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Abstract 

Much has been written on the determinants of input and technology adoption in agriculture, 
with issues such as input availability, knowledge and education, risk preferences, 
profitability, and credit constraints receiving much attention.  This paper focuses on a factor 
that has been less well documented: the differential ability of households to take on risky 
production technologies for fear of the welfare consequences if shocks result in poor harvests. 
Building on an explicit model, this is explored in panel data for Ethiopia. Historical rainfall 
distributions are used to identify the counterfactual consumption risk. Controlling for 
unobserved household and time-varying village characteristics, it emerges that not just ex-
ante credit constraints, but also the possibly low consumption outcomes when harvests fail, 
discourage the application of fertiliser. The lack of insurance causes inefficiency in 
production choices. 
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1 Introduction 

Households in poor developing countries are typically ill-equipped to cope with large shocks.  

Formal insurance schemes are mostly absent and informal risk-sharing arrangements and 

savings offer only partial consumption smoothing (Morduch, 1995; Townsend, 1995, Dercon 

2002). Especially the consequences of covariate shocks, such as droughts, are most often hard 

felt, often affecting people’s welfare many years after the shock (Dercon, 2004).  In 

anticipation of such outcomes, households, especially poorer ones, may opt for less risky 

technologies and portfolios in order to avoid permanent damage.  Yet, these often also 

generate lower returns on average (Just and Pope, 1979; Rosenzweig and Binswanger, 1993). 

This suggests the potential existence of risk induced poverty traps, whereby those 

who can insure their consumption against income shocks can take advantage of the more 

profitable opportunities and possibly grow out of poverty, while others are stuck with low 

return, low risk activities, trapping them into poverty, even though their inherent risk 

preferences may fundamentally be the same.  Zimmerman and Carter (2003) simulate for 

example that, even when assets are divisible and agents fully rational, optimal portfolio 

strategies bifurcate in resource-poor, risky environments with subsistence constraints and 

imperfect credit and insurance markets. Initially wealthier agents obtain higher yielding, 

higher risk portfolios, while smoothing their consumption.  Initially poorer agents revert to 

lower yielding and lower risk portfolios, often absorbing the shock by reducing their 

consumption to maintain their asset levels.   

While theoretically sound2 and supported by anecdotal evidence (Narayan et al. 

2000), whether households actually engage in risk avoidance in the face of subsistence 

constraints, ineffective self-insurance strategies and incomplete credit and insurance markets, 

and whether such behaviour is quantitatively important in explaining persistent poverty in 

                                                 
2 Sandmo (1971), Eswaran and Kotwal (1990), Kurosaki and Fafchamps (2002).  
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poor, risky, agrarian settings is hard to investigate empirically. The limited available evidence 

suggests nonetheless that the income and welfare losses associated with risk avoidance can be 

significant, especially in drought prone areas.   

Rosenzweig and Binswanger (1993) for example find that a one standard deviation 

decrease in weather risk would raise average profits by up to 35 per cent among the lowest 

wealth quintile of their sample in semi-arid India.  Similarly, farmers in Shinyanga, a semi-

arid district in western Tanzania, with limited options to smooth consumption ex post, were 

found to grow more lower return, but safer crops (in this case sweet potatoes) foregoing up to 

20 per cent of their income as implicit insurance premium (Dercon, 1996).  Adaptation of the 

crop portfolio (substituting fodder for Basmati rice production largely in response to 

covariant fodder price risk) was also observed in Punjab Pakistan (Kurosaki and Fafchamps, 

2002), despite well developed input and product markets, though income and welfare losses 

were smaller (2 and 9.4 percent respectively).  

Risk avoidance in the face of incomplete insurance may also be key in understanding 

limited fertiliser use (Lamb, 2003).  Modern input use, including fertiliser, is an important 

determinant of agricultural productivity, and continuing low agricultural productivity is an 

important contributor to poverty persistence especially in agriculture based countries such as 

in Sub Saharan Africa (Christiaensen and Demery, 2007; Morris et al., 2007).  If so, there 

would be substantial synergies in complementing interventions that foster access to credit 

with interventions that help households cope with shocks (e.g. insurance), a critical insight 

for the design of effective poverty reducing strategies.   

This paper explores the empirical importance of risk avoidance in fertiliser adoption 

in Ethiopia, using a four round panel data set of about 1500 rural households.  Fertiliser use 

in Ethiopia has remained limited despite concerted efforts by the government to promote its 

adoption through improved extension services and access to credit. A host of demand and 
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supply side factors have been invoked to explain the limited adoption of fertiliser in Ethiopia3 

including limited knowledge and education (Asfaw and Admassie, 2004), risk preferences, 

credit constraints (Croppenstedt, Demeke and Meschi, 2003), limited profitability of fertiliser 

use (Dadi, Burton, and Ozanne, 2004; World Bank, 2006b), lack of market access (Abrar, 

Morrissey, and Rayner, 2004) as well as limited or untimely availability of the inputs 

themselves. Carlsson, et al. (2005), the World Bank (2006a) and anecdotal evidence4 have 

recently also highlighted the importance of the households’ limited ex-post consumption 

coping capacity.  

 The paper proceeds by introducing a model of risky input choice in section 2. In this 

model, the possible impact of seasonal credit constraints on input adoption is distinguished5 

from intertemporal constraints related to risk and consumption outcomes, a key contribution 

of the paper.  An empirical model to test these propositions is presented in section 3. Section 

4 describes the data with a particular emphasis on the effect of fertiliser use on profit 

variability. The econometric results are discussed in section 5 and section 6 concludes. 

  

2 A theoretical model of risky input choice  

Households derive income from agricultural production, which involves determining the 

level of risky inputs (such as high yielding varieties and fertiliser) that increase both the mean 

and the variance of the net returns to production. The level of input use has to be decided 

before the rains have come and the harvest is known, i.e. before uncertainty has been 

resolved, and often in the face of imperfect credit and insurance markets. 

                                                 
3 Morris et al. (2007) provide a comprehensive review of the factors affecting fertiliser use in Africa. Feder et al. 
(1985) review the international evidence.    
4 Bonger et al. (2004).  Largely uncorroborated but insistent reports exist that strict enforcement of repayment of 
loans that are granted without insurance in case of crop failure may well have discouraged farmers to continue 
fertiliser use after local or widespread droughts such as in 2002. 
5 Duflo et al. (2006), in an innovative field experiment in rural Kenya, identified access to finance at the right 
time as the critical constraint to fertiliser adoption. While they specifically focused on the inability to save over 
the agricultural cycle to have sufficient funds when fertiliser needs to be applied, widespread access to credit to 
finance fertiliser adoption, as in Ethiopia, is another way of alleviating this constraint. 
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This decision making process, common in many rural settings, is modelled building 

on Evans and Jovanovic (1989), Eswaran and Kotwal (1990), Morduch (1990), and Deaton 

(1992).  We explore in particular the implications of a household’s capacity to protect its 

consumption from falling in case of a shock for its ex ante risk-taking in agriculture (i.e. 

assuming income endogenous), beyond the effects from working-capital related credit 

constraints.  This means taking into account both limitations on using insurance, credit or 

savings ex-post, i.e. after uncertainty has been resolved, as well as credit constraints ex-ante, 

when input decisions have to be taken, i.e. before uncertainty has been resolved.   

 To highlight the differential impact of input credit market imperfections, and risk and 

coping capacity, the adoption of risky inputs is first modelled in a world without uncertainty 

but with imperfect credit markets, and then in a world with uncertainty. The level of risky 

inputs determines riskiness in production.  This suffices to capture the core insights regarding 

the dynamic interaction between limited ex-post consumption smoothing capacity and ex-

ante production choices.  Abstraction is made from other income risk reducing mechanisms 

(such as land and labour allocations to diversify the crop and income portfolio).     

Denote gross returns at the end of period t as ( )txg , with xt the quantity of inputs used, 

to be decided at the beginning of the period, and g(.) increasing at a decreasing rate in xt. For 

now, there is no risk. Input prices are px and inputs have to be paid before the harvest is 

known, although we will allow for credit.  Purchased inputs, such as fertiliser, are divisible 

and can be used in small quantities, with limited start-up costs in production. Still, 

transactions costs in contacting and travelling to suppliers, and learning, may imply some 

sunk costs6.  Net returns from agricultural production can be defined as ( ) txtt xpxgy −=  - 

I(xt).m, with m defined as sunk costs incurred from using fertiliser (m ≥ 0) and I(xt) is the 

indicator function taking on the value one if fertiliser is used, and zero otherwise.   

                                                 
6 World Bank (2006b) reports that most fertiliser in Ethiopia is sold in bags of 25 kilograms.  
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 Assume that households optimize intertemporal welfare defined in consumption. 

Suppose they have an intertemporally additive utility function u defined over lifetime T as:  

 ( )∑
=

−+=
T

t

t
t cvu

τ
τ

τδ )1(      (1) 

with ν(.) instantaneous utility derived from consumption cτ (≥ 0) and δ the rate of time 

preference, (ν’(.)>0, ν’’(.)<0). Define r as the rate of returns of savings between periods and 

At+1 as assets at the beginning of period t+1.  Assets evolve from one period to the next 

according to: 

 ))()(1(1 tttxttt c).mI(xxpxgArA −−−++=+    (2) 

We assume for simplicity that assets can be liquidated at any point in time. Consumption 

prices are used as the numéraire. Consumption decisions are made after income has been 

generated from production, while inputs have to be paid beforehand unless credit is available. 

