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To warn of an evil is justified only if, along 

with the warning, there is a way of escape. 
Cicero 
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Abstract  

In many chemical and processing industries and chemical manufacture, particularly in the 

fine, pharmaceutical and speciality chemical industries, there is an increasing trend towards 

the production of very high value products, such as polymers, pharmaceuticals, and speciality 

chemicals, in batch reactors. As a result, there is an increasing dependence in the sector on the 

existence of smaller, more flexible enterprises, especially in Europe, capable of providing 

specialised skills and products in niche markets.  

The reliability of a chemical batch reactor depends on the capability of the control/supervision 

system to monitor its state and, in time, to identify its operational functions or failure modes. 

It is estimated that around 20% of the process industries carry out exothermic reactions that 

require detailed investigations of the associated reactive hazards and the design and 

installation of safety systems.  

The control systems are of great importance. They have to ensure that the desired operating 

conditions can be maintained as closely as possible during the course of a batch operation. 

However, achieving such optimal conditions and control of batch processes is still quite 

difficult and provides challenging and interesting problems. The most important of these are 

due to the inherent complexity of the batch reactors, characterized by many parameters, such 

as highly nonlinear behaviour resulting from the dependence of reaction rates on 

concentrations and temperature and so forth.  

Specifically for chemical batch reactors carrying out exothermic reactions, the major problem 

is the loss of temperature control. In this situation, when the rate of heat generation of the 

chemical reaction exceeds the rate of heat removal by the cooling system, there is a positive 

feedback mechanism, since the temperature of the reaction mass will rise, thereby increasing 

in turn the rate of heat generation if the temperature dependence of the reaction can be 

described by Arrhenius’ law. In this situation, if no countermeasures are taken, a runaway 

may occur.  

The consequence of such a reaction is often a loss of process containment. Although the 

safety records of the process industries have improved in recent years, fires, explosions and 

other incidents due to runaway reactions still occur. In view of the likely reasons for these 

occurrences, such as overfilling, pipe blockage, excessive initial heating, loss of power, 

coolant or stirring, it is clear that there is a vital need for reliable safety systems.  
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Therefore, batch reactors used for exothermal reactions are, amongst other safety features, 

equipped with trip systems. These may be based on the fast injection of a reaction inhibitor, 

the quick addition of a compatible diluter or fast dumping of the reactor contents into a 

knock-out tank. The measures mentioned are active, namely they require a number of 

components (such as sensors, pumps, valves) to function in order to be successful. In order to 

reach a high availability, a redundant design is often used. Additional gains in availability by 

further increasing the degree of redundancy are, however, limited by the possible occurrence 

of common cause failures. Nevertheless, the availability of the trip function can be improved 

if a passive trip system is used instead.  

In general, passive means reducing or eliminating hazards by processes and equipment 

features which work without active components and energy supply from outside. The working 

principle of the passive trip system is to utilize the natural driving force of the pressure built 

up during a runaway reaction, either by gas production, evaporation or both. The passive trip 

system prevents damage simply by being present. There is no need for any additional action 

from outside.  

The goal of the present work is to show the system’s feasibility, as well as to design and 

develop the passive trip system for batch chemical reactors and to optimize its key 

parameters. The system to stop runaway reactions was mounted on a reactor and theoretically 

modelled with the computer programs. The representative reactions were identified and 

carried out. In every case, there was no operational cooling and hence the reaction 

temperature increased. The ensuing runaway reaction was in each case successfully stopped 

by the passive trip system. An experimental and theoretical proof of the success criterion of 

the passive trip system was provided.  
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Zusammenfassung  

In vielen Betrieben der Chemie und Verfahrenstechnik, besonders in der Feinchemie und 

Arzneimittelherstellung, gibt es eine zunehmende Tendenz zur Herstellung von Produkten mit 

einer hohen Wertschöpfung, wie Polymere, Arzneimittel und Spezialchemikalien in Batch-

Reaktoren. Infolgedessen gibt es besonders in Europa auf diesem Sektor eine zunehmende 

Abhängigkeit von der Existenz kleiner, flexibler Unternehmen, die fähig sind, spezielles 

Wissen und Produkte in Nischenmärkten zur Verfügung zu stellen.  

Die Zuverlässigkeit eines chemischen Batch-Reaktors hängt von der Fähigkeit des Kontroll- 

oder Überwachungssystems ab, dessen Zustand zu überwachen und rechtzeitig 

Fehlerzustände zu identifizieren. Schätzungsweise 20% der von der verarbeitenden Industrie 

durchgeführten exothermen Reaktionen erfordern ausführliche Untersuchungen zu den aus 

der Reaktion resultierenden Gefahren und zur Auslegung und Installation von 

Sicherheitssystemen erfordern.  

Die Regelsysteme sind von besonderer Bedeutung. Sie müssen sicherstellen, dass die 

gewünschten Betriebsbedingungen während des Batch-Prozesses so gut wie möglich 

eingehalten werden. Jedoch ist das Erzielen solcher optimalen Bedingungen und die Kontrolle 

von Batch-Prozessen schwierig und bietet herausfordernde und interessante 

Problemstellungen. Die Wichtigsten beruhen auf der inhärenten Komplexität der Batch-

Reaktoren, die charakterisiert sind durch ausgeprägtes nichtlineares Verhalten, das unter 

anderem von der Abhängigkeit der Reaktionsraten von den Konzentrationen und der 

Temperatur herrührt.  

Das Hauptproblem chemischer Batch-Reaktoren, in denen die exotherme Reaktionen 

ablaufen, ist der Ausfall der Temperaturregelung. In dieser Situation, in der die 

Wärmeproduktion größer wird als die Wärmeabfuhr durch das Kühlsystem, kommt es zu 

einer positiven Rückkopplung, wenn die Temperaturabhängigkeit der 

Reaktionsgeschwindigkeit durch das Arrhenius-Gesetz beschrieben werden kann. Dabei steigt 

die Temperatur des Reaktorinhalts, was wiederum zu einem Ansteigen der 

Wärmeproduktionsrate führt und schließlich zum Durchgehen der Reaktion führt, wenn keine 

Gegenmaßnahmen getroffen werden.  

Die Folge solch einer durchgehenden Reaktion ist häufig ein Verlust der 

Prozessumschließung. Obwohl sich die Sicherheitsmaßnahmen der Prozess-Industrien in den 
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letzten Jahren verbessert haben, kommen Brände, Explosionen und andere Ereignisse 

aufgrund durchgehender Reaktionen immer noch vor. Im Hinblick auf die Gründe für diese 

Vorfälle, wie Überfüllung, Rohrleitungs-Blockade, Ausfall der Versorgungsenergie, des 

Rührers oder Verlust des Kühlmittels, ist es klar, dass es ein dringendes Bedürfnis nach 

zuverlässigen Sicherheitssystemen gibt.  

Deshalb sind Batch-Reaktoren, die für exotherme Reaktionen verwendete werden, neben 

anderen Sicherheitsmaßnahmen, mit Abschaltsystemen ausgestattet. Diese können auf der 

schnellen Einspritzung eines Reaktionshemmers, dem schnellen Einbringen eines geeigneten 

Verdünnungsmittels oder dem schnellen Ablassen des Reaktorinhalts in einen Notablasstank 

beruhen. Die erwähnten Maßnahmen sind alle aktiv, denn sie erfordern, um erfolgreich zu 

sein, dass mehrere Komponenten (wie Sensoren, Pumpen, Ventile) funktionieren. Ein 

zusätzlicher Gewinn an Verfügbarkeit durch einen höheren Redundanzgrad wird durch das 

Wirken von Fehlern aus gemeinsamer Ursache eingeschränkt. Trotzdem lässt sich die 

Verfügbarkeit von Abschaltsystemen durch den Einsatz von passiven Systemen verbessern.  

Im Allgemeinen bedeutet passiv, Reduktion oder Beseitigung von Gefahren durch 

Eigenschaften von Prozessen und Apparaturen, die ohne aktive Bestandteile und 

Energieversorgung von Außen arbeiten. Das Arbeitsprinzip des passiven Abschaltsystems 

beruht auf der natürlichen Triebkraft des Drucks, der während des Durchgehens der Reaktion 

durch Gasproduktion, Verdampfung oder beides entsteht. Passive Abschaltsysteme 

verhindern Schäden durch ihr bloßes Vorhandensein. Es ist kein Eingreifen von Außen 

notwendig.  

Ziele der vorliegenden Arbeit sind, die Machbarkeit des Systems nachzuweisen, sowie ein 

passives Abschaltsystem für chemische Batch-Reaktoren zu entwerfen, zu entwickeln und 

Schlüsselparameter zu optimieren. Das Abschaltsystem zum Aufhalten durchgehender 

Reaktionen wurde an einem Laborreaktor montiert und theoretisch mit Computerprogrammen 

modelliert. Repräsentative Reaktionen wurden identifiziert und durchgeführt. Es gab 

grundsätzlich keine betriebliche Kühlung, und folglich nahm die Reaktionstemperatur zu. Das 

daraufhin einsetzende Durchgehen der Reaktion wurde in allen Fällen durch das passive 

Abschaltsystem gestoppt. Ein experimenteller und theoretischer Nachweis der Wirksamkeit 

des passiven Abschaltsystems wird erbracht.  
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1 
Introduction  
 

 

1.1 Background  

The chemical industry in Europe is increasingly expanding into the pharmaceuticals and 

speciality chemicals sectors [1, 2]. These types of production are characterized by the use of 

batch reactors and, in many cases, exothermal reactions. The design of safe and reliable batch 

reactor safety systems is a big challenge, especially due to the inherent complexity of some of 

the reactions and the possibility of a runaway reaction.  

How do we prevent undesirable events like thermal runaway? How do we prevent such 

incidents like Seveso and Bhopal? How do we make safety systems more efficient and 

reliable? These are only some of the questions which safety engineers have to answer when 

considering batch reactor safety. The fact is that the major causes of accidents in the chemical 

industry are exothermic runaway reactions (35% according to the U.S.C.S.B. report [3] and 

26% according to Balasubramanian [4]). The control of these reactions is an important issue 

for chemical process safety. The consequence of such a reaction is often a loss of the process 

containment. This can lead to hazardous situations: fires, explosions, missiles or toxic hazards 

and can cause the death of both employees and the population at large, in addition to harm to 

the environment and loss of property (c.f. [5, 6, 7], Appendix A).  

In view of the likely reasons for these reactions, such as loss of cooling capacity or too high 

temperature of the coolant, loss of stirring, reactants accumulation or external heating, there is 

a need for a reliable safety system. Conventional systems for dealing with a possible runaway 

are, for example, the injection of an inhibitor, the fast dumping of the reactor contents into a 

knock-out tank or the reduction of the concentration by introducing an inert gas. The 

measures mentioned are active in that they require a number of components (such as sensors, 

pumps, valves and the corresponding energy supplies) to function for being successful. In 
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order to reach a high availability a redundant design is often used. Additional gains in 

availability by further increasing the degree of redundancy are, however, limited by the 

possible occurrence of common cause failures [8]. Furthermore, the resulting increase in 

complexity makes it more difficult to discover possible design flaws and maintenance errors. 

However, the availability of the trip function may be improved if a passive trip system i.e. a 

system which works without energy supply from outside is used instead (c.f. Chapter 3, 

Chapter 4). Therefore, the design, conditions of operation and availabilities of such passive 

trip system are investigated in this work.  
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1.2 Runaway reactions in hindsight  

Many chemical reactions within the chemical process industries are exothermic. The heat 

which is released during such reactions is usually controlled by equipping the reactor with 

cooling jackets or cooling coils. In some cases, the rate of heat generation can exceed the rate 

of heat removal and an uncontrolled runaway reaction may occur. Runaway reactions 

continue to be a major problem in the process industry. A recent study showed that 26.5% of 

the major chemical plants accidents are due to runaway reactions [4]. Unfortunately, this fact 

is not apparent when reviewing the major accidents reported on an annual basis. The 

Chemical Safety Board CSB [3, 5] emphasizes the relevance and importance of consulting 

more than one database. Safety authorities in one of the EU-countries have revealed that, 

within the total number of around 2000 batch and semi-batch reactors installed, an average of 

about 110 runaways occur annually [9]. In Germany about 13.75% of the accidents in the 

process industry were caused by chemical reactions [10]. An important analysis was also 

conducted in 1989 by Barton and Nolan [11]. They highlighted 189 accidents that occurred in 

the UK chemical industry between 1962 and 1987. Figure 1.1 shows the contribution of 

different reaction types to the total number of exothermal runaway reactions [12].  
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Figure 1.1 Percentage of incidents per specified chemical process  
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The above statistical evidence shows that the potential for loss of control and hence runaway 

reactions is very high. Polymerisation reactions contribute most (48%) and esterification 

reactions least (1%).  

Another statistical study showed that at least 60% of batch reactor incidents could probably be 

avoided, if a proper design of the reactor plant and safe operating conditions had been adhered 

to. Table 1.1 presents a comparison of three different studies [13].  

Table 1.1 Prime causes of batch reactor incidents  

Barton and  
Nolan (1987) 

Barton and  
Nolan (1989) Etchells (1993) 

Incident cause 
1962-1984 1962-1987 1986-1990 

Thermo-reaction chemistry 21.4% 20.1% 14.8% 

Raw material quality  7.9% 8.9% 9.8% 

Maintenance/other factors 22.3% 21.3% 22.2% 

Temperature control 22.2% 18.9% 13.9% 

Loss of mixing/agitation 9.5% 10.1% 13.1% 

Mischarging of reactants 16.7% 20.7% 26.2% 

Incident rate (1/month) 0.46 0.54 2.03 

The last row in table indicates that the number of incidents per month increased but, in reality, 

this merely demonstrates the improvement of reporting methods. These surveys also proved 

how important it is to control temperature in batch reactors.  

The principal causes of exothermic runaway incidents are:  

- Inadequate maintenance – 21.9% 

- Human factors (mischarging) – 21.2%  

- Little or no study of the reaction chemistry and thermochemistry – 18.7% 

- Cooling system failures - 18.3% 

- Stirrer failures - 10.3%  

- Mistakes made as a consequence of raw material quality – 8.9%  

Other but also important factors responsible for exothermic incidents are:  

- Poorly designed reactors  

- Underrated control systems  

- Inadequate procedures and training  
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A study conducted by the Health and Safety Executive (HSE) shows the same trend. Special 

attention should be paid to the following critical points: mischarging (23%), little knowledge 

of reaction chemistry (18%) and inadequate temperature control (15%).  

Mischarging
23%

Agitation 
9%

Raw Material 
Quality 

9%

Failure to access 
reaction chemistry 

18%

Other 
15%

Operator Error
5% Maintenance

6%

Inadequate 
Temperature Control 

15%

 
Figure 1.2 Main causes of runaway reactions in UK (Chemical Industry) [1986-2000]  

In 2002, the U.S. Chemical Safety and Hazard Investigation Board (CSB) published a report 

containing the results of investigations on 167 reactive chemical incidents that occurred in the 

U.S. between 1980 and 2001. The results of these investigations are presented in Appendix 

C. These accidents caused 108 deaths and millions of dollars in property damage. About 35% 

of the incidents were caused by runaway reactions. Chemical reactors constituted the highest 

share of equipment involved in accidents triggered by reactive chemicals. The next highest 

share of equipment affected is storage equipment and other process equipment with a 

contribution of 22%. About 70% of accidents occurred in the chemical industry and the 

remaining 30% occurred in other industries that use bulk quantities of chemicals, such as 

waste processing and petroleum refining. The manufacture of fine, intermediate organics and 

plastic, rubbers and resins in batch reactors had the highest share of incidents reported. Nearly 

70% of all analyzed accidents were caused by exothermal reaction. The highest contributions 

were made by decomposition reactions (26%) and polymerization reactions (10%).  

According to the HSE, 269 accidents were reported between 1986 and 2000 and currently 

there are 10-20 incidents reported every year. Although fatalities and injuries are very rare, 

there nonetheless exists a high potential for injury in some cases.  
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In the European Union, the Major Accident Hazard Bureau (MAHB) established the Major 

Accident Reporting System (MARS). At present (January 2007), the MARS database 

contains around 600 reported accidents. According to the research presented in [14], a total 

number of 132 accidents related to reactive chemical incidents (exothermic runaway 

reactions) can be identified. The list of these accidents with a short overview is presented in 

Appendix B. The statistical analysis presented in Table 1.2 confirmed the results of 

investigations performed by HSE, CSB and ZEMA.  

Table 1.2 Number of runaway accidents in the MARS databank with indication of technical 

and physical causes  

Technical and physical causes Total % 
Unexpected reaction  30 22.9 
Runaway reaction  21 16 
Component failure  13 9.9 
Vessel failure, containment equipment failure  12 9.2 
Electrostatic accumulation  9 6.9 
Failure of control / monitoring device  7 5.3 
Loss of process control  6 4.6 
Corrosion / fatigue  6 4.6 
Blockage  4 3.1 
Utilities failure (electricity, gas, water, steam etc.)  4 3.1 
Natural event (earthquake, temperature etc.)  3 2.3 
Other  3 2.3 
Transport accident  1 0.8 
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1.3 Lessons learnt  

The use of hindsight from the analysis of accidents reported in the aforementioned databases 

plays an important role in improving process safety. The most common issues involve flaws 

in either process analysis, design of safety measures and control systems and management 

procedures. All these issues are very important and therefore should be considered by safety 

engineers.  

The study of past accidents can help avoid the recurrence of similar situations. Table 1.3 

summarizes the statistical data presented in Chapter 1.2. The most important conclusions 

confirm how important runaway reaction control is and how much there is still left to be done 

for safety and chemical engineers.  

Table 1.3 Statistics on the importance of runaway reactions (multiple causes are possible)  

Runaway reaction related characteristics  Fraction Source 
Chemical manufacturing (industry)  70% [3] 
Runaway accidents due to inadequate engineering design  60% [13] 
Runaway reactions - polymerization  48% [12] 
Fires and explosions due to runaway reactions  42% [3,5] 
Runaway major chemical plants accidents  26,5% [4] 
Fine and intermediate organics  26% [13] 
Batch reactors and storage tanks involved in runaway accidents  25%, 22% [3] 
Decomposition and polymerization  26%, 10% [3] 
Lack of proper understanding of the process chemistry  18% [HSE] 
Runaway major accidents in Germany  13,75% [10] 

Despite the large amount of literature and organizations that deal with runaway reaction 

phenomena, the topic still demands a lot of work. The most important area seems to be the 

chemical manufacturing industry, especially regarding batch reactors (70%) and the 

manufacture of fine and intermediate organics (26%). The prevention and protection systems 

installed have to be more reliable in order to avoid accidents such as fires or explosions 

(42%). More attention has to be paid to decomposition and polymerization reactions, which 

have the highest potential to runaway (26% and 10% respectively). It is also essential to have 

a thorough understanding of process chemistry and thermochemistry (18%). Finally, an 

adequate engineering design for heat transfer, adequate control systems and operational 

procedures including training must be guaranteed.  
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2 
Batch and semi-batch reactors – 

hazards and safety  
 

 

2.1 Batch and semi-batch reactor hazards  

Batch reactors are operated by a wide variety of firms because of their convenience and 

flexibility. In most cases they are quite small (about 20-1000 litres in small industrial plants) 

but the number of reactions or chemicals can be quite large. The size of batch reactors in large 

plants ranges from 38.000 to 76.000 litres. The same batch reactor allows one to carry out 

many different reactions [15]. Frequently, these reactions are exothermic and loss of control, 

the most critical event of which is operational cooling failure, can lead to a temperature 

increase and thermal runaway as a consequence of this reaction.  

In the case of batch reactors, where the rate of reaction, and thereby the rate of heat 

production, varies with time, runaway reactions can be very problematic [16]. The task of 

designing apparently simple batch reactors with their operating, control and safety systems 

can be very difficult if all the time-dependent parameters are considered. The problem is 

aggravated additionally, if the same reactor has to carry out different chemical processes. 

