
Prototype-based

Classification and Clustering

Habilitationsschrift

zur Erlangung der Venia legendi für

Informatik

angenommen durch die Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

von Dr.-Ing. Christian Borgelt,

geboren am 6. Mai 1967 in Bünde (Westfalen)

Gutachter: Prof. Dr. Rudolf Kruse
Prof. Dr. Hans-Joachim Lenz
Prof. Dr. Olaf Wolkenhauer

Magdeburg, den 2. November 2005

Contents

Abstract v

1 Introduction 1
1.1 Classification and Clustering 2
1.2 Prototype-based Methods . 5
1.3 Outline of this Thesis . 9
1.4 Software . 10

2 Cluster Prototypes 11
2.1 Distance Measures . 12
2.2 Radial Functions . 16
2.3 Prototype Properties . 20
2.4 Normalization Modes . 22
2.5 Classification Schemes . 37
2.6 Related Approaches . 41

3 Objective Functions 45
3.1 Least Sum of Squared Distances 46
3.2 Least Sum of Squared Errors 59
3.3 Maximum Likelihood . 62
3.4 Maximum Likelihood Ratio 65
3.5 Other Approaches . 69

4 Initialization Methods 73
4.1 Data Independent Methods 74
4.2 Simple Data Dependent Methods 76
4.3 More Sophisticated Methods 81
4.4 Weight Initialization . 94

i

ii CONTENTS

5 Update Methods 99
5.1 Gradient Methods . 100

5.1.1 General Approach . 100
5.1.2 Gradient Descent on Sum of Squared Distances 103
5.1.3 Gradient Descent on Sum of Squared Errors 108
5.1.4 Gradient Ascent on Likelihood Function 113
5.1.5 Problems of Gradient Methods 117

5.2 Alternating Optimization . 120
5.2.1 General Approach . 120
5.2.2 Classical Crisp Clustering 121
5.2.3 Fuzzy Clustering . 125
5.2.4 Expectation Maximization 139

5.3 Competitive Learning . 152
5.3.1 Classical Learning Vector Quantization 152
5.3.2 Fuzzy Learning Vector Quantization 159
5.3.3 Size and Shape Parameters 162
5.3.4 Maximum Likelihood Ratio 165

5.4 Guided Random Search . 171
5.4.1 Simulated Annealing 171
5.4.2 Genetic or Evolutionary Algorithms 173
5.4.3 Application to Classification and Clustering 175

6 Update Modifications 177
6.1 Robustness . 178

6.1.1 Noise Clustering . 178
6.1.2 Shape Regularization 183
6.1.3 Size Regularization . 186
6.1.4 Weight Regularization 187

6.2 Acceleration . 188
6.2.1 Step Expansion . 190
6.2.2 Momentum Term . 191
6.2.3 Super Self-Adaptive Backpropagation 191
6.2.4 Resilient Backpropagation 192
6.2.5 Quick Backpropagation 193

7 Evaluation Methods 197
7.1 Assessing the Classification Quality 198

7.1.1 Causes of Classification Errors 198
7.1.2 Cross Validation . 200
7.1.3 Evaluation Measures 202

CONTENTS iii

7.2 Assessing the Clustering Quality 209
7.2.1 Internal Evaluation Measures 210
7.2.2 Relative Evaluation Measures 221
7.2.3 Resampling . 228

8 Experiments and Applications 233
8.1 Regularization . 234
8.2 Acceleration . 239
8.3 Clustering Document Collections 242

8.3.1 Preprocessing the Documents 243
8.3.2 Clustering Experiments 248
8.3.3 Conclusions . 260

9 Conclusions and Future Work 263

A Mathematical Background 267
A.1 Basic Vector and Matrix Derivatives 267
A.2 Properties of Radial Functions 270

A.2.1 Normalization to Unit Integral 270
A.2.2 Derivatives . 274

A.3 Cholesky Decomposition . 278
A.4 Eigenvalue Decomposition . 280
A.5 Singular Value Decomposition 284
A.6 Multilinear Regression . 285
A.7 Matrix Inversion Lemma . 287
A.8 Lagrange Theory . 288
A.9 Heron’s Algorithm . 290
A.10 Types of Averages . 290
A.11 The χ2 Measure . 291

B List of Symbols 295

Bibliography 303

Index 327

Curriculum Vitae 339

ABSTRACT v

Abstract

Classification and clustering are, without doubt, among the most frequently
encountered data analysis tasks. This thesis provides a comprehensive syn-
opsis of the main approaches to solve these tasks that are based on (point)
prototypes, possibly enhanced by size and shape information. It studies
how prototypes are defined, how they interact, how they can be initialized,
and how their parameters can be optimized by three main update methods
(gradient methods, alternating optimization, competitive learning), which
are applied to four objective functions (sum of squared distances, sum of
squared errors, likelihood, likelihood ratio). Besides organizing these meth-
ods into such a unified framework, the main contributions of this thesis are
extensions of existing approaches that render them more flexible and more
robust or accelerate the learning process. Among these are shape and size
parameters for (fuzzified) learning vector quantization, shape and size regu-
larization methods, and a transfer of neural network techniques to clustering
algorithms. The practical relevance of these extensions is demonstrated by
experimental results with an application to document structuring.

Zusammenfassung

Klassifikation und Clustering gehören ohne Zweifel zu den am häufigsten
anzutreffenden Datenanalyseaufgaben. Diese Schrift bietet eine umfassende
Zusammenschau der Hauptansätze zur Lösung dieser Aufgaben, die auf
(Punkt-)Prototypen basieren, möglicherweise angereichert um Größen- und
Forminformation. Es wird untersucht, wie Prototypen definiert werden
können, wie sie wechselwirken, wie sie initialisiert werden und wie ihre
Parameter mit drei Hauptaktualisierungsmethoden (Gradientenverfahren,
alternierende Optimierung, Wettbewerbslernen) optimiert werden können,
die auf vier Zielfunktionen angewandt werden (Summe der quadratischen
Abstände, Summe der quadrierten Fehler, Likelihood, Likelihood-Verhält-
nis). Neben der Einordnung dieser Methoden in einen solchen einheitlichen
Rahmen bestehen die Hauptbeiträge dieser Arbeit in Erweiterungen exi-
stierender Ansätze, die sie flexibler und robuster machen oder den Lern-
prozeß beschleunigen. Dazu gehören etwa Größen- und Formparameter für
die (fuzzifizierte) lernende Vektorquantisierung, Methoden für die Form-
und Größenregularisierung, sowie eine Übertragung von Methoden, die für
neuronale Netze entwickelt wurden, auf Clusteringalgorithmen. Die prak-
tische Relevanz dieser Erweiterungen wird mit experimentellen Ergebnissen
aus einer Anwendung zur Dokumentenstrukturierung belegt.

Chapter 1

Introduction

Due to the extremely rapid growth of collected data, which has rendered
manual analysis virtually impossible, recent years have seen an intense in-
terest in intelligent computer-aided data analysis methods (see, for example,
[Fayyad et al. 1996a, Nakhaeizadeh 1998a, Berthold and Hand 1999, Witten
and Frank 1999, Hand et al. 2001, Berry and Linoff 2004]).

On the list of data analysis tasks frequently occurring in applications,
classification (understood as the construction of a classifier from labeled
data) and clustering (that is, the division of a data set into groups of similar
cases or objects) occupy very high, if not the highest ranks [Nakhaeizadeh
1998b]. As a consequence a large variety of methods to tackle these tasks has
been developed, ranging from decision trees, (näıve) Bayes classifiers, rule
induction, and different types of artificial neural networks for classification
to (fuzzy) c-means clustering, hierarchical clustering, and learning vector
quantization (see below for references for selected methods).

Several of these methods are based on a fundamentally very simple, but
nevertheless very effective idea, namely to describe the data under consid-
eration by a set of prototypes, which capture characteristics of the data
distribution (like location, size, and shape), and to classify or to divide the
data set based on the similarity of the data points to these prototypes. The
approaches relying on this idea differ mainly in the way in which prototypes
are described and how they are updated during the model construction step.
The goal of this thesis is to develop a unified view of a certain subset of
such prototype-based approaches, namely those that are essentially based
on point prototypes, and to transfer ideas from one approach to another in
order to improve the performance and usability of known algorithms.

1

2 CHAPTER 1. INTRODUCTION

1.1 Classification and Clustering

The terms “classification” and “to classify” are ambiguous. In the area of
Machine Learning [Mitchell 1997] they usually turn up in connection with
classifiers like decision trees, (artificial) neural networks, or (näıve) Bayes
classifiers and denote the process of assigning a class from a predefined
set to an object or case under consideration. Consequently, a classification
problem is the task to construct a classifier—that is, an automatic procedure
to assign class labels—from a data set of labeled case descriptions.

In classical statistics [Everitt 1998], however, these terms usually have
a different meaning: they describe the process of dividing a data set of
sample cases into groups of similar cases, with the groups not predefined,
but to be found by the classification algorithm. This process is also called
classification, because the groups to be found are often called classes, thus
inviting unpleasant confusion. Classification in the sense of Machine Learn-
ing is better known in statistics as discriminant analysis, although this is
sometimes, but rarely, called classification in statistics as well.

In order to avoid the confusion that may result from this ambiguity, the
latter process, i.e., dividing a data set into groups of similar cases, is often
called clustering or cluster analysis, replacing the ambiguous term class
with the less ambiguous cluster. An alternative is to speak of supervised
classification if the assignment of predefined classes is referred to and of
unsupervised classification if clustering is the topic of interest. In this thesis,
however, I adopt the first option and distinguish between classification and
clustering, reserving the former for classifier construction.

To characterize these two tasks more formally, I assume that we are given
a data set X = {~x1, . . . , ~xn} of m-dimensional vectors ~xj = (xj1, . . . , xjm),
1 ≤ j ≤ n. Each of these vectors represents an example case or object,
which is described by stating the values of m attributes. Alternatively, the
data set may be seen as a data matrix X = (xjk)1≤j≤n,1≤k≤m, each row of
which is a data vector and thus represents an example case. Which way of
viewing the data is more convenient depends on the situation and therefore
I switch freely between these two very similar representations.

In general, the attributes used to describe the example cases or objects
may have nominal, ordinal, or metric scales1, depending on the property of

1An attribute is called nominal if its values can only be tested for equality. It is called
ordinal if there is a natural order, so that a test can be performed which of two values is
greater than the other. Finally, an attribute is called metric if numeric differences of two
values are meaningful. Sometimes metric attributes are further subdivided according to
whether ratios of two values are meaningful (ratio scale) or not (interval scale).

1.1. CLASSIFICATION AND CLUSTERING 3

the object or case they refer to. Here, however, I confine myself to metric
attributes and hence to numeric (real-valued) vectors. The main reason
for this restriction is that prototype-based methods rely on a notion of
similarity, which is usually based on a distance measure (details are given
in the next chapter). Even worse, the greater part of such methods not
only need to measure the distance of a data vector from a prototype, but
must also be able to construct a prototype from a set of data vectors. If
the attributes are not metric, this can lead to unsurmountable problems,
so that one is forced to select a representative, as, for example, in so-called
medoid clustering [Kaufman and Rousseeuw 1990, Chu et al. 2001], in which
the most central element of a set of data vectors is chosen as the prototype.
However, even for this approach a distance measure is needed in order to
determine which of the elements of the group is most central.

Since plausible, generally applicable distance measure are difficult to
find for nominal and ordinal attributes, it is usually easiest to transform
them into metric attributes in a preprocessing step. For example, a very
simple approach is so-called 1-in-n encoding , which constructs a metric (or
actually binary) attribute for each value of a nominal attribute. In a data
vector a value of 1 is then assigned to the metric attribute that represents the
nominal value the example case has, and a value of 0 to all metric attributes
that correspond to other values of the nominal attribute. Formally: let A
be a nominal attribute with domain dom(A) = {a1, . . . , as}. To encode an
assignment A = ai, we replace A by s metric (binary) attributes B1, . . . , Bs

and set Bi = 1 and Bk = 0, 1 ≤ k ≤ s, k 6= i.
If the task is clustering, we are given only a data set (or data matrix).

The goal is to divide the data vectors into groups or clusters, with the
number of groups either specified by a user or to be found by the clustering
algorithm. The division should be such that data vectors from the same
group are as similar as possible and data vectors from different groups are
as dissimilar as possible. As already mentioned above, the similarity of
two data vectors is usually based on a (transformed) distance measure, so
that we may also say: such that data vectors from the same group are as
close to each other as possible and data vectors from different groups are
as far away from each other as possible. Note that these two objectives are
complementary: often one can reduce the (average) distance between data
vectors from the same group by splitting a group into two. However, this
may reduce the (average) distance between vectors from different groups.

Classical clustering approaches are often crisp or hard, in the sense that
the data points are partitioned into disjoint groups. That is, each data
point is assigned to exactly one cluster. However, in applications such hard

4 CHAPTER 1. INTRODUCTION

partitioning approaches are not always appropriate for the task at hand, es-
pecially if the groups of data points are not well separated, but rather form
more densely populated regions, which are separated by less densely popu-
lated ones. In such cases the boundary between clusters can only be drawn
with a certain degree of arbitrariness, leading to uncertain assignments of
the data points in the less densely populated regions.

To cope with such conditions it is usually better to allow for so-called
degrees of membership. That is, a data point may belong to several clusters
and its membership is quantified by a real number, with 1 meaning full
membership and 0 meaning no membership at all. The meaning of degrees
of membership between 0 and 1 may differ, depending on the underlying
assumptions. They may express intuitively how typical a data point is for
a group, or may represent preferences for a hard assignment to a cluster.

If similarity is based on distances, I call the approach distance-based
clustering . Alternatively, one may try to find proper groups of data points
by building a probabilistic model from a user-defined family for each of the
groups, trying to maximize the likelihood of the data. Such approaches,
which very naturally assign degrees of membership to data vectors, I call
probabilistic clustering. However, in the following chapter we will see that
these categories are not strict, since commonly used probabilistic models are
based on distance measures as well. This offers the convenient possibility
to combine several approaches into a unified scheme.

If the task at hand is classification, a data set (or data matrix) is not
enough. In addition to the vectors stating the values of descriptive attributes
for the example cases, we need a vector ~z = (z1, . . . , zn), which states the
classes of the data points. Some of the approaches studied in this thesis, like
radial basis function networks, allow for values zj , 1 ≤ j ≤ n, that are real
numbers, thus turning the task into a numeric prediction problem. Most of
the time, however, I confine myself to true classification, where the zj come
from a finite (and usually small) set of class labels, e.g. zj ∈ {1, . . . , s}.

The goal of classification is to construct or to parameterize a procedure,
called a classifier, which assigns class labels based on the values of the
descriptive attributes (i.e. the elements of the vectors ~xj). Such a classifier
may work in a crisp way, yielding a unique class label for each example
case, or it may offer an indication of the reliability of the classification
by assigning probabilities, activations, or membership degrees to several
classes. The latter case corresponds to the introduction of membership
degrees into clustering, as it can be achieved by the same means.

To measure the classification quality, different so-called loss functions
may be used, for example, 0-1 loss, which simply counts the misclassifi-

1.2. PROTOTYPE-BASED METHODS 5

cations (on the training data set or on a separate test data set), and the
sum of squared errors, which is computed on a 1-in-n encoding of the class
labels2 and can take a measure of reliability, for example, probabilities for
the different classes, into account (cf. Sections 3.2 and 7.1).

1.2 Prototype-based Methods

Among the variety of methods that have been developed for classification
and clustering, this thesis focuses on what may be called prototype-based
approaches. Prototype-based methods try to describe the data set to clas-
sify or to cluster by a (usually small) set of prototypes, in particular point
prototypes, which are simply points in the data space. Each prototype is
meant to capture the distribution of a group of data points based on a con-
cept of similarity to the prototype or closeness to its location, which may
be influenced by (prototype-specific) size and shape parameters.

The main advantages of prototype-based methods are that they provide
an intuitive summarization of the given data in few prototypical instances
and thus lead to plausible and interpretable cluster structures and classifi-
cation schemes. Such approaches are usually perceived as intuitive, because
human beings also look for similar past experiences in order to assess a new
situation and because they summarize their experiences in order to avoid
having to memorize too many and often irrelevant individual details.

In order to convey a better understanding of what I mean by prototype-
based methods and what their characteristics are, the following lists provide
arguments how several well-known data analysis methods can be catego-
rized as based or not based on prototypes. The main criteria are whether
the data is captured with few(!) representatives and whether clustering or
classification relies on the closeness of a data point to these representatives.
Nevertheless, this categorization is not strict as there are boundary cases.

Approaches based on prototypes

• (näıve and full) Bayes classifiers
[Good 1965, Duda and Hart 1973, Langley et al. 1992]
A very frequent assumption in Bayesian classification is that numeric
attributes are normally distributed and thus a class can be described
in a numeric input space by a multivariate normal distribution, either

2Note that the sum of squared errors is proportional to the 0-1 loss if the classifier
yields crisp predictions (i.e. a unique class for each example case).

6 CHAPTER 1. INTRODUCTION

axes-parallel (näıve) or in general orientation (full). This may be seen
as a description with one prototype per class, located at the mean
vector, with a covariance matrix specifying shape and size.

• radial basis function neural networks
[Rojas 1993, Haykin 1994, Zell 1994, Anderson 1995, Bishop 1995,
Nauck et al. 2003]
Radial basis function networks rely on center vectors and reference
radii to capture the distribution of the data. More general versions
employ covariance matrices to describe the shape of the influence re-
gion of each prototype (reference vector). However, learning results
do not always yield a representative description of the data as the
prominent goal is error minimization and not data summarization.

• (fuzzy) c-means clustering
[Ball and Hall 1967, Ruspini 1969, Dunn 1973, Hartigan und Wong
1979, Lloyd 1982, Bezdek et al. 1999, Höppner et al. 1999]
Since in c-means approaches clustering is achieved by minimizing the
(weighted) sum of (squared) distances to a set of c center vectors,
with c usually small, this approach is clearly prototype-based. More
sophisticated approaches use covariance matrices to modify the dis-
tance measure and thus to model different cluster shapes and sizes.
Fuzzy approaches add the possibility of “soft” cluster boundaries.

• expectation maximization
[Dempster et al. 1977, Everitt and Hand 1981, Jamshidian and Jenn-
rich 1993, Bilmes 1997]
Expectation maximization clustering is based on a mixture model of
the data generation process and usually assumes multivariate normal
distributions as the mixture components. It is thus very similar to
the construction of a näıve or full Bayes classifier for unknown class
labels, with the goal to maximize the likelihood of the data given the
model. This approach is also very closely related to fuzzy clustering.

• learning vector quantization
[Gray 1984, Kohonen 1986, Kohonen 1990, NNRC 2002]
The reference or codebook vectors of this approach can be seen as pro-
totypes capturing the distribution of the data, based on the distance
of the data points to these vectors. It has to be conceded, though,
that in learning vector quantization the number of reference vectors is
often much higher than the number of clusters in clustering, making
the term “prototypes” sound a little presumptuous.

1.2. PROTOTYPE-BASED METHODS 7

• fuzzy rule-based systems / neuro-fuzzy systems
[Zadeh 1965, Mamdani and Assilian 1975, Takagi and Sugeno 1985,
Nauck and Kruse 1997, Nauck et al. 1997, Nauck et al. 2003]
Fuzzy rule-based systems and especially some types of neuro-fuzzy
systems are closely related to radial basis function neural networks.
They differ mainly in certain restrictions placed on the description
of the similarity and distance to the prototypes (usually each input
dimension is handled independently in order to simplify the structure
of the classifier and thus to make it easier to interpret).

Approaches not based on prototypes

• decision and regression trees
[Breiman et al. 1984, Quinlan 1986, Quinlan 1993]
For numeric attributes decision and regression trees divide the in-
put space by axes-parallel hyperplanes, which are described by simple
threshold values. Generalizations to so-called oblique decision trees
[Murthy et al. 1994] allow for hyperplanes in general orientation. How-
ever, no prototypes are constructed or selected and no concept of sim-
ilarity is employed. It should be noted that decision and regression
trees are closely related to rule-based approaches, since each path in
the tree can be seen as a (classification) rule.

• classical rule-based systems
[Michalski et al. 1983, Clark and Niblett 1989, Clark and Boswell
1991, Quinlan 1993, Cohen 1995, Domingos 1996]
Depending on its antecedent, a classification rule may capture a lim-
ited region of the data space. However, this region is not defined by a
prototype and a distance or similarity to it. The classification is rather
achieved by separating hyperplanes, in a similar way as decision trees
and multilayer perceptrons do. It should be noted that rules easily
lose their interpretability if general hyperplanes are used that cannot
be described by a simple threshold value.

• multilayer perceptrons
[Rojas 1993, Haykin 1994, Zell 1994, Anderson 1995, Bishop 1995,
Nauck et al. 2003]
If multilayer perceptrons are used to solve classification problems, they
describe piecewise linear decision boundaries between the classes, rep-
resented by normal vectors of hyperplanes. They do not capture the
distribution of the data points on either side of these boundaries with

8 CHAPTER 1. INTRODUCTION

(constructed or selected) prototypes. Seen geometrically, they achieve
a classification in a similar way as (oblique) decision trees.

Boundary cases

• hierarchical agglomerative clustering
[Sokal and Sneath 1963, Johnson 1967, Bock 1974, Everitt 1981, Jain
and Dubes 1988, Mucha 1992]
With the possible exception of the centroid method , hierarchical ag-
glomerative clustering only groups data points into clusters with-
out constructing or selecting a prototypical data point. However,
since only the single-linkage method can lead to non-compact clus-
ters, which are difficult to capture with prototypes, one may construct
prototypes by forming a mean vector for each resulting cluster.

• support vector machines
[Vapnik 1995, Vapnik 1998, Cristianini and Shawe-Taylor 2000, Schöl-
kopf and Smola 2002]
Support vector machines can mimic radial basis function networks
as well as multilayer perceptrons. Hence, whether they may reason-
ably be seen as prototype-based depends on the kernel function used,
whether a reduction to few support vectors takes place, and on whether
the support vectors actually try to capture the distribution of the data
(radial basis function networks) or just define the location of the de-
cision boundary (multilayer perceptrons).

• k-nearest neighbor / case-based reasoning
[Duda and Hart 1973, Dasarathy 1990, Aha 1992, Kolodner 1993,
Wettschereck 1994]
Since in k-nearest neighbor classification the closeness or similarity
of a new data point to the points in the training data set determine
the classification, this approach may seem prototype-based. However,
each case of the training set is a reference point and thus there is no
reduction to (few) prototypes or representatives.

As a further characterization of prototype-based methods, approaches in
this direction may be divided according to whether they construct proto-
types or only select them from the given data set, whether they can in-
corporate size and shape information into the prototypes or not, whether
the resulting model can be interpreted probabilistically or not, and whether
they rely on an iterative improvement or determine the set of prototypes in
a single run (which may take the form of an iterative thinning).

1.3. OUTLINE OF THIS THESIS 9

1.3 Outline of this Thesis

Since prototype-based methods all share the same basic idea, it is possible
and also very convenient to combine them into a unified scheme. Such a
view makes it easier to transfer ideas that have been developed for one model
to another. In this thesis I present some such transfers, for example, shape
and size parameters for learning vector quantization, as well as extensions of
known approaches that endow them with more favorable characteristics, for
example, improved robustness or speed. This thesis is structured as follows:

In Chapter 2 I introduce the basics of (cluster) prototypes. I define
the core prototype properties like location, shape, size, and weight, and
study how these properties can be described with the help of parameters of
distance measures and radial functions. Since classification and clustering
methods always rely on several prototypes, I also study normalization meth-
ods, which relate the similarities of a data point to different prototypes to
each other and modify them in order to obtain certain properties. Finally,
I briefly discuss alternative descriptions like neuro-fuzzy systems as well as
extensions to non-point prototypes.

Since most prototype-based classification and clustering approaches can
be seen as optimizing some quantity, Chapter 3 studies the two main
paradigms for objective functions: least sum of squared deviations and
maximum likelihood. While the former is based on either a distance mini-
mization (clustering) or an error minimization (classification), the latter is
based on a probabilistic approach and tries to adapt the parameter of the
model so that the likelihood or likelihood ratio of the data is maximized.

Chapter 4 is dedicated to the initialization of the clustering or clas-
sification process. I briefly review simple, but very commonly used data
independent as well as data dependent methods before turning to more so-
phisticated approaches. Several of the more sophisticated methods can be
seen as clustering methods in their own right (or may even have been devel-
oped as such). Often they determine an (initial) clustering or classification
in a single run (no iterative improvement). The chapter concludes with a
review of weight initialization for classification purposes.

Chapter 5 is the most extensive of this thesis and considers the main
approaches to an iterative improvement of an initial clustering or classifica-
tion: gradient descent, alternating optimization, and competitive learning.
I try to show that these methods are closely related and often enough one
specific approach turns out to be a special or boundary case of another
that is based on a different paradigm. As a consequence it becomes pos-
sible to transfer improvements that have been made to a basic algorithm

10 CHAPTER 1. INTRODUCTION

in one domain to another, for example, the introduction of size and shape
parameters into learning vector quantization. The chapter concludes with a
brief consideration of guided random search methods and their application
to clustering, which however, turn out to be inferior to other strategies.

In Chapter 6 I discuss approaches to modify the basic update schemes
in order to endow them with improved properties. These include methods
to handle outliers as well as regularization techniques for the size, shape,
and weight of a cluster in order to prevent undesired results. Furthermore, I
study a transfer of neural network training improvements, like self-adaptive,
resilient, or quick backpropagation, to fuzzy clustering and other iterative
update schemes in order to accelerate the learning process.

In Chapter 7 I consider the question how to assess the quality of a
classifier or cluster model. Approaches for the former are fairly straight-
forward and are mainly based on the error rate on a validation data set,
with cross validation being the most prominent strategy. Success criteria
for clustering are somewhat less clear and less convincing in their ability to
judge the quality of a cluster model appropriately. The main approaches
are evaluation measures and resampling methods.

In Chapter 8 I report experiments that were done with some of the
developed methods in order to demonstrate their benefits. As a substantial
application I present an example of clustering web page collections with
different algorithms, which emphasizes the relevance of, for example, the
generalized learning vector quantization approach introduced in Chapter 5
as well as the regularization methods studied in Chapter 6.

The thesis finishes with Chapter 9, in which I draw conclusions and
point out some directions for future work.

1.4 Software

I implemented several (though not all) of the clustering and classification
methods described in this thesis and incorporated some of the suggested
improvements and modifications into these programs. Executable programs
for Microsoft WindowsTM and LinuxTM as well as the source code can be
found on my WWW page:

http://fuzzy.cs.uni-magdeburg.de/~borgelt/software.html

All programs are distributed either under the Gnu General Public License
or the Gnu Lesser (Library) General Public License (which license applies
is stated in the documentation that comes with the program).

Chapter 2

Cluster Prototypes

The clustering and classification methods studied in this thesis are based
on finding a set of c cluster prototypes, each of which captures a group of
data points that are similar to each other. A clustering result consists of
these prototypes together with a rule of how to assign data points to these
prototypes, either crisp or with degrees of memberships. For classification
purposes an additional decision function is needed. This function draws on
the assignments to clusters to compute an assignment to the given classes,
again either crisp or with degrees of membership.1

Since the standard way of measuring similarity starts from a distance
measure, Section 2.1 reviews some basics about such functions and their
properties. Similarity measures themselves are then based on radial func-
tions, the properties of which are studied in Section 2.2.

Section 2.3 introduces the core properties of cluster prototypes—namely
location, size, shape, and weight—and elaborates the mathematical means
to describe these properties as well as how to measure the similarity of a
data point to a cluster prototype based on these means.

However, usually the assignment to a cluster is not obtained directly
from the raw similarity value, but from a normalization of it over all clusters.
Therefore Section 2.4 studies normalization modes, which provide (crisp
or graded) assignment rules for clusters. Afterwards the (crisp or graded)
assignment of data points to classes is examined in Section 2.5. The chapter
concludes with a brief survey of related approaches in Section 2.6.

1Note that cluster differs from class. There may be many more clusters than classes,
so that each class comprises several clusters of data points, even though the special case,
in which each class consists of one cluster is often worth considering.

11

12 CHAPTER 2. CLUSTER PROTOTYPES

k = 1 k = 2 k →∞

Figure 2.1: Circles for three distance measures from the Minkowski family.

2.1 Distance Measures

Distance measures are the most common way to measure the similarity of
data points. Axiomatically, a distance measure is defined as follows:

Definition 2.1 A function d : X ×X → IR+
0 , where X is an arbitrary set,

is called a distance measure or simply a distance or metric (on X) iff
it satisfies the following three axioms ∀x, y, z ∈ X:

• d(x, y) = 0 ⇔ x = y,
• d(x, y) = d(y, x) (symmetry),
• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

The best-known examples of distance measures come from the so-called
Minkowski family, which is defined as

dk(~x, ~y) =

(
m∑

i=1

|xi − yi|k
)1

k

,

where k is a parameter. It contains the following special cases:

k = 1: Manhattan or city block distance,
k = 2: Euclidean distance,
k →∞: maximum distance, i.e., d∞(~x, ~y) = max m

i=1|xi − yi|

The properties of distance measures can be illustrated nicely by considering
how circles look with them, because a circle is defined as the set of points
that have the same given distance (the radius of the circle) from a given
point (the center of the circle). Circles corresponding to the three special
cases mentioned above are shown in Figure 2.1.

2.1. DISTANCE MEASURES 13

An important advantage of the best-known and most commonly used
distance measure, the Euclidean distance, is that it is invariant w.r.t. or-
thogonal linear transformations (translation, rotation, reflection), that is,
its value stays the same if the vectors are transformed according to

~x 7→ R~x+ ~o,

where R is an arbitrary orthogonal2 m × m matrix and ~o is an arbitrary
(but fixed) m-dimensional vector. While all distance measures from the
Minkowski family are invariant w.r.t. translation, only the Euclidean dis-
tance is invariant w.r.t. rotation and (arbitrary) reflection. However, even
the Euclidean distance, as well as any other distance measure from the
Minkowski family, is not scale-invariant. That is, in general the Euclidean
distance changes its value if the data points are mapped according to

~x 7→ diag(s1, . . . , sm) ~x,

where the si, 1 ≤ i ≤ m, which form a diagonal matrix, are the scaling
factors for the m axes, at least one of which differs from 1.

A distance measure that is invariant w.r.t. orthogonal linear transfor-
mations as well as scale-invariant is the so-called Mahalanobis distance
[Mahalanobis 1936]. It is frequently used in clustering and defined as

d(~x, ~y;Σ) =
√

(~x− ~y)>Σ−1(~x− ~y),

where the m×m matrix Σ is the covariance matrix of the considered data
set X, which (implicitly assuming that all data points are realizations of
independent and identically distributed random vectors) is computed as

Σ =
1

n− 1

n∑
j=1

(~xj − ~µ)(~xj − ~µ)> with ~µ =
1
n

n∑
j=1

~xj .

From these formulae it is easily seen that the Mahalanobis distance is actu-
ally scale-invariant, because scaling the data points also scales the covari-
ance matrix and thus computing the distance based on the inverse of the
covariance matrix removes the scaling again. However, this also makes the
distance measure dependent on the data set: in general the Mahalanobis
distance with the covariance matrix computed from one data set does not
have the stated invariance characteristics for another data set.

2A square matrix is called orthogonal if its columns are pairwise orthogonal and have
length 1. As a consequence the transpose of such a matrix equals its inverse.

14 CHAPTER 2. CLUSTER PROTOTYPES

Figure 2.2: A circle for the Maha-
lanobis distance. The directions of
the axes of the ellipse are the eigen-
vectors of the covariance matrix Σ.

It should be noted that the Mahalanobis distance, which is actually a
family of distance measures parameterized by a covariance matrix, contains
the Euclidean distance as a special case, namely for Σ = 1:

d(~x, ~y;1) =
√

(~x− ~y)>(~x− ~y) =

√√√√ m∑
i=1

(xi − yi)2.

This specific covariance matrix results for uncorrelated data, which are nor-
malized to standard deviation 1 in each dimension.

The insight that the Euclidean distance is a special case of the Maha-
lanobis distance already provides us with an intuition how circles look with
this distance: they should be distorted Euclidean circles. And indeed, cir-
cles are ellipses in general orientation, as shown in Figure 2.2, with the axes
ratio and the rotation angle depending on the covariance matrix Σ.

Mathematically, this can be nicely demonstrated by a Cholesky decom-
position or eigenvalue decomposition of the covariance matrix, techniques
that are reviewed in some detail in Section A.3 and Section A.4, respec-
tively, in the appendix. Eigenvalue decomposition, for example, makes it
possible to write an m×m covariance matrix Σ as

Σ = TT> with T = R diag(
√
λ1, . . . ,

√
λm),

where R is an m ×m orthogonal matrix (or more specifically: a rotation
matrix), the columns of which are the eigenvectors of Σ (normalized to
length 1), and the λi, 1 ≤ i ≤ m, are the eigenvalues of Σ. As a consequence
the inverse Σ−1 of Σ can be written as

Σ−1 = U>U with U = diag
(
λ
− 1

2
1 , . . . , λ

− 1
2

m

)
R>

(cf. page 283 in Section A.4). The matrix U describes a mapping of an
ellipse that is a circle w.r.t. the Mahalanobis distance to a circle w.r.t.
the Euclidean distance by rotating (with R>) the coordinate system to

2.1. DISTANCE MEASURES 15

Figure 2.3: A circle for a Maha-
lanobis distance that uses a diago-
nal covariance matrix Σ, so that the
eigenvectors of Σ are parallel to the
coordinate axes.

the eigensystem of the covariance matrix Σ and then scaling it (with the
diagonal matrix) to unit standard deviation in each direction. Therefore
the argument of the square root of the Mahalanobis distance, written as

(~x− ~y)>Σ−1(~x− ~y) = (~x− ~y)>U>U(~x− ~y) = (~x ′ − ~y ′)>(~x ′ − ~y ′),

where ~x ′ = U~x and ~y ′ = U~y, is equivalent to the squared Euclidean dis-
tance in the properly scaled eigensystem of the covariance matrix.

It should be noted that in the special case, where the covariance matrix
is a diagonal matrix (uncorrelated attributes), the Mahalanobis distance de-
scribes only a scaling of the axes, since in this case the orthogonal matrix R
is the unit matrix. As a consequence circles w.r.t. this distance measure are
axes-parallel ellipses, like the one shown in Figure 2.3.

It should also be noted that the Mahalanobis distance was originally
defined with the covariance matrix of the given data set X [Mahalanobis
1936] (see above). However, in clustering and classification it is more often
used with cluster-specific covariance matrices, so that individual sizes and
shapes of clusters can be modeled (see Section 2.3). This is highly advan-
tageous, even though one has to cope with the drawback that there is no
unique distance between two data points anymore, because distances w.r.t.
one cluster may differ from those w.r.t. another cluster.

Even though there are approaches to prototype-based clustering and
classification that employ other members of the Minkowski family—see, for
example, [Bobrowski and Bezdek 1991], who study the city block and the
maximum distance—or a cosine-based distance [Klawonn and Keller 1999]
(which, however, does not lead to substantial differences, see Section 8.3.1),
the vast majority of approaches rely on either the Euclidean distance or the
Mahalanobis distance. Besides the convenient properties named above, an
important reason for this preference is that some of the update methods
discussed in Chapter 5 need the derivative of the underlying distance mea-
sure, and this derivative is much easier to compute for quadratic forms like
the Euclidean distance or the Mahalanobis distance.

16 CHAPTER 2. CLUSTER PROTOTYPES

2.2 Radial Functions

In principle, prototype-based classification and clustering methods can work
directly with a distance measure. However, it is often more convenient to
use a similarity measure instead, which can be obtained by applying a (non-
linear) mapping of a certain type to a distance measure. Such a mapping
can be described with a so-called radial function and provides flexible means
to control the region and strength of influence of a cluster prototype.

Definition 2.2 A function f : IR+
0 → IR+

0 satisfying

• limr→∞ f(r) = 0 and

• ∀r1, r2 ∈ IR+
0 : r2 > r1 ⇒ f(r2) ≤ f(r1)

(i.e., f is monotonically non-increasing)

is called a radial function.

The reason for the name radial function is that if its argument is a distance,
it can be seen as being defined on a radius r (Latin for ray) from a point,
from which the distance is measured. As a consequence it has the same
value on all points of a circle w.r.t. the underlying distance measure.

Radial functions possess the properties we expect intuitively from a sim-
ilarity measure: the larger the distance, the smaller the similarity should
be, and for infinite distance the similarity should vanish. Sometimes it is
convenient to add the condition f(0) = 1, because similarity measures are
often required to be normalized in the sense that they are 1 for indistin-
guishable data points. However, I refrain from adding this requirement here,
because there are several important approaches that use radial functions not
satisfying this constraint (for example, standard fuzzy c-means clustering).

Examples of well-known radial functions include:

• Generalized Cauchy function

fCauchy(r; a, b) =
1

ra + b

The standard Cauchy function is obtained from this definition for
a = 2 and b = 1. Example graphs of this function for a fixed value
b = 1 and different values of a are shown in Figure 2.4 on the left. For
b = 1, the limits for a→ 0 and a→∞ are shown in Figure 2.5 on the
left and right, respectively. Example graphs for a fixed value of a = 2
and then different values of b are shown in Figure 2.6. Only for b = 1
we get a standard similarity measure satisfying f(0) = 1.

2.2. RADIAL FUNCTIONS 17

1

0
0 1 2 r

1
2

a = 1

a = 5 fCauchy(r; a, 1) 1

0
0 1 2 r

1√
e

a = 1

a = 5 fGauss(r; a, 0)

Figure 2.4: Generalized Cauchy (left, b = 1) and Gaussian function (right)
for different exponents a of the radius r (a ∈ {1, 1.4, 2, 3, 5}).

1

0
0 1 2 r

1
2

lim
a→0

fCauchy(r; a, 1)
1

0
0 1 2 r

1
2

lim
a→∞

fCauchy(r; a, 1)

Figure 2.5: Limits of the generalized Cauchy for a → 0 (left) and a → ∞
(right). The limits of the generalized Gaussian function are analogous.

1

0
0 1 2 r

2

1
2

3
2

b = 2

b = 1 b = 0

fCauchy(r; 2, b)

Figure 2.6: Generalized Cauchy
function for different values of the
parameter b (b ∈ {0, 0.5, 1, 1.5, 2},
a = 2). Note that independent of
the value of a we get a standard
similarity measure (satisfying the
condition f(0) = 1) only for b = 1.

18 CHAPTER 2. CLUSTER PROTOTYPES

• Generalized Gaussian function

fGauss(r; a, b) = e−
1
2 ra

Example graphs of this function for different values of a (note that the
parameter b has no influence and thus may be fixed at 0) are shown
in Figure 2.4 on the right. Its general shape is obviously very similar
to that of the generalized Cauchy function, although I will point out a
decisive difference in Section 2.4. Note that the limiting functions for
a→ 0 and a→∞ are analogous to those shown in Figure 2.5 for the
generalized Cauchy function with the only difference that for a → 0
the limit value is e−

1
2 instead of 1

2 . Note also that all members of this
family are proper similarity measures satisfying f(0) = 1.

• Trapezoidal (triangular/rectangular) function

ftrapez(r; a, b) =

1, if r ≤ b,

r−b
a−b , if b < r < a,
0, if r ≥ a.

A triangular function is obtained from this definition for b = 0, a
rectangular function for a = b. Example graphs of these functions are
shown in Figure 2.7 on the left.

• Splines of different order
Splines are piecewise polynomial functions. The highest exponent of
each polynomial is called the order of the spline. They satisfy certain
smoothness constraints and are defined by a set of knots and values for
the function value and certain derivatives at these knots. Triangular
functions can be seen as splines of order 1. An example of a cubic
spline (order 3) is shown in Figure 2.7 on the right.

Of course, an abundance of other radial functions may be considered, like
the cosine down to zero, which is defined as fcosine(r) = 2 cos(r) + 1 for
r < π and 0 otherwise. However, most of these functions suffer from certain
drawbacks. Trapezoidal functions as well as splines, for example, have only
a bounded region in which they do not vanish, which leads to problems in
several of the clustering and classification methods studied later. Therefore
I confine myself to the first two functions in the above list, which have
several convenient properties, one of which is that for a fixed value of b
they have a reference point at r = 1 through which all curves pass that
result from different values of a. This makes it very easy to relate them to
reference radii that describe the size of clusters (see the next section).

2.2. RADIAL FUNCTIONS 19

1

0
0 1 2 r

b = 0
b = 1

ftrapez(r; 2, b) 1

0
0 1 2 r

fspline(r; 3, b)

Figure 2.7: Trapezoidal/triangular function (left) and cubic spline (right).

In some approaches the radial function describes a probability density of
an underlying data generation process rather than a similarity. In such a
case the radial function has to be normalized, so that its integral over the
whole data space is 1. Formally, this is achieved by enhancing the radial
function with a normalization factor. However, whether a normalization is
possible depends on the chosen function and its parameters.

The generalized Cauchy function can be normalized to a unit integral
if the parameter b is non-negative and the parameter a is greater than the
dimension m of the data space. This normalized version is defined as

γCauchy(a, b,m,Σ) · fCauchy(r; a, b),

where Σ is the covariance matrix of the underlying distance measure and
γCauchy(m,a, b,Σ) is the mentioned normalization factor,

γCauchy(a, b,m,Σ) =
aΓ
(

m
2

)
sin mπ

a

2π
m
2 +1b

m
a −1

· |Σ|− 1
2 .

A detailed derivation of this factor can be found in Section A.2.1 in the
appendix. Γ denotes the so-called generalized factorial, which is defined as

Γ(x) =
∫ ∞

0

e−ttx−1dt, x > 0.

Similarly, the generalized Gaussian function can be scaled to a unit integral
if its (only) parameter a > 1. This normalized version is defined as

γGauss(a, b,m,Σ) · fGauss(r; a, b),

where γGauss(m,a, b,Σ) is the normalization factor

γGauss(a, b,m,Σ) =
aΓ
(

m
2

)
2

m
a +1π

m
2 Γ
(

m
a

) · |Σ|− 1
2 .

A detailed derivation can be found in Section A.2.1 in the appendix.

20 CHAPTER 2. CLUSTER PROTOTYPES

2.3 Prototype Properties

The cluster prototypes I consider in this thesis are essentially point proto-
types (points in the data space), sometimes enhanced by size, shape, and
weight parameters. Formally, I describe a set of clusters by the parameters
C = {ci | 1 ≤ i ≤ c} (c is the number of clusters of the model) where each

ci = (~µi,Σi, %i), 1 ≤ i ≤ c,

specifies a cluster prototype. ~µi is an m-dimensional real vector that states
the location of the cluster and which is usually called the cluster center.
Σi is an m×m real, symmetric3, and positive definite4 matrix describing the
cluster’s size and shape. It is usually called the covariance matrix of the
cluster, since it is often computed in a similar way as the covariance matrix
of a data set. (Details about how this matrix can be split into two factors,
so that size and shape parameters can be distinguished, are given below.)
Finally, %i is a real number that is the weight of the cluster. The %i are
often (though not always) required to satisfy the constraint

∑c
i=1 %i = 1, so

that they can be interpreted as (prior) probabilities of the clusters.
The similarity of a data point ~x to a cluster prototype ci is described

by a membership function, into which these and other parameters enter
(like the two radial function parameters a and b discussed in the preceding
section as well as the dimension m of the data space):

u◦i (~x) = u◦(~x; ci) = γ(a, b,m,Σi) · fradial(d(~x, ~µi;Σi); a, b).

Here d is a distance measure as it was discussed in Section 2.1 and fradial

is a radial function as it was considered in Section 2.2. This radial function
and its parameters a and b are the same for all clusters. γ is an optional
normalization factor for the radial function. It was also discussed in
Section 2.2 w.r.t. the interpretation of the radial function as a probability
density and then scales the radial function so that its integral over the data
space becomes 1. In all other cases this factor is simply set to 1.

Depending on the clustering or classification model, the membership
degrees may be normalized in some way over all clusters. Such normal-
ization modes are discussed in Section 2.4, in which I also consider the
weight %i of a cluster. It does not appear in the above formula, as it has no
proper meaning for cluster prototypes considered in isolation.

3An m×m matrix A is called symmetric if it equals its transpose, i.e. A = A>.
4An m×m matrix A is called positive definite iff for all m-dimensional vectors ~v 6= ~0,

it is ~v>A~v > 0.

2.3. PROTOTYPE PROPERTIES 21

While the cluster center ~µi = (µi1, . . . , µim), which is a simple point
in the data space, needs no further explanation, it is useful to inspect a
cluster’s covariance matrix a little more closely. I write such a matrix as

Σi =

 σi,11 . . . σi,1m

...
. . .

...
σi,m1 . . . σi,mm

 .

That is, σi,jk refers to the element in the j-th row and k-th column of the
covariance matrix of cluster ci. Similar to common usage in statistics, the
diagonal elements σi,jj may alternatively be written as σ2

i,j , with the square
replacing the double second index.

To distinguish between the size and the shape of a cluster, I exploit the
fact that (the square root of) the determinant |Σi| can be seen as a mea-
sure of the size of a unit (hyper-)sphere (i.e., the set of points for which the
distance from a given point is no greater than 1) w.r.t. the Mahalanobis dis-
tance that is parameterized with the covariance matrix Σi. More precisely:√
|Σi| is proportional5 to the described (hyper-)ellipsoid’s (hyper-)volume

(see Section A.4 in the appendix, especially page 283, for a detailed expla-
nation of this fact). As a consequence we can distinguish between the size
and the shape of a cluster by writing its covariance matrix as

Σi = σ2
i Si,

where σi = 2m
√
|Σi| and Si is a symmetric and positive definite matrix

satisfying |Si| = 1. Since Si has a unit determinant (and thus unit size in
basically all possible interpretations of the meaning of the term size, see
below), it can be seen as a measure of only the shape of the cluster, while
its size is captured in the other factor. This view is exploited in the shape
and size regularization methods studied in Sections 6.1.2 and 6.1.3.

Note that it is to some degree a matter of taste how we measure the size
of a cluster. From the above considerations it is plausible that it should be
of the form σκ

i , but good arguments can be put forward for several different
choices of κ. The choice κ = m, for example, where m is the number
of dimensions of the data space, yields σm

i =
√
|Σi|. This is directly the

(hyper-)volume of the (hyper-)ellipsoid that is described by the Mahalanobis
distance parameterized with Σi (see above).

5The proportionality factor is γ = π
m
2 rm

Γ(m
2 +1)

, which is the size of a unit (hyper-)sphere

in m-dimensional space, measured with the Euclidean distance (see Section A.4 in the
appendix, especially page 283, for details).

22 CHAPTER 2. CLUSTER PROTOTYPES

However, the choice κ = m has the disadvantage that it depends on
the number m of dimensions of the data space. Since it is often convenient
to remove this dependence, κ = 1 and κ = 2 are favorable alternatives.
The former can be seen as an equivalent “isotropic”6 standard deviation,
because a (hyper-)sphere with radius σi w.r.t. the Euclidean distance has
the same (hyper-)volume as the (hyper-)ellipsoid that is described by the
Mahalanobis distance parameterized with Σi. Similarly, σ2

i = |Σi| (i.e., the
choice κ = 2) may be seen as an equivalent “isotropic” variance.

Up to now I considered only general covariance matrices, which can
describe (hyper-)ellipsoids in arbitrary orientation. However, in applications
it is often advantageous to restrict the cluster-specific covariance matrices
to diagonal matrices, i.e., to require

Σi = diag(σ2
i,1, . . . , σ

2
i,m).

The reason is that such covariance matrices describe (as already studied
in Section 2.1) (hyper-)ellipsoids the major axes of which are parallel to
the axes of the coordinate system. As a consequence, they are much eas-
ier to interpret, since humans usually have considerable problems to imag-
ine (hyper-)ellipsoids in general orientation, especially in high-dimensional
spaces. A related argument was put forward in [Klawonn and Kruse 1997],
in which a fuzzy clustering result was used to derive fuzzy rules from data.
In this case axes parallel (hyper-)ellipsoids minimize the information loss
resulting from the transformation into fuzzy rules.

2.4 Normalization Modes

A clustering result or classification model consists not only of one, but of
several clusters. Therefore the question arises how to assign a data point
to a cluster, either in a crisp way, so that each data point is assigned to
exactly one cluster, or to several clusters using degrees of membership. The
basis for this assignment is, of course, the set of membership degrees of a
data point ~x to the different clusters i, 1 ≤ i ≤ c, of the model, as they
were defined in the preceding section, i.e., u◦i (~x) = u◦(~x; ci), 1 ≤ i ≤ c.
In addition, we have to respect the weights %i of the clusters, which may
express a preference for the assignment, thus modifying the relation of the
membership degrees. Finally, it can be useful to transform the membership

6From the Greek “iso” — equal, same and “tropos” — direction; “isotropic” means
that all directions have the same properties, which holds for a sphere seen from its center,
but not for a general ellipsoid, the extensions of which differ depending on the direction.

2.4. NORMALIZATION MODES 23

degrees in order to ensure certain properties of the resulting assignment,
which is particularly important if degrees of membership are used. This
whole process I call the normalization of the membership degrees.

In order to simplify the explanation, I take the normalization procedure
apart into three steps: In the first step, weighting, the membership degree
of a data point ~x to the i-th cluster is multiplied with the weight of the
cluster, i.e. ∀i; 1 ≤ i ≤ c :

u∗i (~x) = %i · u◦i (~x).

The second step consists in the following transformation ∀i; 1 ≤ i ≤ c :

u•i (~x;α, β) = max {0, (u∗i (~x))α − βmax c
k=1(u

∗
k(~x))α} , α > 0, 0 ≤ β < 1.

This transformation is inspired by the approach presented in [Klawonn and
Höppner 2003] and can be seen as a heuristic simplification of that ap-
proach. The idea underlying it is as follows: both the Cauchy function and
the Gaussian function do not vanish, not even for very large arguments. As
a consequence any data point has a non-vanishing degree of membership to
a cluster, regardless of how far away that cluster is. The subsequent nor-
malization described below (except when it consists in a hard assignment)
does not change this. Under these conditions certain clustering algorithms,
for example the popular fuzzy c-means algorithm (see Sections 3.1 and 5.2),
can show an undesirable behavior: they encounter serious problems if they
are to recognize clusters that differ considerably in how densely they are
populated. The higher number of points in a densely populated region,
even if they all have a low degree of membership, can “drag” a cluster pro-
totype away from a less densely populated region, simply because the sum
of a large number of small values can exceed the sum of a small number of
large values. This can leave the less densely populated region uncovered.

A solution to this problem consists in making it possible that a data point
has a vanishing degree of membership to a cluster, provided that cluster is
far away [Klawonn and Höppner 2003]. At first sight, this may look like a
contradiction to my rejection of radial functions that have a limited region
of non-vanishing values (like splines or trapezoidal functions) in Section 2.2.
Such functions automatically vanish if only the data point is far enough away
from a cluster. However, the effect of the above transformation is different.
There is no fixed distance at which the degree of membership to a cluster
vanishes nor any limit for this distance. It rather depends on how good
the “best” cluster (i.e., the one yielding the highest (weighted) degree of
membership) is, since the value subtracted from the degree of membership
depends on the degree of membership to this cluster.

24 CHAPTER 2. CLUSTER PROTOTYPES

Intuitively, the above transformation can be interpreted as follows: The
degree of membership to the “best” cluster (the one yielding the highest
degree of membership) never vanishes. Whether the data point has a non-
vanishing degree of membership to a second cluster depends on the ratio
of the (untransformed) degrees of memberships to this second cluster and
to the best cluster. This ratio must exceed the value of the parameter β,
otherwise the degree of membership to the second cluster will be zero.

To illustrate the effect of the value of β in this transformation, Figures 2.8
to 2.10 show the degrees of membership for a one-dimensional domain with
two clusters, located at −0.5 (black curve) and 0.5 (grey curve), for a Eu-
clidean distance and the inverse squared distance (Figure 2.8), the standard
Cauchy function (Figure 2.9), and the standard Gaussian function (Fig-
ure 2.10). Since the transformation is the identity for the left diagrams, it
becomes clearly visible how a positive value for β reduces the membership
to one cluster to zero in certain regions. Thus it has the desired effect.

Note that the effect of the parameter α can often be achieved by other
means, in particular by the cluster size or the choice of the radial function.
For example, if the generalized Gaussian function is used with the cluster
weights %i fixed to 1 and β = 0, we have

u∗i (~x) = u◦i (~x) = exp
(
−1

2
(d(~x, ~µi;Σi))a

)
and therefore

u∗i (~x) = u◦i (~x) =
(

exp
(
−1

2
(d(~x, ~µi;Σi))a

))α

= exp
(
−α

2
(d(~x, ~µi;Σi))a

)
.

In this form it is easy to see that the parameter α could be incorporated
into the covariance matrix parameterizing the Mahalanobis distance, thus
changing the size of the cluster (cf. Section 2.3).

Similarly, if the unnormalized generalized Cauchy function with b = 0 is
used, and the cluster weights %i are fixed to 1, we have

u∗i (~x) = u◦i (~x) =
1

(~x− ~µi)a

and therefore

u•i (~x;α, 0) =
(

1
(~x− ~µi)a

)α

=
1

(~x− ~µi)aα
.

This is equivalent to changing the parameter a of the generalized Cauchy
function to a′ = aα. A difference that cannot be reproduced by changing

2.4. NORMALIZATION MODES 25

1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0
1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0.2

Figure 2.8: Transformed membership degrees for the generalized Cauchy
function (a = 2, b = 0) for two cluster centers at −0.5 and 0.5.

1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0
1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0.4

Figure 2.9: Transformed membership degrees for the generalized Cauchy
function (a = 2, b = 1) for two cluster centers at −0.5 and 0.5.

1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0
1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0.4

Figure 2.10: Transformed membership degrees for the generalized Gaussian
function (a = 2) for two cluster centers at −0.5 and 0.5.

the cluster size or the parameters of the radial function results only if the
generalized Cauchy function is used with b > 0.

However, the main reason for introducing the parameter α is that in
fuzzy clustering an exponent like α enters the update formulae, where it is
coupled to another exponent that controls how the case weight for the esti-
mation of the cluster parameters is computed from the membership degrees.
This issue is discussed in more detail in Chapter 5.

26 CHAPTER 2. CLUSTER PROTOTYPES

Note that choosing α = 1 and β = 0 in the transformation rule leaves the
(weighted) membership degrees unchanged, i.e., u•i (~x; 1, 0) = u∗i (~x). This is
actually the standard choice for most algorithms.

Note also that a similar effect can be achieved using the transformation

u•i (~x;α, β) =
{

(u∗i (~x))
α, if (u∗i (~x))

α ≥ βmax c
k=1(u

∗
k(~x))α,

0, otherwise,

with α > 0, and 0 ≤ β < 1. The advantage of this alternative transfor-
mation is that it does not change the ratios of the (weighted) membership
degrees. However, the former transformation is closer to the inspiring rule
by [Klawonn and Höppner 2003]. This rule was derived from a generaliza-
tion of the fuzzifier in fuzzy clustering and is defined as follows: sort the
membership degrees u∗i (~x) descendingly, i.e., determine a mapping function
ς : {1, . . . , c} → {1, . . . , c} for the cluster indices such that

∀i; 1 ≤ i < c : u∗ς(i)(~x) ≥ u∗ς(i+1)(~x).

Then define the quantity č(~x), which measures the number of clusters to
which the data point ~x has a non-vanishing membership degree, as

č(~x) = max

{
k

∣∣∣∣∣ u∗ς(k)(~x) >
β

1 + β(k − 1)

k∑
i=1

u∗ς(i)(~x)

}
.

Based on this quantity the transformed degrees of membership are then
(note that the parameter α does not appear in this formula)

u•i (~x;α, β) = 2
(

(1 + β(č(~x)− 1))
u∗i (~x)
U

− β

)
=

2(1 + β(č(~x)− 1))
U

(
u∗i (~x)−

β

1 + β(č(~x)− 1)
U

)
,

where
U =

∑
k:ς(k)≤č(~x)

u∗ς(k)(~x).

The relation to the first transformation studied above can be seen if one
normalizes the membership degrees to sum 1 over all clusters. Then the
following transformation is effectively equivalent:

u•i (~x;α, β) = max

0, u∗i (~x)−
β

1 + β(č(~x)− 1)

∑
k:ς(k)≤č(~x)

u∗ς(k)(~x)

 .

2.4. NORMALIZATION MODES 27

An obvious disadvantage of this approach is that it does not allow for such
nice and simple interpretations as the two transformations studied before.
Its advantage, however, is that it can be justified very cleanly in the area
of fuzzy clustering by a derivation from a specific objective function. This
derivation is discussed in more detail in Sections 3.1 and 5.2.

After the membership degrees have been weighted and transformed in
the first two steps, the final third step is the actual normalization, which
ensures certain properties of the set of membership degrees as a whole,
rather than properties of individual membership degrees. Depending on the
general approach and the algorithm, the following choices have been tried:

• hard/crisp assignment

u
(hard)
i (~x) =

{
1, if i = argmax c

k=1u
•
k(~x),

0, otherwise.

• normalization to sum 1

u
(sum1)
i (~x) =

u•i (~x)∑c
k=1 u

•
k(~x)

• normalization to maximum 1

u
(max1)
i (~x) =

u•i (~x)
max c

k=1u
•
k(~x)

• no normalization
u

(raw)
i (~x) = u•i (~x)

A hard assignment to clusters can lead to ties, i.e., situations in which
two or more clusters share the highest degree of membership. Such ties
are usually broken arbitrarily, i.e., the data point is assigned to a cluster
that is randomly chosen from those to which it has the highest degree of
membership. Note that a hard assignment can (almost) be mimicked by
letting the parameter β of the membership transformation rule go to one
and using a normalization to sum 1 or maximum 1.

Unfortunately, none of these normalization modes is perfect: all have
their specific advantages and disadvantages. A hard assignment, which is
used in many classical clustering and classification approaches like, for ex-
ample, hard c-means clustering and (supervised and unsupervised) learning
vector quantization, suffers from the fact that often data points cannot be

28 CHAPTER 2. CLUSTER PROTOTYPES

Figure 2.11: Results of the hard c-means (left) and the fuzzy c-means al-
gorithm (right) for a symmetric data set. Fuzzy membership degrees allow
for assigning the point in the middle to both clusters with a degree of 0.5.

assigned unambiguously to one (and only one) cluster. In such situations a
crisp decision which cluster such data points belong to can often be made
only with a certain degree of arbitrariness, enforcing sharp boundaries where
there is actually ambiguity. An extreme example is the highly symmetric
data set shown in Figure 2.11, which is to be divided into two clusters. The
problem obviously resides with the data point in the middle. Assigning it
uniquely to one cluster, as shown on the left (which is the result of hard
c-means clustering7) breaks the symmetry unintuitively.

For such situations a normalization to sum 1 or maximum 1 is much more
appropriate, as it allows us to assign the point in the middle equally to both
clusters. This is shown on the right in Figure 2.11 (result of fuzzy c-means
clustering with a normalization to sum 1), thus maintaining in their solution
the symmetry of the data set. However, symmetric data distributions are
not the only case where graded assignments are advantageous. Whenever
the clusters are not clearly separated, but rather form regions of higher data
point density, which are separated by regions of lower data point density, a
sharp boundary is not intuitive and should be replaced by a soft transition
between the clusters, described by degrees of membership.

A normalization to sum 1 is particularly meaningful if the set of clusters
describes a so-called mixture model [Everitt and Hand 1981] of the data.
In such a mixture model the probability density function of the process
that generated the data is assumed to be a mixture of a certain number
of probability density functions, each of which is described by one cluster.

7Details about the clustering algorithms with which the results shown in Figure 2.11
were obtained (hard and fuzzy c-means clustering) are given in later chapters. Here
they only serve the purpose of demonstrating the effects of a hard assignment versus
membership degrees normalized to sum 1 or maximum 1.

2.4. NORMALIZATION MODES 29

Formally, we consider the likelihood of the data point in this case, that is,

f ~X(~x;C) =
c∑

y=1

f ~X,Y (~x, y;C) =
c∑

y=1

pY (y;C) · f ~X|Y (~x|y;C).

~X is a random vector that has the points of the data space as possible values
(i.e., dom(~X) = IRm) and Y is a random variable that has the cluster indices
as possible values (i.e., dom(Y) = {1, . . . , c}). pY (y;C) is the probability
that the data point belongs to (was generated by) the y-th component of the
mixture. This probability is stated by the cluster weights %y. f ~X|Y (~x|y;C)
is the conditional probability density function of the data points given the
cluster. It is modeled by the clusters’ membership functions u◦y. That is,

pY (y;C) · f ~X|Y (~x|y;C) = %y · u◦y(~x) = u∗y(~x).

Of course, to be able to serve as a conditional probability function, the
membership function u◦y has to be normalized to integral 1 over the data
space (cf. page 19 in Section 2.2 and page 20 in Section 2.3 for details).

If the set of clusters describes a mixture model, the normalization of
the membership degrees to sum 1 is equivalent to computing the posterior
probabilities of the clusters given the data point. This follows, by a simple
application of Bayes’ rule and the rule of total probability:

pY | ~X(y|~x) =
pY (y;C) · f ~X|Y (~x|y;C)

f ~X(~x;C)

=
pY (y;C) · f ~X|Y (~x|y;C)∑c
i=1 pY (i;C) · f ~X|Y (~x|i;C)

=
%y · u◦y(~x)∑c
i=1 %i · u◦i (~x)

=
u∗y(~x)∑c
i=1 u

∗
i (~x)

= u(sum1)
y (~x).

Of course, the last step follows only if no membership transformation is
used, i.e., if α = 1 and β = 0. However, this is no real restriction, as such
a transformation is usually not necessary with the most common radial
function used in mixture models, that is, the Gaussian function.

A normalization to sum 1 also has its disadvantages, though, as can be
seen from Figures 2.12 to 2.14, which show the normalized versions of the
(transformed) degrees of membership depicted in Figures 2.8 to 2.10, re-
spectively. With the exception of the inverse squared distance (Figure 2.12)
the maximum of the membership degrees does no longer coincide with the

30 CHAPTER 2. CLUSTER PROTOTYPES

1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0
1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0.2

Figure 2.12: Membership degrees normalized to sum 1 for the generalized
Cauchy function (a = 2, b = 0) for two cluster centers at −0.5 and 0.5.

1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0
1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0.4

Figure 2.13: Membership degrees normalized to sum 1 for the generalized
Cauchy function (a = 2, b = 1) for two cluster centers at −0.5 and 0.5.

1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0
1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0.4

Figure 2.14: Membership degrees normalized to sum 1 for the generalized
Gaussian function (a = 2) for two cluster centers at −0.5 and 0.5.

positions of the cluster centers (−0.5 and 0.5, as indicated by the thin ver-
tical lines). If a positive value for β annuls, in some region, the degree
of membership to the cluster that is further away (thus, for two clusters,
forcing the membership degree to the other cluster to be one), the cluster
centers do not lie in the regions with membership degree 1 (again with the
exception of the inverse squared distance, Figure 2.12). Such a behavior is
definitely not what we expect intuitively of degrees of membership.

2.4. NORMALIZATION MODES 31

1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0
1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0.2

Figure 2.15: Normalization to maximum 1 for the generalized Cauchy func-
tion (a = 2, b = 0) for two cluster centers at −0.5 and 0.5.

1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0
1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0.4

Figure 2.16: Normalization to maximum 1 for the generalized Cauchy func-
tion (a = 2, b = 1) for two cluster centers at −0.5 and 0.5.

1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0
1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0.4

Figure 2.17: Normalization to maximum 1 for the generalized Gaussian
function (a = 2) for two cluster centers at −0.5 and 0.5.

Even worse, if we consider the degrees of membership to one cluster,
once we move beyond the position of the other, they increase again, with the
exception of the Gaussian function (2.14). This behavior is an effect of the
normalization, since it is not present in the figures showing the unnormalized
degrees of membership (2.8 to 2.10). It is even less intuitive than the fact
that the maxima do not coincide with the cluster centers. The same effect
can be observed for a normalization to maximum 1 (Figures 2.15 and 2.16).

32 CHAPTER 2. CLUSTER PROTOTYPES

For a formal analysis of this effect, which will reveal a decisive differ-
ence between the generalized Cauchy function and the generalized Gaussian
function already mentioned earlier, consider a one-dimensional space with
two cluster centers at µ1 and µ2 that are ∆ apart, i.e., µ2 = µ1 +∆, ∆ > 0.
(Note that instead of assuming a one-dimensional space we may just as
well consider a multi-dimensional space and restrict our considerations for
the time being to the line through the two cluster centers.) For simplicity,
assume that membership degrees are transformed with α = 1 and β = 0.
Then, regardless of the radial function used, its parameters, and whether
the membership degrees are normalized to sum 1 or maximum 1, we have

lim
x→∞

u1(x)
u2(x)

= lim
x→∞

u∗1(x)
u∗2(x)

,

since the normalization terms cancel each other. For a generalized Cauchy
function, in which we fix the parameter a to 2 merely in order to simplify
the computations, this leads to [Döring et al. 2005]

lim
x→∞

u∗1(x)
u∗2(x)

= lim
x→∞

fCauchy(d(x, µ1;1); 2, b)
fCauchy(d(x, µ2;1); 2, b)

= lim
x→∞

(x− µ2)2 + b

(x− µ1)2 + b

= lim
x→∞

(x− µ1 −∆)2 + b

(x− µ1)2 + b

= lim
x→∞

(x− µ1)2 + b

(x− µ1)2 + b
+ lim

x→∞

2∆(x− µ1) + ∆2

(x− µ1)2 + b

= 1 + 0 = 1.

Consequently we have for a normalization to sum 1 that

lim
x→∞

u1(x) = lim
x→∞

u2(x) =
1
2
.

Note that we get the same result for other values of a, only that the formal
derivation is a little more complicated than for the standard case a = 2.
Note also that the result may easily be transferred to directions in a multi-
dimensional space that deviate from the line connecting the two clusters.
Again this only leads to some technical complications, because then the
value of ∆ is not constant, but depends on the angle under which the two
cluster centers are seen. Finally, note that the result may be generalized to
c clusters, for which the membership degrees approach 1

c in the limit.

2.4. NORMALIZATION MODES 33

The limit behavior of the generalized Gaussian function, on the other
hand, is completely different. Again setting the parameter a = 2 to simplify
the computations, we obtain here [Döring et al. 2005]

lim
x→∞

u1(x)
u2(x)

= lim
x→∞

fGauss(d(x, µ1;1); 2, 0)
fGauss(d(x, µ2;1); 2, 0)

= lim
x→∞

exp
(
− 1

2 (x− µ1)2
)

exp
(
− 1

2 (x− µ2)2
)

= lim
x→∞

exp
(
−1

2
(
(x− µ1)2 − (x− µ1 −∆)2

))
= lim

x→∞
exp

(
−1

2
(
2x∆− 2µ1∆−∆2

))
= lim

x→∞
exp

(
−x∆− µ1∆− ∆2

2

)
= 0.

Consequently we have for a normalization to sum 1 or maximum 1 that

lim
x→∞

u1(x) = 0 and lim
x→∞

u2(x) = 1.

For x→ −∞ the relation is reversed, so that we have

lim
x→−∞

u1(x) = 1 and lim
x→−∞

u2(x) = 0.

That is, in the limit a data point will be assigned exclusively to the closer
cluster. Note that, just as for the generalized Cauchy function, the above
derivation does not really depend on the choice a = 2. We only have to
ensure that a > 1 (for a = 1 we obviously get a constant ratio, which
depends on the distance ∆ of the two clusters). In a similar way, we can
generalize the result to arbitrary directions in a multi-dimensional domain
and to several clusters. That is, in the limit a data point is assigned with a
degree of 1 to the closest cluster and with a degree of 0 to all others.

Since I need this observation later, it should be noted that the same
effect can be achieved if one lets the determinant of the size and shape pa-
rameter Σi go to zero, because this “increases”, through the scaling matrix
of the eigenvalue decomposition of Σ, the effective distance of a data point
to a cluster center (cf. Section 2.1). In other words, if the size of the clusters
goes to zero, the data points are also assigned exclusively to the closest clus-
ter. This effect can be used to represent hard assignment algorithms (like
classical learning vector quantization) as limiting cases of Gaussian radial
function based algorithms that use membership degrees.

34 CHAPTER 2. CLUSTER PROTOTYPES

1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0
1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0.2

Figure 2.18: Membership degrees normalized to sum 1 for the generalized
Cauchy function (a = 2, b = 0) for three cluster centers at −1, 0, and 1.

1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0
1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0.5

Figure 2.19: Membership degrees normalized to sum 1 for the generalized
Cauchy function (a = 2, b = 1) for three cluster centers at −1, 0, and 1.

1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0
1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0.61

Figure 2.20: Membership degrees normalized to sum 1 for the generalized
Gaussian function (a = 2) for three cluster centers at −1, 0, and 1.

As a further illustration of the effects of normalization, Figures 2.18
to 2.20 show, for a one-dimensional domain, the degrees of membership
for three clusters at 0 (black curve), −1 and 1 (grey curves). The left
diagrams always show the situation for an identity transformation, i.e., for
the standard case α = 1 and β = 0. The right diagrams, on the other hand,
use special values for the parameter β of the membership transformation
to achieve a specific effect, like that the membership degrees to one cluster

2.4. NORMALIZATION MODES 35

1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0
1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0.2

Figure 2.21: Normalization to maximum 1 for the generalized Cauchy func-
tion (a = 2, b = 0) for three cluster centers at −1, 0, and 1.

1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0
1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0.5

Figure 2.22: Normalization to maximum 1 for the generalized Cauchy func-
tion (a = 2, b = 1) for three cluster centers at −1, 0, and 1.

1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0
1

0
−3 −2 −1 0 1 2 3

α = 1, β = 0.61

Figure 2.23: Normalization to maximum 1 for the generalized Gaussian
function (a = 2) for three cluster centers at −1, 0, and 1.

vanish at the position of the other clusters. However, this effect depends
on the relation between the distance of the cluster centers and the value
of β, which is usually not adapted in a clustering algorithm. It actually also
requires equidistant cluster centers. Hence these illustrations should not
be seen as arguments for these special values of β, but only as illustrations
what effects can result from different choices of β. Figures 2.21 to 2.23 show
the corresponding situations for a normalization to maximum 1.

36 CHAPTER 2. CLUSTER PROTOTYPES

1

0
−3 −2 −1 0 1 2 3

β = 0.05
1

0
−3 −2 −1 0 1 2 3

β = 0.1

Figure 2.24: Special membership degrees normalization for the generalized
Cauchy function (a = 2, b = 0) for two cluster centers at −0.5 and 0.5.

1

0
−3 −2 −1 0 1 2 3

β = 0.1
1

0
−3 −2 −1 0 1 2 3

β = 0.2

Figure 2.25: Special membership degrees normalization for the generalized
Cauchy function (a = 2, b = 0) for two cluster centers at −1, 0, and 1.

Finally, Figures 2.24 and 2.25 show the effects of the membership trans-
formation suggested by [Klawonn and Höppner 2003] (cf. page 26). They
also give an idea of how it relates to the membership transformation

u•i (~x;α, β) = max {0, (u∗i (~x))α − βmax c
k=1(u

∗
k(~x))α} , α > 0, 0 ≤ β < 1,

the effects of which for a normalization to sum 1 are shown in Figures 2.12
and 2.18. Obviously, the behavior is very similar, only that the values for β
have to be chosen differently. It also reveals another disadvantage of the
scheme by [Klawonn and Höppner 2003]: the values of β, with which certain
effects can be achieved, depend more strongly on the number of clusters.

Due to the unintuitive effects of a normalization to sum 1, which were
discussed above, using no normalization seems to be an attractive alter-
native. However, approaches that work with unnormalized membership
degrees—like, for example, possibilistic fuzzy clustering [Krishnapuram and
Keller 1993]—have their drawbacks too. Although the membership degrees
are now easier to interpret, since they do not suffer from the abovemen-

2.5. CLASSIFICATION SCHEMES 37

tioned strange behavior, serious problems arise with the algorithm that is
used to find the clusters. The reason is that doing without normalization
decouples the clusters, so that each of them is optimized independently (in
particular if the parameter β of the membership transformation is set to 0).
As a consequence the clusters have a strong tendency to become identical.
Other results are obtained only due to the initialization and the fact that
the optimization can get stuck in a local minimum. This problem is dis-
cussed in more detail in Section 3.1, which—among other things—reveals
the core problem of possibilistic fuzzy clustering.

In order to profit from the advantages of unnormalized membership de-
grees nevertheless, at least to some degree, some more flexible normalization
schemes than those listed above have been tried, in particular in the area of
learning vector quantization. An example is restricted hard assignment.
In this approach a data point is assigned crisply if there is a cluster that is
within some given maximum distance of the data point (or, equivalently, to
which the data point has at least a given minimum degree of membership)
[Acciani et al. 1999, Borgelt et al. 2004]. This distance is described by a
(sometimes cluster-specific and adaptable) radius or radius factor. Other-
wise the data point is assigned to all clusters without normalization.

The advantage of such an approach is that the clusters are still coupled
through the hard assignment inside a certain radius. But since the influence
is restricted to a region close to the cluster center, the transition from one
cluster to another is made with degrees of membership that are easy to
interpret. The problem of the sharp drop at the hard assignment radius
may be avoided by measuring the distance for the unnormalized membership
degrees from this radius (which is equivalent to an r-insensitive distance).
The drawbacks of a restricted hard assignment are that the choice of the
radius is difficult and automatic adaptation rules for this radius are more
or less heuristic in nature and do not always have the desired effect.

2.5 Classification Schemes

Up to now I studied only how to assign a data point to one or several
clusters. For classification purposes, however, we also need a method to
assign it to a class, which is a different issue, because a class may consist
of several clusters. Nevertheless the assignments to the clusters form, of
course, the basis for the assignments to the classes.

There are basically two prototype-based classification schemes, that is,
schemes of assigning data points to classes based on a cluster structure. The

38 CHAPTER 2. CLUSTER PROTOTYPES

first approach is known as the nearest prototype classifier or, slightly
more generally, the maximum membership classifier. In this approach
each cluster is endowed with a class label ζi ∈ {1, . . . , s}, 1 ≤ i ≤ c (several
clusters may share the same label). Then the prototype that is closest to the
data point (or yields the highest degree of membership) is used to classify
a data point by labeling it with the associated class:

o = ζk where k = argmax c
i=1 ui(~x).

The advantage of this approach is that it is very simple, needs only a mini-
mal extension over a cluster structure (namely the assignment of the class
labels ζi to the clusters), and is very easy to interpret. However, if a single
cluster for one class is surrounded by several clusters of another, the region
in which a data point is labeled with the class of this one cluster may be
too big, since several clusters of the other class may claim that it belongs
to them, so that their joint degree of membership should outweigh a higher
degree of membership to the single cluster.

To handle such situations, the second scheme may be adopted, namely
a classification based on a linear function of the degrees of membership.
This approach is employed, for example, in so-called radial basis function
neural networks [Rojas 1993, Haykin 1994, Anderson 1995, Nauck et
al. 2003]. The idea is to set up a class membership function gk, 1 ≤ k ≤ s,
for each of the classes (s is the number of classes) as a linear function

gk(~x) = wk0 +
c∑

i=1

wki ui(~x)

of the cluster memberships. This classification scheme is usually applied
without cluster membership transformation or normalization and without
cluster weights, so that the ui(~x) in the above function are equivalent to
u◦i (~x), 1 ≤ i ≤ c. This shows that the missing cluster weights are actu-
ally incorporated into the coefficients wki. Alternatively, we may see the
coefficients as providing a different cluster weight for each of the classes.

Note that each of the functions gk can be seen as a classifier in its
own right, which discriminates the class it is associated with from all other
classes. Note also that by combining the functions gk the above classification
scheme may just as well be written in matrix-vector form as

~g(~x) = W~u◦(~x),

where W = (wki)1≤k≤s,0≤i≤c, ~u◦(~x) = (1, u◦1(~x), . . . , u
◦
c(~x))

> (note the ad-
ditional 1 in the first element) and ~g(~x) = (g1(~x), . . . , gs(~x))>.

2.5. CLASSIFICATION SCHEMES 39

A crisp class assignment may be obtained from the results (i.e., from the
vector ~g(~x) of class membership degrees) by assigning the data point to the
class that yields the highest value. That is, the classifier predicts the class

o = argmax s
k=1 gk(~x).

A (formal) probability distribution over the classes may be computed by
normalizing the vector ~g(~x), so that the sum of its elements is 1. Note,
however, that such a normalization to sum 1 gives meaningful probabilities
only if the cluster structure describes a so-called mixture model [Everitt
and Hand 1981] for each of the classes. In such a mixture model the proba-
bility density function for each class is assumed to be a mixture of a certain
number of probability density functions, each of which is described by one
cluster (cf. page 29 in Section 2.4 for the analogous case without classes).
Formally, we consider in this case

f ~X|Z(~x|z;C) =
∑

y∈I(z)

f ~X,Y |Z(~x, y|z;C)

=
∑

y∈I(z)

pY |Z(y|z;C) · f ~X|Y,Z(~x|y, z;C).

I(z) ⊆ {1, . . . , c} is a set that contains the indices of those clusters that
describe a mixture component of the z-th class. ~X is a random vector that
has the points of the data space as possible values, i.e., dom(~X) = IRm,
Y is a random variable that has indices of clusters as possible values, i.e.,
dom(Y) = {1, . . . , c}, and Z is a random variable that has indices of classes
as possible values, i.e., dom(Z) = {1, . . . , s}. pY |Z(y|z;C) is the probability
that the data point belongs to (was generated by) the i-th component of
the mixture given that it belongs to the k-th class. f ~X|Y,Z(~x|y, z;C) is the
conditional probability density function of the data points given the class
and the cluster Note that in this model each cluster is usually associated
with only one class (even though the above formula allows for using the same
cluster for several classes), that is, the I(z), 1 ≤ z ≤ s, form a partition
of the set {1, . . . , c} of cluster indices. (As a consequence, we may discard
the random variable Z and its value z from this conditional probability
function.) With the above probability density we define

gz(~x) = f ~X,Z(~x, z;C)

= pZ(z) · f ~X|Z(~x|z;C)

= pZ(z)
∑

y∈I(z)

pY |Z(y|z) · f ~X|Y,Z(~x|y, z;C),

40 CHAPTER 2. CLUSTER PROTOTYPES

where pZ(z) is the prior probability of the z-th class. That is, we have a
special case of a linear function classifier, in which the conditional prob-
ability density f ~X|Y,Z(~x|y, z;C) of a data point given the cluster and the
class is represented by the cluster membership functions u◦y. Of course, for
this to be possible, these membership functions u◦y have to be normalized
to integral 1 over the data space (cf. page 19 in Section 2.2 and page 20
in Section 2.3 for details). The coefficients wzy of the linear classification
functions are defined as ∀z; 1 ≤ z ≤ s : ∀y; 1 ≤ y ≤ c :

wz0 = 0 and
wzy = pY,Z(y, z) = pY |Z(y|z) · pZ(z).

That is, there is no bias term and the coefficients combine the cluster mem-
bership degrees probabilistically. Consequently the coefficients satisfy∑

y∈I(z) wzy =
∑

y∈I(z) pY,Z(y, z) = pZ(z) and

wzy = pY,Z(y, z) > 0 → ∀k; k 6= z : wky = pY,Z(y, k) = 0.

That is, together the coefficients for one class specify the prior probability
of that class and each cluster is used in the mixture model for only one class.

If the cluster structure describes a mixture model, the normalization
of the class assignments in ~g(~x) to sum 1 is equivalent to computing the
posterior probabilities of the classes given the data point, since

pZ| ~X(z|~x) =
f ~X,Z(~x, z;C)

f ~X(~x;C)
=

f ~X,Z(~x, z;C)∑s
k=1 f ~X,Z(~x, k;C)

=
gz(~x)∑s

k=1 gk(~x)
.

This is a very well-known and well-founded classification scheme, which,
for example, is used with one cluster per class in a (näıve or full) Bayes
classifier (cf. Section 4.2 for more details).

Another special case of linear function classification is the following very
simple and fairly common approach: the classes are assigned based on the
sum of the (unnormalized) membership degrees to all clusters sharing the
same class label. Of course, this is just a special linear function with a bias
value of wk0 = 0 for all classes and weights wki that are 1 for all clusters
belonging to the considered class and 0 for all other classes.

Note that, if a normalization of the class memberships to sum 1 is used,
this classification scheme is also a special case of a mixture model classi-
fier. The reason is that the normalization—due to which only the ratios of
the different weights wki matter, but not their absolute values—makes it
equivalent to a mixture model in which all pY,Z(y, z;C) are equal.

2.6. RELATED APPROACHES 41

2.6 Related Approaches

The cluster prototype model described in the preceding sections covers a
large variety of approaches, ranging from probabilistic mixture models and
fuzzy clustering to radial basis function neural networks and Bayes classi-
fiers. However, there are also approaches, which are only partly covered or
in special cases, but which are closely related nevertheless. Some of these
approaches (I do not claim to be exhaustive) I discuss briefly in this sec-
tion. A detailed explanation of these approaches is beyond the scope of this
thesis, though, and thus I presuppose some basic knowledge about them.
An interested reader should consult the referenced literature for details.

In the first place there are the so-called kernel-based methods with
support vector machines as their currently most prominent representa-
tive [Vapnik 1995, Vapnik 1998, Cristianini and Shawe-Taylor 2000, Schöl-
kopf and Smola 2002]. Approaches in this direction are captured formally
by the cluster model studied here if the kernel function used is a radial
function defined on a distance measure.8 In this case the support vectors
found by a support vector machine may formally resemble cluster centers
and the classification is actually achieved with a linear function classifier as
it was discussed in the preceding section.

Concerning the formal model there are, indeed, only some minor differ-
ences between these approaches. Among these are, in the first place, that
only a single kernel function is used, which is parameterized in the same way
for all support vectors, so that it describes a (hyper-)spherical region of in-
fluence9, while the clusters, although they share the same radial function,
can have different shapes and sizes. This is not a real restriction, though,
since a lot of clustering algorithms also require the size and shape parame-
ters of the clusters to be equal, mainly because this enhances robustness.

Secondly, the support vectors may not be arbitrary points in the data
space, but are selected from the given data set. This restriction can turn out
to be inconvenient, especially if data are sparse, but usually it does not lead
to unsurmountable complications. If the data space allows for measuring
distances, but not for computing mean vectors, one is actually forced to
select the cluster centers from the given data set as, for instance, in medoid
clustering [Kaufman and Rousseeuw 1990, Chu et al. 2001].

8Not all kernel functions that are commonly used are in this category. For example,
Gaussian kernels are, but most polynomial kernels are not.

9Of course, support vector machines may rely on the Mahalanobis distance, but only
on the version that is parameterized with the covariance matrix of the whole data set.
There are no covariance matrices that are specific to a support vector.

42 CHAPTER 2. CLUSTER PROTOTYPES

Nevertheless, in most cases the relationship between cluster centers and
support vectors is actually merely formal. The reason is that the objective
of the cluster model, as it was developed in the preceding sections, is to
capture the distribution of the data points with few prototypes. Certain
limited deviations from an ideal representation may be accepted if this im-
proves classification performance, but the foremost concern is to reflect the
characteristics of the data distribution in the model. The idea of support
vector machines, however, is to describe the decision boundary between
classes by finding the data points that are closest to it.10 (See Section 3.5
for more explanations about the objective of support vector machines.) It
is rather an accident if they also capture the data distribution well. As a
consequence, I almost neglect support vector machines in this thesis.

Another fairly closely related approach are fuzzy rule-based systems
[Zadeh 1965, Dubois and Prade 1980, Pedrycz 1988, Böhme 1994, Kruse
et al. 1994] and in particular neuro-fuzzy systems [Nauck et al. 2003],
because they may be seen as a special case or a modification of radial basis
function neural networks. The antecedent of each fuzzy rule, which consists
of a conjunction of fuzzy sets on the individual data dimensions, describes
a softly bounded region in the data space and thus can capture a subset of
the data points that are similar to each other. The consequent of the rule
may assign a class to them in a crisp way or may also specify a fuzzy set.

However, not all fuzzy systems can be interpreted in this way. Limita-
tions include, in the first place, that the fuzzy sets used must be symmetric,
because asymmetric membership functions cannot be mapped to a radial
function based on a distance measure. The reason is that even though the
Mahalanobis distance allows for different shapes and sizes, it always treats
directions alike that are opposite to each other. This fundamental symme-
try is inherent in the model developed in the preceding sections and cannot
be removed without having to accept disadvantages w.r.t. interpretability
as well as the update mechanisms of the learning algorithms.

Secondly, the fuzzy sets may not have different shape. Differing exten-
sions in the different data dimensions can be handled by a scaling matrix
for the distance measure and thus need not be ruled out, but it must not
be that one dimension uses triangular fuzzy sets, another bell-shaped ones.
The reason is, of course, that in the cluster model there is only one radial
function, which cannot be changed depending on the data dimension. If,

10Actually closest in a transformation of the data points to some high-dimensional
space, which is implicitly brought about by the kernel function, but with radial function
kernels this usually also means closest in the original space. In this case the transforma-
tion mainly has the effect of allowing complex decision boundaries.