 Even though (formal) consumption credit is rarely available, input credit is common, 

an important distinction to be taken into account. In Ethiopia, inputs such as fertiliser are 

provided under regional government guarantees usually offering seasonal credit without 

collateral. Repayment is strictly enforced, and default rates are low, albeit non-zero.7 

Following Evans and Jovanovic (1989), suppose that that enforcement is not perfect, but that  

those caught are punished by losing the equivalent of a proportion of their assets, and that the 

net return on their assets and production for those not repaying pxxt will only be 

( ) mxIAxg ttt ).(−−θ , with θ(>0) determined by factors such as the probability of getting 

caught and the share of assets impounded when caught. However, lenders will only offer 

                                                 
7 Bonger et al. (2004) for example found that 20 percent of the farmers in their sample did not fully repay the 
fertiliser credit, largely due to harvest failure.  Those farmers faced severe penalties such as imprisonment, or 
had to sell livestock and other property or sell their food items.   



 7

credit if there are incentives to repay loans, or if net returns when repaying outweigh returns 

when cheating, i.e.8: 

  0≥− txt xpAθ        (3) 

 This equation is then the seasonal credit constraint, whereby credit is an increasing 

function of initial assets levels. When assets are fully liquid, values θ <1 won’t hold since the 

household can use cash purchases up to the value of its assets.  If θ =1, a household’s 

purchases of inputs must be fully collateralised.  They are indifferent between borrowing for 

the purchase of inputs (to repay later) and selling the assets now to purchase the inputs. 

Higher values imply access to not-fully collateralised credit, such as borrowing against future 

harvests.  Reflecting the Ethiopian reality—seasonal loans without collateral but with harsh 

enforcement—we assume θ ≥1, nesting the more conventional case of credit constraints 

( 0≥− txt xpA ).  

 Consumption is decided after income has been generated from production and after 

seasonal credit has been repaid. Borrowing against future income is not possible9 and 

consumption is limited to the sum of the realized income and the value of assets At at the end 

of t, or formally:  

 0)()(1 ≥−−−+=+ tttxttt cmxIxpxgAA      (4) 

This is the “consumption credit constraint” ‘ex-post’, which together with the (‘ex-ante’) 

seasonal credit constraint (3) and the transversality condition AT+1=0, i.e. there is no savings 

beyond the last period T, and ct ≥ 0, form the constraints of the optimization problem.  The 

value function, defined in initial asset levels, can be written as: 

                                                 
8 It is assumed that no interest rate is charged on seasonal credit, but this could be easily introduced, without 
affecting the general thrust of the results. 
9 Given that informal insurance is only partially effective at best in insuring households against idiosyncratic 
shocks and ineffective in insuring them against covariant shocks (Townsend (1995), Morduch (1995)), we 
abstract from effects of informal insurance on consumption smoothing. Lamb (2003) highlights the potential for 
ex post consumption smoothing in semi-arid India through the labor market.  In Ethiopia, opportunities for both 
off-farm employment and seasonal migration are very limited. 
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))()(()(

)))()().(1(()(max)( 1, 1

1

tttxttt
tx

tt

ttxtttttxctt

cmxIxpxgAA

mxIxpcxgArVcvAV

xp
tt

−−++−+

−−−+++=

−

+
+

γλ θ

δ   (5) 

Solving this problem backwardly implies that we get the solution for optimal 

consumption in each period and then derive the optimal input decision, given the optimal rule 

for deciding on consumption. The optimal consumption rule satisfies:  

 0)('.
)1(
)1()(' 11 =−

+
+

−=
∂
∂

++ tttt
t

t AVrcv
c
V

γ
δ

    (6) 

Given (6), when the input decision is being taken (and given that the seasonal credit 

constraint has built-in incentives for credit repayment to be the optimal decision ex-post), the 

subsequent intertemporal (or ‘ex-post’) budget constraint is not relevant and only the seasonal 

credit constraint matters. The optimal level of input use (for non-zero input use) can be 

obtained from (5) as: 

 0)('.
)1(
)1(

11 =−
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
+

+
+

=
∂
∂

++ θ
λ

γ
δ

xt

t

t
ttt

t

t p
x
y

AVr
x
V

   (7) 

Substituting (6) into (7) gives the optimal decision rule for the adoption of xt: 

 

 0)(' =−
∂
∂

=
∂
∂

θ
λ xt

t

t
t

t

t p
x
ycv

x
V      (8) 

Equation (6) is the standard rule for intertemporal consumption with (consumption) 

credit constraints: if binding, then the marginal utility of current consumption is higher than 

the marginal value of future (appropriately discounted) consumption, or consumption now is 

lower than optimal. Equation (8) shows how the seasonal credit constraint may result in 

inefficiency: if seasonal budget constraints do not bind (λt=0), an efficient allocation in 

production is obtained when the marginal value product equals the input price, i.e. when the 

marginal net return equals zero.  Otherwise, the seasonal credit constraint and decreasing 
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marginal returns imply that sub-optimal and lower input levels are obtained, with positive 

marginal net returns. Note furthermore that, given positive marginal returns, the larger is the 

input use, the larger is the household’s income and the less likely it is that γt binds.  In the 

deterministic case, it is thus optimal to choose the input level that maximizes income, as this 

also minimizes the risk that the intertemporal liquidity constraint binds.10 

 To introduce risk in the income process, consider gross returns being governed by 

g(xt, εt), whereby εt is a random, serially uncorrelated shock, realised after input decisions 

have been made.  It is assumed that min[ ( )tt ,xg ε ]= a ≥ 0, i.e. the lowest gross returns are 

nonnegative. Define yt=g(xt,εt)-pxxt-I(xt)m as the net returns to production and 

( ) 0>∂∂ ttt xyE  (with Et the expectation at the beginning of t before yt is known), so that 

expected returns with risky inputs are always higher than without inputs, albeit at a 

decreasing rate, ( ) 022 <∂∂ ttt xyE .  It is further assumed that 0>∂∂ tty ε , that 0>∂∂ tt xy if 

0>tε  and that 0<∂∂ tt xy if 0<tε . In good times, choosing more risk increases net 

returns, while in bad times, choosing more risk results in losses, or the dispersion of net 

returns increases as inputs increase.11  If the household were maximising expected income 

(i.e. risk-neutrality), it would choose xt such that 0=
∂
∂

t

t
t x

y
E , or x

t

tt
t p

x
xgE =
∂

∂ ),( ε , and some 

inputs would always be used given the assumptions (including that input use is profitable in 

expectation).  

                                                 
10 The sunk costs m do not play a role in deciding the level of input use here, since these decision rules are 
derived for non-zero input use. Non-zero input use will only apply if it is profitable to do so, i.e. it yields 
positive net returns yt. The sunk costs imply that there is a threshold level of fertiliser below which marginal 
return to using more fertiliser is positive but levels used are zero since it would result in negative overall profits 
(net returns). Introducing risk does not affect this. Formally, this is equivalent to introducing the condition g(xt)-
pxxt-I(xt)m ≥ 0 into the optimization problem.  
11 We remain agnostic about whether the increased riskiness stems from higher risk in yields or (given the non-
zero costs of inputs) higher risk in returns, even if yields are not ‘more risky’. Inputs could also be perceived to 
be more risky given limited knowledge of the new production technique inducing a degree of subjective 
uncertainty which typically declines as producers become more familiar with the technique (Hiebert, 1974).  In 
the empirical analysis, we do not find evidence that fertiliser results in more risky yields, but the non-zero costs 
result in higher, but more risky returns as assumed in the model.   
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Assume that the household maximises the expected flow of utility from consumption, 

( )∑
=

−
−+=

T

t
t

t
t cvEu

τ
ττ

τδ )1( . All assumptions made before regarding risk aversion are 

maintained. The period t value function for the household can now be written as: 

)(
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tt

tttxtttt
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⎤
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⎢

⎣
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            (9) 

with λt and γt defined as before. Backwardly solving this problem, we first derive the optimal 

consumption rule (after uncertainty over income has been resolved): 
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⎦

⎤
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⎡
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+
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∂
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δ

   (10) 

Given (10), we subsequently take the derivative of (9) with respect to xt at the beginning of t, 

i.e. before uncertainty has been resolved and obtain the optimal decision rule for xt (for non-

zero input allocations) as: 

 0)(
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1
'
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x
V    (11) 

Expanding equation (11) yields: 
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 (12) 

 Since εt and εt+1 are uncorrelated and given (10):  
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From (10) it can furthermore be seen that ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+

+
+

= ++ tttttt AVrEcvE γ
δ

)('.
)1(
)1()(' 11  at the 

beginning of t.  Using these insights, (12) can be rewritten as  
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which is equivalent to: 
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 While there is obviously much similarity between (14) and (8), uncertainty and risk 

aversion make it no longer optimal to maximize income by maximizing the amount of inputs 

used. Given risk aversion, low levels of consumption (i.e. higher marginal utility) will have a 

higher weight in the expected value in (14), so that incentives exist to allocate inputs at lower 

levels (i.e. higher marginal returns) than without risk. In other words, risk may result in lower 

risky inputs in production.12 

 These insights follow readily from equation (13).   To see this, note that the 

covariance in (13) is non-positive.  In moving from a good to a bad state of the world, the 

marginal return to input use turns negative, or income is lower for higher levels of input use 

in a bad state of the world.   If as a result, the consumption credit constraint (γt) binds and 

current consumption has to be reduced, the marginal utility of consumption will increase—

the marginal return to risky inputs and the marginal utility of consumption move in the 

opposite direction. In other words, if at least in some states of the world the consumption 

constraint (γt) is likely to bind, the covariance is negative.  As a result, the expected marginal 

return to input use increases, making it optimal to reduce the use of risky inputs. If liquidity 

constraints never bind, the covariance will be zero. 

