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Zusammenfassung in deutscher
Sprache

Mehrprodukt-Batch-Anlagen (MBAn) sind für die sequenzielle Herstellung von kleinen
Mengen vieler verschiedener Produkte geeignet. Diese Anlagen werden gewöhnlich dafür
genutzt, hochwertige Produkte, wie Feinchemikalien, Pharmazeutika usw. herzustellen.
Die wichtigsten Vorteile einer MBP sind ihre inherente Flexibilität und die Möglichkeit,
auf sich ändernde Marktanforderungen schnell zu reagieren. Diese Flexibilität wird
dadurch erreicht, dass verschiedene Produkte sich die gleichen Komponenten teilen (z.B.
Reaktoren und Filter). Es gibt beispielsweise MBAn, in denen sogar hunderte ver-
schieden Produkte in der gleichen Einheit hergestellt werden. Aus diesem Grund wird
eine geeignete Regelung dieser Anlagen benötigt, so dass die verfügbaren Ressourcen
effizient genutzt werden, um einen maximalen Profit zu erzielen. Das Optimierungsprob-
lem für MBAn kann wie folgt formuliert werden: Gegeben seien das dynamische Modell
f”ur jeden Prozess, die verfügbaren Komponenten (Reaktoren, Filter usw.) mit ihren Ka-
pazitäten und Speicherstrategien (keine Wartezeiten, unbegrenzte Zwischenspeicher usw.)
sowie die verfügbare Speicherkapazitäten für alle Materialien. Das Problem ist die Fes-
tlegung einer optimalen Sequenz von Aufgaben, die in jeder Komponente stattfinden, die
Materialmenge, die verwendet wird, und die Zeitdauer jeder Aufgabe in jeder Kompo-
nente, so dass die gewünschten Ziele (Maximierung des Profits, Minimierung der Pro-
duktionsdauer etc.) erreicht werden und gleichzeitig die Marktanforderungen in einem
gegeben Zeithorizont erfüllt werden.

Das oben beschriebene Optimierungsproblem für MBAn ist eine sehr komplexe hybride
Optimierungsaufgabe, da sie sowohl diskrete als auch kontinuierliche Stelleingriffe bein-
haltet. In der Praxis werden Ansätze benutzt, die auf standardisierten Rezepten für Pro-
duktionsabläufe basieren, wobei zunächst die Rezepte empirisch oder durch Optimierung
eines einzelnen Batches (unter Nutzung der dynamischen Modelle jedes Prozesses) stan-
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dardisiert werden und anschließend das Optimierungsproblem basierend auf diesen Stan-
dardrezepten formuliert wird. Allerdings führt die Standardisierung von Rezepten zur
Reduzierung von Freiheitsgraden des Systems und somit können die Lösungen, die durch
dieses Ansatz gewonnen werden, suboptimal sein, da sie durch vorgefertigte Produktion-
srezepte eingeschränkt werden. Ein anderer Hauptnachteil dieser rezeptbasierten Ansätze
besteht darin, dass es keine standardisierten Richtlinien gibt, welche festlegen wie ein
geeignetes Standardrezept aussehen sollte. Für denselben Prozess kann es verschiedene
widersprüchliche Rezepte geben und es gibt kein Verfahren zu entscheiden, welches
dieser Rezepte das geeignetste zur Formulierung des gesamten Optimierungsproblems
ist.

Der “ideale Ansatz” zur Optimierung von MBAn ist, das dynamische Modell jedes
Prozesses direkt in die Formulierung des Problems zu integrieren anstatt auf standar-
disierte Produktionsrezepte zurückzugreifen. Dies erhält die Freiheitsgrade des Sys-
tems (die ansonsten wegen der standardisierten Produktionsrezepte wegfallen würden)
und somit liefert dieser Ansatz potenziell Lösungen, die besser sind wie die mit dem
rezeptbasierten Ansätzen gewonnenen Lösungen. Die direkte Einbindung der dynamis-
chen Modelle, welche meist differenziell-algebraische Gleichungen (DAEs) sind, ergibt
ein “sehr umfangreiches” nichtlineares mixed-integer dynamisches Optimierungsprob-
lem (MIDO). Die kombinatorische Komplexität von MBAen und das Fehlen von Stan-
dardlösungsmethoden für MIDO-Probleme macht diesen Ansatz rechentechnisch für die
meisten reale Probleme unlösbar. Deshalb sind neue Ansätze notwendig, die bessere
Lösungen liefern als die existierenden rezeptbasierten Ansätze und gleichzeitig rechen-
technisch lösbar für reale Probleme sind.

Ein verbesserter Ansatz zur Optimierung von MBAn, der durch die Einführung einer
geeigneten Lösungsstruktur die Anzahl der Freiheitsgrade zwar reduziert, sich aber gle-
ichzeitig nur wenig auf das Kostenfunktional auswirkt, wird in dieser Arbeit vorgestellt.
Die Effektivität dieses Ansatzes wird mit Hilfe von verschiedenen Anwendungsbeispielen
veranschaulicht.
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Abstract

Multiproduct batch plants (MBPs), also known as specialty plants, are capable of sequen-
tially producing small amounts of a large number of different products. These plants are
commonly used for producing very high value products such as fine chemicals, pharma-
ceuticals etc. The most important features that make MBPs particularly attractive are their
inherent flexibility and the ability to respond quickly to the changing market demands.
Owing this inherent flexibility, in MBPs several products share the same units (for e.g.,
reactors, purificators etc.). There are examples of MBPs where even hundreds of products
are processed in the same unit. This mandates the need for proper control of these plants
so as to utilize the available resources efficiently and achieve maximum profit. The opti-
mal control problem for the MBPs can be formally stated as: given the dynamic model for
each of the processes, available units (reactors, purificators etc.) along with their capacity
limits, the storage policy (zero-wait, unlimited intermediate storage etc.) to be followed
and available storage capacity for each of the materials, determine the optimal sequence
of tasks taking place on each unit, the amount of material being processed and the du-
ration of each task on each unit, so as to achieve the desired objective (maximization of
profit, minimization of make-span etc.) while satisfying the market demands within the
given time horizon.

The above mentioned optimal control problem of MBPs is a highly non-trivial hybrid con-
trol problem as it involves both discrete and continuous decisions. In practice, approaches
based on standard production recipes are used, where first the recipes are standardized ei-
ther empirically or via single batch optimization (using the dynamic models of each of
the processes) and then the control problem is formulated on the basis of these standard-
ized recipes. However, standardization of recipes removes degrees of freedom from the
system and hence the solutions obtained with this approach can be suboptimal as they
are confined to pre-determined standard production recipes. Another major disadvantage
of these standard recipe based approaches arises from the fact that there are no standard
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guidelines available for deciding what a suitable standard recipe should be. For the same
process there can be several conflicting recipes and there is no way to decide which one
of these recipes would be the most suitable for the overall control problem formulation.

The “ideal approach” for the optimal control of MBPs is to include the dynamic model of
each of the processes directly into the control problem formulation instead of standardized
production recipes. This restores the additional degrees of freedom of the system (which
were otherwise removed due to the standardization of the production recipe) and hence
this approach potentially yields solutions that are usually much better or at least as good
as that obtained with the standard recipe based approaches. However, direct inclusion of
the dynamic models, which are usually differential algebraic equations (DAEs), results in
a “large” nonlinear mixed-integer dynamic optimization (MIDO) problem. The combi-
natorial complexity of MBPs and lack of standard solution methods for MIDO problems
render this approach computationally intractable for real world problems. This mandates
the need for novel approaches which can yield better solutions than the existing standard
recipe based approaches and at the same time are computationally tractable for real world
problems.

An improved approach for the optimal control of MBPs, which, by imposing a suitable
solution structure reduces the degrees of freedom of the system while only slightly affect-
ing the achievable performance, is proposed in this work. This approach helps to recover
the solution theoretically obtainable by the “ideal approach” more closely than that by the
standard recipe approach while keeping a lid on the complexity. The effectiveness of this
approach is illustrated with the help of several application examples.
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Nomenclature

General nomenclature for all the chapters

Indices

i index relating to tasks
j index relating to units
n index relating to event points representing the beginning of

a task or unit utilization
s index relating to states

Sets

I set of tasks
Ij set of tasks which can be performed in unit j
Is set of tasks processing (producing or consuming) state s
J set of units
Ji set of units which are suitable for performing task i
N set of event points within the time horizon
S set of all involved states s

Parameters

Cmin
ij minimum capacity for carrying out task i on unit j

Cmax
ij maximum capacity of unit j while executing task i

mds market demand for state s to be satisfied at the end of the time horizon
P p

si proportion of state s produced from task i
P c

si proportion of state s consumed by task i
M time horizon or the total makespan
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stmax
s maximum storage capacity available for state s

H a large scalar, should be greater than the time horizon under consideration
T cl

jii′ cleaning time required between tasks i and i′ at unit j

Variables

te(i, n) te(i, n) ∈ {0,1}, where {te(i, n) = 1} signifies the beginning of
task i at event point n

ue(j, n) ue(j, n) ∈ {0,1}, where {ue(i, n) = 1} signifies the beginning of
utilization of unit j at event point n

vol(i, j, n) amount of material undergoing task i in unit j at event point n, i ∈ Ij

referred simply as vol (i.e., without the indices) when discussing an
individual task on an individual unit

d(s, n) amount of state s going to the market at event point n
st(s, n) amount of state s at event point n
T s(i, j, n) starting time of task i in unit j at event point n, i ∈ Ij

T f(i, j, n) finishing time of task i in unit j at event point n, i ∈ Ij

dur(i, j, n) duration of task i in unit j at event point n, i ∈ Ij

referred simply as dur (i.e., without the indices) when discussing an
individual task on an individual unit

dur0(i, j, n) minimum processing duration for task i in unit j at event point n, i ∈ Ij

referred simply as dur0 (i.e., without the indices) when discussing an
individual task on an individual unit

δ(i, j, n) absolute minimum of all “residuals” that are less than zero for task i in
unit j at event point n, i ∈ Ij

Qr(i, j, n) resources (e.g., energy, etc.) required for task i in unit j at event point n, i ∈ Ij

referred simply as Qr (i.e., without the indices) when discussing an
individual task on an individual unit

zijn(t) vector of state variables for task i in unit j at time t, where t starts at T s(i, j, n)

referred simply as z(t) (i.e., without the subscripts) when discussing an
individual task on an individual unit

uijn(t) control variables for task i in unit j at time t, where t starts at T s(i, j, n)

referred simply as Qr(t) (i.e., without the subscripts) when discussing an
individual task on an individual unit
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Chapter-specific nomenclature

Chapter2

ca(t) concentration of reactant A at time t [kg/m3]
cb(t) concentration of product B at time t [kg/m3]
v(t) kinetic rate constant (transformed control variable) [hour−1]
α kinetic parameter in example 1
β kinetic parameter in example 1 [hourα−1]
αk kinetic parameter for reaction k in example 2 [hourβk−1]
βk kinetic parameter for reaction k in example 2
XAk

(t) total moles of reactant A in reaction k at time t [kmoles]
CAk

concentration of reactant A in the feed for reaction k [kmoles/m3]
XPk

(t) total moles of reactant P in reaction k at time t [kmoles]
XWk

(t) total moles of reactant W in reaction k at time t [kmoles]
uk(t) kinetic rate constant (transformed control variable) [hour−1]
FAk

(t) feed flow rate of reactant A in reaction k at time t [m3/hour]
Vk(t) volume of the reactor mixture during reaction k at time t [m3]
volk batch size for reaction k [m3]
durk duration of reaction k [hours]
Qrk energy resource required for reaction k

Chapter4

Air inner surface area of reactor r, where r ∈ {1, 2} [m2]

Aor
outer surface area of reactor r[m2]

Cix(t) concentration of component i in reaction x at time t [kmol/m3]

Cpx
specific heat of the reactant in reaction x [J/kg K]

Cpm specific heat of the reactor/purificator metal [J/kg K]

CpJ specific heat of the coolant/hot water [J/kg K]

E1x
activation energy 1 for reaction x [J/kmol]

E2x
activation energy 2 for reaction x [J/kmol]

FJx
(t) coolant flow rate at time t for reaction x [m3/h]

∆H1x
enthalpy of reaction 1 for reaction x [J/kmol]

∆H2x
enthalpy of reaction 2 for reaction x [J/kmol]
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k1x
reaction rate constant 1 for reaction x

k2x
reaction rate constant 2 for reaction x

k10x
frequency factor 1 for reaction x [hour−1]

k20x
frequency factor 2 for reaction x [hour−1]

Qrx
heat generated during reaction x

QJx
amount of heat transferred to the coolant in reaction x

Qmx
amount of heat transferred to the reactor metal in reaction x

R universal gas constant [J/kmol K]

Tx(t) temperature of the reaction mixture at time t in reaction x [K]

TJx
(t) temperature of coolant at time t in reaction x [K]

TJ0 inlet temperature of coolant [K]

Tmx
(t) temperature of the reactor metal at time t in reaction x [K]

Ui inside heat transfer coefficient of the reactor/purificator metal [J/h K m2]

Uo outside heat transfer coefficient of the reactor/purificator metal [J/h K m2]

Vx volume of the reactor contents in reaction x [m3]

VJr
volume of the jacket of reactor r [m3]

Vmr
volume of the reactor metal of reactor r [m3]

ρx density of the reacting mixture in reaction x [kg/m3]

ρm density of the reactor/purificator metal [kg/m3]

ρJ density of the coolant/hot water [kg/m3]

coolantx total amount of coolant needed for reaction x [m3]

Tupx
upper bound on the temperature of the reacting mixture during reaction x [K]

Tsatx saturation temperature of the intermediate produced from reaction x [K]

CAx
(t) concentration of reactant A at time t in reaction x [kmol/m3]

CBx
(t) concentration of product B at time t in reaction x [kmol/m3]

CCx
(t) concentration of by-product C at time t in reaction x [kmol/m3]

CCmaxx
upper limit on the amount of by-product produced during reaction x [kmol/m3]

CBintx
final concentration of the desired product B in the intermediate produced
from reaction x [kmol/m3]

Ai inner surface area of the purificators [m2]

Ao outer surface area of the purificators [m2]

TJxp
(t) temperature of hot water at time t while purifying the intermediate produced

from reaction x [K]

TJin
inlet temperature of hot water [K]

Tmxp
(t) temperature of the purificator metal (wall) at time t while purifying

the intermediate produced from reaction x [K]
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Vxp(t) volume of the purificator content at time t while purifying the
intermediate produced from reaction x [m3]

V0xp
initial volume of the purificator content while purifying the intermediate
produced from reaction x [m3]

Mvxp
mass flowrate of vapor while purifying the intermediate
produced from reaction x [kg/h]

Hvxp
enthalpy of the vapor leaving the purificator while purifying the
intermediate produced from reaction x

Hxp(t) enthalpy of the intermediate produced
from reaction x at time t during purification

VJ volume of the jacket of the purificator [m3]

Vm volume of the purificator metal [m3]

Hlatentx latent heat of the intermediate produced from reaction x [J/kg]

FJxp
(t) hot water flow rate at time t while purifying the

intermediate produced from reaction x [m3/h]

CBxp
(t) concentration of product B at time t while purifying the

intermediate produced from reaction x [kmol/m3]

CB0xp
initial concentration of product B while purifying the
intermediate produced from reaction x, note that CB0xp

= CBintx
[kmol/m3]

CBfxp
final concentration of product B while purifying the
intermediate produced from reaction x [kmol/m3]

hot waterxp total amount of hot water needed while purifying the
intermediate produced from reaction x [m3]

AppendixB

Indices

l index relating to time-points
c index relating to control-intervals
Sets

L set of time-points
C set of control-intervals
Variables

z(c, l) value of state variables z at time-point l within control-interval c
u(c) value of control variables u within control-interval c
step(c, l) spacing between time-points l and l + 1 within control-interval c
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Chapter 1

Introduction

Multi-product batch plants (MBPs), also termed as specialty plants, are capable of sequen-
tially producing small amounts of a large number of different products. These plants are
commonly used for producing very high value products (sales price usually in the range
of 5 - 500 Euros/kg [38]) such as foods, fine chemicals, pharmaceuticals etc. MBPs are of
particular importance in the chemical manufacturing arena as nearly 80 % of the products
produced in these plants are found to be in steady and growing business [34]. The most
important features that make MBPs particularly attractive are their inherent flexibility and
the ability to respond quickly to the ever changing market demands [42].

An example multi-product batch plant comprising of two semi-batch reactors (R1 and R2)
and three batch filters (F1, F2 and F3) is shown in Figure 1.1. Three different products
(P1, P2 and P3) are produced in this plant from three different raw materials (A1, A2 and
A3) as per the following reaction scheme:

Ak −→ Pk

Ak −→ Wk ; k = 1, 2, 3
Ak = reactant, Pk = product, Wk = waste

All of these reactions are carried out in the presence of a large amount of solvent, which
is stored in the solvent tank shown in Figure 1.1. It is assumed that for every reaction
the amount of solvent contributes 90% of the given batch size. Before every reaction, the
reactors are filled with the required amount of solvent and then the reactants are dosed
strategically. At the end of the reactions, the intermediates from these reactors are sent to
the filters, where they are split volumetrically into the solvent (90%) and the respective
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products (10%). The recovered solvent is sent back to the solvent tank and can be used
for further reactions.

Each of these reactions and the subsequent filtrations can be carried out in any of the
reactors and the filters respectively. Thus, we see that in MBPs several products share the
same units (for e.g., the reactors and the filters in this case). This is true for every MBP.
There are examples of MBPs, where even hundreds of different products are processed in
the same unit [35].

Optimal operation of these plants is a highly non-trivial hybrid control problem as it in-
volves both discrete and continuous decisions. The discrete decisions usually involve se-
lection of proper sequence in which the products are to be produced and the units allocated
for producing them. Whereas, the continuous decisions usually involve determination of
suitable control input signals, amounts of materials to be processed at a time on a given
unit and the processing durations dedicated to them.

A A A1 2 3

R1

F1 F2 F3

R2 Reactors

Vacuum

B
Tank
Solvent

Feed

Product Product Product

Filter−
systems

Figure 1.1: An example multi-product batch plant.
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1.1 The Control Problem Statement

The control problem of the MBPs considered in this work can be formally stated as fol-
lows:
Given the dynamic models for each of the processes (i.e., the stoichiometric balances,
rate equations, safety constraints etc.), available units (reactors, purificators etc.) along
with their capacity limits, the storage policy (zero-wait, unlimited intermediate storage
etc.) to be followed and available storage capacity for each of the materials, determine
the optimal sequence of tasks taking place on each unit, the amount of material being
processed and the duration of each task on each unit, so as to achieve the desired objec-
tive (maximization of profit, minimization of makespan etc.) while satisfying the market
demands within the time horizon.

This boils down to the determination of open loop optimal control policy for the plant.
Aspects of feedback control are not taken into account in this work.

1.2 General Structure of the Control Problem

The control problem formulation of the MBPs can be divided into the following two steps:

1. Graphical representation of the process under consideration.
Graphical representation of the process network is very important for a better un-
derstanding of the tasks involved in the process and the interconnections between
them. There are several approaches available for this in the literature. Out of which,
some of the most prominent ones are the state-task network (STN) representation
proposed by Kondili et al. [24], the resource-task network (RTN) representation
proposed by Schilling and Pantelides [44] and the state-sequence network (SSN)
proposed by Zhu and Majozi [26]. Throughout this work, the STN is used for
graphically representing the processes and hence, it is discussed in detail in the
following.

The state-task network (STN) is a very powerful mean for the graphical represen-
tation of chemical processes and particularly, batch processes involving a large va-
riety of complexities can be unambiguously represented by it. In STN, all of the
materials (reactants, intermediates, final products, etc.) involved in the process are
marked as ”states” and are denoted by circles. Whereas, all the processing steps
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(reaction, purification, etc.), which transform one or more input states to one or
more output states are marked as ”tasks” and are denoted by rectangles.

