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1. Introdu
tion
The �eld of nonlinear dynami
s has attra
ted mu
h attention during the past 
entury

sin
e the seminal work of Poin
aré [1℄ who studied the stability of planetary motions

in the framework of 
lassi
al Newtonian me
hani
s. Already at the end of the 19th


entury he noti
ed that small perturbations of integrable Hamiltonian systems may lead

to unpredi
table long-time behavior due to `small divisor' resonant terms showing up

in a perturbation series approa
h. The work of Poin
aré marked the beginning of a

period during whi
h the per
eption began to prevail that irregular behavior in 
onser-

vative systems is the rule rather than the ex
eption. This period 
ulminated in the

works of Kolmogorov [2℄, Arnold [3℄ and Moser [4℄ who 
ame up with the 
elebrated

KAM theorem. For the 
ase that the integrable, and therefore regular motion, o

urs

on a 2-torus where the frequen
ies are su�
iently in
ommensurable, the theorem ba-

si
ally says that the torus will persist under small perturbations. In the 
ase that the

frequen
ies are 
ommensurable, small perturbations will 
ause the torus to de
ompose

into smaller tori whi
h again may be stable a

ording to the KAM theorem. However,

the motion in phase spa
e between the tori is 
ompletely irregular and for su�
iently

large perturbations all tori and therefore all regular behavior is destroyed.

Unlike 
onservative systems, where the total energy is a 
onstant of motion, many real

world systems belong to the 
lass of so-
alled dissipative systems sin
e they permanently

dissipate energy into heat, for example, or rely on a steady ex
hange of energy and/or

matter with the environment in order to operate properly. It has been a mystery for a

long time how living organisms 
ir
umvent the se
ond law of thermodynami
s. Now we

know that they represent open systems that 
ontinuously maintain a 
ertain distan
e to

thermodynami
al equilibrium and thus, the se
ond law is not appli
able to them in the

usual sense.

The distan
e to equilibrium 
an usually be 
ontrolled by parameters or boundary


onditions modeling the environmental surrounding of the system under investigation.

In parti
ular, it is possible to bar an open system from rea
hing the thermodynami
al

equilibrium. Close to the equilibrium, the dynami
s of the system follows linear rela-

tions among generalized �uxes and for
es that 
ause the system to approa
h a unique

stable nonequilibrium state. The states, 
lose to the equilibrium, form the so-
alled

thermodynami
al bran
h (
f. Fig. 1.1) sin
e it emanates 
ontinuously from the state

of thermodynami
al equilibrium. However, Ni
olis and Prigogine [5℄ showed that when

open systems are driven farther away from thermodynami
al equilibrium, nonlinear pro-


esses may destabilize the thermodynami
al bran
h giving rise to new stable nonequi-

librium states whi
h they termed dissipative stru
tures. They further showed that for

su
h stru
tures to o

ur, a 
ertain 
riti
al distan
e to equilibrium must be ex
eeded.

1
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Figure 1.1.: Dissipative stru
tures emerge far away from thermodynami
al equilibrium

as a 
riti
al parameter value is ex
eeded. Beyond that point the thermo-

dynami
al bran
h is unstable and nonlinear phenomena drive the system

towards new stable nonequilibrium states. (stable states ↔ solid lines, un-

stable states ↔ dashed lines)

Today we know that the nonlinear behavior of a system is a further ne
essary 
ondi-

tion for the o

urren
e of dissipative stru
tures. The mathemati
al language in whi
h

nonlinear phenomena are frequently formulated is that of dynami
al systems theory,

i.e. one has to spe
ify a suitable phase spa
e X together with an evolution law for the

state of the system. In the 
ase that the evolution law is deterministi
, the state of the

system at time t is 
ompletely determined by a one-parameter group of transformations

ϕt : X → X a

ording to xt = ϕtx0 on
e the initial state x0 ∈ X of the system is known.

In general, one distinguishes two kinds of dynami
al systems � 
ontinuous-time systems

with t ∈ R being a 
ontinuously varying parameter and dis
rete-time systems where

t ∈ Z is an integer. In the 
ontinuous-time 
ase, the one-parameter group of transfor-

mations is also 
alled a �ow whi
h is typi
ally obtained as a solution of an initial value

problem of a system of ordinary or partial di�erential equations depending on whether

the system under 
onsideration is spatially homogeneous or not.

Dissipative stru
tures are frequently observed as a result of self-organizing pro
esses

in spa
e or time where the individual entities of an ensemble spontaneously begin to

a
t in a 
ooperative manner as soon as a relevant parameter of the system ex
eeds a

2




ertain 
riti
al value. As a result, new properties of the system as a whole emerge

whi
h were not yet seen in the individual entities. These new system-theoreti
al aspe
ts

were 
ombined by Haken [6℄ with the methods of nonlinear dynami
s to establish a new

�eld of resear
h 
alled Synergeti
s. Here the new emergent ma
ros
opi
 features of a


omplex system, 
onsisting of many subunits ea
h of whi
h follows a 
ertain mi
ros
opi


dynami
s, are des
ribed 
lose to the transition from individual to 
olle
tive behavior

by only very few degrees of freedom, so-
alled order parameters. As an example for

temporal self-organization, 
onsider an opti
al resonator 
ontaining an a
tive medium

whose atoms are ex
ited by an external energy supply. Below a 
ertain energy pump-

rate, all atoms emit light just randomly resulting in a low power output of the system.

However, above a 
ertain threshold, the atoms start to syn
hronize their os
illation

phases and the power output is high � the system works as a laser.

A distin
t feature of dissipative systems, as 
ompared to 
onservative ones, is that in

the former bounded regions in phase spa
e may shrink during the temporal evolution

in whi
h 
ase all traje
tories starting in that region are attra
ted by lower dimensional

phase spa
e obje
ts su
h as points, 
urves or tori whi
h would result in a regular motion

of the system. In addition, it was found that the long-time dynami
s of a dissipative

system may o

ur on quite 
ompli
ated sets in phase spa
e. These sets 
an be of fra
tal

nature whi
h is the reason why they were 
alled strange attra
tors. The behavior of

traje
tories on su
h an attra
tor is highly irregular or 
haoti
. For example, traje
tories

whose initial 
onditions on a 
haoti
 attra
tor vary only slightly will diverge exponen-

tially fast from ea
h other in the 
ourse of the temporal evolution and thus, may lead

after �nite time to 
ompletely di�erent behavior. As a 
onsequen
e, it is pra
ti
ally im-

possible to fore
ast the long-time behavior of real world 
haoti
 system sin
e its initial


onditions are only known with �nite a

ura
y.

One of the �rst numeri
al eviden
es for the existen
e of a 
haoti
 attra
tor was re-

ported by Lorenz [7℄ in 1963 who studied a nonlinear three variable system of ordinary

di�erential equations that was derived from a 2-dimensional 
onve
tive �uid system by

a Galerkin proje
tion of suitable Fourier modes. In the same year, Smale [8℄ 
onstru
ted

his famous horseshoe map whi
h is a simple 2-dimensional map that expands small phase

spa
e volumes in one dire
tion while it 
ontra
ts them in the orthogonal dire
tion. Su
h

maps may be indu
ed by the �ow of a 
ontinuous-time dynami
al system on a suitable

Poin
aré se
tion where they 
an o

ur in 
onjun
tion with a homo
lini
 orbit of the

Poin
aré map [9℄. The horseshoe map has a very 
ompli
ated invariant set exhibiting

the stru
ture of a dire
t produ
t between two Cantor sets. If the dynami
s is only 
on-

sidered on the invariant Cantor set, one �nds the essential properties of 
haoti
 behavior

su
h as the `sensitve dependen
e on the initial 
onditions' mentioned above. In addition,

the invariant set of the horseshoe map 
ontains a 
ountable in�nity of periodi
 points

whi
h are all of saddle-type, a 
ountable in�nity of homo
lini
 and hetero
lini
 orbits

and a non
ountable in�nity of nonperiodi
 points. Thus, the typi
al (i.e. for almost all

initial 
onditions) behavior of traje
tories on the invariant set is highly irregular.

Although the invariant Cantor set of the horseshoe map is not an attra
tor, the

map has an important property whi
h is the reason why it is still 
onsidered as the

prototypi
al example of a 
haoti
 system: that is its stru
tural stability. This means

3
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that if the horseshoe map is slightly perturbed, the invariant Cantor set as well as

the properties of the dynami
s on this set will persist. In this sense, the notion of

stru
tural stability 
an be used to de�ne the phenomena of a system that are observable

in numeri
al or real experiments whi
h are always subje
t to small perturbations. Thus,

a natural question to ask is: What is the `typi
al' behavior of traje
tories in a given

dynami
al system and how does it 
hange as parameters in the system are varied? In

this 
ontext, `typi
al' means that the 
orresponding behavior is observed for a large set of

initial 
onditions and/or parameter values. For example, a system 
ould have a 
haoti


attra
tor for parameter values that form a set of Lebesque measure zero in parameter

spa
e whi
h, therefore, would not be observable in experiments. On the other hand,

it is often the regular periodi
 behavior of a system whi
h is of mu
h more pra
ti
al

relevan
e than to know that a system has an invisible 
haoti
 attra
tor.

Of parti
ular interest are 
omplex os
illatory states su
h as mixed-mode or bursting

os
illations whi
h are frequently observed in 
hemi
al and biologi
al systems where they

are of potential relevan
e for signal transdu
tion pro
esses. These periodi
 states exhibit

a spe
ial waveform whi
h 
an be des
ribed as a repeating pattern of L large amplitude

os
illations that are followed by S small ones. Due to this property, mixed-mode or

bursting states are labeled by the nomen
lature LS. Mixed-mode os
illations (MMOs)

were �rst observed in 
hemi
al rea
tion systems su
h as the Belousov-Zhabotinsky (BZ)

[10, 11, 12℄ and the peroxidase-oxidase (PO) rea
tion system [13, 14, 15℄, while bursting

dynami
s was predominantly reported for biologi
al pro
esses su
h as nerve signal 
on-

du
tion [16, 17℄, signal transdu
tion dynami
s in the 
ell involving 
al
ium ions as se
ond

messengers [18, 19℄ and the se
retion of insulin by pan
reati
 β-
ells [20, 21, 22℄. Thus,
the distin
tion between mixed-mode and bursting os
illations is somewhat arbitrary and

seems to re�e
t the 
ontext in whi
h they were found experimentally.

Bursting behavior 
an be alternatively 
lassi�ed by a slow-fast analysis following

Rinzel and Ermentrout [23℄. Systems exhibiting bursting os
illations typi
ally involve

a fast os
illatory subsystem whi
h is 
oupled to a slowly evolving variable whi
h a
ts

as a quasi-stati
 bifur
ation parameter for the fast subsystem. A

ordingly, one 
an


lassify the bursting behavior by the type of bifur
ations o

uring in the fast subsystem,

that lead to the emergen
e and disappearan
e of the bursting state [24℄. MMOs are

frequently en
ountered in the transition region from simple periodi
 or quasi-periodi
 to


haoti
 behavior where they either appear in periodi
-
haoti
 or as (in
omplete) Farey

sequen
es (
f. Table 1.1). The latter often arise from phase-lo
ked states on an invariant

2-torus as, for example, in the BZ [11, 25, 26℄ and in the PO system [14, 15, 27℄. How-

ever, Hauser and Olsen [13℄ found MMOs in the PO system whi
h were asso
iated with a

saddle-fo
us homo
lini
 orbit instead of a 2-torus. Similarly, Koper [28℄ observed MMOs

in a three-variable extension of the Boissonade-DeKepper model [29℄ whi
h emerge from

a neutrally twisted homo
lini
 orbit in a 
odimension two bifur
ation.

Another possible s
enario was put forward by Ringland et. al. [30℄ who showed that

a one-parameter family of two-extremum maps may (in a 
ertain limit) equally a

ount

for the ordering of MMOs into Farey sequen
es without the ne
essity of involving a

2-torus. Gorya
hev et. al. [31℄ found a 
on
rete realization of this map in terms of a

Poin
aré map asso
iated with the 3-dimensional �ow of another three-variable exten-

4



Fn Elements in Fn

F1 {0
1
, 1

1
}

F2 {0
1
, 1

2
, 1

1
}

F3 {0
1
, 1

3
, 1

2
, 2

3
, 1

1
}

F4 {0
1
, 1

4
, 1

3
, 1

2
, 2

3
, 3

4
, 1

1
}

Table 1.1.: The general Farey sequen
e Fn is de�ned for any positive integer number n.
It 
ontains the set of irredu
ible rational numbers a/b with 0 ≤ a ≤ b ≤ n
arranged in in
reasing order. Ea
h three su

esive terms in a Farey sequen
e

obey Farey arithmeti
, i.e. the middle term in the sequen
e p/q, p′/q′, p′′/q′′

is the `sum' of the neighbors a

ording to
p′

q′
= p

q
⊕ p′′

q′′
≡ p+p′′

q+q′′
.

sion of the Boissonade-DeKepper model whi
h a

ounts for a qualitative des
ription of

transient MMOs in the BZ rea
tion. They reported that the MMOs are embedded into

a horseshoetype attra
tor.

In the present thesis, we investigate the bursting os
illations in the hemin � hydrogen

peroxide � sul�te system (hemin system) [32, 33, 34℄ whi
h represents a so-
alled pH

os
illator (Fig. 1.2) sin
e it indu
es periodi
 
hanges in the proton 
on
entration of

the rea
tion medium. Thus, the produ
tion and 
onsumption of H+ ions are essential

steps in the rea
tion me
hanism of a pH os
illator. A large family of pH os
illators

is based on the auto
atalyti
 oxidation of HSO
−
3 by H2O2 [35℄ while they di�er in the

H+-
onsuming spe
ies that provides for a negative feedba
k to allow for an os
illatory

dynami
s [35, 36, 37, 38, 39℄. One of the main motivations to study pH os
illators is

their potential relevan
e for biologi
al systems sin
e 
hanges in the pH value a�e
t many

physiologi
al parameters in the environment of the system, e.g. in the permeability of

membranes or the a
tivity of enzymes.

So far, most of the known pH os
illators involve only inorgani
 substan
es whi
h 
learly

limits their biologi
al relevan
e. Therefore, Hauser et. al. [32℄ developed a new pH

os
illator based on the well-known pH-dependent oxidation of HSO
−
3 by H2O2 [35℄ whi
h

involves hemin as an enzyme model 
ompound that provides for the required negative

feedba
k step in order to generate os
illatory dynami
s. Sin
e hemin is 
onsidered as

a bio
ompatible mimi
k of heme-
ontaining enzymes [40, 41, 42℄, the hemin rea
tion

system represents a �rst step towards a biologi
ally more realisti
 pH os
illator.

The dynami
al properties observed in the family of pH os
illators is very ri
h. Exper-

imental and numeri
al investigations revealed a period doubling route to 
haos [36, 37℄

as well as 
omplex os
illatory patterns su
h as bursting os
illations [43, 44℄. However,

a detailed bifur
ation analysis revealing the nature of the 
omplex os
illatory patterns

in pH os
illator systems has, to our knowledge, not yet been performed. Therefore, we

devote one part of the present thesis to a detailed study of bursting os
illations in the

5
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Figure 1.2.: Time series obtained from a numeri
al simulation of the bursting pH os-


illations in the hemin system (left image): 4 large amplitude os
illations

alternate with 19 small ones. The re
tangular region is magni�ed in the

right image showing the small amplitude os
illations.

hemin system where we are parti
ularly interested in the bifur
ations involved in the

transition from simple periodi
 to bursting os
illations as well as in the elu
idation of the

underlying bursting me
hanism. A thorough understanding of the nonlinear behavior

exhibited by simple rea
tion s
hemes, su
h as that of the hemin system, whi
h only 
on-

sists of rea
tions involving the enzyme spe
ies hemin and its substrates, may essentially

fa
ilitate the 
omprehension of the dynami
s in more 
omplex rea
tion networks.

A se
ond major issue, that will be addressed in the 
ourse of the thesis, is how 
omplex

rea
tion networks, su
h as those des
ribing metabolism [45, 46℄, atmospheri
 
hemistry

[47, 48℄, and 
ombustion rea
tions [49, 50℄, 
an be simpli�ed while keeping their essential

dynami
al properties. For example, the realisti
 modeling of large s
ale systems, su
h as

a detailed des
ription of 
ombustion rea
tions [50℄ or the Belousov-Zhabotinsky rea
tion

[51℄, usually requires the integration of large systems of ordinary di�erential equations

(ODE systems). Moreover, one is usually interested in the system's behavior as one or

more externally tunable parameters are 
ontinuously varied. Thus, it is highly desirable

from a pra
ti
al point of view to be able to identify the essential dynami
al degrees of

freedom in a given rea
tion network in order to obtain redu
ed systems whi
h are mu
h

easier to investigate, but still show the relevant dynami
s of the original system.

A redu
tion of 
omplex rea
tion me
hanisms may also be useful for other, more theo-

reti
al reasons: For example, one would like to know those rea
tion steps and 
hemi
al

spe
ies in a given me
hanism that are ne
essary to generate a 
ertain type of dynam-

i
s. This information 
ould then be used to design dynami
al systems with desired

properties. While a general answer to this problem is still missing, there are promising

results about bistable [52℄, os
illatory [53, 54℄ and a 
ertain 
lass of 
haoti
 systems [55℄.

The main tools of investigation in this �eld are stoi
hiometri
 network analysis [56℄ and

6



sensitivity analysis [57℄. Both theoreti
al approa
hes have been su

esfully 
ombined

with prin
ipal 
omponent analysis to identify essential rea
tion steps in diverse systems

su
h as the metabolism of red blood 
ells [58℄ and the well-known Belousov-Zhabotinsky

rea
tion [59℄.

There are basi
ally two reasons why 
hemi
al rea
tion networks often show redun-

dan
ies, whi
h 
an be used for an e�e
tive model redu
tion: First, 
hemi
al rea
tions

o

ur in �xed stoi
hiometries. This results in mass 
onservation relations for 
ertain

atoms and thus, not all 
hemi
al spe
ies in a given network a
t as independent degrees

of freedom. Se
ond and more importantly, 
hemi
al rea
tions naturally evolve on dif-

ferent time s
ales. A

ordingly, their temporal evolution 
an be de
omposed into a fast

transient relaxation to lower dimensional invariant slow manifolds and a subsequent evo-

lution on the union of these manifolds, whi
h often still 
aptures the interesting type

of dynami
s on experimentally a

essible time s
ales. The mathemati
al des
ription of

su
h rea
tion networks leads to singularly perturbed systems for whi
h a well developed

theory [60, 61℄ exists. As a result, one obtains a lower dimensional approximation on

the slow manifold of the original system.

In the 
ourse of the years, several methods exploiting singular perturbation te
hniques

have been proposed to simplify 
omplex 
hemi
al rea
tion networks su
h as lumping

s
hemes [62℄ or the approximation of the invariant manifold based on a fun
tional equa-

tion [63℄. However, before these te
hniques may su

essfully be applied, one still needs

to identify the di�erent time s
ales in the system whi
h is often the hardest task. The

presen
e of di�erent time s
ales is usually indi
ated by small dimensionless parameters

in front of time derivatives of some of the phase spa
e variables whi
h indi
ates that

these variables vary signi�
antly only on very short time s
ales and thereafter follow

instanteneously (algebrai
ally) the dynami
s of the slow degrees of freedom.

The 
onventional strategy to sear
h for small parameters in a system is to introdu
e

new dimensionless variables su
h that some 
ombination of intrinsi
 parameters be
omes

su�
iently small and subsequently may be used as a singular perturbation parameter.

Clearly, this pro
edure be
omes a formidable task in more 
omplex rea
tion networks

and other methods are required; as for example the method of 
omputational singular

perturbation proposed by Lam [64℄. Furthermore, the res
aling pro
edure is not free

of ambiguity in 
hoosing the 'right' s
ales [65℄ and if the res
aled variables are not

bounded from above and below, then the res
aled kineti
 parameters do not provide any

indi
ation, whether the 
orresponding rea
tion step is slow or fast. Thus, one is often

guided by 
hemi
al intuition or experimental expertise to group the individual rea
tions

a

ording to slow and fast steps. On
e the di�erent time s
ales of a system are known,

it is more or less straight forward to apply singular perturbation te
hniques in order to

redu
e the dimensionality of the original system.

In view of the above mentioned problems to identify the relevant time s
ales in a

system, we shall introdu
e a new method that allows to systemati
ally �nd slow man-

ifolds in a 
ertain 
lass of rea
tion networks (in
luding those following a mass-a
tion

kineti
s) whi
h neither relies on a priori knowledge about the time s
ales nor requires a

sophisti
ated res
aling pro
edure to identify small parameters in a system. Instead, we

dire
tly use the solution 
urves from a numeri
al integration routine to 
he
k whether

7
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ertain nonlinear fun
tions of the phase spa
e variables, whi
h we 
all quasi-integrals, are

approximately 
onstant along the numeri
ally obtained solution 
urves. Quasi-integrals

de�ne nonlinear algebrai
 
onstraints among some of the phase spa
e variables and thus,

may be used to eliminate dynami
al degrees of freedom in the rea
tion network; for ex-

ample, by a quasi-steady-state approximation (QSSA) [66, 67℄. In this sense, the method

of quasi-integrals may serve as a supplement to existing methods whi
h rely on a priori

knowledge of time s
ales.

In the next Se
tion, we introdue the hemin system in some detail sin
e it represents

the main obje
t of study in this thesis. Afterwards, we give a detailed outline of the

thesis and thereby 
on
lude the introdu
tion.

1.1. The hemin � hydrogen peroxide � sul�te system

The hemin � hydrogen peroxide � sul�te system belongs to a family of pH os
illators

whi
h are based on the pH-dependent oxidation of HSO
−
3 by H2O2 sin
e this rea
tion

produ
es H
+
ions in an auto
atalyti
 fashion [35, 36, 37, 38, 39℄. In order to prevent the

unbounded produ
tion of protons, H
+
-
onsuming rea
tions are required, whi
h play the

role of a negative feedba
k step and thus, open the possibility for an os
illatory dynami
s

of the pH value in the rea
tion medium. In earlier studies of pH os
illators, inorgani



ompounds su
h as hexa
yanoferrate [36, 35℄, thiosulfate [43℄, sul�de [68℄, or hydrogen


arbonate [37℄ have been used to a

omplish the negative feedba
k. However, due to

the use of purely inorgani
 substan
es, the 
orresponding pH os
illator systems are not

ne
essarily physiologi
ally 
ompatible. To this purpose, Hauser et. al. [32℄ developed

a pH os
illator where hemin provides for the H
+
-
onsuming rea
tion steps and thus,

represents a �rst step towards a biologi
ally more realisti
 pH o
sillator.

The hemin system was studied experimentally under open 
onditions in a 
ontinuous-

�ow stirred tank rea
tor to whi
h the ne
essary rea
tants are 
ontinuously supplied at

a 
ertain rate k0 and from whi
h all produ
ts are 
ontinuously removed at the same

rate. Thus, there is a 
onstant matter �ow through the system keeping it away from

thermodynami
al equilibrium.

With in
reasing �ow rate k0, the following sequen
e of nonequilibrium states was

observed: a
idi
 (pH∼ 6.5) stationary state → relaxational os
illations → bursting

os
illations → alkaline (pH∼ 7.6) stationary state. The bursting os
illations 
onsist of

one large amplitude os
illation and a 
ertain number of small amplitude os
illations per

period.

A �rst rea
tion me
hanism was proposed in [32, 33℄ based on the well established

oxidation of HSO
−
3 by H2O2 whi
h involves the auto
atalyti
 rea
tion step. In addition,

two pH-dependent equilibria between di�erent forms of hemin were 
onsidered as sour
es

for the negative feedba
k step. However, we showed in a re
ent publi
ation [34℄ that

one of these two equilibria, the pH-dependent dimerisation of hemin, provides only a

minor 
ontribution to the onset of os
illations and may therefore be negle
ted, sin
e we

are aiming at a minimal rea
tion me
hanism whi
h only 
ontains the essential rea
tion

steps in order to reprodu
e the observed dynami
s.

8



1.1. The hemin � hydrogen peroxide � sul�te system

Instead, it be
ame ne
essary to take the degradation of hemin by H2O2 into a

ount

whi
h is known to o

ur at high H2O2 
on
entrations ex
eeding 8 × 10−3mol l
−1

[69℄.

In this degradation pro
ess, the porphyrin ring of hemin is oxidatively 
leaved by a yet

unknown agent. This rea
tion was found to be of �rst order with respe
t to hemin

[70℄. Due to the un
ertainty 
on
erning the oxidising agent and in order to keep the

me
hanisti
 model as simple as possible, we proposed the following rea
tion s
heme for

the hemin system [34℄

SO2−
3 + H+

k5,k4

⇋ HSO−
3 (1.1)

H2O2 + SO2−
3

k1→ SO2−
4 + H2O

H2O2 + HSO−
3

k2→ SO2−
4 + H+ + H2O

H2O2 + HSO−
3 + H+ k3→ SO2−

4 + 2H+ + H2O

A+
k6,k7

⇋ A + H+

A
k8→ produ
ts

where the degradation pro
ess is taken into a

ount by an unspe
i�
 de
omposition of

hemin a

ording to A
k8→ produ
ts. The produ
ts are assumed not to take part in any

further rea
tion of the system.

The �rst four rea
tion steps in (1.1) represent the well established oxidation of HSO
−
3

by H2O2 [35, 36, 37, 38℄. The auto
atalyti
 step is 
ontained in the fourth rea
tion

where H+ produ
es 2H+. The rate 
onstants k1, . . . , k5 were measured in dependen
e

on the temperature in [38℄. The �fth rea
tion step in (1.1) denotes the pH-dependent

H2O

H2O

H2O

OH

R1

R1

R1

R1

R2

R2

R2

R2

Fe Fe

N

N N

N N

N N

N

A+ A

R1 : CH = CH2 R2 : CH2CH2COOH

Figure 1.3.: The hemin mole
ule 
onsists of a 
entral iron atom FeIII and a porphyrin

ring whi
h may either 
oordinate with two aquo ligands (A+) or to one

hydroxy and one aquo ligand (A).
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equilibrium between two forms of hemin whose porphyrin ring may either 
oordinate

with two aquo ligands in whi
h 
ase it is denoted as A
+
or to one hydroxy and one aquo

ligand abbreviated as A (Fig. 1.3). The 
orresponding rate 
onstants k6, k7 have been

measured in [71℄.

The only rate 
onstant whose value has not been pre
isely determined yet is that of

the hemin de
ay, i.e. k8. Consequently, we shall regard it, in addition to the �ow rate

k0, as a se
ond variable parameter in our model .

In order to model the dynami
al behavior of the rea
tion system (1.1) we assume

the individual rea
tion steps to follow a mass-a
tion kineti
s, i.e. we assume that the

frequen
y of 
ollisions leading to a rea
tion between two 
hemi
al spe
ies is proportional

to their 
on
entration. This is a valid assumption if [65, 72℄ (i) the 
on
entrations

of the involved atoms/mole
ules are not too high su
h that a doubling of the initial


on
entration for one spe
ies results in a doubling of e�e
tive 
ollisions leading to a


hemi
al rea
tion, (ii) the rea
tion medium is homogeneous whi
h is assured by stirring

and (iii) the temperature is held 
onstant during the experiment su
h that the parameters

ki are truly 
onstant (the experiments for the hemin system were 
arried out at 25◦C).
We derived a 6-dimensional ODE system from the rea
tion me
hanism (1.1) to model

the bursting behavior of the hemin system [34℄:

ẋ1 = −k1x1x2 + k4x3 − k5x1x4 + k0(x
0
1 − x1) (1.2)

ẋ2 = −k1x1x2 − k2x2x3 − k3x2x3x4 + k0(x
0
2 − x2)

ẋ3 = −k2x2x3 − k3x2x3x4 − k4x3 + k5x1x4 − k0x3

ẋ4 = k2x2x3 + k3x2x3x4 + k4x3 − k5x1x4 + k6x6 − k7x4x5 + k0(x
0
4 − x4)

ẋ5 = k6x6 − k7x4x5 − k8x5 + k0(x
0
5 − x5)

ẋ6 = −k6x6 + k7x4x5 − k0x6

where the pH value is given as the negative de
adi
 logarithm of the proton 
on
entration

H+ (x4) and the `dot' denotes derivatives with respe
t to time t. To simplify notation,

we assigned the following abbreviations to the 
hemi
al spe
ies:

x1 ↔ SO
2−
3 (1.3)

x2 ↔ H2O2

x3 ↔ HSO
−
3

x4 ↔ H
+

x5 ↔ A

x6 ↔ A
+.