                                                 
12This may seem a trivial result, and could be obtained from a static model with income risk and risk aversion. 
However, this result is dependent on consumption being lower when poor harvests occur, and in an 
intertemporal model this means that intertemporal constraints have to be taken into account. To see this, note 
from (10) that the presence of credit constraints in particular states of the world at t (γt>0) implies that current 
marginal utility will be higher (and thus consumption lower).  
 



 12

 More broadly, the insights related to equations (13) and (10) can help us to identify 

whether the choice of risky inputs is determined just by seasonal ‘ex-ante’ credit constraints 

(λt) or whether possible risk-related intertemporal ‘ex-post’ credit constraints (γt) are relevant 

as well. Consider the following scenarios.  If consumption can be kept smooth over time (∀εt: 

γt=0 and λt≥0), then the covariance between marginal returns in different states of the world 

and marginal utility is zero. The only cause for a deviation from a risk-neutral allocation 

based on expected marginal returns to inputs equal to zero would be seasonal credit 

constraints (λt>0) – effectively similar to (8). These seasonal credit constraints would be 

determined by the levels of assets available and the nature of the credit market constraints at 

the time of the input decision. 

 However, whenever ex post consumption credit constraints are more likely to bind 

due to limited ex post coping capacity (γt>0 for some εt and λt≥0), the choice of risky inputs 

is likely affected as it affects the likelihood of ex post credit constraints to bind.  In particular, 

poorer households (with limited assets At) are more likely to forego risky inputs (such as 

fertiliser), not just because they have less access to credit (λt≥0) but also because they are less 

able to avoid consumption shortfalls (γt>0).  Note furthermore, at low levels of consumption, 

instantaneous utility is likely to be steep and highly concave as the household is concerned 

about very low levels of consumption.  As a result, small reductions in income will result in 

large increases in marginal utility and consumption credit constraints will be much more 

likely to bind.  

In sum, factors contributing to more likely binding consumption credit constraints—

including more risky production patterns and less smoothing possibilities—reduce people’s 

willingness to take risk. This effect goes beyond just risk averse preferences: risk averse 

households with appropriate means for risk-sharing and consumption smoothing, so that their 

marginal utilities ex-post are not affected by particular outcomes, could take decisions on 
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production as if they were risk-neutral. Lower risk taking results in lower returns on average, 

and perpetuates poverty. 

 

3 Empirical Approach 

To test the key prediction from our model— fewer risky inputs will be used, ceteris paribus, 

when households face higher ex-post downside consumption risk—a credible identification of 

each household’s downside consumption risk is needed. This information is subsequently 

used to explore whether households’ expectations about ex post consumption downfalls (γt) 

affect their ex ante decisions on modern input use, in addition to seasonal credit constraints 

(related to the need for working capital). If the likelihood of consumption downfall is 

properly controlled for, then measures of current liquidity positions (At) and any required 

down payments for inputs would allow one to distinguish (ex-ante) working capital 

constraints (λt) from (ex-post) consumption smoothing constraints (γt).  

 Equation (14) shows that input decisions are based on ex-post consumption outcomes 

in expectation.  Obviously, using information on actual consumption ex-post to proxy this is  

endogenous as it is itself a function of actual adoption of the inputs.  Initial assets could be 

used as instruments (Morduch, 1990), though they would not allow us to distinguish seasonal 

credit constraints from ex-post consumption risk. Instead, a parametrised version of the ex-

post consumption model is first estimated including explicit information on shocks, and the 

ex-ante consumption risk faced by the household is then simulated using historical data on 

rainfall shocks and conditioned on other current household and community characteristics.13   

 By applying the envelope theorem to equation (6) and assuming that households can 

perfectly smooth consumption, the optimal consumption path is defined by: 

                                                 
13 This means that we assume rational expectations, i.e. households know the underlying consumption model 
including the ex-ante distribution of the stochastic variables and the effect of these shocks on consumption. This 
procedure is similar to Kazianga and Udry (2006) in their test for precautionary savings in Burkina Faso. 
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Assuming constant relative risk aversion with direct marginal utility defined at t as tect
ϕρ− , 

with ρ defined as the coefficient of relative risk aversion and φt a general taste shifter, taking 

logs, and introducing subscript i to denote households, an empirical specification can be 

obtained from (15) as14: 
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Equation (16) suggests that the path of consumption over time is only affected by taste and 

preference shifters, as long as there are no binding liquidity constraints over time and 

provided the underlying factors determining wealth (or permanent income) are not changing. 

Overidentifying this equation to reflect shocks (ΔSit+1) to income and possible heterogeneity 

in households’ capacity to cope with these shocks15, this leads to the following linear 

specification: 
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with Zit+1 taste and other preference shifters (such as, changes in household composition, 

price changes, or seasonality shifters), ΔSit+1, shocks linked to idiosyncratic and common risk 

and eit+1 an error term. If consumption credit constraints do not bind, then α2 is zero.  

The first regression to be estimated is based on (17), though expressed as a household 

fixed effects levels model, rather than a difference model. Define Xit as a set of (exogenous) 

household characteristics affecting preferences and ‘permanent’ income (such as changes in 

                                                 
14 In (16), r and δ are assumed constant across households. It is less straightforward to defend that ρ is assumed 
constant, i.e. constant relative risk aversion with the same coefficient across households. Given fixed effects, 
some of the heterogeneity in risk preferences will nevertheless be controlled for in this regression, as well as in 
the adoption regression discussed below. 
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household composition) and Sit are variables that describe different sources of risk (such as 

weather, pests, and general health conditions).  To capture households’ differential ability to 

cope with changes in income, Sit is interacted with liquid asset levels Bit, proxied by livestock 

at t-1 to avoid endogeneity.  Livestock is the most important liquid asset in rural Ethiopia. 

The indicator variable Git is introduced to reflect the fact that it may be easier to protect 

consumption from positive (e.g. good harvests) than from negative shocks. Unobserved 

household fixed effects are represented by vi and εit is a white noise error term.. 

 itiitititititoit BGBSXc ενδδδδ +++++= 321 ..ln    (18) 

From equation (18) consumption expectations for different possible values of the shock 

variables can be obtained to investigate whether expected values in ‘bad’ years matter for 

input adoption.  

Equation (14) implied that the demand for risky inputs will be influenced by factors 

influencing the marginal utility and the value of the marginal productivity of these inputs.  

These include: Lit fixed inputs (such as land endowments) and other household specific 

characteristics, some of which are fixed, such as land quality or risk preferences; Vit, input 

and output prices and other community16 and agro-ecological characteristics; Ait, asset 

variables capturing (ex-ante) working capital-related credit constraints at the time of making 

the input use decisions; and g(cit), expectations about (ex-post) consumption outcomes, 

weighted towards the anticipated downside risk in consumption; itν  reflecting unobserved 

community characteristics; and ωi reflecting unobserved time invariant household 

characteristics. uit is a white noise error term. In a linear specification, this could be written 

as:  

                                                                                                                                                        
15 Datt and Hoogeveen (2003) and Christiaensen and Subbarao (2005) provide empirical evidence of the 
differential ability of households to smooth consumption in the face of shocks in the Philippines and Kenya 
respectively. 
16 Vit may also capture changing availability of fertiliser, the changing presence of extension officers offering 
information on fertiliser use, and more general learning and increased familiarity with fertiliser use. 
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Identification of g(cit) is achieved by using counterfactual values based on possible 

(not actual) realisations of the shock variables.  From equation (18), different households 

have a differential ability to bear risk over time.  When combined with the historical rainfall 

distribution data for each cluster, time variant and household specific ex ante (counterfactual) 

consumption distributions can be generated to construct the potential downside risk variable 

at the time of the fertiliser use decision g(cit). 

 This leaves the choice of the relevant counterfactual. If fertiliser adoption results in 

changing the distribution of consumption outcomes (higher mean but higher variance), then 

estimating (18) without controlling for fertiliser use effectively ignores the differential 

consumption risk distribution for users versus non-users. Inclusion of fertiliser use in model 

(18) would introduce an endogenous variable–the theory clearly showed non-separability of 

consumption and production decisions if risk is not fully insured. Instead, the reduced form 

specification as in (18) is used, in effect ignoring fertiliser as a variable shifting the 

distribution of consumption, to avoid introducing endogeneity. It will be shown below that 

fertiliser use results in larger downside income risk, and that households have in general a 

limited ability to smooth consumption. The reduced form approach thus offers a lower bound 

on the risk faced by households. 
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4 Fertiliser use, agricultural production and households in rural Ethiopia 

Our data are taken from the Ethiopia Rural Household Survey (ERHS), which comprises 

1477 households in 15 Peasant Associations across the four major regions in Ethiopia. 

Households were surveyed 4 times between 1994 and 1999.  The sample is broadly 

representative for the main farming systems in the country, including the ox-plough cereal 

producing areas in the northern and central areas (about 63 percent of the sample), the enset17 

dominated areas which are typically also suitable for coffee and chat (about 30 percent) and 

the much smaller hoe-based cereal areas (about 7 percent).18 Attrition is low. For about 88 

percent of the sample, we have observations in each year, but many households were 

recovered within the sample during the five year period and in 1999 there is information for 

94 percent of the households interviewed in 1994. Estimations are done on the unbalanced 

panel.   