S1

S4

0.1

S7

1.0

1.0

0.1

0.1

1.0

1.0

0.1

S2

S5

S8

Reaction 2Reaction 1

Filtration 2

0.1

1.0

1.0

S3

S6

Reaction 3

Filtration 3Filtration 1

(Task 1, 2) (Task 3, 4) (Task 5, 6)

(Task 7, 8, 9) (Task 10, 11, 12) (Task 13, 14, 15)

0.9

S10

S9

0.1

0.9

0.9

0.90.9

0.9

1 2
3

Intermediate  3

Product  1 Product  2 Product  3

Solvent

Reactant   A Reactant   A
Reactant   A

Intermediate  1 Intermediate  2

Figure 1.2: State-task-network representation of the process shown in Figure 1.1.

As an example, the STN representation for the MBP shown in Figure 1.1 is pre-
sented in Figure 1.2. Where, all the reactants (A1, A2 and A3), the intermediates
(intermediate 1, 2 and 3) the products(P1, P2 and P3) and the solvent are denoted
by states S1 - S10, respectively. The three reaction tasks and the respective filtra-
tion tasks are denoted by rectangles. The flow of materials within the process is
indicated by means of arrows. An arrow pointing towards a given rectangle indi-
cates that the connecting state is being consumed by the task represented by that
rectangle, whereas, an arrow pointing away from the rectangle indicates that the
connecting state is being produced by that task. The proportion of a state being
produced or consumed by a connected task is indicated alongside the arrows. It
needs to be mentioned that the units (reactors, filters, etc.) are never shown explic-
itly in the STN. For a detailed description of the STNs and their various capabilities,
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the reader is kindly referred to Appendix A.

2. Control problem formulation.
The control problem of MBPs, considered throughout this work, is nothing but a
mathematical optimization problem, where the goal is to realize a certain objective
(maximization of the sales revenue, minimization of the makespan, etc.) while
satisfying the various process constraints as well as the market requirements.

Extensive research has been done in this area [24, 31, 32, 44, 18, 25, 16, 26, 8,
3, 15, 19, 20, 30, 33, 36, 37, 43, 48, 27]. and several elegant approaches have
been proposed in the literature for the control problem formulation of the MBPs.
Depending on their handling of the process dynamics, these approaches can be
broadly classified into the following:

• The standard recipe approach (SRA)
Most of the control problem formulations proposed in the literature are based
on this approach [24, 31, 32, 44, 18, 25, 16, 26, 3, 15, 19, 20, 30, 33, 36, 37, 48,
27]. A schematic representation of this approach is presented in Figure 1.3. In
this approach, first a standard production recipe (e.g., processing time, control
strategy etc., for different batch sizes) is obtained either empirically or via
single batch optimization (SBO) using the dynamic models of the processes
and then, the control problem is formulated using this standard production
recipe. The control problem obtained with this approach is either a mixed-
integer nonlinear programming (MINLP) problem or a mixed-integer linear
programming (MILP) problem, which can be approached using conventional
solvers readily available in the market. However, this approach suffers from
a major drawback, which arises due to the use of standard production recipe.
Standardization of recipe removes degrees of freedom from the system and
hence, the solution obtained with this approach is expected to be suboptimal.

• The overall optimization approach (OOA)
This approach was first discussed by Bhatia and Biegler [8]. Figure 1.4
presents a schematic representation of this approach. In this approach, the
dynamic models of the processes are directly included in the control problem
formulation instead of the standard production recipe. However, direct inclu-
sion of the dynamic models of the processes in the control problem formu-
lation results in a mixed-integer dynamic optimization (MIDO) problem, the
solution of which can be a formidable task. The present trend of approaching
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these infinite-dimensional MIDO problems is to transform them into finite-
dimensional MINLP problems [4, 5] via suitable time discretization schemes
like the standard trapezoidal rule, the orthogonal collocation on finite elements
etc. However, the MINLP problems obtained by discretizing the MIDO prob-
lems in time are usually very large and hence computationally difficult or even
impossible to solve for problems of practical size.

The SRA and the OOA both suffer from some serious drawbacks, as mentioned above.
This mandates the need for novel approaches for the control of this important class of
chemical plants, which can yield better solutions than the SRA and at the same time result
in computationally tractable control problems. An improved approach, which promises
to overcome the drawbacks of both the SRA and the OOA upto a large extent, is proposed

Local Objective Function

Process Dynamics

Control Problem

Process Constraints

Market Requirements

Mixed−Integer Nonlinear 
Programming Model

or
Mixed−Integer Linear
Programming Model

Overall Objective Function

Standard Production Recipe

Figure 1.3: Schematic representation of the standard recipe approach (SRA).

Control Problem

Overall Objective Function

Process Dynamics

Process Constraints

Mixed−Integer Dynamic

Mixed−Integer Nonlinear
Programming Model

Market Requirements

Optimization Problem

Figure 1.4: Schematic representation of the overall optimization approach (OOA).
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in this thesis.

1.3 Outline

The remainder of this thesis is organized as follows. Chapter 2 presents a comparative
study of the SRA and the OOA. The advantages and disadvantages of both these ap-
proaches are discussed in detail with the help of illustrative examples. Chapter 3 presents
an improved approach for the control of MBPs and illustrates its effectiveness by com-
paring its performance to that of the SRA and the OOA for the illustrative examples. A
detailed application example is presented in chapter 4. Finally, the conclusions and the
directions for future research are presented in chapter 5.

7



Chapter 2

A Comparative Study of Different
Approaches

The objective of this chapter is to present a comparative study of the SRA and the OOA.
The main advantages and disadvantages of both these approaches are illustrated with the
help of simple examples.

As mentioned earlier, the STN representation is used for the graphical depiction of the
process. An event-point based continuous-time formulation proposed by Ierapetritou and
Floudas [18, 19, 20] is adopted for the control problem formulation. The following section
presents the mathematical formulation of the control problem.

2.1 Mathematical formulation of the control problem

The control problem is formulated as per the continuous time formulation proposed by
Ierapetritou and Floudas [18]. The most important ingredients of the problem formulation
presented in their work are reproduced here for the sake of completeness and so as to work
out clearly how the process dynamics fit into this formulation. For detailed information,
the reader is kindly referred to the original work of Ierapetritou and Floudas [18, 19, 20]).

In this approach, first a necessary number of event points (n = 1 . . .nlast) are defined for
each unit at unknown locations on the makespan. The total number of these event points
for each unit is the same, however, they can be located differently on the makespan. The
initiation of a task (i.e., reaction or purification) or the beginning of an unit (i.e., reactor
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or purificator) utilization can happen exactly at these event points. The other constraints
for the control problem are also then formulated on the basis of these event points.

The following notations are used in the control problem formulation :
Indices
index i relates to tasks
index j relates to units
index n relates to event points representing the beginning of a task or unit utilization
index s relates to states

Sets
I . . . set of tasks
Ij . . . set of tasks which can be performed in unit j
Is . . . set of tasks processing (producing or consuming) state s
J . . . set of units
Ji . . . set of units which are suitable for performing task i
N . . . set of event points within the time horizon
S . . . set of all involved states s

Parameters
Cmin

ij . . . minimum capacity for carrying out task i on unit j
Cmax

ij . . . maximum capacity of unit j while executing task i
mds . . . market demand for state s to be satisfied at the end of the time horizon
P p

si . . . proportion of state s produced from task i
P c

si . . . proportion of state s consumed by task i
M . . . time horizon or the total makespan
stmax

s . . . maximum storage capacity available for state s
H . . . a large scalar, should be greater than the time horizon under consideration
T cl

jii′ . . . cleaning time required between tasks i and i′ at unit j

Variables
te(i, n) ∈ {0,1}, where {te(i, n) = 1} signifies the beginning of task i at event point n
ue(j, n) ∈ {0,1}, where {ue(i, n) = 1} signifies the beginning of utilization of unit j at
event point n
vol(i, j, n) . . . amount of material undergoing task i in unit j at event point n, i ∈ Ij

d(s, n) . . . amount of state s going to the market at event point n
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st(s, n) . . . amount of state s at event point n
T s(i, j, n) . . . starting time of task i in unit j at event point n, i ∈ Ij

T f(i, j, n) . . . finishing time of task i in unit j at event point n, i ∈ Ij

dur(i, j, n) . . . duration of task i in unit j at event point n, i ∈ Ij

Qr(i, j, n) . . . resources (e.g., energy, etc.) required for task i in unit j at event point n, i
∈ Ij

zijn(t) . . . vector of state variables for task i in unit j at time t, where t starts at T s(i, j, n)

uijn(t) . . . control variables for task i in unit j at time t, where t starts at T s(i, j, n)

Based on this notation the control problem involves the following constraints in general :
Allocation Constraints

∑

i ∈ Ij

te(i, n) = ue(j, n), ∀j ∈ J, n ∈ N (2.1)

where, addition is defined in the sense of standard integer addition.
These constraints express that at each unit j and at an event point n not more than one of
the tasks that can be performed on this unit, i.e., i ∈ Ij , should take place.

Capacity Constraints

Cmin
ij · te(i, n) ≤ vol(i, j, n) ≤ Cmax

ij · te(i, n), ∀i ∈ I, j ∈ Ji, n ∈ N (2.2)

These constraints impose upper and lower bounds on the amount of material undergoing
task i in unit j at event point n.

Material Balances

st(s, n) = st(s, n− 1) − d(s, n) +
∑

i ∈ Is

P p
si

∑

j ∈ Ji

vol(i, j, n− 1)

+
∑

i ∈ Is

P c
si

∑

j ∈ Ji

vol(i, j, n), ∀s ∈ S, n ∈ N (2.3)

where P c
si ≤ 0 and P p

si ≥ 0. As per these constraints, the amount of state s at event
point n is equal to that at event point n − 1 adjusted by any amounts produced or
consumed between the event points n and n − 1 and the amount required by the market
at event point n within the time horizon. Note that, at the first event point, i.e., n = 1,
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st(s, n− 1) corresponds to the initial amount of state s.

Storage Constraints

st(s, n) ≤ stmax
s , ∀s ∈ S, n ∈ N (2.4)

These constraints represent the maximum available storage capacity for each state s at
event point n.

Demand Constraints

∑

n ∈ N

d(s, n) ≥ mds, ∀s ∈ S (2.5)

These constraints impose a lower bound on the amount of product to be produced so as
to satisfy the market demand.

Duration Constraints

T f(i, j, n) = T s(i, j, n) + dur(i, j, n), ∀i ∈ I, j ∈ Ji, n ∈ N (2.6)

These constraints represent the time duration of task i in unit j at event point n.

Sequence Constraints : Same task in the same unit

T s(i, j, n+ 1) ≥ T f(i, j, n), ∀i ∈ I, j ∈ Ji, n ∈ N, n 6= nlast (2.7)

These constraints imply that task i in unit j at event point n + 1 should start only after
the end of the same task being performed in the same unit at event point n.

Sequence Constraints : Different tasks in the same unit

T s(i, j, n+ 1) ≥ T f(i′, j, n) + T cl
jii′ · te(i, n + 1) − H · (1 − te(i′, n)),

∀j ∈ J, i′ ∈ Ij, i ∈ Ij, i 6= i′, n ∈ N, n 6= nlast (2.8)

These constraints express that if tasks i and i′ are taking place in the same unit j, then
they should be performed at most consecutively while satisfying cleaning requirements,
if any.
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Sequence Constraints : Different tasks in different units

T s(i, j, n + 1) ≥ T f (i′, j ′, n) − H · (1 − te(i′, n)),

∀i, i′ ∈ I, j ∈ Ji, j
′ ∈ Ji′, i 6= i′, j 6= j ′, n ∈ N, n 6= nlast (2.9)

These constraints express that if tasks i and i′ are performed in different units j and j ′,
then they should be carried out consecutively adhering to the production recipe.

Sequence constraints : Same task in different units

A task that can be performed on different units is formulated as different tasks in
different units using Equation 2.9 , i.e., each task in each unit is considered as a different
task with the same features.

Sequence Constraints : ’Zero-wait’ conditions

T s(i, j, n + 1) ≤ T f (i′, j ′, n) + H · (2 − te(i, n + 1) − te(i′, n)),

∀i, i′ ∈ I, j ∈ Ji, j
′ ∈ Ji′, n ∈ N, n 6= nlast (2.10)

Combined with Equations 2.8 and 2.9, Equation 2.10 enforces that task i in unit j at
event point n + 1 starts immediately after the end of task i′ in unit j ′ at event point n if
both of them are to be performed.

Sequence Constraints : Completion of previous tasks

T s(i, j, n + 1) ≥
∑

n′ ∈ N, n′ ≤ n

∑

i′ ∈ Ij

(T f(i′, j, n′) − T s(i′, j, n′)),

∀i ∈ I, j ∈ Ji, n ∈ N, n 6= nlast (2.11)

Equation 2.11 imposes a lower bound on the starting time of task i in unit j at event point
n+ 1.

Time Horizon Constraints

T f(i, j, n) ≤ M, ∀i ∈ I, j ∈ Ji, n ∈ N (2.12)

Equation 2.12 ensures that every task ends within the time horizon under consideration.
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Objective Function

The objective function of the control problem represents the desired performance
criteria, for example, minimization of makespan, maximization of profit via sales
revenue, minimization of operation costs, etc. However, in this work, we aim at
maximization of the overall profit for the processing plant over a given makespan.

Process Dynamics

∀i ∈ I, j ∈ Ji, n ∈ N

dzijn(t)

dt
= f(zijn(t), uijn(t)) (2.13)

Qr(i, j, n) = γ(zijn(t), uijn(t)) (2.14)

h(zijn(t), uijn(t)) = 0 (2.15)

g(zijn(t), uijn(t)) ≤ 0 (2.16)

hep1
(zijn(tep), uijn(tep)) = vol(i, j, n) (2.17)

hep2
(zijn(tep), uijn(tep)) = 0 (2.18)

gep(zijn(tep), uijn(tep)) ≤ 0 (2.19)

where, t ∈ [0, dur(i, j, n)] and tep ∈ {0, dur(i, j, n)}

Equations 2.13 - 2.15 represent the process model, which is in general a system of dif-
ferential algebraic equations (DAEs). However, for the sake of simplicity, only systems
defined solely by ordinary differential equations (ODEs) are considered in this work. Ad-
ditionally, one may have path constraints 2.16 and equality 2.17, 2.18 and/or inequality
2.19 constraints at the initial and/or final time.

Based on their treatment of the process dynamics, the control approaches are classified
into the SRA and the OOA, as explained in the following :
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Standard Recipe Approach (SRA)

In this approach, the process dynamics do not participate directly in the control problem
formulation. Instead, they are used to obtain standard recipes and then these recipes are
used to simplify the control problem, as explained in detail later.

Throughout this work, the recipes are obtained by carrying out single batch optimization
(SBO) of the processes described by Equations 2.13 - 2.19 (without the indices i, j and
n) using suitable optimization criterion (e.g., minimization of the operation cost etc.).

min
z(t), u(t), dur

ρ(z(t), u(t), z(dur)), ∀i ∈ I, j ∈ Ji, n ∈ N (2.20)

subject to

dz(t)

dt
= f(z(t), u(t)) (2.21)

Qr = γ(z(t), u(t)) (2.22)

h(z(t), u(t)) = 0 (2.23)

g(z(t), u(t)) ≤ 0 (2.24)

hep1
(z(tep), u(tep)) = vol (2.25)

hep2
(z(tep), u(tep)) = 0 (2.26)

gep(z(tep), u(tep)) ≤ 0 (2.27)

where, t ∈ [0, dur] and tep ∈ {0, dur}

The SBO is carried out for different batch sizes and all tasks using suitable performance
criteria, as shown in Equation 2.20. This way for every task i in unit j at event point n,
the processing duration dur(i, j, n) and the other resources (e.g., energy requirement etc.)
needed for the process Qr(i, j, n), etc. is obtained for different batch sizes vol(i, j, n).
Subsequently, suitable polynomial fittings ψ and φ are then used to get Equations 2.28
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and 2.29.
∀i ∈ I, j ∈ Ji, n ∈ N

dur(i, j, n) =

{

0, vol(i, j, n) = 0

ψ(vol(i, j, n)), vol(i, j, n) > 0
(2.28)

Qr(i, j, n) =

{

0, vol(i, j, n) = 0

φ(vol(i, j, n)), vol(i, j, n) > 0
(2.29)

It should be noted that Equations 2.28 and 2.29 can be highly nonlinear or non-smooth in
practical cases and are expected to have residuals associated with them. Utmost care is
needed while defining these equations so as to keep these residuals as low as possible.

Then, Equations 2.28 and 2.29 are used for the control problem formulation instead of the
process dynamics given by 2.13 - 2.19. The resulting control problem in this approach is
either a MILP or a MINLP problem depending on whether Equations 2.28, 2.29 and the
objective function are linear or nonlinear respectively.

Overall Optimization Approach (OOA)

In this approach, unlike the SRA, the process dynamics (i.e., Equations 2.13 -
2.19) are directly included in the control problem formulation. The resulting control
problem obtained in this case is essentially a MIDO problem, which can be transformed
into a MINLP problem by using a suitable time discretization scheme.

2.2 Illustrative examples

This section presents two illustrative examples. Both the control approaches are applied
to these examples and the results are compared.

2.2.1 Example 1

A single product batch plant consisting of two processing stages, namely a batch reactor
and a purification unit, as shown in Figure 2.1, is considered here. The plant is assumed
to be operating under zero-wait policy, i.e., the intermediate from the reactor cannot be
stored and has to be consumed by the purification unit as soon as the reaction ends. A
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brief description of the processing stages involved is as follows :

Reactor :

The reactor in the plant is a dynamic batch reactor with the following series reac-
tion to be carried out :

A −→ B −→ C ; A = reactant, B = product, C = waste

The governing equations for this reactor are as follows :

dca(t)

dt
= −v(t) · ca(t) ; ca(t = 0) = 12.8 kg/m3 (2.30)

dcb(t)

dt
= v(t) · ca(t) − β · v(t)α · cb(t) ; cb(t = 0) = 0.0 (2.31)

where, α = 1.44798 ; β = 0.0246 hourα−1

Qr = vol ·

∫ dur

0

v(t) · dt (2.32)

Where, ca(t) and cb(t) represent the concentrations of reactant A and product B re-
spectively at any instant of time t (t ∈ [0, dur]), while their respective rate equations
are given by Equations 2.30 & 2.31. α and β are kinetic parameters. v(t) is a rate
constant and is considered to be the control variable. In practice, v(t) can be changed
by changing the temperature. The amount of energy resource Qr required for this is
proportional to the integral over v(t) according to Equation 2.32. vol is the volume of the
reacting mixture in m3, assumed to be constant throughout the reaction. The minimum

Reactor

Feed

Purification unit

Product

Waste

Figure 2.1: Flow sheet of the process in example 1.
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volume of the reacting mixture required to start operating the reactor is assumed to
be 2.0 m3. For safe operation of the reactor, the control variable v(t) is subjected
to the path constraint given by Equation 2.33. Equation 2.34 represents an end con-
straint, which expresses the desired concentration of the product at the end of the reaction.

0.05647 hour−1 ≤ v(t) ≤ 8.8885 hour−1 (2.33)

cb(t = dur) = 11.52 kg/m3 (2.34)

Purification Unit:

The intermediate from the reactor goes to the purification unit, where the product
is separated from the waste and the unreacted reactant. The purification unit is assumed
to be a separation train where the intermediate is subjected to several unit operations and
is finally separated into pure product and a mixture of waste and unreacted reactant. The
following simplifying assumptions are made for the operation of the purification unit :

1. The time needed for purification is directly proportional to the volume of the inter-
mediate (from the reactor) being purified and is given as follows:
purification duration (hours) = 2.0 · (volume of intermediate being purified (m3))

2. The densities of reactant, product and waste are identical. Hence, the intermediate
can be split volumetrically into product B and a mixture of waste C and unreacted
reactant A. For example, in the above reaction the operational yield of product B is
90%, which under the assumption of identical densities implies that 5m3 of reactant
gives 4.5 m3 of product.