Therefore, it is necessary to adjust the safety system to each reaction in order to avoid thermal 

runaway.  
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2.1.1 Batch and semi-batch reactors  

Batch reactors are characterized by the fact that neither a reactant is added, nor is a product 

removed during the reaction. Any reaction being carried out with this constraint, regardless of 

any other reactor characteristic, is considered batch. The batch operations are characterized 

by:  

- well mixed tank contents,  

- a reaction that does not occur in any appreciable degree until filling and start-up 

procedures are complete, and  

- a reaction that stops when quenched or emptied.  

The main advantages of a batch reactor are:  

- the simple construction (cylindrical tank with charging nozzles and access for 

inserting agitators, coils, or other internal devices and for cleaning),  

- the small instrumentation and cost (when small quantities of different materials are to 

be made using the same equipment or when products are highly regulated such as 

pharmaceuticals [17]),  

- the ease at which they can be scaled up (beneficial when time-to-market is important), 

and 

- the flexibility of operation (used in the production of fine and speciality chemicals).  

Although the operation of batch reactors demonstrates a high degree of flexibility, batch 

processes are usually very complex with strong nonlinear dynamics and time-varying 

parameters. Therefore they require continual safeguarding and corrections by the operator or 

automatic devices. Due to the small amounts produced and the variety of processes, obtaining 

a complete understanding of the reactor dynamics is often not economically feasible. This 

lack of knowledge gave rise to a number of accidents, see Chapter 1. The study of accidents 

also shows that batch units are more frequently involved in accidents than continuous 

reactors. This fact highlights, perhaps more so than any other, the necessity of investigations 

on safety systems for batch reactors. The main disadvantage of a batch reactor is in the labour 

costs, which include the time taken to:  

- fill the reactor,  

- heat the reactor contents to the initial temperature, 

- cool it after completion of the reaction, 

- discharge the reactor contents, and  
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- clean the reactor for the next batch (required between runs for emptying and filling the 

tank).  

These procedures increase the overall labour costs per unit of production.  

An attractive way to reduce any potential hazard is to use semi-batch reactors instead of batch 

reactors. With this type of operation, the reactor is initially charged with one reactant and then 

the other reactants are subsequently added to the vessel. This makes it possible to control the 

reaction rate by varying the amount of reactant introduced and hence the heat production. 

Therefore, semi-batch reactors are used for highly exothermic reactions. Furthermore, the 

addition of reactants in small increments enables one to control the distribution of the product 

and the evolution of the reaction with time. In addition, the removal of the product increases 

both conversion and selectivity.  

These systems also have disadvantages. Under certain circumstances, when the initial 

temperature is too low, the added reactants will not react immediately and will accumulate, 

after which the combination of increasing concentration and gradual temperature rise may 

lead to a runaway [18]. A safe operation of a semi-batch reactor is therefore based on the 

prevention of accumulation of reactants in the system. Consequently, this reactor type should 

be operated with a temperature high enough to maintain a reaction rate that is approximately 

equal to the feed rate. A semi-batch reactor has similar disadvantages as the batch reactor. 

However, when comparing these reactors, a semi-batch reactor seems to be the safer solution. 

Other disadvantages of the batch and semi-batch reactors are dependent on the particular type 

of reaction, such as whether the reaction is in parallel or in series.  
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2.1.2 Thermal runaway  

The statistics presented in the first chapter showed that a considerable number of accidents in 

the industry can be attributed to runaway reactions. A basic understanding of a runaway 

reaction can be drawn from the thermal explosion theory according to Semenov [18]. This 

theory deals with the competition between the heat generation from an exothermic reaction 

and its removal from the reaction mass to, for instance, a cooling jacket or a cooling coil, or 

both. A thermal runaway may be initiated if the heat generated by a chemical reaction exceeds 

the heat removed by the cooling systems (c.f. Figure 2.1).  

 

Figure 2.1 Batch reactor with cooling jacket and cooling coil  

The surplus heat increases the temperature of the reactor contents, which causes the reaction 

rate to increase. Subsequently, the exothermal reaction produces heat at a much faster rate. 

Consequently, a runaway reaction occurs along the following lines: as the temperature rises, 

the rate of heat loss to the cooling system increases linearly with the temperature (Newtonian 

cooling) and is given by:  

CU A (T T )= − ⋅ ⋅ −&Q     (2.1) 

where: & cQ = heat flow (rate) removed by the cooling system [W]; U = overall heat transfer 

coefficient [W/(m2 K)]; A= surface area for heat transfer [m2]; T = reactor contents 

temperature [K]; Tc = coolant temperature [K].  
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In contrast, the rate of heat generation increases exponentially with the temperature according 

to the Arrhenius equation:  

0 ak k exp( E / R T)= ⋅ − ⋅      (2.2) 

where: k is the reaction rate constant or velocity constant; k0 is the pre-exponential factor or 

frequency factor (its dimension depends on the order of the reaction kinetics); Ea is the 

activation energy [J/mol]; R is the universal gas constant [8.314 J/mol K], and T is the 

absolute temperature in [K].  

Therefore, thermal runaway starts slowly but then tends to accelerate, until eventually it can 

lead to a thermal explosion. Possible operational regimes are shown in Figure 2.2, where the 

ideal cooling regime is marked by A. Regime B is only metastable and at C the reaction 

cannot be controlled any more.  

 

Figure 2.2 Self heat rate and heat transfer of a reaction with cooling  

In the first case, the rate of heat loss (line 1) intersects the exponential heat production curve 

at two points (A and C). Point A represents a stable situation which can be illustrated by 

comparing it to an increase in temperature at point B. At this point, the rate of heat loss due to 

cooling is greater than the rate of heat production and the temperature will return to point A. 

Point C is unstable and any slight increase in temperature will cause an increase in the rate of 
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heat production not matched by the rate of heat loss and a runaway will occur. At this moment 

an emergency cooling system, could be of help (line 0). It should cool down the reactor 

contents and consequently stop the runaway reaction.  

Line 2 represents the situation where the heat production is equal to heat removal. A slight 

decrease in temperature will cause the reaction to fade away, whilst a slight increase in 

temperature will produce a runaway. The equilibrium is not stable. Both cases are highly 

probable.  

Line 3 represents situation where the rate of heat loss is always less than the rate of heat 

production and a runaway reaction will always occur.  

Additionally, since the rate of heat loss is dependent on the heat transfer coefficient and area, 

a decrease in either will lead to a decrease in the slope of the cooling line and a reduction in 

the rate of heat loss from the reactor.  

A further very important problem is that the amount of heat produced increases proportionally 

to the volume of the reactor content (cube term - [m3]), whereas the cooling capacity varies in 

proportion to the surface area of the cooling system (square term - [m2]). This is very 

important for scaling up, where a small increase in volume may lead to an inadequate design 

of the cooling system and therefore the possibility of a loss of control.  

The quantities which have to be considered in specifying safe operating conditions for batch 

reactors are therefore:  

- heat of reaction,  

- heat capacity,  

- rate of heat production,  

- rate of heat removal,  

- heat transfer properties of the reaction mixture,  

- dependence of reaction kinetics on reactant concentration,  

- factors which affect accumulation,  

- temperature range in which decomposition occurs,  

- amount and rate of gas evolution, and 

- effects of mischarging, impurities.  

Furthermore, all of this data can be affected by many factors. One of them is the degree of 

mixing which affects at least two of the quantities measured, the reaction rate and heat 

transfer behaviour. Where the reaction mass is well mixed, the temperature in the whole 
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reactor is uniform and the integral reaction rate increases. Where thermal control is lost (the 

worst case being a total loss of the cooling system), exothermic reaction will occur without a 

significant heat loss i.e. almost adiabatically, see Figure 2.3. The temperature will rise until 

the maximum available has been reached. This can be calculated from:  

max s adT T T= + Δ      (2.3) 

where Ts is the starting temperature of the reaction and ΔTad is the adiabatic temperature 

increase, which can be calculated from:  

R A0
ad

A p

( H ) cT
( ) c
−Δ ⋅

Δ =
−ν ⋅ρ⋅      (2.4) 

where ΔHR is the enthalpy of reaction in [kJ/kg], cA0 is the concentration of limiting reactant 

in [kmol/m3], cp is the specific heat capacity in [kJ/kmol K], νA is the stoichiometric 

coefficient, ρ is the density of the reactor contents in [kg/m3].  

 

Figure 2.3 Thermal scenario for a runaway in a batch reactor from [19]  

The adiabatic temperature rise is one of three characteristic numbers. It provides direct 

information of the exothermic effect of the chemical reaction and gives the maximum increase 

in temperature that can be attained. This increase takes place when the substance or reacting 

mixture decomposes (ΔTad2) or fully reacts under adiabatic conditions (ΔTad1) and, in 

consequence, leads to thermal runaway (desired reaction). Medium and high temperature 

increases (Table 2.1) must be assessed with regard to the probability of an accident occurring. 

In general, the batch reactor can be applied only for reactions with a low adiabatic 
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temperature increase. For exothermic reactions not satisfying this requirement, a semi-batch 

reactor is used.  

Table 2.1 Classification of the adiabatic temperature increase [16]  

Adiabatic temperature increase ΔTad (K) Impact 
> 200  High  

50 < ΔTad < 200 Medium  
< 50 Low (the boiling point is not exceeded)  

Due to the fact that Tmax is reached quickly when cooling fails, the time left for intervention is 

more or less determined by the dynamics of the reaction. The time to thermal explosion is 

referred to as the time of the maximum rate under adiabatic conditions (TMR); it is also called 

induction time. This parameter depends on the reaction kinetics as well as the temperature at 

which it is evaluated and can be predicted using the following formula [17]:  
2

p 0
ad

0 a

c R T
TMR

q E
⋅ ⋅

=
⋅&

    (2.5) 

where cp is the specific heat capacity in [J/kg K], R is the universal gas constant [8.314 J/mol 

K], Ea is the activation energy in [J/mol], T0 is the start temperature in [K], and 0q&  is the 

corresponding heat release rate in [W/kg].  

Time to maximum rate TMR2 corresponds to Tmax or the temperature reached at the end of 

standard reaction and TMR1 corresponds to Ts, or the temperature at the start of reaction (c.f. 

Figure 2.3). The latter gives an indication of the time available for triggering emergency 

measures once the deviation has occurred.  

The second characteristic number is the Damkoehler (Da) number. This number represents the 

ratio of the characteristic reaction time to the kinetic time constant of the reaction. Therefore 

it is a measure for the reaction time. The characteristic times are specific for each reactor type. 

For ideal reactors, it is the reaction time for the batch reactor, the feed time for semi-batch 

reactor and the mean residence time for both continuous types. The value of the Damkoehler 

number can vary from 0.01 for slow batch reactors to 100 and more for semi-batch processes 

or continuous manufacturing with high mean residence times.  

A 0 ch
I

A0

( ) r tDa
c

−ν ⋅ ⋅
=     (2.6) 
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The third characteristic number, the modified Stanton (St) number, combines all relevant 

parameters which determine the cooling capacity of the reactor. This number ranges from 3 

for plant scale reactors to 20 for laboratory equipment.  

ch

p

U A tSt
c V

⋅ ⋅
=

⋅ ⋅ρ      (2.7) 

Large batch reactors without cooling systems are working near to adiabatic conditions unless 

a trip system, based on emergency cooling is activated. When considering decomposition 

reactions, it is important to understand that decomposition can occur at all temperatures. As 

the temperature is reduced, the decomposition slows down but does not stop.  

The consequence of such a reaction is often a loss of the process containment. Depending on 

material properties, process conditions and reactor design, this can lead to hazardous 

situations such as fires, explosions, missiles or toxic hazards. If the materials are toxic, this 

can pose a hazard to both operators and off-site personnel. Furthermore, if the materials are 

environmentally damaging, this can also pose a widespread environmental hazard.  

2.1.3 Reactive systems  

The main hazard posed by exothermal reactions is associated with the generation of heat and 

consequent pressure built-up due to degassing or evaporation. This pressure can be developed 

in three different ways:  

- The exothermic reaction increases the temperature of reactor content to above its 

boiling point at nominal operating conditions causing the pressure to rise – vapour 

pressure system.  

- Gas production as a result of an exothermic reaction can cause pressurisation – gassy 

system.  

- The exothermic reaction produces both gas and vapour – hybrid (gas + vapour) 

system.  

These categories have a significant meaning in terms of either pressure relief systems or 

passive trip systems and are reviewed below. Figure 2.4 shows the characteristic temperature 

changes for the three systems, according to the Health and Safety Executive (HSE).  
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Figure 2.4 Runaway reaction categories – vapour, gassy and hybrid  

Vapour pressure system  

In this type of reaction, there is no permanent gas generation. The pressure increases as the 

temperature of the reaction mixture increases due to the progress of chemical conversion 

(evaporation of the reactants, products and/or inert solvent). In that case, it is not the peak rate 

but the rate of temperature rise that determines the design parameters of the relief system such 

as the diameter of a relief valve. Boiling point is thus attained before potential gaseous 

decomposition (i.e. the heat of reaction is removed by the latent heat of vaporization). After 

relief system activation, the reaction is tempered by vaporization and, additionally, in the case 

of the passive trip system, by internal cooling coils (Figure 2.5, Case A and B). The pressure 

inside the reactor is equal to the vapour or atmospheric pressure. Such vapour pressure 

systems can be approximated by the well known Clausius-Clapeyron relationship or 

Antoine’s equation (Equation 2.5).  

v
Bln P A
T

= +      (2.8) 

where Pv is vapour pressure, A and B are constants and T is the absolute temperature. An 

ideal example of this reaction type is the esterification of methanol and acetic anhydride.  

Gassy system  

The pressure increase is caused by the production of non-condensable gassy products. These 

gases may be produced by the decomposition of reactants. The exothermic heat release is 

retained in the reaction mass because the cooling potential of volatile materials is not 

available. Due to that, both the maximum temperature and maximum gas generation rate can 

be attained during system activation. Gaseous decomposition reactions occur without 

tempering and the total pressure in the reactor is equal to the gas pressure. The main 
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parameter for dimensioning relief devices is the maximum rate of pressure rise. For the 

pressure of non-condensable, ideal gas law is approximately obeyed.  

g
g

wg g

m R T
P

M V
⋅ ⋅

=
⋅      (2.9) 

where Pg is gas pressure, mg is mass of gas, Mwg is molecular mass of gas, Vg is volume of 

gas, R is ideal gas constant and T is the absolute temperature.  

A survey within the chemical industry shows that gassy reaction systems predominate due to 

established processes such as nitrations, diazotizations, sulphonations, and many other 

reaction types. Very few vapour pressure systems can be identified that also generate a 

permanent gas – hybrid reaction. A good example of gassy systems is the decomposition 

reaction of ammonium peroxydisulphate.  

Hybrid (gas + vapour) system  

This system is a combination of the two previous systems. The pressure increase is caused by 

the production of gassy non-condensable products as well as by evaporation. Gaseous 

decomposition reaction occurs before boiling and the reaction is still tempered by vapour 

stripping. The total pressure in the system is the summation of the vapour pressure and gas 

partial pressure (Equation 2.7) and is called Dalton’s law of partial pressure.  

tot v gP P P= +      (2.10) 

where Ptot is total pressure, Pv is vapour pressure and Pg is gas pressure. 

In this case, the principal parameters in determining the venting diameter are the rates of 

temperature and pressure rise. A tempered reaction contains volatile fluid that vaporizes 

during the relieving process through the venting system. This vaporization removes energy 

which is evolved by exothermic reaction and tempers a rise in the temperature rate. An 

example of this type of reaction systems is the decomposition of hydrogen peroxide.  

In order to prove the feasibility of the design of the passive trip system, its effectiveness for 

these different reaction systems will be demonstrated. The choice of the system has 

considerable influence on the activation and functioning of any pressure relief system, 

including the passive trip system. For instance, in the case of some hybrid and all vapour 

pressure reaction, the relief system activation will temper the reaction by losing enough heat 
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through vaporization in order to maintain temperature and pressure at a safe level (Figure 2.5, 

Case A). In the case of passive trip activation, there is an additional cooling effect which 

enables one not only to maintain a constant temperature and pressure in the system but also to 

reduce them and bring the reaction to a stand-still (Figure 2.5, Case B).  

In hybrid systems that do not temper and gassy systems, there is negligible or sometimes no 

control of temperature due to pressure relief. The control of temperature in the reactor could 

be achieved by the use of emergency cooling, such as the passive trip system (Figure 2.5, 

Case B). In the case of relief venting, the temperature continues to rise and the rate of reaction 

continues to increase even after the relief device has opened and the pressure is held constant 

(Figure 2.5, Case C). In such systems, the maximum rate of material discharge the relief vent 

devices have to safely cope with is determined by the maximum rate of the runaway reaction.  

 

Figure 2.5 Diagram of tempering of runaway reaction  

There are a lot of vent sizing methods, such as Richter and Turner [22], and these have 

provided methods for sizing batch reactor relief systems. A large number of them were also 

elaborated by Fauske [23] and DIERS [24]. There is a wide range of theoretical work on vent 

sizing, which, unfortunately, to a large extent lacks experimental verification, if two-phase 

flow is involved. Therefore, the application of safety factors in the design of vent areas is 

necessary.  
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The knowledge of chemical reactor systems is of paramount importance for the protection 

strategy to be adopted. On this basis, it can be decided whether the system is gassy, vapour or 

hybrid and tempered or untempered (Figure 2.6). This information is one of the main factors 

for safety system design.  

 

Figure 2.6 Reactivity categories from [24]  
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2.2 Batch and semi-batch reactors safety development  

The process industry has made major improvements in safety performance over the last half 

century. A huge progress can be observed in prevention measures, but much more obvious 

improvements have been made to protection systems such as critical alarms, automatic safety 

instrumented systems (SIS), emergency relief systems, active quenching (inhibition), 

emergency dumping (drown out), and manual intervention. However, there is still a need for 

additional levels of protection and hence increases in the quality and amount of safeguards are 

clearly justified. In order to improve the reliability of the safety systems, fault tree analyses 

are appropriate and recommended. Therefore a reliability analysis of frequently used trip 

systems for chemical batch reactors was performed, see Chapter 3.  

2.2.1 Layers of protection  

Chemical batch reactors with hazardous processes and materials should be designed with 

multiple layers of protection [25]. These should protect people, the environment, and property 

from the hazard associated with the chemical processes. While we can design more reliable 

equipment and motivate people to reduce mistakes, we can never completely avoid failures. 

The famous statement made by Trevor Kletz that “an accident recurs” [26] is always true in 

spite of all possible measures taken in the chemical process industry. Therefore, it is very 

important to use multiple layers of protection in order to reduce risk (Figure 2.7, Case 1). 

Nevertheless, there is always a small probability that all layers of protection will fail 

simultaneously and an accident will occur. For instance, the deterioration of a management 

system, maintenance of equipment or training will reduce the reliability of protection layers 

and consequently the risk will be increased (Figure 2.7, Case 2). Here the passive strategy 

can be helpful. In the case of a properly designed passive system, it could reduce the risk 

(Figure 2.7, Case 3). Furthermore, an inherently safer design [27] can reduce the need for 

layers of protection. If the magnitude of the potential consequence of an accident could be 

reduced sufficiently, it may eliminate the need for protection layers entirely (Figure 2.7, Case 

4).  
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Figure 2.7 Layers of protection for chemical processes  

In scientific literature concerning regulations and standards, we can find many similar terms 

for safety systems, such as layer of protection, safety barrier, safety function etc. It is 

therefore practical to distinguish between the safety functions and safety systems that carry 

out these functions. There are many ways in which safety systems may be classified. One of 

them is classification according to their functions: prevention, protection and mitigation 

(LOPA). Safety systems can also be classified by several criteria, some of them being active 

versus passive or physical / technical versus human / operational. One of the methods used to 

classify safety systems is shown in Figure 2.8.  

 

Figure 2.8 Classification of safety systems  
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Safety strategies applied to a chemical process can be placed into four main categories:  

- Inherent: eliminate or reduce the hazard by using less hazardous materials and 

conditions, or naturally occurring safety directed phenomena, such as self 

stabilisation.  

- Passive: control or minimization of the hazard using design features that reduce either 

the frequency or consequence of incidents using no active components.  