2.6. RELATED APPROACHES 43

however, the input domain has just a single dimension, all fuzzy rule-based
systems, provided they use symmetric fuzzy sets having the same shape,
can be mapped to the cluster model studied here. This is obvious, because
we only have to choose the (possibly scaled) Euclidean distance and a radial
function that matches the membership function of the fuzzy sets.

On the other hand, if we have multiple input dimensions, it depends on
the t-norm (cf. page 222 in Section 7.2.2 for a definition) by which the con-
junction is modeled as well as the way in which the implication is evaluated,
whether the antecedent of a fuzzy rule can actually be seen as a descrip-
tion of a cluster. This is definitely not the case for fuzzy systems based on
relational equations, since they use the Gödel implication and thus specify
constraints rather than clusters.

A fuzzy system that can be mapped to a cluster view is the standard
Mamdani–Assilian model [Mamdani and Assilian 1975] with t-norm mini-
mum, regardless of the shape of the fuzzy sets, provided they are symmetric
and have the same shape: simply define the radial function in the same way
as the fuzzy sets are defined on the individual dimensions and use a max-
imum distance. Another fuzzy system that can be interpreted as a cluster
model is one that is based on Gaussian fuzzy sets and the t-norm product.
The reason is that a product of standard Gaussian functions is equivalent
to a multi-dimensional Gaussian function based on a Mahalanobis distance
parameterized with a diagonal covariance matrix, i.e.,

m∏
j=1

fgauss(d(xj , yj ;σ2
j); 2, 0) = fgauss(d(~x, ~y; diag(σ2

1 , . . . , σ
2
m)); 2, 0).

It is actually well-known from functional equation theory that the stan-
dard Gaussian function is the only function that has this property.11 How-
ever, this does not mean that fuzzy systems with t-norm product cannot be
mapped if they use non-Gaussian fuzzy sets. In principle, we may change
the radial function of the clusters to meet the shape requirements—it need
not be identical to the membership function of the fuzzy sets.

As already pointed out in Section 1.2, this thesis focuses on point proto-
types, that is, clusters are described by cluster centers, which are points in
the data space, possibly enhanced by size and shape parameters. However,
one may also consider more complex prototypes and measure the similarity
to shapes in the data space rather than the similarity to a single point.
One may, for example, use lines, planes, circles or (hyper-)spheres, ellipses

11Note that the parameter a of the generalized Gaussian function must be two due to
the quadratic nature of the Mahalanobis distance.

44 CHAPTER 2. CLUSTER PROTOTYPES

or (hyper-)ellipsoids, rectangles or (hyper-)boxes etc. as cluster prototypes,
approaches which are combined under the name of shell clustering. These
methods can be highly useful in image processing, because they may be em-
ployed to detect shapes and thus to identify objects in images. An analysis
of these methods is, however, beyond the scope of this thesis. A fairly
detailed overview of fuzzy clustering approaches that use non-point proto-
types can be found, for example, in [Höppner et al. 1999]. An abundance
of references is also given in [Bezdek et al. 1999].

As a final remark, I should point out that cluster models that combine
membership degrees to clusters with a linear function may not only be
used for classification purposes, but also for the prediction of numerical
values. Actually it is, in this context, often more convenient to see the
discrimination between two classes as the prediction of a special real-valued
function. This function may either be crisp and then assigns a value of 1 to
all members of one class and a value of 0 to all other data points, or it is
graded and thus represents class membership degrees or class probabilities.
More than two classes are treated by setting up a classifier for each class,
which discriminates it from all other classes (cf. Section 2.5), and then
deciding on the class that yields the clearest assignment.

In this thesis, however, I confine myself to cluster models for classifi-
cation, since only little extension is necessary to enable cluster models to
predict numerical values generally (with a linear function to combine the
cluster membership degrees, one merely has to revoke all restrictions on the
coefficients wik). As we will see in the next chapter, classification actually
allows for a wider variety of objective functions than numerical prediction
and thus may be seen, in a way, as the more general task.

Chapter 3

Objective Functions

Even though not all clustering and classification algorithms, which try to
find a set of prototypes to describe the data, start from an objective function
to derive the induction procedure (some use heuristics that sometimes may
even appear a bit ad hoc), their goal can often be characterized as the
optimization of a certain quantity. This objective quantity also provides an
immediate measure of the quality of the clustering result and thus defines
when an algorithm has been successful. At least it enables us to compare
two results of the same algorithm, which may have been obtained due to
different initializations, by comparing the value of the objective function.
It should be noted, though, as is also emphasized in [Bezdek et al. 1999],
that an optimal result w.r.t. a chosen objective function is not necessarily
the “best” result. Since human perception easily finds clusters, we may
have expectations about the result, or an application may require specific
properties, which are not properly represented by the objective function.

In this chapter I review objective functions for prototype-based clas-
sification and clustering, which can be divided into two main categories:
those that are based on the minimization of the sum of certain (squared)
deviations and those that start from a probabilistic model and try to max-
imize the likelihood or likelihood ratio of the data. These two main classes,
which both contain clustering as well as classification approaches, are stud-
ied in Sections 3.1 (clustering based on the least sum of squared distances),
3.2 (classification based on the least sum of squared errors), 3.3 (clustering
based on the maximization of the likelihood of the data), and 3.4 (classi-
fication based on the maximization of the likelihood ratio of the classes).
In Section 3.5 I briefly consider alternative approaches.

45

46 CHAPTER 3. OBJECTIVE FUNCTIONS

3.1 Least Sum of Squared Distances

The oldest and most common objective function for clustering algorithms is
the sum of (squared) distances of the data points to the cluster centers they
are assigned to. The idea underlying this objective function is that good
cluster centers should be as representative for the data points as possible,
which holds intuitively if the deviation of the data points from the positions
of the cluster centers is as small as possible. Therefore the sum of (squared)
distances is to be minimized. This is directly analogous to the definition
of location measures in descriptive statistics, where values (or vectors) are
chosen, around which the dispersion of the data is minimal. (The arithmetic
mean, for instance, minimizes the sum of squared differences to the sample
values, the median minimizes the sum of absolute differences.)

Formally, the sum of (squared) distances can be written as

J(X,U,C) =
c∑

i=1

n∑
j=1

uij d
2
ij ,

where X = {~xj | 1 ≤ j ≤ n} is the given data set, which consists of n m-
dimensional vectors (cf. Section 1.1), and C = {ci | 1 ≤ i ≤ c} is the set of
cluster prototypes (cf. Chapter 2). dij = d(~xj , ~µi;Σi) denotes the distance
between datum ~xj and the i-th cluster (cf. Section 2.1) and uij ∈ {0, 1}
states whether the datum ~xj is assigned to the i-th cluster (uij = 1 if it
is and uij = 0 otherwise). The c × n binary matrix U = (uij)1≤i≤c,1≤j≤n

combines the individual assignments and is called the partition matrix,
because it describes how the data points are distributed on the different
clusters. That the distribution is actually a partition, that is, that each data
point is assigned to exactly one cluster, is ensured formally by requiring

∀j; 1 ≤ j ≤ n :
c∑

i=1

uij = 1.

This constraint also serves the purpose to rule out the trivial solution

∀i; 1 ≤ i ≤ c : ∀j; 1 ≤ j ≤ n : uij = 0,

which is obviously minimal, but not useful at all. Furthermore, one often
finds the (basically only formal and rarely operational) constraint

∀i; 1 ≤ i ≤ c :
n∑

j=1

uij > 0,

which is meant to ensure that no cluster is empty, i.e., has no data points.

3.1. LEAST SUM OF SQUARED DISTANCES 47

Being forced by the former constraint to set exactly one uij to one for
a given datum ~xj , it is immediately clear that for a given set C of clusters
the minimum is obtained by assigning ~xj to the closest cluster, i.e., the
cluster ci for which the distance dij is minimal. Choosing cluster ck instead,
with dkj > dij , would increase the objective function J by d2

kj − d2
ij > 0.

The above objective function is written with squared distances, since
this is the most common choice. It leads to so-called c-means clustering
[Ball and Hall 1967, Hartigan und Wong 1979, Lloyd 1982] (cf. Section 5.2).
However, one may just as well use the distances directly, i.e., define

J(X,U,C) =
c∑

i=1

n∑
j=1

uij dij ,

which leads to so-called c-medoids clustering [Kaufman and Rousseeuw
1990, Krishnapuram et al. 1999, Chu et al. 2001], where a medoid is
the multi-dimensional analog of a median. It is less popular than c-means
clustering due to some technical problems, which can already be seen from
the (one-dimensional) median: if the number of data points is even and the
two values xl and xr in the middle of a sorted list of the sample values differ,
then any value in [xl, xr] minimizes the sum of absolute differences and thus
it is not uniquely determined. In multiple dimensions this occurs less often
(except when the city block distance is used, with which any vector in a
certain (hyper-)box may minimize the sum of distances), but nevertheless
it can be very tedious to determine the medoid.

In order to cope with this problem, one requires, as it is often also the
case for the median, that the chosen value must come from the data set.1

As a consequence, one tries to find the most central element of the data
points that are assigned to a cluster and uses it as the cluster center.

A further generalization of an objective function based on the least sum
of (squared) distances can be achieved by using a similarity measure instead
of a distance. That is, the objective function may be defined as

J(X,U,C) =
c∑

i=1

n∑
j=1

uij

u•i (~xj)
,

where u•i is the weighted and transformed membership function of the clus-
ter ci as it was defined in Section 2.4. That both the elements uij of

1For the median, for example, this is mandatory if the sample values come from an
attribute with an ordinal scale instead of a metric scale, because then the arithmetical
mean of the two central elements cannot be (meaningfully) computed.

48 CHAPTER 3. OBJECTIVE FUNCTIONS

the partition and the different membership functions (raw u◦i , weighted u∗i ,
transformed u•i , and normalized ui) are denoted by u may appear to be
confusing at first sight, but is actually very natural. As we will see in Chap-
ter 5, the elements uij of the partition matrix are usually computed as the
normalized membership degrees, that is, uij = ui(~xj) = u(~xj , ci), which is
only reflected by the identical symbol.

From this generalized objective function we can easily recover the objec-
tive functions of c-means and c-medoids clustering by choosing the Cauchy
radial function with parameters a = 2, b = 0 and a = 1, b = 0, respectively
(cf. page 16 in Section 2.2). In addition, we may choose arbitrary other
exponents of the distance (other values for the parameter a), may set b to
other values than 0, or employ a Gaussian radial function.

Note, however, that as long as we consider a crisp assignment of the data
points to the clusters (i.e., uij ∈ {0, 1}), the choice of the radial function or
the value of the parameter b has no influence on the assignment for a fixed
set C of clusters. The reason is that in this case only the relative order of the
membership degrees is relevant, not their absolute value, and since both the
(generalized) Cauchy function as well as the (generalized) Gaussian function
are monotonically decreasing, they lead to the same order of the membership
degrees. As a consequence, a data point is always assigned to the cluster to
which it has the smallest distance (or highest degree of membership).

However, this does not mean that all of these objective functions have
their optimal value for the same set of clusters. For the choice of the cluster
parameters the chosen radial function is relevant, as we will see in Chapter 5.
We may not even conclude that the optimal partition is the same, because
with differing choices of the clusters, different partitions may be optimal.
Only for an already determined and fixed set C of clusters, the assignment
is identical for all (parameterizations of the) radial functions.

Most classical clustering algorithms assign each datum to exactly one
cluster, thus forming a crisp partition of the given data. However, as we
already saw in Section 2.4, such a crisp assignment is not always appropriate,
since it can lead to somewhat arbitrary decisions about the location of the
cluster boundaries. In order to cope with this problem, normalizations of
the membership degrees, for instance, to sum 1 are employed instead of a
crisp assignment, as discussed in Section 2.4. In connection with the type
of objective function we are considering here, this leads to so-called fuzzy
clustering [Ruspini 1969, Dunn 1973, Bezdek 1981, Bezdek et al. 1999,
Höppner et al. 1999] and in particular to fuzzy c-means clustering.

In order to incorporate degrees of membership into the objective func-
tion, it may seem, at first sight, to be sufficient to simply extend the allowed

3.1. LEAST SUM OF SQUARED DISTANCES 49

range of values of the uij from the set {0, 1} to the real interval [0, 1], but
to make no changes to the objective function itself, as it is used for crisp
clustering (i.e. the sum of squared distances). However, this is not the case:
the optimum of the objective function is obtained for a crisp assignment, re-
gardless of whether we enforce a crisp assignment or not and also regardless
of the distance measure or similarity function used.

This can easily be demonstrated as follows: let kj = argminc
i=1 d

2
ij , that

is, let kj be the index of the cluster closest to the data point ~xj . Then it is

J(X,U,C) =
c∑

i=1

n∑
j=1

uij d
2
ij

≥
c∑

i=1

n∑
j=1

uij d
2
kjj =

n∑
j=1

d2
kjj

c∑
i=1

uij︸ ︷︷ ︸
=1 (due to the first constraint)

=
n∑

j=1

(
1 · d2

kjj +
c∑

i=1
i6=kj

0 · d2
ij

)
.

Therefore it is best to set ukjj = 1 and uij = 0 for 1 ≤ i ≤ c, i 6= kj .
In other words: the objective function is minimized by assigning each data
point crisply to the closest cluster. Analogous arguments hold, of course, for
membership functions instead of (squared) distances, since both the Cauchy
function and the Gaussian function are monotonically strictly decreasing.

A careful analysis of what is necessary to make a graded assignment
optimal for an objective function that is based on (squared) distances was
first presented in [Klawonn and Höppner 2003]. Since the distances are
fixed by the positions of the data points and the cluster centers, and the
membership function does not change the above argument either, we must
apply a function to the (graded) assignments uij in the objective function.

Formally, we consider the objective function

J(X,U,C) =
c∑

i=1

n∑
j=1

h(uij) d2
ij ,

where h is the mentioned function. In order to explore what properties this
function h must have, we consider the terms of the objective function that
refer to a single data point ~xj . For simplicity, we also confine ourselves to
two clusters c1 and c2. That is, we consider

J(~xj , u1j , u2j) = h(u1j) d2
1j + h(u2j) d2

2j

50 CHAPTER 3. OBJECTIVE FUNCTIONS

and study how it behaves for different values u1j and u2j . A minor technical
complication is introduced into this study by the fact that we may not want
to rule out a crisp assignment categorically: if the distances d1j and d2j

differ significantly, a crisp assignment to the closer cluster should still be
possible. Hence we assume that they differ only slightly, so that we actually
have a situation in which a graded assignment is desired.

Our goal, of course, is to minimize J(~xj , u1j , u2j) by choosing u1j and u2j

appropriately. Since we have only two clusters, the constraint
∑c

i=1 uij = 1
enables us to express u2j by u1j . Hence we consider

J(~xj , u1j) = h(u1j) d2
1j + h(1− u1j) d2

2j

A necessary condition for a minimum of this functional is

∂

∂u1j
J(~xj , u1j) = h′(u1j) d2

1j − h′(1− u1j) d2
2j = 0,

where the prime (′) denotes taking the derivative w.r.t. the argument of the
function. This leads to the simple condition

h′(u1j) d2
1j = h′(1− u1j) d2

2j ,

which yields another argument that a graded assignment cannot be optimal
without any function h: if h is the identity, we have h′(u1j) = h′(1−u1j) = 1
and thus the equation cannot hold if the distances differ.

For the further analysis let us assume, without loss of generality, that
d1j < d2j . Hence we have h′(u1j) > h′(1− u1j). In addition, we know that
u1j > u2j = 1− u1j , because the closer cluster should get the higher degree
of membership. In other words, the function h must be the steeper, the
greater its argument, and, of course, it may coincide with the identity only
for the extreme arguments 0 and 1. Therefore it must be a convex function
on the unit interval [Klawonn and Höppner 2003].

The most common choice for the function h is h(uij) = u2
ij , which leads

to the standard objective function of fuzzy clustering [Ruspini 1969, Dunn
1973, Bezdek 1981, Bezdek et al. 1999, Höppner et al. 1999], namely

J(X,U,C) =
c∑

i=1

n∑
j=1

u2
ij d

2
ij .

Here uij ∈ [0, 1] is the (now graded) assignment of the data point ~xj to
the cluster ci and dij is the distance between data point ~xj and cluster ci.
The c × n matrix U = (uij) is called the fuzzy partition matrix, where
“fuzzy” indicates that its elements now come from the interval [0, 1].

3.1. LEAST SUM OF SQUARED DISTANCES 51

w = 5
4

w = 4

α = 1
5

α = 4
5

Figure 3.1: Different mapping functions h for the (graded) assignments
in the objective function J(X,U,C). Left: h(uij) = uw

ij , w = 5
4 , 2, 3, 5.

Right: h(uij) = αu2
ij + (1− α)uij , α = 1

5 ,
1
2 ,

4
5 .

The first generalization was suggested in [Bezdek 1981] by introduc-
ing an arbitrary exponent w instead of 2, which is called the fuzzifier or
weighting exponent. That is, we now choose h(uij) = uw

ij , w ∈ (1,∞)
(see Figure 3.1 on the left), which leads to the objective function

J(X,U,C) =
c∑

i=1

n∑
j=1

uw
ij d

2
ij , w ∈ (1,∞).

The fuzzifier w determines the “fuzziness” of the clustering: with higher
values for w the boundaries between the clusters become softer, with lower
values they get harder. (This can easily be seen from the left diagram in
Figure 3.1.) Hard clustering results in the limit for w → 1+.

Although it has been applied successfully to a large number of cluster-
ing tasks, this choice of the function h has a serious drawback, which was
already mentioned in passing in Section 2.4. In a way, it “over-corrects” the
weakness of an objective function in which the (graded) assignments ap-
pear directly: with this choice of h, the optimum is necessarily achieved for
a graded assignment. A crisp assignment is completely ruled out, regardless
of the ratio of the distances to the different clusters.

As a consequence, we get the undesired effects described in Section 2.4,
namely that the clustering algorithm encounters serious problems if it is to
recognize clusters that differ considerably in population density. The higher
number of points in a densely populated cluster, even though they have a
low degree of membership to a cluster prototype that is far away, can “drag”
that cluster prototype away from a less densely populated cluster.

52 CHAPTER 3. OBJECTIVE FUNCTIONS

As was revealed in [Klawonn and Höppner 2003], the reason for the
inconvenient property that the optimum is now necessarily obtained for a
graded assignment (with the only exception of a data point that coincides
with a cluster center) lies in the fact that for h(uij) = uw

ij we have h′(0) = 0.
To understand this, consider again the relation

h′(u1j) d2
1j = h′(1− u1j) d2

2j

which was derived above for the assignment of a data point ~xj to two clus-
ters. Obviously, this equation cannot hold if both distances are positive and
one of the factors h′(u1j) and h′(1−u1j) is zero (note that they cannot both
be zero at the same time, because h′ must be, as was derived above, a strictly
increasing function). Therefore, if h′(uij) cannot be zero and h′(0) = 0, it
follows that uij cannot be zero. Likewise, since h′(1− uij) cannot be zero,
uij cannot be 1 either. This rules out a crisp assignment of any data point,
with the exception of those that coincide with a cluster center.

As a consequence of this argument we have that, if we want to allow
crisp assignments (if only for extreme distance ratios), we must choose a
function h, the derivative of which does not vanish at 0. In [Klawonn and
Höppner 2003] it was suggested to use h(uij) = αu2

ij +(1−α)uij , α ∈ (0, 1],
which is shown for three different choices of α in Figure 3.1 on the right.
This choice leads to the objective function

J(X,U,C) =
c∑

i=1

n∑
j=1

(αu2
ij + (1− α)uij) d2

ij , α ∈ (0, 1].

However, the parameter α of this objective function is difficult to interpret
and thus difficult to choose in applications. To find a better parameteriza-
tion, consider again the above relation for the assignment of a data point ~xj

to two clusters. Suppose that dij < dkj and u1j = 1 and consider

d2
2j

d2
1j

=
h′(0)
h′(1)

=
1− α

2α+ (1− α)
=

1− α

1 + α
.

This shows that the minimum ratio of the smaller to the larger squared
distance, at which we first get a crisp assignment, is β = 1−α

1+α . Since this is
an easily interpretable quantity, it is plausible to parameterize the objective
function with it, which, due to α = 1−β

1+β and 1− α = 2β
1+β , leads to

J(X,U,C) =
c∑

i=1

n∑
j=1

(
1− β

1 + β
u2

ij +
2β

1 + β
uij

)
d2

ij , β ∈ [0, 1).

For β = 0 we have the standard objective function of fuzzy clustering.

3.1. LEAST SUM OF SQUARED DISTANCES 53

Another direction in which an objective function that is based on the
sum of squared distances may be generalized concerns the constraint

∀j; 1 ≤ j ≤ n :
c∑

i=1

uij = 1.

Intuitively, it ensures that each data point has the same total influence
by requiring that the (graded) assignments of a data point are normalized
to sum 1. As a consequence an approach that relies on this constraint is
often called probabilistic fuzzy clustering, since with it the (graded)
assignments of a data point formally resemble the probabilities of its being
a member of the corresponding clusters. The partitioning property of a
probabilistic clustering algorithm, which “distributes” the weight of a data
point to the different clusters, is due to this constraint.

However, we already saw in Section 2.4 that such a normalization also
has its drawbacks, namely that the maximum of the membership function
may not coincide with the cluster center anymore and that the membership
degrees may increase again once we move beyond the center of another
cluster. Since such a behavior can cause confusion, it is attractive to discard
it and allow arbitrary (graded) assignments of a data point to different
clusters. Such an approach is usually called possibilistic fuzzy clustering
[Krishnapuram and Keller 1993], since in this case the (graded) assignments
of a data point formally resemble the possibility degrees2 of its being a
member of the corresponding clusters.

However, we cannot simply discard the normalization constraint. As I
pointed out at the beginning of this section, it also serves the purpose to rule
out the trivial minimization of the objective function by setting all uij = 0,
1 ≤ i ≤ c, 1 ≤ j ≤ n. Therefore, if we want to eliminate the normalization
constraint, we have to introduce other means to suppress the trivial solution.
In [Krishnapuram and Keller 1993] it was suggested to extend the objective
function by a term that penalizes low (graded) assignments. Since the
objective function is to be minimized, this additional term basically sums
their differences to 1. That is, the objective function (with a fuzzifier w) is

J(X,U,C) =
c∑

i=1

n∑
j=1

uw
ij d

2
ij +

c∑
i=1

νi

n∑
j=1

(1− uij)w,

where the νi, 1 ≤ i ≤ c, are cluster-specific penalty weights.
2For an extensive study of possibility theory, which is beyond the scope of this thesis,

see [Dubois and Prade 1988]. A brief intuitive introduction can also be found in Chapter 2
of [Borgelt and Kruse 2002].

54 CHAPTER 3. OBJECTIVE FUNCTIONS

Unfortunately, there is another problem involved in dropping the nor-
malization constraint, namely that it decouples the clusters. Since the
(graded) assignment to each cluster can be chosen independently, the objec-
tive function is minimized by optimizing each cluster independently. This
becomes particularly clear, if one writes the objective function as

J(X,U,C) =
c∑

i=1

 n∑
j=1

uw
ij d

2
ij + νi

n∑
j=1

(1− uij)w

and notices that the terms of the outer sum are independent. The conse-
quence is immediately clear: except in very rare cases, in which the data
points exhibit a high symmetry so that there is more than one global mini-
mum, the objective function is minimized only if all cluster prototypes are
identical. If two clusters differed, then one of the two terms of the outer
sum that refer to these two clusters would be smaller (with the exception
of cases with a highly symmetrical data point distribution). Therefore the
value of the objective function could be reduced by setting the cluster with
the greater term equal to the cluster with the smaller term, which is possible,
because the terms have no influence on each other.

Strangely enough it took the scientific community a long time to realize
this irritating fact. Even though [Barni et al. 1996] already reported prob-
lems with possibilistic fuzzy clustering, namely that clusters often became
identical in the possibilistic fuzzy c-means algorithm, and [Krishnapuram
and Keller 1996] commented on these observations, suggesting an ineffec-
tive cure, the true cause was revealed only in [Timm et al. 2001, Timm and
Kruse 2002, Timm 2002, Timm et al. 2004]. The reason why it was over-
looked so long is that for clearly separated clusters the objective function
has pronounced local minima, each of which may be found by a cluster,
depending on the initialization. Thus possibilistic fuzzy clustering some-
times yields meaningful results. If the size of the clusters (cf. Section 2.3) is
properly chosen, it may even yield a useful result if the clusters are not well
separated, even though it is not a true minimum of the objective function.

To illustrate this fact, and also the effect of choosing different (fixed)
cluster sizes, I visualized the vector field describing the gradient of the
objective function for a single cluster center in possibilistic clustering based
on the Euclidean distance. The direction of the gradient vector is coded by
the hue on a standard color circle and its length by the saturation of the
color. As an example, Figure 3.2 shows the gradient for a single data point
that is located at the center. The closer the cluster center gets to this point,
the smaller is the gradient and thus the darker the color.

3.1. LEAST SUM OF SQUARED DISTANCES 55

Figure 3.2: Color coding of the gra-
dient of the objective function of
possibilistic fuzzy clustering for a
single cluster center. The hue repre-
sents the direction (all vectors point
towards the center) and the satura-
tion the strength of the attraction.
This picture was generated with a
single data point in the center.

Since the pictures get clearer in this way, I consider an objective function
based on cluster membership functions instead of pure distances, that is

J(X,U,C) =
c∑

i=1

 n∑
j=1

uw
ij

u◦i (~xj)
+ νi

n∑
j=1

(1− uij)w

 .

Note that the membership function is the raw one (i.e., u◦i), so there is no
cluster weighting or membership transformation. However, the resulting
vector field is scaled before visualization, so that the color saturation is
shifted to a range in which the different levels are clearly distinguishable,
sometimes accepting a cut-off at maximum saturation.

As a test case I took the well-known Iris data set [Anderson 1935], at-
tributes petal length and petal width. Figures 3.3 to 3.5 show the vector
field for a Cauchy function with a = 2, b = 1, Figures 3.6 to 3.8 the vector
field for a Gaussian function with a = 2. The cluster radii are 1, 1

4 , and 1
6 ,

respectively. The data points are shown as small white circles. The group
in the lower left corner are the Iris setosa cases, the group in the upper right
corner comprises Iris versicolor (lower left part of the data point cloud) and
Iris virginica (upper right part of the data point cloud).

Figures 3.3 already shows the problem very clearly. There is only one
minimum, namely in the middle of the black area in the Iris versicolor/vir-
ginica cloud. The dark area to the lower left of it only shows a region of
smaller gradient, but does not contain a attraction center, as can be seen
from the colors surrounding it. However, if the cluster radius is reduced
(Figures 3.4 and 3.5), an attraction center forms in the Iris setosa cloud.

56 CHAPTER 3. OBJECTIVE FUNCTIONS

Figure 3.3: Vector field of the at-
traction of a single spherical cluster
prototype in possibilistic fuzzy clus-
tering, radius 1, Cauchy function
with parameters a = 2 and b = 1, for
the Iris data, attributes petal length
(horizontal) and width (vertical).

Figure 3.4: Vector field of the at-
traction of a single spherical cluster
prototype in possibilistic fuzzy clus-
tering, radius 1

4 , Cauchy function
with parameters a = 2 and b = 1, for
the Iris data, attributes petal length
(horizontal) and width (vertical).

Figure 3.5: Vector field of the at-
traction of a single spherical cluster
prototype in possibilistic fuzzy clus-
tering, radius 1

6 , Cauchy function
with parameters a = 2 and b = 1, for
the Iris data, attributes petal length
(horizontal) and width (vertical).

3.1. LEAST SUM OF SQUARED DISTANCES 57

Figure 3.6: Vector field of the at-
traction of a single spherical cluster
prototype in possibilistic fuzzy clus-
tering, radius 1, Gaussian function
with parameter a = 2, for the Iris
data, attributes petal length (hori-
zontal) and width (vertical).

Figure 3.7: Vector field of the at-
traction of a single spherical cluster
prototype in possibilistic fuzzy clus-
tering, radius 1

4 , Gaussian function
with parameter a = 2, for the Iris
data, attributes petal length (hori-
zontal) and width (vertical).

Figure 3.8: Vector field of the at-
traction of a single spherical cluster
prototype in possibilistic fuzzy clus-
tering, radius 1

6 , Gaussian function
with parameter a = 2, for the Iris
data, attributes petal length (hori-
zontal) and width (vertical).

58 CHAPTER 3. OBJECTIVE FUNCTIONS

Similar observations can be made for the Gaussian function. Although
there are already two local minima with a cluster radius of 1 (Figure 3.6, the
dark region between the two data point clouds may also contain an unstable
equilibrium point) due to the fact that the Gaussian function is steeper, their
number increases with lower radius. With radius 1

4 , two more local minima
have almost formed in the upper right of the picture, although they are not
stable yet. With radius 1

6 , however, there are several local minima along
the Iris versicolor/virginica data point cloud.

In such a situation the result of clustering depends heavily on the initial-
ization. Any distribution of the clusters to these local minima is possible.
We cannot even single out the best one by comparing the values of the
objective function for these outcomes, because the best in this sense is the
one in which all clusters are identical. As a consequence, possibilistic fuzzy
clustering should be applied with much caution, if at all.

A working approach that tackles the problem has been suggested in
[Timm et al. 2001, Timm 2002, Timm et al. 2004], namely introducing a
term that models a mutual repulsion of the clusters. This leads to

J(X,U,C) =
c∑

i=1

n∑
j=1

uw
ij d

2
ij +

c∑
i=1

νi

n∑
j=1

(1−uij)w +
c∑

i=1

ξi

c∑
k=1
k 6=i

f(ζ ·d(~µi, ~µk)),

where f is a radial function, for example, the Cauchy function or the Gaus-
sian function, and the ξi and ζ are parameters that control the strength of
the cluster repulsion. By this repulsion it is explicitely prevented that clus-
ters become identical. However, the parameters that enter this approach are
difficult to choose and thus its application can be cumbersome. Therefore I
do not consider this approach any further.

Another approach, which is also directed at the normalization constraint,
consists not in dropping it (as in possibilistic clustering), but in replacing
it, for example, by

∀j; 1 ≤ j ≤ n :
c∑

i=1

w
√
uij = 1,

while the (unextended) objective function J is defined without a member-
ship degree mapping function h. This approach is very closely related to the
approach based on using h(uij) = uw

ij in the objective function J . In partic-
ular, for w = 2 the cluster parameters, for which the optimum is obtained,
are identical, only the membership degrees uij differ (cf. Section 5.2.3 for
details). Note that the parameter w appearing here plays basically the same
role as the fuzzifier in the first generalization of fuzzy clustering.

3.2. LEAST SUM OF SQUARED ERRORS 59

Furthermore, other functions than w
√
uij may be used to define the con-

straint. However, by analogy to the requirement that the membership map-
ping function h has to be convex to make it possible that the optimum is
obtained with a graded assignment of the data points (cf. the discussion on
page 50), it is clear that the function should be concave. Alternatively, one
may reason (using a substitution) that its inverse must be convex.

3.2 Least Sum of Squared Errors

When it comes to classification instead of clustering, it is much easier to
find appropriate objective functions, because the goal of classification is
much clearer defined. In clustering we search for a model that “captures
the distribution of the data well” by finding clusters that are “representative
for a group of data points”, goals that are open to a fairly wide range of
interpretations. In classification, on the other hand, we are given a desired
output zj for each of the data points ~xj , 1 ≤ j ≤ n, and thus we can derive
an objective function from these desired outputs.

The most direct way to define an objective function is to compute for
each data point ~xj the output oj of a given model and to compare it the de-
sired output zj . Then we either count the number of correct classifications,
which gives an objective function that is to be maximized, or the number of
misclassifications, which gives an objective function that is to be minimized.
The latter is more common and is well-known as 0-1 loss.

However, even though this approach is very simple and intuitive, it suf-
fers from the severe drawback that it is a fairly coarse measure. With it
a large number of models may appear to be equivalent, since considerable
changes to the model may be needed in order to change the classification
for at least one data point. Although it is clear that in the end, when a
decision has to be made, only the number of correct and wrong classification
count, for the induction and adaptation of the classification model a more
sensitive measure is needed. For this task 0-1 loss is actually a fairly bad
choice and thus I do not consider it as an objective function.

A more fine-grained evaluation of a classification model can be obtained
if the model assigns degrees of membership or probabilities to the different
classes. This is naturally the case if a cluster model is turned into a classifier
by linear functions combining the membership degrees as it was studied in
Section 2.5. In this case there is one linear function for each of the classes
and the values of these functions, possibly normalized to sum 1, can be seen
as graded assignments to the classes. However, it is also possible to obtain

60 CHAPTER 3. OBJECTIVE FUNCTIONS

graded assignments with a nearest prototype classifier, if one extends it in
such a way that it reports not only the class of the closest cluster, but the
degrees of membership to the closest cluster of each class. These degrees of
membership may also be captured by classification functions gk, 1 ≤ k ≤ s,
as it is the case for a linear function classifier (cf. page 38 in Section 2.5),
only that these functions are not necessarily linear in nature.

Given a graded assignment an objective function can be defined by com-
puting its divergence from a binary encoding of the desired output class
(cf. page 3 in Section 1.1). Formally, it can be defined as

esqr(X, ~z;C,W) =
n∑

j=1

s∑
k=1

(δk,zj
− gk(~xj))2.

The vector ~z = (z1, . . . , zn) states the classes zj ∈ {1, . . . , s} of the data
points ~xj , 1 ≤ j ≤ n (cf. page 4 in Section 1.1), and the weight matrix
W = (wki)1≤k≤s,0≤i≤c contains the parameters of the (linear) classification
functions associated with the classes (cf. page 38 in Section 2.5). Finally,
δ is the so-called Kronecker symbol,

δk,z =
{

1, if k = z,
0, otherwise,

which describes the encoding of the correct class as a binary vector. This
objective function is known as the sum of squared errors or quadratic
loss and is obviously to be minimized. It may also be applied if the desired
output is a numeric value, by using only a single prediction function g,
which computes an output value for each data point, and defining

esqr(X, ~z;C, ~w) =
n∑

j=1

(zj − g(~xj))2.

This possibility should be kept in mind, even though I focus on classification,
because both versions appear in connection with the training of radial basis
function neural networks (cf. Section 5.1). It should also be noted that the
objective function for classification may be seen as the sum of the objective
functions for s numerical functions, each of which predicts the membership
to one class against all others as a binary function.

The above objective function sums the square of the errors, although
computing the sum of absolute errors or absolute loss as

eabs(X, ~z;C,W) =
n∑

j=1

s∑
k=1

|δk,zj
− gk(~xj)|

3.2. LEAST SUM OF SQUARED ERRORS 61

(analogously for the numeric prediction case) may appear more natural.3

However, there are two reasons for preferring the sum of squared errors. The
first is that an error-based objective function is often used with gradient
methods, for which its derivative has to be computed. This is easy with
squared errors, but can be inconvenient with absolute errors, because even
if the derivative of the absolute value is reasonably completed for a vanishing
argument4, an annoying distinction of cases is necessary.

The second reason is that with squared errors large deviations have a
greater influence and thus the optimization algorithm tends to avoid large
errors, even at the cost of increasing smaller ones. However, this can also
turn out to be a disadvantage, as it makes the procedure susceptible to the
influence of outliers, which can distort the result. The sum of absolute errors
is a much more robust objective function in this sense [Press et al. 1992].

A final issue one has to consider in connection with an error-based ob-
jective function for classification are misclassification costs. In the above
discussion I always assumed implicitly that the same costs are incurred,
regardless of which class is confused with which. However, in applications
this is not always the case. For a company that sends out advertisements
to possible customers it is usually less costly to send a superfluous mail to
a non-buyer, who could have been excluded by a more detailed analysis,
than to lose a potential buyer by omitting him/her from the mailing. In
the medical domain it may be less critical to diagnose a patient as having
a disease he/she has not, as this can be corrected without harm by further
tests, than to misclassify an actually ill patient as healthy, which may then
be discovered only after the illness has spread and intensified.

The simplest way to include misclassification costs into an error-based
objective function, to which I confine myself here, is by weighting the classes
depending on how important it is to predict them correctly. In this case the
sum of squared errors, for example, is modified to

e(X, ~z;C,W) =
n∑

j=1

s∑
k=1

ξk · (δk,zj
− gk(~xj))2,

where the ξk, 1 ≤ k ≤ s, are the class-specific weights. Equivalently, one
may weight the data points w.r.t. the classes associated with them. This
may be technically easier as it can be performed in a preprocessing step.

3It should be clear that simply summing the differences (not their absolute values) is
not a good idea, as positive and negative differences may cancel each other.

4Often it is defined that d
dx
|x| = sgn(x) =

{
1, if x > 0,
0, if x = 0,

−1, if x < 0.

62 CHAPTER 3. OBJECTIVE FUNCTIONS

3.3 Maximum Likelihood

As I already pointed out in Section 2.4, a set of clusters in the view I adopt
in this thesis can be seen as a description of a probabilistic mixture model
[Everitt and Hand 1981]. This presupposes that the membership functions
of the clusters are normalized to integral 1 over the data space, so that they
can be interpreted as (conditional) probability density functions, and the
cluster weights sum up to 1, so that they can be seen as prior probabilities
of the clusters. In addition, of course, the membership degrees must not be
transformed, i.e., it must be u•i (~x) = u∗i (~x) (cf. page 23 in Section 2.4).

Formally, we have in this case (cf. page 29 in Section 2.4)
c∑

y=1

u•y(~x) =
c∑

y=1

u∗i (~x) =
c∑

y=1

%y · u◦y(~x)

=
c∑

y=1

pY (y;C) · f ~X|Y (~x|y;C)

=
c∑

y=1

f ~X,Y (~x, y;C) = f ~X(~x;C).

As a consequence, we can write the likelihood of the complete data set X
(implicitly assuming that all data points are independent) as

L(X;C) = fX (X;C) =
n∏

j=1

f ~Xj
(~xj ;C) =

n∏
j=1

c∑
i=1

u•i (~x).

Drawing on the principle of maximum likelihood estimation [Fisher
1925], we may choose this function as an objective function. It is based
on the idea to estimate the parameters of a probabilistic model in such a
way that it becomes maximally likely to observe the given data. This is the
basis of probabilistic approaches to clustering that employ the expectation
maximization (EM) algorithm [Dempster et al. 1977, Everitt and Hand
1981, Jamshidian and Jennrich 1993, Bilmes 1997].

Most often the mixture model underlying a maximum likelihood ap-
proach is chosen to be a Gaussian mixture model, that is, the cluster
membership functions are (conditional) normal distributions. Then we have

L(X;C) =
n∏

j=1

c∑
i=1

%i · γGauss(2, 0,m,Σi) · fGauss(d(~xj , ~µi;Σi); 2, 0)

with the functions γGauss and fGauss defined as on page 19 in Section 2.2.

3.3. MAXIMUM LIKELIHOOD 63

An important advantage of a Gaussian mixture model, which has been
known for a long time already, is that a set of finite mixtures of m-dimen-
sional normal distributions is identifiable. That is, if at all, a probability
density function f can be written in only one way as a mixture of finitely
many normal distributions [Bock 1974]. Unfortunately, this does not mean
that there is a unique optimum of the likelihood function for a given data set,
even if this data set was generated by sampling from a mixture of normal
distributions. The problem is that an unconstrained optimization of the
likelihood function leads to a situation in which all normal distributions,
with the exception of one, are contracted to Dirac pulses at individual data
points (i.e., σ2

i → 0). The remaining normal distribution is the maximum
likelihood estimate for the whole data set.

Therefore, to ensure useful results, maximum likelihood clustering is
usually applied with constraints on the covariance matrices that enter the
Mahalanobis distance on which the Gaussian function is based. A classi-
cal approach, for example, is to set all covariance matrices to σ21, with a
variance σ2 that has to be chosen appropriately for the data set. (For low
dimensional data sets that are normalized to variance 1 in each dimension,
my experience is that σ = 1

c is a choice that often works well.) In addition,
one often fixes the prior probabilities of the clusters to equal values.

With standard Gaussian membership functions, maximum likelihood is
closely connected to a least sum of (squared) distances approach (cf. Sec-
tion 3.1). This is very similar to the method of least squares for finding
regression lines or regression polynomials, which can be seen as a maxi-
mum likelihood estimator for the parameters of the regression function if
one assumes normally distributed deviations (with constant variance) from
the function value. With a mixture model, however, the situation is slightly
more complicated, because the combination of a product and a sum in the
objective function leads to technical problems in the optimization.

A standard approach to handle these problems consists in assuming that
there is a hidden attribute Y , which states the cluster (i.e. the component of
the mixture) that “generated” a given data point. With such an attribute
we can restrict our considerations to one term, namely the one referring to
the mixture component indicated by the value yj ∈ {1, . . . , c}, 1 ≤ j ≤ n,
of this attribute. Formally, the objective function can be written as

fX ,~Y (X, ~y;C) =
n∏

j=1

%yj√
(2π)m|Σyj |

· exp
(
−1

2
d2(~xj , ~µyj ;Σyj)

)
,

where yj indicates the cluster that “generated” the data point ~xj .

64 CHAPTER 3. OBJECTIVE FUNCTIONS

Unfortunately, although it is a very natural way of stating the corre-
sponding cluster, this notation (with random variables Yj) is a little in-
convenient for showing the equivalence to a least sum of squared distances
approach. A better way is to draw on the following technical trick: we
represent the individual factors of the above product as

f ~Xj
(~xj , ~uj ;C) =

c∏
i=1

(
%i√

(2π)m|Σi|
· exp

(
−1

2
d2

ij

))uij

.

Here uij is a binary variable that indicates whether data point ~xj was “gen-
erated” by the i-th cluster (then it is uij = 1) or not (then it is uij = 0). In
other words: the vector ~uj = (u1j , . . . ucj) is a binary encoding of the cluster
index yj where uij = δi,yj , 1 ≤ i ≤ c. Hence this product for f ~Xj

(~xj , ~uj ;C)
effectively reduces to one factor that describes the probability density of the
data point and the cluster that “generated” it.

Inserting this product into the objective function, we get

fX ,~Y (X,U;C) =
n∏

j=1

c∏
i=1

(
%i√

(2π)m|Σi|
· exp

(
−1

2
d2

ij

))uij

.

Next we take the natural logarithm of this objective function, which obvi-
ously does not change the location of the maximum, because the natural
logarithm is a strictly monotone function.5 Thus we obtain

ln fX (X,U;C) =
n∑

j=1

c∑
i=1

uij

(
ln

%i√
(2π)m|Σi|

− 1
2
d2

ij

)
.

Provided that the prior probabilities %i of the different clusters as well as
their covariance matrices Σi are fixed, the only variable term in this sum
is the last, which consists of the (squared) distances of the data points
to the (variable) cluster centers. Therefore, in this case maximizing this
(log-)likelihood function is equivalent to minimizing

J(X,U,C) =
n∑

j=1

c∑
i=1

uij d
2
ij .

However, this is the objective function of hard c-means clustering as it was
introduced on page 46 in Section 3.1.

5Of course, taking the natural logarithm does change the value of the maximum.
However, we are not interested in this value, but only in the location of the maximum.

3.4. MAXIMUM LIKELIHOOD RATIO 65

Nevertheless there is a decisive difference between the approaches based
on maximum likelihood and on the least sum of squared distances. In the
latter, the uij , 1 ≤ i ≤ c, 1 ≤ j ≤ n, are introduced as parameters of the
model, which are to be determined by the optimization process. Therefore
their values can be chosen arbitrarily. In maximum likelihood, however, the
values of the uij are fixed by the data generation process (they indicate
which component of the Gaussian mixture “generated” the data point ~xj).
We do not know their values, but we may not choose them arbitrarily.

How this problem is handled—namely by seeing the Yj as random vari-
ables and then considering the expected value of the likelihood function,
which leads to the well-known expectation maximization algorithm
[Dempster et al. 1977, Everitt and Hand 1981, Jamshidian and Jennrich
1993, Bilmes 1997]—is discussed in detail in Section 5.2. It is closely re-
lated to fuzzy clustering approaches, as it also employs an alternating op-
timization scheme. Fuzzy clustering actually comes very close in the fuzzy
maximum likelihood estimation (FMLE) algorithm, also known as
the Gath–Geva algorithm [Gath and Geva 1989]: in the form in which
it was proposed originally it is almost identical to expectation maximiza-
tion. However, as will become clear later, a derivation of this algorithm
that is based on strict analogies to standard fuzzy clustering leads to a clear
distinction between the two approaches [Döring et al. 2004].

Another connection of maximum likelihood and expectation maximiza-
tion to fuzzy clustering is brought about through (fuzzy) learning vector
quantization [Kohonen 1986, Kohonen 1990, Kohonen 1995, Karayiannis
and Pai 1996, Karayiannis and Bezdek 1997]: the competitive learning rule
it employs can be derived as a limit case of a Gaussian mixture model.
Details about this view can be found in Section 5.3.

3.4 Maximum Likelihood Ratio

A maximum likelihood approach can not only be used for clustering, as
described in the preceding section, but also for classification. The simplest
approach is to split the data set w.r.t. the classes associated with the data
points, so that one obtains one data set for each class. Then one builds a
maximum likelihood model separately for each of the classes, using the ob-
jective function studied in the preceding section. However, such an approach
has the disadvantage that it is not really geared towards a high classification
performance: a maximum likelihood model built separately for each of the
classes need not yield a particularly good classifier.

66 CHAPTER 3. OBJECTIVE FUNCTIONS

A better approach starts from the idea that in order to meet the ultimate
goal, namely to achieve a good classification performance, one rather has
to consider how the likelihoods of a data point in connection with different
classes relate to each other than to focus on the likelihood of the data point
for the correct class, because the highest likelihood yields the classification.
The basis for such an approach is that a cluster model together with a set
of (linear) classification functions yields a probability distribution over the
data space for each of the classes (cf. Section 2.5). In addition, we know the
correct classes and thus the desired prediction for a given data set. Hence
we can compute for each data point its likelihood in connection with the
correct class and the complementary likelihood with any incorrect class.

Now it is plausible that for an optimal classifier the likelihood with the
correct class should be maximal, while the likelihood with any incorrect
class should be minimal. Therefore it has been suggested to use the ratio of
the former to the latter as an objective function [Seo and Obermayer 2003].
That is, one tries to maximize the likelihood ratio

L
(1)
ratio(X, ~z;C,W) =

n∏
j=1

L(~xj , zj ;C,W)
L(~xj , zj ;C,W)

=
n∏

j=1

f ~Xj ,Zj
(~xj , zj ;C,W)

f ~Xj ,Zj
(~xj , zj ;C,W)

=
n∏

j=1

pZj | ~Xj
(zj |~xj ;C,W)

pZj | ~Xj
(zj |~xj ;C,W)

.

Obviously, this ratio can be seen as stating the odds of a correct classifica-
tion with a classifier that predicts the class that yields the highest likelihood.
The numerator of this ratio is the posterior probability of the correct class zj

given the data point ~xj . That is,

pZj | ~Xj
(zj |~xj ;C,W) =

∑
y∈I(zj)

f ~Xj |Y,Zj
(~xj |y, zj ;C,W) pY,Zj (y, zj ;W)

f ~Xj
(~xj ;C,W)

.

Here I(z) ⊆ {1, . . . , c} is again, as on page 39 in Section 2.5, a set that
contains the indices of those clusters that describe a mixture component of
the z-th class. Therefore the numerator aggregates all probability density
functions associated with the class zj of the data point ~xj . Note that the
probability distribution pY,Zj has only W as a parameter, since the ele-
ments of this matrix, which are the coefficients in the (linear) combination
functions, directly state these probabilities (cf. page 40 in Section 2.5).

3.4. MAXIMUM LIKELIHOOD RATIO 67

The symbol zj in the denominator is used to denote all possible class
indices except zj and thus the denominator is the likelihood of the data
point in connection with an incorrect class. That is,

pZj | ~Xj
(zj |~xj ;C,W)

=
∑

k∈{1,...,s}−{zj}

∑
y∈I(k) f ~Xj ,Y |Zj

(~xk|y, k;C,W) pY,Zj
(y, k;W)

f ~Xj
(~xj ;C,W)

.

If the clusters are partitioned onto the different classes (as it is usually the
case), so that each cluster is associated with exactly one class, the two sums
in this expression may conveniently be combined into one, ranging over
y ∈ {1, . . . , c} − I(zj). That is, one sums the probability densities at the
data point ~xj that result from all clusters not associated with the class zj .

The denominator in both posterior probabilities considered above is the
likelihood of seeing the data point ~xj , regardless of its class zj , as it is
specified by the full cluster model. That is,

f ~Xj
(~xj ;C,W) =

∑
k∈{1,...,s}

∑
y∈I(k)

f ~Xj |Y,Zj
(~xk|y, k;C,W) pY,Zj (y, k;W).

Again, if the clusters are partitioned onto the different classes, the two
sums in this expression may conveniently be combined into one, ranging
over y ∈ {1, . . . , c}, that is, over all clusters. Note, however, that this
probability cancels when forming the likelihood ratio. Therefore we have

L
(1)
ratio(X, ~z;C,W)

=
n∏

j=1

∑
y∈I(zj)

f ~Xj |Y,Zj
(~xj |y, zj ;C,W) pY,Zj

(y, zj ;W)∑
k∈{1,...,s}

∑
y∈I(k) f ~Xj |Y,Zj

(~xk|y, k;C,W) pY,Zj
(y, k;W)

.

However, the fact that the above likelihood ratio is unbounded (i.e., in prin-
ciple it can go to infinity), can lead to technical problems in the optimization
process (cf. Section 5.3.4). Therefore it is often preferable to maximize the
ratio of the likelihood of a correct classification to the likelihood of seeing
the data point [Seo and Obermayer 2003]. In this case one tries to maximize

L
(2)
ratio(X, ~z;C,W) =

n∏
j=1

L(~xj , zj ;C,W)
L(~xj ; zj ;C,W) + L(~xj ; zj ;C,W)

=
n∏

j=1

L(~xj , zj ;C,W)
L(~xj ;C,W)

68 CHAPTER 3. OBJECTIVE FUNCTIONS

=
n∏

j=1

f ~Xj ,Zj
(~xj , zj ;C,W)

f ~Xj
(~xj ;C,W)

=
n∏

j=1

pZj | ~Xj
(zj |~xj ;C,W).

Note that this second likelihood ratio, which is equivalent to the posterior
probability of the correct classes, is obviously bounded by 1 from above,
because the posterior probabilities are all no greater than 1. As already
mentioned above, this is important for the optimization procedure, because
an unbounded ratio can lead to technical problems, in particular “run-away”
effects for the cluster parameters (diverging cluster centers). These effects
can make it necessary to introduce restrictions into the update process,
which are a little difficult to justify from a probabilistic point of view.

Note also that it is often technically easier to optimize the (natural6)
logarithm of these ratios (as for the likelihood considered in the preceding
section). Again this only changes the value of the maximum, but not its
location. However, it enables us to write the first ratio as

lnL(1)
ratio(X, ~z;C,W)

=
n∑

j=1

ln pZj | ~Xj
(zj |~xj ;C,W) −

n∑
j=1

ln pZj | ~Xj
(zj |~xj ;C,W)

=
n∑

j=1

ln f ~Xj ,Zj
(~xj , zj ;C,W)−

n∑
j=1

ln f ~Xj ,Zj
(~xj , zj ;C,W)

and the second as

lnL(2)
ratio(X, ~z;C,W)

=
n∑

j=1

ln pZj | ~Xj
(zj |~xj ;C,W)

=
n∑

j=1

ln f ~Xj ,Zj
(~xj , zj ;C,W)−

n∑
j=1

ln f ~Xj
(zj ;C,W).

Finally, note that there is a close connection of this approach to learning
vector quantization for classification, since it can be seen as limit case of a
Gaussian mixture model approach with classes [Seo and Obermayer 2003].
Details about this view can be found in Section 5.3.

6The base of the logarithm is actually irrelevant as it only introduces a constant factor.

3.5. OTHER APPROACHES 69

3.5 Other Approaches

The approaches considered in the preceding four sections can nicely be cat-
egorized into those based on minimizing (squared) deviations (distances or
errors) and those based on maximizing likelihood (or likelihood ratio). In
both of these categories we find approaches for clustering as well as classi-
fication and thus they cover the major directions of tackling clustering and
classification problems with prototypes.

However, for classification there is another highly popular approach,
which is also based on (point-)prototypes and distance measures, but which
does not fall into one of these categories. This approach is the so-called
maximum margin classifier, which is closely connected to the theory of
support vector machines (SVMs) [Vapnik 1995, Vapnik 1998, Cristianini
and Shawe-Taylor 2000, Schölkopf and Smola 2002]. Although this classifier
works directly only for two classes, it can be extended to multiple classes
by building several binary classifiers that separate one class from all others
or discriminate pairs of classes. The results of these classifiers are then
combined, for example, by simply deciding on the class yielding the highest
score in all pairwise separations of one class from all others.

The idea underlying the maximum margin classifier is to map the data
points in such a way into some high-dimensional space that the (two) classes
become linearly separable, i.e., can be separated by a linear function in
the coordinates describing a data point. The classifier is then basically a
(hyper-)plane that separates the classes in such a way that the margin, that
is, the smallest distance of a data point to the (hyper-)plane, is maximized
(hence the name maximum margin classifier).

The data points that define the margin, that is, the data points whose
images are closest to the separating (hyper-)plane, are called the support
vectors. Their number depends on the mapping to the high-dimensional
space, in particular the number of dimensions of that space, and the location
of the data points. The support vectors take the place of the prototypes
in the classification schemes studied above and explain the name support
vector machine for a classifier based on this approach.

Since it is not always easy to find a mapping so that the classes become
linearly separable, especially if the mapping function is restricted to come
from a limited class of functions, the maximum margin classifier has been
generalized to work with violations of a perfect separation. This generaliza-
tion, which is known as the soft margin approach, is brought about by
specifying a target margin, that is, a minimum distance all data points
should have from the separating (hyper-)plane. In addition, a so-called

70 CHAPTER 3. OBJECTIVE FUNCTIONS

slack variable is introduced for each data point, which measures by how
much the data point fails to meet the target, i.e., by how much it is closer
to the separating (hyper-)plane (or even to the wrong side of it). The task
is then to minimize the sum of the values of the slack variables.

Although the maximum margin classifier appears to be very similar to a
prototype-based classifier, especially, since the support vectors seem to be
analogs of the (point) prototypes, I do not consider support vector machines
in this thesis. The reason is that the support vectors do not (or only by
accident) provide any information about the distribution of the data points
in the sense of a cluster prototype, which describes a group of similar data
points. They only define the location of the separating (hyper-)plane (the
classification boundary) by being those data points whose images have a
minimal distance to this (hyper-)plane. Thus they are actually likely to be
extreme points, fairly far away from the majority of the data points, and
thus not “prototypical” for the data set in an intuitive sense.

When it comes to clustering, some alternative methods do not rely on
an explicit objective function to define the goal and success of a clustering
algorithm (cf. the first two sections of this chapter) and to derive the pa-
rameter update procedure (cf. Chapter 5). They rather define an update
scheme for the cluster parameters directly and take the convergence point of
this update scheme (if it exists) as the result of the clustering algorithm. An
example of such an approach is alternating cluster estimation (ACE)
[Runkler and Bezdek 1999, Höppner et al. 1999], which is closely related to
fuzzy clustering, but does not try explicitely to optimize a given objective
function. As a consequence the resulting algorithms are often much more
flexible than their objective function based counterparts.

In this thesis I make use of an analogous approach in Chapter 6, where
I study extensions of the basic update procedures discussed in Chapter 5.
Since certain frame conditions are sometimes difficult to incorporate into
an objective function (for example, restrictions of the ranges of values for
some cluster parameters), I rely on an objective function only to derive a
basic update scheme, the steps of which are then modified in order to satisfy
given constraints or to speed up the clustering process.

A frequently heard objection against a clustering approach that aban-
dons the strict goal of optimizing an objective function is that it may fail to
reach a stable point, while convergence is (almost) guaranteed if the update
scheme is derived from an objective function. However, such an objection
conveys, in my opinion, a distorted picture of the situation. In the first
place, although some update schemes have been shown to converge reliably
(like, for example, the fuzzy c-means algorithm [Bezdek 1980, Selim and

3.5. OTHER APPROACHES 71

Ismael 1984, Ismael and Selim 1986, Bezdek et al. 1987]), such proofs are
lacking for more flexible approaches, even though they are based on an ob-
jective function. Furthermore, even if an update procedure can be shown
to converge theoretically, it may not do so in practice due to numerical
problems like roundoff errors. Finally, for a large variety of update schemes
convergence problems are very rare or even non-existent in practice and
they usually lead to very good results, and very often to even better results
than the methods that are derived directly from an objective function.

Chapter 4

Initialization Methods

As already mentioned, the majority of prototype-based clustering and clas-
sification algorithms are iterative in nature. That is, they employ an update
scheme, which improves the parameters of the clusters and the classification
functions step by step. Such an iterative improvement is usually necessary
even if the goal of the clustering or classification method is specified as
the optimization of an objective function, because the objective functions
discussed in the preceding chapter are difficult to optimize directly.

For an iterative improvement algorithm two things are needed: (1) a
method to initialize the parameters and (2) a method to update these pa-
rameters to new values, which is then applied repeatedly until some termi-
nation criterion is met. In this chapter I study the former, while the next
chapter is devoted to update methods (derived from objective functions).

The initialization methods examined in this chapter focus on the ini-
tialization of the cluster centers, because they are most difficult to choose
appropriately. I categorize the discussed methods as data independent (the
locations of the data points are completely ignored, Section 4.1), simple
data dependent (the data points enter the initialization, but only in a sim-
ple way, Section 4.2) and sophisticated (approaches that can (almost) be
seen as clustering algorithms in their own right, Section 4.3).

Parameters like the covariance matrices of the Mahalanobis distance, on
the other hand, are most conveniently initialized to a unit matrix. The
cluster sizes and weights are best set to equal values, with the size chosen
w.r.t. the extension of the data space and the cluster number (e.g. σ ≤ D

2c ,
where D is the diagonal of the data space). Only for classification a special
weight initialization is recommended, which is reviewed in Section 4.4.

73

74 CHAPTER 4. INITIALIZATION METHODS

4.1 Data Independent Methods

All data independent initialization methods for cluster centers sample ran-
dom points from a probability distribution on the data space. They only
differ in the probability distribution they sample from and the exact proce-
dure used for the sampling. For the choice of the probability distribution
and its parameters these methods may rely on some information about the
data points (like, for instance, the range of values they take in the different
dimensions of the data space) in order to restrict the sampling to that region
of the data space in which the data points are located. In this sense they
may not be completely data independent, even though they do not consider
the specific locations of individual data points.

The most common data independent initialization method for the clus-
ter centers is to sample from a uniform distribution on the smallest
(hyper-)box enclosing the data points. It has the advantage that it is very
simple and efficient, since random numbers from a uniform distribution can
easily be obtained in a computer. It is also highly likely that the initial
cluster centers are well spread out over the data space, which is a desirable
effect, as it increases the chances of detecting all clusters. If, in contrast
to this, the initial positions of the cluster centers are close together, there
is—at least with some methods—the danger that they share few data point
clouds among them, with more than one cluster center per cloud, while
other data point clouds are not covered by a cluster prototype.

The disadvantage of this method is that for high-dimensional spaces,
in which the smallest bounding (hyper-)box is unlikely to be populated
uniformly, the initial positions of the cluster centers can be very far away
from the data points (the cluster centers may, by accident, be chosen in
regions of the data space that are void of data points). However, this is a
disadvantage of all data independent initialization methods, since they do
not take any information about the location of the data points into account.

A slight variation of this most common method is to sample from a
uniform distribution of user-specified extensions centered in the smallest
(hyper-)box enclosing the data points. This has the advantage that the
user can control how far spread out the initial cluster centers should be and
can also compensate effects outliers may have on the bounding (hyper-)box.
This method is best implemented by initializing all cluster centers to the
center of the data space and then adding a uniformly distributed random
offset of user-specified maximum size in each dimension. Adding a random
offset to an initial choice is actually a good idea for many initialization
methods, whether data dependent or data independent.

4.1. DATA INDEPENDENT METHODS 75

Figure 4.1: Latin hypercube sampling in two dimensions with c = 4.

An alternative to sampling from a uniform distribution is to sample
from a normal distribution, which has the center of the data space as
its excepted value and a user-specified variance. However, this method is
less popular, since sampling from a normal distribution is more complicated
and has few noticeable advantages over the simpler uniform sampling.

A very nice extension of the simple uniform sampling method is so-
called Latin hypercube sampling, which aims at initial cluster centers
whose coordinates are well spread out in the individual dimensions. Latin
hypercube sampling was originally developed in statistics for situations, in
which controlled experiments are to be carried out to obtain data about
some domain, but in which each experiment is very expensive. Hence one
has to plan the experiments in such a way that the parameter space is
covered as well as possible with a very limited number of sample points.1

Latin hypercube sampling works as illustrated for two dimensions in
Figure 4.1. In an initial step a grid on the data space is constructed by
choosing c equidistant lines for each dimension (where c is the number of
samples one plans to draw, and hence it is the number of clusters here).
Figure 4.1 shows such a grid for c = 4 in the diagram on the very left.

The grid points are the sample candidates, which are chosen with equal
probability. However, after a grid point (an initial cluster center) is selected,
all points having the same coordinate in one or more dimensions are banned
for future selection. This is shown in Figure 4.1 by grey bars marking the
grid lines that are ruled out by previous selections: after the grid point
at the top right is chosen, the first row and last column are ruled out
(second diagram). The subsequent choice rules out the third row and the
first column (third diagram) and so forth. As a consequence fewer and fewer
grid points are available until the final choice is uniquely determined (since
all other coordinates for each of the dimensions have been ruled out).

1Of course, in order to study some domain statistically, it is not a good idea to rely
on very few sample points. However, if you can afford only very few experiments (like,
for instance, crash tests with cars, varying the car type, passengers, direction of impact
etc.), planning them with Latin hypercube sampling is often the best that one can do.

76 CHAPTER 4. INITIALIZATION METHODS

A special case of Latin hypercube sampling is to choose equidistant
cluster centers on the diagonal of the data space. This case results if
in the Latin hypercube scheme always the same grid coordinate is chosen
for all dimensions. Seen the other way round, Latin hypercube sampling
can be seen as a perturbation of (the coordinates of) such points on the
data space diagonal. Actually one of the simplest ways of implementing
Latin hypercube sampling is to start from equally spaced points on the
diagonal of the data space and then to shuffle the coordinates of these
points independently for each of the dimensions of the data space.

4.2 Simple Data Dependent Methods

As already pointed out in the preceding section, it is a drawback of all data
independent initialization methods that the chosen initial cluster centers
may be far away from the data points, since there is nothing to prevent
these methods from choosing points in regions that are bare of data points.
Better initial positions can usually be obtained by taking the locations of
the data points into account, either in an aggregated form as a mean vector,
or by using the data points directly.

The simplest data dependent initialization method is, of course, to draw
random samples from the data set (without replacement). It has the
obvious advantage that initial positions in empty regions of the data space
are avoided, but suffers from the disadvantage that it is not too unlikely that
the cluster centers are not properly spread out over the data set. This is
especially true if the data set consists of data point clouds with considerably
differing numbers of data points. In this case it is likely that a high number
of initial cluster centers are chosen in the densely populated regions, while
less densely populated regions tend to be neglected.

A sampling method that was explicitely devised to achieve a good cover-
age of the data set, and thus to overcome the drawbacks of a simple random
sampling, is a method known as Maximindist [Bachelor and Wilkins 1969]:
The first cluster center is either chosen randomly from the data set or ini-
tialized to the center of the data space or the mean of all points in the data
set (the first is the most common). In subsequent steps one chooses the
data point, whose minimal distance to all already chosen cluster centers is
maximal (hence the name Maximindist : maximize minimal distance).

An obvious advantage of this approach is that it avoids initial cluster
centers that are close together, because it tries to maximize their distance.
In addition, the sequence of maximized minimal distances can be used to

4.2. SIMPLE DATA DEPENDENT METHODS 77

guess the number of clusters: if this distance falls significantly from one
selection step to the next, it is likely that with the last selection one exceeded
the number of clusters that can reasonably be found in the data set. Hence
one should retract one step and remove the last chosen cluster center.

A severe disadvantage of Maximindist is that it is fairly sensitive to
outliers. Since outliers have a large distance to all other data points in the
data set, the procedure tends to choose them and even tends to choose them
early. Of course, this is not desirable, because outliers are definitely not pro-
totypical for any clusters at all and thus are very bad starting points for
a clustering algorithm. In addition, if the sequence of maximized minimal
distances is studied to guess the number of clusters, outliers can convey a
wrong impression. Furthermore, Maximindist is a fairly expensive initializa-
tion method, at least when compared to a simple random sampling, because
c · n distances have to be computed (where c is the number of clusters and
n is the number of data points, i.e. the size of the data set).

A different way of taking the specific locations of the data points into
account, which is less sensitive to outliers than both random sampling and
Maximindist, is to estimate the parameters of a simple probabilistic
model of the data and then to sample from this model. If the task is
clustering, one may estimate, for example, the parameters of a single mul-
tivariate normal distribution from the data. For classification tasks, one
multivariate normal distribution for each of the classes may be determined.
Such an approach is equivalent to building a (näıve or full) Bayes classifier
for the data and then sampling from this Bayes classifier. Since one may
subsume the initialization for a clustering task under this approach by view-
ing the data set as classified, but having only one class, I confine myself to
explaining this approach for classified data.

Let us start by recalling the ideas underlying a (näıve or full) Bayes
classifier [Good 1965, Duda and Hart 1973, Langley et al. 1992] for purely
numeric data. A Bayes classifier tries to maximize the probability of a cor-
rect class assignment by trying to predict the most probable class. To do so,
it estimates the posterior probabilities pZ| ~X(k|~x) for all k ∈ {1, . . . , s},
where s is the number of classes (i.e., the probabilities of the classes after
observing the data point ~x). As in Chapter 2, and in particular on page 40
in Section 2.5, ~X is a random vector that has the data space as its domain
and Z is a random variable that has the different class indices as possible
values. A Bayes classifier predicts the class for which (the estimate of) this
posterior probability is maximal, i.e., it predicts the class

k∗ = argmax
k∈{1,...,s}

pZ| ~X(k|~x).

78 CHAPTER 4. INITIALIZATION METHODS

However, it is clear that it is practically infeasible to estimate the posterior
probabilities pZ| ~X(k|~x) directly for each point ~x of the data space. Therefore
a Bayes classifier exploits, in a first step, Bayes’ rule to represent them as

pZ| ~X(k|~x) =
f ~X|Z(~x|k) pZ(k)

f ~X(~x)
=

f ~X|Z(~x|k) pZ(k)∑s
i=1 f ~X|Z(~x|i) pZ(i)

.

Since the denominator of the rightmost fraction can be computed once we
determined the numerators for all k ∈ {1, . . . , s}, we may neglect it and
see it as a normalization factor that is computed in the end by scaling the
numerators so that they add up to 1 over the different classes.

For computing the first factor in the numerators, one usually assumes,
as already mentioned above, that the conditional probability of the data
points given a class is an m-dimensional normal distribution. That is,

f ~X|Z(~x|k; ~µk,Σk) =
1√

(2π)m|Σk|
· exp

(
−1

2
d2(~x, ~µk;Σk)

)
.

Here ~µk is the expected value vector and Σk the covariance matrix associ-
ated with class k. They are estimated from the data set by

~̂µk =

∑n
j=1 δk,zj ~xj∑n

j=1 δk,zj

and Σ̂k =

∑n
j=1 δk,zj (~xj − ~̂µk)(~xj − ~̂µk)>∑n

j=1 δk,zj

,

where the zj , 1 ≤ j ≤ n, state the indices of the classes associated with the
data points ~xj ∈ X (cf. Section 3.2 and 3.4). δk,z is the Kronecker symbol
(cf. page 60 in Section 3.2 for a definition), which is used to restrict the sums
to those data points that are associated with the class k under consideration.
As is common notation in statistics, the hat symbol (̂) indicates that the
quantities are estimates of the distribution parameters.

The second factor in the numerator of Bayes’ rule, which states the
prior probability %k = pZ(k) of class k (i.e., the probability of class k
before observing the data point), is estimated as

p̂Z(k) = %̂k =
1
n

n∑
j=1

δk,zj ,

i.e., as the relative frequency of class k. As a result we obtain a probabilis-
tic classifier that has the same structure as those described in Section 2.5.
The only difference is that a Bayes classifier uses only one (normal distri-
bution) cluster per class, while the classifiers discussed in Section 2.5 are
more general and may comprise several clusters per class.

4.2. SIMPLE DATA DEPENDENT METHODS 79

iris type iris setosa iris versicolor iris virginica
prior probability 0.333 0.333 0.333
petal length 1.46± 0.17 4.26± 0.46 5.55± 0.55
petal width 0.24± 0.11 1.33± 0.20 2.03± 0.27
covariance 0.0065 0.0640 0.0673

Table 4.1: The parameters of a näıve and a full Bayes classifier for the
iris data. The parameters of the normal distribution for the individual
dimensions are stated as µ̂ ± σ̂ (i.e. expected value ± standard deviation).
The last row states the covariances needed for a full Bayes classifier.

If full covariance matrices Σk, 1 ≤ k ≤ s, are used, the classifier is called
a full Bayes classifier. A common alternative is the so-called näıve Bayes
classifier, which makes the additional assumption that the dimensions of
the data space are conditionally independent given the class. That is, it is
assumed that the conditional probability of a data point ~x = (x1, . . . , xm)
given any class k ∈ {1, . . . , s} can be written as

f ~X|Z(~x|k) =
m∏

i=1

fXi|Z(xi|k).

It is easy to see that such an assumption is equivalent to assuming that all
covariance matrices are diagonal, i.e.,

Σk = diag(σ2
k1, . . . , σ

2
km),

since this allows us to decompose the Mahalanobis distance accordingly.
The elements of Σk may then be estimated from the data set by

σ̂ki =

∑n
j=1 δk,zj (xji − µ̂ki)2∑n

j=1 δk,zj

,

where ~xj = (xj1, . . . , xjm) and ~µk = (µk1, . . . , µkm), with the latter esti-
mated in the same way as for a full Bayes classifier (see above).

As an illustrative example I consider the well-known iris data [Anderson
1935, Fisher 1936, Blake and Merz 1998]. The classification problem is
to predict the iris type (iris setosa, iris versicolor, or iris virginica) from
measurements of the sepal length and width and the petal length and width.
Here, however, I confine myself to the latter two measures, which are the

80 CHAPTER 4. INITIALIZATION METHODS

Figure 4.2: The probability density functions used by a full Bayes classifier
(general ellipses, left) and a näıve Bayes classifier (axis-parallel ellipses,
right) for the iris data. The ellipses are the 1σ- and 2σ-boundaries.

most informative w.r.t. a prediction of the iris type. (In addition, one cannot
visualize a four-dimensional space.) The parameters of the two types of
Bayes classifiers as they can be estimated from these two measures and all
150 cases (50 cases of each iris type) are shown in Table 4.1.

The conditional probability density functions used to predict the iris
type are shown in Figure 4.2 [Borgelt et al. 2001]. The ellipses are the 1σ-
and 2σ-boundaries of the (bivariate) normal distributions. The left diagram
shows the full Bayes classifier, with ellipses in general orientation, while the
right diagram depicts the näıve Bayes classifier, with diagonal covariance
matrices and thus axes-parallel ellipses (cf. Section 2.1). It is easy to see that
the full Bayes classifier captures the data much better, which is confirmed by
the number of misclassifications: while the full Bayes classifier misclassifies
only three example cases, the näıve Bayes classifier leads to six errors.

After a Bayes classifier is constructed, the cluster centers are initialized
by sampling from the estimated normal distributions, either choosing the
same number of centers for each class or a number that reflects their prior
probability. If one desires to construct a classifier with one cluster per class,
the Bayes classifier—including covariance matrices and cluster weights—
may be used directly as a starting point [Nürnberger et al. 1999]. However,
the covariance matrices may also be used for initialization if multiple clusters
per class are used. In this case it may be advisable, though, to reduce their
size by multiplying them with a factor less than 1.

4.3. MORE SOPHISTICATED METHODS 81

4.3 More Sophisticated Methods

The data dependent methods discussed in the preceding section exploited
the information contained in the data set only in a very simple manner, sam-
pling from the data set or estimating a simple probabilistic model from it.
In contrast to this, the more sophisticated methods I review in this section
are much more complex and can even be seen as clustering methods in their
own right. As a consequence they are computationally considerably more
expensive and therefore one has to check carefully whether they improve the
quality of the initialization enough to warrant the additional costs that are
incurred. This is especially true if one of the simpler clustering approaches
(like fuzzy c-means clustering) is employed, because these are very efficient
and usually also not so sensitive to the initialization.

In the following I consider first initialization methods for clustering and
later for classification purposes. Although the former methods can always
be used for the latter task by splitting the data set w.r.t. the classes and
then finding initial clusters for each of the classes separately, there are some
approaches that work on the complete data set and are geared to find clus-
ters that yield a good classification. It should also be noted that I do not
claim to provide a complete coverage of the methods of either type, as there
are too many special data dependent approaches to clustering and classifica-
tion that may be used to initialize the prototype-based methods discussed
in this thesis. Rather I try to focus on some core ideas, exemplified by
typical representatives of methods derived from them.

For the initialization of clustering algorithms, one class of initializa-
tion approaches is based on the idea to analyze of the structure of a non-
parametric estimate of the probability density function that generated the
data set. In particular, one carries out a kernel-based estimation and stud-
ies the structure of the modes of the resulting density estimate. Important
representatives of such an approach are mountain clustering [Yager and
Filev 1994] and subtractive clustering [Chiu 1994], which differ only in
the set of candidate points that is considered for the initial positions of
the cluster centers: while in mountain clustering a regular grid is defined
on the data space (like for Latin hypercube sampling, cf. Section 4.1), in
subtractive clustering one relies on the points in the given data set.

Once the set of candidate cluster centers is fixed, both approaches work
in basically the same way. First a user has to choose a kernel function
for a non-parametric estimation of the probability density function. This
kernel function is usually a radial function defined on a distance measure
(most often the Euclidean distance), as it was studied in Section 2.1.

82 CHAPTER 4. INITIALIZATION METHODS

The idea underlying such a kernel function is that in continuous domains
one cannot estimate probabilities by simply computing relative frequencies,
as one may for estimating the probabilities of a multinomial distribution
on a finite domain. The reason is simply that in a continuous domain it
is highly likely that all data points differ in their values. Of course, one
can always discretize a continuous domain, thus forming bins, for which a
relative frequency estimation works again. However, such an approach can
introduce strange effects resulting from the positioning of the grid, which
determines which data points fall into the same bin.

A very natural and straightforward approach to cope with such effects is
to estimate the probability in a grid cell not only from the data points that
fall into it. Rather one also takes into account the data points falling into
neighboring cells, making sure that these points have a smaller influence
than those located in the cell itself. In other words, one uses overlapping
bins for the estimation. Of course, with such a scheme one has to introduce
a proper weighting of the data points, so that each of them has the same
influence on the whole estimation. That is, a unit weight for each data point
should be distributed to the different estimations it enters.

Such a distribution of the unit weight of a data point can very naturally
be described by a radial step function on the maximum distance, which is
centered at the data point, provided the radial function is normalized to
integral 1. However, we may also generalize this approach, doing without
bins defined by a grid, by specifying a general radial function (though still
normalized to integral 1) on a general distance measure—the abovemen-
tioned kernel function. With such a kernel function we may estimate the
probability density at arbitrarily chosen points of the data space, by simply
summing the corresponding values of the kernel functions of all data points.
This is the basic idea of kernel estimation [Scott 1992, Everitt 1998],
which goes back to the idea of Parzen windows [Parzen 1962].

Formally, a one-dimensional probability density f is estimated as

f̂(x) =
1
nw

n∑
j=1

K

(
d(x, xj)
w

)
,

where the kernel functionK satisfies
∫
dom(t)

K(t)dt = 1, i.e., it is normalized
to integral 1, and w is called the window width or bandwidth [Everitt
1998]. Intuitively, a kernel estimator sums a series of “bumps” located at
the data points. The kernel function K specifies the shape of these bumps
and the window width w determines their extension or size. One of the
most common kernel functions is the Gaussian function (cf. Section 2.2).

4.3. MORE SOPHISTICATED METHODS 83

It should be noted that due to the symmetry of the distance measure
the computation of the estimate may also be seen as placing the kernel
function at the point where the density is to be estimated and evaluating
it at the locations of the data points. Furthermore, it should be noted
that the estimated density function is the smoother, the larger the value of
the window width w. Finally, it is clear that the window width w can be
incorporated into the kernel function (or rather into the distance measure),
provided it is made sure that the integral of K over the whole data space
remains 1 (the factor 1

w in the estimation formula only accounts for the
change of the integral that is brought about by the division of the distance
by w and rescales K to a unit integral over the data space—cf. Section 2.2
and Appendix A.2.1, where such a renormalization is discussed for the more
general case of a covariance matrix entering a Mahalanobis distance).

Based on the idea of kernel estimation, mountain clustering [Yager and
Filev 1994] and subtractive clustering [Chiu 1994] can be described as fol-
lows: The kernel estimate can be seen intuitively as a “mountain range”
(from this view the name of the former method is derived). Clusters should
be located at the highest peaks, provided these peaks are not too close
together (we do not want cluster centers on all the side peaks of the high-
est elevation). Unfortunately, it can be mathematically tricky to find the
modes (peaks, local maxima) of a kernel estimated density function [Fuku-
naga 1990]. Therefore one considers only a limited set of points, namely the
chosen set of candidate cluster centers and estimates the probability density
only at these points. Next one finds the candidate cluster center with the
highest probability density and chooses it as the first cluster center.

For consecutive choices of cluster centers we have to take precautions
that side peaks of already chosen peaks are penalized. This is achieved by an
operation that [Yager and Filev 1994] call the “destruction of a mountain.”
A kernel function, which is multiplied with a certain weight, which accounts
for the number of data points one desires or expects to find in a cluster, is
placed at the location of the chosen cluster center. It is evaluated at the
locations of the remaining candidate cluster centers, and the resulting value
is subtracted from the corresponding density estimate. Usually the kernel
function used for the “destruction of a mountain” is the same as the one
used for the estimation in the first place and thus the only parameter is
the weighting factor, by which it is multiplied. After the destruction of a
mountain, the highest peak of the modified estimate is determined, chosen
as the next cluster center, its corresponding mountain is “destructed” and
so on. The process stops when a predefined number of cluster centers has
been selected or the highest density value lies below a specified threshold.

84 CHAPTER 4. INITIALIZATION METHODS

Depending on the chosen weighting factor for the “destruction of a moun-
tain” it can happen that the maximum of the modified density estimate lies
at an already chosen cluster center. In this case it is usually best to destruct
the corresponding mountain without choosing another cluster, because sim-
ply excluding already chosen cluster centers bears a considerable danger
that undesired side peaks of a high elevation get selected.

Although mountain clustering and subtractive clustering are fairly intu-
itive methods with some sound basis in statistics, it should be kept in mind
that they are computationally expensive as they require the computation of
a large number of distances (the number of data points times the number of
candidate cluster centers). Thus its computational costs can easily exceed
the costs for iterating the update scheme of a simple clustering algorithm,
for example, of fuzzy c-means clustering, until convergence (cf. Section 5.2).
On the other hand, an advantage of these approaches is that they can be
used to guess the number of clusters, namely by specifying a threshold for
the density estimate at which no more cluster centers get selected. As an
alternative one may first select center candidates with the mode-finding
method by [Schnell 1964], which however, is itself an expensive procedure.

The second major initialization method for clustering I consider here
is the well-known approach of hierarchical agglomerative clustering
[Sokal and Sneath 1963, Johnson 1967, Bock 1974, Mucha 1992]. As its
name already indicates, this method constructs a hierarchy of clusters, that
is, each cluster consists of subclusters. The hierarchy is formed in an ag-
glomerative fashion: Initially each data point forms a cluster of its own.
The clustering process iteratively merges those clusters that are closest to
each other, until only one cluster, covering all data points, remains.

The obvious problem residing with such an approach is that as long as
a cluster contains only one data point, we can easily determine the dis-
tance of two clusters. However, as soon as clusters have been merged, and
thus contain multiple data points, how should we measure their distance?
A large variety of so-called “ultra metrics” has been suggested: single
linkage — smallest distance between a data point in one and a data point
in the other cluster, complete linkage — largest distance between two
data points, average linkage — average distance between two data points,
centroid method — distance between the centroids (mean vectors) of the
clusters etc. (see [Bock 1974] for a quite complete list). However, among
these methods only those that lead to compact clusters are useful for ini-
tializing prototype-based clustering . This rules out single linkage, because
the clusters found with this methods may be long chains of data points, but
complete linkage, average linkage, and the centroid method are good choices.

4.3. MORE SOPHISTICATED METHODS 85

2 12 16 25 29 45 2 12 16 25 29 45 2 12 16 25 29 45

single linkage complete linkage centroid method

14 27

10

16.8

21.5

Figure 4.3: Dendrograms of cluster hierarchies built with hierarchical ag-
glomerative clustering for a simple one-dimensional data set with three dif-
ferent methods of measuring the distance between clusters.

A method that is particularly recommended for the initialization of
prototype-based approaches is Ward’s method [Ward 1963]: in each step
merge those two clusters that lead to the lowest increase in the average
intra-cluster variance. This variance is the weighted average (weighted with
the number of data points) of the equivalent isotropic variances of each clus-
ter (cf. Section 2.3). The method is well-suited for the initialization of crisp
and fuzzy clustering, because it uses basically the same objective function:
the sum of squared distances to cluster centers, which are the mean vec-
tors of the assigned data points, is obviously proportional to the average
equivalent isotropic variance. Due to the close connection of a clustering
approach based on the minimization of squared distances to maximization
of the likelihood with a Gaussian mixture model (cf. page 64 in Section 3.3),
it is also a good choice for initializing maximum likelihood approaches.

As already mentioned, consecutively merging clusters leads to a hierar-
chy of clusters. This hierarchy is usually depicted as a so called dendro-
gram (from the Greek δ έντ%ων: tree), in which merged clusters are con-
nected by a bridge, the height of which represents their distance. Examples
of dendrograms for a one-dimensional data set and three different methods
of measuring the distances between clusters are shown in Figure 4.3.

After the cluster hierarchy has been constructed, the initial clusters are
determined as follows: if the number c of clusters to be used in the subse-
quent prototype-based clustering is already known, one simply cuts the den-
drogram horizontally in such a way that c branches are cut. (Equivalently
one may stop merging clusters once their number has been reduced to c.)

86 CHAPTER 4. INITIALIZATION METHODS

However, the sequence of cluster distances in the mergers carried out to form
the cluster hierarchy may also be analyzed to guess a proper cut and thus
the number of clusters. An overview of methods to determine the number
of clusters in this way can be found, for example, in [Kirsten 2002].

Each branch of the cut dendrogram represents one cluster, with a crisp
assignment of data points. To find the corresponding center, one simply
computes the mean vector of the data points assigned to a cluster. In
addition, one may compute a covariance matrix for each of the clusters to
initialize a Mahalanobis distance and/or the relative number of data points
in the cluster to initialize the cluster weight (if these parameters are used).

Although it can yield very good initializations and can be used to guess
the number of clusters (see above), hierarchical agglomerative clustering
suffers from the same drawbacks as mountain clustering and subtractive
clustering, namely that it is fairly expensive. It starts from a distance
matrix for all data points (containing all pairwise distances) and modifies
this matrix according to the cluster mergers that are carried out. As a
consequence, a large number of distance computations (quadratic in the
size of the data set) is necessary, and thus one should check carefully if the
better initialization outweighs the incurred costs.

A closely related, but computationally much cheaper method was sug-
gested by [MacQueen 1967]. It can be seen as using a blend of ideas from
hierarchical agglomerative clustering and classical c-means clustering and
consists in traversing the data set once in a randomly chosen order. The
first c data points, where c is the desired number of clusters, are chosen
as initial clusters, containing one data point each. When traversing the
remaining data points one always finds the cluster that is closest to the
new data point w.r.t. the centroid method and merges the new data point
with it (a procedure that can be seen as “online” c-means clustering, cf.
Section 5.2.2), computing a new cluster center.

Since the cluster centers move during the procedure, it is likely that after
some steps the cluster, a data point was assigned to originally, is no longer
the one yielding the center closest to the data point. Therefore [MacQueen
1967] suggested to recompute the assignment of all already processed data
points as well as the resulting centers in each step. However, this renders
the method very expensive computationally and hence, since I am only con-
cerned with initializing the centers and not with finding a final clustering
result, it is recommended to skip this re-assignment. Without this reassign-
ment, the costs of the whole process are only slightly higher than those of
one update step of classical c-means clustering (cf. Section 5.2.2) and hence
it is well-suited even for initializing very simple clustering algorithms.

