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Abstract

Decoding patterns of neural activity onto cognitive states is one of
the central goals of functional brain imaging. Standard univariate
fMRI analysis methods, which correlate cognitive and perceptual
function with the blood oxygenation-level dependent (BOLD) sig-
nal, have proven successful in identifying anatomical regions based
on signal increases during cognitive and perceptual tasks. Recently,
researchers have begun to explore new multivariate techniques that
have proven to be more �exible, more reliable, and more sensi-
tive than standard univariate analysis. Drawing on the �eld of
statistical learning theory, these new multivariate pattern analysis
(MVPA) techniques possess explanatory power that could provide
new insights into the functional properties of the brain.
However, unlike the wealth of software packages for univariate anal-
yses, there are few packages that facilitate multivariate pattern
classi�cation analyses of fMRI data. This in turn prevents the
adoption of these methods by a large number of research groups
to fully assess their potential with respect to cognitive neuroscience
research. Here, a novel, Python-based, cross-platform, and open-
source software framework, called PyMVPA, for the application of
multivariate pattern analysis techniques to fMRI datasets is intro-
duced. PyMVPA makes use of Python's ability to access libraries
written in a large variety of programming languages and comput-
ing environments to interface with the wealth of existing machine-
learning packages. The framework is presented in this thesis, and
illustrative examples on its usage, features, and programmability
are provided.
In addition, this thesis provides an overview of promising strategies
for the application of MVPA to neuroimaging datasets. While vari-
ous possibilities are reviewed based on previously published studies,
the primary focus lies on the sensitivity analysis technique that is
shown to provide interesting additional information which are read-
ily available as part of any typical MVPA-based study. Moreover,
this technique is eminently suited for modality-independent data
analysis, a feature that is demonstrated by an example of a uniform
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analysis of datasets from four di�erent brain imaging domains.
The thesis concludes with a discussion about the challenges that
have to be faced to establish MVPA as a standard analysis pro-
cedure, including the statistical evaluation of results, as well as
potential pitfalls in their interpretation.
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1. Advancing the

Comprehension of Brain

Function with Multivariate

Pattern Analysis

Recently, neuroscientists have reported surprising results when they
applied machine learning techniques based on statistical learning
theory in their analysis of fMRI data1. For example, two studies
employing multivariate pattern analyses by Haynes & Rees (2005)
and Kamitani & Tong (2005) were able to predict the orientation
of visual stimuli from fMRI data recorded in human primary visual
cortex. These studies aggregated information contained in variable,
subtle response biases in large numbers of voxels which would not
be detected by univariate analysis. These small signal biases were
su�cient to disambiguate stimulus orientations despite the fact that
their fMRI data were recorded at 3mm spatial resolution. This is
especially notable because the organization of the primary visual
cortex in monkeys indicates that the orientation-selective columns
are only approximately 0.5mm in diameter (Vandu�el, Tootell,
Schoups, & Orban, 2002), consequently any individual voxel car-
ries only a small amount discriminating information on its own.
Other MVPA-based studies have further highlighted the strength
of a multivariate analysis approach. For example, MVPA was �rst
used to investigate neural representations of faces and objects in
ventral temporal cortex and showed that the representations of dif-
ferent object categories are spatially distributed and overlapping
and revealed that they have a similarity structure that is related to

1In the literature, authors have referred to the application of machine learning
techniques to neural data as decoding (Kamitani & Tong, 2005; Haynes et al.,
2007), information-based analysis (e.g. Kriegeskorte, Goebel, & Bandettini,
2006) or multi-voxel pattern analysis (e.g. Norman, Polyn, Detre, & Haxby,
2006). Throughout this thesis the more general term multivariate pattern

analysis (MVPA) will be used to refer to all these methods.
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stimulus properties and semantic relationships (Haxby et al., 2001;
Hanson, Matsuka, & Haxby, 2004; O'Toole, Jiang, Abdi, & Haxby,
2005).
Although the �rst use of MVPA on neuroimaging data dates back
into the early 1990s (Moeller & Strother, 1991; Kippenhahn, Barker,
Pascal, Nagel, & Duara, 1992, with both studies using data from
positron emission tomography, PET), these striking developments
have just recently attracted considerable interest throughout the
neuroscience community (see Norman et al., 2006; Haynes & Rees,
2006, for reviews). While classical, multivariate statistical tech-
niques, such multivariate analysis of variance (MANOVA), are not
well suited for the speci�cs of fMRI data (e.g. due to its high-
dimensionality with low number of observations; O'Toole et al.,
2007), machine learning (ML) research has spawned a more pow-
erful set of multivariate analysis techniques. They are typically
generic, �exible (e.g. classi�cation, regression, clustering), power-
ful (e.g. multivariate, linear and non-linear) and often applicable to
various data modalities with minor modality-speci�c preprocessing.
These techniques, which were developed outside the neuroscience
community, could provide another valuable approach to the anal-
ysis of neural data. This chapter aims to assess their potential by
contrasting their most important properties with currently prevail-
ing analysis procedures to pinpoint general di�erences, limitations,
and advantages. This introduction will necessarily be brief and lim-
ited to the topics which are closely related to the scope of this thesis.
For a general overview of inferential and non-inferential fMRI anal-
ysis techniques the reader is referred to Petersson, Nichols, Poline,
& Holmes (1999a,b).
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1 Advancing the Comprehension of Brain Function

1.1. Exploring the brain voxel by voxel

The most prevalent approach used in the analysis of fMRI data is
the statistical parametric mapping (SPM; Friston, Holmes, et al.,
1994). SPM employs a voxel-wise analysis procedure that aims to
localize units in the functional neuroanatomy by comparing every
voxel's behavior to modeled signal timecourses derived from prior
knowledge about the hemodynamic system of the brain.
Although in principle all fMRI analysis techniques rely on the hemo-
dynamic signal measured by fMRI, SPM requires speci�c assump-
tions about the nature of this signal to be made. Hence, a few
important details need to be mentioned to be able to outline po-
tential problems that arise from these assumptions.
A subset of the fMRI signal is related to the ratio of oxyhemoglobin
and deoxyhemoglobin in a particular voxel, where an increase in
the proportion of deoxyhemoglobin is causing local decreases in
the strength of the magnetic �eld, and vice versa (Ogawa, Lee,
Kay, & Tank, 1990). The e�ect is called the blood oxygenation
level-dependent (BOLD) response, and this physiological signal is
thought to re�ect the intensity of the neural processing (i.e. �ring of
neurons) in the surrounding brain tissue � an idea originally postu-
lated by Roy & Sherington (1890). Evidence in favor of this hypoth-
esis comes from two studies by Logothetis (Logothetis, Pauls, Au-
gath, Trinath, & Oeltermann, 2001; Logothetis, 2002) which found
strong correlations between the BOLD signal and local �eld poten-
tials (LFPs) simultaneously measured by intracortical electrodes.
However, the association of the BOLD signal and neural processing
has not gone unquestioned and the corresponding debate does not
seem to be resolved yet (see e.g. Heeger & Ross, 2002, for a review).
The basic analysis routine of SPM involves the generation of (poten-
tially many) BOLD response models from the actual experimental
design, covering the full duration of a scanning session. The hemo-
dynamic signal in response to a short stimulation is signi�cantly
smeared over time (Bandettini, 1999), so that when building the
BOLD-response model, this temporal forward contamination of the
signal is typically accounted for by convolving a stimulation proto-
col with an assumed hemodynamic response function (HRF). More-
over, the extension of the stimulus-related signal over time causes a
signi�cant overlap of responses to rapidly occuring stimulations. A
central assumption in SPM is that overlapping responses combine
in an additive fashion (Boynton, Engel, Glover, & Heeger, 1996).
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1.1 Exploring the brain voxel by voxel

The panels (A) and (B) in �gure 1.1 show an exemplary �transla-
tion� of a stimulation protocol with events of decreasing temporal
distance into the BOLD-response model.
For any further analysis the models have to be downsampled to
match the temporal resolution of the recorded fMRI data (Fig.
1.1C). Afterwards each response timeseries model can be used as a
regressor in a general linear model (GLM), which is then �tted to
the actual timeseries of each voxel in the dataset individually, i.e.
univariately (Fig 1.1D and E). The regressor parameter estimates
(often referred to as beta-weights, emphasizing their multiple linear
regression origin) are the intermediate analysis results, indicating
the magnitude of a voxel's response to a particular experimental
condition. Research questions are essentially framed as contrasts
between experimental conditions, and hence as contrasts of param-
eter estimates. Such a contrast is equivalent to asking the question
whether a certain voxel di�ers in its response behavior between ex-
perimental conditions.
This analysis approach implies two problems. The �rst problem is
that being model-based, SPM relies on appropriate HRF models to
prevent impairing the sensitivity to actually detect brain responses
to a respective stimulation. However, the BOLD response is sub-
ject to substantial variability across subjects (Aguirre, Zarahn, &
D'esposito, 1998). But also within subjects there is variation in
the response timing. Schacter, Buckner, Koutstaal, Dale, & Rosen
(1997) have shown a timing di�erence of several seconds between
anterior and dorsal prefrontal cortex in a memory study. Buckner
et al. (1998) report a di�erence of one second between extrastri-
ate and prefrontal cortex during a word generation task, and even
within visual cortex Bandettini (1999) has shown a variance of re-
sponse timing of 1-2 s. Moreover, the shape and timing of the BOLD
response are also in�uenced by the actual experimental paradigm
employed in a study. Miezin, Maccotta, Ollinger, Petersen, & Buck-
ner (2000) report a signi�cant decrease in the response amplitudes
for temporally dense events, as opposed to spaced stimulation. This
variation is typically accounted for by adding additional regressors
to the GLM design matrix, such as the temporal derivatives of the
original HRFs, or more generally the use of HRF basis functions
(see e.g. Woolrich, Behrens, & Smith, 2004).
The second, and more vexing problem is that typically several ten
thousand univariate statistical tests are performed to assess the
signi�cance of parameter estimates, or their contrasts, which in-
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1 Advancing the Comprehension of Brain Function

Figure 1.1.: Basic SPM analysis procedure. Based on the stimulation
protocol (A; stimulus intensity over time) a model regressor (B) is gen-
erated by convolving the protocol with a model hemodynamic response
function (HRF) representing the temporal properties of the blood oxy-
genation level-dependent (BOLD) response. (B) shows model shapes
for stimulation events with decreasing temporal distance leading to a
substantial overlap of the corresponding BOLD-responses. Standard
analysis procedures typically assume additivity of individual responses.
The model regressor is assumed to represent the signal timecourse of
a voxel that responds to the stimulation. For the actual analysis the
model has to be downsampled to the temporal resolution of the fMRI
data (C). Finally, the GLM is �tted to each voxel's timeseries individ-
ually, yielding per regressor β weights indicating the magnitude of the
response. (D) shows a model �t for arti�cially generated data based
on the regressor shape itself and (E) shows a �t for a timeseries gen-
erated from Gaussian noise only (both timeseries with an arbitrary
signal baseline). To take the goodness of �t of each regressor into ac-
count typically z-statistics are reported instead of raw β weights (in
this example (D) z = 6.8 and (E) z = 0.95). The red ticks mark the
corresponding stimulus onsets.
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1.1 Exploring the brain voxel by voxel

evitably leads to type I error rate in�ation, i.e. rejecting the null
hypothesis (there is no di�erence) when it is actually true. That
this is indeed a problem becomes obvious if one considers that a
standard fMRI dataset contains about 30000 voxels. Testing each
of them individually using a common criterion of p < 0.05 would
lead to approximately 1500 voxels being labeled as signi�cantly �ac-
tivated� � regardless of the actual signal in the data, merely by
chance.
This problem is usually addressed by performing alpha-level correc-
tions formultiple comparisons. However, techniques such as Bonfer-
roni correction typically lead to overly conservative tests and hence
increase the type II error rate, i.e. not rejecting the null hypothesis
whenever it is false. Therefore several more sophisticated techniques
have been developed that aim to improve the situation, e.g. false
discovery rate (FDR; Benjamini & Hochberg, 1995) or Gaussian
random �eld (GRF; Sigmund & Worsley, 1995) theory that tries to
account for the spatial distribution of �activated� areas.
To summarize, SPM represents a mass-univariate analysis technique
that analyzes each voxel's timeseries independently from all others,
and is therefore explicitly excluding potentially available informa-
tion in the global covariance structure of a dataset. Although this
property seems to be unfavorable for the analysis of a system that is
performing a massively parallel signal processing task, it was never-
theless motivated by two valid reasons (Monti, 2006). First, fMRI
data is typically very high-dimensional (i.e. usually several 10000
voxels), but at the same time most of the datasets consist of only a
couple of hundred volumes, and even less experimental trials, which
leads to di�culties with some multivariate, statistical algorithms,
such as linear discriminant analysis2. The second reason is incident
with the primary intention of SPM to identify and localize func-
tional subsystems of the brain. Multivariate techniques consider
a functional volume as a whole and are able to integrate complex
signals, which in turn might be di�cult to interpret in terms of the
contribution of a speci�c region of interest (ROI). Using a univari-
ate technique, such as SPM always provides inherent localization
information since each voxel, and hence a speci�c location in the
brain, is tested individually with the aim to �nd clusters of voxels
with a similar temporal behavior.

2More voxels (variables) than volumes or trials (observations) leads to the
inversion of a rank-de�cient matrix, and hence is impossible to process.
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1 Advancing the Comprehension of Brain Function

Figure 1.2.: Spatial independent component analysis (ICA) of
fMRI data, factors the dataset into a set of spatial maps and
their associated temporal pro�les. The �gure has been adopted
from Beckmann (2009).

1.2. Considering brain-response patterns

Data-driven techniques, such as independent component analysis
(ICA), or principle component analysis (PCA) are able to address
some problems of model-based approaches that have been outlined
earlier. First of all they are multivariate techniques that are able to
take interactions between voxels into account, and hence have access
to a huge amount of information that is invisible to SPM. However,
in addition to that, these model-free methods are also applicable to
cognitive paradigms where there is no appropriate a priori model
of the anticipated brain response (Calhoun, Pekar, McGinty, Adali,
& Watson, 2002).
The basic analysis pipeline contains similar pre-processing steps as
for SPM. However, instead of a univariate GLM-model �t, the data
is factored into a set of components that capture a certain amount
of the variance in the dataset, with PCA and ICA implementing dif-
ferent assumptions about the relation of these components (in terms
of orthogonality or independence). In the case of fMRI data typi-
cally a spatial ICA is performed (Calhoun, Adali, Hansen, Larsen,
& Pekar, 2003) that yields a number of spatial patterns (i.e. voxel
maps) that share a common temporal pro�le (Fig. 1.2).
In contrast to SPM, this �exible analysis approach is both an ad-
vantage and a disadvantage. Data-driven techniques are able to
pickup any signal in a dataset, regardless of its association with
the experimental design. This property makes them a useful tool
to identify artifacts, such as slice-dropout, head-motion related sig-
nals, eye-movement artifacts, physiological, or scanner-related noise
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1.2 Considering brain-response patterns

components (see Beckmann, 2009, for examples). Because the anal-
ysis o�ers the temporal pro�le of each component, they can be used
to denoise the data, by e.g. using the pro�les of artifact components
as confound regressors in a GLM.

However, noise-components will be intermixed with the ones that
are interesting in terms of the original research question, and neither
ICA nor PCA provide intrinsic measures to associate components
with the experimental design. Instead, components are usually or-
dered by the amount of explained variance. If one recalls that the
expected BOLD-response magnitude at 3Tesla is just about 1-2%
signal-change (Aguirre et al., 1998), it becomes obvious that com-
ponents explaining lots of variance do not necessarily explain �inter-
esting� variance, but rather things like motion artifacts, that cause
substantial changes in signal intensity (O'Toole et al., 2007).

The �hypothesis-free� analysis approach forces researchers to inter-
pret and label each estimated component by eye, hence reversing
the analysis logic as opposed to SPM, where anticipated signal time-
courses are determined �rst, and the data is analyzed with respect
to them afterwards. The situation is made even worse by the fact
that the size of the analysis results is as large as the input data,
i.e. a dataset with 600 volumes is factored into 600 components
with their associated temporal pro�le. Inspecting, interpreting and
�nally labeling all those components by eye will identify some as
artifacts, and some as �interesting�, but the nature of most compo-
nents remains ambiguous, and they are typically ignored (O'Toole
et al., 2007).

At least two approaches exists that aim to improve the interpre-
tation of ICA results. The �rst is an attempt to reduce the num-
ber of estimated ICA components by assessing the actual dimen-
sionality of the dataset, via a PCA-analysis step prior to the ICA
procedure (Beckmann & Smith, 2005). However, that still leaves
the researcher with many components to interpret, including those
artifact-related ones that explain lots of variance. The second ap-
proach is a post-hoc labeling of each component, by correlating the
respective temporal pro�le with a model-timeseries, basically iden-
tical to a GLM-regressor in SPM analyses. This will automatically
identify components which are related to the experimental design.
However, reverting to a response-model e�ectively demolishes the
ability of ICA/PCA techniques to emphasize components for which
no appropriate a priori model exists.
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1 Advancing the Comprehension of Brain Function

1.3. Linking brain-responses to cognitive
states with MVPA

The application of MVPA to neuroimaging data promises to resolve
many of the shortcomings of established model-based or model-free
techniques that have been outlined so far. Their basic �aw is that
they either provide a quantitative link between experimental design
and fMRI data, or are pattern-based (i.e. multivariate), but not
both.
O'Toole et al. (2007) provide an excellent classi�cation of MVPA
with respect to neuroimaging research and other �elds of psycholog-
ical research. The authors claim that �pattern-based classi�cation
analyses have the potential [. . . ] to become the standard approach
in functional neuroimaging analysis�, and list a number of techni-
cal, theoretical, and practical advances. The following sections will
review these and some additional advantages in comparison to es-
tablished and prevailing techniques, but at the same time also pin-
point problems that must be resolved before MVPA has the chance
to become a standard method.