- Active: incident control or mitigation using controls, safety interlocks, or emergency 

shutdown systems in order to detect hazards and thus enable appropriate action to be 

taken.  

- Procedural: operating procedures, emergency response, administrative checks and 

other management systems that are used to prevent incidents, to detect incidents in 

time, or to reduce the magnitude of damage resulting from an incident.  

Safety strategies belonging to passive and inherent categories are generally considered to be 

the most robust and reliable. They depend on the physical and chemical properties of the 

system, rather than on the successful operation of equipment, safety devices or procedures. 

Inherent and passive safety concepts are often confused but, in reality, they are quite different. 

For instance, the inherent solution to the batch reactor will either eliminate the hazard or 

reduce the potential magnitude of an incident associated with the hazard sufficiently so that it 

cannot cause significant damage. Passive safety strategies do not necessarily eliminate the 

hazard, but prevent damage and injury by eliminating or reducing exposure of people to the 

hazardous conditions without the active functioning of any components. The passive trip 

system is a good example [28]. In the case of an operating cooling system failure and possible 

reaction runaway, it performs its function of preventing damage and injuries simply by being 

present. There is no need for any active devices or person to perform their function.  

As mentioned before, in order to achieve the safe operation of chemical reactors that process 

exothermic reactions, a combination of four layers of protection is required [25], (Table 2.2).  
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Table 2.2 Layers of protection for process industry [26]  

Layer of protection Classification of safeguards Functional requirements  

Design - Layer 1  1. Chemical process design 
Normal operation with control of 
operational design conditions 
(considering start-up and shut-down). 

Prevention - Layer 2 
1. Process control systems 
2. Alarm systems 
3. Operator response 

To stop the runaway reaction from 
occurring and to reduce the 
frequency of its possible scenario. 

Protection - Layer 3  

1. Critical alarms 
2. Automatic SIS 
3. Emergency relief systems 

Active quenching (inhibition) 
Emergency dumping (drown 
out) 

6. Manual intervention 
7. Passive systems 

To slow down development of 
runaway scenario and reduce the 
probability and severity of its 
consequences. 

Mitigation - Layer 4 
1. Active protection systems 

Community emergency 
response 

To limit and mitigate on and off-site 
consequences of reactants release. 

Figure 2.9 presents the functioning of layers of protection and interactions between them 

[30].  

 
Figure 2.9 Layers of protection for process industry  
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The first design layer is the most important one and should always be implemented at the 

earliest possible stage, such as during the selection of processes, plant layout, facility siting 

etc. If operational design conditions are held constant and there are no deviations in the 

process, there will be no need to employ prevention, protection and mitigation layers.  

As was presented in the table, the purpose of prevention is to reduce the probability of 

accidental releases. The ideal result of a successful prevention effort is that a runaway 

reaction does not occur. In reality, prevention can succeed only in reducing the probability of 

a runaway to a reasonable minimum. The main role of prevention is the choice of the right 

operating conditions such as:  

- the degree of mixing (mixing rate),  

- the capacity of the cooling system,  

- the temperature of the coolant,  

- the dosing rates of the reactant(s) etc.  

Automatic control systems also play a vital role, and these include the use of an independent 

hardwired alarm and trip system based on Safety Integrity Level analysis [31].  

When preventive measures fail, then a second function of control concerns protection from 

reaction runaway. Protection means that the runaway onset must be detected, contained and 

neutralized or suppressed before the reactor content escapes into the environment. The 

protection can be considered as inartistic or extrinsic. Some examples of this are:  

- critical alarms,  

- Safety Instrumented Systems (SIS) which use realized functions of shut down or 

emergency shutdown of reactor and physical protection systems like diking, flares and 

scrubbers,  

- relief systems (rupture discs, relief valves),  

- active quenching (inhibition) [12],  

- emergency dumping (drown out),  

- passive systems (passive trip system).  

If the reactor protection fails or is deficient, the system will release chemicals in the form of 

vapour or gas into the environment. The consequences of such a release can be reduced by the 

effective activation of the fourth layer of protection and this mitigation equipment can reduce 

the concentration of released chemicals to below a harmful level. For chemical reactors, there 

are technical systems used such as water sprays, steam curtains, barriers for dispersion and 

different alarms and communication systems.  
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Although the prevention of accidents clearly has the highest priority, prevention alone is not 

enough as major accidents do happen. The most efficient method of dealing with a major 

accident is the protection layer with its most commonly used technique: emergency relief 

venting. Unfortunately, this method is not so reliable due to the risk connected with 

inadequate vent sizing and failures [32, 33, 34]. There are many other methods for reactor 

protection, but all of them require external energy sources, which can always fail. Passive trip 

systems were also mentioned as a final safeguard. These methods are not so commonly used 

but they have a big potential to overcome some of the inherent disadvantages of active 

systems. The passive trip system investigated here is patented [28] and may be used in batch, 

semi-batch, and possibly in continuous processes using cascades of reactors. It can also be 

applicable to the storage of self-reactive substances in devices either barrels. The exact 

description of the system will be given in Chapter 4.  

The main hazard posed by exothermal reactions is pressure generation and the consequent 

loss of the process containment (fires, missiles, explosions, toxic hazards). Furthermore, there 

are other important effects such as loss of productivity, loss of market share, environmental 

clean-up costs, costs of rebuilding the damaged plant and, as a further consequence, a 

negative perception of the company. Any of the above mentioned consequences would be 

reason enough to investigate new methods for the protection of chemical reactors.  
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2.2.2 Passive and inherent safety aspects  

Both inherent and passive strategies relate to the basic process technology and design and 

should always be considered and implemented in the design life cycle. The main intention of 

these strategies is to eliminate hazards or at least to minimize their degree. Even after all the 

above efforts, the remaining or residual spectrum of various risks will still remain together 

with the question “how safe is safe enough?” [27].  

As far as possible, chemical reactors should be designed to be inherently safe. This is the first 

step in safety, and techniques such as the use of low-pressure designs and low capacities are 

obviously the most desirable route to follow wherever possible. According to the Chemical 

Process Safety Centre, there are four important strategies for inherent safety: minimize, 

substitute, moderate and simplify [35].  

Inherently safer plants in reactor systems equipped with passive systems  

Kletz [27] and later Englund [36] have both given details of inherently safer plants involving 

reactors. They emphasized the importance of friendly plants. When designing reactors for 

safety, the following should be considered:  

1. A very good understanding of reaction kinetics (safe conditions for operation of 

exothermic reaction).  

2. The replacement of batch reactors with continuous (reduction of resident mass of 

hazardous substances) and, if possible, easier temperature control, although this is 

only feasible for large quantities.  

3. The production and consumption of hazardous materials in situ as hazardous shipping 

and storing should be avoided.  

4. The use of high purity materials that can reduce the amount of waste materials.  

5. Designing the reactor for the highest possible pressure in order that thermal explosion 

and release to environment can be avoided.  

6. Limiting the total possible charge to a batch reactor by using a feed tank of limited 

capacity.  

7. Limiting the maximum or minimum temperature attainable in the reactor by properly 

designed operating or passive cooling systems.  

8. Reducing and simplifying the inventory by tubular reactors application (no moving 

parts).  
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9. Mass transfer is often the rate-limiting step in gas-liquid reaction. Novel reactor 

designs that increase mass transfer can reduce reactor size and improve yields.  

Metrics for passive and inherent safety  

How can we measure passive and inherent safety? Such questions must be answered in order 

to perceive the significance of these strategies. It is evident that the development of new 

technologies could be more easily obtained when the costs and potential benefits of a new 

technology (including economics, environment, and safety) can be measured. However, this is 

not a simple task as chemical processes usually involve multiple hazards and, therefore, the 

tools for measuring inherent and passive safety should be available. The engineers are 

beginning to understand and recognize the value of these strategies.  

One of the most practical methods used for passive and inherent safety identification is the 

analysis of the potential consequences of accidents. For instance, the consequences of a 

thermal explosion in the reactor might take into consideration the safety distances from the 

reactor that results from a fire, explosion or toxic release. This analysis helps us to understand 

the benefits of inherent and passive strategies and highlights where improvements can be 

made.  

Another method to measure inherent and passive safety is risk indices. They usually measure 

a single aspect and it is necessary to use several indices to understand what characterises the 

overall process. The most popular are the Dow Fire and Explosion Index and the Dow 

Chemical Exposure Index [33, 34]. Unfortunately, they only focus on the inherent safety and 

only on such areas as fires, explosions and toxic hazards.  

Some work has already been done on the development of an overall inherent safety index 

(Loughborough University, VTT in Finland), [35]. These indices take more phenomena into 

account, such as inventory, flammability, explosiveness, toxicity, temperature and pressure).  

Passive and active layers of protection - process intensification  

The term “process intensification” was developed to describe a kind of thinking about the 

process unit operations [36]. This approach led to the prospect of much smaller chemical 

plants that would be significantly cheaper and safer than existing ones. While a smaller 

process may not eliminate all hazards, it can frequently have a positive influence on making 
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effective passive mitigation measures for the process more feasible and cost effective. Blast-

resistant enclosures, bunkers or dikes can be considered as a common example of passive 

mitigation systems. In the case, when an explosion occurs, the process equipment within the 

enclosures can be damaged, but nobody will be injured and the environment and other 

property will be safe. Such a type of protection systems may be practical for small equipment 

but is very expensive for large equipment. Additionally, the enclosure not only has to be 

much bigger but also much stronger for bigger tanks because of the magnitude of the 

explosion potential. In this instance, two different approaches to the problem have to be taken 

into account:  

- Safety – very efficient protection systems of the plants, but more expensive.  

- Economy – less efficient protection systems, but not so expensive.  

Here the question arises: what is more important? Both these factors have an important 

influence on the environment, human beings and chemical plants. However, the application of 

some protective systems such as emergency quenching, which is used to protect against a 

runaway reaction, can be restricted. If the temperature in the reactor exceeds a threshold 

pressure, the content of the reactor will be rapidly discharged to another tank containing an 

inhibitor. Such a system can easily be applied to a small reactor but for a bigger one it could 

be questionable. A small tank can be emptied into the quench tank in a few seconds and the 

reaction will be inhibited but, in the case of a large reactor, emptying can take many minutes 

and it may be not possible to prevent runaway in time.  

For a passive cooling system, there are no technical restrictions. The emergency cooling 

system can be easily adjusted to every reacting system and, if every device and parameters are 

correctly dimensioned, the runaway reaction can be prevented. Hence, the only barrier will be 

the cost of the emergency cooling tank.  

Batch reactors are often protected from overpressure by active devices such as relief valves. 

These devices open at a set pressure and allow gas and liquid to escape in order to limit the 

pressure. A few years ago, relief devices would simply discharge into the atmosphere. 

Nowadays such situation is unacceptable and the reactor content must be discharged to a 

collection-and-treatment system, unless totally innocuous, which is rare.  
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Chemical process safety has to be taken into account together with the criteria for process and 

plant design. During chemical plant design and operation, there are a lot of requirements 

which have to be fulfilled. These are related to the following groups:  

- Workers (long-term health, employment etc.) 

- Owners (costs, capital investment, etc.) 

- Customers (cost, quality of products, etc.) 

- Neighbours (environmental impact, health and safety) 

- Government (regulations and laws) 

In order to meet all of them, the engineer must optimize the design of the plant. Process 

intensification is likely to play a very important role in the future since all modern prevention 

and protection strategies are more efficient and cheaper for smaller plants. Process plants will 

then be more safe, more economically competitive and more environmental friendly.  

2.2.3 Trip systems  

In general, trip systems are used to protect the equipment or plant against certain hazardous 

situations by shutting the whole or part of it down if particular parameters go outside the 

specified limits. For the protection of batch reactors against exothermic runaway reactions, 

there are many old and few new practical solutions available. These include, in the first place, 

the most common emergency relief venting, then physical containment, secondary emergency 

cooling, quenching or reaction inhibition, emergency dumping and the concept of the passive 

trip system. For these systems a reliability analysis was made. The new passive concept for 

batch reactor protection was compared with the most popular trip systems. The results of this 

analysis are discussed in the next chapter.  

All of these systems have many limitations and the possible application of any one of them 

depends mainly on the reaction type and thus a brief description and characterization of these 

techniques is presented below.  

a) Pressure relief system  

The venting of the reactor contents is one of the most frequently used safety measures against 

pressure increase. The main effect of pressure relief is temperature stabilisation due to the 

heat removed by evaporation (vapour reactions). However, this system has some problems:  
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- restrictions due to environmental protection (release of chemical substances to the 

atmosphere) and containment of the ejected material needed,  

- the difficulty of finding the size of the relief valve (two-phase flow and starting 

pressure for venting, and  

- the fact that it is ineffective for low vapour pressure systems.  

The adequate function of a particular vent also depends upon many factors:  

- the accuracy of the kinetic data,  

- the accuracy of physical properties of the reactants,  

- the accuracy of the design of the safety device, and  

- the accuracy in determining the initial conditions.  

b) Inhibition trip system  

The use of small quantities of active quenching agents that are capable of stopping runaway 

reactions is called inhibition [12]. An inhibitor or diluent is usually placed in an emergency 

tank and it is pressurized to allow for fast injection, when required. The type of inhibitor or 

diluent depends generally on the reacting system under investigation. The addition of such an 

inhibitor modifies the reaction rate expression and thus the reaction slows down. The 

polymerization of vinyl compounds is a good example of this. After the detection of a 

runaway reaction, an inhibitor such as tertiary butyl catechol is added. It can stop reactions by 

removing free radicals, which propagate runaway reaction. This method seems to be very 

effective but there are still many limitations, such as:  

- the lack of inhibiting species for many exothermal reactions (e.g. decomposition), 

- non effective injection systems, 

- problems with effective detection of abnormal behaviour, 

- non effective mixing of agents in the reactor (hot spots), 

- the high price of inhibitors, 

- the necessity of laboratory studies, 

- the lack of sufficient free volume in the reactor.  

c) Emergency Dumping System  

The dumping of the reactor contents is a very old method. The reaction mixture is dumped 

into a vessel which contains water or other cold diluents. Sometimes the dumping system is 

combined with the inhibition system and the inhibitor is added to the dumping vessel. This 

method requires a good understanding of the reacting system and technical installation to 
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perform dumping. The dumping system has some disadvantages, such as the loss of products 

and expensive equipment but, conversely, it also has many advantages:  

- the reactor is not subjected to pressure,  

- there is no discharge to the environment,  

- the mixture can be disposed of later and expensive reactants can potentially be 

recovered.  

d) Passive trip system  

A passive trip system can be approximated as a combination of pressure relief system and 

emergency cooling system. Therefore, it can be applied to all reactive systems and 

successfully reduce both temperature through vaporization and by cooling coils, and pressure 

by relief. It has many advantages in comparison to other trip systems which will be proved in 

this work. The detailed description of passive trip system can be found in Chapters 3 and 4.  

Summary of trip systems  

There are many different ways in which trip systems function. Each of them can influence one 

or several parameters that play important roles in batch reactor protection. The main 

parameters which can have a substantial influence on the successful operation of a trip system 

are part of the reaction rate equation (Arrhenius), the heat transfer equation for emergency 

cooling and the Clausius-Clapeyron equation (assuming ideal gas). These are presented in 

Table 2.3:  

Table 2.3 The influence of trip systems activation on crucial process parameters  
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where k0 is the reaction rate constant (pre-exponential factor), T the temperature, Ea the 

activation energy, R the gas constant, U overall heat transfer coefficient, A the surface area 

available for heat transfer, Tc coolant temperature, n the number of moles of gas and V is the 

volume of gas or vapour.  

The reduction of process parameters presented in the table is highlighted with an arrow. The 

numbers preceding the process parameters from 1 to 3 indicate the sequence of interactions. 

The same number preceding two different parameters means simultaneity.  

Temperature and pressure reduction are classified in the first place for both dumping and a 

passive system. In the case of a pressure relief system, the pressure relief plays the main role. 

The reduction of pre-exponential factors is for these systems in the last position, contrary to 

the inhibition system, where reduction of this parameter (k0) is of great importance. The 

injection of an inhibitor slows down the reaction and stabilizes both temperature and pressure.
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3 
The reliability study of different 

trip systems  

 
3.1 Trip systems under investigation  

Trip systems belong to the principal types of protective systems. They are used for shutting 

down plants or parts of them e.g. reactors, if a hazard condition is detected. The choice of the 

trip system and necessity of using it depends on design philosophy. The most common types 

of trip systems include flow, pressure, temperature, level or limit switches. The chemical 

reactors used for exothermic reactions are, amongst others, equipped with trip systems. As 

mentioned before, these may, for example, be based on the fast injection of a reaction 

inhibitor or the fast dumping of the reactor contents into a knock-out tank. The measures 

enumerated are active, in that they require a number of components (e.g. sensors, pumps, 

valves etc.) to function in order to be successful. The availability of trip systems, i.e. their 

probability of functioning on demand, largely depends on their degree of redundancy. 

However, there is a limitation to increasing their availability by raising their degree of 

redundancy. This is imposed by the possibility of the occurrence of common cause failures 

[41]. Nevertheless, the availability of a trip system may be elevated further if, instead of a 

higher redundancy, a passive system is used [42]. In order to demonstrate this, four different 

trip systems, among them a passive one, are described and analyzed using fault tree analysis 

[43]. In performing the comparison, only the trip systems as such are considered. Possible 

additional safety measures either engineered or by operator intervention, which is often 

provided for, are disregarded in order to create a sound basis for comparison. Potential 

failures of instrument air, normally counteracted by fail-safe positions of the affected 

components, are not treated either. No consideration is given to the expected frequencies of 

demand of the systems, since only the trip function is of interest here.  
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3.1.1 Emergency Dumping System  

The emergency dumping system presented in Figure 3.1 belongs to a nitration reactor for 

producing hexogen [44, 45]. The reactor temperature is measured by sensor TE2. In case of a 

temperature rise above the set-point of temperature switch TSH2, the hexamine supply to the 

reactor is cut by stopping motor M1. Should the temperature increase not be contained by this 

measure and the set-point of temperature switch TSHH2 be reached, the reactor contents is 

discharged via discharge valve DV1 into the knock-out tank. In order to achieve this, the 

solenoid valve SV1 activating the discharge valve DV1 as well as that itself have to open and 

the stirrer motor M2 has to start. Weekly inspections by the operator ensure that the knock-out 

tank is always filled.  

 

Figure 3.1 Emergency dumping system  
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3.1.2 Inhibition trip system  

A reactor with an inhibition trip system is shown in Figure 3.2. It is equipped with an injector 

vessel containing the inhibitor. In case the temperature is too high, temperature switch TSH 

opens valve AV 5 and the inhibitor is injected into the reactor by a pressure blanket inside the 

injector vessel. Redundantly, pressure switch P1 opens valve AV 2 due to the pressure 

increase associated with a rising temperature and the reactor contents is relieved into the catch 

tank. Sufficient pressure in the injector vessel is ensured by weekly inspections of the 

pressure sensor P4 and the corresponding operator action, if required.  

 

Figure 3.2 Inhibition trip system – HSE pilot plant diagram [12]  
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3.1.3 Pressure relief system  

A standard reactor used in the chemical industry for synthesis reactions is shown in Figure 

3.3. Reactants A and B are introduced in controlled quantities into the reactor. A catalyst is 

continuously supplied and both the temperature and the pressure increases are measured. The 

protective trip system consists of the safety valve SV1 and the relief system made up of 

pressure switch PSHH1, relay I, and pneumatic valve AV1. The “safe place” for relief is 

considered to be a knock-out tank equal to that in Figure 3.1.  

