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1. ZUSAMMENFASSUNG

Der Vertex-Effekt beschreibt den Einfluss mehrerer koexistenter plastischer Fließ-
mechanismen in ihrer Interaktion. Sie bewirken, dass am Schnittpunkt der
Fließflächen im Spannungsraum eine Ecke (Corner, Vertex ) im zusammenge-
setzten Fließort entsteht, was zur Namensgebung geführt hat.

Wenn sehr viele Mechanismen existieren, wie in Polykristallen, ist von größe-
rer Bedeutung der Einfluss auf die sich ergebende Fließregel. Ein Vergleich der
Mehrflächenplastizität (Abschnitt 4.3) mit regularisierten Versionen (Abschnitt
4.4) zeigt in Abschnitt 4.5, dass dieses einerseits auf den Rang des inkrementellen
linearen Operators und andererseits auf den nichtlinearen Einfluss der Belas-
tungsbedingung für die Gleitsysteme zurückzuführen ist. Berücksichtigt man die
stückweise Definition des aktiven Set der Gleitsysteme, so kann dieser Einfluss
durch ein einzelnes, aber stückweise definiertes plastisches Potential beschrieben
werden.

Dieser Weg wird in Kapitel 6 beschritten. Das vorgeschlagene plastische
Potential erweitert die assoziierte Fließregel nach von Mises um Terme, die
eine Fließflächenparallele Komponente des plastischen Fließens in Abhängigkeit
von der Abweichung vom proportionalen Belastungspfad gestattet. Dieser Ein-
fluss wird durch einen einzelnen skalaren Parameter α beschrieben, der den
Richtungskosinus der Rate des elastischen Mandel-Spannungstensors bei einge-
frorenen plastischen Variablen im Verhältnis zur proportionalen Prozessrichtung
wiedergibt. Diese Wahl wurde getroffen, weil dieser Parameter für die Belas-
tungsbedingung der Mehrflächenplastizität maßgeblich ist.

Es zeigt sich, dass die Null-Fläche des gewählten Potentials mit der der
Fließfläche übereinstimmt, da die Normale der von-Mises-Fließfläche mit der
radialen Richtung eines proportionalen Prüfprozesses übereinstimmt.

Die zusätzlichen Materialfunktionen werden mit Hilfe einer Simulation mit
dem Taylor-Modell, das als numerisches Laboratorium dient, bestimmt. In
einem einzelnen Zeitschritt ergibt sich eine deutliche Verbesserung der Fließrich-
tung und der dissipierten Leistung im Gegensatz zur J2-Theorie.

Weitere Untersuchungen mit Hilfe des Taylor-Modelles zeigen in Kapitel 5
die Entwicklung einer Ecke in der Polykristallfließfläche, die nach dem Dissi-
pationskriterium bestimmt wurde. Diese Ecke wandert auf proportionalen und
nichtproportionalen Pfaden mit dem Spannungspunkt und entsteht durch das
intergranulare Eigenspannungsfeld schon nach kleiner Vorverformung.

Die vorgeschlagene Theorie wird in Abschnitt 6.5 durch einen Vergleich mit
experimentellen Befunden eines mehrachsigen Zug-Torsions-Versuches (Lensky,
1960) verifiziert. Auch auf einem komplexen Prozesspfad zeigt sich die Verbes-
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serung gegenüber der J2-Theorie.
Als letztes Anwendungsbeispiel wird das Drillknicken einer kreuzförmigen

Säule untersucht. Dieses Beispiel sorgte in den 1940er und 1950er Jahren für er-
hebliche Zweifel an der Richtigkeit der J2-Fließtheorie, da die entsprechende De-
formationstheorie weitaus bessere Ergebnisse für die kritische Knicklast lieferte.
Später wurde dies mit der zu großen tangentialen Steifigkeit bei nichtpropor-
tionalen Prozessen erklärt, die aus dem fehlenden Vertex-Effekt herrührt. Im
Gegensatz dazu ist der Modul der Deformationstheorie völlig pfadunabhängig.
Dieser Fehler zeigt sich bei diesem speziellen Problem als günstig.

Mit dem vorgeschlagenen Vertex-Modell lässt sich auf analytischem Weg
zeigen, dass die richtige Steifigkeit aus der geeigneten Mittelung der Steifigkeiten
über die Plattendicke resultiert. Die experimentell ermittelten Knicklasten
lassen sich korrekt wiedergeben, im Gegensatz zur J2-Theorie, die infolge der
postulierten Entlastung ein Verfestigungsunabhängiges Ergebnis liefert.



2. INTRODUCTION

2.1 The Vertex Effect

The term vertex effect means the experimentally and theoretically well founded
fact that plastic materials in a stress state where the yield surfaces of several
distinct plastic glide mechanisms intersect in a vertex in the stress space, behave
differently from materials with a smooth yield surface.

At first, the normality rule is not directly applicable, because a well defined
normal is lacking.

Secondly, the interaction of different mechanisms allows for a more compli-
cated constitutive behaviour in the flow rule. In particular, a nonlinear depen-
dence of the direction of plastic flow on the loading direction can be stated.

As a third topic, the shape of the yield surface is not smooth, indicating the
presence of strong distortional hardening dependent on the loading history.

The vertex effect is important as it explains a couple of problems encountered
in application of smooth plasticity (as the contrasting theory without a vertex
effect). In particular, such material models behave excessively stiff upon strain
path changes as can be seen in nonproportional experiments, like e.g. multiaxial
strain or torsional buckling.

2.2 Literature review

2.2.1 Isotropic criteria

Non-smooth yield surfaces are not a modern invention. As early as in the work
of (Tresca, 1864), corners in the yield surface were assumed. The criterion

max τij − k = 0 (2.1)

leads to a number of three distinct criteria. At some points the according
hyperplanes in stress space intersect, leading to a non-smooth boundary of the
elastic domain. As the material described by the Tresca criterion is isotropic,
the nonsmoothness was taken as a disadvantage. In contrast, the smooth Huber-
v.Mises-criterion has been widely accepted.

2.2.2 Early models of polycrystal plasticity

With the investigation of crystals, the research interest focussed on the existence
of several physically distinct mechanisms. The early work of Taylor (1938) and
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Sachs (1928) were not embedded in a continuum theory of plasticity. Hence,
a gap opened between the smooth isotropic continuum theory of plasticity and
the non-smooth anisotropic discrete crystal plasticity.

In the second half of the twentieth century, this gap was filled. For the
first time, Batdorf and Budiansky (1949) decomposed the plastic strain into
contributions of infinitely many slip systems. Heuristic hardening laws for each
mechanism were fitted to experiments.

Koiter (1953) introduced multiple yield surfaces into classical flow theory,
the interSection of which may form corners and vertices.

Lin (1954, 1958) presented a slip model with experimental an uniaxial stress-
strain-curve and was able to calculate the effective elastic-plastic response of a
polycrystalline material and to compare with experiments. As a consequence,
he claimed the existence of corners in the macroscopic yield surface.

A similar presentation was given by Sanders Jr. (1954). Extrapolating the
results by Koiter (1953) to an infinite number of mechanisms, he showed the
existence of a rounded initial yield surface and the composition of subsequent
yield surfaces by part of the initial surface and a developing vertex that could be
approximated by a cone the tip of which is the preloading point. In addition he
made the transition from focussing on the irregular shape of the yield surface
to the implications on the flow rule. In contradiction to a plasticity theory
with a smooth yield surface, a direction of the plastic flow that is fixed in a
process-independent way cannot be expected.

2.2.3 Experimental research

A number of investigations attempted to provide experimental evidence for yield
vertices. Clearly, multiaxial tests are necessary for such experiments. Phillips
(1960) proposed stress controlled combined tension-torsion experiments on thin-
walled aluminum tubes. A stress path oscillating in a zig-zag manner around a
mean direction indicated strongly process-dependend strain rates as expected if
“the path of loading carries a pointed or sharply rounded vertex with it” due to
the changes in the yield surface normal.

Bertsch and Findley (1962) presented a theoretical analysis, according to
which typical intrinsic corners move along the stress path instead of being traced
by the stress point while moving along the yield surface. Their experimental
results left questions open that were augmented by a detailed discussion of the
definition of yield and its influence on the results. Indeed, it will be shown in
Chapter 5 that the shape of the yield surface and the existence of a pointed ver-
tex depends on the definition of the critical quantity that indicates plastification.
In particular the choice of the threshold is of importance.

Cruciform planar specimens were used by Shiratori and Ikegami (1968). Sub-
sequent yield surfaces clearly exhibit corners. Their experiments with zig-zag
loading were less clear. Here, the yield point is defined by a small offset strain
of ǫp = 0.0001.

Hecker (1971, 1972) pointed out the influence of the definition of the yield
point. He used a combined tension-internal-pressure machine and a copper spec-
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imen. Large offset strains (ǫp = 0.002) tend to wipe out the finer contributions
of the plastic anisotropy leaving only gross effects like isotropic and kinematic
hardening. At small proof strains (ǫp = 5 · 10−6) the curvature of the yield
surface increases by the negative cross effect. However, no corners have been
found. The importance of including the physical background into the mathe-
matical models of plasticity is stressed in the summary. In particular the yield
stress drop in reloading (Phillips and Sierakowski, 1965) is explicitly named as
a factor able to erase corners that have developed.

By usage of a computer controlled testing machine Gupta and Lauert (1983)
obtained subsequent yield surfaces for different proof strains by radial probing.
They showed that very sensitive testing (ǫp = 0.0001) exhibits a vertex, while
for only slightly larger proof strain this is not the case. In addition a degression
opposite to the vertex is found.

Reviews on experimental results that include the question of existence of
corners are given by Hecker (1976) (who gives a huge classified overview on
experimental papers) and Ikegami (1982).

Besides the question of the special shape of yield surfaces due to the cor-
ners, the implications for the plastic flow gained increasing interest in later
publications. Starting with Lensky (1960) whose experimental results for non-
proportional stress trajectories resulted in the delay phenomenon: After de-
viation from a proportional path a continuation of the process in a constant
direction of plastic flow with some additional plastic strain is needed to obtain
a stress process that runs straightly in the new normality direction. Such effects
are crucial for macroscopic vertex theories of plasticity that concentrate on an
improved formulation of the flow rule being able to predict such effects.

2.2.4 Computational approaches

Computational methods improved the knowledge from their first usage on. First
investigations were possible with the polycrystal model by Lin and Ito (1966),
which used simplified assumptions (isotropy, single slip in a grain) to obtain
an analytical solution. He found a vertex in the subsequent yield surfaces if
the occurence of the first active slip system was taken as a criterion. A com-
parison with experimental yield surfaces for larger plastic proof strains show a
replacement of the vertex with a rounded area of high curvature.

The non-smoothness of the yield surface in an improved theoretical setting
was shown by Hutchinson (1970). Using a self-consistent method, initial and
subsequent yield surfaces for f.c.c. crystals were computed, assuming that the
yielded grain is completely surrounded by an elastic matrix. The results show
a clear corner. The yield surface is defined by the first occurrence of slip in any
grain.

A self-consistent model was used by Kiryk and Petryk (1998) to calculate
isolines of the viscous flow potential. Subsequent yield surfaces carry a vertex.
A comparison with experiments is given.

Kraska (1998) computed the yield-surface of polycrystals using a finite-
element discretization. Distortional hardening and vertex-like structures can
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be found in his Fig. 7.26 for small thresholds of dissipated power, although not
mentioned by the author. His approach will be used in Chapter 5 for determi-
nation of important vertex parameters.

Zattarin et al. (2004) used a nonlinear self-consistent polycrystal model to
predict the evolution of yield surfaces. They compared their results with ex-
periments by Boucher et al. (1992). The distortional hardening demonstrates
primary and secondary rounded vertices and is mainly attributed to second or-
der internal stresses, but this result is only based on the relative smallness of
plastic strain. However, our findings in Chapter 5 suggest a more prominent
influence of the crystallographic texture.

2.2.5 Construction of material models

A general discussion of materials with a micro-macro scale transition led Hill
(1967) to the conclusion that in a strict sense, corners must exist in yield sur-
faces (even in the isotropic case with smooth yield surfaces for the microscopic
entities).

Sewell (1974) proposed a plastic flow theory using a 3-surface vertex as in a
multisurface model. It takes up the structure of the crystal plasticity proposed
by Mandel (1965).

For the analysis of localization of deformation in brittle rock materials, the
development of vertex-like structures on the yield surface were investigated by
Rudnicki and Rice (1975). These are shown to destabilize the material behav-
iour. Deformation theory of plasticity is interpreted as vertex development for
full loading.

Localization of biaxially stretched metal sheets at earlier strain levels than
expected can be explained by the vertex formation (Stören and Rice, 1975).
Initial imperfections (Marciniak and Kuczynski, 1967) need too strong intensi-
ties for giving realistic results when the yield surface is assumed to be smooth.
Again, the deformation theory of plasticity has been used to model the vertex
effect. In contrast to the flow theory, it does not exhibit a excessive lateral in-
cremental modulus, a fact which has been interpreted as a direction-dependent
plastic modulus as connected with the vertex effect.

Christoffersen and Hutchinson (1979) continued in this direction. By a short
review of results on the stability of plastic structures it is demonstrated that
flow theories with a smooth yield surface do not agree with experiments in that
point. An incremental J2 vertex theory is presented making use of a convex
stress rate potential that contains the usual quadratic ansatz multiplied by a
scalar function of the angle between the axis of the conical vertex and the
stress rate, separating total loading or fully active range (identified with J2

deformation theory), unloading, and partial loading in between.
These results were further refined in Hutchinson and Tvergaard (1981). By

a comparison of different theories (nonlinear elasticity, i.e. J2 deformation the-
ory), kinematic hardening plasticity and plasticity with yield surface corner
development), the influence of the corner angle and the size of the total loading
range on the bifurcation and imperfection sensitivity have been studied showing
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that blunt corners decrease the imperfection sensitivity as well as a smaller total
loading range.

In a series of articles Gotoh (1985a,c) introduced a general incremental plas-
tic law based on isotropic representation theorems that depends explicitly on
the angle between stress tensor and stress increment. This dependence has been
chosen as to reduce to J2 deformation theory for the case of proportional loading
and to purely elastic behavior for large angles. Hence a vertex is incorporated.
Gotoh (1985b) is supplemented with a calculation of the stress response in non-
proportional strain paths. It is shown to exhibit the delay effect (Lensky, 1960).

Goya and Ito (1991) presented a corner theory based on the incremental
moduli. Stress- and strain-rate-dependend functions were used to weaken the
moduli. In addition, the process direction itself has been shown to be of interest
and included in an extended version (Ito et al., 1992). An FE polycrystal model
was used to identify parameters of a macroscopic model. 64 grains were used,
and the model includes two extra parameters for the influence of non-normality
effects (Goya and Ito, 1997).

A framework for the enhancement of classical (smooth) plasticity theories
with the corner effect was proposed by Petryk and Thermann (1997) A two sur-
face model is modified in order to introduce the corner effect by the inner yield
surface while the outer loading surface is defined by a smooth analytical formula.
The plastic compliances are assumed to depend on the angle of the stress rate
and the corner tip. Micromechanical considerations lead to the derived transi-
tion function for partial unloading. The reference strain rate for proportional
loading depends on the distance from loading surface. In the proposed most
simple version, only one additional parameter is needed, the maximum cone an-
gle at the yield surface vertex. Isotropy is assumed for the elastic behavior. The
loading surface behaves like in the J2 flow theory with kinematic and isotropic
hardening, but could be replaced by any other suitable smooth law.

Hu et al. (1998) proposed a theory based on an evolution law for Young’s
modulus and Poisson’s ratio, called J2 Quasi-Flow Corner Theory. It seems
to improve the smooth transition from plastic loading to elastic unloading at
the localization point. It was used with a Barlat-Lian type of anisotropic yield
function (Hu et al., 2001).

A series of papers (Kuroda and Tvergaard, 1999, Kuwabara et al., 2000,
Kuroda and Tvergaard, 2001a,b) proposed to describe the yield surface in the
vicinity of the prestress point by an abrupt modification of strain rate. It is
shown analytically that this corresponds to a resulting stress trajectory that is
very close to the yield surface (Kuroda and Tvergaard, 1999). For a 160 grain
Taylor-type polycrystal model, the method has been used for the determination
of subsequent yield surfaces that exhibit a clear corner. The comparison with
offset strain-based yield surfaces shows that the strain path change gives a better
approximation. It is argued, that the strain path change exhibits corners that
are erased by a yield surface probing experiment through unloading (Hecker,
1976). In an experimental study using cruciform specimens (Kuwabara et al.,
2000), the predictions have been confirmed while offset strain yield curves show
no or only blunted corners.
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Kuroda and Tvergaard (2001a) proposed a phenomenological elastically iso-
tropic plasticity model based on a viscoplastic overstress law and a smooth while
anisotropic dynamic yield surface. Its shape is given by an approach of Barlat
and Lian (1989), employing an exponential parameter to adapt the yield surface
radii. In contradiction to classical approaches, normality is not preassumed, but
an explicit dependence of the plastic strain rate on the tangential part of total
strain rate is assumed. By this approach a vertex-like behavior is modelled also
for a smooth yield surface. The reason is that yield surfaces widely used in
application are based on a small but finite offset strain. Thus the existence of
a vertex is not obvious. Comparison with a Taylor model of 800 grains is used
in terms of a 2D forming limit diagram (FLD) to adapt the parameters.

Tsutsumi and Hashiguchi (2005) proposed a non-normality flow rule that
has originally been intended for granular media. In addition to a normal contri-
bution, ”loading to the side” generates an additional component of the plastic
strain rate that is parallel to the yield surfaces.

Yet there is no widely accepted model for plastic materials exhibiting the
vertex effect, even in the case of small strain.

2.2.6 Application

Early contributions mentioned the occasional failure of J2 flow theory to de-
scribe buckling phaenomena properly (Gerard and Becker, 1957). Often, im-
perfections are needed that can exceed realistic levels (Stören and Rice, 1975,
Hutchinson and Budiansky, 1976, Hutchinson and Tvergaard, 1981). An im-
portant issue is the prediction of forming limits that is improved by the in-
clusion of the vertex effect into the considerations (Stören and Rice (1975),
Petryk and Thermann, 1996, Kuroda and Tvergaard (2001a), Hu et al. (2001),
Stoughton and Zhu (2004)).

2.3 Overview and main results

In Part I, the theoretical background of this work is given. Chapter 3 contains
the fundamental equations of continuum mechanics, while in Chapter 4 the
theory of plastic materials is considered.

In Section 4.3, plastic materials with multiple mechanisms are investigated.
The well-known resulting formulae are compared with regularized approaches
to such materials (presented in Section 4.4).

They differ due to the intersection of multiple yield surfaces at one point,
called a vertex . The resulting difference of the flow rules is called vertex effect
and discussed in Section 4.5. It is shown (Section 4.5.2), that it is mainly due
to two facts:

1. The rank of certain linear operators is 1 for a single mechanism (regu-
larized) and larger for multiple mechanisms. Thus the flow rules depend
on the strain rate direction in different linear ways. The nondefective
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eigenspace of the regularized operator is contained in the nondefective
eigenspace of the multi-mode operator.

2. Successive unloading leads to different active sets in different process di-
rections. Each of these disjoint cones in the strain rate space deserves a
separate treatment. Thus a nonlinear dependence of the flow rule on the
strain rate is the case.

If the information about the active set of mechanisms is included in the
dependencies of a single plastic potential, the vertex effect can be predicted. In
particular, plastic flow components parallel to the regularized yield surface as
found in the multi mode plasticity theory, can be obtained by this approach.

In accordance with problems in the experimental investigation, the existence
of corners in yield surfaces is shown by a micro-macro simulation based on the
Taylor-Lin model in Chapter 5. Two different indicators are compared and the
development of the vertex – in particular the corner angle – as a function of
accumulated strain, on one- and two-staged process paths is obtained from the
data.

It is concluded that at strains of an order of magnitude as technical proof
strains, vertices in the yield surface are well developed and follow the stress point
immediately (traveling vertex). Thus in a macroscopic theory, the vertex effect
may be included without a separate theory for the vertex evolution, considerably
simplifying the matter.

Chapter 6 deals with a macroscopic vertex model of plasticity based on
these findings. A single plastic potential including two transition functions
to model the successive unloading of mechanisms and their influence on the
dissipation as well as on the direction of plastic flow is introduced. The transition
functions incorporate the influence of the process continuation on the plastic
flow. They are chosen to approximate simulations with the Taylor-Lin model
(Section 6.4). The results of the J2 flow theory are considerably improved both
in terms of the dissipation and the direction of plastic flow. Both are connected
with the incremental moduli of the material model that are corrected for non-
proportional processes.

The ability of the proposed theory to predict the behaviour of a plastic
material in the sequel of a kinked process path is shown by a comparison with
experiments in Section 6.5. The delay effect investigated by Lensky (1960) can
be reproduced better than by the J2 flow theory. It is worth mentioning, that
this is not paid for by largely increased numerical costs.

As a structural example, the torsional buckling of a cruciform column is the
subject of Section 7. The J2 flow theory and its excessive lateral stiffness tends
to overestimate the buckling load. By the proposed theory this problem can
be overcome. Its formulation enables the usage of an incremental directionally
quadratic rate potential. It is used to interpret the critical buckling load at which
the nature of the quadratic form changes from elliptic to hyperbolic, leading to
an instable incremental deformation in the sense of the energy criterion (Petryk,
1991).
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It is shown that the proposed theory is able to reproduce the experimental
data reported by Gerard and Becker (1957) without relying on strong geomet-
ric imperfections like Hutchinson and Budiansky (1976) or finite timesteps as
Papadopoulos and Lu (1998).

