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1. Introduction 

Opiates have been used for pain relieve from ancient times. Its principal component 

morphine is the first alkaloid purified from plants. Even today, opioid agonists are still 

extensively used for the treatment of severe pain associated with traumatic injuries, 

cancer or heart attacks. However, the development of opiate tolerance and dependence 

severely limits their clinical administration. In the early 1970s, the existence of opioid 

receptors in the brain was identified by radiolabeled opioid ligands-binding studies 

(Pert and Snyder, 1973; Simon et al., 1973; Terenius, 1973). Since these first reports, 

extense pharmacological studies were carried out using a large number of opioid 

derivatives and provided evidence to divide opioid receptors into three different types, 

δ, μ, and κ (Gilbert and Martin, 1976; Lord et al., 1977; Martin et al., 1976). During the 

same time, various endogenous ligands of opioid receptors, enkephalin, β-endorphin 

and dynorphin, were discovered and isolated (Goldstein et al., 1981; Hughes et al., 

1975; Li and Chung, 1976; Tachibana et al., 1982), which were followed by cloning of 

their precursor proteins, proopiomelanocortin (POMC), prodynophin (PDYN) and 

proenkephalin (PENK) (Kakidani et al., 1982; Nakanishi et al., 1979; Noda et al., 1982). 

In the early 1990s, cDNAs encoding three members of the receptor family were cloned, 

beginning with the mouse δ-opioid receptor (DOR) (Evans et al., 1992; Kieffer et al., 

1992, 1994) and followed by cloning of μ-opioid receptor (MOR) (Chen et al., 1993a; 

Fukuda et al., 1993; Thompson et al., 1993; Wang et al., 1993) and κ-opioid receptor 

(KOR) (Chen et al., 1993b; Li et al., 1993; Meng et al., 1993; Minami et al., 1993; 

Nishi et al., 1993). 

1.1 Opioid receptors 

The cloned δ-, μ-, and κ-opioid receptors are highly homologous (Fig. 1). All three 

opioid receptors belong to the G protein-coupled receptor superfamily (Childers, 1991; 

Gilman, 1987), which interacts with heterotrimeric G proteins and spans the cell 

membrane seven times forming an extracellular amino terminal, three extracellular 

loops, three intracellular loops and an intracellular carboxyl terminal. Studies 

conducted on the cloned opioid receptors demonstrated that the amino acids of the three 

opioid receptors are 65% homologous, that means the other 35% confer type selectivity 

(Reisine and Bell, 1993). Higher identities are found in the transmembrane regions 

(73-76%) and the intracellular loops (86-100%). Conversely, the most divergent 

regions are the extracellular loops and the extracellular amino- and intracellular 
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carboxyl-terminals (30-40%). In addition to the well-established three types of opioid 

receptors, an orphan opioid-like receptor (ORL1) has been cloned (Chen et al., 1994). It 

is also a G-protein coupled receptor and shares 50-60% sequence homology with the 

other opioid receptors. However, ORL1 receptor has a low affinity to opioid agonists 

and the non-selective opioid receptor antagonist naloxone. Its pharmacological profile 

differs greatly from that of the classic opioid receptors. The activation of the ORL1 

receptor is considered to mediate the physiological actions of orphanin FQ/nociceptin, 

such as nociceptive response, locomotion, food intake, cognitive processes and 

emotional behavior (Henderson and McKnight, 1997; Meunier, 1997). 

   

A B

Fig. 1. Structure and amino acid sequence of opioid receptors. A, Structure of opioid receptors as G 

protein coupled receptors. B, Human δ-, κ-, and μ-opioid receptor amino acid comparison (Knapp et al., 

1995). 

The cloned μ-opioid receptor is more sensitive to morphine than other opioid receptors, 

and endomorphins may be its endogenous agonists. Enkephalins bind to the δ-opioid 

receptor with great affinity, and therefore are considered to be endogenous δ-opioid 

receptor agonists. Dynorphins bind to κ-opioid receptors and therefore function as 

endogenous κ-opioid receptors ligands. β-endorphin was found to have a similar 

affinity to bind with μ- and δ-opioid receptors. The ORL1 receptor is responsive to the 

novel peptide orphanin FQ or named nociceptin (Meunier et al., 1995; Reinscheid et al., 

1995). 

1.2 Signal Transduction 
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As mentioned above, the opioid receptors belong to G protein-coupled receptor family. 

G proteins are heterotrimeric proteins, consisting of α, β and γ subunits. The activation 

of G protein-coupled receptors by agonist results in the dissociation of GDP from the α 

subunit, followed by association of GTP with the open nucleotide binding site. The 

binding of GTP to the α subunit induces a conformational change that results in 

dissociation of the heterotrimer into α and βγ subunits. Both the GTP-bound α subunit 

and the combined βγ subunits can initiate distal steps in the signaling pathway. These 

signals are terminated when the endogenous GTPase of the α subunit hydrolyze the 

bound GTP to GDP. The α subunit/GDP complex then reassociates with the βγ subunits 

to form heterotrimeric G protein again. Opioid receptors are prototypical Gi/o-coupled 

receptors because opioid signals are efficiently blocked by pertussis toxin that 

ADP-ribosylates and inactivates the α subunits of Gi/o proteins (Connor and Christie, 

1999). 

1.2.1 Regulation of adenylyl cyclase activity 

The inhibitory coupling of opioid receptors to the adenylate cyclase has been studied in 

transformed cell lines and in brain tissues. In early time the opioid receptors in 

NG108-15 cells had been identified as δ-type (Chang et al., 1981). In this cell line, the 

δ-opioid receptor agonist DADLE inhibited cAMP production. The inhibition was 

reversed by the nonselective opioid antagonist naloxone (Costa et al., 1985). Pertussis 

toxin blocked the inhibition of adenylyl cyclase by opioids in NG108-15 cells (Burns et 

al., 1983; Law et al., 1985), suggesting that the inhibitory effects on cAMP production 

is mediated through the activation of the Gi/o protein. δ-selective inhibition of cAMP 

production has also been verified in human δ-opioid receptor-transfected cell lines 

where forskolin-stimulated cAMP production was inhibited by the agonist DPDPE and 

this DPDPE-mediated inhibition was antagonized by naltrindol (Malatynska et al., 

1995). In addition, δ-selective agonists have also been reported to inhibit basal cAMP 

levels in rat brain regions (Unterwald et al., 1993). The cloned μ-, and κ-opioid 

receptors expressed in COS or CHO cell lines also mediate the inhibition of adenylate 

cyclase (Chen et al., 1993a; Chen et al., 1993b; Childers, 1991). These inhibitory 

effects of opioid agonist on the adenylate cyclase are blocked by pertussis toxin, 

suggesting that the μ- and κ-opioid receptors are also coupled to Gi/o protein to exert 

their inhibitory effects. Studies with Gα-specific antibodies suggested that Gi2 mediates 

the δ-opioid receptor inhibition of adenylyl cyclase (McKenzie and Milligan, 1990). 
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The Gz protein, a PTX-insensitive member of the Gi subfamily, can also potently 

inhibit cAMP accumulation upon receptor activation (Wong et al., 1992). Detailed 

examination of opioid-induced inhibition of adenylyl cyclase in NG108-15 cells, which 

are known to coexpress the δ-opioid receptor and Gz, revealed a small but significant 

inhibitory component that cannot be completely abolished by PTX (Selley et al., 1998).  

On the other hand, chronic opioid treatment can also produces a paradoxical 

enhancement of adenylate cyclase activity, thus increasing cyclic AMP accumulation 

when the action of the inhibitory receptor is terminated. This phenomenon, by which 

chronic activation of Gi/o coupled receptors leads to an increase of cAMP level, is so 

called “cAMP overshoot” or “adenylyl cyclase superactivation”. Opioid-induced 

adenylyl cyclase superactivation was shown to be mediated by the βγ subunits of G 

protein (Avidor-Reiss et al., 1996; Steiner et al., 2005), and protein kinases including 

tyrosine kinase and protein kinase C converging at Raf-1 protein kinase (Varga et al., 

2002; Varga et al., 2003).  

1.2.2 Regulation of ion channels 

Calcium channels. All three opioid receptors have the ability to inhibit different types 

of calcium channels (Acosta and Lopez, 1999; Gross et al., 1990; Hamra et al., 1999), 

and thus influence the release of neurotransmitters and modulate the function of several 

protein kinase families.  

Potassium channels. Another cellular event, which is thought to be important for the 

reduction of cellular excitability and inhibition neurotransmitter release by opioids, is 

the potassium conductance. The activation of opioid receptors have been shown to 

increase an inwardly potassium conductance (Alreja and Aghajanian, 1993; Grudt and 

Williams, 1993; Jiang and North, 1992; North et al., 1987).  

1.2.3 Mitogen-activated protein kinases (MAPK) 

There are at least three sets of mammalian MAP kinase modules: the 

extracellular-signal-regulated kinases (ERKs), the Jun N-terminal kinases (JNKs), and 

the p38 kinases. Mitogenic signals from GPCRs are often transmitted along the ERK 

pathway. Stimulation of the ERK1/2 by opioids was first demonstrated with the 

μ-opioid receptor in recombinant CHO cells (Li and Chang, 1996). The stimulation 

showed ligand selectivity, agonist dose-dependency, and PTX sensitivity. Similarly, 

when expressed in Rat-1 fibroblasts, the δ-opioid receptor can stimulate the 

phosphorylation and activation of ERK1/2 (Burt et al., 1996). The activation of 
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ERK1/2 was shown to occur through the Gβγ subunits in a Ras-dependent manner 

(Fukuda et al., 1996). Apart from linking opioid receptor activation to mitogenesis, 

stimulation of the MAP kinase cascade may be required for other aspects of opioid 

signaling. For example, desensitization of μ-opioid receptors may involve MAP kinase 

(Polakiewicz et al., 1998; Schmidt et al., 2000). Little is known with regard to the 

involvement of JNK or p38 kinase in opioid signaling. Recently p38 MAP kinase was 

demonstrated to be activated through the μ-opioid receptor by [D-Ala2, N-Me-Phe4, 

Gly5-ol]-enkephalin (DAMGO) but not by morphine, regulating μ-opioid receptor 

endocytosis (Mace et al., 2005). 

1.3 Phosphorylation and Desensitization 

Agonist-induced opioid receptor phosphorylation was first shown with the δ-opioid 

receptor (Pei et al., 1995). Studies with the δ-opioid receptor and μ-opioid receptor 

suggested that the agonist-induced phosphorylation is most likely mediated via 

G-protein coupled receptor kinases (GRKs) (Guo et al., 2000; Kovoor et al., 1997; Pei 

et al., 1995; Zhang et al., 1996). Expression of the dominant negative mutant of 

beta-adrenergic receptor kinase-1 (note: GRK2) or overexpression of GRK2 resulted in 

the attenuation or potentiation of agonist-dependent phosphorylation of the opioid 

receptors. It was also demonstrated that other protein kinases such as 

Ca2+/calmodulin-dependent kinase II (Koch et al., 1997; Mestek et al., 1995) and 

mitogen activated protein (MAP) kinase (Polakiewicz et al., 1998; Schmidt et al., 2000) 

are involved in the phosphorylation of opioid receptors. ERK1/2 could probably 

mediate the agonist-dependent phosphorylation of the δ-opioid receptor at position 

Thr361 which is a putative MAP kinase phosphorylation site. It is apparent that the 

major phosphorylation sites are at the carboxyl tails of opioid receptors. Deletion of the 

last 31 amino acids of the δ-opioid receptor resulted in the abolition of both GRK- and 

PKC-mediated agonist-dependent phosphorylation of the receptor (Zhao et al., 1997). 

Truncation of the mouse δ-opioid receptor DOR344T also blocked the ability of 

DPDPE to induce phosphorylation of the receptor (Murray et al., 1998). The 

phosphorylation of δ-opioid receptor was shown to be hierarchical, with Ser363 acting 

as the critical primary phosphorylation site (Kouhen et al., 2000). Among those Ser/Thr 

residue phosphorylation sites at the carboxyl tails of μ-opioid receptor, in the absence 

of the agonist, a basal phosphorylation of Ser363 and Thr370 was observed, whereas 

DAMGO-induced receptor phosphorylation occurs at Thr370 and Ser375 residues (El 
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Kouhen et al., 2001).  

Exposure of opioid receptors to opiates causes decreased receptor sensitivity to the 

drugs, in which the ability of receptors to modulate second messengers is reduced (Law 

et al., 1983; Nomura et al., 1994; Mestek et al., 1995). Desensitization of GPCR 

signaling in most mammalian cells involves agonist-mediated receptor phosphorylation, 

followed by recruitment of arrestins and the sequestration of the arrestin-bound 

receptors (Bohm et al., 1997; Bohn et al., 2004; Bohn et al., 1999; Yu et al., 1997). The 

mutation of putative phosphorylation sites to Alanine could block or significantly 

attenuate agonist-induced µ-opioid receptor desensitization (Deng et al., 2000; Schulz 

et al., 2004; Wang et al., 2002). Desensitization of the δ-opioid receptor was also 

shown to correlate with the phosphorylation of the receptor protein in the SKN-BE 

cells (Hasbi et al., 1998). DPDPE-induced receptor desensitization can be blocked with 

the dominant negative mutants of GRKs (Pei et al., 1995). Overexpression of GRK2 in 

HEK293 cells could accelerate the DPDPE-induced δ-opioid receptor desensitization 

(El Kouhen et al., 1999). Mutation of the last four Thr and Ser residues at the 

C-terminus of the δ-opioid receptor to Ala would block the GRK- and 

arrestin-mediated desensitization (Kovoor et al., 1997). It was demonstrated that 

DPDPE-induced rapid receptor desensitization, as measured by adenylyl cyclase 

activity, and receptor internalization are intimately related to the phosphorylation of 

Thr(358) and Ser(363) at the C-terminal of receptor, with Thr(358) being involved in 

the receptor internalization (Kouhen et al., 2000). However, only phosphorylation 

might not be sufficient for rapid δ-opioid receptor desensitization in all cases. Law et al 

reported that deltorphin II-induced desensitization of the δ-opioid receptor involves 

cellular events in addition to receptor phosphorylation. The rapid desensitization of the 

delta-opioid receptor requires both the phosphorylation and internalization of the 

receptor (Law et al., 2000).  

