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Preface

This dissertation is submitted to Otto-von-Guericke-University, Magdeburg for
the degree of Doctor of Engineer. The research described herein was conducted
under the supervision of Prof. E. Specht and Prof. A Bertram between May
2003 and July 2007. To the best of my knowledge, this work is original, except
where suitable references are made to previous works. Neither this, nor any
substantially similar dissertation has been submitted for any degree, diploma or
qualification at any other university or institution.

Yalçın Kaymak
Magdeburg, 02.07.2007

If we knew what it was we were doing, it would not be called research, would it?

Albert Einstein (1879-1955)
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Abstract

A complex thermo-mechanical model and its finite element implementation for
simulating the transient fields of the temperature, micro structure, stress, strain,
and displacement during a heat treatment process is introduced. At the inte-
gration points, the temperature, phase fractions, Scheil’s sum, plastic strain,
transformation induced plastic strain tensors, hardening parameter, and stress
tensor is stored as state variables at each time step. The thermo-plastic material
model is reformulated with a temperature and phase fraction dependent yield
limit on the basis of J2-plasticity theory. Each phase has its own material proper-
ties, which are used for computing mixture material properties. Coupling effects
such as dissipation of mechanical energy into heat energy, phase transformati-
on enthalpy, and transformation induced plasticity (TRIP) are considered. The
developed model is validated by comparing the simulation results with available
experimental measurements. Many simulations have been carried out in order
to investigate the optimum cooling strategies for avoiding the distortion and
reducing stresses for various geometries such as long profiles, disks and shafts
made of 100Cr6, C45, C80 and aluminum. The results have shown that by re-
ducing the cooling at thin parts and edges as well as increasing the cooling at
thicker parts, the distortion and stresses can be reduced concurrently.

Keywords: Quenching process, TRIP, J2-plasticity theory, phase transition,
distortion
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Zusammenfassung

Ein kompliziertes thermomechanisches Modell und seine Finite Elemente For-
mulierung für das Simulieren des transient Feldes von der Temperatur, Mi-
krostruktur, Spannung, Dehnung und die Gestaltänderungen (Verzug), wer-
den während eines Wärmebehandlungsprozesses dargelegt. An den Integrati-
onspunkten wird die Temperatur, Phasenanteile, die Summe des Scheil, pla-
stischer Dehnungstensor, Phasenumwandlung plastischer Dehnungstensor, der
Verfestigungsparameter und Spannungstensor als Zustandsvariablen an jeden
Zeitabschnitt gespeichert. Das Modell des thermoplastischen Materials wird neu
formuliert, auf der Grundlage von der J2-Plastizitätstheorie, die Streckspan-
nung ist abhängig von der Temperatur und der Phaseanteile. Jede Phase hat
seine eigenen materiellen Eigenschaften, diese werden für die Berechnung der
Mischungseigenschaften benutzt. Koppelungseffekte wie die Umwandlung von
mechanischer Energie in Wärme, Phasenumwandlungsenthalpie und Phasen-
umwandlungsplastizität (PUP) werden Berücksichtigt. Das entwickelte Modell
wird überprüft, indem man die Simulationsresultate mit vorhandenen experi-
mentellen Messungen vergleicht. Viele Simulationen sind durchgeführt worden,
um nach optimalen abkühlenden Strategien, für das Vermeiden der Verzerrung
sowie das Reduzieren der Spannung für verschiedene Geometrien, wie z. B.
langen Profilen, Scheiben und Wellen zu Forschen, die aus 100Cr6, C45, C80
und Aluminium bestehen. Die Resultate haben gezeigt, dass durch das Verrin-
gern des Abkühlens, an den schmalen Bereichen und an den Rändern, sowie
die Erhöhung des Abkühlens an den breiten Bereichen, die Verzerrung und die
Spannung gleichzeitig reduziert werden können.

Schlagwörter: Wärmebehandlungsprozess, PUP, J2-Plastizitätstheorie, Pha-
senumwandlung, Verzerrung
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Abbreviations

Tensor operations

a : 0th order tensor is a scalar.
a⊗ b = aibj (ei ⊗ ej) = A : tensor product of 1st order tensors is a 2nd order.
A ⊗B = AijBkl (e i ⊗ e j ⊗ ek ⊗ e l) = Ĉ : tensor product of 2nd order tensors
is a 4th order.
a · b = aibi : scalar product of 1st order tensors is a scalar.
A · b = Aijbje i : scalar product of 2nd order tensor with 1st order tensor is a
1st order.
A ·B = AijBij : scalar product of 2nd order tensors is a scalar.
Ĉ ·A = CijklAkl (e i ⊗ e j) : scalar product of 4th order tensor with 2nd order is
a 2nd order.
∇ ·A : divergence of a 2nd order tensor is a 1st order.
∇a : gradient of a scalar is a 1st order tensor.

Matrix and vector operations

AB : multiplication of matrices if sizes are compatible.
Ab : matrix and vector multiplication for compatible size matrices and vector.
tr(A) : trace of a square matrix (or tensor) is the sum of diagonal elements.
|A| : determinant of a square matrix.
AT ,aT : transpose of matrix and vector.
a · b = aT b : dot product of two vectors is a scalar.
A : B = tr

(
ABT

)
: sum of all corresponding multiplied terms is a scalar.

Matrix, tensor and scalar field variables

α Heat transfer coefficient [W/m2/K]
εpl Hardening state variable
εpl
eff Effective plastic strain
` Thickness of 2D elements [m]
σeff Effective stress [Pa = N/m2]
σm Mean stress [Pa = N/m2]
θ Temperature [oC]
θ∞ Ambient temperature [oC]
Θ Nodal temperature vector [oC]
B,B Strain displacement relations [1/m]
C, Ĉ Constitutive relations [Pa = N/m2]

xxi
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P̂1, P̂1 Spherical projectors
P̂2, P̂2 Deviator projectors
E,E Strain tensors
T,T Stress tensors [Pa = N/m2]
f Volumetric phase fraction
x, y, z Global coordinates [m]
r, s, t Local coordinates
u Displacement field [m]
uS Prescribed surface displacement [m]
Sn Scheil’s sum at nth time step
fB Body forces [N/m3]
fS Prescribed surface traction [Pa = N/m2]
Î 4th order identity tensor
I, I 2nd order identity tensors
nS ,nS Body surface unit normal
n′

T,n
′
T Flow surface normal and stress deviator direction

Ne Element interpolation functions’ vector
He Element interpolation function derivatives’ operator [1/m]
Be Element strain-displacement operator [1/m]
Je Element Jacobian matrix
Ce Element capacitance matrix [J/K]
Fe Element force vector (mechanical formulation) [N ]
Re Element response vector (mechanical formulation) [N ]
Qe Element force vector (thermal formulation) [J ]
Ke Element stiffness matrix (mechanical formulations) [N/m]
Ke Element conductance matrix (thermal formulations) [J/K]
Xe,Ye,Ze Element x-, y-, z-coordinates [m]
qV Heat generation per unit volume [J/m3]
qS Heat flux through the body surface [J/m2]

Material properties

κ Bulk modulus [Pa = N/m2]
µ Shear modulus [Pa = N/m2]
ρ Density [kg/m3]
σy Yield strength [Pa = N/m2]
aσm Mean stress coefficient in modified

Koistinen-Marburger equation [1/Pa = m2/N ]
aσe Effective stress coefficient in modified

Koistinen-Marburger equation [1/Pa = m2/N ]
cp Specific heat capacity [J/kg/K]
e Emissivity
H Plastic (hardening) modulus [Pa = N/m2]
k Heat conductivity [W/m/K]
kM Stress-dependent martensitic transformation constant [1/K]
Li Latent heat of transformation [J/kg]
MS Martensitic transformation start temperature [K]
TTT Matrix of isothermal transformation data, (θ, tS, tE)
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Other variables

χ Fraction of mechanical energy converted into heat
ψ View factor for thermal radiation
λ Plastic multiplier
σ Stefan-Boltzmann constant [J/s/m2/K]
dV Infinitesimal volume element [m3]
dA Infinitesimal area element [m2]
tS, tE Transformation starting and ending times isothermal case [s]
tinc Incubation time (time necessary for transformation start

in continuous cooling) [s]
Sf Traction defined surface [m2]
Su Displacement defined surface [m2]
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Chapter 1

Introduction

1.1 Motivation

Quenching or rapid cooling is the most important part in many heat treatment
processes, which is performed to obtain the improved mechanical properties
of metals. However, quenching provokes residual stresses, which also instigate
distortion. A high residual stress state is detrimental since it initiates cracks
and shortens the service life of the metal product. Therefore, after the cooling
process the high residual stresses should be reduced by an additional process
such as stretching or tempering. If the distortion after the cooling exceeds the
specified tolerance, then this distortion should be removed with further methods
such as straightening, grinding, surface polishing or cutting. The motivation of
this thesis is to investigate and develop new cooling strategies for minimizing the
residual stress and distortion by adjusting the local cooling. For this purpose
a finite element code has been developed and implemented to calculate the
coupled thermal, metallurgical and mechanical fields. Heat treatment is the
controlled heating and cooling of metals or metal alloys in the solid state to alter
their physical and mechanical properties. In micro scale, metallic materials are
composed of small grains. Within these grains, the molecules are arranged in a
uniform crystallographic pattern. The character of the grains, for instance grain
size and composition, establishes the whole mechanical behavior of the metal.

1
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Figure 1.1: Variation of temperature in a typical heat treatment process

Heat treatment is an accomplished technique to influence the properties of
the metal by controlling the rate of diffusion within the micro-structure. That
means, the same alloy depending on the cooling rates ends up with different
micro-structures. Upon being rapidly cooled, the austenite will transform into
martensite, a hard brittle crystalline structure, in which the alloying elements
are trapped and necessitate a tempering to precipitate inter-metallic particles,
thereby achieving the maximum strength and hardness. The desired mechan-
ical properties at room temperature for a specific alloy can be achieved by a
designed heat treatment process which requires understanding of phase trans-
formations within the metallic alloys. The variation of the temperature in a
typical heat treatment process is shown in Fig. 1.1. The rate of temperature
drop is maximized during the quenching. The temperature drop rate is much
higher than the temperature increase rate during heating, which precedes the
quenching process. Depending on the alloy type, the duration of austenization
may vary from minutes to hours and usually tempering duration from hours to
days. The heating and cooling rates are much small in the tempering stage to
avoid the stresses and distortion.

Usually, a quenched metal is too brittle for further usage without tempering.
Depending on the alloy used, it will be evenly heated between 90 and 260oC,
held at that temperature for an appropriate time, and then cooled slowly. This
heat treatment will ensure strength and ductility by balancing the amount of
hard martensite with ductile ferrite and pearlite. In certain cases, different
areas of an object may be heat treated differently. This is known as differential
hardening, which is common in high quality knives and swords, e.g., the Chinese
swords, Japanese katana, and Nepalese Khukuri, and many others.

Quenching induces high residual stresses due to several mechanisms like
phase transformation, thermal shrinkage, transformation induced plasticity and
yielding. The phase transformation is accompanied by a volume change owing to
the rearrangement of the atoms in the crystal structures. The total strain field
due to thermal shrinkage and phase transformation becomes non-uniform when
the temperature field is non-uniform. Hence, the stress state may go beyond
the yield strength of the metal resulting in an elasto-plastic behavior. On the
other hand, the distortion is amplified by additional transformation induced
plastic strains, which occur during the phase transformation, even when the
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stress levels below the yield strength.
After quenching, the high residual stresses should be reduced by an addi-

tional process such as stretching and tempering. Stretching provides a uniform
plastic strain field throughout the product and the internal stress state is equal-
ized by this way. 2-5% strain is enough for this purpose. However, this method
can be applicable to specific geometries such as plates and long profiles. Another
method is tempering, which usually follows a quenching operation. Tempering
relieves the internal stresses, lowers the hardness to a certain extent, and restores
the ductility. Moreover it improves the toughness, refines grain size or changes
the electromagnetic properties. Such a softening is a necessary operation when a
large amount of cold working has to be performed, e.g., a cold-rolling operation
or wiredrawing. The stress relieve mechanism in tempering can be explained
by the creep phenomena. Creep (stress relaxation) is actually defined as the
tendency of a material to move or to deform permanently to relieve stresses in
time. Although it takes very long time at room temperature, the effect of creep
increases substantially as the temperature approaches to the melting point of
the material.

At the end of many quenching processes, the distortion exceeds the specified
tolerance. In general, this distortion can be removed with the help of polishing,
machining, and straightening processes. Metal polishing, also termed buffing , is
the process of smoothing and polishing the metals and metal alloys to a clear,
mirror-like surface finish. As a general rule, coarse abrasives are used first and
fine abrasives are applied later. Machining, which is a part of the manufacturing
process of almost all metal products, is a class of metal cutting processes that
involves using a power-driven device, such as a lathe, milling machine, drilling
machine, etc., to shape the metals. For example, lathe generates circular sections
by rotating a metal workpiece, so that a cutting tool can peel metal off, creating
a smooth, round surface. Other tools, which may be used for various types of
metal removal, are milling machines, saws, and grinding tools. A press is used
to flatten a piece of metal into a desired shape. Advanced machining operations
might use electrical discharge, electro-chemical erosion, or laser cutting to shape
the metal work pieces.

Heat treatment is an indispensable method in many large scale manufac-
turing industries such as automotive, transportation, aerospace, construction,
marine, military, material handling (casting, forging, machinery), and med-
ical/pharmaceutical industries. Heat treatment provides great advantages for
example reduced cost, weight, and noise, and also increased strength, durability,
dependability, toughness, performance, wear and fatigue resistance. Hence, the
metal components of powertrains, engines, turbines, farm/mining/forestry/con-
struction equipments are heat treated. For instance, in aerospace industry the
steel and aluminum alloys may undergo five or even more different heat treating
operations to develop the desired properties. The most common heat treated
metal geometries include profiles, shafts, disks, gears, plates, and so on. Long
profiles of different cross-sections (T, L, U, etc.) are common in construction,
rail, and other industries. High strength shafts, disks and gears are basic com-
ponents of powertrains in automotive industry for transmission of the engine
rotation to the wheels. Improving the heat treatment techniques for the elim-
ination of associated problems is of great importance and value to the related
industries, which makes it a precious challenge for the researchers and scientists.

This dissertation particularly deals with the quenching stage of heat treat-
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ment where the high stresses and distortion are generated in common. Quench-
ing may be performed with various fluids like forced air or other gas (such as
nitrogen, helium, and argon), oil, polymer dissolved in water, water, brine, etc.
The gas or atomized spray quenching in a nozzle field facilitates to alter the
local cooling by adjusting the flow rates. It has been proved that the distortion
of profiles can be avoided [Pie00, PBK+05, PBK+07, KS07, KBS05, KBS06],
a uniform hardness and a reduced residual stress state in the shafts can be
achieved [BSO+05, BSO+06, BKS05] by locally controlling the quenching. This
dissertation discusses the further possibilities to reduce the residual stresses and
distortion simultaneously.

1.2 Common cooling problems

Long profiles usually have distortion upon cooling due to the formation of a
non-uniform temperature field. Distortion is mainly produced by the volume
changes due to thermal shrinkage and solid state phase transformations. At the
initial stages of the cooling before phase transitions begin, the low temperature
regions shrink more and cause a bending in the profile. Distortion is described
by the curvature which is constant throughout the length of the profile and
defined as the reciprocal of the arc radius. Typical profile cross-sections and
typical arc shaped distortion are shown in Fig. 1.2. The profile distortion
should be eliminated as it means rework expenditure, problems with bearing
and bundling. Methods to minimize the distortion of long steel profiles by
controlled quenching have been discussed in [Pie00, PBK+05, PBK+07, KS07,
KBS05, KBS06]. There have been also experimental researches for the cooling
distortion of the railway profiles. An overview of the works can be found in the
theses [Hin90, Pie00], where the experimental results for the residual stresses
and the deformations after quenching are presented. The distortion and residual
stresses in carburized thin strips are investigated by [PCL+03].

Figure 1.2: Typical distortion of an L, T or U profile after cooling

Some hot plates stacked and allowed to air-cool become warped during un-
stacking as seen in Fig. 1.3. The primary reason for plate buckling is the residual
stresses generated during the heat treatment processes. When the top and bot-
tom surfaces of a plate are cooled at the same cooling rate from a high initial
temperature, the surface temperatures are much lower than that of the neu-
tral plane. This produces compression in the neutral plane and tension on the
surfaces. These stresses may exceed the yield limit and result in plastic deforma-
tions at high cooling rates. The residual stresses are inevitable after completion
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of cooling if there are plastic deformations due to thermal and phase transition
effects. However, because of the inherent symmetry, the plate may remain flat.
When one surface is machined to a certain depth, the residual stresses are re-
distributed along the thickness, and the plate will warp up or down. For the
plates that are hot rolled and then stacked hot, the cooling rates on the top
and bottom surfaces are different. It is realized that there are tensile stresses
on the top surface and compression stresses on the bottom surface in the length
direction. The bending moment generated by the thermal stresses will act on
the cross-sections. As a result, thermal stresses may lead to plate buckling.

Figure 1.3: Typical distortion of plates after cooling [YM03]

A cutting saw is a long thin strip which has very hard teeth on one side.
The strip material is softer than the teeth material in order to provide the nec-
essary ductility. The desired micro-struc-ture for the saw is to have a complete
martensitic structure. The distortion of the saw which is schematically shown
in Fig. 1.4 is produced up on martensitic transformation. Due to material, sur-
face and quenching rate differences between the tooth region and strip region,
martensitic transformation occurs with a time delay at strip region and this
initiates the distortion.

Figure 1.4: Schematic description of cutting saw distortion

The quenching of the saw at is started with the radiation and convection in
an oxygen free environment to prevent the oxidation. As the temperature drops,
the convection becomes dominant since the radiation rate is proportional to the
forth power of temperature. In the last stage of the cooling, the saw temperature
is relatively low and the surface is hard enough to touch. Therefore, the cooling
can be continued either by press-quenching, where cooling is provided by heat
conduction through contact boundary, or by convection cooling. In either case
the cooling must be controlled to avoid the distortion which is obvious as shown
in Fig. 1.5.
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Figure 1.5: Typical distortion of steel cutting saw after cooling

The disk with a hole is similar to a CD shape, except that the the outer
edge is sharp and a segment is straight as shown in Fig. 1.6. Upon uniform
cooling, the central circular hole is distorted to form an oval like shape which
may cause problems during the assemblage of the disk with other parts. The
disk considered here is not radially symmetric because of the straight segment.
Therefore, the temperature gradient and phase transformations produce a non
uniform displacement field. As a result the hole is oval shaped instead of circle
after the quenching. A radially symmetric disk will not have a distortion after
the quenching. However, it would have high residual hoop-stresses.