The terms proportional to k0 in (1.2) des
ribe the matter �ow through the 
ontinuous-

�ow stirred tank rea
tor to whi
h the four spe
ies SO
2−
3 (x0

1), H2O2(x
0
2), H

+(x0
4) and

A(x0
5) are supplied at the variable rate k0 while all six 
hemi
al spe
ies are removed

from the rea
tor at the same rate. The numeri
al values of the rate konstants k1, . . . , k8

and the 
on
entrations in the external reservoirs x0
i that were used in the numeri
al sim-

ulations, are 
ompiled in Table B.1 of the Appendix B.2. A

ording to the experimental

10



1.1. The hemin � hydrogen peroxide � sul�te system

situation, the �ow rate k0 is used as the prin
ipal bifur
ation parameter ranging in the

interval k0 ∈ [1 · 10−4s−1, 4.5 · 10−4s−1].
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1.2. Outline of the thesis

The thesis 
onsists of two main Parts and an Appendix. In the main Parts, we investigate

two themati
ally distin
t aspe
ts of the dynami
al properties of the hemin � hydrogen

peroxide � sul�te system: In the �rst Part, the method of quasi-integrals is developed

as a general pro
edure to identify the essential dynami
al degrees of freedom in a given

rea
tion network. In parti
ular, this method will be used to derive a 3-dimensional ODE

system as an approximation to the 6-dimensional hemin system (1.2). In the se
ond

Part, we exploit the slow-fast stru
ture of the hemin system to analyze the origin of its

bursting behavior by a suitable (slow-fast) bifur
ation analysis. As a result, we identify

the bursting me
hanism of the hemin system as a subHopf/fold-
y
le burster a

ording

to a 
lassi�
ation s
heme that has been introdu
ed by Izhikevi
h [24℄ to 
lassify the

bursting behavior of neural systems. A systemati
 two-parameter bifur
ation analysis

reveals a transition in the bursting behavior of the hemin system from subHopf/fold-


y
le to fold/subHopf type. In addition, the slow-fast analysis provides an explanation

for the origin of quasi-periodi
 behavior in the hemin system, even though the underlying

me
hanism might be of more general importan
e.

Part I

Chapter 2 gives a short introdu
tion into the theory of singularly perturbed systems.

It begins with a simple motivating example using a singularly perturbed algebrai


equation. Afterwards, we introdu
e the main ideas of the geometri
al approa
h

to singular perturbation theory for ODE systems due to Feni
hel [60℄, sin
e this

theory serves as the mathemati
al basis for the method of quasi-integrals.

Chapter 3 introdu
es the 
on
ept of quasi-integrals and reveals its relation to the theory

of singularly perturbed systems. First, we exemplarily show how to �nd quasi-

integrals in the hemin system and further, how they 
an be used to redu
e the

number of dynami
al degrees of freedom in that system. In parti
ular, we derive a

3-dimensional approximation to the 6-dimensional ODE system (1.2). In a se
ond

step, we outline how the method of quasi-integrals 
an be extended to a large 
lass

of rea
tion networks. The results of this Chapter have been published in [73℄.

Chapter 4 
ompares the dynami
al properties of the 6-dimensional hemin system (1.2)

with those of its 3-dimensional approximation. To this purpose, lo
al one- and

two-parameter bifur
ation diagrams are 
al
ulated whi
h demonstrate that both

systems are virtually identi
al.

Chapter 5 summarizes the results of the �rst Part and gives a short outlook.

Part II

Chapter 6 des
ribes how the bursting os
illations arise in the 3-dimensional hemin sys-

tem subsequent to a period doubling 
as
ade and the formation of a 
haoti
 at-

tra
tor. We list some of the bursting states that were found by dire
t numeri
al

12



1.2. Outline of the thesis

integration and dis
uss their bifur
ation sequen
es in terms of Farey progressions.

In addition, we introdu
e the total 
on
entration of hemin spe
ies as a new variable

sin
e it evolves on a slower time s
ale than the remaining variables; an observation

that will be essential when we analyze the bursting os
illations in Chapter 8.

Chapter 7 exempli�es the slow-fast analysis introdu
ed by Rinzel and Ermentrout [23℄

with a 
artoon of the slow-fast stru
ture of the 3-dimensional hemin system. In

parti
ular, we demonstrate how a slow variable may a
t as a quasi-stati
 bifur
a-

tion parameter for the remaining 2-dimensional fast subsystem. In addition, we

mention a 
lassi�
ation s
heme for bursting me
hanisms that has been introdu
ed

by Izhikevi
h [24℄ to 
lassify the bursting behavior of neural systems.

Chapter 8 is devoted to a detailed study of the slow-fast stru
ture of the hemin system.

First, we show that at a �xed value of the �ow rate k0, the bursting os
illations

are 
aused by a saddle-node bifur
ation of periodi
 orbits in 
onjun
tion with a

sub
riti
al Hopf bifur
ation, both of whi
h o

ur in the fast subsystem for nearby

values of the slow variable that was introdu
ed in Chapter 6. By a systemati


two-parameter 
ontinuation in the �ow rate and the slow variable, we identify a

transition in the bursting behavior from subHopf/fold-
y
le to fold/subHopf type

whi
h 
an be attributed to a homo
lini
 bifur
ation in the fast subsystem. Finally,

we perform a slow-fast analysis of the hemin system in a parameter region where

a 2-torus is stable. This analysis shows that the rather unusual phase �ow on

the torus is due to a 
oupling of an os
illator in the fast subsystem with the slow

variable and thus, is a result of the slow-fast stru
ture of the hemin system.

Chapter 9 summarizes and dis
usses the results of the se
ond Part.

The Appendix 
onsists of three Chapters:

Chapter A provides the basi
 notions of dynami
al systems theory and gives an intro-

du
tion to bifur
ation theory as far as it appears ne
essary to understand the ideas

and arguments in the remainder of the thesis. Therefore, this Chapter should be

used as a referen
e. In parti
ular, Se
tions A.3 and A.4 should be 
onsulted for

details about lo
al 
odimension one and two bifur
ations, respe
tively, whi
h will

be frequently referred to throughout the work. Global (homo
lini
) bifur
ations

are dis
ussed in Se
tion A.5.

Chapter B gives an introdu
tion to numeri
al 
ontinuation pro
edures and strategies.

Furthermore, it provides the parameter settings for the hemin and the peroxidase-

oxidase system whi
h are ne
essary to setup the numeri
al simulations.

Chapter C 
ontains a se
ond example for the appli
ation of the method of quasi-

integrals developed in Chapter 3. The rea
tion me
hanism of the peroxidase-

oxidase rea
tion is investigated whi
h ex
lusively 
ontains irreversible rea
tion

steps and therefore, poses a nontrivial appli
ation of the method of quasi-integrals.

Nevertheless, we identify three possible quasi-integrals two of whi
h lead to redu
ed

systems that quantitatively agree quite well with the original 10-dimensional one.
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2. Singular Perturbation Theory
The method of quasi-integrals is mainly inspired by the singular perturbation theory for

ODE systems. Therefore, we give a brief outline of that theory in the present Chapter

and thereby lay the mathemati
al foundation for the redu
tion method using quasi-

integrals in Chapter 3.

In perturbation theory, one studies how small disturban
es of a system a�e
t its

behavior whi
h is assumed to be known under isolated 
onditions, i.e. without the

disturban
es. For 
on
reteness, 
onsider a perturbed system Sε whi
h is, for example,

des
ribed by algebrai
, di�erential, or integral equations, or 
ombinations thereof. Then

a natural, though by no means ne
essary assumption (otherwise there was no singular

perturbation theory), is that the solution xε of the perturbed system is in some sense

`
lose' 1 to the solution x0 of the unperturbed problem S0 provided the perturbation

parameter ε is su�
iently small. If this assumption holds over the entire domain of

de�nition, the a

ording perturbation problem is 
alled regular and one 
an �nd a so-

lution of the perturbed problem in terms of a (asymptoti
) power series expansion in

ε. However, it may happen that the unperturbed problem S0 (i) has no solution or (ii)

has a solution that is not uniformly valid in the domain of de�nition or (iii) has many

solutions. In these 
ases, the perturbation problem Sε is 
alled singular.

2.1. A motivating example

A hallmark of singularly perturbed systems is that they model pro
esses whi
h o

ur on

at least two di�erent s
ales su
h that a solution of the unperturbed problem is usually

only valid at one of the two s
ales.

To illustrate this statement, 
onsider the solutions of the algebrai
 equations

f(x, ε) ≡ x2 − 2x + ε = 0, 0 < ε ≪ 1 (2.1)

f(x, 0) = lim
ε→0

f(x, ε) = x2 − 2x = 0

whi
h are given by

x1,2
ε = 1 ±

√
1 − ε (2.2)

x
1,2
0 = lim

ε→0
x1,2

ε = {2, 0}.

Obviously, the solutions x1,2
ε of the perturbed problem f(x, ε) = 0 
oninuously deform

into the solutions x
1,2
0 of the unperturbed equation. In parti
ular, the solutions x1,2

ε have

1In order to 
ompare two solutions, one 
an, for example, introdu
e an appropriate norm in the spa
e

where the system is de�ned.
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2. Singular Perturbation Theory

power series expansions near ε = 0 starting as

x1
ε = 2 − 1

2
ε − O(ε2) and (2.3)

x2
ε = 0 +

1

2
ε + O(ε2), (2.4)

respe
tively, whi
h shows that they are 
lose to the unperturbed solutions x1,2
0 for ε

su�
iently small. Thus, ε is a regular perturbation parameter for f(x, ε) = 0.
In a next step we shift the position of the small parameter su
h that it o

urs in front

of the monomial of highest degree and 
onsider the following (singular) perturbation

problem (
f. Chapter 9 in [65℄):

g(z, ε) = εz2 − 2z + 1 = 0 (2.5)

whose solutions are now given by

z1,2
ε =

1

ε
(1 ±

√
1 − ε). (2.6)

Up to the s
ale fa
tor 1/ε, these are the same solutions as in (2.2). However, the s
ale

fa
tor has a huge impa
t on the power series expansions sin
e we now have:

z1
ε =

2

ε
− 1

2
− O(ε) and (2.7)

z2
ε =

1

2
+ O(ε). (2.8)

Hen
e, in the limit ε → 0, z1
ε be
omes unbounded while z2

ε remains �nite.

If, on the other hand, one naivly performs the limit ε → 0 in (2.5), one obtains the

�rst order equation −2z + 1 = 0 whi
h has only one solution: z0 = 1/2. Thus, from the

unperturbed problem, one only gets the regular solution (2.8) of the perturbed problem:

lim
ε→0

z2
ε = 1/2 = z0;

the singular solution (2.7) is missing.

The singular nature of the perturbation problem (2.5) may also be seen in a di�erent

way by exploiting the multi-s
ale stru
ture of the system. To this purpose, we introdu
e

a new variable a

ording to

ξ := εz, 0 < ε ≪ 1 (2.9)

and look again at equation (2.5), but now on a smaller s
ale de�ned by (2.9). After

performing the s
ale transformation (2.9) and multiplying the resulting equation by ε,
(2.5) reads

g̃(ξ, ε) = ξ2 − 2ξ + ε = 0, (2.10)

i.e. on the small s
ale we again obtain a regular perturbation problem whi
h, in this 
ase,

is identi
al with (2.1). Consequently, the solutions ξ1,2
ε of (2.10) 
an also be obtained

in terms of power series expansions identi
al to those in (2.3) and (2.4). Finally, one

gets the two solutions z1,2
ε = 1

ε
ξ1,2
ε for the singularly perturbed system (2.5) whi
h are,

of 
ourse, identi
al with (2.7) and (2.8).
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We summarize:

1. The appearan
e of a small parameter in front of the highest order term in an

algebrai
 equation su
h as (2.5) usually indi
ates the existen
e of (some) singular

solutions. This aspe
t has a natural translation to di�erential equations where

singular behavior is indi
ated by small parameters in front of the highest order

derivative term.

2. Looking at equation (2.10), it seems as if the singularity was transformed away

sin
e in this equation, ε is a regular perturbation parameter. This is, however, not

the 
ase sin
e it is now the s
ale transformation (eq. 2.9) that be
omes singular in

the limit ε→ 0.

3. Finally, we again wish to point out the multi-s
ale stru
ture of (2.5) and (2.10). If

we look at a small s
ale (using ξ variables) the system (2.10) is well-behaved and

has the two regular solutions ξ1,2
ε . If, on the other hand, the s
ale is in
reased by

performing the limit ε → 0, only one of the solutions (z2
ε) remains regular while

the other one (z1
ε) be
omes singular.

In the next Se
tion, we shall address the question under whi
h 
onditions one may

approximate a singularly perturbed problem by a regularly perturbed one for the 
ase

that the system is des
ribed by ordinary di�erential equations.

2.2. ODE systems with `small' parameters

The geometri
al singular perturbation theory for ordinary di�erential equations has been

elaborated by Feni
hel [60℄ in the 1970s. We shall present the main ideas of this approa
h

as far as it is ne
essary to motivate the 
on
ept of quasi-integrals in Chapter 3.

In the following we 
onsider n-dimensional ODE systems of the form

ẋ(t) = f(x, y, ε) (2.11)

εẏ(t) = g(x, y, ε)

where ε is again a positive, su�
iently small dimensionless parameter, (x, y) ∈ U ⊂
R

n−m × R
m, and f and g are ve
tor-valued fun
tions of the form f : U → R

n−m and

g : U → R
m, respe
tively. The `dot' denotes derivatives with respe
t to the (time)

parameter t.
The o

urren
e of the small parameter ε in front of ẏ in (2.11) indi
ates that these

quantities vary signi�
antly only on the fast time s
ale t/ε and thereafter instantaneously

follow the slow dynami
al degrees of freedom played by the x variables. Te
hni
ally, this


an be seen by taking the limit ε → 0 in whi
h 
ase the ODE system (2.11) redu
es to

the di�erential-algebrai
 system

ẋ(t) = f(x, y, 0) (2.12)

0 = g(x, y, 0).
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2. Singular Perturbation Theory

Similar to the 
ase of the algebrai
 equation (2.5) in the previous Se
tion where the

limiting pro
ess led to a redu
tion in the order of the original equation, the same limiting

pro
edure now leads to a redu
tion of the dynami
al degrees of freedom from n in (2.11)

to n−m in (2.12) where the y-
omponents of the solution 
urve (x(t), y(t)) are impli
itely

determined by the algebrai
 equation g(x, y, 0) = 0 on
e the solution x(t) is known.

Again, the singular behavior of the y-
omponents of the solution 
urve (x(t), y(t))
on long time s
ales (
omparable with t) 
an be remedied by studying the ODE system

(2.11) on a faster time s
ale τ whi
h is introdu
ed as

τ =
t

ε
. (2.13)

On the time s
ale τ , the ODE system (2.11) reads:

x′(τ) = εf(x, y, ε) (2.14)

y′(τ) = g(x, y, ε)

for whi
h ε is now a regular perturbation parameter sin
e it does not appear anymore

in front of derivatives with respe
t to τ (whi
h are abbreviated with a `prime'). In the

limit ε→ 0, the ODE system (2.14) redu
es to the so-
alled fast subsystem

x′(τ) = 0 (2.15)

y′(τ) = g(x, y, 0).

Thus, on the fast time s
ale τ only the y-
omponents follow a dynami
al evolution while

the x-
omponents are treated as 
onstants sin
e their derivative with respe
t to τ is

zero. As long as ε 6= 0, the two systems (2.11) and (2.14) are 
ompletely equivalent. In

the limit ε → 0, however, this equivalen
e is lost sin
e the s
ale transformation (2.13)

be
omes singular.

It is now the aim of singular perturbation theory to investigate under whi
h 
ondi-

tions the solutions of the redu
ed system (2.12) represent a good approximation to the

solutions of the original (singular perturbation) problem (2.11).

The result is the following: Assume that the algebrai
 equation g(x, y, 0) = 0 in (2.12)

de�nes a smooth manifold y = ỹ(x) whi
h is normally attra
ting in the sense that the

Ja
obian matrix Dyg(x, y) |y=ỹ(x) of the linearized fast subsystem along y = ỹ(x)

(δy)′ = Dyg(x, y) |y=ỹ(x) δy (2.16)

has only negative eigenvalues for x belonging to a 
ompa
t region in R
n−m, then there

exists a slow invariant manifold ψ(x, ε) = ỹ(x) +O(ε) that 
an be used to approximate

the dynami
s of the n-dimensional ODE system (2.11) for su�
iently small ε by the

n−m-dimensional ODE system

ẋ = f(x, ψ(x, ε), ε) (2.17)

whi
h is now a regular perturbation problem in ε.
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2.2. ODE systems with `small' parameters

Of great pra
ti
al relevan
e is the limit ε→ 0 
orresponding to the quasi-steady-state

approximation (QSSA)

ẋ = f(x, ỹ(x), 0) (2.18)

where the slow manifold ψ(x, ε) is approximated by the quasi-stationary manifold ỹ(x).
Noti
e that in pra
ti
al appli
ations ε is usually given in terms of intrinsi
 system param-

eters and therefore 
annot be made arbitrarily small. Nevertheless it is often su�
ient

to approximate the slow manifold of a system by the quasi-stationary manifold in order

to obtain a reasonable des
ription of the dynami
s of the n-dimensional system even in

the 
ase that ε is di�erent from zero.

We wish to stress again that the manifold y = ỹ(x) is entirely 
omposed of stationary

points of the fast subsystem (2.15) whi
h parametri
ally depend on the slow variables

x ∈ R
n−m. In parti
ular, the approximation (2.18) is only valid in those 
ompa
t regions

of R
n−m where the quasi-stationary manifold y = ỹ(x) is attra
ting whi
h may limit the

range of allowed initial 
onditions for the x variables.

The property that the slow manifold ψ(x, ε) is invariant under the �ow of the ODE

system (2.11) is expressed by the equation:

ψ̇(x, ε) = ψx(x, ε)ẋ = 0, (2.19)

where ψx(x, ε) denotes partial di�erentiation with respe
t to x ∈ R
n−m. A

ordingly,

the slow manifold 
an be obtained as a solution of the partial di�erential equation

ψx(x, ε)f(x, ψ(x, ε)) =
1

ε
g(x, ψ(x, ε), ε) (2.20)

where we set y = ψ(x, ε) and used (2.11) to repla
e the time derivatives ẋ and ψ̇ in (2.19)

with the 
orresponding ve
tor-valued fun
tions f and g, respe
tively. In general, it will

be impossible to �nd expli
it solutions of the nonlinear partial di�erential equation(2.20).

However, in many 
ases one may �nd an approximation to the slow manifold in terms

of a power series expansion in the small parameter ε

ψ(x, ε) = ỹ(x) + εψ1(x) +O(ε2) (2.21)

where the quasi-stationary manifold ỹ(x) reappears as the zeroth order term.

Finally, we mention that the approximation (2.18) has two desirable features whi
h

is the reason for the great pra
ti
al importan
e of the QSSA: First, it is valid on the

slow time s
ale t, i.e. it des
ribes the long-time behavior of the system whi
h is also

a

essible to experimental investigations. Se
ond, the fast dynami
al degrees of freedom

are elimimated and thus, one is left with a problem of redu
ed (numeri
al) 
omplexity.
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3. Quasi-Integrals
The individual rea
tion steps in (bio-)
hemi
al rea
tion networks often evolve on di�erent

time s
ales. The mathemati
al des
ription of su
h networks naturally leads to singularly

perturbed ODE systems. However, in large systems it is pra
ti
ally impossible to identify

the small perturbation parameters in the system without any prior knowledge of the

order of magnitude of the individual rea
tion steps. Therefore, we shall develop a method

whi
h does not require any a priori knowledge, but instead makes dire
t use of the

solution 
urves whi
h are obtained by numeri
al integration routines. The results of this

Chapter and Appendix C are published in [73℄.

3.1. Quasi-integrals in the hemin system

In the following, we shall exemplify the method of quasi-integrals with the hemin system

introdu
ed in Se
tion 1.1. In the �rst step, the ODE system (1.2) is rewritten in 
ompa
t

ve
tor notation

ẋ = C · R(x, k) + k0(x
0 − x)

where we introdu
ed the matrix of stoi
hiometri
 
oe�
ients C (without the in- and

out�ow terms proportional to k0) and the ve
tor of rea
tion rates R as:

C =











−1 0 0 1 −1 0 0 0
−1 −1 −1 0 0 0 0 0
0 −1 −1 −1 1 0 0 0
0 1 1 1 −1 1 −1 0
0 0 0 0 0 1 −1 −1
0 0 0 0 0 −1 1 0











R =















k1x1x2

k2x2x3

k3x2x3x4

k4x3

k5x1x4

k6x6

k7x4x5

k8x5















. (3.1)

A

ordingly, the rea
tion me
hanism of the hemin system 
omprises 6 
hemi
al spe
ies

and 8 elementary rea
tion steps. The latter are arranged into the 
omponents of the

rea
tion rate ve
tor R.

In the se
ond step, we use the theory of singularly perturbed systems as it has been

introdu
ed in Se
tion 2.2 to motivate the 
on
ept of quasi-integrals. To this purpose,

let us pretend for a moment that there were two time s
ales in the hemin system (1.2)

so that it 
an be transformed into the standard form of a singularly perturbed system

(2.11) by identifying a suitable 
ombination of intrinsi
 system parameter whi
h 
an

play the role of an epsilon in (2.11). Let us further assume that the small parameter
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3. Quasi-Integrals

epsilon appears in the �rst rate equation of (1.2) whi
h therefore admits a form similar

to the se
ond equation in (2.11):

εẋ1 = −k1x1x2 + k4x3
︸ ︷︷ ︸

+ε (−k5x1x4 + k0(x
0
1 − x1))

︸ ︷︷ ︸
(3.2)

= g0(x1, x2, x3) + ε g̃(x1, x4)
︸ ︷︷ ︸

εẏ = g(x, y, ε)

where we identi�ed x1 with the fast variable y and (x2, . . . , x6) with the slow variable

x in (2.11). The motivation for this parti
ular 
hoi
e of the fun
tion g(x, y, ε) 
omes

from the fa
t that if we were allowed to perform the limit ε → 0 in (3.2), we would have

found a quasi-stationary manifold given by the algebrai
 equation

g0(x1, x2, x3) = 0 = −k1x1x2 + k4x3 (3.3)

provided it is normally attra
ting in the sense of Se
tion 2.2.

The 
ru
ial point is now the following: Instead of expli
itly sear
hing for a small

parameter in the ODE system (1.2), whi
h would fa
ilitate the transformation (3.2), we

simply test whether the ratio

I14 =
k1x1x2

k4x3

≡ R1

R4

?∼ 1 (3.4)

approa
hes the 
onstant (or at least nealy 
onstant) value 1 along the numeri
ally ob-

tained solution 
urves xi(t) in whi
h 
ase (3.3) is simultaneously ful�lled. Sin
e I14 is a

nonlinear fun
tion of the phase spa
e variables, whose time derivative İ14 ∼ 0 is nearly

zero along the solution 
urves, we 
all it a quasi-integral. Note that if the time derivative

was exa
tly zero, I14 would be an exa
t integral for the nonlinear �ow of the ODE system

(1.2).

By reversing the order of the above argument, it is 
lear that ea
h quasi-integral of the

form (3.4) de�nes a quasi-stationary manifold (3.3) in the sense of Se
tion 2.2 whi
h, in

turn, 
an be used to redu
e the number of dynami
al degrees of freedom in the originally

6-dimensional ODE system (1.2). On the other hand, sin
e the partition of g into g0

and g̃ in (3.2) was arbitrary, it is also 
lear how to pro
eed in order to sear
h for other

quasi-integrals. For example, in a next step one 
ould test whether the 
ondition

I45 =
k4x3

k5x1x4

≡ R4

R5

?∼ 1 (3.5)

is ful�lled in whi
h 
ase the quasi-stationary manifold would be given by

g0(x1, x3, x4) = k4x3 − k5x1x4 = 0 = R4 − R5. (3.6)

By 
ontinuing along this line of argument, one 
an systemati
ally test all distin
t


ombinations of the form (3.4) and (3.5) for being approximately 
onstant. To this
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3.1. Quasi-integrals in the hemin system
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Figure 3.1.: Di�erent ratios of 
omponents of the rea
tion rate ve
tor R are shown: While

I45 = R4/R5 approa
hes a 
onstant value and therefore de�nes a quasi-

stationary manifold, I14 = R1/R4 remains a heavily os
illating fun
tion

bounded away from 1 and thus, does not ful�ll the 
ondition for a quasi-

integral.

purpose, one has to 
onsider only those rea
tion rates Ri in a given rate equation whi
h

appear with an opposite sign, sin
e these are the only ones that 
an potentially balan
e

ea
h other. If this pro
edure is 
arried out for all six rate equations in (1.2), one has

found all possible quasi-stationary manifolds whi
h 
an be represented as ratios of 
ertain


omponents of the rea
tion rate ve
tor R.

In the hemin system, we �nd pre
isely one quasi-integral (eq. 3.5). It is shown in

Fig. 3.1 together with I14 whi
h represents a 
ounter example. Note that I45 always

remains in the neighborhood of the 
onstant value 1 ex
ept for short time intervals

where spiking outliers o

ur (Fig. 3.1a). To the 
ontrary, I14 remains a heavily os
illating

fun
tion on the s
ale 10−5 whi
h is far away from the 
onstant value 1 (Fig. 3.1b). Thus,

I45 de�nes a quasi-stationary manifold while I14 does not.

We 
on
lude with some general remarks 
on
erning the method of quasi-integrals.

First of all, the method is appli
able without any prior knowledge about the di�erent

time s
ales whi
h might be present in a given rea
tion network. This property makes it

parti
ularly suitable for a straightforward redu
tion of high dimensional systems. On the

other hand, we have not yet spe
i�ed what we mean when we require that a quasi-integral

is approximately 
onstant, sin
e the distin
tion between di�erent ratios su
h as I14 and

I45 might not be as 
lear 
ut as in Fig. 3.1. However, even in those 
ases, the method

is appli
able if one uses ratios that are approximately 
onstant for a formal redu
tion

of the original ODE system and subsequently 
ompares it with the redu
ed version, for

example, based on a lo
al bifur
ation diagram. This is, in fa
t, the strategy that we

shall follow in Se
tion 4.1 and in the Appendix C where the method of quasi-integrals
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3. Quasi-Integrals

is applied to the 10-dimensional PO system.

3.2. Using quasi-integrals for model redu
tion

Having identi�ed the quasi-integral (3.5), whi
h possibly de�nes a quasi-stationary man-

ifold, we wish to use it now to eliminate one dynami
al degree of freedom in the hemin

system (1.2). To this purpose, we rewrite the 6-dimensional hemin system in the stan-

dard form of a singularly perturbed system (eq. 2.11)

ẋ2 = −R1 − R2 − R3 + k0(x
0
2 − x2) (3.7)

ẋ5 = R6 − R7 − R8x5 + k0(x
0
5 − x5)

ẋ6 = −R6 + R7 − k0x6.

εẋ1 = R4 − R5 + ε(−R1 + k0(x
0
1 − x1))

εẋ3 = −(R4 − R5) + ε(−R2 − R3 − k0x3)

εẋ4 = R4 − R5 + ε(R2 + R3 + R6 − R7 + k0(x
0
4 − x4))

where we have already used the knowledge about the existen
e of the quasi-stationary

manifold g0(x1, x3, x4) = R4 −R5 in order to pla
e the small parameter ε at the 
orre
t

positions. For 
larity, the 
omponents of the rea
tion rate ve
tor R were used to denote

the individual rea
tion steps in (3.7).

We noti
e that a naive redu
tion, following the pro
edure in Se
tion 2.2, is damned to

fail, sin
e the term R4 −R5 appears in three di�erent rate equations in the ODE system

(3.7). This (misleadingly) suggests that the fast subsystem is of the form:

x′
1 = R4 − R5 ≡ g0

x′
3 = −(R4 − R5) ≡ −g0 (3.8)

x′
4 = R4 − R5 ≡ g0

whi
h is obtained after res
aling a

ording to τ = t/ε and performing the limit ε → 0
in (3.7) ( the `prime' again denotes derivatives with respe
t to the fast time s
ale τ).
On the other hand, there is only one equation (eq. 3.6) de�ning the quasi-stationary

manifold and thus, the determinant of the Ja
obian matrix

∂(g0,−g0, g0)

∂(x1, x3, x4)
(3.9)

of the fast subsystem (3.8) is two-fold degenerate, i.e. it has two zero eigenvalues.

Consequently, the quasi-steady-state approximation (2.18) must not be applied to the

ODE system (3.7).

The reason for the degenera
y of the fast subsystem is the presen
e of (mass) 
on-

servation relations in the rea
tion me
hanism of the hemin system whi
h have not been


onsidered so far. Su
h kind of 
onservation relations are frequently en
ountered in


hemi
al rea
tion systems. They simply express the fa
t that atoms of a 
ertain kind
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3.2. Using quasi-integrals for model redu
tion


an not be destroyed during a 
hemi
al rea
tion. Instead they aggregate and disso
iate

in �xed stoi
hiometri
 relations.

In general, the existen
e of mass 
onservation relations is expressed by a non-maximal

rank of the stoi
hiometri
 matrix C (eq. 3.1) whi
h in our 
ase has rank 4. Thus, there

are two left eigenve
tors of C with eigenvalue zero. They 
an be 
hosen as

vT
1 = (1,−1, 1, 0, 0, 0) (3.10)

vT
2 = (0, 0, 1, 1, 0, 1)

whi
h satisfy the eigenvalue equations

vT
1,2 · C = 0 · vT

1,2.

