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Summary

Experimental and computational examinations of the trajectories of spiral

wave cores were performed in excitable systems whose excitability is modu-

lated in proportion to the integral of the activity in a sensory domain. The

experimental observations were carried out using the light-sensitive Belousov-

Zhabotinsky (BZ) reaction. The light-sensitive catalyst was Ru(bpy)2+
3 . For

this reaction an increase in light results in a decrease in excitability. The nu-

merical work was performed using a generic piecewise-linear excitable system

model.

The sensory domains used were in the shape of either equilateral or isosceles

triangles. The behaviour of the spiral core was determined as a function of the

domain size and the ratio of the base length and height of the triangle. These

types of domain exhibit a distinctly different series of bifurcations as compared

with other domain geometries studied so far on account of this domain shape

having vertices opposite sides. In particular, novel forms of lobed limit cycles

occur which are destroyed and then re-form as the domain size is varied.

We also introduce the concept of express and stagnation zones which are

regions where the trajectory moves particularly rapidly or slowly, respectively.

Although these regions can be very prominent for triangular domains, they

also occur for other domain geometries such as squares. They are of interest

in the manipulation of spiral waves since, like stable fixed points, stagnation

zones are to be avoided if the spiral wave is to be moved rapidly from one place

to another.

To give a global picture of the behaviour of the spiral core for a particular

domain, a vector plot indicating the spiral core drift velocity on a lattice of

points in and around the domain is generally used. Such plots can be rather

complicated and to facilitate their interpretation we have developed a colour-
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coding scheme for the arrows and the background based on the normalized

divergence of the vector field at each point. This makes it easier to distinguish

between attracting and repelling limit cycles and makes stagnation zones par-

ticularly prominent.

Finally, we have formulated a simple method which is referred to as the

plane wave approximation (PWA) that can be used to account for some of the

behaviour seen far from the sensory domain. In this approach, the parts of

the spiral wave crossing the sensory domain are treated as a series of plane

waves. The PWA allows one to determine the directions in which express and

stagnation zones lie far from the domain, and also account for how prominent

these zones are. The limit cycles that the spiral core tends to are sometimes

composed partly of attracting express zones. The PWA can also be used to

find the distances of these regions from the domain.



Zusammenfassung

Gegenstand der vorliegenden Dissertation ist die Untersuchung der Steuerung

von selbstorganisierten Raum-Zeit-Strukturen in einem chemischen System.

Als Untersuchungsgegenstand wird die Belousov-Zhabotinsky-Reaktion ver-

wendet, die, ein sowohl experimentell als auch theoretisch gut erforschtes Mod-

ellsystem zur Analyse der Strukturbildung in erregbaren Medien darstellt. Bei

dieser Reaktion können aufgrund der nichtlinearen Dynamik der Reaktion-

sprozesse in Verbindung mit Diffusion eine Vielzahl von Erregungsmustern

auftreten. Propagierende Erregungswellen sind in ein-, zwei- und dreidimen-

sionalen Systemen beobachtet worden. Im Rahmen der Arbeit sind dabei spi-

ralförmige Erregungswellen von Interesse, die mittels Rückkopplung kontrol-

liert werden. Das Verständnis der komplexen Dynamik solcher modulierten

Spiralwellen ist eine Grundvoraussetzung für die Entwicklung von Methoden

zur Kontrolle dieser Spiralwellen, die in biologischen Systemen eine hohe An-

wendungsrelevanz (Spiralwellen auf dem Herzmuskelgewebe) besitzen.

Die vorliegende Arbeit untersucht die Trajektorien von Spiralwellenkernen

in erregbaren Systemen, wobei die Erregbarkeit des gesamten Systems (globale

Rückkopplung) in Abhängigkeit von der Aktivität eines festgelegten Raum-

bereiches (sensorische Domäne) moduliert wird. Um dies zu erreichen wur-

den die Experimente mit der lichtempfindlichen BZ-Reaktion durchgeführt,

bei der die Lichtempfindlichkeit des Katalysators Ru2+
3 genutzt wird. Ru2+

3

wirkt in der Reaktion als Inhibitor und somit kann über die Lichtintensität

die Erregbarkeit des Systems reguliert werden. Eine Erhöhung der Lichtinten-

sität bewirkt dabei eine Abnahme der Erregbarkeit. Parallel zu den Experi-

menten wurden die Ergebnisse mit numerischen Simulationen der entsprechen-

den Reaktions-Diffusionsgleichungen verglichen.

Als geometrische Form der sensorischen Domäne sind gleichseitige und gle-
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ichschenklige Dreiecke verwendet worden. Das Verhalten des Spiralwellen-

kerns wurde zum einen als Funktion der Domänengröße und zum anderen in

Abhängigkeit vom Verhältnis der Basislänge zur Höhe des Dreiecks bestimmt.

Die verwendeten Geometrietypen der Domäne ergeben eine Bifurkationsserie,

die im Vergleich zu den bisher untersuchten Domänengeometrien (Kreise, El-

lipsen, Quadrate, Rechtecke) große Unterschiede aufweist. Die Ursache liegt

darin, dass jedem Eckpunkt des Dreiecks eine Seite gegenüberliegt. Insbeson-

dere treten neuartige Formen von Grenzzyklen auf, die durch Variation der

Domänengröße zerstört und dann neu ausgebildet werden können.

Es wurde das Konzept von Beschleunigungs- und Stagnationszonen einge-

führt. Das sind Bereiche in denen sich die Trajektorien sehr schnell bezieh-

ungsweise sehr langsam bewegen. In den Stagnationszonen kann es sogar

dazu kommen, dass die Spiralkerne an einem Punkt verharren, das heißt es

befinden sich dort stabile Fixpunkte. Für die dreieckigen Domänen erweisen

sich die Beschleunigungs- und Stagnationszonen von großer Bedeutung, sie

sind dort stärker ausgeprägt als in den anderen Domänengeometrien in denen

sie vorkommen (Quadrate). Diese Zonen sind bei der Manipulation von Spi-

ralwellen von Interesse, denn wenn eine Spiralwelle mit hoher Geschwindigkeit

von einem Ort zum anderen bewegt werden soll, erweisen sich stabile Fix-

punkte und Stagnationszonen als Hindernis.

Um eine Übersicht über das Verhalten von Spiralkernen für eine spezielle

Domäne zu geben, wurde ein Vektorfeld berechnet, dass die Geschwindigkeit

der Spiralkerndrift auf einem Gitter der Domäne sowie ihrer unmittelbaren

Umgebung darstellt. Solche Vektorfelder können unter Umständen sehr kom-

pliziert und somit auch schwer zu deuten sein. Zur Interpretationserleichterung

wurde eine Farbcodierung entwickelt, die auf der normalisierten Divergenz des

Vektorfeldes für jeden Punkt basiert. Dieses Programm erleichtert die Unter-

scheidung zwischen anziehenden und abstoßenden Grenzzyklen und hebt die

Stagnationszonen deutlich hervor.

Desweiteren wurde eine einfache Methode entwickelt, welche wir als Plane

wave approximation (PWA) bezeichnen, die zur Charakterisierung der Spi-

ralkerndrift fern der Domäne dient. Diese Methode kann für beliebige Do-

mänengeometrien benutzt werden. Dabei wird angenommen, dass die Teile

der Spiralwelle, welche die Domäne durchkreuzen eine Serie von ebenen Wellen
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bildet. Die PWA ermöglicht es dann die Richtungen zu bestimmen, in der

Beschleunigungs- und Stagnationszonen fern der Domäne liegen. Außerdem

kann die Stärke des Einflußes dieser Zonen auf die Bewegung des Spiralkerns

bestimmt werden. Die Grenzzyklen, auf dem sich der Spiralkern bewegt, setzen

sich manchmal (teilweise) aus anziehenden Beschleunigungszonen zusammen.

Die PWA ist weiterhin in der Lage den Abstand dieser Bereiche zur Domäne

anzugeben.



Chapter 1

Introduction

This thesis is concerned with a certain type of pattern formation and its sub-

sequent manipulation. Pattern formation is the spontaneous appearance of

a non-uniform distribution which is referred to as a ‘pattern.’ Patterns ap-

pear in a wide variety of systems such as fingerprints, stripes of a tiger or

zebra [1], spots of a leopard [2], galaxies and stars [3], nerve conduction [4],

heart muscle [5] and aggregating slime-mould cells [6] as illustrated in Fig. 1.1.

Figure 1.1: Examples of pattern formation in nature. From [7]

9
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Pattern formation occurs as the result of the uniform (unpatterned) state

becoming unstable when the system is driven away from its stable uniform

state by a large disturbance. The patterns can be either stationary like in

animal coats or moving like the rotating spiral waves we will be considering.

In both cases the system is nonlinear and needs to be maintained far from

equilibrium. The patterns result from the interplay between local dynamical

processes and diffusive transport.

The most important example of stationary pattern formation is the Tur-

ing mechanism [8]. Alan Turing proposed a simple reaction-diffusion system

describing chemical reactions and diffusion to account for morphogenesis, i.e.,

the development of form and shape in biological systems..

Both Turing patterns and the non-stationary patterns we will be studying

occur in reaction-diffusion systems. These are governed by equations of the

form
∂u

∂t
= D∇2u + f(u) (1.1)

in which the dependent variables u and the reaction terms f(u) are vectors of

quantities and D is a diagonal matrix of diffusion coefficients.

1.1 Travelling waves

The simplest type of non-stationary patterns take the form of travelling waves.

Such waves can be periodic or non-periodic. In one dimension, non-periodic

waves can take the form of either pulses or kinks. As illustrated in Fig. 1.2,

pulses leave the state of the system unchanged after they have passed. With

kinks, the state of the system ahead of the wavefront is different from the state

behind the wavefront.

����� ����

Figure 1.2: Types of non-periodic waves.

One of the simplest and most well-known reaction-diffusion equations is
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the Fisher equation [9]. It takes the form

∂u

∂t
= D∇2u + run(umax − u) (1.2)

where D is the diffusion coefficient and r is a constant. It was originally

formulated in one-dimension with n = 1 to model the propagation of genes,

but it also applies to the spread of a population of animals and to autocatalytic

reactions of the form

A + nB −→ (n + 1)B + P (rate = kabn)

where a and b are the concentrations of A and B, respectively, and k is the

rate constant, if the diffusion coefficients of A and B are taken to be the same

and the sum of the concentrations of A and B is initially constant in space.

Then (1.2) applies with u, r, and umax replaced by b, k, and a+ b, respectively.

This equation has stable 1-d travelling wave solutions in the form of kinks. In

the case of the autocatalytic reaction, the wavefront is the boundary between

a region of B and a region of A. Since B consumes A to make more B, the

wavefront propagates in the direction of the A region.

The eikonal equation

In two-dimensional systems, the wavefront is a line rather than a point. It

can therefore take a variety of shapes. However, there are only three classes

of wavefront for which the shape of the wavefront stays the same. These are

plane waves, circular waves, and spiral waves [10].

In 2-d reaction-diffusion systems, the local speed of the wavefront approx-

imately obeys the eikonal equation

c = c0 − Dκ with |κ| = 1/ρ (1.3)

where where c is the speed of the wavefront at a point, c0 is the speed of a planar

wavefront, and ρ is the radius of curvature of the wavefront at that point. The

curvature κ at the point is positive or negative depending on whether the centre

of curvature is behind or ahead of the wavefront, respectively (see Fig. 1.3). A

plane wavefront has zero curvature (or an infinite radius of curvature) and so
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(1.3) reduces to c = c0 in this case, as expected. The direction of the velocity

of the wavefront at each point is normal to the tangent plane of the wavefront

at that point.

