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ABSTRACT 

 
 Environmental influences during certain early life periods, particularly those 

provided by the mother or both parents, are generally considered to have a strong 

impact on the development of brain and behavior of the offspring. Using the semi-

precocial South American species Octodon degus, a rodent becoming increasingly 

popular in different laboratory research fields, in the first part of this dissertation I 

aimed to examine the developmental pattern of serotonergic, dopaminergic and amino 

acid neurotransmitting systems. Moreover, the consequences of disturbance of the 

parent-offspring interaction induced by parental separation on the serotonergic 

neurotransmission were assessed. Based on a quantitative neurochemical approach 

using brain homogenates obtained from cortical regions and the hippocampus my 

results revealed that (i) levels of monoamines and amino acids reach adult-like levels 

relatively early in ontogeny, i.e. mainly between postnatal day (PND) 3 and 21, 

depending on the brain region and substance examined, indicating a relatively matured 

neurotransmission in cortical regions and hippocampus at birth. In addition, an age-, 

region- and sex-specific pattern of changes in the serotonergic system has been found 

induced by (ii) an acute stress challenge early in life (parental separation at PND 3, 8, 

14 and 21) with the most pronounced effects at earlier ages (PND 3 – PND 14) in the 

female cortex, and (iii) repeated stress exposure (measured at PND 21) with the most 

pronounced effects in the cortex of both sexes. Taken together, these data indicate that 

early life stress (i.e., parental separation) influences the developing serotonergic system 

in the semi-precocial Octodon degus, even if the brain is relatively well matured at the 

early stages of postnatal development. 

 The second part of my dissertation presents the pattern of dopaminergic 

responses to methylphenidate in the prestressed, juvenile, immature and still developing 

brain of Octodon degus, which mimics the clinical situation in human children and the 

use of MP treatment much more appropriately than studies performed in normal adult 

rodent brains. Methylphenidate (MP) is a drug of choice in the treatment of attention-

deficit hyperactivity disorder (ADHD) in human children. Previous studies performed 

by other members of our group have shown, that exposing the newborn animal to 

repeated episodes of emotional stress (=separation from the family for one hour per day 

from PND 1-21) can induce hyperactive behavior and inattentiveness towards maternal 
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vocalizations in juvenile Octodon degus. Using in vivo microdialysis I measured the 

levels of dopamine in the medial prefrontal cortex and nucleus accumbens of awake, 

normal control and hyperactive degus. These results revealed that (i) methylphenidate 

induces minute response in the mPFC of control animals at PND 22-24 (juveniles), 

whereas in age-matched prestressed degus dopamine levels significantly decline after 

acute MP injection (10 mg/kg); (ii) chronic injection of methylphenidate between PND 

22 and 45 results in the sensitization to the drug; in unstressed control animals 

pretreated with MP the dopamine levels were elevated to a higher extent in response to 

MP injection than in the vehicle pretreated controls, (iii) at the age of PND 46-48 

(adolescent animals) the prestressed, hyperactive animals, which were chronically MP-

treated, show potentiated dopamine increases in response to MP administration, 

compared to the unstressed controls. My study indicates that methylphenidate acts 

differently in the non-fully developed and mature brain. Moreover, early emotional 

experience as well as chronic drug treatment strongly influences the action of MP in the 

brain. 

 Taken together, these results indicate that experience-induced modulation of 

limbic structures during development may influence their neurochemical responsiveness 

later in life. 
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1 INTRODUCTION 
 
 

1.1 Early life stress and its consequences 

 
 How experience sculpts the developing neural circuits is one of the most 

intriguing questions in developmental neurobiology. There is accumulating evidence 

that epigenetic factors affect the development of brain and behavior in a much more 

pronounced way than previously appreciated. Such adaptive plasticity makes the 

developing neuronal circuits sensitive to several environmental stimuli.  

 One of the very first experiences which the offspring faces immediately after 

birth is the contact with mother or both parents and establishing an emotional 

attachment with them. The quality of such interaction, environmental influence, 

learning, experiences affect significantly the maturation of the brain and thus the normal 

development of whole organism. The intimate relationship between the infant and 

parents, in most cases particularly the mother, is a basic factor for the development of 

the organism. 

 Early adverse emotional life events in humans has been associated with the 

development of pathological behavior as well as the etiology of several neurological 

diseases, such as depression and/or anxiety disorders (Downs and Harrison, 1998; 

Parker et al., 2000; Heim and Nemeroff, 2001; Wainwright and Surtees, 2002; Pryce et 

al., 2005), alcoholism (Anda et al., 2002), neuroticism and nicotine dependence 

(McFarlane et al., 2005), psychopathic behavior (Marshall and Cooke, 1999) and 

schizophrenia (Agid et al., 1999). Additionally, sexual and physical abuse in childhood 

has been also found to be associated with the suicidal behavior in adulthood (Ystgaard 

et al., 2004). Such strong consequences may result from the sensitization and repeatedly 

altered activity of the hypothalamic-pituitary-adrenocortical (HPA) system. 

 Early life stress, in particular when it affects the parent-child interaction, can be 

detrimental for the development of the individual´s physiology, endocrine function, 

neuroanatomy as well as behavior. There is a body of evidence from studies in rodents, 

that the physiological responses such as heart rate, growth hormone production and the 

duration of sleep/wake cycles of an infant are regulated by the mother (Levine, 2001). 

Consequently, the separation of infant from the mother results in specific physiological 

changes in the infant, for instance the reduction of heart rate, the decline in growth 
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hormone secretion (Schanberg et al., 1984) as well as the decrease of the ornithine 

decarboxylase levels, the tissue enzyme responsible for the regulation of growth and 

differentiation (Kuhn et al., 1978). On the endocrine level, investigations of Gruss et al. 

(2006) revealed that repeated postnatal stress in Octodon degus may result in an 

attenuated separation-induced increase of glucocorticoids (females) and a higher 

behavioral activity at the age of 3 weeks (both sexes). In rats exposed to repeated stress 

elevated basal adrenocorticotropic hormone (ACTH) and glucocorticoids (GC) levels 

were observed in adulthood, which somehow suggest the development of hyperactivity 

in the hypothalamic-pituitary-adrenocortical (HPA) axis, a key neuroendocrine stress 

axis (De Kloet et al., 1998). On the neuroanatomical level, studies have demonstrated 

that early sensory, motor and functional experience significantly affects the 

morphological maturation of neuronal networks (Rosenzweig and Bennett, 1996; 

Greenough et al., 1987). In extension of these studies on sensory and motor systems 

development, it was demonstrated that emotional experience results in quite dramatical 

neuroanatomical alterations in various species. For instance, in neonate domestic chicks, 

positive emotional experience (filial imprinting) induces the pruning of spine synapses, 

presumably excitatory, in an analogue of the mammalian prefrontal cortex (Bock and 

Braun, 1998; 1999), whereas early aversive learning induces increased synaptic 

densities (Patel and Stewart, 1998). In rodents, early adverse emotional experience, i.e. 

maternal or parental separation, induces increased spine densities on pyramidal cells in 

the anterior cingulate and infralimbic cortex and the CA1 subfield of the hippocampus 

(Helmeke et al., 2001a; 2001b; Ovtscharoff and Braun, 2001; Poeggel et al., 2003a; 

Bock et al., 2005) as well as affects the morphology of hippocampal dendritic trees 

(Bartesaghi et al., 2003). In addition, neonatally stressed animals show lower levels of 

corticotrophin releasing factor (CRF) positive fibers or neurons in central amygdala, 

dentate gyrus, CA1 region and somatosensory cortex, paralleled by the opposite effect 

in basolateral amygdala (Becker et al., 2007). At the behavioral level, maternal or 

parental separation can induce hyperactivity (Kalinichev et al., 2002; Braun et al., 

2003), anxiety (Daniels et al., 2004; Renard et al., 2005), elevated exploratory behavior 

(Becker et al., 2007) and learning deficits (Lehmann and Feldon, 2000; Huang et al., 

2002). Early adverse experience have been also found to increase voluntary ethanol 

consumption (Huot et al., 2001; Vazquez et al. 2002; Ploj et al., 2003a; 2003b; Roman 

et al., 2004) and exaggerate the behavioral responses to psychostimulants (Rots et al., 

1996; Matthews et al., 1996a; 1996b; 1999; 2001; Campbell and Spear, 1999; Meaney 
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et al., 2002; Matthews and Robbins, 2003; Ploj and Nylander, 2003; Ploj et al., 2003a; 

2003b), which provides the evidence that such emotional stress disrupts the 

development of systems mediating reward-related behaviors. 

 

 

1.2 Early stress and its experimental paradigms 

 
 The laboratory studies in the animal models required the development of early 

life stress paradigms. Any comparisons between various experimental approaches might 

be complex, since different laboratories use several experimental stress designs, but also 

different control groups and, in addition, miscellaneous animal species and strains. In 

the laboratory rodents major paradigms are as follows (Plotsky and Meaney, 1993; Liu 

et al., 1997; McCormick et al., 1998; Lehman et al., 1999; Lehman and Feldon, 2000; 

Pryce et al., 2002): 

• Maternal separation – this general term refers to several experimental 

approaches, all of which involve the separation of pups from the dam for at least 

1 hour, however it may last for as long as 24 hours. In some laboratories it is the 

mother, which is removed from the nest and the pups are left in their homecage. 

The second approach is considered to be less stressful for the young animals, in 

other words any change in the experimental paradigm results in different stress 

levels. The term “maternal” refers to rats and mice, however in cases where both 

parents look after their offspring (as Octodon degus parents do) the term 

“parental” should be used – as in this study. Such separation might be single or 

repeated for shorter periods e.g. 1-6 hours/day (repeated maternal/parental 

separation). Maternal (or parental) separation is followed by screening of the 

effects of the manipulation at specific time points between the manipulation and 

adulthood. 

• Early handling – daily handling of the pups to separate them from the mother 

and the littermates for a short period (max. 15 min/day). Such treatment is not 

always considered as stress, since it has been described that frequently after 

reunion of pups and the dam, infants receive more attention and nursing than 

non-treated animals. 
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• Social separation – separation of pup from the dam and the littermates for a 

certain time amount (1-6 h). 

• Social rearing – in this paradigm animals do not experience any direct human 

disturbance during early life, therefore some researchers consider them as a 

control group. However, in some laboratories control animals are subjected to 

occasional handling, due to the need of every day routine cage cleaning without 

any further manipulations. 

 

 

1.3 Neurotransmitting systems and early life stress 

 
 As opposed to behavioral and endocrine data, still relatively little is known about 

the neurochemical outcomes of postnatal stress, in particular the disturbance of parents 

– infant relationship. Monoamines (dopamine and serotonin) as well as inhibitory amino 

acid GABA have been found to be involved in the regulation of emotions and cognition 

(Murphy et al., 1996a; 1996b; Sokolowski et al., 1998; Myhrer, 2003; Castrén, 2005). 

There is evidence that stressful experience such as maternal or parental separation and 

the exposure of an infant to an unfamiliar environment induce changes in particular of 

aminergic (Hall et al., 1999; Braun et al., 2000; Miura et al., 2002; Gartside et al., 2003; 

Poeggel et al., 2003b; van Riel et al., 2004) but also amino acid (mostly GABA) 

neurotransmission (Plaut and Davies, 1972; Hsu et al., 2003;  Jaworski et al., 2005; 

Alvarez et al., 2006).  

 It has been shown that parental separation leaves persistent traces in the 

dopaminergic as well as serotonergic neurotransmission systems. On the cellular level, 

repeated brief parental separation in an unfamiliar environment can induce an up-

regulation of D1, 5-HT1A, but also NMDA receptors in prefrontal cortex, hippocampus 

and amygdala (Ziabreva et al., 2000; 2003a; 2003b). Moreover, early social deprivation 

leads to the enhanced density of dopaminergic and serotonergic fibers in subregions of 

the medial and lateral prefrontal cortex of Octodon degus (Braun et al., 2000; Poeggel et 

al., 2003b). The increase in serotonergic fibers density has been also described for 

subregions of nucleus accumbens (core), dentate gyrus (stratum moleculare) and 

amygdala (central nucleus), whereas same fibers decreased in dentate subgranular layer 

and in the stratum lacunosum of the hippocampal cornu ammonis region 1. 
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Dopaminergic fibers have been shown to increase in the core and shell region of the 

nucleus accumbens, stratum granulosum and subgranular layer of early deprived degus, 

while they decreased in the hilus of the dentate gyrus (Gos et al., 2006). Taken these 

data together, one can conclude that changes in the monoaminergic fiber densities are 

not only region- but also strictly transmitter-specific.  

 Neurochemical measurements have shown, that periodic maternal separation as 

well as handling of neonatal rats result in increased dopamine levels in the striatum and 

decreased dopamine turnover in the medial prefrontal cortex (mPFC). These changes 

are paralleled by reduced serotonin levels in the hippocampus and mPFC of adult rats 

(Smythe et al., 1994; Matthews et al., 2001). In juveniles, an increased amphetamine- 

induced release of dopamine in the ventral striatum was detected in 10-day old (Kehoe 

et al., 1998a) as well as 4- to 5-weeks old rats (Kehoe et al., 1996), suggesting that the 

influence of repeated maternal separation can be observed already in still developing 

animals. In addition, the application of the same paradigm is detectable in adulthood – 

repeated maternal separation leads to altered extracellular 5-HT levels in nucleus 

accumbens of adult female rats, depending on the estrous stage (Zhang et al., 2006). 

Extensive studies in the serotonergic system of rat performed by Gartside et al. (2003) 

showed that early life adversity leaves alterations in two main inhibitory and excitatory 

regulatory systems of 5-HT activity on neurons: 5-HT1A and α1-adrenoceptors. 

 In addition to their function as neurotransmitters, dopamine as well as serotonin 

and noradrenaline have been shown to act as trophic factors, influencing the functional 

state of neurons during ontogeny (Pendleton et al., 1998; Herlenius and Lagercrantz, 

2001; Whitaker-Azmitia, 2001; Alvarez et al., 2002). In other words, the signaling role 

of monoamines would be not only the linking between two neurons, but also 

morphogenic role in developing embryonic tissues. For instance, noradrenaline 

influences the correct proliferation of glial cells in cerebellum. The neonatal 

administration of 6-hydroxydopamine (6-OHDA), neurotoxin which depletes 

noradrenergic stores in nerve endings, leads to abnormal location of the Bergmann glial 

cells and their structural perturbations (e.g., no intimate associations with Purkinje 

cells). In addition, 6-OHDA treated rats expressed changes in behavior, in particular in 

their orientation to a novel environment, searching and skills performance (Podkletnova 

and Alho, 1998; Podkletnova et al., 2001; Djatchkova-Podkletnova and Alho, 2005). 

Furthermore, noradrenaline has been found to regulate the development of Cajal-

Retzius cells, which are playing an important role in the migration of neurons and 
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laminar formation in the cerebral cortex (Berger-Sweeney and Hohmann, 1997; Naqui 

et al., 1999). Dopamine, which appears very early in human development (Sundstrom et 

al., 1993), may act in the perinatal period via stimulation of D1 receptors, which 

regulate the transcription of other genes (Boyson and Adams, 1997). Dopamine 

depletion in rats leads to several developmental abnormalities, such as dyskinesia, 

dystonia, tics and abnormal movements of the eye (Zhou et al., 1995). Serotonin, which 

appears already in the fertilized egg, takes part in cell proliferation, migration and 

differentiation in neuronal, heart and epithelial tissues (Lauder, 1990; Liu and Lauder, 

1991; Nebigil et al., 2000; Buznikov et al., 2001; Menegola et al., 2004). Moreover, the 

action of this monoamine provides the normal development of the somatosensory cortex 

(Cases et al., 1996).  

 Apart from monoamines, amino acid transmitters also play a role in the 

development of the nervous system. Glutamate terminals occur in high excess during 

first 2 years of life in humans, which might be related to the formation of high number 

of synapses at this time (Herlenius and Lagercrantz, 2001; 2004). GABA, which 

normally works as a main inhibitory neurotransmitter in the developing brain, during 

embryogenesis acts as an excitatory agent (Miles, 1999; Herlenius and Lagercrantz, 

2001; 2004; Howard et al., 2007). Disturbances in GABA function at this time may 

cause the damages to the neuronal wiring, plasticity and neural organization (Belhage et 

al., 1998).  

 

 

1.4 Limbic system 

 
 In 1937 Papez postulated that limbic lobe together with some of the subcortical 

areas forms a system, responsible for the behavioral aspects of instincts, emotions and 

cognition. Thereby, limbic system (Figure 1) would be a functional set containing not 

only cortical, but also subcortical brain structures. Limbic system, according to several 

researchers, is composed of the following subunits: 

• Amygdala - involved in regulation of emotions, aggression and fear 

• Cingulate gyrus - regulates the functions of cardiovascular system (heart rate, 

blood pressure) as well as the processing of cognition and attention 

• Hippocampus - a store of long-term memory 
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• Hypothalamus - regulates (via hormone release) several autonomic functions 

such as heart rate, blood pressure, sleep/wake cycle, hunger, thirst, sexual 

arousal 

• Mamillary body - responsible for the formation of memory 

• Nucleus accumbens - is implicated in the reward and pleasure and might be 

involved in addiction 

• Prefrontal cortex - regulates the complex cognitive behaviors and moderates 

correct social behavior 

 

 
Figure 1. Schematic representation of some of the limbic structures and their connections (from 

Nestler et al., 2002). PFC – prefrontal cortex, NAc – nucleus accumbens, VTA – ventral 

tegmental area, LC – locus coeruleus, DR – dorsal raphe, NEergic - noradrenergic.  
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1.4.1 Prefrontal cortex 
 
 Prefrontal cortex (PFC) is the part of the limbic system responsible for the 

cognitive control of behavior (Goldman-Rakic, 1996; Wise et al., 1996; Miller, 2000; 

Miller and Cohen, 2001; Tanji and Hoshi, 2001; Funahashi, 2001). Rodent PFC consists 

of medial, orbital and lateral prefrontal cortex. Medial PFC (mPFC), which is involved 

in attention, working memory, social behavior, can be divided into four regions: medial 

precental, anterior cingulate, prelimbic and infralimbic area. PFC is considered to 

classify the items in short-term memory to organize, plan, and manipulate the 

information required to generate future thought or action, in other words, this particular 

structure allows the organism to plan action based on memory (Fuster, 1990; Seamans 

and Yang, 2004). The neonatal lesions in medial PFC in rats result in severe deficits in 

spatial learning, cognition and motor behaviors, in the opposite to orbital frontal cortex, 

where only mild abnormalities have been found as a result of local lesions (Kolb et al., 

2004). Working memory performance as well as task-dependent neuronal activity 

within the PFC is strongly modulated by dopamine. Local injections of D1 receptor 

antagonist have been shown to disrupt performance on delayed-response tasks 

(Sawaguchi and Goldman-Rakic, 1991; 1994; Seamans et al., 1998). Prefrontal cortex is 

also involved in food-reward and olfactory learning tasks (Ragozzino and Kesner, 1999; 

Rolls, 2000). 