1.3.1. Technical advantages

Looking at the basic elements of the MVPA pipeline will quickly
reveal two major advantages that make these methods superior to
both SPM and ICA/PCA or similar algorithms. In general, MVPA
makes use of a classi�er algorithm that is trained on a dataset to as-
sociate brain response patterns with the corresponding experimen-
tal conditions. During training a multivariate model is generated
that tries to capture important information to allow for such an
association to be established. As a second step the trained model
is usually tested against a second independent dataset. The aim is
to assess whether the supposedly learned association can be used
to correctly predict the experimental condition of yet unseen sam-
ples of brain response pattern, which in turn validates the model
(Pereira, Mitchell, & Botvinick, 2009).
MVPA shares its multivariate nature with other data-driven or un-
supervised methods, such as ICA. Supervised procedures, such as
a classi�er, however, resolve their labeling problem by providing a
direct quanti�able link between neuroimaging data and experimen-
tal design (O'Toole et al., 2007). The prediction performance of
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1.3 Linking brain-responses to cognitive states with MVPA

classi�ers on new, previously unseen data can be interpreted as a
test of the goodness of �t of the extracted multivariate model to the
structure of the underlying signal. Hence, a classi�er not only links
information contained in a neuroimaging dataset to experimental
conditions, it also provides a measure how well that information
can describe them.
Such a link is available despite the fact there is no explicit a priori
model speci�cation of the expected signal, which is, for example,
necessary to perform a posthoc labeling of ICA components by cor-
relating their temporal pro�le with standard GLM regressors. How-
ever, classi�ers can obviously also operate on model-�t parameters
instead of �raw� data, and hence make use of a priori assumptions
about an anticipated signal.
Moreover, in contrast to ICA results, MVPA dramatically reduces
the size of its model, since typically one model parameter per fea-
ture/voxel is estimated, instead of one parameter per voxel and
timepoint for ICA, which therefore merely performs a redescription
of the data. This reduced multivariate model can nevertheless be
subject of an exploratory analysis, which will be the main theme of
chapter 3.
As the MVPA approach is free of a priori response models, it
can also account for the aforementioned variability of the BOLD-
response across subjects, brain regions, physiological states, and
experimental designs. This is an important advantage, since SPM
relies on an appropriate speci�cation of the expected signals, as
all other information in the dataset is considered to be noise and
hence a�ects, via the residual variance, the likelihood to identify a
particular area as signi�cantly activated.
Another important advantage of MVPA as opposed to SPM, which
also o�ers a quanti�able link between experimental condition and
brain responses, is that it represents a multivariate analysis tech-
nique that, by design, does not su�er from the methodological side-
e�ects of the mass-univariate approach. Voxels, or more general,
variables are not treated as independent entities that are tested for
model compliance individually. While considering fMRI volumes
as multivariate samples much better re�ects the massively parallel
nature of the brain, it also obviates to a certain degree the need
for sophisticated algorithms that are applied to assess the statisti-
cal relevance of SPM �activation maps� (e.g. Bonferroni correction
for multiple comparisons, false discovery rate, or Gaussian random
�eld theory). MVPA does not make any assumptions about the in-
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1 Advancing the Comprehension of Brain Function

herent smoothness of the data, so that aside from the intention to
boost the signal to noise ratio, there is no need for spatial �ltering
to, for example, control the true number of degrees of freedom to
prevent an overly conservative statistical testing.
At the latest with the development of the support vector machine
(SVM; Vapnik, 1995) classi�er there are methods available that
have been derived from statistical learning theory, and do not suf-
fer from the limitations of classical statistical techniques, such as
MANOVA or LDA. SVMs for examples can easily deal with feature-
spaces (i.e. number of variables/voxels) of well over one million fea-
tures.
The use of multivariate information integration instead of having
to rely on signi�cant individual features in turn opens the door for
a further increase in the dimensionality of the recorded datasets
to e.g. make use of the power of modern high-�eld MRI-scanners
to record functional volumes at spatial resolutions of as low as
1mm (Kriegeskorte & Bandettini, 2007). Measuring functional data
at such high resolutions moves fMRI closer to exploit information
about signal encoding at the level of the columnar organization of
the human brain (Tanaka, 1996) � promising exciting new insights
into details of information processing within individual functional
subsystems. Multivariate procedures also o�er the possibilities to
investigate the interactions between functional units of the brain,
which is a critical feature to advance the understanding of brain
function beyond the level of localization e�orts.

1.3.2. Theoretical advances

The theoretical advances could be considered as mere by-products
of the technical advantages of MVPA. However, while being caused
by properties of the techniques that have been developed outside
the neurosciences, they o�er an enormous potential for new insights
into the functional properties of the brain and could lead to a change
of experimental paradigms in cognitive neuroscience research.
The most important improvement is once again the switch from
univariate to multivariate analysis. The explanatory power of SPM
is e�ectively limited to the localization of �activated� regions, which
additionally have to be spatially extended to be detectable whenever
the typical preprocessing routine (i.e. spatial �ltering) is applied.
Although it is possible to perform complex analyses by using sophis-
ticated experimental paradigms and studying interaction contrasts
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Figure 1.3.: Conceptual di�erences between MVPA and SPM
analyses. SPM aims to identify brain areas that are activated by a
speci�c task or experimental condition by correlating a response
model with the recorded signal of each individual voxel. SPM
represents a mass-univariate procedure that cannot account for
interactions between multiple voxels. MVPA reverses this analy-
sis logic and provides a direct quanti�able link between brain re-
sponse patterns and experimental design. A multivariate model
is �tted that identi�es information that can be used to predict
certain experimental conditions, or even individual stimuli from
fMRI data. The use of feature selection methods can restrict the
complexity of the multivariate model by identifying information
that is �important� with respect to the intended classi�cation
task. Being free of a priori response models, the exploratory
analysis of the MVPA model parameters can even yield new re-
search questions, by identifying unexpected, yet informative sig-
nals. This �gure is a modi�ed and merged variant of two �gures
that have been adopted from Halchenko (2009).
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of the �tted GLM regressors, any detectable signal nevertheless has
to be available within a single voxel.
Employing multivariate methods allows to refocus the research on
how information is encoded, instead of exclusively looking at where
it is in the brain (O'Toole et al., 2007). Pioneering work on this
topic has been done by e.g. Hanson et al. (2004) who revealed a
combinatorial encoding of object category information in human
ventral temporal cortex and Kriegeskorte, Mur, Ru�, et al. (2008)
who were able to show striking correlations between the similarity
structure of categorical object representations in the inferior tem-
poral cortex of humans and monkeys.
Moreover, being able to access the spatio-temporal structure of
fMRI data allows to perform causal modeling of activation patterns
to determine functional networks in the brain that are associated
with a speci�c task (Halchenko, 2009). Although a similar analysis
logic is possible using the dynamic causal modeling (DCM; Friston,
Harrison, & Penny, 2003) technique, MVPA remains a model-free
method that allows to achieve a similar goal with much less a priori
assumptions (which can of course have both advantages and disad-
vantages, depending on the appropriateness of those assumptions).
A last notable improvement of MVPA over established procedures
is the inherent model-testing and the reversed direction of conclud-
ing. The principle question underlying SPM can be paraphrased as
�Does a voxel behave like a responsive voxel according to my model
for a certain experimental condition?� whereas MVPA is asking
�Does a set of voxels contain enough information to reliably predict
the experimental condition that caused a particular brain state?�
(see �gure 1.3 for a conceptual comparison of the analysis logic of
SPM and MVPA).

1.3.3. Practical advantages

A third and �nal set of improvements is associated with the prac-
tical aspects of the application of MVPA. In general they can be
subsumed as �becoming standard� by discarding the unique anal-
ysis procedures that are commonly applied in brain imaging re-
search. Although high-dimensional datasets are very common in
neuroimaging research they are not unique to this �eld of science
(e.g. much larger datasets are usual in human genome research).
However, rather unique is the mass-univariate approach to analyze
these datasets.
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Its isolated position and the substantial restrictiveness with respect
to alternative analysis techniques e�ectively limits fMRI research by
preventing bene�ts from developments in other areas, such as the
machine learning community. Adopting a more widespread anal-
ysis paradigm could help to facilitate cross-talk between adjacent
research communities.
In that respect MVPA has two primary advantages. First, as being
based on statistical learning theory, it is a standard tool in many
�elds of science, e.g. computer science, signal processing, image
analysis, or arti�cial intelligence. Its usefulness is constantly being
evaluated and new algorithms are developed by skilled researchers
outside the neuroscience, hence signi�cantly enlarging the fraction
of scientists working to improve analysis techniques that are poten-
tially applicable to neuroimaging data. The second advantage is the
aspect of familiarity (O'Toole et al., 2007). Many neuroscientists
are familiar with the concept of arti�cial neural networks (due to
connectionism in psychological research in the 80s and early 90s),
which are simply another facet of MVPA.
Moreover, from a conceptual point of view, studying classi�er per-
formance when predicting category labels of brain response patterns
is very similar to the analysis of behavioral data of humans perform-
ing a categorization task (e.g. in a typical two-alternative-forced-
choice (2AFC) paradigm). Procedures such as those originating in
the signal detection theory (Green & Swets, 1966) are well under-
stood and provide familiar measures (e.g. d′ and receiver operating
characteristics curves, ROC) to assess the quality of classi�er model
performances.
This long list of advantages is a strong indicator that neuroimaging
research could enormously bene�t from a wide adoption of MVPA.
However, two aspects are critical with respect to a successful adop-
tion: immediate availability of the associated technology to the
whole neuroscience community, and the awareness about its poten-
tials as well as its limitations, most importantly with respect to the
interpretation of its results. Both aspects will be the subject of the
remainder of this thesis.

1.4. The need for transparency

The analysis of neuroimaging data is a complex process that com-
prises of many di�erent steps ranging from simple data conversion

14
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to sophisticated modeling procedures, and the interpretation as well
as statistical evaluation of these models. However, as with all meth-
ods one has to be careful to obey limitations or requirements of a
particular method since conclusions drawn from inappropriate anal-
yses might be distorted or even plain wrong.
For a proper assessment of the value of a scienti�c study it is critical
to decide whether the employed methods were used appropriately,
and hence to judge whether the conclusions drawn have at least
the potential to be valid. Obviously, this judgement becomes more
di�cult with increasing complexity of the analysis procedure. The
situation gets even worse if the particular methods used are not part
of the standard toolbox of a scientist or reviewer in a certain �eld,
since in this case there is no common ground to base an evaluation
on.
Unfortunately, this is pretty much the current situation of MVPA
of fMRI data. For the conventional SPM-based approach there is a
huge amount of literature that allows to derive at least a reasonable
guess of the many parameters that have to be considered in each
analysis. Based on this literature a scientist evaluating a particular
study is able to decide whether during preprocessing a reasonable
�ltering kernel was used, or whether the data was modeled with
an appropriate HRF-function. In the worst case, it raises at least
a question if some article does not justify the use of extraordinary
parameter settings. For the MVPA of fMRI there is very little liter-
ature concerned with the evaluation of the many di�erent methods.
This is of course not very surprising since the total number of stud-
ies using this approach is negligible in comparison to the, at least,
15 years of SPM-based fMRI data analysis.
Despite the absence of a tested set of good practices there is never-
theless an increasing number of studies being published that employ
MVPA to answer actual scienti�c questions. A lot of these studies
are published in high-ranked journals, possibly partly due to the
current excitement about the method (e.g. Mitchell et al., 2008;
Haynes et al., 2007; Kamitani & Tong, 2005). But what weight can
be put on the conclusions made in these pioneering studies?
Typically the research process answers this question by replication.
If an e�ect is found using similar or even di�erent methods, by a
di�erent research group, using di�erent data acquisition equipment,
its existance will generally be accepted by the science community.
However, in the context of the application of MVPA to fMRI data
the intention to replicate a study is hindered by at least two main
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factors. First, in contrast to the ML community, datasets are typ-
ically not available to the general public. This is probably due to
the fact that in brain imaging research for each study new datasets
are acquired, while ML research typically focuses on few datasets
with a well-known structure. The second problem is that published
studies typically only contain a verbal description of the applied
analysis.
This second factor is much less important for studies employing con-
ventional SPM-based fMRI data analysis, since they are typically
performed by one of the widely-used fMRI toolkits, like AFNI 3

(R. W. Cox, 1996), BrainVoyager4 (Goebel, Esposito, & Formisano,
2006), FSL5 (Smith et al., 2004), Lipsia6 (Lohmann et al., 2001),
or SPM 7 (Friston, Jezzard, & Turner, 1994). The behavior of these
toolkits is known, they are available to the whole research com-
munity, and the algorithms they implement are published in peer-
reviewed publications. All these aspects allow to summarize an
analysis performed by these toolkits by listing relatively few pa-
rameters.
For an ML analysis the situation is totally di�erent. In the absence
of an established toolkit for neuroscienti�c research, an analysis gen-
erally involves the combination of many di�erent tools, combined
with custom developed, usually unpublished code. While it would
be nevertheless possible to provide a comprehensive verbal descrip-
tion of an algorithm regardless of its complexity, such description is
often not included in the respective publications. For a researcher
intending to replicate a study translating a verbal � potentially in-
complete, or too super�cial � description into running analysis code
is a lengthy and error-prone task that turns a replication attempt
into a costly project.
Nevertheless, the solution to this problem is quite simple. Instead
of exclusively providing a verbal analysis description, a publication
should be accompanied by the actual source code that was used to
run an analysis. The source code, by de�nition, provides the highest
possible level of detail of a description. Access to the source code
can immediately lead to a facilitation of replication e�orts, enabling
the potential for timely feedback with respect to newly developed

3http://afni.nimh.nih.gov/afni
4http://www.brainvoyager.com
5http://www.fmrib.ox.ac.uk/fsl
6http://www.cbs.mpg.de/institute/software/lipsia
7http://www.�l.ion.ucl.ac.uk/spm
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analysis strategies, while simultaneously fostering the use of the
ones that turned out to be generally successful.
To make such e�ort worthwhile for the majority of MVPA-based
studies, analysis descriptions should be provided in a language that
is comprehensible by scientists in the �eld. The least common de-
nominator for such an endeavor would be some form of pseudo-code.
However, chapter 2 introduces a novel software framework that of-
fers an alternative that is signi�cantly more powerful, by actually
providing scientists with executable analysis code.

1.5. Practical di�culties: Where is the
software?

Various factors have delayed the adoption of MVPA methods for
the analysis of neural information. First and foremost, existing
conventional techniques are well-tested and often perfectly suitable
for the standard analysis of data from the modality for which they
were designed. Most importantly, however, a set of sophisticated
software packages has evolved over time that allow researchers to
apply these conventional and modality-speci�c methods without re-
quiring in-depth knowledge about low-level programming languages
or underlying numerical methods. In fact, most of these packages
come with convenient graphical and command line interfaces that
abstract the peculiarities of the methods and allow researchers to
focus on designing experiments and to address actual research ques-
tions without having to develop specialized analyses for each study.
On the other hand, only a few software packages exist that are
speci�cally tailored towards straightforward and interactive explo-
ration of neuroscienti�c data using a broad range of ML techniques.
At present only independent component analysis (ICA), an un-
supervised method, seems to be supported by numerous software
packages (see Beckmann & Smith, 2005, for fMRI, and Makeig,
Debener, Onton, & Delorme, 2004, for EEG data analysis). There-
fore, the application of MVPA usually involves the development of
a signi�cant amount of custom code. Hence, users are typically
required to have in-depth knowledge about both data modality pe-
culiarities and software implementation details.
At the time of this writing there seem to be only two publicly avail-
able software packages designed for MVPA of fMRI data. One is
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the 3dsvm plugin for AFNI (LaConte, Strother, Cherkassky, Ander-
son, & Hu, 2005) and the other is the Matlab-based MVPA toolbox
(Detre et al., 2006). However, both packages only cover a fraction
of the available algorithms that have been developed in machine
learning research (see NIPS8 community) over the past decades.
For example, the recently founded Machine learning open source
software9 project shows an impressive, nonetheless still incomplete,
sample of available software packages. At the very least starting
with these already available high-quality software libraries has the
potential to accelerate scienti�c progress in the emerging �eld of
MVPA of brain-imaging data. Although these libraries are freely
available, their usage typically assumes a high-level of programming
expertise and statistical or mathematical knowledge. Therefore, it
would be of great value to have a unifying framework that helps
to bridge well-established neuroimaging tools and machine learn-
ing software packages and provides ease of programmability, cross-
library integration and transparent fMRI data handling. Such a
framework should at least have the �ve following features:

User-centered programmability with an intuitive interface Since
most neuroimaging researchers are not also trained as com-
puter scientists, it should require only a minimal amount of
programming ability. Work�ows for typical analyses should
be supported by a high-level interface that is focused on the
experimental design and language of the neuroimaging scien-
tist. That being said, of course, all interfaces should allow
access to detailed information about the internal processing
for comprehensive extensibility. Finally, reasonable documen-
tation is a primary requirement.

