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Abstract 

Abstract 

The development of a tool for simulation of constrained multibody dynamics is a 

sophisticated problem. There are a lot of conditions that the simulating tool should 

satisfy: numerical efficiency, stability, distributivity, flexibility, interaction with other 

tools, distributed development, etc.  

Trying to answer the requirements, we developed and implemented the method of 

distributed simulation of mechanical systems. Unlike a huge number of other 

methods, we keep the block-module concept during simulation. The main 

advantages of our approach are separate testing of subsystems, encapsulation of 

critical effects inside of subsystems and distributed simulation of subsystems. 

It is an exact, non-iterative algorithm that is applicable to mechanisms with any joint 

type and any topology, including branches and kinematic loops. The technique can 

be implemented for various systems of connected bodies with variable number of 

degrees of freedom such as systems with coulomb frictions.  

Complexity of the simulation of good-partitioned systems requires O(n)  floating point 

operations, that is comparable with the fastest available algorithms. The combination 

of generalized and absolute coordinates significantly increases the method’s 

efficiency.  

The object-oriented implementation of the algorithm significantly reduces the cost 

and development time of modelling. The tests use a car system with a closed-loop 

structure as one example and a spatial manipulator as another. Both models are 

performed using an object-oriented approach, with several levels of hierarchy. 

Numerical simulation shows the stability of the method. Drift is constant and is limited 

to the order of the computation accuracy.  

For the validation of the simulations results we have built up the same models in 

Dymola and Simpack software. The comparison shows that the dynamics of the 

models was calculated correctly.  
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1. Introduction 1

 

1 Introduction 

The dynamics of multibody systems, such as motion of robotic manipulators, vehicle 

systems and spacecrafts, is becoming increasingly important in engineering, 

especially in mechatronics. A computer simulation of such multibody systems 

requires a concerted integration involving several computational aspects [HAU 90, 

SHL 90, SHL 93]. These include selection of a data structure for the system's 

configuration, computerized generation of governing equations of motion, 

incorporation of constraint conditions and implementation of suitable solution 

algorithms. Basic methods for multibody system simulations are provided by the 

disciplines of dynamics (the multibody formulations), numerical mathematics and 

computer science [EIC 93]. 

Let us briefly review the problems of simulation tools. At first we show the most 

popular theoretical methods of simulation and then we review some important 

implementation's aspects.  

In this thesis we discuss only the simulation of holonomic systems, though the 

method can be easily generalized for the simulation of nonholonomic systems.  

1.1 Algorithms of Simulation 

The principal problem associated with the simulation of constrained mechanical 

systems is forward dynamics. Given the time-histories of actuated joint torques and 

forces, we need to compute their time-histories of the joint coordinates, velocities and 

accelerations. In this case, the solution is obtained in a two-stage process. In the first 

stage, the equations of motion are solved algebraically to determine the 

accelerations. In the second stage, the underlying ordinary differential equations 

(ODE) are integrated to obtain all the joint-coordinate time histories.  

Methods for formulation of equations of motion fall into two main categories: a) Euler-

Lagrange and b) Newton-Euler formulations. Typically, Euler-Lagrange formulations 

use joint-based relative coordinates as configuration-space variables; these 



1. Introduction 2

formulations are generally not well suited for a recursive formulation. However, they 

are popular within the robotics community, since they use joint-based relative 

coordinates, which form a minimal-set for serial manipulators and have a direct 

technical meaning in robotics. Newton-Euler approaches typically use Cartesian 

variables as configuration-space variables. They admit recursive formulations by first 

developing equations of motion for each single body; these equations are then 

assembled to obtain the model of the entire system.  

In subsequent discussions we will focus on the development of equations of motion 

of constrained mechanical systems with loops. 

1.1.1 Recursive Newton-Euler Formulations 

Dynamics equations based on classic Lagrange approaches are of the order  

[FEA 87], which means that the number of floating point operations grow with the 

fourth power of the number of bodies n in the system. Many variants of fast and 

readily-implementable recursive algorithms have been formulated within the last two 

decades, principally within the robotics community.  

)( 4nO

The earliest O(n) algorithm for forward dynamics was developed by Vereshchagin 

[VER 74] who used a recursive formulation to evaluate the Gibbs-Appel form of the 

equations of motion and is applicable to unbranched chains with revolute and 

prismatic joints. Next, Armstrong [ARM 79] developed an O(n) algorithm for 

mechanisms with spherical joints. Later, Walker and Orin [WAL 82] developed an 

efficient recursive forward dynamics algorithm. This method is commonly referred to 

as the composite-rigid-body algorithm (CRBA). This algorithm needed to solve a 

linear system of equations whose dimension grows with the number of rigid bodies. 

Since methods to solve a linear system of n equations in the n unknowns are O(n3), 

this algorithm is also O(n3). However, for small n, the first-order terms dominate the 

computation, so that the algorithm is quite efficient. So far, the CRBA is perhaps the 

most efficient general-purpose algorithm for serial manipulators with n < 10, which 

includes most practical cases.  

Next, Featherstone [FEA 83] developed what he called the articulated-body algorithm 

(ABA), which was followed by a more elaborate and faster model [FEA 87]. The 
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computational complexity of ABA is O(n) and is more efficient than CRBA for n > 9. 

Further gains have been made in efficiency over the years [BRA 86, MML 95]. 

In multi-loop mechanisms the joint variables are no longer independent, since they 

are subject to loop-closure constraints, which are usually nonlinear. The existing 

literature on recursive algorithms applied to multi-loop mechanisms almost always 

uses a non-minimal set of generalized coordinates [BAE 87, CHL 90a, STE 96, BAE 

99, FEA 99]. The most common method for dealing with kinematics is to cut the loop, 

introduce Lagrange multipliers to substitute for the cut joints and use a recursive 

scheme for the open-chain system to obtain a recursive algorithm. However, the 

methods have strong problems with stability. 

1.1.2 Non-Recursive Newton-Lagrange Formulations 

The dynamics of constrained mechanical systems with closed loops using a Newton-

Lagrange approach is traditionally obtained by cutting the closed loops to obtain 

various open loops, also known as reduced systems, and then writing a system of 

ODEs for the corresponding chains in their corresponding generalized coordinates 

[FEA 87]. The solution to these is required to satisfy additional algebraic equations, 

which typically are constraint equations required to close the cut-open loops. A 

Lagrange multiplier term is introduced to represent the forces in the direction of the 

constraint violation. The resulting formulation, often referred to as a descriptor form, 

yields an often simpler, even though larger, system of index-3 differential algebraic 

equations (DAEs) as follows: 

(1.1) 

0)(
)(),()(

=
−=

=

pg
λpGwpfwpM

wTp
T

p

&

&

(1.2) 

(1.3) 

where 

p is the vector of generalized coordinates, 

w is the vector of generalized velocities, 

M(p) is the mass matrix,  
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f(p,w) is the vector of external forces (other than constrain forces), 

g(p) is the vector of holonomic constraints, 

pT
p
gpG
∂
∂

=)(  is the product of the constraint Jacobian matrix 
p
g
∂
∂  and the 

transformation matrix , pT

λ  is the vector of Lagrange multipliers. 

Remark 1.1 For notational simplicity, we assume that the matrix G is the Jacobian 

matrix of g(p) and assume the matrix  in (1.1) is the identity matrix. Our discussion 

on a general form can be made through minor modifications.  

pT

The solution of a system of index-3 DAEs by direct finite difference discretization is 

not possible using explicit discretization methods [AHR 98]. Instead, the above 

system is typically converted to a system of ODEs and expressed in state-space 

form, which may be integrated using standard numerical code. Below we discuss the 

most popular conversion’s methods. 

1.1.2.1 Direct Elimination 

The surplus variables are eliminated directly, using the equations of constraints to 

explicitly reduce index-3 DAE to an ODE in a minimal set of generalized coordinates 

(conversion into Lagrange's equations of the second kind). This is also referred to as 

a closed-form solution of the constraint equations. The resulting minimal order ODE 

is stable and can then be integrated. However, such a reduction cannot be done in 

general, and even when it can, the differential equations obtained, are typically 

complicated [KEC 97].  

1.1.2.2 Lagrange-Multiplier Approximation-Penalty Formulation 

In this approach the loop-closure constraints are relaxed and replaced by virtual 

springs and dampers [WAN 00]. It looks like a form of penalty formulation [GAR 94], 

which incorporates the constraint equations as a dynamical system penalized by a 

large factor. The Lagrange multipliers are estimated using a compliance-based force-

law. The latter is based on the extent of constraint violation and assumed spring 
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stiffness; the force is then eliminated from the list of n+c unknowns, leaving behind a 

system of 2n first-order ODEs, where c is the size of g(p). The choice of parameters 

of virtual springs and dampers is a sophisticated problem. It is important to note that 

penalty approaches only approximate the true constraint forces and can create 

unanticipated problems.   

1.1.2.3 Lagrange-Multiplier Elimination 

A very popular approach in practice is to differentiate the constraints twice, obtaining 

at each time t an algebraic system for the accelerations and the Lagrange multipliers. 

Thus, differentiating the position constraints (1.3) once, we obtain the constraint 

equations on velocity level 

(1.4) G(p)wg0 == &

and a further differentiation with respect to time results in the constraint equations on 

acceleration level 

(1.5) w)w(p,GwG(p)g0 &&&& +==

Remark 1.2 Throughout the thesis we will refer to (1.3) as the position constraints, to 

(1.4) as the velocity constraints and to (1.5) as the acceleration constraints, although 

of course these are all just different forms of the original constraints which are given 

on the generalized position coordinates. 

Combining (1.1), (1.2) with (1.5), we get: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ
f

λ
w

0G
GM &T

 (1.6)

where .  ww)(p,G ⋅−= &ϕ

This allows elimination of λ in terms of the accelerations , obtaining an ODE 

system for w and p: 

w&

(1.7) 
w)(p,fwM(p)

wp
~

=

=

&

&
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where ( ) ( ϕ−−= −−− fGMGGMGfw)(p,f 111 )~ TT  

This system may be integrated using standard codes. 

Remark 1.3 Note that, in principle, the index-reduced system (1.6) or (1.7) needs 

more initial conditions than the original system (1.1) to specify a unique solution. We 

assume, however, that consistent initial conditions (see, e.g. [BRE 89]) for the 

generalized position and velocity coordinates are provided. 

However, there is a disadvantage to integrate (1.7) or (1.6) numerically. The position 

and velocity constraints (1.3) and (1.4) are no longer satisfied exactly - there is a drift 

off the constraints, which results in an error of motion and velocity for longer 

simulations. Moreover, though, the drift magnitude as well as the error in generalized 

positions and velocities grows with time t - at worst quadratically [BAU 72, ALI 92, 

AHR 93]. This is not because of the numerical method used to integrate (1.7) but 

because the system (1.7) or (1.6) itself is mildly unstable. Below we review the 

stabilization methods that help to solve the problem.  

1.1.2.4 Baumgarte's technique 

Using Baumgarte's technique [BAU 72], we consider the index-1 DAE (1.6) or the 

corresponding ODE (1.7) obtained by eliminating the Lagrange multipliers, but now  

ϕ  is defined by 

g(p)w)(p,gw)w(p,G 01 αα −−−= &&ϕ (1.8) 

where the parameters jα  are chosen so that the roots of the polynomial 

01
2)( αταττσ ++= (1.9) 

both have negative real parts. For instance, one may choose 

(1.10) 2)()( γττσ +=

for some 0>γ . The effect of this is to replace (1.5) by 

gg2g0 2γγ ++= &&& (1.11) 
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The apparent conceptual simplicity of Baumgarte stabilization technique and the fact 

that it essentially replaces the index-3 DAE  (1.1) - (1.3) by an ODE formulation must 

be considered a major reason for its popularity in engineering applications.  

The disadvantage of the method is the practical choice of parameters (e.g. γ  in 

(1.11)) to make the stabilization robust. The optimal γ depends on both the 

discretization step size  and the discretization method [BRE 89]. Nowadays there is 

no sufficient algorithm for calculation of 

h

γ . 

1.1.2.5 Projected invariants methods 

Another technique is maintaining more constraints by introducing additional 

multipliers µ  [AHR 93, GEA 81, GEA 85]. By using this technique, DAE (1.1)-(1.4) 

can be reformulated as [GEA 85]  

g(q)0
G(p)w0

(p)λGw)f(p,wM
(p)µGwp

=
=

−=

+=
T

T

&

&

 (1.12)

The system (1.12) is an index-2 DAE for variables (p, w, λ, µ). The exact solution for 

µ  is  so that (1.12)  and (1.7) will share the same solutions for (p, w, λ). As the 

numerical solution of (1.12) satisfies both the position constraint (1.3) and the velocity 

constraint (1.4) the method has no drift problem. But the computation of (1.12) could 

be expensive as implicit schemes have to be used for the even larger dimension 

(1.12). 

0µ ≡

1.1.2.6 Dynamic Projection onto the Tangent Space 

Describing vectors and matrices, we show in square brackets their size. Vectors 

(column vectors) are simply matrices with a single column.  

These methods seek to take the equations of motion into the selected constraints 

manifold. Let S(p) be a [n, n-c] full-rank matrix whose column space lies in the 

nullspace of G(p), i.e. . All feasible dependent velocities w belong to the 

space, which is spanned by the columns of S(p):  

0G(p)S(p)=
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w=S(p)u(t) 

where u(t) is n-c dimensional vector of independent velocities.  

Using the matrix S we could obtain from DAE (1.1) - (1.3)  the ODE: 

u)w,f(p,u =& 

that can be integrated with suitable ODE solvers. 

A family of choices exists for the selection of dependent and independent velocities 

[SHA 01, GAR 94].  

1.1.2.7 Post-Stabilizations Method 

The post-stabilisation method [AHR 95] relates to coordinate projection methods. 

Nowadays, this is one of the most effective and convenient methods for the 

simulation of constrained mechanical systems. 

The position and velocity constraints together form an invariant set  of ODE (1.7), 

given by 

Θ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

G(p)w
g(p)

w)h(p,0  (1.13)

While the simulation on each time step we perform the following two-stage 

subroutine: 

1. Using a favourite ODE integration scheme (e.g. Runge-Kutta or multistep) we 

obtain from (1.12) the values of 1
~

+kp , 1
~

+kw  on the new time step. 

2. Stabilize: 

)w,p)h(w,pF(
w
p

w
p

1111
1

1

1

1 ~~~~
~
~

++++
+

+

+

+ −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
kkkk

k

k

k

k  (1.14)

where  
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⎟⎟
⎠
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=⎟⎟

⎠
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⎝

⎛
∂
∂

∂
∂

=

= −

GG
0G

w
h

p
hH

Q(HQ)F

&
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 (1.15)

with  smooth such that HQ is nonsingular. )( wp,Q

Remark 1.4 Here we assume that H has a full row rank. In practice, during the 

simulation we use a pseudoinverse formula based on singular value decomposition 

[CLI 03]. 

The post-stabilization guarantees [CHI 95] the asymptotic stability of  in the 

difference equations even when 

Θ

Θ  is slightly unstable in the underlying vector field. 

Therefore the numerical solutions will stay near Θ  for all time integration. 

In our software we find it most convenient to choose  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

T

T

G0
0G

Q  (1.16)

In the case when  does not significantly dominate, we can neglect it and rewrite 

(1.15) as 

G&

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

I0
0I

GGGw)F(p, 1TT  (1.17)

where  is the identity matrix. I

In next chapters we consider some simulation examples that show the stability of the 

technique. 