4.3. MORE SOPHISTICATED METHODS 87

The process stops with an initial crisp partition of the data points after
all data points have been processed. If one skipped the re-assignment in the
individual steps, one may still carry out a final re-assignment of the data
points to stabilize the result. The mean values of the clusters in the final
partition may then be used to initialize the cluster centers of a prototype-
based algorithm. In addition, initial values for the cluster-specific covariance
matrices and the cluster weights may be determined.

As a final initialization method for clustering I would like to mention the
refinement approach by [Fayyad et al. 1998]. It starts from the follow-
ing observation: basically all update schemes that are discussed in the next
chapter suffer from the problem of local optima. That is, the iterative im-
provement of the cluster parameters can get stuck in a local optimum of the
objective function, thus leading to suboptimal results. The most common
solution to this problem is to do several clustering runs with different ini-
tializations, yielding several clustering results. Afterwards the result having
the best value for the objective function is determined and chosen as the
final result [Duda and Hart 1973]. However, this approach, though usually
very effective, suffers from the drawback that it is computationally fairly
expensive, because the full clustering algorithm—initialization as well as
iterative updating until convergence—has to be carried out several times.

As an alternative [Fayyad et al. 1998] suggest to refine the initialization
based on the clustering results. However, since it is too costly to run the
algorithm several times on the full data set, especially if this data set is large,
they suggest to use clustering results obtained on (randomly chosen) subsets
of the full data set. The method works as follows: several relatively small
random samples are drawn from the given data set and clustered with a
prototype-based clustering algorithm, in which only cluster centers are used.
In this procedure the algorithm is initialized with some simple method, for
instance, by randomly selecting data points as initial cluster centers. The
resulting cluster centers are then pooled to form a new data set, which again
is clustered with the prototype-based algorithm, doing several runs with
different initializations if necessary. The cluster centers that result from
“clustering the clustering results” are finally used to initialize the clustering
algorithm for the full data set, which is carried out only once.

[Fayyad et al. 1998] report several experiments, which indicate that the
refinement approach often yields results that are superior to those obtained
with multiple runs and selecting the best result. The main advantages are
the fairly small computational costs, which can also be controlled by the
size and the number of the samples that are drawn, and the fact that it can
be combined with any clustering algorithm that uses only cluster centers.

88 CHAPTER 4. INITIALIZATION METHODS

θ−

θ+
core

conflict

core

conflict

Figure 4.4: Illustration of how the thresholds θ− and θ+ of the dynamic
decay adjustment algorithm define the conflict and the core region.

When it comes to initializing cluster prototypes for classification pur-
poses, the first thing to notice is that all approaches discussed above can
be applied as well. One simply splits the data set according to the class la-
bels of the data points and then executes the initialization methods on each
of these subsets. However, since with such an approach the cluster proto-
types of each class are chosen without taking the location of data points of
the other classes into account, their positions may not be particularly well
suited for the task of classifying them. Therefore approaches that work on
the undivided dataset are to be preferred, two of which I discuss here.

The first is the dynamic decay adjustment (DDA) algorithm
[Berthold and Diamond 1995, Berthold and Diamond 1998] for construc-
tively learning a special type of radial basis function network (cf. page 38 in
Section 2.5). The cluster prototypes in this network are usually Gaussian
radial functions over a Euclidean distance (although other radial functions
and distance measures may be used as well), and the data points are classi-
fied by the nearest prototype or maximum membership scheme (cf. page 38
in Section 2.5). The dynamic decay adjustment algorithm selects cluster
centers from the data points and dynamically adjusts the “decay rate” of
the radial functions (hence its name) by adapting their reference radius σ
individually for each cluster prototype.

The decay adjustment is based on two parameters that have to be spec-
ified by a user, namely a lower threshold θ− and an upper threshold θ+ for
the membership of a data point to a cluster prototype. These parameters
are illustrated in Figure 4.4, which shows a side view of the one-dimensional
case on the left and top view of the two-dimensional case on the right. The
grey shading shows the regions defined by the thresholds. The idea of the
algorithm is to select centers and adjust their radii in such a way that

4.3. MORE SOPHISTICATED METHODS 89

• there is no data point with a different class label inside the region
defined by the lower membership threshold θ− (the conflict region),

• each data point is inside the region defined by the upper membership
threshold θ+ (the core region) of at least one prototype having the
same class label as the data point.

To achieve this, the dynamic decay adjustment algorithm works in an online
fashion, that is, it considers the data points one after the other, traversing
the data set several times if necessary. In each step one or both of two
possible update operations are carried out. These operations are:

• commit: If the considered data point is not inside the core region
of any cluster prototype having the same class label, a new cluster
prototype with the class label of the data point is created, which is
located at the data point and has a default reference radius σ.

• shrink: If the considered data point lies inside the conflict region of
one or more cluster prototypes that are associated with different class
labels, the reference radii σ of these prototypes are shrunk until the
data point lies outside the conflict region(s).

Note that both operations can make it necessary to traverse the dataset
again: The commit operation may have introduced a cluster that covers—
with its conflict region—an already processed data point of a different class.
The shrink operation may leave already processed data points uncovered
that were covered when they were processed.

However, it can be shown that the dynamic decay adjustment algorithm
converges after a finite number of steps, provided there are no contradic-
tory example cases (that is, identical data points with differing class labels).
With the recommended values of θ− = 0.2 and θ+ = 0.4 for a Gaussian ra-
dial function, convergence is usually very fast and has been reported to take
about five epochs (i.e. five traversals of the dataset) for typical problems.
The resulting classifier (in the form of a radial basis function network) per-
forms very well and often better than those trained with classical methods
[Berthold and Diamond 1995, Berthold and Diamond 1998].

Although it yields good radial basis function networks, for the initial-
ization of a prototyped-based classifier the dynamic decay adjustment al-
gorithm has the disadvantage that it may create a large number of cluster
prototypes. Although their number depends to some degree on the values
of the parameters θ− and θ+, a small set of prototypes cannot always be
achieved only by adapting these parameters. Therefore it is advisable to

90 CHAPTER 4. INITIALIZATION METHODS

select a subset of the cluster prototypes based, for example, on the number
of data points in their core region. Such ideas to reduce the complexity of
the model have also been introduced in different contexts, namely learning
fuzzy graphs [Berthold and Huber 1999] and learning hierarchical fuzzy rule
systems [Gabriel and Berthold 2003a, Gabriel and Berthold 2003b].

An alternative to the DDA algorithm is to choose the cluster centers with
forward selection or backward elimination based on the classification
performance they yield. (If the target variable is numeric—and not, as
considered here, a nominal value stating a class—these methods are also
known as forward or backward regression.) The idea of these methods is
the same as for the (equally named) methods of (greedy) feature selection.

In forward feature selection, one first builds a set of classifiers, each
of which uses only one of the available feature, and determines their classi-
fication performance. The feature that yields the best classifier is selected.
Next a set of classifiers is build, in which the feature selected in the first
step is combined with all remaining features, one per classifier. Again the
feature yielding the best performance is selected. In the third step classifiers
using three features, two of which are the already selected ones, are evalu-
ated and so on. The feature selection stops when a pre-specified number of
features has been reached or the evaluation of the classification performance
indicates that no feature yields an improvement that warrants the higher
complexity involved in using another feature (see below).

The idea of backward feature elimination is equally simply, only the
process is reversed: features to be eliminated are selected greedily based on
the performance of classifiers from which they have been removed. Feature
elimination stops if the elimination of any of the remaining features leads
to a significant drop in the classification performance.

Forward selection or backward elimination of cluster centers works in an
analogous way. However, before the selection procedure starts, one chooses a
kernel function, as discussed for a kernel estimation of a probability density
function (cf. page 81). With this kernel function one fixes the characteristics
of the cluster, that is, its size and how the similarity “decays” when one
moves away from the cluster center. All that is left to choose then are the
cluster centers, which are selected from the data points.

The centers are selected in the same greedy fashion as the features. First
a set of classifiers with only one cluster, which is located at a data point,
is build and evaluated. The data point that yields the best performance
is permanently chosen as a cluster center. Then a second cluster, located
at another data point, is added and so on, each time choosing the data
point that yields the highest improvement of the classification performance.

4.3. MORE SOPHISTICATED METHODS 91

Similarly, in backward elimination the process is reversed: one starts with
a classifier using all data points as centers and eliminates them greedily.

Since clusters alone do not constitute a full classifier (cf. Section 2.5),
we also have to consider how to set up the classification scheme, once the
clusters are chosen. If the desired classifier is desired to be a nearest pro-
totype or highest membership classifier, we also need an assignment of class
labels to the clusters. The best approach to find such an assignment is to
simply sum for each cluster and each class the degrees of membership of the
data points and then to assign the class with the largest sum.

If the desired classifier is a linear function classifier, we have to determine
the weights of the classification functions, that is, the weight matrix W (cf.
Section 2.5). The standard method for this, which is basically a multivariate
linear regression, is described in the next section. Note, however, that with
this method forward selection and in particular backward elimination, which
are not that cheap anyway, become fairly expensive procedures. This holds,
even though part of the result obtained for a simpler classifier can be used
for the construction of the weight matrix of a more complicated one (with
one more cluster center)—see the next section.

Finally, we have to consider when to terminate the selection of cluster
centers. In the simplest case one stops when a pre-specified number of
cluster centers has been chosen. Alternatively, one may base the decision
on the classification performance the classifiers yields, in particular, if it is
computed as the sum of squared errors (cf. Section 3.2) or as the likelihood
of a correct class prediction. However, a problem with such an approach
is that the classification performance on the given data set (from which
the cluster centers are selected) can only improve with more clusters. In
particular, the classification always gets perfect (in terms of a correct class
prediction and provided that there are not contradictory example cases) if
all data points are used as cluster centers. This is obvious for a nearest
prototype classifier, but also holds for a linear function classifier, for which
weights can be found so that the class associated with a data point has
membership degree 1 and all other classes have membership degree 0. Only
for a probabilistic classifier there is some residual probability for the other
classes, although the associated class is assigned the highest probability.

As a consequence it is advisable to use a penalized measure to assess
the classification performance, that is, a measure that takes the complexity
of the classifier into account. A family of such penalized measures, which
is well-known in the statistical literature on model choice, are so-called
information criteria. An information criterion is defined generally as
the log-likelihood of the data given the model to evaluate plus a term that

92 CHAPTER 4. INITIALIZATION METHODS

depends on the number of parameters of the model. Thus this criterion
takes into account both the statistical goodness of fit and the number of
parameters that have to be estimated to achieve this particular degree of
fit, by imposing a penalty for increasing the number of parameters [Everitt
1998]. For a prototype-based classifier it can be defined as

ICκ(C,W | X, ~z) = − 2 lnP (X, ~z | C,W) + κ(#(C) + #(W)),

where X is the database of sample cases, ~z the vector of class labels assigned
to these sample cases, C the set of cluster prototypes and W the weight
matrix of the classification functions (which is not used for a nearest pro-
totype classifier). The term #(C) denotes the number of parameters of the
cluster prototypes and #(W)) the number of elements of the weight ma-
trix, that is, the number c of clusters (plus 1) times the number s of classes.
P (X, ~z | C,W) is the probability of the data set (including the class labels
of the data points) given the model (the classifier). Hence it is clear that
for κ = 0 we get a measure that is equivalent to a maximum likelihood
approach to model selection. However, pure maximum likelihood is usually
a bad choice, as it does not take the number of parameters into account.

Important special cases of the above general form are the so-called
Akaike Information Criterion (AIC) [Akaike 1974] and the Bayesian
Information Criterion (BIC) [Schwarz 1978]. The former results for
κ = 2 and is derived from asymptotic decision theoretic considerations.
The latter has κ = lnn, where n is the number of sample cases, and is
derived from an asymptotic Bayesian argument [Heckerman 1998].

An alternative to an information criterion is the more general approach
known as the minimum description length principle (MDL) [Rissanen
1983, Rissanen 1987]. Intuitively, the basic idea is the following: A sender
wants to transmit some data to a receiver. Since transmission is costly, it is
tried to encode the message in as few bits as possible. It is assumed that the
receiver knows about the symbols that may appear in the message, but does
not know anything about their probabilities. Therefore the sender cannot
use directly, for instance, a Huffman code [Huffman 1952] for the transmis-
sion, because without the probability information the receiver will not be
able to decode it. Hence the sender must either use a simpler (and longer)
code, for which this information is not required, or he/she must transmit
first the coding scheme or the probabilities it is based on. If the message to
be sent is long enough, transmitting the coding scheme can pay, since the
total number of bits that have to be transmitted may be lower as with a
standard coding that does not take into account the probability information.

4.3. MORE SOPHISTICATED METHODS 93

For choosing a classifier the situation is imagined as follows: We assume
that both the sender and the receiver know the data set and the number
of classes2, but that only the sender knows what class labels are assigned
to the data points. The goal is to transmit the class labels of the data
set to the receiver. To do so, one may use a code with the same number
of bits per class label, and thus no model. Or one may transmit first the
class probabilities and then encode the class labels with a Huffman code.
Or—and this is the case I am interested in—one may construct a classifier
from the data, transmit the classifier, and then either encode the class
labels with the probabilities computed by the classifier or only transmit the
needed corrections to the output of the classifier. The classifier leading to
the smallest total description length (sum of classifier description length
and data description length) is the one to choose. In the forward selection
approach, for example, one stops adding clusters once the total description
length increases due to the addition of another cluster.

A third penalized measure is the predicted residual sum of squared
errors (PRESS) [Myers 1990, Hong et al. 2003, Chen et al. 2004]. The idea
is to estimate the expected sum of squared errors with leave-1-out cross
validation (cf. also Section 7.1.2). That is, once a set of cluster centers is
fixed, n linear function classifiers are constructed from them, which differ
only in their weight matrix. For each classifier one data point is set apart
and the weight matrix is computed from the remaining n − 1 data points
(details of this computation are discussed in the next section). The resulting
classifier is evaluated on the data point that has been set apart. Finally
these (one data point) errors are summed over all classifiers, yielding an
error estimate for the whole data set. The weight matrix that is to be used
afterwards, however, is computed from the full set of data points.

The advantage of the predicted residual sum of squared errors is that it is
also applicable for non-probabilistic classifiers. Its disadvantage is that it is
fairly expensive to compute due to the costly cross validation computations.
Even though there are some mathematical insights that enable us to improve
on truly recomputing the classifier for each data point that is set apart (see
the next section for details), the necessary computations still involve the
inversion of an m × m matrix (where m is the number of dimensions of
the data space), which has complexity O(m3). Hence this method can be
recommended only for low-dimensional spaces or small data sets.

2Note that a strict application of the minimum description length principle would
require that the data set as well as the number of classes are unknown to the receiver.
However, since they have to be transmitted in any case, they do not have an influence
on the classifier ranking and thus are usually neglected or assumed to be known.

94 CHAPTER 4. INITIALIZATION METHODS

4.4 Weight Initialization

After we fixed the cluster prototypes, the weight matrix W of a linear
function classifier has to be initialized. The idea of this initialization is
very simple: when the cluster parameters (centers, radii, radial function)
are chosen, we can compute the (unnormalized) degree of membership for
each data point to each cluster. From these membership degrees the linear
classification functions are to compute a class indicator, usually in the form
of a binary encoding. Hence the task can be seen as a multivariate linear
regression problem (or as s such problems, one for each class, if there are
more than two classes, so that one function for each class is needed).

Formally the initialization problem can be described as follows: we con-
struct the n× (c+ 1) (extended) unnormalized cluster membership matrix

U =

 1 u◦1(~x1) · · · u◦c(~x1)
...

. . .
1 u◦1(~xn) · · · u◦c(~xn)

 .

Note the additional first column, which takes care of the constants wk0

(known as bias values or intercept terms) in the linear regression functions

∀k; 1 ≤ k ≤ s : gk(~x) = wk0 +
c∑

i=1

wki u
◦
i (~x).

In addition, we consider a binary encoding of the classes ~z = (z1, . . . , zn),
zj ∈ {1, . . . , s}, 1 ≤ j ≤ n, that are assigned to the data points. That is,
we construct s binary vectors ~zk, 1 ≤ k ≤ s, with

∀j; 1 ≤ j ≤ n : zkj = δzj ,k =
{

1, if zj = k,
0, otherwise,

where δz,k is the Kronecker symbol (cf. page 60).3 Then the initialization
problem consists in the s linear multivariate regression problems

∀k; 1 ≤ k ≤ s : U~wk = ~zk,

where ~wk = (wk0, wk1, . . . , wkc) contains the weights of the linear classifi-
cation function gk. These weights are to be determined in such a way that
the sum of squared errors

(U~wk − ~zk)>(U~wk − ~zk)
3Note that for s = 2 one such binary vector is sufficient—one may even use the class

index vector ~z directly. Multiple vectors are only needed for more than two classes.

4.4. WEIGHT INITIALIZATION 95

is minimized. How this can be achieved is reviewed in detail in Section A.6
in the appendix. The core result is the linear equation system (known as
the system of normal equations)

U>U ~wk = U>~zk,

from which the weights can be computed, for example, as

~wk =
(
U>U

)−1
U>~zk

(cf. Section A.6 in the appendix for details).
For a single initialization the above equation is all we need. However, in

the preceding section we considered a forward selection of cluster centers,
which gives rise to a large number of regression problems, namely one for
each addition of one cluster center candidate. In order to solve these prob-
lems efficiently, it is advisable to compute the inverse in the above equation
with Cholesky decomposition (cf. Section A.3 in the appendix).4 The rea-
son is that the addition of a cluster center adds a column to the matrix U,
which leads to an additional row and column in the matrix U>U. How-
ever, this is the only change. Apart from this additional row and column
all other matrix elements stay the same. Similarly, the vector U>~zk gets
a new element, but the already existing elements are unchanged. These
properties can be exploited nicely with Cholesky decomposition, because
they make it possible to adapt an existing Cholesky decomposition of the
smaller matrix U (with one column less) instead of fully recomputing it.

Another computational issue concerns the computation of the sum of
squared errors obtained with such a classifier as well as the predicted resid-
ual sum of squared errors. The former can easily be computed by exploiting

esqr(X, ~z;C,W) = (U~wk − ~zk)>(U~wk − ~zk)
= ~w>k U>U~wk − 2~w>k U>~zk − ~z>k ~zk

= ~w>k L>L ~wk − 2~w>k ~rk − ~z>k ~zk,

where L is the lower (or left) triangular matrix that results from a Cholesky
decomposition of U>U and ~rk = U>~zk is the right hand side of the system
of normal equations. Although this formula is numerically not very stable
and should not be used for tasks where precision is the main concern, it
is an efficient way of getting a good estimate of the sum of squared errors,
which is sufficient for a forward selection of initial cluster centers.

4Note that U>U is symmetric and positive definite, as it is computed in basically the
same way as a covariance matrix, namely as the sum of outer products of vectors.

96 CHAPTER 4. INITIALIZATION METHODS

The predicted residual sum of squared errors, on the other hand, is more
difficult to compute. Setting apart a data point ~xj , 1 ≤ j ≤ n, for a cross
validation means to delete the j-th row from the matrix U. I denote this
row by ~u>j = (1, u◦1(~xj), . . . , u◦c(~xj)) and the resulting matrix without this
row by Uj . In addition, I denote the k-th vector of the binary encoding of
the classes, from which the j-th element (which corresponds to the removed
data point) has been deleted, by ~zk[j] = (zk1, . . . , zk(j−1), zk(j+1), . . . , zkn)>.
Then we can write the system of normal equations we have to solve if the
data point ~xj is left out as

U>
j Uj ~wk[j] = U>

j ~zk[j],

where ~wk[j] is the solution for this fold of the cross validation. However,
actually solving one such system for each data point just to evaluate it on
the left out data point and then to sum the squared errors would be much
too costly. Rather one tries to exploit the fact that all these systems of
normal equations are very similar to the one using all data points and tries
to compute the squared error of the reduced system from the squared error
of the full system. This is done as follows [Chen et al. 2004]: we start from

ej = (~u>j ~wk − zkj)2 =
(
~u>j
(
U>U

)−1
U>~zk − zkj

)2

,

that is, the full classifier error for the data point ~xj , and

e∗j = (~u>j ~wk[j] − zkj)2 =
(
~u>j
(
U>

j Uj

)−1
U>

j ~zk[j] − zkj

)2

,

that is, the cross validation classifier error for the data point ~xj . The idea
of the following derivation is to find a relation between these two errors, so
that we can compute e∗j from ej . To achieve this, we note first that due to
the definition of the matrix Uj , it is obviously

U>
j Uj = U>U− ~uj~u

>
j ,

that is, only the outer product of the data point that is left out is removed
from the matrix U>U. Therefore we obtain with the matrix inversion
lemma (cf. Section A.7 in the appendix for a detailed derivation)(

U>
j Uj

)−1
=

(
U>U− ~uj~u

>
j

)−1

= (U>U)−1 +
(U>U)−1~uj~u

>
j (U>U)−1

1− ~u>j (U>U)−1~uj
.

4.4. WEIGHT INITIALIZATION 97

As a consequence we have that

~u>j (U>
j Uj)−1 = ~u>j (U>U)−1 +

~u>j (U>U)−1~uj~u
>
j (U>U)−1

1− ~u>j (U>U)−1~uj

=

(
1 +

~u>j (U>U)−1~uj

1− ~u>j (U>U)−1~uj

)
~u>j (U>U)−1

=
~u>j (U>U)−1

1− ~u>j (U>U)−1~uj
.

Next we observe that it is obviously

U>
j ~zk[j] = U>~zk − ~u>j zkj .

Substituting this and the preceding equation into the expression for e∗j yields

e∗j =

(
~u>j (U>U)−1

1− ~u>j (U>U)−1~uj

(
U>~zk − ~u>j zkj

)
− zkj

)2

=

(
~u>j (U>U)−1U>~zk

1− ~u>j (U>U)−1~uj
−

~u>j (U>U)−1~u>j
1− ~u>j (U>U)−1~uj

zkj − zkj

)2

=

(
~u>j (U>U)−1U>~zk − zkj

1− ~u>j (U>U)−1~uj

)2
=

ej(
1− ~u>j (U>U)−1~uj

)2 .
However, even though this computation speeds up the cross validation con-
siderably, the predicted residual sum of squared errors remains a computa-
tionally very expensive method. If the model construction consists only of
a forwards selection of clusters based on this measure, it may be acceptable,
but it cannot really be recommended for initialization purposes.

Chapter 5

Update Methods

After the cluster prototypes have been initialized, they may be improved
(w.r.t. the objective functions discussed in Chapter 3) by iteratively updat-
ing the cluster parameters. For such iterative updating there are basically
four categories of approaches, which are discussed in this chapter:

Gradient methods try to find a (local) optimum by iteratively computing
the gradient of the objective function at the current point in the parameter
space and making a (small) step in (or against) the direction of this gradient,
thus reaching a new point in the parameter space. The size of the step can
be controlled by a parameter that is often called “learning rate”.

In alternating optimization the parameters of the objective function are
split into (usually, but not necessarily) two parts, so that the optimum
for each part can be computed directly, provided all other parameters are
fixed. The sets of parameters are then worked on in an alternating fashion,
optimizing one set of parameters while the other is fixed.

In competitive learning the cluster prototypes compete over the data
points. Depending on the number of competitions they win or the degree to
which they can acquire the data points (similar to a membership degree),
the cluster parameters are adapted. An advantage of this approach is that
it can also be executed “online”, updating after each data point.

Guided random search exploits ideas from statistical optimization and
evolution theory. The cluster parameters are randomly modified or ran-
domly combined from two candidate solutions. Then the objective function
is recomputed with the new set of parameters. Based on the resulting value
and a random component the new parameters replace the old (simulated
annealing) or have a higher probability of survival (genetic algorithms).

99

100 CHAPTER 5. UPDATE METHODS

x

y

z

x0

y0

∂z
∂x
|~p

∂z
∂y
|~p

∇z|~p=(x0,y0)

Figure 5.1: Illustration of the gradi-
ent vector of a real-valued function
z = f(x, y) at a point ~p = (x0, y0).
It is ∇z|~p =

(
∂z
∂x |~p,

∂z
∂y |~p

)
.

5.1 Gradient Methods

Gradient ascent or descent is among the oldest and best-known methods
for function optimization. In the context of prototype-based clustering and
classification it is most often found in connection with a linear function
classifier and the sum of squared errors as the objective function. That is,
gradient descent is used for training a radial basis function neural network
(RBF network) [Rojas 1993, Haykin 1994, Zell 1994, Anderson 1995, Bishop
1995, Nauck et al. 2003]. Furthermore, it has also been applied in other areas
as an alternative to the expectation maximization algorithm (see Section 5.2)
[Russel et al. 1995, Bauer et al. 1997]. However, since the approach is fully
general and requires only that the objective function is differentiable, it can,
in principle, be applied to almost any objective function.

5.1.1 General Approach

The rationale underlying gradient methods is that we can attempt to op-
timize an objective function if we can find the direction in which we have
to change a given set of parameters in order to improve the value of the
objective function. This information is contained in the gradient of the
function. The gradient is a differential operator (denoted by the symbol ∇,
which is pronounced “nabla”) that assigns a vector to each point of the pa-
rameter space. The elements of this vector are the partial derivatives of the
function w.r.t. its parameters. Formally, the gradient turns a real-valued
function into a vector field. Intuitively, the gradient of a function (at a
given point) points into that direction in the parameter space, in which the
function ascends most steeply. Its length specifies how steep the function is
at this point. As an illustration Figure 5.1 shows the gradient vector of a
real-valued function f(x, y) at a point ~p = (x0, y0).

5.1. GRADIENT METHODS 101

The general procedure of gradient methods is as follows: given initial
values for the parameters (in the context of prototype-based classification
and clustering: obtained with one of the initialization methods studied in
the preceding chapter), we compute the gradient of the objective function
and modify the parameters according to this gradient: the change is in
the direction of the gradient if we want to maximize the function, and in
the opposite direction if we want to minimize it. The length of the step
depends on the length of the gradient vector at the current point and a
factor by which it is multiplied in order to control the process. Due to
its use in artificial neural networks (here in particular: radial basis function
networks), this factor is known as the learning rate. It controls the “speed
of learning”, i.e., how quickly the parameters change their values.

The adapted parameters specify a new point in the parameter space, at
which the gradient is recomputed (because it may be in a different direction
compared to the initial point). Another step in or against the direction
is carried out, and again the gradient is recomputed. The procedure is
iterated until the gradient is sufficiently small, so that we can be reasonably
sure that a (local) optimum of the objective function has been reached. In
practice, a user specifies a threshold ε for the change of any parameter. If
all changes are below this threshold, the procedure is terminated.

Formally, a gradient method can be described as follows: let f(~θ) be an
objective function that has a parameter vector ~θ as its argument. In order
to find a (local) optimum of the function f w.r.t. ~θ, we determine an initial
parameter vector ~θ (0). Then we compute the sequence of vectors

~θ (t+1) = ~θ (t) ± η · ∇~θ f
(
~θ (t)

)
, t = 0, 1, 2, . . . ,

with the plus sign corresponding to gradient ascent (to maximize f) and
the minus sign corresponding to gradient descent (to minimize f). It is

∇~θ =
(

∂

∂θ1
, . . . ,

∂

∂θk

)>
for ~θ =

(
θ1, . . . , θk

)> and η is the learning rate. As a consequence, all we
have to do now is to compute the specific gradient of a given objective
function, which is exactly what is done in the following sections.

Note that we may also take the update formula apart into one formula for
each parameter, or that we may refer to subvectors of ~θ. This is important,
because in the following it is convenient to split the set of parameters. For
example, we may want to consider the update of the cluster centers separate
from the update of the associated covariance matrices.

102 CHAPTER 5. UPDATE METHODS

Note also that several of the objective functions that were considered in
Chapter 3 consist of a sum of certain expressions over the data points. As
a consequence the gradients of these functions are also computed as sums
of expressions over the individual data points. That is, they consist of one
term for each data point. Thus the idea suggests itself to take the update
apart into individual steps, one for each data point. That is, the gradient
ascent or descent is carried out as follows: one computes the term of the
gradient that corresponds to one data point (that is, one term of the sum)
and immediately adds the resulting change to the current parameter vector
(instead of first aggregating the changes over all data points).

This approach to gradient descent is well known as stochastic gradient
descent [Robbins and Monro 1951, Duda and Hart 1973, Spall 2003].
Here the term “stochastic” refers to the recommendable practice to shuffle
the data points randomly between two traversal of the data set. In this
way one tries to rule out or at least to mitigate effects that result from
the order in which the data points are processed. In the area of neural
networks stochastic gradient descent is known as online training, because
the parameters are updated online with the data points that get available. In
contrast to this batch training is equivalent to standard gradient descent,
in which the changes are applied to the parameters only after all data points
have been processed and the changes have been aggregated [Rojas 1993,
Haykin 1994, Anderson 1995, Nauck et al. 2003]. Online training has been
found to be often much faster than batch training, especially on large data
sets. Its disadvantage is a reduced robustness of the training procedure.

The above considerations are all we need to know if we want to apply
gradient ascent or descent to an objective function without constraints.
However, all of the objective functions considered in Chapter 3 constrain at
least some of the parameters appearing in them. For example, in the sum of
(squared) distances the membership degrees uij , 1 ≤ i ≤ c, 1 ≤ j ≤ n, must
lie in the unit interval (cf. page 51 in Section 3.1). In addition, they must
sum to 1 for each value of j (i.e. for each data point). Analogous constraints
hold for the probabilities appearing in a likelihood function.

Unfortunately, the gradient of an objective function does not respect
these constraints (since they are not part of the objective function). There-
fore a gradient ascent or descent step can leave the region of allowed pa-
rameter values. The standard solution to this problem is to “repair” the
parameters if they lie outside the allowed region. The general idea un-
derlying such a repair is to change the parameters to the closest acceptable
point in the parameter space. However, sometimes it is difficult to determine
this closest point and then heuristics are applied.

5.1. GRADIENT METHODS 103

5.1.2 Gradient Descent on Sum of Squared Distances

As pointed out in the preceding section, the objective of this and the follow-
ing sections is to derive the gradients for the different objective functions
studied in Chapter 3. I go through the different objective functions in the
same order as they were considered in Chapter 3, starting with the sum of
(squared) distances (cf. Section 3.1). Since this objective function is to be
minimized, we have to carry out a gradient descent.

Formally, the task consists in the following: The objective function for
the sum of (squared) distances is defined as (cf. page 51 in Section 3.1)

J(X;U,C) =
n∑

j=1

c∑
i=1

uw
ij d

2
ij .

Therefore the update formulae for the different parameters (recall from the
preceding section that they can be treated separately) are

U(t+1) = U(t) − ηU ∇U J(X;U(t),C(t)),

~µ
(t+1)
i = ~µ

(t)
i −

η~µ

2
∇~µi

J(X;U(t),C(t)),(
Σ(t+1)

i

)−1

=
(
Σ(t)

i

)−1

− ηΣ ∇Σ−1
i
J(X;U(t),C(t)).

(The additional factor 1
2 in the second formula and the use of the inverse Σ−1

i

instead of Σi in the third formula are explained below.)
What we have to do is to compute the different gradients appearing in

these formulae. Before we do so, however, note that the learning rates η
in these formulae carry indices, which indicate to which parameter set they
belong. The reason is that it is usually advisable to use different learning
rates for these parameters, because the objective function is not equally
sensitive to changes, for example, of the cluster centers compared to changes
of the covariance matrices. In particular, the learning rate for the cluster
weights %i and the covariance matrices Σi should be considerably smaller
(about a factor of 5 to 10) than the learning rates for the cluster centers.

For deriving the gradient of the objective function J w.r.t. the fuzzy par-
tition matrix U it is most convenient to consider the different membership
degrees uij , 1 ≤ i ≤ c, 1 ≤ j ≤ n, individually. That is, we exploit

∇U =

∂

∂u11
· · · ∂

∂u1c

...
. . .

...
∂

∂un1
· · · ∂

∂unc

 .

104 CHAPTER 5. UPDATE METHODS

For an individual membership degree ukl, 1 ≤ k ≤ c, 1 ≤ l ≤ n, we get

∂

∂ukl
J(X;U,C) =

∂

∂ukl

n∑
j=1

c∑
i=1

uw
ij d

2
ij = w uw−1

kl d2
kl

and thus ∀i; 1 ≤ i ≤ c : ∀j : 1 ≤ j ≤ n :

u
(t+1)
ij = u

(t)
ij − ηU w

(
u

(t)
ij

)w−1 (
d
(t)
ij

)2
.

However, this update formula is not enough. As already pointed out in the
preceding section the objective function J comes with constraints on the
membership degrees, namely ∀i; 1 ≤ i ≤ c : ∀j : 1 ≤ j ≤ n :

uij ∈ [0, 1],
c∑

i=1

uij = 1, and
n∑

j=1

uij > 0.

To satisfy these constraints the new membership degrees may have to be
adapted. The simplest (heuristic) scheme for this is:

• If u(t+1)
ij > 1, set u(t+1)

ij = 1 and

if u(t+1)
ij < 0, set u(t+1)

ij = 0 (to satisfy the first constraint).

• Finally normalize the new membership degrees for each value of j (i.e.
for each data point) to sum 1 (to satisfy the second constraint).

Although this scheme is plausible, it may be advisable in practice not to
force the membership degrees into the unit interval, but actually into an
even smaller interval [ε, 1− ε], with a small positive number ε. The reason
is that as soon as a membership value uij gets zero, it is not updated
anymore. This can easily be seen if one writes the update formula as

u
(t+1)
ij = u

(t)
ij ·

(
1− ηU w

(
u

(t)
ij

)w−2 (
d
(t)
ij

)2)
.

Finally, the third constraint can be handled in different ways. In the first
place, one may check (after the adaptations in the first point of the scheme)
whether there is an empty cluster, that is, a cluster to which all data points
have a vanishing membership degree. If there is, all data points are assigned
with the same, very small membership degree ε > 0 to this cluster. As an
alternative, one may correct all membership degrees that are less than or
equal to 0 to some small value ε, regardless of whether there is an empty

5.1. GRADIENT METHODS 105

cluster or not. (Of course, these adaptations have to be carried out before
the renormalization.) The value of this ε should be very small (for example,
ε = 10−6), to prevent that the clustering result gets distorted.

For the update of the cluster centers ~µk, 1 ≤ k ≤ c, we have

∇~µk
J(X;U,C) = ∇~µk

n∑
j=1

c∑
i=1

uw
ij d

2
ij =

n∑
j=1

uw
kj ∇~µk

d2
kj .

To proceed, we need the derivative of the squared distance. This derivative
can be found in Section A.1 in the appendix, in which some basic vector
and matrix derivatives are collected. It is (cf. page 268)

∇~µk
d2

kj = ∇~µk
(~x− ~µk)>Σ−1

k (~x− ~µk) = − 2Σ−1
k (~xj − ~µk).

Therefore we have ∀i; 1 ≤ i ≤ c :

~µ
(t+1)
i = ~µ

(t)
i −

η~µ

2
∇~µk

J(X;U(t),C(t))

= ~µ
(t)
i + η~µ

(
Σ(t)

i

)−1 n∑
j=1

(
u

(t)
ij

)w (
~xj − ~µ

(t)
i

)
.

This explains the additional factor 1
2 in the original statement of the update

formulae: this factor cancels against the 2 that results from the derivative
of the distance. Alternatively one can argue at this point that the factor
of 2 appearing here may be incorporated into the learning rate and thus
may be canceled. It is simply convenient to eliminate such constants.

Note that the above formula simplifies to

~µ
(t+1)
i = ~µ

(t)
i + η~µ

n∑
j=1

(
u

(t)
ij

)w (
~xj − ~µ

(t)
i

)

=

(
1− η~µ

n∑
j=1

(
u

(t)
ij

)w)
~µ

(t)
i + η~µ

n∑
j=1

(
u

(t)
ij

)w
~xj

if the Euclidean distance is used.1 This update formula is very intuitive:
Suppose we choose a cluster-specific and time-dependent learning rate

η
(t)
~µi

=
1∑n

j=1

(
u

(t)
ij

)w .
1For the Euclidean distance it is Σ = 1, cf. page 14 in Section 2.1.

106 CHAPTER 5. UPDATE METHODS

Then the old center ~µ(t)
i is canceled and the new cluster center is simply set

to the center of gravity of the weighted data points. That is, we get

~µ
(t+1)
i =

∑n
j=1

(
u

(t)
ij

)w
~xj∑n

j=1

(
u

(t)
ij

)w ,

which is exactly the update formula of standard fuzzy clustering, which is
obtained in an alternating optimization approach (cf. Section 5.2.3).

If we choose a smaller, but still cluster-specific and time-dependent learn-
ing rate, we make a step from the old cluster center towards this center of
gravity. In this case the formula describes a convex combination of two
points in the data space and the result must be on the line connecting the
two points. This can easily be seen by writing the learning rate as a product
of the learning rate chosen above and a factor ξ < 1, i.e. as

η
(t)
~µi

=
ξ∑n

j=1

(
u

(t)
ij

)w , ξ ∈ (0, 1).

With this learning rate we have

~µ
(t+1)
i = (1− ξ) · ~µ(t)

i + ξ ·

∑n
j=1

(
u

(t)
ij

)w
~xj∑n

j=1

(
u

(t)
ij

)w .

This way of rewriting the update formula is also important for another rea-
son: as we will see in Section 5.3, we obtain almost the same update formula
for a specific batch version of fuzzy learning vector quantization, again using
a cluster-specific and time-dependent learning rate. However, the derivation
of this formula in the context of fuzzy learning vector quantization does not
refer to a gradient. It is pleasing to see that completely different approaches
can lead to the same intuitive procedure.

Next we turn to the update of the covariance matrices Σi, 1 ≤ i ≤ c.
As is also pointed out in Section A.2.2, it is advantageous not to consider
the covariance matrix itself, but its inverse. That is, instead of

Σ(t+1)
i = Σ(t)

i − ηΣ ∇ΣiJ(X;U(t),C(t)),

which is difficult to compute due to the fact that only the inverse Σ−1
i

appears in J , we consider (as pointed out at the beginning of this section)(
Σ(t+1)

i

)−1

=
(
Σ(t)

i

)−1

− ηΣ ∇Σ−1
i
J(X;U(t),C(t)).

5.1. GRADIENT METHODS 107

In this way the computations become much simpler. It is actually a standard
trick when having to compute the derivative of some function w.r.t. an
inverse matrix, which we will meet again several times in the following
sections. Note that there is no additional cost involved in obtaining the
inverse matrix, because we need it for the computation of the Mahalanobis
distance anyway. Actually one could just as well use the inverse covariance
matrix as a parameter in the first place, as the only reason for using the
covariance matrix is that it is commonly used in statistics.

For the gradient in the above formula we obtain

∇Σ−1
k
J(X;U(t),C(t)) = ∇Σ−1

k

n∑
j=1

c∑
i=1

uw
ij d

2
ij =

n∑
j=1

uw
kj ∇Σ−1

k
d2

kj

=
n∑

j=1

uw
kj ∇Σ−1

k
(~xj − ~µk)>Σ−1

k (~xj − ~µk)

=
n∑

j=1

uw
kj (~xj − ~µk)(~x− ~µ)>.

Again the justification for the last step can be found in Section A.1 in the
appendix, in which some basic vector and matrix derivatives are collected
(cf. page 268). As a consequence we arrive at the update rule ∀i; 1 ≤ i ≤ c :(

Σ(t+1)
i

)−1

=
(
Σ(t)

i

)−1

− ηΣ

n∑
j=1

(
u

(t)
ij

)w (
~xj − ~µ

(t)
i

)(
~xj − ~µ

(t)
i

)>
.

With this formula there is some similarity, but not such a direct equiva-
lence to the corresponding update formula for learning vector quantization,
as there is for the cluster centers ~µi (see above and cf. Section 5.3). Never-
theless it shows how closely related these two approaches are.

It should be noted that there may be a constraint on the covariance
matrix, namely that its determinant must be 1, so that all clusters have the
same size. Of course, a gradient descent according to the above formula does
not respect this constraint and thus unacceptable covariance matrices may
result. The simplest solution to this problem is to normalize the resulting
covariance matrix (or, equivalently, its inverse) to determinant 1.

This completes my discussion of gradient descent on the sum of (squared)
distances. I do not consider explicitely the various special cases and exten-
sions of this objective function as they were discussed in Section 3.1. The
derivations of the update formulae for them follow basically the same lines
and are easy to obtain in analogy to the derivations carried out above.

108 CHAPTER 5. UPDATE METHODS

5.1.3 Gradient Descent on Sum of Squared Errors

In the area of classifier construction, gradient descent may be best known
as a training method for artificial neural networks. As already pointed out
several times above, I consider here the specific neural network type that
is known as radial basis function network (RBF network) [Rojas 1993,
Haykin 1994, Anderson 1995, Nauck et al. 2003]. Such a network is equiva-
lent to a cluster model together with a set of (linear) classification functions
as it was studied in Section 2.5: the hidden neurons represent the clusters
and the output neurons represent the classification functions. Gradient de-
scent is used to optimize the weights of the classification functions as well
as the locations of the clusters and their shape and size parameters.

Formally, the task consists in the following: for each data point ~xj ,
1 ≤ j ≤ n, we are given a class zj ∈ {1, . . . , s}. For easier reference these
classes are combined into a vector ~z = (z1, . . . , zn)>. The quality of the
classification is measured by how well the classifier produces these desired
outputs, usually based on a binary encoding of the classes (cf. Section 3.2).
For a gradient descent approach it is best to measure this quality by the sum
of squared errors, because obtaining the gradient of this objective function
is technically easiest. That is, we use the error function

esqr(X, ~z;C,W) =
n∑

j=1

s∑
k=1

(δk,zj
− gk(~xj))2,

where the gk, 1 ≤ k ≤ s, are the (linear) classification functions, the weights
of which are contained in the matrix W. δk,z is the Kronecker symbol,
which describes the binary encoding of the classes (cf. Section 3.2). As a
consequence the update formulae for the different parameters are

W(t+1) = W(t) − ηW
2

∇W esqr(X, ~z;C(t),W(t)),

~µ
(t+1)
i = ~µ

(t)
i −

η~µ

2
∇~µi

esqr(X, ~z;C(t),W(t)),(
Σ(t+1)

i

)−1

=
(
Σ(t)

i

)−1

− ηΣ
2

∇Σ−1
i
esqr(X, ~z;C(t),W(t)).

(Recall from Section 5.1.1 that the different parameters can be treated
separately—due to the partial derivatives—and thus we are allowed to split
the update into separate formulae for each set of parameters.) Why the
learning rates are written as η

2 will become clear below. The reason is ba-
sically the same as for the update formula for the centers in the preceding

5.1. GRADIENT METHODS 109

section: the factor 1
2 cancels against a factor of 2 that results from taking

the derivative of the square in the objective function.
As in the preceding section for the fuzzy partition matrix U, it is most

convenient to derive the derivative of esqr w.r.t. the weight matrix W by
considering the weights wki, 1 ≤ k ≤ s, 0 ≤ i ≤ c, individually. For such an
individual weight we get (for 1 ≤ q ≤ s and 0 ≤ r ≤ c)

∂

∂wqr
esqr(X, ~z;C,W) =

∂

∂wqr

n∑
j=1

s∑
k=1

(δk,zj
− gk(~xj))2

=
∂

∂wqr

n∑
j=1

s∑
k=1

(δk,zj
− ~w>k ~u(~xj))2

=
n∑

j=1

∂

∂wqr
(δq,zj − ~w>q ~u(~xj))2

= −2
n∑

j=1

(δq,zj
− ~w>q ~u(~xj)) · ur(~xj).

Here ~wq = (wq0, wq1, . . . , wqc)> is a weight vector containing the elements
of the q-th row of the matrix W. The vector ~u(~x) = (1, u1(~x), . . . , uc(~x))>

holds the membership degrees of the data point ~x to the c different clusters
(cf. page 38 in Section 2.5).2 Note that the last step follows from

∂

∂wqr
~w>q ~u(~xj) =

∂

∂wqr

c∑
i=0

wqi ui(~x) = ur(~x).

As a consequence we have ∀k; 1 ≤ k ≤ s : ∀i; 1 ≤ i ≤ c :

w
(t+1)
ki = w

(t)
ki + ηW

n∑
j=1

(
δk,zj

−
(
~w

(t)
k

)>
~u(t)(~xj)

)
· u(t)

i (~xj).

Note how the factor −2 cancels against the factor 1
2 and the minus sign

signifying gradient descent in the general statement of the update formula.
Note also that the scalar product in the first factor of each term as well as
the second factor are computed in the process of executing the classifier and
are thus readily available, without any additional costs.

2Note that the additional 1 in the first element of the vector ~u(~x) is combined with the
bias weight of the classification function. In addition, recall that for a linear function clas-
sifier it is usually ~u(~x) = ~u◦(~x). That is, one uses the unnormalized and untransformed
membership degrees (again cf. Section 2.5).

110 CHAPTER 5. UPDATE METHODS

To obtain the update formula for the cluster centers, we have to compute

∇~µr
esqr(X, ~z;C,W) = ∇~µr

n∑
j=1

(δk,zj − gk(~xj))2

=
n∑

j=1

s∑
k=1

∇~µr
(δk,zj − ~w>k ~u(~xj))2.

Similarly, for the update of the covariance matrices we have to compute

∇Σresqr(X, ~z;C,W) = ∇Σr

n∑
j=1

(δk,zj
− gk(~xj))2

=
n∑

j=1

s∑
k=1

∇Σr
(δk,zj

− ~w>k ~u(~xj))2.

Since the centers as well as the covariance matrices enter the terms of these
sums only through the classification functions gk, 1 ≤ k ≤ s, and in par-
ticular only through the membership degrees ui(~x) in the vector ~u(~x), it
is most convenient to compute these gradients by applying the chain rule.
That is, we compute them by exploiting for the cluster centers

∇~µr
(δk,zj − gk(~xj))2 =

∂

∂ur(~xj)
(δk,zj

− ~w>k ~u(~xj))2 · ∇~µr
ur(~xj)

= −2 (δk,zj − ~w>k ~u(~xj)) · wkr · ∇~µr
ur(~xj)

and for the covariance matrices

∇Σr (δk,zj − gk(~xj))2 =
∂

∂ur(~xj)
(δk,zj

− ~w>k ~u(~xj))2 · ∇Σrur(~xj)

= −2 (δk,zj − ~w>k ~u(~xj)) · wkr · ∇Σrur(~xj).

With these formulae the task is reduced to computing the gradients of the
membership degrees w.r.t. the cluster centers and the covariance matrices.

If ~u(x) = ~u◦(~x), that is, if we use unnormalized and untransformed
membership degrees (as it is usually the case in a linear function classi-
fier as we consider it here), expressions for these gradients can be found in
Section A.2.2 in the appendix. In this section the most common choices
for radial functions yielding the membership degrees, namely the gener-
alized Cauchy function as well as the generalized Gaussian function (cf.
Section 2.2), are treated in detail. In particular, their derivatives w.r.t. the
center vector µ and the covariance matrix Σ are computed.

5.1. GRADIENT METHODS 111

Inserting these derivatives into the formulae derived above, we obtain
for the generalized Cauchy function as the radial function ∀i; 1 ≤ i ≤ c :

~µ
(t+1)
i = ~µ

(t)
i + η~µ a

n∑
j=1

s∑
k=1

(
δk,zj

−
(
~w

(t)
k

)>
~u(t)(~xj)

)
· w(t)

ki

·
(
u
◦(t)
i (~xj)

)2
·
(
d
(
~xj , ~µ

(t)
i ;Σ(t)

i

))a−2

·
(
Σ(t)

i

)−1 (
~xj − ~µ

(t)
i

)
as an update rule for the cluster centers. Note that the distance factor
vanishes for the important special case a = 2. Note also that several terms in
this formula are already known from the execution of the classifier. Finally,
note that the factor a can be incorporated into the learning rate η~µ.

Analogously, we get for the covariance matrices ∀i; 1 ≤ i ≤ c :

(
Σ(t+1)

i

)−1

=
(
Σ(t)

i

)−1

− ηΣ
a

2

n∑
j=1

s∑
k=1

(
δk,zj −

(
~w

(t)
k

)>
~u(t)(~xj)

)
· w(t)

ki

·
(
u
◦(t)
i (~xj)

)2
·
(
d
(
~xj , ~µ

(t)
i ;Σ(t)

i

))a−2

·
(
~xj − ~µ

(t)
i

)(
~xj − ~µ

(t)
i

)>
.

On the other hand, if the generalized Gaussian function is used as the radial
function, we obtain for the cluster centers ∀i; 1 ≤ i ≤ c :

~µ
(t+1)
i = ~µ

(t)
i + η~µ

a

2

n∑
j=1

s∑
k=1

(
δk,zj −

(
~w

(t)
k

)>
~u(t)(~xj)

)
· w(t)

ki

· u◦(t)i (~xj)·
(
d
(
~xj , ~µ

(t)
i ;Σ(t)

i

))a−2

·
(
Σ(t)

i

)−1(
~xj − ~µ

(t)
i

)
.

Note that this formula is very similar to the one above for the generalized
Cauchy function. The only differences are an additional factor 1

2 and the
missing square at the membership degree u◦i (~xj). (Note, however, that these
membership degrees are different, because they are computed with the gen-
eralized Cauchy function or the generalized Gaussian function, depending
on which function is used as the radial function.)

112 CHAPTER 5. UPDATE METHODS

For the covariance matrices we get ∀i; 1 ≤ i ≤ c :(
Σ(t+1)

i

)−1

=
(
Σ(t)

i

)−1

− ηΣ
a

4

n∑
j=1

s∑
k=1

(
δk,zj −

(
~w

(t)
k

)>
~u(t)(~xj)

)
· w(t)

ki

· u◦(t)i (~xj) ·
(
d
(
~xj , ~µ

(t)
i ;Σ(t)

i

))a−2

·
(
~xj − ~µ

(t)
i

)(
~xj − ~µ

(t)
i

)>
.

Again this formula is very similar to the corresponding one for the gener-
alized Cauchy function derived above. The differences are the same as for
the cluster centers: an additional factor 1

2 and a missing square.
The above considerations were restricted to the sum of squared errors,

for which the technical task of computing the gradient is easiest. However,
gradient descent may also be carried out for the sum of absolute errors,
provided we complete the derivative of the absolute value, which does not
exist at 0, in an appropriate way. For example, we may use the definition

d
dx
|x| def= sgn(x) =

 1, if x > 0,
−1, if x < 0,

0, otherwise.

This approach is closely related to a training method that is known as
Manhattan training in neural networks. Manhattan training uses only
the sign of the gradient and a fixed step width for the update. Here, however,
some information about the length of the gradient is preserved.

With this definition, we get for the cluster centers (in analogy to the
considerations for squared errors above)

∇~µr
|δk,zj − gk(~xj)| =

∂

∂ur(~xj)
|δk,zj

− ~w>k ~u(~xj)| · ∇~µr
ur(~xj)

= − sgn(δk,zj − ~w>k ~u(~xj)) · wkr · ∇~µr
ur(~xj)

and for the covariance matrices

∇Σr
|δk,zj

− gk(~xj)| =
∂

∂ur(~xj)
|δk,zj

− ~w>k ~u(~xj)| · ∇Σrur(~xj)

= − sgn(δk,zj − ~w>k ~u(~xj)) · wkr · ∇Σrur(~xj).

Inserting into these formulae the same expressions as above for the gradients
of the membership degrees ~u(~xj) then yields the update rules.

5.1. GRADIENT METHODS 113

5.1.4 Gradient Ascent on Likelihood Function

Although the standard method for optimizing a likelihood function is the
expectation maximization algorithm, which is discussed in detail in Sec-
tion 5.2.4, gradient ascent may also be applied. Even though it has the
drawback of being less robust (in part this is due to the parameter repairs
that may be necessary, cf. Section 5.1.1), it can be faster than the expec-
tation maximization algorithm, in particular close to the convergence point
and if specific versions of gradient descent are used [Jamshidian and Jenn-
rich 1993, Russel et al. 1995, Bauer et al. 1997, Salakhutdinov et al. 2003].

Formally, the task consists in the following: The likelihood function
describes the likelihood of the data set w.r.t. the cluster parameters in C.
That is,

L(X;C) = fX (X;C) =
n∏

j=1

f ~Xj
(~xj ;C).

As explained in Section 3.3, the probability density function f ~X(~x;C) can
be written as a sum of membership degrees. As a consequence we have

L(X;C) =
n∏

j=1

c∑
i=1

u∗i (~xj) =
n∏

j=1

c∑
i=1

%i · u◦i (~xj)

=
n∏

j=1

c∑
i=1

%i · γ(a, b,m,Σi) · fradial(d(~xj , ~µi;Σi); a, b).

Here %i is the prior probability of the i-th cluster. γ(a, b,m,Σ) is a nor-
malization factor that scales the radial function in such a way that it can
be interpreted as a probability density function (cf. page 19 in Section 2.2).
That is, its value is defined by the requirement to satisfy the constraints

∀i; 1 ≤ i ≤ c :
∫

IRm

γ(a, b,m,Σi) · fradial(d(~x, ~µi;Σi); a, b) d~x = 1.

Since it simplifies the technical task of computing the gradients, one usually
does not consider the above likelihood function, but its natural logarithm.
That is, one tries to optimize the log-likelihood (cf. Section 3.3)

lnL(X;C) =
n∑

j=1

ln

(
c∑

i=1

%i · u◦i (~xj)

)
.

This function has to be maximized, so we have to carry out a gradient
ascent, which explains the plus signs in the following list of generic update

114 CHAPTER 5. UPDATE METHODS

formulae for the cluster parameters (compare Sections 5.1.2 and 5.1.3):

%
(t+1)
i = %

(t)
i + η%

∂
∂%i

lnL(X;C(t)),

~µ
(t+1)
i = ~µ

(t)
i + η~µ ∇~µi

lnL(X;C(t)),(
Σ(t+1)

i

)−1

=
(
Σ(t)

i

)−1

+ ηΣ ∇Σ−1
i

lnL(X;C(t)).

To obtain the exact update formulae, we have to compute—as usual—the
different gradients appearing in these generic formulae. For the prior prob-
abilities %i, 1 ≤ i ≤ c, of the clusters we get

∂

∂%r
lnL(X;C) =

∂

∂%r

n∑
j=1

ln

(
c∑

i=1

%i · u◦i (~xj)

)
=

n∑
j=1

u◦r(~xj)∑c
i=1 %i · u◦i (~xj)

.

Therefore the update rule for the prior probabilities is ∀i; 1 ≤ i ≤ c :

%
(t+1)
i = %

(t)
i + η%

n∑
j=1

u
◦(t)
i (~xj)∑c

k=1 %
(t)
k · u◦(t)k (~xj)

.

However, as for the elements of the fuzzy partition matrix in Section 5.1.2
(which must sum to 1 for each data point), we have to take the constraints

∀i; 1 ≤ i ≤ c : %i ∈ [0, 1] and
c∑

i=1

%i = 1

into account. To ensure that these constraints are satisfied, we may have
to repair the result of a gradient ascent step. We do so in basically the
same way as in Section 5.1.2, that is, we adapt negative prior probabilities
to 0 or some small ε and prior probabilities greater than 1 to 1 or 1 − ε.
In addition, we may have to renormalize them to sum 1.

For the center vectors ~µi we obtain generally

∇~µr
lnL(X;C) = ∇~µr

n∑
j=1

ln

(
c∑

i=1

%i · u◦i (~xj)

)

=
n∑

j=1

%r∑c
i=1 %i · u◦i (~xj)

.∇~µr
u◦r(~xj)

=
n∑

j=1

%r∑c
i=1 %i · u◦i (~xj)

· γ(a, b,m,Σr) · ∇~µr
fradial(d(~xj , ~µr;Σr); a, b).

5.1. GRADIENT METHODS 115

Note that the normalization factor does not depend on any center vector
and thus is simply reproduced. This is different for the derivatives w.r.t.
the (inverse) covariance matrices:

∇Σr lnL(X;C) = ∇Σr

n∑
j=1

ln

(
c∑

i=1

%i · u◦i (~xj)

)

=
n∑

j=1

%r∑c
i=1 %i · u◦i (~xj)

.∇Σru
◦
r(~xj)

=
n∑

j=1

%r∑c
i=1 %i · u◦i (~xj)

· ∇Σ−1
r
γ(a, b,m,Σr) · fradial(d(~xj , ~µr;Σr); a, b).

Here we have to apply the product rule to obtain

∇Σ−1
r
γ(a, b,m,Σr) · fradial(d(~xj , ~µr;Σr); a, b)

= γ(a, b,m,Σr) ·
(
∇Σ−1

r
fradial(d(~xj , ~µr;Σr); a, b)

)
+

(
∇Σ−1

r
γ(a, b,m,Σr)

)
· fradial(d(~xj , ~µr;Σr); a, b)

= γ(a, b,m,Σr) ·
(
∇Σ−1

r
fradial(d(~xj , ~µr;Σr); a, b)

)
− 1

2
γ(a, b,m,Σr) · fradial(d(~xj , ~µr;Σr); a, b)︸ ︷︷ ︸

= u◦r(~xj)

·Σ.

The derivative of the normalization factor used in this formula can be found
in Section A.2.2 in the appendix. For the gradients of the radial function
we also use again (as in the preceding section) the formulae derived in
Section A.2.2 in the appendix. This yields as the update rule for the cluster
centers for the generalized Cauchy function ∀i; 1 ≤ i ≤ c :

~µ
(t+1)
i = ~µ

(t)
i + η~µ a

n∑
j=1

%r∑c
i=1 %i · u◦(t)i (~xj)

· 1
γ(a, b,m,Σr)

·
(
u
◦(t)
i (~xj)

)2
·
(
d
(
~xj , ~µ

(t)
i ;Σ(t)

i

))a−2

·
(
Σ(t)

i

)−1 (
~xj − ~µ

(t)
i

)
.

Note that here u◦i (~xj) contains the normalization factor γ(a, b,m,Σr), in
contrast to the preceding section, where this normalization factor was 1.

116 CHAPTER 5. UPDATE METHODS

For the covariance matrices we have ∀i; 1 ≤ i ≤ c :(
Σ(t+1)

i

)−1

=
(
Σ(t)

i

)−1

− ηΣ
a

2

n∑
j=1

%r∑c
i=1 %i · u◦(t)i (~xj)

· u◦i (~xj)

·

(
u
◦(t)
i (~xj)

γ(a, b,m,Σr)
·
(
d
(
~xj , ~µ

(t)
i ;Σ(t)

i

))a−2

·
(
~xj − ~µ

(t)
i

)(
~xj − ~µ

(t)
i

)>
− 1

2
Σ
)
.

Note here the additional term − 1
2Σ that results from the application of the

product rule and then from the normalization factor.
On the other hand, if the generalized Gaussian function is used as the

radial function, we obtain for the cluster centers ∀i; 1 ≤ i ≤ c :

~µ
(t+1)
i = ~µ

(t)
i + η~µ

a

2

n∑
j=1

%r∑c
i=1 %i · u◦(t)i (~xj)

·u◦(t)i (~xj) ·
(
d
(
~xj , ~µ

(t)
i ;Σ(t)

i

))a−2

·
(
Σ(t)

i

)−1 (
~xj − ~µ

(t)
i

)
.

This formula is very similar to the one above for the generalized Cauchy
function. The only differences are an additional factor 1

2 and the miss-
ing square at the membership degree u◦i (~xj). (Note, however, that these
membership degrees are different, because they are computed with the gen-
eralized Cauchy function or the generalized Gaussian function, depending
on which function is used as the radial function.)

For the covariance matrices we get ∀i; 1 ≤ i ≤ c :(
Σ(t+1)

i

)−1

=
(
Σ(t)

i

)−1

− ηΣ
a

4

n∑
j=1

%r∑c
i=1 %i · u◦(t)i (~xj)

· u◦(t)i (~xj)

·
((

d
(
~xj , ~µ

(t)
i ;Σ(t)

i

))a−2

·
(
~xj − ~µ

(t)
i

)(
~xj − ~µ

(t)
i

)>
− 1

2
Σ
)
.

Again this formula is very similar to the corresponding one for the gener-
alized Cauchy function derived above. The differences are the same as for
the cluster centers: an additional factor 1

2 and a missing square.

5.1. GRADIENT METHODS 117

I skip a detailed consideration of a gradient ascent on the two versions
of the likelihood ratio that were considered in Section 3.4. The reason is
that by applying the same trick as for the likelihood function, namely by
taking the natural logarithm, these objective functions become

lnL(1)
ratio(X,~z;C,W) =

n∑
j=1

ln f ~Xj ,Zj
(~xj ,zj ;C,W)−

n∑
j=1

ln f ~Xj ,Zj
(~xj ,zj ;C,W)

and

lnL(2)
ratio(X, ~z;C,W) =

n∑
j=1

ln f ~Xj ,Zj
(~xj , zj ;C,W)−

n∑
j=1

ln f ~Xj
(~xj ;C,W),

respectively (cf. Section 3.4). Since the class indicators zj or zj only specify
a restriction to a subset of the clusters (cf. Section 3.4), these log-likelihood
ratios can be handled with basically the same formulae as the likelihood
function itself (cf. also Section 5.3.4 and [Seo and Obermayer 2003]).

5.1.5 Problems of Gradient Methods

There are two main problems of gradient methods. The first is the choice
of the learning rate. This choice is critical as is illustrated in Figures 5.2
and 5.3, which show a simple gradient descent on the polynomial3

f(x) =
5
6
x4 − 7x3 +

115
6
x2 − 18x+ 6.

To carry out a gradient descent on this function, we compute its derivative

f ′(x) =
10
3
x3 − 21x2 +

115
3
x− 18,

which corresponds to the gradient (the sign of this function indicates the
direction of the steepest ascent, its value how steep the ascent is). Then a
gradient descent is carried out according to

xi+1 = xi + ∆xi with ∆xi = −ηf ′(xi),

where x0 is the chosen starting point (initialization) and η the learning rate.
Figures 5.2 and 5.3 show this gradient descent with different starting points
and different learning rates.

3Note that this function has no connection to any of the objective functions discussed
here. It is used here only to illustrate the general problems of gradient descent.

118 CHAPTER 5. UPDATE METHODS

i xi f(xi) f ′(xi) ∆xi

0 0.200 3.112 −11.147 0.011
1 0.211 2.990 −10.811 0.011
2 0.222 2.874 −10.490 0.010
3 0.232 2.766 −10.182 0.010
4 0.243 2.664 −9.888 0.010
5 0.253 2.568 −9.606 0.010
6 0.262 2.477 −9.335 0.009
7 0.271 2.391 −9.075 0.009
8 0.281 2.309 −8.825 0.009
9 0.289 2.233 −8.585 0.009

10 0.298 2.160

6

5

4

3

2

1

0
0 1 2 3 4

Figure 5.2: Gradient descent with initial value 0.2 and learning rate 0.001.

i xi f(xi) f ′(xi) ∆xi

0 1.500 2.719 3.500 −0.875
1 0.625 0.655 −1.431 0.358
2 0.983 0.955 2.554 −0.639
3 0.344 1.801 −7.157 1.789
4 2.134 4.127 0.567 −0.142
5 1.992 3.989 1.380 −0.345
6 1.647 3.203 3.063 −0.766
7 0.881 0.734 1.753 −0.438
8 0.443 1.211 −4.851 1.213
9 1.656 3.231 3.029 −0.757

10 0.898 0.766

6

5

4

3

2

1

0
0 1 2 3 4

start

Figure 5.3: Gradient descent with initial value 1.5 and learning rate 0.25.

In Figure 5.2 the learning rate is too small and thus the minimum is ap-
proached very slowly. Even though it is clear that it will be reached finally,
it takes a (too) large number of steps. On the other hand, in Figure 5.3 the
learning rate is chosen too large, so that the current point in the parameter
space (here the set IR of real numbers) “jumps around,” leading to oscilla-
tory behavior. If some more steps are carried out than those shown in the
figure, the process even leaves the region of the global minimum on the left
and updates the parameter value to the region of the local minimum on the
right. This is definitely not an acceptable behavior.

5.1. GRADIENT METHODS 119

i xi f(xi) f ′(xi) ∆xi

0 2.600 3.816 −1.707 0.085
1 2.685 3.660 −1.947 0.097
2 2.783 3.461 −2.116 0.106
3 2.888 3.233 −2.153 0.108
4 2.996 3.008 −2.009 0.100
5 3.097 2.820 −1.688 0.084
6 3.181 2.695 −1.263 0.063
7 3.244 2.628 −0.845 0.042
8 3.286 2.599 −0.515 0.026
9 3.312 2.589 −0.293 0.015

10 3.327 2.585

6

5

4

3

2

1

0
0 1 2 3 4

Figure 5.4: Gradient descent with initial value 2.6 and learning rate 0.05.

As a consequence the learning rate should be chosen with care, so that
the (local) minimum is approached rapidly without the danger of running
into instabilities like oscillations. This choice is difficult, because the optimal
value of the learning rate depends on the particular objective function to
be optimized and often enough also on the region in the parameter space
in which the current parameter vector lies. To cope with this problem,
adaptive methods have been devised, which try to adapt the learning rate
(or directly the length of the step that is carried out in parameter space)
depending on the preceding steps and the current gradient of the objective
function. These methods are reviewed in Section 6.2. They are discussed
in a separate chapter, because they are not only applicable to gradient
methods, but to basically all update methods discussed in this chapter.

The second fundamental problem connected with gradient ascent or de-
scent is that they may get stuck in a local optimum. This is demon-
strated in Figure 5.4: the learning rate is chosen well so that the minimum
is approached quickly. However, due to the unfortunate location of the
starting point this minimum is only a local minimum.

No general method (in the sense of a modification of gradient ascent or
descent) is known that ensures that this does not happen and thus guaran-
tees that the global optimum of the objective function is found. As already
mentioned in Section 4.3, the most common way of trying to cope with this
problem is to run the clustering algorithm several times with different ini-
tializations. This yields several clustering results, of which the one having
the best value for the objective function is chosen as the final result [Duda

120 CHAPTER 5. UPDATE METHODS

and Hart 1973]. Of course, this approach does not rule out the possibility
of getting stuck in a local optimum. It only improves the chances of finding
the global optimum or at least of finding a sufficiently good local optimum.
In practice, however, this is good enough and thus it is not surprising that
the method has been used successfully in several applications.

5.2 Alternating Optimization

Alternating optimization is the standard parameter update scheme in the
area of (fuzzy) c-means clustering. In addition, the expectation maximiza-
tion algorithm for estimating the parameters of a mixture of Gaussians is
very closely related to alternating optimization. Hence it is also treated in
this section, even though it deviates slightly from the general scheme.

Alternating optimization has the advantage that it is an extremely ro-
bust update method. In several of its variants it is guaranteed to converge
to a (local) optimum of the objective function. However, gradient descent
is sometimes preferable, because it can be faster, especially close to the
convergence point, where alternating optimization tends to be slow.

5.2.1 General Approach

The general idea of alternating optimization is to split the set of parameters
to optimize into two (or more) subsets. This is done in such a way that the
optimum for one set of parameters can be computed directly, provided the
other set(s) are held constant. This property is exploited to optimize the
full set of parameters by alternatingly optimizing (hence the name) the
parameters in each set while the others are fixed.

Formally, alternating optimization can be described as follows for two
sets of parameters: ket f(~θ1, ~θ2) be an objective function that has two
parameter vectors ~θ1 and ~θ2 as its arguments. Together these two vectors
should contain all parameters of the objective function and they must not
have any parameters in common. In order to find a (local) optimum of the
function f w.r.t. ~θ1 and ~θ2, we determine an initial parameter vector ~θ (0)

2 .
Then we compute the sequence of vectors

~θ
(t+1)
1 = argopt

~θ1

f
(
~θ1, ~θ

(t)
2

)
,

~θ
(t+1)
2 = argopt

~θ2

f
(
~θ

(t+1)
1 , ~θ2

)
, t = 0, 1, 2, . . . ,

5.2. ALTERNATING OPTIMIZATION 121

where argopt is either argmax (if the objective function f is to be maxi-
mized) or argmin (if it is to be minimized). Of course, this scheme presup-
poses that both optima can be computed directly.

As for gradient descent, situations may arise in which the objective func-
tion has its optimum at a point that does not satisfy the given constraints on
the parameters. In such a case alternating optimization has the advantage
that we need not apply repair mechanisms in order to force the parameter
vector back into the allowed region, but have a much more elegant method
at hand. It consists in the well-known method of Lagrange multipliers,
which is reviewed in some detail in Section A.8 in the appendix. The gen-
eral idea is that constraints of a certain type can be incorporated into the
objective function and thus the optimization process can be guaranteed to
yield a solution that respects the constraints.

5.2.2 Classical Crisp Clustering

Classical crisp clustering is best known under the name of c-means (or k-
means) clustering, where c (or k) is the number of clusters to be found. It
is based on the objective function of the sum of (squared) distances defined
in Section 3.1, with a hard assignment of the data points to the clusters.
That is, each data point is assigned to one cluster and one cluster only.

At first sight this objective function may seem to be easy to optimize.
However, a careful analysis reveals that the problem of hard c-means clus-
tering is NP-hard even for c = 2 [Drineas et al. 2004]. That is, there is no
known algorithm that finds the optimal partition in a time that is polyno-
mial in the size of the input (that is, the number of data points). The proof
is carried out by a reduction from the problem of minimum bisection, that
is, the problem of partitioning a given graph into two parts of equal size
so that the number of edges between these two parts is minimized [Drineas
et al. 2004]. For larger values of c the same result can be obtained by a
reduction from the problem of minimum c-section.

However, as is also shown in [Drineas et al. 2004], a 2-approximation of
the optimum can be achieved in polynomial time, that is, a result for which
the value of the objective function is at most twice as large as the optimum.
The corresponding algorithm, which I do not discuss in detail here, starts by
projecting the given data points to a cleverly chosen subspace of dimension-
ality c (the number of clusters). This subspace is determined by a singular
value decomposition of the data matrix and selecting the singular vectors
corresponding to the largest singular values. [Drineas et al. 2004] show that
there is a linear time Monte Carlo method for approximating the largest

122 CHAPTER 5. UPDATE METHODS

singular values, which renders this step efficient. The algorithm then finds
the solution of the crisp clustering problem in this subspace by enumerating
and checking all relevant partitions of the projected data points. However,
for practical purposes this is usually not a feasible algorithm. One reason
is that it seems to require c ≤ m, where m is the number of dimensions of
the data space, another is that the time complexity of the enumeration of
all relevant partitions is too high for larger values of c.

As a consequence approaches like alternating optimization are the meth-
ods of choice. Even though they cannot be guaranteed to find the optimal
solution as they may get stuck in a local optimum, they work very well in
practice. The alternating optimization scheme of c-means clustering works
as follows: after initial cluster centers have been chosen (see Chapter 4 for
a discussion of different methods), the data points are first partitioned by
assigning each data point to the closest cluster center. In a second step new
cluster centers are computed as the centers of gravity of the data points in
each cluster, that is, the data points that have been assigned to the same
cluster center. These two steps are iterated until the partition of the data
points does not change anymore. This iterative procedure, which is guar-
anteed to converge, is also known as the ISODATA algorithm [Ball and
Hall 1966, Ball and Hall 1967] or as Lloyd’s algorithm [Lloyd 1982].

As an example Figure 5.5 shows the execution of c-means clustering on
a very simple two-dimensional data set. The data set itself is shown in the
top left diagram. Obviously, it contains three clusters. Hence the algorithm
is initialized in the middle diagram in the top row by randomly selecting
three data points as the initial cluster centers. In this diagram the colors
of the data points as well as the grey lines show the initial partition of the
data points. The grey lines actually form a Voronoi diagram [Preparata
and Shamos 1985, Aurenhammer 1991] of the three initial cluster centers.
It is a partition of the data space into three regions, called Voronoi cells,
with one cluster center per cell. Each region consists of those points that
are closer to the cluster center contained in the region than to any other
cluster center and thus also indicates the partition of the data points.4

4The Voronoi diagram of a set of points (e.g., a set of cluster centers) can easily be
computed from a so-called Delaunay triangulation [Preparata and Shamos 1985] of this
set of points. A triangulation is a maximal set of non-intersecting edges with end
points in the given set of points. It structures the point set into triangles. A Delaunay
triangulation has the special property that the circle through the corners of each triangle
does not contain another point from the set. The Voronoi diagram is formed by the mid-
perpendiculars of the edges of the Delaunay triangulation. Both Voronoi diagrams and
Delaunay triangulations can be generalized to more than two dimensions by replacing
the terms “triangle” and “circle” with “simplex” and “(hyper-)sphere”, respectively.

5.2. ALTERNATING OPTIMIZATION 123

Figure 5.5: Hard c-means clustering of a simple example data set.

In the right diagram in the top row new cluster centers have been com-
puted as the centers of gravity of those data points that were assigned to a
cluster center. The colors of the data points and the grey lines have been
adapted to show the new partition of the data points. The bottom row of
Figure 5.5 shows the next steps, each consisting of a recomputation of the
cluster centers and a new assignment of the data points. The rightmost
diagram in the bottom row shows the convergence point: here a recompu-
tation of the cluster centers and a new assignment of the data points does
not lead to any (further) change. Obviously the desired result is obtained:
each cluster is captured by one cluster center.

Unfortunately, hard c-means does not always work as smoothly as in
this example. This is demonstrated in Figure 5.6: the diagrams in the
top row show different initialization of the algorithm on the same data set,
the corresponding diagram in the bottom row shows the convergence point
reached from this initialization. (The second and third initialization differ
only in the assignment of the data point in the bottom right corner, which
lies exactly on the border between two Voronoi cells, so that the tie has to
be broken randomly.) As can be seen, the desired result is reached in none
of these cases, because the algorithm gets stuck in a local optimum.

124 CHAPTER 5. UPDATE METHODS

Figure 5.6: Hard c-means clustering can easily get stuck in local minima.

The tendency of hard c-means clustering to get stuck in a local opti-
mum is very annoying, as it makes it often necessary to carry out several
clustering runs, from which the best result is then selected [Duda and Hart
1973]. As a consequence, fuzzy c-means approaches—as they are discussed
in the next section—are usually preferable, because they tend to behave
much nicer w.r.t. local optima and also possess some other favorable char-
acteristics. Although there is no formal proof of a superior robustness of
fuzzy clustering algorithms yet, there are plausible conjectures that the ob-
jective function of fuzzy c-means clustering has fewer local optima, which
are also “flattened out” by the fuzzifier (i.e., the weighting exponent for the
membership degrees). Furthermore, experimental results clearly speak in
favor of fuzzy clustering: there are several data sets on which hard c-means
clustering does not succeed in a certain percentage of all cases, while fuzzy
c-means clustering has never been observed to fail on them.

As a final remark I would like to point out that I introduced the two
alternating steps of hard c-means clustering simply as a computation rule
without deriving it from the objective function. Such a derivation is, of
course, possible. However, it is most conveniently treated as a special case
of fuzzy c-means clustering and thus it is postponed to the next section.

5.2. ALTERNATING OPTIMIZATION 125

5.2.3 Fuzzy Clustering

The two sets of parameters that are optimized alternatingly in fuzzy clus-
tering are the degrees of membership on the one hand (which corresponds
to the assignment of the data points in hard clustering) and the cluster pa-
rameters (center vectors, covariance matrices) on the other. In the following
I consider the corresponding two update steps in this order. In doing so I
do not treat—as it is commonly done—fuzzy c-means clustering separately
from more sophisticated approaches like the Gustafson–Kessel algorithm,
either in its general form [Gustafson and Kessel 1979] or in its axes-parallel
version [Klawonn and Kruse 1997]. The reason is that fuzzy c-means clus-
tering can be seen as a special case of a more general approach, in which the
covariance matrices are all fixed to the unit matrix. Similarly, axes-parallel
versions restrict the covariance matrices to diagonal matrices, as explained
in detail in Section 2.1. However, I consider explicitely possibilistic cluster-
ing (in order to show how it is easily obtained by simply parameterizing the
standard scheme) as well as the modified update formulae that result from
an alternative to the standard fuzzifier [Klawonn and Höppner 2003].

Update of the Membership Degrees

When deriving the update rule for the membership degrees, we have to
take into account that for each data point they should sum to one over
the different clusters. Following the general approach as it was explained in
Section 5.2.1, we do so with the help of Lagrange multipliers (cf. Section A.8
in the appendix for a fairly detailed review of this mathematical technique).
For the task at hand, we have to introduce in all n Lagrange multipliers λj ,
1 ≤ j ≤ n, that is, one multiplier per data point for the constraint referring
to that data point. This yields the Lagrange function

L(X,C,U,Λ) =
c∑

i=1

n∑
j=1

uw
ij d

2
ij︸ ︷︷ ︸

=J(X,C,U)

+
n∑

j=1

λj

(
1−

c∑
i=1

uij

)
,

which is to be minimized. (Note that the function J(X,C,U) is the objec-
tive function of fuzzy clustering as it was defined on page 51 in Section 3.1.)
A necessary condition for a minimum of the Lagrange function is that the
partial derivatives w.r.t. the membership degrees vanish, i.e.,

∂

∂ukl
L(X,C,U,Λ) = wuw−1

kl d2
kl − λl

!= 0,

126 CHAPTER 5. UPDATE METHODS

which leads to ∀i; 1 ≤ i ≤ c: ∀j; 1 ≤ j ≤ n:

uij =

(
λj

w d2
ij

) 1
w−1

.

Summing these equations over the clusters (in order to be able to exploit
the corresponding constraints on the membership degrees), we get

1 =
c∑

i=1

uij =
c∑

i=1

(
λj

w d2
ij

) 1
w−1

.

Consequently the λj , 1 ≤ j ≤ n, are

λj =

(
c∑

i=1

(
w d2

ij

) 1
1−w

)1−w

.

Inserting this into the equation for the membership degrees yields
∀i; 1 ≤ i ≤ c: ∀j; 1 ≤ j ≤ n:

u
(t+1)
ij =

(
d
(t)
ij

) 2
1−w

∑c
k=1

(
d
(t)
kj

) 2
1−w

,

with the special (and most common) case w = 2 leading to

u
(t+1)
ij =

(
d
(t)
ij

)−2

∑c
k=1

(
d
(t)
kj

)−2 .

Note that this update formula results regardless of the distance measure
d(~x, ~µ;Σ). Note also that it is actually a very intuitive result: the member-
ship degrees reflect the relative (squared) distances of the data point to the
different cluster centers, which is what one would expect.

In the above derivation w may not be set to 1, because then we get

∂

∂ukl
L(X,C,U,Λ) = d2

kl − λl
!= 0.

This set of equations cannot be satisfied in general (with the exception of
the special case in which all distances are equal). However, that the formal
approach fails is actually not surprising, because the objective function does
not have a minimum in this case. Even respecting the constraint, the value

5.2. ALTERNATING OPTIMIZATION 127

of the objective function can be made arbitrarily small by choosing negative
membership degrees for all distances except the minimal one. We would
have to incorporate the constraint uij ∈ [0, 1] in order to get a result.
However, we may also get a reasonable result by using |uij | instead of uij

in the objective function, which does not make a difference for the allowed
range of values for the uij , but ensures that the objective function has a
minimum in the allowed region of the parameter space. Using the convenient
definition d

dx |x| = sgn(x) (cf. page 61), we obtain in this case

∂

∂ukl
L(X,C,U,Λ) = sgn(ukl)

(
d2

kl − λl

) != 0.

From this set of equations it follows that for a given data point ~xj all uij ,
1 ≤ i ≤ c, have to be zero, except one. Drawing on the considerations on
page 49 in Section 3.1, we can even conclude that it should be ukj = 1 for
k = argminc

i=1 d
2
ij . That is, the data point should be assigned exclusively to

the closest cluster center. However, this is exactly the assignment rule as it
is used for hard c-means clustering, which shows that hard c-means results
from fuzzy clustering in the limit for w → 1+.

If we consider the update rule that results for w > 1 (and in particular
the special case w = 2), we observe that this rule may also be written as

u
(t+1)
ij =

fCauchy

(
d
(t)
ij ; 2

w−1 , 0
)∑c

k=1 fCauchy

(
d
(t)
kj ; 2

w−1 , 0
) =

u
◦(t)
i (~xj)∑c

k=1 u
◦(t)
k (~xj)

= u
(t)
i (~xj).

Even though this formula presupposes a specific choice of the radial function,
it suggests the idea to generalize the update rule to

u
(t+1)
ij = u

(t)
i (~xj),

independent of the chosen radial function and whether the membership de-
grees are weighted or not and transformed or not. (Note that the factor 1

w−1
in the exponent of the distance may also be shifted to the transformation
of the membership degrees as it was described in Section 2.4.)

Such a generalization is indeed possible: as pointed out above, the up-
date rule results regardless of the chosen distance measure. Therefore we
may define the objective function as (cf. page 47 in Section 3.1)

J(X,C,U) =
c∑

i=1

n∑
j=1

uw
ij

u•i (~xj)

and interpret (u•i (~xj))−1 as a (squared) distance measure.

128 CHAPTER 5. UPDATE METHODS

Practical tests show that such a generalization is indeed feasible and
leads to reasonable results that are often preferable to the results obtained
with the standard method (which relies on relative inverse squared dis-
tances). In particular, in can be observed that choosing the Gaussian ra-
dial function (instead of the Cauchy radial function) in the above update
formula makes the clustering algorithm much more robust w.r.t. informa-
tionless attributes5 [Döring et al. 2005]. While the Cauchy radial function
leads to a pronounced tendency of clusters merging into one if there are too
many informationless attributes, no such tendency can be observed with the
Gaussian radial function. The reasons for this behavior were already given
in Section 2.4, in which the effects of a normalization of the membership
degrees to sum 1 were studied in detail. With the Cauchy function larger
distances lead to a less extreme assignment of a data point to a cluster (in the
limit the membership degrees are all equal), while it gets more pronounced
with the Gaussian function (in the limit we get a hard assignment to the
closest cluster). As a consequence additional informationless dimensions,
which mainly have the effect of increasing the average distance to the clus-
ter centers, are no problem for the Gaussian function, but a severe problem
for the Cauchy function. Although this effect can be mitigated by reducing
the fuzzifier to values closer to 1, it cannot be eliminated completely.

Up to now I considered only the standard membership transformation
h(u) = uw in the objective function. However, as discussed in Section 3.1,
this transformation can be generalized to any convex function [0, 1] → [0, 1].
A very useful special case of such a convex transformation function was
suggested in [Klawonn and Höppner 2003], namely

h(uij) = αu2
ij + (1− α)uij

or equivalently, but easier to interpret,

h(uij) =
1− β

1 + β
u2

ij +
2β

1 + β
uij ,

where β = 1−α
1+α or α = 1−β

1+β . With this transformation the objective function
reads (cf. page 52 in Section 3.1)

J(X,U,C) =
c∑

i=1

n∑
j=1

(
1− β

1 + β
u2

ij +
2β

1 + β
uij

)
d2

ij .

5An attribute is considered to be informationless if it does not provide any information
about the split of a set of data points into clusters, that is, if the distribution of its values
is basically the same for all clusters, so that they cannot be distinguished.

5.2. ALTERNATING OPTIMIZATION 129

Introducing Lagrange multipliers as above in order to incorporate the con-
straint that the membership degrees must sum to 1 for each data point, we
obtain the Lagrange function

L(X,U,C,Λ) =
c∑

i=1

n∑
j=1

(
1− β

1 + β
u2

ij +
2β

1 + β
uij

)
d2

ij︸ ︷︷ ︸
J(X,U,C)

+
n∑

j=1

λj

(
1−

c∑
i=1

uij

)
.

Again it is a necessary condition for a minimum that the partial derivatives
w.r.t. the membership degrees vanish, that is, ∀k; 1 ≤ k ≤ c : ∀l; 1 ≤ l ≤ n :

∂

∂ukl
L(X,U,C,Λ) =

(
1− β

1 + β
2ukl +

2β
1 + β

)
d2

kl − λl
!= 0.

As a consequence we have ∀i; 1 ≤ i ≤ c : ∀j; 1 ≤ j ≤ n :

λj =
(2(1− β)uij + 2β) d2

ij

1 + β

and therefore ∀i; 1 ≤ i ≤ c : ∀j; 1 ≤ j ≤ n :

uij =
(1 + β)λjd

−2
ij − 2β

2(1− β)
.

At this point we have to pay attention to the fact that this expression
for the uij may be negative for large distances dij , because then it may be
(1+β)λjd

−2
ij < 2β. However, by definition, a membership degree uij cannot

be negative. Hence one has to bear in mind that this formula may only be
used if is yields a positive value, and uij = 0 otherwise. This is expressed
in the following by restricting certain sums to terms for which uij > 0.

As in the derivation for the membership transformation h(u) = uw,
we sum these equations over all clusters in order to be able to exploit the
constraint on the membership degrees. This yields

1 =
c∑

i=1

uij =
∑

i:uij=0

0 +
∑

i:uij>0

(1 + β)λjd
−2
ij − 2β

2(1− β)
.