Extensibility It should be easy to add support for additional ex-
ternal machine learning toolboxes to prevent duplicating the
e�ort that is necessary when a single algorithm has to be im-
plemented multiple times.

Transparent reading and writing of datasets Because the toolbox
is focused on neuroimaging data, the default access to data,
should require little or no speci�cation for the user. The tool-
box framework should also take care of proper conversions

8Neural Information Processing Systems http://nips.cc/
9http://www.mloss.org
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into any target data format required for the external machine
learning algorithms.

Portability It should not impose restrictions about hardware plat-
forms and should be able to run on all major operating sys-
tems.

Open source software It should be open source software, as it al-
lows one to access and to investigate every detail of an imple-
mentation, which improves the reproducibility of experimen-
tal results, leading to more e�cient debugging and gives rise
to accelerated scienti�c progress (Sonnenburg et al., 2007).

As an attempt to provide such a framework PyMVPA10 (Multi-
Variate Pattern Analysis in Python) was implemented. The next
chapters will introduce the framework and highlight the features
that ease the access to the advantages of ML methods and help to
overcome the associated di�culties that have been identi�ed so far.

10http://www.pymvpa.org
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2. The PyMVPA Framework

PyMVPA is a free and open-source framework to facilitate uniform
analysis of information obtained from di�erent neural modalities
through the use of MVPA. PyMVPA heavily utilizes libraries writ-
ten in a large variety of programing languages and computing envi-
ronments to interface with the wealth of existing machine learning
packages developed outside the neuroscience community. Although
the framework is eminently suited for neuroscienti�c datasets, it is
by no means limited to this �eld. However, the neuroscience tun-
ing is a unique aspect of PyMVPA in comparison to other ML or
computing toolboxes, such as MDP1, scipy-cluster2, or the Spider
toolbox 3 which are developed as domain-neutral packages.
This chapter o�ers an overview of PyMVPA's key features and de-
sign principles. A justi�cation for the choice of programing language
will be presented, and common analysis steps will be illustrated by
actual code snippets. The chapter concludes with an outline of the
e�orts that have been undertaken to promote a community-driven
development process to foster the PyMVPA project.

2.1. Python: lingua franca of
computational (neuro)science

The choice of the programming language is an important decision
for a project, since it determines the number of potential devel-
opers, as well as the �exibility, and maintainability of the result-
ing code base. To ful�ll the signi�cant computational demands
PyMVPA had to be implemented in a programing language that
allows for high-performance computing solutions. With increasing
size of neuroscienti�c datasets and also increasing complexity of
analysis procedures, there is a strong trend away from the use of

1http://mdp-toolkit.sourceforge.net
2http://code.google.com/p/scipy-cluster/
3http://www.kyb.mpg.de/bs/people/spider
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individual workstations towards cluster or cloud computing. How-
ever, at the same time the choice of language had to be compatible
with the primary requirements that have been put forth in section
1.5, mainly being open-source, portable, feature-rich, and easy to
learn.
To this end, the Python4 language was selected for PyMVPA.
Python is a free and open-source scripting language and is available
for all major platforms and operating systems. It has become the
open-source scripting language of choice in the research community
to prototype and carry out scienti�c data analyses or to develop
complete software solutions quickly. It has attracted attention due
to its openness, �exibility, and the availability of a constantly evolv-
ing set of tools for the analysis of many types of data. Python's
automatic memory management, in conjunction with its powerful
libraries for e�cient computation (NumPy5 and SciPy6) abstracts
users from low-level �software engineering� tasks and allows them
to fully concentrate their attention on the development of compu-
tational methods.
Furthermore, Python extensions make it easy to wrap high-per-
formance libraries written in low-level programing languages like
C, C++, or Fortran while preserving their speed (e.g. via ctypes,
SWIG, SIP, Cython), and use them in addition to the avail-
able NumPy and SciPy packages which already provide a fast
n-dimensional array library with comprehensive signal processing
toolboxes. Two other Python packages provide PyMVPA with the
possibility to access an even larger code base. The RPy7 mod-
ule allows PyMVPA scripts to make use of the full functionality of
the statistical programing language R8 and all its extensions and
support packages. Also, pymat9 and mlabwrap10 provide a similar
interface for easy access to Matlab.
Finally, the IPython project o�ers a powerful Matlab-like command-
line interface for interactive data exploration (Perez & Granger,
2007). Recent releases added support for interactive cluster com-
puting, enabling PyMVPA users to make use of high-performance

4http://www.python.org
5http://numpy.scipy.org
6http://www.scipy.org
7http://rpy.sourceforge.net
8http://www.r-project.org
9http://claymore.engineer.gvsu.edu/~steriana/Python/pymat.html

10http://mlabwrap.sourceforge.net
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Table 2.1.: Various free and open-source projects, either written
in Python or providing Python bindings, which are germane to
acquiring or processing neuroimaging datasets using MVPA. The
last column indicates whether PyMVPA internally uses a partic-
ular project or provides public interfaces to it.
Name Description URL PyMVPA

Machine Learning

Elephant Multi-purpose library for ML http://elefant.developer.nicta.com.au
Shogun Comprehensive ML toolbox http://www.shogun-toolbox.org/

√

Orange General-purpose data mining http://www.ailab.si/orange
PyML ML in Python http://pyml.sourceforge.net
MDP Modular data processing http://mdp-toolkit.sourceforge.net

√

hcluster Agglomerative clustering http://code.google.com/p/scipy-cluster/
√

� Other Python modules http://www.mloss.org/software/language/python

Neuroscience Related
NiPy Neuroimaging data analysis http://neuroimaging.scipy.org
PyMGH Access FreeSurfer's .mgh �les http://code.google.com/p/pyfsio
PyNIfTI Access NIfTI/Analyze �les http://niftilib.sourceforge.net/pynifti

√

OpenMEEG EEG/MEG inverse problems http://www-sop.inria.fr/odyssee/software/OpenMEEG

Stimuli and Experiment Design
PyEPL Create complete experiments http://pyepl.sourceforge.net/
VisionEgg Visual Stimuli Generation http://www.visionegg.org
PsychoPy Create psychophysical stimuli http://www.psychopy.org/
PIL Python Imaging Library http://www.pythonware.com/products/pil/

Interfaces to Other Computing Environments
RPy Interface to R http://rpy.sourceforge.net/

√

mlabwrap Interface to Matlab http://mlabwrap.sourceforge.net/

Generic
Matplotlib 2D Plotting http://matplotlib.sourceforge.net

√

Mayavi2 Interactive 3D visualization http://code.enthought.com/projects/mayavi
PyExcelerator Access MS Excel �les http://sourceforge.net/projects/pyexcelerator
pywavelets Discrete wavelet transforms http://www.pybytes.com/pywavelets/

√

computing hardware.
In addition to its technical advantages, Python is a well docu-
mented, easy to learn, interpreted high-level scripting language,
which is instrumental in making PyMVPA an easy and powerful
multivariate analysis framework. Table 2.1 summarizes the fea-
tures of a Python-based environment by listing available Python
modules which might be of interest in the neuroscienti�c context.

2.2. Bridging fMRI data and machine
learning software

Despite the huge number of specialized Python modules and the
resulting fact that it is possible to perform complex data analyses
solely within Python, it once again often requires in-depth knowl-

23

http://elefant.developer.nicta.com.au
http://www.shogun-toolbox.org/
http://www.ailab.si/orange
http://pyml.sourceforge.net
http://mdp-toolkit.sourceforge.net
http://code.google.com/p/scipy-cluster/
http://www.mloss.org/software/language/python
http://neuroimaging.scipy.org
http://code.google.com/p/pyfsio
http://niftilib.sourceforge.net/pynifti
http://www-sop.inria.fr/odyssee/software/OpenMEEG
http://pyepl.sourceforge.net/
http://www.visionegg.org
http://www.psychopy.org/
http://www.pythonware.com/products/pil/
http://rpy.sourceforge.net/
http://mlabwrap.sourceforge.net/
http://matplotlib.sourceforge.net
http://code.enthought.com/projects/mayavi
http://sourceforge.net/projects/pyexcelerator
http://www.pybytes.com/pywavelets/


2.2 Bridging fMRI data and machine learning software

edge of numerous Python modules, as well as the development of a
large amount of code to lay the foundation for one's work. There-
fore, it would be of great value to have a framework that helps
to abstract from both data modality speci�cs and the implementa-
tion details of a particular analysis method. The task of PyMVPA,
which is aiming to be such a framework, is to help to expose any
form of data in an optimal format applicable to a broad range of
machine learning methods, and on the other hand provide a versa-
tile, yet simple, interface to plug in additional algorithms operating
on the data.
In the neuroscience context it would also be useful to bridge between
well-established neuroimaging tools and ML software packages by
providing cross library integration and transparent data handling
for typical containers of neuroimaging data, e.g. data formats for
anatomical and functional volumes in fMRI research. Although
there are many fMRI data formats, over the last decade the neu-
roimaging community has converged on NIfTI as a standard data
format that most fMRI analysis packages support � either directly
or by conversion into their respective native format. Thus it was
an obvious choice for the primary data storage format supported
by PyMVPA.
While PyNIfTI 11 makes it easy to read and write NIfTI �les from
within the PyMVPA framework, merely being able to access data is
not su�cient for a full analysis pipeline. FMRI data typically has to
undergo multiple preprocessing steps before an actual analysis can
be applied. This involves several procedures to address the speci�cs
of the modality, e.g. motion and distortion correction, temporal
detrending, and spatial �ltering.
Although, with the project Neuroimaging in Python (NIPY; Mill-
man & Brett, 2007) there is already an ongoing e�ort to provide a
comprehensive software library for traditional fMRI data analysis,
including data preprocessing, there are many other toolkits o�ering
di�erent sophisticated routines. Here, PyMVPA tries to follow the
same path as with connecting to various ML packages, by o�er-
ing simple, yet su�cient, interfaces to access relevant information.
Due to NIfTI as the common data format, it is already very easy
to import data that has been preprocessed elsewhere. Sometimes,
however, information becomes interesting that was generated dur-
ing preprocessing, but is not available in the dataset itself, e.g. if

11http://niftilib.sourceforge.net/pynifti
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one wants to consider the motion correction parameters for a data
detrending procedure in PyMVPA. For such situations PyMVPA
tries to provide support to access information in additional data
formats, such as the parameter output of the McFLIRT motion
correction tool (Jenkinson, Bannister, Brady, & Smith, 2002).
As Table 2.1 highlighted, PyMVPA is not the only ML framework
available for scripting and interactive data exploration in Python.
In contrast to some of the primarily GUI-based ML toolboxes (e.g.
Orange, Elephant), PyMVPA is designed to provide not just a tool-
box, but a framework for concise, yet intuitive, scripting of possibly
complex analysis pipelines. To achieve this goal, PyMVPA provides
a number of building blocks that can be combined in a very �exi-
ble way. They can be categorized into three distinct components:
dataset handling, machine learning algorithms and high-level work-
�ow abstractions. Each component provides interfaces that connect
the framework with a large variety of existing software packages.
Figure 2.1 shows a schematic representation of the framework de-
sign and its building blocks. In the following sections the interfaces
to neuroimaging and machine learning software, and how the three
components combine to create complete analyses, are discussed.

2.3. Dataset handling

Input, output, and conversion of datasets are a key task for
PyMVPA. A dataset representation has to be simple enough to
allow for maximum interoperability with other toolkits, but simul-
taneously also has to be comprehensive in order to make available
as much information as possible to e.g. domain-speci�c analysis al-
gorithms. In PyMVPA a dataset consists of three parts: the data
samples, sample attributes and dataset attributes. While the data
samples are the actual patterns that shall be used for training or
validation, sample attributes hold additional information on a per
sample basis (see Fig. 2.2). First and foremost of these are the labels
that index each data sample with a certain experimental condition
and, therefore, de�ne the mapping that will be learned by the clas-
si�er.
Additionally, it is often necessary to de�ne groups of data samples.
For example, when performing a cross-validation it is necessary to
have independent training and validation sets. In the case of fMRI
data, with its signi�cant forward temporal contamination across the
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2.3 Dataset handling

Figure 2.2.: Terminology for MVPA as implemented in PyMVPA. The
upper part shows a simple block-design experiment with two experi-
mental conditions (red and blue) and two experimental runs (black and
white). Experimental runs are referred to as independent chunks of
data and fMRI volumes recorded in certain experimental conditions
are data samples with the corresponding condition labels attached to
them (for the purpose of visualization the axial slices are taken from
the MNI152 template downsampled to 3mm isotopic resolution). The
lower part shows an example ROI analysis of that paradigm. All voxels
in the de�ned ROI are considered as features. The three-dimensional
data samples are transformed into a two-dimensional samples×feature

representation, where each row (sample) of the data matrix is associ-
ated with a certain label and data chunk.
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samples, it is mandatory to take actions to ensure this independence
by e.g. su�ciently separating training and validation datasets in
time. This is typically achieved by splitting an experiment into
several runs that are recorded separately. In PyMVPA this type of
information can be speci�ed by a special chunks sample attribute,
where each sample is associated with the numerical identi�er of its
respective data chunk or run (see Fig. 2.2). However, an arbitrary
number of auxiliary sample attributes can be de�ned in addition to
labels and chunks.
One of the key features of PyMVPA is its ability to read fMRI
datasets and transform them into a generic format that makes it
easy for other data processing toolboxes to inherit them. Most ma-
chine learning software requires data to be represented in a simple
two-dimensional samples× featuresmatrix (see Fig. 2.2, bottom),
however, fMRI datasets are typically four-dimensional. Although it
is possible to view each volume as a simple vector of voxels, doing
so discards information about the spatial properties of the volume
samples. This is a potentially serious disadvantage because in the
context of brain imaging, spatial metrics, and especially distance
information, are of interest. In addition, some analysis algorithms
such as the multivariate searchlight (Kriegeskorte et al., 2006) make
use of this information when calculating spheres of voxels.
PyMVPA follows a di�erent approach. Each dataset is accompa-
nied by a transformation or mapping algorithm that preserves all re-
quired information and stores it as a dataset attribute. These map-
pers allow for bidirectional transformations from the original data
space into the generic 2-D matrix representation and vice versa. In
the case of fMRI volumes the mapper indexes each feature with its
original coordinate in the volume. It can optionally compute cus-
tomizable distances (e.g. Cartesian) between features by taking the
voxel size along all three dimensions into account. Using the map-
per in the reverse direction, from generic feature space into original
data space makes it easy to visualize analysis results. For example,
feature sensitivity maps can be easily projected back into a 3-D
volume and visualized similar to a statistical parametric map.
PyMVPA comes with a specialized dataset type for handling import
from and export to images in the NIfTI format12. It automatically
con�gures an appropriate mapper by reading all necessary infor-

12ANALYZE format is supported as well but it is inferior to NIfTI thus is not
explicitly advertised here.
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mation from the NIfTI �le header. Upon export, all header infor-
mation is preserved (including embedded transformation matrices).
This makes it very easy to do further processing or use the visual-
ization capabilities of any other NIfTI-aware software package, like
any of the major fMRI toolkits that have been listed previously.
Since many algorithms are applied only to a subset of voxels,
PyMVPA provides convenient methods to select voxels based on
ROI masks. Successively applied feature selections will be taken
into account by the mapping algorithm of NIfTI datasets and re-
verse mappings from the new subspace of features into the original
dataspace, e.g. for visualization, is automatically performed upon
request.
However, the mapper construct in PyMVPA, which is applied to
each data sample, is more �exible than a simple 3-D data volume
to 1-D feature vector transformation. The original dataspace is not
limited to three dimensions. For example, when analyzing an exper-
iment using an event-related paradigm it might be di�cult to select
a single volume that is representative for some event. A possible so-
lution is to select all volumes covering an event in time (as suggested
by e.g. Mitchell et al., 2004), which results in a four-dimensional
dataspace. A mapper can also be easily used for EEG/MEG data,
e.g. mapping spectral decompositions of the time series from mul-
tiple electrodes into a single feature vector. PyMVPA provides
convenient methods for these use-cases and also supports reverse
mapping of results into the original dataspace, which can be of any
dimensionality.

