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1. Introduction

The field of nonlinear dynamics has attracted much attention during the past century
since the seminal work of Poincaré [I] who studied the stability of planetary motions
in the framework of classical Newtonian mechanics. Already at the end of the 19th
century he noticed that small perturbations of integrable Hamiltonian systems may lead
to unpredictable long-time behavior due to ‘small divisor’ resonant terms showing up
in a perturbation series approach. The work of Poincaré marked the beginning of a
period during which the perception began to prevail that irregular behavior in conser-
vative systems is the rule rather than the exception. This period culminated in the
works of Kolmogorov |2|, Arnold [3] and Moser || who came up with the celebrated
KAM theorem. For the case that the integrable, and therefore regular motion, occurs
on a 2-torus where the frequencies are sufficiently incommensurable, the theorem ba-
sically says that the torus will persist under small perturbations. In the case that the
frequencies are commensurable, small perturbations will cause the torus to decompose
into smaller tori which again may be stable according to the KAM theorem. However,
the motion in phase space between the tori is completely irregular and for sufficiently
large perturbations all tori and therefore all regular behavior is destroyed.

Unlike conservative systems, where the total energy is a constant of motion, many real
world systems belong to the class of so-called dissipative systems since they permanently
dissipate energy into heat, for example, or rely on a steady exchange of energy and/or
matter with the environment in order to operate properly. It has been a mystery for a
long time how living organisms circumvent the second law of thermodynamics. Now we
know that they represent open systems that continuously maintain a certain distance to
thermodynamical equilibrium and thus, the second law is not applicable to them in the
usual sense.

The distance to equilibrium can usually be controlled by parameters or boundary
conditions modeling the environmental surrounding of the system under investigation.
In particular, it is possible to bar an open system from reaching the thermodynamical
equilibrium. Close to the equilibrium, the dynamics of the system follows linear rela-
tions among generalized fluxes and forces that cause the system to approach a unique
stable nonequilibrium state. The states, close to the equilibrium, form the so-called
thermodynamical branch (cf. Fig. 1.1) since it emanates continuously from the state
of thermodynamical equilibrium. However, Nicolis and Prigogine [5] showed that when
open systems are driven farther away from thermodynamical equilibrium, nonlinear pro-
cesses may destabilize the thermodynamical branch giving rise to new stable nonequi-
librium states which they termed dissipative structures. They further showed that for
such structures to occur, a certain critical distance to equilibrium must be exceeded.
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Figure 1.1.: Dissipative structures emerge far away from thermodynamical equilibrium
as a critical parameter value is exceeded. Beyond that point the thermo-
dynamical branch is unstable and nonlinear phenomena drive the system
towards new stable nonequilibrium states. (stable states < solid lines, un-
stable states < dashed lines)

Today we know that the nonlinear behavior of a system is a further necessary condi-
tion for the occurrence of dissipative structures. The mathematical language in which
nonlinear phenomena are frequently formulated is that of dynamical systems theory,
i.e. one has to specify a suitable phase space X together with an evolution law for the
state of the system. In the case that the evolution law is deterministic, the state of the
system at time t is completely determined by a one-parameter group of transformations
vy + X — X according to z; = ;o once the initial state xy € X of the system is known.
In general, one distinguishes two kinds of dynamical systems — continuous-time systems
with ¢ € R being a continuously varying parameter and discrete-time systems where
t € 7Z is an integer. In the continuous-time case, the one-parameter group of transfor-
mations is also called a flow which is typically obtained as a solution of an initial value
problem of a system of ordinary or partial differential equations depending on whether
the system under consideration is spatially homogeneous or not.

Dissipative structures are frequently observed as a result of self-organizing processes
in space or time where the individual entities of an ensemble spontaneously begin to
act in a cooperative manner as soon as a relevant parameter of the system exceeds a



certain critical value. As a result, new properties of the system as a whole emerge
which were not yet seen in the individual entities. These new system-theoretical aspects
were combined by Haken [6] with the methods of nonlinear dynamics to establish a new
field of research called Synergetics. Here the new emergent macroscopic features of a
complex system, consisting of many subunits each of which follows a certain microscopic
dynamics, are described close to the transition from individual to collective behavior
by only very few degrees of freedom, so-called order parameters. As an example for
temporal self-organization, consider an optical resonator containing an active medium
whose atoms are excited by an external energy supply. Below a certain energy pump-
rate, all atoms emit light just randomly resulting in a low power output of the system.
However, above a certain threshold, the atoms start to synchronize their oscillation
phases and the power output is high — the system works as a [aser-

A distinct feature of dissipative systems, as compared to conservative ones, is that in
the former bounded regions in phase space may shrink during the temporal evolution
in which case all trajectories starting in that region are attracted by lower dimensional
phase space objects such as points, curves or tori which would result in a regular motion
of the system. In addition, it was found that the long-time dynamics of a dissipative
system may occur on quite complicated sets in phase space. These sets can be of fractal
nature which is the reason why they were called strange attractors. The behavior of
trajectories on such an attractor is highly irregular or chaotic. For example, trajectories
whose initial conditions on a chaotic attractor vary only slightly will diverge exponen-
tially fast from each other in the course of the temporal evolution and thus, may lead
after finite time to completely different behavior. As a consequence, it is practically im-
possible to forecast the long-time behavior of real world chaotic system since its initial
conditions are only known with finite accuracy.

One of the first numerical evidences for the existence of a chaotic attractor was re-
ported by Lorenz [7] in 1963 who studied a nonlinear three variable system of ordinary
differential equations that was derived from a 2-dimensional convective fluid system by
a Galerkin projection of suitable Fourier modes. In the same year, Smale |8] constructed
his famous horseshoe map which is a simple 2-dimensional map that expands small phase
space volumes in one direction while it contracts them in the orthogonal direction. Such
maps may be induced by the flow of a continuous-time dynamical system on a suitable
Poincaré section where they can occur in conjunction with a homoclinic orbit of the
Poincaré map |9]. The horseshoe map has a very complicated invariant set exhibiting
the structure of a direct product between two Cantor sets. If the dynamics is only con-
sidered on the invariant Cantor set, one finds the essential properties of chaotic behavior
such as the ‘sensitve dependence on the initial conditions’ mentioned above. In addition,
the invariant set of the horseshoe map contains a countable infinity of periodic points
which are all of saddle-type, a countable infinity of homoclinic and heteroclinic orbits
and a noncountable infinity of nonperiodic points. Thus, the typical (i.e. for almost all
initial conditions) behavior of trajectories on the invariant set is highly irregular.

Although the invariant Cantor set of the horseshoe map is not an attractor, the
map has an important property which is the reason why it is still considered as the
prototypical example of a chaotic system: that is its structural stability. This means
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that if the horseshoe map is slightly perturbed, the invariant Cantor set as well as
the properties of the dynamics on this set will persist. In this sense, the notion of
structural stability can be used to define the phenomena of a system that are observable
in numerical or real experiments which are always subject to small perturbations. Thus,
a natural question to ask is: What is the ‘typical’ behavior of trajectories in a given
dynamical system and how does it change as parameters in the system are varied? In
this context, ‘typical’ means that the corresponding behavior is observed for a large set of
initial conditions and/or parameter values. For example, a system could have a chaotic
attractor for parameter values that form a set of Lebesque measure zero in parameter
space which, therefore, would not be observable in experiments. On the other hand,
it is often the regular periodic behavior of a system which is of much more practical
relevance than to know that a system has an invisible chaotic attractor.

Of particular interest are complex oscillatory states such as mized-mode or bursting
oscillations which are frequently observed in chemical and biological systems where they
are of potential relevance for signal transduction processes. These periodic states exhibit
a special waveform which can be described as a repeating pattern of L large amplitude
oscillations that are followed by S small ones. Due to this property, mixed-mode or
bursting states are labeled by the nomenclature L. Mixed-mode oscillations (MMOs)
were first observed in chemical reaction systems such as the Belousov-Zhabotinsky (BZ)

[10, 11, 12] and the peroxidase-oxidase (PO) reaction system |13, 14, 15|, while bursting
dynamics was predominantly reported for biological processes such as nerve signal con-
duction [16, 17], signal transduction dynamics in the cell involving calcium ions as second

messengers |18, 19] and the secretion of insulin by pancreatic S-cells [20, 21, 22]. Thus,
the distinction between mixed-mode and bursting oscillations is somewhat arbitrary and
seems to reflect the context in which they were found experimentally.

Bursting behavior can be alternatively classified by a slow-fast analysis following
Rinzel and Ermentrout [23]. Systems exhibiting bursting oscillations typically involve
a fast oscillatory subsystem which is coupled to a slowly evolving variable which acts
as a quasi-static bifurcation parameter for the fast subsystem. Accordingly, one can
classify the bursting behavior by the type of bifurcations occuring in the fast subsystem,
that lead to the emergence and disappearance of the bursting state [24]. MMOs are
frequently encountered in the transition region from simple periodic or quasi-periodic to
chaotic behavior where they either appear in periodic-chaotic or as (incomplete) Farey
sequences (cf. Table 1.1). The latter often arise from phase-locked states on an invariant
2-torus as, for example, in the BZ |11, 25, 26| and in the PO system [14, 15, 27]. How-
ever, Hauser and Olsen |13] found MMOs in the PO system which were associated with a
saddle-focus homoclinic orbit instead of a 2-torus. Similarly, Koper [28] observed MMOs
in a three-variable extension of the Boissonade-DeKepper model [29] which emerge from
a neutrally twisted homoclinic orbit in a codimension two bifurcation.

Another possible scenario was put forward by Ringland et. al. |30] who showed that
a one-parameter family of two-extremum maps may (in a certain limit) equally account
for the ordering of MMOs into Farey sequences without the necessity of involving a
2-torus. Goryachev et. al. [31] found a concrete realization of this map in terms of a
Poincaré map associated with the 3-dimensional flow of another three-variable exten-
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Table 1.1.: The general Farey sequence F}, is defined for any positive integer number n.
It contains the set of irreducible rational numbers a/b with 0 < a < b <n
arranged in increasing order. Each three succesive terms in a Farey sequence
obey Farey arithmetic, i.e. the middle term 111 the sequence p/ q, p'/d, 0" /q"

is the ‘sum’ of the neighbors according to = p fast p,, = qu

sion of the Boissonade-DeKepper model which accounts for a qualitative description of
transient MMOs in the BZ reaction. They reported that the MMOs are embedded into
a horseshoetype attractor.

In the present thesis, we investigate the bursting oscillations in the hemin — hydrogen
peroxide  sulfite system (hemin system) [32, 33, 34| which represents a so-called pH
oscillator (Fig. 1.2) since it induces periodic changes in the proton concentration of
the reaction medium. Thus, the production and consumption of H ions are essential
steps in the reaction mechanism of a pH oscillator. A large family of pH oscillators
is based on the autocatalytic oxidation of HSO; by HsO [35] while they differ in the
H*-consuming species that provides for a negative feedback to allow for an oscillatory
dynamics [35, 36, 37, 38, 39]. One of the main motivations to study pH oscillators is
their potential relevance for biological systems since changes in the pH value affect many
physiological parameters in the environment of the system, e.g. in the permeability of
membranes or the activity of enzymes.

So far, most of the known pH oscillators involve only inorganic substances which clearly
limits their biological relevance. Therefore, Hauser et. al. [32] developed a new pH
oscillator based on the well-known pH-dependent oxidation of HSO3 by HoO4 [35] which
involves hemin as an enzyme model compound that provides for the required negative
feedback step in order to generate oscillatory dynamics. Since hemin is considered as
a biocompatible mimick of heme-containing enzymes |10, 11, 42|, the hemin reaction
system represents a first step towards a biologically more realistic pH oscillator.

The dynamical properties observed in the family of pH oscillators is very rich. Exper-
imental and numerical investigations revealed a period doubling route to chaos |36, 37|
as well as complex oscillatory patterns such as bursting oscillations |43, 44|. However,
a detailed bifurcation analysis revealing the nature of the complex oscillatory patterns
in pH oscillator systems has, to our knowledge, not yet been performed. Therefore, we
devote one part of the present thesis to a detailed study of bursting oscillations in the
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Figure 1.2.: Time series obtained from a numerical simulation of the bursting pH os-
cillations in the hemin system (left image): 4 large amplitude oscillations
alternate with 19 small ones. The rectangular region is magnified in the
right image showing the small amplitude oscillations.

hemin system where we are particularly interested in the bifurcations involved in the
transition from simple periodic to bursting oscillations as well as in the elucidation of the
underlying bursting mechanism. A thorough understanding of the nonlinear behavior
exhibited by simple reaction schemes, such as that of the hemin system, which only con-
sists of reactions involving the enzyme species hemin and its substrates, may essentially
facilitate the comprehension of the dynamics in more complex reaction networks.

A second major issue, that will be addressed in the course of the thesis, is how complex
reaction networks, such as those describing metabolism [15, 16|, atmospheric chemistry
[17, 48], and combustion reactions [19, 50|, can be simplified while keeping their essential
dynamical properties. For example, the realistic modeling of large scale systems, such as
a detailed description of combustion reactions [50] or the Belousov-Zhabotinsky reaction
[51], usually requires the integration of large systems of ordinary differential equations
(ODE systems). Moreover, one is usually interested in the system’s behavior as one or
more externally tunable parameters are continuously varied. Thus, it is highly desirable
from a practical point of view to be able to identify the essential dynamical degrees of
freedom in a given reaction network in order to obtain reduced systems which are much
easier to investigate, but still show the relevant dynamics of the original system.

A reduction of complex reaction mechanisms may also be useful for other, more theo-
retical reasons: For example, one would like to know those reaction steps and chemical
species in a given mechanism that are necessary to generate a certain type of dynam-
ics. This information could then be used to design dynamical systems with desired
properties. While a general answer to this problem is still missing, there are promising
results about bistable [52], oscillatory [53, 54| and a certain class of chaotic systems [55].
The main tools of investigation in this field are stoichiometric network analysis [56] and



sensitivity analysis [77]. Both theoretical approaches have been succesfully combined
with principal component analysis to identify essential reaction steps in diverse systems
such as the metabolism of red blood cells [58] and the well-known Belousov-Zhabotinsky
reaction [59)].

There are basically two reasons why chemical reaction networks often show redun-
dancies, which can be used for an effective model reduction: First, chemical reactions
occur in fixed stoichiometries. This results in mass conservation relations for certain
atoms and thus, not all chemical species in a given network act as independent degrees
of freedom. Second and more importantly, chemical reactions naturally evolve on dif-
ferent time scales. Accordingly, their temporal evolution can be decomposed into a fast
transient relaxation to lower dimensional invariant slow manifolds and a subsequent evo-
lution on the union of these manifolds, which often still captures the interesting type
of dynamics on experimentally accessible time scales. The mathematical description of
such reaction networks leads to singularly perturbed systems for which a well developed
theory |60, 61| exists. As a result, one obtains a lower dimensional approximation on
the slow manifold of the original system.

In the course of the years, several methods exploiting singular perturbation techniques
have been proposed to simplify complex chemical reaction networks such as lumping
schemes |62] or the approximation of the invariant manifold based on a functional equa-
tion [63|. However, before these techniques may successfully be applied, one still needs
to identify the different time scales in the system which is often the hardest task. The
presence of different time scales is usually indicated by small dimensionless parameters
in front of time derivatives of some of the phase space variables which indicates that
these variables vary significantly only on very short time scales and thereafter follow
instanteneously (algebraically) the dynamics of the slow degrees of freedom.

The conventional strategy to search for small parameters in a system is to introduce
new dimensionless variables such that some combination of intrinsic parameters becomes
sufficiently small and subsequently may be used as a singular perturbation parameter.
Clearly, this procedure becomes a formidable task in more complex reaction networks
and other methods are required; as for example the method of computational singular
perturbation proposed by Lam [64|. Furthermore, the rescaling procedure is not free
of ambiguity in choosing the 'right’ scales [65] and if the rescaled variables are not
bounded from above and below, then the rescaled kinetic parameters do not provide any
indication, whether the corresponding reaction step is slow or fast. Thus, one is often
guided by chemical intuition or experimental expertise to group the individual reactions
according to slow and fast steps. Once the different time scales of a system are known,
it is more or less straight forward to apply singular perturbation techniques in order to
reduce the dimensionality of the original system.

In view of the above mentioned problems to identify the relevant time scales in a
system, we shall introduce a new method that allows to systematically find slow man-
ifolds in a certain class of reaction networks (including those following a mass-action
kinetics) which neither relies on a priori knowledge about the time scales nor requires a
sophisticated rescaling procedure to identify small parameters in a system. Instead, we
directly use the solution curves from a numerical integration routine to check whether
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certain nonlinear functions of the phase space variables, which we call quasi-integrals, are
approximately constant along the numerically obtained solution curves. Quasi-integrals
define nonlinear algebraic constraints among some of the phase space variables and thus,
may be used to eliminate dynamical degrees of freedom in the reaction network; for ex-
ample, by a quasi-steady-state approximation (QSSA) [66, 67]. In this sense, the method
of quasi-integrals may serve as a supplement to existing methods which rely on a priori
knowledge of time scales.

In the next Section, we introdue the hemin system in some detail since it represents
the main object of study in this thesis. Afterwards, we give a detailed outline of the
thesis and thereby conclude the introduction.

1.1. The hemin — hydrogen peroxide — sulfite system

The hemin — hydrogen peroxide — sulfite system belongs to a family of pH oscillators
which are based on the pH-dependent oxidation of HSO; by Hy05 since this reaction
produces HT ions in an autocatalytic fashion |35, 36, 37, 38, 39]. In order to prevent the
unbounded production of protons, H"-consuming reactions are required, which play the
role of a negative feedback step and thus, open the possibility for an oscillatory dynamics
of the pH value in the reaction medium. In earlier studies of pH oscillators, inorganic
compounds such as hexacyanoferrate |36, 35|, thiosulfate [13|, sulfide [6&|, or hydrogen
carbonate [37] have been used to accomplish the negative feedback. However, due to
the use of purely inorganic substances, the corresponding pH oscillator systems are not
necessarily physiologically compatible. To this purpose, Hauser et. al. [32] developed
a pH oscillator where hemin provides for the H-consuming reaction steps and thus,
represents a first step towards a biologically more realistic pH ocsillator.

The hemin system was studied experimentally under open conditions in a continuous-
flow stirred tank reactor to which the necessary reactants are continuously supplied at
a certain rate ky and from which all products are continuously removed at the same
rate. Thus, there is a constant matter flow through the system keeping it away from
thermodynamical equilibrium.

With increasing flow rate kg, the following sequence of nonequilibrium states was
observed: acidic (pH~ 6.5) stationary state — relaxational oscillations — bursting
oscillations — alkaline (pH~ 7.6) stationary state. The bursting oscillations consist of
one large amplitude oscillation and a certain number of small amplitude oscillations per
period.

A first reaction mechanism was proposed in [32, 33] based on the well established
oxidation of HSO; by HyO9 which involves the autocatalytic reaction step. In addition,
two pH-dependent equilibria between different forms of hemin were considered as sources
for the negative feedback step. However, we showed in a recent publication [34] that
one of these two equilibria, the pH-dependent dimerisation of hemin, provides only a
minor contribution to the onset of oscillations and may therefore be neglected, since we
are aiming at a minimal reaction mechanism which only contains the essential reaction
steps in order to reproduce the observed dynamics.
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Instead, it became necessary to take the degradation of hemin by HyOs into account
which is known to occur at high HyO, concentrations exceeding 8 x 10~*mol 17" [69].
In this degradation process, the porphyrin ring of hemin is oxidatively cleaved by a yet
unknown agent. This reaction was found to be of first order with respect to hemin
[70]. Due to the uncertainty concerning the oxidising agent and in order to keep the
mechanistic model as simple as possible, we proposed the following reaction scheme for
the hemin system [34]

SO+ HY &= HSO; (1.1)
HyO, 4+ 503 B 50* + H,0
H,0, + HSO; 2 S0* + HY + H,0
H,0o+ HSO; + HY B 502 1 2HY + H,0
AT = A4+ HT

A5 products

where the degradation process is taken into account by an unspecific decomposition of

hemin according to A Lit products. The products are assumed not to take part in any
further reaction of the system.

The first four reaction steps in (1.1) represent the well established oxidation of HSO3
by HoO [35, 306, 37, 38]. The autocatalytic step is contained in the fourth reaction
where H' produces 2H'. The rate constants ki, ..., ks were measured in dependence
on the temperature in [38]. The fifth reaction step in (1.1) denotes the pH-dependent

Ry : CH=CH, Ry: CH,CH,COOH

Figure 1.3.: The hemin molecule consists of a central iron atom Fe!!! and a porphyrin
ring which may either coordinate with two aquo ligands (A1) or to one

hydroxy and one aquo ligand (A).
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equilibrium between two forms of hemin whose porphyrin ring may either coordinate
with two aquo ligands in which case it is denoted as A™ or to one hydroxy and one aquo
ligand abbreviated as A (Fig. 1.3). The corresponding rate constants kg, k7 have been
measured in [71].

The only rate constant whose value has not been precisely determined yet is that of
the hemin decay, i.e. kg. Consequently, we shall regard it, in addition to the flow rate
ko, as a second variable parameter in our model .

In order to model the dynamical behavior of the reaction system (1.1) we assume
the individual reaction steps to follow a mass-action kinetics, i.e. we assume that the
frequency of collisions leading to a reaction between two chemical species is proportional
to their concentration. This is a valid assumption if [65, 72] (i) the concentrations
of the involved atoms/molecules are not too high such that a doubling of the initial
concentration for one species results in a doubling of effective collisions leading to a
chemical reaction, (ii) the reaction medium is homogeneous which is assured by stirring
and (iii) the temperature is held constant during the experiment such that the parameters
k; are truly constant (the experiments for the hemin system were carried out at 25°C).

We derived a 6-dimensional ODE system from the reaction mechanism (1.1) to model
the bursting behavior of the hemin system [34]:

Ty = —kizixo + kaxs — ks + k(2 — 1) (1.2)
Ty = —kix129 — kowows — kswowswy + kfo(xg )

Ty = —hkoXows — kawowsry — kg3 + kszi1x4 — ko3

Xy = kowoxs + ksxowsxy + kyxs — ksx124 + kere — krwa5 + ko(fﬁg — 14)

Ts = keve — krxars — ksxs + ko(xg - $5)

T = —kexe+ krraxs — koxe

where the pH value is given as the negative decadic logarithm of the proton concentration
H* (x4) and the ‘dot’ denotes derivatives with respect to time ¢. To simplify notation,
we assigned the following abbreviations to the chemical species:

r; « SO3” (1.3)
T9 <« Hy0Os9

x3 <« HSO3

xy, — HT

rs — A

rg — AT.

The terms proportional to kg in (1.2) describe the matter flow through the continuous-
flow stirred tank reactor to which the four species SO3 (29), HyOo(293), HT(29) and
A(22) are supplied at the variable rate ko while all six chemical species are removed
from the reactor at the same rate. The numerical values of the rate konstants k1, ..., kg
and the concentrations in the external reservoirs 20 that were used in the numerical sim-
ulations, are compiled in Table B.1 of the Appendix B.2. According to the experimental

10
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situation, the flow rate kg is used as the principal bifurcation parameter ranging in the
interval ko € [1-107%s714.5-107*s71].

11
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1.2. Outline of the thesis

The thesis consists of two main Parts and an Appendix. In the main Parts, we investigate
two thematically distinct aspects of the dynamical properties of the hemin — hydrogen
peroxide sulfite system: In the first Part, the method of quasi-integrals is developed
as a general procedure to identify the essential dynamical degrees of freedom in a given
reaction network. In particular, this method will be used to derive a 3-dimensional ODE
system as an approximation to the 6-dimensional hemin system (1.2). In the second
Part, we exploit the slow-fast structure of the hemin system to analyze the origin of its
bursting behavior by a suitable (slow-fast) bifurcation analysis. As a result, we identify
the bursting mechanism of the hemin system as a subHopf/fold-cycle burster according
to a classification scheme that has been introduced by Izhikevich [21] to classify the
bursting behavior of neural systems. A systematic two-parameter bifurcation analysis
reveals a transition in the bursting behavior of the hemin system from subHopf/fold-
cycle to fold/subHopf type. In addition, the slow-fast analysis provides an explanation
for the origin of quasi-periodic behavior in the hemin system, even though the underlying
mechanism might be of more general importance.