Both analytical and numerical results are presented.

2.4 Notation

Vectors and second order tensors are denoted by bold lower and upper case let-
ters, a = aiei, A = aijei⊗ej , while their components are denoted by lower case
italic letters having the according number of indices. The summation conven-
tion is used for double latin indices unless explicitly excluded. The application
and composition has no extra symbol, Av, AB. Fourth order tensors are de-
noted such as C = cijklei ⊗ ej ⊗ ek ⊗ el and their application by brackets,
A = C[B]. A dot symbolizes the inner product of the according vectors or
tensors, A · B = aijbij .

For push-forward operations, the Rayleigh product is frequently used in the
following form (A⊗B⊗C⊗D) ⋆C = cijkl(Aei)⊗ (Bej)⊗ (Cek)⊗ (Del), for
short, (A⊗B) ⋆C = (A⊗B⊗A⊗B) ⋆C and A ⋆C = (A⊗A⊗A⊗A) ⋆C.



Part I

THEORETICAL FOUNDATIONS





3. GENERAL ASPECTS OF CONTINUUM MECHANICS

3.1 Kinematics of continua

Section Overview

In this Section the basic terms of the description of the motion of continuous
media are introduced, including the strain measures, and different placements.
See Leigh (1968), Marsden and Hughes (1994), Bertram (2005) or others for
details.

3.1.1 Placement and motion

The basic assumption of continuum mechanics is the continuous distribution of
matter. This means that the existence of atoms –quanta of matter– is neglected.
Instead, each body is thought about as a differentiable manifold, parametrized
by a number of three parameters, Xi, i = 1 . . . 3. Each triple (X1,X2,X3)
intrinsically adresses a point P .

At each time t, the body occupies a closed region of the physical Euclidean
space E . For each point (X1,X2,X3), its placement in Bt ⊆ E , κt is defined by

κt : R
3 → E ,

(X1,X2,X3) 7→ xt.
(3.1)

This placement is referred to as the actual placement, and xt the spatial position
vector of P. Placements can also be defined if they are never actually attained by
the body. Thus one can arbitrarily introduce a reference placement κ0 leading
to the material position vector, x0 = κ0(X1,X2,X3). To describe the motion
of a body, the reference placement is often utilized to eliminate the intrinsic
coordinates with the material position vector.

χ : B0 × R → E ,
(x0, t) 7→ κt ◦ κ−1

0 (x0).
(3.2)

Here, B0 ⊆ E and Bt ⊆ E are the volumes occupied by the body in the two
placements, respectively.

The deformation of a body can also be described without relying on the
arbitrary introduction of a reference placement. In that case, instead of position
vectors the parametrization of the manifold (X1,X2,X3) is used. Accordingly,
a clear distinction between the elements of the tangential space and the dual
space makes the transformation rules for different objects clear: Vectors have
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to be transformed as in (3.4), while covectors (one-forms) transform according
to (3.5) (Krawietz, 1986, Bertram, 1989, Marsden and Hughes, 1994).

3.1.2 Deformation and strain measures

In the description of material behaviour, the deformation gradient

F = Gradχ(x0, t) = χ(x0, t) ⊗∇0. (3.3)

is the fundamental measure of how a body transforms locally. In rigid body
translation it is the identity. F ∈ L+ is a second order two point tensor. It
maps line elements (vectors) associated with the reference placement to such
associated with the actual placement. Thus, in a thorrow notation, it is a map
from the local tangent space of the undeformed body to the local tangent space
of the deformed body.

dt = Fd0 (3.4)

Nanson’s formula (also called Piola transform by Marsden and Hughes (1994))
does the same for elements of surface (covectors), using the cofactor,

ntdAt = JF−T n0dA0. (3.5)

While F has no special symmetry properties, the impermeability of matter
requires its Jacobian J = dVt

dV0
that transforms volume element from the reference

to actual placement to be positive,

J = detF > 0. (3.6)

The polar decomposition theorem allows for the split between rotation and
stretch,

F = RU = VR, (3.7)

introducing the rotation tensor R and the right and left stretch tensors, U
and V, respectively. The latter are constant in rigid body rotations. Both
decompositions are of equal importance. Here, U =

√
C. This tensor function

is computed via the singular values of F, the eigenvalues of

C = F⊤F. (3.8)

C is called right Cauchy-Green tensor. Then (3.7) can be solved for R and V.
For practical applications, an iterative algorithm proposed by Higham (1986) is
superior to the classical approach based on singular value decomposition.

Suitable functions E(n) of U and V can be used as measures of strain. An
overview is given in the textbooks by Lubarda (2002), or Bertram (2005). Some
measures of deformation used in this work are summarized in Table 3.1 on page
30.

Another description, how a material point x0 = κ0(P ) moves, is the dis-
placement vector u(x0, t) = χ(x0, t) − x0. Its gradient

H = F − 1 (3.9)
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is used to judge the magnitude of deformation. Small deformations are charac-
terized by ‖H‖ ≪ 1. Here, the Frobenius norm ‖A‖ =

√
A · A is used.

In the case of small deformations, the strain tensors converge, by lineariza-
tion,

E(n) ≈ ǫ =
1

2

(
H + H⊤) . (3.10)

In problems varying with time, the rate of deformation is needed. Taking
the time derivative of F, the material velocity gradient is obtained. In a spatial
description, the chain rule yields the spatial velocity gradient.

L = v(xt, t) ⊗∇ = ḞF−1. (3.11)

Introducing the stretching and the spin tensor,

D =
1

2
(L + L⊤)

W =
1

2
(L − L⊤),

(3.12)

the rates of the different strain tensors can be written as linear functions of D,
like for Green’s strain

E = E(1) =
1

2
(C − 1)

Ė = F⊤DF,
(3.13)

showing that the stretching tensor D can be considered the fundamental mea-
sure of strain rate.

3.1.3 Change of reference placement

If instead of κ0 another reference placement κ1 has been chosen, also the motion
is affected.

χ1 = κt ◦ κ−1
1 = κt ◦ κ−1

0 ◦ κ0 ◦ κ−1
1 = χ ◦ χ01, (3.14)

i.e. the motion χ is preceded by the relative motion from the new to the original
reference placement. Accordingly, the deformation gradient is

F1 = χ ⊗∇1 = FF01 (3.15)

where F01 = χ01 ⊗∇1.
Thus if we combine the motions between different placements, the according

deformation gradients as tangent maps combine multiplicatively. The displace-
ment is additive,

u1 = χ − x1 = u + u01 (3.16)

while the displacement gradient is not.

H1 = F1 − 1 = u ⊗∇1 + u01 ⊗∇1 = HF01 + H01. (3.17)
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Only if the change of reference placement includes small deformations, F01 ≈ 1
and the displacement gradients can be added in good approximation.

The same applies to the strain tensors that result from the two motions. In
small deformations they are additive. In general, that property does not hold.

3.2 Dynamics of continua

Section Overview

In this Section, the dynamics of continua are introduced, including balance equa-
tions, fluxes and productions. Textbooks including details are Müller (1985),
Bertram (2005), amongst others. Different stress measures are introduced.

3.2.1 Spatial balance equations

According to the assumptions of continuum mechanics, for extensive quantities
balance equations can be applied to each subset of the body Bi

t ⊆ Bt. The
equations for the mass density ρt, the mass-specific linear momentum u̇, the
mass-specific angular momentum x× u̇, and the mass-specific internal energy ǫ
can be brought to the following local form:

ρ0

ρt

= J (3.18)

ρtü+ = divT + ρtb (3.19)

T = T⊤ (3.20)

ρtǫ̇ = −divq + T · D + ρtr (3.21)

In these spatial formulations, the substantial time derivative ȧt = ∂a
∂t

+grada ·v
is used. The nonconvective spatial flux of momentum in (3.19), T, is called
Cauchy stress. According to (3.20), for classical (non-Cosserat) continua, it is
a symmetric second order tensor. The according source term b is called body
force. In (3.21), the heat flux q, the internal stress power T ·D per unit volume
and the radiation term r can be found.

In the derivation, the regularity of the field quantities is necessary. In places,
where the Gauss theorem cannot be used, jump equations apply. See Krawietz
(1986), Petryk (1998) for a discussion of this point.

3.2.2 Material balance equations

By application of the transformation rules for elements of surface (3.5) and
volume (3.6), material balance equations for linear and angular momentum,
and internal energy can be formulated.

ρ0ü = DIVT0 + ρ0b (3.22)

T0F
⊤ = FT⊤

0 (3.23)

ρ0ǫ̇ = −DIVq0 + T0 · Ḟ + ρ0r (3.24)
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The time rate simplifies to the material time derivative, ȧ = ∂a
∂t

. Here, the
nonconvective material flux of momentum T0 = JTF−⊤ is the First Piola-
Kirchhoff stress tensor. Instead of the symmetry, (3.23) applies. q0 = JqF−⊤

is the material heat flux.
Either version of the field equations leaves the closure problem open: The 5

field equations contain 14 variables, (ρt, ǫ,u,q,T) in the actual placement or 13
variables (ǫ,u,q0,T0) in 4 equations in the reference placement. In addition,
the temperature Θ is a constitutive variable.

Restricting ourselves to the isothermal case Θ = const, we shall proceed
with the derivation of a set of constitutive equations that close that problem
and describe materials with elastic-plastic properties including the vertex effect.

3.2.3 Work conjugate stress and strain measures

The balance of internal energy (3.21) or (3.24) is the key for the introduction of
stress measures. A strain tensor Ex and a stress tensor Sx are work conjugate,
if their inner product equals the stress power per unit reference volume, using
thus the Kirchhoff stress τ = JT,

Sx · Ėx = τ · D = T0 · Ḟ. (3.25)

In particular, for invertible tensors A and B,

Ėx = A⊤DB, (3.26)

which includes the rates Ė(n), the work conjugate stress tensor is

Sx = A−1τB−⊤. (3.27)

For A = B = F the stress tensor is pulled back to the reference placement,
accounting for the mixedvariant nature of the according slots. We obtain

τ · D = S · Ė, (3.28)

introducing the second Piola-Kirchhoff stress S = F−1τF−⊤ as work conjugate
to Green’s strain. S maps the reference surface element covectors to reference
stress vectors. Accordingly, F⊤DF maps reference vectors to reference velocity
covectors.

On the other hand, for A = F−⊤ and B = F, the pull-back transformation
is applied to the covariant stretching tensor.

τ · D = F⊤τF−⊤ · F−1DF = CS · F−1DF. (3.29)

(3.29) introduces the Mandel stress CS, but does not define a strain tensor.

F−1DF = symF−1Ḟ, (3.30)

The result is the material gradient of the pulled-back velocity, mapping reference
vectors into reference vectors. The pull-back of the deformed metric, C, is thus
used to lower one index in CS being a map of reference covectors.

Some other useful notations are summarized in Table 3.1.
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Deformation Gradient F T0 = JTF
−⊤ First Piola-Kirchhoff stress

linear strain ǫ T Cauchy stress

Green strain E = 1
2
(F⊤

F − 1) S = JF
−1

TF
−⊤ Second Piola-Kirchhoff stress

Almansi strain E
A = 1

2
(1 − F

−1
F

−⊤) τ Kirchhoff stress

Hencky strain E
H = ln

√
F⊤F ≈ R

⊤
τR rotated Kirchhoff stress

Tab. 3.1: Stress and strain measures

3.3 The second law of thermodynamics

The second law of thermodynamics is a restriction to processes possible in na-
ture. Constitutive eqations must be carefully examined not to admit unphysical
processes.

Amongst different formulations that are present in the standard literature,
the Clausius-Planck equation for the Helmholtz free energy ψ = ǫ− Θη,

1

ρ
T · D ≥ ψ̇. (3.31)

ascertains in purely mechanical processes, that the dissipation is non-negative
(Bertram, 2005, p. 152).

A more general approach can be found in Müller (1985) and has been taken
up in a part of the newer literature (Müller and Ruggeri, 1993, Šilhavý, 1997,
Wilmański, 1998). However, (3.31) is broad enough for the class of materials
focussed on in this work.
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4.1 Elastic properties

Section Overview

In this Section the elastic laws that shall be applied later are introduced. After
a short introduction, we restrict ourselves to small elastic deformations. This
restriction is justified for metals.

4.1.1 Hyperelastic laws

The behavior of elastic materials is instantaneous and reversible. Thus no influ-
ence of the past and no friction stresses are present. The Helmholtz free energy
(suppressing the temperature-dependence in the isothermal case), is

ψ = ψ̂F(F). (4.1)

It serves as a potential for the first Piola-Kirchhoff stress,

T0 = ρ0
∂ψF

∂F
. (4.2)

For the function ψ̂F(F), the principles of material theory apply (Truesdell and Noll
(1965), also Krawietz (1986), Bertram (2005)).

4.1.2 Principle of material objectivity

Application of the principle of material objectivity yields reduced forms for ma-
terial equations, based on the assumption of Euclidean invariance of constitutive
equations. For the free energy, we get as one possibility amongst others

ψ = ψ̂C(C) = ψ̂F(F). (4.3)
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4.1.3 Change of strain measure and reference placement

For other stress and strain measures, formulations equivalent to (4.2) can be
found by application of the chain rule:

Sx · Ėx = T0 · Ḟ

= ρ0
∂ψ

∂F
·
(
∂Ex

∂F

)−1

◦
(
∂Ex

∂F

)

[Ḟ]

= ρ0

(
∂Ex

∂F

)−⊤
[
∂ψ

∂F
] ·
(
∂Ex

∂F

)

[Ḟ]

= ρ0
∂ψ

∂Ex
· Ėx

(4.4)

The strain tensors change by a transition to another reference placement
(see Section 3.1.3 on page 27). Accordingly, the free energy function, like all
constitutive functions, depends on that choice.

ψ̂F 1(F1) = ψ̂F 1(FF01) = ψ̂F 0(F) (4.5)

Releasing this dependence on the arbitrary unphysical reference placement is the
advantage of an intrinsic formulation based on manifolds as presented in a couple
of advanced textbooks (e.g. Krawietz, 1986, Bertram, 1989, Marsden and Hughes,
1994).

4.1.4 The general hyperelastic law

To obtain a hyperelastic law, we use the reduced form of the free energy (4.3),

S = 2ρ0∂Cψ (4.6)

Thus the constitutive function for the stress can be deduced from the free energy,

S = k(C),

k(C) = 2ρ0∂Cψ̂C(C).
(4.7)

We use k as symbol for the reduced form as we shall use it as the fundamental
constituive law from which we derive equivalent formulations for other work
conjugate measures, e.g.

Sx = Ŝx(Ex)

Ŝx(Ex) = ρ0∂Ex ψ̂Ex(Ex).
(4.8)

4.1.5 Linear elastic laws

In the case of small deformations, linear elastic behavior means a linear law
between the Cauchy stress and the linear strain tensor, using the fourth order
tensor of elastic moduli C̃ and the stress-free strain ǫU ,

T̂(ǫ) = C̃[ǫ − ǫU ]. (4.9)
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The free energy that results in (4.9) via T = ∂ǫψ is quadratic,

ψ̂ǫ(ǫ) =
1

2
(ǫ − ǫU ) · C̃[ǫ − ǫU ]. (4.10)

The generalization for large deformations is nontrivial, as we could use any
strain tensor to obtain a quadratic energy and a linear stress function. For other
strain measures, additional dependencies on the deformation gradient may be
obtained inducing a nonlinearity. Thus linear elasticity has no physical meaning
in large strain problems without including the choice of stress and strain measure
in the constitutive assumptions. However, if the elastic deformations are small,
all strain tensors are equal to the linear strain tensor up to higher order terms,
and a linear elastic law for any pair of conjugate stress and strain measures is
justified.

In the sequel we shall use S and E as preferred measures and thus

ψ̂E(E) =
1

2
(E − EU ) · C̃[E − EU ], (4.11)

Ŝ(E) = C̃[E − EU ], (4.12)

k(C) = C̃[
1

2
(C − 1) − EU ]. (4.13)

(4.13) shall prove to be of particular interest for the introduction of plastic
behavior. In that case, the free energy has to be enhanced by additional terms.

Accordingly, for other stress measures we obtain by a simple transformation

T0 = FC[E − EU ]

= (F ⊗ 1) ⋆ C[
1

2
(F − F−⊤) − F−⊤EU ]

τ = F ⋆ C[EA − F−⊤EUF−1]

Sx = A−1FC[F⊤A−⊤EAB−1F − EU ]F⊤B−⊤

= (A−1F ⊗ B−1F) ⋆ C[A⊤EAB − A⊤F−⊤EUF−1B].

(4.14)

and thus formally identical elastic laws, however, are not given in the respective
work conjugate strain tensor (see Section 2.4 on page 22 for the usage of the
Rayleigh product ⋆).

(4.14)1−3 have in common that the elastic moduli, which are constant in
(4.12), are functions of the deformation now.
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4.1.6 Rate forms of the elastic law

Taking the time derivative of (4.12) or (4.14) and suitable transformations, we
obtain rate forms of the elastic laws,

Ṡ = Ŝ(Ė)

Ṫ0 − LT0 = (F ⊗ 1) ⋆ C[Ḟ]

τ̇ − Lτ − τL⊤ = F ⋆ C[D]

Ṡx − (A−1F)•(A−1F)−1Sx − Sx
(
(B−1F)•(B−1F)−1

)⊤

= (A−1F ⊗ B−1F) ⋆ C[Ėx].

(4.15)

An alternative formulation for the stress rate in (4.15)3 is

. . . = Φ ◦ d

dt
Φ−1[Sx] (4.16)

with the push-forward transformation

Φ[C] = A−1FCB−1F, (4.17)

which can be interpreted as a convective Lie rate (e.g. Marsden and Hughes,
1994) in the case A = B. Our formulation is also applicable for two point
tensors. In particular for (4.15)3 the upper Oldroyd rate of the Kirchhoff

stress
△
τ is obtained.

Starting from other elastic laws in a pair of work conjugate invariant stress
and strain tensors, the ojective rate obtained for the Kirchhoff stress would
be another one. Thus, we understand the choice of an objective rate for an
incremental elastic law as a constitutive assumption like the choice of stress and
strain tensors in a given form of elastic law. If the rate law is derived from a
finite elastic law, all the alternatives are equally applicable. In such a manner,
difficulties arising from hypoelastic formulations can be avoided. Nevertheless
there is still an academic discussion on which objective rate is preferrable.

Obviously, the instantaneous elastic moduli tensors used in the rate laws
(4.15) are the same as in the finite elastic laws (4.14)3 derived by a mere push-
forward operation. They can all be obtained as second derivatives of the free
energy,

C
x = (A−1F ⊗ B−1F) ⋆ C = ∂2

Ex ψ̂(Ex). (4.18)

From the reciprocal symmetry of the instantaneous moduli, a potential for
the rate equations (4.15) is available. In that case,

Ṡ = ∂
Ė
U

U =
1

2
Ė · C[Ė].

(4.19)

The existence of such rate potentials is independend of the choice of the stress
and strain measure. However, in contrast to the “physical” potential ψ, the rate
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potential U changes with different choices (Lubarda, 2002, pp. 151ff).

Ṫ0 − LT0 = ∂
Ḟ

1

2
Ḟ · (F ⊗ 1) ⋆ C[Ḟ]

τ̇ − Lτ − τL⊤ = ∂D
1

2
D · F ⋆ C[D]

Ṡx − (A−1F)•(A−1F)−1Sx − Sx
(
(B−1F)•(B−1F)−1

)⊤

= ∂
Ėx

1

2
Ėx · (A−1F ⊗ B−1F) ⋆ C[Ėx].

(4.20)

Although not being of much benefit for elastic problems, in the elastic-plastic
regime certain useful applications exist.

4.1.7 Elastic isomorphy

Two elastic material points X and Y are called elastically isomorphic (Bertram,
2005, Sect. 6.4), if there exists an elastic isomorphism K ∈ L+ such that for
the reference densities, and for the elastic laws for the second Piola-Kirchhoff
stress S, the following relation are valid:

ρ0X = ρ0Y detK, (4.21)

kY (C) = detKKkX(K⊤CK)K⊤, ∀F ∈ L+, (4.22)

i.e. the elastic isomorphism behaves like the deformation gradient of a change
of reference placement. However, it is not the gradient of any motion. For the
material behavior in X and Y , arbitrary reference placements are allowed. K
depends on the choice of the reference placements.

For linear elastic behaviour, we obtain from (4.22)2

CY [
1

2
(C−1)−EUY ] = detKKCX [

1

2
(K⊤CK−1)−EUX ]K⊤ ∀C, (4.23)

which by comparison results in a transformation rule of the elastic moduli

CY = detKK ⋆ C

EUY = K−⊤
{

EUX +
1

2
(K⊤K − 1)

}

K−1.
(4.24)

(4.24)2 can be obtained from (4.14)3 by setting A = FK and B = detKFK.
Thus, a second interpretation of the elastic isomorphism is a change of the
constitutive variables while the elastic law is formally left identical.