1.1.3 Distributed Forward Dynamic Simulation 

The simulation process involves the time-discretized numerical solution of an initial-

value problem, using a variety of numerical time-stepping schemes. In particular, the 

numerical stiffness of the underlying coupled differential-algebraic equations 

necessitates a large number of small time-steps in order to ensure a prescribed 

accuracy. Hence, while real-time and interactive simulations of complex systems are 

desirable from a design view point, they tend to be difficult to achieve for large multi-
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body systems with multiple links and many kinematic loops using conventional 

processing paradigms. One method to achieve speed-ups in such computations and 

to satisfy real-time constraints is to distribute the computational load onto several 

processors running in parallel. Henrich and Honiger [HEN 97] gave a brief review and 

a preliminary classification of the different levels of distribution that have been 

explored in the context of robotic applications and noted that distribution at all levels 

may not be possible. Results obtained by distributed algorithms vary depending on 

the degree of dependency and coupling among the equations. While image-

processing problems [CHA 90] can be broken down quite well by dividing the image 

into smaller independent blocks, the problems of simulation of constrained 

mechanical systems is a strongly coupled problem and the task is not trivially 

distributable [FUJ 92, ZOY 93]. 

In what follows, we will discuss some aspects of these levels of distribution as 

applicable to the simulation of robotic systems, and specifically to closed-loop 

systems. 

1.1.3.1 Constraint-force algorithm 

Fijani et al. [FUJ 95] are credited for the first distributed forward dynamics algorithm 

called the constraint-force algorithm (CFA) for serial/parallel manipulators with 

 complexity of computation on  processors. An improved form of this, 

where all restrictions to type of kinematic chains and classes of joints were removed, 

appeared in [FEA 99]. The algorithm is in full-descriptor form and works by dividing 

the mechanisms into sub-chains, obtaining a sparse system of linear equations for 

the unknown inter-body constraint forces. This system is then solved by various 

iterative parallel methods.  The constraint forces are then used to determine state-

derivatives that are time-integrated to obtain updated values for the system state. 

The main disadvantage to this method is the utilization of iterative methods and the 

use of the full descriptor form, which is not stable. 

))(log(nO )(nO
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1.1.3.2 Divide-and-conquer articulated-body algorithm 

The divide-and-conquer articulated-body algorithm (DCA) [FEA 99a] with  

time complexity on  processors is the fastest available algorithm for a computer 

with a large number of processors and low communication cost. 

))(log(nO

)(nO

The method uses a recursive binary assembly of a system, as shown in Fig. 1.1. 

Each assembly corresponds to the assembly tree, where leaves are bodies and 

nodes are constrained subsystems. The central idea of the method is that it is 

possible to construct the equations of motion of each node in the assembly tree from 

the corresponding equations of its children. 

 

Figure 1.1: Recursive binary assembly of a four-link chain 

and the corresponding assembly tree

 

 

 

 

The complete DCA consists of four passes through the virtual processor tree. The 

first two passes serve to calculate the body positions and velocities. Using the 

assembly tree we calculate the new values of position and velocity variables of child 

from the current value of the joint position and velocity variables. 

In the third pass we start from the leaves of the assembly tree and work toward the 

root. Subsystems express the acceleration of their external joints as the linear 

functions of forces acting in this joints and transform dependency matrices up to tree. 

The fourth pass is the back-substitution pass, in which subsystems calculate the 

acceleration of internal joint from the known forces in external joints. 

The approach has several disadvantages. The first is the high communication cost, 

that limits the method’s implementation on general-purpose parallel and 

multiprocessing systems such as distributed-memory cluster computing machines. 
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The second drawback is the use of Baumgarte stabilization for closed-loops systems. 

Above we discussed the problems of the practical use of the stabilization. Also the 

drift of Baumgarte stabilization is much more than the drift of some other stabilization 

techniques. 

The next problem is the limit on the structure of simulating systems: only one body 

can be connected with the ground. Obviously, there are many popular multibodies 

systems (e.g. multilegged robots, vehicles) that do not satisfy this limit.  

We note also that the most common way is the construction of a simulating system 

from subsystems in a hierarchical approach, i.e. we consider the complete system as 

the highest level of hierarchically connected subsystems. But the assembly tree of 

the complete model changes after addition of a new subsystem. Thus, we can not 

partially test the subsystems, but should test the complete model, that significantly 

increases development costs. 

All this drawbacks limits the implementation of DCA method in practical use. 

Nowadays, DCA method is not implemented in commercial tools. Also, there are no 

tests of DCA’s stability in the case of simulation of closed-loops systems.  

In our method we perform a hierarchical calculation of accelerations in the way 

similar to DCA. But we simulate the model using the same hierarchy disassembly, as 

was performed by the user while the model’s construction. Since the assembly tree 

of a subsystem does not changes while the changes of the global model’s structure, 

it follows that we can distributivly test the subsystem. For the stability of the method 

we use the post-stabilization technique that is much more convenient and accurate 

than Baumgarte’s method. All this helps us to avoid the drawbacks of DCA method.  

1.1.3.3 Hybrid Direct/Iterative Algorithm 

The Hybrid Direct/Iterative Algorithm (HDIA) proposed by Anderson and Duan [AND 

00] is an iterative algorithm and works by cutting a rigid-body system into just 

sufficient separate pieces to allow for full use of all the processors on a given parallel 

computer.  
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The equations of the separate pieces are evaluated in parallel, and the results are 

loaded into a single system-wide matrix equation to calculate the constraint forces 

acting between the pieces due to the cut joints. This matrix has dimensions that 

depend on the number of cut joints, rather than the number of bodies, and is typically 

sparse, enabling parallel iterative solution techniques to be used effectively. Apart 

from this one matrix equation, the total cost of the rest of the algorithm is . 

HDIA expresses its equations of motion in minimal coordinates using coordinate-

partitioning, which is an advantage. However, again the iterative solution techniques 

employed are the major draw back.  

))(log(nO

1.2 Object-Oriented Implementation 

1.2.1 Tool requirement  

Modelling and simulation are becoming more important since engineers need to 

analyze increasingly complex mechanical and mechatronic systems. And in many 

cases the simulation method’s parameters i.e. numerical efficiency, stability and 

distributivity are much less important than the implementation parameters. Trying to 

choose the appropriate commercial software, we should evaluate the software 

efficiency.  

1.2.1.1 Flexibility 

In earlier years, software components of systems had not been designed for reuse, 

and any modification in design required a substantial re-evaluation, which made such 

systems almost as expensive as possible, even more expensive than individually 

designed ones. But recent years have shown an increasing demand for pre-

fabricated goods with lots of options that the customer can choose from. The markets 

for flexible manufacturing depend heavily on the ability of the producer to maximize 

flexibility, while keeping the cost down and providing as fast a response time as 

possible on customized orders.  

This goes hand in hand with a demand for flexible modelling and simulation tools, 

whereby hardware components are described by corresponding software modules 
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that must be combinable in at least the same flexible manner as the hardware 

components themselves. 

1.2.1.2 Usability 

One of the most important characteristics of a tool is its usability. The software 

should minimize the time of simulating model’s redesign. Modelling should be much 

closer to the way an engineer builds a real system, first trying to find standard 

components like motors, pumps and valves from manufacturers' catalogues with 

appropriate specifications and interfaces [ELM 01]. 

The main factors that help reduce both cost and development time of software are: 

• Reusability. A software design methodology that ensures optimal reusability 

of software components is the most essential factor in keeping the software 

development and maintenance cost down. 

• Quick Development. Typically, the engineer is facing some particular 

problems. In order to get a clear arrangement of the distinct physical elements 

the separation of the real structure into the block elements has to be done in a 

physical- and design-related manner. Thus one obtains several model-blocks, 

each of them representing the corresponding mechanical subsystem. 

• Abstraction. Higher abstraction levels at the user interface help to reduce the 

time of software development as well as debugging. The conceptual distance 

between the user interface and the final production code needs to be 

enlarged. Software translators can perform considerably more tasks than they 

traditionally did. 

1.2.1.3 Interaction with other tools 

In last few years the importance of mechatronics significantly grows [KAS 04]. The 

huge numbers of modern machines are complex mechatronic structures consisting of 

electronic units, electromechanical transformers such as sensors, actors, pure data 

processing units as controllers and mechanical structures. The popularity of 
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mechatronic structures grows enormously: hardware, cars, home electronics like 

clothes washers and video equipment, robots, airplanes etc.  

That is why nowadays one of the most important requirements for a mechanical 

simulation tool is its interaction with electrical and control tools. Today the world’s 

largest automotive companies estimate that 80-90% of future innovations are based 

on the integration of electronics and information processing in their classical 

mechanical products.  

But special problems appear when coupling several components from different 

disciplines to one new system and the methodical limits of the used tool are reached, 

because of the different engineering domains. One possibility is the translation by 

analogy consideration [KAS 95]. The other way is to couple different simulation tools, 

but then there is no direct view to the real system components [Lefarth 96]. Every 

result and modification has to be translated and very often this can only be done by 

the model developer. It is clear that this is a major source of errors. 

The interaction with other tools is one of the most important parameter of simulation 

software.  

1.2.2 Object-Oriented programming 

Trying to satisfy all these demands, modern simulation tools use the object-oriented 

method. One of the principal advantages of object-oriented programming techniques 

over procedural programming techniques is that they enable programmers to create 

modules that do not need to be changed when a new type of object is added. A 

programmer can simply create a new object that inherits many of its features from 

existing objects. This makes object-oriented programs easier to modify.  

One of the most popular simulation tool Dymola is based on the object-oriented 

modelling paradigm that was originally invented in 1978 by Hilding Elmqvist as part of 

his Ph.D. dissertation [ELM 78].  

The object-oriented modelling paradigm shares many of the properties of object-

oriented programming. Its main characteristics can be summarized as follows [CEL 

95]: 
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• Encapsulation of knowledge. The modeller must be able to encode all 

knowledge related to a particular object in a compact fashion in one place with 

well-defined interface points to the outside. 

• Topological interconnection capability. The modeller should be able to 

interconnect objects in a topological fashion, plugging together component 

models in the same way as an experimenter would plug together a real 

equipment in a laboratory. This requirement involves that equations describing 

a subsystem should be independent on equations of a global model.  

• Hierarchical modelling. The modeller should be able to declare 

interconnected models as new objects, making them indistinguishable from 

the outside from the basic equation models. Models can then be built up in a 

hierarchical fashion. 

• Object instantiation. The modeller should have the possibility to describe 

generic object classes, and instantiate actual objects from these class 

definitions by a mechanism of model invocation. 

• Class inheritance. A useful feature is class inheritance, since it allows the 

encapsulation of knowledge even below the level of a physical object. The so 

encapsulated knowledge can then be distributed through the model by an 

inheritance mechanism, which ensures that the same knowledge will not have 

to be encoded several times in different places of the model separately. 

• Generalized Networking Capability. A useful feature of a modelling 

environment is the capability to interconnect models through nodes. Nodes 

are different from regular models (objects) in that they offer a variable number 

of connections to them. This feature mandates the availability of across and 

through variables, so that power continuity across the nodes can be 

guaranteed. 

Kasper and W. Koch [KAS 99] introduced a COM based Mechatronic Design 

Environment. Their technology allows treating arbitrary models, analysis and design 

methods in a uniform and implementation independent way, by concentration on a 

set of well-defined interfaces. This allows the reuse of existing software by 
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connection interfaces on a very efficient level. Actually there exist interfaces to use 

models generated by Matlab/Simulink and Dymola. Using their approach, it is 

possible to simulate even very complex mechatronic models.  
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2 Theoretical Background 

In Chapter 1 we showed the advantages of the object-oriented approach. 

Unfortunately this type of modularization in most cases is given up during the 

simulation, especially for mechanical systems, because common modelling 

formulations use access to the complete system to calculate all accelerations 

needed. But from a practical point of view, there are big advantages of the simulation 

on the basis of subsystems:  

1. Subsystems can be modelled, tested and compiled. Then they can be used in 

a way similar to software components that encapsulate their internal structure 

and can be connected via interfaces. 

2. Critical effects like coulomb friction, backslash etc. can be encapsulated inside 

a subsystem. 

3. Subsystems are ideal candidates for the partitioning of large systems on 

multiple processors. 

2.1 Main idea of the hierarchical simulation 

Fig. 2.1 shows the multibody system S that was built up by a design engineer as a 

hierarchy of subsystems. The subsystems S1,1, S1,2, S2,1, S2,2 of the first level of the 

hierarchy consist of connected bodies. The subsystems S1, S2 of the second level 

consist of connected subsystems of the first level. The relation between S1 and S1,1, 

S1,2 are called inheritance, S1 is called a child of S1,1, S1,2. Correspondingly, S1,1, S1,2 are 

called parents of S1. The system S consists of the connected subsystems S1, S2. 

A subsystem is called basic if it does not include other subsystems, i.e. the 

subsystem is situated on the first level of the hierarchy (e.g. S1,1, S1,2, S2,1, S2,2). If a 

subsystem consists of several connected subsystems, then this subsystem is called 

derived (e.g. S1, S2 and S). 
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 Figure 2.1: Multibody system S  

Consider a basic subsystem. A body is called bordering to the basic subsystem if it is 

connected with subsystem’s external joints (e.g. Body 1 and Body 3 are bordering to 

the subsystem S1,1). All other bodies in the subsystem are called internal to the basic 

subsystem (e.g. Body 2 is internal to the subsystem S1,1).  

Consider a derived subsystem. In our method the subsystem needs only the 

information about bordering bodies of its parents and does not need any information 

about parents’ internal bodies. This approach significantly reduces the size of 

equations and communication cost. That is why we call a body internal to the derived 

subsystem if it is bordering to one of subsystem’s parents and is not connected with 

subsystem’s external joints (e.g. Body 9 and Body 10 are internal to the subsystem S2, 

but Body 8 is not internal to the subsystem S2 because it is internal to S2,1). We call a 

body bordering to the derived subsystem if it is bordering to one of subsystem’s 

parents and is connected with subsystem’s external joints (e.g. Body 7 and Body 12 

are bordering to the subsystem S2). Obviously, S does not have bordering bodies and 

has four internal bodies: Body 1, Body 6, Body 7, Body 12. 

During the simulation, on each time step we perform the several operations, shown in 

Fig. 2.2:  
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2. Hierarchical generations of equations of motion. A subsystem gets from its 

parents their dependency matrices  and : )(kD )(kr

 

where  

)(k
ev& is the vector of absolute accelerations of k -th parent’s bordering 

bodies, 

 is the vector of forces acting in k-th parent’s external links. )(kτ

Using equations of constraints connecting the parents, the subsystem 

calculates matrices D and r and transmits them to its child. Here D and r are 

the dependency matrices: 

 

where  

ev&  is the vector of accelerations of subsystem’s bordering bodies, 

 is the vector of forces acting in subsystem’s external links. τ

)()()()( kkkk rτDve +=&

rDτve +=&

3. Backward hierarchical calculation of absolute accelerations. A subsystem 

gets the current values of τ  from its child. Using , the subsystem calculates 

. Then for each parent k the subsystem calculates  and transmits it to 

the parent.  

τ

ev& )(kτ

After we reach the lowest level of the hierarchy, the absolute accelerations of 

all simulating bodies are calculated.  

4. Calculation of generalized accelerations. From the absolute accelerations 

 we consequently calculate the current values of the generalized 

accelerations . 

v&

w&

5. Calculation of generalized coordinates and velocities on the next time 
step. Using a favourite ODE integration scheme (e.g. Runge-Kutta or 

multistep), we obtain the values of )(~
1+ktp , )(~

1+ktw  on the new time step. 