Part I

Chapter 2 gives a short introduction into the theory of singularly perturbed systems.
It begins with a simple motivating example using a singularly perturbed algebraic
equation. Afterwards, we introduce the main ideas of the geometrical approach
to singular perturbation theory for ODE systems due to Fenichel |60], since this
theory serves as the mathematical basis for the method of quasi-integrals.

Chapter 3 introduces the concept of quasi-integrals and reveals its relation to the theory
of singularly perturbed systems. First, we exemplarily show how to find quasi-
integrals in the hemin system and further, how they can be used to reduce the
number of dynamical degrees of freedom in that system. In particular, we derive a
3-dimensional approximation to the 6-dimensional ODE system (1.2). In a second
step, we outline how the method of quasi-integrals can be extended to a large class
of reaction networks. The results of this Chapter have been published in |73].

Chapter 4 compares the dynamical properties of the 6-dimensional hemin system (1.2)
with those of its 3-dimensional approximation. To this purpose, local one- and
two-parameter bifurcation diagrams are calculated which demonstrate that both
systems are virtually identical.

Chapter 5 summarizes the results of the first Part and gives a short outlook.

Part 11

Chapter 6 describes how the bursting oscillations arise in the 3-dimensional hemin sys-
tem subsequent to a period doubling cascade and the formation of a chaotic at-
tractor. We list some of the bursting states that were found by direct numerical
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1.2. Outline of the thesis

integration and discuss their bifurcation sequences in terms of Farey progressions.
In addition, we introduce the total concentration of hemin species as a new variable
since it evolves on a slower time scale than the remaining variables; an observation
that will be essential when we analyze the bursting oscillations in Chapter 8.

Chapter 7 exemplifies the slow-fast analysis introduced by Rinzel and Ermentrout [23]
with a cartoon of the slow-fast structure of the 3-dimensional hemin system. In
particular, we demonstrate how a slow variable may act as a quasi-static bifurca-
tion parameter for the remaining 2-dimensional fast subsystem. In addition, we
mention a classification scheme for bursting mechanisms that has been introduced
by Izhikevich [21] to classify the bursting behavior of neural systems.

Chapter 8 is devoted to a detailed study of the slow-fast structure of the hemin system.
First, we show that at a fixed value of the flow rate ky, the bursting oscillations
are caused by a saddle-node bifurcation of periodic orbits in conjunction with a
subcritical Hopf bifurcation, both of which occur in the fast subsystem for nearby
values of the slow variable that was introduced in Chapter 6. By a systematic
two-parameter continuation in the flow rate and the slow variable, we identify a
transition in the bursting behavior from subHopf/fold-cycle to fold /subHopf type
which can be attributed to a homoclinic bifurcation in the fast subsystem. Finally,
we perform a slow-fast analysis of the hemin system in a parameter region where
a 2-torus is stable. This analysis shows that the rather unusual phase flow on
the torus is due to a coupling of an oscillator in the fast subsystem with the slow
variable and thus, is a result of the slow-fast structure of the hemin system.

Chapter 9 summarizes and discusses the results of the second Part.
The Appendix consists of three Chapters:

Chapter A provides the basic notions of dynamical systems theory and gives an intro-
duction to bifurcation theory as far as it appears necessary to understand the ideas
and arguments in the remainder of the thesis. Therefore, this Chapter should be
used as a reference. In particular, Sections A.3 and A.4 should be consulted for
details about local codimension one and two bifurcations, respectively, which will
be frequently referred to throughout the work. Global (homoclinic) bifurcations
are discussed in Section A.5.

Chapter B gives an introduction to numerical continuation procedures and strategies.
Furthermore, it provides the parameter settings for the hemin and the peroxidase-
oxidase system which are necessary to setup the numerical simulations.

Chapter C contains a second example for the application of the method of quasi-
integrals developed in Chapter 3. The reaction mechanism of the peroxidase-
oxidase reaction is investigated which exclusively contains irreversible reaction
steps and therefore, poses a nontrivial application of the method of quasi-integrals.
Nevertheless, we identify three possible quasi-integrals two of which lead to reduced
systems that quantitatively agree quite well with the original 10-dimensional one.
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Part |I.

Quasi-Integrals and Slow Manifolds
In Reaction Networks
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2. Singular Perturbation Theory

The method of quasi-integrals is mainly inspired by the singular perturbation theory for
ODE systems. Therefore, we give a brief outline of that theory in the present Chapter
and thereby lay the mathematical foundation for the reduction method using quasi-
integrals in Chapter 3.

In perturbation theory, one studies how small disturbances of a system affect its
behavior which is assumed to be known under isolated conditions, i.e. without the
disturbances. For concreteness, consider a perturbed system S. which is, for example,
described by algebraic, differential, or integral equations, or combinations thereof. Then
a natural, though by no means necessary assumption (otherwise there was no singular
perturbation theory), is that the solution z. of the perturbed system is in some sense
‘close’ ! to the solution zy of the unperturbed problem Sy provided the perturbation
parameter ¢ is sufficiently small. If this assumption holds over the entire domain of
definition, the according perturbation problem is called regular and one can find a so-
lution of the perturbed problem in terms of a (asymptotic) power series expansion in
e. However, it may happen that the unperturbed problem Sj (i) has no solution or (ii)
has a solution that is not uniformly valid in the domain of definition or (iii) has many
solutions. In these cases, the perturbation problem S; is called singular.

2.1. A motivating example

A hallmark of singularly perturbed systems is that they model processes which occur on
at least two different scales such that a solution of the unperturbed problem is usually
only valid at one of the two scales.

To illustrate this statement, consider the solutions of the algebraic equations

flz,e) = 22 -224+e=0, 0<ex1 (2.1)
f(SE,O):hH(l]f(ZL‘,S) = 27 -22=0

which are given by

v = 1+£1—¢ (2.2)
1,2

ry? =limz!? = {2,0}.

€
e—0

Obviously, the solutions z1? of the perturbed problem f(z,¢) = 0 coninuously deform

into the solutions 7 of the unperturbed equation. In particular, the solutions 212 have

In order to compare two solutions, one can, for example, introduce an appropriate norm in the space
where the system is defined.
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2. Singular Perturbation Theory

power series expansions near € = () starting as

1

vt = 2- 3¢~ O(e?) and (2.3)
1

a2 = 0+ 5+ O(e?), (2.4)

respectively, which shows that they are close to the unperturbed solutions xé’Q for e
sufficiently small. Thus, ¢ is a regular perturbation parameter for f(z,e) = 0.

In a next step we shift the position of the small parameter such that it occurs in front
of the monomial of highest degree and consider the following (singular) perturbation
problem (cf. Chapter 9 in [65]):

g(z,6) =ez* —224+1=0 (2.5)
whose solutions are now given by

Z7? = %(11\/1—5). (2.6)

Up to the scale factor 1/e, these are the same solutions as in (2.2). However, the scale
factor has a huge impact on the power series expansions since we now have:

2 1
1 f— —_—— ——
e = -3 O(e) and (2.7)
1

Hence, in the limit € — 0, 2! becomes unbounded while z? remains finite.

If, on the other hand, one naivly performs the limit ¢ — 0 in (2.5), one obtains the
first order equation —2z 4+ 1 = 0 which has only one solution: zy = 1/2. Thus, from the
unperturbed problem, one only gets the regular solution (2.8) of the perturbed problem:

lim 22 = 1/2 = 2;
e—0
the singular solution (2.7) is missing.

The singular nature of the perturbation problem (2.5) may also be seen in a different
way by exploiting the multi-scale structure of the system. To this purpose, we introduce
a new variable according to

E=¢cz, 0<exl (2.9)

and look again at equation (2.5), but now on a smaller scale defined by (2.9). After
performing the scale transformation (2.9) and multiplying the resulting equation by ¢,
(2.5) reads

§(&e) =8 —-26+¢e=0, (2.10)
i.e. on the small scale we again obtain a regular perturbation problem which, in this case,
is identical with (2.1). Consequently, the solutions £1* of (2.10) can also be obtained
in terms of power series expansions identical to those in (2.3) and (2.4). Finally, one

gets the two solutions z!? = éfau for the singularly perturbed system (2.5) which are,
of course, identical with (2.7) and (2.8).
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2.2. ODE systems with ‘small’ parameters

We summarize:

1. The appearance of a small parameter in front of the highest order term in an
algebraic equation such as (2.5) usually indicates the existence of (some) singular
solutions. This aspect has a natural translation to differential equations where
singular behavior is indicated by small parameters in front of the highest order
derivative term.

2. Looking at equation (2.10), it seems as if the singularity was transformed away
since in this equation, ¢ is a regular perturbation parameter. This is, however, not
the case since it is now the scale transformation (eq. 2.9) that becomes singular in
the limit ¢ — 0.

3. Finally, we again wish to point out the multi-scale structure of (2.5) and (2.10). If
we look at a small scale (using & variables) the system (2.10) is well-behaved and
has the two regular solutions £!%. If, on the other hand, the scale is increased by
performing the limit € — 0, only one of the solutions (2?) remains regular while
the other one (z!) becomes singular.

In the next Section, we shall address the question under which conditions one may
approximate a singularly perturbed problem by a regularly perturbed one for the case
that the system is described by ordinary differential equations.

2.2. ODE systems with ‘small’ parameters

The geometrical singular perturbation theory for ordinary differential equations has been
elaborated by Fenichel [60] in the 1970s. We shall present the main ideas of this approach
as far as it is necessary to motivate the concept of quasi-integrals in Chapter 3.

In the following we consider n-dimensional ODE systems of the form

i(t) = flz,y¢e) (2.11)
ey(t) = g(z,y,¢)

where ¢ is again a positive, sufficiently small dimensionless parameter, (z,y) € U C
R"™™™ x R™, and f and g are vector-valued functions of the form f : U — R"™™ and
g : U — R™ respectively. The ‘dot’ denotes derivatives with respect to the (time)
parameter t.

The occurrence of the small parameter € in front of § in (2.11) indicates that these
quantities vary significantly only on the fast time scale ¢/ and thereafter instantaneously
follow the slow dynamical degrees of freedom played by the x variables. Technically, this
can be seen by taking the limit &€ — 0 in which case the ODE system (2.11) reduces to
the differential-algebraic system

o(t) = flz,y,0) (2.12)
0 = g(z,v,0).
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2. Singular Perturbation Theory

Similar to the case of the algebraic equation (2.5) in the previous Section where the
limiting process led to a reduction in the order of the original equation, the same limiting
procedure now leads to a reduction of the dynamical degrees of freedom from n in (2.11)
ton—m in (2.12) where the y-components of the solution curve (x(t),y(t)) are implicitely
determined by the algebraic equation g(z,y,0) = 0 once the solution z(t) is known.

Again, the singular behavior of the y-components of the solution curve (x(t),y(t))
on long time scales (comparable with ) can be remedied by studying the ODE system
(2.11) on a faster time scale T which is introduced as

t
=, 2.13
r=t (2.13)
On the time scale 7, the ODE system (2.11) reads:

(1) = ef(z,y.¢€) (2.14)
y'(r) = g(z,y,¢)

for which e is now a regular perturbation parameter since it does not appear anymore
in front of derivatives with respect to 7 (which are abbreviated with a ‘prime’). In the
limit € — 0, the ODE system (2.14) reduces to the so-called fast subsystem

Z(r) = 0 (2.15)
y'(r) = glz,y,0).

Thus, on the fast time scale 7 only the y-components follow a dynamical evolution while
the z-components are treated as constants since their derivative with respect to 7 is
zero. As long as € # 0, the two systems (2.11) and (2.14) are completely equivalent. In
the limit ¢ — 0, however, this equivalence is lost since the scale transformation (2.13)
becomes singular.

It is now the aim of singular perturbation theory to investigate under which condi-
tions the solutions of the reduced system (2.12) represent a good approximation to the
solutions of the original (singular perturbation) problem (2.11).

The result is the following: Assume that the algebraic equation g(x,y,0) = 0 in (2.12)
defines a smooth manifold y = §(z) which is normally attracting in the sense that the
Jacobian matrix Dy,g(z,y) |,=g@) of the linearized fast subsystem along y = §(x)

(6y) = Dyg(z,y) |y—j) 0y (2.16)

has only negative eigenvalues for x belonging to a compact region in R®™™, then there
exists a slow invariant manifold ¢ (z,e) = g(z) + O(e) that can be used to approximate
the dynamics of the n-dimensional ODE system (2.11) for sufficiently small ¢ by the
n — m-dimensional ODE system

T = f(x,¥(x,¢e),¢e) (2.17)

which is now a regular perturbation problem in e.
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2.2. ODE systems with ‘small’ parameters

Of great practical relevance is the limit € — 0 corresponding to the quasi-steady-state
approzimation (QSSA)

&= f(x,y(x),0) (2.18)

where the slow manifold v (z, ) is approximated by the quasi-stationary manifold g(z).
Notice that in practical applications ¢ is usually given in terms of intrinsic system param-
eters and therefore cannot be made arbitrarily small. Nevertheless it is often sufficient
to approximate the slow manifold of a system by the quasi-stationary manifold in order
to obtain a reasonable description of the dynamics of the n-dimensional system even in
the case that ¢ is different from zero.

We wish to stress again that the manifold y = () is entirely composed of stationary
points of the fast subsystem (2.15) which parametrically depend on the slow variables
x € R*™™, In particular, the approximation (2.18) is only valid in those compact regions
of R"™ where the quasi-stationary manifold y = g(z) is attracting which may limit the
range of allowed initial conditions for the x variables.

The property that the slow manifold ¢ (z,¢) is invariant under the flow of the ODE
system (2.11) is expressed by the equation:

1&(1}, g) =Y. (x,6)t =0, (2.19)

where 1, (z,¢) denotes partial differentiation with respect to € R"™. Accordingly,
the slow manifold can be obtained as a solution of the partial differential equation

Val, &)z, (x, €)) = ég(x,i/z(as,s),e) (2.20)

where we set iy = ¢ (x, €) and used (2.11) to replace the time derivatives & and ¢ in (2.19)
with the corresponding vector-valued functions f and g, respectively. In general, it will
be impossible to find explicit solutions of the nonlinear partial differential equation(2.20).
However, in many cases one may find an approximation to the slow manifold in terms
of a power series expansion in the small parameter e

V(@) = glo) + et (@) + O(e?) (2.21)

where the quasi-stationary manifold §(z) reappears as the zeroth order term.

Finally, we mention that the approximation (2.18) has two desirable features which
is the reason for the great practical importance of the QSSA: First, it is valid on the
slow time scale ¢, i.e. it describes the long-time behavior of the system which is also
accessible to experimental investigations. Second, the fast dynamical degrees of freedom
are elimimated and thus, one is left with a problem of reduced (numerical) complexity.
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3. Quasi-Integrals

The individual reaction steps in (bio-)chemical reaction networks often evolve on different
time scales. The mathematical description of such networks naturally leads to singularly
perturbed ODE systems. However, in large systems it is practically impossible to identify
the small perturbation parameters in the system without any prior knowledge of the
order of magnitude of the individual reaction steps. Therefore, we shall develop a method
which does not require any a priori knowledge, but instead makes direct use of the
solution curves which are obtained by numerical integration routines. The results of this
Chapter and Appendix C are published in [73].

3.1. Quasi-integrals in the hemin system

In the following, we shall exemplify the method of quasi-integrals with the hemin system
introduced in Section 1.1. In the first step, the ODE system (1.2) is rewritten in compact
vector notation

i=C-R(z,k) + ko(2° — )

where we introduced the matrix of stoichiometric coefficients C (without the in- and
outflow terms proportional to ky) and the vector of reaction rates R as:

]{?11’1[E2
—1 0 0 1 —1 0 0 0 k)gl’gfﬁg
-1 -1 -1 0 0 0 0 0 ]{?31'21'3334
o -1 -1 -1 1 0 0 0 kyxs
o o o o 0 1 -1 -1 kg
o o o o0 o0 -1 1 0 krzys
k’gl’5

Accordingly, the reaction mechanism of the hemin system comprises 6 chemical species
and 8 elementary reaction steps. The latter are arranged into the components of the
reaction rate vector R.

In the second step, we use the theory of singularly perturbed systems as it has been
introduced in Section 2.2 to motivate the concept of quasi-integrals. To this purpose,
let us pretend for a moment that there were two time scales in the hemin system (1.2)
so that it can be transformed into the standard form of a singularly perturbed system
(2.11) by identifying a suitable combination of intrinsic system parameter which can
play the role of an epsilon in (2.11). Let us further assume that the small parameter
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3. Quasi-Integrals

epsilon appears in the first rate equation of (1.2) which therefore admits a form similar
to the second equation in (2.11):

er1 = ks + kawgte (—ksmiwg + ko (29 — 1)) (3.2)
= go(w1,@3,03) +e¢ g1, 24)
Ey = g(xa Y, 5)
where we identified z; with the fast variable y and (xs,...,z) with the slow variable

x in (2.11). The motivation for this particular choice of the function g(z,y,e) comes
from the fact that if we were allowed to perform the limit € — 0 in (3.2), we would have
found a quasi-stationary manifold given by the algebraic equation

go(x1, 29, 23) = 0 = —k1w129 + ky3 (3.3)

provided it is normally attracting in the sense of Section 2.2.

The crucial point is now the following: Instead of explicitly searching for a small
parameter in the ODE system (1.2), which would facilitate the transformation (3.2), we
simply test whether the ratio

=—~1 (3.4)

approaches the constant (or at least nealy constant) value 1 along the numerically ob-
tained solution curves x;(t) in which case (3.3) is simultaneously fulfilled. Since [,4 is a
nonlinear function of the phase space variables, whose time derivative I;; ~ 0 is nearly
zero along the solution curves, we call it a quasi-integral. Note that if the time derivative
was exactly zero, 114 would be an exact integral for the nonlinear flow of the ODE system
(1.2).

By reversing the order of the above argument, it is clear that each quasi-integral of the
form (3.4) defines a quasi-stationary manifold (3.3) in the sense of Section 2.2 which, in
turn, can be used to reduce the number of dynamical degrees of freedom in the originally
6-dimensional ODE system (1.2). On the other hand, since the partition of g into g
and ¢ in (3.2) was arbitrary, it is also clear how to proceed in order to search for other
quasi-integrals. For example, in a next step one could test whether the condition

=_—~1 (3.5)
is fulfilled in which case the quasi-stationary manifold would be given by
g0($1,l’3, 1‘4) = k4l’3 — /{53311‘4 =0= R4 — R5. (36)

By continuing along this line of argument, one can systematically test all distinct
combinations of the form (3.4) and (3.5) for being approximately constant. To this
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3.1. Quasi-integrals in the hemin system
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Figure 3.1.: Different ratios of components of the reaction rate vector R are shown: While
I;5 = Ry4/Rs approaches a constant value and therefore defines a quasi-

stationary manifold, I14 = R;/R4 remains a heavily oscillating function
bounded away from 1 and thus, does not fulfill the condition for a quasi-
integral.

purpose, one has to consider only those reaction rates R; in a given rate equation which
appear with an opposite sign, since these are the only ones that can potentially balance
each other. If this procedure is carried out for all six rate equations in (1.2), one has
found all possible quasi-stationary manifolds which can be represented as ratios of certain
components of the reaction rate vector R.

In the hemin system, we find precisely one quasi-integral (eq. 3.5). It is shown in
Fig. 3.1 together with I, which represents a counter example. Note that I,5 always
remains in the neighborhood of the constant value 1 except for short time intervals
where spiking outliers occur (Fig. 3.1a). To the contrary, I14 remains a heavily oscillating
function on the scale 107° which is far away from the constant value 1 (Fig. 3.1b). Thus,
145 defines a quasi-stationary manifold while ;4 does not.

We conclude with some general remarks concerning the method of quasi-integrals.
First of all, the method is applicable without any prior knowledge about the different
time scales which might be present in a given reaction network. This property makes it
particularly suitable for a straightforward reduction of high dimensional systems. On the
other hand, we have not yet specified what we mean when we require that a quasi-integral
is approximately constant, since the distinction between different ratios such as I14 and
1,5 might not be as clear cut as in Fig. 3.1. However, even in those cases, the method
is applicable if one uses ratios that are approximately constant for a formal reduction
of the original ODE system and subsequently compares it with the reduced version, for
example, based on a local bifurcation diagram. This is, in fact, the strategy that we
shall follow in Section 4.1 and in the Appendix C where the method of quasi-integrals
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3. Quasi-Integrals

is applied to the 10-dimensional PO system.

3.2. Using quasi-integrals for model reduction

Having identified the quasi-integral (3.5), which possibly defines a quasi-stationary man-
ifold, we wish to use it now to eliminate one dynamical degree of freedom in the hemin
system (1.2). To this purpose, we rewrite the 6-dimensional hemin system in the stan-
dard form of a singularly perturbed system (eq. 2.11)

Ty = —Ry— Ry— R3+ ko(2) — 2) (3.7)
Ts = Rg— Ry — Rsgws + ko(x) — x5)
e = —Rg+ Ry — koxg.

51:1 = R4—R5+E(—R1 +k50($(1) —ZEl))

ets = —(Ry— Rs)+e(—Ry— Rs — kox3)

51:4 == R4 - R5 + €(R2 -+ Rg -+ Rﬁ — R7 —+ ko(mg — 1'4))

where we have already used the knowledge about the existence of the quasi-stationary
manifold go(z1, 23, x4) = R4y — Rs in order to place the small parameter ¢ at the correct
positions. For clarity, the components of the reaction rate vector R were used to denote
the individual reaction steps in (3.7).

We notice that a naive reduction, following the procedure in Section 2.2, is damned to
fail, since the term R, — R5 appears in three different rate equations in the ODE system
(3.7). This (misleadingly) suggests that the fast subsystem is of the form:

l'll = R4 — R5 = Jo
ry = —(Ry—Rs5) = —go (3.8)
zy = Ri— Rs = go

which is obtained after rescaling according to 7 = t/e and performing the limit ¢ — 0
in (3.7) ( the ‘prime’ again denotes derivatives with respect to the fast time scale 7).
On the other hand, there is only one equation (eq. 3.6) defining the quasi-stationary
manifold and thus, the determinant of the Jacobian matrix

9(90, —90, 90)
a(xh X3, I’4>

(3.9)

of the fast subsystem (3.8) is two-fold degenerate, i.e. it has two zero eigenvalues.
Consequently, the quasi-steady-state approximation (2.18) must not be applied to the
ODE system (3.7).

The reason for the degeneracy of the fast subsystem is the presence of (mass) con-
servation relations in the reaction mechanism of the hemin system which have not been
considered so far. Such kind of conservation relations are frequently encountered in
chemical reaction systems. They simply express the fact that atoms of a certain kind
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3.2. Using quasi-integrals for model reduction

can not be destroyed during a chemical reaction. Instead they aggregate and dissociate
in fixed stoichiometric relations.

In general, the existence of mass conservation relations is expressed by a non-maximal
rank of the stoichiometric matrix C (eq. 3.1) which in our case has rank 4. Thus, there
are two left eigenvectors of C with eigenvalue zero. They can be chosen as

vl = (1,-1,1,0,0,0) (3.10)
va = (0,0,1,1,0,1)

which satisfy the eigenvalue equations

In the following, we use these eigenvectors as the last two rows of the linear coordinate
transformation

" 01 0000 2
Y2 0 0 0O0O01 T
ws | o o0 0010 z3
Y4 o 1 0 0 0 0 0 Ty (3'11)
Us 1 ~1100 0 25
i 000 1101 Ze
which brings the ODE system (1.2) into a form
Y1 = koxd — y1{/€o +kiya + (ko + ks(ys —ys —y1 — y2 +ya)) (5 — ya + y1)}
Yo = —key2 + krys(ye — ys — y1 — y2 + ya) — Koy (3.12)
Ys = —ksys + keyo — krys(ye — ys — y1 — y2 + ya) + ko(22 — y3)
Y = ka(ys —ya +y1) — ksya(yYs — ys — y1 — Y2 + Y1) — k1y1ya + ko(z§ — ya)
s = ko(z) —a§ — ys)
Yo = ko(z} — ye)

where the last two equations for ys; and ys become decoupled from the 4-dimensional
subsystem corresponding to the (yi,y2,ys3, y4) variables. Note that the latter four vari-
ables are just relabeled versions of four of the original variables, i.e. we have y; = xo,
Yo = Tg, Y3 = T5 and y, = 1.

