
A Monitoring-based Approach to
Object-Oriented Real-Time Computing

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von Diplom-Informatiker Martin Gergeleit,
geboren am 23. September 1965 in Neuwied

Gutachter:
Prof. Dr. Edgar Nett
Prof. Dr. Wolfgang Schröder-Preikschat
Prof. Dr. Jörg Kaiser

Magdeburg, den 20. Dezember 2001

i

Table of Contents

1 Introduction.. 1

1.1 Motivation.. 1

1.2 Approach and Outline.. 4

1.3 Object-Orientation and Real-Time 5

1.3.1 Object-Oriented Languages for Real-Time 6

1.3.2 Object-Models for Distributed Real-Time............... 8

1.3.3 Object-Oriented Modeling for Real-Time 11

1.3.4 Summary.. 14

2 Time-Aware Systems... 15

2.1 Monitoring ... 15

2.1.1 Types of Monitors.. 16

2.1.2 Related Work on Monitoring................................. 19

2.1.3 Monitoring Object-Oriented Real-Time Systems.. 23

2.2 Instrumentation at the Operating System Level 23

2.2.1 Issues in System-Level Instrumentation 23

2.2.2 Implementation for Windows NT.......................... 25

2.3 Instrumentation at Language Level 32

2.3.1 Issues in Code Instrumentation.............................. 33

2.3.2 The mc4p Tool... 37

2.4 Instrumentation at Middleware Level............................ 50

2.4.1 The Activity Concept... 51

2.4.2 Monitoring Activities... 53

2.4.3 Instrumenting CORBA .. 54

2.5 Case Study – MagicZoom.. 56

2.5.1 Monitoring with MagicZoom 57

2.5.2 The Design of MagicZoom.................................... 59

2.5.3 Summary.. 65

3 Real-Time Systems .. 66

3.1 Providing Timing Guarantees .. 67

3.1.1 Worst Case Execution Times................................. 67

ii

3.1.2 Task-Classification .. 69

3.1.3 Expected Case Execution Times............................ 72

3.1.4 TAFT Scheduling .. 74

3.1.5 Related Work ... 77

3.2 The Measurement-based Approach 82

3.2.1 ECET Analysis in Object-oriented Systems.......... 83

3.2.2 Maintaining Timing Statistics for ECET Analysis 86

3.2.3 Early Detection of Timing Faults 91

3.2.4 Adapting Granularity ... 95

3.3 The Implementation Architecture.................................. 96

3.3.1 Runtime Object Database 98

3.3.2 Online Statistics ... 101

3.3.3 Query Interface .. 103

3.3.4 Activity Manager ... 105

3.4 Measurements and Evaluation 106

3.5 Case Study – RTL-based Constraint Checking 107

3.5.1 Event-based Timing Constraints in Objects 108

3.5.2 Infrastructure for Constraint Checking 114

4 Summary.. 119

5 References.. 121

iii

List of Figures
Figure 1.1: The simplistic view of a heterogeneous distributes real-time system 3

Figure 1.2: The proposed partition in distributed real-time systems 3

Figure 1.3: Structure of a TMO object ... 9

Figure 1.4: SIMOO-RT Model Editing Tool (MET).. 11

Figure 1.5: A SIMOO-RT Message-Sequence Diagram 12

Figure 2.1: Components of the JewelNT distributed monitoring system for
Windows NT... 26

Figure 2.2: A JewelNT event-record .. 26

Figure 2.3: The Jewel NT sensor code ... 29

Figure 2.4: Gantt-chart display of JewelNT ... 30

Figure 2.5: Declaration of instrumented_class ... 41

Figure 2.6: The Building Process using mc4p.. 43

Figure 2.7: The stack example prepared for instrumentation with mc4p 46

Figure 2.8: The instrumented stack example .. 47

Figure 2.9: A trace with the inst_log class of the instrumented stack example .. 48

Figure 2.10: A dump of the name space as generated by mc4p 49

Figure 2.11: Sceenshots of a class-browser and a visual instrumentation tool
based on the mc4p name server .. 49

Figure 2.12: An activity originating from object A with nested invocations of
objects B and C ... 52

Figure 2.13: Interceptors in the CORBA 2 specification.................................... 55

Figure 2.14: The MagicZoom user interface .. 58

Figure 2.15: The DCOM-Trace view of MagicZoom .. 59

Figure 2.16: Components of MagicZoom .. 60

Figure 2.17: Programming interface of MagicZoom.. 61

Figure 2.18: Generating the incoming call event with a ChannelHook.............. 63

Figure 2.19: Algorithm for constructing a global activity trace 65

Figure 3.1: Computing the ECETt,p from a probabilistic density function 73

Figure 3.2: A TaskPair ... 75

iv

Figure 3.3: The adaptation loop.. 82

Figure 3.4: The stack-like object invocation sequence of an activity 84

Figure 3.5: ECET evaluation with a discrete representation of the distribution. 88

Figure 3.6: The event-history representation of the n most recent execution
times.. 88

Figure 3.7: The negative exponential fade-out algorithm................................... 89

Figure 3.8: Adaptive re-scaling of the density representation 90

Figure 3.9: A Timing density with high variance caused by data-dependent
branching .. 92

Figure 3.10: The concept of the ECTT... 93

Figure 3.11: Detection of probable timing faults using ECTTs.......................... 94

Figure 3.12: Detection of a probable timing fault with time-deltas.................... 95

Figure 3.13: The components of the implementation architecture 97

Figure 3.14: Data-Structures of the RODB .. 99

Figure 3.15:Internal structure of the RODB server process 101

Figure 3.16: Abstract base-class for evaluators .. 102

Figure 3.17: Abstract base-class for results .. 104

Figure 3.18: Example of an RODB query .. 105

Figure 3.19: A C++ class with timing constraints .. 111

Figure 3.20: The usage of macros to simplify the notation 111

Figure 3.21: A C++ class with inter-object timing constraints......................... 113

Figure 3.22: Graph-template for @(A, i) <= @(B, j) - C 114

v

Introduction 1

1 Introduction
Future real-time applications will become large and physically distributed among
different sites. They will have to work in environments that are so complex that
it is not possible to specify all possible states and conditions in detail. At the
same time, the time-to-market from the first idea to the working product de-
creases, especially as real-time technology is no longer restricted to long-living
embedded applications, like in aircrafts or defense systems, but also penetrates
business and customer applications. Many of today’s Internet-applications have
an increasing demand for real-time behavior. This starts from hard real-time
telemetric-applications and critical trading applications, like stock trading, in-
cludes all kinds of multimedia-applications and ranges to multi-player games.

1.1 Motivation
An important issue, that all these applications have in common, is that they do
not act in a closed environment. They act in environments that are usually not
controlled by a single principal, like one company that runs an application-server
or one telecom carrier that manages the whole network. Large scale distributed
real-time applications (e.g. over the Internet) usually have to use resources from
different entities. This immediately leads to a need for agreed common inter-
faces, i.e. standards that allow for interaction in a heterogeneous environment.
Open standards have driven the expansion of the Internet and today it is com-
monly agreed that only applications that use and provide standard interfaces have
the potential to become successful. Today, even closed applications (e.g. on the
Intranet) are usually designed and implemented using these standards. However,
these standards mainly have focused on functional behavior. Specification of
timing behavior was initially out of scope. This is true for the major Internet
protocol standards, like e.g. TCP/IP, IEEE 802.x, or HTML, as well as for com-
monly used interface description languages like CORBA or DCOM IDL. Also
all common implementation languages (ranging from C/C++, Java to SQL) do
not provide means to express timing behavior. What is needed are open stan-
dards that include timing and cope with the heterogeneity.

Object-Orientation

The benefits of object-orientation in system development and for handling het-
erogeneity are well accepted from the software engineering point of view. Today
nearly all new IT systems emerge from an object-oriented analysis and modeling
phase, their implementations are based on object-oriented middleware (like
DCOM or CORBA), they are written in an object-oriented language (like C++ or
Java), and their APIs are offered in abstractions of classes and objects. The de-
sired properties of object-orientation design and programming are extensibility,
reusability, understandability, robustness, portability, and efficiency achieved by

2 Motivation

modularity, implementation hiding, and inheritance [Boo91]. It is common be-
lieve that these benefits also apply to real-time applications. For many real-time
applications, the object-oriented approach (at least for modeling purposes) seems
to be quite natural, especially for control applications, which have to handle real-
world objects.

Timing Requirements

Only recently, extensions and new standards that can handle timing requirements
or, more globally, QoS (Quality of Service) parameters have been proposed and
introduced [OMG99b, OMG01]. QoS typically denotes a combination of many
non-functional properties, including especially timing and fault-tolerance. While
the use of QoS guarantees is common in the telecom world (where handling of
synchronous and thus time-critical data is the core business), it is still a current
topic of research in distributed computing. Especially the use of dynamic QoS
guarantees is the challenge. While communication lines are usually leased with
some static QoS assurances, it is highly inefficient and often infeasible to pro-
vide static guarantees also in a network of interacting services due to the number
of involved components. Instead dynamic guarantees are negotiated and the
resulting QoS is dependent on the actual requirements and the currently available
resources.

Problem Exposition

A straightforward approach that combines the benefits of object-orientation and
dynamic QoS guarantees seems to be a promising approach to tackle the prob-
lems of future real-time applications. A system as depicted in Figure 1.1 seems
to be the ideal solution for the coexistence and interoperability of real-time and
non-real-time applications in one common infrastructure. All components inter-
act via a common object-oriented infrastructure and if this infrastructure man-
ages also dynamic QoS guarantees, all problems can be solved.

However, such an architecture can only be successful in very isolated problem
domains. For most applications and especially all Internet-based services this
scenario is too simplistic. Even if all technical problems were solved, it relies
heavily on the ability and, often even more important, the willingness of all in-
volved entities to negotiate and implement the required QoS guarantees. Even
with a complete replacement of the network, the operating system, and the mid-
dleware components with new, QoS aware versions, legacy application on top
will still not be real-time capable. They have to be redesigned, often from
scratch. With the large base of installed services, the migration process would
require incredible investments, as the complete existing IT-infrastructure has to
be replaced or at least updated. This leads to the situation, where real-time appli-
cations wanting to interact with the rest of the world will have to deal with non-
QoS aware services for a very long time.

Introduction 3

Common
Infrastructure
(e.g. CORBA)

Non-Real-Time
Services

Standard
DBMS Graphical User

Interface

Internet-Services

Real-Time
Services

RT-Control

Sensors/Actuators

RT-Database

Figure 1.1: The simplistic view of a heterogeneous distributes real-time system

Another problem with this approach is that object-orientation itself imposes a
major problem for QoS aware systems. While implementation hiding isolates
module implementations and eases their integration, it ignores the fact that for
negotiating timing and other resource-related guarantees detailed knowledge
about the implementation is required. Implementation does matter! To that ex-
tend object-orientation and real-time computing are even contradicting. These
observations were the starting points of this work: alternatives to the unrealistic
scenario of the whole heterogeneous IT-environment being one big object-
oriented real-time system had to be explored.

CORBA,
DCOM

Non-Real-Time
Services

Standard
DBMS

Graphical User
Interface

Internet-Services

Real-Time
Services

Sensors/Actuators

RT-Control
RT-
Database

?
Predictability

RT-ORB

Figure 1.2: The proposed partition in distributed real-time systems

The idea is to preserve object-orientation as the basic paradigm for system con-
struction and to undermine implementation hiding only where possible and
where required. Clearly, it is required for objects that operate under strict timing
constraints. Here, predictability is the most the important property. All other
desirable features have to be reconsidered under this premise. On the other hand
implementation hiding cannot be weakened for most of the external non-real-
time objects. Either their code is simply not available or too complex to be ana-

4 Approach and Outline

lyzable in terms of resource requirements, or the administering entity will not
grant access to it. This idea leads to an approach as depicted in Figure 1.2 where
the applications are separated in two partitions, a real-time domain and a non-
real-time domain. While the real-time domain itself is likely to be a distributed
system based on a real-time-capable object-oriented infrastructure, it still has to
interact with services that are running on top of standard middleware (like
CORBA or DCOM) that does not handle timing requirements at all. The problem
with this partitioning occurs as soon as an invocation crosses the boundary from
the real-time into the non-real-time domain. Without additional measures, the
real-time property of a computation is lost as soon as one of its components fails
to meet the timing requirements. Thus, the fundamental question is: how to run
real-time applications in a predictable manner in such a heterogeneous environ-
ment?

1.2 Approach and Outline
The first idea for handling unpredictably in a time-critical environment is the use
of timeouts. Whenever the real-time system has to initiate an activity with an
unknown time to completion, e.g. the invocation of a non-real-time component,
it sets a timeout. If this timeout expires before the activity terminates, it executes
some kind of exception handling. This mechanism ensures that the real-time
system can detect the potential violation of timing bounds and react accordingly.
However, there are two fundamental problems with timeouts:

1. What to do if the timeout expires? When the timeout expires there is usually
not much time left to react. Some basic recovery and error reporting can be
done in most cases, but how to ensure the computational progress? If there
were an alternative algorithm (with guaranteed execution time) of achieving
the same result as from the abandoned activity, it would have been applied
directly. Using old results from prior executions or approximations can be an
option, but only to a certain extent. If too many successive timeouts happen,
the use of these increasingly imprecise values will lead to intolerable devia-
tions in the final result. If this is not the case, there is obviously no need for
the exact (but non-real-time) computation and the applications is over-
specified.

2. How to choose realistic timeout-values? The worst situation that can happen
is that a timeout is always a little bit too short. There is no computational
progress but a lot of valuable resources are spent on computations that are
abandoned every time shortly before their successful termination. On the
other hand, if timeouts are chosen too long, the overall maximum execution
time becomes greater than necessary. This results in a decreased throughput
and thus a sub-optimal efficiency of the real-time system. The situation be-
comes even more complicated if the timing changes dynamically. Timeouts

Introduction 5

that were adequate before may become too long or, even worse too short as
the load characteristics in the non-real-time partition changes.

Both problems lead to the observation that there is an urged need for a precise
estimation of the time required to execute certain activities and thus of the ap-
propriate timeout values. The monitoring-based approach presented in this thesis
tackles the problem by observing the timing-behavior of the system components.
When guarantees are not available it enables the real-time scheduler to make
decisions based at least on their expected timing. With this knowledge a fault-
tolerant scheduler can determine realistic timeout-values, depending on the cur-
rent system state, and plan online for alternative actions based on up-to-date
statistical information.

The remainder of the thesis is organized as follows: In the remainder of the in-
troduction, section 1.3, an overview of the existing approaches to object-
orientation and real-time at the different architectural levels is given. Then chap-
ter 2 describes time-awareness in distributed object-oriented real-time systems.
Time-awareness reveals timing-related information of object-oriented systems
from the non-real-time domain. The presented concepts, mechanisms, and im-
plementations for monitoring these systems at the different levels of abstraction
are the premises for chapter 3, where the main contribution, the monitoring-
based approach is described. In this approach the gathered timing information
from the running system is used to support efficient scheduling and intelligent
timeout handling of not (totally) predictable objects. An implementation archi-
tecture is described and performance figures that prove the feasibility of the
approach are presented. Related work on the specific topics of these chapters will
be discussed in the concrete contexts. At the end of each of the chapters case
studies for the application of the introduced mechanisms are given. A summary
and references conclude the work.

1.3 Object-Orientation and Real-Time
As argued before, the traditional object model is insufficient in the context of
real-time systems. Here a completely new aspect has to be added to the object
concept, namely time. It has to be investigated how to annotate the functional
specification of types with timing constraints and how to guarantee and imple-
ment these timing specifications. Also other concepts that were already included
in the traditional object model have to be reviewed in the context of a real-time
system, due to the difficulties to obtain deterministic timing behavior. These
concepts include inheritance, dynamic binding, dynamic memory allocation,
concurrency, and synchronization. A lot of research has been undertaken in order
to resolve the inherent contradiction between object-orientation and real-time. In
the following subsections several different approaches to real-time objects will
be reviewed.

6 Object-Orientation and Real-Time

1.3.1 Object-Oriented Languages for Real-Time
The first attempts to enhance an object-oriented language, namely C++, to be-
come real-time capable were the presentations of FLEX [Lin88, Ken94] and
RTC++ [Ish90]. These languages contain special constructs for defining dead-
lines, periods, and synchronization conditions. Some of these constructs can be
mapped to scheduler-level abstractions, like task-deadlines and priorities. The
expressiveness of these language add-ons is limited (e.g. RTC++ provides no
language constructs to define an aperiodic real-time task) and some timing con-
straints may be still implicit in the code. Both languages, RTC++ and FLEX,
provide the basic information for a schedulability analysis, but they do not con-
tain provisions for a static worst-case execution time analysis. Thus, timing vio-
lations still may happen. RTC++ contains an exception-handling mechanism that
is activated after such a violation has happened. Flex supports computations with
adjustable execution times by allowing them to return imprecise results [Liu94].
In addition, the runtime system can choose a version of a function based on per-
formance constraints; this is called performance polymorphism.

Real-Time Specification for Java

A more recent approach to an object-oriented language for real-time is based on
the Java language. Following the recommendation form the National Institute of
Standards and Technology (NIST) the Real Time for Java Expert Group
(RTJEG), a group of representatives from 21 organizations in industry, acade-
mia, and government, proposed a Real-Time Specification for Java (RTSJ) for
real-time extensions to the Java language [Bol00]. The main underlying design
principles are:

• Compatibility: the RTSJ shall not include specifications that restrict its use
to particular Java environments. It shall not prevent existing, properly writ-
ten, non-real-time Java programs from executing on implementations of the
RTSJ and the Java idea of "Write once, run anywhere" should be preserved.

• Predictable execution: the RTSJ shall hold predictable execution as first
priority in all tradeoffs.

• No syntactic extension: the RTSJ shall not introduce new keywords or make
other syntactic extensions to the Java language.

• Current practice versus advanced features: The RTSJ should address cur-
rent real-time system practice as well as allow for the incorporation of more
advanced features in the future.

Unlike most Java specifications that merely define new APIs, the real-time
specification provides modifications to the Java language specification and the
Java Virtual Machine (JVM) specification, as well as new APIs. This means,
Real-Time Java applications will need a special JVM on which to execute, but

Introduction 7

could use many of the features of the standard Java programming model. The
RTJEG identified basically five areas for modification:

• Scheduling: the RTSJ allows the programmatic assignment of parameters
appropriate for the underlying scheduling mechanism in use in a given real-
time system, as well as providing methods for the creation, management,
admittance, and termination of real-time Java threads. The RTSJ base
scheduling mechanism is preemptive priority-based, FIFO within priority,
with at least 28 unique priority levels. However, the RTSJ is open for future
extension to load other schedulers as well.

• Memory management: the RTSJ defines a memory allocation and reclama-
tion specification that is independent of any particular garbage collection al-
gorithm and lets the program precisely characterize the garbage collection
algorithm’s effect on the execution time, preemption, and dispatching of
real-time Java threads. The RTSJ defines new types of memory areas, Im-
mortalMemory and ScopedMemory that allow the creation of Java objects
but do not cause the threads that employ them to incur delays because of the
execution of the GC algorithm.

• Synchronization: the RTSJ defines that the semantics of the current Java
keyword "synchronized" has to be enhanced. Instead of pure mutual exclu-
sion priority inheritance is provided by default.

• Asynchronous event handling: the RTSJ generalizes the Java language’s
notion of asynchronous event handling. The AsyncEventHandler class is ex-
tended to run as real-time thread when the event is triggered.

• Asynchronous transfer of control: the RTSJ specifies that methods that al-
low for being interrupted (receive an exception) by another thread at any
time. This is an extension to plain Java, where this could happen only in cer-
tain blocking calls. This mechanism can also be used for terminating a tread
by an external event.

A Reference implementation of the RTSJ is currently under development.

Discussion

While object-oriented languages like FLEX and RTC++ try to exploit the fea-
tures of object-orientation for a simple and flexible programming of real-time
systems, their applicability is rather limited. They provide the expressiveness to
define the typical tasks of a real-time system, but both do not support a full
schedulability analysis as required by a hard real-time system. Both languages
require their own underlying runtime-system and they are closed in a sense that
they were not designed for interfacing with external objects.

Things are a little bit different for the RTSJ. It provides a perfect basis for the
interoperability of real-time and non-real-time objects and with its powerful
APIs for scheduling and thread-management it will surely provide an interesting

8 Object-Orientation and Real-Time

platform also for the concepts presented in chapter 3 below. However, RTSJ
does not define "real-time objects" but it uses an object-oriented language to
program a real-time system. It is more an operating system extension than a
language. Timing specifications are not part of an object’s interface but they are
implicit in the code. Whether or not a schedulability analysis is supported de-
pends on the actual implementation of the runtime-system, but as the RTSJ does
not impose any restrictions on the Java language, this is an inherently hard prob-
lem.

All languages do not address distribution at all. In the case of Java this imposes
additional problems, as other extensions to the Java-language already have a
clear orientation towards distribution (e.g. Java RMI and the Java CORBA-
binding). A combination of these different directions in Java evolution is still
future work.

1.3.2 Object-Models for Distributed Real-Time
In the research community a number of extended object-models were proposed
that try to provide both, distribution and predictability. Two of them will be
presented in more detail.

TMO

The TMO (Time-triggered Message-triggered Object) [Sho99] scheme is a good
example for this approach. It has been first published in the early 1990’s, previ-
ously named RTO.k. The TMO structuring is intended to support the design of
all types of components including heterogeneous systems with real-time and
non-real-time objects within one general structure. The basic TMO structure is
depicted in Figure 1.3. The significant extensions of TMO compared to the tradi-
tional object model are:

1. Distribution: A TMO is a distributed computing component. TMOs are dis-
tributed over multiple nodes and interact via remote method calls. To maxi-
mize the concurrency in execution of client methods and server methods, cli-
ent methods are allowed to make non-blocking types of service requests to
server methods.

2. Time-triggered and method-triggered methods: The TMO may contain two
types of methods, time-triggered (TT-) methods (also called spontaneous
methods, SpMs) and the conventional message-triggered (MT-) methods (also
called service methods, SvMs). The TT-method executions are triggered upon
reaching of the real-time clock at specific values determined at the design
time. Each TT-method is associated with an autonomous activation condition
(AAC) that specifies the times at which the associated method should be acti-
vated. The MT-method executions are triggered by service request messages
from clients.

Introduction 9

3. Concurrency constraints: A fundamental concurrency constraint prevents
potential conflicts between TT-methods and MT-methods and reduces the
designer’s efforts in guaranteeing timely service capabilities of TMOs. Acti-
vation of an MT-method triggered by a message from an external client is al-
lowed only, when potentially conflicting executions are not in place. An MT-
method is allowed to execute only if no TT-method that accesses the same set
of resources within the object will overlap with the execution time-window
of this MT-method.

4. Guaranteed completion time and deadline: As in other RT object models, the
TMO incorporates deadlines and it does in the most general form. Basically,
for output actions and method completions of a TMO, the designer guaran-
tees and advertises execution time-windows bounded by start times and com-
pletion times. Triggering times for TT-methods must be fully specified as
constants during the design time. It is also possible to specify so-called can-
didate triggering times in contrast to the actual triggering times. A subset of
the candidate triggering times may be dynamically chosen for actual trigger-
ing. Such a dynamic selection occurs when an MT-method within the same
TMO object requests future executions of a specific TT-method.

Figure 1.3: Structure of a TMO object

TMOs interact via invocations of service methods in server objects from client
objects. The caller may be a TT- or an MT-method in the client object. It is up to
the designer of each TMO to provide a guarantee of timely service capabilities of
the object. The designer does so by indicating the guaranteed execution time-
window for every output produced by each MT-method as well as by each TT-

10 Object-Orientation and Real-Time

method executed on requests from the and the guaranteed completion time for
the in the specification of the MT-method. These specifications are advertised to
the designers of potential client objects. A middleware that supports the TMO
model and that is based on the standard CORBA API has been implemented on
Windows NT.

Real-Time CORBA

The Real-Time CORBA (RT CORBA) specification [OMG99b, Sch00] adopts a
similar approach. It extends the CORBA standard by interfaces and QoS policies
that allow applications to configure and control the various resources:

1. Processor resources: RT CORBA defines thread pools that allow to control
the mapping of multiple treads to certain interfaces. It also introduces activi-
ties as a kind of distributed threads (as described later in more detail) and
global priorities that enforce a fixed priority scheduling throughout the dis-
tributed system. Priority inheritance and priority ceiling protocols are pro-
vided by new intra-process mutexes and a global scheduling service hides the
platform-specific details of low-level resource management under a common
API.

2. Communication resources: RT CORBA allows to specify required protocol
properties explicitly and and it adds APIs to perform explicit binding of
communication streams to certain interfaces.

3. Memory resources: Management of memory resources is made explicit by
RT CORBA as it allows to manipulate the buffering policies in queues and to
limit the size of thread pools.

RT CORBA has been implemented first by the TAO ORB [Sch97], but other
vendors are following soon after.

Discussion

The TMO model provides a rather strict framework for the development of dis-
tributed hard real-time applications. Because of its restrictions it simplifies
schedulability analysis. It extends the object-oriented model by adding timing
specifications to the interface. However, even if TMO now supports CORBA
interfaces and can interact with external objects, it still can not preserve predict-
ability when leaving the real-time system that consists of a homogenous network
of TMOs.

RT CORBA can be seen more as an abstract distributed operating system than a
new object model. It encapsulates many features of operating systems and maps
them to a heterogeneous, distributed environment. To that extend it supports
heterogeneity of platforms, but it also does not foresee any mechanism for inte-
grating non-real-time services, other than the plain possibility to call them via the
standard CORBA APIs.

Introduction 11

1.3.3 Object-Oriented Modeling for Real-Time
A different approach to object-orientation than object-oriented languages or
middleware layers has evolved over the last ten years from the community that
developed and promoted general-purpose object-oriented design and modeling
methodologies. Two of them will be presented in more detail: SIMOO-RT, be-
cause it has been enhanced in a joint work with the Federal University of Rio
Grande do Sul, Brazil with the monitoring components described below in chap-
ter 2 [Bec99] and Real-Time UML, because UML is now the well-accepted
standard for object-oriented design.

SIMOO-RT

The SIMOO-RT environment [Bec00] is a modeling, design, and simulation
framework. The extensions to the standard features of object-oriented modeling
tools comprise the explicit representation of timing requirements like deadlines,
timeouts and periodic operations.

Figure 1.4: SIMOO-RT Model Editing Tool (MET)

The first step in the development process with SIMOO-RT is the definition of an
object-oriented model for the problem under analysis. The Model Editing Tool
(MET) provides support for the construction of two different diagrams: the class
diagram that depicts important problem domain concepts and their relationships,
and the instance diagram that represents the specific elements that take part in a
specific application. Figure 1.4 depicts a screenshot of the MET, where the most
left part represents the class diagram and the right one represents the instance
diagram.

For modeling the internal object behavior, the environment encourages the use of
state-transition diagrams. Incoming messages are associated to actions that ob-

12 Object-Orientation and Real-Time

jects have to convert in reaction. These actions can be executed either during the
state transition as well as while the object remain in a given state. Temporal
constraints can be imposed to the model by specifying cyclic operations and
deadlines. Also, a pre-defined timeout exception handler can be specified. This
operation is only activated when the given operation doesn’t accomplish its dead-
line. In the SIMOO-RT environment timing properties are attached to the
classes.

Figure 1.5: A SIMOO-RT Message-Sequence Diagram

For specifying the model global interaction SIMOO-RT allows users to state the
whole set of a system’s functionality by means of UML use-cases. Furthermore,
each use-case can be detailed into a Message-Sequence Diagram (MSD) or into a
data-flow diagram (DFD). Through the MSDs, the user can establish the object
interactions, as well as timing-marks that represent the overall systems timing
behavior. An example of a MSD is depicted in Figure 1.5. Once a design is ready
for execution it can be tested in an internal simulator or it can be send to an
automatic code generator for executable code. The resulting implementation than
can be executed in a distributed environment using the QNX real-time operating
system as underlying platform.

Real-Time UML

The UML (Unified Modeling Language), an OMG standard, is a language for
specifying, visualizing, constructing, and documenting software systems [Boo99,
OMG99]. UML fuses the concepts of Booch, OMT, and OOSE (all three older
OO modeling techniques). The UML focuses on a standard modeling language,

Introduction 13

not a standard process. Therefore, the efforts concentrated first on a common
meta-model (which unifies semantics) and second on a common notation (which
provides a human rendering of these semantics). The UML authors promote a
development process that is use-case driven, architecture centric, iterative and
incremental. The UML is intended to be a visual modeling language, not a visual
programming language, in the sense of having all the necessary visual and se-
mantic support to replace programming languages. However, the UML has a
tight mapping to a family of object-oriented languages and many tools support
C++ as their primary language.

Currently the UML Profile for Schedulability, Performance, and Time is being
in the OMG standardization process [OMG01]. It proposes "standard paradigms
of use for modeling of time-, schedulability-, and performance-related aspects of
real-time systems that enables the construction of models that could be used to
make quantitative predictions regarding these characteristics". It tries to unify the
various different approaches that have evolved for modeling real-time applica-
tion in UML. These are namely the approaches from Douglass [Dou98] that uses
mainly the existing predefined UML diagrams, and the work from Selic that uses
extensively the option of UML to define stereotypes (a kind of visual macros in
diagrams) to impose a notation similar to ROOM (Real-Time Object-Oriented
Modeling) [Sel94] his prior modeling environment onto UML.

The abstractions and diagrams specified by UML are similar to those of SIMOO-
RT, while partially more elaborated. The fundamental notation for expressing
object-timing relations is again the message sequence diagram. In RT-UML it
has been extended and it can be annotated with expressions in a constraints lan-
guage that allow to define exactly the relation between the occurrence of events
and messages. The various tools from the different vendors that promote UML
for real-time can automatically generate code that runs on a number of real-time
operating systems.

Discussion

While the expressiveness of UML and similar modeling tools is powerful and
with UML it is possible to describe all kinds of distributed object-oriented com-
puting in a standardized manner, it also cannot solve all problems in the real-
time domain. The available methodologies (as manifested e.g. in the products
from Rational and I-Logix) are a step towards a more formal, partially automated
development process of distributed real-time control systems. However, they are
far away from providing a proof for the correctness of the synthesized code. Still
it is possible that the specification of the system is correct and complete and the
synthesized code is simply not able to fulfill the timing requirements (due to
errors in the design or insufficient resources of the executing system).

14 Object-Orientation and Real-Time

1.3.4 Summary
Basically, the different approaches to real-time objects can be clustered in two
categories: the operational and the specificational approaches.

The real-time languages (especially RTSJ) and RT-CORBA are focused on pro-
viding access to and control over the resources of the underlying machine, not on
an extended object-model. In these operational environments it is the believe
that the programmers will be clever enough to use the enhanced control correctly
to achieve what they want and deploy the created objects in the right manner.
Implementation hiding is not weakened by the object-model but by the people
that use the real-time programming environment and document their created
classes. Schedulability analysis is not an issue here.

The specificational approach lead by UML allows to define exactly the timing
(and the functional) behavior of the implementation. This is indeed a step to-
wards a special object-model for real-time. However, the modeling and design
environments do not care to much about how to achieve this correct behavior.
The high level abstractions they use during design need to be mapped without
losses down to the real implementation. Especially in a heterogeneous environ-
ment, where not all components can be simply synthesized from a specification,
this clean approach reaches its limits.

The TMO-approach can be seen in the middle: while it deals with low-level
abstractions, it allows to specify timing at the interface. With its strict design
rules it supports schedulability analysis. Another combination of both ap-
proaches is surely on the way, e.g. a Real-Time UML design environment with
RTSJ or RT-CORBA back-end (all (future) OMG standards). This will probably
lead soon to a satisfying result for objects in the real-time domain. However, it
has to be stated that none of these approaches has a convincing solution, how to
integrate the rest of the IT-world, like Internet-based services, into real-time
computations. The question mark on predictability from Figure 1.2 is still in
place.

