timer. 
Any system that implements ad-hoc time-awareness based on these primitives at 
application-level has to address the same problems again and again. As soon as 
time-awareness is accepted as a requirement of a class of applications, it is a 
perfect candidate for becoming a system-level service. Moreover, there is already 
a well-engineered category of system-level tools that handles exactly these prob-
lems in a generic and efficient way, namely the monitors.  

This chapter explains how the existing approaches for monitoring can be adapted 
and combined to provide the required system-level time-awareness service for 
object-oriented systems. It first introduces the common terminology of monitor-
ing systems and then reviews the state-of-art. Then, it discusses in three subsec-
tions the special requirements for the monitoring of object-oriented systems at 
the different architectural levels, namely the operating system level, the middle-
ware level, and the programming language level. Finally, it presents as a case 
study a monitoring tool that integrates the monitoring at these different levels in 
one tool. 

2.1 Monitoring 
As defined in [Tsa96], monitoring a system means to collect runtime information 
about the system under test that cannot be obtained by static analysis, i.e. by only 
analyzing the program code. A monitor is a system used to monitor a system 
under test’s execution. The system’s behavior, including the behavior of the ap-
plication program and the operating system, can be described as a series of 
events. These events are the visible changes of the system under test’s state, e.g. 
process creation or termination, sending or receiving a message, or context 
switches. Usually, events are grouped by categories. The different events of one 
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category are distinguished by a number of parameters (e.g. "process creation" is 
the event category and each event of this category is distinguished in the parame-
ter of the actual process number). Depending on the focus of interest or the level 
of detail only a small subset of all possible events is usually observed by a moni-
tor. Those events that are monitored are called the events of interest. Sensors are 
used to record the events of interest. An instrumented system is a system with 
added sensors. When an instrumented system is executed, event traces are pro-
duced. 

The required activities for monitoring are the instrumentation of the system un-
der test (specification of events by inserting sensors into target programs), event 
detection (identifying the event occurrence generated by die execution of the 
instrumentation code), and event processing (time stamping and storing the pa-
rameters collected at the event occurrence in an event trace).  

Monitoring intrusion refers to any attempt to record system execution by using 
the computing resource of the monitored target system. The problem with moni-
toring intrusion is that it causes interference, i.e. a perturbation of the execution 
of the system under and thus a difference in the timing and in a system with 
concurrent threads of control possibly even in the functional behavior. 

2.1.1 Types of Monitors 
Monitors can be classified according to their method for observing the system 
under test’s state (event-based or sampling), to their implementation (hardware 
or software) and to their abstraction level (system or application). 

Event-based or Sampling Monitor 

An alternative approach to event-based monitoring as defined in the previous 
section is sampling. Sampling is a time-based technique, where a small part of 
the system state is captured and recorded with a certain sampling frequency. In 
contrast to e.g. sampling of an electrical signal, where oversampling is used, the 
sampling frequency of a (software) monitoring system is usually much smaller 
than the maximum frequency of state changes. Thus, sampling is typically used, 
if the desired result of the monitoring activity can be obtained by a statistical 
analysis. This means, sampling is not appropriate for short monitoring intervals 
as it relies on a large number of samples for achieving sufficient coverage and 
confidence. Also, as it does not capture information on all relevant state changes 
nor on their exact sequence, sampling is hardly applicable to obtain information 
on problems that happen only a few times during the monitored execution. How-
ever, this is exactly the case for many timing-related problems in real-time sys-
tems. Thus, monitoring in the real-time context is typically done with event-
based monitors. 
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Hardware or Software Monitor 

Event detection and processing can be performed in a number of different ways, 
each of them causing a different amount of interference with the system under 
test. The more dedicated resources are available for measurement data process-
ing, the less interference with the system under test can be expected. In principle, 
event detection and processing can be done with software, hardware, or a combi-
nation of hardware and software. The difference between hardware and software 
monitoring is that the hardware approach separates the monitoring task from the 
target system’s workload, whereas the software approach adds to the target sys-
tem’s workload. A hybrid monitor refers to a monitor that uses a combination of 
hardware and software. 

The optimal solution for monitoring with respect to interference is a hardware 
monitor that is able to detect events without affecting the activity of the system 
under test. This is accomplished usually by passively monitoring the target proc-
essor’s signal lines such as the data, address, and control buses. However, as 
argued in [Hab89] hardware monitors have reached their frontiers due to the 
extensive use of memory management units and on-chip caches in today’s com-
puter systems. Most of the state changes of the software isn’t reflected any more 
by signals on externally accessible signal lines, but they result only in some on-
chip operations. It is out of scope for the addressed problem domain to try to get 
access to these on-chip signals for monitoring purposes. But even if this were 
possible, difficulties arise in identifying events in a problem-oriented manner. 
Often, a lot of different logical events are mapped to the same measurable physi-
cal event (e.g. access to the same memory location from different contexts). If 
the internal state of the system context has to be known to detect an event, a type 
of software component is needed which is inserted into the code of the system 
under test at locations corresponding to the events of interest.  

This leads to an hybrid approach to overcome these problems. Here sensors are 
divided into an internal software part and an external hardware part which runs 
on resources dedicated solely to the monitor. The internal part consists of addi-
tional statements inserted into the code of the system under test in order to detect 
events of interest. Upon activation the event handling routine extracts the pa-
rameters associated with that event and passes them to the external sensor part 
for further event processing. While this approach combines the flexibility of 
software sensors with the low interference of a hardware monitor, it suffers from 
the required special purpose hardware. Usually, a hybrid monitor for a distrib-
uted system consists at least of a dedicated global clock, an event-processing unit 
per node of the distributed system with a high-speed interface to the system un-
der test and some sort of network for propagating the events traces to a central 
monitoring console. This means, such a monitor is a complex distributed system 
in itself. This additional effort can be justified for a number of experiments in the 
testing lab, but it will not be tolerated by a customer as a permanent part of the 
application if it increases the overall costs significantly. 
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As this thesis argues that monitoring should be an integral part of the runtime 
system for enabling time-awareness, for most application domains, pure software 
monitoring is the only viable solution. Here the monitoring system consists 
solely of additional software inserted into the target system code. Event detection 
is accomplished by executing the inserted sensors, parameters pertaining to 
events of interest are recorded and stored in the memory of the system under test, 
and event traces are transferred using the same network as the application. Thus 
the software monitor shares the computing resources with the monitored target 
system. As a result instrumented programs have an execution speed penalty. 
Without the use of additional resources, the dilemma of finding a balance be-
tween minimal interference and recording sufficient information always exists. 
Limiting instrumentation provides inadequate measurement detail, but excessive 
instrumentation will perturb the measured system to an unacceptable degree. In 
order to tackle these problems, techniques for reducing the interference while 
retaining sufficient information have been developed. Interference can be re-
duced by an optimized instrumentation mechanism, by modifying the monitored 
target programs, or by selectively switching on and off the events of interest 
depending on the current status of the system under test and the monitor. Also, in 
a kind of post-processing the event trace can be adjusted to reduce the effect of 
interference. 

System or Application Level Monitor 

Depending on the motivation for monitoring execution behavior can be moni-
tored at system level and/or application level. At system level, activities and data 
structures visible to the operating system kernel and all generic components of 
the system (like e.g. communication system or middleware) are monitored. At 
the application level, activities and data structures visible to the user processes 
are monitored. Those visible at system level include process state transitions, 
external interrupts, system calls and interprocess communication. Those visible 
to the user processes include function/method calls and returns, and variable 
value changes. Some of the activities and data structures, such as system calls, 
are visible to both the system and the application level, and others are visible 
only to the kernel, like process state transitions and interrupts. Finally, others are 
visible only to the application level, like function/procedure calls and returns and 
variable value changes. 

To monitor at the system level, the kernel and other runtime services can be 
instrumented for the events of interest. As this instrumentation is inserted into 
generic components it can be applied once and reused even if the application 
running on the system changes. This instrumentation typically requires only a 
very limited number of sensors. However, as the execution frequency of this 
sensor code is often quite high (e.g. hundreds to thousands of interrupts per sec-
ond) careful optimization is needed in order to minimize interference in case of 
temporal instrumentation or inefficiency in case of a permanent instrumentation. 
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Thus, system level instrumentation is usually applied manually and there is noth-
ing wrong with that. 

In contrast, application level instrumentation tends usually to be quite big. As 
user-level function-invocations are usually not routed via common code se-
quences, each and every function has to be instrumented separately. While the 
required techniques for event detection and parameter collection are always the 
same, applying this instrumentation manually is still inconvenient, error-prone, 
and time-consuming. This opens a perfect scenario for automating this process.  

2.1.2 Related Work on Monitoring 
Over the last two decades monitoring tools have shown their value for debugging 
and performance evaluation of complex software systems.  

Sampling Monitors 

The probably most used tools for program-monitoring are the Unix tools “prof” 
and “gprof” [Gra82] and their deviates for nearly an system platform or lan-
guage. They use a sampling approach and their monitoring model is a call-graph 
that presents a breakdown of the total execution time per (C-)function. While 
similar tools are also available for object-oriented languages like C++ and Java, 
their results suffer from their pure functional model. The information provided 
reflects only a static view on methods (a class-view) and object contexts are 
ignored. Many programs have been tuned during the last decades using these 
tools and their model is well suited for non-real-time programs that run on a 
single CPU. But for distributed real-time applications these tools have reached 
their limits, as they don't address distribution and concurrency. In the following a 
number of event-based software monitoring systems that explicitly address real-
time issues will be summarizes. 

Event-based Monitors 

In 1992 the distributed measurement system JEWEL [Lan92] was presented. 
JEWEL consists of a generic set of flexible components and is not limited to a 
specific application domain. The JEWEL components are a configurable graphical 
presentation system for online visualization of the behavior of the system under 
test, a central interactive experiment control system, and a modular, distributed 
event processing system. JEWEL was designed and implemented to provide re-
sults of high precision. This goal was achieved primarily by ensuring that inter-
ference between JEWEL and the system under test is kept low. A clear separation 
of the sensor functionality made it possible to take full advantage of the proper-
ties of the different hardware/software environments, e.g. by using dedicated 
resources to achieve low-interference. JEWEL allowed for the use of hybrid sen-
sors as well as for a pure software monitoring approach. It has been adapted to a 
number of different target architectures and systems under test. An implementa-
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tion for monitoring real-time application on embedded processor boards running 
VxWorks was based on additional dedicated monitoring processors which were 
attached to the system under test. The second implementation for observing the 
performance of the Mach 3.0 operating system has been primarily targeted to-
wards multi-processor systems and was done completely in software. 

While JEWEL implemented all architectural levels of a distributed monitoring 
system as described e.g. in the book of Jain [Jai91] or Tsai [Tsa96] and revealed 
the desired flexibility it suffered from two related basic problems. Firstly, it 
implemented no default monitoring or measurement model, i.e. it doesn’t suggest 
the user any structure to start monitoring a system, like e.g. the ’prof’ tool does by 
creating the annotated call-tree. Secondly, it also left all the burden of instru-
menting the system under test completely to the user. As JEWEL only provided 
the infrastructure for monitoring it had no idea where to place the sensors and 
which parameters to collect. 

System-Level Monitors 

Miller, Macrander, and Sechrest [Mil86] described in 1986 a measurement tool 
for monitoring the execution performance of distributed programs running in 
BSD UNIX. A model of distributed computation and measurement is used to 
describe the activities of processes in terms of their internal and external events 
(corresponding to computation and communication). Based on this model, a 
monitor and a measurement tool was constructed by changing the kernel-level 
structures of BSD UNIX and adding some daemon processes to allow the moni-
tor to observe distributed activities that cross machine boundaries. The meas-
urement system consisted of four parts: the meters, the filter processes, a control 
process, and analysis routines. Each node has a meter in its kernel. Implementing 
the meter inside the kernel avoids context switching and thus reduces the degree 
of interference. The meter detects events and extracts the event parameters from 
the operating system’s data structures. The meter detects interprocess communi-
cation events by intercepting system calls made by the monitored processes. 
From the meter the events are sent to a possibly remote filter process. The filter 
process selects and reduces the received event data according to configurable 
selection rules. The filtered event traces then can be written to a file on be ana-
lyzed online.  

Unlike the later JEWEL tool, this monitor was tailored towards a specific target 
architecture. This allowed for providing a generic instrumentation inside the 
target operating system. Without further instrumentation a user of the monitor 
receives an event trace of all relevant system level events. However, the main 
tasks that remain were to relate these events to user-level (i.e. programming 
language-level) activities, to reduce the huge the amount of data by appropriate 
filtering and to present the data in an understandable manner. 

The systems described so far tried to minimize the interference. Dodd and Rav-
ishankar from the Real-Time Computing Laboratory at the University of Michi-
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gan have chosen a different approach. They tried to predict it. In [Dod92] they 
proposed the monitoring system HMON for the real-time system HARTS. 
HMON is able to provide consistent monitoring and deterministic replay by 
predicting the overhead caused by monitoring. HMON assumes that the com-
plete system is predictable because the monitoring code is part of the target sys-
tem. However, the design of the HMON monitor is closely dependent on the 
hardware architecture of HARTS. The nodes of HARTS are connected via a 
hexagonal mesh interconnection network. Each node is a tightly coupled multi-
processor system and is directly connected to six neighbors. The nodes have up 
to three application processors, a network processor, an Ethernet processor, a 
system controller, and a monitoring processor. In addition an external work-
station is used for logging the event traces. All parts of the monitor are imple-
mented in software. However, the required amount of additional hardware re-
sources is significant. Thus, it can hardly be categorized as a pure software moni-
tor. The generic HMON instrumentation detects the following events: system 
calls, interprocess communication, interrupts, and application-specific events.  

While HMON is able to visualize monitoring data, the main focus of the project 
was on determinism and on the ability to replay a distributed execution on the 
real system. This ability is tightly coupled to the specific system environment 
and cannot be transferred to a typical current real-time computing environment. 
In subsection 3.1.1 it is argued in more detail that there in an inherent tradeoff 
between today’s high-performance hardware architectures and fully predictable 
behavior. Also, it is impossible to preserve the degree of predictability that is 
required by a monitor like HMON as soon as the system has to interact with 
other computers that are not part of the monitored domain. 

Tokuda, Kotera, and Mercer proposed in 1988 a real-time monitor featuring the 
visualization of the internal behavior of a distributed real-time operating system 
ARTS [Tok88]. It consists of a real-time monitor/debugger to visualize the target 
systems scheduling decisions in quasi-real-time by Gantt-diagrams. Information 
is gathered by a software sensor, called an Event Tap, embedded into the real-
time operating system kernel. To predict and reduce the monitoring interference, 
the monitor is a permanent part of the ARTS system so that scheduling always 
includes the overhead of monitoring. 

The main contributions of the ARTS monitor were permanent instrumentation 
(like in HARTS/HMON) and online visualization of real-time scheduling. While 
permanent instrumentation is still sometimes considered too much overhead, the 
type of visualization is well accepted in the community for understanding the 
behavior of real-time systems. It has been adopted e.g. by the commercial tool 
WindView for the VxWorks real-time kernel. 

Monitoring of the Middleware Layer 

The systems presented so far, do not address standard middleware layers. Work 
on instrumenting and monitoring of object-oriented middleware has been done 
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by Rackl [Rac00] with MIMO (MIddleware MOnitor). The tool it targeted to-
wards heterogeneous systems under test and special emphasize it put on the 
multi-layer approach. It provides a framework that conceptually allows to moni-
tor the system at six different levels: application, (object-oriented) interfaces, 
middleware (distributed objects), language, operating system, and hardware. 
This approach is based on the same observation that lead to the monitoring tool 
MagicZoom described below in subsection 2.5: the fact that a consistent map-
ping between the monitoring information gathered at the different layers is of 
great importance for understanding the system. In MIMO special emphasis is put 
on the instrumentation of the middleware layer. In [Rac01] two concrete imple-
mentations for instrumenting CORBA and DCOM are presented, both differ 
from the approach presented in this thesis. The CORBA instrumentation is based 
on a special instrumented library that replaces the original CORBA library. The 
DCOM approach is based on a universal delegator [Bro99], a redirection of 
DCOM invocations. The presented solutions are capable of intercepting all re-
quired object-related calls. However, the major problem is performance. With an 
overhead of 40 to more than 100% the interference is enormous. This results 
from the fact that the monitoring component itself is implemented using 
CORBA. MIMO itself can be considered as a kind of generic distributed event 
propagation service. While this is a clean approach, it is surely not suitable for 
online monitoring of real-time systems. The envisaged applications for MIMO 
are therefore system management scenarios. 

Summary 

Concluding from the numerous different monitoring solutions it can be stated 
that the four main problems every distributed monitoring system is facing are: 

1. how to limit and or at least predict the level of interference, 

2. how to synchronize local clocks or to provide an additional event ordering 
mechanism, 

3. how to minimize the effort of instrumentation while providing traces with a 
sufficient level of detail, and 

4. how to transport, process, and present the event traces in a manner adequate 
to the problem domain. 

As all these problems can be solved with different tradeoff considerations in 
mind, the potential design-space for an event-based monitor huge. There is no 
dominant standard available in this area and none of the so far mentioned moni-
tors addresses all of the requirements of an object-oriented, standard-based real-
time system. Therefore, the monitoring solutions presented in the remainder of 
this chapter are focused on this special class of systems.  
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2.1.3 Monitoring Object-Oriented Real-Time Systems 
In the context of this thesis the system under test is the observed real-time sys-
tem, i.e. the object-oriented, distributed system that executes the time-critical 
application. Its software consists of the application programs (written in some 
programming language), the object-oriented middleware, and the operating sys-
tem. (As the operating system is the lowest software layer its monitoring also 
covers the influences from the underlying hardware layers.) Now it has to be 
considered, which parts of such a system have to be monitored in order to pro-
vide the required information for time-awareness? All components that contrib-
ute to the system’s timing. As timing is a non-functional property that cannot be 
fixed to one abstraction layer of the system, consequently time-awareness re-
quires monitoring at all system levels. 

2.2 Instrumentation at the Operating System 
Level 
The lowest software level that contributes to the timing of the real-time applica-
tion is the operating system. As the operating system is finally responsible for 
the assignment of resources, including the CPU, it is often in the focus of interest 
when the actual results of a scheduling strategy adopted by an application have 
to be analyzed. The related abstractions provided by an operating system are 
processes, threads, interrupts, and synchronization objects, like e.g. messages or 
semaphores. As the examples of ARTS and WindView (see above) have shown, 
detailed event traces on the state changes of these objects are inevitable for an 
understanding of the system’s scheduling behavior any monitoring system that 
claims support real-time computing should provide this information. 

2.2.1 Issues in System-Level Instrumentation 
When instrumenting the operating system and collecting events at this low level 
a number of important implementation-related issues and restrictions have to be 
obeyed: 

1. How to place a sensor to get aware of an event of interest? As long as the 
source-code of the operating system kernel is available, as this is the case e.g. 
for Linux, RTLinux, and partially also for Windows CE the code can be ana-
lyzed and the sensors can be placed at the right locations. Then a new instru-
mented kernel can be build and this kernel can then be used for the system 
under test. For all systems that do not provide a build environment for the 
kernel this is not a viable solution. Here the existing kernel has to be modi-
fied to execute the additional sensor code. As long as the kernel provides the 
required hooks (i.e. debugging APIs) that allow for adding this code at run-
time, this is also a simple job to do.  
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2. How to obtain time-stamps with sufficient accuracy? Typically, kernel-
level events like context-switches and interrupts happen at rates higher than 1 
event/ms. This means, the standard operating-system timer running with at 
most 1 kHz does not provide sufficient resolution for accurately time-
stamping these events. At least a microsecond resolution is required. A mi-
crosecond-counter with only 32 bits wraps around every 71 minutes 
(4294,967296 seconds). Hence, any long-term measurement needs time-
stamps with significantly more bits, typically 64. 

3. How to minimize intrusion? As stated before, operating system level in-
strumentation can produce event-rates above 1 event/ms. With an execution 
time of about 10 µs for one sensor this can already result in an overall slow-
down of more than 1%. While, this is a fundamental drawback of any soft-
ware monitor and differences in the monitored case can be avoided by using 
permanent instrumentation, it is still the goal to minimized intrusion as far as 
possible. Careful coding of the sensors is required to accomplish that.  

4. Where to collect event-traces? As operating system level instrumentation 
typically deals with very low-level events, the sensor code is usually exe-
cuted either in an interrupt handler or in some locked kernel state. This means 
when the sensors write event data to a memory buffer, this buffer must be ac-
cessible from this execution level and under no circumstances the kernel can 
trap into a page-fault. A page-fault would introduce an arbitrary amount of 
intrusion and even worse, in a locked kernel state it would crash the machine. 
Therefore, the memory buffer has to reside in the same address-space and it 
must be pinned to physical memory. Other event-sources, e.g. in user-level 
code, may use different buffers. Events from different buffers can be merged 
into one linear event trace off-line using time-stamps from the local clock. 
However, as the need for minimized intrusion forces all buffers to be pinned 
to physical memory, it is an obvious idea to use just one buffer for all events. 
Given that writing one events is an atomic action, this buffer will then con-
tain all events in chronological order.  

Even if these problems are solved convincingly by a monitor, there is still the 
additional challenge of distribution. Local traces from the involved nodes have to 
be merged into one view of the system. This requires the transport of the possi-
bly large amount of data and also, even more serious a timely synchronization. A 
general property of distributed systems is that there is no global clock. There is a 
lot of work done in the causal ordering of events using just local clock, but in the 
scope of monitoring this is of limited value. In order to allow for the timely cor-
rect observation of activities that span across a number of nodes, some kind of a 
global timer is required. If one is interested e.g. in the latency of a (one-way) 
message sent over the network, the only way to measure this time is to correlate 
the (global) time-stamps of the “message send” and the “message receive” event. 
One way to generate a global time-stamp is to use special monitoring hardware 
implementing a true synchronous timer that can be accessed by the sensors. But 
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even if there is no special global clock device available (e.g. a GPS-based clock) 
in the envisaged environment, traces can be synchronized a-posteriori. This can 
be done by identifying at least two events in each of the involved traces that have 
a known timing relation (given that the local clocks have an unknown offset and 
a constant drift) [Ger95]. 

2.2.2 Implementation for Windows NT 
In order to discuss concrete solutions to these important issues in monitoring and 
instrumenting at the operating system level, Windows NT 4.0 has been chosen as 
a representative target system. The concepts presented with the JewelNT moni-
toring tool are portable and have been applied in a quite similar way also to 
Windows CE, VxWorks (TORNADO), RTLinux, and Mach 3.0 [Ger92]. From 
the technical point of view Windows NT can be considered as one of the most 
difficult targets for instrumentation, as it doesn’t include predefined hooks for 
installing sensor code (like VxWorks) nor is it available in source code as the 
other mentioned targets.  

The standard monitoring tools provided by NT are not sufficient for the desired 
application domain. Like the performance Monitor ‘perfmon.exe’ they rely on 
the performance counter API that is designed to provide average values but no 
information on individual events. More detailed traces of system events with 
accurate time-stamps are not provided. This means, no information is available 
e.g. on minimum and maximum duration of certain executions. Also, these tools 
are not designed for distributed computations. While they are able to access 
performance data of remote machine, they do not provide information on cross-
context or even cross-machine activities (e.g. message latencies). 

The JewelNT monitoring tool has been designed as a software-only, event-
driven, distributed monitor for Windows NT. JewelNT allows analyzing the 
event traces on a remote machine with a graphical presentation interface 
[Ger97b, Ger99b]. During monitoring an experimenter can interactively select 
the set of events (and even the application objects) he/she is interested in. With 
the addition of the kernel-level events by JewelNT it can provide a view on the 
system that combines application semantics and information on its implementa-
tion by the system. A typical observation that can be made with JewelNT would 
be e.g. the overall time of an application’s I/O operation and its breakdown into 
application specific activities (e.g. class-library calls), kernel activities (Win32 
and system server threads), interrupt processing, waiting-time, and preemption 
by other threads. 

The JewelNT monitoring system as depicted in Figure 2.1 consists of three com-
ponents: the instrumentation, a remote communication infrastructure (both one 
instance per monitored node), and a central monitoring console with its graphical 
user interface. 
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Figure 2.1: Components of the JewelNT distributed monitoring system for Win-
dows NT. 

JewelNT Instrumentation 

The instrumentation augments the operating system to intercept all thread 
switches, interrupt handlers and other low level system-events. It inserts sensors 
that generate event-descriptions about these system events and stores them in a 
shared buffer (one on each observed node, typical size 128KB to 1 MB). By 
calling a library function from anywhere in the user-code, an application devel-
oper can also instrument his/her own software with additional user-defined 
events. They are placed in the same event-stream and exhibit arbitrary processing 
steps inside of an object implementation. Each event is stored with information 
about its type, a 64-bit high-resolution time-stamp, the executing CPU, process- 
and thread-id, and a 32-bit type-specific parameter.  

Type
0 31

Timestamp (low)
Timestamp (high)

Process Id
Thread Id
Parameter

CPU

7

 

Figure 2.2: A JewelNT event-record 
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Figure 2.2 depicts such an event record. At this level an event-record does not 
contain a node-id. As all events in a local event-buffer would contain the same id 
this information is redundant here and can be added when the data is extracted 
from the buffer.  

JewelNT addresses the above-mentioned implementation-related issues in the 
following ways: 

1. How to place a sensor to get aware of an event of interest? Some operat-
ing system kernels provide the required hooks for adding instrumentation 
code at runtime. The VxWorks kernel e.g. provides special function-pointers 
as a global variable. If this variable contains a non-null value the kernel calls 
through this pointer a function on every event. A straightforward implemen-
tation will modify this pointer for inserting the sensor code. Similarly, the 
Windows NT debug kernel (so-called “checked kernel”) provides a kernel-
level API that allows for the same approach. However, as the checked kernel 
contains all sorts of debugging code its timing behavior is significantly dif-
ferent from the normal kernel (so-called 'free kernel') and any real-life time-
critical application will use the free kernel. This means relying on the 
checked kernel for instrumentation is not an option. Therefore, it becomes 
necessary to insert instrumentation into the existing binary of the free Win-
dows NT kernel.  