�

�

�

��������	

Figure 1.3: Motion of a curved wavefront. Arrows show local direction of
motion; crosses are centres of curvature. κP > 0, κQ < 0.

It can be seen that a circular wavefront of radius r travelling outwards will

have a speed given by

c = c0 − D

r
. (1.4)

The speed will be negative if r < D/c0 which means that a circular wave can

only propagate if it has a radius larger than

rcrit =
D

c0

and a circular wavefront can only be formed if the source of the wavefront has

a radius larger than rcrit.

In three-dimensional systems, wavefronts are surfaces. The obvious 2-d

generalizations of wavefronts that maintain their shape are planar, cylindrical,

and spherical wavefronts. Generalizations of 2-d spiral waves are known as

scroll waves. In general, the local wavefront speed is given by

c = c0 − D(κ1 + κ2) (1.5)

where κ1 and κ2 are the curvatures at a point on the wavefront measured in
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two perpendicular directions. It can be seen that (1.5) reduces to

c = c0 − 2D

ρ

for a spherical surface of radius ρ (since in that case κ1 = κ2 = 1/ρ), and to

(1.3) when parallel slices through the wavefront look the same (in which case

κ1 = κ, κ2 = 0) e.g. a cylindrical wavefront.

Spiral wave

The simplest type of spiral wave can be described in polar coordinates (r, θ)

by

θ =

{
ψ(r) − ωt + 2πn

m
+ θ0

}
mod 2π, n = 0, 1, . . . , |m| − 1. (1.6)

In the above equation, 2π/ω is the period of the pattern, |m| is the number

of spiral arms, θ0 is a phase constant which determines the initial orientation,

and ψ is a monotonically increasing function that describes the type of spiral.

For example, for an Archimedean spiral,

ψ(r) = ar. (1.7)

A further requirement for ψ is that ψ′ → constant as r → ∞, which is satisfied

by the above example.

The spiral nature of the wavefronts given by (1.6) can be seen by setting

t = 0. With |m| = 1 (which is the most usual case for real systems) θ is

single valued (n = 0 only) and so there is just one spiral arm. The sign

of m determines the direction of the spiral. Positive and negative signs give

anticlockwise and clockwise spirals, respectively. With |m| > 1, there are |m|
symmetrically placed identical spiral arms. Various cases are shown in Fig. 1.4.

As t is increased it can be seen (from both the equation and the figure)

that anticlockwise spirals (m > 0) will rotate in the clockwise direction, and

vice versa. The angular speed of each point on the wavefront will be ω/|m|.
The wavelength λ of a spiral wave is the distance between successive wave-
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Figure 1.4: Archimedean spiral waves: (a) m = 1 (b) m = −1 (c) m = 3. Filled
arrows: local motion of wavefront. Thin arrows: apparent sense of rotation.

fronts in the radial direction. From (1.6), it can be seen that dθ = (ψ′ dr)/m

and so

mλ =

∫
dr =

∫ θ1+2π

θ1

m dθ

ψ′ . (1.8)

If ψ′ → ψ′
∞ as r → ∞ then for large r this reduces to

λ∞ =
2π

ψ′∞
. (1.9)

For an Archimedean spiral, given by (1.7), ψ′ = ψ′
∞ = a, and so the wavelength

is independent of r for this type of spiral. As r increases, the wavefront becomes

less curved and so in the limit of large r, the speed of the wavefront is the plane

wave speed c0(λ∞) of a periodic wave with wavelength λ∞. Since it takes time

T = 2π/ω for the wavefront to move one wavelength,

c0(λ∞) =
λ∞

2π/ω
⇒ ω = c0(λ∞)ψ′

∞. (1.10)

There is therefore a relation between the plane wave speed, the type of spiral,

and the rate of rotation of the pattern. The type of spiral (i.e. the form of

ψ) is determined by substituting (1.6) into the eikonal equation (1.3) with the

appropriate boundary conditions. This ends up being a nonlinear eigenvalue

problem that must be solved numerically to find ω. The spiral waves from this

analysis are found to be approximately Archimedean, in agreement with those

seen in nature.

In real systems, the tip of the spiral wave (where the spiral wave starts)

is not fixed, but instead (in the simplest cases) moves around a circle known
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as the spiral core at the same angular frequency as the rotation of the spiral

wave. If this core has radius r0, then the ψ(r) given in (1.7) would become

a(r − r0). As will be discussed shortly, for some systems it is also possible for

the spiral wave tip to undergo much more complicated motion.

Unlike planar, circular, cylindrical or spherical waves, it is important to

note that spiral wave can only exist in systems which have stable pulse-shaped

1-d travelling wave solutions. This is self-evident from the form of these waves.

It means that spiral and scroll waves cannot occur in systems such as the simple

autocatalytic system described earlier. An important type of reaction-diffusion

system where pulse-shaped travelling waves do occur, and hence spiral wave is

possible, is the excitable system.

1.2 Excitable systems

Excitable systems are governed by a special class of reaction-diffusion equa-

tions. Whether or not a system is excitable depends on the nature of the

reaction terms in the equation. We therefore first consider just the state with

no spatial variation with the result that the diffusion terms can be ignored.

The simplest type of excitable system can be described by [11]

∂u

∂t
= f(u, v)

∂v

∂t
= εg(u, v) (1.11)

in which the u-nullcline (f(u, v) = 0) has a local maximum and a local mini-

mum, the v-nullcline (g(u, v) = 0) intersects f = 0 once to give a single stable

fixed point (u∗, v∗), and ε<<1. The phase portrait for such a system is shown

in Fig. 1.5. A number of properties of the system can be explained by con-

sidering the path and speed of trajectories on the phase portrait. First, if a

small perturbation is applied (the system is moved away from its steady state

by a small amount), the system quickly returns to its steady state. If a large

perturbation is applied so that the system is placed on the other side of the

threshold, the system will become excited and then slowly return to the steady

state. During most of the slow return from the excited state, it is difficult to

excite the system again – this is called the refractory phase.

The changes in the v-direction are always slow because of the ε in (1.11).
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Figure 1.5: Phase portrait for an excitable system with no spatial dependence.
Single arrows: slow changes; double arrows: rapid changes; orthogonal arrow
pairs in circle: direction of u (right/left) and v (up/down).

The changes in the u-direction are only slow when f is close to zero, which

only occurs when the trajectory is close to the u-nullcline.

The quantities u and v are generally known as the activator and inhibitor,

respectively. Increasing the amount of activator beyond the threshold will

result in the system reaching its excited state. While the system is in the

excited state, the activator slowly decreases while the inhibitor slowly increases.

When the system leaves the excited state, the activator drops quickly, and then

both the activator and inhibitor slowly return to their equilibrium values. The

inhibitor is so named because when it is low, the system will quickly become

excited, but when the inhibitor level is high, it is more difficult and sometimes

impossible for the system to become excited.

Most excitable systems in nature have spatial dependence due to a diffusion

term. The simplest are described by reaction-diffusion equations of the form

ut = Du∇2u + f(u, v) vt = Dv∇2v + εg(u, v) (1.12)

where Du and Dv are the diffusion coefficients of the activator and inhibitor,

respectively. In many systems, Dv � 0.

To investigate the form of the travelling wave solutions in one dimension

it is most convenient to transform to a frame moving at the same speed as a
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wave moving to the left. If the wave is travelling at speed c this means writing

z = x + ct. This gives, after rearranging,

uz =
1

c

(
f(u, v) + Du

∂2u

∂z2

)
, vz =

1

c

(
εg(u, v) + Dv

∂2v

∂z2

)
. (1.13)

It is not possible do proper phase plane analysis on this system as it four-

dimensional. However, apart from the diffusion terms, these equations have

the same form as (1.11) with the t replaced by z/c. This means that the shape

of the travelling wave will be similar to the time dependence of the spatially

independent system if the diffusion terms are small compared with f and g for

most of the time. The form of the travelling wave is shown in Fig. 1.6.

�

����

����

Figure 1.6: Travelling wave in an excitable system. The wave is moving to the
left.

Behind and ahead of the travelling wave u and v are at their equilibrium

values. The activator concentration starts increasing at the start of the wave

due to a large positive ∂2u/∂z2 which is enough to make uz > 0 in spite of

the fact that f < 0. Once past the threshold, u rapidly rises until it reaches

the excited state after which it drops slowly while v increases. As with the

spatially independent case, it will leave the excited state, with u dropping very

quickly. However, when this happens ∂2u/∂z2 will be large and negative which

means that it will leave the excited state at a lower value of v than illustrated

in Fig. 1.5, and consequently ‘cut across’ the f > 0 region. Finally, at the

tail of the wave, u and v slowly return to their equilibrium values. A similar

analysis starting with z = x − ct will show that a mirror image of this wave

travelling to the right is also possible.
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To start a travelling wave of this type, an excess of activator must be sup-

plied to a localized region. If the excess is too small, the excited state will not

be reached and the excess will quickly decrease as a result of both the reaction

and diffusion terms. Travelling waves will only be generated if the excess is

large enough so that the excitable state is reached, and in higher-dimensional

cases, the size of the region must also exceed a certain critical radius as was

discussed earlier. In one dimension, two travelling waves moving apart in op-

posite directions will form. In two or three dimensions, a symmetrical initial

region of excess activator will generate a circular or spherical wave, respec-

tively. Spiral waves are generated by removing part of a wavefront – the two

‘free ends’ so created will form the tips of a pair of spiral waves rotating in

opposite directions.

The refractory phase of excitable systems means that excitable waves have

what is known as a refractory tail. In this region it is impossible to have

another excitable wave. This has two important consequences. First, there is

a minimum wavelength for a periodic train of excitable waves – the trailing

wavefront can only follow the leading wavefront at a distance larger than the

length of the refractory tail. Second, wavefronts are annihilated when they

collide or hit a boundary. There is no possibility of reflection or the waves

passing through one another due to the refractory tails.

It should be noted that these waves are of permanent form – their amplitude

or functional form does not change with time. This is also true of the higher-

dimensional generalizations of these waves. Also, the periodic trains of waves

mentioned above have a similar form to the single waves. In this case, the speed

of propagation depends on the wave period. The speed decreases slightly with

decreasing wavelength until there is a sudden cut-off at the critical wavelength

below which periodic wavetrains cannot exist.

Excitable systems in nature in which spiral waves have been observed in-

clude the Belousov-Zhabotinsky (BZ) reaction [12], catalytic oxidation on sur-

faces [13], slime mold [6], heart muscle [5] and mammalian neocortex [14].
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1.3 Motion of the spiral tip

The motion of spiral wave tip can be classified as being either simple rotation

or compound rotation. In simple rotation, also known as rigid rotation, the tip

rotates around a fixed circular core and the angular velocity is constant [15].

This type of motion is therefore strictly periodic. In compound rotation, also

known as meandering, the spiral tip rotates with two frequencies [16]. If the

two frequencies are incommensurate, the path of the tip will never repeat itself

and the motion is quasiperiodic. There are two types of meandering. In one

type, the spiral tip moves in epicycloidal trajectory (inward petals) and in

the other it has hypocycloidal motion (outward petal), as shown in Fig. 1.7.

In general, meandering spirals are more often observed than rigid rotating

spirals [17, 18]. The variety of possible types of motion as a function of the

system parameters for a generic excitable system is shown in Fig 1.8.

Figure 1.7: Meandering spiral with (a) outward and (b) inward petals. The
white lines in the images show the trajectories of spiral tip. (c) and (d) illus-
trate, respectively, a hypocycloidal and epicycloid, analogous to the motion in
(a) and (b). (From [19]).