Time-Aware Systems 15

2 Time-Aware Systems
The first step in a monitoring-based approach to object-oriented real-time com-
puting is a time-aware system. A system is time-aware if it is able to get infor-
mation about its own timing, e.g. to monitor execution times or to check whether
the actual timing conforms to the specification. Even a non-real-time system, i.e.
a system that provides no time-related guarantees, can be time-aware. Time-
awareness enables a system to react on timing-related problems and to adapt to
an actual, but previously unknown, timing behavior in a concrete application
environment. This in turn is the basis for active QoS-management and a key to
handle the inherent problems of heterogeneous object-oriented real-time systems
that were outlined in the introduction. If it is not possible to provide guarantees
when non-real-time object are invoked from the real-time domain, it is at least
helpful to get an idea of what is going on and what might be the problem.

However, the typical time-awareness of today’s systems is poor and limited to an
API that allows an application to read a global clock or a thread-relative timer.
Any system that implements ad-hoc time-awareness based on these primitives at
application-level has to address the same problems again and again. As soon as
time-awareness is accepted as a requirement of a class of applications, it is a
perfect candidate for becoming a system-level service. Moreover, there is already
a well-engineered category of system-level tools that handles exactly these prob-
lems in a generic and efficient way, namely the monitors.

This chapter explains how the existing approaches for monitoring can be adapted
and combined to provide the required system-level time-awareness service for
object-oriented systems. It first introduces the common terminology of monitor-
ing systems and then reviews the state-of-art. Then, it discusses in three subsec-
tions the special requirements for the monitoring of object-oriented systems at
the different architectural levels, namely the operating system level, the middle-
ware level, and the programming language level. Finally, it presents as a case
study a monitoring tool that integrates the monitoring at these different levels in
one tool.

2.1 Monitoring
As defined in [Tsa96], monitoring a system means to collect runtime information
about the system under test that cannot be obtained by static analysis, i.e. by only
analyzing the program code. A monitor is a system used to monitor a system
under test’s execution. The system’s behavior, including the behavior of the ap-
plication program and the operating system, can be described as a series of
events. These events are the visible changes of the system under test’s state, e.g.
process creation or termination, sending or receiving a message, or context
switches. Usually, events are grouped by categories. The different events of one

16 Monitoring

category are distinguished by a number of parameters (e.g. "process creation" is
the event category and each event of this category is distinguished in the parame-
ter of the actual process number). Depending on the focus of interest or the level
of detail only a small subset of all possible events is usually observed by a moni-
tor. Those events that are monitored are called the events of interest. Sensors are
used to record the events of interest. An instrumented system is a system with
added sensors. When an instrumented system is executed, event traces are pro-
duced.

The required activities for monitoring are the instrumentation of the system un-
der test (specification of events by inserting sensors into target programs), event
detection (identifying the event occurrence generated by die execution of the
instrumentation code), and event processing (time stamping and storing the pa-
rameters collected at the event occurrence in an event trace).

Monitoring intrusion refers to any attempt to record system execution by using
the computing resource of the monitored target system. The problem with moni-
toring intrusion is that it causes interference, i.e. a perturbation of the execution
of the system under and thus a difference in the timing and in a system with
concurrent threads of control possibly even in the functional behavior.

2.1.1 Types of Monitors
Monitors can be classified according to their method for observing the system
under test’s state (event-based or sampling), to their implementation (hardware
or software) and to their abstraction level (system or application).

Event-based or Sampling Monitor

An alternative approach to event-based monitoring as defined in the previous
section is sampling. Sampling is a time-based technique, where a small part of
the system state is captured and recorded with a certain sampling frequency. In
contrast to e.g. sampling of an electrical signal, where oversampling is used, the
sampling frequency of a (software) monitoring system is usually much smaller
than the maximum frequency of state changes. Thus, sampling is typically used,
if the desired result of the monitoring activity can be obtained by a statistical
analysis. This means, sampling is not appropriate for short monitoring intervals
as it relies on a large number of samples for achieving sufficient coverage and
confidence. Also, as it does not capture information on all relevant state changes
nor on their exact sequence, sampling is hardly applicable to obtain information
on problems that happen only a few times during the monitored execution. How-
ever, this is exactly the case for many timing-related problems in real-time sys-
tems. Thus, monitoring in the real-time context is typically done with event-
based monitors.

Time-Aware Systems 17

Hardware or Software Monitor

Event detection and processing can be performed in a number of different ways,
each of them causing a different amount of interference with the system under
test. The more dedicated resources are available for measurement data process-
ing, the less interference with the system under test can be expected. In principle,
event detection and processing can be done with software, hardware, or a combi-
nation of hardware and software. The difference between hardware and software
monitoring is that the hardware approach separates the monitoring task from the
target system’s workload, whereas the software approach adds to the target sys-
tem’s workload. A hybrid monitor refers to a monitor that uses a combination of
hardware and software.

The optimal solution for monitoring with respect to interference is a hardware
monitor that is able to detect events without affecting the activity of the system
under test. This is accomplished usually by passively monitoring the target proc-
essor’s signal lines such as the data, address, and control buses. However, as
argued in [Hab89] hardware monitors have reached their frontiers due to the
extensive use of memory management units and on-chip caches in today’s com-
puter systems. Most of the state changes of the software isn’t reflected any more
by signals on externally accessible signal lines, but they result only in some on-
chip operations. It is out of scope for the addressed problem domain to try to get
access to these on-chip signals for monitoring purposes. But even if this were
possible, difficulties arise in identifying events in a problem-oriented manner.
Often, a lot of different logical events are mapped to the same measurable physi-
cal event (e.g. access to the same memory location from different contexts). If
the internal state of the system context has to be known to detect an event, a type
of software component is needed which is inserted into the code of the system
under test at locations corresponding to the events of interest.

This leads to an hybrid approach to overcome these problems. Here sensors are
divided into an internal software part and an external hardware part which runs
on resources dedicated solely to the monitor. The internal part consists of addi-
tional statements inserted into the code of the system under test in order to detect
events of interest. Upon activation the event handling routine extracts the pa-
rameters associated with that event and passes them to the external sensor part
for further event processing. While this approach combines the flexibility of
software sensors with the low interference of a hardware monitor, it suffers from
the required special purpose hardware. Usually, a hybrid monitor for a distrib-
uted system consists at least of a dedicated global clock, an event-processing unit
per node of the distributed system with a high-speed interface to the system un-
der test and some sort of network for propagating the events traces to a central
monitoring console. This means, such a monitor is a complex distributed system
in itself. This additional effort can be justified for a number of experiments in the
testing lab, but it will not be tolerated by a customer as a permanent part of the
application if it increases the overall costs significantly.

18 Monitoring

As this thesis argues that monitoring should be an integral part of the runtime
system for enabling time-awareness, for most application domains, pure software
monitoring is the only viable solution. Here the monitoring system consists
solely of additional software inserted into the target system code. Event detection
is accomplished by executing the inserted sensors, parameters pertaining to
events of interest are recorded and stored in the memory of the system under test,
and event traces are transferred using the same network as the application. Thus
the software monitor shares the computing resources with the monitored target
system. As a result instrumented programs have an execution speed penalty.
Without the use of additional resources, the dilemma of finding a balance be-
tween minimal interference and recording sufficient information always exists.
Limiting instrumentation provides inadequate measurement detail, but excessive
instrumentation will perturb the measured system to an unacceptable degree. In
order to tackle these problems, techniques for reducing the interference while
retaining sufficient information have been developed. Interference can be re-
duced by an optimized instrumentation mechanism, by modifying the monitored
target programs, or by selectively switching on and off the events of interest
depending on the current status of the system under test and the monitor. Also, in
a kind of post-processing the event trace can be adjusted to reduce the effect of
interference.

System or Application Level Monitor

Depending on the motivation for monitoring execution behavior can be moni-
tored at system level and/or application level. At system level, activities and data
structures visible to the operating system kernel and all generic components of
the system (like e.g. communication system or middleware) are monitored. At
the application level, activities and data structures visible to the user processes
are monitored. Those visible at system level include process state transitions,
external interrupts, system calls and interprocess communication. Those visible
to the user processes include function/method calls and returns, and variable
value changes. Some of the activities and data structures, such as system calls,
are visible to both the system and the application level, and others are visible
only to the kernel, like process state transitions and interrupts. Finally, others are
visible only to the application level, like function/procedure calls and returns and
variable value changes.

To monitor at the system level, the kernel and other runtime services can be
instrumented for the events of interest. As this instrumentation is inserted into
generic components it can be applied once and reused even if the application
running on the system changes. This instrumentation typically requires only a
very limited number of sensors. However, as the execution frequency of this
sensor code is often quite high (e.g. hundreds to thousands of interrupts per sec-
ond) careful optimization is needed in order to minimize interference in case of
temporal instrumentation or inefficiency in case of a permanent instrumentation.

Time-Aware Systems 19

Thus, system level instrumentation is usually applied manually and there is noth-
ing wrong with that.

In contrast, application level instrumentation tends usually to be quite big. As
user-level function-invocations are usually not routed via common code se-
quences, each and every function has to be instrumented separately. While the
required techniques for event detection and parameter collection are always the
same, applying this instrumentation manually is still inconvenient, error-prone,
and time-consuming. This opens a perfect scenario for automating this process.

2.1.2 Related Work on Monitoring
Over the last two decades monitoring tools have shown their value for debugging
and performance evaluation of complex software systems.

Sampling Monitors

The probably most used tools for program-monitoring are the Unix tools “prof”
and “gprof” [Gra82] and their deviates for nearly an system platform or lan-
guage. They use a sampling approach and their monitoring model is a call-graph
that presents a breakdown of the total execution time per (C-)function. While
similar tools are also available for object-oriented languages like C++ and Java,
their results suffer from their pure functional model. The information provided
reflects only a static view on methods (a class-view) and object contexts are
ignored. Many programs have been tuned during the last decades using these
tools and their model is well suited for non-real-time programs that run on a
single CPU. But for distributed real-time applications these tools have reached
their limits, as they don't address distribution and concurrency. In the following a
number of event-based software monitoring systems that explicitly address real-
time issues will be summarizes.

Event-based Monitors

In 1992 the distributed measurement system JEWEL [Lan92] was presented.
JEWEL consists of a generic set of flexible components and is not limited to a
specific application domain. The JEWEL components are a configurable graphical
presentation system for online visualization of the behavior of the system under
test, a central interactive experiment control system, and a modular, distributed
event processing system. JEWEL was designed and implemented to provide re-
sults of high precision. This goal was achieved primarily by ensuring that inter-
ference between JEWEL and the system under test is kept low. A clear separation
of the sensor functionality made it possible to take full advantage of the proper-
ties of the different hardware/software environments, e.g. by using dedicated
resources to achieve low-interference. JEWEL allowed for the use of hybrid sen-
sors as well as for a pure software monitoring approach. It has been adapted to a
number of different target architectures and systems under test. An implementa-

20 Monitoring

tion for monitoring real-time application on embedded processor boards running
VxWorks was based on additional dedicated monitoring processors which were
attached to the system under test. The second implementation for observing the
performance of the Mach 3.0 operating system has been primarily targeted to-
wards multi-processor systems and was done completely in software.

While JEWEL implemented all architectural levels of a distributed monitoring
system as described e.g. in the book of Jain [Jai91] or Tsai [Tsa96] and revealed
the desired flexibility it suffered from two related basic problems. Firstly, it
implemented no default monitoring or measurement model, i.e. it doesn’t suggest
the user any structure to start monitoring a system, like e.g. the ’prof’ tool does by
creating the annotated call-tree. Secondly, it also left all the burden of instru-
menting the system under test completely to the user. As JEWEL only provided
the infrastructure for monitoring it had no idea where to place the sensors and
which parameters to collect.

System-Level Monitors

Miller, Macrander, and Sechrest [Mil86] described in 1986 a measurement tool
for monitoring the execution performance of distributed programs running in
BSD UNIX. A model of distributed computation and measurement is used to
describe the activities of processes in terms of their internal and external events
(corresponding to computation and communication). Based on this model, a
monitor and a measurement tool was constructed by changing the kernel-level
structures of BSD UNIX and adding some daemon processes to allow the moni-
tor to observe distributed activities that cross machine boundaries. The meas-
urement system consisted of four parts: the meters, the filter processes, a control
process, and analysis routines. Each node has a meter in its kernel. Implementing
the meter inside the kernel avoids context switching and thus reduces the degree
of interference. The meter detects events and extracts the event parameters from
the operating system’s data structures. The meter detects interprocess communi-
cation events by intercepting system calls made by the monitored processes.
From the meter the events are sent to a possibly remote filter process. The filter
process selects and reduces the received event data according to configurable
selection rules. The filtered event traces then can be written to a file on be ana-
lyzed online.

Unlike the later JEWEL tool, this monitor was tailored towards a specific target
architecture. This allowed for providing a generic instrumentation inside the
target operating system. Without further instrumentation a user of the monitor
receives an event trace of all relevant system level events. However, the main
tasks that remain were to relate these events to user-level (i.e. programming
language-level) activities, to reduce the huge the amount of data by appropriate
filtering and to present the data in an understandable manner.

The systems described so far tried to minimize the interference. Dodd and Rav-
ishankar from the Real-Time Computing Laboratory at the University of Michi-

Time-Aware Systems 21

gan have chosen a different approach. They tried to predict it. In [Dod92] they
proposed the monitoring system HMON for the real-time system HARTS.
HMON is able to provide consistent monitoring and deterministic replay by
predicting the overhead caused by monitoring. HMON assumes that the com-
plete system is predictable because the monitoring code is part of the target sys-
tem. However, the design of the HMON monitor is closely dependent on the
hardware architecture of HARTS. The nodes of HARTS are connected via a
hexagonal mesh interconnection network. Each node is a tightly coupled multi-
processor system and is directly connected to six neighbors. The nodes have up
to three application processors, a network processor, an Ethernet processor, a
system controller, and a monitoring processor. In addition an external work-
station is used for logging the event traces. All parts of the monitor are imple-
mented in software. However, the required amount of additional hardware re-
sources is significant. Thus, it can hardly be categorized as a pure software moni-
tor. The generic HMON instrumentation detects the following events: system
calls, interprocess communication, interrupts, and application-specific events.

While HMON is able to visualize monitoring data, the main focus of the project
was on determinism and on the ability to replay a distributed execution on the
real system. This ability is tightly coupled to the specific system environment
and cannot be transferred to a typical current real-time computing environment.
In subsection 3.1.1 it is argued in more detail that there in an inherent tradeoff
between today’s high-performance hardware architectures and fully predictable
behavior. Also, it is impossible to preserve the degree of predictability that is
required by a monitor like HMON as soon as the system has to interact with
other computers that are not part of the monitored domain.

Tokuda, Kotera, and Mercer proposed in 1988 a real-time monitor featuring the
visualization of the internal behavior of a distributed real-time operating system
ARTS [Tok88]. It consists of a real-time monitor/debugger to visualize the target
systems scheduling decisions in quasi-real-time by Gantt-diagrams. Information
is gathered by a software sensor, called an Event Tap, embedded into the real-
time operating system kernel. To predict and reduce the monitoring interference,
the monitor is a permanent part of the ARTS system so that scheduling always
includes the overhead of monitoring.

The main contributions of the ARTS monitor were permanent instrumentation
(like in HARTS/HMON) and online visualization of real-time scheduling. While
permanent instrumentation is still sometimes considered too much overhead, the
type of visualization is well accepted in the community for understanding the
behavior of real-time systems. It has been adopted e.g. by the commercial tool
WindView for the VxWorks real-time kernel.

Monitoring of the Middleware Layer

The systems presented so far, do not address standard middleware layers. Work
on instrumenting and monitoring of object-oriented middleware has been done

22 Monitoring

by Rackl [Rac00] with MIMO (MIddleware MOnitor). The tool it targeted to-
wards heterogeneous systems under test and special emphasize it put on the
multi-layer approach. It provides a framework that conceptually allows to moni-
tor the system at six different levels: application, (object-oriented) interfaces,
middleware (distributed objects), language, operating system, and hardware.
This approach is based on the same observation that lead to the monitoring tool
MagicZoom described below in subsection 2.5: the fact that a consistent map-
ping between the monitoring information gathered at the different layers is of
great importance for understanding the system. In MIMO special emphasis is put
on the instrumentation of the middleware layer. In [Rac01] two concrete imple-
mentations for instrumenting CORBA and DCOM are presented, both differ
from the approach presented in this thesis. The CORBA instrumentation is based
on a special instrumented library that replaces the original CORBA library. The
DCOM approach is based on a universal delegator [Bro99], a redirection of
DCOM invocations. The presented solutions are capable of intercepting all re-
quired object-related calls. However, the major problem is performance. With an
overhead of 40 to more than 100% the interference is enormous. This results
from the fact that the monitoring component itself is implemented using
CORBA. MIMO itself can be considered as a kind of generic distributed event
propagation service. While this is a clean approach, it is surely not suitable for
online monitoring of real-time systems. The envisaged applications for MIMO
are therefore system management scenarios.

Summary

Concluding from the numerous different monitoring solutions it can be stated
that the four main problems every distributed monitoring system is facing are:

1. how to limit and or at least predict the level of interference,

2. how to synchronize local clocks or to provide an additional event ordering
mechanism,

3. how to minimize the effort of instrumentation while providing traces with a
sufficient level of detail, and

4. how to transport, process, and present the event traces in a manner adequate
to the problem domain.

As all these problems can be solved with different tradeoff considerations in
mind, the potential design-space for an event-based monitor huge. There is no
dominant standard available in this area and none of the so far mentioned moni-
tors addresses all of the requirements of an object-oriented, standard-based real-
time system. Therefore, the monitoring solutions presented in the remainder of
this chapter are focused on this special class of systems.

Time-Aware Systems 23

2.1.3 Monitoring Object-Oriented Real-Time Systems
In the context of this thesis the system under test is the observed real-time sys-
tem, i.e. the object-oriented, distributed system that executes the time-critical
application. Its software consists of the application programs (written in some
programming language), the object-oriented middleware, and the operating sys-
tem. (As the operating system is the lowest software layer its monitoring also
covers the influences from the underlying hardware layers.) Now it has to be
considered, which parts of such a system have to be monitored in order to pro-
vide the required information for time-awareness? All components that contrib-
ute to the system’s timing. As timing is a non-functional property that cannot be
fixed to one abstraction layer of the system, consequently time-awareness re-
quires monitoring at all system levels.

2.2 Instrumentation at the Operating System
Level
The lowest software level that contributes to the timing of the real-time applica-
tion is the operating system. As the operating system is finally responsible for
the assignment of resources, including the CPU, it is often in the focus of interest
when the actual results of a scheduling strategy adopted by an application have
to be analyzed. The related abstractions provided by an operating system are
processes, threads, interrupts, and synchronization objects, like e.g. messages or
semaphores. As the examples of ARTS and WindView (see above) have shown,
detailed event traces on the state changes of these objects are inevitable for an
understanding of the system’s scheduling behavior any monitoring system that
claims support real-time computing should provide this information.

2.2.1 Issues in System-Level Instrumentation
When instrumenting the operating system and collecting events at this low level
a number of important implementation-related issues and restrictions have to be
obeyed:

1. How to place a sensor to get aware of an event of interest? As long as the
source-code of the operating system kernel is available, as this is the case e.g.
for Linux, RTLinux, and partially also for Windows CE the code can be ana-
lyzed and the sensors can be placed at the right locations. Then a new instru-
mented kernel can be build and this kernel can then be used for the system
under test. For all systems that do not provide a build environment for the
kernel this is not a viable solution. Here the existing kernel has to be modi-
fied to execute the additional sensor code. As long as the kernel provides the
required hooks (i.e. debugging APIs) that allow for adding this code at run-
time, this is also a simple job to do.

24 Instrumentation at the Operating System Level

2. How to obtain time-stamps with sufficient accuracy? Typically, kernel-
level events like context-switches and interrupts happen at rates higher than 1
event/ms. This means, the standard operating-system timer running with at
most 1 kHz does not provide sufficient resolution for accurately time-
stamping these events. At least a microsecond resolution is required. A mi-
crosecond-counter with only 32 bits wraps around every 71 minutes
(4294,967296 seconds). Hence, any long-term measurement needs time-
stamps with significantly more bits, typically 64.

3. How to minimize intrusion? As stated before, operating system level in-
strumentation can produce event-rates above 1 event/ms. With an execution
time of about 10 µs for one sensor this can already result in an overall slow-
down of more than 1%. While, this is a fundamental drawback of any soft-
ware monitor and differences in the monitored case can be avoided by using
permanent instrumentation, it is still the goal to minimized intrusion as far as
possible. Careful coding of the sensors is required to accomplish that.

4. Where to collect event-traces? As operating system level instrumentation
typically deals with very low-level events, the sensor code is usually exe-
cuted either in an interrupt handler or in some locked kernel state. This means
when the sensors write event data to a memory buffer, this buffer must be ac-
cessible from this execution level and under no circumstances the kernel can
trap into a page-fault. A page-fault would introduce an arbitrary amount of
intrusion and even worse, in a locked kernel state it would crash the machine.
Therefore, the memory buffer has to reside in the same address-space and it
must be pinned to physical memory. Other event-sources, e.g. in user-level
code, may use different buffers. Events from different buffers can be merged
into one linear event trace off-line using time-stamps from the local clock.
However, as the need for minimized intrusion forces all buffers to be pinned
to physical memory, it is an obvious idea to use just one buffer for all events.
Given that writing one events is an atomic action, this buffer will then con-
tain all events in chronological order.

Even if these problems are solved convincingly by a monitor, there is still the
additional challenge of distribution. Local traces from the involved nodes have to
be merged into one view of the system. This requires the transport of the possi-
bly large amount of data and also, even more serious a timely synchronization. A
general property of distributed systems is that there is no global clock. There is a
lot of work done in the causal ordering of events using just local clock, but in the
scope of monitoring this is of limited value. In order to allow for the timely cor-
rect observation of activities that span across a number of nodes, some kind of a
global timer is required. If one is interested e.g. in the latency of a (one-way)
message sent over the network, the only way to measure this time is to correlate
the (global) time-stamps of the “message send” and the “message receive” event.
One way to generate a global time-stamp is to use special monitoring hardware
implementing a true synchronous timer that can be accessed by the sensors. But

Time-Aware Systems 25

even if there is no special global clock device available (e.g. a GPS-based clock)
in the envisaged environment, traces can be synchronized a-posteriori. This can
be done by identifying at least two events in each of the involved traces that have
a known timing relation (given that the local clocks have an unknown offset and
a constant drift) [Ger95].

2.2.2 Implementation for Windows NT
In order to discuss concrete solutions to these important issues in monitoring and
instrumenting at the operating system level, Windows NT 4.0 has been chosen as
a representative target system. The concepts presented with the JewelNT moni-
toring tool are portable and have been applied in a quite similar way also to
Windows CE, VxWorks (TORNADO), RTLinux, and Mach 3.0 [Ger92]. From
the technical point of view Windows NT can be considered as one of the most
difficult targets for instrumentation, as it doesn’t include predefined hooks for
installing sensor code (like VxWorks) nor is it available in source code as the
other mentioned targets.

The standard monitoring tools provided by NT are not sufficient for the desired
application domain. Like the performance Monitor ‘perfmon.exe’ they rely on
the performance counter API that is designed to provide average values but no
information on individual events. More detailed traces of system events with
accurate time-stamps are not provided. This means, no information is available
e.g. on minimum and maximum duration of certain executions. Also, these tools
are not designed for distributed computations. While they are able to access
performance data of remote machine, they do not provide information on cross-
context or even cross-machine activities (e.g. message latencies).

The JewelNT monitoring tool has been designed as a software-only, event-
driven, distributed monitor for Windows NT. JewelNT allows analyzing the
event traces on a remote machine with a graphical presentation interface
[Ger97b, Ger99b]. During monitoring an experimenter can interactively select
the set of events (and even the application objects) he/she is interested in. With
the addition of the kernel-level events by JewelNT it can provide a view on the
system that combines application semantics and information on its implementa-
tion by the system. A typical observation that can be made with JewelNT would
be e.g. the overall time of an application’s I/O operation and its breakdown into
application specific activities (e.g. class-library calls), kernel activities (Win32
and system server threads), interrupt processing, waiting-time, and preemption
by other threads.

The JewelNT monitoring system as depicted in Figure 2.1 consists of three com-
ponents: the instrumentation, a remote communication infrastructure (both one
instance per monitored node), and a central monitoring console with its graphical
user interface.

26 Instrumentation at the Operating System Level

...
Application Node B

JewelNT
Graphical User Interface

Monitoring Node

OS-Kernel

JewelNT
Kernel Driver

Event-Buffer

Interrupts Context-Switches

System Events

Instrumentation
Library

User-
defined
Events

Application

JewelNT
external Sensor

Application Node A

Local
Event-Stream

Figure 2.1: Components of the JewelNT distributed monitoring system for Win-
dows NT.

JewelNT Instrumentation

The instrumentation augments the operating system to intercept all thread
switches, interrupt handlers and other low level system-events. It inserts sensors
that generate event-descriptions about these system events and stores them in a
shared buffer (one on each observed node, typical size 128KB to 1 MB). By
calling a library function from anywhere in the user-code, an application devel-
oper can also instrument his/her own software with additional user-defined
events. They are placed in the same event-stream and exhibit arbitrary processing
steps inside of an object implementation. Each event is stored with information
about its type, a 64-bit high-resolution time-stamp, the executing CPU, process-
and thread-id, and a 32-bit type-specific parameter.

Type
0 31

Timestamp (low)
Timestamp (high)

Process Id
Thread Id
Parameter

CPU

7

Figure 2.2: A JewelNT event-record

Time-Aware Systems 27

Figure 2.2 depicts such an event record. At this level an event-record does not
contain a node-id. As all events in a local event-buffer would contain the same id
this information is redundant here and can be added when the data is extracted
from the buffer.

JewelNT addresses the above-mentioned implementation-related issues in the
following ways:

1. How to place a sensor to get aware of an event of interest? Some operat-
ing system kernels provide the required hooks for adding instrumentation
code at runtime. The VxWorks kernel e.g. provides special function-pointers
as a global variable. If this variable contains a non-null value the kernel calls
through this pointer a function on every event. A straightforward implemen-
tation will modify this pointer for inserting the sensor code. Similarly, the
Windows NT debug kernel (so-called “checked kernel”) provides a kernel-
level API that allows for the same approach. However, as the checked kernel
contains all sorts of debugging code its timing behavior is significantly dif-
ferent from the normal kernel (so-called 'free kernel') and any real-life time-
critical application will use the free kernel. This means relying on the
checked kernel for instrumentation is not an option. Therefore, it becomes
necessary to insert instrumentation into the existing binary of the free Win-
dows NT kernel.

This can be accomplished by driver-level programming. A Windows NT de-
vice driver coexists with the kernel in one address-space and on the same
privileged execution level, i.e. driver code can modify the kernel image. The
JewelNT kernel driver utilized this to patch the kernel and to insert the sen-
sors. Basically, the sensor code is a detour though a C-function procedure
provided by the driver. This function reads the time-stamp, collects the other
event data, and writes the event-record to memory. As the debugging infor-
mation available for the free Windows NT kernel provides sufficient infor-
mation on the location of the central functions and variables of the kernel
(e.g. for context-switching and interrupt-processing), this approach for in-
strumenting an operating system kernel is viable for all versions of Windows
NT. However, it requires (once) careful hand coding of the generic instru-
mentation code in the driver, as it is critical to the reliability of the complete
system.

2. How to obtain time-stamps with sufficient accuracy? Standard PC hard-
ware, the primary target architecture of Windows NW, provides two timers
that can be used for monitoring purposes: The build-in clock-chip that also
generates the timer-interrupts and the on-chip performance counter, imple-
mented by each Pentium-class CPU. While the first has the advantage of a
standardized clock-rate (about 1 MHz), it has the drawback on modern proc-
essor with 1 GHz and beyond even this might be not enough and also that the
provided timer is only 16 bits wide. Substantial software support is required

28 Instrumentation at the Operating System Level

to emulate a 64-bit timer-register. The on-chip performance counter is clearly
the first choice for time-stamping events. It runs at processor speed and it is
64 bits wide. It takes only one instruction to read its value and even on a
SMP-machine the values of these registers are updated synchronously on all
CPUs. Only on the most recent CPUs that use variable clock-rates for power
management this counter doesn’t provide a linear time-scale. But as this fea-
ture contradicts fundamentally to predictability of execution time, it can be
neglected in the scope of real-time processing. An implementation problem
that remains is the CPU-dependent rate of this timer. In a distributed system a
central monitoring station needs additional information to determine the
time-scale of each connected system under test. JewelNT provides this in-
formation by measuring the clock-speed once during installation on a new
target system and sending this to the central monitoring station prior to any
event trace data.

3. How to minimize intrusion? The JewelNT sensor code is designed obeying
the following coding rules:

• A local memory write is the only possible way of storing event data, di-
rect file or network-access would take by far too much time.

• Any subroutine-calls in the sensor should be replaced by inline code.

• Any kind of system-calls (especially though call-gates) should be
avoided.

• Code-length, memory accesses, and locking-code should be minimized.

Figure 2.3 shows JewelNT’s buffer structure that stores the events and the
sensor code. The buffer is organized as a ring-buffer, i.e. a FIFO where the
sensors fill in new events and the external sensor extracts events and for-
wards them to further processing. As the buffer-structure is mapped into dif-
ferent address-spaces and to different locations, indices are used instead of
absolute pointers for storing the current input- and output-positions. Note,
that the function-lookalike statement KeGetCurrentThread(), KeAc-
quireSpinLock() and KeReleaseSpinLock()are actually short
macros and that "spinlocks" are mapped to simple interrupt-level changes on
single processor machines.

On a 133 MHz Pentium machine this code executes in at most 2 µs. The exe-
cution time was determined by executing two subsequent sensors with
flushed caches. Timing becomes much better if the code is already in the
cache (typically 0.9 µs).

typedef struct {
 unsigned long spin_lock;
 unsigned long log_set;
 unsigned long max_length;
 unsigned long full;
 unsigned long input;

Time-Aware Systems 29

 unsigned long output;
 Event_Record rb[1];
}JewelNT_RingBuffer;

__inline Event_Record *jnt_sensor(

 RingBuffer *rbp,
 unsigned long e_type,
 unsigned long e_param)
{
 void *cur;
 KIRQL old_irql;

 /* time stamp --> eax:edx */
 long t_high, t_low;

 if ((rbp->log_set & MZ_EV_TRIGGER) &&

 (e_type & rbp->log_set)) {
 KeAcquireSpinLock(&(rbp->spin_lock), &old_irql);

 if (!rbp->full) {
 Event_Record *ev;
 ev = &(rbp->rb[(rbp->input)++]);
 rbp->input %= rbp->max_length;
 if (rbp->input == rbp->output)
 rbp->full = 1;
 __asm { _emit 0x0F
 _emit 0x31
 mov t_low, eax
 mov t_high, edx
 }
 ev->time_l = t_low;
 ev->time_h = t_high;

 KeReleaseSpinLock(&(rbp->spin_lock), old_irql);
 ev->type = e_type;
 cur = KeGetCurrentThread();
 ev->proc_id = *(long *)((long)cur + 0x1e0);
 ev->thread_id = *(long *)((long)cur + 0x1e4);
 ev->param = e_param;
 return ev;
 } else
 KeReleaseSpinLock(&(rbp->spin_lock), old_irql);
 }
 return 0;
}

Figure 2.3: The Jewel NT sensor code

5. Where to collect event-traces? The JewelNT kernel driver provides a mem-
ory buffer that is pinned to physical memory. This makes it accessible from
anywhere in the kernel address-space. Note, that Windows NT has no further
memory protection scheme inside the kernel. The virtual address of this
buffer is propagated to all components inside the kernel by an entry in the
global “system registry” database. The "ZwMapViewOfSection()" driver-API

30 Instrumentation at the Operating System Level

is then used to map this buffer also into all address-spaces that contain sensor
code. Kernel and user-level events are therefore written into the same buffer.
This also simplifies the task of the external sensor and the central monitoring
console, as only one buffer per machine has to be processed.

