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1. Introduction

Imagine yourself in a car driving though a narrow street. Suddenly a blue van
shoots out of a side road. In such a situation, it is not important to recognize
that the other car is blue, neither that it is a van. The only thing that matters
is that you press the break immediately.

Now consider the scene in Figure 1.1 on the following page. There are several
persons and lots of different objects. The longer we look at this picture, the more
details we see. We are able to recognize persons and objects that are partially
hidden behind other persons and objects. After some time we will even be able
to give a fairly detailed description of the scene without even seeing the picture
anymore – we have learned something about the picture.

These two examples impressively demonstrate the great flexibility of the vi-
sual system. The very same system rapidly provides a basis for execution of
behavioral responses (Kirchner & Thorpe, 2006). At the same time it is up to
amazingly detailed representations of the environment and even learning of these
representations. In the brain, all these tasks are performed on the basis of action
potentials, also called spikes, emitted by densely interconnected neurons. Dif-
ferent investigators have proposed mechanisms how a network of neurons could
achieve either the speed (see Thorpe et al., 2001, for review) or the analytic
capability (e.g. Freeman, 2003; König & Krüger, 2006; Thielscher & Neumann,
2006) of the visual system. The current report will focus on the impact of motor
activity on the visual system. Thus, we will focus our attention in most cases to
situations like the one in the first exampe with the blue van. Models aiming to
explain such fast behavioral responses, usually consider some sort of interaction
between the collective behavior of large groups of neurons and the individual
behavior of the single cells constituing the whole group (e.g. Körner et al., 1999;
Thorpe et al., 2001; Wyss et al., 2003). Thus, what a single cell does becomes
meaningful only in relation to what the whole population does. In the following
sections we will review some of the basic ideas of these models. We will first stick
to highly simplified discriminations between two alternatives and later proceed
to more complex situations.

1.1. Spike timing in neural populations

The patterns of action potentials from single neurons are reasonably well approx-
imated by a poisson process (Dayan & Abbott, 2001, p. 25). This means that
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Chapter 1. Introduction

Figure 1.1.: A complex scene with different persons and objects.

(under fixed conditions) for any small time interval there is a fixed probability
for the neuron to fire a spike. Thus, the state of the neuron can easily be de-
scribed by this probability or equivalently by the average rate of spikes that is
emitted in a time interval of fixed length. Furthermore, this model allows the
response of a neuron to be easily described by changes in this firing rate (Dayan
& Abbott, 2001, p. 8 ff).

Figure 1.2 on the next page displays the response of a biologically realistic
model neuron (Wilson, 1999, p. 147) to current injection of different strengths.
We can immediately see the usefulness of the description by means of the firing
rate in this case. The neuron with weak input current (I = 0.265nA) emits six
spikes, while the neuron with strong input current (I = 0.270nA) emits seven
spikes. Thus, the information about the strength of the input is contained in the
number of action potentials that the cell fired.

What is the first moment at which we can infer the neurons input strength
from the neurons firing properties? We do not need to observe the whole time
course of the neurons response. In Figure 1.2 it is sufficient to look at the first

2



1.1. Spike timing in neural populations
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Figure 1.2.:
Two spike trains elicited by current stimulation of different strength. The
membrane potential of both model cells is described by the equations V ′ =
−(17.81 + 47.58V + 33.8V 2)(V − 0.48) − 26R(V + 0.95) + I, R′ = (−R +
1.29V +0.79+3.3[V +0.38]2)/5.6. The membrane potential 100 ·V is plotted for
I = 0.265nA (red) and a slightly stronger input I = 0.270nA (blue). The inset at
the top of the figure shows an enlarged version of the light blue area in the main
figure. Note that different inputs not only result in different firing rates but also
in different latency of the first spike.

spike that the neurons fire with the different input currents. With weak input,
the neuron fires later than it does with stronger input (also see the inset in Figure
1.2). Thus, the first information about the input of the neuron is not contained
in the firing rate, but in the timing of the action potentials (Hopfield, 1995).
However, this requires the timing of action potentials to be sufficiently reliable.
It has been proposed that fast, (shunting) inhibition1 could ensure the reliability
of the temporal firing patterns by integrating information from a larger group of

1Shunting inhibition, also called “silent” inhibition, describes the non-linear inhibitory effect
of synapses that drive the membrane potential closer to the resting potential (Dayan &
Abbott, 2001, p. 160). Synaptic currents associated with shunting inhibition usually have
a divisive effect on the target cell (input gain, response to current etc.) and are virtually
unnoticed in voltage records (Fregnac et al., 2003).

3



Chapter 1. Introduction

cells (Fregnac et al., 2003; Körding & König, 2000; Wehr & Zador, 2003). These
authors demonstrated that such inhibition sharpens the tuning characteristics of
neurons in the visual pathway (Fregnac et al., 2003) and even results in a learning
rule that extracts invariant information from dynamic images (Körding & König,
2000; Wyss et al., 2003).

1.2. Oscillations as control signals of neural
processing

The situation in 1.2 is particularly simple. There is only one event (a step in the
input current) and all we want to learn from the neurons response is the amplitude
of this change. Under more natural conditions, e.g. when viewing a complex
and probably also moving scene, the input is constantly changing – in time and
in space. Thus, it is necessary to (i) constantly reinvestigate the input and
(ii) obtain some reference time that enables discrimination of “early” and “late”
spikes. From a computational perspective, a solution to both these problems can
be obtained by applying an oscillatory modulation to the membrane potential of
large groups of neurons in a network (Hopfield, 1995; Körner et al., 1999; Körding
& König, 2000; Kupper et al., 2005; Lengyel et al., 2005; Rodemann & Körner,
2003). During a cycle of such an oscillation we can discriminate different phases
(c.f. Figure 1.3 on the facing page):

I The neurons are maximally hyperpolarized. There is virtually no chance to
evoke an action potential.

II The hyperpolarization decreases and finally changes to a depolarization. At
the beginning of this phase only very strong input from many cells can evoke
an action potential. Later also weak input from fewer cells can evoke action
potentials.

III The neurons are maximally depolarized. Every neuron that could fire an
action potential will spike at least in this stage.

IV Those neurons that could spike during the oscillatory cycle are refractory
and cannot fire an action potential any more. The network decays to its
initial state I.

Thus, the actual processing of the input is now restricted to stage II and the
oscillatory signal controls the sequence of the processing stages. It is well known
since a long time, that neural tissue tends to oscillate at different frequencies
(Başar, 1980; Freeman, 1975). Furthermore, recent data identified neurons that
preferred specific phases of local field potential oscillations (Jacobs et al., 2007).
Thus, the basic prerequisite of the above mechanism is fullfilled. However, it

4



1.3. Measuring large scale brain oscillations

Figure 1.3.:
Phases of an oscillatory cycle. See main
text for explanation
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should be noted that a large variety of other computational properties can be
ascribed to oscillatory brain signals too (e.g. Lengyel et al., 2005).

Using an oscillatory control signal has successfully been employed to tempo-
rally encode information about a stimulus in neural firing patterns (Rodemann
& Körner, 2003) and to integrate feedforward and feedback processing (Rode-
mann & Körner, 2001). However, a static oscillatory signal will fail if the input
(e.g. from the retina) is changing. VanRullen & Koch (2003) argue that instead
oscillatory signals in the brain should adapt to the requirements of the current
task. Indeed, Kupper et al. (2005) were able to reconstruct input images from
spike timings controlled by an oscillatory signal only, if the oscillatory signal
was reset to a fixed phase every time a reasonably large change in the input
image appeared. It has been proposed that directly after a stimulus has been
presented, the oscillatory control signal should be actively reset, while at later
times it would be sufficient to keep the oscillatory signal synchronized amoung
those neurons that contain information that might be integrated into the per-
cept (Körner et al., 1999). The reset mechanism should lead to a more or less
constant relationship of the phase of the oscillatory signal to the onset of a stim-
ulus after multiple stimulus representations. In contrast, keeping the oscillation
synchronized accross a suffient group of neurons should be expressed in a more
or less constant phase of the oscillatory control signal in these neurons but not
necessarily a constant phase accross stimulus presentations.

1.3. Measuring large scale brain oscillations

A common method to measure synchronous activity from large numbers of neu-
rons is the electroencephalogram (EEG Berger, 1929, see also Section 2.1). By
means of a strong amplifier, electrical signals are recorded from electrodes affixed
to the scalp of a person (or an animal). These signals can be associated with
summed postsynaptic potentials of ≈ 60 × 106 neurons (Nunez & Srinivasan,
2006). If these potentials are synchronized, the potential can be measured on
the scalp. Thus, the EEG seems to be the method of choice to investigate the
large scale control signals described in section 1.2. Indeed, EEG oscillations are
known since the very first days of the EEG (Berger, 1929). Different investiga-
tors have argued that stimulus induced reorganization/resetting of these spon-

5



Chapter 1. Introduction

taneously emerging oscillations might constitute the basis of the event related
potential observed after sensory stimulation (Başar, 1980; Makeig et al., 2002;
Wright et al., 1990).

Two fundamental types of oscillatory EEG responses have been identified (see
Basar-Eroglu et al., 1996; Tallon-Baudry & Bertrand, 1999, for review). These
two types of responses are illustrated in Figure 1.4 on the next page in part
(A). The top three rows of this Figure display possible single trial responses in
blue. Between 50 and 100ms, an oscillatory response peaks in every trial. This
response has the same time course in all trials. Such a response is usually called
evoked. It can be observed in a simple pointwise average across all single trials as
demonstrated for 200 trials in the forth row of Figure 1.4 (A, marked in green).
Figure 1.4 (A) also displays another type of response. This is a second oscillatory
burst, peaking between 450 and 550ms. However, this second type of response
jitters in latency with respect to stimulus onset (assumed to be at 0ms). As a
consequence, this second type of response is virtually absent in the average across
single trials in the forth row (time range marked in yellow). To quantify such
induced responses, it is now common to average single trial power or amplitude
(e.g. Gruber & Müller, 2005; Jensen et al., 2002; Lachaux et al., 2005; Tallon-
Baudry et al., 1996b). In Figure 1.4 (A) time courses of instantaneous amplitude
(so called envelopes) are plotted in red. An average across 200 of these envelopes
is plotted in the bottom row of Figure 1.4. In contrast to the simple average
in the forth row, the induced response is now clearly visible in the average of
the envelopes. This model is of course a very coarse simplification. The brain is
probably not quiet between the oscillatory responses. Furthermore, a prototypical
response as suggested by Figure 1.4 (A) seems rather unrealistic.

In Figure 1.4 (B) the responses of an oscillating linear system to stochastic
inputs are shown. The system is constantly stimulated by gaussian white noise
with an amplitude of σ = 1. There are two exceptions to this rule. (i) At t = 0s,
the input is set to a fixed value of 2. (ii) In the time range from t = 0.4s to t = 0.5s
the amplitude of the input noise first rises until it reaches a value of 2 at t = 0.45s.
From t = 0.45s to t = 0.5s, the amplitude of the input noise falls back to 1. In
the single realizations (top three panels in Figure 1.4), neither responses to the
fixed input (i) nor to the input amplitude change (ii) can be discerned from the
random variations due to the noisy input. However, averaging the signals (fourth
row in Figure 1.4, labeled “average”) reveals a clear response to the fixed input
(i) but virtually no response to the gradual change of the input signal (ii). In
contrast, if we average the envelopes of the single realizations of the output signal
(blue curves in Figure 1.4), the situation reverses. The average envelope increases
in response to increased input amplitude (ii), while there is virtully no response
to the fixed input. The inputs to our simplified model may be associated with
two different types of input than can be imposed on neural tissue. Input from the
thalamus to the cortex begins with a transient pulse (Funke & Wörgötter, 1997).
The fixed input (i) to our linear oscillating system might be a reduced model for

6
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Figure 1.4.:
Poststimulus EEG dynamics and possible underlying machanisms. (A) The

classical model with an evoked response (green underlay) and an induced response
(yellow underlay). This model assumes a prototypical response (here modeled as
a modulated gaussian 1/(2π) cos(2π40[t − 64 − t0]) exp(−[t − 64 − t0]

2/[2σ2]),
σ = 20ms). If the onset t0 of this response is constant over time, this results in
an evoked response. If the onset of this response jitters across trials this results in
an induced response (modified after Tallon-Baudry & Bertrand, 1999). The top
three rows show single trial responses, the bottom rows show an average across
200 single trials (blue lines) and an average across the 200 single trial envelopes
(dark red lines). (B) Different inputs to a stochastically driven linear oscillator.
The top three rows of the image show time courses of the output of a linear
oscillator (impulse response as in (A), displayed in blue) and envelopes of the
output (displayed in red). The oscillator was stimulated with gaussian white noise
with time varying standard deviation (µ = 0, σ(t) = 1.5− cos(2π(t−0.45s)/0.1s)
if 0.4s ≤ t ≤ 0.5s and σ(t) = 1 otherwise) except for t = 0s. At t = 0 the input
to the oscillator was set to the constant value 2. In the fourth row (average)
the average time course of the oscillators output signal from 200 realizations of
the input signal is shown. In the bottom row (averaged envelopes) the average
of the envelope signals is shown. Observe, that the direct average detects the
response of the fixed input, while the average of the envelopes detects the output
to increased input standard deviation.
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Chapter 1. Introduction

this kind of input. The membrane potentials of neocortical neurons in vivo are
fluctuating with an approximately gaussian distribution (Destexhe et al., 2003).
We believe that input of type (ii) might model the effects of increased neural
firing in a sufficiently large group of cells. Although EEG signals do not seem
to be generated by a linear system (Basar, 1990; Moss et al., 2004; Stam, 2005;
Sarbadhikari & Chakrabarty, 2001), linearity seems to be a valid approximation
at least on a short time scale (Freeman, 1975; Wright et al., 1990). As mentioned
above, the two types of responses can indeed be observed in scalp measured EEG
signals, although in these cases their origin is less clear than in our model. We can
thus generalize our notion of evoked and induced responses. Oscillatory responses
that are detectable in a simple average of the ongoing EEG (with respect to a
repeated stimulation) are called evoked responses, while responses that are only
detectable in averages of envelopes are termed induced responses (Basar-Eroglu
et al., 1996; Tallon-Baudry & Bertrand, 1999). These two response types are
often charaterized as being phase-locked to a stimulus (evoked) or not phase-
locked (induced).

In the simulation in Figure 1.4 on the preceding page, we have used a linear sys-
tem with a fairly narrow frequency response. Typical scalp measured responses
are characterized by far more different frequencies. In these cases, a clear oscilla-
tory structure is not always obvious. However, it has been argued that the scalp
measured EEG signals represent the superimposed activity of different oscilla-
tory systems working in parallel (Başar, 1980; VanRullen & Koch, 2003). Başar
(1980) proposes that these subsystems could be differentiated as distinct peaks
in the power spectrum of the EEG. Most of these oscillatory systems can also
be dissociated by their functional characteristics. For instance rhythmic activity
between 8 and 13Hz over the motor cortex is selectively abolished before move-
ments (see Pineda, 2005, for review). A similar decrease can be observed for
8 to 13Hz (α) activity over posterior areas after visual stimulation (Klimesch,
1999). Other frequency ranges exhibit specific changes during short term mem-
ory tasks (Klimesch, 1999; Klimesch et al., 2006, θ, 5-7Hz) or gestalt perception
(Tallon-Baudry et al., 1996a, γ, 30-90Hz). VanRullen & Koch (2003) state that
different frequencies seem to be employed for different tasks. They particularly
argue that frequencies around 40 Hz should play a role in generating speeded re-
sponses, as this frequency is present in both, reaction time histograms and brain
signals. With respect to reaction time histograms, Vorberg & Schwarz (1987)
note, that ”‘histograms from unimodal populations are quite likely to exhibit
multiple peaks unless extremely large sample sizes are used.”’ Extremely large
in their case means of the order of 105-106. As normal behavioral experiments
usualy do not employ such large sample sizes, Jokeit (1990) suggested to consider
pairwise differences between reaction times. If there was indeed a periodicity in
the true reaction time distribution, this would persist in the histogram of pair-
wise reaction time differences. In contrast, a spurious periodicity that was due
to an insufficiently large sample would clearly be diminished in that case. In
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Figure 1.5.:
Power spectra of reaction time differ-
ence histograms from two different par-
ticipants
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Figure 1.5, we present power spectra computed from the histograms of reaction
time differences from two participants performing speeded button presses. Sup-
porting the claim by VanRullen & Koch (2003) a prominent peak between 30
and 40 Hz can be observed in both panels. These results suggest an important
role for γ (30-90 Hz) oscillations in the context of visual processing in relation
to rapid motor acts. In the following, we will briefly review previous findings on
oscillatory brain activity in the γ frequency range.