2. Theoretical Background 22

6. Post-stabilization of generalized coordinates and velocities. Using the 

post-stabilization described in the previous chapter, we obtain from )(~
1+ktp , 

)(~
1+ktw  the stabilized values of the generalized coordinates p(tk+1) and 

generalized velocities w(tk+1). 

In this chapter we precisely observe the most important theoretical problems of our 

method for the distributed simulations of multibodies. 

Remark 2.1 We show our method in the case of conservative systems but it can be 

also extended for the simulation of non-conservative systems with various degrees of 

freedom. 

Remark 2.2 For the sake of simplicity we assume that a ground can be included only 

on the highest level of the hierarchy. This limit can be easily removed through minor 

modifications of the method.  

In our implementation a ground object can be included on each hierarchy’s level. In 

Chapter 7 we demonstrate the simulation of a multibody system where subsystems 

include ground objects. 

2.2 Choice of coordinates 

There are two main approaches for the generation of equations of motion: perform it 

using generalized coordinates or perform it using absolute coordinates. Both 

approaches have its advantages and disadvantages. 

If we use generalized coordinates in the case of a loops-free model, then for many 

types of joints we do not need to stabilize a simulation model. In the case of a model 

with closed loops, use of generalized coordinates significantly reduces the post-

stabilization complexity.  

Example 2.1. Consider a two-dimensional loop with m revolute joints. The dimension 

of  expressed using generalized coordinates is [m, 2] vs. [3m, 2m] of G  expressed 

using absolute coordinates. This property is very important because in the post-

stabilization we need to inverse the matrix .  

G

TGG
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But if we use generalized coordinates in the calculation of accelerations and internal 

forces, then we cannot separate our system into subsystems. It happens because 

some of the generalized coordinates are included in the equations of motion of all 

bodies. Therefore, we need to perform our calculations of accelerations and internal 

forces using absolute coordinates.  

Trying to maximise the effectiveness of the method, we use the combination of 

generalized and absolute coordinates. The distributive calculation of forces and 

accelerations we perform using absolute velocities and coordinates. But we perform 

the integration and stabilization steps using generalized accelerations. This 

combination leads some extra calculations needed for the transformation from 

absolute to generalized acceleration and from generalized to absolute coordinates. 

But this additional numerical complexity is much less than the numerical complexity 

of the post-stabilization using absolute coordinates. In Chapter 3 we precisely 

compare the effectiveness of this two stabilization's types. 

2.3 Choice of absolute coordinates 

Let us consider an arbitrary simulating body. Let k  denote the number of the body. 

The vector  of absolute coordinates of the body consists of three Cartesian 

coordinates  indicating the position of centre of mass of the 

body with respect to the global frame and a set of coordinates indicating the 

orientation of the body fixed frame with respect to the global frame. The orientation 

can be described by three angles (Eulerian angles) or by four Euler parameters [NIK 

83, SHA 89, JAI 91, LUB 92].  

kq

( T
kkkk xxx 3,2,1,=x )

In the case of using of Eulerian angles we obtain the significant computation 

difficulties when the mutation angle is equal to null. That is why in our method we use 

Euler parameters that do not have critical points. Using of Euler parameters is 

concerned with quaternions algebra discussed in Appendix A. 

When four Euler parameters ( )Tkkkkk eeee 3,2,1,0,=θ  are used, a simple 

relationship exists between the components of the global angular velocity vector  

and time derivatives of Euler parameters 

kΩ

( )Tkkkkk eeee 3,2,1,0, &&&&& =θ : 
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where Ek is a semi-transformation matrix [NIK 82] that depends linearly on Euler 

parameters:  
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The position variables are: 

( )TT
k

T
kk θxq = 

The velocity variables are: 
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T
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The body position and velocity variables are related: 
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where  

  is the [3,3] identity matrix, 3I

 Tk is the [7,6] velocity transformation matrix of the k-th body.  

Also exists the backward relation: 

 

k
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where kT is the [6,7] backward velocity transformation matrix of the k-th body 

Use of Euler parameters requires the normalization condition: 

  1=kθ
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2.4 Calculation of absolute coordinates and velocities 

From the object-oriented point of view the most convenient is to use generalized 

coordinates p and generalized velocities w associated with constraints. 

Consider a constraint connecting a set of bodies J={Body j1, Body j2,…, Body js}. If it 

exists a dependency of the coordinates ( )TT
k

T
k

T
k t

qqqqK L
21

=  of some subset 

of bodies K={Body k1, Body k2,…, Body kt} on the generalized coordinates p and on the 

coordinates  of some other subset of bodies B={Body b1, 

Body b2,…, Body br}: 

( TT
b

T
b

T
b r

qqqqB L
21

= )

 ),( BK qpq q=

then bodies Body b1,…, Body br are called basic for the constraint, and bodies Body k1, 

…, Body kt are called dependent on the constraint.  

Example 2.2. Consider a revolute joint connecting two bodies. Let Body 1 be basic 

and Body 2 be dependent. The generalized coordinate p associated with the joint is 

the angle between Body 1 and Body 2. The generalized velocity w associated with the 

joint is the time derivative of p. 

The absolute coordinates of Body 2 are expressed as the function of the coordinates 

of the basic body and the angle between the connected bodies p:  
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where 

 x1 are the coordinates of the centre of mass of Body 1, 

r1 is the state vector expressed in the frame connected with Body 1 from the 

centre of mass of the body to the centre of joint, 

r2 is the state vector expressed in the frame connected with Body 2 from the 

centre of mass of the body to the centre of joint,  
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1θ is the vector of Euler parameters of Body 1, 

)(θA 10,1 is the matrix of rotation of Body 1, 

)(A p1,2  is the matrix of relative rotation,  

TTTT ppss ))2/sin()2/cos(()( 10 as ==  are Euler parameters describing the 

relative rotation around the axe a1, where a1 is the axe of relative rotation 

expressed in the frame connected with Body 1. 

Example 2.3. Consider a ball joint connecting two bodies. Let Body 1 be basic and 

Body 2 be dependent. The set of generalized coordinates ( )Tpppp 4321=p  is 

equal to the vector of Euler parameters θ2 of Body 2. The generalized velocity w is 

equal to the angular velocity  of Body 1.  1Ω

For more details of descriptions of different types of joints, see Chapter 6.  

Bodies that do not depend on any constraint are called independent. In Fig. 2.3 is 

shown the graph of a multibody system. The system consists of 7 bodies connected 

with two grounds. Grounds (i.e. bodies whose motion are predefined) are 

represented by red points, independent bodies are represented by blue points, and 

other bodies are represented by black points. Directed arcs stand for constraints that 

are used in transformations. Other constraints are represented by undirected arcs.  

 

 

 
Figure 2.3: Graph of a 7-bodies system 

 

While the translation of a multibody system we generate the array of independent 

bodies I={Body i1,…, Body in} and the sequence of constraints C={Constraint c1,.., 

Constraint cm} that are used during the transformation. Let us call C the sequence of 

dependencies. Obviously, p can be written as: 

( )TTT
CI pqp = 
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where 

  is the vector of absolute coordinates of bodies in I,  Iq

  is the vector of generalized coordinates associated with constraints in C.  Cp

On each time step we perform the same routine. At first we obtain the absolute 

coordinates of bodies included in I. Then, using the C-order, we consequently 

calculate the absolute coordinates of dependent bodies as the result of the q-function 

of constraints. After the routine’s completion we calculate the absolute coordinates of 

all simulating bodies.  

Clearly, we have two limits on the structure of C. The first is the limit on the set of 

constraints included in C: a body can not be dependent on two different constraints. 

Else way we calculate two times the absolute coordinates of the body. 

The second is the limit on the order of constraints inside C. Consider an arbitrary 

Body j. Suppose that the body is dependent on Constraint c1 and it is basic for 

Constraint c2. If Constraint c1 would be situated after Constraint c2 in the sequence C, 

then we calculate the absolute coordinates of bodies that are dependent on 

Constraint c2 before we calculate the coordinates of Body j. Therefore, Constraint c1 

should be before Constraint c2. 

Finally, we obtain that C has a tree-structure without loop-closing constraints.  

We perform the calculation of absolute velocities in a similar way as the calculation of 

the absolute coordinates. For the calculations of velocities of bodies dependent on a 

constraint we use the constraint’s function v equal to the time derivative of q: 

 qv &=),,,( BB vwqp

 

2.5 Equations of motion of a basic subsystem  

Consider a basic subsystem S, shown in Fig. 2.4, included in a complete simulating 

system. By n denote the number of bodies in S. Let g denote the vector of equations 

of internal constraints: 
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Figure 2.4: A subsystem of several connected bodies  
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Let  be the vector of Lagrange forces acting in external constraints. Then the 

descriptor form of equations of motion can be written as [CHI 95], [STE 01]: 
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where  
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Here  

kf  is the resultant external force acting on the k-th body, 

kl  is the resultant external torque acting on the k-th body, 

mk is the mass of the k-th body, 
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M is the mass matrix, 

Jk is the [3,3] moment of inertia matrix of the k-th body with respect to the body 

centre-of-mass frame,  

3I  is the [3,3] identity matrix. 

Here a body centre-of-mass frame is a frame parallel to inertial frame but centred at 

body centre of mass.  

Remark 2.3 Matrices Jk are not constant and should be calculated on each time step 

from formula [WIT 77]: 

)(qAJ)(qAJ ,, kkkkkk 00 ⋅⋅= 

where 

A0,k(qk) is the rotation matrix of the k-th body, 

)(qA)(qA k
T

kkk ,00, =  is the backward rotation matrix of the k-th body, 

kJ  is the constant [3,3] moment of inertia matrix of the k-th body expressed in 

the body-fixed frame centred at body centre of mass. 

Let first m bodies are connected with the complete system by external joints. Let qe 

denote the 7m-length vector of absolute coordinates of bordering bodies. Let qi 

denote the 7(n-m)-length vector of absolute coordinates of internal bodies. Obviously, 

q can be written as: 

( )TTT
ie qqq =  (2.3)

Therefore, we can write (2.2) in the new form:  
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where 
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Thus, differentiating (2.1) once, we obtain the constraint equations on velocity level: 
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and further differentiation with respect to time results in the constraint equations on 

acceleration level: 

( ) uvGvGu
v
v

GGvGvG0 iiee
i

e
ie ++=+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=+= &&

&

&
&& (2.11) 

Substituting ,  from (2.6), (2.7), we obtain: ev& iv&

u)cλ(GMG)cτλ(GMG0 i
T

i
1

iie
T

e
1

ee +−+−+= −− 

that can be rewritten as  

(2.12) ucGMτMGλGGM0 11
ee

T1 +−+= −−−

yielding the dependency of Lagrange multipliers λ on forces  in external links: τ

(2.13) bSτλ +=

where 

u)c(GM)G(GMb

MG)G(GMS
11T1

1
ee

1T1

−=

−=
−−−

−−−

 (2.14)

If G does not have dependent rows, then we can invert  because M is 

positive definite. 

)G(GM T1−

Substituting λ  in (2.6), we obtain the relation between  and : ev& τ



2. Theoretical Background 31

rDτve +=&  (2.15)

where 

e
1

e
T

e
1

e

1
e

T
e

1
e

cMbGMr

MSGMD
−−

−−

−=

+=
 (2.16)

If we know , then we can also calculate the accelerations of internal bodies: using 

equation (2.13), we get the value of Lagrange multipliers λ and then substitute it to 

the modification of equation (2.4): 

τ

)cλ(GMv i
T

i
1

ii −= −&  (2.17)

We use this property after we obtain . τ

Remark 2.4 Consider the case when G  has dependent rows. Let G  denote the 

matrix obtained from  by elimination of dependent rows. Obviously, we can 

represent 

~

G

G~  as: 

GRG ~
= 

where R is the dependency matrix. 

Then (2.6), (2.7) can be rewritten:  

µGcvM

τµGcvM
T

iiii

T
eeee

~

~

=+

+=+

&

&
 (2.18)

where µ  is the vector of new Lagrange multipliers: 

 λRµ T=

Now we can obtain D and r in the same way as it was described above. We need 

only to substitute in equation (2.11) - (2.17) G~ instead of G and µ  instead of λ . 

2.6 Building up the hierarchy 

Consider a derived subsystem S consisting of N parent subsystems: S1, S2,…,SN, 

shown in Fig. 2.5. Let qE denote the vector of coordinates of bodies bordered to the 
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parents of S. Since the definition of bordering bodies, it follows that the vector qE is 

the union of vectors qe
(k) (k=1..N). 

 

1τ ′

2S1S

3SNS
2τ ′

3τ ′ 1τ

2τ
3τ

S
 

 

 

 
Figure 2.5: A subsystem consisting of several connected subsystems 

 

Let qExt qE be the vector of coordinates of bodies bordered to S. Let qEin ⊂ qE denote 

the vector of coordinates of bodies internal to S. Obviously, qE can be written as: 

⊂

TTT )( EinExtE qqq =  

Let g denote the vector of equations of internal constraints between S1, S2,…,SN : 

(2.19) ( ) ( )TT
cgg 00),(),(1 KL == EinExtEinExt qqqqg

By G denote the constraint Jacobian matrix multiplied by the matrix T: 

 
T

q
g

q
g)GG(G

EinExt
EinExt ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
∂

∂
==

 

Let λ denote the vector of Lagrange multipliers associated with the constraints 

between subsystems S1, S2,…,SN . Denote the forces acting in links external to S as τ′ . 

From the previous hierarchy level we get matrices D(k) and vectors r(k). We can unite 

the equations of accelerations 

Nkkkkk ...1)()()()( =+= rτDvE& (2.20) 

in two matrix equations: 

EinEinEinEin

ExtExtExtExt

rτDλGDv

rτDλGDv

ˆˆˆ
ˆˆˆ

+′′+=

+′′+=
T

T

&

&
 (2.21)
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or, in the other form: 

(2.22) rτDλGDv T
e ˆˆˆ +′′+=&

While obtaining  we need to invert the matrix G . In section 2.5 it was 

demonstrated that we can eliminate dependent rows from G, but the problem is that 

 can be singular. That is why we use the reduction of eigendecomposition of D . 

λ TGD̂

D̂ ˆ

Let r denote the size of D . Then we can rewrite D  in the form ˆ ˆ

TZDZD ~ˆ = (2.23) 

where D~  is a diagonal matrix composed of m nonzero eigenvalues of : D̂

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

mζ

ζ
ζ

L

MOMM

L

L

00

00
00

~ 2

1

D 

 

and Z is a matrix composed of eigenvectors: 

 

( )
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

==

mrrr

m

m

m

zzz

zzz
zzz

,2,1,

,22,21,2

,12,11,1

21

L

MOMM

L

L

K zzzZ 

 

All eigenvalues of D  are real because  is a symmetric matrix.  ˆ D̂

Let G~  denote the matrix obtained from the matrix GZ by elimination of dependent 

rows. Obviously, we can represent G~  as: 

GNGZ

KGZG
~

~

=

=  (2.24)

where N and K are dependency matrices. 