Figure 1.6: Geometry of the disk with a hole

A notched shaft is a long cylinder which has different diameters at different
sections as shown in Fig. 1.7. Shafts are one of the basic components of a
power train. Therefore, they need high strength, fatigue resistance, etc. which
are provided by quenching. After the quenching, the shafts do not have dis-
tortion problems since their geometry is axially symmetric. However, if the
quenching is uncontrolled, very high stresses and non-uniform hardness distri-
bution occur. The high stress regions are mainly located at sharp edges and on
the surface which may even cause cracks on the surface. The hardness distribu-
tion is directly related to the quenching rates which vary significantly when the
quenching is uncontrolled.

Figure 1.7: Geometry of the shaft with notches
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Experiments have been performed in Bremen University, Germany on the
disks and shafts. The temperature, distortion, residual stresses, and micro-
structure have been measured after the cooling. These results are also used in
order to verify our mathematical model [BSO+05, BSO+06, BKS05].

Although metal quenching process is very beneficial, the above mentioned
problems are common for the products mainly made up of aluminum and steel
alloys. These problems in general occur upon quenching and originate from the
high temperature gradients and phase transitions. In almost every case it is
possible to resolve these problems by controlling the local quenching using a gas
nozzle field or atomized sprays.

1.3 Common existing solutions

1.3.1 Press hardening

Press hardening is a modern and pollution free method in order to harden the flat
products free of distortion. Quenching is performed by contact cooling between
the two liquid-cooled metal dies, which prevent the distortion by a pressing
force in vertical direction as shown in Fig. 1.8. The main disadvantage of this
method is inconvenience of continuous production. Each quenching operation
is performed separately, which diversely affect the production time and cost.
Another disadvantage is that this process is limited to flat products such as
plates and profiles. Moreover, if the surface of the product needs to be stretch
free, then press hardening is not an applicable technique. If the quenching is
performed in the forming dies without any additional external load, unlike press
hardening, then the process is called plug/die quenching. However, this method
does not guarantee that the work-piece remains straight after removed from the
dies.

Figure 1.8: Mechanism of press hardening equipment

1.3.2 Straightening

A common method for reducing the distortion is the straightening technique,
in which the metal entity is transported through a series of rollers which are
arranged as shown in Fig. 1.9. The rollers plastically bend the profile in se-
quence several times to achieve a final straight geometry. Subsequent to such a
straightening method, preferably a stress relieving procedure is applied.
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Figure 1.9: Schematic representation of a role arranging

Flame straightening is also common in welding processes as well as quenching
where high temperature gradients leave stresses in the metal causing a distor-
tion or warping. This method is an efficient and long-established technique of
correcting the distorted parts. Flame straightening is based on the physical
principle that metals expand when heated and contract when cooled. If the
expansion is limited, compressive stresses build up, which result in plastic de-
formations at high temperatures. Upon cooling, since it contracts more than it
could expand when heated, the additional plastic deformations cancel out the
initial distortion. The choice of appropriate flame nozzles depends on the type
and thickness of the material. Straightening of a plate with 3 flame nozzles is
illustrated in Fig. 1.10.

Figure 1.10: Flame straightening of a plate with 3 flame nozzles

Straightening methods can be applicable to the following products:

• Angles, I-beams and channels

• Axles

• Bars: round, hexagonal and square

• Crank Shafts

• Cylinders: shafts and tubes

• Dies

• Forklift: forks and carriages

• Molds

• Precision parts

• Plates: all shapes and sizes
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• Tubes: round and square

• Weldments: aircraft and industrial

1.3.3 Stretching

Stretching by a few percent can reduce the residual stresses for some products
such as plates and extrusions. A uniform plastic deformation is applied so that
after the removal of external load, uniformly distributed stresses and strains
remain over the entire body. Although, the warped plate can be corrected to
a certain extent by the flattening and leveling processes, the flatness of the
plates still may not meet the requirements of the customers. Moreover some
warped plates remain unrecoverable because of the restrictions in the process
and equipment capability [YM03].

1.4 Distortion engineering

The distortion controlling is one of the highest challenges in modern cost-
effective production in the industry. Therefore, there have been also many
scientific and industrial researches on the distortion caused by heat treatment.
The 1st International Conference on Distortion Engineering was held in Bremen,
Germany on 14-16. Nov. 2005. Although, the initial researches were on pure
empirical investigations, with the tremendous growth of the computer technol-
ogy and modeling, the realistic numerical simulations of complex problems are
possible today. These recent advances have significantly enhanced the under-
standing of distortion mechanisms which is apparent from the recent research
works.

During quenching of a metal, distortion, high residual stresses, cracking and
inability of obtaining the desired micro-structure lead to defective products or
service failure. The computation of the temperature evolution, cooling rates,
residual stresses and distortion is indispensable to the industry. For this reason,
the modeling of the cooling process has been the subject of many investigations
[Yu77, HE79, Sjo84, LMDD85]. Simulation of heat treatment process provides
a considerable reduction of the design time and cost with the optimum product
properties. However, for the simulations nonlinear coupled partial differential
equations of heat transfer, phase transformation, stress evolution must be solved
simultaneously.

Numerical methods enable the calculation of the temperature, micro-struc-
ture, and displacement fields during quenching. In addition, the influence of
individual parameters, which usually cannot be separated experimentally, can
be analyzed. On the other hand, experiments are still essential not only to
compare experimental and numerical results but also to obtain basic material
data such as heat conductivity or elasticity modulus as well as heat transfer
coefficients.

1.5 Summary

The motivation of the study was explained at the beginning of this chapter. It
is followed by the review of the common problems encountered in the industrial
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manufacturing process. Also, a short review of the known solutions of there
problems was given. Finally, the chapter is concluded by some words taken from
the 1st International Conference on Distortion Engineering as the importance
of distortion controlling is getting more and more importance every day.



Chapter 2

Literature review

2.1 Introduction

Numerical methods are becoming more important since the computer technol-
ogy is advancing continuously and the ratio of computational power to price is
getting higher and higher. However, experiments are still necessary in order to
obtain the material data and perform the benchmark tests of the mathemati-
cal models. Simulations are faster and cheaper to run, provide more detailed
results and a better understanding of the quenching process as compared to
the experiments. Mathematical modeling of the quenching process involves the
solution of coupled temperature, micro-structure, and displacement fields which
are the main subjects of the mechanics and metallurgy. In a quenching process
simulation, the cooling conditions, which are expressed in terms of heat transfer
boundary condition, are provided in order to compute the coupled temperature,
micro-structure and stress/strain fields.

The couplings are of particular importance in some industrial processes such
as quenching, tempering, welding, casting. Hence, there have been extensive
research studies and literature on the mathematical modeling and numerical
simulations of the fields as well as the coupling among them. There is a two-
way coupling between each field as depicted in Fig. 2.1. The essential couplings
are temperature dependency of phase transitions, the effect of latent heat on
the temperature field, additional strains due to phase transition and thermal
volume changes, and additional transformation induced plastic strains. The
conversion of mechanical energy into heat during plastification is very small as
compared to the latent heat effect. Usually, all material properties are assumed
to be isotropic and function of temperature and phase fraction.

11
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Figure 2.1: Couplings of temperature, micro-structure and displacement fields

The intensity of quenching is defined by the heat transfer coefficient on the
boundaries. The recent studies [KS05b, KSP05, KS05a, Att05, PS04a, PS04b]
have introduced the new quenching techniques where the local cooling is ad-
justed by using a gas nozzle field or by atomized sprays. The final micro-
structure, residual stresses and distortion can be controlled by local adjustment
of the heat transfer coefficient. In order to asses the effect of local cooling on the
final micro-structure, residual stresses and distortion, a complete understand-
ing of the mathematical model of each field is necessary. This research work is
concentrated on the modeling of phase transitions and constitutive relation of
thermo-elasto-plastic materials.

2.2 Phase transformation kinetics

The cooling rate of the steel has dominant effects on the final grain size and
phase structures as well as on the phase morphology. For example, increasing
the cooling rate leads to a higher nucleation rate of the new phase and a micro-
structure with a finer grain size. If the cooling rate of the austenite exceeds a
critical value, the transformation mechanism changes from diffusion-controlled
to displacive. During the last decades the modeling of phase transformations of
steel has been studied [SMA02, Ser03, AB81, VV87, WCY93, WCY97, Hoe96,
LNMA98, JM99, FDS84, Hou90]. Most of the conducted investigations were
concentrated on quenching of steel and resulting in thermal stresses, or cal-
culation of Continuous Cooling Transformation (CCT) diagrams. The phase
transformation kinetics is generally obtained from the dilatation data during a
cooling process [ZMC02]. It was shown that the experimental and calculation
results can be in excellent agreement.

Transformation Induced Plastic (TRIP) strains are limited to the range of
a few percent. Therefore, all the TRIP models are formulated in the small
strain domain. For most of the cases like quenching simulations, this assump-
tion is acceptable. However, for the simulation of some cases like hot rolling
process, the small strains must be extended to large strain domain in order
to be compatible with the large plastic strains. The TRIP model presented
in [Leb89] was reformulated in terms of the Lie time derivative by [BH02]. A
non-additive transformation kinetics model for the cooling of low alloy steels
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was presented by [LL99]. The model delivers the temperature, volume fractions
(ferrite, pearlite, bainite, and martensite), residual stresses and distortion as
functions of time. The martensitic phase transformation in inelastic materials
was presented in [Lev98]. The bainitic transformation has the characteristics
of both diffusional and displacive transformations. A conceptual framework of
bainitic transformation is given in [MN02].

2.3 Constitutive relations

There are numerous references in the literature pertaining to the representation
of the thermo-mechanical behavior of the elasto-plastic materials subjected to
small deformations. An accurate knowledge about the true stress state and
strength in metal products are crucial to be known in many applications. The
manufacturing process involves the change of the mechanical state such as the
evolution of residual stresses and the material properties due to work-hardening,
recrystallization, phase transition, etc. The approach favored by most authors is
an additive split of the strain tensor into elastic and inelastic parts. There exists
a finite element-based algorithmic framework for thermo-plasticity in metals
[SM92, Gla92, AS93]. The evolution of plastic strains is calculated by means
of a predictor-corrector algorithm, also called return map algorithm which was
established in the late eighties [Sim88a, Sim88b]. The temperature dependency
of the yield stress has been taken into account.

Modeling the behavior of steel at higher temperatures requires the consid-
eration of phase transformations, which is not considered in the above formu-
lations. Although, the problems concerning calculation of the residual stresses
from quenching without phase transformation are well understood, large dis-
crepancies still exist regarding the calculation of transformation stresses. This
can be attributed to the complex interrelation between the development of trans-
formation stresses and phase transformation parameters [Tod99, HJ02].

2.4 Coupling phenomena

2.4.1 Dilatation due to temperature and phase changes

The inter-atomic bond energy of a metal is defined by its temperature and
crystal structure state. When the stored energy increases, the length of the
molecular bond also increases. Thus, the material expands or contracts due
to these temperature and phase changes. This expansion or contraction can
be measured by either volume or length changes, which are closely related.
The volume changes can be measured for all substances of condensed matter
(liquids and solid state). However, the length changes (coefficient of thermal
expansion) can only be measured in the solid state and is common in engineering
applications.

Metallurgical encyclopedias such as the ASM Metals Handbook [A.S79] and
Metals Reference Book [Smi76] contain some high temperature thermal expan-
sion data, but the most comprehensive source of thermal expansion data is
included in Thermo-physical Properties of Matter series produced by Purdue
University in the USA [Tou75]. Thermal expansion of many solids can be found
in the book by [Tay98].
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There are number of electronic databases available with materials property
data, and many of these have coefficient of thermal expansion values. Some
are available free of cost via the internet, while others are subscription-based
CD-Rom services:

• CINDAS LLC http://www.cindasdata.com

• Matweb http://www.matweb.com

• Cambridge Engineering Selector http://www.granta.co.uk

• Metals and Materials Infobase http://www.ili.co.uk

• MAPP http://www.esm-software.com/mapp

• JAHM Software http://jahm.com

2.4.2 Transformation induced plastic strains (TRIP)

TRIP is described by [Mit87] as: ...Significantly increased plasticity during a
phase change. Even under an externally applied load stress with the correspond-
ing equivalent stress being small in relation to the yield stress of the material,
plastic deformation occurs. During a transformation, a micro-region may change
its volume and occasionally its shape, too. To achieve the compatibility between
the neighboring material and the micro-region under consideration, the misfit
must be accommodated by an eigen-stress state which may vary within a grain
of a polycrystalline material, but at least from grain to grain. In many cases the
misfit leads to at least a plastification of the neighboring material of the micro-
region, sometimes even to a plastification of the micro-regions themselves. It
can be easily imagined that the development of this local eigen-stress state is in-
fluenced by an externally applied global stress state on a certain given specimen.
The superposition of these two stressing or straining mechanisms may initiate
or even promote plastification [FOTN98, FRW+00]. Comparison of main TRIP
models with experimental results for the steel 16MND5 which composes vessels
in French nuclear reactors was considered by [TCW01, TS03, CCC02]. The
transformation plasticity coefficient, the kinetics as well as the dependence on
the norm and the direction of the applied stress are particularly studied.

2.4.3 Dissipation of mechanical energy into heat

It is well known that the plastic deformation of metals is accompanied by the
heat generation. This means that the energy balance equation that governs
the temperature evolution, should involve several terms arising from thermo-
mechanical coupling. The first term relates the heat production to the recover-
able deformations. A second term defines heating arising from the dissipation of
mechanical work during breaking of internal bonds in crystal lattice. The third
term describes the stored energy of cold work, which is motivated by the re-
arrangement of various defects in the structure during the plastic deformation.
These effects are only important in some particular cases in the small strain
regime and cannot be avoided in the most cases in finite strain regime [CB04].
In the modeling of quenching process, the heat generation due to mechanical
energy dissipation is negligibly small compared to the heat transfer by cooling.
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2.5 Estimation of mixture material properties

The micro-to-macro transition is defined as the averaging or homogenization to
get the macroscopic overall response of heterogeneous materials with complex
micro-structures [Mie03]. For homogenization methods, it is usually assumed
that the internal energy per unit mass stored in the original heterogeneous and
equivalent homogenized systems are to be equal. Probably the most widely-
used estimate is that introduced by [Tay38]. This is obtained by assuming a
uniform strain-rate field over the entire micro region and calculating the asso-
ciated mean stress. The resulting estimate was proved to give an upper bound
for the overall yield stress by [BH51]. A simple mechanical model was devel-
oped by [LSD99] to estimate the characteristics of fracture and yield strength
of two-phase materials with fine particles. The upper and lower bounds depend
on the ratio of strength and volume fraction of the constituent phases. Another
averaging approach, which is a modified version of the Mori-Tanaka prediction,
was suggested for two phase materials in [IK05]. The elastic properties of three-
phase composites by means of closed-form analytical solutions, which do not
require detailed knowledge of the micro-structure, are described in [AR05]. An-
other method for evaluation of the micro-mechanical properties of composite
materials via incompatible multi variable FEM and homogenization theory was
proposed in [SDZW01]. A micromechanical model was developed to capture the
mechanical behavior of dual phase steel, which is a ferrite-martensite mixture,
in [AAN03]. A method to determine the thermo-mechanical properties of com-
posite parts was presented in [LPC+98]. The flow-induced fiber orientation was
first calculated by numerical simulation, and the resulting orientation state was
used as input in a micro-mechanical model that predicts the thermo-mechanical
properties of the part.

2.6 Mathematical models for coupled field ap-
plications

2.6.1 Quenching

Quenching is a very common process in industry. Therefore, there have been
many investigations on the modeling of quenching process. The mathematical
model and numerical simulations of induction and flame hardening were pre-
sented in [BI98]. The couplings among the electromagnetic, thermal, stress and
phase fields are considered in their model. Internal stresses are computed by an
extended thermo-plasticity theory with isotropic hardening, temperature and
phase fraction dependent material properties. Phase fractions are calculated by
using TTT-heating and TTT-cooling diagrams in the model.

The internal micro-structures of heat treated steel bars were predicted by
using a finite element method. A finite element code was developed in For-
tran 77 in order to perform quenching simulations by [CTO00, GT96, GTS96].
The numerical results were compared with the experimental results for different
quenching rates.

A new multiphase material model for simulating distortion and residual
stresses in carburized and quenched gear steels was presented in [PCL+03].
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Comparisons of the significant transverse quenching distortion predicted nu-
merically showed agreement with those measured experimentally.

A model of finite thermo-plasticity with phase changes based on the concept
of isomorphism of elastic ranges was presented by [DB04]. The restrictions due
to the second law of thermodynamics were discussed in detail. Mass fractions
were used as the internal variables to describe evolution of the phases. The
described model is an extension of the thermo-plasticity theory developed by
[Ber98] and rather general so that it can be applied to different materials.

2.6.2 Welding

Welding is an another common industrial process which is a coupled thermal,
mechanical, and metallurgical process. Finite element modeling of such a cou-
pled thermo-mechano-metallurgical process requires also the derivation of evolu-
tion equations for solid phase transformations as well as temperature and stress
evolutions. General framework of the finite element modeling is described in
detail by [RO00].

An efficient and systematic numerical implementation of the thermo-elasto-
plastic constitutive equation, which accounts for the transformation plasticity
in welding, was presented in [KIK05]. The thermo-elastic free energy with the
temperature-dependent material constants has been employed together with the
relation of the transformation plastic flow rule between the additive decompo-
sition of the rate of deformation and the multiplicative decomposition of the
deformation gradient. The tangent modulus is calculated consistent with the
stress-update algorithm considering the transformation plasticity for fast con-
vergence of the solution.

2.7 Summary

This chapter is devoted to the literature on the fundamentals of the mathe-
matical modeling of the same or similar problems. Models on phase transfor-
mation kinetics and constitutive relations frequently addressed. Literature on
the coupling phenomena such as temperature and transformation related vol-
ume changes, transformation induced plasticity and dissipation of mechanical
energy are reviewed, existing mixture and homogenization models are studied.
Coupling phenomena are occasionally studied in modeling of quenching and
welding processes. Therefore, a short literature review on the modeling of these
processes is also given in this chapter.