In the following, we use these eigenve
tors as the last two rows of the linear 
oordinate

transformation










y1

y2

y3

y4

y5

y6











=











0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
1 −1 1 0 0 0
0 0 1 1 0 1











·











x1

x2

x3

x4

x5

x6











(3.11)

whi
h brings the ODE system (1.2) into a form

ẏ1 = k0x
0
2 − y1

{

k0 + k1y4 +
(
k2 + k3(y6 − y5 − y1 − y2 + y4)

)
(y5 − y4 + y1)

}

ẏ2 = −k6y2 + k7y3(y6 − y5 − y1 − y2 + y4) − k0y2 (3.12)

ẏ3 = −k8y3 + k6y2 − k7y3(y6 − y5 − y1 − y2 + y4) + k0(x
0
5 − y3)

ẏ4 = k4(y5 − y4 + y1) − k5y4(y6 − y5 − y1 − y2 + y4) − k1y1y4 + k0(x
0
1 − y4)

ẏ5 = k0(x
0
1 − x0

2 − y5)

ẏ6 = k0(x
0
4 − y6)

where the last two equations for y5 and y6 be
ome de
oupled from the 4-dimensional

subsystem 
orresponding to the (y1, y2, y3, y4) variables. Note that the latter four vari-

ables are just relabeled versions of four of the original variables, i.e. we have y1 = x2,

y2 = x6, y3 = x5 and y4 = x1.

The last two equations in (3.12) des
ribe the mass 
onservation relations. They 
an

be integrated separately and yield the following solution for zero initial 
ondition:

y5(t) = (x0
1 − x0

2)(1 − exp(−k0t))

y6(t) = (x0
4)(1 − exp(−k0t)).

This means that after a transient time of order t ∼ 1/k0, the traje
tories of the ODE

system (3.12) (and equally that of (1.2)) approa
h an attra
ting 4-dimensional manifold

whi
h is formally de�ned in the limit t → ∞ as

lim
t→∞

y5(t) = lim
t→∞

(x1(t) − x2(t) + x3(t)) = x0
1 − x0

2 =: y∞
5 (3.13)

lim
t→∞

y6(t) = lim
t→∞

(x3(t) + x4(t) + x6(t)) = x0
4 =: y∞

6 .
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3. Quasi-Integrals

In 
hemi
al terms, these two relations express the 
onservation of S atoms and H+ ions,

respe
tively:

[SO2−
3 ] − [H2O2] + [HSO−

3 ] = [SO2−
3 ]0 − [H2O2]

0
(3.14)

[HSO−
3 ] + [H+] + [AH] = [H+]0

whi
h is obtained using the 
orresponden
e between the 
hemi
al spe
ies and the phase

spa
e variables (1.3). Sin
e the last two equations in (3.12) do not 
ontain any essential

dynami
al information, but merely express the stoi
hiometri
 
onstraints in the rea
tion

me
hanism (1.1), the transient approa
h to the 4-dimensional manifold (3.13) 
an be

negle
ted by repla
ing the variables y5 and y6 in (3.12) with their asymptoti
 values

a

ording to (3.13)

y5 = y∞
5 , y6 = y∞

6 . (3.15)

As a result, we obtain a 4-dimensional ODE system

ẏ1 = k0x
0
2 − y1

{

k0 + k1y4 +
(

k2 + k3(y
∞
6 − y∞

5 − y1 − y2 + y4)
)

(y∞
5 − y4 + y1)

}

ẏ2 = −k6y2 + k7y3(y
∞
6 − y∞

5 − y1 − y2 + y4) − k0y2 (3.16)

ẏ3 = −k8y3 + k6y2 − k7y3(y
∞
6 − y∞

5 − y1 − y2 + y4) + k0(x
0
5 − y3)

εẏ4 = k4(y
∞
5 − y4 + y1) − k5y4(y

∞
6 − y∞

5 − y1 − y2 + y4) + ε(−k1y1y4 + k0(x
0
1 − y4))

where the stoi
hiometri
 
onstraints (3.13, 3.14) are properly taken into a

ount. More-

over, the quasi-stationary manifold (3.6) now appears in only one rate equation whi
h,

due to our 
hoi
e of the linear 
oordinate transformation (3.11), is that of y4 ≡ x1. The

fast subsystem is now given by

d

dτ
y4 = k4(y

∞
5 − y4 + y1)

︸ ︷︷ ︸
− k5y4(y

∞
6 − y∞

5 − y1 − y2 + y4)
︸ ︷︷ ︸

. (3.17)

= R4 − R5

Its stationary points

k4 (y∞
5 − y4 + y1)

︸ ︷︷ ︸

x3

−k5 y4
︸︷︷︸

x1

(y∞
6 − y∞

5 − y1 − y2 + y4)
︸ ︷︷ ︸

x4

= 0 (3.18)

de�ne the quasi-stationary manifold for the 4-dimensional version of the hemin system

(eq. 3.16). Due to the proper 
onsideration of the 
hemi
al 
onstraints (3.14), this is

now a quadrati
 equation for y4 ≡ x1 whose solution is given by

y4 =
1

2
(y∞

5 −y∞
6 +y1+y2−

k4

k5

)± 1

2

√

(y∞
5 − y∞

6 + y1 + y2 −
k4

k5

)2 + 4
k4

k5

(y∞
5 + y1). (3.19)

Here, we must 
onsider only the positive square root, sin
e y4 represents a 
on
entration

and therefore y4 ≥ 0 must hold. A dire
t 
omputation of the (1-dimensional) Ja
obian

28



3.3. Quasi-integrals in general rea
tion networks

matrix along the manifold (3.19) shows that it is globally attra
ting sin
e we have:

∂

∂y4

(R4 − R5)
∣
∣
y4=y4(y1,y2)

= −k4 − k5(y
∞
6 − y∞

5 − y1 − y2 + 2y4)
∣
∣
y4=y4(y1,y2)

= −k5

√

(y∞
5 − y∞

6 + y1 + y2 −
k4

k5

)2 + 4
k4

k5

(y∞
5 + y1)

whi
h is negative for all (y1, y2) ∈ R
2
+. This shows in parti
ular, that the fast subsystem

(3.17) is no longer degenerate. On the other hand, it is known [74℄ that if the fast

subsystem is entirely 
omposed of reversible rea
tions, as it is in our 
ase (R4 and

R5 
orrespond to the �rst reversible rea
tion step in (1.1)), then its stationary points

automati
ally de�ne an attra
ting manifold for the original �ow.

Finally, we perform the QSSA using the pro
edure outlined in Se
tion 2.2 and arrive

at the following 3-dimensional ODE system:

ẏ1 = k0x
0
2 − y1

{

k0 + k1y4 +
(

k2 + k3(y
∞
6 − y∞

5 − y1 − y2 + y4)
)

(y∞
5 − y4 + y1)

}

ẏ2 = −k6y2 + k7y3(y
∞
6 − y∞

5 − y1 − y2 + y4) − k0y2 (3.20)

ẏ3 = −k8y3 + k6y2 − k7y3(y
∞
6 − y∞

5 − y1 − y2 + y4) + k0(x
0
5 − y3),

where y4 = y4(y1, y2) is now a fun
tion of y1 and y2 a

ording to the expression for

the quasi-stationary manifold (3.19). That the 3-dimensional ODE system (3.20) truly

represents a very good (even quantitative) approximation to the long-time behavior of

the hemin system (1.2) will be shown in Chapter 4, in parti
ular in Se
tion 4.1, where

we 
ompare the lo
al one- and two-parameter bifur
ation diagrams for both systems.

We remark that the de�ning equation for the quasi-stationary manifold (3.18) rep-

resents a so-
alled quadri
 [75℄ whi
h is the 3-dimensional analog of a 
oni
 se
tion.

Quadri
s 
an be thought of as smooth embedded surfa
es in R
3. In the 
ase of equa-

tion (3.18), we �nd after performing appropriate linear transformations (translation,

rotation) a hyperboli
 paraboloid (Fig. 3.2) whose normal form is given by

y2

b2
− x2

a2
= z (x, y, z) ∈ R

3.

The parameters a and b are given as fun
tions of the 
onstants k4, k5, y
∞
5 , and y∞

6 . They

determine the parti
ular shape of the surfa
e.

3.3. Quasi-integrals in general rea
tion networks

We brie�y des
ribe how to generalize the method of quasi-integrals to rea
tion networks

of the form:

ẋ = f(x, k) ≡ C · R(x, k) (3.21)

where the 
omponents of the ve
tor �eld f 
an be written as linear 
ombinations of


omponents of the rea
tion rate ve
tor R:

ẋl = fl(x, k) =
r∑

i=1

CliRi(x, k) l = 1 . . . n. (3.22)
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Figure 3.2.: The slow manifold for the hemin system is a so-
alled hyperboli
 paraboloid

whose representation in standard 
oordinates is given by
y2

b2
− x2

a2 = z.

Here, x ∈ R
n denotes the time-dependent state, k ∈ R

r stands 
olle
tively for all pa-

rameters in the system and the 
onstant matrix C represents the stoi
hiometri
 matrix.

In the following, we shall not assume a parti
ular shape of the rea
tion rate ve
tor R.

However, sin
e a large 
lass of (bio-)
hemi
al rea
tion systems (su
h as the hemin and

the PO system studied in this thesis) is modeled by mass-a
tion type rea
tion networks,

we note that in this 
ase, the 
omponents of the rea
tion rate ve
tor are given by

Ri(x, k) = ki Πjx
κji

j i = 1 . . . r, j = 1 . . . n. (3.23)

Thus, the general form (3.21) admits mass-a
tion type kineti
s as a spe
ial 
ase, but

also leaves the possibility to use other kineti
 s
hemes. The 
onstant matrix κ in (3.23)


ontains the kineti
 information of ea
h individual rea
tion step. Both of the above

mentioned matri
es, C and κ, have as many rows as there are 
hemi
al spe
ies (n) and

as many 
olumns as there are individual rea
tion steps (r) and thus, 
ompletely spe
ify

the topology of a network following a mass-a
tion kineti
s.
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3.3. Quasi-integrals in general rea
tion networks

Re
all that in Se
tion 3.2 we sear
hed in ea
h rate equation for rea
tion steps that

balan
e ea
h other along the numeri
ally obtained traje
tories. To this purpose, we

partitioned the fun
tion g(x, y, ε) in (3.2) into a dominating part g0(x, y) whi
h was

supposed to des
ribe the quasi-stationary manifold in the limit ε → 0 and a negligible

part g̃(x, y, ε). In general, the dominating part will be of the form:

(g0)
l
ij = CliRi(x(t), k) + CljRj(x(t), k) ∼ 0, (3.24)

where the index l = 1, . . . , n runs over all rate equations in (3.22) while i, j = 1, . . . , r
denote the individual rea
tion steps o

uring in a parti
ular rate equation.

Quasi-integrals are de�ned as those ratios

I l
ij =

CliRi(x(t), k)

CljRj(x(t), k)
∼ −1 (3.25)

that approa
h an almost 
onstant value along the traje
tories xl(t) of (3.22) for a 
ertain

ombination of indi
es l ∈ {1 . . . n}, i, j ∈ {1 . . . r}. The o

uren
e of the `−1' on the

right-hand side in (3.25) is due to the fa
t that in (3.24) we must 
onsider only those

rea
tion steps Ri, Rj for whi
h sign(Clj) = −sign(Cli) holds be
ause otherwise (3.24)


an not be ful�lled. This 
ondition redu
es the number of index 
ombinations (l, i, j)
that must be taken into a

ount during the sear
h for quasi-integrals. On the other

hand, it may also happen that the same 
ombination of rea
tion steps o

urs in di�erent

rate equations in whi
h 
ase they 
an be omitted.

In a next step, one 
an easily extend the de�nition for a quasi-integral (3.25) and try

to balan
e more than two rea
tion steps in whi
h 
ase the dominant part g0 of g(x, y, ε)

ould be, for example, of the form:

(g0)
l
ijk = CliRi(x(t), k) + CljRj(x(t), k) + ClkRk(x(t), k) ∼ 0. (3.26)

In this 
ase, quasi-integrals would be given by:

I l
ijk =

CliRi(x(t), k) + ClkRk(x(t), k)

CljRj(x(t), k)
∼ −1 (3.27)

provided that e.g. sign(Cli) = sign(Clk) = −sign(Clj) holds. Indeed, for the PO

system, whi
h will be dis
ussed in Appendix C, we �nd two quasi-integrals of this type.

From the above des
ription it is 
lear that the sear
h for quasi-integrals is an algo-

rithmi
 pro
edure whi
h 
an be summarized in the following three steps:

1. First, integrate the ODE system (3.21) over a su�
iently long time interval to

obtain the traje
tories for parameter values, where the interesting asymptoti
 kind

of dynami
s is observed.

2. Se
ond, 
he
k whether quasi-integrals of the form (3.25) (or equally (3.27)) exist.

3. Third, apply singular perturbation te
hniques (for example the QSSA (eq. 2.18))

to redu
e the number of dynami
al degrees of freedom in the system.
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3. Quasi-Integrals

In the end, it is a good idea to 
he
k the quality of the approximation due to the loose

de�nition of a quasi-integral as being `almost 
onstant'. This 
an be done, for example,

by 
omparing the lo
al bifur
ation diagrams for the original and the redu
ed system

whi
h, at least, reveals whether both systems belong to the same topologi
al 
lass.

A se
ond reason for the ne
essity to 
ompare the dynami
s of the original with that

of the redu
ed system is that quasi-integrals are usually determined for one parti
ular

set of parameters and therefore, the redu
tion pro
edure is te
hni
ally valid for only one

point in parameter spa
e. Thus, by systemati
ally 
omparing the lo
al bifur
ations in

dependen
e on relevant system parameters, one 
an ensure that the redu
ed system has

truly inherited the dynami
al properties of the original system in a whole parameter

range.

In this thesis, we always 
ompare the original and the redu
ed systems based on their

lo
al bifur
ation diagrams.
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4. Lo
al Bifur
ations in the HeminSystem
This Chapter is devoted to a 
omparison between the 6-dimensional hemin system

(eq. 1.2) and its 3-dimensional approximation (eq. 3.20) that was derived in Se
tion 3.2

using the method of quasi-integrals. We begin with a presentation of a two-parameter

bifur
ation diagram whi
h shows the global bifur
ation stru
ture of the 3-dimensional

hemin system. In the next step, we take a se
tion along a one-parameter path in the

two-parameter plane in order to study some of the 
odimension one bifur
ation se-

quen
es in detail. Finally, we show that the 6-dimensional hemin system (eq. 1.2) and

its 3-dimensional approximation (eq. 3.20) are indistinguishable based on their lo
al

bifur
ation stru
ture.

Noti
e that for the presentation of the results, we shall use res
aled dimensionless

variables and parameters a

ording to Appendix B.2. In addition, we will �nd several


odimension one and 
odimension two bifur
ations in the 
ourse of the investigation. All

of them are des
ribed in Appendix A.3 and A.4 in some detail whi
h, therefore, should

be 
onsulted for referen
e.

4.1. Two-parameter 
ontinuation in k0 and k8

During the experimental investigations of the hemin system [32, 33℄, the �ow rate k0

was taken as the prin
ipal bifur
ation parameter (
f. Se
. 1.1) 
ontrolling the matter

�ow through the rea
tion system. In order to perform a two-parameter 
ontinuation,

we 
hose the de
ay rate of hemin k8 as a se
ond bifur
ation parameter for two reasons:

First, its experimental value has not been pre
isely determined so far and se
ond, the

me
hanisti
 role of hemin is to prevent the unbounded produ
tion of H+ ions and, thus,

the hemin de
ay rate should be a sensible parameter. In fa
t, if k8 is identi
ally zero,

the ODE systems (1.2) and (3.20) be
ome essentially 2-dimensional and no 
omplex

dynami
s is possible anymore.

Generi
ally, as two parameters of an ODE system are varied, several 
odimension two

bifur
ations may be en
ountered along bran
hes of 
odimension one bifur
ations. Those

bifur
ations, that are relevant for the hemin system, are summarized in Appendix A.4

whi
h should be 
onsulted for details.

Figure 4.1 shows the two-parameter bifur
ation diagram for the 3-dimensional ODE

system (3.20) where the �ow rate k0 and the hemin de
ay rate k8 have been used as


ontinuation parameters. It basi
ally 
onsists of �ve regions: In regions 1 and 5, there
is only one stable stationary state. Coming from region 1, the stationary state loses
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Figure 4.1.: Two-parameter bifur
ation diagram in the �ow rate k0 and the hemin de
ay

rate k8. Bursting os
illations are stable in region 3 whi
h is bounded by

the period doubling 
urve (PD) and the saddle-node 
urve SN1. The dotted

line at k8 = 2.5 marks the parameter path along whi
h the 
odimension one

bifur
ation diagram in Fig. 4.2 has been 
al
ulated. Symbols denote: SHi

- 
urves of sub
riti
al Hopf bifur
ations (dashed), H - 
urve of super
riti
al

Hopf bifur
ations (solid), SNi - 
urves of saddle-node bifur
ations of �xed

points (solid), PD - 
urve of period doubling bifur
ations (dash-dot), 
odi-

mension two points: GHi - generalized Hopf bifur
ations (open triangle),

CP - 
usp (�lled triangle, see also the inset).

stability via a sub
riti
al (SH1, dashed line) or a super
riti
al Hopf bifur
ation (H, solid

line). In the latter 
ase this leads immediately to the emergen
e of stable os
illations

whi
h remain of simple periodi
ity throughout region 2 while in the sub
riti
al 
ase

simple periodi
 os
illations also arise, but in a series of se
ondary bifur
ations that will

be dis
ussed in Se
tion 4.2. The two bran
hes of Hopf bifur
ations meet in a 
odimension

two bifur
ation point, the generalized Hopf bifur
ation GH1 at k8 = 1.892 where the

�rst Liapunov 
oe�
ient vanishes.

As the 
urve of super
riti
al Hopf bifur
ations (H) is tra
ed towards lower values of k8,

the 
urve again be
omes sub
riti
al (SH2) at GH2 where k8 is negative. Noti
e that the
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4.2. Bifur
ations along a one-parameter path

region where k8 is negative does not have a physi
al signi�
an
e; it is merely in
luded

for a 
onsistent des
ription of the bifur
ation s
enario. Finally, the sub
riti
al Hopf

bifur
ation turns into a neutral saddle (where the eigenvalues ful�ll λ1 + λ2 = 0 with

λ1, λ2 ∈ R) 
lose to the 
usp singularity (CP, solid triangle). However, this does not


orrespond to a bifur
ation. The region in the vi
inity of the 
usp point is magni�ed

in the inset of Fig. 4.1 whi
h shows that two bran
hes of saddle-node points (SN1 and

SN2) emanate from CP.

Bursting os
illations are stable in region 3. This region is entered through a 
urve of

period doubling bifur
ations (PD) while it is terminated by a bran
h of the saddle-node

points SN1. In region 4 two saddle points 
oexist with one stable equilibrium whi
h

remains the only �xed point in region 5 where it is stable. A

ordingly, all traje
tories

settle down to a stationary state in the regions 4 and 5.

The partition into �ve regions, however, only gives a �rst impression of the expe
ted

dynami
s of the ODE system (1.2). For example, there is a narrow band to the right

of the period doubling 
urve PD where a whole 
as
ade of period doubling bifur
ations

o

urs as the �ow rate k0 is in
reased for a �xed value of k8. Subsequently, a folded


haoti
 attra
tor emerges before the �rst periodi
 bursting os
illations appear in region 3.
The bifur
ations o

uring beyond the period doubling bifur
ation PD are dis
ussed

in Se
tions 6.2 and 6.3. Furthermore, it is known from the normal form theory of


odimension two bifur
ations [76℄ that there is an additional 
urve bifur
ating from

the generalized Hopf point GH1 in Fig. 4.1 (in our 
ase towards higher values of k8)

along whi
h a saddle-node bifur
ation of periodi
 orbits takes pla
e. This bifur
ation

is involved in the emergen
e of stable simple periodi
 os
illations above the generalized

Hopf point GH1 where the Hopf bifur
ation is sub
riti
al. The details will be dis
ussed

in the next Se
tion.

4.2. Bifur
ations along a one-parameter path

In order to obtain a full pi
ture of the bifur
ation sequen
es, we take a se
tion along

the one-parameter path k8 = 2.5 in the k0-k8 plane (dotted line, Fig. 4.1) where the

stationary state disappears via a sub
riti
al Hopf bifur
ation. As in the 
ase of the two-

parameter 
ontinuation, there are now several 
odimension one bifur
ations of stationary

points and periodi
 solutions that may be en
ountered upon varying one parameter in

the ODE system (3.20). The relevant bifur
ations are summarized in the Appendix A.3

whi
h should be 
onsulted for referen
e.

Coming from region 1 of the two-parameter plane above the generalized Hopf bifur-


ation point (
f. Fig. 4.1), the simple periodi
 os
illations arise in the following s
enario

(inset Fig. 4.2): The stable stationary state (solid line) loses stability at k0 = 1.6461
via a sub
riti
al Hopf bifur
ation (SH) giving rise to an unstable limit 
y
le with one

unstable dimension (one of the two Floquet multipliers is outside the unit 
ir
le). The

sub
riti
al Hopf is followed by a saddle-node bifur
ation of periodi
 orbits (SNP) at

k0 = 1.6438 where the se
ond multiplier also leaves the unit 
ir
le and the limit 
y
le

gains a se
ond unstable dimension. In the narrow parameter interval between the SNP
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Figure 4.2.: One-parameter bifur
ation diagram along the line k8 = 2.5 (
f. Fig. 4.1).

The inset shows a magni�
ation of the re
tangular region where the simple

periodi
 os
illations (solid 
ir
les) emerge via a sub
riti
al Hopf (inset, SH)

followed by a saddle-node bifur
ation of periodi
 orbits (inset, open triangle,

SNP) and an (inverse) Neimark-Sa
ker bifur
ation (inset, �lled square, NS).

Between SNP and SH, the only stable attra
tor is a �xed point while a torus

is stable between SH and NS. Mixed-mode os
illations are observed beyond

the period doubling (PD) where the primary limit 
y
le (open 
ir
les) is

unstable (see text for details). The os
illatory region extends until the

saddle-node bifur
ation SN1 where a homo
lini
 bifur
ation o

urs (see also

Se
tion 6.3). For the os
illatory states, the minimum and the maximum

amplitude of the os
illation are plotted.

and the SH bifur
ation point, the stationary state is the only attra
tor sin
e the 
oex-

isting limit 
y
le is unstable. Stable os
illations, however, arise at k0 = 1.6519 by an

(inverse) Neimark-Sa
ker (NS) bifur
ation where both multipliers simultaneously 
ross

the unit 
ir
le inwards. Thus, there is a stable quasi-periodi
 solution bifur
ating to

the left of the Neimark-Sa
ker point (towards lower k0 values) where it 
oexists with a

saddle point (
orresponding to the dashed line in the inset of Fig. 4.2) in the parameter

interval k0 ∈ (1.6461, 1.6519).
The properties of the torus solution are further dis
ussed in Se
tion 8.3 where we

analyze the phase �ow on the torus using the slow-fast stru
ture of the hemin system.

36



4.3. Comparison between the 6-d system and its 3-d approximation
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Figure 4.3.: Overlay of the two-parameter bifur
ation diagrams of the 3-dimensional

ODE system (3.20) (bla
k lines) and the original 6-dimensional ODE system

(1.2) (red lines).

4.3. Comparison between the 6-d system and its 3-d

approximation

As Fig. 4.3 reveals, there is virtually no di�eren
e between the two-parameter bifur
ation

diagrams of the 3-dimensional (bla
k lines) and the original 6-dimensional hemin system

(red lines). A

ordingly, the lo
al bifur
ation stru
ture of the 6-dimensional ODE system

(1.2) is perfe
tly preserved by the 3-dimensional ODE system (3.20). Thus, the latter

yields a very good quantitative approximation to the original dynami
s whi
h, therefore,

will be used for a further investigation of the bursting os
illations in the se
ond Part of

the thesis.

The two-parameter bifur
ation diagram for the 6-dimensional system (1.2) was re
on-

stru
ted from 1-dimensional bifur
ation diagrams taken along equally spa
ed se
tions in

the two-parameter plane where k8 was varied with a stepsize of 0.1.
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5. Summary and Dis
ussion
The �rst Part of the thesis is 
on
erned with the redu
tion of 
omplex (bio-)
hemi
al re-

a
tion networks of the form (3.22) while keeping their essential dynami
al properties. We

have introdu
ed the 
on
ept of quasi-integrals as a numeri
al method for systemati
ally

�nding a parti
ular 
lass of quasi-stationary manifolds in su
h networks. Subsequently,

the slow manifolds 
an be used to eliminate as many dynami
al degrees of freedom as

there are quasi-integrals in a given rea
tion network. As a result, one obtains a system of

redu
ed dimensionality whi
h 
ontains only the essential dynami
al degrees of freedom.

It was shown that quasi-integrals of the type (3.25) and (3.27) may arise from ratios

between 
ertain 
omponents of the rea
tion rate ve
tor R. In general, the 
omponents

of the rea
tion rate ve
tor are nonlinear fun
tions of the phase spa
e variables des
ribing

the kineti
s of the individual rea
tion steps. Thus, the 
lass of slow manifolds, that 
an

be dete
ted, not only in
ludes linear relationships among the phase spa
e variables, but

generi
ally also 
ontains those whi
h are de�ned by nonlinear equations.

The method of quasi-integrals is inspired by the geometri
al singular perturbation

theory of Feni
hel [60℄ (
f. Se
. 3.1) whi
h sets the suitable mathemati
al framework

for the des
ription of 
hemi
al rea
tion systems evolving on di�erent time s
ales. In

this approa
h, the existen
e of quasi-integrals su
h as (3.25) and (3.27) is a su�
ient


ondition for the existen
e of a slow manifold. The major advantages of the proposed

method are that

- it does not require a priori knowledge about the relevant time s
ales in a system.

To the 
ontrary, it identi�es them.

- it does not rely on a sophisti
ated res
aling pro
edure in order to identify small

parameters in the system.

- it is an algorithmi
 pro
edure and therefore, it is espe
ially suited for a straight-

forward redu
tion of higher dimensional networks.

In Se
tion 3.2, we have exemplarily introdu
ed the method of quasi-integrals using the

6-dimensional hemin system (1.2). The rea
tion me
hanism (1.1) of the hemin system


omprises the two equilibria

SO2−
3 + H+

k5,k4

⇋ HSO−
3 (5.1)

A+
k6,k7

⇋ A + H+,

and it is not too surprising that the quasi-integral, that we have found, 
orresponds to

one of them, namely the �rst equilibrium rea
tion in (5.1). However, this observation is
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ussion

not trivial sin
e the se
ond equilibrium rea
tion in (5.1) does not de�ne a quasi-integral.

In order to demonstrate that the method of quasi-integrals does not only dete
t quasi-

stationary manifolds asso
iated with equilibrium rea
tions, we also applied the method

to the 10-dimensional peroxidase�oxidase rea
tion system (
f. Appendix B.3) whi
h,

in 
ontrast to the hemin system, is entirely 
omposed of irreversible rea
tion steps.

Remarkably, we identi�ed three possible quasi-integrals in the rea
tion me
hanism of

the PO system, two of whi
h lead to redu
ed systems that even quantitatively agree

quite well with the original one.

In Se
tion 4.3, we 
ompared the 6-dimensional ODE system (1.2) with its 3-dimensional

approximation (3.20) based on their lo
al 
odimension two bifur
ation diagrams. The

3-dimensional system has been obtained in Se
tion 3.2 as a result of a QSSA using the

quasi-integral (3.5). The fa
t that the bifur
ation diagrams for both systems are virtu-

ally identi
al demonstrates that the 3-dimensional ODE system has the same dynami
al

properties as the original 6-dimensional ODE system (1.2) and thus, the former may be

used for a further analysis of the bursting os
illations in the se
ond Part of the thesis.

The 
ru
ial step in identifying a quasi-integral was to de�ne, under whi
h 
onditions

the graph of a quasi-integral is to be regarded as `almost 
onstant'. As we have already

noti
ed, there is some ambiguity in this de�nition and espe
ially for higher dimensional

ODE systems, it would be of great value to have a numeri
al measure that allows for a

more systemati
 or even automati
 dete
tion of quasi-integrals. Based on some 
ommon

properties shown by all of the dete
ted quasi-integrals, we suggest the following working

de�nition: A quasi-integral is a non-
onstant fun
tion of the phase spa
e variables that

remains bounded almost everywhere in a stripe of adjustable thi
kness µ around 1.
This means that outliers are only allowed in time intervals of adjustable length δ whi
h

should be small as 
ompared to typi
al time s
ales in the system su
h as the period of

the os
illations.