Both interpretations underline the physical content of elastic isomorphisms:
The two points have the same elastic behavior. This statement is in large defor-
mation problems only possible after a transformation to appropriate reference
placements and identical measures of strain.
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4.1.8 Elastic symmetry

One important application of elastic isomorphism is in analyzing elastic sym-
metry. If a material point is elastically isomorphic to itself (automorphism), the
elastic isomorphism is called a symmetry transformation. For K = Q ∈ SO(3),
we have detK = 1. Overviews can be found in many textbooks (e.g Hosford,
1993, Lubarda, 2002, Bertram, 2005).

4.2 Theory of plasticity based on isomorphisms

Section Overview

The main features of a plasticity theory based on isomorphisms are recalled
(Bertram, 1992, 1999, 2005).

4.2.1 Isomorphisms between elastic laws

The fact that traveling dislocations leave the crystallographic lattice and, thus,
elastic properties unchanged, is reflected by the introduction of isomorphic elas-
tic laws before and after plastic deformation (yielding). In dependence on the
plastic state to be introduced, the elastic law is

S = kP (C). (4.25)

For a (ficticious) plastic reference state denoted by a tilde, an elastic reference
law

S = k̃(C) (4.26)

is assumed. (4.25) and (4.26) are related by an elastic isomorphism according
to (4.22).

kP (C) = detPPk̃(P⊤CP)P⊤. (4.27)

The isomorphism operator P ∈ L+ is called plastic transformation.

Thus using the alternate interpretation of elastic isomorphism in Section
4.1.7, the constant elastic reference law can easily be formulated using (4.14)3
and

A = FP =: F̃, (4.28)

and

B = detPFP = detPF̃. (4.29)

Equivalently,

S̃ = detPF̃−1τ F̃−⊤

C̃ = F̃⊤F̃

Ẽ =
1

2
(C̃ − 1)

(4.30)
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introduces the quantities F̃, S̃, C̃, Ẽ. They are called the elastic transformation,
the elastic second Piola-Kirchhoff stress, the elastic right Cauchy-Green tensor,
and the elastic Green’s strain.

ˆ̃S(Ẽ) = C̃[Ẽ] (4.31)

thus choosing the undistorted state ẼU = 0 as the reference state. (4.14) yields
equivalent formulations for the elastic law,

Ŝ(E) = P ⋆ C̃[E − 1

2
(P−⊤P − 1)]

T̂0(F) = (F̃ ⊗ P) ⋆ C̃[
1

2
(F − F−⊤) − 1

2
(F̃−⊤P − F−⊤)]

τ̂ (EA) = F̃ ⋆ C̃[EA − 1

2
(F̃−⊤F̃ − F−⊤F−1)]

Ŝx(A⊤EAB) = (A−1F̃ ⊗ B−1F̃) ⋆ C̃[A⊤EAB − 1

2
(AF̃−⊤F̃B − AF−⊤F−1B)]

(4.32)

4.2.2 Derivation of the multiplicative split

The definition of the elastic transformation

F̃ = FP ⇒ F = F̃P−1 (4.33)

used above as a short-hand notation is the starting point for the vast majority
of approaches to finite plasticity. In spite of a lack of clearness of the concept in
early publications, the multiplicative split is well understood today (Lubliner,
1990, Bertram, 1999, Neff, 2000, Böhlke, 2001, Mielke, 2003, Bertram, 2005).
The interpretation of an elastic isomorphism as a local change of reference place-
ment according to the needs of simplification of elastic laws acknowledges the
substantial parallelism between these two concepts.

For most practical applications both approaches can be stated as identical.
Often the multiplicative split is apparently introduced based on kinematic ar-
guments only. The isomorphy condition is however tacitly assumed by many
authors.

The interpretation as a local (incompatible) placement is particular useful
for a geometric interpretation of P and F̃. Application of (3.4) and (3.5) shows
that P transforms lattice vectors to the reference placement, d0 = Pd̃, as well as
covectors n0 = detPP−⊤ñ. Similarly, F̃ acts in the actual placement, dt = F̃d̃,
nt = J detPF̃−⊤ñ.

4.2.3 A kinematic split of the velocity gradient

By taking the time derivative,

˙̃FF̃−1
︸ ︷︷ ︸

L̃

= ḞF−1
︸ ︷︷ ︸

L

+F̃P−1ṖF̃−1, (4.34)
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an apparently kinematically defined split of the spatial velocity gradient L can
be found:

L = L̃ − F̃P−1ṖF̃−1 (4.35)

During elastic processes, the elastic law is unchanged, which leaves P con-
stant. Accordingly, the second part in (4.35) is present in inelastic processes
only, while in elastic ones L̃ = L.

Plastic imcompressibility is achieved, if all volume changes are completely
elastic in nature. As a consequence, trP−1Ṗ = 0 and thus detP = 1. Henceforth
we shall assume this.

Inserting (4.35) into (3.25), the stress power can be split into an elastic
(storage) and an inelastic (dissipational) part

τ · L = τ · L̃ − τ · F̃P−1ṖF̃−1

= F̃⊤F̃F̃−1τ F̃−⊤ ·
(

F̃−1 ˙̃F − P−1Ṗ
)

= C̃S̃ · F̃−1 ˙̃F − C̃S̃ · P−1Ṗ.

(4.36)

Here, the Mandel stress C̃S̃ has been shown to be power conjugate to F̃−1 ˙̃F −
P−1Ṗ, the second of which is only present in inelastic processes.

Besides the plastic transformation P, additional plastic hardening variables
z (denoting symbolically a tuple of variables in the according spaces) shall be
introduced. Also dual variables g = ĝ(z) of the same rank and number as z
are assumed that contribute energetically as g · ż. We shall use z and g as
generic vectorial representations of the respective variables, regardless of their
tensorial rank and the operations · or ⊗ on these variables have to be read in
an appropriate manner.

The evolution of the internal variables P and g is governed by the flow rule
and the hardening rule. A general treatise of the description of inelasticity in
the state space can be found in Bertram (2005, p. 244ff). An ansatz for the
rules of evolution that is broad enough to describe the process-dependence of
plasticity also in the presence of the vertex effect, but obeys the restrictions of
the principles of material theory is

P−1Ṗ(t) = Π̂(C,P, z, Ċ)

ż(t) = ẑ(C,P, z, Ċ).
(4.37)

Purely elastic behaviour with (P, z) = const is found on processes that are
completely inside the elastic domain, i.e. a subset of the Mandel stress space
which depends on g,

E =
{

C̃S̃| φ(C̃S̃, g) ≤ 0
}

(4.38)

The boundary ∂E is called yield limit, and the function φ(C̃S̃, g) yield criterion.

In contrast, processes that would penetrate the current yield limit are in-
elastic.
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Here, we restrict ourselves to the case of convex elastic domains. This re-
striction allows for the use of certain results of convex optimization and has
sufficient generality for most practical applications. However, the convexity can
be released as stated, e.g. in Bertram (2005, p. 252).

The plastic flow changes the elastic law (4.32) by alteration of P, and
the elastic domain (4.38) indirectly through g. No inelastic process can leave
the elastic domain configured by the actual plastic state. Accordingly some
processes require a change of the plastic state variables and, thus, of the elastic
law.

Contrary, rate-dependend models require that in the thermodynamic equilib-
rium no inelastic processes take place. Thus a finite overstress is needed. Other
models use creep laws, like the widely used model for single crystals described
in Kocks (1998a), which was originally introduced by Hutchinson (1976). Here,
the yield limit is incorporated as the point where the mechanisms’ activity in-
creases massively, while the elastic domain in a strict sense shrinks to a single
stress point. Rate-dependend models typically have a rate-independend limit.

4.2.4 Small elastic deformations

Small elastic deformations are characterized by ‖F̃ − 1‖ ≪ 1.

All simplifications that apply for small total deformations are also available
here. In particular, the elastic Green’s strain can be linearized, and the elastic
second Piola-Kirchhoff stress is approximately equal to the Cauchy stress tensor.
Moreover, C̃S̃ ≈ S̃ and, thus, the Mandel stress is approximately symmetric.

4.3 Constitutive theory of multi-mode plasticity

Section Overview

The theory of plasticity for materials with multiple coexisting mechanisms is
worked out. This includes as a special case the classical (single mode) plasticity.
Results of this Section are necessary for description of the vertex effect. In
addition, the basic formula for further derivations are provided.

4.3.1 Multiple mechanisms of plasticity

The general constitutive equation for the flow and hardening rules (4.37) is

P−1Ṗ = Π̂,

ż = ẑ.
(4.39)
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If a set of N independent mechanisms potentially contribute to plastic flow, an
additive relation is usually assumed for the rates (Koiter, 1953),

Π̂ =

N∑

α=1

Π̂α,

ẑ =

N∑

α=1

ẑα

(4.40)

For each mechanism, a convex yield criterion

φα(C̃S̃, g) ≤ 0 (4.41)

is used. (4.41) are weak inequality constraints for (4.40). The elastic domain is
defined by the intersection,

E :=
{

C̃S̃|φα(C̃S̃, g) ≤ 0, α = 1 . . . N
}

. (4.42)

The intersection of convex domains is alsoconvex (see Boyd and Vandenberghe
(2004)).

The flow and hardening rules can be introduced according to the maximum
dissipation principle (Bishop and Hill, 1951a,b), which is widely used in the lit-
erature (Chin and Mammel (1969), Lubliner (1990, Section 3.2.2), Neff (2000),
Nguyen (2000), Miehe et al. (2002)). It is an equivalent variational formulation
of the consistency condition and the normality rule. Thus it is a geometric and
not a thermodynamic principle as the name seems to indicate.

max
C̃S̃,g

(

−C̃S̃ · P−1Ṗ + g · ż
)

. (4.43)

The elastic domain imposes constraints on the above maximization,

φα ≤ 0 α = 1 . . . N. (4.44)

Introducing the plastic Lagrange multipliers λα ≥ 0, we obtain the uncon-
strained maximum principle

max
C̃S̃,g,λα

(

−C̃S̃ · P−1Ṗ + g · ż +
∑

α

λαφα

)

. (4.45)

By the methods of convex optimization (see Boyd and Vandenberghe, 2004) the
solutions

P−1Ṗ = −
N∑

α=1

λα∂C̃S̃
φα,

ż = −
N∑

α=1

λα∂gφα,

λα φα = 0 if α = 1 . . . N,

λα ≥ 0 if α = 1 . . . N,

φα ≤ 0 if α = 1 . . . N

(4.46)
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are restricted by the Kuhn-Tucker conditions. (4.46) is a differential-algebraic
system of equations (DAE) for the flow and hardening rule. (4.46) is equally
valid for elastic and elastic-plastic processes, by (4.46)3 selecting zero slip on a
particular slip system α, if the according yield criterion (4.46)4 is not fulfilled.

The normality rule (4.46)1 is widely acknowledged as a physically well founded
assumption in newer textbooks (Nguyen, 2000, Lubarda, 2002) Note that the
minus sign in the flow rule (4.46) results from the definition of P = F−1

p .

The set of active constraints, here interpreted as the set of inelastic mecha-
nisms, is called the active set

A = {α|φα = 0, λα > 0} . (4.47)

In numerical solution procedures, the determination of A imposes some difficul-
ties as the DAE problem can be ill posed due to a nonuniquess of the solution
of the algebraic part (see Section 4.3.3). The positivity condition for the plastic
multiplicators λα was introduced as a consequence of the one-sidedness of the
constraints (4.46)5. It is further analyzed in Section 4.3.4.

4.3.2 Solution of the DAE

More information about the plastic behaviour can be achieved by resolving the
algebraic constraint equations in (4.46)3 by differentiation, as it must be valid
at any time. Thus the algebraic constraint equations can be replaced by a
differential equation. Initial conditions must be consistent with the constraint.

Starting at a certain time, it is known which mechanisms are critical, i.e.
α ∈ A ⇒ φα = 0. The remaining mechanisms have λα = 0. Accordingly,
forward differentiation is possible. Now, the differentiated constraint is

λα φ̇α + λ̇αφα = 0. (4.48)

For active mechanisms, the first term applies, and for subcritical ones the second
term. Accordingly, λα = 0 for subcritical mechanisms. When a previously
inactive mechanism gets critical, new consistent initial conditions φ = 0 have to
be formulated.

Thus from the differentiated constraint (4.48)

max
C̃S̃,g,λα



−C̃S̃ · P−1Ṗ + g · ż +
∑

α,φα=0

λαφ̇α



 . (4.49)
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a similar set of equations arises

P−1Ṗ = −
N∑

α=1

λα∂C̃S̃
φα,

ż = −
N∑

α=1

λα∂gφα,

λα φ̇α = 0 if φα = 0,

λα ≥ 0 if φα = 0,

φ̇α ≤ 0 if φα = 0,

λα = 0 if φα < 0

(4.50)

We will now explicitly determine the plastic multipliers λα, α ∈ A by the
consistency condition,

φ̇α = ∂
C̃S̃
φα · d

dt
C̃S̃ + ∂gφα · ġ. (4.51)

For further evaluation, we insert

d

dt
C̃S̃ = ˙̃CS̃ + C̃ ˙̃S

=
[

P⊤ĊP + 2symC̃P−1Ṗ
]

S̃ +
1

2
C̃C̃[P⊤ĊP + 2symC̃P−1Ṗ]

ġ =
∂ĝ

∂z
ż

(4.52)

and rearrange to get an explicit expression in the rates P−1Ṗ, Ċ, and ż,

φ̇α = Ãα ·
(

symC̃P−1Ṗ + P⊤ 1

2
ĊP

)

+ aα · ż. (4.53)

Here, the factors

Ãα = 2sym(∂
C̃S̃
φαS̃) + C̃[C̃∂

C̃S̃
φα]

aα = ∂gφα

∂g

∂z

(4.54)

have been introduced. After insertion of the flow and hardening rule (4.50)1,2,
the consistency matrix

gαβ =
∂φ̇α

∂λβ

= Ãα · C̃ ∂
C̃S̃
φβ + aα∂gφβ (4.55)

simplifies the resulting equation,

φ̇α = −
∑

β∈A
gαβλβ + P ⋆ Ãα · Ė = 0, α ∈ A (4.56)
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Symbol Lubarda (2002) Nguyen (2000) Petryk (2000b)

P ⋆ Ãα Cα
0 Bi λK ,λp

K

sym C̃∂
C̃S̃
φα Pα

0 f i,A ÷
gαβ gαβ −Cij gKL

aα∂gφβ hαβ Hij ÷
P ⋆ C̃ Λ(1) W,∇u∇u Le

Tab. 4.1: Notation of multi-mode plasticity found in the literature

which can be finally solved for the plastic multipliers.
A derivation for a number of stress and strain measures can be found in

Lubarda (2002), Section 12, while a formulation for dissipative standard mate-
rials is briefly outlined in Nguyen (2000), Section 15.5.2. A generalized approach
is used by Petryk (2000b), where the rate equations are assumed as the fun-
damental constitutive equations, and the above formula can be derived by the
introduction of an elastic range and the normality rule. For comparison, no-
tations found in the cited literature are summarized in Table 4.1. Note that
different stress and strain measures are used. The interaction matrix gαβ , how-
ever, is invariant with respect to the choice of stress and strain measure (Petryk,
2000b, Lubarda, 2002).

The plastic multipliers can be obtained by solving (4.56),

λβ =

{ ∑

α∈A(g−1)βαP ⋆ Ãα · Ė β ∈ A
0 β /∈ A . (4.57)

Insertion in the flow rule (4.50)1 yields

P−1Ṗ = −
∑

α,β∈A
(g−1)βα (∂

C̃S̃
φβ) ⊗ P ⋆ Ãα[Ė]

= −
∑

α,β∈A
(g−1)βα (∂

C̃S̃
φβ) ⊗ F̃ ⋆ Ãα[D],

(4.58)

whereas the hardening rule (4.50)2 results in

ż = −
∑

α,β∈A
(g−1)βα (∂gφβ) ⊗ P ⋆ Ãα[Ė]

= −
∑

α,β∈A
(g−1)βα (∂gφβ) ⊗ F̃ ⋆ Ãα[D].

(4.59)

Note the special convention for the variables z and g of unspecified rank.
In both equations, the strain rate is mapped by a state-dependent linear

operator on the according rates. Thus, the theory is rate-independent (see
Section 4.3.6).

The exploitation of (4.50)3 showed that there are still algebraic equations
contained after single differentiation, since (4.50)3 contained the unknown plas-
tic multipliers λ as hidden constraints (Scherf, 2000). One finds that (4.46) is
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a DAE of index 2 by another differentiation of (4.56) that results finally in an
(implicit) ODE for λ.

4.3.3 Properties of the multiple condition of consistency

The Taylor problem

(4.56) can be interpreted as a mapping from the plastic multipliers to the strain
rate Ė. Moreover, the volume preserving nature of plasticity imposes an addi-
tional constraint, thus it is a mapping R

dim(A) → R
5, which cannot be inverted

for dim(A) ≥ 5. This number imposes the Taylor problem of the selection of
the active set.

In the case of crystal plasticity, a number of proposals have been made to
overcome it by selection of five slip systems. A largely applied approach is
the center of gravity method: For d = dimA > 5 any combinatoric choice
of 5 of d mechanisms is investigated. A superposition is computed afterwards.
Other methods, including a random choice have been proposed. They have been
summarized by van Houtte (1988) and Kocks (1998a).

A physical aproach has been proposed by exploitation of the energy criterion
of plastic stability (Petryk, 1999).

Standard mathematical approaches like the Moore-Penrose generalized in-
verse have been investigaded and used (Anand and Kothari, 1996, Miehe et al.,
1999, Knockaert et al., 2000) that use minimization of the defect to select one of
the multiple solutions. This approach has been interpreted in Knockaert et al.
(2000) as physically adequate by application of Taylor’s minimum slip princi-
ple (Taylor, 1938). Other techniques in the style of a Tykhonov regulariza-
tion or a problem-adapted “Ansatz in reduced space” have been introduced
by Miehe et al. (1999) (see also Miehe and Schröder, 2001). Another problem
oriented solution is a special iterative procedure based on a combination of a La-
grange formalism and a penalty method proposed by Schmidt-Baldassari (2003)
which has been shown to converge towards λα = 0 for α /∈ A.

For a single yield surface the Taylor problem is inexistent. This can be
exploited by a regularization of the yield limit of crystal plasticity. It has been
proposed independently by Arminjon (1991) and Gambin (1991) and further
investigated by Schurig and Bertram (2003), see Section 4.4.

Symmetry and condition of the consistency matrix

In the resolved DAE, the consistency matrix gαβ is of central importance. A
matrix with similar properties arises equally in the numerical solution of (4.46)
(Knockaert et al., 2000, Miehe et al., 1999). In general, it is nonsymmetric.
However, symmetry is achieved in a number of cases of different significance.

For small elastic deformations (C̃ ≈ 1) and symmetry of the interaction
matrix ∂gφα

∂g
∂z
∂gφβ , C̃S̃ ≈ S̃, Ãα = C̃[∂

C̃S̃
φα], and gαβ = C̃[∂

C̃S̃
φα] · ∂

C̃S̃
φβ +

∂g
∂z
∂gφα ∂gφβ (Steinmann, 1996, Knockaert et al., 2000). Also, special choices

for the interaction matrix can be made to symmetrize gαβ , as proposed by
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Havner and Shalaby (1978). If a potential exists for the hardening variables,
by an integrability condition the symmetry of the interaction matrix follows
(Nguyen, 2000, p.265f). Sometimes this it at least an approximation (Miehe et al.,
2002). Convexity of the potential ensures positive definiteness and, thus, invert-
ibility.

gαβ can have a bad condition number or even be irregular. The reason is

strongly connected with the Taylor problem. In the five-dimensional C̃S̃-space
only five of the normal directions ∂

C̃S̃
φβ can be linearly independent. Thus,

the maximum rank of Ãα · C̃ ∂
C̃S̃
φβ is 5. Irregularity follows for more than

five active mechanisms in the case of perfect plasticity. Hardening sometimes
improves the situation by the shift of singular values through the interaction
matrix. However, if hardening moduli are small, ill-conditioned problems can
still arise. This case needs the same way of treatment as above.

4.3.4 The loading condition

Besides the condition φα = 0, also λα ≥ 0 was required for active mechanisms.
This second criterion was a mere mathematical requirement from the maximiza-
tion principle (4.45).

Any negative or vanishing plastic multiplier λα means that the according
rate of the constraint φα is also negative or zero. Thus, the positivity condition
excludes unloading mechanisms. A positive value of λα is required for loading
mechanisms only.

The loading condition used by Bertram (2005) for single mode plasticity

φ̇|P,z=const > 0 (4.60)

is still valid. However, it cannot be simply transferred equally to each single
mechanism’s constraint. The reason is that for nondiagonal gαβ the mechanisms
interact plastically by latent hardening (Hill, 1967). The generalization is

∃α : φ̇α|P,z=const > 0. (4.61)

Thus, it is possible to determine in advance whether there are active mechanisms
at all, but not the active set a priori without solving the incremental equations.

Inserting

φ̇α|P,z=const = P ⋆ Ãα · Ė (4.62)

in the positivity condition for the plastic multipliers as obtained in (4.57),

∑

α∈A
(g−1)βαφ̇α|P,z=const = Ñβ · d

dt
C̃S̃

∣
∣
∣
∣
P,z=const

> 0 β ∈ A, (4.63)

which can be interpreted as a coupled loading condition. The generalized
normal

Ñβ =
∑

α∈A
(g−1)βα∂C̃S̃

φα (4.64)
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replaces the normal direction in uncoupled mechanisms. Accordingly, for a
diagonal gαβ , Ñβ = ∂

C̃S̃
φβ (Lubarda, 2002, Section 12.13).