JewelNT Remote Communication Infrastructure

The remote communication infrastructure represented in Figure 2.1 by the Jew-
elNT external sensor allows for the remote initialization and control of the meas-
urement and the transfer of the local event-stream from each monitored node of
the distributed system to the central monitoring console. It is implemented as a
standard user-process that runs at low priority. It selects the instrumentation
options and reads the local event-buffer located in shared-memory on behalf of
the central monitoring console. If necessary the external sensor buffers events
read from shared memory temporarily in the local file-system. The execution of
this process and its file-system accesses are not on the critical path, i.e. if it is
blocked due to an temporal overload the collected events are simply queue up in
shared memory without any performance penalty for the generating thread. If the
buffer runs full, additional events are discarded. In case of such a congestion of
the monitor the observed activities are not effected, but a special event indicating
the temporal buffer overflow is inserted in the event stream. This results in a
warning on the graphical. The experimenter might react by increasing the buffer
space.

Figure 2.4: Gantt-chart display of JewelNT

JewelNT Central Monitoring Console

The remote communication infrastructure forwards event data from the moni-
tored nodes to central monitoring console. On this node the experimenter can

Time-Aware Systems 31

manage the experiments remotely only using one graphical user interface. This
interface allows selecting the interesting events, to start and stop measurements
on a selected set of nodes, to initiate online data transfer to the monitoring con-
sole and to analyze the monitored data in detail. The analysis view displays ei-
ther as text or as graphical display (shown in Figure 2.4) with variable zooming
facility.

Process and thread assignment is displayed in a Gantt-chart. On the x-axis the
time (in ms) is shown. The y-axis shows processes and their contained thread.
For each CPU a line depicts the assigned thread at time t. All other events are
shown in this display by marking the event-generating thread with a cross at the
time where the event occurred.

Clock Synchonization

The JewelNT graphical interface allows controlling a distributed system under
test from the central monitoring console. However, starting and stopping meas-
urements on various nodes at about the same time doesn’t already imply, that
synchronized event traces are created. The JewelNT central monitoring console
offers two mechanisms that allow for creating and visualizing synchronized
traces:

For synchronization it uses the a-posteriori algorithm as described above. In
order to apply the transformation of trace time-stamps “synchronous” events are
required. Typically, receive events from broadcast networks can serve for this
purpose. On most types of LANs (e.g. Ethernet) there is a known (and for
coarser-grained measurements negligible) delay between the reception of the
same frame at different nodes. In order to create the “synchronous” events, the
central monitoring console sends broadcast messages containing a unique num-
bers. A sensor on each monitored node (implemented by the external sensor)
detects these events and stores them in the local event-trace. If there are more
than two common event pairs in two traces, the best synchronization can be
achieved by choosing the pair with the maximum local time difference (as this
minimizes the effect of inaccuracies of a single measurement). Once two pairs of
such “synchronous” events are identified for two nodes a simple linear transfor-
mation of the local time of one of the involved nodes leads to global order be-
tween all events of these nodes (given that the local clocks have an unknown
offset and a constant drift). Once two pairs of such “synchronous” events are
identified for two nodes a simple linear transformation of the local time of one of
the involved nodes leads to global order between all events of these nodes.

Transformation:

21 ToffsetTdrift =+

with

21

21

tt

tt
drift

−
′−′

=

32 Instrumentation at Language Level

and

11 tdrifttoffset −′=

where 11, tt ′ and 22 , tt ′ are the local timestamps of the two known synchronous

events.

At the interface level JewelNT allows to link the Gantt-chart diagrams of two
synchronized traces. With the linked cursors and scales it becomes easy to ex-
actly determine the time difference between two events on different nodes.

Summary

A tool like JewelNT provides the infrastructure to observe an industrial operating
system kernel in its application environment and to present the collected data
online. In contrast to existing monitoring tools JewelNT allows to observe the
activity of a number of distributed machines simultaneously and to correlate
events between these interacting machines. This makes it suitable for the obser-
vation of distributed real-time systems at the operating system level. Beyond
that, its ability to record and store not only the generic kernel events but also all
types of events suggests its use also as the generic event collection infrastructure
for user-level monitoring. However, as user-level code is highly application-
dependent and cannot be traced by only a small set of generic sensors, tools and
mechanism are required for simplifying the task of code instrumentation.

2.3 Instrumentation at Language Level
If observation wants to go into the details of the program execution, it is neces-
sary to instrument the application itself. Adding and maintaining instrumentation
by hand is a time-consuming and error-prone task. Thus, there is a need for an
automatically instrumentation. Given that the major part of all software-projects
is not yet described in a specification framework like UML that contains addi-
tional meta-information about the application, the main starting point for auto-
matic instrumentation is the source code. Thus, the approach is code
instrumentation. The source code contains the ultimate executable specification
of the application and in real-time systems it is important to understand exactly
the behavior of the executed code. A system that derives application
instrumentation from a UML-like model is described in [Bec99].

This section discusses the possible options for automatic instrumentation and
describes the tool „mc4p“ that implements automatic code instrumentation for a
large class of object-oriented programs, namely those written in C++.

Time-Aware Systems 33

2.3.1 Issues in Code Instrumentation
The main principle of automatic code instrumentation is the utilization of the
structural information of the program sources. Sensors are placed by a compiler
using fixed syntactical rules. This results in very fine grained observation of
nearly every step the software takes, but this also requires an event processing
system that copes with the high bandwidth of event data. Even with a monitor
that has been designed for low-interference like JewelNT, full code instrumenta-
tion still may lead to non-tolerable amount of interference with the system under
test. Thus, a run- or compile-time filter is needed that reduces the amount of
collected events, when they are not needed.

Procedural Languages

The main structural elements in a procedural programming language, like C or
Pascal, are data types, variables, and procedures. Procedures themselves are
structured by statements, blocks, and control structures. This enables the com-
piler to add sensor code before and/or after these units. With instrumenting only
the procedure’s entries and exits a number of features of the (not yet object-
oriented) measurement model can be supported as listed below. Nearly all of the
results of these measurements are hard to obtain by any other measurement tech-
nique:

• Profiling: An event-based system can obtain the same results as a traditional
profiler. In addition the full population of all executions of a procedure is
observed by event-based observation, leading to the distribution function,
which may be important for evaluating whether an analytical model of the
system is correct or not.

• Statistics on a per thread basis: Given that the thread identifier is added as
a parameter to every event, all statistics can be displayed based on the rela-
tion (thread x procedure), rather than on a per procedure basis only. This is
important as soon as not all threads that execute the same procedures are
equivalent.

• Tracing on a per thread basis: The event streams provided by automatic
instrumentation can be used for detailed tracing of the program’s threads.
The event traces can serve as input for visualization, for a step-by-step cost
breakdown of complex operations. They are also valuable as a powerful de-
bugging aid. Traces can help to explain bugs, like deadlock situations, or
they can serve as a basis of a code coverage analysis.

• A fully attributed call-tree: As a superset of the three options mentioned
above, the complete call-tree relation (procedure x procedure x thread) can
be recorded. All members of the relation may have performance attributes.
In the most complex case one attribute may contain the whole time-stamped
calling-history, but often a counter or a distribution should be enough.

34 Instrumentation at Language Level

The instrumented Attribute

For complete observation it is desirable to add instrumentation to all procedures
of a program, but often this may be not tractable because of the imposed interfer-
ence, especially for very small and short procedures. To allow for a more selec-
tive instrumentation, each procedure is tagged by an additional attribute instru-
mented that defines during compilation time whether the procedure should con-
tain the additional sensor code or not. The actual value of the instrumented at-
tribute may be defined either within the source (by a new keyword or a comment
that proceeds the procedure declaration) or by an external definition list that
contains the names of all instrumented procedures. The first method has the
advantage that all information concerning the sources is kept consistent within
one file, whereas the second possibility allows to leave the original source file
completely unchanged. Both, the additional keyword and the definition file are
easy to skip, when no instrumentation is needed, and they both do not reduce the
readability of the sources (like e.g. #ifdef’s would).

The observed Attribute

Another option to reduce the overhead of instrumented code, when no observa-
tion is required, is an additional run time filter mechanism that determines
whether events created by a certain procedure are observed or not. This filter
should be employed in a very early stage of event processing (best within the
generating code) to avoid any waste of bandwidth and keep perturbation as small
as possible. This means in addition to the instrumented attribute that is evaluated
during compile time each instrumented procedure obtains an additional boolean
attribute observed that is evaluated during run time. If a procedure is observed its
events will be reported, otherwise they are discarded. The observed attribute may
be changed during run time either by the observing event processing system or
by the system under test itself. The first option requires that the event processing
system has access to these attributes (as implemented with relevant-table in the
JEWEL system [Lan92]), while the second implies that the system under test is
written to be aware of its own instrumentation. The observed attribute of proce-
dures can be stored in a static data-structure as the number and names of the
procedures are known at compile (or link) time.

Object-Oriented Languages

Object-oriented languages add a number of features to the procedural program-
ming paradigm. Three concepts, namely the notion of classes, instances, and
attributes are of high value for automatic code instrumentation. Other common
features of object-oriented languages, like function overloading and polymor-
phism do not affect instrumentation substantially.

Classes introduce a new important structural element that provides a lot of addi-
tional information for automatic instrumentation. As a program written in an
object-oriented language should be a one-to-one mapping from an object-

Time-Aware Systems 35

oriented design, the measurement model supported by an automatic instrumenta-
tion of object-oriented code is more likely to match the original system model.
Classes also represent a higher-level abstraction for event filtering than simple
procedures do. An experimenter may now specify the name of a class he is inter-
ested in, instead of a bunch of procedures or a source file with a number of re-
lated procedures.

A new quality for code observation is introduced by the concept of instances of
classes. As every method of a class knows implicitly about the object it manipu-
lates, this knowledge can be made visible to the observing system, by generating
instance-related events. In a procedural language instances have to be specified
explicitly within the procedure parameters or, even worse, in global variables. In
both cases it is generally impossible for automatic instrumentation to name the
instance on which the procedure operates. The improvement when observing
object-oriented programs is, that events (and thus also performance indices) can
be collected, filtered, and displayed on a per instance level rather than on a per
procedure level. This enables a number of additional features of the generic
measurement model:

• Statistics on a per instance basis: In many cases it is misleading to display
information on a per function or per class basis, as objects of the same class
may have completely different characteristics due to their actual instance
(e.g. statistics about context switching of the class "process" does not say
much about the scheduling behavior of a certain process).

• Observation of instances in a certain context: One might be interested in
the behavior of instances in a certain context or subsystem, rather than in all
instances of the same class (e.g. buffers within a certain protocol, but not
within the rest of the system).

• Probe observation: In order to get a better understanding one might be
interested in only generating events for some probe instances rather than the
whole population (e.g. measuring the delays for a sample request on its way
through the communication system).

• Attribute Traces: The value of some attributes of some objects at certain
points during the execution may be traced. E.g. the afterimages of some im-
portant status variables may be reported when a method of this object has
been executed.

Instrumentation and Classes

A class collects all methods (or member functions) and status variables (attrib-
utes) that define a certain object-type. Instrumenting classes means inserting
sensors into the methods’ code in order to signal object invocations, their pa-
rameters and attribute value changes. In a procedural language only procedures
have an instrumented attribute. In an object-oriented language the instrumented
attribute can be extended to classes, in order to collectively enable or disable the

36 Instrumentation at Language Level

observation of methods of a certain class. The following definition of the relation
between the instrumented attribute of classes and methods allows to instrument a
single method as well as complete classes.

If a class x is instrumented, all contained methods or classes of x are implicitly
instrumented. If only a contained class or method is instrumented the surround-
ing class is not necessarily instrumented.

In order to be flexible automatic instrumentation should only determine the
places where to put the sensors, but not the semantics of the sensors itself. The
feature of generating events can be regarded as a certain property of all instru-
mented classes. Thus it is natural within an object-oriented environment to ex-
press this property as a separate base class. This abstract base class, called
_instrumented_class, defines the protocol for the inserted sensors. Their actual
implementation is encapsulated in a descendant of the abstract base. Each class
that contains at least one instrumented method has to inherit from a suitable
descendant of _instrumented_class. Now the process of automatic instrumenta-
tion only has to insert the calls to sensor methods known from the base
_instrumented_class.

Instrumentation and Inheritance

In an object-oriented language the behavior of a class is not only described by
the methods that are defined within the class itself, but also by inherited methods
from other classes. Thus, the instrumented attribute has to be extended to the
inheritance relation as well. The following extension to the definition above
describes one possibility that enables a high degree of flexibility and requires
only a small amount of additional information besides the source file.

If a class x inherits from another class y all methods and subclasses that are
instrumented in y are instrumented in x as well.

Instrumentation and Instances

To allow for the detailed observation of single instances without causing to much
interference during observation, it is of a high value to extend the observed at-
tribute from procedures to instances (or even methods of instances). One restric-
tions for this is obvious:

An instance can only be observed if at least one method of the class it belongs to
is instrumented.

Otherwise there is nothing to report from an instrumented instance. But as in-
stances are created at runtime, it is generally not possible to distinguish statically
between observed and not observed instances. This problem can be solved by
adding the observed status of an instance to the according implementation of
_instrumented_class, either simply one boolean per instance or, even more de-
tailed, one a per instumented method. Thus the storage allocation and the initiali-

Time-Aware Systems 37

zation of the per instance attributes are done dynamically during the creation of
new objects. As the implementation of the observed attribute is now hidden in
the implementation of _instrumented_class, an automatic instrumentation tool
does not have to deal with this attribute; it only has to supply enough informa-
tion, i.e. about the instance and the method to each sensor. Again, this is known
statically during compilation and it can be hidden in the event-identifier. The
constructor of _instrumented_class is provided with type information about the
class it belongs to in order to allocate the correct data structures for keeping track
of the observed status of an object.

Instrumentation of Attributes

To provide information about the internal status of an object, its attributes have
to be made visible. In an event-based system this can be done by creating an
event that contains the value of the attribute in its data part. But when should
such an event be created? Whenever the value of the attribute has been changed,
continuously with a certain sampling rate, on request of the experimenter, or
during certain steps of the execution? The first option seems to be the most ef-
fective, since it provides a complete trace with a minimum amount of bandwidth.
But as attributes may be changed by arbitrary references this approach requires
either help from the memory-management to detect write access to certain loca-
tions or a major code change to check every reference before any data is written.
Continuous sampling of a larger number of attributes requires a lot of additional
cycles and there is still the chance of missing rapid changes, while the "on re-
quest" option does not even allow to reconstruct a global snapshot of the systems
state. Thus the last option is promising, as it can be combined with the already
discussed sensors. One approach is to add the value of the instrumented attrib-
utes of an object to every method end event that is produced by this object. This
will result in a complete trace of all afterimages of all observed method calls
without producing additional events.

2.3.2 The mc4p Tool
In order to prove the usefulness of automatic instrumentation a tool has been
built that implements this approach [Ger94]. This tool has to fulfill several re-
quirements. It should be easy to use, applicable to a large class of existing pro-
grams, easy to adapt to different event processing systems, and independent of
special compilers. These requirements lead to a design of a preprocessor, called
mc4p (Martins C Plusplus Preprocessor) that translates a source written in K&R
C, ANSI C, or C++ into the same language again, but adds configurable instru-
mentation statements. This allows for an easy integration into the normal build-
ing process of any C/C++ source with an arbitrary compiler. As mc4p only de-
fines the places in the source, where the additional instrumentation statements
will go, but not the actual statements, it is open to cooperate with processing
systems other than JEWEL.

38 Instrumentation at Language Level

The mc4p tools implements an automatic instrumentation according to the meas-
urement models as described above. This means mc4p keeps track of the instru-
mented attribute of classes and methods, and attributes. It implements the name
space management as described above and it applies three kinds of modifications
to the source files: it adds the generic instrumentation code, hidden in a descen-
dant of _instrumented_class, it inserts the sensors that indicate start and stop of
methods, and it adds attribute reporting sensors to the end of instrumented func-
tions. While mc4p is able to instrument at C/C++-block level as well, no at-
tempts have been made so far to optimize sensors placement as in [Mah01].

Instrumentation of Procedures

The automatic instrumentation of a program written in a procedural language is
straightforward. The complete structure of the call-tree can be described by
events, if every entry of any procedure produces a unique event. Additionally the
timing of a procedure can be observed if another event also indicates a return
from a call. This can be obtained either

1. by adding code within the called procedures body,

proc_a(){
 _method_start(proc_a);
 .
 .
 .
 _method_end(proc_a);
}

proc_b(){
 proc_a();
}

2. by instrumenting each call sequence,

proc_a(){
 .
 .
 .
}

proc_b(){
 _method_start(proc_a);
 proc_a();
 _method_end(proc_a);
}

Time-Aware Systems 39

3. or by wrapping each call in an instrumented stub.

proc_a’(){ // was proc_a ()
 .
 .
 .
}

proc_a(){
 _method_start(proc_a);
 proc_a’();
 _method_end(proc_a);
}

proc_b(){
 proc_a();
}

With the first method instrumentation can be done statically as long as the source
text of the procedure is available. The second possibility also works for external
procedures (e.g. in a library) but it requires a dynamic determination of the pro-
cedures name as a call may be done via a reference. The third option is a kind of
a mixture of the other two possibilities, as it can be done statically and it also
works for external procedures. The major drawback of this method is the slightly
increased overhead if the call to the wrapper really introduces a second call se-
quence. Implementing the wrapper as an open procedure will avoid a lot of the
additional code.

Instrumentation at the beginning and the end of a procedure body as well as
wrapping of procedures can be implemented at preprocessor level. As there is
only one starting point of each procedure, it is easy to insert a sensor in front of
the first statement of a procedure body. The end of a procedure has to be reported
either before a return statement is executed or when the textual end of a proce-
dure is reached. A problem arises when a complex computation is done within
the expression of the return value. If the end of the procedure is signaled before
the return expression is evaluated, the time consumed by longer computation will
be accounted for the calling procedure and if other procedures are called within
this computation even the call tree will be mixed up. This problem can be solved
by inventing an additional temporary variable x of the procedures return type and
changing a sequence "return expr" into "x := expr; _method_end(); return x".
Simple C procedures are instrumented by mc4p using body instrumentation
technique.

In C++ another, more elegant way, of body instrumentation can be implemented.
In C++ local variables (allocated on the stack) are automatically constructed (the
constructor is called) before a procedure starts and destroyed (the destructor is
called) after the procedure has returned. This mechanism is implemented by the

40 Instrumentation at Language Level

compiler. To use this mechanism for signaling start an stop events a new class
sensor has to be defined. In its constructor this class signals the start of a proce-
dure and in its destructor it signals its end. If now a variable of this class sensor
is added to an instrumented procedure, the compiler will arrange exactly the code
we need, as it signals the start before the first instruction of the procedure is
executed and it signals the end even after the return expression has been evalu-
ated. The latest version of mc4p uses this kind of body instrumentation for C++
instead of the (more C-like) version described above, but the two version func-
tionally equivalent. (The example described below uses the C++ method)

Wrapping requires a redefinition of the procedure that has to be instrumented.
The body of the wrapper simply contains the instrumentation indicating the start
and the end of the procedure and a call to the original code with unchanged pa-
rameters. A name clash between the original procedure and the instrumented stub
can be avoided by renaming the original procedure and naming the stub like the
unchanged original procedure. The same technique as above, using a temporary
variable, can be used for propagating the return value of a wrapped procedure.
The mc4p tool has to use the wrapping for instrumenting inherited C++ methods.

The value of formal parameters of procedures can be determined and signaled
easily during the start sequence of a procedure. Before the start of a procedure a
sensor is inserted the mc4p preprocessor adds per instrumented parameter a sen-
sor that reports its current value. If the implementation allows for collecting
events and processing them in a batch-like manner, the sensors may condense the
parameter values and the procedure start into a single event.

The parameter sensors have to know about the event_id, a pointer to the parame-
ter, the length of its binary representation, and a type identifier. While the pointer
and the length are useful for fast internal copies, the type identifier will allow for
encoding the data into a hardware independent representation (e.g. using XDR).
This is generally important for interpreting the values outside the context of the
C++ program. Type information is also necessary when transferring the values in
a heterogeneous distributed environment. The type identifiers may cover either
only the basic types, or in a more advanced implementation also constructed
types like complete classes.

Instrumentation of Classes

Whenever mc4p has to insert a sensor it inserts one of the methods of
_instrumented_class. The declaration of _instrumented_class is shown in Figure
2.5. A descendant of _instrumented_class has to be introduced as a new base
class of every class that contains at least one instrumented method. It has to be
insured that every instance contains the components of this base class only once,
even if the class inherits from one or more other classes that are already derived
from _instrumented_class. C++ provides the virtual inheritance concept to
achieve exactly this.

Time-Aware Systems 41

All static information about the location of the sensors can packed into the event
identifier as described above. The dynamic parameters, like thread identifier or
object identifier are determined, whenever needed, within the implementation of
_instrumented_class. This is possible because the object identifier provided with
the C++ this pointer is always known within the implementation of
_instrumented_class. All status that has to be stored or cached within a sensor
can be implemented as member variables of a descendant of
_instrumented_class. E.g. a simple collection mechanism for reducing bandwidth
might combine a start_method and an end_method event to one event that sig-
nals the duration of a certain method invocation. A timestamp of the
start_method event can be stored within the object until the according
end_method event occurs.

class _instrumented_class {
public:
 _instrumented_class() {};
 ~_instrumented_class() {};

// method start and end sensors
 virtual void
 _start_method(unsigned long event_id) const = 0;
 virtual void
 _end_method(unsigned long event_id) const = 0;
 virtual void
 _end_constructor(unsigned long event_id) const = 0;
 virtual void
 _start_destructor(unsigned long event_id) const = 0;

// parameter sensor
 virtual void
 _add_method_local(unsigned long event_id, void * ptr,
 int size, typeinfo type) const = 0;

// attribute sensor
 virtual void
 _add_attr(unsigned long event_id, void * ptr,
 int size, typeinfo type) const = 0;

// collector for attribute sensors (reimplemented by every
// instrumented class)
 void
 _report_attr() const {};
};

Figure 2.5: Declaration of instrumented_class

Instrumentation of Methods

For instrumenting the beginning and the end of methods the mc4p tool uses the
techniques for procedures as described above. It either instruments the body of a
method when it is newly defined within an instrumented class or it uses wrap-

42 Instrumentation at Language Level

ping to allow for the instrumentation of inherited methods that where not instru-
mented in their defining class. This leaves the original class and its methods
unchanged (not instrumented) and allows to use the new wrapper with the same
functional behavior in a derived class in an instrumented version (see section 6
for an example). An exception to the standard rule for inserting sensors in meth-
ods has to be considered for class constructors and destructors, as the code of
their body does not denote the actual start and end of their execution. All con-
structors and destructors of inherited classes are called before, res. after, the
execution of the constructors or destructors of the current class. To get a realistic
timing, instrumentation rules for these special methods are slightly different.
Only the end of a constructor (res. the beginning of a destructor) is instrumented
in the way described above. The start of a constructor and the end of a destructor
is signaled by the according methods of _instrumented_class itself, as they are
executed as first or last part of construction or destruction of the composed ob-
ject (given a proper ordering of the inheritance list – if there are other virtual
base classes than _instrumented_class and if they are located deeper in the in-
heritance hierarchy, these are initialized before and destroyed later)

Instrumentation of Attributes

The mc4p tool implements instrumentation of attributes by creating a new
method, called _report_attr(), for every class that contains at least one instru-
mented attribute. The _report_attr() function generates events that report the
values of all instrumented attribute of this object. In order to do this the
_report_attr() function in turn calls the _add_attr() method for each attribute.
The _add_attr() function is defined by _instrumented_class or one of its descen-
dants. It produces an event, containing the current value of an attribute and it
works similar to the parameter sensor described above. As the afterimage of an
object-invocation should be reported, the _report_attr() function is called right
before the call to the _end_method() method. Again, the various attribute values
and the method termination event may be condensed into a single event.

A similar mechanism as for observed attributes is used by mc4p to allow for
instrumentation of global variables within a C program. A complete instance of a
program can be regarded as a single object and the global variables as its attrib-
utes. Corresponding to _report_attr() and _add_attr() within C++ objects mc4p
uses the free procedures _report_global() and _add_global() to report the current
status of all instrumented global variables. These procedures are defined locally
once per source file and they are called at the end of all procedures.

Using mc4p

For instrumenting a program, mc4p has to be inserted into the building process
as shown in Figure 2.6. After a source file has been successfully compiled using
the usual C/C++ compiler, mc4p has to be run on the output of the normal C

Time-Aware Systems 43

preprocessor. Mc4p’s output, the instrumented program, then has to be compiled
using the normal C/C++ Compiler.

C/C++
Preprocessor

C/C++
Compiler/

Linker

mcpp

C/C++
Source

Preprocessed
Source

Instrumented
Source Executable

Instrumentation
Specification

(optional)

Instrumentation
Library

instrumented

normal

Figure 2.6: The Building Process using mc4p

Event Name Management

Event names are generated in a global name space containing the system under
test-, class-, and method- and attribute-identifier plus the event type as described
above. These names are mapped to integers that are actually used during data
transmission. The mc4p tool implements a name server for events as a separate
server process and communicates with the server via RPCs. This allows for con-
current distributed compiler sessions that modify the same sub-tree of the name
space, as it is common for a group of cooperating software developers. To allow
for a persistent name space that survives independently of the server, the current
state of the name space can be flushed to a file.

An attempt to (pre-)compile a modified version of the same example code again
will result in the same events identifiers for all events that are still in place. New
events are added to the database automatically, but old events are never dis-
carded without user intervention. As event names are never deleted or changed
dynamically every client of the name server is allowed to cache event names and
mappings as needed without any invalidation mechanism. This will speed up
event processing components significantly.

Of course, the name server does not only resolve class and method names into
event identifiers as requested by the mc4p during compilation. It also maps in the

44 Instrumentation at Language Level

other direction event identifier to classes and methods as required by all tools do
event processing based on the object-oriented structure of the observed system.

Example

The mc4p tool has been implemented and tested with a large number of C++
programs. The preprocessor runs on Unix or Windows NT workstations. The
largest test so far has been carried out by translating an application that includes
the complete Microsoft Foundation Classes library (more that 50 000 lines of
code) and instruments the derived application main window class.

In the following a basic example of a mc4p-generated instrumentation is given.
The code in Figure 2.7 shows a C++ implementation of the well known stack
class in a rather simple implementation plus a derived class xstack that imple-
ments a stack with an is_empty() method. The classes stack and xstack, the pa-
rameter i of the stack::push() method, the attribute sp (the stack pointer of stack)
and the free procedure main() have been marked to be instrumented. In order to
keep the example simple the instrumentation has been defined within the original
code by using the additional keyword instrumented. As long as no instrumenta-
tion is needed, instrumented is simply removed by the ordinary C++ preproces-
sor.

Figure 2.8 shows the output generated by mc4p. There are a number of modifica-
tions, marked in boldface:

• The inheritance list of all classes that include any instrumented code are
modified to contain _inst_log as the first base class. In the case of the stack
class the inheritance list is newly created while the list of xstack has been
simple extended. The _inst_log class has been derived from the abstract
class _instrumented_class. It implements the log style print-out of the pro-
duced events as shown in Figure 2.9.

• All methods that are instrumented and not inherited from other classes now
have an additional local variable _s of type _sensor or _sensor_constr with
one or two integer parameters. Within the constructor and the destructor of
these variables the methods of _instrumented_class _start_method() and
_end_method() are called. The parameters of these _s varuables are the
event_ids that are forwarded to the _start_method() and _end_method()
calls.

• All free procedures (in this case main()) are surrounded by calls to the pro-
cedures _start_procedure() and _end_procedure(). These procedures are not
methods of _instrumented_class but free procedures themselves. Thus, they
do not take this-pointers and can be used for instrumenting free procedures
and static methods.

• The additional method _report_attr() has been redefined in all instrumented
classes to report the values of the instrumented attributes using _add_attr().

Time-Aware Systems 45

In addition calls to _report_attr() are added to the exit sequence’s of all in-
strumented member_functions. The type identifier as a parameter of
_add_attr() as described above is not yet implemented in the current version
of mc4p, thus only binary copies of attributes are supported.

• Finally, for every instrumented formal parameter mc4p has inserted a call to
the _add_method_local(). It is executed in the start sequence of the func-
tions right before the call to _start_method() is done.

• All inserted sensors receive an event identifier as parameter. The mapping
between these identifiers and the semantics of the event is maintained in the
mc4p event name database.

#include "inst_log.h"

const int MAXSTACKSIZE = 100;

instrumented class stack {
private:
instrumented int sp;
 int array[MAXSTACKSIZE];
public:

 inline stack() {sp = 0;};
 inline ~stack() {};
 inline void push (instrumented int i) {array[sp++] = i;};
 int & pop (void);
 virtual int pop (int &);
};

int &stack::pop(void) {

 sp--;
 return array[sp+1];}

int stack::pop(int &i) {
 if (sp == 0)
 i = -1;
 else
 i = array[--sp];
 return i;}

instrumented class xstack: public stack {
public:
 int is_empty(void);
};

int xstack::is_empty(void) {
int h;
 if (pop(h) != -1) push(h);
 return (h == -1);
}

instrumented void main() {
 xstack S;

46 Instrumentation at Language Level

 for (int pop=1; pop < 2; pop++)
 S.push(pop);

 while (! S.is_empty())
 S.pop();
}

Figure 2.7: The stack example prepared for instrumentation with mc4p

// some header code
 :
 :

const int MAXSTACKSIZE = 100;

class stack: virtual public _inst_log {
private:
 int sp;
 int array[MAXSTACKSIZE];
public:

 inline stack(): _inst_log(0x1000, "stack") {_sensor_constr

_s((_instrumented_class*)this, 0x1002); {sp = 0;}};
 inline ~stack(){_sensor_destr _s((_instrumented_class*)this,

0x1003); {}};
 inline void push (int i){_add_method_local(0x1004, &(i),

sizeof(i)); _sensor _s((_instrumented_class*)this, 0x1005, 0x1006);
{array[sp++] = i;}};

 int &pop (void);
 virtual int pop (int &);
inline virtual void _report_attr() const
{
 _add_attr(0x1007, (void *) &(sp), sizeof(sp));
};
};

int &stack::pop(void){_sensor _s((_instrumented_class*)this,

0x1008, 0x1009); {
 sp--;{
 return array[sp+1];}}}

int stack::pop(int &i){_sensor _s((_instrumented_class*)this,

0x100a, 0x100b); {
 if (sp == 0)
 i = -1;
 else
 i = array[--sp];{
 return i;}}}

class xstack: virtual public _inst_log, public stack {
public:
 int is_empty(void);

inline virtual void _report_attr() const
{
stack::_report_attr();
};

Time-Aware Systems 47

public:
xstack():_inst_log(0x100c) {_sensor_constr

_s((_instrumented_class*)this, 0x100d);};
};

int xstack::is_empty(void){_sensor

_s((_instrumented_class*)this, 0x100e, 0x100f); {
int h;
 if (pop(h) != -1) push(h);{
 return (h == -1);}
}}

 void main(){_start_procedure(0x1010); {
 xstack S;{

 for (int pop=1; pop < 2; pop++)
 S.push(pop);

 while (! S.is_empty())
 S.pop();

}_report_global(); _end_procedure(0x1011);}

static void _report_global()
{
};

Figure 2.8: The instrumented stack example

Figure 2.9 shows a trace of a test run of the example program using a descendant
of _instrumented_class that simply writes ASCII text into a log-file. In this case
the timing of the program is completely dominated by the costs for the text out-
put. Sensor versions that directly use JewelNT user-level API for writing to the
memory-mapped have been implemented and provide the desired low-
interference property [Bec99].