2.4. Machine learning algorithms

2.4.1. Classi�er abstraction

PyMVPA itself does not at present implement all possible classi�ers,
even if that were desirable. Currently included are implementations
of a k-nearest-neighbor classi�er as well as ridge, penalized logistic,
Bayesian linear, Gaussian process (GPR), and sparse multinomial
logistic regressions (SMLR; Krishnapuram et al., 2005). However,
instead of distributing yet another implementation of popular classi-
�cation algorithms the toolbox de�nes a generic classi�er interface
that makes it possible to easily create software wrappers for ex-
isting machine learning libraries and enable their classi�ers to be
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used within the PyMVPA framework. At the time of this writing,
wrappers for SVMs of the widely used LIBSVM package (Chang
& Lin, 2001) and Shogun machine learning toolbox (Sonnenburg,
Raetsch, Schaefer, & Schoelkopf, 2006) are included. Additional
classi�ers implemented in the statistical programing language R are
provided within PyMVPA, e.g. least angle regression (LARS; Efron,
Trevor, Johnstone, & Tibshirani, 2004) and elastic net (ENET; Zou
& Hastie, 2005). The software wrappers expose as much function-
ality of the underlying implementation as necessary to allow for a
seamless integration of the classi�cation algorithm into PyMVPA.
Wrapped classi�ers can be treated and behave exactly as any of the
native implementations.
Some classi�ers have speci�c requirements about the datasets they
can be trained on. For example, SVMs do not provide native sup-
port for multi-class problems, i.e. discrimination of more than two
classes. To deal with this fact, PyMVPA provides a framework to
create meta-classi�ers (see Fig. 2.1). These are classi�ers that uti-
lize several basic classi�ers, both those implemented in PyMVPA
and those from external resources, that are each trained separately
and their respective predictions are used to form a joint meta-
prediction, sometimes referred to as boosting (see Schapire, 2003).
Besides generic multi-class support, PyMVPA provides a number
of additional meta-classi�ers e.g. a classi�er that automatically ap-
plies a customizable feature selection procedure prior to training
and prediction. Another example is a meta-classi�er that applies
an arbitrary mapping algorithm to the data to implement a data
reduction step, such as principal component analysis (PCA), in-
dependent component analysis (ICA), both using implementations
from MDP13 or wavelet decomposition via pywavelets14.
Despite its high-level interface PyMVPA o�ers detailed information
to the user. To achieve a useful level of transparency, all classi�ers
can easily store any amount of additional information. For example,
a logistic regression might optionally store the output values of the
regression that are used to make a prediction. PyMVPA provides a
framework to store and pass this information to the user if it is re-
quested. The type and size of such information is in no way limited.
However, if the use of additional computational or storage resources
is not required, then it can be switched o� at any time, to allow for

13http://mdp-toolkit.sourceforge.net
14http://www.pybytes.com/pywavelets/
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an optimal tradeo� between transparency and performance.

2.4.2. Feature measures

A primary goal for brain-mapping research is to determine where in
the brain certain types of information are processed or which regions
are engaged in a speci�c task. In univariate analysis procedures the
localization of information is automatically achieved because each
feature is tested independently of all others. In contrast, MVPA-
based techniques, however, incorporate information from the entire
feature set to e.g. determine whether or not a classi�er can extract
su�cient information in order to predict the experimental condition
from the recorded brain activity. Although classi�ers can use the
joint signal of the whole feature set to perform their predictions, it
is nevertheless important to know which features contribute to the
classi�ers' correct predictions. Some classi�ers readily provide in-
formation about sensitivities, i.e. feature-wise scores measuring the
impact of each feature on the decision made by the classi�er. For
example, a simple arti�cial neural network or a logistic regression,
such as SMLR, bases its decisions on a weighted sum of the inputs.
Similar weights can also be extracted from any linear classi�er in-
cluding SVMs.
However, there are also classi�er-independent algorithms to com-
pute featurewise measures. While neural network and SVM weights
are inherently multivariate, a feature-wise ANOVA, i.e. the fraction
of within-class and across class variances, is a univariate measure, as
is simple variance or entropy measures of each voxel over all classes.
In addition to a simple ANOVA measure PyMVPA provides linear
SVM, GPR, LARS, ENET, and SMLR weights as basic feature sen-
sitivities. As with the classi�ers discussed in the previous section,
a simple and intuitive interface makes it easy to extend PyMVPA
with custom measures (e.g. information entropy). Among others,
the SciPy package provides a large variety of measures that can be
easily used within the PyMVPA framework.
PyMVPA provides some algorithms that can be used on top of the
basic featurewise measures to potentially increase their reliability.
Multiple feature measures can be easily computed for sub-splits of
the training data and combined into a single featurewise measure by
averaging, t-scoring or rank-averaging across all splits. This might
help to stabilize measure estimates if a dataset contains spatially
distributed artifacts. While a SPM is rather insensitive to such
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artifacts as it looks at each voxel individually (Chen, Pereira, Lee,
Strother, & Mitchell, 2006), classi�ers usually pick up such signal
if it is related to the classi�cation decision. But, if the artifacts
are not equally distributed across the entire experiment, computing
measures for separate sub-splits of the dataset can help to identify
and reduce their impact on the �nal measure.
In addition, PyMVPA enables researchers to easily conduct noise
perturbation analyses, where one measure of interest, such as cross-
validated classi�er performance, is computed many times with a
certain amount of noise added to each feature in turn. Feature sensi-
tivity is then expressed in terms of the di�erence between computed
measures with and without noise added to a feature (see Rakotoma-
monjy, 2003; Hanson et al., 2004, for equivalence analyses between
noise perturbation and simple sensitivities for SVM).

2.5. Work�ow abstraction

MVPA-based analyses typically consist of some basic procedures
that are independent of the classi�cation algorithm or decision pro-
cess that was actually used, e.g. error calculation, cross-validation of
prediction performance, and feature selection. PyMVPA provides
support for all of these procedures and, to maximize �exibility, it
allows for arbitrary combinations of procedures with any classi�ers,
featurewise measures, and feature selectors. The two most impor-
tant procedures are dataset resampling and feature selection.

2.5.1. Dataset resampling

During a typical MVPA a particular dataset has to be resampled
several times to obtain an unbiased generalization estimate of a spe-
ci�c classi�er. In the simplest case, resampling is done via splitting
the dataset, so that some part serves as a validation dataset while
the remaining dataset is used to train a classi�er. This is done
multiple times until a stable estimate is achieved or the particular
sampling procedure exhausts all possible choices to split the data.
Proper splitting of a dataset is very important and might not be ob-
vious due to the aforementioned forward contamination through the
hemodynamic response function. If the strict separation of training
and validation datasets was violated, all subsequent analyses would
be biased because the classi�er might have had access to the data
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against which it will be validated.
PyMVPA provides a number of resampling algorithms. The most
generic one is an N-M splitter whereM out of N dataset chunks are
chosen as the validation dataset while all others serve as training
data until all possible combinations of M chunks are drawn. This
implementation can be used for leave-one-out cross-validation, but
additionally provides functionality that is useful for bootstrapping
procedures (Efron & Tibshirani, 1993). Additional splitters produce
�rst-half-second-half or odd-even splits. Each splitter may base its
splitting on any sample attribute. Therefore it is possible to split
not just into di�erent data chunks but also e.g. into pairs of stimulus
conditions.
Most algorithms implemented in PyMVPA can be parameterized
with a splitter, making them easy to apply within di�erent kinds
of splitting or cross-validation procedures. Like with other parts
of PyMVPA, it is trivial to add other custom splitters, due to a
common interface de�nition.
The dataset resampling functionality in PyMVPA also eases non-
parametric testing of classi�cation and generalization performances
via a data randomization approach, e.g. Monte Carlo permutation
testing (Nichols & Holmes, 2001). By running the same analysis
multiple times with permuted dataset labels (independently within
each data chunk) it is possible to obtain an estimate of the base-
line or chance performance of a classi�er or some sensitivity mea-
sure. This allows one to estimate statistical signi�cance (in terms
of p-values) of the results achieved on the original (non-permuted)
dataset. The reader is kindly referred to section 3.5 for a discussion
of the statistical evaluation of classi�er accuracies.

2.5.2. Feature selection procedures

As mentioned above, featurewise measure maps can easily be com-
puted with a variety of algorithms. However, such maps alone can-
not answer the question of which features are necessary or su�cient
to perform some classi�cation. Feature selection algorithms address
this question by trying to determine the relevant features based on
a featurewise measure. As such, feature selection can be performed
in a data-driven or classi�er-driven fashion. In a data-driven selec-
tion, features could be chosen according to some criterion such as
a statistically signi�cant ANOVA score for the feature given a par-
ticular dataset, or a statistically signi�cant t-score of one particular
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weight across splits. Classi�er-driven approaches usually involve a
sequence of training and validation actions to determine the feature
set which is optimal with respect to some classi�cation error (e.g.
transfer, inherent leave-one-out, theoretical upper-bound) value. It
is important to mention that to perform unbiased feature selection
using the classi�er-driven approach, the selection has to be carried
out without observing the main validation dataset for the classi�er.
Among the existing algorithms incremental feature search (IFS)
and recursive feature elimination (RFE, Guyon et al., 2002; Guyon
& Elissee�, 2003) are widely used (e.g. Rakotomamonjy, 2003)
and both are available within PyMVPA. The main di�erences be-
tween these procedures are starting point and direction of feature
selection. RFE starts with the full feature set and attempts to
remove the least-important features until a stopping criterion is
reached. IFS on the other hand starts with an empty feature set
and sequentially adds important features until a stopping criterion
is reached. The implementations of both algorithms in PyMVPA
are very �exible as they can be parameterized with all available ba-
sic and meta featurewise measures, and expose any desired amount
of the progress and internal state of the computation. In addition,
the speci�cs of the iteration process and the stopping criteria are
both fully customizable.

2.6. Demonstrating the high-level
interface

An important feature of PyMVPA is that it allows, by design, re-
searchers to compress complex analyses into a small amount of code.
This makes it possible to complement publications with the source
code actually used to perform the analysis as supplementary mate-
rial (a feature that has been demonstrated in Hanke et al., 2009).
Making this critical piece of information publicly available allows for
in-depth reviews of the applied methods on a level well beyond what
is possible with verbal descriptions. Although such an approach is
generally desirable in the scienti�c context, it is of particular im-
portance in an emerging �eld, such as the application of MVPA to
neural data, as has been argued in section 1.4.
To demonstrate PyMVPA's high-level interface the following sec-
tions provide a few examples of common analysis steps and their
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actual implementation in PyMVPA.

2.6.1. Loading a dataset

Dataset representation in PyMVPA builds on NumPy arrays. Any-
thing that can be converted into such an array can also be used as
a dataset source for PyMVPA. Possible formats range from various
plain text formats to binary �les. However, the most important
input format from the functional imaging perspective is NIfTI15,
which PyMVPA supports with a specialized module.
The following short source code snippet demonstrates how a dataset
can be loaded from a NIfTI image. Among various other approaches
PyMVPA supports reading the sample attributes from a simple two-
column text �le that contains a line with a label and a chunk id for
each volume in the NIfTI image (line 0). To load the data samples
from a NIfTI �le it is su�cient to create a NiftiDataset object
with the �lename as an argument (line 1). The previously-loaded
sample attributes are passed to their respective arguments as well
(lines 2-3). Optionally, a mask image can be speci�ed (line 4) to
easily select a subset of voxels from each volume based on the non-
zero elements of the mask volume. This would typically be a mask
image indicating brain and non-brain voxels.

0 a t t r = SampleAt tr ibutes ( ' sample_attr_fi lename . txt ' )
1 datase t = Ni f t iDa ta s e t ( samples=' subj1_bold . n i i . gz ' ,
2 l a b e l s=a t t r . l ab e l s ,
3 chunks=a t t r . chunks ,
4 mask=' subj1_roi_mask . n i i . gz ' )

Once the dataset is loaded, successive analysis steps, such as feature
selection and classi�cation, only involve passing the dataset object
to di�erent processing objects. All following examples assume that
a dataset was already loaded.

2.6.2. Simple full-brain analysis

The �rst analysis example shows the few steps necessary to run
a simple cross-validated classi�cation analysis. After a dataset is
loaded, it is su�cient to decide which classi�er and type of splitting
shall be used for the cross-validation procedure. Everything else
is automatically handled by CrossValidatedTransferError. The
following code snippet performs the desired classi�cation analysis

15To a certain degree PyMVPA also supports importing ANALYZE �les.
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via leave-one-out cross-validation. Error calculation during cross-
validation is conveniently performed by TransferError, which is
con�gured to use a linear C-SVM classi�er16 on line 6. The leave-
one-out cross-validation type is speci�ed on line 7.

5 cv = CrossVal idatedTransferError (
6 t r an s f e r_e r r o r=TransferError (LinearCSVMC ( ) ) ,
7 s p l i t t e r=NFo ldSp l i t t e r ( cvtype=1))
8 mean_error = cv ( datase t )

Simply passing the dataset to cv (line 8) yields the mean error. The
computed error defaults to the fraction of incorrect classi�cations,
but an alternative error function can be passed as an argument
to the TransferError call. If desired, more detailed information
is available, such as a confusion matrix based on all the classi�er
predictions during cross-validation.

2.6.3. Feature selection

Feature selection is a common preprocessing step that is also rou-
tinely performed as part of a conventional fMRI data analysis, i.e.
the initial removal of non-brain voxels. This basic functionality is
provided by NiftiDataset as it was shown on line 4 to provide an
initial operable feature set. Nevertheless, PyMVPA provides addi-
tional means to perform feature selection, which are not speci�c to
the fMRI domain, in a transparent and uni�ed way.
Machine learning algorithms often bene�t from the removal of noisy
and irrelevant features (see Guyon et al., 2002, Section V.1. �The
features selected matter more than the classi�er used�). Retain-
ing only features relevant for classi�cation improves learning and
generalization of the classi�er by reducing the possibility of over-
�tting the data. Therefore, providing a simple interface to feature
selection is critical to gain superior generalization performance and
get better insights about the relevance of a subset of features with
respect to a given contrast.
The FeatureSelectionClassifier in PyMVPA o�ers an easy way
to perform feature selections. It is a meta-classi�er that enhances
any other classi�er with an arbitrary initial feature selection step.
This approach is very �exible as the resulting classi�er can be used
as any other classi�er, e.g. for unbiased generalization testing us-
ing CrossValidatedTransferError. For instance, the following
16LIBSVM C-SVC (Chang & Lin, 2001) with trade-o� parameter C being a

reciprocal of the squared mean of Frobenius norms of the data samples.
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example shows a classi�er that operates only on 5% of the voxels
that have the highest ANOVA score across the data categories in
a particular dataset. It is noteworthy that the source code looks
almost identical to the example given on lines 5-8, with just the
feature selection method added to it. No changes are necessary for
the actual cross-validation procedure.

9 c l f = Fea t u r eS e l e c t i o nC l a s s i f i e r (
10 c l f=LinearCSVMC ( ) ,
11 f e a t u r e_s e l e c t i o n=Sen s i t i v i t yBa s edFea tu r eS e l e c t i on (
12 s e n s i t i v i t y_ana l y z e r=OneWayAnova ( ) ,
13 f e a t u r e_s e l e c t o r=
14 Frac t i onTa i l Se l e c t o r ( 0 . 0 5 , mode=' s e l e c t ' ,
15 t a i l= ' upper ' ) )
16 cv = CrossVal idatedTransferError (
17 t r an s f e r_e r r o r=TransferError ( c l f ) ,
18 s p l i t t e r=NFo ldSp l i t t e r ( cvtype=1))
19 mean_error = cv ( datase t )

It is important to emphasize that feature selection (lines 11-13) in
this case is not performed �rst on the full dataset, which could bias
generalization estimation. Instead, feature selection is being per-
formed as a part of classi�er training, thus, only the actual training
dataset is visible to the feature selection. Due to the uni�ed inter-
face, it is possible to create a more sophisticated example, where fea-
ture selection is performed via recursive feature elimination (Guyon
et al., 2002; Guyon & Elissee�, 2003):

20 rfesvm = LinearCSVMC ( )
21 c l f = S p l i t C l a s s i f i e r (
22 Fea t u r eS e l e c t i o nC l a s s i f i e r (
23 c l f=rfesvm ,
24 f e a t u r e_s e l e c t i o n=RFE(
25 s e n s i t i v i t y_ana l y z e r=
26 LinearSVMWeights ( c l f=rfesvm ,
27 t rans fo rmer=Abso lute ) ,
28 t r an s f e r_e r r o r=TransferError ( rfesvm ) ,
29 s t opp ing_cr i t e r i on=
30 FixedErrorThresholdStopCrit ( 0 . 0 5 ) ,
31 f e a t u r e_s e l e c t o r=
32 Frac t i onTa i l Se l e c t o r ( 0 . 2 , mode=' d i s ca rd ' ,
33 t a i l= ' lower ' ) ,
34 update_sens i t i v i ty=True ) ) ,
35 s p l i t t e r=NFo ldSp l i t t e r ( ) )

On line 20 the main classi�er that is reused in many aspects of the
processing is de�ned: line 23 speci�es that classi�er to be used to
make the �nal prediction operating only on the selected features,
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line 26 instructs the sensitivity analyzer to use it to provide sen-
sitivity estimates of the features at each step of recursive feature
elimination, and on line 28 it is speci�ed that the error used to select
the best feature set is a generalization error of that same classi�er.
Utilization of the same classi�er for both the sensitivity analysis
and for the transfer error computation prevents us from re-training
a classi�er twice for the same dataset.

The fact that the RFE approach is classi�er-driven requires us to
provide the classi�er with two datasets: one to train a classi�er and
assess its features sensitivities and the other one to determine stop-
ping point of feature elimination based on the transfer error. There-
fore, the FeatureSelectionClassifier (line 22) is wrapped within
a SplitClassifier (line 21), which in turn uses NFoldSplitter

(line 35) to generate a set of data splits on which to train and test
each independent classi�er. Within each data split, the classi�er
selects its features independently using RFE by computing a gener-
alization error estimate (line 28) on the internal validation dataset
generated by the splitter. Finally, the SplitClassifier uses a cus-
tomizable voting strategy (by default MaximalVote) to derive the
joint classi�cation decision.

As before, the resultant classi�er can now simply be used to obtain
an unbiased generalization estimate of the trained classi�er within
CrossValidatedTransferError . The step of validation onto in-
dependent validation dataset is often overlooked by the researchers
performing RFE (Guyon et al., 2002). That leads to biased gener-
alization estimates, since otherwise internal feature selection of the
classi�er is driven by the full dataset.