 Cereal yields in Ethiopia are currently only about 1,250 kg per hectare, compared 

with 2,500 and 4,500 kg per hectare in South and East Asia respectively.19  Yields increased 

only marginally over the past decade (by 0.3 percent per year between 1991/92 and 2003/4), 

most of it accounted for by increased maize yields and an expansion of the fertilized area 

(about 43 percent of the area under cereals fertilized in 2002/3, up from 32.5 percent in 

1994/5).  Intensity remained constant at about 100kg per hectare and the number of users 

remained at less than a quarter of all farmers.20   

Consistent with national trends both adoption rates and intensity of fertiliser use in the 

sample are low with an overall expansion in the main cereal areas and a decline in the enset 

and other permanent crop areas (Table 1).  Only 22 percent of all households used fertiliser in 

each period and many households switch in and out of fertiliser from year to year.  In 1999, 

                                                 
17 A permanent food crop, commonly known as false banana.  
18 See Dercon, Hoddinott, and Woldehanna (2005) for more details on the sample. 
19 Average yields during 2003-2005 (World Bank, 2007). 
20 See World Bank (2006b) for a comprehensive review of the performance of the agricultural sector in Ethiopia 
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14 percent of households did not use fertiliser, despite having used it in one of the three 

earlier rounds and 3 percent stopped using fertiliser after having used it every round before.  

Three quarters of all purchased quantities are multiples of 25 kilogrammes (a small bag), 

suggesting the existence of a small threshold due to fixed costs or other indivisibilities. 

Table 1: Fertiliser use in ERHS, 1994-1999 

  Incidence of farmers using fertiliser (%) Application rate per hectare1) (kg) 
  Main 

cereal 
areas 

Enset and other 
permanent crop 

areas 

Total Main 
cereal 
areas 

Enset and other 
permanent crop 

areas 

Total

1994 43.0 44.5 43.5 35.0 33.9 34.6 
1995 41.6 28.0 37.0 31.1 13.2 25.1 
1997 49.9 41.8 47.3 32.1 25.0 29.8 
1999 50.0 36.4 45.5 39.0 18.1 32.2 

1) Average across users and non-users. 

Source: Data from the ERHS 1994-99 

In 1994, about half the farmers quoted costs as the main reason for not using modern 

inputs (including fertiliser), increasing to about 60 percent in 1999 (Table 2).21  Only 15 

percent mentioned limited availability as a constraint.22  The percentage of farmers indicating 

non-suitability of the agro-climatic conditions as reasons for nonadoption, declined from 19 

percent in 1994 to only 8 percent in 1999.  This coincided with the declining importance of 

knowledge and skills in adopting modern inputs and suggests better understanding of how 

fertiliser works over time. Only 3 percent reported not to have the relevant skills in 1999. 

 

                                                                                                                                                        
over the past 25 years (including the functioning of the fertiliser market).  
21 In 1994, the question distinguished profitability from costs and lack of cash, and very few farmers (2 percent) 
suggested that the profitability of fertiliser itself was the problem, settling for cost reasons, suggestive of credit 
constraints. In 1999, this distinction was not made and the two groups are reported together in table 2, even 
though profitability had likely declined following the fertiliser price increase since 1997. 
22 In 1994, lack of availability was concentrated in two enset growing villages. In 1999, this response was 
concentrated in one coffee producing village (Adado, near Dilla in SNNPR), and most likely referred to 
pesticides for coffee disease. 
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Table 2: Main two reasons for not using modern inputs (% of farmers reporting) 

 1994 1999 
Too expensive/low profitability/lack of cash 49 60 
Fertiliser not available in area 15 15 
Soil/crops/climate not suitable 19 8 
Don’t have skills 10 3 
Other 7 15 
Source: ERHS 

Consistent with the observation that input use is expensive, real fertiliser prices in the 

areas under study at the time of planting increased by 28 percent between 1993/4 and 

1998/99 (see Table 3).  This follows the gradual removal of panterritorial price fixing, 

completed by 1997/98. However, cereal prices did not follow this increase and the relative 

output-fertiliser price decreased considerably during the latter years of the survey.  

 

Table 3 : Evolution of fertiliser and cereal prices during 1994-1999. 

 Average Fertiliser Price per 
Quintal (per 100 kg in 1993 

prices) 

Average cereal price 
(Ethiopian birr) per 100 kg 

in 1993 prices 

Average cereal/fertiliser 
price ratio 

1993/94 141 227 1.61 
1994/95 129 242 1.88 
1996/97 176 212 1.20 
1998/99 180 221 1.23 
Fertiliser prices are the average of DAP and UREA prices around the time of planting for the main season 
(June).  DAP and UREA are the two main types of fertiliser used.  Cereal prices are averages based on village-
specific prices derived from price surveys in the Ethiopian Rural Household Survey at the time of the harvest 
given that loans must repaid upon harvesting.  All prices are deflated using the consumer price index.  
 
Source: Development Studies Associates (2001), IMF, International Financial Statistics, and 
own calculations using ERHS.  
 

The cost of credit adds to the cost of fertiliser.  In 1999, 71 percent of those 

purchasing fertiliser used seasonal credit and the implicit median interest rate is calculated at 

57 percent per year.23 While the data on the terms of loans are noisy, incurring credit appears 

                                                 
23 A down payment of about 0.65 birr per kg or about 30 percent of the purchase price is required.  Interest 
payments and other costs related to the loan have a median of about 0.34 birr per kg, though the data on the 
terms of loans in the survey are noisy and there is a lot of variation around this.  Given a median repayment 
period of about 7 months, this suggests an interest rate of about 30 percent for the median loan duration (or 57 
percent per year).  In an economy with consistently very low inflation (in this period, about 4 percent per annum 
on average) this is substantial. 
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costly. Most of those using cash to purchase fertiliser mention the perceived high interest 

rates (and not lack of fertiliser availability) as main reason for using cash.  The latter is not an 

important reason for not using fertiliser either.   

 Understanding the profitability of fertiliser use under uncertainty is critical for our 

analysis. However, data on input application and outputs by crop and plot were only collected 

in 1999.  In other years, the data were collected at the farm-level, so crops that use modern 

inputs cannot be identified.  Given the high variability in climatic and other conditions, it is 

thus difficult to establish the distribution of returns for crops in different areas, with and 

without fertiliser application.24 Nonetheless, comparing the (counterfactual) yields across 

plots with and without fertiliser based on (cross-sectional) production function analysis, is 

still suggestive.  About 28 percent of all cereal plots in the sample are fertilized.25 

A standard Cobb-Douglas production function is estimated linking plot-level cereal 

yields to plot size, livestock, the input of different types of labour (male, female and 

children), fertiliser input, herbicide, fungicide, insecticide, controls for land quality and slope, 

controls for the particular crop grown as well as a series of village-level (e.g. rainfall) and 

idiosyncratic (e.g. pests) shock variables. A set of interaction terms of the rainfall variables 

and fertiliser use are introduced to account for different sensitivity of yields to fertiliser 

across the rainfall distribution. Yields are significantly affected by fertiliser use, by rainfall 

and other shock variables, as well as their interactions. The full estimation results and 

robustness tests using household fixed effects are reported in Appendix 1. 

This regression is used to construct (counterfactual) yield and return distributions for 

an otherwise average farmer for 1999, by simulating through the rainfall distribution from the 

nearest rainfall station to each survey site26 and the distribution of a self-reported quality of 

                                                 
24 Lack of agricultural labour input data in the other rounds and inconsistencies in the questionnaire design of 
the crop production modules across rounds made production analysis at the household level inappropriate.  
25 Fertiliser is mainly used on plots with cereals but most farmers using fertiliser do not use it on all their plots. 
26 For each station, rainfall levels over the past 20 years or more are available.  In simulating the counterfactual 
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rainfall index derived from the different survey rounds.  For each crop, average fertilizer 

application rates among those using fertilizer are used.  

Across the rainfall distribution, cereal yields on fertilized plots dominate yields on 

non-fertilized plots, despite being more risky (Figure 1).  Gains can be up to 24 percent 

(given average fertiliser use)27, declining as we move away from the median rainfall and 

virtually disappearing in periods of extreme droughts and floods (below the 20th and above 

the 80th percentile).28  At the 1994-5 prices, fertiliser use is also profitable over a wide range 

of rainfalls, though not at the extremes.  At median rainfall levels, returns were 11 percent 

higher when using fertiliser in 1994-95; beyond the 30-60th percentile rainfall range, they 

were lower.  

While the estimates are approximate at best, these results give credence to our 

contention that fertiliser use is a high return, but high risk technology. Given the sharp 

increase in fertiliser price across the survey rounds, returns to using fertiliser were lower in 

the last few years of our sample, and turning negative more rapidly when moving away from  

the median.29  In conclusion, our sample encompasses a period where cereal production under 

fertiliser yields is more profitable on average, but more risky, facilitating the identification of 

the effect of limited ex post coping capacity on fertiliser adoption. The findings further 

highlight the critical need to control for changing price ratios and other factors in analyzing 

fertiliser use.  