 
S1

Feed

Reaction

1.0
task 1

1.0 1.0
S2

Intermediate
0.1

Purification

task 2

S4

waste

0.9
S3

Product

Figure 2.2: State-task-network representation of the process in example 1.
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Figure 2.2 shows the state-task-network (STN) representation of the process. The basic
data for the units and the states is given in Table 2.1. As an example, the following costs
are assumed for running the process :

1. The running cost of the reactor is 1.2 money unit (MU) per hour.

2. The cost of resources needed for purification is 75.0 MU per m3 of the intermediate
being purified.

3. The running cost of the purification unit is 2.0 MU per hour.

4. The energy resource cost is 4.0 MU per unit Qr.

Table 2.1: Data for example 1.

Unit(j) Capacity(m3) Suitability(task i)
Reactor(j=1) 5.0 Reaction(i=1)
Purificator(j=2) 5.0 Purification(i=2)
State(s) initial amount(m3) price(MU per m3)
Feed(s=1) 50.0 60.0
Intermediate(s=2) 0.0 0.0
Product(s=3) 0.0 180.0
Waste(s=4) 0.0 0.0

The control target for this example is maximization of overall profit for the plant over a
fixed makespan of 10 hours, where the overall profit for the plant is defined as follows:

Profit = (price of products) − (price of raw materials)

− (running cost of the reactor) − (running cost of the purification unit)

− (cost of resources needed for purification)

− (energy resource cost of the reactor)

Control via the SRA

The SRA for control involves determination of a standard production recipe followed by
the control problem formulation on the basis of this recipe. In the present case, the recipe
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represents optimal heating policies for given batch sizes.

Determination of Standard Production Recipe

Reactor :
The standard production recipe for the reactor is determined via single batch optimization
(SBO). For a batch reaction with fixed conversion, maximum profit can be achieved by
minimization of the operation costs. So the only reasonable objective for the SBO is to
minimize the total operation cost (i.e., the sum of the running cost and the energy cost)
of the reactor. The SBO problem (Equations 2.20 - 2.27) in this case can be written as
follows:

minimize (1.2 · dur + 4.0 ·Qr) (2.35)

subject to

Equations 2.30 - 2.34

Hence, we have an infinite dimensional dynamic optimization problem. Appropriate dis-
cretization of the state and the control variables in time transforms this problem into a fi-
nite dimensional nonlinear programming (NLP) problem. Efficient discretization schemes
based on the orthogonal collocation over finite elements [12, 13, 11, 40, 41, 45, 14, 22, 17]
and moving finite elements [9] have been proposed in the literature. However, due to the
simplicity of the examples chosen in this work, the standard trapezoidal rule with equidis-
tant grids is used for discretization throughout this work. For a detailed information on
the discretization technique used in this work, the reader is kindly referred to Appendix
B.

The SBO is carried out for different batch sizes using 100 equidistant time points. The
corresponding duration of reaction dur and energy resource requirement Qr are shown
in Table 2.2. Figure 2.3 shows the reaction recipe, i.e., the reaction duration and the
energy required, for some of the batch sizes. Please note that the energy resource Qr
required for a given batch size is given by the product of the area under the respective
control profile curve (i.e., v(t) vs. t plot) and the batch size. Throughout this work,
the NLP problems are solved using GAMS/CONOPT2 solver [1] on a Linux workstation
with AMD Athlon(TM) XP 3200+ processor. The standardized equations for processing
duration and energy resource requirement are obtained by fitting the optimization data
shown in Table 2.2 with polynomials of appropriate order and are given by Equations
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Figure 2.3: Optimal control profiles for the reaction in example 1.

2.36 and 2.37.

dur(1, 1, n) =











0, vol(1, 1, n) = 0

(1.743 + 1.172 · vol(1, 1, n)

−0.195 · vol(1, 1, n)2 + 0.02518 · vol(1, 1, n)3), vol(1, 1, n) > 0
(2.36)

Table 2.2: Results of the SBO of the reactor in example 1.

vol(m3) dur(hours) Heatf Qr(m3)

2.0 3.5096 2.7689 5.5377
2.5 3.8423 2.7243 6.8108
3.0 4.1824 2.6871 8.0614
3.5 4.5385 2.6542 9.2897
4.0 4.9226 2.6235 10.4939
4.5 5.3546 2.5930 11.6684
5.0 5.8754 2.5601 12.8006
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Qr(1, 1, n) =











0, vol(1, 1, n) = 0

(0.1463 + 2.802 · vol(1, 1, n)

−0.05396 · vol(1, 1, n)2), vol(1, 1, n) > 0

(2.37)

For higher accuracy, processing duration dur(1, 1, n) is fitted with a cubic polynomial,
while for the energy requirement Qr(1, 1, n), quadratic polynomial fitting serves the
purpose satisfactorily.

Purificator :
Since no process dynamics are considered for the purificator in this example, the
production recipe for the purificator is given by Equation 2.38.

dur(2, 2, n) = 2.0 · vol(2, 2, n) (2.38)

Control Problem Formulation
The control problem is formulated using the standard production recipe, i.e., Equations
2.36, 2.37 and 2.38, as per the continuous time formulation presented in section 2. How-
ever, within the control problem formulation Equations 2.36 and 2.37 have to be rewritten
as Equations 2.39 and 2.40 respectively.

dur(1, 1, n) = 1.743 · te(1, n) + 1.172 · vol(1, 1, n) − 0.195 · vol(1, 1, n)2

+0.02518 · vol(1, 1, n)3 (2.39)

Qr(1, 1, n) = 0.1463 · te(1, n) + 2.802 · vol(1, 1, n) − 0.05396 · vol(1, 1, n)2 (2.40)

The objective function for this example, which is maximization of overall profit for the
plant, is expressed by Equation 2.41.

maximize
∑

n

(180.0 · d(3, n) − 60.0 · vol(1, 1, n) − 1.2 · dur(1, 1, n)

−2.0 · dur(2, 2, n)− 4.0 ·Qr(1, 1, n) − 75.0 · vol(2, 2, n)) (2.41)

Computational Result
A maximum profit of 30.8718 MU is achieved. A total amount of 2.637 m3 of product
is obtained by processing 2.93 m3 of reactant and the corresponding production schedule
is shown in Figure 2.4. The optimal solution converges for two event points and does not
change with further increase in the number of event points. Throughout this work, the
MINLP problems are solved using GAMS/SBB [2] solver on a Linux workstation with
AMD Athlon(TM) XP 3200+ processor.
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Control via the OOA

In the OOA, the process dynamics (i.e., a set of Equations 2.30 - 2.34 for each task i in
unit j at event point n) are directly included in the control model instead of the standard
production recipe i.e., Equations 2.36 - 2.38. The processing duration dur(1, 1, n) and the
energy resource requirementQr(1, 1, n) are obtained from the process dynamics included
in the control problem.

Due to the direct consideration of the process dynamics, the control problem obtained in
this case is a MIDO problem.

Computational Result
The MIDO problem is transformed into the MINLP problem by using standard trape-
zoidal rule with 100 equidistant time points. Two event points are needed for obtaining
the optimal solution and the corresponding production schedule is shown in Figure 2.5.
The optimal solution converges to a maximum profit value of 37.6109 MU and does not
change with further increase in the number of event points. Figure 2.5 shows that this
maximum profit is obtained by processing a total amount of 3.69 m3 of the reactant,
thereby producing 3.321 m3 of the product.

Comparison of the Computational Results of the SRA and the OOA

Table 2.3 shows the model statistics and the solutions obtained via both the approaches.
As expected, the size of the OOA control problem is very large (in terms of the number of
variables and equations) in comparison to the SRA control problem and thus needs much

Reactor

Purificator

Units

0.0
Hours

2.0 4.0 6.0 8.0 10.0

10.0

Profit = 30.8718 MU

4.14

4.14

2.93

2.93

Figure 2.4: Optimal schedule obtained by the SRA for example 1.
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more computational effort. However, the model statistics given for the SRA approach
in Table 2.3 is only for the control problem. It should be noted that significant effort is
involved in obtaining the standard recipe.

Table 2.3: Comparison of the SRA and the OOA results for example 1.

SRA OOA
Integer variables 2 2
Continuous variables 27 430
Equations 37 333
Solution (MU) 30.8718 37.6109

Nevertheless, in case of the OOA, the maximum profit increases by 21.83 %. Since
the price of the product in this example is much higher than the other prices involved,
the OOA control problem chooses to produce more product as quickly as possible while
keeping all the other prices in check, which ultimately increases the overall profit for the
plant significantly. The choice of this strategy by the OOA is possible only because of the
additional degrees of freedom restored by the direct inclusion of the process dynamics in
the control problem. To illustrate the influence of these additional degrees of freedom,
let us consider the reaction task shown in Figure 2.5. The control profile followed by the
OOA for this task is compared to that obtained by the SBO for the same batch size. These
control profiles are shown in Figure 2.6 and the corresponding optimization results are
shown in Table 2.4.

We see from Table 2.4 that for processing a volume of 3.69 m3 the OOA takes 2.62 hours

Reactor

Purificator

Units

0.0
Hours

2.0 4.0 6.0 8.0 10.0

10.02.62

3.69

2.62

Profit = 37.6109 MU

3.69

Figure 2.5: Optimal schedule obtained by the OOA for example 1.
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Figure 2.6: Control profiles for the reaction task (batch size 3.69 m
3) in example 1.

duration and 11.0366 units of energy resource, thereby corresponding to an operational
cost of 47.2904 MU instead of the optimal 44.6453 MU obtained by the SBO. But this
expensive mode of operation for the reaction task in the OOA allows more products to
be produced during the entire process, thereby resulting in higher overall profit at the
end of the time horizon. This clearly indicates that the OOA control problem is free to
manipulate the control strategy so as to yield higher profit for the overall plant, rather than
confining itself to the optimal control strategy obtained by the SBO.

Table 2.4: Optimization results for the reaction task (batch size 3.69 m3) in example 1.

vol = 3.69 m3

SBO OOA
dur 4.6823 2.62
Qr 9.7566 11.0366

Cost (MU) 44.6453 47.2904

Influence of the SBO Objective Function

From the results obtained above, it seems that the results of the SRA can be easily
improved by changing the objective for the SBO. Instead of minimizing the operation
costs, we could minimize the operation costs per unit time or maximize the overall profit
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per unit time. This needs to be investigated and hence an alternate objective function is
considered next for the SBO.

An Alternate Objective Function

Here, the objective function for the SBO is minimization of the operation cost for
the reactor per unit time for a given batch size, as expressed by Equation 2.42.

minimize
(operation cost for a given batch size (vol)

duration of reaction (dur)

)

(2.42)

subject to

Equations 2.30 - 2.34

Where, the operation cost for a given batch size (vol) is given as follows :

Operation cost = 1.2 · dur + 4.0 ·Qr (2.43)

The SBO is performed for different batch sizes and the results are presented in Table
2.5. The SBO results presented in Table 2.5 show that the reaction duration dur and the

Table 2.5: Results of the SBO for the alternate recipe.

vol(m3) dur(hours) Heatf Qr(m3)

2.0 2.3796 3.1492 6.2983
2.5 2.3796 3.1492 7.8729
3.0 2.3796 3.1492 9.4475
3.5 2.3796 3.1492 11.0221
4.0 2.3796 3.1492 12.5967
4.5 2.3796 3.1492 14.1713
5.0 2.3796 3.1492 15.7459

specific heat requirement Heatf in this case are independent of the batch size. This is
due to the particular objective function (Equation 2.42) chosen for the SBO. The common
reaction recipe obtained for different batch sizes is shown in Figure 2.7.

The standardized equations for the processing duration and energy requirement in terms
of the control notation are given by Equations 2.44 & 2.45.

dur(1, 1, n) = 2.3796 · te(1, n), ∀n ∈ N (2.44)
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Figure 2.7: Optimal control profile for the reaction in alternative recipe case.

Qr(1, 1, n) = 3.1492 · vol(1, 1, n), ∀n ∈ N (2.45)

Control via the SRA using the Alternate Recipe

The control problem presented in section 2.2.1 is solved again using the alternate
recipe presented above. Since the duration of the reaction task is independent of the batch
size, the control problem in this case is very trivial. The maximum profit for the plant
in this case can be obtained simply by processing as much as possible within the given
makespan. Hence, on a makespan of 10 hours a maximum of 3.8102 m3 of reactant is
processed in this example. Thus a maximum profit of 36.7862 MU is achieved with this

Reactor

Purificator

Units

0.0
Hours

2.0 4.0 6.0 8.0 10.0

10.0

3.81

2.38

2.38

3.81

Profit = 36.7862 MU

Figure 2.8: Optimal schedule obtained via the SRA using the alternate recipe.
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alternate recipe and the corresponding production schedule is given in Figure 2.8.

On comparing Figure 2.8 with Figure 2.4, we see that with the alternate recipe the plant is
able to produce more product within the given makespan, thereby yielding a higher profit.
With this recipe the overall profit for the plant is very close to that obtained with the OOA.
This gives the impression that this recipe is more appropriate for control via the SRA than
the one used in section 2.2.1. However, this is not always the case, as illustrated next.

A fixed makespan of 25 hours is considered and the control problem is solved for this
makespan. All the other information including the control objective and the recipes re-
main unchanged. The control problem is solved via the SRA (using both the recipes
discussed above) as well as the OOA and the respective optimal production schedules are
presented in Figures 2.9, 2.10 & 2.11.

Reactor

Purificator

Units

0.0
Hours

5.0 10.0 15.0 20.0 25.0

2.24

2.24

15.0

3.42

3.67 8.15 9.13

5.0

3.67 8.15 15.0 25.0

5.03.42

Profit = 116.1633 MU

Figure 2.9: Optimal schedule obtained via the SRA using the first recipe (25 hours makespan).
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12.62

2.38 11.0
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8.62 11.0 15.0
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Figure 2.10: Optimal schedule obtained via the SRA using the alternate recipe (25 hours makespan).
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2.41 6.41 9.13
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2.0 5.04.3

Figure 2.11: Optimal schedule obtained via the OOA (25 hours makespan).

Here, the overall profit obtained by using the alternate recipe is lower than that obtained
by using the first recipe presented in section 2.2.1. Hence, in this case the alternate recipe
which performed better than the first recipe on a makespan of 10 hours turns out to be a
bad choice for the very same plant. However, this could not have been known in advance
without executing the control problem with these recipes. As such, there are no standard
rules available to obtain a recipe which would fetch the best overall optimal solution for
a given plant and this is clearly a major drawback of the SRA. On the other hand, the
overall profit obtained with the OOA is always better than that obtained with the SRA, as
can be seen from Figures 2.5 & 2.11. The additional degrees of freedom due to the direct
inclusion of the process dynamics in the control problem formulation indeed makes the
OOA superior to the SRA. In principle, for any given plant, the OOA control problem is
bound to be ’at least’ as good as the SRA control problem in terms of the optimal solution
obtained, provided it is computationally solvable.

Influence of the Process Cost Structure

The difference between the solutions obtained via the SRA and the OOA depends not
only on the nature of the SBO objective function (e.g. minimization of operation costs
or maximization of profit per unit time) but also on the values of the cost factors (i.e.,
parameters) in the SBO objective function, i.e., the cost structure. In practice, these
depend on the process. For example, in pharmaceutical production, the materials are
usually more expensive than the operating costs. This section illustrates the influence
of different process cost structures on the difference in the control problem solutions
obtained via both the approaches.
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Let us consider different operation costs for the reactor while keeping all the other data
unchanged. The SBO objective function chosen is the minimization of the operational
costs, as presented in section 2.2.1. The control problem solutions obtained via both the
approaches for these different cost structures on a makespan of 10 hours are presented in
Table 2.6.

Table 2.6: Comparison of scheduling solutions for different reactor operation costs.

Reaction operation SRA (MU) OOA (MU) improvement(%)
cost

running cost = 1.2 MU/hour 30.8718 37.6109 21.83
energy resource cost = 4.0 MU/m3

running cost = 2.6 MU/hour 47.5210 50.2549 5.7530
energy resource cost = 2.6 MU/m3

running cost = 4.0 MU/hour 63.3656 64.1516 1.24
energy resource cost = 1.2 MU/m3

running cost = 10.0 MU/hour 52.7798 52.8733 0.1772
energy resource cost = 1.0 MU/m3

It is evident from the results presented in Table 2.6 that as the running cost of the reac-
tor increases in comparison to the energy cost, the SRA control solution moves closer to
the OOA control solution. This is due to the fact, that as the running cost of the reactor
increases the SBO strategy tends to minimize processing time more than the energy re-
quirement. This accordingly increases the amount of product being produced via the SRA
control problem. Since the OOA control problem in this case also looks for producing as
much as possible within the given time horizon, the difference in the SRA and the OOA
control solutions decreases with the increasing running cost of the reactor in comparison
to its energy cost.

However, the results presented in Table 2.6 are true only for the recipe chosen for the
SRA and the given makespan of 10 hours. It may not hold true when different recipes are
chosen and/or different makespan is considered, as discussed in section 2.2.1. Consid-
ering the fact that real chemical processes are characterized by much more complicated
cost structures, it can be very challenging (or may be impossible) to choose an appropri-
ate recipe for production control via the SRA. This problem can be eradicated with the
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OOA, but the large size of the OOA control problems proves to be a major hindrance in
its application to many real world problems.

2.2.2 Example 2

A multiple product plant consisting of two semi-batch reactors (R1 and R2) and three
batch filters (F1, F2 and F3), as shown in Figure 1.1, is considered here. The plant is
assumed to be operating under zero-wait policy. The processing stages involved are
described in the following :

Reactors :

The reactors in the plant are dynamic semi-batch reactors with the following paral-
lel reactions to be executed :

Ak −→ Pk

Ak −→Wk ; k = 1, 2, 3
Ak = reactant, Pk = product, Wk = waste

All the reactions are assumed to be carried out in the presence of a large amount of
solvent. It is assumed that for every reaction the amount of solvent contributes 90 % of
the given batch size. Before every reaction, the reactors are first filled with the required
amount of solvent and then the reactants are dosed strategically.
The governing equations for the reactors are as follows :

∀k

dXAk
(t)

dt
= FAk

(t) ·CAk
− (αk ·uk(t)

βk +uk(t)) ·XAk
(t) ; XAk

(t = 0) = 0.0 (2.46)

Where, CAk
= 6.0 kmoles/m3

dXPk
(t)

dt
= αk · uk(t)

βk ·XAk
(t) ; XPk

(t = 0) = 0.0 (2.47)

dXWk
(t)

dt
= uk(t) ·XAk

(t) ; XWk
(t = 0) = 0.0 (2.48)

dVk(t)

dt
= FAk

(t) ; Vk(t = 0) = 0.9 · volk ; Vk(t = durk) = volk (2.49)
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Qrk =

∫ durk

0

uk(t) · dt (2.50)

XAk
(t) ≤ 2.0 kmoles (2.51)

0.01 hour−1 ≤ uk(t) ≤ 4.0 hour−1 (2.52)

FAk
(t) ≤ 0.5m3/hour (2.53)

XPk
(t = durk) = 0.9 · (0.1 · volk · CAk

) (2.54)

Where, XAk
(t), XPk

(t) and XWk
(t) represent the moles of reactant Ak, product Pk and

waste Wk respectively at any instant of time t (t ∈ [0, durk]), while their respective rate
equations are given by Equations 2.46, 2.47 and 2.48. αk and βk are kinetic parameters
for the reactions and are given in Table 2.7. uk(t) is a rate constant, which is assumed
to be a control variable. FAk

(t) is also a control variable, which represents the feed flow
rate of reactant Ak at any instant of time t. CAk

represents the concentration of reactant
Ak in the feed. volk is the batch size for the given reaction in m3. The minimum batch
size required for a reactor to operate is assumed to be 20 % of the maximum capacity of
that reactor. Vk(t) represents the volume of the reacting mixture at any instant of time t
and its rate of change due to the addition of reactant Ak is given by Equation 2.49. The
initial condition for Equation 2.49 corresponds to the fact that before every reaction the
reactors are filled with the required amount of solvent, i.e., 90 % of the given batch size.
Qrk represents the energy resource requirement for the reaction, which is given by the
integral over uk(t) as per Equation 2.50. Equations 2.51, 2.52 and 2.53 represent path
constraints, mainly for safe operation of the reactors. Equation 2.54 represents an end
constraint, which expresses that the operational yield of the product at the end of the
reaction should be 90 %.