Fortunately, some machine learning algorithms provide an internal
theoretical upper bound on the generalization performance, thus
they could be used as a transfer_error criterion (line 28) with
RFE, which eliminates the necessity of additional splitting of the
dataset. Some other classi�ers perform feature selection internally
(e.g. SMLR, also see �gure 3.16), which removes the burden of
external explicit feature selection and additional data splitting.

The next chapter o�ers additional information about the feature se-
lection facilities of PyMVPA and analysis examples on actual neural
datasets.
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2.7. Paving the way for solid,
community-driven methods
development

The PyMVPA projects aims for a community-driven development
to ensure high-quality software and the timely inclusion of newly
developed analysis techniques. A su�ciently large developer base
is a critical requirement to extend the lifetime of such a project
beyond the scope of a dissertation project. While attracting devel-
opers is to a certain degree subject to �social engineering� a project
nevertheless has to provide the technical means to scale well with
an increasing number of developers.
But �rst of all it has to provide functionality that outweighs the
negative side-e�ects of participating in a multi-developer project,
as opposed to individual development, such as the hassles of deal-
ing with divergent opinions. PyMVPA achieves that by its modu-
larity, that allows to independently add novel algorithms without
having to worry about data import and export or even storage of
analysis results. In PyMVPA, each building block (e.g. all clas-
si�ers) follows a simple, standardized, interface. This allows one
to use various types of classi�ers interchangeably, without addi-
tional changes in the source code, and makes it easy to test the
performance of newly developed algorithms on one of the many
didactical neuroscience-related examples and datasets that are in-
cluded in PyMVPA. In addition, any implementation of an analysis
method/algorithm bene�ts from the basic house-keeping functional-
ity done by the base classes, reducing the necessary amount of code
needed to contribute a new fully-functional algorithm. PyMVPA
takes care of hiding implementation-speci�c details, such as a clas-
si�er algorithm provided by an external C++ library. At the same
time it tries to expose all available information (e.g. classi�er train-
ing performance) through a consistent interface (for reference, this
interface is called states in PyMVPA).
As it has already been mentioned, PyMVPA makes use of a num-
ber of external software packages, including other Python modules
and low-level libraries (e.g. LIBSVM 17) and computing environ-
ments (e.g. R18). Using externally developed software instead of
reimplementing algorithms has the advantage of a larger developer
17http://www.csie.ntu.edu.tw/~cjlin/libsvm/
18http://www.r-project.org
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and user base and makes it more likely to �nd and �x bugs in a
software package to ensure a high level of quality. However, using
external software also carries the risk of breaking functionality when
any of the external dependencies break. To address this problem
PyMVPA utilizes an automatic testing framework performing vari-
ous types of tests ranging from unittests (currently covering 84% of
all lines of code) to sample code snippet tests in the manual and the
source code documentation itself to more evolved �real-life� exam-
ples. This facility allows one to test the framework within a variety
of speci�c settings, such as the unique combination of program and
library versions found on a particular user machine.
At the same time, the testing framework also signi�cantly eases
the inclusion of code by a novel contributor by catching errors
that would potentially break the project's functionality. Being
open-source does not always mean easy to contribute due to var-
ious factors such as a complicated application programing interface
(API) coupled with undocumented source code and unpredictable
outcomes from any code modi�cations (bug �xes, optimizations,
improvements). PyMVPA welcomes contributions, and thus, ad-
dresses all the previously mentioned points:

Accessibility of source code and documentation All source code
(including website and examples) together with the full devel-
opment history is publicly available via a distributed version
control system19 which makes it very easy to track the de-
velopment of the project, as well as to develop independently
and to submit back into the project.

Inplace code documentation Large parts of the source code are
well documented using reStructuredText20, a lightweight mark-
up language that is highly readable in source format as well
as being suitable for automatic conversion into HTML or
PDF reference documentation. In fact, Ohloh.net21 source
code analysis judges PyMVPA as having �extremely well-
commented source code�.

Developer guidelines A brief summary de�nes a set of coding con-
ventions to facilitate uniform code and documentation look
and feel. Automatic checking of compliance to a subset of

19http://en.wikipedia.org/wiki/Version_control_system
20http://en.wikipedia.org/wiki/ReStructuredText
21http://www.ohloh.net/projects/pymvpa/factoids
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the coding standards is provided through a custom PyLint22

con�guration, allowing early stage minor bug catching.

Moreover, PyMVPA does not raise barriers by being limited to spe-
ci�c platforms. It could fully or partially be used on any platform
supported by Python (depending on the availability of external de-
pendencies). However, to improve the accessibility, binary installers
for Windows, and MacOS X, as well as binary packages for De-
bian GNU/Linux (included in the o�cial repository), Ubuntu, and
a large number of RPM-based GNU/Linux distributions, such as
OpenSUSE, RedHat, CentOS, Mandriva, and Fedora are provided.
Additionally, the available documentation provides detailed instruc-
tions on how to build the packages from source on many platforms.

22http://www.logilab.org/projects/pylint
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3. Analysis Strategies

Previous chapters have reviewed the general, rather theoretical ad-
vantages of the application of MVPA to neuroimaging data, and
also have introduced a new software framework that aims to pro-
vide scientists with the means to quickly adopt and evaluate these
powerful new methods in their own research.
The main focus of the current chapter is now to illustrate this
power with some concrete examples that show the �exibility of
the MVPA approach. To this end a series of analyses will be pre-
sented that cover a wide variety of experimental paradigms, rang-
ing from object perception, over auditory information processing, to
memory-related research. Several di�erent datasets will be the sub-
ject of these analyses to point out potentially interesting processing
schemes and layout a set of valid and informative procedures. The
selection of datasets includes block-design as well as event-related
fMRI data. Moreover, due to the aforementioned absence of re-
quired a priori models, MVPA analyses of other data modalities
are equally possible and fruitful, therefore similar methods will be
applied to data from extracellular recordings, EEG, and MEG as
well. All analysis steps including pre-processing of the data have
been performed with PyMVPA, unless otherwise noted1.
To begin with a set of analysis strategies will be discussed that
primarily focus on interpreting the direct quanti�able link between
brain response patterns and experimental conditions (O'Toole et
al., 2007) and so far make up the majority of applied methods in
the studies that have been published in this �eld.
However, the second part of the chapter will introduce a sensitivity
analysis scheme that o�ers alternative information sources that are
readily available as part of any MVPA study, but haven't received
much attention in the literature so far.
What is not going to be discussed, however, are many possible de-
cisions to be made when applying MVPA, such as which type of

1Note that PyMVPA internally makes use of a number of other aforementioned
Python modules, such as NumPy and SciPy.
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classi�er to use, or which preprocessing to apply. Of course the ac-
tual analysis parameters will be speci�ed, but no attempt is made
to promote a particular choice as superior to an alternative. For
a comprehensive overview about important aspects that should be
considered when such decisions have to be made (i.e. whether or
not a non-linear classi�er should be employed), the reader is kindly
refered to Pereira et al. (2009) for a comprehensive tutorial overview
about these topics.

3.1. Labeling functional systems by
prediction performance

It has been mentioned previously that one of the primary features
of MVPA is that it provides a direct quanti�able link between brain
response patterns and the experimental design. This link is the ac-
curacy measure of a trained classi�er predicting the experimental
condition of new data samples. A high accuracy indicates that a
classi�er extracted a multivariate model that appropriately captures
the underlying signal, and does not su�er from severe over�tting of
the speci�c noise pattern in the training data. The implication with
respect to the original research question is that somewhere in the
dataset there has to be enough information of some kind to allow
for this prediction to be made. However, quite often, if not always,
the actual research question deals with either speci�cally localizing
this information, or characterizing its structure, or both. Hence,
researchers typically need to go beyond the level of reliable pre-
dictions and need to characterize the cause for this situation. The
following sections introduce strategies that use the generalization
accuracy as the primary dependent variable.

3.1.1. Classify and dissect

The �rst analysis strategy that shall be introduced has been labeled
as �classify and dissect� by O'Toole et al. (2007). For this approach
a classi�er is trained on data from a, possibly hypothesis-led, se-
lection of ROIs �rst. The critical requirement for this analysis is
that the classi�er is able to perform reliable predictions for gen-
eralization test datasets. To investigate the sources of the signals
that contribute to the classi�cation each ROI is excluded from the
training data. Afterwards a new classi�er is trained on the reduced
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Figure 3.1.: Assessing the involvement of brain areas in the per-
ception of near-threshold fear. Pessoa & Padmala (2007) trained
a classi�er on data from multiple ROIs to distinguish between
trials with masked fear-related and neutral stimuli. The multi-
variate model was then inspected with respect to the contribution
of individual ROIs by successively excluding each of them from
the training dataset. ROIs were then scored by the reduction of
the achieved generalization accuracy of the reduced model with
respect to the full model including all ROIs, where an increasing
reduction was considered as stronger involvement in the process-
ing. Reprinted from Pessoa & Padmala (2007)

dataset, and its prediction accuracy is compared to the initial clas-
si�er, trained on the full dataset. A reduction in the accuracy of the
reduced classi�er might be interpreted as that with the exclusion
of the particular ROI a relatively important chunk of information
is no longer available, hence the reduction of the accuracy is used
as a measure of importance.
Pessoa & Padmala (2007) o�er an application example of this strat-
egy, who aimed to determine the emotional content of brief visual
presentations of face (i.e. fearful vs. neutral faces) from single-
trial fMRI data employing a slow event-related paradigm. They
identi�ed a set of ROIs based on results available from previous
studies, performed a �virtual lesioning� analysis using the proce-
dure outlined above, and were able to identify a set of brain areas
(including the amygdala) that contribute to the perception of the
emotional content of the stimulus faces (Fig. 3.1).
However, this approach to deduce the function or even just the
contribution of brain areas with respect to a speci�c cognitive task,
implies at least one problem. Excluding one ROI from the training
dataset at a time might not necessarily lead to a reduction in the
prediction accuracy even if a particular ROI contributes meaningful
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signal with respect to the classi�cation task. That might happen,
for example, if multiple ROIs contain redundant information, or
even when that information is not redundant, but complementary
yet each subset alone is su�cient to allow for a high prediction ac-
curacy. Therefore, using this analysis strategy requires additional
in-depth analysis of the extracted multivariate models to be able
to interpret the type of contribution of a speci�c brain area. Sev-
eral possibilities how such an in-depth analysis can be done are
presented in the remainder of this chapter.

3.1.2. Leaving the voxel-space: Brain response
components

One of the possibilities to analyze brain response patterns men-
tioned in chapter 1 is to investigate them in terms of components
as estimated by PCA/ICA algorithms instead of voxels, or ROIs of
those. However, the labeling issue, i.e. to decide whether a particu-
lar components represents a meaningful signal, or noise, was listed
as the primary factor limiting the usefulness of this approach.
Classi�ers can help to address this issue by assigning a measure to
each component that re�ects how informative it is with respect to
a particular classi�cation. It is basically irrelevant for a classi�er
whether its input features originate from voxel signal timecourses,
or from the temporal pro�les of a spatial ICA components. There-
fore it is equally possible to apply the previously outlined �classify
and dissect� strategy to datasets that have been transformed into
component space. However, this time not for certain spatial ROIs,
but for individual components, i.e. features.
It is worth mentioning that transforming an fMRI dataset into a
component representation causes a dramatic reduction of the di-
mensionality, hence often being labeled as data-compression. For
example, a spatial ICA of a dataset with 30k voxels and 500 vol-
umes would yield 500 components (i.e. features), which only 1.7% of
the original number of feature. Such a reduction also typically also
allows to employ classical mutlivariate algorithms, such as LDA.
Carlson, Schrater, & Sheng (2003) proposed a slightly di�erent
strategy that accounts for the ordering of the estimated PCA/ICA
components. They suggest a �knockout� procedure that starts with
the full set of components, and successively removes them from
the dataset, starting with those explaining most of the variance.
The importance of each component is now expressed as the rela-
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Figure 3.2.: Carlson et al. (2003) proposed a hierarchical knock-
out procedure to investigate the importance of brain response
components. This strategy successively removes the axes of the
component space, and projects the original data points into the
reduced space. Removing an informative component yields an
impaired prediction accuracy, where the relative loss of informa-
tion can be used to quantify the contribution. Reprinted from
Carlson et al. (2003)

tive loss of generalization accuracy when excluding that component
from the dataset (Fig. 3.2). In contrast to the previous strategy,
that analysis approach is implemented as a hierarchical procedure
where previously excluded components are not put back into the
dataset.
However, it has been mentioned before that the ordering of the
components might not be very useful in terms of the experimental
design (with i.e. motion artifacts explaining substantial proportions
of the signal variance, in contrast to the tiny changes that are due
to the BOLD-response). Therefore, both the hierarchical exclusion
strategy, as well as the �classify and dissect� approach might be sub-
optimal. It would be very useful to have an analysis procedure that
is able to assign importance-scores to all features simultaneously.
Fortunately, such a strategy will be introduced in section 3.2.

3.1.3. Multivariate searchlight

An alternative algorithm for information localization, again operat-
ing in voxel-space, not on components, was proposed by Kriegesko-
rte et al. (2006). The basic idea is to scan the whole brain by
automatically running multiple ROI analyses. The so-called mul-
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tivariate searchlight does a MVPA on spherical ROIs of a given
radius centered around any voxel covering brain matter. A search-
light analysis computing e.g. generalization accuracies yields a map
showing where in the brain a relevant signal can be identi�ed while
still harnessing the power of multivariate techniques (for application
examples see Haynes et al., 2007; Kriegeskorte, Formisano, Sorger,
& Goebel, 2007).
A searchlight performs well if the target signal is available within a
relatively small area. By increasing the size of the searchlight the
information localization becomes less speci�c because, due to the
anatomical structure of the brain, each spherical ROI will contain a
growing mixture of grey-matter, white-matter, and non-brain vox-
els. Additionally, a searchlight operating on volumetric data will
integrate information across brain-areas that are not directly con-
nected to each other i.e. located on opposite borders of a sulcus.
This problem can be addressed by running a searchlight on data
that has been transformed into a surface representation. PyMVPA
supports analyses with spatial searchlights (not extending in time),
operating on both volumetric and surface data (given an appro-
priate mapping algorithm and using circular patches instead of
spheres). The searchlight implementation can compute arbitrary
measures within the spheres.
For the following exemplary application of a searchlight analysis
data of a single participant (participant 1) from the now classical
study by Haxby et al. (2001) are used. This dataset was chosen
because, since its �rst publication, it has been repeatedly reanalyzed
(Hanson et al., 2004; O'Toole et al., 2007; Hanson & Halchenko,
2008) and parts of it also serve as an example dataset of the Matlab-
based MVPA toolbox (Detre et al., 2006). This dataset will also be
subject of further analyses in the following sections.
The dataset itself is a block-design fMRI experiment consisting of
12 runs. In each run, the participant passively viewed greyscale
images of eight object categories (Fig. 3.3), grouped in 24 s blocks,
separated by rest periods. Each image was shown for 500ms and
followed by a 1500ms inter-stimulus interval. Full-brain fMRI data
were recorded with a volume repetition time of 2500ms, thus, a
stimulus block was covered by roughly 9 volumes. For a complete
description of the experimental design and fMRI acquisition param-
eters see Haxby et al. (2001).
Prior to any analysis, the raw fMRI data were motion corrected
using FLIRT from FSL (Jenkinson et al., 2002). After motion cor-
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Figure 3.3.: Example set of the stimuli used in Haxby et al. (2001).

rection, linear detrending was performed for each run individually
by �tting a straight line to each voxels timeseries and subtracting
it from the data. No additional spatial or temporal �ltering was
applied.
For the sake of simplicity, the binary CATS vs. SCISSORS classi�-
cation problem was selected for this example. All volumes recorded
during either CATS or SCISSORS blocks were extracted and voxel-
wise z-scored with respect to the mean and standard deviation of
volumes recorded during rest periods. Z-scoring was performed in-
dividually for each run to prevent any kind of information transfer
across runs.
Because the actual source code to perform a searchlight analysis in
PyMVPA is so short it is printed in its full length below.