The last two equations in (3.12) describe the mass conservation relations. They can
be integrated separately and yield the following solution for zero initial condition:

ys(t) = (2§ —25)(1 — exp(—kot))
ys(t) = (2)(1 — exp(—kot)).

This means that after a transient time of order ¢ ~ 1/ky, the trajectories of the ODE
system (3.12) (and equally that of (1.2)) approach an attracting 4-dimensional manifold
which is formally defined in the limit ¢ — oo as

Jim (1) = Jim (1 (1) = a(8) 4 ma(1)) = o —af =0 (31)

lim yo(t) = lim (25(t) + 2a(t) + 26(t) = 2§ =y
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3. Quasi-Integrals

In chemical terms, these two relations express the conservation of S atoms and H* ions,
respectively:

[SO57] = [Hx00] + [HSOy] = [SO57|" = [H0,]" (3.14)
[HSO;]+ [H']+[AH] = [H']’

which is obtained using the correspondence between the chemical species and the phase
space variables (1.3). Since the last two equations in (3.12) do not contain any essential
dynamical information, but merely express the stoichiometric constraints in the reaction
mechanism (1.1), the transient approach to the 4-dimensional manifold (3.13) can be
neglected by replacing the variables y5 and yg in (3.12) with their asymptotic values
according to (3.13)

Ys = Yss Yo =Yg - (3.15)

As a result, we obtain a 4-dimensional ODE system

i = koxg—y1{ko+kly4+ <k2+k3(ygo — Y5 — W —y2—|—y4)>(y§° —y4+y1)}
Y2 = —key2 + krys(ye” — ¥5° — 1 — Y2 + ya) — koye (3.16)
ys = —ksys + keyo — krys(ygS — ¥ — y1 — Y2 + ya) + ko(x) — ys3)

e = Ka(Us® — v+ 1) — ksya(ye” — v5° — v1 — y2 + ya) + e(—=kayaya + ko(2] — ya))

where the stoichiometric constraints (3.13, 3.14) are properly taken into account. More-
over, the quasi-stationary manifold (3.6) now appears in only one rate equation which,
due to our choice of the linear coordinate transformation (3.11), is that of y, = z1. The
fast subsystem is now given by

d

= Fays® —ya+ 1) = ksya(ye” — 5" —y1 — Y2 + 4a) - (3.17)
Its stationary points
ky (ye° —ys + 1) —k o —YsS — YL — Y2+ =0 3.18
2 (Us" —yat+y1) ks _ya g% Ys 31 Y2 + Ya) ( )
T3 1 T4

define the quasi-stationary manifold for the 4-dimensional version of the hemin system
(eq. 3.16). Due to the proper consideration of the chemical constraints (3.14), this is
now a quadratic equation for y4 = x; whose solution is given by

1, ke 1 k k
ys = = (Y5 —ys +y1+yz——4)i—\/(y§°—y8°+y1+yz——4)2+4—4(y§°+y1)- (3.19)
9 k' 2 ks ks

Here, we must consider only the positive square root, since y, represents a concentration
and therefore y, > 0 must hold. A direct computation of the (1-dimensional) Jacobian
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3.3. Quasi-integrals in general reaction networks

matrix along the manifold (3.19) shows that it is globally attracting since we have:

0

5~ (Ri— Rs)| = —hy—ks(yg® — y5° — w1 — y2 + 2ua)|

Oy, ya=ya(y1,y2) ya=ya(y1,y2)

k k
= —k5\/(y§°—yg°+y1—|—y2——4)2+4—4(y§°+y1)
ks ks

which is negative for all (y;,ys) € ]R%r. This shows in particular, that the fast subsystem
(3.17) is no longer degenerate. On the other hand, it is known [74] that if the fast
subsystem is entirely composed of reversible reactions, as it is in our case (R; and
Rs correspond to the first reversible reaction step in (1.1)), then its stationary points
automatically define an attracting manifold for the original flow.

Finally, we perform the QSSA using the procedure outlined in Section 2.2 and arrive
at the following 3-dimensional ODE system:

Yy = koxg—yl{k0+k:1y4+ <k2+k3(ygo_ygo — U —y2+y4)>(y§°—y4+y1)}
Yo = —key2+krys(ye” — ¥s® — y1 — Y2 + ya) — Koy (3.20)
ys = —ksys + keya — krys(ye® — Us* — y1 — y2 + ya) + k(25 — ys),

where ys = y4(v1,¥2) is now a function of y; and y, according to the expression for
the quasi-stationary manifold (3.19). That the 3-dimensional ODE system (3.20) truly
represents a very good (even quantitative) approximation to the long-time behavior of
the hemin system (1.2) will be shown in Chapter 4, in particular in Section 4.1, where
we compare the local one- and two-parameter bifurcation diagrams for both systems.

We remark that the defining equation for the quasi-stationary manifold (3.18) rep-
resents a so-called quadric |75 which is the 3-dimensional analog of a conic section.
Quadrics can be thought of as smooth embedded surfaces in R3. In the case of equa-
tion (3.18), we find after performing appropriate linear transformations (translation,
rotation) a hyperbolic paraboloid (Fig. 3.2) whose normal form is given by

2 2
Z—Q - % =z (v,y,2) €R

The parameters a and b are given as functions of the constants ky, ks, y=°, and yg°. They
determine the particular shape of the surface.

3.3. Quasi-integrals in general reaction networks

We briefly describe how to generalize the method of quasi-integrals to reaction networks
of the form:

&= f(z,k) =C- R(z, k) (3.21)

where the components of the vector field f can be written as linear combinations of
components of the reaction rate vector R:

i = filw, k) =) CuRi(x,k)  1=1...n. (3.22)
=1
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Figure 3.2.: The slow manifold for the hemin system is a so-called hypel;bolic paraboloid
2

whose representation in standard coordinates is given by ¥ — % = z.

Here, x € R™ denotes the time-dependent state, k € R” stands collectively for all pa-
rameters in the system and the constant matrix C represents the stoichiometric matrix.
In the following, we shall not assume a particular shape of the reaction rate vector R.
However, since a large class of (bio-)chemical reaction systems (such as the hemin and
the PO system studied in this thesis) is modeled by mass-action type reaction networks,
we note that in this case, the components of the reaction rate vector are given by

Ri(x, k) = k; Iz i=1...r, j=1...n (3.23)

Thus, the general form (3.21) admits mass-action type kinetics as a special case, but
also leaves the possibility to use other kinetic schemes. The constant matrix  in (3.23)
contains the kinetic information of each individual reaction step. Both of the above
mentioned matrices, C and k, have as many rows as there are chemical species (n) and
as many columns as there are individual reaction steps () and thus, completely specify
the topology of a network following a mass-action kinetics.
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3.3. Quasi-integrals in general reaction networks

Recall that in Section 3.2 we searched in each rate equation for reaction steps that
balance each other along the numerically obtained trajectories. To this purpose, we
partitioned the function g(z,y,e) in (3.2) into a dominating part go(z,y) which was
supposed to describe the quasi-stationary manifold in the limit ¢ — 0 and a negligible
part g(x,y,e). In general, the dominating part will be of the form:

where the index [ = 1,...,n runs over all rate equations in (3.22) while 4,5 = 1,...,r
denote the individual reaction steps occuring in a particular rate equation.
Quasi-integrals are defined as those ratios

T AEON R .

that approach an almost constant value along the trajectories x;(t) of (3.22) for a certain
combination of indices [ € {1...n},7,7 € {1...r}. The occurence of the ‘—1" on the
right-hand side in (3.25) is due to the fact that in (3.24) we must consider only those
reaction steps R;, R; for which sign(Cj;) = —sign(Cj;) holds because otherwise (3.24)
can not be fulfilled. This condition reduces the number of index combinations (1,1, 7)
that must be taken into account during the search for quasi-integrals. On the other
hand, it may also happen that the same combination of reaction steps occurs in different
rate equations in which case they can be omitted.

In a next step, one can easily extend the definition for a quasi-integral (3.25) and try
to balance more than two reaction steps in which case the dominant part go of g(z,y, )
could be, for example, of the form:

In this case, quasi-integrals would be given by:

o CliRi(l‘(t), k‘) + CgkRk(I(t), kﬁ)

ijk T CljRj(fL’(t), ]{?) —1 (327)

provided that e.g. sign(Cj;) = sign(Cy,) = —sign(Cj;) holds. Indeed, for the PO
system, which will be discussed in Appendix C, we find two quasi-integrals of this type.

From the above description it is clear that the search for quasi-integrals is an algo-
rithmic procedure which can be summarized in the following three steps:

1. First, integrate the ODE system (3.21) over a sufficiently long time interval to
obtain the trajectories for parameter values, where the interesting asymptotic kind
of dynamics is observed.

2. Second, check whether quasi-integrals of the form (3.25) (or equally (3.27)) exist.

3. Third, apply singular perturbation techniques (for example the QSSA (eq. 2.18))
to reduce the number of dynamical degrees of freedom in the system.
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3. Quasi-Integrals

In the end, it is a good idea to check the quality of the approximation due to the loose
definition of a quasi-integral as being ‘almost constant’. This can be done, for example,
by comparing the local bifurcation diagrams for the original and the reduced system
which, at least, reveals whether both systems belong to the same topological class.

A second reason for the necessity to compare the dynamics of the original with that
of the reduced system is that quasi-integrals are usually determined for one particular
set of parameters and therefore, the reduction procedure is technically valid for only one
point in parameter space. Thus, by systematically comparing the local bifurcations in
dependence on relevant system parameters, one can ensure that the reduced system has
truly inherited the dynamical properties of the original system in a whole parameter
range.

In this thesis, we always compare the original and the reduced systems based on their
local bifurcation diagrams.
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4. Local Bifurcations in the Hemin
System

This Chapter is devoted to a comparison between the 6-dimensional hemin system
(eq. 1.2) and its 3-dimensional approximation (eq. 3.20) that was derived in Section 3.2
using the method of quasi-integrals. We begin with a presentation of a two-parameter
bifurcation diagram which shows the global bifurcation structure of the 3-dimensional
hemin system. In the next step, we take a section along a one-parameter path in the
two-parameter plane in order to study some of the codimension one bifurcation se-
quences in detail. Finally, we show that the 6-dimensional hemin system (eq. 1.2) and
its 3-dimensional approximation (eq. 3.20) are indistinguishable based on their local
bifurcation structure.

Notice that for the presentation of the results, we shall use rescaled dimensionless
variables and parameters according to Appendix B.2. In addition, we will find several
codimension one and codimension two bifurcations in the course of the investigation. All
of them are described in Appendix A.3 and A.4 in some detail which, therefore, should
be consulted for reference.

4.1. Two-parameter continuation in k; and kg

During the experimental investigations of the hemin system [32, 33], the flow rate kg
was taken as the principal bifurcation parameter (cf. Sec. 1.1) controlling the matter
flow through the reaction system. In order to perform a two-parameter continuation,
we chose the decay rate of hemin kg as a second bifurcation parameter for two reasons:
First, its experimental value has not been precisely determined so far and second, the
mechanistic role of hemin is to prevent the unbounded production of H ions and, thus,
the hemin decay rate should be a sensible parameter. In fact, if kg is identically zero,
the ODE systems (1.2) and (3.20) become essentially 2-dimensional and no complex
dynamics is possible anymore.

Generically, as two parameters of an ODE system are varied, several codimension two
bifurcations may be encountered along branches of codimension one bifurcations. Those
bifurcations, that are relevant for the hemin system, are summarized in Appendix A.4
which should be consulted for details.

Figure 4.1 shows the two-parameter bifurcation diagram for the 3-dimensional ODE
system (3.20) where the flow rate kg and the hemin decay rate kg have been used as
continuation parameters. It basically consists of five regions: In regions 1 and 5, there
is only one stable stationary state. Coming from region 1, the stationary state loses
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Figure 4.1.: Two-parameter bifurcation diagram in the flow rate ky and the hemin decay
rate kg. Bursting oscillations are stable in region 3 which is bounded by
the period doubling curve (PD) and the saddle-node curve SN;. The dotted
line at kg = 2.5 marks the parameter path along which the codimension one
bifurcation diagram in Fig. 4.2 has been calculated. Symbols denote: SH;
- curves of subcritical Hopf bifurcations (dashed), H - curve of supercritical
Hopf bifurcations (solid), SN; - curves of saddle-node bifurcations of fixed
points (solid), PD - curve of period doubling bifurcations (dash-dot), codi-
mension two points: GH; - generalized Hopf bifurcations (open triangle),
CP - cusp (filled triangle, see also the inset).

stability via a subcritical (SHy, dashed line) or a supercritical Hopf bifurcation (H, solid
line). In the latter case this leads immediately to the emergence of stable oscillations
which remain of simple periodicity throughout region 2 while in the subcritical case
simple periodic oscillations also arise, but in a series of secondary bifurcations that will
be discussed in Section 4.2. The two branches of Hopf bifurcations meet in a codimension
two bifurcation point, the generalized Hopf bifurcation GH; at ks = 1.892 where the
first Liapunov coefficient vanishes.

As the curve of supercritical Hopf bifurcations (H) is traced towards lower values of kg,
the curve again becomes subcritical (SHy) at GHy where kg is negative. Notice that the
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4.2. Bifurcations along a one-parameter path

region where kg is negative does not have a physical significance; it is merely included
for a consistent description of the bifurcation scenario. Finally, the subcritical Hopf
bifurcation turns into a neutral saddle (where the eigenvalues fulfill A\; + Ay = 0 with
A1, A2 € R) close to the cusp singularity (CP, solid triangle). However, this does not
correspond to a bifurcation. The region in the vicinity of the cusp point is magnified
in the inset of Fig. 4.1 which shows that two branches of saddle-node points (SN; and
SN3) emanate from CP.

Bursting oscillations are stable in region 3. This region is entered through a curve of
period doubling bifurcations (PD) while it is terminated by a branch of the saddle-node
points SN;. In region 4 two saddle points coexist with one stable equilibrium which
remains the only fixed point in region 5 where it is stable. Accordingly, all trajectories
settle down to a stationary state in the regions 4 and 5.

The partition into five regions, however, only gives a first impression of the expected
dynamics of the ODE system (1.2). For example, there is a narrow band to the right
of the period doubling curve PD where a whole cascade of period doubling bifurcations
occurs as the flow rate kg is increased for a fixed value of kg. Subsequently, a folded
chaotic attractor emerges before the first periodic bursting oscillations appear in region 3.
The bifurcations occuring beyond the period doubling bifurcation PD are discussed
in Sections 6.2 and 6.3. Furthermore, it is known from the normal form theory of
codimension two bifurcations [76] that there is an additional curve bifurcating from
the generalized Hopf point GH; in Fig. 4.1 (in our case towards higher values of kg)
along which a saddle-node bifurcation of periodic orbits takes place. This bifurcation
is involved in the emergence of stable simple periodic oscillations above the generalized
Hopf point GH; where the Hopf bifurcation is subcritical. The details will be discussed
in the next Section.

4.2. Bifurcations along a one-parameter path

In order to obtain a full picture of the bifurcation sequences, we take a section along
the one-parameter path kg = 2.5 in the ko-kg plane (dotted line, Fig. 4.1) where the
stationary state disappears via a subcritical Hopf bifurcation. As in the case of the two-
parameter continuation, there are now several codimension one bifurcations of stationary
points and periodic solutions that may be encountered upon varying one parameter in
the ODE system (3.20). The relevant bifurcations are summarized in the Appendix A.3
which should be consulted for reference.

Coming from region 1 of the two-parameter plane above the generalized Hopf bifur-
cation point (cf. Fig. 4.1), the simple periodic oscillations arise in the following scenario
(inset Fig. 4.2): The stable stationary state (solid line) loses stability at ky = 1.6461
via a subcritical Hopf bifurcation (SH) giving rise to an unstable limit cycle with one
unstable dimension (one of the two Floquet multipliers is outside the unit circle). The
subcritical Hopf is followed by a saddle-node bifurcation of periodic orbits (SNP) at
ko = 1.6438 where the second multiplier also leaves the unit circle and the limit cycle
gains a second unstable dimension. In the narrow parameter interval between the SNP
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Figure 4.2.: One-parameter bifurcation diagram along the line kg = 2.5 (cf. Fig. 4.1).

The inset shows a magnification of the rectangular region where the simple
periodic oscillations (solid circles) emerge via a subcritical Hopf (inset, SH)
followed by a saddle-node bifurcation of periodic orbits (inset, open triangle,
SNP) and an (inverse) Neimark-Sacker bifurcation (inset, filled square, NS).
Between SNP and SH, the only stable attractor is a fixed point while a torus
is stable between SH and NS. Mixed-mode oscillations are observed beyond
the period doubling (PD) where the primary limit cycle (open circles) is
unstable (see text for details). The oscillatory region extends until the
saddle-node bifurcation SN; where a homoclinic bifurcation occurs (see also
Section 6.3). For the oscillatory states, the minimum and the maximum
amplitude of the oscillation are plotted.

and the SH bifurcation point, the stationary state is the only attractor since the coex-
isting limit cycle is unstable. Stable oscillations, however, arise at kg = 1.6519 by an
(inverse) Neimark-Sacker (NS) bifurcation where both multipliers simultaneously cross
the unit circle inwards. Thus, there is a stable quasi-periodic solution bifurcating to
the left of the Neimark-Sacker point (towards lower ko values) where it coexists with a
saddle point (corresponding to the dashed line in the inset of Fig. 4.2) in the parameter
interval ko € (1.6461,1.6519).

The properties of the torus solution are further discussed in Section 8.3 where we
analyze the phase flow on the torus using the slow-fast structure of the hemin system.
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0.5

Figure 4.3.: Overlay of the two-parameter bifurcation diagrams of the 3-dimensional
ODE system (3.20) (black lines) and the original 6-dimensional ODE system
(1.2) (red lines).

4.3. Comparison between the 6-d system and its 3-d
approximation

As Fig. 4.3 reveals, there is virtually no difference between the two-parameter bifurcation
diagrams of the 3-dimensional (black lines) and the original 6-dimensional hemin system
(red lines). Accordingly, the local bifurcation structure of the 6-dimensional ODE system
(1.2) is perfectly preserved by the 3-dimensional ODE system (3.20). Thus, the latter
yields a very good quantitative approximation to the original dynamics which, therefore,
will be used for a further investigation of the bursting oscillations in the second Part of
the thesis.

The two-parameter bifurcation diagram for the 6-dimensional system (1.2) was recon-
structed from 1-dimensional bifurcation diagrams taken along equally spaced sections in
the two-parameter plane where kg was varied with a stepsize of 0.1.
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5. Summary and Discussion

The first Part of the thesis is concerned with the reduction of complex (bio-)chemical re-
action networks of the form (3.22) while keeping their essential dynamical properties. We
have introduced the concept of quasi-integrals as a numerical method for systematically
finding a particular class of quasi-stationary manifolds in such networks. Subsequently,
the slow manifolds can be used to eliminate as many dynamical degrees of freedom as
there are quasi-integrals in a given reaction network. As a result, one obtains a system of
reduced dimensionality which contains only the essential dynamical degrees of freedom.

It was shown that quasi-integrals of the type (3.25) and (3.27) may arise from ratios
between certain components of the reaction rate vector R. In general, the components
of the reaction rate vector are nonlinear functions of the phase space variables describing
the kinetics of the individual reaction steps. Thus, the class of slow manifolds, that can
be detected, not only includes linear relationships among the phase space variables, but
generically also contains those which are defined by nonlinear equations.

The method of quasi-integrals is inspired by the geometrical singular perturbation
theory of Fenichel [60] (cf. Sec. 3.1) which sets the suitable mathematical framework
for the description of chemical reaction systems evolving on different time scales. In
this approach, the existence of quasi-integrals such as (3.25) and (3.27) is a sufficient
condition for the existence of a slow manifold. The major advantages of the proposed
method are that

- it does not require a priori knowledge about the relevant time scales in a system.
To the contrary, it identifies them.

- it does not rely on a sophisticated rescaling procedure in order to identify small
parameters in the system.

- it is an algorithmic procedure and therefore, it is especially suited for a straight-
forward reduction of higher dimensional networks.

In Section 3.2, we have exemplarily introduced the method of quasi-integrals using the
6-dimensional hemin system (1.2). The reaction mechanism (1.1) of the hemin system
comprises the two equilibria
2 + k57k4 _
SO +H" = HSO; (5.1)
At Ay g

and it is not too surprising that the quasi-integral, that we have found, corresponds to
one of them, namely the first equilibrium reaction in (5.1). However, this observation is
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5. Summary and Discussion

not trivial since the second equilibrium reaction in (5.1) does not define a quasi-integral.
In order to demonstrate that the method of quasi-integrals does not only detect quasi-
stationary manifolds associated with equilibrium reactions, we also applied the method
to the 10-dimensional peroxidase—oxidase reaction system (cf. Appendix B.3) which,
in contrast to the hemin system, is entirely composed of irreversible reaction steps.
Remarkably, we identified three possible quasi-integrals in the reaction mechanism of
the PO system, two of which lead to reduced systems that even quantitatively agree
quite well with the original one.

In Section 4.3, we compared the 6-dimensional ODE system (1.2) with its 3-dimensional
approximation (3.20) based on their local codimension two bifurcation diagrams. The
3-dimensional system has been obtained in Section 3.2 as a result of a QSSA using the
quasi-integral (3.5). The fact that the bifurcation diagrams for both systems are virtu-
ally identical demonstrates that the 3-dimensional ODE system has the same dynamical
properties as the original 6-dimensional ODE system (1.2) and thus, the former may be
used for a further analysis of the bursting oscillations in the second Part of the thesis.

The crucial step in identifying a quasi-integral was to define, under which conditions
the graph of a quasi-integral is to be regarded as ‘almost constant’. As we have already
noticed, there is some ambiguity in this definition and especially for higher dimensional
ODE systems, it would be of great value to have a numerical measure that allows for a
more systematic or even automatic detection of quasi-integrals. Based on some common
properties shown by all of the detected quasi-integrals, we suggest the following working
definition: A quasi-integral is a non-constant function of the phase space variables that
remains bounded almost everywhere in a stripe of adjustable thickness p around 1.
This means that outliers are only allowed in time intervals of adjustable length ¢ which
should be small as compared to typical time scales in the system such as the period of
the oscillations.

However, when deciding whether a certain ratio I;; is to be regarded as almost con-
stant, our method is quite similar to other semi-objective methods such as principal
component analysis or even singular perturbation theory. In the case of principal compo-
nent analysis, one usually has to decide how many modes to keep in order to reconstruct
the original data based on the eigenvalue spectrum of a suitable covariance matrix. But
since there is no a priori interpretation of the principal components of a given data set, a
rigorous measure, indicating how many modes to retain, is equally missing. On the other
hand, for singular perturbation theory to be valid, the singular perturbation parameter
¢ is required to be sufficiently small. However, as we have already pointed out, in prac-
tical applications € is given in terms of intrinsic system parameters and thus, has some
fixed constant value. Moreover, it may even become of order unity for some systems
without leaving the range of applicability of singular perturbation theory. Thus, for a
particular system one usually relies on numerical simulations in order to test the validity
of the approximation. Indeed, this is exactly what we have done when we compared the
original and the reduced systems based on their local bifurcations.

Future efforts should comprise tests of the method of quasi-integrals in higher dimen-
sional reaction networks in conjunction with a suitable extension and/or implementation
of our working definition of a quasi-integral.
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Part IlI.

The Origin of Bursting Behavior in
the Hemin System
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6. Dynamics and Bursting
Oscillations in the Hemin System

In this Chapter, we investigate the bifurcations leading to the emergence of bursting os-
cillations in the hemin system (1.1) and subsequently, discuss their bifurcation sequences
in terms of Farey progressions. Thereby, we continue the description of the bifurcation
diagram of the hemin system in its 3-dimensional approximation (3.20) where the sim-
ple periodic oscillations arose via a series of codimension one bifurcations involving a
subcritical Hopf bifurcation, a saddle-node bifurcation of periodic orbits and an inverse
Neimark-Sacker bifurcation (Fig. 4.2).