An exploitation is possible, whenever the active set A is known. Usually this
is not the case. Using a hypothesis on the active set, the plastic multipliers can
be determined and the validity of the hypotheses be checked by the positivity
constraint. Thus, an iterative solution process is necessary.

4.3.5 Derivation of rate equations

The forward material time rate of (4.31) yields ˙̃S = C̃[ ˙̃E], with ˙̃E = 1
2

˙̃C the rate
of the elastic Green’s strain tensor. Insertion of the respective elastic tensors
yields

Ṡ = P ⋆ C̃[Ė]

+ P
(

2symP−1ṖS̃ + C̃[C̃P−1Ṗ]
)

P⊤ (4.65)

resulting in a split of the second Piola-Kirchhoff stress rate into elastic and
plastic parts (4.65)1 and (4.65)2. Upon insertion of (4.58), the rate of stress
turns into an incremental law, (see Lubarda, 2002, Sections 9.5f, Bertram, 2005,
p. 270),

Ṡ = P ⋆ K̃[Ė]. (4.66)

The incremental moduli tensor is given by

K̃ = C̃ −
∑

α,β∈A
(g)−1

αβÃα ⊗ Ãβ . (4.67)

A rate potential U exists, if K = P ⋆ K̃ has the major symmetry. This is
the case, if C̃ has this property (in the case of hyperelasticity c̃ijkl = c̃klij), and
moreover gαβ = gβα (see Section 4.3.3).

Then, the rate law and its potential are connected by

U =
1

2
Ė · K[Ė],

Ṡ = ∂
Ė
U ,

K =
∂2U
∂Ė ∂Ė

.

(4.68)

For other measures, we obtain according to (4.20)

Ṫ0 − LT0 = ∂
Ḟ

1

2
Ḟ · (F ⊗ 1) ⋆K[Ḟ]

τ̇ − Lτ − τL⊤ = ∂D
1

2
D · F ⋆K[D]

Ṡx − (A−1F)•(A−1F)−1Sx − Sx
(
(B−1F)•(B−1F)−1

)⊤

= ∂
Ėx

1

2
Ėx · (A−1F ⊗ B−1F) ⋆K[Ėx].

(4.69)
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Inspection shows that in any case U is a homogeneous function of degree
two of the associated rate of deformation. Its domain is divided into a number
of disjoint cones, each defined by the active set A that can be determined from
(4.50). By (4.68) the incremental moduli tensor K is the Hessian of U which is
in turn piecewise defined.

Another split of strain rate is possible by reformulation of (4.66),

Ṡ = P ⋆ C̃[Ė − Ėp]

Ėp =
(

P ⋆ C̃

)−1

◦



P ⋆
∑

α,β∈A
(g)−1

αβÃα ⊗ Ãβ



 [Ė]

=
∑

α,β∈A
(g)−1

αβC̃
−1[Ãα] ⊗ Ãβ [P⊤ĖP],

(4.70)

introducing a formal analogy to small strain formulations (Lubarda and Benson,
2001).

4.3.6 Rate-independence

Replacing a strain process defined by C(t) by a slower or faster one C∗(t) =
C(a(t)) (Bertram, 1989), one finds that Ċ∗(t) = Ċ(a(t))ȧ(t). All the material
functionals used so far prove to be positive homogeneous in the strain rate.
Clearly, upon integration, (4.66) as well as (4.58) and (4.59) yield the same
results after the strain process C∗(t) at time a(t) compared with C(t) at t.
Thus the presented theory is rate-independent.

In a general way, rate-independent plasticity models can be introduced with
an extension of the set of variables included in the flow and hardening rule
(Halphen and Nguyen, 1975, Bertram, 1999, 2005)

Π̂ : (C̃S̃, g; Ċ) 7→ P−1Ṗ, ẑ : (C̃S̃, g; Ċ) 7→ ż. (4.71)

and the additional assumption that the functions are positive homogeneous in
Ċ. As a consequence, a split in magnitude and direction is possible,

Π̂ =
∑

α

λα(C̃S̃, g, ‖Ċ‖, Ċ

‖Ċ‖
) Π̃α(C̃S̃, g,

Ċ

‖Ċ‖
)

ẑ =
∑

α

λα(C̃S̃, g, ‖Ċ‖, Ċ

‖Ċ‖
) z̃α(C̃S̃, g,

Ċ

‖Ċ‖
)

(4.72)

where λ(C̃S̃, g, •, Ċ

‖Ċ‖ ) is a positive homogeneous function.

(4.58) and (4.59) fit into this format. The difference is that in Section 4.3.1
(p. 39) λα are mathematical objects that are used to implement consistency.
Instead of a direct constitutive assumption, they are obtained from the algebraic
constraint equations.

Here, the plastic multipliers λα are considered as constitutive functions of
their own right, allowing for a broader class of materials. The list of variables
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shows that the rate Ċ is not considered as one of the normal constitutive vari-
ables. In fact it differs by the condition of rate independence. To obtain the
same result as in 4.3.2, the differentiated condition of consistency is utilized,
together with the loading condition of (4.63)

P−1Ṗ = −
N∑

α=1

λα∂C̃S̃
φα,

ż =

N∑

α=1

λα∂gφα,

λα φ̇α = 0 if φα = 0,

φ̇α|P,z=const ≥ 0 if φα = 0,

φ̇α ≤ 0 if φα = 0,

λα = 0 if φα < 0

(4.73)

As shown in Chapter 5, an extension of this scheme can be used to introduce
additional effects that are seen in multi-surface plasticity into theories with a
single (but process-dependend) plastic potential.

Even more general are constitutive assumptions that are based on rate equa-
tions of the type (4.66). As indicated in Petryk (2000a), a number of physically
distinct phenomena can be covered by such equations. Additional attractivity
comes out of the formal similarity to elastic laws that allows for some methods
of solution from the theory of elasticity to be transferred.

4.4 Regular yield criteria

Section Overview

Two approaches to define a single smooth yield function that approximates the
non-smooth elastic domain of multi-mode plasticity are presented. For both
cases, the associated flow rules are computed. In contradiction to the multi-
mode theory, the vertex effect is not present in these models.

4.4.1 The model of interacting slip systems

To overcome the Taylor problem in single crystal plasticity, the model of inter-
acting slip systems was proposed independently by Gambin (1991) and Arminjon
(1991).

They introduced a single yield surface based on an Lp-regularization of the
compound crystallite yield locus and an associated flow rule. The approach is
similar to the rate-dependent theory (Kocks, 1998b) and includes an exponent
similar to the reciprocal strain rate sensitivity as a parameter.

Gambin and Barlat (1997) connected this exponent with the stacking fault
energy of the material. Kowalczyk (2001), Kowalczyk and Gambin (2004) used
this approach for the determination of an evolving macroscopic yield surface
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of a polycrystal, based on the grain interaction model by Sachs (1928) and
rigid-plastic grains.

Schurig and Bertram (2003) discussed an ansatz on the slip system level that
does not integrate to a normality rule for the crystallite. The ratios of the slip
rates are the same as in the rate-dependend theory. For Taylor hardening (all
critical stresses are equal, gα = g), the approaches are identical.

A general discussion of the Lp-regularization of compound yield surfaces (for
sheet metals) can be found in Mollica and Srinivasa (2002).

Starting from the Schmid law for the slip systems of a single crystal,

φα(C̃S̃, gα) = τα − τ c
α = 0

τα = C̃S̃ · Mα

τ c
α = gα,

(4.74)

introducing the constant structural Schmid tensors M̃α = dα ⊗ nα, where dα

is the tangential vector of a slip system’s slip direction and the nα the covector
of the according slip plane, an equivalent formulation is found,

φG
α (C̃S̃, gα) =

φα(C̃S̃, gα)

gα

=

(
τα
gα

)

− 1. (4.75)

To obtain a useful expression without absolute values, the set of available slip
systems has to be chosen in such a manner that positive and negative slip
direction are recognized as two distinct slip systems. Thus the number of slip
systems in a mathematical sense is twice the number of physically distinct slip
systems.

Let B ⊇ A be an arbitrary set of slip mechanisms. An Lp-regularization of
the individual mechanisms α ∈ B is obtained by

Φ(C̃S̃, gα) =
1

n+ 1

∑

α∈B

(
φG

α + 1
)n+1 − 1. (4.76)

For growing exponents n, this function approaches the multi-mode yield limit
(Fig. 4.1) and represents a rounded crystallite yield locus. Application of (4.46)
for this single yield surface results in

P−1Ṗ = −λ
∑

α∈B

1

gα

(φG
α + 1)n ∂

C̃S̃
φα,

żβ = −λ
∑

α∈B

1

gα

(φG
α + 1)n

(
∂gβ

φα − φG
α

)
,

λΦ = 0,

λ ≥ 0,

φ ≤ 0

(4.77)

By comparison with the original approach, an interpretation as a modified multi-
mode approach with interacting slip systems (Kowalczyk, 2001)

λα = λ
1

gα

(
φG

α + 1
)n

= λθG
α (4.78)
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n=7 10 20

Fig. 4.1: Sketch of the rounded crystallite yield locus (Bertram, 2005)
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can be found. θα =
(

τα

gα

)n

regularizes the Schmid criterion, and θG
α = 1

gα
θα.

If α ∈ A ⇒ φG
α = φα = 0 ⇒ θα = 1. In the limit,

lim
n→∞

θα =

{
1 α ∈ A
0 α /∈ A (4.79)

Thus, the approach can be interpreted as a regularization of the Heaviside func-
tion which implements a sudden activation. Accordingly, (4.78) is still approx-
imately fulfilled if subcritical slip systems are included.

The plastic multiplier λ can be obtained again by differentiation of the al-
gebraic constraint, inserting (4.56) and (4.78),

Φ̇ =
∑

α∈B

1

gα

(
φG

α + 1
)n
(

φ̇α − φG
α ġα

)

=
∑

α∈B
θG

α



P ⋆ Ãα · Ė −
∑

β∈B
gαβλβ + φG

α

∂ gα

∂ zβ

∂gβ
φβ λβ





=
∑

α∈B
θG

α P ⋆ Ãα · Ė

+ λ
∑

α,β∈B
θG

α θ
G
β g

G
αβ

gG
αβ =

∂φ̇G
α

∂λβ

= gαβ − φG
α

∂ gα

∂ zβ

∂gβ
φβ

= gαβ if B ⊆ A

(4.80)

resulting in

λ =
∑

α∈B

θG
α

∑

γ δ∈B θ
G
γ θ

G
δ g

G
γδ

P ⋆ Ãα · Ė (4.81)

and

λβ =
∑

α∈B

θG
β θ

G
α

∑

γ,δ∈B θ
G
γ θ

G
δ g

G
γδ

P ⋆ Ãα · Ė,

=
∑

α∈B
gG†

βαP ⋆ Ãα · Ė.
(4.82)

Our solution results in an “inverse” matrix

gG†
αβ =

θG
α θ

G
β

∑

γ,δ∈B θ
G
γ gG

γδθ
G
δ

(4.83)

Although it is not the inverse of gG, it takes place in solving for the λα of the
interacting slip system model. Clearly, gG†

αβ = gG†
βα.
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To investigate, wether gG† is a pseudoinverse of gG, we use the neccessary
and sufficient condition gG gG† gG = gG. Insertion of (4.83) this results in.

∑

α,β∈B g
G
µα θ

G
α θ

G
β g

G
βν

∑

γ,δ∈B θ
G
γ g

G
γδθ

G
δ

= gG
µν µ, ν ∈ B. (4.84)

For (4.84) to hold, gG must be symmetric. Introducing the weighted row sum
rα =

∑

β∈B g
G
αβθ

G
β , (4.84) can be reformulated as

gG
µν =

rµ rν
∑

γ∈B θ
G
γ rγ

µ, ν ∈ B. (4.85)

The implications of (4.85) will be discussed in Section 4.4.3.

4.4.2 The viscoplastic flow potential

Rice (1970) introduced the following viscous flow potential,

ω(C̃S̃, g) =
1

n+ 1
γ̇0

∑

α

gα

∣
∣
∣
∣

τα
gα

∣
∣
∣
∣

n+1

. (4.86)

Its derivatives
∂ω

∂τα
= γ̇0

∣
∣
∣
∣

τα
gα

∣
∣
∣
∣

n

signτα. (4.87)

are the slip rates according to the rate-dependent theory (Kocks, 1998a),
Hutchinson and Budiansky (1976) and Kiryk and Petryk (1998) used isosur-

faces of ω as a surrogate for the yield surface. One finds ω and Φ quite similar
by keeping in mind that the positive and negative direction of a slip system
is regarded as two distinct mechanisms in the previous Section, while they are
combined here.

Thus, for a rate-independent approach we introduce a second regularized
yield surface by

Ψ(C̃S̃, g) = ω(C̃S̃, g) − ωc. (4.88)

In the introduced notation, it is (again using double mechanisms to avoid ab-
solute values)

Ψ(C̃S̃, g) =
1

n+ 1
γ̇0

∑

α∈B
gα

(
φG

α + 1
)n+1 − ωc, (4.89)

which is not directly connected with a regularization of the individual mech-
anisms’ yield limit, but weighted with the respective critical resolved shear
stresses. Thus in the vertices, a suitable rounding is achieved, while for sin-
gle slip conditions the yield limit of the selected mechanism is in general not
reproduced:

φG
α =

(
(n+ 1)ωc

γ̇0 gα

) 1
n+1

− 1. (4.90)
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For different hardening states gα of the mechanisms this cannot be obtained for
more than one mechanism.

Accordingly, (4.46) yields

P−1Ṗ = −λγ̇0

∑

α∈B
(φG

α + 1)n ∂
C̃S̃
φα,

żβ = −λγ̇0

∑

α∈B
(φG

α + 1)n
(
∂gβ

φα − φG
α

)
,

λΨ = 0,

λ ≥ 0,

Ψ ≤ 0

(4.91)

resulting in
λβ = λγ̇0θβ . (4.92)

The resulting λβ are independent of the actual values of the hardening variable
and dimensionless.

The same procedure as in the previous Section results in

λβ =
∑

α∈B

θβ θα
∑

γ,δ∈B θγθδgG
γδ

P ⋆ Ãα · Ė,

=
∑

α∈B
gG‡

βαP ⋆ Ãα · Ė.
(4.93)

Note that the only difference to (4.82) is the exchange of θG
α with θα. Ac-

cordingly, using the slightly different definition rα =
∑

β∈B g
G
αβθβ , the property

(4.85) is now

gG
µν =

rµ rν
∑

γ∈B θγ rγ
µ, ν ∈ B. (4.94)

4.4.3 Regular yield surfaces as replacement for multiple mechanisms

The use of the two regularized criteria is of particular interest in cases where the
resulting equations of evolution coincide at least approximately with the multi-
mode approach which can be regarded as the physical model. Any deviations
are contributions of the vertex effect which is absent in the regularized models.
We shall discuss this problem in the sequel.

An inclusion of only active systems B ⊆ A can be neglected if one accepts
the activation function as a suitable regularization. In this case the fact that
each of the (doubled) mechanisms has a half space of the Mandel stress space
as its elastic domain needs to be taken into account, e.g. by augmenting the
activation function with Maccauley brackets 〈x〉 = 1

2 (|x| + x),

θα =
〈
φG

α − 1
〉n

(4.95)

We shall now discuss, whether the application of a regularized yield crite-
rion can be interpreted as the application of a pseudoinverse of the consistency
matrix, at least under certain circumstances.
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The definition of a pseudoinverse has been used in (4.85) and (4.94). Both
can only be fulfilled if the matrix gG is symmetric. Thus the conditions discussed
in Section 4.3.3 have to be met, which is the case for small elastic deformations.

The pseudoinverse property for gG†
αβ and gG‡

αβ is fulfilled, if by rαP
δ∈B

gδθδ
=: 1

NB

each entry of gG can be reformulated as

gG
αβ =

rα
NA

∀α, β ∈ B ⊆ A, (4.96)

which requires that all components gG
αβ are equal.

In cannot be expected that this property holds true in general but only in
very special situations.

Accordingly, the regularized approach is not a generalized solution of the
multi-mode approach, it is a distinct theory. Cases, where both coincide or
differ are suitable to discuss the vertex effect. It will be shown that this is not
a matter of special choice of material parameters but a matter of how a plastic
process is continued.

4.5 The vertex effect

Section Overview

From a given state, different process continuations result in different material
responses due to the loading condition and the distinct active set in a material
with multiple plastic mechanisms. The nature of this vertex effect is explored
by comparison of the multi-mode and the regularized approach of Sections 4.3
and 4.4.

4.5.1 Straight and kinked loading

Starting from a given state the active set A on a continuation process determines
the way a material with multiple plastic mechanisms evolves.

The consistency matrix is a function of the state variables, thus the sign
of the plastic multipliers can be obtained from the coupled loading condition
(4.63). It is homogeneous of first order.

Accordingly, the active set can be obtained from the dual state variables and
the direction of the elastic rate of Mandel’s stress, the loading direction

M̃ =

d
dt

C̃S̃
∣
∣
∣
P,z=const

∥
∥
∥
∥

d
dt

C̃S̃
∣
∣
∣
P,z=const

∥
∥
∥
∥

. (4.97)

A(C̃S̃, g, M̃) =
{

β| φβ(C̃S̃, g) = 0, Ñβ · M̃ > 0
}

. (4.98)

The coupled loading condition (4.63) results in an implicit definition, which
raises the need for an iterative approach.
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Fig. 4.2: Description of deviation from straight loading from a critical state by a single
parameter

It shall prove useful to parametrize the continuation of a process relative to a
natural direction, M̃N. The regularized and the multi-mode approach coincide
in this direction. Accordingly,

M̃ = αM̃N +
√

1 − α2M̃T, (4.99)

where a decomposition in parts parallel to the natural direction M̃N, and its
complement, the tangential direction M̃T has been made. The latter can be
computed from the projection

(

I − M̃N ⊗ M̃N

)

[M̃] = M̃ − αM̃N (4.100)

and normalization

M̃T =
M̃ − αM̃N√

1 − α2
. (4.101)

The loading direction is described by the loading parameter

α = M̃N · M̃, (4.102)

namely the direction cosine of M̃ with respect to M̃N. Accordingly, α = 1 is
loading in the natural direction, while α = −1 is reversed loading. α = 0 is a
90-degree kink, that is not necessarily connected with neutral loading.

Inserting (4.99) into the loading criterion of (4.98), we obtain

α > αβ(g, M̃N, M̃) =
|Ñβ · M̃T|

√
(

Ñβ · M̃N

)2

+
(

Ñβ · M̃T

)2
. (4.103)

In cases of linear yield functions φα, such as the Schmid law (4.74), the mod-
ified normal direction Ñβ does not depend on C̃S̃, only on the dual hardening
variables g.
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If the natural direction coincides with Nβ , (4.103) implies α > 0 for loading.
This is the case in presence of a single mechanism.

Clarifying the dependence of A,

A(C̃S̃, g, M̃N, M̃) =
{

β| φβ(C̃S̃, g) = 0, α > αβ(g, M̃N, M̃)
}

. (4.104)

(4.104) is still an implicit definition, as αβ depends on A via Ñβ . Formally
inserting the resulting active set in the equations of evolution (4.58) and (4.59),
one obtains rate-independent constitutive functions

P−1Ṗ = Π̂(C,P, z, M̃N, M̃)

ż = ẑ(F,P, z, M̃N, M̃)
(4.105)

that are valid at a yield vertex characterized by M̃N for a process continuation
expressed by M̃, which in turn is a linear function of Ċ.

In contradiction to the classical single surface theory of plasticity, a com-
plicated dependence on the loading parameter α is obvious. This direction
dependence of the plastic flow Π, in particular of the direction of Π is the
vertex effect.

A phenomenological vertex model of plasticity based on the structure of
(4.105) will be proposed in Chapter 5 on page 67.

4.5.2 Symmetric planar double slip

The idea is outlaid by a simple planar double slip model (Fig. 4.3). This
standard example has also been worked out in Lubarda (2002, Section 12.13) and
used in Peirce et al. (1982), Asaro (1983). Both slip systems are symmetricaly
inclined at an angle ψ (not shown in the Figure). Thus, the slip direction
vectors are d̃1 = (cosψ, sinψ), d̃2 = (− cosψ, sinψ). The slip plane normals are
ñ1 = (− sinψ, cosψ), ñ2 = (sinψ, cosψ). The according Schmid functions are
given by

φα = C̃S̃ · symd̃α ⊗ ñα − gα. (4.106)

Accordingly, the vertex can be found at the intersection, i.e. at the planar stress
state

C̃S̃ = a1 d̃1 ⊗ ñ1 + a2 d̃2 ⊗ ñ2

ai = −1

4

gi

cos2 ψ (cos2 ψ − 1)
.

(4.107)

The symmetric state at g1 = g2 = g yields the simple results

M̃N =

√
2

2

[
1 0
0 −1

]

M̃T =
1

√

cos4 ψ + sin4 ψ

[
0 cos2 ψ

− sin2 ψ 0

]

.

(4.108)
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Fig. 4.3: Symmetric planar double slip model (Lubarda, 2002) outlined in Mandel’s
stress space

For simplicity, we assume isotropic elasticity at small elastic strain. The
hardening model is

ġα = H [q + (1 − q)δαβ ] γ̇β . (4.109)

.