1 cv = CrossVal idatedTransferError (
2 t r an s f e r_e r r o r=TransferError (LinearCSVMC ( ) ) ,
3 s p l i t t e r=OddEvenSpl i t ter ( ) )
4 s l = Sea r ch l i g h t ( cv , r ad iu s=5)
5 sl_map = s l ( datase t )
6 datase t . map2Nift i ( sl_map ) . save ( ' searchlight_5mm . n i i . gz ' )

In the source code the measure to be computed by the searchlight
is con�gured �rst. Similar to the code examples in the previous
chapter it is a cross-validated transfer or generalization error, but
this time it will be computed on a run-wise odd-even split of the
dataset and with a linear C-SVM classi�er (lines 1-3). On line 4 the
searchlight is set up to compute this measure in all possible 5mm-
radius spheres when called with a dataset (line 5) The �nal call on
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line 6 transforms the computed error map back into the original
data space and stores it as a compressed NIfTI �le. Such a �le can
then be viewed and further processed with any NIfTI-aware toolkit.
Figure 3.4 shows the searchlight error maps for the CATS vs. SCIS-
SORS classi�cation on single volumes from the example dataset for
radii of 1, 5, 10 and 20mm respectively. Utilizing only a single
voxel in each sphere (1mm radius), yields a generalization error as
low as 17% in the best performing sphere, which is located in the
left occipito-temporal fusiform cortex. With increases in the radius
there is a tendency for further error reduction, indicating that the
classi�er performance bene�ts from integrating signal from multi-
ple voxels. However, better classi�cation accuracy is achieved at
the cost of reduced spatial precision of signal localization. The
distance between the centers of the best-performing spheres for 5
and 20mm searchlights totals almost 18mm. The lowest overall
error in the right occipito-temporal cortex with 8% is achieved by
a searchlight with a radius of 10mm. The best performing sphere
with 20mm radius (12% generalization error) is centered between
right inferior temporal and fusiform gyrus. It comprises approxi-
mately 700 voxels and extends from right lingual gyrus to the right
inferior temporal gyrus, also including parts of the cerebellum and
left lateral ventricle. It, therefore, includes a signi�cant proportion
of voxels sampling cerebrospinal �uid or white matter, indicating
that a sphere of this size is not optimal given the structural organi-
zation of the brain surface. Kriegeskorte et al. (2006) suggest that
a sphere radius of 4mm yields near-optimal performance. How-
ever, while this assumption might be valid for representations of
object properties or low-level visual features, a searchlight of this
size could miss signals related to high-level cognitive processes that
involve several spatially distinct functional subsystems of the brain.
However, there are nevertheless studies trying to employ a search-
light to identify complex cognitive signals, such as hidden intentions
(Haynes et al., 2007).
To summarize, a searchlight represents a relatively simple way to
localize regions whos brain response patterns contain relevant infor-
mation. However, due to its assumptions about the spatial layout
and size of the targeted regions, it is limited in its ability to de-
tect signals that are encoded in the interaction of spatially distinct
areas. Reducing the dataset to just a few features from a local
neighborhood might nevertheless be necessary, if one wants to ap-
ply classical statistical algorithms, such as LDA to datasets with a
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Figure 3.4.: Searchlight analysis results for CATS vs. SCISSORS
classi�cation for sphere radii of 1, 5, 10 and 20mm (correspond-
ing to approximately 1, 15, 80 and 675 voxels per sphere respec-
tively). The upper part shows generalization error maps for each
radius. All error maps are thresholded arbitrarily at 0.35 (chance
level: 0.5) and are not smoothed to re�ect the true functional
resolution. The center of the best performing sphere (i.e. lowest
generalization error) in right temporal fusiform cortex or right
lateral occipital cortex is marked by the cross-hair on each coro-
nal slice. The dashed circle around the center shows the size of
the respective sphere (for radius 1mm the sphere only contains
a single voxel). MNI-space coordinates (x, y, z) in mm for the
four sphere centers are: 1mm (R1 ): (48, -61, -6), 5mm (R5 ):
(48, -69, -4), 10mm (R10 ): (28, -59, -12) and 20mm (R20 ):
(40, -54, -8). The lower part shows the generalization errors for
spheres centered around these four coordinates, plus the location
of the univariately best performing voxel (L1 : -35, -43, -23; left
occipito-temporal fusiform cortex) for all radii. The error bars
show the standard error of the mean across cross-validation folds.
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low number of observations. However, classi�er algorithms such as
SVMs are easily able to deal with full-brain datasets. Especially
in conjunction with more �exible feature selection strategies (i.e.
based on classi�er weights), they are able to achieve impressive
prediction accuracies, hence estimating multivariate models that
appropriately capture the underlying signal in the dataset.
Table 3.1 shows the prediction error of a variety of classi�ers trained
on the full-brain dataset with and without any prior feature selec-
tion. Most of the classi�ers perform near chance performance with-
out prior feature selection2, but even simple feature selection (e.g.
some percentage of the population with highest scores on some mea-
sure) boosts generalization performance signi�cantly of all classi-
�ers, including the non-linear algorithms radial basis function SVM,
and kNN.
Inspecting which features are preserved during the feature selection
stage, again provides inherent localization information. Moreover,
the stability of the selection patterns also provide information about
the variability of the underlying signal � a topic that will be dis-
cussed in section 3.5. However, more versatile measures than binary
selection maps are available. The next section will provide some
hints on how the MVPA model parameters itself can be interpreted
in meaningful ways.

3.2. More information is available:
Sensitivity analysis

Hanson et al. (2004) trained a multi-layer arti�cial neural network
on the data from Haxby et al. (2001) (the same dataset that has
been the subject of the analysis example in the previous section).
By inspecting the weights of the trained neural network they were
able to provide convincing evidence in favor of a distributed combi-
natorial coding of object category related information in the fMRI
data. Such a sensitivity analysis, i.e. the analysis of the multivari-
ate model parameters is easily possible with any linear classi�er
(in contrast non-linear sensitivities, such as those from radial ba-

2Chance performance without feature selection was not the norm for all cate-
gory pairs in the dataset. For example, the SVM classi�er generalized well
for other pairs of categories (e.g. FACE vs HOUSE) without prior feature
selection. Consequently, SCISSORS vs CATS was chosen to provide a more
di�cult analysis case.
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Table 3.1.: Performance of various classi�ers with and without
feature selection. For classi�ers with feature selection the classi-
�er algorithm is followed by the sensitivity measure the feature
selection was based on (e.g. LinSVM on 50(SVM) reads: linear
SVM classi�er using 50 features selected by their magnitude of
weight from a trained linear SVM).

Training Transfer

Classi�er Features Error Time Error Time

utilized (sec) (±stderr) (sec)

Without feature selection

LinSVM(C=def) 29125 0.00 22.7 0.40±0.07 2.0

LinSVM(C=10*def) 29125 0.00 22.7 0.36±0.07 2.0

LinSVM(C=1) 29125 0.00 22.6 0.36±0.07 2.0

RbfSVM() 29125 0.00 23.8 0.50±0.07 2.1

kNN() 29125 0.02 0.0 0.44±0.03 2.9

With feature selection

SMLR(lm=0.1) 314 0.00 19.0 0.09±0.03 0.1

SMLR(lm=1.0) 92 0.00 5.0 0.11±0.03 0.1

SMLR(lm=10.0) 42 0.00 2.4 0.09±0.03 0.1

RbfSVM on SMLR(lm=10) non-0 42 0.00 2.5 0.11±0.02 0.0

kNN on 5%(ANOVA) 1456 0.00 0.8 0.28±0.05 0.2

kNN on 50(ANOVA) 50 0.01 0.8 0.07±0.02 0.0

kNN on SMLR(lm=10) non-0 42 0.00 2.5 0.12±0.02 0.0

LinSVM on 5%(SVM) 1456 0.00 23.1 0.18±0.04 0.1

LinSVM on 50(SVM) 50 0.00 22.7 0.03±0.02 0.0

LinSVM on 5%(ANOVA) 1456 0.00 1.6 0.13±0.04 0.1

LinSVM on 50(ANOVA) 50 0.00 0.8 0.09±0.03 0.0

LinSVM on SMLR(lm=1) non-0 92 0.00 5.3 0.08±0.02 0.0

LinSVM on SMLR(lm=10) non-0 42 0.00 2.5 0.12±0.03 0.0

LinSVM+RFE(N-Fold) 4587 0.00 2010.0 0.12±0.03 3.4

LinSVM+RFE(OddEven) 42 0.09 260.9 0.24±0.04 0.0
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sis function SVMs are much harder to interpret (see e.g. Kienzle,
Schölkopf, Wichmann, & Franz, 2007, for an analysis approach).
An interesting example is the investigation of the spatio-temporal
structure of a multivariate model, which is going to be introduced
in this section.
It has been already mentioned in chapter 2 that when analyzing
event-related fMRI datasets it might be hard to decide which vol-
ume during an event should be selected as the �representative� brain
response sample for that particular trial. There are several possibil-
ities to make this decision. First, considering the temporal proper-
ties of the BOLD-response, one could argue that the peak amplitude
is probably reached 5-6 s after stimulus onset. Simply choosing the
volume that is closest in time would yield a reasonable candidate.
However, it has been noted earlier that there is substantial variation
in the timing of the BOLD-response across subjects, brain areas,
and experimental paradigms. To account for a certain variability
some studies average a number of successively recorded volumes,
aiming to capture the peak response, and at the same time seek to
boost the signal-to-noise ratio (see e.g. Pessoa & Padmala, 2007;
Haynes et al., 2007, for applications). But volume averaging in-
evitably destroys the temporal structure of the fMRI signal over
the course of a trial, and might signi�cantly demolish the available
signal, especially for relatively fast event-related designs.
The analysis approach that is proposed here is centered around the
idea to explicitly make use of the full spatio-temporal structure
of the fMRI signal, and use the powerful classi�er algorithms to
determine the relevant information, instead of selectively excluding
information based on a priori assumptions. The dataset that will be
used to demonstrate the method has not been published previously,
therefore a short summary of the employed paradigm and recording
parameters will be given �rst.

3.2.1. Event-related example dataset

fMRI datasets from eleven participants have been recorded while
they were performing an object categorization task. Colored im-
ages of computer-generated faces and photographs of shoes were
presented to the participants. All object stimuli were displayed
centered on top of a rectangular area that subtended 7.2◦×4.8◦ de-
grees of visual angle and consisted of a phase scrambled version of
the actual stimulus itself (Fig. 3.5). This was done to equalize the
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stimuli with respect to their visual appearance (e.g. shape outline).
The participants had to categorize each stimulus with respect to one
of two possible aspects. Either they had to make a two-alternative
forced-choice response concerning the width (i.e. slim vs. wide) or
the gender (i.e. male vs. female) of the presented image. Each trial
began with the presentation of a stimulus for two seconds. After-
wards the stimulus was replaced by a new phase-scrambled image
without an object on top of it. This ��ller� image was replaced
by a new one after another two seconds, and a total of three �ller
images were presented in each trial, hence yielding a trial length of
eight seconds. Participants were asked to respond within six sec-
onds after trial onset by a button-press with their right hand and no
feedback was given to them. Trials were grouped into mini blocks
consisting of �ve trials of each stimulus condition (5× 4 trials) and
another �ve null-event trials in which the initial stimulus image was
replaced by a forth purely scrambled image. The trial order in each
mini block was pseudo-randomized to ensure the each condition and
the null-events were equally often followed by any other condition
or null-event. The participants task and the stimulus object cate-
gory (i.e. being a face or a shoe) was kept constant during a mini
block. Over the course of a scanning run four mini blocks were
presented to the participants covering all combinations of stimulus
object category and task. The mini block order was randomized in
each run and a total of four runs were performed.
A standard echo-planar imaging (EPI) sequence was used to acquire
the fMRI data using a Siemens Trio 3Tesla MRI scanner (TR=2 s,
TE=30ms, and �ip-angle α = 90◦). The spatial resolution was
3 × 3mm (64 × 64 matrix in-plane matrix) and 32 slices (3mm
thickness and 10% interslice-gap). A total of 1564 volumes (4×391)
were recorded.

3.2.2. Spatio-temporal MVPA

For the purpose of this example analysis the stimulus variation with
respect to width and gender was ignored and only the object cate-
gory classi�cation problem was considered � which has been stud-
ied repeatedly, and hence, good estimates for the expected classi�er
performance are available (Haxby et al., 2001; Hanson et al., 2004;
Hanson & Halchenko, 2008; O'Toole et al., 2007).
The initial pre-processing of the fMRI data was very similar to the
procedure applied in the previous section. The functional timeseries
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Figure 3.5.: Computer-generated stimulus examples. The columns
show examples of slim female, wide female, slim male, and wide
male faces and shoes used in the object categorization experiment
analyzed in section 3.2.

were �rst motion-corrected using McFLIRT from FSL. Afterwards,
run-wise detrending was performed. This time, however, not only
by linear detrending, but additionally by regressing out quadratic
trends in the data to account for the long run length of approxi-
mately 13 minutes (which had a signi�cant positive impact on the
classi�er performance as opposed to linear detrending alone). Ex-
cept for a feature-wise z-scoring of the data for each run individu-
ally, no further pre-processing was done, especially no slice-timing
correction or any spatial or temporal �ltering of the data.
The critical step in this analysis was the selection of brain response
patterns for each trial in the experiment. To be able to look at
spatio-temporal patterns, not only a single volume was selected,
but a series of �ve volumes from a 10 s-window starting at stim-
ulus onset, and therefore extending 2 s past the beginning of the
next trial. For a full brain analysis this would yield about 200k
voxel-timepoints, which PyMVPA is easily able to deal with (when
running on reasonably modern desktop hardware). However, for
the purpose of this example, the analysis was limited to a bilateral
occipito-temporal ROI (as de�ned by the probabilistic Harvard-
Oxford cortical atlas as occipito-temporal fusiform cortex, Flitney
et al., 2007). Aligning each subject's functional space to the MNI-
template and backprojecting the corresponding ROI mask yielded
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ROIs of approximately 300 voxels per volume, and hence brain re-
sponse samples with about 1700 features each.
Linear SVM classi�ers were trained on each participant's dataset in-
dividually, using a 4-fold cross-validation procedure, that routinely
held out all trials from a full scanning run as a test dataset. All clas-
si�ers were able to achieve resonable accuracies in the generalization
tests, with a mean of 79% correct single-trial predictions across
all subjects (one-sample t-test against the chance-performance of
50%, t = 13.75, df = 10, p < 0.001). With the trained classi�ers
being able to reliably predict the object category of stimuli from
single-trial data it was now posssible to inspect the classi�er model
parameters. Please note, that it is necessary to achieve reasonably
high generalization accuracies (not just a little better-than-chance),
as otherwise interpreting the model parameters is not meaningful,
since the multivariate model most likely su�ers from substantial
over�tting or did not learn at all.
The SVM classi�er provides one weight per feature � basically a
score that attributes how informative a feature is. The higher the
classi�er weight, the larger is the impact of a feature on the clas-
si�er's decision. This association is largely identical to the weights
of a logistic regression. Since the features in this example analysis
are actually voxel-timepoints, it is possible to look at the temporal
�importance� pro�le of each voxel.
Figure 3.6 shows such pro�les (extracted from the classi�er of par-
ticipant 1) for the two voxels with the highest absolute classi�er
weight on any voxel-timestep in comparison to the event-related
signal change. Voxel A located on the lateral side of the fusiform
gyrus responds relatively similar to both object categories. How-
ever, there are small but reliable di�erences in the signal amplitude,
that are picked-up by the classi�er. Voxel B on the opposite, medial
part of the fusiform gyrus shows a response to shoe stimuli that is
about twice a large as the response to faces. Although the magni-
tudes of the assigned weights are about as large as the ones of voxel
A, the impact of the signal of voxel B on the classi�er decision is
nevertheless stronger due to the larger response di�erences of the
timepoints four and six seconds after stimulus onset. Both voxels
clearly show a univariate e�ect of object category, and consequently
the corresponding locations are also identi�ed by an SPM analysis
(Fig. 3.6).
Figure 3.7 o�ers a more detailed view on spatio-temporal structure
of the multivariate model for a set of eight exemplary voxels on the
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Figure 3.6.: Event-related SVM classi�er sensitivities for object
category discrimination of face and shoe stimuli (subject 1; oc-
cipital temporal fusiform ROI). The upper half shows the mean
trial timecourse (errorbars show the standard error of the mean
across all trials) for each stimulus condition and the associated
SVM sensitivties (81% SVM prediction accuracy; errorbars show
the standard error of the mean across cross-validation folds). The
classi�er automatically picks-up reliable signal di�erences, with-
out having a notion of BOLD-response timing or shape. Posi-
tive and negative sensitivities are equally informative and rep-
resent a weighting towards one of the two alternatives in this
binaries discrimination. The lower half contains a comparison of
the sensitivity topography six seconds after stimulus onset and
the corresponding SPM z-statistic map (arbitrarily thresholded
at z = 2.3) of the face vs. shoe contrast. For the SPM analysis
the data has been spatially smoothed using a 5mm FWHM gaus-
sian kernel, while the sensitivity analysis was run on unsmoothed
data. The typical SPM-based analysis (including preprocessing)
substantially obscures the response pattern pattern revealed by
the classi�er sensitivity topography.
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Figure 3.7.: Event-related SVM classi�er sensitivities for eight ad-
jacent target voxels on the right fusiform gyrus of subject 4. The
classi�er performed at a prediction accuracy of 92% using data
from the occipito temporal fusiform ROI. The shown plots are
analogous to �gure 3.6, but in addition the SPM z-statistic of the
face - shoe contrast of each voxel is plotted for data that has been
smoothed using a 5mm FWHM spatial Gaussian �lter, and for
unsmoothed data. The BOLD signal change is computed relative
the global mean of a voxel's signal across the whole timeseries,
to prevent obscuring a potential baseline di�erence between both
stimulation conditions, that might be picked-up by the classi�er.
Voxel (E) shows a substantially larger BOLD-response than all
other voxel in both conditions (note the divergent y-axis scaling).
This might be due to a potential intersection of this voxel with a
draining vein. This is re�ected in both classi�er sensitivities, and
SPM z-statistic of unsmoothed data, but is not visible anymore
after spatial �ltering with a 5mm kernel.
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surface of the right fusiform gyrus of participant 4 (that was chosen
as another example of a classi�er model with high generalization
accuracy). When looking at the event-related signal change of these
voxels it becomes obvious that there is a substantial variation in the
response patterns. While most voxels seem to be responsive to both
stimulus conditions there are nevertheless di�erences in amplitude
(e.g. voxel B), but also in timing within a voxel (voxel H), and
across voxels (e.g. voxel D vs. G).
The corresponding SPM z-score computed on the spatially smoothed
data seems to be mainly driven by the small di�erence in the ampli-
tudes, with faces causing a slightly stronger BOLD-response. How-
ever, this type of analysis completely cancels out local variations
in the signal (as can be seen in the z-scores of smoothed and un-
smoothed data of voxel E). Moreover, SPM is largely incapable
to pick-up reliable signal di�erences originating in shape or tim-
ing di�erence of the BOLD-response (voxel H). Although it has to
be mentioned that SPM is capable of framing hypotheses about
timing-di�erences through the use of additional regressors, such as
HRF basis functions, most studies nevertheless focus on contrasts
about pure amplitude di�erences. MVPA on the other hand read-
ily provides this type of information without the requirement of
explicit hypotheses about them.
Finally, �gure 3.8 shows an assessment of the stability of the struc-
ture of the multivariate model. Across all participants MVPA iden-
ti�es continuous clusters of informative regions on the lateral and
medial parts of the fusiform gyrus. The clustering of informative
voxels can be considered as converging evidence that the model
parameters capture a meaningful signal in the dataset, since the
BOLD-response itself is known to be spatially extended (�watering
the garden for the sake of the single �ower�; Malonek & Grinvald,
1997). However, please note the variation in the spatial constella-
tions across participants. One part shows the voxel clusters where a
larger response indicates a face stimulus (blue color) on the lateral
part of the fusiform gyrus, while others have this pattern reversed.
This might be due to the known variability of the chunk of cor-
tex that is supposed to perform the face processing in the human
ventral stream (Kanwisher, McDermott, & Chun, 1997).
This pattern of results clearly shows that the employed SVM classi-
�ers automatically picked-up meaningful information in the dataset
that is based on amplitude and timing di�erences in the BOLD-
response across subjects. This con�rms the aforementioned prop-
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Figure 3.8.: SVM accuracies (ACC) and sensitivity distributions
for all eleven subjects. The coronal slices show the sensitivities of
voxels recorded 4-6 s after stimulus onset (no slicetime correction
was performed). The sensitivity analysis can reliably identify
informative voxel clusters on the lateral and medial surface of the
right fusiform gyrus in all subjects. Please note, that the sign of
the sensitivity is no uniform indicator of selectivity for any of the
stimulus categories. The position of all slices is speci�ed using
the MNI coordinate system. Reported accuracies refer to the
mean generalization performance, and analogously sensitivities
are means across cross-validation folds. All SVMs were trained
on voxels from a occipito-temporal ROI and multiple timepoints
from a 10-seconds window after stimulus onset. The sensitivity
plots are unsmoothed to re�ect the true functional resolution.
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erty of MVPA to generate meaningful multivariate models of high-
dimensional datasets without the need to specify a priori models of
the anticipated signal.