In the next Section, we shall introduce a coordinate system that will be more suitable
for the investigation of the bursting oscillations, since it is well adapted to the slow-
fast structure of the hemin system. In Section 6.2, we describe the formation of a
chaotic attractor that emerges subsequent to the period doubling bifurcation PD shown
in the one-parameter bifurcation diagram of Fig. 4.2. This suggests that the bursting
oscillations arising beyond the period doubling cascade are not associated with phase-
locked states on a 2-torus. Instead, we observe periodic-chaotic progressions of mixed-
mode states in Section 6.3 which are organized in pruned Farey sequences.

6.1. Change of coordinates

For convenience, we will change the notation of the variables (yi, 2, y3, y4) used in (3.20)
to (z,y, 2, s) and abbreviate the constant 29 — 29 + 29 as ¢. In the new coordinates, the
3-dimensional hemin system (3.20) reads

T = koxg—x{ko—i—kls(x,y)—i— (/{;2—i—kg(c—x—y—l—s(x,y)))}(x?—xg—i-x—s(x,y))
= —koy — key + krz(c —x —y + s(x,y)) (6.1)
2= ko(xd — 2) — ksz + key — kyz(c — 2 — y + s(z,y))

where s(z,y) stands for the slow manifold (3.19) of the 6-dimensional system (1.2) given
by

1 1 k k
s = —(x—i—y—c——)—I——\/(x+y—c+—4)2—1—4—4(x(1)—x8+x). (6.2)
2 2 ks ks

However, numerical simulations suggest to investigate the bursting oscillations in the
hemin system in a different coordiante system where the slow-fast structure of the ODE
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6. Dynamics and Bursting Oscillations in the Hemin System

system (6.1) becomes more apparent. To this purpose, we introduce the sum of y and z
as a new coordinate according to
p=y+z (6.3)

This linear coordinate transformation has the effect that one of the three equations
in (6.1) becomes linear in the new coordinate system. On the other hand, numerical
simulations show that y and z are basically anticorrelated (cf. Fig. 6.1 in the next Section)
such that the sum of them evolves on a much slower time scale than the 2-dimensional
x-y subsystem. This observation will be crucial to analyze the origin of bursting and
quasi-periodic behavior in the hemin system. In chemical terms, the sum of y and z
is nothing but the total concentration of hemin species in the system which, therefore,
might also be of physiological relevance.
Using (z,y,p) coordinates, the ODE system (6.1) is transformed into

& = kox) — x{ko + kys(z,y) + <k2 + k3(c —x —y + s(x, y))) }(Jc(l) — a9+ 2 — s(z,y))
g = —(ks+ko)y+k:(p—y)(c—z —y+s(z,y)) (6.4)
b= ko(z5§—p)—ks(p—y)

which will be the starting point for the slow-fast analysis of the hemin system in
Chapter 8.

6.2. A period doubling route to chaos

In the following, we shall describe the formation of a chaotic attractor which emerges
subsequent to the period doubling bifurcation PD in Fig. 4.2, but prior to the bursting
oscillations. Recall that the simple periodic oscillations (full circles in Fig. 4.2) were
generated by an inverse Neimark-Sacker bifurcation at ky = 1.6519. They remain stable
up to kg = 2.5169 where the first of a series of period doubling bifurcations renders the
simple oscillations unstable and creates a stable period-2 cycle (Fig. 6.1a). The next two
period doublings occur at ko = 2.5241 (Fig. 6.1b) and 2.5253 (not shown).

During the period doubling cascade, the two multipliers of the primary unstable limit
cycle (open circles in Fig. 4.2) rapidly diverge until they are separated by approximately
12 orders of magnitude, i.e. p; ~ 10° and py ~ 107%. Thus, the associated Poincaré
map exhibits a strong contraction in one and a fast expansion in the other direction
indicating the creation of a folded attractor for the subsequent chaotic states.

Figure 6.1c shows one of these states together with its Poincaré map (cf. inset). For
the Poincaré map, we plot the value of the x variable each time the y variable passes
a local minimum against the value of x at the preceeding minimum of y. As a result,
the Poincaré map exhibits a typical (asymmetric) tent map shape indicating chaotic
behavior. Indeed, the largest Liapunov exponent, characterizing the local divergence of
initially close trajectories, is found to be 0.84 at ky = 2.529. Figure 6.1d shows a nearby
chaotic state at kg = 2.53 with a Liapunov exponent of 1.12. This state differs from
the former one in that the trajectory now performs small amplitude excursions to the
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Figure 6.1.: Period doubling cascade leading to a chaotic attractor: Phase space projec-
tions of period-2 (a), period-4 (b) and two subsequent chaotic states (c),(d)
are shown. The chaotic trajectory in (c) performs only large amplitude oscil-
lations while the chaotic trajectory in (d) makes irregular excursions to the
neighborhood of the saddle point (open triangle). The associated Poincaré
map of the chaotic state in (c) is shown in the inset. It exhibits the shape
of an inverse tent map with a cuspoid tip (see text for details). The inset
in (d) shows the same chaotic state as in (d) but in a y-z projection of (6.1)
where it becomes apparent that the chaotic attractor is contained in a thin
layer in phase space.

neighborhood of the saddle point (open triangle) in an irregular fashion indicating the
upcoming bursting oscillations. The inset in Fig. 6.1d shows the same chaotic trajectory
at kg = 2.53 but in a y-z projection where it becomes self-evident that y and z are
basically anticorrelated which causes the chaotic attractor to be contained in a thin
layer in phase space; a property that also holds for the subsequent bursting oscillations.
Due to the anti-correlation between y and z, their sum y + 2z changes only slowly in time
which again suggests to introduce the sum of y and z as a new variable as we have done
in equation (6.3).
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Figure 6.2.: The 11?° bursting state (MMO) at ky = 2.545 is shown in a y-z projection
(a) and in a p-y projection (b) from which the unfolding of the bursting state
along the p direction becomes apparent. The corresponding time series is
presented in (c¢) while the dashed rectangular region in (c) is magnified in
(d) showing the small amplitude oscillations.

6.3. Bursting oscillations

Subsequent to the formation of the chaotic attractor, we observe periodic-chaotic pro-
gressions of bursting oscillations (or MMOs) which are organized into pruned Farey
sequences as described below. Note that the bursting states are not shown in the one-
parameter bifurcation diagram of Fig. 4.2 since they do not bifurcate from the primary
periodic orbit. Instead, they emerge beyond the chaotic window that follows the period
doubling bifurcation PD. This suggests that they belong to isolated bifurcation curves.
Therefore, we present some of the bursting states that were found by direct numerical
integration at the corresponding parameter values.

The first periodic bursting state is observed at ky = 2.545 where 11 large amplitude
oscillations alternate with 20 small excursions (Fig. 6.2). According to the mixed-mode
nomenclature L°, this state is denoted as 112°. Figure 6.2a shows a projection onto the
x-y plane (similar to that in Fig. 6.1). If we regard, however, the same state in the p-y
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6.3. Bursting oscillations

projection (Fig. 6.2b) using the newly introduced (z, y, p) coordinate system (cf. Sec.6.1),
the ‘unfolding’ of the bursting oscillations along the p direction becomes apparent: In
the z-y projection (Fig. 6.2a) the small amplitude oscillations are located in the right
lower corner while in Fig. 6.2b they occur along a line-like manifold at y ~ 2.1. In
Fig. 6.2c we present the time series corresponding to the pase portraits of Figs. 6.2(a,b).
The dashed rectangular region is magnified in Fig. 6.2d showing the small amplitude
oscillations.

As the flow rate ky increases from 2.545, where a 11%° state is observed, to ky =
3.778, narrow chaotic windows alternate with further periodic windows which contain
bursting states with a gradually decreasing number L of large amplitude oscillations.
This periodic-chaotic sequence approaches the window corresponding to L = 1 at kg =
3.31 where a 1'% state is stable. Within each periodic window of fixed L, we find
pruned Farey sequences of bursting states with a different number S of small amplitude
oscillations. For example, in the periodic window corresponding to the 4° states, the
following progression was numerically resolved: 417 (kg = 2.768) — 418 (ky = 2.780) —
419 (kg = 2.800) — 4%° (kg = 2.830). A complete Farey sequence would also contain
the intermediate states which are obtained by Farey arithmetic (cf. Table 1.1), e.g.
83 = 417 ¢ 418, etc.

In the transition region between two states L and L°t!' with the same number of
large amplitude oscillations, narrow chaotic windows as well as concatenated states of
the form L°L°t! are found. The latter are periodic patterns that repeat after two
revolutions while their number of small amplitude oscillations differs by one. For the
example above, the 4174'® state is observed at ko = 2.775 (Fig. 6.3) while the other two
states 418419 419420 gccur at kg = 2.795, 2.817, respectively.

The parameter window where L° states are stable becomes larger as L gets smaller.
Consequently, we also observed progressions starting with a lower number of small am-
plitude oscillations, e.g. 1'3 at kg = 3.235. At ko = 3.390, the number of small amplitude
oscillations for the 1° progression already exceeds 20, but their amplitudes are too small
to be counted. As the sequence of 1° states approaches k, = 3.778, the number of
small amplitude oscillations steadily increases while the chaotic region between two such
states becomes broader. Thus, one may suspect that within each periodic window of a
fixed number of large amplitude oscillations, L° states with arbitrary integer number S
exist though most of them occur in too narrow parameter intervals to be observed in
numerical simulations.

Subsequent to the periodic-chaotic progression of bursting oscillations, there is a fur-
ther periodic window where we observe simple periodic oscillations which are now of
relaxational type and have long periods (Fig. 6.4a). In Section 8.2 we shall show that
the hemin system undergoes a transition in the bursting mechanism at ky = 3.778 which
causes the relaxational character of the oscillations beyond the periodic-chaotic pro-
gression of bursting states. The relaxational oscillations terminate at ky = 3.858 by a
saddle-node homoclinic bifurcation (cf. Appendix A.5) where the saddle-node bifurcation
SN; (cf. Figs. 4.1 and 4.2) occurs on the formerly periodic solution (Fig. 6.4b).

This completes the discussion of the bifurcation diagram in Fig. 4.2 along the one-
parameter path at kg = 2.5 in Fig. 4.1.
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Figure 6.3.: The concatenated bursting state 4174 at ky = 2.775 in a p-y projection:
The trajectory ‘closes” after two revolutions; one consists of 4 large and 17
small, the other one of 4 large and 18 small amplitude oscillations.
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Figure 6.4.: Large relaxational oscillations at ky = 3.8 close to a homoclinic orbit (a).

The corresponding trajectory in phase space is shown in (b). SN; marks the
location where a saddle-node bifurcation (the same as in Fig. 4.2) is to occur
at kg = 3.858 on the formerly periodic solution. This yields a saddle-node
homoclinic bifurcation causing the oscillations to vanish.
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7. Slow-Fast Analysis — The
Method

Before the slow-fast structure of the hemin system will be analyzed in detail, we present
the basic ideas underlying a slow-fast analysis as it has been introduced by Rinzel and
Ermentrout |23] to describe the bursting behavior of neural systems. In such systems, the
dynamical variables evolve on different time scales similar to the reaction networks that
have been investigated in the first Part of the thesis. However, the crucial difference is
now that the time scale separation between the slow and the fast processes is not infinite
anymore.

As a consequence, one can not simply assume that the fast processes relax to a slow
manifold and henceforth instantaneously follow the slow dynamical degrees of freedom.
Instead, the fast dynamical variables must not be neglected in the dynamical description.
In fact, it is the dynamics of the slow processes that trigger certain bifurcations in the fast
subsystem. As a result, there are several attracting states in different regions of phase
space. One may then arrive at a geometrical comprehension of the dynamics since the
flow of a system exhibiting a slow-fast structure is mostly confined to the neighborhood
of the attracting states of the fast subsystem.

We shall use a cartoon of the hemin system in order to exemplarily describe its slow-
fast structure in phase space. This example should facilitate the understanding of the
bifurcation diagrams that will be presented in Chapter 8 where we analyze the slow-fast
structure of the hemin system in detail.

7.1. Cartoon of the slow-fast structure of the hemin
system

Consider Fig. 7.1 where the slow-fast structure of the 3-dimensional hemin system (6.4)
is illustrated in a cartoon using the (z,y,p) coordinate system. Here we assume that
the dynamics of the hemin system can be decomposed into a fast motion in the x and
y directions and a slow motion along the p direction. Accordingly, the dynamics of the
system should be describable in terms of an ODE system of the form

& = f(x,y,p) (7.1)
) = g(z,y,p)
p = eh(z,y,p)
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SNy

Figure 7.1.: Cartoon of the slow-fast structure of the 3-dimensional hemin system (6.4).
For each fixed value of the slow variable p, there are certain invariant states
in the fast z-y subsystem. At pg, for example, a stable limit cycle (black)
coexists with an unstable limit cycle (red) and a stable fixed point. Symbols
denote: SNP  saddle-node bifurcation of periodic orbits, SH subcritical
Hopf bifurcation, SN; saddle-node bifurcation of stationary points,

F,, — 2-dimensional space of the fast subsystem at p = py, C — cylinder-like

manifold composed of stable limit cycle solutions of the fast subsystem,

L — line-like manifold composed of stationary points of the fast subsystem.

where ¢ is a small parameter indicating that p evolves on a slower time scale than the
x-y subsystem.

For the time being, let us consider the limit € — 0 in (7.1) which corresponds to the
assumption that p is not a dynamical variable, but a parameter for the 2-dimensional fast
x-y subsystem. Then, for each fixed parameter value pg, there exist certain invariant sets
such as stationary and/or oscillatory states in the 2-dimensional fast subsystem which
is symbolically represented as the plane space [}, in Fig. 7.1. For example, at py, there
are three coexisting invariant sets: A stable limit cycle (black circle), an unstable limit
cycle (red circle) and a stable fixed point (black dot).

In the next step, the dynamical nature of p is taken into account. To this purpose, we
again consider the dynamics of the ODE system (7.1), but this time for small nonzero
e. As p slowly varies according to the third equation in (7.1), the type and stability
of the states in the fast x-y subsystem will also change. In this sense, p now acts as a
quasi-static bifurcation parameter for the fast subsystem.
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7.2. A classification scheme for bursting behavior

For example, as p moves to the left, the stable and the unstable limit cycle merge
in a saddle-node bifurcation (SNP) and disappear leaving the stable stationary (thin
black line) state as the only invariant set. On the other hand, as p moves to the right,
the unstable limit cycle shrinks and vanishes in a subcritical Hopf bifurcation (SH).
Henceforth, a large amplitude limit cycle coexists with a saddle point. Eventually, a
saddle-node bifurcation (SNy) takes place on the large amplitude limit cycle to form a
saddle-node homoclinic orbit (cf. Appendix A.5) by which the periodic solution of the
fast subsystem ceases to exist.

Now the basic assumption underlying the slow-fast analysis is that the finite time scale
separation between the fast x-y subsystem and the slow p dynamics is such that the
stationary and oscillatory states, that exist in the fast subsystem at a particular value
of p, extend along the p direction to quasi-stationary manifolds in the 3-dimensional
phase space (cf. Fig. 7.1), i.e. the stationary states become a line-like quasi-stationary
manifold (£) while the oscillatory states form a (finite) cylinder-like manifold (C) which
is terminated at one side by a saddle-node bifurcation (SNP) and at the other side by a
saddle-node homoclinic orbit.

Here the term ‘quasi-stationary’ is used in a somewhat different meaning as compared
to the first Part of the thesis where it denoted the zeroth order approximation to a slow
manifold to which the flow is confined due to an infinite time scale separation between
the fast and slow processes (see Section 2.2). Here and in the following, we shall use the
term ‘quasi-stationary manifold’ in the sense that the flow of the 3-dimensional ODE
system (7.1) is only confined to the neighborhood of the quasi-stationary manifolds. For
example, to the left of the saddle-node bifurcation (SNP), £ is the only attracting set.
Consequently, a trajectory would evolve close to £ in an oscillatory or straight manner
depending whether the eigenvalues along £ are complex or real, respectively. Similarly,
between the subcritical Hopf (SH) and the saddle-node bifurcation (SNy), the cylinder-
like manifold C is the only attracting set such that in this region of the phase space a
trajectory would perform large amplitude oscillations in the neighborhood of C.

7.2. A classification scheme for bursting behavior

We have explained how the qualitative behavior of the 3-dimensional flow (7.1) can be
understood in terms of the invariant sets of the fast x-y subsystem and their bifurcations
leading to different attracting states in the corresponding regions of the phase space.
Note, however, that the dynamics of a particular trajectory is essentially determined
by the third equation in (7.1) which describes the slow dynamics of the quasi-static
bifurcation parameter.

A systematic approach to classify the bursting behavior of systems exhibiting a slow-
fast structure has been developed by Izhikevich [24]|. By taking into account all possible
combinations of codimension one bifurcations that may occur in the fast subsystem,
different bursting mechanisms are distinguished by the kind of bifurcations that lead to
the bursting behavior. According to this classification scheme, the hemin system, as it
is shown in Fig. 7.1, is a subHopf/fold-cycle burster, since the two bifurcations, SH and
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SNP, essentially determine the bursting behavior of this system (cf. Chapter 8).
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8. The Slow-Fast Structure of the
Hemin System

This Chapter is devoted to a detailed study of the slow-fast structure of the hemin sys-
tem by which the origin of its bursting as well as its quasi-periodic behavior will be
elucidated. The basis for the slow-fast analysis will be the 3-dimensional hemin system
in the representation of (6.4) that has been introduced in Section 6.1 using (z,y, p) coor-
dinates. In this coordinate system, the slow-fast structure of the hemin system becomes
manifest since p evolves on a slower time scale than the 2-dimensional x-y subsystem.
Furthermore, numerical simulations have shown that the bursting oscillations ‘unfold’
along the p direction (cf. Fig. 6.2b) indicating that the (x,y,p) coordinate system is
especially suited for a slow-fast analysis. Notice that while in the hemin system, the
slow variable is simply given by the linear combination p = y + 2, it may be difficult to
find such a suitable variable in general.

The slow-fast analysis is performed by treating the slow variable p as a (quasi-static)
bifurcation parameter for the 2-dimensional fast subsystem

T = koxg—a:{ko+kls(a:,y)+<k2+k3(c—a:—y+s(x,y))>}(a:(f—xg—l—x—s(x,y))
y = —(ke+k)y+k:p—y)c—z—y+s(zy)) (8.1)

which is simply obtained by omitting the third equation in the 3-dimensional hemin
system (6.4)
P = —(/{0 + k‘g)p — kgy + k’oitg (82)

that describes the slow p dynamics since both, kg and kg, vary on the scale 107%s~1.

In the following, we will analyze the bifurcation structure of the ODE system (8.1)
in two steps: In Section 8.1, we fix the flow rate ky at an arbitrary value and describe
the bifurcations in the fast subsystem (8.1) leading to the bursting oscillations at this
particular value of ky. Depending on the current value of the slow variable p, we will find
different attracting states in the fast subsystem. These states extend to quasi-stationary
manifolds along the p direction and confine the trajectories of the full 3-dimensional
system (6.4) to their neighborhood.

In Section 8.2, we investigate how the quasi-stationary manifolds that exist at a par-
ticular value of ky change in dependence on ky. Therefore, ky may be regarded as an
external bifurcation parameter for the 2-dimensional subsystem (8.1). To the contrary,
the actual value of the slow variable p can not be prescribed arbitrarily. Instead it
evolves dynamically — although within a narrow range of values — according to equation
(8.2) and thus, p can be called an internal bifurcation parameter.
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8. The Slow-Fast Structure of the Hemin System

Note that the truncated ODE system (8.1) no longer depends on the hemin decay rate
ks which was used as a second bifurcation parameter in the two-parameter bifurcation
diagram in Fig. 4.1. Thus, for each fixed value of the external bifurcation parameter
ko, we obtain certain quasi-stationary manifolds in the 3-dimensional system that exist
independently of kg. However, kg determines (together with kg) the slow dynamics of
the p variable according to equation (8.2) and consequently, it influences the dynamics
of the trajectories of the full 3-dimensional system.

The last Section is devoted to a detailed study of the torus solution that has been
encountered close to the subcritical Hopf bifurcation in Fig. 4.2. We show that the
rather unusual phase flow along the torus is a result of the slow-fast structure of the
hemin system which can be analyzed in the same way as the bursting oscillations.

8.1. Slow-fast analysis at a fixed value of k

In the following, we analyze the codimension one bifurcations of the fast subsystem (8.1)
at a fixed value of the flow rate ky which we arbitrarily chose as 2.8. At this particular
value of the flow rate, we will find that the bifurcation structure of the fast subsystem
(8.1) is similar to the one described in Section 7.1 where we used a cartoon of the hemin
system to illustrate its slow-fast structure.

Figure 8.1a shows the bifurcation diagram of the fast subsystem where p has been used
as a bifurcation parameter whose range has been limited due to minimum and maximum
values obtained from prior numerical simulations. Stationary states are plotted as thin
lines while the maxima and minima of the oscillatory states are plotted as bold lines.
The stability of the states is indicated by color and line style: black solid lines denote
stable states while red dashed lines encode unstable states.

There are two branches of stable stationary states in the fast subsystem, one at y ~
2.07 and the other at y close to 1. Both of these branches become unstable via subcritical
Hopf bifurcations (SH; and SHj) while the stable oscillations emerge via saddle-node
bifurcations (SNP; and SNP;) where a stable limit cycle merges with an unstable one.

The dashed rectangular region in Fig. 8.1a is magnified in Fig. 8.1b. It shows the
bifurcations in the fast subsystem together with the 4'° bursting state (blue) at kg = 2.5
which is confined to the region in phase space where the subcritical Hopf SH; and the
saddle-node bifurcation SNP; occur in the fast subsystem. Notice that in this region of
the phase space the bifurcation structure is exactly the same as in Fig. 7.1.

The dotted line p = 0 denotes the nullcline of (8.2), i.e. it indicates in which region of
the phase space the trajectory (blue line) moves to the left (p < 0, below the nullcline)
and to the right (p > 0, above the nullcline). Note that the orbit is always confined to the
neighborhood of the invariant sets of the fast subsystem. At the present value of kg = 2.5,
it makes 4 loops close to the cylinder-like manifold (bold black solid line) before it ‘jumps’
to the line-like manifold (black thin line) where it performs 19 small oscillations. This
can be seen in Fig. 8.1c¢ which shows a magnification of the dashed rectangular region
in Fig. 8.1b. In general, a L® state wraps L times around the cylinder-like manifold and
oscillates S times along the line-like manifold. In Fig. 8.1d a 3-dimensional view of the
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Figure 8.1.: Slow-fast analysis at a fixed value of the flow rate ky = 2.8: The bifurcation
diagram of the fast subsystem (8.1) (a). The dashed rectangular region is
magnified in (b) together with the trajectory (blue line) of a 4! state at
ks = 2.5. The dashed rectangular region in (b) is magnified in (c). In (d)
a 3-dimensional view of the 4 state is shown together with a projection
onto the x-y plane. Solid and dashed bold lines denote maxima and minima
of a stable (black) and an unstable (red) limit cycle while solid and dashed
thin lines denote stable (black) and unstable (red) fixed points of the fast
subsystem.

419 state in the (z,y, p) coordinate system is visualized together with a projection onto
the -y plane which again demonstrates the unfolding of the bursting state along the p
direction.

In order to clarify how the bifurcations in the fast subsystem lead to the emergence
and disappearance of the bursting oscillations, we describe one revolution of the trajec-
tory in detail: To the left of the SNP; point in Figs. 8.1(b,c) the line-like quasi-stationary
manifold is the only attractor. Since it is entirely composed of stable stationary states
of the fast subsystem (8.1) which are foci, the trajectory performs damped oscillations
along this manifold (Fig. 8.1c). Subsequent to the subcritical Hopf point SHy, the foci
change stability and hence, the quasi-stationary manifold becomes unstable. Accord-
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8. The Slow-Fast Structure of the Hemin System

ingly, the amplitude of the oscillations increases again while the trajectory gets more
and more attracted by the invariant cylinder-like manifold that is composed of stable
limit cycle solutions of the fast subsystem. In the following the trajectory wraps around
the cylinder-like manifold while it performs large amplitude oscillations. During that
period, it spends some time above and some time below the plane defined by the nullcline
p = 0 (Fig. 8.1b). In total, however, there is an effective movement of the trajectory
towards lower p values until it passes the saddle-node bifurcation point SNP; where the
trajectory jumps back to the line-like quasi-stationary manifold to complete one cycle.
The reason for the net movement towards lower p values is the slowing down effect
that the line-like quasi-stationary manifold exerts on the part of the trajectory above
the nullcline plane. In other words, the trajectory ‘feels’ the presence of the stationary
points of the fast subsystem.