 

Figure 3.3 Pressure relief system  
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3.1.4 Passive trip system  

A passive trip system [28, 42] is shown in Figure 3.4. It provides emergency cooling and 

works as follows. The pressure increase which accompanies a runaway reaction is used for 

driving the coolant from the emergency coolant supply tank (ECST) through the coil inside 

the reactor. During normal reactor operation, the coolant is separated from the reactor 

contents and the cooling coil by two bursting discs. If the pressure increases above the set-

point of bursting disc BD 1 this will rupture and the pressure is relieved by opening the pipe 

to the emergency coolant supply tank. Rupture disc BD 2 then bursts as well, thus allowing 

the coolant to be forced through the cooling coil. The reactor contents is cooled down and the 

reaction is stopped. With appropriate dimensioning this occurs before the substances escape 

from the system. Hence, a receiving tank for vented substances becomes unnecessary. There 

is a sufficient margin for the onset pressure of relief so that the system even works if the 

rupture discs open below or above their set points, which is their most frequent failure mode.  

 

Figure 3.4 Passive trip system  
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3.2 Fault tree analysis  

Fault tree analysis [43] was used to investigate presented systems. Their unavailabilities, i.e. 

their probabilities of not functioning if demanded, were calculated using a program written in 

FORTRAN. The fault trees for the top event “Failure of protective trip system” for each of 

the systems are shown in Figures 3.5-3.8.  

Emergency dumping system  

The corresponding fault tree is shown in Figure 3.5. The following assumptions were made in 

its elaboration: the trip is only successful if the hexamine supply is cut in addition to 

successful dumping, dumping is only successful if the stirrer motor M2 starts and thus 

provides sufficient initial mixing with the contents of the knock-out tank (although continuous 

operation of M2 is not deemed necessary), the relay represents the signal processing which 

converts the demand for opening into the activation signal for solenoid valve SV1.  

 

Figure 3.5 Fault tree for the emergency dumping system  
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Inhibition trip system  

The fault tree for the inhibition trip system is given in Figure 3.6. In the following analysis, 

the assumption was made that either successful inhibition or relief into the catch tank will 

bring about a safe state. The system is redundant.  

 

Figure 3.6 Fault tree for the inhibition trip system  

Pressure relief system 

The fault tree for the pressure relief system is presented in Figure 3.7. The following 

assumptions were made: relief is only successful if the stirrer motor M2 starts and thus 

provides sufficient initial mixing with the contents of the knock-out tank (although the 

continuous operation of M2 is not deemed necessary), the relay represents the signal 

processing which converts the demand for opening into the activation signal for valve AV1.  
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Figure 3.7 Fault tree for the pressure relief system  

Passive trip system  

The fault tree for the passive trip system is shown in Figure 3.8. The following assumptions 

were made in its elaboration: the trip function is only successful if both bursting discs open 

and the emergency cooling supply tank is filled with the coolant. The lack of coolant can be 

caused by a leak and failure of level control LG1 or operator can fail to take action.  
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Figure 3.8 Fault tree for the passive trip system  
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3.3 Reliability study and test intervals  

The reliability data and test or inspection intervals for the evaluation of the fault trees are 

given in Table 3.1. The former are based on [46] and the following investigation. Both the 

median and the 90% uncertainty factor K95 for a log-normal distribution of the failure rates 

are provided [47]. Probabilities for human error in operator actions are represented by 

rectangular distributions [48] whose width is assessed on the basis of information contained in 

[35]. The values for test and inspection intervals were derived from indications by plant 

owners.  

Table 3.1 Reliability data and test/inspection intervals  
a upper probability limit, b lower probability limit, c taken as 0.1% of the safety valve failure rate, 
replacement after 2 years 

System Fault tree 
variable 

Type of component/failure mode Median of 
failure rate 
λ in 10-6/hr 

Uncertain-
ty factor 

K95 

Test/in-
spection 

interval θ 
in hrs 

x1 temperature sensor 27.8 1.5 720 
x2 temperature switch  60.4 1.5 720 
x3 relay 0.30 3.0 720 
x4 stirrer motor does not start 1.00 3.3 168 
x5 solenoid valve  1.92 8.4 168 
x6 discharge valve fails to open 17.8 2.2 168 
x7 leak (includes all modes of fluid 

loss) 
1.50 8.4 168 

x8 operator fails to take remedial 
action 

0.05a 0.002b  

x9 knock-out tank not controlled 
weekly 

0.05a 0.002b  

x10 temperature switch 60.4 1.5 720 

Emergency 
dumping 
system 

x11 remotely operated switch 9.2 1.7 168 
x1 temperature sensor  27.8 1.5 17500 
x2 relief valve does not open 17.8 2.2 17500 
x3 wrong inhibitor 0.05a 0.002b  
x4 pressure switch  0.93 8.4 720 
x5 no measure taken 0.05a 0.002b  
x6 pressure switch  0.93 8.4 720 

Inhibition trip 
system 

x7 relief valve does not open 17.8 2.2 168 
x1 safety valve does not open 1.13 8.4 17500 
x2 pressure switch  0.93 8.4 720 
x3 relay  0.30 3.0 720 
x4 relief valve does not open 17.8 2.2 168 
x5 stirrer motor does not start 1.00 3.3 168 
x6 leak (includes all modes of fluid 

loss) 
1.5 8.4 168 

Pressure relief 
system 

x7 operator fails to take remedial 0.05a 0.002b  
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action 
x8 knock-out tank not controlled 

weekly 
0.05a 0.002b  

x1 bursting disc does not open 0.001 8.4 17500 
x2 bursting does not open 0.001 8.4 17500 
x3 leak (includes all modes of fluid 

loss) 
1.5 8.4 168 

x4 level gauge  6.7 1.7 168 
x5 operator fails to take remedial 

action 
0.05a 0.002b  

Passive trip 
system 

x6 emergency coolant supply tank not 
controlled weekly 

0.05a 0.002b  

The time averaged unavailabilities for components subject to periodical tests or inspections 

every θ hours were calculated under the assumption that the duration of functional tests is 

negligible and that repair, if needed, restores the original properties of the component (“as 

good as new hypothesis”). This leads to:  

( )1e11u −⋅
θ⋅λ

+= θ⋅λ−

     (3.1) 

where u  is the time averaged unavailability, λ the failure rate in 1/hr, and θ the time interval 

between functional tests in hrs.  
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3.4 Results and conclusions  

Characteristic distribution parameters for the time averaged unavailabilities obtained for the 

four trip systems are given in Table 3.2.  

Table 3.2 Time averaged unavailabilities of the investigated systems  

System 5th percentile Expected value 
 

95th percentile 
 

 
Emergency dumping system 
 

4.5·10-2 5.7·10-2 7.1·10-2 

 
Inhibition trip system  
 

3.5·10-4 1.0·10-3 2.1·10-3 

 
Pressure relief system 
 

4.8·10-5 1.7·10-4 4.1·10-4 

 
Passive trip system 
 

9.9·10-6 6.1·10-5 1.7·10-4 

The analysis of the underlying minimal cut sets [38] shows the following:  

Emergency dumping system 

Key contributors to the unavailability are the failures of instruments TE2, TSH2, and TSHH2. 

An introduction of redundant instrumentation would reduce the expected value of the time 

averaged unavailability of the system to 2.1·10-3.  

Inhibition system 

The most important contributions to its unavailability stem from the minimal cut sets x1x6, 

x1x7 and x2x6, x2x7. Since the system is already redundant, the gain from further redundancies 

would most likely be limited by common cause failures [41].  

Pressure relief system 

The main contribution to its unavailability stems from the failure of the stirring motor to start. 

Since the system is already redundant and highly available, the reduction by further 

redundancies would most likely be limited by common cause failures [41].  



The reliability study of different trip systems 

 46

Passive trip system 

Its unavailability is dominated by the failure probability of the bursting discs, which, based on 

the chosen failure rate and period between replacements, amounts to 2.3·10-5, a value which 

lies within the range indicated in [35]. If the lower limit given there, i.e. a failure probability 

of 10-5, were used, the time averaged unavailability of the passive system would drop to 

3.5·10-5. The frequency of testing/inspection plays a subordinate role for unavailability. 

Placing the outlet of the emergency coolant tank above the upper coolant level would make 

rupture disc BD2 superfluous and hence further reduce the time averaged unavailability to 

1.8·10-5.  

The choice of the test or inspection intervals has a considerable impact on the unavailabilities 

of the active trip systems. Hence, it is difficult to make a fair comparison. However, in 

practice, the operator is not free in his choice. For example, the inhibitor and corresponding 

systems cannot be tested too frequently, because a test involves the loss of the inhibiting 

substance. The times selected represent a compromise between frequent tests, which lower the 

unavailability, and operational requirements, which imply avoiding interferences of 

production and costs caused by tests and inspections.  

Overall, the passive system showed the lowest time averaged unavailability and the best 

technical properties. Its unavailability is dominated by the failure rates assigned to the 

bursting discs. Test intervals and inspections play a minor role. If the design is made properly, 

even the most frequent failure mode of bursting discs, i.e. not rupturing exactly at the 

specified set-point, does not affect its effectiveness so that low failure rates are warranted. 

Hence, the passive system proves to be superior to those involving the necessity of the 

functioning of active components. This is true especially since it does not require a redundant 

design in order to reach a high level of availability and will therefore not be affected by 

potential common cause failures.  
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4 
The Passive Trip System  

as a method of reactor protection  
 

 

4.1 Working principle of the Passive Trip System  

The passive trip system is patented and applies to the process and equipment for emergency 

cooling and pressure relief of the facilities for exothermal reactions [28, 42]. It can be also 

applied together with a conventional safety system such as pressure relief systems or as an 

independent safety system for facilities like manufacturing, storage or transport of substances, 

which are able to react with the heat evolution (exothermal reactions).  

The general principle of operation of the passive cooling system is as follows. The pressure 

increase which accompanies the runaway reaction, either because gaseous reaction products 

are generated and/or the reactor contents starts to boil, is used for driving the reactor cooling. 

In order to achieve this, a reactor (Figure 4.1, 4.2) was equipped with an emergency coolant 

supply tank. This tank was installed above the reactor and connected to a cooling coil passing 

through the reactor. During normal reactor operation, the coolant is separated from the reactor 

contents and from the cooling coil by two bursting discs. If the pressure increases above the 

set-point of bursting disc no. 1, it will rupture and the pressure is relieved by opening the pipe 

to the emergency coolant supply tank. At the same time, the coolant is forced through the 

cooling coil and thus cools down the reacting mixture. In this way, the reactor contents are 

cooled in time and both the temperature and the pressure are reduced until the reaction comes 

to a stand-still. This will normally occur before substances from inside the reactor escape. 

Hence, a receiving tank for vented substances becomes unnecessary.  

In the figures seen below, arrows show the direction of fluid flow. Under normal working 

conditions (Figure 4.1), the reactor is cooled by the continuous circulation of coolant through 
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the reactor jacket. The emergency cooling system is not active, since the coolant is withheld 

from the cooling coil by the bursting discs. Should the operational cooling system fail or a 

runaway be initiated for other reasons e.g. stirrer failure, the passive trip system is activated 

(Figure 4.2). The pressure build-up in the reactor, will then open bursting disc no. 1 and 

pressurize the emergency system. This opens bursting disc no. 2 and makes the coolant flow 

through the coil inside the reactor. Pressure is relieved, evaporation and forced cooling cool 

the reactor content down and the reaction comes to a stand-still. Hence the hazard (increase of 

pressure) is used for its combat.  

           

Figure 4.1 Normal working conditions   Figure 4.2 Emergency working conditions  

For passive trip system simulation, visualisation and documentation 3-dimensional model and 

dynamic visualisation were performed [ACHEMA 2006].  
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4.2 Experimental demonstration of the feasibility of the Passive 

Trip System  

For passive trip system development and design, a 3-dimensional model was constructed, see 

Figure 4.3. The laboratory scale batch reactor, type III manufactured by Büchi AG, was used 

to build the passive trip system. In order to demonstrate the feasibility this reactor was 

equipped with an emergency coolant supply tank (1). This tank was installed above the 

reactor and connected by pipes (2) to a cooling coil (3) passing through the reactor  During 

normal reactor operation the coolant is separated from the reactor contents and the cooling 

coil by two bursting discs or permanent valve (4, 5). Figure 4.4 shows the realization of the 

project.  

    

Figure 4.3 Passive trip system (3D-model)            Figure 4.4 Passive trip system (realization) 

1

2 2

3 

4

5
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The main components of the passive system are an emergency coolant supply tank, a cooling 

coil and bursting or other relief devices, see Figure 4.5.  

 

Figure 4.5 Passive cooling system components  

Reactor vessel, stirrers, measurement register and control units belong to the standard batch 

reactor equipment. Their detailed specification is presented in Table 4.1.  

Table 4.1 Specification of the reactor  

Description  Value / Type 

Capacity of the reactor 0.01 m3 
Capacity of jacket cooling system  0.0015 m3 
Stirrer Blade 
Max. pressure 20 bar 
Max. temperature 250°C 
Inner diameter of the reactor 0.207 m 
Safety valve 20 bar 
Material Stainless steel 1.4571 
Pressure indicator and recorder  Digital measurement instrument with display 
Temperature indicator and recorder Digital measurement instrument with display 
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A detailed size specification of the passive trip system is presented in Table 4.2. The 

remaining design parameters depend on the reacting systems.  

Table 4.2 Specification of the passive trip system  

Description Capacity Diameter Length Thickness 
Emergency cooling 
tank 0.01 m3 0.16 m 0.45 m 0.001 m 

Bursting discs - 0,00635 m - Depends on 
material  

Permanent relief 
valve - 0,00635 m - - 

Cooling coil 0.001 m3 0.00635 m 2.1 m 
(modelling)  0.001 m 

Emergency cooling tank  

The emergency coolant supply tank was designed according to simulations executed for 

several reacting systems. A nine litre cylindrical tank was built (1), and with the help of three 

supports (2), installed above the reactor. In order to render filling and emptying operations a 

hand-operated valve (3) was installed at the bottom of the coolant tank. The outlet of a coolant 

(4) was fitted at the bottom of the tank and connected with the reactor using 6 mm diameter 

pipe (5). To prevent the coolant from flowing out, before the trip system activation, a bursting 

disc was installed (6). On the pipe connecting inlet site of a coolant tank with the vapour 

phase of reactor, the permanent relief valve (7) was installed. The emergency cooling tank is 

designed according to existing standards for pressure vessels.  
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Figure 4.6 Emergency coolant tank  

Bursting and relief devices  

Bursting discs were chosen in the original design for availability reasons. In order to avoid the 

consumption of many bursting discs during experimentation, a special valve was designed to 

replace bursting disc no. 1, whilst bursting disc no. 2, which only has to prevent the water 

from flowing out, was replaced by a thin metal foil. A conventional safety valve (Figure 4.7) 

was modified by application and adjustment of a strong permanent magnet (1) and two 

stainless steel screws (2, 3) see Figures 4.8 - 4.10. The forces of springs (4) inside the valve 

were measured and a permanent magnet sufficiently strong to overcome them was installed. 

Once the safety valve opens it is held open by the magnet. Apart from saving bursting discs, 

the device enables one to use different set points for the opening pressure in search for 

optimal operating conditions for the emergency cooling system. The set-point pressure 

adjustment for a valve takes a few seconds and by this specific design enables one to set 

opening pressures between 0,1 – 4 bar above atmospheric pressure.  
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Figure 4.7 Conventional 
                  relief valve 

Figure 4.8 Permanent relief  
                  valve (3D-model) 

Figure 4.9 Permanent relief  
                  valve (realization)
  

 

 

 

Figure 4.10 Components of the permanent relief valve  

Cooling coil  

The cooling coil of straight tube type, manufactured and recommended by Büchi AG, was 

used to develop the passive cooling system. The geometry and specification of a cooling coil 

is shown in Figure 4.11. The coil has a simple cylindrical geometry which enables effective 

heat transfer and does not cause a significant decrease of the volume of the reactor.  

    

Figure 4.11 Cooling coil  
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4.3 Choice of design parameters  

The first step of designing a passive trip system is to understand the runaway reaction 

mechanism. Of crucial interest are properties, such as reaction kinetics, chemistry and 

especially thermo-chemistry.  

The most important requirement for an effective passive trip system is the choice of coolant 

quantity (the size of emergency coolant tank) capable of moderating or halting the runaway 

reaction. There are no restrictions for the application of a passive trip system to any 

exothermal reaction. The tank size depends only on the reaction investigated. In order to 

guarantee efficient cooling and thus a halting of heat development, appropriate design 

parameters have to be selected. This has a vital influence on the successful trip function and 

will be investigated. For reasons of vessel certification some of the design parameters are 

fixed. The cooling coil has, for instance, a fixed diameter of 0.00635 m and a wall thickness 

of 0.001 m (the reactor is certified pressure vessel, which may not be modified). The crucial 

parameters which influence the efficiency of the passive trip system are:  

- Capacity of the emergency coolant supply tank  

- Cooling coil dimension (diameter, length, wall thickness, material)  

- Coolant characteristics (type, temperature, amount)  

- Relief device characteristics (response pressure, diameter)  

The main problems in designing the passive trip system are:  

- Lack of case-specific kinetics for chemical reactions  

- Bursting discs do not open at an exact pressure  

- Uncertainties connected with the transfer of measured data under laboratory 

conditions to real plants  

- Insufficient knowledge on runaway reactions mechanisms and thermo-chemistry  
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5 
Laboratory investigations  
 

 

The experimental work was carried out in the safety laboratory at the Otto-von-Guericke-

University. In this chapter, equipment and procedures relevant for the passive trip system 

experiments are described. The experimental setup and procedure in the experimental runs are 

described in Sections 5.1 and 5.2. Section 5.3 describes reacting systems investigated and 

presents experimental results. The analysis of them is presented in Section 5.4.  

5.1 Experimental setup  

The identification of hazardous scenarios, reactions etc., is often very difficult without 

experimental testing. The scale of experiments and equipment used at this stage should be 

such that a potential runaway can be contained [49].  

The experiments with different exothermal reactions were carried out in the batch reactor 

described in the previous chapter using the experimental setup of Figure 5.1. The reactor is 

equipped with the emergency cooling system (1), pressure and temperature sensors (2), water 

bath (3), pressure and temperature digital meters (4), and the computer (6). The temperature 

and pressure signals from the sensors are continuously transferred to the digital meters and 

from there to the computer, where they are registered in the graphical and numerical form. 

The passive trip system was designed, performed and installed in the Department of Process 

Design and Safety. Preliminary tests were then carried out. In the beginning, water was used 

to test the system. When the tests brought satisfactory results, a second medium, methanol, 

was applied. Due to the low boiling point (64°C), it was very easy to heat the reactor contents 

and observe the system. The test results for this were also satisfactory. Thereafter, the test 

facility was prepared for experiments with exothermal reactions.  
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Figure 5.1 Experimental Setup  
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5.2 Experimental procedure  

For the visualisation and documentation of the experimental procedure, a 3-dimensional 

dynamic presentation was performed, see Appendix G. The experimental procedure included 

preparing the system and carrying out the experiments themselves. Due to different conditions 

and reacting systems, a full preparation of the system was always necessary. The preparation 

of the system consists of the following steps:  

- cleaning and assembling the passive trip system and the reactor,  

- control and start of computer and registry devices,  

- control of the safety valve,  

- set of the permanent relief valve - activation pressure,  

- filling the emergency cooling tank with the coolant (water),  

- pressure tests and control of the set-pressure for relief devices,  

- preparing emergency measures like additional cooling, ice, etc.  

The procedure for preparing an experiment is as follows:  

- the emergency cooling tank is filled with a coolant,  

- the reactants are prepared by using graduated flasks,  

- the agitation and registry devices are switched on,  

- the reactor is filled with reactants through the top,  

- the reactor contents is heated until the required starting temperature is reached,  

- the reactor is closed and its contents is mixed by stirring,  

- the reaction starts,  

- the operating cooling system (the reactor jacket) is stopped in order to simulate a 

cooling system failure.  

The evolutions of pressure and temperature can be observed by the registry units and saved by 

the computer software BLS 2 (Büchi AG). After the passive trip system operation, the 

experiment is finished. For a new experiment the above steps have to be repeated.  
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5.3 Laboratory investigations  

In order to show the feasibility of the design of the passive trip system, its effectiveness for 

different realistic reaction systems must be demonstrated. Based on the DIERS classification 

the following three systems were chosen (c.f. Chapter 2):  

- vapour system – the pressure increases as the temperature of the reaction mixture 

increases by a progressing chemical conversion (evaporation of the components),  

- gassy system – the pressure increase is caused by the production of permanent gassy 

products, for example due to a decomposition reaction, and  

- hybrid system – a combination of the two previous systems; the pressure increase is 

caused by both the production of gassy products and evaporation.  