Chapter 3

Mathematical modeling

3.1 Temperature field

The temperature field in the body is modeled by the Fourier’s law of heat
conduction with two additional heat source terms. The first additional term ac-
counts for the transformation enthalpies, and the second term includes the heat
generation by mechanical energy dissipation. During the quenching processes,
the heat generated due to the mechanical work is negligibly small as compared
to the transformation enthalpies. Fourier’s law is

∇ · (k∇θ) + qV = ρcpθ̇, (3.1)

with boundary condition

nS · (k∇θ) + qS = 0. (3.2)

In Equations (3.1 and 3.2), k is the heat conductivity, qV is the heat gen-
eration per unit volume, ρ the mass density, cp the specific heat capacity, qS

the heat flux through the body surface due to heat convection and radiation,
and nS the surface unit normal. All of the material constants are assumed to
be functions of the temperature θ and the converted phase fractions fi. The
dependency of the material properties on the phase fractions fi can be expressed
by the arithmetic, geometric, harmonic, or other means.

The heat flux qS through the boundary (outward direction is positive) and
internal heat source qV (heat generation is positive) are

qS = ψ · e · σ
(
θ4 − θ4∞

)
+ α (θ − θ∞) = ᾱ (θ − θ∞)

qV = χσyε̇
pl
eff +

∑N
i=1(Li ḟi)

}
. (3.3)

The heat flux qS is due to thermal radiation and heat convection, where ᾱ is
the equivalent Heat Transfer Coefficient (HTC), θ the temperature of the body
surface, θ∞ the ambient temperature, ψ the view factor, e the emissivity, and
σ the Stefan-Boltzmann constant. The internal heat source qV is composed of
latent heat generation and dissipation of mechanical energy into heat, where Li

are the latent heats of transformations, ḟi are the rates of converted phases, χ
is fraction of mechanical energy converted into heat, σy is the yield strength,
ε̇pl
eff is the rate of effective plastic strain.

17
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3.2 Micro-structure field

3.2.1 TTT charts and diffusive transformations

To predict the diffusive phase transformation, the Scheil additivity rule [Sch35]
and Avrami-type equation are utilized [JM39, Kol37]. Steel has two crystal
structures of the iron lattice. The solvability of carbon in iron is up to 2% in
Face Centered Cubic (FCC) iron and only up to 0.2% in Body Centered Cubic
(BCC) iron. The orientation of atoms in FCC iron and BCC iron are shown in
Fig. 3.1.

Figure 3.1: Crystallographic structure of Face centered cubic (FCC) iron and
body centered cubic (BCC) iron lattice

The micro-structures in iron are austenite, ferrite, pearlite, bainite and
martensite. Austenite is a solid interstitial solution of carbon in FCC iron lat-
tice. Ferrite is solid interstitial solution of carbon in BCC iron lattice. Pearlite,
which is soft and ductile, is a lamellar structure of ferrite and cementite (Fe3C).
Bainite is a mixture of ferrite and carbides, between pearlite and martensite.
Martensite, which is hard and brittle, is a solid solution of carbon in tetrago-
nally distorted BCC iron. The micro-structure s depend on the cooling rate and
steel characteristics, which are normally expressed by the Time-Temperature-
Transformation (TTT) diagrams, (see Fig. 3.2).
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Figure 3.2: Typical TTT diagram for steel [Hoe96]

The evolution of the diffusive phase transitions is best described by TTT
diagrams, which enables the metallurgist to interpret the response of steel to any
specified heat-treatment. In the non-isothermal case, the phase evolutions are
represented in Continuous-Cooling-Transformation (CCT) diagrams. The CCT
diagrams can be derived from the Isothermal-Transformation (IT) diagram by
superimposing several cooling curves and marking the transformation beginning
and end. Then, the locus of the respective points defines the CCT diagram.
Compared to an IT diagram the transformation curves in CCT diagrams are
moved to later time and lower temperature. Pearlite forms above the nose of
IT diagram and bainite forms below the nose. The formation of the new phase
is described in this work by a very simple linear transformation rule,

df =
dt

tE − tS
. (3.4)

where transformation start time tS and transformation end time tE are obtained
from the IT diagram. The transformation limit curves in the IT diagrams con-
tain two C-shaped curves as shown in Fig. 3.2 for a diffusional phase transition.
One is for the beginning of the transformation and the other is for its end. The
transformation beginning curve gives the transformation start time tS and the
other curve gives the transformation end time tE at a constant temperature
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θ. In the continuous cooling case, the transformation begins at the incubation
time tinc and it ends when phase fraction is unity or the temperature is out of
transformation range. Incubation time tinc is obtained by Scheil’s sum,∫ tinc

0

1
tS (θ (t))

dt = 1. (3.5)

3.2.2 Displacive transformation

The displacive transformation is a shear-dominant, time-independent, diffusion-
less solid-state phase transformation. Displacive transformations occur when
the temperature drops rapidly (through the interval in which nucleation could
take place) to a low temperature at which the molecular mobility, i.e. diffusion,
becomes too small for the formation of nuclei. The austenite changes incom-
pletely into a distorted BBC structure, with little or no diffusion of the carbon
into particles of cementite, to form martensite. This suggests that the mecha-
nism of formation of martensitic structure is not nucleation and growth but a
shearing process. The amount of martensite formed is practically independent
of time and depends principally on the temperatures at which the steel is held.
The temperature at which martensite begins to form is called as martensite
start temperature MS, which is progressively lowered as the carbon content of
the steel increases. A detailed research work and overview of available models
are given by [SGM05].

The martensitic transformation in solids provides extraordinary mechani-
cal behaviors ranging from the super-elastic behavior of Shape Memory Alloys
(SMA) to non-thermo-elastic behavior of steels with a good compromise between
ductility and toughness. Martensitic transformation does not depend directly
on the time but only on the temperature below the martensite start temperature
MS and is calculated in this work according to Koistinen-Marburger equation,

fM = fA {1− exp (kM (θ −MS))} , (3.6)

where fM is the calculated martensite phase fraction, fA is the austenite phase
fraction at the beginning of martensitic transformation, and kM is a stress-
dependent transformation constant. The effects of the stress state on the trans-
formation kinetics are discussed by [DGSS87].

The volumetric expansion associated with the formation of martensite com-
bined with large temperature gradients and non-uniform cooling promotes high
residual stresses that can induce distortion or even cracking in the quenched
steels.

3.3 Displacement field

3.3.1 Plasticity formulation

An isotropic thermo-plastic material model with a temperature and phase frac-
tion dependent constitutive relation is employed. The procedure described in
the book [SH97] has been modified and adapted. The basic assumptions are as
follows:
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1. Total deformations are small so that the total strain tensor can be addi-
tively decomposed,

E = 1
2

(
∇u +∇uT

)
= E el + Epl + E tp + E trip, (3.7)

where u is the displacement field, E el is elastic part of strain tensor, Epl is
plastic part of strain tensor, E trip is for transformation induced plasticity
and E tp is for the volume change due to temperature and phase changes.
The prime over a tensor E ′ represents its deviator.

2. The material is isotropic,

T = Ĉ
el
·E el = κ tr

(
E −E tp

)
I + 2µ

(
E ′ −E trip −Epl

)
, (3.8)

where T is the stress tensor, Ĉ
el

elastic constitutive tensor, κ is the bulk
modulus and µ is the shear modulus.

3. Plastic deformations are incompressible,

tr
(
Epl
)

= 0. (3.9)

tr(E) is the trace operator.

4. The material behavior is rate-independent.

5. The flow criterion is of von-Mises type,

φ(T ′, εpl, θ, fi) =
∥∥T ′∥∥−√ 2

3σy(εpl, θ, fi), (3.10)

where the yield strength σy is a function of hardening state variable εpl,
temperature θ and phase fractions fi.

6. An associative flow rule is used,

˙Epl = λ
∂φ

∂T
= λ

T ′∥∥T ′∥∥ = λN ′, (3.11)

where λ is the plastic multiplier and N ′ is the flow surface normal direc-
tion.

7. Linear isotropic hardening behavior is assumed for the yield strength,

σy

(
εpl, θ, fi

)
= σyv (θ, fi) +H (θ, fi) εpl, (3.12)

where σyv is the yield strength at virgin state and H (θ, fi) = dσ
dεpl is the

plastic (hardening) modulus. The hardening state variable is integrated
from the plastic multiplier,

εpl =
∫
ε̇pldt =

√
2
3

∫
λ. (3.13)
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A load increment might be elastic or plastic depending on the flow criteria,

φ =
{
< 0, elastic
= 0, elastic or plastic . (3.14)

If φ = 0, then the loading is identified by loading condition:

φ̇
∣∣∣
εpl=const.

= ∂φ
∂T ′ ·Ṫ ′+ ∂φ

∂θ θ̇+
∑n

i=1

∂φ
∂fi
ḟi =

 > 0 plastic loading
= 0 neutral loading
< 0 elastic unloading

. (3.15)

A typical plastic loading increment in stress space is explained in Fig. 3.3
with a simplified 2D-sketch.

Figure 3.3: Typical plastic loading increment in stress space

For a plastic loading increment, the unknown plastic multiplier λ can be
obtained from the consistency condition:

φ̇ = ∂φ
∂T ′ · Ṫ

′
+ ∂φ

∂εpl ε̇
pl + ∂φ

∂θ θ̇ +
n∑

i=1

∂φ
∂fi
ḟi = 0, (3.16)

and flow rule. The first term in the consistency condition is computed from the
elastic constitutive law,

∂φ
∂T′ · Ṫ

′
= N ′ ·

{
2µ̇
(
E −E trip −Epl

)
+ 2µ

(
Ė − Ė

trip
− Ė

pl
)}

. (3.17)

Equations (3.10, 3.11 and 3.12) are used to calculate the last three terms in
the consistency condition Eq. (3.16). Finally, the unknown plastic multiplier is

λ =
2µ̇N ′ ·

(
E −E trip

)
+ 2µN ′ ·

(
Ė − Ė

trip
)
−
√

2
3

(
∂σy
∂θ θ̇ +

∑n
i=1

∂σy
∂fi

ḟi

)
2µ+ 2

3H
.

(3.18)
The relationship between the stress tensor T and the elastic strain tensor

E el is given by the elastic constitutive law. The continuum tangential elasto-
plastic material operator is

Ĉ
ep

=
∂Ṫ

∂Ė
ep

∣∣∣∣∣
T,f=const.

= · · ·

Ĉ
el
− 2µ

1 + H
3µ

n′
T ⊗ n′

T = κI ⊗ I + 2µ
(
Î − 1

3I ⊗ I
)
− 2µ

1 + H
3µ

n′
T ⊗ n′

T ,

(3.19)
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where Î is 4th order identity tensor and I ⊗I is the dyadic product of 2nd order
identity tensors. Quadratic convergence is provided for plastic deformations
with the elasto-plastic tangential operator.

3.3.2 Dilatation due to temperature and phase changes

The coefficient of thermal expansion is used in general for solids for computation
of thermal strains. However, this method contains a linearization and sometimes
requires a conversion of the reference temperatures. An alternative method
is based on the temperature dependency of the density. The strains due to
temperature and phase changes are combined in

E tp =
(

3

√
ρR
ρ − 1

)
I , (3.20)

where ρR denotes the reference density and ρ the mixture density. For an n-
phase mixture, the thermal and transformation induced strain rate becomes

Ė
tp

=
dEtp

dρ

(
∂ρ

∂θ
θ̇ +

n∑
i=1

∂ρ

∂fi
ḟi

)
. (3.21)

3.3.3 Transformation induced plasticity (TRIP)

The transformation induced plastic strain rate is proportional to the applied
stress deviator and phase transformation rates. The transformation induced
plastic strain is

Ė
trip

= − 3
2T

′
∑n

i=1

{
Λi ln (fi) ḟi

}
. (3.22)

This equation characterizes the macroscopic material behavior, which is de-
termined by the micro-mechanical processes. Moreover, the proportionality fac-
tor depends on the fraction of the transformed phase and Greenwood Johnson
coefficients Λi [GJ65], which must be determined experimentally. An approxi-
mation for the factor is given by

Λi =
5
6

(ρA − ρi)
ρAσyA

, (3.23)

where the relative density difference is a measure for the volume ratio of the
converting phases (e.g. austenite→pearlite), and σyA the yield limit of the softer
phase (mostly austenite) at transformation temperature.

3.4 Generalized mixture rule for material prop-
erties

The material properties of the mixture are calculated by using the phase frac-
tions and material properties of constituting phases. Different mixture rules are
applied for different material properties. The generalized mixture rule is given
by

Xmix = N

√∑n

i=0
fiXN

i , (3.24)
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where n is the number of phases (including parent phase) and N defines the
type of mixture rule (i.e., arithmetic, geometric, harmonic, or any other mixture
rule). The partial derivatives with respect to temperature and phase fractions
are also necessary to compute the time rate of change of the material property.
So, these partial derivatives are given by

∂Xmix
∂T = X1−N

mix
N

(∑
i fiX

N−1
i

dXi
dT

)
, i = including parent phase

∂Xmix
∂fi

= X1−N
mix
N

(
XN

i −XN
A

)
, i = excluding parent phase

}
. (3.25)

In Equations (3.23 and 3.24), Xmix stands for the mixture material property
estimate and Xi for the material property of ith phase (A: parent phase, i.e.,
austenite). The arithmetic mean is assumed for the density ρ, heat conductivity
k, or specific heat capacity cp with a value of N = 1. The harmonic mean is
assumed for the flow stress σy with a value of N = −1. The geometric mean is
assumed for the bulk modulus κ or the shear modulus µ with a value of N = 0,
which cannot be used in the general equation due to singularity. Therefore, the
general equation is modified for this specific case as

XGM
mix = exp {

∑
i fi · ln (Xi)} , i = including parent phase

∂XGM
mix

∂T = XGM
mix ·

∑
i

fi
Xi

dXi
dT , i = including parent phase

∂XGM
mix

∂fi
= XGM

mix · ln
(

Xi
XA

)
, i = excluding parent phase

 . (3.26)

The overall behavior of the mixture material is greatly influenced by the local
distribution of the phases. Consider a micro region in a two phase mixture where
the phases are located as shown in Fig. 3.4. This micro-region apparently has
an orthotropic behavior since the material properties such as heat conductivity
and elasticity modulus are different in two mutually perpendicular directions 1
and 2. On the other hand, it is obvious that some other material properties
such as heat capacity and density are direction independent properties. In
this particular example, let the red color represent the phase 1 and blue color
represent the phase 2. If each phase has its own heat conductivity, elasticity
modulus and density, then the mixture properties can be computed depending
on the phase volume fraction and direction in the following way.

Figure 3.4: Micro regional orthotropy due to effect of phase distribution

Elasticity modulus in the 1st direction can be obtained by using the force
equilibrium condition because the displacements are equal for both phases,

F = F1 + F2 = u
LE1A1 + u

LE2A2 = u
LEmixA

Emix = f1E1 + f2E2

}
. (3.27)
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The strain terms u
L cancel out and the ratio of the phase area to total area

is equal the volumetric phase fraction. Hence, for the 1st direction the elasticity
modulus is obtained by arithmetic mean.

Elasticity modulus in the 2nd direction can be obtained by using the dis-
placement equilibrium condition because this time, the forces are equal for both
phases. Equation (3.28) summarizes the calculations. So for the 2nd direction
the elasticity modulus is obtained by harmonic mean,

u = u1 + u2 = FL1
E1A + FL2

E2A = FL
EmixA

1
Emix

= f1
E1

+ f2
E2
.

}
. (3.28)

The mixture elasticity modulus obtained by arithmetic and harmonic mean
define the upper and lower bounds. If the distribution of the phase fractions
is not regular as in Fig. 3.4, then a geometric approximation for the mixture
elasticity modulus would be a reasonable estimate which lies in between these
two bounds.

Similar calculations can also be performed for heat transfer calculation in
order to estimate the heat conductivities in the 1st and 2nd directions. In the
1st direction the heat flux equilibrium condition is used since the temperature
difference is same for both phases,

q = q1 + q2 = ∆θ
L K1A1 + ∆θ

L K2A2 = ∆θ
L KmixA

Kmix = f1K1 + f2K2.

}
. (3.29)

The temperature gradient terms ∆θ
L cancel out and area ratios are equal to

phase fractions. It is clear that in the 1st direction, the heat conductivity is
obtained by arithmetic mean.

In the 2nd direction the Temperature equilibrium condition is used since the
flux is same through both phases

∆θ = ∆θ1 + ∆θ2 = qL1
K1A + qL2

K2A = qL
KmixA

1
Kmix

= f1
K1

+ f2
K2
.

}
. (3.30)

Heat flux q and area A cancel out in Eq. (3.30), the ratio of the phase length
to total length is equal to the phase fraction. Hence, in the 2nd direction the heat
conductivity is obtained by harmonic mean. The heat conductivities in these
two directions define the upper and lower bounds for the mixture conductivity.
If the distributions of the phase fractions are not regular as in Fig. 3.4, then a
geometric approximation would be a reasonable estimate which lies in between
these bounds.

On the other hand, some other material properties such as heat capacity and
density are direction-independent. One can easily prove this for the density by
writing the total mass in the volume as

m = m1 +m2 = ρ1V1 + ρ2V2 = ρmixV
ρmix = f1ρ1 + f2ρ2.

}
. (3.31)

3.5 Description of the distortion

The definition of distortion should be a scalar value representing the deforma-
tion which is critical for the quenching process. A uniform deformation field
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is usually not detrimental whereas a deflection or non-uniform radial displace-
ments might be quite detrimental. In this sense, the proper description of the
profile distortion can be explained by the deflection but the deflection is length
dependent. A better description for the distortion is the curvature of profile.
If the profile is bent to a circular arc shape then the reciprocal of the radius
gives the curvature (independent of profile length) as described in Fig. 3.5.
Fortunately, the curvature is a direct output of the finite element simulations of
profiles.