1.4. Previous findings on γ oscillations: matching
and utilization

In the previous section, we suggested that oscillatory brain activity in the γ
frequency range could play a role for rapid perception. Indeed, modulations of
γ activity are often found in response to visual stimulation (e.g. Busch et al.,
2004; Herrmann et al., 1999; Hoogenboom et al., 2006; Keil et al., 2001; Tallon-
Baudry et al., 1996b) and auditory stimulation (Debener et al., 2003; Jokeit &
Makeig, 1994; Kaiser & Lutzenberger, 2005; Tiitinen et al., 1993). The distinction
between evoked and induced responses from section 1.3 applies well to γ band
activity. Evoked and induced γ band responses usually show no temporal overlap:
early responses occur around 90 ms (after auditory stimulation earlier) and can
be characterized as evoked responses, while later responses are usually induced
in the sense of section 1.3 (Herrmann et al., 2004; Tallon-Baudry & Bertrand,
1999).

Evoked γ band responses (eGBRs) display a strong dependence on physical
factors of the stimulus (Busch et al., 2004; Fründ et al., 2007; Herrmann & Meck-
linger, 2000). For instance, large, centrally presented stimuli evoke significantly
stonger eGBRs than smaller versions or more peripherally presented versions of
the same stimuli (Busch et al., 2004). Not only stimulus factors influence eGBRs.
In particular attention seems to facilitate eGBRs (Busch et al., 2006; Debener
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Chapter 1. Introduction

et al., 2003; Herrmann et al., 1999; Tiitinen et al., 1993). Recently it has also
been demonstrated, that eGBRs are enhanced in response to line drawings of
familiar objects compared to random arrangements of the same lines (Herrmann
et al., 2004).

Induced γ band responses (iGBRs) on the other hand, arise relatively indepen-
dent of stimulus factors after stimulation with semantically meaningful pictures
(Busch et al., 2006; Gruber & Müller, 2005). It has been suggested, that iGBRs
would be related to the maintenance of object representations (Gruber & Müller,
2006; Tallon-Baudry & Bertrand, 1999), because they are also visible during the
retention interval of a short term memory task (Tallon-Baudry et al., 1998) and
emerge when participants detect figures hidden in noise (Tallon-Baudry et al.,
1997). Further evidence supporting this hypothesis comes from Gruber & Müller
(2005). These authors observed, that iGBRs increased for repeated presentations
of initially unknown pictures. Based on intracranial recordings from animals,
Singer & Gray (1995) suggested, that γ band synchrony of cells in different brain
areas could serve as a “tag” indicating that these cells belong to the same ob-
ject representation. Furthermore, it has been shown, that such synchrony also
facilitates the allocation of attention (Fries et al., 2001). Studies measuring long
range synchrony of γ oscillations from the scalp of healthy humans support this
view (Gruber & Müller, 2005; Rodriguez et al., 1999).

There have been only few attempts to integrate the findings about evoked and
induced γ band oscillations in a common theoretical framework. Körner et al.
(1999) suggested a neural architecture in which spike latency based feedforward
processing of spike timings is refined by feedback activity based on an internal
representation of the environment. In their model, γ oscillations serve as a com-
mon temporal reference for feedforward and feedback activity (similar to Section
1.2). They demonstrate, that resetting the phase of the ongoing γ oscillations
sharpens the representations after sudden changes of the stimulus (Kupper et al.,
2005). Without such a phase-reset, these authors observed increasingly scattered
responses, that could not form a reliable basis for a latency code. In recordings
of electrical activity averaged from many neurons, such a reset could manifest in
an evoked γ band response. More recently, it has been suggested that matching
of incoming information with stored long term memory representations should
enhance evoked γ responses, while subsequent utilization of the outcome of this
matching process should enhance induced γ responses (Herrmann et al., 2004).

In addition to the above findings about the perceptual role of γ oscillations,
some reports describe relations between reaction time and γ oscillations. Jokeit
& Makeig (1994) report that fast reacting participants displayed a stronger en-
hancement of γ power than slow reacting participants, when reacting to auditory
stimulation. Also the latency of stimulus related γ power enhancements correlates
with reaction time (Haig et al., 1999). This is in line with the observation, that γ
oscillations are facilitated if participants have to perform a motor response at all
(De Pascalis & Ray, 1998). These studies investigated γ power, which is equiva-
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lent to analyzing the envelopes, i.e. induced γ responses as in Figure 1.4 on page
7. However, from the computational perspective outlined in section 1.2 on page 4,
a relation between evoked (phase locked to the stimulus) γ responses and reaction
time would seem particularly plausible. There is only indirect evidence regarding
this topic. In studies investigating eGBRs in schizophrenic patients, decreased
phase-locking of γ band responses is accompanied by prolongated reaction times
in patients compared to healthy controls (Spencer et al., 2003).
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2. General Methods

In this chapter we will give a brief overview of the methods used throughout the
following experiments. These include the general EEG recording setup, which
will be described in section 2.1. In section 2.2 on page 17 ff, we will define some
standard methods to quantify the event related oscillatory dynamics of the EEG.
This will include a more quantitative definition of the concepts of evoked and
induced responses from section 1.3 on page 5.

2.1. Electroencephalographic measurements

2.1.1. Generation of the electroencephalographic signal

As briefly mentioned in section 1.3 on page 5, the electroencephalogram (EEG)
is a method for measuring summed postsynaptic potentials from large groups of
neurons (Berger, 1929; Nunez & Srinivasan, 2006). The synapses that connect
neurons usually have a rather local effect. If a synapse becomes active, this results
in a change of the permeability of the postsynaptic cell membrane to different
types of ions. These ions carry charge through the cell membrane which results in
a small current through the cell membrane. These local currents through the cell
membrane generate electrical sources or sinks depending on whether the currents
have a hyperpolarizing or depolarizing effect on the cells membrane potential. If
all this happens at one end of a lengthy neuron, for example the apical dendrite of
a cortical pyramidal cell, this neuron for a short moment behaves like an electrical
dipole. Such a dipole has a characteristic electrical field. A sketch of such an
electrical field is illustrated in Figure 2.1 on the next page (A).

Under normal conditions, there will usually be lots of such electrical dipoles
in cortical tissue1. Whether or not the extracellular currents associated with
postsynaptic potentials can be measured on the scalp is highly dependent on the
geometrical arrangement of these cells. In Figure 2.1 (B) and (C) the summed
electric fields of 30 dipoles that were randomly positioned in a restricted area
(marked by the dotted box) are shown as iso lines. In display (B) all the dipoles
have the same orientation (i.e. same direction of potential gradient) while the

1Note that cells that do not have such a lengthy morphology as the one scematically drawn
in Figure 2.1 (A) will not have such a prototypical electric field. In many cases their
extracellular currents will even average to zero. This is particularly the case for most
subcortical structures.
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(A) single dipole (B) parallelly oriented dipoles (C) randomly oriented dipoles

E=−0.79 N/C E=−0.08 N/C

Figure 2.1.:
Electric dipole fields. (A) Iso lines of the electric field of a single dipole. Black
lines indicate the possible position of a cortical pyramidal cell. (B) Iso lines of the
electric field of 30 randomly positioned, iso-oriented dipoles. The area in which
the dipoles have been positioned is marked by a dashed box. (C) like (B) but
dipole orientations are random. Iso lines are colored according field strength –
blue iso lines correspond to negative field strength, red iso lines to positive field
strength. Note that electrical field strength differs by a factor of nearly 10 at the
position marked in parts (B) and (C).

orientations in display (C) have been drawn from a random distribution. The
strength of the electric field at the same position (with respect to the dipole area)
is nearly 10 times larger in Figure 2.1 (B) than in Figure 2.1 (C). In cortical tissue,
however, pyramidal cells are usually iso-oriented, perpendicular to the cortical
surface. However, there are some exceptions to this rule. Close to the ground
of a sulcus for instance, there are dipoles with virtually all possible orientation.
In such a constellation, it will not be possible to measure an EEG signal from a
distance (e.g. from the scalp). Thus, we conclude that the EEG mainly measures
postsynaptic potentials from apical dendrites of pyramidal cells in cortical tissue.

In contrast to most other methods that record electric activity from the brain,
the EEG usually measures the activity from outside the brain – from the scalp.
In order to be measured from the scalp, these signals have to cross several layers
of tissue and in particular the skull, which leads to significant smearing and
attenuation of the signals (Nunez & Srinivasan, 2006). This requires a sufficiently
strong amplifier. Unfortunately such an amplifier will also amplify signals that
are not related to brain activity, such as 50Hz line activity, radio waves, muscle
activity or eye movements. In the experiments described in this report, the EEG
was recorded using a BrainAmp amplifier (Brain Products, Munich).
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Figure 2.2.:
Strategies to avoid amplifier saturation. at the top of the figure, an artificial

signal is shown. The output of a simulated amplifier is displayed at the bottom of
the figure. The amplifier range (indicated in light blue) of this simulated amplifier
ranges from -2 to 2 (in arbirary units). Left panel, bottom: no mechanism to
avoid amplifier saturation. Middle panel, bottom: a high pass filter is applied to
avoid amplifier saturation. Right panel, bottom: the signal is reset from time to
time. Note that, high pass filtering does not disrupt the signal, but destroys the
slow drift, while resetting disrupts the signal but conserves the slow drift in the
signal.

2.1.2. Reducing environmental noise

A serious problem for electroencephalographic measurements are artifacts from
electrical activity that is not related to the brain. To reduce influences from
electric fields associated with line activity or radio waves, participants sat in an
electrically shielded and sound attenuated room (iac, niederkrüchten, germany)
during the experiments. The stimulation monitor was placed outside this record-
ing cabin behind an electrically shielded window. All devices inside the cabin
were battery operated to avoid line frequency interference. Cables connecting de-
vices in the interior of the cabin to devices outside the cabin can transfer electric
activity into the cabin, thus undoing the shielding effect of the cabin. Therefore,
EEG data were digitized inside the cabin (at a rate of 500Hz) and transferred to
a computer outside the cabin by means of a fiber optic cable.

In electroencephalographic recordings, the signal sometimes shows slow drifts
of high amplitude over extended time intervals. This poses problems for the
amplifier, which has a limited amplification range. At the borders of this range the
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amplifier saturates and a further increase of the input signal (i.e. EEG) does not
lead to a further increase of the amplifier output signal (i.e. the recorded EEG).
This is illustrated for an artificial signal in left part of figure 2.2 on the preceding
page. To avoid such saturation effects different strategies can be applied. the
simplest version is to apply an analog high pass filter before the signal is amplified.
As illustrated in the middle part of figure 2.2, such a filter will reduce any slow
changes of the input signal. This is particularly relevant, if such slow changes
contain relevant parts of the signal. In such a case the alternative solution is, to
recalibrate the amplifier every time it approaches saturation. This case is shown
in the right part of figure 2.2. We will use different strategies to avoid amplifier
saturation in the different experiments.

2.1.3. Physiological artifacts

As mentioned on page 14, there are also artifacts, that can be associated with
physiological processes. For instance, eye movements generate characteristic, step
like potential changes in the EEG. Similarly, activity from muscles close to the
scalp generates potential bursts with a broad band frequency spectrum. These
bursts contain a significant amount of energy in the frequency range between
30 and 80 Hz and could therefore easily be mistaken for EEG γ oscillations
(Herrmann et al., 2005). Although these, and other physiological artifacts, may
be related to an experimental condition, they can obscure the EEG signals. If
a good model, describing the influence of an artifact source is available, one can
try to apply an algorithm to correct for these artifacts (see Talsma & Woldorff,
2005, for an overview). For the experiments presented in the current report,
we employed another approach. Data segments that contained artifacts were
completely excluded from subsequent analysis. This way some parts of the signal,
that actually contained meaningful information might have been discarded, too.
However, this procedure ensured that only artifact free data were included into
the analysis.

2.1.4. The problem of electrode placements

From the fact, that EEG represents summed activity from very large numbers
of neurons, it might be inferred that electrode placement is not important for
measuring EEG. this is only partly true. Due to the bipolar structure of electric
fields of the EEG (Nunez & Srinivasan, 2006), interpretation and comparison of
EEG data is only possible if the exact measurement positions are known. Jasper
(1958) presented a system to standardize positions of 19 electrodes on the scalp.
He divided the distance between nasion and inion into segments of 10%, 20%,
20%, 20%, 20%, and 10% to obtain five positions along the sagittal axis of the
head. Lateral positions are integer multiples of the 20% nasion-inion distance
from this central line to the left or right respectively. Jasper’s nomenclature
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roughly labels the sagittal positions by the letters F, C, P, O for frontal, central,
parietal and occipital2. Odd numbers refer to electrodes in the left hemisphere,
even numbers refer to electrodes in the right hemisphere. More lateral positions
are marked by larger numbers. Electrodes on the midline are labeled with a “z”.

Modern EEG systems can measure EEG from a lot more than 19 electrodes.
For instance the company Geodesics Inc. offers EEG systems with 256 electrodes
(http://www.egi.com/, offer from 5. March 2007). The positions of such large
numbers of electrodes can hardly be described by Jaspers’ 10-20 system. There-
fore, extensions of this system have been proposed to include larger numbers of
electrodes (e.g. Chatrian et al., 1985). In the experiments in Chapters 3, 4, and
5 such an extended version of the original 10-20 sytem is used to label electrode
locations. This way electrode labels roughly correspond to the cortical lobe below
them3.

2.2. Time-frequency analysis

2.2.1. Classical EEG analysis and its drawbacks

The classical method to analyze the EEG consists of computing the average event
related potential (ERP). This is a pointwise average of many trials from the same
experimental condition. Although this method has proven very useful and is now
one of the standard methods for analyzing the EEG, information about oscillatory
components of the EEG is less obvious from the ERP waveforms. Information
about oscillatory components on the contrary is contained in the power spectral
density (e.g. Başar, 1980). The power spectral density is the fourier transform of
the autocorrelation function and describes frequency and strength of periodicities
in a signal sampled from a linear stationary stochastic process4. Unfortunately,
the EEG is generally agreed to be neither stationary and nor linear (e.g. Rosso
et al., 2001). At some point, oscillations arise, at another point slow changes in
the signal emerge or sudden singular spikes can be observed. A common strategy
to overcome this problem is, to analyze only small segments of the signal. This
strategy will simultaneously represent the signal in time (of the segment) and
frequency (within the segment). We will first consider the general approach of

2In addition to this rule, the letters T for temporal and Fp for fronto-polar are used.
3Due to the dipolar structure of fields measured by the EEG, this does not necessarily imply

that activity measured by these electrodes originates from that lobe (Nunez & Srinivasan,
2006).

4A stochastic process is a sequence of random variables (Xi)i. In general, there are no restric-
tion about the interrelations of the Xi, or their distributions. Stationarity characterizes
a stochstic process for which the distributions of all Xi are the same. Linearity requires
that the interrelations between the Xi are linear. All information about a linear, station-
ary stochastic process is contained in its autocorrelation function, or equivalently its power
spectrum (Oppenheim et al., 2004).
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time frequency analyses and then proceed to the wavelet transform, which is used
in this report. Finally we will derive three statistical quantities, that can be used
to characterize EEG signals in time and frequency.