1.4 Role of internalization/β-arrestin in signaling 

Agonist-induced opioid receptor internalization was initially demonstrated in cultured 

neuroblastoma cells (Moses and Snell, 1983). The internalization of opioid receptors is 

thought to involve clathrin-coated vesicles (Chu et al., 1997; Gaudriault et al., 1997; 

Hasbi et al., 2000; Keith et al., 1996; Law et al., 1999). Agonist-activated opioid 

receptors are rapidly concentrated in clathrin-coated pits, which subsequently undergo 

dynamin-dependent fission from the plasma membrane and then fuse with early 
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endosomes (Chu et al., 1997; Keith et al., 1996). This process is regulated by a highly 

conserved mechanism, involving phosphorylation of the agonist-bound receptors by G 

protein-coupled receptor kinases and association of the receptors with β-arrestins. Upon 

receptor activation, β-arrestins translocate to the cell membrane and bind to the 

agonist-occupied receptors. These events terminate receptor signaling by preventing 

receptor interaction with heterotrimeric G proteins. Morphine, in agreement with its 

inability to phosphorylate the opioid receptors and recruit β-arrestin, is unable to 

promote opioid receptors internalization in transfected cells (Keith et al., 1996; Kramer 

and Simon, 2000). The carboxyl-terminus and the third intracellular loop regions of 

δ-opioid receptor exhibit high affinity to both β-arrestin1 and β-arrestin2 (Cen et al., 

2001). It is also suggested that a Thr residue in the second intracellular loop region may 

serve as an additional β-arrestin binding site in the opioid receptor (Celver et al., 2001). 

Binding of β-arrestin leads to physical separation of the receptor from the G proteins 

and promote endocytosis by physically linking receptors to the clathrin-containing 

coated vesicles. β-arrestin can interact with the β-subunit of AP-2 through their C 

terminal domains (Mousavi et al., 2004). AP-2 is the clathrin adaptor protein that seems 

to be involved in nearly all stages of clathrin-coated vesicle formation. The interaction 

of β-arrestin with AP-2 is the essential targeting step recruiting the receptor to coated 

pits. Interactions of β-arrestin with both constitutively produced and signal-induced 

phosphoinositides also contribute to the incorporation of activated receptors into 

clathrin-coated pits. The formation of endocytic clathrin-coated pits and vesicles 

involves a complex series protein-protein and protein-lipid interactions. To form a free 

clathrin-coated vesicle from the plasma membrane, amphiphysin functions as a linker 

between dynamin and clathrin coats. Dynamin, acting as a GTPase, provide force to 

induce the scission of forming free vesicles, which are soon fused with early 

endosomes. 

β-arrestins serve as important adaptors that link receptors to the clathrin-dependent 

internalization pathway. However, accumulating evidence indicates that beta-arrestins 

also function as scaffold proteins that interact with several cytoplasmic proteins and 

link GPCRs to intracellular signaling pathways. β-arrestin is reported to be involved in 

the activation of ERK1/2 kinase cascades by some GPCRs (Tohgo et al., 2003). 

Heterodimerization of μ-opioid receptor with δ-opioid receptor was described to lead to 

a constitutive recruitment of β-arrestin2 to the receptor complex resulting in changes in 
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the spatio-temporal regulation of ERK1/2 signaling, indicating that μ-opioid 

receptor-δ-opioid receptor heterodimers are in a conformation conducive to 

β-arrestin-mediated signaling. Destabilization of this conformation by cotreatment with 

MOR and DOR ligands leads to a switch to a non-β-arrestin-mediated signaling 

(Rozenfeld and Devi, 2007). Recent work has also revealed that, beta-arrestin appears 

to play important roles in cell growth, apoptosis and modulation of immune functions 

by mediating regulation of transcription. In response to activation of certain GPCRs, 

beta-arrestins translocate from the cytoplasm to the nucleus and associate with 

transcription cofactors such as p300 and cAMP-response element-binding protein 

(CREB) at the promoters of target genes to promote transcription. They also interact 

with regulators of transcription factors, such as IκBα and MDM2, in the cytoplasm and 

regulate transcription indirectly (see Ma and Pei, 2007 for review). Applying 

beta-arrestin2 knockout mice, Bradaia et al. found that beta-Arrestin2, interacting with 

phosphodiesterase 4, regulates synaptic release probability and presynaptic inhibition 

by opioids (Bradaia et al., 2005). Beta-arrestins were also shown to bind and direct the 

activity of several nonreceptor tyrosine kinases in response to seven-transmembrane 

receptor stimulation (Shenoy and Lefkowitz, 2005). Thus as indicated by these novel 

functions of the internalization adaptor arrestin, receptor internalization which 

originally characterized as negative regulation process of G-protein-coupled receptor 

(GPCR) signaling, on the other hand, is also a signal transduction process. 

Etorphine or DAMGO promotes rapid internalization of µ-opioid receptor, whereas 

morphine fails to promote significant receptor internalization. Consistent with these 

findings, µ-opioid receptor is phosphorylated at a low level in the absence of agonist, 

and receptor phosphorylation is significantly enhanced in the presence of etorphine or 

DAMGO (Arden et al., 1995; Whistler et al., 1999), whereas morphine was observed to 

promote phosphorylation of µ-opioid receptor to a lesser extent than opioid peptides 

and certain other alkaloid agonists (Arden et al., 1995; Yu et al., 1997; Zhang et al., 

1998). The mutation of agonist-induced phosphorylation site serine375 to alanine in the 

carboxyl terminal significantly attenuates µ-opioid receptor internalization (El Kouhen 

et al., 2001; Schulz et al., 2004). The carboxyl terminal of the δ-opioid receptor was 

shown to have a critical role in receptor internalization. Examination of a series of 

chimeric mutant κ/δ receptors, revealed that at least two receptor domains, including 

the highly divergent carboxyl-terminal cytoplasmic tail, determine the type of the 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Bradaia+A%22%5BAuthor%5D
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endocytic mechanism of δ-opioid receptor (Chu et al., 1997). The transfected CHO 

cells expressing mouse δ-opioid receptor lacking the C-terminal 15 or 37 amino acids 

exhibit a substantially slower rate of internalization. Furthermore, the cells expressing 

receptors with point mutations of any of Ser/Thr between Ser344 and Ser363 in the 

C-terminal tail exhibit a significant reduction in the rate of receptor internalization 

(Trapaidze et al., 1996). However, there are also confusing data whether receptor 

phosphorylation is absolutely required in agonist-induced δ-opioid receptor endocytosis, 

especially in carboxy-terminal truncated δ-opioid receptor studies. Murray et al. 

reported that the DOR344T receptor, a functional and truncated mutant δ-opioid 

receptor which is missing phosphorylation sites located in the carboxyl-terminal 

cytoplasmic domain, when expressed in CHO cells could not undergo endocytosis. 

However, the same DOR344T truncated receptor expressed in HEK293 cells exhibited 

rapid ligand-induced internalization with the similarly rapid kinetics as full-length 

δ-opioid receptor in the absence of phosphorylation (Murray et al., 1998). Whistler et al. 

further addressed this question by examining the endocytic trafficking of a series of 

mutant version of the δ-opioid receptor in stably transfected HEK293 cells (Whistler et 

al., 2001). They confirmed that for agonist-induced endocytosis of truncated mutant 

δ-opioid receptors that lack the distal carboxyl-terminal cytoplasmic domain containing 

sites of regulatory phosphorylation, receptor phosphorylation is not required. However, 

phosphorylation is required for endocytosis of the full-length receptors. Mutation of all 

serine/threonine residues located in the distal carboxyl-terminal tail domain of 

full-length receptor to alanine created functional mutant receptors that exhibit no 

detectable agonist-induced endocytosis. So they put forward the hypothesis that the 

distal portion of the carboxyl-terminal cytoplasmic domain functions as an endocytic 

‘brake’ mechanism that is released by phosphorylation.  

Recently the enhanced green fluorescent protein (EGFP) was knocked into δ-opioid 

receptor gene and mice expressing a functional DOR –EGFP C-terminal fusion in place 

of native DOR were produced. In DOR-EGFP animals, drug treatment triggered 

receptor endocytosis that correlated with the behavioral response. Mice with 

internalized receptors were insensitive to subsequent agonist administration, providing 

evidence that δ-opioid receptors receptor sequestration limits drug efficacy in vivo 

(Scherrer et al., 2006). 
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1.5 Down-regulation  

Down-regulation of opioid receptors is characterized by a decrease in the total number 

of receptors in a cell. Opioid receptor down-regulation may result from a proteolytic 

degradation of internalized receptors and/or a decrease of newly synthesized receptors. 

The receptor degradation caused by agonist exposure was intensively studied. The 

down-regulation of many GPCRs involves the clathrin-coated vesicle pathway 

(Krupnick and Benovic, 1998). The fate of the opioid receptor types after 

agonist-mediated internalization is quite different. After agonist-induced endocytosis, 

the internalized δ-opioid receptor are preferentially targeted to protein degradation 

pathways and undergoes quick and significant down-regulation in recombinant cell 

lines (Malatynska et al., 1996), neuroblastoma cells (Afify et al., 1998) and intact brain 

tissues (Tao et al., 1988), while the μ-opioid receptor is preferentially recycled to the 

cell membrane (Afify et al., 1998; Koch et al., 1998). Recycling of internalized opioid 

receptors to the plasma membrane is associated with dephosphorylation of receptors, 

counteracting receptor down-regulation (Schulz et al., 2004; Tsao and von Zastrow, 

2000). The role of the carboxyl tail in directing opioid receptor trafficking has been 

established. C-terminal domain of δ-opioid receptor has a fundamental role in receptor 

down-regulation. Exchange of C-terminal tail between the μ and δ-opioid receptors led 

to reciprocal changes in the kinetics of receptor down-regulation (Afify et al., 1998). 

Truncation of last 37 amino acids from the C-terminus of the mouse δ-opioid receptor 

prevented DADLE-mediated down-regulation in transfected CHO cells, and the 

cytoplasmic tail residue Thr353 in the receptor was identified as the crucial residue, 

since when it was mutated to an Ala, the down-regulation of the mutant receptor was 

blocked (Cvejic et al., 1996). Transfer of a putative recycling motif of the μ-opioid 

receptor (Tanowitz and von Zastrow, 2003) or β2-adrenergic receptor (Gage et al., 

2001) was shown to redirect the chimeric δ-opioid receptor to the recycling pathway. 

Down-regulation of δ-opioid receptor was demonstrated to involve predominantly 

lysosomal degradation in neuroblastoma cells (Ko et al., 1999; Shapira et al., 2001). 

Whistler et al (Whistler et al., 2002) have identified a protein that binds preferentially 

to the cytoplasmic tail of δ-opioid receptor and which is G protein-coupled 

receptor-associated sorting protein (GASP) that targets the mouse δ-opioid to the 

lysosomal pathway in HEK293 cells. Disruption of the interaction between the δ-opioid 

receptor and the GASP by receptor mutation or overexpression of a dominant negative 
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fragment of GASP inhibited receptor trafficking to lysosomes and promoted receptor 

recycling.  

1.6 Phospholipase D 

The phospholipase D (PLD) is a ubiquitous enzyme present in organism ranging from 

viruses to bacteria, yeast, plants and animals. PLD hydrolyze phosphatidylcholine (PC) 

to yield phosphatidic acid (PA) and free choline. In mammalian cells, there are two 

major subtypes of PLDs (Fig. 2) (Exton, 1999; Frohman et al., 1999; Liscovitch et al., 

2000). In line with a role for PLD enzymes in different cellular tasks, PLD1 and PLD2 

show a diverse subcellular distribution. PLD1 is found throughout the cell, but 

primarily localizes to intracellular compartments, including the Golgi apparatus, 

endoplasmic reticulum, late endosomes, and the perinuclear region (Colley et al., 1997; 

Freyberg et al., 2001; Lucocq et al., 2001), whereas PLD2 is most often reported to 

distribute to the plasma membrane (Colley et al., 1997; Du et al., 2004; Liscovitch et al., 

1999). Mammalian PLD activity can be regulated by many factors including 

phosphoinositides, protein kinase C, ADP-ribosylation factor and Rho GTPase 

(Frohman et al., 1999). PLD activity also has been demonstrated to respond to a 

number of GPCRs, including metabotropic glutamate receptors (Bhattacharya et al., 

2004; Kanumilli et al., 2002; Shinomura et al., 2000), m1-m4 muscarinic receptors 

(Mitchell et al., 2003; Sandmann et al., 1991), the endothelin receptor (Ambar and 

Sokolovsky, 1993), the a2-adrenergic receptor (MacNulty et al., 1992), and D2 

dopamine receptor (Senogles, 2000). 

 

 
Fig. 2. Domain structure of PLD isoforms. The PLD isoforms PLD1 and PLD2 contain N-terminal PX 

and PH domains and the highly conserved domains I–IV. The domains II and IV contain HKD sequence 

motifs that are necessary for catalytic activity. N-terminal to domain III is a well conserved basic 

sequence that binds PIP2. PLD1 is distinguished by a loop region that seem to contribute to the 

regulation of PLD1 activity.  

The PLD-produced PA can be converted into DAG by the family of enzymes known as 

phosphohydrolases (PAPs or PPHs), which are highly active in vivo (Brindley and 

Waggoner, 1996; Sciorra and Morris, 1999). The isoform PAP2b co-localizes to 

PLD2-enriched membrane domains, thus possibly contributing to a rapid turnover of 
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PLD-produced PA to DAG (Sciorra and Morris, 1999). PA can also be deacylated by 

phospholipase A (PLA) to form lysoPA (LPA). Activation of PLD results in the 

increase of both PA and DAG. The produced DAG can be reconverted to PA via 

phosphorylation by diacylglycerol kinases (DGKs) (Topham and Prescott, 1999). The 

regulation of PA and DAG appears to be tightly controlled via the activities of PPH and 

DGK. The comprehensive studies on the lipids hydrolyzed and produced by PLD 

clearly defined the fatty acid composition of these lipids (Pettitt et al., 1997; Pettitt et 

al., 2001). The acyl chains which were derived from PLD2 activation were palmitate 

(16:0), stearate (18:0) and oleate (18:1). The DAG produced by PAP dephosphorylation 

of PA, whose diacyl composition is primarily of the monounsaturated and/or saturated 

species, is different from polyunsaturated DAG produced via phospholipase C cleavage 

of PI4,5P2 (Pettitt et al., 1997). The in vivo specificity of PLD for PC was limited to 

mainly monounsaturated or saturated acyl chains as determined by analysis of the 

phosphatidylbutanol formed, of which the diacyl profile was comparable to that of 

endogenous PC (Pettitt et al., 2001), indicating that PLD seems to hydrolyze PC with 

either monounsaturated and/or saturated acyl chains forming PA of the same diacyl 

composition. As a long studied lipid second messenger, DAG has been shown to 

activate lipid-dependent kinases such as the classical and most novel PKC families 

(Newton, 1997). However, the more saturated forms of DAG produced from PA have 

been suggested not to activate PKC in vivo (Hodgkin et al., 1998; Pettitt et al., 1997), 

though a report showed that a metabotropic glutamate receptor associated to 

phospholipase D might influence translocation of PKC subtype ε in a 

calcium-independent manner (Pastorino et al., 2000). Therefore the possible role of 

these DAG derived from PA remains to be determined. The signaling function of PA 

and DAG is strongly dependent on their fatty acid contents. Also PA was described to 

be only active when it is formed from PC or contains predominantly saturated fatty 

acids (Hodgkin et al., 1998; Jones et al., 2000).  