 In human patients lesions in PFC result in deficits in cognitive behaviors. 

Schizophrenic patients may express some prefrontal cortical alterations, for instance the 

dysfunctional dopaminergic input to this structure and a decreased density of 

dopaminergic fibers (Daniel et al., 1991; Okubo et al., 1997; Akil et al., 1999). In 

schizophrenia, the prefrontal atrophy has been also described (Ragland et al., 2004; 

Molina et al., 2005). Moreover, schizophrenics express altered GABAergic 

neurotransmission, elevated neuronal densities and reduced spine density in PFC 

(Selemon et al., 1995; 1998; Glantz and Lewis 1997; 2000; Karson et al. 1999; Lewis et 

al. 1999; Halim et al. 2003). In addition, altered function of PFC might participate in 

formation of obsessive-compulsive disorder (Szeszko et al., 1999), post-traumatic stress 

(Rickert et al., 2006), depression (Lai et al., 2000) and personality disorders (Tebartz et 

al., 2003).  
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1.4.2 Nucleus accumbens 
 
 In 1954 Olds and Milner described so called “pleasure area” of the brain, found 

in the experiment where rats were self-stimulating it via electrode implanted into septal 

area. Later on, this particular structure of the nervous system has been called nucleus 

accumbens (Nac). Nucleus accumbens, which together with some of dopaminergic 

afferent fibers of ventral tegmental area (VTA) forms the reward circuit, is most likely 

taking part in the drug dependence and the control of motivations. Nac acquisits and 

expresses most Pavlovian stimulus-reward learning (Day and Carelli, 2007; Di Chiara 

and Bassareo, 2007). Nucleus accumbens is composed of core involved in motor 

functions and shell responsible for processing of emotions and motivations (Zhou et al., 

2002). It collects the inputs from amygdala, hippocampus, perirhinal and prefrontal 

regions, which altogether form a system responsible for receiving, acquisition and 

coding of aversive learning and memory (Levita et al., 2002). The outputs from nucleus 

accumbens project to substantia nigra and indirectly to prefrontal cortex (via ventral 

pallidum and dorsal thalamus).  

 Action of nucleus accumbens is based on dopamine, promoting the feeling of 

desire, as well as serotonin, providing satiation. Therefore, many addictive drugs 

enhance dopamine and in parallel decline serotonin in Nac. The dopaminergic terminals 

in Nac which originate in ventral tegmental area are the target for addictive drugs, such 

as amphetamine or cocaine.  

 

1.4.3 Hippocampus 
 
 Hippocampus (Hpc) is the limbic structure responsible for the formation and 

storage of long-term memory. In general, it plays an essential role in the transfer of 

experienced events into an autobiographic memory. Hippocampus stores the 

information about episodes and its damage results in difficulties to form new memories, 

however some of the aspects may remain unaffected, such as the ability to learn new 

skills (Nakazawa et al., 2004; O’Kane et al., 2004). In addition, hippocampus takes a 

part in navigation, e.g. finding shortcuts between known places. The individuals who 

are more skilled in navigation exhibit more active and larger hippocampi than the 

average ones, which was proved by Macguire et al. (2000) in an excellent London cab 

drivers study.  
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 The acute preparation of hippocampal slices has been also used to study the 

activity-dependent forms of synaptic plasticity: long-term potentiation (LTP) and long-

term depression (LTD) (Navakkode et al., 2004; 2005; Sajikumar et al., 2005a; 2005b).  

 
 
 

1.5 Attention-deficit/hyperactivity disorder – etiology, symptoms 

and treatment 

 
 As known from behavioral studies in our group, repeated episodes of emotional 

stress are potent to develop hyperactive behavior as well as inattentiveness towards 

maternal vocalizations (Braun et al., 2003; Gruss et al., 2006). Such symptoms resemble 

those typical for attention-deficit/hyperactivity disorder (ADHD). ADHD is a clinically 

heterogenous disorder, which is typically diagnosed during early childhood and 

characterized by the presence of some basic symptoms: moderate-to-severe 

distractibility, short attention span, motoric hyperactivity, emotional lability, and 

impulsivity. Additionally, the patients might suffer from cognitive problems. Finally, all 

these symptoms may result in either aggression or anxiety and depression (Oades, 

1998).  Inattention, i.e. problems with attention focusing, distractibility and completing 

tasks, has been documented using questionnaire ratings by teachers and parents 

(Solanto, 2002). Neuropsychological investigations as well as neuroimaging studies 

revealed that ADHD might be caused by dysfunctions of the prefrontal cortex as well as 

connected subcortical areas (Berger and Posner, 2000; Sowell et al, 2003; Carboni and 

Silvagni, 2004). Anatomic MRI revealed, that ADHD children matched with healthy 

same-age controls, show smaller total volume of the brain (around 4% difference), 

smaller caudate, globus pallidus, anterior frontal cortex and cerebellar vermis (Solanto, 

2002). High-resolution MRI and surface-based, computational image analysis 

performed by Sowell et al. (2003) showed reduced regional brain size localized mainly 

to inferior portions of dorsal prefrontal cortices, reduced brain size in anterior temporal 

cortices as well as prominent increases in gray matter found in posterior temporal and 

inferior parietal cortices. All mentioned brain changes were recorded in both 

hemispheres. 

 It is believed that one of the most important factors causing hyperactive behavior 

in ADHD is dopaminergic dysfunction of the cortical regulation of the dorsal striatum. 
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Such conclusions are based on the neuropharmacology of drugs used in the treatment of 

ADHD (Higgins, 1999; Popper, 2000; Greydanus et al., 2002), molecular genetic 

investigations, which relate the symptoms of ADHD to the polymorphism of genes 

encoding dopamine transporters (DAT1 gene) and D4 receptors (DRD4 gene) (Cook et 

al., 1995; LaHoste et al., 1996; Rowe et al., 1998; Swanson et al., 1998; 2000; Faraone 

et al., 1999) and neuroimaging studies of ADHD patients (Lou et al., 1989; Dougherty 

et al., 1999; Dresel et al., 2000; Krause et al., 2000). The most affected dopaminergic 

pathway in ADHD seems to be the one which projects from PFC through the external 

segment of globus pallidus and ends on the inhibitory projections from the subthalamic 

nucleus to the internal globus pallidus. The lack of dopamine in this pathway will result 

in the “inhibition of the inhibition” and therefore in motoric hyperactivity of the patient 

(Castellanos, 1997). The cognitive dysfunctions in the patients suffering from ADHD 

are probably caused by the alterations in prefrontal cortex, which is normally 

responsible for attention, organization and planning. PFC is extremely sensitive to any 

oscillations of dopamine levels, for instance its insufficient stimulation may lead to the 

development of working memory deficits (Arnsten, 1997). Children suffering from 

ADHD require an extended, complex psychological care, which should be provided by 

parents collaborating with the doctor of appropriate specialty and teachers (Rappley, 

2005). Nevertheless, psychotherapy at least in some cases should be additionally 

supported by the pharmacological treatment.  

 At present, there are few drugs commonly used in the treatment of ADHD. One 

of these is atomoxetine (Strattera®, IUPAC name: (3S)-N-methyl-3-(2-methylphenoxy)-

3-phenyl-propan-1-amine), which selectively blocks the reuptake of noradrenaline from 

the synapse, by blocking the noradrenaline presynaptic transporter (Michelson et al., 

2001; Bymaster et al., 2002; Kratochvil et al., 2003). The other one is 

dextroamphetamine (Dexedrine, IUPAC name: 1-phenylpropan-2-amine), blocking the 

re-entry of dopamine into the neuron (Glaser et al., 2005). However, the drug of choice 

in the treatment of ADHD is currently methylphenidate. 

 Methylphenidate (MP, Ritalin®, IUPAC name: methyl-a-phenyl-2-

piperidineacetate, Figure 2) is an integral part of the treatment programs for ADHD 

symptoms, which typically also include other remedial measures (psychological, 

educational, and social) to stabilize and normalize children diagnosed for ADHD. 

However, still little is known about the action of MP in the juvenile, still developing 

brain, which is known to respond differently, quite often more sensitively to 
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pharmaceutical drugs compared to the mature, adult brain. So far all microdialysis 

studies to analyze the action of MP were performed in adult rats and revealed that MP 

increases extracellular dopamine for instance in nucleus accumbens, striatum or 

prefrontal cortex (Kuczenski and Segal, 1999; Gerasimov et al., 2000; Huff and Davies, 

2002; Marsteller et al., 2002), most likely by blocking dopamine transporters and 

thereby suppressing the re-uptake of dopamine from the synaptic cleft (its re-entry into 

the neuron). Animal microdialysis data was confirmed by imaging studies in the human 

brain, where methylphenidate has been shown to raise extracellular dopamine in the 

striatum of healthy men (Volkow et al., 2001).  

 

 
 

Figure 2. The chemical structure of methylphenidate. Drawn with BKchem software. 

  

 The question is how is a drug which elevates extracellular dopamine in the brain 

downregulating psychomotor activity in hyperactive children, although dopamine is 

known to enhance motor activity? During normal nerve activity dopamine rises 60-fold 

outside the cell. After administration of low therapeutic doses of psychostimulants the 

locomotion in both humans and animals is reduced. The hypothetical explanation would 

be that the drug raise resting extracellular levels of dopamine several-fold, but reduce 

the extent to which dopamine is released with nerve impulses, compared to the impulse-

associated release in the absence of the drug (Figure 3). This reduced amplitude of 

impulse-associated dopamine release would finally result in less activation of post-

synaptic dopamine receptors which control psychomotor activity (Robbins, 2002; 

Seeman and Madras, 2002). Additionally, the number of functional D1 and D2 

receptors seems to be reduced by the elevated dopamine in the synaptic cleft – in other 

words, D1 and D2 which are characterized by high-affinity state for dopamine, in this 
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case would be less stimulated due to their decrease in amount. Such state might be 

caused by constant occupation of some pool of the receptors by enhanced dopamine 

during rest, and thereby by desensitization of dopaminergic subcellular system (Seeman 

and Madras, 2002). 

 

 

 

 

 
 

Figure 3. Hypothetical action of methylphenidate at the synapse (picture from Robbins, 2002). 

Methylphenidate blocks the dopamine transporter (A), which results in the increase of dopamine 

(blue circles, B) in the synaptic cleft. Dopamine can stimulate its receptors (red triangles, C), 

but due to the feedback inhibition it could lead at the end to the decline of dopamine release and 

thereby to the suppression of hyperactive behavior.  

 

 

 

 Methylphenidate produces effects not only on dopamine, but also on 

noradrenaline. Low density of dopamine transporters may lead to the inactivation of 

extracellular dopamine by its uptake into noradrenaline nerve terminals (Tanda et al., 

1997; Wayment et al., 2001). The administration of clinical doses of MP and 

subsequent rise in extracellular noradrenaline may result in increase of cortical 

dopamine and as a consequence cortical dopaminergic transmission may be facilitated 
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at doses of the stimulant that do not affect accumbens dopamine (Kuczenski and Segal, 

2002).  

 There is also some evidence, that the action of methylphenidate is somehow 

linked to the serotonergic activity of central nervous system, although serotonin levels 

themselves are not affected by this particular drug (Kuczenski and Segal, 1997), nor the 

affinity of methylphenidate for the serotonin transporter is very low (Gatley et al., 

1996). The induction of serotonin increase by citalopram (5-HT re-uptake inhibitor) in 

rat hippocampus is enhanced by methylphenidate, however MP attenuates the 5-HT 

citalopram mediated release in prefrontal cortex (Weikop et al., 2007). The study of 

Gainetdinov et al. (1999) showed that hyperactivity of dopamine transporter gene knock 

out mice (DAT-KO) might be reduced by serotonergic drugs (fluoxetine). Anyway, the 

data on serotonin and its role in ADHD need further extensive studies. 

 The use of methylphenidate in children remains controversial. Some of the 

contras raised by the opponents of this particular medicine are: short term help provided 

by MP as well as the risk of cross-sensitization to cocaine and amphetamine (which are 

relatively similar to MP in terms of pharmacological effects) and thereby the possibility 

of developing the long-term sensitization to psychostimulants and drug addiction (Huss 

and Lehmkuhl, 2002; Robbins, 2002). 

 

 

1.6 Octodon degus – an animal model for the study of early life stress 

 
 Octodon degus (trumpet-tailed rat or degu) is a semi-precocial, diurnal, 

caviomorph, hystricomorph rodent originating from central Chile (Figure 4). This 

particular species has been chosen for extensive psychobiological experiments on 

account of several interesting features, which make it different from other popular 

laboratory animals such as rats and mice (Wright and Kern, 1992). For instance, degus 

as semi-precocial animals are born with functional sensory systems, e.g. open eyes and 

ears, which allow them, like human babies, to establish an intensive contact with the 

mother immediately after birth. Moreover, they display relatively advanced behavior – 

they live in complicated family units, where they communicate with each other using an 

elaborated set of sounds (Fulk, 1976; Braun and Scheich, 1997; Ebensperger and 

Bozinovic, 2000). In the field they usually live in groups of around 10 adult animals 
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(mostly females, which are closely related, and 1-3 males). In the wild degus breed once 

per year, at the beginning of rainy cold season but a second litter might be also observed 

(depending on the length of the winter season). The pregnancy lasts for 90-95 days, 

young animals suckle for the next 28-35 days (Lee, 2004). Finally, not only the mother, 

but also the father takes care of the pups during early development. Interestingly, in the 

home environment degu female kin have been found to nest the pups communally, also 

the non-offspring nursing exists in this species (Ebensperger et al., 2002; 2004). Taken 

together, these features were quite encouraging to use the degu as an animal model to 

study the effects of parental separation in this semi-precocial species living in an 

elaborated family structure. 

 Besides of being an animal model for investigations of parents’ role in early 

development, Octodon degus is also used for studying the mechanisms of visual 

adaptations (Jacobs et al., 2003), diabetes and cataract development (Datiles and Fukui, 

1989), circadian rhythms and recovery from Jet Lag (Garcia-Allegue et al., 1999; Kas 

and Edgar, 1999; Lee, 2004; Mohawk et al., 2005), drug research (Pellissier et al., 1989) 

as well as Alzheimer’s disease (Inestrosa et al., 2005).  
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Figure 4. Adult Octodon degus couple with 1-day-old pups in the cage. Picture taken with 

Konica-Minolta Dimage Z6 digital camera. 
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1.7 Aims of the dissertation 

 
 
 The advanced development of the degu pups at birth in relation to the altricial 

species (rat and mouse), the crucial role of early life experience and neurotransmitters in 

normal development and physiology as well as pathophysiology, and the severe 

neurochemical consequences induced by disturbing the mother-offspring interaction in 

several rodents, the degu and primates, led me to the working hypothesis that in degus 

(i) the neurotransmission systems are showing adult-like characteristics early in 

ontogeny, (ii) acute separation acts as a severe stressor and induces alterations in 

neurotransmission, and (iii) repeated separation stress has a persistent impact on 

monoaminergic neurotransmission. To test these hypotheses systematically the first part 

of my dissertation:  

 

Part I. Epigenetic influences on neurotransmission in Octodon degus 

during early postnatal development: study in brain homogenates 
 

was designed to address the following questions: 

 
(i) What is the developmental pattern of serotonin (5-HT) and its metabolite 5-

hydroxyindole-3-acetic acid (5-HIAA), dopamine (DA) and its metabolites 3,4-

dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), as well as brain 

amino acids: aspartate, glutamate, GABA and taurine in the cortex and hippocampus of 

the semi-precocial Octodon degus? Is the advanced developmental stage at birth of this 

species paralleled by relatively matured neurotransmitting systems?  

 
(ii) What is the impact of a single, acute parental separation at different stages during 

early development (at postnatal day (PND) 3, 8, 14, or 21) or  

 
(iii) repeated parental separation during the first 3 weeks of life, i.e. the phase of the 

most intensive emotional bounding between parents and offspring, on the serotonergic 

transmission in cortical regions and the hippocampus at PND 21? Previous extensive 

experiments of our working group on dopaminergic transmission showed, that neither 

dopamine nor its metabolites (DOPAC and HVA) does not produce any clear pattern of 

changes, in both experimental designs, therefore these data are not shown. 
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The second part of my dissertation: 

 

Part II. Neurochemical consequences of juvenile stress and chronic 

methylphenidate treatment on dopaminergic function in Octodon 

degus: in vivo microdialysis study 
 

focused on the dopaminergic neurotransmission and was designed based on the finding 

that repeatedly separated degus develop hyperactive and inattentive behavior. 