Double slip

For the case of double slip we obtain

(gαβ) =

(
2G+H −2G (cos2 ψ − sin2 ψ)2 + q H

−2G (cos2 ψ − sin2 ψ)2 + q H 2G+H

)

(g−1
αβ ) =

1

Γ

(
(2G+H) 2G (cos2 ψ − sin2 ψ)2 − q H

2G (cos2 ψ − sin2 ψ)2 − q H (2G+H)

)

Γ = (2G+H)
2 −

(
−2G (cos2 ψ − sin2 ψ)2 + q H

)2

(4.110)

The generalized normals defined in (4.64) are

Ñ1 = Γ−1
[

(2G+H) d̃1 ⊗ ñ1 +
(
2G (cos2 ψ − sin2 ψ)2 − q H

)
d̃2 ⊗ ñ2

]

Ñ2 = Γ−1
[

(2G+H) d̃2 ⊗ ñ2 +
(
2G (cos2 ψ − sin2 ψ)2 − q H

)
d̃1 ⊗ ñ1

]

(4.111)
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Fig. 4.4: Dependency of the total loading angle α1 on H
G

, q, and ψ

which results in a total loading cone confined due to symmetry by A = Ñ1 · M̃N,
B = Ñ1 · M̃T, and

α > α1 =
B√

A2 +B2
. (4.112)

By simple manipulation one can express α1 as a function of the dimension-
less parameters (H

G
, q, ψ). The dependence on each of them is shown in Fig.

4.4. One finds that both q = 0 and ψ = 45◦ have special properties. If both
conditions coincide, gαβ is diagonal. Accordingly, α1 is then independent of
the nondimensional hardening modulus, H

G
(4.4 (a,c)). In the other cases the

ratio of diagonal and non-diagonal terms that governs the direction of Ñ1, is
influenced by H

G
(4.4 (b,d)).

Note that A = B for q = 0 or H = 0, leading to α1 =
√

2
2 , and the total

loading cone is the so called prolongation cone (Lubarda, 2002, Section 12.13).
In the general case, α1 is larger.
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B = {1, 2} B = {2}
Multi mode −(M̃1 ⊗ M̃1 + M̃2 ⊗ M̃2) · P⊤ĖP −(M̃2 ⊗ M̃2) · P⊤ĖP

Regularized −(M̃N ⊗ M̃N) · P⊤ĖP −(M̃2 ⊗ M̃2) · P⊤ĖP

Tab. 4.2: Flow rules of multi-mode and regularized approach

Accordingly, we obtain the plastic multipliers from (4.57)

λ1 = Ñ1 · 2GP⊤ĖP

λ2 = Ñ2 · 2GP⊤ĖP.
(4.113)

Insertion into the flow rule (4.58) results in

P−1Ṗ =

2∑

α,β=1

g−1
βα d̃β ⊗ ñβ ⊗ d̃α ⊗ ñα[2GP⊤ĖP]

= A[PĖP].

(4.114)

The nonzero elements of the linear operator A are given by

A1111 = −2 2G
Γ cos2 ψ sin2 ψ

(
−2G(2 cos2 ψ − 1)2 − (2G+H) + q H

)

A1122 = +2 2G
Γ cos2 ψ sin2 ψ

(
−2G(2 cos2 ψ − 1)2 − (2G+H) + q H

)

A2211 = +2 2G
Γ cos2 ψ sin2 ψ

(
−2G(2 cos2 ψ − 1)2 − (2G+H) + q H

)

A2222 = −2 2G
Γ cos2 ψ sin2 ψ

(
−2G(2 cos2 ψ − 1)2 − (2G+H) + q H

)

A1212 = +2 2G
Γ cos4 ψ

(
−2G(2 cos2 ψ − 1)2 + (2G+H) + q H

)

A1221 = −2 2G
Γ cos2 ψ sin2 ψ

(
−2G(2 cos2 ψ − 1)2 + (2G+H) + q H

)

A2112 = −2 2G
Γ cos2 ψ sin2 ψ

(
−2G(2 cos2 ψ − 1)2 + (2G+H) + q H

)

A2121 = +2 2G
Γ sin4 ψ

(
−2G(2 cos2 ψ − 1)2 + (2G+H) + q H

)
,

(4.115)
which once more can be shown not to depend on G but only on the nondimen-
sional parameters (H

G
, q, ψ). The particular simple case H = 0, ψ = 45◦ renders

for the nonzero elements of above

Aijij = 1 Aijji = −1, (4.116)

and the eigenvalues are 0 double (a matter of the insufficient number of mech-
anisms), and 1 double referring to the nondefective eigenspace spanned by
(M̃N, M̃T). Using any of the (here coincident) regularized approaches, we ob-
tain

A1111 = A2222 = 1 A1122 = A2211 = −1, (4.117)

with eigenvalues 0 triple (even less “mechanisms”), 1 single and the according
eigenvector is M̃N. Both flow rules are compared in Table 4.2. The two ap-
proaches yield flow rules that coincide for M̃ = M̃N. The respective plastic
potentials (and yield limits) are plotted in Fig. 4.5(a).
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Fig. 4.5: Multi mode and regularized approach compared

Accordingly, straight processes are properly modeled by the regularized
model, while it is only an approximation for kinked processes. In particular
the lateral (M̃T-) component of plastic flow is missing. To show the magnitude
of error, the relative norm of the difference in the flow rule

δ(α) =

∥
∥
∥Π̂R − Π̂MM

∥
∥
∥

‖Π̂MM‖
(4.118)

has been plotted vs. α in Fig. 4.5(b). It shows that only for α = 1, i.e. for
the straight process that is contained in the nondefective eigenspaces of both
models, the two approaches yield the same result.

Single slip

If only slip system 2 is active, the solution is simple. One obtains

λ =
2G

2G+H
= M̃2 · P⊤ĖP. (4.119)

The flow rule has again been shown in Table 4.2.

The regularized approach is the same as above. One finds the deviation from
the single slip solution δS even larger than the double slip case (Fig. 4.5(b)).

However, if only the single active mechanism is included in the set B, the
situation changes. For the double slip cone, the regularized plastic potential is
as depicted in 4.5(a) (B), while in the single slip cone, the regularized approach
results in the same equations as the single slip solution and 4.5(a) (A) is applied.

The relative error of the approximation of flow direction by the regularized
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B A/B ‖δ(α)‖2

{1, 2}, −α1 ≤ α ≤ 1 B only 0.8857
{2}, −α1 ≤ α < α1; {1, 2}, α1 ≤ α ≤ 1 A and B 0.2782

Tab. 4.3: Improvement of the approximation of a regularized flow rule by information
about the active set

approach can be measured by

‖δ(α)‖2 =

√
∫ 1

α=−1

(δ(α))
2

dα. (4.120)

The result for different approximations can be found in Table 4.3. If only the
active set obtained in a cone is used for the regularization, the approach is much
better.

The direction of plastic flow can most simply be described by

βΠ =
Π

‖Π‖ · M̃N. (4.121)

It has been plotted for the solution obtained by the multi mode approach for
double slip βD and single slip βS , and the regularized approach for B = {1, 2},
βR. One concludes that the separate regularization for each cone is like an
approximation of the true solution by a step function, and a lateral component
of plastic flow is generated.

At a single point in each cone, the proper multi mode direction is obtained.

4.5.3 Regularized plastic potential and multislip

By the investigation of the symmetric double slip example the last section
showed that for all slip systems active, the regularization coincides with the
multi-mode theory in a single direction.

To study the influence of a larger number of simultaneously active slip sys-
tems, the planar double slip model was extended by an addition of more and
more mechanisms in the same plane, leading to N ∈ {3, 5, 7, 9, 11, 13, 23, 43}
mechanisms (see last drawing in Fig. 4.7). Although this is not a physical ex-
ample, the typical properties of single- and polycrystals in activating different
sets of slip systems for different process directions are included.

For different processes, the active set A was investigated according to the
loading condition (4.103). The whole range α ∈ [−1, 1] was thus split in disjoint
intervals [−1, 1] =

⋃

i Ci each describing one cone in the Ė-space with a distinct
active set Ai.

For each cone Ci separately, the regularized approach was used setting B =
Ai to obtain a flow potential Φi(C̃S̃, g) for each cone as introduced in (4.76).
These functions Φi define a single but piecewise defined plastic potential Φ∗ that
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Fig. 4.6: Approximation of the flow direction by regularization for each cone separately

transfers the direction-dependence of Ai into the flow rule. By application of
(4.58) to the case of a single mechanism, this piecewise plastic potential defines
a flow rule,

Π̂(C̃S̃, g, M̃N, M̃T, α) = − 1

g∗
∂
C̃S̃

Φ∗ ⊗ Ã[P⊤ĖP]. (4.122)

β of (4.121) was used to compare the direction of plastic flow with the multi-
mode approach (Fig. 4.7) Here, the loading domain and range of β(α) in were
normalized to [−1, 1] and [0, 1] to facilitate the comparison.

One finds that the direction of plastic flow is constant in each cone of the
multi-mode approach but varies in the regularization. Only in the total load-
ing direction, both results coincide. However, the smooth result based on the
combined plastic potential Φ∗ yields a lower bound, i.e. the deviation from the
response to a proportional process continuation is overestimated.

With an increasing number of mechanisms the sizes of each single constitu-
tive cones shrink and in the limit a continuous dependence on the direction of
Ė results as shown by the vanishing rudiments of the steps can be found.

Accordingly, the piecewise defined plastic potential Φ∗ turns into a continu-
ous function of the process direction for a very large number of mechanisms.

4.5.4 Conclusion

In comparing the multi-mode plasticity in single and double slip and the ac-
cording regularized approach, the vertex effect has been clarified:
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N=3 N=5 N=7

N=9 N=11 N=13

N=23 N=43

Fig. 4.7: The direction of plastic flow β vs. α obtained for multi-mode plasticity and
its regularisation for each cone separately for an increasing number (3 . . . 43)
of mechanisms.
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The rank of the incremental material operator of the multi-mode approach
is higher than in the according regularization, leading to the linear vertex effect,
i.e. a dependence of the direction of plastic flow on the process continuation.

In addition, the loading condition changes the active set again in a process-
dependent manner and incorporates a nonlinear kind of vertex effect.

In the presence of a large number of mechanisms, the gross effect is deter-
mined by the natural direction M̃N (proportional loading direction) and a scalar
measure of deviation from this direction α in the lateral direction M̃T.

It has been shown by the example of regularization in the distinct constitu-
tive cones that it is at least in principle possible to reproduce such an effect by
the introduction of a single scalar plastic potential with a dependence on the
process continuation by (M̃N, M̃T, α) as a gross model for the many existing
constitutive cones.



Part II

PLASTICITY WITH YIELD VERTICES





5. SIMULATION-BASED ANALYSIS OF YIELD-VERTEX

DEVELOPMENT

Section Overview

The Taylor-Lin model is used to simulate the subsequent yield surfaces of a
copper polycrystal. Using an appropriate criterion, the vertex formation near
the prestress and the traveling of the vertex with the stress process can be
found.

5.1 Micromechanical Investigation of subsequent yield surfaces

The vertex effect in metals is the consequence of the many existing mechanisms
of plastic deformation. According to the results of Section 4.5, the flow rule
has a tangential component in addition to the normal one of classical smooth
theories of plasticity.

The connection with corners in yield surfaces and the insufficient experi-
mental evidence for these corners lead to the necessity of numerical experiments
with a polycrystal model.

The determination of subsequent yield surfaces after a defined prestrain
is a classical application of crystal plasticity. From the early publications
(Bishop and Hill, 1951b), computations of the macroscopic yield surface have
been done based on averagein properties of the grains alone. However, in the
presence of texture, nonisotropic hardening and residual stresses computations
based on the elastic domain alone are questionable for the evolution of yield
surface (Zattarin et al., 2004). Instead, overall process properties have to be
taken into account.

However, fruitful approaches have been used in the literature, based on ho-
mogenization methods.

Kiryk and Petryk (1998) used a self-consistent approach to compute a macro-
scopic viscous flow potential as proposed by Hutchinson (1970). They compared
isolines of this potential with experimentally obtained subsequent yield surfaces.

Using an FEM-based polycrystal model, Kraska and Bertram (1996) used
the average dissipated power as a criterion for macroscopic plasticity. In Kraska
(1998), yield surfaces for copper polycrystals were computed for different thresh-
olds. Small thresholds exhibited a vertex-like structure in the direction of pre-
loading, while larger critical values lead to smooth surfaces.

A rate independent self consistent model was used by Zattarin et al. (2004)
for straight and kinked process paths. They reported primary and secondary
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vertices (after a change of strain direction) to be formed in the vicinity of the
prestress point. The yield criterion has been defined by an engineering strain of
0.01%.

5.1.1 Usage of the Taylor-Lin model

Here, the conceptually simpler Taylor-Lin model has been used as laid out in
Schurig et al. (2005). It is up to a certain degree capable of representing the
crystallographic texture, anisotropic and distortional hardening and to a certain
degree the intergranular residual stresses (Aris, 2000).

Based on the assumption of homogeneous deformations established by Taylor
(1938), we assume for every grain κ an identical (externally prescribed) velocity
gradient,

Lκ ≡ L̄. (5.1)

Each one is treated by the theory of multi-mode plasticity. To facilitate the use
of the viscous flow potential of (4.86), the slip rates were determined by the
approach of Rice (1970),

γ̇α = γ̇0

∣
∣
∣
∣

τα
τ c
α

∣
∣
∣
∣

n

signτα. (5.2)

As a simple hardening model for the critical resolved shear stresses, the
hardening model used by Böhlke (2001) and the material parameters used there
were applied (see Table 5.1 for a summary).

τ c
κα = τ c

0 +

N∑

α=1

Hqαβρβ

qαβ = q + (1 − q)δαβ

ρ̇α = b(1 − ρα)|γ̇α|

(5.3)

The stress acting in a grain can be determined by (4.31) or equivalent for-
mulations. According to the theorem of averaging (Hill, 1952, Krawietz, 1986,
Petryk, 1998), the homogeneuos strain assumption allows to obtain the macro-
scopic Kirchhoff stress by averaging of the local Kirchhoff stresses, each of them
assumed to be homogeneous in the according grain,

τ̄ =

∑N
κ=1 fκ τκ
∑N

κ=1 fκ

. (5.4)

N is the number of grains and fκ is their respective reference volume fraction.
Equal grain size has been assumed, thus fκ = 1

N
. Due to the summation in (5.4),

τ̄ = 0 can be achieved in presence of a (self-equilibrated) transgranular residual
stress state (residual stresses of the second kind, Aris (2000)). The model is not
capable of representing macroscopic or sub-granular residual stresses (first and
third kind). The complete model equations are summarized in Table 5.1.
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Lκ ≡ L̄ (5.1) strain localization

ḞκF
−1
κ = Lκ evolution of F

Lκ = L̃κ − F̃κP
−1
κ ṖκF̃

−1
κ (4.35) evolution of elastic transformation

P−1
κ Ṗκ = −∑N

α=1 γ̇κα∂C̃κS̃κ
φκα (4.50)1 flow rule

τ c
κα = τ c

0 +
∑N

α=1Hqαβρβ

qαβ = q + (1 − q)δαβ (5.3) hardening rule (Böhlke, 2001)
ρ̇α = b(1 − ρα)|γ̇α|
γ̇κα = γ̇0

∣
∣
∣
τκα

τc
κα

∣
∣
∣

n

signτκα (5.2) slip rates

Tab. 5.1: Set of equations of the Taylor-Lin model

α d̃α ñα

1 (0, 1, 1)/
√

2 (1, 1,−1)/
√

3

2 (1, 0, 1)/
√

2 (1, 1,−1)/
√

3

3 (1,−1, 0)/
√

2 (1, 1,−1)/
√

3

4 (0, 1,−1)/
√

2 (1,−1,−1)/
√

3

5 (1, 0, 1)/
√

2 (1,−1,−1)/
√

3

6 (1, 1, 0)/
√

2 (1,−1,−1)/
√

3

7 (0, 1, 1)/
√

2 (1,−1, 1)/
√

3

8 (1, 0,−1)/
√

2 (1,−1, 1)/
√

3

9 (1, 1, 0)/
√

2 (1,−1, 1)/
√

3

10 (0, 1,−1)/
√

2 (1, 1, 1)/
√

3

11 (1, 0,−1)/
√

2 (1, 1, 1)/
√

3

12 (1,−1, 0)/
√

2 (1, 1, 1)/
√

3

γ0 1e− 3
n 80
τ c
0 16.0 MPa
b 15
H 10 MPa
c1111 168.0 MPa
c1122 121.4 MPa
c2323 75.4 MPa

Tab. 5.2: Octahedral slip systems numbered after Kocks (1970) (left) and material
parameters of the Taylor-Lin model (right)
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Table 5.2 lists the according material parameters used for copper. The ini-
tial data for each grain contained the given values and an initial orientation
distribution Pκ = Qκ optimized for isotropy using the algorithm proposed by
Böhlke and Bertram (1998). The number of grains is N = 1024.

5.1.2 The viscous flow potential as a yield indicator

The regularized approaches of Section 4.4 can be used as a surrogate for the
yield surface of a single crystal, if the conditions of 4.4.3 are fulfilled.

For each single grain, we use the viscous flow potential of (Rice, 1970) in
(4.86). A homogenization is possible (Lubarda, 2002, e.g.) and results in a
macroscopic flow potential,

ω̄ =
1

|B|

∫

B
ω dV. (5.5)

Here, the integration takes place over the reference volume occupied by the
polycrystal.

The computation of ω̄ is performed under the assumption that all deforma-
tions are elastic until a critical threshold is reached. Thus

Φω(C̃S̃, ωc) = ω̄ − ωc (5.6)

defines an indicator function for a sub-level set of the macroscopic flow potential.
Thus, from the knowledge of the crystallite yield loci, the macroscopic yield

locus can be obtained, provided that Φω is a suitable indicator of yield.

5.1.3 The dissipated power as a path dependend yield criterion

Technical definitions of the yield point (Ikegami, 1982) cannot detect the bound-
ary of the elastic domain without producing at least a small amount of plastic
deformation.

A similar approach is to define the yield point on a prescribed process path
as the instant where the dissipated power reaches a threshold value that can
be regarded as small (Kraska and Bertram, 1996). Usually this is defined as a
fraction of the total average stress power.

d̄ =
1
N

∑

κ

∑

α ταγ̇α

τ̄ · D̄ (5.7)

can be used to define such a criterion. Fig. 5.1 shows that the dissipation
criterion is useful in the hardening and non-hardening case. By probing in
different radial directions, an approximation of the macroscopic yield locus can
be obtained.

5.1.4 The initial yield surface

Both approaches have been used to determine the initial yield locus of the
copper polycrystal. For that purpose, a number of standard processes has been
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used (Tab. 5.3). Tension describes an elongation with volume-preserving lateral
contraction. Shear is a symmetric shear process which is similar to the idealized
rolling process (identical for isotropic material).

The isoline of the flow potential at ω̄ = 1 in the rolling-tension (see Tab. 5.3
for definition) section of the stress space has been determined out of the virgin
state in Fig. 5.2a. In addition, radial processes with inelastic behaviour lead
to isolines of the dissipation at d̄ = 25%. Both yield comparable curves that
approximate Tresca’s criterion of maximum shear. A rounding of the vertices is
obvious, an effect that is stronger in the flow potential for comparable thresholds.

The exact usage of both indicators for the first yield is shown in Fig. 5.2
b. A plane strain compression test with L̄ = 0.001

Arolling

‖Arolling‖ was started out of

the virgin state. Together with the v.-Mises equivalent stress, the dissipative
power ratio (inelastic process) and the viscous flow potential (elastic process)
were plotted.

A practically linear elastic behaviour is found up to d̄ = 0.25 or ω̄ = 1
(marked C). At the same time, the dissipation increases massively.

Elastic reversal of the process reveals the plastic proof strain remaining at
label A. At the total unloaded state ω̄ reaches a value as small as 10−99. A value
of ǫlog = 2 × 10−5 is found. This can be regarded as a very strict criterion for
the onset of yield, differing orders of magnitude from technical definitions.

It is possible to define even sharper criteria, such as ω̄ = 10−9. From (4.86)
we conclude for only one slip system contributing,

τ

τ c
= n+1

√

N(n+ 1)

γ̇0τ c
ω̄ ≈ 0.93, (5.8)

thus ω̄ = 10−9 really establishes an approximate criterion for first yield.

Further, the reversed process exhibits a small Bauschinger effect as the crit-
ical flow potential is reached in negative direction at a lower stress level. This
effect has been explained by the residual microstresses by many authors, e.g.
Kraska (1998), if kinematical hardening is absent.

5.1.5 Subsequent yield surfaces

First, volume preserving tension was chosen as the prestrain process. The equiv-
alent strain finally reached ǫeq = 0.1 (moderate strain). At different stages, the
aggregate was elastically unloaded. From that state, radial processes were used
to draw isolines of the viscous flow potential and the dissipated power fraction.
These stages are shown by arrows in Fig. 5.3. Definitions of process directions
and stages are shown in Table 5.3.