To get a lower bound for the interference of the monitored program, the costs of
a call to an empty sensor of _instrumented_class have been analyzed. On an Intel
Pentium the Microsoft C++ Compiler generates 7 additional instructions per
sensor. This includes the computation of the object’s this-pointer and the virtual
call mechanism of the sensor’s method.

void main () () starts
 xstack(0): xstack::xstack () () starts
 xstack(0): [int sp = 0x0(size 4)]
 xstack(0): stack::stack () () ends
 xstack(0): [int sp = 0x0(size 4)]
 xstack(0): xstack::xstack () () ends
 xstack(0): stack::void push (int) (int i = 0x1(size 4)) starts
 xstack(0): [int sp = 0x1(size 4)]
 xstack(0): stack::void push (int) () ends
 xstack(0): xstack::int is_empty () () starts
 xstack(0): stack::int pop (int &) () starts
 xstack(0): [int sp = 0x0(size 4)]
 xstack(0): stack::int pop (int &) () ends

48 Instrumentation at Language Level

 xstack(0): stack::void push (int) (int i = 0x1(size 4)) starts
 xstack(0): [int sp = 0x1(size 4)]
 xstack(0): stack::void push (int) () ends
 xstack(0): [int sp = 0x1(size 4)]
 xstack(0): xstack::int is_empty () () ends
 xstack(0): stack::int & pop () () starts
 xstack(0): [int sp = 0x0(size 4)]
 xstack(0): stack::int & pop () () ends
 xstack(0): xstack::int is_empty () ()
 xstack(0): stack::int pop (int &) ()
 xstack(0): [int sp = 0x0(size 4)]
 xstack(0): stack::int pop (int &) () ends
 xstack(0): [int sp = 0x0(size 4)]
 xstack(0): xstack::int is_empty () () ends
 xstack(0): stack::~ stack () () starts
 xstack(0): destroyed
void main () () ends

Figure 2.9: A trace with the inst_log class of the instrumented stack example

Figure 2.10 finally shows a small part of the dump of mc4p name-server after
processing the sample program. The entries are organized in a tree with five
levels:

1. The system under test (in this case “Defaul_SUT”).

2. The class (here “stack” and “xstack”).

3. The component-types (variable, base-class, constructor, method, event).

4. Instances of the components (the actual variables, base-classes, constructors,
methods), their instrumentation status (“i” = instrumented, “u” = not instru-
mented), and their first occurrence in the code (file-name and line number).
In case of events this level describes the names of the entities that the events
belong to (e.g. the method-names)).

5. The event numbers and their semantics (start, end, value).

0 Default_SUT 1012
. . .
1 stack
2 Variable
3 int’sp’ i:"test.cpp":7-7
3 int’array’[’MAXSTACKSIZE’]’ u:"test.cpp":8-8
2 Constructor
3 stack’(’)’ u:"test.cpp":11-11
2 Method
3 ~’stack’(’)’ u:"test.cpp":12-12
3 void’push’(’int’)’ i:"test.cpp":13-13
3 int’&’pop’(’)’ u:"test.cpp":18-20
3 int’pop’(’int’&’)’ u:"test.cpp":22-27
2 Event
3 stack’(’)’
4 start_constructor 1000
4 end_constructor 1002
3 ~’stack’(’)’
4 start_destructor 1003
3 void’push’(’int’)’
4 int’i’ 1004
4 start 1005

Time-Aware Systems 49

4 end 1006
3 int’sp’
4 value 1007
3 int’&’pop’(’)’
4 start 1008
4 end 1009
3 int’pop’(’int’&’)’
4 start 100a
4 end 100b
1 xstack
2 Method
3 int’is_empty’(’)’ u:"test.cpp":34-38
2 Baseclass
3 stack u:"test.cpp":32
2 Event
3 xstack’(’)’ 0
4 start_constructor 100c
4 end_constructor 100d
3 int’is_empty’(’)’ 0
4 start 100e
4 end 100f

Figure 2.10: A dump of the name space as generated by mc4p

This information is kept persistent by the mc4p name server and it assures that
event names a constant over the lifetime of a software project. Also it illustrates
the amount of structural information that is extracted by mc4p.

Figure 2.11: Sceenshots of a class-browser and a visual instrumentation tool
based on the mc4p name server

50 Instrumentation at Middleware Level

Based on this information also graphical tools for class-browsing and visually
guided code instrumentation have been developed as educational projects (sceen-
shots are show in Figure 2.11).

2.4 Instrumentation at Middleware Level
Before going into the details of instrumentation and monitoring of the middle-
ware level, it first has to be clarified what middleware actually is. In the IT-world
there is a quite fuzzy understanding of this term and this results from the fact that
"middleware" actually denotes three different categories of software [Rac01]:

1. Presentation middleware only cares for displaying data remotely. A Web
browser and server communicating via the HTTP protocol (hypertext transfer
protocol) can for example be classified into this category.

2. Database middleware is deployed to access database management systems
remotely. For example, SQL requests being sent to the DBMS and transfer-
ring back the results to the client are a typical task for database middleware.

3. Application middleware is used to distribute the application logic, and there-
fore functions as a general purpose programming platform for distributed ap-
plications. Its goal is to enable application programmers to build interacting
components using middleware to abstract from given system details.

For the remainder of this thesis the term middleware will be used the sense of
application middleware. Among the various solutions for application middle-
ware, including PVM (message-based) or ONC or DCE (client/server-based), the
focus is solely on object-oriented approaches like CORBA or DCOM. Therefore,
the definition for middleware in this thesis is:

Middleware: A software layer between operating platform and application that
enables the interaction of potentially distributed objects, aiming at transparency
and independence from the surrounding runtime environments.

Since the rapid success of object-oriented middleware like CORBA [OMG95] or
DCOM [Edd99] objects do not just reside locally inside of user processes but
they are now visible entities in a distributed system. These middleware-objects
are usually bigger than standard C++ objects, as they act as clients and servers in
(possibly) cross-context or cross-machine invocations. Bigger means not neces-
sarily bigger in terms of code size or internal status (while a complete database
can be hidden behind one interface object), but the execution time of middle-
ware-objects is usually big enough to justify a full-fledged remote invocation via
the network. Even with today’s high-speed networks this is still in the order of
some microseconds and thus several orders of magnitude larger than an intra-
context C++ invocation. Also for these objects client/server-style computing
requires explicit assignment of network (RPC-style messages), memory (buffer-
space), and CPU resources (server-threads). This means middleware-objects as

Time-Aware Systems 51

units of distribution and scheduling are ideal entities for adjusting and adapting
real-time behavior and thus they are also of special interest for monitoring in a
time-aware system.

The previous section has described how language-level objects can be instru-
mented using compiler techniques. Similar techniques could be applied for in-
strumenting middleware-objects as well. The interfaces of middleware-objects
are usually defined in an Interface Definition Language (IDL) that is compiled
into stub-code that is later liked against the implementation. A modified IDL
compiler could insert sensor statements into the generated stub-code, just as
mc4p does for C++ code. However, a major drawback of this approach is, that it
can only be applied to source-code. One of the ideas of object-oriented middle-
ware however is the component model that allows to integrate third-party object-
code and problem-specific source code into one distributed application. Espe-
cially this integration of black-box third-party code introduces one of the biggest
problems in object-oriented real-time computing, as also the timing of these
components is not open for further analysis. Time-awareness through monitoring
is an approach to tackle this problem. This and the fact that invocations of mid-
dleware-objects are routed through a common runtime-system demand and allow
for a different kind of instrumentation. Like at the operating system level, a ge-
neric instrumentation of just a few important events of interest in the runtime-
system can provide the required information. The next section tries to identify
these generic events of interest.

2.4.1 The Activity Concept
The basic abstractions provided by a distributed object-oriented middleware
framework are the same as in an object-oriented language, namely classes, ob-
jects and (location transparent) method invocations. However, execution model
in a distributed object-oriented environment differs from that of a local C++
program. In the local case the computation is driven by a number of threads. A
thread starts in the context of a certain object and if this object invokes another
object the thread switches into the context of this object. These invocations can
be nested, but at any nesting level the thread (and its Id) identifies the complete
chain of invocations that belongs to one top-level computation.

52 Instrumentation at Middleware Level

Object CObject A Object B

Invoke Invoke

Reply Reply

Figure 2.12: An activity originating from object A with nested invocations of
objects B and C

Things are different in a distributed environment. Here each object can have a
different mapping of invocations to serving threads and this mapping changes
each time another object is called. Without additional measures the pattern of
object invocations in such an environment is flat and reveals no nesting hierar-
chy. From the pure functional point of view this causes no problems. However,
in real-time-systems it is usually only the top-level computation that is associated
with parameters like deadlines, periods, or priorities. Thus, for a correct execu-
tion it becomes important to know which top-level computation is responsible
for a certain (nested) invocation. Transferring the thread model to a distributed
system yields the concept of an activity: an activity in a distributed object-
oriented system is as a distributed sequence of possibly nested method invoca-
tions (see Figure 2.12). An activity branches from a top-level object and returns
control to the same top-level object. It can contain nested method calls, each of
which has well defined start and end points. By invoking other objects, an activ-
ity can cross object boundaries and site boundaries in distributed systems. Con-
sidering real-time requirements, the end-to-end timing behavior of an activity is
clearly given by the execution times of the activities top-level method invoca-
tions. Thus, a real-time activity is an activity whose top-level method invocations
are subject to real-time requirements.

The activity concept (without considering monitoring and real-time aspects)
already has been implemented in some distributed object-oriented systems and
distributed transaction systems, e.g. [Cah93]. However, it is not part of the speci-
fication of neither CORBA nor DCOM. The first standard that contained it was
the Real-Time CORBA specification [OMG99b, Sch00]. It states that an abstract
activity is represented in an ORB by concrete entities: a message within a trans-
port protocol, a request held in memory, and a thread scheduled to run on a proc-
essor. These three phases are termed “in-transit”, “static” and “active” respec-
tively. Real-Time CORBA provides the ability to effect these three phases of an
activity. It leaves the developer to delimit their concept of an activity by the way
they coordinate these concrete entities using the interfaces specified. The Real-
Time CORBA Scheduling Service provides abstractions to work in terms of
activities.

Time-Aware Systems 53

2.4.2 Monitoring Activities

As activities are the units of timing specification and already supported by mid-
dleware-frameworks, they are also the natural units for being monitored. What is
needed to capture the events of activities in a distributed object-oriented envi-
ronment?

“Active” activities are executed by local threads. This means whenever the
thread that carries an activity crosses an object boundary a sensor has to generate
an event. In contrast to pure local invocations now it becomes important to keep
track which invocation and which thread acts on behalf of which activity. Only if
this mapping is recorded in the event trace, the complete invocation path of an
activity can be followed by the monitor. This can be accomplished by storing not
just the thread Ids in the event records but also "activity" Ids. However, as activi-
ties and their Ids are not maintained by the operating system (and in most envi-
ronments not even by the middleware layer) it is highly dependent on the system
environment how these activity Ids are generated. Examples of how activity Ids
can be added to a system are given below.

From the functional point of view for middleware-objects the same types of
events are of interest as for language-level objects: those that allow to trace the
sequence of objects invocations. In the previous section the language level tool
accomplished that by generating an event in just one object's context, either in
the invoking or in the invoked object. However, when considering distributed
systems it turns out that it is not enough. In the time between leaving one ob-
ject’s context and entering the other one the activity is “in-transit”. This delay
cannot be assumed to be zero, as it was the case for local C++ invocations. It
measures the delay introduced by the intermediate middleware and the network
layer. In distributed applications it is often exactly this overhead that is of special
interest, as it is an important parameter for object placement or the selection of
the best copy of a replicated service. In order to measure this delay it becomes
necessary to detect both events, when an activity is leaving of one object’s con-
text and also when it is entering the other one. This happens twice for each syn-
chronous object invocation: once for the request and once for the reply. Measur-
ing the time between the two events is a truly distributed measurement as both
events are possibly recorded on different nodes. It is important to realize that
pure local "round-trip" measurements cannot provide the same information be-
cause typically the amount of required processing resources is not equally dis-
tributed between the two directions.

With the use of an object-oriented middleware layer invocations between two
objects managed by this layer are redirected through the middleware. This sim-
plifies the task of placing the sensors significantly. Like for the instrumentation
of the operating system it is enough to augment the system with a few generic
sensors at those points in the middleware that are passed by all invocations.
Similar to the introduction of activity Ids, this requirement was not foreseen by
the initial middleware standards. Again, the implementation is dependent on the

54 Instrumentation at Middleware Level

actual system environment. In the next section implementation alternatives for
CORBA based middleware will be discussed an in the following case study on
the integrated monitoring tool MagicZoom a concrete implementation also for
DCOM will be described.

2.4.3 Instrumenting CORBA
The concept of an activity as some kind of a distributed thread is not imple-
mented in a standard CORBA ORB. However, using the CORBA interceptors
API allows to implement the concept of activities as an add-on.

Logically, an interceptor is a transformer interposed in the invocation (and re-
sponse) path(s) between a client and a server object. Interceptors are intended as
a generic mechanism for adding services to a CORBA-compliant object system
in a portable manner. They are bound between client and server objects and they
are derived from the interceptor interface defined in OMG IDL. CORBA defines
two types of interceptors (see Figure 2.13):

• Request-level interceptors: are used to implement services, which may be
required regardless of whether the client and server reside on the same host
or not. They resemble the CORBA bridge mechanism in that they receive
the request as a parameter, and subsequently re-invoke it using the Dynamic
Invocation Interface (DII). The ORB core invokes each request-level inter-
ceptor via the client_invoke operation (at the client) or the tar-
get_invoke operation (at the server). Request-level interceptors are in-
tended for services such as transaction management, access control, or repli-
cation. Services at this level process the request in some way. For example,
they may transform the request into one or more lower-level invocations or
make checks that the request is permitted. The request-level interceptors, af-
ter performing whatever action is needed re-invoke the (transformed) re-
quest using the CORBA Dynamic Invocation Interface. The interceptor is
then stacked until the invocation completes, when it has an opportunity to
perform further actions, taking into account the response before returning.
Interceptors can find details of the request and the reply using the operations
as defined in the Dynamic Skeleton interface of CORBA 2. This allows the
interceptor to find e.g. the target object 1, operation name, context, parame-
ters, and (when complete) the result.

• Message-level interceptors: When a cross-machine invocation is required,
the ORB will transform the request into a message, which can be sent over
the network. Here a second kind of interceptor interface is defined that ma-
nipulates messages. The ORB code invokes each message-level interceptor
via the send_message operation (when sending a message, for example,
the request at the client and the reply at the server) or the re-
ceive_message operation (when receiving a message). Both have a mes-
sage as an argument. The interceptor generally transforms the message and

Time-Aware Systems 55

then invokes send. Request-level interceptors are intended for services
such as e.g. encryption.

Figure 2.13: Interceptors in the CORBA 2 specification

For the purpose of instrumentation especially the request-level interceptors are of
interest. They allow to introduce additional sensor code that will be executed
every time an object is invoked. The method request is fully accessible including
its parameters and its environment. The environment of a request is a set of
named parameters that are not necessarily all specified in the interface descrip-
tion of the invoked object. Environment parameters that are not required by the
invoked object are simply ignored there. This enables the interceptor to add extra
parameters to the environment, which are afterwards marshaled and sent with the
other parameters. The interceptor adds a unique activity Id (a random number)
into the environment, if it cannot find a definition in the environment of the re-
quest. This is done every time a request or a reply leaves through an interceptor
and the sensor code within the interceptor includes this information at the client
and at the server side in to the event record that reports on the object invocation.
This way the activity can be traced on its way through the distributed object
space.

This basic instrumentation is generic for all objects implementation that are sup-
ported by the ORB. It has been first implemented using a predecessor of the
CORBA interceptor interface, namely the filter mechanism of the IONA ORBIX
ORB [Ion95, Ger97a]. ORBIX filters were introduced for the same purpose as
interceptors later, but as they were an ORB-specific feature, their usage was
limited to a small set of applications.

56 Case Study – MagicZoom

2.5 Case Study – MagicZoom
The previous sections described the concepts and implementation issues required
when monitoring object-oriented real-time systems at the different architectural
levels. This section now focuses on an integration of the techniques into one tool.
The tool named MagicZoom allows to monitor the various levels at the same
time, to combine this information in one graphical presentation, and to "zoom"
into the systems abstractions as required for the analysis of timing related prob-
lems. It combines the high level abstraction provided by object-orientation with
the low level system view: on the hand, an activity can be seen as sequence of
(possibly nested) method invocations that walk through an abstract object space.
On the other hand, an activity is executed by threads that are scheduled on CPUs,
that are subject to interrupts, that are blocked or preempted, and that are finally
needed to understand and explain the timing behavior of the application. Magic-
Zoom monitors and visualizes the distributed execution path of an activity in
terms of method invocations and returns while simultaneously revealing the
status and execution times of the associated threads. MagicZoom is intended as a
tool for developers that design, implement, and test distributed object-oriented
real-time applications. However, while its graphical user interface addresses
human users, a possible consumer of the provided information could be the run-
time system itself as described in Section 3.

MagicZoom applies the monitoring concepts described in the previous sections.
Therefore it is portable and applicable to any distributed object-oriented frame-
work that supports (or can be extended to support) the concept of activities. Re-
garding implementation, the monitoring components are generic and portable.
The instrumentation however (i.e., the application of event-generating sensors in
the target system), is system dependent. Here the instrumentation for DCOM on
Windows NT is described [Moc00]. While DCOM has been specified as a plat-
form independent standard, and implementations for Unix, Linux, and other
operating systems are available, the premier platform for DCOM is Windows
NT. It was the first platform providing DCOM support, and since version 4.0, it
contains the DCOM runtime-libraries in its standard distribution.

As stated in [Cus93] "Microsoft® Windows NT™ Workstation is not a hard
real-time operating system. Rather, it is a general-purpose operating system that
has the capability to provide very fast response times, but is not as deterministic
as a hard real-time system". Also, there is no "Real-Time DCOM" specification
available. Why has DCOM/Windows NT been chosen as primary target for a
monitor that aims at providing service to real-time applications?

1. Because DCOM is the base for many commercial real-time projects. DCOM
is established on the market as widely used product and there is a growing in-
terest in DCOM in the field of industrial process control. Industrial automa-
tion systems are getting more connected with higher level processes, the use
of off-the-shelf components and hardware independent software standards

Time-Aware Systems 57

becomes a predominant factor for the marketing. All this makes DCOM an
ideal candidate as basis for future developments in that field.

2. Windows NT itself comes with many valuable mechanisms for soft real-time
applications, like e.g. multimedia applications or online stock-trading. It pro-
vides preemptive multi-threading with special real-time priorities, a memory-
management that offers page-locking, and a kernel that is optimized for
minimizing interrupt latency by the use of deferred procedure calls. And, last
not least, the Win32 API provided by Windows NT acts as de-facto industrial
programming standard.

3. Real-time applications on top of a not completely predictable system-
platform can benefit even more from any kind of time-awareness. As there is
inherently no static worst case timing analysis, there is an even bigger need
for information on the actual behavior at runtime.

4. Any system that uses an object-oriented middleware layer uses a standard
non-real-time communication layer (like TCP/IP), looses its overall predict-
ability. Again, in such a standard distributed environment there is a need for
information on the actual behavior at runtime.

Since the applied system abstractions (activity, objects, invocations at the higher
level, processes, threads, etc. at the lower level) are identical, the monitoring
concept is applicable to Real-Time CORBA, too. In fact, activity handling in
MagicZoom uses the same approach as the CORBA scheduling service of using
names (strings) for identifying activities and objects.

2.5.1 Monitoring with MagicZoom
A user of MagicZoom controls a monitoring session from the central monitoring
console with its graphical user interface (see Figure 2.14). This monitoring con-
sole is typically hosted on a dedicated node that itself is not involved in the
monitored distributed activity. From this interface an experimenter initializes all
involved nodes, i.e. he/she selects the event-types of interest and starts the event
recording on these nodes. Now the distributed object-oriented program can be
run. Each node records its local event stream, i.e. at least all object-related
events. If explicitly selected by the experimenter, also thread switches, inter-
rupts, and user-level events will be traced. An observation ends by stopping the
event recording from the MagicZoom user interface. Automatically, the event
streams from all nodes are transferred to the central monitoring console.

58 Case Study – MagicZoom

Figure 2.14: The MagicZoom user interface

In order to analyze the walk of an activity through the distributed object space,
the experimenter opens a view called “DCOM-Trace” at the central monitoring
console. An initially empty window appears and the experimenter gets a selec-
tion of all observed activities from which he/she can select the activities of inter-
est. These activities are presented in a Gantt-chart (see Figure 2.15, the Gantt-
chart at the bottom).

The y-axis lists all objects visited by the selected activities and their called meth-
ods. Objects are identified by their user-defined names or, if such a name is not
available, a system-generated name is used. Methods are simply named by their
index in the virtual function table (as method names are only known to the com-
piler, not to the DCOM runtime system, it would require an additional name
service to provide symbolic names here). Since the starting point of an activity is
not canonically linked to an object, each activity is associated with a new
pseudo-object called “S:<activity-name>”. It represents the activities initial
method, similar to a “main()” in C++. On the x-axis, the global time from the
synchronized clocks of the system is given. Each selected activity is represented
by a line in the chart that walks through the different methods of the system’s
objects (like a thread with a call stack in the local case). Areas of the line that are
separated by small vertical markers depict different states of the thread currently
executing on behalf of the activity. The thread can be executing in normal mode,

Time-Aware Systems 59

it can be waiting, executing an interrupt, or the CPU is idle (in the graphical
interface these different states are visualized by different colors). For getting
further information on the local behavior of an activity, for instance in order to
find out by which other thread the thread of the activity has been preempted, an
separate different view showing all threads on a node can be opened.

Figure 2.15: The DCOM-Trace view of MagicZoom

Figure 2.15 shows the visualization of a very simple example of a DCOM activ-
ity. It contains one selected activity, four objects, and one method(-number) per
object. One of the objects is the pseudo-object “S:MZ Demo Act” that represents
the initial method of the selected activity (since the user-defined name “MZ
Demo Activity” has been assigned to the thread). Two of the three remaining
objects have their system-generated names (“sain.81.134878” and
“sain.81.137aa8”) and one has the user-defined name “SimpleObject”. The two
objects with system-generated names are those of the class factory (DCOM in-
ternal helper objects) that are only required for constructing and destructing the
“SimpleObject” object, which finally provides the user-defined functionality that
the application wants to invoke. The chart further shows the invocation of
method 3 of the “SimpleObject” object and the call to the final destruction
(method 5 of the class factory object). In the given screenshot the view on the
activity trace has been zoomed onto a short time-interval of overall about 100
ms. The invocation of method 3 of the “SimpleObject” object that contains virtu-
ally no user-code already takes about 7 ms on a pair of a Pentium 233 MHz (cli-
ent) and a Pentium 133 MHz (server) machine with no other load.

2.5.2 The Design of MagicZoom
Figure 2.16 depicts the architecture of the components on one node monitored by
MagicZoom. Basically, it comprises three components similar to those of Jew-
elNT, the instrumentation, a remote communication infrastructure (both one
instance per monitored node), and a central monitoring console with its graphical
user interface. The instrumentation includes the kernel driver and libraries. The
kernel driver augments the kernel with the sensors for detecting the operating
system level event and maintains the per-node event buffer. The libraries imple-

60 Case Study – MagicZoom

ment the instrumentation of the DCOM middleware layer as described below.
The remote communication infrastructure is responsible for controlling the moni-
toring and for retrieving the event traces from the event buffer, for buffering the
data and for transferring it to the central monitoring console. This console col-
lects event traces from the nodes of the distributed system, synchronizes them,
and merges them into a global view of the system. Finally, it is responsible for
computing and displaying the activity traces.

Central
Monitoring
Console

NT-Kernel

MagicZoom
Kernel Driver

Event-Buffer

Interrupts Context-Switches

System Events

Activitymonitor
(DCOM DLL)

DCOM Events

DCOM

Application

MagicZoom
External
Sensor

Event Stream 1

Site 1 Site 2

Event Stream 2

DCOM
Invocation

DCOM
Objects

User-level Events

Figure 2.16: Components of MagicZoom

User-Level API

The high level abstractions on which the monitoring of the distributed object-
oriented system with MagicZoom is based are objects and activities. For identi-
fying instances of objects and activities, concepts of object identifiers and activ-
ity identifiers are needed. This is especially necessary when system behavior is
monitored: monitored information is presented with object identifiers and identi-
fiers that allow the experimenter to associate the monitoring information to the
respective system entities. In order to make a generic design independent of the
concrete representation of object and activities in a specific system, it is possible
for the user to assign names (user-defined strings) to objects. These names are
then displayed in the monitoring interface.

Figure 2.17 depicts the programming interface of the MagicZoom activity moni-
tor. The function AM_set_object_name associates the object pointed to by
the parameter obj_ptr with name given by the parameter object_name.

Time-Aware Systems 61

 AM_API void AM_set_object_name(
 void *obj_ptr,
 char *object_name);

AM_API void AM_set_activity_name(
 char *activity_name);

AM_API set_user_event(
 int user_param);

Figure 2.17: Programming interface of MagicZoom

A similar solution is applied for identifying activities. In terms of operating sys-
tems entities, an activity is represented by an initial thread executing a program
in some process. Secondary threads in other (local or remote) processes are tem-
porarily added to the activity when executing method invocations on behalf of
the initial thread (or on behalf another secondary thread that currently belongs to
the activity). Note that secondary threads can (sequentially) work on behalf of
different activities. In order not to overwhelm the user with these low-level sys-
tem issues, which in addition can change from run to run, the activity monitor
allows to associate activities with user-defined names. This is the purpose of the
function AM_set_activity_name in Figure 2.17 that has to be called by the
initial thread of an activity and associates the name given by the parameter
activity_name with that activity.

Event Types

The monitor distinguishes three event categories:

1. the object-related events from the abstraction level of the distributed object-
oriented framework occur whenever an activity invokes (or returns) from an
object,

2. low-level system events such as thread switches and interrupts that relate to
the scheduling behavior on a local node

3. user-level events in the application code. These include events generated by
the mc4p automatic instrumentation tool.

The object-related events allow tracing an activity through different threads,
nodes, objects, and methods. They are defined as follows:

1. Outgoing call: a thread t on node n executing on behalf of an activity A in-
vokes some object with call-id i. The call-id is a unique number generated by
the instrumentation that allows matching outgoing and incoming calls/replies.

2. Incoming call: a thread t’ on node n starts executing a method m in an object
O on behalf of an activity A with call-id i.

62 Case Study – MagicZoom

3. Outgoing reply: a thread t’ on node n ends executing a method m in an object
O on behalf on an activity A with call-id i’.

4. Incoming reply: a thread t on node n executing on behalf of an activity A
receives a reply from some object with call-id i’.

The implementation details of how the object-related events are retrieved from
the DCOM runtime system are explained below. Low-level system events are
retrieved from the operating system kernel by instrumenting that kernel (as de-
scribed in section 2.2). Finally, user-defined events are indicated with the func-
tion set_user_event in Figure 2.17. The application programmer can set the
parameter user_param for identifying this event later on. The user-defined
event allows the application programmer to mark specific points of interest in the
execution path, e.g., code sections of interest within a method. Mc4p provides a
subclass of _instrumented_class that uses set_user_event to record its
events.

Instrumentation of the DCOM-Middleware Layer

The concepts of object and activity identifiers are the basis for gathering the
object-related events from the system. For the convenience of the user, Magic-
Zoom allows to associate user-defined names with objects and activities for
monitoring purposes. However, a system level representation of object identifiers
and activity identifiers is needed, too. Since DCOM does not directly support the
notion of globally unique object identifiers, a 3-tuple <server process site id,
server process id, virtual address of the object in the server process> is used as
system level unique identifier for an object. The virtual address of an object is
the address of the object’s implementation of the IUnknown interface, the basic
interface that every DCOM object must implement.

Let us now consider how the DCOM system is instrumented in order to detect
the object-related events. This will also reveal how the notions of activity and
activity identifiers are introduced to DCOM. Invoked objects can reside either in
the same process or in another (either local or remote) process - it is called "out-
of-process". Invocations of out-of-process objects imply changing the thread that
is active on behalf of the activity. Special care has to be taken that the monitor-
ing system can keep track of the invocation under the activity id for ensuring that
the involved thread are monitored as acting on behalf of the same activity.

An invocation of an out-of-process object is implemented by a remote procedure
call (RPC) that is executed between the stub object and the actual object. The
RPC protocol used by DCOM basically is DCE RPC [Loc94] with the extension
that some extra information is piggybacked on the RPC call/reply messages.

Since its latest release DCOM defines in its API the ChannelHook interface
that allows defining and extracting the extra information piggybacked to the RPC
call/reply messages [Edd99]. By default, DCOM adds a CausalityIdenti-

Time-Aware Systems 63

fier to each call and reply. This identifier remains the same whenever a call is
executed on behalf of another call. It supports tracing of activities since the
CausalityIdentifier can be used as internal identifier for the activity.
The ChannelHook interface provides four functions ClientFillBuffer,
ServerNotify, ServerFillBuffer, and ClientNotify that are called
by DCOM when an RPC is made, an RPC comes in, an RPC reply is sent, and an
RPC reply is received, respectively. These functions are called whenever the
object-related events (see section 3.1) are to be generated. Hence, the required
instrumentation of DCOM can be achieved by implementing the Channel-
Hook interface. As an example, Figure 2.18 shows the implementation of the
ServerNotify function that generates the "incoming call" event.

// Called in server just before a method is invoked

void CChannelHook::ServerNotify(
 REFGUID uExtent,
 REFIID riid,
 ULONG cbDataSize,
 void* pDataBuffer,
 DWORD lDataRep)
{

SChannelHookCallInfo *p_callinfo;

if(uExtent == EXTENTID_MyHook &&
 lDataRep == NDR_LOCAL_DATA_REPRESENTATION)
{
 p_callinfo = (SChannelHookCallInfo *)&riid;
 MYHOOK_THIS* data = (MYHOOK_THIS*)pDataBuffer;

 MagicZoomNoticeOO(

 MZ_EV_OO_SERVER_CALL, // Event-Id
 p_callinfo->uCausality, // Activity-Id
 object_id(p_callinfo->pObject), // Object-Id
 p_callinfo->iMethod, // Method-Id
 *data);
}

}

Figure 2.18: Generating the incoming call event with a ChannelHook

The code shown in Figure 2.18 extracts the relevant extra information from the
incoming RPC and stores it in the local event buffer of the monitoring system.
The helper function object_id returns a pointer to the object’s IUnknown inter-
face. The other functions of the ChannelHook interface are implemented in a
similar way, yielding a complete instrumentation of the object-related events in
DCOM for out-of-process invocations, including the information on the over-
head introduced by the RPC system.

The current implementation of the DCOM instrumentation does not generate
events for invocations that do not cross process boundaries. These calls are exe-
cuted just like simple C++ invocation and information about them is not neces-

64 Case Study – MagicZoom

sary for keeping track of activities. They are instrumented at source code level
using the mc4p tool.

Tracing Activities

The object-related events are recorded in the different traces from the various
machines involved in the object-oriented computation. Now, how is information
of distributed activities extracted out of this data? The different traces are first
transferred to the central monitoring station and then projected onto the same
global time axis. This adjustment of the local time stamps is done as described
above for JewelNT in subsection 2.2.2. In the next step, all recorded event
streams are scanned for object-related events. The collected activity-ids from
these events together with the involved object-ids are stored in a separate look-
up table that is used for preparing the visualizing chart. The table stores any user-
defined name that the application has assigned to one of these instances as well
as the thread that contains the first occurrence of an activity.