This can be accomplished by driver-level programming. A Windows NT de-
vice driver coexists with the kernel in one address-space and on the same 
privileged execution level, i.e. driver code can modify the kernel image. The 
JewelNT kernel driver utilized this to patch the kernel and to insert the sen-
sors. Basically, the sensor code is a detour though a C-function procedure 
provided by the driver. This function reads the time-stamp, collects the other 
event data, and writes the event-record to memory. As the debugging infor-
mation available for the free Windows NT kernel provides sufficient infor-
mation on the location of the central functions and variables of the kernel 
(e.g. for context-switching and interrupt-processing), this approach for in-
strumenting an operating system kernel is viable for all versions of Windows 
NT. However, it requires (once) careful hand coding of the generic instru-
mentation code in the driver, as it is critical to the reliability of the complete 
system. 

2. How to obtain time-stamps with sufficient accuracy? Standard PC hard-
ware, the primary target architecture of Windows NW, provides two timers 
that can be used for monitoring purposes: The build-in clock-chip that also 
generates the timer-interrupts and the on-chip performance counter, imple-
mented by each Pentium-class CPU. While the first has the advantage of a 
standardized clock-rate (about 1 MHz), it has the drawback on modern proc-
essor with 1 GHz and beyond even this might be not enough and also that the 
provided timer is only 16 bits wide. Substantial software support is required 
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to emulate a 64-bit timer-register. The on-chip performance counter is clearly 
the first choice for time-stamping events. It runs at processor speed and it is 
64 bits wide. It takes only one instruction to read its value and even on a 
SMP-machine the values of these registers are updated synchronously on all 
CPUs. Only on the most recent CPUs that use variable clock-rates for power 
management this counter doesn’t provide a linear time-scale. But as this fea-
ture contradicts fundamentally to predictability of execution time, it can be 
neglected in the scope of real-time processing. An implementation problem 
that remains is the CPU-dependent rate of this timer. In a distributed system a 
central monitoring station needs additional information to determine the 
time-scale of each connected system under test. JewelNT provides this in-
formation by measuring the clock-speed once during installation on a new 
target system and sending this to the central monitoring station prior to any 
event trace data. 

3. How to minimize intrusion? The JewelNT sensor code is designed obeying 
the following coding rules: 

• A local memory write is the only possible way of storing event data, di-
rect file or network-access would take by far too much time. 

• Any subroutine-calls in the sensor should be replaced by inline code. 

• Any kind of system-calls (especially though call-gates) should be 
avoided. 

• Code-length, memory accesses, and locking-code should be minimized. 

Figure 2.3 shows JewelNT’s buffer structure that stores the events and the 
sensor code. The buffer is organized as a ring-buffer, i.e. a FIFO where the 
sensors fill in new events and the external sensor extracts events and for-
wards them to further processing. As the buffer-structure is mapped into dif-
ferent address-spaces and to different locations, indices are used instead of 
absolute pointers for storing the current input- and output-positions. Note, 
that the function-lookalike statement KeGetCurrentThread(), KeAc-
quireSpinLock() and KeReleaseSpinLock()are actually short 
macros and that "spinlocks" are mapped to simple interrupt-level changes on 
single processor machines. 

On a 133 MHz Pentium machine this code executes in at most 2 µs. The exe-
cution time was determined by executing two subsequent sensors with 
flushed caches. Timing becomes much better if the code is already in the 
cache (typically 0.9 µs). 

typedef struct { 
 unsigned long spin_lock; 
 unsigned long log_set; 
 unsigned long max_length; 
 unsigned long full; 
 unsigned long input; 
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 unsigned long output; 
 Event_Record rb[1]; 
}JewelNT_RingBuffer; 
 
__inline Event_Record *jnt_sensor( 

    RingBuffer *rbp, 
    unsigned long e_type,  
    unsigned long e_param) 
{ 
 void *cur; 
 KIRQL old_irql; 
 
 /* time stamp --> eax:edx */ 
 long t_high, t_low; 
 
 if ((rbp->log_set & MZ_EV_TRIGGER) &&  

      (e_type & rbp->log_set)) { 
     KeAcquireSpinLock(&(rbp->spin_lock), &old_irql); 
 
     if  (!rbp->full) { 
  Event_Record *ev; 
  ev = &(rbp->rb[(rbp->input)++]); 
  rbp->input %= rbp->max_length; 
  if (rbp->input == rbp->output) 
   rbp->full = 1; 
  __asm { _emit     0x0F 
   _emit      0x31 
   mov     t_low, eax 
   mov     t_high, edx 
  } 
  ev->time_l = t_low; 
  ev->time_h = t_high; 
 
  KeReleaseSpinLock(&(rbp->spin_lock), old_irql); 
  ev->type = e_type; 
  cur = KeGetCurrentThread(); 
  ev->proc_id = *(long *)((long)cur + 0x1e0); 
  ev->thread_id = *(long *)((long)cur + 0x1e4); 
  ev->param = e_param; 
  return ev; 
     } else 
  KeReleaseSpinLock(&(rbp->spin_lock), old_irql); 
 } 
 return 0; 
} 

Figure 2.3: The Jewel NT sensor code 

5. Where to collect event-traces? The JewelNT kernel driver provides a mem-
ory buffer that is pinned to physical memory. This makes it accessible from 
anywhere in the kernel address-space. Note, that Windows NT has no further 
memory protection scheme inside the kernel. The virtual address of this 
buffer is propagated to all components inside the kernel by an entry in the 
global “system registry” database. The "ZwMapViewOfSection()" driver-API 
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is then used to map this buffer also into all address-spaces that contain sensor 
code. Kernel and user-level events are therefore written into the same buffer. 
This also simplifies the task of the external sensor and the central monitoring 
console, as only one buffer per machine has to be processed. 

JewelNT Remote Communication Infrastructure 

The remote communication infrastructure represented in Figure 2.1 by the Jew-
elNT external sensor allows for the remote initialization and control of the meas-
urement and the transfer of the local event-stream from each monitored node of 
the distributed system to the central monitoring console. It is implemented as a 
standard user-process that runs at low priority. It selects the instrumentation 
options and reads the local event-buffer located in shared-memory on behalf of 
the central monitoring console. If necessary the external sensor buffers events 
read from shared memory temporarily in the local file-system. The execution of 
this process and its file-system accesses are not on the critical path, i.e. if it is 
blocked due to an temporal overload the collected events are simply queue up in 
shared memory without any performance penalty for the generating thread. If the 
buffer runs full, additional events are discarded. In case of such a congestion of 
the monitor the observed activities are not effected, but a special event indicating 
the temporal buffer overflow is inserted in the event stream. This results in a 
warning on the graphical. The experimenter might react by increasing the buffer 
space. 

 

Figure 2.4: Gantt-chart display of JewelNT 

JewelNT Central Monitoring Console 

The remote communication infrastructure forwards event data from the moni-
tored nodes to central monitoring console. On this node the experimenter can 
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manage the experiments remotely only using one graphical user interface. This 
interface allows selecting the interesting events, to start and stop measurements 
on a selected set of nodes, to initiate online data transfer to the monitoring con-
sole and to analyze the monitored data in detail. The analysis view displays ei-
ther as text or as graphical display (shown in Figure 2.4) with variable zooming 
facility.  

Process and thread assignment is displayed in a Gantt-chart. On the x-axis the 
time (in ms) is shown. The y-axis shows processes and their contained thread. 
For each CPU a line depicts the assigned thread at time t. All other events are 
shown in this display by marking the event-generating thread with a cross at the 
time where the event occurred.  

Clock Synchonization 

The JewelNT graphical interface allows controlling a distributed system under 
test from the central monitoring console. However, starting and stopping meas-
urements on various nodes at about the same time doesn’t already imply, that 
synchronized event traces are created. The JewelNT central monitoring console 
offers two mechanisms that allow for creating and visualizing synchronized 
traces: 

For synchronization it uses the a-posteriori algorithm as described above. In 
order to apply the transformation of trace time-stamps “synchronous” events are 
required. Typically, receive events from broadcast networks can serve for this 
purpose. On most types of LANs (e.g. Ethernet) there is a known (and for 
coarser-grained measurements negligible) delay between the reception of the 
same frame at different nodes. In order to create the “synchronous” events, the 
central monitoring console sends broadcast messages containing a unique num-
bers. A sensor on each monitored node (implemented by the external sensor) 
detects these events and stores them in the local event-trace. If there are more 
than two common event pairs in two traces, the best synchronization can be 
achieved by choosing the pair with the maximum local time difference (as this 
minimizes the effect of inaccuracies of a single measurement). Once two pairs of 
such “synchronous” events are identified for two nodes a simple linear transfor-
mation of the local time of one of the involved nodes leads to global order be-
tween all events of these nodes (given that the local clocks have an unknown 
offset and a constant drift). Once two pairs of such “synchronous” events are 
identified for two nodes a simple linear transformation of the local time of one of 
the involved nodes leads to global order between all events of these nodes. 

Transformation: 
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and    

11 tdrifttoffset −′=  

 

where 11, tt ′  and 22 , tt ′  are the local timestamps of the two known synchronous 

events. 
 
At the interface level JewelNT allows to link the Gantt-chart diagrams of two 
synchronized traces. With the linked cursors and scales it becomes easy to ex-
actly determine the time difference between two events on different nodes. 

Summary 

A tool like JewelNT provides the infrastructure to observe an industrial operating 
system kernel in its application environment and to present the collected data 
online. In contrast to existing monitoring tools JewelNT allows to observe the 
activity of a number of distributed machines simultaneously and to correlate 
events between these interacting machines. This makes it suitable for the obser-
vation of distributed real-time systems at the operating system level. Beyond 
that, its ability to record and store not only the generic kernel events but also all 
types of events suggests its use also as the generic event collection infrastructure 
for user-level monitoring. However, as user-level code is highly application-
dependent and cannot be traced by only a small set of generic sensors, tools and 
mechanism are required for simplifying the task of code instrumentation. 

2.3 Instrumentation at Language Level 
If observation wants to go into the details of the program execution, it is neces-
sary to instrument the application itself. Adding and maintaining instrumentation 
by hand is a time-consuming and error-prone task. Thus, there is a need for an 
automatically instrumentation. Given that the major part of all software-projects 
is not yet described in a specification framework like UML that contains addi-
tional meta-information about the application, the main starting point for auto-
matic instrumentation is the source code. Thus, the approach is code 
instrumentation. The source code contains the ultimate executable specification 
of the application and in real-time systems it is important to understand exactly 
the behavior of the executed code. A system that derives application 
instrumentation from a UML-like model is described in [Bec99]. 

This section discusses the possible options for automatic instrumentation and 
describes the tool „mc4p“ that implements automatic code instrumentation for a 
large class of object-oriented programs, namely those written in C++.  
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2.3.1 Issues in Code Instrumentation 
The main principle of automatic code instrumentation is the utilization of the 
structural information of the program sources. Sensors are placed by a compiler 
using fixed syntactical rules. This results in very fine grained observation of 
nearly every step the software takes, but this also requires an event processing 
system that copes with the high bandwidth of event data. Even with a monitor 
that has been designed for low-interference like JewelNT, full code instrumenta-
tion still may lead to non-tolerable amount of interference with the system under 
test. Thus, a run- or compile-time filter is needed that reduces the amount of 
collected events, when they are not needed. 

Procedural Languages 

The main structural elements in a procedural programming language, like C or 
Pascal, are data types, variables, and procedures. Procedures themselves are 
structured by statements, blocks, and control structures. This enables the com-
piler to add sensor code before and/or after these units. With instrumenting only 
the procedure’s entries and exits a number of features of the (not yet object-
oriented) measurement model can be supported as listed below. Nearly all of the 
results of these measurements are hard to obtain by any other measurement tech-
nique: 

• Profiling: An event-based system can obtain the same results as a traditional 
profiler. In addition the full population of all executions of a procedure is 
observed by event-based observation, leading to the distribution function, 
which may be important for evaluating whether an analytical model of the 
system is correct or not. 

• Statistics on a per thread basis: Given that the thread identifier is added as 
a parameter to every event, all statistics can be displayed based on the rela-
tion (thread x procedure), rather than on a per procedure basis only. This is 
important as soon as not all threads that execute the same procedures are 
equivalent. 

• Tracing on a per thread basis: The event streams provided by automatic 
instrumentation can be used for detailed tracing of the program’s threads. 
The event traces can serve as input for visualization, for a step-by-step cost 
breakdown of complex operations. They are also valuable as a powerful de-
bugging aid. Traces can help to explain bugs, like deadlock situations, or 
they can serve as a basis of a code coverage analysis. 

• A fully attributed call-tree: As a superset of the three options mentioned 
above, the complete call-tree relation (procedure x procedure x thread) can 
be recorded. All members of the relation may have performance attributes. 
In the most complex case one attribute may contain the whole time-stamped 
calling-history, but often a counter or a distribution should be enough. 
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The instrumented Attribute 

For complete observation it is desirable to add instrumentation to all procedures 
of a program, but often this may be not tractable because of the imposed interfer-
ence, especially for very small and short procedures. To allow for a more selec-
tive instrumentation, each procedure is tagged by an additional attribute instru-
mented that defines during compilation time whether the procedure should con-
tain the additional sensor code or not. The actual value of the instrumented at-
tribute may be defined either within the source (by a new keyword or a comment 
that proceeds the procedure declaration) or by an external definition list that 
contains the names of all instrumented procedures. The first method has the 
advantage that all information concerning the sources is kept consistent within 
one file, whereas the second possibility allows to leave the original source file 
completely unchanged. Both, the additional keyword and the definition file are 
easy to skip, when no instrumentation is needed, and they both do not reduce the 
readability of the sources (like e.g. #ifdef’s would). 

The observed Attribute 

Another option to reduce the overhead of instrumented code, when no observa-
tion is required, is an additional run time filter mechanism that determines 
whether events created by a certain procedure are observed or not. This filter 
should be employed in a very early stage of event processing (best within the 
generating code) to avoid any waste of bandwidth and keep perturbation as small 
as possible. This means in addition to the instrumented attribute that is evaluated 
during compile time each instrumented procedure obtains an additional boolean 
attribute observed that is evaluated during run time. If a procedure is observed its 
events will be reported, otherwise they are discarded. The observed attribute may 
be changed during run time either by the observing event processing system or 
by the system under test itself. The first option requires that the event processing 
system has access to these attributes (as implemented with relevant-table in the 
JEWEL system [Lan92]), while the second implies that the system under test is 
written to be aware of its own instrumentation. The observed attribute of proce-
dures can be stored in a static data-structure as the number and names of the 
procedures are known at compile (or link) time.  

Object-Oriented Languages 

Object-oriented languages add a number of features to the procedural program-
ming paradigm. Three concepts, namely the notion of classes, instances, and 
attributes are of high value for automatic code instrumentation. Other common 
features of object-oriented languages, like function overloading and polymor-
phism do not affect instrumentation substantially. 

Classes introduce a new important structural element that provides a lot of addi-
tional information for automatic instrumentation. As a program written in an 
object-oriented language should be a one-to-one mapping from an object-
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oriented design, the measurement model supported by an automatic instrumenta-
tion of object-oriented code is more likely to match the original system model. 
Classes also represent a higher-level abstraction for event filtering than simple 
procedures do. An experimenter may now specify the name of a class he is inter-
ested in, instead of a bunch of procedures or a source file with a number of re-
lated procedures. 

A new quality for code observation is introduced by the concept of instances of 
classes. As every method of a class knows implicitly about the object it manipu-
lates, this knowledge can be made visible to the observing system, by generating 
instance-related events. In a procedural language instances have to be specified 
explicitly within the procedure parameters or, even worse, in global variables. In 
both cases it is generally impossible for automatic instrumentation to name the 
instance on which the procedure operates. The improvement when observing 
object-oriented programs is, that events (and thus also performance indices) can 
be collected, filtered, and displayed on a per instance level rather than on a per 
procedure level. This enables a number of additional features of the generic 
measurement model: 

• Statistics on a per instance basis: In many cases it is misleading to display 
information on a per function or per class basis, as objects of the same class 
may have completely different characteristics due to their actual instance 
(e.g. statistics about context switching of the class "process" does not say 
much about the scheduling behavior of a certain process).  

• Observation of instances in a certain context: One might be interested in 
the behavior of instances in a certain context or subsystem, rather than in all 
instances of the same class (e.g. buffers within a certain protocol, but not 
within the rest of the system). 

• Probe observation: In order to get a better understanding one might be 
interested in only generating events for some probe instances rather than the 
whole population (e.g. measuring the delays for a sample request on its way 
through the communication system). 

• Attribute Traces: The value of some attributes of some objects at certain 
points during the execution may be traced. E.g. the afterimages of some im-
portant status variables may be reported when a method of this object has 
been executed. 

Instrumentation and Classes 

A class collects all methods (or member functions) and status variables (attrib-
utes) that define a certain object-type. Instrumenting classes means inserting 
sensors into the methods’ code in order to signal object invocations, their pa-
rameters and attribute value changes. In a procedural language only procedures 
have an instrumented attribute. In an object-oriented language the instrumented 
attribute can be extended to classes, in order to collectively enable or disable the 
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observation of methods of a certain class. The following definition of the relation 
between the instrumented attribute of classes and methods allows to instrument a 
single method as well as complete classes.  

If a class x is instrumented, all contained methods or classes of x are implicitly 
instrumented. If only a contained class or method is instrumented the surround-
ing class is not necessarily instrumented.  

In order to be flexible automatic instrumentation should only determine the 
places where to put the sensors, but not the semantics of the sensors itself. The 
feature of generating events can be regarded as a certain property of all instru-
mented classes. Thus it is natural within an object-oriented environment to ex-
press this property as a separate base class. This abstract base class, called 
_instrumented_class, defines the protocol for the inserted sensors. Their actual 
implementation is encapsulated in a descendant of the abstract base. Each class 
that contains at least one instrumented method has to inherit from a suitable 
descendant of _instrumented_class. Now the process of automatic instrumenta-
tion only has to insert the calls to sensor methods known from the base 
_instrumented_class. 

Instrumentation and Inheritance 

In an object-oriented language the behavior of a class is not only described by 
the methods that are defined within the class itself, but also by inherited methods 
from other classes. Thus, the instrumented attribute has to be extended to the 
inheritance relation as well. The following extension to the definition above 
describes one possibility that enables a high degree of flexibility and requires 
only a small amount of additional information besides the source file.  

If a class x inherits from another class y all methods and subclasses that are 
instrumented in y are instrumented in x as well.  

Instrumentation and Instances 

To allow for the detailed observation of single instances without causing to much 
interference during observation, it is of a high value to extend the observed at-
tribute from procedures to instances (or even methods of instances). One restric-
tions for this is obvious: 

An instance can only be observed if at least one method of the class it belongs to 
is instrumented. 

Otherwise there is nothing to report from an instrumented instance. But as in-
stances are created at runtime, it is generally not possible to distinguish statically 
between observed and not observed instances. This problem can be solved by 
adding the observed status of an instance to the according implementation of 
_instrumented_class, either simply one boolean per instance or, even more de-
tailed, one a per instumented method. Thus the storage allocation and the initiali-
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zation of the per instance attributes are done dynamically during the creation of 
new objects. As the implementation of the observed attribute is now hidden in 
the implementation of _instrumented_class, an automatic instrumentation tool 
does not have to deal with this attribute; it only has to supply enough informa-
tion, i.e. about the instance and the method to each sensor. Again, this is known 
statically during compilation and it can be hidden in the event-identifier. The 
constructor of _instrumented_class is provided with type information about the 
class it belongs to in order to allocate the correct data structures for keeping track 
of the observed status of an object.  

Instrumentation of Attributes 

To provide information about the internal status of an object, its attributes have 
to be made visible. In an event-based system this can be done by creating an 
event that contains the value of the attribute in its data part. But when should 
such an event be created? Whenever the value of the attribute has been changed, 
continuously with a certain sampling rate, on request of the experimenter, or 
during certain steps of the execution? The first option seems to be the most ef-
fective, since it provides a complete trace with a minimum amount of bandwidth. 
But as attributes may be changed by arbitrary references this approach requires 
either help from the memory-management to detect write access to certain loca-
tions or a major code change to check every reference before any data is written. 
Continuous sampling of a larger number of attributes requires a lot of additional 
cycles and there is still the chance of missing rapid changes, while the "on re-
quest" option does not even allow to reconstruct a global snapshot of the systems 
state. Thus the last option is promising, as it can be combined with the already 
discussed sensors. One approach is to add the value of the instrumented attrib-
utes of an object to every method end event that is produced by this object. This 
will result in a complete trace of all afterimages of all observed method calls 
without producing additional events. 

2.3.2 The mc4p Tool 
In order to prove the usefulness of automatic instrumentation a tool has been 
built that implements this approach [Ger94]. This tool has to fulfill several re-
quirements. It should be easy to use, applicable to a large class of existing pro-
grams, easy to adapt to different event processing systems, and independent of 
special compilers. These requirements lead to a design of a preprocessor, called 
mc4p (Martins C Plusplus Preprocessor) that translates a source written in K&R 
C, ANSI C, or C++ into the same language again, but adds configurable instru-
mentation statements. This allows for an easy integration into the normal build-
ing process of any C/C++ source with an arbitrary compiler. As mc4p only de-
fines the places in the source, where the additional instrumentation statements 
will go, but not the actual statements, it is open to cooperate with processing 
systems other than JEWEL. 
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The mc4p tools implements an automatic instrumentation according to the meas-
urement models as described above. This means mc4p keeps track of the instru-
mented attribute of classes and methods, and attributes. It implements the name 
space management as described above and it applies three kinds of modifications 
to the source files: it adds the generic instrumentation code, hidden in a descen-
dant of _instrumented_class, it inserts the sensors that indicate start and stop of 
methods, and it adds attribute reporting sensors to the end of instrumented func-
tions. While mc4p is able to instrument at C/C++-block level as well, no at-
tempts have been made so far to optimize sensors placement as in [Mah01].  

Instrumentation of Procedures 

The automatic instrumentation of a program written in a procedural language is 
straightforward. The complete structure of the call-tree can be described by 
events, if every entry of any procedure produces a unique event. Additionally the 
timing of a procedure can be observed if another event also indicates a return 
from a call. This can be obtained either  

1. by adding code within the called procedures body, 

proc_a(){ 
  _method_start(proc_a); 
  . 
  . 
  . 
  _method_end(proc_a); 
} 
 
proc_b(){ 
  proc_a(); 
} 
 

 

2. by instrumenting each call sequence,  

proc_a(){ 
  . 
  . 
  . 
} 
 
proc_b(){ 
  _method_start(proc_a); 
    proc_a(); 
  _method_end(proc_a); 
} 
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3. or by wrapping each call in an instrumented stub.  

proc_a’(){  // was proc_a () 
  . 
  . 
  . 
} 
 
proc_a(){ 
  _method_start(proc_a); 
    proc_a’(); 
  _method_end(proc_a); 
} 
 
proc_b(){ 
  proc_a(); 
} 
 

 

With the first method instrumentation can be done statically as long as the source 
text of the procedure is available. The second possibility also works for external 
procedures (e.g. in a library) but it requires a dynamic determination of the pro-
cedures name as a call may be done via a reference. The third option is a kind of 
a mixture of the other two possibilities, as it can be done statically and it also 
works for external procedures. The major drawback of this method is the slightly 
increased overhead if the call to the wrapper really introduces a second call se-
quence. Implementing the wrapper as an open procedure will avoid a lot of the 
additional code.  

Instrumentation at the beginning and the end of a procedure body as well as 
wrapping of procedures can be implemented at preprocessor level. As there is 
only one starting point of each procedure, it is easy to insert a sensor in front of 
the first statement of a procedure body. The end of a procedure has to be reported 
either before a return statement is executed or when the textual end of a proce-
dure is reached. A problem arises when a complex computation is done within 
the expression of the return value. If the end of the procedure is signaled before 
the return expression is evaluated, the time consumed by longer computation will 
be accounted for the calling procedure and if other procedures are called within 
this computation even the call tree will be mixed up. This problem can be solved 
by inventing an additional temporary variable x of the procedures return type and 
changing a sequence "return expr" into "x := expr; _method_end(); return x". 
Simple C procedures are instrumented by mc4p using body instrumentation 
technique.  

In C++ another, more elegant way, of body instrumentation can be implemented. 
In C++ local variables (allocated on the stack) are automatically constructed (the 
constructor is called) before a procedure starts and destroyed (the destructor is 
called) after the procedure has returned. This mechanism is implemented by the 
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compiler. To use this mechanism for signaling start an stop events a new class 
sensor has to be defined. In its constructor this class signals the start of a proce-
dure and in its destructor it signals its end. If now a variable of this class sensor 
is added to an instrumented procedure, the compiler will arrange exactly the code 
we need, as it signals the start before the first instruction of the procedure is 
executed and it signals the end even after the return expression has been evalu-
ated. The latest version of mc4p uses this kind of body instrumentation for C++ 
instead of the (more C-like) version described above, but the two version func-
tionally equivalent. (The example described below uses the C++ method) 

Wrapping requires a redefinition of the procedure that has to be instrumented. 
The body of the wrapper simply contains the instrumentation indicating the start 
and the end of the procedure and a call to the original code with unchanged pa-
rameters. A name clash between the original procedure and the instrumented stub 
can be avoided by renaming the original procedure and naming the stub like the 
unchanged original procedure. The same technique as above, using a temporary 
variable, can be used for propagating the return value of a wrapped procedure. 
The mc4p tool has to use the wrapping for instrumenting inherited C++ methods. 