2.2.2. The general notion of time-frequency analysis

The basic idea of time-frequency analysis of a signal x(t) is to compute a repre-
sentation of the form

Lx(t, f) =

∫
x(τ)φ(t− τ ; f) dτ = (x ∗ φ( · ; f))(t), (2.1)

where φ(t; f) is a function with a suitable localization in time as well as frequency
(Louis et al., 1998). The parameter f can tune φ to different peak frequencies.
The ∗ operator denotes (complex) convolution and overlining indicates complex
conjugation. For fixed f we can see, that Lx(t, f) is just the convolution of x
and φ( · ; f). As φ( · ; f) is limited to a finite frequency band, the operator L
will act like a (complex) band pass filter. This implies, that the most general
time-frequency representation of a signal x(t) can be obtained by applying a set
of band pass filters to the signal. However, setting the band limits of such filters
will generally be a somewhat arbitrary choice. Başar (1980) suggested to adapt
the band limits of the filters in accordance with the frequency characteristic of
the ERP. This approach will not be able to track transient changes in response
frequency. Despite this shortcoming, virtually all time-frequency analyses are at
the heart a (possibly infinite) set of filters (Louis et al., 1998; Oppenheim et al.,
2004).

If we set φ(t; f) = (1/
√

2π)w(t) exp(−2πıft) with a fixed, real valued window
function w(t) in equation (2.1), we obtain the windowed fourier transform. An
overview of different windows can be found in most books about signal processing
(e.g. Oppenheim et al., 2004). Inserting this definition of φ into equation (2.1)
and denoting the fourier transform operator as F yields

Lx(t, f) =

∫
x(τ)w(t− τ) exp(2πıf(t− τ)) dτ (2.2)

=

∫
x(τ)w(t− τ) exp(2πıft) exp(−2πıfτ) dτ (2.3)

= exp(2πıft)
( ∫

(x(τ)w(t− τ) exp(−2πıfτ) dτ
)

(2.4)

= exp(2πıft)F
(
(xw(t− · ))(f)

)
(2.5)

= exp(2πıft)(Fx ∗ Fw(t− · ))(f). (2.6)

In (2.5) we used the parseval theorem. As can be seen from (2.6), the fourier
transform of x around time t is smeared due to the convolution with the fourier
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transform of the window. At the same time, the signal x is smeared in time due
to the convolution with the window in (2.2).

Equations (2.2) to (2.6) indicate a fundamental problem of time-frequency
analyses: Time and frequency of an event can not be represented with infinite
precision at the same time. The Heisenberg uncertainty principle states that
the product of the variances in time and frequency has a lower bound (Louis
et al., 1998). Time-frequency analysis therefore always represents a compromise
between temporal resolution and frequency resolution. For the windowed fourier
transform, this compromise is always the same. It only depends on the window
function w(t). Also see Figure 2.3.

2.2.3. The wavelet transform

Generally, we can expect high frequency components to vary fast and low fre-
quency components to vary slow. The wavelet transform accounts for this, by
varying frequency and window width at the same time. This is done by introduc-
ing a scaling operator

Saφ(t) = a−1/2φ
( t
a

)
, a > 0.

Due to the scaling property of the fourier transform, we see that

F
(
Saφ( · )

)
(f) = F

(
a−1/2φ

( ·
a

))
(f) = a−1/2F

(
φ
( ·
a

))
(f) = a1/2(Fφ)(af).

For high values of a, the function Saφ becomes very broad in time but very
concentrated in frequency at relatively low frequencies. For low values of a, the
function Saφ becomes concentrated in time but covers a broad range of high
frequencies. The same also holds for the localization of Lx(t, f) around (t, f).
Also see Figure 2.3

Furthermore, the wavelet transform does not use a general function φ( · ; f) to
analyze the signal, but instead uses a so called wavelet . A wavelet is a function
ψ with finite energy that fulfills the admissability condition (Louis et al., 1998)

0 < cψ :=

∫ (
Fψ(ω)

)2

|ω|
dω <∞. (2.7)

It is common to set ψa := Saψ. Using this notation, equation (2.1) becomes for
the wavelet transform

Lψx(t, a) =

∫
x(τ)ψa(t− τ) dτ. (2.8)

There is an infinite number of wavelets fulfilling the equation (2.7)5. In EEG
analysis a common choice is the morlet wavelet, which is usually denoted as a

5Indeed, wavelets form a dense subset of L2(R) (Louis et al., 1998)
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Figure 2.3.:
Localization properties of windowed fourier
transform and wavelet transform. In the left
part, the time-frequency localization proper-
ties of the windowed fourier transform are
shown. In the right part, the time-frequency
localization properties of the wavelet trans-
form are shown. While the windowed fourier
transform has the same localization proper-
ties for all frequencies, the wavelet transform
adapts the window size to the analyzed fre-
quency.

modulated Gaussian (Herrmann et al., 2005)

ψ(t) = A exp
(
− t2

2

)
exp(2πıf0t), (2.9)

with the real parameter A usually set such that ψ has unit energy. Careful
evaluation of equation (2.7) shows that this is actually not a wavelet, because
the integral does not converge. However, a slight modification of the modulation
term from exp(2πıf0t) to exp(2πıf0t)− κ, with κ := exp(−(2πf0)

2/2) solves the
problem analytically. The computations in this report are performed on the basis
of equation (2.9), because κ will usually be very small (< 10−8 for f0 = 1).

The choice of a complex wavelet in equation (2.9) also results in a complex
wavelet transform Lψx. This makes plotting Lψx particularly difficult. In the
next section we will derive three simple measures from the wavelet transform, that
describe those characteristics of the event related EEG, that we will consider in
the current report.

2.2.4. Statistical quantities to describe EEG signals in time
and frequency

We will now consider a set of N EEG trials X = {xn(t)}Nn=1, that were recorded
in a fixed relation to some stimulus of interest (suppose that t ∈ [t0, t1], where
0 ∈ [t0, t1] is the time of the stimulus)6. For convenience, we will further denote
the averaged ERP as

x̄(t) =
1

N

N∑
n=1

xn(t).

6In practice the xn(t) will only be known at discrete sample time points tk, k = 0, . . . ,K. The
effects of such a sampling are described in detail in the book by Oppenheim et al. (2004).
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A straight forward measure of event related oscillatory activity is7

evoX(t, f) := |Lψx̄(t, f)| =
∣∣ 1

N

N∑
n=1

Lψx(t, f)
∣∣ (2.10)

called evoked activity (Herrmann et al., 2005). Evoked activity represents the part
of the event related activity, that is phase-locked to the stimulus. The evoked
response defined in section 1.3 on page 5 is best detected using the measure of
evoked activity.

In section 1.3, we also observed that not all event related activity needs to be
phase-locked to the stimulus. A stimulus can also induce changes of the envelope
activity without significantly altering the distribution of phases. To track this
kind of changes a simple modification of equation (2.10) yields the total activity
(Herrmann et al., 2005)

totX(t, f) :=
1

N

N∑
n=1

|Lψxn(t, f)|. (2.11)

Note that some authors also analyze evoked and total power (e.g. Tallon-Baudry
et al., 1996b). These measures are in virtually all cases equivalent. Total activity
contains contributions from both, phase-locked as well as non phase-locked com-
ponents of the event related activity. Both evoked, as well as induced oscillatory
responses can be observed as changes of total activity. However, the induced
response will not be visible in evoked activity.

Due to the triangle inequality, the general relation evoX(t, f) ≤ totX(t, f)
holds. Here equality implies that the signals are perfectly phase-locked. To
quantify the amount of phase-locking to the stimulus, an obvious measure would
thus be:

P :=
evoX(t, f)

totX(t, f)

For perfect phase-locking across trials, one would obtain P = 1 and otherwise a
value between 0 and 1. Unfortunately the phase of high amplitude signal compo-
nents will contribute more to this value, than the phase of low amplitude signals,
because the phase of the single trials xn is weighted by the amplitude in each sin-
gle trial. If phase and amplitude are independent, this does not make a difference.
Otherwise, however, the amount of phase-locking might be underestimated and
amplitude outliers might obscure the pattern of phase-locking (e.g. Nolte et al.,
2004). A measure, that is less prone to amplitude outliers has successfully been
applied by Tallon-Baudry et al. (1996b). For a sample of phases, it is known in

7In this section we use the notation Lψx(t, f) to denote the wavelet transform as in (2.8) with
the wavelet scaled to be most concentrated around the frequency f . For the morlet wavelet
(2.9) with f0 = 1 this means a = f−1.
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Figure 2.4.:
Distribution of phase angles for the evoked γ
band response. Phases have been computed
using the wavelet transform at the frequency
of the evoked response. The histogram has
been computed from 100 trials after stimula-
tion with a grating pattern with a spatial fre-
quency of 1 cycle per degree visual arc. (Data
were taken from Fründ et al. (2007))

circular statistics as mean resultant length (Fisher, 1993). In our time-frequency
notation it is defined by

plfX(t, f) =
∣∣ 1

N

N∑
n=1

Lψxn(t, f)

|Lψxn(t, f)|
∣∣. (2.12)

To distinguish the measure (2.12) that varies in time and frequency from mean
resultant length derived from a fixed sample of phases, and to relate our results to
data from other groups, we will here use the term phase-locking factor . A value
plfX(t, f) = 1 implies perfect phase-locking with all trials having the same phase.
Unfortunately a value plfX(t, f) = 0 does not necessarily imply a uniform distri-
bution of phases. This further requires the distribution of phases to be unimodal
(Fisher, 1993). Surprisingly there seem to be no studies that systematically in-
vestigate the phase distribution of stimulus related EEG γ oscillations. Nunez
& Srinivasan (2006, p. 459) present histograms of phases in the θ range (5-7 Hz)
that are clearly unimodal. Unsystematic inspection of γ band phase histograms
suggests, that unimodality is at least approximately fulfilled for γ band responses
too (also see Figure 2.4).

2.2.5. Definitions of evoked and induced GBR

Based on the statistical quantities introduced in section 2.2.4 on page 20, more
quantitative definitions of the concepts of evoked and induced GBR can be for-
mulated. A significant deflection of γ activity from a prestimulus baseline will be
termed a γ band response (GBR). We will differentiate two types of GBRs

1. An evoked GBR (eGBR) is characterized by an increase of evoked γ band
activity and the phase-locking factor.

2. An induced GBR (iGBR) is characterized by an increase of total γ band
activity without an accompanying increase of the phase-locking factor.
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We will usually further constrain our definitions of eGBR and iGBR by accepting
only responses from a certain time and/or frequency range.

The frequencies of GBR show considerable inter individual variability (Busch
et al., 2004). Therefore, averaging the time frequency representations of evoked
activity, total activity and phase-locking factor will generally smear the responses
in frequency. To avoid such smearing effects, we determined the responses indi-
vidually from every participant and display the time courses of the respective
measure at the frequency of the GBR (i.e. at the peak in the time frequency
plane).

2.3. Outline for the following experiments

In the following three chapters ( 3 on page 25, 4 on page 37, and 5 on page 51),
we will present empirical results from three different experiments.

In the first of these experiments (Chapter 3), we test the stability of large
scale γ band oscillations over time. Only oscillatory responses with temporally
stable properties can form a reliable control signal for timing based neural codes.
Thus, establishing the temporal stability of evoked γ band responses constitutes
a necessary condition for the following experiments.

As mentioned in Chapter 1, such temporal codes seem to be particularly impor-
tant to achieve the speed of visual processing. If evoked γ band responses help to
quickly establish a framework for reliable processing on the basis of such temporal
codes, one should expect faster processing to be accompanied by elevated evoked
γ band responses. This hypothesis is tested in the second experiment which is
presented in Chapter 4.

In Chapter 4, we demonstrate that spontaneous fluctuations of reaction time
can be associated with different levels of stimulus evoked γ band responses. How-
ever, can these responses be adapted to different situations? In the third ex-
periment (Chapter 5), we go further into this question by contrasting situation
in which participants have to either respond as quickly as possible to a visual
stimulus or have to wait for a certain amount of time until they may respond to
the stimulus. If evoked γ band responses form a basis for rapid, timing based
processing, they should be facilitated in the former case of speeded processing. If
processing is adapted to the demands of the current task, evoked γ band responses
should additionally be diminished in the case of a delayed response.
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3. Experiment I: evoked γ band
responses are test retest reliable

The experiment described in this chapter has been published as in the Journal
“Clinical Neurophysiology” (Fründ et al., 2007).

3.1. Introduction

In section 1.2 on page 4, large scale brain oscillations have been introduced as a
possible control signal for fast temporal coding schemes based on spiking neurons.
In particular, such a control signal should reliably be reset following suffciently
large changes of the input (Kupper et al., 2005).
γ oscillations have recently been related to pathological brain function (see

Herrmann & Demiralp, 2005, for a review). γ oscillations seem to be related to a
variety of neuropsychiatric disorders such as schizophrenia (Lee et al., 2003, 2001;
Basar-Eroglu et al., 2006), attention-deficit hyperactivity disorder (ADHD; Yor-
danova et al., 2001), or autism (Grice et al., 2001; Brown et al., 2005). It seems
reasonable to also use oscillatory brain responses in the γ range as a diagnostic
tool for neuropsychiatric disorders (Spencer et al., 2003; Ribary et al., 1991). A
prerequisite for such clinical application as well as for our following experiments
would be that γ band responses (GBRs) can reliably be detected such that vari-
ations in the GBR could be related to specific longer lasting aspects of brain
function rather than random or transient variations. Along these lines Debener
& Engel (2005) have recently commented a review on γ activity in neuropsychi-
atric disorders (Herrmann & Demiralp, 2005) that the reliability of γ responses
needs to be demonstrated before they can be used for clinical diagnosis.

GBRs can be measured from a wide variety of brain structures (Basar et al.,
2001). As mentioned in section 1.3 on page 5, two types of GBRs are usually
distinguished: Evoked GBRs (eGBRs) are phase-locked to the onset of a stimulus
and do not necessarily correspond to amplitude modulations in the single trials,
whereas induced GBRs (iGBRs) usually occur in a later time window and are
not time locked to the onset of a stimulus (Basar-Eroglu et al., 1996). Induced
GBRs are usually detected as amplitude modulations in single trials, and are
now commonly related to a wide variety of cognitive processes (Engel et al., 2001;
Tallon-Baudry & Bertrand, 1999; Keil et al., 2001) as well as certain types of
learning and memory (Gruber & Müller, 2005, 2006). Most researchers agree
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Chapter 3. Experiment I: evoked γ band responses are test retest reliable

in that the earlier eGBRs depend on stimulus factors such as size, eccentricity
(Busch et al., 2004), or spatial frequency (Fründ et al., 2007). However, they also
seem to be modulated by basic cognitive processes such as memory matching
(Herrmann et al., 2004) or attention (Busch et al., 2006; Tiitinen et al., 1993;
Debener et al., 2003; Fell et al., 2003). Whereas the reliability of iGBRs has been
shown before (Keil et al., 2003; Hoogenboom et al., 2006), such demonstrations
lack for the eGBR.

In the current study we investigated the test-retest reliability of eGBRs in
response to sinusoidal gratings. Since a recent study revealed that size matters
for evoking γ activity (Busch et al., 2004), we used stimuli of different size for
our test.

3.2. Methods

3.2.1. Participants

Twelve healthy volunteers aged between 20 and 44 years (mean age 27 ± 6.721,
5 m, 7 f) participated in the current study. We decided that 12 participants
would be enough to get an idea of the reliability of eGBRs. However, due to the
small sample size, the results remain preliminary. All participants had normal
or corrected to normal vision and were free of current or past neurological or
psychiatric disorders. Before the first recording session started, participants gave
their informed consent. The experimental procedure was in accordance with the
guidelines of the local ethics commitee of the university of Magdeburg and the
declaration of Helsinki.