PLD can play multiple roles in cellular function. PA generated via PLD has been linked 

to a variety of events of intracellular signal processes through quenching of PA 

synthesis by 1-butanol, which has been proven useful and is widely used to investigate 

the involvement of PLD enzymes in cell physiology. One of the important effects of 

PA (Jenkins et al., 1994; Moritz et al., 1992), mainly the saturated/monounsaturated PA 

in vivo (Jones et al., 2000), is the stimulation of type I PI4P 5-kinase, to produce 
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PI4,5P2. PA can also bind to Raf-1 kinase which causes its translocation to plasma 

membranes and promote the activation of ERK1/2 mitogen activated protein kinase 

(Ghosh et al., 2003; Rizzo et al., 1999; Rizzo et al., 2000). In addition, PLD has also 

been implicated in survival pathways such as anti-apoptosis and cell proliferation 

(Klein, 2005). In Dictyostelium it was reported to be essential for actin localization and 

actin-based motility (Zouwail et al., 2005). Recently, PLD and its product PA have 

been found to be involved in vesicular trafficking, secretion and receptor endocytosis. 

It was demonstrated to regulate insulin release in pancreatic beta-cells (Hughes et al., 

2004), macrophage phagocytosis (Iyer et al., 2004; Kusner et al., 1999), and B-Cell 

antigen receptor trafficking (Snyder and Pierce, 2006). PLD2 localizes to the plasma 

membrane and regulates angiotensin II receptor endocytosis (Du et al., 2004), 

epidermal growth factor endocytosis (Shen et al., 2001). Our group also found 

phospholipase D2 modulates agonist-induced μ-opioid receptor endocytosis (Koch et 

al., 2003). 

1.7 Aims of the present research 

As demonstrated above, opioid receptors internalization is an important regulatory 

event of opioid signaling. Previously our group has found that a μ-opioid receptor 

interacting protein, PLD2, is critical for agonist-induced μ-opioid receptor endocytosis 

(Koch et al., 2003). Thus we raised and addressed the following questions:  

1. Does PLD2 associate with δ-opioid receptor, and what is the role of PLD2 activity in 

δ-opioid receptor endocytosis?  

To answer these questions, we investigated the relation between PLD2 enzyme activity 

and δ-opioid receptor agonist stimulation. The physiological interaction of PLD2 with 

δ-opioid receptor was also studied. The function of PLD2 on δ-opioid receptor 

endocytosis was investigated by analyzing the effects of coexpressing PLD2, and the 

inhibition of PLD2 activity by coexpressing a catalytically inactive PLD2 mutant and 

applying the specific PLD inhibitor.  

2. If PLD2 could regulate δ-opioid receptor endocytosis, what would be the mechanism 

of PLD2 for the regulation of both δ- and μ-opioid receptor endocytosis?  

To uncover the mechanism of PLD2 which regulates opioid receptors endocytosis, the 

further metabolism of PA, the product of PLD2 phosphodiesterase activity, was 

specially focused on. Once the downstream molecule PA-derived DAG, which might 

mediate the function of PLD2 in opioid receptors endocytosis, was identified, its 
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further involvement in the clathrin-dependent endocytosis pathway was investigated. 

Then the further functional relation between PLD2 and p38 kinase, a potential regulator 

of clathrin-dependent endocytosis pathway, was established by analyzing the 

involvement of PLD2-PA-DAG pathway in the opioid receptors-mediated p38 kinase 

activation. 
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2 Materials 

2.1 Instruments 

UV-visible Spectrophotometer (Pharmacia Biotech, Germany) 

PTC-0200 DNA Engine (MJ Research, Inc. USA) for PCR 

Gene Pulser II and Pulse Controller Plus (Bio-Rad, USA) for Electroporation 

DNA sequencer, model 4000 (Li-cor, Germany) 

Leica TCS-NT laser-scanning confocal microscope (Leica Microsystems, Germany) 

TRI-CARB 1900 TR Liquid Scintillation Analyzer (Packard, USA) 

Expert Plus Microplate Reader (ASYS, Austria) 

Electrophoresis power supply (Bio-Rad) 

Gel electrophoresis system (Bio-Rad) 

Semi-dry Transfer Cell (Bio-Rad) for electroblotting 

2.2 Kits 

PCR purification Kit, Gel extraction Kit, Plasmid Midi Kit (QIAGEN, Germany) 

MinElute Reaction Cleanup Kit (QIAGEN, Germany) 

Cyclic AMP (3H) assay system (Amersham Biosciences, Braunschweig, Germany) 

Sequencing kit with 7-deaza-dGTP (Amersham Pharmacia Biotech) 

2.3 Chemicals and reagents 

DPDPE (Bachem, Heidelberg, Germany) 

DAMGO (Bachem, Heidelberg, Germany) 

Morphine (Synopharm, Barsbüttel, Germany) 

Naloxone (Tocris) 

[1,2,3-3H]glycerol (American Radiolabeled Chemicals, St. Louis, MO) 

[3H]Naltrindol (NEN, Köln, Germany) 

1-butanol (Merck, Darmstadt, Germany) 

Propranolol (Calbiochem) 

R59949 (Calbiochem) 

Chelerythrine chloride (Sigma, ST. Louis, USA)   

Calphostin C (Calbiochem) 

RHC80627 (Calbiochem) 

DOG (1-palmitoyl 2-oleoyl-sn-glycerol) (Calbiochem) 

Sucrose (MP Biomedicals, France) 

Filipin (Sigma, ST. Louis, USA ) 
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SB203580 (Calbiochem) 

Forskolin (Biotrend, Köln, Germany) 

LipofectamineTM 2000 (Life technologies, Invitrogen) 

Enhanced chemiluminescence detection system (Amersham Biosciences) 

DPX mountant for histology (resinous mounting media) (Fluka, NeuUlm, Germany) 

Protein A-agarose beads (Amersham Biosciences, Sweden) 

ABTS solution (Roche Molecular Biochemicals) 

Ammonium persulfate (Sigma) 

30% acrylamide mix (Carl Roth GmbH & Co) 

HEPES, TEMED (Serva) 

2.4 Bacterium and eukaryotic cell line 

E. coli XL1 (Promega) 

Human embryonic kidney HEK 293 cell (ATCC CRL 1573) 

2.5 Enzymes 

All endonucleases from New England Biolab 

Taq DNA polymerase, T4 ligase from Promega 

RNase A from Sigma 

2.6 plasmids 

pcDNA3.1-DOR from Dr. Manuela Pfeiffer (IPT, Magdeburg Univ., Germany) 

pcDNA3.1- PLD2 from Dr. S. Ryu (Pohang, South Korea) 

pEAK10 expression vector (Edge Bio Systems, Gaithersburg, MD) 

pGEM-T easy vector (Promega, Madison, USA) 

pcDNA3.1 (Invitrogen) 

2.7 Mediums and Antibiotics 

DMEM with 4.5g/L Glucose and L-Glutamine (Cambrex, Belgium) 

Ultra MEM (Modified Eagle's Minimum Essential Medium) (Cambrex, Belgium)  

LB media and LB-Agar media (Gibco) 

Fetal calf serum (FCS) (Bachem, Heidelberg, Germany) 

Poly-L-lysine (PAA Laboratories GmbH, Pasching, Germany) 

Hygromycin B (PAA Laboratories GmbH, Pasching, Germany) 

Puromycin, Ampicillin, Penicillin and Streptomycin (Sigma) 

Zeocin (Life technologies, Invitrogen) 

G418 (Gibco) 
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2.8 Antibodies 

Mouse anti-Myc monoclonal antibody (Clontech) 

Rabbit anti-HA serum (IPT, Magdeburg Univ., Germany) 

Mouse anti-HA antibody (Sigma) 

All fluorescent conjugated second antibodies (Jackson ImmunoResearch, PA) 

HRP -conjugated anti-rabbit antibody (Amersham Biosciences) 

Phospho-p38 MAPK (Thr180/Tyr182) Rabbit mAb (Cell signaling) 

Phospho-Akt (Ser473) Rabbit mAb (Cell signaling) 

Mouse anti-β-actin antibody (Sigma, ST. Louis, USA ) 

Peroxidase-conjugated second antibodies (Jackson ImmunoResearch, PA)  

2.9 Buffers and solvents 

Zamboni’s fixative: 

4% paraformaldehyde and 0.2% picric acid in phosphate buffer, pH 6.9. 

Radioimmune precipitation buffer (RIPA buffer): 

50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 10 mM NaF, 10 mM disodium 

pyrophosphate, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS, and the 

following proteinase inhibitors: 0.2 mM phenylmethylsulfonyl fluoride, 10 µg/ml 

leupeptin, 1 µg/ml pepstatin A, 1 µg/ml aprotinin, and 10 µg/ml bacitracin. (Proteinase 

inhibitors were added just prior to use) 

SDS-sample buffer: 

62.5 mM Tris-HCl, pH 6.8, 2% SDS, 20% glycerol, 0.005% bromphenol blue, 10% 

2-mercaptoethanol. (2-mercaptoethanol was added prior to use) 

Blotting buffer: 50 mM Tris-HCl, 40 mM glycine, 0.0375% SDS, 20% methanol 

1 x TPBS (Tris/phosphate-buffered saline): 

10 mM Tris, 10 mM phosphate buffer, 137 mM NaCl and 0.05% thimerosal, pH 7.4. 

Trypsin/EDTA solution: 0.5 mM EDTA and 0.05% Trypsin in PBS 
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3 Methods 

3.1 Gene subclone 

In the following experiments, the related PCR, restriction endonuclease cleavage, 

ligation, transformation by calcium chloride or electroporation, plasmid preparation, 

purification and identification were carried out using standard protocols according to 

Molecular Clone or manufacturer’s instruction. 

Epitope tagging and cloning of cDNA 

A HA epitope tag sequence MYPYDVPDYA was added to the NH2 terminus of the 

mouse δ-opioid receptor by polymerase chain reaction. Then this tagged δ-opioid 

receptors gene was subcloned to pEAK10 expression vector. PLD2 expressing vector 

pcDNA3.1-PLD2 and PLD1b expressing vector pcDNA3.1-PLD1b were acquired from 

Dr. S. Ryu (Pohang, South Korea). Using Hind III, BamH I sites, a myc tag was further 

introduced at the N-terminus of the PLD2 in the same vector by PCR method. The 

catalytically inactive (K758R) PLD2 mutant (nPLD2) was constructed by 

PCR-mutagenesis and subcloned into the pcDNA3 expression vector. 

Plasmid sequencing 

To confirm the plasmid constructions, all subclones were sequenced using the Thermo 

Sequenase fluorescent labeled primer cycle sequencing kit according to the 

manufacturer’s protocol. 

3.2 Cell culture and generation of stable cell lines 

Generation of stable cell lines expressing δ-opioid receptor and/or PLD2, PLD1b 

or catalytically inactive PLD2 mutant (nPLD2)  

HEK293 cells were maintained in DMEM supplemented with 10% FCS in a 

humidified incubator with an atmosphere containing 10% CO2, at 37°C. To generate 

δ-opioid receptor expressing cell line, HEK293 cells were transfected with 

pEAK10-HADOR plasmid by the calcium phosphate precipitation method and stable 

transfectants were selected with 1.25 μg/ml puromycin. Then HADOR stably 

expressing cells were subjected to a second round of transfection with 

pcDNA3.1-PLD2, pcDNA3.1-PLD1b or pcDNA3-nPLD2 plasmids using 

liptofectamime 2000 according to manufacturer’s protocol to generate the HADOR and 

PLD2, PLD1 or mutant PLD2 (K758R) coexpressing cell lines. Stable transfectants 

was selected with 1.25 μg/ml puromycin and 500 μg/ml G418 in DMEM medium 

containing 10% fetal calf serum. Receptor and/or PLD2 expression of the stable 
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transfectants were monitored and selected with confocal microscopy, quantitative 

ELISA and radioligand binding assay. Stably transfected multi-clones in similar 

receptor density were used for the further studies. 

Calcium-phosphate-mediated transfection of HEK293 cells 

24 h before transfection, exponentially growing cells were harvest by trypsinization and 

replated at a density of about 6 x 105 cells in 5 ml complete growth medium (DMEM 

with 10% FCS) in 6 cm dishes. Incubate the cultures for 20-24 h at 37°C in a 

humidified incubator with an atmosphere containing of 10% CO2. Change medium 2~4 

h before transfection. For one transfection in 6 cm-dish, the calcium phosphate-DNA 

coprecipitate was prepared as follows: 8 µg of purified plasmid DNA, 25 µl of 2.5 M 

CaCl2 and suitable amount of H2O were added to a final volume of 250 µl. Then an 

equal volume of 2 x HEPES-buffered saline (280 mM NaCl, 50 mM HEPES, 1.5 mM 

Na2HPO4, pH 7.05) was mixed to 1 volume of this 2 x calcium-DNA solution. The 

solution was quickly vortexed and allowed to stay for 20 min at RT. Hereafter this 

calcium phosphate-DNA suspension was dropped immediately into the medium over 

the cell monolayer. After shaking the plate gently to mix the medium, cells were 

incubated for 16-18 h at 35°C in a humidified incubator with an atmosphere containing 

of 3% CO2. Then medium was change to complete growth medium and cells were 

further incubated for 1-2 days at 37°C in a normal condition (10% CO2, 37°C) before 

experiments or selection. 

3.3 Coimmunoprecipitation and Immunoblot 

Cells were seed into 10 cm dishes and grown to 80% confluence. Then cells were lysed 

on ice with 1 ml of ice-cold RIPA buffer (50 mM Tris-HCl, 150mM NaCl, 5 mM 

EDTA, 1% NP-40, 0.5% Na-Deoxychlorat, 0.1% SDS and proteinase inhibitors) for 30 

min, then were transfered to 2-ml tube and further lysed with shaking for 1-2 h at 4°C.. 