Figure 3.5: Deflection of an L profile, definition of the distortion by curvature,
and central hole of the cutting disk before and after the cooling

The distortion of the steel disc with a hole is described by the radial dis-
placement of the hole. The hole is initially circular but after the quenching,
it becomes oval as shown in Fig. 3.5. A scalar value should be defined that
expresses the ovalisation of the hole. From the finite element solution, the final
nodal coordinates of the nodes that are located on the hole are known. The
radius of the best circle fit is computed. The distance of the nodal points to
the circle is then calculated. The standard deviation of these distance values is
a measure for distortion. If the standard deviation is zero it means there is no
distortion and hole is circular. As the standard deviation gets larger the hole
becomes more oval.

3.6 Summary

The mathematical model for the quenching precess was introduced in this chap-
ter. Transient temperature field, solid state phase transitions and displacement
field models are separately discussed but coupling terms are addressed during
the explanations. Different material properties of the mixture was estimated by
using different mixture rules. So, a generalized mixture rule also introduced. Fi-
nally, the descriptions of the distortion were stated for the geometries considered
in this study.



Chapter 4

Finite element modeling

4.1 Reasons to choose finite element method

In this chapter the finite element formulation of the described mathematical
model and its implementation will be discussed. The Partial Differential Equa-
tions (PDE) that have been already introduced in chapter 3 for describing the
heat flow and deformation processes are too complex, coupled and highly non-
linear to be solved analytically. Therefore, the finite element method, which is
the most common and powerful method to handle such engineering problems,
is chosen to obtain the approximate solutions. The material body of concern
is approximated by an assemblage of finite elements, over which the fields are
interpolated from the values of nodal field variables. Once the element formu-
lation is implemented to calculate the element matrices, the system matrices
can be assembled by using the element connectivity data, and the unknown
field variables can be solved from the system of linear algebraic equations. In
the following sections of this chapter, details of the element formulations for
computing the heat transfer, phase transitions and mechanical processes will be
discussed.

4.2 Solution algorithm

A time integration scheme that involves equilibrium iterations is applied to solve
the described coupled field problem. In each time step, first the temperature
field is solved iteratively, then the phase transitions are computed, and finally
displacement field is computed iteratively. The phase transitions are calculated
by using the current temperature and previous time step data. In the compu-
tation of displacement field, the current temperature, phase fractions and their
rates are used. After the convergence of displacement field, the next time step
is started. This solution algorithm is summarized as:

27
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START

Preprocess
(set input parameters)

 Material properties
FE mesh and boundary conditions
Initial database

Solve
(solve coupled fields
at each time step)


Iteratively solve temperature field
Calculate phase fractions
Iteratively solve displacement field
Save integration point variables to database

Postprocess
(analyze output)

 Point tracking (for a time range)
Results through a line between two points (at a time)
Contour results (at a time)

END

4.3 Temperature field formulation

4.3.1 Preliminaries

The heat conduction equation has to be put in a more convenient form before
using it in the finite element formulations. For an arbitrarily chosen temperature
distribution θ̃ (with θ̃ = 0 on the boundary with prescribed temperature), the
heat conduction equation can be expressed in the integral form. For the solution
θ, the equation ∫

V

[
∇ · (k∇θ) + qV − ρ cp θ̇

]
θ̃ dV = 0 (4.1)

is apparently satisfied because the bracket in the integral is zero. This method
is named virtual temperature method and stated in the following way: the
principle of virtual temperatures is an equation of heat flow equilibrium: for θ
to be the solution of the temperature in the body under consideration, must hold
for arbitrary virtual (continuous) temperature distributions that are zero on the
temperature described boundary. in [Bat96].

By using the property of the divergence operator,

∇ ·
(
θ̃ k∇θ

)
= (k∇θ) · ∇θ̃ +∇ · (k∇θ) θ̃, (4.2)

Eq. (4.1) can be written as∫
V

[
∇ ·
(
θ̃ k∇θ

)
− (k∇θ) · ∇θ̃ + qV θ̃ − ρ cp θ̇ θ̃

]
dV = 0, (4.3)

the first term of which is suitable for the application of the divergence theorem.
After applying the divergence theorem and the imposition of the boundary con-
ditions, the first term becomes∫

V

[
∇ ·
(
θ̃ k∇θ

)]
dV =

∫
S

[
nS ·

(
θ̃ k∇θ

)]
dS = −

∫
S

[
qS θ̃

]
dS. (4.4)
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After the replacement of the first term in Eq. (4.3) by Eq. (4.4) and the
imposition of the boundary conditions and some rearrangement,∫

V

[
∇θ̃ · (k∇θ)

]
dV +

∫
S

[
θ̃ ᾱ θ

]
dS +

∫
V

[
θ̃ ρ cp θ̇

]
dV = · · ·∫

V

[
θ̃ qV

]
dV +

∫
S

[
θ̃ ᾱ θ∞

]
dS, (4.5)

which is almost ready to be used in the finite element formulations. Eq. (4.5)
is satisfied over the whole domain and sub-domains (i.e. each element) for an
arbitrary temperature distribution θ̃.

As it has been already stated before, the complete body under consideration
can be approximated as an assemblage of finite elements. Over each element,
the temperature field is interpolated from the nodal temperatures. So, for the
eth element, the temperature field and its gradient are

θe = NT
e Θe

∂θe
∂xi

= ∂NT
e

∂xi
Θe = HeΘe

}
, (4.6)

where the subscript e denotes the eth element and Θe is the vector of all nodal
point temperatures of the eth element with n-nodes

Θe =
[
θ1 θ2 ... θn

]T
. (4.7)

The operators Ne and He =
[

∂Ne
∂x

∂Ne
∂y

]T are the element temperature and
temperature-gradient interpolation operators, respectively. With the help of
these descriptions, the integral equation can be put in the following form

∑
e

∫
Ve

[
Θ̃T

e HT
e k He Θe

]
dV +

∑
e

∫
Se

[
Θ̃T

e NS
e ᾱ

(
NS

e

)T
Θe

]
dS + · · ·

∑
e

∫
Ve

[
Θ̃T

e Ne ρ cp NT
e Θ̇e

]
dV = · · ·

∑
e

∫
Ve

[
Θ̃T

e Ne q
V
]
dV +

∑
e

∫
Se

[
Θ̃T

e NS
e ᾱ θ∞

]
dS, (4.8)

where NS
e is the interpolation functions on the element surface and Θ̃e is an

arbitrary vector of virtual nodal temperatures that is common on both sides, so
it cancel outs, and after the assemblage, a linear system of equation is obtained
with unknown nodal temperatures. Newton-Raphson iterations are used for the
solution at current time t+∆t. The nodal temperature vector and its derivative
(Euler backward approximation) for the current ith iteration are

t+∆t
iΘ = t+∆t

i−1Θ + ∆Θ
t+∆t

iΘ̇ =
t+∆t

i−1Θ+∆Θ−tΘ

∆t

}
. (4.9)

When these two terms are inserted in the final form of the integral equation
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(Eq. (4.8)), we get{∑
e

∫
Ve

[
HT

e
t+∆t

i−1k He

]
dV +

∑
e

∫
Se

[
Ne

t+∆t
i−1ᾱ

(
NS

e

)T ]
dS

}(
t+∆t

i−1Θ + ∆Θ
)
+· · ·{∑

e

∫
Ve

[
Ne

t+∆t
i−1ρ

t+∆t
i−1cp NT

e

]
dV

}(
t+∆t

i−1Θ + ∆Θ−t Θ
∆t

)
= · · ·

∑
e

∫
Ve

[
Ne

t+∆t
i−1q

V
]
dV +

∑
e

∫
Se

[
Ne

t+∆t
i−1ᾱ θ∞

]
dS. (4.10)

Now the nodal temperature increment is the only unknown vector and it is
kept on the left-hand-side, all other terms are moved to right-hand-side,{∑

e

∫
Ve

[
HT

e
t+∆t

i−1k He

]
dV +

∑
e

∫
Se

[
NS

e
t+∆t

i−1ᾱ
(
NS

e

)T ]
dS

}
(∆Θ) + · · ·{∑

e

∫
Ve

[
Ne

t+∆t
i−1ρ

t+∆t
i−1cp NT

e

]
dV

}(
∆Θ
∆t

)
= · · ·

∑
e

∫
Ve

[
Ne

t+∆t
i−1q

V
]
dV +

∑
e

∫
S(m)

[
NS

e
t+∆t

i−1ᾱ θ∞
]
dS − · · ·{∑

e

∫
Ve

[
HT

e
t+∆t

i−1k He

]
dV +

∑
e

∫
Se

[
NS

e
t+∆t

i−1ᾱ
(
NS

e

)T ]
dS

}(
t+∆t

i−1Θ
)
− · · ·{∑

e

∫
Ve

[
Ne

t+∆t
i−1ρ

t+∆t
i−1cp NT

e

]
dV

}(
t+∆t

i−1Θ − tΘ
∆t

)
, (4.11)

or if the matrices are given specific names,{
t+∆t

i−1K
k + t+∆t

i−1K
c + 1

∆t
t+∆t

i−1C
}

(∆Θ) = t+∆t
i−1Q+t+∆t

i−1Q
c−t+∆t

i−1Q
k−t+∆t

i−1Q
cp.

(4.12)
These global matrices are assembled from the numerically integrated element

matrices by using the element connectivity. The finite element matrices used in
nonlinear heat transfer analysis are:

t+∆t
i−1K

k =
∑

e

∫
Ve

[
HT

e
t+∆t

i−1k He

]
dV

t+∆t
i−1K

c =
∑

e

∫
Se

[
NS

e
t+∆t

i−1ᾱ
(
NS

e

)T ]
dS

t+∆t
i−1C =

∑
e

∫
Ve

[
Ne

t+∆t
i−1ρ

t+∆t
i−1cp NT

e

]
dV

t+∆t
i−1Q =

∑
e

∫
Ve

[
Ne

t+∆t
i−1q

V
]
dV

t+∆t
i−1Q

c =
∑

e

∫
Se

[
Ne

t+∆t
i−1ᾱ θ∞

]
dS

t+∆t
i−1Q

k =
{∑

e

∫
Ve

[
HT

e
t+∆t

i−1k He

]
dV
}(

t+∆t
i−1Θ

)
t+∆t

i−1Q
cp =

{∑
e

∫
Ve

[
Ne

t+∆t
i−1ρ

t+∆t
i−1cp NT

e

]
dV
}( t+∆t

i−1Θ−tΘ

∆t

)


. (4.13)

The integrals are calculated numerically by Gauss-Quadrature rule. Three
points are selected in each coordinate axis direction. Therefore, 2D elements
have nine integration points in the area and three integration points on each
side. 3D elements have twenty-seven integration points in the volume and nine
integration points on each face.
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4.3.2 Two-dimensional elements

It is assumed that the temperature and cooling conditions are constant in the
axial direction of the long profiles. This assumption leads to all of the other fields
also to be constant. Consequently, the mathematical model of the profile prob-
lems reduces from three dimension to two dimension with much fewer degrees of
freedoms. This reduction of the dimension, simplifies not only the visualization
of the fields, but also the determination of optimal cooling conditions.

In finite element implementations, usually plane stress, plane strain and
axis symmetric elements are combined in a single routine. In this work, an ad-
ditional beam cross-section element type is introduced in addition to these three
elements. The finite element calculations for these four types of elements are
very similar to each others. There are only minor differences while performing
the numerical integrations to form the element matrices and vectors. These
minor differences do not change the general structure of the formulation. Only,
the volume dV and area dA terms in the integrals differ from each other, which
is obvious from the 3D geometry described by typical 2D element geometry.
Quadrilateral parent element and its typical mapping to the global coordinates
are shown in Fig. 4.1 together with element node numbering.

Figure 4.1: Quadrilateral parent element and its typical mapping to global
coordinates

In 2D-finite elements, the infinitesimal volume for the volume integrals is ob-
tained by multiplying the area with the thickness in the perpendicular direction,

dV = ` |J| dr ds. (4.14)

Similarly, the infinitesimal area for the surface integrals is

dA =
{
`
∣∣J〈2〉∣∣ ds on faces 1&2
`
∣∣J〈1〉∣∣ dr on faces 3&4

, (4.15)

where J〈i〉 represents the ith column vector of the Jacobian matrix, J〈1〉dr and
J〈2〉ds are the maping of the infinitesimal vectors dr and ds to global coordi-
nates, and t is the thickness in the perpendicular direction. For plane strain,
plane stress, beam cross-section and axis symmetric element formulations, the
values of thickness ` are:

` =

 1 unit length if plane strain or beam cross-section
` real thickness if plane stress
x the radius if axis symmetric (1 rad is considered)

. (4.16)
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The faces define the four boundaries of the element. According to node
numbering in Fig. 4.1, the left and right sides are called faces 1-2, and top and
bottom sides are called faces 3-4, respectively.

The same interpolation functions are used to map the element geometry and
temperature field for isoparametric elements. Hence, the global coordinates and
temperature in terms of nodal coordinates and nodal temperatures at a given
local coordinates (r, s) are interpolated by

x (r, s) = NT X
y (r, s) = NT Y

}
and θ (r, s) = NT Θ, (4.17)

where the vectors, X and Y, are the coordinates of the nodes. Vector Θ is the
nodal temperatures and N is the interpolation functions,

N =
1
4

[
(1+r)(1+s)
(1−r)(1+s)
(1−r)(1−s)
(1+r)(1−s)

]
. (4.18)

The calculations of element matrices require the derivatives of the temper-
ature with respect to global coordinates. The gradient operator H, which per-
forms this derivative operation, can be obtained by the chain rule in the following
manner, [

∂
∂r
∂
∂s

]
=
[

∂x
∂r

∂y
∂r

∂x
∂s

∂y
∂s

] [ ∂
∂x
∂
∂y

]
= JT

[ ∂
∂x
∂
∂y

]
. (4.19)

From Eq. (4.19), the Jacobian can be calculates as

J =
[

∂x
∂r

∂x
∂s

∂y
∂r

∂y
∂s

]
=

[
∂NT

∂r X ∂NT

∂s X
∂NT

∂r Y ∂NT

∂r Y

]
, or JT =

[
∂N
∂r

∂N
∂s

]T [
X Y

]
. (4.20)

The derivatives of the interpolation functions with respect to local coordi-
nates are required for calculation of the Jacobian,

∂N
∂r

=
1
4

[
+(1+s)
−(1+s)
−(1−s)
+(1−s)

]
,
∂N
∂s

=
1
4

[
+(1+r)
+(1−r)
−(1−r)
−(1+r)

]
. (4.21)

The derivative operator H is of size 2× 4 by definition and given by

H =
[ ∂

∂x
∂
∂y

]
NT = J−T

[
∂
∂r
∂
∂s

]
NT . (4.22)

4.3.3 Three-dimensional element

For the modeling of the heat transfer in 3D geometries, an 8-node isoparametric
brick element is introduced. The 3D element formulation is relatively simple
as compared to the general 2D element formulation which is described in the
previous section. Typical 3D parent element geometry and its node numbering
are shown in Fig. 4.2.
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Figure 4.2: 3D parent element and its node numbering for temperature field
calculations

The infinitesimal volume for volume integral computations is

dV = |J| dr ds dt. (4.23)

The infinitesimal area for surface integral computations is

dA =


∣∣J〈2〉 × J〈3〉

∣∣ ds dt on face 1&2∣∣J〈1〉 × J〈3〉
∣∣ dr dt on face 3&4∣∣J〈1〉 × J〈2〉
∣∣ dr ds on face 5&6

, (4.24)

where J〈i〉 represents the ith column vector of the Jacobian matrix, J〈1〉dr,
J〈2〉ds and J〈3〉dt are the mapping of infinitesimal vectors dr, ds and dt to global
coordinates, respectively. So, the cross product simply gives the infinitesimal
area dA.

The faces define the six boundary of the element. According to node num-
bering in Fig. 4.2, the front and back faces are called faces 1-2, left and right
faces are called faces 3-4, and top and bottom faces are called faces 5-6, all
respectively.

The same interpolation functions are used to map the element geometry and
temperature field (i.e., isoparametric element formulation). Hence, for a given
local coordinates (r, s, t), the global coordinates (x, y, z) and temperature θ are

x (r, s, t) = NT X
y (r, s, t) = NT Y
z (r, s, t) = NT Z

 and θ (r, s, t) = NT Θ, (4.25)

where the vectors, X, Y and Z, are the coordinates of the nodes, vector Θ
is the nodal temperatures and N is the interpolation functions,

N =
1
8


(1+r)(1−s)(1−t)
(1+r)(1+s)(1−t)
(1−r)(1+s)(1−t)
(1−r)(1−s)(1−t)
(1+r)(1−s)(1+t)
(1+r)(1+s)(1+t)
(1−r)(1+s)(1+t)
(1−r)(1−s)(1+t)

 . (4.26)

The calculations of element matrices require the derivatives of temperature
with respect to global coordinates. The operator H performs this operation.
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The chain rule can be applied to obtain the derivative operator in the following
manner  ∂

∂r
∂
∂s
∂
∂t

 =

 ∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t

 ∂
∂x
∂
∂y
∂
∂z

 = JT

 ∂
∂x
∂
∂y
∂
∂z

 . (4.27)

From Eq. (4.27), the Jacobian is obtained as

J =

 ∂x
∂r

∂x
∂s

∂x
∂t

∂y
∂r

∂y
∂s

∂y
∂t

∂z
∂r

∂z
∂s

∂z
∂t

 =

 ∂NT

∂r X ∂NT

∂s X ∂NT

∂t X
∂NT

∂r Y ∂NT

∂s Y ∂NT

∂t Y
∂NT

∂r Z ∂NT

∂s Z ∂NT

∂t Z


JT =

[
∂N
∂r

∂N
∂s

∂N
∂t

]T [
X Y Z

]
 . (4.28)

The derivatives with respect to local coordinates are required for the calcu-
lation the Jacobian,

∂N
∂r

=
1
8


+(1−s)(1−t)
+(1+s)(1−t)
−(1+s)(1−t)
−(1−s)(1−t)
+(1−s)(1+t)
+(1+s)(1+t)
−(1+s)(1+t)
−(1−s)(1+t)

 ,
∂N
∂s

=
1
8


−(1+r)(1−t)
+(1+r)(1−t)
+(1−r)(1−t)
−(1−r)(1−t)
−(1+r)(1+t)
+(1+r)(1+t)
+(1−r)(1+t)
−(1−r)(1+t)

 ,
∂N
∂t

=
1
8


−(1+r)(1−s)
−(1+r)(1+s)
−(1−r)(1+s)
−(1−r)(1−s)
+(1+r)(1−s)
+(1+r)(1+s)
+(1−r)(1+s)
+(1−r)(1−s)

 .
(4.29)

The derivatives operator, whose size is 3× 8, is by definition

H =

 ∂
∂x
∂
∂y
∂
∂z

NT = J−T

 ∂
∂r
∂
∂s
∂
∂t

NT . (4.30)

4.4 Phase field formulation

4.4.1 Computation of diffusional phase fractions

The isothermal transformation (IT) diagrams are used to describe the phase
transformation for an arbitrary cooling curve by using Scheil’s additivity rule.
The TTT chart data is provided numerically in an array form for the imple-
mented algorithm,

TTT =

[
θ tS tE
...