3.3. Sensitivity analysis as a
modality-independent technique

Understanding how the brain is able to give rise to complex behav-
ior has stimulated a plethora of brain measures such as non-invasive
EEG3, MEG4, MRI5, PET6, optical imaging, and invasive extra-
cellular and intracellular recordings, often in conjunction with new
methods, models, and techniques. Each data acquisition method
has o�ered a unique set of properties in terms of spatio-temporal
resolution, signal to noise, data acquisition cost, applicability to
humans, and the corresponding neural correlates that result from
the measurement process.
Neuroscientists often focus on only one or a smaller subset of these
neural modalities partly due to the kinds of questions investigated
and partly due to the cost of learning to analyze data from these
di�erent modalities. The diverse measurement approaches to brain
function can heavily in�uence the selection of a research question
and, in turn, the development of speci�c software packages to an-
swer them. Consequently, the peculiarities of each data acquisi-
tion modality and the lack of strong interaction between the neuro-
science communities employing them have produced distinct soft-
ware packages specialized for the conventional analyses within a
particular modality. Some analysis techniques have become, due
to normative concerns, de facto standards despite their limitations
and inappropriate assumptions for the given data type (e.g. SPM
for fMRI).
While specialized procedures, and the software packages implement-
ing them, are useful when dealing with the speci�c properties of a
single data modality, they limit the �exibility to transfer newly de-
veloped analysis techniques to other �elds of neuroscience. This
issue is compounded by the closed-source, or restrictive licensing

3Electroencephalography
4Magnetoencephalography
5Magnetic resonance imaging
6Positron emission tomography
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of many software packages, which further limits software �exibility
and extensibility.
MVPA o�ers the chance to apply its powerful methods to data
from various modalities, and hence loosen the otherwise tight cou-
pling between analysis method and data modality. A central idea
of PyMVPA is to expose any data in a optimal format for compat-
ibility with a wide range of external software packages. However,
at the same time it preserves modality speci�c information, such
as the metric of the original dataspace. This is a critical feature to
allow for meaningful interpretation of the multivariate model pa-
rameters as it has been outlined in the previous section. The con-
cept of a sensitivity analysis is equally well applicable to other data
modalities than fMRI, and PyMVPA helps to access the embedded
information in modality-speci�c ways.
To illustrate this ability this section contains example analyses of
four datasets, each from a di�erent modality (EEG, MEG, fMRI,
and extracellular recordings). All examples follow the same ba-
sic analysis pipeline: initial modality-speci�c preprocessing, appli-
cation of MVPA methods, and visualization of the results. For
the modality-independent machine-learning stage, all four exam-
ples employ the same analysis with exactly the same source code.
Speci�cally, a cross-validation with one or more classi�ers on each
dataset is performed �rst and afterwards feature-wise sensitivity
measures are computed. These measures can then be examined to
reveal their implications in terms of the underlying research ques-
tion.

3.3.1. EEG

The dataset used for the EEG example consists of a single par-
ticipant from a previously published study on object recognition
(Fründ et al., 2008). In the experiment, participants indicated,
for a sequence of images, whether they considered each particu-
lar image a meaningful object or just object-like with a meaning-
less con�guration. This task was performed for two sets of stimuli
with di�erent statistical properties and under two di�erent speed
constraints. EEG was recorded from 31 electrodes at a sampling
rate of 500Hz using standard recording techniques. Details of the
recording procedure can be found in Fründ et al. (2008). A de-
tailed description of the stimuli can be found in Busch, Herrmann,
Müller, Lenz, & Gruber (2006, colored images) and in Herrmann,
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Lenz, Junge, Busch, & Maess (2004, line-art pictures).
Fründ et al. (2008) performed a wavelet-based time-frequency anal-
ysis of channels from a posterior region of interest (i.e. no multi-
variate methods were employed). Here, multivariate methods are
used to di�erentiate between two conditions: trials with colored
stimuli (broad spectrum of spatial frequencies and a high level of
detail) and trials with black and white line-art stimuli (Fig. 3.9A),
collapsing the data across all other conditions. This discrimina-
tion is orthogonal to the participants task of indicating object vs.
non-object stimuli.
The data for this analysis were 700ms EEG segments starting
200ms prior to the stimulus onset of each trial, to which the follow-
ing preprocessing procedure was applied. Only trials that passed
the semi-automatic artifact rejection procedure performed in the
original study were included, yielding 852 trials (422 color and 430
line-art). Each trial timeseries was downsampled to 200Hz, leaving
140 sample points per trial and electrode. Each trial, including the
EEG signal of all sample points from all channels, was de�ned as
a sample to be classi�ed (4340 features total). Finally, all features
for each sample were normalized to zero mean and unit variance
(z-scored).
As the main analysis a standard 6-fold cross-validation7 proce-
dure with linear support vector machine (linCSVM; Vapnik, 1995),
sparse multinomial logistic regression (SMLR; Krishnapuram et al.,
2005) and Gaussian process regression with linear kernel (linGPR;
Rasmussen & Williams, 2006) classi�ers was applied. Additionally,
the multivariate I-RELIEF (Sun, 2007) feature sensitivity measures,
and, for comparison, a univariate analysis of variance (ANOVA) F -
score were computed on the same cross-validation dataset splits.
All three classi�ers performed with high accuracy on the indepen-
dent test datasets, achieving 86.2% (linCSVM), 91.8% (SMLR),
and 89.6% (linGPR) correct single trial predictions, respectively.
However, more interesting than the plain accuracy are the features
each classi�er relied upon to perform its predictions. Figure 3.9B
shows the computed sensitivities from all classi�ers and measures.
There is a striking similarity between the shape of the classi�er
sensitivities plotted over time and the corresponding event-related
potential (ERP) di�erence wave between the two experimental con-
ditions (Fig. 3.9A; example shown for electrode Pz ).

7http://en.wikipedia.org/wiki/Cross-validation#K-fold_cross-validation
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Figure 3.9.: Sensitivities for the classi�cation of color and line-
art conditions. Panel (A) shows event-related potentials (ERP)
of each condition for electrode Pz. The light shaded area shows
the standard deviation, the darker shade the 95% con�dence in-
terval around the mean ERP of each condition. The black curve is
the di�erence wave of both ERPs. The stimulus example images
are from Fründ et al. (2008). Panel (B) shows feature sensitivity
measures for the di�erent methods plotted over time for the Pz
electrode. This electrode was chosen as Fründ et al. (2008) made
it the subject of most visualizations. Sensitivities were normal-
ized by scaling the vector norm of each sensitivity vector (covering
all timepoints from all electrodes) to unit length. This allows for
comparison of the relative weight each classi�er puts on each fea-
ture. The shape of the sensitivity curves nicely resemble the ERP
di�erence wave. Interestingly, for a time window around 370ms
after stimulus onset (indicated by the grey bar), all multivari-
ate sensitivity measures assign a considerable amount of weight
on the respective timepoints, whereas the univariate ANOVA is
completely �at at zero.
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Figure 3.10.: Timecourse of the sensitivity topographies of various
multivariate classi�ers and measures, as well as the univariate ANOVA
for the classi�cation of color and line-art conditions. While the mul-
tivariate I-RELIEF shows a spatio-temporal pro�le that is very sim-
ilar to ANOVA all other classi�ers determine additional information
in time-windows other than the one around 150ms that contains a
large signal di�erence in the ERP of electrode Pz between the stim-
ulus conditions. The topographies show the channel-wise average of
the sensitivities, either across the whole trial-timecourse (top-row) or
from a 20ms-window around 150, 200, 150, or 370ms after stimulus
onset.
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While all measures are able to identify the large signal di�erences
at around 150ms after stimulus onset, one particularly interesting
result is the di�erence between the multivariate sensitivities and
the univariate ANOVA F -scores from 300ms to 400ms. Only the
multivariate methods (especially SMLR, linCSVM and linGPR) de-
tected a relevant contribution to the classi�cation task of the signal
in this time window.
The head topography plots of the sensitivities (Fig. 3.10) nicely il-
lustrate this situation for a selection of representative time windows
(around 150, 200, 250 and 370ms). They reveal a high variability
with respect to the speci�city among the multivariate measures.
SVM, GPR and SMLR weights congruently identify three poste-
rior electrodes as being most informative (SMLR weights provide
the highest contrast of all measures). The I-RELIEF topography is
much less speci�c and more similar to the ANOVA topography in
its global spatio-temporal structure than to the other multivariate
measures.
The late signal at around 370ms that is completely missed by the
univariate ANOVA may be related to the intracranial EEG gamma-
band responses that Lachaux et al. (2005) observed at around the
same time range when participants viewed complex stimuli. Given
that the present data also seem to show a similar evoked gamma-
band response (Fründ et al., 2008), it is possible that the multivari-
ate methods are sensitive to the gamma-band activity in the data.
Still, further work would be required to prove this correlation.

3.3.2. MEG

The example MEG dataset was collected with the aim to test
whether it is possible to predict the recognition of brie�y presented
natural scenes from single trial MEG-recordings of brain activity
(Rieger et al., 2008) and to use machine learning methods to in-
vestigate the properties of the brain activity that is predictive of
later recognition. On each trial participants saw a brie�y presented
photograph (37ms) of a natural scene that was immediately fol-
lowed by a pattern mask (1000ms � 1400ms). The short masked
presentation e�ectively limits the processing interval of the scene
in the brain (Rieger, Braun, Bültho�, & Gegenfurtner, 2005) and,
therefore, participants will later recognize only some of the scenes.
After the mask was turned o�, participants indicated via button
presses whether they would subsequently recognize the photograph
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3.3 Sensitivity analysis as a modality-independent technique

or if they would fail. Immediately after this judgement, four natural
scene photographs were presented and participants had to indicate
which of the four scenes had been previously presented (i.e. a four-
alternative forced-choice delayed match to sample task).
The MEG was recorded with a 151 channel CTF Omega MEG
system from the whole head (sampling rate 625Hz and a 120Hz
analogue low pass �lter) while participants performed this task.
The 600ms interval of the MEG time series data that was used for
the analysis started at the onset of the brie�y presented scene and
ended before the mask was turned o�. As in the original study, only
those trials were analyzed in which participants both judged they
would be correct and also correctly recognized the scene (RECOG)
and the trials in which participants both predicted they would fail
and gave an incorrect response (NRECOG). For details about the
rationale of this selection, the stimulus presentation information,
and the recording procedure see Rieger et al. (2008). In this example
analysis data from a single participant was used (labeled P1 in the
original publication).
The MEG timeseries were �rst downsampled to 80Hz and then all
trial segments were channel-wise normalized by subtracting their
mean baseline signal (determined from a 200ms window prior to
scene onset). Only timepoints within the �rst 600ms after stimulus
onset were considered for further analysis. The resulting dataset
consisted of 151 channels with 48 timepoints each (7248 features),
and a total of 294 samples (233 RECOG trials and 61 NRECOG
trials).
The original study contained analyses based upon SVM classi�ers,
which revealed, by means of the spatio-temporal distribution of
the sensitivities, that the theta band alone provides the most dis-
criminative signal. The authors also addressed the topic of how to
interpret heavily unbalanced datasets8. Given this comprehensive
analysis, the aim here was to replicate their basic analysis strat-
egy with PyMVPA and it was possible to achieve almost identical
results.
As with the EEG data, a standard cross-validation procedure was
applied, this time 8-fold, using linear SVM and SMLR classi�ers.
Additionally, a univariate ANOVA F -scores was again computed

8Unbalanced datasets have a dominant category (category which has consid-
erably more samples than any other category). That potentially leads to
the problem when a classi�er prefers to assign the label of that category to
all samples to minimize total prediction error.
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on the same cross-validation dataset splits. The SVM classi�er was
con�gured to use di�erent per-class C-values9, scaled with respect
to the number of samples in each class to address the unbalanced
number of samples. Similar to Rieger et al. (2008), a second cross-
validation was ran on balanced datasets (by performing multiple
selections of a random subset of samples from the larger RECOG
category).
Both, classi�ers performed almost identically on the full, unbal-
anced dataset, achieving 84.69% (SMLR) and 82.31% (linCSVM)
correct single trial predictions (83.0% in the original study). Figure
3.11 shows sample timeseries of the classi�er sensitivities and the
ANOVA F -score of two posterior channels. Due to the signi�cant
di�erence in the number of samples of each category, it is impor-
tant to additionally report mean true positive rate (TPR)10, that
amounted to 72% (SMLR), and 76% (linCSVM) respectively. The
second SVM classi�er trained on the balanced dataset achieved a
comparable accuracy of 76.07% correct predictions (mean across
100 subsampled datasets), which is a slightly larger drop in accu-
racy when compared to the 80.8% achieved in the original study
(refer to table 3 in Rieger et al., 2008).
Importantly, these results show that PyMVPA produces repro-
ducible results that depend on the ML methods employed, but not
on a particular implementation. However, according to the original
authors, the integrated framework of PyMVPA allows to achieve
these results with much less e�ort than what was necessary in the
original study.

3.3.3. Extracellular recordings

The extracellular dataset analyzed in this section is previously un-
published11, thus, the experimental and acquisition setup is brie�y
described �rst. Animal experiments were carried out in accordance

9Parameter C in soft-margin SVM controls a trade-o� between width of the
SVM margin and number of support vectors (see Veropoulos, Campbell, &
Cristianini, 1999, for an evaluation of this approach)

10Mean TPR is equivalent to accuracy in balanced sets, and is 50% at chance
performance even with unbalanced set sizes (see Rieger et al., 2008, for a
discussion of this point).