According to the classification of bursting mechanisms given in [24] (cf. Sec. 7.2), the
hemin system is a subHopf/fold-cycle burster at kg = 2.8 since the large amplitude
oscillations terminate by a fold-cycle bifurcation (SNP;) while the small oscillations
disappear via a subcritial Hopf bifurcation (SH;). As we shall show in the next Section,
there is a transition in the bursting behavior at higher values of the flow rate k.

8.2. Two-parameter continuation in p and kg

So far we have analyzed the bifurcations in the fast subsystem (8.1) at one particular
value of the external bifurcation parameter, namely at ky = 2.8. Now we investigate
how the quasi-stationary states of the fast subsystem change as kg is varied. To this
purpose, we again proceed in two steps: First, we monitor the deformation of the line-
like quasi-stationary manifold corresponding to the branch of stationary solutions of the
fast subsystem. In the second step, we also include the oscillatory states and present
a complete two-parameter bifurcation diagram of the fast subsystem using the slow
variable p and the flow rate kq as parameters.

Figure 8.2 shows how the line-like quasi-stationary manifold (blue lines) deforms as
the flow rate kg is increased from the value 2.8 (I) used in Section 8.1 via kg = 3.6 (II) to
ko = 3.8 (III). Along these curves, we find certain codimension one bifurcations which
are connected by curves obtained from a two-parameter continuation using p and kg as
parameters. For example, the curve I intersects the branches SH; and SHy (dashed red
lines) in two points where subcritical Hopf bifurcations occur. These Hopf bifurcations
are the same as those in Fig. 8.1a.

At a higher value of the flow rate (ko = 3.495) there is a Bogdanov-Takens bifurca-
tion (BT) occuring in the fast subsystem where the second branch of subcritical Hopf
bifurcations SHy terminates. As a consequence, the other two branches of stationary
states (II and III) still intersect the first subcritical Hopf bifurcation curve SHy, but no
longer SHy. Instead, the two branches IT and III cross the two saddle-node bifurcation
curves SN; and SN, that emerge at CP from a cusp singularity. Note that the location
of the first saddle-node bifurcation SN; moves towards lower p values as the flow rate kg
increases which may lead to interactions of SN; with the oscillatory states generated in

o8



8.2. Two-parameter continuation in p and kg

Figure 8.2.: The curves I, II, III show how the branch of stationary states (blue lines)
of the fast subsystem (8.1) changes as the flow rate kg is increased from 2.8
to 3.6 and 3.8. The codimension one bifurcations occuring along the curves
I, T, TIT are found at the intersection points of these curves with the two-
parameter continuation curves SH; and SN;. Symbols denote: SH; - curves
of subcritical Hopf bifurcations (dashed, red), H - curve of supercritical
Hopf bifurcations (solid, black), SN; - curves of saddle-node bifurcations of
fixed points (solid, black), codimension two points: GH; - generalized Hopf
bifurcations (open triangle), BT - Bogdanov-Takens (diamond), CP - cusp
(filled triangle).

the subcritical Hopf bifurcation SHy, but which have been omitted in Fig. 8.2 for clarity.

The complete two-parameter bifurcation structure of the fast subsystem including the
oscillatory states is summarized in Fig. 8.3 where p and ky were used as parameters.
The bifurcation lines SHy, SNy, etc. are the same as those in Fig. 8.2. In addtion, a
branch of saddle-node bifurcations of periodic orbits (SNP;) is shown which bifurcates
from the generalized Hopf bifurcation point GH; (cf. inset Fig. 8.3a). This codimension
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Figure 8.3.: Two-parameter bifurcation diagram of the fast subsystem(8.1) using the
slow variable p and the flow rate ky as parameters. If p sweeps back and
forth between region 1 and 2 crossing the SNP; curve, the dynamics of
the whole system exhibits bursting behavior. In the neighborhood of the
intersection point 3 a transition in the bursting mechanism occurs (see text
and Fig. 8.4 for details). Symbols denote: SH; - curves of subcritical Hopf
bifurcations (dashed red), H - curve of supercritical Hopf bifurcations (solid),
SN; - curves of saddle-node bifurcations of fixed points (solid), SNP; - curve
of saddle-node bifurcations of periodic orbits (dash-dot), codimension two
points: GH; - generalized Hopf bifurcations (open triangle), BT - Bogdanov-
Takens (diamond), CP - cusp (filled triangle).

two bifurcation point separates two branches of Hopf bifurcations, a supercritical (H,
solid black line) and a subcritical one (SHy, dashed red line). The second inset Fig. 8.3b
shows a magnification of the region close to the cusp bifurcation point CP where the
two branches of saddle-node bifurcations originate.

In the two-parameter bifurcation diagram Fig. 8.3, one can identify the invariant sets
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8.2. Two-parameter continuation in p and kg

of the fast subsystem at a given value of the slow variable p which, in turn, determine the
potential dynamical properties of the system. For example, region 1 corresponds to the
upper stationary state at y ~ 2.07 while in region 2 we find the cylinder-like manifold
that is composed of stable limit cycle solutions. In addition, there is a small bistable
region bounded by the two curves SNP; and SH; where a limit cycle coexists with a
stationary state (cf. Fig. 8.1c). Thus, we deduce that whenever the slow p dynamics is
such that p sweeps back and forth between region 1 and 2 in phase space while crossing
the SNP; curve, the hemin system exhibits bursting behavior as described in Section 8.1.

8.2.1. A transition in the bursting behavior

The two-parameter bifurcation diagram shown in Fig. 8.3 can also be used to identify
transitions in the bursting behavior of the hemin system. To this purpose, consider
the intersection point (p, ko) = (2.211,3.773) marked as 3. Here, the subcritical Hopf
bifurcation SH; and the saddle-node bifurcation SN; occur at the same value of p in
phase space. Thus, it becomes possible that in a neighborhood of the intersection point
the (unstable) oscillatory states emanating from the subcritical Hopf bifurcation may
interact with the branch of (unstable) states that originate in the saddle-node bifurca-
tion. In order to show that this truly leads to a transition in the bursting behavior of
the hemin system, we compare the bifurcation diagrams of the fast subsystem for two
neighboring values of the flow rate k.

Figure 8.4 shows the codimension one bifurcation diagrams of the fast subsystem for
ko = 3.6 (Fig. 8.4a) and ko = 3.8 (Fig. 8.4c), respectively. Again, the trajectories
(blue lines, calculated for kg = 2.5) are superimposed on the bifurcation diagrams. The
waveform of the oscillations is displayed in the corresponding time series (Figs. 8.4(b,d)).
The branches of stationary states (thin lines) in Figs. 8.4(a,c) are the same as the curves
IT and IIT in Fig. 8.2, but now they are supplemented by the oscillatory states (bold
lines) arising from the subcritical Hopf bifurcation SH;. At kg = 3.6, the finite cylinder-
like manifold is bounded by the saddle-node bifurcation SNP; at the left side and the
saddle-node homoclinic orbit SNHC at the right side (at p ~ 2.7) where the saddle-node
bifurcation SN; occurs on the large amplitude limit cycle.

As the flow rate kg increases from 3.6 to 3.8, the saddle-node homoclinic orbit moves
together with the two saddle-node bifurcation points SN; and SNy towards lower p
values until the first of them (SN;) collides with the unstable limit cycle (bold dashed
red line) at approximately kg ~ 3.778 (not shown), i.e. slightly above the intersection
point 3 of Fig. 8.3. Subsequent to this bifurcation, the saddle-node homoclinic orbit
has turned into a saddle homoclinic orbit (SHC) (cf. Appendix A.5 for the difference
between the two types of homoclinic orbits) while the saddle-node bifurcation SNP; has
disappeared (Fig. 8.4¢). Thus, the cylinder-like manifold (Fig. 8.4a, bold black solid
lines) does not appear anymore for ky > 3.778 and the fast subsystem becomes bistable.
Henceforth, the bursting behavior of the hemin system is of fold/subHopf type since
the upper stationary state disappears via the subcritical Hopf bifurcation SH; while the
lower stationary state undergoes a fold bifurcation at SN;. A typical trajectory basically
jumps back and forth between the two quasi-stationary states (Fig. 8.4¢) causing the
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strong relaxational character of the oscillations (Fig. 8.4d).
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8.3. The origin of quasi-periodic behavior in the
hemin system

In the preceding Sections, we have shown that the origin of the bursting behavior of
the hemin system may be well understood in terms of the invariant states of the fast
subsystem (8.1) which the trajectories closely follow during their temporal evolution. Tt
is the goal of the following investigation to show that the quasi-periodic behavior of the
hemin system has a similar origin that can be equally analyzed by a slow-fast analysis.

To this purpose, we investigate the phase flow on the 2-torus that has been observed
close to the subcritical Hopf bifurcation in Fig. 4.2 (cf. Sec. 4.2). Figure 8.5 again
shows the inset of Fig. 4.2 where the Neimark-Sacker bifurcation NS appears in con-
junction with the saddle-node bifurcation SNP and the subcritical Hopf bifurcation SH.
By analyzing the slow-fast structure of the hemin system (6.4) in the vicinity of the
Neimark-Sacker bifurcation point, we shall show that the rather unusual phase flow on
the torus is a result of the finite time scale separation in the hemin system.

8.3.1. A torus with unusual phase flow

Figure 8.6 shows how the torus deforms as the flow rate kg is decreased. In the projections
on the p-y plane (Figs. 8.6(a,b)), the numerical integration was stopped before the
trajectory made a full revolution on the torus in order to reveal a portion of the flow
along the ‘inner part’ of the torus. We observe a sharp transition from a smooth torus
shown in Fig. 8.6a at kg = 1.65189 close to the Neimark-Sacker bifurcation point in
Fig. 8.5 to a highly distorted one at ky = 1.65180 (Fig. 8.6b). The arrows indicate the
direction of phase flow along the torus.

The saddle point S that emerges after the subcritical Hopf bifurcation SH (corre-
sponding to the dashed line in Fig. 8.5) acts as an organizing center for the torus as
can be seen in Fig. 8.6b: The flow approaches the ‘outer part’ of the torus along the
2-dimensional unstable manifold of the saddle point. Then it moves to the left (i.e.
towards lower p values) until it changes direction and returns along the 1-dimensional
stable manifold of the saddle. The reason for the trajectory to change its direction can
be grasped from the slow-fast analysis of (6.4) and will be given below.

The phase flow on the 2-torus can be described as follows: If we consider a 2-torus as a
direct product of two circles with a different radius (Fig. 8.7), then the angular velocity
wy, along the circle with the larger radius is much higher than that of the circle with
the smaller radius (Fig. 8.7a). However, close to the onset of quasi-periodic behavior,
the opposite situation wg > wy, is usually encountered 9] (Fig. 8.7b). In other words,
the ‘unusual’ phase flow in Fig. 8.6 is a result of the time scale separation in the ODE
system (6.4) since the trajectory moves much faster in the z-y directions than along the
p direction.

As the flow rate kg is further decreased, the overall shape of the torus in Fig. 8.6b does
not change significantly anymore. However, the time spent by the trajectory along the
stable manifold of the saddle point S gradually increases until the torus and the saddle
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point have eventually disappeared to the left of the subcritical Hopf point (SH) where
only a stable fixed point exists (cf. Fig. 8.5).

8.3.2. Slow-fast analysis of the phase flow on the torus

Figure 8.8 shows the same projections of the phase flow on the torus as Figs. 8.6(a,c),
but this time the bifurcation diagrams of the fast subsystem (8.1) are superimposed.
The arrows indicate the direction of the flow on the torus while SNP; and SH; mark the
locations where a saddle-node bifurcation of periodic orbits and a subcritical Hopf bifur-
cation occur in the fast subsystem. Thus, the bifurcation scenario in the fast subsystem
is similar to that shown in Fig. 8.1 where we have analyzed the bursting oscillations at
ko = 2.8.

Notice how the flow closely follows the quasi-stationary states of the fast subsystem.
For example, at ky = 1.65189, the trajectory (blue line) basically sweeps back and forth
the saddle-node bifurcation point SNP; while it performs large amplitude oscillations
in the vicinity of the cylinder-like manifold (bold black line), thereby creating quasi-
periodic behavior (Fig. 8.8a). As long as the amplitude of the oscillations along the
‘inner part’ of the cylinder-like manifold is sufficiently large, the trajectory does not
‘feel’ the attractive line-like quasi-stationary manifold (thin black line) and therefore,
remains in the neighborhood of the cylinder-like manifold.

However, as the flow rate ky is decreased, the flow on the torus changes (Fig. 8.8b):
As soon as the saddle-node point SNP; is passed to the left, the trajectory is attracted
by the line-like quasi-stationary manifold. Thus, it is the saddle-node point that causes
the trajectory to change its direction. Then the orbit returns to the saddle point S along
the stable manifold of S which, apparently, is confined to a neighborhood of the line-like
quasi-stationary manifold. Subsequently, the trajectory moves along the 2-dimensional
unstable manifold of the saddle point S to approach the cylinder-like manifold where it
performs large amplitude oscillations while slowly moving to the left until the saddle-
node point SNP; is passed again and the next revolution begins.

The results shown in Fig. 8.8 suggest that the quasi-periodic behavior in the hemin
system is caused by the particular constellation of the saddle-node (SNP;) and the
subcritical Hopf bifurcation (SH;) occuring in the fast subsystem (8.1). Indeed, the
two-parameter bifurcation diagram Fig. 8.3 shows that the fast subsystem is close to
a Bautin bifurcation (cf. Appendix A.4) in Fig. 8.8. Since the curve of subcritical
Hopf bifurcations SH; always remains in the neighborhood of the curve of saddle-node
bifurcations SNP1, the two bifurcations always occur in the same region of phase space
and thus, they may potentially trap a trajectory in the quasi-periodic way as described
above for Fig. 8.8.
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Figure 8.4.: Transition in the bursting behavior from subHopf/fold-cycle at ky = 3.6
(a,b) to fold/subHopf type at ky = 3.8 (c,d). (a),(c) show codimension one
bifurcation diagrams of the fast subsystem together with trajectories (blue
lines) calculated for kg = 2.5 while (b),(d) depict the corresponding time
series. As the flow rate ko increases, the invariant cylinder-like manifold
(formed by stable limit cycles of the fast subsystem) is destroyed as the
location of the saddle-node bifurcation SN; approaches the unstable limit
cycle that is created in the subcritical Hopf bifurcation SH; (a,c). Hence-
forth, the fast subsystem is bistable (¢) and only relaxational oscillations
are observed (d). Symbols denote: SH; - subcritical Hopf bifurcation, SNP;
- saddle-node bifurcation of periodic orbits, SN; - saddle-node bifurcation of
fixed points, SHC - saddle homoclinic orbit, SNHC - saddle-node homoclinic
orbit. Solid and dashed bold lines denote maxima and minima of a stable
(black) and an unstable (red) limit cycle while solid and dashed thin lines
denote stable (black) and unstable (red) fixed points of the fast subsystem,
respectively.
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Figure 8.5.: Inset of Fig. 4.2: A torus solution bifurcates at ky = 1.6519 from the
Neimark-Sacker Point NS (black square) towards lower values of k.
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Figure 8.6.: Deformation of the 2-torus as the flow rate kg is decreased: (a),(b) represent
projections onto the p-y plane while (c),(d) depict the corresponding time
series. Close to the Neimark-Sacker point NS in Fig. 8.5, the torus looks
smooth (a). At a slightly decreased value of the flow rate, the ‘inner part’ of
the torus rapidly shrinks to a line-like manifold along which the trajectory
approaches the stable manifold of the saddle point S (b).
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Figure 8.7.: Flow on a 2-torus with different ratios of angular velocities:
wr, > wg (‘unusual’) (a) and wy, < wg (‘usual’) (b).
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Figure 8.8.: Slow-fast analysis of the phase flow on the 2-torus close to the Neimark-
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Sacker bifurcation (a) and slightly below (b) (see text for details). The
trajectories (blue) are superimposed on bifurcation diagrams of the fast
subsystem (8.1). Invariant sets of the fast subsystem: Stable/unstable limit
cycles are displayed in bold black/red lines while stable/unstable stationary
states are drawn as thin black/red lines.



9. Summary and Discussion

In the second Part of the thesis, we have studied the bursting or mixed-mode oscillations
in the 3-dimensional hemin system (6.4) where we have been particularly interested in
the elucidation of the mechanism generating the bursting oscillations.

In Chapter 6, we showed that the bursting oscillations in the hemin system arise
subsequent to the formation of a chaotic attractor that follows a period doubling cascade.
This suggests that the bursting oscillations are not associated with phase-locked states
on a 2-torus which is stable in another region of the parameter space. Instead, the MMOs
come in periodic-chaotic sequences with different levels of organization. At the top level,
the periodic windows are labeled by the number L of large amplitude oscillations which
at the same time correspond to the levels of a Farey tree. Within each periodic window
of fixed L, we observed pruned Farey sequences of L° states with a different number
S of small amplitude oscillations. Transitions between adjacent states L° and L5*!
again occur via narrow chaotic windows where periodic concatenated states of the form
LSL5*! are embedded. Similar bifurcation sequences were also observed by Hauser and
Olsen [13] in the PO system and Koper [28] in a three variable model system.

The observation that mixed-mode states L° of a gradually decreasing number L of
large amplitude oscillations alternate with narrow chaotic windows together with the fact
that a chaotic attractor was formed prior to the emergence of the first bursting state,
suggests that the bursting oscillations might actually be embedded in a chaotic attractor
similar to a scenario reported by Goryachev et. al. [31]. In this article it is argued that
the mixed-mode states are embedded in a horseshoe-type attractor. The bifurcations of
the MMOs are described on the basis of a detailed investigation of a suitable Poincaré
map from which the transformation of the system’s slow manifold into a horseshoe-type
attractor could be derived as parameters are varied. During the transformation process,
Poincaré maps are observed that are very similar to the one we calculated in Fig. 6.1c
subsequent to the period doubling bifurcation. In particular, Goryachev et. al. also
observe a tent map with almost cuspoid tip (cf. Fig. 5e in [31]).

For the hemin system, however, it remains an open task to find a Poincaré section that
is well-defined for the whole parameter range of kq values, where the bursting oscillations
are stable, which would facilitate to establish a closer link of the bursting dynamics in
the hemin system to the mechanism proposed in [31].

In Chapter 7 we introduced the basics underlying a slow-fast analysis due to Rinzel
and Ermentrout |23], and illustrated the slow-fast structure of the hemin system using
the cartoon in Fig. 7.1. In addition, we mentioned a classification scheme for bursting
mechanisms that has been elaborated by Izhikevich [24]. In this scheme, the bursting
behavior is classified by the type of bifurcations that occur in the fast subsystem and
lead to the bursting behavior.
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In Chapter 8, we decomposed the 3-dimensional ODE system (6.4) according to its
slow-fast structure into the fast subsystem (8.1) and the slow dynamics for the quasi-
static bifurcation parameter p (eq. 8.2). In the following, we analyzed the bifurcations
occuring in the fast subsystem (8.1) in dependence on the slow variable p. In general,
from such an analysis one can deduce the existence of quasi-stationary manifolds in phase
space to whose neighborhood the trajectories of the ODE system (6.4) are confined and
thus, one may arrive at a geometrical comprehension of the phase flow.

In a first step, we analyzed the slow-fast structure of the hemin system at a fixed value
of the flow rate ky. As a result, we found that certain codimension one bifurcations in
the fast subsystem are responsible for the occurence of bursting oscillations; in particular
the constellation of the saddle-node bifurcation of periodic orbits SNP; and the subcrit-
ical Hopf bifurcation SH; turned out to be essential for the generation of the bursting
oscillations (cf. Fig. 8.1). Accordingly, the bursting mechanism is of subHopf/fold-cycle
type at the chosen parameter value for the flow rate and thus, it can be arranged into
the classification scheme proposed by Izhikevich [24].

In a second step, we investigated how the stationary and oscillatory states of the fast
subsystem change under variation of the flow rate k. To this purpose, we performed a
systematic two-parameter continuation of the fast subsystem using the slow variable p
and the flow rate ko as parameters. From the resulting bifurcation diagram (Fig. 8.3),
we identified a transition in the bursting behavior of the hemin system by which it
becomes a fold /subHopf burster due to a change in the nature of the homoclinic orbit
in the fast subsystem (Figs. 8.4(a,c)). At ky = 3.6 (Fig. 8.4a), the fast subsystem has
an orbit that is homoclinic to the nonhyperbolic equilibrium at p ~ 2.7. In contrast, at
ko = 3.8 (Fig. 8.4c¢), the saddle-node homoclinic orbit SNHC has turned into the saddle
homoclinic orbit SHC which involves a hyperbolic equilibrium at p ~ 2.2.

The observation of a transition in the bursting behavior of the hemin system is a
novel result at least from a theoretical point of view, since the slow-fast structure in
other systems is, to our knowledge, mostly investigated at a particular parameter set in
order to determine the type of bursting behavior according to the classification scheme
of Izhikevich. However, such an approach prevents the detection of a transition in the
bursting behavior although such a transition can be of physiological relevance.

Finally, we found that the same constellation of codimension one bifurcations of the
fast subsystem (SNP; in conjunction with SHy), that was already identified to allow
for bursting oscillations, may equally account for quasi-periodic behavior in the hemin
system, although in a different region of the parameter space. A detailed investigation
of the phase flow on the 2-torus close to the Neimark-Sacker bifurcation in Fig. 8.5
revealed that the quasi-periodic behavior is due to the coupling of an oscillator in the
fast subsystem (8.1) (which is represented by the stable limit cycle solution) with the
p variable, but on a slow time scale. Indeed, a similar line of argument has been used
by Koper |28] to explain the origin of quasi-periodicity in a different system although a
slow-fast analysis has not been performed to support this statement. However, since tori
with a phase flow similar to the one in Fig. 8.6 have been observed in several chemical
systems |25, 26, 28], it is very likely that they share a common dynamical origin that
can be analyzed by a suitable slow-fast analysis.
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A. Dynamical Systems and
Bifurcation Theory in a Nutshell

It is the aim of the present Chapter to provide the basic ideas and concepts underlying
dynamical systems and bifurcation theory as they are necessary to understand the results
in part I and II of this work. Therefore, it should be used as a reference. For convenience,
the presentation will mostly be kept on an informal level.

We begin in Section A.1 with a brief introduction to the theory of finite dimensional
dynamical systems where the basic notions and theorems are reviewed. In particular,
the Hartman-Grobman and the stable manifold theorem will be presented as the basis
for the local analysis of the nonlinear flow near fixed points and limit cycles.

Section A.2 is devoted to the foundations of bifurcation theory. Here we introduce
the important notion of topological equivalence which defines an equivalence relation in
the space of dynamical systems and thus, allows to compare the dynamical properties
of two such systems. In addition, the center manifold theorem, parameter dependent
dynamical systems and normal forms are discussed.

In Section A.3, we review the generic local bifurcations of fixed points and limit cycles,
that can be observed as one parameter of a system is continously varied. Section A.4
describes some of the generic local two-parameter bifurcations of fixed points that are
frequently encountered in this work. We conclude this Chapter with Section A.5 where
we briefly introduce two global bifurcations that involve a homoclinic orbit to a hyper-
bolic and a nonhyperbolic equilibrium, respectively.

Our presentation mainly follows the books of Guckenheimer & Holmes |9], Kuznetsov
[76] and Jetschke |77] without particular reference.