If now the experimenter selects a certain activity A for display in the O-O Trace
view, the algorithm depicted in Figure 2.19 collects the activity trace information
SA for this activity from the various event streams. It is executed once for each
monitored activity. Basically it creates the activity trace information SA by fol-
lowing the thread between the object invocations, as it is the implicit vehicle of
an activity, and following the explicit activity-ids across process and machine
boundaries. SA contains all events from the different nodes that happened during
the time the activity was active on that node. The visualization uses this informa-
tion to present the activity, its execution status and the objects it has invoked.
Note that in step 7) a special error indicator is set if an activity invokes an object
on a node that has not been monitored. In this case, the visualization shows a
dashed line until the call returns, which indicates this condition to the experi-
menter.

1) t (the current thread) := NULL

2) Sc (the current event stream) := event stream that contains the first oc-
currence of A

3) SA (the event stream for activity A) := empty

4) skip all events from Sc until the first occurrence of a DCOM-event e with
activity-ide equals A

5) t := thread-ide

6) copy next event e from Sc to SA

7) if thread-ide = t and e is an outgoing invocation with call-ide = i find
other event Streams S’ for an event e’ where e’ is an incoming invoca-
tion with the activity-ide’ equals A and call-ide’ = i; if found skip all
events before e’ in S’; Sc = S’; t := thread-ide’ ; continue with 6); if not

Time-Aware Systems 65

found (the node hosting the object has not been monitored) copy a spe-
cial event eerror to SA and skip all events before the next incoming reply
event e’’ in Sc with activity-ide’’ equals A

8) if thread-ide = t and e is an outgoing reply with call-ide = i find other
event Streams S’ for an event e’ where e’ is an incoming reply with the
activity-ide’ equals A and call-ide’ = i; if found skip all events before e’ in
S’; Sc = S’; t := thread-ide’ ; continue with 6)

9) if Sc is not empty continue with 6)

10) end

Figure 2.19: Algorithm for constructing a global activity trace

2.5.3 Summary
The MagicZoom allows for the tracing of activities in object-oriented applica-
tions while simultaneously revealing and visualizing the CPU scheduling of the
threads that execute on behalf of the activities. Being a valuable tool for the
development of distributed object-oriented real-time applications, it also com-
plements the Real-Time CORBA approach that specifies scheduling support for
distributed activities.

MagicZoom has been implemented in the context of DCOM. Although lacking a
clear concept of global object identifiers, DCOM has turned out to be a suitable
implementation vehicle. Especially the concept of ChannelHooks has directly
supported the instrumentation of DCOM and allowed for the introduction of the
concept of distributed activities into DCOM. DCOM is of major interest in in-
dustrial process control systems and MagicZoom has been applied to perform-
ance and real-time related problems in a DCOM-based distributed factory auto-
mation system.

66 Case Study – MagicZoom

3 Real-Time Systems
The previous chapter discussed time-aware systems that use monitoring to get
information about their own timing. While these systems have the system-
supported infrastructure to react on time-related problems and to adapt to an
actual timing behavior, they do not yet fulfill the basic requirement of real-time
systems. The time-awareness in itself does not provide any guarantees that a
specified timing behavior is accomplished. It does not include any mechanisms
for exploiting the acquired knowledge about its own timing. It is still up to the
application or to the designer of the system to take advantage of the newly
gained knowledge and to implement a strategy for achieving the final goal of any
real-time system, namely to provide guaranteeing timely correct behavior. This
chapter discusses how time-awareness can be utilized to accomplish these guar-
antees event in an environment as described in the introduction where real-time
and non-real-time objects interact in one application.

Section 3.1 of this chapter extends the monitoring techniques presented in the
previous chapter towards a system architecture that can provide these guarantees.
It first describes the general problems with obtaining timing bounds. It argues
that the abstraction of worst case timing assumptions, as adopted by the vast
majority of previous publications on time-critical computing, leads to a very
limited view on real-time systems. This limited view excludes the efficient use of
modern hardware as well as many of the well-known features of object-oriented
programming. In order to broaden the scope of real-time systems, a task-
classification is presented that introduces a category of soft tasks. These soft
tasks allow for a tradeoff between timeliness and functionality. The TAFT-
Scheduling approach is presented that implements a scheduling that is aware of
this tradeoff. TAFT-Scheduling relies on up-to-date timing analysis provided by
a monitoring component. In section 3.2 the concept of Expected Case Execution
Times (ECETs), the basis for providing timing estimates for the TAFT-
Scheduler, is introduced. The remainder of this section discusses algorithms for
an efficient analysis and prediction of ECETs, extends the concept towards an
early detection mechanism for probable timing faults, and describes the tradeoff
between the achieved granularity of ECET analysis and the required resources.
The implementation architecture for the TAFT-Scheduler in general and espe-
cially the components of the online monitor with ECET-analysis are presented in
section 3.3. Section 3.4 concludes the discussion of the tools by providing per-
formance figures that prove the feasibility of the concept. Finally, in section 3.5
the general applicability of the presented algorithms and implementation struc-
tures is illustrated by a study that applies the monitoring and event processing
components to a slightly different problem in object-oriented real-time comput-
ing, namely the online checking of formal timing constraints.

Real-Time Systems 67

3.1 Providing Timing Guarantees
In a real-time system, it is mainly the job of the scheduler to guarantee timely
correct behavior. It assigns the required resources to the specified tasks and de-
termines whether these will meet their specified timing in all possible executions
of the complete systems. The required resources certainly include the computing
power, i.e. the CPU, but may include also network bandwidth, memory, access
to critical regions, and any kind of physical resources attached to the system. In
general the complexity of a scheduler’s job grows exponentially with the number
of tasks. In the past, a lot of work on scheduling has been done and the most
relevant results for current real-time systems are based on more or less rigid
constraints on considered the tasks and resources [But97]. Often a very limited
set of resources is considered and the most commonly used scheduling algo-
rithms, e.g. RM (Rate Monotonic) and EDF (Earliest Deadline First), consider
the CPU-resource only. All these scheduling algorithms have in common that
they need a set of attributes of the tasks to be scheduled in order to perform a
schedulability analysis, i.e. a test that determines whether a given set of tasks can
fulfill its timing requirements or not. The attributes comprise at least the period
(in case of periodic tasks), the release time, and the deadline of a task. The values
for these attributes can be extracted from the specification of the system. One
other important attribute cannot be determined so easily: the execution time.

3.1.1 Worst Case Execution Times
As the actual execution time depends on the current state of the system that is
hardly known in advance, schedulers usually base their planning on the worst-
case execution times (WCET) of the tasks. The WCET is the maximum execution
time that an arbitrary instance of the task ever needs until completion.

More formally: Let t be an instance of a periodic task T.

=:tET The CPU-time instance t needs until completion in the given environ-

ment.

The CPU-time includes only the time when the task is assigned to run on the
CPU. It does not account for any queuing-time or for any overhead introduced
by the executing environment. With this definition the WCET of a task T is given
by:

{ }tTtT ETMaxWCET ∈=:

While the WCET of a task is usually also given in the specification, there is no
constructive approach that can generate code for a task with a given functionality
and that can guarantee a fixed WCET. Therefore, an iterative approach is taken.
The code is implemented and then it is determined whether this implementation
can meet the requirements. If not, either the specification of the WCET is adapted

68 Providing Timing Guarantees

or the implementation or the execution environment is modified in order to
match specification and reality.

This approach needs a reliable method to determine the WCET of a task. The
straightforward approach would be the analysis of the program code that
searches for the longest possible path in a task’s execution and accounts for its
execution time. However, in real life this imposes more and more problems and
most programming environments do not provide the tools for this kind of analy-
sis. This is because:

• A programming language that can be statically analyzed for WCETs neces-
sarily has to impose severe restrictions on the expressiveness of its state-
ments. Loops must be bounded and recursion must be restricted in depth.
Thus, also dynamic data-structures are restricted. Trees or lists must have a
fixed depth and length and it is impossible to manage an object-space of
previously unknown size. In dynamic systems that schedule tasks dynami-
cally at runtime, it is possible to give a function for a task that computes its
WCET depending on the current system status. However, usually it requires
additional effort from the programmer to provide the knowledge for this
function.

• Another problem is that WCETs are highly system specific. The WCET of a
program does not only depend on its logical structure but also on the com-
piler, the processor, and the system environment. Thus, while there are some
approaches to compute WCETs with only the source code and some system
knowledge as input, most attempts to determine the WCET rely on the de-
tailed knowledge of the processor, the source code, and the compiled object
code. But this is still not sufficient. The characteristics of a single system,
like its clock speed, its bus architecture, its memory access behavior, and its
DMA controller, have significant and often non-linear impact on the timing
of a program. Thus, it is impossible to argue about WCETs without a spe-
cific machine in mind.

• Another problem is the increasing complexity of today’s hardware architec-
tures. Much of the basic work on WCET analysis in the past has been done
on M68000 machines, which had nearly constant execution times per in-
struction. This means, from the timing point of view a pretty simple model.
However, all modern processors make intensive use of at least two levels of
caches (instructions and data), internal pipelining and parallelism, branch
prediction, and speculative execution. A model that tries to cover all these
features can become about as complex as the hardware itself. An model that
ignores only one of these architectural features can easily lead to a massive
overestimation of the actual WCET (e.g. 275% for data caching as shown in
[Kim99]).

• Even with a perfect model of the executing machine, it becomes more and
more difficult to give reasonable bounds for the WCET of a piece of code.

Real-Time Systems 69

The speedup of processors in the last years does not mainly result from
faster transistors, but from a better usage of parallelism and locality. The
current state of the machine has a big impact on the execution time of the
next instruction. However, it is hard to determine the dynamic state of the
computation in advance during static analysis. Modern processors are not
built for constant execution times, but for a high probability of a maximum
execution throughput. This and the two prior issues lead to the general ob-
servations that:

1. It is really hard to determine how long a single instruction takes in a cer-
tain execution context and

2. the difference in the execution time between the worst case and the aver-
age case may be in the order of 10.

The first observation means that it is even more difficult to build a WCET
analyzer than it was ten years ago and the second observation tells that even
a good tool will provide WCET figures that are far apart from the realistic
execution times of a running application. Drastically spoken, this means that
real-time systems that rely only on WCETs will not benefit a lot from the
current development of new processors.

• Finally, object-orientation and, based on it, component based programming
impose another major problem on WCET analysis. Using existing (or even
third-party) components in real-time applications is difficult because the
timing behavior of the components must be known. While implementation
hiding isolates module implementations and eases their integration as it al-
lows matching interfaces easily, it ignores the fact that for execution time
analysis knowledge about the implementation at the lowest possible level is
required. Polymorphism and late binding [Boo91] (virtual methods in C++)
impose another problem. As in an object-oriented environment the code that
is actually being executed can be determined at runtime, WCET analysis has
to take into account all possible implementations.

If it so hard to get reasonable bounds for the WCET of tasks, especially in object-
oriented systems, what can be done? How can the benefits of object-oriented
software development and new processor architectures be transferred into the
real-time domain? The answer heavily depends on the type of application and
especially on the class of tasks that are considered.

3.1.2 Task-Classification
Classically, real-time tasks have been divided into “hard” and “soft” tasks. How-
ever, to capture both the functional and timing behavior, this scheme is insuffi-
cient. In [Kai99] a classification of real-time tasks is given that will be used in
the following to identify those tasks that are candidates for a real-time schedul-
ing beyond the restrictions of a full WCET analysis:

70 Providing Timing Guarantees

1. Hard Tasks: The term hard task is well known in real-time literature. It
denotes all those tasks, where it is mission-critical that these tasks are exe-
cuted and those they meet their timing requirements. Any timing-fault of a
hard task will lead to a non-acceptable failure of the whole system, depend-
ing on the embedding system with possibly catastrophic consequences. The
timely correct execution of hard tasks must be guaranteed by the real-time
system and when executed they must not fail. A typical example of a hard
task is the brake-by-wire control in an automotive.

2. Essential Tasks: Similar to hard tasks essential tasks also must not violate
their timing requirements. Essential tasks are generating the computational
progress of the application and once they are started, they have to be treated
like hard tasks. However, in contrast to hard tasks, there is some flexibility in
when they are executed. The real-time system can decide to delay the execu-
tion of an essential task until it can guarantee the resources for a successful
execution. Usually, there are still requirements on the maximum allowed de-
lay or the overall rate of executions. The notion of essential tasks has been
first introduced by Stankovic and Ramamritham in the Spring kernel [Sta89].
A classic example of an essential task is the landing-control of an aircraft. It
has to be executed in the near future and once the task (or a set of cooperating
tasks) has been started it has to be completed successfully.

3. Soft Tasks: The term soft task is also often used in real-time literature. How-
ever, its definition is usually quite fuzzy. In many papers the term soft task
only means not a hard task, including all kinds of tasks ranging from essential
to non-real-time. A common understanding is that a soft task might fail to de-
liver the desired functionality within the specified time. In order to distin-
guish the functional and the timing dimension, in [Kai99] a division into
"soft" and "best-effort" tasks is proposed. With this definition, a "soft task" is
a task that has to meet its timing specification, but it has the option to provide
functional degraded behavior. An important constraint remains: the result of
a soft task must not violate the safety constraints of the complete system, i.e.
it is allowed to provide no computational progress, but it must not leave the
system is an erroneous state. When looking closer to tasks that are considered
to be hard real-time, it turns out that many of them an actually soft tasks in
the sense of this definition. Often, it is acceptable and also more cost-
effective to use a smaller sized system that might fail in e.g. one percent of its
task executions than to use a huge over-sized system that handles even the
worst case. This kind of sporadic degradation of functionality might be toler-
able if the system still maintains a basic level of functionality and safety by
guaranteeing a hard real-time core. Typical examples of soft tasks are all
kinds of "any-time" algorithms that provide increasingly better results for the
same problem, depending on the amount of execution time they can use (like
e.g. a chess program). Also media-streaming applications often reveal soft
task behavior as they either drop images of a video-stream or reduce the reso-

Real-Time Systems 71

lution of the audio or video signal in response to insufficient computing or
networking resources.

4. Best-effort Tasks: Finally, best-effort tasks are those tasks that always pro-
vide full functionality, but are allowed to execute beyond their optimal com-
pletion time (i.e. their "deadline"). The real-time system will try its best to as-
sign enough resources to these tasks to make them meet their timing require-
ment, while it does not provide guarantees. The idea of assigning a value
function [Jen85] to each task that expresses the value of a completed task at a
certain point in time can be applied to express the overall value of a run of a
system of best-effort tasks. Typically, e.g. all kinds of timing requirements
that are expressed for (Web-based) user-interfaces of business-applications
can be categorized as being best-effort tasks.

All tasks that have no explicit timing specification and that should just be exe-
cuted “as fast as possible” are “non-real- time” tasks and will be not considered
in this context.

Regarding this classification hard and essential tasks are not good candidates for
diminishing the requirements on WCET analysis. As these task have to provide
full functionality in time and a (timing) fault of these tasks has possibly catastro-
phic consequences, there is no alternative to a full schedulability analysis (in-
cluding WCETs). On the other hand, best-effort tasks don't need the strict WCET
attribute. For a successful scheduling of best-effort tasks it is enough for the
scheduler to get stochastic values for their execution times. Sporadic failures in
meeting their optimal completion times will not reduce the overall value of the
systems significantly. Only permanent timing errors will degrade it beyond an
acceptable quantity.

Now, what about soft tasks, the remaining category? Does a scheduler need the
WCETs of these tasks in order to guarantee the safety of the system? Not neces-
sarily. It can use probabilistic timing assumptions for scheduling the functional
part and find a way to deal in time with the situation when a really bad case hap-
pens! It is not required that each execution of a task is successful. It only has to
be guaranteed that the effects of a termination with degraded functionality of one
instance do not cripple the systems overall state nor the timing of the remaining
tasks. Also, the scheduler should ensure a considerable amount of successful
executions of task instances. Otherwise the computational progress of the system
is in danger. Once the system can assure this, the soft task concept enables a
large quantity of currently not real-time capable code to work in a predictable
manner under timing constraints.

In order to implement this idea three issues have to be resolved:

1. The tasks have to be organized in a manner that allows to separate the hard
real-time core (that ensures a consistent system state) from the functional
part,

72 Providing Timing Guarantees

2. the scheduler has to be aware of this separation and schedule them accord-
ingly, and

3. good timing estimates are required that enable the scheduler to spend
enough resources on the functional parts in order to ensure computational
progress.

The Time-Aware Fault-Tolerant (TAFT) scheduling approach, presented in sec-
tion 3.1.4, addresses these issues and, thus, is capable of handling soft tasks in an
adequate manner. It uses time-awareness to estimate the actual resource require-
ments of the functional parts. In order to handle this quantity, it uses a newly
introduced property of a task, its Expected Case Execution Time. The notion of
this property is formalized in the following section.

3.1.3 Expected Case Execution Times
Roughly speaking, the Expected Case Execution Time (ECET) is a measure for
the time that instances of a task need in most cases for a successful completion.

Let t be an instance of a periodic task T.

=:, ptECET the CPU-time that has to be assigned to instance t in order get a

probability of p that t is completed.

Again, the CPU-time includes only the time when the task is assigned to run on
the CPU. Similar to the definition of WCETT also the ECETT,p of a task T can be
defined as:

{ }ptTtpT ECETMaxECET ,, : ∈=

This property of a task denotes the time the scheduler has to assign to each in-
stance of T in order to achieve an overall probability of successful completions
of at least p. Note that, WCETT is an upper bound for ECETT,p as even for p=1 all
instances of T will complete within WCETT.

In contrast to WCETT and ECETT,p, which are static properties of a Task, ECETt,p
is dynamic. It is not only dependent on the code to be executed by the task T
(and its possible set of parameters) but also on the system’s state and the envi-
ronment at the time T is executed. This means that the ECETT,p may change over
the live-time of the system and, if the scheduler can handle dynamic changes in
the task descriptions, it is exactly the quantity the scheduler needs. As it de-
scribes the requirements of the a single instance, the scheduler can adapt to the
current behavior of the system’s tasks. In general, the task of the scheduler will
become too complex if it has to use new timing estimations for each instance.
However, the “locality” of ECETs can be expected to be high. This means, in
many cases the ECETt,p will change marginally from one instance of T to the
following. Especially, this is true for all T that have no or only a small data-
dependency of their execution times. This is also true for tasks that operate on

Real-Time Systems 73

dynamic data where the amount of data is increasing or decreasing slowly. The
assumption still holds for many cases of changes in the environment, e.g. varying
physical properties of sensors or actuators (e.g. caused by their increasing age) or
changes in the overall load on the system. In case of transient errors (like e.g.
message loss in the network and a repeated computation) this is surely not the
case, but these cases can be regarded as equally distributed over all executions.
The case that the ECETt,p is monotonously increasing is pathological because
either the task is unusable in a real-time system as it will exceed all bounds or
the value will converge towards a fixed time.

The ECETt,p can be derived from a discrete probability density function. Con-
sider a density function ft for an instance t of task T

{ } ()∑
=

=→
m

x
xfwheremf tt

1
1],1,0[,...,2,1:

where m = WCETT, (given that T has some WCET) with the interpretation that
ft(x) is the probability that the execution time of the task instance is exactly the
discrete time x. From this function ECETt,p can be computed by

{ } ()

 ≥∈= ∑
=

prfmqMinECET
q

r
pt

1
, |,...,2,1

This function is depicted in Figure 3.1. The points mark the values of the discrete
probabilistic density function ft and the shaded areas represent the sum of the
probabilities up to that execution time (i.e. the probability distribution). This sum
exceeds the given probability p for the requested ECETt,p on the execution time-
axis (the dark shaded area). This is the p-quantil of the distribution.

.

Execution
Time

Probability

m

1
p

ECETt,p

Figure 3.1: Computing the ECETt,p from a probabilistic density function

However, ECETt,p is not yet a useable quantity for a real implementation of a
scheduler as it is a probabilistic quantity that is not available in a concrete sys-

74 Providing Timing Guarantees

tem. The transition from a probabilistic to a statistic quantity is required. In order
to estimate ECETt,p for the next instance t of task T it should be a good approxi-
mation to look at the most recent executions of instances of T. This leads to the
definition of ECETt,k,n. It denotes the time in which a specific amount of previous
instances of the same task has succeeded.

=:,, nktECET The minimal execution time that was needed to successfully com-

plete at least k out of the last n executions of instances of a task T before t.

If the assumption of locality is true, then ECETt,k,n is a fairly good approximation
for ECETt,p with p=k/n. ECETt,k,n can be computed from the statistical density
function in the same way as ECETt,p has been derived above from the probabilis-
tic density function. All that is required is the density function of the n most
recent executions. This function can be obtained easily from a real system by
online monitoring. This means, the ECETt,k,n is a good estimation for scheduling
decisions of soft tasks and it can be made available in a real system.

3.1.4 TAFT Scheduling
The scheduler is the crucial component of a real-time system. It has to assign the
resources to the tasks such that their timing requirements are met. Given an envi-
ronment, where no reliable bounds for the WCET of tasks are available, but there
is an understanding of soft tasks as described in subsection 3.1.2 and support for
determining ECETs as described in the previous subsection. What is needed is a
scheduling component that is capable of handling uncertain, possibly wrong
timing parameters due to their estimated nature and dynamically changing be-
havior. This can be done by trading optimal functionality for timeliness, a well-
known strategy in fault tolerance. Fault-tolerant mechanisms can be used to
handle timing faults such that deadlines are still met. A timing fault occurs
whenever the actual execution time of a task differs from its estimation. This
idea lead to a system that is able to adapt online to changing timing parameters
of the executed tasks: TAFT.

The Time-Aware Fault-Tolerant (TAFT) scheduling system consists of two ma-
jor components: the Fault-Tolerant (FT) scheduler that enforces predictability
and the Time-Awareness (TA) components, i.e. the monitor that is responsible
for providing the required ECETs. The first ideas, the design of the TAFT sched-
uler, as well as reports on its usage in a concrete application example have been
published in [Ger96a, Net97a, Net97b, Net98, Net01].

Fault-Tolerance

FT-Scheduling is based on the notion of a TaskPair (TP). Each task is designed
as a TaskPair (TP). A TP constitutes a MainPart (MP) and the ExceptionPart
(EP) [Str95]. From the scheduler’s point of view, both parts are treated as sepa-

Real-Time Systems 75

rate scheduling entities having their individual timing parameters. The minimal
functionality of the EP is to ensure that the respective TP leaves

• the controlled application in a fail-safe state and

• the controlling system in a consistent state.

This reflects the above-mentioned fault-tolerance aspect. The deadline of the EP
is identical with the one of the whole TP (see Figure 3.2). Its timely completion
is guaranteed by the scheduler by explicitly reserving the necessary resources
(e.g. the complete CPU time needed). Thus, its timing parameter ”execution
time” can be interpreted as a WCET. This is reasonable because the EP usually
comprises only a few, a priori determined system operations. In contrast to ex-
ception handling mechanisms known for other real-time programming environ-
ments, the scheduler guarantees the completion of the EP before the deadline of
the TP, not, as usual, only as a best-effort task after the MP failed. Scheduling
algorithms for a dynamic planning of TaskPairs are described in [Str95] and in
[Kri97]. The latter calls the same concept “Primary and Alternate” tasks and
limits the periodicity of TaskPairs (a base period multiplied with a power of 2).

Time

MainPart ExceptPart

Deadline
Exception

Figure 3.2: A TaskPair

This means, the fault-tolerance aspect of TAFT is provided by the EP of the
respective TP. Whether more can be done than restoring a consistent and/or fail-
safe state is very much application dependent. There are quite a lot of task types
that are amenable to a fault-tolerant approach. For such tasks the EP is able to
deliver a result that is still acceptable as output for the whole TP. To give an
idea, a sketch of some typical examples of such types of application tasks are
given:

1. Tasks having two versions: a primary and an alternative [Net96]. The result
of both versions is acceptable. They differ, however, in that the primary ver-
sion provides a better quality of service, whereas the timely execution of the
other one can be guaranteed. In this case the MP would represent a best effort
approach to maximize the resulting quality of service. It is aborted when it is
time to allot the respective resource to the EP in order to ensure that the dead-
line is met.

2. Iterative tasks, producing an output the quality of which is the higher the
longer they run. Many tasks having this property can be stopped early and

76 Providing Timing Guarantees

still provide useful output. Their quality is usually a monotonically non-
decreasing function of the execution time. It is the job of the EP to evaluate
the outcome of the corresponding MP and to initiate the appropriate actions
to be done.

3. Best-effort tasks where, as the name implies, meeting of respective deadlines
is not essential to the application. However, they do deal with time-varying
data meaning that if not terminated timely their value for the application de-
creases and eventually will become useless. The goal in scheduling is to
maximize the cumulative value, i.e. the sum of the values of the completed
individual tasks.

The principal difference to conventional software fault tolerance measures is that
in the TAFT approach exception handling is done as part of an entity, which is
under the control of the real-time scheduler.

Time-Awareness

The MP contains the real application code and this is the code that is usually
critical in terms of unknown or useless WCETs. At this point time-awareness
becomes important. Execution times of MPs, by default, are interpreted as
ECETs. The task-internal deadline of a MP is computed as the deadline of the
corresponding TP minus the WCET of its associated EP.

In order to guarantee the timely execution of tasks, each newly arriving task has
to undergo an acceptance test. Its outcome is positive, if the ECET of its MP plus
the WCET of its EP can be reserved by the scheduler prior to the deadline of the
TP. The approach taken by the adaptive TAFT scheduler to cope with the unreli-
ability of a priori defined task execution times is to adjust its behavior dynami-
cally in order to achieve a predictable overall behavior. More precisely, this
means that the time reserved for the MainPart depends on the ECETs actually
measured in the running system. It is still assumed that the WCETEP of an Excep-
tionPart is known, but this is not a severe restriction, as it is assumed to be very
short. Thus, even a bad and very pessimistic execution time estimation should
not lead to resource requirements that are comparable with those of the ordinary
task (ECETMP >> WCETEP). This approach is viable if WCETT > ECETMP +
WCETEP. This means, the WCET of t is greater than its expected execution plus
the time for a possible emergency procedure.

The behavior of the scheduler as described so far ensures that deadlines of Task-
Pairs are never violated even if there is only a partial knowledge about their
timing. But what happens with TAFT scheduling in overload situations, when
there exists no schedule that can execute all requested tasks in time? As in other
scheduling algorithms here the notion of "importance" (or "value") of a task
comes into play. The scheduler has to guarantee that the executions of tasks are
canceled in the reverse order of their importance. In TAFT scheduling the prob-
ability p (i.e. k/n) in ECETt,p is a parameter that can be used to express the impor-

Real-Time Systems 77

tance of a task. As p raises towards 1, ECETT,p converges towards WCETT. In the
case of overload, scheduled TaskPairs with a value of p close to 1 will still re-
ceive enough guaranteed resources to successfully complete the MP (i.e. to
achieve computational progress), while those with a lower value of p will proba-
bly run into more exceptions, resulting in degraded (or even no) computational
progress.

3.1.5 Related Work
The adaptive, measurement-based scheduling approach of TAFT is related to a
number of different areas in the real-time research, namely analytic WCET-
analysis and its limitations, techniques for measurement-based timing analysis,
other approaches that use online feedback of monitoring data in real-time sys-
tems, adaptive object-oriented systems in general, as well as real-time scheduling
techniques that explicitly address fault-tolerance mechanisms. These areas of
related work are covered in the following subsections.

Analytic Approaches for WCET Analysis

The basic work on WCET-analysis has been published in [Kli86] and [Pus89].
Kligerman and Stoyenko present in [Kli86] a restricted language, Real-Time
Euclid, which was designed to make schedulability analysis possible under a
number of assumptions about the system and process behavior. In [Pus89]
Puschner and Koza propose the Maximum Execution Time (MAXT) concept, i.e.
an extension to standard programming languages, which introduces bounded
loops, exceptions, markers and scopes. Bounded loops are introduced that must
either have a time limit or a limitation on the number of iterations. The basic idea
of both research groups was to determine runtime boundaries of a program at
compile time by avoiding any recursions, function variables, or jumps. If these
conditions are satisfied by the software, the WCET can be calculated for basic
constructs by calculating the execution time for the corresponding underlying
machine instructions. However, this approach is limited by it ability to establish
tight bounds on the execution time of the basic constructs. Exactly this has be-
come hard on modern RISC and also CISC processors. Most of the research that
has been published on WCET analysis for modern processors is focused on just
one architectural feature: program path analysis, instruction caching, data cach-
ing, or pipelining. Combined analysis approaches tend to have either a high
computational complexity or a weakness in some parts of the analysis.

In [Arn94] a technique is described to statically predict which instructions will
be in the instruction cache during program execution. In this approach, called
Static Cache Simulation, instructions are classified as always-hit, always-miss,
first-miss and first-hit, by analyzing the control flow of the program.

For the analysis of data caches in [Bas94] a graph coloring approach similar to
that used for register allocation in compiler construction is suggested. That ap-

78 Providing Timing Guarantees

proach tries to group variables based on temporal locality, i. e. variables that are
accessed within one basic block are clustered in memory so that they fit into one
cache block (spatial locality). Its main goal is to get more confidence on the
estimated number of data cache misses.

[Lim94] presents an approach that addresses two aspects: pipelining and instruc-
tion caching. In that approach, a program statement is associated not only with a
WCET, but with an abstract description of the current status of the pipeline and
the instruction cache: the worst-case timing abstraction (WCTA). A program
path can be analyzed by concatenating and pruning the WCTAs of its basic
blocks.

The prediction of pipeline performance in combination with cache prediction is
discussed in [Nil95] and [Hea94]. In [Nil95] the pipeline behavior is simulated
for a given code segment. It introduces the pipeline simulator compiler, which
uses a description of a processor to generate a program that simulates the execu-
tion of code on this processor. The main shortcoming of this approach is that
cache prediction is weak and it is estimated that it is unlikely that even in an
optimal case, the cache analyzer can predict more than 50% of the actual cache
hits for realistic workloads. In [Hea95] the Static Cache Simulation is combined
with pipeline simulation. However, it does not take into account data caching
and instruction level parallelism.

In [LiM95] the program path analysis is modeled by integer linear programming
(ILP). The instruction cache performance is also integrated in this ILP-model.
Although the program behavior can easily be modeled by ILP, the analysis is
likely to become inefficient for larger applications, since solving an ILP takes
exponential time.

Measurement-Based Approaches for Timing Analysis

The general idea to use monitoring in real-time systems has already been ex-
ploited by other researchers. Haban and Shin [Hab90] used it to generate esti-
mates for off-line scheduling decisions. This early work has been done on proc-
essor architectures that allowed for establishing tight bounds on the WCET by
measuring the execution time of the basic blocks of the program. For more ad-
vanced architectures, methods known from dynamic testing have been studied by
several research groups. An approach that regards the real-time application as a
black box and that uses genetic algorithms to produce a timing estimate is re-
ported to produce good results [Pus98]. However, no guarantee regarding the
safeness of the results can be given, i.e. the results are not necessarily the WCET.

Other work tries to combine analytic and experimental methods. In [Pet99] a
method for measuring the execution time of programs is presented. By analyzing
the control flow graph, a reduced control graph is generated, which limits the
paths to be measured. Using this information the object code of the program is
instrumented and then measured. By measuring all paths the reduced control

Real-Time Systems 79

flow graph indicates, bounds on the WCET are established without getting too
pessimistic estimations. Similar to this approach, in [Lin00] a method for low-
level timing analysis based on measurements of execution times of programs
executing on the actual target architecture is proposed. The basic idea of the
method is to derive a system of linear equations from a limited number of timing
measurements of an instrumented version of the considered program. The solu-
tion to these equations gives the WCET for program fragments, from which the
WCET of the entire program can be derived. However, both approaches produce
safe WCETs only within the limits of their restricted system models, e.g. if the
execution times of paths are input data independent. This is not true for many
processor architectures, e.g. in case of arithmetical division instructions. Fur-
thermore, the second method is not applicable to systems with caches.