Therefore, based on this result I proposed that repeatedly stressed, hyperactive degu 

pups would be a potential animal model for the study of ADHD and the action of 

methylphenidate in the brain.  My working hypothesis for this part of my dissertation 

was that repeatedly separated (prestressed) animals with hyperactive symptoms respond 

differently to this drug, compared to controls. This was tested for the dopaminergic 

responses in two limbic structures: medial prefrontal cortex and nucleus accumbens. 

Moreover, I hypothesized that the age of the animal as well as the duration of drug 

treatment would be also the critical factors for methylphenidate action in the brain. 

Since the effects of this drug as well as the underlying mechanisms on dopaminergic 

function in the juvenile brain have not yet been investigated on the neurochemical level, 

this part of the dissertation using a quantitative neurochemical approach was designed 

to address the following questions:  

 

(i) What is the effect of social separation stress and acute methylphenidate treatment on 

extracellular dopamine levels in medial prefrontal cortex (mPFC) and nucleus 

accumbens (Nac) at post-weaning (PND 22-24) and puberty (PND 46-48) ages in 

unstressed and repeatedly stressed male Octodon degus?  

 

(ii) What is the effect of chronic methylphenidate pretreatment on extracellular 

dopamine levels in the mPFC and Nac at puberty age (PND 46-48) in unstressed and 

repeatedly stressed male Octodon degus during acute social separation stress and 

methylphenidate challenge? 
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2 MATERIALS AND METHODS 
 

 

2.1 Chemicals 

 
Sigma: Methylphenidate, DA, HVA, DOPAC, 5-HT, 5-HIAA, EDTA, NaCl, KCl, 

CaCl2, MgCl2, CH3COONa, ortho-phtaldialdehyde, sodium metabisulfite and 

octanesulfonic acid. 

 

Serva: cresyl violet, aspartate, glutamate,  taurine and GABA. 

 

Merck: NaH2PO4, acetic acid, perchloric acid, phosphoric acid, acetonitrile, xylol and 

methanol. 

 

Life Sciences: Histomount 

 

Eurim-Pharm: Halothane 

 

Roth: 2-propanol 

 

Harvard Dental: dental cement 

 

B. Braun Melsungen AG: saline 

 

 

2.2 Animals: housing and rearing conditions 

 
 The degus (Octodon degus) used in both experimental approaches were bred in 

our colony at the Leibniz Institute of Neurobiology, Magdeburg. Family groups 

consisting of an adult couple and their offspring were housed in wire cages (length x 

height x depth: 49 x 68 x 40 cm) located in temperature- (22 ± 2°C) and humidity- 

controlled (55 ± 3%) rooms (Figure 5). The degus were exposed to a 12 h light – 12 h 
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dark cycle with light on at 06:00 a.m. and had free access to food (rat diet pellets, 

SSNIFF Spezialdiäten GmbH, Soest, Germany) and water. 

 All experiments were performed in accordance with the European Communities 

Council Directive of November 1986 (86/609/EEC) and according to the German 

guidelines for the care and use of animals in laboratory research and the experimental 

protocols were approved by an ethical committee. 

 

 

 
 

Figure 5. The degus colony at Leibniz-Institute of Neurobiology, Magdeburg. Each cage 

contains one family (1 couple and its offspring). Picture taken with Konica-Minolta 

Dimage Z6 digital camera. 

 

 

 Each breeding couple was checked for litters daily, and the day of birth was 

defined as postnatal day (PND) 0. To avoid litter effect - differential parental treatment 

within a litter, as well as genetical similarity of siblings, the whole litter was randomly 

assigned to one of the following rearing conditions: 
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unstressed controls: The litters were left undisturbed with their parents until PND 21 

(day of weaning), after which the parents were removed from the home cage. The 

siblings remained together until PND 45, and were thereafter raised as sex-matched 

groups of two to three siblings from PND 46 until the experiment. 

repeated separation stress: From PND 1 to PND 20, the pups were removed from their 

parents and home cage. In a separate room (temperature: 22 ± 2°C), the pups were kept 

individually in opaque rodent cages (length x height x depth: 39 x 10 x 10 cm) for one 

hour daily (starting between 09:00 a.m. and 12:00 a.m.). Thus, during separation the 

pups had acoustic and olfactory but no visual and social contact with their siblings. 

After one hour separation pups were returned to their parents and home cage and left 

undisturbed until next separation period. 

 

 

Part I. Epigenetic influences on neurotransmission in Octodon degus 

during early postnatal development: study in brain homogenates 
  

2.3 Preparation of brain homogenates 

 
 Animals were sacrificed by decapitation, the brains were quickly removed from 

the skull and placed on an ice-cold dissection plate. Four brain regions were dissected 

out of each brain: medial prefrontal cortex (mPFC), frontal cortex (including the orbital, 

primary motor and frontal part of somatosensory cortex), caudal cortex (including the 

caudal part of somatosensory cortex and visual cortex), and hippocampus. The tissue 

from both hemispheres was pooled and frozen in liquid nitrogen and stored at -80°C 

until assayed. 

 To determine the levels of neurotransmitters in the brain homogenates, the tissue 

was weighted (= tissue wet weight), homogenized in ice-cold homogenization buffer 

(0.1 M perchloric acid, 0.1 mM EDTA, 2 mM sodium metabisulfite) and sonicated 

(Sonoplus HD60, Bandelin, Germany). Subsequently, each sample was centrifuged at 

20,800 x g for 15 min at 4°C (Eppendorf centrifuge 5417R, Germany), supernatants 

were filtered through a syringe filter (0.2 μm pore size, Whatman, USA) and 

immediately analysed by high performance liquid chromatography (HPLC). 
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 Animals of both rearing groups were used for the following experiments (for the 

number of animals and litters used at each age see Table I). Each animal was used in a 

single experiment only. All experiments were carried out during the light phase, i.e. 

during the activity phase of this day-active species. 

 

2.4 Experiment 1: Postnatal development of neurotransmission 

 
 To examine the maturation of neurotransmission, monoaminergic 

neurotransmitters and their related metabolites as well as amino acids were determined 

in brain homogenates of unstressed control male and female degus. At PND 3, 8, 14, 21, 

45 or 90 (considered as adulthood), the animals were removed from their home cage 

and immediately sacrificed for the preparation of brain tissue as described above. A 

maximum of one male/ one female was used from each litter. 

 

 

2.5 Experiment 2: Age-dependent impact of an acute separation 

stressor on serotonergic neurotransmission 

 
 To examine the effect of an acute, single stress challenge on serotonergic 

neurotransmission during early development, the levels of serotonin and its metabolite 

5-HIAA were examined in previously unstressed control male and female degu pups at 

different ages (PND 3, 8, 14, or 21). To measure basal as well as stress-evoked 

neurotransmitter levels, the pups were removed from the home cage and either (i) 

immediately sacrificed (= basal, control values) or (ii) subjected to an acute stress-

challenge (i.e., a single episode of 1 hour parental separation stress, under the conditions 

described for repeated parental separation stress) and thereafter immediately sacrificed 

for the preparation of brain tissue as described above. A maximum of one male/ one 

female for basal measurement and one male/ one female for the measurement after 

stress challenge was used from each litter. 
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2.6 Experiment 3: The impact of repeated separation stress on basal 

and stress-evoked serotonergic neurotransmission at PND 21 

 
 To reveal the impact of repeated parental separation during the first three weeks 

of life, the levels of serotonin and 5-HIAA in brain homogenates of previously 

unstressed controls and male and female pups exposed to repeated separation stress 

were analyzed. At PND 21, animals from both groups were removed from their home 

cage and either (i.) immediately sacrificed (= basal values) or (ii.) subjected to an acute 

stress-challenge (i.e., an episode of 1 hour parental separation, under the conditions 

described for repeated parental separation stress) and thereafter immediately sacrificed 

for the preparation of brain tissue as described above. Thus, for the control animals this 

stress-challenge at PND 21 was the 1st stress exposure (i.e., novel situation), whereas for 

the repeatedly separated animals this stress challenge was the 21st stress exposure (i.e., a 

potentially familiar situation). A maximum of one male/ one female for basal 

measurement and one male/ one female for the measurement after stress challenge was 

used from each litter. 
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Table I. Number of animals (males/females) and litters [given in square brackets] used in Part I, Experiments 1- 3. * - same animals as in Experiment 1. 

Experiment 1 Experiment 2 Experiment 3 

Age 

unstressed 
controls 

unstressed  
  controls * 

acute 
separation 

stress 
challenge 

unstressed 
controls 

unstressed 
rearing 

+ 
acute 

separation 
stress 

challenge 

repeated 
separation 

stress 

repeated 
separation 

stress  
+ 

acute 
separation 

stress 
challenge 

PND 30 
8/8 

[14] 

8/8 

[14] 

9/7  

[14] 
- - - - 

PND 80 
8/8 

[10] 

8/8 

[10] 

8/8  

[10] 
- - - - 

PND 14 
8/8 

[8] 

8/8  

[8] 

8/7 

[8] 
- - - - 

PND 21 
8/8 

[9] 

8/8 

[9] 

7/7 

[9] 

8/8  

[11] 

8/8 

[11] 

9/8 

[12] 

8/10 

[12] 

PND 45 
7/7 

[10] 
- - - - - - 

PND 90 
6/6 

[7] 
- - - - - - 
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2.7 HPLC analysis of brain homogenates 

 
 Monoaminergic neurotransmitters DA and its metabolites 3,4-

dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) as well as 5-HT 

and its metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) (Figure 6) were quantified 

under isocratic conditions (flow rate: 0.7 ml/min) using a reversed phase HPLC column 

(100x3 mm, packed with YMC ODS-AQ®, 5 μm, YMC, Germany) with the use of 

electrochemical detection. The mobile phase consisted of 75 mM NaH2PO4 (pH 4.6) 

with 1 mM EDTA, 0.2 mM octanesulfonic acid including 3.5% (v/v) acetonitrile. A 

glassy carbon working electrode (electrochemical flowcell: VT-03, ANTEC, The 

Netherlands) was set at +780 mV against an Ag/AgCl reference electrode. The amounts 

of the measured substances were quantified using an external calibration curve and 

expressed as ng/g wet weight. 

 

 
 

Figure 6. The chromatogram representing the separation of monoamines standards: DOPAC, 

dopamine, 5-HIAA, HVA, 3-MT (3-methoxytyramine, metabolite of dopamine) and 5-HT. 
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 Amino acids (Figure 7) were measured after an automatic pre-column-

derivatization procedure using ortho-phtaldialdehyde (10 µl of the sample + 50 µl ortho-

phtaldialdehyde- reagent, reaction time: 2 minutes) following the modified method of 

Lindroth and Mopper (1979). Aspartate, glutamate, taurine, and GABA were separated 

using a reversed-phase HPLC column (125x4 mm, packed with LiChrospher®, 5 μm, 

Merck, Germany) by a non-linear gradient elution method (flow rate: 1.5 ml/min). The 

mobile phase consisted of 0.15 M phosphate buffer (pH 7.0) including 5-75 % 

methanol. With the use of fluorescence detection (RF2000 detector, Dionex, Germany) 

with excitation wavelength set at 330 nm and emission wavelength set at 450 nm, the 

amounts of amino acids were quantified using an external calibration curve and 

expressed as µg/g wet weight. 

 

 

 
Figure 7. The chromatogram presenting the separation of amino acids standards: aspartate 

(Asp), glutamate (Glu), glutamine (Gln), taurine, alanine (Ala) and GABA. 
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2.8 Statistics 

 
 For statistical analysis (SigmaStat 2.0, Jandel; Germany) non-parametric tests 

were used, as most of the data failed to show normality and/or equal variance (even 

after several transformation procedures). The changes in tissue wet weights and levels 

of neurotransmitters during development (Experiment 1) were analysed using Kruskal-

Wallis one-way analysis of variance (ANOVA) followed by post hoc Dunn’s test (with 

PND 90 as the control group). All other comparisons were performed by using the 

Mann-Whitney U-test. For all statistical tests the level of significance was set at p<0.05. 
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Part II. Neurochemical consequences of juvenile stress and chronic 

methylphenidate treatment on dopaminergic function in Octodon 

degus: in vivo microdialysis study 
 

2.9 Animals 

 
 Degus used for the microdialysis experiments were housed and reared under the 

conditions given in Materials and methods, Part I. Animals of two rearing groups were 

used for the microdialysis experiment at two developmental time points: postweaning 

age (PND 23-24) or puberty (PND 47-48) (for schematic representation of the 

experimental groups see Figure 8). Only male animals were used in microdialysis 

experiments. 

PND 22-24: at PND 22 (i.e. for the repeatedly separation stressed animals the last 

episode of parental separation took place at PND 21), between 12:00 a.m. – 01:00 p.m. 

3 animals (siblings) were removed from the home cage and placed in the microdialysis 

rodent bowl (height: 35.56 cm, diameter: 40.64 cm, Bioanalytical Systems, USA) 

equipped with bedding and with free access to food and water. Those 3 animals, 

familiar to each other, were supposed to form the familiar environment, which was 

subsequently disturbed in the forthcoming experiment by the application of separation 

stress (see below). The rodent bowl was placed in a separate room (temperature: 22 ± 

2°C, 12 h light – 12 h dark cycle with light on at 06:00 a.m.) for the whole experiment. 

Two animals from each litter were used at two consecutive days for the microdialysis 

experiments (see below).  

PND 46-48: From PND 22 the animals were injected daily either with saline (200 µL, 

i.p.) or methylphenidate (MP) solution (10 mg/kg, in saline, 200 µL, i.p.). At PND 46 

between 12:00 a.m. – 01:00 p.m. 3 animals (siblings) were removed from the home 

cage and subjected to the same procedure as the degus at PND 22. From each litter one 

animal repeatedly injected with saline and one repeatedly injected with MP solution was 

used. 

 

 

 

 



                                                                                                        Materials and methods 

 38

 

 

PND 0 PND 21 PND 45

C (n=6)

S (n=6)

200 µl saline / day C-Sal (n=6)

S-MP (n=6)

200 µl MP (10mg/kg) / day C-MP (n=6)

unstressed controls

repeated separation stress

S-Sal (n=6)200 µl saline / day

200 µl MP (10mg/kg) / day

unstressed controls

repeated separation stress

repeated separation stress

unstressed controls

 

Figure 8. Schematic representation of experimental groups used for in vivo microdialysis 

experiments. 

 

 

2.10 Microdialysis 

 

2.10.1 The principles of microdialysis 
 
 Microdialysis is a unique technique which enables monitoring of the 

concentration of numerous substances in the living tissue. It was introduced in the 

1970’s as a useful tool for measuring the release of particular substances in the brain 

tissue. The principles of microdialysis are very simple and based on free diffusion of 

substances between two solutions of different concentration (concentration gradient).  

 Microdialysis can be applied to determine either the pharmacokinetic profile of 

administered drug in the area of interest (target tissue) (Kreilgaard, 2002) or the 

amounts of substances of natural origin, such as neurotransmitters in brain tissue 

(Timmerman and Westerink, 1997). Moreover, when applied to the living, conscious, 
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freely moving animal, microdialysis enables the researcher to combine the quantitative 

neurochemical approach with the behavioral or pharmacological experiment 

(Westerink, 2002; Weikop et al., 2004). In addition, with the use of reverse 

microdialysis one can administer pharmacological agents locally through microdialysis 

probe, and measure neurochemical changes in parallel.  

 The design of a microdialysis probe, as it was used in this study, is presented in 

Figure 9. Each probe has an inlet, where the infusate (physiological solution, for 

instance artificial cerebrospinal fluid, which may additionally contain the drug of 

interest) is slowly delivered with the use of microinjection pump. The microdialysis 

semi-permeable membrane is exposed to the particular location of the brain, where the 

measurements take place. Semi-permeable means that it allows the passage of 

molecules with volumes smaller than the pores in the membrane (“cut-off” value). The 

substances smaller than the “cut-off” value of the membrane are slowly exchanged 

between the infusate and the tissue. During the dialysis, the infusate is collected via the 

probe’s outlet into vials and subjected subsequently to the further analysis.  

 One of the parameters characterizing the microdialysis technique is relative 

recovery. Relative recovery provides the information on the percentage of substance 

that can be recovered from extracellular space in particular time unit. The relative 

recovery of a substance from the tissue depends on: 

 

1. The flow rate of perfusate 

2. The dimensions of the membrane – its length and diameter 

3. The “cut-off” value of the membrane, i.e. the size of the pores 

4. The temperature of tissue 

5. The diffusion coefficient of the compounds through the extracellular fluid 

6. The analysed sample – its molecular weight, charge, structure 

7. The unspecific binding of the substance to the membrane and/or connecting tubings. 

  

 Relative recovery increases with the slow down of the flow. Whet the flow stops 

the recovery reaches 100%. 
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     A. 

B. 