The value of formal parameters of procedures can be determined and signaled 
easily during the start sequence of a procedure. Before the start of a procedure a 
sensor is inserted the mc4p preprocessor adds per instrumented parameter a sen-
sor that reports its current value. If the implementation allows for collecting 
events and processing them in a batch-like manner, the sensors may condense the 
parameter values and the procedure start into a single event. 

The parameter sensors have to know about the event_id, a pointer to the parame-
ter, the length of its binary representation, and a type identifier. While the pointer 
and the length are useful for fast internal copies, the type identifier will allow for 
encoding the data into a hardware independent representation (e.g. using XDR). 
This is generally important for interpreting the values outside the context of the 
C++ program. Type information is also necessary when transferring the values in 
a heterogeneous distributed environment. The type identifiers may cover either 
only the basic types, or in a more advanced implementation also constructed 
types like complete classes. 

Instrumentation of Classes 

Whenever mc4p has to insert a sensor it inserts one of the methods of 
_instrumented_class. The declaration of _instrumented_class is shown in Figure 
2.5. A descendant of _instrumented_class has to be introduced as a new base 
class of every class that contains at least one instrumented method. It has to be 
insured that every instance contains the components of this base class only once, 
even if the class inherits from one or more other classes that are already derived 
from _instrumented_class. C++ provides the virtual inheritance concept to 
achieve exactly this. 
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All static information about the location of the sensors can packed into the event 
identifier as described above. The dynamic parameters, like thread identifier or 
object identifier are determined, whenever needed, within the implementation of 
_instrumented_class. This is possible because the object identifier provided with 
the C++ this pointer is always known within the implementation of 
_instrumented_class. All status that has to be stored or cached within a sensor 
can be implemented as member variables of a descendant of 
_instrumented_class. E.g. a simple collection mechanism for reducing bandwidth 
might combine a start_method and an end_method event to one event that sig-
nals the duration of a certain method invocation. A timestamp of the 
start_method event can be stored within the object until the according 
end_method event occurs. 

 

class _instrumented_class { 
public: 
 _instrumented_class() {}; 
 ~_instrumented_class() {}; 
 
// method start and end sensors 
 virtual void 
 _start_method(unsigned long event_id) const = 0; 
 virtual void 
 _end_method(unsigned long event_id) const = 0; 
 virtual void 
 _end_constructor(unsigned long event_id) const = 0; 
 virtual void 
 _start_destructor(unsigned long event_id) const = 0; 
 
// parameter sensor 
 virtual void 
 _add_method_local(unsigned long event_id, void * ptr, 
    int size, typeinfo type) const = 0; 
 
// attribute sensor 
 virtual void 
 _add_attr(unsigned long event_id, void * ptr,  
    int size, typeinfo type) const = 0; 
 
// collector for attribute sensors (reimplemented by every 
// instrumented class) 
 void 
 _report_attr() const {}; 
}; 

Figure 2.5: Declaration of instrumented_class 

Instrumentation of Methods 

For instrumenting the beginning and the end of methods the mc4p tool uses the 
techniques for procedures as described above. It either instruments the body of a 
method when it is newly defined within an instrumented class or it uses wrap-
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ping to allow for the instrumentation of inherited methods that where not instru-
mented in their defining class. This leaves the original class and its methods 
unchanged (not instrumented) and allows to use the new wrapper with the same 
functional behavior in a derived class in an instrumented version (see section 6 
for an example). An exception to the standard rule for inserting sensors in meth-
ods has to be considered for class constructors and destructors, as the code of 
their body does not denote the actual start and end of their execution. All con-
structors and destructors of inherited classes are called before, res. after, the 
execution of the constructors or destructors of the current class. To get a realistic 
timing, instrumentation rules for these special methods are slightly different. 
Only the end of a constructor (res. the beginning of a destructor) is instrumented 
in the way described above. The start of a constructor and the end of a destructor 
is signaled by the according methods of _instrumented_class itself, as they are 
executed as first or last part of construction or destruction of the composed ob-
ject (given a proper ordering of the inheritance list – if there are other virtual 
base classes than _instrumented_class and if they are located deeper in the in-
heritance hierarchy, these are initialized before and destroyed later) 

Instrumentation of Attributes 

The mc4p tool implements instrumentation of attributes by creating a new 
method, called _report_attr(), for every class that contains at least one instru-
mented attribute. The _report_attr() function generates events that report the 
values of all instrumented attribute of this object. In order to do this the 
_report_attr() function in turn calls the _add_attr() method for each attribute. 
The _add_attr() function is defined by _instrumented_class or one of its descen-
dants. It produces an event, containing the current value of an attribute and it 
works similar to the parameter sensor described above. As the afterimage of an 
object-invocation should be reported, the _report_attr() function is called right 
before the call to the _end_method() method. Again, the various attribute values 
and the method termination event may be condensed into a single event. 

A similar mechanism as for observed attributes is used by mc4p to allow for 
instrumentation of global variables within a C program. A complete instance of a 
program can be regarded as a single object and the global variables as its attrib-
utes. Corresponding to _report_attr() and _add_attr() within C++ objects mc4p 
uses the free procedures _report_global() and _add_global() to report the current 
status of all instrumented global variables. These procedures are defined locally 
once per source file and they are called at the end of all procedures.  

Using mc4p 

For instrumenting a program, mc4p has to be inserted into the building process 
as shown in Figure 2.6. After a source file has been successfully compiled using 
the usual C/C++ compiler, mc4p has to be run on the output of the normal C 
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preprocessor. Mc4p’s output, the instrumented program, then has to be compiled 
using the normal C/C++ Compiler. 

C/C++ 
Preprocessor

C/C++ 
Compiler/ 

Linker

mcpp

C/C++ 
Source

Preprocessed  
Source

Instrumented  
Source Executable

Instrumentation 
Specification 

(optional)

Instrumentation 
Library 

instrumented

normal

 

Figure 2.6: The Building Process using mc4p 

Event Name Management 

Event names are generated in a global name space containing the system under 
test-, class-, and method- and attribute-identifier plus the event type as described 
above. These names are mapped to integers that are actually used during data 
transmission. The mc4p tool implements a name server for events as a separate 
server process and communicates with the server via RPCs. This allows for con-
current distributed compiler sessions that modify the same sub-tree of the name 
space, as it is common for a group of cooperating software developers. To allow 
for a persistent name space that survives independently of the server, the current 
state of the name space can be flushed to a file. 

An attempt to (pre-)compile a modified version of the same example code again 
will result in the same events identifiers for all events that are still in place. New 
events are added to the database automatically, but old events are never dis-
carded without user intervention. As event names are never deleted or changed 
dynamically every client of the name server is allowed to cache event names and 
mappings as needed without any invalidation mechanism. This will speed up 
event processing components significantly. 

Of course, the name server does not only resolve class and method names into 
event identifiers as requested by the mc4p during compilation. It also maps in the 
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other direction event identifier to classes and methods as required by all tools do 
event processing based on the object-oriented structure of the observed system. 

Example 

The mc4p tool has been implemented and tested with a large number of C++ 
programs. The preprocessor runs on Unix or Windows NT workstations. The 
largest test so far has been carried out by translating an application that includes 
the complete Microsoft Foundation Classes library (more that 50 000 lines of 
code) and instruments the derived application main window class. 

In the following a basic example of a mc4p-generated instrumentation is given. 
The code in Figure 2.7 shows a C++ implementation of the well known stack 
class in a rather simple implementation plus a derived class xstack that imple-
ments a stack with an is_empty() method. The classes stack and xstack, the pa-
rameter i of the stack::push() method, the attribute sp (the stack pointer of stack) 
and the free procedure main() have been marked to be instrumented. In order to 
keep the example simple the instrumentation has been defined within the original 
code by using the additional keyword instrumented. As long as no instrumenta-
tion is needed, instrumented is simply removed by the ordinary C++ preproces-
sor. 

Figure 2.8 shows the output generated by mc4p. There are a number of modifica-
tions, marked in boldface:  

• The inheritance list of all classes that include any instrumented code are 
modified to contain _inst_log as the first base class. In the case of the stack 
class the inheritance list is newly created while the list of xstack has been 
simple extended. The _inst_log class has been derived from the abstract 
class _instrumented_class. It implements the log style print-out of the pro-
duced events as shown in Figure 2.9.  

• All methods that are instrumented and not inherited from other classes now 
have an additional local variable _s of type _sensor or _sensor_constr with 
one or two integer parameters. Within the constructor and the destructor of 
these variables the methods of _instrumented_class _start_method() and 
_end_method() are called. The parameters of these _s varuables are the 
event_ids that are forwarded to the _start_method() and _end_method() 
calls. 

• All free procedures (in this case main()) are surrounded by calls to the pro-
cedures _start_procedure() and _end_procedure(). These procedures are not 
methods of _instrumented_class but free procedures themselves. Thus, they 
do not take this-pointers and can be used for instrumenting free procedures 
and static methods. 

• The additional method _report_attr() has been redefined in all instrumented 
classes to report the values of the instrumented attributes using _add_attr(). 
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In addition calls to _report_attr() are added to the exit sequence’s of all in-
strumented member_functions. The type identifier as a parameter of 
_add_attr() as described above is not yet implemented in the current version 
of mc4p, thus only binary copies of attributes are supported. 

• Finally, for every instrumented formal parameter mc4p has inserted a call to 
the _add_method_local(). It is executed in the start sequence of the func-
tions right before the call to _start_method() is done. 

• All inserted sensors receive an event identifier as parameter. The mapping 
between these identifiers and the semantics of the event is maintained in the 
mc4p event name database.  

#include "inst_log.h" 
 
const int MAXSTACKSIZE = 100; 
 
instrumented class stack { 
private: 
instrumented int sp; 
  int array[MAXSTACKSIZE]; 
public: 
 
 inline stack() {sp = 0;}; 
 inline ~stack() {}; 
 inline void push (instrumented int i) {array[sp++] = i;}; 
  int & pop (void); 
 virtual int pop (int &); 
}; 
 
int &stack::pop(void) { 

 sp--; 
 return array[sp+1];} 
 
int stack::pop(int &i) { 
 if (sp == 0) 
  i = -1; 
 else 
  i = array[--sp]; 
 return i;} 
 
instrumented class xstack: public stack { 
public: 
 int is_empty(void); 
}; 
 
int xstack::is_empty(void) { 
int h; 
 if (pop(h) != -1) push(h); 
 return (h == -1); 
} 
 
instrumented void main() { 
 xstack S; 
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 for (int pop=1; pop < 2; pop++) 
  S.push(pop); 
 
 while (! S.is_empty()) 
  S.pop(); 
} 

Figure 2.7: The stack example prepared for instrumentation with mc4p 

// some header code 
 : 
 : 
 
const int MAXSTACKSIZE = 100; 
 
class stack: virtual public _inst_log  { 
private: 
 int sp; 
 int array[MAXSTACKSIZE]; 
public: 
 
 inline stack(): _inst_log(0x1000, "stack") {_sensor_constr 

_s((_instrumented_class*)this, 0x1002); {sp = 0;}}; 
 inline ~stack(){_sensor_destr _s((_instrumented_class*)this, 

0x1003); {}}; 
 inline void push ( int i){_add_method_local(0x1004, &(i), 

sizeof(i)); _sensor _s((_instrumented_class*)this, 0x1005, 0x1006); 
{array[sp++] = i;}}; 

  int &pop (void); 
 virtual int pop (int &); 
inline virtual void _report_attr() const 
{ 
 _add_attr(0x1007, (void *) &(sp), sizeof(sp)); 
}; 
}; 
 
int &stack::pop(void){_sensor _s((_instrumented_class*)this, 

0x1008, 0x1009); { 
 sp--;{ 
 return array[sp+1];}}} 
 
int stack::pop(int &i){_sensor _s((_instrumented_class*)this, 

0x100a, 0x100b); { 
 if (sp == 0) 
  i = -1; 
 else 
  i = array[--sp];{ 
 return i;}}} 
 
class xstack: virtual public _inst_log,  public stack { 
public: 
 int is_empty(void); 
 
inline virtual void _report_attr() const 
{ 
stack::_report_attr(); 
}; 
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public: 
xstack():_inst_log(0x100c) {_sensor_constr 

_s((_instrumented_class*)this, 0x100d);}; 
}; 
 
int xstack::is_empty(void){_sensor 

_s((_instrumented_class*)this, 0x100e, 0x100f); { 
int h; 
 if (pop(h) != -1) push(h);{ 
 return (h == -1);} 
}} 
 
 void main(){_start_procedure(0x1010); { 
 xstack S;{ 
 
 for (int pop=1; pop < 2; pop++) 
  S.push(pop); 
 
 while (! S.is_empty()) 
  S.pop(); 
 
}_report_global(); _end_procedure(0x1011);} 
 
static void _report_global() 
{ 
}; 

Figure 2.8: The instrumented stack example 

Figure 2.9 shows a trace of a test run of the example program using a descendant 
of _instrumented_class that simply writes ASCII text into a log-file. In this case 
the timing of the program is completely dominated by the costs for the text out-
put. Sensor versions that directly use JewelNT user-level API for writing to the 
memory-mapped have been implemented and provide the desired low-
interference property [Bec99].  

To get a lower bound for the interference of the monitored program, the costs of 
a call to an empty sensor of _instrumented_class have been analyzed. On an Intel 
Pentium the Microsoft C++ Compiler generates 7 additional instructions per 
sensor. This includes the computation of the object’s this-pointer and the virtual 
call mechanism of the sensor’s method.  

void main ( ) () starts 
   xstack(0): xstack::xstack ( ) () starts 
   xstack(0): [int sp = 0x0(size 4)] 
   xstack(0): stack::stack ( ) () ends 
   xstack(0): [int sp = 0x0(size 4)] 
   xstack(0): xstack::xstack ( ) () ends 
   xstack(0): stack::void push ( int ) (int i = 0x1(size 4)) starts 
   xstack(0): [int sp = 0x1(size 4)] 
   xstack(0): stack::void push ( int ) () ends 
   xstack(0): xstack::int is_empty ( ) () starts 
      xstack(0): stack::int pop ( int & ) () starts 
      xstack(0): [int sp = 0x0(size 4)] 
      xstack(0): stack::int pop ( int & ) () ends 
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      xstack(0): stack::void push ( int ) (int i = 0x1(size 4)) starts 
      xstack(0): [int sp = 0x1(size 4)] 
      xstack(0): stack::void push ( int ) () ends 
   xstack(0): [int sp = 0x1(size 4)] 
   xstack(0): xstack::int is_empty ( ) () ends 
   xstack(0): stack::int & pop ( ) () starts 
   xstack(0): [int sp = 0x0(size 4)] 
   xstack(0): stack::int & pop ( ) () ends 
   xstack(0): xstack::int is_empty ( ) ()  
      xstack(0): stack::int pop ( int & ) () 
      xstack(0): [int sp = 0x0(size 4)] 
      xstack(0): stack::int pop ( int & ) () ends 
   xstack(0): [int sp = 0x0(size 4)] 
   xstack(0): xstack::int is_empty ( ) () ends 
   xstack(0): stack::~ stack ( ) () starts 
   xstack(0): destroyed 
void main ( ) () ends 

Figure 2.9: A trace with the inst_log class of the instrumented stack example 

Figure 2.10 finally shows a small part of the dump of mc4p name-server after 
processing the sample program. The entries are organized in a tree with five 
levels: 

1. The system under test (in this case “Defaul_SUT”). 

2. The class (here “stack” and “xstack”). 

3. The component-types (variable, base-class, constructor, method, event). 

4. Instances of the components (the actual variables, base-classes, constructors, 
methods), their instrumentation status (“i” = instrumented, “u” = not instru-
mented), and their first occurrence in the code (file-name and line number). 
In case of events this level describes the names of the entities that the events 
belong to (e.g. the method-names)). 

5. The event numbers and their semantics (start, end, value). 

 
0 Default_SUT 1012 
. . . 
1  stack  
2   Variable  
3    int’sp’ i:"test.cpp":7-7 
3    int’array’[’MAXSTACKSIZE’]’ u:"test.cpp":8-8 
2   Constructor  
3    stack’(’)’ u:"test.cpp":11-11 
2   Method  
3    ~’stack’(’)’ u:"test.cpp":12-12 
3    void’push’(’int’)’ i:"test.cpp":13-13 
3    int’&’pop’(’)’ u:"test.cpp":18-20 
3    int’pop’(’int’&’)’ u:"test.cpp":22-27 
2   Event  
3    stack’(’)’  
4     start_constructor 1000 
4     end_constructor 1002 
3    ~’stack’(’)’  
4     start_destructor 1003 
3    void’push’(’int’)’  
4     int’i’ 1004 
4     start 1005 



Time-Aware Systems 49 

4     end 1006 
3    int’sp’  
4     value 1007 
3    int’&’pop’(’)’  
4     start 1008 
4     end 1009 
3    int’pop’(’int’&’)’  
4     start 100a 
4     end 100b 
1  xstack  
2   Method  
3    int’is_empty’(’)’ u:"test.cpp":34-38 
2   Baseclass  
3    stack u:"test.cpp":32 
2   Event  
3    xstack’(’)’ 0 
4     start_constructor 100c 
4     end_constructor 100d 
3    int’is_empty’(’)’ 0 
4     start 100e 
4     end 100f 

Figure 2.10: A dump of the name space as generated by mc4p 

This information is kept persistent by the mc4p name server and it assures that 
event names a constant over the lifetime of a software project. Also it illustrates 
the amount of structural information that is extracted by mc4p.  

 

 

 

Figure 2.11: Sceenshots of a class-browser and a visual instrumentation tool 
based on the mc4p name server 
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Based on this information also graphical tools for class-browsing and visually 
guided code instrumentation have been developed as educational projects (sceen-
shots are show in Figure 2.11). 

2.4 Instrumentation at Middleware Level 
Before going into the details of instrumentation and monitoring of the middle-
ware level, it first has to be clarified what middleware actually is. In the IT-world 
there is a quite fuzzy understanding of this term and this results from the fact that 
"middleware" actually denotes three different categories of software [Rac01]: 

1. Presentation middleware only cares for displaying data remotely. A Web 
browser and server communicating via the HTTP protocol (hypertext transfer 
protocol) can for example be classified into this category. 

2. Database middleware is deployed to access database management systems 
remotely. For example, SQL requests being sent to the DBMS and transfer-
ring back the results to the client are a typical task for database middleware. 

3. Application middleware is used to distribute the application logic, and there-
fore functions as a general purpose programming platform for distributed ap-
plications. Its goal is to enable application programmers to build interacting 
components using middleware to abstract from given system details. 

For the remainder of this thesis the term middleware will be used the sense of 
application middleware. Among the various solutions for application middle-
ware, including PVM (message-based) or ONC or DCE (client/server-based), the 
focus is solely on object-oriented approaches like CORBA or DCOM. Therefore, 
the definition for middleware in this thesis is: 

Middleware: A software layer between operating platform and application that 
enables the interaction of potentially distributed objects, aiming at transparency 
and independence from the surrounding runtime environments. 

Since the rapid success of object-oriented middleware like CORBA [OMG95] or 
DCOM [Edd99] objects do not just reside locally inside of user processes but 
they are now visible entities in a distributed system. These middleware-objects 
are usually bigger than standard C++ objects, as they act as clients and servers in 
(possibly) cross-context or cross-machine invocations. Bigger means not neces-
sarily bigger in terms of code size or internal status (while a complete database 
can be hidden behind one interface object), but the execution time of middle-
ware-objects is usually big enough to justify a full-fledged remote invocation via 
the network. Even with today’s high-speed networks this is still in the order of 
some microseconds and thus several orders of magnitude larger than an intra-
context C++ invocation. Also for these objects client/server-style computing 
requires explicit assignment of network (RPC-style messages), memory (buffer-
space), and CPU resources (server-threads). This means middleware-objects as 
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units of distribution and scheduling are ideal entities for adjusting and adapting 
real-time behavior and thus they are also of special interest for monitoring in a 
time-aware system. 

The previous section has described how language-level objects can be instru-
mented using compiler techniques. Similar techniques could be applied for in-
strumenting middleware-objects as well. The interfaces of middleware-objects 
are usually defined in an Interface Definition Language (IDL) that is compiled 
into stub-code that is later liked against the implementation. A modified IDL 
compiler could insert sensor statements into the generated stub-code, just as 
mc4p does for C++ code. However, a major drawback of this approach is, that it 
can only be applied to source-code. One of the ideas of object-oriented middle-
ware however is the component model that allows to integrate third-party object-
code and problem-specific source code into one distributed application. Espe-
cially this integration of black-box third-party code introduces one of the biggest 
problems in object-oriented real-time computing, as also the timing of these 
components is not open for further analysis. Time-awareness through monitoring 
is an approach to tackle this problem. This and the fact that invocations of mid-
dleware-objects are routed through a common runtime-system demand and allow 
for a different kind of instrumentation. Like at the operating system level, a ge-
neric instrumentation of just a few important events of interest in the runtime-
system can provide the required information. The next section tries to identify 
these generic events of interest. 

2.4.1 The Activity Concept 
The basic abstractions provided by a distributed object-oriented middleware 
framework are the same as in an object-oriented language, namely classes, ob-
jects and (location transparent) method invocations. However, execution model 
in a distributed object-oriented environment differs from that of a local C++ 
program. In the local case the computation is driven by a number of threads. A 
thread starts in the context of a certain object and if this object invokes another 
object the thread switches into the context of this object. These invocations can 
be nested, but at any nesting level the thread (and its Id) identifies the complete 
chain of invocations that belongs to one top-level computation.  
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Figure 2.12: An activity originating from object A with nested invocations of 
objects B and C 

Things are different in a distributed environment. Here each object can have a 
different mapping of invocations to serving threads and this mapping changes 
each time another object is called. Without additional measures the pattern of 
object invocations in such an environment is flat and reveals no nesting hierar-
chy. From the pure functional point of view this causes no problems. However, 
in real-time-systems it is usually only the top-level computation that is associated 
with parameters like deadlines, periods, or priorities. Thus, for a correct execu-
tion it becomes important to know which top-level computation is responsible 
for a certain (nested) invocation. Transferring the thread model to a distributed 
system yields the concept of an activity: an activity in a distributed object-
oriented system is as a distributed sequence of possibly nested method invoca-
tions (see Figure 2.12). An activity branches from a top-level object and returns 
control to the same top-level object. It can contain nested method calls, each of 
which has well defined start and end points. By invoking other objects, an activ-
ity can cross object boundaries and site boundaries in distributed systems. Con-
sidering real-time requirements, the end-to-end timing behavior of an activity is 
clearly given by the execution times of the activities top-level method invoca-
tions. Thus, a real-time activity is an activity whose top-level method invocations 
are subject to real-time requirements.  

The activity concept (without considering monitoring and real-time aspects) 
already has been implemented in some distributed object-oriented systems and 
distributed transaction systems, e.g. [Cah93]. However, it is not part of the speci-
fication of neither CORBA nor DCOM. The first standard that contained it was 
the Real-Time CORBA specification [OMG99b, Sch00]. It states that an abstract 
activity is represented in an ORB by concrete entities: a message within a trans-
port protocol, a request held in memory, and a thread scheduled to run on a proc-
essor. These three phases are termed “in-transit”, “static” and “active” respec-
tively. Real-Time CORBA provides the ability to effect these three phases of an 
activity. It leaves the developer to delimit their concept of an activity by the way 
they coordinate these concrete entities using the interfaces specified. The Real-
Time CORBA Scheduling Service provides abstractions to work in terms of 
activities. 
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2.4.2 Monitoring Activities 

As activities are the units of timing specification and already supported by mid-
dleware-frameworks, they are also the natural units for being monitored. What is 
needed to capture the events of activities in a distributed object-oriented envi-
ronment?  

“Active” activities are executed by local threads. This means whenever the 
thread that carries an activity crosses an object boundary a sensor has to generate 
an event. In contrast to pure local invocations now it becomes important to keep 
track which invocation and which thread acts on behalf of which activity. Only if 
this mapping is recorded in the event trace, the complete invocation path of an 
activity can be followed by the monitor. This can be accomplished by storing not 
just the thread Ids in the event records but also "activity" Ids. However, as activi-
ties and their Ids are not maintained by the operating system (and in most envi-
ronments not even by the middleware layer) it is highly dependent on the system 
environment how these activity Ids are generated. Examples of how activity Ids 
can be added to a system are given below. 

From the functional point of view for middleware-objects the same types of 
events are of interest as for language-level objects: those that allow to trace the 
sequence of objects invocations. In the previous section the language level tool 
accomplished that by generating an event in just one object's context, either in 
the invoking or in the invoked object. However, when considering distributed 
systems it turns out that it is not enough. In the time between leaving one ob-
ject’s context and entering the other one the activity is “in-transit”. This delay 
cannot be assumed to be zero, as it was the case for local C++ invocations. It 
measures the delay introduced by the intermediate middleware and the network 
layer. In distributed applications it is often exactly this overhead that is of special 
interest, as it is an important parameter for object placement or the selection of 
the best copy of a replicated service. In order to measure this delay it becomes 
necessary to detect both events, when an activity is leaving of one object’s con-
text and also when it is entering the other one. This happens twice for each syn-
chronous object invocation: once for the request and once for the reply. Measur-
ing the time between the two events is a truly distributed measurement as both 
events are possibly recorded on different nodes. It is important to realize that 
pure local "round-trip" measurements cannot provide the same information be-
cause typically the amount of required processing resources is not equally dis-
tributed between the two directions. 