However, when de
iding whether a 
ertain ratio Iij is to be regarded as almost 
on-

stant, our method is quite similar to other semi-obje
tive methods su
h as prin
ipal


omponent analysis or even singular perturbation theory. In the 
ase of prin
ipal 
ompo-

nent analysis, one usually has to de
ide how many modes to keep in order to re
onstru
t

the original data based on the eigenvalue spe
trum of a suitable 
ovarian
e matrix. But

sin
e there is no a priori interpretation of the prin
ipal 
omponents of a given data set, a

rigorous measure, indi
ating how many modes to retain, is equally missing. On the other

hand, for singular perturbation theory to be valid, the singular perturbation parameter

ε is required to be su�
iently small. However, as we have already pointed out, in pra
-

ti
al appli
ations ε is given in terms of intrinsi
 system parameters and thus, has some

�xed 
onstant value. Moreover, it may even be
ome of order unity for some systems

without leaving the range of appli
ability of singular perturbation theory. Thus, for a

parti
ular system one usually relies on numeri
al simulations in order to test the validity

of the approximation. Indeed, this is exa
tly what we have done when we 
ompared the

original and the redu
ed systems based on their lo
al bifur
ations.

Future e�orts should 
omprise tests of the method of quasi-integrals in higher dimen-

sional rea
tion networks in 
onjun
tion with a suitable extension and/or implementation

of our working de�nition of a quasi-integral.
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6. Dynami
s and BurstingOs
illations in the Hemin System
In this Chapter, we investigate the bifur
ations leading to the emergen
e of bursting os-


illations in the hemin system (1.1) and subsequently, dis
uss their bifur
ation sequen
es

in terms of Farey progressions. Thereby, we 
ontinue the des
ription of the bifur
ation

diagram of the hemin system in its 3-dimensional approximation (3.20) where the sim-

ple periodi
 os
illations arose via a series of 
odimension one bifur
ations involving a

sub
riti
al Hopf bifur
ation, a saddle-node bifur
ation of periodi
 orbits and an inverse

Neimark-Sa
ker bifur
ation (Fig. 4.2).

In the next Se
tion, we shall introdu
e a 
oordinate system that will be more suitable

for the investigation of the bursting os
illations, sin
e it is well adapted to the slow-

fast stru
ture of the hemin system. In Se
tion 6.2, we des
ribe the formation of a


haoti
 attra
tor that emerges subsequent to the period doubling bifur
ation PD shown

in the one-parameter bifur
ation diagram of Fig. 4.2. This suggests that the bursting

os
illations arising beyond the period doubling 
as
ade are not asso
iated with phase-

lo
ked states on a 2-torus. Instead, we observe periodi
-
haoti
 progressions of mixed-

mode states in Se
tion 6.3 whi
h are organized in pruned Farey sequen
es.

6.1. Change of 
oordinates

For 
onvenien
e, we will 
hange the notation of the variables (y1, y2, y3, y4) used in (3.20)

to (x, y, z, s) and abbreviate the 
onstant x0
4 − x0

1 + x0
2 as c. In the new 
oordinates, the

3-dimensional hemin system (3.20) reads

ẋ = k0x
0
2 − x

{

k0 + k1s(x, y) +
(

k2 + k3(c − x − y + s(x, y))
)}

(x0
1 − x0

2 + x − s(x, y))

ẏ = −k0y − k6y + k7z(c − x − y + s(x, y)) (6.1)

ż = k0(x
0
5 − z) − k8z + k6y − k7z(c − x − y + s(x, y))

where s(x, y) stands for the slow manifold (3.19) of the 6-dimensional system (1.2) given

by

s =
1

2
(x + y − c − k4

k5

) +
1

2

√

(x + y − c +
k4

k5

)2 + 4
k4

k5

(x0
1 − x0

2 + x). (6.2)

However, numeri
al simulations suggest to investigate the bursting os
illations in the

hemin system in a di�erent 
oordiante system where the slow-fast stru
ture of the ODE
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illations in the Hemin System

system (6.1) be
omes more apparent. To this purpose, we introdu
e the sum of y and z

as a new 
oordinate a

ording to

p = y + z. (6.3)

This linear 
oordinate transformation has the e�e
t that one of the three equations

in (6.1) be
omes linear in the new 
oordinate system. On the other hand, numeri
al

simulations show that y and z are basi
ally anti
orrelated (
f. Fig. 6.1 in the next Se
tion)

su
h that the sum of them evolves on a mu
h slower time s
ale than the 2-dimensional

x-y subsystem. This observation will be 
ru
ial to analyze the origin of bursting and

quasi-periodi
 behavior in the hemin system. In 
hemi
al terms, the sum of y and z

is nothing but the total 
on
entration of hemin spe
ies in the system whi
h, therefore,

might also be of physiologi
al relevan
e.

Using (x, y, p) 
oordinates, the ODE system (6.1) is transformed into

ẋ = k0x
0
2 − x

{

k0 + k1s(x, y) +
(

k2 + k3(c − x − y + s(x, y))
)}

(x0
1 − x0

2 + x − s(x, y))

ẏ = −(k6 + k0)y + k7(p − y)(c − x − y + s(x, y)) (6.4)

ṗ = k0(x
0
5 − p) − k8(p − y)

whi
h will be the starting point for the slow-fast analysis of the hemin system in

Chapter 8.

6.2. A period doubling route to 
haos

In the following, we shall des
ribe the formation of a 
haoti
 attra
tor whi
h emerges

subsequent to the period doubling bifur
ation PD in Fig. 4.2, but prior to the bursting

os
illations. Re
all that the simple periodi
 os
illations (full 
ir
les in Fig. 4.2) were

generated by an inverse Neimark-Sa
ker bifur
ation at k0 = 1.6519. They remain stable

up to k0 = 2.5169 where the �rst of a series of period doubling bifur
ations renders the

simple os
illations unstable and 
reates a stable period-2 
y
le (Fig. 6.1a). The next two

period doublings o

ur at k0 = 2.5241 (Fig. 6.1b) and 2.5253 (not shown).

During the period doubling 
as
ade, the two multipliers of the primary unstable limit


y
le (open 
ir
les in Fig. 4.2) rapidly diverge until they are separated by approximately

12 orders of magnitude, i.e. µ1 ∼ 106 and µ2 ∼ 10−6. Thus, the asso
iated Poin
aré

map exhibits a strong 
ontra
tion in one and a fast expansion in the other dire
tion

indi
ating the 
reation of a folded attra
tor for the subsequent 
haoti
 states.

Figure 6.1
 shows one of these states together with its Poin
aré map (
f. inset). For

the Poin
aré map, we plot the value of the x variable ea
h time the y variable passes

a lo
al minimum against the value of x at the pre
eeding minimum of y. As a result,

the Poin
aré map exhibits a typi
al (asymmetri
) tent map shape indi
ating 
haoti


behavior. Indeed, the largest Liapunov exponent, 
hara
terizing the lo
al divergen
e of

initially 
lose traje
tories, is found to be 0.84 at k0 = 2.529. Figure 6.1d shows a nearby


haoti
 state at k0 = 2.53 with a Liapunov exponent of 1.12. This state di�ers from

the former one in that the traje
tory now performs small amplitude ex
ursions to the
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Figure 6.1.: Period doubling 
as
ade leading to a 
haoti
 attra
tor: Phase spa
e proje
-

tions of period-2 (a), period-4 (b) and two subsequent 
haoti
 states (
),(d)

are shown. The 
haoti
 traje
tory in (
) performs only large amplitude os
il-

lations while the 
haoti
 traje
tory in (d) makes irregular ex
ursions to the

neighborhood of the saddle point (open triangle). The asso
iated Poin
aré

map of the 
haoti
 state in (
) is shown in the inset. It exhibits the shape

of an inverse tent map with a 
uspoid tip (see text for details). The inset

in (d) shows the same 
haoti
 state as in (d) but in a y-z proje
tion of (6.1)

where it be
omes apparent that the 
haoti
 attra
tor is 
ontained in a thin

layer in phase spa
e.

neighborhood of the saddle point (open triangle) in an irregular fashion indi
ating the

up
oming bursting os
illations. The inset in Fig. 6.1d shows the same 
haoti
 traje
tory

at k0 = 2.53 but in a y-z proje
tion where it be
omes self-evident that y and z are

basi
ally anti
orrelated whi
h 
auses the 
haoti
 attra
tor to be 
ontained in a thin

layer in phase spa
e; a property that also holds for the subsequent bursting os
illations.

Due to the anti-
orrelation between y and z, their sum y +z 
hanges only slowly in time

whi
h again suggests to introdu
e the sum of y and z as a new variable as we have done

in equation (6.3).
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Figure 6.2.: The 1120 bursting state (MMO) at k0 = 2.545 is shown in a y-x proje
tion

(a) and in a p-y proje
tion (b) from whi
h the unfolding of the bursting state

along the p dire
tion be
omes apparent. The 
orresponding time series is

presented in (
) while the dashed re
tangular region in (
) is magni�ed in

(d) showing the small amplitude os
illations.

6.3. Bursting os
illations

Subsequent to the formation of the 
haoti
 attra
tor, we observe periodi
-
haoti
 pro-

gressions of bursting os
illations (or MMOs) whi
h are organized into pruned Farey

sequen
es as des
ribed below. Note that the bursting states are not shown in the one-

parameter bifur
ation diagram of Fig. 4.2 sin
e they do not bifur
ate from the primary

periodi
 orbit. Instead, they emerge beyond the 
haoti
 window that follows the period

doubling bifur
ation PD. This suggests that they belong to isolated bifur
ation 
urves.

Therefore, we present some of the bursting states that were found by dire
t numeri
al

integration at the 
orresponding parameter values.

The �rst periodi
 bursting state is observed at k0 = 2.545 where 11 large amplitude

os
illations alternate with 20 small ex
ursions (Fig. 6.2). A

ording to the mixed-mode

nomen
lature LS, this state is denoted as 1120. Figure 6.2a shows a proje
tion onto the

x-y plane (similar to that in Fig. 6.1). If we regard, however, the same state in the p-y
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6.3. Bursting os
illations

proje
tion (Fig. 6.2b) using the newly introdu
ed (x, y, p) 
oordinate system (
f. Se
.6.1),

the `unfolding' of the bursting os
illations along the p dire
tion be
omes apparent: In

the x-y proje
tion (Fig. 6.2a) the small amplitude os
illations are lo
ated in the right

lower 
orner while in Fig. 6.2b they o

ur along a line-like manifold at y ∼ 2.1. In

Fig. 6.2
 we present the time series 
orresponding to the pase portraits of Figs. 6.2(a,b).

The dashed re
tangular region is magni�ed in Fig. 6.2d showing the small amplitude

os
illations.

As the �ow rate k0 in
reases from 2.545, where a 1120 state is observed, to k0 =
3.778, narrow 
haoti
 windows alternate with further periodi
 windows whi
h 
ontain

bursting states with a gradually de
reasing number L of large amplitude os
illations.

This periodi
-
haoti
 sequen
e approa
hes the window 
orresponding to L = 1 at k0 =
3.31 where a 116 state is stable. Within ea
h periodi
 window of �xed L, we �nd

pruned Farey sequen
es of bursting states with a di�erent number S of small amplitude

os
illations. For example, in the periodi
 window 
orresponding to the 4S states, the

following progression was numeri
ally resolved: 417 (k0 = 2.768) → 418 (k0 = 2.780) →
419 (k0 = 2.800) → 420 (k0 = 2.830). A 
omplete Farey sequen
e would also 
ontain

the intermediate states whi
h are obtained by Farey arithmeti
 (
f. Table 1.1), e.g.

835 = 417 ⊕ 418, et
.

In the transition region between two states LS and LS+1 with the same number of

large amplitude os
illations, narrow 
haoti
 windows as well as 
on
atenated states of

the form LSLS+1 are found. The latter are periodi
 patterns that repeat after two

revolutions while their number of small amplitude os
illations di�ers by one. For the

example above, the 417418 state is observed at k0 = 2.775 (Fig. 6.3) while the other two

states 418419, 419420 o

ur at k0 = 2.795, 2.817, respe
tively.
The parameter window where LS states are stable be
omes larger as L gets smaller.

Consequently, we also observed progressions starting with a lower number of small am-

plitude os
illations, e.g. 113 at k0 = 3.235. At k0 = 3.390, the number of small amplitude

os
illations for the 1S progression already ex
eeds 20, but their amplitudes are too small

to be 
ounted. As the sequen
e of 1S states approa
hes k0 = 3.778, the number of

small amplitude os
illations steadily in
reases while the 
haoti
 region between two su
h

states be
omes broader. Thus, one may suspe
t that within ea
h periodi
 window of a

�xed number of large amplitude os
illations, LS states with arbitrary integer number S
exist though most of them o

ur in too narrow parameter intervals to be observed in

numeri
al simulations.

Subsequent to the periodi
-
haoti
 progression of bursting os
illations, there is a fur-

ther periodi
 window where we observe simple periodi
 os
illations whi
h are now of

relaxational type and have long periods (Fig. 6.4a). In Se
tion 8.2 we shall show that

the hemin system undergoes a transition in the bursting me
hanism at k0 = 3.778 whi
h


auses the relaxational 
hara
ter of the os
illations beyond the periodi
-
haoti
 pro-

gression of bursting states. The relaxational os
illations terminate at k0 = 3.858 by a

saddle-node homo
lini
 bifur
ation (
f. Appendix A.5) where the saddle-node bifur
ation

SN1 (
f. Figs. 4.1 and 4.2) o

urs on the formerly periodi
 solution (Fig. 6.4b).

This 
ompletes the dis
ussion of the bifur
ation diagram in Fig. 4.2 along the one-

parameter path at k8 = 2.5 in Fig. 4.1.
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Figure 6.3.: The 
on
atenated bursting state 417418 at k0 = 2.775 in a p-y proje
tion:

The traje
tory `
loses' after two revolutions; one 
onsists of 4 large and 17

small, the other one of 4 large and 18 small amplitude os
illations.
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Figure 6.4.: Large relaxational os
illations at k0 = 3.8 
lose to a homo
lini
 orbit (a).

The 
orresponding traje
tory in phase spa
e is shown in (b). SN1 marks the

lo
ation where a saddle-node bifur
ation (the same as in Fig. 4.2) is to o

ur

at k0 = 3.858 on the formerly periodi
 solution. This yields a saddle-node

homo
lini
 bifur
ation 
ausing the os
illations to vanish.
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7. Slow-Fast Analysis � TheMethod
Before the slow-fast stru
ture of the hemin system will be analyzed in detail, we present

the basi
 ideas underlying a slow-fast analysis as it has been introdu
ed by Rinzel and

Ermentrout [23℄ to des
ribe the bursting behavior of neural systems. In su
h systems, the

dynami
al variables evolve on di�erent time s
ales similar to the rea
tion networks that

have been investigated in the �rst Part of the thesis. However, the 
ru
ial di�eren
e is

now that the time s
ale separation between the slow and the fast pro
esses is not in�nite

anymore.

As a 
onsequen
e, one 
an not simply assume that the fast pro
esses relax to a slow

manifold and hen
eforth instantaneously follow the slow dynami
al degrees of freedom.

Instead, the fast dynami
al variables must not be negle
ted in the dynami
al des
ription.

In fa
t, it is the dynami
s of the slow pro
esses that trigger 
ertain bifur
ations in the fast

subsystem. As a result, there are several attra
ting states in di�erent regions of phase

spa
e. One may then arrive at a geometri
al 
omprehension of the dynami
s sin
e the

�ow of a system exhibiting a slow-fast stru
ture is mostly 
on�ned to the neighborhood

of the attra
ting states of the fast subsystem.

We shall use a 
artoon of the hemin system in order to exemplarily des
ribe its slow-

fast stru
ture in phase spa
e. This example should fa
ilitate the understanding of the

bifur
ation diagrams that will be presented in Chapter 8 where we analyze the slow-fast

stru
ture of the hemin system in detail.

7.1. Cartoon of the slow-fast stru
ture of the hemin

system

Consider Fig. 7.1 where the slow-fast stru
ture of the 3-dimensional hemin system (6.4)

is illustrated in a 
artoon using the (x, y, p) 
oordinate system. Here we assume that

the dynami
s of the hemin system 
an be de
omposed into a fast motion in the x and

y dire
tions and a slow motion along the p dire
tion. A

ordingly, the dynami
s of the

system should be des
ribable in terms of an ODE system of the form

ẋ = f(x, y, p) (7.1)

ẏ = g(x, y, p)

ṗ = εh(x, y, p)
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Figure 7.1.: Cartoon of the slow-fast stru
ture of the 3-dimensional hemin system (6.4).

For ea
h �xed value of the slow variable p, there are 
ertain invariant states

in the fast x-y subsystem. At p0, for example, a stable limit 
y
le (bla
k)


oexists with an unstable limit 
y
le (red) and a stable �xed point. Symbols

denote: SNP � saddle-node bifur
ation of periodi
 orbits, SH � sub
riti
al

Hopf bifur
ation, SNi � saddle-node bifur
ation of stationary points,

Fp0
� 2-dimensional spa
e of the fast subsystem at p = p0, C � 
ylinder-like

manifold 
omposed of stable limit 
y
le solutions of the fast subsystem,

L � line-like manifold 
omposed of stationary points of the fast subsystem.

where ε is a small parameter indi
ating that p evolves on a slower time s
ale than the

x-y subsystem.

For the time being, let us 
onsider the limit ε → 0 in (7.1) whi
h 
orresponds to the

assumption that p is not a dynami
al variable, but a parameter for the 2-dimensional fast

x-y subsystem. Then, for ea
h �xed parameter value p0, there exist 
ertain invariant sets

su
h as stationary and/or os
illatory states in the 2-dimensional fast subsystem whi
h

is symboli
ally represented as the plane spa
e Fp0
in Fig. 7.1. For example, at p0, there

are three 
oexisting invariant sets: A stable limit 
y
le (bla
k 
ir
le), an unstable limit


y
le (red 
ir
le) and a stable �xed point (bla
k dot).

In the next step, the dynami
al nature of p is taken into a

ount. To this purpose, we

again 
onsider the dynami
s of the ODE system (7.1), but this time for small nonzero

ε. As p slowly varies a

ording to the third equation in (7.1), the type and stability

of the states in the fast x-y subsystem will also 
hange. In this sense, p now a
ts as a

quasi-stati
 bifur
ation parameter for the fast subsystem.
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lassi�
ation s
heme for bursting behavior

For example, as p moves to the left, the stable and the unstable limit 
y
le merge

in a saddle-node bifur
ation (SNP) and disappear leaving the stable stationary (thin

bla
k line) state as the only invariant set. On the other hand, as p moves to the right,

the unstable limit 
y
le shrinks and vanishes in a sub
riti
al Hopf bifur
ation (SH).

Hen
eforth, a large amplitude limit 
y
le 
oexists with a saddle point. Eventually, a

saddle-node bifur
ation (SN1) takes pla
e on the large amplitude limit 
y
le to form a

saddle-node homo
lini
 orbit (
f. Appendix A.5) by whi
h the periodi
 solution of the

fast subsystem 
eases to exist.

Now the basi
 assumption underlying the slow-fast analysis is that the �nite time s
ale

separation between the fast x-y subsystem and the slow p dynami
s is su
h that the

stationary and os
illatory states, that exist in the fast subsystem at a parti
ular value

of p, extend along the p dire
tion to quasi-stationary manifolds in the 3-dimensional

phase spa
e (
f. Fig. 7.1), i.e. the stationary states be
ome a line-like quasi-stationary

manifold (L) while the os
illatory states form a (�nite) 
ylinder-like manifold (C) whi
h
is terminated at one side by a saddle-node bifur
ation (SNP) and at the other side by a

saddle-node homo
lini
 orbit.

Here the term `quasi-stationary' is used in a somewhat di�erent meaning as 
ompared

to the �rst Part of the thesis where it denoted the zeroth order approximation to a slow

manifold to whi
h the �ow is 
on�ned due to an in�nite time s
ale separation between

the fast and slow pro
esses (see Se
tion 2.2). Here and in the following, we shall use the

term `quasi-stationary manifold' in the sense that the �ow of the 3-dimensional ODE

system (7.1) is only 
on�ned to the neighborhood of the quasi-stationary manifolds. For

example, to the left of the saddle-node bifur
ation (SNP), L is the only attra
ting set.

Consequently, a traje
tory would evolve 
lose to L in an os
illatory or straight manner

depending whether the eigenvalues along L are 
omplex or real, respe
tively. Similarly,

between the sub
riti
al Hopf (SH) and the saddle-node bifur
ation (SN1), the 
ylinder-

like manifold C is the only attra
ting set su
h that in this region of the phase spa
e a

traje
tory would perform large amplitude os
illations in the neighborhood of C.

7.2. A 
lassi�
ation s
heme for bursting behavior

We have explained how the qualitative behavior of the 3-dimensional �ow (7.1) 
an be

understood in terms of the invariant sets of the fast x-y subsystem and their bifur
ations

leading to di�erent attra
ting states in the 
orresponding regions of the phase spa
e.

Note, however, that the dynami
s of a parti
ular traje
tory is essentially determined

by the third equation in (7.1) whi
h des
ribes the slow dynami
s of the quasi-stati


bifur
ation parameter.

A systemati
 approa
h to 
lassify the bursting behavior of systems exhibiting a slow-

fast stru
ture has been developed by Izhikevi
h [24℄. By taking into a

ount all possible


ombinations of 
odimension one bifur
ations that may o

ur in the fast subsystem,

di�erent bursting me
hanisms are distinguished by the kind of bifur
ations that lead to

the bursting behavior. A

ording to this 
lassi�
ation s
heme, the hemin system, as it

is shown in Fig. 7.1, is a subHopf/fold-
y
le burster, sin
e the two bifur
ations, SH and
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SNP, essentially determine the bursting behavior of this system (
f. Chapter 8).
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8. The Slow-Fast Stru
ture of theHemin System
This Chapter is devoted to a detailed study of the slow-fast stru
ture of the hemin sys-

tem by whi
h the origin of its bursting as well as its quasi-periodi
 behavior will be

elu
idated. The basis for the slow-fast analysis will be the 3-dimensional hemin system

in the representation of (6.4) that has been introdu
ed in Se
tion 6.1 using (x, y, p) 
oor-
dinates. In this 
oordinate system, the slow-fast stru
ture of the hemin system be
omes

manifest sin
e p evolves on a slower time s
ale than the 2-dimensional x-y subsystem.

Furthermore, numeri
al simulations have shown that the bursting os
illations `unfold'

along the p dire
tion (
f. Fig. 6.2b) indi
ating that the (x, y, p) 
oordinate system is

espe
ially suited for a slow-fast analysis. Noti
e that while in the hemin system, the

slow variable is simply given by the linear 
ombination p = y + z, it may be di�
ult to

�nd su
h a suitable variable in general.

The slow-fast analysis is performed by treating the slow variable p as a (quasi-stati
)

bifur
ation parameter for the 2-dimensional fast subsystem

ẋ = k0x
0
2 − x

{

k0 + k1s(x, y) +
(

k2 + k3(c − x − y + s(x, y))
)}

(x0
1 − x0

2 + x − s(x, y))

ẏ = −(k6 + k0)y + k7(p − y)(c − x − y + s(x, y)) (8.1)

whi
h is simply obtained by omitting the third equation in the 3-dimensional hemin

system (6.4)

ṗ = −(k0 + k8)p − k8y + k0x
0
5 (8.2)

that des
ribes the slow p dynami
s sin
e both, k0 and k8, vary on the s
ale 10−4s−1.

In the following, we will analyze the bifur
ation stru
ture of the ODE system (8.1)

in two steps: In Se
tion 8.1, we �x the �ow rate k0 at an arbitrary value and des
ribe

the bifur
ations in the fast subsystem (8.1) leading to the bursting os
illations at this

parti
ular value of k0. Depending on the 
urrent value of the slow variable p, we will �nd

di�erent attra
ting states in the fast subsystem. These states extend to quasi-stationary

manifolds along the p dire
tion and 
on�ne the traje
tories of the full 3-dimensional

system (6.4) to their neighborhood.

In Se
tion 8.2, we investigate how the quasi-stationary manifolds that exist at a par-

ti
ular value of k0 
hange in dependen
e on k0. Therefore, k0 may be regarded as an

external bifur
ation parameter for the 2-dimensional subsystem (8.1). To the 
ontrary,

the a
tual value of the slow variable p 
an not be pres
ribed arbitrarily. Instead it

evolves dynami
ally � although within a narrow range of values � a

ording to equation

(8.2) and thus, p 
an be 
alled an internal bifur
ation parameter.
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Note that the trun
ated ODE system (8.1) no longer depends on the hemin de
ay rate

k8 whi
h was used as a se
ond bifur
ation parameter in the two-parameter bifur
ation

diagram in Fig. 4.1. Thus, for ea
h �xed value of the external bifur
ation parameter

k0, we obtain 
ertain quasi-stationary manifolds in the 3-dimensional system that exist

independently of k8. However, k8 determines (together with k0) the slow dynami
s of

the p variable a

ording to equation (8.2) and 
onsequently, it in�uen
es the dynami
s

of the traje
tories of the full 3-dimensional system.

The last Se
tion is devoted to a detailed study of the torus solution that has been

en
ountered 
lose to the sub
riti
al Hopf bifur
ation in Fig. 4.2. We show that the

rather unusual phase �ow along the torus is a result of the slow-fast stru
ture of the

hemin system whi
h 
an be analyzed in the same way as the bursting os
illations.

8.1. Slow-fast analysis at a �xed value of k0

In the following, we analyze the 
odimension one bifur
ations of the fast subsystem (8.1)

at a �xed value of the �ow rate k0 whi
h we arbitrarily 
hose as 2.8. At this parti
ular
value of the �ow rate, we will �nd that the bifur
ation stru
ture of the fast subsystem

(8.1) is similar to the one des
ribed in Se
tion 7.1 where we used a 
artoon of the hemin

system to illustrate its slow-fast stru
ture.

Figure 8.1a shows the bifur
ation diagram of the fast subsystem where p has been used

as a bifur
ation parameter whose range has been limited due to minimum and maximum

values obtained from prior numeri
al simulations. Stationary states are plotted as thin

lines while the maxima and minima of the os
illatory states are plotted as bold lines.

The stability of the states is indi
ated by 
olor and line style: bla
k solid lines denote

stable states while red dashed lines en
ode unstable states.

There are two bran
hes of stable stationary states in the fast subsystem, one at y ∼
2.07 and the other at y 
lose to 1. Both of these bran
hes be
ome unstable via sub
riti
al

Hopf bifur
ations (SH1 and SH2) while the stable os
illations emerge via saddle-node

bifur
ations (SNP1 and SNP2) where a stable limit 
y
le merges with an unstable one.

The dashed re
tangular region in Fig. 8.1a is magni�ed in Fig. 8.1b. It shows the

bifur
ations in the fast subsystem together with the 419 bursting state (blue) at k8 = 2.5
whi
h is 
on�ned to the region in phase spa
e where the sub
riti
al Hopf SH1 and the

saddle-node bifur
ation SNP1 o

ur in the fast subsystem. Noti
e that in this region of

the phase spa
e the bifur
ation stru
ture is exa
tly the same as in Fig. 7.1.

The dotted line ṗ = 0 denotes the null
line of (8.2), i.e. it indi
ates in whi
h region of

the phase spa
e the traje
tory (blue line) moves to the left (ṗ < 0, below the null
line)

and to the right (ṗ > 0, above the null
line). Note that the orbit is always 
on�ned to the

neighborhood of the invariant sets of the fast subsystem. At the present value of k8 = 2.5,
it makes 4 loops 
lose to the 
ylinder-like manifold (bold bla
k solid line) before it `jumps'

to the line-like manifold (bla
k thin line) where it performs 19 small os
illations. This


an be seen in Fig. 8.1
 whi
h shows a magni�
ation of the dashed re
tangular region

in Fig. 8.1b. In general, a LS state wraps L times around the 
ylinder-like manifold and

os
illates S times along the line-like manifold. In Fig. 8.1d a 3-dimensional view of the
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Figure 8.1.: Slow-fast analysis at a �xed value of the �ow rate k0 = 2.8: The bifur
ation
diagram of the fast subsystem (8.1) (a). The dashed re
tangular region is

magni�ed in (b) together with the traje
tory (blue line) of a 419 state at

k8 = 2.5. The dashed re
tangular region in (b) is magni�ed in (
). In (d)

a 3-dimensional view of the 419 state is shown together with a proje
tion

onto the x-y plane. Solid and dashed bold lines denote maxima and minima

of a stable (bla
k) and an unstable (red) limit 
y
le while solid and dashed

thin lines denote stable (bla
k) and unstable (red) �xed points of the fast

subsystem.

419 state in the (x, y, p) 
oordinate system is visualized together with a proje
tion onto

the x-y plane whi
h again demonstrates the unfolding of the bursting state along the p
dire
tion.