...
...

]
. (4.31)

If temperature is out of the transition range (i.e., θ > θN or θ < θ1) then the
transformation start and end times are tS = tE = ∞ . At an integration point,
the current temperature t+∆tθ, last temperature increment ∆θ = t+∆tθ− tθ and
global time increment ∆t are known. Therefore, Scheil’s sum can be computed.
If the diffusive phase fraction is less than one, then the increment for the Scheil’s
sum [Sch35] is computed by

∆S =
∆t

tS
(
t+∆tθ − 1

2∆θ
) . (4.32)
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If the Scheil’s sum reaches one (i.e., tS < 1 and tS + ∆S > 1), then only
a fraction of temperature increment ∆θ causes the phase transition. If the
incubation is already completed, the complete temperature ∆θ increment causes
the transition. Hence, the increment of the diffusive phase fraction is simply

∆f =
∆t

tE
(
t+∆tθ − 1

2∆θ
)
− tS

(
t+∆tθ − 1

2∆θ
) (4.33)

The Scheil’s sum algorithm is schematically illustrated in Fig. 4.3 for a
typical time step. The cooling curve is shown on the left side and on the right
side is the TTT-diagram.

Figure 4.3: Illustration of the Scheil’s sum algorithm

For the time step [t, t+∆t], Scheil’s sum is updated at each integration point
by

t+∆tS = tS +
∆t

t+∆ttS
. (4.34)

If the updated sum is less than 1, it means the transformation has not started
yet. Therefore, the phase increment is zero

if t+∆tS < 1, then ∆f = 0. (4.35)

If the updated sum is greater than 1, the previous sum is controlled to decide
whether the transformation is started in this time step or has already started
before. If the transformation has already started, then the whole time step
contributes to the transformation,

if tS > 1, then ∆f =
∆t

t+∆ttE − t+∆ttS
(4.36)

Otherwise (i.e., tS < 1 and tS + ∆S > 1), only a part of the time step
after tinc, which can be calculated explicitly from IT start and cooling curves,
contributes to the transformation.

Remark: the stress-dependency of the diffusional transformations is not con-
sidered in this study. However, it is known that the IT curves are shifted at
high stresses.
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4.4.2 Computation of displacive phase fractions

The displacive phase transformations are not time-dependent but only tempera-
ture-dependent. Once the temperature drops below the martensite start tem-
perature MS, the retained austenite starts to convert into martensite. The stress
dependency of martensitic transformations can be included in the model by in-
troducing additional stress coefficients in the Koistinen-Marburger equation,

t+∆tfM = tfA
{
1− exp

[
kM

(
t+∆tθ −MS

)
+ aσm

tσm + aσe
tσeff

]}
, (4.37)

where MS is the martensite start temperature, kM, aσm and aσe are material
parameters for martensitic transformation, σm is the mean stress and σeff is the
effective stress. The current temperature and previous time step stress data
used in the computation.

4.5 Displacement field formulation

4.5.1 Preliminaries

Consider a material body which is deforming under some loads. This mate-
rial body has internal stresses which satisfy the stress equilibrium condition at
current configuration. The stress equilibrium equation is

∇ ·T + fB = 0. (4.38)

The traction fS must satisfy boundary conditions nS ·T = fS on Sf , and
the displacement field must conform u = uS on Su.

The stress equilibrium equation has to be put in a more convenient form be-
fore using it in finite element formulations. For an arbitrary chosen displacement
field ũ (with ũ = 0 on displacement described boundary), the stress equilibrium
equation can be expressed differently. For the solution, the equation∫

V

[
∇ ·T + fB

]
· ũ dV = 0 (4.39)

is apparently satisfied because the bracket in the integral is zero vector. This
method is named virtual displacement method. By using the property of diver-
gence operator

∇ · (T · ũ) = (∇ ·T) · ũ + T : ∇ũ (4.40)

the integral in Eq. (4.39) can be written as∫
V

[
∇ · (T · ũ)−T : ∇ũ + fB · ũ

]
dV = 0, (4.41)

the first term of which is suitable for the application of divergence theorem. Af-
ter applying the divergence theorem and the imposition of boundary conditions
to Eq. (4.41), the first term becomes∫

V

[∇ · (T · ũ)]dV =
∫

Sf

[
nS · (T · ũ)

]
dS =

∫
Sf

[
fS · ũ

]
dS (4.42)
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The second term of Eq. (4.41) is a inner product between tensors. Recall
the property of tensor inner product that the inner product with a symmetric
tensor regards only the symmetric part of the other tensor

T : ∇ũ = T : sym (∇ũ) = T : Ẽ (4.43)

which is equal to the virtual work. After the replacement of the 1st and 2nd

terms in Eq. (4.41) with their equivalences in Eqs. (4.42 and 4.43) and some
rearrangement,∫

V

[
T : Ẽ

]
dV =

∫
Sf

[
fS · ũ

]
dS +

∫
V

[
fB · ũ

]
dV, (4.44)

which is almost ready to be used in the finite element formulations. This equality
must be satisfied in the whole domain and sub-domains (i.e., each element) for
an arbitrary displacement field ũ. Recall that the complete domain under con-
sideration can be approximated as an assemblage of finite elements. Over each
element, the displacement field is interpolated from the nodal displacements.
So, for the eth element, the displacement field is

ue = NT
e Ue

ve = NT
e Ve

we = NT
e We

 . (4.45)

The strain field is just the gradient of the displacement field,

Ee =
[
(∂ue

∂x ) (∂ve
∂y ) (∂we

∂z ) (∂ue
∂y + ∂ve

∂x ) (∂ue
∂z + ∂we

∂x ) (∂ve
∂z + ∂we

∂y )
]T

= · · ·

BeÛe, (4.46)

where Û is the nodal point displacement vector for the eth element and expressed
by

Ûe = [ Ue1 Ve1 We1 · · · Uen Ven Wen ]T . (4.47)

The matrices Ne and Be are called the element interpolation and strain-
displacement matrices, respectively. The number of nodes per element is desig-
nated by n. With these descriptions, the integral in Eq. (4.44) can be converted
into the following form∑

e

∫
Ve

[
˜̂UT

e BT
e Te

]
dV =

∑
e

∫
Se

[
˜̂UT

e NS
e fS

e

]
dS+

∑
e

∫
Ve

[
˜̂UT

e NefB
e

]
dV, (4.48)

where ˜̂U is an arbitrary displacement vector that is common on both sides.
After the assemblage, ˜̂U cancel outs, and a linear system of equation remains to
be solved for the unknown nodal displacements. The Newton-Raphson iteration
scheme is used to compute the equilibrium state displacements at time t+ ∆t.
The strain-displacement operator B relates the displacement increment to the
total strain increment, and the tangential stress-strain operator C relates total
strain increment to stress increment for the ith iteration

∆E = BT ∆Û
∆T = t+∆t

i−1C ∆E

}
. (4.49)
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The incremental forms of nodal displacement vector, integration point strains,
and stresses for ith iteration are:

t+∆t
iÛ = t+∆t

i−1Û + ∆Û
t+∆t

0E = tE + ∆Etp + ∆Etrip

t+∆t
iE = t+∆t

i−1E + ∆E = t+∆t
i−1E + BT ∆Û

t+∆t
0T = tT

t+∆t
iT = t+∆t

i−1T + ∆T = t+∆t
i−1T + t+∆t

i−1C ∆E

 , (4.50)

where ∆Etp is the spherical strain increment due to temperature and phase
changes, and ∆Etrip is the transformation induced plastic strains occurred in
time interval [t, t+ ∆t].

After simplifying Eq. (4.48) and rewriting it at the current time [t + ∆t],
the expression for the stress tensor t+∆t

iT as given in Eq. (4.50) is substituted
to it. The integral with unknown displacement increment ∆Û is kept on the
left-hand-side and all known terms are moved to right-hand-side,

∑
e

∫
Ve

[
BT

e
t+∆t

i−1Ce Be ∆Ûe

]
dV =

∑
e

∫
Sf

e

[
NS

e
t+∆tfS

e

]
dS +

∑
e

∫
Ve

[
Ne

t+∆tfB
e

]
dV −

∑
e

∫
Ve

[
BT

e
t+∆t

i−1Te

]
dV ,

(4.51)

or if the matrices are given specific names,

t+∆t
i−1K ∆Û = t+∆tF− t+∆t

i−1R, (4.52)

where F is the equivalent nodal load vector for externally applied surface trac-
tion fS and body forces fB . The internal reaction vector R is taken from the
previous iteration. The unbalanced forces produce the additional displacement
increment ∆Û.

Global finite element matrices are assembled from element matrices by using
the connectivity data. Element matrices are obtained by numerical integration.
The stiffness matrix, force and response vectors are:

t+∆t
i−1K =

∑
e

∫
Ve

[
BT

e
t+∆t

i−1Ce Be

]
dV

t+∆tF =
∑

e

∫
Sf

e

[
NS

e
t+∆tfS

e

]
dS +

∑
e

∫
Ve

[
Ne

t+∆tfB
e

]
dV

t+∆t
i−1R =

∑
e

∫
Ve

[
BT

e
t+∆t

i−1Te

]
dV


. (4.53)

The integrals are calculated numerically by Gauss-Quadrature rule. Three
points are selected in each coordinate axis direction. Therefore, 2D elements
have nine integration points in the area and three integration points on each
side, 3D elements have twenty-seven integration points in the volume and nine
integration points on each face.
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4.5.2 Two-dimensional elements

It has been already stated that the mathematical model of the profile problem
can be reduced to a two dimensional problem with much fewer degrees of free-
dom. In 2D finite element implementations, usually plane stress, plane strain,
and axis symmetric elements are combined in a single routine. In this work, an
additional beam cross-section element type is introduced in addition to these
three elements. For the beam cross-section, three additional degrees of freedom
have to be considered to account the beam elongation, bending about the x-axis
and about the y-axis. These beam degrees of freedom are common to all the
elements in a beam cross-section following the famous Bernoulli-Euler slender
beam assumption (i.e., plane sections before bending remain plane after bend-
ing). The finite element calculations for these four types of elements are very
similar to each others. There are only minor differences while performing the
numerical integrations to form the element matrices and vectors. These dif-
ferences do not change the general formulation. The infinitesimal volume dV ,
infinitesimal area dA, stress-strain operator C, and strain-displacement opera-
tor B which frequently appear in the integrals slightly differ from each others.
This is obvious from the modeled actual 3D geometry and boundary conditions
in the perpendicular direction. A typical 2D element and its node numbering
in local and global coordinates are shown in Fig. 4.4.

Figure 4.4: Typical 2D element for displacement calculation

The infinitesimal volume for volume integral computations is

dV = ` |J| dr ds. (4.54)

The infinitesimal area for surface integral computations is

dA =
{
`
∣∣J〈2〉∣∣ ds on faces 1&2
`
∣∣J〈1〉∣∣ dr on faces 3&4

, (4.55)

where J〈i〉 represents the ith column vector of the Jacobian matrix, J〈1〉dr and
J〈2〉ds are the maping of the infinitesimal vectors dr and ds to global coordi-
nates, and ` is the thickness in the perpendicular direction. For plane strain,
plane stress, beam cross-section and axis symmetric element formulations, the
values of thickness ` are:

` =

 1 unit length if plane strain or beam cross-section
` real thickness if plane stress
x the radius if axis symmetric (1 rad is considered)

. (4.56)
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The faces of the elements are used for evaluation of the natural boundary
conditions. According to node numbering in Fig. 4.1, the left and right sides are
called faces 1&2, and top and bottom sides are called faces 3&4, respectively.

An isoparametric element formulation has been performed. That is, the same
interpolation functions are used to map the element geometry and displacement
field. Hence, for a given local coordinates (r, s), the global coordinates and
displacements are

x (r, s) = NT X
y (r, s) = NT Y

}
and

u (r, s) = NT U
v (r, s) = NT V

}
, (4.57)

where the vectors X and Y are the coordinates of the nodes, vectors U and V
are the nodal displacements and N is the interpolation functions,

N =



0.25(r2+r)(s2+s)
0.25(r2−r)(s2+s)
0.25(r2−r)(s2−s)
0.25(r2+r)(s2−s)
0.5(1−r2)(s2+s)
0.5(r2−r)(1−s2)
0.5(1−r2)(s2−s)
0.5(r2+r)(1−s2)
(1−r2)(1−s2)


. (4.58)

The calculations of element matrices require the derivatives of displacements
u and v with respect to global coordinates x and y. The operator H performs
this operation. For obtaining operator H, the chain rule can be applied in the
following manner,[

∂
∂r
∂
∂s

]
=
[

∂x
∂r

∂y
∂r

∂x
∂s

∂y
∂s

] [ ∂
∂x
∂
∂y

]
= JT

[ ∂
∂x
∂
∂y

]
. (4.59)

Therefore, the Jacobian is defined as

J =
[

∂x
∂r

∂x
∂s

∂y
∂r

∂y
∂s

]
=

[
∂NT

∂r X ∂NT

∂s X
∂NT

∂r Y ∂NT

∂r Y

]
, or JT =

[
∂N
∂r

∂N
∂s

]T [
X Y

]
. (4.60)

To calculate the Jacobian, the derivatives with respect to local coordinates
∂N
∂r and ∂N

∂s are required. The derivatives with respect to global coordinates ∂
∂x

and ∂
∂y can be obtained by inverting Eq. (4.59). So, the derivative operator H,

which has the size of 2× 9, is by definition,

H =
[ ∂

∂x
∂
∂y

]
NT = J−T

[
∂
∂r
∂
∂s

]
NT . (4.61)

After these preliminary definitions, now the strain-displacement operators
can be written for plane stress, plane strain, axis-symmetric and beam cross-
section elements.

The strain-displacement operator for the plane stress case is the simplest
one and it is referred in this text as standard strain-displacement operator with
size 3× 18,

B = Bstd =

 H1i 0
0 H2i

H2i H1i

∣∣∣∣∣∣
· · ·
· · ·
· · ·

 , (4.62)
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where H1i and H2i are the elements of the first and second rows of derivative
operator H.

The strain-displacement operator for the axis-symmetric case has an addi-
tional row. Therefore, its size is 4× 18

B =
[

Bstd

Baxs

]
, where Baxs =

[
Ni
x 0 | · · ·

]
, (4.63)

where Ni are the elements of the interpolation vector N, and x is the global
radial coordinate.

The strain-displacement matrix for the beam case has size 4× 21. There is
one additional row and three additional columns. The introduced addition is
named Bbeam and

B =
[

Bstd 0
0 Bbeam

]
, where Bbeam = 1

L

[
1 y −x

]
. (4.64)

The additional operator Bbeam is used for computing the strain in the axial
direction, which is just related to axial elongation and bending curvatures.

The stress-strain operator (constitutive matrix, the derivation is discussed
in section 3.3.1),

Cep
std = 3κP̂1 + 2µP̂2 −

2µ
1 + H

3µ

n̂′
T − λ

4µ2

‖(T′)trial‖

(
P̂2 − n̂′

T

)
(4.65)

where P̂1 is the spherical projector, P̂2 is the deviator projector and n̂′
T is the

plastic flow direction projector. Since in the case of plane stress case the stress
in the perpendicular direction is zero, the projectors are of size 3× 3,

P̂1 =
1
3

 1 1 0
1 1 0
0 0 0

 , P̂2 =
1
2

 + 4
3 − 2

3 0
− 2

3 + 4
3 0

0 0 1

 , n̂′
T = n′

T (n′
T)T =

T′ (T′)T

‖T′‖2 .

(4.66)
For all other cases (plane strain, axis-symmetric and beam cases), projectors

are of size 4× 4,

P̂1 =
1
3


1 1 0 1
1 1 0 1
0 0 0 0
1 1 0 1

 , P̂2 =
1
2


+ 4

3 − 2
3 0 − 2

3
− 2

3 + 4
3 0 − 2

3
0 0 1 0
− 2

3 − 2
3 0 + 4

3

 . (4.67)

4.5.3 Three-dimensional element

For the modeling of general 3D models, a 27-node isoparametric brick element
is introduced. Formulation of the 3D element is straight forward and special
considerations are not required as in the case of 2D elements. A typical 3D
parent element and its node numbering is shown in Fig. 4.5
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Figure 4.5: Typical 3D parent element and its node numbering

The infinitesimal volume for volume integral computations is

dV = |J| dr ds dt. (4.68)

The infinitesimal area for surface integral computations is

dA =


∣∣J〈2〉 × J〈3〉

∣∣ ds dt for face 1&2∣∣J〈1〉 × J〈3〉
∣∣ dr dt for face 3&4∣∣J〈1〉 × J〈2〉
∣∣ dr ds for face 5&6

, (4.69)

where J〈i〉 represents the ith column vector of the Jacobian matrix, J〈1〉dr,
J〈2〉ds and J〈3〉dt are the mapping of infinitesimal vectors dr, ds and dt to global
coordinates, respectively. So, the cross product simply gives the infinitesimal
area dA.

The faces define the six boundary of the element. According to node num-
bering in Fig. 4.5, the front and back faces are called faces 1-2, left and right
faces are called faces 3-4, and top and bottom faces are called faces 5-6, all
respectively.