Experiments [22, 23] and theoretical analysis [24] have shown that whether
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Figure 1.8: Phase diagram or flower garden of spiral dynamics and a function
of two control parameters (a and b) in a reaction-diffusion model of Fitzhugh-
Nagumo type [20]. There are three main parameter regions containing: no
spiral waves, periodically rotating spirals, and meandering spiral waves. The
meander region is itself separated into regions whose flowers have inward petals
and outward petals by the dashed curve (from [21]).

rigid rotation or meandering occurs depends on the excitability of the sys-

tem [25, 17]. Rigidly rotating spiral tend to be observed when the system has

either a very high or very low excitability. Excitability is a measure of how

close the threshold is to the stable steady state. If a system parameter con-

trolling the excitability is varied periodically in time, in addition to cycloids,

tip trajectories in the form of ‘wavy cycloids’ and Lissajous figures are ob-

tained [26, 27, 28]. If the period of the variation in excitability is exactly the

same as the period of the spiral wave rotation, then the spiral core will move in

a straight line. This is known as resonant drift [29]. The direction of the drift

depends on the relative phase of the spiral wave and the excitability variation.

This would appear to be a straightforward method to control the spiral wave.

As spiral waves occur in a malfunctioning heart [30], a strategy for removing

the wave might be to somehow apply a modulation of the excitability with the

same period as the spiral wave so that the wave is moved to a boundary and
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disappears. However, it has been shown that such resonantly drifting spiral

waves are repelled by boundaries [31]. This difficulty could be overcome by

applying the variation of the excitability in response to the measured value of

the state of the system at a point or over a region of the excitable medium.

This is known as feedback control.

1.4 Spiral wave dynamics under feedback con-

trol

The motion of the spiral core has been studied under a number of different

types of feedback regimes. These can be divided into two classes – local feed-

back and non-local feedback. Local feedback is where the excitability of the

system is modulated according to the state of the system at a single point.

In non-local feedback, the system excitability is modulated in response to the

state of the system at more than one point – normally the average value over

a region.

The effect of feedback has been investigated experimentally [32, 33, 34, 35],

numerically [26, 36, 37], and theoretically [38, 39, 40]. In the experimental

studies and some of the numerical simulations, the excitable system used was

the BZ reaction with a light-sensitive catalyst. For this system, the excitability

is a function of the applied light intensity. This light is applied homogeneously

over the whole system. In the remainder of the numerical studies, an idealized

excitable system model was used [37]. Further details will be given in later

sections.

Local feedback

In local feedback (also known as one-channel feedback), an arbitrary point in

the medium is selected and the excitability of the system is then modulated

according to the state of the system at that measuring point. It is found that

the trajectory of the spiral core centre is attracted to a series of circular limit

cycles centred on the measuring point [26]. If the measuring point is selected

such that it is near to the spiral tip before feedback is applied, the spiral tip

will end up on the innermost limit cycle. Otherwise, it will end up on a limit
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Figure 1.9: Experimentally determined entrainment attractors for various time
delays, τ : (a) τ = 0 s (b) τ = 3 s (c) τ = 5 s. Thick segments of the trajectories
are when the increased light intensity was applied. Scale bar: 0.5 mm. (From
Ref. [27])

Figure 1.10: Experimentally determined resonance attractors for various time
delays, τ : (a) τ = 7 s (b) τ = 25 s. Scale bar: 0.5 mm. (From Ref. [27])

cycle further away. If the motion on the innermost limit cycle is epicycloidal

then this limit cycle is referred to as the entrainment attractor while the limit

cycles further from the measuring point are known as resonance attractors [41].

If the spiral is meandering before feedback is applied, the innermost limit cycle

will be an entrainment attractor and is illustrated in Fig. 1.9. On a resonance

attractor, the meandering spiral core has a four loop drift along the circular

limit cycle as shown in Fig. 1.10.

The feedback can be applied with a time delay, τ . As can be seen in

Figs. 1.9 and 1.10, the value of τ affects the radius of the attractor. The

influence of one-channel feedback on a rigidly rotating spiral has also been

studied experimentally [42]. The effect of time delay on the size of resonance

attractor is shown in Fig 1.11. It shows the drift of the spiral wave core along a
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Figure 1.11: Trajectories of the spiral wave tip (thin solid line) observed for
different time delays τ and feedback light-pulse amplitudes A: (a) τ = 5 s,
A = 0.08 mW/cm2, (b) τ = 30 s, A = 0.08 mW/cm2, (c) τ = 5 s, A =
-0.08 mW/cm2, (d) τ = 35 s, A = -0.08 mW/cm2. Scale bar: 1 mm. (From
Ref. [42])

stable circular orbits centred at the measuring point. The theory of resonance

attractors given in Ref. [43] is in good agreement with these results.

Finally, if there is a sufficient time delay between the measuring point

state and the modulation of the excitability, the limit cycles become unstable

in favour of attractors of a more complicated nature [35].

Non-local feedback

The most obvious generalization of one-channel feedback is to instead mon-

itor the state of the system at two points and add the signals from both to

determine the strength of the feedback signal. It has been shown that this

two-channel feedback destroys the regular dynamics seen in one-channel feed-

back if the measuring points are sufficiently far apart. Several complex regimes

are found on varying the distance between the two measuring points [44]. Of

particular interest is the appearance of lines along which the spiral wave core
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does not drift at all [45]. These are illustrated in the spiral core drift velocity

plot shown in Fig. 1.12.

Figure 1.12: Spiral core drift velocity fields for two-channel feedback when
the distance between the measuring points is equal to wavelength of the spiral
wave. Thick solid lines: trajectories of the spiral core. Thin solid lines: locus
of points where the drift velocity is zero. (From Ref. [45])

In the other types of non-local feedback studied so far, the excitability is

modulated according to the expression

I(t) = I0 + kfb{B(t − τ) − B0}, (1.14)

where I0 and the feedback gain kfb are constants and

B(t) =
1

S

∫
D

g(x, y, t) dx dy (1.15)

where S is the area of the sensory domain D over which the integration of the

state variable g is performed. B0 is the average value of B(t) over one revolu-

tion of a spiral wave located at the centre of the domain. In the experiments

involving the photosensitive BZ reaction, I(t) is proportional to the applied

light intensity and I0 is then the background light intensity when no feedback

is applied [46, 47].

It has been found in various studies that when the domain size is sig-
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nificantly smaller than the wavelength, λ, of the spiral wave, the spiral core

trajectories are similar to those for local feedback. However, for larger do-

mains, the nature of the attractors depends very much on the size and shape

of the domain [39, 48]. The change in behaviour occurring as a function of

domain size has been examined for circular [47] and square [39, 49] domains.

The simplest type of behaviour is seen with circular domains. This is to

be expected since the system has full rotational symmetry about the centre of

the domain in this case. Both experimental and numerical results show that

the final trajectory of spiral wave core is in circular path around the circular

domain. Some experimental results for this are shown in Fig. 1.13. In fact for

any size of domain, the core trajectory will finally tend to either a stable fixed

point at the centre of the domain or a circular limit cycle concentric with the

domain.

Figure 1.13: Trajectories of the spiral wave tip under positive feedback with
time delay τ = 0 observed for different initial locations of the spiral wave core
(arrows): (a) at the centre and (b) outside of integration area. Scale bar: 1
mm. (From Ref [50])

The behaviour for other domain geometries with less symmetry is more

complex. For example, for an elliptical domain as shown in Fig. 1.14, the

resonance attractor can be destroyed due to a saddle-node bifurcation induced

by a variation of the domain eccentricity [36].

For a square domain of size λ, the core drifts in an approximately square

path around the domain as can seen in Fig. 1.15. As the size of the square

domain is increased, the number of fixed points in the drift velocity field in-

creases [49, 36]. These fixed points are found to lie on a fairly regular lattice

inside the domain.

A wide variety of other domain geometries have been looked at, but not
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Figure 1.14: Resonant drift of a spiral wave induced by a global feedback with
kfb = -1.5, B0 = 25, and I0 = 70. (a)-(c) Circular domain of radius R = λ; (d)
elliptical domain with large axis a = 2λ = 4 mm and small axis b = a/1.25.
In (a) and (d), the time delay is τ = 0, in (b) τ/T∞ = 0.5. Initial spiral tip
locations are marked by arrows. Scale bar: 1 mm. (From [36])

1 mm

Figure 1.15: Trajectory of spiral wave in square path around the centre of
square domain. Domain size: 1 λ

in so much detail [48]. Some of the numerically obtained trajectories are

illustrated in Fig. 1.16. It is to be noted that in some cases the trajectory

has the same shape as the domain when the domain has a specific size (square

domain: 1 λ, triangular domain: 1.4 λ).
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Figure 1.16: Trajectories of the spiral wave tip with different shape of sensory
domain (a) Triangle side length 1.5 λ, (b) square side length 1.0 λ, (c) pentagon
side length 1.0 λ (d) circle, diameter 1.0 λ (e-g) rhombus side length 1.0 λ acute
angle: 80◦, 70◦ and 60◦ respectively (from [48]).

1.5 The light-sensitive Belousov-Zhabotinsky

reaction

The excitable system that we will use to study the effect of feedback on spiral

wave core trajectories is the light-sensitive Belousov-Zhabotinsky (BZ) reac-

tion. The reaction involves the oxidation of malonic acid by bromate producing

carbon dioxide in a medium of sulphuric acid [51]. Depending on the concen-

trations involved, the reaction can be made to show relaxation oscillations

or behave as an excitable system. The changes can be observed through the

colour of the solution. The colour (and the light-sensitivity) depends on the

type of catalyst used.
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The BZ reaction is rather complicated. To understand the most important

steps, we review the simplified mechanism given by Field, Körös and Noyes

(FKN) [52]. This FKN mechanism can be described as three processes as

shown in Table 1.1.

Process A
(R1) Br− + HOBr + H+ → Br2 + H2O
(R2) HBrO2 + Br− + H+ → 2HOBr
(R3) BrO−

3 + Br− + 2H+ → HBrO2 + HOBr
Process B
(R4) 2HBrO2 → BrO−

3

(R5) BrO−
3 + HBrO2 + H+ → 2BrO2 + H2O

(R6) BrO2 + Catred + H+ → HBrO2 + Catox

Process C
(C1) CH2(COOH)2 ⇀↽ (HO)2C = CHCOOH
(C2) (HO)2C = CHCOOH + Br2

→ BrCH(COOH)2 + H+ + Br−

(C3) 2Catox + CH2(COOH)2 + BrCH(COOH)2

→ fBr− + other products

Table 1.1: Abbreviated FKN mechanism governing the BZ reaction.

In process A, the reduction of bromate to bromine via the reducing agent

bromide occurs. In this step, bromomalonic acid is also produced. Then the

concentration of bromide eventually falls below some critical level. When it

reaches the critical value, process B starts to become more important. The

hypobromous acid (HBrO2) begins to compete with the bromide to reduce

the bromate. This increases with an accelerating rate and the oxidized form

of the catalyst is produced. This results in a sudden colour change for a

suitably chosen catalyst (and indicator). In process C, the catalyst formed

from Processes A and B reverts to its reduced form and Br− is produced.

The HBrO2 is the autocatalytic species in the reaction. Without another

process occurring to remove this species, the autocatalyst would form a kink

type wave (Fig. 1.2(b)). It turns out that process B is inhibited when the

amount of bromide is high. Thus bromide acts as the inhibitor for the auto-

catalyst.

A light-sensitive ruthenium tris-bipyridyl complex Ru(bpy)2+
3 is used as a

catalyst for the excitable system in order to control or study the behaviour
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of the system by using intensity of light [53]. Illumination at around 452 nm

produces an excited state of the ruthenium catalyst. Light decreases the veloc-

ity and even inhibits wave propagation completely [54]. The inhibitory effect

of light on the ruthenium-catalyzed BZ reaction is associated with additional

bromide production in accordance with the photochemical properties of the

ruthenium complex [55].