In order to 
larify how the bifur
ations in the fast subsystem lead to the emergen
e

and disappearan
e of the bursting os
illations, we des
ribe one revolution of the traje
-

tory in detail: To the left of the SNP1 point in Figs. 8.1(b,
) the line-like quasi-stationary

manifold is the only attra
tor. Sin
e it is entirely 
omposed of stable stationary states

of the fast subsystem (8.1) whi
h are fo
i, the traje
tory performs damped os
illations

along this manifold (Fig. 8.1
). Subsequent to the sub
riti
al Hopf point SH1, the fo
i


hange stability and hen
e, the quasi-stationary manifold be
omes unstable. A

ord-
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ingly, the amplitude of the os
illations in
reases again while the traje
tory gets more

and more attra
ted by the invariant 
ylinder-like manifold that is 
omposed of stable

limit 
y
le solutions of the fast subsystem. In the following the traje
tory wraps around

the 
ylinder-like manifold while it performs large amplitude os
illations. During that

period, it spends some time above and some time below the plane de�ned by the null
line

ṗ = 0 (Fig. 8.1b). In total, however, there is an e�e
tive movement of the traje
tory

towards lower p values until it passes the saddle-node bifur
ation point SNP1 where the

traje
tory jumps ba
k to the line-like quasi-stationary manifold to 
omplete one 
y
le.

The reason for the net movement towards lower p values is the slowing down e�e
t

that the line-like quasi-stationary manifold exerts on the part of the traje
tory above

the null
line plane. In other words, the traje
tory `feels' the presen
e of the stationary

points of the fast subsystem.

A

ording to the 
lassi�
ation of bursting me
hanisms given in [24℄ (
f. Se
. 7.2), the

hemin system is a subHopf/fold-
y
le burster at k0 = 2.8 sin
e the large amplitude

os
illations terminate by a fold-
y
le bifur
ation (SNP1) while the small os
illations

disappear via a sub
ritial Hopf bifur
ation (SH1). As we shall show in the next Se
tion,

there is a transition in the bursting behavior at higher values of the �ow rate k0.

8.2. Two-parameter 
ontinuation in p and k0

So far we have analyzed the bifur
ations in the fast subsystem (8.1) at one parti
ular

value of the external bifur
ation parameter, namely at k0 = 2.8. Now we investigate

how the quasi-stationary states of the fast subsystem 
hange as k0 is varied. To this

purpose, we again pro
eed in two steps: First, we monitor the deformation of the line-

like quasi-stationary manifold 
orresponding to the bran
h of stationary solutions of the

fast subsystem. In the se
ond step, we also in
lude the os
illatory states and present

a 
omplete two-parameter bifur
ation diagram of the fast subsystem using the slow

variable p and the �ow rate k0 as parameters.

Figure 8.2 shows how the line-like quasi-stationary manifold (blue lines) deforms as

the �ow rate k0 is in
reased from the value 2.8 (I) used in Se
tion 8.1 via k0 = 3.6 (II) to

k0 = 3.8 (III). Along these 
urves, we �nd 
ertain 
odimension one bifur
ations whi
h

are 
onne
ted by 
urves obtained from a two-parameter 
ontinuation using p and k0 as

parameters. For example, the 
urve I interse
ts the bran
hes SH1 and SH2 (dashed red

lines) in two points where sub
riti
al Hopf bifur
ations o

ur. These Hopf bifur
ations

are the same as those in Fig. 8.1a.

At a higher value of the �ow rate (k0 = 3.495) there is a Bogdanov-Takens bifur
a-

tion (BT) o

uring in the fast subsystem where the se
ond bran
h of sub
riti
al Hopf

bifur
ations SH2 terminates. As a 
onsequen
e, the other two bran
hes of stationary

states (II and III) still interse
t the �rst sub
riti
al Hopf bifur
ation 
urve SH1, but no

longer SH2. Instead, the two bran
hes II and III 
ross the two saddle-node bifur
ation


urves SN1 and SN2 that emerge at CP from a 
usp singularity. Note that the lo
ation

of the �rst saddle-node bifur
ation SN1 moves towards lower p values as the �ow rate k0

in
reases whi
h may lead to intera
tions of SN1 with the os
illatory states generated in
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Figure 8.2.: The 
urves I, II, III show how the bran
h of stationary states (blue lines)

of the fast subsystem (8.1) 
hanges as the �ow rate k0 is in
reased from 2.8
to 3.6 and 3.8. The 
odimension one bifur
ations o

uring along the 
urves

I, II, III are found at the interse
tion points of these 
urves with the two-

parameter 
ontinuation 
urves SHi and SNi. Symbols denote: SHi - 
urves

of sub
riti
al Hopf bifur
ations (dashed, red), H - 
urve of super
riti
al

Hopf bifur
ations (solid, bla
k), SNi - 
urves of saddle-node bifur
ations of

�xed points (solid, bla
k), 
odimension two points: GHi - generalized Hopf

bifur
ations (open triangle), BT - Bogdanov-Takens (diamond), CP - 
usp

(�lled triangle).

the sub
riti
al Hopf bifur
ation SH1, but whi
h have been omitted in Fig. 8.2 for 
larity.

The 
omplete two-parameter bifur
ation stru
ture of the fast subsystem in
luding the

os
illatory states is summarized in Fig. 8.3 where p and k0 were used as parameters.

The bifur
ation lines SH1, SN1, et
. are the same as those in Fig. 8.2. In addtion, a

bran
h of saddle-node bifur
ations of periodi
 orbits (SNP1) is shown whi
h bifur
ates

from the generalized Hopf bifur
ation point GH1 (
f. inset Fig. 8.3a). This 
odimension
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Figure 8.3.: Two-parameter bifur
ation diagram of the fast subsystem(8.1) using the

slow variable p and the �ow rate k0 as parameters. If p sweeps ba
k and

forth between region 1 and 2 
rossing the SNP1 
urve, the dynami
s of

the whole system exhibits bursting behavior. In the neighborhood of the

interse
tion point 3 a transition in the bursting me
hanism o

urs (see text

and Fig. 8.4 for details). Symbols denote: SHi - 
urves of sub
riti
al Hopf

bifur
ations (dashed red), H - 
urve of super
riti
al Hopf bifur
ations (solid),

SNi - 
urves of saddle-node bifur
ations of �xed points (solid), SNP1 - 
urve

of saddle-node bifur
ations of periodi
 orbits (dash-dot), 
odimension two

points: GHi - generalized Hopf bifur
ations (open triangle), BT - Bogdanov-

Takens (diamond), CP - 
usp (�lled triangle).

two bifur
ation point separates two bran
hes of Hopf bifur
ations, a super
riti
al (H,

solid bla
k line) and a sub
riti
al one (SH1, dashed red line). The se
ond inset Fig. 8.3b

shows a magni�
ation of the region 
lose to the 
usp bifur
ation point CP where the

two bran
hes of saddle-node bifur
ations originate.

In the two-parameter bifur
ation diagram Fig. 8.3, one 
an identify the invariant sets

60



8.2. Two-parameter 
ontinuation in p and k0

of the fast subsystem at a given value of the slow variable p whi
h, in turn, determine the

potential dynami
al properties of the system. For example, region 1 
orresponds to the

upper stationary state at y ∼ 2.07 while in region 2 we �nd the 
ylinder-like manifold

that is 
omposed of stable limit 
y
le solutions. In addition, there is a small bistable

region bounded by the two 
urves SNP1 and SH1 where a limit 
y
le 
oexists with a

stationary state (
f. Fig. 8.1
). Thus, we dedu
e that whenever the slow p dynami
s is

su
h that p sweeps ba
k and forth between region 1 and 2 in phase spa
e while 
rossing

the SNP1 
urve, the hemin system exhibits bursting behavior as des
ribed in Se
tion 8.1.

8.2.1. A transition in the bursting behavior

The two-parameter bifur
ation diagram shown in Fig. 8.3 
an also be used to identify

transitions in the bursting behavior of the hemin system. To this purpose, 
onsider

the interse
tion point (p, k0) = (2.211, 3.773) marked as 3. Here, the sub
riti
al Hopf

bifur
ation SH1 and the saddle-node bifur
ation SN1 o

ur at the same value of p in

phase spa
e. Thus, it be
omes possible that in a neighborhood of the interse
tion point

the (unstable) os
illatory states emanating from the sub
riti
al Hopf bifur
ation may

intera
t with the bran
h of (unstable) states that originate in the saddle-node bifur
a-

tion. In order to show that this truly leads to a transition in the bursting behavior of

the hemin system, we 
ompare the bifur
ation diagrams of the fast subsystem for two

neighboring values of the �ow rate k0.

Figure 8.4 shows the 
odimension one bifur
ation diagrams of the fast subsystem for

k0 = 3.6 (Fig. 8.4a) and k0 = 3.8 (Fig. 8.4
), respe
tively. Again, the traje
tories

(blue lines, 
al
ulated for k8 = 2.5) are superimposed on the bifur
ation diagrams. The

waveform of the os
illations is displayed in the 
orresponding time series (Figs. 8.4(b,d)).

The bran
hes of stationary states (thin lines) in Figs. 8.4(a,
) are the same as the 
urves

II and III in Fig. 8.2, but now they are supplemented by the os
illatory states (bold

lines) arising from the sub
riti
al Hopf bifur
ation SH1. At k0 = 3.6, the �nite 
ylinder-
like manifold is bounded by the saddle-node bifur
ation SNP1 at the left side and the

saddle-node homo
lini
 orbit SNHC at the right side (at p ∼ 2.7) where the saddle-node
bifur
ation SN1 o

urs on the large amplitude limit 
y
le.

As the �ow rate k0 in
reases from 3.6 to 3.8, the saddle-node homo
lini
 orbit moves

together with the two saddle-node bifur
ation points SN1 and SN2 towards lower p
values until the �rst of them (SN1) 
ollides with the unstable limit 
y
le (bold dashed

red line) at approximately k0 ∼ 3.778 (not shown), i.e. slightly above the interse
tion

point 3 of Fig. 8.3. Subsequent to this bifur
ation, the saddle-node homo
lini
 orbit

has turned into a saddle homo
lini
 orbit (SHC) (
f. Appendix A.5 for the di�eren
e

between the two types of homo
lini
 orbits) while the saddle-node bifur
ation SNP1 has

disappeared (Fig. 8.4
). Thus, the 
ylinder-like manifold (Fig. 8.4a, bold bla
k solid

lines) does not appear anymore for k0 > 3.778 and the fast subsystem be
omes bistable.

Hen
eforth, the bursting behavior of the hemin system is of fold/subHopf type sin
e

the upper stationary state disappears via the sub
riti
al Hopf bifur
ation SH1 while the

lower stationary state undergoes a fold bifur
ation at SN1. A typi
al traje
tory basi
ally

jumps ba
k and forth between the two quasi-stationary states (Fig. 8.4
) 
ausing the
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strong relaxational 
hara
ter of the os
illations (Fig. 8.4d).
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 behavior in the hemin system

8.3. The origin of quasi-periodi
 behavior in the

hemin system

In the pre
eding Se
tions, we have shown that the origin of the bursting behavior of

the hemin system may be well understood in terms of the invariant states of the fast

subsystem (8.1) whi
h the traje
tories 
losely follow during their temporal evolution. It

is the goal of the following investigation to show that the quasi-periodi
 behavior of the

hemin system has a similar origin that 
an be equally analyzed by a slow-fast analysis.

To this purpose, we investigate the phase �ow on the 2-torus that has been observed


lose to the sub
riti
al Hopf bifur
ation in Fig. 4.2 (
f. Se
. 4.2). Figure 8.5 again

shows the inset of Fig. 4.2 where the Neimark-Sa
ker bifur
ation NS appears in 
on-

jun
tion with the saddle-node bifur
ation SNP and the sub
riti
al Hopf bifur
ation SH.

By analyzing the slow-fast stru
ture of the hemin system (6.4) in the vi
inity of the

Neimark-Sa
ker bifur
ation point, we shall show that the rather unusual phase �ow on

the torus is a result of the �nite time s
ale separation in the hemin system.

8.3.1. A torus with unusual phase �ow

Figure 8.6 shows how the torus deforms as the �ow rate k0 is de
reased. In the proje
tions

on the p-y plane (Figs. 8.6(a,b)), the numeri
al integration was stopped before the

traje
tory made a full revolution on the torus in order to reveal a portion of the �ow

along the `inner part' of the torus. We observe a sharp transition from a smooth torus

shown in Fig. 8.6a at k0 = 1.65189 
lose to the Neimark-Sa
ker bifur
ation point in

Fig. 8.5 to a highly distorted one at k0 = 1.65180 (Fig. 8.6b). The arrows indi
ate the

dire
tion of phase �ow along the torus.

The saddle point S that emerges after the sub
riti
al Hopf bifur
ation SH (
orre-

sponding to the dashed line in Fig. 8.5) a
ts as an organizing 
enter for the torus as


an be seen in Fig. 8.6b: The �ow approa
hes the `outer part' of the torus along the

2-dimensional unstable manifold of the saddle point. Then it moves to the left (i.e.

towards lower p values) until it 
hanges dire
tion and returns along the 1-dimensional

stable manifold of the saddle. The reason for the traje
tory to 
hange its dire
tion 
an

be grasped from the slow-fast analysis of (6.4) and will be given below.

The phase �ow on the 2-torus 
an be des
ribed as follows: If we 
onsider a 2-torus as a

dire
t produ
t of two 
ir
les with a di�erent radius (Fig. 8.7), then the angular velo
ity

ωL along the 
ir
le with the larger radius is mu
h higher than that of the 
ir
le with

the smaller radius (Fig. 8.7a). However, 
lose to the onset of quasi-periodi
 behavior,

the opposite situation ωS > ωL is usually en
ountered [9℄ (Fig. 8.7b). In other words,

the `unusual' phase �ow in Fig. 8.6 is a result of the time s
ale separation in the ODE

system (6.4) sin
e the traje
tory moves mu
h faster in the x-y dire
tions than along the

p dire
tion.

As the �ow rate k0 is further de
reased, the overall shape of the torus in Fig. 8.6b does

not 
hange signi�
antly anymore. However, the time spent by the traje
tory along the

stable manifold of the saddle point S gradually in
reases until the torus and the saddle
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point have eventually disappeared to the left of the sub
riti
al Hopf point (SH) where

only a stable �xed point exists (
f. Fig. 8.5).

8.3.2. Slow-fast analysis of the phase �ow on the torus

Figure 8.8 shows the same proje
tions of the phase �ow on the torus as Figs. 8.6(a,
),

but this time the bifur
ation diagrams of the fast subsystem (8.1) are superimposed.

The arrows indi
ate the dire
tion of the �ow on the torus while SNP1 and SH1 mark the

lo
ations where a saddle-node bifur
ation of periodi
 orbits and a sub
riti
al Hopf bifur-


ation o

ur in the fast subsystem. Thus, the bifur
ation s
enario in the fast subsystem

is similar to that shown in Fig. 8.1 where we have analyzed the bursting os
illations at

k0 = 2.8.
Noti
e how the �ow 
losely follows the quasi-stationary states of the fast subsystem.

For example, at k0 = 1.65189, the traje
tory (blue line) basi
ally sweeps ba
k and forth

the saddle-node bifur
ation point SNP1 while it performs large amplitude os
illations

in the vi
inity of the 
ylinder-like manifold (bold bla
k line), thereby 
reating quasi-

periodi
 behavior (Fig. 8.8a). As long as the amplitude of the os
illations along the

`inner part' of the 
ylinder-like manifold is su�
iently large, the traje
tory does not

`feel' the attra
tive line-like quasi-stationary manifold (thin bla
k line) and therefore,

remains in the neighborhood of the 
ylinder-like manifold.

However, as the �ow rate k0 is de
reased, the �ow on the torus 
hanges (Fig. 8.8b):

As soon as the saddle-node point SNP1 is passed to the left, the traje
tory is attra
ted

by the line-like quasi-stationary manifold. Thus, it is the saddle-node point that 
auses

the traje
tory to 
hange its dire
tion. Then the orbit returns to the saddle point S along

the stable manifold of S whi
h, apparently, is 
on�ned to a neighborhood of the line-like

quasi-stationary manifold. Subsequently, the traje
tory moves along the 2-dimensional

unstable manifold of the saddle point S to approa
h the 
ylinder-like manifold where it

performs large amplitude os
illations while slowly moving to the left until the saddle-

node point SNP1 is passed again and the next revolution begins.

The results shown in Fig. 8.8 suggest that the quasi-periodi
 behavior in the hemin

system is 
aused by the parti
ular 
onstellation of the saddle-node (SNP1) and the

sub
riti
al Hopf bifur
ation (SH1) o

uring in the fast subsystem (8.1). Indeed, the

two-parameter bifur
ation diagram Fig. 8.3 shows that the fast subsystem is 
lose to

a Bautin bifur
ation (
f. Appendix A.4) in Fig. 8.8. Sin
e the 
urve of sub
riti
al

Hopf bifur
ations SH1 always remains in the neighborhood of the 
urve of saddle-node

bifur
ations SNP1, the two bifur
ations always o

ur in the same region of phase spa
e

and thus, they may potentially trap a traje
tory in the quasi-periodi
 way as des
ribed

above for Fig. 8.8.
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Figure 8.4.: Transition in the bursting behavior from subHopf/fold-
y
le at k0 = 3.6
(a,b) to fold/subHopf type at k0 = 3.8 (
,d). (a),(
) show 
odimension one

bifur
ation diagrams of the fast subsystem together with traje
tories (blue

lines) 
al
ulated for k8 = 2.5 while (b),(d) depi
t the 
orresponding time

series. As the �ow rate k0 in
reases, the invariant 
ylinder-like manifold

(formed by stable limit 
y
les of the fast subsystem) is destroyed as the

lo
ation of the saddle-node bifur
ation SN1 approa
hes the unstable limit


y
le that is 
reated in the sub
riti
al Hopf bifur
ation SH1 (a,
). Hen
e-

forth, the fast subsystem is bistable (
) and only relaxational os
illations

are observed (d). Symbols denote: SH1 - sub
riti
al Hopf bifur
ation, SNP1

- saddle-node bifur
ation of periodi
 orbits, SNi - saddle-node bifur
ation of

�xed points, SHC - saddle homo
lini
 orbit, SNHC - saddle-node homo
lini


orbit. Solid and dashed bold lines denote maxima and minima of a stable

(bla
k) and an unstable (red) limit 
y
le while solid and dashed thin lines

denote stable (bla
k) and unstable (red) �xed points of the fast subsystem,

respe
tively.
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Figure 8.5.: Inset of Fig. 4.2: A torus solution bifur
ates at k0 = 1.6519 from the

Neimark-Sa
ker Point NS (bla
k square) towards lower values of k0. It

exists in a narrow interval up to the sub
riti
al Hopf bifur
ation SH at

k0 = 1.6461. Other symbols denote: SNP (open triangle) - saddle-node

bifur
ation of periodi
 orbits, solid line - stable �xed point, dashed line -

saddle point, open/bla
k 
ir
le - unstable/stable limit 
y
le.
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Figure 8.6.: Deformation of the 2-torus as the �ow rate k0 is de
reased: (a),(b) represent

proje
tions onto the p-y plane while (
),(d) depi
t the 
orresponding time

series. Close to the Neimark-Sa
ker point NS in Fig. 8.5, the torus looks

smooth (a). At a slightly de
reased value of the �ow rate, the `inner part' of

the torus rapidly shrinks to a line-like manifold along whi
h the traje
tory

approa
hes the stable manifold of the saddle point S (b).
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Figure 8.7.: Flow on a 2-torus with di�erent ratios of angular velo
ities:

ωL > ωS (`unusual') (a) and ωL < ωS (`usual') (b).
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Figure 8.8.: Slow-fast analysis of the phase �ow on the 2-torus 
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Sa
ker bifur
ation (a) and slightly below (b) (see text for details). The

traje
tories (blue) are superimposed on bifur
ation diagrams of the fast

subsystem (8.1). Invariant sets of the fast subsystem: Stable/unstable limit


y
les are displayed in bold bla
k/red lines while stable/unstable stationary

states are drawn as thin bla
k/red lines.
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9. Summary and Dis
ussion
In the se
ond Part of the thesis, we have studied the bursting or mixed-mode os
illations

in the 3-dimensional hemin system (6.4) where we have been parti
ularly interested in

the elu
idation of the me
hanism generating the bursting os
illations.

In Chapter 6, we showed that the bursting os
illations in the hemin system arise

subsequent to the formation of a 
haoti
 attra
tor that follows a period doubling 
as
ade.

This suggests that the bursting os
illations are not asso
iated with phase-lo
ked states

on a 2-torus whi
h is stable in another region of the parameter spa
e. Instead, the MMOs


ome in periodi
-
haoti
 sequen
es with di�erent levels of organization. At the top level,

the periodi
 windows are labeled by the number L of large amplitude os
illations whi
h

at the same time 
orrespond to the levels of a Farey tree. Within ea
h periodi
 window

of �xed L, we observed pruned Farey sequen
es of LS states with a di�erent number

S of small amplitude os
illations. Transitions between adja
ent states LS and LS+1

again o

ur via narrow 
haoti
 windows where periodi
 
on
atenated states of the form

LSLS+1 are embedded. Similar bifur
ation sequen
es were also observed by Hauser and

Olsen [13℄ in the PO system and Koper [28℄ in a three variable model system.

The observation that mixed-mode states LS of a gradually de
reasing number L of

large amplitude os
illations alternate with narrow 
haoti
 windows together with the fa
t

that a 
haoti
 attra
tor was formed prior to the emergen
e of the �rst bursting state,

suggests that the bursting os
illations might a
tually be embedded in a 
haoti
 attra
tor

similar to a s
enario reported by Gorya
hev et. al. [31℄. In this arti
le it is argued that

the mixed-mode states are embedded in a horseshoe-type attra
tor. The bifur
ations of

the MMOs are des
ribed on the basis of a detailed investigation of a suitable Poin
aré

map from whi
h the transformation of the system's slow manifold into a horseshoe-type

attra
tor 
ould be derived as parameters are varied. During the transformation pro
ess,

Poin
aré maps are observed that are very similar to the one we 
al
ulated in Fig. 6.1


subsequent to the period doubling bifur
ation. In parti
ular, Gorya
hev et. al. also

observe a tent map with almost 
uspoid tip (
f. Fig. 5e in [31℄).

For the hemin system, however, it remains an open task to �nd a Poin
aré se
tion that

is well-de�ned for the whole parameter range of k0 values, where the bursting os
illations

are stable, whi
h would fa
ilitate to establish a 
loser link of the bursting dynami
s in

the hemin system to the me
hanism proposed in [31℄.

In Chapter 7 we introdu
ed the basi
s underlying a slow-fast analysis due to Rinzel

and Ermentrout [23℄, and illustrated the slow-fast stru
ture of the hemin system using

the 
artoon in Fig. 7.1. In addition, we mentioned a 
lassi�
ation s
heme for bursting

me
hanisms that has been elaborated by Izhikevi
h [24℄. In this s
heme, the bursting

behavior is 
lassi�ed by the type of bifur
ations that o

ur in the fast subsystem and

lead to the bursting behavior.
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9. Summary and Dis
ussion

In Chapter 8, we de
omposed the 3-dimensional ODE system (6.4) a

ording to its

slow-fast stru
ture into the fast subsystem (8.1) and the slow dynami
s for the quasi-

stati
 bifur
ation parameter p (eq. 8.2). In the following, we analyzed the bifur
ations

o

uring in the fast subsystem (8.1) in dependen
e on the slow variable p. In general,

from su
h an analysis one 
an dedu
e the existen
e of quasi-stationary manifolds in phase

spa
e to whose neighborhood the traje
tories of the ODE system (6.4) are 
on�ned and

thus, one may arrive at a geometri
al 
omprehension of the phase �ow.

In a �rst step, we analyzed the slow-fast stru
ture of the hemin system at a �xed value

of the �ow rate k0. As a result, we found that 
ertain 
odimension one bifur
ations in

the fast subsystem are responsible for the o

uren
e of bursting os
illations; in parti
ular

the 
onstellation of the saddle-node bifur
ation of periodi
 orbits SNP1 and the sub
rit-

i
al Hopf bifur
ation SH1 turned out to be essential for the generation of the bursting

os
illations (
f. Fig. 8.1). A

ordingly, the bursting me
hanism is of subHopf/fold-
y
le

type at the 
hosen parameter value for the �ow rate and thus, it 
an be arranged into

the 
lassi�
ation s
heme proposed by Izhikevi
h [24℄.

In a se
ond step, we investigated how the stationary and os
illatory states of the fast

subsystem 
hange under variation of the �ow rate k0. To this purpose, we performed a

systemati
 two-parameter 
ontinuation of the fast subsystem using the slow variable p

and the �ow rate k0 as parameters. From the resulting bifur
ation diagram (Fig. 8.3),

we identi�ed a transition in the bursting behavior of the hemin system by whi
h it

be
omes a fold/subHopf burster due to a 
hange in the nature of the homo
lini
 orbit

in the fast subsystem (Figs. 8.4(a,
)). At k0 = 3.6 (Fig. 8.4a), the fast subsystem has

an orbit that is homo
lini
 to the nonhyperboli
 equilibrium at p ∼ 2.7. In 
ontrast, at

k0 = 3.8 (Fig. 8.4
), the saddle-node homo
lini
 orbit SNHC has turned into the saddle

homo
lini
 orbit SHC whi
h involves a hyperboli
 equilibrium at p ∼ 2.2.
The observation of a transition in the bursting behavior of the hemin system is a

novel result at least from a theoreti
al point of view, sin
e the slow-fast stru
ture in

other systems is, to our knowledge, mostly investigated at a parti
ular parameter set in

order to determine the type of bursting behavior a

ording to the 
lassi�
ation s
heme

of Izhikevi
h. However, su
h an approa
h prevents the dete
tion of a transition in the

bursting behavior although su
h a transition 
an be of physiologi
al relevan
e.

Finally, we found that the same 
onstellation of 
odimension one bifur
ations of the

fast subsystem (SNP1 in 
onjun
tion with SH1), that was already identi�ed to allow

for bursting os
illations, may equally a

ount for quasi-periodi
 behavior in the hemin

system, although in a di�erent region of the parameter spa
e. A detailed investigation

of the phase �ow on the 2-torus 
lose to the Neimark-Sa
ker bifur
ation in Fig. 8.5

revealed that the quasi-periodi
 behavior is due to the 
oupling of an os
illator in the

fast subsystem (8.1) (whi
h is represented by the stable limit 
y
le solution) with the

p variable, but on a slow time s
ale. Indeed, a similar line of argument has been used

by Koper [28℄ to explain the origin of quasi-periodi
ity in a di�erent system although a

slow-fast analysis has not been performed to support this statement. However, sin
e tori

with a phase �ow similar to the one in Fig. 8.6 have been observed in several 
hemi
al

systems [25, 26, 28℄, it is very likely that they share a 
ommon dynami
al origin that


an be analyzed by a suitable slow-fast analysis.
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A. Dynami
al Systems andBifur
ation Theory in a Nutshell
It is the aim of the present Chapter to provide the basi
 ideas and 
on
epts underlying

dynami
al systems and bifur
ation theory as they are ne
essary to understand the results

in part I and II of this work. Therefore, it should be used as a referen
e. For 
onvenien
e,

the presentation will mostly be kept on an informal level.

We begin in Se
tion A.1 with a brief introdu
tion to the theory of �nite dimensional

dynami
al systems where the basi
 notions and theorems are reviewed. In parti
ular,

the Hartman-Grobman and the stable manifold theorem will be presented as the basis

for the lo
al analysis of the nonlinear �ow near �xed points and limit 
y
les.

Se
tion A.2 is devoted to the foundations of bifur
ation theory. Here we introdu
e

the important notion of topologi
al equivalen
e whi
h de�nes an equivalen
e relation in

the spa
e of dynami
al systems and thus, allows to 
ompare the dynami
al properties

of two su
h systems. In addition, the 
enter manifold theorem, parameter dependent

dynami
al systems and normal forms are dis
ussed.

In Se
tion A.3, we review the generi
 lo
al bifur
ations of �xed points and limit 
y
les,

that 
an be observed as one parameter of a system is 
ontinously varied. Se
tion A.4

des
ribes some of the generi
 lo
al two-parameter bifur
ations of �xed points that are

frequently en
ountered in this work. We 
on
lude this Chapter with Se
tion A.5 where

we brie�y introdu
e two global bifur
ations that involve a homo
lini
 orbit to a hyper-

boli
 and a nonhyperboli
 equilibrium, respe
tively.

Our presentation mainly follows the books of Gu
kenheimer & Holmes [9℄, Kuznetsov

[76℄ and Jets
hke [77℄ without parti
ular referen
e.