From this equation follows ∀j; 1 ≤ j ≤ n :

λj =
2(1 + β(čj − 1))

(1 + β)
∑c

i=1;uij>0 d
−2
ij

,

130 CHAPTER 5. UPDATE METHODS

where čj is the number of clusters for which uij > 0, 1 ≤ i ≤ c. Therefore

u
(t+1)
ij =

1
1− β

 1 + β
(
č
(t)
j − 1

)
∑

k:u
(t+1)
kj

>0

(
d
(t)
kj

)−2

(
d
(t)
ij

)−2

− β

=

1 + β
(
č
(t)
j − 1

)
(1− β)

∑
k:u

(t+1)
kj

>0

(
d
(t)
kj

)−2

·

(d(t)
ij

)−2

− β

1 + β
(
č
(t)
j − 1

) ∑
k:u

(t+1)
kj

>0

(
d
(t)
kj

)−2

,
provided, of course, that this expression yields a positive membership degree
(see above). Based on the fact that for such positive membership degrees the
right factor must be positive, we can now determine čj : the distances dij are
sorted ascendingly, which may be described formally by a mapping function
ς : {1, . . . , c} → {1, . . . c} for the cluster indices such that

∀i; 1 ≤ i < c : dς(i)j ≤ dς(i+1)j .

With this function ς we can define čj , 1 ≤ j ≤ n, as

čj = max

{
k

∣∣∣∣∣ d−2
ς(k)j >

β

1 + β(k − 1)

k∑
i=1

d−2
ς(i)j

}
.

The membership degrees are thus ∀i; 1 ≤ i ≤ c : ∀j; 1 ≤ j ≤ n :

u
(t+1)
ij =

u
′ (t+1)
ij∑c

k=1 u
′ (t+1)
kj

where

u
′ (t+1)
ij = max

0,
(
d
(t)
ij

)−2

− β

1 + β(č(t)j − 1)

č
(t)
j∑

k=1

(
d
(t)
ς(k)j

)−2

 .

This formula for the u′ij , which was already mentioned in Section 2.4 (cf.
page 26), justifies the alternative transformation of the membership degrees
described in Section 2.4, even though it is slightly different (cf. page 23).

5.2. ALTERNATING OPTIMIZATION 131

To check that the above computation of the membership degrees in two
steps (first computing the u′ij and then normalizing them to sum 1) leads
to the same result as the formula stated earlier, we compute

c∑
i=1

u′ij =
čj∑

i=1

u′ς(i)j +
c∑

i=čj+1

0

=
čj∑

i=1

(
d−2

s(i)j −
β

1 + β(čj − 1)

čj∑
k=1

d−2
ς(k)j

)

=
čj∑

i=1

d−2
ς(i)j −

β čj
1 + β(čj − 1)

čj∑
k=1

d−2
ς(k)j

=
(

1− β čj
1 + β(čj − 1)

) čj∑
k=1

d−2
s(k)j

=
1− β

1 + β(čj − 1)

čj∑
k=1

d−2
ς(k)j .

Obviously, this expression is the reciprocal of the first factor in the original
formula for the u(t)

ij and thus the two steps yield the same result.
Finally, we have to consider the update of the membership degrees in

possibilistic fuzzy clustering, which drops the constraint on the membership
degrees and uses the objective function (cf. page 53 in Section 3.1)

J(X,U,C) =
c∑

i=1

n∑
j=1

uw
ij d

2
ij +

c∑
i=1

νi

n∑
j=1

(1− uij)w,

where the νi, 1 ≤ i ≤ c, are (constant) cluster-specific penalty weights.
In this case we do not need any Lagrange multipliers (as there are no con-
straints) and thus optimize the objective function directly. As usual we
exploit the fact that it is a necessary condition for a minimum that the
partial derivatives vanish. This leads to ∀k; 1 ≤ k ≤ c : ∀l; 1 ≤ l ≤ n :

∂

∂ukl
J(X,U,C) = wuw−1

kl d2
kl − νkw(1− ukl)w−1 != 0.

From these equations it follows ∀i; 1 ≤ i ≤ c : ∀j; 1 ≤ j ≤ n :

uij =

(
νi

d2
ij + νi

) 1
w−1

=

(
d2

ij

νi
+ 1

) 1
1−w

132 CHAPTER 5. UPDATE METHODS

with the special case w = 2 yielding

uij =
1

d2
ij

νi
+ 1

.

From this special case we see two things: in the first place, the penalty
weights νi, 1 ≤ i ≤ c, turn out to be the squares of the distances from the
cluster centers at which the degree of membership equals 1

2 . Therefore they
can be interpreted as a kind of reference radius. This is also supported by
the second observation, which consists in the insight that the above formula
for the special case w = 2 may also be written as

uij = fCauchy(d(~µi, ~xj ; νiΣi); 2, 1).

Here νi is combined with the covariance matrix of the Mahalanobis distance,
which has the same effect as scaling the (squared) distance with its reciprocal
value. The general form of the update rule (i.e., with the exponent 1

w−1)
may also be accommodated by exploiting the membership transformation
as it was described in Section 2.4 with α = 1

w−1 and β = 0. This shows
that possibilistic fuzzy clustering needs no special treatment, but can be
achieved by properly parameterizing the general cluster model.

Update of the Cluster Parameters

For the derivation of the update rule for the cluster parameters we consider
the most general case of a cluster-specific Mahalanobis distance measure.
That is, we consider ∀i; 1 ≤ i ≤ c: ∀j; 1 ≤ j ≤ n:

dij = d(~xj , ~µi;Σi) =
√

(~xj − ~µi)>Σ−1
i (~xj − ~µi),

where each Σi, 1 ≤ i ≤ c, is a symmetric and positive definite matrix. Note
that in this very general case I do not even require these matrices to have
determinant 1, as it is usually the case for so-called Gustafson–Kessel clus-
tering [Gustafson and Kessel 1979]. Although this leads to minor technical
complications (see below), it has the advantage of being very general and
demonstrates that all special approaches result from the general case by
simply introducing particular constraints.

With a general Mahalanobis distance the objective function reads

J(X,C,U) =
c∑

i=1

n∑
j=1

h(uij) (~xj − ~µi)>Σ−1(~xj − ~µi).

5.2. ALTERNATING OPTIMIZATION 133

Note that this objective function is written with a general membership
transformation function h(uij) instead of the special case uw

ij . This is pos-
sible, because the membership degrees are fixed in this step and thus the
transformation function does not have any influence on the result.

To obtain the update rule for the cluster parameters we exploit that a
necessary condition for a minimum is that the partial derivatives w.r.t. the
parameters vanish. For the cluster centers we thus get ∀k; 1 ≤ k ≤ c:

∇~µk
J(X,C,U) = ∇~µk

c∑
i=1

n∑
j=1

h(ukj) (~xj − ~µi)>Σ−1
i (~xj − ~µi)

=
n∑

j=1

h(ukj) ∇~µk
(~xj − ~µk)>Σ−1

k (~xj − ~µk)

= −2Σ−1
k

n∑
j=1

h(ukj) (~xj − ~µk) != ~0

Note that the minus sign results from the inner derivative ∇~µk
(~xj−~µk) (also

cf. Sections A.1 and A.2.2 in the appendix for details about computing the
gradient of the vector-matrix expression). It follows ∀i; 1 ≤ i ≤ c :

~µ
(t+1)
i =

∑n
j=1 h

(
u

(t+1)
ij

)
~xj∑n

j=1 h
(
u

(t+1)
ij

) .

Like the update rule for the membership degrees this expression is fairly
intuitive. However, one has to concede that it would be even more intuitive
without the membership transformation function h(uij). Then the uij could
be interpreted as fractional weights of the data points, which add up to
one over the clusters, so that each data point has unit total influence on
the clusters. Unfortunately, such a more intuitive update rule cannot be
obtained as a result of modifying the objective function.6 Such a rule results,
though, in the related approach of expectation maximization for mixture
models, which is discussed in the next section. However, there it is derived
in a completely different way.

6It is possible to get such an update rule formally by using h(uij) = uij and changing
the constraint to ∀j; 1 ≤ j ≤ n :

∑c

i=1
u2

ij = 1. However, this only shifts the standard

fuzzifier w = 2 of h(uij) = u2
ij into the constraint, where it has basically the same effect

(although the membership degrees are different now). Due to the changed constraint,
the membership degrees again do not add up to one for each data point and thus cannot
be interpreted as a distribution of a unit data point weight.

134 CHAPTER 5. UPDATE METHODS

Next we have to find the update formula for the covariance matrices Σi,
1 ≤ i ≤ c. Here we face the complication that the objective function does
not possess a minimum w.r.t. unconstrained covariance matrices. The rea-
son is that a Mahalanobis distance is the smaller, the larger the determinant
of the covariance matrix it is parameterized with. This is so, simply because
the larger the determinant of the covariance matrix, the smaller the deter-
minant of its inverse and thus the smaller the value of (~x−~µi)>Σ−1

i (~x−~µi).
Hence the minimum of the objective function would be obtained for covari-
ance matrices with infinite determinant (if this were possible).

To handle this (actually merely technical and not fundamental) problem,
we draw on insights about the properties of cluster prototypes derived in
Section 2.3. In particular, we exploit that a covariance matrix can be split
into size and shape parameters by writing it as

Σ = σ2S,

where σ = 2m
√
|Σ| (with m being the number of dimensions of the data

space) and S is a symmetric and positive definite matrix satisfying |S| = 1.
At first sight such an approach may seem to be unreasonable, because we
now have to handle the additional constraints |Si| = 1, 1 ≤ i ≤ c. However,
a careful analysis shows that in some special cases we need these constraints
anyway in order to obtain a proper result, so we may just as well introduce
them generally. We also have to cope with the technical problem that it is
cumbersome to compute the derivative of (~xj − ~µi)>Σ−1

i (~xj − ~µi) w.r.t. Si.
Fortunately, however, this problem is removed without any effort by the
convenient fact that taking the derivative w.r.t. the inverse S−1

i leads to an
update formula for Si. Therefore we can proceed in a fairly straightforward
manner, treating the size and shape parameters separately.

We start by deriving an update formula for the shape parameters Si.
To do so, we incorporate the constraints |Si| = |S−1

i | = 1, i = 1, . . . , c, with
the help of Lagrange multipliers λi. Thus we get the Lagrange function

L(X,C,U,Λ) =
c∑

i=1

n∑
j=1

h(uij)(~xj − ~µi)>σ−2
i S−1

i (~xj − ~µi)︸ ︷︷ ︸
=J(X,C,U)

+
c∑

i=1

λi(1− |S−1
i |),

which is to be minimized. A necessary condition for a minimum is that the
derivatives w.r.t. S−1

k , 1 ≤ k ≤ c, all vanish. Thus we get (cf. the general

5.2. ALTERNATING OPTIMIZATION 135

considerations in Section A.1 in the appendix) ∀k; 1 ≤ k ≤ c:

∇S−1
k
L(X,C,U,Λ)

= ∇S−1
k

 c∑
i=1

n∑
j=1

h(uij) (~xj − ~µi)>σ−2
i S−1

i (~xj − ~µi) +
c∑

i=1

λi(1− |S−1
i |)

=

n∑
j=1

h(ukj)σ−2
i (~xj − ~µk)(~xj − ~µk)> − λk |S−1

k |Sk
!= 0,

where 0 denotes anm×m null matrix (i.e., all its elements are zero). For the
derivative ∇S−1

k
|S−1

k | the formula computed in Section A.1 in the appendix
was used with A = S−1

k . It follows ∀i; 1 ≤ i ≤ c:

n∑
j=1

h(uij)σ−2
i (~xj − ~µi)(~xj − ~µi)> = λi |S−1

i |Si = λiSi,

since we have to respect the constraint |Si| = |S−1
i | = 1. Hence we have

|λiSi| = λm
i |Si| = λm

i =

∣∣∣∣∣∣
n∑

j=1

h(uij)σ−2
i (~xj − ~µi)(~xj − ~µi)>

∣∣∣∣∣∣ ,
where we exploited again the constraints |Si| = |S−1

i | = 1. Inserting the
value for λi that results from this equation into the preceding one, we obtain

S(t+1)
i =

∣∣∣Ŝ (t+1)
i

∣∣∣− 1
m

Ŝ (t+1)
i

where

Ŝ (t+1)
i =

n∑
j=1

h
(
u

(t+1)
ij

)(
σ

(t)
i

)−2 (
~xj − ~µ

(t+1)
i

)(
~xj − ~µ

(t+1)
i

)>
.

Obviously the factor |Ŝi|−
1
m normalizes Ŝi to a unit determinant, as desired.

If the sizes of the clusters (as they are described by the σ2
i) are fixed, the

above update formulae are all we need. They define a slightly generalized
version of the algorithm by [Gustafson and Kessel 1979] (generalized to
arbitrary, but fixed cluster sizes). Note that in the above formula one may
also use ~µ(t)

i instead of ~µ(t+1)
i , depending on which version is more convenient

to implement (this depends on how the covariance matrix is computed—
from the data points or from the difference vectors).

136 CHAPTER 5. UPDATE METHODS

It is worth noting that the algorithm by [Gustafson and Kessel 1979] is
actually defined in terms of so-called fuzzy covariance matrices7

Σ̂(t+1)
i =

∑n
j=1 h

(
u

(t+1)
ij

)(
~xj − ~µ

(t+1)
i

)(
~xj − ~µ

(t+1)
i

)>
∑n

j=1 h
(
u

(t+1)
ij

)
instead of the matrices Ŝi, 1 ≤ i ≤ c, as defined above. (Note that the factor
σ−2

i is missing, because the algorithm by [Gustafson and Kessel 1979] fixes
this factor to 1. It may, however, be introduced here without problems.)
This leads to the same result for the Si, because the additional factors(∑n

j=1 h(uij)
)−1 have no influence due to the normalization to a unit de-

terminant that is involved in computing the new size parameters (the new
matrices Si). However, using Σ̂i instead of Ŝi is clearly more intuitive, when
compared to the well-known statistical estimator for a covariance matrix.

Furthermore, with a fuzzy covariance matrix as defined above, the most
natural and intuitive way of adapting the cluster size would be to set

Σ(t+1)
i = Σ̂(t+1)

i , or equivalently σ
(t+1)
i = 2m

√∣∣∣Σ̂(t+1)
i

∣∣∣,
that is, to simply skip the normalization to a unit determinant. Such an
approach is indeed feasible and leads to good results in practical tests. Its
only drawback is that this update rule cannot be derived from the objective
function due to the complications mentioned above.

If one desires to derive an update rule for the cluster sizes from the ob-
jective function, one has to introduce a constraint that prevents the clusters
sizes from becoming infinite (see above). Such a constraint could be that
the sum of the cluster sizes is fixed. For example, one may constrain the
sum of the cluster sizes to the number of clusters, so that on average the
clusters have unit size. Of course, if one does so, one has to take into account
that the size of a cluster can be measured in different ways, as discussed in
Section 2.3. Drawing on the considerations in that section, I measure the
size of a cluster generally as σκ

i , where σi is defined as above, that is, as
σi = 2m

√
|Σi|. Hence I introduce the size constraint

c∑
i=1

σκ
i = c

7The original paper uses, of course, h(uij) = uw
ij , but it is immediately clear that a

generalization to an arbitrary membership transformation is possible.

5.2. ALTERNATING OPTIMIZATION 137

and incorporate it into the objective function by a Lagrange multiplier λ.
This approach—which is very similar to the approach suggested in [Keller
2002], but somewhat more principled—yields the Lagrange function

L(X,C,U,Λ) =
c∑

i=1

n∑
j=1

h(uij)(~xj − ~µi)>σ−2
i S−1

i (~xj − ~µi)︸ ︷︷ ︸
=J(X,C,U)

+λ

(
c∑

i=1

σκ
i − c

)
.

Exploiting as usual that it is a necessary condition for a minimum that the
partial derivatives vanish, we obtain ∀k; 1 ≤ k ≤ c:

∂

∂σk
L(X,C,U,Λ)

= −2σ−3
k

n∑
j=1

h(ukj) (~xj − ~µk)>S−1
k (~xj − ~µk) + λκσκ−1

k
!= 0.

As a consequence we have ∀i; 1 ≤ i ≤ c:

σκ+2
i =

2
λκ

n∑
j=1

h(uij) (~xj − ~µi)>S−1
i (~xj − ~µi).

In order to be able to exploit the constraint on the cluster sizes, which refers
to σκ

i , 1 ≤ i ≤ c, we transform this equation into

σκ
i =

 2
λκ

n∑
j=1

h(uij) (~xj − ~µi)>S−1
i (~xj − ~µi)

 κ
κ+2

and sum the result over all clusters. Thus we obtain

c =
c∑

i=1

σκ
i =

c∑
i=1

 2
λκ

n∑
j=1

h(uij) (~xj − ~µi)>S−1
i (~xj − ~µi)

 κ
κ+2

,

which entails

λ =
2
κ

1
c

c∑
i=1

 n∑
j=1

h(uij) (~xj − ~µi)>S−1
i (~xj − ~µi)

 κ
κ+2

κ+2
κ

.

138 CHAPTER 5. UPDATE METHODS

Inserting this expression for λ into the above formula for σκ
i yields

σ
κ(t+1)
i =

c ·
(∑n

j=1 h
(
u

(t+1)
ij

)(
~xj − ~µ

(t+1)
i

)>(
S(t+1)

i

)−1(
~xj − ~µ

(t+1)
i

)) κ
κ+2

∑c
k=1

(∑n
j=1 h

(
u

(t+1)
kj

)(
~xj − ~µ

(t+1)
k

)>(
S(t+1)

k

)−1(
~xj − ~µ

(t+1)
k

)) κ
κ+2

.

On closer inspection this formula is actually not too unintuitive. If there
were no exponents, the new sizes of the clusters would be computed from
the weighted sum of squared distances as they result from a covariance
matrix with unit determinant, by relating it to the total weighted sum of
squared distances for all clusters. This would be a very natural way of
updating the sizes. The exponents modify this a little, so that the results
deviate somewhat from the most natural case. Unfortunately, such an effect
is often met in fuzzy clustering. We already observed it when we derived
the update rules for the cluster centers, which contain the fuzzifier as an
unnatural modification. Here, however, the effect is that a tendency towards
equal sizes is introduced (since the exponents are less than 1), which may
be desirable in some cases (cf. also Section 6.1.3).

This completes the derivation of the update rules for the cluster param-
eters. Nevertheless, it is often recommendable to introduce further con-
straints and modifications into the update process, which can enhance the
stability and usefulness of fuzzy clustering. However, since these constraints
and modifications are more generally applicable (for example, they may also
be used with gradient descent), they are considered in the next chapter.

Note that for the derivation of the update rules for the cluster parame-
ters it was not necessary to consider possibilistic fuzzy clustering as a special
case, while it was necessary to treat it as a special case for the derivation of
the update rules for the membership degrees. The reason is that the addi-
tional terms in the objective function of possibilistic fuzzy clustering refer
only to the membership degrees and not to any cluster parameters. There-
fore they are eliminated by taking derivatives w.r.t. cluster parameters.

What needs explicit consideration, though, is the generalized form of the
objective function that uses membership functions instead of distances, i.e.

J(X,C,U) =
c∑

i=1

n∑
j=1

uw
ij

u•i (~xj)
.

In this case the membership functions u•i , 1 ≤ i ≤ c, may make it impossible
to find the optimum w.r.t. the cluster parameters (for fixed membership
degrees) by simply setting the partial derivatives equal to zero.

5.2. ALTERNATING OPTIMIZATION 139

The most convenient way to solve this problem is to abandon the strict
requirement that the update formulae have to be derived from the objective
function. The general idea is to keep the alternating scheme, but to specify
update rules for the two steps that are inspired by the objective function
and are analogous to the results for cases with just a distance measure, but
may not be derivable in a strict way. This approach has been suggested
by [Runkler and Bezdek 1999] under the name of alternating cluster
estimation (ACE). Here I use the same idea by keeping the update rules
for the cluster parameters even though the membership to a cluster may be
computed with the generalized Cauchy or Gaussian function. Experiments
show that this approach is feasible and leads to good results.

As a final remark I would like to mention the reformulation approach
to the update rules that was suggested in [Hathaway and Bezdek 1995].
The basic idea is to insert the update rule for the membership degrees
into the objective function in order to obtain a one step update scheme.
Although this is surely an interesting approach from a mathematical point
of view, I do not discuss it in detail here, because its practical relevance is
limited. In addition, it works smoothly only for the standard membership
transformation h(uij) = uw

ij , while one encounters technical problems for
the more general case and in particular for h(uij) = 1−β

1+βu
2
ij + 2β

1+βuij .

5.2.4 Expectation Maximization

The expectation maximization (EM) algorithm is a standard method in
statistics for computing maximum likelihood estimates of distribution pa-
rameters in the presence of missing values or hidden variables (also called
latent variables), that is, variables the values of which cannot be observed.
In the presence of missing values or hidden variables it is often impossible to
maximize the likelihood function directly, because it is (partially) unknown
which data points may be used for estimating which parameters.

The general idea underlying the expectation maximization algorithm
is to describe a value that is missing by a random variable. The domain
of this random variable is the set of values that could be the actual, but
unknown value. As a consequence, the likelihood of the data set becomes a
random variable, because it is a function of the random variables describing
the missing values. (We may also view the situation like this: we do not
have a fixed data set, but a random variable that has different data sets,
though from a limited range, as possible values.) This, of course, makes it
impossible to maximize the likelihood directly, as it does not have a unique
value anymore. However, since it is a random variable, we can compute its

140 CHAPTER 5. UPDATE METHODS

expected value and choose the parameters in such a way that this expected
value is maximized. Hence the name expectation maximization for this
approach: the parameters are estimated such that the expected value of the
likelihood function is maximized.

In the following I consider the expectation maximization approach in
two flavors. In the first place I study the standard approach for mixture
models, in which I focus in particular on the most common case of Gaussian
mixture models [Everitt and Hand 1981, Bilmes 1997]. The second approach
is what has become known as the fuzzy maximum likelihood estimation al-
gorithm [Gath and Geva 1989]. This algorithms draws on ideas from both
expectation maximization for mixture models and fuzzy clustering as it was
discussed in the preceding section.

Expectation Maximization for Mixture Models

We assume that the given data was generated by sampling from a mixture
of c probability density functions, each of which is represented by a cluster
and its parameters (cf. Section 3.3). That is, we assume that the probability
density function of the data generation process can be described as

f ~X(~x;C) =
c∑

y=1

f ~X,Y (~x, y;C) =
c∑

y=1

pY (y;C) · f ~X|Y (~x|y;C).

Here C is, as usual, the set of cluster parameters. ~X is a random vector that
has the data space as its domain (i.e. dom(~X) = IRm). Y is a random vari-
able that has cluster indices as possible values (i.e. dom(Y) = {1, . . . , c}).
pY (y;C) is the probability that a data point belongs to (is generated by)
the y-th component of the mixture (the y-th cluster) and f ~X|Y (~x|y;C) is the
conditional probability density function of a data point given the mixture
component (as specified by the cluster index y).

The task is to estimate the cluster parameters in such a way that the
likelihood of a given data set, described by the likelihood function

L(X;C) =
n∏

j=1

f ~Xj
(~xj ;C) =

n∏
j=1

c∑
y=1

pY (y;C) · f ~Xj |Y (~xj |y;C)

(cf. page 62 in Section 3.3) is maximized. Alternatively, one may choose to
maximize the so-called log-likelihood, because this can ease the technical
task8, in particular, if a Gaussian mixture model is used.

8Note that taking the logarithm of the likelihood function changes the value, but not
the location of the maximum in the parameter space, which is all we are interested in.

5.2. ALTERNATING OPTIMIZATION 141

Unfortunately, the likelihood function is difficult to optimize, even if one
takes its natural logarithm, because

lnL(X;C) =
n∑

j=1

ln
c∑

y=1

pY (y;C) · f ~Xj |Y (~xj |y;C)

contains the product of the natural logarithms of complex sums. (Note
that this was no problem in a gradient descent approach, because we only
desired the derivative of the log-likelihood function. Here, however, we want
to compute the maximum directly, in a non-iterative fashion.)

To handle this problem, we assume that there are “hidden” variables Yj ,
1 ≤ j ≤ n, which state for each data point ~xj the cluster that generated it
(i.e. dom(Yi) = {1, . . . , c}). With such variables, the (inner) sums reduce to
one term and the task of computing the maximum becomes mathematically
feasible. Formally, we now maximize the likelihood of the “completed” data
set (X, ~y), where ~y = (y1, . . . , yn) combines the values of the variables Yj ,
1 ≤ j ≤ n. That is, we consider the extended likelihood function

L(X, ~y;C) =
n∏

j=1

f ~Xj ,Yj
(~xj , yj ;C) =

n∏
j=1

pYj
(yj ;C) · f ~Xj |Yj

(~xj |yj ;C)

(or, equivalently, the natural logarithm of this function). The problem with
this approach is, of course, that the Yj are hidden, so we do not know
their values. However, we need to know these values in order to compute
the factors pYj

(yj ;C). Otherwise we are unable to maximize the likelihood
function, because it is incompletely specified.

To find a solution nevertheless, we see the Yj as random variables (i.e.,
the values yj are not fixed), as already indicated at the beginning of this
section. Then we consider a probability distribution over the possible values,
that is over the set dom(Yj) = {1, . . . , c}. As a consequence the value of the
likelihood L(X, ~y;C) becomes a random variable, even for a fixed data set X
and fixed cluster parameters C, simply because the third parameter ~y of
the likelihood function is a random vector. Since L(X, ~y;C) or lnL(X, ~y;C)
are random variables, they have an expected value and we may now try to
maximize this expected value (hence the name expectation maximization for
this approach, as already pointed out above).

Formally, this means to try to find the cluster parameters as

Ĉ = argmax
C

E([ln]L(X, ~y;C) | X;C),

142 CHAPTER 5. UPDATE METHODS

where the hat symbol (̂) is standard statistical notation for an estimate and
[ln] indicates the optional use of the log-likelihood. That is, we compute
the parameters by maximizing the expected likelihood

E(L(X, ~y;C) | X;C) =
∑

~y∈{1,...,c}n

p~Y |X (~y |X;C) ·
n∏

j=1

f ~Xj ,Yj
(~xj , yj ;C)

or, alternatively, by maximizing the expected log-likelihood

E(lnL(X, ~y;C) | X;C) =
∑

~y∈{1,...,c}n

p~Y |X (~y |X;C) ·
n∑

j=1

ln f ~Xj ,Yj
(~xj , yj ;C).

Here X is a random variable that has data sets as possible values. ~Y is a
random variable that has the possible assignments of the data points to the
clusters as possible values, which are described by a vector ~y ∈ {1, . . . , c}n.
The expected value is computed in the standard way: the different values of
the likelihood function of the completed data set, which are distinguished
by the different possible vectors ~y of cluster indices, are summed weighted
with the probability of their occurrence.

Unfortunately, these functionals are still difficult to optimize directly.
However, they can nicely be turned into iterative schemes. This is done by
fixing C in some terms. Then the maximization operation (now limited to
terms in which C is not fixed) is used iteratively to compute increasingly
better approximations of the maximum, until a convergence point is reached.

This principle is very similar to the idea underlying Heron’s algorithm
for computing the square root of a given real number, which is reviewed in
Section A.9 in the appendix. In Heron’s algorithm the defining equation for
the square root is rewritten, so that the quantity to compute appears several
times in the resulting equation. The resulting equation is then written in
such a way that the desired quantity (the square root) appears isolated on
the left hand side. The algorithm itself works by initializing the desired
quantity (the square root) to an arbitrary value and inserting it into the
right hand side. Evaluating the right hand side provides us with a new
approximation of the desired quantity, which is inserted again into the right
hand side and so on, until a chosen precision is reached.

Analogously, the iterative scheme for expectation maximization works
as follows: we choose an initial set C(0) of cluster parameters (see Chapter 4
for initialization methods). With this initial parameter set we can compute
the posterior probability of the i-th cluster given a data point. This enables

5.2. ALTERNATING OPTIMIZATION 143

us to carry out the maximization, since the first factors in the outer sum
are now fixed values, which can even be simplified considerably (see below).
The result is a new approximation C(1) of the cluster parameters, which
is used again to compute the posterior probabilities of the clusters given a
data point and so on, until a convergence point is reached.

The posterior probabilities, which I abbreviate by u
(t+1)
ij in analogy to

the membership degrees of fuzzy clustering, are computed as [Bilmes 1997]

u
(t+1)
ij = pYj | ~Xj

(i|~xj ;C(t)) =
f ~Xj ,Yj

(~xj , i;C(t))

f ~Xj
(~xj ;C(t))

=
f ~Xj |Yj

(~xj |i;C(t)) · pYj
(i;C(t))∑c

k=1 f ~Xj |Yj
(~xj |k;C(t)) · pYj

(k;C(t))
,

that is, as the relative probability densities of the different clusters at the
location of the data points ~xj . Note that these u(t+1)

ij may also be written
in terms of the cluster membership functions (parameterized with C(t)) as

u
(t+1)
ij = u

(sum1) (t)
i (~xj) =

u
•(t)
i (~xj)∑c

k=1 u
•(t)
k (~xj)

.

This provides another justification for using u
(t+1)
ij as an abbreviation for

the posterior probabilities pYj | ~Xj
(i|~xj ;C(t)).

The computation of the posterior probabilities is called the expectation
step, which is followed by the maximization step [Bilmes 1997]:

C(t+1) = argmax
C

E(lnL(X, ~y;C) | X;C(t))

= argmax
C

∑
~y∈{1,...,c}n

p~Y |X (~y |X;C(t))
n∑

j=1

ln f ~Xj ,Yj
(~xj , yj ;C)

= argmax
C

∑
~y∈{1,...,c}n

(
n∏

l=1

pYl| ~Xl
(yl|~xl;C(t))

)
n∑

j=1

ln f ~Xj ,Yj
(~xj , yj ;C)

= argmax
C

c∑
i=1

n∑
j=1

pYj | ~Xj
(i|~xj ;C(t)) · ln f ~Xj ,Yj

(~xj , i;C).

The last step of this transformation, which replaces the complex sum over
all possible vectors of cluster indices by a simple sum over the clusters, is

144 CHAPTER 5. UPDATE METHODS

justified as follows [Bilmes 1997] (δi,y is the Kronecker symbol, cf. page 60):

∑
~y∈{1,...,c}n

(
n∏

l=1

pYl| ~Xl
(yl|~xl;C(t))

)
n∑

j=1

ln f ~Xj ,Yj
(~xj , yj ;C)

=
c∑

y1=1

· · ·
c∑

yn=1

(
n∏

l=1

pYl| ~Xl
(yl|~xl;C(t))

)
n∑

j=1

c∑
i=1

δi,yj ln f ~Xj ,Yj
(~xj , i;C)

=
c∑

i=1

n∑
j=1

ln f ~Xj ,Yj
(~xj , i;C)

c∑
y1=1

· · ·
c∑

yn=1

δi,yj

n∏
l=1

pYl| ~Xl
(yl|~xl;C(t))

=
c∑

i=1

n∑
j=1

ln f ~Xj ,Yj
(~xj , i;C)

c∑
y1=1

· · ·
c∑

yn=1

δi,yj · pYj | ~Xj
(yj |~xj ;C(t))

n∏
l=1;l 6=j

pYl| ~Xl
(yl|~xl;C(t))

=
c∑

i=1

n∑
j=1

ln f ~Xj ,Yj
(~xj , i;C)

c∑
yj=1

δi,yj · pYj | ~Xj
(yj |~xj ;C(t))

c∑
y1=1

· · ·
c∑

yj−1=1

c∑
yj+1=1

· · ·
c∑

yn=1

n∏
l=1;l 6=j

pYl| ~Xl
(yl|~xl;C(t))

=
c∑

i=1

n∑
j=1

ln f ~Xj ,Yj
(~xj , i;C) · pYj | ~Xj

(i|~xj ;C(t))

c∑
y1=1

· · ·
c∑

yj−1=1

c∑
yj+1=1

· · ·
c∑

yn=1

n∏
l=1;l 6=j

pYl| ~Xl
(yl|~xl;C(t))

=
c∑

i=1

n∑
j=1

pYj | ~Xj
(i|~xj ;C(t)) · ln f ~Xj ,Yj

(~xj , i;C)

n∏
l=1;l 6=j

c∑
yl=1

pYl| ~Xl
(yl|~xl;C(t))︸ ︷︷ ︸
=1

=
c∑

i=1

n∑
j=1

pYj | ~Xj
(i|~xj ;C(t)) · ln f ~Xj ,Yj

(~xj , i;C).

5.2. ALTERNATING OPTIMIZATION 145

Intuitively, the outlined procedure can be interpreted as follows: In the
expectation step, with the posterior probabilities of the clusters given a
data point, we compute case weights of a “completed” data set. That is,

• we split each data point ~xj into c data points (~xj , i), 1 ≤ i ≤ c;

• we distribute the unit weight of the data point ~xj according to the
above probabilities, i.e., we assign to (~xj , i), 1 ≤ i ≤ c, 1 ≤ j ≤ n, the
case weight u(t+1)

ij = pYj | ~Xj
(i|~xj ;C

(t)
k).

This interpretation of the posterior probabilities as case weights is supported
by the following consideration: suppose we sample a data set S from a
cluster model C, recording for each data point also the cluster i, so that
the sample points have the form (~xj , i), 1 ≤ i ≤ c, 1 ≤ j ≤ n. In addition,
let uij ∈ IN0 state how often the corresponding data point (~xj , i) occurs in
the sample S. (In principle, it may be uij = 0, namely if the data point
does not occur in the sample, although this is only a theoretical possibility.)
Then the probability of the sample S can be written as

P (S) =
c∏

i=1

n∏
j=1

(
f ~Xj ,Yj

(~xj , i;C)
)uij

.

(Compare the considerations in Section 3.3, where I used exponents uij to
write the probability of a data set in a very similar way.)

On the other hand, the expected log-likelihood can be written as

E(lnL(X, ~y;C) | X;C(t)) =
c∑

i=1

n∑
j=1

u
(t)
ij · ln f ~Xj ,Yj

(~xj , i;C)

=
c∑

i=1

n∑
j=1

ln
(
f ~Xj ,Yj

(~xj , i;C)
)u

(t)
ij

= ln
c∏

i=1

n∏
j=1

(
f ~Xj ,Yj

(~xj , i;C)
)u

(t)
ij

.

Hence, if the exponents u(t)
ij were integer values, the expected log-likelihood

would be the natural logarithm of the probability of a data set, in which a
data point (~xj , i) occurred u

(t)
ij times, 1 ≤ i ≤ c, 1 ≤ j ≤ n. All we have

to do now is to drop the requirement for integer occurrence numbers and
allow fractional occurrences. These fractional occurrences (or case weights)
are given by the posterior probabilities.

146 CHAPTER 5. UPDATE METHODS

After the data set has been “completed” by computing case weights
for the extended data points, we estimate the cluster parameters in the
maximization step. This estimation is trivial now, because we have a
completely specified data set and thus can apply the standard statistical
estimation formulae. Intuitively, we simple split the “completed” data set
according to the value of i in the data points (~xj , i) into c subsets. From
each of the subsets we have to estimate the parameters of one clusters.
However, one cluster is described by a single density function—not by a
mixture of density functions—and thus all mathematical problems that we
encountered originally for the (log-)likelihood maximization vanished.

It can be shown that each iteration of the expectation maximization
algorithm, consisting of one expectation step and one maximization step,
increases the likelihood of the data. Even more, it can be shown that the
algorithm converges to a local maximum of the likelihood function. In other
words, expectation maximization is a safe way to maximize the likelihood
function [Dempster et al. 1977, Wu 1983, Cheeseman and Stutz 1996].

In the above derivation the form of the conditional probability density
function given the cluster was left unspecified. The most common case,
however, is a normal distribution, i.e., a Gaussian mixture model (cf. page 62
in Section 3.3). In this case the maximization is particularly simple for the
expected log-likelihood, because then we have for the maximization step
(using again the abbreviation u(t)

ij = pYj | ~Xj
(i|~xj ;C(t)) introduced above)

C(t+1) = argmax
C

E(lnL(X, ~y;C) | X;C(t))

= argmax
C

c∑
i=1

n∑
j=1

u
(t+1)
ij ln f ~Xj ,Yj

(~xj , i;C)

= argmax
C

c∑
i=1

n∑
j=1

u
(t+1)
ij

ln

(
%i√

(2π)m|Σi|
exp

(
−1

2
(~xj − ~µi)>Σ−1

i (~xj − ~µi)
))

= argmax
C

c∑
i=1

n∑
j=1

u
(t+1)
ij

1
2
(
2 ln %i −m ln(2π)− ln |Σi|

− (~xj − ~µi)>Σ−1
i (~xj − ~µi)

)
.

From this formula we can derive the update rules for the cluster parameters
by simply taking the partial derivatives of the double sum and setting them

5.2. ALTERNATING OPTIMIZATION 147

equal to zero (necessary condition for a maximum). That is, we compute

∇~µk
E(lnL(X, ~y;C) | X;C(t))

= ∇~µk

c∑
i=1

n∑
j=1

u
(t+1)
ij

1
2
(
2 ln %i −m ln(2π)− ln |Σi|

− (~xj − ~µi)>Σ−1
i (~xj − ~µi)

)
= −1

2

n∑
j=1

u
(t+1)
kj ∇~µk

(~xj − ~µk)>Σ−1
k (~xj − ~µk)

= Σ−1
k

n∑
j=1

u
(t+1)
kj (~xj − ~µk) != ~0.

This leads to

~µ
(t+1)
i =

∑n
j=1 u

(t+1)
ij ~xj∑n

j=1 u
(t+1)
ij

,

which is directly analogous to the standard maximum likelihood estimate
for the expected value vector of a multivariate normal distribution. Note
that it differs from the update rule for the cluster centers derived in fuzzy
clustering by the missing transformation function h(uij) for the membership
degrees/posterior probabilities. As a consequence it is more intuitive.

For the covariance matrices we obtain, by taking derivatives w.r.t. their
inverses as we already did several times before to simplify the computations:

∇Σ−1
k
E(lnL(X, ~y;C) | X;C(t))

= ∇Σ−1
k

c∑
i=1

n∑
j=1

u
(t+1)
ij

1
2
(
2 ln %i −m ln(2π)− ln |Σi|

− (~xj − ~µi)>Σ−1
i (~xj − ~µi)

)
=

n∑
j=1

u
(t+1)
ij

1
2
∇Σ−1

k

(
ln |Σ−1

k | − (~xj − ~µk)>Σ−1
k (~xj − ~µk)

)
=

n∑
j=1

u
(t+1)
kj

1
2
(
Σk − (~xj − ~µk)(~xj − ~µk)>

) != 0.

In this derivation it was exploited that ∇Σ−1
k

ln |Σ−1
k | = |Σk||Σ−1

k |Σk = Σk

(cf. Section A.1 in the appendix for the derivative of a determinant).

148 CHAPTER 5. UPDATE METHODS

It follows as the update rule for the covariance matrices

Σ(t+1)
i =

∑n
j=1 u

(t+1)
ij

(
~xj − ~µ

(t+1)
i

)(
~xj − ~µ

(t+1)
i

)>
∑n

j=1 u
(t+1)
ij

.

Again this result is directly analogous to the standard maximum likelihood
estimate for a covariance matrix. Note that it differs, like the update rule
for the expected value vectors, from the update rule derived in fuzzy clus-
tering by the missing transformation function h(uij) for the membership
degrees/posterior probabilities. As a consequence it is again more intu-
itive. Note also that for implementations it may be more convenient to use
~µ

(t)
i instead of ~µ(t+1)

i , depending on how the covariance matrix is computed
(directly from the data points or from the difference vectors).

In a final step we have to consider the update rule for the prior proba-
bilities %i, 1 ≤ i ≤ c, of the different clusters, as the last cluster parameter.
For these prior probability we have to take into account that they have to
sum to 1 over the clusters. That is, we have to respect the constraint

c∑
i=1

%i = 1.

Relying on our standard practice, we incorporate this constraint with the
help of a Lagrange multiplier λ and obtain the Lagrange function

L(X, ~y;C, λ) = E(lnL(X, ~y;C) | X;C(t)) + λ

(
1−

c∑
i=1

%i

)
,

which is to be maximized. Exploiting as usual that it is a necessary condition
for a maximum that the partial derivatives vanish, we obtain

∂

∂%k
L(X, ~y;C, λ) =

∂

∂%k

(
c∑

i=1

n∑
j=1

u
(t+1)
ij

1
2
(
2 ln %i −m ln(2π)− ln |Σi|

− (~xj − ~µi)>Σ−1
i (~xj − ~µi)

)
+ λ

(
1−

c∑
i=1

%i

))

=
n∑

j=1

u
(t+1)
kj

∂

∂%k
ln %k +

∂

∂%k
λ

(
1−

c∑
i=1

%i

)

=
n∑

j=1

u
(t+1)
kj

1
%k
− λ

!= 0.

5.2. ALTERNATING OPTIMIZATION 149

This leads to ∀i; 1 ≤ i ≤ c:

%i =
1
λ

n∑
j=1

u
(t+1)
ij .

In order to exploit the constraint, we sum these equations over the clusters,

1 =
c∑

i=1

%i =
1
λ

c∑
i=1

n∑
j=1

u
(t+1)
ij .

From this we can compute λ as

λ =
c∑

i=1

n∑
j=1

u
(t+1)
ij .

Inserting this equation into the expression for the prior probabilities yields

%
(t+1)
i =

∑n
j=1 u

(t+1)
ij∑c

k=1

∑n
j=1 u

(t+1)
kj

=

∑n
j=1 u

(t+1)
ij∑n

j=1

∑c
k=1 u

(t+1)
kj︸ ︷︷ ︸

=1

=
1
n

n∑
j=1

u
(t+1)
ij .

Like the other update rules this result is very intuitive and directly analo-
gous to standard maximum likelihood estimates for corresponding situations
(like, for example, the estimate of a probability in a multinomial distribu-
tion, which is the relative frequency of the corresponding value). Note that
it was exploited here that the u(t+1)

ij describe, for each j, 1 ≤ j ≤ n, a
probability distribution over the clusters. Actually, we defined (see above)

u
(t+1)
ij = pYj | ~Xj

(i|~xj ;C(t)).

Consequently their sum over the clusters must be 1 for any value of j.
With these update rules, together with the formula for the computa-

tion of the posterior probabilities u(t+1)
ij as it was stated at the beginning,

we have the full set of update formulae for a standard Gaussian mixture
model. Of course, it is also possible to derive analogous formulae for a
mixture model that uses the generalized Gaussian radial function or even
the generalized Cauchy radial function, provided they can be normalized
to unit integral (cf. Section A.2.1 in the appendix). However, since these
derivations follow the same lines, I do no consider them explicitely.

150 CHAPTER 5. UPDATE METHODS

Fuzzy Maximum Likelihood Estimation

The fuzzy maximum likelihood estimation algorithm [Gath and Geva 1989],
although it uses an objective function that is based on a sum of (squared)
distances, is more closely related to the expectation maximization algorithm
than to the fuzzy clustering approaches discussed in the preceding section.
It uses a (squared) distance measure that is inversely proportional to the
probability that the datum is a member of the cluster, based on a normal
distribution assumption. That is, the (squared) distance is defined as

d2
ij =

(
%i√

(2π)m|Σi|
exp

(
−1

2
(~xj − ~µi)>Σ−1

i (~xj − ~µi)
))−1

.

Therefore the objective function is

J(X,C,U) =
c∑

i=1

n∑
j=1

uw
ij

√
(2π)m|Σi|
%i

exp
(

1
2
(~xj − ~µi)>Σ−1

i (~xj − ~µi)
)
.

As we saw in Section 5.2.3, the update rule for the membership degrees is,
independent of the distance measure,

u
(t+1)
ij =

(
d
(t)
ij

) 2
1−w

∑c
k=1

(
d
(t)
kj

) 2
1−w

.

Thus we have for the special case w = 2

u
(t+1)
ij =

%
(t)
i√

(2π)m|Σ(t)
i
|
exp

(
− 1

2

(
~xj − ~µ

(t)
i

)>(
Σ(t)

i

)−1(
~xj − ~µ

(t)
i

))
c∑

k=1

%
(t)
k√

(2π)m|Σ(t)
k
|
exp

(
− 1

2

(
~xj − ~µ

(t)
k

)>(
Σ(t)

k

)−1(
~xj − ~µ

(t)
k

))
= pYj | ~Xj

(i|~xj ;C(t)).

That is, we obtain a formula that is identical to the expectation step of
the expectation maximization algorithm for a standard Gaussian mixture
model as it was studied above.

On the other hand, deriving update rules for the cluster parameters
from the above objective function is much more difficult. Therefore [Gath
and Geva 1989] rely on analogical reasoning and draw on the update rules
as they result from fuzzy clustering with normal distances and from the
expectation maximization algorithm for a Gaussian mixture model.

5.2. ALTERNATING OPTIMIZATION 151

The basic idea is that the parameter update rules in the expectation
maximization algorithm closely resemble those for fuzzy clustering based
on a Mahalanobis distance (Gustafson–Kessel algorithm). The main differ-
ence between these update rules consists in the fact that in fuzzy clustering
the data point weights are computed from the membership degrees through
a membership transformation function. In expectation maximization, how-
ever, the posterior probabilities, which are analogous to the membership
degrees in fuzzy clustering, are used directly as case weights. Hence the
idea suggests itself to apply such a membership transformation function
here too, in order to arrive at a “fuzzified” maximum likelihood estimation
algorithm [Gath and Geva 1989, Döring et al. 2004].

For the cluster centers we thus get the same update rule as in fuzzy
clustering based on a Mahalanobis distance, namely ∀i; 1 ≤ i ≤ c:

~µ
(t+1)
i =

∑n
j=1 h

(
u

(t+1)
ij

)
~xj∑n

j=1 h
(
u

(t+1)
ij

) .

For the covariance matrices, we take the update rule of the expectation
maximization algorithm for a Gaussian mixture model and introduce mem-
bership transformations. This is equivalent to computing fuzzy covariance
matrices as they were defined on page 136 and refraining from normalizing
them to unit determinant. That is, ∀i; 1 ≤ i ≤ c:

Σ(t+1)
i = Σ̂(t+1)

i =

∑n
j=1 h

(
u

(t+1)
ij

)(
~xj − ~µ

(t+1)
i

)(
~xj − ~µ

(t+1)
i

)>
∑n

j=1 h
(
u

(t+1)
ij

) .

(Note that this matrix need not have unit determinant, and thus differs from
the standard approach in fuzzy clustering. At least it cannot be derived from
the objective function—see the discussion in Section 5.2.3.)

In addition, we need an update rule for the prior probability, which is
also obtained by introducing a membership transformation into the corre-
sponding update rule of the expectation maximization algorithm. That is,

%
(t+1)
i =

∑n
j=1 h

(
u

(t+1)
ij

)
∑c

k=1

∑n
j=1 h

(
u

(t+1)
kj

) .
Unfortunately, in contrast to the original rule it was derived from, this
rule cannot be simplified, since no constraint holds for the transformed
membership degrees, but only for the untransformed ones.

152 CHAPTER 5. UPDATE METHODS

5.3 Competitive Learning

Competitive learning, likely to be even better known under the name of
learning vector quantization, was developed mainly in the area of artifi-
cial neural networks [Gersho 1982, Gray 1984, Kohonen 1986, DeSieno 1988,
Kohonen 1990, Kohonen 1995, NNRC 2002]. It has the advantage that it
can be applied for supervised as well as for unsupervised learning, that is,
for classification as well as for clustering tasks. The training approach is
closely related to gradient descent (as already pointed out in Section 5.1.2),
although it has a much more heuristic and ad hoc basis. Furthermore, it
is closely related to classical c-means clustering, which is very similar to a
“batch version” of learning vector quantization.

The general idea of competitive learning is that a set of reference vectors
(or cluster centers) in the data space compete over each data point. The
reference vector that is most similar to a data point wins the competition
and is adapted subsequently. The adaptation is done in such a way that
the reference vector becomes even more similar to the data point. In order
to enforce convergence, the adaptation is reduced over time.

In the following sections I consider first classical winner-takes-all learning
vector quantization, in which only the winning reference vector is adapted.
Then I turn to a fuzzy counterpart, in which multiple reference vectors may
be adapted according to their relative similarity to a data point. Next I
study how shape and size parameters, which are missing from the origi-
nal approach, can be introduced into learning vector quantization in a very
natural way. Finally, I discuss a statistical justification of learning vec-
tor quantization for classification purposes that is based on the objective
function of maximum likelihood ratio. As it turns out, learning vector quan-
tization can be seen as limiting case, a view that also gives rise to a better
version, which works without a “window rule” for the adaptation.

5.3.1 Classical Learning Vector Quantization

As already outlined above, classical learning vector quantization works with
a set a reference vectors that are adapted in such a way that each reference
vector captures a set of similar data points. These reference vectors are
initialized randomly (see Chapter 4 for some methods) and then adapted in
an “online” fashion. That is, the data points are considered one after the
other and for each of them one reference vector is adapted. This reference
vector is determined by a “competition” between all reference vectors, which
is won by the one that is most similar to the currently processed data point.

5.3. COMPETITIVE LEARNING 153

The similarity of a reference vector and a data point is measured in
the same way as we have always done it up to now, namely with the help
of a similarity function that is defined on a distance measure. Since a
similarity function is usually required to be monotonous (see Section 2.2),
we may also say that the competition is won by the reference vector that
is closest to the currently processed data point. For classical learning this
formulation is surely preferable. However, when we introduce fuzzy learning
vector quantization in the next section, the similarity functions enter the
consideration again and therefore I prefer the first statement.

After the winning reference vector has been determined, it is updated
immediately (that is, before the next data point is processed). If the task
is clustering, there is only one update rule, namely

~µ
(t+1)
k = ~µ

(t)
k + η~µ

(
~x− ~µ

(t)
k

)
,

where k, 1 ≤ k ≤ c, is the index of the winning reference vector ~µk, ~x is
the processed data point, and η~µ is a (positive) learning rate9 less than 1.
The idea of this rule is to update the reference vector in such a way that
it becomes even more similar to the processed data point. It is, so to
say, “attracted” by the data point, which is why I call the above rule the
attraction rule.10 This rule is illustrated in the left diagram in Figure 5.7.

With such a rule it is plausible that each reference vector will end up in
the middle of a group of similar data points, for which it wins the compe-
tition. This becomes even clearer if we rewrite the update rule as

~µ
(t+1)
k = (1− η~µ) ~µ(t)

k + η~µ ~x.

This equation makes it obvious that the update models an exponential
decay of information incorporated earlier into the reference vector ~µ (as it
is multiplied with a factor less than 1—actually the new reference vector
is a convex combination of the old reference vector and the data point).
Hence, after sufficiently many updates, the reference vectors will depend
almost exclusively on the data points closely surrounding them.

However, in the above simple form, the update rule is susceptible to
oscillations and cyclic updates. To understand this, consider the extreme
case that is depicted in the left diagram in Figure 5.8: a single reference
vector is repeatedly updated with four data points that are placed at the

9The learning rate η has an index ~µ here, because later we will also consider learning
rates for other cluster parameters (like size and shape, see Section 5.3.3).

10Later I will also introduce a repulsion rule, namely in the context of classification.

154 CHAPTER 5. UPDATE METHODS

~µ1

~µ2

~µ3
~x

d
η~µd

~µ1

~µ2

~µ3
~x

d η~µd

Figure 5.7: Adaptation of reference vectors (•) with a single data point (◦),
η~µ = 0.4. Left: attraction rule, right: repulsion rule.

Figure 5.8: Adaptation of a single reference vector with four data points.
Left: constant learning rate η~µ(t) = 0.5, right: continuously decreasing
learning rate η~µ(t) = 0.6 · 0.85t. In the first step it is t = 0.

four corners of a square. Due to the relation of the initial position of the
reference vector and the learning rate, the reference vector moves in a cycle
of length four. Although situations of such high symmetry are unlikely in
practice, it is clear that similar cyclic updates (though with more irregular
cycles, which may also not be so perfectly closed) are likely to occur. In
such situations the center of the group of data points, which would be the
desired final position of the reference vector, is never reached.

The standard approach to enforce convergence in such a case is to make
the update steps smaller and smaller over time, so that a cycle turns into a
spiral. That is, while up to now I considered a constant learning rate η~µ, I

5.3. COMPETITIVE LEARNING 155

now introduce a time-dependent learning rate, for instance,

η
(t)
~µ = η

(0)
~µ αt, 0 < α < 1, or η

(t)
~µ = η

(0)
~µ tκ, κ < 0,

for t = 1, 2, . . . As an illustration of the resulting effect, the right diagram
in Figure 5.8 shows the update of a single reference vector with the same
four data points as considered above. However, this time the learning rate
is reduced over time. Consequently, the update cycle turns into a spiral
and thus the reference vector will finally come to a rest in the center of the
square that is formed by the four data points—as desired.

However, although a time-dependent learning rate guarantees conver-
gence, one has to pay attention not to let the learning rate decrease too
quickly over time. Otherwise one may observe a “starvation” effect, that is,
the update steps get very quickly very small, so that the reference vectors
cannot reach or even come close to their natural destination. On the other
hand, letting it decrease too slowly can lead to slow convergence. As usual,
the proper choice of the learning rate is a difficult issue.

Although the update rule as it was stated above already describes the
update process fully, it is technically convenient to write it as a rule that
refers to all reference vectors, that is, as ∀i; 1 ≤ i ≤ c: ∀j; 1 ≤ j ≤ n:

~µ
(t+1)
i = ~µ

(t)
i + η~µ u

(t)
ij

(
~xj − ~µ

(t)
i

)
,

where u(t)
ij = δi,k(j,t) with k(j, t) = argminc

l=1 d(~xj , ~µ
(t)
l). Here δi,k is the

Kronecker symbol (cf. page 60 in Section 3.2 for a definition), which has
the effect that only the winning reference vector is adapted, while all others
stay unchanged (because u(t)

ij = 1 only for the closest reference vector and
u

(t)
ij = 0 otherwise). Note that the uij , 1 ≤ i ≤ c, 1 ≤ j ≤ n, in this

rule correspond directly to the uij in classical (crisp) c-means clustering (cf.
page 46 in Section 3.1), which justifies the use of this symbol.

The correspondence to c-means clustering becomes even more obvious if
we consider a batch update of the reference vectors. In a batch update the
winning reference vector is not updated immediately after each data point
that is processed, but the changes are aggregated in separate variables and
applied only at the end of an epoch11, that is, after all data points have
been processed. The corresponding update rule is therefore

~µ
(t+1)
i = ~µ

(t)
i + η~µ

n∑
j=1

u
(t)
ij

(
~xj − ~µ

(t)
i

)
.

11In neural network training one traversal of the whole data set is called an epoch.

156 CHAPTER 5. UPDATE METHODS

(Note that the time steps are different in this formula compared to the one
above for an online update. While for an online update the time indicator
is incremented with each data point that is processed, in batch update it is
incremented only with each epoch and thus much more slowly.) Rewriting
the above batch update rule in the same way as the online update rule yields

~µ
(t+1)
i =

(
1− η~µ

n∑
j=1

u
(t)
ij

)
~µ

(t)
i + η~µ

n∑
j=1

u
(t)
ij ~xj ,

which again reveals learning vector quantization as a method of exponential
decay of information. Furthermore, this formula suggests to choose a time-
and cluster-dependent learning rate

η
(t)
~µi

=
1∑n

j=1 u
(t)
ij

.

With such a learning rate the update rule turns into

~µ
(t+1)
i =

∑n
j=1 u

(t)
ij ~xj∑n

j=1 u
(t)
ij

,

that is, the standard update rule for (crisp) c-means clustering. Note that
a similar connection was pointed out for gradient descent on the sum of
squared errors for fuzzy clustering, which led to almost the same update
rule (cf. page 106 in Section 5.1.2). The only differences are the restriction
of the uij to the set {0, 1} (which I will drop in the next section, though)
and the missing fuzzifier w. As a consequence, gradient descent, alternating
optimization, and learning vector quantization turn out to be very similar
approaches (at least w.r.t. the update of cluster centers/reference vectors),
even though their standard forms exhibit, of course, certain differences.

As an illustration of both online and batch training for learning vector
quantization, Figure 5.9 shows both update methods applied to a very sim-
ple data set with 15 data points. The left diagram shows the online update,
as can be seen from the zig-zag shape of the trajectories of the reference
vectors, which is particularly pronounced for the middle one. As long as this
reference vector has not been attracted far enough to the data point group
in the lower right corner, it wins over the uppermost reference vector for
the data points in the upper middle of the diagram and thus is temporar-
ily dragged back and forth between two groups of data points. In contrast
to this the batch update, which is depicted in the right diagram, is much
smoother, but, as usual, also somewhat slower than the online update.

5.3. COMPETITIVE LEARNING 157

Figure 5.9: Learning vector quantization with 3 reference vectors for a sim-
ple set of 15 data points. Left: online training with (constant) learning rate
η~µ = 0.1, right: batch training with (constant) learning rate η~µ = 0.05.

Up to now I considered learning vector quantization only as a method
for clustering. However, it may just as well be applied to solve classification
tasks, namely by building a nearest prototype classifier (cf. page 38 in Sec-
tion 2.5 for a definition of this type of classifier). To this end each reference
vectors is endowed not only with an initial position, but also with a class
label, which, however, is never changed in the update process.

Based on the class labels, the update rule is modified as follows: if the
winning reference vector for a data point has the same class label as the data
point, it is adapted in the same way as above, that is, using the attraction
rule. If, however, the class labels differ, the repulsion rule is applied, which
is distinguished from the attraction rule only by the sign of the change:

~µ
(t+1)
k = ~µ

(t)
k − η~µ

(
~x− ~µ

(t)
k

)
(see the right diagram in Figure 5.7 for an illustration). Thus it can easily
be merged with the attraction rule if we use indicators uij in the same way
as we did above, that is, if we define the update rule as

~µ
(t+1)
i = ~µ

(t)
i + η~µ u

(t)
ij

(
~x− ~µ

(t)
i

)
.

Then we simply set the indicators uij , 1 ≤ i ≤ c, 1 ≤ j ≤ n, according to

u
(t)
ij =

+1, i = argminc

l=1 d
(
~xj , ~µ

(t)
l

)
∧ zj = ζi,

−1, i = argminc
l=1 d

(
~xj , ~µ

(t)
l

)
∧ zj 6= ζi,

0, otherwise.

158 CHAPTER 5. UPDATE METHODS

Here zj , 1 ≤ j ≤ n, is the class associated with the data point ~xj and ζi,
1 ≤ i ≤ c, is the class associated with the reference vector ~µi. Like for
learning vector quantization for clustering, the learning rate is made time-
dependent in order to enforce convergence. This approach is a simple, yet
fairly effective way of learning nearest prototype classifiers.

Improved versions of learning vector quantization for classification up-
date not only the one reference vector that is closest to the currently pro-
cessed data point, but the two closest ones [Kohonen 1990, Kohonen 1995].
Let ~µk and ~µl be these two closest reference vectors. Then an update is
carried out if the classes ζk and ζl assigned to these reference vectors differ,
but one of them coincides with the class zj assigned to the data point ~xj .
W.l.o.g. we assume that ζk = zj . Then the update rules are

~µ
(t+1)
k = ~µ

(t)
k + η~µ

(
~x− ~µ

(t)
k

)
and

~µ
(t+1)
l = ~µ

(t)
l − η~µ

(
~x− ~µ

(t)
l

)
,

while all other reference vectors remain unchanged. If, on the other hand,
the classes of the two closest reference vectors coincide with each other,
regardless of whether they coincide with the class of the data point or not,
no reference vector is adapted at all. These rules have been found to yield
good nearest prototype classifiers [Kohonen 1990].

Unfortunately, it was also observed in practical tests that this version
of learning vector quantization may drive the reference vectors further and
further apart on certain data sets, instead of leading to a stable convergence.
To counteract this obviously undesired behavior, [Kohonen 1990] introduced
a so-called window rule into the update: the reference vectors are updated
only if the data point ~xj is close to the classification boundary, where “close”
is made formally precise by requiring

min
(
d(~xj , ~µk)
d(~xj , ~µl)

,
d(~xj , ~µl)
d(~xj , ~µk)

)
> θ, where θ =

1− ξ

1 + ξ
.

Here ξ is a parameter that has to be specified by a user. Intuitively, ξ
describes the “width” of the window around the classification boundary, in
which the data point has to lie in order to lead to an update. Using it
prevents divergence, because the update ceases for a data point once the
classification boundary has been moved far enough away.

Nevertheless, this window rule is a bit counterintuitive and it would be
preferable to do without it. This is actually possible, as will be shown in Sec-
tion 5.3.3, in which a method closely related to learning vector quantization
is derived as a limiting case of optimizing the likelihood ratio.

5.3. COMPETITIVE LEARNING 159

5.3.2 Fuzzy Learning Vector Quantization

Classical learning vector quantization employs a winner-takes-all principle:
only the winning reference vector, that is, the closest or most similar refer-
ence vector, is adapted. However, in analogy to the extension of classical
crisp c-means clustering to fuzzy c-means clustering, one may consider a
fuzzified version, in which multiple reference vectors are adapted according
to their respective distance or similarity to a data point.

A straightforward way to introduce membership degrees into learning
vector quantization is to employ a similarity function like, for instance, the
Cauchy or Gaussian radial functions, which I generally use for this purpose
in this thesis. In neural network terms this function yields an activation
of the neuron that represents a reference vector. The idea is to weight the
update of a reference vector with this activation (in addition to a time-
dependent learning rate). However, this scheme, which is closely related to
possibilistic fuzzy clustering , usually leads to unsatisfactory results, since
there is no dependence between the clusters/reference vectors, so that they
tend to end up at the center of gravity of all data points (cf. the extensive
discussion of possibilistic fuzzy clustering in Section 3.1).

An alternative is to rely on a normalization scheme as in probabilistic
fuzzy clustering (cf. also Section 3.1). That is, one computes the weight for
the update of a reference vector as the relative inverse (squared) distance
from this vector, or generally as the relative activation of a neuron. This is
the approach I employ here, which I presented in [Borgelt and Nürnberger
2004a, Borgelt et al. 2005]. It is closely related to the approach by [Tsao et
al. 1994], but differs from it in as far as it uses a fixed instead of a varying
fuzzifier (which is used to obtain a smooth transition from fuzzy to hard
clustering). Other discussions of related aspects of fuzzy learning vector
quantization can be found in [Yair et al. 1992, Bezdek and Pal 1995, Zhang
et al. 2004]. However, one should note that basically all of these approaches
(including the one by [Tsao et al. 1994]) are restricted to batch learning
vector quantization, while I strive here to develop an online version in order
to exploit the usually higher speed of such an approach.

The update rule for fuzzy learning vector quantization is basically the
same as above, only that it necessarily refers to all vectors, i.e. ∀i; 1 ≤ i ≤ c:

~µ
(t+1)
i = ~µ

(t)
i + η~µ

(
u

(t)
ij

)w (
~x− ~µ

(t)
i

)
.

The main differences consist in the range of values for the uij , which is
now the real interval [0, 1], and that a fuzzifier or weighting exponent w

160 CHAPTER 5. UPDATE METHODS

is introduced as in fuzzy clustering. (Note that such an exponent has no
effect in classical (crisp) learning vector quantization due to the restriction
of the uij to the set {0, 1}.) The membership degrees or activations uij are
computed as ∀i; 1 ≤ i ≤ c: ∀j; 1 ≤ j ≤ n:

uij = ui(~xj),

where it is important that they are normalized.12 A normalization to sum 1
is, of course, the most natural choice, but one may also consider a normal-
ization to maximum 1 (cf. Section 2.4 about normalization modes).

In contrast to fuzzy clustering, where a fuzzifier w = 1 leads effectively
to crisp clustering, this choice does not have such an effect in learning vector
quantization, since the update rule is derived in a different way. Rather,
w = 1 is the most natural choice, which keeps fuzzy learning vector quanti-
zation as close as possible to the classical approach. Hence, by rewriting the
update rule (in its online or batch form) into a scheme of exponential decay
and choosing a cluster- and time-dependent learning rate (see above), we
can obtain from fuzzy learning vector quantization the update rule for the
cluster centers/reference vectors as it results from expectation maximization
(cf. Section 5.2.4), namely for w = 1, as well as the update rule for fuzzy
clustering, namely for w > 1. Therefore fuzzy learning vector quantization
can be seen as mediating between the two approaches.

Although the choice w = 1 is unproblematic now and thus we do not ob-
tain crisp clustering in the limit for w → 1+ as in fuzzy clustering, classical
(crisp) learning vector quantization can nevertheless be seen as a limiting
case of fuzzy learning vector quantization. It results in the limit if we let the
radius of the clusters, as it enters the radial similarity or activation func-
tion, go to zero. The reason is that decreasing the cluster radius effectively
increases the distance of the data points to the cluster centers/reference vec-
tors. Hence we get the effects that were studied in Section 2.4 in connection
with the limiting behavior of the membership degrees for large distances
w.r.t. a normalization to sum 1 or maximum 1 and their computation from
the Cauchy and Gaussian radial function (cf. page 32f). The interesting
case here is the Gaussian radial function. If we let the radius of the clusters
go to zero, even the membership degrees of data points close to the reference
vectors (close w.r.t. an unmodified distance) get more and more extreme.
In the limit, for a vanishing cluster radius, we get a hard assignment to the
closest cluster center/reference vector.

12Unnormalized membership degrees uij = u◦i (~xj) have the disadvantage pointed out
above, which are the same as those of possibilistic fuzzy clustering.

5.3. COMPETITIVE LEARNING 161

It is fairly obvious that with the described approach batch fuzzy learning
vector quantization is very similar to fuzzy clustering and can be made
equivalent by using the cluster- and time-dependent learning rate mentioned
in the preceding section. If we choose a smaller, but still cluster-specific and
time-dependent learning rate, we make a step from the position of the old
reference vector towards the center of gravity of the weighted data points.
This can easily be seen by writing the learning rate as

η
(t)
~µi

=
κ∑n

j=1

(
u

(t)
ij

)w , κ ∈ (0, 1).

(cf. Section 5.1.2 for an analogous suggestion). With this learning rate we
obtain for a batch version of fuzzy learning vector quantization

~µ
(t+1)
i = (1− κ) · ~µ(t)

i + κ ·

∑n
j=1

(
u

(t)
ij

)w
~xj∑n

j=1

(
u

(t)
ij

)w .

However, I am more interested in an online version, updating the cluster
parameters more often in order to achieve faster convergence. In particular,
I desire a scheme that allows to update the reference vectors not only after
single data points (this case does not pose any particular problems), but
after a group of data points, which are processed in a batch manner. The
objective of such an approach is to combine the higher speed of an online
update with the superior robustness of a batch update. In addition, an
online update of other cluster parameters (which will be studied in the next
section), may be too expensive if carried out for every single data point. For
example, it is not advisable to update a covariance matrix, which captures
the size and shape of a cluster, after each individual data point.

Therefore I consider an approach, in which an update is performed after
a user-specified number of data points, which may be adapted depending on
the size of the data set. However, this makes it slightly difficult to choose
a proper learning rate, especially since the weights (sum of membership de-
grees) may differ for each cluster/reference vector and in particular from the
relative weights of a batch update. As a solution I propose a scheme that is
inspired by the similarity of learning vector quantization to fuzzy clustering,
as it was also exploited for the special batch update rule above. That is, I
suggest to update a reference vector according to [Borgelt et al. 2005]

~µ
(t+1)
i = ~µ

(t)
i + η

∗(t)
~µ

∑
j∈J

(
u

(t)
ij

)w (
~xj − ~µ

(t)
i

)
,

162 CHAPTER 5. UPDATE METHODS

where J is the index set of the processed subset of data points and

η
∗(t)
~µ =

η
(t)
~µ , if

∑
j∈J

(
u

(t)
ij

)w
≤ 1

η
(t)
~µ∑

j∈J

(
u

(t)
ij

)w , otherwise.

The idea of this rule is that the update step is limited by a basic learning
rate even if the sum of membership degrees to a cluster is small. As a con-
sequence, a reference vector is always moved only a fraction of the distance
towards the center of gravity of the weighted data points, specified by the
learning rate. Again this becomes obvious if the update rule is rewritten into
a scheme of exponential decay (as above). Defining the learning rate in this
way makes is fairly easy to choose a proper learning rate. In experiments
this rule exhibited a very robust behavior (cf. Section 8.3).

5.3.3 Size and Shape Parameters

Up to now the clusters that are found with learning vector quantization
were described only by reference vectors, which play exactly the same role
as cluster centers. No information about the size or the shape of the clus-
ters was included in the model. However, drawing on the analogy of (fuzzy)
learning vector quantization to fuzzy clustering and expectation maximiza-
tion, the idea suggests itself to introduce size and shape parameters into
this approach as well. Of course, this is simpler in a batch version, but as
we will see below, may also be employed in an online update scheme.

Early approaches to find clusters of different size are based on the relative
weight of the assigned data points and thus try to find clusters that do not
differ too much in the number of data points they cover. An example is
so-called frequency sensitive competitive learning [DeSieno 1988], in
which the distance to a reference vector is modified according to the number
of data points that are assigned to this reference vector, i.e.

d
(t)
ij = d

(t)
mod

(
~xj , ~µ

(t)
i

)
=
n

(t−1)
i

n
d
(
~xj , ~µ

(t)
i

)
,

where n(t−1)
i , 1 ≤ i ≤ c, is the number of data points that were assigned to

the reference vector ~µi in the preceding epoch and n is the total number of
data points. That is, the distance of a data point to a reference vector is the
smaller, the fewer data points that reference vector covers. Consequently
there is a tendency to equalize the number of covered data points.

5.3. COMPETITIVE LEARNING 163

Note that this approach is equivalent to using a time-dependent cluster
radius σ(t) = n/n

(t−1)
i to modify the distance function, or formally

d
(t)
ij = d

(
~xj , ~µ

(t)
i ;

n

n
(t−1)
i

1

)
.

Drawing on this idea, one may also state explicitely that the goal is to assign
(roughly) the same number of data points to each cluster. That is, one sets
the goal to cover n

c data points with each cluster/reference vector, where n
is the total number of data points and c the number of clusters. If a given
(fixed or current) radius σi, 1 ≤ i ≤ c, leads to an assignment of ni data
points, the desired reference radius is computed as [Borgelt et al. 2004]

σ
(desired)
i = σi ·

n

c · ni
.

The rationale is to decrease the radius if the desired number of data points is
less than the current number and to increase it if it is greater, thus balancing
the number of data points that are assigned to each reference vector.

An alternative consists in computing a desired reference radius from the
average distance of the data points to a reference vector (or, alternatively,
from the square root of the average squared distance), where on average
the data points are weighted with the activation/membership degree. Then
the reference radius may simply be set to this desired radius (of course, this
is only reasonable in batch update), or, more cautiously, changed in the
direction of the desired radius using a learning rate as for the update of the
reference vectors. A corresponding online learning rule is ∀i; 1 ≤ i ≤ c:

σ
(t+1)
i = σ

(t)
i + ησ

(
d
(
~x, ~µ

(t)
i

)
− σ

(t)
i

)
,

where ησ may or may not be the same learning rate as the one that is used
for the reference vectors themselves [Borgelt et al. 2004]. Intuitively, the
cluster radius is increased if the data point lies outside the current radius
and it is decreased if it lies inside. Thus, in the limit, the radius should
converge to the average distance of the data points. In [Acciani et al. 1999]
a slightly more complex update scheme is used, which distinguishes whether
a data point is inside the (hyper-)sphere defined by the current radius (then
only this radius, i.e., the one for the corresponding winning reference vector,
is decreased) or outside the radius (hyper-)spheres of all clusters (then all
radii, i.e. the radii of all reference vectors, are increased).

164 CHAPTER 5. UPDATE METHODS

In a fuzzy approach to learning vector quantization it should be noted
that if we do not normalize the activations/membership degrees, which we
use for computing the average distance in the above scheme, size adaptation
can be slightly problematic. The reason is that in this case the sum of the
activations over all reference vectors and all data points will, in general,
differ from the total number n of data points. Depending on the method to
determine the desired radius and the activation function used, this can lead
to collapsing clusters in some cases. To counteract this tendency, we may
introduce a parameter by which we multiply the computed desired radius
before we use it to adapt the current reference radius [Borgelt et al. 2004].

A more principled approach to introduce cluster sizes, which at the same
time enables cluster-specific shape parameters, is based on using a cluster-
specific covariance matrix, which is updated in each step [Borgelt and
Nürnberger 2004a, Borgelt et al. 2005]. In order to find an update rule for
the covariance matrix, we draw on the observation made in Section 5.3.1,
namely that the update of the reference vector (in classical, crisp learning
vector quantization) may also be written as

~µ
(t+1)
i = (1− η~µ) ~µ(t)

i + η~µ ~xj .

This showed that the update can be seen as an exponential decay of infor-
mation gained from data points processed earlier. In addition, we exploit
that in c-means clustering with cluster-specific covariance matrices, these
matrices can be estimated as ∀i; 1 ≤ i ≤ c:

Σ̂(t+1)
i =

∑n
j=1 u

(t+1)
ij

(
~xj − ~µ

(t+1)
i

)(
~xj − ~µ

(t+1)
i

)>
∑n

j=1 u
(t+1)
ij

(cf. Section 5.2.3), where the uij , 1 ≤ i ≤ c, 1 ≤ j ≤ n, describe the
assignment of the data points to the clusters. This formula shows that each
data point contributes to the covariance matrix through the outer product
of the difference vector to the cluster center with itself. This insight and
the transfer of the idea of exponential decay leads directly to

Σ(t+1)
i = (1− ηΣ)Σ(t)

i + ηΣ

(
~xj − ~µ

(t)
i

)(
~xj − ~µ

(t)
i

)>
for the update of the covariance matrix of the winning reference vector,
where ηΣ is a learning rate. Usually ηΣ will differ from the learning rate
η~µ for the reference vectors (it should be chosen much smaller than η~µ). In
the fuzzy case this update may be weighted, as the update of the reference
vectors, by h(uij), that is, we use ηΣ · h(uij) instead of just ηΣ.

5.3. COMPETITIVE LEARNING 165

Obviously, this update rule is very similar to Gustafson–Kessel fuzzy
clustering (cf. Section 5.2.3), especially if we use batch update and introduce
activations/membership degrees to arrive at a fuzzy approach. Note that
we may or may not normalize the covariance matrices to determinant 1
after the update, so the rule may also update the cluster size. For an online
update rule, it is important to note that it is too expensive to update the
covariance matrices after each training pattern. Therefore I recommend to
update them only after a user-specified number of data points, which may be
adapted depending on the size of the data set (as already discussed for pure
reference vectors in Section 5.3.2). In this case the scheme for modifying the
learning rate that was proposed on page 161 in Section 5.2.3 should be used
for the update of the covariance matrices as well. As already mentioned,
this rule exhibited a very stable behavior in experiments (cf. Section 8.3).

5.3.4 Maximum Likelihood Ratio

At the end of Section 5.3.1 I mentioned an improved version of learning
vector quantization for classification, which adapts the two closest reference
vectors, but only if their classes differ and one of the classes coincides with
the class of the data point [Kohonen 1990, Kohonen 1995]. In this section
I review an approach to justify this update rule in a principled way from a
gradient descent scheme [Seo and Obermayer 2003]. It also provides means
to get rid of the window rule—a heuristic that was introduced to avoid
divergence in the update of the reference vectors.

This approach is based on the assumption that the probability distribu-
tion of the data points for each class can be described well by a mixture of
Gaussian distributions. However, we may just as well employ the general-
ized forms of the Gaussian or Cauchy function (normalized, of course, to
integral 1) to describe the distributions. I confine myself here to standard
Gaussian distributions merely for the sake of simplicity.

Furthermore, since with learning vector quantization one tries to build
a nearest prototype classifier (cf. page 38 in Section 2.5 for a definition),
the Gaussian distributions are assumed to have fixed and equal standard
deviations σ (that is, the clusters have uniform size and (hyper-)spherical
shape) as well as equal prior probabilities % = 1

c . With these constraints only
the distance of a data point to the cluster center/reference vector decides
about the classification of the data point.

The learning procedure is derived from the objective function of maxi-
mum likelihood ratio, with which one tries to maximize the odds of a correct
classification for each data point (cf. Section 3.4). As we will see below, it

166 CHAPTER 5. UPDATE METHODS

then turns out that the attraction rule is a result of maximizing the poste-
rior probability of the correct class (i.e. the true class assigned to the data
point under consideration), while the repulsion rule is a consequence of the
minimization of the posterior probability of the wrong class [Seo and Ober-
mayer 2003]. Formally, we perform a (stochastic) gradient descent on the
maximum likelihood ratio, as it was considered briefly (though not in de-
tail) in Section 3.4. However, as I already pointed out several times in this
chapter, gradient descent and competitive learning are very closely related
methods and thus it is not surprising that insights about the one can be
gained by considering the other and transferring the result.

Based on the above assumption we get for the first likelihood ratio

lnL(1)
ratio(X, ~z;C,W) =

n∑
j=1

ln
∑

y∈I(zj)

exp
(
− (~xj − ~µy)>(~xj − ~µy)

2σ2

)
−

n∑
j=1

ln
∑

y∈{1,...,c}−I(zj)

exp
(
− (~xj − ~µy)>(~xj − ~µy)

2σ2

)
.

Note that the normalization factors, which scale the Gaussian function to
integral 1, cancel, because all clusters are endowed with the same standard
deviation/variance. This is very obvious if the above is actually written
as a ratio—cf. Section 3.4. Likewise, the prior probabilities of the clusters
cancel, because we assumed them to be equal.

From this objective function we get almost immediately13 as an online
gradient descent update rule ∀i; 1 ≤ i ≤ c: ∀j; 1 ≤ j ≤ n:

~µ
(t+1)
i = ~µ

(t)
i + η~µ · ∇~µi

lnL(1)
ratio(X, ~z;C

(t),W)

= ~µ
(t)
i + η~µ ·

 u
⊕(t)
ij ·

(
~xj − ~µ

(t)
i

)
, if zj = ζi,

−u	(t)
ij ·

(
~xj − ~µ

(t)
i

)
, if zj 6= ζi,

where ζi, as above, is the class associated with the i-th reference vector.
The “membership degrees” u⊕ij and u	ij are

u
⊕(t)
ij =

exp
(
− 1

2σ2

(
~xj − ~µ

(t)
i

)> (
~xj − ~µ

(t)
i

))
∑

y∈I(zj)

exp
(
− 1

2σ2

(
~xj − ~µ

(t)
y

)> (
~xj − ~µ

(t)
y

)) and

13The derivation given by [Seo and Obermayer 2003] is unnecessarily complex, because
in it they do not exploit log a

b
= log a− log b for some unknown reason.

5.3. COMPETITIVE LEARNING 167

u
	(t)
ij =

exp
(
− 1

2σ2

(
~xj − ~µ

(t)
i

)> (
~xj − ~µ

(t)
i

))
∑

y∈{1,...,c}−I(zj)

exp
(
− 1

2σ2

(
~xj − ~µ

(t)
y

)> (
~xj − ~µ

(t)
y

)) .

Note the symbols u⊕ij and u	ij are justified by the fact that these terms are
computed in basically the same way as the membership degrees in fuzzy
clustering or the posterior probabilities of the clusters in expectation max-
imization, for which I used the same symbols. The split into the two cases
i = zj (the class of the data point coincides with that of the distribution)
and i 6= zj (the distribution has a different class than the data point) is
obvious from the fact that each cluster center µi appears in only one of the
two sums: either its index i is contained in I(zj) and then only the first
sum contributes to the derivative, or it is not contained in I(zj) and then
only the second sum contributes. The denominators of the fractions for uij

and uij clearly result from taking the derivative of the natural logarithm.
The result is a soft learning vector quantization scheme [Seo and

Obermayer 2003] (soft, because it does not employ a winner-takes-all prin-
ciple for the update), which is very similar to fuzzy learning vector quan-
tization as it was studied in Section 5.3.2. The difference consists in the
missing exponent w for the uij—the standard difference between a fuzzy-
or distance-based and a probability-based approach (cf. Section 5.2.3 and
5.2.4 for a similar case). With this approach all reference vectors having the
same class as the data point under consideration are “attracted” to the data
point, while all other reference vectors are “repelled” by the data point.

Hard or crisp learning vector quantization is easily derived from
this scheme in the same way as for its clustering counterpart (cf. page 160
in Section 5.3.2), namely by letting the reference radii of the clusters go to
zero. As studied on page 32f in Section 2.4, this leads to increasingly extreme
values for the uij and thus, in the limit for σ → 0 to a hard assignment

u⊕ij = δi,k⊕(j), where k⊕(j) = argmin
l∈I(zj)

d(~xj , ~µl), and

u	ij = δi,k	(j), where k	(j) = argmin
l∈{1,...,c}−I(zj)

d(~xj , ~µl).

Note, however, that this scheme is not identical to the scheme proposed
by [Kohonen 1990, Kohonen 1995]. While Kohonen’s scheme determines
the two closest reference vectors and updates them only if they belong to
different classes, one of which equals the class of the data point, this scheme
always updates two reference vectors: the closest reference vector among

168 CHAPTER 5. UPDATE METHODS

those having the same class (this vector is attracted) and the closest ref-
erence vector among those having a different class (this vector is repelled).
Note that these need not be the two overall closest reference vectors. Al-
though one of them must be the one overall closest reference vector, the
other can be further away than several other reference vectors. Neverthe-
less it is clear that the two schemes are very similar.

One advantage of the above approach is that it provides means to an-
alyze the reasons for the sometimes diverging behavior of this version of
learning vector quantization for classification [Seo and Obermayer 2003]:
We compute the expected value of the logarithm of the likelihood ratio,
which yields an insight into its behavior in the limit, that is, for a number n
of data points that goes to infinity. Assuming that the true probability
distribution underlying the data generation can be described by the cluster
parameters C∗, this expected value is for soft learning vector quantization

E(lnL(1)
ratio(~x, z;C,W))

=
s∑

z=1

∫
~x∈dom(~X)

f ~X,Z(~x, z;C∗) · lnL(1)
ratio(~x, z;C,W) d~x

=
s∑

z=1

∫
~x∈dom(~X)

f ~X,Z(~x, z;C∗) · ln
f ~X,Z(~x, z;C)

f ~X,Z(~x, z;C)
d~x.

That is, at every point (~x, z) of the data space dom(~X) × {1, . . . , s} the
likelihood ratio as it results from the cluster model specified by the cluster
parameters C is weighted with the true probability of seeing the data point,
as it results from the true cluster parameters C∗. This leads to

E(lnL(1)
ratio(X, ~z;C,W))

=
s∑

z=1

∫
~x∈dom(~X)

f ~X,Z(~x, z;C∗) · ln
f ~X,Z(~x, z;C) · f ~X,Z(~x, z;C∗)

f ~X,Z(~x, z;C) · f ~X,Z(~x, z;C∗)
d~x

=
s∑

z=1

∫
~x∈dom(~X)

f ~X,Z(~x, z;C∗) · ln
f ~X,Z(~x, z;C∗)

f ~X,Z(~x, z;C)
d~x

−
s∑

z=1

∫
~x∈dom(~X)

f ~X,Z(~x, z;C∗) · ln
f ~X,Z(~x, z;C∗)

f ~X,Z(~x, z;C)
. d~x

Hence the expected value of the above likelihood ratio is the difference of
two terms, both of which are a Kullback–Leibler information divergence
[Kullback and Leibler 1951] between two probability density functions.

5.3. COMPETITIVE LEARNING 169

Kullback–Leibler information divergence is generally defined as

dKL(f1, f2) =
∫

ω∈Ω

f1(ω) ln
f1(ω)
f2(ω)

dω,

where f1 and f2 are two arbitrary probability density functions on the same
sample space Ω. For discrete probability distributions the integral has to be
replaced by a sum.14 Kullback–Leibler information divergence can be seen
as a measure of how much two probability distributions or density functions
differ, because it can be shown that it is non-negative and zero only if the
probability distributions coincide.15 Therefore we may write

E(lnL(1)
ratio(X, ~z;C,W)) = dKL(f ~X,Z(~x, z;C∗), f ~X,Z(~x, z;C))

− dKL(f ~X,Z(~x, z;C∗), f ~X,Z(~x, z;C)).

Hence the expected value of the likelihood ratio is maximized if the dif-
ference between the true density function for a class and the distribution
described by the set C of cluster parameters is minimized (second term),
while at the same time the difference between the true density function for
a class and the distribution for all other classes is maximized. Obviously,
the former is uncritical, but the latter can lead to divergence. The reason
is that clearly two Gaussian distributions differ the more, the further apart
their center vectors are. Since the reference vectors for the different classes
are disjoint, the force driving them apart never vanishes. To counteract this
force, it is necessary to introduce heuristics like the window rule.

Fortunately, the approach to justify learning vector quantization on a
clean probabilistic basis also provides a solution to this problem that does
without a window rule. All we have to do is to use the second likelihood
ratio, as it was introduced in Section 3.4, instead of the one used above.
Assuming again Gaussian distributions of equal size σ and equal weight
% = 1

c , this second likelihood ratio reads [Seo and Obermayer 2003]

lnL(2)
ratio(X, ~z;C,W) =

n∑
j=1

ln
∑

y∈I(zj)

exp
(
− (~xj − ~µy)>(~xj − ~µy)

2σ2

)
−

n∑
j=1

ln
∑

y∈{1,...,c}

exp
(
− (~xj − ~µy)>(~xj − ~µy)

2σ2

)
.