 
Figure 9. A. The photograph of entire microdialysis probe used in this study (picture taken with 
Konica-Minolta Dimage Z6 digital camera). B. Schematic representation of the tip of 
microdialysis probe (membrane) – blue arrows indicate the flow direction, green arrows – the 
diffusion of substance of interest (green dots).  
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2.10.2 The microdialysis experiments 
 
 For the implantation of microdialysis probes (CMA/11, 2 mm, Cuprophan, CMA 

Microdialysis, Sweden) the animals were anesthetized with 3% halothane and fixed in 

the stereotaxic apparatus (starting between 03:00 pm – 04:00 pm, on the day of the 

removal from the home cage or at the next day). Two microdialysis probes were 

implanted into the left prefrontal cortex (PND 22-24:  1.4 mm anterior to bregma, 0.4 

mm lateral, and 2.8 mm below dura; PND 46-48: 2.3 mm anterior to bregma, 0.5 mm 

lateral, and 2.8 mm below dura) and right nucleus accumbens (PND 22-24: 0.4 mm 

posterior to bregma, 1.4 mm lateral, and 7.5 mm below dura; PND 46-48: 1.3 mm 

posterior to bregma, 1.4 mm lateral, and 7.8 mm below dura) according to the 

stereotaxic atlas of the degu brain (Wright and Kern, 1992, modified). For the schematic 

representation of the probes placement see Figure 10. The two probes had to be 

implanted into different hemispheres due to space limitations on the small skulls of 

young animals. After insertion, the microdialysis probes were secured to the skull using 

dental cement (Harvard Dental, Germany). The degus were allowed to recover from 

anesthesia and surgery for approximately 16 h in the presence of 2 siblings to avoid the 

stress due to social separation. The siblings were also present during the whole 

experiment (except for the separation procedure, see below).  
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Figure 10. Schematic illustration of microdialysis probes placement in left prefrontal cortex 

(right) and right nucleus accumbens (left), according to Wright and Kern (1992). Figures 

reproduced from Paxinos and Watson (1998). PrCm – precentral medial cortex, ACd – anterior 

cingulate cortex, PL – prelimbic cortex, IL – infralimbic cortex, NacC – nucleus accumbens 

core, NacSh – nucleus accumbens shell, CPu – caudate putamen. 

 

 The infusion of the artificial cerebrospinal fluid (aCSF) was started on the day of 

implantation. The composition of aCSF was as follows: 140 mM NaCl, 4 mM KCl, 2.4 

mM CaCl2, and 1 mM MgCl2. On the day of the experiment the baseline, defined as six 

consecutive samples with <10% variation in levels of DA, was established (0’ – 120’). 

The microdialysates were collected every 20 (separation procedure) or 10 minutes 

(methylphenidate injection), with the flow rate of 1.2 µL/min, using a microinjection 

pump (CMA/100, CMA Microdialysis, Sweden). For the separation procedure the 

samples were collected only every 20 min in order not to stress an animal additionally 

with picking up the sample from microdialysis room. Collecting samples every 10 min 

after MP injection allowed to obtain better time resolution and monitor the effect of MP 

in more detailed way. After establishing the baseline the animal was placed alone in a 

novel environment where it was subjected to 1 hour social separation from its siblings 

(acute separation stress), with parallel counting of animal’s vocalizations (121’ – 180’), 
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as a marker of emotional state of the animal. After separation, each subject was brought 

back to the siblings and the samples were collected for the next 1 h (181’ – 240’). In the 

second part each implanted animal was injected with methylphenidate (10 mg/kg, in 

saline, i.p.) and the samples were collected for the next 3 h (241’ – 420’). For the 

schematic representation of experimental approach see Figure 11. 

 

 
 

Figure 11. Schematic design of the in vivo microdialysis experiment. 

 

 

2.11 HPLC analysis of microdialysates 

 
 Dopamine was quantified under isocratic conditions (flow rate: 0.5 ml/min) 

using a reversed phase HPLC column (100x2.1 mm, packed with YMC ODS-AQ®, 

5µm, YMC, Germany) by electrochemical detection. The mobile phase consisted of 75 

mM phosphate buffer (pH 4.6) with 1 mM EDTA, 1.7 mM octanesulfonic acid 

including 7.5% (v/v) acetonitrile. A glassy carbon working electrode (electrochemical 

flowcell: VT-03, ANTEC, The Netherlands) was set at +650 mV against an in situ 

Ag/AgCl reference electrode (3 mM NaCl in the mobile phase). The detection limit of 

0.1 nM was routinely achieved. 5-HT and noradrenaline were not measurable under 

these conditions. 
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2.12 Histology 

 
 The correct placement of the microdialysis probes in the PFC and Nac was 

histologically verified in each animal by examining series of transversal 40-µm cryostat 

(Micron, Walldorf, Germany) sections, which were counterstained with cresyl violet 

(Nissl stain). Each slide containing brain sections was incubated in the following 

solutions in the given order:  

• acetate buffer (50 mM CH3COONa, 50 mM CH3COOH, pH 4.6) – 3 min 

• 0.5 % cresyl violet – 5 min 

• distilled H2O – 1 min 

• acetate buffer – 5 min 

• 50 % ethanol – 4 min 

• 70 % ethanol – 4 min 

• 96 % ethanol – 2-4 min 

• 2-propanol – 4 min x2 

• xylol – 10 min x2 

Finally, the stained sections were mounted with coverslips with appropriate Histomount 

(Life Sciences) medium. 

 

 

2.13 Statistics 

 
 For the within-group statistical analysis, the effects of acute social separation 

stress and acute MP-injection were compared with mean baseline values using a 

repeated measurement ANOVA on ranks followed by a Dunn´s test (SigmaStat 2.0, 

Jandel; Germany). For the between-group statistical analysis, area-under-curves 

(AUC´s) were calculated for periods of acute social separation stress (t120-180) as well 

after acute MP-injection (t250-280, t280-310, t310-340), and either a t-test (two experimental 

groups) or the General Linear Model including Bonferroni’s adjustment for multiple 

comparisons followed by a t-test was applied (SPSS 8.0.0.). In Experiment 1 

(postweaning age), data were analyzed by a 2x3- design (acute MP-injection) with the 

main factor of rearing conditions (controls/early stressed) and a repeated measurement 

factor of time following acute MP injection (t250-280, t280-310, t310-340). In Experiment 2 
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(puberty), either a 2x2-design (acute social separation stress) with the main factors of 

rearing conditions and pretreatment conditions (saline/MP), or a 2x2x3- design (acute 

MP-injection) with the main factors of rearing conditions as well as pretreatment 

conditions, and a repeated measurement factor of time following MP injection was 

applied. To reveal the relationship between number of distress calls and the increase in 

DA, the Pearson´s correlation procedure was carried out. In all tests, the significance 

level was set at p<0.05. 
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3 RESULTS 

 

 

Part I. Epigenetic influences on neurotransmission in Octodon degus 

during early postnatal development: study in brain homogenates 
 

3.1 Changes of tissue wet weights during postnatal development 

 
 As an indicator of the overall brain maturation, the postnatal development of 

tissue wet weights were determined (Figure 12). In general, an increase in tissue wet 

weights during development was observed for males and females in the mPFC 

(H(5)=37.5, p<0.001, and H(5)=46.2, p<0.001, respectively; Kruskal-Wallis ANOVA), 

frontal cortex (H(5)=37.5, p<0.001, and H(5)=36.0, p<0.001, respectively), caudal cortex 

(H(5)=64.4, p<0.001, and H(5)=59.3, p<0.001, respectively) and hippocampus (H(5)=63.7, 

p<0.001, and H(5)=67.2, p<0.001, respectively). At the earliest time point measured 

(PND 3) the tissue wet weights reached in both sexes already 54/ 54 % (males and 

females, respectively) in mPFC, 58/ 59 % in the frontal cortex,  45/ 50 % in the caudal 

cortex and 49/ 53 % in the hippocampus of adult values (PND 90). Whereas the mPFC 

reached adult-like wet weights already at PND 21 and the frontal cortex at PND 45, the 

caudal cortex and hippocampus showed a continuous increase until adulthood (PND 

90). In addition, no sex differences in tissue wet weights were found (except for the 

caudal cortex at PND 90 with males higher (p=0.028, Mann-Whitney U-test) than 

females). 
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Figure 12. The postnatal development of the tissue wet weights (mg ± SEM) of the mPFC (A), 

frontal cortex (B), caudal cortex (C), and hippocampus (D) of male (left) and female (right) 

Octodon degus.  

* p<0.05 vs. PND 90 

# p<0.05 vs. males of the same age 
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3.2 Experiment 1: Postnatal development of neurotransmission 

 
 

3.2.1 Dopaminergic system 
 

3.2.1.1 Dopamine, DOPAC and HVA 
 
 The developmental changes in DA, DOPAC and HVA levels are presented in 

Figure 13. In general, the levels of DA increased in male mPFC (H(5)=21.5, p<0.001, 

Kruskal-Wallis-ANOVA) and male and female frontal cortex (H(5)=24.0, p=0.023 and 

H(5)=15.9, p<0.001, respectively). The same was found for DOPAC in male and female 

mPFC (H(5)=23.3, p<0.001 and H(5)=19.8, p=0.007, respectively), frontal cortex 

(H(5)=23.5, p<0.001, and H(5)=20.2, p<0.001, respectively) and female caudal cortex 

(H(5)=19.2, p=0.009). The levels of DOPAC and HVA decreased in male hippocampus 

(H(5)=19.1, p=0.031 and H(5)=25.4, p=0.003, respectively). All 3 substances reached 

adult-like levels relatively early during ontogeny, i.e. until PND 21.  

 In more detail, in the mPFC in females, adult-like levels of DA were reached 

earlier than in males (PND 3 and PND 8, respectively). For DOPAC in males an 

increase starting at PND 3 (20 % of adults, p<0.05) was observed until adulthood. In 

females, the levels of DOPAC expressed no statistical difference from adult-like levels 

at PND 3 (36 % in comparison to adulthood). At PND 45 the levels of DOPAC in 

females were significantly higher than in males (p=0.011, Mann-Whitney U-test). The 

levels of HVA at PND 3 reached in males 90 % (p<0.05, Dunn´s test) and in females 

100 % of adult-like amounts, in both sexes this developmental point showed no 

statistical difference from the adults. At PND 21 the levels of HVA in females were 

significantly lower than in males (p=0.021, Mann-Whitney U-test). 

 In the frontal cortex, at PND 3, the levels of DA reached 75 % of adult-like 

amounts in males and 78 % in females. Adult-like levels of DA were observed already 

at PND 3. For DOPAC an increase starting at PND 3 (males: 18 %, females: 36 % of 

adults; p<0.05) was observed reaching adult-like levels at PND 8 (both sexes). At PND 

14 the levels of DOPAC in females were significantly lower than in males (p=0.038, 

Mann-Whitney U-test). The levels of HVA at PND 3 reached in males 94 % and in 
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females 104 % of adult-like amounts, with no developmental significance. At PND 8 

the levels of HVA in females were significantly higher than in males (p=0.015, Mann-

Whitney U-test). 

 In the caudal cortex, the DA values reached 52 % of adult-like levels in males 

and 45 % (p<0.05) in females at PND 3. In males, DA reached adult-like amounts at 

PND 3, in females it increased until PND 8. Moreover, DOPAC (at PND 3: 35 % and 

44 % (p<0.05) compared to adults in males and females, respectively) reached the adult-

like levels at PND 3 in males and at PND 14 in females. HVA at PND 3 showed 60 % 

and 67 % of PND 90 amounts in males and females, respectively. In both sexes at the 

earliest developmental point tested, HVA reached already adult-like levels. 

 The hippocampus, among the regions analyzed, was characterized by the lowest 

concentrations of DA and DOPAC. At PND 3, DA reached 72 % of adult-like levels in 

males and females. The concentrations of this monoamine did not change during 

development significantly in any of the sexes. The levels of DOPAC (at PND 3: 103 % 

and 48 % compared to adults in males and females, respectively) reached adult-like 

values at PND 3 in both sexes. HVA amounts were higher at PND 3 (males: 128 %, 

females: 110 %) than at PND 90 and, comparable to DOPAC, did not change 

significantly during development. 
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Figure 13. The postnatal development of DA, DOPAC and HVA concentrations (ng/g wet 

weight ± SEM) of the mPFC, frontal cortex, caudal cortex, and hippocampus of male and 

female Octodon degus. * p<0.05 vs. PND 90 in mPFC, # in frontal cortex, § in caudal cortex, † in 

hippocampus (Dunn’s test). (*), (#) p<0.05 vs. males of the same age (Mann-Whitney U-test). 
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3.2.1.2 Dopamine turnover 
 
 The developmental changes in dopamine turnover ratios are presented in Figure 

14. In general, the DOPAC/DA ratios displayed no significant changes during 

development in any of the regions examined. HVA/DA ratio decreased in male mPFC 

(H(5)=22.5, p=0.004, Kruskal-Wallis-ANOVA) and frontal cortex (H(5)=31.5, p<0.001). 

An increase was found for (DOPAC+HVA)/DA ratio in male frontal cortex (H(5)=28.4, 

p=0.002). 

 In more detail, in the mPFC at PND 3 the levels of DOPAC/DA ratio reached in 

males 94 % and in females 111 % of adult-like values, with no further significant 

developmental changes. For HVA/DA ratio in males and females a decrease starting at 

PND 3 (664 %, p<0.05 and 240 % of adults, respectively) was observed reaching levels 

comparable to adults at PND 8 and 3, respectively. At PND 21 the levels of HVA/DA 

ratio in females were significantly lower than in males (p=0.029, Mann-Whitney U-

test). Similarly to HVA/DA ratio, for (DOPAC+HVA)/DA a decrease was observed for 

males and females (at PND 3: 446 % and 116 % of adults) with no significant 

developmental changes except for a peak in males at PND 45 (p<0.05 vs. adults).  

 In the frontal cortex, at PND 3, the levels of DOPAC/DA ratio reached 79 % of 

adult-like amounts in males and 102 % in females. Adult-like levels of dopamine 

turnover were observed already at PND 3. The levels of HVA/DA ratio at PND 3 

reached 125 % of adult-like amounts in males and 134 % in females and remained 

stable from PND 14 (males) or 3 (females). (DOPAC+HVA)/DA ratio at PND 3 

reached 94 % of adult levels in males (slight increase until PND 14) and 116 % in 

females (no further significant changes). 

 At PND 3 in the caudal cortex, in males and females respectively, DOPAC/DA 

ratio reached 106 % and 105 % of adult-like levels, HVA/DA ratio 124 % and 168 %, 

and (DOPAC+HVA)/DA 106 % and 137 %. None of the ratios expressed significant 

developmental changes in this brain area, which suggests that adult-like levels are 

reached already at PND 3. At PND 45 the levels of HVA/DA ratio in females were 

significantly higher than in males (p=0.023, Mann-Whitney U-test). 

 At PND 3 in the hippocampus, in males and females respectively, DOPAC/DA 

ratio reached 78 % and 90 % of adult-like levels, HVA/DA ratio 202 % and 220 %, and 

(DOPAC+HVA)/DA 194 % and 204 %. Similarly to caudal cortex, adult-like 

comparable levels were reached at PND 3. 



                                                                                                                                Results 

 52

DOPAC / DA DOPAC / DA

HVA / DA

0

5

10

15

20

25

30
HVA / DA

X Data

0

5

10

15

20

25

30

(DOPAC+HVA) / DA

age (postnatal day)

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

*

(*)

(DOPAC+HVA) / DA

* *#

#

(§)

* mPFC # frontal cortex

§ caudal cortex hippocampus

MALES FEMALES

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

3 8 14 21 45 90 3 8 14 21 45 90

 

Figure 14. Postnatal development of dopamine turnover in the mPFC, frontal cortex, caudal 

cortex, and hippocampus of male and female Octodon degus. * p<0.05 vs. PND 90 in mPFC, # 

in frontal cortex, § in caudal cortex, (Dunn’s test). (*), (§) p<0.05 vs. males of the same age 

(Mann-Whitney U-test). 

 



                                                                                                                                Results 

 53

3.2.2 Serotonergic system 
 
 The developmental changes in 5-HT and 5-HIAA levels as well as 5-HT 

turnover ratios are presented in Figure 15. In general, the levels of 5-HT increased in 

male and female mPFC (H(5)=15.1, p=0.010 and H(5)=22.0, p<0.001, respectively; 

Kruskal-Wallis-ANOVA), frontal cortex (H(5)=14.5, p=0.013 and H(5)=27.0, p<0.001, 

respectively), caudal cortex (H(5)=22.5, p<0.001, and H(5)=24.7, p<0.001, respectively) 

and hippocampus (H(5)=14.8, p=0.011 and H(5)=20.5, p<0.001, respectively). The same 

was found for 5-HIAA in male and female mPFC (H(5)=16.3, p<0.001, and H(5)=21.5, 

p<0.001, respectively), frontal cortex (H(5)=31.3, p=0.021 and H(5)=29.5, p=0.022, 

respectively), caudal cortex (H(5)=13.7, p<0.001, and H(5)=19.8, p<0.001, respectively) 

and hippocampus (H(5)=15.1, p=0.031 and H(5)=12.7, p=0.013, respectively). Both 

substances reached adult-like levels relatively early during ontogeny, i.e. mostly 

between PND 3 and 21. The 5-HIAA/5-HT ratios displayed no significant changes 

during development in any of the regions examined. In addition, no differences in 5-HT 

and 5-HIAA levels between males and females were found in the developmental 

pattern. 

 In more detail, in the mPFC at PND 3 the levels of serotonin reached in males 

43 % (p<0.05, Dunn´s test) and in females 40 % (p<0.05) of adult-like amounts. In 

males, adult-like levels of 5-HT were reached much earlier than in females (PND 8 and 

PND 45, respectively). For 5-HIAA an increase starting at PND 3 (males: 37 %, 

females: 39 % of adults; p<0.05) was observed reaching adult-like levels at PND 21 

(males) or PND 14 (females). 

 The frontal cortex, among the regions analyzed, was characterized by the 

lowest levels of 5-HT and 5-HIAA. At PND 3, the levels of 5-HT reached 64 % of 

adult-like levels in males and 56 % in females (p<0.05, respectively). Comparable to the 

mPFC, adult-like levels of 5-HT were observed much earlier in males (at PND 8) than 

in females which showed a gradual increase lasting until adulthood. For 5-HIAA an 

increase starting at PND 3 (males: 55 %, females: 57 % of adults; p<0.05) was observed 

reaching adult-like levels at PND 14 (males) or PND 21 (females). 