100 μl of protein A agarose beads for each sample were washed with RIPA buffer and 

preloaded with 10 μg rabbit anti-HA antibodies for 4-6 h at 4°C. Then they were 

washed four times before use. After the cell lysate was centrifuged at 14,000 rpm for 1 

h, the supernatant was collected and subjected to immunoprecipitation with 100 μl 

protein A-agarose beads preloaded with 10 μg rabbit anti-HA antibodies or was treated 

with wheat germ lectin beads to purify the glycoproteins at 4°C overnight. Beads were 

washed five times with RIPA buffer. Then the proteins on the beads were eluted to 100 
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μl of SDS-sample buffer at 60°C for 20 min and subjected to 10% SDS-polyacrylamide 

gel electrophoresis.  

Immunoblotting was carried out according to standard procedures. After being 

separated by SDS-PAGE, proteins were transferred from the gel to nitrocellulose 

membrane by electroblotting, the membranes were blocked with 5% non-fat milk and 

incubated with 1 μg/ml mouse monoclonal anti-myc antibody or affinity-purified 

anti-HA antibody at 4°C overnight, followed by detection using enhanced 

chemiluminescence detection system. 

3.4 Immunocytochemistry 

Cells expressing DOR or coexpressing PLD2 and DOR were grown on poly-L-lysin 

coated coverslips overnight. After being washed with Ultra MEM once, cells were 

treated or not treated as indicated in text in serum-free Ultra MEM. The cells were then 

fixed with 4% paraformaldehyde and 0.2% picric acid in PB for 40 minutes at room 

temperature and washed three times with TPBS. Subsequently the cells were 

permeablized with 50% methanol and 100% methanol for each 3 minutes, and blocked 

with 1% and 3% normal goat serum at room temperature for 3 minutes and 1h 

respectively. Subsequently cells were incubated with rabbit anti-HA antibody and/or 

mouse anti-Myc antibody at a concentration of 0.5 mg/ml in TPBS containing 1% 

normal goat serum overnight. Bound primary antibodies were detected with 

corresponding cyanine 2.18 (Cy2)- and/or 3.18 (Cy3)-conjugated second antibodies 

(1:400 or 3.75 μg/ml). Cells were then dehydrated with ethanol from concentration 

70% to 100%, cleared in xylol and permanently mounted in DPX. Cells were examined 

using a Leica TCS-NT laser scanning confocal microscope equipped with a 

krypton/argon laser. Cyanine 2.18 was imaged with 488 nm excitation and 530 nm 

emission filters, and cyanine 3.18 was imaged with 568 nm excitation and 570-630 nm 

band pass emission filters. To observe the trafficking of surface DOR and/or PLD2, 

cells were firstly surface-labeled with rabbit anti-HA antibody at a final concentration 

of 1:1000 at 4°C for 1.5 h. Cells were subsequently treated as shown in text, and then 

fixed normally. The bound primary antibodies were detected as described above. 

3.5 Radioligand binding assay 

The binding characteristics of the δ-opioid receptor were determined by saturation 

binding assays on membranes prepared from stably transfected HEK293 cells 

expressing HA-DOR with and without PLD2. Dissociation constant (KD) and number 
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of [3H]Naltrindol binding sites (Bmax) were calculated by Scatchard analysis using at 

least seven concentrations of radioligand in a range from 0.025 to 25 nM. Nonspecific 

binding was determined as radioactivity bound in the presence of 1 µM unlabeled 

Naltrindol. Radioligand binding assay is sensitive to calculate the receptor amount. By 

using the ratio of specific bound radioligand per mg protein, the number of 

[3H]Naltrindol binding sites in membrane binding assay reflects the amount of total 

δ-opioid receptor. 

3.6 PLD Activity Assay 

PLD activity was determined using a transphosphatidylation assay. HEK293 cells 

coexpressing DOR and PLD2 were seeded at a density of 1–1.5×106 per 6 cm-dish and 

grown for 24 h. After washing once the cells were kept in serum-free OPTI MEM 

containing [1,2,3-3H]glycerol (1 μCi/ml; specific activity 40 Ci/mmol) for 24 h in order 

to label phospholipids. Cells were then exposed to serum-free medium containing drugs 

as indicated and 2% ethanol. The following drugs were added as aqueous solutions 

resulting in final concentrations of 1 μM DPDPE, 1 μM morphine, 5 μM chelerythrine 

chloride, or 10 μM naloxone. After 30 min of drug treatment, cells were washed with 

cold PBS and extracted in 2.5 ml of ice-cold methanol/water (3:2, v/v). Subsequently, 

1.5 ml chloroform and 0.35 ml H2O were added, and the lipid phase was separated by 

centrifuge. The lower phase of methanol/chloroform/water (10:10:9, v/v/v) was 

collected, evaporated by vacuum and redissolved in methanol/chloroform. Individual 

phospholipids were separated by thin layer chromatography and stained with iodine, 

identified by standards, and spots corresponding to phosphatidylethanol (PtdEtOH), PA, 

and PC were isolated and subjected to liquid scintillation counting. PLD activity was 

expressed as percent [3H]PtdEtOH of the total cellular PC concentration. Then the 

relative PLD activity to control of each experiment was calculated. 

3.7 Quantitative Analysis of Receptor Internalization 

To quantitatively measure receptor internalization, cells were seeded at a density of 

2.5×105 per well and grown overnight in poly-L-lysine-treated 24-well plates. Cells 

were washed and treated differently as indicated in the text in Ultra MEM at 37°C. 

After washing with ultra MEM, HA-tagged cell surface receptors were labeled by 

incubation with rabbit anti-HA serum (1:2000) in Ultra MEM at 4°C for 1 h 40 min. 

Subsequently, cells were fixed with Zamboni’s fixative buffer for 40min and then 

incubated with peroxidase-conjugated anti-rabbit antibody (1:1000, Amersham 
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Biosciences) for 2 h at room temperature. After three times wash with PBS for each 5 

minutes, colour was developed with 250 μl of ABTS solution per well. After 10–20 

min of rotation, 200 μl of the substrate solution from each well were transferred to a 

96-well plate and measured at 405/492 nm with a microtiter plate reader. Compared to 

the cells which were same treated in agonist-free medium, agonist-induced receptor 

internalization was quantified as the percentage loss of surface receptors. 

3.8 Preparation of cell lysates and Western blotting analysis for MAP kinase 

The activation of p38 MAP kinase was determined by Western blotting with 

Phospho-p38 MAPK (Thr180/Tyr182) antibody which is specific for phosphorylated, 

activated form of p38 MAPK. Cells were seeded in 12-well plate at a density of 

2.0×105 per well. After 24 hours, cells were further serum-starved for 16 h with 

DMEM containing 1% FCS. After stimulation with 1 µM DPDPE or 10 µM DAMGO 

in serum-free medium at 37°C for indicated time, cells were washed with ice-cold PBS 

once and lysed on ice with 100 µl of fresh-prepared ice-cold RIPA buffer containing 

proteinase inhibitors and phosphatase inhibitors for 1 hour. The cell lysate was 

centrifuged at 14,000 rpm for 20 min and the total protein in supernatant was quantified. 

Supernatants containing same amount of total proteins were subjected to 10% 

SDS-polyacrylamide gel electrophoresis. After electroblotting, the nitrocellulose 

membrane were blocked with 3% non-fat milk for 30 min, and incubated with 1 μg/ml 

phospho-p38 MAPK (Thr180/Tyr182) rabbit antibody overnight at 4°C. Binding of 

primary antibody was detected with secondary anti-rabbit antibody for 1 h at room 

temperature, followed by detection using enhanced chemiluminescence (ECL) 

detection system. To detect β-actin, the same membrane was treated with 1% sodium 

azide in TBS for 45 min to inactive the peroxidase signal. After that the membrane was 

incubated with β-actin mouse antibody and further detected with secondary anti-mouse 

antibody and ECL system. 

3.9 cAMP measurement 

1.0 x 105 cells per well were seeded in poly-L-lysine-coated 24-well plate overnight. 

For the measurement of cAMP accumulation, cells were first washed one time with 0.5 

ml serum-free Ultra MEM. Immediately, medium was removed and replaced by 0.25 

ml serum-free DEEM medium containing 25 µM forskolin with or without agonist. The 

cells were incubated at 37°C for 15 min. After one time wash with cold PBS, the 

intracellular cAMP was extracted immediately with 0.5 ml of cold HCl/ethanol (1 
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volume of 1 N HCl/100 volumes of ethanol, stored at -20°C). The supernatant was 

transferred into a 1.5 ml tube, and then evaporated by vacuum at 30°C. The residue of 

cAMP was frozen in -20°C or for further examination. The extracted cAMP content 

was dissolved in TE buffer and determined using a commercially available cyclic AMP 

[3H] assay system. 

3.10 Data analysis 

Statistic significant difference was analyzed by Student’s t-test or ANOVA followed by 

bonferroni test using GraphPad Prism 4.0 software. All graphs in the following were 

drawed by the same software. 
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4. Results 

4.1 δ-opioid receptor activates PLD2 

    Since our group has previously demonstrated that μ-opioid receptor can mediate 

phospholipase D2 activation (Koch et al., 2003), we speculated that this may be the 

case also for the δ-opioid receptor. Therefore we stably expressed PLD2 and 

HA-tagged δ-opioid receptor in HEK293 cells. δ-opioid receptor and PLD2 expression 

were monitored by ligand binding experiments, Western blot, and 

immunocytochemical analyses. Saturation binding experiments revealed no substantial 

differences between DOR and DOR-PLD2 expressing cells with respect to their 

affinities (KD) to selective δ antagonist [3H]naltrindol (0.142 ± 0.048 nM and 0.173 ± 

0.049 nM for DOR and DOR-PLD2 cells, respectively) and their numbers of binding 

sites (Bmax) (1258 ± 361 fmol/mg protein and 1247 ± 352 fmol/mg protein for DOR and 

DOR-PLD2, respectively). Then using a transphosphatidylation assay, we examined 

whether PLD2 can be activated by agonist exposure of δ-opioid receptor in PLD2-DOR 

stably expressing cells (Fig. 3A). After a treatment for 30 min with the δ-opioid 

receptors selective agonist [D-Pen2, D-Pen5]enkephalin (DPDPE), PLD2 activity was 

increased about to 1.4 times. The incubation with the opioid antagonist naloxone could 

block this DPDPE-induced activation of PLD2, indicating that this PLD2 activation 

was mediated by δ-opioid receptor. Since the alkaloid agonist morphine has been 

reported to activate both δ- and μ-opioid receptors but not to cause their rapid 

internalization (Keith et al., 1996), we further tested its effect on the receptor-mediated 

PLD activation. The exposure to morphine failed to induce an increase of PLD2 

activity. Furthermore, inhibition of protein kinase C (PKC) by the PKC inhibitor 

chelerythrine chloride did not attenuate the DPDPE-induced PLD2 activation. This 

finding suggests that the δ-opioid receptor-induced PLD2 activation is not caused by 

PKC activation. In contrast, in PLD1b-HADOR coexpressing cells, DPDPE stimulation 

did not increase PLD1b activity (Fig. 3B) showing that δ-opioid receptor specifically 

activates PLD2. 
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    Fig. 3. δ-opioid receptor mediates PLD2 activation but not PLD1b activation. A, HEK293 cells 

coexpressing PLD2 and DOR were treated with 1μM DPDPE with or without 10μM naloxone (Nal) or 

5μM chelerythrine chloride (Che), or treated with 1μM morphine alone for 30min, or not treated 

(control). B, HEK293 cells coexpressing PLD1b and DOR were treated with 1μM DPDPE for 30min or 

not treated (control). PLD relative activity was calculated as the ratio of PLD activity of each treatment 

to controls. Asterisk represents a significant difference (P<0.05) compared with the control cells using 

ANOVA followed by Bonferroni test. The values represent means ± S.E. of at least three independent 

experiments. 

 

4.2 δ-opioid receptor interacts with PLD2 in HEK293 cells 

To analyze the interaction between δ-opioid receptor and PLD2 in HEK293 cells, 

we carried out coimmunoprecipitation studies. δ-opioid receptor and PLD2 were 

NH2-terminally tagged with a HA epitope tag and a Myc epitope tag, respectively. 

Expression of HADOR and MycPLD2 was examined by directly immunoblotting 

lysates from these cells with specific antibodies against HA tag and Myc tag (Fig. 4, 
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lysate). For coimmunoprecipitation, HADOR receptors were precipitated respectively 

from the lysates of HADOR expressing cells, MycPLD2 expressing cells and 

HADOR-MycPLD2 coexpressing cells using an anti-HA antibody. The resulting 

precipitates were immunoblotted with antibody directed against Myc tag. As shown in 

Fig. 4 (lane 2, 3), Myc-tagged PLD2 was detected in immunoprecipitates from cells 

coexpressing HADOR and MycPLD2, suggesting that δ-opioid receptor is physically 

associated with PLD2 in vivo. Even after the cells were treated with 0.1 μM DPDPE 

for 30 min, PLD2 could still be detected in the resulting immunoprecipitate. However, 

as a control, in immunoprecipitate from MycPLD2 expressing cells, no MycPLD2 was 

detected (Fig. 4, lane 5), indicating that PLD2 is not unspecifically immunoprecipitated 

by anti-HA antibody.  

 

   
Fig. 4. DOR physically associates with PLD2. Lysates of cells or the immunoprecipitates (IP) 

generated with the anti-HA antibody from the cell lysates were subjected to Western blot analysis. Lane 

1, lysate of HADOR-mycPLD2 coexpressing HEK293 cells; lane 2, IP of HADOR-mycPLD2 

coexpressing HEK293 cells; lane 3, IP of HADOR-mycPLD2 coexpressing HEK293 cells which were 

preincubated with 0.1μM DPDPE for 30 min; lane 4, IP of HADOR expressing cells; lane 5, IP of 

mycPLD2 expressing cells; lane 6, lysate of mycPLD2 expressing cells. 