1.6 Outline

The spiral waves are an interesting pattern in excitable media. They have been

observed in biological, chemical and physical systems. In the case of biological

systems such as the aggregation of slime mold Dictyostelium discoideum cells

and heart muscle, the spiral waves occur when the cells are in trouble and about

to die. For instance, spirals in cardiac muscle are believed to play a vital role

in life-threatening situations such as tachzcardia and fibrillation. Spiral waves

also appear in aggregating slime mold cells when the cells are starving and

going to die. It is therefore of interest to seek some effective methods for spiral

wave control.

To study the behaviour of spiral wave and try to control them, the light-

sensitive Belousov-Zhabotinsky (BZ) reaction is a very powerful tool to observe

the spiral wave in the laboratory. The control of spiral waves in light-sensitive

BZ reaction can take the form of periodic forcing, one-channel feedback and

non-local feedback which induces the spiral wave move on a linear path, en-

trainment or resonance attractor. For non-local feedback, feedback using the

signal integrated over circular and square domains has been observed. Stable

nodes, unstable nodes and limit cycles are found inside the domain. It would

appear that other types of geometry domain could give rise to additional in-

teresting phenomena. The objective of this work is to study the influence of

non-local feedback via an triangular domain on the dynamics of spiral waves.

In this thesis we present both experimentally and numerically derived results

for the case of feedback control of rigidly rotating spiral waves using domains

in the shape of equilateral and isosceles triangles. The fact that in this case

each vertex is opposite a side turns out to be crucial. It results in significant

differences in the shape of the limit cycles and a more complicated sequence of
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bifurcations as compared with those obtained with a square domain. We also

develop a simplified model, which we refer to as the plane wave approxima-

tion. We use this to account for the locations of regions outside the domain

where the core has an exceptionally large or small speed. We call these regions

express and stagnation zones, respectively.

The remainder of this thesis is organized as follows. In Chapter 2 details

are given of how the BZ reaction we use is prepared. The experimental setup

used to illuminate the reactants, gather data and apply feedback is explained,

along with some details of the controlling program. Chapter 3 contains a de-

scription of the equations we use for the computational analysis of an excitable

system under feedback. It also deals with the numerical method for solving

the equations, and obtaining the drift velocity vector field plots. Finally, we

give a new way of presenting the vector field data, the divergence plot, which

greatly eases their interpretation. In Chapter 4 the plane wave approximation

is formulated. The experimental and computational results for feedback via

equilateral and isosceles triangular domains are given in Chapter 5. The plane

wave approximation is used to account for the behaviour seen far from the

domain. In the final chapter, the key results of this are summarized and their

application and possibilities for further work are considered.



Chapter 2

Experimental Part

In this chapter we describe the experimental setup, preparation of chemicals

and observation techniques. The experimental observations were carried out

in using a photosensitive Belousov-Zhabotinsky (BZ) reaction. The reaction is

observed in a gel in a Petri dish. The recipe of the BZ reaction, the concentra-

tion of the catalyst and the thickness of the gel layer were chosen in such a way

that it is possible to generate a rigidly rotating spiral wave. The illumination

of the system and image analysis were computer controlled.

2.1 Preparation of chemicals

Commercially available analytical grade reagents (malonic acid, sulphuric acid,

sodium bromide and sodium bromate) were used for the preparation of the BZ

stock solutions. The light-sensitive catalyst, Ru(bpy)2+
3 at a concentration of

4.2 mM was immobilised in a 0.33 ± 0.02 mm silica gel layer at the base of

a 7 cm diameter Petri dish. All the solutions were prepared using distilled,

deionized water.

Preparation of Ru(bpy)3SO4

Ru(bpy)3SO4 is not available for purchase so it is prepared by precipitation

from tris (2,2′-bipyridine) ruthenium (II) chloride [Ru(C10H8N2)3Cl2·6H2O] in

sulphuric acid. Initially, 2.5 g of Ru(bpy)3Cl2 are dissolved in 40 ml of water

and then made up to 100 ml with 5 M sulphuric acid. Ru(bpy)3SO4 is formed

31
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as a reddish crystals. After 3 hours the crystals are filtered out and then

dried at 50◦C for two days. Note that the filter paper must be discarded

before putting the sediment into the oven otherwise the sediment will get

burned by the burning filter paper. The Ru(bpy)3SO4 obtained was dissolved

in 100 ml of 0.025 M sulphuric acid. The precise concentration of Ru(bpy)3SO4

in this solution was measured spectrophotometrically [55]. In order to avoid

inaccuracies in calculating the concentration, the absorption value must be

under 1.0 unit. The solution is therefore diluted 500 times by adding 0.01 ml

of Ru(bpy)3SO4 to 4.99 ml of 0.025 M sulphuric acid. Then an aliquot of the

resulting solution is transferred into a cuvette with a light pathway of 1 cm.

The 0.025 M sulphuric acid is used as a blank solution. The absorption of

the spectrum at 460 nm is measured. The concentration c of Ru(bpy)3SO4 is

calculated from

c =
A

2εd

where A is the absorption value, d is the width of the cuvette, ε is the extinction

coefficient of the complex at the specific wavelength. The width of the cuvette

used was 1.0 cm, and for ruthenium II at 460 nm, ε = 13.4×103 M−1cm−1 [56].

Preparation of the Ru(bpy)2+
3 catalyst silica gel

The stock solutions of waterglass (sodium silicate) were prepared by dissolv-

ing the appropriate amount of sodium trisilicate (Na2Si3O7, Fluka: Na2O 18%,

SiO2 60%) in distilled water [57]. We used 13% waterglass which was prepared

by adding 15 g of sodium trisilicate to 100 ml of distilled water. To dissolve the

mixture, it was kept hot while stirring intensively until the solution was trans-

parent. After cooling down to room temperature, the solutions was filtered

and the amount of water lost due to evaporation was re-added.

In order to fix the concentration of the ruthenium catalyst in the gel at

4.2 mM, the relative volumes of Ru(bpy)3SO4 solution and waterglass must be

adjusted. The silica gel is obtained by preparing 1 ml of the mixture of 5 M sul-

phuric acid, distilled water and Ru(bpy)3SO4. As the volume of Ru(bpy)3SO4

is fixed, the amount of sulphuric acid and water must be adjusted. How fast

the solution becomes a gelatinous mass depends on the amount of sulphuric

acid (the larger the amount, the faster the gelation). If gelation is too fast
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or too slow, the volume of sulphuric acid has to be decreased or increased,

respectively, and the volume of water also has to be changed correspondingly.

The mixture of sulphuric acid, water and Ru(bpy)3SO4 was then slowly added

to 2 ml of the 13% waterglass solution while stirring. Then 2 ml of the mixture

is poured into a Petri dish to gelate. Since the homogeneity of the gel layer is

important, the Petri dish is placed on a horizontal glass plate. It was ensured

that the plate was horizontal by using a spirit level. The thickness of the gels

was measured using a micrometer and found to be 0.33 ± 0.02 mm.

During gelation the pH of the gels increased. For neutralisation it is neces-

sary to cover the gel first with 6 ml of 0.1 M sulphuric acid for about 30 minutes

and then several times with a large amount of distilled water. The ready-to-

use gels were kept under distilled water. A typical example of the recipe for

preparing the silica gel in this study is as follows:

0.20 ml H2O

0.70 ml 0.018 M Ru(bpy)3SO4

0.10 ml 5 M H2SO4

Preparation of the BZ reaction

The stock solutions used for making the BZ reaction are listed in Table 2.1.

reagent company quantity
1 M NaBrO3 Riedel-de Haen, 99.5% 15.089 g NaBrO3 in 100 ml H2O
4 M MA1 Merck, 99% 41.624 g MA in 100 ml H2O
5 M H2SO4 Riedel-de Haen standard solution
1 M NaBr Riedel-de Haen, 99.5% 10.289 g NaBr in 100 ml H2O

Table 2.1: The stock solutions used to prepare the BZ reaction.

The investigation of wave propagation needs a few hours but the lifetime

of a rigidly rotating spiral wave in a closed system is short. To maximize the

lifetime, a reservoir layer of BZ solution is placed above the Ru(bpy)2+
3 catalyst

silica gel. The excitable system is prepared from two different BZ solutions

that we refer to as BZ1 and BZ2 [58]. The concentrations of the reagents in

1Malonic acid
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BZ2 are half of those in BZ1. Solution BZ2 is put onto the gel a few minutes

after BZ1 in order to enlarge the reservoir of the reaction. The quantities and

reagents used in the preparation of the two solutions are given in Table 2.2.

reagent quantity (ml) BZ 1 quantity (ml) BZ 2
NaBrO3 0.90 1.80
MA 0.21 0.42
H2O 0.55 6.10
H2SO4 0.39 0.78
NaBr 0.45 0.90

Table 2.2: Quantities and reagents used to prepare the two BZ solutions.

The BZ solutions are prepared by first adding the malonic acid to the

sodium bromate followed by the water and sulphuric acid. Addition of the

sodium bromide to this must be done under a fume hood, as some bromine

gas is evolved which is toxic. After the sodium bromide is added, the solution

which is originally colourless turns yellow because in an acidic environment

bromate is oxidised by bromide to form yellowish bromine. The bromination

of the malonic acid results from the presence of bromine. After around 5

minutes the solution becomes colourless again.

To start the reaction, 2 ml of the BZ1 solution is put on top of the gel in

which the catalyst is immobilized. The solution is left for a few minutes to allow

the concentrations of the reagents in gel and solution to attain homogeneity

through diffusion. Since the volume of BZ1 solution added is the same volume

as the volume of the gel, the overall concentration of the BZ solution will be

half that of BZ1. It will therefore be the same as the concentration of the

BZ2 solution. The reservoir of BZ solution above the gel is then enlarged by

adding 8 ml of the BZ2 solution onto the gel. After equilibrium is established

the calculated concentrations of the reactants are given in Table 2.3.

2.2 Generation of a single spiral wave

To create a single spiral wave in the Petri dish, the BZ solution is first poured

on the gel at the boundary of the Petri dish. The inhomogeneities at the edge

of the dish act as source of a semi-circular oxidation wave (Fig. 2.1a). This
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reagent concentration (M)
NaBrO3 0.20
MA 0.17
H2SO4 0.39
NaBr 0.09

Table 2.3: The concentrations of the BZ reactants

wave moves slowly to the centre of the dish. A spiral wave is generated by

removing half of the semi-circular wavefront when it has reached the centre of

the dish (Fig. 2.1c). This is done by using a cold light source which provides

a 4 mm diameter circular spot of high illumination intensity which completely

suppresses the wave activity. Half of the wave is deleted by moving the light

spot along the wavefront from the centre to the boundary. The remaining

open end evolves into a single rotating spiral wave near the centre of the dish

(Fig. 2.1d). In order to obtain an anticlockwise spiral wave, the right-hand side

of the wavefront is removed as viewed from behind the wavefront as illustrated

in Figure 2.1.

(a) (b) (c) (d) (e)

Figure 2.1: Creation of an anticlockwise spiral: (a) A semi-circular wave is
created at boundary of the Petri dish (b) wave moves to the centre of the Petri
dish (c) half of wavefront is deleted (d) the open end starts to form a spiral
wave (e) the complete anticlockwise spiral wave

The spiral wave is allowed to fully form before feedback is applied. An

unperturbed spiral wave prepared in this way has an initial wavelength of 2.1

to 3.0 mm and a period of 52 to 60 s. The spiral wavelength was monitored

continually. In some cases the wavelength was found to increase with time.