 In the caudal cortex, the 5-HT values reached 60 % (p<0.05) of adult-like levels 

in males and 48 % (p<0.05) in females at PND 3. In males, 5-HT increased to adult-like 

amounts until PND 14, in females until PND 21. Moreover, 5-HIAA (at PND 3: 65 % 
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and 52 % compared to adults in males and females, respectively; p<0.05) reached the 

adult-like levels at PND 3 in males and at PND 8 in females. 

 The hippocampus, among the regions analyzed, was characterized by the 

highest concentrations of 5-HT and 5-HIAA. At PND 3, 5-HT reached 77 % and 58 % 

(p<0.05, respectively) of adult-like levels in males and females, respectively. Whereas 

in males the concentrations of 5-HT did not change during development significantly, in 

females adult-like levels were reached at PND 21. The levels of 5-HIAA (at PND 3: 59 

% and 52 % compared to adults in males and females, respectively; p<0.05) reached 

adult-like values at PND 8 in both sexes. 
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Figure 15. Postnatal development of 5-HT and 5-HIAA concentrations (ng/g wet weight ± 

SEM) as well as 5-HIAA/5-HT ratio of the mPFC, frontal cortex, caudal cortex, and 

hippocampus of male and female Octodon degus. * p<0.05 vs. PND 90 in mPFC, # in frontal 

cortex, § in caudal cortex, † in hippocampus (Dunn’s test). 
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3.2.3 Amino acids 
 
 The developmental changes in amino acids levels are presented in Figure 16. In 

general, the levels of aspartate decreased in male and female caudal cortex (H(5)=32.2, 

p=0.003, and H(5)=33.2, p=0.004, respectively; Kruskal-Wallis-ANOVA) and female 

hippocampus (H(5)=30.1, p=0.004). Glutamate increased in male and female 

hippocampus (H(5)=24.5, p=0.031, and H(5)=26.6, p=0.007, respectively) and in female 

caudal cortex (H(5)=28.9, p<0.001). Taurine decreased in male and female mPFC 

(H(5)=19.1, p<0.001, and H(5)=22.2, p<0.001, respectively), frontal cortex (H(5)=25.3, 

p<0.001, H(5)=24.7, p<0.001, respectively), caudal cortex (H(5)=23.2, p<0.001, and 

H(5)=28.5, p<0.001, respectively) and hippocampus (H(5)=29.2, p<0.001, and H(5)=30.6, 

p<0.001, respectively). GABA increased significantly only in female hippocampus 

(H(5)=29.2, p=0.008). In addition, no sex differences were found in the developmental 

pattern. 

 In more detail, in the mPFC at PND 3 the levels of aspartate reached in males 

76 % and in females 80 % of adult-like amounts. In both sexes adult-like levels were 

reached already at PND 3. The same was found for glutamate, with 73 % and 71 % of 

PND 90 levels at PND 3 in males and females, respectively. Taurine gradually 

decreased from PND 3 (males: 215 %, p<0.05, females:  273 %, p<0.05 of adult-like 

concentrations), reaching stable levels PND 14 (males) and PND 21 (females). GABA 

did not change significantly during development, and at PND 3 it made 93 % and 82 % 

of adult-like amounts in males and females, respectively. 

 In the frontal cortex at PND 3 the levels of aspartate reached in males 100 % 

and in females 115 % of adult-like amounts. In both sexes adult-like levels were 

reached already at PND 3. The same was found for glutamate, with 109 % and 98 % of 

PND 90 levels at PND 3 in males and females, respectively. Taurine gradually 

decreased from PND 3 (males: 329 %, p<0.05, females:  325 %, p<0.05 of adult-like 

concentrations), reaching stable levels PND 21 (both sexes). GABA did not change 

significantly during development, and at PND 3 it made 105 % and 100 % of adult-like 

amounts in males and females, respectively. 

 In the caudal cortex at PND 3 the levels of aspartate reached in males 110 % 

and in females 113 % of adult-like amounts. Stable levels of this amino acid were 

reached at PND 45 (males) and PND 21 (females) after crossing a peak in the middle of 

developmental curve. For glutamate, 95 % and 86 % of PND 90 levels at PND 3 in 
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males and females, respectively, were found. The concentrations typical for adulthood 

were detected already at PND 3 for males and PND 14 for females. Taurine gradually 

decreased from PND 3 (males: 325 %, p<0.05, females:  285 %, p<0.05 of adult-like 

concentrations), reaching stable levels PND 21 (males) and PND 45 (females). GABA 

did not change significantly during development, and at PND 3 it made 87 % and 106 % 

of adult-like amounts in males and females, respectively. 

 In the hippocampus at PND 3 the levels of aspartate reached in males 104 % 

and in females 112 % of adult-like amounts. Stable levels of this amino acid were 

reached at PND 3 (males) and PND 21 (females) after crossing a peak at PND (14). For 

glutamate, 77 % (p<0.05) and 78 % (p<0.05) of PND 90 levels at PND 3 in males and 

females, respectively, were found. The concentrations typical for adulthood were 

reached at PND 21 for males and PND 14 for females. Taurine gradually decreased 

from PND 3 (males: 192 %, p<0.05, females:  190 %, p<0.05 of adult-like 

concentrations), reaching stable levels PND 21 (both sexes). GABA did not change 

significantly during development in males, and at PND 3 it made 81 % of adult-like 

amounts. In females, at PND 3 concentration of this amino acid reached 79 % of PND 

90 levels and increased until PND 14. 
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Figure 16. Postnatal development of brain amino acids concentrations (µg/g wet weight ± 

SEM) in mPFC, frontal cortex, caudal cortex, and hippocampus of male and female Octodon 

degus. * p<0.05 vs. PND 90 in mPFC, # in frontal cortex, § in caudal cortex, † in hippocampus 

(Dunn’s test). 
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3.3 Experiment 2: Age-dependent impact of an acute separation 

stressor on serotonergic neurotransmission 

 
 The basal and acute stress-evoked levels of 5-HT as well as the 5-HIAA/5-HT 

ratios are summarized in Table II. Since 5-HIAA was not affected in any of the brain 

regions by acute stress, the data are not shown. 

 In general, the stress challenge (i.e. separation from parents and from siblings) 

induced an age-, region- and sex-specific pattern of changes in the serotonergic system. 

The most pronounced effects were found in the frontal cortex of females. 

 In more detail, in the mPFC, except of an increased 5-HIAA/5-HT ratio after 

acute separation stress at PND 14 in males (p=0.009; Mann-Whitney U-test) as well as 

in females (p=0.013), there was no effect of the acute stressor. 

 In the frontal cortex, an acute separation stress induced a decrease of 5-HT at 

PND 3 (p<0.001; Mann-Whitney U-test), PND 8 (p=0.010) and PND 14 (p=0.039) in 

males and at PND 3 (p=0.024) and PND 8 (p=0.005) in females. The 5-HIAA/5-HT 

ratios were increased by the acute separation stress at PND 3 (p<0.001) and PND 8 

(p<0.001) in males and at PND 3 (p=0.023), PND 8 (p=0.010), PND 14 (p=0.006) and 

PND 21 (p=0.014) in females. 

 In the caudal cortex, no impact of the acute separation stress on the 

neurochemical parameters was observed. 

 In the hippocampus, except of an elevated 5-HIAA/5-HT ratio at PND 21 in 

males (p=0.008) as well as in females (p=0.008), there was no effect of the acute 

stressor on serotonergic neurotransmission. 
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Table II. The impact of acute parental separation stress on 5-HT levels (ng/g wet weight ± SEM) and 5-HIAA/5-HT ratios in previously unstressed male and female Octodon 

degus. 

 

5-HT 5-HIAA/5-HT 
Males Females Males Females Region PND 

unstressed controls acute separation 
stress challenge unstressed controls acute separation 

stress challenge unstressed controls acute separation 
stress challenge unstressed controls acute separation 

stress challenge 
3 91.6 ± 17.8   85.8 ± 16.7   84.1 ± 15.10   83.8 ± 13.00 0.99 ± 0.10 1.12 ± 0.14 1.12 ± 0.23 1.23 ± 0.14 
8 109.7 ± 14.70 103.3 ± 15.7 96.1 ± 9.40 100.1 ± 15.30 1.06 ± 0.15 1.04 ± 0.05 1.10 ± 0.06 1.10 ± 0.19 

14 103.9 ± 8.800 107.6 ± 15.4 123.9 ± 11.80 113.8 ± 14.60 0.86 ± 0.02    1.27 ± 0.17 # 0.94 ± 0.07    1.13 ± 0.11 # 
mPFC 

21 144.6 ± 23.60 124.8 ± 15.2 115.8 ± 9.100 112.2 ± 16.60 1.20 ± 0.12 1.39 ± 0.15 1.21 ± 0.13 1.32 ± 0.12 

3 71.7 ± 2.40    48.3 ± 3.9 # 71.4 ± 2.10    66.1 ± 8.1 #0 0.95 ± 0.05    1.30 ± 0.13 # 1.06 ± 0.07    1.38 ± 0.07 # 
8 87.6 ± 3.30    73.3 ± 3.5 # 83.2 ± 3.40    75.3 ± 5.4 #0 0.96 ± 0.05    1.23 ± 0.02 # 0.96 ± 0.04    1.21 ± 0.05 # 

14 86.4 ± 6.00    62.1 ± 9.1 # 85.4 ± 5.40 97.5 ± 11.2 0.98 ± 0.05 1.10 ± 0.09 1.08 ± 0.05    1.30 ± 0.12 # 
frontal 
cortex 

21 92.5 ± 3.60 95.3 ± 7.5 97.3 ± 6.00 91.3 ± 4.10 1.03 ± 0.03 1.12 ± 0.09 1.04 ± 0.04    1.32 ± 0.13 # 
3 89.9 ± 7.50 117.8 ± 15.4 88.3 ± 4.10 109.4 ± 17.90 0.83 ± 0.04 0.86 ± 0.05 0.77 ± 0.05 0.90 ± 0.05 
8 94.6 ± 8.00 101.5 ± 4.60 125.2 ± 20.30 100.1 ± 3.200 0.87 ± 0.09 0.98 ± 0.03 0.84 ± 0.07 0.94 ± 0.04 

14 114.9 ± 7.400 108.3 ± 6.70 112.9 ± 6.200 112.3 ± 8.400 0.82 ± 0.07 0.99 ± 0.02 0.89 ± 0.04 0.95 ± 0.03 
caudal 
cortex 

21 137.9 ± 11.10 130.8 ± 13.6 136.9 ± 9.20b 136.4 ± 14.70 0.95 ± 0.09 0.81 ± 0.04 0.83 ± 0.06 0.79 ± 0.05 

3 232.3 ± 12.40 244.7 ± 5.40 229.4 ± 8.300 240.4 ± 8.600 1.27 ± 0.09 1.34 ± 0.26 1.30 ± 0.08 1.28 ± 0.26 
8 264.8 ± 8.100 264.5 ± 13.7 263.0 ± 16.50 260.7 ± 15.50 1.31 ± 0.08 1.53 ± 0.48 1.45 ± 0.12 1.65 ± 0.40 

14   261.8 ± 14.200 269.3 ± 8.90 275.2 ± 16.60 267.0 ± 8.900 1.32 ± 0.09 0.84 ± 0.19 1.58 ± 0.13 0.76 ± 0.15 
hippocampus 

21 285.3 ± 16.10 287.5 ± 14.6 299.3 ± 15.50 265.7 ± 17.30 1.25 ± 0.05    1.66 ± 0.17 # 1.34 ± 0.06    1.70 ± 0.15 # 

 
# p<0.05 vs. levels in unstressed controls (Mann-Whitney U-test) 
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3.4 Experiment 3: The impact of repeated separation stress on basal 

and stress-evoked serotonergic neurotransmission at PND 21 

 
 The impact of repeated stress exposure, i.e. repeated parental separation during 

the first three postnatal weeks, on the basal and stress-evoked levels of 5-HT, 5-HIAA 

and 5-HIAA/5-HT ratios at PND 21 is summarized in Figure 17. 

 In general, repeated stress exposure had sex- and region-specific effects on the 

serotonergic system with the most pronounced effects in the frontal (only females) and 

caudal cortex (both sexes). 

 In more detail, in the mPFC, except of an increase of the basal levels of 5-HIAA 

in males (p<0.001 compared to unstressed control animals; Mann-Whitney U-test) and 

females (p<0.001), no effects of repeated separation stress were detected. 

 In the frontal cortex of females, acute separation stress resulted in an increase 

of 5-HIAA/5-HT ratio in unstressed controls (p=0.001, compared to the basal levels) 

and repeatedly stressed animals (p<0.001). Consequently, there was an attenuated 

responsiveness (-18 % vs. acutely stressed, control animals, p=0.038) of the 

serotonergic system in the repeatedly stressed females. In contrast, no stress evoked 

changes of 5-HIAA/5-HT ratio were found either in unstressed controls (comparable to 

Experiment 2) or repeatedly stressed males. 

 In the caudal cortex, repeated separation stress resulted in an up-regulation of 

the basal levels of 5-HIAA in males (p<0.001 compared to unstressed control animals) 

and females (p=0.021). In all experimental groups, a tendency towards decreased 5-

HIAA levels after acute stress was observed. This decrease was more pronounced in 

repeatedly stressed females than in males (p=0.033). 

 In the hippocampus, a stress-induced increase of 5-HT (p=0.043 compared to 

basal levels) and an increase of the basal 5-HIAA/5-HT ratio (p=0.028 compared to 

unstressed control animals) was observed in repeatedly stressed males. Acute stress 

resulted in an increase of 5-HIAA/5-HT ratio in unstressed control males (p=0.019, 

compared to the basal levels) and females (p=0.030, respectively), but not in repeatedly 

stressed animals. 
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Figure 17. The impact of repeated parental separation stress on basal and stress-induced 

(acute, 1 h parental separation) levels of serotonin, 5-HIAA and 5-HIAA/5-HT ratio in 

mPFC, frontal and caudal cortex and hippocampus of male (M) and female (F) Octodon 

degus at PND 21. Data are given as ng/g wet tissue (mean ± SEM). * p<0.05 (Mann-

Whitney U-test) 
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Part II. Neurochemical consequences of juvenile stress and chronic 

methylphenidate treatment on dopaminergic function in Octodon 

degus: in vivo microdialysis study 

 
 

3.5 Influence of repeated separation stress and methylphenidate 

injection on body weights and basal levels of dopamine  

 
 
 
 
Table III. Body weights and basal extracellular levels of dopamine. Values are given as mean ± 
SD. #:  p<0.05 vs. C; §: p<0.05 vs. C-Sal; *: p<0.05 vs. S-Sal; †: p<0.05 vs. C-MP; 
 

 Experimental 
group 

Body weights 
(g) mPFC (nM) Nac (nM) 

C   47.6 ± 3.2 0.908 ± 0.002 11.259 ± 0.001 postweaning 
age S   50.3 ± 2.5    0.992 ± 0.002 #    13.981 ± 0.003 # 

C-Sal 119.3 ± 9.1 0.871 ± 0.001 11.440 ± 0.001 
 C-MP 129.0 ± 3.3    0.829 ± 0.001 § 11.471 ± 0.001 
S-Sal 128.1 ± 5.2    1.049 ± 0.002 §    12.872 ± 0.004 § puberty 
 S-MP 131.0 ± 2.6       1.010 ± 0.001 * †       10.731 ± 0.001 * † 

 
 
 
 
 
 
 At postweaning age (Table III), no difference in body weights (p=0.123) was 

found between repeatedly stressed (S) and unstressed control (C) animals. Comparing 

the basal DA concentrations, increased levels were observed in repeatedly stressed 

animals compared to controls in both the mPFC (p<0.001) and Nac (p<0.001). 

 At puberty, increased body weights were observed in repeatedly stressed and/or 

MP- pretreated animals, as indicated by an effect of rearing (F(1,20)=5.393, p=0.031) and 

pretreatment (F(1,20)=7.35, p=0.013), but no rearing x pretreatment- interaction was 

detected. Comparing the basal DA levels, a significant effect of rearing 

(F(1,20)=118282.1, p<0.001), pretreatment (F(1,20)=5877.0, p<0.001), and a rearing x 

pretreatment- interaction (F(1,20)=4.4, p=0.048) was observed in the mPFC. Post-hoc 

analysis revealed increased DA levels in repeatedly stressed animals (C-Sal vs. S-Sal: 
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p<0.05; C-MP vs. S-MP: p<0.05), but decreased levels of DA after chronic MP- 

pretreatment (C-Sal vs. C-MP: p<0.05; S-Sal vs. S-MP: p<0.05). In the Nac, a 

significant effect of rearing (F(1,20)=181572.3, p<0.001), pretreatment 

(F(1,20)=1690651.7, p<0.001), and a rearing x pretreatment- interaction 

(F(1,20)=1789955.9, p<0.001) was observed on basal DA levels. Post-hoc analysis 

revealed increased DA levels in saline- pretreated (C-Sal vs. S-Sal: p<0.05), but 

decreased DA levels in MP- pretreated, repeatedly stressed animals (C-MP vs. S-MP: 

p<0.05). In addition, decreased levels of DA were observed after chronic MP- 

pretreatment in repeatedly stressed animals (S-Sal vs. S-MP: p<0.05), but not in 

unstressed controls. 

 

 

3.6 Distress calls during social separation stress 

 
 Postweaning age: During acute social separation stress four (unstressed controls) 

and two (repeatedly stressed) out of six animals displayed distress vocalization (Figure 

18), a difference which tended towards significance (p = 0.070). A correlation analysis 

revealed no relationship between the number of distress calls and the accumulated 

increase of dopamine (as indicated by the AUC- values) in mPFC or Nac in any of the 

experimental groups (data not shown). 