                                                                                                                                                        
cereal yield distribution, the 10th percentile rainfall is equivalent to the 10th percentile of the rainfall 
distribution, and so on.   
27 Detailed results can be found in Appendix 1. 
28 As 87 percent of the sample had rainfall levels between the 21st and 80th percentile, caution is warranted in 
interpreting the counterfactual results for very low and very high rainfall. 
29 The profitability of fertiliser use is sensitive to the cereal-fertiliser price ratio and at average 1997-99 prices, 
cereal cultivation with fertiliser use may on average no longer be more profitable than cereal cultivation without 
fertiliser use. Indeed, most recently, two World Bank studies (2006b; Morris, et al., 2007) have highlighted the 
lack of profitability as an important factor in explaining limited fertiliser use in Ethiopia in particular, and Sub-
Saharan Africa more widely.  Yet, they also emphasize that fertiliser use is the outcome of many other demand 
and supply factors, including agronomic practices that strongly affect the physical (and thus also the economic) 
returns to fertiliser use. 
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Figure 1: Distribution of yields and returns for cereals in 1994-1995 
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Note: Simulations based on the estimates reported in table A.1, column (3). Yields based on estimated output 
per hectare for an average plot (i.e. with mean characteristics for plot, farmer and village), among 2294 plots, 
and the mean application rate for fertiliser users for each crop. For example, the 10th percentile reflects cereal 
yields when the rainfall was equivalent to the 10th percentile of the rainfall distribution, i.e. very poor rains.   
Returns are the gross returns (yield times output price, evaluated at the mean output price in 1994-5) minus the 
cost of the fertiliser (using the mean fertiliser price of at the time of planting in 1994-5). Prices are expressed in 
1999 prices. 
Source: Own calculations using EHRS. 

 

5 Empirical results  

Equation (18) is first estimated using a household fixed effects regression applied to the 

1994, 1995, 1997 and 1999 ERHS data.  “Permanent” income terms are thus tied up in the 

fixed household effects.  To investigate the sensitivity of consumption to shocks, (village-

level) rainfall30, and a set of variables describing idiosyncratic shocks are included.  As 

downside risk may be harder to handle—“good” shocks could presumably be saved—the 

rainfall variable is interacted with a dummy with value one when rainfall is below the median 

level of the last twenty years. The idiosyncratic shock variables include an index based on 

(self-reported) descriptions of the quality of ‘rainfall’ (one if the rainfall distribution was 

                                                 
30 Not only do we have four time periods, but there is substantial between and within-village variation in this 
period in the village-level rainfall data. First, 24 percent of the variation is within-village variation, i.e. not 
explained by village fixed-effects and time dummies. Only 6 percent is explained by the time dummies, i.e. 
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satisfactory in all respect, zero if unsatisfactory in all respects—see appendix), an index of 

‘non-rain’ crop shocks, such as weed damage, plant diseases and insect damage, which is one 

if there is no problem, and illness shocks (the number of adults ill in the month before the 

survey).   

To capture differential risk bearing capacity, all shocks are interacted with the (natural 

logarithm) of livestock holdings per adult (measured at t-1). Livestock values were scaled by 

the median value of livestock in the village to control for the different role livestock may play 

across farming systems.31 Despite considerable persistency, livestock possessions vary over 

time—about 25 percent of variation remains in the livestock holdings data after controlling 

for household fixed effects and time trends. Through the interaction terms, this variation 

allows us to identify the time-varying consumption risk at the household level.  

Livestock holdings at t-1 are also included separately in the regression to control for 

time-varying changes in wealth.32  Finally, in addition to basic time-varying household 

characteristics, such as household demographics, which may reflect taste shifters33, a post 

harvest period dummy is included, to control for seasonal variation in food prices and 

consumption.   

 The effect of village-level rainfall shocks on consumption is substantial, but smaller 

for those with relatively high livestock holdings (column (1), Table 4).  For example, a 10 

percent drop in rainfall reduces consumption by 1.5 percent in a household with 2.7 times 

more livestock than the village median, compared to 2 percent for someone with median 

livestock holdings.34  Idiosyncratic shocks have no significant impact.35 

                                                                                                                                                        
common patterns over time between the villages, and the rest, 70 percent, is between village-variation. 
31 The findings are only marginally affected by this scaling, but offer advantages in terms of interpretation. 
32Initially, land was included as well but it was systematically insignificant, possibly because of 
multicollinearity (Pearson correlation coefficient between land and livestock possessions is 0.75). As it was only 
included as an alternative proxy for wealth, it was dropped. 
33 Demographic variables also act as an implicit control for incorrect equivalence scales and the lack of allowing 
for economies of scale in the nutritional adult equivalent corrections used in the construction of the left hand 
side variable, consumption per adult equivalent. 
34 Note that given our definition, the interaction term is zero for someone with median livestock holdings. The 
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 Those with higher levels of livestock (above the median) are less sensitive to poor 

rainfall outcomes than to rainfall outcomes above the long term median (column 2). In other 

words, ‘positive’ rainfall shocks are not fully saved, but reflected in consumption; a result 

consistent with other studies on Ethiopia (Dercon, 2004).36 For simulating counterfactual 

consumption distributions for our sampled households, the insignificant rainfall variable 

interacted with below the median rainfall dummy is dropped (column (3)).  

The two key conclusions for the purposes of this paper are, first, that covariate rainfall 

shocks are the most important source of uninsured risk in these communities and second, that 

households clearly differ in their ability to cope with shocks depending on their livestock 

wealth.  

                                                                                                                                                        
specification controls for village specific rainfall averages through the fixed effects. Finally, the result does not 
necessarily imply that livestock is being used to smooth consumption, but rather, that better smoothing is 
correlated with having more assets.  Wealthier households may have better access to village level risk-sharing or 
to other coping mechanisms, such as off-farm employment or migration opportunities when required. 
35 The lack of significance of the idiosyncratic shocks may follow from errors in measuring (self-reported) 
idiosyncratic shocks. As yields are highly sensitive to some of these shocks (appendix 1), it is also plausible that  
households actually manage to insure themselves against idiosyncratic risk.. 
36This may reflect choices by households—a preference for feasting when good rains occur—rather  than their 
inability to smooth consumption.  This provides support for focusing on the downside risk in consumption in  
assessing its relevance for production decisions, as pursued below.   
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Table 4 : Determinants of real consumption per adult. Household fixed effects regression.  

Dependent variable: ln of real consumption per adult  equivalent (1) (2) (3) 
ln livestock holdings in t-1 (per adult, relative to village median) 0.445 0.554 0.547 
 [2.57]** [3.07]*** [3.03]*** 
ln annual level of rainfall 0.200 0.218 0.190 
 [4.30]*** [4.03]*** [4.07]*** 
ln rainfall * ln livestock holdings at t-1 (relative to median) -0.049 -0.062 -0.061 
 [1.96]* [2.41]** [2.37]** 
quality of rain index (1 is best, 0 is worst) -0.091 -0.094 -0.086 
 [0.74] [0.77] [0.70] 
quality of rain * ln livestock holdings -0.027 -0.017 -0.018 
 [0.38] [0.24] [0.25] 
quality of rain squared 0.065 0.065 0.059 
 [0.59] [0.59] [0.53] 
quality of rain squared * ln livestock holdings 0.013 0.009 0.008 
 [0.21] [0.14] [0.14] 
Index of pests, trampling, frost, flooding (1 is best, 0 is worst) -0.003 -0.015 -0.019 
 [0.02] [0.09] [0.12] 
Index of pests etc * ln livestock holdings in t-1 -0.114 -0.111 -0.111 
 [1.40] [1.35] [1.35] 
index of pests squared 0.253 0.252 0.247 
 [1.02] [1.02] [0.99] 
index of pests squared*ln livestock holdings in t-1 -0.226 -0.234 -0.23 
 [1.63] [1.68]* [1.66]* 
Number of adults ill in last 4 weeks 0.021 0.022 0.023 
 [1.08] [1.15] [1.21] 
adults ill * ln livestock holdings in t-1 -0.001 -0.002 -0.001 
 [0.07] [0.17] [0.15] 
ln rainfall * rainfall below median dummy  0.005  
  [1.00]  
ln rainfall * ln livestock * below median  -0.005 -0.006 
  [1.93]* [2.02]** 
Constant 3.532 3.417 3.614 
 [10.77]*** [8.88]*** [10.94]*** 
Observations 4336 4336 4336 
R-squared 0.13 0.13 0.13 
Absolute value of t statistics in brackets. * significant at 10%; ** significant at 5%; *** significant at 1%. 
Note: The regression includes further controls for whether consumption is measured in post harvest period, and 
variables controlling for changes in demographic composition (male adults, female adults, children 0-5, children 
5-15, all by gender) and sex of the head. All values in 1994 prices, adult equivalent corrections based on 
nutritional scales, see Dercon and Krishnan (2000). 
 

In estimating (19), we control for household labour characteristics (adults and 

children above 15, and sex of the head) as well as land holdings (and a square), given 
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relatively poorly functioning labour markets and missing land markets.37  Livestock holdings 

at t-1 are included to capture seasonal (working capital) credit constraints.  

To test whether the risk of low consumption outcomes affects fertiliser use, we 

include the predicted counterfactual level of consumption, simulated based on column (3), 

table 4 and using historical rainfall data from the nearest rainfall station near each survey site. 

Three alternatives to represent the presence of downside risk are explored.  First, the level of 

consumption if the 20th percentile of the rainfall distribution were realised, is used.  