A.1. Dynamical systems

A (finite dimensional) dynamical system consists of a (finite dimensional) state space
X and a one-parameter group of transformations (y;); on X where we have ¢t € R for
coninuous-time and t € Z for discrete-time systems. For each t, the so-called flow map

T — (),

is a diffeomorphism of the state space X transforming any initial state x into a final
state p(x) = @(t, z) (cf. Fig. A.1la).
On the other hand, if we fix some initial point xy € X then the map

o(,r9) : R— X (A.2)
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(a) (b)
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Figure A.1.: The flow of a dynamical system (a) and a particular trajectory passing
through zq (b).

describes a curve in X. The image ¢(t, ) of the map in (A.2) is called orbit, solution
curve or trajectory of the flow ¢, through the point xy (Fig. A.1b). The flow satisfies
the group properties:

po = idx
PtOPs = Pits = Ps O Py,

i.e. it yields an abelian action (in the group theoretical sense) ¢; : R(Z) x X — X of
the real (integer) numbers on the phase space X defined by (t,z) — @(x).

In the following, we shall consider dynamical systems whose flow arises from a vector
field in the sense that the flow satisfies for all x € M C R"™ and all s out of an interval
I =(a,b) CR:

d

St 2)ims = f((s,2) (A3)
where it is sufficient to think of a vector field as a map f: M C R" — R". If we use
the n-dimensional Euclidean space R" equipped with coordinates z = (z1,...,x,) as

the state space X and fix an initial condition ¢(t, zo)|t=o = x(t, 2o)|t=0 = 0, then (A.3)
becomes a system of ordinary differential equations (ODE system):

d
&xizii:fi(:ﬂla'“?mn)? xl(o):<x0)l7 izlw"an

or in short vector notation

&= f(z), x(0)=xo. (A.4)

The (local) existence and uniquness of a solution curve ¢(-,z¢) = z(-,x¢) : (a,b) —
M of the ODE system (A.4) is guaranteed provided f is, for example, C?, i.e. once
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differentiable and the derivative is continuous. However, exact solutions of the ODE
system (A.4) can be found only if the components of the vector field are linear functions
or f has certain continuous symmetries, i.e. it is equivariant with respect to a Lie group
of transformations |78, 79]. Thus, the natural question arises: What can be said about
the typical behavior of trajectories in the absence of such symmetries?

A.1.1. The geometrical approach

In the qualitative theory of dynamical systems, a geometrical viewpoint is adopted where
the properties of a dynamical system as a whole are more important than the fate of an
individual trajectory. In particular, invariant manifolds are of paramount interest since
they allow to classify the different types of long-time behavior that can be found in a
dynamical system.

In the simplest case, a trajectory settles down to a stationary state which is associated
with a singular point of the vector field f, i.e. it is a solution of the equation f(x) = 0.
If the flow map satisfies @i r(x) = ¢i(x) for some T' > 0 and for all ¢ > 0 and all =
belonging to an orbit C', this orbit is called a limit cycle and corresponds to a periodic
solution of the ODE system (A.4) with period T. These are the most simple examples of
so-called invariant sets which represent the potential long-time behavior of a dynamical
system. Thus, a good strategy for the investigation of any nonlinear dynamical system
is to locate its invariant sets beginning with the fixed points and study subsequently the
behavior of trajectories in the neighborhood of the invariant sets.

This approach is facilitated by the Hartman-Grobman and the stable manifold theorem
for fixed points both of which come in two versions; one for continuous-time and one for
discrete-time systems, i.e. iterated maps. They allow for a local reconstruction of the
phase portait (i.e. the collection of all orbits) near fixed points and limit cycles. In the
case of a 2-dimensional system, the knowledge about the local behavior is often sufficient
to reconstruct the global phase flow due to the topological restrictions in 2-dimensional
space. In fact, fixed points and limit cycles are the only (generic) invariant sets for
2-dimensional continous-time flows. To the contrary, in higher dimensional (continous-
time) systems, the long-time behavior of trajectories may become more complex and
one usually relies on numerical simulations to obtain some global information about the
corresponding phase flow. We remark that for discrete-time dynamical systems, there are
no such topological restrictions and even 1-dimensional dynamical systems may become
arbitrarily complex.

A.1.2. Invariant sets, attractors, etc.

Before the main ideas of the Hartman-Grobman and the stable manifold theorem are
discussed, we give some definitions of special sets in phase space that are relavant for
the discussion of limiting behavior.

A subset S C R" is called invariant with respect to the flow ¢, if z € S implies
pi(x) € S for all t. Fixed points and limit cycles are simple examples of invariant
sets. A closed invariant set A C R” is called attracting if trajectories being in some
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neighborhood U of A at t = 0, remain there for £ > 0 and approach the attracting set
in the limit ¢ — co. The domain of attraction of the set A consists of all orbits reaching
the neighborhood U of A in finite time, i.e. Ui<o:(U).

An attractor is an attracting set containing a dense orbit. This requirement ensures
that a typical trajectory belonging to the attractor comes arbitrary close to every point
of the attractor. Fixed points and limit cycles show rather simple limiting behavior in the
case that they are attracting. However, in higher dimensional systems (n > 3), one may
also find bounded regions in phase space containing complicately folded attracting sets
that exhibit a ‘strange’ limiting behavior in the sense that nearby trajectories belonging
to the attractor deviate (locally) exponentially fast from each other. The term ‘locally’
is important here since the attractor resides in a bounded region in phase space and
therefore, two locally diverging trajectories may again come close together after some
time. The ‘strong dependence on the initial conditions’ is a hallmark of chaotic behavior
which basically prevents any long-time forecasts in real world chaotic systems where
initial conditions are only known with finite accuracy. On the other hand, it is usually
very difficult to ‘prove’ the existence of a chaotic attractor in a given dynamical system,
in particular the existence of a dense orbit.

A.1.3. Hartman-Grobman and stable manifold theorem

In order to state the Hartman-Grobman Theorem, we assume that at least one solution
20 of the fixed point equation

flx) =0 (A.5)

has been found. Note that even this task is basically impossible for higher dimensional
systems since (A.5) is a coupled nonlinear algebraic equation system.

Next, we study the temporal evolution of small deviations from the fixed point and
set z(t) = 2° + £(t). If the deviations |¢| are sufficiently small, one may linearize the
ODE system (A.4) for the nonlinear flow around the fixed point z° by truncating the
higher order terms in |£|. As a result, the linear ODE system

is obtained which describes the temporal evolution of small deviations from the fixed
point.

The flow map ¢! of the linearized equation (A.6) can be explicitely constructed in
terms of the eigenvalues and the (generalized) eigenvectors of the (constant) Jacobian
matrix f,(2") whose entries are the first partial derivatives of the vector field evaluated
at the fixed point, i.e. (f.(2°)); = ngj_lac:J:O- A formal solution is just given by the
matrix exponential ¢ = exptf,(2°) which is a one-parameter group of transformations
mapping any initial state & to the final state £(¢, &) = @L&. Thus, the linearized flow
is globally defined for all £ € R™ and all ¢ € R which is not necessarily the case for
the flow of the nonlinear ODE system (A.4) whose existence is only guaranteed locally
and usually depends on the initial condition. The standard example is provided by the
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solution z(t) = x¢/(1 — txy) of the ODE & = x? with initial condition x(0) = x, whose
positive time solutions are only defined up to time ¢ = 1/x.

The question is now: What information about the local behavior of trajectories of the
nonlinear flow close to the fixed point 2° can be obtained from the linearized equations
(A.6)?

The answer is given by the Hartman-Grobman theorem which asserts that it is suf-
ficient to study the linearized flow near the fixed point provided the Jacobian matrix
f2(2°) has no eigenvalues with zero real part there, i.e. 2° is a hyperbolic fixed point.
In this case, one can show that there is a continuous change of coordinates taking the
orbits of the nonlinear flow to that of the linearized one while the sense of the orbits
is preserved. This property states that the nonlinear and the linear flow are topologi-
cally equivalent; a notion that we shall return to in the next Section when bifurcation
theory will be discussed. Topological equivalence is of paramount importance in the
classification of dynamical systems since it is used to define its ‘generic’ properties.

The explicit solution of the linearized ODE system A.6 can be used to classify the
type of fixed point according to the eigenvalue spectrum of the Jacobian matrix. If all
eigenvalues have a negative real part, the fixed point is asymptotically stable, i.e. all
sufficiently small perturbations decay in time and asymptotically approach the stationary
state which, in this case, is called a sink. If the Jacobian matrix possesses at least one
eigenvalue with positive real part, it is called a saddle which is unstable. In the case
that all eigenvalues have a positive real part, the fixed point is called a source. This
means that trajectories which start in the neighborhood of the source will diverge from
it exponentially fast. Note, however, that the linear stability analysis does not answer
questions of the type: What happens to the trajectory if it escaped the neighborhood
of a saddle point or a source. In order to answer such questions, one has to include
sufficient higher order terms in the Taylor expansion of the vector field in (A.6).

We now turn to the stable manifold theorem. Let Ay,... A, and Asiq,..., A, be
the eigenvalues with negative and positive real part, respectively, and denote by E*® =
spanf{vy, ..., v} and E* = span{vgy1,...,v,} the stable and unstable eigenspaces that
are spanned by the corresponding eigenvectors. The linear spaces E° and E* are sub-
spaces of R" which are invariant under the linearized flow ¢F. Moreover, according to
the stable manifold theorem, there exist local stable and unstable manifolds W} ., W}%_in
a neighborhood U (z°) of the fixed point which are locally invariant under the nonlinear
flow map ¢;. One can think of these manifolds as the nonlinear extensions of the linear
stable and unstable subspaces E* and E“, to which they are tangent at z° (Fig. A.2).
Using the nonlinear flow map, the local invariant manifolds are defined as:

Wie(2") = {z € U(2")|pe(z) € U(2") Yt = 0, pu(x) — 2 as t — oo}
(A.7)
Wi (2%) = {z € U(2°)|pu(x) € U(x”) Vt <0, p,(z) — 2° as t — —o0}.

Thus, the local stable (unstable) manifold consists of all trajectories that, once belonging
to the neighborhood U (z°) of the fixed point, remain there for all future (past) time and
approach it as time tends to infinity (minus infinity).
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T=x
y=a*—y

/

Figure A.2.: Stable (bold, black) and unstable manifolds (red) for a two-dimensional
ODE system with fixed point (z°,¢°) = (0,0).
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By applying the nonlinear flow map backward (forward) in time to the local stable
(unstable) manifold, one may define global stable and unstable manifolds (formally) as:

W (2°) = Upcopre (Wi (2%)),  W(a°) = Upsope (Wi (2°)). (A.8)

Accordingly, the global stable (unstable) manifold consists of all points which (whose
preimages) are mapped under the action of the nonlinear flow map to the local stable
(unstable) manifold in finite time and thus, approach the fixed point as time tends
to infinity (minus infinity). While the local manifolds can often be approximated by
Taylor series, their global extensions can be computed explicitly only for very simple
cases. However, the knowledge about their existence can facilitate the interpretation of
numerical simulations.

A.1.4. Periodic orbits and Poincaré maps

Having analyzed the local phase flow near the singular points of the vector field f, the
next step could be to find periodic solutions of the ODE system (A.4) and study the phase
flow near those solutions. In the case of a continuous-time system, a periodic orbit is a
closed invariant curve C' composed of points € C all of which satisfy ¢ () = @i(x)
for some 7" > 0 and for all £ > 0. The minimal 7" satisfying this condition is called the
period of the orbit. As this definition shows, one actually needs an explicit representation
of the nonlinear flow map in order to verify the periodicity condition. Thus, periodic
solutions can, in general, be found only by numerical methods such as the continuation
schemes discussed in Section B.1.

Nevertheless, much information of the local phase flow near a periodic orbit can be
gained by a similar analysis to that of fixed points in Section A.1.3. To this purpose, one
introduces the geometrical concept of a first return or Poincaré map (Fig.A.3) by taking
a n — 1 dimensional local cross section > C R” such that the periodic orbit as well as
all nearby solution curves pierce the cross section transversally, i.e. the Euclidean scalar
product (v(z), f(x)) # 0 between the vector field f and the unit normal vector field v
of the cross section vanishes nowhere on ¥. Denote the (unique) intersection point of
the periodic orbit C' with ¥ by p. Then any point ¢ € U(p) C ¥ out of a sufficiently
small neighborhood U(p) will be mapped by the nonlinear flow map to another point
P(q) = p,(q) € ¥ of the cross section where the first return time 7 = 7(¢), in general,
depends on the point q.

By this geometrical construction, the analysis of the local n-dimensional flow near
the periodic orbit is effectively reduced to that of the n — 1 dimensional Poincaré map
P : U — Y which is accessible by the Hartman-Grobman and the stable manifold
theorem for fixed points of iterated maps. In fact, the periodic orbit C will always
intersect X at the same point p which therefore is a fixed point of the Poincaré map.
Furthermore, solution curves starting sufficiently close to p will produce a sequence of
points in X which corresponds to an orbit under the iterated application of the Poincaré
map.

The Hartman-Grobman Theorem asserts that if the linearized Poincaré map P,(q)|,=p
has no eigenvalues of unit modulus, the stability of the fixed point p and that of the cor-
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Figure A.3.: Orbits, which start in the neighborhood of a periodic solutions C' of the
nonlinear flow, induce an iterated map, the Poincaré map ¢ — P(q), on the
transversal cross section X.

responding periodic orbit C'is completely determined by the eigenvalues of the linearized
Poincaré map. This is the equivalent condition for fixed points of iterated maps to be
hyperbolic. The eigenvalues of an iterated map are also called multipliers. In the case
that the n — 1 multipliers are all of modulus less than one, p and C' are asymptotically
stable, otherwise p and C' are unstable. Periodic solutions with at least one unstable
direction are called saddle-cycles.

Finally, the stable manifold theorem guarantees the existence of local stable and un-
stable manifolds W} .(p) and W} .(p) which are tangent to the corresponding linear
eigenspaces E*(p) and E“(p) of the linearized Poincaré map at p. These manifolds are
composed of trajectories that remain in a neighborhood of the periodic orbit while they
produce a sequence of intersection points on ¥ which, in the case of solutions starting
in W2 _.(p), converge to p as the number of iterations tends to infinity.

A.2. Bifurcation theory

Bifurcation Theory is concerned with ‘generic’ properties of dynamical systems. While
the qualitative theory of dynamical systems allows to characterize a particular system
according to the local stability of its invariant sets, bifurcation theory deals with the
problem whether the properties of a particular system persist under small pertubations
in which case the system is called structurally stable. This issue is of high practical
relevance since experimental systems are always subject to ‘external’ noise exerted by
the environment which results in small random perturbations to the system under inves-
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tigation. Thus, one can observe only those features of a system which are not affected
by these perturbations, i.e. its generic features.

In order to tackle the problem of structural stability, one has to compare two dynamical
systems and therefore one needs some notion of ‘closeness’ and the allowed class of ‘small
perturbations’. These ideas are made precise when we regard two n-dimensional vector
fields f and g as close (more precisely as € — C* close) if for all z € K C R" out of
some bounded region in phase space, || f — ¢ ||< € and || f. — ¢. ||< € hold, where || - ||
denotes any convenient norm in R", R™ respectively. In addition, two n-dimensional
ODE systems

@ =fx), &=g(x)

are said to be topologically equivalent if there is a continuous change of coordinates h
such that

h(gl (x)) = ¢ (h(x)),

i.e. orbits of the flow gp{ ; associated with f are continuously deformed into the corre-
sponding orbits of gpfg.

Equipped with these definitions, we can now define a nonlinear ODE system @ = f(x)
to be structurally stable if all sufficiently e — C"! close systems @ = g(x) are topologically
equivalent to & = f(z). In particular, the number and stability type of invariant sets
of the flow gp{ ; are retained under small perturbations which implies that the phase
portraits of topologically equivalent systems ‘look qualitatively the same’.

So far we have always assumed that the Jacobian matrix at a fixed point has no
eigenvalue with zero real part in which case small perturbations to the system will
produce topologically equivalent phase portraits. However, since the eigenvalues of the
Jacobian matrix depend continuously on the system parameters, it may happen that
one of the eigenvalues crosses the imaginary axis as a parameter is varied. In this case,
one can expect topologically non-equivalent phase portaits for nearby parameter values.

As an example, consider the linear two-dimensional ODE system:

T1 = a1 + 122 (A.9)

Ty = Q21T1 + Q2272

which depends on four parameters given by the entries of the 2 x 2 matrix A = (a;;).
The eigenvalues of this matrix are given by the roots of the characteristic polynomial:

M4+ AtrA+detA=0

where trA = ay1+a9 and det A = aq1a90—aj2a91. The qualitative behavior of trajectories
near the only fixed point (0, 0) is summarized in (Fig. A.4). Along the parabola (trA)* =
4det A (bold black line), the eigenvalues change from real to complex while the topological
nature of the fixed point is not altered, i.e. a sink remains a sink, whether solutions
approach it in straight lines or in spirals.

The important point to note is that in the space of linear systems of the form (A.9),
the stability type of the fixed point is completely determined by the two quantities det A
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trA
A (trA)? = 4det A
> detA
Im\ @
Re)\ °

Figure A.4.: The partition of the space of linear 2-dimensional ODE systems according
to topological equivalence. Bifurcations occur along the positive det A- and
the tr A-axis (bold, red). The small insets show the qualitative behavior of
trajectories (blue lines) near the fixed point and the corresponding position
of the eigenvalues in the complex plane.

and trA as long as the system is not located on the positive detA-axis or the trA-axis
(bold red line) where the system becomes structurally unstable due to the emergence of
eigenvalues with zero real part. A point in the det A-tr A-plane where the ODE system is
structurally unstable is called a bifurcation point and the crossing of one of the two axis
is accompanied by a qualitative change of the local phase portrait near the fixed point
for nearby parameter values. For example, when the positive detA-axis is crossed from
below, the sink turns into a source. However, the two lines along which a bifurcation
occurs, constitute a set of (Lebesque) measure zero in the det A-trA-plane. Thus, if one
generates a two-dimensional linear system by chance, it is almost surely structurally
stable which, therefore, is a generic property of such a system. We remark that the
same argumentation naturally extends to higher dimensional linear systems.

To the contrary, Smale [20, 81| has shwon that structural stability is no generic prop-
erty for higher dimensional nonlinear systems (i.e. for n > 3) and much of the complexity
in such systems arises from the nontrivial global behavior of the associated nonlinear
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Figure A.5.: Homoclinic orbits in R? (a) and R? (b).

phase flows. Of particular interest are the so-called homoclinic orbits (Fig. A.5) where
the unstable and the stable manifold of a fixed point bend in such a way that they in-
tersect along the homoclinic orbit, i.e. an orbit I" starting at x € R"™ is called homoclinic
to a fixed point 2° of the ODE system (A.4) if ;2 — 2% as t — 4-oo which implies that
L c W) N W¥(z?). In the case that 2° is a hyperbolic fixed point, one can show
that a homoclinic orbit to such a point is structurally unstable, so that one can expect
qualitatively different behavior for slightly perturbed systems (cf. Sec. A.5).

A.2.1. Center manifold theorem

We now consider the case that the ODE system (A.4) has a nonhyperbolic equilibrium
point zy in which case the Hartman-Grobman and the stable manifold theorems are
supplemented by the center manifold theorem. Therefore, we assume that the Jacobian
matrix f,(2°) has among n, and n_ eigenvalues with positive and negative real parts,
respectively, also ng eigenvalues with vanishing real part. The center manifold theorem
asserts the existence of a local ng-dimensional manifold W _(x°) that is tangent to the
linear eigenspace E¢(2°) at z° and locally invariant under the nonlinear flow. W ()
is called the center manifold and E°(x°) is spanned by the (generalized) eigenvectors
associated to the ng eigenvalues with zero real part.

The importance of the center manifold results from the fact that it contains the
essential dynamics of an ODE system near an equilibrium point no matter what the
dimension of the system is. This is a remarkable fact since, as we will later show, the
reduced flow on the center manifold for one-parameter families of dynamical systems is
generically of dimension one or two.

In order to clarify the ideas involved in the center manifold theorem, let us assume
that the original ODE system & = f(z) with x € R™ has been transformed into an
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eigenbasis of the Jacobian matrix f,(0)

i = Bu+g(u,v) (A.10)
v = Cv+h(u,v)

where we assumed without loss of generality that the fixed point has been translated to
the origin 2° = 0 and u € R™, v € R"+" "=, n = n_ + n_ + ng. The eigenvalues of the
no X ng matrix B have all zero real parts while those of the (ny +n_) x (ny +n_) matrix
C are all different from zero. The nonlinear functions g and h have Taylor expansions
starting with at least quadratic terms. The center manifold can be locally represented
as a graph of a smooth function:

We ={(u,v)|lv="V(u),V(0)=0,V,(0) =0} (A.11)

with V' : U(0) C R% — R™+* "-.

One of the most important results of the center manifold theorem is the so-called
Reduction Principle which says that the flow of the n-dimensional ODE system (A.10)
is topologically equivalent near the origin to the ODE system

u = Bu+g(u,V(u)) (A.12)
) = Cwv

where the first equation is the restriction of (A.10) to the center manifold (eq. A.11).
It describes the essential dynamics near the fixed point while the second equation in
(A.12) contains the trivial dynamics since it describes exponentially growing or decaying
solutions. However, in practical applications it is desirable to have n, = 0 in which
case the center manifold is locally attracting and truly describes the long-time behavior
of solution curves in its neighborhood. Finally, we remark that by differentiating the
defining equation for the center manifold v = V' (u) with respect to time, one can derive
the (partial) differential equation

CV () + hlu, V(w)) = Va(w) (Bu + g(u, V(1))

from which one may obtain an approximation to the center manifold in terms of a power
series expansion.

A.2.2. Parameter dependent systems and normal forms

In the last Subsection, we argued that if a n-dimensional ODE system has a nonhyper-
bolic fixed point it is sufficient to study the restriction of the n-dimensional flow to the
center manifold of the nonhyperbolic fixed point in order to determine its stability type.
In the following, we consider parameter dependent systems which are naturally used to
model experimental situations since the system of interest is usually embedded in some
form of environment or subjected to external driving forces. It is clear that hyperbolic
fixed points, though they remain hyperbolic under sufficiently small perturbations, may
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become nonhyperbolic as parameters in the system are varied; for example, consider a
path in the trA-det A-plane of Fig. A.4 which crosses the trA-axis.

To this purpose, we describe how the analysis of the previous Subsection can be
extended to parameter dependent families of ODE systems

& = f(z,a), (z,0)€R"xR" (A.13)
y = 0

where we added a trivial dynamics for the parameters a to make the center manifold
theorem applicable to such systems.

Assume that the parameter dependent ODE system (A.13) has at @ = 0 a nonhyper-
bolic fixed point at 2° = 0 with ng eigenvalues having zero real parts. For simplicity,
and because it is the most interesting case in real applications, we further assume that
all other n — ng eigenvalues have a negative real part. In an appropriate eigenbasis of
the Jacobian matrix f,(0,0), the ODE system (A.13) reads

u = B(a)u+ g(u,v, )
D(a)v + h(u,v,«), (u,v) € R% x R" " (A.14)
@ = 0, aeR”

At (u,v,) = (0,0,0) this ODE system has a ng + k-dimensional (parameter depen-
dent) center manifold W¢,(0,0) that is tangent at the origin to £°(0) x R¥. It can be
represented as the graph of a function v = V(u, @) which may be approximated by a
power series in u and «. The invariance properties of center manifolds guarantee that
any bifurcating solution near (0,0, 0) remains in one of the center manifolds for |a| be-
ing sufficiently small. Thus, the local bifurcations occuring in a family of ODE systems
can be studied by restricting (A.14) to the parameter dependent center manifold. As a
result, one obtains the topologically equivalent ODE system

= B(a)u+ g(u, V(u,a), a) (A.15)

which is now of dimension ng. In one-parameter families, ng is typically 1 or 2.