3.2.2. Stimuli and experimental procedure

All participants took part in two recording sessions, temporally separated by two
weeks. During both recording sessions the participants had to perform the same
task.

The task of the participants was to detect the orientation of monochromatic
gratings with a spatial frequency of 2 cycles per degree visual arc (cpd) and a
Michelson contrast of 50%. These gratings were either rotated 45 degree clock-
wise from a vertical orientation or counterclockwise. Examples of the stimuli can
be found in Figure 3.1 on the facing page. Participants indicated the detected
orientation by pressing a button with one hand or another button with the other
hand. The gratings subtended either 10 degree visual arc (big stimuli) or 1.3
degree (small stimuli). This results in 4 different stimuli, each of which was pre-
sented 100 times. Thus, in total the participants perceived 400 grating patterns
during the experiment.
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3.2. Methods

Figure 3.1.:
Examples of the stimuli used in the experiment. Left: big stimulus, right: small
stimulus

Response hands were counterbalanced across participants but remained con-
stant during the two sessions. The stimuli were presented on a TFT monitor
(width = 34.5 cm, height = 25.9 cm) placed at a distance of 110 cm in front of
the participants. Monitor refresh rate was 75 Hz. Participants were instructed
to fixate a small white cross in the center of the screen during the whole exper-
iment. Furthermore, electrooculographic (EOG) activity (see Section 3.2.3) was
recorded in order to discard trials that were contaminated with eye movements.
Stimuli were presented for 1000 ms with inter stimulus intervals varying randomly
between 1000 ms and 2000 ms.

3.2.3. Data acquisition

During data recording, participants sat in an electrically shielded and sound at-
tenuated room (IAC, Niederkrüchten, Germany). The stimulation monitor was
placed outside the recording cabin behind an electrically shielded window. All
devices inside the cabin were battery operated to avoid line frequency interference
(50 Hz). EEG activity was measured from 31 scalp locations according to an ex-
tended 10-20 system. The nose served as reference. Electrooculographic activity
was measured from an electrode placed below the orbital rim in order to detect
artifacts due to eye movements. Activity was recorded using sintered Ag/AgCl
electrodes mounted in an elastic cap (Easycap, Falk Minow Services, Munich, Ger-
many) and amplified by means of a BrainAmp amplifier (Brain Products, Munich,
Germany). Electrode impedances were kept below 5 kΩ. The EEG signals were
filtered between 0.02 and 250 Hz, digitized at a rate of 500 Hz and stored on a
computer hard disc for offline analysis. Digitized EEG data were transferred to a
computer outside the recording cabin with a fiber optic cable. The data were dig-
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Chapter 3. Experiment I: evoked γ band responses are test retest reliable

itally high-pass filtered offline with a cutoff frequency of 0.5 Hz in order to avoid
slow shifts in the baseline. An automatic artifact rejection was computed which
excluded trials from further analysis if the standard deviation within a moving
200 ms time window exceeded 40 µV in one channel. The automatic artifact re-
jection was supplemented by visual inspection to ensure that only trials without
artifacts were included in the subsequent analysis. After artifact rejection on
average 165 trials per session per subject went into the analysis.

3.2.4. Data analysis

In order to obtain a time frequency representation of the EEG signals, a wavelet
transform was performed as described in Section 2.2 on page 17. At 40 Hz the
wavelet had a time resolution of 2σt = 50 ms and a frequency resolution of 2σf =
13 Hz. The exact time frequency resolution of the wavelet depended on the
analyzed frequency. The wavelets were normalized to have unit energy. From the
wavelet transformed data the three measures described in Section 2.2.4 on page 20
were derived: (i) the amount of evoked activity, (ii) the total γ activity and (iii)
the phase-locking factor. This resulted in a representation of the responses of
every participant in the plane spanned by time and frequency, where the frequency
of the participant’s response could be analyzed as well as the magnitude of the
response at that frequency. From the time frequency planes for evoked and total
activity, the average from a baseline 200 to 100 ms before stimulus onset was
subtracted.

In a previous study we reported strong eGBRs over posterior electrodes O1, O2,
P3, Pz and P4 (Busch et al., 2006). This was confirmed by the current results.
We therefore decided to average the time frequency planes from these electrodes
to quantify eGBRs. Response frequencies were defined for each condition in
the time frequency plane averaged accross electrodes O1, O2, P3, Pz, and P41

as those frequencies between 28 and 90 Hz that showed the strongest increase
in the time range between 50 and 130 ms after stimulation onset with respect
to a baseline level (100 to 200 ms before stimulus onset). The time course of
the γ band response was computed as the average of the time courses at these
individually defined response frequencies. Thus, we acquired one time course for
evoked, one for total activity and one for phase-locking. If a participant did not
show a dominant response peak but rather multiple small peaks that could not be
distinguished from noise, this response was excluded from the reliability analysis
of response frequencies. Examples for this procedure are illustrated in Figure 3.2.

From the time courses we obtained the peak magnitude in the time window
between 50 and 130 ms after stimulation onset. If for a particular condition
no response frequency could be ascertained, the peak magnitude was extracted

1 Reliabilities of eGBR derived from single channels were generally smaller (by a value of
approximately 0.2 for big stimuli) and less significant (0.05 > p > 0.03)
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3.3. Results

at the response frequency of the other condition (big or small respectively). If
a response frequency could not be ascertained for the other condition either,
peak magnitude was extracted at 40 Hz. This procedure yields different analysis
frequencies for eGBR, phase-locking and total GBR. However, the differences in
analysis frequencies were well below the bandwidth of the employed wavelets.

Thus, for every session we analyzed 6 response frequencies and response mag-
nitudes (two conditions: small, big stimulus; three characteristic values: evoked
activity, total activity, phase-locking). In order to obtain a measure for test-retest
reliability, the correlation for all these values was derived separately between the
first and the second session (Keil et al., 2003). The correlations were tested by
means of a t-test with n − 2 degrees of freedom, where n denotes the number
of participants that were included in the analysis. The statistics were performed
using the function cor.test() from the statistical analysis software “R” (R De-
velopment Core Team, 2004).

To get an estimate of the reliability within a single session, we randomly split
the trials from the first session into two subsets. These two subsets were compared
in the same way as the data from the two sessions.

3.3. Results

For big stimuli a marked eGBR could be observed at posterior electrodes. This
was not the case for small stimuli. Figure 3.2 shows time-frequency representa-
tions of the evoked γ response from two participants. Figure 3.3 displays topogra-
phies of the responses to big and small stimuli.

3.3.1. Behavioral data

Mean reaction times were 477 ± 65 ms. For both stimuli the mean reaction
times were highly correlated between sessions (big stimuli: r = .91, t10 = 6.95,
p < 0.0001, small stimuli: r = .89, t10 = 6.02, p < 0.001).

3.3.2. Evoked GBR

Response frequencies of evoked activity significantly correlated for the big stim-
ulus (r = .85, t10 = 5.1, p < 0.001). For the small stimulus, the number of
responses for that a response frequency could be distinguished (5) was too small
to calculate a meaningful correlation. Response magnitudes of evoked activity
were significantly correlated only for the large stimulus (r = .82, t10 = 4.55,
p < 0.01), but not for the small stimulus (r = .30, t10 = 1.1). Scatter plots of the
response frequencies and magnitudes of the eGBR can be found in Figure 3.4. A
comparison between first and second session for big and small stimuli from two
representative subjects is presented at the top of Figure 3.2.
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Figure 3.2.:
Time-frequency representations of

evoked activity (top), phase-locking
(middle) and total activity (bottom)
in response to the big grating stimu-
lus from two single representative par-
ticipants. In every display two time-
frequency plots are shown. The first
corresponds to the first session, the
second to the second session. To
obtain these time-frequency represen-
tations, the time-frequency representa-
tions from electrodes O1, O2, P3, Pz,
P4 have been averaged. Dotted lines
indicate the time-frequency position at
which the values were extracted for fur-
ther computation. Plots of evoked ac-
tivity and phase-locking show a high re-
liablity across sessions, while this was
less clear for total activity. Note that for
subject 2 no response frequency for to-
tal activtiy was ascertained in the early
time window. Subject 2 was the only
subject that displayed a late total GBR.
This was, however, not test-retest reli-
able.
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3.3. Results

Figure 3.3.:
Evoked GBR in response to big stim-

uli (left column) and small stimuli (right
column). Top: Time courses at elec-
trode O2, solid lines represent responses
from the first session, dotted lines repre-
sent responses from the second session,
middle: topographies from first session,
bottom: topographies from second ses-
sion. Data were averaged accross all
participants. Topographies correspond
to the time window 60 to 115 ms after
stimulus onset. Both time courses and
topographies in response to big stimuli
were highly reliable across sessions.
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Chapter 3. Experiment I: evoked γ band responses are test retest reliable

Table 3.1.:
Correlations between first and second session, evoX indicates evoked activity,
plfX indicates phase-locking and totX indicates total activity. Note that fre-
quency was assumed to be 40 Hz for the magnitude analysis if no clear peak was
visible. However, frequency could not be analyzed in these cases.

big stimuli small stimuli
Correlation r t value p value Correlation r t value p value

Response frequencies
evoX 0.85 5.1 0.001 not enough observations
plfX 0.95 8.95 0.0001 not enough observations
totX not enough observations not enough observations

Response magnitudes
evoX 0.82 4.55 0.01 0.30 1.1 n.s.
plfX 0.88 5.98 0.001 0.21 0.64 n.s.
totX 0.31 0.99 n.s. 0.49 1.67 n.s.
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Figure 3.4.:
Scatter plots of evoked responses.
Top: response magnitudes, Bot-
tom: response frequencies. Left:
Magnitude and frequency of
evoked γ band response, right:
magnitude and frequency of
phase-locking. Filled circles
represent responses to big stimuli,
open circles represent responses
to small stimuli. In all plots high
reliablity across sessions can be
observed for big but not for small
stimuli.
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3.3. Results

3.3.3. Phase-locking

Phase-locking revealed an even larger correlation across sessions, than did the
evoked activity. Response frequencies as well as magnitudes for the big stimuli
were highly correlated (response frequencies: r = .95, t8 = 8.95, p < 0.0001,
response magnitudes: r = .88, t10 = 5.98, p < 0.001). For small stimuli response
frequencies could only be distinguished in five participants which precluded the
calculation of a meaningful correlation. Magnitudes of phase-locking in response
to small stimuli were not significantly correlated (r = .21, t9 = 0.64). Scatter
plots of frequencies and magnitudes of phase-locking are presented in the right
column of Figure 3.4. Time frequency representations of the responses from two
representative subjects are compiled in the middle panel of Figure 3.2.

3.3.4. Total γ activity

Response frequencies of total γ activity could only be ascertained for three partic-
ipants. Time frequency planes from other participants did not show a clear peak
at any frequency. This precluded the calculation of a meaningful correlation of
response frequencies. The magnitudes of total γ activity were not significantly
correlated (r < .5, t9 < 1.7). Total γ activity was not significantly correlated in
later time windows either. Time frequency representations of the responses from
two representative subjects are displayed at the bottom of Figure 3.2.

3.3.5. Event-related potentials

Event-related potentials (ERPs) are plotted in Figure 3.5. Although we did not
analyze ERP components statistically, two aspects can be noted about the ERP.
First, the early responses to big as well as small stimuli are very similar across
sessions. Second, in line with previous findings (Debener et al., 2002) the later
responses to big stimuli are slightly more similar between sessions, than are those
to small stimuli.

3.3.6. Split-half reliabilities

The results of the split-half analysis were comparable to those from the test-
retest analysis. For big stimuli both, frequency as well as magnitude of the
eGBR were significantly correlated (big stimuli: frequency: r = .89, t8 = 5.54,
p < 0.001, magnitude: r = .80, t10 = 4.29, p < 0.01), whereas this was not the
case for small stimuli (frequency could only be ascertained in five participants,
magnitude: r = −.51, t10 = −1.87). High correlations were obtained also for
phase-locking (big stimuli: frequency: r = .78, t6 = 3.07, p < 0.05, magnitude:
r = .80, t10 = 4.18, p < 0.01, small stimuli: frequency could only be ascertained
in four participants, magnitude: r = −.04, t10 = 0.12), but not total γ activity
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Figure 3.5.:
Event-related potentials after stimulation with big stimuli (left column) and after
stimulation with small stimuli (right column). The top row shows time courses
of the event-related potential, the second row shows topographic maps of activity
between 80 and 120 ms in the first session and the third row shows topographic
maps of the same time window in the second session. ERPs were lowpass filtered
at 20 Hz for display.
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(big stimuli: frequency could only be ascertained in five participants, magnitude:
r = .45, t10 = 1.59, small stimuli: frequency could only be ascertained in five
participants, magnitude: r = −.73, t10 = −3.43)

3.3.7. Reliabilities of broad band γ activity

We performed the same analysis as above with the amplitudes averaged across the
whole time-frequency range of interest (50-130 ms, 28-90 Hz). Correlations were
significant under the same conditions as with peak frequency analysis. However,
these correlations were much lower (on average .17 less than for peak frequencies).

3.4. Discussion

In the current study we investigated the reliability of early, phase-locked γ activ-
ity in response to different stimulus sizes. We observed that for large stimuli a
reliable measurement of longer lasting properties of evoked, phase-locked γ activ-
ity is possible. Total γ activity was not significantly correlated between the two
sessions.

It has been demonstrated previously, that evoked γ oscillations are highly de-
pendent upon parameters of the stimulation procedure like spatial frequency
(Fründ et al., 2007), size or eccentricity (Busch et al., 2004). For small stim-
uli subtending only one degree visual arc, the eGBR hardly exceeds the noise
level. We found the same in our current data and could even extend these find-
ings by showing that for small stimuli stable detection of γ responses across two
recording sessions is not possible either.

From the fact that phase-locking in our data was generally more reliable than
total γ activity, we infer that the reliable part of the eGBR was due to phase-
locking rather than modulation of amplitudes in single trials. This is in line with
findings indicating that phase-locking and power modulations of early γ responses
are independent parameters of cortical information processing (Yordanova et al.,
1997; Fell et al., 2005). Total γ activity, was not significantly correlated between
sessions. This might explain, why Keil et al. (2003) found only weak reliabilities
for power increases of early γ band responses.

Phase-locked γ activity has been regarded as being mainly related to sensory
processing (Karakaş & Başar, 1998), which is modulated by top-down processes
like memory (Herrmann et al., 2004) or attention (Busch et al., 2006; Tiitinen
et al., 1993; Debener et al., 2003; Fell et al., 2003). Phase dynamics of high
frequency brain oscillations have gained interest in recent years (Makarenko &
Llinás, 1998; Kazantsev et al., 2004; Freeman & Rogers, 2002). The phase of
ongoing oscillations in the γ-β range is spontaneously reset at a frequency of
approximately 5 Hz (Freeman & Rogers, 2002). These authors observed that
phase-resets occur simultaneously at different spatial scales of cortical processing
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and can be very rapid. Such phase-resets have been studied in much detail in the
inferior olive. The subthreshold oscillations of neurons in the inferior olive can be
reset rapidly to a value that is determined by properties of the stimulus (Kazant-
sev et al., 2004). Makarenko & Llinás (1998) suggested that such mechanisms
might be found in different brain structures in which subthreshold oscillations
can be detected. Thus, it might be possible, that resetting the phase of ongoing
high frequency oscillations provides a mechanism for rapid classification of visual
stimuli, (Körner et al., 1999). These authors further argue, that for the very same
oscillation phase-locking to the stimulus might become weaker with time, while
the cells are synchronized to each other by a common subthreshold oscillation.
From this point of view it seems reasonable to expect phase-locking to be reliable
in an early time window, whereas amplitudes (i.e. local synchronization between
many neurons) become more reliable in later time windows as has been shown
before (Hoogenboom et al., 2006; Keil et al., 2003).