For ω̄ = 1, the result is given in Fig. 5.4a. In the beginning, a strong
distortion of the initially ellipsoidal shape can be seen. In the first subsequent
line at a prestrain as small as ǫlog = 2.5× 10−4 at the very onset of plasticity, a
rounded vertex can already be seen. The rounding could be minimized by using
a smaller critical value.
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yield surfaces after different tension prestrains
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Label A Description

tension





1 0 0
0 − 1

2 0
0 0 − 1

2



 Volume-preserving tension

shear





0 1 0
1 0 0
0 0 0



 Symmetric shear

rolling





0 0 0
0 1 0
0 0 −1



 Plane strain compression (idealized rolling)

ǫlog 0 2.5 × 10−4 4 × 10−4 6 × 10−4 1 × 10−3 2 × 10−3

Label A

ǫlog 4 × 10−3 8 × 10−3 1.6 × 10−2 3.2 × 10−2 1 × 10−1

Label B C

Tab. 5.3: Definition of standard processes and process stages

From the line corresponding to ǫlog = 2×10−3 on (labeled A), after the range
of incipient plastic flow, the distortion is not predominant any more. Instead, a
nearly self-similar growth takes place.

Also, for the same stages of a tension process, the dissipated power was used
to produce isolines in Fig. 5.4b. While the initial isolines for both indicators
are similar, in the follow-up they develop differently. The dissipation criterion
exhibits a lower amount of distortion and a much more pointed vertex.

In a similar manner, prestrain processes defined by the shear and rolling
direction have been explored. The results are shown in Fig. 5.5 and Fig. 5.6.

The initial shape of the isosurfaces is different, since the plots are in differ-
ent sections of the stress space. However, in both cases the main features of
development of the subsequent yield surfaces are similar.

The isolines of the flow potential after a certain plastic strain exhibit a strong
distortion. Finally, the shape is completely changed and does not reproduce the
expected shape of a finite area with a vertex any more.

In contrast, the distortion of the dissipation isolines is smaller, and the yield
vertex can be clearly identified.

In all plots, the stress point that was reached during the prestrain process
is marked. The critical thresholds were defined according to the initial yield
point. Obviously, this threshold remains valid for the dissipation criterion, but
not in the flow potential case.

An explanation of this different behaviour can be given based on the data
stored in the polycrystal model. In particular, the crystallographic texture and
a residual stress field are contained in the statistical distribution of F̃κ. In a
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Fig. 5.5: Flow potential (a) and dissipation (b) isolines as indicators for subsequent
yield surfaces after different tension prestrains
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Fig. 5.6: Flow potential (a) and dissipation (b) isolines as indicators for subsequent
yield surfaces after different tension prestrains
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polar decomposition of the elastic transformation

F̃κ = R̃κŨκ, (5.9)

R̃κ describes the texture information while in a macroscopically unloaded state,
and Ũκ 6= 1 indicates a residual stress field.

In such a state, by replacing F̃κ with R̃κ, the residual stress field is deleted
without changing the texture and the hardening information. Then the isolines
of the flow potential were once more computed (Fig. 5.4a, labeled D). For com-
parison, the elastic transformations F̃ were reset to the initial ones (Fig. 5.4a,
labeled E, large ellipsoid only shown by part.). These are also pure rotations,
but this time the early developed texture has been deleted, too. It is obvious
that the texture information has substatially more influence on the shape of the
isoline than the residual stress field.

This contradicts findings in the literature that attribute the early distortion
of yield surface mainly to the residual stress field (Kraska, 1998, Zattarin et al.,
2004).

An explanation can be found in the nature of shear processes on crystals.
Due to the possible perpetuous lattice rotation, slip systems get active and
inactive on a straight deformation path (Schurig and Bertram, 2003). Thus it
is possible that a macroscopic reversal of stress does not unload but load a small
number of slip systems. In such a case, an elastic domain in a strict sense ceases
to exist.

The high exponent n in the definition of the viscous flow potential (4.86)
results in large values, if a small number of slip systems exceed their critical
stress by a small amount. Thus, the flow potential looses its predictive character
for the elastic domain, if reversal of the process would not lead to total unloading
as reflected by a value of ω̄ < 10−9 which has been shown to be of the order of
magnitude of a single active slip system (5.8).

Fig. 5.7 shows the minimum of the flow potential that is eventually reached
after different amounts of reversed strain. For shear prestrain, it does not fall
below a finite value which depends on the level of prestrain. After the prestrain
stage A, the flow potential does not fall below 1.16× 10−6 (or 0.2% of its value
at a straight continuation).

However, a tensile prestrain shows much smaller minima, indicating unload-
ing of all mechanisms.

The dissipation criterion handles such situations by allowing yield on a few
slip systems that are then filtered out by the critical threshold. Thus, it is more
suitable for such situations.

The sharpening of the outer corner angle reaches further stages earlier in
shear and rolling processes than in tension processes. A similar result has been
obtained in the stress-strain curves, once more indicating that the equivalent
stress/strain are not perfectly suitable for the model.
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5.2 Development of the outer corner angle

In vertex models of plasticity, the outer corner angle of the yield vertex is a con-
stitutive parameter of considerable importance (Christoffersen and Hutchinson,
1979, Gotoh, 1985a,b, Petryk and Thermann, 1997). From the isodissipation
lines, it can be identified using a linear regression analysis in a twodimensional
section of the stress space.

We use plot sheet coordinates in the non-normalized basis given by the
process directions Ai of Tab. 5.3. x = T · Ax and y = T · Ay. The resulting
linear equations, y = mi x+ bi, i = 1, 2 can be retransferred to the deviatoric
Cauchy stress space by

T(x) = x

(
Ax

Ax · Ax

+mi

Ay

Ay · Ay

)

+ bi
Ay

Ay · Ay

(5.10)

Accordingly, the direction of these lines is given by

Bi =
Ax

Ax · Ax

+mi

Ay

Ay · Ay

(5.11)

and the outer corner angle θc (Fig. 5.9) can be calculated from their full con-
traction,

θc = π − 1

2
arccos

B1

‖B1‖
· B2

‖B2‖
. (5.12)
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The intersection of the two regression lines is at

xc =
b2 − b1
m1 −m2

. (5.13)

Using (5.10), the according stress point Tc can be computed. It is regarded as
the idealized vertex if no rounding were present.

Tc =
b2 − b1
m1 −m2

Ax

Ax · Ax

+
m1b2 −m2b1
m1 −m2

Ay

Ay · Ay

(5.14)

The development of θc for different prestrain processes and both criteria has
been plotted in Fig. 5.10. Due to the above explained reasons, the results for
the flow potential are not trustworthy for strains beyond stage A. The results
obtained with the dissipation criterion in Fig. 5.10b start from a smooth initial
surface (θc = 90◦). After a small amount of strain at stage A (ǫlog = 10−3) the
vertex has developed.

From the flow potential, it was not possible to determine the corner angle
for very small prestrains. The reason is that the strong rounding makes a linear
regression inaccurate.

Thus the linear regression confirms the qualitative results of the isoline plots
Fig. 5.4–5.6. At that strain level a second stage of sublinear growth of the outer
corner angle is initiated. However, a saturation is not found.



5.2. Development of the outer corner angle 83

outer corner angle

110

120

130

140

150

160

170

180

190

1 10 100 1000
equivalent prestrain [1e-4]

a
n

g
le

[g
ra

d
]

tens 1e0

shear 1e0

psc 1e0

A

B CDE

a

outer corner angle

110

120

130

140

150

160

170

180

190

1 10 100 1000

equivalent prestrain [1e-4]

a
n

g
le

[g
ra

d
]

tens 1e0

pst 1e0

shear 1e0

A

B CDE

b

Fig. 5.10: Development of the outer corner angle a) in flow potential b) in dissipation



84 5. Simulation-based analysis of yield-vertex development

5.3 Complex strain processes

5.3.1 Shear after unloaded tension

A tension prestrain up to stage A (see Tab. 5.3) was followed by an elastic
unloading process. From that state, the same program as prescribed above for
shear has been performed as a secondary path. Fig. 5.11 shows the resulting
potential and dissipation isolines together with the stress path obtained by this
sequence.

Near the stress path, a secondary vertex can be found. While it is developing,
the prior shape including the primary vertex is dissolved.

The outer corner angle of the secondary vertex has been obtained for a
secondary shear of stage A as 135.5◦. In comparison, shear without prior tension
process at stage A reaches 138.0◦.

5.3.2 Shear immediately after tension

Without intermediate unloading, after tension prestrain up to stage A, strain
was continued by shear processes. Fig. 5.12 shows the resulting potential and
dissipation isolines together with the stress path obtained by this sequence.
Here, the vertex is not removed but turns along with the actual stress point.
The prior shape of the primary vertex has completely transformed (Fig. 5.13).
An outer corner angle of 137.7◦ is finally reached at stage A.

The irregular shape makes a regression analysis difficult in the first stages
of secondary corner development. Thus, based on judgement of the outer cor-
ner angle reached after additional equivalent accumulated logarithmic strain of
ǫlog = 0.001, the secondary vertex develops like the primary one.

5.4 Consequences for a macroscopic vertex model

The analysis of subsequent yield surfaces is possible using the surrogate of iso-
dissipation surfaces in stress space Kraska (1998), Kuwabara et al. (2000).

Using a critical threshold that is equivalent to a plastic offset strain of ap-
proximately 2 × 10−5, the development of a corner near the actual stress point
can be detected. This corner is well developed at strains of 10−3, i.e. at the
typical technical definition of the yield point.

After changing the strain path, a secondary vertex develops. Regardless
whether unloading takes place at the point of strain change, it develops to
similar sharpness as the primary vertex. The vertex tip point in the direction
of the last prestress point in straight as well as in complex processes and has an
approximately conical shape.

For that reason it is justified to speak about a traveling vertex in polycrystal
plasticity, i.e. a vertex that is always immediately present at the actual stress
point on the yield surface.

This assumption has been made in the literature on the vertex effect, mainly
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Fig. 5.11: Development of a secondary vertex with transient unloading
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Fig. 5.12: Development of a secondary vertex without transient unloading
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based on evidence from theoretical considerations. The preceeding investiga-
tions provide a simulation-based foundation.

For the formulation of a flow rule incorporating the vertex effect, it allows
for the following simplifications for a first approximation:

• The direction of prestress characterizes the vertex

• A flow rule is rotationally symmetric with regard to this direction.

• It can be used for proportional and non-proportional processes simultane-
ously.
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6. A MACROSCOPIC VERTEX MODEL

Section Overview

A macroscopic theory of plasticity based on the theoretical considerations of
Chapter 4.3 and the simulation results of Chapter 5 is proposed. It is an exten-
sion of the classical J2 flow theory which is contained as a special case.
Parameters are estimated from additional polycrystal simulations and a numer-
ical scheme for its implementation in numerical applications is proposed.

6.1 Process dependence of dissipation

As shown in Section 4.5, Fig. 4.2, the vertex effect in a macroscopic flow rule
in the presence of a large number of microscopic mechanisms can be modeled
by the following procedure:

• The flow rule additionally depends on the direction in which a stress
process would be continued straight, which will be referred to as the nat-
ural direction M̃N.

• A scalar loading parameter α models the deviation from this direction. In
this manner the rate-independence is maintained.

• In the subspace spanned by the natural direction and the direction of
Mandel’s stress rate at fixed plastic state variables (the loading direction)
M̃N and M̃T with M̃N · M̃T = 0 can be used as a basis. M̃T is called the
tangential direction.

• For convenience, we use the direction cosine as loading parameter which
results in

M̃ =

d
dt

C̃S̃
∣
∣
∣
P,z=const

∥
∥
∥
∥

d
dt

C̃S̃
∣
∣
∣
P,z=const

∥
∥
∥
∥

= αM̃N +
√

1 − α2M̃T,

α = M̃N · M̃.

(6.1)

In a microscopic model the vertex effect affects not only the direction of the
plastic flow but also the size of the plastic zone resp. the volume fraction of
that grains that are in a loading state. The reason is that the active set A is a
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Fig. 6.1: Unloading on kinked paths

function of the process continuation through the loading condition (see Section
4.5).

Assuming that some grains or part of them return to the elastic state if all
slip systems get inactive the according volume fractions are F1 for the plastic
and 1 − F1 for the elastic zone (Fig. 6.1).

The macroscopic internal stress power can be obtained from the zone av-
erages of the zones under Hill’s averaging theorem (Hill, 1952, Krawietz, 1986,
Petryk, 1998), with the Kirchhoff stress τ ,

τ̄ · D̄ = F1τ 1 · D1 + (1 − F1)τ 2 · D2, (6.2)

which by (4.36) can be splitted in elastic and plastic parts,

τ̄ · D̄ = F1

(

τ 1 · D̃1 − (C̃S̃)1 · (P−1Ṗ)1

)

+ (1 − F1)τ 2 · D̃2. (6.3)

Here, elastic behaviour was assumed in zone 2, while zone 1 is elastic-plastic,
and the according flow rule has to be inserted for (P−1Ṗ)1.

A simple assumption that fulfills Hill’s Lemma is the Reuss hypothesis:

τ 1 = τ 2 = τ̄ . (6.4)

Modeling the progressive unloading zone due to kinked process continuations,
the assumption that both zones start from the same state, is natural. Taking
the time derivative of (6.4),

τ̇ i = L̃iτ i + τ iL̃
⊤
i + F̃i

˙̃SiF̃
⊤
i

= L̃iτ i + τ iL̃
⊤
i + F̃i ⋆ C̃[D̃i]

=

[

Iτ i + τ iT + F̃i ⋆ C̃ ◦ 1

2
(I + T)

]

[L̃i]

(6.5)
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one finds the incremental moduli in this equation only depending on state vari-
ables. From the equality of the rates (and not the appropriate objective rates
of (4.15)3), the elastic rates of stretching are equal1

D̃1 = D̃2 = D̃, (6.6)

by which we obtain

τ̄ · D̄ = τ̄ · D̃ − F1C̃S̃ · (P−1Ṗ)1. (6.7)

A comparison with the macroscopic version (4.36) yields

P−1Ṗ = F1 (P−1Ṗ)1. (6.8)

We assume a constitutive transition function

F1 : [−1, 1] → [0, 1], α 7→ F1(α). (6.9)

This derivation is not a strict homogenization approach which would nec-
essarily be based on distinct state variables for the zones and an equation of
evolution for the volume fraction in the finite duration of a process. Instead,
the present model accounts only for the influence of the changing direction of
process on the dissipation by partial unloading. This dissipation modell is ad-
ditional to the history-dependence through the flow rule (P−1Ṗ)1. In contrast,
the classical J2 flow theory has only the latter feature.

For this purpose the dissipation model shall prove valuable for an improved
description of plastic processes on nonproportional process paths in spite of its
simplified nature.

6.2 Process dependence of the flow rule

.
In Section 4.5, a regularization of the multi-mode approach separately for

each constitutive cone lead to a process-dependence of the plastic potential via
the process dependence of the active set.

For many mechanisms like in a polycrystal, this behaviour can be modeled
by a smooth plastic potential for each constitutive cone, i.e. in the limit for
each process continuation.

Accordingly, a nonlinear process-dependence of the plastic potential can be
stated, which is used to enhance the single-mechanism plasticity contained in
the results of Section 4.3. The variables that describe the process continuation,
i.e. M̃N, M̃T, and α are assumed to be given at any instance.

Starting with a (given) macroscopic yield criterion that describes the elastic
domain (4.41),

Φ(C̃S̃′, g) ≤ 0, (6.10)

1 Of course, this model is a rough one. The simplification is the lack of individual state
variables for the zones.
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an associated flow rule results in (4.46)1,

P−1Ṗ = ΠN = −λN∂C̃S̃
Φ. (6.11)

(6.11) is not process-dependent and lacks a flow component parallel to the elastic
domain as existent in the multi-mode theory (see Section 4.5.4). An enhance-
ment by an additional flow component can be derived from

ΠT = −λT∂C̃S̃
ΠT,

ΠT = M̃T · C̃S̃.
(6.12)

The two parts can be summed up to a single plastic potential Π,

P−1Ṗ = −λ∂
C̃S̃

Π, (6.13)

Π =
λN

λ
Φ +

λT

λ
ΠT. (6.14)

Π is a function of (F, z, M̃N, M̃). This includes the crucial influence of
α = M̃N · M̃. A second transition function,

F : [−1, 1] → [0, 1], α 7→ F (α) (6.15)

is used to model the exact dependence on non-straight processes through the
ratios

λN

λ
= F (α),

λT

λ
= 1 − F (α).

(6.16)

Accordingly, we arrive at

P−1Ṗ = −λ∂
C̃S̃

Π

Π̂(C̃S̃, g, M̃N, M̃) = F (α)Φ + (1 − F (α))M̃T · (C̃S̃)′.
(6.17)

Here, (·)′ denotes the deviator. It is sufficient because M̃T is deviatoric.

6.2.1 The associated elastic domain

Following the traveling vertex assumption of Section 5.4 and the results of Sec-
tion 4.5.4, we identify the natural direction M̃N with the direction of the normal
of the elastic domain,

M̃N = ∂
C̃S̃

Φ. (6.18)

Hence, on any radial stress path we find at Φ = 0 a value of the plastic
potential of

Π|Φ=0 = (1 − F (α)) M̃T · (C̃S̃)′. (6.19)
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Accordingly, the plastic potential can also be used as an indicator for the
elastic domain if

M̃T · (C̃S̃)′ = 0. (6.20)

This is the case if the elastic domain is given by the Huber-von-Mises criterion,

Φ(C̃S̃, g) =

√

3

2
(C̃S̃)′ · (C̃S̃)′ − g. (6.21)

In this case

M̃N =
(C̃S̃)′

‖(C̃S̃)′‖
(6.22)

and, thus, (6.20) is fulfilled. The direction of plastic flow is finally

∂
C̃S̃

Π = F (α)
(C̃S̃)′

‖(C̃S̃)′‖
+ (1 − F (α))M̃T. (6.23)

6.2.2 The hardening rule

For the hardening variables we introduce the equation of evolution (4.46)2 in a
suitable way:

g = ĝ(z)

ż = −λ∂gΠ.
(6.24)

6.2.3 Exploitation of the condition of consistency

This result can be utilized for the formulation of the condition of consistency.
For fixed process continuation parameters (4.56) can be applied accordingly

d

dt
Π = F (α)

d

dt
Φ(C̃S̃, g) = 0 (6.25)

allowing for a standard way of determination of the single plastic multiplier with
all consequences that shall be exploited in the sequel.

6.2.4 Thermodynamic consistency

In the formulation of the second law, the Clausius-Planck-Equation (3.31) has
to be fulfilled.

Insertion of the specific stress power (4.36) and the flow rule (6.8), we obtain

ρψ̇ ≤ C̃S̃ ·
[

F̃−1 ˙̃F − F1(α)
(

F (α)M̃N + (1 − F (α))M̃T

)]

= C̃S̃ ·
[

F̃−1 ˙̃F − F1(α)F (α)M̃N

]

.
(6.26)

The second expression is a consequence of the choice of the natural direction
according to (6.20).

For 0 < (F (α)F1(α)) ≤ 1, the right hand side of (6.26) is increased in
comparison to the same equation if the J2 flow theory is adopted.

Accordingly, the second law is fulfilled at least in all cases where it is by the
J2 flow theory.
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F = u ⊗∇0 (3.3) Deformation gradient

F̃ = FP (4.28) Elastic transformation

C̃ = F̃
⊤
F̃ (4.30) Elastic right

Cauchy-Green tensor

Ẽ = 1
2
(C̃ − 1) (3.13) Elastic Green’s Tensor

S̃ = E
1+ν

h
Ẽ + ν

1−2ν
Ẽ · 1 ⊗ 1

i
Isotropic elastic law

Φ(C̃S̃, g) =
q

3
2
(C̃S̃)′ · (C̃S̃)′ − g (6.21) Huber-von-Mises

criterion

0 = Π(C̃S̃, g,M0)

= F (α)Φ + (1 − F (α))MT · (C̃S̃)′
(6.17)2, (6.20)

Plastic Potential
and Consistency

P
−1

Ṗ = −λF1(α)∂
C̃S̃

Π (6.17)1, (6.8)
Flow rule corrected for
plastic zone

g = ĝ(z) (6.24)1 Hardening curve
ż = −λ∂gΠ (6.24)2 Hardening rule

M =
d
dt

(C̃S̃)′|
P,z=const


 d

dt
(C̃S̃)′|

P,z=const




 (4.97) Loading direction

MN = (C̃S̃)′

‖(C̃S̃)′‖
(6.18) Natural direction

α = M · MT (4.102) Loading parameter

MT = M−αMN√
1−α2

(4.101) Tangential direction

Tab. 6.1: Set of equations for the vertex model

6.3 Incremental elastic-plastic law

6.3.1 General formulation

Exploiting the indicator property of the plastic potential Π established in Section
6.2.1, we set φα = Π and procede as in Section 4.3.5 to obtain a rate law for
the rate of the second Piola-Kirchhoff stress,

Ṡ = P ⋆ K̃[Ė]. (6.27)

The incremental moduli tensor is

K̃ = C̃ − g−1
11 Ã ⊗ Ã,

g11 = (Ã · C̃ ∂
C̃S̃

Π − a∂gΠ)/F1(α)

Ã = 2sym(∂
C̃S̃

Π S̃) + C̃[C̃∂
C̃S̃

Π]

= (2I
sS̃ + C̃ ◦ C̃I)[F (α)M̃N + (1 − F (α))M̃T]

a = ∂gΠ
∂g

∂z
.