From each group a representative reaction was chosen. The first group is represented by the 

esterification of methanol and acetic anhydride, the second by the decomposition of hydrogen 

peroxide (temperature initiated) and the last one by the decomposition of hydrogen peroxide 

in the presence of catalyst. Depending on the reacting system, different safety parameters 

have to be taken into account. The main intrinsic safety parameters are presented in Table 

5.1.  

Table 5.1 Intrinsic safety parameters for chemical reactions  

Kinetic Thermodynamic Physical 
Reaction rate constant [k0] Reaction enthalpy [ΔHr]  Heat capacity  

Activation energy [Ea] 
Adiabatic temperature and 
pressure rise [ΔTad, ΔPad]  

Thermal conductivity  

Time to maximum rate [TMR] Quantity of gas generated   
Onset of exothermicity   
Reaction order [n]   
Rate of vessel pressure rise    

The data enable one, for example, to evaluate temperatures and pressures, as well as their 

evolution with time. However, for the vast majority of batch operations employed in the 

pharmaceutical and speciality chemicals industries, reliable thermodynamic and kinetic data 

are scarce.  

For all experiments, the operating cooling failure was considered as a cause of runaway. Due 

to this failure, a runaway reaction was triggered. When the pressure reached the set-point of 

the relief device, the passive trip system was activated. Furthermore the influence of stirrer 
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failure on the passive trip system efficacy was investigated. In the next sections, the passive 

trip system experiments will be presented. In addition to this, an experimental comparison of 

the same scenarios with and without trip system will be presented.  

5.3.1 Esterification reaction between methanol and acetic anhydride  

The kinetic data for this reaction have been published by several authors; see Duffield and 

Nijsing [45], Wright and Rogers [46], Singh [47], Friedel and Wehmeier [48]. The reaction 

progresses according to the following stoichiometric formula:  

sT 25 C
3 2 (l) 3 (l) 3 3(l) 3 (v,l)(CH CO) O CH OH CH COOCH CH COOH≈ °+ ⎯⎯⎯⎯→ +  (5.1) 

The reaction is very slow, which enables one to easily observe and record all changes in the 

system. The esterification reaction is irreversible and proceeds with stoichiometric quantities 

of the reactants. Its reaction products are acetic acid and acetic methyl ester. Both reactants 

and the products of reaction are in the liquid phase. Their physical and chemical properties are 

presented in Appendix E. The reaction (without catalyst) starts slowly at 25-30°C and 

becomes more rapid above 70-80°C. Due to the low boiling point, the methanol vaporizes 

first. The main kinetic and thermodynamic data for a molar ratio of methanol/acetic anhydride 

2:1 mol/mol are presented in Table 5.2:  

Table 5.2 Kinetic data for esterification of acetic anhydride reaction  

Parameter  Value 
Reaction rate constant k0 = 8.97·106 m3 /(kmol s) 

Energy of activation Ea = 73752 kJ/kmol 
Enthalpy of reaction   -∆Hr = 66300 kJ/kmol 

Figure 5.2 shows the pressure and temperature history of noncatalysed esterification reaction, 

which was carried out in the Dewar Calorimeter [DynoChem]. At the beginning, the reactor 

contents were heated to a temperature of 24°C in order to slowly start the runaway reaction. 

Due to the low reaction rate, the temperature and pressure increased very slowly. Two hours 

later, the temperature 60-70°C was reached. The reaction became very fast and, after full 

conversion of the limited reactant, reached a temperature of almost 180°C and a pressure of 

20 bar.  
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Figure 5.2 Esterification of acetic anhydride with methanol (Mol ratio 2:1) [54]  

Figure 5.3 presents the experimental result of the esterification reaction. The initial 

temperature of the process was 30°C. Other conditions were a reactor filling level of 80% and 

a molar ratio of reactants of 1:1. After three hours, when the pressure reached 2.3 bar, the 

passive trip system was activated. The pressure decreased to atmospheric pressure and the 

temperature by 25°C. The reaction came to a standstill.  
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Figure 5.3 Temperature and pressure profile for esterification reaction  
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In order to show the feasibility of the passive trip system, the same reaction but without 

activation of the passive trip system was carried out, see Figure 5.4. The safety valve opened 

at the same pressure as in the first case (2.3 bar) but, since there was no emergency cooling, 

the temperature still increased. A short moment after relief, the pressure decreased to 1.4 bar 

but, due to a very high temperature and the vaporization rate of reactants, it started to increase 

again. Figure 5.5 provides a more detailed look around the point of the passive trip system 

activation. It presents this case 5 minutes before and 5 minutes after pressure relief. Finally 

the runaway reaction was successfully stopped by the operational cooling system, which was 

activated manually.  
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Figure 5.4 Temperature and pressure profile for esterification reaction (without passive trip 
system)  
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Figure 5.5 Enlarged fragment of Figure 5.4  
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The next experiment (Figure 5.6) presents the same reaction conditions but for another 

activation pressure of the trip system – 2.4 bar. Furthermore, it was assumed that during the 

reaction course the operating cooling system would be restored. Therefore, at a temperature of 

52°C and a pressure of 0.6 bar, the jacket cooling system was activated. A momentary 

decrease in the temperature and pressure could be observed. However, the operating cooling 

system was not sufficient and, due to the very high reaction rate the runaway reaction began 

again. The pressure reached the set-point and the trip system was initiated. The runaway 

reaction was then stopped successfully.  
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Figure 5.6 Temperature and pressure profile for esterification reaction (with passive trip 

system)  

Figure 5.7 presents the case of reduction of stirrer revolutions and finally the stirrer failure. 

The initial temperature of the process was 25°C. Other conditions were a reactor filling level 

of 80% and molar ratio of reactants 2:1. The time to the passive trip activation was 

approximately 1.5 hours. By that time, the stirrer revolutions were reduced from 500 to 250 

and, a short time before the activation of the passive trip system, the stirrer was turned off. 

Due to the reduction of revolutions, the reaction slowed down. Furthermore, as a consequence 

of stirrer failure, the emergency cooling system became less effective. The reactor content 

was not mixed well and therefore the heat transfer between coolant and reactants was limited. 

Usually the simultaneous failure of two operational systems, i.e. the simultaneous occurrence 

of two initiating events, is highly improbable and therefore normally not considered (an 

exception are events causing several dependent failures, e.g. failure of electric supply). 
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Finally, the stirrer was activated and the cooling effect of the trip system was significantly 

improved.  
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Figure 5.7 Temperature and pressure profile for esterification reaction  

5.3.2 H2O2 decomposition – temperature initiated  

Hydrogen peroxide is a frequently used reactant in the chemical industry and it is one of the 

most powerful oxidizers known. Hydrogen peroxide oxidative power, and the gas and heat 

generated by its decomposition, are responsible for the large majority of hazardous situations 

that arise during its storage, handling and use. Hydrogen peroxide is generally supplied in 

aqueous solutions (industrial concentration are 27.5% - 70%).  

The normal rate of decomposition for commercially supplied hydrogen peroxide is very low 

(1% loss per year) [55]. However, significantly faster decomposition can be triggered by even 

very small amounts (less than 1 ppm) of soluble impurities, or by contact with incompatible 

rough surfaces.  

The reaction was carried out in the liquid phase using the following concentrations of 

hydrogen peroxide: 3, 6, and 12%. The decomposition was initiated by an external heat 

source. The temperature was kept below the boiling point of the solution. Therefore, the only 

product of decomposition was oxygen, since hydrogen peroxide solutions vaporize above 
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100°C. The filling level of the reactor was 50%. The number of stirrer revolutions was varied 

between 300 and 1200 rpm.  

The reaction progressed according to the following stoichiometric formula:  

290 C/ MnO
2 2(l) 2 (v,l) 2(g)

1H O H O O
2

°⎯⎯⎯⎯→ +     (5.2) 

The products of H2O2 decomposition are water and oxygen. The physical and chemical 

properties of reactant, products and catalyst are presented in Appendix E. The reaction kinetic 

data were adopted from Duffield and Nijsing [50] and are presented in Table 5.3.  

Table 5.3 Kinetic data for hydrogen peroxide decomposition  

Parameter Value 
Reaction rate constant k0 = 1.5·1012 1/s 

Energy of activation Ea = 12833 kJ/kmol 
Enthalpy of reaction  -∆Hr = 2.79 103 kJ/kg 

Figure 5.8 shows the pressure and temperature history for 3 wt-% hydrogen peroxide 

solution. The filling level of the reactor was 5 litres. The reaction started slowly at a 

temperature of 68°C and took approximately 1.5 hours until the passive trip system was 

activated. The permanent relief valve opened at 3 bar, thus activating the passive trip system. 

The pressure decreased to atmospheric pressure and the temperature by 15°C.  
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Figure 5.8 Temperature and pressure profile for hydrogen peroxide decomposition - 3%  
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For 6 wt-% hydrogen peroxide solution (Figure 5.9) the reaction was significantly faster. The 

passive trip system was activated at a pressure of 3.5 bar and at a temperature of about 98°C. 

The pressure decreased to the ambient pressure but, due to the failure of the permanent relief 

valve, increased again due to oxygen generation. The pressure reached 0.7 bar and, due to the 

fact that the reactant was consumed, it was stopped. Hence the reaction did not present a 

runaway hazard as the pressure relief and operational cooling were actuated. The reaction 

came to a standstill. Figure 5.10 presents the fragment of this curve for a 10 minute time 

period after passive trip system activation.  
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Figure 5.9 Temperature and pressure profile for hydrogen peroxide decomposition -6% 
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Figure 5.10 Enlarged section of Figure 5.9 
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The third experiment (Figure 5.11) was carried out for 12 wt-% hydrogen peroxide solution. 

Due to safety precautions, the set pressure of the permanent safety valve was reduced to 3.2 

bar. The reaction started at 60°C and reached a maximum temperature of 99°C and a 

maximum pressure of 3.2 bar. At this point, the passive trip system responded and both the 

pressure and the temperature were reduced. In order to prove whether or not the 

decomposition reaction could be initiated again, the permanent safety valve was closed for a 

moment. Consequently, an increase of the pressure by 0.5 bar could be observed but, due to 

the high conversion of hydrogen peroxide, the temperature did not increase and the reaction 

was successfully stopped.  
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Figure 5.11 Temperature and pressure profile for hydrogen peroxide decomposition -12%  

5.3.3 H2O2 decomposition - on MnO2 catalyst  

The third reaction investigated was the decomposition of hydrogen peroxide catalyzed by 

manganese dioxide (MnO2). The temperature at the beginning was 60-70°C. The experiments 

were carried out in the liquid phase using 1, 1.5 and 2% solutions of hydrogen peroxide. The 

reaction is very fast and is characterized by a violent gas generation. The products of this 

reaction are only water and oxygen and the catalyst can easily be separated from the water 

solution. The filling level of the reactor was 70% and the agitation rate was varied between 

300 and 1200 rpm.  
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Figures 5.12-5.16 show the pressure and temperature history of the reactor equipped with a 

passive trip system for different hydrogen peroxide solutions. Other conditions were a reactor 

filling level of 70%, a temperature at the beginning Tpr = 60-61°C, a mass of catalyst 0.0175 

kg and an agitation rate of 400 rpm.  

Figure 5.12 presents the temperature and pressure history for 1 wt-% hydrogen peroxide 

solution. The reactor filling level was 70%. The reaction started at 60.7° C. After 82 seconds, 

the reaction reached a temperature of 62.4°C and a pressure of 3.9 bar. At this moment, the 

passive trip system was activated and both the pressure and the temperature dropped. Hence, 

because there was no further increase in either pressure or temperature, the danger of a 

runaway reaction was avoided. The atmospheric pressure was reached and the temperature 

dropped by 6°C. 
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Figure 5.12 Temperature and pressure profile for hydrogen peroxide decomposition -1%  

A similar scenario for higher concentration of hydrogen peroxide is presented in Figure 5.13. 

The reaction started at the same temperature and reached the set pressure of the trip systems 

after 60 seconds. In that case the emergency cooling system was also effective and stopped 

the runaway reaction.  
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Figure 5.13 Temperature and pressure profile for hydrogen peroxide decomposition -1.5%  

The third case (Figure 5.14) proved again that the passive trip system is able to stop fast 

decomposition reactions for different concentrations of hydrogen peroxide. Due to a lower 

temperature at the beginning, the reaction reached the set pressure of the trip system after 74 

seconds. The pressure and temperature decreased and the reaction came to a standstill.  
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Figure 5.14 Temperature and pressure profile for hydrogen peroxide decomposition -2%  

In order to show the feasibility of our system, the experiments were carried out with pressure 

relief but without the emergency cooling system. The diameter of the relief valve was the 

same as that of the permanent valve. Figure 5.15 proves that, even though the pressure 
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dropped very quickly, the temperature was still increasing and had the potential to initiate 

secondary reactions. Figure 5.16 presents the same experimental conditions. The oxygen 

produced was relieved through the safety valve but, every time the atmospheric pressure was 

reached, the relief valve was closed again. The amount of gas produced was so high that even 

after three relief activations the pressure and temperature were still increasing. At the end the 

reaction was cooled down by the operational cooling system.  
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Figure 5.15 Temperature and pressure profile for hydrogen peroxide decomposition -1%, 

without passive trip system  
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Figure 5.16 Temperature and pressure profile for hydrogen peroxide decomposition -1%, 

without passive trip system 
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5.4 Concluding remarks  

The aim of the experiments was to determine whether the passive trip system can successfully 

halt the runaway reactions under various conditions. The results of these experiments are 

clear. Three different reactions have been examined and the results showed that the system is 

able to halt vapour, gassy and hybrid reactive systems.  

The first reaction, esterification of acetic anhydride, was carried out for different 

concentrations of methanol and acetic anhydride. The effect of the degree of mixing on the 

passive trip system effectiveness was also studied. The failure of the operating cooling system 

was assumed in every case. Furthermore, the case of stirrer failure was investigated. It affects 

the process itself and can also lead to accumulation or cause hot spot formation. Concerning 

the trip system, the failure of the stirrer will affect the heat distribution inside the reactor and 

consequently reduce the effectiveness of its safety function.  

The second reaction investigated concerned the decomposition of hydrogen peroxide. In the 

first case, the reaction was induced by a temperature increase and, in the second, by the 

addition of a catalyst. The decomposition rate of a catalyzed reaction was much higher than 

that of the noncatalysed one. The passive trip system was investigated for different 

concentrations of hydrogen peroxide and for different set points of trip system activation. In 

every case, successful trip operation could be observed. Additionally, the tests were carried 

out without a passive trip system. They have proved that pressure relief alone through the trip 

system coil cannot avoid temperature increase and consequently a runaway reaction. Hence, 

the coolant is essential for success.  

These experiments show that the application of a passive trip system to vapour, gassy and 

hybrid reactive systems is a feasible method. With its help, the development of runaway 

scenarios can be avoided. However, a very important obstacle for investigations of 

exothermal reactions seems to be the lack of case-specific reaction kinetic data.  
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6 
Modelling of the Passive Trip 

System  
 

 

6.1 Numerical modelling  

In parallel to the experimental demonstration of the feasibility of the system, a computer 

program was also written. This serves, amongst other things, to optimise the important system 

parameters such as the set-point pressure of the bursting disc, the diameter of the cooling coil 

and the quantity of the coolant according to the reaction in question. In order to build the 

mathematical model of the passive trip system, a set of energy and mass balance equations 

were written in order to state the fundamental aspects of the program used to simulate the 

system. The program had been developed focusing mainly on the dynamics of an exothermal 

reaction and dynamics of the heat transfer from the reaction to the cooling liquid. Depending 

on the reaction type and their products, the system consisted of five or six first order non-

linear differential equations. The description of the mathematical model is presented in 

Appendix D. The program can easily be adapted to any other reactor configuration and size if 

the necessary modifications are introduced.  
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6.1.1 Comparison – Experiments vs. Modelling  

In order to optimize the functioning of the passive trip system and to verify the experimental 

results, the simulations were carried out using a computer program. Figures 6.1 and 6.2 

present the comparison of numerical and experimental analyses. The first reaction 

investigated is the esterification of acetic anhydride with methanol and the second one the 

decomposition of hydrogen peroxide. The description of both processes was presented in 

Chapter 5. The process parameters for numerical simulations are presented in Appendix D, 

Table 10.3.  

Some assumptions were made in the development of a mathematical model to describe the 

dynamics of batch reactor and cooling process behaviour. First of all, it was assumed that the 

reactor was perfectly mixed. The physical parameters of reactants and products, such as 

density, viscosity or specific enthalpy were assumed to be constant. The parameters regarding 

heat transfer such as heat conduction were found in VDI-Heat Atlas [56]. Assuming that 

vapour is in equilibrium with liquid, partial pressures of reactants and products were 

calculated using the following formula:  

0 0
i i i i i iP P P x= ⋅α = ⋅ γ ⋅     (6.1) 

where Pi is the partial vapour pressure of component i (mmHg), P0
i is the vapour pressure of 

component i (mmHg), αi is the activity of component i, γi is the activity coefficient of 

component i and xi is the mole fraction of component i in the liquid phase.  

Afterwards the Clausius-Clapeyron equation was used [57, 58]. This relationship can be less 

accurate at very low temperatures [59] but since the temperatures during runaway simulations 

are high, it can be applied to the passive trip system.  

i i
2

d ln P H
dT R T

Δ
=

⋅
     (6.2) 

where T is the temperature (K), ΔHi is the enthalpy of vaporization of component i (kJ/mol), 

and R is the gas constant, 8.314 (J/mol K).  

Figure 6.1 presents experimental and model calculations results for the esterification reaction.  
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Figure 6.1 Comparison of experimental and calculate results for the esterification reaction 

It can be seen that there is some discrepancy between the simulation trends and the 

experimental results. The magnitude of the initial pressure and temperature increase observed 

in the experiments is less than that in the simulations. A vital role was played here by kinetics, 

which was adopted from the other authors [50], [51], [52], [53]. Nevertheless, the overall 

agreement at the end of the simulation is very good, despite discrepancies in the initial phase. 

The mathematical model can be considered adequate for the purposes of the passive trip 

system simulations. In both cases, the emergency cooling system responded at the same 

pressure and temperature level, but not at exactly the same time. The introduction of case-

specific kinetic data and correction factors for heat losses would improve the evolutions of 

pressure and temperature. The results of the laboratory-scale experiments were found to be 

quantitatively consistent with the simulated temperature-time and pressure-time curves.  

Figure 6.2 shows the decomposition of 6% hydrogen peroxide solution without a catalyst. It 

can be observed that the pressure increases linearly and temperature exponentially and that 

both the numerical temperature and pressure increase at a slightly faster rate than the 

experimental one.  



Modelling of the passive trip system 

 74

 

Figure 6.2 Comparison experiment vs. model calculations for the decomposition of hydrogen 
peroxide  

To conclude, the results of the laboratory-scale experiments were found to be quantitatively 

consistent with the simulated temperature/pressure-time curves. In order to obtain an accurate 

model, many considerations had to be fulfilled. Different parameters for the reaction and the 

system had to either be calculated or found in existing literature. Nevertheless, good results 

can also be obtained only from using approximated data.  