With the use of an object-oriented middleware layer invocations between two 
objects managed by this layer are redirected through the middleware. This sim-
plifies the task of placing the sensors significantly. Like for the instrumentation 
of the operating system it is enough to augment the system with a few generic 
sensors at those points in the middleware that are passed by all invocations. 
Similar to the introduction of activity Ids, this requirement was not foreseen by 
the initial middleware standards. Again, the implementation is dependent on the 
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actual system environment. In the next section implementation alternatives for 
CORBA based middleware will be discussed an in the following case study on 
the integrated monitoring tool MagicZoom a concrete implementation also for 
DCOM will be described. 

2.4.3 Instrumenting CORBA 
The concept of an activity as some kind of a distributed thread is not imple-
mented in a standard CORBA ORB. However, using the CORBA interceptors 
API allows to implement the concept of activities as an add-on.  

Logically, an interceptor is a transformer interposed in the invocation (and re-
sponse) path(s) between a client and a server object. Interceptors are intended as 
a generic mechanism for adding services to a CORBA-compliant object system 
in a portable manner. They are bound between client and server objects and they 
are derived from the interceptor interface defined in OMG IDL. CORBA defines 
two types of interceptors (see Figure 2.13): 

• Request-level interceptors: are used to implement services, which may be 
required regardless of whether the client and server reside on the same host 
or not. They resemble the CORBA bridge mechanism in that they receive 
the request as a parameter, and subsequently re-invoke it using the Dynamic 
Invocation Interface (DII). The ORB core invokes each request-level inter-
ceptor via the client_invoke operation (at the client) or the tar-
get_invoke operation (at the server). Request-level interceptors are in-
tended for services such as transaction management, access control, or repli-
cation. Services at this level process the request in some way. For example, 
they may transform the request into one or more lower-level invocations or 
make checks that the request is permitted. The request-level interceptors, af-
ter performing whatever action is needed re-invoke the (transformed) re-
quest using the CORBA Dynamic Invocation Interface. The interceptor is 
then stacked until the invocation completes, when it has an opportunity to 
perform further actions, taking into account the response before returning. 
Interceptors can find details of the request and the reply using the operations 
as defined in the Dynamic Skeleton interface of CORBA 2. This allows the 
interceptor to find e.g. the target object 1, operation name, context, parame-
ters, and (when complete) the result. 

• Message-level interceptors: When a cross-machine invocation is required, 
the ORB will transform the request into a message, which can be sent over 
the network. Here a second kind of interceptor interface is defined that ma-
nipulates messages. The ORB code invokes each message-level interceptor 
via the send_message operation (when sending a message, for example, 
the request at the client and the reply at the server) or the re-
ceive_message operation (when receiving a message). Both have a mes-
sage as an argument. The interceptor generally transforms the message and 
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then invokes send. Request-level interceptors are intended for services 
such as e.g. encryption. 

 

Figure 2.13: Interceptors in the CORBA 2 specification 

For the purpose of instrumentation especially the request-level interceptors are of 
interest. They allow to introduce additional sensor code that will be executed 
every time an object is invoked. The method request is fully accessible including 
its parameters and its environment. The environment of a request is a set of 
named parameters that are not necessarily all specified in the interface descrip-
tion of the invoked object. Environment parameters that are not required by the 
invoked object are simply ignored there. This enables the interceptor to add extra 
parameters to the environment, which are afterwards marshaled and sent with the 
other parameters. The interceptor adds a unique activity Id (a random number) 
into the environment, if it cannot find a definition in the environment of the re-
quest. This is done every time a request or a reply leaves through an interceptor 
and the sensor code within the interceptor includes this information at the client 
and at the server side in to the event record that reports on the object invocation. 
This way the activity can be traced on its way through the distributed object 
space.  

This basic instrumentation is generic for all objects implementation that are sup-
ported by the ORB. It has been first implemented using a predecessor of the 
CORBA interceptor interface, namely the filter mechanism of the IONA ORBIX 
ORB [Ion95, Ger97a]. ORBIX filters were introduced for the same purpose as 
interceptors later, but as they were an ORB-specific feature, their usage was 
limited to a small set of applications. 
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2.5 Case Study – MagicZoom 
The previous sections described the concepts and implementation issues required 
when monitoring object-oriented real-time systems at the different architectural 
levels. This section now focuses on an integration of the techniques into one tool. 
The tool named MagicZoom allows to monitor the various levels at the same 
time, to combine this information in one graphical presentation, and to "zoom" 
into the systems abstractions as required for the analysis of timing related prob-
lems. It combines the high level abstraction provided by object-orientation with 
the low level system view: on the hand, an activity can be seen as sequence of 
(possibly nested) method invocations that walk through an abstract object space. 
On the other hand, an activity is executed by threads that are scheduled on CPUs, 
that are subject to interrupts, that are blocked or preempted, and that are finally 
needed to understand and explain the timing behavior of the application. Magic-
Zoom monitors and visualizes the distributed execution path of an activity in 
terms of method invocations and returns while simultaneously revealing the 
status and execution times of the associated threads. MagicZoom is intended as a 
tool for developers that design, implement, and test distributed object-oriented 
real-time applications. However, while its graphical user interface addresses 
human users, a possible consumer of the provided information could be the run-
time system itself as described in Section 3. 

MagicZoom applies the monitoring concepts described in the previous sections. 
Therefore it is portable and applicable to any distributed object-oriented frame-
work that supports (or can be extended to support) the concept of activities. Re-
garding implementation, the monitoring components are generic and portable. 
The instrumentation however (i.e., the application of event-generating sensors in 
the target system), is system dependent. Here the instrumentation for DCOM on 
Windows NT is described [Moc00]. While DCOM has been specified as a plat-
form independent standard, and implementations for Unix, Linux, and other 
operating systems are available, the premier platform for DCOM is Windows 
NT. It was the first platform providing DCOM support, and since version 4.0, it 
contains the DCOM runtime-libraries in its standard distribution.  

As stated in [Cus93] "Microsoft® Windows NT™ Workstation is not a hard 
real-time operating system. Rather, it is a general-purpose operating system that 
has the capability to provide very fast response times, but is not as deterministic 
as a hard real-time system". Also, there is no "Real-Time DCOM" specification 
available. Why has DCOM/Windows NT been chosen as primary target for a 
monitor that aims at providing service to real-time applications?  

1. Because DCOM is the base for many commercial real-time projects. DCOM 
is established on the market as widely used product and there is a growing in-
terest in DCOM in the field of industrial process control. Industrial automa-
tion systems are getting more connected with higher level processes, the use 
of off-the-shelf components and hardware independent software standards 
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becomes a predominant factor for the marketing. All this makes DCOM an 
ideal candidate as basis for future developments in that field.  

2. Windows NT itself comes with many valuable mechanisms for soft real-time 
applications, like e.g. multimedia applications or online stock-trading. It pro-
vides preemptive multi-threading with special real-time priorities, a memory-
management that offers page-locking, and a kernel that is optimized for 
minimizing interrupt latency by the use of deferred procedure calls. And, last 
not least, the Win32 API provided by Windows NT acts as de-facto industrial 
programming standard. 

3. Real-time applications on top of a not completely predictable system-
platform can benefit even more from any kind of time-awareness. As there is 
inherently no static worst case timing analysis, there is an even bigger need 
for information on the actual behavior at runtime. 

4. Any system that uses an object-oriented middleware layer uses a standard 
non-real-time communication layer (like TCP/IP), looses its overall predict-
ability. Again, in such a standard distributed environment there is a need for 
information on the actual behavior at runtime. 

Since the applied system abstractions (activity, objects, invocations at the higher 
level, processes, threads, etc. at the lower level) are identical, the monitoring 
concept is applicable to Real-Time CORBA, too. In fact, activity handling in 
MagicZoom uses the same approach as the CORBA scheduling service of using 
names (strings) for identifying activities and objects. 

2.5.1 Monitoring with MagicZoom 
A user of MagicZoom controls a monitoring session from the central monitoring 
console with its graphical user interface (see Figure 2.14). This monitoring con-
sole is typically hosted on a dedicated node that itself is not involved in the 
monitored distributed activity. From this interface an experimenter initializes all 
involved nodes, i.e. he/she selects the event-types of interest and starts the event 
recording on these nodes. Now the distributed object-oriented program can be 
run. Each node records its local event stream, i.e. at least all object-related 
events. If explicitly selected by the experimenter, also thread switches, inter-
rupts, and user-level events will be traced. An observation ends by stopping the 
event recording from the MagicZoom user interface. Automatically, the event 
streams from all nodes are transferred to the central monitoring console.  
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Figure 2.14: The MagicZoom user interface 

In order to analyze the walk of an activity through the distributed object space, 
the experimenter opens a view called “DCOM-Trace” at the central monitoring 
console. An initially empty window appears and the experimenter gets a selec-
tion of all observed activities from which he/she can select the activities of inter-
est. These activities are presented in a Gantt-chart (see Figure 2.15, the Gantt-
chart at the bottom). 

The y-axis lists all objects visited by the selected activities and their called meth-
ods. Objects are identified by their user-defined names or, if such a name is not 
available, a system-generated name is used. Methods are simply named by their 
index in the virtual function table (as method names are only known to the com-
piler, not to the DCOM runtime system, it would require an additional name 
service to provide symbolic names here). Since the starting point of an activity is 
not canonically linked to an object, each activity is associated with a new 
pseudo-object called “S:<activity-name>”. It represents the activities initial 
method, similar to a “main()” in C++. On the x-axis, the global time from the 
synchronized clocks of the system is given. Each selected activity is represented 
by a line in the chart that walks through the different methods of the system’s 
objects (like a thread with a call stack in the local case). Areas of the line that are 
separated by small vertical markers depict different states of the thread currently 
executing on behalf of the activity. The thread can be executing in normal mode, 
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it can be waiting, executing an interrupt, or the CPU is idle (in the graphical 
interface these different states are visualized by different colors). For getting 
further information on the local behavior of an activity, for instance in order to 
find out by which other thread the thread of the activity has been preempted, an 
separate different view showing all threads on a node can be opened. 

 

Figure 2.15: The DCOM-Trace view of MagicZoom 

Figure 2.15 shows the visualization of a very simple example of a DCOM activ-
ity. It contains one selected activity, four objects, and one method(-number) per 
object. One of the objects is the pseudo-object “S:MZ Demo Act” that represents 
the initial method of the selected activity (since the user-defined name “MZ 
Demo Activity” has been assigned to the thread). Two of the three remaining 
objects have their system-generated names (“sain.81.134878” and 
“sain.81.137aa8”) and one has the user-defined name “SimpleObject”. The two 
objects with system-generated names are those of the class factory (DCOM in-
ternal helper objects) that are only required for constructing and destructing the 
“SimpleObject” object, which finally provides the user-defined functionality that 
the application wants to invoke. The chart further shows the invocation of 
method 3 of the “SimpleObject” object and the call to the final destruction 
(method 5 of the class factory object). In the given screenshot the view on the 
activity trace has been zoomed onto a short time-interval of overall about 100 
ms. The invocation of method 3 of the “SimpleObject” object that contains virtu-
ally no user-code already takes about 7 ms on a pair of a Pentium 233 MHz (cli-
ent) and a Pentium 133 MHz (server) machine with no other load. 

2.5.2 The Design of MagicZoom 
Figure 2.16 depicts the architecture of the components on one node monitored by 
MagicZoom. Basically, it comprises three components similar to those of Jew-
elNT, the instrumentation, a remote communication infrastructure (both one 
instance per monitored node), and a central monitoring console with its graphical 
user interface. The instrumentation includes the kernel driver and libraries. The 
kernel driver augments the kernel with the sensors for detecting the operating 
system level event and maintains the per-node event buffer. The libraries imple-
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ment the instrumentation of the DCOM middleware layer as described below. 
The remote communication infrastructure is responsible for controlling the moni-
toring and for retrieving the event traces from the event buffer, for buffering the 
data and for transferring it to the central monitoring console. This console col-
lects event traces from the nodes of the distributed system, synchronizes them, 
and merges them into a global view of the system. Finally, it is responsible for 
computing and displaying the activity traces. 
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Figure 2.16: Components of MagicZoom 

User-Level API 

The high level abstractions on which the monitoring of the distributed object-
oriented system with MagicZoom is based are objects and activities. For identi-
fying instances of objects and activities, concepts of object identifiers and activ-
ity identifiers are needed. This is especially necessary when system behavior is 
monitored: monitored information is presented with object identifiers and identi-
fiers that allow the experimenter to associate the monitoring information to the 
respective system entities. In order to make a generic design independent of the 
concrete representation of object and activities in a specific system, it is possible 
for the user to assign names (user-defined strings) to objects. These names are 
then displayed in the monitoring interface.  

Figure 2.17 depicts the programming interface of the MagicZoom activity moni-
tor. The function AM_set_object_name associates the object pointed to by 
the parameter obj_ptr with name given by the parameter object_name. 
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   AM_API void AM_set_object_name( 
  void *obj_ptr, 
  char *object_name); 
 

AM_API void AM_set_activity_name( 
  char *activity_name); 
 

AM_API set_user_event( 
  int user_param); 
 

Figure 2.17: Programming interface of MagicZoom 

A similar solution is applied for identifying activities. In terms of operating sys-
tems entities, an activity is represented by an initial thread executing a program 
in some process. Secondary threads in other (local or remote) processes are tem-
porarily added to the activity when executing method invocations on behalf of 
the initial thread (or on behalf another secondary thread that currently belongs to 
the activity). Note that secondary threads can (sequentially) work on behalf of 
different activities. In order not to overwhelm the user with these low-level sys-
tem issues, which in addition can change from run to run, the activity monitor 
allows to associate activities with user-defined names. This is the purpose of the 
function AM_set_activity_name in Figure 2.17 that has to be called by the 
initial thread of an activity and associates the name given by the parameter 
activity_name with that activity.  

Event Types 

The monitor distinguishes three event categories: 

1. the object-related events from the abstraction level of the distributed object-
oriented framework occur whenever an activity invokes (or returns) from an 
object, 

2. low-level system events such as thread switches and interrupts that relate to 
the scheduling behavior on a local node 

3. user-level events in the application code. These include events generated by 
the mc4p automatic instrumentation tool. 

The object-related events allow tracing an activity through different threads, 
nodes, objects, and methods. They are defined as follows: 

1. Outgoing call: a thread t on node n executing on behalf of an activity A in-
vokes some object with call-id i. The call-id is a unique number generated by 
the instrumentation that allows matching outgoing and incoming calls/replies. 

2. Incoming call: a thread t’ on node n starts executing a method m in an object 
O on behalf of an activity A with call-id i.  
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3. Outgoing reply: a thread t’ on node n ends executing a method m in an object 
O on behalf on an activity A with call-id i’.  

4. Incoming reply: a thread t on node n executing on behalf of an activity A 
receives a reply from some object with call-id i’. 

The implementation details of how the object-related events are retrieved from 
the DCOM runtime system are explained below. Low-level system events are 
retrieved from the operating system kernel by instrumenting that kernel (as de-
scribed in section 2.2). Finally, user-defined events are indicated with the func-
tion set_user_event in Figure 2.17. The application programmer can set the 
parameter user_param for identifying this event later on. The user-defined 
event allows the application programmer to mark specific points of interest in the 
execution path, e.g., code sections of interest within a method. Mc4p provides a 
subclass of _instrumented_class that uses set_user_event to record its 
events. 

Instrumentation of the DCOM-Middleware Layer 

The concepts of object and activity identifiers are the basis for gathering the 
object-related events from the system. For the convenience of the user, Magic-
Zoom allows to associate user-defined names with objects and activities for 
monitoring purposes. However, a system level representation of object identifiers 
and activity identifiers is needed, too. Since DCOM does not directly support the 
notion of globally unique object identifiers, a 3-tuple <server process site id, 
server process id, virtual address of the object in the server process> is used as 
system level unique identifier for an object. The virtual address of an object is 
the address of the object’s implementation of the IUnknown interface, the basic 
interface that every DCOM object must implement.  

Let us now consider how the DCOM system is instrumented in order to detect 
the object-related events. This will also reveal how the notions of activity and 
activity identifiers are introduced to DCOM. Invoked objects can reside either in 
the same process or in another (either local or remote) process - it is called "out-
of-process". Invocations of out-of-process objects imply changing the thread that 
is active on behalf of the activity. Special care has to be taken that the monitor-
ing system can keep track of the invocation under the activity id for ensuring that 
the involved thread are monitored as acting on behalf of the same activity. 

An invocation of an out-of-process object is implemented by a remote procedure 
call (RPC) that is executed between the stub object and the actual object. The 
RPC protocol used by DCOM basically is DCE RPC [Loc94] with the extension 
that some extra information is piggybacked on the RPC call/reply messages.  

Since its latest release DCOM defines in its API the ChannelHook interface 
that allows defining and extracting the extra information piggybacked to the RPC 
call/reply messages [Edd99]. By default, DCOM adds a CausalityIdenti-
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fier to each call and reply. This identifier remains the same whenever a call is 
executed on behalf of another call. It supports tracing of activities since the 
CausalityIdentifier can be used as internal identifier for the activity. 
The ChannelHook interface provides four functions ClientFillBuffer, 
ServerNotify, ServerFillBuffer, and ClientNotify that are called 
by DCOM when an RPC is made, an RPC comes in, an RPC reply is sent, and an 
RPC reply is received, respectively. These functions are called whenever the 
object-related events (see section 3.1) are to be generated. Hence, the required 
instrumentation of DCOM can be achieved by implementing the Channel-
Hook interface. As an example, Figure 2.18 shows the implementation of the 
ServerNotify function that generates the "incoming call" event. 

// Called in server just before a method is invoked 
 
void CChannelHook::ServerNotify( 
   REFGUID uExtent,  
   REFIID riid,  
   ULONG cbDataSize,  
   void* pDataBuffer,  
   DWORD lDataRep) 
{  

SChannelHookCallInfo *p_callinfo; 
 
if(uExtent == EXTENTID_MyHook &&  
   lDataRep == NDR_LOCAL_DATA_REPRESENTATION) 
{ 
 p_callinfo = (SChannelHookCallInfo *)&riid; 
 MYHOOK_THIS* data = (MYHOOK_THIS*)pDataBuffer;  
   
 MagicZoomNoticeOO( 

   MZ_EV_OO_SERVER_CALL,      // Event-Id 
   p_callinfo->uCausality,     // Activity-Id 
  object_id(p_callinfo->pObject), // Object-Id 
   p_callinfo->iMethod,      // Method-Id 
   *data); 
} 

} 

Figure 2.18: Generating the incoming call event with a ChannelHook 

The code shown in Figure 2.18 extracts the relevant extra information from the 
incoming RPC and stores it in the local event buffer of the monitoring system. 
The helper function object_id returns a pointer to the object’s IUnknown inter-
face. The other functions of the ChannelHook interface are implemented in a 
similar way, yielding a complete instrumentation of the object-related events in 
DCOM for out-of-process invocations, including the information on the over-
head introduced by the RPC system.  

The current implementation of the DCOM instrumentation does not generate 
events for invocations that do not cross process boundaries. These calls are exe-
cuted just like simple C++ invocation and information about them is not neces-
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sary for keeping track of activities. They are instrumented at source code level 
using the mc4p tool. 

Tracing Activities 

The object-related events are recorded in the different traces from the various 
machines involved in the object-oriented computation. Now, how is information 
of distributed activities extracted out of this data? The different traces are first 
transferred to the central monitoring station and then projected onto the same 
global time axis. This adjustment of the local time stamps is done as described 
above for JewelNT in subsection 2.2.2. In the next step, all recorded event 
streams are scanned for object-related events. The collected activity-ids from 
these events together with the involved object-ids are stored in a separate look-
up table that is used for preparing the visualizing chart. The table stores any user-
defined name that the application has assigned to one of these instances as well 
as the thread that contains the first occurrence of an activity. 

If now the experimenter selects a certain activity A for display in the O-O Trace 
view, the algorithm depicted in Figure 2.19 collects the activity trace information 
SA for this activity from the various event streams. It is executed once for each 
monitored activity. Basically it creates the activity trace information SA by fol-
lowing the thread between the object invocations, as it is the implicit vehicle of 
an activity, and following the explicit activity-ids across process and machine 
boundaries. SA contains all events from the different nodes that happened during 
the time the activity was active on that node. The visualization uses this informa-
tion to present the activity, its execution status and the objects it has invoked. 
Note that in step 7) a special error indicator is set if an activity invokes an object 
on a node that has not been monitored. In this case, the visualization shows a 
dashed line until the call returns, which indicates this condition to the experi-
menter. 

1) t (the current thread) := NULL 

2) Sc (the current event stream) := event stream that contains the first oc-
currence of A 

3) SA (the event stream for activity A) := empty 

4) skip all events from Sc until the first occurrence of a DCOM-event e with 
activity-ide equals A 

5) t := thread-ide 

6) copy next event e from Sc to SA 

7) if thread-ide = t and e is an outgoing invocation with call-ide = i find 
other event Streams S’ for an event e’ where e’ is an incoming invoca-
tion with the activity-ide’ equals A and call-ide’ = i; if found skip all 
events before e’ in S’; Sc = S’; t := thread-ide’ ; continue with 6); if not 
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found (the node hosting the object has not been monitored) copy a spe-
cial event eerror to SA and skip all events before the next incoming reply 
event e’’ in Sc with activity-ide’’ equals A 

8) if thread-ide = t and e is an outgoing reply with call-ide = i find other 
event Streams S’ for an event e’ where e’ is an incoming reply with the 
activity-ide’ equals A and call-ide’ = i; if found skip all events before e’ in 
S’; Sc = S’; t := thread-ide’ ; continue with 6) 

9) if Sc is not empty continue with 6) 

10) end 

Figure 2.19: Algorithm for constructing a global activity trace 

2.5.3 Summary 
The MagicZoom allows for the tracing of activities in object-oriented applica-
tions while simultaneously revealing and visualizing the CPU scheduling of the 
threads that execute on behalf of the activities. Being a valuable tool for the 
development of distributed object-oriented real-time applications, it also com-
plements the Real-Time CORBA approach that specifies scheduling support for 
distributed activities. 

MagicZoom has been implemented in the context of DCOM. Although lacking a 
clear concept of global object identifiers, DCOM has turned out to be a suitable 
implementation vehicle. Especially the concept of ChannelHooks has directly 
supported the instrumentation of DCOM and allowed for the introduction of the 
concept of distributed activities into DCOM. DCOM is of major interest in in-
dustrial process control systems and MagicZoom has been applied to perform-
ance and real-time related problems in a DCOM-based distributed factory auto-
mation system. 
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3 Real-Time Systems 
The previous chapter discussed time-aware systems that use monitoring to get 
information about their own timing. While these systems have the system-
supported infrastructure to react on time-related problems and to adapt to an 
actual timing behavior, they do not yet fulfill the basic requirement of real-time 
systems. The time-awareness in itself does not provide any guarantees that a 
specified timing behavior is accomplished. It does not include any mechanisms 
for exploiting the acquired knowledge about its own timing. It is still up to the 
application or to the designer of the system to take advantage of the newly 
gained knowledge and to implement a strategy for achieving the final goal of any 
real-time system, namely to provide guaranteeing timely correct behavior. This 
chapter discusses how time-awareness can be utilized to accomplish these guar-
antees event in an environment as described in the introduction where real-time 
and non-real-time objects interact in one application.  

Section 3.1 of this chapter extends the monitoring techniques presented in the 
previous chapter towards a system architecture that can provide these guarantees. 
It first describes the general problems with obtaining timing bounds. It argues 
that the abstraction of worst case timing assumptions, as adopted by the vast 
majority of previous publications on time-critical computing, leads to a very 
limited view on real-time systems. This limited view excludes the efficient use of 
modern hardware as well as many of the well-known features of object-oriented 
programming. In order to broaden the scope of real-time systems, a task-
classification is presented that introduces a category of soft tasks. These soft 
tasks allow for a tradeoff between timeliness and functionality. The TAFT-
Scheduling approach is presented that implements a scheduling that is aware of 
this tradeoff. TAFT-Scheduling relies on up-to-date timing analysis provided by 
a monitoring component. In section 3.2 the concept of Expected Case Execution 
Times (ECETs), the basis for providing timing estimates for the TAFT-
Scheduler, is introduced. The remainder of this section discusses algorithms for 
an efficient analysis and prediction of ECETs, extends the concept towards an 
early detection mechanism for probable timing faults, and describes the tradeoff 
between the achieved granularity of ECET analysis and the required resources. 
The implementation architecture for the TAFT-Scheduler in general and espe-
cially the components of the online monitor with ECET-analysis are presented in 
section 3.3. Section 3.4 concludes the discussion of the tools by providing per-
formance figures that prove the feasibility of the concept. Finally, in section 3.5 
the general applicability of the presented algorithms and implementation struc-
tures is illustrated by a study that applies the monitoring and event processing 
components to a slightly different problem in object-oriented real-time comput-
ing, namely the online checking of formal timing constraints.  
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3.1 Providing Timing Guarantees 
In a real-time system, it is mainly the job of the scheduler to guarantee timely 
correct behavior. It assigns the required resources to the specified tasks and de-
termines whether these will meet their specified timing in all possible executions 
of the complete systems. The required resources certainly include the computing 
power, i.e. the CPU, but may include also network bandwidth, memory, access 
to critical regions, and any kind of physical resources attached to the system. In 
general the complexity of a scheduler’s job grows exponentially with the number 
of tasks. In the past, a lot of work on scheduling has been done and the most 
relevant results for current real-time systems are based on more or less rigid 
constraints on considered the tasks and resources [But97]. Often a very limited 
set of resources is considered and the most commonly used scheduling algo-
rithms, e.g. RM (Rate Monotonic) and EDF (Earliest Deadline First), consider 
the CPU-resource only. All these scheduling algorithms have in common that 
they need a set of attributes of the tasks to be scheduled in order to perform a 
schedulability analysis, i.e. a test that determines whether a given set of tasks can 
fulfill its timing requirements or not. The attributes comprise at least the period 
(in case of periodic tasks), the release time, and the deadline of a task. The values 
for these attributes can be extracted from the specification of the system. One 
other important attribute cannot be determined so easily: the execution time. 