A.1. Dynami
al systems

A (�nite dimensional) dynami
al system 
onsists of a (�nite dimensional) state spa
e

X and a one-parameter group of transformations (ϕt)t on X where we have t ∈ R for


oninuous-time and t ∈ Z for dis
rete-time systems. For ea
h t, the so-
alled �ow map

ϕt : X → X (A.1)

x 7→ ϕt(x),

is a di�eomorphism of the state spa
e X transforming any initial state x into a �nal

state ϕt(x) = ϕ(t, x) (
f. Fig. A.1a).
On the other hand, if we �x some initial point x0 ∈ X then the map

ϕ(·, x0) : R → X (A.2)
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X

X

ϕt(X)

x0

ϕ(·, x0)

0 t

ϕt(x0)

(a) (b)

R

Figure A.1.: The �ow of a dynami
al system (a) and a parti
ular traje
tory passing

through x0 (b).

des
ribes a 
urve in X. The image ϕ(t, x0) of the map in (A.2) is 
alled orbit, solution


urve or traje
tory of the �ow ϕt through the point x0 (Fig. A.1b). The �ow satis�es

the group properties:

ϕ0 = idX

ϕt ◦ ϕs = ϕt+s = ϕs ◦ ϕt,

i.e. it yields an abelian a
tion (in the group theoreti
al sense) ϕt : R(Z) × X → X of

the real (integer) numbers on the phase spa
e X de�ned by (t, x) 7→ ϕt(x).
In the following, we shall 
onsider dynami
al systems whose �ow arises from a ve
tor

�eld in the sense that the �ow satis�es for all x ∈ M ⊆ R
n and all s out of an interval

I = (a, b) ⊆ R:

d

dt
ϕ(t, x)|t=s = f(ϕ(s, x)) (A.3)

where it is su�
ient to think of a ve
tor �eld as a map f : M ⊂ R
n → R

n. If we use

the n-dimensional Eu
lidean spa
e R
n equipped with 
oordinates x = (x1, . . . , xn) as

the state spa
e X and �x an initial 
ondition ϕ(t, x0)|t=0 = x(t, x0)|t=0 = x0, then (A.3)

be
omes a system of ordinary di�erential equations (ODE system):

d

dt
xi ≡ ẋi = fi(x1, . . . , xn), xi(0) = (x0)i, i = 1, . . . , n

or in short ve
tor notation

ẋ = f(x), x(0) = x0. (A.4)

The (lo
al) existen
e and uniquness of a solution 
urve ϕ(·, x0) ≡ x(·, x0) : (a, b) →
M of the ODE system (A.4) is guaranteed provided f is, for example, C1, i.e. on
e
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di�erentiable and the derivative is 
ontinuous. However, exa
t solutions of the ODE

system (A.4) 
an be found only if the 
omponents of the ve
tor �eld are linear fun
tions

or f has 
ertain 
ontinuous symmetries, i.e. it is equivariant with respe
t to a Lie group

of transformations [78, 79℄. Thus, the natural question arises: What 
an be said about

the typi
al behavior of traje
tories in the absen
e of su
h symmetries?

A.1.1. The geometri
al approa
h

In the qualitative theory of dynami
al systems, a geometri
al viewpoint is adopted where

the properties of a dynami
al system as a whole are more important than the fate of an

individual traje
tory. In parti
ular, invariant manifolds are of paramount interest sin
e

they allow to 
lassify the di�erent types of long-time behavior that 
an be found in a

dynami
al system.

In the simplest 
ase, a traje
tory settles down to a stationary state whi
h is asso
iated

with a singular point of the ve
tor �eld f , i.e. it is a solution of the equation f(x) = 0.
If the �ow map satis�es ϕt+T (x) = ϕt(x) for some T ≥ 0 and for all t ≥ 0 and all x

belonging to an orbit C, this orbit is 
alled a limit 
y
le and 
orresponds to a periodi


solution of the ODE system (A.4) with period T . These are the most simple examples of

so-
alled invariant sets whi
h represent the potential long-time behavior of a dynami
al

system. Thus, a good strategy for the investigation of any nonlinear dynami
al system

is to lo
ate its invariant sets beginning with the �xed points and study subsequently the

behavior of traje
tories in the neighborhood of the invariant sets.

This approa
h is fa
ilitated by the Hartman-Grobman and the stable manifold theorem

for �xed points both of whi
h 
ome in two versions; one for 
ontinuous-time and one for

dis
rete-time systems, i.e. iterated maps. They allow for a lo
al re
onstru
tion of the

phase portait (i.e. the 
olle
tion of all orbits) near �xed points and limit 
y
les. In the


ase of a 2-dimensional system, the knowledge about the lo
al behavior is often su�
ient

to re
onstru
t the global phase �ow due to the topologi
al restri
tions in 2-dimensional

spa
e. In fa
t, �xed points and limit 
y
les are the only (generi
) invariant sets for

2-dimensional 
ontinous-time �ows. To the 
ontrary, in higher dimensional (
ontinous-

time) systems, the long-time behavior of traje
tories may be
ome more 
omplex and

one usually relies on numeri
al simulations to obtain some global information about the


orresponding phase �ow. We remark that for dis
rete-time dynami
al systems, there are

no su
h topologi
al restri
tions and even 1-dimensional dynami
al systems may be
ome

arbitrarily 
omplex.

A.1.2. Invariant sets, attra
tors, et
.

Before the main ideas of the Hartman-Grobman and the stable manifold theorem are

dis
ussed, we give some de�nitions of spe
ial sets in phase spa
e that are relavant for

the dis
ussion of limiting behavior.

A subset S ⊂ R
n is 
alled invariant with respe
t to the �ow ϕt if x ∈ S implies

ϕt(x) ∈ S for all t. Fixed points and limit 
y
les are simple examples of invariant

sets. A 
losed invariant set A ⊂ R
n is 
alled attra
ting if traje
tories being in some
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neighborhood U of A at t = 0, remain there for t ≥ 0 and approa
h the attra
ting set

in the limit t → ∞. The domain of attra
tion of the set A 
onsists of all orbits rea
hing

the neighborhood U of A in �nite time, i.e. ∪t≤0ϕt(U).
An attra
tor is an attra
ting set 
ontaining a dense orbit. This requirement ensures

that a typi
al traje
tory belonging to the attra
tor 
omes arbitrary 
lose to every point

of the attra
tor. Fixed points and limit 
y
les show rather simple limiting behavior in the


ase that they are attra
ting. However, in higher dimensional systems (n ≥ 3), one may

also �nd bounded regions in phase spa
e 
ontaining 
ompli
ately folded attra
ting sets

that exhibit a `strange' limiting behavior in the sense that nearby traje
tories belonging

to the attra
tor deviate (lo
ally) exponentially fast from ea
h other. The term `lo
ally'

is important here sin
e the attra
tor resides in a bounded region in phase spa
e and

therefore, two lo
ally diverging traje
tories may again 
ome 
lose together after some

time. The `strong dependen
e on the initial 
onditions' is a hallmark of 
haoti
 behavior

whi
h basi
ally prevents any long-time fore
asts in real world 
haoti
 systems where

initial 
onditions are only known with �nite a

ura
y. On the other hand, it is usually

very di�
ult to `prove' the existen
e of a 
haoti
 attra
tor in a given dynami
al system,

in parti
ular the existen
e of a dense orbit.

A.1.3. Hartman-Grobman and stable manifold theorem

In order to state the Hartman-Grobman Theorem, we assume that at least one solution

x0 of the �xed point equation

f(x) = 0 (A.5)

has been found. Note that even this task is basi
ally impossible for higher dimensional

systems sin
e (A.5) is a 
oupled nonlinear algebrai
 equation system.

Next, we study the temporal evolution of small deviations from the �xed point and

set x(t) = x0 + ξ(t). If the deviations |ξ| are su�
iently small, one may linearize the

ODE system (A.4) for the nonlinear �ow around the �xed point x0 by trun
ating the

higher order terms in |ξ|. As a result, the linear ODE system

ξ̇ = fx(x
0)ξ, ξ ∈ R

n
(A.6)

is obtained whi
h des
ribes the temporal evolution of small deviations from the �xed

point.

The �ow map ϕL
t of the linearized equation (A.6) 
an be expli
itely 
onstru
ted in

terms of the eigenvalues and the (generalized) eigenve
tors of the (
onstant) Ja
obian

matrix fx(x
0) whose entries are the �rst partial derivatives of the ve
tor �eld evaluated

at the �xed point, i.e. (fx(x
0))ij ≡ ∂fi

∂xj
|x=x0 . A formal solution is just given by the

matrix exponential ϕL
t = exp tfx(x

0) whi
h is a one-parameter group of transformations

mapping any initial state ξ0 to the �nal state ξ(t, ξ0) = ϕL
t ξ0. Thus, the linearized �ow

is globally de�ned for all ξ ∈ R
n and all t ∈ R whi
h is not ne
essarily the 
ase for

the �ow of the nonlinear ODE system (A.4) whose existen
e is only guaranteed lo
ally

and usually depends on the initial 
ondition. The standard example is provided by the

76



A.1. Dynami
al systems

solution x(t) = x0/(1 − tx0) of the ODE ẋ = x2 with initial 
ondition x(0) = x0 whose

positive time solutions are only de�ned up to time t = 1/x0.

The question is now: What information about the lo
al behavior of traje
tories of the

nonlinear �ow 
lose to the �xed point x0 
an be obtained from the linearized equations

(A.6)?

The answer is given by the Hartman-Grobman theorem whi
h asserts that it is suf-

�
ient to study the linearized �ow near the �xed point provided the Ja
obian matrix

fx(x
0) has no eigenvalues with zero real part there, i.e. x0 is a hyperboli
 �xed point.

In this 
ase, one 
an show that there is a 
ontinuous 
hange of 
oordinates taking the

orbits of the nonlinear �ow to that of the linearized one while the sense of the orbits

is preserved. This property states that the nonlinear and the linear �ow are topologi-


ally equivalent; a notion that we shall return to in the next Se
tion when bifur
ation

theory will be dis
ussed. Topologi
al equivalen
e is of paramount importan
e in the


lassi�
ation of dynami
al systems sin
e it is used to de�ne its `generi
' properties.

The expli
it solution of the linearized ODE system A.6 
an be used to 
lassify the

type of �xed point a

ording to the eigenvalue spe
trum of the Ja
obian matrix. If all

eigenvalues have a negative real part, the �xed point is asymptoti
ally stable, i.e. all

su�
iently small perturbations de
ay in time and asymptoti
ally approa
h the stationary

state whi
h, in this 
ase, is 
alled a sink. If the Ja
obian matrix possesses at least one

eigenvalue with positive real part, it is 
alled a saddle whi
h is unstable. In the 
ase

that all eigenvalues have a positive real part, the �xed point is 
alled a sour
e. This

means that traje
tories whi
h start in the neighborhood of the sour
e will diverge from

it exponentially fast. Note, however, that the linear stability analysis does not answer

questions of the type: What happens to the traje
tory if it es
aped the neighborhood

of a saddle point or a sour
e. In order to answer su
h questions, one has to in
lude

su�
ient higher order terms in the Taylor expansion of the ve
tor �eld in (A.6).

We now turn to the stable manifold theorem. Let λ1, . . . , λs and λs+1, . . . , λn be

the eigenvalues with negative and positive real part, respe
tively, and denote by Es =
span{v1, . . . , vs} and Eu = span{vs+1, . . . , vn} the stable and unstable eigenspa
es that

are spanned by the 
orresponding eigenve
tors. The linear spa
es Es and Eu are sub-

spa
es of R
n whi
h are invariant under the linearized �ow ϕL

t . Moreover, a

ording to

the stable manifold theorem, there exist lo
al stable and unstable manifolds W s
loc, W

u
loc in

a neighborhood U(x0) of the �xed point whi
h are lo
ally invariant under the nonlinear

�ow map ϕt. One 
an think of these manifolds as the nonlinear extensions of the linear

stable and unstable subspa
es Es and Eu, to whi
h they are tangent at x0 (Fig. A.2).

Using the nonlinear �ow map, the lo
al invariant manifolds are de�ned as:

W s
loc(x

0) = {x ∈ U(x0)|ϕt(x) ∈ U(x0) ∀t ≥ 0, ϕt(x) → x0
as t → ∞}

(A.7)

W u
loc(x

0) = {x ∈ U(x0)|ϕt(x) ∈ U(x0) ∀t ≤ 0, ϕt(x) → x0
as t → −∞}.

Thus, the lo
al stable (unstable) manifold 
onsists of all traje
tories that, on
e belonging

to the neighborhood U(x0) of the �xed point, remain there for all future (past) time and

approa
h it as time tends to in�nity (minus in�nity).
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Es = W s

Eu

W u

x

y

ẋ = x
ẏ = x2 − y y = x2/3

Figure A.2.: Stable (bold, bla
k) and unstable manifolds (red) for a two-dimensional

ODE system with �xed point (x0, y0) = (0, 0).
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By applying the nonlinear �ow map ba
kward (forward) in time to the lo
al stable

(unstable) manifold, one may de�ne global stable and unstable manifolds (formally) as:

W s(x0) = ∪t≤0ϕt(W
s
loc(x

0)), W u(x0) = ∪t≥0ϕt(W
u
loc(x

0)). (A.8)

A

ordingly, the global stable (unstable) manifold 
onsists of all points whi
h (whose

preimages) are mapped under the a
tion of the nonlinear �ow map to the lo
al stable

(unstable) manifold in �nite time and thus, approa
h the �xed point as time tends

to in�nity (minus in�nity). While the lo
al manifolds 
an often be approximated by

Taylor series, their global extensions 
an be 
omputed expli
itly only for very simple


ases. However, the knowledge about their existen
e 
an fa
ilitate the interpretation of

numeri
al simulations.

A.1.4. Periodi
 orbits and Poin
aré maps

Having analyzed the lo
al phase �ow near the singular points of the ve
tor �eld f , the

next step 
ould be to �nd periodi
 solutions of the ODE system (A.4) and study the phase

�ow near those solutions. In the 
ase of a 
ontinuous-time system, a periodi
 orbit is a


losed invariant 
urve C 
omposed of points x ∈ C all of whi
h satisfy ϕt+T (x) = ϕt(x)
for some T ≥ 0 and for all t ≥ 0. The minimal T satisfying this 
ondition is 
alled the

period of the orbit. As this de�nition shows, one a
tually needs an expli
it representation

of the nonlinear �ow map in order to verify the periodi
ity 
ondition. Thus, periodi


solutions 
an, in general, be found only by numeri
al methods su
h as the 
ontinuation

s
hemes dis
ussed in Se
tion B.1.

Nevertheless, mu
h information of the lo
al phase �ow near a periodi
 orbit 
an be

gained by a similar analysis to that of �xed points in Se
tion A.1.3. To this purpose, one

introdu
es the geometri
al 
on
ept of a �rst return or Poin
aré map (Fig.A.3) by taking

a n − 1 dimensional lo
al 
ross se
tion Σ ⊂ R
n su
h that the periodi
 orbit as well as

all nearby solution 
urves pier
e the 
ross se
tion transversally, i.e. the Eu
lidean s
alar

produ
t (ν(x), f(x)) 6= 0 between the ve
tor �eld f and the unit normal ve
tor �eld ν

of the 
ross se
tion vanishes nowhere on Σ. Denote the (unique) interse
tion point of

the periodi
 orbit C with Σ by p. Then any point q ∈ U(p) ⊂ Σ out of a su�
iently

small neighborhood U(p) will be mapped by the nonlinear �ow map to another point

P (q) = ϕτ (q) ∈ Σ of the 
ross se
tion where the �rst return time τ = τ(q), in general,

depends on the point q.

By this geometri
al 
onstru
tion, the analysis of the lo
al n-dimensional �ow near

the periodi
 orbit is e�e
tively redu
ed to that of the n − 1 dimensional Poin
aré map

P : U → Σ whi
h is a

essible by the Hartman-Grobman and the stable manifold

theorem for �xed points of iterated maps. In fa
t, the periodi
 orbit C will always

interse
t Σ at the same point p whi
h therefore is a �xed point of the Poin
aré map.

Furthermore, solution 
urves starting su�
iently 
lose to p will produ
e a sequen
e of

points in Σ whi
h 
orresponds to an orbit under the iterated appli
ation of the Poin
aré

map.

The Hartman-Grobman Theorem asserts that if the linearized Poin
aré map Pq(q)|q=p

has no eigenvalues of unit modulus, the stability of the �xed point p and that of the 
or-
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C
p q

P (q)

Σ

U

Figure A.3.: Orbits, whi
h start in the neighborhood of a periodi
 solutions C of the

nonlinear �ow, indu
e an iterated map, the Poin
aré map q 7→ P (q), on the

transversal 
ross se
tion Σ.

responding periodi
 orbit C is 
ompletely determined by the eigenvalues of the linearized

Poin
aré map. This is the equivalent 
ondition for �xed points of iterated maps to be

hyperboli
. The eigenvalues of an iterated map are also 
alled multipliers. In the 
ase

that the n − 1 multipliers are all of modulus less than one, p and C are asymptoti
ally

stable, otherwise p and C are unstable. Periodi
 solutions with at least one unstable

dire
tion are 
alled saddle-
y
les.

Finally, the stable manifold theorem guarantees the existen
e of lo
al stable and un-

stable manifolds W s
loc(p) and W u

loc(p) whi
h are tangent to the 
orresponding linear

eigenspa
es Es(p) and Eu(p) of the linearized Poin
aré map at p. These manifolds are


omposed of traje
tories that remain in a neighborhood of the periodi
 orbit while they

produ
e a sequen
e of interse
tion points on Σ whi
h, in the 
ase of solutions starting

in W s
loc(p), 
onverge to p as the number of iterations tends to in�nity.

A.2. Bifur
ation theory

Bifur
ation Theory is 
on
erned with `generi
' properties of dynami
al systems. While

the qualitative theory of dynami
al systems allows to 
hara
terize a parti
ular system

a

ording to the lo
al stability of its invariant sets, bifur
ation theory deals with the

problem whether the properties of a parti
ular system persist under small pertubations

in whi
h 
ase the system is 
alled stru
turally stable. This issue is of high pra
ti
al

relevan
e sin
e experimental systems are always subje
t to `external' noise exerted by

the environment whi
h results in small random perturbations to the system under inves-
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tigation. Thus, one 
an observe only those features of a system whi
h are not a�e
ted

by these perturbations, i.e. its generi
 features.

In order to ta
kle the problem of stru
tural stability, one has to 
ompare two dynami
al

systems and therefore one needs some notion of `
loseness' and the allowed 
lass of `small

perturbations'. These ideas are made pre
ise when we regard two n-dimensional ve
tor

�elds f and g as 
lose (more pre
isely as ε − C1 
lose) if for all x ∈ K ⊂ R
n out of

some bounded region in phase spa
e, ‖ f − g ‖< ε and ‖ fx − gx ‖< ε hold, where ‖ · ‖
denotes any 
onvenient norm in R

n, R
n2

respe
tively. In addition, two n-dimensional

ODE systems

ẋ = f(x), ẋ = g(x)

are said to be topologi
ally equivalent if there is a 
ontinuous 
hange of 
oordinates h

su
h that

h(ϕf
tf

(x)) = ϕ
g
tg(h(x)),

i.e. orbits of the �ow ϕ
f
tf

asso
iated with f are 
ontinuously deformed into the 
orre-

sponding orbits of ϕ
g
tg .

Equipped with these de�nitions, we 
an now de�ne a nonlinear ODE system ẋ = f(x)
to be stru
turally stable if all su�
iently ε−C1 
lose systems ẋ = g(x) are topologi
ally
equivalent to ẋ = f(x). In parti
ular, the number and stability type of invariant sets

of the �ow ϕ
f
tf

are retained under small perturbations whi
h implies that the phase

portraits of topologi
ally equivalent systems `look qualitatively the same'.

So far we have always assumed that the Ja
obian matrix at a �xed point has no

eigenvalue with zero real part in whi
h 
ase small perturbations to the system will

produ
e topologi
ally equivalent phase portraits. However, sin
e the eigenvalues of the

Ja
obian matrix depend 
ontinuously on the system parameters, it may happen that

one of the eigenvalues 
rosses the imaginary axis as a parameter is varied. In this 
ase,

one 
an expe
t topologi
ally non-equivalent phase portaits for nearby parameter values.

As an example, 
onsider the linear two-dimensional ODE system:

ẋ1 = a11x1 + a12x2 (A.9)

ẋ2 = a21x1 + a22x2

whi
h depends on four parameters given by the entries of the 2 × 2 matrix A = (aij).
The eigenvalues of this matrix are given by the roots of the 
hara
teristi
 polynomial:

λ2 + λ trA + detA = 0

where trA = a11+a22 and detA = a11a22−a12a21. The qualitative behavior of traje
tories

near the only �xed point (0, 0) is summarized in (Fig. A.4). Along the parabola (trA)2 =
4detA (bold bla
k line), the eigenvalues 
hange from real to 
omplex while the topologi
al

nature of the �xed point is not altered, i.e. a sink remains a sink, whether solutions

approa
h it in straight lines or in spirals.

The important point to note is that in the spa
e of linear systems of the form (A.9),

the stability type of the �xed point is 
ompletely determined by the two quantities detA
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trA

detA

Reλ

Imλ

(trA)2 = 4detA

Figure A.4.: The partition of the spa
e of linear 2-dimensional ODE systems a

ording

to topologi
al equivalen
e. Bifur
ations o

ur along the positive detA- and

the trA-axis (bold, red). The small insets show the qualitative behavior of

traje
tories (blue lines) near the �xed point and the 
orresponding position

of the eigenvalues in the 
omplex plane.

and trA as long as the system is not lo
ated on the positive detA-axis or the trA-axis

(bold red line) where the system be
omes stru
turally unstable due to the emergen
e of

eigenvalues with zero real part. A point in the detA-trA-plane where the ODE system is

stru
turally unstable is 
alled a bifur
ation point and the 
rossing of one of the two axis

is a

ompanied by a qualitative 
hange of the lo
al phase portrait near the �xed point

for nearby parameter values. For example, when the positive detA-axis is 
rossed from

below, the sink turns into a sour
e. However, the two lines along whi
h a bifur
ation

o

urs, 
onstitute a set of (Lebesque) measure zero in the detA-trA-plane. Thus, if one

generates a two-dimensional linear system by 
han
e, it is almost surely stru
turally

stable whi
h, therefore, is a generi
 property of su
h a system. We remark that the

same argumentation naturally extends to higher dimensional linear systems.

To the 
ontrary, Smale [80, 81℄ has shwon that stru
tural stability is no generi
 prop-

erty for higher dimensional nonlinear systems (i.e. for n ≥ 3) and mu
h of the 
omplexity

in su
h systems arises from the nontrivial global behavior of the asso
iated nonlinear
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a) b)

Γ

Γ

x0
x0

x

x

W u

W u

W s

W s

Figure A.5.: Homo
lini
 orbits in R
2 (a) and R

3 (b).

phase �ows. Of parti
ular interest are the so-
alled homo
lini
 orbits (Fig. A.5) where

the unstable and the stable manifold of a �xed point bend in su
h a way that they in-

terse
t along the homo
lini
 orbit, i.e. an orbit Γ starting at x ∈ R
n is 
alled homo
lini


to a �xed point x0 of the ODE system (A.4) if ϕtx → x0 as t → ±∞ whi
h implies that

Γ ⊂ W s(x0) ∩ W u(x0). In the 
ase that x0 is a hyperboli
 �xed point, one 
an show

that a homo
lini
 orbit to su
h a point is stru
turally unstable, so that one 
an expe
t

qualitatively di�erent behavior for slightly perturbed systems (
f. Se
. A.5).

A.2.1. Center manifold theorem

We now 
onsider the 
ase that the ODE system (A.4) has a nonhyperboli
 equilibrium

point x0 in whi
h 
ase the Hartman-Grobman and the stable manifold theorems are

supplemented by the 
enter manifold theorem. Therefore, we assume that the Ja
obian

matrix fx(x
0) has among n+ and n− eigenvalues with positive and negative real parts,

respe
tively, also n0 eigenvalues with vanishing real part. The 
enter manifold theorem

asserts the existen
e of a lo
al n0-dimensional manifold W c
loc(x

0) that is tangent to the

linear eigenspa
e Ec(x0) at x0 and lo
ally invariant under the nonlinear �ow. W c
loc(x

0)
is 
alled the 
enter manifold and Ec(x0) is spanned by the (generalized) eigenve
tors

asso
iated to the n0 eigenvalues with zero real part.

The importan
e of the 
enter manifold results from the fa
t that it 
ontains the

essential dynami
s of an ODE system near an equilibrium point no matter what the

dimension of the system is. This is a remarkable fa
t sin
e, as we will later show, the

redu
ed �ow on the 
enter manifold for one-parameter families of dynami
al systems is

generi
ally of dimension one or two.

In order to 
larify the ideas involved in the 
enter manifold theorem, let us assume

that the original ODE system ẋ = f(x) with x ∈ R
n has been transformed into an
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eigenbasis of the Ja
obian matrix fx(0)

u̇ = Bu + g(u, v) (A.10)

v̇ = Cv + h(u, v)

where we assumed without loss of generality that the �xed point has been translated to

the origin x0 = 0 and u ∈ R
n

0 , v ∈ R
n

+
+ n

− , n = n+ + n− + n0. The eigenvalues of the

n0×n0 matrix B have all zero real parts while those of the (n+ +n−)× (n+ +n−) matrix

C are all di�erent from zero. The nonlinear fun
tions g and h have Taylor expansions

starting with at least quadrati
 terms. The 
enter manifold 
an be lo
ally represented

as a graph of a smooth fun
tion:

W c = {(u, v)|v = V (u), V (0) = 0, Vu(0) = 0} (A.11)

with V : U(0) ⊂ R
n

0 → R
n

+
+ n

− .

One of the most important results of the 
enter manifold theorem is the so-
alled

Redu
tion Prin
iple whi
h says that the �ow of the n-dimensional ODE system (A.10)

is topologi
ally equivalent near the origin to the ODE system

u̇ = Bu + g(u, V (u)) (A.12)

v̇ = Cv

where the �rst equation is the restri
tion of (A.10) to the 
enter manifold (eq. A.11).

It des
ribes the essential dynami
s near the �xed point while the se
ond equation in

(A.12) 
ontains the trivial dynami
s sin
e it des
ribes exponentially growing or de
aying

solutions. However, in pra
ti
al appli
ations it is desirable to have n+ = 0 in whi
h


ase the 
enter manifold is lo
ally attra
ting and truly des
ribes the long-time behavior

of solution 
urves in its neighborhood. Finally, we remark that by di�erentiating the

de�ning equation for the 
enter manifold v = V (u) with respe
t to time, one 
an derive

the (partial) di�erential equation

CV (u) + h(u, V (u)) = Vu(u)
(

Bu + g(u, V (u))
)

from whi
h one may obtain an approximation to the 
enter manifold in terms of a power

series expansion.

A.2.2. Parameter dependent systems and normal forms

In the last Subse
tion, we argued that if a n-dimensional ODE system has a nonhyper-

boli
 �xed point it is su�
ient to study the restri
tion of the n-dimensional �ow to the


enter manifold of the nonhyperboli
 �xed point in order to determine its stability type.

In the following, we 
onsider parameter dependent systems whi
h are naturally used to

model experimental situations sin
e the system of interest is usually embedded in some

form of environment or subje
ted to external driving for
es. It is 
lear that hyperboli


�xed points, though they remain hyperboli
 under su�
iently small perturbations, may
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be
ome nonhyperboli
 as parameters in the system are varied; for example, 
onsider a

path in the trA-detA-plane of Fig. A.4 whi
h 
rosses the trA-axis.

To this purpose, we des
ribe how the analysis of the previous Subse
tion 
an be

extended to parameter dependent families of ODE systems

ẋ = f(x, α), (x, α) ∈ R
n × R

k
(A.13)

α̇ = 0

where we added a trivial dynami
s for the parameters α to make the 
enter manifold

theorem appli
able to su
h systems.

Assume that the parameter dependent ODE system (A.13) has at α = 0 a nonhyper-

boli
 �xed point at x0 = 0 with n0 eigenvalues having zero real parts. For simpli
ity,

and be
ause it is the most interesting 
ase in real appli
ations, we further assume that

all other n − n0 eigenvalues have a negative real part. In an appropriate eigenbasis of

the Ja
obian matrix fx(0, 0), the ODE system (A.13) reads

u̇ = B(α)u + g(u, v, α)

v̇ = D(α)v + h(u, v, α), (u, v) ∈ R
n

0 × R
n−n

0 (A.14)

α̇ = 0, α ∈ R
k.