In [Mos97] Moser et al. present a method for computing execution times based
on a calculus for probabilistic density functions. These (discrete) functions are
either extracted from a system by measurements or based on assumptions. The
goal is to model the timing behavior of a real-time system by combining the
probabilistic density functions of parts of the system. Statements on the depend-
ability of the system are then based on the probability of a timing fault and not
on fixed upper bounds like WCETs. No attempts are made to make this analysis
available to the scheduler of the system.

All these described techniques do not try to utilize any object-oriented structure
of the program. I.e. they can report on the timing properties of tasks (basically a
piece of code, e.g. a procedure) but not on single instances. Also, all these ap-
proaches are off-line techniques.

Online Feedback of Monitored Data

The next step towards a system that can use monitoring data online to guarantee
timing behavior has been done by Jahanian, Mok et al.. Their work started with
the RTL (Real Time Logic) [Jah86] language for the specification of real-time
system. The semantics of RTL is based on the occurrence of events that result
from the execution of a real-time system (like the start and the end of code
blocks or the assignment of values to status-variables). Timing properties can be
expressed as the relationship between events. They developed algorithms for
checking safety assertions [Jah87] and partial event-traces [Jah90] against RTL-
specifications. In [Cho91] they propose a runtime monitor for the online-
verification of properties of real-time systems. In this monitor, the timing con-
straints are divided into embedded constraints that can be verified immediately at
their occurrence and monitored constraints that need to be verified by a separate
monitor process in the context of the current event trace. The real-time processes
are instrumented to generate the events of interest and also to verify the embed-
ded timing-constraints. The idea of this monitor is to detect possible violations of
predefined safety constraints in the running system as soon as possible. On the
detection of such a violation a signal is raised. This signal might be used to trig-

80 Providing Timing Guarantees

ger some kind of exception handling in the monitored application itself or it may
simply inform a human supervisor about the detected condition. This monitoring
system has been extended by Raju et al. [Raj92] to distributed real-time systems.
Each node of the target system has a monitor that collects event information
generated by the user processes and verifies both embedded and monitored tim-
ing constraints. The monitors have to communicate in order to verify timing
constraints that can only be checked with event-information of more than one
node.

In [Mar91a, Mar91b] Marzullo et al. propose a reactive system named Meta.
With Meta, a distributed system can be instrumented with a sensor and actuator
abstraction that exposes the state of the system for purposes of control. Then, a
control program can be written in an object-oriented modeling language that
interacts with the instrumented system using guarded commands. The focus of
Meta is more on fault-tolerance in general, as it does not address especially tim-
ing issues.

Adaptive Object-Oriented Systems

In [Bih91] Bihari and Schwan presented a model of an adaptive real-time system
(RESAS). RESAS is a complete development and runtime environment that
includes an object-oriented programming model, a representation framework,
and an adaptation control system. The adaptation control system includes a data
management system that stores static (from the compiler) and dynamic data
(from the monitor) about the application’s objects. Adaptations can be performed
by manipulation of object shadows in the data management system, which in
turn triggers the adaptation enactment mechanism. This work on adaptive objects
has been extended in the context of the CHAOS real-time operating system ker-
nel. In [Ghe93] the notion of policies associated with objects that intercept object
invocation to make runtime decisions on invocation and object implementation is
introduced. These policies can accept and interpret runtime attributes. Attributes
expose selected aspects of object and invocation implementations. RESAS and
CHAOS are generic and do not provide a predefined adaptation strategy. Be-
cause of their age, they were closed environments for adaptive real-time pro-
gramming with no interfacing to object-oriented standards like CORBA or
DCOM.

Work on the problem of integrating object-oriented components into real-time
systems has been done in the context of real-time extensions of CORBA and
Java. The obvious approaches aiming to build full CORBA compliant real-time
ORBs, like TAO [Sch97] and the Real-Time CORBA specification [OMG99b,
Sch00], is only a partial solution to the problem. They rely on static scheduling
and they assume a closed real-time environment. The resulting limitations are
becoming increasingly evident. CORBA-based applications tend to access ob-
jects that are outside the real-time domain, like data-bases or internet-based ser-
vices, and these are usually shared among a large group of users and applica-

Real-Time Systems 81

tions. Also they are often long living (That is why they were designed as
CORBA services). In order to interface with these objects, a more adaptive ap-
proach seems to be more adequate, as it doesn’t rely on strict assumptions about
the behavior of these objects.

In the ARTDOM project [Kru98] at MITRE Corporation and the University of
Rhode Island, a real-time trading object service has been developed. The service,
when coupled with a corresponding traditional CORBA service, provides an
adaptive binding service within CORBA. Thus, CORBA clients are bound to
CORBA servers that can best meet their real-time requirements. This represents
a best effort strategy and does not provide any guarantee to the client. In case of
failing to meet the real-time requirements, the client system has no means like
our FT scheduler to cope with that. The determination of the appropriate server
is based on calculating the future requests (load) of the servers in question. The
underlying timing parameters like request arrival times and (worst case) execu-
tion times are assumed to be known a priori.

Working groups dealing with real-time extensions to the Java platform are dis-
cussing approaches similar to the real-time trader [Foo99]. They call it a negoti-
ating component that is able to negotiate with the runtime systems about re-
source requirements. It remains unresolved so far, whether such a component
should be a low-level, integral part of the platform or only a “third-party API“.
The resulting real-time properties will depend very much on the outcome of that
discussion.

Fault-Tolerant Real-Time Scheduling

Liu et al. defined imprecise computation [Liu94], where each task has a required
part and an optional part. The optional part refines the computation performed in
the required part, reducing the computational error. A modified task scheduler
was used to allocate extra CPU capacity for the optional parts in order to reduce
the overall computational error. Tasks have 3 levels: running, running with more
computational error, and not running. Applications do not miss deadlines, and
there is no deadline miss detection or notification. The major difference between
the mandatory part in imprecise computations and the EP in a TaskPair is that an
EP has to be executed if and only if its MP cannot be competed before the dead-
line of the TP, while the mandatory part in an imprecise computation is sched-
uled unconditionally before each optional part.

Lu et al. [LuS99] have developed a feedback driven version of EDF scheduling
that uses a control theoretic approach to dynamically adjust the target CPU utili-
zation based on direct measurements of the missed deadline ratio. Their work
demonstrates the feasibility of this approach and shows that it works well under
dynamic application loads. The feedback-driven EDF approach is limited to a
single soft real-time policy wherein applications miss deadlines under situations
of overload.

82 The Measurement-based Approach

3.2 The Measurement-based Approach
The basic idea of this chapter is to extend the system support for time-awareness
as presented in chapter 2, to an online feedback that allows for guaranteeing
timing properties. With the ideas of soft tasks, ECETs, and TAFT scheduling as
described in the previous subsection, the overall approach can be depicted as an
adaptation loop as shown in Figure 3.3. At a high level, the complete real-time
system consists basically of three interacting entities: the application, the monitor
that observes the application, and the scheduler that controls it.

Real-T ime
Application

Monitoring
Execution Time
Statistics

Events

Notifications

Resource
Allocation

Resource
Requirements

FT-Scheduling

Time-Aware Fault-Tolerant (TAFT) Scheduling

Figure 3.3: The adaptation loop.

The application is typically organized in objects, it is distributed, and it has to
fulfill the specified timing constraints. In order to meet these constraints it has
explicit or implicit resource requirements that are send to the system’s scheduler.
The monitor observes the actual behavior of the application. In order to do this, it
collects events from the executing application. This monitoring is continuous,
online, and also distributed. Internally, the monitor maintains a system model of
the application. With the incoming events it updates state-information about the
application entities (e.g. threads and objects). It provides online information
about the observed timing properties to both, the application (for application-
level adaptation) and the scheduler (for system-level adaptations).

The application receives (possibly asynchronous) notifications from the monitor
as soon as predefined timing conditions are detected to be fulfilled. This kind of
time-awareness allows for direct adaptations of the application. It can be viewed
as a part of the application logic that has been delegated to the system’s infra-
structure as the infrastructure can do the job more efficiently, with less intrusion,
and in a generic way for a huge class of application.

Real-Time Systems 83

The scheduler uses the input about the timing of the application from the monitor
as parameters for optimizing its resource allocation decisions. As depicted in
Figure 3.3 the monitor and the scheduler together can implement TAFT schedul-
ing: the monitor provides an FT-Scheduler with the required execution time
statistics of the ECETs and the scheduler dynamically adapts the guaranteed
execution time of the MPs according to their current behavior, their importance,
and the current overall load situation.

The following subsections will present the details of the measurement-based
approach. Focus is put again on the monitoring component and especially on
applying the concepts to object-oriented systems. Firstly, as already sketched
above, ECET-analysis as source of online timing approximations for the TAFT
scheduler will be described in more detail. Then, an advanced model for the
analysis of the expected termination time will be introduced that allows for sav-
ing resources by a notification of "hopelessly late" MPs.

3.2.1 ECET Analysis in Object-oriented Systems
Up to now, object-orientation, despite its doubtlessly existing advantages for
software engineering, has been regarded mainly as the source of problems in
real-time computing, not as the solution. Due to its feature to hide implementa-
tion (and thus timing) details and its ability to integrate third-party components,
it has aggravated the problem of application code with unknown or completely
unrealistic WCETs. But now, object-orientation can also help to solve these prob-
lems, at least partially. One of its main features, namely the ability to capture
much of a program’s data-dependencies in syntactic categories, will be exploited
to provide better timing estimates that it would not be possible in a purely proce-
dural structure.

System Model

Consider the following system model: the distributed application is modeled as a
10-tuple (C, M, fm, T, O, N, fc, fn, A, fa) with

C is a set of classes,
M is a set of methods,
fm: C → 2M,
T is a discrete time-base (for simplicity the natural numbers),
O is a set of objects,
N is a set on computing nodes,
fc: O → C,
fn: O×T → N ∪ ∅,
A is a set of activities, and
fa: A×T → {O × M} ∪ {}.

84 The Measurement-based Approach

An application consists of a set of classes C with a set of methods M and a set of
objects O. The function fm(c): C → 2M maps a class c ∈ C to the subset of meth-
ods that are members of c. This describes the static structure of the application.
More detailed relationships (inheritance, use-relation, etc.) as required for object-
oriented design are not considered here and they are not needed for the following
considerations.

The dynamic structure of the system is described by the remaining components:
the function fc(o): O → C maps an object o∈O to a class c ∈ C, i.e. it determines
which object belongs to which class. Consequently, fm(fc(o)) denotes the methods
applicable to object o. The function fn(o,t): O×T → N ∪ ∅ describes the location
of object o at time t. If the object has not yet been created at time t or already
destroyed, fn maps to the empty set. Note, that the notation of function fn allows
for the migration of objects, i.e. the mapping of an object to a node may change
over time. The described monitoring system does not yet support this. Instead,
whenever an object is first seen at a node, it is treated as a new object. However,
this is not a severe limitation, as most systems do not support migration and even
if, the timing of a migrated object will probably change, thus new data on its
behavior is required anyway.

Finally, activities in A are described by fa(a,t): A×T → {O × M} ∪ {} that maps
an activity a at time t to a certain method in a certain object. If the activity is not
yet started or already terminated, fa maps to the empty set. Activities are "distrib-
uted threads" as discussed above and they may be periodic or aperiodic. Activi-
ties are considered to behave like a usual execution with a call-stack, i.e. an ac-
tivity a starts at some time t0,a in a top-level method-execution (o0,a,m0,a) and for
each subsequent clock tick it either stays in this method or switches into another
methods following the syntactic rules of nesting and concatenation as depicted in
Figure 3.4.

time

o0.m0

o2.m2

o1.m1

t0,a

fa

Figure 3.4: The stack-like object invocation sequence of an activity

Each change in function fa from one point in time to the subsequent denotes
either the invocation of another method on behalf of the current method or the
return from an invoked method to its caller. "Forking" of activities, i.e. the paral-

Real-Time Systems 85

lel execution of multiple threads of control is not considered. Instead, a new
activity starting in the current object is created if one activity initiates a new
thread of control.

Methods – Entities of Monitoring and Scheduling

The changes of the value of function fa correspond to the events generated by the
different instrumentation techniques for object-oriented systems as described in
chapter 2. Whenever a thread (on behalf of an activity) enters or leaves an ob-
ject’s method, an event is generated. This means, a monitor is able to determine
the timing of every method-invocation and, instead of just presenting this data in
a graphical presentation as discussed before, it can also process this data in order
to provide statistics on their timing.

Also, methods-executions are the natural entities of code for scheduling. Ulti-
mately, the scheduler has to schedule periodic or aperiodic activities, correspond-
ing to the classical notion of tasks in non-object-oriented systems. However, the
code of activities is structured by methods. An activity starts and ends in a top-
level method and in between it is organized by the function fa into a concatenated
and nested sequence of methods. In all considered object-oriented systems,
method-invocations also denote the boundaries of objects and thus possible node
boundaries. If the timing of certain parts of the application is unknown due to
unpredictable network-delays, this is manifested in the timing of those methods
that are called remotely. Also, whenever a heterogeneous object-oriented system
has to invoke a third-party service with unknown timing, this happens at method
boundaries. Therefore, methods are the natural entities that have timing attributes
like execution times or other resource requirements.

The state of objects is accessed and changed by invocations of their methods. If
an object is implemented to provide soft task behavior, this is best encapsulated
in the code of a method. Whatever happens exactly inside a method is invisible
to the caller by the rules of implementation hiding, but it is guaranteed that the
object is in a consistent state after the method invocation has terminated in time.
Therefore, methods are the ideal entities to be organized as TaskPairs.

From the view of an object that invokes another object’s method with unknown
timing-behavior, it is also desirable to encapsulate this invocation in a TaskPair.
Like with a classical timeout it might want to limit the maximum time spend in
the invocation. However, with a surrounding TaskPair it can also specify the
emergency action that is executed in case of the failure of the invocation and it
can put a guaranteed upper bound on the complete transaction. Again, knowl-
edge about the expected timing of the actual invocation will help the scheduler a
lot to ensure computational progress.

Putting this together, an implementation of the adaptation loop as depicted in
Figure 3.3 for object-oriented systems requires a fault-tolerant scheduling of
methods and a monitor that provides timing information on a per-method basis.

86 The Measurement-based Approach

Objects – Capturing Data-Dependencies

Up to now, the main focus of interest has been on methods. The method’s code
belongs to the static structure of a system and one could expect that timing at-
tributes of methods are static as well. However, in general, the timing of a piece
of code does not only depend on the statements to be executed, but also on the
data that the code manipulates. This is obvious if the code contains conditional
branches and loops, but also the timing of straight-line code can be affected by
data-dependencies (e.g. in variable timing of arithmetic instructions or cache
issues). For tight WCET-analysis and also for timing estimations it is important
to to minimize the influence of data-dependencies. Therefore, [Pus89] already
proposed meta-statements that exclude certain input-data for timing analysis. But
as long as procedures can operate on an unknown set of input-parameters, it
remains hard to take data-dependencies into account in a static analysis. How-
ever, in contrast to procedures that are pure static code, methods do explicitly
belong to objects.

An object-oriented environment possesses the desirable property that data de-
pendencies in execution time behavior are partly tied to object instances. This is
true for all data-items that are part of the object's state. It is not true for the re-
maining input-parameters. This means, the ability to tie data-dependent timing
behavior to objects varies with the design of the object-oriented system. If the
main paradigm of the system is data shipping, it will be less promising than if it
were function shipping. However, in a distributed environment, where commu-
nication costs are still a dominate factor, object state tends to be bigger and func-
tion-shipping can be expected to be the first choice.

Since an object is an entity of data and code, variances caused by data-
dependencies can be captured by monitoring and analyzing the timing character-
istics of each object separately. Objects of the same class, e.g. a class "List", may
expose completely different timing behavior depending on their internal status
(e.g. list length) and the environment (e.g. communication costs). Thus, monitor-
ing at the class level only, as would be the possible approach in a non-object-
oriented environment, would encounter variances that automatically disappear
when object specific monitoring is applied. Thus, object-orientation helps to
achieve more accurate timing estimates for methods as it allows to monitor them
also on a per-object basis.

3.2.2 Maintaining Timing Statistics for ECET Analysis
In order to provide the FT-scheduler of the TAFT system with reasonable timing
estimations, for each pair (o, m) the ECET(o,m),k,n has to be available, i.e. the
minimal execution time that was needed to successfully complete at least k out of
the last n executions of method m in the context of o (independent of the activity
that actually executed m). From continuous monitoring, the start- and the end-
events of the method (o, m) are available and by simply computing the difference

Real-Time Systems 87

between their time-stamps, the overall execution time (including all blocking
times) can be computed easily. Blocking times can be eliminated by additionally
taking thread-switch events into account as described below.

In the simplest case one could assume executions times as being normally dis-
tributed and compute the ECET from the constantly updated average and vari-
ance for a desired execution completion rate k/n. While this approach requires
only a minimum of additional state per pair (o, m), it will fail for most realistic
execution-time distributions. As stated in [Mos97] also other well-analyzed dis-
tributions, like e.g. negative exponential distribution, tend to be a bad approxi-
mation for the real behavior of code.

Therefore, a more realistic approach is to maintain an efficient discrete represen-
tation of the measured distribution, as depicted in Figure 3.5. It holds the execu-
tion time density for the n most recent executions of a method m of object o. The
maximum seen execution time maxt(o, m) is divided into l equally sized slots. A
slot i, with 0 ≤ i < l represents the number of executions that had a duration in the
time interval]i * maxt(o, m)/l, (i+1) * maxt(o, m)/l]. Whenever a new monitored
execution time comes in, it is added to the slot that represents its execution time.
In turn, the value that had been added n events ago is removed from the represen-
tation.

The ECET(o,m),k,n is then determined as the time, which k of those execution times
lay within. It is computed by summing up the number of executions starting from
slot 0 upwards until k is reached and taking the upper time limit of this slot:

l

mo
iECET t

nkmo

),(max
)1(,),,(∗+≤ with ()∑

=
≥

i

x
kxslot

0

This is basically again the integration in order to get from the density function to
the distribution. The density has been chosen as primary representation as it
allows for a more efficient online update when events with new timing data have
to be integrated As the number of slots l is constant, the computation of ECETs
can still be done in O(1) time.

88 The Measurement-based Approach
N

u
m

b
er

 o
f

E
xe

cu
ti

o
n

s

sums up to k

sums up to n-k

Execution Time

Figure 3.5: ECET evaluation with a discrete representation of the distribution

While this kind of statistics is easy to maintain and to evaluate, it has a major
drawback with respect to space complexity. By construction the size of the data-
structure is in O(|O| |M|). This means the size of the data scales linear with the
number of (monitored) objects, i.e. the size of the application. If however, it also
has to maintain an event-history (basically a queue) of length n per object and
method (in order to remove the outdated events) the scaling factor becomes
rather large. Figure 3.6 shows an example where a new event with execution
time of 4 comes in and is queued, while the oldest event with execution time 6 is
removed from the history and subtracted from the density representation. A his-
tory of length 100 or even 1000 will probably be no exception, which means that
monitoring data might have a bigger memory footprint than the monitored appli-
cation itself, a clearly undesirable effect.

subtracted (1)

added (1)

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

After event e After event e+1

Event e+1
with time 4

64
6

Figure 3.6: The event-history representation of the n most recent execution
times

Real-Time Systems 89

Therefore, currently a negative exponential fade-out algorithm is used to reduce
the effect of old events. It approximates the density of the last n executions by
subtracting one nth of each slot’s value before the value of a new event is added.
This equals a multiplication with (n-1)/n. Figure 3.7 depicts the same example as
in Figure 3.6, but this time with the exponential fade-out algorithm. The state of
the required data structure consists only of the slot values, which is more accept-
able than the full history as it is in most cases at least smaller than the observed
object itself. While the negative exponential character of this algorithm never
leads to a zero slot-value, there is a threshold. If the value of a slot drops below
this threshold, it is set to zero. This is important in order to allow for an adaptive
re-scaling of the slot-sizes as described below.

subtracted (value / n)

added (1)

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

After event e After event e+1

Event e+1
with time 4

Figure 3.7: The negative exponential fade-out algorithm.

If for a method (o,m) no events have been collected so far, the ECET(o,m),k,n can-
not be computed using the algorithm described above. In order to initialize new
methods with reasonable timing defaults, an additional record on (fc(o), m) is
maintained. It holds the execution time density of m in the context of the class c
of o. It is updated each time an event of method (o’,m) with fc(o’) = c is observed.
This per-class statistics refers to the static part of the application's structure,
while the per-object statistics reflects the behavior of the dynamic entities. How-
ever, both statistics are updated online and may change over time.

As the overall maximum execution time of a method (o, m), the WCET(o,m), is
still unknown, it might happen that an event comes in reporting on a new execu-
tion time that larger t’ than the current maxt(o, m). In this case the density repre-
sentation has to be re-scaled. This can happen either by setting maxt(o, m) to t’ or
by simply doubling the current maxt(o, m) until it is larger than t’ (see Figure
3.8). In both cases the slot sizes have to be adapted accordingly and the current
values of the slots have to be distributed proportionally among the new slots
covering the same ranges. The first solution has the advantage that it provides a
maximum resolution with the fixed number of slots (its slots cover only the
range of actually seen execution times). The latter has the advantage that it
causes probably less future re-scaling actions, as it doubles the range each time.

90 The Measurement-based Approach

Re-scaling in the other direction becomes necessary if the density function shifts
to the left, i.e. the monitored execution times are becoming shorter.

 1 2 3 4 5 6 7 8

After event e

After event e+1

Event e+1
with time 14

 2 4 6 8 10 12 14 16

Re-scaled

Figure 3.8: Adaptive re-scaling of the density representation

ECETs and the presented data structures so far refer to "successful" completions
of a method (o, m). When scheduled with the FT-Scheduler this means a normal
termination of the MP. Sometimes reasonable new ECET values cannot be pro-
vided because all of the recent executions of the MP of (o, m) have been inter-
rupted by EPs. This typically happens, when the last computed ECET value is
for some reason suddenly by far to small for the next required computation of the
same (o, m). In this case, another heuristic is required. The proposed approach is
to exponentially increase the formerly computed ECET (by a factor of 2) when
the k most recent executions have failed in order to find quickly a feasible upper
bound that can be refined by subsequent monitoring. The same heuristic is ap-
plied initially on the first occurrence of an event reporting on a new method,
when there is even no default value from the per-class statistics available to ini-
tialize the timing data.

Just to clarify, it should be recalled that despite all approximations and heuris-
tics, the job of the ECET computation is to provide reasonable estimations in
order to allow for an effective scheduling and to enable computational progress
in the long run. Safety and timeliness are still guaranteed by the scheduler and do
not rely on the value of the ECETs.

Considering Blocking Times

Accounting the timing of methods simply from the execution of the first state-
ment until the termination leads to a measurement that includes all blocking
times, regardless whether this blocking is caused by preemption or by synchroni-
zation conditions. As a result, the calculated timing predictions would also report
on this overall execution time. For the purpose of predicting the timing of remote

Real-Time Systems 91

services (that are not under the control of the system’s scheduler) this is the ap-
propriate measure: the real-time system is not really interested in the internal
reasons for the observed timing. It needs the overall time until completion for
choosing proper timeout values.

Things are different if timing prediction for methods of local objects is consid-
ered. Here, the scheduler is interested in the pure CPU-time (as the definition of
ECETs requires) as it is used as planning base for assigning CPU-resources to
the executing activity. Still, the overall execution time including the blocking
time is helpful as it provides a hint whether a method has a chance to meet its
deadline even facing non-trivial synchronization conditions (see also the next
section). Resulting from this, the Expected Case Runtime (ECRT) can be defined
as:

=:, ptECRT The overall time (including all blocking time) that is needed by

task instance t in order get a probability of p that t is completed.

From the view of statistic evaluation the same mechanisms and data-structure as
described above for the ECETs can be applied to ECRTs in order to provide
predictions based on the recent behavior of the task. Also, the monitoring sys-
tems from chapter 2 can support both, ECETs and ECRTs. The overall timing
information required for ECRTs is provided by the middleware- and language-
level instrumentation. It reports on the start and the end of method executions.
For determining the pure CPU-time, the instrumentation at operating-system-
level is required. Using the information from the events reporting on thread-
switches and interrupts, the actual CPU-time spend on a single thread can be
calculated easily. MagicZoom as described in subsection 2.5 records and visual-
izes exactly this information.

For the purpose of ECET-analysis the sensor-code can be simplified: instead of
recording each thread-switch in the event-trace and reporting it to the monitoring
console, it can account for the CPU-usage of a thread directly at kernel level, like
e.g. the getrusage() system-call does for Unix processes. A virtual clock per
thread is maintained and this clock is used for an additional time-stamp of the
method-start and method-end events. Again, it turns out that for a successful
monitoring of real-time systems an observation at all architectural levels is re-
quired.

3.2.3 Early Detection of Timing Faults
Up to now, ECETs have been considered as input for the scheduler before it
generates the schedule. Given that the prediction of ECETs works well, i.e. the
approximation of the probabilistic value by the statistics over the recent n execu-
tions leads to correct results, this enables the system to create efficient and re-
source-saving schedules. However, by the definition of ECET(o, m),p, there is the
probability of 1-p that the execution takes longer than ECET(o, m),p suggests. In all

92 The Measurement-based Approach

these cases even a guaranteed execution time for the MP can lead to an abort of
the MP and an exception handling by the EP. Although this is not a safety prob-
lem, due to the guaranteed timely execution of the ET, it would be a waste of
resources. The CPU-time spend on the MT is lost and has not lead to any compu-
tational progress. While this is the price to pay for the use of estimations instead
of hard bounds, there might be the chance of avoiding unnecessary waste of
cycles.

This is especially an issue when the considered methods themselves condition-
ally invoke further objects. Consider a case where an object’s method exhibits a
timing distribution as depicted in Figure 3.9. Depending on the input parameters
or the internal state it sometimes invokes an external object, in most cases it does
not. This behavior leads to a timing distribution with at least two peaks that may
be separated by a large time interval (consider the difference of a local computa-
tion and an external call, e.g. to update a database). If now the ECET of the top-
level method is requested by the scheduler, the result might be (as in Figure 3.9)
that second (small) peak is completely cut off. This happens because only a very
small percentage of executions exhibits this extreme timing behavior.

N
u

m
b

er
 o

f
E

xe
cu

ti
o

n
s

Execution Time

ECET(o,m),p

Figure 3.9: A Timing density with high variance caused by data-dependent
branching

When looking at the code of the method, it might be easy to identify the code
that is responsible for this behavior. Typically, it is data-dependant branching.
Moreover the branch, which takes significantly longer, often invokes some other
methods (possibly on remote nodes). How can this behavior be captured by
ECET monitoring?

The idea is to re-calculate estimates of the remaining execution time based on the
state reached so far. If the calculated remaining execution time exceeds the re-
minder of the originally calculated ECET, the current execution is probably an

Real-Time Systems 93

instance where the ECET was too small. Since this can now be detected before
the actual end of the original ECET is reached, possible EP-aborts are detected
early. As soon as the system detects that the activity will probably violate the
overall deadline, the calling object is informed and, depending on the new esti-
mate, it may decide whether to abort the call or still to wait for its results.

In order to discuss this simple early detection mechanism in more detail, the
concept of the Expected Case Termination Time (ECTT) is introduced. The
ECTT uses the concept of ECETs to predict when an execution will probably
terminate. As depicted in Figure 3.10, the ECTT of a method (o, m) is defined to
be ECET(o, m),p + t0,(o,m), i.e. the starting time of a methods plus its ECET. This
results in the absolute time when method (o, m) is expected to terminate.

Time

o0.m0

o2.m2

o1.m1

ECET(o0.m0)

ECET(o1.m1)

t0,o0.m0

ECET(o2.m2)

t0,o1.m1

t0,o2.m2 ECTT(o2.m2) ECTT(o0.m0)

Figure 3.10: The concept of the ECTT

However, the ECET of a method changes slowly and during the execution it is
constant. Therefore, the notion of an ECTT alone does not reveal any new in-
sights that can help in detecting extreme timing behavior of a method. Here
again, object-orientation can be of great help: assume only the timing distribu-
tion of individual methods is available, regardless of the method internals, e.g.
nested method calls. By this, each nesting level has its own ECTT, i.e. each cur-
rently invoked method in an activity can be viewed independently. Each time a
new nesting level is reached, i.e. a method is invoked, the monitor can concur-
rently check the compliance of the new ECTT of this nesting level with the guar-
anteed execution time of the complete activity. This can be done in two different
ways.

In the simplest solution, the ECTT(o, m),p of each nesting level is computed at the
time of the entry in this method and checked against the guaranteed execution
time of the activity (or directly the deadline, if ECRTs are considered). If it is
greater, the ECET prediction at least at this level has serious doubts that the
ECET for level zero was enough. This kind of probable timing fault detection
can capture at least the case discussed above, where a data-dependency leads into
a branch with a longer-lasting remote invocation. As shown in Figure 3.11 for
method o2.m2, the monitor will detect the contradiction in ECTTs at level 0 and 2
as soon as it gets aware of the invocation of o2.m2. The current ECTT for o2.m2 is
later than that of o0,m0. While the first fits into the deadline, the second does not.

94 The Measurement-based Approach

Now, the activity might be informed about the possible problem of wasting re-
sources. One major drawback of the described technique is that it only detects
problems that become evident in the execution time of one method (the one that
finally exceeds the available time). At most the duration of this one method can
be saved, when a MP is aborted before it has finally exceeded its quantum. This
does not help a lot when several consecutive, comparably small methods exceed
their predicted ECETs.

Time

o1.m1.start

o0.m0.start o2.m2.start

Events

ECET(o0.m0)
Deadline

ECET(o2.m2)

o0.m0

o2.m2

o1.m1

ECTT(o0.m0)

ECTT(o2.m2)

Figure 3.11: Detection of probable timing faults using ECTTs

An extension to the method sketched above that addresses this case is shown in
Figure 3.12����������	
�������	���� T) between the ECTT and actual termina-
tion time for each nesting level is computed. The detection algorithm sums up
these deltas along the execution of one nesting level, i.e. the deltas of subsequent
invocations in one nesting level are added. This means, the time gained and extra
time spent in methods are summed up. Each time a method terminates, the result
is added to the ECTT of all methods in the current nesting hierarchy. If one ex-
ceeds the overall execution time, a violation is predicted. In Figure 3.12 at the
end of o2.m2 one might want to raise an exception as the top-level ECET of
(o0.m0) plus the extra time consumed by o2.m2 is greater the overall deadline.

The problem with these two models is that they assume that method executions
are independent from each other. In particular, they do not account for the fact
that different execution paths might or might not be reachable from the current
state. It is very difficult to calculate the reliability of the decisions resulting from
the application of the used heuristics. It can be concluded the existence of multi-
ple alternative completion paths for one activity at any point in the control flow
graph is counterproductive for the simple model. It has to be emphasized that
objects with statistically independent execution times of all method segments are
quickly analyzed using this model. An approach that models the different execu-
tion paths in more detail using a Markov-model is proposed in [Ger97a]. How-
ever, this approach relies on a considerably larger monitor state for each ob-
served method and it requires the observation of additional events reporting on
branch decisions. While a tool as mc4p can produce these events, the computa-

Real-Time Systems 95

tional effort in the monitor is not justified by the CPU-cycles that can be gained
by early detection of possible timing errors.