3.1.1 Worst Case Execution Times 
As the actual execution time depends on the current state of the system that is 
hardly known in advance, schedulers usually base their planning on the worst-
case execution times (WCET) of the tasks. The WCET is the maximum execution 
time that an arbitrary instance of the task ever needs until completion. 

More formally: Let t be an instance of a periodic task T. 

=:tET The CPU-time instance t needs until completion in the given environ-

ment.  

The CPU-time includes only the time when the task is assigned to run on the 
CPU. It does not account for any queuing-time or for any overhead introduced 
by the executing environment. With this definition the WCET of a task T is given 
by: 

{ }tTtT ETMaxWCET ∈=:  

While the WCET of a task is usually also given in the specification, there is no 
constructive approach that can generate code for a task with a given functionality 
and that can guarantee a fixed WCET. Therefore, an iterative approach is taken. 
The code is implemented and then it is determined whether this implementation 
can meet the requirements. If not, either the specification of the WCET is adapted 
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or the implementation or the execution environment is modified in order to 
match specification and reality.  

This approach needs a reliable method to determine the WCET of a task. The 
straightforward approach would be the analysis of the program code that 
searches for the longest possible path in a task’s execution and accounts for its 
execution time. However, in real life this imposes more and more problems and 
most programming environments do not provide the tools for this kind of analy-
sis. This is because: 

• A programming language that can be statically analyzed for WCETs neces-
sarily has to impose severe restrictions on the expressiveness of its state-
ments. Loops must be bounded and recursion must be restricted in depth. 
Thus, also dynamic data-structures are restricted. Trees or lists must have a 
fixed depth and length and it is impossible to manage an object-space of 
previously unknown size. In dynamic systems that schedule tasks dynami-
cally at runtime, it is possible to give a function for a task that computes its 
WCET depending on the current system status. However, usually it requires 
additional effort from the programmer to provide the knowledge for this 
function. 

• Another problem is that WCETs are highly system specific. The WCET of a 
program does not only depend on its logical structure but also on the com-
piler, the processor, and the system environment. Thus, while there are some 
approaches to compute WCETs with only the source code and some system 
knowledge as input, most attempts to determine the WCET rely on the de-
tailed knowledge of the processor, the source code, and the compiled object 
code. But this is still not sufficient. The characteristics of a single system, 
like its clock speed, its bus architecture, its memory access behavior, and its 
DMA controller, have significant and often non-linear impact on the timing 
of a program. Thus, it is impossible to argue about WCETs without a spe-
cific machine in mind. 

• Another problem is the increasing complexity of today’s hardware architec-
tures. Much of the basic work on WCET analysis in the past has been done 
on M68000 machines, which had nearly constant execution times per in-
struction. This means, from the timing point of view a pretty simple model. 
However, all modern processors make intensive use of at least two levels of 
caches (instructions and data), internal pipelining and parallelism, branch 
prediction, and speculative execution. A model that tries to cover all these 
features can become about as complex as the hardware itself. An model that 
ignores only one of these architectural features can easily lead to a massive 
overestimation of the actual WCET (e.g. 275% for data caching as shown in 
[Kim99]). 

• Even with a perfect model of the executing machine, it becomes more and 
more difficult to give reasonable bounds for the WCET of a piece of code. 
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The speedup of processors in the last years does not mainly result from 
faster transistors, but from a better usage of parallelism and locality. The 
current state of the machine has a big impact on the execution time of the 
next instruction. However, it is hard to determine the dynamic state of the 
computation in advance during static analysis. Modern processors are not 
built for constant execution times, but for a high probability of a maximum 
execution throughput. This and the two prior issues lead to the general ob-
servations that:  

1. It is really hard to determine how long a single instruction takes in a cer-
tain execution context and  

2. the difference in the execution time between the worst case and the aver-
age case may be in the order of 10.  

The first observation means that it is even more difficult to build a WCET 
analyzer than it was ten years ago and the second observation tells that even 
a good tool will provide WCET figures that are far apart from the realistic 
execution times of a running application. Drastically spoken, this means that 
real-time systems that rely only on WCETs will not benefit a lot from the 
current development of new processors.  

• Finally, object-orientation and, based on it, component based programming 
impose another major problem on WCET analysis. Using existing (or even 
third-party) components in real-time applications is difficult because the 
timing behavior of the components must be known. While implementation 
hiding isolates module implementations and eases their integration as it al-
lows matching interfaces easily, it ignores the fact that for execution time 
analysis knowledge about the implementation at the lowest possible level is 
required. Polymorphism and late binding [Boo91] (virtual methods in C++) 
impose another problem. As in an object-oriented environment the code that 
is actually being executed can be determined at runtime, WCET analysis has 
to take into account all possible implementations. 

If it so hard to get reasonable bounds for the WCET of tasks, especially in object-
oriented systems, what can be done? How can the benefits of object-oriented 
software development and new processor architectures be transferred into the 
real-time domain? The answer heavily depends on the type of application and 
especially on the class of tasks that are considered. 

3.1.2 Task-Classification 
Classically, real-time tasks have been divided into “hard” and “soft” tasks. How-
ever, to capture both the functional and timing behavior, this scheme is insuffi-
cient. In [Kai99] a classification of real-time tasks is given that will be used in 
the following to identify those tasks that are candidates for a real-time schedul-
ing beyond the restrictions of a full WCET analysis: 
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1. Hard Tasks: The term hard task is well known in real-time literature. It 
denotes all those tasks, where it is mission-critical that these tasks are exe-
cuted and those they meet their timing requirements. Any timing-fault of a 
hard task will lead to a non-acceptable failure of the whole system, depend-
ing on the embedding system with possibly catastrophic consequences. The 
timely correct execution of hard tasks must be guaranteed by the real-time 
system and when executed they must not fail. A typical example of a hard 
task is the brake-by-wire control in an automotive. 

2. Essential Tasks: Similar to hard tasks essential tasks also must not violate 
their timing requirements. Essential tasks are generating the computational 
progress of the application and once they are started, they have to be treated 
like hard tasks. However, in contrast to hard tasks, there is some flexibility in 
when they are executed. The real-time system can decide to delay the execu-
tion of an essential task until it can guarantee the resources for a successful 
execution. Usually, there are still requirements on the maximum allowed de-
lay or the overall rate of executions. The notion of essential tasks has been 
first introduced by Stankovic and Ramamritham in the Spring kernel [Sta89]. 
A classic example of an essential task is the landing-control of an aircraft. It 
has to be executed in the near future and once the task (or a set of cooperating 
tasks) has been started it has to be completed successfully.  

3. Soft Tasks: The term soft task is also often used in real-time literature. How-
ever, its definition is usually quite fuzzy. In many papers the term soft task 
only means not a hard task, including all kinds of tasks ranging from essential 
to non-real-time. A common understanding is that a soft task might fail to de-
liver the desired functionality within the specified time. In order to distin-
guish the functional and the timing dimension, in [Kai99] a division into 
"soft" and "best-effort" tasks is proposed. With this definition, a "soft task" is 
a task that has to meet its timing specification, but it has the option to provide 
functional degraded behavior. An important constraint remains: the result of 
a soft task must not violate the safety constraints of the complete system, i.e. 
it is allowed to provide no computational progress, but it must not leave the 
system is an erroneous state. When looking closer to tasks that are considered 
to be hard real-time, it turns out that many of them an actually soft tasks in 
the sense of this definition. Often, it is acceptable and also more cost-
effective to use a smaller sized system that might fail in e.g. one percent of its 
task executions than to use a huge over-sized system that handles even the 
worst case. This kind of sporadic degradation of functionality might be toler-
able if the system still maintains a basic level of functionality and safety by 
guaranteeing a hard real-time core. Typical examples of soft tasks are all 
kinds of "any-time" algorithms that provide increasingly better results for the 
same problem, depending on the amount of execution time they can use (like 
e.g. a chess program). Also media-streaming applications often reveal soft 
task behavior as they either drop images of a video-stream or reduce the reso-
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lution of the audio or video signal in response to insufficient computing or 
networking resources. 

4. Best-effort Tasks: Finally, best-effort tasks are those tasks that always pro-
vide full functionality, but are allowed to execute beyond their optimal com-
pletion time (i.e. their "deadline"). The real-time system will try its best to as-
sign enough resources to these tasks to make them meet their timing require-
ment, while it does not provide guarantees. The idea of assigning a value 
function [Jen85] to each task that expresses the value of a completed task at a 
certain point in time can be applied to express the overall value of a run of a 
system of best-effort tasks. Typically, e.g. all kinds of timing requirements 
that are expressed for (Web-based) user-interfaces of business-applications 
can be categorized as being best-effort tasks. 

All tasks that have no explicit timing specification and that should just be exe-
cuted “as fast as possible” are “non-real- time” tasks and will be not considered 
in this context. 

Regarding this classification hard and essential tasks are not good candidates for 
diminishing the requirements on WCET analysis. As these task have to provide 
full functionality in time and a (timing) fault of these tasks has possibly catastro-
phic consequences, there is no alternative to a full schedulability analysis (in-
cluding WCETs). On the other hand, best-effort tasks don't need the strict WCET 
attribute. For a successful scheduling of best-effort tasks it is enough for the 
scheduler to get stochastic values for their execution times. Sporadic failures in 
meeting their optimal completion times will not reduce the overall value of the 
systems significantly. Only permanent timing errors will degrade it beyond an 
acceptable quantity.  

Now, what about soft tasks, the remaining category? Does a scheduler need the 
WCETs of these tasks in order to guarantee the safety of the system? Not neces-
sarily. It can use probabilistic timing assumptions for scheduling the functional 
part and find a way to deal in time with the situation when a really bad case hap-
pens! It is not required that each execution of a task is successful. It only has to 
be guaranteed that the effects of a termination with degraded functionality of one 
instance do not cripple the systems overall state nor the timing of the remaining 
tasks. Also, the scheduler should ensure a considerable amount of successful 
executions of task instances. Otherwise the computational progress of the system 
is in danger. Once the system can assure this, the soft task concept enables a 
large quantity of currently not real-time capable code to work in a predictable 
manner under timing constraints. 

In order to implement this idea three issues have to be resolved:  

1. The tasks have to be organized in a manner that allows to separate the hard 
real-time core (that ensures a consistent system state) from the functional 
part,  
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2. the scheduler has to be aware of this separation and schedule them accord-
ingly, and 

3. good timing estimates are required that enable the scheduler to spend 
enough resources on the functional parts in order to ensure computational 
progress. 

The Time-Aware Fault-Tolerant (TAFT) scheduling approach, presented in sec-
tion 3.1.4, addresses these issues and, thus, is capable of handling soft tasks in an 
adequate manner. It uses time-awareness to estimate the actual resource require-
ments of the functional parts. In order to handle this quantity, it uses a newly 
introduced property of a task, its Expected Case Execution Time. The notion of 
this property is formalized in the following section.  

3.1.3 Expected Case Execution Times 
Roughly speaking, the Expected Case Execution Time (ECET) is a measure for 
the time that instances of a task need in most cases for a successful completion.  

Let t be an instance of a periodic task T.  

=:, ptECET the CPU-time that has to be assigned to instance t in order get a 

probability of p that t is completed. 

Again, the CPU-time includes only the time when the task is assigned to run on 
the CPU. Similar to the definition of WCETT also the ECETT,p of a task T can be 
defined as: 

{ }ptTtpT ECETMaxECET ,, : ∈=  

This property of a task denotes the time the scheduler has to assign to each in-
stance of T in order to achieve an overall probability of successful completions 
of at least p. Note that, WCETT is an upper bound for ECETT,p as even for p=1 all 
instances of T will complete within WCETT.  

In contrast to WCETT and ECETT,p, which are static properties of a Task, ECETt,p 
is dynamic. It is not only dependent on the code to be executed by the task T 
(and its possible set of parameters) but also on the system’s state and the envi-
ronment at the time T is executed. This means that the ECETT,p may change over 
the live-time of the system and, if the scheduler can handle dynamic changes in 
the task descriptions, it is exactly the quantity the scheduler needs. As it de-
scribes the requirements of the a single instance, the scheduler can adapt to the 
current behavior of the system’s tasks. In general, the task of the scheduler will 
become too complex if it has to use new timing estimations for each instance. 
However, the “locality” of ECETs can be expected to be high. This means, in 
many cases the ECETt,p will change marginally from one instance of T to the 
following. Especially, this is true for all T that have no or only a small data-
dependency of their execution times. This is also true for tasks that operate on 
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dynamic data where the amount of data is increasing or decreasing slowly. The 
assumption still holds for many cases of changes in the environment, e.g. varying 
physical properties of sensors or actuators (e.g. caused by their increasing age) or 
changes in the overall load on the system. In case of transient errors (like e.g. 
message loss in the network and a repeated computation) this is surely not the 
case, but these cases can be regarded as equally distributed over all executions. 
The case that the ECETt,p is monotonously increasing is pathological because 
either the task is unusable in a real-time system as it will exceed all bounds or 
the value will converge towards a fixed time. 

The ECETt,p can be derived from a discrete probability density function. Con-
sider a density function ft for an instance t of task T 
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where m = WCETT, (given that T has some WCET) with the interpretation that 
ft(x) is the probability that the execution time of the task instance is exactly the 
discrete time x. From this function ECETt,p can be computed by 
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This function is depicted in Figure 3.1. The points mark the values of the discrete 
probabilistic density function ft and the shaded areas represent the sum of the 
probabilities up to that execution time (i.e. the probability distribution). This sum 
exceeds the given probability p for the requested ECETt,p on the execution time-
axis (the dark shaded area). This is the p-quantil of the distribution. 
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Figure 3.1: Computing the ECETt,p from a probabilistic density function 

However, ECETt,p is not yet a useable quantity for a real implementation of a 
scheduler as it is a probabilistic quantity that is not available in a concrete sys-
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tem. The transition from a probabilistic to a statistic quantity is required. In order 
to estimate ECETt,p for the next instance t of task T it should be a good approxi-
mation to look at the most recent executions of instances of T. This leads to the 
definition of ECETt,k,n. It denotes the time in which a specific amount of previous 
instances of the same task has succeeded. 

=:,, nktECET  The minimal execution time that was needed to successfully com-

plete at least k out of the last n executions of instances of a task T before t. 

If the assumption of locality is true, then ECETt,k,n is a fairly good approximation 
for ECETt,p with p=k/n. ECETt,k,n can be computed from the statistical density 
function in the same way as ECETt,p has been derived above from the probabilis-
tic density function. All that is required is the density function of the n most 
recent executions. This function can be obtained easily from a real system by 
online monitoring. This means, the ECETt,k,n is a good estimation for scheduling 
decisions of soft tasks and it can be made available in a real system. 

3.1.4 TAFT Scheduling 
The scheduler is the crucial component of a real-time system. It has to assign the 
resources to the tasks such that their timing requirements are met. Given an envi-
ronment, where no reliable bounds for the WCET of tasks are available, but there 
is an understanding of soft tasks as described in subsection 3.1.2 and support for 
determining ECETs as described in the previous subsection. What is needed is a 
scheduling component that is capable of handling uncertain, possibly wrong 
timing parameters due to their estimated nature and dynamically changing be-
havior. This can be done by trading optimal functionality for timeliness, a well-
known strategy in fault tolerance. Fault-tolerant mechanisms can be used to 
handle timing faults such that deadlines are still met. A timing fault occurs 
whenever the actual execution time of a task differs from its estimation. This 
idea lead to a system that is able to adapt online to changing timing parameters 
of the executed tasks: TAFT. 

The Time-Aware Fault-Tolerant (TAFT) scheduling system consists of two ma-
jor components: the Fault-Tolerant (FT) scheduler that enforces predictability 
and the Time-Awareness (TA) components, i.e. the monitor that is responsible 
for providing the required ECETs. The first ideas, the design of the TAFT sched-
uler, as well as reports on its usage in a concrete application example have been 
published in [Ger96a, Net97a, Net97b, Net98, Net01]. 

Fault-Tolerance  

FT-Scheduling is based on the notion of a TaskPair (TP). Each task is designed 
as a TaskPair (TP). A TP constitutes a MainPart (MP) and the ExceptionPart 
(EP) [Str95]. From the scheduler’s point of view, both parts are treated as sepa-
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rate scheduling entities having their individual timing parameters. The minimal 
functionality of the EP is to ensure that the respective TP leaves  

• the controlled application in a fail-safe state and  

• the controlling system in a consistent state.  

This reflects the above-mentioned fault-tolerance aspect. The deadline of the EP 
is identical with the one of the whole TP (see Figure 3.2). Its timely completion 
is guaranteed by the scheduler by explicitly reserving the necessary resources 
(e.g. the complete CPU time needed). Thus, its timing parameter ”execution 
time” can be interpreted as a WCET. This is reasonable because the EP usually 
comprises only a few, a priori determined system operations. In contrast to ex-
ception handling mechanisms known for other real-time programming environ-
ments, the scheduler guarantees the completion of the EP before the deadline of 
the TP, not, as usual, only as a best-effort task after the MP failed. Scheduling 
algorithms for a dynamic planning of TaskPairs are described in [Str95] and in 
[Kri97]. The latter calls the same concept “Primary and Alternate” tasks and 
limits the periodicity of TaskPairs (a base period multiplied with a power of 2). 

Time

MainPart ExceptPart

Deadline
Exception

 
Figure 3.2: A TaskPair 

This means, the fault-tolerance aspect of TAFT is provided by the EP of the 
respective TP. Whether more can be done than restoring a consistent and/or fail-
safe state is very much application dependent. There are quite a lot of task types 
that are amenable to a fault-tolerant approach. For such tasks the EP is able to 
deliver a result that is still acceptable as output for the whole TP. To give an 
idea, a sketch of some typical examples of such types of application tasks are 
given: 

1. Tasks having two versions: a primary and an alternative [Net96]. The result 
of both versions is acceptable. They differ, however, in that the primary ver-
sion provides a better quality of service, whereas the timely execution of the 
other one can be guaranteed. In this case the MP would represent a best effort 
approach to maximize the resulting quality of service. It is aborted when it is 
time to allot the respective resource to the EP in order to ensure that the dead-
line is met. 

2. Iterative tasks, producing an output the quality of which is the higher the 
longer they run. Many tasks having this property can be stopped early and 
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still provide useful output. Their quality is usually a monotonically non-
decreasing function of the execution time. It is the job of the EP to evaluate 
the outcome of the corresponding MP and to initiate the appropriate actions 
to be done. 

3. Best-effort tasks where, as the name implies, meeting of respective deadlines 
is not essential to the application. However, they do deal with time-varying 
data meaning that if not terminated timely their value for the application de-
creases and eventually will become useless. The goal in scheduling is to 
maximize the cumulative value, i.e. the sum of the values of the completed 
individual tasks. 

The principal difference to conventional software fault tolerance measures is that 
in the TAFT approach exception handling is done as part of an entity, which is 
under the control of the real-time scheduler. 

Time-Awareness 

The MP contains the real application code and this is the code that is usually 
critical in terms of unknown or useless WCETs. At this point time-awareness 
becomes important. Execution times of MPs, by default, are interpreted as 
ECETs. The task-internal deadline of a MP is computed as the deadline of the 
corresponding TP minus the WCET of its associated EP.  

In order to guarantee the timely execution of tasks, each newly arriving task has 
to undergo an acceptance test. Its outcome is positive, if the ECET of its MP plus 
the WCET of its EP can be reserved by the scheduler prior to the deadline of the 
TP. The approach taken by the adaptive TAFT scheduler to cope with the unreli-
ability of a priori defined task execution times is to adjust its behavior dynami-
cally in order to achieve a predictable overall behavior. More precisely, this 
means that the time reserved for the MainPart depends on the ECETs actually 
measured in the running system. It is still assumed that the WCETEP of an Excep-
tionPart is known, but this is not a severe restriction, as it is assumed to be very 
short. Thus, even a bad and very pessimistic execution time estimation should 
not lead to resource requirements that are comparable with those of the ordinary 
task (ECETMP >> WCETEP). This approach is viable if WCETT > ECETMP + 
WCETEP. This means, the WCET of t is greater than its expected execution plus 
the time for a possible emergency procedure. 

The behavior of the scheduler as described so far ensures that deadlines of Task-
Pairs are never violated even if there is only a partial knowledge about their 
timing. But what happens with TAFT scheduling in overload situations, when 
there exists no schedule that can execute all requested tasks in time? As in other 
scheduling algorithms here the notion of "importance" (or "value") of a task 
comes into play. The scheduler has to guarantee that the executions of tasks are 
canceled in the reverse order of their importance. In TAFT scheduling the prob-
ability p (i.e. k/n) in ECETt,p is a parameter that can be used to express the impor-
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tance of a task. As p raises towards 1, ECETT,p converges towards WCETT. In the 
case of overload, scheduled TaskPairs with a value of p close to 1 will still re-
ceive enough guaranteed resources to successfully complete the MP (i.e. to 
achieve computational progress), while those with a lower value of p will proba-
bly run into more exceptions, resulting in degraded (or even no) computational 
progress. 

3.1.5 Related Work 
The adaptive, measurement-based scheduling approach of TAFT is related to a 
number of different areas in the real-time research, namely analytic WCET-
analysis and its limitations, techniques for measurement-based timing analysis, 
other approaches that use online feedback of monitoring data in real-time sys-
tems, adaptive object-oriented systems in general, as well as real-time scheduling 
techniques that explicitly address fault-tolerance mechanisms. These areas of 
related work are covered in the following subsections. 

Analytic Approaches for WCET Analysis 

The basic work on WCET-analysis has been published in [Kli86] and [Pus89]. 
Kligerman and Stoyenko present in [Kli86] a restricted language, Real-Time 
Euclid, which was designed to make schedulability analysis possible under a 
number of assumptions about the system and process behavior. In [Pus89] 
Puschner and Koza propose the Maximum Execution Time (MAXT) concept, i.e. 
an extension to standard programming languages, which introduces bounded 
loops, exceptions, markers and scopes. Bounded loops are introduced that must 
either have a time limit or a limitation on the number of iterations. The basic idea 
of both research groups was to determine runtime boundaries of a program at 
compile time by avoiding any recursions, function variables, or jumps. If these 
conditions are satisfied by the software, the WCET can be calculated for basic 
constructs by calculating the execution time for the corresponding underlying 
machine instructions. However, this approach is limited by it ability to establish 
tight bounds on the execution time of the basic constructs. Exactly this has be-
come hard on modern RISC and also CISC processors. Most of the research that 
has been published on WCET analysis for modern processors is focused on just 
one architectural feature: program path analysis, instruction caching, data cach-
ing, or pipelining. Combined analysis approaches tend to have either a high 
computational complexity or a weakness in some parts of the analysis.  

In [Arn94] a technique is described to statically predict which instructions will 
be in the instruction cache during program execution. In this approach, called 
Static Cache Simulation, instructions are classified as always-hit, always-miss, 
first-miss and first-hit, by analyzing the control flow of the program.  

For the analysis of data caches in [Bas94] a graph coloring approach similar to 
that used for register allocation in compiler construction is suggested. That ap-
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proach tries to group variables based on temporal locality, i. e. variables that are 
accessed within one basic block are clustered in memory so that they fit into one 
cache block (spatial locality). Its main goal is to get more confidence on the 
estimated number of data cache misses.  

[Lim94] presents an approach that addresses two aspects: pipelining and instruc-
tion caching. In that approach, a program statement is associated not only with a 
WCET, but with an abstract description of the current status of the pipeline and 
the instruction cache: the worst-case timing abstraction (WCTA). A program 
path can be analyzed by concatenating and pruning the WCTAs of its basic 
blocks.  

The prediction of pipeline performance in combination with cache prediction is 
discussed in [Nil95] and [Hea94]. In [Nil95] the pipeline behavior is simulated 
for a given code segment. It introduces the pipeline simulator compiler, which 
uses a description of a processor to generate a program that simulates the execu-
tion of code on this processor. The main shortcoming of this approach is that 
cache prediction is weak and it is estimated that it is unlikely that even in an 
optimal case, the cache analyzer can predict more than 50% of the actual cache 
hits for realistic workloads. In [Hea95] the Static Cache Simulation is combined 
with pipeline simulation. However, it does not take into account data caching 
and instruction level parallelism.  

In [LiM95] the program path analysis is modeled by integer linear programming 
(ILP). The instruction cache performance is also integrated in this ILP-model. 
Although the program behavior can easily be modeled by ILP, the analysis is 
likely to become inefficient for larger applications, since solving an ILP takes 
exponential time.  

Measurement-Based Approaches for Timing Analysis 

The general idea to use monitoring in real-time systems has already been ex-
ploited by other researchers. Haban and Shin [Hab90] used it to generate esti-
mates for off-line scheduling decisions. This early work has been done on proc-
essor architectures that allowed for establishing tight bounds on the WCET by 
measuring the execution time of the basic blocks of the program. For more ad-
vanced architectures, methods known from dynamic testing have been studied by 
several research groups. An approach that regards the real-time application as a 
black box and that uses genetic algorithms to produce a timing estimate is re-
ported to produce good results [Pus98]. However, no guarantee regarding the 
safeness of the results can be given, i.e. the results are not necessarily the WCET. 