Table 2.7: Kinetic parameters for the reactions in example 2.

k 1 2 3
αk(hourβk−1) 2 2 3

βk 0.5 0.4 0.5

Filters :

The filters in the plant are assumed to be batch filters. The intermediates from the
reactors are sent to the filters, where the solvent is totally recovered and the rest is sent
out as products. The following assumptions are made for the operation of the filters :
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1. The time needed for filtration is given by the following :
filtration duration (hours) = 1.2 · (volume of intermediate being purified (m3))

2. The intermediate is split volumetrically into the solvent (90 %) and the final product
(10 %). Note that the final product in this case is a mixture of the product Pk, the
waste Wk and the unreacted reactant Ak.

The STN representation of the process is shown in Figure 1.2, while the basic data for
the units and the states is presented in Table 2.8. The running cost of the reactors and the
filters as well as the energy resource cost for the reactors remain exactly the same as in
Example 1. Whereas, the cost of resources needed for every filtration is assumed to be
20.0 MU per m3 of the intermediate being processed.

Table 2.8: Data for example 2.

Unit(j) Capacity(m3) Suitability(task i)
Reactor R1(j=1) 2.0 Reactions 1(i=1), 2(i=3) & 3(i=5)
Reactor R2(j=2) 1.0 Reactions 1(i=2), 2(i=4) & 3(i=6)
Filter F1(j=3) 1.0 Filtrations 1(i=7), 2(i=10) & 3(i=13)
Filter F2(j=4) 1.0 Filtrations 1(i=8), 2(i=11) & 3(i=14)
Filter F3(j=5) 1.0 Filtrations 1(i=9), 2(i=12) & 3(i=15)
State(s) initial amount(m3) price(MU per m3)
Reactant A1(s=1) 20.0 40.0
Reactant A2(s=2) 20.0 35.0
Reactant A3(s=3) 20.0 25.0
Intermediate 1(s=4) 0.0 0.0
Intermediate 2(s=5) 0.0 0.0
Intermediate 3(s=6) 0.0 0.0
Product 1(s=7) 0.0 430.0
Product 2(s=8) 0.0 410.0
Product 3(s=9) 0.0 385.0
Solvent(s=10) 40.0 2000.0

The objective for this example is maximization of overall profit for the plant over a fixed
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makespan of 7 hours, where the overall profit for the plant is defined as follows :

Profit = (price of products) − (price of reactants)

− (cost of resources needed for filtration)

− (energy resource cost of the reactors)

− (running cost of the reactors)

− (running cost of the filters)

The minimum production requirement for each product in order to satisfy the market
demand is assumed to be 0.06 m3. Also it is assumed that without cleaning requirements
the filters can only be used for filtering in the sequence Intermediate 1, 2 and 3. If this
sequence cannot be followed on a particular filter then a cleaning time of one hour is
needed for that filter before filtering the following intermediate. However, apart from the
cleaning time no other cost is assumed for cleaning the filters.

Control via the SRA

Determination of Standard Production Recipe

Reactors :
The standard production recipe for the reactors (for producing each product) in this
example involves determination of the optimal heating and dosing policy, which is done
via single batch optimization (SBO) for the respective reaction. Since for a given batch
size with fixed operational yield maximum profit can be achieved by minimization of the
operational cost of the reactors, it is chosen as the SBO objective. The SBO problem can
be written as follows :

minimize (1.2 · durk + 4.0 ·Qrk) (2.55)

subject to

Equations 2.46 - 2.54

The SBO for each reaction is carried out for different batch sizes using 100 equidistant
time points and the corresponding results are presented in Tables 2.9, 2.10 and 2.11.
The standardized equations for processing duration and energy resource requirement for
each reaction in terms of the control notation, as given by Equation 2.56, are obtained
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Table 2.9: SBO results for reaction 1 in example 2.

vol1(m3) Qr1 dur1(hours)

0.2 0.4493 4.5560
0.4 0.4493 4.5770
0.6 0.4509 4.6346
0.8 0.4675 4.8830
1.0 0.4967 5.2279
1.2 0.5304 5.6316
1.4 0.5689 6.0612
1.6 0.6107 6.5073
1.8 0.6551 6.9635
2.0 0.7018 7.4260

by suitably fitting the data shown in Tables 2.9, 2.10 and 2.11 with polynomials of
appropriate order.

dur(1, 1, n) = 4.75 · te(1, n) − 1.35 · vol(1, 1, n) + 2.3 · vol(1, 1, n)2

−0.48 · vol(1, 1, n)3

Table 2.10: SBO results for reaction 2 in example 2.

vol2(m3) Qr2 dur2(hours)

0.2 0.2869 3.2896
0.4 0.2874 3.3089
0.6 0.2888 3.3508
0.8 0.3033 3.5187
1.0 0.3247 3.7685
1.2 0.3521 4.0558
1.4 0.3836 4.3644
1.6 0.4179 4.6877
1.8 0.4555 5.0159
2.0 0.4969 5.3465
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Table 2.11: SBO results for reaction 3 in example 2.

vol3(m3) Qr3 dur3(hours)

0.2 0.3200 2.3259
0.4 0.3198 2.3486
0.6 0.3220 2.3815
0.8 0.3362 2.4991
1.0 0.3610 2.6601
1.2 0.3899 2.8515
1.4 0.4227 3.0565
1.6 0.4588 3.2681
1.8 0.5000 3.4756
2.0 0.5402 3.6986

dur(2, 2, n) = 4.75 · te(2, n) − 1.35 · vol(2, 2, n) + 2.3 · vol(2, 2, n)2

−0.48 · vol(2, 2, n)3

Qr(1, 1, n) = 0.47 · te(1, n) − 0.132 · vol(1, 1, n) + 0.193 · vol(1, 1, n)2

−0.0344 · vol(1, 1, n)3

Qr(2, 2, n) = 0.47 · te(2, n) − 0.132 · vol(2, 2, n) + 0.193 · vol(2, 2, n)2

−0.0344 · vol(2, 2, n)3

dur(3, 1, n) = 3.43 · te(3, n) − 0.963 · vol(3, 1, n) + 1.64 · vol(3, 1, n)2

−0.339 · vol(3, 1, n)3

dur(4, 2, n) = 3.43 · te(4, n) − 0.963 · vol(4, 2, n) + 1.64 · vol(4, 2, n)2

−0.339 · vol(4, 2, n)3

Qr(3, 1, n) = 0.301 · te(3, n) − 0.0924 · vol(3, 1, n) + 0.137 · vol(3, 1, n)2

−0.0211 · vol(3, 1, n)3

Qr(4, 2, n) = 0.301 · te(4, n) − 0.0924 · vol(4, 2, n) + 0.137 · vol(4, 2, n)2

−0.0211 · vol(4, 2, n)3
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dur(5, 1, n) = 2.4 · te(5, n) − 0.556 · vol(5, 1, n) + 1.02 · vol(5, 1, n)2

−0.212 · vol(5, 1, n)3

dur(6, 2, n) = 2.4 · te(6, n) − 0.556 · vol(6, 2, n) + 1.02 · vol(6, 2, n)2

−0.212 · vol(6, 2, n)3

Qr(5, 1, n) = 0.336 · te(5, n) − 0.107 · vol(5, 1, n) + 0.157 · vol(5, 1, n)2

−0.0265 · vol(5, 1, n)3

Qr(6, 2, n) = 0.336 · te(6, n) − 0.107 · vol(6, 2, n) + 0.157 · vol(6, 2, n)2

−0.0265 · vol(6, 2, n)3

(2.56)

Purificators :
Once again no process dynamics are considered for the tasks of purification and hence the
production recipe for the purificators is given by the Equations 2.57 - 2.59.

dur(i, 3, n) = 1.2 · vol(i, 3, n), ∀i ∈ {7, 10, 13} (2.57)

dur(i, 4, n) = 1.2 · vol(i, 4, n), ∀i ∈ {8, 11, 14} (2.58)

dur(i, 5, n) = 1.2 · vol(i, 5, n), ∀i ∈ {9, 12, 15} (2.59)

Control Problem Formulation
The control problem is formulated using the standard production recipe, i.e., Equations
2.56 - 2.59. The objective function, which is maximization of overall profit for the plant,
is expressed by Equation 2.60.
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maximize
∑

n

(430.0 · d(7, n) + 410.0 · d(8, n)

+385.0 · d(9, n) − 40.0 · (0.1 · (vol(1, 1, n) + vol(2, 2, n)))

−35.0 · (0.1 · (vol(3, 1, n) + vol(4, 2, n))) − 25.0 · (0.1 · (vol(5, 1, n)

+vol(6, 2, n))) − 1.2 · (dur(1, 1, n) + dur(2, 2, n)

+dur(3, 1, n) + dur(4, 2, n) + dur(5, 1, n) + dur(6, 2, n))

−2.0 · (dur(7, 3, n) + dur(8, 4, n) + dur(9, 5, n) + dur(10, 3, n)

+dur(11, 4, n) + dur(12, 5, n) + dur(13, 3, n) + dur(14, 4, n)

+dur(15, 5, n))− 4.0 · (Qr(1, 1, n) +Qr(2, 2, n) +Qr(3, 1, n)

+Qr(4, 2, n) +Qr(5, 1, n) +Qr(6, 2, n)) − 20.0 · (vol(7, 3, n)

+vol(8, 4, n) + vol(9, 5, n) + vol(10, 3, n) + vol(11, 4, n)

+vol(12, 5, n) + vol(13, 3, n) + vol(14, 4, n) + vol(15, 5, n))) (2.60)

Computational Result
A maximum profit of 31.9093 MU is achieved and the corresponding production schedule
is shown is Figure 2.12. The optimal solution converges for five event points and does not
change with further increase in the number of event points.

Control via the OOA

The OOA control problem directly involves the process dynamics given by Equations
2.46 - 2.54 instead of the standard production recipe for the products.

Computational Result
Once again 100 equidistant time points were used to transform the underlying MIDO
problem into a MINLP problem. A profit of 36.5287 MU is obtained by using four event
points and the corresponding production schedule is shown in Figure 2.13. It could not
be checked whether the profit increases further with increase in the number of event
points, as a further increase in the number of event points renders the control problem
insolvable in acceptable computation time.
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0.0 2.0 3.0 4.01.0 5.0 6.0 7.0
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Units
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R1

R2

F1

F2

0.18

6.0416r1

1.3959

2.8320 6.6000r3
1.0000 1.0000

r2

f1

f1

f1

f2

f2

f24.0320 5.0320f3

0.4653 0.3333

0.4653

0.4653

0.3333

0.3333
1.0000 cleaning

Profit = 31.9093 MUr = reaction,  f = filtration

Figure 2.12: Optimal schedule obtained by the SRA for example 2.
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Profit = 36.5287 MUr = reaction,  f = filtration

r3 3.1109
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6.3974
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1.0044

5.5860r1

1.0000

1.0000

6.7860f1

f2

f2

0.5022

0.5022

f3
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4.0709
1.0000

0.8000

0.2000

f3
3.3509 4.3509
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cleaning

cleaning
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Figure 2.13: Optimal schedule obtained by the OOA for example 2.
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Comparison of the Computational Results of the SRA and the OOA

The model statistics and the solutions obtained via both the approaches for this example
are presented in Table 2.12. It is observed that the overall profit for the plant obtained
via the OOA is 14.48 % higher than that obtained with the SRA. Once again, this can
be attributed to the ability of the OOA control problem to manipulate the control pol-
icy instead of adhering to the control strategy obtained by the SBO, as shown in Table
2.13. The results presented in Table 2.13 show that the OOA control problem chooses
an expensive mode of operation for the reactors instead of the more economical mode of
operation obtained by the SBO. However, like in example 1, this expensive mode of oper-
ation reduces processing time on the reactors, which finally allows more production over
the entire makespan thereby increasing the overall profit for the plant. It should be noted
that the SRA solution presented in Table 2.12 is subject to the SBO objective function
chosen, as discussed in section 2.2.1.

The model statistics presented in Table 2.12 clearly show that the size of the OOA control
problem in this case is much larger than its SRA counterpart, thereby making it compu-
tationally very expensive. The computation time needed for the OOA control problem in
this case is roughly 29 times higher than that needed for the corresponding SRA control
problem. Moreover, the OOA model statistics and solution presented in Table 2.12 corre-
spond only to four event points. A further increase in the number of event points makes
the OOA control problem too difficult to be solved in acceptable computation time, as
presented in Table 2.14. This clearly indicates the inapplicability of the OOA to larger
chemical plants, thereby advocating the need for novel solution techniques for such prob-
lems.

Table 2.12: Comparison of the SRA and the OOA results for example 2.

SRA OOA
Integer variables 75 60
Continuous variables 441 12969
Equations 1143 9864
Solution (MU) 31.9093 36.5287
CPU time(s) 99.53 2885.85

39



Table 2.13: Comparison of the reactor operation cost followed by the OOA scheduling
model and that obtained via SBO for example 2.

Reaction batch size OOA SBO
(m3)

r1 1.0000 dur1 = 5.2214 (hours) dur1 = 5.2279 (hours)
Qr1 = 0.4990 Qr1 = 0.4967

operation cost = 8.2617 (MU) operation cost = 8.2604 (MU)
r2 1.0044 dur2 = 3.2865 (hours) dur2 = 3.7746 (hours)

Qr2 = 0.6761 Qr2 = 0.3253
operation cost = 6.6482 (MU) operation cost = 5.8307 (MU)

r3 2.0000 dur3 = 3.1109 (hours) dur3 = 3.6986 (hours)
Qr3 = 0.9484 Qr3 = 0.5402

operation cost = 7.5267 (MU) operation cost = 6.5990 (MU)

Table 2.14: OOA scheduling model statistics for example 2 with 5 event points.

Integer variables 75
Continuous variables 17258
Equations 13100
Solution (MU) terminated before completion
CPU time(s) > 184125

2.3 Summary

In this chapter, two major approaches, i.e., the SRA and the OOA, are applied to a control
problem of chemical processes and their performance is compared. It is shown that the
results obtained with the SRA can be suboptimal due to standardization of the production
recipes, which remove degrees of freedom from the system. Moreover, this approach is
clouded by ambiguities concerning the determination of the standard production recipes,
as discussed in section 2.2.1. On the other hand, the OOA does not need standard recipes
at all for production control and hence it is free from all the problems associated with the
standard recipe determination. Moreover, due to relatively more degrees of freedom this
approach results in solutions which are at least as good as that obtained with the SRA.

In terms of the solutions obtained, the OOA is definitely superior to the SRA. But there are
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some severe drawbacks which make this approach unfavorable for many real world prob-
lems. The major drawback comes from the fact that the MINLP problems obtained via
discretization of the underlying MIDO problem are usually very large in size and hence
computationally very difficult or even impossible for problems involving large chemical
plants, as seen in section 2.2.2. This problem is further aggravated if the unit operations
in the plant involve discrete/hybrid process dynamics, because for such plants the number
of integer variables in the OOA control problem can be very high.

Nevertheless, considering the potential for significantly better solutions, the OOA ap-
proach needs to be focused upon. Novel solution techniques need to be developed to
tackle the major challenges (particularly the size and the non-convexity of the control
problems) posed by this approach, especially for plants involving discrete/hybrid unit
operations. A natural line for future research is therefore to establish “smart” decomposi-
tion techniques which, by imposing suitable solution structure, reduce degrees of freedom
while only minimally affecting achievable performance. In this way, one may hope to re-
cover the solution theoretically obtainable by the OOA more closely than by the SRA
while keeping a lid on complexity. This forms the basis of the next chapter.
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Chapter 3

An Improved Approach for the Control
of Multiproduct Batch Plants

The comparative study presented in chapter 2 clearly indicates that the SRA results in
solutions that are usually far from the optimal. However, the control problems obtained
with this approach can be solved conveniently with the conventional solvers readily avail-
able in the market. The OOA, on the other hand, results in solutions that are usually
far better than that obtained with the SRA. But, the control problems obtained with this
approach are computationally very difficult, which renders this approach inapplicable to
the problems of practical size. This advocates the need for a better approach, which has
computational features like the control problems obtained via the SRA and degrees of
freedom like the control problems obtained via the OOA, as depicted in Figure 3.1.

Improved Approach

SRA OOA

Computational 
Features

Degrees of
Freedom

Figure 3.1: An improved approach for the control of MBPs.

In the SRA, the control problem is parameterized by a recipe with only one free param-
eter, that is, the batch size vol(i, j, n). A straightforward extension to this approach is to
use more than one free parameter for the parameterization of the control problem. This
will add further degrees of freedom to the control problem without requiring the direct in-
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clusion of the process dynamics, as in the OOA. This brings us to the improved approach
that is proposed next.

Kindly note that in this work we restrict to introducing just two free parameters for the
parameterization of the control problem, as it is enough for the examples considered here.
Besides, introduction of more than two free parameters would not only make the recipes
quite cumbersome to obtain but also very difficult to visualize.

3.1 Control of MBPs via the Improved Approach

The IA for the control of MBPs involves determination of suitable recipe functions fol-
lowed by the control problem formulation on the basis of these functions.

3.1.1 Determination of suitable recipe functions

The suitable recipe functions are determined via single batch optimization (SBO). How-
ever, unlike the SRA, the following two different types of SBO problems are solved in
this case for different batch sizes and for every task on a given unit.

SBO problem 1 :

This SBO problem involves determination of the minimum processing durations dur0 for
different batch sizes and for all tasks on all units.

minimize dur0, ∀i ∈ I, j ∈ Ji, n ∈ N (3.1)

subject to

Equations 2.21 - 2.27

where, t ∈ [0, dur0] and tep ∈ {0, dur0}

This problem is solved for different batch sizes and all tasks on all units and the corre-
sponding dur0 are obtained as in Table 3.1. The dependence of the minimum processing
duration dur0(i, j, n) on the batch size vol(i, j, n) for every task i in unit j at event point
n, as given by Equation 3.2, is then obtained via suitable polynomial fitting of the data in
Table 3.1.

dur0(i, j, n) =

{

0, vol(i, j, n) = 0

π1(vol(i, j, n)), vol(i, j, n) > 0
(3.2)
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Table 3.1: Minimum processing durations for different batch sizes for a given task in a
given unit.

vol dur0 (for vol)

vol1 dur0 (for vol1)

vol2 dur0 (for vol2)
...

...
vollast dur0 (for vollast)

SBO problem 2 :

This SBO problem involves determination of the minimum resources Qr required over
different processing durations for a given batch size and for all tasks on all units.

minimize Qr, ∀i ∈ I, j ∈ Ji, n ∈ N (3.3)

subject to

Equations 2.21 - 2.27

where, t ∈ [0, dur], tep ∈ {0, dur} and dur > dur0

This problem is solved and for different batch sizes and every task on a given unit, a family
of optimal control profiles is obtained over the time domain of interest, as illustrated in
Table 3.2.

Table 3.2: Data corresponding to optimal control profiles for different batch sizes and a
given task on a given unit.

vol1 vol2 . . . vollast

dur Qr dur Qr . . . dur Qr

dur0 Qr0 dur0 Qr0 . . . dur0 Qr0

dur1 Qr1 dur1 Qr1 . . . dur1 Qr1

dur2 Qr2 dur2 Qr2 . . . dur2 Qr2
...

...
...

... . . .
...