In a line of experiments, we studied the conditions for the detection of eGBRs.
We especially reported that measurement of eGBRs is only possible, if the stim-
ulation is appropriate (Busch et al., 2004, 2006; Fründ et al., 2007). The current
results extend these findings by demonstrating that γ oscillations can also be
reliably detected if the stimulation is appropriate. Thus, a clinical application of
eGBRs as a diagnostic tool seems realistic. Especially schizophrenia has been as-
sociated with abnormalities of γ oscillations (Lee et al., 2003). For schizophrenic
patients deficits in early visual processing have been demonstrated (Brand et al.,
2005), that could also account for cognitive impairments in higher order processes
like social cognition (Sergi & Green, 2002). It has been argued that these deficits
in early visual processing could be explained by dysfunction of the magnocellular
pathway in schizophrenic patients (Schechter et al., 2005). It has been suggested
that GBRs can be associated with activity in the magnocellular pathway (Se-
wards & Sewards, 1999). Indeed it was reported that phase-locking of oscillatory
γ activity is abnormal in schizophrenic patients and that these abnormalities are
correlated with symptoms of schizophrenia (Spencer et al., 2003, 2004). The
current findings might thus be speculated to open new paths for a diagnosis of
magnocellular dysfunction in schizophrenia. However, to date no specific links
between eGBRs and magnocellular function have been established.

We conclude that using appropriate stimulation it is possible to obtain reliable
measurements of evoked, phase-locked γ oscillations in EEG measurements.
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4. Experiment II: γ band responses
vary with reaction time

The results of this experiment have been published in the Journal “BMC Neuro-
science” (Fründ et al., 2007).

4.1. Introduction

As noted in chapter 1 on page 1, response times to visual stimuli can be extremely
fast in some cases. However, there is also considerable intra-individual variabil-
ity in response times across trials, even under identical experimental conditions.
Which neural processes can account for these behavioral differences? Why do we
manage to be fast on some trials but not on others?

Experimental findings suggest that processing of visual information may be ex-
tremly rapid, leaving an upper limit of 10-20 ms for information transfer between
two neurons at successive levels of the visual processing hierarchy (Thorpe et al.,
1996). This implies that processing must be achieved using the very first spikes
of a neuronal stimulus response based on an ensemble code rather than a rate
code (Thorpe et al., 2001, also see section 1.1 on page 1). Such effective and fast
transfer demands synchronous arrival of several spikes at the same target neuron,
propagated from different source neurons that were activated by the respective
stimulus. However, the membrane potential of neurons is randomly fluctuating
around its resting potential. Therefore, without a synchronization of those fluc-
tuations even a coherent wave of input spikes to a certain processing stage will
result in an increasingly scattered spike distribution at the input to the next pro-
cessing stage. In this case reliable processing of a stimulus can only be achieved
based on a time consuming rate code. Rodemann & Körner (2003) demonstrated
in a neural network simulation that stimulus-locked, evoked γ band responses
(eGBRs) can be the expression of a phase reset of ongoing neuronal activity after
a visual stimulus, which results in strong synchronization of spiking activity in
the stimulated neuronal population. In this case processing of the stimulus can
be based on instantaneous evaluation of an ensemble code, which results in much
faster responses.

As outlined in section 1.4 on page 9, eGBRs have so far mainly been studied in
perceptual tasks in both auditory (Yordanova et al., 1997; Tiitinen et al., 1993)
and visual modalities (Busch et al., 2004; Spencer et al., 2004). In these experi-
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ments it could be shown that although eGBRs are highly dependent on physical
parameters of the stimulation (Busch et al., 2004; Karakaş & Başar, 1998), they
are significantly modulated by top down factors like attention (Busch et al., 2006;
Tiitinen et al., 1993) or memory (Herrmann et al., 2004). Although the early
time window in which they occur and the simulation performed by Rodemann
& Körner (2003) render eGBRs a possible mechanism for fast response initia-
tion, studies that link eGBRs and response times are rare. There is only indirect
evidence regarding this topic. In studies investigating eGBRs in schizophrenic
patients, decreased phase-locking is accompanied by prolongated reaction times
in patients compared to healthy controls (Spencer et al., 2003). Furthermore,
studies that investigated stimulus induced amplitude modulations in the γ range
found relations between such amplitude modulations and reaction time (Haig
et al., 1999; Jokeit & Makeig, 1994). Such later amplitude modulations of oscil-
lations in the γ range, so called induced γ oscillations (Basar-Eroglu et al., 1996)
have been associated with a wide range of cognitive processes (Tallon-Baudry
et al., 1998; Engel et al., 2001) and learning (Gruber & Müller, 2005, 2006).

In the current study, we directly investigated the idea that phase-locked, evoked
GBRs are relevant for speeded responses. Participants were asked to respond as
fast as possible to large black squares presented on a white screen, while their
electroencephalogram (EEG) was recorded. Trials in which the participants were
able to respond fast were analyzed separately from trials with slower reactions.
We hypothesized that eGBRs would be enhanced in those trials, in which the
participants were able to respond fast, compared to trials, in which participants
responded slower. We further explored whether these effects could be explained
by amplitude modulations in the single trials or whether they were due to an
increase in phase-locking to the onset of the stimulus.

4.2. Methods

4.2.1. Participants

Thirteen healthy volunteers aged between 22 and 44 years (mean age 27±6.7, 6m,
7f) participated in the current study. All participants had normal or corrected to
normal vision and were free of current or past neurological or psychiatric disorders.
Before the recording session started, participants gave their informed consent to
participate. The experimental procedure was in accordance with the guidelines
of the local ethics commitee of the university of Magdeburg and the declaration
of Helsinki.
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4.2.2. Stimuli and experimental procedure

The participants viewed large black squares (16×16 cm at a distance of 120 cm,
subtending 8 degree visual arc) that were presented in front of a white background
on a TFT monitor (width= 34.5 cm, height= 25.9 cm). Stimuli were presented
for 1000 ms. The participants were instructed to press a button as fast as possi-
ble, as soon as a square appeared on the screen. After every button press, the
participants received feedback about their reaction time. Stimuli were presented
in three blocks of 200 trials each. Inter stimulus intervals (ISIs, time interval
between offset of one stimulus and onset of the next stimulus) were taken from a
uniform random distribution in one block, from a normal distribution in another
block and from a shifted exponential distribution in the third block, to control
anticipatory effects due to the randomization of the ISI. It has been shown, that
stimulus preceding negative potentials are weakest for a uniform distribution of
ISIs (Trillenberg et al., 2000). In all blocks mean ISI was 1200 ms and standard
deviation was 300 ms. Block sequence and response hands were counterbalanced
across participants. Participants were instructed to fixate a small black cross in
the center of the screen during the whole experiment.

4.2.3. Data acquisition

During data recording, participants sat in an electrically shielded and sound at-
tenuated room (IAC, Niederkrüchten, Germany). The stimulation monitor was
placed outside the recording cabin behind an electrically shielded window. All
devices inside the cabin were battery operated to avoid line frequency interference
(50 Hz in Germany). EEG activity was measured form 31 scalp locations refer-
enced to the nose. Electrode positions were selected according to an extended
10-20 system. Electrooculographic activity was recorded from an electrode placed
below the orbital rim in order to detect eye movement artifacts. Activity was
recorded using sintered Ag/AgCl electrodes mounted in an elastic cap (Easycap,
Falk Minow Services, Munich) and amplified by means of a BrainAmp amplifier
(Brain Products, Munich). Electrode impedances were kept below 5kΩ. The data
was analog low pass filtered at 200 Hz, digitized at a rate of 500 Hz and stored
on a computer hard disc for offline analysis. Digitized EEG data was transferred
to a computer outside the recording cabin with a fiber optic cable. No analog
or digital high pass filter was applied to preserve DC components of the signal.
An automatic artifact rejection was performed which excluded trials from further
analysis if the standard deviation within a moving 200 ms time window exceeded
40 µV in any channel (EEProbe, ANT, Enschede). The automatic artifact re-
jection was supplemented by visual inspection to ensure that only trials without
artifacts due to eye movements, motor activity or amplifier noise were included
in the subsequent analysis.
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4.2.4. Data analysis

For each single trial the response time was recorded. Based on inspection of the
response time histograms, only responses between 100 and 400 ms were considered
for further analysis. See top of Figure 4.4 on page 45 for a histogram of response
times accross all participants. To investigate the current hypotheses it might
sound obvious to perform a correlational analysis. One would expect, that there
is a high correlation between the reaction time and the eGBR (and probably the
slow negative potential) across trials. The main problem with this approach lies in
the definition of evoked activity. Evoked activity is defined as being phase-locked
to the onset of the stimulus (Basar-Eroglu et al., 1996). Unfortunately phase-
locking to the onset of a stimulus cannot be analyzed in single trials. Thus, a
correlational analysis of the observed effects could only indirectly be performed on
the basis of subaverages. To this end, responses of each participant were split into
two groups according to whether the response was faster than the participant’s
median response time or slower.

As neither EEG nor response time data differed significantly between blocks,
data from all three blocks were merged for the analysis of EEG. Event-related
potentials (ERPs) were computed as averages across trials for fast response and
slow response trials separately. To investigate the impact of slow ERP compo-
nents preceding the stimulus on eGBRs, a straight line was fit to the last 500 ms
before stimulus onset in single trials. Based on the slope of this line a median
split was performed to obtain trials with strong stimulus preceding negativity
and weak stimulus preceding negativity.

To analyze event-related γ oscillations, a wavelet transform was applied (see
section 2.2 on page 17 for a detailed description). The wavelet transform was
computed at linearly spaced time and frequency positions using a discrete ver-
sion of the integral wavelet transform with the morlet wavelet (i.e. a modulated
gaussian) as basis function. At 40 Hz this wavelet had a time frequency resolution
of 2σt ≈ 50 ms and 2σf ≈ 13 Hz. The exact time frequency localization depends
on the analyzed frequency. The wavelet transform represents a signal as a func-
tion of time and frequency. From these time-frequency representations the three
characteristic values described in Section 2.2.4 were derived: (i) the strength of
the evoked activity, (ii) total activity (iii) the phase-locking factor (PLF). On av-
erage 130 trials were included in the analysis of ERP and oscillatory activity for
fast and slow response subaverages. For a uniform distribution of phases across
trials the 95th percentile of the phase-locking value was numerically estimated to
be ≈ 0.15.

From the time frequency representations of evoked activity and total activity,
the average activity from the last 200 ms before stimulus onset was subtracted,
to obtain a measure of the event related changes of these quantities.

One participant was excluded from the GBR analysis due to large muscular
artifacts that could not be separated from the GBR.
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Table 4.1.:
Response frequencies and latencies for different participants. If a participant did
not show any peak at all, this value is marked as “no response” in the table and
the value was excluded from the statistical analysis

participant early (60-140 ms) late (180-400 ms)
frequency [Hz] latency [ms] frequency [Hz] latency [ms]

participant 1 33 140 53 336
participant 2 31 120 no response
participant 3 33 99 45 328
participant 4 37 69 52 268
participant 5 35 137 42 331
participant 6 38 96 40 294
participant 7 39 90 48 311
participant 8 30 97 40 304
participant 9 33 113 49 279
participant 10 36 72 53 255
participant 11 42 130 44 218
participant 12 61 79 44 300
participant 13 excluded due to high frequency artifacts

For every participant the eGBR was defined as the peak response in a frequency
range between 30 and 90 Hz and a time range between 50 and 160 ms after
stimulation onset. The frequency range for the eGBR was predefined to include
the whole γ frequency range. The time range was adapted to include all initial
phase-locked responses (see Table 4.1).

The analysis was focused on peak responses, because the response frequency
in the γ range has been shown do vary considerably across participants (Busch
et al., 2004). Furthermore, the data from Chapter 3 demonstrated that peak
responses are more reliable than averages across multiple frequencies. Responses
were pooled into two regions of interest (ROI) as summarized in Table 4.2 on
the next page. The posterior ROI was chosen to include channels over visual
areas, the central ROI was chosen to include channels from a broad area around
the central sulcus. We decided to select electrodes from both hemispheres into
the ROI, because we observed in a pre-analysis, that no significant laterality
effects were present in the data (slow negative potential: t12 = .29, central eGBR:
t9 = −0.84, contra- vs. ipsilateral to responding hand). Response strengths and
latencies were analyzed by means of ANOVA for repeated measurements with two
factors (ROI × SPEED). If for a particular participant and condition no response
peak could be extracted, this value was considered “missing” in the statistical
analysis.

The statistical analysis was performed separately for evoked activity, total

41



Chapter 4. Experiment II: γ band responses vary with reaction time

Table 4.2.: Regions of interest
ROI channels

central TP9, TP10, T7, T8, CP5, CP6, C3, C4, Cz, FC1, FC2, FC5, FC6
posterior CP1, CP2, P3, P4, Pz, P7, P8, O1, O2

activity and phase-locking factor.

4.3. Results

4.3.1. Response times

Median response times ranged between 170 and 236 ms (mean=204 ms, standard
deviation=16 ms). Mean response times for fast trials (faster, than the median
response time, red) and slow trials (slower, than the median response time, blue)
are indicated in Figures 4.1 on the facing page and 4.2 on page 44 as vertical dot-
ted lines. A histogram of all response times can be found at the top of Figure 4.4
on page 45.

4.3.2. Event related potentials

A slowly increasing negative potential was observed preceding the stimulus. In
order to test whether this negativity was influenced by the degree of expectancy
of the next stimulus, we used three different randomizations of the inter stimulus
interval (ISI): a uniform distribution, for which all possible ISIs had the same
probability, a gaussian distribution with a clear peak for medium latency ISIs, an
exponential distribution, for which very long ISIs are possible, but most ISIs are
relatively short. These three ISI distributions have been shown to influence the
slow stimulus preceding potentials (Trillenberg et al., 2000). In the current data,
however, the negative potential did not differ between different randomizations of
the inter stimulus interval (F2,12 = 0.51) and was most pronounced over central
electrodes. Separating the trials into fast and slow responses revealed that this
slowly increasing negative potential was large for fast response trials, but nearly
absent for slow response trials (Fig. 4.1). Comparing the mean amplitude in the
last 500 ms preceding stimulus onset in a central region of interest (ROI) yielded
a highly significant difference (t(12) = −6.233, p < 10−4).

In addition also a difference in P1-N1 peak to peak amplitude is visible in
Figure 4.1. However, this difference was only visible in a small subset of three
participants. In some participants no P1-N1 complex could be found or the effect
was even reversed. A statistical analysis of those participants for which a P1-N1
pattern could be observed did not yield a significant difference between fast and
slow responses (t10 = −1.71).
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Figure 4.1.:
Averaged event related potentials for fast and slow responses (left) and topo-
graphic maps of the average activity in the time window -0.5 to 0 s. The stimulus
was presented at 0 s. Dotted lines indicate mean response times of fast response
trials (red) and slow response trials (blue). Note that the negative potential start-
ing approximately 700 ms before stimulus onset for fast response trials is virtually
absent for slow response trials.

4.3.3. γ band responses

A clear eGBR could be observed over posterior and central areas. This response
peaked between 50 and 160 ms at frequencies between 30 and 50 Hz (see Table 4.1
on page 41). Evoked GBRs were generally more pronounced over the posterior
ROI as compared to the central ROI (F1,9 = 28.91, p < 0.001). No significant
differences for different ISI randomizations were found (F2,9 = 0.29). Separating
the trials into fast and slow behavioral responses yielded a clear difference in
the eGBR (see Fig. 4.2 on the following page): In trials with fast behavioral
responses, eGBRs were larger in amplitude (F1,9 = 12.36, p < 0.01) and earlier in
latency (F1,9 = 5.54, p < 0.05) than in trials with slow behavioral responses. No
significant differences were observed in the baseline level of γ activity (t11 = 0.36).