Other work tries to combine analytic and experimental methods. In [Pet99] a 
method for measuring the execution time of programs is presented. By analyzing 
the control flow graph, a reduced control graph is generated, which limits the 
paths to be measured. Using this information the object code of the program is 
instrumented and then measured. By measuring all paths the reduced control 
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flow graph indicates, bounds on the WCET are established without getting too 
pessimistic estimations. Similar to this approach, in [Lin00] a method for low-
level timing analysis based on measurements of execution times of programs 
executing on the actual target architecture is proposed. The basic idea of the 
method is to derive a system of linear equations from a limited number of timing 
measurements of an instrumented version of the considered program. The solu-
tion to these equations gives the WCET for program fragments, from which the 
WCET of the entire program can be derived. However, both approaches produce 
safe WCETs only within the limits of their restricted system models, e.g. if the 
execution times of paths are input data independent. This is not true for many 
processor architectures, e.g. in case of arithmetical division instructions. Fur-
thermore, the second method is not applicable to systems with caches.  

In [Mos97] Moser et al. present a method for computing execution times based 
on a calculus for probabilistic density functions. These (discrete) functions are 
either extracted from a system by measurements or based on assumptions. The 
goal is to model the timing behavior of a real-time system by combining the 
probabilistic density functions of parts of the system. Statements on the depend-
ability of the system are then based on the probability of a timing fault and not 
on fixed upper bounds like WCETs. No attempts are made to make this analysis 
available to the scheduler of the system. 

All these described techniques do not try to utilize any object-oriented structure 
of the program. I.e. they can report on the timing properties of tasks (basically a 
piece of code, e.g. a procedure) but not on single instances. Also, all these ap-
proaches are off-line techniques.  

Online Feedback of Monitored Data  

The next step towards a system that can use monitoring data online to guarantee 
timing behavior has been done by Jahanian, Mok et al.. Their work started with 
the RTL (Real Time Logic) [Jah86] language for the specification of real-time 
system. The semantics of RTL is based on the occurrence of events that result 
from the execution of a real-time system (like the start and the end of code 
blocks or the assignment of values to status-variables). Timing properties can be 
expressed as the relationship between events. They developed algorithms for 
checking safety assertions [Jah87] and partial event-traces [Jah90] against RTL-
specifications. In [Cho91] they propose a runtime monitor for the online-
verification of properties of real-time systems. In this monitor, the timing con-
straints are divided into embedded constraints that can be verified immediately at 
their occurrence and monitored constraints that need to be verified by a separate 
monitor process in the context of the current event trace. The real-time processes 
are instrumented to generate the events of interest and also to verify the embed-
ded timing-constraints. The idea of this monitor is to detect possible violations of 
predefined safety constraints in the running system as soon as possible. On the 
detection of such a violation a signal is raised. This signal might be used to trig-
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ger some kind of exception handling in the monitored application itself or it may 
simply inform a human supervisor about the detected condition. This monitoring 
system has been extended by Raju et al. [Raj92] to distributed real-time systems. 
Each node of the target system has a monitor that collects event information 
generated by the user processes and verifies both embedded and monitored tim-
ing constraints. The monitors have to communicate in order to verify timing 
constraints that can only be checked with event-information of more than one 
node. 

In [Mar91a, Mar91b] Marzullo et al. propose a reactive system named Meta. 
With Meta, a distributed system can be instrumented with a sensor and actuator 
abstraction that exposes the state of the system for purposes of control. Then, a 
control program can be written in an object-oriented modeling language that 
interacts with the instrumented system using guarded commands. The focus of 
Meta is more on fault-tolerance in general, as it does not address especially tim-
ing issues. 

Adaptive Object-Oriented Systems 

In [Bih91] Bihari and Schwan presented a model of an adaptive real-time system 
(RESAS). RESAS is a complete development and runtime environment that 
includes an object-oriented programming model, a representation framework, 
and an adaptation control system. The adaptation control system includes a data 
management system that stores static (from the compiler) and dynamic data 
(from the monitor) about the application’s objects. Adaptations can be performed 
by manipulation of object shadows in the data management system, which in 
turn triggers the adaptation enactment mechanism. This work on adaptive objects 
has been extended in the context of the CHAOS real-time operating system ker-
nel. In [Ghe93] the notion of policies associated with objects that intercept object 
invocation to make runtime decisions on invocation and object implementation is 
introduced. These policies can accept and interpret runtime attributes. Attributes 
expose selected aspects of object and invocation implementations. RESAS and 
CHAOS are generic and do not provide a predefined adaptation strategy. Be-
cause of their age, they were closed environments for adaptive real-time pro-
gramming with no interfacing to object-oriented standards like CORBA or 
DCOM.  

Work on the problem of integrating object-oriented components into real-time 
systems has been done in the context of real-time extensions of CORBA and 
Java. The obvious approaches aiming to build full CORBA compliant real-time 
ORBs, like TAO [Sch97] and the Real-Time CORBA specification [OMG99b, 
Sch00], is only a partial solution to the problem. They rely on static scheduling 
and they assume a closed real-time environment. The resulting limitations are 
becoming increasingly evident. CORBA-based applications tend to access ob-
jects that are outside the real-time domain, like data-bases or internet-based ser-
vices, and these are usually shared among a large group of users and applica-
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tions. Also they are often long living (That is why they were designed as 
CORBA services). In order to interface with these objects, a more adaptive ap-
proach seems to be more adequate, as it doesn’t rely on strict assumptions about 
the behavior of these objects.  

In the ARTDOM project [Kru98] at MITRE Corporation and the University of 
Rhode Island, a real-time trading object service has been developed. The service, 
when coupled with a corresponding traditional CORBA service, provides an 
adaptive binding service within CORBA. Thus, CORBA clients are bound to 
CORBA servers that can best meet their real-time requirements. This represents 
a best effort strategy and does not provide any guarantee to the client. In case of 
failing to meet the real-time requirements, the client system has no means like 
our FT scheduler to cope with that. The determination of the appropriate server 
is based on calculating the future requests (load) of the servers in question. The 
underlying timing parameters like request arrival times and (worst case) execu-
tion times are assumed to be known a priori. 

Working groups dealing with real-time extensions to the Java platform are dis-
cussing approaches similar to the real-time trader [Foo99]. They call it a negoti-
ating component that is able to negotiate with the runtime systems about re-
source requirements. It remains unresolved so far, whether such a component 
should be a low-level, integral part of the platform or only a “third-party API“. 
The resulting real-time properties will depend very much on the outcome of that 
discussion. 

Fault-Tolerant Real-Time Scheduling 

Liu et al. defined imprecise computation [Liu94], where each task has a required 
part and an optional part. The optional part refines the computation performed in 
the required part, reducing the computational error. A modified task scheduler 
was used to allocate extra CPU capacity for the optional parts in order to reduce 
the overall computational error. Tasks have 3 levels: running, running with more 
computational error, and not running. Applications do not miss deadlines, and 
there is no deadline miss detection or notification. The major difference between 
the mandatory part in imprecise computations and the EP in a TaskPair is that an 
EP has to be executed if and only if its MP cannot be competed before the dead-
line of the TP, while the mandatory part in an imprecise computation is sched-
uled unconditionally before each optional part. 

Lu et al. [LuS99] have developed a feedback driven version of EDF scheduling 
that uses a control theoretic approach to dynamically adjust the target CPU utili-
zation based on direct measurements of the missed deadline ratio. Their work 
demonstrates the feasibility of this approach and shows that it works well under 
dynamic application loads. The feedback-driven EDF approach is limited to a 
single soft real-time policy wherein applications miss deadlines under situations 
of overload. 
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3.2 The Measurement-based Approach 
The basic idea of this chapter is to extend the system support for time-awareness 
as presented in chapter 2, to an online feedback that allows for guaranteeing 
timing properties. With the ideas of soft tasks, ECETs, and TAFT scheduling as 
described in the previous subsection, the overall approach can be depicted as an 
adaptation loop as shown in Figure 3.3. At a high level, the complete real-time 
system consists basically of three interacting entities: the application, the monitor 
that observes the application, and the scheduler that controls it. 

Real-T ime
Application

Monitoring
Execution Time
Statistics

Events

Notifications

Resource
Allocation

Resource
Requirements

FT-Scheduling

Time-Aware Fault-Tolerant (TAFT) Scheduling

 

Figure 3.3: The adaptation loop. 

The application is typically organized in objects, it is distributed, and it has to 
fulfill the specified timing constraints. In order to meet these constraints it has 
explicit or implicit resource requirements that are send to the system’s scheduler. 
The monitor observes the actual behavior of the application. In order to do this, it 
collects events from the executing application. This monitoring is continuous, 
online, and also distributed. Internally, the monitor maintains a system model of 
the application. With the incoming events it updates state-information about the 
application entities (e.g. threads and objects). It provides online information 
about the observed timing properties to both, the application (for application-
level adaptation) and the scheduler (for system-level adaptations).  

The application receives (possibly asynchronous) notifications from the monitor 
as soon as predefined timing conditions are detected to be fulfilled. This kind of 
time-awareness allows for direct adaptations of the application. It can be viewed 
as a part of the application logic that has been delegated to the system’s infra-
structure as the infrastructure can do the job more efficiently, with less intrusion, 
and in a generic way for a huge class of application. 
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The scheduler uses the input about the timing of the application from the monitor 
as parameters for optimizing its resource allocation decisions. As depicted in 
Figure 3.3 the monitor and the scheduler together can implement TAFT schedul-
ing: the monitor provides an FT-Scheduler with the required execution time 
statistics of the ECETs and the scheduler dynamically adapts the guaranteed 
execution time of the MPs according to their current behavior, their importance, 
and the current overall load situation. 

The following subsections will present the details of the measurement-based 
approach. Focus is put again on the monitoring component and especially on 
applying the concepts to object-oriented systems. Firstly, as already sketched 
above, ECET-analysis as source of online timing approximations for the TAFT 
scheduler will be described in more detail. Then, an advanced model for the 
analysis of the expected termination time will be introduced that allows for sav-
ing resources by a notification of "hopelessly late" MPs. 

3.2.1 ECET Analysis in Object-oriented Systems 
Up to now, object-orientation, despite its doubtlessly existing advantages for 
software engineering, has been regarded mainly as the source of problems in 
real-time computing, not as the solution. Due to its feature to hide implementa-
tion (and thus timing) details and its ability to integrate third-party components, 
it has aggravated the problem of application code with unknown or completely 
unrealistic WCETs. But now, object-orientation can also help to solve these prob-
lems, at least partially. One of its main features, namely the ability to capture 
much of a program’s data-dependencies in syntactic categories, will be exploited 
to provide better timing estimates that it would not be possible in a purely proce-
dural structure. 

System Model 

Consider the following system model: the distributed application is modeled as a 
10-tuple (C, M, fm, T, O, N, fc, fn, A, fa) with 

C is a set of classes, 
M is a set of methods, 
fm: C → 2M, 
T is a discrete time-base (for simplicity the natural numbers), 
O is a set of objects, 
N is a set on computing nodes, 
fc: O → C, 
fn: O×T → N ∪ ∅, 
A is a set of activities, and 
fa: A×T → {O × M} ∪ {}. 
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An application consists of a set of classes C with a set of methods M and a set of 
objects O. The function fm(c): C → 2M maps a class c ∈ C to the subset of meth-
ods that are members of c. This describes the static structure of the application. 
More detailed relationships (inheritance, use-relation, etc.) as required for object-
oriented design are not considered here and they are not needed for the following 
considerations.  

The dynamic structure of the system is described by the remaining components: 
the function fc(o): O → C maps an object o∈O to a class c ∈ C, i.e. it determines 
which object belongs to which class. Consequently, fm(fc(o)) denotes the methods 
applicable to object o. The function fn(o,t): O×T → N ∪ ∅ describes the location 
of object o at time t. If the object has not yet been created at time t or already 
destroyed, fn maps to the empty set. Note, that the notation of function fn allows 
for the migration of objects, i.e. the mapping of an object to a node may change 
over time. The described monitoring system does not yet support this. Instead, 
whenever an object is first seen at a node, it is treated as a new object. However, 
this is not a severe limitation, as most systems do not support migration and even 
if, the timing of a migrated object will probably change, thus new data on its 
behavior is required anyway. 

Finally, activities in A are described by fa(a,t): A×T → {O × M} ∪ {} that maps 
an activity a at time t to a certain method in a certain object. If the activity is not 
yet started or already terminated, fa maps to the empty set. Activities are "distrib-
uted threads" as discussed above and they may be periodic or aperiodic. Activi-
ties are considered to behave like a usual execution with a call-stack, i.e. an ac-
tivity a starts at some time t0,a in a top-level method-execution (o0,a,m0,a) and for 
each subsequent clock tick it either stays in this method or switches into another 
methods following the syntactic rules of nesting and concatenation as depicted in 
Figure 3.4.  

time

o0.m0

o2.m2

o1.m1

t0,a

fa

 

Figure 3.4: The stack-like object invocation sequence of an activity 

Each change in function fa from one point in time to the subsequent denotes 
either the invocation of another method on behalf of the current method or the 
return from an invoked method to its caller. "Forking" of activities, i.e. the paral-
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lel execution of multiple threads of control is not considered. Instead, a new 
activity starting in the current object is created if one activity initiates a new 
thread of control. 

Methods – Entities of Monitoring and Scheduling 

The changes of the value of function fa correspond to the events generated by the 
different instrumentation techniques for object-oriented systems as described in 
chapter 2. Whenever a thread (on behalf of an activity) enters or leaves an ob-
ject’s method, an event is generated. This means, a monitor is able to determine 
the timing of every method-invocation and, instead of just presenting this data in 
a graphical presentation as discussed before, it can also process this data in order 
to provide statistics on their timing. 

Also, methods-executions are the natural entities of code for scheduling. Ulti-
mately, the scheduler has to schedule periodic or aperiodic activities, correspond-
ing to the classical notion of tasks in non-object-oriented systems. However, the 
code of activities is structured by methods. An activity starts and ends in a top-
level method and in between it is organized by the function fa into a concatenated 
and nested sequence of methods. In all considered object-oriented systems, 
method-invocations also denote the boundaries of objects and thus possible node 
boundaries. If the timing of certain parts of the application is unknown due to 
unpredictable network-delays, this is manifested in the timing of those methods 
that are called remotely. Also, whenever a heterogeneous object-oriented system 
has to invoke a third-party service with unknown timing, this happens at method 
boundaries. Therefore, methods are the natural entities that have timing attributes 
like execution times or other resource requirements. 

The state of objects is accessed and changed by invocations of their methods. If 
an object is implemented to provide soft task behavior, this is best encapsulated 
in the code of a method. Whatever happens exactly inside a method is invisible 
to the caller by the rules of implementation hiding, but it is guaranteed that the 
object is in a consistent state after the method invocation has terminated in time. 
Therefore, methods are the ideal entities to be organized as TaskPairs.  

From the view of an object that invokes another object’s method with unknown 
timing-behavior, it is also desirable to encapsulate this invocation in a TaskPair. 
Like with a classical timeout it might want to limit the maximum time spend in 
the invocation. However, with a surrounding TaskPair it can also specify the 
emergency action that is executed in case of the failure of the invocation and it 
can put a guaranteed upper bound on the complete transaction. Again, knowl-
edge about the expected timing of the actual invocation will help the scheduler a 
lot to ensure computational progress. 

Putting this together, an implementation of the adaptation loop as depicted in 
Figure 3.3 for object-oriented systems requires a fault-tolerant scheduling of 
methods and a monitor that provides timing information on a per-method basis.  
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Objects – Capturing Data-Dependencies 

Up to now, the main focus of interest has been on methods. The method’s code 
belongs to the static structure of a system and one could expect that timing at-
tributes of methods are static as well. However, in general, the timing of a piece 
of code does not only depend on the statements to be executed, but also on the 
data that the code manipulates. This is obvious if the code contains conditional 
branches and loops, but also the timing of straight-line code can be affected by 
data-dependencies (e.g. in variable timing of arithmetic instructions or cache 
issues). For tight WCET-analysis and also for timing estimations it is important 
to to minimize the influence of data-dependencies. Therefore, [Pus89] already 
proposed meta-statements that exclude certain input-data for timing analysis. But 
as long as procedures can operate on an unknown set of input-parameters, it 
remains hard to take data-dependencies into account in a static analysis. How-
ever, in contrast to procedures that are pure static code, methods do explicitly 
belong to objects.  

An object-oriented environment possesses the desirable property that data de-
pendencies in execution time behavior are partly tied to object instances. This is 
true for all data-items that are part of the object's state. It is not true for the re-
maining input-parameters. This means, the ability to tie data-dependent timing 
behavior to objects varies with the design of the object-oriented system. If the 
main paradigm of the system is data shipping, it will be less promising than if it 
were function shipping. However, in a distributed environment, where commu-
nication costs are still a dominate factor, object state tends to be bigger and func-
tion-shipping can be expected to be the first choice.  

Since an object is an entity of data and code, variances caused by data-
dependencies can be captured by monitoring and analyzing the timing character-
istics of each object separately. Objects of the same class, e.g. a class "List", may 
expose completely different timing behavior depending on their internal status 
(e.g. list length) and the environment (e.g. communication costs). Thus, monitor-
ing at the class level only, as would be the possible approach in a non-object-
oriented environment, would encounter variances that automatically disappear 
when object specific monitoring is applied. Thus, object-orientation helps to 
achieve more accurate timing estimates for methods as it allows to monitor them 
also on a per-object basis. 

3.2.2 Maintaining Timing Statistics for ECET Analysis 
In order to provide the FT-scheduler of the TAFT system with reasonable timing 
estimations, for each pair (o, m) the ECET(o,m),k,n has to be available, i.e. the 
minimal execution time that was needed to successfully complete at least k out of 
the last n executions of method m in the context of o (independent of the activity 
that actually executed m). From continuous monitoring, the start- and the end-
events of the method (o, m) are available and by simply computing the difference 
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between their time-stamps, the overall execution time (including all blocking 
times) can be computed easily. Blocking times can be eliminated by additionally 
taking thread-switch events into account as described below. 

In the simplest case one could assume executions times as being normally dis-
tributed and compute the ECET from the constantly updated average and vari-
ance for a desired execution completion rate k/n. While this approach requires 
only a minimum of additional state per pair (o, m), it will fail for most realistic 
execution-time distributions. As stated in [Mos97] also other well-analyzed dis-
tributions, like e.g. negative exponential distribution, tend to be a bad approxi-
mation for the real behavior of code. 

Therefore, a more realistic approach is to maintain an efficient discrete represen-
tation of the measured distribution, as depicted in Figure 3.5. It holds the execu-
tion time density for the n most recent executions of a method m of object o. The 
maximum seen execution time maxt(o, m) is divided into l equally sized slots. A 
slot i, with 0 ≤ i < l represents the number of executions that had a duration in the 
time interval ]i * maxt(o, m)/l, (i+1) * maxt(o, m)/l]. Whenever a new monitored 
execution time comes in, it is added to the slot that represents its execution time. 
In turn, the value that had been added n events ago is removed from the represen-
tation. 

The ECET(o,m),k,n is then determined as the time, which k of those execution times 
lay within. It is computed by summing up the number of executions starting from 
slot 0 upwards until k is reached and taking the upper time limit of this slot: 
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This is basically again the integration in order to get from the density function to 
the distribution. The density has been chosen as primary representation as it 
allows for a more efficient online update when events with new timing data have 
to be integrated As the number of slots l is constant, the computation of ECETs 
can still be done in O(1) time. 
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Figure 3.5: ECET evaluation with a discrete representation of the distribution 

While this kind of statistics is easy to maintain and to evaluate, it has a major 
drawback with respect to space complexity. By construction the size of the data-
structure is in O(|O| |M|). This means the size of the data scales linear with the 
number of (monitored) objects, i.e. the size of the application. If however, it also 
has to maintain an event-history (basically a queue) of length n per object and 
method (in order to remove the outdated events) the scaling factor becomes 
rather large. Figure 3.6 shows an example where a new event with execution 
time of 4 comes in and is queued, while the oldest event with execution time 6 is 
removed from the history and subtracted from the density representation. A his-
tory of length 100 or even 1000 will probably be no exception, which means that 
monitoring data might have a bigger memory footprint than the monitored appli-
cation itself, a clearly undesirable effect.  
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Figure 3.6:  The event-history representation of the n most recent execution 
times 
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Therefore, currently a negative exponential fade-out algorithm is used to reduce 
the effect of old events. It approximates the density of the last n executions by 
subtracting one nth of each slot’s value before the value of a new event is added. 
This equals a multiplication with (n-1)/n. Figure 3.7 depicts the same example as 
in Figure 3.6, but this time with the exponential fade-out algorithm. The state of 
the required data structure consists only of the slot values, which is more accept-
able than the full history as it is in most cases at least smaller than the observed 
object itself. While the negative exponential character of this algorithm never 
leads to a zero slot-value, there is a threshold. If the value of a slot drops below 
this threshold, it is set to zero. This is important in order to allow for an adaptive 
re-scaling of the slot-sizes as described below.  

subtracted (value / n) 

added (1)

 1    2   3    4   5    6    7    8  1    2   3    4   5    6    7    8

After event e After event e+1  

Event e+1
with time 4

 

Figure 3.7: The negative exponential fade-out algorithm. 

If for a method (o,m) no events have been collected so far, the ECET(o,m),k,n can-
not be computed using the algorithm described above. In order to initialize new 
methods with reasonable timing defaults, an additional record on (fc(o), m) is 
maintained. It holds the execution time density of m in the context of the class c 
of o. It is updated each time an event of method (o’,m) with fc(o’) = c is observed. 
This per-class statistics refers to the static part of the application's structure, 
while the per-object statistics reflects the behavior of the dynamic entities. How-
ever, both statistics are updated online and may change over time. 

As the overall maximum execution time of a method (o, m), the WCET(o,m), is 
still unknown, it might happen that an event comes in reporting on a new execu-
tion time that larger t’ than the current maxt(o, m). In this case the density repre-
sentation has to be re-scaled. This can happen either by setting maxt(o, m) to t’ or 
by simply doubling the current maxt(o, m) until it is larger than t’ (see Figure 
3.8). In both cases the slot sizes have to be adapted accordingly and the current 
values of the slots have to be distributed proportionally among the new slots 
covering the same ranges. The first solution has the advantage that it provides a 
maximum resolution with the fixed number of slots (its slots cover only the 
range of actually seen execution times). The latter has the advantage that it 
causes probably less future re-scaling actions, as it doubles the range each time. 
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Re-scaling in the other direction becomes necessary if the density function shifts 
to the left, i.e. the monitored execution times are becoming shorter. 

 1    2   3    4   5    6    7    8

After event e

After event e+1  

Event e+1
with time 14

 2    4   6    8   10   12  14  16

Re-scaled

 

Figure 3.8: Adaptive re-scaling of the density representation 

ECETs and the presented data structures so far refer to "successful" completions 
of a method (o, m). When scheduled with the FT-Scheduler this means a normal 
termination of the MP. Sometimes reasonable new ECET values cannot be pro-
vided because all of the recent executions of the MP of (o, m) have been inter-
rupted by EPs. This typically happens, when the last computed ECET value is 
for some reason suddenly by far to small for the next required computation of the 
same (o, m). In this case, another heuristic is required. The proposed approach is 
to exponentially increase the formerly computed ECET (by a factor of 2) when 
the k most recent executions have failed in order to find quickly a feasible upper 
bound that can be refined by subsequent monitoring. The same heuristic is ap-
plied initially on the first occurrence of an event reporting on a new method, 
when there is even no default value from the per-class statistics available to ini-
tialize the timing data. 

Just to clarify, it should be recalled that despite all approximations and heuris-
tics, the job of the ECET computation is to provide reasonable estimations in 
order to allow for an effective scheduling and to enable computational progress 
in the long run. Safety and timeliness are still guaranteed by the scheduler and do 
not rely on the value of the ECETs. 

Considering Blocking Times 

Accounting the timing of methods simply from the execution of the first state-
ment until the termination leads to a measurement that includes all blocking 
times, regardless whether this blocking is caused by preemption or by synchroni-
zation conditions. As a result, the calculated timing predictions would also report 
on this overall execution time. For the purpose of predicting the timing of remote 
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services (that are not under the control of the system’s scheduler) this is the ap-
propriate measure: the real-time system is not really interested in the internal 
reasons for the observed timing. It needs the overall time until completion for 
choosing proper timeout values.  

Things are different if timing prediction for methods of local objects is consid-
ered. Here, the scheduler is interested in the pure CPU-time (as the definition of 
ECETs requires) as it is used as planning base for assigning CPU-resources to 
the executing activity. Still, the overall execution time including the blocking 
time is helpful as it provides a hint whether a method has a chance to meet its 
deadline even facing non-trivial synchronization conditions (see also the next 
section). Resulting from this, the Expected Case Runtime (ECRT) can be defined 
as: 

=:, ptECRT The overall time (including all blocking time) that is needed by 

task instance t in order get a probability of p that t is completed. 

From the view of statistic evaluation the same mechanisms and data-structure as 
described above for the ECETs can be applied to ECRTs in order to provide 
predictions based on the recent behavior of the task. Also, the monitoring sys-
tems from chapter 2 can support both, ECETs and ECRTs. The overall timing 
information required for ECRTs is provided by the middleware- and language-
level instrumentation. It reports on the start and the end of method executions. 
For determining the pure CPU-time, the instrumentation at operating-system-
level is required. Using the information from the events reporting on thread-
switches and interrupts, the actual CPU-time spend on a single thread can be 
calculated easily. MagicZoom as described in subsection 2.5 records and visual-
izes exactly this information.  

For the purpose of ECET-analysis the sensor-code can be simplified: instead of 
recording each thread-switch in the event-trace and reporting it to the monitoring 
console, it can account for the CPU-usage of a thread directly at kernel level, like 
e.g. the getrusage() system-call does for Unix processes. A virtual clock per 
thread is maintained and this clock is used for an additional time-stamp of the 
method-start and method-end events. Again, it turns out that for a successful 
monitoring of real-time systems an observation at all architectural levels is re-
quired. 