...
durlast Qrlast durlast Qrlast . . . durlast Qrlast
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The data in Table 3.2 is then used to determine the remaining suitable recipe functions,
that are given by Equation 3.2 and Equations 3.4 - 3.6.
∀i ∈ I, j ∈ Ji, n ∈ N

Qr(i, j, n) =

{

0, vol(i, j, n) = 0

π2(vol(i, j, n), dur(i, j, n)), vol(i, j, n) > 0
(3.4)

dur(i, j, n) = 0, ∀ vol(i, j, n) = 0 (3.5)

dur(i, j, n) ≥ dur0(i, j, n) + δ(i, j, n), ∀ vol(i, j, n) > 0 (3.6)

Equation 3.4 is obtained via suitable polynomial regression of the data given in table
3.2. Equations 3.5 and 3.6 ensure that whenever a task is being executed, the processing
duration for that should not be less than the minimum processing duration dur0 required
for that task for the given batch size. The δ(i, j, n) in Equation 3.6 is a correction factor,
which is obtained from Figure 3.2 as follows:

δ(i, j, n) = the absolute minimum of all “residuals” that are less than zero.
where, residual = fitted dur0(i, j, n) - true dur0(i, j, n)

vol(i,j,n)

dur

true dur
fitted dur

0(i,j,n)

0 (i,j,n)

0 (i,j,n)

Figure 3.2: An illustration of the polynomial fitting used for obtaining Equation 3.2.

δ(i, j, n) allows Equation 3.6 to ensure that the processing duration obtained with it is
never less than the minimum processing duration that is physically possible for the given
task on a given unit.

It needs to be mentioned that the orders of polynomial fittings used for obtaining Equa-
tions 3.2 and 3.4 have to be chosen very carefully, as the data used for obtaining these
equations can be highly nonlinear or non-smooth. Besides, they should be such that no
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further computational difficulties are introduced, while at the same time keeping a check
on the residuals.

3.1.2 Control problem formulation

The control problem is then formulated using Equations 3.2 - 3.6 instead of the process
dynamics. The resulting control problem in this case is either a MILP or a MINLP prob-
lem depending on whether Equations 3.2, 3.4 and the objective function are linear or
nonlinear respectively.

3.2 Illustrative examples

In this section, the illustrative examples considered in chapter 2 are reconsidered. The
IA is applied to these examples and the results obtained thereby are compared with the
results obtained via the SRA and the OOA for these examples.

3.2.1 Example 1

The single product plant presented in section 2.2.1 is reconsidered here. The process
flowsheet, the corresponding STN, the governing equations for the units and all the
other data remain exactly the same as in 2.2.1. The objective of the control problem is
maximization of the overall profit for the plant over a makespan of 25 hours. The control
problem, as discussed in the previous section, involves determination of suitable recipe
functions followed by the control problem formulation on the basis of these functions.

Determination of suitable recipe functions

Reactor :
The suitable recipe functions for the reactor are determined via solution of the following
two SBO problems.

SBO problem 1
This step involves determination of the minimum processing durations for different
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batch-sizes by solving the following SBO problem:

minimize dur0 (3.7)

subject to

Equations 2.30 - 2.34

The SBO is carried out using the standard trapezoidal rule with 100 equidistant time
points. The corresponding results are furnished in Table 3.3 and the corresponding control
profile is shown in Figure 3.3.
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Figure 3.3: Optimal control profile corresponding to the minimum processing time for the reaction in
example 1.

From the results presented in Table 3.3, we see that, for this example, the minimum pro-
cessing duration remains the same for all the batch sizes. This is due to the simple gov-
erning equations chosen for this example.

The dependence of the minimum processing duration on the batch size is very straight-
forward in this case and is expressed by Equation 3.8.

dur0(1, 1, n) =

{

0, vol(1, 1, n) = 0

2.2921, vol(1, 1, n) > 0
(3.8)
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Table 3.3: Minimum processing durations for different batch sizes for the reaction in
example 1.

vol (m3) dur0 (hours) (for vol)

2.0 2.2921
2.5 2.2921
3.0 2.2921

...
...

5.0 2.2921

SBO problem 2
The minimum energy resource Qr required over different processing durations for differ-
ent batch-sizes on the reactor is determined in this step via the following SBO problem.
The results obtained thereby are presented in Table 3.4.

minimize Qr (3.9)

subject to

Equations 2.30 - 2.34

Table 3.4: Data corresponding to optimal control profiles for different batch sizes and for
the reaction in example 1.

2.0 m3 2.5 m3 . . . 5.0 m3

dur Qr dur Qr . . . dur Qr

(hours) (m3) (hours) (m3) . . . (hours) (m3)

2.2921 6.7256 2.2921 8.4070 . . . 2.2921 16.8140
2.75 5.8752 2.75 7.3440 . . . 2.75 14.6880
3.25 5.6244 3.25 7.0305 . . . 3.25 14.0610

...
...

...
... . . .

...
...

17.25 3.4254 17.25 4.2818 . . . 17.25 8.5635

Figure 3.4 presents the optimal control profiles corresponding to minimum Qr required
for processing a batch-size of 2.5m3 over different time durations. For the sake of brevity,
the optimal control profiles for the other batch-sizes are not presented here.
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Figure 3.4: Optimal control profiles (u) corresponding to different processing durations for a batch-size
of 2.5 m

3 in example 1.

The remaining recipe functions, as given by Equations 3.10 - 3.12, are then determined
by using the data presented in Table 3.4.

Qr(1, 1, n) =


















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


















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













0, vol(1, 1, n) = 0

(1.9674 + 3.4719 · vol(1, 1, n)

−0.8633 · dur(1, 1, n) + 0.0633 · vol(1, 1, n)2

−0.2050 · vol(1, 1, n) · dur(1, 1, n)

+0.1162 · dur(1, 1, n)2 − 0.0043 · vol(1, 1, n)3

+0.0016 · vol(1, 1, n)2 · dur(1, 1, n)

+0.0046 · vol(1, 1, n) · dur(1, 1, n)2

−0.0041 · dur(1, 1, n)3), vol(1, 1, n) > 0
(3.10)

dur(1, 1, n) = 0, ∀ vol(1, 1, n) = 0 (3.11)

dur(1, 1, n) ≥ dur0(1, 1, n) + δ(1, 1, n), ∀ vol(1, 1, n) > 0 (3.12)

where, δ(1, 1, n) = 0.0

Equation 3.10 is obtained via third order polynomial regression of the data presented in
Table 3.4. Figure 3.5, shows the plot of the polynomial obtained in Equation 3.10. It
is clear from Figure 3.5 that the obtained polynomial is very smooth and not liable to
introduce any further computational difficulty in the control problem. Equations 3.11 and
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Figure 3.5: Plot of the third order polynomial given in Equation 3.10.

3.12 ensure that whenever a reaction is taking place on the reactor, the processing duration
needed for it should not be less than the minimum duration required for processing the
given batch size. Note that the correction factor δ in this case is zero, as Equation 3.8
involves just a single value and therefore, has no residuals associated with it.

Purificator :
Since no process dynamics are considered for the purificator, the suitable recipe function
for the purificator is given by Equation 2.38.

Control problem formulation
The control problem is formulated using the suitable recipe functions given by Equations
3.8 and 3.10 - 3.12, as per the continuous time formulation presented in section 2.1. The
objective function remains exactly the same as in section 2.2.1.

Computational result
A maximum profit of 120.0232 MU is achieved over a makespan of 25 hours and the
corresponding production schedule is presented in Figure 3.6. The optimal solution was
found to converge at 4 event points.

It needs to be mentioned that the control problem solution actually gives a maximum profit
of 116.2852 MU. However, this profit is obtained by using just the value of the energy
resource Qr, given by Equation 3.10. The true profit value is obtained by replacing this
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Profit = 120.0232 MU

2.2921

2.4809 3.8731
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7.25382.2921

Figure 3.6: Optimal schedule obtained via the IA for example 1.

value with the true Qr for the different batch sizes and their respective processing dura-
tions obtained by the control problem solution. The true Qr is evaluated from Equations
2.30 - 2.34. Table 3.5 shows the fitted as well as the true energy resource requirement Qr
for the different batch sizes and their respective processing durations shown in Figure 3.6.

Table 3.5: The fitted and the true Qr for the batch sizes shown in Figure 3.6.

vol dur Qr (fitted) Qr (true)
(m3) (hours) (m3) (m3)

2.4809 2.2921 8.4038 8.3372
3.8731 4.9617 10.8087 10.1497

5.0 7.7462 12.5014 12.2925

Comparison with the solutions obtained via the SRA and the OOA

Table 3.6 shows the model statistics and the solutions obtained via the SRA (using the
objective function given by Equation 2.35 in section 2.2.1), the OOA and the IA for this
example. As expected, the solution obtained by the OOA is definitely the best. However,
as discussed in the previous chapter, this approach is largely inapplicable to the problems
of practical size.

The most interesting thing to note in Table 3.6 is that the IA results in a maximum profit
that is higher than the SRA with exactly the same model statistics. This increase in the
maximum profit is due to an increase in the degrees of freedom. This becomes evident
from Figure 3.7, which shows the control profiles followed by the IA and the SBO for a
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Table 3.6: Comparison of the SRA, the OOA and the IA results for example 1.

SRA OOA IA
Integer variables 8 8 8
Continuous variables 53 1672 53
Equations 89 1297 89
Solution (MU) 116.1633 122.3952 120.0232

batch size of 2.4809 m3. Table 3.7 shows the data corresponding to the control profiles
shown in Figure 3.7. This data illustrates the ability of the IA to manipulate the control
strategies so as to achieve higher overall profit for the plant, instead of confining itself to
the control strategies obtained by the SBO.
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Figure 3.7: Control profiles for the reaction task with batch size 2.4809 m
3 in example 1.

3.2.2 Example 2

The multiple product plant presented in section 2.2.2 is re-considered here. The process
flowsheet, the STN representation, the objective of the control problem and all the other
data remain exactly the same as in 2.2.2. The control problem formulation for this plant
with via the IA is as follows:
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Table 3.7: Optimization results for the reaction task with batch size 2.4809m3 in example
1.

vol = 2.4809 m3

SBO IA
dur (hours) 3.8295 2.2921
Qr (m3) 6.7626 8.3372

Cost (MU) 31.6458 36.3657

Determination of suitable recipe functions

Reactors :

The following two SBO problems are solved for each of the reactions on these reactors.

SBO problem 1

The minimum processing durations for different batch sizes and for all the reactions are
determined in this approach by solving the following SBO problems :
∀k,

minimize dur0 (3.13)

subject to

Equations 2.46 - 2.54

Table 3.8: Minimum processing durations for different batch sizes for the reactions in
example 2.

reaction 1 reaction 2 reaction 3
vol dur0 vol dur0 vol dur0

(m3) (hours) (m3) (hours) (m3) (hours)

0.2 3.8328 0.2 2.7124 0.2 1.7367
0.4 3.8528 0.4 2.7306 0.4 1.7566
...

...
...

...
...

...
2.0 6.6446 2.0 4.6766 2.0 3.0034
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Once again, the SBO problems are solved using the standard trapezoidal rule with 100
equidistant time points. The results obtained thereby are presented in Table 3.8 and the
corresponding optimal control profiles are shown in Figures 3.8 - 3.13.
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Figure 3.8: Optimal control profiles (u) corresponding to the minimum processing durations for different
batch sizes for reaction 1 in example 2.
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Figure 3.9: Optimal control profiles (FA) corresponding to the minimum processing durations for differ-
ent batch sizes for reaction 1 in example 2.
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Figure 3.10: Optimal control profiles (u) corresponding to the minimum processing durations for differ-
ent batch sizes for reaction 2 in example 2.

0 1 2 3 4 5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time [hours]

F
A

2 [
m

3 /h
o

u
r]

vol
2
 = 0.4 cu. m

vol
2
 = 1.0 cu. m

vol
2
 = 1.6 cu. m

Figure 3.11: Optimal control profiles (FA) corresponding to the minimum processing durations for dif-
ferent batch sizes for reaction 2 in example 2.
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Figure 3.12: Optimal control profiles (u) corresponding to the minimum processing durations for differ-
ent batch sizes for reaction 3 in example 2.
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Figure 3.13: Optimal control profiles (FA) corresponding to the minimum processing durations for dif-
ferent batch sizes for reaction 3 in example 2.
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The dependence of the minimum processing duration on the batch size for every reaction
is determined via suitable polynomial fitting of the data presented in Table 3.8 and are
expressed by Equations 3.14 - 3.19. The corresponding polynomial plots along with their
residuals are shown in Figures 3.14 - 3.16.

dur0(1, 1, n) =



















0, vol(1, 1, n) = 0

3.502 + 3.6 · vol(1, 1, n) − 13.71 · vol(1, 1, n)2

+23.3 · vol(1, 1, n)3 − 17.77 · vol(1, 1, n)4

+6.486 · vol(1, 1, n)5 − 0.9205 · vol(1, 1, n)6, vol(1, 1, n) > 0
(3.14)

dur0(2, 2, n) =



















0, vol(2, 2, n) = 0

3.502 + 3.6 · vol(2, 2, n) − 13.71 · vol(2, 2, n)2

+23.3 · vol(2, 2, n)3 − 17.77 · vol(2, 2, n)4

+6.486 · vol(2, 2, n)5 − 0.9205 · vol(2, 2, n)6, vol(2, 2, n) > 0
(3.15)

dur0(3, 1, n) =



















0, vol(3, 1, n) = 0

2.482 + 2.467 · vol(3, 1, n) − 9.225 · vol(3, 1, n)2

+15.53 · vol(3, 1, n)3 − 11.73 · vol(3, 1, n)4

+4.25 · vol(3, 1, n)5 − 0.5994 · vol(3, 1, n)6, vol(3, 1, n) > 0
(3.16)

dur0(4, 2, n) =



















0, vol(4, 2, n) = 0

2.482 + 2.467 · vol(4, 2, n) − 9.225 · vol(4, 2, n)2

+15.53 · vol(4, 2, n)3 − 11.73 · vol(4, 2, n)4

+4.25 · vol(4, 2, n)5 − 0.5994 · vol(4, 2, n)6, vol(4, 2, n) > 0
(3.17)

dur0(5, 1, n) =



















0, vol(5, 1, n) = 0

1.571 + 1.711 · vol(5, 1, n) − 6.159 · vol(5, 1, n)2

+10.24 · vol(5, 1, n)3 − 7.716 · vol(5, 1, n)4

+2.792 · vol(5, 1, n)5 − 0.3933 · vol(5, 1, n)6, vol(5, 1, n) > 0
(3.18)
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dur0(6, 2, n) =








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







0, vol(6, 2, n) = 0

1.571 + 1.711 · vol(6, 2, n) − 6.159 · vol(6, 2, n)2

+10.24 · vol(6, 2, n)3 − 7.716 · vol(6, 2, n)4

+2.792 · vol(6, 2, n)5 − 0.3933 · vol(6, 2, n)6, vol(6, 2, n) > 0
(3.19)

SBO problem 2

The minimum energy resource Qr required for different batch sizes over different pro-
cessing durations and for each reaction is determined in this step by solving the following
SBO problems. The results obtained thereby are presented in Tables 3.9 - 3.11 and the
corresponding optimal control profiles are shown in Figures 3.17 - 3.22. For the sake of
brevity, the optimal control profiles are shown only for a single batch size of 1.0 m3.
∀k

minimize Qr (3.20)

subject to

Equations 2.46 - 2.54

The remaining recipe functions, as given by Equations 3.21 - 3.38, are determined by
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Figure 3.14: Plot of the polynomial given in Equations 3.14 and 3.15.
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Figure 3.15: Plot of the polynomial given in Equations 3.16 and 3.17.
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Figure 3.16: Plot of the polynomial given in Equations 3.18 and 3.19.
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Figure 3.17: Optimal control profiles (u) corresponding to different processing durations for a batch size
of 1.0 m

3 and for reaction 1 in example 2.
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Figure 3.18: Optimal control profiles (FA) corresponding to different processing durations for a batch
size of 1.0 m

3 and for reaction 1 in example 2.
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Figure 3.19: Optimal control profiles (u) corresponding to different processing durations for a batch size
of 1.0 m

3 and for reaction 2 in example 2.
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Figure 3.20: Optimal control profiles (FA) corresponding to different processing durations for a batch
size of 1.0 m

3 and for reaction 2 in example 2.
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Figure 3.21: Optimal control profiles (u) corresponding to different processing durations for a batch size
of 1.0 m

3 and for reaction 3 in example 2.
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Figure 3.22: Optimal control profiles (FA) corresponding to different processing durations for a batch
size of 1.0 m

3 and for reaction 3 in example 2.
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Table 3.9: Data corresponding to the optimal control profiles for different batch sizes and
for the reaction 1 in example 2.

0.2 m3 0.4 m3 . . . 2.0 m3

dur Qr dur Qr . . . dur Qr

(hours) (hours) . . . (hours)

3.8328 1.4871 3.8528 1.4877 . . . 6.6446 1.7930
4.25 0.5746 4.25 0.5869 . . . 6.75 1.20
4.5 0.4669 4.5 0.4740 . . . 7.0 0.8942

...
...

...
... . . .

7.0 0.1885 7.0 0.1889 . . .

Table 3.10: Data corresponding to the optimal control profiles for different batch sizes
and for the reaction 2 in example 2.

0.2 m3 0.4 m3 . . . 2.0 m3

dur Qr dur Qr . . . dur Qr

(hours) (hours) . . . (hours)

2.7124 1.2332 2.7306 1.2334 . . . 4.6766 1.5046
3.0 0.4183 3.0 0.4327 . . . 5.0 0.6486

3.25 0.2993 3.25 0.3063 . . . 5.25 0.5282
...

...
...

... . . .
...

...
7.0 0.0700 7.0 0.0700 . . . 7.0 0.2644

using the data presented in Tables 3.9 - 3.11.

Qr(1, 1, n) =


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
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











0, vol(1, 1, n) = 0

(24.1268 + 5.9706 · vol(1, 1, n)

−12.0213 · dur(1, 1, n) + 6.2806 · vol(1, 1, n)2

−3.2029 · vol(1, 1, n) · dur(1, 1, n)

+2.0583 · dur(1, 1, n)2 − 0.9790 · vol(1, 1, n)3

−1.3104 · vol(1, 1, n)2 · dur(1, 1, n)

+0.3882 · vol(1, 1, n) · dur(1, 1, n)2

−0.1197 · dur(1, 1, n)3), vol(1, 1, n) > 0
(3.21)

dur(1, 1, n) = 0, ∀ vol(1, 1, n) = 0 (3.22)
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Table 3.11: Data corresponding to the optimal control profiles for different batch sizes
and for the reaction 3 in example 2.

0.2 m3 0.4 m3 . . . 2.0 m3

dur Qr dur Qr . . . dur Qr

(hours) (hours) . . . (hours)

1.7367 1.1880 1.7566 1.1899 . . . 3.0034 1.4795
2.0 0.4750 2.0 0.4924 . . . 3.25 0.7654

2.25 0.3448 2.25 0.3529 . . . 3.5 0.6111
...

...
...

... . . .
...