14This explains why there are both an integral and a sum in the above expression for
the expected value of the likelihood ratio: dom(~X) is a continuous space, while Z has
the finite set {1, . . . , s} as its domain. Hence both versions have to be combined.

15A proof of this statement can be found, for example, in [Borgelt and Kruse 2002].

170 CHAPTER 5. UPDATE METHODS

Note that the only difference to the first likelihood ratio consists in the
different bounds for the second sum in the second term. Everything else is
identical. Here we get as a soft learning vector quantization scheme
the online gradient descent update rule ∀i; 1 ≤ i ≤ c: ∀j; 1 ≤ j ≤ n:

~µ
(t+1)
i = ~µ

(t)
i + η~µ · ∇~µi

lnL(1)
ratio(X, ~z;C

(t),W)

= ~µ
(t)
i + η~µ ·

(
u
⊕(t)
ij − u

(t)
ij

)
·
(
~xj − ~µ

(t)
i

)
, if zj = ζi,

− u
(t)
ij ·

(
~xj − ~µ

(t)
i

)
, if zj 6= ζi.

(Note that this time the reference vectors having the correct class appear in
both terms of the likelihood ratio, which explains the sum u⊕ij − uij in the
first case. Also recall that ζi is the class associated with the i-th reference
vector.) The “membership degrees” u⊕ij and uij are

u
⊕(t)
ij =

exp
(
− 1

2σ2

(
~xj − ~µ

(t)
i

)> (
~xj − ~µ

(t)
i

))
∑

y∈I(zj)

exp
(
− 1

2σ2

(
~xj − ~µ

(t)
y

)> (
~xj − ~µ

(t)
y

)) and

u
(t)
ij =

exp
(
− 1

2σ2

(
~xj − ~µ

(t)
i

)> (
~xj − ~µ

(t)
i

))
∑

y∈{1,...,c}

exp
(
− 1

2σ2

(
~xj − ~µ

(t)
y

)> (
~xj − ~µ

(t)
y

)) .
Hard or crisp learning vector quantization can again be derived from
this scheme in the limit σ → 0, that is, for vanishing cluster radii. We get

u⊕ij = δi,k⊕(j), where k⊕(j) = argmin
l∈I(zj)

d(~xj , ~µl), and

uij = δi,k(j), where k(j) = argmin
l∈{1,...,c}

d(~xj , ~µl).

This update rule is very similar to, but again slightly different from the
rule of [Kohonen 1990, Kohonen 1995]. Intuitively, it can be interpreted
as follows: if the closest reference vector has the same class as the data
point, no update is performed. On the other hand, if the class of the closest
reference vector differs from the class of the data point, this closest vector is
repelled, while the closest vector having the same class is attracted. In other
words: an update is performed only if the data point is misclassified by a
nearest prototype classifier based on the current positions of the reference
vectors. Otherwise the positions of the reference vectors are kept.

5.4. GUIDED RANDOM SEARCH 171

Although this is clearly an improvement, as no window rule is needed
(since the second likelihood ratio is bounded, see Section 3.4), one has to
admit that this approach optimizes classification boundaries rather than
captures the distribution of the data. As a consequence it behaves similar
to support vector machines (cf. Section 3.5), where it is also unlikely that
the resulting support vectors are representative of the data distribution.
Although experiments by [Seo and Obermayer 2003] show that it performs
better than Kohonen’s version (which also tries to optimize classification
boundaries), I rather prefer the classical scheme in which only one reference
vector is adapted. Although it may lead to worse classification accuracy, it
better serves the purpose to capture the data distribution.

5.4 Guided Random Search

Apart from the specific update methods considered in the preceding sec-
tions, a large class of heuristics, but very general optimization methods
needs at least a brief consideration here. I like to call the methods in this
class guided random search methods, because all of them employ chance
(in the form of random modifications of solution candidates), but not in
a blind manner, but guided by an objective function. These methods are
very generally applicable, because they do not presuppose a model for the
optimization process, but are defined only by a very general scheme for the
optimization. As a consequence, however, they are usually less efficient and
less effective than methods that are particularly geared to a specific prob-
lem. Nevertheless considering them can be worthwhile even in such cases.

5.4.1 Simulated Annealing

One of the best known methods in this direction is simulated annealing
[Metropolis et al. 1953, Kirkpatrick et al. 1983]. The core idea underlying it
is to start with a randomly generated candidate solution, which is evaluated.
Then this candidate solution is modified randomly and the resulting new
candidate solution is evaluated. If the new candidate solution is better than
the original one, it is accepted and replaces the original one. If it worse, it is
accepted only with a certain probability that depends on how much worse
the new candidate solution is. In addition, this probability is lowered in the
course of time, so that eventually only those new candidate solutions are
accepted that are better than the current. Often the best solution found so
far is recorded in parallel, in order to avoid losing good solutions again.

172 CHAPTER 5. UPDATE METHODS

The reason for accepting a new candidate solution even though it is
worse than the current is that without doing so the approach would be very
similar to a gradient ascent (or descent, cf. Section 5.1). The only difference
is that the direction of the gradient of the solution quality is not computed,
but that the upward (or downward) direction is searched for by trial and
error. However, it is well known that a gradient-based approach can easily
get stuck in a local optimum. By accepting worse candidate solutions at
the beginning of the process it is tried to overcome this undesired behavior.
Intuitively, accepting worse candidate solutions makes it possible to cross
the “barriers” that separate local optima from the global one, i.e., regions
of the search space where the quality of the candidate solutions is worse.
Later, however, when the probability for accepting worse candidate solutions
is lowered, the objective function is optimized locally.

The name “simulated annealing” for this approach stems from the fact
that it is similar to the physical minimization of the energy function (to be
more precise: the atom lattice energy) when a heated piece of metal is cooled
down very slowly. This process is usually called “annealing” and is used to
soften a metal, relieve internal stresses and instabilities, and thus make it
easier to work or machine. Physically, the thermal activity of the atoms
prevents them from settling in a configuration that may be only a local
minimum of the energy function. They “jump out” of this configuration.
Of course, the “deeper” the (local) energy minimum, the harder it is for the
atoms to “jump out” of the configuration. Hence, by this process they are
likely to settle in a configuration of very low energy, the optimum of which is,
in the case of a metal, a monocrystalline structure. It is clear, though, that
it cannot be guaranteed that the global minimum of the energy function
is reached. Especially if the piece of metal is not heated long enough, the
atoms are likely to settle in a configuration that is only a local minimum (a
polycrystalline structure in the case of a metal). Hence it is important to
lower the temperature very slowly, so that there is a high probability that
local minima, once reached, are left again.

This energy minimization process can easily be visualized by imagining
a ball rolling on a curved landscape [Nauck et al. 1997]. The function to be
minimized is the potential energy of the ball. At the beginning the ball is
endowed with a certain kinetic energy which enables it to “climb” slopes.
But due to friction this kinetic energy is diminished in the course of time
and finally the ball will come to rest in a valley (a minimum of the objective
function). Since it takes a higher kinetic energy to roll out of a deep valley
than out of a shallow one, the final resting point is likely to be in a rather
deep valley and maybe in the deepest one around (the global minimum).

5.4. GUIDED RANDOM SEARCH 173

Obviously, the thermal energy of the atoms in the annealing process or
the kinetic energy of the ball in the illustration is modeled by the decreas-
ing probability for accepting a worse candidate solution. Often an explicit
temperature parameter is introduced, from which the probability (param-
eterized by how much worse the new candidate solution is) is computed.
Since the probability distribution of the velocities of atoms is often an ex-
ponential distribution (cf., for example, the Maxwell distribution, which
describes the velocity distribution for an ideal gas [Greiner et al. 1987]),
a function like P (accept) = ce−

dQ
T is frequently used to compute the prob-

ability for accepting a worse solution. Here dQ is the quality difference of
the current and the new candidate solution, T is the temperature parameter
and c is a normalization constant.

5.4.2 Genetic or Evolutionary Algorithms

The idea of genetic or evolutionary algorithms in their various forms [Gold-
berg 1989, Bäck et al. 1991, Koza 1992, Michalewicz 1996, Nilsson 1998,
Mitchell 1998, Whitley 2001], is to employ an analog of biological evolution
[Darwin 1859, Dawkins 1976, Dawkins 1987] to optimize a given function.
In this approach the candidate solutions are coded into chromosomes with
individual genes representing the components of a candidate solution. Most
often such chromosomes are simple bit strings or vectors of real numbers,
which hold the parameters of the candidate solution.

A genetic or evolutionary algorithm starts by generating a random initial
population of individuals, each with its own chromosome. These individu-
als—or, to be more precise, the candidate solutions represented by their
chromosomes16—are evaluated by a fitness function, which is the function
to be optimized (or derived from it).

From the initial population a new population is generated by two means:
The first is a simple selection process. A certain number of individuals is
selected at random, with the probability that a given individual gets se-
lected depending on its fitness. A simple method to achieve such a selection
behavior is tournament selection: A certain number of individuals is picked
at random from the population and the one with the highest fitness among
them (the “winner of the tournament”) is selected. It is clear that with
this selection method individuals with a high fitness have a better chance
to be passed into the new population than those with a low fitness and thus

16As in biology one may distinguish between the genotype of a living being, which is
its genetic constitution, and its phenotype, which denotes its physical appearance or, in
the context of genetic algorithms, the represented candidate solution.

174 CHAPTER 5. UPDATE METHODS

only the fittest individuals of a population “survive”, illustrating the (some-
what simplistic) characterization of biological evolution as the survival of
the fittest. Of course, the individuals are also randomly modified from time
to time (as in simulated annealing), thus imitating mutation, which in living
beings occurs due to errors in the copying process chromosomes undergo.

The second process that is involved in generating the new population
imitates sexual reproduction. Two “parent” individuals are chosen from the
population, again with a probability depending on their fitness (for exam-
ple, using tournament selection). Then their chromosomes are crossed over
in order to obtain two new individuals that differ from both “parents”.17

A very simple method to do so is to fix a breakage point on the chromosomes
and then to exchange one of the parts (so-called one-point crossover).

The idea underlying the crossing-over of chromosomes is that each of
the “parent” chromosomes may already describe a good partial solution,
which accounts for their high fitness (recall that the “parents” are selected
with a probability depending on their fitness, so individuals with a high
fitness are more likely to become “parents”). By crossing-over their chro-
mosomes there is a good chance that these partial solutions are combined
and that consequently an “offspring” chromosome is better than both of
the “parents”. This plausible argument is made formally more precise by
the schema theorem [Michalewicz 1996]. It explains why evolution is much
faster with sexual reproduction than without it (i.e., with mutation being
the only mechanism by which genetically new individuals can emerge).

Of course, the new population is then taken as a starting point for gen-
erating the next and so on, until a certain number of generations has been
created or the fitness of the best member of the population has not increased
in the last few generations. The result of a genetic algorithm is the fittest in-
dividual of the final generation or the fittest individual that emerged during
the generations (if it is kept track of).

There are several variants of genetic or evolutionary algorithms, de-
pending on whether only “offspring” is allowed into the next population or
whether “parents” are passed too, whether the population is processed as
a whole or split into subgroups with “mating” occurring only within sub-
groups and only rare “migrations” of individuals from one subpopulation to
another etc. [Michalewicz 1996].

17The term crossing-over was chosen in analogy to the biological process with the
same name in which genetic material is exchanged between (homologous) chromosomes
by breakage and reunion. This process happens during meiosis (reduction division), i.e,
the division of (homologous) chromosome pairs so that each gamete (a sex cell, e.g., an
egg) receives one chromosome.

5.4. GUIDED RANDOM SEARCH 175

5.4.3 Application to Classification and Clustering

Applying a form of guided random search to clustering or classification tasks
is straightforward: the space of cluster parameters in C, combined with the
space of weighting parameters in W if the task is classification, is the search
space. That these parameters can easily be written as a vector of real num-
bers makes it possible to employ or easily adapt standard implementations
of genetic algorithms and simulated annealing. The fitness function is, of
course, one of the functions defined in Chapter 3. Adding a vector of nor-
mally distributed random numbers may be used to implement mutation or
to produce a variant of the current solution in simulated annealing. It is
plausible that the crossover operation should be chosen in such a way that
there is a tendency that the parameters of a cluster stay together, so that it
mainly produces recombinations of clusters rather than of arbitrary subsets
of cluster parameters. If the task is classification, clusters should also keep
their associated weighting parameters.

Details about simulated annealing approaches to clustering can be found,
for example, in [Rose 1998]. Approaches that are based on genetic algo-
rithms are more numerous, possibly because it is hoped that the lower effi-
ciency of genetic algorithms in approaching an optimum will be outweighed
by the parallel search with several solution candidates, which provides bet-
ter chances to avoid getting stuck in a local optimum. Examples of such
approaches, which cover a large variety of aspects (including determining
the number of clusters), can be found in [Babu and Murty 1994, Bezdek
et al. 1994, Hall et al. 1994, Petry et al. 1994, Van Le 1995, Nascimiento
and Moura-Pires 1997, Klawonn and Keller 1998, Hall et al. 1999, Gerdes
et al. 2004]. Here I skip a more detailed consideration of these approaches,
mainly because of the results of [Hall et al. 1999] (as cited in [Gerdes et
al. 2004]), who found in hard and fuzzy clustering experiments that on the
tested data sets a genetic algorithm based approach never found a better
optimum than alternating optimization, which was carried out several times
with different initializations. Only equally good optima could be found if
the population and the number of computed generations was large enough.
However, to find these optima the execution time of the genetic algorithm
based approach was, on most data sets, about two orders of magnitude
greater than that of the standard alternating optimization scheme.

As a consequence, guided random search techniques cannot be recom-
mended for standard clustering tasks. The same holds for classification, as
the same arguments apply: simulated annealing and genetic algorithms are
simply much slower in approaching an optimum and the problem of get-

176 CHAPTER 5. UPDATE METHODS

ting stuck in local optima can be more efficiently solved by simply running
gradient descent, alternating optimization, or learning vector quantization
several times with different initializations.

Using guided random search can be useful only if, due to a particu-
lar application-specific objective function, the standard approaches are not
applicable. Such an application area seems to be semi-supervised classifi-
cation [Klose 2004], in which two objective functions—one for classification
and one for clustering—have to be combined. Such a combination can ren-
der the standard numerical techniques infeasible, while approaches based on
genetic algorithms are easily applicable. Another application area is using
fuzzy clustering for learning fuzzy rules [Klawonn and Keller 1998, Gerdes
et al. 2004], where (depending on the type of fuzzy system) a distance mea-
sure is used that is not continuously differentiable, so that the standard
numerical techniques fail.

Chapter 6

Update Modifications

The update methods as they were studied in the preceding chapter already
provide a complete prescription for updating the parameters of a cluster
model or a classifier. Hence, at first sight, nothing else seems to be needed
for the learning process. However, there are several situations in which it is
useful to modify these update rules in order to achieve the goals of either
a higher robustness of the method or to accelerate the training process. In
the two sections of this chapter I study such modifications, dealing with the
former goal in Section 6.1 and with the latter in Section 6.2.

Methods to enhance robustness mainly deal with the effects of outliers
or specifically skewed data distributions that can deteriorate the results. In
this connection I study noise clustering [Ohashi 1984, Davé 1991, Davé and
Krishnapuram 1997, Davé and Sen 1997] as well as regularization methods
for the shape, size, and weight of the clusters [Borgelt and Kruse 2004,
Borgelt and Kruse 2005]. Methods to enhance the learning speed, mainly
by reducing the number of iterations that are needed until convergence, are
based on a transfer of techniques that were developed for training neural
networks with gradient descent [Borgelt and Kruse 2003].

Simple forms of modifications that are closely related to those examined
here were already considered in the preceding chapter. Examples are the
“repair” of results obtained by gradient descent, the normalization of covari-
ance matrices to determinant 1, or the choice of the learning rate in gradient
descent. Here, however, they are studied in a more principled and more gen-
eral way. In addition, most of these methods are not limited to a specific
update method, but can be combined with any of the methods presented in
the preceding chapter. Therefore it is useful to discuss them separately.

177

178 CHAPTER 6. UPDATE MODIFICATIONS

6.1 Robustness

Data points that lie far away from the majority of the data—so-called out-
liers—are a problem for most clustering approaches. This problem is par-
ticularly severe if they are based on minimizing the sum of squared distances
from the cluster centers, and even more so if hard clustering is employed.
The reason is that they strongly affect the clusters they are assigned to, since
they have a large squared distance to them (regardless of which cluster they
are assigned to). Thus reducing this distance by moving a cluster center
closer to them can outweigh the increase in the squared distance to several
other data points. In order to deal with this problem, noise clustering has
been introduced, which is reviewed in Section 6.1.1.

Methods for both classification and clustering can be negatively affected
by skewed data distributions if size and shape parameters are used for the
cluster prototypes. Among the effects that can occur in such situations are
that clusters are drawn into very long and thin (hyper-)ellipsoids or that
they (almost) collapse to radius 0, focusing on very few or even a single
data point. Depending on the clustering or classification method used, these
effects may even occur for fairly “normal” data distributions, simply because
the method reacts (too) sensitively to certain properties of the data set. In
order to handle these problems, I introduce regularization methods for the
shape, size, and weight parameters of the clusters, which cause a tendency
towards spherical shape, equal size, and equal weight of the clusters. The
strength of this tendency can be controlled with parameters, yielding very
flexible methods. These methods are presented in Sections 6.1.2 to 6.1.4.

6.1.1 Noise Clustering

The idea of noise clustering [Ohashi 1984, Davé 1991, Davé and Krishnapu-
ram 1997, Davé and Sen 1997], which is a modification of fuzzy clustering, is
very simple: In addition to the cluster prototypes, the parameters of which
are adapted, one introduces a so-called noise cluster, which has the same
distance to every data point. This cluster is not described by a prototype
and hence no parameters are adapted. Throughout the update process it
always has the same distance to every data point, regardless of the locations
of the other clusters. Its distance to the data points (or, alternatively, the
(unnormalized) membership degree every data point has to it) is specified
by the user. The smaller the distance (or the larger the membership degree),
the more pronouncedly outliers are assigned to the noise cluster. Standard
fuzzy clustering results in the limit for an infinite distance.

6.1. ROBUSTNESS 179

To illustrate the effect of introducing a noise cluster, Figures 6.1 to 6.3
show the results of fuzzy c-means clustering for a very simple data set. In
Figure 6.1 there is no outlier, so the clustering method is successful without
effort, yielding two clusters in symmetric positions. In Figure 6.2 another
data point has been added to the data set. It is clearly an outlier, since it
is far away from both groups of data points (at the top of the diagram).
Intuitively, one would say that it should not be considered when forming
the clusters. However, since it has the same distance to both clusters, it is
assigned with a degree of membership of 0.5 to both of them and thus drags
the cluster centers away from their natural positions. This effect would
be even worse for hard c-means clustering, since in this case the outlier
would be assigned exclusively to one cluster, affecting it even more. This
deteriorating effect can effectively be removed with noise clustering as can
be seen in Figure 6.3, where it was specified that every data point should
have an (unnormalized) membership degree of 0.2 to the noise cluster. Due
to this the outlier is assigned almost exclusively to the noise cluster, and as
a consequence the other two clusters are almost unaffected by the outlier.

Note, however, that the membership to the noise cluster has to be chosen
with care. In the example, the two clusters are still slightly affected by the
outlier if the (unnormalized) membership degree to the noise cluster is set
to 0.1. On the other hand, if the membership degree to the noise cluster is
set too large, data points that can be assigned well to a cluster, although
they are only on its rim, already get assigned to the noise cluster and thus
are (partially) lost for estimating the cluster parameters. A good strategy
is to check the sum of (normalized) membership degrees to the noise cluster
in a clustering result. If this sum considerably exceeds the percentage of
the data set that may be outliers, the (unnormalized) membership degree
to the noise cluster should be reduced (the distance to the noise cluster
should be increased) and the clustering should be repeated. Several runs
may be necessary until an appropriate value for the noise cluster parameter
(i.e. distance of membership degree) is found.

Note also that noise clustering removes the undesired effect of a nor-
malization to sum 1 in connection with a Cauchy radial function as it was
studied in Section 2.4 (cf. page 29ff), namely that the membership degrees
to the different clusters tend to become equal far away from the cluster
centers. Since the distance (and thus the (unnormalized) degree of mem-
bership) to the noise cluster is fixed, the (normalized) membership to the
noise cluster is not subject to this effect. Rather the (normalized) member-
ship degree to the noise cluster becomes larger and larger and approaches 1
in the limit, which is exactly why it captures outliers effectively.

180 CHAPTER 6. UPDATE MODIFICATIONS

Figure 6.1: Fuzzy c-means cluster-
ing of a very simple data set without
outliers. The structure of the data
points is captured well.

Figure 6.2: Fuzzy c-means cluster-
ing of the same data set as in Fig-
ure 6.1, but with an additional data
point that is fairly far away from
both clusters (the single data point
at the top of the picture). This out-
lier has a harmful effect as it drags
the cluster centers away from their
natural positions.

Figure 6.3: Fuzzy c-means cluster-
ing of the same data set as in Fig-
ure 6.1, but with noise clustering,
using an (unnormalized) member-
ship degree of 0.2 to the noise clus-
ter. The deteriorating effect of the
outlier is effectively removed. With
an (unnormalized) membership de-
gree of 0.1 a slight change of the
cluster centers can still be observed.

6.1. ROBUSTNESS 181

1

0
−3 −2 −1 0 1 2 3

u◦noise = 0
1

0
−3 −2 −1 0 1 2 3

u◦noise = 0.2

Figure 6.4: Membership degrees normalized to sum 1 for the generalized
Cauchy function (a = 2, b = 0) for two cluster centers at −0.5 and 0.5.
Left: without a noise cluster, right: with a noise cluster to which every
point has an unnormalized degree of membership of 0.2.

1

0
−3 −2 −1 0 1 2 3

u◦noise = 0
1

0
−3 −2 −1 0 1 2 3

u◦noise = 0.2

Figure 6.5: Membership degrees normalized to sum 1 for the generalized
Cauchy function (a = 2, b = 0) for three cluster centers at −1, 0, and 1.
Left: without a noise cluster, right: with a noise cluster to which every
point has an unnormalized degree of membership of 0.2.

This is illustrated in Figures 6.4 and 6.5 for two and three cluster centers,
respectively. The left diagram shows the membership degrees for a Cauchy
function with a = 2 and b = 0 (that is, for standard fuzzy clustering) after
a normalization to sum 1 if no noise cluster is used (cf. Figures 2.12 and
2.18 on pages 30 and 34, respectively). The right diagrams show the corre-
sponding (normalized) membership degrees if a noise cluster is introduced,
to which every point has an (unnormalized) membership degree of 0.2. It
is clearly visible that the membership degrees to the two clusters approach
zero in the limit for a large distance to the cluster centers, because the (nor-
malized) membership degree to the noise cluster approaches 1. Although
directly beyond the other cluster center the membership degree to a cluster
increases, which is still slightly unintuitive, this effect is limited to rather
small membership degrees and a fairly small region.

182 CHAPTER 6. UPDATE MODIFICATIONS

In principle, the idea of noise clustering may also be applied with prob-
ability based approaches like the expectation maximization algorithm. In
this case the noise cluster is described formally by a uniform distribution
on the data space. Of course, the corresponding density function can be
proper (that is, can only have integral 1) if it is restricted to a finite sub-
space. However, this technical problem can easily be handled by limiting
the noise cluster to an appropriate (hyper-)box enclosing all points in the
given data set. To parameterize the approach in this case it is most conve-
nient to specify the probability of observing a data point that is generated
by the noise cluster, that is, the prior probability of the noise cluster times
the probability density inside the (hyper-)box chosen for the uniform distri-
bution. (Note that these two parameters cannot be separated well anyway,
since a higher prior probability can be compensated by a larger region for
the uniform distribution, so it is best to specify their product directly.)

A more sophisticated approach to deal with outliers, which is related
to noise clustering, has been suggested in [Keller 2000, Keller 2002]. It
introduces a weight for each data point that is meant to describe the degree
to which the data point is an outlier. These weights are adapted during the
clustering process. Formally, the approach is based on the objective function

J(X,U,C) =
c∑

i=1

n∑
j=1

uw
ij

ων
j

d2
ij ,

where the ωj are the data point weights and ν is a parameter by which the
influence of the weights can be controlled. In addition, a value ω has to be
chosen by a user, which is used in the constraint

n∑
j=1

ωj = ω.

Based on these definitions, the update rules for the cluster parameters and
the data point weights can easily be derived in the same way as it was
done in Chapter 5 for the corresponding cases without data point weights.
For an alternating optimization approach the membership degrees uij are
computed in exactly the same way as for the standard algorithm, while the
update rule for the data point weights is ∀j; 1 ≤ j ≤ n:

ω
(t+1)
j =

(∑c
i=1

(
u

(t)
ij

)w (
d
(t)
ij

)2) 1
ν+1

∑n
k=1

(∑c
i=1

(
u

(t)
ij

)w (
d
(t)
ij

)2) 1
ν+1

.

6.1. ROBUSTNESS 183

From this update rule it is easy to see that in the limit for ν → ∞ all
weighting factors for the data points approach ω

n , so that we obtain the
standard approach for the choice ω = n. On the other hand, for ν → 0 the
influence of the weighting factors becomes maximal.

Note that for the update of the cluster parameters (centers and co-
variance matrices) the membership degrees and the weighting factors can
simply be combined into quantities ũij = uij

ωj
, 1 ≤ i ≤ c, 1 ≤ j ≤ n, because

they are both considered fixed in this update step. These quantities simply
replace the uij in the standard update rules.

As an alternative to noise clustering, possibilistic fuzzy clustering is also
often advocated as a means to treat data sets containing a non-negligible
amount of outliers. An argument supporting this is that in possibilistic
clustering the degree of membership depends only on the distance to a
cluster, and since there is no normalization, a data point far away from
all clusters (i.e. an outlier) will have a small degree of membership to all
clusters. As a consequence, the influence of such an outlier on the clustering
result is limited. However, although this argument is plausible, the detailed
discussion in Section 3.1 (cf. page 53ff) should have made it clear that due to
its severe drawbacks possibilistic clustering is not a recommendable method.
Therefore noise clustering should be preferred.

Other approaches to handle outliers in clustering, in particular fuzzy
clustering, which I do not discuss in detail here, can be found in [Davé and
Krishnapuram 1997, Davé and Sen 1997, Kharin 1997].

6.1.2 Shape Regularization

The large number of parameters (mainly the elements of the covariance ma-
trices) of the more flexible clustering algorithms as well as of classification
algorithms allowing for cluster size and shape adaptation can render these
algorithms less robust or even fairly unstable, compared to their simpler
counterparts that only adapt the cluster centers. Common undesired re-
sults include very long and thin ellipsoids as well as clusters collapsing to
very few or even a single data point. To counteract such undesired tenden-
cies, I introduce shape and size constraints into the update scheme [Borgelt
and Kruse 2004, Borgelt and Kruse 2005]. The basic idea is to modify,
in every update step, the cluster parameters in such a way that certain
constraints are satisfied or at least that a noticeable tendency (of varying
strength, as specified by a user) towards satisfying these constraints is intro-
duced. In particular I consider regularizing the (ellipsoidal) shape as well
as constraining the (relative) size and the (relative) weight of a cluster.

184 CHAPTER 6. UPDATE MODIFICATIONS

In accordance with the common usage of this term, I call all of these
approaches regularization methods. The origin of this term is, however,
actually in linear optimization, in which ill-conditioned matrices describing
a linear equation system are modified in such a way that they are “less
singular” and thus “more regular” [Tikhonov and Arsenin 1977, Engl et
al. 1996]. (Recall that an ill-conditioned matrix may behave numerically
like a singular one in computations on a finite precision machine—cf. Sec-
tion A.5 in the appendix for more explanations.) However, over the years
the term “regularization” has acquired a more general meaning and is used
now whenever a tendency towards certain desired properties (or, alterna-
tively, a penalty against certain undesired properties) of the solution of an
optimization problem is introduced. Hence it is appropriate not only to
speak of shape regularization (which, as will become clear below, is actually
based on a regularization approach in the original sense), but also of shape
and weight regularization (cf. Sections 6.1.3 and 6.1.4, respectively).

This section deals with shape regularization. As discussed in Sec-
tion 2.3, the shape of a cluster is represented by its covariance matrix Σi.
Intuitively, Σi describes a general (hyper-)ellipsoidal shape, which can be
obtained, for example, by computing the Cholesky decomposition or the
eigenvalue decomposition of Σi and mapping the unit (hyper-)sphere with
it (cf. Sections A.3 and A.4, respectively, in the appendix).

Shape regularization means to modify the covariance matrix, so that a
certain (user-specified) relation of the lengths of the major axes of the repre-
sented (hyper-)ellipsoid is obtained or that at least a tendency towards this
relation is introduced. Since the lengths of the major axes are the roots of
the eigenvalues of the covariance matrix (cf. Section A.4 in the appendix),
regularizing it means shifting the eigenvalues of Σi. Note that such a shift
leaves the eigenvectors unchanged, i.e., the orientation of the represented
(hyper-)ellipsoid is preserved (cf. Section A.6 in the appendix). Note also
that such a shift of the eigenvalues is the basis of the Tikhonov regulariza-
tion of linear optimization problems [Tikhonov and Arsenin 1977, Engl et
al. 1996], which inspired my approach. I suggest two shape regularization
methods [Borgelt and Kruse 2004, Borgelt and Kruse 2005]:

Method 1: The covariance matrices Σi, i = 1, . . . , c, are adapted (in every
update step) according to

Σ(adap)
i = σ2

i ·
Si + h21

m
√
|Si + h21|

= σ2
i ·

Σi + σ2
i h

21
m
√
|Σi + σ2

i h
21|

,

where m is the dimension of the data space, 1 is a unit matrix, σ2
i = m

√
|Σi|

6.1. ROBUSTNESS 185

Figure 6.6: The effect of shape regular-
ization: the orientation is left unchanged,
but a tendency towards spherical shape is
introduced (thin ellipse: before regulariza-
tion, thick ellipse: after regularization).

is the equivalent isotropic variance (equivalent in the sense that it leads to
the same (hyper-)volume, i.e., |Σi| = |σ2

i 1|), Si = σ−2
i Σi is the covariance

matrix scaled to determinant 1, and h is the regularization parameter.
This modification of the covariance matrix shifts all eigenvalues by the

value of σ2
i h

2 and then renormalizes the resulting matrix so that the deter-
minant of the old covariance matrix is preserved (i.e., the (hyper-)volume
is kept constant). This regularization tends to equalize the lengths of the
major axes of the represented (hyper-)ellipsoid and thus introduces a ten-
dency towards (hyper-)spherical clusters. This tendency is the stronger, the
greater the value of h. In the limit, for h→∞, the clusters are forced to be
exactly spherical; for h = 0 the shape is left unchanged. An illustration of
the effect is shown in Figure 6.6: the thin ellipse shows the situation before
the shape regularization, the thick ellipse the situation afterwards.

Method 2: The above method always changes the length ratios of the ma-
jor axes and thus introduces a general tendency towards (hyper-)spherical
clusters. In this (second) method, however, a limit r, r > 1, for the length
ratio of the longest to the shortest major axis of the represented (hyper-)
ellipsoid is used and only if this limit is exceeded, the eigenvalues are shifted
in such a way that the limit is satisfied. Formally: let λk, k = 1, . . .m, be
the eigenvalues of the matrix Σi. Set (in every update step)

h2 =

0, if

max m
k=1λk

min m
k=1λk

≤ r2,

max m
k=1λk − r2 min m

k=1λk

σ2
i (r2 − 1)

, otherwise,

and execute Method 1 with this value of h2. This method also has the
advantage that it is much easier to choose r than to choose h.

Note that both methods are heuristics in the sense that they cannot be
justified, for example, by setting up a (modified) objective function from
which they can be derived. Nevertheless they turn out to be very useful in
practice (cf. Section 8.1 for experimental results).

186 CHAPTER 6. UPDATE MODIFICATIONS

6.1.3 Size Regularization

As explained in Section 2.3, the size of a cluster can be described in different
ways, for example, by the determinant of its covariance matrix Σi, which is a
measure of the clusters squared (hyper-)volume, by an equivalent isotropic
variance σ2

i or by an equivalent isotropic radius (standard deviation) σi

(equivalent in the sense that they lead to the same (hyper-)volume). The
latter two measures are defined as σ2

i = m
√
|Σi| and σi =

√
σ2

i = 2m
√
|Σi|

and thus the (hyper-)volume may also be written as σm
i =

√
|Σi|.

Size regularization means to ensure a certain relation between the cluster
sizes or at least to introduce a tendency into this direction. I suggest three
different versions of size regularization, in each of which the measure that
is used to describe the cluster size is specified by an exponent κ of the
equivalent isotropic radius σi, with the special cases (cf. Section 2.3):

κ = 1 : equivalent isotropic radius,
κ = 2 : equivalent isotropic variance,
κ = m : (hyper-)volume.

For regularizing of the (relative) cluster sizes I consider three methods
[Borgelt and Kruse 2004, Borgelt and Kruse 2005], with the first and the
third being analogous to the shape regularization methods presented in the
preceding section. The second method is a simplification with the goal to
make the computations more efficient.

Method 1: The equivalent isotropic radii σi are adapted (in every update
step) according to

σ
(adap)
i = κ

√
ν ·

∑c
k=1 σ

κ
k∑c

k=1(σ
κ
k + o)

· (σκ
i + o)

= κ

√
ν ·

∑c
k=1 σ

κ
k

c·o+
∑c

k=1 σ
κ
k

· (σκ
i + o).

That is, each cluster size is increased by the value of the regularization
parameter o and then the sizes are renormalized so that the sum of the
cluster sizes is preserved. However, the parameter ν may be used to scale
the sum of the sizes up or down (by default ν = 1). For o→∞ the cluster
sizes are equalized completely, for o = 0 only the parameter ν has an effect.
This method is inspired by Laplace correction or Bayesian estimation with
an uninformative prior (cf. also Section 6.1.4).

6.1. ROBUSTNESS 187

Method 2: This (second) method, which is meant as a simplified and thus
more efficient version of method 1, does not renormalize the sizes, so that
the size sum increases by c·o. However, this missing renormalization may be
mitigated to some degree by specifying a value of the scaling parameter ν
that is smaller than 1. The equivalent isotropic radii σi are adapted (in
every update step) according to

σ
(adap)
i = κ

√
ν · (σκ

i + o).

Method 3: The above methods always change the relation of the cluster
sizes and thus introduce a general tendency towards clusters of equal size.
In this (third) method, however, a limit r, r > 1, for the size ratio of the
largest to the smallest cluster is used and only if this limit is exceeded, the
sizes are changed in such a way that the limit is satisfied. To achieve this,
o is set (in every update step) according to

o =

0, if

max c
k=1σ

κ
k

min c
k=1σ

κ
k

≤ r,

max c
k=1σ

κ
k − rmin c

k=1σ
κ
k

r − 1
, otherwise,

and then Method 1 is executed with this value of o. Similar to the second
method for shape regularization, this method also has the advantage that
it is much easier to choose an appropriate value for r than it is to choose
an appropriate value for o.

Note again (as in Section 6.1.2) that all methods are heuristics in the
sense that they cannot be justified, for example, by setting up a (modified)
objective function from which they can be derived. Nevertheless they yield
useful results in practice (cf. Section 8.1 for experimental results).

6.1.4 Weight Regularization

A cluster weight %i only appears in the mixture model approach and the
fuzzy maximum likelihood (FMLE) algorithm, where it describes the prior
probability of a cluster. For the cluster weight we may use basically the same
regularization methods as for the cluster size. An exception is the scaling
parameter ν, since the %i are probabilities, i.e., we must ensure

∑c
i=1 %i = 1.

I suggest two methods, which are directly analogous to the two methods of
shape regularization and to the first and third method of size regularization
[Borgelt and Kruse 2004, Borgelt and Kruse 2005]:

188 CHAPTER 6. UPDATE MODIFICATIONS

Method 1: The cluster weights %i, 1 ≤ i ≤ c, are adapted (in every update
step) according to

%
(adap)
i =

∑c
k=1 %k∑c

k=1(%k + o)
· (%i + o) =

∑c
k=1 %k

c·o+
∑c

k=1 %k
· (%i + o),

where o is the regularization parameter that has to be specified by a user.
Note that this method is equivalent to a Laplace corrected estimation of the
prior probabilities or a Bayesian estimation with an uninformative (uniform)
prior. Such an estimation is meant to ensure that all estimated probabilities
are positive (non-vanishing). It is also used to introduce a tendency towards
a uniform distribution, which is the most appropriate prior assumption if
no background knowledge is available about the probabilities.

Method 2: The value of the regularization parameter o is computed as

o =

0, if

max c
k=1%k

min c
k=1%k

≤ r,

max c
k=1%k − rmin c

k=1%k

r − 1
, otherwise,

with a user-specified maximum weight ratio r, r > 1, and then Method 1 is
executed with this value of the regularization parameter o.

Note again (as in Sections 6.1.2 and 6.1.3) that all methods are heuristics
in the sense that they cannot be justified, for example, by setting up a
(modified) objective function from which they can be derived.

6.2 Acceleration

All update methods that were discussed in Chapter 5 are iterative in na-
ture, because it is not possible to optimize any of the objective functions
reviewed in Chapter 3 directly (expect for rare and practically irrelevant
special cases). The time complexity of each iteration is usually, regard-
less of the update method used, O(cnm) for the Euclidean distance and
O(cnm2) for the Mahalanobis distance, where c is the number of clusters,
n is the number of data points, and m is the number of dimensions of the
data space. The reason is that the complexity of one iteration is governed
by the computation of the distance/membership degree of the data points
to the different cluster centers. Computing this distance for one data point
and one cluster takes O(m) operations for the Euclidean distance, because
then it is basically the computation of the inner product of the difference

6.2. ACCELERATION 189

vector to the cluster center with itself. For a Mahalanobis distance the time
complexity is O(m2), because the difference vector has to be multiplied with
a covariance matrix.

Recomputing the cluster parameters can usually be neglected, since in
most methods this recomputation is carried out only once per iteration. Its
costs are O(cm) for the Euclidean distance and O(cm3) for the Mahalanobis
distance.1 Therefore recomputing the cluster parameters does not change
the asymptotic time complexity even for the Mahalanobis distance, because
usually m � n. By an analogous argument we can neglect the time com-
plexity for recomputing the weighting parameters wik, 1 ≤ i ≤ c, 1 ≤ k ≤ s,
of a classifier, which has time complexity O(cs), because usually s� n.

As a consequence, the total time complexity of building a cluster model
or of constructing a classifier is O(cnmT) or O(cnm2T), depending on
whether the Euclidean or the Mahalanobis distance is used, where T is
the number of iterations needed until convergence. Unfortunately, basically
nothing is known about the number of iterations needed to reach the (local)
optimum of the chosen objective function with some given error limit ε,
regardless of the chosen update method. However, what can easily be seen
is this: if we want to improve the execution time of the algorithms, trying
to reduce the number T of iterations needed until convergence is the most
promising line of attack. Alternatives are, of course, to improve the compu-
tations that are carried out in one iteration, but most of these improvements
only change the constant that is hidden in the O-notation.

A fairly large variety of modifications that aim at reducing the number
of update steps are known for gradient methods. Most of them were de-
veloped for training neural networks, in particular multilayer perceptrons
(see, for example, [Zell 1994, Nauck et al. 2003]). The reason is that the
so-called backpropagation method for training such neural networks is basi-
cally a gradient descent on the error function, very much in the same way
as it was studied in Section 5.1.3 for a prototype-based classifier.

However, in principle these modifications are applicable together with
any iterative update scheme. All one has to do is to replace, in their original
form, the gradient with the difference between the new and the old param-
eters. This is the approach I suggested in [Borgelt and Kruse 2003], where
I applied it to fuzzy clustering. An earlier, but less general investigation in
the same direction (it is, for example, restricted to fuzzy c-means clustering)
has been done by [Hershfinkel and Dinstein 1996].

1Note that the exponent 3 for the number m of dimensions in this complexity expres-
sion stems from the fact that the computed covariance matrix usually has to be inverted,
an operation that has time complexity O(m3).

190 CHAPTER 6. UPDATE MODIFICATIONS

In the following sections I review several techniques for modifying the
update steps in such a way that the number of iterations needed until con-
vergence is potentially2 reduced. I review them here w.r.t. gradient descent,
because this is the area in which they were developed. However, the (neg-
ative) gradient should rather be seen as a kind of placeholder that may be
replaced by a parameter change as it can be computed with other update
methods (like, for example, alternating optimization). Experimental results
with these methods for fuzzy clustering are presented in Section 8.2.

6.2.1 Step Expansion

In order to have a reference point, recall the update rule for basic gradient
descent on an error function (that is, standard so-called error backpropaga-
tion). This update rule reads for an arbitrary parameter θi, 1 ≤ i ≤ k:

θ
(t+1)
i = θ

(t)
i + ∆θ(t)i where ∆θ(t)i = −η∇θie

(
~θ(t)
)
.

Here t is the time step, e is the objective function (here: error function),
which is to be minimized, and ~θ = (θ1, . . . , θk) is the full set of parameters
of this objective function. This update rule prescribes to compute the new
value of the parameter θi (in step t + 1) from its old value (in step t) by
adding a change, which is computed from the gradient ∇θie

(t)(~θ) of the error
function w.r.t. the parameter θi. η is a learning rate that influences the size
of the steps that are carried out. The minus sign results from the fact that
the gradient points into the direction of the steepest ascent, but we want
to carry out a gradient descent. Depending on the definition of the error,
the gradient may also be preceded by a factor of 1

2 in this formula, in order
to cancel a factor of 2 that results from differentiating a squared error (cf.
Section 5.1 for several concrete examples of such update rules).

Although this is the standard approach for gradient descent, it is (also)
listed as a modification here, because the learning rate only appeared in the
gradient descent approaches as they were studied in Section 5.1. However,
if we use a different update method, we may still use a scheme like this.
For example, we may compute the parameter change with alternating opti-
mization and then multiply this change with a factor η that resembles the
learning rate in gradient descent. Of course, in this case this factor should
be greater than one, since η = 1 yields the standard approach and η < 1
is likely to slow it down. As a consequence I call this update modification
step expansion: it expands the step in the parameter space.

2There is, of course, no guarantee that the methods actually achieve this goal.

6.2. ACCELERATION 191

6.2.2 Momentum Term

The momentum term method [Rumelhart et al. 1986] consists in adding a
fraction of the parameter change of the previous step to a normal gradient
descent step. The rule for changing the parameters thus becomes

∆θ(t)i = −η∇θie
(
~θ(t)
)

+ β ∆θ(t−1)
i ,

where β is a parameter, which must be smaller than 1 in order to make the
method stable. In neural network training β is usually chosen between 0.5
and 0.95, but sometimes values even up to 0.99 can be useful.

The additional term β ∆θ(t−1)
i is called momentum term, because its

effect corresponds to the momentum that is gained by a ball rolling down a
slope. The longer the ball rolls in the same direction, the faster it gets. As
a consequence it has a tendency to keep on moving in the same direction
(this is modeled by the momentum term), but it also follows, though slightly
retarded, the shape of the surface (this is modeled by the gradient term).

By adding a momentum term the learning process can be accelerated,
especially in areas of the parameter space, in which the objective function
is (almost) flat, but descends in a uniform direction. In this case larger and
larger steps will be made in the direction opposite to the gradient. Adding
a momentum term also mitigates the problem of how to choose the value
of the learning rate, because the momentum terms enlarges or shrinks the
step width depending on the shape of the error function. However, if the
learning rate is far too small, the momentum term can not fully compensate
for this, since the step width |∆θi| is bounded by

|∆θi| ≤

∣∣∣∣∣η∇θie(~θ)
2(1− β)

∣∣∣∣∣ ,
provided the gradient ∇θi

e(~θ) is constant (in the current region of the pa-
rameter space). In addition, if the learning rate η is too large, it is still
possible—actually even more likely than without a momentum term—that
oscillations and chaotic behavior result (cf. Section 5.1.5).

6.2.3 Super Self-Adaptive Backpropagation

The idea of so-called (super) self-adaptive backpropagation (SuperSAB)
[Jakobs 1988, Tollenaere 1990] is to introduce an individual learning rate ηw

for each parameter of the objective function. These learning rates are then

192 CHAPTER 6. UPDATE MODIFICATIONS

adapted (before they are used in the current update step) according to the
values of the current and the previous gradient. The exact adaptation rule
for the update of the learning rates ηi, 1 ≤ i ≤ k, is

η
(t)
i =

β− · η(t−1)

i , if ∇θie
(
~θ(t)
)

·∇θie
(
~θ(t−1)

)
< 0,

β+ · η(t−1)
i , if ∇θie

(
~θ(t)
)

·∇θie
(
~θ(t−1)

)
> 0,

∧ ∇θie
(
~θ(t−1)

)
·∇θie

(
~θ(t−2)

)
≥ 0,

η
(t−1)
i , otherwise.

β− is a shrink factor (β− < 1), which is used to reduce the learning rate if
the current and the previous gradient have opposite signs. In this case one
has leaped over the minimum, so smaller steps are necessary to approach
it. Typical values for β− are between 0.5 and 0.7.

β+ is a growth factor (β+ > 1), which is used to increase the learning
rate if the current and the previous gradient have the same sign. In this case
two steps are carried out in the same direction, so it is plausible to assume
that we have to run down a longer slope of the error function. Consequently,
the learning rate should be increased in order to proceed faster. Typically,
β+ is chosen between 1.05 and 1.2, so that the learning rate grows slowly.

The second condition for the application of the growth factor β+ prevents
that the learning rate is increased immediately after it has been decreased
in the previous step. A common way of implementing this is to simply set
the previous gradient to zero in order to indicate that the learning rate
was decreased. Although this somewhat crude measure also suppresses two
consecutive reductions of the learning rate, it has the advantage that it
eliminates the need to store the gradient ∇θie

(
~θ(t−2)

)
(or at least its sign).

In order to prevent the weight changes from becoming too small or too
large, it is common to limit the learning rate to a reasonable range. It is
also recommended to use batch training (update after all data points have
been processed), as online training (update after each data point) tends to
be unstable (the learning rates may be updated in an inconsistent way).

6.2.4 Resilient Backpropagation

The resilient backpropagation approach (Rprop) [Riedmiller and Braun
1993] can be seen as a combination of the ideas of Manhattan training
(which is like standard backpropagation, but only the sign of the gradient is
used, so that the learning rate determines the step width directly) and self-
adaptive backpropagation. For each parameter of the objective function a

6.2. ACCELERATION 193

step width ∆θi is introduced, which is adapted according to the values of the
current and the previous gradient. The adaptation rule reads ∀i; 1 ≤ i ≤ k:

η
(t)
i =

β− ·∆θ(t−1)

i , if ∇θie
(
~θ(t)
)

·∇θie
(
~θ(t−1)

)
< 0,

β+ ·∆θ(t−1)
i , if ∇θie

(
~θ(t)
)

·∇θie
(
~θ(t−1)

)
> 0,

∧ ∇θie
(
~θ(t−1)

)
·∇θie

(
~θ(t−2)

)
≥ 0,

∆θ(t−1)
i , otherwise.

In analogy to self-adaptive backpropagation, β− is a shrink factor (β− < 1)
and β+ a growth factor (β+ > 1), which are used to decrease or increase
the step width. The application of these factors is justified in exactly the
same way as for self-adaptive backpropagation (see preceding section). The
typical ranges of values also coincide (β− ∈ [0.5, 0.7] and β+ ∈ [1.05, 1.2]).

Like in self-adaptive backpropagation the step width is restricted to a
reasonable range in order to avoid far jumps in the parameter space as well
as slow learning. It is also advisable to use batch training, because online
training can be very unstable (compare the preceding section, as the same
recommendations hold for super self-adaptive backpropagation).

In several applications resilient backpropagation has proven to be supe-
rior to a lot of other approaches (including momentum term, self-adaptive
backpropagation, and quick backpropagation), especially w.r.t. the training
time [Zell 1994]. It is definitely one of the most highly recommendable meth-
ods for training multilayer perceptrons with a gradient descent approach.

6.2.5 Quick Backpropagation

The idea underlying quick backpropagation (Quickprop) [Fahlman 1988] is
to locally approximate the error function by a parabola (see Figure 6.7).
The parameter is then changed in such a way that we end up at the apex
of this parabola, that is, the parameter is simply set to the value at which
the apex of the parabola lies. If the objective function is “good-natured”,
i.e., can be approximated well by a parabola, this enables us to get fairly
close to the true minimum in one or very few steps.

The update rule for the parameters can easily be derived from the deriva-
tive of the approximation parabola (see Figure 6.8). Clearly it is (consider
the shaded triangles, both of which describe the ascent of the derivative)

∇θi
e
(
~θ(t−1)

)
−∇θie

(
~θ(t)
)

θ
(t−1)
i − θ

(t)
i

=
∇θi

e
(
~θ(t)
)

θ
(t)
i − θ

(t+1)
i

.

194 CHAPTER 6. UPDATE MODIFICATIONS

e

θ

m θ(t+1) θ(t) θ(t−1)

e(t)

e(t−1)

apex

Figure 6.7: Quick back-
propagation approximates
the error function locally
with a parabola. m is the
true minimum.

∂
∂θ

e

θ

θ(t+1) θ(t) θ(t−1)

∂
∂θ

e(t)

∂
∂θ

e(t−1)

0

Figure 6.8: The formula
for the weight change can
easily be derived from the
derivative of the approxi-
mation parabola.

Solving for ∆θ(t)i = θ
(t+1)
i − θ(t)i and exploiting that ∆θ(t−1)

i = θ
(t)
i − θ(t−1)

i ,
we get

∆θ(t)i =
∇θie

(
~θ(t)
)

∇θie
(
~θ(t−1)

)
−∇θie

(
~θ(t)
) ·∆θ(t−1)

i .

However, it has to be taken into account that the above formula does not
distinguish between a parabola that opens upwards and one that opens
downwards, so that a maximum of the error function may be approached.
Although this can be avoided by checking whether

∇θi
e
(
~θ(t−1)

)
−∇θie

(
~θ(t)
)

∆θ(t−1)
i

< 0

holds (parabola opens upwards), this check is often missing in implementa-
tions. Furthermore a growth factor is introduced, which limits the weight
change relative to the previous step. That is, it is made sure that

|∆θ(t)i | ≤ β · |∆θ(t−1)
i |,

where β is a parameter, which is commonly chosen between 1.75 and 2.25.
That is, the step width should at most double from one step to the next.

6.2. ACCELERATION 195

In addition, neural network implementations of this method often add a
normal gradient descent step if the two gradients∇θie

(
~θ(t)
)

and∇θie
(
~θ(t−1)

)
have the same sign, i.e., if the minimum does not lie between the current
and the previous weight value. Finally, it is advisable to limit the weight
change in order to avoid far jumps in the parameter space.

If the assumptions underlying the quick backpropagation method hold,
namely if the error function can be approximated locally by a parabola that
opens upwards and the parameters can be changed fairly independent of
each other, and if batch training is used, it is one of the fastest gradient-
based learning methods for multilayer perceptrons. Otherwise it tends to
be unstable and is fairly susceptible to oscillations.

A more sophisticated method, which is closely related to quickpropa-
gation, approximates the objective function locally by a multidimensional
quadratic function in the full parameter space [Press et al. 1992], rather
than only in single parameters as quickpropagation does. An advantage of
such an approach is, of course, that a better approximation of the objective
function can be achieved and thus the number of iterations needed until
convergence may be even smaller. However, a severe disadvantage of such
an approach is that a large number of derivatives (for the gradient and the
second derivatives for the Hessian matrix, which are in all in the order of
k2 derivatives, where k is the number of parameters) have to be computed
from the objective function.

An even more sophisticated update method, which builds on the above,
is known as the Levenberg-Marquardt method [Levenberg 1944, Mar-
quardt 1963]. Intuitively, it varies smoothly between an update based on
the approximation by a multidimensional quadratic function and a pure
gradient-based update. Details about this methods, which are beyond the
scope of this thesis, can be found, for example, in [Press et al. 1992].

Chapter 7

Evaluation Methods

After a classifier or a cluster model have been constructed, one would like to
know how “good” it is. Quality criteria are fairly easy to find for classifiers:
we desire that they generalize well and thus yield, on new data, an error
rate that is as small as possible. However, due to possible overfitting to
the training data (that is, adaptations to features of the data that are not
regular, but accidental) the error rate on the training data is usually not too
indicative of this: the classifier yielding the lowest error rate on the training
data is not necessarily the one yielding the lowest error rate on new data.
Hence approaches to assess the classification quality are usually based on
the idea of a validation data set, with so-called cross validation being one
of the most popular techniques. Such methods are studied in Section 7.1.

Assessing the quality of a clustering result, discussed in Section 7.2, is
much more difficult, because there is no target variable that has to be hit
as closely as possible. As a starting point we only have the somewhat vague
goal that data points in the same cluster should be as similar as possible
while data points assigned to different clusters should be as dissimilar as
possible. As a consequence a large variety of approaches is based on develop-
ing concepts that make this goal more precise. This gives rise to evaluation
measures, by which the quality of a cluster model is quantified, thus making
it possible to compare different cluster models (cf. Sections 7.2.1 and 7.2.2).
A second approach is based on the insight that a clustering algorithm al-
ways yields a result, regardless of whether the data exhibit a (clear) cluster
structure or not. In order to determine whether the result captures regu-
larities in the data or is an artefact of the algorithm, one may resample the
data set several times and compare the results (cf. Section 7.2.3).

197

198 CHAPTER 7. EVALUATION METHODS

7.1 Assessing the Classification Quality

Classifier assessment serves two purposes: in the first place we would like to
know how reliable a classifier is, that is, we would like to have an estimate
of how accurately it will perform on new data points. Depending on the
result we will then base our decisions mainly on the classification result (if
the classifier is highly reliable) or will take it only as a hint that has to be
validated by other means in order to make a decision.

Secondly, an estimate of a classifier’s performance on new data can be
used for model selection. Usually we have the possibility to construct several
different classifiers, for example, by choosing different numbers of prototypes
or allowing for different prototype properties (cf. Section 2.3). From these
classifiers we would like to the select the one that performs best, though,
of course, not on the training data. Hence we face again the problem of
estimating the performance of a classifier on new data.

It should be noted that, although the focus of this thesis is on prototype-
based classifiers, the assessment methods discussed in this section are gen-
eral and can be applied with any type of classifier.

7.1.1 Causes of Classification Errors

In order to gain a better insight into the problems of estimating the perfor-
mance of a classifier on new data, it is advantageous to split the classification
error into three parts that refer to three different error causes. The three
parts are the Bayes error, the bias error, and the variance error or scatter.

The Bayes error is due to the fact that given any data point usually
several classes have a non-vanishing probability. However, if a decision has
to be made for a given data point, one has to choose one of these classes.
Since several classes are possible, it cannot be guaranteed that the choice is
correct, regardless of how the choice is made. The error may, of course, be
minimized by choosing the most probable class given the data point. This is
the approach of Bayesian classification, which explains the name Bayes
error : it is the error that such an (optimal) Bayes classifier makes. However,
even the most probable class may be wrong (if it is not the only one possible).
Therefore this error type is independent of the classifier and cannot be
eliminated as long as the data space is left unchanged. The only way in
which it may be possible to get rid of the Bayes error is by enhancing the
data space with additional attributes, which lead to a distribution in which
for each data point only one class is possible. However, such additional
attributes are not always available or sufficiently easy to obtain.

7.1. ASSESSING THE CLASSIFICATION QUALITY 199

The bias error is connected to the family of classifiers, a member of
which is selected by the classifier construction process. For example, we
may consider the family of classifiers having a given limited number of pro-
totypes with certain properties, so that constructing the classifier consists
only in adapting parameters.1 The bias error results from the fact that the
employed family of classifiers may have only a limited capacity to model
the optimal classification function, that is, the one that predicts the most
probable class for each data point. In such a case even the best classifier
from the family (i.e., the one that is closest to an (optimal) Bayes classifier)
may perform worse than Bayesian classification and thus has a higher error
rate than the Bayes error. The bias error is simply the difference of its error
rate to the Bayes error. Unlike the Bayes error, however, the bias error
can be reduced or even made to vanish by changing the family of classifiers
under consideration. In general more complex classifiers (for example, with
more prototypes or with more parameters to describe the shape and size
of each prototype) have a lower bias error, because they have more degrees
of freedom that can be adapted, making it possible to model the optimal
classification function more precisely.

The variance error or scatter is due to the fact that, in practice, we
cannot determine a classifier by selecting the member of the given family
of classifiers that best approximates the optimal classification function (in
this case we would only have the Bayes error and the bias error). The
reason simply is that usually we do not have direct access to the optimal
classification function (and if we had, there would be no need to construct
a classifier). Rather we build a classifier by adapting it in such a way that
its error on a given data set is minimized. However, the given data set is
only sampled from the underlying distribution and thus may not portray
it well. In addition, it may exhibit random peculiarities due to the chance
mechanisms by which it was obtained. Since the training procedure is given
only the data set, it cannot distinguish between regularities of the under-
lying distribution and accidental peculiarities of the given data set. Hence
the classifier may be adapted in such a way that it captures not only the
regularities but also the accidental properties that are exhibited. This effect
is known as overfitting the data set. It results in a high variance of the
classifiers learned from different samples from the underlying distribution,
which explains the name variance error. Alternatively, we may say that the
learned classifiers follow the variance in sampled data sets.

1This is analogous to statistical parameter estimation, which, by choosing parameter
values, selects a member of a given family of distribution functions. If the classifier is
based on a probabilistic model, its training is equivalent to parameter estimation.

200 CHAPTER 7. EVALUATION METHODS

From the above explanations it should be clear that the bias error and
the variance error are complementary. A family of classifiers has a low bias
error if it can model the optimal classification function well. However, by
the same means it will usually be able to model accidental properties of
the training data set well and thus will be highly susceptible to overfitting,
leading to a high variance error. As a consequence one usually has to aim for
a tradeoff between the bias error and the variance error, so that the overall
error (sum of Bayes error, bias error, and variance error) is minimized.

7.1.2 Cross Validation

Unfortunately, a classifier’s error rate on the training data set is not too
indicative of how well it will perform on new data. Although these errors
should comprise the Bayes error (because this error is independent of the
classifier) and the bias error (because this error depends only on how well
the optimal classification function can be modeled), they do not yield any
information about the variance error. Rather it is clear that the error rate
on the training data is likely to be (much) lower than the true overall error
rate on new data, because the classifier was tuned to fit the training data
well. Depending on how well the training data set represents the underlying
distribution and how flexibly the chosen type of classifier can be adapted,
the overfitting may even be so strong that the error rate is less than the sum
of Bayes error and bias error (for example, with one prototype per data
point one can usually achieve a perfect classification of the training data).

A common approach to cope with this problem is to use a second data
set to estimate the error on new data. That is, the given data set to learn
from is split into two parts: the training data set and the validation data
set. The classifier is trained only with the data points in the former and
then executed on the data points in the latter. Since the validation data set
has not been used to train the classifier, the classifier cannot be adapted to
its accidental properties. Therefore the error rate on the validation data set
will be indicative of the overall error rate on new data.

If the goal is model selection, several classifiers, in particular, classifiers
of different complexity, are trained on the training data and tested on the
validation data. Finally the classifier that performs best on the validation
data is selected as the result. In this way an overfitting to accidental prop-
erties of the training data set can be ruled out, since the validation data
set will exhibit different random peculiarities. However, since the classifier
is selected based on its performance on the validation data set, there is still
some, though considerably lower danger that it will be overfitted to the val-

7.1. ASSESSING THE CLASSIFICATION QUALITY 201

idation data set. Hence its performance on the validation data set should
not be seen as an estimate of its performance on new data. In this case a
third data set, usually called test data set, is needed to actually estimate
the performance of the selected classifier on new data.

Using a validation data set has the disadvantage that some of the avail-
able data has to be set apart and cannot be used for training the classifier.
As a consequence the estimates of its parameters may be worse than nec-
essary. A popular method to overcome this drawback is so-called cross
validation [Mosier 1951, Toussaint 1974, Mitchell 1997]. In this approach
the available data is split into k parts of roughly equal size, called folds,
with k to be specified by a user: k-fold cross validation. k − 1 folds are
combined into a training set and the remaining fold forms the validation set.
Then a classifier is trained on the training data and tested on the validation
data. This training and testing is repeated for each of the k possible combi-
nations of k−1 folds, that is, in all k classifiers are constructed. Finally the
average of the error rates (one for each classifier) on the k validation data
sets (which together comprise the whole data set), is taken as an indicator
of the performance on new data. The final classifier, however, is not selected
from the k already trained classifiers, but constructed anew from the full
data set, thus exploiting all available information.

In principle, the split into folds can (and should) be done randomly.
However, a completely random split can lead to class distributions in the
folds that differ considerably from the overall class distribution, especially
if the individual folds are fairly small. Such a divergence of the class dis-
tributions in the folds from the overall distribution can be detrimental for
the quality of the error estimate provided by cross validation, because a
classifier faces a situation in the validation data set that does not represent
the situation it is likely to meet in new data. Hence it may perform worse
than it actually is. In order to avoid such misjudgment, a technique called
stratification or stratified sampling is used: the data points in the folds
are sampled in such a way that the overall class distribution is preserved
as closely as possible. A simple way of implementing stratified sampling is
to shuffle the data set randomly, then to sort it w.r.t. the class labels, and
finally to build a fold by selecting every k-th sample case.

Note that cross validation never tests the final classifier on hold-out data.
Hence it does not estimate the performance of this classifier on new data
directly. It rather assesses the capacity of a family of classifiers together
with a training procedure to produce a classifier that performs well on new
data. Therefore cross validation is not only well suited for model selection,
but also for comparing and evaluating learning procedures.

202 CHAPTER 7. EVALUATION METHODS

7.1.3 Evaluation Measures

In order to assess the quality of a classifier on the validation data, we need an
evaluation measure. Some of these measures accept degrees of membership
or probabilities for the different classes, but most of them are (originally)
defined for a crisp classification. As explained in Section 2.5, if the clas-
sifier under consideration is a nearest prototype or maximum membership
classifier, such a crisp prediction o (output) is obtained as ∀j; 1 ≤ j ≤ n:

oj = ζk where k = argmax c
i=1 ui(~xj)

and the ζi, 1 ≤ i ≤ c, are the classes associated with the c clusters. If the
classifier is based on (linear) classification functions (whether interpreted
probabilistically or not), it is computed as ∀j; 1 ≤ j ≤ n:

oj = argmax s
k=1 gk(~xj),

where the gk, 1 ≤ k ≤ s, are the (linear) classification functions associated
with the different classes (cf. Section 2.5). On the other hand, if the evalu-
ation measure allows for degrees of membership or probabilities, the values
of gk(~xj), 1 ≤ k ≤ s, directly enter the evaluation measure.

Note that even though we want to minimize the number of wrong clas-
sifications in order to minimize the number of wrong decisions, it can be
useful not to rely exclusively on crisp predictions, but to take degrees of
membership or probabilities into account. The reason is that the degrees of
membership provide information about the reliability of the classification,
which may be exploited in the decision making process. Thus a classifier
that yields more misclassifications, but indicates several of them by a slim
majority for the predicted class, can be more useful than a crisp classifier
with a lower misclassification rate. A selection aiming at such classifiers can
be based on a measure that uses class membership degrees directly.

Objective Function

It is immediately clear that all objective functions for classification intro-
duced in Chapter 3, like 0-1 loss, quadratic loss (sum of squared errors), and
absolute loss (sum of absolute errors) (cf. Section 3.2) as well as likelihood
ratio (cf. Section 3.4), can be used to evaluate the classifier on the validation
data. Such a choice is, in a way, the most natural, because then the perfor-
mance is assessed by the same means the classifier was constructed with in
the first place. In addition, all of these measures (with the exception of 0-1
loss) allow for class membership degrees or class probabilities. Details can
be found in Sections 3.2 and 3.4.

7.1. ASSESSING THE CLASSIFICATION QUALITY 203

Precision and Recall

The evaluation measures named in the preceding paragraph have the disad-
vantage that they fail to capture the quality with which the different classes
are recognized. Especially if the class distribution is skewed, that is, if there
are large differences in the frequencies with which the classes occur, they
may give a wrong impression. For example, if in a two class problem one
class occurs in 95% of all cases, while the other covers only the remaining
5%, a classifier that always predicts the first class reaches an impressive
accuracy of 95%—without distinguishing between the classes at all.

Such unpleasant situations are fairly common in practice. For example,
illnesses are (fortunately) rare and replies to mailings are (unfortunately?)
scarce. Hence a classifier that tries to distinguish between ill and healthy
patients or between addressees that reply and those that do not can easily
achieve a (very) low error rate by predicting that everyone is healthy or
a non-replier. However, it is obvious that such a classifier is useless to
a physician or a product manager. In such cases higher error rates are
accepted in exchange for a better coverage of the minority class.

In Section 3.2 I mentioned that such situations can be handled by in-
troducing misclassification costs, which is a very effective method. Here,
however, I review an approach that tries to measure how well the classes
are captured without the need to specify such costs. In this approach two
measures, called precision and recall, are computed for each class, which
describe how well the class is captured by the classifier. Since they are
class-specific, they allow for a more refined performance analysis.

In order to compute these measures a 2 × 2 contingency table (cf. Ta-
ble 7.1) is set up for each class based on the true classes zj associated with
the data points ~xj , 1 ≤ j ≤ n, and the classes oj that are predicted by the
classifier. The elements of these contingency tables are ∀k; 1 ≤ k ≤ s:

n
(k)
11 (X, ~z,C,W) =

n∑
j=1

δzj ,k · δoj ,k (true positives),

n
(k)
01 (X, ~z,C,W) =

n∑
j=1

(1− δzj ,k) · δoj ,k (false positives),

n
(k)
10 (X, ~z,C,W) =

n∑
j=1

δzj ,k · (1− δoj ,k) (false negatives),

n
(k)
00 (X, ~z,C,W) =

n∑
j=1

(1− δzj ,k) · (1− δoj ,k) (true negatives).

204 CHAPTER 7. EVALUATION METHODS

o = k o 6= k Σ

z = k n
(k)
11 n

(k)
10 n

(k)
1.

z 6= k n
(k)
01 n

(k)
00 n

(k)
0.

Σ n
(k)
.1 n

(k)
.0 n

Table 7.1: Contingency table for
the computation of precision and
recall.

Here δz,k is, as usual, the Kronecker symbol (cf. page 60 in Section 3.2).
To make the formulae easier to read, the arguments X, ~z, C, and W are
dropped in the following. In addition, it is convenient to define the following
abbreviations for the row and column sums (cf. Table 7.1)

n
(k)
1. = n

(k)
11 + n

(k)
10 , n

(k)
0. = n

(k)
01 + n

(k)
00 ,

n
(k)
.1 = n

(k)
11 + n

(k)
01 , n

(k)
.0 = n

(k)
10 + n

(k)
00 .

With these numbers, the precision πk of the given classifier for class k,
1 ≤ k ≤ s and its recall ρk for this class, are defined as [Rijsbergen 1979]

πk =
n

(k)
11

n
(k)
.1

=
n

(k)
11

n
(k)
11 + n

(k)
01

and ρk =
n

(k)
11

n
(k)
1.

=
n

(k)
11

n
(k)
11 + n

(k)
10

.

That is, precision is the ratio of true positives to all data points classified as
class k, while recall is the ratio of true positives to all data points actually
belonging to class k. In other words: precision is the fraction of data points
for which the classification as class k is correct, and recall is the fraction of
data points of class k that is identified by the classifier.

It is easy to see that usually higher levels of precision may be obtained at
the price of lower values of recall and vice versa. For instance, if more data
points are classified as class k, usually more of those data points actually
belonging to class k will be classified as class k, thus raising recall. However,
it is likely that at the same time more data points not belonging to class k
will be misclassified as class k, thus reducing precision. In the extreme case,
all data points are classified as class k, so that recall is 1. However, in this
case precision is only the fraction of all data points that belong to class k.
On the other hand, some data points can usually be classified as class k
with high certainty, yielding a high precision. However, by restricting the
classifier to assign class k to these few cases, one usually captures only a
small fraction of the data points actually belonging to class k.

7.1. ASSESSING THE CLASSIFICATION QUALITY 205

Precision and recall were originally developed for two-class problems,
where one class is at the focus of attention [Rijsbergen 1979]. In this case
precision and recall for this focus class provide a comprehensive assessment
of the classifier. However, as it was implicitly done above, one may also see
precision and recall as class-specific measures and use them for multi-class
problems. In this case as classifier is evaluated by 2s numbers (where s is
the number of classes). Although this provides a very detailed picture, it
is, of course, a bit inconvenient. In order to obtain estimates for precision
and recall in the collection as a whole, they are averaged to reduce them to
two values. At least three different averages have been proposed.

The first method is macro-averaging [Sebastiani 2002]. In this method
precision and recall are first computed for all classes individually and then
the results are (arithmetically) averaged over all classes. That is, we have
for (macro-averaged) overall precision

πmacro =
1
s

s∑
k=1

πk =
1
s

s∑
k=1

n
(k)
11

n
(k)
.1

=
1
s

s∑
k=1

n
(k)
11

n
(k)
11 + n

(k)
01

and for (macro-averaged) overall recall

ρmacro =
1
s

s∑
k=1

ρk =
1
s

s∑
k=1

n
(k)
11

n
(k)
1.

=
1
s

s∑
k=1

n
(k)
11

n
(k)
11 + n

(k)
10

.

A second, closely related method is to weight the precision and recall values
in the average with the relative frequency of the class to which they refer.
That is, the overall precision is computed as

πwgt =
s∑

k=1

n
(k)
1.

n
πk =

1
n

s∑
k=1

n
(k)
1.

n
(k)
.1

n
(k)
11

and the overall recall as

ρwgt =
s∑

k=1

n
(k)
1.

n
ρk =

s∑
k=1

n
(k)
1.

n

n
(k)
11

n
(k)
1.

=
1
n

s∑
k=1

n
(k)
11 .

In this case recall obviously coincides with the (relative) classification
accuracy: it is the ratio of the total number of true positives, that is, the
number of correctly classified instances, to the total number of instances.
Hence it states the fraction of correctly classified data points. Precision also
takes into account how well the classifier captures the class frequencies.

206 CHAPTER 7. EVALUATION METHODS

It should be noted that these two versions of averaging precision and
recall may give fairly different results if the classes differ considerably in
their frequency. Since the first version treats all classes the same, regardless
of the number of data points belonging to them, it emphasizes the ability
of the classifier to yield good results on small classes (i.e., classes with
few data points). This is actually very similar to a cost-based approach
(cf. the introduction of misclassification costs into the objective function in
Section 3.2) in which the misclassification costs for each class are inversely
proportional to its frequency. Which of the two methods is more appropriate
depends on the application and the class frequency distribution.

A third method to obtain overall precision and recall values is known
under the name of micro-averaging [Sebastiani 2002]. In this method
the counts for true positives, false positives and false negatives (from which
precision and recall are computed) are first summed over all classes. Then
overall values of precision and recall are computed using the global values.
That is, we have for (micro-averaged) precision

πmicro =
∑s

k=1 n
(k)
11∑s

k=1 n
(k)
.1

=
∑s

k=1 n
(k)
11∑s

k=1

(
n

(k)
11 + n

(k)
01

) =
1
n

s∑
k=1

n
(k)
11

and for (micro-averaged) recall

ρmicro =
∑s

k=1 n
(k)
11∑s

k=1 n
(k)
1.

=
∑s

k=1 n
(k)
11∑s

k=1

(
n

(k)
11 + n

(k)
10

) =
1
n

s∑
k=1

n
(k)
11 .

The last steps follow from the fact that summing the number of cases be-
longing to (recall) or predicted to be in each class (precision) yields the total
number of cases. Hence in this case precision and recall are identical and also
identical to the classification accuracy. This identity renders micro-averaged
precision and recall basically useless, since they do not add anything to the
expressiveness of the straightforward accuracy measure. Strangely enough
this identity, which causes me to neglect these micro-averages entirely, seems
to be widely unrecognized.2

2This can be inferred from the fact that the last step in the above equalities is usu-
ally missing from the definition and it is also not pointed out in any other way that
the denominators are actually equal to n, the total number of cases (see, for instance,
[Sebastiani 2002], but also several other machine learning papers). It may be, though,
that micro-averaging yields useful results if the classification is not exclusive, that is, if
a data point may belong to (and may be assigned to) several classes at the same time.
However, this is not the scenario in which one finds it usually applied.

7.1. ASSESSING THE CLASSIFICATION QUALITY 207

Combined Measures

With (macro-)averaged precision and recall one still has two numbers that
assess the quality of a classifier. A common way to combine them into
one number is to compute the F1 measure [Rijsbergen 1979], which is the
harmonic average (cf. Section A.10 in the appendix) of precision and recall:

F1 =
2

1
π + 1

ρ

=
2πρ
π + ρ

.

In this formula precision and recall have the same weight. The generalized
F measure [Rijsbergen 1979] introduces a mixing parameter. It can be
found in several different, but basically equivalent versions. For example,

F (α) =
1

α
π + 1−α

ρ

=
πρ

αρ+ (1− α)π
, α ∈ [0, 1],

or

F (β) =
1 + β2

1
π + β2

ρ

=
πρ(1 + β2)
ρ+ β2π

, β ∈ [0,∞).

Obviously, the standard F1 measure results from these formulae for α = 1
2

or β = 1, respectively. (The latter explains the index 1 of the F1 measure.)
By choosing α or β it can be controlled whether the focus should be more
on precision (α > 1

2 or β > 1; for α = 1 or β = 0 we have F (α) = π) or
more on recall (α < 1

2 or β < 1; for α = 0 or β → ∞ we have F (α) = ρ).
However, this possibility is rarely used, presumably, because precision and
recall are usually considered to be equally important.

Apart from averaging precision and recall before computing the F1 mea-
sure, we may also compute the F1 measure for each category individually
and then average the results weighted with the probability of the class:

F1,(alt) =
s∑

k=1

n
(k)
1.

n
F

(k)
1 where F

(k)
1 =

2πkρk

πk + ρk
.

Several other combined measures are really useful only for two class prob-
lems, but may, in principle, be used for multi-class problems by averaging
them over all classes (as it was done with the F1 measure above). Examples
are 11-point average precision and the breakeven point [Baeza-Yates
and Ribeiro-Neto 1999]. Both of these measures exploit the fact that it is
usually possible to tune the classifier in such as way that recall (for the class
under consideration) takes the values 0.0, 0.1., . . . , 0.9, 1.0. This may be

208 CHAPTER 7. EVALUATION METHODS

achieved, for example, by setting a threshold for the probability or mem-
bership degree that has to be exceeded in order to assign the class focused
on. Then the precision (for the focus class) is computed for these 11 points
and the results are averaged. (The choice of the step width 0.1, which leads
to 11 points, is, of course, somewhat arbitrary; other step widths may be
used too.) The breakeven point exploits a similar idea, but tries to find, by
tuning the classifier, the recall value for which precision equals recall. This
value is then used as a combined measure.

An even more sophisticated measure, though again really useful only
for two-class problems, is the power, which is defined as twice the area
between the receiver operating characteristic curve (ROC curve) and
the diagonal of the unit square [Hanley and McNeil 1982]. However, a
detailed explanation of this measure is beyond the scope of this thesis.

Penalized Measures

All measures discussed up to now are meant to be computed on a validation
set, since they obviously overestimate the quality of the classifier if they
are computed on the training data (cf. Section 7.1.1). However, there are
also approaches that try to estimate the true error rate of the classifier
(that is, the error rate on new data) from the error rate on the training
data and a penalty term that is meant to account for possible overfitting.
Usually this penalty term takes into account the flexibility of the model
to fit the data, measured, for example, by the number of parameters that
can be adapted. Several such methods have already been mentioned on
pages 91ff in Section 4.3, for example, information criteria and the minimum
description length principle (MDL) [Rissanen 1983, Rissanen 1987]. An
alternative that was not mentioned is based on the Vapnik–Chervonenkis
dimension (VC dimension) of a class of classifiers. Details can be found, for
instance, in [Vapnik 1995, Vapnik 1998].

It should be noted, though, that cross validation is a clearly preferable
approach, since all penalization approaches must conjecture how the true
error rate grows with the model complexity [Scheffer and Joachims 1999].
This conjecture will inevitably fail for some learning problems, leading to a
limited performance of such approaches [Kearns et al. 1997]. Nevertheless
penalized approaches are very popular due to their simplicity and the fact
that only a single learning process is necessary for each class of classifiers.
In contrast to this, k-fold cross validation needs k + 1 learning executions
of the learning algorithm (k for the k combinations of k − 1 folds and one
for the final construction of the classifier from the entire data set).

7.2. ASSESSING THE CLUSTERING QUALITY 209

An alternative to cross validation as well as to penalized measures that
is worth mentioning has been developed by [Scheffer and Joachims 1999]. It
is based on the idea to evaluate randomly selected classifiers from the given
model class on the data in order to obtain an expected error rate. From this
an indication of the best model class can be derived, which according to the
authors is highly competitive to cross validation. A detailed discussion of
this approach is, however, beyond the scope of this thesis.

7.2 Assessing the Clustering Quality

While assessing the quality of a classifier is fairly easy, because for each data
point we have a target class the classifier should predict, assessing a cluster
model is much more difficult, because there is no such reference value. All
we have as a basis for an assessment is the somewhat vague goal that data
points assigned to the same cluster should be as similar as possible, while
data points assigned to different clusters should be as dissimilar as possible.
In addition, we face the unpleasant problem that most clustering algorithms
always produce a cluster model, for any data set. Hence it may be that the
obtained cluster structure is only an artifact of the clustering algorithm and
does not capture actual regularities in the data.

As a consequence, methods to assess the clustering quality have two
purposes: in the first place, one would like to have means to select the most
appropriate cluster model. In particular, this means choosing the number
of clusters, because basically all algorithms discussed in this thesis (with
the exception of some of the more sophisticated initialization methods, cf.
Section 4.3) presuppose that the number c of clusters is known. Approaches
in this direction are usually based on (internal) evaluation measures (cf.
Section 7.2.1), which try to give precise meaning to the somewhat vague goal
of clustering stated above. Alternatively, one may compare the clustering
result to a reference, which is obtained from class labels assigned to the
data points, background knowledge about the domain, or simply another
clustering result with a different algorithm. How such comparisons can be
done with (relative) evaluation measures is studied in Section 7.2.2.

Secondly, one would like to know whether the data set actually exhibits
a cluster structure or whether the result is an artefact of the algorithm.
Approaches to answer this question are traditionally based on resampling
(cf. Section 7.2.3). However, resampling approaches may also be used for
model selection, since, for example, the right choice of the number of clusters
should lead to much more stable resampling results.

210 CHAPTER 7. EVALUATION METHODS

7.2.1 Internal Evaluation Measures

Suggestions for evaluation measures for cluster models abound and thus it is
impossible to provide a full list. Overviews, which are necessarily incomplete
themselves, though, can be found, for example, in [Pal and Bezdek 1995,
Bezdek and Pal 1998, Bezdek et al. 1999, Höppner et al. 1999, Halkidi et
al. 2002a, Halkidi et al. 2002b]. In this and the next section I review several
of the better known indices and quality measures. This section focuses on
internal measures, that is, measures that exploit only information from
the data set and the clustering result. In contrast to this, the next section
discusses relative measures, that is, measures that compare two groupings
or a clustering result with a given class assignment.

Note that the term relative measure is often reserved for the comparison
of two clustering results, while measures for the comparison of a clustering
result with a given class assignment are called external measures [Halkidi
et al. 2002a]. However, since these measures draw on the same ideas as
long as they only consider assignments of the data points to clusters (or
classes), I do not distinguish them here. It has to be conceded, though,
that cluster models may also be compared by comparing their parameters.
Such approaches are not captured in the term external measure.

Since classical clustering is concerned with a crisp partition of the data
points, some of the measures reviewed in the following were originally devel-
oped for crisp clustering results. Fortunately, however, they usually become
applicable to fuzzy and probabilistic clustering results if they are written
with the elements of the partition matrix U. Furthermore, not all of the
measures can handle clusters that employ size and shape parameters, but
rather presuppose (hyper-)spherical clusters of equal size. The main reason
for this restriction is that with cluster-specific size and shape information
the distance between clusters is undefined, because there is no uniform dis-
tance measure on the data space anymore. As a solution one may define
the distance between two clusters by averaging the distance of the center
of one as seen from the other [Timm 2002]. However, one has to check
carefully whether this leads to an appropriate evaluation measure. As a
consequence of these problems, I try to point out, as far as possible, the
limits of applicability of the different evaluation measures.

Finally, it is recommended to compute the measures on a validation data
set, which has not been used for building the cluster model, if the goal is
model selection (e.g., choosing the number of clusters). The idea is the same
as in model selection for classification (cf. Section 7.1.2): one tries to avoid
overfitting to accidental properties of the training data.

7.2. ASSESSING THE CLUSTERING QUALITY 211

Objective Function

As for evaluating classification results (cf. Section 7.1.3), it is immediately
clear that all objective functions introduced in Chapter 3, like the (weighted)
sum of squared distances (cf. Section 3.1) or the likelihood of the data (cf.
Section 3.3), can be used to evaluate a cluster model. These are actually
the most natural choices for evaluation measures, because the quality of a
clustering result was originally defined by these objective functions.

It may even be argued that the quality of a clustering result is only
defined by whether it is the optimum of the objective function [Bezdek et
al. 1999]. However, this should not be interpreted as a general argument
against other evaluation measures. Such measures can provide useful in-
formation about certain properties of the clustering result, which is not
expressed as clearly by the objective function. In addition, most of the
measures stated below cannot be used as objective functions, because it is
not possible to optimize them without additional constraints.

Dunn Index / Separation Index

One of the oldest quality measures for (crisp) clustering is the Dunn index
[Dunn 1973], which is also known as the separation index. Actually it is a
family of indices, because it is generally defined as

QDunn(C,U,X) =
min1≤i<k≤c d(ci, ck;U,X)

max1≤i≤c S(ci;U,X)

where d(ci, cj ;U,X) is a cluster distance measure and S(cl;U,X) is a mea-
sure for the diameter of a cluster. Each choice of a measure for the cluster
distance d and the cluster diameter S yields a member of this index family.

Obviously, the separation index is directly derived from the general goal
of clustering. That data points from the same cluster should be as similar
as possible is interpreted as: the (maximum) diameter of a cluster should be
as small as possible; and that data points from different clusters should be
as dissimilar as possible is interpreted as: the (minimum) pairwise distance
between clusters should be as large as possible. By dividing the former by
the latter one obtains a measure that should be maximized.

[Dunn 1973] originally used for the cluster distance measure

d(ci, ck;U,X) = min
1≤j,l≤n:
uijukl=1

d(~xj , ~xl),

that is, the smallest distance between two data points, one from each cluster.

212 CHAPTER 7. EVALUATION METHODS

The diameter of a cluster [Dunn 1973] defined as

S(ci;U,X) = max
1≤j,l≤n:
uijuil=1

d(~xj , ~xl),

that is, as the largest distance between two data points from the cluster.
Technically this presupposes that at least one cluster contains at least two
data points, which is no relevant constraint in practice, though.

However, a serious problem of the original Dunn index is that it is highly
sensitive to noise. Since both the cluster distance and the cluster diameter
are defined through operations that neglect all but one distance, a single
outlier can change the value of the Dunn index considerably.

A better, that is, much more robust version was suggested by [Bezdek
et al. 1997]. Here the distance between two clusters is defined as

d(ci, ck;U,X) =
1(∑n

j=1 uij

)(∑n
j=1 ukj

) n∑
j=1

n∑
l=1

uijukl d(~xj , ~xl),

that is, as the average distance between two data points, one from each
cluster. In a matching fashion, the diameter of a cluster is defined as

S(ci;U,X) = 2

∑n
j=1 uij d(~xj , ~µi)∑n

j=1 uij
,

i.e., as twice the arithmetic mean of the data point distance from the cluster
center, which may be seen as a kind of cluster radius (hence the factor two:
diameter = 2×radius). [Bezdek et al. 1997] reported very good and reliable
experimental results with this version of the separation index.

It should be noted that up to now it was assumed that uij ∈ {0, 1},
1 ≤ i ≤ c, 1 ≤ j ≤ n. Indeed, this is indispensable for the original version of
the Dunn index as proposed by [Dunn 1973]. In the version by [Bezdek et
al. 1997], however, we may just as well have uij ∈ [0, 1], as this only leads to
a weighting of the distances. Hence this version is also applicable to fuzzy
or probabilistic clustering results, making it a very versatile index.

Even applying it to non-spherical clusters (that is, with distances based
on a cluster-specific covariance matrix) is imaginable. The distance be-
tween two clusters may be computed, as mentioned before, by averaging
the mutual distances (which may differ due to different covariance matri-
ces), and the diameter of a (hyper-)ellipsoidal cluster may be defined as
twice its isotropic radius (cf. Section 2.3). However, a careful study and
experimental evaluation of this possibility seems to be missing yet.