Now we can rewrite equation (2.22) in the form: 

rτDµGDZv T
E ˆˆ~~ +′′+=& (2.25) 
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or, separately: 

EinEin
T

EinEin

ExtExt
T

ExtExt

rτDµGDZv

rτDµGDZv

ˆˆ~~
ˆˆ~~

+′′+=

+′′+=

&

& (2.26) 

(2.27) 

where µ  are new Lagrange multipliers: 

 λNµ T=

Differentiating (2.19) once, we obtain the constraint equations on velocity level: 

EE
E

E
E

GvTv
q
gq

q
g0 =

∂
∂

=
∂
∂

= & 

and further differentiation with respect to time and multiplication by K results in the 

constraint equations on acceleration level: 

 uvKGvGKvKG0 EEE +=+= &&&

Substituting (2.25), we get: 

u)rτDµGDKG(Z0 T ++′′+= ˆˆ~~ 

Now we obtain the dependency of Lagrange multipliers µ  on τ′ : 

bτSµ +′= (2.28) 

where 

u)r(KG)GDG(b

DKG)GDG(S
1T

1T

+−=

′−=
−

−

ˆ~~~
ˆ~~~

 (2.29)

Substituting µ  in (2.26), we obtain: 

rτDvExt +′=& (2.30) 

where 

Ext
T

Ext

Ext
T

Ext

rbGDZr

DSGDZD

ˆ~~
ˆ~~

+=

′+=
 (2.31)
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If we know , then we can also calculate the accelerations  of internal bodies: 

using equation (2.28), we get the values of Lagrange multipliers 

τ′ Einv&

µ  and then 

substitute it in equation (2.27). We use this property after we obtain the forces τ′ . 

We should iteratively perform this step of the simulation for the next levels of the 

hierarchy until the subsystem includes all bodies.  

2.7 Calculation of absolute accelerations  

Consider a system S of the highest hierarchy level. Suppose that the system consists 

of N parent subsystems S1, S2,…,SN and the ground whose absolute coordinates q0 are 

predefined: q0=q0(t). 

Remark 2.5 The situation when the ground is not included in the complete system 

can also be easily described with the minor modifications of the formulas. 

Let qEin denote the vector of coordinates of bodies bordered to the parents of S (qEin 

is equal to qE because S does not have external constraints). Obviously, the vector qE 

is the union of vectors qE
(k) (k=1…N).  

Let g denote the vector of equations of internal constraints:  

( ) ( )TT
cgg 00),(),( 001 KK == EinEin qqqqg (2.32) 

By G denote the constraint Jacobian matrix multiplied by the matrix T: 

 
T

q
g

q
g)GG(G

Ein
Ein ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
∂
∂

==
0

0
 

Let λ denote the Lagrange multipliers associated with the constraints. From the 

previous hierarchy level we get matrices D(k) and r(k). We can unite the equations of 

accelerations 

)(
...1

00 t
Nkkkkk

vv
rτDv )()()()(

e

&&

&

=
=+=

 (2.33)

in two matrix equations: 
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)(
ˆˆ

00 t

T

vv
rλGDv EinEin

&&

&

=
+=  (2.34)

While obtaining  we need to invert the matrix . If  is singular, then we 

use the reduction of the eigendecomposition of  in the same way as it was 

performed while building up the hierarchy: 

λ T
EinEin GDG ˆ D̂

D̂

TZDZD ~ˆ = 

where D~  is a diagonal matrix composed of nonzero eigenvalues of  and Z is a 

matrix composed of eigenvectors. 

D̂

Let EinG~  denote the matrix obtained from the matrix  by elimination of 

dependent rows. Obviously, we can represent 

ZG Ein

EinG~  as: 

EinEin

EinEin

GNZG

ZKGG
~

~

=

= 

 

where N and K are dependency matrices. Obviously, 

(2.35) INK =

where I is the identity matrix. 

Now we can rewrite equation (2.34) in the form  

)(
ˆ~~

00 t

T

vv
rµGDZv EinEin

&&

&

=
+=

 (2.36)

where µ  are new Lagrange multipliers: 

(2.37) λNµ T=

Differentiating (2.32), we get: 

 
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=
Ein

Ein
EinEinEinEinEin v

v
GG

vT
vT

q
g

q
g

q
q

q
g

q
g0 0

0
00

0

0

0 &

&

Differentiating this equation and multiplying by matrix K, we obtain: 
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( ) ( ) uvKGvKG
v
v

GG
v
v

GGK0 EinEin00
Ein

0
Ein0

Ein

0
Ein0 ++=⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= &&

&

&
&&

 

Substituting  from (2.36), we get: Einv&

( ) urKGµGDGvKGurµGDZKGvKG0 EinEinEin00EinEin00 +++=+++= ˆ~~~ˆ~~ TT && 

Finally, we calculate µ : 

( ) ( )urKGvKGGDGµ Ein00EinEin ++−=
− ˆ~~~ 1

&T (2.38) 

From (2.35), (2.37) follows that 

 µKλ T=

Then we obtain the values of forces  acting in system’s constraints: τ

 µKGλGτ TTT ==

and transmit them to the parents S1, S2,… SN.  

In the previous step we obtained the relation between the accelerations of internal 

bodies and the forces in external links. Iteratively substituting the forces in external 

links to the previous levels of the hierarchy we obtain the absolute accelerations of all 

bodies.  

2.8 Calculation of generalized accelerations 

We perform the calculation of generalized accelerations similar to the calculation of 

absolute coordinates. For the calculation of generalized accelerations  associated 

with a constraint we use the constraint’s function ε

w&

: 

 w)vv,q, && =(ε

where  

q is the vector of absolute coordinates of connected bodies, 

v is the vector of absolute velocities of connected bodies, 
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v&  is the vector of absolute accelerations of connected bodies. 

On each time step we obtain at first the generalized accelerations of objects included 

in I and then, using C-order, we calculate the generalized accelerations associated 

with constraints from the constraint’s function ε. After finishing the routine we 

calculate all generalized accelerations.  

2.9 Post-stabilization of generalized coordinates and velocities 

After calculating the generalized accelerations  we calculate the values of the 

generalized coordinates 

w&

)(~
1+ktp  and velocities )(~

1+ktw  on the next time step using an 

ODE integration scheme (e.g. Runge-Kutta or multistep).  

If our simulated system does not have closed loops, then usually we do not need to 

perform the stabilization because we use the generalized coordinates in the 

integration. Otherwise we should stabilize our solution trying to minimise the drift of 

the system. In our method we use the post-stabilization described in Chapter 1.  

Let A+ denote the pseudoinverse of a matrix A: 

 ( ) 1−+ = TT AAAA

The stabilization equations [AHR 95] can be rewritten as: 

( ) wpGpGw

pg
p
pgp

w
p

w
p

w
p

~)~()~(

)~(~
)~(

~
~

+

+

=∆

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=∆

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆
∆

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

 (2.39)

where  

)~(pg  is the drift of non-trivial position constraints, 

wpG ~)~(  is the drift of non-trivial velocity constraints, 

p∆  is the vector stabilizing position constraints,  

w∆  is the vector stabilizing velocity constraints 0)( =wpG , 
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)~(~
)~()~( pT

p
pgpG p∂

∂
=  is the product of the constraint Jacobian matrix 

p
g

∂
∂  and the 

generalized velocity transformation matrix .  pT

Here  is a block-diagonal matrix: )~(pTp

k

k
kpkpp diag

w
pTTT

∂
∂

==
&

,, )( 

Cline and Pai [CLI 03] showed that the pseudoinverse of G is definded, even when 

GGT is singular. They used a pseudoinverse formula based on a singular value 

decomposition (SVD) of G. Thus, G+ is obtained by truncating the small (nearly zero) 

singular values. In [PRE 02] the code is published solving a pseudoinverse problem 

using SVD. 

The calculation of  is trivial because each  can be calculated as the output 

parameter of the k-th constraint. But the computation of 

pT kp,T

p
g

∂
∂  of the complete system is 

a challenge, because it may happen that the equation of a constraint does not only 

depend on generalized coordinates associated with this constraint, but also on other 

generalized coordinates. 

Example 2.4. Consider a 3-bodies closed loop system with revolute joints shown in 

Fig. 2.6. Here generalized coordinates are the relative angles p1, p2, p3 associated 

with the first three constraints. Obviously, the derivative 
1

4

p∂
∂g  depends on all pk 

(k=1…3) 

4 

3 2 

1 
 

 

 

 

Figure 2.6: A 3-bodies closed loop system with revolute joints 
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That is why in the general case the derivative ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

m

ii

p
g

p
g

L
1

 can not be the output 

parameter of the i-th constraint object. 

We can solve this problem if we use the equation: 

 

j

i

j

i i

i
p
q

q
g

p
g B

B ∂
∂

∂
∂

=
∂
∂

 

where  is the vector of coordinates of constraint’s basic bodies. The matrix iBq
i

i

Bq
g

∂
∂  

can be set as the output parameters of the i-th constraint object.  

Now we need to calculate the matrix 
j

i

p
qB

∂

∂
. Consider an arbitrary body from Bi. Let t 

denote the number of the body. There are two variants of the calculations of the 

deviation 
j

t

p
q

∂
∂ . If the t-th body is dependent on the j-th constraint, then the deviation 

can be calculated from the output parameter 
j

jj j
q

p

)q,(p B

∂

∂
 of the j-th constraint object 

(in Example 2.4 we calculated the partial derivative 33 / p∂∂q  in this way). 

The more sophisticated problem is to calculate the partial derivative 
j

t

p
q

∂
∂  when the t-

th body depends on another constraint (e.g. 23 / p∂∂q  in Example 2.4). Let the t-th 

body depends on the m-th constraint. Then 
j

t

p
q

∂
∂  is the part of the derivative 

j

mm
q

p
)p,(q

mB

∂

∂
, that can be calculated from the equation:  

 

j

m

j

mm m

m

qq
p
q

qp
)p,(q B

B

Bm

∂

∂

∂

∂
=

∂

∂
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where 
m

m
q

Bq∂

∂
 is the output parameter of the m-th constraint object. We should 

recursively repeat this routine for all bodies with coordinates included in  and 

dependent on pj. In the recursion’s end we obtain the case that was discussed 

before: we need to calculate the partial derivative 

mBq

j

t

p
q

∂
∂ , where the t-th body is 

dependent on the j-th constraint.  

Remark 2.6 Implementing this routine in Example 2.4, we obtain: 

 

1

1

1
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2

3

1

1

1

2

2

3

1
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2

3

1

2

2

3

1
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1

3
),(),(

p
qqq

p
qq

p
pqq

p
q

p
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p ∂

∂

∂

∂

∂

∂
=

∂
∂

∂

∂

∂

∂
=

∂

∂

∂

∂
=

∂
∂

∂

∂
=

∂

∂
=

∂
∂
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q
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q

q
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Finally, we obtain that the calculation of the global Jacobian matrix 
p
q

∂
∂  can be 

performed only using the partial derivatives 
iB

i
q
q∂

∂
 and 

i

i
q

p∂

∂
 generated inside of 

constraint objects. 
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3 Computation Complexity 

We estimate the complexity of the method using four basic estimations [GOL 93, 

PRE 02]:  

1. The multiplication of two matrices CB where C is a [n,m] matrix and B is a [m,l] 

matrix B involves O(n·m·l) floating point operations (multiplications and 

additions).  

2. The complexity of the inversion of a [n,n] matrix is O(n3).  

3. The pseudoinverse of a [m,n] matrix is O(m·n2+n3) procedure.  

4. Elimination of dependent rows from a [k,n] matrix has complexity )( knlO ⋅⋅ , 

where . ),min( nkl =

5. The complexity of eigendecomposition of a [n,n] matrix is O(n3). 

Obviously, the time complexity of the simulation depends on many factors: the 

system's structure, the types of constraints, the number of joints and bodies, the 

number of processors, the structure of the hierarchy. In this chapter we calculate the 

complexities of basic subroutines that we execute during the simulation. Then we 

summarize them and obtain the method's complexity. 

3.1 Stabilization complexity 

Let us compare the complexity of post-stabilizations of absolute and generalized 

coordinates. 

Consider a multibody system S. Let c denote the total number of constraints and n 

denote the total number of bodies in S.  From (2.39) follows, that during the post-

stabilization of absolute coordinates we need the pseudoinverse of two [O(c), O(n)] 

matrices: 
q
g

∂
∂  and G. Therefore, the post-stabilization of absolute coordinates has 

complexity O(c·n2+n3).  
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Let us calculate the complexity of stabilization of generalized coordinates. The 

transformation from generalized to absolute coordinates and the backward 

transformation from generalized to absolute has complexity O(c).  

The more sophisticated problem is the calculation of the Jacobian matrix 
p
g

∂
∂  of the 

complete system. After the transformation to generalized coordinates the number of 

nonconfluent equations g reduces. Now g consists only of the equations of loop-

closing constraints that are not included in the sequence of dependencies C. For a 

system with t closed loops the number of equations in g is O(t). 

Let sj denote the number of bodies in the j-th loop. Then the equation gj=0 of the 

loop-closing constraint depends on O(sj) generalized coordinates. The algorithm of 

the calculation 
p
g

∂
∂ j  has complexity O(sj). Obviously, the calculation of the global 

Jacobian matrix 
p
g

∂
∂  is O(s) procedure, where s=s1+. . .+ st is the total number of 

bodies in loops. 

Since the size of the Jacobian matrix 
p
g

∂
∂  is [O(t),O(s)], it follows that the 

pseudoinverse of 
p
g

∂
∂  has complexity O(s·t2+t3).  

Summing up all complexities, we obtain that the stabilization of generalized 

coordinates has complexity O(s·t2+t3), which is much less than the complexity of the 

stabilization of absolute coordinates. 

3.2 Computation complexity of a basic subsystem 

Consider a basic subsystem S consisting of n connected bodies. Let m denote the 

number of bodies that are connected by external joints with the complete system. Let 

c denote the number of internal constraints in g. The Jacobian matrix G has size 

[O(c), O(n)], the mass matrix M has size [O(n),O(n)]. Elimination of dependent rows 

from G has complexity O(l·n·c), where l=min(c,n). 
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The matrix Ge has size [O(c),O(m)], Me is a [O(m), O(m)] square matrix. Using equation 

(2.14), we obtain a complexity of O(c·n2+c3) for the calculation of O(c)-length vector b 

and [O(c),O(m)] matrix S.  

From (2.16) we obtain a complexity of O(c·m2+ m3) for the calculation of matrix D and 

a complexity of O(c·m+ m3) for the calculation of vector r. 

From equation (2.17) we get a complexity of O((n-m)3+n·c) for the calculation of 

accelerations of internal bodies . iv&

Summing up all complexities, we obtain that on each time step the basic subsystem 

performs O(n3+c3) calculations. 

3.3 Computation complexity of a derived subsystem 

Consider a derived subsystem S consisting of parents S1, S2,…,SN connected by c 

constraints. Let nEin denote the number of internal bodies in S, and nExt denote the 

number of bordered bodies in S. The matrix D  from (2.22) is a square [O(n), O(n)] 

matrix, where n=nExt+nEin. The complexity of eigendecomposition of  in (2.23) is 

O(n3).  

ˆ

D̂

The matrix G has size [O(c), O(n)]. From (2.24) follows, that the calculation G~  has 

complexity O(c3+c·n2).  

The matrix  has size [O(n), O(nExt)], D′ˆ G~  has size [O(c), O(n)], D~  is a [O(n), O(n)] 

square matrix,  is an O(n) vector. Using equation (2.29), we obtain a complexity 

O(c·n2+c3) for the calculation of the [O(c),O(nExt)] matrix S and the O(c)-length vector b. 

r̂

From equation (2.31) we obtain a complexity of O(c·n2) for the calculation of matrices 

D and r.  

If we know the vector , then we can calculate the accelerations of internal bodies 

. The complexity of this calculation is O(n·c +n2).  