We analyzed phase-locking factor and total activity patterns in the same time
window to investigate whether the effects of evoked activity were due to an in-
creased phase-locking to the stimulus or due to amplitude modulations in the
single trials. Phase-locking was significantly enhanced for the fast response tri-
als compared to the slow response trials (F1,10 = 9.30, p < 0.05, Fig. 4.3 on the
next page). Phase-locking was also more pronounced over the posterior ROI
as compared to the central ROI (F1,10 = 11.63, p < 0.01). Total activity was
more pronounced over the posterior ROI (F1,9 = 30.77, p < 0.001), too. How-
ever, total activity between 50 and 160 ms did not depend on the response speed
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Figure 4.2.:
Evoked γ band responses for fast (red) and slow (blue) motor responses (right)
and topographic maps of the evoked γ band responses in the time range 60 to
130 ms (left) averaged across all participants. The vertical black lines indicate
stimulus onset, dotted lines indicate mean response times of fast response trials
(red) and slow response trials (blue). Note the marked increase of the response
for fast response trials.
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Figure 4.3.:
Time frequency representations of eGBR (top) and phase-locking factor (bot-
tom) for fast responses (left) and slow responses (right) of a single representative
participant. Bot measures show a considerable enhancement for fast responses.
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Figure 4.4.:
Total activity patterns for fast and slow mo-

tor responses and reaction time histogram.
Top: reaction time histogram of all trials from
all participants. Time axis is like below. Mid-
dle: Time frequency representation of total ac-
tivity for fast response trials. Bottom: Time
frequency representation of total activity in
slow response trials. Data from the posterior
ROI have been averaged to obtain the time
frequency representations. Simulus onset is at
0 ms. Note that the response time histogram
peaks considerably earlier than the total γ ac-
tivity.
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(F1,9 = 0.83). In a later time window between 180 and 400 ms total activity
was significantly modulated by response speed (F1,9 = 8.51, p < 0.05, Fig. 4.4).
Note however, that this effect was found in most cases after the participants had
already pressed the button.

4.3.4. Relation between stimulus preceding ERP and γ band
response

In order to disentangle the relation between the slow negative potential and the
eGBR, we split the trials into two groups of trials with either a pronounced
prestimulus negativity (strong negativity trials) or a weak prestimulus negativ-
ity (weak negativity trials) and analyzed eGBRs separately in both subsets. No
significant eGBR differences were found between trials with strong and weak neg-
ativity (F1,9 = 0.96). As depicted in Figure 4.5 on the next page, this was due
to large standard deviations between single participants. Inspection of single par-
ticipant data revealed that out of 11 participants, five demonstrated enhanced
eGBRs in strong negativity trials compared to weak negativity trials, while two
participants demonstrated decreased eGBRs in strong negativity trials compared
to weak negativity trials. For the remaining four participants, eGBRs were vir-
tually the same for strong negativity trials compared to weak negativity trials.

4.4. Discussion

In the current study we demonstrated that both ERPs and eGBRs are more
pronounced for fast compared to slow responses. We further pointed out that the
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Figure 4.5.:
Strength of the eGBR in trials with weak and strong
negative potential preceding the stimulus. Subaverages
with weak prestimulus negative potential are marked
in grey, subaverages with strong negative potential are
marked in white. Error bars indicate standard error of
mean. Note the large error bars, that result from the
fact that less then half of the participants responded
with an enhanced evoked γ peak in strong negativity
trials, while this effect was even reversed in some par-
ticipants.

enhanced eGBRs for fast responses are a result of increased phase-locking to the
stimulus, rather than stimulus related amplitude modulations.

We observed a slowly increasing potential that appeared 500 ms before stimulus
onset and was terminated by the participant’s response. On the one hand, this
negativity could reflect a contingent negative variation (CNV, Grey Walter, 1964).
Such a CNV would be expected to vary between blocks depending on the degree
of expectancy, i.e. the distribution of inter stimulus intervals (Trillenberg et al.,
2000). However, in our paradigm no significant differences were found between the
three blocks which differed in the distribution of inter stimulus intervals. On the
other hand, the negativity might also reflect a readiness potential (Freude et al.,
1989; Endo et al., 1999; Deecke et al., 1984). However, a readiness potential
should normally be observed preceding self paced movements (Brunia, 1999),
whereas in the current study no such movements were required. We demonstrated
that this negative potential differed between fast and slow responses, which is
in line with previous studies, that showed that reaction times are short if a
pronounced readiness potential can be observed (Freude et al., 1989). Deecke
et al. (1984) have argued that readiness potentials are recordable only before
voluntary movements (actions) but not or to a lesser degree before reactions
as in case of the reaction to a visual stimulus. In contrast, other authors also
described readiness potentials before reactions to a stimulus (Endo et al., 1999;
Leocani et al., 2001; Endl et al., 1999). Thus, based on our current data we cannot
discriminate between a CNV and a readiness potential that preceds the stimulus.
However, both types of slow potentials have been associated with anticipatory
motor preparation (Brunia, 1999).

We could extend the ERP findings by showing a relation between evoked
gamma oscillations and reaction time, indicating that fast reactions are asso-
ciated with highly phase-locked γ oscillations. In line with the ERP results this
effect was observed at central electrodes (Freude et al., 1989). However, in the
current study we found significant differences between fast and slow response
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trials also at posterior electrodes. Previous results indicating that eGBRs are
highly dependend on physical factors of the stimulus, linked eGBRs to very early
visual processing (Busch et al., 2004). This extends the findings obtained from
ERP analysis by showing that fast and slow response trials differ already in
earlier stages of visual processing. The current findings are in line with both find-
ings from the auditory modality (Yordanova et al., 2001; Jokeit & Makeig, 1994)
as well as models that link rapid feedforward processing of spike timings with
phase-locked gamma oscillations (Körner et al., 1999). Furthermore, GBRs seem
to be facilitated when participants are required to make a behavioral response
compared to when no responses are required (De Pascalis & Ray, 1998).

It might be argued that the observed effects are, although triggered by the
stimulus, mainly a manifestation of anticipation of the stimulus. Such an effect
should take place already before the stimulus would be applied. It has been re-
ported that such anticipation effects vary with the randomization procedure used
for inter stimulus intervals (Trillenberg et al., 2000). Although different random-
ization procedures were used for the different blocks of the experiment, no effect
of the randomization procedure was observed. This favors the interpretation that
the electrophysiological effects are related to facilitation of stimulus processing
rather than anticipation of stimulus timing in fast response trials.

Due to its similar frequency characteristics, electromyographic activity is usu-
ally a big problem when dealing with EEG γ activity (cf. Chapter 2). We visually
inspected every trial before analysis to make sure that there was no excessive high
frequency activity in the data. Still there might be muscular activity in the data,
with an amplitude that is too low to be detected visually. However, the γ activity
in the present study displays one important property that cannot be expected
for such low amplitude muscular activity: it is phase-locked to a visual stimulus
while showing virtually no power increase. Furthermore, low amplitude muscular
activity would be expected to have a constant tonus which would be subtracted
with the baseline. Therefore, we believe that the results described here can be
related to cerebral processing rather than muscular artifacts.

How do the slow negative potential and the findings about phase-locked gamma
oscillations fit together? While slow negative potentials like CNV or readiness
potential are usually associated with anticipatory motor activity (for review see
Brunia, 1999), eGBRs have been linked to early visual processing (Busch et al.,
2004). These two phenomena might be related in two different ways: First, the
slow negativity might be a prerequisite for an enhanced eGBR, which in turn
enables the participant to perform a rapid response. Second, the slow negativity
as well as the eGBR might independently facilitate rapid reactions. The fact,
that we did not find significant differences in eGBR for different magnitudes of
the slow negativity in single trials, is in line with the second alternative. However,
further research in this direction is needed to reveal the exact relations between
these two brain signals and behavioral performance. In such an experiment the
stimulus preceding ERP and poststimulus γ band activity could be dissociated
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by experimentally suppressing one of these phenomena independently by an ap-
propriate experimental manipulation.

We observed very fast reaction times in the current study. Compared to the
reaction times of 400-600 ms (e.g. Schmiedt et al., 2005; Busch et al., 2004) ob-
served in simple cognitive experiments, 200 ms might seem very short. It should
be kept in mind, that in the current experiment no stimulus discrimination was
necessary. Taking into account the high contrast and very low spatial frequency
(one big square, no texture) of the stimuli used in the present study, reaction
times around 200 ms fit well with the expected reaction times as estimated by
Plainis & Murray (2000).

Previous studies reported correlations of either γ peak latency (Haig et al.,
1999) or amplitude (Jokeit & Makeig, 1994) with reaction time. However, in both
studies effects were observed after the participant’s average response time. Fur-
thermore, these studies did not analyze phase-locking of the activity. Although
our data also include late, stimulus induced amplitude modulations, which also
vary with reaction time, we show that fast and slow response trials differ with
respect to their phase-locking even before amplitude modulations start to play a
role. Furthermore, the fact that the effect on total γ activity only becomes sig-
nificant after the participants already have responded, excludes the latter from
being a causal factor determining the reaction time differences. These results
might indicate that phase-locked GBRs play an important role in fast detection
of visual stimuli, whereas induced GBRs might be linked to further refinement
of this initial classification, as has been suggested by recent models of visual
processing (Körner et al., 1999; Herrmann et al., 2004).

The current results demonstrate that rapid visual processing in preparation for
a speeded response is (at least partly) dependent on stimulus locked activity in
the γ range. However, the actual behavior in a cognitive task is most probably
based on the interactions of different oscillatory processes. Indeed, movement
seems to be related to other, probably lower frequencies (Neuper & Pfurtscheller,
2001). Also the integration of different modalities to a coherent movement has
been associated with oscillatory activity at lower frequencies (Pineda, 2005). In
contrast, the observed effects in the γ range seem primarily related to visual
processing, albeit preparing the brain for speeded responses. It has been argued
recently that high frequency oscillations which are evoked in early sensory areas
need to be down-modulated to lower frequencies that then cover more distributed
areas of the brain (Chen & Herrmann, 2001; Olufsen et al., 2003). Thus, it
seems plausible to assume that early evoked γ activity might be necessary but
not sufficient for speeded responses. Later activity of lower frequency seems to
relay the results of the enhanced visual processing to motor areas. Indeed, lower
frequencies during a visual motor integration task have been reported to be highly
synchronized between visual and motor areas in cats (Roelfsema et al., 1997).

In conclusion we could show that fast reaction times are associated with en-
hanced phase-locking in the γ range. Evoked γ activity might thus be related to
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a fast mode of visual processing.
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5. Experiment III: Effects on γ
band activity depend on time
constraints of the behavioral task

The experiment described in this chapter have been published in the Journal
“PLoS one” (Fründ et al., 2008).

5.1. Introduction

In everyday life, actions need to be continuously adjusted to sensory input. This
requires fast processing of sensory stimuli in order to make them available for
motor reactions. At the same time, there are numerous situations in which more
detailed analyses are required to refine the perceptual outcome and adapt future
behavior (Rodemann & Körner, 2001). Are these functions governed by the same
neural system or do we use different systems for these tasks? Which physiological
processes might mediate these functions?

Speed of processing could be achieved by rapid feedforward categorization of
incoming stimuli (Körner et al., 1999; Thorpe et al., 2001, see also Chapter 1).
More detailed analyses seem to rely on feedback to refine these initial categories
(Hochstein & Ahissar, 2002; Körner et al., 1999; Lamme & Roelfsema, 2000).
Recently Herrmann et al. (2004) linked these two modes of processing to differ-
ent aspects of EEG γ band oscillations. Rapid stimulus categorization seems to
be accompanied by early phase-locked, so called evoked γ band responses (eG-
BRs, latency approximately 100 ms, gamma band: 30-90 Hz, see also Chapter 4).
Later refinement of these quickly established categories has been linked to late
induced γ band responses (iGBRs, latency approximately 300 ms). We know that
the response characteristics of evoked and induced GBRs differ considerably with
respect to several aspects of processing. Evoked GBRs are highly dependent on
the physical salience of the stimulus (Busch et al., 2004). Although it has been
argued that they were mainly a sensory phenomenon (Karakaş & Başar, 1998),
other reports point out that eGBRs are modulated by attention (Busch et al.,
2006; Tiitinen et al., 1993; Yordanova et al., 2001). Recent reports also suggest
a link between eGBRs and matches between incoming sensory information and
experience based object templates (Herrmann et al., 2004; Morup et al., 2006).
If a stimulus matches with such an object template, this was assumed to result
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in increased firing. The consequences of such a match are twofold; (i) informa-
tion is more efficiently relayed to later stages of processing, (ii) feedback signals
from the locus of the match are enhanced. Herrmann et al. (2004) argued that
especially these feedback signals could result in activity reverberating between
low level visual areas at γ frequencies. In contrast, iGBRs seem to be related
to the semantic content of the stimuli (Busch et al., 2006; Gruber & Müller,
2005; Tallon-Baudry et al., 1998). If a semantic representation is generated dur-
ing multiple presentations for a particular class of stimuli, this also leads to the
emergence of increasingly strong iGBRs (Gruber & Müller, 2005). Evoked and
induced GBRs also differ with respect to their dynamic properties. While eG-
BRs seem to be mainly a phenomenon of increased phase-locking to the stimulus
(Busch et al., 2006; Fründ et al., 2007), iGBRs occur as amplitude increases with
varying latency after the stimulus (Basar-Eroglu et al., 1996; Tallon-Baudry &
Bertrand, 1999). Since timing as manifested in phase-locking to the stimulus is
the first available information about a stimulus (Cariani, 2004), a fast processing
mechanism should employ timing information to discriminate different stimuli
(Thorpe et al., 2001). In conclusion, these findings are in line with the idea that
eGBRs are related to fast processing of upstream information, whereas iGBRs
are related to more elaborated processing based on the integration of upstream
and downstream information (Körner et al., 1999).

In this third experiment, we want to test the idea that (i) eGBRs are related
to rapid initial processing and (ii) that iGBRs are related to the subsequent re-
finement of the stimulus representation. If the functional relevance of eGBRs is
a rapid discrimination of stimuli, differences in eGBR between meaningful and
meaningless patterns should be particularly salient in a speeded response task
that can only be based on rapid stimulus discrimination. We expected that a
further refinement of the initial rough categorization would only be possible for
more complex stimuli. If such refinement processes were related to iGBRs, dif-
ferences in iGBR between meaningful and meaningless stimuli should be more
pronounced with the more complex stimuli. Participants were required to catego-
rize objects and object-like but meaningless patterns (non-objects) as meaningful
and meaningless. In the speeded response condition they were required to select
the correct button as fast as possible, whereas in the delayed response task, no
time pressure was imposed. These two tasks were performed on two different
sets of stimuli. One set of stimuli contained black and white line drawings of
objects and non-objects (stimulus Set A, see left column of Figure 5.1). Another
set of stimuli contained more natural, colored pictures of objects and non-objects
(stimulus Set B, see right column of Figure 5.1).
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Figure 5.1.:
Example stimuli employed in the cur-

rent experiment. Left column: an ex-
ample of an object and a non-object
stimulus from stimulus Set A. Right
column: an example of an object and a
non-object stimulus from stimulus Set
B is shown.
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5.2. Methods

5.2.1. Participants

Seventeen healthy participants (mean age: 23.76±2.34 years, range: 20 to 28
years, 5 m, 12 f) participated in the current study. Participants did not report
any current or past psychiatric or neurological disorders and received money
or course credits for their participation. The experimental procedure was in
accordance with the Declaration of Helsinki as well as with the guidelines of the
local ethics committee of the Otto-von-Guericke University of Magdeburg.

5.2.2. Stimuli and experimental procedure

During the experiment participants observed stimuli from two different sets of
stimuli. Both these sets encompassed pictures of semantically meaningful objects
and object-like patterns that did not correspond to a particular semantic content.
One set of stimuli consisted of schematic line drawings (Set A). The other set of
stimuli consisted of images that were colored and had a broad band spectrum of
spatial frequencies (Set B).