Subsequently, the probability-weighted mean value of the natural logarithm of consumption 

across the entire rainfall distribution has been taken—which is equivalent to using expected 

utility given constant relative risk aversion with a coefficient of one. Finally, to focus more 

on the downside risk in consumption, the previous measure is truncated at the median level of 

rainfall. It is noted again that in calibrating the downside risk on the historical rainfall 

distribution, reliance on within-sample variables to supply instruments is avoided, and the 

fundamental identification problem in assessing the impact of consumption risk on 

production decisions is circumvented.  

Since fertiliser use is far from general, limited dependent variable models are 

appropriate.  But fixed effects in limited dependent variable models based on the normal 

distribution (such as the probit and tobit) yield inconsistent estimates, as fixed effects cannot 

be treated as incidental parameters without biasing the other model coefficients (as long as N 

> T) (Hsiao, 1986).  To get around this, we use the conditional fixed effects logit model to 

explore adoption of fertiliser (not the amount used) and the Honoré semiparametric fixed 

effect tobit estimator (Honoré, 1992) to look at the effect of consumption risk on fertiliser 

application rates.38    

                                                 
37 All land is state-owned and allocated by the local government for farmers to cultivate. 
38 This estimator is consistent, even if N is increasing relative to T. We used an adapted version of Honoré’s 
Pantob programme, using Gauss 6.0. We tried a number of alternative versions. We report the results from a 
simple quadratic loss function with zero bandwith, but all models estimated offered very similar estimates for 
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In addition to household fixed effects that allow us to capture all time-invariant 

household characteristics, such as risk preferences, skill and education levels or permanent 

income, both approaches also control for time varying village level effects. This allows us to 

control for all community wide influences on fertilizer adoption and use, including prices, 

availability, general economic trends, increased extension service availability, broad changes 

in the delivery systems and general village-wide learning over time. They also force all 

identification of variables of interest to be based on within village variation in each period, 

making any significant results rather remarkable and robust. 

From column (1), table 5, it is clear that the possibility of low consumption ex post 

following low rainfall and low harvests reduces a household’s likelihood of adopting fertiliser 

ex ante (column (1), table 5).  This finding is quite striking given that it is identified from 

farm households switching in and out of fertilizer, substantially reducing the sample size (to 

417 households), and after controlling for all household time invariant and community time 

varying effects. Though positively correlated, the effect of livestock, our other variable of 

interest as the main measure of liquid wealth, is not statistically significant.  Households with 

more labor (male and female adults) are more likely to adopt fertiliser.  The same holds for 

male headed households.39 The village-time dummies are mostly significant. 

The second column shows the estimated coefficients of the determinants of the 

intensity of fertiliser use based on the Honoré household fixed effects tobit.  As before, there 

is a strongly significant positive effect from the counterfactual level of consumption if rains 

were to be relatively poor. 

 

 

                                                                                                                                                        
the coefficients of the variables of interest. 
39 We have to be cautious with this effect, as it is identified from households with a change in the head of the 
household, mainly involving a change from male to female head, due to the death of the head of the household. 
About 11 percent of households experienced a change in the sex of the head of the household, more than 75 
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Table 5: Explaining fertilizer adoption and aplication Rates (log kg per hectare):  

 (1) 
Conditional fixed effects logit 

model 
(n=1540, 417 groups) 

(2) 
Honoré Fixed Effects 
Tobit Model (n=4397) 

(3) 
Standard Tobit Model 

(n=4397) 

 Whether using fertiliser (yes=1) Ln fertiliser in kg per ha Ln fertiliser in kg per ha 
 

 Coeff. z-value  Coeff. z-value  Coeff. z-value 
Male child <15   0.069 0.59  -0.105 2.01 ** 0.037 0.78  
Male adults    0.354 3.01 *** -0.071 1.51  0.135 2.96 *** 
Female child <15 -0.032 0.26  -0.118 2.28 ** 0.029 0.59  
Female adults 0.269 2.51 ** 0.055 1.25  0.220 4.75 *** 
Sex head (male=1) 0.779 2.13 ** 0.443 2.35 ** 0.500 4.05 *** 
Ln Livestock/1000  (birr) 
at t-1 

0.160 1.45  0.068 1.17  0.693 13.55 *** 

Ln Land per adult  0.114 0.73  -0.936 6.44 *** -0.001 0.01  
Ln consumption at 20th 
percentile for rain 

0.236 2.02 ** 0.165 2.69 *** 0.431 5.87 *** 

Time (round) dummies, 
and interaction between 
village and time dummies 
included but not reported 

YES YES YES 

Joint-significance tests 
Wald chi2 

 2650.11*** 766.2*** 

Notes: Natural logarithm of fertiliser in kg plus 1 per hectare. One is added to allow zero values to be 
transformed in logarithms. Land per adult and livestock per adult (in ‘000) is adjusted by 0.01 to allow 
logarithms. * significant at 10%; ** significant at 5%; *** significant at 1%. 

 

The coefficients for livestock, land and downside consumption risk are lower in the 

household fixed effects specification than in the standard tobit, presented in column (3) for 

comparison  Indeed, the level of consumption in ‘bad years’ as well as current livestock 

wealth and land holdings (at t-1) are likely correlated with fixed characteristics of the 

household, such as higher permanent income, that in turn positively affects fertiliser use. 

More striking is that the consumption outcome in a bad year remains relevant, even in 

the fixed effects regression, while the effect of livestock wealth around the time of the 

fertiliser decision disappears—the household’s position at the time of the fertiliser decision 

matters largely to extent that it may cause hardship in bad years.  This supports our 

interpretation that potential ex-post credit constraints when harvests fail matter in a distinct 

manner from the seasonal credit constraint.  Furthermore, households with higher land-labor 

ratios are found to use less fertilisers (even though their adoption of fertiliser is unaffected).  

                                                                                                                                                        
percent from male to female headed.   
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This is consistent with their comparative advantage, and only emerged when the household’s 

total (liquid and illiquid) wealth was properly controlled (through the household fixed 

effects). 

These results are robust to the use of alternative definitions of the downside risk 

variable.  When the downside risk variable is defined as the expected value of the logarithm 

of consumption for rainfall levels up to the median (column (1), table 6), the results are 

virtually identical as in table 5, column (2). Very similar results were obtained when using 

the expected value of the logarithm of consumption (not truncated), giving a higher weight to 

downside consumption risk than upside risk.40   

                                                 
40 These and all other robustness checks also hold in the fixed effects conditional logit model (not reported 
here). 



Table 6: Robustness checks  
 
 (1) 

Honoré Fixed Effects 
Tobit Model (n=4397) 

(2) 
Honoré Fixed Effects 

Tobit Model 
(n=4397) 

(3) 
Honoré Fixed Effects 

Tobit Model 
(n=4397) 

(4) 
Conditional fixed 
effects logit model 

(n=1540, 417 groups) 

(5) 
Honoré Fixed Effects 

Tobit Model 
(n=3260) 

Dependent Variable Ln fertiliser in kg per 
ha 

Ln fertiliser in kg per 
ha 

Ln fertiliser in kg per 
ha 

Whether using 
fertiliser (yes=1) 

Ln fertiliser in kg per 
ha 

 coeff z-value coeff z-value coeff z-value Coeff z-value Coeff z-value 
Male child <15   -0.105 2.01 ** -0.087 1.34  -0.103 1.97 ** 0.071 0.61  -0.064 0.97  
Male adults    -0.072 1.51  -0.041 0.72  -0.073 1.54  0.356 3.03 *** -0.039 0.63  
Female child <15 -0.118 2.28 ** -0.107 1.66 * -0.118 2.28 ** -0.029 0.24  -0.113 1.93 * 
Female adults 0.055 1.26  0.105 2.01 ** 0.056 1.27  0.267 2.49 ** 0.076 1.32  
Sex head (male=1) 0.443 2.35 ** 0.536 2.76 *** 0.446 2.36 ** 0.776 2.12 ** 0.731 3.31 *** 
Ln Livestock at t-1 0.067 1.16  0.035 0.51  0.113 1.49  0.264 1.06  0.132 1.96 ** 
Ln Land per adult  -0.936 6.44 *** -0.979 6.48 *** -0.936 6.45 *** 0.117 0.75  -0.771 4.40 *** 
Ln consumption 20th perc       0.166 2.70 *** 0.237 2.03 ** 0.221 2.49 ** 
Expected ln consumption 
Below median rainfall 

0.165 2.69 ***             

Ln consumption 20th perc 
based on predicted cons 

   0.478 1.64 *          

Ln Livestock at t-1 
interacted with down 
payment fertiliser loan 

      0.105 0.88  0.207 0.47     

Ln consumption at t-1             -0.034 0.35  
Time (round) dummies, and 
interaction between village 
and time dummies included 
but not reported 

YES YES YES YES YES 

* significant at 10%; ** significant at 5%; *** significant at 1%. 
 
 
 
 
 
 
 



So far, the counterfactual distribution of consumption for different levels of rainfall 

was calculated starting from actual consumption, and then using the estimated coefficients 

from table 4.  The counterfactual consumption levels in column (2), table 6, start from 

predicted values of consumption based on table 4.  If actual consumption is measured with 

substantial measurement error, then the estimates in column (2) will be superior; however, 

predicted consumption ignores any factors causing consumption differences between 

households known to the household but not observed by the researcher. The results reported 

so far are maintained: insignificant effects from livestock holdings at t-1, but counterfactual 

consumption if the harvest were to be poor, is still significant. The coefficient on the latter is 

higher than in column (2), table 5, consistent with attenuation bias when using our original 

estimate for counterfactual consumption.  