τ′

Einv&

Summing up all complexities, we obtain that on each time step the basic subsystem 

performs O(n3+c3) calculations. 
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3.4 Computation complexity of the method 

Let us create the hierarchy of subsystems for a mechanical system S. Let all 

subsystems on all levels of the hierarchy have internal bodies and the number of 

bodies and internal constraints in each subsystem be limited by the global constant 

D. Therefore, the computation complexity of each subsystem is limited by O(D3).  

Let n denote the total number of bodies in S. Since all subsystems have internal 

bodies, it follows that the total number of subsystems is limited by n.  

Thus, we obtain that the global complexity of the computation of accelerations is 

O(n·D3). Adding the complexity of the stabilization, we obtain that on each time step 

we perform O(n·D3+t2·s+t3) operations, where t is the number of closed loops in the 

system and s  is the total number of bodies in loops. 
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4 Implementation Background 

Trying to develop software for the simulation of dynamics of multibodies, we should 

remember that in a common way a multibody system is only a part of a sophisticated 

mechatronic system. Typically elements of mechatronic structures are electronic 

units, electromechanical transformers such as sensors, actors, pure data processing 

units as controllers and mechanical structures. These components are assembled 

according to their physical interfaces like mechanical connections, data 

transmissions, electric connections etc.  

Our goal is to develop a tool that could be used for the simulation of mechanical parts 

of mechatronic systems. That is why we need that our software could be easily 

combined with electronic and control tools. 

Our software is based on a strictly capsulated block-module concept [KAS 97]. In this 

context it means that the mechanical structure will be represented by separate 

objects which interact via predefined interfaces with each other. Using such interface, 

the objects could interact also with external software. 

This approach has some significant advantages: 

1. Top-Down Design. The design of the model structure can be done in a very 

physical-related manner. Models are partitioned in its physical units as they 

are constituted like a real system. The mechanical structure is kept as a 

particular component as it is connected in their real counterpart. The physical 

system borders will be kept in the virtual system as well. The model 

development can be performed in steps from a high grade of abstraction into 

more precise functionality. Changes in the topological structure or in the 

schematic (addition of sensors, etc.) will not affect the modelling procedure. 

2. Distributed Development. The development of subsystems can be done at 

different places by various specialists. The global functionality can be assured 

by keeping the defined interfaces. There is no restriction which mathematical 

technique is used to describe the capsulated system behaviour as far as the 

interfaces will be maintained. 
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3. Flexibility. The model will get a high grade of exchangeability. Later 

developed, more complex and time consuming subsystems do not affect the 

development of other blocks and can be changed without degrading the 

performance of the whole model. The individual blocks can be tested 

separately. Once developed and tested modules can be reused in other 

applications. This will lead to an accumulation of block-models as a basis for 

block-oriented libraries to speed up development time for further modelling 

tasks. 

4. Quick Development. An important precondition to retain good performance 

for this concept is a proper definition of the interfaces of the distinct blocks. 

Typically, the engineer is facing some particular problems. In order to get a 

clear arrangement of the distinct physical elements the separation of the real 

structure into the block elements has to be done in a physical- and design-

related manner. Thus one obtains several model-blocks, each of them 

representing the corresponding mechanical subsystem. 

Unlike of a huge number of other methods, we keep the block-module concept during 

the simulation. From a practical point of view, there are big advantages of a 

simulation on the basis of subsystems:  

1. Separate Testing. Subsystems can be modelled, tested and compiled. Then 

they can be used in a way similar to software components that encapsulate 

their internal structure and can be connected via interfaces. 

2. Encapsulation of Critical Effects. Critical effects like coulomb friction, non-

permanent contacts etc. can be encapsulated inside a subsystem. While the 

changing of the structure of a subsystem we do not need to change the 

complete model structure.  

3. Distributed Simulation. Subsystems are ideal candidates for the partitioning 

of large systems on multiple processors. During the simulation the main 

number of calculations proceeds inside of a subsystem. Therefore, we could 

easily distribute the simulation on several processors; each of them will work 

with its own subsystem.  
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Using this approach, we implemented our software in Visual Basic 6.0, but it can be 

easily partitioned in other existing object-oriented programming languages like Visual 

C, Delphi etc. 
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5 Basic Objects  

In our method we split a simulating mechanical system into functional parts 

representing real components. Let us describe eight basic objects that are used in 

our algorithm. For the sake of simplicity we do not show the Visual Basic code, but 

only review the parameters and properties of objects.  

Child objects describing the different types of constraints and forces are considered 

in the next chapter. 

5.1 Timer 

A timer object is used for the identification of the current time inside a simulating 

system. It has only two properties:  

1. Set the new current time value. 

2. Show the current time value.  

During the calculations we use only one global time object. When we start a new 

integration step we set the new value of current time. All objects that need the current 

time value for their calculations (i.e. ground, force) get it from this timer.  

5.2 Ground  

We treat a ground object as a body whose motion is predefined. There is no 

restriction on the number of ground objects inside a simulating system. For example, 

inside a car model, described in Chapter 7, we use five ground objects.  

While the simulation the object generates the following functions:  

1.  - Absolute coordinates.  ]1,7[q

 

where  

( )TTT θxq =
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( )Txxx 321=x  are Cartesian coordinates indicating the position of 

centre of mass of the body with respect to the global frame 

( Teeee 3210=θ )

)

 is the vector of Euler parameters  

2. v[6,1] - Absolute velocity  

 

where  is the global angular velocity vector. ( TΩΩΩ 321=Ω

( )TTT Ωxv &=

3. [6,1] - Absolute acceleration. v&

4. A[3,3] - Rotation matrix: 
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5. T[7,6] - Velocity transformation matrix: 

 Tvq =&

6. T [6,7] - Backward velocity transformation matrix: 

 qTv &⋅=

The structure of matrices T, T  was precisely described in Chapter 2, while the 

discussion of types of absolute coordinates.  

5.3 Body 

The difference between body objects and ground objects is that the motion of body 

objects is not predefined.  

A body object has the following static parameters that should be set while the 

translation:  

1. m - Mass. 
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2. J [3,3] - Moment of inertia expressed in the body frame connected to the 

centre of mass.  

While the simulation we set the dynamical parameters of the object: 

1. q[7,1] - Absolute coordinates.  

2. v[6,1] - Absolute velocity. 

3. [6,1] - Absolute acceleration.  v&

4. f[6,1] - Vector of external generalized forces acting on the body. 

While the simulation the object generates the following functions: 

1. A[3,3] - Rotation matrix: 

 

 ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−−+−
−−+−+
+−−−+

=
2
3

2
2

2
1

2
010232013

1032
2
3

2
2

2
1

2
03012

20313021
2
3

2
2

2
1

2
0

)(2)(2
)(2)(2
)(2)(2

eeeeeeeeeeee
eeeeeeeeeeee
eeeeeeeeeeee

A

2. M[6,6] - Mass matrix: 

 

 

where  

I3 is the [3,3] identity matrix, 

TAJAJ =  is the [3,3] moment of inertia matrix of the body expressed in 

the inertial frame. 

⎟⎟
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⎞
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⎛
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J0
0I

M 3m

3. T[7,6] - Velocity transformation matrix: 

 Tvq =&

4. T [6,7] - Backward velocity transformation matrix: 

 qTv &⋅=
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5. g - Drift function of the normalization condition for Euler parameters: 

 2
3

2
2

2
1

2
0 eeeeg +++=

6. 
q∂
∂g [1,7] - Partial derivative of the drift: 

( )3210 2222000 eeeeg
=

∂
∂
q

  

5.4 Body output 

Body outputs are interfaces used for connection of bodies with subsystem’s external 

constraints.  

Example 5.1. Consider a subsystem shown in Fig. 5.1. From the physical point of 

view this is a system of two connected bodies. But from the object-oriented point of 

view this is a system consisting of two parents S1 and S2 connected by Constraint 1. 

 

 

 

S1 S2 

Output 1 Constraint 1Body 1 Output 2 Body2 

 

Figure 5.1: Two subsystems connected by the constraint 
 

The typical way in object-oriented programming (e.g. Dymola software) is not to work 

with a body object outside of a body’s subsystem but to create the special types of 

objects called outputs and to use them as bodies. This is possible because each 

output object (called child) inherits parameters (i.e. absolute coordinates, velocity) of 

its parent (a body or another output). If output’s parameters change, then the output 

object automatically changes corresponding parameters of its parent. 

This approach helps us to show explicitly on each level of hierarchy which bodies 

could be connected on the next level.  



5. Basic Objects  53

An output objects has the following static parameters that should be set while the 

translation:  

1. Parent – Parent of the output (the body or the other output).  

While the simulation the object inherits the same parameters of its parent: 

1. q[7,1] - Absolute coordinates,  

2. v[6,1] - Absolute velocity, 

3. [6,1] - Absolute acceleration,  v&

4. A[3,3] - Rotation matrix, 

5. T[7,6] - Velocity transformation matrix, 

6. T [6,7] - Backward velocity transformation matrix. 

If the parent is not a ground object then the object inherits two more parameters from 

its parent: 

1. M[6,6] - Mass matrix,  

2. f[6,1] - Vector of external generalized forces acting on the parent. 

The object has also its own parameter: 

1. τ[6,1] - Generalized forces acting in links external to the output’s subsystem. 

Remark 5.1 While the description of objects we do not make a difference between 

bodies and outputs (i.e. saying “The parameter of the constraint is an array of bodies” 

we mean that the parameters of the constraint is the array of body objects and output 

objects)  

5.5 Generalized force 

A generalized force object describes an external force or external torque acting on 

bodies.  
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The object has the following static parameters that should be set while the 

translation:  

1. J={Body j1, Body j2,…, Body js} - Array of bodies which are acted by the force, 

where s is the number of bodies in J. 

2. Timer - Timer object that provides the force object by the current time value. 

While the simulation the object runs the subroutine: 

1. Applying the force. Using the values of the coordinates  

and velocities  of bodies in J and the current time t of the 

timer object, the force object calculates the vector :  

TT
j

T
j s

)(
1

qqqJ K=

( TT
j

T
j s

vvvJ K
1

= )
Jf

 

where t is the current time value, obtained from  Timer. 

After this, the subroutine increases the parameter f of each body in J by the 

value of the correspondent element of . Jf

( )TT
j

T
j s

t ff)vq,(f JJJ K
1

, =

5.6 Constraint 

A constraint object describes a holonomical constraint connecting several bodies. 

The object has the following static parameters that should be set while the 

translation:  

1. J - Array of bodies connected by the constraint, 

2. B - Array of basic bodies, where , JB ⊂

3. K- Array of dependent bodies, where . JK ⊂

If the constraint is included in the sequence of dependencies C, then while the 

simulation we set the dynamical parameters of the object:  

1. p - Generalized coordinates associated with the constraint, 
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2. w - Generalized velocities, 

3. - Generalized acceleration, w&

4. Tp – Generalized velocity transformation matrix:  

 wTp p=&

While the simulation the object runs the subroutines: 

1. Set absolute coordinates of dependent bodies. The constraint calculates 

the current value of the dependency function q(p, qB) and sets the current 

values of coordinates of dependent bodies: 

 )q(p,:q BK q=

Remark 5.2 The operator “:=” indicates the changing of objects’ parameters, e.g. 

expression “ q=:Kq ” means that we set parameters q of all bodies in K equal the 

correspondent parts of vector function q. 

2. Set the absolute velocities of dependent bodies. The constraint calculates 

the time derivative of the dependency function qv &=)( BB vw,,qp,  and sets the 

current value of the velocities of dependent bodies:  

 

where KT is the backward velocity transformation matrix:  

 

Here iT  is the backward velocity transformation matrix of the i-th body in K. 

)vw,,q(p,T:v BBKK v⋅=

)Tdiag(TqTv KKKK i=⋅= &

While the simulation the object generates the functions: 

1.  - Drift of the constraint for the absolute coordinates, )(qg J1

2. 
J

1

q
g

∂
∂  - Constraint Jacobian matrix,  

3. u - Vector: 
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Here  is the velocity transformation matrix of the i-th body in J. iT

)diag(TTvT
q
g

dt
du JJJ
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4.  - Drift of the constraint for the generalized coordinates, (p)g2

5. 
p
g2

∂
∂  - Jacobian matrix, 

6. 
p

)q(p, B

∂
∂q

 - Partial derivative of the dependency function )( Bqp,q , a part of the 

Jacobian matrix, 

7. 
B

B

q
)q(p,

∂
∂q

 - Partial derivative, a part of the Jacobian matrix, 

8.  ε  - Dependency function, describing the relation between the generalized 

accelerations  and the absolute coordinates , velocities , accelerations 

: 

w& Jq Jv

Jv&

 ).v,v,(qw JJJ && ε=

Remark 5.3 For most types of joints (revolute, prismatic etc.) parameters  and (p)g2

p
g
∂
∂ 2  are equal to null since the equation of the constraint expressed in the 

generalized coordinates are singular. But for some types of constraints (e.g. ball 

joint) we do not have the singularity. We note that  and  can describe 

different drifts (e.g.  of a ball joint object shows that the places of connection of 

both bodies coincide,  of a ball joint object describes the normalization condition 

for Euler parameters of a dependent body). We precisely discuss this in Chapter 6 

while the descriptions of the ball joint object. 

(q)g1 (p)g2

(q)g1

(p)g2
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5.7 Basic subsystem 

Basic subsystem object is a subsystem of the lowest level of hierarchy. It can include 

body objects, ground objects, force objects and output objects, but it can not include 

subsystems.  

The object has the following static parameters that should be set while the 

translation:  

1. J - Array of bodies in the subsystem,  

2. R - Array of grounds in the subsystem,  

3. F - Array of forces in the subsystem,  

4. C - Array of constraints in the subsystem, 

5. O - Array of outputs in the subsystem. 

While the translation the object generates the static parameters:  

1. E - Array of bordering bodies, where  (obviously, E is equal to the array 

of bodies that have children in O), 

JE ⊂

2. I - Array of internal bodies, where  (obviously, I is equal to the array of 

bodies that do not have children in O). 

JI ⊂

If the subsystem has external constraints, then while the simulation it generates the 

function: 

1. D, r - Dependency matrices that describe the relation between the 

accelerations  of bordering bodies and the forces τ in external constraints: Ev&

 rDτvE +=&

While the simulation the object runs the subroutine: 

1. Null forces. The parameter f of all bodies from J is set equal to null, 

2. Apply forces. All forces from F run the subroutine “Applying the force”, 
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3. Set acceleration (when there are no external constraints). The subsystem 

solves the equations of motion and calculates the current values of the 

accelerations . The parameter  of each body in J is set equal to the value 

of the correspondent element of , 

Jv& v&

Jv&

4. Set internal acceleration (when there are external constraints). The object 

obtains from the outputs in O the values of forces  in external constraints. 

Using  it calculates the new values of accelerations . The parameter  of 

each body in I is set equal to the value of the correspondent element of . 

τ

τ Iv& v&

Iv&

5.8 Derived subsystem 

Derived subsystem object is a subsystem of the high level of hierarchy. It can include 

other subsystems, ground objects, force objects and output objects. But it can not 

include body objects.  

The object has the following static parameters that should be set while the 

translation:  

1.  - Array of subsystem’s parents,  { NSSS K,, 21=J }

2. R - Array of grounds in the subsystem,  

3. F - Array of forces in the subsystem,  

4. C - Array of constraints in the subsystem,  

5. O - Array of outputs in the subsystem. 

While the translation the object generates the static parameters:  

1. E – Array of outputs of S1,…,SN: , U
N

i
iS

1

)(
=

= OE

2. Ext – Array of outputs bordering to the subsystem, where  (obviously, 

Ext is equal to the array of outputs that have children in O), 

EExt ⊂
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3. Ein – Array of outputs internal to the subsystem, where  (obviously, 

Ein is equal to the array of outputs that do not have children in O). 