Stimuli in Set A were all high contrast schematic black on white drawings.
Non-objects were constructed by rearranging the lines from the objects. This
way, the number of black and white pixels and the number of black and white
edges was approximately the same for object and non-object stimuli. A detailed
description of the stimuli in Set A can be found elsewhere (Herrmann et al., 2004).
Examples for stimuli from stimulus Set A are shown on the left side of Figure 5.1.
Stimuli in Set B were derived from images of natural objects. To obtain a set
of non-object stimuli, these images were distorted. From this set of original and
distorted images, stimulus Set B was derived by averaging the amplitude spectra
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of spatial frequencies and differentiating the stimuli only by means of their phase
spectra. A detailed description of the stimuli in Set B can be found elsewhere
(Busch et al., 2006). Examples for stimuli from stimulus Set B are shown in the
right column of Figure 5.1.

Each set of stimuli was presented in two blocks of 200 stimuli each (100 objects
and 100 non-objects). Participants were instructed to press a button with one
hand to indicate that the current stimulus represented a meaningful object and
to press another button with the other hand to indicate that the current stimulus
represented a meaningless non-object. In one of the two blocks, participants were
to press the button as quickly as possible (speeded response). In the other block,
they were to press the button one second after the onset of the stimulus, after a
response screen had been presented (delayed response). Thus, each participant re-
sponded to a total of four blocks: one block with stimuli from Set A and speeded
response requirements, one block with stimuli from Set A and delayed response
requirements, one block with stimuli from Set B and speeded response require-
ments and one block with stimuli from Set B and delayed response requirements.
Each block was preceded by a practice block of 16 trials that was not analyzed.
During the practice block participants were able to become familiar with the
stimuli and the task demands of the new block. Block sequence and response
buttons were counterbalanced across participants.

Stimuli were presented on a 24” TFT-display at a distance of 122 cm. The
stimuli subtended a region of ≈ 8 to 10 degree visual angle which has been shown
to be suitable to evoke GBRs (Busch et al., 2004; Fründ et al., 2007). The stimuli
were presented in randomized order with interstimulus intervals drawn from a
uniform distribution between 1000 and 2000 ms. Stimulus duration was 1000 ms
in the speeded response task and 500 ms in the delayed response task. In the
delayed response blocks, there was a 500 ms delay after each stimulus before the
response screen was presented. This way, block duration was kept approximately
constant in order to avoid fatigue effects. Participants were instructed to fixate
a small black cross that was presented at the center of the presentation screen.

5.2.3. Data acquisition

Participants performed the experiment in an electrically shielded, sound-attenuat-
ed, and dimly lit cabin (IAC, Niederkrüchten, Germany). The stimulation mon-
itor was placed outside the cabin behind an electrically shielded window. All
devices inside the cabin were battery operated to avoid line frequency interfer-
ence (50 Hz in Germany). The electroencephalogram (EEG) was measured from
31 scalp locations according to an extended 10-20 system. The nose served as ref-
erence. In order to detect artifacts due to eye movements, an electrode placed be-
low the orbital rim recorded the electrooculogram (EOG). Activity was recorded
using sintered Ag/AgCl electrodes mounted in an elastic cap (Easycap, Falk Mi-
now, Munich, Germany). Electrode impedances were kept below 5 kΩ. The EEG
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was filtered between 0.02-250 Hz, digitized at a rate of 500 Hz, and stored on a
computer hard disk for off-line analysis. A fiber optic cable transferred the dig-
itized EEG to a computer outside of the recording cabin. A digital high pass
filter with a cutoff frequency of 0.5 Hz was applied offline in order to avoid slow
shifts in the baseline. If participants moved their eyes away from the fixation
cross, it was detected by measurements of EOG activity and the trial was dis-
carded. For this purpose, an automatic artifact detection was computed, which
excluded trials from further analysis if the standard deviation within a moving
200 ms window exceeded 40 µV in one channel. The automatic artifact rejection
was supplemented by visual inspection of every trial to ensure that only trials
without artifacts were included in the subsequent analysis.

5.2.4. Data analysis

For all trials, the percentage of correct responses was ascertained. In addition,
mean reaction times were determined for speeded response trials with respect to
stimulus onset. Mean reaction times were determined for delayed response trials
with respect to the onset of the response display (1000 ms after stimulus onset).

Event related potentials (ERPs) were computed as averages of all artifact-free
trials of a given condition. These curves were aligned by subtracting baseline
activity from the last 200 ms preceding stimulus onset. Grand average time
courses were computed by averaging ERP waveforms from all participants.

Gamma band responses were characterized by three parameters derived from
the EEG by means of the wavelet transform (Morlet wavelet with 12 cycles, time
frequency localization at 40 Hz: 2σt ≈ 50 ms, 2σf ≈ 13 Hz). (i) The evoked
activity, which is the amplitude of the wavelet transform of the ERP; (ii) the
total activity, which is the averaged absolute amplitude of the single trial wavelet
transforms; and (iii) the degree of phase-locking (PL) to the stimulus, quantified
by the phase locking factor from Chapter 2 Equation (2.12) on page 22. It has
been demonstrated that the exact frequency of the GBR varies in a very consis-
tent manner across participants (Fründ et al., 2007). To account for frequency
variations across participants, the time frequency planes from each participant
were averaged across all conditions. The response frequency was defined as the
frequency that displayed the strongest deviation from a baseline (200 to 100 ms
before stimulus onset). Two different response frequencies were ascertained: the
frequency of the eGBR, as local maximum of evoked activity in the time range
between 60 and 140 ms after stimulus onset and the frequency of the iGBR as
local maximum of total activity in the time range between 200 and 400 ms after
stimulus onset. In both cases, response frequencies were determined from the
frequency range between 30 and 90 Hz. Response frequencies of the eGBR were
between 32 and 66 Hz (mean 42 Hz) and response frequencies for iGBR were be-
tween 35 and 69 Hz (mean 50 Hz). Time courses of evoked and total activity as
well as PL were extracted at these two frequencies.
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To avoid loss of statistical power, electrodes were pooled into regions of inter-
est (ROI). Responses were evaluated from a posterior ROI (electrodes O1, O2,
P7, P3, Pz, P4 and P8) and from a central ROI (electrodes CP1, CP2, C3, Cz,
C4, FC1, FC2). These ROIs were chosen from those electrodes, that displayed a
strong signal change after stimulation. Repeated measurements analyses of vari-
ance were used to judge statistical significance of the factors TIME PRESSURE
(speeded vs. delayed response), OBJECTNESS (object vs. non-object), STIM-
ULUS COMPLEXITY (schematic line drawings from Set A vs. natural images
from Set B) and ROI. Separate analyses of variance were performed on the per-
centage of correct responses (without the factor ROI), on mean ERP amplitude
between 250 and 400 ms, and on early (mean amplitude between 60 and 140 ms)
and late (mean amplitude between 200 and 400 ms) GBR.

5.3. Results

5.3.1. Behavioral data

Mean reaction times were generally faster for the more detailed stimuli from Set
B than for the line drawings from stimulus Set A (F1,16 = 21.03, p < 0.001). In
addition, mean reaction times in the delayed condition (response time relative
to the response screen one second after stimulus onset) were on average 178 ms
shorter than in the speeded response condition (response time relative to stimulus
onset, F1,16 = 322.87, p < 10−11). In the speeded response task, participants
made significantly more errors compared to the delayed response task (F1,16 =
34.63, p < 10−4). Participants also made more errors with line drawings from
stimulus Set A than with colored stimuli from stimulus Set B (F1,16 = 23.06,
p < 0.001). This was particularly true in the delayed response task (STIMULUS
COMPLEXITY × TIME PRESSURE interaction: F1,16 = 12.14, p < 0.01). See
Figure 5.2 for a summary of the behavioral results.

5.3.2. Event related potentials

A late modulation of the event related potential (ERP) was observed between 250
and 400 ms (see Figure 5.3). The most prominent effect in this time window was
a strong modulation of the average amplitude in the time range 250 to 400 ms
when the stimuli were objects (F1,16 = 151.27, p < 10−8).

5.3.3. Early γ band response

Figure 5.4 displays time frequency representations of evoked oscillatory activity
in a single participant (top) and averages across all participants (middle). A clear
eGBR can be observed for the single participant which is smeared in the averaged
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Figure 5.2.:
Behavioral data in the current experiment.
Left display: percentages of correct re-
sponses. Right display: reaction times. Re-
sults from schematic line drawings (Set A)
are marked in grey. Results from colored,
more complex images (Set B) are marked
in white. Note that the accuracy benefit
from the additional information contained
in stimuli from Set B is much more pro-
nounced for delayed responses. Note also
that reaction times in the speeded task re-
fer to stimulus onset, while in the delayed
task reaction times refer to the onset of the
response screen which appeared 1000 ms af-
ter stimulus onset.
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activity due to considerable variance in the response frequencies between subjects.
In order to perform statistical analyses of this activity, time courses at the peak
frequency of the response were selected for further analysis.

These evoked GBRs are depicted in Figure 5.5. An eGBR could be observed in
all participants. The eGBR differed between object and non-object stimuli only
if a speeded response was required (TIME PRESSURE × OBJECTNESS inter-
action: F1,16 = 5.00, p < 0.05). To differentiate between stimulus related changes
in oscillatory amplitude and oscillatory phase, we calculated the average analytic
amplitude across all trials (total oscillatory activity) and the phase locking fac-
tor (Tallon-Baudry et al., 1996b). The effect on eGBR was not accompanied by
any recognition related effect of total oscillatory activity (no significant effect in
ANOVA, see Figure 5.7, although this displays results with frequencies adapted to
the late response). Similar to evoked activity, phase locking of the early GBR to
the stimulus differentiated object and non-object stimuli in the speeded response
task (TIME PRESSURE × OBJECTNESS interaction: F1,16 = 5.08, p < 0.05,
see Figure 5.6). Phase locking was also significantly enhanced at posterior elec-
trodes (main effect of ROI: F1,16 = 33.08, p < 10−4) and for stimulus Set A (main
effect of STIMULUS COMPLEXITY: F1,16 = 7.50, p < 0.05). In Figure 5.5 there
seems to be a difference in prestimulus activity between object and non-object
stimuli for stimulus Set B in the speeded response task. However, this difference
was not statistically significant (t16 < 1.24, p > 0.2).
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Figure 5.3.:
Event related potentials. Left: ERP-

waveform at Pz for object (red) and
non-object (blue) stimuli. Right: to-
pographic map of averaged activity
from all conditions between 250 and
400 ms after stimulus onset. Note that
the clear late negative deflection is ob-
served for object stimuli only. The as-
terisk indicates a significant difference
that is described in the text.

5.3.4. Late γ band response

At the bottom of Figure 5.4, a late enhancement of total gamma band activity
can be observed. The late γ band response was also characterized by a clear
peak in the time courses of total γ activity (see Figure 5.7). This peak had
a very broad spatial distribution and was more pronounced for schematic line
drawings from stimulus Set A (main effect STIMULUS COMPLEXITY: F1,16 =
4.80, p < 0.05). However, recognition related modulations of late total γ activity
were only observed for the more natural images from stimulus Set B (STIMULUS
COMPLEXITY × OBJECTNESS interaction: F1,16 = 5.11, p < 0.05).

5.4. Discussion

In the current report, we investigated how different types of γ band responses
(GBRs) can be modulated depending on task requirements and stimulus com-
plexity. Early evoked GBRs differentiated between objects and non-objects, irre-
spective of stimulus complexity, only when participants had to perform speeded
discriminations. Later induced GBRs differentiated between objects and non-
objects irrespective of response demands, only for complex stimulus material.

Previous studies related eGBRs to a fast processing mode based on tempo-
ral information (Körner et al., 1999, see also Chapter 4) which allows stimulus
classifications within 100-150 ms after stimulus onset (Thorpe et al., 1996). The
current results confirm this hypothesis. Early differences between meaningful and
meaningless stimuli become manifest in the temporal structure, i.e. the phase-
locking of the eGBRs. The results also indicate that this fast mode seems to be
used predominantly in those cases in which a speeded response was required. In
situations that do not require a speeded response, additional information from
a refinement system (presumable expressed in the induced GBR) can further
shape the response. The error rates in the current experiment are in line with
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Figure 5.4.:
Time frequency representations of os-
cillatory activity. Top: evoked activ-
ity from a single representative partic-
ipant. Middle: evoked activity aver-
aged across all participants. Bottom:
total activity averaged across all par-
ticipants. Note how averaging smeares
the relatively focal activity of single
participants. These data have been
obtained by averaging time frequency
planes from the posterior ROI.
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this interpretation. Although a difference in the physiological response can be ob-
served, the additional information contained in the more natural stimuli cannot
completely be utilized in the speeded response task.

Reactions to the more natural stimuli were generally faster than those to the
line drawings in line with previous results (Rossion & Pourtois, 2004). This might
indicate that participants benefit from the additional information contained in
the natural stimuli. In the speeded response condition, participants had to first
perceive the stimulus and use this information to immediately initiate a response.
In contrast, in the delayed condition, participants could perceive the stimulus and
prepare their response before the response screen appeared. If we assume that
response execution takes approximately the same time in the speeded task and
in the delayed task, the difference in reaction time gives a coarse estimate of the
time required to identify the stimulus in the speeded response task. This time,
which is ≈ 180 ms, is clearly below the latency of the late γ band response, yet
still includes the early gamma band response. Thus, we infer that responses in
the speeded response condition are based on the evoked GBR, whereas responses
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Figure 5.5.:
Early evoked γ band response to

object (red) and non-object (blue)
stimuli. Data from stimulus Set A
(schematic black and white line draw-
ings) are shown in the left column;
data from stimulus Set B (natural col-
ored images) are shown in the right col-
umn. The top row shows topographic
maps of the averaged activity from all
conditions between 60 and 140 ms. In
the second row, eGBRs for the speeded
response task are shown. In the third
row, eGBRs for the delayed response
task are shown. All time course data
are taken from Pz. Note that eGBRs
to object stimuli are enhanced only if
participants need to perform a speeded
response. Response frequencies have
been determined from the time range
60-140 ms. Asterisks mark significant
differences that are described in the
text, n.s. denotes nonsignificant differ-
ences.

in the delayed response condition, might be initiated only after information from
both, early evoked and late total GBR has been integrated. Participants seemed
to benefit from this additional information only for the more natural stimuli.