An isoparametric element formulation has been performed. That is, the same
interpolation functions are used to map the element geometry and displacement
field. Hence, for a given local coordinates (r, s, t), the global coordinates (x, y, z)
and displacements (u, v, w) are

x (r, s, t) = NT X
y (r, s, t) = NT Y
z (r, s, t) = NT Z

 and
u (r, s, t) = NT U
v (r, s, t) = NT V
w (r, s, t) = NT W

 , (4.70)

where the vectors, X, Y and Z, are coordinates of the nodes, vectors U, V and
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W, are the nodal displacements and N is the interpolation functions,

N =



+0.125(r+r2)(s−s2)(t−t2)
−0.125(r+r2)(s+s2)(t−t2)
+0.125(r−r2)(s+s2)(t−t2)
−0.125(r−r2)(s−s2)(t−t2)
−0.125(r+r2)(s−s2)(t+t2)
+0.125(r+r2)(s+s2)(t+t2)
−0.125(r−r2)(s+s2)(t+t2)
+0.125(r−r2)(s−s2)(t+t2)
−0.25(r+r2)(1−s2)(t−t2)
−0.25(1−r2)(s+s2)(t−t2)
+0.25(r−r2)(1−s2)(t−t2)
+0.25(1−r2)(s−s2)(t−t2)
−0.25(r+r2)(s−s2)(1−t2)
+0.25(r+r2)(s+s2)(1−t2)
−0.25(r−r2)(s+s2)(1−t2)
+0.25(r−r2)(s−s2)(1−t2)
+0.25(r+r2)(1−s2)(t+t2)
+0.25(1−r2)(s+s2)(t+t2)
−0.25(r−r2)(1−s2)(t+t2)
−0.25(1−r2)(s−s2)(t+t2)
−0.5(1−r2)(1−s2)(t−t2)
+0.5(r+r2)(1−s2)(1−t2)
+0.5(1−r2)(s+s2)(1−t2)
−0.5(r−r2)(1+s2)(1−t2)
−0.5(1−r2)(s−s2)(1−t2)
+0.5(1−r2)(1−s2)(t+t2)

(1−r2)(1−s2)(1−t2)



. (4.71)

The calculations of element matrices require the derivatives with respect to
global coordinates. The operator H performs this operation. For obtaining the
operator H, the chain rule can be applied in the following manner, ∂

∂r
∂
∂s
∂
∂t

 =

 ∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t

 ∂
∂x
∂
∂y
∂
∂z

 = JT

 ∂
∂x
∂
∂y
∂
∂z

 . (4.72)

Therefore, the Jacobian is defined as

J =

 ∂x
∂r

∂x
∂s

∂x
∂t

∂y
∂r

∂y
∂s

∂y
∂t

∂z
∂r

∂z
∂s

∂z
∂t

 =

 ∂NT

∂r X ∂NT

∂s X ∂NT

∂t X
∂NT

∂r Y ∂NT

∂s Y ∂NT

∂t Y
∂NT

∂r Z ∂NT

∂s Z ∂NT

∂t Z


JT =

[
∂N
∂r

∂N
∂s

∂N
∂t

]T [
X Y Z

]
 . (4.73)

To calculate the Jacobian, the derivatives with respect to local coordinates,
∂N
∂r and ∂N

∂s are required. The derivative operator H, whose size is 3× 27, is by
definition:

H =

 ∂
∂x
∂
∂y
∂
∂z

NT = J−T

 ∂
∂r
∂
∂s
∂
∂t

NT . (4.74)
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Now the strain-displacement relation, which has a size 6×81, can be written
as

B =


H1i 0 0
0 H2i 0
0 0 H3i

H2i H1i 0
H3i 0 H1i
0 H3i H2i

∣∣∣∣∣
···
···
···
···
···
···

 , (4.75)

where H1i, H2i and H3i are the elements of the first second and third row of
derivative operator H.

The formulation of the stress-strain operator was performed in section 3.3.1

Ĉep
std = 3κP̂1 + 2µP̂2 −

2µ
1 + H

3µ

n̂′
T − λ

4µ2∥∥∥T′trial
∥∥∥
(
P̂2 − n̂′

T

)
, (4.76)

where the projectors are:

P̂1 =
1
3


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , P̂2 =
1
2


+ 4

3 − 2
3 − 2

3 0 0 0
− 2

3 + 4
3 − 2

3 0 0 0
− 2

3 − 2
3 + 4

3 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


n̂′

T = n′
T (n′

T)T =
T′ (T′)T

‖T′‖2 . (4.77)

4.5.4 Integration scheme for the plastic strains

The equilibrium iterations for the stress-strain calculations require an integra-
tion algorithm for the plastic strains at time t+ ∆t. The calculation of plastic
strain is one of the major steps in the solution of plasticity problems. In this sub-
section the integration algorithm for the plastic strains will be explained. The
most commonly used and most simple method is the Euler backward method
for the total plastic strain tensor and the hardening parameter,

t+∆t
iE

pl = t+∆t
i−1E

pl + λ t+∆t
in

′
T

t+∆t
iε

pl = t+∆t
i−1ε

pl +
√

2
3 λ

}
, (4.78)

where E (i.e., E = [ εxx εyy εzz εxy εxz εyz ]T ) is the vector form of
the strain tensor, n′

T is the unit direction vector for the stress deviator, εpl

is the plastic hardening state variable, λ is the plastic multiplier, and i is the
current equilibrium iteration number. Similar to the strain tensor, T (i.e.,
T = [ σxx σyy σzz σxy σxz σyz ]T ) is the vector form of the stress tensor.
The stress state at the end of time increment is

t+∆t
iT = t+∆t

iC
el t+∆t

iE
el = · · ·

t+∆tκ tr
(
t+∆t

iE− t+∆tEtp
)
I + 2 t+∆tµ

(
t+∆t

iE
′ − t+∆tEtrip − t+∆t

iE
pl
)
.

(4.79)

The deviatoric part of the stress tensor is∥∥t+∆t
iT

′∥∥ t+∆t
in

′
T = 2 t+∆tµ

(
t+∆t

iE
′ − t+∆tEtrip − t+∆t

i−1E
pl − λ t+∆t

in
′
T

)
.

(4.80)
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The trial deviatoric stress is defined as

(t+∆t
iT

′)trial = 2 t+∆tµ
(
t+∆t

iE
′ − t+∆tEtrip − t+∆t

i−1E
pl
)∥∥(t+∆t

iT
′)trial

∥∥ (t+∆t
in

′
T)trial =

∥∥t+∆t
iT

′
∥∥ t+∆t

in
′
T + 2 t+∆tµ λ t+∆t

in
′
T

}
(4.81)

From the last equation, the following expression can easily be derived,
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The relationship, t+∆t
iC

alg, which is the partial derivative of the stress in-
crement ∆T with respect to total strain increment ∆E = ∆Eel +∆Epl, is called
algorithmic stress-strain operator at time t+ ∆t,
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4.6 Summary

The mathematical model for the quenching precess was introduced in this chap-
ter. Transient temperature field, solid state phase transitions, and displacement
field models are separately discussed but coupling terms are addressed during
the explanations. Different material properties of the mixture are estimated
by using different mixture rules. So, a generalized mixture rule is also intro-
duced. Finally, the descriptions of the distortion was stated for the geometries
considered in this study.
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Chapter 5

Validation of mathematical
model

5.1 Introduction

The simulation results are compared with the known analytical solutions for
simple geometries in order to test the correctness of the individual parts of
the mathematical model and their computational implementations. The com-
plete coupled model is tested by comparing the simulation results with ex-
perimental measurements. Fourier’s heat conduction equation has analytical
solutions only for simple geometries such as rectangular, circular, prismatic,
cylindrical or spherical domains. These analytical solutions are represented by
the sum of an infinite series, which is truncated for the approximation. The
phase transformation model is established on the basis of Time-Temperature-
Transformation (TTT) diagrams, which are experimentally determined. The
Continuous-Cooling-Transformation (CCT) diagrams can be obtained from Iso-
thermal Transformation (IT), or TTT diagrams by using the Scheil’s additivity
rule for a range of different cooling rates. The displacement and stress-strain
state can be analytically computed only for simple geometries and simple bound-
ary conditions, which usually produce a uniform stress-strain field. Such prob-
lems are called patch tests in the literature [Bat96]. Although, the individual
fields can be computed analytically for simple boundary conditions and over sim-
ple domains, it is not possible to obtain an analytical solution for the coupled
problem. Therefore, experimental results, which are available in the literature
[BSO+05, BSO+06, BKS05], for the shaft and disk geometries are compared
with the simulation results.

5.2 Validation of temperature field formulation

The linear heat conduction equation can be solved for very simple geometries.
However, it is not possible to find out such analytical solutions for complex
geometries and for nonlinear cases. Numerical methods are applicable to both
linear and nonlinear cases. The correctness of the implementation of the temper-
ature field formulation is controlled by comparing the known analytical solution
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for a very simple prismatic geometry, which is shown in Fig. 5.1 and subjected
to an equal cooling over all the boundaries. Even for this simple geometry the
analytical solution equations have very complex forms. The derivation of these
equations can be found in heat transfer handbooks such as [CJ96]. Because
of the symmetry of the geometry and boundary conditions, only the positive
octant is considered.

Figure 5.1: Geometry of the solid prism for analytical solution of convective
cooling

In order to avoid the repetitions, the solution equations are directly given
here. Some dimensionless numbers, i.e., the thermal diffusivity, Fourier number,
Biot number, are used to get the results. Thermal diffusivity is defined as

a =
k

ρ cp
, (5.1)

where k is the heat conductivity, ρ is the density and cp is the specific heat.Fourier
numbers are:

Fox = at
l2x

, Foy = at
l2y

, Foz = at
l2z

, (5.2)

where t is the time, lx, ly and lz are dimensions of the prism. Biot numbers are:

Bix = αxlx
k , Biy = αyly

k , Biz = αzlz
k , (5.3)

where αx, αy and αz are the heat transfer coefficients on the corresponding
surfaces. The solution equations (see Eq. (5.6)) involve the eigenvalues, which
are obtained by solving

qx tan (qx) = Bix, qy tan (qy) = Biy, qz tan (qz) = Biz. (5.4)

The positive roots of the eigenvalue problems are

qxi, qyi, qzi, i = (1, 2, 3, · · · ). . (5.5)

Then, the normalized temperature fractions in each direction are computed
by the infinite sums
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cos(qzi z

lz
) exp(−q2ziFoz)

 . (5.6)
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Although, these temperatures are obtained from an infinite series sum, usu-
ally first few terms of the series are enough because of exponentially decaying
term to approximate the sum with adequate accuracy.

The normalized temperature at point (x,y,z) at time t is

θxyz = θx θy θz = θ−θg
θ0−θg

. (5.7)

In the case of 2D computations, the parameters with indices x and y are
only used, those with z index are all not involved in calculations.

Example : An imaginary material is considered with density ρ = 1000 kg/m3,
heat capacity cp = 1000 J/kg/K, and conductivity k = 100 W/m/K.
The heat transfer coefficient is α = 1000 W/m2/K, initial temperature is
θ0 = 1000 K and the surrounding temperature θg = 300 K. Cross-section
of a continuous beam with lx = ly = 0.1 m is considered for simplicity.
The performance of the numerical method is evaluated by varying the time
increment and the mesh density. The temperatures at the corner, middle
of the surface and center are represented by θ1, θ2 and θ3 respectively. The
errors in the finite element calculations are plotted in Fig. 5.2, Fig. 5.3
and Fig. 5.4 for temperatures θ1, θ2 and θ3, respectively. Two different
meshes and two different time step sizes have been used. For the coarse
mesh dashed lines and for the fine mesh solid lines are used. For the small
time stepping red light and for the big time stepping dark color is used in
the figures. The analytical results and finite element results are also listed
in Table. 5.1 for convenience. The errors are zero when t = 1000 s because
the cooling is completed (the material and environment temperatures are
equal). For big time steps, the error is very high when t = 100 s since
the time increments are very big as they are logarithmically increased. In
Fig. 5.4, the error is zero until t = 3 s since the core temperature θ3 start
reducing only after 3 s. According to the results, it is essential to use
small time steps to obtain a good accuracy. On the other hand, the mesh
refinement has relatively less effect on the accuracy.

Figure 5.2: Error in computed temperature θ1 at the corner vs. time
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Figure 5.3: Error in computed temperature θ2 on the mid-surface vs. time

Figure 5.4: Error in computed temperature θ3 in the core vs. time
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Table 5.1: Numerical values of temperature from analytical and numerical so-
lutions in time

The temperature variation between center P3 and middle of the surface
P2 after 100.6 s is discussed in Fig. 5.5 for different mesh densities and
time step sizes. The analytical results and finite element results are also
listed in Table. 5.2 for convenience. In the coarse mesh, the positions of
the observation points are located inside the element, and the tempera-
ture values are interpolated from the nodal values. Therefore, the dashed
lines are sinusoidal. For the fine mesh, the position of observation points
match to finite element node positions and no interpolation is necessary.
Therefore, the solid lines are smooth.

Figure 5.5: Error in computed temperature θ between the core and mid-surface
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Table 5.2: Numerical values of temperature from analytical and numerical so-
lutions in space

5.3 Validation of phase transformation formula-
tion

Both diffusional and martensitic transformations are considered in this formu-
lation. At higher temperatures, austenite converts into ferrite/pearlite/bainite
by diffusional phase transformation. However, below the martensite start tem-
perature, the martensitic transformation takes place and retained austenite is
converted into martensite. For the computation of diffusional transformations,
a simple approximation is chosen which assumes that the new phase evolves
linearly proportional to the time in the transformation range. The martensitic
phase fractions are computed according to [KM59]. The described models are
tested on a 100Cr6 steel, the IT curve and CCT curves of which are given as
shown in Fig. 5.6. As expected, the CCT curve is shifted to later times and
lower temperatures. However, the computed CCT curve is quite different from
the data sheet CCT curve.

Figure 5.6: Comparison of IT diagram, computed CCT diagram and CCT dia-
gram from the data sheet (provided by Saarstahl [Fig. A.6 and Fig. A.7]), for
the pearlitic transformation of a typical steel

Unlike diffusive transformations, the martensitic transformation depends
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only on the temperature. The austenite is converted into martensite as the
temperature drops below the martensite start temperature. The martensite
start temperature MS is 220 oC and the transformation equation is assumed as

fM = fA (1− exp {0.011 (θ −MS)}) (5.8)

where fM is the martensite fraction at temperature θ and fA is the austenite
fraction at the beginning of transformation (it is cooled to 0 oC temperature).
Depending on the cooling rate, the final micro-structure becomes either diffusive
or martensitic, or a mixture of them. It is shown in Fig. 5.7 that the variation of
the final micro structure depends on the cooling rate. The black line represents
the retained austenite. The blue line shows the martensite and red line shows
the pearlite phase fraction. For slow cooling only pearlite forms, and for very
high cooling only martensite occur and some of the austenite remains.

Figure 5.7: Variation of martensite fraction after the cooling depending on
cooling time

5.4 Validation of displacement field formulation

Analytical solutions of stress equilibrium equation are known only for simple
geometries and simple boundary conditions. The simplest case is a uniform
stress-strain field in a rectangular domain. A simple patch tests is suggested in
[Bat96]. Consider a 10 m × 10 m plate with 1 m thickness which is shown on
the left side of Fig. 5.10. The x-displacement on the left boundary is restricted
and a uniform traction, which is increased up to 1.5 Pa, is applied on the right
boundary. Such boundary conditions produce a uniform stress distribution in
the x-direction over the domain. A bilinear elasto-plastic material model with
isotropic hardening is assumed as shown on the right side of Fig. 5.8. The finite
element computation result of this 2D-patch test is compatible with the ana-
lytical results and the finite element code has a good convergence characteristic
for the plastic loading. It converges to solution only after 4 iterations.



54 CHAPTER 5. VALIDATION OF MATHEMATICAL MODEL

Figure 5.8: Patch test problem with its mesh and material model

5.5 Comparison with experimental results

5.5.1 Necessity of experiments

The system of coupled differential equations is too complicated to have an an-
alytical solution. It is only possible to solve it by using numerical methods.
The correctness of the developed numerical method can be tested by compar-
ing the numerical results with experimental results or by comparing them with
numerical results from commercial software, the correctness of which has al-
ready been tested. The correctness of the mathematical model described in
chapter 3 and its finite element implementation is validated by experimental
results from cooling of shafts and disks which are shown in Fig. 5.9. The ex-
periments have been carried out in Bremen University, Germany and published
in [BSO+05, BSO+06].

Figure 5.9: Geometry of notched shaft and disk

The phase fractions were measured by the point analysis method [EH86]
with an accuracy of 1% fraction. As a material, 100Cr6 was used because its
material properties are well known and available with high accuracy as given
in Tab. A.1 in appendix. Further details of the experiments can be found in
[BSO+05, BSO+06].

5.5.2 Shaft with notches

Two sample geometries of the shafts have been used in the experiments. The
geometrical dimensions of the samples are shown in Fig. 5.10. The samples
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were heated up to austenization temperature 850 oC and then quenched in a
nozzle field. The heat transfer coefficient is known from Computational Fluid
Dynamics (CFD) analysis.

Figure 5.10: Geometrical dimensions [in mm] of big and small shaft

The calculated principal stresses are compared with the measured stresses
for the bigger shaft in Fig. 5.11. The measurements were taken at 5 sampling
points in longitudinal direction with a computer-controlled diffractometer.

Figure 5.11: Calculated and measured values of stress at different positions
[BSO+05, BSO+06]

The calculated and measured phase fractions for the shafts are presented in
Table. 5.3 at 4 positions. There is no pearlite and mostly martensite formed in
the small shaft since the cooling is faster for small pieces.
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Table 5.3: Calculated and measured phase fractions for the shafts

The discrepancies with the computed and experimental phase fraction mea-
surements are less than 10 %, which is acceptable for such simulations.

5.5.3 Disk with a hole

The disk has sharp edges and a hole as shown in Fig. 5.9. In the experiments
two different sizes of cuttings disks were used: 90 mm and 120 mm of outer
diameter. The dimension of the big disk is shown in Fig. 5.12. For the plane
stress type of mathematical modeling, an equivalent disk is defined where the
sharp edges are removed and corresponding boundary conditions are modified
accordingly.