 

4.3 PLD2 activity is required for agonist-induced δ-opioid receptor endocytosis 

4.3.1 Coexpression of PLD2 enhances agonist-induced δ-opioid receptor 

endocytosis 
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Because PLD2 is physically associated with the δ-opioid receptor and can be 

activated through the δ-opioid receptor, we further investigated the effects of PLD2 on 

δ-opioid receptor endocytosis in PLD2-HADOR coexpressing cells and in HADOR 

expressing cells. We first studied δ-opioid receptor internalization induced by δ-opioid 

receptor selective agonist by a quantitative internalization assay. Cell surface δ-opioid 

receptors in both PLD2-HADOR coexpressing cells and HADOR expressing cells were 

labeled with anti HA antibody at 4°C. The cells were treated with the DOR agonist 

DPDPE in a series of concentrations for 30 minutes at 37°C, and the remaining cell 

surface δ-opioid receptors were measured by ELISA. Based on the control cells which 

were exposed in agonist-free medium in the same conditions, agonist-induced receptor 

internalization was calculated as the loss of the surface δ-opioid receptor. As shown in 

Fig. 5A, in the presence of 1 nM DPDPE, very little δ-opioid receptor endocytosis was 

observed in cells coexpressing PLD2-HADOR or cells expressing HADOR, and there 

was no distinct difference between these two cell lines. As the concentration of DPDPE 

was raised, the δ-opioid receptor internalization increased in both cells lines in a 

dose-dependent manner. However, in PLD2-HADOR coexpressing cells, the 

DPDPE-induced δ-opioid receptor internalization increased more promptly than that in 

DOR alone expressing cells, and the difference between them became gradually larger 

and significant. Compared to the cells expressing δ-opioid receptors and only 

endogenous PLD2, the coexpression of PLD2 led to a left shift of the DPDPE 

dose-response curve of receptor endocytosis with a 3-fold increase in the ability of 

DPDPE, indicating a role of PLD2 in promoting δ-opioid receptor endocytosis. When 

the concentration of DPDPE reached 10 μM, the δ-opioid receptor internalization was 

maximal for both cells, and almost 20% of the cellular δ-opioid receptors were more 

endocytosed in PLD2-HADOR coexpressing cells than in HADOR expressing cells. 

These data reveal that the PLD2 enhances agonist-induced δ-opioid receptor 

endocytosis.  

Next we studied the time-dependency of DPDPE-induced δ-opioid receptor 

endocytosis in HADOR expressing cells and PLD2-HADOR coexpressing cells by 

confocal microscopy analysis. After labeling of cell surface δ-opioid receptors, cells 

were treated with DPDPE for different time periods. Then cells were fixed and 

subjected to immunofluorescence staining. As shown in Fig. 5B, compared to untreated 

cells, no distinct alteration in the cellular localization of δ-opioid receptors was 
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observed in the cells expressing HADOR after 5 minutes stimulation with DPDPE, in 

contrast, there were already small vesicles with receptors forming in the cells 

coexpressing PLD2 and HADOR. After 20 minutes of DPDPE stimulation, the most 

vesicles in PLD2 coexpressing cells were already inside of the cells, whereas a lot of 

vesicles in the cells expressing only DOR were still on or near the plasma membrane. A  
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   Fig. 5. Coexpression of PLD2 enhances agonist-induced δ-opioid receptor endocytosis. A, 

Quantitative analysis of DOR internalization in HEK293 cells expressing HADOR or coexpressing 

PLD2 and HADOR, which were exposed to DPDPE in a series of concentrations for 30 min. 

Agonist-induced DOR endocytosis, quantified as the percentage loss of surface receptors in 

agonist-treated cells, was measured by ELISA. Data are presented as means ± S.E. from at least three 

independent experiments performed in triplicate. B, Confocal microscopy analysis of time-dependent 

DOR endocytosis induced by DPDPE in HADOR-PLD2 coexpressing cells and HADOR expressing 

cells. After the labeling of cell surface δ-opioid receptors, cells were treated with 0.1 μM DPDPE for 

different times as indicated. 
 

striking difference of δ-opioid receptor endocytosis between the two cell lines was 

observed after DPDPE treatment for 25 min, when most of the vesicles in PLD2 and 

HADOR coexpressing cells fused and accumulated in the perinuclear region. Taking 

together, these observations indicate the role of PLD2 in enhancing of δ-opioid receptor 

endocytosis. 

 

4.3.2 Coexpression of a PLD2 negative mutant (K758R) decreases agonist-induced 

δ-opioid receptor endocytosis 

To further confirm the function of PLD2 in δ-opioid receptor endocytosis, we 

made a point mutation in the catalyzing motif of PLD2, in which the amino acid 

Lysine758 was substituted by Arginine. The mutation deletes the catalytic activity of 
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PLD2 and the negative mutant construct was generally used for silencing endogenous 

PLD2 activity (Denmat-Ouisse et al., 2001; Sung et al., 1997; Wang et al., 2003). Then 

this negative PLD2 mutant (nPLD2) was used to transfect the cells expressing HADOR. 

The coexpression of this K758R PLD2-catalytically inactive mutant significantly 

attenuated the DPDPE-induced DOR endocytosis in HADOR expressing cells 

(nPLD2-HADOR) (Fig. 6A). This suggests that the catalytically inactive PLD2 

competes with the endogenous PLD2 for the interaction with DOR, and its 

coexpression impairs the DOR-mediated PLD2 activation, so that the DOR 

internalization was impaired. Thus PLD2 activity is essential for agonist-induced 

δ-opioid receptor endocytosis.   

 

4.3.3 Inhibition of agonist-induced δ-opioid receptor endocytosis by primary 

alcohol 1-butanol  

Using H2O as an electron donor, PLD2 plays a function as a phospholipid 

degrading enzyme, cleaving phosphatidylcholine (PC) to yield phosphatidic acid (PA) 

and choline. By the same mechanism, PLD2 can generate phosphatidylbutanol instead 

of PA from 1-butanol. In the presence of 1-butanol, PLD2 will predominantly utilize 

1-butanol instead of H2O (Fig. 6B). Therefore 1-butanol is generally used as a PLD 

inhibitor to inhibit PA production. Using 1-butanol, we examined the role of 

PLD2-mediated PA production in δ-opioid receptor endocytosis in HEK293 cells. 

Applying confocal microscopy, we found that after DPDPE treatment for 30 min, 

δ-opioid receptors were distinctly endocytosed in both HADOR and PLD2-HADOR 

expressing cells, and this DPDPE-induced δ-opioid receptor endocytosis was strongly 

blocked by 1-butanol in both cell lines (Fig. 6C). Consistent with the results of the 

confocal analysis, the quantitative internalization assay further confirmed the effect of 

1-butanol on the inhibition of DPDPE-mediated DOR endocytosis (Fig. 6D). These 

observations strongly suggest that the production PA by PLD2 is required for 

agonist-induced δ-opioid receptor endocytosis. 
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Fig.6. Inhibition of agonist-induced DOR endocytosis by expression of a negative mutant PLD2 

(K758R) or by the primary alcohol 1-butanol. A, HEK293 cells coexpressing HADOR and the negative 

PLD2 mutant or expressing HADOR alone were treated with 0.1 μM DPDPE for 30 min, and then 

subjected to a quantitative internalization assay. B, The mechanism of 1-butanol to inhibit PLD. C, 

Confocal microscopy analysis of DOR internalization and its inhibition by the primary alcohol 1-butanol 

in HADOR expressing and PLD2-HADOR coexpressing HEK293 cells. Cells were left untreated or 

treated with 0.1 μM DPDPE for 30 min in the presence or absence of 1-butanol in serum-free medium. D, 

Quantitative analysis of the inhibition of δ-opioid receptor endocytosis by 1-butanol. HEK293 cells 

coexpressing PLD2 and HADOR or expressing HADOR alone were treated with 0.1 μM DPDPE for 30 

min in the presence or absence of 0.5% 1-butanol. Cell surface opioid receptors were determined by 

ELISA. Agonist-induced DOR endocytosis was quantified as the percentage loss of surface receptors 

compared to the cells which were same treated in agonist-free medium. Data are presented as means ± 

S.E. from at least three independent experiments performed in triplicate. Double asterisks indicate a 

significant difference (P<0.001) using Student’s t-test.  

 

4.4 Role of PA-derived DAG in agonist-induced DOR and MOR endocytosis 

     PLD hydrolyzes PC to form PA. In the lipid metabolism related to PLD (Fig. 7A), 

PA can be further dephosphorylated to diacylglycerol (DAG) by PA phosphohydrolase 

(PAP or PPH) (Brindley and Waggoner, 1996; Sciorra and Morris, 1999). The resulted 

DAG can also be turned back to PA by DAG kinase (DGK) (Topham and Prescott, 

1999). DAG is an important intracellular lipid signaling molecule which is under 
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intensive investigation. Therefore we investigated what role the conversion from PA to 

DAG plays for the function of PLD2 in δ-opioid receptor endocytosis.  

4.4.1 Inhibition of PA-derived DAG synthesis attenuates agonist-induced opioid 

receptors internalization 

First we inhibited the conversion from PA to DAG by using propranolol, an 

effective PAP inhibitor used since 1980’s (Albert et al., 2005; Billah et al., 1989; 

Deretic et al., 2004; Grkovich et al., 2006; Koul and Hauser, 1987). Fig. 7B shows the 

results of the quantitative internalization analysis of DPDPE-induced DOR endocytosis 

during the inhibition of PAP activity. We found, when the conversion from PA to DAG 

was inhibited, δ-opioid receptor endocytosis was not enhanced because of the increase 

of PA, but rather was distinctly decreased, revealing a role of PA-derived DAG in 

agonist-induced DOR endocytosis. Because our group has previously demonstrated that 

PLD2 activity is also required for agonist-induced μ-opioid receptor (MOR) 

endocytosis, we further tested this effect on [D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin 

(DAMGO)-induced μ-opioid receptor endocytosis in HEK293 cells expressing 

HAMOR. Similar to δ-opioid receptor endocytosis, the inhibition of PAP also 

remarkably attenuated μ-opioid receptor endocytosis (Fig. 7B). These data suggest that 

the conversion from PA to DAG is important for the function of PLD2 in opioid 

receptors endocytosis.  
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Fig. 7. Inhibition of the conversion from PA to DAG attenuates agonist-induced DOR and MOR 

endocytosis. A, The lipid metabolism related to PLD. B, HEK293 cells expressing HADOR or HAMOR 

were stimulated with 0.1 μM DPDPE or 1 μM DAMGO respectively for 30 min in the presence or 

absence of 250 μM propranolol. Cell surface opioid receptors were determined by ELISA and 

agonist-induced receptor internalization was quantified as the percentage loss of surface receptors 

compared to the cells which were same treated in agonist-free medium. Single asterisk indicates a 

significant difference (P<0.05) and double asterisks indicate a significant difference (P<0.001) between 

in the presence and the in the absence of propranolol using Student’s t-test. Data are presented as means 

± S.E. from three independent experiments performed in triplicate. 

 

4.4.2 Increasing the level of PA-derived DAG augments agonist-stimulated opioid 

receptors endocytosis 

To further verify the effect of the conversion between PA and DAG on opioid 

receptor endocytosis, we inhibited the reversed conversion from DAG to PA. To 

increase DAG accumulation, we applied the most commonly used DGK inhibitor, 

R59949. R59949 specifically acts on the catalytic domain of DGK and inhibits its 

catalytic activity (Jiang et al., 2000). As shown in Fig. 8A, the inhibition of conversion 

from DAG to PA augmented the DPDPE-induced δ-opioid receptor endocytosis 

significantly. The same effect of the DGK inhibition was also detected on the 
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DAMGO-induced μ-opioid receptor internalization. These data confirm the above 

results and further demonstrate that PA-derived DAG is involved in opioid receptor 

endocytosis. 
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Fig. 8. Increasing the level of PA-derived DAG augments agonist-stimulated opioid receptor 

endocytosis. A, Inhibition of DAG kinase. HEK293 cells expressing HADOR or HAMOR were 

stimulated with 0.1μM DPDPE or 1μM DAMGO for 30 min after the preincubation with or without 

40μM R59949. B, Inhibition of DAG lipase. HEK293 cells expressing HADOR or HAMOR were 

stimulated with 0.1μM DPDPE or 1μM DAMGO respectively for 30 min after the preincubation with or 

without 100μM RHC80627. Cell surface opioid receptors were determined by ELISA and 

agonist-induced opioid receptor internalization was quantified as the percentage loss of surface receptors 

compared to the cells which were same treated in agonist-free medium. Single asterisk indicates a 

significant difference (P<0.05) between with and without R59949 or RHC80627 incubation using 

Student’s t-test. Data are presented as means ± S.E. from three independent experiments performed in 

triplicate. 

 

DAG may also be metabolized to monoacylglycerol (MAG) and free fatty acids 

by DAG lipase (DGL) (Amin et al., 1986; Migas and Severson, 1996; Pasquare et al., 

2004). We further examined whether this metabolism might have effect on opioid 

receptor endocytosis. Fig. 8B shows that, when DAG lipase was inhibited by its 

specific inhibitor RHC80627 (Amin et al., 1986; Konrad et al., 1994), DPDPE-induced 

δ-opioid receptor internalization was significantly increased, which can be due to more 

DAG accumulated after the inhibition of DGL. For μ-opioid receptor internalization, no 

significant increase was observed. It might be because that less DAG needs to be 

converted through this DGL pathway and more DAG is need in other physiological 

events of μ-opioid receptor. On the other hand, because neither μ-opioid receptor 

internalization nor δ-opioid receptor internalization was reduced by the inhibition of 

DGL, it can be deduced that the downstream of DGL, for example MAG, does not 

contribute to agonist-induced opioid receptors endocytosis. 

 

4.4.3 DOG, a synthetic cell-permeable DAG analogue increases opioid receptor 

endocytosis  

Diacylglycerol is a lipid composed of two fatty acid chains linked to glycerol. In 

order to obtain more direct evidence that the resulted DAG contributes to opioid 

receptor endocytosis, we applied a cell-permeable DAG analog, 

1,2-dioctanoyl-sn-glycerol (DOG). DOG is a synthetic DAG of short chain fatty acid, 

which is a powerful cell biology research tool for DAG function (Fig. 9A) (Lucas et al., 

2003; Ma et al., 2000). We examined whether the presence of DOG influenced the 

agonist-induced opioid receptor endocytosis. Compared to the treatment with DPDPE 

 



Results                                                          - 37 - 

alone, the presence of DOG remarkably increased the DPDPE-stimulated δ-opioid 

receptor endocytosis in HADOR expressing cells (Fig. 9B). Confocal microscopy 

analysis again confirmed the effect of DOG on enhancing the rate of DPDPE-induced 

δ-opioid receptor endocytosis in HADOR expressing HEK293 cells. After 30 min of 

incubation with a very low concentration of DPDPE, 1nM, hardly could the receptor 

endocytosis be observed. If DOG was present, the δ-opioid receptor exhibited some 

obvious receptor endocytosis. When the concentration of DPDPE was raised to 10 nM, 

very distinct difference could be observed between in the presence and absence of 

DOG (Fig. 9D). We further examined whether DOG treatment also promotes 

agonist-induced μ-opioid receptor endocytosis by quantitative internalization assay. As 

shown in Fig. 9C, similar to δ-opioid receptor endocytosis, in the presence DOG, 

DAMGO induced distinctly more μ-opioid receptor endocytosis in HAMOR expressing 

cells. These data strongly suggest a role of resulted DAG in opioid receptor endocytosis 

and give further evidence that the conversion from PA to DAG is involved in the 

function of PLD2 in opioid receptor endocytosis.  
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Fig. 9. The DAG analog, DOG, enhances agonist-induced opioid receptor endocytosis in a 

PKC-independent manner. A, Structure of DOG (1,2-dioctanoyl-sn-glycerol, a synthetic cell-permeable 

DAG with short chain fatty acids) and DAG. B, Quantitative analysis of delta-opioid receptor 

internalization in HEK293 cells expressing HADOR, which were treated with 0.1 μM DPDPE for 30 min 

in the presence or absence of 150 μM DOG with or without 5 μM chelerythrine chloride (Che) or 1μM 
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calphostin C (Calph). C, Quantitative analysis of μ-opioid receptor internalization in HAMOR expressing 

HEK293 cells, which were stimulated with 1 μM DAMGO in the presence or absence of 150 μM DOG 

with or without either 5 μM chelerythrine chloride or 1μM calphostin C for 30 min. Cell surface opioid 

receptors were determined by ELISA and agonist-induced opioid receptor internalization was quantified 

as the percentage loss of surface receptors compared to the cells which were same treated in agonist-free 

medium. D, Confocal microscopy analysis of delta-opioid receptor subcellular distribution in HADOR 

expressing cells which were treated 1 or 10 nM DPDPE in the presence or absence of 150 μM DOG with 

or without 5 μM chelerythrine chloride. Single asterisk indicates a significant difference (P<0.05) 

between with and without DOG treatment using ANOVA followed by Bonferroni test. Data are 

presented as means ± S.E. from three independent experiments performed in triplicate. 