Time

Current Time

Deadline

ECET(o0.m0)

�T

�To0.m0

o2.m2

o1.m1

o1.m1.start

o0.m0.start o2.m2.start

Events

o2.m2.end

ECET(o2.m2)

Figure 3.12: Detection of a probable timing fault with time-deltas

3.2.4 Adapting Granularity
Despite all considerations that try to minimize the space and time complexity of
the ECET prediction, it is still a considerably amount of processing power and
memory required to implement the algorithms presented in this subsection. De-
pending on the size of the monitored object, the amount of resources spend on
the monitoring representation might become bigger than the requirements of the
original object. This is a clearly undesirable state that has to be avoided.

A key in achieving a balance between the supporting monitoring system and the
system under test is the use of the right granularity of the monitoring. The granu-
larity can be adjusted with parameters at various levels.

1. Class level: As discussed in subsection 2.3.1 not necessarily all classes and
thus all objects have to contain the same sensor code. Small-size objects, like
e.g. arithmetic types, or all kinds of private helper-objects that do not reveal
their interfaces to external classes, are good candidates for being skipped in
the instrumentation process. Their execution time will than be added to the
objects that use these classes. Typically, scheduling support is only required
for objects that are about as big (in terms of execution time) as schedulable
entities. For current systems this means in the order of milliseconds to hun-
dreds of microseconds.

2. Object level: Even if the code of a class contains the instrumentation code,
not all objects of this class might be of interest. If only a small number of the
objects is involved in time-critical activities, it reduces the amount for re-
quired monitoring resources, if only these objects contribute to the load on
the monitoring system. Objects might also be out of the scope of the time-
awareness component if they belong to hard or essential tasks. In this case

96 The Implementation Architecture

additional information on their timing might be interesting, but it cannot con-
tribute to an improvement of the systems runtime behavior. Their schedule is
determined by static WCETs.

3. Method level: The same that applies to classes is true for methods as well:
not all of them are necessarily interesting for being monitored. Only the ex-
ternal and scheduling-relevant methods need timing estimations. The others
can be accounted for the invoking methods. Sometimes it might be also an
option not to distinguish between the different methods of an object. If e.g. an
object is actually a wrapper for a remote invocation of a small (in terms of
execution time) object on another node, it is not the actual execution time of
a single method that the scheduler is interested in, but the overall time of the
RPC that is dominated by the communication overhead. In this case the
ECRT (that includes waiting for the return of the RPC) of all methods of this
object can be accumulated and analyzed in one density function.

4. Analysis level: Depending on the required accuracy and perhaps on the qual-
ity of previous ECET predictions, the type and the granularity of the statistics
used for analysis can differ. For a first approximation a simple normal distri-
bution with mean and variance may be enough. Only if it turns out that the
variance becomes to high, a switch to a discrete density representation is ini-
tiated. Within the discrete density representation the number of slots is an
important factor that scales resource consumption versus accuracy.

While the first mainly influence the amount of generated events, the last has
impact on the event-processing component. The number of events is controlled
by static and dynamic filters applied during instrumentation and event genera-
tion. The required mechanisms have been described in chapter 2. The design of
the components that allow for an effective and flexible processing and analysis
of these events is described in the following subsection.

3.3 The Implementation Architecture
This subsection describes a system-architecture that implements the measure-
ment-based approach for real-time system and it describes the components and
their tasks. The complete system is depicted in Figure 3.13. It is divided into the
user-provided real-time application and the runtime system.

The application consists of the user-written code implementing the application
objects plus the complete environment that is required to execute these objects.
The application has to fulfill the end-to-end real-time requirements. Considering
e.g. an embedded real-time application that has to interact with external CORBA
services, the application consists of the user-written code of the embedded appli-
cation, the CORBA objects implementation, (preferably coded in an object-
oriented language) the CORBA-stubs (generated from the IDL), the object-
adapter, the ORB itself, and the operating system that hosts these components.

Real-Time Systems 97

This complete system is augmented with the sensors of the monitoring system.
These sensors report on events from all architectural levels and forward them to
the local runtime system.

Application
Objects

Sensors

O-O Monitor

Events

 FT-Scheduler

 O-O Online Statistics

Query Interface

Updates

Object-Specific
Timing Info

Schedule

Real-Time
Application Runtime System

Runtime Object
Database

 Activity Manager
Thread->Activity
Mapping

Figure 3.13: The components of the implementation architecture

The runtime system contains all components that are required beyond the stan-
dard real-time operating system functionality to close the feedback loop of the
adaptive system and to implement the TAFT-Scheduler. It consists of the moni-
tor and the scheduler. The internals of the scheduler are beyond the scope of this
thesis and are explained in [Str95, Net97c]. The monitor uses the same basic
mechanisms for instrumentation, for detecting, time-stamping, storing, and re-
trieving events as the monitors described in chapter 2. However, each local in-
stance now contains additional components.

• The Runtime Object Database (RODB) manages the storage of the required
per-object status.

• The Online Statistics component performs the computations described in the
previous subsections for determining the ECETs of methods.

• The Query Interface provides an object-oriented and properly synchronized
access for local and remote schedulers to the Online Statistics.

• The Activity Manager traces activities and provides this abstraction for
those application environments that do not support it by default.

The architecture is generic in the sense that it does not rely on a specific object
implementation for the real-time application side. The interaction between these
two blocks happens only via events (that report about the application’s timing) in
one direction and via resource assignment and notifications (that actually influ-
ence the applications behavior) in the other direction. Principally, any object-
oriented application can be made adaptive by this architecture as long as is can
be augmented with the required event-generating sensors and provides computa-

98 The Implementation Architecture

tional entities that can be scheduled by the TAFT-Scheduler. In the following
subsections, the distinct components of the monitor will be discussed in more
detail.

3.3.1 Runtime Object Database
The Runtime Object Database (RODB) is responsible for organizing and storing
the information gathered about the objects of the real-time application. It inter-
faces to the remaining components of the architecture through the event buffer
and the Query Interface. The RODB server-processes also execute the code of
the Online Statistics components. While the RODB is an object-oriented data-
base, it was a design decision, not to implement it using a generic OODB system.
This is mainly because of two reasons:

1. The main features offered by an OODB system are not in the focus of interest
in this implementation: neither persistence nor concurrency management are
required in the first place. Thus, any performance or memory penalty im-
posed by an OODB system is clearly unnecessary overhead.

2. The structure of the RODB is quite regular and the search pattern is always
the same. Therefore, there is no indication, that an OODB system can achieve
a better performance for the most critical activity, namely event processing.

The RODB is currently implemented in C++ and can be run on Sun Solaris,
Linux, and, by encapsulation of the thread and shared memory APIs, also on
Windows NT.

The RODB is distributed in a sense that each node holds the current monitoring
data obtained from the application objects it is hosting. The main data-flow is
generated by the events and the queries of the local scheduler. Therefore, any
other partitioning of functionality or data would tremendously increase the
amount of data to be shipped over the network. This would be a clearly undesir-
able effect, as communication is still a bottleneck in a distributed system.

In order to maintain the per-object timing information, the RODB uses the events
from the real-time application to keep track of the dynamically evolving object-
space. From the static program analysis the RODB knows about the class-
structure. Static program analysis for language-level objects is done by the (pre-)
compiler. The required information which classes generate which events are
available via the mc4p name-server. For middleware-objects the IDL-compiler
typically extracts the static class information and stores it in a database that is
accessible for application processes. In CORBA this is the Class Repository and
DCOM puts this information in the system’s “Registry” database. With this
knowledge, the RODB interprets the event-stream and constructs a model of the
current object-space of the application. In a way the RODB mirrors the knowl-
edge that is also held in the application's internal data-structures.

Real-Time Systems 99

Data-Structures

According to the static and dynamic structure of object-oriented programs the
RODB is organized in two separate parts (see Figure 3.14). The dynamic part is
supposed to reflect the application objects. The second part accumulates all run-
time-data according to the objects’ class membership. It is called the static part.
This part does not only recollect the currently running application’s object be-
havior from the classes-view, but it is also supposed to accumulate the classes
behavior over multiple runs of the target application. The class-part of the RODB
can be made persistent by writing it to a file before shutting down the service.
This makes sense, as class-behavior is usually not dependent on the current in-
stance of the system but reflects a general property of the code. As object-
oriented code usually changes only slowly over time, the static part of the RODB
can even persist minor code changes due to bug fixes or further development. It
is the decision of the user when to reset the stored class information in the
RODB.

Object Part

Class Part Event

Class ID

Object ID

Method ID

Method ID

Event

Figure 3.14: Data-Structures of the RODB

Both parts of the RODB are internally structured in a similar manner. They are
optimized for a two level search (plus a root at level zero). The first level is in-
dexing the objects (respectively classes) and the second is matching the methods.
Both levels are internally organized as balanced search-trees (see Figure 3.14).
Thus, each node at level two represents one method of the system, either re-
garded as a piece of code in the static part, or in the dynamic part as element of
an activity when executing in an object. The node at the first level represents
objects and classes of the monitored system. Each object node in the dynamic
part also contains a link to the corresponding class node in the static part.

100 The Implementation Architecture

Each node at level zero (root), one, or two can hold evaluators. An evaluator is
basically an event-consuming entity. More concrete, it is an object of any sub-
class of the abstract base-class TstatEval (see Figure 3.16). Each node can con-
tain an arbitrary number of (different) evaluators. The types of evaluators to be
maintained for a given node are determined by the father node at the next higher
level. They are inherited at the moment of the node creation. In addition, evalua-
tors can be added and removed dynamically.

Event Processing

Whenever a new event reporting on method (o,m) comes in, it is the job of the
RODB to route it to the evaluators that need to know about it. These are the
evaluators for object o, for method m of object o, for class fc(o), and for method
m of class fc(o). The routing of events is done by searching in the balanced tree
data-structures according to the class, object, and method identifiers. Each
evaluator receives a copy of the event. While class- and object-level evaluators
do not distinguish the different methods (as this is done as the next level), these
evaluators might still be useful. They receive events of all methods of an object/a
class. Whenever a search leads to an empty result, i.e. a class, an object, or a
method has generated an event for the first time, a new node is created and ini-
tialized with cloned instances of the evaluators of the next higher level. Thus, the
evaluator set of a higher-level node serves as template for the creation of new
nodes. In the simplest case, the evaluator types of all nodes are equal to those of
the root.

The complexity of this search process grows with O(log n), n being the number
of different object-contexts, due to the tree-algorithm it uses (given that the
number of classes and methods is constant in a running system).

Execution Model

The RODB is implemented in a separate user-level server process. It replaces the
External Server component in the JewelNT and MagicZoom design. It takes over
its functionality of extracting the events from the local event buffer. Figure 3.15
depicts the structure of the RODB server process. Two threads are executing in
the server. All interfacing is done via shared memory interfaces in order to avoid
additional synchronization operations and to minimize the overhead of interproc-
ess communication.

The Update Thread is responsible for the actual event processing. It collects the
events from the event queue in the share buffer, performs the search operation in
the RODB tree structures, and processes the evaluator code in both parts of the
RODB and at the both levels. The Query Thread waits for requests from the local
scheduler or the external process that serves requests from other nodes.

Real-Time Systems 101

RODBUpdate
Thread

Query
Thread

Event
Queue

Query
Queue

Reply
Queues

Shared Memory Interface

Application
Processes

Scheduler

Server for
Remote Clients

Object Part

Class Part EventEvent

Class ID

Object ID

Method ID

Method ID

EventEvent

Figure 3.15:Internal structure of the RODB server process

Event and query processing consumes cycles and storing the required informa-
tion in the RODB requires additional memory capacity. As these resources are
usually critical in a real-time system, it is design-goal of the overall system to
minimize this resource-consumption and to use non-critical resources (e.g. CPU
idle-cycles) whenever possible. As the update of the RODB is not highly time-
critical in itself, it can be done asynchronously, e.g. after a monitored activity has
terminated the top-level method. The only requirement is, that the database is
“reasonably“ up-to-date to avoid providing completely out-dated performance
figures to the other components.

3.3.2 Online Statistics
The RODB provides the infrastructure for mapping events to classes, objects,
and methods. It is completely generic concerning the concrete algorithms used
inside the evaluators. Evaluators are consuming events, they are responsible for
accumulating any required state, and they finally provide the results of a statisti-
cal analysis when requested via the Query Interface. Any evaluator in the RODB
is an implementation of the abstract base class TStatEval, which provides the
necessary recording- and reading-interface to represent its actual statistical
evaluation functionality and to report a class-specific set of statistical data. Dif-
ferent evaluators can be linked in a chain. Thus, the system can homogeneously
handle different types of evaluators in a common way.

template <class t_SampleValue> class TStatEval
// Abstract base-class for evaluators.
{

102 The Implementation Architecture

 public:

 virtual int Record (const t_SampleValue &NewET) = 0;
 // Records new ET to statistical evaluation.
 // Return value reflects if execution was successful.

 virtual int GetEvaluation (TStatResult &EvalResult) = 0;
 // Updates ’EvalResult’ according to the current
 // statistical evaluation data.
 // Return value reflects if execution was successful.
 // (Implementation of elaborated class should be such it can
 // fill on object of the corresponding elaboration
 // of ’TStatResult’.)

 virtual void Reset () = 0;
 // Resets statistics (as if newly constructed).
 // (Does not affect if object is enabled or disabled.)

 virtual void Disable () = 0;
 // Advises statistical evaluation object to ignore
 // incoming samples.

 virtual void Enable () = 0;
 // Advises statistical evaluation object to process
 // incoming samples.

 virtual int Save (ostream &SaveStream);
 // Saves evaluation data to ’SaveStream’.
 // Return value reflects if execution was successful.

 virtual int Load (istream &LoadStream);
 // Loads evaluation data from ’LoadStream’.
 // Return value reflects if execution was successful.

 virtual t_SE_ErrorCode CheckError () const = 0;
 // Returns code of last error that occurred since last call of
 // ’ClearErrorStatus()’ (or since creation).

 virtual void ClearError () = 0;
 // Reset internally stored error information to a state
 // as if no error had occurred.

 virtual t_StatType GetEvalType () const = 0;
 // Returns type of statistical evaluation.
 // (Has to match corresponding
 // ’TStatResult’-elaboration’s ’GetEvalType()’.)

 virtual TStatEval *MakeNew () const = 0;
 // Returns pointer to a newly created object instance
 // of the elaborated statistical evaluation class.
 // (NULL, if allocation failed.

 virtual ~TStatEval () {};
 // Destroys statistical evaluation object.
};

Figure 3.16: Abstract base-class for evaluators

Real-Time Systems 103

The most important methods of the TstatEval class, shown in Figure 3.16, are
Record() and GetEvaluation(). The fist is used to insert an event into
the evaluator. Note, that the class is parameterized by t_SampleValue – that is the
type of the inserted event. This allows for adapting the RODB and the evaluator
to new event-formats containing additional or even completely different informa-
tion. The only constant information that has to remain in an event data record are
event identifiers that can be mapped to class and method identifiers and the ob-
ject identifier. Otherwise routing in the RODB becomes impossible.

The second method, GetEvaluation(), is used for extracting analysis results
from an evaluator. It operates on an object of the TStatResult base-class, which
will be described in the next subsection. Depending on the actual sub-type of the
evaluator, the sub-type of the result object may differ. The correct type can be
determined at runtime using GetEvalType() that returns a matching type
identifier.

The remaining methods are specifying the API for creating and retrieving a per-
sistent image of an evaluator, for error handling, for enabling and disabling the
event consumption (useful for objects that just serve as templates in level zero or
one of the RODB and do no processing themselves), and the method Mak-
eNew() that clones new instances of the current object.

In order to provide ECETs as described in subsection 3.2.1, three different evalu-
ators have been implemented, one that assumes a normal distribution with mean
and variance and two that use the discrete density representation, one with the
full history of the recent n events and one with the negative exponential fade-out
algorithm. Performance figures for these evaluators will be given in subsection
3.4.

3.3.3 Query Interface
In order to make use of the progressing analysis, queries have to be sent to the
Online Statistics components, the evaluators, in the RODB. Every querying ap-
plication is a client of the server; this can be any application, like a dedicated
scheduler, or even the monitored application itself. In the latter case the online
monitoring infrastructure acts again as a tool for providing time-awareness, or in
other words it can be seen as an extension to the object-oriented language that
adds a new dimension of reflection, namely ”performance reflection”.

To query the server, a query request is put into a local shared memory buffer for
the server, similar to the event-recording interface. The results of a query in turn
are also passed to the client via shared memory. However, while for queries the
server maintains one buffer, which collects the requests of all clients, for receiv-
ing the results the client opens an individual shared memory buffer, referred to as
response channel here. Results in a response channel will always appear in the
same order as the requests have been posted. In querying, apart from the re-

104 The Implementation Architecture

quested context, which specifies the object instance and method, the type of
evaluator to be queried has to be specified by the client. To select the requested
evaluator type, simply an arbitrary instance of the desired class has to be speci-
fied. In addition, the request can contain arguments to the evaluator, which influ-
ence as parameters the computation of the result.

In Figure 3.17 the declaration of the TstatResult class, the base-class for all
evaluator results is given. It provides method-templates for accessing the opaque
data-structure (that is actually transferred from the RODB server via shared
memory and/or the network interface), for printing the data in a human-readable
format, for determining the type (in order to match it with the evaluator), and
two methods to access the validity of the contained result.

class TStatResult
// Abstract base-class for results of ’TStatEval’ objects.
{
public:

 virtual void MakeInvalid () = 0;
 // Marks result as being invalid (internally).

 virtual int CheckValidity () const = 0;
 // Returns if result object is containing valid data.

 virtual int TextCopy (char * const StringBuffer,

const size_t BufferSize,
const char * const IndentStr = NULL) const = 0;

 // Copies string containing a textual representation of the
 // result into ’StringBuffer’ (for human-readable output).

 virtual t_StatType GetEvalType () const = 0;
 // Returns type of evaluation result.
 // (Has to match corresponding ’TStatEval’-elaboration’s
 // ’GetEvalType()’.)

 virtual void *DeliverData () = 0;
 // Returns pointer to internal data structure.

 virtual unsigned long GetDataSize () const = 0;
 // Returns size of internal data structure.

 virtual ~TStatResult () {};
 // Destroys result object.

};

Figure 3.17: Abstract base-class for results

The details of the query API of the RODB are sketched in terms of a short code
sample (see Figure 3.18). In the example the ECET(o,m),k,n is requested from an
exponential fade-out evaluator. The parameters o and m are set by the requesting
program as well as the ratio k/n (in the example 95%). As n is a parameter of the
evaluator itself, the required k is determined during the query. After sending the

Real-Time Systems 105

query, the result is received from the corresponding response channel. The Re-
ceiveEvalResult() method waits until the result is present in the channel
or the timeout expires. A timeout value of -1 means immediate return, so it can
be used for non-blocking requests, where the result can be collected later from
the return channel.

#include "RODB_cl.hh"
 ...
 t_RODB_Client RODB_Client;
 t_ResponseChannel BackChannel;
 TFadingDist EvalXY;
 // the ’exponential fade-out’ evaluator

 TFadingResult ResultECET;
 // the corresponding result object

 t_ObjectID ObjectID = o;
 // some object of an instrumented class
 t_MethodID MethodID = m;
 // the ID of the requested method
 ...

 RODB_Client.OpenResponseChannel(BackChannel);

 ResultECET.SetSamplePercentage(95);

 // the request’s result will report on
 // ECET(o, m, 95)
 // the ECET which is equal or greater
 // than at least 95% of the recorded samples

 RODB_Client.RequestEvaluation(
 ResultECET, ObjectID,
 MethodID, ResponseChannel));

 if (RODB_Client.ReceiveEvalResult(ResultXY,
 ResponseChannel,Timeout)) {
 ExpectedTiming = ResultECET.Prediction
 // Now we can use the ECET
 ...
 }
}

Figure 3.18: Example of an RODB query

3.3.4 Activity Manager
The second component that receives event data from the Event-Processing com-
ponent is the Activity Manager. The Activity Manager is synchronously invoked
when new events are detected that potentially report on a new mapping of activi-
ties to threads (i.e. invocation/return events from the middleware layer).

Even simple tracing of activities in a distributed o-o system is a non-trivial task,
as an activity may cross node boundaries several times. In addition, as stated

106 Measurements and Evaluation

before, many middleware systems, including standard CORBA, do not even have
a build-in activity abstraction that would allow identifying an activity across
nodes e.g. by a global ID. The Activity Manager also requires knowledge about
the timing requirements associated with an activity. Therefore, it has to imple-
ment a mechanism to piggyback this information on the invocations. In order to
do this transparently to the application, the Activity Manager closely cooperates
with the local instrumentation code that is hooked into each remote method in-
vocation. The timing data and the activity ID mapping to the local threads is
maintained by the Activity Manager and then added and extracted to and from
each invocation message by the instrumentation code. If required the activity
manager can report the current mapping of thread to activities to scheduler (in
order to provide it with the knowledge about timing parameters of activities or to
enable early detection of timing faults).

3.4 Measurements and Evaluation
With the implementation of the complete monitoring system, a number of meas-
urements have been made in order to give an estimation for the actual overhead
introduced by online monitoring and for determining the possible granularity of
observation. All given figures have be measured on a Sun UltraSparc 1 running
the SunOS 5.5 (Solaris) operating system [Ger99a].

Sensor Performance

For the measurement of the overhead introduced by the instrumentation, code
instrumentation with mc4p has been applied. A sub-class of mc4p’s
_instrumented_class has been implemented that reduces the number of events to
one per method invocation. On the start of a method it stores the timestamp in a
local variable and at the end it reports the time difference directly in one event.

The interference introduced by the execution of this sensor code has been meas-
ured. The overhead includes the time for taking two 64-bit timestamps (at the
beginning and at the end of the measured method), for computing the time-
difference, locking the event queue, and for enqueuing the event data. The time
was measured to be about 5 µsec per sensor. In the current Solaris implementa-
tion a major part (30%) of the overhead results from the “gethrtime()” system
call that is used to access the nanosecond counter. This can be improved by ei-
ther using a memory-mapped version of this counter or, on other architectures
(e.g. the Intel Pentium), by using on-chip counters. In both cases the overhead
reduces dramatically (just one instruction on the Pentium). Another 10% of the
sensor overhead is due to the locking of the event queue. As prior mentioned, in
some system environments this can be simplified to a plain “disable interrupts”
in the single processor case. But even without these optimizations, it can be
stated that 1000 events/s can be created with using less than 0.5% of the CPU
power of the machine.

Real-Time Systems 107

RODB Performance

The figures in the previous subsection do not yet include the processing power
needed for storing the events in the RODB. Therefore, also the performance of
the RODB depending on the size of the object-space and the complexity of the
used evaluators has been measured. With the “negative exponential fade-out”
type evaluator (which can be considered as having a medium complexity) and an
object-space of 100 classes, 500 objects, and 200 methods per class, about
60.000 event/s (~17 µsec/evens) has been achieved. Either by decreasing the
object-space by a factor of 100 or by using a very simple statistical evaluator
(incremental computation of average and variance) is was possible to speed-up
event processing by another 10%. A query into the database has about the same
time-complexity as an event input. This means that the RODB uses less than 2%
of the computing power of the machine (possibly at idle priority) to process
continuously 1000 events/s resulting from 1000 instrumented methods execu-
tions per second.

Conclusion

At a first glance 1000 methods per second seem not to be a lot in an up-to-date
object oriented system. However, it has to be conceived that for supporting the
TAFT-Scheduler, only the monitoring of scheduling-relevant entities is required.
This means, that only methods of the size of “tasks” have to be instrumented. For
those, a granularity in the order of milliseconds is quite reasonable. Also, if you
consider remote invocations in a distributed object-oriented system via a net-
work, like e.g. in CORBA, 1000 methods per second is a realistic order of mag-
nitude. This clearly shows that our online monitoring system can provide the
required generic support for the scheduler without needing significant additional
CPU resources.

3.5 Case Study – RTL-based Constraint Check-
ing
The presented monitoring and event-processing infrastructure supports the con-
cept of TAFT-Scheduling for an adaptive, object-oriented real-time system.
However, the presented instrumentation techniques and also the sensors and the
event-infrastructure of the RODB can be used for other purposes in object-
oriented real-time systems as well. They can even be useful in systems that have
no notion of soft-tasks as required for the TAFT-Scheduling approach.

In this study, a concept is presented that applies the techniques of this thesis to
hard real-time systems in order to implement an object-oriented checker for
timing-constraints written in the RTL formal language [Ger96b]. The first sub-
section shortly describes the existing formalism and its extension for object-
oriented languages. The second part explains how the tools presented in the pre-
vious chapters can be applied to implement this checker.

108 Case Study – RTL-based Constraint Checking

3.5.1 Event-based Timing Constraints in Objects
In the design of all real-time systems, assumptions about the behavior of the
system and its environment are made. Assumptions may be related to the exter-
nal world (e.g. a maximum event rate), to the hardware components (e.g. sensor
response times), or to the software itself (e.g. worst case execution times of rou-
tines). In the best case these assumptions are based on a formal analysis. But
even a formal treatment of a problem has to be based on a certain system model
that does not necessarily cover all relevant aspects of the system (e.g. faulty
components). Traditionally, a real-time system relies completely on the correct-
ness of its design assumptions and the system’s behavior becomes undefined as
soon as an assumption is violated. In many modern applications this is not ac-
ceptable any more and so fault-tolerance has become another major issue in the
design of real-time systems. The first step in fault-tolerance is fault-detection. In
order to react on the violation of design assumptions, the system software (either
the operating system or the application) has to be informed when such a violation
occurs. Thus, runtime-checks of the system’s behavior are an integral part of a
fault-tolerant real-time system.

Major work in the area of online checking of timing constraints with an event-
based system has been done Jahanian al. As already discussed in the related
work in subsection 3.1.5, their RTL-based constraint checkers [Cho91, Raj92,
Jah94] use a model of monitoring that is comparable to the one presented in this
thesis. However, in their work no assumptions are made how this fits together
with object-orientation, how the work can be integrated with standard program-
ming languages, and how the code can be instrumented with event-triggers. The
concept presented here extends the work towards object-oriented real-time sys-
tems. It focuses on how object-orientation can be utilized to simplify the specifi-
cation and the checking of timing constraints and how this can be integrated into
an existing programming language, namely C++.

Specifying and Checking Timing Constraints

It seems to be attractive to add a notion of "timing-abstraction" to the object’s
interfaces. Similar to data-abstraction the "timing-abstraction" can define the
temporal behavior of an object independent of it’s actual implementation. Like in
non-object-oriented real-time software, timing can be expressed either in a speci-
ficational notation or in a more constructive manner.

A specificational notation (like RTL) allows to specify complex system behavior
including the behavior of environmental components, but it does not show a way
how to really implement the behavior in a real system. An approach to utilize a
specification after the design and verification phase of a software project is a
runtime system that allows to check the behavior of the actual application against
the timing constraints written in a formal language. In case of a detected timing
constraint violation an exception-condition is raised. In response to exception
application-specific error recovery mechanisms may be triggered. These recov-

Real-Time Systems 109

ery mechanisms may range from a complete shut-down to the activation of hot-
standby resources. Such an "checker"-approach is comparable to the definition of
pre- and post-conditions that also help to check the behavior of an application
but do not propose any solution to the problem of how to implement the required
properties.

In an object-oriented environment it seems to be quite natural to specify the
timing in the same place where also the functional description is given: in the
class description. This means, that all objects of one class have the same func-
tional and timing behavior. If an object is needed with an identical functional
behavior and different timing constraints, a new class has to be defined. This is
equivalent to the situation where parts of the functional behavior have to be
changed. In both cases inheritance should enable code-reuse, so that only these
parts that affected by the changes have to be redefined. An alternative approach
is to define the temporal and the functional behavior in different class hierarchies
and to combine two classes from both hierarchies to create an instance of an
object. This separation avoids extensive re-definitions of functional code if only
the constraints have been changed (an effect known as the inheritance anomaly
[Mat93]), but it introduces redundancy and a source of inconsistency. To avoid
this, the concept proposes an approach where the timing constraints are included
in the class definition. As the RTL-style rules are independent of the functional
class code, changes in these rules cannot lead to redundant re-definitions of class
methods.

The RTL Language

RTL is a formal language for reasoning about timing properties of real-time
systems. It describes the absolute timing of events (not just the ordering of
events). An event marks a point in time, which is of significance to the behavior
of the real-time system. RTL distinguishes three types of events: external events
coming from the environment, start/stop events marking the beginning/end of an
execution of a code sequence, and transition events that indicate changes of cer-
tain variables of the system. Events have unique names. Time is captured by the
occurrence function @:Event x Instance → Time that assigns a time value to an
event occurrence. The expression @(X,i) denotes for example the time-stamp of
the ith occurrence of the event X. RTL formulas are constructed using addition
and subtraction of occurrence functions with integers, (in)equality predicates,
universal and existential quantifiers, and the first-order logic connectives.

The automatic checking of safety assertions about a system with a specification
written in these general RTL-formulas is extremely inefficient and can only be
used for small systems. But a similar formalism can also be used to check an
actual run of a system (a sequence of events) against its specification. Three
subsets of RTL have been defined in [Jah90] which can be evaluated in polyno-
mial time to decide even for an incomplete computation whether it still can fulfill
its specification or not. The most important subset are those formulas that only

110 Case Study – RTL-based Constraint Checking

consist of occurrence functions with a constant occurrence index. A positive
index value i denotes the absolute number of the occurrence (e.g. the first), while
a negative value specifies an occurrence relative to the current point in time (i.e.
@(X,-1) is the time when the last instance of event X has happened). The papers
[Cho91] and [Raj92] describe a graph-based algorithm that evaluates these for-
mulas, whenever a new event arrives or when a timeout expires. In addition they
defined a new access function @val: Variable x Instance → Value for the use in
timing constraints. The function results in the value of a variable after the ith
occurrence of a transition event for this variable.

Basic Events

The object-oriented extension uses the same basic events as already known from
RTL: "Start" and "End" events of code sections and state changes of variables. In
the case of object-oriented system this matches with the beginning and the end of
methods and the changes of member variables. All these basic events are implic-
itly defined by the definition of the corresponding member components. An
event consists of four components: the static event name, the dynamic context, a
time-stamp, and additional optional parameters.

The static event name denotes the static context in which the event occurred. In
case of a basic event the static event name is expressed by the name of the class
and either the name of the method (plus "start" or "end) or the name of the mem-
ber variable. The dynamic context of the event is the unique object-identifier of
the producing object. Using a clock synchronization, e.g. as the a-posteriori algo-
rithm as described in subsection 2.2.2, it is assumed that the time-stamps impose
a global order on the events of the distributed. The fourth component holds addi-
tional optional parameters, like the new value associated with a state change
event.

Timing Constraints

In order to specify the timing of objects a new component is added to a class
description: the constraint section. This section contains a list of named
RTL-like formulas. The formulas are composed out of the basic events as de-
scribed above. A constraint itself also defines an event. When a constraint is
violated, the object produces an event with the static name of the constraint, the
dynamic context of the object that violated the constraint and a time-stamp that is
the earliest point in time when the checker could evaluate that the constraint will
be violated. This allows to easily composing more complex events out of basic
events. In our current approach events are not first-class objects. They cannot be
used in the functional specification of the class (in the "normal" C++ part) and
there exist no variables of type "event". This independence of functional specifi-
cation and timing specification avoids inheritance anomalies and it allows the
construction of two separate systems: the object oriented real-time system and its
constraint checker.

Real-Time Systems 111

A simple example of a constraint list is shown in Figure 3.19. Constraint 1,
named "max_time", states that an execution of the method get_val() must
not take longer than 4 ms. The expression @(get_val.start,-1) denotes
the start time of the most recent execution of the method get_val()and
@(get_val.end,-1) evaluates to the end time of the same execution. Constraint 2,
named "recovery", expresses that two successive calls to get_val() have to
have a distance of at least 1 s.