EEin ⊂

If the subsystem has external constraints, then while the simulation it generates the 

function: 

1. D, r - Dependency matrices which describe the relation between the 

accelerations  of bordering bodies and the forces  in external 

constraints: 

Extv& τ′

 rτDvExt +′=&

While the simulation the object runs the subroutines: 

1. Null forces. All subsystems from J run the subroutine “Null forces”, 

2. Apply forces. All forces from F run the subroutine “Applying the force”. All 

subsystems from J run the subroutine “Apply forces”, 

3. Set acceleration (when there are no external constraints). Using the matrices 

DJ, RJ of parents in J, the subsystem calculates the current values of 

accelerations  of objects in Ein and forces τEin, where τEin are internal 

forces produced by constraints from C. The parameters  and τ of each object 

in Ein are set equal to the correspondent elements of  and τEin 

respectively, 

Einv&

v&

Einv&

4. Set internal acceleration (when there are external constraints). The object 

obtains from the outputs in O the values of forces τ′  in external constraints. 

Using  it calculates the current values of accelerations  and forces τEin, 

where τEin are internal forces produced by constraints from C. The parameters 

 and τ of each object in Ein are set equal to the correspondent elements of 

 and τEin respectively. 

τ′ Einv&

v&

Einv&
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6 Components 

In this chapter we show derived objects simulating the different types of constraints 

and forces. The description of other objects can be performed in a similar way.  

6.1 Joints 

We describe four most frequent types of joints: Revolute joint, Prismatic joint, Ball 

joint and Stiff connection. All of them are based on the constraint class (described in 

Chapter 5) and have all its parameters.  

6.1.1 Revolute joint 

 

O1

Oc

x1

y1

z1

O2x2

y2

z2

a1
r1

r2

Figure 6.1: Revolute joint 

Revolute joint object describes a revolute joint’s connection of two bodies shown in 

Fig. 6.1. Let Oi be the centre of mass of Body i (i=1,2). Let  be the centre of the 

joint. By Oixiyizi denote the frame associated with the body. Let Body 1 be basic and 

Body 2 be dependent. 

cO
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By  denote the vector of position coordinates, where xi = (xi,1 xi,2 xi,3)T is 

the Cartesian coordinates of centre of mass of the body with respect to the global 

frame and  are four Euler parameters indicating the 

orientation of the body. Let  be the rotation matrix of Body i. 

( TT
i

T
i θxqi = )

)( T
iiiii eeee 3,2,1,0,=θ

i,0A

The object has the following static parameters that should be set while the 

translation: 

1. J={Body 1, Body 2} - Array of bodies connected by the constraint, 

2. B={Body 1} - Array of basic bodies,  

3. K={Body 2} - Array of dependent bodies,  

4. r1[3,1] - Relative vector from  to , expressed in , 1O cO 1111 zyxO

5. r2[3,1] - Relative vector from  to , expressed in , 2O cO 2222 zyxO

6. a1[3,1] - Normalized axis of rotation expressed in . 1111 zyxO

While the translation the object generates the static parameter:  

1. a2[3,1] - Normalized axis of rotation expressed in   2222 zyxO

Since the properties of rotation matrices, it follows that the absolute 

coordinates of a equal to A0,1a1. Thus, we can calculate  using initial 

conditions: 

2a

 

where  is the backward rotation matrix of Body 2 T
, 2,002 AA =

10100022 aAAa === t,t,

If the joint is included in the sequence of dependencies C, then while the simulation 

we set the dynamical parameters of the object: 

1. p[1,1] - Generalized coordinate equal to the angle between the projections of 

r1 and r2 on the plane perpendicular to a:  
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2. w[1,1] - Generalized velocity equal to the time derivative of p: 

 pw &=

3. Tp=(1) - Generalized velocity transformation matrix:  

 wwTp p ==&

4. [1,1] - Generalized acceleration: w&

 

where  

110 aAw ,⋅= w  is the vector of relative angular velocity.  

1Ω  is the global angular velocity of Body 1 

( ) ( )11,0112 )( aAwvv ⋅×Ω−−= Tw &&&

5. s[4,1] - Euler parameters describing the relative rotation around the axis a1: 

 TTTT ppss ))2/sin()2/cos(()( 10 as ==

While the simulation the object runs the subroutines:  

1. Set absolute coordinates of the dependent body. The constraint calculates 

the current value of the dependency function q: 

 

 

where  

A1,2(s) is the matrix of relative rotation, 

θ=θ1◦s is the vector of Euler parameters describing the rotation of Body 2. 
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After calculation of q the object sets the current values of the coordinates of 

the dependent body: 

 q2Body =:.q

2. Set the absolute velocity of the dependent body. The object calculates the 

time derivative qwpv &=),,,( 1 vq  and sets the current values of the absolute 

velocity of the dependent body: 

 

where 2T  is the backward velocity transformation matrix of Body 2. 

)v,q(Tv 11 ,,:. 2 wpv2Body ⋅=

Now consider the functions generated by the object on each time step: 

1. g1[6,1] - Drift of the constraint for the absolute coordinates: 
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2. 
q
g
∂
∂ 1 [6,14] - Constraint Jacobian matrix,  

3. u[6,1] - Vector: 

 

 

where  is the velocity transformation matrix of the i-th body,  iT
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4.  - Drift of the constraint for the generalized coordinate, 0)(2 ≡pg

5. 02 ≡
∂
∂

p
g  - Derivative of , )(2 pg

6. 
p
pq
∂

∂ )q,( 1 [7,1] - Partial derivative,  
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7. 
1

1

q
)q,(

∂
∂ pq

[7,7] - Partial derivative. 

6.1.2 Prismatic joint 

Prismatic joint object describes a prismatic joint’s connection of two bodies shown in 

Fig. 6.2. We implemented the object as the combination of a prismatic joint and a 

revolute joint because bodies can slide and rotate and along the axis a1. For the sake 

of simplicity we do not mention the joint’s parameters associated with the rotation 

because they are absolutely the same as revolute joint’s parameters.  

Let Oi be the centre of mass of Body i (i=1,2). Let Mi be the place of connection of the 

body. By Oixiyizi denote the frame associated with the body. Let Body 1 be basic and 

Body 2 be dependent. 
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M2

 

 

 

 

 

 

 

 

Figure 6.2: Prismatic joint  

 

The object has the following static parameters that should be set while the 

translation:  
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1. J = {Body 1, Body 2} - Array of bodies connected by the constraint, 

2. B = {Body 1} - Array of basic bodies,  

3. K= {Body 2} - Array of dependent bodies,  

4. r1[3,1] - Relative vector from  to , expressed in , 1O 1M 1111 zyxO

5. r2[3,1] - Relative vector from  to , expressed in ,  2O 2M 2222 zyxO

6. a1[3,1] - Normalized axis of sliding expressed in . 1111 zyxO

While the translation the object generates the static parameter:  

1. a2[3,1] - Normalized axis of rotation expressed in . It can be 

calculated using initial values:  

2222 zyxO

 101,00022 aAAa , === tt

If the joint is included in the sequence of dependencies C, then while the simulation 

we set the dynamical parameters of the object: 

1. p[1,1] - Generalized coordinate equal to the projection of distance between  

and  on the axis a:  

1M

2M

 ( ) ( )11,0122,0211,0 rAxrAxaA −−+⋅= Tp

2. w[1,1] - Generalized velocity equal to the time derivative of p: 

 pw &=

3. Tp=(1) - Generalized velocity transformation matrix:  

 wwTp p ==&

4. [3,1] - Generalized acceleration. w&

While the simulation the object runs the subroutines:  
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1. Set the absolute coordinates of the dependent body. The constraint 

calculates the current value of the dependency function q: 

 

 

After calculation of q the object sets the current values of coordinates of 

dependent body: 
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2. Set the absolute velocity of the dependent body. The object calculates the 

time derivative qwpv &=),,,( 1 vq  and sets the current values of the absolute 

velocity of the dependent body: 

 

where 2T  is the backward velocity transformation matrix of Body 2. 

)v,q(Tv 11 ,,:.2 2 wpvBody ⋅=

Now consider the functions generated by the object on each time step: 

1. g1[6,1] - Drift of the constraint for the absolute coordinates: 
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where  is the velocity transformation matrix of the i-th body, iT
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5. 02 ≡
∂
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∂ )q,( 1 [7,1] - Partial derivative, 
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[7,7] - Partial derivative. 

6.1.3 Ball joint 

Ball joint object describes the ball joint’s connection of two bodies shown in Fig. 6.3.  

Let  be the centre of the joint. Let Oi be the centre of mass of Body i (i=1,2). By 

Oixiyizi denote the frame associated with the body. Let Body 1 be basic and Body 2 be 

dependent.  
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Figure 6.3: Ball joint  

The object has the following static parameters that should be set while the 

translation:  

1. J = {Body 1, Body 2} - Array of bodies connected by the constraint, 

2. B = {Body 1} - Array of basic bodies,  

3. K = {Body 2} - Array of dependent bodies,  
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4. r1[3,1] - Relative vector from  to , expressed in ,  1O 1M 1111 zyxO

5. r2[3,1] - Relative vector from  to , expressed in .  2O 2M 2222 zyxO

If the joint is included in the sequence of dependencies C, then while the simulation 

we set the dynamical parameters of the object: 

1. p=(p1  p2  p3  p4)T - Vector of generalized coordinates equal to the vector of 

Euler parameters of the dependent body: 

 2θp =

2. w=(w1 w2 w3)T - Vector of generalized velocity equal to the global angular 

velocity vector of the dependent body:  

 2Ωw =

3. Tp - Generalized velocity transformation matrix:  
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4.  - Generalized acceleration. w&

While the simulation the object runs the subroutines:  

1. Set absolute coordinates of the dependent body. The constraint calculates 

the current value of the dependency function q: 

 

 

where A1,2(p) is the relative rotation matrix. 

After calculation of q the object sets the new values of the absolute 

coordinates of the dependent body:  
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 q.Body =:2 q

2. Set the absolute velocity of the dependent body. The object calculates the 

time derivative qwpv &=),,,( 1 vq  and sets the current values of the absolute 

velocity of the dependent body: 

 

where 2T  is the backward velocity transformation matrix of Body 2. 

)vw,q(pTv 112 ,,:.2 vBody ⋅=

Now consider the functions generated by the object on each time step: 

1. g1[3,1] - Drift of the constraint for the absolute coordinates: 

 )rA(x)rA(xg , 11,0122021 +−+=

2. 
q
g
∂
∂ 1 [3,14] - Constraint Jacobian matrix,  

3. u[3,1] - Vector: 

 

 

where  is the velocity transformation matrix of the i-th body, iT
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7. 7. 

Figure 6.4: Stiff connection Figure 6.4: Stiff connection 

r1

O1
x1

y1

z1

O2 x2

y2

z2

Oc
r2

6. Components 70

r1

O1
x1

y1

z1

O2 x2

y2

z2

Oc
r2

1

1

q
)q(p,

∂
∂q

[7,7] - Partial derivative. 

6.1.4 Stiff connection 

Stiff connection describes a rigid connection of two bodies shown in Fig. 6.4. 

 

 

 

 

 

Let  be the centre of the joint. Let Oi be the centre of mass of Body i (i=1,2). By 

Oixiyizi denote the frame associated with the body. Let Body 1 be basic and Body 2 be 

dependent. 

cO

The object has the following static parameters that should be set while the 

translation:  

1. J = {Body 1, Body 2} - Array of bodies connected by the constraint, 

2. B = {Body 1} - Array of basic bodies,  

3. K= {Body 2} - Array of dependent bodies,  

4. r1[3,1] - Relative vector from O  to M , expressed in ,  1 1 1111 zyxO

5. r2[3,1] - Relative vector r2 from  to , expressed in ,  2O 2M 2222 zyxO

6. s=(s0 s1 s2 s3)T - Euler parameters describing the relative rotation from O  

to O . 

1111 zyx

2222 zyx

While the translation the object generates the static parameter:  

1. A1,2(s)[3,3] - Matrix of relative rotation: 
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Since the properties of rotation matrices, it follows:  

 (s)AAA 1,20,10,2 =

Obviously, the joint does not have generalized coordinates. While the simulation the 

object runs the subroutines: 

1. Set absolute coordinates of the dependent body. The constraint calculates 

the current value of the dependency function q: 

 

 

where θ=θ1◦s is the vector of Euler parameters describing the rotation of Body2. 

After calculation of q the object sets the current values of the coordinates of 

the dependent body: 
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2. Set the absolute velocity of the dependent body. The object calculates the 

time derivative qwpv &=),,,( 1 vq  and sets the current values of the absolute 

velocity of the dependent body: 

 

where 2T  is the backward velocity transformation matrix of Body 2. 

)v,(qTv 112:.2 vBody ⋅=

Now consider the functions generated by the object on each time step: 

1. g1[7,1] - Drift of the constraint for the absolute coordinates: 
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2. 
1q

g1

∂
∂ [7,14] - Constraint Jacobian matrix,  

3. u[7,1] - Vector: 

 

 

where  is the velocity transformation matrix of the i-th body, iT
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6.2 Forces 

We describe three frequent types of generalised forces: Gravity force, Spring 

Damper, and Cosine torque. All of them are based on Generalized force class 

described in Chapter 5. 

6.2.1 Gravity force 

A gravity force object simulates the impact of the gravity force on bodies.  

The object has the following static parameters that should be set while the 

translation:  

1. J={Body 1, Body 2,…, Body s} - Array of bodies that includes all bodies in a 

simulating system,  

2. g=9.8 - Gravity constant,  

3. e=(e1 e2 e3)T - Gravity direction.  

While the simulation the object runs the subroutine: 

1. Applying the force. For each Body i in J the object calculates the current 

value of the gravity force acting on the body: 

( ) sieeegm T
ii ,...,1000321 =⋅=f
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where  is the mass of Body i.  im

Then the object increases the parameter f of the body: 

 siBody iBody i i ,...,1.:. =+= fff

6.2.2 Spring damper 

Spring damper object simulates a spring with a damper between two bodies shown in 

Fig. 6.5. Let Oi be the centre of mass of Body i (i=1,2). Let Mi be the place of 

connection of the body. By Oixiyizi denote the frame associated with the body. 
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Figure 6.5: Spring damper  

The object has the following static parameters that should be set while the 

translation:  

1. J = {Body 1, Body 2} - Array of bodies connected by the constraint, 

2. r1[3,1] - Relative vector from  to , expressed in , 1O 1M 1111 zyxO

3. r2[3,1] - Relative vector from  to , expressed in ,  2O 2M 2222 zyxO

4. k - Spring constant,  

5. l0 - Unstretched length,  

6. c - Damping constant,  
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7. δ - Accuracy.  

While the simulation the object runs the subroutine: 

1. Applying the force. The object calculates the current value of the spring 

force: 

 

 

where 

l is the length of the spring: 

 

e is the normalized direction of the force: 

 

 

and the spring torques: 

 

 

Then the object increases the parameter f of connected bodies: 
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6.2.3 Cosine torque 

A cosine torque object simulates the torque acting on a body, where the torque's 

value is the cosine waves. The direction of the torque is fixed in body’s frame.  
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Let  be the centre of mass of the body. By  denote the frame associated 

with the body. 