 

4.4.4 Role of PKC in the Agonist-induced DOR and MOR endocytosis  
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Fig. 10. Inhibition of PKC does not impair agonist-induced DOR and MOR endocytosis. A, 

HADOR expressing HEK293 cells were stimulated with 0.1μM DPDPE for 30 min in the presence or 
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absence of 1 μM calphostin C or 5 μM chelerythrine chloride. B, HAMOR expressing HEK293 cells 

were stimulated with 1μM DAMGO for 30 min in the presence or absence of 1 μM calphostin C or 5 μM 

chelerythrine chloride. Cell surface opioid receptors were determined by ELISA and agonist-induced 

opioid receptor internalization was calculated as the percentage loss of surface receptors compared to the 

cells which were same treated in agonist-free medium. Data are presented as means ± S.E. from three 

independent experiments performed in triplicate. 
 

DAG or DOG is usually thought that it can activate protein kinase C (PKC). So 

we investigated whether the activation of PKC was involved in the process of opioid 

receptor endocytosis by application of two specific PKC inhibitors, chelerythrine 

chloride and calphostin C. We found, the inhibition of PKC by either chelerythrine 

chloride or calphostin C did not impair DPDPE-induced δ-opioid receptor endocytosis 

in HADOR expressing cells, nor impaired DAMGO-induced μ-opioid receptor 

endocytosis in HAMOR expressing cells (Fig. 10A and 10B), suggesting that PKC is 

not involved in agonist-induced δ- and μ-opioid receptor endocytosis. Consistent with 

these findings, in the investigation of the DOG’s effect which is showed above, we also 

made PKC inhibition to assess the influence of PKC. In quantitative receptor 

internalization analysis the inhibition of PKC by chelerythrine chloride or calphostin C 

could not block the effect of DOG on increasing agonist-induced both δ-opioid receptor 

and μ-opioid receptor endocytosis (Fig. 9B and 9C). Confocal analysis also showed that 

after inhibition of PKC by chelerythrine chloride, the enhancement of δ-opioid receptor 

endocytosis by DOG was not attenuated for both concentrations of DPDPE treatment 

(Fig. 9D).  

 

4.4.5 DAG enhances the clathrin-dependent agonist-induced opioid receptor 

internalization 

Eukaryotic cells exhibit at least two endocytic pathways: the clathrin-dependent 

pathway and the clathrin-independent pathway. Clathrin-independent endocytosis is 

mainly mediated by glycolipid rafts, in which caveolae are a well-characterized 

subdomain. The sensitivity of endocytosis via caveolae to cholesterol depletion by 

filipin distinguishes the pathway from the clathrin-dependent endocytic pathway which 

is sensitive to hypertonic sucrose (Anderson, 1998; Heuser and Anderson, 1989). It is 

generally believed that the internalization of opioid receptors occurs through 

clathrin-coated vesicles (von Zastrow, 2003). We investigated whether the 
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enhancement of opioid receptor internalization by either the endogenous PA-derived 

DAG or the heterologous DAG analog DOG, is via clathrin-dependent endocytosis or 

via caveolae-dependent endocytosis. As shown in Fig. 11, in the absence of DOG, the 

inhibition of caveolae-dependent endocytic pathway by filipin did not change the 

endocytic rate of DPDPE-stimulated δ-opioid receptor, and hypertonic sucrose blocked 

the receptor endocytosis stimulated by DPDPE in HADOR expressing cells, showing 

that DPDPE induces δ-opioid receptor via clathrin-dependent pathway in line with 

previous reports (Chu et al., 1997; Gaudriault et al., 1997; Hasbi et al., 2000). In the 

presence of DOG, the DPDPE-induced endocytosis of δ-opioid receptor was 

significantly increased. Filipin had no distinct effect on this DOG enhancement of 

agonist-induced receptor endocytosis. Whereas hypertonic sucrose blocked the 

DPDPE-induced δ-opioid receptor endocytosis also in the presence of DOG, and there 

was no significant difference of DPDPE-stimulated δ-opioid receptor endocytosis 

between in the presence and in the absence of DOG. These results suggest that the 

enhancement of agonist-induced opioid receptor endocytosis by the resulted DAG 

occurs via the clathrin-dependent pathway but not via the caveolae-dependent pathway. 
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Fig. 11. The enhancement of agonist-induced δ-opioid receptor endocytosis by DAG is via the 

clathrin-dependent pathway. In the presence or absence 150 μM DOG, HADOR expressing HEK293 

cells were treated with 0.1 μM DPDPE for 30 min followed a preincubation with or without either 10 
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ng/ml filipin or 400 μM sucrose. The cells in the same treatment without the agonist were set as 

zero-controls. Cell DOR endocytosis was determined by quantitative receptor internalization assay. 

“*”indicates a significant difference (P<0.05) of the same treatments between in the presence and in 

the absence of DOG, and “#” indicates a significant difference (P<0.05) of the same treatments 

between in the presence and in the absence of sucrose, using Student’s t-test. Data are presented as 

means ± S.E. from three independent experiments performed in triplicate. 

 

4.5 The role of PLD2 in opioid receptor endocytosis involves p38 kinase activation 

Recently p38 MAP kinase was shown to regulate endocytic trafficking (Cavalli et 

al., 2001; Huang et al., 2004; Mace et al., 2005; McLaughlin et al., 2006; 

Vergarajauregui et al., 2006). It was described that the activation of p38 MAPK 

promotes endocytosis by stimulating the formation of guanyl nucleotide dissociation 

inhibitor (GDI):Rab5 complex (Cavalli et al., 2001; Huang et al., 2004), or by 

phosphorylation of the Rab5 effectors EEA1 (early endosome antigen 1) and 

Rabenosyn-5 to regulate their recruitment to membranes (Mace et al., 2005). These 

events facilitate the functions of the small GTPase Rab5, a key regulator of 

clathrin-dependent endocytosis. Rab5 coordinates multiple processes, such as the 

formation of clathrin-coated vesicles, their fusion with early endosomes, homotypic 

early endosome fusion, as well as motility of endosomes (reviewed in Zerial and 

McBride, 2001). It has been shown that p38 MAPK activation is required for μ-opioid 

receptor endocytosis (Mace et al., 2005). The inhibition of p38 MAPK by the inhibitor 

SB203580 impaired DAMGO-induced μ-opioid receptor endocytosis, whereas the 

activation of p38 MAPK by coexpressing a constitutively active form of MKK6 

enhanced μ-opioid receptor endocytosis. Consistent with this, we also found that the 

DPDPE-induced δ-opioid receptor endocytosis was attenuated by the inhibition of p38 

kinase with the inhibitor SB203580 but not by the inhibition of other MAPKs with 

ERK (extracellular signal-regulated kinase) inhibitor PD98059 and JNK (c-jun 

N-terminal kinase) inhibitor SP600125 (Fig. 12). Furthermore, DAMGO rapidly 

stimulated an activation of p38 MAPK in μ-opioid receptor expressing cells as 

examined by Western blotting using phospho-specific antibodies. In contrast, 

short-term morphine, which is not able to trigger μ-opioid receptor endocytosis, was 

not able to induce p38 activation (Mace et al., 2005). We hypothesized that, there might 

be a relation between the activation of p38 MAPK and opioid receptor-mediated PLD2 
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activation so that the opioid receptor-mediated PLD2 activity is involved in the 

activation of p38 MAPK. 
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Fig. 12. DPDPE-induced δ-opioid receptor endocytosis was attenuated by inhibition of p38 kinase. 

HEK293 cells expressing HADOR were treated with 0.1 μM DPDPE for 30 min in the presence or 

absence of 10 μM SB203580 (SB) (P38 inhibitor), 50 μM PD98059 (PD) (ERK inhibitor) or 10 μM 

SP600125 (SP) (JNK inhibitor). Agonist-induced DOR endocytosis was determined by quantitative 

receptor internalization assay as described in Material and Methods. . *Significant difference (p < 0.05) 

compared to the treatment with DPDPE alone (ANOVA followed by Bonferroni test). Data are presented 

as means ± S.E. from three independent experiments performed in triplicate. 

 

4.5.1 PLD activity is required for opioid receptor-mediated p38 activation 

Using a specific antibody against phosphorylated p38 MAPK (Thr180/Tyr182), we 

first tested the activation of p38 MAPK by the agonist DPDPE in HADOR expressing 

HKE293 cells as well as by DAMGO in HAMOR expressing HEK293 cells (Fig. 13A). 

The increase of p38 MAPK phosphorylation was readily detected with the peaking 

after 5 min of stimulation with DPDPE in HADOR-expressing cells. Same finding also 

occurred in HAMOR expressing cells after DAMGO stimulation, which is in 

agreement with previous report (Mace et al., 2005). However, in the presence of the 

PLD inhibitor 1-butanol, which inhibits PA production by PLD, the p38 

phosphorylation, induced by both DPDPE and DAMGO, was strongly blocked, 

indicating that PLD activity and PA production are necessary for opioid 

receptors-mediated p38 MAPK activation. To ensure that the inhibiting effect of 

1-butanol for p38 MAPK signaling is not because of an unspecific toxic inhibition, we 
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also examined the activation of protein kinase Akt as a control. As shown in Fig. 13A, 

the Akt activation was not affected in the presence of 1-butanol. 

Then we further examined the influence of PLD2 coexpression on δ-opioid 

receptor-mediated p38 MAPK activation (Fig. 13B). It was found that coexpression of 

PLD2 caused stronger and more sustained DPDPE-induced activation of p38 MAPK as 

compared to cells expressing only endogenous PLD2. In both cells, p38 MAPK was 

rapidly phosphorylated after 5 min of DPDPE treatment, then in HADOR expressing 

cells the p38 MAPK phosphorylation began to decrease quickly, whereas the 

phosphorylation of p38 MAPK in HADOR-PLD2 coexpressing cells was still distinct 

even after 20 min of DPDPE stimulation, indicating a potential role of PLD2 in opioid 

receptor-mediated p38 MAPK activation. These data suggest that PLD2 activity is 

required for opioid receptor-mediated p38 activation. 

 

A 
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Fig. 13. PLD2 is required for opioid receptor-mediated p38 MAPK activation. A, Blocking of opioid 

receptor-mediated p38 MAPK activation by the PLD inhibitor 1-butanol. As indicated, δ- or μ-opioid 

receptors expressing HEK293 cells were unstimulated (C) or stimulated with 0.1 μM DPDPE or 1 μM 

DAMGO with (D+Bu) or without 0.5% 1-butanol for 5 min. B, Comparison of DPDPE-induced p38 

MAPK activation in HADOR expressing cells with that in PLD2-HADOR coexpressing cells. Cells were 

treated with 0.1μM DPDPE for different time courses as indicated. Cell lysates were subjected to 

Western blotting to analyze phosphorylated p38 kinase or phosphorylated Akt. 

 

4.5.2 DAG generated from PA is involved in opioid receptor-mediated p38 

activation 

Because the PLD2 product PA can be further converted to DAG, which is 

important for opioid receptors endocytosis as shown above, it is possible that 

PA-derived DAG is also involved in the function of PLD2 on opioid 

receptors-mediated p38 MAPK activation. To address this issue, we inhibited the 

conversion of PA to DAG by propranolol. P38 MAPK phosphorylation induced by 

either DPDPE in HADOR expressing cells or DAMGO in HAMOR expressing cells 

was remarkably impaired after inhibition of the conversion (Fig. 14A), indicating the 

important role of PA-derived DAG in opioid receptors-mediated p38 MAPK activation.  

In addition, we analyzed the effect of DOG, an analog of endogenous DAG, on 

p38 MAPK activation. As mentioned before, DOG is a synthetic cell-permeable DAG 

with short chains of fatty acids. As shown in Fig. 14B, in HEK293 cells expressing 

HADOR, treatment with DOG alone was sufficient to induce p38 MAPK 

phosphorylation, which could not be blocked by the inhibition of PKC with 

chelerythrine chloride. When the cells were stimulated with the DOR agonist DPDPE, 

p38 MAPK phosphorylation was triggered rapidly. The presence of DOG augmented 

the DPDPE-induced phosphorylation of p38 MAPK. Inhibition of PKC with 

chelerythrine chloride could not impair this augmented phosphorylation of p38 MAPK, 

too. The same results were also obtained in HAMOR expressing cells. Fig. 14C shows 

the activating effect of DOG on p38 MAPK phosphorylation in HAMOR expressing 

cells which were treated or not treated with the MOR agonist DAMGO. Taken together, 

these data indicate the PA-derived DAG can activate p38 MAPK in a PKC-independent 

manner.  
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Fig. 14. PA-derived DAG is involved in opioid receptor-mediated p38 activation. A, Attenuation of 

opioid receptor-mediated p38 MAPK activation by inhibition of the conversion from PA to DAG with 

propranolol. As indicated, HEK293 cells expressing δ- or μ-opioid receptor were unstimulated (C) or 

stimulated with 0.1 μM DPDPE or 1 μM DAMGO for 5 min in the absence or presence (D+Pro) of 250 

μM propranolol. B, Effect of DOG, a DAG analog, on the activation of p38 MAPK in 

HADOR-expressing cells. HADOR expressing cells were treated as indicated with or without 150 μM 

DOG, 0.1 μM DPDPE, and 5 μM chelerythrine chloride. C, Effect of DOG on the activation of p38 
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MAPK in HAMOR-expressing cells. HAMOR expressing cells were treated as indicated with or without 

150 μM DOG, 1 μM DAMGO, and 5 μM chelerythrine chloride. Cell lysates were subject to Western 

blotting and phosphorylated p38 kinase was analyzed.  
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5. Discussion 

PLD widely distributes in organisms ranging from bacteria, plants to animals. It 

hydrolyzes phosphatidylcholine to generate choline and the bioactive lipid phosphatidic 

acid, which is believed to have many different functions in signal transduction, 

membrane trafficking, transformation and cytoskeletal dynamics (Liscovitch et al., 

1999; Liscovitch et al., 2000). In addition, PLD activity has been shown to be regulated 

by a number of GPCRs as reviewed in the introduction. Our group has reported 

previously that the μ-opioid receptor can mediate PLD2 activation (Koch et al., 2003). 