7.2. ASSESSING THE CLUSTERING QUALITY 213

Davies–Bouldin Index

Similar to the Dunn index, the Davies–Bouldin index [Davies and Bouldin
1979] is actually a family of indices. It is defined generally as

QDB(C,U,X) =
1
c

c∑
i=1

max
1≤k≤c

k 6=i

S(ci;U,X) + S(ck;U,X)
d(ci, ck;U,X)

where d is a cluster distance measure and S measures the scatter within a
cluster3 and thus intuitively the size of a cluster. Depending on the choice
of the measures d and S different indices from this family result.

Similar to the Dunn index, the Davies–Bouldin index relates the dis-
tances within a cluster (captured by the scatter within a cluster) to the
distance between clusters. However, the Dunn index considers these two
quantities independently, relating only global aggregates to each other. In
contrast to this, the Davies–Bouldin index forms a ratio for each cluster,
which is compared to every other cluster. The basic idea underlying this
approach is that the assessment of the distance between two clusters should
depend on the scatter within the two clusters. Large clusters (that is, clus-
ters with a high scatter) should be further apart in order to be well sep-
arated, while small clusters (that is, clusters with a small scatter) can be
closer together and still be well separated. With the maximum in the above
formula the worst separation in this sense (that is, the separation from the
most similar cluster) is determined for each cluster, which corresponds to
a high value of the ratio. The full Davies–Bouldin index is the arithmetic
average of these cluster-specific separation indicators. As a consequence, it
is to be minimized for a good separation.

[Davies and Bouldin 1979] originally used for the cluster distance

d(ci, ck;U,X) = d(~µi, ~µk) =
√

(~µi − ~µk)>(~µi − ~µk),

that is, the Euclidean distance of the cluster centers, and for the scatter
within a cluster (or, intuitively, the size of a cluster)

S(ci;U,X) =

√∑n
j=1 uij d2(~xj , ~µi)∑n

j=1 uij
,

that is, the quadratic mean of the distances of the data points from the
cluster center (which is equivalent to a maximum likelihood estimate of the

3Since measures for the diameter of a cluster may be seen as measures of the scatter
within it and vice versa, I use the same letter S for both quantities.

214 CHAPTER 7. EVALUATION METHODS

variance of a normal distribution). However, the measures used by [Bezdek
et al. 1997] for the separation index (see above) may just as well employed.

The Davies–Bouldin index was originally defined for crisp clustering re-
sults (uij ∈ {0, 1}), but there is nothing that hinders its application to
fuzzy or probabilistic clustering result. In this case the membership degrees
uij ∈ [0, 1] weight the distances in the measure for the scatter within a clus-
ter (and maybe also in the measure for the cluster distance, if some other
measure than the Euclidean distance of the cluster centers is used).

Similar to the Dunn index, an application of the Davies–Bouldin index to
non-spherical clusters is imaginable, but has not been studied in detail yet.
However, in the subject area of semi-supervised learning [Klose 2004] sug-
gested a modified Davies–Bouldin index that is applicable to non-spherical
clusters and led to good results in this application domain.

Xie–Beni Index / Separation

The Xie–Beni index [Xie and Beni 1991] or separation (not to be confused
with the separation index, see above) or draws on similar ideas as the pre-
ceding two measures, but was defined specifically for evaluating results of
the fuzzy clustering, in particular fuzzy c-means clustering. It is defined as

Qsep(C,U,X) =
1
n

∑c
i=1

∑n
j=1 u

w
ij d

2(~xj , ~µi)
min1≤i<k≤n d2(~µi, ~µk)

.

Clearly, the numerator of this measure contains the standard objective func-
tion of fuzzy clustering (cf. page 51 in Section 3.1). This objective function is
divided by n in order to remove a dependence on the number of data points.
The result can be seen as an average (weighted) distance of the data points
from the cluster centers and thus as a global measure of the scatter within
the clusters, connecting it to the Davies–Bouldin index. This global scatter
measure is finally divided by the minimum distance between two cluster
centers, which indicates how well the clusters are separated. Since for a
good clustering result the numerator should be as small as possible and the
denominator as large as possible, this measure is to be minimized.

Note that the Xie–Beni index is similar to a reciprocal Dunn index, with
the maximum diameter of a cluster replaced by the average distance to a
cluster center. Note also that by replacing the Euclidean distance of the
cluster centers in the denominator by a general cluster distance measure
d(ci, ck;U,X) the Xie–Beni index may be turned into a family of quality
indices, in analogy to the preceding two measures.

7.2. ASSESSING THE CLUSTERING QUALITY 215

The Xie–Beni index is one of the most popular measures for assessing
fuzzy clustering results, mainly due to the results of [Pal and Bezdek 1995],
who found that is provided the best response over a wide range of choices for
the number of clusters. Note that, although the Xie–Beni index was defined
for fuzzy clustering, it may just as well be applied to crisp partitions. W.r.t.
clusters with adaptable shape and size the same comments apply as for the
preceding two measures (Dunn index and Davies–Bouldin index).

Fukuyama–Sugeno Index

The Fukuyama–Sugeno index [Fukuyama and Sugeno 1989] employs a fairly
similar idea as the Xie–Beni index, but measures and incorporates the sep-
aration of the clusters differently. It is defined as

QFS(C,U,X) =
c∑

i=1

n∑
j=1

uw
ij

(
d2(~xj , ~µi)− d2(~µi, ~µ)

)
=

c∑
i=1

n∑
j=1

uw
ij d

2(~xj , ~µi)−
c∑

i=1

d2(~µi, ~µ)
n∑

j=1

uw
ij ,

where ~µ is the global mean of the data points, that is,

~µ =
1
n

n∑
j=1

~xj .

Like the Xie–Beni index, this measure obviously contains the standard ob-
jective function of fuzzy clustering (cf. page 51 in Section 3.1). However,
it modifies it by relating every single distance to a cluster center to the
distance of this cluster center to the global mean. Alternatively, as can be
seen from the second line in the above definition, we may say that it reduces
the objective function by the sum of the distances of the clusters centers
to the global mean, where each such distance enters with the weight of the
data points assigned to it. This sum is the larger, the better separated the
clusters are, while the objective function is to be minimized anyway. As a
consequence, the Fukuyama–Sugeno index is to be minimized.

[Pal and Bezdek 1995] report that the Fukuyama–Sugeno index is unre-
liable for high as well as low values of the fuzzifier w. This is actually not
too surprising, because the formula already indicates that it prefers large
clusters far away from the center and thus imposes a certain bias on the clus-
ter structure. Apart from this unfavorable evaluation, the same comments
apply as for the Xie–Beni index (see above).

216 CHAPTER 7. EVALUATION METHODS

Partition Coefficient

The partition coefficient [Bezdek 1973, Bezdek 1981, Windham 1982] was
introduced for assessing fuzzy clustering results and intuitively measures
how crisp a partition is. It is defined on the fuzzy partition matrix alone as

QPC(U) =
1
n

c∑
i=1

n∑
j=1

u2
ij .

From this formula it is immediately clear that this measure is entirely useless
for assessing crisp partitions, because for uij ∈ {0, 1}, 1 ≤ i ≤ c, 1 ≤ j ≤ n,
and with the constraint ∀j; 1 ≤ j ≤ n :

∑c
i=1 uij = 1 (that is, each data

point is assigned to exactly one cluster), it is always QPC(U) = 1, indepen-
dent of the number of cluster, the number of data points, and how the data
points are assigned to the clusters.

For fuzzy partitions, however, it can yield useful results, which are the
higher, the closer a fuzzy partition is to a crisp partition. The reason is
that due to the squared membership degrees in this formula, the value of
the partition coefficient is the smaller, the more uniformly the data points
are assigned to all clusters. From this insight we can infer that its minimum
value results for uij = 1

c , 1 ≤ i ≤ c, 1 ≤ j ≤ n. In this case we have

QPC(U) =
1
n

c∑
i=1

n∑
j=1

1
c2

=
1
n

nc

c2
=

1
c
.

As a consequence we have QPC(U) ∈
[
1
c , 1
]

for all fuzzy clustering results.
From this lower bound on the value of the partition coefficient it is

already clear that its value depends on the number of clusters, which is
inconvenient if one wants to compare clustering results that were obtained
with a different number of clusters. In order to amend this drawback, the
normalized partition coefficient [Backer and Jain 1981, Stutz 1998] has been
introduced. This variant of the partition coefficient is defined as

QPCnorm(U) = 1− c

c− 1
(1−QPC(U)).

That this normalization removes the dependence on the number of clusters
can be seen by analyzing its range of values as follows:

QPC(U) ∈
[
1
c , 1
]

⇔ 1−QPC(U) ∈
[
0, c−1

c

]
⇔ c

c− 1
(1−QPC(U)) ∈ [0, 1]

⇔ QPCnorm(U) ∈ [0, 1].

7.2. ASSESSING THE CLUSTERING QUALITY 217

The rationale underlying both the partition coefficient and its normalized
version is that a (fuzzy) cluster model that does not fit the data well should
lead to ambiguous membership degrees, because the misfit will show itself
in the inability of the cluster model to assign data points clearly to one
cluster. However, although this view is very intuitive, the usefulness of the
partition coefficient is limited in practice. The reason is that a cluster model
may fit a large part of the data well, so that only a small number of data
points receive ambiguous membership degrees, which may have only a very
small impact on the total partition coefficient. In particular, if one tries to
estimate the number of clusters with this measure, numbers of clusters that
differ only little from the optimal number will also receive good assessments
from this measure, rendering the decision at least problematic.

In addition, in fuzzy clustering with inverse squared distances, member-
ship degrees tend to become more equal with a higher number of dimensions
of the data space, because the average distance between data points tends
to increase with the number of dimensions (cf. Section 2.4 for a detailed in-
vestigation of the dependence of the membership degrees on the distance).
Hence one may conjecture that for fuzzy clustering algorithms the expres-
siveness of the partition coefficient does not scale well with the number of
dimensions. This is indeed observed in experiments.

It is clear that both the partition coefficient and its normalized variant
are applicable to non-spherical clusters and clusters of differing size, because
they are defined only on the fuzzy partition matrix. Thus they do not make
any assumptions about the cluster size or shape.

Partition/Classification Entropy

Like the partition coefficient, the partition entropy [Bezdek 1975, Bezdek
1981, Windham 1982], which is also known as the classification entropy,
was introduced for assessing fuzzy clustering results. It is defined on the
fuzzy partition matrix alone as

H(U) =
1
n

n∑
j=1

H(~uj) = − 1
n

n∑
j=1

c∑
i=1

uij log2 uij ,

where ~uj = (u1j , . . . , ucj) is the i-th row of the fuzzy partition matrix U
and comprises the membership degrees of one data point to the different
clusters and H denotes the Shannon entropy [Shannon 1948].

In general, the Shannon entropy of a (strictly positive) probability dis-
tribution over r values, given as a vector ~p = (p1, . . . , pr) of probabilities

218 CHAPTER 7. EVALUATION METHODS

satisfying
∑r

i=1 pi = 1, is defined as

H(Shannon)(~p) = −
r∑

i=1

pi log2 pi.

Intuitively, it measures the expected number of yes/no-questions one has
to ask (with an optimal question scheme) in order to discover the obtaining
value.4 The Shannon entropy is always positive and it is the higher, the more
uniform the probability distribution is and it is maximal for a completely
uniform distribution pi = 1

r , 1 ≤ i ≤ r, namely log2 r.
The idea of the partition entropy is to interpret the membership degrees

to the different clusters, which formally resemble a probability distribution
(if normalized to sum 1), as cluster assignment probabilities. This view is
particularly justified, if the underlying model is actually probabilistic (for
instance, a Gaussian mixture model) and thus the membership degrees are
posterior probabilities. With this view the partition entropy computes the
average entropy of the cluster probability distributions, which is the smaller,
the closer a fuzzy or probabilistic partition is to crisp partition.

Since its underlying idea is similar to the idea of the partition coeffi-
cient, the partition entropy shares basically all properties of the partition
coefficient (except that it is to be minimized while the partition coefficient
is to be maximized): it is useless for comparing crisp partitions, it does not
scale well with the number of dimensions of the data space, but it can be
applied to cluster models with clusters of different shape and size.

It should be noted that the partition entropy may also be normalized,
like the partition coefficient, by removing the dependence on the number
of clusters and data points. However, in this case this normalization is
achieved by dividing by the maximum value the partition entropy can have,
that is, by log2 c. Therefore the normalized partition entropy is

Hnorm(U) =
1

n log2 c

n∑
j=1

H(~uj) = − 1
n log2 c

n∑
j=1

c∑
i=1

uij log2 uij .

Fuzzy Hyper-Volume

The fuzzy hyper-volume [Gath and Geva 1989] was introduced in order to
evaluate the result of the fuzzy maximum likelihood algorithm, but may
generally be used to assess and compare clustering results obtained with

4A detailed explanation of the ideas underlying Shannon entropy and its connection
to coding theory can be found in [Borgelt and Kruse 2002].

7.2. ASSESSING THE CLUSTERING QUALITY 219

adaptable cluster-specific sizes (with or without adaptable shape). It is
defined as the total hyper-volume of all clusters, that is, as

Qvolume(C) =
c∑

i=1

σm
i =

c∑
i=1

√
|Σi|,

and thus depends only on the (final) cluster parameters. However, due to
the discussion in Section 2.3, we know that the volume is only one way
of measuring the size of a cluster. We may choose differently, using, for
example, the isotropic radius. This gives rise to a generalized version of this
measure, which may be defined as

Qsize(C, κ) =
c∑

i=1

σκ
i =

c∑
i=1

|Σi|
κ

2m .

From this generalized version the original form obviously results for κ = m.
Other plausible choices are κ = 1 and κ = 2 (cf. also Section 6.1.3).

The idea underlying all forms of this measure is that a cluster model that
fits the data well should lead to compact clusters and thus a low value of
the fuzzy hyper-volume or any other measure for the size of a cluster. Note
that it is not applicable if the cluster size is fixed, because then this measure
is necessarily constant, regardless of the clustering result. However, it is not
restricted to fuzzy partitions, but applies equally well to crisp partitions.

Partition Density

In the fuzzy hyper-volume, as it was discussed above, it is only indirectly
taken into account how the data points are distributed in a cluster, namely
only through the adaptation of the cluster volume/size in the clustering
process. In addition, the relative location of the clusters is neglected (even
though the partitioning property of a clustering algorithm in which the
membership degrees are normalized to sum 1 limits the possible amount of
overlap). To amend these drawbacks, [Gath and Geva 1989] suggested the
partition density , which intuitively measures the data point density in the
“core regions” of the clusters. Formally, the partition density is defined as

QPD(C,U,X) =

∑c
i=1

∑
j∈I(i) uij∑c

i=1

√
|Σi|

where
I(i) = {j | 1 ≤ j ≤ n ∧ (~xj − ~µi)>Σ−1

i (~xj − ~µi) < 1}.

220 CHAPTER 7. EVALUATION METHODS

That is, the “core region” of a cluster is defined as the interior of a (hyper-)
sphere with radius one around the cluster center, which is defined by the
Mahalanobis distance that is parameterized with the cluster-specific covari-
ance matrix Σi, 1 ≤ i ≤ c (cf. Section 2.3). Only the data points in these
interior regions of each cluster are considered, and they are weighted with
their degree of membership, so that data points closer to the cluster center
have a higher influence. By dividing the result by a value that is propor-
tional to the total size of these interior regions5, one obtains a measure of
the data point density in these interior regions. Obviously, for a good clus-
tering result, this data point density should be as large as possible, so that
many data points are covered by few, small clusters and in such a way that
only few data points are outside the “core regions” of the clusters.

As an alternative to the above, one may compute first the data point
densities for each cluster individually and then (arithmetically) average the
results over the clusters. This leads to the so-called average partition density
[Gath and Geva 1989], which is formally defined as

QPDavg(C,U,X) =
1
c

c∑
i=1

∑
j∈I(i) uij√
|Σi|

.

Note that the partition density and the average partition density may yield
fairly different results, especially if the clusters are of considerably different
size and cover substantially differing numbers of data points. Intuitively,
small clusters with few data points have a much lesser influence on the
partition density than on the average partition density.

Note that, although both versions of the partition density were developed
for assessing fuzzy clustering results, they may just as well be applied to
crisp clustering results, since no difficulties result from a restriction of the
uij , 1 ≤ i ≤ c, 1 ≤ j ≤ n, to the set {0, 1}. Unlike the fuzzy hyper-volume,
these measures may even be applied if the cluster sizes are not adaptable
(and thus the volume of a cluster, as it is measured by

√
|Σi|, is fixed).

Selecting the Number of Clusters

The general approach to select the number of clusters with an internal
evaluation measure is to carry out the chosen clustering algorithm with
all numbers of clusters in a certain, user-defined range, then to evaluate
the result with an internal evaluation measure, and finally to select the

5Consult Section A.4 in the appendix for a detailed explanation why
√
|Σi| is pro-

portional to the size of “core region” of a cluster.

7.2. ASSESSING THE CLUSTERING QUALITY 221

number of clusters that yields the best value for this measure. Some indices,
however, show a monotone behavior over the number of clusters, that is,
they generally tend to decrease (increase) with a larger number of clusters
(for example, partition coefficient or partition entropy). In this case one
has to look not for minimum, but for a pronounced knee in the graph of the
evaluation measure over the number of clusters.

Unfortunately, even though this simple and straightforward procedure
sometimes leads to good results, thus identifying the “correct” (in an intu-
itive sense) number of clusters, the problem of choosing the right number
of clusters is far from being solved. Often enough different indices indicate
different numbers of clusters and thus the choices recommended are fairly
unreliable. How one can reliably determine a good value for the number of
clusters with an internal measure remains an open research problem.

7.2.2 Relative Evaluation Measures

Relative evaluation measures compare two partitions, one being a clustering
result and the other either also a clustering result or given by a classification
or a human expert defined grouping. In the latter case one also speaks of
external measures [Halkidi et al. 2002a, Halkidi et al. 2002b], although the
methods to compare the partitions are usually the same: in both cases we
are given two partition matrices and have to determine how similar they
are. Two clustering results, however, may also be compared based on the
cluster parameters alone, although I do not discuss such methods here.

I usually assume that the two partition matrices to compare have the
same number of rows, that is, refer to the same number of clusters or classes.
However, it is also imaginable to compare matrices with different numbers of
rows, although some measures may give misleading results in this case, since
they are based on the assumption that it is possible to set up a bijective
(i.e., one-to-one) mapping between the cluster/classes of the two partitions.

Regardless of whether the numbers of rows coincide or not, we face the
general problem of relating the clusters/classes of the one partition to the
clusters/classes of the other partition. There are basically three solutions
to this problem: (1) for each cluster/class in the one partition we determine
the best fitting cluster/class in the other, (2) we find the best permutation
of the rows of one partition matrix, that is, the best one-to-one mapping
of the clusters, or (3) we compare the partition matrices indirectly by first
setting up a coincidence matrix for each of them, which records for each
pair of data points whether they are assigned to the same cluster or not,
and then compare the coincidence matrices.

222 CHAPTER 7. EVALUATION METHODS

The first alternative has the advantage of being quite efficient (time
complexity O(nc2), but the severe disadvantage that we cannot make sure
that we obtain a one-to-one relationship. Some clusters/classes in the second
partition may not be paired with any cluster/class in the first, which also
renders the approach asymmetric. The second alternative has the advantage
that it definitely finds the best one-to-one relationship. Its disadvantage is
the fairly high computational cost (time complexity O(nc2+c3), see below).
The third alternative has the disadvantages that it does not yield a direct
indication of how to relate the clusters to each other and that it can have
fairly high computational costs (time complexity O(n2c)), especially for a
large number of data points. However, the fact that it does not need an
explicit mapping between the clusters can also be seen as an advantage,
because it renders this method very flexible. In particular, this method is
well suited to compare partitions with different numbers of clusters/classes.

Fuzzy or Probabilistic Membership Degrees

All approaches listed above were originally developed for crisp partitions,
that is, for partition matrices U, whose elements uij , 1 ≤ i ≤ c, 1 ≤ j ≤ n,
are either 0 or 1. However, it is also possible to extend them to fuzzy or
probabilistic partition matrices, namely by drawing on fuzzy set theory
[Klir and Yuan 1997, Böhme 1994, Kruse et al. 1994] and in particular the
theory of t-norms, t-conorms, and fuzzy negations for the combination of
membership degrees or probabilities. The general idea of this extension is
that the measures discussed in the following can be seen as based on counting
how often some logical expression about the elements of the partition matrix
or the coincidence matrix is true. Even the elements of the coincidence
matrix itself can be seen as derived by logical expressions. Hence it is
proper to briefly review the operators of fuzzy logic here.

A fuzzy negation is a function ∼ : [0, 1] → [0, 1] that behaves like
a logical “not”. This condition already sets the frame conditions, namely
that ∼0 = 1 and ∼1 = 0. In addition, it is natural to require the function
to be monotonously decreasing, that is, ∀a, b ∈ [0, 1] : a < b ⇒ ∼a > ∼b.
In addition, one may require ∼∼a ≡ a and continuity. However, even
though these conditions do not uniquely determine a fuzzy negation and
several families of fuzzy negation operators have been proposed, in practice
only the standard negation ∼a ≡ 1− a [Zadeh 1965] is used.

A fuzzy conjunction or t-norm is a function > : [0, 1]2 → [0, 1] that
behaves like a logical “and”. This already fixes the function values at the
corner points, that is, >(1, 1) = 1 and >(0, 0) = >(0, 1) = >(1, 0) = 0.

7.2. ASSESSING THE CLUSTERING QUALITY 223

In addition, > should be commutative, associative, and monotonously non-
decreasing, that is, ∀a, b, c ∈ [0, 1] : a ≤ b ⇒ >(a, c) ≤ >(b, c). Together
with the values at the corner points it follows from the monotony condition
that ∀a ∈ [0, 1] : >(0, a) = >(a, 0) = 0. On the other two sides of the
unit square it is usually defined that >(1, a) = >(a, 1) = a. All conditions
together define the class of t-norms. Further conditions, like continuity
and sub-idempotency (that is, >(a, a) < a) may be introduced to define
specific subclasses (like Archimedic t-norms [Klir and Yuan 1997, Kruse et
al. 1994]), but I do not consider those here. Well-known t-norms are

>min (a, b) = min{a, b},
>prod (a, b) = ab, or
>Luka(a, b) = max{0, a+ b− 1}.

Note that in a probabilistic context >prod is usually most appropriate, even
though it implicitly assumes independence.

A fuzzy disjunction or t-conorm is a function ⊥ : [0, 1]2 → [0, 1] that
behaves like a logical “or”. As for t-norms, this already fixes the function
values at the corner points, that is, ⊥(1, 1) = ⊥(0, 1) = ⊥(1, 0) = 1 and
⊥(0, 0) = 0. In analogy to t-norms, ⊥ should be commutative, associa-
tive, and monotonously non-decreasing, that is, ∀a, b, c ∈ [0, 1] : a ≤ b ⇒
⊥(a, c) ≤ ⊥(b, c). Together with the values at the corner points it follows
from the monotony condition that ∀a ∈ [0, 1] : ⊥(1, a) = ⊥(a, 1) = 1. On
the other two sides of the unit square it is usually defined that ⊥(0, a) =
⊥(a, 0) = a. All conditions together define the class of t-conorms. As for
t-norms, further conditions, like continuity and super-idempotency (that is,
⊥(a, a) > a) may be introduced to define specific subclasses (like Archimedic
t-conorms [Klir and Yuan 1997, Kruse et al. 1994]), but again I do not con-
sider those here. Well-known t-conorms are

⊥max (a, b) = max{a, b},
⊥prod (a, b) = a+ b− ab, or
⊥Luka(a, b) = min{1, a+ b}.

Note that in a probabilistic context ⊥prod is usually most appropriate, even
though it implicitly assumes independence.

In the following it is mostly fuzzy negation and fuzzy conjunction I need.
I write the formulae generally with a product if a conjunction is needed,
because this is the most natural, not only in a probabilistic, but also in a
crisp scenario. However, it should be kept in mind that this product may
be replaced by other t-norms. For the negation I generally use the standard
negation ∼a ≡ 1− a, which is predominant even in fuzzy set theory.

224 CHAPTER 7. EVALUATION METHODS

u
(2)
kj = 1 u

(2)
kj = 0 Σ

u
(1)
ij = 1 n

(i,k)
11 n

(i,k)
10 n

(i,k)
1.

u
(1)
ij = 0 n

(i,k)
01 n

(i,k)
00 n

(i,k)
0.

Σ n
(i,k)
.1 n

(i,k)
.0 n

Table 7.2: Contingency table
for comparing two rows of two
partition matrices.

Comparing Partition Matrices

The first two approaches outlined at the beginning of this section directly
compare two c × n partition matrices U(1) and U(2). For both of them
we need a measure that compares two rows, one from each matrix. Such
measures are basically the same as those used in Section 7.1 for comparing
a classifier output to the class labels of a data set. Formally, we set up a
2 × 2 contingency table for each pair of rows, one from each matrix. (cf.
Table 7.2). This is done in basically the same way as in Section 7.1.3. That
is, for each pair (i, k) ∈ {1, . . . , c}2 we compute

n
(i,k)
11

(
U(1),U(2)

)
=

n∑
j=1

u
(1)
ij · u(2)

kj ,

n
(i,k)
01

(
U(1),U(2)

)
=

n∑
j=1

(
1− u

(1)
ij

)
· u(2)

kj ,

n
(i,k)
10

(
U(1),U(2)

)
=

n∑
j=1

u
(1)
ij ·

(
1− u

(2)
kj

)
,

n
(i,k)
00

(
U(1),U(2)

)
=

n∑
j=1

(
1− u

(1)
ij

)
·
(
1− u

(2)
kj

)
.

As in Section 7.1.3, I drop the arguments U(1) and U(2) in the following
to make the formulae easier to read. Likewise, it is convenient to introduce
the following abbreviations for the row and column sums (cf. Table 7.1)

n
(i,k)
1. = n

(i,k)
11 + n

(i,k)
10 , n

(i,k)
0. = n

(i,k)
01 + n

(i,k)
00 ,

n
(i,k)
.1 = n

(i,k)
11 + n

(i,k)
01 , n

(i,k)
.0 = n

(i,k)
10 + n

(i,k)
00 .

(Note that all these numbers may also be computed from fuzzy or proba-
bilistic membership degrees, even though I assume uij ∈ {0, 1} here.)

7.2. ASSESSING THE CLUSTERING QUALITY 225

From these number we may now compute the same measures as in Sec-
tion 7.1.3. The only differences consist in how the rows are paired in the two
approaches outlined at the beginning of this section. If we try to find the
best matching row in the partition matrix U(2) for each row in the partition
matrix U(1), we may compute, for example, (macro-averaged) precision as

π =
c∑

i=1

max
1≤k≤c

πi,k =
c∑

i=1

max
1≤k≤c

n
(i,k)
11

n
(i,k)
.1

=
c∑

i=1

max
1≤k≤c

n
(i,k)
11

n
(i,k)
01 + n

(i,k)
11

and (macro-averaged) recall as

ρ =
c∑

i=1

max
1≤k≤c

πi,k =
c∑

i=1

max
1≤k≤c

n
(i,k)
11

n
(i,k)
1.

=
c∑

i=1

max
1≤k≤c

n
(i,k)
11

n
(i,k)
10 + n

(i,k)
11

.

However, since both precision and recall are needed for the assessment of
how similar the two partitions are, such an approach is somewhat dubious:
it may be that for a given row i of the first matrix precision and recall may
draw on different rows k of the second matrix. In such a case the closeness
of the partition would be overrated, because then there is no one-to-one
mapping that achieves the computed values of precision and recall. Rather
all assessments computed from one-to-one mappings would either have a
lower precision or a lower recall. Therefore combining the values of the
above two formulae into an F1 measure (cf. page 207) is not advisable.

Unfortunately, this problem cannot be resolved by applying the second
approach outlined at the beginning of this section, that is, by computing
the maximum over all possible one-to-one mappings of the matrix rows. In
this case (macro-averaged) precision would be computed as

π = max
ς∈Π(c)

c∑
i=1

πi,ς(i) = max
ς∈Π(c)

c∑
i=1

n
(i,ς(i))
11

n
(i,ς(i))
.1

= max
ς∈Π(c)

c∑
i=1

n
(i,ς(i))
11

n
(i,ς(i))
01 + n

(i,ς(i))
11

and (macro-averaged) recall as

ρ = max
ς∈Π(c)

c∑
i=1

πi,ς(i) = max
ς∈Π(c)

c∑
i=1

n
(i,π(i))
11

n
(i,ς(i))
1.

= max
ς∈Π(c)

c∑
i=1

n
(i,ς(i))
11

n
(i,ς(i))
10 + n

(i,ς(i))
11

,

where Π(c) is the set of all permutations of the c numbers {1, . . . , c}.6 Again
we cannot be sure that the best precision value results for the same per-
mutation as the best recall value. A useful result can only be obtained if a

6Note that with the so-called Hungarian method for solving optimum weighted bipar-
tite matching problems [Papadimitriou and Steiglitz 1982] the time complexity of finding
the maximum for given pairwise precision and recall values is only O(c3) and not O(c!).

226 CHAPTER 7. EVALUATION METHODS

single assessment value is maximized over all permutations. Examples are
the F1 measure

F1 = max
ς∈Π(c)

c∑
i=1

2πi,ς(i)ρi,ς(i)

πi,ς(i) + ρi,ς(i)
,

(compare page 207) where class-specific precision and recall are

πi,k =
n

(i,k)
11

n
(i,k)
.1

=
n

(i,k)
11

n
(i,k)
01 + n

(i,k)
11

and ρi,k =
n

(i,k)
11

n
(i,k)
1.

=
n

(i,k)
11

n
(i,k)
10 + n

(i,k)
11

,

and the (cross-classification) accuracy

Qacc

(
U(1),U(2)

)
= max

ς∈Π(c)

1
n

c∑
i=1

(
n

(i,ς(i))
00 + n

(i,ς(i))
11

)
.

Generally two partition matrices U(1) and U(2) are the more similar, the
higher the values of the F1 measure or the cross-classification accuracy.

Comparing Coincidence Matrices

As an alternative to comparing the partition matrices directly, one may
first compute from each of them an n×n coincidence matrix, also called
a cluster connectivity matrix [Levine and Domany 2001], which states
for each pair of data points whether they are assigned to the same cluster
or not. Formally, a coincidence matrix Ψ = (ψjl)1≤j,l≤n can be computed
from a partition matrix U = (uij)1≤i≤c,1≤j≤n by

ψjl =
c∑

i=1

uijuil.

Note that this computation may also be carried out with fuzzy or probabilis-
tic membership degrees, possibly replacing the product by another t-norm
(cf. the general discussion on page 222).

After coincidence matrices Ψ(1) and Ψ(2) are computed from the two
partition matrices U(1) and U(2), the comparison is carried out by comput-
ing statistics of the number of data point pairs that are in the same group
in both partitions, in the same group in one, but in different groups in the
other, or in different groups in both. The main advantage of this approach
is, of course, that we are freed of the need to pair the groups of the two par-
titions. We rather exploit that data points that are considered (dis)similar
by one partition should also be considered (dis)similar by the other.

7.2. ASSESSING THE CLUSTERING QUALITY 227

ψ
(2)
jl = 1 ψ

(2)
jl = 0 Σ

ψ
(1)
jl = 1 NSS NSD NS.

ψ
(1)
jl = 0 NDS NDD ND.

Σ N.S N.D N..

Table 7.3: Contingency table
for the computation of several
clustering comparison indices.

Formally, we compute a 2×2 contingency table (cf. Table 7.3) containing
the numbers (which are basically counts of the different pairs

(
ψ

(1)
jl , ψ

(2)
jl

)
)

NSS

(
Ψ(1),Ψ(2)

)
=

n∑
j=2

j−1∑
l=1

ψ
(1)
jl ψ

(2)
jl ,

NSD

(
Ψ(1),Ψ(2)

)
=

n∑
j=2

j−1∑
l=1

ψ
(1)
jl

(
1− ψ

(2)
jl

)
,

NDS

(
Ψ(1),Ψ(2)

)
=

n∑
j=2

j−1∑
l=1

(
1− ψ

(1)
jl

)
ψ

(2)
jl ,

NDD

(
Ψ(1),Ψ(2)

)
=

n∑
j=2

j−1∑
l=1

(
1− ψ

(1)
jl

)(
1− ψ

(2)
jl

)
,

where the index S stands for “same group” and the index D stands for
“different groups” and the two indices refer to the two partitions. To make
the formulae easier to read, the arguments Ψ(1) and Ψ(2) are dropped in the
following. In addition, it is convenient to define the following abbreviations

NS. = NSS +NSD, ND. = NDS +NDD,

N.S = NSS +NDS , N.D = NSD +NDD,

N.. = NSS +NSD +NDS +NDD =
n(n− 1)

2
.

From these number a large variety of measures may be computed. Well-
known examples include the Rand statistic

QRand

(
Ψ(1),Ψ(2)

)
=
NSS +NDD

N..
=

NSS +NDD

NSS +NSD +NDS +NDD
,

228 CHAPTER 7. EVALUATION METHODS

which is a simple ratio of the number of data point pairs treated the same
in both partitions to all data point pairs, and the Jaccard coefficient

QJaccard

(
Ψ(1),Ψ(2)

)
=

NSS

NSS +NSD +NDS
,

which ignores negative information, that is, pairs that are assigned to differ-
ent groups in both partitions. Both measures are to be maximized. Another
frequently encountered measure is the Folkes–Mallows index

QFM

(
Ψ(1),Ψ(2)

)
=

NSS√
NS.N.S

=
√

NSS

NSS +NSD
· NSS

NSS +NDS
,

which can be interpreted as a cosine similarity measure, because it computes
the cosine between two binary vectors, each of which contains all elements
of one of the two coincidence matrices Ψ(1) and Ψ(2). Consequently, this
measure is also to be maximized. A final example is the Hubert index

QHubert

(
Ψ(1),Ψ(2)

)
=
N..NSS −NS.N.S√
NS.N.SND.N.D

,

which may either be interpreted as a product-moment correlation, computed
from the set of pairs

(
ψ

(1)
jl , ψ

(2)
jl

)
, 1 ≤ j, l ≤ n. Alternatively, it may be

interpreted as the square root of the (normalized) χ2 measure, as it can
be computed from the 2 × 2 contingency table shown in Table 7.3. The
χ2 measure can be seen as measuring the strength of dependence between
two random variables, one for each partition, which indicate for each data
point pair whether the data points are in the same group or not.7

It should be clear that this list does not exhaust all possibilities. Basi-
cally all measures by which (binary) vectors and matrices can be compared
are applicable, and these abound.

7.2.3 Resampling

Resampling [Good 1999] can be seen as a special Monte Carlo method,
that is, as a method for finding solutions to mathematical and statistical
problems by simulation [Everitt 1998, Halkidi et al. 2002a]. It has been ap-
plied to cluster estimation problems already fairly early [Jain and Moreau

7A detailed explanation of the general χ2 measure can be found, for instance, in
[Borgelt and Kruse 2002]. A derivation of the special formula for 2×2 contingency tables
referred to here can be found in Section A.11 in the appendix.

7.2. ASSESSING THE CLUSTERING QUALITY 229

1986, Breckenridge 1989] and it seems to have gained increased attention
in this domain recently [Levine and Domany 2001, Roth et al. 2002, Law
and Jain 2003]. Its main purpose in clustering is the validation of clus-
tering results as well as the selection of an appropriate cluster model—in
particular the choice of an appropriate number of clusters—by estimating
the variability (or, equivalently, the stability) of the clustering result.

Resampling methods can be found with two sampling strategies. In
the first place, one may use subsampling, that is, the samples are drawn
without replacement from the given data set, so that each data point appears
in at most one data subset. This strategy is usually applied in a cross
validation style (cf. Section 7.1.2), that is, the given data set is split into
a certain number of disjoint subsets. The alternative is bootstrapping
[Efron and Tibshirani 1993], in which samples are drawn with replacement,
so that a data point may even appear multiple times in the same data
subset. There are good arguments in favor and against both approaches.

The general idea of applying resampling for cluster validation and model
selection is as follows: a cluster model can usually be applied as a classifier
with as many classes as there are clusters (i.e. one class per cluster). In the
case of a prototype-based cluster model the natural approach is a nearest
prototype or maximum membership classifier (cf. Section 2.5), in which each
data point is assigned to the most similar prototype. In this way data points
that have not been used to build the cluster model can be assigned to clusters
(or the corresponding classes). Thus we obtain, with the same algorithm,
two different groupings of the same set of data points. For example, one
may be obtained by clustering the data set, the other by applying a cluster
model that was built on another data set. These two groupings can be
compared using, for example, one of the measures discussed in the preceding
section. By repeating such comparisons with several samples drawn from
the original data set, one can obtain an assessment of the variability of the
cluster structure (or, more precisely, an assessment of the variability of the
evaluation measure for the similarity of partitions).

Specific algorithms following this general scheme have been proposed by
[Levine and Domany 2001, Roth et al. 2002, Law and Jain 2003]. The
approaches by [Levine and Domany 2001] and [Law and Jain 2003] are ba-
sically identical. Both are based on a bootstrapping approach and work as
follows: first the full given data set is clustered with the chosen algorithm.
Formally, this may be seen as an estimate of the “average” partition [Law
and Jain 2003]. Then a user-defined number of random samples of user-
defined size are drawn (with replacement) from the data set and clustered
as well. The cluster models obtained from the samples are applied to the full

230 CHAPTER 7. EVALUATION METHODS

data set, thus obtaining two groupings of this data set. These two groupings
are compared by one of the relative evaluation measures based on coinci-
dence matrices that were discussed in Section 7.2.2. Finally, the average of
the evaluation measure values for each of these comparisons is taken as an
assessment of the cluster variability. As an alternative, [Law and Jain 2003]
mention that one may do without an estimate for the “average” partition
(which is estimated by the cluster model obtained from the full data set)
and rather assess the variability of the cluster structures by comparing all
pairs of cluster models obtained from the samples on the full data set.

This resampling approach may be applied to select the most appropriate
cluster model, in particular, the “best” number of clusters, by executing the
above algorithm for different parameterizations of the clustering algorithm
and then to select the one showing the lowest variability. Experimental
results reported by [Law and Jain 2003] indicate that this approach is very
robust and a fairly reliable way of choosing the number of clusters.

In contrast to the bootstrapping approaches, [Roth et al. 2002] rely on a
(repeated) two-fold cross validation sampling scheme. In each step the given
data set is split randomly into two parts of about equal size. Both parts are
processed with the same clustering algorithm and the cluster model obtained
on the second half of the data is applied to the first half. Thus one obtains
two groupings for the first half of the data, which are compared with a risk-
based evaluation measure. This (relative) measure is defined on the two
partition matrices and thus has to find the best matching of the clusters of
the two groupings (see above). However, in principle all relative measures
discussed in the preceding section (including those based on coincidence
matrices) may be applied (just as measures based on partition matrices
may be applied in the bootstrapping approaches by [Levine and Domany
2001, Law and Jain 2003]). [Roth et al. 2002] report experimental results
on several data sets, which show that the number of clusters can be selected
in a fairly reliable way with this approach.

For applications of these resampling methods it should be noted that all
approaches in this direction only assess the variability in the results obtained
with some clustering algorithm. Although a low variability is surely a highly
desirable property, it is not sufficient to guarantee a good clustering result.
For example, a clustering algorithm that always yields the same partition of
the data space, regardless of the data it is provided with, has no variability
at all, but surely yields unsatisfactory clustering results [Law and Jain 2003].
Hence the clustering algorithms that are compared with such schemes should
not differ too much in their flexibility, because otherwise the simpler and
thus more stable algorithm may be judged superior without actually being.

7.2. ASSESSING THE CLUSTERING QUALITY 231

Furthermore, [Halkidi et al. 2002a, Halkidi et al. 2002b] remark that the
power of many such statistical tests, like the estimation of the variability of
the clustering structure as it was discussed above, decreases quickly with in-
creasing data dimensionality. This is not surprising, because due to what is
usually called the curse of dimensionality , the data space necessarily is less
and less densely populated, the more dimensions there are. In addition, the
noise in the different dimensions tends to sum, which in combination with
the tendency of larger average distances between the data points [Döring
et al. 2005], makes it more and more difficult for a clustering algorithm to
find reasonable groups in the data. This, of course, must lead to a higher
variability in the clustering result. For low-dimensional data sets, however,
resampling is a very powerful technique and seems to be the best available
approach to determine the number of clusters.

Chapter 8

Experiments
and Applications

Although data analysis methods should have a sound mathematical basis,
the ultimate test of their quality is whether they yield useful results in prac-
tice. While the preceding chapters were all devoted to a (theoretical) review
and development of clustering and classification methods, this chapter re-
ports experiments on well-known data sets that were carried out with an
implementation of these methods. In addition, I describe an application of
the discussed methods to document clustering. This application needs some
additional considerations concerning, in particular, how to code documents
so that clustering algorithms become applicable. The needed theoretical
background and preprocessing steps are reviewed briefly in Section 8.3.

All experiments reported here were carried out with the programs that
can be found on my WWW page1, which was already mentioned in Sec-
tion 1.4. The cluster package contains programs for expectation maxi-
mization and fuzzy clustering, which also offer a learning vector quantization
mode. In addition, the lvq package contains a special learning vector quan-
tization program, which provides some special features (like, for example,
the radius adaptation methods discussed at the beginning of Section 5.3.3).
Finally, the rbf package contains programs for training radial basis function
neural networks, which can be initialized with a clustering result. In ad-
dition, several of the simpler initialization methods described in Chapter 4
are available in all of the mentioned programs.

1http://fuzzy.cs.uni-magdeburg.de/~borgelt/software.html

233

234 CHAPTER 8. EXPERIMENTS AND APPLICATIONS

8.1 Regularization

In this section I report experiments that demonstrate the usefulness of the
regularization methods that I suggested in Section 6.1.2 and 6.1.3, respec-
tively [Borgelt and Kruse 2004, Borgelt and Kruse 2005]. As test cases I use
well-known data sets from the UCI machine learning repository [Blake and
Merz 1998]. In all experiments each dimension of the data set is normalized
to mean value 0 and standard deviation 1 in order to avoid any distortions
that may be caused by a different scaling of the coordinate axes.

As a first illustrative example, I consider the result of clustering the iris
data [Anderson 1935, Fisher 1936, Blake and Merz 1998] (excluding, of
course, the class attribute), which was already mentioned in Section 4.2.
This data set was clustered with the Gustafson–Kessel fuzzy clustering al-
gorithm 2—that is, using an alternating optimization approach—with the
aim of finding three clusters: one cluster per class. In this algorithm each
cluster is endowed with a covariance matrix describing its shape (cf. Sec-
tion 5.2.3). The size of the clusters (measured as the isotropic radius, that
is, κ = 1, cf. Section 2.3) was set to a fixed value of 0.4 (since all dimensions
are normalized to mean value 0 and standard deviation 1, 0.4 is a good
size of a cluster if three clusters are to be found). Note, however, that this
size only influences how the clusters are described numerically, but not the
degrees of membership a data point has to the different clusters. The rea-
son is that in the formula for computing the membership degrees a possible
size factor cancels if the Cauchy function with a = 2 and b = 0 is used
(cf. Section 5.2.3). As a consequence the same membership degrees result
independent of the chosen cluster size. Hence I use such a size value only
to obtain a better visualization of the clustering result.

The result without shape regularization is shown in Figure 8.1 on the
left. Due to a few data points located in a thin diagonal cloud on the upper
right border on the figure, the middle cluster is drawn into a fairly long
ellipsoid. Although this shape minimizes the objective function, it may not
be a desirable result, because the cluster structure is not compact enough.
Another argument supporting this assessment is that it does not capture the
class structure well (cf. Figure 4.2 on page 80, which shows the classes of the
data points in a similar figure). Computing the reclassification accuracy3

2The options used for the clustering program cli are -Vc3I0.4.
3The reclassification accuracy can be computed by executing the cluster model with

the program clx from the cluster package, using the option -c to obtain a hard classi-
fication. The resulting output table is then processed with the program xmat from the
table package, using the option -c to find the best assignment of clusters to classes.

8.1. REGULARIZATION 235

Figure 8.1: Result of the Gustafson-Kessel algorithm on the iris data with
fixed equal cluster size of σ = 0.4 without (left) and with shape regulariza-
tion (right, method 2 with r = 4). Clustering was done on all four attributes
(that is, petal length and width and sepal length and width).

confirms this visual impression: a classifier based on this cluster structure
yields 15 misclassifications (10%), whereas a Bayes classifier yields only 6
(4%, näıve Bayes classifier—axes-parallel ellipsoids) or 3 misclassifications
(2%, full Bayes classifier—general ellipsoids, cf. page 80).

Using shape regularization method 2 (cf. page 185 in Section 6.1.2) with
r = 4 the cluster structure shown on the right in Figure 8.1 is obtained. In
this result the clusters are more compact and resemble the class structure of
the data set. This impression is confirmed by the reclassification accuracy:
with this cluster model, if it is used as a classifier, only 3 cases are misclas-
sified, and thus the same quality is achieved as with a full Bayes classifier.
This is particularly remarkable if one considers that the clustering approach
does not use any class information about the data points.

As another example let us consider the result of clustering the wine data
[Blake and Merz 1998], which describes 178 Italian wines from three different
cultivation regions by 13 numerical attributes obtained from a chemical
analysis. This data set was clustered with the fuzzy maximum likelihood
estimation (FMLE) algorithm using three clusters of variable shape, size,
and weight. In this experiment I used attributes 7, 10, and 13, which are
among the most informative w.r.t. the class assignments, where the classes
are the cultivation areas. One result without size regularization is shown

236 CHAPTER 8. EXPERIMENTS AND APPLICATIONS

Figure 8.2: Result of the fuzzy maximum likelihood estimation (FMLE)
algorithm on the wine data without (left) and with size regularization (right,
method 3 with r = 2). Clustering was done on attributes 7, 10, and 13.

Figure 8.3: A three-dimensional
scatter plot of the wine data in
the space spanned by the at-
tributes 7, 10, and 13. In this
view it is well visible that the
three classes have a fairly clear
cluster structure, even though
the classes are not cleanly sep-
arated from each other.

in Figure 8.2 on the left.4 However, the algorithm is much too unstable to
present a unique result. Sometimes clustering fails completely, because one
cluster collapses to a single data point—an effect that is due to the steepness
of the Gaussian probability density function. Only with a good initialization
an acceptable clustering structure is obtained with high probability (which
is why it is usually recommended to initialize the fuzzy maximum likelihood
estimation (FMLE) algorithm it with the fuzzy c-means algorithm).

4The options used for the clustering program cli are -wZVGNc3.

8.1. REGULARIZATION 237

Figure 8.4: The probability density functions used by a full Bayes classifier
(general ellipses, left) and a näıve Bayes classifier (axis-parallel ellipses,
right) for the wine data. The ellipses are the 1σ- and 2σ-boundaries.

The result also does not capture the class structure well, even though the
classes form fairly clear clusters, as can easily be seen in a three-dimensional
scatter plot (cf. Figure 8.3). However, Figure 8.4, in which the labeled data
points are shown in the same space as the clustering results (attributes 7
and 10), makes it easier to compare the clustering result to the class assign-
ments. The visual impression obtained by this comparison is confirmed by
computing the reclassification accuracy, which yields 61(!) errors. In con-
trast to this, a näıve Bayes classifier misclassifies only 8 cases (cf. Figure 8.4
on the right), a full Bayes classifier even only 6 (cf. Figure 8.4 on the left).

The situation is improved with size regularization, the most frequent
result of which (which sometimes, with a fortunate initialization, can also
be achieved without) is shown on the right in Figure 8.2. It was obtained
with method 3 with r = 2. Using this result as a classifier yields 21 mis-
classifications, which is still not too good compared to the Bayes classifier
results, but considerably better than the result shown in Figure 8.2 on the
left. Another result that is also often obtained (though less frequently than
the one shown in Figure 8.2 on the right) is depicted in Figure 8.5. It cap-
tures the class structure very well and misclassifies only 7 cases, which is
competitive to the Bayes classifier results. Again one should bear in mind
that the cluster structure is computed without any information about the
class labels. Therefore this is fairly remarkable result.

238 CHAPTER 8. EXPERIMENTS AND APPLICATIONS

Figure 8.5: Alternative result of
the fuzzy maximum likelihood
estimation (FMLE) algorithm on
the wine data, which can be ob-
tained with and without regu-
larization. It captures the class
structure even better than the
most frequent result.

Summarizing, it is justified to say that, although the results are still not
unique and sometimes clusters still focus on very few data points, the fuzzy
maximum likelihood estimation (FMLE) algorithm becomes more stable by
using size regularization and reasonable results are obtained more often than
without size regularization. Hence we can conclude that size regularization
considerably improves the robustness of this algorithm.

Even better results can be obtained if size regularization is combined
with weight regularization. The reason is that, depending on the data dis-
tribution, equalizing the sizes of the clusters not necessarily also equalizes
their weights, so that the effect on the full cluster model is too small. Com-
bined size and weight regularization turn the fuzzy maximum likelihood
estimation (FMLE) algorithm into a fairly stable clustering method.

The expectation maximization algorithm, on the other hand, does not
profit as much from such modifications, mainly because it is already fairly
stable without. Results like the one shown in Figure 8.2 on the left almost
never occur, as experiments reported in [Döring et al. 2004] indicate. The
reason seems to be that the weighting exponent or fuzzifier that is used
in the fuzzy maximum likelihood estimation (FMLE) algorithm, has a de-
teriorating effect, in particular w.r.t. the cluster size and weight, which is
mitigated by regularization. Expectation maximization, which does not use
such an exponent, seems to have a lesser tendency towards extreme cluster
sizes or weights. However, size and weight regularization with method 3 or 2,
respectively, do not introduce any changes as long as the size and weight
relations are within the user-specified bounds, and only interfere with the
clustering process when extreme results are about to develop. Hence they
are harmless and thus generally recommendable modifications.

8.2. ACCELERATION 239

8.2 Acceleration

In this section I present experimental results of fuzzy clustering algorithms
modified with the acceleration techniques that I discussed in Section 6.2
[Borgelt and Kruse 2003]. As in the preceding section I tested these methods
on well-known data sets from the UCI machine learning repository [Blake
and Merz 1998]: abalone (physical measurements of abalone clams), breast
(Wisconsin breast cancer, tissue and cell measurements), iris (petal and
sepal length and width of iris flowers, see also Section 4.2), and wine (chem-
ical analysis of Italian wines from different regions, see also the preceding
section). In order to avoid scaling effects, all data was normalized, so that
in each dimension the mean value was 0 and the standard deviation 1.

Since the listed data sets are originally classified (although I did not use
the class information in the clustering process), one knows the number of
clusters to find (abalone: 3 classes, breast: 2 classes, iris: 3 classes, wine:
3 classes). Therefore I ran the clustering algorithms using these numbers.
In addition, I ran the algorithms with 6 clusters for the abalone and the
wine data set, for which these numbers also yield reasonable results.

In all experiments the iterative updating was terminated when a (nor-
mal, that is, unmodified alternating optimization) update step changed no
center coordinate by more than 10−6. That is, regardless of the update
step modification, I used the normal update step to define the termination
criterion in order to make the results comparable over the different accel-
eration methods. Note that for the Gustafson–Kessel algorithm (normal
and axes-parallel version) I did not consider the change of the elements of
the covariance matrices for the termination criterion. Doing so would have
introduced difficulties when comparing the results obtained with it to the
results obtained with the fuzzy c-means algorithm. It should also be noted
that I used shape regularization (cf. Section 6.1.2) method 2 with r = 4 to
stabilize the results obtained with the Gustafson–Kessel algorithm.

Most of the methods I explored in Section 6.2 have parameters that
influence their behavior. My experiments showed that the exact values of
these parameters are important only for the step width expansion and the
momentum term, for which the best value seems to depend on the data set.
Therefore I ran the clustering algorithm for different values of the expansion
factor η (cf. Section 6.2.1) and the momentum factor β (cf. Section 6.2.2).
In the following I report only the best results I obtained; the parameter
values I employed are listed in Table 8.1. For the self-adaptive learning rate
as well as for the resilient approach I used a growth factor of 1.2 and a
shrink factor of 0.5, which are very common choices for these parameters.

240 CHAPTER 8. EXPERIMENTS AND APPLICATIONS

fuzzy c-means axis-parallel GK Gustafson–Kessel
dataset expand moment expand moment expand moment
abalone 3 1.50 0.30 1.60 0.45 1.80 0.60
abalone 6 1.80 0.50 1.80 0.70 1.90 0.65
breast 2 1.20 0.05 1.60 0.25 1.50 0.25
iris 3 1.40 0.15 1.60 0.30 1.60 0.25
wine 3 1.40 0.10 1.70 0.30 1.90 0.70
wine 6 1.90 0.75 2.00 0.50 1.90 0.70

Table 8.1: Best parameter values for the different datasets.

In order to remove the influence of the random initialization of the clus-
ters (they are initialized by sampling from the data set, cf. Section 4.2), I
ran each method 20 times for each data set and averaged the number of iter-
ations needed. The standard deviation of the individual results from these
averages is fairly small, though. A shell script with which the experiments
can be repeated is available on my WWW page.5 Note that the results
differ somewhat from the results reported in [Borgelt and Kruse 2003], due
to certain changes of the implementation and the experimental setup.

Note also that the modifications of the update steps only affect the re-
computation of the cluster centers and not the distance computations for
the data points, the latter of which accounts for the greater part of the com-
putational costs of fuzzy clustering. Therefore the increase in computation
time for one iteration is negligible and consequently it is justified to com-
pare the different approaches by simply comparing the number of iterations
needed to reach a given accuracy of the cluster parameters. Hence all result
tables show average numbers of iteration steps.

Table 8.2 shows the results for the fuzzy c-means algorithm (spherical
clusters of equal size). Each column shows the results for a method, each
line the results for a dataset. The most striking observation to be made
about this table is that the analogs of resilient backpropagation and quick
backpropagation almost always increase the number of iterations needed.
Step width expansion, momentum term, and self-adaptive learning rate,
however, yield very good results, in some cases even cutting down the num-
ber of iterations to less than half of what the standard algorithm needs.
Judging from the numbers in this table, the momentum term approach and
the self-adapting learning rate appear to perform best. However, it should

5 http://fuzzy.cs.uni-magdeburg.de/~borgelt/cluster.html.

8.2. ACCELERATION 241

dataset standard expand moment adaptive resilient quick
abalone 3 46.2 31.9 27.5 28.8 56.9 56.2
abalone 6 114.8 72.5 53.1 64.6 87.6 144.8
breast 2 13.2 9.9 11.4 10.6 46.8 13.8
iris 3 26.3 17.8 18.1 16.1 48.1 27.9
wine 3 27.4 20.7 20.6 17.6 52.0 28.9
wine 6 490.2 269.7 112.8 259.4 306.9 430.9

Table 8.2: Results for the fuzzy c-means algorithm.

dataset standard expand moment adaptive resilient quick
abalone 3 51.2 32.5 43.9 50.9 222.9 50.8
abalone 6 140.6 61.8 103.5 139.8 484.8 141.9
breast 2 30.6 21.2 18.7 19.2 83.8 30.6
iris 3 27.1 26.4 26.7 26.6 100.8 27.2
wine 3 32.2 29.1 29.1 29.1 115.9 32.4
wine 6 406.0 359.4 360.6 359.3 failed 384.8

Table 8.3: Results for the axes-parallel Gustafson–Kessel algorithm.

be kept in mind that the best value of the momentum factor β is not known
in advance and that these results were obtained using the optimal value.
Hence the self-adaptive learning rate approach, which does not need such
tuning, has a clear edge over the momentum term approach.

Table 8.3 shows the results for the axes-parallel Gustafson–Kessel algo-
rithm (axes-parallel (hyper-)ellipsoids of equal size) and Table 8.4 the results
for the normal Gustafson–Kessel algorithm (equally sized (hyper-)ellipsoids
in general orientation). Here the picture is basically the same. The analogs
of resilient and quick backpropagation are clear failures (the entry “failed”
means that at least in some runs no stable clustering result could be reached
even with 10000 iterations). Step width expansion, momentum term, and
self-adaptive learning rate, however, yield very good results. In particular
for the normal Gustafson–Kessel algorithm the momentum term approach
seems to be the clear winner. However, it has to be taken into account
that the optimal value of the momentum factor β is not known in advance.
Therefore one should prefer the self-adaptive learning rate approach, which
consistently leads to significant gains in the number of iterations.

242 CHAPTER 8. EXPERIMENTS AND APPLICATIONS

dataset standard expand moment adaptive resilient quick
abalone 3 146.3 83.2 63.0 74.8 205.2 172.3
abalone 6 268.2 136.5 77.2 135.1 failed 247.7
breast 2 37.8 25.9 24.5 21.1 54.1 37.1
iris 3 44.7 26.9 28.4 27.1 308.8 55.6
wine 3 333.8 174.4 92.2 175.0 333.8 325.4
wine 6 358.6 187.5 103.0 185.8 358.6 339.1

Table 8.4: Results for the normal Gustafson–Kessel algorithm.

Summarizing, one has to say that the experimental results show that
there is indeed some potential for accelerating the clustering process, espe-
cially if a self-adaptive learning rate or a momentum term are used. With
these approaches the number of iterations needed until convergence can
sometimes be reduced to less than half the number of the standard ap-
proach. I recommend the self-adaptive learning rate, but the step width
expansion and the momentum term approach also deserve strong interest,
especially, because they are so simple to implement. Their drawback is,
however, that the best value for their parameter depends on the dataset.

8.3 Clustering Document Collections

In the area of information retrieval [Frakes and Baeza-Yates 1992, Jones
1997, Baeza-Yates and Ribeiro-Neto 1999, Grossman and Frieder 2004] one
often faces the task to structure a given document collection with the aim
of finding groups of similar documents. Such a grouping, once it is deter-
mined, can be used to guide a user in his/her search for documents that are
relevant for a given task. One way to approach this task is to represent the
given text documents by numerical feature vectors that are clustered using,
for example, one of the methods discussed in this thesis. In the following
I describe experiments in this direction, which were presented first in the
sequence of papers [Borgelt and Nürnberger 2004a, Borgelt and Nürnberger
2004b, Borgelt and Nürnberger 2004c]. In these papers we explored whether
cluster specific variances (axes-parallel ellipsoids) are useful when clustering
document collections, to what extent term re-weighting influences the clus-
tering performance, and whether initial—global or cluster specific—term
re-weighting can be used to bias or improve the performance.

8.3. CLUSTERING DOCUMENT COLLECTIONS 243

8.3.1 Preprocessing the Documents

For both searching in large document collections as well as for structuring
them it is necessary to preprocess the documents and to store the resulting
features in a data structure that is more appropriate for further process-
ing than unstructured text files. The currently predominant approaches to
document representation are the vector space model [Salton et al. 1975],
the probabilistic model [Robertson 1977], the logical model [Rijsbergen
1986], and the Bayesian network model [Turtle and Croft 1990].

Although it lacks explicit semantic information and treats a document
as a bag of words rather than a sequence of words, the vector space model
allows for very efficient analysis of huge document collections due to its
simple structure. As a consequence it is used in most of the currently avail-
able document retrieval systems. The most popular retrieval methods that
are based on this model are—besides the direct use of the vector descrip-
tion in an inverse index—latent semantic indexing (LSI) [Deerwester
et al. 1990], random projection [Kaski 1998] and independent com-
ponent analysis (ICA) [Isbell and Viola 1998]. In the following I briefly
describe the vector space model as well as corresponding document encoding
techniques, which are based on filtering and stemming the words appearing
in the documents to encode and on selecting appropriate index terms.

The Vector Space Model

In the vector space model text documents are represented as vectors in an
m-dimensional space. That is, each documentDj , 1 ≤ j ≤ n, is described by
a numerical feature vector ~xj = (xj1, . . . , xjm). Each element of this vector
represents a word of the document collection, i.e., the size of the vector is
given by the total number m of words in the complete document collection.
For a given document Dj , 1 ≤ j ≤ n, the so-called term weight xjl

specifies the importance of the word Wl, 1 ≤ l ≤ m, in this document w.r.t.
the given document collection. The general idea is to assign large weights
to terms that are frequent in relevant documents but rare in the whole
document collection [Salton and Buckley 1988]. To achieve this, the weight
of a term Wl in document Dj is computed as the term frequency tfjl

times the inverse document frequency idf l, where the former is simply
the number of occurrences of term Wl in document Dj . The latter is defined
as idf l = log(n

nl
), where n is the size of the document collection and nl,

1 ≤ l ≤ m, is the number of documents that contain term Wl, Hence it
describes the specificity of term Wl within the document collection.

244 CHAPTER 8. EXPERIMENTS AND APPLICATIONS

This weighting scheme has meanwhile proven its usability in practice.
However, if used directly in this simple form, the vectors ~xjl may have differ-
ent lengths for different documents. In particular, the longer a document—
that is, the more words it contains—the more often a given term can appear
in it. As a consequence the frequency and thus the weight of this term are
higher, which inevitably increases the length of the representing vector. This
can lead to the undesired effect that in retrieval systems longer documents
have better chances of being retrieved than shorter ones—independent of
their actual relevance for a given task. To counteract this undesired behav-
ior, [Salton et al. 1994] add a length normalization factor, which ensures
that all documents have equal chances of being retrieved independent of
their lengths. That is, the term weights are computed as

xjl =
tfjl log n

nl√∑m
k=1

(
tfjk log n

nk

)2 .
Another way of justifying the introduction of this normalization factor is
through the most common measure for the similarity of two documents,
which is the cosine of the angle between the two vectors representing the
documents. Obviously, this cosine is 1 if the two documents are equivalent
w.r.t. the set of considered terms (same or proportional term frequency for
all words) and thus the two vectors representing them point into the same
direction. On the other hand, it is 0 if the two documents do not have any
word in common and thus the two vectors are perpendicular to each other.
This behavior captures our intuition of document similarity fairly well.

The cosine of the angle between two vectors is most easily computed
through the scalar product of these vectors, that is, as

cosϕ(~xj , ~xk) =
~x>j ~xk

|~xj | · |~xk|
.

Hence it is advisable to normalize the vectors to length 1, because then the
division by the lengths of the two vectors can be eliminated. Normalizing the
vectors can also be seen as a preprocessing step to accelerate computations,
without affecting the result of retrieval or clustering.

Note that for normalized vectors the scalar product is basically equiva-
lent to the Euclidean distance, since it is [Borgelt and Nürnberger 2004a]

~x>j ~xk

|~xj | · |~xk|
= 1− 1

2
d2

(
~xj

|~xj |
,
~xk

|~xk|

)
.

8.3. CLUSTERING DOCUMENT COLLECTIONS 245

Strangely enough, this simple geometrical relation seems to have been over-
looked by many researchers, as even special versions of, for example, the
fuzzy c-means algorithm have been developed that are based a scalar prod-
uct derived distance [Klawonn and Keller 1999, Mendes and Sacks 2001,
Frigui and Nasraoui 2003]. However, due to the above relation between the
scalar product and the Euclidean distance, no such special consideration is
actually necessary. Effectively, the mentioned version of the fuzzy c-means
algorithm only introduces a factor of

√
2 into the distance measure, since

the papers cited above define (for vectors normalized to length 1)

d2
doc(~xj , ~xk) = 1− ~x>j ~xk.

It has to be conceded, though, that in addition to a scalar product based
distance measure the corresponding, so-called hyperspherical fuzzy clus-
tering algorithm introduces the constraint that the center vectors of the
clusters must have unit length, so that they can be treated in the same way
as the vectors representing documents. However, it should be immediately
clear that basically the same result may also be obtained by using the nor-
mal update rule for the cluster centers and renormalizing them to length 1
afterwards. Indeed, a formal derivation (carried out by incorporating the
constraint into the objective function with the help of a Lagrange multiplier
[Mendes and Sacks 2001, Mendes and Sacks 2003], also cf. Section 5.2.3 for
similar cases) leads to exactly this update rule: compute the weighted sum
of the data points and normalize the result to length 1. As a consequence,
we may conclude that the improvements of the clustering results reported
by [Mendes and Sacks 2001] are due to the fact that the cluster centers are
forced to lie on the m-dimensional (hyper-)sphere with radius 1, and not
due to real changes of the objective function or the update rules.

Another point in favor of the scalar product based distance, which can
be important in practice, is that it can be much faster to compute. The
main reason is that vectors representing documents are usually sparse (that
is, differ from zero in only few elements), because only a (small) subset of
all words will appear in a given document. If this is exploited by a sparse
representation of the vectors, only a small subset of all coordinates may have
to be accessed in order to compute a needed distance. On the other hand, it
may be a disadvantage of the scalar product based distance that it enforces
spherical clusters. For ellipsoidal clusters we need the Mahalanobis distance,
which is a generalization of the Euclidean distance (cf. Section 2.1).

For a further, more detailed discussion of the vector space model and
term weighting schemes, in particular for information retrieval purposes,
see, for instance, [Salton et al. 1975, Salton and Buckley 1988, Greiff 1998].

246 CHAPTER 8. EXPERIMENTS AND APPLICATIONS

Filtering and Stemming

It is usually advisable to try to reduce the number of used terms, that is,
the size of the dictionary of words describing the documents, and thus to
minimize the dimensionality of the vector space description of the document
collection. Such a reduction is possible, because usually only a (small)
subset of all terms appearing in the documents of the given collection are
relevant for characterizing or for distinguishing them. The main techniques
for this task are filtering so-called stop words and stemming.

The idea of stop word filtering is to remove words that, in general,
bear little or no content information, like articles, conjunctions, prepositions
etc. Eliminating such words is harmless, because they appear frequently in
basically every text document and thus give no hints how we may structure
them. More generally, any word that occurs extremely often in the whole
text collection can be assumed to provide only little information that can be
used to distinguish between the documents [Frakes and Baeza-Yates 1992].
For example, if all texts in the given collection are about a specific subject
area, it is to be expected that basically all texts contain certain words that
describe key concepts of this subject area. These words, however, are of
little use when it comes to structuring the documents, since they only tell
us that all texts under consideration are from this subject area—a redundant
information. Similarly, words that occur very rarely are likely to be of no
(statistical) relevance and thus may be removed from the dictionary [Frakes
and Baeza-Yates 1992]. If only very few documents (say, less than five)
contain a given word, this word is useless for finding broader structures in
the data: the subset of documents containing it is simply too small.

Stemming methods try to build the basic forms of words, i.e., strip
the plural “s” from nouns, the “ing” from verbs, or other affixes. Linguis-
tically, a stem is a natural group of words with the same (or very similar)
meaning. After the stemming process, every word is represented by its stem
in the vector space description. For example, the stem “notifi” stands for
words like “notify”, “notifies”, “notified”, “notifying”, “notification” etc.
As a consequence, a feature xjl of a document vector ~xj now describes a
group of words rather than a single word and thus the vector length can be
reduced considerably. A more sophisticated analysis would even consider
irregularities, especially in verb forms, and map, for example, “went” to the
stem “go”. A well-known and widely applied stemming algorithm has been
proposed originally by [Porter 1980]. It consists of a set of production rules
to iteratively transform (English) words into their stems. Although it is far
from perfect, it has the advantage of being simple and thus efficient.

8.3. CLUSTERING DOCUMENT COLLECTIONS 247

Index Term/Keyword Selection

To further reduce the number of terms used in the vector description of
a document collection, indexing or keyword selection algorithms may be
applied (see, for example, [Deerwester et al. 1990, Witten et al. 1999]). In
this case only the selected keywords are used to describe the documents,
which not only speeds up the processing, but can also enhance the quality
of the description, provided that appropriate keywords are chosen.

A common approach is to select the keywords based on (statistical)
measures that try to capture how well a word can distinguish between doc-
uments. An example of such a measure the so-called entropy of a word Wl,
1 ≤ l ≤ m, which is defined as [Lochbaum and Streeter 1989]

Hl = 1 +
1

log2 n

n∑
j=1

pjl log2 pjl with pjl =
tfjl∑n

k=1 tfkl
,

where tfjl is the frequency of the word Wl in document Dj , 1 ≤ j ≤ n (see
above). Unfortunately, the name “entropy” for this measure, although it is
common in information retrieval, is a bit misleading, since it differs from the
so-called Shannon entropy [Shannon 1948] of the probability distribution
of the word Wl over the document collection. Shannon entropy is actually
only the negated sum appearing in the above formula6:

H
(Shannon)
l = −

n∑
j=1

pjl log2 pjl.

However, by dividing the Shannon entropy by log2 n, it is set in relation to
the maximally possible Shannon entropy, which results for a uniform distri-
bution (all probabilities pjl = 1

n), and thus normalized to the range [0, 1].
In addition, it is subtracted from 1, so that high rather than low entropy
values Hl indicate good keywords. (Note that low entropy means high Shan-
non entropy, which in turn means that the word occurs with roughly the
same frequency in all documents and is thus of little value for discriminating
between documents. High entropy, on the other hand, means low Shannon
entropy, which in turn means that the word is frequent in some, but in-
frequent in other documents and hence distinguishes well between them.)
Intuitively, the entropy states how well a word is suited to separate docu-
ments from the collection by a keyword search. It may also be seen as a
measure of the importance of a word in the given domain context.

6A detailed explanation of the ideas underlying Shannon entropy and its connection
to coding theory can be found in [Borgelt and Kruse 2002].

248 CHAPTER 8. EXPERIMENTS AND APPLICATIONS

Given such a quality measure for words, one may select keywords by
simply ranking all words that could possibly be used (after stop word filter-
ing and stemming) and selecting the m top ranked ones, where m is to be
chosen by a user. However, this usually favors rare words, since they tend
to have a higher entropy, independent of their actual relevance. Hence a
better approach consists in selecting words that have a high entropy rela-
tive to their inverse document frequency, thus penalizing infrequent words.
Empirically this approach has been found to yield a set of relevant words
that are well suited to serve as index terms [Klose et al. 2000].

However, even such a strategy does not necessarily ensure that the set
of selected keywords covers the document collection well. Therefore one
should also take care to select index terms in such a way that for each
document there are at least some terms actually occurring in it. This is
particularly important if the number of keywords that shall be selected is
limited. Otherwise too many documents will be represented by null vectors,
because none of the chosen index terms appears in them.

In order to obtain a fixed number of index terms that appropriately
cover the documents, we applied a greedy strategy when preparing the doc-
uments for the experiments described below [Borgelt and Nürnberger 2004a,
Borgelt and Nürnberger 2004b, Borgelt and Nürnberger 2004c]: from the
first document (w.r.t. an arbitrary, but fixed order) in the collection select
the term with the highest relative entropy as an index term. Mark this
document and all other documents containing this term. From the first of
the remaining unmarked documents select again the term with the highest
relative entropy as an index term. Again mark this document and all other
documents containing this term. Repeat this process until all documents are
marked, then unmark all of them and start over. The process is terminated
when the desired number of index terms have been selected.

8.3.2 Clustering Experiments

The problem of finding descriptive weights for terms in document collections
in order to improve retrieval performance has been studied extensively in
the past (see, for instance, [Salton et al. 1975, Salton and Buckley 1988,
Greiff 1998]). To achieve an improved classification or clustering perfor-
mance for a given text collection, it is usually necessary to select a subset of
all describing features (that is, keywords) and/or to re-weight the features
w.r.t. a specific classification or clustering goal. Consequently, several stud-
ies were conducted in this direction. For example, it was explored how to
select keywords based on statistical and information theoretical measures

8.3. CLUSTERING DOCUMENT COLLECTIONS 249

Label Dataset Category Associated Theme
A Commercial Banks Banking & Finance
B Building Societies Banking & Finance
C Insurance Agencies Banking & Finance
D Java Programming Languages
E C / C++ Programming Languages
F Visual Basic Programming Languages
G Astronomy Science
H Biology Science
I Soccer Sport
J Motor Racing Sport
K Sport Sport

Table 8.5: Categories and Themes of a benchmark data set of web pages.

[Foreman 2003, Mladenic 2001, Yang and Pedersen 1997] or how to combine
clustering and keyword weighting techniques [Frigui and Nasraoui 2003] in
order to improve the clustering performance. With the clustering exper-
iments that are reported below we7 investigated the effects of global and
cluster-specific term weighting in clustering [Borgelt and Nürnberger 2004a,
Borgelt and Nürnberger 2004b, Borgelt and Nürnberger 2004c]. Cluster-
specific term weights were introduced through (adaptable or precomputed)
cluster-specific variances to describe the shape of the cluster, while global
term weights were introduced through a re-scaling of the vector space.

Web Page Collection

For our experimental studies we chose the collection of web page documents
that has also been used in [Sinka and Corne 2002].8 This data set consists
of 11,000 web pages that are classified into 11 categories each of which
contains about 1,000 web documents. In addition, the categories are also
grouped into four disjoint themes, namely Banking & Finance, Programming
Languages, Science, and Sport, which are assigned as shown in Table 8.5.
[Sinka and Corne 2002] reported baseline classification rates using c-means
clustering and different preprocessing strategies (alternatively stop word
filtering and/or stemming, different numbers of index terms).

7The pronoun “we” used in the following refers to Borgelt and Nürnberger.
8This web page collection is available for download at the URL

http://www.pedal.rdg.ac.uk/banksearchdataset/.

250 CHAPTER 8. EXPERIMENTS AND APPLICATIONS

In order to obtain a well-covering, but nevertheless compact vector space
description of this document collection, we first applied the preprocessing
methods described in the preceding section. After stemming and stop word
filtering we had 163,860 different words. This set was further reduced by
removing terms that are shorter than 4 characters and that occur less then
15 times or more than 11, 000/12 ≈ 917 times in the whole collection. With
the latter condition we tried to ensure that in the describing vectors no
words are referred to that perfectly separate one class from another. Such
words would make clustering, in a way, too “easy”, with the consequence
that the results could convey a wrong impression about the quality of the
approaches. From the remaining 10,626 words we chose 400 words by ap-
plying the greedy index term selection approach described in the preceding
section. For our clustering experiments we selected finally subsets of the
50, 100, 150, ..., 350, 400 most frequent words in the data subset to be clus-
tered. Based on these words we determined vector space descriptions for
each document (see the preceding section for explanations) that we used in
our clustering experiments. All document vectors were normalized to unit
length (after selecting the subset of keywords).

For our experiments we used the same data sets and clustering tasks
as in [Sinka and Corne 2002]. That is, we clustered the union of the se-
mantically fairly dissimilar categories A and I, and the semantically more
similar categories B and C. The average reclassification accuracies reported
in [Sinka and Corne 2002] using stemming, stop word filtering, and hard
c-means clustering on the resulting vector representation are 67.5% for data
sets A and I and 75.4% for data sets B and C.9 In a third set of experi-
ments we used all classes and tried to find clusters describing the four main
themes, i.e. banking, programming languages, science, and sport.

The algorithms we applied are (hard) c-means clustering, fuzzy c-means
clustering and (fuzzy) learning vector quantization.10 The (fuzzy) learning
vector quantization algorithm updated the cluster parameters once for every
100 documents with the approach described in Section 5.3.2. To evaluate
the clustering results we always applied the cluster model as a nearest pro-
totype or maximum membership classifier (cf. Section 2.5) and computed
the reclassification accuracy (cf. Section 7.2 for details).

9These results are surprising, since A and I are much easier to separate than B and C.
Maybe the sets of keywords chosen by [Sinka and Corne 2002] were not well suited.

10All experiments were carried out with a program written in C and compiled with
gcc 3.3.3 on a Pentium 4C 2.6GHz system with 1GB of main memory running S.u.S.E.
Linux 9.1. The program and its sources can be downloaded free of charge at the already
mentioned URL http://fuzzy.cs.uni-magdeburg.de/˜borgelt/cluster.html.

8.3. CLUSTERING DOCUMENT COLLECTIONS 251

Clustering using Adaptable Variances

In a first set of experiments we ran the clustering algorithms on a stan-
dard vector space description of the documents as it resulted from the pre-
processing described above (experiments with a rescaled vector space are
discussed below). We executed the algorithms with and without cluster
centers normalized to unit length, with and without variances (i.e., spher-
ical clusters and axes-parallel ellipsoids—diagonal covariance matrices—of
equal size), and with the inverse squared distance (special Cauchy function)
or the Gaussian function for the activation/membership degree. For the
experiments with adaptable variances we restricted the maximum ratio of
the variances (cf. Section 6.1.2) to 1.22 : 1 = 1.44 : 1 if cluster centers were
normalized to length 1, and to a maximum ratio of 82 : 1 = 64 : 1 for un-
normalized cluster centers. In preliminary runs these values had produced
the best average results over all three clustering tasks described above.11

The results for some parameterizations of the algorithms are shown in
Figures 8.6 to 8.8. All results are the mean values of ten runs, which dif-
fered in the initial cluster positions and the order in which documents were
processed. The dotted horizontal lines show the default accuracy (that is,
the accuracy that is obtained if all documents are assigned to the majority
class). The grey horizontal lines in each block, which are also marked by
diamonds to make them more easily visible, show the average reclassifica-
tion accuracy in percent (left axis, computed from a confusion matrix by
permuting the columns so that the minimum number of errors results, cf.
Section 7.2), while the black crosses indicate the performance of individual
experiments. The grey dots and lines close to the bottom show the average
execution times in seconds (right axis), while the smaller grey dots and lines
at the top of each diagram show the performance of a näıve Bayes classifier
trained on a labeled version of the data set. The latter can be seen as an
upper limit, while the default accuracy is a lower baseline.

The diagrams in the top row of each figure show the results for spher-
ical clusters (fixed uniform variances) with cluster centers normalized to
unit length (cf. Section 8.3.1 for a discussion of this approach). In this
case we used a fixed cluster radius of 1

3 and a standard Gaussian member-
ship/activation function.12 Results obtained with the membership/activa-

11For individual experiments, however, other values seem to be better. For example,
for unnormalized centers and categories A versus I a larger maximum ratio than 82 : 1 is
preferable, while for categories B versus C a lower maximum ratio yields better results.

12Note that with an inverse squared distance membership/activation, the radius has
no effect, because of the normalization to sum 1.

252 CHAPTER 8. EXPERIMENTS AND APPLICATIONS

c-means fuzzy c-means vector quantization
100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

Figure 8.6: Reclassification accuracy over number of keywords on commer-
cial banks (category A) versus soccer (category I). Top row: normalized
centers; bottom row: ditto, but with adaptable variances.

c-means fuzzy c-means vector quantization
100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

Figure 8.7: Reclassification accuracy over number of keywords on building
companies (category B) versus insurance agencies (category C). Top row:
normalized centers; bottom row: ditto, but with adaptable variances.

8.3. CLUSTERING DOCUMENT COLLECTIONS 253

c-means fuzzy c-means vector quantization
100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

40

32

24

16

8

0

100

80

60

40

20

0 100 200 300 400

40

32

24

16

8

0

100

80

60

40

20

0 100 200 300 400

40

32

24

16

8

0

Figure 8.8: Reclassification accuracy over number of keywords on major
themes (four clusters). Top row: normalized centers; bottom row: ditto,
but with adaptable variances. (Note the time scale in the bottom row!)

tion computed as the inverse squared distance lead to considerably worse
results for fuzzy clustering and (fuzzy) learning vector quantization. There-
fore I omit an explicit discussion of these results here.

The diagrams show that the introduction of variances increases the per-
formance of fuzzy c-means clustering in all cases. However, the performance
for (hard) c-means clustering is only improved for the two class problem
with data sets A and I and the four class problem, while the performance
of (fuzzified) learning vector quantization is minimally improved for the se-
mantically more similar data sets B and C and the four class problem. For
the data sets A and I, however, performance deteriorated significantly.

It is remarkable that in several experiments we carried out (some of
which are not reported explicitely here) we found that using ellipsoidal
clusters often slightly deteriorates performance if the cluster centers are
normalized (see Figures 8.6 to 8.8), but slightly improves performance for
free cluster centers (i.e., no normalization to unit length, results not shown
in diagrams). Furthermore, shape regularization (as it was described in
Section 6.1.2) was mandatory in all experiments with adaptable variances.
Without such regularization, the clusters tended to degenerate into very
long and thin ellipsoids, leading to useless cluster models.

254 CHAPTER 8. EXPERIMENTS AND APPLICATIONS

The diagrams also show that for all data sets the clustering process of
fuzzy c-means clustering and (fuzzy) learning vector quantization is much
more stable than that of (hard) c-means clustering. (Although for the se-
mantically similar data sets B and C all methods seem to switch between
two strong local minima, the variation around the corresponding reclassi-
fication accuracies is considerably smaller for the fuzzy approaches.) This
observation confirms general experience with fuzzy clustering approaches
compared to their hard or crisp counterparts, namely that they are more
robust and less likely to get stuck in local optima.

It may be a little surprising that learning vector quantization not only
outperforms fuzzy clustering w.r.t. the execution time, but can even compete
with (hard) c-means clustering in this respect. Note, however, that the
execution time curves are less smooth for (hard) c-means clustering due to
the crisp behavior of the algorithm, which leads to a considerable variation
in the number of update iterations needed until convergence. Therefore
individual runs of hard c-means may be considerably faster while others
may be considerably slower. Note also that the execution times level off
for 350 and 400 words for all algorithms in Figures 8.6 and 8.7. This effect
occurs, because only 316 and 300 words appear in these document subsets,
respectively, while the remaining words occur only in other categories than
A and I or B and C, respectively.

Keyword Weighting

The experiments reported above indicate that using cluster prototypes with
adaptable variances (which may be seen as cluster-specific keyword weights)
can sometimes improve the clustering performance, though only slightly. In
the following I consider a related approach, in which term weights are not
found by the clustering algorithm through the adaptation of variances, but
are introduced into the clustering process by external considerations. Such
externally determined weights may be better able to provide the necessary
information for a good division into clusters, because they can exploit, for
example, a user’s preferences about how to structure the documents. Term
weights determined in this way are either used as (fixed) cluster-specific
variances or as a means to rescale the document space.

For our experiments we determined term weights from the labeled docu-
ments (that is, the data points with their associated category), because our
goal is a cluster model that captures the categories well. The term weights
were computed as information gain or the χ2 measure between presence or
absence of a term in a document and the associated classes.

8.3. CLUSTERING DOCUMENT COLLECTIONS 255

Information gain (also known as mutual (Shannon) information
or (Shannon) cross entropy), which is very popular in decision tree in-
duction [Quinlan 1986, Quinlan 1993], measures the average or expected
entropy reduction of the probability distribution over the classes that re-
sults from observing the value of a (nominal) attribute.13 In text catego-
rization one considers one binary attribute for each term, which indicates
whether the term is present in a document or not. Intuitively, information
gain then measures how well a term can be used to classify a document.
Formally, the information gained from a term Wl, 1 ≤ l ≤ m, about a given
set {1, . . . , s} of s classes is defined as

Igain(Wl) = −
s∑

k=1

pZ(k) log2 pZ(k)

+pXl
(1)

s∑
k=1

pZ|Xl
(k|1) log2 pZ|Xl

(k|1)

+pXl
(0)

s∑
k=1

pZ|Xl
(k|0) log2 pZ|Xl

(k|0),

where Z is a random variables that has the possible classes as its values,
while Xl is a random variable that indicates whether the term Wl is con-
tained in a given document (Xl = 1) or not (Xl = 0). The information is
the larger, the better a term is suited to distinguish between the classes.

The χ2 measure, on the other hand, which is well known in statistics,
but has also been used for decision tree induction [Breiman et al. 1984],
uses the difference of expected and observed occurrences of attributes (here:
terms) to measure the statistical significance of a (nominal) attribute (here:
a term) with respect to another (nominal) attribute (here: the class). The
χ2 measure can be computed based on the contingency table of a term Wl,
1 ≤ l ≤ m, and the classes k, 1 ≤ k ≤ s. Formally, it can be defined as

χ2(Wl) = n

s∑
k=1

(
(pZ(k)pXl

(0)− pXl,Z(0, k))2

pZ(k)pXl
(0)

+
(pZ(k)pXl

(1)− pXl,Z(1, k))2

pZ(k)pXl
(1)

)
,

where n is the total number of documents in the collection.
13A detailed discussion of the information gain measure and its interpretation can be

found, for example, in [Borgelt and Kruse 2002]. The same holds for the χ2 measure.

256 CHAPTER 8. EXPERIMENTS AND APPLICATIONS

Intuitively, pXl,Z(x, k), 1 ≤ k ≤ s, is the probability that a document
in class k contains the term Wl (x = 1) or not (x = 0). pZ(k)pXl

(x) is the
same probability, but under the assumption that the events that a document
belongs to class k and that the word Wl occurs in it are independent. Hence
the χ2 measure assesses how much the true joint distribution differs from an
independent one by summing the (weighted) pointwise squared differences
of the two distributions. As a consequence, the χ2 measure is the larger,
the more the two distributions differ. Thus, like information gain, it is the
larger, the better a term is suited to distinguish between the classes.