Puberty: During acute separation stress, two (unstressed controls; unstressed controls + 

chronically MP-pretreated; repeatedly stressed) or three (repeatedly stressed + 

chronically MP-pretreated) out of six animals displayed distress calls (Figure 18), 

however this difference was not significant. Furthermore, there was no correlation 

between the number of distress calls and the increase of dopamine (as indicated by the 

AUC- values) in mPFC or Nac (data not shown). 
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Figure 18. Distress calls during period of separation from the siblings. Data are given as mean ± 

SEM. 



                                                                                                                                Results 

 66

 

3.7 The impact of acute separation stress and MP injection on 

extracellular levels of dopamine in the medial prefrontal cortex 

and nucleus accumbens at postweaning age 

 
 Acute social separation stress increased the levels of DA in the mPFC (Figure 

19) in unstressed control (χ2=30.847, p<0.001) as well as repeatedly prestressed 

animals (χ2=24.467, p<0.001), reaching 171 ± 4% (p<0.05 compared to baseline) and 

146 ± 3% (p<0.05) of baseline, respectively. The between-group comparison revealed 

an attenuation of the DA increase in repeatedly prestressed compared to unstressed 

control animals (p<0.001). In the Nac (Figure 20), DA levels were increased in 

unstressed controls (χ2=21.154, p=0.0021) as well as repeatedly prestressed animals 

(χ2=15.643, p=0.016) to 169 ± 18% (p<0.05) and 150 ± 14% (p<0.05) of baseline, 

respectively. However, the between-group comparison using AUC-values revealed no 

significant difference in the effect of acute social separation stress on DA release 

between both groups. Importantly, after cessation of acute social separation stress, DA 

levels returned to baseline in both brain regions within the next 60 minutes.  

 A single acute MP injection increased the levels of DA in the mPFC (Figure 19) 

in unstressed controls (χ2=66.954, p<0.001) reaching 116 ± 2% of baseline (p<0.05 

compared to baseline), but not in repeatedly prestressed animals (the decrease observed 

failed significance). The between-group comparison using AUC-values revealed a 

strong tendency towards significance for the main effect of rearing (F(1,10)=4.902, 

p=0.051), an effect of time following injection (F(2,20)=11.615, p<0.001), and a rearing x 

time following injection- interaction (F(2,20)=11.396, p<0.001) on DA release. Post-hoc 

analysis indicated a difference between both rearing groups during the first (p=0.004) 

and second (p=0.041), but not during the third half-hour following MP injection. In the 

Nac (Figure 20), DA levels were increased in unstressed controls (χ2=47.882, p<0.001) 

to 136 ± 6%; (p<0.05) of baseline, but not in repeatedly prestressed animals. A 

between-group comparison revealed no difference in the effect of acute MP injection 

between both rearing groups. 
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Figure 19. Effect of acute separation stress challenge (horizontal bar) and acute injection of methylphenidate (vertical arrow) on the extracellular levels of 

dopamine in mPFC at postweaning age (PND 22-24). Data are given as percent of baseline levels (± SEM). The inserts represent changes for the t120-180 (acute 

separation stress) and t250-280, t280-310, t310-340 (acute MP) sampling period. Statistical differences versus baseline levels in the range of each experimental group are 

given in the text. 
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Figure 20. Effect of acute separation stress (horizontal bar) and acute injection of methylphenidate (vertical arrow) on the extracellular levels of dopamine in Nac 

at postweaning age (PND 22-24). Data are given as percent of baseline levels (± SEM). The inserts represent changes for the t120-180 (acute separation stress) and 

t250-280, t280-310, t310-340 (acute MP) sampling period. Statistical differences versus baseline levels in the range of each experimental group are given in the text. 
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3.8 The impact of chronic methylphenidate treatment on acute 

separation stress and acute MP injection evoked extracellular 

levels of dopamine in the prefrontal cortex and nucleus 

accumbens at puberty  

 
 Acute social separation stress increased the levels of DA in the mPFC (Figure 

21) in unstressed controls (χ2=30.358, p<0.001) to 142 ± 3% of baseline (p<0.05 

compared with baseline), in unstressed MP-pretreated (χ2=35.122, p<0.001) to 170 ± 

1% (p<0.05), in repeatedly prestressed (χ2=24.539, p<0.001) to 148 ± 12% (p<0.05), 

and in repeatedly prestressed MP-pretreated animals (χ2=24.867, p<0.001) to 265 ± 

52% (p<0.05) of baseline levels. The between-group comparison using AUC-values 

revealed a main effect of rearing (F(1,20)=8.876, p=0.007) and pretreatment conditions 

(F(1,20)=10.050, p=0.005) on DA release in the mPFC, but no interaction between both 

factors. In the Nac (Figure 22), DA was increased in unstressed MP-pretreated 

(χ2=31.929, p<0.001) to 186 ± 6% (p<0.05), in repeatedly prestressed (χ2=16.890, 

p<0.001) to 125 ± 7% (p<0.05), and in repeatedly prestressed MP-pretreated animals 

(χ2=30.162, p<0.001) to 214 ± 26% (p<0.05) of baseline levels, but not in unstressed 

control animals. The between- group comparison using AUC-values revealed a main 

effect of pretreatment conditions (F(1,20)=32.869, p<0.001) on DA levels during acute 

social separation stress, but no effect of rearing and no interaction between rearing x 

pretreatment conditions. Importantly, after cessation of acute separation stress DA 

levels returned to baseline within the next 60 minutes in both brain regions of all 

experimental groups.  

 A single acute MP injection increased the levels of DA in the mPFC (Figure 21) 

in unstressed control animals (χ2=97.558, p<0.001) to 174 ± 2% of baseline (p<0.05 

compared with baseline), in unstressed, chronically MP-pretreated (χ2=100.859, 

p<0.001) to 441 ± 5% (p<0.05), in repeatedly prestressed (χ2=88.042, p<0.001) to 277 ± 

13% (p<0.05), and in repeatedly prestressed MP-pretreated animals (χ2=87.159, 

p<0.001) to 583 ± 58% (p<0.05) of baseline levels. The between-group comparison 

using AUC-values revealed a main effect of rearing (F(1,20)=73.477, p<0.001) and 

pretreatment conditions (F(1,20)=68.26, p<0.001) on DA release in the mPFC, but no 

interaction between both factors. Furthermore, there was a main effect of time following 

injection (F(2,40)=777.736, p<0.001), and an interaction between rearing x time 
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following injection (F(2,40)=80.405, p<0.001), pretreatment conditions x time following 

injection (F(2,40)=231.998, p<0.001), and an interaction between rearing x pretreatment 

conditions x time following injection (F(2,40)=4.941, p=0.012). Post-hoc analysis 

revealed increased DA levels in repeatedly prestressed animals (unstressed controls vs. 

repeatedly prestressed: p<0.05; unstressed, chronically MP pretreated vs. repeatedly 

prestressed, MP pretreated: p<0.05) as well as after chronic MP- pretreatment 

(unstressed controls vs. unstressed, chronically MP pretreated: p<0.05; repeatedly 

prestressed vs. repeatedly prestressed, MP pretreated: p<0.05) most prominent in the 

first half-hour following acute MP injection. In the Nac (Figure 22), DA was increased 

in unstressed controls (χ2=81.654, p<0.001) to 195 ± 10% (p<0.05), in unstressed, 

chronically MP pretreated (χ2=93.693, p<0.001) to 275 ± 9% (p<0.05), in repeatedly 

prestressed (χ2=87.562, p<0.001) to 204 ± 9% (p<0.05), and in repeatedly prestressed, 

MP pretreated (χ2=91.717, p<0.001) to 321 ± 12% (p<0.05) of baseline levels after 

acute MP injection. The between-group comparison using AUC-values revealed a main 

effect of pretreatment conditions (F(1,20)=31.337, p<0.001) and an interaction between 

rearing x pretreatment conditions (F(1,20)=8.989, p=0.007) on DA release in the Nac, but 

no effect of rearing conditions. Furthermore, there was a main effect of time following 

injection (F(2,40)=484.118, p<0.001), and an interaction between rearing x time 

following injection (F(2,40)=6.342 p=0.004), pretreatment conditions x time following 

injection (F(2,40)=140.138, p<0.001), and rearing x pretreatment conditions x time 

following injection (F(2,40)=13.884, p<0.001). Post-hoc analysis revealed increased 

levels of DA in repeatedly prestressed animals (unstressed controls vs. repeatedly 

prestressed: p<0.05), and decreased DA levels in repeatedly prestressed, chronically MP 

pretreated animals (unstressed, chronically MP pretreated vs. repeatedly prestressed, 

MP pretreated: p<0.05) as well as after chronic MP pretreatment (unstressed controls 

vs. unstressed, chronically MP pretreated: p<0.05; repeatedly prestressed vs. repeatedly 

prestressed, MP pretreated: p<0.05) most prominent in the first half-hour following 

acute MP injection. 
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Figure 21. Effect of acute social separation stress (horizontal bar) and acute injection of methylphenidate (vertical arrow) on the extracellular levels of 

dopamine in mPFC at puberty (PND 46-48). Data are given as percent of baseline levels (± SEM). The inserts represent changes for the t120-140, t140-160, t160-180, 

t180-200 (acute separation stress) and t250-280, t280-310, t310-340 (acute MP) sampling period. Statistical differences versus baseline levels in the range of each 

experimental group are given in the text.  
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Figure 22. Effect of acute social separation stress (horizontal bar) and acute injection of methylphenidate (vertical arrow) on the extracellular levels of 

dopamine in Nac at puberty (PND 46-48). Data are given as percent of baseline levels (± SEM). The inserts represent changes for the t120-140, t140-160, t160-180, 

t180-200 (acute separation stress) and t250-280, t280-310, t310-340 (acute MP) sampling period. Statistical differences versus baseline levels in the range of each 

experimental group are given in the text. 
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4 DISCUSSION 

 

 

Part I. Epigenetic influences on the neurotransmission in Octodon 

degus during early postnatal development 

 

 
 The first part of my dissertation characterizes (i) the ontogenetic development of 

dopaminergic, serotonergic as well as amino acids neurotransmitting systems and the 

impact of (ii) acute and (iii) repeated stress exposure early in life on serotonergic 

neurotransmission in Octodon degus. In this semi-precocial species I observed that (i) 

tissue levels of monoamines and amino acids reached adult-like levels relatively early in 

ontogeny (mainly between PND 3 and 21, depending on the brain region and substance 

examined), indicating a relatively matured neurotransmission in cortical regions and 

hippocampus at birth. In addition, an age-, region- and sex-specific pattern of changes 

were found in the serotonergic system induced by (ii) an acute stress challenge early in 

life (i.e., parental separation at PND 3, 8, 14 or 21) with the most pronounced effects at 

early age stages (PND 3 – PND 14) in the frontal cortex of females, and (iii) repeated 

stress exposure (i.e., parental separation during the first 3 weeks of life, 1 hour daily) 

with the most pronounced effects in the frontal (only females) and caudal cortex (both 

sexes) measured at PND 21. These results support the conclusion that in Octodon degus 

aversive emotional experience alters serotonergic transmission acutely as well as 

permanently. 

 
 

4.1 Postnatal development of the brain wet weights, dopaminergic 

and serotonergic neurotransmission  

 
 One major aim of the present study was to determine how the developmental 

patterns of the neurotransmitter systems differ between semi-precocial and altricial 

species. It came out that, parallel to the well matured physiology (i.e., functional 

sensory systems, advanced behavioral activity), the degu pups are characterized by a 

relatively matured dopaminergic and serotonergic neuronal network around birth. 
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Whereas in rats, an altricial species, there is a 10-fold increase in brain weight, 14-fold 

increase in tissue levels of dopamine and 5-fold increase in tissue levels of serotonin 

from birth until adulthood (Agrawal et al., 1966; Herregodts et al., 1990), a quite 

different pattern was found in Octodon degus, a precocial species, with an average 2-

fold increase in brain weight as well as levels of dopamine, serotonin, their metabolites 

and metabolic ratios. Remarkably, in Octodon degus adult-like levels of serotonin, its 

metabolite 5-HIAA and 5-HIAA/5-HT ratios are reached relatively early during 

ontogeny, i.e. mostly until weaning, with similar findings for DA, DOPAC and HVA 

amounts, followed by DA turnover. These results are in line with findings of Braun et 

al. (2000), who described in male degus an adult-like dopaminergic and serotonergic 

innervation pattern in the mPFC at about 12th - 14th day of life. Additionally, the adult-

like density of serotonergic appositions in the pyramidal cells of prefrontal cortex is 

reached before 14 day of life in precocial rhesus monkeys (Lambe et al., 2000), 

nevertheless the density of catecholamine appositions on pyramidal neurons matures 

very slowly. Another interesting feature found in my study is the sex specific 

developmental pattern for serotonin. In males, adult-like levels of serotonin are reached 

much earlier in life, i.e. between PND 8 – 14, than in females, where the process of 

maturation is extended until adulthood. Whether this sex difference in the maturation of 

the serotonergic system might be one of the reasons that female degu pups are more 

susceptible to early life stress (see below) has to be proven in future experiments. 

 The analysis of brain homogenates gives the opportunity to analyse the whole 

pool of several neurotransmitters in different brain regions. Not only can those 

transmitters which are already present in the synaptic cleft be measured, but also 

already synthesized and not yet released part. The disadvantage of this experimental 

approach is that only post mortem investigation is possible – in other words there is no 

opportunity to measure the dynamic changes of neurotransmitters during for instance 

behavioral or pharmacological experiment. Such limitation is counterbalanced by the 

possibility of investigation of several brain structures at the same time. Moreover, 

analysis of homogenates allows determining the metabolic ratios of the analyzed 

substances. As known from previous studies, the concentration of metabolites as well as 

their ratio to the monoamine may serve as an indicator of monoamine turnover and a 

parameter of neuronal activity in the brain (Ribary et al., 1986; Herregodts et al., 1990). 

Taken all the findings together, with particular attention to relatively high dopamine 

turnover ratios in some regions of the brain, I postulate, that dopamine as well as 



                                                                                                                          Discussion 

 75

serotonin are fully available and act in the degu brain already immediately after birth. 

However, these monoamines were found to take a part not only in neurotransmission, 

but also in brain development, namely as a trophic factor modulating the functional 

state of neurons, from very early stages of life (Pendleton et al., 1998; Herlenius and 

Lagercrantz, 2001; Whitaker-Azmitia, 2001), by modulating the activity of particular 

cells. Therefore, some pool of DA and 5-HT might be acting not as the 

neurotransmitters, but also regulate establishment of synaptic connections in response to 

environmental influences. In addition, not only the levels of neurotransmitters 

themselves, but also the presence and amount of receptors, transporters as well as other 

parts of molecular machinery responsible for the signal transduction, should be taken 

into account when speaking about the functional state of neurotransmission in the 

developing brain. 

 The limitation of this study was that noradrenaline was not measurable under 

HPLC conditions established in our lab, due to the very short retention time, in 

comparison to serotonin. The developmental pattern of noradrenaline, its metabolite 3-

methoxy-4-hydroxyphenylethyleneglycol (MOPEG) as well as noradrenaline turnover 

shall be established in future experiments.  

 

 

4.2 Postnatal development of the amino acids neurotransmitting 

systems  

 
 As described above, the monoamines increase differently in the brain of 

precocial and altricial species. In contrast, the amino acids represent similar 

developmental pattern in both groups. For instance, glutamate increases approximately 

2-fold in rats, 1.5-fold in Octodon degus, from birth until adulthood, however in some 

brain areas certain amino acids do not change their levels during brain maturation. In 

principle the development of amino acids in the degu brain is completed at the 

developmental time window between PND 14 and 21. 

 Among all the amino acids analyzed only taurine has been found to be the one 

expressing clear developmental pattern for both sexes in Octodon degus. In all the 

examined regions this brain amino acid decreased constantly from PND 3 until 

adulthood, which resembles the picture found in altricial mice (Agrawal et al., 1968). 
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Taurine has been proposed to play a neuromodulating role in the developing, non-

mature brain (Sturman, 1993). It takes also a part in neuroprotection (Saransaari and 

Oja, 2000; 2007) and osmoregulation (Walz and Allen, 1987). Taurine has a specific 

function in terms of influencing GABA role in the brain. First of all, taurine inhibits 

GABA transaminase, enzyme metabolizing GABA in neuronal tissue (Frossini et al., 

2003; 2006; Ricci et al., 2006). This allows GABA to persist longer in the synapse and 

bind to postsynaptic receptor. Secondly, taurine is able to mimic the effects of GABA 

by binding to GABAA receptor (Louzada et al., 2004; Paula-Lima et al., 2005). By 

enhancing GABA function, taurine is preventing the excitotoxicity in the brain. 

Excitotoxicity can occur when glutamate activates NMDA receptor and consequently 

intracellular Ca2+ ions increase, which causes cell excitability. When GABA and taurine 

activate GABAA receptor the intracellular Cl- ions concentration goes up, which reduces 

the excitability and, as a consequence, prevents the excitotoxicity (El Idrissi, 2006). 

Therefore, GABA and taurine form a protective system against the excess of excitatory 

amino acids in the neuronal tissue (Saransaari and Oja, 2007). Taurine has been also 

found to increase in response to presence of free radicals, which increase glutamate. In 

this case taurine also modulates the state of the cell by keeping in hyperpolarized, and 

therefore it prevents it from excitability, acting as an antioxidant (Saransaari and Oja, 

2004; Yildirim et al., 2007). Perhaps at the very early (gestational and after birth) stages 

of development taurine is the main inhibitory amino acid, while at the same time GABA 

could still play an excitatory role (Leinekugel et al., 1999). That would explain the 

sudden and constant decline of taurine levels in developing degu brain. However, for 

GABA no pronounced increase in the amounts in the maturing brain has been found, 

which would suggest that GABAergic system is relatively well developed already at 

birth, which is in contrast to findings in altricial species such as rats and mice, where 

GABA shows a progressive increase in the whole brain content up to PND 30 (Agrawal 

et al. 1966; 1968).  