In mammalian cells, PLD2 is mainly associated with the plasma membrane (Jenkins 

and Frohman, 2005; Liscovitch et al., 1999). In the present study, it was found that 

PLD2 but not PLD1b can also be activated by stimulating δ-opioid receptor with the 

agonist DPDPE. The opioid agonist morphine which is not able to induce opioid 

receptor internalization failed to induce an increase of PLD2 activity. The opioid 

receptor antagonist naloxone blocked the DPDPE-stimulated PLD2 activation in 

HADOR-PLD2 coexpressing cells, suggesting that it is the δ-opioid receptor which 

specifically mediates this PLD2 activation. Both δ-opioid receptor and μ-opioid 

receptor-mediated PLD2 activation are PKC-independent, which is consistent with the 

reported mechanism of PLD activation in other receptor systems, such as M3 

muscarinic and α1-adrenergic receptors (Balboa and Insel, 1998; Muthalif et al., 2000; 

Rumenapp et al., 1997; Schmidt et al., 1994). On the other hand, an association of PKC 

with PLD resulting in strong activation of PLD1 in vitro has been reported, in which 

the major interaction site of PLD1 was identified within its N-terminus (Park et al., 

1998). A physiological association between δ-opioid receptor and PLD2 was identified 

by coimmunoprecipitation experiments in HEK293 cells stably expressing δ-opioid 

receptor and PLD2. In the NH2 terminus of PLD2 there is a phox homologous (PX) 

domain (Liscovitch et al., 2000). This PX domain, which is found in a number of 

signaling and adaptor proteins, is thought to mediate protein-protein interaction or to 

bind phosphatidylinositol phosphates (Xu et al., 2001). PX domains of proteins 

mediating protein trafficking were shown to be required not only for the association 

with cellular membranes but also for the association with various receptors, such as 

epidermal growth factor receptor and platelet-derived growth factor receptor (Haft et al., 

1998; Phillips et al., 2001). The PX domain in PLD2 is the site for the interaction with 

the COOH terminus of μ-opioid receptor as revealed by a yeast two-hybrid screen 
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(Koch et al., 2003). Therefore we speculate that this PX domain in PLD2 may also be 

the site which binds to the δ-opioid receptor. 

Chronic opioid application is well known to produce tolerance, limiting the 

therapeutic use of these drugs. To uncover and eventually control the adaptive 

mechanisms, several cellular functions with regard to tolerance development have been 

intensively investigated. Special interest focused on opioid receptors internalization. In 

general, opioid receptor endocytosis is accomplished by complicated interactions of 

various determinants. Our previous work has shown that PLD2 activation is required 

for agonist-induced MOR endocytosis (Koch et al., 2003). The present study provides 

evidence for an essential role of PLD2 in the agonist-induced DOR endocytosis. 

Coexpression of PLD2 in DOR expressing cells remarkably enhanced DPDPE-induced 

DOR endocytosis. The effect of PLD2 on agonist-induced DOR endocytosis was 

further proved by inhibition of endogenous PLD2 activity with a catalytically inactive 

PLD2 mutant (K758R). PLD2 enzymatic action produces PA, a bioactive lipid. The 

inhibition of PLD2 activity results in the reduction of PA production. So we further 

tested the effect of blocking PA production with 1-butanol, which causes the 

replacement of PA by phosphatidylbutanol, on agonist-induced DOR endocytosis. In 

agreement with the data acquired by coexpressing the catalytically inactive PLD2 

mutant, the results further confirmed the role of PLD2-mediated PA formation in 

agonist-induced DOR endocytosis, which is similar to MOR, providing further support 

that PLD2 activity is required for agonist-induced endocytosis of opioid receptors via 

its product PA. Consistent with our results, in recent reports PLD activity has been 

shown to regulate angiotensin II receptor endocytosis (Du et al., 2004), B-cell antigen 

receptor trafficking (Snyder and Pierce, 2006) and class 1 metabotropic glutamate 

receptor endocytosis (Bhattacharya et al., 2004) by coexpression of wild type PLD, 

catalytically inactive PLD mutant as well as applying PLD inhibitor 1-butanol. A recent 

report showed that PLD increases epidermal growth factor (EGF) receptor endocytosis 

through its PX domain, which is described to have GTPase-activating protein (GAP) 

activity and can directly activate the GTPase domain of dynamin to facilitate EGF 

receptor internalization (Lee et al., 2006). But demonstrably this mechanism is not 

sufficient for the role of PLD2 in agonist-induced opioid receptor endocytosis, because 

coexpression of the negative mutant PLD2, which has intact wild-type PLD2-PX 

domain, decreased opioid receptor endocytosis, moreover, the inhibition of PA 
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production from PLD with 1-butanol does not affect function of the PX domain of PLD, 

but inhibited the agonist-induced opioid receptor endocytosis. In fact the results in 

present study reveal that the lipase activity of PLD2 and its product PA are crucial for 

agonist-induced opioid receptor endocytosis. 

Having identified PA is required for opioid receptor endocytosis, we asked whether 

the metabolism of PA could contribute to the function of PLD2 in this process. The 

PLD-produced PA can be converted into DAG by the family of enzymes known as 

phosphatidic acid phosphohydrolases (PAPs), which are highly active in vivo (Brindley 

and Waggoner, 1996; Sciorra and Morris, 1999). Thus, activation of PLD results in the 

increase of both PA and DAG. The produced DAG can be reconverted to PA via 

phosphorylation by diacylglycerol kinases (DGKs). The regulation of PA and DAG 

levels appears to be tightly controlled via the activities of PAP and DGK. Thus 

inhibition of PAP and DGK can be used to analyze the influence of the conversion 

from PA to DAG on opioid receptor endocytosis. We found when the PAP activity was 

inhibited, DPDPE-induced δ-opioid receptor endocytosis was remarkably reduced in 

HADOR expressing cells. Similarly, inhibition of PAP activity also resulted in strong 

reduction of DAMGO-induced μ-opioid receptor endocytosis in the cells expressing 

HAMOR. These experiments indicate that the PA-derived DAG is involved in the 

function of PLD2 to facilitate agonist-induced opioid receptor endocytosis. If so, the 

converse inhibition of DGK should increase agonist-induced opioid receptor 

endocytosis. Indeed the DGK inhibition significantly augmented both DPDPE-induced 

δ-opioid receptor endocytosis and DAMGO-induced μ-opioid receptor endocytosis. 

This finding was further supported by addition of the cell-permeable analog of 

endogenous DAG, DOG (Lucas et al., 2003; Ma et al., 2000). The presence of DOG 

strongly enhanced both DPDPE-induced δ-opioid receptor endocytosis and 

DAMGO-induced μ-opioid receptor endocytosis. Collectively, our results reveal that 

the metabolism from PA to DAG is involved in the role of PLD2 in agonist-induced 

opioid receptor endocytosis. 

But how can the PA-derived DAG regulate agonist-induced opioid receptor 

endocytosis? DAG is an extensively studied lipid second messenger, and has been 

shown to activate lipid-dependent kinases such as the classical and most novel PKC 

families. It may also be further hydrolyzed to monoacylglycerol and related fatty acid 

by DAG lipase (Amin et al., 1986; Migas and Severson, 1996; Pasquare et al., 2004). 
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Using two broad-spectrum PKC inhibitors, chelerythrine chloride and calphostin C, we 

exclude the mediation by PKC for the function of PA-derived DAG in agonist-induced 

opioid receptor internalization. Inhibition of PKC impeded neither DPDPE-induced 

δ-opioid receptor endocytosis nor DAMGO-induced μ-opioid receptor endocytosis. 

Furthermore, inhibition of PKC failed to reduce the effect of DOG in promoting both 

DPDPE-induced δ-opioid receptor endocytosis and DAMGO-induced μ-opioid receptor 

endocytosis. Therefore PKC activity is not required for agonist-induced opioid receptor 

endocytosis. It should be noted that the studies on the specificity of the lipids 

hydrolyzed and produced in vivo by PLD defined the fatty acid composition of these 

lipids, indicating that PLD seems to hydrolyze PC with either monounsaturated and/or 

saturated acyl chains and to form PA of the same diacyl composition (Pettitt et al., 1997; 

Pettitt et al., 2001). The diacyl composition of the DAG species resulted from PAP 

dephosphorylation of PA is likewise primarily of the monounsaturated and/or saturated 

species (Pettitt et al., 1997). The signaling function of PA and DAG are strongly 

dependent on their fatty acid contents. In the studies of compositions and functions of 

diacylglycerol and phosphatidate, the more saturated forms of DAG produced from PA 

have been suggested to have less potency or not to stimulate PKC activity in vivo 

(Hodgkin et al., 1998; Pettitt et al., 1997) and in vitro (Marignani et al., 1996). Also PA 

is only active when it contains predominantly saturated fatty acids (Hodgkin et al., 

1998). Though a report also showed that a metabotropic glutamate receptor associated 

to phospholipase D might influence translocation of protein kinase C subtype ε in a 

calcium-independent manner (Pastorino et al., 2000). Thus the following discussed 

effect of DAG may be one of the important functions of the more saturated DAG 

species derived from PA other than activating PKC.  

On the other hand, the hydrolytic products of DAG are not responsible for the role 

of the produced DAG in agonist-stimulated opioid receptor endocytosis, since the 

inhibition of DAG lipase by RHC80627 was unable to decrease either δ-opioid receptor 

endocytosis stimulated by DPDPE or μ-opioid receptor endocytosis stimulate by 

DAMGO. Moreover, both in the absence and in the presence of DOG, hypertonic 

sucrose, the inhibitor of clathrin-dependent endocytosis, but not filipin, the inhibitor of 

caveolae-dependent endocytosis, blocked agonist-induced opioid receptor endocytosis, 

showing that the enhancement of agonist-induced opioid receptor endocytosis by the 

PA-derived DAG is mediated via clathrin-dependent pathway but not caveolae- 
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dependent pathway.  

In this study, evidence for a functional link between PLD2 activity and p38 MAP 

kinase activation was provided. P38 MAPK is a member of the MAP kinase family, 

which can regulate numerous cellular responses, for example, stress related 

transcription and cell cycle regulation (Ono and Han, 2000; Takeda and Ichijo, 2002). 

The activation of p38 MAPK requires its phosphorylation. Recently p38 MAP kinase 

has been identified to have the ability to regulate receptor endocytic trafficking (Cavalli 

et al., 2001; Huang et al., 2004; Mace et al., 2005; McLaughlin et al., 2006; Samuvel et 

al., 2005; Vergarajauregui et al., 2006). The function of P38 in endocytosis is tightly 

related to the small GTPase Rab5, one of the key regulators of clathrin-dependent 

endocytosis. Rab5 coordinates multiple processes, such as the formation of 

clathrin-coated vesicles, their fusion with early endosomes and homotypic early 

endosome fusion, as well as motility of endosomes (Seachrist and Ferguson, 2003; 

Zerial and McBride, 2001). Rab5 cycles between GTP- and GDP-bound states 

(Martinez and Goud, 1998). In addition, it also cycles between membrane-bound and 

cytosolic states, and this cycling requires guanyl-nucleotide dissociation inhibitor (GDI) 

(Wu et al., 1996). GDI functions as a vehicle. It extracts the GDP-bound Rab proteins 

from membranes and forms a cytosolic GDI:Rab complex, and it delivers Rab proteins 

to the appropriate target membrane where Rab proteins are reloaded by a GDI 

displacement factor (Dirac-Svejstrup et al., 1997; Pfeffer and Aivazian, 2004). The 

activation of p38 MAPK has been identified to accelerate endocytosis by stimulating 

the activity of GDI to form the GDI:Rab5 complex, enhancing its activity in retrieving 

Rab5 from the endosomal membranes (Cavalli et al., 2001; Huang et al., 2004). For the 

μ-opioid receptor it has been found that p38 MAPK modulates endocytosis by 

phosphorylating the Rab5 effectors EEA1 (early endosome antigen 1) and Rabenosyn-5 

regulating the recruitment of them to membranes (Mace et al., 2005) (Fig. 15B). 

Stimulation of the μ-opioid receptor with DAMGO rapidly induced an activation of p38 

MAPK, in contrast, morphine, which is not able to trigger μ-opioid receptor 

endocytosis, was not able to induce P38 MAPK activation. Moreover, P38 MAPK 

activation was shown to be required for μ-opioid receptor endocytosis. The inhibition 

of p38 MAPK by inhibitor SB203580 impaired DAMGO-induced μ-opioid receptor 

endocytosis (Mace et al., 2005). Consistent with this, we also found that 

DPDPE-induced δ-opioid receptor endocytosis involves p38 MAPK activation. We 
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further uncovered a functional relation between p38 MAPK activation and PLD2 

activity in both μ-opioid receptor and δ-opioid receptor signaling (Fig. 15A). Firstly, by 

inhibition of PLD2 activity or overexpression of PLD2, PLD2 activity was found to be 

required for opioid receptor-mediated p38 activation. Secondly, by inhibition of the 

enzyme PAP and heterologous administration of DAG analog, it was identified that 

conversion from PA to DAG is involved in opioid receptor-mediated p38 MAPK 

activation. Combining together, these data indicate that the role of PLD2 in regulating 

agonist-induced opioid receptor endocytosis involves p38 MAPK. Like all MAP 

kinases, p38 MPK is activated by the MAP kinase kinases (MKKs). MKK6, MKK3, 

MKK4 and MKK7 have been reported to activate all or part of the p38 MAPK isoforms 

(Hu et al., 1999; Jiang et al., 1997; Keesler et al., 1998). The further upstream 

activators of MKK/p38 pathway are further diversified. Several MKK kinases (MAP3K) 

including MTK1, MLK2, MLK3, DLK, ASK1 and TAK1, as well as p21 activated 

kinases (PAKs) have been demonstrated to cause p38 activation (Ono and Han, 2000). 