When nonlocal feedback is being applied, an increase in the wavelength is

equivalent to a decrease in the size of the domain. As this effect was not

desired, the recorded tip trajectory from time at which the wavelength started

to increase significantly had to be discarded.
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Figure 2.2: The experimental setup

2.3 Experimental setup

The experimental setup is shown in Figure 2.2. The central 3 cm×3 cm re-

gion of the Petri dish is monitored using a Hamamatsu H 3077 CCD camera

connected to a computer. The waves appear blue on an orange background.

To facilitate the image processing, the contrast between wavefront and back-

ground is enhanced by placing a 490±13 nm filter in front of the camera. The

Petri dish is illuminated from below by a Panasonic PT-L555E video projector

whose light intensity is controlled by a computer. To illuminate the Petri dish,

the light from the video projector is reflected up to the Petri dish by a mirror.

The KG4 filter removes infra-red radiation to minimize the heating of the so-

lution from the light beam. The BG6 filter passes wavelengths of 310±530 nm

as the Ru catalyst is most sensitive to this range [53]. The milky glass and

convex lens (focal length 22 cm) ensure that the beam is homogeneous and

collimated, respectively. The Petri dish can be adjusted in the vertical and

horizontal directions by a micro-manipulator.

The CCD camera output is connected to a frame grabber card (Data Trans-

lation DT3155) in the computer. The frame grabber digitizes the analogue



2.4. Controlling program 37

signal from the camera. The frame grabber data is read by a program which

controls the light output from the video projector. An image in the form of a

homogeneous grey region is sent to the video projector. The light intensity at

the Petri dish as a function of the grey level was measured using a Tektronix

J 1812 photometer. The results are shown in Fig 2.3. Grey levels of 0 and 255

correspond to black and white, respectively. The light intensities used lie in

the linear response region of the video projector between 0.7 to 1.7 W/m2. In

this region, corresponding to grey levels between 100 to 170, a change of grey

level of 1 unit, corresponds to a change in intensity of 20 mW/m2.

Figure 2.3: Light intensity at Petri dish versus grey level sent to the projector

2.4 Controlling program

To apply feedback, a controlling program takes the digitized image from the

frame grabber card and computes the desired intensity level, I(t), according

to

I(t) = I0 + kfb(B(t) − B0), B(t) =
1

S

∫
D

g(x, y, t) dx dy (2.1)

where kfb is the feedback gain, S is the area of the sensory domain D over

which the integration of the image brightness g is performed, and B0 is the
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average value of B(t) over one revolution of a spiral wave located at the centre

of the domain. The program also controls the projector and stores the images.

The program was written in C++ in cooporation with Jan Tusch with the Fox

tool kit library (for the graphical user interface) and was about 6000 lines long.

The computer (a Pentium 4 PC) was running under the Windows operating

system.

Figure 2.4: Initial GUI of controlling program.

The controlling program starts by creating a graphical user interface (GUI)

which allows the user to view the current image from the CCD camera and

enter the parameters (as shown in Figure 2.4). When the program starts,

a window appears and the user presses the open frame grabber button. The

image, which is then updated every 10 ms appears on the left-hand side of

the window as shown in Figure 2.5. The user then chooses which type of

integration area by pressing the appropriate button. The choices available are

rectangle, triangle, pentagon, ellipse or annulus. The user then uses the mouse

to click on the image to specify the size and position of the integration area.

The values of I0 (background intensity), B0 (average grey level of each pixel

inside the integration area when the tip of the spiral wave is in the centre) and

kfb (feedback gain) are entered by using spin boxes on the right-hand window.
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Figure 2.5: Specifying the integration area.

In the final stage of setting up, the user specifies the rectangular recording

area by clicking on the image and choosing the time interval between recording

the images. Then the user presses the start button and a window is created

for displaying the value of the feedback illumination, the maximum number

of recorded images (after which the program stops), and the time as shown in

Figure 2.6. The program then enters the main loop.

Inside the main loop, the program sends a signal to the projector to set the

intensity to I0. The program gets the image data from the frame grabber and

calculates the average grey level of each pixel inside the integration area. Then

the program calculates the feedback illumination I and changes the projector

illumination accordingly. Each measurement cycle lasts 1.5 s. During the

first 0.1 s the CCD image is acquired and the value of I is calculated while

the dish is illuminated with intensity I0. For the remaining 1.4 s, the dish is

illuminated with intensity I, and the image is stored as a TIFF file. The main

loop is repeated until the user presses the stop button.
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Figure 2.6: Appearance of GUI while gathering data.

2.5 Obtaining the control parameters

The background intensity, I0 is chosen so that the spiral wave does not me-

ander. This value can vary from 0.8 to 1.2 W/m2 but is typically 1.0 W/m2.

To determine the value of I0 for a rigidly rotating spiral wave, first a constant

illumination of 0.8 W/m2 is applied. Then if the core is meandering a little,

the intensity is increased gradually until rigid rotation is obtained. However,

if the core is meandering considerably, no value of I0 can be found to give rigid

rotation and the experiment cannot be continued.

If kfb is too small, the spiral core drift is very slow and the core will not

travel far enough before the experiment has to be finished due to aging. On the

other hand, if kfb is too large, the approximation that the spiral wave rotation

is fast compared to the core drift can no longer be made. The optimum value

of kfb was found to be given by 0.12 W m−2/ max(|B(t) − B0|).
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2.6 Image analysis

The image are processed and analysed using IDL programs written by Dirk

Michael Goldschmidt and Vladimir Zykov. The data acquisition program

stores the image as arrays of grey levels. These grey level values are in the

range 150 to 180. The program contrast.pro maximizes the contrast of the

images by rescaling the grey levels range from 0 to 255 by applying the follow-

ing formula to each pixel:

I ′
ij = 255

(Iij − Imin)

(Imax − Imin)
(2.2)

where Iij and I ′
ij are the original and rescaled grey levels of pixel (i, j), and Imax

and Imin are the maximum and minimum values in the original image. The

image contains a background of inhomogeneities due to impurities in the gel

such as bubbles, dust and scratches on the Petri dish. This can be corrected

by a histogram method [58]. The background is then subtracted from the

normalized image and the image normalized again using (2.2) and stored as

new files to be read by tipfinder.pro.

The program tipfinder.pro finds the position of the tip by obtaining the

contour lines for the grey level 0.6(Imax − Imin) + Imin. The intersection of

these contour lines for consecutive images gives the position of the tip [58].
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Numerical Calculation

3.1 Numerical solution of excitable system equa-

tions

The excitable system we study numerically is governed by the equations

∂u

∂t
= Du∇2u + F (u, v) − I(t),

∂v

∂t
= εG(u, v) (3.1)

where u and v are the concentrations of activator and inhibitor, respectively.

For the reaction terms F (u, v) and G(u, v) we chose to use Zykov’s piecewise

linear model as it is straightforward to obtain a rigidly rotating spiral using

this [37]. It is possible to obtain rigid rotation using other excitable system

models, but this requires fine tuning of the parameters. The piecewise linear

model we use has the additional advantage that the reaction terms are simpler

to evaluate than other schemes and so the code runs faster. The functions take

the form

F (u, v) = f(u) − v, f(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−k1u, u ≤ σ,

kf(u − a), σ ≤ u ≤ 1 − σ,

k2(1 − u), 1 − σ ≤ u,

(3.2)

G(u, v) =

⎧⎨
⎩kgu − v, kgu − v ≥ 0,

kε(kgu − v), kgu − v ≤ 0.
(3.3)

42
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Figure 3.1: Sketch of u-nullcline (v = f(u)) and v-nullcline (v = kgu) for
Zykov’s piecewise linear excitable system model (3.2 and 3.3).

As in Ref. [37], we used the following parameter values: kf = 1.7, kg = 2,

kε = 6.0, a = 0.1, σ = 0.01, ε = 0.3 and Du = 1. Parameters k1 and k2, which

are chosen so that f(u) is continuous, are then found to be 15.3 and 151.3,

respectively. A sketch of the u- and v-nullclines is shown in Figure 3.1. The

feedback term I(t) is given by

I(t) = kfb(B(t) − B0), B(t) =
1

S

∫
D

v(x, y, t) dx dy (3.4)

where S is the area of the sensory domain D over which the integration of v is

performed, and B0 is the average value of B(t) over one revolution of a spiral

wave located at the centre of the domain. Typically, the feedback gain, kfb

was given the value 0.1.

The numerical calculation was carried out using an adapted version of

Barkley’s program ezspiral [20]. The code integrates (3.1) using the explicit

Euler method with a 9-point Laplacian and no-flux boundary conditions, and

also determines the location of the spiral tip. A time step of 0.05 and a space

step of 0.5 were used throughout. A rigidly rotating spiral of pitch 70 space

units that rotates about a core of radius 7 units is obtained by using the

following initial conditions [37]:

u(r, θ) =

{
1, r > 2 and 0 ≤ θ < π/4,

0, otherwise,
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v(r, θ) =

⎧⎪⎪⎨
⎪⎪⎩

2, r ≤ 2,

1.6 − 5.2θ/π, r > 2 and 0 ≤ θ < π/4,

0.3 + 5.2(θ − π/4)/(7π) r > 2 and π/4 ≤ θ < 2π.

The discrepancy between the value of the pitch we obtain and that given

in Refs. [40, 39] of 64 in spite of our using identical parameter values is due

to the fact that we used a larger time step and the 9-point rather than 5-

point Laplacian. With time steps of less than 0.2 and 0.05, the 9 and 5-point

calculations give pitches of 66 and 64, respectively. After normalizing the

length to be in units of spiral wavelength the plots obtained from using the

larger and smaller time steps were found to be essentially the same.

3.2 Drift vector field

To aid interpretation of the experimental and numerical results, we also plot

the drift vector field which depicts the drift velocity of the spiral core [39]. The

vector plot analysis shows the direction of the spiral wave movement in any

position both inside and outside the sensory domain. By following the arrows

one can determine the trajectory of the the spiral tip.

As long as kfb is not too large, the spiral core does not move far during one

rotation of the spiral wave. The feedback term I(t) that appears in (3.4) may

therefore be approximated as being periodic (with a period equal to T∞) and

hence may be expressed as the Fourier series

I(t) = kfb

[
a0

2
+

∞∑
n=1

(an cos nωt + bn sin nωt)

]
(3.5)

where ω = 2π/T∞. It has been shown that a systematic (resonant) drift of the

spiral core will only occur if

ω = pω2 + qωf (3.6)

where ω2 is the secondary (meandering) frequency, ωf is the forcing frequency,

and p and q are integers [29]. For rigid rotation, ω2 = 0 and from (3.5) it
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Figure 3.2: Illustration of the method for calculating B(t). Rotation of the
spiral wave with a fixed domain (a-e) is equivalent to rotating the domain with
a fixed spiral wave (f).

can be seen that the forcing frequencies are ωf = nω. Hence (3.6) will only

be satisfied if n = q = 1 which means that only the first Fourier component

(a1, b1) results in spiral core drift [39]. The relative magnitude of the drift

velocity is therefore given by the amplitude of the first Fourier component of

B(t). The direction of the velocity is equal to φ + φ0 where φ is the phase

of the first Fourier component and φ0 is a constant. φ0 can be obtained for

a single vector in the plot by first carrying out a simulation starting at the

position of that vector. Comparing the direction of the spiral core drift from

the simulation with the φ obtained from the first Fourier component will give

the required value of φ0.