 The role of asparatate in neural transmission remains up to now unclear. The 

study of Gundersen et al. (1998) proves that in stratum radiatum of hippocampal CA1 

region, aspartate is colocalized with glutamate in excitatory terminals, concentrated in 

synaptic vesicles and subject to exocytotic release from the same nerve endings that 

contain and release glutamate. Therefore perhaps it plays some role in excitatory 

neurotransmission, however its role in the process of neurotransmission remains 

controversial and unclear. Study of Ogata et al. (1996) showed that during ischemia 
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neurons may be damaged by increased release of aspartate from glial cells, although 

under physiological conditions aspartate is not as potent as glutamate in inducing 

excitatory transmission. The immunochistochemical measurements showed that 

aspartate is localized in higher concentration in certain rat brain areas, such as olfactory 

bulb, hypothalamus, cerebellum and brain stem, but also endocrine structures, for 

instance adrenal medulla, posterior pituitary and pineal gland (Schell et al., 1997). That 

would denote aspartate as a substance playing both neuronal and neuroendocrine 

function. The increased levels of aspartate in cortical regions, striatum, hippocampus, 

cerebellum and brainstem of juvenile FMR1 knockout mice points to this amino acid as 

to the signal molecule possibly involved in fragile X mental retardation (Gruss and 

Braun, 2001; 2004).  

 

 

4.3 The impact of an acute stress challenge on serotonergic 

neurotransmission during early postnatal development 

 
 There is evidence from experiments using brain homogenates (Noguchi et al., 

2001) or in vivo microdialysis (Adell et al., 1997; Fujino et al., 2002) that the 

serotonergic system is involved in the mediation of various kinds of stress including tail 

pinch, handling, saline injection or forced swimming (Chaouloff et al., 1999). However, 

to the present knowledge little is known about the effects of strong emotional stress in 

the immature brain. As it comes from this study, parental separation acts as a stressor 

which is able to alter serotonergic neurotransmission in a sex-, time- and brain region 

specific manner in Octodon degus. In both sexes, I observed a decrease of serotonin 

levels (frontal cortex) and an increase in 5-HIAA/5-HT ratios (frontal cortex, 

hippocampus) which indicates an increased 5-HT turnover in the acutely separated 

animals. Interestingly, neonatal handling of rat pups (i.e., removal from the mother and 

the home cage for 15 minutes), a widely used model to study the environmental 

regulation of neural development and function, also induces increased 5-HIAA/5-HT 

ratios in frontal cortex and hippocampus (Smythe et al., 1994). Vazquez et al. (2000) 

had shown that post-synaptic 5-HT receptors in the developing hippocampus and cortex 

are sensitive to maternal deprivation – such treatment significantly increases the levels 

of 5-HT mRNA receptors in both structures at the age of PND 6, 9 and 12 in rats. In 
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addition, early postnatal aversive experience influences the serotonergic system, so that 

induced changes are still detectable at adulthood (Daniels et al., 2004; Matsumoto et al., 

2005). Taken together, these findings indicate that short-term manipulation of the 

neonate’s social environment affects the serotonergic system immediately. Noteworthy, 

in the frontal cortex of male degu pups the response towards parental separation is 

restricted to the first two weeks of life, while in females there is a prolonged period of 

responsiveness, i.e. at least until PND 21. An extended female’s vulnerability towards a 

challenging situation in this species was also shown by Ziabreva et al. (2003a; 2003b). 

A short-term exposition to brief (3 min) separation from the parents and siblings and 

exposure to unfamiliar environment early in life resulted in more pronounced effects at 

the level of D1 and 5-HT1A receptors in females compared to males. This contributes to 

a growing body of literature that suggests that pre- or post-natal exposure to stress 

causes sexually dimorphic effects (Patchev and Almeida, 1998; Palanza, 2001; 

Kudielka and Kirschbaum, 2005; Weinstock, 2005). For instance, Papaioannou et al. 

(2002) had proven the sex differences in the effects of neonatal handling and the 

female’s increased susceptibility to express ´depressive´ behavior. Furthermore, 

Carlsson et al. (1985) showed stronger responses towards different drugs involved in the 

serotonergic transmission in females which are indicative of sex differences in the brain 

5-HT neuronal systems. 

 

 

4.4 The impact of repeated neonatal stress exposure on basal and 

stress-evoked serotonergic neurotransmission 

 
 The present study revealed that repeated separation stress has a region specific 

permanent impact on the serotonergic system in Octodon degus manifested mainly as 

increased basal 5-HIAA levels or 5-HIAA/5-HT ratios but no changes in 5-HT (except 

of an increase after acute stress in repeatedly separated males) measured at PND 21. In 

contrast to most of the previous studies which focused on long-term effects induced by 

different separation paradigms in adulthood (for review see Lehmann and Feldon, 2000; 

Holmes et al., 2005; Pryce et al., 2005), this early age stage (i.e., PND 21) was chosen 

because of the interest in finding indices related to neurological diseases to make the 

possible therapeutic window as wide as possible. The present results in young animals 
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contrast with findings of Matthews et al. (2001), who described after maternal 

separation a decrease of serotonin and no differences in 5-HIAA/5-HT ratios in 

homogenates of the mPFC and hippocampus of adult rats. Since both studies differ in 

some aspects of the experimental procedure (i.e., species used, duration of separation, 

environmental conditions, age of examination), the differences rather highlight the 

importance of those aspects mentioned here for the final outcome of separation than 

make these studies comparable directly. However, these results together with the work 

of Gartside et al. (2003), who determined an array of functional alterations in 5-HT 

levels and its metabolic activity in adulthood, further strengthen the evidence that early 

life experience can lead to long-term dysregulation of serotonergic functions in a multi-

factorial dependent manner. The question is, whether such changes are pathological or 

beneficial for the animal’s behavior and development? The study of Gruss et al. (2006) 

showed that repeatedly separated male degus develop enhanced hyperactivity compared 

to females. In addition, same males express higher endocrine response than females. 

Braun et al. (2003) proved that parentally deprived degus besides of the developed 

running hyperactivity remain unaffected by the presence of maternal call, which might 

suggest that aversive experience can induce reduced sensitivity or attention deficit in 

these animals. The disturbance of early parent-infant relationship is considered as one of 

the main factors in development of adult mental and behavioral disorders. Furthermore, 

clinical as well as basic research implicates altered 5-HT function in such diseases. For 

instance, serotonin, among other factors, has been shown to play a crucial role in the 

etiology of depression which is supported by the fact that the administration of 5-HT 

precursors (i.e. tryptophan, 5-hydroxytryptophan) either suppresses the symptoms or 

prevents the disease formation (Kalia, 2005). Additionally, several classes of 

antidepressants have been shown to strengthen serotonergic neurotransmission at pre- 

and postsynaptic sites (Blier and de Montigny, 1999; Blardi et al., 2005). The second 

interesting finding of this experiment is the attenuated increase of 5-HIAA/5-HT ratio in 

the frontal cortex of repeatedly separated females which points to adaptation-like 

processes in these animals. This is supported by the finding that the same females 

express attenuated stress evoked cortisol/corticosterone responses under the same stress 

paradigm (Gruss et al., 2006). This would suggest that female degus might develop 

stronger endocrine and neurochemical adaptive mechanisms in response to separation 

stress. However, if this leads to more efficient coping strategies in response to stressful 

events in later life compared to male animals, remains to be determined in future 
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experiments. These results stand in the opposite to findings of Smythe et al. (1994) who 

demonstrated a stronger increase in 5-HIAA/5-HT ratios in chronically compared to 

acutely handled 7-day old rats. As stated earlier, the difference might be explained by 

the different species, age and/or environmental situation and last but not least by 

experimental approach. Some authors consider early handling as a paradigm, which 

leads to acquisition of more maternal care. In other words, handling itself would be not 

long enough to induce the disturbance in homeostasis, but would stimulate the mother 

to nurse the infants more intensively after reunion (Pryce et al., 2002).  

 In conclusion, the first part of my dissertation revealed an early maturation of 

the dopaminergic, serotonergic and amino acids systems in the semi-precocial Octodon 

degus compared to altricial species like rats or mice. Furthermore, these findings 

suggest that repeated one-hour separation periods at different age stages during the first 

three weeks of life acts as a stressor having an immediate as well as lasting effect on the 

serotonergic system in Octodon degus. Therefore, the current experiments expand the 

understanding of the neurochemical maturation of those brain regions, which respond to 

parental separation with changes in serotonergic activity. However, the method used in 

this study (i.e., brain tissue homogenates) offers no information about the changes in the 

dynamics of serotonergic neurotransmission which remains to be determined by other 

techniques, i.e. in vivo microdialysis, in future experiments. 
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Part II. Neurochemical consequences of juvenile stress and chronic 

methylphenidate treatment on dopaminergic function in Octodon 

degus. In vivo microdialysis study 

 
 The second part of my dissertation presents the pattern of dopaminergic 

responses to methylphenidate in the prestressed, juvenile, immature and still developing 

brain of Octodon degus. This paradigm mimics the clinical situation in human children 

and the use of MP treatment much more appropriately than studies performed in normal 

and adult brains. My working hypothesis for this part of my dissertation was that 

repeatedly separated (prestressed) animals with hyperactive symptoms respond 

differently to this drug, compared to controls. Moreover, I hypothesized that the age of 

the animal as well as the duration of drug treatment would be also the critical factors for 

methylphenidate action in the brain. As an outcome of performed in vivo experiments I 

observed that: (i) the effect of an acute methylphenidate injection on extracellular DA 

levels is age dependent, (ii) repeatedly stressed animals are less sensitive to acute social 

separation stress challenge and showed sensitized DA release during an acute 

methylphenidate injection and (iii) chronic methylphenidate pretreatment sensitizes the 

animals to DA release during acute social separation stress as well as an acute 

methylphenidate injection with the repeatedly prestressed animals showed more 

pronounced DA release than unstressed controls. These findings are in line with my 

hypothesis, that age, rearing conditions as well as drug treatment duration might 

significantly alter the action of this psychostimulant in the brain. 

 

 

4.5 Age differences in response to methylphenidate 

 
 One of the aims of this study was to determine how the animals tested at two 

different developmental time points respond to methylphenidate. MP is believed to 

block dopamine transporters (DAT), which results in inhibition of the re-uptake of 

neurotransmitter to the presynaptic site. All in vivo microdialysis studies performed so 

far in rats have been investigating just the effects in adult brains (Kuczenski and Segal, 
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1999; Gerasimov et al., 2000; Huff and Davies, 2002; Marsteller et al., 2002), revealing 

that the levels of extracellular dopamine rise after administration of the drug. This effect 

has been also found in striatum of healthy human subjects with the use of PET studies 

(Volkov et al., 2001). In my experiments I observed that injection of MP does not lead 

to significant changes in dopamine levels in both mPFC and Nac, at the post-weaning 

age. The age-dependency towards acute MP application could be due to structural, 

neuroanatomical, neurochemical or (intra-)cellular immaturity of the dopaminergic 

system, especially in the late developing prefrontal cortex. One possible explanation 

would be the immaturity or lack of cellular elements involved in dopamine action at the 

synapse, mainly dopamine transporters (DAT), which are believed to be engaged in the 

response to MP. However this interpretation seems unlikely, since it has been found in 

the altricial rat that DA transporters reach around 70 % of adult levels in the PFC and 70 

– 90 % in Nac at PND 21 (Coulter et al., 1996; Tarazi et al., 1998). On the structural 

level adult like innervation patters in the mPFC of degus are established around the age 

of PND 14 (Braun et al., 2000). Thus, it appears likely that in the semi-precocial degu 

similar or even more adult-like dopaminergic function should be found, and therefore 

cannot be solely accounted to the observed age-dependency of MP-evoked responses. 

Neurochemically it has been found in the mPFC and Nac that the magnitude of acute 

stress-evoked DA increase is comparable in juvenile and adolescent animals. 

Furthermore, injection of amphetamine, which also enhances DA in the extracellular 

space, but by a different mechanism (Kahling et al., 2005; Sulzer et al., 2005), revealed 

a comparable increase of DA levels in both, juvenile and adolescent degus (own 

unpublished observations). The postsynaptic dopamine machinery i.e. the receptors 

might be also involved in this age-specific reaction. As known from rat development D1 

receptor levels in the Nac at PND 21 reach about 60 % of adult amounts, similar to 

findings in the frontal cortex, while D2 at this developmental point are slightly above 

adult levels in Nac and 70 % of adult values in frontal cortex (Tarazi and Baldessarini, 

2000). Last but not least, one of the mechanisms leading to observed age differences in 

response to MP could be the immaturity of the cellular machinery that regulates 

exocytosis, i.e. the release of dopamine into synapse, or some other elements involved 

in dopaminergic action. Penner et al. (2002) observed age specific c-fos protein 

distribution in murine striatum after acute MP administration. c-fos gene is one of the 

immediate early genes, which are induced by psychostimulants such as cocaine or 

amphetamine and subsequently intensively expressed. Fukui et al. (2003) demonstrated 
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in adult mice, that MP increases Thr34 and decreases Thr75 phosphorylation of 

DARPP-32 (dopamine- and cAMP-regulated phosphoprotein, 32 kDa). Interestingly, 

such effect was not observed in young (14-15 days old) animals, which proves that also 

in this species some of not yet fully developed elements directly related to the vesicular 

dopamine release may be the cause of differential responses to methylphenidate at 

different ages.  

 

 

4.6 The impact of early experience on social separation stress effect 

and methylphenidate action in the brain 

 
 My data showed that repeated exposure to parental separation stress during the 

first 3 weeks of life significantly affects the response of dopaminergic mechanism to 

both acute social separation stress and to methylphenidate injection. Since repeatedly 

stressed animals display a blunted DA release in response to acute separation stressor, 

this might indicate a habituation or decreased sensitivity towards stressful events. In 

other words, this experience-induced effect indicates that there are adaptive 

mechanisms, which might be related to learning, and specifically involves changes in 

the mPFC, and to a lesser extent also in the Nac. Along this line, an adaptation of the 

endocrine response was observed in repeatedly separated degu pups (Gruss et al., 2006). 

This endocrine and neurochemical habituation might allow the animals to cope 

differentially - perhaps better - with stressful situations.  

 Another outcome of this study was the observed tendency of prestressed animals 

to vocalize in a lower extend than controls under stressful event, which would 

contribute to the adaptation mechanism hypothesis. This confirms previous findings of 

behavioral aspects in 10-14 day old degus (Braun et al., 2003). As known from other 

reports, the distress vocalizations might reflect the emotional state of the individual 

(Panksepp, 1980; Thomas et al., 1983; Knutson et al., 2002; Panksepp and Burgdorf, 

2003). In contrast to data from my study, Kehoe showed that exorbitant behavioral 

responses to environmental challenges are typical for juvenile (Kehoe et al., 1998a) as 

well as adult (Kehoe et al., 1998b) rats stressed as neonates, which points to the early 

experience as to the factor which under some conditions might sensitize the animal to 

the stressful events. Since vocalizations emitted during stress may serve as an anxiety 
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marker, it is believed that this phenomenon is mediated mostly by the serotonergic and 

GABAergic systems. Fish et al. (2000) proved that agonists of the 5-HT1 receptors (8-

OH-DPAT, flesinoxan, CP-94,253 and TFMPP) are potent to decrease maternal 

separation induced distress vocalizations in 7 day old mice. Same was observed for 

midazolam and allopregnanolone, drugs acting on GABAA receptors. In my study, 

serotonin was not measurable under the conditions established for dopamine, however it 

would be of interest to see the correlation of 5-HT levels and the amount of 

vocalizations evoked by acute separation stressor. That needs to be determined in future 

experiments.  

 My data have shown that basal levels of dopamine differ significantly between 

unstressed and repeatedly stressed degus, which suggests that in addition to the several 

morphological changes in the brain (Braun et al., 2000; Helmeke et al., 2001a; 2001b; 

Ovtscharoff and Braun, 2001; Poeggel et al., 2003a; 2003b) dopamine itself does not 

appear in stable levels at the synapse after repeated stressful events. This result would 

be in contrast to findings of Matthews et al. (2001), who described no significant 

disparities in total (intra- and extracellular) dopamine content of medial PFC between 

socially reared and repeatedly maternally separated rats, measured at adulthood. On the 

other hand, microdialysis technique restricts the investigations only to the extracellular 

pool of measured substance, therefore these results are not fully comparable. In 

addition, Zhang et al. (2006) described no effect on extracellular dopamine levels after 

neonatal isolation in rats. None the less, their measurements have been performed in 

adulthood, i.e. at PND 70-90, and there is no proof that any of the changes are not 

visible yet at younger ages. 

 The second effect of early stressful experience described in this study is the 

enhancement of dopaminergic response to pharmacological challenge, i.e. 

methylphenidate injection. Repeatedly stressed, adolescent degus respond with 

increased extracellular dopamine, as it was described in adult animals of other species, 

while at the age of weaning they show a distinct decline in the prefrontal DA levels 

after drug injection. Such surprising and new effect would be probably the sum of both 

early experience and non-finished development of some dopamine-engaged 

mechanisms. Repeatedly stressed rats, subjected to an amphetamine or cocaine 

challenge at PND 10 respond with much higher dopamine release in nucleus accumbens 

or ventral striatum than non stressed controls (Kehoe et al., 1998a; Kosten et al., 2003). 

Additionally, cross-sensitization to amphetamine may be induced by social defeat stress 
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in rats (Nikulina et al., 2004; de Jong et at., 2005). Altogether, such findings support my 

results from adolescent degus. Quantitative developmental analysis of dopaminergic 

fiber innervation revealed gradually increasing dopaminergic afferent fiber density in 

the mPFC during the first 2 postnatal weeks, i.e. the time period during which the 

animals in the present study were exposed to early separation stress (Braun et al., 2000). 