3.2.3 Early Detection of Timing Faults 
Up to now, ECETs have been considered as input for the scheduler before it 
generates the schedule. Given that the prediction of ECETs works well, i.e. the 
approximation of the probabilistic value by the statistics over the recent n execu-
tions leads to correct results, this enables the system to create efficient and re-
source-saving schedules. However, by the definition of ECET(o, m),p, there is the 
probability of 1-p that the execution takes longer than ECET(o, m),p suggests. In all 
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these cases even a guaranteed execution time for the MP can lead to an abort of 
the MP and an exception handling by the EP. Although this is not a safety prob-
lem, due to the guaranteed timely execution of the ET, it would be a waste of 
resources. The CPU-time spend on the MT is lost and has not lead to any compu-
tational progress. While this is the price to pay for the use of estimations instead 
of hard bounds, there might be the chance of avoiding unnecessary waste of 
cycles.  

This is especially an issue when the considered methods themselves condition-
ally invoke further objects. Consider a case where an object’s method exhibits a 
timing distribution as depicted in Figure 3.9. Depending on the input parameters 
or the internal state it sometimes invokes an external object, in most cases it does 
not. This behavior leads to a timing distribution with at least two peaks that may 
be separated by a large time interval (consider the difference of a local computa-
tion and an external call, e.g. to update a database). If now the ECET of the top-
level method is requested by the scheduler, the result might be (as in Figure 3.9) 
that second (small) peak is completely cut off. This happens because only a very 
small percentage of executions exhibits this extreme timing behavior. 
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Figure 3.9: A Timing density with high variance caused by data-dependent 
branching 

When looking at the code of the method, it might be easy to identify the code 
that is responsible for this behavior. Typically, it is data-dependant branching. 
Moreover the branch, which takes significantly longer, often invokes some other 
methods (possibly on remote nodes). How can this behavior be captured by 
ECET monitoring? 

The idea is to re-calculate estimates of the remaining execution time based on the 
state reached so far. If the calculated remaining execution time exceeds the re-
minder of the originally calculated ECET, the current execution is probably an 



Real-Time Systems 93 

instance where the ECET was too small. Since this can now be detected before 
the actual end of the original ECET is reached, possible EP-aborts are detected 
early. As soon as the system detects that the activity will probably violate the 
overall deadline, the calling object is informed and, depending on the new esti-
mate, it may decide whether to abort the call or still to wait for its results. 

In order to discuss this simple early detection mechanism in more detail, the 
concept of the Expected Case Termination Time (ECTT) is introduced. The 
ECTT uses the concept of ECETs to predict when an execution will probably 
terminate. As depicted in Figure 3.10, the ECTT of a method (o, m) is defined to 
be ECET(o, m),p + t0,(o,m), i.e. the starting time of a methods plus its ECET. This 
results in the absolute time when method (o, m) is expected to terminate. 
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ECET(o0.m0)

ECET(o1.m1)

t0,o0.m0

ECET(o2.m2)
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t0,o2.m2 ECTT(o2.m2) ECTT(o0.m0)
 

Figure 3.10: The concept of the ECTT 

However, the ECET of a method changes slowly and during the execution it is 
constant. Therefore, the notion of an ECTT alone does not reveal any new in-
sights that can help in detecting extreme timing behavior of a method. Here 
again, object-orientation can be of great help: assume only the timing distribu-
tion of individual methods is available, regardless of the method internals, e.g. 
nested method calls. By this, each nesting level has its own ECTT, i.e. each cur-
rently invoked method in an activity can be viewed independently. Each time a 
new nesting level is reached, i.e. a method is invoked, the monitor can concur-
rently check the compliance of the new ECTT of this nesting level with the guar-
anteed execution time of the complete activity. This can be done in two different 
ways.  

In the simplest solution, the ECTT(o, m),p of each nesting level is computed at the 
time of the entry in this method and checked against the guaranteed execution 
time of the activity (or directly the deadline, if ECRTs are considered). If it is 
greater, the ECET prediction at least at this level has serious doubts that the 
ECET for level zero was enough. This kind of probable timing fault detection 
can capture at least the case discussed above, where a data-dependency leads into 
a branch with a longer-lasting remote invocation. As shown in Figure 3.11 for 
method o2.m2, the monitor will detect the contradiction in ECTTs at level 0 and 2 
as soon as it gets aware of the invocation of o2.m2. The current ECTT for o2.m2 is 
later than that of o0,m0. While the first fits into the deadline, the second does not. 
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Now, the activity might be informed about the possible problem of wasting re-
sources. One major drawback of the described technique is that it only detects 
problems that become evident in the execution time of one method (the one that 
finally exceeds the available time). At most the duration of this one method can 
be saved, when a MP is aborted before it has finally exceeded its quantum. This 
does not help a lot when several consecutive, comparably small methods exceed 
their predicted ECETs.  
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Figure 3.11: Detection of probable timing faults using ECTTs 

An extension to the method sketched above that addresses this case is shown in 
Figure 3.12����������	
�������	���� T) between the ECTT and actual termina-
tion time for each nesting level is computed. The detection algorithm sums up 
these deltas along the execution of one nesting level, i.e. the deltas of subsequent 
invocations in one nesting level are added. This means, the time gained and extra 
time spent in methods are summed up. Each time a method terminates, the result 
is added to the ECTT of all methods in the current nesting hierarchy. If one ex-
ceeds the overall execution time, a violation is predicted. In Figure 3.12 at the 
end of o2.m2 one might want to raise an exception as the top-level ECET of 
(o0.m0) plus the extra time consumed by o2.m2 is greater the overall deadline.  

The problem with these two models is that they assume that method executions 
are independent from each other. In particular, they do not account for the fact 
that different execution paths might or might not be reachable from the current 
state. It is very difficult to calculate the reliability of the decisions resulting from 
the application of the used heuristics. It can be concluded the existence of multi-
ple alternative completion paths for one activity at any point in the control flow 
graph is counterproductive for the simple model. It has to be emphasized that 
objects with statistically independent execution times of all method segments are 
quickly analyzed using this model. An approach that models the different execu-
tion paths in more detail using a Markov-model is proposed in [Ger97a]. How-
ever, this approach relies on a considerably larger monitor state for each ob-
served method and it requires the observation of additional events reporting on 
branch decisions. While a tool as mc4p can produce these events, the computa-
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tional effort in the monitor is not justified by the CPU-cycles that can be gained 
by early detection of possible timing errors. 
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Figure 3.12: Detection of a probable timing fault with time-deltas 

3.2.4 Adapting Granularity 
Despite all considerations that try to minimize the space and time complexity of 
the ECET prediction, it is still a considerably amount of processing power and 
memory required to implement the algorithms presented in this subsection. De-
pending on the size of the monitored object, the amount of resources spend on 
the monitoring representation might become bigger than the requirements of the 
original object. This is a clearly undesirable state that has to be avoided. 

A key in achieving a balance between the supporting monitoring system and the 
system under test is the use of the right granularity of the monitoring. The granu-
larity can be adjusted with parameters at various levels. 

1. Class level: As discussed in subsection 2.3.1 not necessarily all classes and 
thus all objects have to contain the same sensor code. Small-size objects, like 
e.g. arithmetic types, or all kinds of private helper-objects that do not reveal 
their interfaces to external classes, are good candidates for being skipped in 
the instrumentation process. Their execution time will than be added to the 
objects that use these classes. Typically, scheduling support is only required 
for objects that are about as big (in terms of execution time) as schedulable 
entities. For current systems this means in the order of milliseconds to hun-
dreds of microseconds. 

2. Object level: Even if the code of a class contains the instrumentation code, 
not all objects of this class might be of interest. If only a small number of the 
objects is involved in time-critical activities, it reduces the amount for re-
quired monitoring resources, if only these objects contribute to the load on 
the monitoring system. Objects might also be out of the scope of the time-
awareness component if they belong to hard or essential tasks. In this case 
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additional information on their timing might be interesting, but it cannot con-
tribute to an improvement of the systems runtime behavior. Their schedule is 
determined by static WCETs. 

3. Method level: The same that applies to classes is true for methods as well: 
not all of them are necessarily interesting for being monitored. Only the ex-
ternal and scheduling-relevant methods need timing estimations. The others 
can be accounted for the invoking methods. Sometimes it might be also an 
option not to distinguish between the different methods of an object. If e.g. an 
object is actually a wrapper for a remote invocation of a small (in terms of 
execution time) object on another node, it is not the actual execution time of 
a single method that the scheduler is interested in, but the overall time of the 
RPC that is dominated by the communication overhead. In this case the 
ECRT (that includes waiting for the return of the RPC) of all methods of this 
object can be accumulated and analyzed in one density function. 

4. Analysis level: Depending on the required accuracy and perhaps on the qual-
ity of previous ECET predictions, the type and the granularity of the statistics 
used for analysis can differ. For a first approximation a simple normal distri-
bution with mean and variance may be enough. Only if it turns out that the 
variance becomes to high, a switch to a discrete density representation is ini-
tiated. Within the discrete density representation the number of slots is an 
important factor that scales resource consumption versus accuracy. 

While the first mainly influence the amount of generated events, the last has 
impact on the event-processing component. The number of events is controlled 
by static and dynamic filters applied during instrumentation and event genera-
tion. The required mechanisms have been described in chapter 2. The design of 
the components that allow for an effective and flexible processing and analysis 
of these events is described in the following subsection. 

3.3 The Implementation Architecture 
This subsection describes a system-architecture that implements the measure-
ment-based approach for real-time system and it describes the components and 
their tasks. The complete system is depicted in Figure 3.13. It is divided into the 
user-provided real-time application and the runtime system.  

The application consists of the user-written code implementing the application 
objects plus the complete environment that is required to execute these objects. 
The application has to fulfill the end-to-end real-time requirements. Considering 
e.g. an embedded real-time application that has to interact with external CORBA 
services, the application consists of the user-written code of the embedded appli-
cation, the CORBA objects implementation, (preferably coded in an object-
oriented language) the CORBA-stubs (generated from the IDL), the object-
adapter, the ORB itself, and the operating system that hosts these components. 
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This complete system is augmented with the sensors of the monitoring system. 
These sensors report on events from all architectural levels and forward them to 
the local runtime system. 
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Figure 3.13: The components of the implementation architecture 

The runtime system contains all components that are required beyond the stan-
dard real-time operating system functionality to close the feedback loop of the 
adaptive system and to implement the TAFT-Scheduler. It consists of the moni-
tor and the scheduler. The internals of the scheduler are beyond the scope of this 
thesis and are explained in [Str95, Net97c]. The monitor uses the same basic 
mechanisms for instrumentation, for detecting, time-stamping, storing, and re-
trieving events as the monitors described in chapter 2. However, each local in-
stance now contains additional components.  

• The Runtime Object Database (RODB) manages the storage of the required 
per-object status. 

• The Online Statistics component performs the computations described in the 
previous subsections for determining the ECETs of methods. 

• The Query Interface provides an object-oriented and properly synchronized 
access for local and remote schedulers to the Online Statistics. 

• The Activity Manager traces activities and provides this abstraction for 
those application environments that do not support it by default. 

The architecture is generic in the sense that it does not rely on a specific object 
implementation for the real-time application side. The interaction between these 
two blocks happens only via events (that report about the application’s timing) in 
one direction and via resource assignment and notifications (that actually influ-
ence the applications behavior) in the other direction. Principally, any object-
oriented application can be made adaptive by this architecture as long as is can 
be augmented with the required event-generating sensors and provides computa-
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tional entities that can be scheduled by the TAFT-Scheduler. In the following 
subsections, the distinct components of the monitor will be discussed in more 
detail. 

3.3.1 Runtime Object Database 
The Runtime Object Database (RODB) is responsible for organizing and storing 
the information gathered about the objects of the real-time application. It inter-
faces to the remaining components of the architecture through the event buffer 
and the Query Interface. The RODB server-processes also execute the code of 
the Online Statistics components. While the RODB is an object-oriented data-
base, it was a design decision, not to implement it using a generic OODB system. 
This is mainly because of two reasons: 

1. The main features offered by an OODB system are not in the focus of interest 
in this implementation: neither persistence nor concurrency management are 
required in the first place. Thus, any performance or memory penalty im-
posed by an OODB system is clearly unnecessary overhead. 

2. The structure of the RODB is quite regular and the search pattern is always 
the same. Therefore, there is no indication, that an OODB system can achieve 
a better performance for the most critical activity, namely event processing. 

The RODB is currently implemented in C++ and can be run on Sun Solaris, 
Linux, and, by encapsulation of the thread and shared memory APIs, also on 
Windows NT. 

The RODB is distributed in a sense that each node holds the current monitoring 
data obtained from the application objects it is hosting. The main data-flow is 
generated by the events and the queries of the local scheduler. Therefore, any 
other partitioning of functionality or data would tremendously increase the 
amount of data to be shipped over the network. This would be a clearly undesir-
able effect, as communication is still a bottleneck in a distributed system.  

In order to maintain the per-object timing information, the RODB uses the events 
from the real-time application to keep track of the dynamically evolving object-
space. From the static program analysis the RODB knows about the class-
structure. Static program analysis for language-level objects is done by the (pre-) 
compiler. The required information which classes generate which events are 
available via the mc4p name-server. For middleware-objects the IDL-compiler 
typically extracts the static class information and stores it in a database that is 
accessible for application processes. In CORBA this is the Class Repository and 
DCOM puts this information in the system’s “Registry” database. With this 
knowledge, the RODB interprets the event-stream and constructs a model of the 
current object-space of the application. In a way the RODB mirrors the knowl-
edge that is also held in the application's internal data-structures. 
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Data-Structures 

According to the static and dynamic structure of object-oriented programs the 
RODB is organized in two separate parts (see Figure 3.14). The dynamic part is 
supposed to reflect the application objects. The second part accumulates all run-
time-data according to the objects’ class membership. It is called the static part. 
This part does not only recollect the currently running application’s object be-
havior from the classes-view, but it is also supposed to accumulate the classes 
behavior over multiple runs of the target application. The class-part of the RODB 
can be made persistent by writing it to a file before shutting down the service. 
This makes sense, as class-behavior is usually not dependent on the current in-
stance of the system but reflects a general property of the code. As object-
oriented code usually changes only slowly over time, the static part of the RODB 
can even persist minor code changes due to bug fixes or further development. It 
is the decision of the user when to reset the stored class information in the 
RODB. 
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Figure 3.14: Data-Structures of the RODB 

Both parts of the RODB are internally structured in a similar manner. They are 
optimized for a two level search (plus a root at level zero). The first level is in-
dexing the objects (respectively classes) and the second is matching the methods. 
Both levels are internally organized as balanced search-trees (see Figure 3.14). 
Thus, each node at level two represents one method of the system, either re-
garded as a piece of code in the static part, or in the dynamic part as element of 
an activity when executing in an object. The node at the first level represents 
objects and classes of the monitored system. Each object node in the dynamic 
part also contains a link to the corresponding class node in the static part. 
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Each node at level zero (root), one, or two can hold evaluators. An evaluator is 
basically an event-consuming entity. More concrete, it is an object of any sub-
class of the abstract base-class TstatEval (see Figure 3.16). Each node can con-
tain an arbitrary number of (different) evaluators. The types of evaluators to be 
maintained for a given node are determined by the father node at the next higher 
level. They are inherited at the moment of the node creation. In addition, evalua-
tors can be added and removed dynamically. 

Event Processing 

Whenever a new event reporting on method (o,m) comes in, it is the job of the 
RODB to route it to the evaluators that need to know about it. These are the 
evaluators for object o, for method m of object o, for class fc(o), and for method 
m of class fc(o). The routing of events is done by searching in the balanced tree 
data-structures according to the class, object, and method identifiers. Each 
evaluator receives a copy of the event. While class- and object-level evaluators 
do not distinguish the different methods (as this is done as the next level), these 
evaluators might still be useful. They receive events of all methods of an object/a 
class. Whenever a search leads to an empty result, i.e. a class, an object, or a 
method has generated an event for the first time, a new node is created and ini-
tialized with cloned instances of the evaluators of the next higher level. Thus, the 
evaluator set of a higher-level node serves as template for the creation of new 
nodes. In the simplest case, the evaluator types of all nodes are equal to those of 
the root. 

The complexity of this search process grows with O(log n), n being the number 
of different object-contexts, due to the tree-algorithm it uses (given that the 
number of classes and methods is constant in a running system).  

Execution Model 

The RODB is implemented in a separate user-level server process. It replaces the 
External Server component in the JewelNT and MagicZoom design. It takes over 
its functionality of extracting the events from the local event buffer. Figure 3.15 
depicts the structure of the RODB server process. Two threads are executing in 
the server. All interfacing is done via shared memory interfaces in order to avoid 
additional synchronization operations and to minimize the overhead of interproc-
ess communication. 

The Update Thread is responsible for the actual event processing. It collects the 
events from the event queue in the share buffer, performs the search operation in 
the RODB tree structures, and processes the evaluator code in both parts of the 
RODB and at the both levels. The Query Thread waits for requests from the local 
scheduler or the external process that serves requests from other nodes.  
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Figure 3.15:Internal structure of the RODB server process 

Event and query processing consumes cycles and storing the required informa-
tion in the RODB requires additional memory capacity. As these resources are 
usually critical in a real-time system, it is design-goal of the overall system to 
minimize this resource-consumption and to use non-critical resources (e.g. CPU 
idle-cycles) whenever possible. As the update of the RODB is not highly time-
critical in itself, it can be done asynchronously, e.g. after a monitored activity has 
terminated the top-level method. The only requirement is, that the database is 
“reasonably“ up-to-date to avoid providing completely out-dated performance 
figures to the other components. 

3.3.2 Online Statistics 
The RODB provides the infrastructure for mapping events to classes, objects, 
and methods. It is completely generic concerning the concrete algorithms used 
inside the evaluators. Evaluators are consuming events, they are responsible for 
accumulating any required state, and they finally provide the results of a statisti-
cal analysis when requested via the Query Interface. Any evaluator in the RODB 
is an implementation of the abstract base class TStatEval, which provides the 
necessary recording- and reading-interface to represent its actual statistical 
evaluation functionality and to report a class-specific set of statistical data. Dif-
ferent evaluators can be linked in a chain. Thus, the system can homogeneously 
handle different types of evaluators in a common way. 

 
template <class t_SampleValue> class TStatEval 
// Abstract base-class for evaluators. 
{ 
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 public: 
 

  virtual int Record (const t_SampleValue &NewET) = 0; 
  // Records new ET to statistical evaluation. 
  // Return value reflects if execution was successful. 
 
  virtual int GetEvaluation (TStatResult &EvalResult) = 0; 
  // Updates ’EvalResult’ according to the current 
  // statistical evaluation data. 
  // Return value reflects if execution was successful. 
  // (Implementation of elaborated class should be such it can 
  // fill on object of the corresponding elaboration  
  // of ’TStatResult’.) 
 
  virtual void Reset () = 0; 
  // Resets statistics (as if newly constructed). 
  // (Does not affect if object is enabled or disabled.) 
 
  virtual void Disable () = 0; 
  // Advises statistical evaluation object to ignore  
  // incoming samples. 
 
  virtual void Enable () = 0; 
  // Advises statistical evaluation object to process  
  // incoming samples. 
 
  virtual int Save (ostream &SaveStream); 
  // Saves evaluation data to ’SaveStream’. 
  // Return value reflects if execution was successful. 
 
  virtual int Load (istream &LoadStream); 
  // Loads evaluation data from ’LoadStream’. 
  // Return value reflects if execution was successful. 
 
  virtual t_SE_ErrorCode CheckError () const = 0; 
  // Returns code of last error that occurred since last call of 
  // ’ClearErrorStatus()’ (or since creation). 
 
  virtual void ClearError () = 0; 
  // Reset internally stored error information to a state  
  // as if no error had occurred. 
 
  virtual t_StatType GetEvalType () const = 0; 
  // Returns type of statistical evaluation. 
  // (Has to match corresponding  
  // ’TStatResult’-elaboration’s ’GetEvalType()’.) 
 
  virtual TStatEval *MakeNew () const = 0; 
  // Returns pointer to a newly created object instance  
  // of the elaborated statistical evaluation class. 
  // (NULL, if allocation failed. 
 
  virtual ~TStatEval () {}; 
  // Destroys statistical evaluation object. 
}; 

Figure 3.16: Abstract base-class for evaluators 
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The most important methods of the TstatEval class, shown in Figure 3.16, are 
Record() and GetEvaluation(). The fist is used to insert an event into 
the evaluator. Note, that the class is parameterized by t_SampleValue – that is the 
type of the inserted event. This allows for adapting the RODB and the evaluator 
to new event-formats containing additional or even completely different informa-
tion. The only constant information that has to remain in an event data record are 
event identifiers that can be mapped to class and method identifiers and the ob-
ject identifier. Otherwise routing in the RODB becomes impossible.   

The second method, GetEvaluation(), is used for extracting analysis results 
from an evaluator. It operates on an object of the TStatResult base-class, which 
will be described in the next subsection. Depending on the actual sub-type of the 
evaluator, the sub-type of the result object may differ. The correct type can be 
determined at runtime using GetEvalType() that returns a matching type 
identifier.  

The remaining methods are specifying the API for creating and retrieving a per-
sistent image of an evaluator, for error handling, for enabling and disabling the 
event consumption (useful for objects that just serve as templates in level zero or 
one of the RODB and do no processing themselves), and the method Mak-
eNew() that clones new instances of the current object.  

In order to provide ECETs as described in subsection 3.2.1, three different evalu-
ators have been implemented, one that assumes a normal distribution with mean 
and variance and two that use the discrete density representation, one with the 
full history of the recent n events and one with the negative exponential fade-out 
algorithm. Performance figures for these evaluators will be given in subsection 
3.4. 

3.3.3 Query Interface 
In order to make use of the progressing analysis, queries have to be sent to the 
Online Statistics components, the evaluators, in the RODB. Every querying ap-
plication is a client of the server; this can be any application, like a dedicated 
scheduler, or even the monitored application itself. In the latter case the online 
monitoring infrastructure acts again as a tool for providing time-awareness, or in 
other words it can be seen as an extension to the object-oriented language that 
adds a new dimension of reflection, namely ”performance reflection”.  

To query the server, a query request is put into a local shared memory buffer for 
the server, similar to the event-recording interface. The results of a query in turn 
are also passed to the client via shared memory. However, while for queries the 
server maintains one buffer, which collects the requests of all clients, for receiv-
ing the results the client opens an individual shared memory buffer, referred to as 
response channel here. Results in a response channel will always appear in the 
same order as the requests have been posted. In querying, apart from the re-
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quested context, which specifies the object instance and method, the type of 
evaluator to be queried has to be specified by the client. To select the requested 
evaluator type, simply an arbitrary instance of the desired class has to be speci-
fied. In addition, the request can contain arguments to the evaluator, which influ-
ence as parameters the computation of the result.  

In Figure 3.17 the declaration of the TstatResult class, the base-class for all 
evaluator results is given. It provides method-templates for accessing the opaque 
data-structure (that is actually transferred from the RODB server via shared 
memory and/or the network interface), for printing the data in a human-readable 
format, for determining the type (in order to match it with the evaluator), and 
two methods to access the validity of the contained result. 

class TStatResult 
// Abstract base-class for results of ’TStatEval’ objects. 
{ 
public: 
 
  virtual void MakeInvalid () = 0; 
  // Marks result as being invalid (internally). 
 
  virtual int CheckValidity () const = 0; 
  // Returns if result object is containing valid data. 
 
  virtual int TextCopy (char * const StringBuffer,  

const size_t BufferSize,  
const char * const IndentStr = NULL) const = 0; 

  // Copies string containing a textual representation of the 
  // result into ’StringBuffer’ (for human-readable output). 
 
  virtual t_StatType GetEvalType () const = 0; 
  // Returns type of evaluation result. 
  // (Has to match corresponding ’TStatEval’-elaboration’s  
  // ’GetEvalType()’.) 
 
  virtual void *DeliverData () = 0; 
  // Returns pointer to internal data structure. 
 
  virtual unsigned long GetDataSize () const = 0; 
  // Returns size of internal data structure. 
 
  virtual ~TStatResult () {}; 
  // Destroys result object. 
 
}; 

Figure 3.17: Abstract base-class for results 

The details of the query API of the RODB are sketched in terms of a short code 
sample (see Figure 3.18). In the example the ECET(o,m),k,n is requested from an 
exponential fade-out evaluator. The parameters o and m are set by the requesting 
program as well as the ratio k/n (in the example 95%). As n is a parameter of the 
evaluator itself, the required k is determined during the query. After sending the 
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query, the result is received from the corresponding response channel. The Re-
ceiveEvalResult() method waits until the result is present in the channel 
or the timeout expires. A timeout value of -1 means immediate return, so it can 
be used for non-blocking requests, where the result can be collected later from 
the return channel. 

#include "RODB_cl.hh" 
  ... 
  t_RODB_Client     RODB_Client; 
  t_ResponseChannel BackChannel; 
  TFadingDist       EvalXY; 
  // the ’exponential fade-out’ evaluator 
 
  TFadingResult     ResultECET; 
  // the corresponding result object 
 
  t_ObjectID  ObjectID = o; 
  // some object of an instrumented class 
  t_MethodID     MethodID = m; 
  // the ID of the requested method 
  ... 
 