The late γ band amplitude modulation is comparable with respect to latency,
frequency and recognition modulation to what other authors have termed induced
GBR (Gruber & Müller, 2005; Busch et al., 2006; Tallon-Baudry et al., 1998).
This seems to indicate that iGBRs only discriminate semantically meaningful
objects from object-like but meaningless patterns if the stimuli provide a sufficient
amount of detail. Interestingly, iGBRs have also been related to learning new
stimuli (Gruber & Müller, 2006; Axmacher et al., 2006). This is in line with the
interpretation that iGBRs relate to a refinement system (Körner et al., 1999), the
output of which could be used to modify future behavior (Rodemann & Körner,
2001). Here, we propose that this refinement system is only activated if the
stimuli are sufficiently complex to support a further refinement. An example for
stimuli that are not sufficiently complex for further refinement seems to be given
by the schematic line drawings.
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Figure 5.6.:
Phase locking (PL) of the early γ

band response to object (red) and non-
object (blue) stimuli. Data from stim-
ulus Set A (schematic black and white
line drawings) are shown in the left col-
umn. Data from stimulus Set B (nat-
ural colored images) are shown in the
right column. The top row shows to-
pographic maps of the averaged phase
locking from all conditions between 60
and 140 ms. In the second row, PL
for the speeded response task is shown.
In the third row, PL for the delayed re-
sponse task is shown. All time course
data are taken from Pz. Note that PL
after presentation of object stimuli is
enhanced only if participants need to
perform a speeded response. Response
frequencies have been determined from
the time range 60 to 140 ms after stim-
ulus onset. Asterisks mark significant
differences that are described in the
text, n.s. denotes nonsignificant differ-
ences.
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In the speeded response condition, participants seemed to base their responses
on coarse and global categorizations of the stimulus. This might indicate that the
initiation of a button press can be based on such global categorizations even before
all the details of a stimulus have been processed. A similar account comes from
the reverse hierarchy theory (Ahissar & Hochstein, 2004; Hochstein & Ahissar,
2002). This theory states that incoming stimuli are rapidly relayed to higher
visual areas. Conscious access to incoming stimuli then proceeds from global
categorizations to successive levels of detail. The current findings link these two
processing modes within the same system to evoked and induced GBRs (Körner
et al., 1999; Herrmann et al., 2004). In an initial, fast but coarse, classification
step, information is rapidly relayed to higher perceptual areas. This classification
depends on the temporal fine structure of the spike wave triggered by the stimulus
(Körner et al., 1999). It has been suggested that such rapid processing could be
mediated by the dorsal visual pathway (Bar, 2003; Bar et al., 2006). Different
authors emphasized that initial, fast but coarse classifications should be based on
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feedforward processing (Lamme & Roelfsema, 2000; Hochstein & Ahissar, 2002).
From a modeling study, Rodemann & Körner (2003) inferred that the reliability
of classifications by such a system strongly depends on the presence of evoked γ
oscillations. After this initial classification, feedback connections ensure that the
information reverberates within the visual system (Körner et al., 1999; Lamme
& Roelfsema, 2000). This leads to a refinement of the percept (Rodemann &
Körner, 2001) and induced γ band oscillations (Körner et al., 1999; Engel et al.,
2001; Fründ & Herrmann, 2007). These oscillations could, in turn, be used to
adapt future behavior based on learning (Axmacher et al., 2006; Körding & König,
2000). The current findings demonstrate that these two modes can be modulated
separately by fairly general experimental manipulations.

Previous reports that investigated recognition related GBRs either found effects
on evoked (Herrmann et al., 2004; Morup et al., 2006) or on induced GBRs
(Gruber & Müller, 2005; Busch et al., 2006), but not on both at the same time.
The current results resolve this issue. The stimuli used by those authors that
reported effects on eGBRs (Herrmann et al., 2004; Morup et al., 2006), were
probably too simple to elicit significant effects on later iGBRs. Note that these
stimuli are the same as those used in the present report in stimulus Set A. There
seem to be different reasons why authors found recognition effects on iGBRs but
not on eGBRs. Busch et al. (2006) employed the same stimuli that we used in
stimulus Set B in a delayed response task and reported effects on iGBRs, but not
on eGBRs. It seems that the absence of a recognition effect on eGBRs in their
data can be explained by the lack of time pressure in their experiment. In the
experiment by Gruber & Müller (2005), no response delay was imposed. However,
in this experiment, stimuli were reported to be relatively small (≈ 4.5 × 5.2◦).
Recent findings suggest that eGBRs are highly dependent on stimulus parameters,
in particular size (Busch et al., 2004; Fründ et al., 2007). Furthermore, the size
of a stimulus not only seems to be a prerequisite for reliably measuring eGBRs
but also for detecting top-down effects on eGBRs (Busch et al., 2006). Thus, it
might be expected, that the stimuli employed by Gruber & Müller (2005) were
not large enough to evoke a detectable GBR effect.

In conclusion, we were able to demonstrate that two different visual processing
modes can be discriminated. One of these streams mediates rapid, but less accu-
rate, categorization processes and seems to be based mainly on temporal relations
to the stimulus as quantified by evoked γ band responses. The other stream is
slower, but more accurate, and seems to be based on temporal relations between
neural groups as quantified by induced γ band responses.
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Figure 5.7.:
Total γ band activity after presen-

tation of object (red) and non-object
(blue) stimuli. Data from stimulus
Set A (schematic black and white line
drawings) are shown in the left column.
Data from stimulus Set B (natural col-
ored images) are shown in the right
column. The top row displays topo-
graphic maps of the averaged activity
from all conditions between 200 and
400 ms. In the second row, total γ
band activity in the speeded response
task is shown. In the third row, total γ
band activity in the delayed response
task is shown. All time course data
are taken from Pz. Note that total γ
band activity responds in a highly stim-
ulus specific way: Although strongest
responses are observed for stimulus Set
A, differences between object and non-
object stimuli can only be found for
the more natural stimuli in stimulus
Set B. Also note that there is no early
response at all. Response frequencies
have been determined from the time
range 200 to 400 ms after stimulus on-
set. Asterisks mark significant differ-
ences that are described in the text;
n.s. denotes nonsignificant differences.

−0.1

0.1

0.2

0.3

0.4

0.5

−0.2 0.2 0.4
−0.1

0.1

0.2

0.3

0.4

0.5

s

µV

−0.1

0.1

0.2

0.3

0.4

0.5

−0.2 0.2 0.4
−0.1

0.1

0.2

0.3

0.4

0.5

s

µV

−0.1

0.1

0.2

0.3

0.4

0.5

−0.2 0.2 0.4
−0.1

0.1

0.2

0.3

0.4

0.5

s

µV

−0.1

0.1

0.2

0.3

0.4

0.5

−0.2 0.2 0.4
−0.1

0.1

0.2

0.3

0.4

0.5

s

µV

+0.0 +0.4µV

n.s.

n.s.

*

*

Total activity
Stimulus set B

objects non−objects

Stimulus set A

d
e

la
y
e

d
 re

s
p

o
n

s
e

s
p

e
e

d
e

d
 re

s
p

o
n

s
e

63



Chapter 5. Experiment III: Effects on γ band activity depend on time
constraints of the behavioral task

64



6. General Discussion

In Chapters 3, 4 and 5, we presented data, that indicated a relation between
evoked γ band responses and rapid motor reactions. Based on the considerations
from Chapter 1, these data are in line with the interpretation of oscillatory γ
activity as a control signal for rapid neural information processing. However,
some questions remain. In the following sections we will address some of these
points. Although in most cases there are no conclusive answers, we believe that
there are at least data that render some interpretations more plausible than
others.

6.1. The origin of evoked γ oscillations

Where do evoked γ band responses come from? Which neural structures are
involved in their generation? How do different neural mechanisms interact, to
establish a temporally stable framework that reveals itself on the scalp in the
form of evoked γ band responses? The data reviewed in this section are meant
to give a rough idea of the origins of γ band activity in general and particularly
evoked γ band responses. However, this review is not meant to be exhaustive.
Recent reviews about these topics can be found elsewhere (e.g. Traub et al., 1998;
Whittington et al., 2000 for cellular mechanisms and Singer & Gray, 1995; Engel
et al., 2001; Llinás et al., 1998; Herrmann et al., 2004 for large scale oscillations).

6.1.1. Cellular origins of γ oscillations

In a series of studies, Traub et al. (1998) and Whittington et al. (2000) demon-
strated that networks that include mutually interconnected inhibitory interneu-
rons synchronize at high frequencies, mainly in the γ range. They studied two
extreme cases that are replicated in Figure 6.1. If a network that does only in-
clude inhibitory connections is exposed to a tonic depolarizing current, the cells
synchronize at a frequency in the γ range (see Figure 6.1, (b)). This cannot be
observed if there are no connections at all as in Figure 6.1 (a). The extreme case
of γ oscillations in purely inhibitory networks was termed interneural network γ
(ING, e.g. Traub et al., 1998). In Figure 6.1 (c) a network is depicted that in-
cludes both, excitatory and inhibitory cells. If the excitatory neurons are strongly
depolarized (e.g. by tetanic stimulation), they drive the inhibitory cells and the
network synchronizes at a frequency in the γ range (Whittington et al., 2000).
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Figure 6.1.:
Different cellular origins of network γ oscillations. Spike rastergrams and sketches
of the network connectivity for computational models of (a) fifty pyramidal cells
and fifty interneurons without mutual connections (b) one hundred mutually
connected interneurons generating interneural network γ (c) fifty pyramidal cells
and fifty interneurons with mutual connections generating pyramidal interneuron
network γ (d) 500 cells organized in five pools of fifty pyramidal cells and fifty
interneurons each. Neighbouring pools are mutually connected. Note that in
this case excitatory pyramidal cells do not fire at all cycles but still make up a γ
oscillation in the summed activity. Spike rastergrams have the time on the x-axis
and the index of the neuron on the y-axis. If a particular cells fires a spike, a
small black square is drawn at that position. All cells have been modeled using
the generalized integrate and fire neuron proposed by Izhikevich (2003).
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Figure 6.2.:
Raster plot showing a phase reset induced by a brief, strong excitatory pulse

applied to the excitatory pyramidal cells in a PING network. Pyramidal (ex-
citatory) cells are marked in red, (inhibitory) interneurons are marked in blue.
Although a marked change in the firing dynamics can be observed around the
time of the pulse, only a weak change of the phase of the ongoing oscillation is
induced.

This extreme case of γ oscillations were the inhibitory cells are driven by the
excitatory pyramidal neurons is termed pyramidal interneuron network γ (PING,
e.g. Traub et al., 1998). In normal neural tissue a situation that is somewhere be-
tween these two extremes will occur (Whittington et al., 2000). Such a situation
is depicted in Figure 6.1 (d). Five pools of neurons have been arranged in a line
to simulate a simple spatial configuration. It can be observed that inhibitory cells
fire in virtually every cycle of the oscillations. In contrast, excitatory cells only
fire at a subset of cycles. However, if an excitatory cell fires, is fires in synchrony
with the inhibitory cells. This results in a synchronized oscillatory signal in the
sum of all cells.

The abovementioned findings do not explain stimulus related resetting of on-
going oscillations. In a simulation study, Kupper et al. (2005) investigated three
different mechanisms of resetting a neural network. In the first case they did not
perform any resetting at all – one stimulus was simply replaced by another one.
This led to increasingly scattered oscillations. In contrast, short suppression of
the input between two stimuli as well as brief inhibitory pulses induced resets of
the oscillations while conserving the oscillatory nature of the signal. It is well
known, that brief excitatory currents can induce phase resets in Hodgkin-Huxley
type neurons (e.g. Wilson, 1999, p. 152, see Tateno & Robinson, 2007 for re-
lated experimental data). Figure 6.2 illustrates a reset induced by such a brief
excitatory current applied to the pyramidal cells in a PING network.
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6.1.2. Cerebral systems showing γ oscillations

The data from Traub et al. (1998) and Whittington et al. (2000) are aimed to
describe the emergence of γ oscillations in hippocampal and neocortical tissue.
Measurements of γ oscillations have been obtained from a wide range of cortical
and subcortical structures (Basar et al., 2001). Two different mechanisms for
cortical (and thus potentially scalp measurable) γ oscillations have been consid-
ered. (i) The cortex itself could spontaneously generate γ oscillations (Freeman
& Rogers, 2002; Singer & Gray, 1995). (ii) There could be a subcortical pace-
maker (e.g. the thalamus), that drives the cortex at a frequency in the γ band
which in turn leads to γ oscillations that can be measured on the scalp (Llinás
et al., 1998). Thus, synchronous oscillations can also be the consequence of a com-
mon input (Whittington et al., 2000). The most important candidate for such
an input signal is the thalamus. Indeed, thalamocortical connections have been
associated with oscillatory activity in the γ band (Llinas et al., 2005; Steriade
et al., 1996). In particular, it has been suggested that the intralaminar thalamic
nuclei might drive large areas of the cortex with γ oscillations (Llinás & Ribary,
1993; Steriade et al., 1997). These nuclei constitute unspecific excitatory input to
the superficial cortical layers. Furthermore, they form a PING-capable network
(see Section 6.1.1) with the thalamic reticular nuclei (Steriade et al., 1997). It
has been suggested, that activation of the intralaminar nuclei by sensory input re-
layed via the reticular formation might reset γ oscillations observed in the cortex
(Körner et al., 1999).

6.2. Visual information processing with speed
constraints

Different accounts have demonstrated that even complex visual tasks can be ac-
complished in less than 200 ms (Thorpe et al., 1996). Visual information can be
utilized to guide saccade behavior after only 120 ms (Kirchner & Thorpe, 2006).
Is this the normal speed of visual processing? Do we actually deal with the
same type of visual processing under such “ultra-fast” response conditions? The
results from Chapter 5 seem to suggest that this was not the case. Depending
on temporal constraints imposed on the behavioral response, the evoked GBR is
differently modulated by the perceptual task. In Section 1.2 on page 4, we intro-
duced large scale brain oscillations as control signals for a neural timing based
code. Such codes are frequently discussed in the context of feedforward process-
ing (see Thorpe et al., 2001; VanRullen & Thorpe, 2002, for reviews). However,
it is now widely agreed, that feedback plays a pivotal role in neural processing
(e.g. Lamme & Roelfsema, 2000; Bar, 2004; Bullier, 2001; Sillito et al., 2006). If
such a feedback signal would be manifest in sufficiently long lasting postsynaptic
potentials, it could survive multiple processing frames, i.e. γ cycles, by modu-
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lating the input sensitivity of specific cells (Körner et al., 1999; Crick & Koch,
1998). Such long lasting excitatory postsynaptic potentials have been described
in superficial cortical layers (Cauller & Connors, 1994), where most of the cortic-
ocortical afferents terminate (Abeles, 1991). Such feedback could disambiguate
incoming sensory information and thereby result in successive refinement of the
percept (Rodemann & Körner, 2001; Körner et al., 1999).

As has been pointed out by different authors (Thorpe et al., 2001; Rolls et al.,
2006), rate coding and spike latency coding are not mutually exclusive. A neuron
with a higher firing rate is more likely to fire one of the first spikes of a popula-
tion response. It might thus be, that only the first categorization of a stimulus
is accomplished on the basis of a latency code, while later refinement processes
utilize firing rate as the basic coding variable. Rolls et al. (2006) demonstrated
that much of the information about a presented stimulus is already contained
in the number of spikes each neuron fires in a short (20 ms) time window after
response onset. Unfortunately, they only measured responses from inferior tem-
poral cortex and did not contrast their results to a real temporal code based on
synchrony or latency/phase. It is therefore not possible to infer from their data
wether coding in the visual system is based on firing rates throughout the visual
hierarchy, or whether the high information content carried by the firing rates is a
property that emerges after the input has been distributed throughout the whole
visual system (by means of either a latency or a rate code). Psychological states
like perceptions, thoughts or emotions are often described as attractors of cortical
dynamics (Freeman, 2003; Jirsa & Haken, 1997; Rolls et al., 1997). Although the
properties and the emergence of such attractors have been described in consider-
able detail (Kruse et al., 1986; Freeman, 2004b,a; Rolls et al., 1997; Ohl et al.,
2001), only few authors have described rapid transitions between such states
(Freeman & Rogers, 2002). Interestingly Freeman & Rogers (2002) observed that
spontaneous transitions between such attractors were associated with large scale,
rapid, and coordinated phase slips of ongoing γ band oscillations. If such phase
slips could be triggered by a stimulus, they might be measured on the scalp as
evoked γ band responses.

Thus, the data presented in the current report do not conclusively support
either spike based coding (Thorpe et al., 2001; Körner et al., 1999) or distributed
rate coding (Rolls et al., 1997; Freeman, 2003). These two positions are, however,
not mutually exclusive. While the individual neural spikes make up a distributed
firing rate, it is by means of the dense interconnections between neurons, that this
population firing rate determines the timing of spikes from individual neurons (e.g.
Haken, 1983, S. 219). It might however be, that the information contained in the
spike timings is optimal for different aspects of behaviour than is the information
contained in spike rates (Fründ & Herrmann, 2007). The data presented in
this report about phase-locking of evoked GBRs seem to indicate that temporal
reorganization of spontaneous brain activity is crucial for linking perceptual and
behavioral processing.
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Okt - Nov 2003 Praktikum am Institut für Biophysik an der Dokuz
Eylül Universität, Izmir (Prof. Başar)
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Meinen Eltern möchte ich danken für eine gute Mischung aus kritischen Fragen
und persönlicher Wertschätzung und Geborgenheit.
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