Figure 5.12: Actual dimensions of the disk with a hole and its idealization for
modeling

The radial displacement of the hole in the center is measured. Since the
geometry is not symmetric because of the linear edge of the disk, the central hole
becomes oval after the cooling. This distortion behavior is very well captured
by the simulations as well. The diameter from 0o to 180o is the minimum
and the diameter from 90o to 270o is the maximum after the cooling. Note
that the experimental measurements scatter more for the small disk since the
measurements contains more relative error when the geometry is small (see Fig.
5.13). The measured phase fractions are given in Table. 5.4. For both disks,
the austenite converts into bainite and martensite. The simulation overestimates
the bainite fraction and underestimates the martensite fraction.
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Figure 5.13: Comparison of experimental and calculated radial displacement of
the hole for the big disk on the top and small disc on the bottom

Table 5.4: Calculated and measured phase fraction for the cutting disks

5.6 Summary and conclusions

The correctness of the finite element formulations and their convergence char-
acteristics were tested in this chapter. The individual parts of the model is
tested by comparing the numerical results with the analytical solutions for very
simple geometries and boundary conditions. The complete coupled field formu-
lation was validated by comparing simulation results with experimental results.
The developed model and its finite element implementation were proved to be
correct. Hence, this tool can be used to find the optimum cooling strategy by
performing simulations of quenching processes for varied boundary conditions
which represent different cooling strategies.
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Chapter 6

Simulation results

6.1 Introduction

This chapter is devoted to present all the obtained results of the simulation.
Most of the simulations are carried out for long profiles which are made of
different materials such as 100Cr6, C45, C80 and aluminum. Many simulations
have been conducted to characterize the cooling behavior of the L120×12 profiles
which are made of 100Cr6, C45, C80 and aluminum. The size effect has also
been investigated by comparing the result from L60×6 and L180×18 aluminum
profiles. A cooling range from 10 W/m2/K (i.e., free/furnace air cooling) to
4500 W/m2/K (i.e., water spray quenching) has been considered to figure out
the effect of cooling intensity. The optimization study is performed only for the
cooling regime with the highest distortion. Interestingly, it has been observed
that the maximum distortion usually does not occur for the highest cooling.

There are also some simulation results for the disk with a hole which is
made of 100Cr6. All the material properties used for the simulations are given
in appendix A.1, A.2 A.3 and A.4. The main purpose of the simulations is to
minimize the stresses and distortion simultaneously. In such an optimization
process, the distortion and stress states should be both described by scalars.
The distortion of the profiles is defined by its curvature. The distortion of the
disk is indicated by the deviation of the central hole from the perfect circle.
Expressing the whole stress state by a scalar value is quite difficult as the stress
state is a tensor field quantity which is changing with position and cooling time.
To overcome this difficulty, the stress tensor field is replaced by the effective
stress field in order to reduce the tensor field to a scalar field. The volume
average value and the maximum value of this effective stress field are used to
characterize the total stress field. Lower average stress values are desirable
with a maximum value which is small enough to prevent from crack formations.
Different cooling strategies which lead to the optimum cooling, different material
behaviors, the effect of size and geometry have been discussed in detail in the
following sections. Also, the sensitivity of the computed distortion and stresses
with respect to the material properties will be discussed at the end.
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6.2 L profiles made of 100Cr6

Initially a series of simulations with equal Heat Transfer Coefficients (HTC)
ranging from 10 W/m2/K to 4500 W/m2/K has been performed to find out the
critical cooling regions. The L profile investigations are started with an L120×12
profile made of 100Cr6 steel. The computed final distortion, average effective
stress and the maximum effective stress are plotted against the equal HTC α in
Fig. 6.1. The highest distortion occurs for a HTC value of 700 W/m2/K. The
highest value of stresses occurs for the most intensive cooling.

Figure 6.1: Distortion, average and max. residual stress vs. HTC α (100Cr6, L
profile)

The average temperatures and the temperature difference between the hottest
and coldest point is very important in a heat treatment process. There is usu-
ally a limitation for the maximum temperature difference value to control the
micro-structure distribution, limit the maximum stress values and to prevent
the formation of cracks. The variation of the average temperatures and the
maximum temperature difference in time is plotted in Fig. 6.2, for the lowest
cooling by 10 W/m2/K, the highest distortion cooling by 700 W/m2/K and
the highest cooling 4500 W/m2/K. The latent heat generation effect cannot
be clearly observed in the highest cooling regime. However, it is obvious from
the stationary temperature region during the phase transitions for the lowest
cooling regime. As expected, the maximum temperature difference occurs in
the highest cooling regime. The temperature difference is much smaller for
the lowest cooling regime. During the phase transformations the temperature
difference values get even smaller due to the latent heat effect.



6.2. L PROFILES MADE OF 100CR6 61

Figure 6.2: Average temperature and max. temperature difference vs. time for
different HTC α (100Cr6, L profile)

The phase evolutions are also important since the final micro-structure iden-
tifies the material properties such as strength and ductility. The simulation re-
sults provide the fractions of each phase at each integration points. This phase
field is replaced by a scalar which is just the fraction of the phase for the whole
volume like the volume averaged effective stress. Three phases have been con-
sidered. Austenite is the parent phase. Pearlite and martensite are the product
phases. The phase transition time ranges can be observed in Fig. 6.3. During
low cooling, the austenite completely converts into pearlite as shown in Fig.
6.3. However, in the case of intensive cooling austenite may also convert into
martensite, which provides the strength and hardness to the quenched steel.
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Figure 6.3: Phase fractions vs. time for different HTC α (100Cr6, L profile)

Figure 6.4 shows the evolution of the distortion during different cooling
regimes as a function of time for 100Cr6 steel L profile. There is almost no
distortion for the low cooling with α = 10 W/m2/K. It is interesting to notice
that the distortion when α = 700 W/m2/K is almost the double of that when
α = 4500 W/m2/K.

Figure 6.4: Distortion vs. time for different HTC α (100Cr6, L profile)

The distortion of the L profile can be better understood from Fig. 6.5,
where the distorted shape of the profile is shown at different stages of cooling.
Initially due to higher thermal shrinkage at the ends of the legs, the profile
bends toward the legs. However, the ends of the legs soon undergo the phase
transition which is also accompanied by a volume increase. Hence, the distortion
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changes its direction. As the phase transition penetrates through the legs, the
distortion again changes its direction and the profile bends toward the legs one
more time. Finally, the phase transition is completed throughout the profile
and the distortion gradually decreases as the temperature becomes uniform.
However, a permanent deformation remains due to the mechanical yielding and
transformation induced plasticity.

Figure 6.5: Distortion of L profile at different stages of cooling

Figure 6.6 shows the evolution of the average and the maximum effective
stress during different cooling regimes as a function of time for the 100Cr6 steel
L profile. The stresses have fluctuations during the phase transformations. The
maximum stresses are observed in the intensive cooling range.

Figure 6.6: Average residual stress and maximum residual stress vs. time for
different HTC α (100Cr6, L profile)

The highest distortion occurs for a homogeneous cooling with HTC α =
700 W/m2/K in the case of the 100Cr6 L120×12 profile. In order to reduce the
distortion and stresses, the cooling can be optimized by increasing the cooling
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at mass-lumped regions of the profile and by reducing the cooling at the ends
of the legs. The HTC at the mass-lumped regions is designated by α1, and it is
designated by α2 at ends of the legs. By increasing the value of α1 and reducing
the α2, it is intended to avoid the distortion and at the same time it is tried
to reduce the average and maximum effective stress values. Fig. 6.7 shows the
variation of the distortion and the average effective stresses for varying HTC
α1.

Figure 6.7: Distortion and average residual stress vs. HTC α1 at mass lumped
region (100Cr6, L profile)

The evolution of the average temperature and the maximum temperature
difference for the equal cooling and optimum cooling is plotted in Fig. 6.8 to
evaluate the characteristics of the optimum cooling as compared to equal cooling.
Although the average temperature evolutions are almost the same for both types
of cooling, the maximum temperature difference is lower in the case of optimum
cooling. The lower temperature difference provides less thermal stresses and the
occurrence of a more uniform phase transition with less transformation stresses.
Similar to the average temperature evolution, the martensite and pearlite phase
evolutions are also almost the same as shown in Fig. 6.9. Only in the case of
optimum cooling, the phase transition time range is a little bit smaller than
that of equal cooling.
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Figure 6.8: Average temperature and max. temperature difference vs. time for
different cooling strategies (100Cr6, L profile)

Figure 6.9: Phase fractions vs. time for different cooling strategies (100Cr6, L
profile)

Although, the average temperature and phase fraction evolutions are very
similar for the equal and optimized cooling, the evolutions of stresses and dis-
tortions are completely different. In the case of optimized cooling, the distortion
is much smaller during the cooling and it is finally eliminated as shown in Fig.
6.10.
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Figure 6.10: Distortion vs. time for different cooling strategies (100Cr6, L
profile)

The evolutions of the average and maximum effective stresses for the equal
cooling and optimum cooling are plotted in Fig. 6.11. The final maximum
effective stress is reduced approximately from 87.2 MPa to 24 MPa. Similarly,
the average effective stress is reduced from 16.4 MPa to 10.1 MPa. During the
phase transformation the maximum effective stress fluctuates a lot due to the
transformation induced plasticity.

Figure 6.11: Average temperature and max. temperature difference vs. time
for different cooling strategies (100Cr6, L profile)
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6.3 L profiles made of C80

Many simulations have been performed for the L120×12 profile made of C80
to find out the cooling characteristics. Initially a series of simulations with
a homogeneous HTCs ranging from 10 to 4500 W/m2/K has been performed
to find out the critical cooling regions. The computed distortion and average
effective stress are plotted in Fig. 6.12. The highest distortion occurs for the
HTCs 100 and 3000 W/m2/K. However, the highest value of the stresses occurs
for the HTCs 20 and 450 W/m2/K. The evolutions of temperature, phase
fractions, distortion and stresses in time will be discussed in the following figures
for the HTCs 20, 100 and 3000 W/m2/K in order to characterize the cooling
behavior of the L profile made of C80.

Figure 6.12: Average residual stress and maximum residual stress vs. time for
different cooling strategies (C80, L profile)

The evolutions of the average temperatures and maximum temperature dif-
ference in time are plotted in Fig. 6.13 for three critical HTCs of 20, 100 and
3000 W/m2/K. The latent heat generation effect can be clearly observed in Fig.
6.13 by the stationary temperature for the low cooling with α = 20 W/m2/K.
The temperature difference between the hottest and coldest point is very high
for the intensive cooling with α = 3000 W/m2/K.
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Figure 6.13: Average temperature and max. temperature difference vs. time
for different HTC α (C80, L profile)

During the low cooling, the austenite completely converts into pearlite as
shown in Fig. 6.14. However, in the case of intensive cooling, the austenite
can also convert into martensite, which provides the strength and hardness to
quenched steel. Because of the limitation of the Koistinen-Marburger equation,
a small amount of austenite retains after the martensitic transformation as ob-
served in Fig. 6.14. The sum of the phase fractions fP and fM is less than unity
(the remaining part is austenite).

Figure 6.14: Phase fractions vs. time for different HTC α (C80, L profile)

The resulting distortions are compared in Fig. 6.15 for these three cooling
regimes. During the phase transition, the direction of the distortion changes
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and reaches its maximum value. Although the largest distortion occurs for the
equal cooling with a HTC value of 3000 W/m2/K, the residual stresses are much
smaller as compared to other cooling regimes. The evolutions of the average
and maximum effective stresses are plotted in Fig. 6.16. For the intensive
cooling case, the residual stresses are very small since both the martensitic and
the diffusive phase transitions take place with a small time shift due to large
temperature gradient (> 500 oC). During the martensitic transformation, the
high stresses relax by the TRIP. For the other cooling regimes only a diffusive
transformation takes place. Therefore, during the phase transition the stress
reaches its maximum and does not reduces afterward.

Figure 6.15: Distortion vs. time for different HTC α (C80, L profile)
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Figure 6.16: Average residual stress and maximum residual stress vs. time for
different HTC α (C80, L profile)

6.4 L profiles made of C45

A series of simulations with uniform HTCs ranging from 10 to 4500 W/m2/K
have been carried out for the L120×12 profiles made of C45 steel. The effect
of cooling on the distortion and residual stresses are shown in Fig. 6.17. For
very low cooling (i.e., α = 10 W/m2/K), there is almost no distortion. How-
ever, the distortion rapidly increases and reaches its maximum value at a HTC
α = 100 W/m2/K. Further increase in the HTC reduces the distortion gradu-
ally. The relation between the average residual stress and the HTC α is more
complicated. Interestingly, the highest stresses are observed for the lowest cool-
ing. This strange behavior can be explained by the strong phase transformation
characteristics of C45. With increasing HTC, the stresses rapidly reduces and
has a minimum at α = 30 W/m2/K and then it increases and has a local maxi-
mum at α = 150 W/m2/K. Then it reduces again and has its second minimum
at α = 2000 W/m2/K. After this point, the residual stresses increases with
increasing HTC α.
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Figure 6.17: Distortion and average residual stress vs. HTC α (C45, L profile)

The variation of the average temperatures and the maximum temperature
difference in time is plotted in Fig. 6.18 for the HTCs: 10, 100 and 4500 W/m2/K.
The stationary temperature region during the cooling with α = 10 W/m2/K is
due to the phase transformation latent heat generation. For the cooling with
a HTC α = 100 W/m2/K the temperature difference between the hottest and
coldest point is slightly reduced due to the latent heat generation. For the high-
est cooling (α = 4500 W/m2/K) the temperature difference between the hottest
point and coldest point is very high since the heat conduction in the steel is rel-
atively poor (i.e., aluminum has a higher conductivity and would have a smaller
temperature difference).
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Figure 6.18: Average temperature and max. temperature difference vs. time
for different HTC α (C45, L profile)

C45 is a pearlitic steel. Even at very high quenching rates, only pearlite
forms. Austenite is completely converted into pearlite as shown in Fig. 6.19 for
any intensity of cooling. As the cooling rate increases, a finer pearlitic micro
structure is obtained.

Figure 6.19: Phase fractions vs. time for different HTC α (C45, L profile)

The variations of the distortion in time are plotted in Fig. 6.20 for three
different cooling intensities. At relatively low cooling rates (α ≤ 100 W/m2/K),
the distortions change direction during the phase transformation. However, this
phenomenon is not observed for the intensive cooling case. Therefore, the final
distortion for the intensive cooling with α = 4500 W/m2/K is relatively small.
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Figure 6.20: Distortion vs. time for different HTC α (C45, L profile)

The variations of stress in time are plotted in Fig. 6.21 for three different
cooling intensities. For all cooling cases, the average stress rapidly increases
during the phase transformation. For the low cooling with α = 10 W/m2/K,
there is almost no stress before the phase transition, and all stresses suddenly
develop during the phase transition. The final average effective stress values are
more or less similar. However, the maximum effective stress evolutions are quite
different. Very high maximum effective stresses are generated for the intensive
cooling with α = 4500 W/m2/K. On the other hand, for low cooling intensities
(α = 10 or 100 W/m2/K) the maximum effective stresses have similar values.

Figure 6.21: Average residual stress and maximum residual stress vs. time for
different HTC α (C45, L profile)
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6.5 Mesh convergence test

In finite element modeling, a finer mesh and small time steps typically result in
a more accurate solution. However, a finer mesh comes with a cost of more com-
putational time and large memory requirements since the number of unknowns
are increased. When the time step size is reduced, the number of solutions
to reach the state at a desired time increases. Therefore, a balance between
accuracy and computing resources should be established. The question that
always arises is: How small do I need to make the elements and time step size
before I can trust the solution? In general there are no real firm answers on
this. One way is to perform a mesh convergence study. The same problem is
repeatedly solved by refining mesh and reducing the time step size until the
results converge.

Mesh convergence tests have been performed for aluminum L120 profiles.
Three different meshes have been considered as shown in Fig. 6.22. As the
computer resources such as solution time and output file size are important
characteristics of such a cooling simulation, they have been given in Tab. 6.1.

Figure 6.22: Three different meshes considered in the mesh convergence analysis
(Aluminum, L profile)

Table 6.1: Required computer resources for different meshes and time steps

The convergence characteristics of the developed finite element code is very
good even for a very coarse mesh and large time stepping. This can be easily
recognized from the computed distortion and average effective stress results.
Although a very coarse mesh and large time stepping is enough for the distortion
computation as shown in Fig. 6.23 and for the average stress computation as
shown in Fig. 6.24, a relatively fine mesh is essential to capture the variation
of the state variables over profile geometry. The computed distribution of the
effective stress over the profile geometry is shown in Fig. 6.25 for three different
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meshes. Note that for the coarse mesh the local variations are quite roughly
captured.

Figure 6.23: Distortion vs. time for different meshes and time steps (Aluminum,
L profile)

Figure 6.24: Maximum residual stress vs. time for different meshes and time
steps (Aluminum, L profile)
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Figure 6.25: Contours of max. residual stress for different meshes (Aluminum,
L profile)

6.6 Comparison of different sizes

The effect of profile size on the distortion and residual stresses are investi-
gated for aluminum L profiles. Three different sizes, L60×6, L120×12 and
L180×18, are considered in the simulations within a HTC range from 10 to
4500 W/m2/K. The computed distortion and average effective stress for three
different sizes of aluminum L profiles are plotted in Fig. 6.26 and in Fig. 6.27,
respectively. The highest distortion and stresses occur for the highest HTC
value of 4500 W/m2/K. Interestingly, large aluminum profiles have a relatively
higher distortion tendency after the cooling. Also, the average effective stress
is apparently higher for large profile and lower for the small profile.

Figure 6.26: Distortion vs. HTC α for different sizes of Aluminum L profiles
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Figure 6.27: Average residual stress vs. HTC α for different sizes of aluminum
L profile

A HTC value of 4500 W/m2/K causes the highest distortion and stresses
in the considered cooling range. During the cooling the small profile has a
higher maximum distortion and the large profile has smaller maximum distortion
because of the smaller bending resistance of the small profile and the higher
bending resistance of large profile. After the cooling, large profiles has more
distortion due to higher plastifications.

Figure 6.28: Distortion vs. time for different sizes of aluminum L profiles

The evolution of the average temperatures and maximum temperature dif-
ferences in time are plotted in Fig. 6.29 for the HTCs of 4500 W/m2/K. The
large profile cools down slower and the temperature difference is higher whereas
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the small profile cools down relatively faster with a small temperature difference.

Figure 6.29: Average temperature and max. temperature difference vs. time
for different sizes of aluminum L profiles

The evolution of the average and maximum effective stress in time is shown
in Fig. 6.30 for the HTCs of 4500 W/m2/K. The large profile has the highest
stresses due to higher temperature difference whereas the small profile has the
lowest stresses.