6.1.2 Possible modifications in the system  

The operation of the passive trip system depends on many design and process parameters 

which can determine whether or not the trip will be successful. The computer program allows 

variations of these parameters in order to optimize its design. The most important parameters 

are:  

- the capacity of emergency cooling tank (coolant quantity),  

- the cooling coil dimension (length, diameter, wall thickness, material, geometry),  

- the relief devices characteristic (set pressure, diameter), and 

- the coolant characteristic (type, temperature).  
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Some of these parameters, such as the cooling coil dimension or coolant type, were fixed but 

all of them could be varied using the FORTRAN program. The variations of parameters such 

as the coolant quantity, activation pressure of trip system, cooling coil length and diameter, 

and their influence on temperature and pressure history are presented below, see Figures 6.3-

6.10. The esterification of acetic anhydride as a very slow reaction was also investigated.  
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Figure 6.3 Temperature as a function of time for different coolant quantities  

The passive trip system responded at a pressure of 1.6 bar. As shown in Figure 6.3 the 

effectiveness of cooling increased as the amount of water increased. The reactor contents can 

already be effectively cooled down by the use of 10 litres of coolant. The next figure 

highlights the pressure history for the same variations. It can be observed that the pressure 

peak is higher in the cases where more coolant is applied. It can be easily explained in that 

more coolant means that the fluid takes longer to go through the cooling system until the 

emergency cooling tank is empty and the ambient pressure reached. Of course, parallel to the 

passive trip system operation, the reaction progresses, thus increasing pressure and 

temperature.  
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Figure 6.4 Pressure as a function of time for different coolant quantities  

In Figures 6.5 and 6.6 the variations of activation pressure for the system are presented.  
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Figure 6.5 Temperature as a function of time for different triggering pressure setpoints  
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The main conclusion is that for higher activation pressures the velocity of coolant can be too 

high and hence the consumption of the coolant too fast in order to stop the runaway. The 

system seems to be most effective in the range of 1.4 - 2.2 bar.  
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Figure 6.6 Pressure as a function of time for different triggering pressure setpoints  

The next varied parameter was cooling coil length (c.f. Figures 6.7 and 6.8).  
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Figure 6.7 Temperature as a function of time for different cooling coil lengths  
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A longer cooling coil means a larger heat transfer surface and therefore better cooling effect. 

For ten litres of coolant, a cooling coil longer than 2 metres seemed to be a good choice. Both 

the temperature and pressure were sufficiently reduced.  
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Figure 6.8 Pressure as a function of time for different cooling coil lengths  

The diameter of a cooling coil has tremendous influence on the cooling efficiency, see 

Figures 6.9 and 6.10.  
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Figure 6.9 Temperature as a function of time for different cooling coils diameters  
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Figure 6.10 Pressure as a function of time for different cooling coil diameters  

It can be seen that for too big diameters the cooling effect decreases. This is the result of a 

very high mass coolant flow. The best choice seems to be the cooling coil with a diameter of 

12.7 mm. In this case, the response time is very good and it does not limit the end pressure 

and temperature reached. For the smaller diameter of 6.35 mm, cooling takes longer but, 

nonetheless, the end temperature is still higher than in the case before.  

The FORTRAN program allows the variations of many other parameters such as:  

- the temperature at the beginning of reaction,  

- the pressure at the beginning of reaction,  

- the temperature of coolant,  

- the concentration of the reactants,  

- the filling level of the reactor,  

- the number of cooling coils.  

The variations of these aforementioned parameters enable one to find the optimum design.  

The experimental results indicated that the activation pressure of the passive trip system was 

the most important parameter for the success of a trip in controlling a runaway.  
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6.2 Theoretical application of the passive trip system  

The passive trip system was investigated both experimentally and numerically at laboratory 

scale but, since its intended application is to large-scale reactors, a program able to simulate 

the real conditions in the industrial scale was also written. The Seveso batch plant for the 

manufacture of 2,4,5-trichlorophenol (TCP) from 1,2,4,5-tetrachlorobenzene was found to be 

a good application [60, 61]. It was adapted to the problem of reactor trip in [62]. If the passive 

trip system is able to stop such a runaway reaction, which sparked the first campaign about 

the safety of process plants 32 years ago, this would be the best proof of its feasibility.  

6.2.1 Process description  

2,4,5 Trichlorophenol is used for manufacturing herbicides, antiseptics or as a fungicide in 

paper and pulp mills. The process used for its production is carried out in a batch reactor at a 

pressure of approximately 19 bar using methanol as a solvent.  

A total amount of 1400 kg of the feed, 1,2,4,5-tetrachlorobenzene (TCB), is suspended in a 

mashing-tub together with 3.8 m3 of methanol (CH3OH) and 0.05 m3 of sodium hydroxide. 

The suspension is introduced into the reactor and heated to 141°C. After that, a total quantity 

of 0.775 m3 of a 50% aqueous solution of sodium hydroxide (NaOH) is added to the process 

over a time period of 60 minutes. The subsequent time for reaction amounts to 13.5 hrs. The 

reaction is exothermal and is held at a temperature of 155°C by a cooling system once it has 

been started up by heating the mixture with steam of 156°C.  

The initial volume of the reactor contents amounts to 4825 l reaching 5600 l after the addition 

of the sodium hydroxide lye, which is fed into the reactor at a temperature of 25°C.  

It is well known that during the process the highly toxic dioxin (TCDD) is produced, albeit in 

minute quantities, as long as the nominal range of the reaction parameters is maintained. A 

deviation of the reaction parameters was the cause of the Seveso accident [63], in which an 

estimated quantity between 0.45 and 3 kg of TCDD was released into the environment.  

The reaction network of the important steps (up to the formation of tetrachlorophenolate) is 

shown in Figure 6.11.  
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Figure 6.11 Reaction network for the synthesis of TCP according to the Boehringer process 

[60, 61]  

The parameters required for describing the reactions mathematically are given in Table 6.1.  

Table 6.2.1 Kinetic data for the reactions of Figure 6.11  

Reaction i ΔHR,j in kJ/mol ki (428 K) in m3/(mol s) Ea,j in kJ/mol 
1 -112 2.17·10-7 64.8 
2 -50.5 7.70·10-8 146.5 
3 -50.5 7.92·10-9 194.3 
4 not determined 7.90·10-14 240 
5 not determined 2.70 10-13 220 

The reaction network and parameters stem from co-operation of the authors of [60, 61] with 

the Boehringer Company. Simulations based on them agree with the experimental results 

obtained in a 10 l laboratory reactor and values measured in production as shown in [60, 61].  

The substances involved in the process and their relevant properties are given in Table 6.2.  
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Table 6.2 Substances of the process and relevant properties (a assumed values; b calculated 

according to [65], c NaOH only) 

No. i Substance Chemical 
formula  

Molar 
mass Mi 

[kmol/kg] 
Heat capacity 
cp in J/(kg K) 

1 1,2,4,5 Tetrachlorobenzene (TeCB) C6H2Cl4 215.9 937.9 

2 2,4,5 Trichloroanisole (TCA) C7H5Cl3O 211.4 953.3b 

3 2,4,5 Trichlorophenolate (TCP) C6H2Cl3ONa 219.42 884.8b 

4 2,3,7,8 Tetrachlorodibenzo-p-dioxin 
(TCDD) C12H4Cl4O2 321.97 889.9b 

5 Miscellaneous by-products - 200a 700a 

6 Aqueous solution of sodium 
hydroxide (50%) NaOH+H2O 40.0c 3274.0 

7 Methanol CH3OH 32.04 2541.0 

6.2.2 Passive trip system simulations  

The process model described in [60, 61] is used. The reactor model was extended in [62] by 

an operational cooling and heating system and its control. This extended version forms the 

basis of the present treatment. The underlying concept is that of a well stirred reactor [64]. 

The resulting system of first-order differential and algebraic equations is given in Appendix 

F. It is solved by a second order Runge-Kutta scheme with adaptive time steps.  

The passive trip system described in [42] was applied to this reactor and a mathematical 

model of the trip system [Appendix E] was combined with mathematical model of Seveso 

reactor [Appendix F].  

In order to investigate the feasibility of the trip function, the failure of the operational cooling 

system was assumed. The design parameters of the passive trip system such as the quantity of 

coolant, pressure set-point for trip activation, time of cooling failure and size of cooling coil 

were varied in order to optimize the emergency cooling operation. Some results of those 

simulations are presented in figures below.  
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Fig. 6.12 Temperature profiles for different moments of cooling failure (time after start of 

reaction)  
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Fig. 6.13 Pressure profiles for different moments of cooling failure (time after start of 

reaction)  
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The passive trip system is most effective 1 hour after the start of reaction. Its effectiveness 

decreases with the time and consequently its initiation 2 hours after the start of reaction would 

not stop runaway reaction.  
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Fig. 6.14 Temperature profiles for different set points of bursting device  
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Fig. 6.15 Pressure profiles for different set points of bursting device  



Modelling of the passive trip system 

 85

The system seems to be most effective at a set-point pressure of 19.8 bar but this efficacy 

decreases rapidly at higher pressures.  

The feasibility of the passive trip system application to the SEVESO batch plant was 

confirmed. The system would have been able to reduce both the temperature and pressure to 

safe levels, thus avoiding the evolution of a runaway reaction. The most important issue 

concerning the application of the passive trip system to pilot-scale or large-scale reactors is 

the effect of scale. The fact that the mass of the fluid increases linearly with the reactor 

volume, but the heat transfer area does not, has to be taken into account at the simulation and 

design stage. In scaling up from the laboratory 10 litre batch reactor to the industrial 8000 

litre reactor, there were some significant differences such as the relative heat loss, agitation 

efficiency or the pressure set-point of the bursting disc.  
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6.3 CFD modelling of the passive trip system  

Due to the hazardous nature of runaway reactions, some factors can not be exactly studied 

with laboratory scale experiments. Furthermore, the modelling of such systems with a zero-

dimensional code does not take into account all of the important factors. Recent developments 

in CFD (computational fluid dynamics) allow for carrying out virtual experiments in three 

dimensions. There is not much commercial CFD software which specializes in the modelling 

of chemical reactors but the most popular are: Comsol [66] and Fluent [67].  

CFD is a method of predicting fluid flow, heat and mass transfer, chemical reactions and 

other related phenomena (e.g. boiling, vaporization) by solving a set of appropriate partial 

differential equations that describe these processes – mass, momentum and energy balances. 

CFD simulations are very useful for modelling and designing processes, particularly in the 

industrial scale [68]. The work on CFD-models consists mainly of three steps: preprocessing, 

solution, postprocessing and will be presented in this sequence.  

6.3.1 Preprocessing – MixSim, Gambit and TGrid  

The commercial grid-generation tools MixSim 2.0, Gambit 2.2.30 and TGrid 3.6.8 (Fluent 

Inc., USA) have been used to create the geometry of the passive trip system and generate the 

grids. The preprocessing consists of four main steps:  

1. Building of the reactor, stirrer, and cooling coil geometries  

2. Verification of the above mentioned geometries  

3. Volume generation  

4. Mesh generation  

The geometry consists of a flat-bottomed cylindrical vessel (diameter D equal 0.16 m, and 

height H equal 0.45 m) without baffles, which is agitated by a stirrer. The emergency cooling 

process is performed by a cylindrical cooling coil.  

About 300.000 computational cells are applied for the simulation. It must be pointed out that 

an adequate number of cells is crucial for the accuracy of CFD calculations. Figure 6.16 

presents the technical drawing of the batch reactor under investigation. The geometries 

performed in MixSim, Gambit and TGrid are presented in Figures 6.17 – 6.18.  
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Fig. 6.16 Reactor vessel –  
               technical drawing 

Fig. 6.17 Reactor vessel -  
               MixSim 

Fig. 6.18 Reactor vessel -  
               Gambit, TGrid  

The geometry of the cooling coil has been simplified, see Figures 6.19-6.20. The grids of the 

cooling coil placed close to the connections between pipes and a tube were notably refined in 

order to ensure good quality of the grids, see Figure 6.21.  

   

Fig. 6.19 Cooling coil –  
               technical drawing 

Fig. 6.20 Cooling coil  Fig. 6.21 Cooling coil - grids 
 

Based on several trials, it was established that the number of cells for each grid and their 

quality is sufficient for our model. In the next step the geometry of the passive trip system 

was exported to the CFD software Fluent.  
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6.3.2 Solution – Fluent  

Fluent solutions are transient and thus require a time stepping procedure to solve the problem. 

Subsequently each time step needs to be converged in flow velocity and especially energy 

balance. The stability of the solution results in very small time steps, thus requiring a lot of 

them. The “Reynolds stresses” appearing in a momentum balance equation have been 

modelled by employing the Bussinesq hypothesis and the standard k-ε turbulent model [69, 

70]. The stirrer movements were modelled by using a “multiple reference frame” (MFR) 

approach. The finite volume method was employed and CFD simulations were carried out. 

Since the reactor and its equipment are symmetrical and the geometry was simplified by 

cutting it off, significant reduction of computing time could be achieved. For the esterification 

reaction of acetic anhydride with methanol the user defined function (UDF) was created. The 

kinetic expression and other related data were adopted from earlier studies. The properties of 

components and products were found in [71].  

6.3.3 Postprocessing  

The elaborated CFD model was built in order to simulate an operation of a laboratory scale 

reactor equipped with a passive trip system in both normal operation and operation after 

operational cooling failure. Due to the high computational requirements of the models applied 

to the problem, only flow and mixing simulations were performed. Nevertheless, this 

approach presents a good basis for further investigations of the model of the passive trip 

system.  

Modelling of such complex systems as this one is a very difficult task, since the physics and 

the computational resources are still very limiting and computational requirements are high. 

The complexity of the problem results from:  

- complex geometry (cylindrical reactor, cooling jacket, cooling coil, stirrer)  

- flow generated by a rotating stirrer  

- heat transfer combined with a flow (cooling coil, cooling jacket)  

- two-phase flow  

- phase change  

- chemical reaction (exothermic)  

The results presented in this chapter can be very useful for continuing and extending the 

application of CFD to passive trip systems and the approach used here can also be generalized 
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for different reacting systems and different reactor geometries. Approximations employed 

using the MRF method lead to very good results, which are presented in Figures 6.22 – 6.23.  

 
 
Fig. 6.23 Contours of velocity magnitude 
               (m/s) – 3D model  

 
Fig. 6.24 Contours of velocity magnitude 
               (m/s) – 3D model  

The results show that placing the cooling coil above the stirrer has a considerable influence on 

the mixing process, see Figures 6.24 – 6.25.  

 
 
Fig. 6.24 Contours of velocity magnitude  
               (m/s) – 3D model  

 
Fig. 6.25 Velocity vectors colored by velocity  
               magnitude(m/s) – 3D model  
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7 
Summary, conclusions & outlook  
 

 

7.1 Summary  

The passive trip system was investigated theoretically, experimentally and numerically. In the 

beginning, in Chapter 1, the demand for investigations on safety systems for batch and semi-

batch reactors was examined. The statistical study revealed that the topic still requires a lot of 

research, especially due to the relatively large number of accidents involving these reactors.  

Moreover, hazards related to chemical batch and semi-batch reactors, such as runaway 

reactions, were investigated in Chapter 2. In addition to this, safety systems and safety 

strategies such as passive, active or inherent were discussed in detail and a layer of protection 

analysis (LOPA) was identified as a suitable tool to achieve the safe operation of chemical 

reactors processing exothermic reactions.  

In the next step, the reliability study of the most frequently used chemical reactor trip systems 

for chemical reactors was carried out. Three active trip systems were compared with the 

passive one. The passive system demonstrated the lowest unavailability (6.1·10-5) and the best 

technical properties, as shown in Chapter 3.  

Chapter 4 presented the working principle and technical design of the PTS. For its 

simulation, visualisation and documentation, a three-dimensional model was used. It was 

created in 3D Studio Max software and then an animation which presented the working 

principle and the experimental procedure was prepared. For the aim of teaching, a video 

presentation with a real experiment was also made.  

In addition to the creation of a computerised model, the system was also built and laboratory 

investigations were carried out, see Chapter 5. Before each investigation, preliminary 
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calculations were performed. In the course of the experiments, the feasibility of applying the 

passive trip system to different chemical systems such as gassy, vapour and hybrid was 

examined and the results proved that the system is able to halt all of the above mentioned 

reactive systems.  

The preparation of these experiments was carried out using a zero-dimensional program 

written in FORTRAN. The crucial design and process parameters were optimized and a 

comparison between experimental and numerical results was carried out. The results of the 

laboratory-scale experiments were found to be quantitatively consistent with the simulated 

temperature-time and –pressure curves. Variations of different parameters and their influence 

on the trip function were investigated. The results indicated that the set-point pressure of the 

bursting disc is an important parameter for the success of a trip in controlling a runaway, as 

presented in Chapter 6.  

Furthermore, the plausibility of applying the passive trip system to an industrial reactor was 

also investigated. A FORTRAN program was used to carry out a simulation of a process for 

the production of TCP. The main conclusion was that the passive trip system would have 

avoided even a major accident, such as that in Seveso, in 1976.  

Finally, the CFD technique was applied to the modelling of the passive system. The 

commercial tools MixSim, Gambit and TGrid were used to create the geometry and a mesh of 

a reactor with a stirrer and a cooling coil. After that, the geometry was imported to the Fluent 

software. The simplified case of the mixing operation was defined and simulated.  

The possibility of taking advantage of passive features, such as the natural driving force of 

gravity, the pressure build-up during runaway or the operation of bursting discs, were 

examined and the feasibility of the passive trip system was proved. It can potentially be 

applied not only in a laboratory or pilot scale, but also at an industrial scale. The scale up 

process is not a simple task but the use of modern simulation techniques makes this process 

more feasible.  
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7.2 Implications for industrial application  

Some suggested industrial applications of the passive trip system include the following:  

- batch and semi-batch reactors,  

- storage facilities, and  

- continuous reactors in series.  

However, the most adequate applications are batch and semi-batch reactors. As already 

mentioned in Chapter 1, batch processes are most frequently involved in accidents compared 

to a continuous one.  

During investigations on the topic many factors and parameters were taken into account. 

Some of them helped design the safety system and could potentially be very helpful in 

industrial applications. For instance, in order to increase the heat transfer parameter, helical 

coils are recommended. One of the main advantages in the use of helical coiled tubes lies in 

the fact that the considerable length of the tubing may be contained in a space saving 

configuration. Heat transfer coefficients and mass transfer coefficients are higher in helical 

coiled tubes than straight tubes. When fluid flows through a curved pipe, the presence of 

curvature generates the centrifugal force that acts at a right angle to main flow and results in 

secondary flow. The strength of the secondary flow depends on the curvature of the surface.  

Furthermore, an application of other coolants than water would also influence a heat transfer 

coefficient. These factors can improve the functioning of the passive trip system and have to 

be taken into account at the scale up stage.  

A fundamental issue in applying the passive trip system to industrial use is the scale up of the 

emergency cooling tank, cooling coil and reactor. Even a very small increase in the volume of 

the reactor can lead to an inadequate design of the cooling coil and the coolant tank. 

Consequently, the trip function will fail and an incident may occur. The problem arises from 

the fact that the amount of heat produced increases proportionally to the volume of the reactor 

content (m3), whereas the cooling capacity varies in proportion to the surface of the cooling 

coil (m2).  

Due to economical and environmental factors, only water and a straight tube cooling coil 

were applied. Even so, the application of the aforementioned improvements will not create 

any crucial changes and, in laboratory-scale experiments, the influence of them is negligible. 
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7.3 Advantages of the PTS and future research  

As already discussed in Chapter 1, many industrial accidents caused by chemical reactions 

still happen today in the process industries. In the aftermath of that, new additional technical 

measures, which are mostly active, have been developed and applied. Consequently, the 

growing complexity of the process installations, where more and more products are produced, 

became a huge problem. Here, a new solution for the protection of chemical reactors as an 

alternative to active systems was proposed and tested. It does not rely on an energy supply 

from outside, pump functioning or generally PLC systems and therefore is much more 

reliable. The essence of the passive approach is the avoidance of hazards in the case of 

runaway reactions. At present, the system is in successful operation in the safety laboratory at 

the Otto-von-Guericke-University. Passive trip systems have many advantages as compared 

with active ones, such as:  

- higher availability (SIL 4),  

- quicker response in time (dependent on runaway incipient point),  

- huge sensitivity on deviation in the system,  

- automatic response on deviation in the system,  

- simplicity of the system (cheaper and easier maintenance),  

- water ingress into reactor is not possible,  

- high reliability performance (high reliability of bursting discs),  

- since the pressure which produces the problem is used as a driving force it cannot fail.  