After the center manifold theorem has been applied, the linear part of the ODE system
(A.15) is already in a canonical form since the eigenvectors of the Jacobian matrix were
used as a basis for the new coordinate system. In order to study the local bifurcations of
the flow on the center manifold it is desirable to find a particular simple representative
out of the class of topologically equivalent systems which is the aim of normal form
theory. By successive near identity coordinate transformations, one tries to eliminate as
much higher order terms in (A.15) as possible up to a particular order. This procedure
guarantees that the linear part of the vector field is retained at each step, so that the
resulting (nonlinear) normal form has the same linear degeneracies as the original vector
field. Interestingly, it is the linear part of the vector that determines which higher order
terms can be removed by a suitable change of coordinates. The nonremovable terms are
called resonances.
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In a next step, one tries to show that neglecting the higher order terms beyond a
particular order does not alter the topological class of the system in which case the
obtained vector field is called a normal form or a universal unfolding for the considered
bifurcation. However, it should be mentioned that normal form theory is far from being
complete. So far, it is well developed for one- and two-parameter families of dynamical
systems where many universal unfoldings are known.

In the special case that the vector field f can be obtained as the gradient of a scalar
function V : R" — R, i.e. f(x) = grad V(z), all universal unfoldings for generic four-
parameter families are known. They are given by Thom’s famous seven elementary
‘catastrophes’ [32].

Finally, we remark that there is a center manifold theorem for fixed points in discrete-
time dynamical systems, too, which allows for a similar reduction of the flow near non-
hyperbolic limit cycles that arise as fixed points of a suitable Poincaré map.

A.3. Local bifurcations in one-parameter families

We give a survey of the bifurcations of fixed points and limit cycles that generically
occur in one-parameter families of continuous-time dynamical systems.

For each bifurcation, we present a relevant bifurcation diagram together with the
bifurcation condition and where appropriate, mention the corresponding normal form
vector field. As we have already pointed out, the normal form vector field describes the
local behavior of trajectories near a nonhyperbolic fixed point in the center manifold of
any generic n-dimensional system fulfilling the corresponding bifurcation condition. In
view of (A.14), ‘local’ means here both, in a neighborhood of the fixed point in phase
space as well as in a neighborhod of the critical parameter value where the bifurcation
occurs in parameter space. In order to be called ‘generic’, the n-dimensional vector field
has to satisfy certain non-degeneracy conditions, such as the nonvanishing of (higher
order) derivatives with respect to phase space variables and/or parameters evaluated at
the fixed point.

A general bifurcation diagram is usually composed of several bifurcations taking place
in different regions of the parameter space. Thus, the generic bifurcations described in
the following may be used as building blocks to understand the bifurcation diagrams
shown in Part I and II of this thesis. However, it should be noted that the bifurcation
diagrams presented there are not drawn with respect to canonical coordinates according
to the center manifold theorem and thus, they may appear distorted.

Finally, we make two general remarks: First, we note that the number of independent
conditions defining a bifurcation is called its codimension. It equals the number of
parameters that can be varied independently. Second, the bifurcations described in
Section A.3 and A.4 can be detected by analyzing the flow in the neighborhood of a
fixed point or a limit cycle and are, therefore, called local bifurcations.
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a) x4 b)

Figure A.6.: Generic bifurcations of equilibria in one-parameter families of ODE systems:
the saddle-node (a) and the Hopf bifurcation (b).

A.3.1. Bifurcations of equilibria

The setting is mostly the same as in Section A.2. We consider parameter dependent ODE
systems & = f(z,a) with x € R", but only 1-dimensional parameter spaces with a € R.
A solution of the fixed point equation f(z, ) = 0 is a smooth curve 2° = 2%(a) € R™*!
and the eigenvalues \;(a) of the Jacobian matrix f,(z°(«)) depend continuously on the
parameter a. Thus, as long as 2°(a) is hyperbolic it remains hyperbolic under small
parameter perturbations.

However, when a parameter exceeds a critical value, there are generically two possibil-
ities by which z°(a) may become nonhyperbolic: First, the Jacobian matrix f,(z%(a))
has a simple real zero eigenvalue \; = 0 at the critical parameter value or second,
a simple pair of complex conjugated eigenvalues approaches the imaginary axis, i.e.
A2 = Fiw, w > 0. In the former case, a saddle-node bifurcation takes place while the
latter corresponds to a Hopf bifurcation.

saddle-node bifurcation

The saddle-node bifurcation, also known as tangent or fold bifurction, describes the
appearance and disappearance of a pair of equilibrium points as a critical parameter
value is passed (Fig. A.6). The standard form of an ODE system exhibiting a saddle-
node bifurcation is given by

t=a—2°=f(r,a), (r,0) c RxR (A.16)
which satifies the two nondegeneracy conditions

f22(0,0) # 0 (A.17)
fa # 0.
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The ODE system (A.16) can be thought of as the restricted flow of a n-dimensional
system to its one-dimensional center manifold.

At o = 0, the ODE A.16 has a nonhyberbolic fixed point 2° = 0 with eigenvalue
A= f.(0,0) = 0. For a < 0, there is no solution of the fixed point equation f(x,a) =0
and hence, no fixed point while for @ > 0, there are two stationary points: a saddle
(dashed line) and a node (solid line). The arrows in Fig. A.6 show the direction of the
one-dimensional flow. Note that in higher dimensional systems with n > 2 both of the
bifurcating equilibria can be of saddle-type if the number of their unstable directions
differs by one.

Hopf bifurcation

The standard form of the Hopf bifurcation is given by the two-dimensional ODE system:

G)-ED)G)een(G) e

which has a simple pair of complex conjugate eigenvalues A1/, = +iw at (z,y,a) =
(0,0,0). For o < 0, there is only a stable focus (solid line) which becomes unstable for
a > 0 (Fig. A.6b). At the same time, a stable periodic solution emerges and coexists
with an unstable focus (dashed line). Directly at the bifurcation point, the fixed point
remains stable, but the rate of convergence is not exponentially anymore.

The Hopf bifurcation shown in Fig. A.Gb is called supercritical since the emerging
limit cycle is stable. In general, the stability of the bifurcating cycle is determined by
the first Liapunov coefficient which must not vanish for a Hopf bifurcation to occur. This
coefficient is given by a certain combination of second- and third order derivatives of the
vector field evaluated at the bifurcation point (cf. Chapter 3 in [76]). If the Liapunov
coefficient is negative, the bifurcating cycle is stable. Otherwise, the sign in front of the
nonlinear term in (A.18) is reversed from ‘—’ to ‘+’ and the new born periodic solution
is unstable and bifurcates to the left where o« < 0. In this case, the Hopf bifurcation is
called subcritical.

The existence of the limit cycle is guaranteed only for sufficiently small parameter
values in the neighborhood of the bifurcation point. What ‘sufficient’” means, depends
on the system under consideration. In particular, the nonlinear terms beyond the third
order determine the fate of the limit cycle far away from the bifurcation point.

A.3.2. Bifurcations of limit cycles

We give a survey of the three generic local bifurcations that a limit cycle may undergo as
one-parameter is continuously varied. As we pointed out earlier, the analysis of the local
changes in the phase flow near a periodic orbit can be reduced to a local analysis of the
associated Poincaré map (cf. Fig. A.3), i.e. to a discrete-time system. In order to discuss
the topological changes in the proximity of the bifurcation point, we show representative
phase portaits directly at as well as slightly above and below the bifurcation point
together with the reduced dynamics on a suitable Poincaré section (Fig. A.7). The
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Figure A.7.: Generic one-parameter bifurcations of limit cycles: saddle-node (a), period
doubling (b) and Neimark-Sacker bifurcation (c).
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definition of ‘above’ and ‘below’ the bifurcation point is somewhat arbitrary as long as
the explicit expressions for the corresponding normal form mappings are not taken into
account. However, we shall give here only a qualitative description of the corresponding
bifurcation phenomena without explicit reference to a particular normal form.

In the following, we describe the saddle-node, the period doubling and the Neimark-
Sacker bifurcation for limit cycles in a 3-dimensional phase space. Thus, the associated
Poincaré map has two multipliers that determine the stability of its fixed points and
thereby the stability of the corresponding cycles. A fixed point of the Poincaré map
becomes nonhyperbolic if one of the multipliers lies on the unit circle in the complex
plane, i.e. |u| = 1. Generically, there are three possibilities how a multiplier can cross the
unit cirle as one-parameter is varied and all possibilities lead to topologically different
scenarios.

Saddle-node bifurcation of periodic orbits (SNP)

Assume that the linearized Poincaré map has a simple multiplier y; = +1 at a = 0
while the other multiplier satisfies 0 < ps < 1, then a saddle-node bifurcation takes
place where, this time, a pair of periodic orbits is created and annihilated as « passes
through zero (Fig. A.7a). For a > 0, there are two limit cycles, a stable and an unstable
one. They merge at o = 0 and disappear for a < 0. The corresponding Poincaré maps
show a node coexisting with a saddle (« > 0), a nonhyperbolic fixed point (o = 0) and
no fixed point at all (v < 0). In phase space dimensions n > 3, both of the merging
limit cycles can also be of saddle-type if the number of their unstable directions differs
by one.

Period doubling bifurcation

Assume that the linearized Poincaré map has a simple multiplier y; = —1 at a = 0 while
the other multiplier satisfies —1 < o < 0, then a period doubling (or flip) bifurcation
takes place where a stable limit cycle, existing for a < 0, loses its stability and coexists
for « > 0 with a newly emerged stable limit cycle Cy having approximately twice the
period of the primary periodic orbit (Fig. A.7b). The associated Poincaré map P, has
one stable fixed point for a < 0 which becomes unstable for o > 0 where the period-2
cycle Oy is stable instead. On the transversal cross section, the period-2 cycle consists of
two points which are mapped into each other under the application of P,, i.e. p; = P,ps
and py = P,p;. In particular, each of the two points is a fixed point of the second iterate
of the Poincaré map, i.e. py = P2p; and p, = P2p, where P2 = P, o P,.

Neimark-Sacker bifurcation

Here we consider the case that the linearized Poincaré map has a simple pair of complex
conjugate eigenvalues pi = =% located at the unit circle (Fig. A.7c). If the multipliers
are away from strong resonances defined by e*? = 1 for k = 1,2,3,4 (cf. [9]), the
Poincaré map has a two-dimensional invariant manifold on which a closed invariant
curve bifurcates from the stable fixed point as « passes through zero while the fixed
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point becomes unstable for a« < 0. The closed invariant curve on the Poincaré section
corresponds to a 2-torus 75 of the original ODE system.

The orbit structure on the torus is basically determined by the properties of a one-
dimensional map on the invariant circle. In particular, fixed points and cycles of the
circle map correspond to periodic orbits on the torus which always come in pairs of
alternating stability. The periodic orbits emerge and disappear in pairs via saddle-node
bifurcations as one parameter is varied. Outside these parameter windows, the torus is
densely covered by a quasi-periodic orbit.

A.4. Local bifurcations in two-parameter families

We have shown that along branches of one-parameter equilibrium curves z°(a), a bifur-
cation may occur at those points (2%, a®) where a simple real or a simple pair of complex
conjugate eigenvalues of the Jacobian matrix approach the imaginary axis provided some
nondegeneracy conditions such as (A.17) are simultaneously satisfied.

Now, assume that there are two parameters in the system: 3; and 5. In this case,
codimension one bifurcations will generically occur along curves in the two-parameter
plane as long as the relevant bifurcation and nondegeneracy conditions are still fulfilled.
However, if one of these conditions is violated at some point along the codimension
one bifurcation curve, a codimension two bifurcation takes place and one may expect
topologically nonequivalent phase portraits for nearby parameter values. Thus, branches
of codimension one bifurcations originate in codimension two bifurcation points which,
therefore, act as organizing centers for the former. In fact, this is a general feature of
higher codimension bifurcation points.

In the remainder of the Section, we shall consider the following three cases leading to
topologically distinct codimension two bifurcations in ODE systems:

1. Together with a simple real eigenvalue A = 0, the first of the nondegeneracy
conditions in (A.17) (f;2(0,0) # 0) does not hold anymore in which case higher
order terms beyond the quadratic term are needed to unfold the singularity at
(0,0). Accordingly, the normal form of the fold bifurcation (A.16) is replaced by
a two-parameter family of one-dimensional ODEs exhibiting a cusp bifurcation.

2. Together with a simple real eigenvalue \; = 0, a second simple real eigenvalue
Ay = 0 also approaches the imaginary axis in which case the center manifold
becomes two-dimensional and a Bogdanov-Takens bifurcation takes place.

3. Finally, we consider the case that the first Liapunov coefficient vanishes along a
Hopf bifurcation curve in which case higher order terms beyond the third order are
needed in (A.18) to unfold the Hopf bifurcation. The corresponding codimension
two bifurcation is called a generalized Hopf or Bautin bifurcation.
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A. Dynamical Systems and Bifurcation Theory in a Nutshell

A.4.1. Cusp bifurcation

The minimal phase space dimension for a cusp bifurcation to occur is one. The corre-
sponding normal form is given by

i =0+ Pox —2° = f(z,01,0), w€R, (Br,B) € R (A.19)

The zeros of the vector field f define the equilibrium manifold

M = {(x, 51, 02) : + Bow — 2° = 0}

which is shown in Fig. A.8a. For 5 < 0, there is a curve (bold line) on M whose
projection onto the (1, 32)-plane yields the semicubic parabola

SN = {(61,52) : 465 + 27037 = 0}

along which saddle-node bifurcations take place (Fig. A.8b). The two branches of the
semicubic parabola meet in a cusp singularity at (51, 32) = (0,0). The section along
the dotted line in Fig. A.8b is shown in Fig. A.8c where the S-shaped equilibrium curve
becomes apparent which is typical for bistable systems. In the wedge-shaped region I of
Fig. A.8b, two stable and one unstable fixed point coexist while in region II there is only
one stable fixed point. Along the two branches SN; and SNy in Fig. A.8b, one stable
and one unstable fixed point disappear via a fold bifurcation.

A.4.2. Bogdanov-Takens bifurcation

Here we shall only give a qualitative description of the phase portraits near the Bogdanov-
Takens point (31, 52) = (0,0) (Fig. A.9a). There are no equlibria in region I. As region
IT is entered passing the curve SNy, a saddle and a stable node are created by a saddle-
node bifurcation. Then the node turns into a focus which does not correspond to a
bifurcation. Subsequently, the focus loses stability via a supercritical Hopf bifurcation
as region III is entered along H and a stable limit cycle emerges. As one moves inside
region IIT towards HC, the limit cycle grows until it ‘merges’ with the the saddle that
was created at SNy and hence, it becomes a homoclinic orbit by which the limit cycle
vanishes as region IV is entered. In region IV a saddle coexists with an unstable focus
which turns into a node before it disappears together with the saddle along the second
branch SN; of saddle-node bifurcations.

The transition from region 11T into region IV corresponds to a global bifurcation (cf.
Sec. A.5) which can not be detected by merely investigating the neighborhood of a
fixed point since the homoclinic orbit forms as a result of the intersection of the global
stable and unstable manifolds of the saddle-point and thus, involves global aspects of
the flow far away from the fixed point. This is a nice example how the local analysis of
higher codimension bifurcations may provide information about global bifurcations in
the system.
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A.4. Local bifurcations in two-parameter families

A.4.3. Bautin bifurcation

Similar to the Bogdanov-Takens bifurcation, we shall restrict to a qualitative discussion
of the changes in the local phase portraits as one moves around the Bautin bifurcation
point (51, B2) = (0,0) (Fig. A.9b). In region I, there is only one stable focus. It becomes
unstable as region II is entered while crossing the curve H where a stable limit cycle
emerges via a supercritical Hopf bifurcation. This limit cycle persists as region III is
entered crossing the branch SH where an additional unstable limit cycle is created inside
the first one while the unstable focus regains its stability. Both limit cycles merge along
the curve SNP in a saddle-node bifurcation (cf. A.3) leaving the stable focus as the only
attractor in region I.

The stability of the newborn limit cycles is determined by the first Liapunov coefficient.
It is negative along H where supercritical Hopf bifurcations take place while it is positive
along SH where subcritical Hopf bifurcations occur (cf. [70]).

Figure A.8.: The cusp bifurcation: M is the equilibrium manifold in the direct product
space R x R? (a). The other two images show different projections of M
onto the parameter plane (b) and the x-;-plane (¢) which is taken along the
dotted line in (b). Region I exhibits bistability (c) while in Region II there
is only one stable equilibrium. SN; denote curves along which saddle-node
bifurcations occur.
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Figure A.9.: Bogdanov-Takens (a) and Bautin bifurcation (b). Symbols denote: H
supercritical Hopf bifurcation, SH — subcritical Hopf bifurcation, SN; —
saddle-node bifurcation of fixed point, SNP — saddle-node bifurcation of
periodic orbits, HC — saddle homoclinic bifurcation.

A.5. Global bifurcations

So far we have considered bifurcations that can be detected by a local analysis, i.e. by
studying the linearized flow in the neighborhood of a fixed point (eq. A.6) or a limit
cycle. In contrast, global bifurcations are often associated with homoclinic orbits and
thus, involve the global behavior of stable and unstable manifolds of fixed points and
limit cycles which, in general, can not be investigated by a local analysis. Note, however,
that we have already encountered an example where the local analysis of a codimension
two bifurcation (the Bogdanov-Takens bifurcation in Section A.4) led to the prediction
of a global bifurcation.

In the remainder of this Section, we shall discuss two global one-parameter bifurca-
tions: the saddle homoclinic bifurcation and the saddle-node homoclinic bifurcation.
While the former involves a homoclinic orbit to a hyperbolic fixed point, the latter one
is associated with a nonhyperbolic fixed point. The minimal phase space dimension for
both bifurcations to occur is two.

A.5.1. Saddle homoclinic bifurcation

The saddle homoclinic bifurcation is completely characterized by the Andronov-Leontovich
theorem (cf. |76]). Here, one considers a 2-dimensional ODE system of the form:

= f(r,a), reR*acR (A.20)

94



A.5. Global bifurcations

a>0 a=0 a<0

.

P N v N S

Figure A.10.: Saddle homoclinic bifurcation (a) and saddle-node homoclinic bifurcation
(b): Both are global bifurcations that involve a homoclinic orbit T" to a
hyperbolic (a) or a nonhyperbolic fixed point (b) while periodic orbits C'
exist for nearby parameter values. N and S denote a node and a saddle
equilibrium point, respectively.

which at @ = 0 has a saddle equilibrium S at 2° = 0 with nonvanishing eigenvalues
A1(0) < 0 < A2(0). In addition, the existence of a homoclinic orbit I" (as in Fig. A.10a for
(v = 0)) has to be assumed. So the theorem does not prove the existence of a homoclinic
orbit. It ‘merely’ describes what happens to this orbit under small perturbations.

First of all, it is clear that the homoclinic orbit I' in Fig. A.10a is not a structurally
stable object since one part of the saddle’s unstable manifold has to bend in such a way
that it exactly coincides with one part of its stable manifold. However, the interesting
result of the Andronov-Leontovich theorem is the forecast about the existence of a
periodic orbit C' for certain perturbations of the homoclinic orbit which is schematically
represented in Fig. A.10a for a < 0. If the perturbation is applied in the other direction
(a > 0), the homoclinic orbit simply disappears. The stability of the cycle C' in the case
a < 0 is determined by the so-called saddle quantity o = A;(0) + A2(0). If 0 < 0 the
cycle is stable and vice versa.

A frequently observed scenario is the following (see the Bogdanov-Takens bifurcation
in Section A.4): A limit cycle is born in a Hopf bifurcation and coexists with a saddle
equilibrium which is already present. As the bifurcation parameter increases from the
Hopf bifurcation value, the limit cycle grows in magnitude until it merges with the saddle
equilibrium in a homoclinic orbit and henceforth vanishes.
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A.5.2. Saddle-node homoclinic bifurcation

The saddle-node homoclinic bifurcation (also known as saddle-loop homoclinic or saddle-
node on invariant circle bifurcation) actually involves two events: A local saddle-node
bifurcation and the sudden appearance of a stable limit cycle solution after the two
equilibria have disappeared. The novel feature of this bifurcation is that the saddle-
node bifurcation occurs directly on the limit cycle (Fig. A.10b).

At a < 0, a saddle S and a node N are located on an invariant circle which is formed
by the two fixed points and the unstable manifold of the saddle which coincides with
the one part of the stable manifold of the node. At a = 0, the saddle and the node
merge in a saddle-node bifurcation leaving a nonhyperbolic fixed point together with a
homoclinic orbit I'. The union of these two sets now constitutes the invariant circle.
Small perturbations towards o > 0 cause the homoclinic orbit and the nonhyperbolic
fixed point to vanish, but leave the stable limit cycle C' instead.
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B. Investigation Methods and
Parameter Settings

The numerical simulations for the hemin and the PO system in Appendix C were per-
formed with the freely available software package XPPAUT [83]. Due to the stiffness
of the corresponding ODE systems, the ‘STIFF’ integration routine [33, 84] was chosen
with a tolerance of 10™° to ensure numerical stability. For the computation of the one
and two-parameter bifurcation diagrams, we used the continuation routines of AUTO
which are integrated in the XPPAUT environment as well as two other freely available
continuation packages: Content [85] and MatCont [86]. While the AUTO routines are
very robust and reliable for the computation of codimension one bifurcations, the other
two packages have some advantages for the computation of codimension two bifurcation
points since they make use of symbolic algebra packages to compute analytical expres-
sions for the derivatives of the vector field on the right hand side of an ODE system
up to the fourth order. The higher order derivatives are required for the detection of
certain codimension two bifurcation points such as the generalized Hopf bifurcation |70]
and the computation of normal form coefficients. In addition, Content and MatCont
allow for an easy monitoring of eigenvalues and multipliers along branches of stationary
and oscillatory solutions, respectively.

In the next Section, we shortly introduce the method of numerical continuation which
was frequently used throughout this work to obtain most of the presented bifurcation
diagrams. The Chapter is concluded by two short Sections containing the necessary
technical details to set up the numerical simulations for the hemin and the PO system.

B.1. The method of numerical continuation

We shall give a rather informal introduction to the basic concepts underlying the method
of numerical continuation. A more elaborate presentation can be found in Chapter 10
of the textbook by Kuznetsov [76|. Many of the examples given there can be directly
implemented as algorithms.

The numerical continuation method is a tool for studying the parameter dependence of
invariant sets of a dynamical system as well as their bifurcations. As a result, a bifurca-
tion diagram is obtained showing the possible asymptotic behavior of typical trajectories
in the parameter regions of interest. The mathematical basis for the numerical contin-
uation methods is bifurcation theory (see Appendix A). It is frequently utilized where
analytical computations fail or are too intricate, i.e. basically in all cases of practical
relevance.
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B. Investigation Methods and Parameter Settings

In the following, we consider a parameter dependent family of ODE systems
t=f(r,0) e MCR", ac NCR?* f:MxN —R" (B.1)

where, for convenience, we assume that the parameter space is at most two-dimensional.
However, this is not a severe restriction because the bifurcation theory for families of
ODE systems involving more than two parameters is only poorly developed. So, from
theoretical grounds, it is not clear what typical dynamical changes are to be expected
under such circumstances which clearly hampers, for example, the interpretation of
experimental results.

The numerical continuation is started from a known or at least approximately known
invariant set at a particular point in parameter space. The most commonly used starting
point is a stationary state, but in some cases may also be a limit cycle or a homoclinic
orbit of the ODE system (B.1). Therefore, one has to compute these sets either analyt-
ically or numerically. For example, the fixed points of the ODE system are associated
with the singular points of the vector field f; the latter are solutions of the (generally
nonlinear) algebraic equation system:

flz,a) =0 (B.2)

for which solutions 2°(«) are rarely found explicitly.

The first strategy to locate at least one of the stable fixed points of an ODE system
consists in a straightforward numerical integration of the equations (B.1). To this pur-
pose, one has to choose the initial condition such that the ODE system (B.1) has a fixed
point at the corresponding parameter value and the initial point belongs to the basin of
attraction of the desired fixed point. A second strategy would be to use some form of
the Newton iteration scheme, i.e.

20 = O 1Oy (@) i =0,1,... (B.3)

€T

which converges to the desired fixed point provided the iteration is started close enough
to that point and the Jacobian f, has no zero eigenvalue there, i.e. the fixed point is
hyperbolic.

The location of limit cycle solutions of the ODE system (B.1) is a more intricate
task. If the cycle has no unstable direction, it can be equally found by a straightforward
numerical integration provided the parameter and the initial point are chosen appro-
priately. Otherwise, one relies again on iteration schemes which now are formulated as
boundary value problems due to the periodicity of the desired solution. In addition,
one has to provide a phase condition to single out a particular periodic solution. This
becomes necessary due to the phase invariance of a limit cycle, i.e. every phase-shifted
solution is again a periodic solution with the same period.