In Ref. [39] the B(t) needed for the drift vector plot was found by approxi-

mating the wavefront as a thin Archimedean spiral. Instead, we first used the

program to obtain a fully formed spiral wave which was then stored for later

retrieval. To find the value of B(t) over one period of rotation, creating a new

array containing data for a translated and rotated spiral wave from the initial

spiral wave data would be very time consuming. Hence rather than keeping

the domain fixed and rotating the spiral in this way (see Figure 3.2(a-e)), it is

much more efficient to instead translate and rotate the domain relative to the

fixed spiral wave data as illustrated in Fig 3.2(f).
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In the case of an equilateral triangular domain, the 3-fold rotational sym-

metry about the triangle centroid was exploited by evaluating the drift vectors

on a triangular grid centred on this point for values of the polar angle in the

range 0 ≤ θ < 120◦. These vectors could then be used to obtain the remaining

drift vectors in the regions 120◦ ≤ θ < 240◦ and 240◦ ≤ θ < 360◦ by rotat-

ing the vectors by 120◦ and 240◦, respectively. For all other types of sensory

domain, the drift vectors were evaluated on an ordinary rectangular grid.

3.3 Divergence plot

The drift vector fields obtained for larger domain sizes are quite complex.

Visualization of the flows and attractors is greatly enhanced by colouring the

arrows and background according to the sign of the divergence since attractors

and repellors will occur in regions of negative and positive divergence, respec-

tively. We use a normalized divergence obtained by dividing the divergence

by the mean magnitude of the vectors used to calculate the divergence. For a

rectangular grid, the normalized divergence Di,j at point (i, j) is given by

Di,j =
F+

x − F−
x + F+

y − F−
y

|F+
x | + |F−

x | + |F+
y | + |F−

y |

where

F±
x = Ai±1,j cos Φi±1,j , F±

y = Ai,j±1 sin Φi,j±1,

in which Ai,j is the amplitude of the drift vector at (i, j) and Φi,j = φi,j + φ0.

For a triangular grid,

Di,j =
F+

0 − F−
0 + F+

1 − F−
1 + F+

2 − F−
2

|F+
0 | − |F−

0 | + |F+
1 | − |F−

1 | + |F+
2 | − |F−

2 |

where

F±
0 = Ai±1,j cos Φi±1,j , F±

1 = Ai±1,j±1 cos(Φi±1,j±1 − π/3),

F±
2 = Ai,j±1 cos(Φi,j±1 − 2π/3).
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i+1,j+1i,j+1

i+1,ji,ji-1,j

i-1,j-1 i,j-1

Figure 3.3: Location of points in triangular grid. The connection lines are
guideline for the eyes

For the triangular grid the relative positions of the grid points are illustrated

in Fig 3.3. The origin of the triangular grid (i = 0, j = 0) is at the centroid

of the equilateral triangular domain. The remainder of the coordinates on the

lattice are defined in such a way that moving in the θ = 0 direction i increases

while j remains fixed. Moving in the θ = 120◦ direction, j increases while i

remains fixed.

Colouring the arrows and background in this way shows regions where the

magnitude of the vectors is low particularly striking. A very dark background

indicates that the vectors are small and are converging. A very bright back-

ground shows that the vectors are small and are diverging. Some examples are

shown in Figure 3.4.



48 3. Numerical Calculation

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x

y

(a)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x

y

(b)

Figure 3.4: Drift vector plots coloured according to the normalized diver-
gence.(a) for triangle grid and (b) for rectangle grid.



Chapter 4

Plane Wave Approximation

In this chapter we describe a straightforward technique that can be used to

account for some features of the behaviour of the core trajectory when it is

far from the domain. To explain features of the drift vector fields, we would

ideally require an analytical expression for the feedback integral B(t). In the

Archimedean spiral wave approximation, B(t) is calculated by finding the total

length of the sections of an Archimedean spiral that lie inside the domain [39].

In general, such an expression cannot be written in closed form. However,

since the curvature of a spiral wave decreases with increasing distance from

the core, for sufficiently large core-domain distances we can treat the parts of

the spiral wave inside the domain as a series of plane waves with a wavelength

equal to that of the spiral wavelength far from the core. In the following,

for simplicity we scale the spatial coordinates so that this wavelength is equal

to 1. The plane waves will be propagating away form the spiral core in the

direction of the centre of the domain as illustrated in Fig. 4.1(a). As the tip

rotates about the core (which is taken to have zero radius) once in time T∞,

the plane wavefronts move forward one unit at uniform speed. In this plane

wave approximation (PWA) the feedback integral B(t) is given by the sum of

the lengths of the lines inside the domain divided by the domain area.

The PWA is most useful when the domain is in the shape of a polygon. It

is apparent that in this case, B(t) will increase or decrease linearly and hence

B(t) will take the form of a piecewise linear function of period T . If the plane

wave is parallel to one of the sides, there will be a discontinuous change in

B(t) as the wavefront crosses one of the sides. The change will be an increase

49
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Figure 4.1: Plane wave approximation. In (a) spiral core is in the direction
of the dashed line. In (b) the small circle represents the spiral core and the
arrow the current direction of motion of the tip.

if the wavefront is entering the domain side and a decrease if it is leaving it.

For example, in Fig. 4.1(a) if θ = 90◦, the plane wavefronts enter the domain

at a vertex. The total length of the plane waves inside the domain will steadily

increase until a plane leaves the domain at the side opposite the vertex where

they enter. At this point B(t) will suddenly drop. Overall, B(t) will take the

form of a rising sawtooth wave. Conversely, if θ = 30◦, it can be seen that

B(t) will take the form of a falling sawtooth wave.

Now consider the case when the spiral core is a half integer number of

wavelengths from one of the sides. As the spiral wave (approximated by a

plane wave) crosses the side of the triangle, there will be a sudden increase in

the excitability resulting in a boost to the motion of the tip and hence also

the core in the direction shown. Now consider moving the spiral core a little

further away from the domain. In order for the wavefront to touch the side,

the spiral must be rotated anticlockwise. Thus as the spiral core moves away

from the domain, the drift velocity vectors rotate anticlockwise, completing

one rotation every wavelength. From this one can conclude two points. First,

the spiral core shown is therefore in the centre of an attracting region. Second,

these attracting regions will be spaced at an interval of one unit. We would

therefore expect to see attracting (repelling) limit cycles to be spaced 1 unit

apart in regions far from the domain.

It is evident that the greatest difference between the maximum and mini-

mum values of B(t) will occur when the plane waves are aligned with a side,

as in the examples mentioned earlier. The Fourier components of B(t) will be

proportional to this difference in values. Since the drift velocity is proportional

to the magnitude of the first Fourier component, the drift velocity will be the
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largest in these cases.

The drift vector plots obtained in this work and by others [39, 40] show a

number of striking features in the regions far from the domain. In particular, it

is clear that there are regions where the drift velocity is either particularly large

or almost zero. The PWA developed here gives a relatively straightforward

approach to account for these features. Further details of this method are

given in the following chapter where it is applied to some specific cases.



Chapter 5

Experimental and Numerical

Results

The effect of feedback on spiral wave trajectories is studied using two different

shapes of sensory domain. The simpler of our systematic studies is for the equi-

lateral triangle, since this geometry only has one parameter to vary, namely,

the domain size. The isosceles triangular domain has two parameters. Some

of the results can be explained using the plane wave approximation described

in the previous chapter.

The experimental studies were carried out with anticlockwise spiral waves

(which appear to rotate clockwise as the wavefront propagates). The image

from the IDL program was inverted due to programming technique and so the

anticlockwise spirals used in the experiment appeared as clockwise spirals. For

ease of comparison, the numerical computations were therefore also performed

using clockwise spirals. The plots for anticlockwise spiral waves would be a

mirror image of the ones presented here.

5.1 Equilateral triangular domain

First, spiral wave dynamics under feedback via an equilateral triangular sen-

sory domain is considered. The domain size, d, is defined as the length of a

side of the triangle. From now on, all lengths are given in units of the spiral

wavelength, λ∞.

The experimental results for an equilateral triangle domain show a number

52
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of types of behaviour. The behaviour depends on the size of the domain. When

the length of the domain d is less than about 1.3, after feedback illumination

is applied to the system, the spiral tip moves out of the domain and drifts

around the domain in an approximately circular path and then repeats this

orbit as we can see in the experimental and numerical results of Fig. 5.1. The

attractor is therefore a stable limit cycle with an approximately circular shape.

The result is similar to the results found for a square domain. When the length

of the square domain is smaller than 1 the spiral tip drift around the square

domain is also in a circular path [49]. The numerical results show further that

the central source is surrounded by concentric alternately stable and unstable

limit cycles.

1 mm
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Figure 5.1: (a) Experimental results for the spiral wave tip drift in circular
path with equilateral triangular domain d = 1. In this and later plots obtained
from experiments, the spiral wave image is taken at the start of the tip trajec-
tory. Feedback is initiated after a few revolutions of the tip. (b) Numerically
obtained drift vector plot for d = 1. In this and subsequent plots of this type,
the black triangle is the domain, the white curves are the spiral tip paths, and
the arrows indicate the drift velocity. The length of all but the small, narrow-
headed arrows is proportional to the drift speed (although the proportionality
constant differs for each plot). Black (white) arrows are in regions where the
field divergence is positive (negative). The background is shaded according
to the normalized divergence (see section 3.3). Regions of negative (positive)
divergence have a dark (light) background.

For some larger values of d, the attractor has the shape of an equilateral

triangle as shown in the experimental results of Fig. 5.2 and numerical results
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Figure 5.2: Experimental results showing triangular limit cycle for various
values of (d, kfb): (a) (1.3, 0.6); (b) (1.5, 0.6); (c) (2.3, 1.0).

in Fig. 5.4(a). This attractor is in the opposite orientation compared with

the domain. For d between 1.3 and 1.5, the attractor is approximately the

same size as the domain. For larger d, the size of the attractor decreases as d

increases. In all instances, the stable limits cycles flow anticlockwise, while the

unstable limit cycles are in the opposite sense. Starting close to an unstable

limit cycle, the spiral core first drifts clockwise and then reverses its sense as

it approaches a limit cycle as can be seen in Fig. 5.5(a).

By around d = 1.5, it is clear from the computational results that there

are regions where the spiral core speed is large (long arrows) and those where

it is small (short arrows), aside from near the single fixed point at the cen-

troid (Fig. 5.4(a)). We refer to these as express and stagnation zones, respec-

tively . As with the regions in the immediate neighbourhood of sinks (stable

nodes/foci) and sources (unstable nodes/foci), the stagnation zones appear as

the darkest or brightest regions of the plot depending, respectively, on whether

the divergence is negative or positive (see section 3.3). Notice in Fig. 5.4(a)

that the innermost limit cycle passes through three stagnation zones (the spiral

core move slowly). It will be convenient to classify the express zones accord-

ing to the direction from the centroid in which they lie and whether they are

attracting (white arrows) or repelling (black arrows). Vertex express zones

(VEZs) lie in the directions of the domain vertices, namely, θ = −30◦, 90◦,

−150◦, whereas lateral express zones (LEZs) are located in the opposing di-

rections away from the centroid (Fig 5.3).

Just outside the domain is an approximately hexagonal unstable limit cycle
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Figure 5.3: Sketch of the region where vertex and lateral zone are indicated
for the triangular domain. VEZs and LEZs are the region where the large
magnitude arrows take place in the vertex zone and lateral zone, respectively.
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Figure 5.4: Drift vector plots. (a) d = 1.5. The tip trajectory starts near
the central unstable focus and ends up on the innermost stable limit cycle.
(b) d = 1.7 – tip trajectories shown following the first two stable limit cycles.

lying within six repelling express zones (3 LEZs and 3 VEZs) interspersed with

six weak stagnation zones. Further out there is a stable limit cycle of similar

shape lying within six attracting express zones.