These capabilities of the proposed solution provide the safety assurances needed at present for 

many installations worldwide. In spite of many advantages, the system has also some 

weaknesses, which have to also be presented. These are aspects such as: 

- energy loss during operation, which is, however, partly enhancing mixing,  

- longer pipes are needed,  

- more space is required,  

- the cost of additional tanks and pipes,  

- the difficulties by dimensioning for different reactive systems (e.g. lack of reaction 

kinetic data).  

Fortunately, these disadvantages are mostly related to equipment costs and the safety of a 

chemical reactor should not be compromised for economic reasons.  
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However, contrary to the passive system, active safety instrumented systems have many 

disadvantages:  

- an increased number of shutdowns and start-ups,  

- instruments may be susceptible to the weather conditions, such as water ingress or 

corrosion,  

- high complexity (higher maintenance costs),  

- adding safety systems may reduce the risk from specific hazards but creates an 

infrastructure which has a higher chance of an accident and exposes more people to its 

effects.  

Despite the advantages resulting from this thesis, the passive trip system can still be 

improved. The most important issues which should be investigated in the future are:  

- three-dimensional modelling of the reactor and emergency cooling for the purpose of 

optimisation,  

- the development of the passive trip system integrated with the passive inhibition,  

- the application of CFD for modelling of the passive trip system integrated with 

passive inhibition,  

- the application of the other cooling coil types,  

- the application of other coolants.  
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9 
Nomenclature & Abbreviations  
 

 

Latin letters  

A   cross section area     [m2]  

C   concentration     [kmol/m3]  

cp   specific enthalpy     [kJ/(kmol K)]  

D   diameter     [m]  

Ea   activation energy     [kJ/kmol]  

fr    friction factor      [-]  

G   wall thickness     [m]  

Hv   heat of vaporization     [kJ/kg]  

k0   pre-exponential factor (2order)  [m3/(kmol s)]  

L   length       [m]  

M    molar mass      [kmol/kg]  

   motor  

m   mass       [kg]  

n    number of moles, reaction order  [-]  

N   number     [-]  

Nu    Nusselt number    [-]  

P   pressure     [Pa]  

Pr    Prandtl number     [-]  

PBD   Activation pressure of BD   [Pa]  

Q    heat output rate    [W]  

r    rate of reaction    [mol/s] 

R   universal gas constant    [kJ/(kmol K)]  

Re    Reynolds number    [-]  

Ro   density      [kg/m3]  
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t   time       [s]  

T   temperature      [°C]  

U    overall heat transfer coefficient   [W/(m2 K)] 

V   volume     [m3],  

u    velocity      [m/s]  

u    time average unavailability    [-]  

X   volume fraction     [-]  

Greek letters  

α    heat transfer coefficient    [W/(m2 K)]  

ΔHr   reaction enthalpy    [kJ/kmol]  

ΔTad   adiabatic temperature rise   [kJ/kmol]  

λ    heat conductivity     [W/(m K)]  

λ   failure rate      [1/hr]  

ν    stoichiometric coefficient    [-]  

ρ    density      [kg/m3]  

θ   time interval between functional tests  [hr]  

Indices  

A    limiting component  

abs    absorbed  

ad    adiabatic conditions  

atm    atmospheric  

CC    Clausius-Clapeyron  

ch    characteristic  

c    cooling, cooling coil  

f    final  

g   gaseous products  

v   vapour products  

G    thickness  

i    component i  
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in    inlet  

L    liquid phase  

max    maximum  

out    outlet  

pr    process  

R    reactor  

rmv    removed  

R    chemical reaction  

s    parameter at the start 

tot    total  

v    vapour  

0    initial or reference state  

Abbreviations  

AV    automatic valve  

BD    bursting disc  

BR    batch reactor  

CSB    Chemical Safety Board  

CFD    computational fluid dynamics  

CSTR    continuously stirred tank reactor  

DA    Damkoehler number  

DIERS   Design Institute for Emergency Relief Systems 

DV    discharge valve  

ECST    emergency coolant supply tank  

HSE    Health and Safety Executive  

I    relay  

LG    level gauge  

LOPA    Layer of Protection Analysis  

MAHB   Major Accident Hazard Bureau  

MARS   Major Accident Reporting System  

MFR    multiple reference frame  

P    pressure switch  

PSH    pressure switch high  
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PSHH    pressure switch high high  

PTS    passive trip system  

SAL   switch alarm low  

SAH    switch alarm high  

SBR    semi-batch reactor  

SIL    Safety Integrity Level  

SIS   Safety Instrumented System  

SV    safety valve  

TCB    1,2,4,5 - tetrachlorobenzene  

TCP    2,4,5 - trichlorophenol  

TCDD   2,3,7,8 – tetrachlorodibenzo-p-dioxin  

TE    temperature sensor  

TSH    temperature switch high  

TSHH    temperature switch high high  

TMR    time to maximum rate  

UDF    user defined function  

ZEMA   Zentrale Melde- und Auswertestelle für Störfälle und Störungen in  

Verfahrenstechnischen Anlagen, UBA, Berlin  
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Appendices 
 

 

10.1 Appendix A – Common Accident Databases  

Table 10.1 List of common accident databases (Germany, EU Countries and USA) [3, 4]  

Data 
Source (a) 

Organization 
 

Years 
Searched 

Description Availability 

KAS Guides and reports adopted by 
the SFK and TAA 

1999–Present Includes fire and 
explosion incident 
reports  

www.sfk-taa.de/ 
 
http://www.kas-bmu.de/  
 

DECHEMA Description of non reportable 
accidental events (near misses)  

1978-present http://www.dechema.de/deu
tsch/dechema/pages/dechge
4.htm 
 
http://fach-
for.dechema.de/sicherheitste
chnik/deutsch/fa/ahag2/scha
den/index.html 

 
MARS Information on major accident 

hazards 
1982-Present 15 local databases in 

each Member State of 
the European Union 

http://mahbsrv.jrc.it/mars/D
efault.html  

ORPS Chemical occurrences (events 
and conditions) reported at 
DOE facilities 

1992- Present Analysis of 
occurrences, causes, 
corrective actions, and 
lessons learned as 
well as some 
statistical analysis of 
chemical safety 
performance  

http://www.dne.bnl.gov/etd/
csc/ 
 

NTSB Hazardous Materials Accidents 
- National Transportation 
Safety Board Reports 

1997-Present A list of hazardous 
materials accident 
reports 

http://www.ntsb.gov/Publict
n/Z_Acc.htm  

FACTS  
(TNO) 

FACTS, a database containing 
more than 22000 descriptions 
of serious accidents involving 
hazardous materials that 
caused, or could have caused, 

Accident prevention 
by analyzing former 
accidents. Research 
on safety methods, 
accident mechanisms, 

http://www.factsonline.nl/F
RIENDS2006update/tabid/1
88/Default.aspx 
 

http://www.sfk-taa.de/
http://www.kas-bmu.de/
http://www.dechema.de/deutsch/dechema/pages/dechge4.htm
http://www.dechema.de/deutsch/dechema/pages/dechge4.htm
http://www.dechema.de/deutsch/dechema/pages/dechge4.htm
http://fach-for.dechema.de/sicherheitstechnik/deutsch/fa/ahag2/schaden/index.html
http://fach-for.dechema.de/sicherheitstechnik/deutsch/fa/ahag2/schaden/index.html
http://fach-for.dechema.de/sicherheitstechnik/deutsch/fa/ahag2/schaden/index.html
http://fach-for.dechema.de/sicherheitstechnik/deutsch/fa/ahag2/schaden/index.html
http://mahbsrv.jrc.it/mars/Default.html
http://mahbsrv.jrc.it/mars/Default.html
http://www.dne.bnl.gov/etd/csc/
http://www.dne.bnl.gov/etd/csc/
http://www.ntsb.gov/Publictn/Z_Acc.htm
http://www.ntsb.gov/Publictn/Z_Acc.htm
http://www.factsonline.nl/FRIENDS2006update/tabid/188/Default.aspx
http://www.factsonline.nl/FRIENDS2006update/tabid/188/Default.aspx
http://www.factsonline.nl/FRIENDS2006update/tabid/188/Default.aspx
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severe damage and danger equipment, reaction of 
chemicals, emergency 
response and cost 
reduction 
Investigating the risks 
that are involved with 
the handling of 
hazardous materials  

USCG NRC Data on release notifications of 
oil and hazardous substance 
reports to NRC or EPA 
regional offices 
 

1982-Present Extensive range of 
incidents, including 
those resulting in a 
chemical release from 
a reactive incident All 
states and localities 
included 

http://www.nrc.uscg.mil/ 
 

OSHA IMIS 
 

Records of workplace 
inspections, including those 
prompted by accidents where a 
worker is injured 

1984-Present Information from 
OSHA field 
inspections, a third 
party 
More accurate 
description of 
impacts on employees 
and 
contractors 
Keyword indexing 
allows for 
easy search and 
retrieval 

www.dol.gov 
 

EPA ARIP 
 

Responses to questionnaires 
sent by EPA from facilities that 
have had significant releases; 
purpose is to learn about causes 
and consequences of hazardous 
material incidents 

1986-Present Supplements NRC 
reports for more 
significant events 
Additional 
information on causal 
factors, consequences, 
and company safety 
programs. Data are 
easily analyzed for 
common causes 
Includes all states and 
localities  

http://yosemite.epa.gov/OS
WER/Ceppoweb.nsf/conten
t/ds-epds.htm 

 

EPARMP 
Info 
 

Data about chemical releases 
resulting in specific impacts 
covered under RMP regulation 
(40CFR 68) 

1994-Present Provides further 
information about 
major events 
involving specific 
listed chemicals More 
accurate data on 
impacts, causal 
factors, and corrective 
actions Includes all 
states and localities  

http://yosemite.epa.gov/osw
er/Ceppoweb.nsf/content/R
MPoverview.htm 

 

http://www.nrc.uscg.mil/
http://www.dol.gov/
http://yosemite.epa.gov/OSWER/Ceppoweb.nsf/content/ds-epds.htm
http://yosemite.epa.gov/OSWER/Ceppoweb.nsf/content/ds-epds.htm
http://yosemite.epa.gov/OSWER/Ceppoweb.nsf/content/ds-epds.htm
http://yosemite.epa.gov/oswer/Ceppoweb.nsf/content/RMPoverview.htm
http://yosemite.epa.gov/oswer/Ceppoweb.nsf/content/RMPoverview.htm
http://yosemite.epa.gov/oswer/Ceppoweb.nsf/content/RMPoverview.htm
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IChemE 
Accident 
Database 

Reports about chemical 
incidents around the world 
from official government 
sources, the news media, and 
company reports 

1980-Present Scope is beyond 
incidents reported to 
or investigated by 
regulatory agencies or 
first responders 
Contains lessons 
learned from 3,000 
incidents 
 

http://www.icheme.org/she/
accident_db.html 
 
http://www.environment97.
org/framed/icheme/accident
1.htm 

HSE 
MHIDAS 

Information taken from public 
domain sources worldwide; 
however, majority of the 7,000 
incidents occurred either in UK 
or US 

1985-Present Scope is beyond 
incidents reported to 
or investigated by 
regulatory agencies or 
first responders 
 

http://www.hse.gov.uk/infos
erv/mhidas.htm  
 

U.S. Fire 
Administrati
on NFIRS 

Response data submitted by 
local fire departments  

1980-Present Includes fire and 
explosion incidents 
with no/little release, 
incidents resulting in 
property damage only, 
and near-misses if fire 
department was called 

 

http://www.usfa.dhs.gov/fir
eservice/nfirs/  
 

CSB CIRC Initial reports about chemical 
incidents around the world 
from official government 
sources, news media, and 
eyewitnesses 

1998-Present Scope is beyond 
incidents reported to 
or investigated by 
regulatory agencies or 
first responders 
includes domestic and 
international incidents 

 

http://www.chemsafety.gov/
circ/  

(a) KAS = Commission on Process Safety; DECHEMA = Society for Chemical Engineering and Biotechnology; 
ORPS = US Department of Energy's Occurrence Reporting and Processing System; NTSB = National 
Transportation Safety Board; FACTS = Database for accidents with hazardous materials ;MARS = Major Accident 
Reporting System; ARIP = Accidental Release Information Program; CIRC = Chemical Incident Reports Center; HSE = 
Health and Safety Executive, United Kingdom; IChemE = Institution of Chemical Engineers; IMIS = Integrated 
Management Information System; MHIDAS = Major Hazard Incident Data Service; NFIRS = National Fire Incident 
Reporting System; NRC =National Response; Center; RMP = Risk Management Program;  

http://www.icheme.org/she/accident_db.html
http://www.icheme.org/she/accident_db.html
http://www.environment97.org/framed/icheme/accident1.htm
http://www.environment97.org/framed/icheme/accident1.htm
http://www.environment97.org/framed/icheme/accident1.htm
http://www.hse.gov.uk/infoserv/mhidas.htm
http://www.hse.gov.uk/infoserv/mhidas.htm
http://www.usfa.dhs.gov/fireservice/nfirs/
http://www.usfa.dhs.gov/fireservice/nfirs/
http://www.chemsafety.gov/circ/
http://www.chemsafety.gov/circ/
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10.2 Appendix B – Major accidents involving chemical reactive 

substances  

Table 10.2 Study of major accidents involving chemical reactive substances [11]  

Accident  
 

Chemical description Main features of accident 

001  
 

Acid-base reaction; NaClO + acid waste Tanks connected erroneously; blocked valve due 
to crystals formation 

002  Ethylene oxide reacted with ancillary 
equipment  

Leakage; possible hot spot in column 

003  
 

Ethylene oxide reacted with moisture to 
form non-volatile polyethylene glycols in 
the insulation material which auto-oxidized 

Leakage in weld due to fatigue 
 

004  Phenol crystallization Lack of pipe heating led to blockage 
005  TiCl4 reacted with water Control system not disconnected during 

maintenance led to tank overflow; external 
operators did not know way out  

006  
 

Ethylene mixed with air, oxygen started 
decomposition of ethylene 

Incorrect purging of installation 
 

007  
 

Decomposition of nitro compounds due to 
temperature raise 

Climatic conditions lead to freezing of waste 
condensate 

008  
 

Unexpected formation of methylnitrate in 
tank containing chlorine residuals 

Introduction of hydrogen chloride contaminated 
with methanol 

009  Decomposition of 1-nitro-anthraquinone Unknown catalytic effect of impurities (inorganic 
salts)  

010  
 

TiCl4 reacted with water from cooling 
circuit 

Leakage in cooling circuit made water become in 
touch with TiCl4; leakage due to corrosion for 
incorrect cleaning procedures 

011  Self ignition of substances in storage area Unexpected unstable behaviour of substance 
012  Mixture formaldehyde/air exploded due to a 

temperature increase 
Welding operation in a tank containing flammable 
mixture provoked explosion 

013  
 

Mixture of Zinc powder and air Explosion due to hitting equipment with a hammer 
generating a hot nucleus of zinc powder 

014  NaClO + HClO releasing chlorine Labels of tanks had been interchanged 
015  
 

Decomposition of crystallized 
hypophosphorous acid; formation of 
explosive air/phosphine mixture 

Formation of crystalline incrustration in tank; 
failure in steam supply line 

016  
 

Flammable vapours ignited Excessive heating from worn bearing of the 
agitator 

017  Mixture of methanol, methylacetate and air 
ignited 

Wrong maintenance procedures 

018  
 

Crystalline SO3 formed due to contact 
between oleum and ammonium sulphate 

Introduction of air increased pressure in blocked 
pipe  

019  Acid mixture in contact with water 
generated release of nitrous gases 

Storage tank not properly emptied, cleaning water 
reached tank 

020  
 

NaClO + acid releasing chlorine Label mismatch, tank used for NaClO was 
exceptionally loaded with acid, then forgotten 

021  
 

Self ignition of substances in storage area 
for wastes 

Unexpected unstable behaviour of substance 

022  Ferric chloride sulfate + sodium chloride No verification of vessel contents 
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 released chlorine 
023  
 

Decomposition of H2O2 due to presence of 
impurities 

Ventilation pipe used for safe drainage of H2 
blocked, possibility of product backflow 

024   Aqueous caustic soda solution ţ alkyl 
residues generating flammable gases 

The container had been sealed infringing operating 
instructions 

025  Uncontrolled formation of phenylphosphine Unexpected unstable behaviour of substance 
026  Flammable vapours ignited Ignition due to lightning with halogen lamp in 

highly flammable tank 
027  
 

Ignition of polyvinylpyrrolidine Oxidation and ignition due to atmospheric air feed 
instead of nitrogen 

028  Release of polychloroacetone Faulty pipe connection 
029  Release of phenol-water solution Operator erroneously opened valve 
030  Mixture of air/styrene vapours ignited Mixture ignited due to static electricity 
031  
 

Release of acetylene and decomposition 
products 

Leakage of pipe 

032  
 

Release of SO2 due to different exothermic 
reactions 

Wrong storage procedures; no toxic detectors 

033  
 

Decomposition of fertilizers producing NOx 
vapours due to wrong mixture of products 
containing Cu and Cl 

Wrong process analysis  

034  Ignition of air/ethyl alcohol mixture Mixture ignited due to static electricity 
035  Ignition of flammable materials due to 

overheating 
Wrong storage procedures 

036   
 

Explosion of mixture of volatile elements 
and fuel-oil 

Unexpected unstable behaviours of substance 

037  NaClO + HCl releasing chlorine Tank rupture; pipe containing uncompatible 
materials broke as well 

038  
 

Fire of sodium dichlorisocyanurate 
associated with the release of chlorine 

Rupture of bag, product reached drainage, ignited 
in touch with wastes and oils 

030 Decomposition of fertilizers Wrong storage procedures 
040  Decomposition of H2O2 due to presence of 

impurities 
Control failure + human error; valves opened that 
should have been closed 

041  
 

Release of hydrochloric acid and sulphur 
dioxide due to mixture of sulphur chloride 
and water 

Operator cleaned tank with water 

042  
 

Spontaneous burning of pyrophoric iron 
sulphides deposit 

No verification of vessel contents 

043  NaClO + HCl releasing chlorine Chemicals picked from wrong container 
044  
 

Trichloromethylsilane + water releasing 
chlorine 

Operator mixed wrong chemicals 

045  Isocyanuric acid + water Label mismatch 
046  
 

Ignition of sodium chlorate + combustible 
substances in storage area 

Wrong storage procedures 
 

047  Explosion of sodium hydroborate Unexpected unstable behaviour of substance 
048  
 

Sulphuric acid + sodium bisulphite released 
SOx 

No verification of vessel contents, wrong chemical 
used 

049  Release of SO2 Wrong handling of chemical drum 
050  
 
 

Spontaneous combustion of sodium 
dichloroisocyanurate polluted with organic 
compounds 

Wrong storage procedures; hazard was foreseen 
but no measures put in place 

051  Ethoxyalkylphenol + water Operator mixed wrong chemicals 
052  Water + benzoil chloride Leakage due to failure of joint in condenser 
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053  
 
 

Tosyl isocianate + metal container released 
H2S, HCl, sawdust added as inhibitor but 
did not work 

Wrong operation procedures; addition of sawdust 
to inhibit reaction did not work 

054  
 

Sodium chloride + ferric chloride NaClO introduced erroneously in tank containing 
FeCl3 

055  
 

Dust cloud ignition Chemical reacted with container material; 
blockage of aerosol outlet 

056  Decomposition of 2-azo-bis 
methylburtyronitrile 

One plate of the dryer was broken; excessive 
heating over safe temperature 

057  Release of HCN Wrong process analysis 
058  Reaction of water + toluene diisocyanate Leakage 
059  KMNO4 + ethanol solution No verification of compatibility of mixture 
060  
 

Benzoyl chloride + methanol released HCl Verification of compatibility of mixture 
inadequate 

061  Release of SO2 Accumulation of product in equipment; 
improvement of agitation systems required 

062  
 

Trichloromethylbenzol reacted with 
humidity releasing HCl 

Wrong connections 
 

063  Formation of polymer of ethylene oxide Valve blockage 
065  
 

Release of vapours and ignition due to 
welding 

Wrong procedures for maintenance 

066  
 

Ignition of vapours Wrong application of foam; compatibility of 
auxiliary services 