The most difficult task, however, is to begin the numerical continuation from a ho-
moclinic orbit since it is usually known only approximately; for example in terms of a
nearby located limit cycle having a very long period (cf. Sec. A.5). Another possibility
is to start a homoclinic continuation from a codimension two bifurcation point such as
a Bogdanov-Takens point (cf. Sec. A.4).
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Finally, we discuss a typical continuation strategy starting from a stationary state as it
was done throughout this thesis. First, we note that the equation system (B.2) consists
of n equations for the n+1 variables (z, a) € R" xR, thus defining generically (i.e. under
some regularity conditions for the vector field f) a smooth curve x°(a) in R"*! which
describes the dependence of the equilibrium state on the parameter. Beginning with the
starting point, the continuation program uses a predictor-corrector algorithm to locate
the next point along the curve 2°(a) and determines its local stability by examining the
eigenvalues of the Jacobian matrix. In addition, certain test functions are used to check
the occurence of a particular bifurcation (see Chapter 10 in [76] for details).

From Section A.3 we already know that there are only two generic bifurcations that
can be encountered along an equilibrium curve: a saddle-node and a Hopf bifurcation.
There are now several possibilities for a further investigation.

If a saddle-node is found, one may simply continue the equilibrium branch or start a
new continuation from the saddle-node point using a second parameter of the system.
The latter procedure yields a curve in the two-parameter plane along which saddle-node
bifurcations occur. Generically, this saddle-node curve meets with a second saddle-node
curve in a cusp singularity which is a codimension two bifurcation point.

If, on the other hand, a Hopf bifurcation is encountered along the primary equilibrium
curve, one may equally continue this curve (which then consists of unstable equilibrium
points after the Hopf bifurcation) or switch to the new branch of periodic solutions
which emanates from the Hopf bifurcation point. In the course of traversing the pe-
riodic branch, one may now observe three generic bifurcations: The saddle-node, the
period doubling and the torus or Neimark-Sacker bifurcation (cf. Sec. A.3). All of these
codimension one bifurcations may be continued in a second parameter of the system
which leads to a refined partition of the two-parameter plane into regions where differ-
ent types of complex oscillatory behavior is present.

In addition, one may encounter other codimension two bifurcation points along two-
parameter bifurcation curves such as the generalized Hopf or Bautin bifurcation when
traversing a branch of Hopf bifurcations. Similarly, on a branch of saddle-node bifurca-
tions of fixed points, a Bogdanov-Takens bifurcation may occur (for details see Sec. A.4).

B.2. Parameters and settings in the hemin system

The rate constants that were used for the simulations of the ODE system (1.2) and all
its derived versions are listed in Table B.1. The variables x4, ..., xs were rescaled such
that the maximal amplitude of the new variables becomes of order unity. In particular,
we set

o) =10"-M"tx 2y =10"-M"'a,
why =10 M ' 2y ab=10"- M 25 (B.4)
2y =10" M~y ap =10 M xg.

The method of numerical continuation (see Sec. B.1) was used for the hemin system
to compare the original as well as the reduced ODE system according to their local
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Table B.1.: Rate constants (at 25°C) and inflow stream concentrations used for the nu-
merical investigations of the hemin system. The flow rate ky was varied
between 1-107%s71 and 4.5 - 1074571,

Fy=02M1t st [ ky=15 M1t 57t | k3 =85-10° M~%. 571 ky = 1000 s~!

ks = 1010 M=t 71 ke = 0.011 s~1 ky=25-10" M1 s7! | kg =1.9-10"* s71

| a)=0025M | af=00456M | 29=22-10"M | 2l=3-10"M

bifurcations. Continuation calculations were always started from a stable fixed point,
which we obtained by direct numerical integration of the corresponding ODE system.
The parameter region, where the stable fixed point is reached, has to be tested in several
runs. We found ko = 1-107%s™! to be a suitable starting value.

The two principal bifurcation parameters in the hemin system are the flow rate ky and
the decay rate kg of hemin which are both simple rate constants having the dimension
s~ Their order of magnitude is 10~*. Thus, whenever we present numerical values
of any of the two parameters, they are to be understood in units of 107* - s7!. For
example, in the ODE system (3.20), we found a subcritical Hopf bifurcation at (ko, ks) =
(1.6461-107%s71,2.5-107*s71) which due to our convention would simply be denoted as

B.3. Parameters and settings in the PO system

For the numerical simulations of the PO system, we used the BFSO model proposed
by Bronnikova et. al. [37]. The underlying reaction mechanism, the components of
the reaction rate vector R as well as the numerical values of the corresponding rate
constants are listed in Table B.2. Per"t denotes the different oxidation states of the
enzyme peroxidase while col, coll and colIl are synonyms for Per®™, Per®™ and Per®",
respectively.

In order to obtain a quantitative picture of the asymptotic states in the PO system,
we computed bifurcation diagrams by direct numerical integration of the ODE system
(C.1) in dependence on the inflow rate kjo of NADH in the parameter range ki, =
1.1-10""Ms™'...1.345-10""Ms~!. For each parameter value, we discarded a transient
of 35000 time steps and recorded the successive maxima of the peroxidase compound II1
(collI) concentration over the next 15000 time steps. The run for the first parameter
value of each simulation was always started from fixed initial conditions. For subsequent
runs of the same simulation. but for other parameter values, the final concentrations of
the preceding run were used as new initial conditions. By this procedure, it is possible
to monitor the changes in the asymptotic states as a parameter is almost continuously
varied provided the parameter step size is suitably adapted. For the computation of
Fig. C.2, we used a step size of 1073.
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B.3. Parameters and settings in the PO system

Table B.2.: Detailed (BFSO) model of the peroxidase-oxidase reaction [37] ¢

reaction R; rate con-
stants k;

(1) NADH + Oy + H* — NAD* + HyO, ki[NADH][0s] 3.0°
(2) HyOy + Per®™ — col + H,O ko[HoOs)[Per3t]  1.8-107°
(3) col + NADH — colI + NAD- kslcol|[NADH]  4.0-10*°
(4) coll + NADH — Per®" + NAD- k4[coll] [NADH] 2.6-10%°%
(5) NAD" + Oy — NAD* + 05 ksINAD[O)] 201070
(6) O3 + Per®t — colIl ke|O5 |[Per3T] 1.7-107°
(7) 20; + 2H+ — H202 + 02 k‘7[0 ] 5.0 - 106 b
(8) colIl + NAD* — col + NAD* kg[col IT][NAD"] 1.35-108°
(9) 2NAD* —s NAD, ko[ N AD-]? 5.6-107°
(10) Per®* + NAD* — Per*t + NAD™ kyo[Per3T|[NAD] 1.8-10%°
(11) Per** + Oy — colII ky1[Per®t][O,) 1.0-105°
(12) — NADH k1o variable ¢
(13) Oz(gas) — Os(liquid) k13[O02]eq d6.() - 1073
(—13) Oy(liquid) — Oo(gas) k_13]04] 6.0-1073 4

@ Rate constants are taken from [I13]. °® In M~'s™'. ¢ between 1.1 - 1077 and
1.345 - 1077 Ms™'. ¢ In s7'. ¢ The value of [Og)eq is 1.2 - 107> M. f The concen-
trations of HT are taken to be constant and absorbed into the rate constants k;, since
the reaction system runs in a buffer solution at pH 6.3

For the interpretation of the resulting bifurcation diagrams, one has to keep in mind
that they are topologically equivalent to a Poincaré map where the cutting section in the
extended ‘phase space’ (which is the usual phase space of concentrations augmented by 1
dimension for the time direction) corresponds to the time points at which the trajectory
of one of the phase space variables (in our case colll) exhibits a maximum. Thus, limit
cycles manifest themselves as fixed points, period-2 cycles as period-2 points, tori as
closed invariant loops, etc.
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C. Quasi-Integrals in the Peroxidase
— Oxidase System

In Part I of the thesis, we have introduced the method of quasi-integrals as an algorithmic
procedure which can be applied in a straightforward manner to any kind of reaction
network modeled by ODE systems of the form (3.21). The method was exemplified with
the hemin system where we have found one quasi-integral. However, the existence of
this quasi-integral is not too surprising since it is associated with one of the reversible
reaction steps in the reaction mechanism (1.1), namely with

ks.ka
SO + H* &' HSO;.

On the other hand, the existence of the aforementioned quasi-integral is not trivial since
the second equilibrium reaction in (1.1)

AT A4t

does not define a quasi-stationary manifold.

In order to demonstrate the fairly wide applicability of the method of quasi-integrals,
we additionally investigate the reaction mechanism of the peroxidase — oxidase (PO)
system which, in contrast to the hemin system, is entirely composed of irreversible reac-
tion steps. Nevertheless, we shall identify three possible candidates for quasi-stationary
manifolds. While two of them lead to reduced systems whose dynamics is in acceptable
quantitative agreement with the original system, the third candidate poses an example
where the dynamics of the reduced system shows only the qualitative features of the
original system.

The PO reaction is the prototypical example of an oscillatory enzyme system (for a
review see [88]). Considerable experimental efforts have been devoted to identify the
individual reaction steps taking part in this reaction system [39]. In parallel, a series
of theoretical investigations aimed at reproducing the observed type of dynamics in
numerical simulations [90)].

The starting point of our analysis is a reaction mechanism proposed by Bronnikova,
Fed’kina, Schaffer and Olsen |87] (Table B.2) which shows periodic mixed-mode oscil-
lations as well as (homoclinic) chaos |13, 27]. It comprises 14 irreversible reaction steps
and involves 10 species. By assuming mass-action kinetics, one can derive the following
10-dimensional ODE system:
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C. Quasi-Integrals in the Peroxidase Oxidase System

1:1 = /{ZQI4I10 — ]{331’1.%'6 + ]{381’31'5 (Cl)
Ty = kzriwe — kywoTs

Ty = —kgx3xs + k112729 4 K310

ZL’.4 = ]{51376567 + k7$§ — k2x4m10

x:5 = kgilﬁlxﬁ + k4x2:1:6 — k5$5£€7 — ]{8$3$5 — 2/€95E§ — k10x5x10

Te = —kixewy — k3106 — kywoze + k1o

L7 = —kixerr — kswsar + kral — knarre — k_i3wr + ki3[Os]eq

ilfg = k’5l’5l‘7 — 2]{771'% — k’ﬁ[lfg[ﬂlo

Tg = kioTsT10 — k112709

Tio = —kewaTio + kaTowe — kexgr10 — K10T5T10-

The parameter values for the simulations as well as the oxygen concentration [Og]eq
at equilibrium between the gas/liquid phase are taken from [13] (cf. Table B.2). We
used zero initial values for all species except for 2, which was set to the total enzyme
concentration of 1.5 - 107°M. ;5 (corresponding to the inflow rate of NADH) was
used as a bifurcation parameter ranging between 1.1-10""Ms™" and 1.345 - 10~ "Ms ™.
The correspondence between phase space variables x; ... x19 and chemical species is as
follows: a1 «» Per®" (or co 1), 25 «» Per®t (or co 11) , x5 +» Per® (or co 111), 24 + HyO,,
x5 <> NAD', x5 «<» NADH, 27 < O, 23 < O3, 29 < Per?™ and 219 < Per®t. The
notation Per"" stands for the different oxidation states of the enzyme peroxidase.

As in the case of the hemin system, we must take care that the chemical constraints,
which are expressed by a non-maximal rank of the stoichiometric matrix, are properly
taken into account, before the method of quasi-integrals is applied. For the PO system,
the rank of the stoichiometric matrix associated with the ODE system (C.1) is 9. The
consequential linear relationship between some of the chemical species can be taken as:

0
X9 = Tig — L10 — X3 — X1 — T2, (02)

which simply expresses the conservation of the total amount of enzyme peroxidase in
time. Note that the reduction from 10 to 9 dimensions does not lead to any information
loss due to (C.2) being an exact conservation relation. Therefore, we shall treat the 9-
and 10-dimensional systems on an equal footing in the following.
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Figure C.1.: Quasi-integrals in the peroxidase—oxidase system. There are three possible
candidates for quasi-stationary manifolds given by I197 (a), I5¢7 (b) and I34
(¢). Iz (d) shows that it is sometimes not enough to balance only two
reaction steps in order to find a quasi-integral: Compare with I97 (a)

In the PO system, there are three candidates for quasi-integrals which are shown in
Figs. C.la-c (cf. Table B.2 for the definition of the R;):

Rl + R7 ]{71[E6J]7 + /{37[E52;
o= —— ~1 ~N—_—— C.3
2 Ry oo kom0 ( )
R 5 kg \/25 ks 1 ks
[sgr = ——— ~1 ~——— (= 24 -0
W= Regom, LT s Ty mot g ae) b s
R k
134:R—3N1 — .Cl?gNk—g.Tl.
4 4

We remark that the first two quasi-integrals in (C.3) are of the form (3.27) (both sides
multiplied by —1), where we had to balance three terms in order to obtain approximately
constant functions. In particular, Fig. C.1d shows that it is not enough to balance only
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C. Quasi-Integrals in the Peroxidase Oxidase System

R, with R, because there are time intervals where 15 shows large deviations from the
constant value 1.

The attractivity of the quasi-stationary manifolds in (C.3) is evident by direct calcu-
lation of the corresponding Jacobian matrices, and the application of the QSSA for x4,
xg and x4 yields successively a 8-,7- and finally the following 6-dimensional ODE system:

.1:1 = k1x6x7 + k7l‘§ — k3x1x6 + kgl'gﬂ?g) (04)
T3 = keri0Ts — kswsT3 + k1179

(L’.5 = 2]€3I1.T6 — k‘5l’5l‘7 — ]{58[['35135 — 2]%'91]% — k10I5$10

ilfﬁ = —]{1$6$7 — 2k3$1$6 + k)lg

T7 = —kixexrr — kswswr + kﬂg — kiiwrrg — ko137 + k13[O2]eq

rio = —kiwerr — k7x§ + ksw126 — kew10m8 — k1075210

where xg = xg(x5, x7,710) in (C.4) is given as a function of x5, x7 and z1¢ according to
the second equation in (C.3).

Let us now address the most prominent dynamical changes that have been observed
during the successive reduction from a 10-variable to a 6-variable reaction mechanism. To
this purpose, we compare the dynamics of the reduced systems with that of the original
one by calculating Poincaré maps of successive maxima of the colll concentration as the
NADH inflow rate kj5 is continuously varied (cf. Sec. B.3). This procedure yields local
bifurcation diagrams which resemble those calculated in [27] due to a similar choice of
parameter sets.

Figure C.2a shows the bifurcation scenario in the 10/9-dimensional system as it has
already been investigated in [13]. Of particular interest are the mixed mode states L°.
(The notation L* denotes a periodic oscillatory state where one period consists of L large
and S small amplitude oscillations.) The mixed mode states as well as the alternating
periodic and chaotic windows are clearly preserved throughout the reduction procedure.
The bifurcation scenarios for the reduced 8- and 7-dimensional systems (Figs. C.2b,c)
even show a quantitative agreement with that of the original 10/9-dimensional system
(Fig. C.2a).

It is only for the 6-dimensional system that we find quantitative deviations from the
original dynamical behavior, since we observe a shift in the parameter space where the
first chaotic and the subsequent mixed-mode states appear (Fig. C.2d). Moreover, the
order of the MMOs is changed which might be caused by an increased resolution of the
periodic windows between two chaotic states. In the 6-dimensional system, the periodic
windows also contain Farey progressions of 19 states with S > 1 which are either absent
in the 10/9-, 8- and 7-dimensional systems or occur in too narrow parameter intervals
to be resolved numerically.

The reason for the quantitative deviations of the 6-dimensional system from the orig-
inal dynamical behaviour may be found in the temporarily large deviations (up to 30%)
of the function I34 in Fig. C.1c from the constant value 1. In contrast, the quasi-integrals
Ls7 and I5¢; exhibit only small fluctuations around 1 of at most 10% (cf. Figs. C.1a,b).
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Figure C.2.: Bifurcation diagrams showing the maxima of peroxidase compound III
(colIT) concentration as the NADH inflow rate ko is varied: the original
10-/9-dimensional system (a), the 8-dimensional system (using I197 ~ 1)
(b), the 7-dimensional system (using Is¢; ~ 1) (¢) and the 6-dimensional
system (using I34 ~ 1) (d). The mixed-mode states as well as the alter-
nating periodic and chaotic windows appear in all of the reduced systems
(b,c,d), but at slightly different parameter values (d). The 6-dimensional
reduced system exhibits Farey sequences of 1° states with S = 1,2,3,4 (d).
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Deutsche Zusammenfassung

Die vorliegende Arbeit ist in der Theorie dynamischer Systeme angesiedelt. Sie befasst
sich einerseits mit der Modellreduktion komplexer (bio-)chemischer Reaktionsnetzwerke,
wobei die wesentlichen dynamischen Eigenschaften der urspriinglichen Systeme weitest-
gehend erhalten werden sollen und andererseits mit einer Untersuchung iiber den Ur-
sprung burstartiger Oszillationen im Hamin-Wasserstoffperoxid-Sulfit-Reaktionssystem
(Hamin-System). Das Hamin-System ist ein so genanntes minimales Ein-Enzym-Modell-
System, das nur aus einem Enzym-Modellkomplex (Hdmin) und seinen Substraten be-
steht. Es gehort zu einer Familie von pH Oszillatoren, die periodische Anderungen des
pH Wertes in ihrer Umgebung hervorrufen kénnen, was im Weiteren zur Anderung phy-
siologischer Parameter wie der Permeabilitdt von Membranen oder der Aktivitdt anderer
Enzyme fiihren kann. Somit besitzt das Hadmin-System als pH Oszillator eine gewisse
biologische Bedeutung, insbesondere da der Enzym-Modellkomplex Hamin in dhnlicher
Form in vielen natiirlich vorkommenden Enzymen vorhanden ist.

Neben einfachen periodischen Oszillationen wurden im Hamin-System experimentell
auch sogenannte burstartige Oszillationen beobachtet. Letztere sind periodische Zyklen,
innerhalb derer einer gewissen Anzahl an Oszillationen grofer Amplitude, eine im Allge-
meinen davon verschiedene Anzahl an Oszillationen kleinerer Amplitude folgen. Wegen
ihrer typischen Wellenform mit abwechselnd grofen und kleinen Amplituden jeweils un-
terschiedlicher Frequenz werden sie oft mit Signaliibertragungsvorgéngen in zelluldren
Netzwerken in Verbindung gebracht und besitzen deshalb potentiell eine gewisse physio-
logische Bedeutung.

Entsprechend ihrer thematischen Ausrichtung, ist die vorliegende Arbeit in zwei Teile
gegliedert, die durch einen Anhang ergéinzt werden.

Im ersten Teil wird die Methode der Quasi-Integrale beispielhaft anhand des Hamin-
Systems entwickelt. Diese Methode ist numerischer Art und dient dem Auffinden langsa-
mer invarianter Mannigfaltigkeiten in Systemen gewdhnlicher nichtlinearer Differential-
gleichungen, welche héufig zum Modellieren rdumlich homogener chemischer Reaktions-
netzwerke verwendet werden. Sie erweist sich insbesondere bei realistischen und deshalb
meistens hoher dimensionalen Systemen von Vorteil, da jene analytischen Methoden im
Allgemeinen nicht mehr zugénglich sind.

Die Existenz langsamer Mannigfaltigkeiten ist charakteristisch fiir dissipative Syste-
me, in denen sich die Zustidnde auf zwei stark unterschiedlichen Zeitskalen entwickeln.
Um diese zu finden, priifen wir systematisch, ob Verhéltnisse bestimmter Komponenten
des Reaktionsgeschwindigkeitsvektors, welche die nichtlineare Kinetik der Elementar-
reaktionen beschreiben, entlang der durch numerische Integrationsroutinen gewonnenen
Losungskurven einen anndhernd konstanten Wert annehmen. Jedem annéhernd konstan-
ten Verhéltnis entspricht ein Quasi-Integral und damit eine langsame Mannigfaltigkeit.
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Deutsche Zusammenfassung

Letztere sind durch algebraische Gleichungen gegeben und kénnen im Folgenden dazu
benutzt werden, die Dimension des urspriinglichen Differentialgleichungssystems und da-
mit die Anzahl dynamischer Freiheitsgrade um die Anzahl gefundener Quasi-Integrale
zu verringern. Dieses Vorgehen wird durch die Theorie singulédr gestérter Systeme moti-
viert, deren Grundideen wir zu Beginn des ersten Teiles der Arbeit kurz darstellen, um
im Anschluss daran auch den Bezug zu den Quasi-Integralen aufzuzeigen.

Die Dynamik des Hdmin-Systems wird aufbauend auf einem experimentell gut be-
stiatigten Reaktionsmechanismus durch ein 6-dimensionales gewdhnliches Differential-
gleichungssystem modelliert. Die Methode der Quasi-Integrale liefert in Anwendung auf
das Hamin-System die Existenz einer langsamen Mannigfaltigkeit. Diese wird, unter
Berticksichtigung zweier Massen-Erhaltungsgroften, zur Reduktion des urspriinglich 6-
dimensionalen Systems auf ein Drei-Variablen-Modell benutzt. Im Folgenden vergleichen
wir die dynamischen Eigenschaften beider Systeme auf der Grundlage ihrer lokalen Bi-
furkationen, die als quantitatives Maf fiir die topologische Aquivalenz beider Systeme
angesehen werden konnen. Dazu berechnen wir mit Hilfe numerischer Kontinuationsrou-
tinen Ein- und Zwei-Parameter Bifurkationsdiagramme, die fiir beide Systeme praktisch
identisch sind.

Im zweiten Teil der Arbeit untersuchen wir den Ursprung der burstartigen Oszilla-
tionen im Hamin-System in seiner 3-dimensionalen Approximation. Dazu benutzen wir
eine von Rinzel und Ermentrout entwickelte Methode, bei der eine langsame dynami-
sche Variable als quasi-statischer Bifurkationsparameter fiir das restliche, sich auf einer
schnelleren Zeitskala entwickelnde Untersystem fungiert. In Abhéngigkeit vom aktuellen
Wert der langsamen Variablen gibt es unterschiedliche anziehende Zusténde im schnellen
Untersystem, denen die Trajektorien des 3-dimensionalen Flusses folgen, was ein geome-
trisches Verstindnis des Flusses im Phasenraum ermdglicht. Insbesondere 1idft sich der
das Bursting-Verhalten charakterisierende Mechanismus nach einem von Izhikevich vor-
geschlagenen Schema durch gewisse Bifurkationen im schnellen Untersystem erkléren,
die zum Entstehen und Verschwinden der burstartigen Oszillationen fiihren.

Entsprechend diesem Schema, zeigt das Himin-System an einem fest gewihlten Satz
von Parameterwerten, so genanntes SubHopf/Fold-Cycle Bursting, da eine subkritische
Hopf-Bifurkation zusammen mit einer Sattel-Knoten Bifurkation periodischer Losungen,
die fiir dicht benachbarte Werte der langsamen Variablen im schnellen Untersystem
auftreten, fiir das Bursting-Verhalten des Hamin-Systems verantwortlich sind.

Durch eine systematische Zwei-Parameter-Bifurkationsanalyse des schnellen Unter-
systems, die in dieser Form bisher noch nicht benutzt worden zu sein scheint, finden
wir einen Ubergang im Bursting-Verhalten des Hémin-Systems von einem sogenannten
SubHopf/Fold-Cycle Burster zu einem Fold/SubHopf Burster entsprechend der Klassi-
fikation von Izhikevich. Solche Ubergéinge im Bursting-Verhalten in Abhiingigkeit von
dusseren Parametern kénnen von physiologischer Bedeutung sein.

Schlieflich untersuchen wir mit der von Rinzel und Ermentrout entwickelten Analyse-
methode den Phasenflufs auf einem 2-Torus im Hamin-System und finden dadurch eine
Erklarung fiir den Ursprung quasi-periodischen Verhaltens in diesem System, die auch
fiir andere dynamische Systeme mit d@hnlichen Tori von Bedeutung sein sollte.
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