The next two columns investigate further whether seasonal credit constraints matter at 

all, and whether our interpretation is robust. It could be argued that simply using asset 

holdings at t-1 is a poor proxy of the true cost ex-ante of fertiliser. Even though credit is 

available, a down payment is required. As discussed in section 4, a payment of about 30 

percent of the purchase price is required, but there is considerable variation across areas. This 

variation is exploited to explore the impact of seasonal credit constraints further (columns (3) 

and (4)). In particular, even though the village time-varying fixed effects contain this 

variation in down payment, it could be expected that in areas with higher downpayment, the 

same asset holdings would result in lower fertiliser application rates – in other words, an 

interaction effect of asset holdings and downpayments should be negative if seasonal 

constraints matter. The results do not confirm this: this variable, just as the asset levels at t-1, 

is insignificant.  

Finally, in column (5), a further robustness test is shown, focusing on the 

interpretation of our counterfactual consumption term. It could be argued that as consumption 
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levels move only slowly, and as our prediction model is based on the evolution of actual 

consumption, our counterfactual consumption level is likely to be highly correlated with 

consumption and welfare levels at t-1. In fact, our measure may then be more a reflection of 

current conditions, not really capturing a counterfactual outcome. Similarly, it could be 

argued that livestock holdings are a poor proxy of current conditions, and our predicted 

consumption levels are in fact a better measure of current circumstances. One way of 

examining the robustness of our interpretation is by including a stronger measure of living 

conditions ex-ante, via consumption levels at t-1, before the fertiliser decision, as well as our 

counterfactual prediction. Even though we lose a round of data now41, the results regarding 

the relevance of counterfactual consumption for fertiliser application are confirmed, while the 

consumption level at t-1 is simply insignificant. Taken together, these results highlight the 

impact of possibly low consumption outcomes ex-post on fertiliser use, controlling for the 

level of assets at the time of fertiliser purchase, and household fixed characteristics and time-

varying village level conditions. 

                                                 
41 Contrary to livestock levels, which were easily collected at t-1 via a set of simple recall questions, this is not 
possible for consumption. 
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6 Conclusions 

This paper has investigated the impact of the risk of poor consumption outcomes on 

the adoption and use of fertiliser in Ethiopia. Fertiliser results in higher yields and substantial 

returns on average. However, as a costly input, when harvests are poor, for example due to 

poor weather conditions, returns tend to be low given the sunk cost of fertiliser, making it a 

high risk activity with moderately higher returns compared to not using fertiliser. We 

developed a simple framework to assess whether the possibility of poor consumption 

outcomes affects modern input use, controlling for a simple asset effect, that could also be a 

reflection of seasonal working capital constraints. 

 Using data from Ethiopia, we find evidence that after controlling for these seasonal 

working capital constraints, as well as household fixed effects (including factors such as risk 

preferences and permanent income) and time-varying community fixed effects (including 

factors such as input output price ratios and extension programs) fertiliser application rates 

are significantly lower due to downside risk in consumption. Consequently, measures to 

remove the downside risk of agricultural innovations via insurance systems would have 

beneficial impacts on stimulating their spread. 

 The presence of a link between downside consumption risk and modern input 

adoption also suggests that risk is a cause of perpetuating poverty: those (poorer) households 

unable to protect themselves against downside risk are forced to avoid some downside risk by 

reducing their use of profitable modern inputs. As such, risk induces the persistence of 

poverty for some, as if trapped in low return, lower risk agriculture.  
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Appendix 1: The distribution of cereal yields and returns  
 
Table A.1 explores the determinants of output per hectare using plot-level data from 1999. 
Yields are regressed on plot level inputs including the plot size in hectares, hours worked by 
male and female adults, and children (up to the age of 15 years), and purchased inputs, such 
as fertiliser, herbicides, fungicides, insecticides, and other pest controls (in kg). All variables 
are expressed in natural logarithms (plus 0.01 to allow for zero values to be defined when 
taking logarithms). Table A.1 adds controls for the different crops (whereby white teff is the 
basegroup), whether the plot is intercropped, local standard descriptions for land quality (lem, 
lemteuf, teuf, with lem the best and teuf the base group) and the slope of the plot (flat, 
sloping and ‘geddel’, the base group, meaning a steep slope). The regression also controls at 
the household level for the number of livestock in tropical livestock units (as a proxy for both 
wealth and for access to oxen for ploughing).  
 
Plot-specific, self-reported ‘shocks’ related to flooding, weed damage, animals damaging 
crops, etc. are introduced as dummies with one suggesting a ‘bad’ event.  A number of 
variables describing the rainfall distribution and experience in this particular year are further 
introduced. First, we have access to historical rainfall data in most locations going back for 
about 20 years, based on rainfall in the nearest station. We use village level variables to 
describe whether the rainfall in the 1999 season was in a particular quintile of the historical 
distribution (from 0-19, 20-39, etc.) To reflect differences in ‘normal’ conditions, we control 
for the median level of rainfall in each area. We also use a self-reported index of how good 
the rain distribution was in this particular year, based on plot-level data from the 1999 survey: 
was the rain on time, did it rain too long, into the harvest period, was there enough at critical 
points, etc. The answers to these questions were added into a simple score, normalised to one 
if the rain was as good as it could get, and zero if it was bad on all counts. The squared value 
of this index was used.  
 
Finally, market access was proxied by a variable for ‘road access and quality’ based on 
community level surveys. It is an index on a scale of six, with the value one a road with 
access for all possible vehicles in all seasons, and six only a track not accessible in the rainy 
season. The value of three is for example a road accessible to trucks most of the time.   
 
Application of OLS shows that here are clear signs of lower yields on larger plots, with 
returns to male labour, fertiliser and insecticide strongly significant (column (1), table A1). 
Livestock and good land quality appears to matter as well. Most of the idiosyncratic shocks 
(with the exception of frost damage, a rare event in the data) have the expected signs and 
several cause substantial and significant yield losses. Areas with good roads appear to have 
higher yields on average, consistent with increased incentives for producing crops. The effect 
is large, though dropping this variable did not affect the signs or size of the rainfall variables.  
 
Unsurprisingly, rainfall matters significantly, with median levels increasing yields (but only 
marginally in magnitude). The realised quintile of the rainfall in 1999 based on the historical 
distribution also displays the expected signs and magnitude. As there were no observations in 
the 1999 data of the highest quintile, the lowest quintile is the basegroup, and all other three 
quintiles showed significantly higher yields (by at least 20 percent). Having rainfall around 
the 40 to 60 percentile compared to historical distribution (ie around the median) had the 
highest yield gain. Finally, the self-reported ‘quality’ of rainfall index showed higher yields 
with a better index but at a decreasing rate.  
Table A.1 Plot-Level Production Function (ln output in kg per hectare) 1999  
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 (1) (2) (3) 
 Ln yield Ln yield Ln yield 

Ln Plot size (in hectares) -0.618 -0.582 -0.616 
 [25.42]*** [18.11]*** [25.22]*** 
Ln Hours Male Labour 0.267 0.409 0.274 
 [11.40]*** [11.31]*** [11.55]*** 
Ln Hours Female Labour 0.014 0.065 0.017 
 [0.96] [2.51]** [1.12] 
Ln Hours Child Labour (<15 years) -0.003 0.056 -0.003 
 [0.25] [1.84]* [0.23] 
Ln Fertiliser in kg 0.034 0.028 0.003 
 [8.34]*** [5.39]*** [0.10] 
Ln Herbicide in kg 0.205 0.261 0.175 
 [1.80]* [1.46] [1.52] 
Ln Fungicide in kg -0.015 -0.913 0.011 
 [0.05] [1.16] [0.04] 
Ln Insecticide in kg 0.144 0.191 0.138 
 [2.06]** [2.00]** [1.98]** 
Ln Other Pest Control in kg 0.224 -0.18 0.213 
 [0.85] [0.36] [0.81] 
Ln Livestock (livestock units) 0.072  0.072 
 [5.33]***  [5.37]*** 
Is the plot intercropped? 0.12 0.072 0.119 
 [2.41]** [1.07] [2.41]** 
Black Teff -0.143 0.114 -0.162 
 [2.61]*** [2.14]** [2.96]*** 
Barley 0.33 0.565 0.345 
 [6.35]*** [10.36]*** [6.59]*** 
Wheat 0.267 0.407 0.272 
 [5.53]*** [8.45]*** [5.60]*** 
Maize 0.461 0.581 0.474 
 [9.69]*** [12.35]*** [9.97]*** 
Sorghum 0.416 0.434 0.409 
 [6.73]*** [6.83]*** [6.60]*** 
Land quality: very good (lem) 0.101 0.192 0.095 
 [2.24]** [3.38]*** [2.11]** 
Land quality: OK (lemteuf) 0.037 0.077 0.037 
 [0.83] [1.34] [0.81] 
Land Slope: flat (Medda) 0.011 -0.089 0.017 
 [0.11] [0.60] [0.16] 
Land Slope: sloping (Dagathama) 0.037 -0.171 0.036 
 [0.35] [1.10] [0.34] 
Wind damage? -0.07 -0.017 -0.074 
 [1.42] [0.14] [1.51] 
Hail damage? -0.029 -0.139 -0.05 
 [0.46] [1.06] [0.79] 
Frost damage? 0.145 0.047 0.152 
 [3.43]*** [0.56] [3.60]*** 
Flood damage? -0.151 0.139 -0.146 
 [3.09]*** [1.58] [2.99]*** 
Plant disease damage? -0.094 -0.182 -0.108 
 [1.02] [1.05] [1.17] 
Insect damage? 0.066 0.08 0.058 
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 (1) (2) (3) 
 Ln yield Ln yield Ln yield 