1O 1111 zyxO

The object has the following static parameters that should be set while the 

translation:  

1. J = {Body 1} - Array of bodies,  

2. a1[3,1] - Direction of the torque expressed in , 1111 zyxO

3. C - Amplitude,  

4. k - Frequency,  

5. Timer - Timer object. 

While the simulation the object runs the subroutine: 

1. Applying the force. The object calculates the current value of the torque: 

 

Then the object increases the parameter f of the body: 

 

 

 

10,1aAt ⋅⋅⋅⋅= ).2cos( tTimerkC π

( )TT1Body 1Body tff 000.:. +=



7. Car Example 76

7 Car Example 

To validate the method presented in the preceding chapters, we have performed a 

number of calculations for the problem of a car system shown in Fig. 7.1. 

 

 

 

 

 

 

Figure 7.1: Car system  

The complete system consists of several subsystems: Damper, Wheel, Suspension. 

This example perfectly illustrates all advantages of our method: the object-oriented 

simulation of multibodies, the stabilization of closed-loop system, the numerical 

efficiency of the combination of absolute and generalized coordinates. 

All values of parameters are expressed in SI units: lengths – in meters, masses – in 

kilograms, etc. For notational simplicity we do not mention them while the model’s 

description. 

In future we will always say “The vector from body” meaning the vector from the 

body’s centre of mass. 

7.1 Wheel Subsystem 

From the physical point of view Wheel Subsystem shown in Fig. 7.2 describes a 

wheel connected with a ground by a spring. It is a Basic Subsystem consisting of a 

few objects: Ring, Ground, Spring and Wheel Output, where Wheel Output is needful for 

the descriptions of constraints, that include the wheel on next steps of hierarchy. 



7. Car Example 77

 

Ring
Body

Ground
Ground

Spring
Spring

Wheel Output
Output

 

 

 

 

 

 

 

 

 

 Figure 7.2: Wheel Subsystem 

While the description of the subsystem we use the following parameters: 

7.1.1 Spring parameters 

1. J={Ground, Wheel} - Array of connected bodies,  

2. r1=(0 0 0)T-  Distance from the ground to the ground’s place of connection,  

3. r2=(0 0 0)T-  Distance from the wheel to the wheel’s place of connection, 

4. k=4·105 - Spring constant, 

5. l0=0.35 - Outstretched length, 

6. c=100 - Damping constant, 

7. δ=10-13 - Accuracy. 
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7.1.2 Ring parameters 

1. m=15 - Mass, 

2. h=0.3 - Height, 

3. r=0.3 - Radius, 

4. ∆h=0.01 - Width of the wheel. 

7.2 Beam Subsystem 

Since Derived Subsystem objects cannot include body objects we make the universal 

Basic Subsystem object. Beam Subsystem shown in Fig. 7.3 can be included in 

derived subsystems of next levels of hierarchy. The subsystem consists of Beam and 

the beam's child Beam Output. 
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Beam Output
Output

 

 

 

 

 

 

Figure 7.3: Beam Subsystem  

While the description of the subsystem we use the following parameters: 

1. m - Mass, 

2. J [3,3] - Moment of inertia expressed in Beam frame connected with the 

centre of mass. 
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7.3 Damper Subsystem 

From the physical point of view the damper shown in Fig. 7.4 is a mechanical 

subsystem consisting of a cylinder and a piston connected by a spring and by a 

prismatic joint. 
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Figure 7.4: Damper Subsystem 
 

From the object-oriented point of view Damper Subsystem is a Basic Subsystem 

consisting of two Body objects (Cylinder and Piston), Prismatic Joint, Spring and two 

Output objects (Cylinder Output and Piston Output). 

While the description of the subsystem we use the following parameters: 
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7.3.1 Spring parameters 

1. J={Piston, Cylinder} - Array of connected bodies,  

2. r1=(0 0 -0.3)T-  Distance from the piston to the piston’s place of connection,  

3. r2=(0 0 -0.3)T-  Distance from the cylinder to the cylinder’s place of connection,  

4. k=5·104 - Spring constant, 

5. l0=0.35 - Unstretched length, 

6. c=104 - Damping constant. 

7.3.2 Cylinder parameters 

1. m=3.4 - Mass, 

2. h=0.6 - Height, 

3. r=0.03 - Radius, 

4. ∆h=0.004 - Width of the wall. 

7.3.3 Piston parameters 

1. m=13.23 - Mass, 

2. h=0.6 - Height, 

3. r=0.01 - Radius. 

7.3.4 Prismatic joint parameters 

1. J={Cylinder, Piston} - Array of connected bodies, 

2. B={Piston} - Array of basic bodies, 

3. K={Cylinder} - Array of dependent bodies, 

4. r1=(0 0 -0.3)T - Distance from the cylinder to the joint, 
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5. r2=(0 0 -0.3)T - Distance from the piston to the joint, 

6. a1=(0 0 1)T - Normalized axis of sliding. 

7.4 Suspensions Subsystem 

From the physical point of view Suspension Subsystem shown in Fig. 7.5 is a 

subsystem consisting of a damper and a beam, where damper’s piston is connected 

with the beam by a revolute joint (the axis of the joint is perpendicular to the frontal 

plane). 
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Figure 7.5: Suspension subsystem  
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From the object-oriented point of view Suspension Subsystem is a Derived 

Subsystem consisting of Damper, Beam, Revolute Joint, and two Outputs (Cylinder 

Output and Beam Output). 

In our model we use left and right types of suspensions. The left suspension is 

obtained from the right by the horizontal rotation. While the description of the left 

suspension we use the following parameters: 

7.4.1 Beam parameters 

1. m=7.02 - Mass, 

2. J =diag(0.06, 0.5855265, 0.5855265) - Moment of inertia. 

7.4.2 Revolute joint parameters 

1. J={Beam.Beam Output, Damper.Piston Output} - Array of connected bodies, 

2. B={Beam.Beam Output} - Array of basic bodies, 

3. K={Damper.Piston Output} - Array of dependent bodies, 

4. r1=(0 0 0.2)T - Distance from the beam to the joint, 

5. r2=(-0.3 0 0)T - Distance from the piston to the joint, 

6. a1=(0 1 0)T - Axis of rotation. 

7.5 Car with suspension 

From the physical point of view Car System shown in Fig. 7.6 consists of a car body 

connected with two suspensions by revolute joints with y-axis of rotation and two 

wheels connected with suspensions by revolute joints with x-axis of rotation. Trying to 

prevent the model from moving away, we connected the car body with a ground by 

the prismatic joint with z-axis of sliding. 
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Figure 7.6: Car System 

 

From the object-oriented point of view Car System is a Derived Subsystem consisting 

of Beam Subsystem (Car Body), two Wheel Subsystems (Wheel Left and Wheel Right), 

Right Suspension, Left Suspension, six Revolute Joint objects, Ground and Gravity. 
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While the description of Car System we use the following parameters: 

7.5.1 Car Body parameters 

1. m=585 - Mass, 

2. J = diag(12.675, 450.9375, 439.2375) - Moment of inertia. 

7.5.2 Revolute 1 parameters 

1. J={Car Body.Beam Output, Suspension Left.Cylinder Output} - Array of connected 

bodies, 

2. r1 =(-0.1 0 0)T - Distance from the car body to the joint, 

3. r2 =(0 0 0.3)T - Distance from the cylinder to the joint, 

4. a1=(0 1 0)T - Axis of rotation. 

7.5.3 Revolute 2 parameters 

1. J={Car Body.Beam Output, Suspension Left.Beam Output} - Array of connected 

bodies, 

2. B={Car Body.Beam Output} - Array of basic bodies, 

3. K={Suspension Left.Beam Output} - Array of dependent bodies, 

4. r1=(0 0 -0.6)T - Distance from the car body to the joint, 

5. r2=(0.5 0 0)T - Distance from the beam to the joint, 

6. a1=(0 1 0)T - Axis of rotation. 

7.5.4 Revolute 3 parameters 

1. J={Suspension Left.Beam Output, Wheel Left.Wheel Output} - Array of connected 

bodies, 
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2. B={Suspension Left.Beam Output } - Array of basic bodies, 

3. K={Wheel Left.Wheel Output } - Array of dependent bodies, 

4. r1 =(-0.5 0 0)T - Distance from the beam to the joint, 

5. r2=(0 0 0)T - Distance from the wheel to the joint, 

6. a1=(1 0 0)T - Axis of rotation. 

7.5.5 Revolute 4 parameters 

1. J={Car Body.Beam Output, Suspension Right.Cylinder Output} - Array of connected 

bodies, 

2. r1=(0.1, 0, 0)T - Distance from the car body to the joint, 

3. r2=(0, 0, 0.3)T - Distance from the cylinder to the joint, 

4. a1=(0, 1, 0)T - Axis of rotation. 

7.5.6 Revolute 5 parameters 

1. J={Car Body.Beam Output, Suspension Right.Beam Output} - Array of connected 

bodies, 

2. B={Car Body.Beam Output} - Array of basic bodies, 

3. K={Suspension Right.Beam Output} - Array of dependent bodies, 

4. r1=(0 0 -0.6)T - Distance from the car body to the joint, 

5. r2=(-0.5 0 0)T - Distance from the beam to the joint, 

6. a1=(0 1 0)T - Axis of rotation. 

7.5.7 Revolute 6 parameters 

1. J={Suspension Right.Beam Output, Wheel Right.Wheel Output} - Array of 

connected bodies, 
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2. B={Suspension Right.Beam Output} - Array of basic bodies, 

3. K={Wheel Right.Wheel Output} - Array of dependent bodies, 

4. r1 =(-0.5 0 0)T - Distance from the beam to the joint, 

5. r2=(0 0 0)T - Distance from the wheel to the joint, 

6. a1=(1 0 0)T - Axis of rotation. 

7.5.8 Prismatic joint parameters 

7. J={Ground, Car Body.Beam Output} - Array of connected bodies, 

8. B={Ground} - Array of basic bodies, 

9. K={Car Body.Beam Output} - Array of dependent bodies, 

10. r1 =(0 0 0)T - Distance from the ground to the joint, 

11. r2=(0 0 -0.95)T - Distance from the car body to the joint, 

12. a1=(0 0 1)T - Axis of sliding. 

7.5.9 Gravity parameters 

1. g=9.8 - Free fall acceleration, 

2. e=(0 0 -1)T - Gravity direction. 

7.6 Array of independent bodies and sequence of dependencies 

The array of independent bodies I is null. Three ground objects: Car System.Ground, 

Wheel Left.Ground, Wheel Right.Ground are marked in Fig. 7.7 by red. 
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Figure 7.7: Ground objects and Sequence of dependencies 
 

The constraints numbers in Fig. 7.7 are the order numbers of constraints in the 

sequence of dependencies C={Car System. Prismatic Joint, Car System.Revolute 5, 

Suspension Right.Revoulte Joint, Suspension Right.Damper.Prismatic Joint, Car 

System.Revolute 6, Car System.Revolute 2, Suspension Left.Revolute Joint, Suspension 

Left.Damper.Prismatic Joint, Car System.Revolute 3}. The loop-closing constraints Car 

System.Revolute 1 and Car System.Revolute 4 are not included in C. 

Arrows in the figure show the way of calculation of absolute coordinates of 

dependent bodies. 

Because of the closed structure of the model, we have the drift problem in the 

constraints Car System.Revolute 1 and Car System.Revolute 4. 

7.7 Start values 

The start value of the 12-th length vector of generalized coordinates is: 

1-2.  Distance parameter p1=0 and the angle of rotation p2=0 of Prismatic Joint,

3. Angle of rotation p1=0 of Car System.Revolute 5, 
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4. Angle of rotation p1=-0.7854 of Suspension Right.Revoulte Joint, 

5-6. Distance parameter p1=0.2485 and the angle of rotation p2=0 of Suspension 

Right.Damper.Prismatic Joint, 

7. Angle of rotation p1=0 of Car System.Revolute 6, 

8. Angle of rotation p1=0 of Car System.Revolute 2, 

9. Angle of rotation p1=0.7854 of Suspension Left.Revoulte Joint, 

10-11. Distance parameter p1=0.2485 and the angle of rotation p2=0 of Suspension 

Left.Damper.Prismatic Joint, 

12.  The angle of rotation p2=0 of Car System.Revolute 3. 

The start value of 12-th length vector of generalized velocities is equal to null. 

7.8 Simulation data 

We perform the simulation of the model using the method described in Chapter 2. 

The simulation data shows the numerical efficiency and stability of our solution. 

We choose the time interval to be [0,1.5]. Simulation was performed with 

Runge-Kutta method of the fourth order with the fixed time step equal to 0.001 s. 

In Fig. 7.8-7.12 is shown the dynamics of Car Body and Wheel Left together with the 

drift of the system. The simulation data shows that the algorithm is stable and the 

model's drift is constant and has the order of the computation accuracy 
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Figure 7.8: Z-coordinate of Car Body  

 

 

 

 

 

 

 

 

 

 
Figure 7.9: Z-acceleration of Car Body
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Figure 7.10: Z-coordinates of Wheel Left 

 

 

 

 

 

 

 

 

 

 

Figure 7.11: Z-acceleration of Wheel Left
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Figure 7.12: Drift of the model  

For the validation of our simulations results we have built up the same car model in 

Simpack software, shown in Fig. 7.13. The simulation in Simpack was performed 

using Simpack's default integrator SODASRT, based on the DAE integrator DASSL. 

 

 

 

 

 

 

 

 

 Figure 7.13: Simpack model  
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In the case of the simulation of closed-loop systems usually researchers perform the 

comparison of results on coordinate level (see, e.g. [HAI 96], [KUN 97]). In Fig. 7.14 

– 7.15 are shown the absolute difference between z-coordinate of the car body and of 

the left wheel in our software and in Simpack.  

Coordinate difference is limited by 1.4·10-8, and stable. This result is comparable with 

other tests of DASSL integrator (e.g. the coordinate error of the simulation of a 2-D 

car truck in [KUN 97], coordinate error of the simulation of Andrew’s squeezing 

mechanism in [HAI 96].  

Therefore, the dynamics of the model was calculated correctly and our calculation 

algorithm is stable.  

 

Figure 7.14: Absolute difference between z-coordinate of 

the car body in our software and in Simpack 
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Figure 7.15: Absolute difference between z-coordinate of 

the left wheel in our software and in Simpack 
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8 Manipulator Example 

As a second example we have 

performed a number of calculations for 

the problem of a three-links 

manipulator shown in Fig. 8.1.  

Each link of the manipulator consists 

of a beam and a motor. All links are 

rigidly connected: each link’s beam is 

fastened to the housing of the motor of 

the next link. The motor of the first link 

is rigidly connected to the ground.  

Figure 8.1: Three-links manipulator 

The axis of rotation of the first motor is vertical and the axes of the two other motors 

are horizontal, that allows the manipulator to perform spatial movements. 

The complete system consists of several subsystems: Motor, Link and Manipulator. 

This example illustrates the implementation of our method in a 3-D case. We perform 

the object-oriented simulation of the manipulator and compare the results of 

calculations using absolute and generalized coordinates with results of the simulation 

performed in Dymola software.  

8.1 Motor subsystem 

The Motor Subsystem shown in Fig. 8.2 describes the motor consisting of a housing 

(marked by red) and a rotor (marked by yellow) connected by a revolute joint. The 

motor torque T acts on the rotor in the forward direction and on the housing in the 

backward direction.  
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 Figure 8.2: Motor  

 

From the object-oriented point of view Motor is a Basic Subsystem consisting of two 

body objects (Housing and Rotor), Revolute Joint, two Cosine Torque objects (Forward 

Torque acting on the Rotor and Backward Torque acting on the Housing) and two 

Output objects (Housing Output and Rotor Output).  