As d increases further, the distance from the centroid to the VEZs de-

creases, while the corresponding distance to the LEZs increases. This results

in the second stable limit cycle having three protruding lobes as can be seen

in Fig. 5.4(b). We will refer to such lobed limit cycles as being of lateral or
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Figure 5.5: Experimental results for d = 1.8: (a) Spiral core trajectory start-
ing at the right bottom vertice, it reaches the inner limit cycle(kfb = 0.6);
(b) Spiral core trajectory entering lobed limit cycle (kfb = 1.4).

vertex type depending on whether the most protruding parts (the ‘lobes’) are

composed of LEZs or VEZs, respectively. Part of a lateral lobed limit cycle

is clearly seen in the experimental results shown in Fig. 5.5(b). Notice the

presence of the stagnation zone (where the loops are bunched together) at the

start of the lobe.

As a result of the increase in separation of the ends of the LEZs from the

ends of the VEZs, the limit cycles become ever more distorted until just below

d = 1.82 in the computational results both the innermost unstable limit cycle

and the lobed stable limit cycle surrounding it are destroyed via saddle-node

bifurcations. With the two limit cycles destroyed, the basin of attraction for

the central stable limit cycle becomes much larger – trajectories starting on

and around the express zones that contained part of the destroyed lobed limit

cycle will eventually make their way to it via a number of (negative divergence)

stagnation zones. However, this extended basin is short-lived. By d = 1.85,

a further saddle-node bifurcation results in each of the innermost LEZs no

longer connecting with the central limit cycle. Instead they link with the

next attracting VEZs to form a vertex lobed stable limit cycle, as can be seen

in Fig. 5.6. A further (lateral) lobed stable limit cycle passes through the

second set of attracting VEZs. Trajectories starting on the attracting VEZs
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Figure 5.6: Drift velocity plot for d = 1.85. Tip trajectories follow (parts of)
the first three stable limit cycles. The first limit cycle is inside the domain and
has a shape of triangular path. The second and third are examples vertex and
lateral lobed limit cycles, respectively. The isolated circle marks the position
of a stable focus.

in between the second and third stable limit cycles will end in a sink. These

sinks occur for only a small range of d. At d = 1.86 this second set of VEZs

are part of the basin of attraction for the third limit cycle, and by d = 1.90,

these VEZs make up part of the third stable limit cycle which is now vertex

lobed.

The central stable limit cycle shrinks down to a stable focus (via a super-

critical Hopf bifurcation) for d ≈ 2 in the computational results, and at a value

of d between 2.3 and 2.5 in the experiment (a small triangular limit cycle and

sink at the centroid are shown in Fig. 5.2(c) and Fig. 5.7(a), respectively). The

parts of the innermost vertex lobed limit cycle get ever closer to the centroid



58 5. Experimental and Numerical Results

1 mm

(a)

1 mm

(b)

Figure 5.7: Experimental results showing the presence of a sink at the centroid
for various (d, kfb): (a) (2.5, 0.9); (b) (3.0, 1.0).

as d increases. They are separated from the stable focus there by saddle nodes.

At around d = 2.6 these saddle nodes move to one side with the result that the

limit cycle is destroyed – trajectories starting on the first VEZs end up at the

centroid. As before, the extended basin of attraction for the central attractor

only occurs for a narrow range of domain size. By d = 2.7, trajectories start-

ing on the first VEZ instead end up on a sink in the neighbouring stagnation

zone Fig 5.8.

Having reached a domain size where there are no longer any limit cycles in

the domain, it is of interest to survey the fixed points present. Referring to the

region 0 ≤ θ < 120◦ in Fig. 5.8, as well as the sinks at the centroid and in the

stagnation zone, there is also a stable focus just inside the domain at (0.62,

0.41) and further out a saddle node at (0.96, 0.64). This pair of fixed points

was born in a bifurcation inside a stagnation zone at around d = 2.57. Finally

there is an unstable node at (−0.07, 0.67) which first appeared when the first

unstable limit cycle broke around d = 1.82. This lattice of evenly separated

sources and sinks is reminiscent of the cellular structure seen for the square

domain [39, 48]. As in that case, more fixed points appear inside the domain

as the domain size is increased still further.
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Figure 5.8: Drift velocity plot for d = 2.70. Selected fixed points referred to
in the text are inside white circles.

Analysis using the plane wave approximation

We now turn our attention to the motion of the core when it is far from the

domain and analyse it by means of the plane wave approximation (PWA)

introduced in Chapter 4. As has been pointed out, since we are approximating

the wavefront as a series of plane waves, it is relatively straightforward to

obtain an explicit expression for B(t). To do this we find the length L(p)

of the plane waves inside the domain as a function of p by first making the

construction as shown in Fig. 5.9. The quantity p is the distance from O to

the nearest plane wave in the direction of the spiral core. It therefore lies in

the range 0 ≤ p < 1 and decreases with time. If time is scaled so that T∞ = 1

then

p = (1 − t + t0) mod 1 (5.1)
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Figure 5.9: Construction used to find L(p) for an equilateral triangular domain.
The spiral core is in the direction of the dashed line. Solid lines perpendicular
to the dashed line are wavefronts. They are one unit apart and move towards
O.

where t0 is a time at which a plane wave passes through O. We only need

to consider the cases 30◦ ≤ θ ≤ 90◦ since in addition to the 3-fold rotational

symmetry, there is also reflection symmetry about the line θ = 30◦. For

30◦ < θ < 90◦, a wavefront passing inside the domain either intersects OB and

OA or OB and AB. The number of wavefronts that intersect OB and OA is

the number, M , of wavefronts that lie between O and C. Point C lies on the

dashed line in such a position that AC is perpendicular to OC. Hence

M = [OC − p + 1] = [d cos θ − p + 1] (5.2)

where [·] represents the integer part. The remaining wavefronts that pass

through the domain and intersect OB and AB, lie between C and D. Point

D lies on the dashed line in such a position that BD is perpendicular to OD.

If N is the number of wavefronts between C and D then it can found from the

total number of wavefronts in the domain which is given by

M + N = [OD − p + 1] = [d cos(60◦ − θ) − p + 1]. (5.3)
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To find L(p) we need to introduce a further point E which is the intersection

of the dashed line with the line that passes through A and B. Then using

simple geometry we obtain

L(p) =

M−1∑
m=0

(p + m) {tan θ + tan(60◦ − θ)}

+
M+N−1∑

m=M

(p + m) tan(60◦ − θ) + {OE − (p + m)} tan(120◦ − θ) (5.4)

where the length OE is given by

OE = d{cos θ + sin θ tan(θ − 30◦)}.

B(t) is then obtained from (5.4) by substituting in (5.1) and then dividing the

whole expression by the area of the triangle.

When θ = 30◦, the plane wavefronts enter the domain parallel to side AB.

Points C and D coincide and the right-hand sides of (5.2) and (5.3) are the

same which means that N = 0 and

M(p) =

[√
3d

2
− p + 1

]
. (5.5)

Expression (5.4) then becomes

L(p) =
2√
3

{
M(p)p + 1

2
M(p)(M(p) − 1)

}
. (5.6)

It can be seen that if d = 2n/
√

3 where n is an integer, then (5.5) will evaluate

to a single number for any 0 < p < 1. (We can ignore the case when p = 0

since this is only a single point and will have no effect on the final result.) This

corresponds to there being a constant number of wavefronts in the domain

(except when p = 0). From (5.6) it can be seen that L(p) increases uniformly

with p and hence that B(t) will be a sawtooth wave with negative gradient.

The phase of the first Fourier component of B(t) will then be π/2 behind the

discontinuity of the wave. For other values of d, M(p) can take on two values,

depending on p. This results in B(t) having two different negative gradients for
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d ≥ 2/
√

3. The phase of B(t) is then not exactly π/2 behind the discontinuity

of the wave, but close to this value.

Similarly, when θ = 90◦, the plane wavefronts enter the domain at B

parallel to side OA. Following through the analysis in a similar way, one

finds that B(t) takes the form of a positive gradient sawtooth wave when

d = 2n/
√

3 for which the phase of the first Fourier component is π/2 ahead

of the discontinuity in B(t). For other values of d, the phase differs from this

slightly.

We are now ready to account for the positions of the LEZs and VEZs.

Referring back to Fig. 4.1(b), it is now apparent that the spiral core in the

figure is at the centre of an attracting LEZ and that in general the LEZs are

located at distances from the centroid of m+ 1
2
+d/

√
12, where m is an integer.

The net phase difference of approximately π between the two cases of θ = 30◦

and θ = 90◦ results in the centres of attracting VEZs occurring at integer,

rather than half-integer, distances from the side and hence their distances

from the centroid are m − d/
√

12. These expressions explain why LEZs move

away from the centroid while VEZs move towards it with increasing d. One

also sees that since the switching between vertex and lateral lobed limit cycles

described earlier for the region near the domain for 1.8 < d < 1.9 results

from the opposing directions of motion of the VEZs and LEZs, this switching

phenomenon is generic for this system and hence will also occur for domain

sizes and distances from the centroid larger than this.

In Fig. 5.10 the PWA estimates for the positions of the express zones are

compared with the measured values from the numerical calculation. As ex-

pected, the agreement is best far from the domain. Also, for a given distance

the discrepancy is larger for LEZs than VEZs. This is because how well the

plane wave approximates the spiral wave depends on the distance of the core

to the side which will evidently be smaller for a LEZ than a VEZ for a given

core-centroid distance.

The PWA can also be used to explain some features of the magnitudes of

the drift vectors in the directions of the side mid-points and vertices. First,

if the spiral core in the centre of a VEZ or LEZ is moved directly away from

the centroid, according to the PWA it will only result in a phase change in

B(t). Hence the magnitude of the drift vector in these directions should be
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Figure 5.10: Distances of centres of attracting express zones in the directions of
(a) the vertices (b) the mid-points of the sides. Solid lines: from computational
results; dashed line: from PWA. The dotted lines show the edge of the domain.

constant. Note that this prediction is also true for the Archimedean spiral

approximation. For the real spiral wave, which has a finite core radius, it

would not be expected to be constant due to the tip not remaining in the same

place as the wave rotates. Second, the difference between the maximum and

minimum total length of the plane wavefronts in the domain is d. Since the

area of the domain is proportional to d2, B(t) and hence the drift velocity

should be inversely proportional to d. As shown in Fig. 5.11, the measured

range of drift vector amplitude, A, within an express zone is generally small.

It is to be expected that this amplitude should be the same for VEZs and

LEZs although this only appears to be the case near d = 2. The amplitudes

certainly decrease with increasing d, but only approximately satisfy the inverse

relationship obtained from the PWA.

We can also use the PWA to account for the occurrence, strength and

positioning of the stagnation zones. When the plane waves are perpendicular

to one of the sides, as is depicted in Fig. 4.1(a), the change in B(t) and therefore

magnitude of the drift velocity is minimized. If stagnation zones are present far

from the domain, we therefore expect that they lie in the directions θ = nπ/3

away from the centroid. For plane waves traversing the domain in this way,

it is easily seen that B(t) will be constant (and hence the drift velocity zero)
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Figure 5.11: (1/d, A) plot of maximum and minimum drift vector amplitudes
lying in the directions θ = 30◦ (open circles) and θ = 90◦ (filled circles) for
the express zones at a distance of about 6 from the centroid. The dotted line
passes through the value with the smallest range of amplitudes.

if there are always an even number of wavefronts in the domain since for

each wavefront whose length inside the domain is increasing, there will be a

corresponding one whose length is decreasing by the same amount. As a result,

according to the PWA it would be expected that the stagnation zones far from

the domain should be strongest when d is close to an even integer. On the

other hand, if there are always an odd number of wavefronts in the domain,

B(t) will vary with the result that the drift speed will not be very small. Hence

for d close to an odd integer we expect very weak stagnation zones. This is

seen for d = 3 in Fig. 5.12(a) in contrast to the very pronounced stagnation

zones when d is close to an even integer as in Fig. 5.6 and Fig. 5.12(b). When

θ = nπ/3, the PWA is at its crudest, and so the stagnation zones are only

approximately in these directions.