 [0.98] [0.89] [0.87] 
Weed damage? -0.218 -0.145 -0.225 
 [2.79]*** [1.35] [2.88]*** 
Bird damage? -0.207 -0.209 -0.21 
 [2.13]** [1.44] [2.17]** 
Wild animals damage? -0.049 0.066 -0.052 
 [0.76] [0.62] [0.81] 
Livestock trampling damage? -0.025 -0.069 -0.012 
 [0.18] [0.32] [0.09] 
Road quality index  -0.081  -0.081 
(1=best, 6=worst) [7.94]***  [7.91]*** 
Median rainfall in area 0.001  0.001 
 [2.52]**  [2.72]*** 
Is rainfall 20-40 percentile? 0.284  0.472 
 [2.37]**  [2.93]*** 
Is rainfall 40-60 percentile? 0.38  0.475 
 [3.00]***  [2.76]*** 
Is rainfall 60-80 percentile? 0.218  0.403 
 [1.87]*  [2.54]** 
Rainfall distribution index 0.752  0.749 
(1=best, 0=worst) [4.18]***  [4.16]*** 
Rainfall distribution index squared -0.501  -0.503 
 [2.75]***  [2.77]*** 
Rainfall index*ln fertiliser   -0.042 
   [3.33]*** 
20-40% * ln fertiliser   0.049 
   [1.49] 
40-60% * ln fertiliser   0.084 
   [2.30]** 
60-80% * ln fertiliser   0.057 
   [1.74]* 
Constant 4.04 4.005 3.816 
 [20.11]*** [19.67]*** [16.69]*** 

Observations 2502 2502 2502 
R-squared 0.4 0.31 0.41 

Absolute value of t statistics in brackets 

* significant at 10%; ** significant at 5%; *** significant at 1% 

 
Column (2) looks at the robustness of the results by showing the household fixed effects 
regression results. By definition, all the household and community level variables are 
absorbed in the fixed effects, so that no results on rainfall can be reported. Importantly, the 
coefficient on fertiliser retains its significance, and is similar in value. While there are some 
signs of correlations of some of the plot-level variables with the household fixed effect (i.e. 
bias in column (1)), it may not affect our inference on the impact of fertiliser on yields. This 
is a striking result, as identification of the impact has to be done across the plots of each 
household, who usually farm about 2-3 plots each. As there is relatively little variation in 
terms of most of the idiosyncratic shocks, it should not come as a surprise that the impacts of 
most shocks are measured with considerable error.  
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Finally, to test whether the returns to fertiliser are rainfall dependent, interaction terms of the 
level of fertiliser use and the various rainfall variables are introduced in column (3). These 
interactions are generally significant.  However, the impact of fertiliser without interaction is 
now no longer different from zero. This term is now the basegroup for the interaction terms 
giving the impact of fertiliser when the rains are really poor (the base group is the 0 to 20th 
percentile of the rainfall distribution).  Or, during drought fertiliser has no impact. 
Simulations are undertaken to obtain clearer inference on the impact of fertiliser on yields 
across the rainfall distribution.  
 
For the village-level rainfall distribution, the historical data are used to show the distribution 
of yields for different levels of rainfall, by comparing otherwise similar plots with ‘mean’ 
characteristics in terms of fertiliser use and non-use. For the self-reported rainfall distribution 
index we rely on the distribution implied across all four rounds of the household-level self-
reported shocks. The frequency distribution of all possible outcomes between 1994-1999 is 
used in the simulations. As was shown in Dercon and Krishnan (2000), this index is largely 
(although not perfectly) covariate by village; the simulations assume perfect covariance, 
although some sensitivity analysis showed that less than perfect covariance hardly affected 
the results reported in the main text.  
 
The equations above use pooled data for all crops. We experimented with specifications by 
crop, but the sample sizes become much smaller, especially to identify the impact of rainfall 
across the distribution as most villages do not grow all different possible crops in this year. 
Broadly speaking, the coefficients are comparable though estimated with less accuracy. 
Restricting the crop-specific effects to multiplicative shifters of yields appears to capture the 
diversity of yields reasonably well in the data. 
 
The regressions are used to construct counterfactual yield distribution for different levels of 
rainfall, based on the historical rainfall distribution, and assuming here that the household 
specific quality of rainfall index is covariate with village rainfall. As the results are in size 
dominated by the village rainfall index, alternative assumptions on the quality of rainfall did 
not make much difference. The results suggest considerably higher yields for fertilised plots 
compared to non-fertilised plots (Table A2). Across cereals, median rainfall conditions offer 
about 24 percent higher yields when using the average amount of fertiliser. While yields on 
fertilised plots dominate those on non-fertilised plots across the rainfall distribution, the 
relative benefit systematically declines the further rainfall levels are from the median. 
 
 Table A.3 shows calculations of the implied returns per hectare for these different yield 
levels. These returns are simply defined as the mean gross return (yields times output prices) 
minus (for the simulations for fertilised plots) the cost of the fertiliser, i.e. mean application 
rates times the fertiliser price, assuming a cash purchase. To get a sense of the distribution of 
returns by fertilised and non-fertilised plots during the survey period, we use the mean output 
and fertiliser price for the period 1994-99. In the main text, we offer in figure 1 the 
distribution for all cereals using average 1994-95 prices and compare it to 1997-99 prices to 
reflect changing profitability.   
 
For all crops, using fertiliser is profitable as long as the rainfall is not deviating too much 
from the usual patterns of rainfall. With median rainfall, the returns on fertilised plots are 
about 10 percent higher than for non-fertilised plots.  Given that using fertiliser offers little 
yield gain at low rainfall levels, non-fertilised plots have higher returns per hectare in these 
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circumstances. The data suggest that with abundant rain, returns are also better for non-
fertilised crops. 
 
Table A.2 Fertiliser use and the distribution of yields  

Yields in kg per ha 
across the rainfall 
distribution  

All 
cereals 

Teff Barley Wheat Maize Sorghum 

 No 
fert 

fert No 
fert 

fert No 
fert 

fert No 
fert 

fert No 
fert 

Fert No 
fert 

fert 

10th percentile 440 443 319 321 394 397 424 427 574 578 584 588 
20th percentile  568 618 412 450 508 555 547 597 741 803 754 806 
30th percentile  790 912 573 668 707 822 761 885 1030 1184 1049 1175 
40th percentile 850 1018 616 748 761 920 819 990 1108 1320 1129 1301 
50th percentile 889 1106 644 815 796 1002 856 1079 1159 1434 1180 1403 
60th percentile 879 1027 637 753 787 927 846 998 1146 1334 1167 1320 
70th percentile 853 939 618 686 764 845 821 909 1112 1221 1133 1222 
80th percentile 847 917 614 669 758 824 815 887 1104 1193 1124 1197 
90th percentile 838 899 607 655 750 808 807 869 1092 1170 1112 1176 
Note: Simulations based on the estimates reported in table A.1, column (3). Yields based on estimated output 
per hectare in 1999 for an average plot (i.e. with mean characteristics for plot, farmer and village), among 2294 
plots. Yields on fertilised plots based on approximately the mean application rate for fertiliser users for each 
crop. The table offers the counterfactual yield distribution for different cereals across the rainfall distribution. 
For example, the 10th percentile gives yields when the rainfall was equivalent to the 10th percentile of the 
rainfall distribution, i.e. very poor rains, the 50th percentile when rains were to be at the median level of rainfall 
in all villages, and the 90th percentile is very abundant rainfall, i.e. rain at the 90th percentile of the historical 
distribution. The crop-specific yield estimates are based on calculating counterfactual yields only for those plots 
currently growing the crop.   
 

Table A.3 Fertiliser use and the distribution of returns 1994-99 

Returns per 
hectare across the 
rainfall 
distribution  

All cereals Teff Barley Wheat Maize Sorghum 

 No 
fert 

fert No 
fert 

fert No 
fert 

fert No 
fert 

fert No 
fert 

Fert No 
fert 

fert 

10th percentile 793 544 688 478 772 535 867 622 742 459 1180 861 
20th percentile  1023 858 888 757 997 846 1119 970 957 751 1523 1301 
30th percentile  1423 1388 1235 1226 1387 1369 1556 1559 1332 1243 2119 2046 
40th percentile 1531 1579 1329 1398 1492 1560 1675 1773 1433 1419 2280 2301 
50th percentile 1601 1740 1389 1543 1560 1721 1751 1955 1499 1567 2384 2507 
60th percentile 1582 1596 1373 1410 1542 1575 1731 1790 1481 1437 2356 2339 
70th percentile 1536 1437 1333 1264 1497 1413 1680 1608 1438 1291 2287 2141 
80th percentile 1525 1397 1323 1227 1486 1373 1668 1563 1427 1255 2270 2092 
90th percentile 1509 1365 1309 1198 1470 1341 1650 1527 1412 1225 2246 2050 
Note: Simulations based on the estimates reported in table A.1, column (3).. Returns are the gross returns (yield 
times output price, evaluated at the mean output price in 1994-99) minus the cost of the fertiliser (using the 
mean fertiliser price at the time of planting in 1994-99). 
 
 