Rescaling the Document Space

In order to study the effects of keyword weighting, we used information gain
as well as the χ2 measure to compute the “importance” of each of the se-
lected 400 keywords for the classification of a document. These importance
values were then used to re-weight the terms in each document according
to the simple linear transformation

x′jl = xjl · (Q(Wl) + o),

where the measure Q is either Igain or χ2. The offset o is computed as

o =
max m

l=1Q(Wl)− r ·min m
l=1Q(Wl)

r − 1
,

where r is a user-specified maximum ratio of the scaling factors for differ-
ent terms and m is the total number of terms considered. From several
preliminary experiments we conducted it seems that values of r must be
small (close to 1) in order not to spoil the performance completely. For the
experiments reported below we chose r = 1.5. After the re-weighting the
document vectors are re-normalized to unit length, resulting in a re-scaling
of the document space with respect to the importance of a keyword.

Since the results using the χ2 measure are almost identical to those
obtained with information gain, I confine myself to the experiments with
information gain. The results of these experiments are shown in the top
rows of Figures 8.9 to 8.11. As can be seen, no gains result in any of the
cases (compared to Figures 8.6 to 8.8). The accuracy rather deteriorates
slightly, an effect that gets stronger with higher values of r as we observed
in other experiments. Hence we can conclude that re-scaling the document
space in the way described does not lead to an improved performance.

8.3. CLUSTERING DOCUMENT COLLECTIONS 257

c-means fuzzy c-means vector quantization
100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

5

4

3

2

1

0

100

80

60

40

20

0 100 200 300 400

5

4

3

2

1

0

100

80

60

40

20

0 100 200 300 400

5

4

3

2

1

0

Figure 8.9: Reclassification accuracy over number of keywords on commer-
cial banks (category A) versus soccer (category I). Top row: document space
rescaled, spherical clusters; bottom row: fixed cluster-specific variances.

c-means fuzzy c-means vector quantization
100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

2

1

0

100

80

60

40

20

0 100 200 300 400

5

4

3

2

1

0

100

80

60

40

20

0 100 200 300 400

5

4

3

2

1

0

100

80

60

40

20

0 100 200 300 400

5

4

3

2

1

0

Figure 8.10: Reclassification accuracy over number of keywords on building
companies (B) versus insurance agencies (C). Top row: document space
rescaled, spherical clusters; bottom row: fixed cluster-specific variances.

258 CHAPTER 8. EXPERIMENTS AND APPLICATIONS

c-means fuzzy c-means vector quantization
100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

20

16

12

8

4

0

100

80

60

40

20

0 100 200 300 400

40

32

24

16

8

0

100

80

60

40

20

0 100 200 300 400

40

32

24

16

8

0

100

80

60

40

20

0 100 200 300 400

40

32

24

16

8

0

Figure 8.11: Reclassification accuracy over number of keywords on major
themes (four clusters). Top row: document space rescaled, spherical clus-
ters; bottom row: fixed cluster-specific variances.

Cluster-Specific Keyword Weights

Instead of using information gain or the χ2 measure to rescale the doc-
ument space, one may also add shape parameters (i.e., variances) to the
cluster prototypes. These variances are then initialized according to the
“importance” of a term. This has the advantage that term weights can be
cluster-specific, since each cluster may use a different set of variances.

To evaluate this approach, we proceeded as follows: in a first step we
clustered the documents with randomly chosen starting points for the cluster
centers (normalized to length 1) and without variances. By evaluating the
confusion matrix of a classification with a nearest prototype classifier based
on the cluster model, we obtained the “best” assignment of classes to these
clusters. Then the cluster prototypes were enhanced with cluster-specific
variances, which were computed as the product of the term frequency in the
class and the information gain or χ2 value of the term w.r.t. a separation
of the class assigned to the cluster from all other classes. The maximum
ratio of the variances was restricted to 1.22 : 1 = 1.44 : 1 (compare the
experiments with adaptable variances reported above). Other values for
this maximum ratio (higher as well as lower) led to worse results. Especially

8.3. CLUSTERING DOCUMENT COLLECTIONS 259

larger values considerably worsened the performance. Finally, in a second
clustering run, these enhanced cluster prototypes were optimized without
changing the variances (only the cluster centers were adapted).

The results of these experiments are shown in the bottom rows of Fig-
ures 8.9 to 8.11. As can be seen when these figures are compared to Fig-
ures 8.6 to 8.8, the cluster-specific variances stabilize the results for the four
cluster problem and—though only very slightly—improve the performance
for the two cluster problems. Thus we can conclude that cluster-specific
variance may provide some means for term weighting. However, the ap-
proach seems to be very sensitive to the parameter settings. Furthermore,
the computational costs are fairly high.

Choosing Initial Cluster Centers

As mentioned in the discussion of the clustering experiments with adapt-
able variances, all clustering methods seem to switch between local minima
depending on the initial cluster centers chosen. This is in fact a well known
clustering problem, especially for the less robust (hard) c-means algorithm,
which is prone to get stuck in local optima easily (cf. Section 5.2.2). In order
to find means to cope with this problem we studied a simple initialization
approach: for each class we sorted the index terms w.r.t. the product of the
term frequency in the class and the information gain of the term w.r.t. a
separation of the class from all other classes (see the preceding paragraph).
Then we selected the first k words in these lists and initialized the cluster
center using the same value for each selected word and zero for all others,
finally normalizing the vector to unit length. Even for fairly small values of
k (i.e. few selected words), this initialization results in a very stable cluster-
ing performance. Hence we can conclude that known describing keywords
can be used to initialize the clustering process. In this way undesired local
minima may be avoided and the results may be stabilized.

Keyword Extraction for Cluster Labeling

Once a set of documents are clustered, one would like to obtain an expres-
sive description of the found clusters. A simple approach in this direction
is to select keywords that characterize a cluster well. In order to obtain
such characteristic terms for each cluster, we compared different keyword
rankings for several clustering experiments on the four major themes using
200 terms. I selected a typical result for this brief discussion. In Table 8.6
the terms are sorted descendingly by their information gain Igain(Wl) w.r.t.

260 CHAPTER 8. EXPERIMENTS AND APPLICATIONS

the found clusters (second column). Columns 3 to 6, each of which corre-
sponds to a cluster, show the probability that term Wl, 1 ≤ l ≤ m, appears
in the corresponding cluster, with the highest probability per row set in
bold face. Going down a column and collecting the highlighted terms yields
a ranked keyword list for the corresponding cluster. Using χ2(Wl) for the
ranking leads to very similar results and thus I omit a separate table.

As an alternative, Table 8.7 shows the keyword ranking obtained by
selecting the terms with the highest weights (largest center coordinates) for
each cluster prototype. As can be seen, the order of the keywords is very
similar to that of Table 8.6 (the rank differences are fairly small, at least in
the shown top part of the list). Thus, to describe a cluster the terms can
simply be selected from an ordered list of the center coordinates of each
cluster, which is, of course, much more efficient than the computation of
an information measure. At least for this example, the descriptive quality
seems to be very similar.

8.3.3 Conclusions

The experiments with adaptable variances [Borgelt and Nürnberger 2004a,
Borgelt and Nürnberger 2004b] show that fuzzy clustering and (fuzzy) learn-
ing vector quantization with shape parameters, as it was developed in Sec-
tion 5.3.3, can be useful for clustering collections of documents. The latter
leads to shorter execution times and may be even slightly more robust than
fuzzy clustering, which, in turn, is known to be considerably more robust
than crisp clustering. In addition, (fuzzy) learning vector quantization en-
ables “online” clustering, since only a fraction of the documents is needed
for each update. Shape regularization, as it was developed in Section 6.1.2,
turned out to be mandatory in this application domain.

The experiments concerning term weighting [Borgelt and Nürnberger
2004b, Borgelt and Nürnberger 2004c] show that including prior informa-
tion about the “importance” or “goodness” of a keyword for a desired class
or cluster can, in principle, improve the clustering performance. However,
it is fairly difficult to find a good way of scaling the documents or enhanc-
ing the cluster prototypes in an appropriate way. Scaling the document
space does not yield any improvement at all. On the other hand, cluster-
specific variances derived from the “importance” of index terms can slightly
improve and stabilize the clustering performance. However, the gains are
marginal and the approaches seem to be fairly sensitive to parameter set-
tings. The most substantial gains, at least w.r.t. robustness, result from an
initialization of the cluster centers w.r.t. the importance of keywords.

8.3. CLUSTERING DOCUMENT COLLECTIONS 261

term W Igain(W) p(W |1) p(W |2) p(W |3) p(W |4)
footbal 0.143 0.001 0.299 0.007 0.004
championship 0.120 0.001 0.242 0.001 0.002
galaxi 0.118 0.003 0.002 0.001 0.270
repay 0.112 0.004 0.000 0.212 0.000
genet 0.106 0.003 0.005 0.002 0.253
season 0.100 0.011 0.277 0.018 0.027
theori 0.094 0.017 0.012 0.004 0.266
applet 0.089 0.178 0.001 0.001 0.004
pension 0.087 0.004 0.004 0.177 0.001
astronom 0.084 0.002 0.003 0.000 0.196
energi 0.080 0.010 0.022 0.009 0.249
premium 0.080 0.006 0.006 0.183 0.008
button 0.080 0.234 0.018 0.030 0.011
sequenc 0.079 0.049 0.018 0.003 0.254
borrow 0.078 0.006 0.005 0.180 0.013
detect 0.076 0.073 0.005 0.005 0.235
telescop 0.076 0.003 0.003 0.003 0.193
cosmolog 0.075 0.003 0.002 0.000 0.178
coach 0.074 0.001 0.173 0.008 0.003
distanc 0.074 0.012 0.058 0.005 0.239
chequ 0.063 0.005 0.005 0.140 0.001
arrai 0.057 0.148 0.009 0.001 0.077
script 0.055 0.150 0.005 0.010 0.013
javascript 0.052 0.147 0.002 0.016 0.017
browser 0.051 0.180 0.011 0.025 0.050
gross 0.050 0.004 0.012 0.134 0.015
activex 0.050 0.109 0.001 0.002 0.002
liabil 0.050 0.005 0.006 0.123 0.006
surfac 0.050 0.020 0.028 0.004 0.178
default 0.049 0.167 0.009 0.030 0.020
input 0.049 0.157 0.016 0.008 0.053
purchas 0.048 0.035 0.035 0.186 0.019
...

...
...

Table 8.6: Table of keywords ordered by information gain (second column).
The values in columns 3 to 6 are the probabilities that the term W appears
in the given cluster c, c ∈ {1, 2, 3, 4}.

262 CHAPTER 8. EXPERIMENTS AND APPLICATIONS

term W µ1W

applet 0.592
button 0.331
javascript 0.319
script 0.263
browser 0.188
password 0.153
thread 0.150
arrai 0.148
...

...

term W µ2W

footbal 0.723
coach 0.329
championship 0.298
season 0.242
david 0.132
basketbal 0.128
round 0.122
scotland 0.100
...

...

term W µ3W

repay 0.495
borrow 0.324
discount 0.312
pension 0.281
gross 0.226
chequ 0.225
premium 0.222
purchas 0.194
...

...

term W µ4W

galaxi 0.626
genet 0.436
sequenc 0.342
theori 0.181
distanc 0.171
cosmolog 0.170
telescop 0.164
energi 0.156
...

...

Table 8.7: Tables of keywords for each cluster obtained by sorting the terms
of each cluster prototype by their weight (center coordinate).

Chapter 9

Conclusions
and Future Work

The study of prototype-based clustering and classification methods carried
out in this thesis showed that these methods can be organized into a nicely
uniform framework. Although this possibility was widely recognized, a rigid
and comprehensive exposition, which not only lists a variety of related ap-
proaches, but structures and combines them into a coherent scheme, was still
missing. I hope to have closed this gap with this thesis, even though it is,
of course, impossible to exhaustively cover all prototype-based approaches
to classification and clustering that have been suggested.

The developed framework of prototype-based methods consists of the
following building blocks, which have been treated in individual chapters:

• prototypes: properties and interaction (Chapter 2)
Prototypes are described by a (typical) reference point (that is, a clus-
ter center) and a possibly prototype-specific similarity function that
is defined as a radial function over a distance measure. Prototypes
may be endowed with a size and a shape by using a Mahalanobis dis-
tance that is parameterized with a (cluster-specific) covariance matrix.
Since a cluster model or a classifier consist of several prototypes, their
interaction can have a considerable influence on the model and its
behavior. This interaction as well as the limiting behavior far away
from the cluster centers is controlled by the choice of how membership
degrees to clusters are transformed and normalized. Finally, there are
several methods of turning a cluster model into a classifier.

263

264 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

• objective functions (Chapter 3)
There are two main approaches to define an objective function for clas-
sification and clustering: the objective function may either be based
on (squared) deviations from some reference, or it is defined with the
help of a probabilistic model of the data generation process. This gives
rise to four types of objective functions, two for clustering (minimum
sum of (squared) distances and maximum likelihood of the data set)
and two for classifier construction (minimum sum of (squared) errors
and maximum likelihood ratio). The possibility to categorize the dif-
ferent approaches in this way provides an appealing framework.

• initialization methods (Chapter 4)
Since the optimum of the objective functions for prototype-based clas-
sification and clustering usually cannot be determined directly, one has
to rely on an iterative improvement scheme. In order to obtain a start-
ing point, the prototypes and, for a classifier, the parameters of the
classification functions have to be initialized. For this initialization
there is a ladder of methods, ranging from very simple procedures,
which exploit only very basic information about the given data set, to
highly sophisticated techniques, which can even be seen as clustering
or classifier construction methods in their own right.

• update methods (Chapter 5)
For updating the parameters of the prototypes iteratively, there are
basically three core methods, namely gradient ascent or descent, al-
ternating optimization, and competitive learning1. As emphasized in
Chapter 5, these update methods are closely related and thus give
rise to a transfer of extensions and improvements between them. An
example is the introduction of shape and size parameters into learning
vector quantization as it was developed in Section 5.3.3. In addition,
the three update methods can fairly freely be combined with the four
objective functions, thus adding to the appeal of this framework.

• update modifications (Chapter 6)
By introducing modifications into the update procedure, it is possible
to enhance both the robustness and the speed of the training process.
Outliers in the data set and the increased flexibility of models in which
prototypes are enhanced with size and shape information often lead to
an unstable behavior of the construction procedure. While the former

1Genetic or evolutionary algorithms, which were considered at the end of Chapter 5
as an alternative, turn out to be clearly inferior to these three.

265

can effectively be handled with known approaches like noise cluster-
ing, I introduced shape and size regularizations techniques to cope
with the latter. Furthermore, by transferring more sophisticated neu-
ral network learning techniques to other update schemes, I obtained
effective methods for accelerating the training process.

• evaluation methods (Chapter 7)
Even though the objective functions already provide direct and nat-
ural means to evaluate a trained classifier or cluster model, several
other evaluation measures have been suggested over the years in order
to capture other desirable properties and to validate the results. Fur-
thermore, one has to pay attention to the data on which the trained
models are evaluated, since an evaluation on the training data may
convey a wrong impression due to overfitting effects. The main tech-
niques to cope with this problem are cross validation and resampling.

That the developed improvements mentioned in the above summary are
actually relevant for practical purposes was demonstrated with experimental
results reported in Chapter 8. The quality of the clustering results and the
speed with which they could be obtained is indeed improved considerably.
In the application to document structuring it even turned out that shape
and size regularization are mandatory in this domain, because otherwise the
cluster shapes tend to degenerate in basically every run.

Since the research area of prototype-based methods is vast, with an abun-
dance of slightly different approaches and extensions, it is natural that I
could not treat all possible variations and enhancements that have been
suggested. However, among those that I encountered during the work on
this thesis, I identified mainly three interesting lines, which my future re-
search in this area may follow:

• merging and splitting prototypes
All methods discussed in this thesis keep the number of prototypes
constant during the update process. However, even the old ISODATA
algorithm [Ball and Hall 1966] contains rules to split, merge, add, or
delete prototypes in order to achieve a better fit to the data. Newer
approaches in this direction can be found in [Krishnapuram and Freg
1992, Frigui and Krishnapuram 1997, Stutz 1998]. Such strategies
can be an efficient way to find an appropriate number of prototypes,
even though in their current state these approaches are inferior to
approaches based on cross validation or resampling.

266 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

• coupled prototypes
In the models considered in this thesis the prototypes are basically
unrelated and any coupling between them is brought about only by
the membership normalization. However, there are several approaches
that introduce a stronger coupling of the prototypes, organizing them,
for example, in some grid. Examples in this direction include self-
organizing maps [Kohonen 1995], and topographic clustering [Graepel
and Obermayer 1998, Lesot et al. 2003]. With such approaches so-
called topology preserving mappings can be learned, which are highly
useful for data visualization and dimensionality reduction.

• feature selection
Throughout this thesis it was implicitly assumed that the data space is
fixed, that is, that the attributes used to describe the cases or objects
under consideration have already been selected. In practice, however,
it is often not known which features are most appropriate. Of course,
selecting the right features may also be seen as a model selection
problem and thus be attacked by approaches like cross validation and
resampling. However, due to the usually high number of possible
selections of features, they suffer from very high computational costs.
An alternative are methods that try to exploit information gathered
during the clustering or classification process in order to dynamically
select from or weight the available features. Examples for clustering
include the approaches in [Roth and Lange 2003, Law et al. 2004].

Summarizing, I think it is proper to say that prototype-based methods are
already a very powerful tool for data analysis, but that they nevertheless
still offer several challenging problems for future research.

Appendix A

Mathematical Background

In this appendix I briefly review the mathematical background of some
techniques used in this thesis. In Section A.1 I discuss basic derivatives
w.r.t. vectors and matrices, in Section A.2 I consider some properties of
radial functions, in Section A.8 I treat the method of Lagrange multipliers,
and in Sections A.3 to A.6 I recall linear algebra methods needed for the
interpretation and initialization of (sets of) clusters.

A.1 Basic Vector and Matrix Derivatives

Since in Chapter 5 and in the subsequent section the derivatives of certain
expressions (which are functions of vectors and matrices) w.r.t. a vector
or a matrix are needed, I review in this section some basics about such
derivatives. In particular, I compute frequently occurring derivatives like

∇~v ~v
>A~v, ∇A ~v>A~v, and ∇A |A|,

where ~v is an m-dimensional vector, A is an m×m matrix, and

∇~v =

∂

∂v1
...
∂

∂vm

 and ∇A =

∂

∂a11
· · · ∂

∂a1m

...
. . .

...
∂

∂am1
· · · ∂

∂amm

 ,

are differential operators, which are treated formally like a vector and a
matrix, respectively, and are “multiplied” with the function following them.

267

268 APPENDIX A. MATHEMATICAL BACKGROUND

To compute the abovementioned derivatives, we write out ~v>A~v as

~v>A~v =
m∑

i=1

m∑
j=1

viaijvj .

Then we have ∀k; 1 ≤ k ≤ m :

∂

∂vk
~v>A~v =

∂

∂vk

m∑
i=1

m∑
j=1

viaijvj =
m∑

i=1

(aki + aik)vi

and therefore

∇~v ~v
>A~v =

(
m∑

i=1

(a1i + ai1)v1, . . . ,
m∑

i=1

(a1m + aim)vm

)>
=
(
A + A>

)
~v.

Alternatively, we may derive this formula by applying the product rule as

∇~v ~v
>A~v = (∇~v ~v)>A~v + (~v>(∇~v A~v))> = A~v + (~v>A)> =

(
A + A>

)
~v.

As special cases of this result we have immediately

∇~v ~v
>A~v = 2A~v

if A is symmetric1 and thus A = A> and

∇~v ~v
>~v = 2~v

if A is the unit matrix 1. These formulae are very intuitive when compared
to the standard rules for derivatives w.r.t. scalar, real-valued quantities.

Similarly, for the matrix derivative we have ∀k, l; 1 ≤ k, l ≤ m :

∂

∂akl
~v>A~v =

∂

∂akl

m∑
i=1

m∑
j=1

viaijvj = vkvl

and therefore

∇A ~v>A~v =

 v1v1 · · · v1vm

...
. . .

...
vmv1 · · · vmvm

 = ~v ~v>.

The expression ~v ~v> appearing on the right is the so-called outer product
or matrix product of the vector ~v with itself, in contrast to the so-called
inner product or scalar product ~v>~v.

1An m × m matrix A is called symmetric iff ∀i, j; 1 ≤ i, j ≤ m : aij = aji or
equivalently iff A = A>, that is, if A equals its transpose.

A.1. BASIC VECTOR AND MATRIX DERIVATIVES 269

Finally, I consider ∇A |A|, which is slightly more complicated. It is best
computed by referring to the definition of the determinant |A| through an
expansion by minors [Bronstein et al. 1995, p. 228], i.e., by exploiting

∀i; 1 ≤ i ≤ m : |A| =
m∑

i=1

aij a∗ij

(expansion by the i-th row) or

∀j; 1 ≤ j ≤ m : |A| =
m∑

j=1

aij a∗ij

(expansion by the j-th column), where the a∗ij , 1 ≤ i, j ≤ m, are the so-
called cofactors of the matrix elements aij . They are defined as

∀i, j; 1 ≤ i, j ≤ m : a∗ij = (−1)i+jaij ,

with the aij being the so-called minors, i.e. the determinants |Aij | of the
matrices Aij , which result from the matrix A by removing the i-th row and
the j-th column. Note that consequently aij and thus a∗ij are independent
of all akl, 1 ≤ k, l ≤ m, with k = i or l = j, a fact that is needed below.
Note also that the cofactors a∗ij satisfy [Bronstein et al. 1995, p. 229]

∀i, j; 1 ≤ i, j ≤ m, i 6= j :
m∑

k=1

aik a∗jk = 0,

that is, if in an expansion by minors w.r.t. the i-th row the cofactors are
replaced by those of another row j, j 6= i, the result is zero.

The matrix A∗ built from all cofactors of A, that is,

A∗ =

 a∗11 · · · a∗1m
...

. . .
...

a∗m1 · · · a∗mm

 ,

is called the cofactor matrix and its transpose A∗> is called the adjoint
matrix2 of the matrix A [Bronstein et al. 1995, p. 229]. For the following
it is worth noting that the inverse A−1 relates to the adjoint matrix by

A−1 =
1
|A|

A∗> or equivalently A∗> = |A|A−1,

2Not to be confused with the adjoint matrix (also called adjugate matrix or conjugate
transpose) of a complex matrix C, which is the transpose of the complex conjugate of C.

270 APPENDIX A. MATHEMATICAL BACKGROUND

as can easily be verified by computing

AA−1 = A
1
|A|

A∗> =
1
|A|

∑m

k=1 a1ka∗1k · · ·
∑m

k=1 a1ka∗mk
...

. . .
...∑m

k=1 amka∗1k · · ·
∑m

k=1 amka∗mk

=

1
|A|

 |A| · · · 0
...

. . .
...

0 · · · |A|

 = 1.

We are now equipped with all necessary ingredients to compute the deriva-
tive ∇A |A|. Using for each derivative w.r.t. a matrix element an expansion
by the row of this element, we have ∀i, j; 1 ≤ i, j ≤ m:

∂

∂aij
|A| = ∂

∂aij

m∑
k=1

akj a∗kj = a∗ij ,

since all a∗kj , 1 ≤ k ≤ m, are independent of aij (see above), and therefore

∇A |A| = A∗> = |A|A−1.

A.2 Properties of Radial Functions

This section is concerned with some properties of the generalized Cauchy
and Gaussian radial functions (cf. Section 2.2). I compute the normalization
factors needed to scale them to a unit integral and their derivatives as they
are needed for the gradient methods (cf. Section 5.1).

A.2.1 Normalization to Unit Integral

In order to determine the normalization factor that scales a given radial
function to a unit integral on the m-dimensional space IRm (so that it can
be interpreted as a probability density function on this space), the radial
function is integrated over (hyper-)sphere shells of infinitesimal thickness dr.
A core quantity in this integration is the surface area Am of such an m-
dimensional (hyper-)sphere as a function of its radius r, which is given by
the Jacobi formula [Bronstein et al. 1996, 0.1.6, p. 15]:

Am(r) =
2π

m
2 rm−1

Γ(m
2)

, m ≥ 2.

This formula is used as a starting point in the following two paragraphs.

A.2. PROPERTIES OF RADIAL FUNCTIONS 271

Generalized Cauchy Function

In order to determine the normalization factor for the generalized Cauchy
function, we have to compute the integral∫ ∞

0

1
ra + b︸ ︷︷ ︸

generalized
Cauchy
function

2π
m
2 rm−1

Γ
(

m
2

)︸ ︷︷ ︸
surface area of the m-
dimensional (hyper-)
sphere with radius r

dr.︸︷︷︸
thickness of
the (hyper-)
sphere shell

Note that this formula works also for m = 1, although the Jacobi formula
(see above) is valid only for m ≥ 2. For m = 1 the fraction evaluates to 2,
which takes care of the fact that the integral has to be doubled in order to
take the other side (i.e. from −∞ to 0) into account. We get∫ ∞

0

2π
m
2 rm−1

Γ
(

m
2

) 1
ra + b

dr =
2π

m
2

bΓ
(

m
2

) ∫ ∞

0

rm−1

1
b r

a + 1
dr.

In order to reduce this integral to the known formula∫ ∞

0

xα−1

1 + xβ
dx =

π

β sin απ
β

, α, β ∈ IR, 0 < α < β,

[Bronstein et al. 1996, 0.9.6, No. 53, p. 189], we substitute x for rb−
1
a .

x = rb−
1
a ⇒ r = xb

1
a ,

⇒ rm−1 =
(
xb

1
a

)m−1 = xm−1b
m−1

a ,

⇒ dx
dr

= b−
1
a ⇒ dr = b

1
a dx.

Note that the integration bounds—from 0 to ∞—do not change. By insert-
ing the above equations into the integral formula we arrive at

2π
m
2

bΓ
(

m
2

) ∫ ∞

0

rm−1

1
b r

a + 1
dr =

2π
m
2

bΓ
(

m
2

) ∫ ∞

0

xm−1b
m−1

a

xa + 1
b

1
a dx

=
2π

m
2 b

m
a

bΓ
(

m
2

) ∫ ∞

0

xm−1

1 + xa
dx

=
2π

m
2 b

m
a −1

Γ
(

m
2

) π

a sin mπ
a

=
2π

m
2 +1b

m
a −1

aΓ
(

m
2

)
sin mπ

a

.

272 APPENDIX A. MATHEMATICAL BACKGROUND

Therefore the desired normalization factor is

γ∗Cauchy(a, b,m) =
aΓ
(

m
2

)
sin mπ

a

2π
m
2 +1b

m
a −1

.

Since the integral formula used above is valid for β > α > 0, we obtain that
the Cauchy function can be scaled to a unit integral provided a > m > 0, the
second half of which necessarily holds, since m ≥ 1. The other parameter b
must be positive, i.e. b > 0 (negative values are ruled out by the requirement
that a probability density function must be non-negative).

Note that for the standard Cauchy function (that is, for a = 2 and
b = 1), where due to the requirement a > m it must be m = 1, we obtain

γ∗Cauchy(2, 1, 1) =
1
π
.

Generalized Gaussian Function

In order to determine the normalization factor for the generalized Gaussian
function, we have to compute the integral∫ ∞

0

e−
1
2 ra

︸ ︷︷ ︸
generalized
Gaussian
function

2π
m
2 rm−1

Γ
(

m
2

)︸ ︷︷ ︸
surface area of the m-
dimensional (hyper-)
sphere with radius r

dr.︸︷︷︸
thickness of
the (hyper-)
sphere shell

As in the preceding section this formula also works for m = 1. We get∫ ∞

0

2π
m
2 rm−1

Γ
(

m
2

) e−
1
2 ra

dr =
2π

m
2

Γ
(

m
2

) ∫ ∞

0

rm−1e−
1
2 ra

dr.

In order to reduce this integral to the known formula∫ ∞

0

xβe−αxdx =
Γ(β + 1)
αβ+1

, α, β ∈ IR, α > 0, β > −1,

[Bronstein et al. 1996, 0.9.6, No. 1, p. 184], we substitute x for ra.

x = ra ⇒ r = a
√
x,

⇒ rm−1 = (a
√
x)m−1 = x

m−1
a ,

⇒ dx
dr

= ara−1 ⇒ dr =
1

a (a
√
x)a−1 dx =

1
a
x

1−a
a dx.

A.2. PROPERTIES OF RADIAL FUNCTIONS 273

Note that the integration bounds—from 0 to ∞—do not change. By insert-
ing the above equations into the integral formula we arrive at

2π
m
2

Γ
(

m
2

) ∫ ∞

0

rm−1e−
1
2 ra

dx =
2π

m
2

Γ
(

m
2

) ∫ ∞

0

x
m−1

a e−
1
2 x 1
a
x

1−a
a dx

=
2π

m
2

aΓ
(

m
2

) ∫ ∞

0

x
m
a −1e−

1
2 xdx

=
2π

m
2

aΓ
(

m
2

) · Γ
(

m
a

)(
1
2

)m
a

=
2

m
a +1π

m
2 Γ
(

m
a

)
aΓ
(

m
2

) .

Therefore the desired normalization factor is

γ∗Gauss(a, b,m) =
aΓ
(

m
2

)
2

m
a +1π

m
2 Γ
(

m
a

) .
Since the integral formula used above is valid for β > 0, we obtain that the
Gaussian function can be scaled to a unit integral provided m

a − 1 > −1,
or equivalently m

a > 0. Since necessarily m ≥ 1, the condition on the
parameter is a > 0. The other parameter b is introduced here only to
obtain an interface compatible with the Cauchy function.

Note that for a = 2 we obtain the well-known special case

γ∗Gauss(2, 0,m) =
1

(2π)
m
2
.

Mahalanobis Distance

The above derivations, by using the Jacobi formula for the surface area
of a (hyper-)sphere, implicitly assume that the Euclidian distance is used
to measure the radius. However, they can easily be extended to the Maha-
lanobis distance, where the transformation brought about by the covariance
matrix Σ has to be taken into account. Of this transformation only the scal-
ing, captured—w.r.t. the volume of the infinitesimally thin (hyper-)sphere
shells—in

√
|Σ| (see Section A.4 for details), is relevant for the normaliza-

tion. That is, the normalization factor changes to

γ(a, b,m,Σ) =
γ∗(a, b,m)√

|Σ|
= γ∗(a, b,m) · |Σ|− 1

2 ,

where γ∗(a, b,m) is the normalization factor as it was computed above.

274 APPENDIX A. MATHEMATICAL BACKGROUND

A.2.2 Derivatives

For the gradient methods the derivatives of the radial functions w.r.t. the
cluster parameters are needed. Here I consider only the most general case,
in which a full covariance matrix Σ is used for the Mahalanobis distance. All
other possibilities can be seen as special cases, namely that the covariance
matrix is a diagonal matrix (for axes-parallel (hyper-)ellipsoids) or the unit
matrix (for the standard Euclidean distance). That is, I consider the case
in which the argument r (radius) of the radial function is computed as

r = d(~x, ~µ;Σ) =
√

(~x− ~µ)>Σ−1(~x− ~µ),

where ~µ is the mean vector and Σ the covariance matrix of the cluster.

Generalized Cauchy Function

Inserting the expression from the beginning of this section for the argument r
into the generalized Cauchy function yields

fCauchy(d(~x, ~µ;Σ), a, b) =
1

((~x− ~µ)>Σ−1(~x− ~µ))
a
2 + b

.

Taking the derivative of this expression w.r.t. the mean vector ~µ yields

∇~µ fCauchy(d(~x, ~µ;Σ), a, b)

= ∇~µ
1

((~x− ~µ)>Σ−1(~x− ~µ))
a
2 + b

= − 1
(((~x− ~µ)>Σ−1(~x− ~µ))

a
2 + b)2

· ∇~µ((~x− ~µ)>Σ−1(~x− ~µ))
a
2

= −a
2
f2
Cauchy(d(~x, ~µ;Σ), a, b) · ((~x− ~µ)>Σ−1(~x− ~µ))

a
2−1

· ∇~µ (~x− ~µ)>Σ−1(~x− ~µ)

= −a
2
f2
Cauchy(d(~x, ~µ;Σ), a, b) · (d(~x, ~µ;Σ))a−2 · (−2)Σ−1(~x− ~µ)

= af2
Cauchy(d(~x, ~µ;Σ), a, b) · (d(~x, ~µ;Σ))a−2 ·Σ−1(~x− ~µ),

where the semi-last step follows from the fact that a covariance matrix Σ
and consequently also its inverse Σ−1 are symmetric, i.e., Σ−1 = Σ−1>, and
the minus sign stems from the inner derivative ∇~µ (~x− ~µ) (see Section A.1

A.2. PROPERTIES OF RADIAL FUNCTIONS 275

for a general consideration of derivatives w.r.t. a vector). For the important
special case a = 2 and b = 0 we have

∇~µ fCauchy(d(~x, ~µ;Σ), 2, 0)

= 2 f2
Cauchy(d(~x, ~µ;Σ), 2, 0)) ·Σ−1(~x− ~µ).

For the other parameter of the distance measure, the covariance matrix Σ,
we consider the derivative w.r.t. its inverse Σ−1. Since the derivative is
needed in Section 5.1 to compute a change of the covariance matrix Σ,
the derivative w.r.t. its inverse Σ−1 suffices, because we can obtain the
new covariance matrix by changing its inverse with the help of the above
derivative and then inverting this new inverse matrix.

For the derivative w.r.t. the inverse Σ−1 we get

∇Σ−1 fCauchy(d(~x, ~µ;Σ), a, b)

= ∇Σ−1
1

((~x− ~µ)>Σ−1(~x− ~µ))
a
2 + b

= −a
2
f2
Cauchy(d(~x, ~µ;Σ), a, b) · ((~x− ~µ)>Σ−1(~x− ~µ))

a
2−1

· ∇Σ−1 (~x− ~µ)>Σ−1(~x− ~µ)

= −a
2
f2
Cauchy(d(~x, ~µ;Σ), a, b) · (d(~x, ~µ;Σ))a−2 ·(~x− ~µ)(~x− ~µ)>.

(See Section A.1 for a general consideration of derivatives w.r.t. a matrix,
especially the derivative of ~v> A~v, which leads to the outer product.)

For the important special case a = 2 and b = 0

∇Σ−1 fCauchy(d(~x, ~µ;Σ), 2, 0)

= −f2
Cauchy(d(~x, ~µ;Σ), 2, 0) · (~x− ~µ)(~x− ~µ)>.

Generalized Gaussian Function

Inserting the expression from the beginning of this section, i.e.,

r = d(~x, ~µ;Σ) =
√

(~x− ~µ)>Σ−1(~x− ~µ),

for the argument r into the generalized Gaussian function yields

fGauss(d(~x, ~µ;Σ), a, b) = exp
(
−1

2
(
(~x− ~µ)>Σ−1(~x− ~µ)

) a
2

)
.

276 APPENDIX A. MATHEMATICAL BACKGROUND

Taking the derivative of this expression w.r.t. the mean vector ~µ yields

∇~µ fGauss(d(~x, ~µ;Σ), a, b)

= ∇~µ exp
(
−1

2
((~x− ~µ)>Σ−1(~x− ~µ))

a
2

)
= −1

2
exp

(
−1

2
(
(~x− ~µ)>Σ−1(~x− ~µ)

) a
2

)
· ∇~µ((~x− ~µ)>Σ−1(~x− ~µ))

a
2

= −a
4
fGauss(d(~x, ~µ;Σ), a, b) · ((~x− ~µ)>Σ−1(~x− ~µ))

a
2−1

· ∇~µ (~x− ~µ)>Σ−1(~x− ~µ)

= −a
4
fGauss(d(~x, ~µ;Σ), a, b) · (d(~x, ~µ;Σ))a−2 · (−2)Σ−1(~x− ~µ)

=
a

2
fGauss(d(~x, ~µ;Σ), a, b) · (d(~x, ~µ;Σ))a−2 ·Σ−1(~x− ~µ)

(compare the derivations in the preceding paragraph as well as the consid-
erations in Section A.1) and thus for the special case a = 2 and b = 0:

∇~µ fGauss(d(~x, ~µ;Σ), 2, 0)
= fGauss(d(~x, ~µ;Σ), 2, 0) ·Σ−1(~x− ~µ).

For the other parameter of the distance measure, the covariance matrix Σ,
we consider again the derivative w.r.t. its inverse Σ−1:

∇Σ−1 fGauss(d(~x, ~µ;Σ), a, b)

= ∇Σ−1 exp
(
−1

2
((~x− ~µ)>Σ−1(~x− ~µ))

a
2

)
= −a

4
fGauss(d(~x, ~µ;Σ), a, b) · ((~x− ~µ)>Σ−1(~x− ~µ))

a
2−1

· ∇Σ−1 (~x− ~µ)>Σ−1(~x− ~µ)

= −a
4
fGauss(d(~x, ~µ;Σ), a, b) · (d(~x, ~µ;Σ))a−2 · (~x− ~µ)(~x− ~µ)>

(compare again the derivations in the preceding paragraph as well as the
considerations in Section A.1) and thus for the special case a = 2 and b = 0:

∇Σ−1 fGauss(d(~x, ~µ;Σ), 2, 0)

= −1
2
fGauss(d(~x, ~µ;Σ), 2, 0) · (~x− ~µ)(~x− ~µ)>.

A.2. PROPERTIES OF RADIAL FUNCTIONS 277

Normalization Factor

If the radial function is required to have unit integral over the data space
so that it can be interpreted as a probability density function, we have to
consider an additional factor in the derivatives, namely the normalization
factor γ∗(a, b,m) or γ(a, b,m,Σ) that was computed in Section A.2.1. If
we do not use a Mahalanobis distance, this factor depends only on the
parameters a and b of the radial function and the number m of dimensions
of the data space, all of which are constants. Hence γ∗(a, b,m) is a constant
and thus simply reproduces when taking the derivative.

If, however, we use a Mahalanobis distance, things are slightly more
complicated. Although the normalization factor does not depend on the
center vector ~µ and thus simply reproduces when computing the derivative
w.r.t. ~µ, it does depend on the covariance matrix Σ. As a consequence,
we have to apply the product rule, for which we need the derivative of the
normalization factor. This can be obtained generally, as it is

γ(a, b,m,Σ) =
γ∗(a, b,m)√

|Σ|
= γ∗(a, b,m) · |Σ|− 1

2

(see Section A.2.1), where γ∗(a, b,m) is constant as argued above.
Since we are considering the derivative w.r.t. the inverse covariance ma-

trix, it is best to exploit |Σ−1| = |Σ|−1 and hence to write the above as

γ(a, b,m,Σ) = γ∗(a, b,m) · |Σ−1| 12 .

Then we have (exploiting ∇A|A| = |A|A−1 as derived in Section A.1)

∇Σ−1 γ(a, b,m,Σ) = γ∗(a, b,m) · ∇Σ−1 |Σ−1| 12

= −γ
∗(a, b,m)

2
· |Σ−1|− 1

2 · ∇Σ−1 |Σ−1|

= −γ
∗(a, b,m)

2
· |Σ−1|− 1

2 · |Σ−1| ·Σ

= −γ
∗(a, b,m)

2
· |Σ−1| 12 ·Σ

= −γ
∗(a, b,m)

2
· |Σ|− 1

2 ·Σ

= −γ(a, b,m,Σ)
2

·Σ.

Compared to standard differentiation rules, this is an intuitive result.

278 APPENDIX A. MATHEMATICAL BACKGROUND

A.3 Cholesky Decomposition

For one-dimensional data the variance σ2 is not a very intuitive measure of
the dispersion of the data around the mean value, because it is a kind of
average squared distance to the mean value.3 A more intuitive measure is
the square root of the variance, that is, the standard deviation σ =

√
σ2,

because it has the same unit as the data and the mean value.
If we are working with multi-dimensional data, their dispersion around

a mean vector ~µ is described in the general case by a covariance matrix Σ,
which is also a quadratic measure and thus a bit difficult to interpret. It
would be convenient if we could do the same as in the one-dimensional case,
that is, if we could compute a “square root” of Σ in order to obtain a more
intuitive measure. Fortunately, this is indeed possible. Formally we try to
find a lower (or left) triangular4 matrix L, such that

Σ = LL>,

where > denotes transposition. This is the so-called Cholesky decom-
position, which exists for any symmetric and positive definite5 matrix.
Writing out the above equation in individual matrix elements, one easily
obtains the following two formulae [Press et al. 1992]:

∀i; 1 ≤ i ≤ m : lii =

√√√√σ2
i −

i−1∑
k=1

l2ik,

and

∀i, j; 1 ≤ i < j ≤ m : lji =
1
lii

(
σij −

i−1∑
k=1

likljk

)
.

In order to understand the meaning of the matrix L, let us consider the
two-dimensional case. Then we have

Σ =
(

σ2
x σxy

σxy σ2
y

)
and L =

 σx 0
σxy

σx

1
σx

√
σ2

xσ
2
y − σ2

xy

 .

3It is exactly the average squared distance to the mean if the maximum likelihood
estimator σ̂2 = 1

n

∑n

j=1
(xj − µj)

2 is used. However, it is more common to rely on the

unbiased estimator σ̂2 = 1
n−1

∑n

j=1
(xj − µj)

2, which is not exactly an average. This

distinction is not relevant for the considerations in this section, though.
4An m×m matrix is called lower or left triangular iff all elements above its diagonal

are zero and upper or right triangular iff all elements below its diagonal are zero.
5An m × m matrix A is called positive definite iff for all m-dimensional vectors

~v 6= ~0, it is ~v>A~v > 0.

A.3. CHOLESKY DECOMPOSITION 279

a

b

c

d

ab

c
d

unit
circle

mapping with L

Σ =

(
1.5 0.8
0.8 0.9

)
Figure A.1: Intuitive interpretation of the result L of the Cholesky decom-
position of a 2× 2 covariance matrix Σ.

This matrix L describes a mapping that transforms a unit circle into an
ellipse with general orientation. An example is shown in figure A.1. This
ellipse is the set of all points that have distance 1 to the origin of the
coordinate system w.r.t. the Mahalanobis distance based on Σ, that is, for
all points ~v on this ellipse it is

√
~v>Σ−1~v = 1.

Consequently, if Σ is used as a parameter of a multi-dimensional prob-
ability density function (for instance, the Gaussian function), this ellipse is
a contour line, that is, all points on it have the same probability density.

Besides providing an intuitive interpretation of a covariance matrix Σ,
Cholesky decomposition is very convenient if one needs to compute the
determinant |Σ| or the inverse matrix Σ−1. For the determinant, one only
has to notice that

|Σ| = |LL>| = |L||L>| = |L|2

and that the determinant |L| can be computed as the product of the diagonal
elements of L, since L is a triangular matrix.

To compute the inverse Σ−1, one starts from

1 = ΣΣ−1 = LL>Σ−1,

where 1 is the m ×m unit matrix, and obtains the solution by first doing
a forward substitution6 with L (recall that L is lower triangular) and the
column vectors of the unit matrix 1 to get

L−11 = L−1 = L>Σ−1

6In a forward substitution one finds the original of a vector ~v w.r.t. a lower (or left)
triangular m×m matrix L (that is, the vector ~z satisfying L~z = ~v and thus ~z = L−1~v)

by solving the equations vi =
∑i

j=1
lijzj in ascending order of i, exploiting that the

values of zj with j < i have already been determined in preceding steps and thus zi can

be computed from known values as zi = 1
lii

(
vi −

∑i−1

j=1
lijzj

)
.

280 APPENDIX A. MATHEMATICAL BACKGROUND

and then a backward substitution7 with L> (note that L> is upper trian-
gular) to arrive at

(L>)−1L−1 = Σ−1.

For such an inversion, Cholesky decomposition is about a factor of 2 faster
than the more general LU decomposition with forward/backward substi-
tution [Press et al. 1992].

A.4 Eigenvalue Decomposition

Cholesky decomposition, as it was discussed in the preceding section, yields
a “square root” of a covariance matrix Σ and thus helps to interpret it.
An even better way of computing such an analog of standard deviation is
eigenvalue decomposition. It yields a matrix T that is composed of a
rotation matrix and a diagonal matrix and that satisfies

Σ = TT>.

Such a matrix T can be found by computing the eigenvalues and eigenvec-
tors of Σ and by writing the resulting decomposition of Σ as a product of
two matrices, which are transposes of each other.

Let us start by recalling that an m × m matrix A is said to have an
eigenvalue λ and corresponding eigenvector ~v if

A~v = λ~v.

Since obviously any multiple of an eigenvector ~v is also an eigenvector, one
usually considers only normalized eigenvectors, i.e. vectors ~v with |~v| = 1.
Furthermore, it is clear that the above equation can hold only if

|A− λ1| = 0,

where 1 is the m×m unit matrix. The left side of this equation is a polyno-
mial of degree m in λ, the roots of which are the eigenvalues (necessary con-
dition for the equation system to have a (unique) solution). Consequently,
an m ×m matrix always has m (not necessarily distinct) eigenvalues and
thus also m corresponding (not necessarily distinct) eigenvectors.

7In a backward substitution one finds the original of a vector ~v w.r.t. an upper (or
right) triangular m × m matrix U (that is, the vector ~z satisfying U~z = ~v and thus
~z = U−1~v) by solving the equations vi =

∑m

j=i
uijzj in descending order of i, exploiting

that the values of zj with j > i have already been determined in preceding steps and

thus zi can be computed from known values as zi = 1
uii

(
vi −

∑m

j=i+1
uijzj

)
.

A.4. EIGENVALUE DECOMPOSITION 281

This enables us to form an m×m matrix R, the columns of which are
the eigenvectors of A, for which it is obviously (because it is only a way of
writing all m eigenvalue/eigenvector equations in one formula)

AR = R diag(λ1, . . . , λm),

where λ1, . . . , λm are the m eigenvalues of A and diag(. . .) denotes a matrix
with the given values on its diagonal (from left top to right bottom) and all
other elements zero. Hence we can write the matrix A as

A = R diag(λ1, . . . , λm)R−1.

For a real, symmetric8 matrix it can be shown that all eigenvalues are
real, and if the matrix is also positive definite9, that all eigenvalues are
positive. Furthermore, for a real, symmetric matrix all eigenvectors are real
and orthonormal10 (provided that orthogonal eigenvectors are chosen for
multiple—also called degenerate—eigenvalues, which is always possible)
[Press et al. 1992]. In this case the matrix R is orthogonal11, so we obtain

A = R diag(λ1, . . . , λm)R>.

If A is positive definite and thus the eigenvalues λ1, . . . , λm are all positive
(see above), this formula may also be written as

A = R diag
(√

λ1, . . . ,
√
λm

)
diag

(√
λ1, . . . ,

√
λm

)
R>

= R diag
(√

λ1, . . . ,
√
λm

) (
R diag

(√
λ1, . . . ,

√
λm

))>
= TT>,

with T = R diag
(√
λ1, . . . ,

√
λm

)
. This matrix T is easily interpreted: the

diagonal matrix diag
(√
λ1, . . . ,

√
λm

)
describes a scaling of the axes and

the matrix R effects a rotation of the coordinate system. (Note that, since
the eigenvectors are normalized, it is |R| = 1 and thus R does not lead to
any further scaling, but describes a pure rotation.)

For a covariance matrix Σ the scaling factors, i.e. the square roots of the
eigenvalues of Σ, are the standard deviations in the eigensystem of Σ (i.e.,

8See footnote 1 on page 268 for a definition.
9See footnote 5 on page 278 for a definition.

10That is, for any two (normalized) eigenvectors ~v1 and ~v2, ~v1 6= ~v2, it is ~v>1 ~v2 = 0.
11A matrix A is called orthogonal if its transpose equals its inverse, that is, if

A>A = AA> = 1.

282 APPENDIX A. MATHEMATICAL BACKGROUND

a

b

c

d

a
b

c
d

σ1

σ2

φ

unit
circle

mapping with T

Σ =

(
1.5 0.8
0.8 0.9

)
Figure A.2: Intuitive interpretation of the result T of the eigenvalue decom-
position of a 2× 2 covariance matrix Σ: scaling and rotation.

the coordinate system formed by the eigenvectors of Σ). To understand this
better, let us consider the two-dimensional case, where we have

Σ =
(

σ2
x σxy

σxy σ2
y

)
and T =

(
cosφ − sinφ

sinφ cosφ

)(
σ1 0

0 σ2

)
,

with φ =
1
2

arctan
2σxy

σ2
x − σ2

y

(rotation angle),

σ1 =
√
σ2

x cos2φ+ σ2
y sin2φ+ 2σxy sinφ cosφ,

σ2 =
√
σ2

x sin2φ+ σ2
y cos2φ− 2σxy sinφ cosφ.

Like the result matrix L of Cholesky decomposition (cf. Section A.3), the
matrix T describes a mapping that transforms a unit circle into an ellipse
with general orientation: diag(σ1, σ2) describes a scaling of the axes with
the standard deviations in the eigensystem of Σ, so that we obtain an axes-
parallel ellipse, which is then rotated by a mapping with R. An example,
which uses the same covariance matrix Σ as the example for Cholesky de-
composition in Figure A.1 on page 279, is shown in Figure A.2. Note that
individual points are mapped differently with T than with the matrix L of
Cholesky decomposition, but that the resulting ellipses are identical.

The above eigenvalue decomposition for two-dimensional covariance ma-
trices was computed with Jacobi transformation, which is the most con-
venient method for low-dimensional matrices, in particular two-dimensional
ones. For bigger matrices, however, Jacobi transformation is computation-
ally less efficient than a combination of Householder transformation to
tridiagonal form and an application of the QR algorithm. Details about
all of these methods can be found, for example, in [Press et al. 1992].

A.4. EIGENVALUE DECOMPOSITION 283

Since the result matrix T of eigenvalue decomposition consists of a di-
agonal matrix describing a scaling and a rotation matrix, it is even better
interpretable than the result matrix L of Cholesky decomposition. Further-
more, once we have the matrices R and diag(λ1, . . . , λm), we can also (and
even more easily) compute the determinant |Σ|, namely as

|Σ| = |R| |diag(λ1, . . . , λm)| |R>| = |diag(λ1, . . . , λm)| =
m∏

i=1

λi

(since |R| = |R>| = 1), and the inverse Σ−1, namely as

Σ−1 = R diag
(

1
λ1
, . . . ,

1
λm

)
R>.

However, if we do not need the eigenvalues of Σ explicitely, Cholesky decom-
position is clearly preferable for implementations. The main disadvantage of
eigenvalue decomposition is that it is computationally even more expensive
than LU decomposition with forward/backward substitution, which, as
remarked above, is already slower than Cholesky decomposition by roughly
a factor of 2 [Press et al. 1992]. Therefore eigenvalue decomposition should
only be used if absolutely necessary (like, for instance, for the alternative
version of shape regularization described in Section 6.1.2, which limits the
ratio of the largest to the smallest eigenvalue to a user-specified value).

Nevertheless, the above formulae are useful in another way: we saw
that the eigenvalues λi, 1 ≤ i ≤ m, are the squared lengths of the semi-
major axes of the (hyper-)ellipsoid a unit (hyper-)sphere is mapped to by
the transformation matrix T derived above (cf. Figure A.2). Therefore the
formula for the determinant shows that

√
|Σ| is proportional to the volume

of this (hyper-)ellipsoid. More precisely and more generally, it shows that

Vm(r) =
π

m
2 rm

Γ
(

m
2 + 1

)√|Σ|
is the volume of the m-dimensional (hyper-)ellipsoid a (hyper-)sphere with
radius r is mapped to. Note that if Σ is the unit matrix and thus |Σ| = 1,
this formula simplifies to the Jacobi formula for the volume of the m-
dimensional (hyper-)sphere [Bronstein et al. 1996, 0.1.6, p. 15]. Note also
that this formula justifies the modified normalization factor for the Ma-
halanobis distance given in Section A.2.1: since the volume of the (hyper-)
ellipsoid (and thus the volume of a (hyper-)ellipsoid shell) is

√
|Σ| times the

volume of the original (hyper-)sphere (shell), we have to divide by
√
|Σ|.

284 APPENDIX A. MATHEMATICAL BACKGROUND

A.5 Singular Value Decomposition

Singular value decomposition is very similar to eigenvalue decomposition
in as far as it also yields a decomposition of a given matrix into three
matrices, one of them diagonal. In contrast to eigenvalue decomposition,
however, it is not restricted to symmetric matrices, although for these it
coincides with eigenvalue decomposition. Singular value decomposition is
based on the following theorem from linear algebra [Golub and Van Loan
1989, Press et al. 1992]: Any n×m matrix A with n (the number of rows)
greater than or equal to m (the number of columns) can be written as the
product of an n×m column-orthogonal matrix U, an m×m diagonal matrix
W= diag(w1, . . . , wm), and the transpose of an m×m orthogonal matrix V:

A = UWV> = U diag(w1, . . . , wm) V>.

Both matrices U and V are orthogonal in the sense that their columns are
orthonormal, i.e. pairwise orthogonal and of unit length. Formally, it is

U>U = V>V = 1,

where 1 is the m ×m unit matrix. Note that since V is a square matrix
(m×m), it is also row-orthonormal, i.e. VV> = 1.

The elements w1, . . . , wm of the diagonal matrix are the so-called sin-
gular values, from which this method derives its name. The reason for
this name is that if singular value decomposition is applied to a square
matrix, the values w1, . . . , wm provide an indication of “how singular” a
matrix is, that is, how close numerically a matrix is to a singular matrix,
so that computations on a finite precision machine may mistake it for an
actually singular matrix [Press et al. 1992]. This indication is provided by
the so-called condition number of a square matrix, which is the ratio

c =
maxm

i=1 |wi|
minm

i=1 |wi|
.

Its value is infinity if the matrix is actually singular, because then at least
one wi vanishes. If c is very large, the matrix is called ill-conditioned.

Singular value decomposition is one of the most robust methods to han-
dle least squares problems (see next section), because of its ability to detect
and handle ill-conditioned matrices [Press et al. 1992]. Details about this
method and a stable algorithm to compute the singular value decomposition
of a matrix can be found, for example, in [Golub and Van Loan 1989]. An
implementation of this algorithm in C is given in [Press et al. 1992].

A.6. MULTILINEAR REGRESSION 285

A.6 Multilinear Regression

Multilinear regression is a data analysis method that is based on the as-
sumption that a so-called response variable y is a linear function of a set
x1, . . . , xc of so-called regressor variables, i.e.,

y = θ +
c∑

i=1

wi xi.

The coefficients wi and the offset θ (also known as bias value or intercept
term) are to be determined in such a way as to fit a given data set. If this
data set is represented by

X =

 1 x11 · · · x1m

...
. . .

...
1 xn1 · · · xnm

 and ~y =

 y1
...
yn

 ,

where xij , 1 ≤ i ≤ n, 1 ≤ j ≤ m, is the value of the j-th regressor variable in
the i-th example case and yi, 1 ≤ i ≤ n, is the value of the response variable
in the i-th example case, we can state the task of multilinear regression as
the problem to find an approximate solution of the (usually overdetermined)
linear equation system

X~w = ~y,

where the vector ~w = (θ, w1, . . . , wc)> represents the parameters to be de-
termined. (Note that the first column of the matrix X, which is set to 1,
corresponds to the offset θ.) The approximation quality is measured by the
sum of squared errors, i.e. the squared differences between the value of y as
it is computed from the above function and the corresponding value of y in
the data set. This sum of squared errors is to be minimized w.r.t. ~w, i.e.

(X~w − ~y)>(X~w − ~y) = min .

Since it is a necessary condition for a minimum that the partial derivatives
of this functional w.r.t. the elements of ~w vanish, we have

∇~w (X~w − ~y)>(X~w − ~y) = ~0,

where the differential operator ∇~w is defined as

∇~w =
(
∂

∂θ
,
∂

∂w1
, . . . ,

∂

∂wc

)>
.

286 APPENDIX A. MATHEMATICAL BACKGROUND

The derivative w.r.t. ~w can easily be computed if one remembers that the
differential operator ∇~w behaves formally like a vector that is “multiplied”
from the left to the sum of squared errors. Alternatively, one may write out
the sum of squared errors and take the derivatives componentwise. Here we
rely on the former, much more convenient method and obtain

~0 = ∇~w (X~w − ~y)>(X~w − ~y)

= (∇~w (X~w − ~y))> (X~w − ~y) + ((X~w − ~y)> (∇~w (X~w − ~y)))>

= (∇~w (X~w − ~y))> (X~w − ~y) + (∇~w (X~w − ~y))> (X~w − ~y)
= 2X>(X~w − ~y)
= 2X>X~w − 2X>~y,

from which the linear system of so-called normal equations

X>X~w = X>~y

follows. This system may be solved by standard methods from linear alge-
bra, for instance, by computing the inverse of X>X, which leads to

~w = (X>X)−1X>~y.

The expression (X>X)−1X> occurring here is well known as the (Moore-
Penrose) pseudo inverse of the matrix X [Albert 1972].

For implementations it is worth noting that 1
nX>X is the covariance

matrix12 of the extended input data (extended in the sense that there is an
artificial extra regressor variable x0 ≡ 1, which corresponds to the offset θ—
see the first column of X) and thus Cholesky decomposition may be used to
compute the inverse (X>X)−1 efficiently (cf. Section A.3). An alternative
is singular value decomposition (cf. Section A.5), which is more robust and
can find a solution even if X>X is ill-conditioned.13

Ill-conditioned matrices may also be handled by so-called Tikhonov reg-
ularization [Tikhonov and Arsenin 1977], also known as ridge regression
[Cristianini and Shawe-Taylor 2000]. It consists in computing ~w as

~w = (X>X + λ1)−1X>~y,

12Computed by maximum likelihood estimation. For the unbiased estimator the frac-
tion 1

n
has to be replaced by 1

n−1
.

13See Section A.5 for a general explanation of the condition number of a matrix. Here
it is ratio of the largest to the smallest eigenvalue of the matrix X>X. A matrix is called
ill-conditioned if its condition number is very large.

A.7. MATRIX INVERSION LEMMA 287

where λ ∈ IR+ is a user-defined regularization parameter. The idea under-
lying this approach is that adding a λ-multiple of a (c + 1) × (c + 1) unit
matrix 1 to X>X “shifts” the eigenvalues of X>X by λ and thus improves
the condition number of the matrix (i.e., makes it “less singular” or “more
regular”). This can easily be seen by considering the defining equations of
the eigenvalues and eigenvectors of an m × m matrix A, i.e. A~vi = λi~vi,
i = 1, . . . ,m, and replacing A by A′ = A + λ1. Then we get

A′~vi = λ′i~vi ⇔ (A + λ1)~vi = λ′i~vi

⇔ A~vi + λ~vi = λ′i~vi

⇔ A~vi = (λ′i − λ)~vi,

that is, λi = λ′i − λ and thus λ′i = λi + λ. Note also that Tikhonov regular-
ization/ridge regression minimizes the penalized sum of squared errors

(X~w − ~y)>(X~w − ~y) + λ~w> ~w.

In this view λ controls a tradeoff between a least sum of squared errors and
a “short” solution vector ~w [Cristianini and Shawe-Taylor 2000].

A.7 Matrix Inversion Lemma

The matrix inversion lemma, also known as the Sherman-Morrison for-
mula, states how the inverses of two matrices relate to each other if one of
the matrices results from the other by adding an outer product of vectors.
That is, for matrices A and B = A+~u~v>, it states how B−1 relates to A−1.
The matrix inversion lemma can be derived as follows [Press et al. 1992]:

B−1 = (A + ~u~v>)−1

= (1 + A−1~u~v>)−1A−1

= (1−A−1~u~v> + A−1~u~v>A−1~u~v> − . . .)A−1

= A−1 −A−1~u~v>A−1(1− λ+ λ2 − . . .)

= A−1 − A−1~u~v>A−1

1 + λ
,

where λ = ~v>A−1~u. The second step in the above derivation factors out
the matrix A−1, the third step is a formal power expansion of the first
factor, and in the fourth step the associativity of matrix (and vector) mul-
tiplications is used to factor out the scalar λ. Finally, in the fifth step, the
well-known formula for geometric series yields the result.

288 APPENDIX A. MATHEMATICAL BACKGROUND

A.8 Lagrange Theory

In this thesis a recurring problem, encountered particularly often in Sec-
tion 5.2, is to optimize some functional F (~θ), which depends on a set
~θ = {θ1, . . . , θr} of parameters, subject to a set of constraints Cj(~θ) = 0,
1 ≤ j ≤ s. In such a situation the standard optimization approach to set the
gradient of the functional F (~θ) w.r.t. ~θ equal to the null vector (or equiva-
lently: to set all partial derivatives w.r.t. the different θi, 1 ≤ i ≤ r, equal
to zero, which is a necessary condition for an optimum—see Section A.6)
does not work: the result cannot be guaranteed to satisfy the constraints.
Or stated the other way round: at a (local) optimum in the constrained
subspace the gradient of F (~θ) need not vanish.

One way to handle this problem is to exploit the dependence between
the parameters, which is brought about by the constraints Cj(~θ) = 0, to
express some parameters in terms of the others and thus to reduce ~θ to
a set ~θ′ of independent parameters. The resulting independent parameters
are well known in theoretical physics as generalized coordinates [Greiner
1989]. However, such an approach is often a bit clumsy and cumbersome,
if possible at all, because the form of the constraints may not allow for
expressing some parameters as proper functions of the others.

A much more elegant approach is based on the following nice insights:
Let ~θ∗ be a (local) optimum of F (~θ) in the constrained subspace. Then:

(1) The gradient ∇~θF (~θ∗), if it does not vanish, must be perpendicular
to the constrained subspace. (If ∇~θF (~θ∗) had a component in the con-
strained subspace, ~θ∗ would not be a (local) optimum in this subspace.)

(2) The gradients ∇~θ Cj(~θ∗), 1 ≤ j ≤ s, must all be perpendicular to
the constrained subspace. (They cannot have any component in the
constrained subspace, because they are constant, namely 0, in this sub-
space.) Together these gradients span the subspace of the parameter
space that is perpendicular to the constrained subspace.

(3) Therefore it must be possible to find values λj , 1 ≤ j ≤ s, such that

∇~θF (~θ∗) +
s∑

j=1

λj∇~θ Cj(~θ∗) = 0.

If the constraints (and thus their gradients) are linearly independent,
the values λj are uniquely determined. This equation can be used to
compensate the gradient of F (~θ∗), so that it vanishes at ~θ∗.

A.8. LAGRANGE THEORY 289

As a result of these insights, we obtain the method of so-called Lagrange
multipliers. The basic idea underlying this method is to extend the func-
tional F (~θ) by terms λjCj(~θ), 1 ≤ j ≤ s, to obtain a so-called Lagrange
function L(~θ,~λ) with ~λ = {λ1, . . . , λs}, where the λj are new unknowns,
which have to be determined in the optimization process. That is, we get

L(~θ,~λ) = F (~θ) +
s∑

k=1

λkCk(~θ),

which is to be optimized (usually to be minimized). Due to the represen-
tation of the gradient of F (~θ∗) found above, the gradient of the Lagrange
function w.r.t. ~θ must vanish at the local optimum ~θ∗, so that the stan-
dard optimization approach of setting the gradient equal to the null vector
(necessary condition for an optimum) works again.

Note that with this we actually optimize the functional F (~θ), because as
long as we are inside the constrained subspace, the constraints are zero and
thus do not have any influence on the value of the Lagrange function. Note
also that computing the partial derivatives of L(~θ,~λ) w.r.t. the Lagrange
multipliers λj reproduces the constraints, i.e.,

∀j; 1 ≤ j ≤ s :
∂

∂λj
L(~θ,~λ) = Cj(~θ),

as the λj appear neither in the functional F (~θ) nor in the constraints Cj(~θ)
and are independent (provided the constraints are independent). In this way
the constraints explicitely and naturally enter the optimization process.

The solution is then obtained in the usual way by solving the system of
r+s equations resulting from the necessary conditions for an optimum, i.e.,

∀i; 1 ≤ i ≤ r :
∂

∂θi
L(~θ,~λ) = 0 and ∀j; 1 ≤ j ≤ s :

∂

∂λj
L(~θ,~λ) = 0.

It should be noted that the method of Lagrange multipliers is more general
than described here. For instance, it can also be applied if the constraints
are not simple equations Cj(~θ) = 0, 1 ≤ j ≤ s, but are given in differential
form. Details can be found, for instance, in [Greiner 1989].

An extension of Lagrange theory, the so-called Kuhn–Tucker theory
[Kuhn and Tucker 1951], can handle even inequality constraints Cj(~θ) ≤ 0 of
a certain type. Some explanations can be found, for example, in [Cristianini
and Shawe-Taylor 2000]. However, since I use only equality constraints in
this thesis, I do not discuss this extension here.

290 APPENDIX A. MATHEMATICAL BACKGROUND

A.9 Heron’s Algorithm

Heron’s algorithm is a simple and efficient method for computing the square
root y =

√
x of a given real number x. It is based on the idea to rewrite the

defining equation y2 = x as

y2 = x ⇔ 2y2 = y2 + x ⇔ y =
1
2y

(y2 + x) ⇔ y =
1
2

(
y +

x

y

)
.

The resulting equation is then used as an iteration formula. That is, one
computes the sequence

yk+1 =
1
2

(
yk +

x

yk

)
for k = 1, 2, . . . with y0 = 1.

(The initial value y0 may be chosen differently, but this has only a minor
effect on the number of steps needed until convergence.) It can be shown
that 0 ≤ yk −

√
x ≤ yk−1 − yn for k ≥ 2. Therefore this iteration formula

provides increasingly better approximations of the square root of x and thus
is a safe and simple way to compute it. For example, for x = 2 we get

y0 = 1, y1 = 1.5, y2 ≈ 1.41667, y3 ≈ 1.414216, y4 ≈ 1.414213 etc.

As can already be seen from this sequence, Heron’s algorithm converges
very quickly and is often used in pocket calculators and microprocessors to
implement the square root. In this thesis Heron’s algorithm is used as an
analogy to convey a core principle of the expectation maximization algorithm
(cf. Section 5.2.4).

A.10 Types of Averages

The main types of averages of a set {x1, . . . , xn} of n numbers are
the arithmetic mean

x̄arith =
1
n

n∑
i=1

xi,

the quadratic mean

x̄quad =

√√√√ 1
n

n∑
i=1

x2
i ,

A.11. THE χ2 MEASURE 291

the geometric mean

x̄geom = n

√√√√ n∏
i=1

xi,

and the harmonic mean

x̄harm = n

(
n∑

i=1

x−1
i

)−1

.

The idea of the harmonic mean can be seen by writing its definition as

1
n

n∑
i=1

x̄harm

xi
= 1.

That is, the average ratio between the harmonic mean and the data values
is 1. This average is used in Section 7.1 to compute the F1 measure as the
average of precision and recall.

Note that for positive xi it is always

min n
i=1xi ≤ x̄harm ≤ x̄geom ≤ x̄arith ≤ x̄quad ≤ max n

i=1xi.

A.11 The χ2 Measure

The χ2 measure is a test statistic that is used to assess the (in)dependence
of two nominal variables forming a contingency table [Everitt 1998]. Under
the hypothesis that the variables are independent it has, approximately, a
χ2 distribution. Formally, it is defined as follows:

Let A and B be two attributes with domains dom(A) = {a1, . . . ar} and
dom(B) = {b1, . . . bs}, respectively, and let X be a dataset over A and B.
Let nij , 1 ≤ i ≤ r, 1 ≤ j ≤ s, be the number of sample cases in X, which
contain both the attribute values ai and bj . Furthermore, let

ni. =
s∑

j=1

nij , n.j =
r∑

i=1

nij , and n.. =
r∑

i=1

s∑
j=1

nij = |X|.

Finally, let

pi. =
ni.

n..
, p.j =

n.j

n..
, and pij =

nij

n..

292 APPENDIX A. MATHEMATICAL BACKGROUND

B = 0 B = 1 Σ
A = 0 n00 n01 n0.

A = 1 n10 n11 n1.

Σ n.0 n.1 n..

B = 0 B = 1 Σ
A = 0 p00 p01 p0.

A = 1 p10 p11 p1.

Σ p.0 p.1 1

Table A.1: A 2 × 2 contingency table for two binary attributes A and B
and the joint probability distribution estimated from it.

be the probabilities of the attribute values and their combinations, as they
can be estimated from these numbers. Then the well-known χ2 measure is
usually defined as [Everitt 1998]

χ2(A,B) =
r∑

i=1

s∑
j=1

(Eij − nij)2

Eij
where Eij = ni.n.j

n..

=
r∑

i=1

s∑
j=1

(
ni.n.j

n..
− nij

)2
ni.n.j

n..

=
r∑

i=1

s∑
j=1

n2
..

(
ni.

n..

n.j

n..
− nij

n..

)2
n..

ni.

n..

n.j

n..

= n..

r∑
i=1

s∑
j=1

(pi. p.j − pij)2

pi. p.j
= n..

r∑
i=1

s∑
j=1

(ni. n.j − n..nij)2

ni. n.j
.

This measure is often normalized by dividing it by the size n.. = |X| of the
dataset to remove the dependence on the number of sample cases.

For binary attributes, that is, dom(A) = dom(B) = {0, 1}, we obtain
the 2 × 2 contingency table and the corresponding estimate of the joint
probability distribution shown in Table A.1. Computing the (normalized)
χ2 measure from this table yields

χ2(A,B)
n..

=
1∑

i=0

1∑
j=0

(pi. p.j − pij)2

pi. p.j
.

=
(p0. p.0 − p00)2

p0. p.0
+

(p0. p.1 − p01)2

p0. p.1

+
(p1. p.0 − p10)2

p1. p.0
+

(p1. p.1 − p11)2

p1. p.1

Now we can exploit the obvious relations

p00 + p01 = p0., p10 + p10 = p1., p00 + p10 = p.0, p01 + p11 = p.1,

p0. + p1. = 1, p.0 + p.1 = 1,

A.11. THE χ2 MEASURE 293

which leads to

p0. p.0 − p00 = (1− p1.)(1− p.1)− (1− p1. − p.1 + p11) = p1. p.1 − p11,

p0. p.1 − p01 = (1− p1.)p.1 − (p.1 − p11) = p11 − p1. p.1,

p1. p.0 − p10 = p1.(1− p.1)− (p1. − p11) = p11 − p1. p.1.

Therefore it is

χ2(A,B)
n..

=
(p1. p.1 − p11)2

(1− p1.)(1− p.1)
+

(p1. p.1 − p11)2

(1− p1.) p.1

+
(p1. p.1 − p11)2

p1.(1− p.1)
+

(p1. p.1 − p11)2

p1. p.1

=
(p1. p.1 − p11)2

p1.(1− p1.)p.1(1− p.1)
=

(p1. p.1 − p11)2

p1.p0.p.1p.0
.

In an analogous way the (normalized) χ2 measure can also be computed
from the absolute frequencies nij , ni., n.j and n.., namely as

χ2(A,B)
n..

=
(n1.n.1 − n..n11)2

n1.(n.. − n1.)n.1(n.. − n.1)
=

(n1.n.1 − n..n11)2

n1.n0.n.1n.0
.

Appendix B

List of Symbols

This appendix contains, as a quick reference, a list of the symbols and
notational conventions I use in this thesis. In order to ease the lookup, the
symbols are in alphabetical order, with the Greek letters placed in such a
way that they are following phonetically similar Latin letters.

∇ A differential operator (read “nabla”) that combines partial deriva-
tives into a vector-like mathematical object, ∇~x =

(
∂

∂x1
, . . . ∂

∂xm

)
,

and analogously for matrices. For scalar quantities equivalent to a
partial derivative: ∇x = ∂

∂x .

bxc Largest integer number less than or equal to x.

dxe Smallest integer number greater than or equal to x.
~0 A null vector, usually m-dimensional, ~0 = (0, . . . , 0).

0 A null matrix, usually of size m×m.

1 A unit matrix, usually of size m×m.

A A matrix (in general descriptions), A = (aij).

A−1 The inverse of the matrix A.

A> The transpose of the matrix A.

A∗ The cofactor matrix of a matrix A, A∗ = (a∗ij).

|A| The determinant of the matrix A.

A An attribute used to describe an object or case.

295

296 APPENDIX B. LIST OF SYMBOLS

a A parameter of a radial function: the exponent of the distance.
With indices used for the elements of a matrix A.

a The minors of a matrix A, aij = |Aij |, where Aij results from the
matrix A by removing the i-th row and the j-th column.

a∗ The cofactors of a matrix A, a∗ij = (−1)i+jaij , where aij is a minor
of the matrix A.

α A parameter of the membership transformation: the exponent of
the (weighted) membership degree.

B An attribute, in particular, a binary attribute.

b A parameter of a radial function: an offset to be added to the
distance (after the distance has been raised to the power a).

β A parameter of the membership transformation: the fraction of the
maximal membership degree, above which membership degrees to
other clusters are not annulled.

C The set of cluster parameters, C = {ci | 1 ≤ i ≤ c}.

C The set of all possible sets of cluster parameters, usually restricted
to a certain number c of cluster.

C A(n equality) constraint in Lagrange theory.

c The parameters of a cluster, c = (~µ,Σ, %), consisting of a location
(or center) ~µ, a covariance matrix Σ, and a weight %.

c The number of clusters, c = |C|.

č The number of clusters to which a data point has a positive degree
of membership.

D The length of the diagonal of the data space, with an index a doc-
ument in a document collection.

d A distance measure, most of the time either the Euclidean distance
d(~x, ~y;1) or the Mahalanobis distance d(~x, ~y;Σ).

diag An operator that constructs a diagonal matrix, i.e., a matrix that
has non-vanishing elements only in the diagonal. The values of
these elements are given as parameters.

∂ A symbol denoting a partial derivative, ∂
∂x means the partial deriva-

tive w.r.t. x.

297

∆ Generally a difference, in particular the (one-dimensional) distance
between two cluster centers.

δ The so-called Kronecker symbol. It is δx,y = 1 if x = y and δx,y = 0
otherwise.

E The expected value of a random variable.

e An objective function based on the sum of (squared) errors, also
the base of the exponential function, e ≈ 2.718282.

esqr The sum of squared errors.

eabs The sum of absolute errors.

η A learning rate (or step width parameter) in a gradient method.

F A functional that is to be optimized.

f A function, most of the time a radial function that describes the
degree of membership to a cluster or a probability density function
(in the latter case indices state the random variables referred to).

fCauchy The (generalized) Cauchy function, fCauchy(r; a, b) = 1
ra+b .

fGauss The (generalized) Gaussian function, fGauss(r; a, b) = e−
1
2 ra

.

φ A rotation angle (in eigenvalue decomposition).

g A (usually linear) function that yields the degree of membership to
a class (not to a cluster!).

~g A vector combining the values of the (linear) classification functions
of the different classes, ~g(~x) = (g1(~x), . . . , gs(~x).

Γ The Gamma function, also known as the generalized factorial.

γ The normalization factor for a radial function that is based on
a Mahalanobis distance, γ(a, b,m,Σi), which leads to the radial
function having integral 1 over the data space.

γ∗ The normalization factor for a radial function that is based on a
Euclidean distance, γ∗(a, b,m) = γ(a, b,m,1).

h Transformation function for the membership degrees in fuzzy clus-
tering. Most of the time it is h(u) = uw, w ∈ (1,∞). Also a
regularization parameter for shape regularization.

I A set of indices, I ⊆ IN.

298 APPENDIX B. LIST OF SYMBOLS

i An index variable; used mainly for clusters.

j An index variable; used mainly for data points.

J An objective function based on the sum of (squared) distances.

K A kernel function for kernel density estimation.

k An index variable; used mainly for classes and dimensions.

κ A parameter, used for different purposes. In particular, κ is the
exponent of the isotropic cluster radius that specifies how the size
of a cluster is measured.

L A lower (or left) triangular matrix, L = (lij), as it appears in the
Cholesky decomposition of a covariance matrix Σ.

L A likelihood function.

L A Lagrange function.

l An index variable, used for different purposes. With indices an
element of a lower (or left) triangular matrix.

λ An eigenvalue of a covariance matrix Σ.

m The number of dimensions of the data space, which is IRm.

~µ The location parameter of a cluster, ~µ = (µ1, . . . , µm).

N A number of data point pairs with a certain property (which is
specified by indices).

n The number of data points in the given data set, n = |X|. With
indices the number of data points with a certain property (for ex-
ample, the number of true positives).

ν A cluster-specific parameter of possibilistic fuzzy clustering, also
used for other parameters in different contexts.

o The class predicted by a classifier (i.e., its output), also a regular-
ization parameter for size and weight regularization.

~o An offset vector (for a translation).

P A probability measure.

p A probability distribution (indices state random variables).

Π The set of all permutations of a set of objects.

299

π The circle measure, π ≈ 3.14159265. Also used to denote the pre-
cision of a classifier.

Ψ A coincidence matrix for comparing two partitions, Ψ = (ψij).

ψ An element of a coincidence matrix Ψ.

Q A quality measure for assessing clustering results (like the Dunn
index or the Xie-Beni index) or for evaluating keywords w.r.t. their
usefulness to classify a set of documents (like information gain or
the χ2 measure).

R A rotation matrix (for example, in eigenvalue decomposition).

r A radius, i.e., the distance from a cluster center. Often appearing
as the argument of a radial function.

% The weight of a cluster.

ρ The recall of a classifier w.r.t. a class.

S A measure for the size of or the scatter within a cluster in cluster
assessment indices.

S A symmetric and positive definite matrix with determinant 1 that
captures the shape parameters of a covariance matrix Σ.

s The number of classes. Also used to denote a scaling factor.

Σ A covariance matrix, the shape and size parameter of a cluster,
Σ = (σij)1≤i,j≤m.

Σ−1 The inverse of a covariance matrix Σ.

σ2 A variance, either as an element of a covariance matrix or as an
equivalent isotropic variance.

σ An isotropic standard deviation or (with a double index for row
and column) an element of a covariance matrix Σ.

ς An index mapping function used to sort membership degrees. Also
used to denote an arbitrary permutation of a set of indices.

T A transformation matrix, usually the result of an eigenvalue de-
composition of a covariance matrix Σ.

T The total number of iterations in an iterative update scheme.

t An argument of a function or an independent variable, also a time
step or series element index; used for different purposes.

300 APPENDIX B. LIST OF SYMBOLS

θ A parameter of a model (in general descriptions).

~θ A vector of parameters of a model (in general descriptions).

> A symbol indicating that a matrix or a vector is to be transposed.

U A (fuzzy) partition matrix, U = (uij)1≤i≤c,1≤j≤n, which comprises
the assignments of the data points ~xj ∈ X to the clusters ci ∈ C.
Also the left matrix in singular value decomposition.

U A sum of membership degrees, needed as a normalization factor.

u◦ The raw membership function.

u∗ The weighted membership function.

u• The weighted and transformed membership function.

u The normalized membership function; with indices an element of a
(fuzzy) partition matrix.

V The right matrix in singular value decomposition.

~v An eigenvector of a covariance matrix Σ, ~v = (v1, . . . , vm), some-
times also used for other vectors.

W A word in a document.

W A weight matrix combining the weight vectors of the (linear) clas-
sification functions for all classes, W = (wki)1≤k≤s,0≤i≤c. Also the
diagonal matrix in singular value decomposition.

w Without indices the fuzzifier or weighting exponent in fuzzy clus-
tering or the window width in kernel estimation; with a single index
a singular value; with two indices an element of a weight matrix.

~w A weight vector in a (linear) classification function, as it is used,
for instance, in a radial basis function network for the weights of
the connections from the hidden layer to the output layer. Also the
parameters in a multivariate (linear) regression.

ω A data point weight in fuzzy clustering with outliers.

X The given data set, which may be seen either as a set of vectors
X = {~xj | 1 ≤ j ≤ n} or as a data matrix X = (xjk)1≤j≤n,1≤k≤m.
It is always X ⊂ IRm (with X interpreted as a set of vectors).

X A random variable that has data sets as possible values.
~X A random vector that has the data space, i.e. IRm, as its domain.

301

X An element of a random vector ~X, also used for a binary random
variable used to describe the occurrence of a keyword in a docu-
ment.

~x A data point, ~x = (x1, . . . , xm)> ∈ IRm.

~x> The transpose of the vector ~x.

ξ A parameter, used for different purposes.

Y A random variable that has cluster indices as possible values,
dom(Y) = {1, . . . , c}.

y A cluster index associated with a data point ~x, y ∈ {1, . . . , c}.
~y Usually a vector ~y = (y1, . . . , yn) that states the clusters associated

with the data points in the given data set X. Also used as a point
in the data space in Section 2.1 on distance measures.

Z A random variable that has indices of classes as possible values,
dom(Z) = {1, . . . , s}.

z A class index associated with a data point ~x, z ∈ {1, . . . , s}.
~z Usually a vector ~z = (z1, . . . , zn) that states the classes associated

with the data points in the given data set X. Also used as a point
in the data space in Section 2.1 on distance measures.

ζ A parameter, used for different purposes. With an index the class
associated with a cluster or a reference vector.

When writing functions, in particular distance measure or probability den-
sity functions, I distinguish between the arguments of a function and its
parameters. The arguments specify the point at which the function is to
be evaluated, the parameters select a particular function from a parame-
terized family of functions of the same type. In my notation I distinguish
arguments and parameters by separating them with a semicolon: the argu-
ments of the function come first and then, after a semicolon, its parameters
are listed. For example, in the distance d(~x, ~y;Σ) the vectors ~x and ~y are
the arguments, that is, the points the distance of which is to be determined.
The distance measure is parameterized by a covariance matrix Σ, which
specifies how the distance computation is to be carried out. Another ex-
ample is the probability density function f ~X(~x; Θ). Here ~x, the value of
the random vector ~X, is the argument and Θ is the (set of) parameters.
This example also shows why it is inconvenient to write the parameters as
indices: the place of the index is already taken by the random variable.

Bibliography

[Abraham et al. 2002] A. Abraham, J. Ruiz-del-Solar, and M. Köppen, eds.
Soft Computing Systems: Design, Management and Applications. IOS
Press, Amsterdam, The Netherlands 2002

[Acciani et al. 1999] G. Acciani, E. Chiarantoni, G. Fornarelli, and S. Ver-
gura. A Feature Extraction Unsupervised Neural Network for an Envi-
ronmental Data Set. Neural Networks 16(3–4):427–436. Elsevier Science,
Amsterdam, Netherlands 1999

[Aha 1992] D.W. Aha. Tolerating Noisy, Irrelevant and Novel Attributes
in Instance-based Learning Algorithms. Int. Journal of Man-Machine
Studies 36(2):267–287. Academic Press, San Diego, CA, USA 1992

[Akaike 1974] H. Akaike. A New Look at the Statistical Model Identifi-
cation. IEEE Trans. on Automatic Control 19:716–723. IEEE Press,
Piscataway, NJ, USA 1974

[Albert 1972] A. Albert. Regression and the Moore-Penrose Pseudoinverse.
Academic Press, New York, NY, USA 1972

[Anderson 1935] E. Anderson. The Irises of the Gaspe Peninsula. Bulletin
of the American Iris Society 59:2–5. American Iris Society, Philadelphia,
PA, USA 1935

[Anderson 1995] J.A. Anderson. An Introduction to Neural Networks. MIT
Press, Cambridge, MA, USA 1995

[Aurenhammer 1991] F. Aurenhammer. Voronoi Diagrams — A Survey of
a Fundamental Geometric Data Structure. ACM Computing Surveys
23(3):345–405. ACM Press, New York, NY, USA 1991

[Bachelor and Wilkins 1969] B.G. Bachelor and B.R. Wilkins. Method for
Location of Clusters of Patterns to Initiate a Learning Machine. Elec-

303

304 BIBLIOGRAPHY

tronics Letters 5:481–483. Institution of Electrical Engineers, London,
United Kingdom 1969

[Babu and Murty 1994] G.P. Babu and M.N. Murty. Clustering with Evo-
lutionary Strategies. Pattern Recognition 27:321–329. Pergamon Press,
Oxford, United Kingdom 1994

[Bäck et al. 1991] T. Bäck, F. Hoffmeister, and H. Schwefel. A Survey
of Evolution Strategies. Proc. 4th Int. Conf. on Genetic Algorithms
(ICGA’91, San Diego, CA), 2–9. Morgan Kaufmann, San Mateo, CA
1991

[Backer and Jain 1981] E. Backer and A.K. Jain. A Clustering Performance
Measure based on Fuzzy Set Decomposition. IEEE Trans. on Pattern
Analysis and Machine Intelligence (PAMI) 3(1):66–74. IEEE Press,
Piscataway, NJ, USA 1981

[Baeza-Yates and Ribeiro-Neto 1999] R. Baeza-Yates and B. Ribeiro-Neto.
Modern Information Retrieval. Addison-Wesley, Reading, MA, USA
1999

[Ball and Hall 1966] G.H. Ball and D.J. Hall. ISODATA — An Iterative
Method of Multivariate Data Analysis and Pattern Classification. IEEE
Int. Comm. Conf. (Philadelphia, PA). IEEE Press, Piscataway, NJ,
USA 1966

[Ball and Hall 1967] G.H. Ball and D.J. Hall. A Clustering Technique
for Summarizing Multivariate Data. Behavioral Science 12(2):153–155.
1967

[Barni et al. 1996] M. Barni, V. Cappellini, and A. Mecocci. Comments
on “A Possibilistic Approach to Clustering”. IEEE Trans. on Fuzzy
Systems 4(3):393–396. IEEE Press, Piscataway, NJ, USA 1996

[Bauer et al. 1997] E. Bauer, D. Koller, and Y. Singer. Update Rules for
Parameter Estimation in Bayesian Networks. Proc. 13th Conf. on Un-
certainty in Artificial Intelligence (UAI’97, Providence, RI, USA), 3–13.
Morgan Kaufmann, San Mateo, CA, USA 1997

[Berry 2003] M.W. Berry, ed. Survey of Text Mining. Springer-Verlag, New
York, NY, USA 2003

[Berry and Linoff 2004] M.J.A. Berry and G. Linoff. Data Mining Tech-
niques (2nd edition). J. Wiley & Sons, Chichester, England 2004 (1st
edition 1997)

BIBLIOGRAPHY 305

[Berthold and Diamond 1995] M.R. Berthold and J. Diamond. Boosting
the Performance of RBF Networks with Dynamic Decay Adjustment.
In: [Tesauro et al. 1995], 512–528.