(6.28)
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For small elastic strain, (6.28) can be simplified (Schurig and Bertram, 2005),

K̃ = C̃ − F1(α) C[F (α)M̃N+(1−F (α))M̃T]⊗C[F (α)M̃N+(1−F (α))M̃T]

(F (α)M̃N+(1−F (α))M̃T)·C[(F (α)M̃N+(1−F (α))M̃T)]+F 2(α) ∂g
∂z

= 2G(Is + ν
1−2ν

1 ⊗ 1)

− F1(α)
4G2 (F (α)M̃N+(1−F (α))M̃T)⊗(F (α)M̃N+(1−F (α))M̃T)

2G(F (α)2+(1−F (α))2)+F 2(α) ∂g
∂z

,

(6.29)

where the last expression is valid for isotropic elasticity.
The existence of a single plastic potential that is also used as a yield criterion

assures the symmetry of the incremental moduli tensor. Accordingly, a rate
potential exists,

U =
1

2
Ė · K[Ė],

Ṡ = ∂
Ė
U ,

K =
∂2U
∂Ė ∂Ė

.

(6.30)

For other measures of stress, (4.69) can be applied to obtain the according
equations.

The incremental moduli as well as the rate potential depend in a nonlinear
manner on α. This allows for modelling a smooth transition from total loading
(α = 1) to total unloading as suggested by Hill (1967).

6.3.2 Plain stress formulation

For twodimensional application like plates and shells (see Section 7), the plane
stress moduli can be obtained using the constraint

ez · Ṡez = 0. (6.31)

The according twodimensional incremental moduli tensor can be obtained as

K̃2 = K̃ − K̃[ez ⊗ ez] ⊗ K̃[ez ⊗ ez]

ez ⊗ ez · K̃[ez ⊗ ez]
. (6.32)

For further use we define

Kii(X) = X · K̃2[X]

= X · C̃[X] − (X · Ã)2

x
−

(

X · C̃[ez ⊗ ez] − (ez⊗ez·Ã)(X·Ã)
x

)2

ez ⊗ ez · C̃[ez ⊗ ez] − (ez⊗ez·Ã)2

x

x =

(

2G(F (α)2 + (1 − F (α))2) + F 2(α)
∂g

∂z

)

F1(α)−1.

(6.33)

We obtain the incremental moduli K11 for X = e1 ⊗ e1 and K33 for X =
sym (e1 ⊗ e2), i.e. the tangential shear modulus.



96 6. A macroscopic vertex model

0

0.5

1

–0.5

0

0.5

1

0.4

0.6

0.8

1

α

H

Fig. 6.2: The incremental modulus K11(H,α)

For the J2 flow theory, F (α) ≡ F1(α) ≡ 1 in the plastic regime leads to
x = 2G + ∂g

∂z
and Ã = 2G M̃N. If M̃N has no shear component, like in the

case of tensile predeformation, X · Ã = 0, and thus K33 = 2G. This excessive
stiffness for strongly nonproportional processes is a major drawback of the J2

flow theory (see Fig. 6.5).

The incremental moduli K11 and K33 have been normalized by the according
elastic values. Figures 6.2 and 6.3 show plots of these moduli as a function of

H =
∂g
∂z

2G
and α. For the determination of the functions F (α) and F1(α) see the

next Section 6.4.

The longitudinal modulus increases steadily with deviation from a propor-
tional process (α = 1) and finally enters the elastic value for the reversed process
(α = −1).

The shear modulus shows different behaviour. In addition to the reversed
process, for α = 1 the elastic modulus is obtained. This seems to be a parellelism
to J2 flow theory. However, one should bear in mind that after a tensile process,
shear cannot be obtained in a process of α = 1. For a total shift to a shear
processes, α = 0 and accordingly the incremental modulus of the vertex model
is much lowered in comparison to J2 flow theory.

Both moduli in general depend on the hardening modulus.



6.4. Parameter estimation by micro-macro-simulation 97

0

0.5

1

–0.5

0

0.5

1

0.2

0.4

0.6

0.8

1

α

H

Fig. 6.3: The incremental shear modulus K∗
33(H

∗, α)

E 123000 MPa ν 0.30
∂g
∂z

0.01E

Tab. 6.2: Material parameters for Copper of the macroscopic model

6.3.3 Rotational symmetric moduli

6.4 Parameter estimation by micro-macro-simulation

To estimate the parameters of the governing equations, a 1000-grain Taylor-
Lin model of a polycrystal was used. The parameters were adopted to the
elastic properties of copper as well as the stress-strain-curve. A strain-controlled
predeformation in a volume preserving tension process was prescribed (cf. Table
5.3). The prestrain reached an equivalent logarithmic strain of 2 × 10−2.

For the macroscopic vertex model summarized in Table 6.1, this state was
assumed as the reference state and thus P = 1 was used. For the smallness
of predeformation, the isotropy of the aggregate was still given. The elastic
parameters were adopted to the known values of copper, as well as the hardening
modulus of a straight continuation. The resulting parameters are summarized
in Table 6.2.

From this state, different continuation processes with an additional shear
component of the strain rate were simulated. As measure of outcome, the stress
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response upon small strain steps (∆ǫlog = 10−5) in different directions as well
as the dissipated power on these processes has been used.

The transition functions F (α) and F1(α) were treated as fit functions and
modeled with piecewise defined functions (Fig. 6.4). In addition, the transition
function leading to the classical J2 flow theory is shown, which is identical to
the Heaviside jump function .

The stress increments following from the continuation paths for the macro-
scopic vertex model and the Taylor-Lin model (with opposite direction of shear
strain to improve readability) show a good agreement (Fig. 6.5).

For comparison the J2 flow theory is shown. Due to the restriction of the
plastic flow in direction of the history stress, it is unable to exhibit the additional
shear component. Thus, the shear stress increments are elastic and by far exceed
the values obtained by the Taylor-Lin model.

The vertex angle θc delimits processes that are nearly dissipation free. It
has been taken from Fig. 5.10b. For α < cos θc, elastic behaviour gives an
acceptable approximation of the material behavior. However, differences can
still be identified.

The exact dependence of the stress and strain increment directions can be
found in Fig. 6.6. Here the deviation of the actual stress increments from

the proportional path, β2 = ∆C̃S̃·C̃S̃

‖∆C̃S̃‖‖C̃S̃‖ has been used. It is compared to

α = ∆C̃S̃·C̃S̃

‖∆C̃S̃‖‖C̃S̃‖

∣
∣
∣
P=const

that is computed under the assumption of elastic be-

haviour and thus directly connected with the strain rate direction. The defin-
ition is in accordance with the other measures of deviation from proportional
path. The improvement by the macroscopic vertex model compared to the J2
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flow theory is obvious.

The sudden decrease in the transition function F (α) even for small devia-
tions from proportional straining reflects the fact that the yield-surface-parallel
component of the plastic flow is absent only for strictly proportional processes.
This additional component is necessary to compensate for the otherwise ob-
served excessive lateral stress increments due to the elastic response.

But these must also not be suppressed completely. 6.6 shows, that only in
a proportional process stress and strain rate keep in line (β2 = 1). For all non-
proportionals paths, the Taylor model predicts stress increment components in
the lateral direction that are of similar size as those in the proportional direction.
The lateral component is also present in the J2 flow theory, but it is much too
large. Accordingly, it dominates over the proportional component, maintaining
the zero level of β2.

For the vertex model, the lowered lateral component restores the influence
of the (negative) proportional component, resulting in a direction of the stress
rate that is not oriented laterally, but inclined backwardly, as observed in the
Taylor model prediction.

In the unloading range, the direction of the actual stress rate approaches a
totally reversed stress process. In the case of J2 theory this happens in a linear
manner, as expected, because in the elastic unloading range α = [−1, 0], α = β2.

The Vertex model has smaller values of β2 because it avoids the large elastic
stress increments and the unloading range is smaller. Still, stress and strain are
in line only for strictly proportional processes.

As a second measure of outcome, the changing dissipation on different con-
tinuation paths is compared. Here, the second transition function F1(α) gains
importance. The dissipation is always larger than the result of the classical
plasticity, in accordance with the second law.

Additionally, zero-lines of the plastic potential Π̂(C̃S̃, g,MN,M) were deter-
mined in stress space (Fig. 6.8) at fixed values of g but for different values of the
loading direction M0. They all intersect at one stress point, (C̃S̃)′. This point
lies on the yield locus defined by Φ = Φ̂((C̃S̃)′, g) = 0. It is the actual stress
reached in the prestrain process, according to the traveling vertex assumption.
The normal of the distinct lines is the process-dependend direction of plastic
flow. One finds that the normal at the actual stress point rotates toward the
direction of strain rate for nonproportional processes.

6.5 Comparisons with Experiments

For a prescribed strain process, the material model has been implemented in the
implicit integration code RADAU5 (Hairer and Wanner, 1996). The stress-strain
curve has been reproduced by linear interpolation of ĝ(z) between sample points
(Fig. 6.9).

In accordance with a nonproportional tension-torsion experiment on a tubu-
lar specimen as reported by Lensky (1960), a complex strain path was pre-
scribed. It includes several stages of loading and unloading, each with a con-
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stant strain rate (Fig. 6.10a, points Oe-Ae-. . . -Fe correspond to Os-As-. . . -Fs
for strain and stress, respectively).

The numerical simulation resulted in the internal variables and the stress
response. For comparison, both the transition functions F (α) by which the
direction of plastic flow is adapted according to the process direction and F1(α)
which does the same for the dissipation, have been adjusted to the Heaviside
function, resulting in the J2 flow theory of plasticity. For both cases, identical
strain processes were used.

At the beginning of each stage, a stress transient can be found. Stress and
strain rate have different directions. Additional straining in the new direction
makes the stress point to run quickly along the yield surface until stress and
strain are parallel (Kuroda and Tvergaard, 1999, Kuwabara et al., 2000). After
that, the direction of the stress rate is constant. This proportional behaviour is
reached at less additional strain with the J2-Theory, as indicated by the smaller
stress level after less strain hardening. However, at the beginning of the next
stage, both results are in line again.

This effect of deviation from coaxiality of stress and strain rate and regaining
after some plastic strain has been labeled delay effect by Lensky (1960)

Fig. 6.10b clarifies the nature of the effect: From every point on the strain
path, the stress scaled by an appropriate factor has been drawn. After a change
of the prescribed strain rate direction, a transient phase with a rotation of the
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stress direction can be seen, that corresponds to the above explanation. The J2

flow theory has a shorter transient.
Qualitatively similar results have been obtained by Gotoh (1985a,c).
For a quantitative comparison we follow the way Lensky (1960) reported his

results. The tension-torsion stress and strain processes have been parametrized
in a twodimensional subspace of the symmetric tensors. As a natural basis, the
components tangential (T) and normal (N) to the strain path were used. In
accordance with the above findings, the normal component has to decay with
further strain. This is in fact the case for both theories. However, the decay
is finished prematurely for the J2-Theory, while a realistic behavior is obtained
with the vertex model (Fig. 6.11).

A second type of experiments has been conducted with smooth nonpropor-
tional paths. By prescription of a circular path in the strain space, hardening
plasticity results in a spiral-shaped stress process (Fig. 6.12(a)). For changing
curvature, the stresses of the competing theories have been plotted together in
Fig. 6.12(b) and 6.13(a). The nonproportional nature of the process results in
increasing deviation of the stress from the respective direction of strain rate.
This effect is more pronounced for smaller radii of curvature.

Accordingly, for nearly proportional processes with curvatures as in Fig.
6.12(b), the J2-theory gives satisfactory results and is thus appropriate for such
processes. An explanation for such behavior can be given in accordance with
Lensky (1960): Based on Fig. 6.11 one can estimate the trace of delay, i.e. the
strain that is necessary to re-obtain proportional behaviour after a kink in the
process path, approx. 0.007. This value is in between the radii of curvature
of the Figures 6.12(b) and 6.13(a), explaining the differences between the two
constitutive approaches. For a radius below 0.007, an approximation using the
J2-theory that is certainly suitable for proportional processes is not appropriate,
while the vertex model yields results as the experiments reproduced in Fig.
6.13(b).
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7. PLASTIC BUCKLING OF A CRUCIFORM COLUMN

Section Overview

The proposed vertex model of plasticity is applied to the torsional buckling of
a cruciform column in the plastic regime. The problem is solved analytically
based on the von Kármán shallow shell theory and the virtual work principle.
Solutions found in the literature are extended for process-dependend incremental
behaviour as typically found in the presence of the vertex effect.

This approach accounts for the often observed problems in assigning the
proper incremental stiffness to such problems. It is shown that a reduced mod-
ulus based on a weighted cross-section average has to be used.

Petryk’s energy criterion of path stability is used in conjunction with the
rate potential to find the stable secondary solution after a bifurcation. Using
the proposed vertex model, a comparison with experimental buckling tests shows
good agreement.

The same applies to a numerical solution based on finite element eigenvalue
buckling.

7.1 The cruciform as a standard example for plastic buckling

Thin walled open structures tend to buckle in the torsion mode under applied
compressive loads. If the applied load exceeds the yield load, the twisted struc-
ture is still in the total plastic state. In contrast the bending mode that governs
very slender columns leads to unloading in the stretched fibres.

Moreover, bending is a completely one-dimensional case without any influ-
ence of the vertex effect. In contrast, in the torsion mode the flanges of the
column show additional twisting and thus change from compression to a com-
bination of compression and shear.

Gerard and Becker (1957, Fig. 5) compared experimental results for cruci-
form columns made out of 2024-T4 Aluminum alloys with analytical approaches.
Various ratios of flange width and thickness were tested. The J2 flow theory
of plasticity and the deformation theory were used to obtain analytical results.
They appeared to favor the deformation theory. These results gave experimen-
tal evidence for certain shortcomings of the J2 flow theory for the first time
(Caner et al., 2002).

Using a nonlinear von Kármán shell theory with an inelastic incremental law,
Hutchinson and Budiansky (1976) showed that the reason is the shear stiffness
in a precompressed column. The J2 flow theory predicts elastic behavior after
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such a change of the strain path. However, by introducing an imperfection
(pretwist) of the column, useful results could be obtained. According to Lubliner
(1990, sect. 5.3) models using thin shells and the J2 flow theory generally exhibit
very strong sensitivity for imperfections.

Black et al. (2002) studied the inelastic buckling behaviour of cruciform
columns used as dissipative elements in earthquake-sustaining steel construc-
tions. They applied a torsion theory enhanced by the consideration of equilib-
rium in the deformed state of an imperfect (pretwisted) column. As a result,
the incremental shear modulus is linked to the (inelastic) compressive modulus,
instead to the elastic modulus as otherwise predicted.

Falgoust (2004) took cruciform columns as an example to establish the exis-
tence of the Wagner effect (Wagner, 1929) in such structures, i.e. the rotation of
the principal stresses with the material in elastic thinwalled structures. This is
the same effect that has been exploited in the treatment by Black et al. (2002).

The plastic cruciform is a standard example for the failure of J2 flow theory
in prediction of buckling loads of perfect structures (Lubliner (1990, sect. 5.3),
Bažant and Cedolin (1991, sect. 8.1), Nguyen (2000, sect. 14.3.2.2)).

7.2 The analytical model

We model the behaviour of the cruciform 7.1(a) by the nonlinear von Kármán
plate theory as proposed in the literature (e.g. Hutchinson and Budiansky, 1976,
Nguyen, 2000). The presentation given in the sequel is valid for shallow shells
as well.

Let x1 and x2 be the in-plane coordinates that parametrize the shell’s mid-
surface, while x3 ≡ z is the thickness coordinate. Accordingly, x2 = (x1, x2)
is the planar position vector component. For differentiation, we use the planar
operator ∇2.

The displacement vector is decomposed in the same way, u2 = (u1, u2),
u3 ≡ w. If the reference coordinates of the shell are given by Z̄(x1, x2), the
planar von Kármán strain acting in the mid-surface is

Ep
2(x2) = ǫ2 +

1

2

(
∇2Z̄ ⊗∇2w + ∇2w ⊗∇2Z̄ + ∇2w ⊗∇2w

)

ǫ
p
2(x2) =

1

2
(u2 ⊗∇2 + ∇2 ⊗ u2).

(7.1)

Plate kinematics are introduced using the tensor of curvature

K(x2) = ∇2w ⊗∇2 (7.2)

and the Bernoulli-Kirchhoff hypothesis resulting in the strain

E2(x2, z) = Ep
2(x2) − zK(x2). (7.3)

We model torsional displacement of a single flange in the x1-x2-plane by an
ansatz

w(x2) = x2 Φ(x1), (7.4)
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and a similar one for a torsional imperfection mode,

Z̄(x2) = x2 Φ̄(x1). (7.5)

For the in-plane displacement, Hutchinson and Budiansky (1976) made the fol-
lowing proposal:

u1 = ǫ0x1

u2 = −(Φ̄Φ + Φ2 − ǫ1)x2

(7.6)

The in-plane shear and the 22 components of the linear and nonlinear part
cancel each other and the midsurface strain tensor is

Ep
2 =

(
ǫ0 + (Φ′Φ̄′ + 1

2Φ′2)x2
2 0

0 +ǫ1

)

. (7.7)

The according tensor of curvature

K =

(
Φ′′x2 Φ′

Φ′ 0

)

(7.8)

gives the planar Green’s strain field in the von Kármán approximation

E2 =

(
ǫ0 + (Φ′Φ̄′ + 1

2Φ′2)x2
2 − Φ′′x2z −Φ′z

−Φ′z ǫ1

)

. (7.9)

By introducing the torsion rate ϕ = Φ̇, the according strain rate field is

Ė2 =

(
ǫ̇0 + (ϕ′Φ̄′ + ϕ′Φ′)x2

2 − ϕ′′x2z −ϕ′z
−ϕ′z ǫ̇1

)

. (7.10)

Application of the plain strain incremental material law (6.32) yields the second
Piola-Kirchhoff stress rate,

Ṡ = K[Ė]

K =
∂Ṡ

∂Ė

Ṡ11 = K11(Ė2)11 + K12(Ė2)22

Ṡ22 = K12(Ė2)11 + K22(Ė2)22

Ṡ12 = K33(Ė2)12

(7.11)

Following Hutchinson and Budiansky (1976) we use the virtual work prin-

ciple in the presence of the normal force N11 =
∫ T

2

−T
2

S11 dz and the twisting

moment M12 =
∫ T

2

−T
2

S12z dz, where the Sij are the according components of

the second Piola-Kirchhoff stress,

∫ L

0

∫ B

0

2M12 δK12 +N11 δ(E2)11 dx2 + P δǫ0 dx1 = 0. (7.12)
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After insertion,

∫ L

0

∫ B

0

∫ T
2

−T
2

−2S12z δΦ
′ +S11

(
δǫ0 + x2

2(Φ̄
′ + Φ′) δΦ′) dz dx2 +P δǫ0 dx1 = 0,

(7.13)
time differentiation of this material equation yields a rate equation for the rates
ǫ̇0 and ϕ = Φ̇,

∫ L

0

(
∫ B

0

∫ T
2

−T
2

[

−2Ṡ12z + S11x
2
2(ϕ

′) + Ṡ11x
2
2(Φ̄

′ + Φ′)
]

dz dx2 δΦ
′

+

[
∫ B

0

∫ T
2

−T
2

Ṡ11 dz dx2 + Ṗ

]

δǫ0

)

dx1 = 0.

(7.14)

By a standard procedure two independend results can be obtained,

∫ B

0

∫ T
2

−T
2

Ṡ11 dz dx2 + Ṗ = 0,

∫ L

0

∫ B

0

∫ T
2

−T
2

[

−2Ṡ12z + S11x
2
2(ϕ

′) + Ṡ11x
2
2(Φ̄

′ + Φ′)
]

δΦ′ dz dx2 dx1 = 0.

(7.15)

Starting from a undisturbed placement on the primary path as given by Φ̄ ≡
Φ ≡ 0, and using Ṡ12 = K33Ė12 = −K33zϕ

′, the bifurcation equation

∫ L

0

∫ B

0

∫ T
2

−T
2

[
2K33z

2 + S11x
2
2

]
ϕ′ δΦ′ dz dx2 dx1 = 0 (7.16)

has a solution which is independend of the actual shape of the eigenmode ϕ.

7.3 The valid reduced modulus

The choice of the valid modulus K33 has been of major interest to research, due
to the finding that the elastic shear modulus as predicted by the J2 flow theory
(see Section 6.3) overestimates the experimental results.

For the proposed vertex model, K33 = K33(α) is a function of the process
continuation, and in particular, of the loading direction α (6.33). Its determi-
nation is beyond the scope of classical treatments of this problem.