At (u, v, α) = (0, 0, 0) this ODE system has a n0 + k-dimensional (parameter depen-

dent) 
enter manifold W c
loc(0, 0) that is tangent at the origin to Ec(0) × R

k. It 
an be

represented as the graph of a fun
tion v = V (u, α) whi
h may be approximated by a

power series in u and α. The invarian
e properties of 
enter manifolds guarantee that

any bifur
ating solution near (0, 0, 0) remains in one of the 
enter manifolds for |α| be-
ing su�
iently small. Thus, the lo
al bifur
ations o

uring in a family of ODE systems


an be studied by restri
ting (A.14) to the parameter dependent 
enter manifold. As a

result, one obtains the topologi
ally equivalent ODE system

u̇ = B(α)u + g(u, V (u, α), α) (A.15)

whi
h is now of dimension n0. In one-parameter families, n0 is typi
ally 1 or 2.
After the 
enter manifold theorem has been applied, the linear part of the ODE system

(A.15) is already in a 
anoni
al form sin
e the eigenve
tors of the Ja
obian matrix were

used as a basis for the new 
oordinate system. In order to study the lo
al bifur
ations of

the �ow on the 
enter manifold it is desirable to �nd a parti
ular simple representative

out of the 
lass of topologi
ally equivalent systems whi
h is the aim of normal form

theory. By su

essive near identity 
oordinate transformations, one tries to eliminate as

mu
h higher order terms in (A.15) as possible up to a parti
ular order. This pro
edure

guarantees that the linear part of the ve
tor �eld is retained at ea
h step, so that the

resulting (nonlinear) normal form has the same linear degenera
ies as the original ve
tor

�eld. Interestingly, it is the linear part of the ve
tor that determines whi
h higher order

terms 
an be removed by a suitable 
hange of 
oordinates. The nonremovable terms are


alled resonan
es.
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In a next step, one tries to show that negle
ting the higher order terms beyond a

parti
ular order does not alter the topologi
al 
lass of the system in whi
h 
ase the

obtained ve
tor �eld is 
alled a normal form or a universal unfolding for the 
onsidered

bifur
ation. However, it should be mentioned that normal form theory is far from being


omplete. So far, it is well developed for one- and two-parameter families of dynami
al

systems where many universal unfoldings are known.

In the spe
ial 
ase that the ve
tor �eld f 
an be obtained as the gradient of a s
alar

fun
tion V : R
n → R, i.e. f(x) = grad V (x), all universal unfoldings for generi
 four-

parameter families are known. They are given by Thom's famous seven elementary

`
atastrophes' [82℄.

Finally, we remark that there is a 
enter manifold theorem for �xed points in dis
rete-

time dynami
al systems, too, whi
h allows for a similar redu
tion of the �ow near non-

hyperboli
 limit 
y
les that arise as �xed points of a suitable Poin
arè map.

A.3. Lo
al bifur
ations in one-parameter families

We give a survey of the bifur
ations of �xed points and limit 
y
les that generi
ally

o

ur in one-parameter families of 
ontinuous-time dynami
al systems.

For ea
h bifur
ation, we present a relevant bifur
ation diagram together with the

bifur
ation 
ondition and where appropriate, mention the 
orresponding normal form

ve
tor �eld. As we have already pointed out, the normal form ve
tor �eld des
ribes the

lo
al behavior of traje
tories near a nonhyperboli
 �xed point in the 
enter manifold of

any generi
 n-dimensional system ful�lling the 
orresponding bifur
ation 
ondition. In

view of (A.14), `lo
al' means here both, in a neighborhood of the �xed point in phase

spa
e as well as in a neighborhod of the 
riti
al parameter value where the bifur
ation

o

urs in parameter spa
e. In order to be 
alled `generi
', the n-dimensional ve
tor �eld

has to satisfy 
ertain non-degenera
y 
onditions, su
h as the nonvanishing of (higher

order) derivatives with respe
t to phase spa
e variables and/or parameters evaluated at

the �xed point.

A general bifur
ation diagram is usually 
omposed of several bifur
ations taking pla
e

in di�erent regions of the parameter spa
e. Thus, the generi
 bifur
ations des
ribed in

the following may be used as building blo
ks to understand the bifur
ation diagrams

shown in Part I and II of this thesis. However, it should be noted that the bifur
ation

diagrams presented there are not drawn with respe
t to 
anoni
al 
oordinates a

ording

to the 
enter manifold theorem and thus, they may appear distorted.

Finally, we make two general remarks: First, we note that the number of independent


onditions de�ning a bifur
ation is 
alled its 
odimension. It equals the number of

parameters that 
an be varied independently. Se
ond, the bifur
ations des
ribed in

Se
tion A.3 and A.4 
an be dete
ted by analyzing the �ow in the neighborhood of a

�xed point or a limit 
y
le and are, therefore, 
alled lo
al bifur
ations.
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a) b)

0

0 α
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Figure A.6.: Generi
 bifur
ations of equilibria in one-parameter families of ODE systems:

the saddle-node (a) and the Hopf bifur
ation (b).

A.3.1. Bifur
ations of equilibria

The setting is mostly the same as in Se
tion A.2. We 
onsider parameter dependent ODE

systems ẋ = f(x, α) with x ∈ R
n, but only 1-dimensional parameter spa
es with α ∈ R.

A solution of the �xed point equation f(x, α) = 0 is a smooth 
urve x0 = x0(α) ∈ R
n+1

and the eigenvalues λi(α) of the Ja
obian matrix fx(x
0(α)) depend 
ontinuously on the

parameter α. Thus, as long as x0(α) is hyperboli
 it remains hyperboli
 under small

parameter perturbations.

However, when a parameter ex
eeds a 
riti
al value, there are generi
ally two possibil-

ities by whi
h x0(α) may be
ome nonhyperboli
: First, the Ja
obian matrix fx(x
0(α))

has a simple real zero eigenvalue λ1 = 0 at the 
riti
al parameter value or se
ond,

a simple pair of 
omplex 
onjugated eigenvalues approa
hes the imaginary axis, i.e.

λ1/2 = ±iω, ω ≥ 0. In the former 
ase, a saddle-node bifur
ation takes pla
e while the

latter 
orresponds to a Hopf bifur
ation.

saddle-node bifur
ation

The saddle-node bifur
ation, also known as tangent or fold bifur
tion, des
ribes the

appearan
e and disappearan
e of a pair of equilibrium points as a 
riti
al parameter

value is passed (Fig. A.6). The standard form of an ODE system exhibiting a saddle-

node bifur
ation is given by

ẋ = α − x2 ≡ f(x, α), (x, α) ∈ R × R (A.16)

whi
h sati�es the two nondegenera
y 
onditions

fxx(0, 0) 6= 0 (A.17)

fα 6= 0.
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The ODE system (A.16) 
an be thought of as the restri
ted �ow of a n-dimensional

system to its one-dimensional 
enter manifold.

At α = 0, the ODE A.16 has a nonhyberboli
 �xed point x0 = 0 with eigenvalue

λ = fx(0, 0) = 0. For α < 0, there is no solution of the �xed point equation f(x, α) = 0
and hen
e, no �xed point while for α > 0, there are two stationary points: a saddle

(dashed line) and a node (solid line). The arrows in Fig. A.6 show the dire
tion of the

one-dimensional �ow. Note that in higher dimensional systems with n ≥ 2 both of the

bifur
ating equilibria 
an be of saddle-type if the number of their unstable dire
tions

di�ers by one.

Hopf bifur
ation

The standard form of the Hopf bifur
ation is given by the two-dimensional ODE system:

(
ẋ

ẏ

)

=

(
α −ω

ω α

)(
x

y

)

− (x2 + y2)

(
x

y

)

(A.18)

whi
h has a simple pair of 
omplex 
onjugate eigenvalues λ1/2 = ±iω at (x, y, α) =
(0, 0, 0). For α < 0, there is only a stable fo
us (solid line) whi
h be
omes unstable for

α > 0 (Fig. A.6b). At the same time, a stable periodi
 solution emerges and 
oexists

with an unstable fo
us (dashed line). Dire
tly at the bifur
ation point, the �xed point

remains stable, but the rate of 
onvergen
e is not exponentially anymore.

The Hopf bifur
ation shown in Fig. A.6b is 
alled super
riti
al sin
e the emerging

limit 
y
le is stable. In general, the stability of the bifur
ating 
y
le is determined by

the �rst Liapunov 
oe�
ient whi
h must not vanish for a Hopf bifur
ation to o

ur. This


oe�
ient is given by a 
ertain 
ombination of se
ond- and third order derivatives of the

ve
tor �eld evaluated at the bifur
ation point (
f. Chapter 3 in [76℄). If the Liapunov


oe�
ient is negative, the bifur
ating 
y
le is stable. Otherwise, the sign in front of the

nonlinear term in (A.18) is reversed from `−' to `+' and the new born periodi
 solution

is unstable and bifur
ates to the left where α < 0. In this 
ase, the Hopf bifur
ation is


alled sub
riti
al.

The existen
e of the limit 
y
le is guaranteed only for su�
iently small parameter

values in the neighborhood of the bifur
ation point. What `su�
ient' means, depends

on the system under 
onsideration. In parti
ular, the nonlinear terms beyond the third

order determine the fate of the limit 
y
le far away from the bifur
ation point.

A.3.2. Bifur
ations of limit 
y
les

We give a survey of the three generi
 lo
al bifur
ations that a limit 
y
le may undergo as

one-parameter is 
ontinuously varied. As we pointed out earlier, the analysis of the lo
al


hanges in the phase �ow near a periodi
 orbit 
an be redu
ed to a lo
al analysis of the

asso
iated Poin
aré map (
f. Fig. A.3), i.e. to a dis
rete-time system. In order to dis
uss

the topologi
al 
hanges in the proximity of the bifur
ation point, we show representative

phase portaits dire
tly at as well as slightly above and below the bifur
ation point

together with the redu
ed dynami
s on a suitable Poin
aré se
tion (Fig. A.7). The
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a)

b)

c)

µ = +1

µ = −1

µ± = e±iθ

Cu

Cu

Cu

Cs Cs

Cs Cs

CsCs

α > 0 α = 0 α < 0

C2

T2

p1 p2

Figure A.7.: Generi
 one-parameter bifur
ations of limit 
y
les: saddle-node (a), period

doubling (b) and Neimark-Sa
ker bifur
ation (
).
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de�nition of `above' and `below' the bifur
ation point is somewhat arbitrary as long as

the expli
it expressions for the 
orresponding normal form mappings are not taken into

a

ount. However, we shall give here only a qualitative des
ription of the 
orresponding

bifur
ation phenomena without expli
it referen
e to a parti
ular normal form.

In the following, we des
ribe the saddle-node, the period doubling and the Neimark-

Sa
ker bifur
ation for limit 
y
les in a 3-dimensional phase spa
e. Thus, the asso
iated

Poin
aré map has two multipliers that determine the stability of its �xed points and

thereby the stability of the 
orresponding 
y
les. A �xed point of the Poin
aré map

be
omes nonhyperboli
 if one of the multipliers lies on the unit 
ir
le in the 
omplex

plane, i.e. |µ| = 1. Generi
ally, there are three possibilities how a multiplier 
an 
ross the

unit 
irle as one-parameter is varied and all possibilities lead to topologi
ally di�erent

s
enarios.

Saddle-node bifur
ation of periodi
 orbits (SNP)

Assume that the linearized Poin
aré map has a simple multiplier µ1 = +1 at α = 0
while the other multiplier satis�es 0 < µ2 < 1, then a saddle-node bifur
ation takes

pla
e where, this time, a pair of periodi
 orbits is 
reated and annihilated as α passes

through zero (Fig. A.7a). For α > 0, there are two limit 
y
les, a stable and an unstable

one. They merge at α = 0 and disappear for α < 0. The 
orresponding Poin
aré maps

show a node 
oexisting with a saddle (α > 0), a nonhyperboli
 �xed point (α = 0) and
no �xed point at all (α < 0). In phase spa
e dimensions n ≥ 3, both of the merging

limit 
y
les 
an also be of saddle-type if the number of their unstable dire
tions di�ers

by one.

Period doubling bifur
ation

Assume that the linearized Poin
aré map has a simple multiplier µ1 = −1 at α = 0 while

the other multiplier satis�es −1 < µ2 < 0, then a period doubling (or �ip) bifur
ation

takes pla
e where a stable limit 
y
le, existing for α < 0, loses its stability and 
oexists

for α > 0 with a newly emerged stable limit 
y
le C2 having approximately twi
e the

period of the primary periodi
 orbit (Fig. A.7b). The asso
iated Poin
aré map Pα has

one stable �xed point for α < 0 whi
h be
omes unstable for α > 0 where the period-2


y
le C2 is stable instead. On the transversal 
ross se
tion, the period-2 
y
le 
onsists of

two points whi
h are mapped into ea
h other under the appli
ation of Pα, i.e. p1 = Pαp2

and p2 = Pαp1. In parti
ular, ea
h of the two points is a �xed point of the se
ond iterate

of the Poin
aré map, i.e. p1 = P 2
αp1 and p2 = P 2

αp2 where P 2
α ≡ Pα ◦ Pα.

Neimark-Sa
ker bifur
ation

Here we 
onsider the 
ase that the linearized Poin
aré map has a simple pair of 
omplex


onjugate eigenvalues µ± = e±iθ lo
ated at the unit 
ir
le (Fig. A.7
). If the multipliers

are away from strong resonan
es de�ned by eikθ = 1 for k = 1, 2, 3, 4 (
f. [9℄), the

Poin
aré map has a two-dimensional invariant manifold on whi
h a 
losed invariant


urve bifur
ates from the stable �xed point as α passes through zero while the �xed
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point be
omes unstable for α < 0. The 
losed invariant 
urve on the Poin
aré se
tion


orresponds to a 2-torus T2 of the original ODE system.

The orbit stru
ture on the torus is basi
ally determined by the properties of a one-

dimensional map on the invariant 
ir
le. In parti
ular, �xed points and 
y
les of the


ir
le map 
orrespond to periodi
 orbits on the torus whi
h always 
ome in pairs of

alternating stability. The periodi
 orbits emerge and disappear in pairs via saddle-node

bifur
ations as one parameter is varied. Outside these parameter windows, the torus is

densely 
overed by a quasi-periodi
 orbit.

A.4. Lo
al bifur
ations in two-parameter families

We have shown that along bran
hes of one-parameter equilibrium 
urves x0(α), a bifur-


ation may o

ur at those points (x0, α0) where a simple real or a simple pair of 
omplex


onjugate eigenvalues of the Ja
obian matrix approa
h the imaginary axis provided some

nondegenera
y 
onditions su
h as (A.17) are simultaneously satis�ed.

Now, assume that there are two parameters in the system: β1 and β2. In this 
ase,


odimension one bifur
ations will generi
ally o

ur along 
urves in the two-parameter

plane as long as the relevant bifur
ation and nondegenera
y 
onditions are still ful�lled.

However, if one of these 
onditions is violated at some point along the 
odimension

one bifur
ation 
urve, a 
odimension two bifur
ation takes pla
e and one may expe
t

topologi
ally nonequivalent phase portraits for nearby parameter values. Thus, bran
hes

of 
odimension one bifur
ations originate in 
odimension two bifur
ation points whi
h,

therefore, a
t as organizing 
enters for the former. In fa
t, this is a general feature of

higher 
odimension bifur
ation points.

In the remainder of the Se
tion, we shall 
onsider the following three 
ases leading to

topologi
ally distin
t 
odimension two bifur
ations in ODE systems:

1. Together with a simple real eigenvalue λ = 0, the �rst of the nondegenera
y


onditions in (A.17) (fxx(0, 0) 6= 0) does not hold anymore in whi
h 
ase higher

order terms beyond the quadrati
 term are needed to unfold the singularity at

(0, 0). A

ordingly, the normal form of the fold bifur
ation (A.16) is repla
ed by

a two-parameter family of one-dimensional ODEs exhibiting a 
usp bifur
ation.

2. Together with a simple real eigenvalue λ1 = 0, a se
ond simple real eigenvalue

λ2 = 0 also approa
hes the imaginary axis in whi
h 
ase the 
enter manifold

be
omes two-dimensional and a Bogdanov-Takens bifur
ation takes pla
e.

3. Finally, we 
onsider the 
ase that the �rst Liapunov 
oe�
ient vanishes along a

Hopf bifur
ation 
urve in whi
h 
ase higher order terms beyond the third order are

needed in (A.18) to unfold the Hopf bifur
ation. The 
orresponding 
odimension

two bifur
ation is 
alled a generalized Hopf or Bautin bifur
ation.
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A.4.1. Cusp bifur
ation

The minimal phase spa
e dimension for a 
usp bifur
ation to o

ur is one. The 
orre-

sponding normal form is given by

ẋ = β1 + β2x − x3 ≡ f(x, β1, β2), x ∈ R, (β1, β2) ∈ R
2. (A.19)

The zeros of the ve
tor �eld f de�ne the equilibrium manifold

M = {(x, β1, β2) : β1 + β2x − x3 = 0}

whi
h is shown in Fig. A.8a. For β2 < 0, there is a 
urve (bold line) on M whose

proje
tion onto the (β1, β2)-plane yields the semi
ubi
 parabola

SN = {(β1, β2) : 4β3
2 + 27β2

1 = 0}

along whi
h saddle-node bifur
ations take pla
e (Fig. A.8b). The two bran
hes of the

semi
ubi
 parabola meet in a 
usp singularity at (β1, β2) = (0, 0). The se
tion along

the dotted line in Fig. A.8b is shown in Fig. A.8
 where the S-shaped equilibrium 
urve

be
omes apparent whi
h is typi
al for bistable systems. In the wedge-shaped region I of

Fig. A.8b, two stable and one unstable �xed point 
oexist while in region II there is only

one stable �xed point. Along the two bran
hes SN1 and SN2 in Fig. A.8b, one stable

and one unstable �xed point disappear via a fold bifur
ation.

A.4.2. Bogdanov-Takens bifur
ation

Here we shall only give a qualitative des
ription of the phase portraits near the Bogdanov-

Takens point (β1, β2) = (0, 0) (Fig. A.9a). There are no equlibria in region I. As region

II is entered passing the 
urve SN2, a saddle and a stable node are 
reated by a saddle-

node bifur
ation. Then the node turns into a fo
us whi
h does not 
orrespond to a

bifur
ation. Subsequently, the fo
us loses stability via a super
riti
al Hopf bifur
ation

as region III is entered along H and a stable limit 
y
le emerges. As one moves inside

region III towards HC, the limit 
y
le grows until it `merges' with the the saddle that

was 
reated at SN2 and hen
e, it be
omes a homo
lini
 orbit by whi
h the limit 
y
le

vanishes as region IV is entered. In region IV a saddle 
oexists with an unstable fo
us

whi
h turns into a node before it disappears together with the saddle along the se
ond

bran
h SN1 of saddle-node bifur
ations.

The transition from region III into region IV 
orresponds to a global bifur
ation (
f.

Se
. A.5) whi
h 
an not be dete
ted by merely investigating the neighborhood of a

�xed point sin
e the homo
lini
 orbit forms as a result of the interse
tion of the global

stable and unstable manifolds of the saddle-point and thus, involves global aspe
ts of

the �ow far away from the �xed point. This is a ni
e example how the lo
al analysis of

higher 
odimension bifur
ations may provide information about global bifur
ations in

the system.
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A.4.3. Bautin bifur
ation

Similar to the Bogdanov-Takens bifur
ation, we shall restri
t to a qualitative dis
ussion

of the 
hanges in the lo
al phase portraits as one moves around the Bautin bifur
ation

point (β1, β2) = (0, 0) (Fig. A.9b). In region I, there is only one stable fo
us. It be
omes

unstable as region II is entered while 
rossing the 
urve H where a stable limit 
y
le

emerges via a super
riti
al Hopf bifur
ation. This limit 
y
le persists as region III is

entered 
rossing the bran
h SH where an additional unstable limit 
y
le is 
reated inside

the �rst one while the unstable fo
us regains its stability. Both limit 
y
les merge along

the 
urve SNP in a saddle-node bifur
ation (
f. A.3) leaving the stable fo
us as the only

attra
tor in region I.

The stability of the newborn limit 
y
les is determined by the �rst Liapunov 
oe�
ient.

It is negative along H where super
riti
al Hopf bifur
ations take pla
e while it is positive

along SH where sub
riti
al Hopf bifur
ations o

ur (
f. [76℄).

a) b)

c)M

x

x

β1

β1

β1

β2

β2

SN1

SN1

SN1

SN2

SN2

SN2

I

II

Figure A.8.: The 
usp bifur
ation: M is the equilibrium manifold in the dire
t produ
t

spa
e R × R
2 (a). The other two images show di�erent proje
tions of M

onto the parameter plane (b) and the x-β1-plane (
) whi
h is taken along the

dotted line in (b). Region I exhibits bistability (
) while in Region II there

is only one stable equilibrium. SNi denote 
urves along whi
h saddle-node

bifur
ations o

ur.
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a) b)

I

I II

II

III

III

IV

β1β1

β2β2

SN1

SN2

SH

H

H
HC

SNP

Figure A.9.: Bogdanov-Takens (a) and Bautin bifur
ation (b). Symbols denote: H �

super
riti
al Hopf bifur
ation, SH � sub
riti
al Hopf bifur
ation, SNi �

saddle-node bifur
ation of �xed point, SNP � saddle-node bifur
ation of

periodi
 orbits, HC � saddle homo
lini
 bifur
ation.

A.5. Global bifur
ations

So far we have 
onsidered bifur
ations that 
an be dete
ted by a lo
al analysis, i.e. by

studying the linearized �ow in the neighborhood of a �xed point (eq. A.6) or a limit


y
le. In 
ontrast, global bifur
ations are often asso
iated with homo
lini
 orbits and

thus, involve the global behavior of stable and unstable manifolds of �xed points and

limit 
y
les whi
h, in general, 
an not be investigated by a lo
al analysis. Note, however,

that we have already en
ountered an example where the lo
al analysis of a 
odimension

two bifur
ation (the Bogdanov-Takens bifur
ation in Se
tion A.4) led to the predi
tion

of a global bifur
ation.

In the remainder of this Se
tion, we shall dis
uss two global one-parameter bifur
a-

tions: the saddle homo
lini
 bifur
ation and the saddle-node homo
lini
 bifur
ation.

While the former involves a homo
lini
 orbit to a hyperboli
 �xed point, the latter one

is asso
iated with a nonhyperboli
 �xed point. The minimal phase spa
e dimension for

both bifur
ations to o

ur is two.

A.5.1. Saddle homo
lini
 bifur
ation

The saddle homo
lini
 bifur
ation is 
ompletely 
hara
terized by the Andronov-Leontovi
h

theorem (
f. [76℄). Here, one 
onsiders a 2-dimensional ODE system of the form:

ẋ = f(x, α), x ∈ R
2, α ∈ R (A.20)
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a)

b)

C

C

Γ

Γ

S

SSS

N

α > 0 α = 0 α < 0

Figure A.10.: Saddle homo
lini
 bifur
ation (a) and saddle-node homo
lini
 bifur
ation

(b): Both are global bifur
ations that involve a homo
lini
 orbit Γ to a

hyperboli
 (a) or a nonhyperboli
 �xed point (b) while periodi
 orbits C

exist for nearby parameter values. N and S denote a node and a saddle

equilibrium point, respe
tively.

whi
h at α = 0 has a saddle equilibrium S at x0 = 0 with nonvanishing eigenvalues

λ1(0) < 0 < λ2(0). In addition, the existen
e of a homo
lini
 orbit Γ (as in Fig. A.10a for

(α = 0)) has to be assumed. So the theorem does not prove the existen
e of a homo
lini


orbit. It `merely' des
ribes what happens to this orbit under small perturbations.

First of all, it is 
lear that the homo
lini
 orbit Γ in Fig. A.10a is not a stru
turally

stable obje
t sin
e one part of the saddle's unstable manifold has to bend in su
h a way

that it exa
tly 
oin
ides with one part of its stable manifold. However, the interesting

result of the Andronov-Leontovi
h theorem is the fore
ast about the existen
e of a

periodi
 orbit C for 
ertain perturbations of the homo
lini
 orbit whi
h is s
hemati
ally

represented in Fig. A.10a for α < 0. If the perturbation is applied in the other dire
tion

(α > 0), the homo
lini
 orbit simply disappears. The stability of the 
y
le C in the 
ase

α < 0 is determined by the so-
alled saddle quantity σ = λ1(0) + λ2(0). If σ < 0 the


y
le is stable and vi
e versa.

A frequently observed s
enario is the following (see the Bogdanov-Takens bifur
ation

in Se
tion A.4): A limit 
y
le is born in a Hopf bifur
ation and 
oexists with a saddle

equilibrium whi
h is already present. As the bifur
ation parameter in
reases from the

Hopf bifur
ation value, the limit 
y
le grows in magnitude until it merges with the saddle

equilibrium in a homo
lini
 orbit and hen
eforth vanishes.
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A.5.2. Saddle-node homo
lini
 bifur
ation

The saddle-node homo
lini
 bifur
ation (also known as saddle-loop homo
lini
 or saddle-

node on invariant 
ir
le bifur
ation) a
tually involves two events: A lo
al saddle-node

bifur
ation and the sudden appearan
e of a stable limit 
y
le solution after the two

equilibria have disappeared. The novel feature of this bifur
ation is that the saddle-

node bifur
ation o

urs dire
tly on the limit 
y
le (Fig. A.10b).

At α < 0, a saddle S and a node N are lo
ated on an invariant 
ir
le whi
h is formed

by the two �xed points and the unstable manifold of the saddle whi
h 
oin
ides with

the one part of the stable manifold of the node. At α = 0, the saddle and the node

merge in a saddle-node bifur
ation leaving a nonhyperboli
 �xed point together with a

homo
lini
 orbit Γ. The union of these two sets now 
onstitutes the invariant 
ir
le.

Small perturbations towards α > 0 
ause the homo
lini
 orbit and the nonhyperboli


�xed point to vanish, but leave the stable limit 
y
le C instead.
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B. Investigation Methods andParameter Settings
The numeri
al simulations for the hemin and the PO system in Appendix C were per-

formed with the freely available software pa
kage XPPAUT [83℄. Due to the sti�ness

of the 
orresponding ODE systems, the `STIFF' integration routine [83, 84℄ was 
hosen

with a toleran
e of 10−5 to ensure numeri
al stability. For the 
omputation of the one

and two-parameter bifur
ation diagrams, we used the 
ontinuation routines of AUTO

whi
h are integrated in the XPPAUT environment as well as two other freely available


ontinuation pa
kages: Content [85℄ and MatCont [86℄. While the AUTO routines are

very robust and reliable for the 
omputation of 
odimension one bifur
ations, the other

two pa
kages have some advantages for the 
omputation of 
odimension two bifur
ation

points sin
e they make use of symboli
 algebra pa
kages to 
ompute analyti
al expres-

sions for the derivatives of the ve
tor �eld on the right hand side of an ODE system

up to the fourth order. The higher order derivatives are required for the dete
tion of


ertain 
odimension two bifur
ation points su
h as the generalized Hopf bifur
ation [76℄

and the 
omputation of normal form 
oe�
ients. In addition, Content and MatCont

allow for an easy monitoring of eigenvalues and multipliers along bran
hes of stationary

and os
illatory solutions, respe
tively.

In the next Se
tion, we shortly introdu
e the method of numeri
al 
ontinuation whi
h

was frequently used throughout this work to obtain most of the presented bifur
ation

diagrams. The Chapter is 
on
luded by two short Se
tions 
ontaining the ne
essary

te
hni
al details to set up the numeri
al simulations for the hemin and the PO system.

B.1. The method of numeri
al 
ontinuation

We shall give a rather informal introdu
tion to the basi
 
on
epts underlying the method

of numeri
al 
ontinuation. A more elaborate presentation 
an be found in Chapter 10

of the textbook by Kuznetsov [76℄. Many of the examples given there 
an be dire
tly

implemented as algorithms.

The numeri
al 
ontinuation method is a tool for studying the parameter dependen
e of

invariant sets of a dynami
al system as well as their bifur
ations. As a result, a bifur
a-

tion diagram is obtained showing the possible asymptoti
 behavior of typi
al traje
tories

in the parameter regions of interest. The mathemati
al basis for the numeri
al 
ontin-

uation methods is bifur
ation theory (see Appendix A). It is frequently utilized where

analyti
al 
omputations fail or are too intri
ate, i.e. basi
ally in all 
ases of pra
ti
al

relevan
e.
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In the following, we 
onsider a parameter dependent family of ODE systems

ẋ = f(x, α) x ∈ M ⊂ R
n, α ∈ N ⊂ R

2, f : M × N → R
n

(B.1)

where, for 
onvenien
e, we assume that the parameter spa
e is at most two-dimensional.

However, this is not a severe restri
tion be
ause the bifur
ation theory for families of

ODE systems involving more than two parameters is only poorly developed. So, from

theoreti
al grounds, it is not 
lear what typi
al dynami
al 
hanges are to be expe
ted

under su
h 
ir
umstan
es whi
h 
learly hampers, for example, the interpretation of

experimental results.

The numeri
al 
ontinuation is started from a known or at least approximately known

invariant set at a parti
ular point in parameter spa
e. The most 
ommonly used starting

point is a stationary state, but in some 
ases may also be a limit 
y
le or a homo
lini


orbit of the ODE system (B.1). Therefore, one has to 
ompute these sets either analyt-

i
ally or numeri
ally. For example, the �xed points of the ODE system are asso
iated

with the singular points of the ve
tor �eld f ; the latter are solutions of the (generally

nonlinear) algebrai
 equation system:

f(x, α) = 0 (B.2)

for whi
h solutions x0(α) are rarely found expli
itly.