There are another class of stagnation zones predicted by the PWA. If M

and N are both constant then L(p) will also be a constant as p varies. In the

above case, M = N . However, if M and N are both any constant positive

integers then we have

M = d cos θ N = d cos(60◦ − θ).
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Figure 5.12: Normalized divergence plots for (a) d = 3.0 (b) d = 4.0.

Solving this gives

d = 2

√
M2 + N2 + MN

3
(5.7)

and

cos θ =
M

2

√
3

M2 + N2 + MN
. (5.8)

Note that, as expected, when M = N , (5.7) reduces to d = 2M and (5.8)

reduces to cos θ = 1
2

(i.e. θ = 60◦). Putting M = 2 and N = 1 (or vice versa)

in (5.7) gives d = 2
√

7/3 � 3.055, and from (5.8) one obtains θ = 49.1◦ from

M = 2, N = 1 and θ = 70.9◦ from M = 1, N = 2. Reflection in the line

θ = 30◦ also gives the values θ = ±10.1◦. As can be seen in Fig. 5.13, there is

a pattern in the divergence plot in these directions. However, the stagnation

zones are very weak. This is perhaps to be expected. In the idealization used

in the PWA, the wavefronts are treated as infinitely thin lines. However, in

the actual calculation of B(t), the wavefronts have thickness. It is therefore

unreasonable to assume that the decreasing of the extent of one wavefront

in the domain could exactly compensate for the increasing of two wavefronts

inside the domain on the other side of line AC. Note that these (M, N) = (1, 2)

and (M, N) = (2, 1) type stagnation zones are also discernible in the plot for

d = 3 shown in Fig. 5.12(a).

On the basis of the above argument, one would expect that the stag-

nation zones would be even weaker for the case M = 3, N = 1 (or vice

versa). These values correspond to d = 2
√

13/3 � 4.163 and angles of
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Figure 5.13: Normalized divergence plots for d = 2
√

7/3 showing the (M, N) =
(1, 2) and (M, N) = (2, 1) stagnation zones. The dashed lines indicate angles
at which the stagnation zones are predicted to lie by the PWA.

θ = 43.9◦, 76.1◦,±16.1◦. As can be seen in Fig. 5.14, this type of stagna-

tion zone is scarcely existent. As in this case d is close to an even integer, the

usual d = 2M type stagnation zones are present in directions of θ = nπ/3.

Conversely, if M/N is closer to unity, one would expect that the stagnation

zones would be more prominent. (M, N) = (3, 2) and (M, N) = (2, 3) give

d = 2
√

19/3 � 5.033 and θ = 66.6◦, 53.4◦,±6.6◦. This appears to be the

case, as can be seen in Fig. 5.15. Note that in this case, d is close to an odd

integer and so one would not expect to find stagnation zones in the θ = nπ/3

directions. These ‘higher-order’ stagnation zones occur instead, giving rise to

two sets to stagnation zones either side of the directions along which stagnation

zones are normally seen.

Finally, it is worth noting that in the more extensive plots, far from the

domain there is a greater symmetry about the directions nπ/3 + π/6. This

is indicating that the lateral asymmetry of the spiral wave is becoming less

important at these distances.
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Figure 5.14: Normalized divergence plots for d = 2
√

13/3. The dashed lines
indicate angles at which the (M, N) = (1, 3) and (M, N) = (3, 1) stagnation
zones are predicted to lie by the PWA.
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Figure 5.15: Normalized divergence plots for d = 2
√

19/3. The dashed lines
indicate angles at which the (M, N) = (2, 3) and (M, N) = (3, 2) stagnation
zones are predicted to lie by the PWA.

5.2 Isosceles triangular domain

The isosceles triangular domain has two parameters, length of the base, b, and

the ratio, ρ = b/h where h is the height. Although the isosceles triangle domain
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possesses reflection symmetry about one axis, the spiral wave itself lacks this

lateral symmetry. The entire vector plot must therefore be calculated.

From Figures 5.16 and 5.18 it can be seen how much the number of fixed

points and the trajectory of the spiral wave tip can vary. From 5.17(a), the

spiral wave core reach to the circular shape limit cycle around the domain

(ρ=1,S=1) which is similar to the results from equilateral triangular and square

domains at size of 1. Fig 5.17(b), the attractor has the triangular shape. Both

of Fig 5.17(a) and (b) has one unstable focus at the centre of the domain.
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Figure 5.16: Drift velocity (a) and tip trajectory from experiment (b) for
Isosceles triangular domain at ρ=2, S=0.5. Scale bar: 1 mm.

From the results, it will be seen that for a given fixed area, the domain

ratio has a big influence on the shape of the trajectory. In Figure 5.16, the

results show that there is one unstable focus at the centre and the spiral tip

moves from the centre and goes around the domain but makes a wavy curve

above the centre near the top and then repeats the path. From the vector

plot, there are no other fixed points outside the domain. Only stable and

unstable limit cycles are found outside the domain. In Figure 5.18(a-b), the

trajectories (experimental results) did not reach the limit cycle. The tip moves

to stagnation zone at the left-hand side outside the domain (Fig 5.18(a)) and

the tip in (Fig 5.18(b)) moves to stable focus at the right-hand side under the
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(a) (b)
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Figure 5.17: Comparison of experimental results (a,b) with simulation (c,d) of
isosceles triangle domain ρ=1 with size S 1.0 and 1.3. Scale bar: 1 mm.

base side of the domain. There is one unstable focus at the centre, two saddle

nodes, one unstable focus at the side of domain and two stable foci outside the

domain (Fig 5.18(c)).

From Figure 5.19, the vector plots show how the spiral core trajectories

vary with different ratios. As the ratio increases, the limit cycles get larger.

For ρ in between 0.25 to 4, there are stable and unstable limit cycles around the

domain and each domain has one unstable focus at the centre. The interesting

point is at ρ = 0.25 and 4, the fixed points are found around the domain. At

ρ = 4 Fig. 5.19(e), there are two unstable foci, two saddle nodes and one stable

focus around the domain. The stable limit cycle attractor is found quite far
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Figure 5.18: Trajectories of spiral wave tip at different starting point (a-c) and
drift velocity plot (d) for isosceles triangular domain with ρ = 0.25, S =0.5.
Scale bar: 1 mm.

away from the domain. The similarity between ρ = 0.25 and 4 is that there

are five fixed points around the domain and the limit cycles are found far away

from the domain (Fig. 5.19(e)and (d), respectively).

Some of the features seen in the vector plots can be analysed using the

PWA. Firstly, for small ρ one would expect to see express zones above and

below the triangle. These would be a result of a wavefront suddenly crossing

the longest edge giving rise to a large jump in B(t). Such express zones are

seen in Fig. 5.18(d). Second, one would also expect to see express zones on
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Figure 5.19: The vector plot for various ratio with Isosceles triangle size S=0.5,
ρ is (a)-(e);0.25, 0.5, 1, 2 and 4 respectively.
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either side of the triangle when b < 1 and ρ is large. Wavefronts travelling in

the θ = 0◦, 180◦ directions will cause a sudden increase in B(t) when they cross

the domain. The sudden increase in B(t) will result in a large first Fourier

component and hence a large drift velocity (see section 3.2. Express zones of

this type are apparent in Fig. 5.19(d) and (e).

Finally, stagnation zones should occur far from the domain in the directions

θ = 0◦, 180◦ when b = 2n where n is an integer. In such cases the number of

wavefronts whose length inside the domain is increasing will always be balanced

by an equal number whose length inside the domain is decreasing. This type

of stagnation zone is seen in Fig. 5.19(a).

5.3 Discussion

In the analysis of spiral wave dynamics under feedback control via an triangular

domains, we have seen two basic types of behaviour. First, trajectories beyond

some critical distance from the centroid (this distance increasing with domain

size) generally will be attracted to stable limit cycles. In contrast to the

results from circular and square domains, both experimental measurements

and computational calculations show that these will in general be lobed if the

domain is sufficiently large. The plane wave approximation tells us that these

lobed limit cycles will occur at arbitrarily large distances from the centroid

and that as the domain size is increased, each limit cycle will only last for

a limited range of d before being destroyed. Parts of the attracting regions

making up such a destroyed limit cycle some distance from the domain will

later join up to form a new limit cycle. Second, inside large domains we see a

regular array of stable and unstable fixed points.

Although the existence of express zones and stagnation zones is apparent

in the experimental and computational results of earlier studies, this appears

to be the first time they have been commented upon. In the control of a

spiral wave they are of great importance. If a spiral tip is to be moved from

one region to another, like stable fixed points, stagnation regions are to be

avoided. Conversely, rapid movement of the spiral core could be achieved by

choosing a path composed of express zones.

The stagnation zones we have reported here are not unique to feedback
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via triangular domains. Using the PWA it can be seen that they would be

expected to occur, for instance, aligned with the vertices of a square domain

and be the most prominent when d =
√

2n for integer n. Such vertex-aligned

stagnation zones are evident in Fig. 2(d) of Ref. [48]. It is also straightforward

to understand why the very extended stagnation zone occurs in the case of the

rhombus-shaped sensory domain in Fig. 1.16(g).

The PWA approach introduced here was presented with the caveat of only

applying far from the domain. Nevertheless, it is of note that some of its

predictions for the drift vector field, such as the location of the express zone

centres, are also reasonably accurate quite near the domain.

The experimental results show how it is possible to control the dynamics

of spiral wave in the light-sensitive BZ solution. Modulation of light intensity

depends on the integral of the wave activity inside a triangular sensory domain.

The measured spiral wave trajectories in laboratory behave as the numerical

work predicts. The experimental results also show the possibility of observing

spiral wave dynamic which is some distance outside the domain.



Chapter 6

Conclusion

In this thesis we have looked that effect of non-local feedback via triangular

domains on the trajectory of the spiral core in excitable systems. In the ex-

perimental work, studies were performed on the light-sensitive BZ reaction.

Numerical studies were carried out using Zykov’s idealized excitable system

model [46]. The experiment has shown that the movement of the spiral wave

core can be controlled using the feedback mechanism with a triangular sensory

domain.

In addition to obtaining specific results on how the size and shape of the

domain affects the trajectories, we have introduced new ways to present data,

classify, and account for the results. Plotting the drift vector arrows with

colour coding on a background whose shade reflects the normalized divergence

makes it much easier to see the attractors and repellors. The existence of

stable and unstable fixed points in such plots is now well-known. However,

regions where the motion of the spiral core is unusually fast or slow are also

important. We have named these express and stagnation zones, respectively.

The express zones are apparent on vector plots by the large size of the arrows

compared to neighbouring regions. The stagnation zones, on the other hand,

appear as particularly dark or bright regions on normalized divergence plots.

The plane wave approximation we have suggested is a simple to use tool to

obtain quick results that can account for some of the features of the vector plot

far from the domain. In particular, it can be used to account for the positions

of express and stagnation zones far from the domain. It also indicates for what

domain parameters such zones will be found and how strong they will be.

74
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We used the PWA for the directions θ = nπ/6 since they turn out to

correspond to the centres of express or stagnation zones and the expressions for

B(t) in these cases are the most straightforward to analyse. In addition, some

further values of θ were involved when predicting directions of higher-order

stagnation zones for specific values of d. Applying our PWA techniques and

their extension through examining the case for other angles to explain features

of drift vector fields for this and other domain geometries is an interesting

topic for future investigation.
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