Figure 6.30: Average residual stress and max. residual stress vs. time for
different sizes of aluminum L profiles
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6.7 Comparison of different optimums

The distortion can be avoided and stresses can be reduced by a controlled cool-
ing. The optimization analysis is carried out for the aluminum L120 profile
which is homogeneously cooled with a HTC of 3000 W/m2/K. The HTCs at
the mass-lumped region of the profile (α1) and at the ends of the legs (α2) are
varied in order to eliminate the distortion and reduce the maximum average ef-
fective stress after the cooling. The built-in optimization function fmincon(...)
in the Matlab is used and four local optimum cooling profiles have been ob-
tained with different initial guesses. These local optimum cooling profiles are
compared in Fig. 6.31. Increasing the cooling at the mass lumped regions and
reducing the cooling at the leg ends produce relatively lower average effective
stress values. However, in all cases the distortion is totally eliminated.

Figure 6.31: Distortion vs. time for different optimum coolings (Aluminum, L
profile)

The axial stress distributions (Fig. 6.32) show the differences between these
four optimum cooling profiles. The 1st optimum cooling profile is quite different
from the other three since the cooling at the mass-lumped region is reduced.
Such a heat transfer profile also produce a negative curvature evolution as seen in
Fig. 6.31. The high plastic deformation in the reverse direction finally balances
and ends up with no distortion. It is not a very preferable cooling strategy as
the high plastic deformations may result in cracks.
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Figure 6.32: Contours of axial residual stress for different optimum coolings
(Aluminum, L profile)

6.8 Comparison of different materials

The cooling behavior of 100Cr6, C45, C80 and aluminum is compared for
L120×12 profiles. The most interesting result is the distortion vs. HTC for dif-
ferent materials. As shown in Fig. 6.33, the material behaviors are completely
different. Surprisingly, the maximum distortion does not occur at high HTCs
for phase changing metals. No distortion is observed in the 100Cr6 profiles up to
α = 150 W/m2/K then suddenly the distortion increases till α = 700 W/m2/K
has a maximum there and starts reducing for further increase of HTC. Steel C45
has a gradually increasing distortion in the low cooling range. The distortion ob-
tains a maximum for a HTC α = 100 W/m2/K. After this point the distortion
gradually reduces with increasing HTC. Steel C80 has two maximum distortion
regions at HTCs α = 100 W/m2/K and α = 3000 W/m2/K. Between these two
HTC values, the distortion is minimum when α = 700 W/m2/K. Non-phase
changing aluminum has much smaller distortion than phase changing steel al-
loys. The distortion of aluminum is only significant at very high heat transfer
values.
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Figure 6.33: Distortion vs. HTC α for different materials (L profile)

6.9 T profiles made of aluminum

Similar simulations to those performed for aluminum L120 profiles have been
carried out for aluminum T120×12 profiles. The purpose was to investigate the
effect of the geometry on the distortion and stresses within the same cooling
range, 10 to 4500 W/m2/K which is analyzed for L profiles. The computed
final distortion, average effective stress and the maximum effective stress are
plotted in Fig. 6.34. The distortion direction changes during the cooling when
the HTC α = 100 W/m2/K. The highest distortion and stresses occur for a
HTC value of 4500 W/m2/K. The evolutions of temperature, distortion and
stresses are investigated for the HTCs 45, 100 and 4500 W/m2/K.
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Figure 6.34: Distortion, average residual stress and max. residual stress vs.
HTC α (Aluminum, T profile)

The evolution of the average temperatures and maximum temperature dif-
ference in time is illustrated in Fig. 6.35. The maximum temperature difference
is much higher in the case of intensive cooling whereas it is relatively small for
low coolings.

Figure 6.35: Average temperature and max. temperature difference vs. time
for different HTC α (Aluminum, T profile)

The evolutions of the distortion and the stresses are compared for three dif-
ferent cooling intensities in Fig. 6.36 and Fig. 6.37, respectively. The distortion
of the aluminum profiles is due to temperature gradient only. The bending of
the profiles occurs about the natural axis of the cross section which is located
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at the centroid. For the T profile, the natural axis is parallel to the flange.
During a homogeneous cooling, the curvature is always negative in the begin-
ning of the cooling since the mass lumped region is located below the natural
axis. However, the final distortion direction is more difficult to estimate by only
using simple rules. Depending on the cooling intensity it may obtain a positive
or negative curvature.

Figure 6.36: Distortion vs. time for different HTC α (Aluminum, T profile)

Figure 6.37: Average residual stress and max. residual stress vs. time for
different HTC α (Aluminum, T profile)

The highest distortion occurs for the homogeneous cooling with a HTC of
4500 W/m2/K in the case of the aluminum T120 profile. In order to reduce the
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distortion and stresses, the cooling can be optimized by increasing the cooling at
the mass-lumped regions of the profile and by reducing the cooling at the ends
of the legs. The HTC at the mass-lumped regions is designated by α1 and it is
designated by α2 at ends of the legs. By increasing the value of α1 and reducing
the α2, it is intended to avoid the distortion and at the same time the average
and maximum effective stress value are intended to be reduced. The distortion
is avoided and internal stresses are minimized when α1 = 5426 W/m2/K and
α2 = 3003 W/m2/K.

Figure 6.38: Distortion, average residual stress and max. residual stress vs.
time for different cooling strategies (Aluminum, T profile)

6.10 Comparison of different geometries

After studying L and T profiles, U profiles are also studied in order to gener-
alize the findings for all profile geometries. A series of simulations has been
performed for the cooling of a U120×12 profile with the same range of HTCs 10
to 4500 W/m2/K. The computed distortion and residual stresses are demon-
strated in Fig. 6.39 (which is very similar to that of T profile given in Fig. 6.34).
The highest distortion and stresses occur for a HTC value of 4500 W/m2/K.
The evolutions of temperature, distortion and stresses in time are investigated
for the HTCs 20, 200 and 4500 W/m2/K in order to characterize the cooling
behavior of the profile.
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Figure 6.39: Distortion, average residual stress and max. residual stress vs.
HTC α (Aluminum, U profile)

The evolutions of the average temperatures and the maximum temperature
are illustrated in Fig. 6.40 for three different HTCs, 20, 200 and 4500 W/m2/K.
The maximum temperature difference is much higher in the case of intensive
cooling but it is very small for low cooling regimes as expected.

Figure 6.40: Average temperature and max. temperature difference vs. time
for different HTC α (Aluminum, U profile)

The evolution of the distortions are compared for three different cooling
intensities in Fig. 6.41. The natural axis of the U profile is parallel to its web and
located at the centroid. The mass lumped regions remain below the natural axis.
Therefore, the curvature is always negative at the initial stages of a homogeneous
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cooling. However, depending on the cooling intensity, this behavior may change
at later stages of the cooling. When the cooling is very high, the distortion
changes its direction three times. The high plastic deformations due to high
temperature gradients are responsible for the directional changes of distortion.
The extend of the plastic zones are easily noticeable in Fig.6.42 which shows
the average and the maximum effective stresses. For HTC α = 20 W/m2/K,
the stresses are always in the elastic range during the cooling. Therefore, there
remain neither residual stress nor distortion after the cooling. When the cooling
is increased to α = 200 W/m2/K, the yielding of the material partly starts. The
average effective stresses are much smaller than the maximum effective stresses.
Therefore, one can say that after the cooling only a small portion of the profile is
plastically deformed. However, the whole profile can plastically deformed for a
very intensive cooling. Notice that the average residual stresses slightly smaller
than the maximum effective stresses.

Figure 6.41: Distortion vs. time for different HTC α (Aluminum, U profile)
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Figure 6.42: Average residual stress and max. residual stress vs. time for
different HTC α (Aluminum, U profile)

Now the simulation results for L, T and U profiles are compared in the cooling
range of 10 to 4500 W/m2/K. Mostly, they have very similar characteristics.
The different behaviors are explained for a complete understanding. The final
distortions are very similar for the L, T and U profiles as shown in Fig. 6.43.

Figure 6.43: Distortion vs. HTC α for different geometries made of aluminum

The evolutions of the distortion for different geometries are compared in Fig.
6.44 for cooling with a homogeneous HTC of α = 4500 W/m2/K. Although the
final distortion is maximum for the U profile, the distortion observed during the
cooling is smaller. This is reasonable since the distortion of U profile changes
the direction three times during the cooling.
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Figure 6.44: Distortion vs. time for different geometries (Aluminum)

The evolutions of temperature and maximum temperature difference are
compared in Fig. 6.45 for L, T and U profile geometries when HTC α =
4500 W/m2/K. The cooling of the U profile is relatively slow since it has
two mass-lumped regions. The maximum temperature difference is higher for
T profile because the mass-lumped region has less area for cooling.

Figure 6.45: Average temperature and max. temperature difference vs. time
for different geometries of aluminum profiles

The stress evolutions are very similar for these three profiles.
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Figure 6.46: Average residual stress and max. residual stress vs. time for
different geometries of aluminum profiles

6.11 Disks made of 100Cr6

A disk with a hole has been considered in the simulations. The outer edge
of the disk is sharp and one quarter is straight as shown in Fig. 6.47. For
a homogeneous quenching with HTC 300 W/m2/K, the central hole has a
distortion which is also verified by experiments [BSO+05, BSO+06]. Many
simulations have been performed for reducing the distortion and residual stresses
in the disk. The HTC through an annular ring is increased gradually and the
corresponding distortion and stresses are calculated. Since the disk is very thin
it can be modeled by using plane stress finite elements. The distortion of the
disk is described by the deviation of the central hole from the perfect circle. The
computed distortion, average and maximum effective stress are plotted in Fig.
6.47. The minimum distortion and average effective stress are calculated for an
increase of α1−α = 850 W/m2/K in the HTC. Moreover, the maximum effective
stress is minimized nearby when α1 − α = 1050 W/m2/K. The evolutions of
temperature, phase fractions, distortion and stresses in time are of interest for
the HTCs (α1 − α =) 0, 850 and 1050 W/m2/K in order to characterize the
cooling behavior of the disk.



90 CHAPTER 6. SIMULATION RESULTS

Figure 6.47: Distortion, average residual stress and max. residual stress vs.
HTC α1 − α (100Cr6, Disk)

The evolutions of the average temperature and maximum temperature dif-
ferences during the cooling time are plotted in Fig. 6.48. As expected the
maximum temperature differences for the optimized cooling strategies are very
small as compared to homogeneous cooling with HTC α = 300 W/m2/K.

Figure 6.48: Average temperature and max. temperature difference vs. time
for different cooling strategies (100Cr6, Disk)

The average phase fraction for the whole disk gives a clear idea of the trans-
formation times. The total cooling provided by the homogeneous cooling is the
smallest. Therefore, less martensite and more pearlite is observed in Fig. 6.49.



6.11. DISKS MADE OF 100CR6 91

The pearlitic transformation took place approximately between t = 10 s and
t = 30 s. The martensitic transformation took place approximately t = 30 s
and t = 110 s.

Figure 6.49: Phase fractions vs. time for different cooling strategies (100Cr6,
Disk)

With Fig. 6.50, the evolution of the stresses will be explained. The phase
transformations have a great influence on the stresses. In the initial period of
cooling (up to t = 10 s), the stresses continuously increases due to the increasing
temperature gradient and reaches a maximum. After t = 10 s, the stresses
start decreasing due to reducing the temperature gradient and pearlitic phase
transitions. Plastic strains introduced by the pearlitic transformation helps to
relax the stresses. After t = 30 s, the stresses suddenly increase and fluctuate
upon the start of martensitic transformation. The fluctuations gradually reduce
and continues until martensitic transformation ends (t = 110 s).
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Figure 6.50: Average residual stress and max. residual stress vs. time for
different different cooling strategies (100Cr6, Disk)

The contours of maximum stresses for standard cooling with a homogeneous
HTC and for optimized cooling with HTC difference α1 − α = 850 W/m2/K
are shown in Fig. 6.52. The stresses are reduced considerably with such an
optimized cooling strategy.

Figure 6.51: Contours of maximum residual stress for different optimum coolings
(100Cr6, Disk)

The evolutions of the distortions are plotted in Fig. 6.52. It can be noticed
from the figure that the distortion is initiated mainly by the martensitic phase
transition.
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Figure 6.52: Distortion vs. time for different cooling strategies (100Cr6, Disk)

6.12 Effects of material properties on distortion
and stresses

6.12.1 Effects of mechanical material properties

The effects of the mechanical material parameters (bulk modulus, shear modu-
lus, yield strength, and hardening modulus) on the distortion and the residual
stresses are investigated for an L120×12 profile made of 100Cr6. The bulk mod-
ulus and the shear modulus are used to describe the stress strain relationship
in the elastic range, and additionally in the plastic range, shear modulus and
the hardening modulus are used. The bulk modulus is related to the volumetric
change under stress so it does not influence the plastic deformations. These
parameters are modified for all phases by a multiplier, and changes in the dis-
tortion and residual stresses are observed (Figs. 6.53, 6.54 and 6.55). It can be
noticed that the shear modulus has the highest influence while the hardening
modulus has no influence.
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Figure 6.53: Sensitivity of distortion to the mechanical material properties
(100Cr6, L profile)

Figure 6.54: Sensitivity of average stress to the mechanical material properties
(100Cr6, L profile)
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Figure 6.55: Sensitivity of maximum stress to the mechanical material properties
(100Cr6, L profile)

6.12.2 Effects of thermal material properties

The material parameters which appear in the Fourier’s heat conduction equa-
tion are called thermal material properties. The effects of thermal material
parameters (conductivity, specific heat capacity, and density) on the distortion
and residual stresses are investigated for an L120×12 profile made of 100Cr6.
These parameters are modified for all phases by a multiplier and changes in the
distortion and residual stresses are observed (Figs. 6.56, 6.57 and 6.58)

Figure 6.56: Sensitivity of distortion to the thermal material properties (100Cr6,
L profile)
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Figure 6.57: Sensitivity of average stress to the thermal material properties
(100Cr6, L profile)

Figure 6.58: Sensitivity of maximum stress to the thermal material properties
(100Cr6, L profile)

6.12.3 Effects of metallurgical material properties

The material properties which are used in the phase transformation computa-
tions are called metallurgical material properties. The Transformation Induced
Plasticity (TRIP) has a great influence on distortion and residual stresses.
Therefore, TRIP effects should be included in the model to obtain realistic
and reliable simulation results. The effects of material properties which con-
trol the phase transformation have been studied here. The effects of TRIP or
Greenwood-Johnson coefficients are skipped because in our model it is approx-
imated in terms of densities and yield strengths.
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The Time-Temperature-Transformation (TTT) diagram is the material prop-
erty which controls the diffusional transformation. Therefore, its influence on
the distortion and residual stresses are studied by shifting the transformation
start and end times. The martensitic transformations are controlled by marten-
sitic transformation start temperature and the temperature coefficient in the
exponent. L120×12 profile made of steel 100Cr6 is considered in the simula-
tions. The effect of these three parameters are summarized in Figs 6.59, 6.60
and 6.61.

Figure 6.59: Sensitivity of distortion to the metallurgical material properties
(100Cr6, L profile)

Figure 6.60: Sensitivity of average stress to the metallurgical material properties
(100Cr6, L profile)
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Figure 6.61: Sensitivity of maximum stress to the metallurgical material prop-
erties (100Cr6, L profile)

6.13 Summary and conclusions

This chapter was devoted to present all the simulation results. Many simula-
tions were performed for different geometries (long profiles with different cross-
sections and disks) and different materials (100Cr6, C80, C45, Aluminum). It
has been found that phase transformation is the main reason for the large distor-
tion. Non-phase changing metals may have distortion when they are intensively
quenched.

The optimum cooling strategy can be obtained from finite element simula-
tions. The simulation results show that the distortion and stresses can be re-
duced with an appropriate cooling strategy. Increasing the cooling at the mass-
lumped regions reduces only the distortion but increases the stresses. However,
an enhanced cooling at the mass-lumped region, and reduced cooling at the
edges and thin parts, reduces both distortion and stresses. This optimization
procedure is independent of geometries and metals. In practice, the local cooling
can be adjusted e.g., with a nozzle field of gas or atomized water sprays.
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Appendix A

Material properties

A.1 Steel 100Cr6

Table A.1: Material properties of steel 100Cr6 [Pie00]
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Figure A.1: Elasticity modulus and Poison’s ratio vs. temperature, (100Cr6)

Figure A.2: Hardening modulus and yield strength vs. temperature, (100Cr6)
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Figure A.3: Heat conductivity and specific heat capacity vs. temperature,
(100Cr6)

Figure A.4: Density vs. temperature, (100Cr6)
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Figure A.5: Data sheet supplied by Saarstahl AG, Germany (100Cr6)

Figure A.6: Isothermal transformation diagram supplied by Saarstahl AG, Ger-
many (100Cr6)
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Figure A.7: Continuous cooling transformation diagram supplied by Saarstahl
AG, Germany (100Cr6)

Table A.2: Numerical values for IT and CCT graphs and their graph, (100Cr6)



112 APPENDIX A. MATERIAL PROPERTIES

Figure A.8: Isothermal and continuous cooling transformation diagrams,
(100Cr6)

A.2 Steel C45

Table A.3: Material properties of steel C45 [Pie00]
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Figure A.9: Elasticity modulus and shear modulus vs. temperature, (C45)

Figure A.10: Hardening modulus and yield strength vs. temperature, (C45)
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Figure A.11: Heat conductivity and specific heat capacity vs. temperature,
(C45)

Figure A.12: Density vs. temperature, (C45)



A.3. STEEL C80 115

A.3 Steel C80

Table A.4: Material properties of steel C80 [Pie00]

Figure A.13: Elasticity modulus and shear modulus vs. temperature, (C80)
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Figure A.14: Hardening modulus and yield strength vs. temperature, (C80)

Figure A.15: Heat conductivity and specific heat capacity vs. temperature,
(C80)



A.4. ALUMINUM 117

Figure A.16: Density vs. temperature, (C80)

A.4 Aluminum

Table A.5: Material properties of Aluminum [MPD99]
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Figure A.17: Elasticity modulus and Poison’s ratio vs. temperature, (Alu-
minum)

Figure A.18: Hardening modulus and yield strength vs. temperature, (Alu-
minum)
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Figure A.19: Heat conductivity and specific heat capacity vs. temperature,
(Aluminum)

Figure A.20: Density vs. temperature, (Aluminum)
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Name: Yalçın Kaymak
Date of Birth: 08.07.1978
Place of Birth: Ankara, Turkey
Parents: Ali Sait Kaymak and Asiye Kaymak
Marital status: Single
Nationality: Turkish

School Education
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