  RODB_Client.OpenResponseChannel(BackChannel); 
 
  ResultECET.SetSamplePercentage(95); 

      // the request’s result will report on  
   // ECET(o, m, 95) 
   // the ECET which is equal or greater 
   // than at least 95% of the recorded samples 
 
  RODB_Client.RequestEvaluation( 
   ResultECET, ObjectID, 
        MethodID, ResponseChannel)); 
 
  if (RODB_Client.ReceiveEvalResult(ResultXY, 
       ResponseChannel,Timeout)) { 
     ExpectedTiming = ResultECET.Prediction 
  // Now we can use the ECET 
  ... 
     } 
} 

Figure 3.18: Example of an RODB query 

3.3.4 Activity Manager 
The second component that receives event data from the Event-Processing com-
ponent is the Activity Manager. The Activity Manager is synchronously invoked 
when new events are detected that potentially report on a new mapping of activi-
ties to threads (i.e. invocation/return events from the middleware layer).  

Even simple tracing of activities in a distributed o-o system is a non-trivial task, 
as an activity may cross node boundaries several times. In addition, as stated 
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before, many middleware systems, including standard CORBA, do not even have 
a build-in activity abstraction that would allow identifying an activity across 
nodes e.g. by a global ID. The Activity Manager also requires knowledge about 
the timing requirements associated with an activity. Therefore, it has to imple-
ment a mechanism to piggyback this information on the invocations. In order to 
do this transparently to the application, the Activity Manager closely cooperates 
with the local instrumentation code that is hooked into each remote method in-
vocation. The timing data and the activity ID mapping to the local threads is 
maintained by the Activity Manager and then added and extracted to and from 
each invocation message by the instrumentation code. If required the activity 
manager can report the current mapping of thread to activities to scheduler (in 
order to provide it with the knowledge about timing parameters of activities or to 
enable early detection of timing faults). 

3.4 Measurements and Evaluation 
With the implementation of the complete monitoring system, a number of meas-
urements have been made in order to give an estimation for the actual overhead 
introduced by online monitoring and for determining the possible granularity of 
observation. All given figures have be measured on a Sun UltraSparc 1 running 
the SunOS 5.5 (Solaris) operating system [Ger99a]. 

Sensor Performance 

For the measurement of the overhead introduced by the instrumentation, code 
instrumentation with mc4p has been applied. A sub-class of mc4p’s 
_instrumented_class has been implemented that reduces the number of events to 
one per method invocation. On the start of a method it stores the timestamp in a 
local variable and at the end it reports the time difference directly in one event. 

The interference introduced by the execution of this sensor code has been meas-
ured. The overhead includes the time for taking two 64-bit timestamps (at the 
beginning and at the end of the measured method), for computing the time-
difference, locking the event queue, and for enqueuing the event data. The time 
was measured to be about 5 µsec per sensor. In the current Solaris implementa-
tion a major part (30%) of the overhead results from the “gethrtime()” system 
call that is used to access the nanosecond counter. This can be improved by ei-
ther using a memory-mapped version of this counter or, on other architectures 
(e.g. the Intel Pentium), by using on-chip counters. In both cases the overhead 
reduces dramatically (just one instruction on the Pentium). Another 10% of the 
sensor overhead is due to the locking of the event queue. As prior mentioned, in 
some system environments this can be simplified to a plain “disable interrupts” 
in the single processor case. But even without these optimizations, it can be 
stated that 1000 events/s can be created with using less than 0.5% of the CPU 
power of the machine. 
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RODB Performance 

The figures in the previous subsection do not yet include the processing power 
needed for storing the events in the RODB. Therefore, also the performance of 
the RODB depending on the size of the object-space and the complexity of the 
used evaluators has been measured. With the “negative exponential fade-out” 
type evaluator (which can be considered as having a medium complexity) and an 
object-space of 100 classes, 500 objects, and 200 methods per class, about 
60.000 event/s (~17 µsec/evens) has been achieved. Either by decreasing the 
object-space by a factor of 100 or by using a very simple statistical evaluator 
(incremental computation of average and variance) is was possible to speed-up 
event processing by another 10%. A query into the database has about the same 
time-complexity as an event input. This means that the RODB uses less than 2% 
of the computing power of the machine (possibly at idle priority) to process 
continuously 1000 events/s resulting from 1000 instrumented methods execu-
tions per second. 

Conclusion 

At a first glance 1000 methods per second seem not to be a lot in an up-to-date 
object oriented system. However, it has to be conceived that for supporting the 
TAFT-Scheduler, only the monitoring of scheduling-relevant entities is required. 
This means, that only methods of the size of “tasks” have to be instrumented. For 
those, a granularity in the order of milliseconds is quite reasonable. Also, if you 
consider remote invocations in a distributed object-oriented system via a net-
work, like e.g. in CORBA, 1000 methods per second is a realistic order of mag-
nitude. This clearly shows that our online monitoring system can provide the 
required generic support for the scheduler without needing significant additional 
CPU resources.  

3.5 Case Study – RTL-based Constraint Check-
ing 
The presented monitoring and event-processing infrastructure supports the con-
cept of TAFT-Scheduling for an adaptive, object-oriented real-time system. 
However, the presented instrumentation techniques and also the sensors and the 
event-infrastructure of the RODB can be used for other purposes in object-
oriented real-time systems as well. They can even be useful in systems that have 
no notion of soft-tasks as required for the TAFT-Scheduling approach. 

In this study, a concept is presented that applies the techniques of this thesis to 
hard real-time systems in order to implement an object-oriented checker for 
timing-constraints written in the RTL formal language [Ger96b]. The first sub-
section shortly describes the existing formalism and its extension for object-
oriented languages. The second part explains how the tools presented in the pre-
vious chapters can be applied to implement this checker. 
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3.5.1 Event-based Timing Constraints in Objects 
In the design of all real-time systems, assumptions about the behavior of the 
system and its environment are made. Assumptions may be related to the exter-
nal world (e.g. a maximum event rate), to the hardware components (e.g. sensor 
response times), or to the software itself (e.g. worst case execution times of rou-
tines). In the best case these assumptions are based on a formal analysis. But 
even a formal treatment of a problem has to be based on a certain system model 
that does not necessarily cover all relevant aspects of the system (e.g. faulty 
components). Traditionally, a real-time system relies completely on the correct-
ness of its design assumptions and the system’s behavior becomes undefined as 
soon as an assumption is violated. In many modern applications this is not ac-
ceptable any more and so fault-tolerance has become another major issue in the 
design of real-time systems. The first step in fault-tolerance is fault-detection. In 
order to react on the violation of design assumptions, the system software (either 
the operating system or the application) has to be informed when such a violation 
occurs. Thus, runtime-checks of the system’s behavior are an integral part of a 
fault-tolerant real-time system.  

Major work in the area of online checking of timing constraints with an event-
based system has been done Jahanian al. As already discussed in the related 
work in subsection 3.1.5, their RTL-based constraint checkers [Cho91, Raj92, 
Jah94] use a model of monitoring that is comparable to the one presented in this 
thesis. However, in their work no assumptions are made how this fits together 
with object-orientation, how the work can be integrated with standard program-
ming languages, and how the code can be instrumented with event-triggers. The 
concept presented here extends the work towards object-oriented real-time sys-
tems. It focuses on how object-orientation can be utilized to simplify the specifi-
cation and the checking of timing constraints and how this can be integrated into 
an existing programming language, namely C++. 

Specifying and Checking Timing Constraints 

It seems to be attractive to add a notion of "timing-abstraction" to the object’s 
interfaces. Similar to data-abstraction the "timing-abstraction" can define the 
temporal behavior of an object independent of it’s actual implementation. Like in 
non-object-oriented real-time software, timing can be expressed either in a speci-
ficational notation or in a more constructive manner. 

A specificational notation (like RTL) allows to specify complex system behavior 
including the behavior of environmental components, but it does not show a way 
how to really implement the behavior in a real system. An approach to utilize a 
specification after the design and verification phase of a software project is a 
runtime system that allows to check the behavior of the actual application against 
the timing constraints written in a formal language. In case of a detected timing 
constraint violation an exception-condition is raised. In response to exception 
application-specific error recovery mechanisms may be triggered. These recov-
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ery mechanisms may range from a complete shut-down to the activation of hot-
standby resources. Such an "checker"-approach is comparable to the definition of 
pre- and post-conditions that also help to check the behavior of an application 
but do not propose any solution to the problem of how to implement the required 
properties. 

In an object-oriented environment it seems to be quite natural to specify the 
timing in the same place where also the functional description is given: in the 
class description. This means, that all objects of one class have the same func-
tional and timing behavior. If an object is needed with an identical functional 
behavior and different timing constraints, a new class has to be defined. This is 
equivalent to the situation where parts of the functional behavior have to be 
changed. In both cases inheritance should enable code-reuse, so that only these 
parts that affected by the changes have to be redefined. An alternative approach 
is to define the temporal and the functional behavior in different class hierarchies 
and to combine two classes from both hierarchies to create an instance of an 
object. This separation avoids extensive re-definitions of functional code if only 
the constraints have been changed (an effect known as the inheritance anomaly 
[Mat93]), but it introduces redundancy and a source of inconsistency. To avoid 
this, the concept proposes an approach where the timing constraints are included 
in the class definition. As the RTL-style rules are independent of the functional 
class code, changes in these rules cannot lead to redundant re-definitions of class 
methods. 

The RTL Language 

RTL is a formal language for reasoning about timing properties of real-time 
systems. It describes the absolute timing of events (not just the ordering of 
events). An event marks a point in time, which is of significance to the behavior 
of the real-time system. RTL distinguishes three types of events: external events 
coming from the environment, start/stop events marking the beginning/end of an 
execution of a code sequence, and transition events that indicate changes of cer-
tain variables of the system. Events have unique names. Time is captured by the 
occurrence function @:Event x Instance → Time that assigns a time value to an 
event occurrence. The expression @(X,i) denotes for example the time-stamp of 
the ith occurrence of the event X. RTL formulas are constructed using addition 
and subtraction of occurrence functions with integers, (in)equality predicates, 
universal and existential quantifiers, and the first-order logic connectives. 

The automatic checking of safety assertions about a system with a specification 
written in these general RTL-formulas is extremely inefficient and can only be 
used for small systems. But a similar formalism can also be used to check an 
actual run of a system (a sequence of events) against its specification. Three 
subsets of RTL have been defined in [Jah90] which can be evaluated in polyno-
mial time to decide even for an incomplete computation whether it still can fulfill 
its specification or not. The most important subset are those formulas that only 
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consist of occurrence functions with a constant occurrence index. A positive 
index value i denotes the absolute number of the occurrence (e.g. the first), while 
a negative value specifies an occurrence relative to the current point in time (i.e. 
@(X,-1) is the time when the last instance of event X has happened). The papers 
[Cho91] and [Raj92] describe a graph-based algorithm that evaluates these for-
mulas, whenever a new event arrives or when a timeout expires. In addition they 
defined a new access function @val: Variable x Instance → Value for the use in 
timing constraints. The function results in the value of a variable after the ith 
occurrence of a transition event for this variable. 

Basic Events 

The object-oriented extension uses the same basic events as already known from 
RTL: "Start" and "End" events of code sections and state changes of variables. In 
the case of object-oriented system this matches with the beginning and the end of 
methods and the changes of member variables. All these basic events are implic-
itly defined by the definition of the corresponding member components. An 
event consists of four components: the static event name, the dynamic context, a 
time-stamp, and additional optional parameters. 

The static event name denotes the static context in which the event occurred. In 
case of a basic event the static event name is expressed by the name of the class 
and either the name of the method (plus "start" or "end) or the name of the mem-
ber variable. The dynamic context of the event is the unique object-identifier of 
the producing object. Using a clock synchronization, e.g. as the a-posteriori algo-
rithm as described in subsection 2.2.2, it is assumed that the time-stamps impose 
a global order on the events of the distributed. The fourth component holds addi-
tional optional parameters, like the new value associated with a state change 
event. 

Timing Constraints 

In order to specify the timing of objects a new component is added to a class 
description: the constraint section. This section contains a list of named 
RTL-like formulas. The formulas are composed out of the basic events as de-
scribed above. A constraint itself also defines an event. When a constraint is 
violated, the object produces an event with the static name of the constraint, the 
dynamic context of the object that violated the constraint and a time-stamp that is 
the earliest point in time when the checker could evaluate that the constraint will 
be violated. This allows to easily composing more complex events out of basic 
events. In our current approach events are not first-class objects. They cannot be 
used in the functional specification of the class (in the "normal" C++ part) and 
there exist no variables of type "event". This independence of functional specifi-
cation and timing specification avoids inheritance anomalies and it allows the 
construction of two separate systems: the object oriented real-time system and its 
constraint checker. 
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A simple example of a constraint list is shown in Figure 3.19. Constraint 1, 
named "max_time", states that an execution of the method get_val() must 
not take longer than 4 ms. The expression @(get_val.start,-1) denotes 
the start time of the most recent execution of the method get_val()and 
@(get_val.end,-1) evaluates to the end time of the same execution. Constraint 2, 
named "recovery", expresses that two successive calls to get_val() have to 
have a distance of at least 1 s.  

In a similar manner a period, a jitter, or a time-out can be defined. The expres-
siveness of RTL-like formulas also allows to define constraints between the 
execution of different methods and rules that depend on the value of member 
variables. This enables to write rules that define synchronization conditions and 
mode-changes. In order to simplify the writing of rules without loosing the com-
plete expressiveness of the constraint formulas the standard C++ macro-
mechanism can be used. Figure 3.20 shows how the max_time constraint from 
the example above can be simplified using a standard C++-macro for defining a 
deadline. 

class sensor { 
public: 
 int get_val(); 
 : 
 [[// The Constraint Section 
 // Constraint 1: 
 // get_val() must not take longer than 4 ms 
  max_time:  @(get_val.start,-1) >=  
       @(get_val.end,-1) - 4ms; 
 // Constraint 2: 
 // get_val() must not be called more that once per 
second 
  recovery: @(get_val.start,-2) <= 

     @(get_val.end,-1) - 1s; 
 ]] 
} 

Figure 3.19: A C++ class with timing constraints 

#define deadline(func,time) (@(func.start,-1) >=  \\ 
         @(func.end,-1) - time) 
       ... 

    // Constraint 1: 
 // get_val() must not take longer than 4 ms 
  max_time: deadline(get_val, 4ms); 
       ... 

Figure 3.20: The usage of macros to simplify the notation 

Note, that all these constraints are local to an object. The constraints are checked 
on a per object basis and they become active, if an object violates one of them. 
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This implies that for every new object also new instances of the events and new 
instances of the constraints are created. This is a major difference to existing 
event-based constraint checking tools. Code sharing is a standard feature in ob-
ject-oriented languages. This implies that the event-producing code is also 
shared. If an event is only determined by the location of its sensor and not by its 
producing object, all objects of the same class would produce the same events. 
Based on these events all timing constrains would be evaluated on a per class 
basis and this is in most cases not the desired semantics. 

The timing constraints described so far are also local in a sense that they only 
refer to events that are produced by the execution of the object itself. But this 
kind of constraints is not sufficient. They can guarantee the local consistency of 
objects, but cannot capture inter-object dependencies in the system. This requires 
constraints that combine events from different objects. To achieve this, objects 
have to export events via their interface. But as "timing abstraction" was one of 
the goals of our approach, it is not desirable to export all events of the interface 
of an object, but only those that are independent of the implementation and rele-
vant to others. This is marked in C++ style with the keywords public, pro-
tected, and private that determine the visibility of an object components. 
Public events are visible globally, while protected events are only mean-
ingful within the inheritance hierarchy. Private events are purely class inter-
nal. Due to the limitations of the static analysis, inter-object constraints are lim-
ited to components of an object where the references are known at compilation 
time. This also means, that constraints can be checked locally at each node as 
components of an object are considered to be always located on the same node as 
the containing object. 

Figure 3.21 shows an example of a class that has timing constraints based on 
local basic events and on events that are exported by some of its components. 
E.g. the expression @(left.max_time,-1) denotes the most recent time, when the 
constraint max_time in the object "left" has been violated. This time is defined 
by the constraint-checking algorithm. The algorithms described in [Jah94] guar-
antee, that a violation is detected at the earliest possible time. If no occurrence of 
e.g. left.deadline ever happened, the expression @(left.max_time,-1) is treated to 
denote some time-value in the future. Thus, according to the algorithm given in 
[Jah90], a constraint like @(A,1) < @(B,1) ("A happens before B") is already 
known to be violated at the moment when B happens first, as no value of @(a,1) 
can ever fulfill the constraint. There is no need to wait with the evaluation of the 
formula until A really happens. The constraint input_incorrect of the class 
element states, that the max_time constraint must not be violated by one of 
the sensor objects (named left and right) while the method 
get_position() is executed.  
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class element { 
sensor right, left; 
 get_position() { 
   int l = left.get_val(); 
   int r = right.get_val(); 
   ...}; 
 : 
 [[ 
 // Constraint 1:  
 // a deadline violation of one of the  
  // sensors must not happen 
 // while the position is determined 
  input_incorrect: 
      @(get_position.start,-1) >= 
      @(left.max_time,-1) > 
      @(get_position.end,-1) 
      || 
         @(get_position.start,-1) >= 
      @(right.max_time,-1) > 
      @(get_position.end,-1);  
 : 
 ]] 
}  

Figure 3.21: A C++ class with inter-object timing constraints  

Inheritance 

In an object-oriented environment the semantics of events has to describe what 
happens to events in an inheritance hierarchy. Events and constraints are inher-
ited like other members of classes. If an event is produced by a base-class the 
same event will be produced by any derived class as well. The same holds for 
constraints. Events and constraints can also be overwritten. Basic events are 
redefined by overwriting the defining method or member variables, while con-
straints (and the according violation events) are redefined by declaring a new 
constraint with the same name. Overwriting a constraint with an empty con-
straint disables it. 

The binding of events in constraints is dynamic in sense that events are always 
tested with the constraints that belong to the actual class of the producing object, 
not in the context of the class that first defined this event. 

This kind of inheritance allows to redefine timing constraints of a class by inher-
iting the functional code and redefining its timing. Of course, this is also possible 
for classes that had no timing constraints before, like classes from an existing 
C++ application.  
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3.5.2 Infrastructure for Constraint Checking 
The actual checking of the constraints defined in the C++ like language requires 
a compile- and runtime support that is very similar to the requirements of the 
ECET-prediction in the TAFT-Scheduler. 

The Compiler 

A compiler for the proposed language extension has to do two additional tasks 
besides the production of the object code. It has to translate the timing con-
straints into a) an instrumentation of the object-oriented program in order to 
produce the required events and b) a representation of the constraints that can be 
evaluated by the constraint checker. The task of adding the instrumentation can 
be done by a mc4p as described in section 2.3.2. The events that identified by 
mc4p are exactly the basic events as defined above. 

For the second task the constraints have to be parsed and converted into a repre-
sentation that is suitable for efficient constraint checking. As described in 
[Cho91] this can be done by converting the formula into disjunctive normal 
form, where each basic predicate is an inequality of the form 

@(A, i) <= @(B, j) - C (A and B are events; i, j, and C are integer constants)  

and finally by converting each disjunction into a graph-template that reflects the 
dependencies between the event occurrences. These graph-templates have a 
vertex for every occurrence function and directed edges weighted with the times 
-C (see Figure 3.22).  

B,j A,i
- C

 

Figure 3.22: Graph-template for @(A, i) <= @(B, j) - C 

The Online Checker 

The checker has to receive the static information about the structure of the timing 
constraints from the compiler (see Figure 3.22). This information includes the 
class structure, the per class event table, the graph-templates representing the 
temporal dependencies between the events as stated by the constraints. During 
runtime the checker has to react on incoming events. Upon the reception of a 
creation/deletion event it has to create/delete an instance of the dynamic object-
specific data-structures. These data structures hold all the necessary information 
to check the timing of this particular object. Upon reception of such an event 
these constraints have to be checked again. 

A constraint violation is detected by constructing a current instance of a graph 
out of the graph-templates (algorithm from [Cho91]). The algorithms works like 
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this: For each edge with weight C in the graph-template that leads to (comes 
from) a vertex with an already assigned value T, an edge in the new graph with 
weight C-T (C+T) leading to (coming from) a special "zero-node" is created. 
Nodes that have not yet an assigned value (the event did not happen), are con-
nected to the zero-node via an edge with the weight -NOW (where NOW is the 
evaluation time), indicating, that the event might happen in the future. If there is 
any negative cycle in the graph the disjunction is unsatisfiable. If all disjunction 
in the DNF of a constraint are unsatisfiable, the constraints has been violated 

Upon detection of a constraint violation the checker itself produces the according 
event that then will be immediately checked (it is by definition the next event in 
the total order of events). For deadline-like constraints the checker also inserts 
special time-out events into the queue, in order to detect a possible violation as 
early as possible. As events are queued according to their time-stamps in front of 
the checker, this does not necessarily mean, that a violation is detected when it 
actually happens, but it is detected before any more recent event is processed. 

The RODB reflects pretty much the required structure of the constraint checker. 
Each object has its separate evaluator that now executes the graph-based check-
ing algorithm. Upon reception of a new event that belongs to a specific objects it 
is routed to the right evaluator using the same mechanisms as described above in 
subsection 3.3.1. Basically one additional mechanism is required. For the evalua-
tion of inter-object constraints, event have to be forwarded to the right consumer 
object’s checker. This can be accomplished by a list of object references main-
tained by each evaluator, where the interested consumers register themselves 
online during object creation.  

There are three possible modes in which a checker can be used: off-line, online, 
and real-time. In the off-line mode performance of the checker is not an issue as 
long as it is possible to get results about an execution after a reasonable time of 
waiting. An online checker has to be able to cope with the average event rate, so 
that it can keep track with the running system. This is probably enough to pro-
vide feedback for an adaptation mechanism. If the checker itself runs as part of 
the real-time system, it can provide direct input for the decisions of the applica-
tion. This would require that parts of the system described so far must have 
known worst case execution times and that they are scheduled with the applica-
tion itself. This is true for the sensor part but it has not been a design-goal of the 
RODB. 

Conclusion 

The mechanisms described for instrumentation and event processing in object-
oriented real-time systems can be used for monitoring and visualization. In a 
second step the same data can be used for online analysis and a feedback into the 
system’s runtime, if the runtime has the mechanisms to exploit this additional 
knowledge. But these are not the only applications for object-specific timing-
data. The presented online checker extends previous ideas about online evalua-
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tion of formal constraints in the running system towards object-oriented systems. 
It is not only that this object-oriented approach allows for more fine-granular 
constraints, but it is the prerequisite to apply such an event-based algorithm in an 
object-based environment. Classic, static code-based event handling must fail 
because of the use of code sharing. The presented RTL-based checking algorithm 
can be seen as an example. If other algorithms are more adequate for a concrete 
target system, the evaluator-based structure of the RODB provides a generic 
interface for inserting any appropriate checking/evaluation module. 
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4 Summary 
The traditional view of real-time systems as isolated, embedded systems does not 
longer suffice for future complex open control systems. The use of the object-
oriented paradigm has already been accepted as a design methodology for real-
time systems that greatly reduces the complexity of the system while improving 
reusability and manageability. As also the surrounding IT-infrastructure is more 
and more accessible through object-oriented interfaces, this directly suggests to 
use object-orientation as the integrating communication paradigm in these open 
heterogeneous systems. However, as CORBA, DCOM and comparable object-
oriented middleware and also most of the applications running on top are not 
aware of real-time requirements, a serious problem arises. The evident approach 
to develop a real-time capable object-oriented runtime system and to implement 
the complete application in a homogeneous real-time environment is usually not 
a practicable solution, as the involved applications are not designed for real-time 
requirements. Moreover, a main concept of object-oriented, namely implementa-
tion hiding, collides with the need of typical real-time systems for total knowl-
edge and control of the required resources. This dilemma results in a separation 
of object-oriented systems into a real-time and a none-real-time domain. Preserv-
ing the heterogeneity of these domains and providing appropriate mechanisms 
for interfacing non-real-time and real-time objects, is probably the only viable 
approach to tackle this problem. 

A first step towards a successful interoperability of these domains is time-
awareness, i.e. the ability of the systems to monitor, gather information, and 
report about its own timing behavior. The availability of this information is the 
necessary precondition that a system can be operated in a time-critical environ-
ment. For a complete view, monitoring must happen at all architectural levels 
and it should preserve and exploit the structural information provided by object-
orientation. As this is a generic job for all applications interfacing to the real-
time domain, it can and should be supported by system infrastructure. This thesis 
presented instrumentation concepts for the operating system, the middleware, 
and the language level and tools for a distributed environment that combine the 
gathered information in a novel and for a real-time system designer intuitive 
way. 

However, in order to give guarantees for real-time behavior in a heterogeneous 
environment with non-real-time and real-time objects, gathering timing informa-
tion of the system it not enough. Resources have to be managed according to the 
acquired knowledge, a scheduling problem. Traditionally real-timer schedulers 
are based on the notion of WCETs, but this concept is increasingly inappropriate 
for the considered systems. In order to cover the degree of unpredictability the 
concept of ECETs has been introduced, that expresses estimates instead of upper 
bounds for the future timing behavior. ECETs can be computed by monitoring 
and extrapolating the timing behavior of individual objects from the near past 
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into the near future. The knowledge of ECETs can be used by a dynamic sched-
uler to adapt its resource allocation decisions depending on the current state of 
the system and the environment. It also enables the objects in the real-time do-
main to anticipate the behavior of invocations of non-real-time objects and to 
react accordingly. The thesis described the design and the implementation of an 
integrated execution time prediction infrastructure that is able to compute ECETs 
efficiently during runtime. The implementation of the system exhibits perform-
ance figures that proof the viability of the approach. The results enable future 
object-oriented real-time systems to use the ECET-knowledge to minimize the 
unpredictability when invoking other services and enable them to establish effi-
cient timing-fault handling that ensures computational progress even in overload 
situations. 
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