While the description of the subsystem we use the following parameters: 

8.1.1 Housing parameters 

1. m=2 - Mass, 

2. h=0.3 - Height,  

3. r=0.034 - Radius, 
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4. ∆r=0.004 - Width of the walls. 

8.1.2 Rotor parameters 

1. m=7.7 - Mass, 

2. h=0.35 - Height, 

3. r=0.03 - Radius. 

8.1.3 Revolute Joint parameters 

1. J={Housing, Rotor} - Array of connected bodies, 

2. B={Housing} - Array of basic bodies, 

3. K={Rotor} - Array of dependent bodies, 

4. r1=(0 -0.15 0)T - Distance from the housing's centre of mass to the joint, 

5. r2=(0 -0.175 0)T - Distance from the rotor's centre of mass to the joint,  

6. a1=(0 1 0)T - Axis of rotation.  

8.1.4 Forward Torque parameters 

1. J={Rotor} - Array of bodies,  

2. a1=(0 1 0)T - Direction.  

8.1.5 Backward Torque parameters 

1. J={Housing} - Array of bodies, 

2. a1=(0 1 0)T - Direction. 

Remark 8.1 There are three different motors in our manipulator model. That is why 

we set frequencies and amplitudes of their torques while the definition of Manipulator 

subsystem. The frequency of Backward Torque is always equal to the frequency of a 
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correspondent Forward Torque and the amplitude of Backward Torque is always 

opposite to the amplitude of Forward Torque.  

8.2 Link Subsystem 
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Figure 8.3: Link Subsystem 

From the physical point of view the link shown in Fig. 8.3 is a mechanical subsystem 

consisting of a beam and a motor connected by a stiff joint. 

From the object-oriented point of view Link Subsystem is a Derived Subsystem 

consisting of Beam (described in Chapter 7), Motor, Stiff Joint, and two Output objects 

(Housing Output and Beam Output).  

While the description of the subsystem we use the following parameters: 
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8.2.1 Beam parameters  

1. m=0.71 - Mass, 

2. J = diag(0.06, 0.06, 0.0002) - Moment of inertia.  

8.2.2 Stiff Joint parameters 

1. J={Motor.Rotor Output, Beam.Beam Output} - Array of connected bodies, 

2. B={Motor.Rotor Output} - Array of basic bodies,  

3. K={Beam.Beam Output} - Array of dependent bodies,  

4. r1=(0 0.175 0)T - Distance from the rotor's centre of mass to the joint,  

5. r2=(0 -0.02 -0.483) T - Distance from the beam's centre of mass to the joint,  

6. s=(1 0 0 0)T - Euler parameters of the relative rotation.  

8.2.3 Manipulator Subsystem 

From the physical point of view the manipulator shown in Fig. 8.4 is a mechanical 

subsystem consisting of three links. All links are rigidly connected: each link’s beam 

is fastened to the housing of the motor of the next link. 

From the object-oriented point of view Manipulator Subsystem is a Derived 

Subsystem consisting of three Link Subsystems, two Stiff Joints, and the Output 

object (Housing Output). 

While the description of the Manipulator subsystem we use the following parameters: 
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 Figure 8.4: Manipulator Subsystem 

8.2.4 Stiff 1 parameters 

1. J={Link 1.Beam Output, Link 2.Housing Output} - Array of connected bodies, 

2. B={Link 1.Beam Output } - Array of basic bodies,  

3. K={Link 2.Housing Output} - Array of dependent bodies,  

4. r1=(0 0 0.5)T - Distance from the beam's centre of mass to the joint,  

5. r2=(0 -0.15 0)T - Distance from the housing's centre of mass to the joint, 
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6. s=(0.5 -0.5 -0.5 -0.5)T - Euler parameters describing the relative rotation around 

the x-axis on the π/2 angle. 

8.2.5 Stiff 2 parameters 

1. J={Link 2.Beam Output, Link 3.Housing Output} - Array of connected bodies, 

2. B={Link 2.Beam Output} - Array of basic bodies,  

3. K={Link 3.Housing Output} - Array of dependent bodies,  

4. r1=(0 0.02 0.483)T - Distance from the beam's centre of mass to the joint,  

5. r2=(0 -0.15 0)T - Distance from the housing's centre of mass to the joint,  

6. s=(1 0 0 0)T - Euler parameters of relative rotation.  

8.2.6 Link 1.Motor.Forward Torque parameters 

1. C=-600 - Amplitude,  

2. k=2 - Frequency.  

8.2.7 Link 2.Motor.Forward Torque parameters 

1. C=300 - Amplitude,  

2. k=2 - Frequency.  

8.2.8 Link 3.Motor.Forward Torque parameters 

1. C=-12 - Amplitude,       

2. k=2 – Frequency.  

8.3 Complete system 

From the physical point of view the mechanical system shown in Fig. 8.5 consists of 

a manipulator and a ground connected by a stiff joint.  
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Figure 8.5: Complete system 

 

From the object-oriented point of view the system is a Derived Subsystem consisting 

of Manipulator, Ground, Stiff Joint and Gravity. 

While the description of the system we use the following parameters 

8.3.1 Stiff Joint parameters 

1. J={Ground, Manipulator.Housing Output} - Array of connected bodies,  

2. B={Ground} - Array of basic bodies,  

3. K={Manipulator.Housing Output} - Array of dependent bodies,  
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4. r1=(0 0 0)T - Distance from the ground to the joint, 

5. r2=(0 -0.15 0)T - Distance from the housing's centre of mass to the joint,  

6. 
T

⎟
⎠

⎞
⎜
⎝

⎛
= 00

2
1

2
1s - Euler parameters describing the relative rotation 

around the x-axis on the -π/2 angle. 

8.3.2 Gravity parameters 

1. g=9.8 - Free fall acceleration, 

2. e=(0 0 -1)T - Gravity direction. 

8.4 Array of independent bodies and sequence of dependencies 
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Fig. 8.6: Ground and Sequence of dependencies 

The array of independent bodies I  is null. The ground is marked in Fig. 8.6 by red. 
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The sequence of dependencies C consists of nine constraints (marked in Fig. 8.6 by 

yellow): C={Stiff Joint, Manipulator.Link 1.Motor.Revoulte Joint, Link 1.Stiff Joint, 

Manipulator.Stiff 1, Manipulator.Link 2.Motor.Revoulte Joint, Link 2.Stiff Joint, 

Manipulator.Stiff 2, Manipulator.Link 2.Motor.Revoulte Joint, Link 3.Stiff Joint}. Constraint 

numbers in Fig. 8.6 are their order numbers in C. 

Using generalized coordinates while the simulation, we do not have drift problems 

because of the tree-structure of the manipulator. 

8.5 Start values 

The vector of generalized coordinates p consists of three elements: 

1. The angle of rotation of Manipulator.Link 1.Motor.Revoulte Joint, 

2. The angle of rotation of Manipulator.Link 2.Motor.Revoulte Joint, 

3. The angle of rotation of Manipulator.Link 3.Motor.Revoulte Joint. 

The start values of the generalized coordinates and velocities are: 
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8.6 Simulation data 

We perform the simulation of the model using the method described in Chapter 2. 

We choose the time interval to be [0, 5]. Simulation was performed with predictor-

corrector method of Adams-Moulton with the fixed time step equal to  

10-4s. 

In Fig. 8.7-8.9 are shown the changes of generalized coordinates, generalized 

velocities and generalized accelerations. 
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Figure 8.7: Generalized coordinates 
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 Figure 8.8: Generalized velocities 
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 Figure 8.9: Generalized accelerations  

For the validation of our simulations results we have built up the same manipulator 

model in Dymola software, shown in Fig. 8.10.  

 

 

 

 

 

 

 

 

 

 

 Figure 8.10: Dymola manipulator model  



8. Manipulator Example 106

Obviously, it is most sensible to compare our simulation results on the accelerations 

level because of their high variability. In Fig. 8.11 is shown the maximum absolute 

difference  between generalized accelerations in our software and in Dymola, 

that are calculated using the formula: 

)(tw&∆
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ttt i

D
ii

www &&& −=∆
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where  

)(tD
iw&  is the i-th generalized acceleration calculated in Dymola, 

  is the )(tiw& i-th generalized acceleration calculated in our software. 
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Figure 8.11: Difference between the generalized 

accelerations in our software and in Dymola  
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The comparison of accelerations shows that the dynamics of the manipulator model 

was calculated correctly and our calculation algorithm is stable. Peaks in Fig. 8.11 

are limited by 1.4·10-8 and correspond to local extremums of accelerations.  

If we perform the simulation of the model using absolute coordinates without 

stabilization, the error in constraints’ equations grows with time. In Fig. 8.12 is shown 

the drift of the unstabilized model.  
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Figure 8.12: Drift of the unstabilized model 
 

 

Conversely, the drift of the stabilized model shown in Fig. 8.13 is limited for a long 

period of time and has the order of floating-point precision.  
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Figure 8.13: Drift of the stabilized model 

For the validation of simulations results of the stabilized results we compared them 

with Dimola’s results. It is the most sensible to compare accelerations of Link 3 

because of their highest variability. In Fig. 8.14 is shown the maximal absolute 

difference between accelerations of Link 3 in our stabilized model and in Dymola.  
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Figure 8.14: Difference between the accelerations of 

Link 3 in the stabilized model and in the Dymola model 
 



8. Manipulator Example 109

Therefore, the stabilization works correctly though the total number of absolute 

coordinates is 64 and the total number of equations of constraints is 75. 

We get that the manipulator’s model can be correctly simulated in two ways: the first 

is the using of generalized coordinates, the second is the performing post-

stabilization using absolute coordinates. The using of generalized coordinates has 

the less computation complexity that is very important in the simulation of 

multibodies.  

Finally, the simulation results show that our tool does not have limits on the structure 

of the simulating model and can be implemented for the simulation of complex 3-D 

models. 
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9 Conclusion 

9.1 Results 

Our goal is to develop a method for component oriented modelling and simulation of 

constrained multibody dynamics. 

In this thesis we start from the comparison of forward dynamic methods that can be 

used as bases of simulation tools. We determine the most important appreciated 

characteristics of methods: stability, numerical efficiency and practical usability. 

Comparing the different stabilization technique, we show the advantage of the post-

stabilization technique [AHR 95]. In Chapter 1 are observed also a few methods of 

distributed forward dynamic simulation. Nowadays, the fastest available method, 

divide-and-conquer algorithm, has a large number of drawbacks and limits. That is 

why we develop the new distributed object-oriented method that is more stable and 

convenient in practical use.  

An implementation of a method is not trivial and requires great effort. In Chapter 1 we 

determine the main characteristics of simulation tools: flexibility, usability and 

interaction with other tools. We precisely describe the object-oriented modelling 

paradigm that we use as the basis of our tool. 

In Chapter 2 we observe some important theoretical problems of the development of 

our method i.e. the choice between generalized and absolute coordinates, choice of 

absolute coordinates etc. We show that the method is stable, distributable and does 

not have limits on the structure of a simulating system.  

In Chapter 3 we appreciate the several computation complexities: stabilization, a 

simulation of a basic subsystem and simulation of a derived subsystem. 

Summarizing them, we obtain the global O(n·D3+t2·s) complexity of the method, 

where n is the total number of bodies, D is the upper limit of constraints in a 

subsystem, t is the number of closed loops and s is the total number of bodies in 

loops. Thus, the numerical efficiency of our method is comparable with fastest 

available algorithms.  
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In Chapter 4 we show the implementation background of the method. The software is 

based on a strictly capsulated block-module concept. In this context it means that the 

mechanical structure will be represented by separate objects which interact with each 

other via predefined interfaces. Then we precisely consider the advantages of such 

an approach and its profits of calculation of accelerations using the same hierarchy 

disassembly as it was performed while the model’s construction.  

In Chapter 5 we start the consideration of the object-oriented implementation of our 

method. We show eight basic objects that are used in our algorithm: Timer, Ground, 

Body, Body Output, Generalized Force, Constraint, Basic subsystem, Derived 

subsystem. In Chapter 6 we show the child objects that describe the different types 

of constraints and forces: Revolute Joint, Ball Joint, Gravity Force etc. 

Using the Visual-Basic implementation of our method, in Chapter 7 and Chapter 8 we 

simulate two models: a car system and a spatial manipulator. Both models are 

performed using object-oriented approach, with several levels of hierarchy.  

The simulation data shows that the algorithm is stable and the model's drift is 

constant and has the order of the computation accuracy in the cases of closed-loop 

and tree structure.  

For the validation of our simulation results we have built up the same models in 

Dymola and Simpack software. The comparison shows that the dynamics of the 

models was calculated correctly. 

Thus, we obtain the simulation proof that our tool could be implemented for the 

simulation of large constrained multibody systems. 

9.2 Discussion of future work 

9.2.1 Integration with CAD tools 

It seems to be inconvenient to create a new graphical model editor like Dymola Editor 

or Simulink because of the high cost of the development and the existence of other 

editors. Since most of 3D models are created inside CAD tools, the much more 

effective way is to integrate our tool with CAD tools. In this case a design engineer 
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specifies geometric and material data of simulation model inside CAD tool and then 

translates it into our simulation tool. This approach minimise the model’s 

development cost and training of design engineers.  

9.2.2 Simulations and analysis of systems with variable structures 

Many industrial systems such as robots are subjected to a change in their kinematic 

structure during the simulation. Backslash and coulomb friction are possible sources 

of these mechanical structure changes. In this case the structure and the number of 

equations of constraints changes and discontinuities on acceleration level will occur. 

Simulations and dynamical analysis of multibody systems with variable kinematic 

structures are needed. The method presented here can be extended straightforward 

to deal with this variable structures. 

9.2.3 Distributed simulation  

Nowadays, we consequently perform the transformation from generalized 

coordinates and velocities to absolute coordinates and velocities. The next step is to 

develop the method of distribution of this calculation using the existing models 

hierarchy.  

The sophisticated problem is the implementation of the distribution. Classical 

methods of distributed simulation works on computers with many processors and low 

communication cost. But the much more common situation is a network consisting of 

several computers. In this case we should minimise the communication costs. The 

optimal way is to start on each computer an independent procedure that translates 

and simulates an individual subsystem. The development of the interaction of 

computers during the simulation is a challenge. 
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Appendix A 

Quaternions algebra 

A quaternion is a collection of four real parameters, of which the first is considered 

as a scalar and the other three as a vector in three-dimensional space. In addition, 

the following operations are defined. If ( ) ( )TTT eeeee 32100 == eθ  and 

 are two quaternions, their sum is defined as ( ) ( TTT ccccc 32100 == cς )

( )TTTce ceςθ ++=+ 00 (A. 1) 

and their product (non-commutative) as 
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Thus, differentiating the product, we obtain  

(A. 3) ςθςθςθ ′+′=′ ooo )(

The quaternion  is identified as the set of Euler parameters for the description 

of finite rotation. According to Euler's theorem of finite rotation, a rotation in 

space can always be described by a rotation along a certain axis over a 

certain angle. With the unit vector a

θ

µ representing the axis and the angle of 

rotation µ, right-handed positive, the Euler parameters  can be interpreted as θ

(A. 4) 
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The rotational matrix A(θ ) is equal: 
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The rotation matrix A of two consecutive rotations θ  and  is equal: ς
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A simple relationship exists between the components of the global angular velocity 

vector Ω  and time derivatives of Euler parameters ( )Teeee 3210 &&&&& =θ : 
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where E is a semi-transformation matrix that depends linearly on Euler parameters: 
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Also exists the backward dependency: 

(A. 8) θE&2=Ω
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