067  Decomposition of azodibutyronitrile Unexpected unstable behaviour of substance 
068  
 

Mixture of H2, light hydrocarbon gases and 
CO ignited by pyrophoric carbon deposits 

Wrong maintenance procedures 

069  
 

Ignition of different materials accumulated Long overheating of materials; wrong tests to 
determine thermal stability 

070  
 

Ignition of unstable residues containing 
nitrotoluenes and nitrocresols 

Wrong management and maintenance, failure of 
tests for stability 

071 Mixture of water with SO3 releasing H2SO4 Erroneous introduction of water, no verification of 
vessel contents 

072 Sodium chloride + epichlorydrin generated 
an exothermic reaction 

No verification of vessel content 
 

073  
 

SCl2 + water releasing SO2 Monochlorobenzene by supplier contaminated 
with water 

074 Release of hydrogen sulphide gas, formed 
when waste chemicals were mixed 

Wrong process analysis 
 

075 Ignition of metholate Operator forgot to switch off heater, lead to 
overheating 

076 Ignition of solvent vapours, acetone, 
methanol 

Static electricity from polyethylene bags 

077 Powdered pharmaceutical product ignited Static electricity, wrong process analysis 
078 Explosion of highly flammable liquids Teflon coating worn out, metal-to-metal contact 

generated the explosion 
079 Explosion of methanol vapours/air mixture No inertization, monitoring of flammables, 

explosive or smoke detectors 
080 Nitric acid + formic acid Wrong connections; mistaken tank 
081 
 

Explosion of different solvents Unknown catalytic effect of impurities (inorganic 
salts) 

082 Release of flammable hydrocarbons + 
NaOH solution 

Human error during diluting mixture; flammable 
reached zone of welding work; stop of electricity 
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supply induced explosions in other zones 
083 Ignition of acrylonitrile, vinyl acetate 

polymers 
Accumulation of product in equipment; ignition 
due to friction generating sparks 

084 Explosion involving thioridazine 
hydrochloride 

Residues from previous process, incomplete 
cleaning of vessel; ignition due to static electricity; 
no investigation of previous incidents 

085  
 

Release of PCl3 in contact with water 
generates HCl and phosphines which self-
ignited 

Wrong connections; reaction with rain water; 
extinguishing with water increased HCl cloud 
 

086 Decomposition of organic peroxides Overheating; incorrect procedures for heating; 
control and management failures 

087 Flammable vapours ignited due to self 
heating 

Wrong process analysis; no flame arrestors 
installed 

088  
 

TiCl4 and AlCl3 water pressure increase and 
HCl release 

Deposit of AlCl3 and TiCl4 formed in tube 

089  
 

Decomposition of NO2 due to overheating Overheating due to pump bearing; pumps 
inadequately cooled 

090  
 

Polymer waste explosion Operators not aware of possible flammables inside 
vessel 

091  Ignition of flammable materials Leakage + ignition due to welding operations 
092  Phenol-formaldehyde polymerization Mischarging; operator error, lack of training 
093  Polyvinyilchloride polymerization Supplies failure 
094  Epichlorhydrine polymerization Cooling failure 
095  Copper phthalocyanine + chlorosulfonic 

acid 
Dosing failure; no interlock between sensors 

096  
 

Azo compounds for paints Agitation failure; operation error restarting 
agitation 

097  Nickel-metal + nitric acid Cooling failure 
098  
 

Ketone-colons manufacture, 
dimethylaniline chloroform, phosgene and 
dyphenilketone 

Dosing failure; erroneous use of water 
 

099  Unknown, dymethilsulphate involved Dosing failure; operator error 
100  Azo compounds for paints Impurities/contamination 
101  Azo compounds for paints Impurities/contamination 
102  
 

Resin synthesis (maleic anhydride, lithium 
hydroxide) 

Mischarging; control system erroneously 
programmed 

103  
 

Production of dimethyl 
phosphorochloridothioate and 
diethylphosphorochloridothioate 

Dosing failure; insufficient cooling 
 

104  Polyvinyilchloride polymerization Pressure increase due to unknown reasons; safety 
valve did not work 

105  
 

Unknown, involved SO2 Impurities/contamination; presence of water 
unnoticed 

106  Polyvinyilchloride polymerization Supplies failure; inhibition did not work 
107  
 

Polyvinyilchloride polymerization Dosing failure; rupture disk broken releasing gas 
in atmosphere 

108  
 

Fine chemical production (sodium 
borohydride) 

Pressure increase due to unknown temperature 
rise, breaking down process intermediate; reactor 
was on stand by 

109  Synthesis of 3-methylthioaniline Dosing failure; inversion of order in reactants 
110  Styrene polymerization Supplies failure; false indication in control room 
111  Various chemicals for production of textile Mischarging; wrong pH control 
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 and plastic industries; emulsion oil and 
water 

 

112  
 

Production of zirconium sponges (involving 
Mg) 

Impurities/contamination 

113  
 

Synthesised active ingredients for the 
pharmaceutical industry, 

Dosing failure; wrong working procedures; 
unexperienced worker 

114  Production of pectines Dosing failure 
115  Phenol-formaldehyde polymerization Supplies failure; wrong working procedures 
116  Phenol-formaldehyde polymerization Dosing failure; wrong working procedures 
117  
 

Pharmaceutical synthesis (p-
clorobenzaldehyde instead of o-
cloronitrobenzene) 

Mischarging; labelling mismatch from supply 

118 
 
 

H2O2 + alcohol vapour Impurities/contamination; bursting disks did not 
work; no investigation of previous similar 
incidents 

119  Fertilizers production Impurities/contamination 
120  
 

o-Nitrobenzylnitrate was produced instead 
ofo-nitrobenzaldehyde 

Impurities/contamination; dumping system did not 
operate 

121  Difluoronitrobenzene contaminated with 
water 

Impurities/contamination; decomposition T of 
intermediates were known, but unexpected that the 
presence of water could generate such T raise 

122  
 

Ethylene production Unknown causes for the runaway; isolation and 
dump valves did not work; hot carbon particles 
generated during the fire ignited vapours 

123  Unknown (involved ethanol and Ni Raney) Cooling failure; control failure; pyrophoric nickel 
as source of ignition 

124  
 

Dosing failure involving H2O2 Dosing failure; operator error; failure of quenching 
system 

125  
 

Hydrogen explosion Leakage; ignition due to static electricity; agitator 
failure; no study of previous incidents; failure of 
bursting disk 

126 
 

Manufacture of bulk fine chemicals (1-
methyl-2-fromyl-1-Nitroimidazole) 

Unknown; wrong laboratory analysis procedures; 
accident during change of scale trials 

127  
 

Isopropyl alcohol recovery Unknown; potential for runaway not detected 
previous to production 

128  
 

Phtalocyamines process unit Dosing failure; operator error; no monitoring of 
pH; pressure relief system inadequate 

129  
 

Production of chemicals to reduce grease Mischarging; wrong chemicals; inexperienced 
operator; no emergency measures available 

130  
 

Polyvinyilchloride polymerization Mischarging; operator error; extra cooling didn’t 
work; formation of corrosive substance attacked 
reactor wall; sprinkler system worked 

131  Polymerization of dicyclopentadiene Mischarging; wrong working procedures; 
inadequate training 

132  Production of ferric chloride Dosing failure; no pH monitoring; wrong working 
procedures 
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10.3 Appendix C – Statistics for runaway incidents  

Storage equipment
22%

Waste equipment
3%Reactor

25%

Unknown 
8%

Transfer equipment 
5% Separation equipment
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Other process 
equipment

22%

Storage drum 
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Figure 10.1 Equipment involved in incidents, 1980-2001  
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Figure 10.2 Industry profiles, 1980 – 2001 (CSB)  
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Figure 10.3 Specific manufacturing industries (189 incidents)  
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Decomposition initiated by 
another reaction
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Figure 10.4 Types of exothermal runaway reaction  
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Figure 10.5 Main causes of Runaway Reactions in UK (Chemical Industry) [1986-2000]  
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Figure 10.6 Consequences of runaway reactions 
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10.4 Appendix D – Mathematical modelling  

10.4.1 System of equations for esterification of acetic anhydride  

In what follows the model for treating the passive trip system is presented using the 

esterification reaction as an example. The procedure is analogous for the other reactions. 

Mass balance of the liquid phase in the reactor  

The change of the mass of liquid in the reactor is produced either by de-gassing or 

evaporation or both, as described by the following equation.  

g vl
dm dmdm

dt dt dt
= − −                    (10.1) 

Mass balance of the gas production   

Eq. 10.2 gives the change of the mass of gas with time. For the vapour system, which does not 

produce gas, we have 

gdm
0

dt
=                      (10.2) 

Mass balance of vapour  

The heat generated by the reaction serves to both heat up the reactor content and to finally 

evaporate it. This is reflected by the following equation 

EA
RT

0 1 2 R l p
v

V

dTk e c c H V m cdm dt
dt H

−⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅
=                  (10.3) 

Change of temperature in time  

The energy balance is contained in eq. (10.4). coolQ&  is the cooling power of the emergency 

cooling system. Before its response it is equal to 0, afterwards it is represented by eq.(10.5). 

Its left hand side becomes equal to zero as soon as the boiling temperature is reached; the 

latter is approximated using the well-known equation of Clausius-Clapeyron.  



Appendices 

 115

vA
0 1 2 R V cool

L p

dmE
k exp c c H V H Q

R T dtdT
dt m c

⎛ ⎞⋅ − ⋅ ⋅ ⋅ ⋅ − ⋅ −⎜ ⎟⋅⎝ ⎠=
⋅

&

              (10.4) 

Heat removal after trip system response 

( ) ( ) ( )
cool p,c c,in

p,c

s t P U
Q t m c T T 1 exp

m c

⎡ ⎤⎛ ⎞⋅ ⋅
= ⋅ ⋅ − ⋅ − −⎢ ⎥⎜ ⎟⎜ ⎟⋅⎢ ⎥⎝ ⎠⎣ ⎦

& &
&

              (10.5) 

Where m& is the coolant mass flow, T the reactor temperature, Tc,in the coolant inlet 

temperature, cp,c the therml capacity of the coolant, U the global coefficient of heat transfer, P 

the parameter of the cooling coil and s(t) the distance the coolant has been introduced, which 

is obtained from eq.(10.7).  

Emergency coolant acceleration  

The accelerating force is the difference between internal and external pressure multiplied by 

the cross-section area of the coolant coil pipe. Opposed to it is the force produced by the 

friction of the coolant flow, i.e.  

( ) 2 c
c atm c r c c

c c

c

L1A P P A f v
dv 2 d
dt m

⋅ − − ⋅ ⋅ ⋅ ⋅ρ ⋅
=                 (10.6) 

Using eq. (10.6) one obtains the distance of introduction of the coolant by  

( ) ( )
t

c
0

s t v t dt′ ′= ∫                     (10.7) 

Mass balance of the acetic anhydride  

The concentration of acetic anhydride changes with time according to a second order reaction 

kinetics, i.e.  

1 A
0 1 2

dc E
k exp c c V

dt R T
⎛ ⎞= − ⋅ − ⋅ ⋅ ⋅⎜ ⎟⋅⎝ ⎠

                 (10.8) 
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Mass balance of methanol  

The concentration of methanol changes with time in analogy with eq. (10.8), i.e.  

2 A
0 1 2

dc E
k exp c c V

dt R T
⎛ ⎞= − ⋅ − ⋅ ⋅ ⋅⎜ ⎟⋅⎝ ⎠

                 (10.9) 

Documentation of the equations not defined here, can be find in the table 10.3.  

10.4.2 Algorithm  

Figure 10.6 presents the algorithm of the FORTRAN program for modelling the passive trip 

system. The algorithm was performed in a flowchart form and enables one to follow 

important steps through calculations of the passive trip system.  
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Figure 10.6 Algorithm for FORTRAN program 
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10.4.3 Process parameters  

Table 10.3 Process and system parameters for numerical simulation (esterification)  

Symbol Passive trip system data Unit Value 
VR Reactor volume  [m3] 0.01  
Dc Diameter of the cooling coil [m] 0.00635  
Lc Length of the cooling coil [m] 2.1  
Gc Thickness of the cooling coil wall [m] 0.001  
Nc Number of cooling coils [-] 1  
PBD Activation pressure of BD  Pa 1·105 - 4·105 

  
Initial parameters    

ml Mass of the liquid in reactor  [kg]  7.96 
xg Volume fraction of the gas space  [-]  0.11 
c1 Concentration of acetic anhydride  [kmol/m3] 10.58 
c2 Concentration of methanol  [kmol/m3] 24.8 
mc Mass of the coolant  [kg]  10 

  
Material data    

Hv Specific enthalpy of vaporization  [kJ/kg] 648.4 
cp Specific enthalpy  [kJ/(kg K)] 2.55 
ρ Density  [kg/m3] 900.8 
R Specific gas constant  [J/kg K] 259.49 

  
Reaction parameters    

ΔHr Specific enthalpy of reaction [kJ/kg] 650 
k0 Pre-exponential factor [1/s] 8.96·106 
Ea Activation energy [kJ/kmol] 73752 
T0 Work temperature [K] 300 
Tcc Temperature for CC equation [K] 293 
Pcc Pressure for CC equation [Pa] 105 
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10.5 Appendix E – Material properties  

10.5.1 Esterification of acetic anhydride  

Table 10.4 Properties of reactants and products in esterification reaction  

Parameter / Reactant Acetic 
Anhydride Methanol Acetic Acid Methyl 

acetate 

Formula 
(CH3 CO)2O 

C4H6O3 

CH3OH 

CH4O 

CH3COOH 

C2H4O2 

CH3COOCH3

C3H6O2 

Molar mass [kg/kmol] 102.01 3.04 60.05 74.08 

- UEL (%) 10.1 36,5 16 12.1 

- LEL (%) 2.7 6 5.4 2.9 

Flash point (°C) 49 12 39 N/A 

Autoignition (°C) 316 385 - 470 427 N/A 

Vapour density 3.52 - 2.1 2.56 

Vapour pressure mm Hg at 

25°C (kPa) 
0.68 16.9 2.07 28.8 

Melting point (°C) -7.3 -97,8 16.7 -20,8 

Boiling point (°C) 139 64,5 117.9 141.1 

Density (kg/m3) 1082 795 1049 933 

Specific enthalpy of 

formation (kJ/mol)  
-624.4 -239.1 -484.5 -445.8 

Specific enthalpy of 

vaporization (kJ/kg) 
506.244 1101 395 - 

Specific heat capacity  

cp (kJ/(kg K)) 
1.670 2.496 1.997 2.119 
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10.5.2 Decomposition of hydrogen peroxide  

Table 10.5 Properties of reactants and products in a decomposition of hydrogen peroxide  

 

Parameter / Reactant 

Hydrogen 

peroxide 

(30%)  

Water Oxygen 
Manganese 

dioxide  

Formula  H2O2 H2O O2 MnO2  

Molar mass (kg/kmol) 34.02 18  32  86.94  

- UEL (%) N/A not appl. N/A not appl. 

- LEL (%) N/A not appl. N/A not appl. 

Flash point (°C) N/A not appl. N/A gas not appl. 

Autoignition (°C) 316 not appl. N/A not appl. 

Vapour density 3.52   not appl. 

Vapour pressure mm Hg at 

20°C (kPa) 
24 2.32  not appl. 

Melting point (°C) -25 0 -219 535 

Boiling point (°C) 106 100 -181 not appl. 

Density (kg/m3) 1110 1000  5080 

Enthalpy of formation 

(kJ/mol)  
-241814 -285.83 0 -520 

Enthalpy of vaporization 

(kJ/mol)  
51.6 40.65 6.82 - 

Specific heat capacity  

cp (J/(mol K)) 
89.1 75.3 29.4 54.1 
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10.6 Appendix F – Seveso process and reactor model  

TeCB 

( ) 1 61 A1
1

n ndn E 1 1k 428 K exp
dt R T 428 V

⋅⎡ ⎤⎛ ⎞= − ⋅ − ⋅ − ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
    (Eq. 10.10) 

TCA 

( ) ( )

( )

( )

1 62 A1
1 2

2 6 A3A2
3

2 6 A3 2 6
5

n ndn E 1 1k 428 K exp k 428 K
dt R T 428 V

n n EE 1 1 1 1exp k 428 K exp
R T 428 V R T 428

n n E n n1 1k 428 K exp
V R T 428 V

⋅⎡ ⎤⎛ ⎞= ⋅ − ⋅ − ⋅ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⋅⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⋅ − ⋅ − ⋅ − ⋅ − ⋅ −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⋅ ⋅⎡ ⎤⎛ ⎞⋅ − ⋅ − ⋅ − ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

  (Eq. 10.11) 

TCP 

( )

( )

3 2 6A2
2

3 6A4
4

dn n nE 1 1k 428 K exp
dt R T 428 V

n nE 1 1k 428 K exp
R T 428 V

⋅⎡ ⎤⎛ ⎞= ⋅ − ⋅ − ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⋅⎡ ⎤⎛ ⎞− ⋅ − ⋅ − ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

    (Eq. 10.12) 

TCDD 

( )

( )

A5 2 64
5

3 6A4
4

E n ndn 1 1k 428 K exp
dt R T 428 V

n nE 1 1k 428 K exp
R T 428 V

⋅⎡ ⎤⎛ ⎞= ⋅ − ⋅ − ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
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NaOH 
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 (Eq. 10.15) 

CH3OH 
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    (Eq. 10.16) 

Process energy balance 
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 (Eq. 10.17) 
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- Heat capacity CP (accounts for heat capacity of residual products, which produces an 

increase of the total heat capacity from 15600 kJ/kg to 20100 kJ/kg after feed)  

( )P 7,i 7C 116.82 n n= ⋅ −   

- Heat loss from the reactor (which varies with reaction temperature and amounts to 21 

kW at 155°C)  

( )lossQ = 0.15556 T-293.15⋅&   
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Coolant energy balance and PI controller  
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     (Eq. 10.18) 
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i

0i =⋅−⋅=     (Eq. 10.20) 

( ) ( ) 00ssTKuks hiT/mVcch =+⋅−⋅=     (Eq. 10.21) 

Table 10.6 General process conditions  

 
kw heat transfer coefficient 0.5 kW/(m2 K) 
A area for heat exchange 12 m2 
Tin temperature of sodium hydroxide feed 25°C 
ΔHmix enthalpy of mixing (NaOH/TeCB) -30 kJ/mol 
Vi initial volume 4825 l 
Vf final volume 5600 l 
Td dosification period for NaOH 60 min 
n1,i tetrachlorobenzene (TeCB) (initial quantity) 6161 mol 
n4,i miscellaneous by-products (initial quantity) 368 mol 
n6,i sodium hydroxide (initial quantity) 950 mol 
n7,i methanol (initial quantity)  93827 mol 
ρ6 density 50% aqueous solution of sodium hydroxide 1521.7.10-3 kg/l 
ρ7 density of methanol 773.2.10-3 kg/l 
CR heat capacity of the reactor 6800 kJ/K 

 

Table 10.7 Cooling system including control  
 

Q&  net heat generation (reaction+mixing- lossQ& -feed) kW 
Tc,in coolant inlet temperature 20°C 
cp,w coolant heat capacity (water) 4.179 kJ/(kg K) 

a coolant/steam mass flow at time t* (when T = 428.15K is 
reached) 2 kg/s 

τ cooler time constant 100.0 s 
K cooler gain 5.0 kg/(s.mV) 
uc command signal 428.15 mV 
kc proportional gain 10.0 
KmV/T gain of temperature in mV transducer 1.0 mV/K 
K0 gain 10.0 
K1 gain  1 kg/(s.kW) 
pi integrator coefficient 5.0 s 
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10.7 Appendix G – Three-dimensional visualisation of the PTS 

The visualization of the passive trip system is available on request. The movie can be opened 

with any video player.  

 

Figure 10.7 Visualisation of the passive trip system  
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