In the proportional fundamental (primary) path before buckling occurs, the
natural direction is given by

M̃N =
1

√
2
3 (ǫ̇20 + ǫ̇0ǫ̇1 + ǫ̇21)





− 2
3 ǫ̇0 − 1

3 ǫ̇1 0 0
0 + 2

3 ǫ̇0 + 1
3 ǫ̇1 0

0 0 ǫ̇0−ǫ̇1
3



 . (7.17)
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The secondary path’s additional twisting mode from (7.10) gives the strain rate
deviator

Ė′ =





− 2
3 ǫ̇0 − 1

3 ǫ̇1 0 0
0 + 2

3 ǫ̇0 + 1
3 ǫ̇1 0

0 0 ǫ̇0−ǫ̇1
3





− z





2
3x2ϕ

′′ ϕ′ 0
ϕ′ − 1

3x2ϕ
′′ 0

0 0 − 1
3x2ϕ

′′





(7.18)

and accordingly

M̃0 =
1

√
2
3 (ǫ̇20 + ǫ̇0ǫ̇1 + ǫ̇21 + z2x2

2ϕ
′′2) + 2z2ϕ′2

[





− 2
3 ǫ̇0 − 1

3 ǫ̇1 0 0
0 + 2

3 ǫ̇0 + 1
3 ǫ̇1 0

0 0 ǫ̇0−ǫ̇1
3





− z





2
3x2ϕ

′′ ϕ′ 0
ϕ′ − 1

3x2ϕ
′′ 0

0 0 − 1
3x2ϕ

′′



]

(7.19)

Thus the direction parameter varies in the cross-section. With µ = ǫ̇1
ǫ̇0

,

α =
1 + µ+ µ2 − zx2

ϕ′′

ǫ̇0
[− 7

6 − 1
3µ]

√

1 + µ+ µ2

√

1 + µ+ µ2 + z2x2
2

(
ϕ′′

ǫ̇0

)2

+ 3z2
(

ϕ′

ǫ̇0

)2
(7.20)

For a uniaxial deformation process, µ = ǫ̇1 = 0 and we obtain

α =
1 + 7

6zx2
ϕ′′

ǫ̇0
√

1 + z2x2
2

(
ϕ′′

ǫ̇0

)2

+ 3z2
(

ϕ′

ǫ̇0

)2
. (7.21)

Hutchinson and Budiansky (1976) proposed a linear x1-dependence of the
bifurcation eigenmode,

Φ′ = Θ ⇔ ϕ′′ ≡ 0, ϕ′ = θ (7.22)

(see Fig. 7.1(b)), which further reduces the result to

α =
1

√

1 + 3z2
(

θ
ǫ̇0

)2
. (7.23)

This arbitrariness is justified by the shape-independence of the bifurcation equa-
tion (7.16).
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The only remaining variability is in z-direction. It has been plotted in Fig.
7.2 for different values of θ

ǫ̇0
= 2q, q = 0 . . . 8. Obviously, on the midsurface

z = 0, α = 1. There is a range in the vicinity of the midsurface where the J2

flow theory (which is characterized exactly by α = 1) is a good approximation.
Its thickness shrinks with growing dominance of the buckling mode. For the
limit case, we obtain

lim
θ

ǫ̇0
→∞

α =

{
1 at z = 0 only
0 almost everywhere

. (7.24)

We integrate the essential part of (7.16)2,

∫ B

0

∫ T
2

−T
2

[
2K33z

2 + S11x
2
2

]
dz dx2 =

BT 3

6
K̄33 + S11

TB3

3
= 0 (7.25)

where the reduced shear modulus K̄33 has been obtained by application of the
mean value. It can be explicitely obtained by substitution,

z = (3u)
1
3

α =
1

√

1 + 3
5
3u

2
3

(
θ
ǫ̇0

)2

K̄33 =
24

T 3

∫ T3

24

0

K33(α) du.

(7.26)
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The result for the critical buckling load is

Sc
11 = −1

2
K̄33

(
T

B

)2

. (7.27)

For z-independent modulus, K̄33 = K33. The latter is the classical result. It has
been used with different choices for the modulus K33.

Gerard and Becker (1957) preferred the incremental modulus from J2 defor-
mation theory due to its better fitting of experimental results than the elastic
shear modulus. Hutchinson and Budiansky (1976), Black et al. (2002) used the
J2 flow theory in conjunction with a preexisting imperfection that cured the
problem raised by the excessive lateral stiffness by application of the plastic
tangential modulus. Based on such experience, Bažant and Cedolin (1991, sect.
8.1) propose to use the tangential modulus on the secondary path for structural
buckling. This algorithm improves the obtained results at the cost of violating
the principle of determinism: The process continuation after the bifurcation
influences the bifurcation point itself.

The proposed vertex model automatically uses a well defined reduced mod-
ulus on a strictly deterministic basis. The exact function for K̄33 has been inte-
grated numerically for different values of θ

ǫ̇0
and T at perfect plastic (g = const)

behaviour and can be found in Fig. 7.3.
With increasing influence of the buckling mode, the reduced shear modulus

decreases. Fig. 7.2 shows, that the lowest possible value can be obtained in the
limit for an infinite ratio θ

ǫ̇0
leading to α = 0 almost everywhere. An increasing

thickness of the shell leads to smaller reduced moduli.
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7.4 Determination of the secondary path by the rate functional

Section Overview

In analogy to the threedimensional theory, the virtual work principle is trans-
ferred into a rate problem which is submitted to Petryk’s energy criterion of
path stability. It results in a selection criterion for the secondary path and
allows for a final exploitation of the buckling equation (7.27).

For rate-independent materials with a rate potential, insertion of the incre-
mental material law (6.32) starting from the primary path without torsional
displacement results in a rate functional

H(ǫ̇0, ϕ) =

Z L

0

 Z B

0

Z T
2

− T
2

��
2K33z

2 + S11x
2
2

� (ϕ′)2

2
+ K11

ǫ̇20
2

�
dz dx2 + Ṗ ǫ̇0

!
dx1.

(7.28)

(7.28) is at the same time the second order time derivative of the energy
consumption (Petryk, 1991, Nguyen, 2000),

1

2
∆Ë =

d2

dt2

∫ t

0

∫ L

0

(
∫ B

0

(

2M12 K̇12 +N11 (Ė2)11

)

dx2 + P ǫ̇0

)

dx1 dt

= H(ǫ̇0, ϕ).

(7.29)

Accordingly, processes that do not minimize the rate functional but give only a
saddle point are not stable (Petryk, 1991, 2000a, Fedelich and Ehrlacher, 1997).

The variation with respect to the two variables ǫ̇0, ϕ(x1) yields (7.14). By
the previously used ansatz for the eigenmode, ϕ′ = θ, the integration results
after division by L in

H(ǫ̇0, θ) =
TB3

3

[

S11 +
1

2

(
T

B

)2

K̄33

]

θ2

2
+BT K̄11

ǫ̇20
2

+ Ṗ ǫ̇0. (7.30)

Here, a reduced longitudinal modulus

K̄11 =
1

T

∫ T
2

−T
2

K11 dz (7.31)

has been introduced similar to (7.26).
In minimizing, we calculate the partial derivatives

H,ǫ̇0 = BT K̄11 ǫ̇0 + Ṗ = 0

H,θ =
TB3

3

[

S11 +
1

2

(
T

B

)2

K̄33

]

θ = 0,
(7.32)

leading to a minimum at θ = 0, BT K̄11 ǫ̇0 = −Ṗ . This is exactly the primary
path.
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Fig. 7.4: Plot of the second variation of the energy functional BT K̄11

Ṗ2 H(x, y) which
governs the buckling behaviour of the cruciform

The minimum exists, if the second variation is positive, i.e. the bracketed
term is positive. At the critical load, the minimum and the related equilibrium
state get indefinite. For a further increasing compressive load an instable process
results.

We represent the rate functional in a normalized way,

H(x, y) =
BT

R2

[
Sc

11

3
(1 −Q)

x2

2
+ K̄11

(
y2

2
+ y

)]

, (7.33)

Sc
11 = 1

2

(
T
B

)2
K̄33, Q = −S11

Sc
11

, R = BT K̄11

Ṗ
, x = BRθ, y = Rǫ̇0. The para-

meter Q ∈ {0.9, 1, 1.1} selects examples of subcritical, critical and postcritical
loads. At the critical point, the quadratic form changes from the elliptic to
the hyperbolic range, supporting the above finding of lost stability. Fig. 7.4
shows contour lines of the normalized rate functional for the mentioned cases,
assuming a constant value of K̄11 and of K̄33, which corresponds to replacing H
by its second variation.

In the critical case, an indifferent situation can be found, assigning a mini-
mum to every path with y = −1 ⇒ BT K̄11 ǫ̇0 = −Ṗ .
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In considering the dependence of K̄11 on α and thus on θ
ǫ̇0

= 1
B

x
y
, the picture

differs somewhat. The rate potential at the critical load can be written as

Hc =
Ṗ 2

BT K̄11
︸ ︷︷ ︸

f( x
y
)

.

(
y2

2
+ y

)

, (7.34)

Accordingly, the minimum of f(x
y
) is reached by an independent adjustment of

x
y

at a given rate of applied force, Ṗ .
As shown in Fig. 6.2, K11 grows with decreasing α. Thus, the limit state

x

y
→ ∞ ⇒ α→ 0 (7.35)

reaches the minimum almost everywhere. As a consequence, K̄11 = K11, K̄33 =
K33.

For the postcritical case, the minimum has changed into a saddle point,
which is a typical result for buckling problems. Such results have also been
reported for other structural stability problems, namely the discrete Shanley’s
column (Petryk, 1991).

7.5 Comparison with buckling experiments

To asses the capability of the proposed vertex model, the minimizing incremental
shear modulus has been inserted into (7.27),

S11 = −1

2
K̄33(α = 0)

(
T

B

)2

. (7.36)

The experimental results reported by Gerard and Becker (1957) for 2024-T4
Aluminium by plotting the buckling reduction factor

η(S11) =
S11

Sel
11

=
K̄33

Kel
33

(7.37)

show the reduction of the critical stress compared to the elastic theory. It is
easily obtained if the reduced shear modulus K̄33 is given. As noted before, the
J2 flow theory is unable to reproduce this difference.

To evaluate (7.37), an analytical expression has been adopted for the hard-
ening behaviour, as proposed by Papadopoulos and Lu (1998).

g(z) = σ0
Y + q(z)

q(z) = H0z +
(
σ∞

Y − σ0
Y

)
(1 − exp(−ζz)) .

(7.38)

The graph has been shown in Fig. 7.5 and the parameters can be found in
Tab. 7.1. For different values of z, (7.37) has been evaluated. These values are
typically in the transitory nonlinear hardening range.
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E 73789 MPa ν 0.33
σ0

Y 200 MPa σ∞
Y 350 MPa

H0 8060 MPa ζ 8042

Tab. 7.1: Material data for the macroscopic vertex model for 2024-T4 Aluminum
(Adapted from Papadopoulos and Lu, 1998)
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Fig. 7.5: The hardening curve of 2024-T4 (Al)
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Fig. 7.6: The buckling reduction factor η of the vertex model (analytical solution from
(7.37) and FEM solution from (7.43)) in comparison to experimental data by
Gerard and Becker (1957), added mean values for every cluster. Error bars
denote double standard deviation.

To compare the results with the experimental observations, the experimental
data from Gerard and Becker (1957) have been digitized and the units converted
to the SI system. In addition, clusters of repeated tests with similar results have
been identified. For each cluster, the mean value and the standard deviation
have been computed. Fig. 7.6 reports this data, together with the respective
result of the vertex model.

The latter exhibits a hardening-dependent reduction of the critical buckling
load compared to the elastic response. The theoretical prediction in the plastic
regime (for which the line has been drawn) is within the double standard de-
viation around the centers of gravity of the experimental clusters. As further
experimental data is lacking, an extrapolation to a larger range of strain has
not been done.

From the structure of the gouverning equations (7.37),(7.38), it is clear that
in the linear hardening range the reduced modulus is constant, leading also to
a constant value for the buckling reduction factor.

7.6 Numerical approach

Section Overview

A numerical treatment of the cruciform column based on the torsion dominant
incremental moduli α = 0 and eigenvalue buckling in an iterative approach
confirms the above results.
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Fig. 7.7: FEM model of the cruciform column

7.6.1 The structural model

The cruciform column has been modelled with the finite element code ABAQUS.
Bi-linear four-node shell elements with reduced integration (S4R) elements have
been used.

As for the boundary conditions, each flange has been modeled simply sup-
ported at the bottom end. The upper end edges have been constrained to follow
the rigid body motion of the center line end point which was additionally con-
strained excluding rotations except in torsion mode. Thus bending-like buckling
has been prevented. At the upper edges a uniform compressive line load has
been applied. A typical mesh is shown in Fig. 7.7.

7.6.2 Eigenvalue buckling

For the numerical approach, an equivalent to the bifurcation equation (7.25)
has to be found.
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A solution for a material of the rate type is supplied by the eigenvalue buck-
ling analysis. For a prescribed unit load case, the load factor can be obtained
from the general eigenvalue problem of the incremental system stiffness matrix,

(

K
d

+ λK
g0

)

· ∆v̇ = 0. (7.39)

Besides the definition of geometry and load case, the user has to supply the
appropriate incremental stiffness tensor.

According to the vertex model, all directions othogonal to M̃N are equiv-
alent, as the theory automatically adjusts to each of them. Such complicated
computations are impossible with the eigenvalue buckling analysis where the
secondary direction and thus M̃T are not known in advance. From (6.29),

K̃p ∝
(

F (α)M̃N + (1 − F (α))M̃T

)

⊗
(

F (α)M̃N + (1 − F (α))M̃T

)

= F 2 M̃N ⊗ M̃N + F (1 − F ) symM̃N ⊗ M̃T + (1 − F )2M̃T ⊗ M̃T

(7.40)

yields different contributions in the M̃N and the M̃T directions. These are
independent from the particular choice of M̃T according to the construction of
the vertex model. A rotational symmetric incremental plastic stiffness tensor

K̃
rot
p = F 2 M̃N⊗M̃N+F (1−F ) symM̃N⊗

(∑

M̃Ti

)

+(1−F )2
∑

M̃Ti⊗M̃Ti

(7.41)
can be obtained using all 5 symmetric tensorial direction perpendicular to M̃N,

called M̃Ti. Thus the matrix representation in the tensorial base
{

M̃N, M̃Ti

}

of K̃p is changed according to











a b 0 0 0 0
b c 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0











→











a b b b b b
b c 0 0 0 0
b 0 c 0 0 0
b 0 0 c 0 0
b 0 0 0 c 0
b 0 0 0 0 c











(7.42)

allowing for an arbitrary secondary path with a constant incremental stiffness.
For the α-dependence we choose the minimizing result for α = 0 (7.35).

7.6.3 Iterative buckling solution

The solution process is complicated by the persisting dependence of the incre-
mental stiffness on the hardening modulus ĥ(z) = ∂g

∂z
that is linked with the

stress in the plastic state due to the critical stress ĝ(z).
Accordingly, an iterative approach is mandatory. Considerable simplifica-

tion is achieved by keeping the stiffness constant and iterating over geometric
parameters. For a fixed length L and arm width B of the cruciform, a simple fix
point iteration for the thickness T is used (see Table 7.2). The update equation
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1. Fix a value of z and compute the hardening modulus h(z), the
rotationally symmetric incremental stiffness K̃e + K̃

rot
p and the

equivalent stress g(z). Estimate the initial thickness T0.

2. Create the FEM model for the given geometry and material pa-
rameters and compute the buckling load factor λi. Being a line
load, it determines the uniaxial stress σi = λi

Ti
.

3. From the analytical result, compute the next iterate for the Thick-

ness, Ti+1 = Ti

(
g(z)
σi

)2

.

4. Until convergence of T (and thus λ) repeat from 2.

Tab. 7.2: Iterative solution of the buckling problem

is based on the analytical buckling equation (7.27). It is found that a single
iteration step is sufficient to obtain four significant figures of the thickness.

To facilitate the iterative approach, a PYTHON (www.python.org) script
has been implemented that computes the incremental stiffness matrix, uses the
preprocessor ABAQUS CAE (Abaqus, Inc., 2005) in the model building process,
submits the created jobs to ABAQUS ANALYSIS, and displays the results. The
reading of the buckling load cannot be automated in the same fashion as it is
not included in the machine readable ABAQUS output database. Thus it has
to be read from the displayed result and typed in the iteration script manually
by the user.

Typical buckling modes for the vertex model and the according elastic be-
haviour can be found in the Figures 7.8–7.9. The differences between elastic
and inelastic buckling shapes are marginal. Obviously, the shape is dominated
by the shell kinematics and the support of the different edges and not by the
material equations.

Both the first and the second mode have a torsion angle varying with the
length coordinate. In contrast, analytical torsion theory would predict a con-
stant twist per unit length.

The resulting buckling loads have been converted to stresses and with the
definition of the buckling reduction factor

η =
λvertex

Tvertex

λelastic

Telastic

(7.43)

the results can be added to the diagram in Fig. 7.6, reproducing the analytical
curve at a little too high level.

Similar results have been obtained by Papadopoulos and Lu (1998). How-
ever, their computational approach is based on Naghdi’s version of finite plas-
ticity with a symmetric plastic state variable. Moreover, a return-mapping
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(b) Mode 1 elastic

Fig. 7.8: First buckling modes for the vertex model and for elastic behaviour
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Fig. 7.9: Second buckling modes for the vertex model and for elastic behaviour
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algorithm is used that artificially introduces a vertex into smooth models of
plasticity if only the time step is large enough.
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8. CONCLUSIONS AND OUTLOOK

In the present work the difference between the multi-mode theory of plasticity
and its regularized counterparts have been worked out to introduce the ver-
tex effect, i.e. the dependence of the plastic flow on the direction of process
continuation, whether proportional or not.

The name of the effect is based on the theoretical prediction of vertices in
subsequent yield surfaces after prestrain processes. Using a polycrystal simula-
tion with the Taylor-Lin model, it has been shown that such corners or vertices
are formed due to the interaction of many single mechanisms.

Based on a single mechanism, a phenomenological vertex model has been
proposed. It is an extension of the classical J2 flow theory which is enhanced
with yield-surface parallel terms in the flow rule. In addition, it is shown that the
resulting plastic potential can be used as a yield surface. Thus the prerequisites
for the existence of an incremental rate potential are fulfilled.

Its parameters, namely the transitory behaviour upon gradual or sudden
strain path changes have been identified from a comparison with homogenized
results of the above mentioned polycrystal model.

An experimental verification has been given by tension-torsion tests in hollow
tubular copper specimens as reported by Lensky (1960) with obvious improve-
ments in the transient results after a sudden strain path change as well as in
smooth non-proportional processes. This delay effect is properly predicted by
the vertex model.

A possible structural application has been demonstrated by the example of
the plastic buckling of a cruciform column. Besides an enhancement of the clas-
sical analytical result to the present case that is characterized by a variation
of the incremental stiffness in the columns cross-section, the buckling reduction
factor has been computed using an energetic stability analysis based on the
rate functional. In contrast to the J2 flow theory, experiments conducted by
Gerard and Becker (1957) have been reproduced within the experimental accu-
racy. The same result has been obtained by a finite element eigenvalue buckling
analysis.

The relevance of the vertex effect is in processes where small additional
deformations are of importance. In large strain applications as in the forming
analysis, other effects gain more importance like the development of microstruc-
tural parameters based on texture or dislocation dynamics. Such behaviour is
not implemented in the present vertex model.

Only the most simple isotropic hardening effect has been introduced in the
present work. A more sophisticated model could introduce anisotropic harden-
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ing which accounts for another source of nonproportional effects as well as for
proper cyclic behaviour by introduction of a back stress.

The present version has no isotropic incremental moduli (similar to the J2

flow theory), but the underlying theory is nevertheless isotropic. An anisotropic
extension would impose the need for a redefinition of the natural direction of
plastic flow on a proportional path.
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Ẽ (4.30) Elastic Green’s strain
Ex (3.25) Generic work conjugate strain tensor

F F (3.3) Deformation gradient

F̃ (4.28) Elastic transformation
F1 (6.2) Transition function for dissipation
F (6.15) Transition function for plastic flow

G g (4.37) Dual hardening variables
gαβ (4.55) Consistency Matrix

I I (6.28) Identity on second order tensors
I
S (6.28) Identiry on symmetric second order tensors

J J (3.6) Jacobian of F

K K (4.66) Incremental elastic-plastic moduli tensor

K̃ (4.66) Incremental elastic-plastic moduli tensor

L L+ Set of tensors with positive determinant
L (3.11) Spatial velocity gradient

L̃ (4.35) Apparent elastic velocity gradient



138 Important Symbols

M M̃ (4.97) Loading direction

M̃N (4.99) Natural direction

M̃T (4.99) Tangential direction

P P (4.27) Plastic transformation

S S (3.28) Second Piola-Kirchhoff stress

S̃ (4.30) Elastic second Piola-Kirchhoff stress
Sx (3.25) Generic work conjugate stress tensor

T T (3.19) Cauchy stress
T0 (3.22) First Piola-Kirchhoff stress
T (6.28) Transposes a second order tensor

U U (4.19) Rate potential

Z z (4.37) Primal Hardening variables

α α (4.102) Loading parameter

ǫ ǫlog Logarithmic equivalent strain

λ λα (4.45) Plastic multipliers

π Π̂ (4.39) RHS of flow rule
Π (6.14) Process dependent plastic potential

τ τ (3.25) Kirchhoff stress
τα (4.74) Schmid stress
τ c
α (4.74) Critical Schmid stress

φ φ (4.38) Yield limit

ω ω (4.86) Viscous flow potential
ω̄ (5.5) Homogenized flow potential



BIBLIOGRAPHY

Abaqus, Inc. ABAQUS, Version 6.5. 2005.

L. Anand and M. Kothari. A computational procedure for rate-independent
crystal plasticity. J. Mech. Phys. Solids, 44(4):525–558, 1996.

S. Aris. Simulation von Textur und texturbedingten Kristallitmikrodehnungen
kubischer Werkstoffe und Vergleich mit experimentellen Daten. Diss., TU
Berlin, 2000. Berichte des Hahn-Meitner-Instituts Berlin, HMI-B 570, ISSN
0936-0891.

M. Arminjon. A regular form of the schmid law, application to the ambiguity
problem. Textures and Microstructures, 14-18:1121–1128, 1991.

R.J. Asaro. Micromechanics of crystals and polycrystals. Advances in Applied
Mechanics, 23, 1983.

S.B. Batdorf and B. Budiansky. A mathematical theory of plasticity based on
the concept of slip. NACA Technical Note 1871, NACA, Washington, 1949.
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