The �rst strategy to lo
ate at least one of the stable �xed points of an ODE system


onsists in a straightforward numeri
al integration of the equations (B.1). To this pur-

pose, one has to 
hoose the initial 
ondition su
h that the ODE system (B.1) has a �xed

point at the 
orresponding parameter value and the initial point belongs to the basin of

attra
tion of the desired �xed point. A se
ond strategy would be to use some form of

the Newton iteration s
heme, i.e.

x(i+1) = x(i) − f−1
x (x(i))f(x(i)), i = 0, 1, . . . (B.3)

whi
h 
onverges to the desired �xed point provided the iteration is started 
lose enough

to that point and the Ja
obian fx has no zero eigenvalue there, i.e. the �xed point is

hyperboli
.

The lo
ation of limit 
y
le solutions of the ODE system (B.1) is a more intri
ate

task. If the 
y
le has no unstable dire
tion, it 
an be equally found by a straightforward

numeri
al integration provided the parameter and the initial point are 
hosen appro-

priately. Otherwise, one relies again on iteration s
hemes whi
h now are formulated as

boundary value problems due to the periodi
ity of the desired solution. In addition,

one has to provide a phase 
ondition to single out a parti
ular periodi
 solution. This

be
omes ne
essary due to the phase invarian
e of a limit 
y
le, i.e. every phase-shifted

solution is again a periodi
 solution with the same period.

The most di�
ult task, however, is to begin the numeri
al 
ontinuation from a ho-

mo
lini
 orbit sin
e it is usually known only approximately; for example in terms of a

nearby lo
ated limit 
y
le having a very long period (
f. Se
. A.5). Another possibility

is to start a homo
lini
 
ontinuation from a 
odimension two bifur
ation point su
h as

a Bogdanov-Takens point (
f. Se
. A.4).
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B.2. Parameters and settings in the hemin system

Finally, we dis
uss a typi
al 
ontinuation strategy starting from a stationary state as it

was done throughout this thesis. First, we note that the equation system (B.2) 
onsists

of n equations for the n+1 variables (x, α) ∈ R
n×R, thus de�ning generi
ally (i.e. under

some regularity 
onditions for the ve
tor �eld f) a smooth 
urve x0(α) in R
n+1 whi
h

des
ribes the dependen
e of the equilibrium state on the parameter. Beginning with the

starting point, the 
ontinuation program uses a predi
tor-
orre
tor algorithm to lo
ate

the next point along the 
urve x0(α) and determines its lo
al stability by examining the

eigenvalues of the Ja
obian matrix. In addition, 
ertain test fun
tions are used to 
he
k

the o

uren
e of a parti
ular bifur
ation (see Chapter 10 in [76℄ for details).

From Se
tion A.3 we already know that there are only two generi
 bifur
ations that


an be en
ountered along an equilibrium 
urve: a saddle-node and a Hopf bifur
ation.

There are now several possibilities for a further investigation.

If a saddle-node is found, one may simply 
ontinue the equilibrium bran
h or start a

new 
ontinuation from the saddle-node point using a se
ond parameter of the system.

The latter pro
edure yields a 
urve in the two-parameter plane along whi
h saddle-node

bifur
ations o

ur. Generi
ally, this saddle-node 
urve meets with a se
ond saddle-node


urve in a 
usp singularity whi
h is a 
odimension two bifur
ation point.

If, on the other hand, a Hopf bifur
ation is en
ountered along the primary equilibrium


urve, one may equally 
ontinue this 
urve (whi
h then 
onsists of unstable equilibrium

points after the Hopf bifur
ation) or swit
h to the new bran
h of periodi
 solutions

whi
h emanates from the Hopf bifur
ation point. In the 
ourse of traversing the pe-

riodi
 bran
h, one may now observe three generi
 bifur
ations: The saddle-node, the

period doubling and the torus or Neimark-Sa
ker bifur
ation (
f. Se
. A.3). All of these


odimension one bifur
ations may be 
ontinued in a se
ond parameter of the system

whi
h leads to a re�ned partition of the two-parameter plane into regions where di�er-

ent types of 
omplex os
illatory behavior is present.

In addition, one may en
ounter other 
odimension two bifur
ation points along two-

parameter bifur
ation 
urves su
h as the generalized Hopf or Bautin bifur
ation when

traversing a bran
h of Hopf bifur
ations. Similarly, on a bran
h of saddle-node bifur
a-

tions of �xed points, a Bogdanov-Takens bifur
ation may o

ur (for details see Se
. A.4).

B.2. Parameters and settings in the hemin system

The rate 
onstants that were used for the simulations of the ODE system (1.2) and all

its derived versions are listed in Table B.1. The variables x1, . . . , x6 were res
aled su
h

that the maximal amplitude of the new variables be
omes of order unity. In parti
ular,

we set

x′
1 = 104 · M−1 x1 x′

4 = 104 · M−1 x4

x′
2 = 102 · M−1 x2 x′

5 = 104 · M−1 x5 (B.4)

x′
3 = 104 · M−1 x3 x′

6 = 104 · M−1 x6.

The method of numeri
al 
ontinuation (see Se
. B.1) was used for the hemin system

to 
ompare the original as well as the redu
ed ODE system a

ording to their lo
al
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B. Investigation Methods and Parameter Settings

Table B.1.: Rate 
onstants (at 25◦C) and in�ow stream 
on
entrations used for the nu-

meri
al investigations of the hemin system. The �ow rate k0 was varied

between 1 · 10−4s−1 and 4.5 · 10−4s−1.

k1 = 0.2 M−1 · s−1 k2 = 1.5 M−1 · s−1 k3 = 8.5 · 106 M−2 · s−1 k4 = 1000 s−1

k5 = 1010 M−1 · s−1 k6 = 0.011 s−1 k7 = 2.5 · 104 M−1 · s−1 k8 = 1.9 · 10−4 s−1

x0
1 = 0.025 M x0

2 = 0.045 M x0
4 = 2.2 · 10−4 M x0

5 = 3 · 10−4 M

bifur
ations. Continuation 
al
ulations were always started from a stable �xed point,

whi
h we obtained by dire
t numeri
al integration of the 
orresponding ODE system.

The parameter region, where the stable �xed point is rea
hed, has to be tested in several

runs. We found k0 = 1 · 10−4s−1 to be a suitable starting value.

The two prin
ipal bifur
ation parameters in the hemin system are the �ow rate k0 and

the de
ay rate k8 of hemin whi
h are both simple rate 
onstants having the dimension

s−1. Their order of magnitude is 10−4. Thus, whenever we present numeri
al values

of any of the two parameters, they are to be understood in units of 10−4 · s−1. For

example, in the ODE system (3.20), we found a sub
riti
al Hopf bifur
ation at (k0, k8) =
(1.6461 · 10−4s−1, 2.5 · 10−4s−1) whi
h due to our 
onvention would simply be denoted as

(k0, k8) = (1.6461, 2.5).

B.3. Parameters and settings in the PO system

For the numeri
al simulations of the PO system, we used the BFSO model proposed

by Bronnikova et. al. [87℄. The underlying rea
tion me
hanism, the 
omponents of

the rea
tion rate ve
tor R as well as the numeri
al values of the 
orresponding rate


onstants are listed in Table B.2. Per
n+

denotes the di�erent oxidation states of the

enzyme peroxidase while 
oI, 
oII and 
oIII are synonyms for Per
5+
, Per

4+
and Per

6+
,

respe
tively.

In order to obtain a quantitative pi
ture of the asymptoti
 states in the PO system,

we 
omputed bifur
ation diagrams by dire
t numeri
al integration of the ODE system

(C.1) in dependen
e on the in�ow rate k12 of NADH in the parameter range k12 =
1.1 · 10−7Ms

−1 . . . 1.345 · 10−7Ms
−1
. For ea
h parameter value, we dis
arded a transient

of 35000 time steps and re
orded the su

essive maxima of the peroxidase 
ompound III

(
oIII) 
on
entration over the next 15000 time steps. The run for the �rst parameter

value of ea
h simulation was always started from �xed initial 
onditions. For subsequent

runs of the same simulation, but for other parameter values, the �nal 
on
entrations of

the pre
eding run were used as new initial 
onditions. By this pro
edure, it is possible

to monitor the 
hanges in the asymptoti
 states as a parameter is almost 
ontinuously

varied provided the parameter step size is suitably adapted. For the 
omputation of

Fig. C.2, we used a step size of 10−3.
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B.3. Parameters and settings in the PO system

Table B.2.: Detailed (BFSO) model of the peroxidase-oxidase rea
tion [87℄ a

rea
tion Ri rate 
on-

stants ki
f

(1) NADH + O2 + H+ −→ NAD+ + H2O2 k1[NADH][O2] 3.0 b

(2) H2O2 + Per3+ −→ coI + H2O k2[H2O2][Per3+] 1.8 · 107 b

(3) coI + NADH −→ coII + NAD� k3[coI][NADH] 4.0 · 104 b

(4) coII + NADH −→ Per3+ + NAD� k4[coII][NADH] 2.6 · 104 b

(5) NAD� + O2 −→ NAD+ + O−
2 k5[NAD�][O2] 2.0 · 107 b

(6) O−
2 + Per3+ −→ coIII k6[O

−
2 ][Per3+] 1.7 · 107 b

(7) 2O−
2 + 2H+ −→ H2O2 + O2 k7[O

−
2 ]2 5.0 · 106 b

(8) coIII + NAD� −→ coI + NAD+ k8[coIII][NAD�] 1.35 ·108 b

(9) 2NAD� −→ NAD2 k9[NAD�]2 5.6 · 107 b

(10) Per3+ + NAD� −→ Per2+ + NAD+ k10[Per3+][NAD�] 1.8 · 106 b

(11) Per2+ + O2 −→ coIII k11[Per2+][O2] 1.0 · 105 b

(12) −→ NADH k12 variable c

(13) O2(gas) −→ O2(liquid) k13[O2]eq 6.0 · 10−3

d,e

(−13) O2(liquid) −→ O2(gas) k−13[O2] 6.0·10−3 d

a Rate 
onstants are taken from [13℄. b In M
−1
s−1. c between 1.1 · 10−7 and

1.345 · 10−7 Ms
−1
. d In s−1. e The value of [O2]eq is 1.2 · 10−5 M. f The 
on
en-

trations of H
+
are taken to be 
onstant and absorbed into the rate 
onstants ki, sin
e

the rea
tion system runs in a bu�er solution at pH 6.3

For the interpretation of the resulting bifur
ation diagrams, one has to keep in mind

that they are topologi
ally equivalent to a Poin
aré map where the 
utting se
tion in the

extended `phase spa
e' (whi
h is the usual phase spa
e of 
on
entrations augmented by 1

dimension for the time dire
tion) 
orresponds to the time points at whi
h the traje
tory

of one of the phase spa
e variables (in our 
ase 
oIII) exhibits a maximum. Thus, limit


y
les manifest themselves as �xed points, period-2 
y
les as period-2 points, tori as


losed invariant loops, et
.
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C. Quasi-Integrals in the Peroxidase� Oxidase System
In Part I of the thesis, we have introdu
ed the method of quasi-integrals as an algorithmi


pro
edure whi
h 
an be applied in a straightforward manner to any kind of rea
tion

network modeled by ODE systems of the form (3.21). The method was exempli�ed with

the hemin system where we have found one quasi-integral. However, the existen
e of

this quasi-integral is not too surprising sin
e it is asso
iated with one of the reversible

rea
tion steps in the rea
tion me
hanism (1.1), namely with

SO2−
3 + H+

k5,k4

⇋ HSO−
3 .

On the other hand, the existen
e of the aforementioned quasi-integral is not trivial sin
e

the se
ond equilibrium rea
tion in (1.1)

A+
k6,k7

⇋ A + H+

does not de�ne a quasi-stationary manifold.

In order to demonstrate the fairly wide appli
ability of the method of quasi-integrals,

we additionally investigate the rea
tion me
hanism of the peroxidase � oxidase (PO)

system whi
h, in 
ontrast to the hemin system, is entirely 
omposed of irreversible rea
-

tion steps. Nevertheless, we shall identify three possible 
andidates for quasi-stationary

manifolds. While two of them lead to redu
ed systems whose dynami
s is in a

eptable

quantitative agreement with the original system, the third 
andidate poses an example

where the dynami
s of the redu
ed system shows only the qualitative features of the

original system.

The PO rea
tion is the prototypi
al example of an os
illatory enzyme system (for a

review see [88℄). Considerable experimental e�orts have been devoted to identify the

individual rea
tion steps taking part in this rea
tion system [89℄. In parallel, a series

of theoreti
al investigations aimed at reprodu
ing the observed type of dynami
s in

numeri
al simulations [90℄.

The starting point of our analysis is a rea
tion me
hanism proposed by Bronnikova,

Fed'kina, S
ha�er and Olsen [87℄ (Table B.2) whi
h shows periodi
 mixed-mode os
il-

lations as well as (homo
lini
) 
haos [13, 27℄. It 
omprises 14 irreversible rea
tion steps

and involves 10 spe
ies. By assuming mass-a
tion kineti
s, one 
an derive the following

10-dimensional ODE system:
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C. Quasi-Integrals in the Peroxidase � Oxidase System

ẋ1 = k2x4x10 − k3x1x6 + k8x3x5 (C.1)

ẋ2 = k3x1x6 − k4x2x6

ẋ3 = −k8x3x5 + k11x7x9 + k6x8x10

ẋ4 = k1x6x7 + k7x
2
8 − k2x4x10

ẋ5 = k3x1x6 + k4x2x6 − k5x5x7 − k8x3x5 − 2k9x
2
5 − k10x5x10

ẋ6 = −k1x6x7 − k3x1x6 − k4x2x6 + k12

ẋ7 = −k1x6x7 − k5x5x7 + k7x
2
8 − k11x7x9 − k−13x7 + k13[O2]eq

ẋ8 = k5x5x7 − 2k7x
2
8 − k6x8x10

ẋ9 = k10x5x10 − k11x7x9

˙x10 = −k2x4x10 + k4x2x6 − k6x8x10 − k10x5x10.

The parameter values for the simulations as well as the oxygen 
on
entration [O2]eq
at equilibrium between the gas/liquid phase are taken from [13℄ (
f. Table B.2). We

used zero initial values for all spe
ies ex
ept for x0
10, whi
h was set to the total enzyme


on
entration of 1.5 · 10−6M. k12 (
orresponding to the in�ow rate of NADH) was

used as a bifur
ation parameter ranging between 1.1 · 10−7Ms
−1

and 1.345 · 10−7Ms
−1
.

The 
orresponden
e between phase spa
e variables x1 . . . x10 and 
hemi
al spe
ies is as

follows: x1 ↔ Per
5+

(or 
o I), x2 ↔ Per
4+

(or 
o II) , x3 ↔ Per
6+

(or 
o III), x4 ↔ H2O2,

x5 ↔ NAD
.
, x6 ↔ NADH, x7 ↔ O2, x8 ↔ O

−
2 , x9 ↔ Per

2+
and x10 ↔ Per

3+
. The

notation Per
n+

stands for the di�erent oxidation states of the enzyme peroxidase.

As in the 
ase of the hemin system, we must take 
are that the 
hemi
al 
onstraints,

whi
h are expressed by a non-maximal rank of the stoi
hiometri
 matrix, are properly

taken into a

ount, before the method of quasi-integrals is applied. For the PO system,

the rank of the stoi
hiometri
 matrix asso
iated with the ODE system (C.1) is 9. The


onsequential linear relationship between some of the 
hemi
al spe
ies 
an be taken as:

x9 = x0
10 − x10 − x3 − x1 − x2, (C.2)

whi
h simply expresses the 
onservation of the total amount of enzyme peroxidase in

time. Note that the redu
tion from 10 to 9 dimensions does not lead to any information

loss due to (C.2) being an exa
t 
onservation relation. Therefore, we shall treat the 9-

and 10-dimensional systems on an equal footing in the following.

104



0 2000 4000 6000

0.9

0.95

1

1.05

t

I 12
7

(a)

0 2000 4000 6000
0.94

0.96

0.98

1

1.02

1.04

I 56
7

t

(b)

0 2000 4000 6000
0.6

0.7

0.8

0.9

1

1.1

1.2

t

I 34

(c)

0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1

1.2
I 12

t

(d)

Figure C.1.: Quasi-integrals in the peroxidase�oxidase system. There are three possible


andidates for quasi-stationary manifolds given by I127 (a), I567 (b) and I34

(
). I12 (d) shows that it is sometimes not enough to balan
e only two

rea
tion steps in order to �nd a quasi-integral: Compare with I127 (a)

In the PO system, there are three 
andidates for quasi-integrals whi
h are shown in

Figs. C.1a-
 (
f. Table B.2 for the de�nition of the Ri):

I127 =
R1 + R7

R2

∼ 1 ↔ x4 ∼
k1x6x7 + k7x

2
8

k2x10

(C.3)

I567 =
R5

R6 + 2R7

∼ 1 ↔ x8 ∼ −5

2

k6

k7

x10 +

√

25

4
(
k6

k7

x10)2 +
1

2

k5

k7

x5x7

I34 =
R3

R4

∼ 1 ↔ x2 ∼
k3

k4

x1.

We remark that the �rst two quasi-integrals in (C.3) are of the form (3.27) (both sides

multiplied by −1), where we had to balan
e three terms in order to obtain approximately


onstant fun
tions. In parti
ular, Fig. C.1d shows that it is not enough to balan
e only

105



C. Quasi-Integrals in the Peroxidase � Oxidase System

R1 with R2, be
ause there are time intervals where I12 shows large deviations from the


onstant value 1.
The attra
tivity of the quasi-stationary manifolds in (C.3) is evident by dire
t 
al
u-

lation of the 
orresponding Ja
obian matri
es, and the appli
ation of the QSSA for x4,

x8 and x2 yields su

essively a 8-,7- and �nally the following 6-dimensional ODE system:

ẋ1 = k1x6x7 + k7x
2
8 − k3x1x6 + k8x3x5 (C.4)

ẋ3 = k6x10x8 − k8x5x3 + k11x7x9

ẋ5 = 2k3x1x6 − k5x5x7 − k8x3x5 − 2k9x
2
5 − k10x5x10

ẋ6 = −k1x6x7 − 2k3x1x6 + k12

ẋ7 = −k1x6x7 − k5x5x7 + k7x
2
8 − k11x7x9 − k−13x7 + k13[O2]eq

˙x10 = −k1x6x7 − k7x
2
8 + k3x1x6 − k6x10x8 − k10x5x10

where x8 = x8(x5, x7, x10) in (C.4) is given as a fun
tion of x5, x7 and x10 a

ording to

the se
ond equation in (C.3).

Let us now address the most prominent dynami
al 
hanges that have been observed

during the su

essive redu
tion from a 10-variable to a 6-variable rea
tion me
hanism. To

this purpose, we 
ompare the dynami
s of the redu
ed systems with that of the original

one by 
al
ulating Poin
aré maps of su

essive maxima of the 
oIII 
on
entration as the

NADH in�ow rate k12 is 
ontinuously varied (
f. Se
. B.3). This pro
edure yields lo
al

bifur
ation diagrams whi
h resemble those 
al
ulated in [27℄ due to a similar 
hoi
e of

parameter sets.

Figure C.2a shows the bifur
ation s
enario in the 10/9-dimensional system as it has

already been investigated in [13℄. Of parti
ular interest are the mixed mode states LS.

(The notation LS denotes a periodi
 os
illatory state where one period 
onsists of L large

and S small amplitude os
illations.) The mixed mode states as well as the alternating

periodi
 and 
haoti
 windows are 
learly preserved throughout the redu
tion pro
edure.

The bifur
ation s
enarios for the redu
ed 8- and 7-dimensional systems (Figs. C.2b,
)

even show a quantitative agreement with that of the original 10/9-dimensional system

(Fig. C.2a).

It is only for the 6-dimensional system that we �nd quantitative deviations from the

original dynami
al behavior, sin
e we observe a shift in the parameter spa
e where the

�rst 
haoti
 and the subsequent mixed-mode states appear (Fig. C.2d). Moreover, the

order of the MMOs is 
hanged whi
h might be 
aused by an in
reased resolution of the

periodi
 windows between two 
haoti
 states. In the 6-dimensional system, the periodi


windows also 
ontain Farey progressions of 1S states with S > 1 whi
h are either absent

in the 10/9-, 8- and 7-dimensional systems or o

ur in too narrow parameter intervals

to be resolved numeri
ally.

The reason for the quantitative deviations of the 6-dimensional system from the orig-

inal dynami
al behaviour may be found in the temporarily large deviations (up to 30%)

of the fun
tion I34 in Fig. C.1
 from the 
onstant value 1. In 
ontrast, the quasi-integrals

I127 and I567 exhibit only small �u
tuations around 1 of at most 10% (
f. Figs. C.1a,b).
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Figure C.2.: Bifur
ation diagrams showing the maxima of peroxidase 
ompound III

(coIII) 
on
entration as the NADH in�ow rate k12 is varied: the original

10-/9-dimensional system (a), the 8-dimensional system (using I127 ∼ 1)
(b), the 7-dimensional system (using I567 ∼ 1) (
) and the 6-dimensional

system (using I34 ∼ 1) (d). The mixed-mode states as well as the alter-

nating periodi
 and 
haoti
 windows appear in all of the redu
ed systems

(b,
,d), but at slightly di�erent parameter values (d). The 6-dimensional

redu
ed system exhibits Farey sequen
es of 1S states with S = 1, 2, 3, 4 (d).
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Deuts
he Zusammenfassung
Die vorliegende Arbeit ist in der Theorie dynamis
her Systeme angesiedelt. Sie befasst

si
h einerseits mit der Modellreduktion komplexer (bio-)
hemis
her Reaktionsnetzwerke,

wobei die wesentli
hen dynamis
hen Eigens
haften der ursprüngli
hen Systeme weitest-

gehend erhalten werden sollen und andererseits mit einer Untersu
hung über den Ur-

sprung burstartiger Oszillationen im Hämin-Wassersto�peroxid-Sul�t-Reaktionssystem

(Hämin-System). Das Hämin-System ist ein so genanntes minimales Ein-Enzym-Modell-

System, das nur aus einem Enzym-Modellkomplex (Hämin) und seinen Substraten be-

steht. Es gehört zu einer Familie von pH Oszillatoren, die periodis
he Änderungen des

pH Wertes in ihrer Umgebung hervorrufen können, was im Weiteren zur Änderung phy-

siologis
her Parameter wie der Permeabilität von Membranen oder der Aktivität anderer

Enzyme führen kann. Somit besitzt das Hämin-System als pH Oszillator eine gewisse

biologis
he Bedeutung, insbesondere da der Enzym-Modellkomplex Hämin in ähnli
her

Form in vielen natürli
h vorkommenden Enzymen vorhanden ist.

Neben einfa
hen periodis
hen Oszillationen wurden im Hämin-System experimentell

au
h sogenannte burstartige Oszillationen beoba
htet. Letztere sind periodis
he Zyklen,

innerhalb derer einer gewissen Anzahl an Oszillationen groÿer Amplitude, eine im Allge-

meinen davon vers
hiedene Anzahl an Oszillationen kleinerer Amplitude folgen. Wegen

ihrer typis
hen Wellenform mit abwe
hselnd groÿen und kleinen Amplituden jeweils un-

ters
hiedli
her Frequenz werden sie oft mit Signalübertragungsvorgängen in zellulären

Netzwerken in Verbindung gebra
ht und besitzen deshalb potentiell eine gewisse physio-

logis
he Bedeutung.

Entspre
hend ihrer thematis
hen Ausri
htung, ist die vorliegende Arbeit in zwei Teile

gegliedert, die dur
h einen Anhang ergänzt werden.

Im ersten Teil wird die Methode der Quasi-Integrale beispielhaft anhand des Hämin-

Systems entwi
kelt. Diese Methode ist numeris
her Art und dient dem Au�nden langsa-

mer invarianter Mannigfaltigkeiten in Systemen gewöhnli
her ni
htlinearer Di�erential-

glei
hungen, wel
he häu�g zum Modellieren räumli
h homogener 
hemis
her Reaktions-

netzwerke verwendet werden. Sie erweist si
h insbesondere bei realistis
hen und deshalb

meistens höher dimensionalen Systemen von Vorteil, da jene analytis
hen Methoden im

Allgemeinen ni
ht mehr zugängli
h sind.

Die Existenz langsamer Mannigfaltigkeiten ist 
harakteristis
h für dissipative Syste-

me, in denen si
h die Zustände auf zwei stark unters
hiedli
hen Zeitskalen entwi
keln.

Um diese zu �nden, prüfen wir systematis
h, ob Verhältnisse bestimmter Komponenten

des Reaktionsges
hwindigkeitsvektors, wel
he die ni
htlineare Kinetik der Elementar-

reaktionen bes
hreiben, entlang der dur
h numeris
he Integrationsroutinen gewonnenen

Lösungskurven einen annähernd konstanten Wert annehmen. Jedem annähernd konstan-

ten Verhältnis entspri
ht ein Quasi-Integral und damit eine langsame Mannigfaltigkeit.
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Deuts
he Zusammenfassung

Letztere sind dur
h algebrais
he Glei
hungen gegeben und können im Folgenden dazu

benutzt werden, die Dimension des ursprüngli
hen Di�erentialglei
hungssystems und da-

mit die Anzahl dynamis
her Freiheitsgrade um die Anzahl gefundener Quasi-Integrale

zu verringern. Dieses Vorgehen wird dur
h die Theorie singulär gestörter Systeme moti-

viert, deren Grundideen wir zu Beginn des ersten Teiles der Arbeit kurz darstellen, um

im Ans
hluss daran au
h den Bezug zu den Quasi-Integralen aufzuzeigen.

Die Dynamik des Hämin-Systems wird aufbauend auf einem experimentell gut be-

stätigten Reaktionsme
hanismus dur
h ein 6-dimensionales gewöhnli
hes Di�erential-

glei
hungssystem modelliert. Die Methode der Quasi-Integrale liefert in Anwendung auf

das Hämin-System die Existenz einer langsamen Mannigfaltigkeit. Diese wird, unter

Berü
ksi
htigung zweier Massen-Erhaltungsgröÿen, zur Reduktion des ursprüngli
h 6-

dimensionalen Systems auf ein Drei-Variablen-Modell benutzt. Im Folgenden verglei
hen

wir die dynamis
hen Eigens
haften beider Systeme auf der Grundlage ihrer lokalen Bi-

furkationen, die als quantitatives Maÿ für die topologis
he Äquivalenz beider Systeme

angesehen werden können. Dazu bere
hnen wir mit Hilfe numeris
her Kontinuationsrou-

tinen Ein- und Zwei-Parameter Bifurkationsdiagramme, die für beide Systeme praktis
h

identis
h sind.

Im zweiten Teil der Arbeit untersu
hen wir den Ursprung der burstartigen Oszilla-

tionen im Hämin-System in seiner 3-dimensionalen Approximation. Dazu benutzen wir

eine von Rinzel und Ermentrout entwi
kelte Methode, bei der eine langsame dynami-

s
he Variable als quasi-statis
her Bifurkationsparameter für das restli
he, si
h auf einer

s
hnelleren Zeitskala entwi
kelnde Untersystem fungiert. In Abhängigkeit vom aktuellen

Wert der langsamen Variablen gibt es unters
hiedli
he anziehende Zustände im s
hnellen

Untersystem, denen die Trajektorien des 3-dimensionalen Flusses folgen, was ein geome-

tris
hes Verständnis des Flusses im Phasenraum ermögli
ht. Insbesondere läÿt si
h der

das Bursting-Verhalten 
harakterisierende Me
hanismus na
h einem von Izhikevi
h vor-

ges
hlagenen S
hema dur
h gewisse Bifurkationen im s
hnellen Untersystem erklären,

die zum Entstehen und Vers
hwinden der burstartigen Oszillationen führen.

Entspre
hend diesem S
hema, zeigt das Hämin-System an einem fest gewählten Satz

von Parameterwerten, so genanntes SubHopf/Fold-Cy
le Bursting, da eine subkritis
he

Hopf-Bifurkation zusammen mit einer Sattel-Knoten Bifurkation periodis
her Lösungen,

die für di
ht bena
hbarte Werte der langsamen Variablen im s
hnellen Untersystem

auftreten, für das Bursting-Verhalten des Hämin-Systems verantwortli
h sind.

Dur
h eine systematis
he Zwei-Parameter-Bifurkationsanalyse des s
hnellen Unter-

systems, die in dieser Form bisher no
h ni
ht benutzt worden zu sein s
heint, �nden

wir einen Übergang im Bursting-Verhalten des Hämin-Systems von einem sogenannten

SubHopf/Fold-Cy
le Burster zu einem Fold/SubHopf Burster entspre
hend der Klassi-

�kation von Izhikevi
h. Sol
he Übergänge im Bursting-Verhalten in Abhängigkeit von

äusseren Parametern können von physiologis
her Bedeutung sein.

S
hlieÿli
h untersu
hen wir mit der von Rinzel und Ermentrout entwi
kelten Analyse-

methode den Phasen�uÿ auf einem 2-Torus im Hämin-System und �nden dadur
h eine

Erklärung für den Ursprung quasi-periodis
hen Verhaltens in diesem System, die au
h

für andere dynamis
he Systeme mit ähnli
hen Tori von Bedeutung sein sollte.
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