Together with previous results, which showed changes in the dopaminergic innervation 

pattern of the mPFC (Braun et al., 2000) and Nac (Gos et al., 2006), these 

neurochemical data confirm the hypothesis that repeated parental separation stress, 

acting as a severe stressor in degu pups (Gruss et al., 2006), modifies not only the 

neuroanatomy of the dopaminergic fiber systems, but also alters dopamine release in 

response to both, emotional as well as pharmacological challenges. The results in 

adolescent animals also revealed another developmental time window of brain plasticity 

in periadolescence (PND 21 - 45), during which the neonatally induced neurochemical 

changes can be “normalized” by rearing the animals under undisturbed social control 

conditions. The “opposite” neurochemical response in the mPFC of stressed animals 

appears to be transient, since as adolescents (i.e. more than three weeks after the last 

exposure to separation stress) their neurochemical response to MP is back to normal, i.e. 

similar to age matched control animals. 

 What underlies the decline of dopamine in juvenile prestressed PFC remains 

controversial, especially taking into account that this particular model would somehow 

reflect the human ADHD children, namely the therapeutical target group in ADHD cure 

and methylphenidate treatment. Previous studies in our group revealed that repeated 

brief parental separation followed by an exposure of the degu pup to the unfamiliar 

environment induces an up-regulation of D1 receptors in several subregions of PFC 

(Ziabreva et al., 2003b). In rats, dopamine transporters have been found to decrease 

after repeated events early in life in nucleus accumbens and caudate putamen (Meaney 

et al., 2002). Perhaps, such two alterations would lead together to the observed pattern 

of dopaminergic responses, however if dopamine transporters are also altered in 

repeatedly separated degus needs to be investigated in further studies. 

 Another hypothesis which needs to be resolved by a separate series of 

experiments is the possible modulation of dopaminergic drug response by the acute 

stress (social separation) applied just 1 hour beforehand. Handling of adult rats has been 

shown to attenuate significantly the dopamine release after administration of 

methylphenidate (Marsteller et al., 2002). However, handling does not necessarily has 
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to be considered as stress. Moreover, all the observed fluctuations in dopamine levels 

might be mediated by a network connections in the limbic system, since stimulation of 

PFC have been shown to inhibit the action of Nac (Jackson et al., 2001) via amygdala 

regulation (Jackson and Moghaddam, 2001). 

 Another aspect of methylphenidate effect is the possible mediation of this drug 

response by serotonergic or noradrenergic systems. It has been shown that application 

of MP does not influence serotonin levels (Kuczenski and Segal, 1997), moreover the 

affinity of methylphenidate for the serotonin transporter is very low (Gatley et al., 

1996). However, the induction of serotonin increase by citalopram (5-HT re-uptake 

inhibitor) in rat hippocampus might be enhanced by methylphenidate, in addition MP 

attenuates the 5-HT citalopram mediated release in prefrontal cortex (Weikop et al., 

2007). The study of Gainetdinov et al. (1999) showed that hyperactivity of dopamine 

transporter gene knock out mice (DAT-KO) might be reduced by serotonergic drug 

fluoxetine. Noradrenergic neurons, located mainly in locus coeruleus (LC) are 

considered to mediate the orienting response, selective attention and vigilance (Pribram 

and McGuinness, 1975; Tucker and Williamson, 1984). Studies in monkeys with high 

levels of activity, behavioral agitation and worse vigilance performance (Solanto, 1998) 

have shown that MP is potent to produce a significant reduction in firing of LC neurons. 

It is also likely, that in ADHD excessive noradrenaline release from LC causes reduced 

capacity of PFC to respond to phasic stimuli (Mefford and Potter, 1989; McCracken, 

1991; Pliszka et al, 1996). Finally, atomoxetine, which selectively blocks the reuptake 

of noradrenaline from the synapse, by blocking the noradrenaline presynaptic 

transporter (Michelson et al., 2001; Bymaster et al., 2002; Kratochvil et al., 2003) is 

considered as one of the most common drugs in ADHD treatment, next to 

methylphenidate. Still, the data on MP action on noradrenergic and especially on 

serotonergic system is quite limited, and in order to conclude if MP effects found in this 

study are related to 5-HT or NA role, a series of additional microdialysis experiments 

should be performed. 
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4.7 Neurochemical sensitization to emotional and pharmacological 

challenge after repeated methylphenidate treatment 

 
 In this study I describe that adolescent degus, subjected to over 3-weeks chronic 

methylphenidate treatment, develop an enhanced dopaminergic response to the drug. 

Sensitization (the enhancement of the response to consecutive doses of the drug), next 

to tolerance, has been believed to play the primary role in drug addiction. Sensitization 

is evoked by such psychostimulants as cocaine, amphetamine, nicotine and the way of 

drug administration might be important for its development (Vetulani, 2001). In rats, 

repeatedly withdrawn amphetamine leads to behavioral sensitization following a stress 

challenge and is used as an animal model of anhedonia, a core symptom of depression 

in humans (Russig et al., 2006). Exposure to repeated amphetamine induces 

sensitization of HPA axis or dopaminergic neurons to a subsequent stressor, such as 

restraint stress (Barr et al., 2002) or foot shock (Robinson et al., 1987). On the 

subcellular level repeatedly injected methylphenidate has been proved to decrease the 

amount of dopamine transporters in rostral caudate putamen but not in nucleus 

accumbens (Izenwasser et al., 1999). Chronic MP pretreatment may also result in cross-

sensitization to both cocaine (Andersen et al., 2002; Schenk and Izenwasser, 2002) and 

amphetamine (Yang et al., 2003b) but not methamphetamine (Kuczenski and Segal, 

2002). Concerning locomotor sensitization, the available data are inconsistent, since 

methylphenidate has been either shown not to produce sensitization (Izenwasser et al., 

1999) or to result in an opposite way (McDougall et al., 1999). However, such 

differences might be an outcome of different drug doses as well as rat strains used 

(Yang et al., 2003a; Amini et al., 2004). The issue which still needs further investigation 

is, whether the neurochemical sensitization observed in degus is persistent or abolished 

after abstinence period. The low, oral doses of methylphenidate may produce the 

improvement of cognitive function of rat PFC (Arnsten and Dudley, 2005), furthermore 

oral vs. intraperitoneal administration is much less potent in terms of increasing the 

dopamine at the synapse (Gerasimov et al., 2000). Therefore, the way of administration 

as well as the determination of appropriate dose of the drug would be also of interest, as 

in my study it goes several fold beyond the therapeutic doses used in human children. 

Interestingly, my data further support the suggestion that not only stressful events are 

able to modulate the action of MP, but vice versa, also chronic MP treatment can 

“cross-sensitize” the response of the mesocortical as well as mesolimbic dopaminergic 
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system towards stress observed in MP-pretreated degus. In line with this interpretation, 

Marsteller et al. (2002) demonstrated a potentiation of DA increase during an acute 

stress situation induced by MP. A comprehensive behavioral study suggests that 

repeated MP application during adolescence resulted in a decreased responsiveness to 

rewarding stimuli but an increased sensitivity to aversive stimuli in animals tested as 

adults (Bolanos et al., 2003). The observed sensitization and “cross-sensitization” of 

behaviorally and pharmacologically induced neurochemical changes are most likely due 

to complex functional changes which include numerous neurotransmitters and brain 

regions. The recent investigations of our group have shown that stress-induced elevated 

spine densities in anterior cingulated region of mPFC at PND 21 can be normalized by 

chronic methylphenidate treatment during periadolescence (Zehle et al., 2007). 

However, such effect is found in the prestressed animals, treated with relatively low 

dose of the drug (1 mg/kg). In addition, repeated injections with higher MP dose (5 

mg/kg) in unstressed controls caused the opposite effect. Furthermore, there is evidence 

for an involvement of calcium/ calmodulin-kinase II-dependent mechanisms in 

accumbal amphetamine-induced dopamine release potentiated by cocaine pretreatment 

(Pierce and Kalivas, 1997). The observed pharmacologically induced functional 

changes might be the result of altered dopaminergic innervation of GABA-ergic 

neurons in the areas which were measured, as well as altered functions of dopaminergic 

neurons in the midbrain (Hedou et al., 2001), however the detailed mechanisms 

underlying these changes need to be analyzed in more details in the future. 

  

 

4.8 General conclusions and clinical relevance  

 

 According to European Society for Child and Adolescent Psychiatry (ESCAP) 

ADHD is a risk factor of developmental alterations and may constitute a background for 

plenty of severe psychological complications. The lack of proper knowledge about 

ADHD as well as little or no help from the closest environment causes the formation of 

inappropriate demeanours towards the affected child as well as constant critics about its 

behavior and repulsive attitudes. Thus, it is of great importance for therapists and 

teachers to understand the background of this particular disease in order to avoid the 

mistakes in the treatment and therapy. 
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 The finding that the functional maturation of dopaminergic limbic function is 

significantly altered in stressed, behaviorally altered and/or periadolescent drug-treated 

animals reveals novel insights into experience-related factors involved in the etiology of 

ADHD, and into the long-term consequences of pharmacological treatment on brain 

development. Current results widen the knowledge about the differential action of 

methylphenidate, which is frequently prescribed to children, in young, non-fully 

developed brain in comparison to the adult neuronal tissue. Basic information for the 

therapists would be the fact that early experience can significantly alter the way of 

methylphenidate action in the brain. Such experience might be related to the absence of 

parents as it was shown in this study, but one can expect that other stressful stimuli 

would be also potent to induce neurochemical, neuroanatomical or subcellular changes 

in the brain that would finally lead to differential pharmacological responses. Therefore, 

at least in some cases the treatment of ADHD should be preceded with a detailed survey 

on the patient’s family situation and past events that would potentially influence the 

disease therapy. Another important aspect is the chronic methylphenidate treatment. 

Here I have shown, that repeated administration of this particular psychostimulant leads 

to sensitization to both behavioral as well as pharmacological challenges. One can 

conclude, that extended theraphy in human children or adolescents would potentially 

induce similar effects, which at last might be disruptive for the entire treatment. 

However, it has to be taken into account that in this research project relatively high 

amounts of the drug have been used – 10 times higher than therapeutic doses. Whether 

such sensitization is persistant and lasts until adulthood should be determined in 

separate series of experiments. At last, the differential responses to the methylphenidate 

at different developmental points should be taken into consideration. As it comes from 

this study, young brain responds differentially to this psychostimulant. Such results 

point to the need of cooperation of several specialists, who should consider both 

medical and psychological aspects in the therapy of ADHD. 
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6 APPENDICES 
 
 
 

6.1 Abbreviations 

 

 

aCSF – artificial cerebrospinal fluid 

ADHD – attention-deficit/hyperactivity disorder 

ANOVA – analysis of variance 

CP-94,253 – 3-(1,2,5,6-tetrahydro-4-pyridyl)-5-propoxypirolo[3,2-b]pyridine 

CRF – corticotropin releasing factor 

DA – dopamine 

DAT – dopamine transporter 

DOPAC – 3,4-dihydroxyphenylacetic acid 

EDTA – ethylenediaminetetraacetic acid 

GABA – γ-aminobutyric acid 

5-HIAA – 5-hydroxyindole-3-acetic acid 

HPA – hypothalamic-pituitary-adrenocortical 

Hpc – hippocampus 

HPLC – high performance liquid chromatography 

HVA – homovanillic acid, 4-hydroxy-3-methoxyphenylacetic acid 

5-HT – 5-hydroxytryptamine, serotonin 

i.p. – intra peritoneal 

IUPAC – International Union of Pure and Applied Chemistry 

LC – locus coeruleus 

MOPEG – methoxy-4- hydroxyphenylethyleneglycol 

MP – methylphenidate 

mPFC – medial prefrontal cortex 

mRNA – messenger ribonucleic acid 

MRI – magnetic resonance imaging 

3-MT – 3-methoxythyramine 

NA – noradrenaline 

Nac – nucleus accumbens 
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NMDA – N-methyl-D-aspartate 

6-OHDA – 6-hydroxydopamine 

8-OH-DPAT – (+)8-hydroxy-2-(di-n-propylamino)tetralin 

PET – positron emission tomography 

PFC – prefrontal cortex 

SD – standard deviation 

SEM – standard error of the mean 

TFMPP – 1-(m-trifluoromethylphenyl)-piperazine 

VTA – ventral tegmental area 
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6.4 Zusammenfassung 
 

 
Die Umwelt, und hier insbesondere der während der frühen Lebensphase von 

der Mutter oder beide Elternteilen ausgehenden Einfluß, hat eine große Bedeutung für 

die Entwicklung des Gehirns und des Verhaltens der Nachkommen. In der vorliegenden 

Arbeit habe ich die Konsequenzen einer Störung der Eltern-Kind-Beziehung am 

Tiermodell der Strauchratte, Octodon degus, auf der Ebene der Neurotransmission in 

ausgewählten Arealen des limbischen Systems untersucht. 

Im ersten Teil der Arbeit charakterisierte ich anhand von Gewebehomogenaten 

kortikaler Areale und des Hippokampus die Veränderungen der i.) basalen 

Gewebekonzentrationen der Monoamine Dopamin und Serotonin sowie der 

Aminosäuren Aspartat, Glutamat, Taurin und GABA während der Ontogenese der 

Strauchratte. Darüber hinaus untersuchte ich die Auswirkungen einer ii.) akuten bzw. 

iii.) wiederholten Störung der Eltern-Kind-Beziehung durch 1-stündige Separation der 

Jungtiere von der Familie während der ersten Lebenswochen. Dabei konnte ich zeigen, 

dass i.) die basalen Gewebekonzentrationen der Monoamine und Aminosäuren das für 

erwachsene Tiere charakteristische Niveau bereits zwischen dem postnatalen Tag 

(PND) 3 und 21 erreichen. Weiterhin konnte ich nachweisen, dass, abhängig vom 

untersuchten Hirnareal, dem Geschlecht und Alter, sowohl die ii.) akute (mit den 

deutlichsten Effekten im Kortex von Weibchen zwischen PND 3 und PND 14) als auch 

die iii.) wiederholte Separation von der Familie (mit den deutlichsten Effekten im 

Kortex beider Geschlechter) starke Veränderungen der serotonergen Neurotransmission 

verursachen. Diese Ergebnisse zeigen einerseits, dass in einer frühen Lebensphase die 

Ontogenese der Neurotransmittersysteme der Strauchratte, verglichen mit z.B. der 

Ratte, bereits sehr weit fortgeschritten ist, und dass andererseits insbesondere das 

serotonerge System in diesem Zeitfenster vulnerabel für Störungen der Eltern-Kind-

Beziehung ist. 

Im zweiten Teil der Arbeit untersuchte ich in einem neuropharmakologischen 

Ansatz unter Verwendung der in vivo Mikrodialyse die Wirkung von Methylphenidat 

(Handelsbezeichnung: Ritalin) auf die dopaminerge Neurotransmission im medialen 

präfrontalen Kortex (mPFC) und dem Nucleus accumbens (Nac) von männlichen 

Strauchratten. Methylphenidat (MP) wird hauptsächlich zur medikamentösen 
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Behandlung der Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung (ADHS) bei Kindern 

eingesetzt. Vorangegangene Untersuchungen in unserem Labor haben gezeigt, dass die 

wiederholte 1-stündige Separation von der Familie während der ersten 3 Lebenswochen 

bei Jungtieren der Strauchratte Symptome von Hyperaktivität und Störungen der 

Aufmerksamkeit hervorrufen, und somit dieser tierexperimentelle Ansatz potentiell ein 

Modellsystem zur Untersuchung der neurobiologischen Grundlagen der ADHS darstellt. 

Der Vergleich von i.) juvenilen (PND22/24) und adolescenten (PND46/48), im 

Sozialverband aufgewachsenen Strauchratten zeigte, dass eine acute Injektion von MP 

(10 mg/kg; i.p.) in den juvenilen Tieren nur eine vergleichsweise sehr geringe 

Stimulation der dopaminergen Transmission im mPFC und Nac verursacht. Der 

Vergleich von ii.) im Sozialverband aufgewachsenen und wiederholt separierten Tieren 

zeigte im mPFC juveniler Tiere eine Verminderung der dopaminergen Transmission, 

während im Nac keine Unterschiede zwischen beiden Versuchsgruppen nachweisbar 

waren. In adolescenten, wiederholt separierten Tieren konnte ich, verglichen mit den 

sozial aufgewachsenen Tieren, eine Sensitivierung der dopaminergen Transmission in 

beiden untersuchten Hirnregionen nachweisen. Der Vergleich von iii.) adolescenten, 

acut injizierten und chronisch mit MP vorbehandelten Strauchratten (täglich 10 mg/kg 

MP zwischen PND 22 und PND 46) zeigte eine Sensitivierung der dopaminergen 

Transmission in beiden untersuchten Hirnregionen von chronisch vorbehandelten 

Tieren. Weiterhin konnte ich nachweisen, dass eine vorangegangene wiederholte 

Separation von der Familie zu einer Verstärkung der nach der chronischen 

Vorbehandlung zu beobachtenden Sensitivierung der dopaminergen Transmission im 

mPFC führt. Mit diesen Ergebnissen konnte ich erstmals nachweisen, dass MP im 

juvenilen, sich entwickelnden limbischen System auf der Ebene der dopaminergen 

Transmission eine deutlich andere Wirkung entfaltet als in der Adolescents. Außerdem 

konnte ich nachweisen, dass sowohl frühe emotionale Erfahrungen, hervorgerufen 

durch die Störung der Eltern-Kind-Beziehung in den ersten Lebenswochen, als auch die 

chronische Gabe von MP in der frühen Ontogenese dramatische Veränderungen der 

dopaminergen Transmission im limbischen System verursachen. 
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