...
7.0 0.0700 7.0 0.0700 . . . 7.0 0.2198

dur(1, 1, n) ≥ dur0(1, 1, n) + δ(1, 1, n), ∀ vol(1, 1, n) > 0 (3.23)

Qr(2, 2, n) =



























































0, vol(2, 2, n) = 0

(24.1268 + 5.9706 · vol(2, 2, n)

−12.0213 · dur(2, 2, n) + 6.2806 · vol(2, 2, n)2

−3.2029 · vol(2, 2, n) · dur(2, 2, n)

+2.0583 · dur(2, 2, n)2 − 0.9790 · vol(2, 2, n)3

−1.3104 · vol(2, 2, n)2 · dur(2, 2, n)

+0.3882 · vol(2, 2, n) · dur(2, 2, n)2

−0.1197 · dur(2, 2, n)3), vol(2, 2, n) > 0
(3.24)

dur(2, 2, n) = 0, ∀ vol(2, 2, n) = 0 (3.25)

dur(2, 2, n) ≥ dur0(2, 2, n) + δ(2, 2, n), ∀ vol(2, 2, n) > 0 (3.26)

Qr(3, 1, n) =



























































0, vol(3, 1, n) = 0

(8.7174 + 2.4525 · vol(3, 1, n)

−4.8829 · dur(3, 1, n) + 2.2293 · vol(3, 1, n)2

−1.5309 · vol(3, 1, n) · dur(3, 1, n)

+0.9552 · dur(3, 1, n)2 + 0.1079 · vol(3, 1, n)3

−0.3878 · vol(3, 1, n)2 · dur(3, 1, n)

+0.1829 · vol(3, 1, n) · dur(3, 1, n)2

−0.0624 · dur(3, 1, n)3), vol(3, 1, n) > 0
(3.27)

dur(3, 1, n) = 0, ∀ vol(3, 1, n) = 0 (3.28)
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dur(3, 1, n) ≥ dur0(3, 1, n) + δ(3, 1, n), ∀ vol(3, 1, n) > 0 (3.29)

Qr(4, 2, n) =



























































0, vol(4, 2, n) = 0

(8.7174 + 2.4525 · vol(4, 2, n)

−4.8829 · dur(4, 2, n) + 2.2293 · vol(4, 2, n)2

−1.5309 · vol(4, 2, n) · dur(4, 2, n)

+0.9552 · dur(4, 2, n)2 + 0.1079 · vol(4, 2, n)3

−0.3878 · vol(4, 2, n)2 · dur(4, 2, n)

+0.1829 · vol(4, 2, n) · dur(4, 2, n)2

−0.0624 · dur(4, 2, n)3), vol(4, 2, n) > 0
(3.30)

dur(4, 2, n) = 0, ∀ vol(4, 2, n) = 0 (3.31)

dur(4, 2, n) ≥ dur0(4, 2, n) + δ(4, 2, n), ∀ vol(4, 2, n) > 0 (3.32)

Qr(5, 1, n) =



























































0, vol(5, 1, n) = 0

(3.8960 + 1.1574 · vol(5, 1, n)

−2.3643 · dur(5, 1, n)− 0.0378 · vol(5, 1, n)2

−0.3721 · vol(5, 1, n) · dur(5, 1, n)

+0.4769 · dur(5, 1, n)2 + 0.2830 · vol(5, 1, n)3

−0.1478 · vol(5, 1, n)2 · dur(5, 1, n)

+0.0536 · vol(5, 1, n) · dur(5, 1, n)2

−0.0316 · dur(5, 1, n)3), vol(5, 1, n) > 0
(3.33)

dur(5, 1, n) = 0, ∀ vol(5, 1, n) = 0 (3.34)

dur(5, 1, n) ≥ dur0(5, 1, n) + δ(5, 1, n), ∀ vol(5, 1, n) > 0 (3.35)

Qr(6, 2, n) =



























































0, vol(6, 2, n) = 0

(3.8960 + 1.1574 · vol(6, 2, n)

−2.3643 · dur(6, 2, n)− 0.0378 · vol(6, 2, n)2

−0.3721 · vol(6, 2, n) · dur(6, 2, n)

+0.4769 · dur(6, 2, n)2 + 0.2830 · vol(6, 2, n)3

−0.1478 · vol(6, 2, n)2 · dur(6, 2, n)

+0.0536 · vol(6, 2, n) · dur(6, 2, n)2

−0.0316 · dur(6, 2, n)3), vol(6, 2, n) > 0
(3.36)

dur(6, 2, n) = 0, ∀ vol(6, 2, n) = 0 (3.37)

dur(6, 2, n) ≥ dur0(6, 2, n) + δ(6, 2, n), ∀ vol(6, 2, n) > 0 (3.38)
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Figure 3.23: Plot of the third order polynomial given in Equations 3.21 and 3.24.

where, the values for δ(i, j, n) in the Equations 3.21 - 3.38 correspond to the largest
residuals below zero in the Figures 3.14 - 3.16 and are given as follows:

δ(1, 1, n) = δ(2, 2, n) = 0.0106
δ(3, 1, n) = δ(4, 2, n) = 0.0066
δ(5, 1, n) = δ(6, 2, n) = 0.0041

Equations 3.21, 3.24, 3.27, 3.30, 3.33 and 3.36 are obtained via third order polynomial
regression of the data presented in Tables 3.9 - 3.11 and the corresponding polynomial
plots are presented in Figures 3.23 - 3.25. It is clear from these figures that the obtained
polynomials are very smooth and thus, computation friendly.
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Figure 3.24: Plot of the third order polynomial given in Equations 3.27 and 3.30.

66



0

0.5

1

1.5

2

1234567
0

1

2

3

4

batch−size m3

dur (hours)

Q
r

Figure 3.25: Plot of the third order polynomial given in Equations 3.33 and 3.36.

Purificators :
The suitable recipe functions for the purificators remain unchanged and are given by
Equations 2.57 - 2.59.

Control problem formulation
The control problem is formulated using the suitable recipe functions given by the
Equations 3.14 - 3.19 and 3.21 - 3.38. The objective function and the control problem
formulation remain exactly the same as in section 2.2.2.

Computational result
A maximum profit of 38.3502 MU is achieved over a makespan of 7.0 hours and the
corresponding production schedule is shown in Figure 3.26. The optimal solution was
found to converge at five event points.

Here 38.3502 MU is the true profit value, which is obtained by replacing the fitted energy
resource requirementQr with the true Qr for the different batch sizes and their respective
processing durations obtained by the control problem solution. The fitted as well as the
true energy resource requirement Qr for the different batch sizes and their respective
processing durations shown in Figure 3.26 are presented in Table 3.12.

Comparison with the solutions obtained via the SRA and the OOA
The model statistics and the solutions obtained via the SRA, the OOA and the IA for
this example are presented in Table 3.13. The maximum profit obtained with the IA
is significantly higher than that obtained with the SRA with exactly the same model
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0.0 2.0 3.0 4.01.0 5.0 6.0 7.0
Hours

Units

F3

R1

R2

F1

F2

r = reaction,  f = filtration

4.5443

1.0000

r1

3.0038 6.1973

Profit = 38.3502 MU

r3 r2

2.0000 1.0067

f3

1.0000

f3

1.0000

5.7443

1.0000

5.20384.2038

4.2038 5.2038

cleaning

cleaning

f1

0.3333

f2

f2

f2

0.3333

0.3333

Figure 3.26: Optimal schedule obtained via the IA for example 2.

statistics and nearly the same CPU timing. This is again due to more degrees of freedom
in the IA control problem than the SRA control problem, as discussed in section 3.2.1.

Interestingly, the IA solution for this example is better than the OOA solution as well.
This is because the IA control problem could be solved with 5 event points in acceptable
computation time, which was not possible for the OOA control problem. The OOA con-
trol problem for this example, as mentioned earlier, could be solved only with a maximum
of 4 event points and for that too, it needed a CPU timing that was nearly 29 times higher
than that needed by the SRA and the IA control problems for this example. However, here

Table 3.12: The fitted and the true Qr for the batch sizes shown in Figure 3.26.

vol dur Qr (fitted) Qr (true)
(m3) (hours)

1.0000 (reaction 1) 4.5443 1.5077 1.1303
1.0067 (reaction 2) 3.1935 1.3723 1.0614
2.0000 (reaction 3) 3.0038 1.6242 1.4424
1.0000 (reaction 3) 2.0557 1.3369 1.0893
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it needs to be pointed out that the CPU timings for the SRA and the IA presented in Table
3.13 do not include the significant amount of time needed for determining the recipes or
the suitable recipe functions.

Table 3.13: Comparison of the SRA, the OOA and the IA results for example 2.

SRA OOA IA
(5 event points) (4 event points) (5 event points)

Integer variables 75 60 75
Continuous variables 441 12969 441
Equations 1143 9864 1143
Solution (MU) 31.9093 36.5287 38.3502
CPU time(s) 99.53 2885.85 99.71

For the sake of true comparison of the performance of the IA and the OOA, the IA control
problem for this example was also solved with 4 event points. A maximum profit of
36.3889 MU is obtained with 4 event points, which is in very close agreement with the
solution obtained via the OOA with the same number of event points. This indicates that
the IA control problem is nearly as good as the OOA control problem as far as the number
of degrees of freedom are concerned. However, in terms of computational requirements,
the IA is far superior to the OOA, as shown in Table 3.13.

3.3 Summary

In this chapter, an improved approach (IA) is proposed for the control of MBPs. The
proposed approach is applied to illustrative examples and the results obtained thereby are
compared to that obtained via the SRA and the OOA for these examples.

The results presented in this chapter, particularly in section 3.2.2, highlight the fact that
the IA control problems indeed possess the computational features like the SRA control
problems. However, the degrees of freedom possessed by them is higher than the SRA
control problems. It can be conveniently concluded that just like the OOA, the solutions
obtained via the IA also would be ”at least” as good as the SRA, if not better.

The results obtained for the illustrative examples clearly advocate that the IA is probably
the most suitable approach for the control of MBPs and can be applied to the real world
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problems due to its computational features. This is further investigated with the help of a
detailed application example in the next chapter.
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Chapter 4

An Application Example

In this chapter, the improved approach for the control of MBPs is applied to a more
realistic example with detailed process dynamics.

The plant considered here comprises of two non-isothermal batch reactors (R1 and R2)
and a set of three batch purificators (P1, P2 and P3), as shown in Figure 4.1. Once again,
the zero-wait policy is assumed for the operation of the plant. Two different products (B1

A A1

R1 R2 Reactors

Feed

systemsP1 P2 P3
Purification

2

Product Waste WasteProduct Waste Product

Figure 4.1: Flow sheet of the application example.

and B2) are to be produced in this plant from two different reactants (A1 and A2) and the
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processing stages involved are described in the following:

Reactors :

The reactors in the plant are assumed to be non-isothermal batch reactors, as shown in
Figure 4.2, with the following exothermic series reactions to be executed:

Ax −→ Bx −→ Cx ; x = 1, 2
Ax = reactant, Bx = desired product, Cx = by-product

A x B x C x

Coolant

Coolant

Reactant A

Intermediate

x

x
+ +( )

Figure 4.2: A schematic of the batch reactors in the application example.

Before every reaction, the reactors are filled with the desired amount of reactant and
then the reaction is carried out until a desired concentration of the product is reached,
while keeping a check on the amount of by-product produced during the reaction. The
optimal temperature profile in the reactor is maintained by appropriately regulating the
coolant flow rate into the reactor jacket. Assuming perfect mixing inside the reactors, the
governing equations for the these reactors are given as follows:

Material balances inside the reactor

dCAx
(t)

dt
= −k1x

· CAx
(t) (4.1)

dCBx
(t)

dt
= k1x

· CAx
(t) − k2x

· CBx
(t) (4.2)
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dCCx
(t)

dt
= k2x

· CBx
(t) (4.3)

Energy balance inside the reactor

dTx(t)

dt
=

Qrx
−Qmx

Cpx
· Vx · ρx

(4.4)

Energy balance for the reactor wall

dTmx
(t)

dt
=

Qmx
−QJ

Cpm · Vmr
· ρm

(4.5)

Energy balance for the reactor jacket

dTJx
(t)

dt
=
FJx

(t)

VJr

· (TJ0 − TJx
(t)) +

QJx

CpJ · VJr
· ρJ

(4.6)

Heat of reaction

Qrx
= −∆H1x

· (k1x
· CAx

(t) · Vx) − ∆H2x
· (k2x

· CBx
(t) · Vx) (4.7)

Heat transfer due to the coolant

Qmx
= Ui · Air · (Tx(t) − Tmx

(t)) (4.8)

QJx
= Uo ·Aor

· (Tmx
(t) − TJx

(t)) (4.9)

Reaction kinetics

k1x
= k10x

· exp

(

−
E1x

R · Tx(t)

)

(4.10)

k2x
= k20x

· exp

(

−
E2x

R · Tx(t)

)

(4.11)

Tx(t) ≤ Tupx
(4.12)

Tx(t = durx) = Tsatx (4.13)

CCx
(t = durx) ≤ CCmaxx

(4.14)
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CBx
(t = durx) = CBintx

(4.15)

coolantx =

∫ durx

0

FJx
(t) · dt (4.16)

where, t ∈ [0, dur] and the notations have the following meaning:

Air . . . inner surface area of reactor r, where r ∈ {1, 2}

Aor
. . . outer surface area of reactor r

Cix(t) . . . concentration of component i in reaction x at time t
Cpx

. . . specific heat of the reactant in reaction x
Cpm . . . specific heat of the reactor/purificator metal
CpJ . . . specific heat of the coolant/hot water
E1x

. . . activation energy 1 for reaction x
E2x

. . . activation energy 2 for reaction x
FJx

(t) . . . coolant flow rate at time t for reaction x
∆H1x

. . . enthalpy of reaction 1 for reaction x
∆H2x

. . . enthalpy of reaction 2 for reaction x
k1x

. . . reaction rate constant 1 for reaction x
k2x

. . . reaction rate constant 2 for reaction x
k10 . . . frequency factor 1 for reaction x
k20 . . . frequency factor 2 for reaction x
Qrx

. . . heat generated during reaction x
QJx

. . . amount of heat transferred to the coolant in reaction x
Qmx

. . . amount of heat transferred to the reactor metal in reaction x
R . . . universal gas constant
Tx(t) . . . temperature of the reaction mixture at time t in reaction x
TJx

(t) . . . temperature of coolant at time t in reaction x
TJ0 . . . inlet temperature of coolant
Tmx

(t) . . . temperature of the reactor metal at time t in reaction x
Ui . . . inside heat transfer coefficient of the reactor/purificator metal
Uo . . . outside heat transfer coefficient of the reactor/purificator metal
Vx . . . volume of the reactor contents in reaction x
VJr

. . . volume of the jacket of reactor r
Vmr

. . . volume of the reactor metal of reactor r
ρx . . . density of the reacting mixture in reaction x
ρm . . . density of the reactor/purificator metal

74



ρJ . . . density of the coolant/hot water
coolantx . . . total amount of coolant needed for reaction x
Tupx

. . . upper bound on the temperature of the reacting mixture during reaction x
Tsatx . . . saturation temperature of the intermediate produced from reaction x
CAx

(t) . . . concentration of reactant A at time t in reaction x
CBx

(t) . . . concentration of product B at time t in reaction x
CCx

(t) . . . concentration of by-product C at time t in reaction x
CCmaxx

. . . upper limit on the amount of by-product produced during reaction x
CBintx

. . . final concentration of the desired product B in the intermediate produced from
reaction x

Equations 4.1 - 4.11 represent the dynamic mass and energy balances, while Equation
4.12 imposes an upper bound on the temperature of the reactor contents during the
process. Equation 4.13 ensures that the intermediates leave the reactors at their respective
saturation temperatures. Equation 4.14 imposes an upper bound on the amount of
by-product C produced during the reaction, whereas Equation 4.15 ensures that the
intermediates leave the reactors with the desired concentration of product B in them.

Table 4.1: Data used for the reactors in the application example.

∆H11
= -6.50E8 J/kmol ∆H21

= -1.20E8 J/kmol ρ1 = 800.0 kg/m3

∆H12
= -6.80E8 J/kmol ∆H22

= -1.40E8 J/kmol ρ2 = 850.0 kg/m3

ρm = 8200.0 kg/m3 ρJ = 1000.0 kg/m3 Cp1
= 4200.0 J/kg K

Cp2
= 4600.0 J/kg K E12

= 3.37E7 J/kmol E22
= 4.29E7 J/kmol

Cpm = 500.0 J/kg K CpJ = 4200.0 J/kg K E11
= 3.49E7 J/kmol

E21
= 4.65E7 J/kmol Vm1

= 0.032 m3 Vm2
= 0.02 m3

VJ1
= 0.53 m3 k101

= 4.38E4 h−1 k201
= 3.94E5h−1

VJ2
= 0.302 m3 k102

= 3.98E4 h−1 k202
= 4.67E5h−1

R = 8314.0 J/kmol K Ui = 7.0E6 J/h K m2 Uo = 8.18E6 J/h K m2

Ai1 = 5.25 m2 Ao1
= 5.25 m2 Tj0 = 298.0 K

Ai2 = 3.3 m2 Ao2
= 3.3 m2 FJx

(t) ∈ [0.0, 9.0] m3/h

Tx(t = 0) = 350.0 K Tmx
(t = 0) = 373.0 K TJx

(t = 0) = 300.0 K
CAx

(t = 0) = 0.975 CBx
(t = 0) = 0.025 CCx

(t = 0) = 0.0
kmol/m3 kmol/m3

Tupx
= 370.0 K Tsat1 = 323.0 K Tsat2 = 328.0 K

CCmaxx
= 0.1 kmol/m3 CBint1

= 0.6 kmol/m3 CBint2
= 0.46 kmol/m3
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Finally, Equation 4.16 represents the total amount of coolant utilized during the reaction.
It is assumed that the minimum batch size required to start operating the reactors is 0.4
m3 and 0.2 m3 for reactors R1 and R2 respectively. The data used for the reactors is
given in Table 4.1.

Purificators :

The purificators in the plant are assumed to be non-isothermal batch purificators,
as shown in Figure 4.3.

A x B x C x+ +( )

A x C x+( )

A x B x C x+ +( )

Hot water

Hot water

Waste

Product

Intermediate x

Figure 4.3: A schematic of the batch purificators in the application example.

The intermediates leave the reactors at their respective saturation temperatures and go
directly to the purificators, where they are evaporated until a desired concentration of the
desired product is reached. It is assumed that the vapor is drawn continuously out of the
purifiactor and comprises only of the unreacted reactant and the by-product. It is also
assumed that absolutely no amount of the desired product, which is the heavy boiling
component, is lost during the process. Under the assumption of perfect mixing inside the
purificators, the governing equations for these purificators can be expressed as follows:

Overall material balance inside the purificator

ρx ·
dVxp(t)

dt
= −Mvxp

(4.17)

Overall energy balance inside the purificator

dHxp(t)

dt
= −Ui · Ai · (Tmxp

(t) − Tsatx) −Mvxp
·Hvxp

(4.18)
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Here we make the following simplifying assumptions:

1. The enthalpy of vapor (Hvxp
) is the same as the latent heat of vaporization (Hlatentx).

2. The energy balance inside the purificators is assumed to be quasi-static, that is,
dHxp(t)

dt
= 0

With these assumptions, the governing equations for these purificators can be written as
follows:

Energy balance for the purificator jacket

dTJxp
(t)

dt
=
FJxp

(t)

VJ

· (TJin
− TJxp

(t)) −
Uo ·Ao · (TJxp

(t) − Tmxp
(t))

CpJ · VJ · ρJ

(4.19)

Energy balance for the purificator wall (metal)

dTmxp
(t)

dt
=

(Uo · Ao · (TJxp
− Tmxp

)) − (Ui · Ai · (Tmxp
(t) − Tsatx))

Cpm · Vm · ρm

(4.20)

Overall material balance inside the purificator

dVxp(t)

dt
=

−Ui · Ai · (Tmxp
(t) − Tsatx)

ρx ·Hlatentx

(4.21)

Material balance for product Bx inside the purificator

dCBxp
(t)

dt
=
Ui · Ai · (Tmxp

(t) − Tsatxp
) · CBxp

(t)

ρx · Vxp(t) ·Hlatentx

(4.22)

Material balance for product Bx at the end of the purification

Vxp(t = durxp) =
V0xp

· CB0xp

CBfxp

(4.23)

The total amount of hot water utilized during the purification

hot waterxp =

∫ durxp

0

FJxp
(t) · dt (4.24)

where, t ∈ [0, dur] and the notations have the following meaning:

Ai . . . inner surface area of the purificators
Ao . . . outer surface area of the purificators
TJxp

(t) . . . temperature of hot water at time t while purifying the intermediate produced
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from reaction x
TJin

. . . inlet temperature of hot water
Tmxp

(t) . . . temperature of the purificator metal (wall) at time t while purifying the inter-
mediate produced from reaction x
Vxp(t) . . . volume of the purificator content at time t while purifying the intermediate pro-
duced from reaction x
V0xp

. . . initial volume of the purificator content while purifying the intermediate produced
from reaction x
Mvxp

. . . mass flowrate of vapor while purifying the intermediate produced from reaction
x

Hvxp
. . . enthalpy of the vapor leaving the purificator while purifying the intermediate pro-

duced from reaction x
Hxp(t) . . . enthalpy of the intermediate produced from reaction x at time t during purifi-
cation
VJ . . . volume of the jacket of the purificator
Vm . . . volume of the purificator metal
Hlatentx . . . latent heat of the intermediate produced from reaction x
FJxp

(t) . . . hot water flow rate at time t while purifying the intermediate produced from
reaction x
CBxp

(t) . . . concentration of product B at time twhile purifying the intermediate produced
from reaction x
CB0xp

. . . initial concentration of product B while purifying the intermediate produced
from reaction x, note that CB0xp

= CBintx

CBfxp
. . . final concentration of product B while purifying the intermediate produced from

reaction x
hot waterxp . . . total amount of hot water needed while purifying the intermediate pro-
duced from reaction x

Equations 4.19 - 4.22 represent the dynamic mass and energy balances for the purificators,
while Equation 4.23 ensures that the purification stops only after the desired concentration
of the product B is reached. Equation 4.24 represents the total amount of hot water utilized
during the purification. Besides, it is assumed that the minimum batch size required to
start operating the purificators is 0.2 m3. The data used for the purificators is given Table
4.2. The STN representation of this process is shown in Figure 4.4 and the corresponding
basic data for the units and the states involved is presented in Table 4.3. Additionally, the
following costs are assumed for the running the process:
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1. The running cost of the reactor is 1.2 MU per hour.