[Berthold and Diamond 1998] M.R. Berthold and J. Diamond. Construc-
tive Training of Probabilistic Neural Networks. Neurocomputing 19:167–
183. Elsevier Science, Amsterdam, Netherlands 1998

[Berthold and Huber 1999] M.R. Berthold and K.-P. Klaus-Peter. Con-
structing Fuzzy Graphs from Examples. Intelligent Data Analysis
3(1):37–54. IOS Press, Amsterdam, Netherlands 1999

[Berthold and Hand 1999] M.R. Berthold and D.J. Hand. Intelligent Data
Analysis. Springer-Verlag, Berlin, Germany 1999

[Bezdek 1973] J.C. Bezdek. Cluster Validity with Fuzzy Sets. Journal of
Cybernetics 3(3):58–73. Hemisphere, Washington, DC, USA 1973

[Bezdek 1975] J.C. Bezdek. Mathematical Models for Systematics and Tax-
anomy. Proc. 8th Int. Conf. on Numerical Taxanomy, 143–166. Freeman,
San Francisco, CA 1975

[Bezdek 1980] J.C. Bezdek. A Convergence Theorem for the Fuzzy ISO-
DATA Clustering Algorithm. IEEE Trans. on Pattern Analysis and
Machine Intelligence (PAMI) 2(1):1–8. IEEE Press, Piscataway, NJ,
USA 1980. Reprinted in [Bezdek and Pal 1992], 130–137

[Bezdek 1981] J.C. Bezdek. Pattern Recognition with Fuzzy Objective Func-
tion Algorithms. Plenum Press, New York, NY, USA 1981

[Bezdek et al. 1987] J.C. Bezdek, R.J. Hathaway, M.J. Sabin, and
W.T. Tucker. Convergence Theory for Fuzzy c-Means: Counterexamples
and Repairs. IEEE Trans. on Systems, Man, and Cybernetics (Part B:
Cybernetics) 17(5):873–877. IEEE Press, Piscataway, NJ, USA 1987.
Reprinted in [Bezdek and Pal 1992], 138–142

[Bezdek and Pal 1992] J.C. Bezdek and N. Pal. Fuzzy Models for Pattern
Recognition. IEEE Press, New York, NY, USA 1992

[Bezdek et al. 1994] J.C. Bezdek, S. Boggavarapu, L.O. Hall, and A. Ben-
said. Genetic Algorithm Guided Clustering. Proc. 1st IEEE Conf. on
Evolutionary Computation (ICEC’94, Orlando, FL), 34–39. IEEE Press,
Piscataway, NJ, USA 1994

[Bezdek and Pal 1995] J.C. Bezdek and N. Pal. Two Soft Relatives of
Learning Vector Quantization. Neural Networks 8(5):729–764. Pren-
tice Hall, Upper Saddle River, NJ, USA 1995

306 BIBLIOGRAPHY

[Bezdek et al. 1997] J.C. Bezdek, W.Q. Li, Y. Attikiouzel, and M. Wind-
ham. A Geometric Approach to Cluster Validity for Normal Mixtures.
Soft Computing 1(4):166–179. Springer-Verlag, Heidelberg, Germany
1997

[Bezdek and Pal 1998] J.C. Bezdek and N. Pal. Some New Indices for Clus-
ter Validity. IEEE Trans. on Systems, Man, and Cybernetics (Part B:
Cybernetics) 28(2):301–315. IEEE Press, Piscataway, NJ, USA 1998

[Bezdek et al. 1999] J.C. Bezdek, J. Keller, R. Krishnapuram, and N. Pal.
Fuzzy Models and Algorithms for Pattern Recognition and Image Pro-
cessing. Kluwer, Dordrecht, Netherlands 1999

[Bilmes 1997] J. Bilmes. A Gentle Tutorial on the EM Algorithm and Its
Application to Parameter Estimation for Gaussian Mixture and Hidden
Markov Models. Tech. Report ICSI-TR-97-021. University of Berkeley,
CA, USA 1997

[Bishop 1995] C. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, Oxford, United Kingdom 1995

[Blake and Merz 1998] C.L. Blake and C.J. Merz. UCI Repository of Ma-
chine Learning Databases. University of California, Irvine, CA, USA
1998
http://www.ics.uci.edu/~mlearn/MLRepository.html

[Bobrowski and Bezdek 1991] L. Bobrowski and J.C. Bezdek. c-Means
Clustering with the L1 and L∞ Norms. IEEE Trans. on Systems, Man
and Cybernetics 21(3):545–554. IEEE Press, Piscataway, NJ, USA 1991

[Bock 1974] H.H. Bock. Automatische Klassifikation (Cluster-Analyse).
Vandenhoek & Ruprecht, Göttingen, Germany 1974

[Böhme 1994] G. Böhme. Fuzzy-Logik. Springer-Verlag, Berlin, Germany
1993

[Borgelt and Kruse 2002] C. Borgelt and R. Kruse. Graphical Models —
Methods for Data Analysis and Mining. J. Wiley & Sons, Chichester,
United Kingdom 2002

[Borgelt and Kruse 2003] C. Borgelt and R. Kruse. Speeding Up Fuzzy
Clustering with Neural Network Techniques. Proc. 12th IEEE Int. Con-
ference on Fuzzy Systems (FUZZ-IEEE’03, St. Louis, MO, USA), on
CDROM. IEEE Press, Piscataway, NJ, USA 2003

[Borgelt and Kruse 2004] C. Borgelt and R. Kruse. Shape and Size Reg-
ularization in Expectation Maximization and Fuzzy Clustering. Proc.

BIBLIOGRAPHY 307

8th European Conf. on Principles and Practice of Knowledge Discovery
in Databases (PKDD 2004, Pisa, Italy), 52–62. Springer-Verlag, Berlin,
Germany 2004

[Borgelt and Kruse 2005] C. Borgelt and R. Kruse. Fuzzy and Probabilistic
Clustering with Shape and Size Constraints. Proc. 15th Int. Fuzzy Sys-
tems Association World Congress (IFSA’05, Beijing, China), to appear.
2005

[Borgelt and Nürnberger 2004a] C. Borgelt and A. Nürnberger. Fast Fuzzy
Clustering of Web Page Collections. Proc. PKDD Workshop on Statis-
tical Approaches for Web Mining (SAWM 2004), 75–86. University of
Pisa, Pisa, Italy 2004

[Borgelt and Nürnberger 2004b] C. Borgelt and A. Nürnberger. Experi-
ments in Document Clustering using Cluster Specific Term Weights.
Proc. Workshop Machine Learning and Interaction for Text-based In-
formation Retrieval (TIR 2004, Ulm, Germany), 55–68. University of
Ulm, Ulm, Germany, 2004

[Borgelt and Nürnberger 2004c] C. Borgelt and A. Nürnberger. Experi-
ments in Term Weighting and Keyword Extraction in Document Clus-
tering. Lernen, Wissensentdeckung und Adaptivität, Workshop GI Fach-
gruppe Maschinelles Lernen (LWA 2004/FGML 2004, Berlin, Ger-
many), 123–130. Humboldt University, Berlin, Germany 2004

[Borgelt et al. 2004] C. Borgelt, D. Girimonte, and G. Acciani. Learning
Vector Quantization: Cluster Size and Cluster Number. Proc. IEEE
Int. Symp. on Circuits and Systems (ISCAS 2004, Vancouver, Canada).
IEEE Press, Piscataway, NJ, USA, 2004

[Borgelt et al. 2005] C. Borgelt, A. Nürnberger, and R. Kruse. Fuzzy Learn-
ing Vector Quantization with Size and Shape Parameters. Proc. 14th
IEEE Int. Conference on Fuzzy Systems (FUZZ-IEEE’05, Reno, NV,
USA), to appear. IEEE Press, Piscataway, NJ, USA 2005

[Borgelt et al. 2001] C. Borgelt, H. Timm, and R. Kruse. Probabilistic Net-
works and Fuzzy Clustering as Generalizations of Naive Bayes Classi-
fiers. In: [Reusch and Temme 2001], 121–138.

[Breckenridge 1989] J. Breckenridge. Replicating Cluster Analysis:
Method, Consistency and Validity. Multivariate Behavioral Research
24:147–161. Lawrence Erlbaum Associates, Mahwah, NJ, USA 1989

308 BIBLIOGRAPHY

[Breiman et al. 1984] L. Breiman, J.H. Friedman, R.A. Olsen, and
C.J. Stone. Classification and Regression Trees. Wadsworth Interna-
tional Group, Belmont, CA, USA 1984

[Bronstein et al. 1995] I.N. Bronstein, K.A. Semendjajew, G. Musiol, and
H. Mühlig. Taschenbuch der Mathematik (2. edition). Verlag Harri
Deutsch, Thun/Frankfurt am Main, Germany 1995

[Bronstein et al. 1996] I.N. Bronstein, K.A. Semendjajew, G. Grosche,
V. Ziegler, and D. Ziegler. Teubner Taschenbuch der Mathematik, Part 1.
Teubner, Leipzig, Germany 1996

[Clark and Niblett 1989] P. Clark and T. Niblett. The CN2 Induction Algo-
rithm. Machine Learning 3(4):261-283. Kluwer, Dordrecht, Netherlands
1989

[Clark and Boswell 1991] P. Clark and R.A. Boswell. Rule Induction with
CN2: Some Recent Improvements. Proc. 5th European Working Session
on Learning (EWSL-91, Porto, Portugal), 151–163. Springer-Verlag,
Berlin, Germany 1991

[Cheeseman and Stutz 1996] P. Cheeseman and J. Stutz. Bayesian Classi-
fication (AutoClass): Theory and Results. In: [Fayyad et al. 1996a],
153–180.

[Chen et al. 2004] S. Chen, X. Hong, C.J. Harris, and P.M. Sharkey. Sparse
Modelling Using Orthogonal Forward Regression with PRESS Statistic
and Regularization. IEEE Trans. on Systems, Man and Cybernetics
(Part B) 34(4):898-911. IEEE Press, Piscataway, NJ, USA 2004

[Chiu 1994] S. Chiu. Fuzzy Model Identification Based on Cluster Estima-
tion. Journal of Intelligent & Fuzzy Systems 2(3):267–278. IEEE Press,
Piscataway, NJ, USA 1994

[Cristianini and Shawe-Taylor 2000] N. Cristianini and J. Shawe-Taylor.
An Introduction to Support Vector Machines and Other Kernel-based
Learning Methods. Cambridge University Press, Cambridge, United
Kingdom 2000

[Chu et al. 2001] S.C. Chu, J.F. Roddick, and J.S. Pan. A Comparative
Study and Extensions to k-Medoids Algorithms.Proc. 5th Int. Conf. on
Optimization: Techniques and Applications (ICOTA’01, Hong Kong,
China), 1708–1717. World Scientific, Hackensack, NJ, USA 2001

[Cohen 1995] W.W. Cohen. Fast Effective Rule Induction. Proc. 12th Int.
Conf. on Machine Learning (ICML 95, Lake Tahoe, CA), 115–123. Mor-
gan Kaufmann, San Mateo, CA, USA 1995

BIBLIOGRAPHY 309

[Darwin 1859] C. Darwin. The Origin of Species. Penguin, London, United
Kongdom 1980 (first published in 1859)

[Dasarathy 1990] B.V. Dasarathy. Nearest Neighbor (NN) Norms: NN
Pattern Classifcation Techniques. IEEE Computer Science Press, Los
Alamitos, CA, USA 1990

[Davé 1991] R.N. Davé. Characterization and Detection of Noise in Clus-
tering. Pattern Recognition Letters 12:657–664. Elsevier Science, Ams-
terdam, Netherlands 1991

[Davé and Krishnapuram 1997] R.N. Davé and R. Krishnapuram. Robust
Clustering Methods: A Unified View. IEEE Trans. on Fuzzy Systems
5:270–293. IEEE Press, Piscataway, NJ, USA 1997

[Davé and Sen 1997] R.N. Dav and S. Sen. On Generalizing the Noise Clus-
tering Algorithms. Proc. 7th Int. Fuzzy Systems Association World
Congress (IFSA’97), 3:205–210. Academia, Prague, Czech Republic
1997

[Davies and Bouldin 1979] D.L. Davies and D.W. Bouldin. A Cluster Sep-
aration Measure. IEEE Trans. on Pattern Analysis and Machine Intel-
ligence (PAMI) 1(4):224–227. IEEE Press, Piscataway, NJ, USA 1979

[Dawkins 1976] R. Dawkins. The Selfish Gene. Oxford University Press,
Oxford, United Kingdom, 1976

[Dawkins 1987] R. Dawkins. The Blind Watchmaker. W.W. Norton & Co.,
London, United Kingdom, 1987

[Deerwester et al. 1990] S. Deerwester, S.T. Dumais, G.W. Furnas, and
T.K. Landauer. Indexing by Latent Semantic Analysis. Journal of
the American Society for Information Sciences 41:391–407. J. Wiley
& Sons, New York, NY, USA 1990

[Dempster et al. 1977] A.P. Dempster, N. Laird, and D. Rubin. Maximum
Likelihood from Incomplete Data via the EM Algorithm. Journal of the
Royal Statistical Society (Series B) 39:1–38. Blackwell, Oxford, United
Kingdom 1977

[DeSieno 1988] D. DeSieno. Adding a Conscience to Competitive Learning.
IEEE Int. Conf. on Neural Networks, Vol. I, 117–124. IEEE Press,
Piscataway, NJ, USA 1988

[Döring et al. 2004] C. Döring, C. Borgelt, and R. Kruse. Fuzzy Clustering
of Quantitative and Qualitative Data. Proc. 23rd Conf. North American
Fuzzy Information Processing Society (NAFIPS 2004, Banff, Alberta,
Canada), 84–89. IEEE Press, Piscataway, NJ, USA 2004

310 BIBLIOGRAPHY

[Döring et al. 2005] C. Döring, C. Borgelt, and R. Kruse. Effects of Irrele-
vant Attributes in Fuzzy Clustering. Proc. 14th IEEE Int. Conference on
Fuzzy Systems (FUZZ-IEEE’05, Reno, NV, USA), on CDROM. IEEE
Press, Piscataway, NJ, USA 2005

[Domingos 1996] P. Domingos. Efficient Specific-to-general Rule Induction.
Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD
96, Portland, Oregon), 319–322. AAAI Press, Menlo Park, CA, USA
1996

[Drineas et al. 2004] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and
V. Vinay. Clustering Large Graphs via the Singular Value Decomposi-
tion.Machine Learning 56:9–33. Kluwer, Dordrecht, Netherlands 2004

[Dubois and Prade 1980] D. Dubois and H. Prade. Fuzzy Sets and Systems
— Theory and Applications. Academic Press, San Diego, CA, USA 1980

[Dubois and Prade 1988] D. Dubois and H. Prade. Possibility Theory.
Plenum Press, New York, NY, USA 1988

[Duda and Hart 1973] R.O. Duda and P.E. Hart. Pattern Classification and
Scene Analysis. J. Wiley & Sons, New York, NY, USA 1973

[Dunn 1973] J.C. Dunn. A Fuzzy Relative of the ISODATA Process and Its
Use in Detecting Compact Well-Separated Clusters. Journal of Cyber-
netics 3(3):32–57. American Society for Cybernetics, Washington, DC,
USA 1973 Reprinted in [Bezdek and Pal 1992], 82–101

[Efron and Tibshirani 1993] B. Efron and R.J. Tibshirani. An Introduction
to the Boostrap. Chapman & Hall, London, United Kingdom 2003

[Engl et al. 1996] H. Engl, M. Hanke, and A. Neubauer. Regularization of
Inverse Problems. Kluwer, Dordrecht, Netherlands 1996

[Everitt 1981] B.S. Everitt. Cluster Analysis. Heinemann, London, United
Kingdom 1981

[Everitt 1998] B.S. Everitt. The Cambridge Dictionary of Statistics. Cam-
bridge University Press, Cambridge, United Kingdom 1998

[Everitt and Hand 1981] B.S. Everitt and D.J. Hand. Finite Mixture Dis-
tributions. Chapman & Hall, London, United Kingdom 1981

[Fahlman 1988] S.E. Fahlman. An Empirical Study of Learning Speed in
Backpropagation Networks. In: [Touretzky et al. 1988].

[Fayyad et al. 1996a] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, eds. Advances in Knowledge Discovery and Data Min-

BIBLIOGRAPHY 311

ing. AAAI Press and MIT Press, Menlo Park and Cambridge, MA, USA
1996

[Fayyad et al. 1998] U.M. Fayyad, C.A. Reina, and P.S. Bradley. Initializa-
tion of Iterative Refinement Clustering Algorithms. Proc. 4th Int. Conf.
on Knowledge Discovery and Data Mining (KDD’98, New York, NY),
194–198. AAAI Press, Menlo Park, CA, USA 1998

[Fisher 1925] R.A. Fisher. Theory of Statistical Estimation. Proc. Cam-
bridge Philosophical Society 22:700–725. Cambridge University Press,
Cambridge, United Kingdom 1925

[Fisher 1936] R.A. Fisher. The Use of Multiple Measurements in Taxo-
nomic Problems. Annals of Eugenics 7(2):179–188. Cambridge Univer-
sity Press, Cambridge, United Kingdom 1936

[Foreman 2003] G. Forman. An Extensive Empirical Study of Feature Se-
lection Metrics for Text Classification. Journal of Machine Learning
Research 3:1289-1305, 2003

[Frakes and Baeza-Yates 1992] W.B. Frakes and R. Baeza-Yates. Informa-
tion Retrieval: Data Structures & Algorithms. Prentice Hall, Upper
Saddle River, NJ, USA 1992

[Frigui and Krishnapuram 1997] H. Frigui and R. Krishnapuram. Cluster-
ing by Competitive Agglomeration. Pattern Recognition 30(7):1109–
1119. Pergamon Press, Oxford, United Kingdom 1997

[Frigui and Nasraoui 2003] H. Frigui and O. Nasraoui. Simultaneous Clus-
tering and Dynamic Keyword Weighting for Text Documents. In: [Berry
2003], 45–72.

[Fukunaga 1990] K. Fukunaga. Introduction to Statistical Pattern Recogni-
tion. Academic Press, San Diego, CA, USA 1990

[Fukuyama and Sugeno 1989] Y. Fukuyama and M. Sugeno. A New
Method of Choosing the Number of Clusters for the Fuzzy c-Means
Method. Proc. 5th Fuzzy Systems Symposium (in Japanese), 247–256.
Japan Society for Fuzzy Sets and Systems, Kobe, Japan 1989

[Gabriel and Berthold 2003a] T.R. Gabriel and M.R. Berthold. Formation
of Hierarchical Fuzzy Rule Systems. Proc. Conf. North American Fuzzy
Information Processing Society (NAFIPS 2003, Chicago, IL). IEEE
Press, Piscataway, NJ, USA 2003

[Gabriel and Berthold 2003b] T.R. Gabriel and M.R. Berthold. Construct-
ing Hierarchical Rule Systems. Proc. 5th Int. Symposium on Intelligent

312 BIBLIOGRAPHY

Data Analysis (IDA 2003, Berlin, Germany), 76–87. Springer-Verlag,
Berlin, Germany 2003

[Gath and Geva 1989] I. Gath and A.B. Geva. Unsupervised Optimal Fuzzy
Clustering. IEEE on Trans. Pattern Analysis and Machine Intelligence
(PAMI) 11:773–781. IEEE Press, Piscataway, NJ, USA 1989. Reprinted
in [Bezdek and Pal 1992], 211–218

[Gerdes et al. 2004] I. Gerdes, F. Klawonn, and R. Kruse. Genetische Al-
gorithmen. Vieweg, Braunschweig/Wiesbaden, Germany 2004

[Gersho 1982] A. Gersho. On the Structure of Vector Quantizers. IEEE
Trans. on Information Theory 28(2):157–166. IEEE Press, Piscataway,
NJ, USA 1982

[Goldberg 1989] D.E. Goldberg. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison Wesley, Reading, MA, USA 1989

[Golub and Van Loan 1989] G.H. Golub and C.F. Van Loan. Matrix Com-
putations. Johns Hopkins University Press, Baltimore, MD, USA 1989

[Good 1965] I.J. Good. The Estimation of Probabilities: An Essay on Mod-
ern Bayesian Methods. MIT Press, Cambridge, MA, USA 1965

[Good 1999] P. Good. Resampling Methods. Springer-Verlag, New York,
NY, USA 1999

[Graepel and Obermayer 1998] T. Graepel and K. Obermayer. Fuzzy Topo-
graphic Kernel Clustering. Proc. 5th GI Workshop Fuzzy-Neuro Systems,
90–97. Gesellschaft für Informatik, Munich, Germany 1998

[Gray 1984] R.M. Gray. Vector Quantization. IEEE Acoustic, Speech and
Signal Processing Magazine 1(2):4–29. IEEE Press, Piscataway, NJ,
USA 1984

[Greiff 1998] W.R. Greiff. A Theory of Term Weighting Based on Ex-
ploratory Data Analysis. Proc. 21st Ann. Int. Conf. on Research and
Development in Information Retrieval (Sydney, Australia), 17–19. ACM
Press, New York, NY, USA 1998

[Greiner 1989] W. Greiner. Mechanik, Teil 2 (Series: Theoretische Physik).
Verlag Harri Deutsch, Thun/Frankfurt am Main, Germany 1989

[Greiner et al. 1987] W. Greiner, L. Neise, and H. Stöcker. Thermodynamik
und Statistische Mechanik (Series: Theoretische Physik). Verlag Harri
Deutsch, Thun/Frankfurt am Main, Germany 1987

[Grossman and Frieder 2004] D.A. Grossman and O. Frieder. Information
Retrieval. Kluwer, Dordrecht, Netherlands 2004

BIBLIOGRAPHY 313

[Gustafson and Kessel 1979] E.E. Gustafson and W.C. Kessel. Fuzzy Clus-
tering with a Fuzzy Covariance Matrix. Proc. of the IEEE Conf. on
Decision and Control (CDC 1979, San Diego, CA), 761–766. IEEE
Press, Piscataway, NJ, USA 1979. Reprinted in [Bezdek and Pal 1992],
117–122

[Halkidi et al. 2002a] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Clus-
tering Validity Checking Methods: Part I. ACM SIGMOD Record
31(2):40–45. ACM Press, New York, NY, USA 2002

[Halkidi et al. 2002b] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Clus-
tering Validity Checking Methods: Part II. ACM SIGMOD Record
31(3):19–27. ACM Press, New York, NY, USA 2002

[Hall et al. 1994] L.O. Hall, J.C. Bezdek, S. Boggavarapu, and A. Bensaid.
Genetic Fuzzy Clustering. Proc. 13th Int. Conf. North American Fuzzy
Information Processing Society (NAFIPS’94, San Antonio, TX), 411–
415. IEEE Press, Piscataway, NJ, USA 1994

[Hall et al. 1999] L.O. Hall, I.B. Özyurt, and J.C. Bezdek. Clustering with
a Genetically Optimized Search. IEEE Trans. on Evolutionary Compu-
tation 3:102–112. IEEE Press, Piscataway, NJ, USA 1999

[Hand et al. 2001] D.J. Hand, H. Mannila, and P. Smyth. Principles of
Data Mining. Bradford Books/MIT Press, Cambridge, MA, USA 2001

[Hanley and McNeil 1982] J.A. Henley and B.J. McNeil. The Meaning
and Use of the Area under a Receiver Operating Characteristic (ROC)
Curve. Radiology 143:29-36. Radiological Society of North America,
Oak Brook, IL, USA 1982

[Hartigan und Wong 1979] J.A. Hartigan and M.A. Wong. A k-means Clus-
tering Algorithm. Applied Statistics 28:100–108. Blackwell, Oxford,
United Kingdom 1979

[Hathaway and Bezdek 1995] R.J. Hathaway and J.C. Bezdek. Optimiza-
tion of Clustering Criteria by Reformulation. IEEE Trans. on Fuzzy
Systems 3:241–145. IEEE Press, Piscataway, NJ, USA 1995

[Haykin 1994] S. Haykin. Neural Networks — A Comprehensive Founda-
tion. Prentice Hall, Upper Saddle River, NJ, USA 1994

[Heckerman 1998] D. Heckerman. A Tutorial on Learning with Bayesian
Networks. In: [Jordan 1998], 301–354.

[Hershfinkel and Dinstein 1996] D. Hershfinkel and I. Dinstein. Proc. SPIE
Applications of Fuzzy Logic Technology III 2761:41–52. Int. Society for
Optical Engineering, Bellingham, WA, USA 1996

314 BIBLIOGRAPHY

[Hong et al. 2003] X. Hong, P.M. Sharkey, and K. Warwick. Automatic
Nonlinear Predictive Model Construction Algorithm using Forward Re-
gression and the PRESS Statistic. IEE Proc. Control Theory and Appli-
cations 150(3):245–254. IEE Computer Society Press, San Diego, CA,
USA 2003

[Höppner et al. 1999] F. Höppner, F. Klawonn, R. Kruse, and T. Runkler.
Fuzzy Cluster Analysis. J. Wiley & Sons, Chichester, United Kingdom
1999

[Huffman 1952] D.A. Huffman. A Method for the Construction of Minimum
Redundancy Codes. Proc. Institute of Radio Engineers 40(9):1098–1101.
Institute of Radio Engineers, Menasha, WI, USA 1952

[Isbell and Viola 1998] C.L. Isbell and P. Viola. Restructuring Sparse High
Dimensional Data for Effective Retrieval. Proc. Conf. on Neural In-
formation Processing (NIPS’98, Denver, CO), 480–486. NIPS (online
proceedings) 1998

[Ismael and Selim 1986] M.A. Ismael and S.Z. Selim. Fuzzy c-Means: Opti-
mality of Solutions and Effective Termination of the Algorithm. Pattern
Recognition 19(6):481–485. Pergamon Press, Oxford, United Kingdom
1986

[Jain and Dubes 1988] A.K. Jain and R.C. Dubes. Algorithms for Cluster-
ing Data. Prentice Hall, Englewood Cliffs, NJ, USA 1988

[Jain and Moreau 1986] A.K. Jain and J. Moreau. Bootstrap Technique
in Cluster Analysis. Pattern Recognition 20:547–569. Pergamon Press,
Oxford, United Kingdom 1986

[Jakobs 1988] R.A. Jakobs. Increased Rates of Convergence Through Learn-
ing Rate Adaption. Neural Networks 1:295–307. Pergamon Press, Ox-
ford, United Kingdom 1988

[Jamshidian and Jennrich 1993] M. Jamshidian and R.I. Jennrich. Conju-
gate Gradient Acceleration of the EM Algorithm. Journal of the Amer-
ican Statistical Society 88(412):221–228. American Statistical Society,
Providence, RI, USA 1993

[Johnson 1967] S.C. Johnson. Hierarchical Clustering Schemes. Psychome-
trika 32:241–254. Psychometric Society, USA 1967

[Jones 1997] K.S. Jones, ed. Readings in Information Retrieval. Morgan
Kaufmann, San Mateo, CA, USA 1997

[Jordan 1998] M.I. Jordan, ed. Learning in Graphical Models. MIT Press,
Cambridge, MA, USA 1998

BIBLIOGRAPHY 315

[Karayiannis and Bezdek 1997] N.B. Karayiannis and J.C. Bezdek. An In-
tegrated Approach to Fuzzy Learning Vector Quantization and Fuzzy
c-Means Clustering. IEEE Trans. on Fuzzy Systems 5(4):622–628. IEEE
Press, Piscataway, NJ, USA 1997

[Karayiannis and Pai 1996] N.B. Karayiannis and P.-I. Pai. Fuzzy Algo-
rithms for Learning Vector Quantization. IEEE Trans. on Neural Net-
works 7:1196–1211. IEEE Press, Piscataway, NJ, USA 1996

[Kaski 1998] S. Kaski. Dimensionality Reduction by Random Mapping:
Fast Similarity Computation for Clustering. Proc. Int. Joint Conf. on
Artificial Neural Networks (IJCNN’98, Anchorage, Alaska), 1:413–418.
IEEE Press, Piscataway, NJ, USA 1998

[Kaufman and Rousseeuw 1990] L. Kaufman and P. Rousseeuw. Finding
Groups in Data: An Introduction to Cluster Analysis. J. Wiley & Sons,
New York, NY, USA 1990

[Kearns et al. 1997] M. Kearns, Y. Mansour, A.Y. Ng, and D. Ron. An
Experimental and Theoretical Comparison of Model Selection Methods.
Machine Learning 27(1):7–50. Kluwer, Dordrecht, Netherlands 1997

[Keller 2000] A. Keller. Fuzzy Clustering with Outliers. Proc. 19th Conf.
North American Fuzzy Information Processing Society (NAFIPS’00, At-
lanta, Canada), 143–147. IEEE Press, Piscataway, NJ, USA 2000

[Keller 2002] A. Keller. Objective Function Based Fuzzy Clustering in Air
Traffic Management. Ph.D. thesis, University of Magdeburg, Germany
2002

[Keller and Klawonn 2003] A. Keller and F. Klawonn. Adaptation of Clus-
ter Sizes in Objective Function Based Fuzzy Clustering. In [Leondes
2003], 181–199.

[Kharin 1997] Y. Kharin. Robustness of Clustering under Outliers. In [Liu
et al. 1997], 501–511.

[Kirkpatrick et al. 1983] S. Kirkpatrick, C.D. Gelatt, and M.P. Vercchi. Op-
timization by Simulated Annealing. Science 220:671–680. High Wire
Press, Stanford, CA, USA 1983

[Kirsten 2002] M. Kirsten. Multirelational Distance-Based Clustering.
Ph.D. Thesis, Otto-von-Guericke-University of Magdeburg, Magdeburg,
Germany 2002

[Klawonn and Höppner 2003] F. Klawonn and F. Höppner. What is Fuzzy
about Fuzzy Clustering? Understanding and Improving the Concept of

316 BIBLIOGRAPHY

the Fuzzifier. Proc. 5th Int. Symposium on Intelligent Data Analysis
(IDA 2003, Berlin, Germany), 254–264. Springer-Verlag, Berlin, Ger-
many 2003

[Klawonn and Keller 1998] F. Klawonn and A. Keller. Fuzzy Clustering
with Evolutionary Algorithms. Int. Journal of Intelligent Systems
13:975–991. J. Wiley & Sons, Chichester, United Kingdom 1998

[Klawonn and Keller 1999] F. Klawonn and A. Keller. Fuzzy Clustering
based on Modified Distance Measures. Proc. 3rd Int. Symposium on
Intelligent Data Analysis (IDA’99, Amsterdam, Netherlands), 291–301.
Springer-Verlag, Berlin, Germany 1999

[Klawonn and Kruse 1997] F. Klawonn and R. Kruse. Constructing a Fuzzy
Controller from Data. Fuzzy Sets and Systems 85:177–193. North-
Holland, Amsterdam, Netherlands 1997

[Klir and Yuan 1997] G.J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic:
Theory and Applications. Prentice Hall, Upper Saddle River, NJ, USA
1997

[Klose et al. 2000] A. Klose, A. Nürnberger, R. Kruse, G.K. Hartmann, and
M. Richards. Interactive Text Retrieval Based on Document Similarities.
Physics and Chemistry of the Earth, (Part A: Solid Earth and Geodesy)
25:649–654. Elsevier Science, Amsterdam, Netherlands 2000

[Klose 2004] A. Klose. Partially Supervised Learning of Fuzzy Classification
Rules. Ph.D. thesis, University of Magdeburg, Germany 2004

[Kohonen 1986] T. Kohonen. Learning Vector Quantization for Pattern
Recognition. Technical Report TKK-F-A601. Helsinki University of
Technology, Finland 1986

[Kohonen 1990] T. Kohonen. Improved Versions of Learning Vector Quan-
tization. Proc. Int. Joint Conference on Neural Networks 1:545–550.
IEE Computer Society Press, San Diego, CA, USA 1990

[Kohonen 1995] T. Kohonen. Self-Organizing Maps. Springer-Verlag,
Berlin, Germany 1995 (3rd ext. edition 2001)

[Kolodner 1993] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann,
San Mateo, CA, USA 1993

[Koza 1992] J.R. Koza. Genetic Programming 1 & 2. MIT Press, Cam-
bridge, CA, USA 1992/1994

[Krishnapuram and Freg 1992] R. Krishnapuram and C.-P. Freg. Fitting
an Unknown Number of Lines and Planes to Image Data through Com-

BIBLIOGRAPHY 317

patible Cluster Merging. Pergamon Press, Oxford, United Kingdom
1992

[Krishnapuram and Keller 1993] R. Krishnapuram and J.M. Keller. A
Possibilistic Approach to Clustering. IEEE Trans. on Fuzzy Systems
1(2):98–110. IEEE Press, Piscataway, NJ, USA 1993

[Krishnapuram and Keller 1996] R. Krishnapuram and J.M. Keller. The
Possibilistic c-Means Algorithm: Insights and Recommendations. IEEE
Trans. on Fuzzy Systems 4(3):385–393. IEEE Press, Piscataway, NJ,
USA 1996

[Krishnapuram et al. 1999] R. Krishnapuram, A. Joshi, and L. Yi. A Fuzzy
Relative of the k-Medoids Algorithm with Applications to Web Docu-
ment and Snippet Clustering. Proc. 8th IEEE Int. Conference on Fuzzy
Systems (FUZZ-IEEE’99, Seoul, Korea), 1281–1286. IEEE Press, Pis-
cataway, NJ, USA 1999

[Kruse et al. 1994] R. Kruse, J. Gebhardt, and F. Klawonn. Foundations
of Fuzzy Systems, J. Wiley & Sons, Chichester, United Kingdom 1994.
Translation of the book: Fuzzy Systeme (Series: Leitfäden und Mono-
graphien der Informatik). Teubner, Stuttgart, Germany 1993 (second
edition 1995)

[Kuhn and Tucker 1951] H. Kuhn and A. Tucker. Nonlinear Programming.
Proc. 2nd Berkeley Symp. on Mathematical Statistics and Probabilistics,
481–492. University of California Press, Berkeley, CA, USA 1951

[Kullback and Leibler 1951] S. Kullback and R.A. Leibler. On Information
and Sufficiency. Annals of Mathematical Statistics 22:79–86. Institute
of Mathematical Statistics, Hayward, CA, USA 1951

[Langley et al. 1992] P. Langley, W. Iba, and K. Thompson. An Analysis
of Bayesian Classifiers. Proc. 10th Nat. Conf. on Artificial Intelligence
(AAAI’92, San Jose, CA, USA), 223–228. AAAI Press / MIT Press,
Menlo Park / Cambridge, CA, USA 1992

[Law and Jain 2003] M.H.C. Law and A.K. Jain. Cluster Validity by Boot-
strapping Partitions. Technical Report MSU-CSE-03-5, Dept. of Com-
puter Science and Engineering, Michigan State University, Michigan, ,
USA 2003

[Law et al. 2004] M.H.C. Law, M.A.T. Figueiredo, and A.K. Jain . Si-
multaneous Feature Selection and Clustering Using Mixture Models.
IEEE Trans. ON Pattern Analysis and Machine Intelligence (PAMI)
26(9):1154–1166. IEEE Press, Piscataway, NJ, USA 2004

318 BIBLIOGRAPHY

[Leondes 2003] C.T. Leondes, ed. Database and Learning Systems IV. CRC
Press, Boca Raton, FL, USA 2003

[Lesot et al. 2003] M.-J. Lesot, F. d’Alché Buc, and G. Siolas. Evaluation
of Topographic Clustering and Its Kernelization. Proc. European Con-
ference on Machine Learning (ECML’03, Cavtat-Dubrovnik, Croatia),
265–276. Springer-Verlag, Heidelberg, Germany 2003

[Levenberg 1944] K. Levenberg. A Method for the Solution of Certain Prob-
lems in Least Squares. Quarterly Journal of Applied Mathematics 2:164–
168. American Mathematical Society, Providence, RI, USA 1944

[Levine and Domany 2001] E. Levine and E. Domany. Resampling Method
for Unsupervised Estimation of Cluster Validity. Neural Computation
13:2573–2593. MIT Press, Cambridge, MA, USA 2001

[Liu et al. 1997] X. Liu, P. Cohen, and M. Berthold, eds. Advances in Intel-
ligent Data Analysis 2 (Proc. 2nd Symposium on Intelligent Data Anal-
ysis, IDA’97, London, UK). Springer-Verlag, Berlin, Germany 1997

[Lloyd 1982] S. Lloyd. Least Squares Quantization in PCM. IEEE Trans.
on Information Theory 28:129–137. IEEE Press, Piscataway, NJ, USA
1982

[Lochbaum and Streeter 1989] K.E. Lochbaum and L.A. Streeter. Combin-
ing and Comparing the Effectiveness of Latent Semantic Indexing and
the Ordinary Vector Space Model for Information Retrieval. Information
Processing and Management 25:665–676. Elsevier Science, Amsterdam,
Netherlands 1989

[MacQueen 1967] J. MacQueen. Some Methods for Classification and Anal-
ysis of Multivariate Observations. Proc. 5th Berkeley Symposium on
Mathematical Statistics and Probability I:281–297. University of Cali-
fornia, Berkeley, CA, USA 1967

[Mahalanobis 1936] P.C. Mahalanobis. On the Generalized Distance in
Statistics. Proc. Nat. Inst. Sci. India 2:49–55. India 1936

[Mamdani and Assilian 1975] E.H. Mamdani and S. Assilian. An Experi-
ment in Linguistic Synthesis with a Fuzzy Logic Controller. Int. Journal
of Man Machine Studies 7:1-13. Academic Press, New York, NY, USA
1975

[Marquardt 1963] D.W. Marquardt. An Algorithm for Least-Squares Esti-
mation of Nonlinear Parameters. Journal of the Society for Industrial
and Applied Mathematics (SIAM) 11:431–441. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA 1963

BIBLIOGRAPHY 319

[Mendes and Sacks 2001] M.E.S. Mendes and L. Sacks. Dynamic Knowl-
edge Representation for e-Learning Applications.Proc. BISC Int. Work-
shop on Fuzzy Logic and the Internet (FLINT 2001, UC Berkeley, CA),
176–181. Memorandum No. UCB/ERL M01/28, University of Califor-
nia, Berkeley, CA, USA 2001

[Mendes and Sacks 2003] M.E.S. Mendes and L. Sacks. Evaluating Fuzzy
Clustering for Relevance-based Information Access. Proc. 12th IEEE
Int. Conference on Fuzzy Systems (FUZZ-IEEE’03, St. Louis, MO,
USA), on CDROM. IEEE Press, Piscataway, NJ, USA 2003

[Metropolis et al. 1953] N. Metropolis, N. Rosenblut, A. Teller, and
E. Teller. Equation of State Calculations for Fast Computing Ma-
chines. Journal of Chemical Physics 21:1087–1092. American Institute
of Physics, Melville, NY, USA 1953

[Michalewicz 1996] Z. Michalewicz. Genetic Algorithms + Data Structures
= Evolution Programs. Springer-Verlag, Berlin, Germany 1996

[Michalski et al. 1983] R.S. Michalski, J.G. Carbonell, and T.M. Mitchell,
ed. Machine Learning: An Artificial Intelligence Approach. Morgan
Kaufmann, San Mateo, CA, USA 1983

[Mitchell 1997] T.M. Mitchell. Machine Learning. McGraw-Hill, New York,
NY, USA 1997

[Mitchell 1998] M. Mitchell. An Introduction to Genetic Algorithms. MIT
Press, Cambridge, MA, USA 1998

[Mladenic 2001] D. Mladenic. Using Text Learning to Help Web Browsing.
Proc. 9th Int. Conf. on Human-Computer Interaction. New Orleans,
LA, USA 2001

[Mosier 1951] C. Mosier. Problems and Design of Cross Validation. Ed-
ucational and Psychological Measurement 11:5–11. Sage Publications,
Thousand Oaks, CA, USA 1951

[Mucha 1992] H.-J. Mucha. Clusteranalyse mit Mikrocomputern. Akademie-
Verlag, Berlin, Germany 1992

[Murthy et al. 1994] S.K. Murthy, S. Kasif, and S. Salzberg. A System for
Induction of Oblique Decision Trees. Journal of Artificial Intelligence
Research 2:1–32. Morgan Kaufmann, San Mateo, CA, USA 1994

[Myers 1990] R.H. Myers. Classical and Modern Regression with Applica-
tions (2nd edition). PWS-Kent, Boston, MA, USA 1990

320 BIBLIOGRAPHY

[Nakhaeizadeh 1998a] G. Nakhaeizadeh, ed. Data Mining: Theoretische
Aspekte und Anwendungen. Physica-Verlag, Heidelberg, Germany 1998

[Nakhaeizadeh 1998b] G. Nakhaeizadeh. Wissensentdeckung in Datenban-
ken und Data Mining: Ein Überblick. In: [Nakhaeizadeh 1998a], 1–33

[Nauck and Kruse 1997] D. Nauck and R. Kruse. A Neuro-Fuzzy Method
to Learn Fuzzy Classification Rules from Data. Fuzzy Sets and Systems
89:277–288. North-Holland, Amsterdam, Netherlands 1997

[Nauck et al. 1997] D. Nauck, F. Klawonn, and R. Kruse. Foundations of
Neuro-Fuzzy Systems. J. Wiley & Sons, Chichester, United Kingdom
1997

[Nauck et al. 2003] D. Nauck, C. Borgelt, F. Klawonn, and R. Kruse.
Neuro-Fuzzy-Systeme — Von den Grundlagen künstlicher neurona-
ler Netze zur Kopplung mit Fuzzy-Systemen. Vieweg, Braun-
schweig/Wiesbaden, Germany 2003

[Nilsson 1998] N.J. Nilsson. Artificial Intelligence: A New Synthesis. Mor-
gan Kaufmann, San Francisco, CA, USA 1998

[NNRC 2002] Neural Networks Research Centre. Bibliography on the Self-
organizing Map and Learning Vector Quantization. Laboratory of Com-
puter and Information Science, Helsinki University of Technology, Es-
poo, Finland 2002
http://www.cis.hut.fi/research/som-bibl/references.bib

[Nascimiento and Moura-Pires 1997] S. Nascimiento and F. Moura-Pires. A
Genetic Approach for Fuzzy Clustering In: [Liu et al. 1997], 325–335.

[Nürnberger et al. 1999] A. Nürnberger, C. Borgelt, and A. Klose. Improv-
ing Naive Bayes Classifiers Using Neuro-Fuzzy Learning. Proc. Int.
Conf. on Neural Information Processing (ICONIP’99, Perth, Australia),
154–159. IEEE Press, Piscataway, NJ, USA 1999

[Ohashi 1984] Y. Ohashi. Fuzzy Clustering and Robust Estimation. Proc.
9th Meeting SAS Users Group Int. Hollywood Beach, FL, USA 1984

[Pal and Bezdek 1995] N.R. Pal and J.C. Bezdek. On Cluster Validity for
the Fuzzy c-Means Model. IEEE Trans. on Fuzzy Systems 3:370–379.
IEEE Press, Piscataway, NJ, USA 1995

[Papadimitriou and Steiglitz 1982] C.H. Papadimitriou and K. Steiglitz.
Combinatorial Optimization, Algorithms and Complexity. Prentice-Hall,
Englewood Cliffs, NJ, USA 1982

BIBLIOGRAPHY 321

[Parzen 1962] E. Parzen. On Estimation of a Probability Density Function
and Mode. Annals of Mathematical Statistics 33:1065–1076. Institute
of Mathematical Statistics, Beachwood, OH, USA 1962

[Pedrycz 1988] W. Pedrycz. Fuzzy Control and Fuzzy Systems. J. Wiley &
Sons, Chichester, United Kingdom 1988

[Petry et al. 1994] F. Petry, B. Buckles, D. Prabhu, R. George, and
R. Srikanth. Fuzzy Clustering with Genetic Search. Proc. 1st IEEE
Conf. on Evolutionary Computation (ICEC), 46–50. IEEE Press, Pis-
cataway, NJ, USA 1994

[Porter 1980] M. Porter. An Algorithm for Suffix Stripping. Program: Elec-
tronic Library & Information Systems 14(3):130–137. Emerald, Brad-
ford, United Kingdom 1980

[Preparata and Shamos 1985] F.R. Preparata, and M.I. Shamos. Compu-
tational Geometry: An Introduction. Springer-Verlag, New York, NY,
USA 1985

[Press et al. 1992] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and
B.P. Flannery. Numerical Recipes in C — The Art of Scientific Com-
puting (2nd edition). Cambridge University Press, Cambridge, United
Kingdom 1992

[Quinlan 1986] J.R. Quinlan. Induction of Decision Trees. Machine Learn-
ing 1:81–106. Kluwer, Dordrecht, Netherlands 1986

[Quinlan 1993] J.R. Quinlan. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann, San Mateo, CA, USA 1993

[Reusch and Temme 2001] B. Reusch and K.-H. Temme, eds. Computa-
tional Intelligence in Theory and Practice. Series: Advances in Soft
Computing. Physica-Verlag, Heidelberg, Germany 2001

[Riedmiller and Braun 1993] M. Riedmiller and H. Braun. A Direct Adap-
tive Method for Faster Backpropagation Learning: The RPROP Algo-
rithm. Int. Conf. on Neural Networks (ICNN-93, San Francisco, CA),
586–591. IEEE Press, Piscataway, NJ, USA 1993

[Rijsbergen 1979] C.J. van Rijsbergen. Information Retrieval. Butterworth,
London, United Kingdom 1979

[Rijsbergen 1986] C.J. van Rijsbergen. A Non-classical Logic for Informa-
tion Retrieval. The Computer Journal 29:481–485. Oxford University
Press, Oxford, United Kingdom 1986

322 BIBLIOGRAPHY

[Rissanen 1983] J. Rissanen. A Universal Prior for Integers and Estima-
tion by Minimum Description Length. Annals of Statistics 11:416–431.
Institute of Mathematical Statistics, Hayward, CA, USA 1983

[Rissanen 1987] J. Rissanen. Stochastic Complexity. Journal of the Royal
Statistical Society (Series B), 49:223-239. Blackwell, Oxford, United
Kingdom 1987

[Robertson 1977] S.E. Robertson. The Probability Ranking Principle. Jour-
nal of Documentation 33:294–304. Emerald, Bradford, United Kingdom
1977

[Robbins and Monro 1951] H. Robbins and S. Monro. A Stochastic Ap-
proximation Method. Ann. Math. Stat. 22:400–407. Institute of Math-
ematical Statistics, Beachwood, OH, USA 1951

[Rojas 1993] R. Rojas. Theorie der Neuronalen Netze: Eine systematische
Einführung. Springer-Verlag, Berlin, Germany 1993

[Rose 1998] K. Rose. Deterministic Annealing for Clustering, Compression,
Classification, Regression, and Related Optimization Problems. Proc.
IEEE 86(11):2210–2239. IEEE Press, Piscataway, NJ, USA 1998

[Roth et al. 2002] V. Roth, T. Lange, M. Braun, and J.M. Buhmann. A Re-
sampling Approach to Cluster Validation. Proc. Computational Statis-
tics (CompStat’02, Berlin, Germany), 123–128. Springer, Heidelberg,
Germany 2002

[Roth and Lange 2003] V. Roth and T. Lange. Feature Selection in Cluster-
ing Problems. Proc. 17th Ann. Conf. on Neural Information Processing
Systems (NIPS’03, Vancouver, Canada). MIT Press, Cambridge, MA,
USA 2004

[Runkler and Bezdek 1999] T.A. Runkler and J.C. Bezdek. Alternating
Cluster Estimation: A New Tool for Clustering and Function Approx-
imation. IEEE Trans. on Fuzzy Systems 7(4):377–393. IEEE Press,
Piscataway, NJ, USA 1999

[Ruspini 1969] E.H. Ruspini. A New Approach to Clustering. Information
and Control 15(1):22–32. Academic Press, San Diego, CA, USA 1969.
Reprinted in [Bezdek and Pal 1992], 63–70

[Rumelhart et al. 1986] D.E. Rumelhart, G.E. Hinton, and R.J. Williams.
Learning Representations by Back-Propagating Errors. Nature 323:533–
536. Nature Publishing Group, Basingstoke, United Kingdom 1986

[Russel et al. 1995] K. Russel, J. Binder, D. Koller, and K. Kanazawa. Lo-
cal Learning in Probabilistic Networks with Hidden Variables. Proc. 1st

BIBLIOGRAPHY 323

Int. Conf. on Knowledge Discovery and Data Mining (KDD’95, Mon-
treal, Canada), 1146–1152. AAAI Press, Menlo Park, CA, USA 1995

[Salakhutdinov et al. 2003] R. Salakhutdinov, S. Roweis, and Z. Ghahra-
mani. Optimization with EM and Expectation-Conjugate-Gradient.
Proc. 20th Int. Conf. on Machine Learning (ICML’03,Washington, DC),
672–679. AAAI Press, Menlo Park, CA, USA 2003

[Salton et al. 1975] G. Salton, A. Wong, and C.S. Yang. A Vector Space
Model for Automatic Indexing. Communications of the ACM 18:613–
620. ACM Press, New York, NY, USA 1975

[Salton and Buckley 1988] G. Salton and C. Buckley. Term Weighting Ap-
proaches in Automatic Text Retrieval. Information Processing & Man-
agement 24:513–523. Elsevier Science, Amsterdam, Netherlands 1988

[Salton et al. 1994] G. Salton, J. Allan, and C. Buckley. Automatic Struc-
turing and Retrieval of Large Text Files. Communications of the ACM
37:97–108. ACM Press, New York, NY, USA 1994

[Scheffer and Joachims 1999] T. Scheffer and T. Joachims. Expected Error
Analysis for Model Selection. Proc. 16th Int. Conf. on Machine Learning
(ICML’99, Bled, Slovenia), 361–370. Morgan Kaufman, San Francisco,
CA USA 1999

[Schnell 1964] P. Schnell. Eine Methode zur Auffindung von Gruppen.
Biometrika 6:47–48. Biometrika Trust, London, United Kingdom 1964

[Schölkopf and Smola 2002] B. Schölkopf and A.J. Smola. Learning with
Kernels. MIT Press, Cambridge, MA, USA 2002

[Schwarz 1978] G. Schwarz. Estimating the Dimension of a Model. Annals
of Statistics 6:461–464. Institute of Mathematical Statistics, Hayward,
CA, USA 1978

[Scott 1992] D.W. Scott. Multivariate Density Estimation. J. Wiley & Sons,
New York, NY, USA 1992

[Sebastiani 2002] F. Sebastiani. Machine Learning in Automated Text Cat-
egorization. ACM Computing Surveys (CSUR) 34(1):1–47. ACM Press,
New York, NY, USA 2002

[Selim and Ismael 1984] S.Z. Selim and M.A. Ismail. k-Means-Type Algo-
rithms: A Generalized Convergence Theorem and Characterization of
Local Optimality. IEEE Trans. on Pattern Analysis and Machine Intel-
ligence (PAMI) 6(1):81–87. IEEE Press, Piscataway, NJ, USA 1984

324 BIBLIOGRAPHY

[Seo and Obermayer 2003] S. Seo and K. Obermayer. Soft Learning Vec-
tor Quantization. Neural Computation 15(7):1589–1604. MIT Press,
Cambridge, MA, USA 2003

[Shannon 1948] C.E. Shannon. The Mathematical Theory of Communica-
tion. The Bell System Technical Journal 27:379–423. Bell Laboratories,
Murray Hill, NJ, USA 1948

[Sinka and Corne 2002] M.P. Sinka, and D.W. Corne. A Large Benchmark
Dataset for Web Document Clustering. In [Abraham et al. 2002], 881–
890.

[Sokal and Sneath 1963] R.R. Sokal and P.H.A. Sneath. Principles of Nu-
merical Taxonomy. Freeman, San Francisco, CA, USA 1963

[Spall 2003] J.C. Spall. Introduction to Stochastic Search and Optimization.
J. Wiley & Sons, Chichester, United Kingdom 2003

[Stutz 1998] C. Stutz. Partially Supervised Fuzzy c-Means Clustering with
Cluster Merging. Proc. 6th European Congress on Intelligent Techniques
and Soft Computing (EUFIT’98, Aachen, Germany), 1725–1729. Verlag
Mainz, Aachen, Germany 1998

[Takagi and Sugeno 1985] H. Takagi and M. Sugeno. Fuzzy Identification
of Systems and Its Application to Modeling and Control. IEEE Trans.
on Systems, Man, and Cybernetics 15:116–132. IEEE Press, Piscataway,
NJ, USA 1985

[Tesauro et al. 1995] G. Tesauro, D.S. Touretzky, and T.K. Leen, eds. Ad-
vances in Neural Information Processing Systems, Vol. 7. MIT Press,
Cambridge, MA, USA 1995

[Tikhonov and Arsenin 1977] A.N. Tikhonov and V.Y. Arsenin. Solutions
of Ill-Posed Problems. J. Wiley & Sons, New York, NY, USA 1977

[Timm et al. 2001] H. Timm, C. Borgelt, C. Döring, and R. Kruse. Fuzzy
Cluster Analysis with Cluster Repulsion. Proc. European Symposium
on Intelligent Technologies (EUNITE, Tenerife, Spain), on CDROM.
Verlag Mainz, Aachen, Germany 2001

[Timm 2002] H. Timm. Fuzzy-Clusteranalyse: Methoden zur Exploration
von Daten mit fehlenden Werten sowie klassifizierten Daten. Ph.D. the-
sis, University of Magdeburg, Germany 2002

[Timm and Kruse 2002] H. Timm and R. Kruse. A Modification to Improve
Possibilistic Cluster Analysis. Proc. IEEE Int. Conf. on Fuzzy Systems
(FUZZ-IEEE 2002, Honolulu, Hawaii). IEEE Press, Piscataway, NJ,
USA 2002

BIBLIOGRAPHY 325

[Timm et al. 2004] H. Timm, C. Borgelt, C. Döring, and R. Kruse. An Ex-
tension to Possibilistic Fuzzy Cluster Analysis. Fuzzy Sets and Systems
147:3–16. Elsevier Science, Amsterdam, Netherlands 2004

[Tollenaere 1990] T. Tollenaere. SuperSAB: Fast Adaptive Backpropaga-
tion with Good Scaling Properties. Neural Networks 3:561–573. Perga-
mon Press, Oxford, United Kingdom 1990

[Touretzky et al. 1988] D. Touretzky, G. Hinton, and T. Sejnowski, eds.
Proc. Connectionist Models Summer School (Carnegie Mellon Univer-
sity, Pittsburgh, PA). Morgan Kaufmann, San Mateo, CA, USA 1988

[Toussaint 1974] G. Toussaint. Bibliography on Estimation of Misclassifica-
tion. IEEE Trans. on Information Theory 20(4):472–279. IEEE Press,
Piscataway, NJ, USA 1974

[Tsao et al. 1994] E.C.-K. Tsao, J.C. Bezdek, and N.R. Pal. Fuzzy Kohonen
Clustering Networks. Pattern Recognition 27(5):757–764. Pergamon
Press, Oxford, United Kingdom 1994

[Turtle and Croft 1990] H. Turtle and W.B. Croft. Inference Networks for
Document Retrieval. Proc. 13th Int. Conf. on Research and Development
in Information Retrieval, 1–24. ACM Press, New York, NY, USA 1990

[Van Le 1995] T. Van Le. Evolutionary Fuzzy Clustering. Proc. 2nd IEEE
Conf. on Evolutionary Computation, 2:753–758. IEEE Press, Piscat-
away, NJ, USA 1995

[Vapnik 1995] V. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag, New York, NY, USA 1995

[Vapnik 1998] V. Vapnik. Statistical Learning Theory. J. Wiley & Sons,
Chichester, England 1998

[Ward 1963] J.H. Ward. Hierarchical Grouping to Optimize an Objective
Function. Journal of the American Statistical Society 58:236–244. Amer-
ican Statistical Society, Providence, RI, USA 1963

[Wettschereck 1994] D. Wettschereck. A Study of Distance-Based Machine
Learning Algorithms. PhD Thesis, Oregon State University, OR, USA
1994

[Whitley 2001] D. Whitley. An Overview of Evolutionary Algorithms:
Practical Issues and Common Pitfalls. Journal of Information and Soft-
ware Technology 43:817–831. Elsevier Science, Amsterdam, Netherlands
2001

326 BIBLIOGRAPHY

[Windham 1982] M.P. Windham. Cluster Validity for the Fuzzy c-Means
Algorithm. IEEE Trans. on Pattern Analysis and Machine Intelligence
(PAMI) 4(4): 357–363. IEEE Press, Piscataway, NJ, USA 1982

[Witten and Frank 1999] I.H. Witten and E. Frank. Data Mining. Morgan
Kaufmann, San Mateo, CA, USA 1999

[Witten et al. 1999] I.H. Witten, A. Moffat, and T.C. Bell. Managing Gi-
gabytes: Compressing and Indexing Documents and Images. Morgan
Kaufmann, San Mateo, CA, USA 1999

[Wu 1983] C.F.J. Wu. On the Convergence Properties of the EM Algorithm.
Annals of Statistics 11(1):95–103. Institute of Mathematical Statistics,
Hayward, CA, USA 1983

[Xie and Beni 1991] X.L. Xie and G.A. Beni. Validity Measure for Fuzzy
Clustering. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence (PAMI) 3(8):841–846. IEEE Press, Piscataway, NJ, USA 1991.
Reprinted in [Bezdek and Pal 1992], 219–226

[Yair et al. 1992] E. Yair, K. Zeger, and A. Gersho. Competitive Learning
and Soft Competition for Vector Quantizer Design. IEEE Trans. on
Signal Processing 40:294–309. IEEE Press, Piscataway, NJ, USA 1992

[Yager and Filev 1994] R.R. Yager and D.P. Filev. Generation of Fuzzy
Rules by Mountain Clustering. Journal of Intelligent & Fuzzy Systems
2(3):209–219. IEEE Press, Piscataway, NJ, USA 1994

[Yang and Pedersen 1997] Y. Yang and J.O. Pedersen. A Comparative
Study on Feature Selection in Text Categorization. Proc. 14th Int.
Conf. on Machine Learning (ICML’97, Nashville, TN), 412–420. Mor-
gan Kaufmann, San Mateo, CA, USA 1997

[Zadeh 1965] L.A. Zadeh. Fuzzy Sets. Information and Control 8:338–353.
Academic Press, San Diego, CA, USA 1965

[Zell 1994] A. Zell. Simulation Neuronaler Netze. Addison Wesley, Bonn,
Germany 1994

[Zhang et al. 2004] D. Zhang, S. Chen, and Z.-H. Zhou. Fuzzy-kernel
Learning Vector Quantization. Proc. 1st Int. Symp. on Neural Net-
works (ISNN’04, Dalian, China), LNCS 3173, 180–185. Springer-Verlag,
Berlin, Germany 2004

Index

0-1 loss, 4, 59, 202
1-in-n encoding, 3, 5
11-point average precision, 207

abalone data, 239
absolute loss, 60, 202
acceleration, 188–195, 239

momentum term, 191
quick backpropagation, 193
resilient backpropagation, 192
step expansion, 190
super self-adaptive backpropa-

gation, 191
accuracy, 205

cross-classification, 226
ACE, 70, 139
activation, 159
adjoint matrix, 269
AIC, 92
Akaike information criterion, 92
alternating cluster estimation, 70,

139
alternating optimization, 120
annealing, 172
argument, 301
arithmetic mean, 46, 290
attraction rule, 153
attribute, 2

hidden, 139
informationless, 128
metric, 2

nominal, 2
ordinal, 2

average, 290
arithmetic, 290
geometric, 291
harmonic, 291
quadratic, 290

average linkage, 84

backpropagation, 190
momentum term, 191
quick, 193
resilient, 192
super self-adaptive, 191

backward elimination, 90
backward regression, 90
backward substitution, 280
bag of words, 243
bandwidth, 82
batch training, 102
Bayes classifier, 5, 40, 77, 198

full, 5, 79
näıve, 5, 79

Bayes error, 198
Bayesian classification, 198
Bayesian information criterion, 92
Bayesian network model, 243
bias error, 199
bias value, 94, 285
BIC, 92
bootstrapping, 229

327

328 INDEX

breakeven point, 207
breast data, 239

c-means clustering, 6, 47, 121
c-medoids clustering, 47
case-based reasoning, 8
Cauchy function, 16, 271
centroid method, 84
χ2 measure, 228
Cholesky decomposition, 14, 278
chromosome, 173
city block distance, 12
class, 4
class membership function, 38
classification, 2–5

accuracy, 205
crisp, 4
error, 198
fuzzy, 4
odds, 66
problem, 2
quality, 4, 198–209
supervised, 2
unsupervised, 2

classifier, 2, 4
construction, 2
linear function, 38
maximum margin, 69
maximum membership, 38
nearest prototype, 38

closeness, 5
cluster

center, 20
connectivity matrix, 226
covariance matrix, 20
hierarchy, 85
location, 20
membership degree, 20
membership function, 20
membership matrix, 94

number of, 20, 221, 231
prototype, 11, 20
shape, 20, 21
size, 20, 21
weight, 20

clustering, 2–5
acceleration, 188
ACE, 70
alternating cluster estimation,

70, 139
c-means, 47, 121
c-medoids, 47
clustering results, 87
convergence, 71
crisp, 3
distance-based, 4
FMLE, 65, 150, 235
fuzzy, 48, 125
fuzzy c-means, 6, 48, 125, 240
fuzzy maximum likelihood esti-

mation, 65, 150, 235
Gath–Geva, 65, 150, 235
Gustafson–Kessel, 125, 136,

234, 241
hard, 3
hard c-means, 6, 47
hierarchical agglomerative, 8, 84
ISODATA, 122
k-means, 121
Lloyd’s algorithm, 122
mountain, 81
noise, 178
possibilistic fuzzy, 53, 159
probabilistic, 4
probabilistic fuzzy, 53
quality, 209–231
regularization, 183
subtractive, 81

cofactor, 269
cofactor matrix, 269

INDEX 329

coincidence matrix, 226
commit step, 89
competitive learning, 152–171

frequency sensitive, 162
fuzzy, 159
maximum likelihood ratio, 165–

171
size and shape, 162–165

complete linkage, 84
condition number, 284
conflict region, 89
contingency table, 224, 227
convergence, 71
core region, 89
cosine down to zero, 18
coupled prototypes, 266
covariance matrix, 13, 14, 20

“square root”, 278, 280
determinant, 279, 283
fuzzy, 136
inverse, 279, 283

crisp assignment, 27, 48
crisp classification, 4
crisp clustering, 3
crisp prediction, 4
cross entropy, 255
cross validation, 200–201

k-fold, 201
leave-1-out, 93, 96

cross-classification accuracy, 226
crossing-over, 174
curse of dimensionality, 231

data analysis, 1
data matrix, 2
data set, 2

abalone, 239
breast, 239
iris, 55, 79, 234, 239
wine, 235, 239

Davies–Bouldin index, 213
DDA, 88
decision tree, 7
decomposition

Cholesky, 14, 278
eigenvalue, 14, 280
LU, 280

degree of membership, 4
Delaunay triangulation, 122
dendrogram, 85
density, 19
desired reference radius, 163
determinant, 269
differential operator, 267
discriminant analysis, 2
distance measure, 3, 12, 20

city block, 12
cosine-based, 15
Euclidean, 12
Mahalanobis, 13, 273, 279
Manhattan, 12
maximum, 12
Minkowski family, 12

distance-based clustering, 4
distribution

Maxwell, 173
velocity, 173

document representation
Bayesian network model, 243
filtering and stemming, 246
index term selection, 247
keyword selection, 247
keyword weighting, 254
logical model, 243
preprocessing, 243
probabilistic model, 243
rescaling, 256
vector space model, 243

Dunn index, 211
dynamic decay adjustment, 88

330 INDEX

eigensystem, 15
eigenvalue, 14, 280

decomposition, 14, 280
degenerate, 281

eigenvector, 14, 280
EM, 6, 139

algorithm, 62, 65, 139
encoding

1-in-n, 3, 5
energy, 172
energy minimum, 172
entropy, 247

Shannon, 247
epoch, 89, 155
error

absolute, 60
Bayes, 198
bias, 199
classification, 198
scatter, 199
squared, 60
variance, 199

Euclidean distance, 12
evaluation measure, 202

0-1 loss, 202
absolute loss, 202
classification, 202
external, 210
F1 measure, 207
internal, 210
precision, 203
quadratic loss, 202
recall, 203
relative, 210, 221

evolution, 173
evolutionary algorithms, 173–174
example case, 2
expansion by minors, 269
expectation maximization, 6, 139

algorithm, 62, 65, 139

expectation step, 143, 145
exponential decay, 153
external evaluation measure, 210

F1 measure, 207, 226
factorial (generalized), 19
feature selection, 90, 266
filtering stop words, 246
fitness, 173
FMLE, 65, 150
fold, 201
Folkes–Mallows index, 228
forward regression, 90
forward selection, 90
forward substitution, 279
frequency sensitive competitive

learning, 162
full Bayes classifier, 5, 79
function argument, 301
function parameter, 301
fuzzifier, 51, 238
fuzzy c-means clustering, 6, 48, 125,

240
fuzzy classification, 4
fuzzy clustering, 48

c-means, 48
constraints, 46
possibilistic, 36, 53
probabilistic, 53

fuzzy conjunction, 222
fuzzy covariance matrix, 136
fuzzy disjunction, 223
fuzzy learning vector quantization,

65, 159–162
fuzzy LVQ, 65
fuzzy maximum likelihood estima-

tion, 65, 150
fuzzy negation, 222
fuzzy partition matrix, 50
fuzzy rule-based system, 7, 42

INDEX 331

fuzzy set theory, 222
fuzzy system

Mamdani–Assilian, 43
neuro-fuzzy, 7, 42
relational equations, 43

Γ-function, 19
Gath–Geva clustering, 65, 150, 235
Gaussian function, 18, 272
Gaussian mixture model, 62, 146
gene, 173
generalized coordinates, 288
generalized factorial, 19
genetic algorithms, 173–174
genotype, 173
geometric mean, 291
Gödel implication, 43
gradient, 54, 100

ascent, 101
color coding, 54
descent, 101
likelihood, 113
likelihood ratio, 116
problems, 117
stochastic descent, 102
sum of squared distances, 103
sum of squared errors, 108

guided random search, 171
Gustafson–Kessel clustering, 125,

135, 136, 234, 241

hard assignment, 27
restricted, 37

hard c-means clustering, 6
hard clustering, 3
harmonic mean, 291
Heron’s algorithm, 142, 290
hidden variable, 139
hierarchical agglomerative cluster-

ing, 8, 84

Householder transformation, 282
Hubert index, 228
(hyper-)ellipsoid, 21
(hyper-)sphere

surface area, 270
volume, 283

hyperspherical fuzzy clustering, 245
(hyper-)volume, 21

ICA, 243
ideal gas, 173
ill-conditioned, 284
independent component analysis,

243
index

Davies–Bouldin, 213
Dunn, 211
Folkes–Mallows, 228
Fukuyama–Sugeno, 215
fuzzy hyper-volume, 218
Hubert, 228
Jaccard, 228
partition coefficient, 216
partition density, 219
partition entropy, 217
Rand, 227
separation, 211
Xie–Beni, 214

index term selection, 247
information criterion, 91, 208

Akaike, 92
Bayesian, 92

information divergence, 169
information gain, 255
information retrieval, 242
informationless attribute, 128
initialization, 73, 259

data independent, 74–76
diagonal of the data space, 76
Latin hypercube sampling, 75

332 INDEX

Maximindist, 76
mountain clustering, 81
normal distribution, 75
refinement approach, 87
sample from a probabilistic

model, 77
samples from the data set, 76
simple data dependent, 76–80
sophisticated, 81–93
subtractive clustering, 81
uniform distribution, 74
weight, 94–97

inner product, 268
intercept term, 94, 285
internal evaluation measure, 210
interval scale, 2
inverse document frequency, 243
inverse matrix, 269
iris data, 55, 79, 234, 239
ISODATA, 122
isotropic standard deviation, 22
isotropic variance, 22

Jaccard coefficient, 228
Jacobi formula

surface area, 270
volume, 283

Jacobi transformation, 282

k-means clustering, 121
k-nearest neighbor, 8
kernel based methods, 41
kernel estimation, 82
kernel function, 8, 81
keyword

extraction, 259
selection, 247
weighting, 254

Kronecker symbol, 60, 94, 297

Kullback–Leibler information diver-
gence, 169

Lagrange
function, 289
multiplier, 288
theory, 288

latent semantic indexing, 243
latent variable, 139
Latin hypercube sampling, 75
lattice energy, 172
learning rate, 101, 117

time dependent, 155
learning vector quantization, 6, 152

classical, 152–158
crisp, 167, 170
fuzzy, 65, 159–162
hard, 167, 170
maximum likelihood ratio, 165–

171
size and shape, 162–165
soft, 167, 170

leave-1-out cross validation, 93, 96
left triangular matrix, 278
Levenberg-Marquardt method, 195
likelihood, 4, 29, 62, 113, 140

log-, 64
ratio, 66

likelihood ratio, 116, 202
linear function classifier, 38
linearly separable, 69
linkage

average, 84
centroid, 84
complete, 84
single, 84
Ward’s method, 85

Lloyd’s algorithm, 122
local optimum, 119
log-likelihood, 64, 113, 140

INDEX 333

logical model, 243
loss function, 4

0-1, 4, 59, 202
absolute, 60, 202
quadratic, 60, 202

lower triangular matrix, 278
LSI, 243
LU decomposition, 280
LVQ

fuzzy, 65

machine learning, 2
macro-averaging, 205, 225
Mahalanobis distance, 13, 273, 279
Mamdani–Assilian system, 43
Manhattan distance, 12
margin, 69

soft, 69
target, 69

mating, 174
matrix

adjoint, 269
cluster connectivity, 226
cluster membership, 94
cofactor, 269
coincidence, 226
covariance, 13, 14
diagonal, 13
fuzzy covariance, 136
fuzzy partition, 50
ill-conditioned, 284
inverse, 269
inversion lemma, 96, 287
left triangular, 278
lower triangular, 278
orthogonal, 13, 281
partition, 46, 224
positive definite, 20, 278
product, 268
right triangular, 278

symmetric, 20, 268
transpose, 268
upper triangular, 278

Maximindist, 76
maximization step, 143, 146
maximum distance, 12
maximum likelihood, 62

estimation, 62
ratio, 65

maximum margin classifier, 69
maximum membership classifier, 38
Maxwell distribution, 173
MDL, 92, 208
mean

arithmetic, 46, 290
geometric, 291
harmonic, 291
quadratic, 290

measure
distance, 12
evaluation, 202, 210
penalized, 91, 208
similarity, 16

median, 46, 47
medoid, 47

clustering, 3, 41
membership degree, 20

normalization, 23, 27
transformation, 23
weighting, 23

membership function, 20
membership transformation, 49
metal, 172
method of least squares, 63
metric, 12
metric scale, 2
micro-averaging, 206
migration, 174
minimum description length, 92, 208
Minkowski family, 12

334 INDEX

minor, 269
expansion by, 269

misclassification costs, 61
missing value, 139
mixture model, 28, 39, 140

Gaussian, 62, 146
momentum term, 191
monocrystalline structure, 172
Monte Carlo method, 228
mountain clustering, 81
multilayer perceptron, 7
multilinear regression, 94, 285
mutation, 174
mutual information, 255

näıve Bayes classifier, 5, 79
nearest prototype classifier, 38
neural network

multilayer perceptron, 7
radial basis function, 6, 38, 100,

108
neuro-fuzzy system, 7, 42
noise cluster, 178
noise clustering, 178
nominal scale, 2
normal distribution initialization, 75
normal equations, 95, 286
normalization, 23

crisp, 27
factor, 19, 20, 270
hard, 27
maximum 1, 27
mode, 22
none, 27
sum 1, 27

number of clusters, 220, 221, 231

object, 2
objective function, 45
odds of correct classification, 66

one-point crossover, 174
online training, 102
ordinal scale, 2
orthogonal linear transformation, 13
orthogonal matrix, 13, 281
outer product, 268
outlier, 178
overfitting, 199

parameter, 301
partition matrix, 46, 224

fuzzy, 50
Parzen window, 82
penalized measure, 91
phenotype, 173
point prototype, 43
polycrystalline structure, 172
population, 173
positive definite, 20, 278
possibilistic fuzzy clustering, 53, 159
posterior probability, 29, 66, 77
power, 208
precision, 204, 225
predicted residual sum of squared er-

rors, 93, 96
prediction, 4, 44

crisp, 4
function, 38, 60

PRESS, 93, 96
prior probability, 78
probabilistic clustering, 4
probabilistic fuzzy clustering, 53
probabilistic model, 243
probability density, 19
product

inner, 268
matrix, 268
outer, 268
scalar, 268

product-moment correlation, 228

INDEX 335

prototype
coupled, 266
merging, 265
splitting, 265

pseudo inverse, 286

QR algorithm, 282
quadratic form, 15
quadratic loss, 60, 202
quadratic mean, 290
quality measure, 202

0-1 loss, 202
absolute loss, 202
classification, 202
external, 210
internal, 210
quadratic loss, 202
relative, 210, 221

quick backpropagation, 193

radial basis function network, 6, 38,
100, 108

radial function, 16, 20
Cauchy, 16
cosine down to zero, 18
Gauss, 18
reference point, 18
spline, 18
trapezoidal, 18
triangular, 18

radius, 16
desired reference, 163
reference, 18

Rand statistic, 227
random projection, 243
ratio scale, 2
RBF network, 100, 108
recall, 204, 225
receiver operating characteristic

curve, 208

refinement approach, 87
reflection, 13
region

conflict, 89
core, 89

regression, 63
backward, 90
forward, 90
multilinear, 94, 285
ridge, 286
tree, 7

regressor variable, 285
regularization, 183–188, 234

shape, 183, 235
size, 186, 235
Tikhonov, 286
weight, 187, 238

relational equation, 43
relative evaluation measure, 210, 221
repulsion rule, 157
resampling, 228
resilient backpropagation, 192
response variable, 285
restricted hard assignment, 37
ridge regression, 286
right triangular matrix, 278
robustness, 178
ROC curve, 208
rotation, 13, 281
rule

attraction, 153
repulsion, 157
window, 158

rule-based system, 7
fuzzy, 7, 42

sampling
Latin hypercube, 75
stratified, 201

scalar product, 268

336 INDEX

scale
interval, 2
invariant, 13
metric, 2
nominal, 2
ordinal, 2
ratio, 2
types, 2

scaling, 281
scatter, 199
schema theorem, 174
selection, 173
self-organizing map, 266
separation index, 211
sequence of words, 243
sexual reproduction, 174
Shannon entropy, 247
shape, 20

regularization, 183, 235
Sherman-Morrison formula, 287
shifting the eigenvalues, 184
shrink step, 89
similarity, 3, 5
similarity measure, 16
simulated annealing, 171–173
single linkage, 84
singular value, 284
singular value decomposition, 284
size, 20

regularization, 186, 235
slack variable, 70
soft learning vector quantization,

167, 170
soft margin approach, 69
software, 10
spline, 18

order, 18
standard deviation

isotropic, 22
statistics, 2

stemming, 246
step expansion, 190
stochastic gradient descent, 102
stop word filtering, 246
stratification, 201
stratified sampling, 201
subsampling, 229
subtractive clustering, 81
sum of absolute errors, 60, 202
sum of squared distances, 46, 103
sum of squared errors, 5, 59, 60, 95,

108, 202, 285
penalized, 287
predicted residual, 93, 96

super self-adaptive backpropagation,
191

supervised classification, 2
support vector, 8, 69
support vector machine, 8, 41, 69
survival of the fittest, 174
SVM, 69
symmetric, 20, 268

t-conorm, 223
t-norm, 43, 222
target margin, 69
temperature, 173
term frequency, 243
term weight, 243
thermal activity, 172
Tikhonov regularization, 286
time-dependent learning rate, 155
topographic clustering, 266
topology preserving mapping, 266
tournament selection, 173
training

batch, 102
data set, 200
Manhattan, 112
online, 102

INDEX 337

transformation
Householder, 282
Jacobi, 282
membership, 49
membership degree, 23
orthogonal linear, 13
reflection, 13
rotation, 13
translation, 13

translation, 13
transpose, 268
trapezoidal function, 18
triangular function, 18
triangulation, 122

Delaunay, 122
trivial solution, 46

ultra metric, 84
uniform distribution initialization,

74
unsupervised classification, 2
upper triangular matrix, 278

validation data set, 200
Vapnik–Chervonenkis dimension,

208
variance

isotropic, 22
variance error, 199
VC dimension, 208
vector field, 54, 100
vector space model, 243
velocity distribution, 173
volume, 21
Voronoi cell, 122
Voronoi diagram, 122

Ward’s method, 85
weight, 20
weight regularization, 187, 238

weighting exponent, 51, 238
window rule, 158
window width, 82
wine data, 235, 239

CURRICULUM VITAE 339

Curriculum Vitae

Name: Christian Borgelt

Anschrift: Ankerstraße 3
D-39124 Magdeburg

Geburtstag: 06. Mai 1967

Geburtsort: Bünde (Westfalen)

Familienstand: ledig

Eltern: Friedrich-Wilhelm Borgelt
Ursula Borgelt, geborene Kaemper
Im Obrock 77, D-32278 Kirchlengern

Geschwister: keine

Schulbildung: 1973 – 1977 Besuch der Grundschule Südlengern
1977 – 1986 Besuch des Gymnasiums am Markt

in Bünde (Westfalen)

Schulabschluß: Allgemeine Hochschulreife (Durchschnittsnote 1.9)

Wehrdienst: 01. Juni 1986 – 30. September 1987 in Munster

Studium: 1987 – 1995 an der Technischen Universität
Carolo-Wilhelmina zu Braunschweig

Oktober 1987: Immatrikulation für den Studiengang Informatik

September 1989: Vordiplom im Studiengang Informatik

Oktober 1989: Immatrikulation für den Studiengang Physik

September 1992: Vordiplom im Studiengang Physik

April 1995: Diplom im Studiengang Informatik
(Gesamtnote: mit Auszeichnung)

Oktober 1995: Auszeichnung für hervorragende Leistungen im Rah-
men der Diplomprüfung im Studiengang Informatik

Schwerpunkte: Künstliche Intelligenz/Wissensverarbeitung
Datenbanksysteme
Technische Informatik (integrierte Schaltungen)
Theoretische Informatik

Anwendungsfach: Physik

340 CURRICULUM VITAE

Weitere Gebiete: Mathematik (Wahrscheinlichkeitstheorie, Numerik,
Differentialgleichungen)
Psychologie (Kognitions- und Wahrnehmungspsycho-
logie, Problemlösen)
Philosophie (Wissenschafts- und Erkenntnistheorie,
Philosophie der Mathematik, philosophische Proble-
me der modernen Physik etc.)

Sonstiges: Mitarbeit an der Übersetzung des Buches:
Kruse, Gebhardt, Klawonn: “Fuzzy Systeme”,
Teubner, Stuttgart 1993, ins Englische:
“Foundations of Fuzzy Systems”,
J. Wiley & Sons, Chichester, United Kingdom 1994.

Promotion zum Doktoringenieur (Dr.-Ing.) mit der Dissertation
“Data Mining with Graphical Models”
an der Otto-von-Guericke-Universität Magdeburg.

Eingereicht: 01. März 2000
Verteidigt: 04. Juli 2000

Gutachter: Prof. Dr. Rudolf Kruse
Prof. Dr. Stefan Wrobel
Prof. Dr. Hans-Joachim Lenz

Note: Summa cum laude

Diese Arbeit wurde mit dem Dissertationspreis 2000
der Fakultät für Informatik der Otto-von-Guericke-
Universität Magdeburg ausgezeichnet.

Berufstätigkeit: In den Jahren 1991 bis 1993 neben dem Studium Mit-
arbeit an Softwareprojekten der Firma Lineas Infor-
mationstechnik GmbH, Braunschweig.

01. Juli 1995 – 30. September 1995
angestellt als System-Analytiker bei der Lineas Infor-
mationstechnik GmbH, Braunschweig.

01. Oktober 1995 – 30. September 1996
tätig als wissenschaftlicher Angestellter der Techni-
schen Universität Braunschweig im Forschungszen-
trum der Daimler-Benz AG in Ulm (Arbeitsgruppe
maschinelles Lernen und Data Mining, Prof. Dr. Gho-
lamreza Nakhaeizadeh).

CURRICULUM VITAE 341

01. Oktober 1996 – 30. September 2000
wissenschaftlicher Mitarbeiter am Institut für Wis-
sens- und Sprachverarbeitung der Otto-von-Guericke-
Universität Magdeburg (am Lehrstuhl für Neuronale
Netze und Fuzzy-Systeme, Prof. Dr. Rudolf Kruse).

seit dem 01. Oktober 2000
wissenschaftlicher Assistent (C1) am Institut für Wis-
sens- und Sprachverarbeitung der Otto-von-Guericke-
Universität Magdeburg (am Lehrstuhl für Neuronale
Netze und Fuzzy-Systeme, Prof. Dr. Rudolf Kruse).

Bücher: C. Borgelt and R. Kruse.
Graphical Models —
Methods for Data Analysis and Mining.
J. Wiley & Sons, Chichester, United Kingdom 2002

D. Nauck, C. Borgelt, F. Klawonn, and R. Kruse.
Neuro-Fuzzy-Systeme —
Von den Grundlagen künstlicher neuronaler Netze
zur Kopplung mit Fuzzy-Systemen.
Vieweg, Braunschweig/Wiesbaden, Germany 2003

M.R. Berthold, H.-J. Lenz, E. Bradley, R. Kruse, and
C. Borgelt (eds.).
Advances in Intelligent Data Analysis V — Proc.
5th Int. Symposium on Intelligent Data Analysis
(IDA2003, Berlin, Germany).
Springer-Verlag, Heidelberg, Germany 2003

Magdeburg, den 2. November 2005

	Table of Contents
	Abstract
	Introduction
	Classification and Clustering
	Prototype-based Methods
	Outline of this Thesis
	Software

	Cluster Prototypes
	Distance Measures
	Radial Functions
	Prototype Properties
	Normalization Modes
	Classification Schemes
	Related Approaches

	Objective Functions
	Least Sum of Squared Distances
	Least Sum of Squared Errors
	Maximum Likelihood
	Maximum Likelihood Ratio
	Other Approaches

	Initialization Methods
	Data Independent Methods
	Simple Data Dependent Methods
	More Sophisticated Methods
	Weight Initialization

	Update Methods
	Gradient Methods
	General Approach
	Gradient Descent on Sum of Squared Distances
	Gradient Descent on Sum of Squared Errors
	Gradient Ascent on Likelihood Function
	Problems of Gradient Methods

	Alternating Optimization
	General Approach
	Classical Crisp Clustering
	Fuzzy Clustering
	Expectation Maximization

	Competitive Learning
	Classical Learning Vector Quantization
	Fuzzy Learning Vector Quantization
	Size and Shape Parameters
	Maximum Likelihood Ratio

	Guided Random Search
	Simulated Annealing
	Genetic or Evolutionary Algorithms
	Application to Classification and Clustering

	Update Modifications
	Robustness
	Noise Clustering
	Shape Regularization
	Size Regularization
	Weight Regularization

	Acceleration
	Step Expansion
	Momentum Term
	Super Self-Adaptive Backpropagation
	Resilient Backpropagation
	Quick Backpropagation

	Evaluation Methods
	Assessing the Classification Quality
	Causes of Classification Errors
	Cross Validation
	Evaluation Measures

	Assessing the Clustering Quality
	Internal Evaluation Measures
	Relative Evaluation Measures
	Resampling

	Experiments and Applications
	Regularization
	Acceleration
	Clustering Document Collections
	Preprocessing the Documents
	Clustering Experiments
	Conclusions

	Conclusions and Future Work
	Mathematical Background
	Basic Vector and Matrix Derivatives
	Properties of Radial Functions
	Normalization to Unit Integral
	Derivatives

	Cholesky Decomposition
	Eigenvalue Decomposition
	Singular Value Decomposition
	Multilinear Regression
	Matrix Inversion Lemma
	Lagrange Theory
	Heron's Algorithm
	Types of Averages
	The 2 Measure

	List of Symbols
	Bibliography
	Index
	Curriculum Vitae