The further upstream activators are not very clear so far. Some small GTP-binding 

proteins, like Rac and Cdc42, were identified as potential regulators of the p38 pathway 

(Bagrodia et al., 1995; Zhang et al., 1995). Others like Rap1 are also reported to be able 

to activate p38 MAPK (Huang et al., 2004). Concerning the mediators between DAG 

and p38 signaling, some reports described that activation of PKC by DAG is involved 

in p38 MAPK activation in respective cell response research (Shimizu et al., 1999; 

Tanaka et al., 2003). In contrast, in the present study the PA-derived DAG activated 

p38 MAPK in a PKC independent manner, since inhibition of PKC did not diminish 

p38 MAPK activation. We speculate that there might be some other mediators which 

contain C-1 domain linking DAG to upstream of p38 signaling. For example, one 

potential molecule is protein kinase D (PKD). PKD is a novel DAG-dependent kinase 

(Baron and Malhotra, 2002; Yang and Kazanietz, 2003). In fact PKC-independent PKD 

activation has been reported to be involved in p38 MAPK activation induced by bone 

morphogenetic protein 2 (Lemonnier et al., 2004). One of the other possible candidates 

is RasGRP, a Ras guanyl nucleotide-releasing protein with DAG-binding motif. Ras 

can be activated by DAG through RasGRP directly (Ebinu et al., 1998). On the other 

hand, Ras has been reported to be able to activate p38 MAPK signaling (Norman et al., 

2004; Shin et al., 2005; Zhu et al., 2001), though it is generally believed as an upstream 

activator of ERK MAPK signaling.  
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Fig.15. A, Opioid receptors mediate p38 MAPK activation through PLD2 in a PKC-independent 

way (drawn based on the present study). B, Phosphorylation of EEA1 by p38 MAP kinase regulates 

opioid receptor endocytosis (drawn according to Mace et al., 2005).  
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Early evidences showed that agonist-induced opioid receptor internalization is 

mediated by clathrin-coated vesicles (Chu et al., 1997; Gaudriault et al., 1997; Hasbi et 

al., 2000; Keith et al., 1996; Law and Loh, 1999). This process is regulated by a highly 

conserved mechanism, involving phosphorylation of the agonist-bound receptors by G 

protein-coupled receptor kinases and association of the receptors with β-arrestins. 

Binding of β-arrestin leads to physical separation of the receptors from the G proteins. 

The further interaction of β-arrestin with AP-2, the clathrin adaptor protein that seems 

to be involved in nearly all stages of clathrin-coated vesicle formation, recruits the 

receptors to clathrin-coated pits. Meanwhile, based on this study and our recent report 

(Koch et al., 2003), the stimulation of opioid receptors by opioid agonists leads to the 

activation of associated PLD2, regulating the receptor internalization. PLD2 hydrolyzes 

PC in plasma membrane to generate the lipid PA. Then the further conversion from PA 

to the DAG results in the activation of p38 MAPK, which could modulate opioid 

receptor endocytosis by promoting the function of Rab5 (Cavalli et al., 2001; Huang et 

al., 2004; Mace et al., 2005), regulating the subsequent dynamin-dependent fission and 

formation of clathrin-coated vesicles from the plasma membrane as well as their fusion 

with early endosomes. In addition, some other PLD2 functions which have been 

demonstrated may also related to opioid receptor endocytosis to some extents. PA is 

known to extensively activate type I phosphoinositides-4-phosphate 5-kinase in 

mammalian cells, leading to an increased phopsphatidylinositol-4,5-bisphosphate 

[PtdIns(4,5)P2] level of the membrane (Jones et al., 2000; Ling et al., 2002). Many 

proteins related to clathrin-dependent endocytosis such as clathrin, dynamin, and 

proteins of the AP-2 adapter complex contain domains which mediate their binding to 

PtdIns(4,5)P2-containing membranes (Mousavi et al., 2004). Therefore opioid receptor 

mediated PLD2 activation might also favor the recruitment of these endocytosis-related 

proteins to the local membranes. In addition, an increase of in the level of PA after 

PLD activation might cause a change of physical properties, e.g. charge and pH, of 

cellular membranes, thereby facilitating vesicle formation.  

Taking all these data in this study together, we can conclude that PLD2 activity 

regulates agonist-induced μ- and δ-opioid receptor endocytosis and the conversion from 

PA to DAG is involved in this process, which may further be mediated by P38 MAPK. 
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6. Summary 

Opioids are classically associated with effects such as analgesia, respiratory depression, 

and addiction, which are mediated via interaction with specific G protein-coupled 

opioid receptors. Opioid receptor endocytosis which occurs after agonist exposure is 

one important regulation process of opioid signaling. Our group has previously 

demonstrated that μ-opioid receptor (MOR) interacts with phospholipase D2 (PLD2) 

and that MOR-mediated activation of PLD2 is essential for the induction of MOR 

endocytosis. Here we found that delta-opioid receptor (DOR) also physiologically 

interacts with and agonist-dependently activates PLD2 in a PKC-independent manner 

in transfected HEK293 cells. As revealed by quantitative internalization assays and 

confocal microscopy studies, coexpression of PLD2 strongly enhanced the extent and 

rate of agonist-induced DOR endocytosis, whereas inhibition of PLD2 by expression of 

a catalytically inactive mutant PLD2 (K758R) significantly attenuated DPDPE-induced 

DOR endocytosis. Similarly, the inhibition of PLD2-mediated phosphatidic acid (PA) 

synthesis with 1-butanol blocked DOR endocytosis. These observations suggest that 

PLD2 activity is required for agonist-induced DOR endocytosis and that PA plays a 

crucial role. PA and diacylglycerol (DAG) can be converted to each other by PA 

phosphohydrolase and DAG kinase. Inhibition of PA phosphohydrolase, which inhibits 

the dephosphorylation of PA to DAG, attenuated both DPDPE-induced DOR 

endocytosis and DAMGO-induced MOR endocytosis. Conversely, inhibition of DAG 

kinase increased agonist-induced endocytosis of both receptors. Furthermore, addition 

of a DAG analog DOG which is a synthetic cell-permeable DAG with short chain fatty 

acids remarkably augmented agonist-stimulated DOR and MOR endocytosis, whereas 

inhibition of protein kinase C (PKC) did not influence agonist-induced opioid receptor 

endocytosis. These findings indicate that PA-derived DAG is involved in 

agonist-induced opioid-receptor endocytosis in a PKC-independent way. We also 

revealed that PLD2 activity and the subsequent PA-derived DAG are required for 

opioid receptor-mediated p38 MAPK activation which is involved in DOR and MOR 

endocytosis. 

Taken together, PLD2 activity regulates agonist-induced δ- and μ-opioid receptor 

endocytosis, which involves the conversion of its product PA to DAG, and the 

following activation of P38 kinase. 
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8. Abbreviations  

ABTS  2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) 

AC  Adenylate cyclase 

ANOVA  Analysis of variance 

ATCC  American Type Culture Collection (Rockville, MD) 

Bmax  the number of maximal [3H] Naltrindol binding site 

CaM  CaM Ca2+/calmodulin 

cAMP  Adenosine 3’,5’-cylic-monophosphate 

cDNA  Complemetary deoxyribonucleic acid 

CHO  Chinese hamster ovary 

CNS  Central nervous system 

DAG diacylglycerol 

DADLE [D-Ala2, D-Leu5] enkephalin 

DAMGO  [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin,  

DGK DAG kinase 

DGL DAG lipase 

DMEM  Dulbecco’s Modified Eagle Medium 

DNA  Deoxyribonucleic acid 

DOG 1, 2-dioctanoyl-sn-glycerol, a synthetic cell permeanle DAG of 

short chain fatty acid 

DOR The delta-opioid receptor 

DPDPE  [D-Pen2, D-Pen5] enkephalin, Tyr-D-Pen-Gly-Phe-D-PenOH 

DPX  Distrene, dibutyl Phthalate, Xylene 

DSLET D-Ser2, Leu5] enkephalin-Thr6 

DSP  Dithiobis-(succinimi-dylpropionate) 

DTT  Dithiothreitol 

E. coli  Escherichia coli 

EDTA  Ethylenediaminetetraacetic acid 

EEA early endosome antigen 

ELISA  Enzyme-linked immunoabsorbent assay 

ERK extracellular-signal-regulated kinases  

FCS  Fetal calf serum 
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GAP GTPase-activating protein 

GDI GDP dissociation inhibitor 

G-protein  guanine nucletide binding protein 

G418 sulfate Geneticin, a 2-deoxystreptamine antibiotic produced by 

Microspora rhodorangea 

GASP  G protein-coupled receptor-associated sorting protein 

GDP  Guanosine 5’-diphosphate 

GFP  Green fluorescent protein 

GPCR  G protein-coupled receptor 

GRK  G protein-coupled receptor kinase 

GTP  Guanosine 5’-triphosphate 

HA  Human influenza virus hemagglutinin (YPYDVPDYA) 

HA-DOR Amino-terminally HA-tagged delta-opioid receptor 

HA-MOR Amino-terminally HA-tagged mu-opioid receptor 

HEK293 cells Human embryonic kidney 293 cells 

HEPES  N-2-hydroxyethylpiperazine-N¢-2-ethanesulfonic acid 

IP Immunoprecipitation 

JNK the Jun N-terminal kinases 

kb Kilobase 

KD  Dissociation constant 

kD  kiloDalton 

MAG monoacylglycerol 

MAPK Mitogen activated protein kinase 

MOR1  The µ-opioid receptor isoform 1 

Myc  Epitope tag (sequence: MASMQKLISEEDL) 

NG108-15 cell mouse/rat, neuroblastoma x glioma hybrid cell 

nPLD2 Negative mutant of phospholipase D subtype 2  

OD  optical density  

ORL orphan opioid-like receptor 

PA  phosphatidic acid 

PAP PA (or phosphatidate) Phosphohydrolase  

PBS  Phosphate-buffered saline 
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PC phosphatidylcholine 

PCR  Polymerase chain reaction 

PEt  phosphatidylethanol 

PLC Phospholipase C 

PLD  Phospholipase D 

PKA  Protein kinase A 

PKC Protein kinae C 

PKD Protein kinase D 

PMA  Phorbol-12- myristate-13- acetate 

PPH Same as PAP 

Ptdbutanol phosphatidylbutanol 

PtdIns(4,5)P2  phopsphatidylinositol-4,5-bisphosphate 

PX domain phox homologous domain 

RIPA buffer Radioimmune precipitation buffer 

rpm  rounds per minte 

RT  Room temperature 

RT-PCR  Reverse transcription-PCR 

SDS  Sodium dodecyl sulphate 

SDS-PAGE  Sodium dodecyl sulphate - polyacrylamide gel electrophoresis 

SEM  Stand error of the mean 

Tris/phosphate-buffered saline TPBS  
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10. Zusammenfassung 

Zu den klassischen Opiatwirkungen zählen neben der Analgesie auch die 

Atemdepression und die Suchtauslösung. Opiate vermitteln ihre Effekte durch die 

Interaktion mit spezifischen G Protein-gekoppelten Opioidrezeptoren. Die Endozytose 

von Opioidrezeptoren nach Agonistenbehandlung gehört zu den wichtigsten 

regulatorischen Prozessen der Signaltransduktion von Opioiden. Unsere Arbeitsgruppe 

konnte kürzlich zeigen, dass der µ-Opioidrezeptor (MOR) mit der Phospholipase D2 

(PLD2) interagiert und die MOR-vermittelte Aktivierung der PLD2 für die Induktion 

der MOR-Endozytose essentiell ist. In der vorliegenden Arbeit fanden wir heraus, dass 

der δ-Opioidrezeptor (DOR) ebenfalls mit der PLD2 interagiert und der DOR-Agonist 

DPDPE die PLD2 in HEK293 Zellen über einen PKC-unabhängigen Weg aktivieren 

kann. Quantitiative Internalisierungsassays und konfokalmikroskopische Studien 

zeigten, dass eine PLD2-Koexpression das Ausmass und die Geschwindigkeit der 

agonist-induzierten DOR-Endozytose erhöhte, wohingegen eine Hemmung der PLD2, 

mittels Expression einer katalytisch inaktiven PLD2-Mutante (PLD2-K758R), die 

DPDPE-induzierte DOR-Endozytose deutlich senkte. Ebenso konnte die 

DOR-Endozytose durch die Hemmung der PLD2-vermittelten Phosphatidsäuresynthese 

mittels 1-Butanol blockiert werden. Diese Beobachtungen lassen vermuten, dass die 

PLD2-Aktivität für die agonist-induzierte DOR-Endozytose erforderlich ist und dass 

Phosphatidsäure (PA) dabei eine wichtige Rolle spielt. PA kann durch die 

PA-Phosphohydrolase in DAG überführt und DAG durch die DAG Kinase wieder in 

PA umgewandelt werden. Die Inhibition der PA-Phosphohydrolase schwächte sowohl 

die DPDPE-induzierte DOR Endozytose als auch die DAMGO-induzierte 

MOR-Endozytose ab. Demgegenüber führte die Inhibition der DAG Kinase zu einem 

Anstieg der DPDPE-induzierten DOR-Endozytose bzw. DAMGO-induzierten 

MOR-Endozytose. Darüber hinaus führte die Zugabe von DOG, einem synthetischen 

und aufgrund von kürzeren Fettsäuren zellpermeablen Analogon des DAG, zu einem 

deutlichen Anstieg der agonist-vermittelten DOR und MOR Endozytose, wohingegen 

eine Hemmung der Proteinkinase C (PKC) die agonist-induizierte 

Opioidrezeptorendozytose nicht beeinflusste. Diese Ergebnisse deuten darauf hin, dass 

das aus PA synthetisierte DAG an der agonist-induzierten DOR- und MOR-Endozytose 

über einen PKC-unabhängigen Weg beteiligt ist. Wir konnten ebenfalls zeigen, dass die 

PLD2-Aktivität und die nachfolgende Bildung von DAG aus PA für die 
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opiatrezeptor-vermittelte Aktivierung der p38 MAPK erforderlich ist, welche an der 

Endozytose des DOR und MOR beteiligt ist. 

Zusammenfassend kann man sagen, dass die PLD2-Aktivität die agonisten-induzierte 

Endozytose des δ- und µ-Opioidrezeptors reguliert. An diesem Prozess ist das aus dem 

PA gebildete DAG und im Weiteren die Aktivierung der p38 MAPK beteiligt. 
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