2. The cost of coolant is 7.0 MU per m3.

3. The running cost of the purificator is 2.0 MU per hour.

4. The cost of hot water is 20.0 MU per m3.

S1

1.0

1.0

1.0

1.0

S2

Reaction 2Reaction 1

Purification 2

(Task 1, 2) (Task 3, 4)

S8S7

1.0 1.0

S3

S5

S4

(Task 5, 6, 7) (Task 8, 9, 10)

S6

0.6122 0.3878 0.4694 0.5306

Purification 1

1 2Reactant   A Reactant   A

Intermediate  1 Intermediate  2

Product  1 Product  2 Waste  2Waste  1

Figure 4.4: State-task-network representation of the application example.

The objective for this example is maximization of overall profit for the plant over a fixed

Table 4.2: Data used for the purificators in the application example.

Vm = 0.02 m3 VJ = 0.302 m3 Tjin
= 336.0 K

Ai = 3.3 m2 Ao = 3.3 m2 FJxp
(t) ∈ [0.0, 9.0] m3/h

Tmxp
(t = 0) = 336.0 K TJxp

(t = 0) = 336.0 K CBxp
(t = 0) = CB0xp

Vxp(t = 0) = V0xp
Hlatent1 = 792.0 J/kg Hlatent2 = 673.0 J/kg

CBf1p
= 0.98 kmol/m3 CBf2p

= 0.98 kmol/m3
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Table 4.3: Data for example 2.

Unit(j) Capacity(m3) Suitability(task i)
Reactor R1(j=1) 1.2 Reactions 1(i=1) & 2(i=3)
Reactor R2(j=2) 0.6 Reactions 1(i=2) & 2(i=4)
Purificator P1(j=3) 0.6 Purifications 1(i=5) & 2(i=8)
Purificator P2(j=4) 0.6 Purifications 1(i=6) & 2(i=9)
Purificator P3(j=5) 0.6 Purifications 1(i=7) & 2(i=10)
State(s) initial amount(m3) price(MU per m3)
Reactant A1(s=1) 10.0 50.0
Reactant A2(s=2) 10.0 45.0
Intermediate 1(s=3) 0.0 0.0
Intermediate 2(s=4) 0.0 0.0
Product 1(s=5) 0.0 540.0
Product 2(s=6) 0.0 515.0
Waste 1(s=7) 0.0 0.0
Waste 2(s=8) 0.0 0.0

makespan of 6 hours, where the overall profit is defined as follows:

Profit = (price of products) − (price of reactants)

− (running cost of the reactors)

− (running cost of the purificators)

− (cost of coolant needed for the reactions)

− (cost of hot water needed for the purifications)

It is assumed that a minimum of 0.1 m3 of each product should be produced within the
given time horizon so as to satisfy the market requirement. Additionally, the following
cleaning restrictions are assumed during the operation of the plant:

1. A cleaning time of 0.65 hour and 0.4 hour is needed on the reactors R1 and R2 re-
spectively between every different reaction tasks that are being performed on these
reactors.

2. A cleaning time of 0.4 hour is needed on the purificators between every different
purification tasks that are being executed on these purificators.

80



4.1 Control via the improved approach

In this section, the IA is applied to the control problem of the above mentioned plant. The
various steps involved in the control problem formulation for this plant are presented in
the following:

Determination of suitable recipe functions

Reactors :

As described in chapter 3, the suitable recipe functions for the reactors are obtained by
solving the following two SBO problems:

SBO problem 1

Here, the minimum processing durations (dur0) for different batch sizes and for each
reaction x on each reactor r are determined by solving the following optimization problem
:

minimize dur0 (4.25)

subject to

Equations 4.1 - 4.16

The corresponding optimization results are presented in Tables 4.4 and 4.5.

Table 4.4: Minimum processing durations for different batch sizes for reaction 1 on reac-
tors 1 and 2.

reaction1 reaction1
on reaction1 on reaction2
vol dur0 vol dur0

(m3) (h) (m3) (h)

0.4 2.3188 0.2 2.2877
0.6 2.3578 0.3 2.3103

...
...

...
...

1.2 2.4714 0.6 2.3955

The dependence of the minimum processing duration on the batch size for each reaction
on each reactor, which is determined via suitable polynomial fitting of the data presented

81



Table 4.5: Minimum processing durations for different batch sizes for reaction 2 on reac-
tors 1 and 2.

reaction1 reaction1
on reaction1 on reaction2
vol dur0 vol dur0

(m3) (h) (m3) (h)

0.4 3.1347 0.2 3.1312
0.6 3.1392 0.3 3.1365

...
...

...
...

1.2 3.1493 0.6 3.1482

in Tables 4.4 and 4.5, are expressed by Equations 4.26 - 4.29. The corresponding polyno-
mial plots along with their residuals are shown in Figures 4.5 - 4.8.

dur0(1, 1, n) =











0, vol(1, 1, n) = 0

2.239 + 0.2035 · vol(1, 1, n)

−0.008 · vol(1, 1, n)2, vol(1, 1, n) > 0

(4.26)

dur0(2, 2, n) =











0, vol(2, 2, n) = 0

2.284 − 0.1926 · vol(2, 2, n)

+1.249 · vol(2, 2, n)2 − 1.033 · vol(2, 2, n)3, vol(2, 2, n) > 0
(4.27)

dur0(3, 1, n) =











0, vol(3, 1, n) = 0

3.12 + 0.03925 · vol(3, 1, n)

−0.005 · vol(3, 1, n)2 − 0.00625 · vol(3, 1, n)3, vol(3, 1, n) > 0
(4.28)

dur0(4, 2, n) =











0, vol(4, 2, n) = 0

3.108 + 0.1718 · vol(4, 2, n)

−0.335 · vol(4, 2, n)2 + 0.2667 · vol(4, 2, n)3, vol(4, 2, n) > 0
(4.29)

SBO problem 2

The minimum amount of coolant Qr required for different batch sizes over different pro-
cessing durations and for each reaction x on each reactor r is determined in this step by
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Figure 4.5: Plot of the polynomial given in Equation 4.26.
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Figure 4.6: Plot of the polynomial given in Equation 4.27.
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Figure 4.7: Plot of the polynomial given in Equation 4.28.
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Figure 4.8: Plot of the polynomial given in Equation 4.29.
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solving the following SBO problem:

minimize coolant (4.30)

subject to

Equations 4.1 - 4.16

The results obtained thereby are presented in Tables 4.6 - 4.9 and some of the correspond-
ing optimal coolant profiles are shown in Figures 4.9 - 4.12.

Table 4.6: Data corresponding to optimal coolant profiles for different batch sizes and for
reaction 1 on reactor 1.

0.4 m3 0.6 m3 . . . 1.2 m3

dur Qr dur Qr . . . dur Qr

(hours) (m3) (hours) (m3) . . . (hours) (m3)
2.3188 2.1708 2.3578 3.0095 . . . 2.4714 5.7049

2.5 1.4533 2.5 2.2706 . . . 2.5 5.2003
2.75 1.3297 2.75 1.9027 . . . 2.75 3.9715

...
...

...
... . . .

...
...

6.0 0.8966 6.0 1.2720 . . . 6.0 2.6634

Table 4.7: Data corresponding to optimal coolant profiles for different batch sizes and for
reaction 1 on reactor 2.

0.2 m3 0.3 m3 . . . 0.6 m3

dur Qr dur Qr . . . dur Qr

(hours) (m3) (hours) (m3) . . . (hours) (m3)
2.2877 1.3314 2.3103 1.7804 . . . 2.3955 3.4328

2.5 0.8229 2.5 1.1323 . . . 2.5 2.1663
2.75 0.6459 2.75 0.9396 . . . 2.75 1.8782

...
...

...
... . . .

...
...

6.0 0.4407 6.0 0.6386 . . . 6.0 1.2649
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Table 4.8: Data corresponding to optimal coolant profiles for different batch sizes and for
reaction 2 on reactor 1.

0.4 m3 0.6 m3 . . . 1.2 m3

dur Qr dur Qr . . . dur Qr

(hours) (m3) (hours) (m3) . . . (hours) (m3)
3.1347 1.7286 3.1392 2.4370 . . . 3.1493 5.4748

3.25 1.2381 3.25 1.7988 . . . 3.25 3.8139
3.5 0.9386 3.5 1.4022 . . . 3.5 3.1063

...
...

...
... . . .

...
...

6.0 0.3379 6.0 0.6445 . . . 6.0 1.8348

Table 4.9: Data corresponding to optimal coolant profiles for different batch sizes and for
reaction 2 on reactor 2.

0.2 m3 0.3 m3 . . . 0.6 m3

dur Qr dur Qr . . . dur Qr

(hours) (m3) (hours) (m3) . . . (hours) (m3)
3.1312 0.8828 3.1365 1.2227 . . . 3.1405 1.6087

3.25 0.6302 3.25 0.9003 . . . 3.25 1.1920
3.5 0.4767 3.5 0.6975 . . . 3.5 0.9365

...
...

...
... . . .

...
...

6.0 0.1541 6.0 0.2977 . . . 6.0 0.4529

The remaining recipe functions for the reactors are determined by using the data presented
in Tables 4.6 - 4.9 and are expressed by Equations 4.31 - 4.42.

Qr(1, 1, n) =



























































0, vol(1, 1, n) = 0

(9.1126 + 10.3376 · vol(1, 1, n)

−7.0865 · dur(1, 1, n) + 1.3882 · vol(1, 1, n)2

−3.9990 · vol(1, 1, n) · dur(1, 1, n)

+1.8520 · dur(1, 1, n)2 − 0.1427 · vol(1, 1, n)3

−0.0431 · vol(1, 1, n)2 · dur(1, 1, n)

+0.4020 · vol(1, 1, n) · dur(1, 1, n)2

−0.1521 · dur(1, 1, n)3), vol(1, 1, n) > 0
(4.31)
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Figure 4.9: Optimal coolant profile corresponding to a batch size of 0.8 m
3 over a processing duration of

4.0 h for reaction 1 on reactor 1.

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (hours)

co
o

la
n

t 
(m

3 /h
)

Figure 4.10: Optimal coolant profile corresponding to a batch size of 0.4 m
3 over a processing duration

of 4.0 h for reaction 1 on reactor 2.
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Figure 4.11: Optimal coolant profile corresponding to a batch size of 0.8 m
3 over a processing duration

of 4.0 h for reaction 2 on reactor 1.

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time (hours)

co
o

la
n

t 
(m

3 /h
)

Figure 4.12: Optimal coolant profile corresponding to a batch size of 0.4 m
3 over a processing duration

of 4.0 h for reaction 2 on reactor 2.
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dur(1, 1, n) = 0, ∀ vol(1, 1, n) = 0 (4.32)

dur(1, 1, n) ≥ dur0(1, 1, n) + δ(1, 1, n), ∀ vol(1, 1, n) > 0 (4.33)

Qr(2, 2, n) =



























































0, vol(2, 2, n) = 0

(6.6247 + 16.5065 · vol(2, 2, n)

−5.5512 · dur(2, 2, n)− 1.6214 · vol(2, 2, n)2

−5.9626 · vol(2, 2, n) · dur(2, 2, n)

+1.4732 · dur(2, 2, n)2 + 1.9096 · vol(2, 2, n)3

+0.1732 · vol(2, 2, n)2 · dur(2, 2, n)

+0.5838 · vol(2, 2, n) · dur(2, 2, n)2

−0.1215 · dur(2, 2, n)3), vol(2, 2, n) > 0
(4.34)

dur(2, 2, n) = 0, ∀ vol(2, 2, n) = 0 (4.35)

dur(2, 2, n) ≥ dur0(2, 2, n) + δ(2, 2, n), ∀ vol(2, 2, n) > 0 (4.36)

Qr(3, 1, n) =



























































0, vol(3, 1, n) = 0

(26.4196 + 12.9844 · vol(3, 1, n)

−17.8010 · dur(3, 1, n) + 3.3760 · vol(3, 1, n)2

−5.2601 · vol(3, 1, n) · dur(3, 1, n)

+3.9662 · dur(3, 1, n)2 + 0.6105 · vol(3, 1, n)3

−0.8878 · vol(3, 1, n)2 · dur(3, 1, n)

+0.6157 · vol(3, 1, n) · dur(3, 1, n)2

−0.2927 · dur(3, 1, n)3), vol(3, 1, n) > 0
(4.37)

dur(3, 1, n) = 0, ∀ vol(3, 1, n) = 0 (4.38)

dur(3, 1, n) ≥ dur0(3, 1, n) + δ(3, 1, n), ∀ vol(3, 1, n) > 0 (4.39)

Qr(4, 2, n) =



























































0, vol(4, 2, n) = 0

(13.7922 + 12.7653 · vol(4, 2, n)

−9.2228 · dur(4, 2, n) + 4.4099 · vol(4, 2, n)2

−4.9520 · vol(4, 2, n) · dur(4, 2, n)

+2.0393 · dur(4, 2, n)2 − 1.3518 · vol(4, 2, n)3

−0.3581 · vol(4, 2, n)2 · dur(4, 2, n)

+0.4864 · vol(4, 2, n) · dur(4, 2, n)2

−0.1477 · dur(4, 2, n)3), vol(4, 2, n) > 0
(4.40)

dur(4, 2, n) = 0, ∀ vol(4, 2, n) = 0 (4.41)
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dur(4, 2, n) ≥ dur0(4, 2, n) + δ(4, 2, n), ∀ vol(4, 2, n) > 0 (4.42)

where, the values for δ(i, j, n) in the Equations 4.33, 4.36, 4.39 and 4.42 correspond to the
largest residuals below zero in the Figures 4.5 - 4.8, respectively and are given as follows:

δ(1, 1, n) = 2.5143e-4, δ(2, 2, n) = 7.7714e-4
δ(3, 1, n) = 1.12e-3, δ(4, 2, n) = 1.6e-4

Third order polynomial regression of the data presented in Tables 4.6 - 4.9 was carried out
to obtain the polynomials expressed by Equations 4.31, 4.34, 4.37 and 4.40, respectively.
The respective plots of these polynomials are shown in Figures 4.13 - 4.16.
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Figure 4.13: Plot of the third order polynomial given in Equation 4.31.

Purificators :

The suitable recipe functions for the purificators are obtained by solving the following
two SBO problems.

SBO problem 1

This step involves determination of the minimum processing duration (dur0) for different
batch sizes and for each intermediate produced from reaction x by solving the following
optimization problem.

minimize dur0 (4.43)

subject to

Equations 4.19 - 4.24
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Figure 4.14: Plot of the third order polynomial given in Equation 4.34.

The corresponding optimization results are presented in Table 4.10. These results are then
used to determine the dependence of the minimum processing duration on the batch size
for each purification task on each purificator, which are expressed by Equations 4.44 -
4.49. Figures 4.17 and 4.18 present the corresponding polynomial plots along with their
residuals.
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Figure 4.15: Plot of the third order polynomial given in Equation 4.37.
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Figure 4.16: Plot of the third order polynomial given in Equation 4.40.

Table 4.10: Minimum processing durations for different batch sizes for purification 1 and
2 on each purificator.

purification 1 purification 2
vol dur0 vol dur0

(m3) (hours) (m3) (hours)

0.2 0.3922 0.2 0.7988
0.3 0.5938 0.3 1.2041

...
...

...
...

0.6 1.1994 0.6 2.4197

dur0(5, 3, n) =











0, vol(5, 3, n) = 0

−0.01102 + 2.015 · vol(5, 3, n)

+0.003571 · vol(5, 3, n)2, vol(5, 3, n) > 0

(4.44)

dur0(6, 4, n) =











0, vol(6, 4, n) = 0

−0.01102 + 2.015 · vol(6, 4, n)

+0.003571 · vol(6, 4, n)2, vol(6, 4, n) > 0

(4.45)
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dur0(7, 5, n) =











0, vol(7, 5, n) = 0

−0.01102 + 2.015 · vol(7, 5, n)

+0.003571 · vol(7, 5, n)2, vol(7, 5, n) > 0

(4.46)

dur0(8, 3, n) =



















0, vol(8, 3, n) = 0

−0.01222 + 4.057 · vol(8, 3, n)

−0.01143 · vol(8, 3, n)2

+0.008333 · vol(8, 3, n)3, vol(8, 3, n) > 0

(4.47)

dur0(9, 4, n) =



















0, vol(9, 4, n) = 0

−0.01222 + 4.057 · vol(9, 4, n)

−0.01143 · vol(9, 4, n)2

+0.008333 · vol(9, 4, n)3, vol(9, 4, n) > 0

(4.48)

dur0(10, 5, n) =



















0, vol(10, 5, n) = 0

−0.01222 + 4.057 · vol(10, 5, n)

−0.01143 · vol(10, 5, n)2

+0.008333 · vol(10, 5, n)3, vol(10, 5, n) > 0

(4.49)

SBO problem 2

The minimum amount of hot water Qr required for different batch sizes over different
processing durations and for each purification task on each purificator is determined in this
step by solving the following SBO problem. The results obtained thereby are presented in
Tables 4.11 and 4.12 and some of the optimal hot water profiles are presented in Figures
4.19 and 4.20.

minimize hot water (4.50)

subject to

Equations 4.19 - 4.24

The remaining recipe functions for the purificators are determined by using the data
presented above and are given by Equations 4.51 - 4.68. The polynomials in these
equations are obtained via third order polynomial regression of the data presented in
Tables 4.11 and 4.12 and the corresponding polynomial plots are presented in Figures
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Figure 4.17: Plot of the polynomial given in Equations 4.44 - 4.46.
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Figure 4.18: Plot of the polynomial given in Equations 4.47 - 4.49.
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Figure 4.19: Optimal hot water profile corresponding to a batch size of 0.4 m
3 over a processing duration

of 2.0 h for purification 1.
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Figure 4.20: Optimal hot water profile corresponding to a batch size of 0.4 m
3 over a processing duration

of 2.0 h for purification 2.
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Table 4.11: Data corresponding to the optimal hot water profiles for different batch sizes
and for purification 1 on each purificator.

0.2 m3 0.3 m3 . . . 0.6 m3

dur Qr dur Qr . . . dur Qr

(hours) (m3) (hours) (m3) . . . (hours) (m3)
0.3922 3.5300 0.5938 5.3439 . . . 1.1994 10.7946

0.5 1.6888 0.75 2.8389 . . . 1.25 9.2635
0.75 1.0068 1.0 1.9504 . . . 1.5 6.2725

...
...

...
... . . .

...
...

3.0 0.6298 3.0 1.2135 . . . 3.0 3.4105

Table 4.12: Data corresponding to the optimal hot water profiles for different batch sizes
and for purification 2 on each purificator.

0.2 m3 0.3 m3 . . . 0.6 m3

dur Qr dur Qr . . . dur Qr

(hours) (m3) (hours) (m3) . . . (hours) (m3)
0.7988 7.1891 1.2041 10.8368 . . . 2.4197 21.7772

1.0 4.0275 1.25 9.4022 . . . 2.5 19.5366
1.25 2.9817 1.5 6.3319 . . . 2.75 15.6944

...
...