In a similar manner a period, a jitter, or a time-out can be defined. The expres-
siveness of RTL-like formulas also allows to define constraints between the
execution of different methods and rules that depend on the value of member
variables. This enables to write rules that define synchronization conditions and
mode-changes. In order to simplify the writing of rules without loosing the com-
plete expressiveness of the constraint formulas the standard C++ macro-
mechanism can be used. Figure 3.20 shows how the max_time constraint from
the example above can be simplified using a standard C++-macro for defining a
deadline.

class sensor {
public:
 int get_val();
 :
 [[// The Constraint Section
 // Constraint 1:
 // get_val() must not take longer than 4 ms
 max_time: @(get_val.start,-1) >=
 @(get_val.end,-1) - 4ms;
 // Constraint 2:
 // get_val() must not be called more that once per
second
 recovery: @(get_val.start,-2) <=

 @(get_val.end,-1) - 1s;
]]
}

Figure 3.19: A C++ class with timing constraints

#define deadline(func,time) (@(func.start,-1) >= \\
 @(func.end,-1) - time)
 ...

 // Constraint 1:
 // get_val() must not take longer than 4 ms
 max_time: deadline(get_val, 4ms);
 ...

Figure 3.20: The usage of macros to simplify the notation

Note, that all these constraints are local to an object. The constraints are checked
on a per object basis and they become active, if an object violates one of them.

112 Case Study – RTL-based Constraint Checking

This implies that for every new object also new instances of the events and new
instances of the constraints are created. This is a major difference to existing
event-based constraint checking tools. Code sharing is a standard feature in ob-
ject-oriented languages. This implies that the event-producing code is also
shared. If an event is only determined by the location of its sensor and not by its
producing object, all objects of the same class would produce the same events.
Based on these events all timing constrains would be evaluated on a per class
basis and this is in most cases not the desired semantics.

The timing constraints described so far are also local in a sense that they only
refer to events that are produced by the execution of the object itself. But this
kind of constraints is not sufficient. They can guarantee the local consistency of
objects, but cannot capture inter-object dependencies in the system. This requires
constraints that combine events from different objects. To achieve this, objects
have to export events via their interface. But as "timing abstraction" was one of
the goals of our approach, it is not desirable to export all events of the interface
of an object, but only those that are independent of the implementation and rele-
vant to others. This is marked in C++ style with the keywords public, pro-
tected, and private that determine the visibility of an object components.
Public events are visible globally, while protected events are only mean-
ingful within the inheritance hierarchy. Private events are purely class inter-
nal. Due to the limitations of the static analysis, inter-object constraints are lim-
ited to components of an object where the references are known at compilation
time. This also means, that constraints can be checked locally at each node as
components of an object are considered to be always located on the same node as
the containing object.

Figure 3.21 shows an example of a class that has timing constraints based on
local basic events and on events that are exported by some of its components.
E.g. the expression @(left.max_time,-1) denotes the most recent time, when the
constraint max_time in the object "left" has been violated. This time is defined
by the constraint-checking algorithm. The algorithms described in [Jah94] guar-
antee, that a violation is detected at the earliest possible time. If no occurrence of
e.g. left.deadline ever happened, the expression @(left.max_time,-1) is treated to
denote some time-value in the future. Thus, according to the algorithm given in
[Jah90], a constraint like @(A,1) < @(B,1) ("A happens before B") is already
known to be violated at the moment when B happens first, as no value of @(a,1)
can ever fulfill the constraint. There is no need to wait with the evaluation of the
formula until A really happens. The constraint input_incorrect of the class
element states, that the max_time constraint must not be violated by one of
the sensor objects (named left and right) while the method
get_position() is executed.

Real-Time Systems 113

class element {
sensor right, left;
 get_position() {
 int l = left.get_val();
 int r = right.get_val();
 ...};
 :
 [[
 // Constraint 1:
 // a deadline violation of one of the
 // sensors must not happen
 // while the position is determined
 input_incorrect:
 @(get_position.start,-1) >=
 @(left.max_time,-1) >
 @(get_position.end,-1)
 ||
 @(get_position.start,-1) >=
 @(right.max_time,-1) >
 @(get_position.end,-1);
 :
]]
}

Figure 3.21: A C++ class with inter-object timing constraints

Inheritance

In an object-oriented environment the semantics of events has to describe what
happens to events in an inheritance hierarchy. Events and constraints are inher-
ited like other members of classes. If an event is produced by a base-class the
same event will be produced by any derived class as well. The same holds for
constraints. Events and constraints can also be overwritten. Basic events are
redefined by overwriting the defining method or member variables, while con-
straints (and the according violation events) are redefined by declaring a new
constraint with the same name. Overwriting a constraint with an empty con-
straint disables it.

The binding of events in constraints is dynamic in sense that events are always
tested with the constraints that belong to the actual class of the producing object,
not in the context of the class that first defined this event.

This kind of inheritance allows to redefine timing constraints of a class by inher-
iting the functional code and redefining its timing. Of course, this is also possible
for classes that had no timing constraints before, like classes from an existing
C++ application.

114 Case Study – RTL-based Constraint Checking

3.5.2 Infrastructure for Constraint Checking
The actual checking of the constraints defined in the C++ like language requires
a compile- and runtime support that is very similar to the requirements of the
ECET-prediction in the TAFT-Scheduler.

The Compiler

A compiler for the proposed language extension has to do two additional tasks
besides the production of the object code. It has to translate the timing con-
straints into a) an instrumentation of the object-oriented program in order to
produce the required events and b) a representation of the constraints that can be
evaluated by the constraint checker. The task of adding the instrumentation can
be done by a mc4p as described in section 2.3.2. The events that identified by
mc4p are exactly the basic events as defined above.

For the second task the constraints have to be parsed and converted into a repre-
sentation that is suitable for efficient constraint checking. As described in
[Cho91] this can be done by converting the formula into disjunctive normal
form, where each basic predicate is an inequality of the form

@(A, i) <= @(B, j) - C (A and B are events; i, j, and C are integer constants)

and finally by converting each disjunction into a graph-template that reflects the
dependencies between the event occurrences. These graph-templates have a
vertex for every occurrence function and directed edges weighted with the times
-C (see Figure 3.22).

B,j A,i
- C

Figure 3.22: Graph-template for @(A, i) <= @(B, j) - C

The Online Checker

The checker has to receive the static information about the structure of the timing
constraints from the compiler (see Figure 3.22). This information includes the
class structure, the per class event table, the graph-templates representing the
temporal dependencies between the events as stated by the constraints. During
runtime the checker has to react on incoming events. Upon the reception of a
creation/deletion event it has to create/delete an instance of the dynamic object-
specific data-structures. These data structures hold all the necessary information
to check the timing of this particular object. Upon reception of such an event
these constraints have to be checked again.

A constraint violation is detected by constructing a current instance of a graph
out of the graph-templates (algorithm from [Cho91]). The algorithms works like

Real-Time Systems 115

this: For each edge with weight C in the graph-template that leads to (comes
from) a vertex with an already assigned value T, an edge in the new graph with
weight C-T (C+T) leading to (coming from) a special "zero-node" is created.
Nodes that have not yet an assigned value (the event did not happen), are con-
nected to the zero-node via an edge with the weight -NOW (where NOW is the
evaluation time), indicating, that the event might happen in the future. If there is
any negative cycle in the graph the disjunction is unsatisfiable. If all disjunction
in the DNF of a constraint are unsatisfiable, the constraints has been violated

Upon detection of a constraint violation the checker itself produces the according
event that then will be immediately checked (it is by definition the next event in
the total order of events). For deadline-like constraints the checker also inserts
special time-out events into the queue, in order to detect a possible violation as
early as possible. As events are queued according to their time-stamps in front of
the checker, this does not necessarily mean, that a violation is detected when it
actually happens, but it is detected before any more recent event is processed.

The RODB reflects pretty much the required structure of the constraint checker.
Each object has its separate evaluator that now executes the graph-based check-
ing algorithm. Upon reception of a new event that belongs to a specific objects it
is routed to the right evaluator using the same mechanisms as described above in
subsection 3.3.1. Basically one additional mechanism is required. For the evalua-
tion of inter-object constraints, event have to be forwarded to the right consumer
object’s checker. This can be accomplished by a list of object references main-
tained by each evaluator, where the interested consumers register themselves
online during object creation.

There are three possible modes in which a checker can be used: off-line, online,
and real-time. In the off-line mode performance of the checker is not an issue as
long as it is possible to get results about an execution after a reasonable time of
waiting. An online checker has to be able to cope with the average event rate, so
that it can keep track with the running system. This is probably enough to pro-
vide feedback for an adaptation mechanism. If the checker itself runs as part of
the real-time system, it can provide direct input for the decisions of the applica-
tion. This would require that parts of the system described so far must have
known worst case execution times and that they are scheduled with the applica-
tion itself. This is true for the sensor part but it has not been a design-goal of the
RODB.

Conclusion

The mechanisms described for instrumentation and event processing in object-
oriented real-time systems can be used for monitoring and visualization. In a
second step the same data can be used for online analysis and a feedback into the
system’s runtime, if the runtime has the mechanisms to exploit this additional
knowledge. But these are not the only applications for object-specific timing-
data. The presented online checker extends previous ideas about online evalua-

116 Case Study – RTL-based Constraint Checking

tion of formal constraints in the running system towards object-oriented systems.
It is not only that this object-oriented approach allows for more fine-granular
constraints, but it is the prerequisite to apply such an event-based algorithm in an
object-based environment. Classic, static code-based event handling must fail
because of the use of code sharing. The presented RTL-based checking algorithm
can be seen as an example. If other algorithms are more adequate for a concrete
target system, the evaluator-based structure of the RODB provides a generic
interface for inserting any appropriate checking/evaluation module.

Real-Time Systems 117

Summary 119

4 Summary
The traditional view of real-time systems as isolated, embedded systems does not
longer suffice for future complex open control systems. The use of the object-
oriented paradigm has already been accepted as a design methodology for real-
time systems that greatly reduces the complexity of the system while improving
reusability and manageability. As also the surrounding IT-infrastructure is more
and more accessible through object-oriented interfaces, this directly suggests to
use object-orientation as the integrating communication paradigm in these open
heterogeneous systems. However, as CORBA, DCOM and comparable object-
oriented middleware and also most of the applications running on top are not
aware of real-time requirements, a serious problem arises. The evident approach
to develop a real-time capable object-oriented runtime system and to implement
the complete application in a homogeneous real-time environment is usually not
a practicable solution, as the involved applications are not designed for real-time
requirements. Moreover, a main concept of object-oriented, namely implementa-
tion hiding, collides with the need of typical real-time systems for total knowl-
edge and control of the required resources. This dilemma results in a separation
of object-oriented systems into a real-time and a none-real-time domain. Preserv-
ing the heterogeneity of these domains and providing appropriate mechanisms
for interfacing non-real-time and real-time objects, is probably the only viable
approach to tackle this problem.

A first step towards a successful interoperability of these domains is time-
awareness, i.e. the ability of the systems to monitor, gather information, and
report about its own timing behavior. The availability of this information is the
necessary precondition that a system can be operated in a time-critical environ-
ment. For a complete view, monitoring must happen at all architectural levels
and it should preserve and exploit the structural information provided by object-
orientation. As this is a generic job for all applications interfacing to the real-
time domain, it can and should be supported by system infrastructure. This thesis
presented instrumentation concepts for the operating system, the middleware,
and the language level and tools for a distributed environment that combine the
gathered information in a novel and for a real-time system designer intuitive
way.

However, in order to give guarantees for real-time behavior in a heterogeneous
environment with non-real-time and real-time objects, gathering timing informa-
tion of the system it not enough. Resources have to be managed according to the
acquired knowledge, a scheduling problem. Traditionally real-timer schedulers
are based on the notion of WCETs, but this concept is increasingly inappropriate
for the considered systems. In order to cover the degree of unpredictability the
concept of ECETs has been introduced, that expresses estimates instead of upper
bounds for the future timing behavior. ECETs can be computed by monitoring
and extrapolating the timing behavior of individual objects from the near past

120

into the near future. The knowledge of ECETs can be used by a dynamic sched-
uler to adapt its resource allocation decisions depending on the current state of
the system and the environment. It also enables the objects in the real-time do-
main to anticipate the behavior of invocations of non-real-time objects and to
react accordingly. The thesis described the design and the implementation of an
integrated execution time prediction infrastructure that is able to compute ECETs
efficiently during runtime. The implementation of the system exhibits perform-
ance figures that proof the viability of the approach. The results enable future
object-oriented real-time systems to use the ECET-knowledge to minimize the
unpredictability when invoking other services and enable them to establish effi-
cient timing-fault handling that ensures computational progress even in overload
situations.

References 121

5 References

[Arn94] Arnold, R., F. Mueller, D. Whalley, and M. Harmon, Bounding
Worst-Case Instruction Cache Performance, in Proceedings of the
15th Real-Time Systems Symposium, pp. 172-181, 1994.

[Bas94] Basumallick, S., K. Nilsen, Cache Issues in Real-Time Systems,
ACM SIGPLAN Workshop on Language, Compiler and Tool
Support for Real-Time Systems, Jun. 1994.

[Bec00] Becker, L.B. and C.E. Pereira, From Design to Implementation:
Tool Support for the Development of Object-Oriented Distributed
Real-Time Systems, in Proc. of 12th Euromicro Conference on
Real-Time Systems, Stokholm, Sweeden, pp. 108-115, June 2000.

[Bec99] Becker, L. B., Gergeleit, M., Nett, E., Pereira, ., C. E., An Inte-
grated Environment for the Complete Development Cycle of an
Object-Oriented Distributed Real-Time System, 2nd IEEE Interna-
tional Symposium on Object-oriented Real-time distributed Com-
puting (ISORC’99), Saint-Malo, France, pp. 165-171, May 1999.

[Bih91] Bihari, T. E. and Schwan, K., Dynamic adaptation of real-time
software, ACM Transactions on Computer Systems, 9(2), pp. 143-
174, 1991.

[Bol00] Bollela, G. et al., The Real-Time Java for Java Experts Group,
Addison Wesley, Reading, MA, 2000.

[Boo91] G. Booch, Object-Oriented Design with Applications, Benja-
min/Cummings Publishing, Redwood City, CA, USA, 1991

[Boo99] Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified
Modeling Language User Guide, Addison Wesley, Reading, MA,
1999.

[But97] Buttazzo, G. C., Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, The Kluwer Interna-
tional Series in Engineering and Computer Science, Kluwer Aca-
demic Publishers, 1997.

[Cah93] Cahill, V., Balter, R., Harris, N.R., Rousset de Pina, X. (Eds.), The
COMANDOS Distributed Application Platform, Research Report
ESPRIT Project 2071, Springer, 1993.

[Cho91] Chodrow, S. E., Jahanian, F., Donner, M., Run-Time Monitoring
of Real-Time Systems, Proc. of Real-Time Systems Symposium,
San Antonio, Texas, pp. 74-83, Dec. 1991.

122

[Cus93] Custer, H., Inside Windows NT, Microsoft Press, Redmond, WA,
USA, 1993.

[Dod92] Dodd, P. S., Ravishankar, C. V., Monitoring and debugging dis-
tributed real-time programs, Software Practice and Experience,
Vol. 22, Nr. 10, pp. 863-877, Oct. 1992.

[Dou98] Douglass, Bruce Powel, Real-Time UML: Developing Efficient
Objects for Embedded Systems, Addison-Wesley, Reading, MA,
1998.

[Edd99] Eddon, G., Eddon, H., Inside Distributed COM, Microsoft Press,
Redmond, WA, USA, 1998.

[Foo99] Foote, W., Real-Time extensions to the JavaTM Platform - A Pro-
gress Report, Proc. Fourth International Workshop on Object-
oriented Real-Time Dependable Systems (WORDS’99), Santa
Barbara CA, 1999.

[Ger92] Gergeleit, M., F. Lange, R. Kröger. Microkernel Performance
Evaluation using the JEWEL Distributed Measurement System",
Proc. OpenForum'92, Technical Conference, Utrecht, Niederlande,
pp. 219-231 Nov. 1992.

[Ger94] Gergeleit, M., Automatic Instrumentation of Object-Oriented Pro-
grams, Arbeitspapiere der GMD, Nr. 826, Feb. 1994.

[Ger95] Gergeleit, M. and H. Streich. Synchronizing High-Resolution
Clocks via the CAN-Bus, 28th ISATA Dedicated Conference on
Mechatronics - Efficient Support for Engineering, Manufacturing,
Testing & Reliability, Stuttgart, Sep. 1995.

[Ger96a] Gergeleit, M. and H. Streich. TaskPair-Scheduling with Optimistic
Case Execution Times - An Example for an Adaptive Real-Time
System, Second International Workshop on Object-oriented Real-
time Dependable Systems (WORDS96), Laguna Beach, Califor-
nia, Feb. 1996.

[Ger96b] Gergeleit, M., J. Kaiser, H. Streich, Checking Timing Constraints
in Distributed Object-Oriented Programs, OOPS Messenger, ACM
Press, Vol. 7, No. 1, pp. 51-58, New York, NY, Jan. 1996.

[Ger97a] Gergeleit, M., M. Mock, E. Nett, J. Reumann. Integrating Time-
Aware CORBA Objects into O-O Real-Time Computations, Third
International Workshop on Object-oriented Real-time Dependable
Systems, Newport Beach, Ca., USA, Feb. 1997

[Ger97b] Gergeleit, M. and M. Mock, Real-Time Monitoring of the EIVIS
Distributed Video-Server on Windows NT, 18th IEEE Real-Time

References 123

Systems Symposium, Work in Progress, (RTSS-97), San Fran-
cisco, Ca, USA. Dec. 1997.

[Ger98] Gergeleit, M., M. Mock, E. Nett, T-CORBA: Making Object-
Oriented Systems Time-Aware, Computer Systems Science & En-
gineering, Vol 13, No 3, pp. 151-160, May 1998.

[Ger99a] M. Gergeleit, J. Fitzner. Using Structure-Based Measurements for
Predicting Execution Times of Object-Oriented Programs, Interna-
tional Journal of Parallel and Distributed Systems & Networks,
Vol 2, No. 3, ACTA Press, Calgary, pp. 118-126, 1999.

[Ger99b] Gergeleit, M., E. Nett. JewelNT: Monitoring of Distributed Real-
Time Applications on Windows NT, Proc. 3rd Annual IASTED
International Conference on Software Engineering and Applica-
tions (SEA’99), Scottsdale, AZ, USA, pp. 325-328, Oct. 1999.

[Ghe93] Gheith, T. and K. Schwan, CHAOS-Arc - Kernel Support for
Multi-Weight Objects, Invocations, and Atomicity in Real-Time
Applications, ACM Transactions on Computer Systems, 11(1), pp.
33-72, 1993.

[Gra82] Graham, S. L., Kessler, P. B., McKusick, M. K., gprof: a call
graph execution profiler, in Proc. SIGPLAN’82 Symp. Compiler
Construction, pp. 120-126, 1982.

[Hab89] Haban and D. Wybranietz, Behavior and Performance Analysis of
Distributed Systems Using a Hybrid Monitor, International Com-
puter Science Institute, Tech. Rep. TR-89-029, Berkeley, CA, May
1989.

[Hab90] Haban, D. and K.G. Shin, Application of Real-Time Monitoring to
Scheduling Tasks with Random Execution Times, IEEE Transac-
tions of Software Engineering, 16(12), pp. 1374-1389, 1990.

[Hea94] Healy, C. A., D. B. Whalley, M. G. Harmon, Integrating the Tim-
ing Analysis of Pipelining and Instruction Caching, in Proc. IEEE
Real-Time Systems Symposium, pp. 288-297, Dec. 1995.

[Ion95] Orbix reference guide, IONA Technologies, 1995, Dublin, Ireland

[Ish90] Y. Ishikawa, H. Tokuda, C.W. Mercer, Object-Oriented Real-Time
Language Design: Constructs for Timing Constraints, Proc.
ECOOP/OOPSLA ’90, Oct. 1990.

[Jah86] Jahanian, F., A. Mok, Safety analysis of timing properties in real-
time systems, IEEE Trans. Software Eng., Vol. SE-12, No. 9, pp.
890-904, Sept. 1986.

124

[Jah87] Jahanian, J. and A. Mok, A Graph-Theoretic Approach for Timing
Analysis and its Implementation, IEEE Transactions on Com-
puters, Vol. C-36, No. 8, Aug. 1987.

[Jah90] Jahanian, F. and A. Goyal, A formalism or Monitoring Real-Time
Constraints at Run-time, in Proc.IEEE Fault-Tolerant Computing
Symp., pp. 148-155, June 1990.

[Jah94] Jahanian, F., R. Rajkumar and S. Raju, Runtime Monitoring of
Timing Constraints in Distributed Real-Time-Systems, Real-Time-
Systems, Vol. 7, No. 3, pp. 247-274, Nov. 1994.

[Jai91] Jain, R., The Art of Computer Systems Performance Analysis,
John Wiley & Sons, New York, USA, 1991.

[Jen85] Jensen E. D., C. D. Locke, and H. Toduda, A time-driven schedul-
ing model for real-time operating systems, in Proceedings of the
IEEE Real-Time Systems Symposium, pp. 112-122, 1985.

[Kai99] Kaiser, J. and Nett, E., Echtzeitverhalten in dynamischen, verteil-
ten Systemen, in: Informatik Spektrum Nr. 21, Gesellschaft für In-
formatik eV, Springer Verlag Berlin, Heideberg, 1999.

[Ken94] Kenny, K. B. and K.-J. Lin, Building Flexible Real-Time Systems
Using the Flex Language, Computer 24:5, May 1991.

[Kim99] Kim, S.-K., S. L. Min, and R. Ha, Analysis of the Impacts of
Overestimation Sources on the Accuracy of Worst Case Timing
Analysis, in Proceedings of the 20th IEEE Real-Time Systems
Symposium, Phoenix, AZ, USA, pp. 22-31, 1-3 Dec. 1999.

[Kli86] Klingerman, E. and A. Stoyenko, Real-Time Euclid: A Language
for Reliable Real-Time Systems. IEEE Transactions on Software
Engineering, 12(9), pp. 941-989, Sept. 1986.

[Kop97] Kopetz, H., Real-Time Systems, Kluwer Academic Publishers,
1997.

[Kri97] Krishna, C. M and K. G. Shin, Real-Time Systems, McGraw-Hill
Series in Computer Science, 1997.

[Kru98] Krupp, P. et al., Adaptable Real-Time Distributed Object Man-
agement for Command and Control Systems: Volume II, MITRE
Technical Report 98B0000067, The MITRE Corporation, Bedford,
MA, 1998.

[Lan92] Lange, F., R. Kröger, M. Gergeleit. JEWEL: Design and Imple-
mentation of a Distributed Measurement System, IEEE Trans. on
Parallel and Distributed Systems, Vol. 3, No. 6, pp. 657-671, Nov.
1992.

References 125

[Lim94] Lim, S.-S., Y. H. Bea, G. T. Jang, B.-D. Rhee, S. L. Min, Y. C.
Park, H. Shin, C. S. Kim, An accurate worst case timing analysis
for RISC processors, in IEEE Real-Time Systems Symposium, pp.
97-108, 1994.

[LiM95] Li, Y.-T. S., S. Malik, A. Wolfe, Efficient Microarchitecture Mod-
elling and Path Analysis for Real-Time Software, in Proc. Real-
Time Systems Symposium, pp. 298-307, Dec. 1995.

[Lin00] Lindgren, M., H. Hansson, H. anf H. Thane, Using Measurements
to Derive the Worst-Case Execution Time, in Proc. of RTCSA
2000 Cheju Island, South Korea. IEEE Computer Society, 2000.

[Lin88] Lin, K.-J. and S. Natarajan, Expressing and Maintaining Timing
Constraints in FLEX, in Proceedings of the IEEE Real-Time Sym-
posium, pp. 96-105, 1988.

[Liu94] Liu, J.W.-S., W.-K. Shih, K.-J. Lin, R. Bettati and J.-Y. Chung,
Imprecise Computations, Proc. of the IEEE, 82(1), pp. 68-82,
1994.

[Loc94] Lockhart, H., OSF DCE: A Guide to Developing Distributed Ap-
plications, McGraw-Hill, Apr. 1994.

[LuS99] Lu, C., J. A. Stankovic, G. Tao, and S. H. Son, The Design and
Evaluation of a Feedback Control EDF Scheduling Algorithm, 20th
IEEE Real-Time Systems Symposium Phoenix, AZ, USA,
Dec.1999.

[Mah01] Mahrenholz, D., Minimal Invasive Monitoring, in proceedings of
The Fourth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2001), Magdeburg,
Germany, 2.-4. Mai 2001

[Mar91a] Marzullo, K. and M. Wood, Making real-time reactive systems
reliable, ACM Operating Systems Review, 25(1), pp.45-48, 1991.

[Mar91b] Marzullo, K., K. Birman, R. Cooper, M. Wood, Tools for Monitor-
ing and Controlling Distributed Applications", IEEE Computer,
24(8), pp. 42-51, 1991.

[Mat93] Matsuoka, S. and A. Yonezawa, Inheritance Anomaly in Object-
Oriented Concurrent Programming Languages, in Research Direc-
tions in Concurrent Object-Oriented Programming, (eds.) G. Agha,
P. Wegner and A. Yonezawa, MIT Press, pp. 107-150, 1993.

[Mil86] Miller, B. P., C. Macrander, S. Sechrest, A distributed programs
monitor for Berkley UNIX, Software Practice and Experience,
Vol. 16, Nr. 2, pp. 206-200, Feb. 1986.

126

[Moc00] Mock, M., M. Gergeleit, E. Nett. Monitoring Distributed Real-
Time Activities in DCOM, 3nd IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC’2K),
Newport Beach, Ca., USA, pp. 26-33, Mar. 2000.

[Mos97] Moser L. E., P. M. Melliar-Smith and E. Thomopoulos, Probabilis-
tic analysis of real-time dependable systems, in Proceedings of the
3rd International Workshop on Object-oriented Real-time Depend-
able Systems, Newport Beach, CA, pp. 306-313, Feb. 1997.

[Net01] Nett, E., M. Gergeleit, M. Mock. Enhancing O-O Middleware to
become Time-Aware, Real-Time Systems, 20 (2), Kluwer, pp.
211-228, Mar. 2001.

[Net96] Nett, E., H. Streich, P. Bizzari, A. Bondavalli, F. Tarini, Adaptive
Fault-Tolerant Policies with Dynamic Real-Time Garuantees,
Proc. WORDS ’96, Second Int. Workshop on Object-oriented
Real-time Dependable Systems, Laguna Beach, 1996.

[Net97a] Nett, E., Real-Time Behaviour in a Heterogeneous Environment?,
in: Pro-ceedings of WORDS'97, Newport Beach, February 5-7,
IEEE Computer Soci-ety, Los Alamitos, California, pp. 275-281,
1997.

[Net97b] Nett, E. and M. Gergeleit, Preserving Real-Time Behavior in Dy-
namic Distributed Systems, Proc. of the Int. Conf. on Intelligent
Information Systems, The Bahamas, Dec. 8-10, 1997.

[Net97c] Nett, E. and H. Streich, The GMD-Snake - Real-Time Scheduling
of a Flexible Robot Application at Run-Time, Int. Workshop on
Parallel Computation and Scheduling in Computers, Ensenada,
Mexico, 1997.

[Net98] Nett, E., M. Gergeleit, M. Mock. An Adaptive Approach to Ob-
ject-Oriented Real-Time Computing, Proc. ISORC'98, Kyoto, Ja-
pan, Apr. 1998.

[Nil95] Nilsen, K.D. and B. Rygg, Worst-Case Execution Time Analysis
on Modern Processors. in ACM SIGPLAN 1995 Workshop on
Languages, Compilers, and Tools for Real-Time Systems, San Di-
ego, USA, 1995.

[OMG01] Response to the OMG RFP for a UML Profile for Schedulabil-
ity, Performance, and Time – Revised Submission, OMG docu-
ment number: ad/2001-06-14, OMG, Framingham, MA, USA,
June 2001

[OMG95] The Common Object Request Broker Architecture, Revision 2,
OMG, 1995.

References 127

[OMG99a] OMG Unified Modeling Language Specification, Version 1.3,
June 1999, OMG, Framingham, MA, USA.

[OMG99b] Real-Time Corba, Joint Revised Submission, www.omg.org, OMG
Document ptc/99-05-03, OMG, Framingham, MA, USA, May
1999.

[Pet99] Petters, S. M. and G. Färber, Making Worst Case Execution Time
Analysis for Hard Real-Time Tasks on State of the Art Processors
Feasible. In Proc. of the International Conference on Real-Time
Computing Systems and Applications, 1999

[Pus89] Puschner P. and C. Koza, Calculating the maximum execution
times of realtime programs, Journal of Real-Time Systems, vol. 1,
pp. 159-176, 1989.

[Pus98] Puschner P. and R. Nossal, Testing the results of static worst-case
execution time analysis, in Proc. IEEE Real-Time Systems Sym-
posium, Madrid, Spain, 1998.

[Rac00] Rackl, G., M. Lindermeier, M. Rudorfer, and B. Süss, MIMO – An
Infrastructure for Monitoring and Managing Distributed Middle-
ware Environments. In J. Sventek and G. Coulson, editors, Mid-
dleware 2000 – IFIP/ACM International Conference on Distrib-
uted Systems Platforms, volume 1795 of Lecture Notes in Com-
puter Science, pp. 71-87, Springer, Apr. 2000.

[Rac01] Rackl, G., Monitoring and Managing Heterogeneous Middleware,
volume 23 of LRR-TUM Research Report Series. Shaker Verlag,
Aachen, 2001.

[Raj92] Raju, S.C.V., Rajkumar, R., Jahanian, F.,Timing Constraints
Monitoring in Distributed Real-Time Systems, Proc of 13th IEEE
Real-Time Systems Symposium, Phoenix, AZ, USA, pp.57-67,
December 1992.

[Sch00] Schmidt, D. C., Kuhns, F., An Overview of the Real-Time
CORBA Specification, IEEE Computer Magazine, Special Issue
on Object-oriented Real-time Computing, Vol. 33, No. 6, pp. 56-
63, 2000.

[Sch97] Schmidt, D., R. Bector, D. Levine, S. Mungee, G. Parulkar, TAO:
A Middleware Framework for Real-time ORB Endsystems, Proc.
1997 IEEE Workshop on Middleware for Distributed Real-Time
Systems and Services, San Francisco, CA, 1997.

[Sel94] Selic, Bran et al., Real-Time Object-Oriented Modeling, John
Wiley & Sons, New York, USA, 1994.

128

[Sho99] Shokri, E., Kim, K., TMO-Based Programming in COTS Soft-
ware/Hardware Platforms: A Case Study, Proc. ASSET ’99 (1999
IEEE Symp. on Application-Specific Systems and Software Engi-
neering & Technology), Richardson, TX, pp. 88-94, 1999.

[Sta89] Stankovic, J.A. and K. Ramamritham, The Spring Kernel: A New
Paradigm for Real-Time Operating Systems, ACM Operating Sys-
tems Review, Vol. 23 No.3, July 1989.

[Str95] Streich, H., TaskPair-Scheduling: An Approach for Dynamic Real-
Time Systems, Int. Journal of Mini & Microcomputers, Vol. 17,
No. 2, pp 77-83, 1995.

[Tok88] Tokuda, H., Kotera, M., Mercer, C. W., A real-time monitor for a
distributed real-time operating system, Proc. of ACM Workshop
on Parallel and Distributed Debugging, Madison, WI, USA, pp.
68-77, May 1988.

[Tsa96] Tsai, J., Bi, Y., Yang, S., Smith, R., Distributed Real-Time Sys-
tems - Monitoring, Visualization, Debugging, and Analysis, John
Wiley & Sons, New York, USA, 1996.