...
... . . . 3.0 13.5338

3.0 1.8903 3.0 3.5680 . . .

4.21 and 4.22.

Qr(5, 3, n) =



























































0, vol(5, 3, n) = 0

(1.3977 + 15.7615 · vol(5, 3, n)

−4.6956 · dur(5, 3, n) + 77.5861 · vol(5, 3, n)2

−35.0575 · vol(5, 3, n) · dur(5, 3, n)

+5.2738 · dur(5, 3, n)2 − 6.9635 · vol(5, 3, n)3

−23.0297 · vol(5, 3, n)2 · dur(5, 3, n)

+10.4108 · vol(5, 3, n) · dur(5, 3, n)2

−1.3069 · dur(5, 3, n)3), vol(5, 3, n) > 0
(4.51)
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dur(5, 3, n) = 0, ∀ vol(5, 3, n) = 0 (4.52)

dur(5, 3, n) ≥ dur0(5, 3, n) + δ(5, 3, n), ∀ vol(5, 3, n) > 0 (4.53)

Qr(6, 4, n) =



























































0, vol(6, 4, n) = 0

(1.3977 + 15.7615 · vol(6, 4, n)

−4.6956 · dur(6, 4, n) + 77.5861 · vol(6, 4, n)2

−35.0575 · vol(6, 4, n) · dur(6, 4, n)

+5.2738 · dur(6, 4, n)2 − 6.9635 · vol(6, 4, n)3

−23.0297 · vol(6, 4, n)2 · dur(6, 4, n)

+10.4108 · vol(6, 4, n) · dur(6, 4, n)2

−1.3069 · dur(6, 4, n)3), vol(6, 4, n) > 0
(4.54)

dur(6, 4, n) = 0, ∀ vol(6, 4, n) = 0 (4.55)

dur(6, 4, n) ≥ dur0(6, 4, n) + δ(6, 4, n), ∀ vol(6, 4, n) > 0 (4.56)

Qr(7, 5, n) =




























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













0, vol(7, 5, n) = 0

(1.3977 + 15.7615 · vol(7, 5, n)

−4.6956 · dur(7, 5, n) + 77.5861 · vol(7, 5, n)2

−35.0575 · vol(7, 5, n) · dur(7, 5, n)

+5.2738 · dur(7, 5, n)2 − 6.9635 · vol(7, 5, n)3

−23.0297 · vol(7, 5, n)2 · dur(7, 5, n)

+10.4108 · vol(7, 5, n) · dur(7, 5, n)2

−1.3069 · dur(7, 5, n)3), vol(7, 5, n) > 0
(4.57)

dur(7, 5, n) = 0, ∀ vol(7, 5, n) = 0 (4.58)

dur(7, 5, n) ≥ dur0(7, 5, n) + δ(7, 5, n), ∀ vol(7, 5, n) > 0 (4.59)

Qr(8, 3, n) =
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

0, vol(8, 3, n) = 0

(−0.0652 + 58.0882 · vol(8, 3, n)

−5.6987 · dur(8, 3, n) + 257.4706 · vol(8, 3, n)2

−92.8353 · vol(8, 3, n) · dur(8, 3, n)

+7.4489 · dur(8, 3, n)2 − 217.2730 · vol(8, 3, n)3

−158.9868 · vol(8, 3, n)2 · dur(8, 3, n)

+34.7176 · vol(8, 3, n) · dur(8, 3, n)2

−2.1984 · dur(8, 3, n)3), vol(8, 3, n) > 0
(4.60)

dur(8, 3, n) = 0, ∀ vol(8, 3, n) = 0 (4.61)
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dur(8, 3, n) ≥ dur0(8, 3, n) + δ(8, 3, n), ∀ vol(8, 3, n) > 0 (4.62)

Qr(9, 4, n) =
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

0, vol(9, 4, n) = 0

(−0.0652 + 58.0882 · vol(9, 4, n)

−5.6987 · dur(9, 4, n) + 257.4706 · vol(9, 4, n)2

−92.8353 · vol(9, 4, n) · dur(9, 4, n)

+7.4489 · dur(9, 4, n)2 − 217.2730 · vol(9, 4, n)3

−158.9868 · vol(9, 4, n)2 · dur(9, 4, n)

+34.7176 · vol(9, 4, n) · dur(9, 4, n)2

−2.1984 · dur(9, 4, n)3), vol(9, 4, n) > 0
(4.63)

dur(9, 4, n) = 0, ∀ vol(9, 4, n) = 0 (4.64)

dur(9, 4, n) ≥ dur0(9, 4, n) + δ(9, 4, n), ∀ vol(9, 4, n) > 0 (4.65)

Qr(10, 5, n) =




























































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















0, vol(10, 5, n) = 0

(−0.0652 + 58.0882 · vol(10, 5, n)

−5.6987 · dur(10, 5, n)

+257.4706 · vol(10, 5, n)2

−92.8353 · vol(10, 5, n) · dur(10, 5, n)

+7.4489 · dur(10, 5, n)2

−217.2730 · vol(10, 5, n)3

−158.9868 · vol(10, 5, n)2 · dur(10, 5, n)

+34.7176 · vol(10, 5, n) · dur(10, 5, n)2

−2.1984 · dur(10, 5, n)3), vol(10, 5, n) > 0
(4.66)

dur(10, 5, n) = 0, ∀ vol(10, 5, n) = 0 (4.67)

dur(10, 5, n) ≥ dur0(10, 5, n) + δ(10, 5, n), ∀ vol(10, 5, n) > 0 (4.68)

Control problem formulation

The control problem is formulated using the suitable recipe functions determined above.
The mathematical formulation remains exactly the same as in section 2.2.2. The objective
function, which is maximization of the overall profit for the plant, is given by Equation
4.69.
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Figure 4.21: Plot of the third order polynomial given in Equations 4.51, 4.54 and 4.57.
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Figure 4.22: Plot of the third order polynomial given in Equations 4.60, 4.63 and 4.66.
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maximize
∑

n

(540.0 · d(5, n) + 515.0 · d(6, n) − 50.0 · (vol(1, 1, n)

+vol(2, 2, n)) − 45.0 · (vol(3, 1, n) + vol(4, 2, n)) − 1.2 · (dur(1, 1, n)

+dur(3, 1, n) + dur(2, 2, n) + dur(4, 2, n))− 2.0 · (dur(5, 3, n)

+dur(6, 4, n) + dur(7, 5, n) + dur(8, 3, n) + dur(9, 4, n) + dur(10, 5, n))

−7.0 · (Qr(1, 1, n) +Qr(3, 1, n) +Qr(2, 2, n) +Qr(4, 2, n))

−20.0 · (Qr(5, 3, n) +Qr(6, 4, n) +Qr(7, 5, n) +Qr(8, 3, n)

+Qr(9, 4, n) +Qr(10, 5, n))) (4.69)

Computational result

A maximum profit of 202.851 MU is achieved over a makespan of 6 hours and the corre-
sponding production schedule is shown in Figure 4.23. The optimal solution was found
to converge at four event points and the corresponding model statistics are presented in
Table 4.13.

0.0 2.0 3.0 4.01.0 5.0 6.0

Units

F3

R1

R2

F1

F2

Hours

2.4719 4.8089

4.2059

rxn 1 rxn 1

rxn 20.1073

1.2 0.4902

0.4806

pfn 1 pfn 1

0.2451

pfn 1

4.2059

pfn 1 pfn 1

pfn 2

0.4806 0.2451

0.2130

0.2130

Profit = 202.851 MU

cleaning

4.2059

rxn = reaction, pfn = purification

Figure 4.23: Optimal schedule obtained obtained via the IA for the application example.
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Table 4.13: Model statistics corresponding to the optimal schedule for the application
example.

Integer variables 40
Continuous variables 257
Equations 409
Solution (MU) 202.851
CPU time(s) 98.670

The data presented in Table 4.13 clearly highlights the effectiveness of the IA. Consider-
ing the detailed dynamics for the reaction and the purification tasks taken into account in
this example, the solution time needed for the control problem is very reasonable.

4.2 Summary

In this chapter, a more realistic example with detailed process dynamics for all the tasks
involved is considered. The IA for the control of MBPs, which was developed in the
previous chapter, is successfully applied to this example. From the results presented in
this chapter, it becomes more clear that the IA can be easily applied to the real world
problems. It not only brings additional degrees of freedom into the control problem but
also maintains its computational tractability.
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Chapter 5

Conclusions and Perspectives

Many of the important and high value products such as fine chemicals, pharmaceuticals
etc. are manufactured in MBPs. Due to the ability to respond quickly to the ever chang-
ing market demands, these plants are becoming increasingly important in the chemical
manufacturing arena. The raw materials or the products associated with these plants are
usually very valuable and therefore, the way these materials are handled affects the eco-
nomics of the whole process very greatly. This makes the optimal control of these plants
all the more important.

The optimal control problem of MBPs is a very challenging one and has been the topic
of extensive research over the past few decades. The two major approaches, i.e., the SRA
and the OOA for the control of MBPs are studied in this work with the help of illustra-
tive examples. This study clearly indicates the ups and downs of both these approaches.
The SRA, which leads to control problems that are relatively more computation friendly,
lacks in the degrees of freedom and usually results in solutions that are far from the opti-
mal. Besides, there are no standard guidelines available for the determination of standard
production recipes, as required in the SRA. While the OOA, which should be the ideal
approach for the control of MBPs, usually results in computationally intractable control
problems.

The IA proposed in this work seems to be a more appropriate approach for the control of
MBPs, as it offers a good mix of the number of degrees of freedom and the computational
tractability of the control problem. The effectiveness of the IA is clear from the illustrative
examples considered in this work. It is evident from these examples that the IA is indeed a
nice trade-off between the SRA and the OOA. Further, the application example considered
in this work, clearly indicates its applicability to the real world plants.
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Methodologically the IA is an extension of the SRA, only differing in the way the recipes
are determined. This makes the IA even more interesting as it can be used to easily
upgrade all the existing SRA formulations, simply by replacing the standard production
recipes with the suitable recipe functions. This property of the IA can be very instrumen-
tal, particularly for the control of very large MBPs. Control of large-scale MBPs has been
studied in detail in the past and several effective SRA formulations have been proposed
for this in the literature [10, 6, 23, 47]. These formulations can be easily transformed into
the IA formulation, thereby improving the solutions obtained by them. Similarly, the IA
can be easily adopted for upgrading the SRA formulations for the control of MBPs with
intermediate due dates [21] and for the rescheduling problem of MBPs [46].

Though the IA proposed in this work seems to be a good approach for the control of
MBPs, there still remains a lot to be explored further for this approach. First of all,
the polynomials involved in the determination of the suitable recipe functions may not
always be computation friendly. There could be cases where they might involve several
local minima, which might require special handling techniques. Secondly, throughout this
work, only processes involving fixed conversions and fixed inlet and outlet concentrations
of the feed and product respectively have been considered. It is a known fact [8] that
keeping the conversions and/or the inlet and/or outlet concentrations variable adds a large
degree of flexibility to the process. Hence, the IA needs to be extended to such processes.
Determination of suitable recipe functions for such processes is going to be an arduous
task and may need some special techniques.
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Appendix A

The State Task Network

The state task network (STN) was first introduced in the year 1993 by Kondili et. al.
[24] in the context of short-term scheduling of batch operations. Prior to the introduction
of the STN, the so called ”recipe networks” [39] were one of the most popular means
for the graphical representation of batch processes. These recipe networks, however, in-
volved serious ambiguities [24] when applied to complex processing structures such as the
multiproduct batch plants (MBPs). In order to overcome these ambiguities of the recipe
networks in a systematic fashion, the STN representation was proposed in the year 1993
and since then has been followed by several researchers [18, 28, 29] for the formulation
of the control problem for the MBPs.

The STN comprises of two different types of nodes; namely, the ”state” nodes (denoted
by circles) and the ”task” nodes (denoted by rectangles) connected by means of arrows.
The state nodes represent the feeds, intermediates and the final products and the task nodes
represent the process operations (reactions, filtrations etc.), which transform material from
one or more inputs states to one or more output states. For example, in Figure A.1, task
1 transforms 50% of state S1 and 50% of state S2 into 30% of state S3 and 70% of state
S4. Similarly, task 2 transforms 70% of state S4 into 35% each of states S5 and S6.

The STN unambiguously represents the flow of materials within the process. Particularly,
challenging situations like the recycle streams and the production and consumption of
intermediate states can be very clearly and concisely represented in these networks. Fig-
ure A.2(a) shows the state task network of a process involving a recycle stream. As per
this figure, state S1 is reproduced/recovered in task 2 and recycled back. Figure A.2(b)
represents a process where an intermediate state S3 is produced/recovered by task 2 and
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task 1 task 2

S1

0.5

0.5

S2

0.3

S3

S4
0.7 0.7

S6

0.35

0.35 S5

Figure A.1: An example state task network.

consumed by task 1. This situation was encountered earlier in example 2 presented in
chapter 2, where the solvent represented a state similar to the state S3. This is something
that could not be done so clearly with the recipe networks used earlier and is perhaps one
of the strongest features of the STNs.

(a)

(b)

 
task 1 task 2S1 S2

S3

S4

 
task 1 task 2S1 S2 S3

Figure A.2: State task networks representing two different processes, one with a recycle stream and the
other involving an intermediate state production and consumption.

It needs to be mentioned, that the STNs need not necessarily be connected graphs. A
processing structure can sometime be represented by a number of disjoint sub-graphs.
This is typically the case with plants involving the production of a number of products
in the same plant but not sharing any raw materials or intermediates. As an example,
consider the simple plant shown in Figure A.3, where two products, B1 and B2, are
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produced in the same reactor from two different reactants A1 and A2. Since the two
products do not share any of the reactants, the STN representation of this plant involves
two disjoint sub-graphs, as shown in Figure A.4.

Reactor

Product B k

k
kk

Feed A
A B

k = 1, 2

Figure A.3: An example plant.

 
task 1S1 S2

 
task 2S3 S4

Figure A.4: State task network representation of the example plant.

The STNs are not restricted only to the batch processes but can also be used for repre-
senting the semi-continuous and continuous processes, as long as the following rules are
respected:

• A task has as many input/output states as different types of input/output materials.

• Two or more streams entering or leaving the same state are necessarily of the same
quality (for e.g., same temperature, composition etc.). If mixing of different streams
is involved in the process, then this operation should be represented as a separate
task.

In addition to the features discussed above, the STNs can be easily modified to incorporate
difficult situations like the limited and unlimited interconnectivity amongst the processing
units or multipurpose storage capacities. However, such situations have not been consid-
ered in this work and hence these modifications of the STNs are not discussed here. A
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detailed information on these modifications can be found in the original work of Kondili
et. al. [24].
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Appendix B

Transformation of Dynamic
Optimization problem into Nonlinear
Programming Problem.

This appendix presents the general transformation of the dynamic optimization (DO)
problem into the nonlinear programming (NLP) problem, via the standard trapezoidal
rule [17, 7].

B.1 The dynamic optimization problem

The general dynamic optimization problem for a chemical process can be written as fol-
lows:

max
z(t), u(t), dur

γ(z(t), u(t), z(dur)) (B.1)

subject to

dz(t)

dt
= f(z(t), u(t)) (B.2)

h(z(t), u(t)) = 0 (B.3)

g(z(t), u(t)) ≤ 0 (B.4)
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hep(z(tep), u(tep)) = 0 (B.5)

gep(z(tep), u(tep)) ≤ 0 (B.6)

t ∈ [0, dur], tep ∈ {0, dur}

Where, z(t) and u(t) represent the state and the control profile vectors respectively. Equa-
tions B.2 and B.3 represent the process model, while Equations B.4 represents path con-
straints. Equations B.5 and B.6 represent equality and inequality end-point constraints.

B.2 Transformation of the dynamic optimization prob-
lem into the NLP problem

The transformation of the DO into the NLP involves the following two steps:

B.2.1 Time discretization

The makespan is divided into an arbitrary number of control-intervals of unknown lengths
as shown in Fig. B.1. Several time-points are defined over each control-interval as shown
in Fig. B.2. The total number of time-points within each control-interval is kept same,
because, consideration of a variable number of time-points depending on the length of
each control-interval would call for definition of sets with variable number of elements,
which in turn may numerically complicate the OC problem. The number of time-points
within each control-interval should be such that the spacing between them (i.e., step(s,i) as
shown in Fig. (B.2)) is sufficiently small for the accurate approximation of the differential
equations. The actual necessary number of control-intervals is determined iteratively by
inspecting the solutions obtained with the increasing number of control intervals.

B.2.2 The NLP formulation

As mentioned earlier, the NLP problem is formulated by using the standard trapezoidal
rule. The formulation is based on the following notations:

6



control interval control interval

last

t = 0

c = 1 c = c

t = dur

Figure B.1: Consideration of control-intervals within the makespan.

time−point

last−1 last

time−point
(c, 2)

step(c, 1) last−1)

(c, 1)

control interval "c"

l = 1 l = 2 l = l

step(c, l

l = l

Figure B.2: Consideration of time-points within each control-interval.

Indices
index l relates to time-points
index c relates to control-intervals

Sets
L . . . set of time-points
C . . . set of control-intervals

Variables
z(c, l) = value of state variables z at time-point l within control-interval c
u(c) = value of control variables u within control-interval c
step(c, l) = spacing between time-points l and l + 1 within control-interval c

The corresponding NLP problem is given as follows:

max
z(l), u(l), dur

γ(z(l), u(l), z(dur)) (B.7)

subject to

z(c, l) = z(c, l − 1) +
step(c, l − 1)

2
·
(

f(z(c, l − 1), u(c)) + f(z(c, l), u(c))
)

,

∀c ∈ C, l ∈ L, l ≥ 2 (B.8)
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h(z(c, l), u(c)) = 0, ∀c ∈ C, l ∈ L (B.9)

Equations B.8 and B.9 represent the discrete approximation of the process model given
by Equations B.2 and B.3. As shown in Equation B.8, the state trajectories are approxi-
mated using piecewise-linear profiles. Whereas, piecewise-constant profiles are used for
approximating the control trajectories, as these control variables mainly represent flow
rates, which can sometimes be discrete as well.

z(c, 1) = z(c− 1, llast), ∀c ∈ C, c ≥ 2 (B.10)

It is understood from Figures B.1 and B.2 that the last time-point (i.e, l = llast) of any
control-interval c− 1 is same as the first time-point (i.e, l = 1) of the succeeding control-
interval c. Hence, the continuity of the state variables over the control-intervals must be
ensured. This is simply done by Equation B.10.

The path constraints can be directly imposed at every time-point within each control-
interval, as expressed by Equation B.11.

g(z(c, l), u(c)) ≤ 0, ∀c ∈ C, l ∈ L (B.11)

The end equality and inequality end point constraints are given by Equations B.12 - B.15.

hep(z(c, 1), u(c)) = 0, c = 1 (B.12)

hep(z(c, llast), u(c)) = 0, c = clast (B.13)

gep(z(c, 1), u(c)) ≤ 0, c = 1 (B.14)

gep(z(c, llast), u(c)) ≤ 0, c = clast (B.15)

Where, Equations B.12 and B.14 represents the initial conditions at time t = 0, while
Equations B.15 represents the final conditions at time t = dur.

step(c, l) ≤ maximum tolerable step− size, ∀c ∈ C, l ∈ L (B.16)

Equation B.16 ensures proper distribution of the time-points within each control-interval,
so as to avoid undesirable numerical artifacts. This constraint simply implies that the max-
imum spacing between any two time-points is always less than or equal to the maximum
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tolerable step-size, which is actually needed for the accurate numerical integration of the
system under consideration. Finally, the makespan is represented by Equation B.17.

dur =

clast
∑

c=1

llast−1
∑

l=1

step(c, l) (B.17)

It needs to be mentioned that equidistant time points, as used in some of the examples
considered in this work, can be realized simply by using Equation B.18.

step(c, l) = step(c, l − 1), ∀c ∈ C, l ∈ L, l ≤ llast − 1 (B.18)
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