11The dataset was acquired and provided by Dr. Artur Luczak and Dr. Ken-
neth D. Harris (CMBN, Rutgers University, Newark, NJ, USA), and the
primary data analysis, as published in Hanke et al. (2009), was performed
by Yaroslav Halchenko.
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Figure 3.11.: Event-related magnetic �elds (EMF) and classi�er
sensitivities. The upper part shows EMFs for two exemplary
MEG channels. On the left sensor MRO22 (right occipital), and
on the right sensor MZO01 (central occipital). The lower part
shows classi�er sensitivities and ANOVA F -scores plotted over
time for both sensors. Both classi�ers showed equivalent gener-
alization performance of approximately 82% correct single trial
predictions.
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with the National Institute of Health Guide for the Care and Use of
Laboratory Animals and approved by Rutgers University. Sprague-
Dawley rats (300-500 g) were anaesthetized with urethane (1.5 g/kg)
and held with a custom naso-orbital restraint. After preparing a
3mm square window in the skull over auditory cortex, the dura
was removed and a silicon microelectrode consisting of eight four-
site recording shanks (NeuroNexus Technologies, Ann Arbor, MI)
was inserted. The recording sites were in the primary auditory cor-
tex, estimated by stereotaxic coordinates, vascular structure (Sally
& Kelly, 1988) and tonotopic variation of frequency tuning across
recording shanks, and located within layer V, determined by elec-
trode depth and �ring patterns.
Five pure tones (3, 7, 12, 20, 30 kHz at 60 dB) and �ve di�erent
natural sounds (extracted from the CD �Voices of the Swamp�, Na-
turesound Studio, Ithaca, NY) were used as stimuli. Each stimulus
had a duration of 500ms followed by 1500ms of silence. All stimuli
were tapered at beginning and end with a 5ms cosine window. The
data acquisition took place in a single-walled sound isolation cham-
ber (IAC, Bronx, NY) with sounds presented free �eld (RP2/ES1,
Tucker-Davis, Alachua, FL).
Individual units12 were isolated by a semiautomatic algorithm
(KlustaKwik13) followed by manual clustering (Klusters14). Post-
stimulus time histograms (PSTH) of spike counts per each unit for
all 1734 stimulation onsets were estimated using a bin size of 3.2ms.
To ensure an accurate estimation of PSTHs only units with mean
�ring rates higher than 2Hz were selected for further analysis, leav-
ing us with a total of 105 units.
Since the segregation of individual units out of the extracellular
recordings is carried out without taking the respective stimulus con-
dition into account, i.e. in unsupervised fashion (in ML terminol-
ogy), it does not guarantee that the activity of any particular unit
can be easily attributed to some set of stimulus conditions. From
the stimulus-wise descriptive statistics of the units presented in the
top plots of (Fig. 3.12) it is di�cult to state that the activity of any
particular unit at some moment in time is speci�c for a given stimu-
lus. Furthermore, due to the inter-trial variance in the spike counts,
it is even more di�cult to reliably assess what stimulus condition

12The term �unit� in the text refers to a single entity, which was segregated
from the recorded data, and is expected to represent a single neuron.

13http://klustakwik.sourceforge.net
14http://klusters.sourceforge.net
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any particular trial belongs to. Hence, the purpose of the PyMVPA
analysis was to complement the results of the unsupervised cluster-
ing with a characterization of all extracted units in terms of their
speci�city to any given stimulus at any given time.
The analysis pipeline was similar to the one used for EEG, and MEG
data. A standard 8-fold cross-validation procedure for an SMLR
(Krishnapuram et al., 2005) classi�er was ran, which achieved a
mean of 77.57% accuracy estimate across all 10 types of stimuli.
This generalization accuracy is well above chance (10%) for all stim-
ulus categories and allows one to conclude that the neuronal pop-
ulation activity pattern at the recording site carries a di�erential
signal across all 10 stimuli. Misclassi�cations mostly occurred for
low-frequency stimuli. Pure tones with 3 kHz and 7 kHz were more
often confused with each other than tones with a larger frequency
di�erence (see Fig. 3.13), which suggests a high similarity in the
spiking patterns for these stimuli. It could be further speculated
that this neuronal population is more tuned towards the processing
of higher frequency tones.
Besides being able to label yet unseen trials with high accuracy,
the trained classi�er can readily provide its sensitivity estimates
for each unit, time bin, and stimulus condition (see bottom plots
of (Fig. 3.12)). Temporal sensitivity pro�les of any particular unit
(see unit #42 pro�les in lower left plot of (Fig. 3.12)) can reveal
that the stimulus speci�c information is contained in spike times
relative to stimulus onset or can be represented as slowly modulated
pattern of spike counts (see 3 kHz stimuli). An aggregate sensitivity
(in this case the sum of absolute sensitivities) across all time-bins
provides a summary statistic of any unit's sensitivity to a given
stimulus condition (see lower right plot of (Fig. 3.12)). In contrast
to a simple variance measure, it provides an easier way to associate
any given unit to a set of stimulus conditions. Additionally, it can
identify units which might lack a substantial amount of variance,
but nevertheless carrying a stimuli-speci�c signal (e.g. unit #28
and 30 kHz stimulus).

3.3.4. fMRI

Although example fMRI data analyses have been presented before
an alternative analysis approach is introduced here, that combines
di�erent types of MVPA techniques, but is otherwise identical to the
procedure used for the other data modalities. The example fMRI
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analysis again uses the dataset from Haxby et al. (2001) that already
has been targeted in section 3.1.3, and employed an exactly identical
pre-processing procedure. However, again for the sake of simplicity,
the dataset was reduced � this time to a four-class problem (faces,
houses, cats and shoes). All volumes recorded during any of these
blocks were extracted and voxel-wise z-scored. This normalization
was performed individually for each run to prevent any kind of
information transfer across runs.
After preprocessing, the same sensitivity analysis was performed as
for all other data modalities. Here, only a SMLR classi�er was used
(6-fold cross-validation, with two of the twelve experimental runs
grouped into one chunk, and trained on single fMRI volumes that
covered the full brain). For comparison, a univariate ANOVA was
again computed for the same cross-validation dataset splits.
The SMLR classi�er performed very well on the independent test
datasets, correctly predicting the category for 94.7% of all single vol-
ume samples in the test datasets. To examine what information was
used by the classi�er to reach this performance level, region of inter-
est (ROI) based sensitivity scores for 48 non-overlapping structures
de�ned by the probabilistic Harvard-Oxford cortical atlas (Flitney
et al., 2007) were computed. To create the ROIs, the probabil-
ity maps of all structures were thresholded at 25%, and assigned
ambiguous voxels to the structure with the higher probability. The
resulting map was projected into the space of the functional dataset
using an a�ne transformation and nearest neighbor interpolation.
In order to determine the contribution of each ROI, the sensitivity
vector was �rst normalized (across all ROIs), so that all absolute
sensitivities summed up to 1 (L1-normed). Afterwards ROI-wise
scores were computed by taking the sum of all sensitivities in a
particular ROI. The upper part of �gure 3.14 shows these scores for
the 20 highest-scoring and the three lowest-scoring ROIs.
The lower part of the �gure shows dendrograms from a hierarchical
cluster analysis15 on relevant voxels from a block-averaged variant of
the dataset (but otherwise identical to the classi�er training data).
For SMLR, only voxels with a non-zero sensitivity were considered
in each particular ROI. For ANOVA, only the voxels with the high-
est F -scores (limited to the same number as for the SMLR case)
were considered. For visualization purposes the dendrograms show

15PyMVPA provides hierarchical clustering facilities through hcluster (Eads,
2008).
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3.3 Sensitivity analysis as a modality-independent technique

Figure 3.13.: Confusion matrix of SMLR classi�er predictions of
stimulus from multiple single units recorded simultaneously. The
classi�er was trained to discriminate between stimuli of �ve pure
tones and �ve natural sounds. Elements of the matrix (numeric
values and color-mapped visualization) show the number of tri-
als which were correctly (diagonal) or incorrectly (o�-diagonal)
classi�ed by a SMLR classi�er during an 8-fold cross-validation
procedure. The results suggest a high similarity in the spiking
patterns for stimuli of low-frequency pure tones, which lead the
classi�er to confuse them more often, whenever responses to nat-
ural sound stimuli and high-frequency tones were hardly ever con-
fused with each other.
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Figure 3.14.: Sensitivity analysis of the four-category fMRI
dataset. The upper part shows the ROI-wise scores computed
from SMLR classi�er weights and ANOVA F -scores (limited to
the 20 highest and the three lowest scoring ROIs). The lower part
shows dendrograms with clusters of average category samples
(computed using squared Euclidean distances) for voxels with
non-zero SMLR-weights and a matching number of voxels with
the highest F -scores in each ROI.

the distances and clusters computed from the average samples of
each condition in each dataset chunk (i.e, two experimental blocks),
yielding 6 samples per condition.

The four chosen ROIs clearly show four di�erent cluster patterns.
The 92 selected voxels in temporal occipital fusiform cortex (TOFC)
show a clear clustering of the experimental categories, with rela-
tively large sample distances between categories. The pattern of
the 36 voxels in angular gyrus reveals an animate/inanimate clus-
tering, although with much smaller distances. The largest group
of 148 voxels in the frontal pole ROI seems to have no obvious
structure in their samples. Despite that, both sensitivity measures
assign substantial importance to this region. This might be due
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3.3 Sensitivity analysis as a modality-independent technique

to the large inter-sample distances, visualized in the corresponding
dendrogram in �gure 3.14. Each leaf node (in this case an average
volume of two stimulation blocks) is approximately as distinct from
any other leaf node, in terms of the employed distance measure, as
the semantic clusters identi�ed in the TOFC ROI. Finally, the ROI
covering the anterior division of the superior temporal gyrus shows
no clustering at all, and, consequently, is among the lowest scoring
ROIs of both measures. On the whole, the cluster patterns from
voxels selected by SMLR weights and F -scores are very similar in
terms of inter-cluster distances.
Given that these results only include the data of a single participant,
no far-reaching implications can be drawn from them. However, the
distinct cluster patterns might provide indications for di�erent lev-
els of information encoding that could be addressed in future stud-
ies. Although voxels selected in both angular gyrus and the frontal
pole ROIs do not provide a discriminative signal for all four stimulus
categories, they nevertheless provide some disambiguating informa-
tion and, thus, are picked up by the classi�er. In angular gyrus, this
seems to be an animate/inanimate pattern that additionally also
di�erentiates between the two categories of animate stimuli. Fi-
nally, in the frontal pole ROI the pattern remains unclear, but the
relatively large inter-sample distances indicate a di�erential code
of some form that is not closely related to the semantic stimulus
category.
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3.4. Using an unsupervised method to
investigate information
representations

The last section introduced the use of unsupervised MVPA tech-
niques (in that case a clustering analysis) to complement supervised
methods, such as classi�ers. In this context supervised means that
the training process is guided by explicitly specifying a model that
should be learned by a classi�er (note that this does not refer to
a priori models of the signal, but a rather general classi�cation of
the available variance). This is typically done by labeling all sam-
ples in a dataset with their corresponding experimental condition
or associating a certain regressor value with each sample. However,
even completely unsupervised approaches can provide insight into
the structure of brain response patterns. These methods do not
require any model-speci�cation. They are completely data-driven,
and only operate on the brain response patterns themselves without
ever observing condition labels, or model regressors.

3.4.1. Self-organizing maps

An example of such a method is a self-organizing map (SOM). This
versatile machine learning technique was originally invented by Ko-
honen (1981), and is also often refered to as a Kohonen-network.
SOMs basically generate a low-dimensional topological map that
preserves structural properties of high-dimensional input data, and
thus makes it an interesting tool to investigate the similarity struc-
ture of neural data. Its abilities to visualize high-dimensional data
structures in typically two dimensions are similar to multidimen-
sional scaling (Kruskal & Wish, 1978), although the underlying
algorithm is di�erent. Kohonen (2001) lists numerous variations of
the SOM algorithm and application examples in statistics, signal
processing and �nancial analysis.
In its simplest form a SOM is a single-layer neural network. The
nodes in that layer are usually aranged in a two-dimensional hexag-
onal or rectangular grid. Each node receives input patterns over
weighted connections, i.e. each node is associated with its own
weight vector ~w that is initialized with random values. More sophis-
ticated initialization methods are also commonly used. For exam-
ple this could be randomly sampled values from a plane spanned by
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the �rst components estimated with a principal component analysis
(PCA).
The training of the network is performed in a two-step process. For
each input pattern a single node is determined whose weight vector
matches the input pattern best. The best matching node is typi-
cally considered as the one where the euclidean distance between
weight vector and input pattern is minimal throughout the network.
Afterwards, the weights of a node i are adjusted according to the
following formula:

~wi(t+ 1) = ~wi(t) + φ(i, j, t) α(t)( ~dk − ~wi(t))

where φ is a temporally decreasing neighborhood kernel that de-
pends on the distance between the to be adjusted node i and the
best matching node j in the Kohonen-layer, an also temporally
decreasing learning coe�cient α, and the di�erence between the
current weight and input pattern ~dk. Depending on the actual
implementation, weight adjustments can be applied online, i.e. per
each input pattern and iteration, or in batch-mode, where the weight
deltas for all input patterns are accumulated �rst and �nally ap-
plied all at once at the end of each iteration. The training phase is
�nished after a predetermined number of iterations or the weight-
adjustment drops below a certain threshold. Zell (2004, chapter 15)
provides an overview of many possible parameters of SOM imple-
mentations and their practical implications.
The mapping of input patterns by a trained SOM, which is in a
sense the classi�cation step, is performed by determining the best
match node and returning its coordinates in the Kohonen-layer,
hence mapping from a high-dimensional input space into a typically
two-dimensional discretized output space.
The properties of these maps are heavily in�uenced by two features
of the training algorithm. First, the neighborhood kernel causes
weights of spatially adjacent nodes to be changed more strongly
than those of distant nodes. Since the kernel decreases in width
over time, the network topology, after an initial global structur-
ing, converges to a certain state during training, as later iterations
only in�uence a relatively local area in the SOM. Second, weight
adjustments become larger with increasing di�erence between cur-
rent weight vector and input pattern, i.e. the weights for the best
matching node for a particular input pattern are never changed.
The conjunction of both properties cause similiar input patterns to
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be represented in adjacent locations. Fine-grained data structures
sampled by many patterns in a dataset are automatically repre-
sented in more detail (i.e. using more nodes) then sparse or even
empty areas in the high-dimensional input space. In this respect,
SOMs are very similar to the retinotopic representation of informa-
tion in primary visual cortex, where the amount of cortical surface
corresponding to a certain fraction of the visual �eld is related to
the receptor density on the retina (Kohonen, 2001).

3.4.2. Example: Looking for categorical
information in the ventral
object-processing stream

It has been long known that there are two distinct visual path-
ways (Ungerleider &Mishkin, 1982; Millner & Goodale, 1992, 1995).
The dorsal pathway is considered to be involved in the processing
of action-related information, while the ventral path is associated
with the identi�cation and processing of features of objects. How-
ever, the details of information encoding along the di�erent stages
in the ventral stream are still under debate (e.g. Kanwisher et al.,
1997; Gauthier, Skudlarski, Gore, & Anderson, 2000; Haxby et al.,
2001; Hanson & Halchenko, 2008). One of the major questions is a
characterization of the subsystem in the ventral stream in terms of
the respective information representation. One possibility to shed
light on this topic is to look at the similarity of brain response pat-
tern in those areas for di�erent stimuli. The basic idea is that areas
responding di�erently to some stimuli must somehow encode the
di�erences between them, while similar responses indicate an insen-
sitivity towards the discriminating features. Recently, researchers
have started looking at the similarity structure of brain-response to
visual objects using representational dissimilarity matrices (RMD;
Kriegeskorte, Mur, & Bandettini, 2008) for di�erent data-modalities
and even across species (Kriegeskorte, Mur, Ru�, et al., 2008).
The purpose of this section is to provide a simple example to show
that the non-linear vector quantization performed by a SOM, can
be used in a similar fashion to look at the development of categorical
information along the ventral stream (see e.g. Liao, Chen, Yang, &
Lei, 2008, for another interesting example of SOM to fMRI data).
With SimpleSOMMapper PyMVPA provides a very simple SOM im-
plementation using a rectangular Kohonen-grid, a gaussian neigh-

83



3.4 A method to investigate information representations

borhood kernel and a euclidean distance measure. SOM is imple-
mented as a mapper, and therefore it cannot only be used to visual-
ize high-dimensional data, but also for data transformation similar
to a PCA or wavelet decomposition. Since the number of features
is e�ectively reduced to two, a SOM might also be a useful prepro-
cessing step for simple non-linear classi�ers as k-Nearest-Neighbor
(kNN), which behaves suboptimal for high-dimensional datasets.
The fMRI dataset used here was again the same as in sections 3.3.4,
and 3.1.3 � the single participant from Haxby et al. (2001), for the
purpose of visualization again limited to the stimulus categories
face, house, cat, and shoe, and preprocessed using the same proce-
dure. Analogous to the previous analysis the originally full-brain
dataset was processed in a ROI-wise fashion, with the anatomical
ROIs de�ned again by the Harvard-Oxford probabilistic cortical
atlas (Flitney et al., 2007). However, only a subset of ROIs along
the ventral stream was considered, namely occipital pole, inferior
lateral occipital cortex, occipital fusiform cortex, temporal occipital
fusiform cortex, and temporal fusiform cortex, posterior division �
all bilaterally.
The main di�erences between the current and the previous analysis
approach is that here exclusively unsupervised techniques were ap-
plied, hence no prede�ned model was �tted to the data. Moreover,
although already �gure 3.14 provided some insight with respect to
the similarity structure of the data using cluster analysis, in this
case no block-averaging of fMRI scans is performed, but single vol-
ume samples were analyzed. Also, there was no classi�er-based
feature selection, but all data from all voxels in each ROI were fed
into the SOM.
Figure 3.15 shows that SOMs clearly re�ect the evolving object
category related information along the ventral processing stream
that has been hypothesized and shown in the literature. While
there is no visible structure in the data from the occipital pole,
a semantic clustering is successively built-up, with an almost per-
fect cluster pattern derived from the data from temporal occipital
fusiform cortex. It is worth mentioning again that the structure
of all SOMs evolved without information of the category member-
ship of the brain response samples it has been trained on. This
information was only added afterwards to visualize the topological
structure of the resulting maps.
Even more insightful analyses would be possible by conducting ex-
periments using stimuli systematically varying along more than one
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dimension, and to track individual stimuli (each dot in �gure 3.15
actually corresponds to a single fMRI volume) along a processing
stream in the brain.

3.5. Statistical safeguarding of results

Drawing conclusions from classi�er-based analyses often involves
the comparison of classi�er performances on data from di�erent
experimental conditions, or from distinct ROIs. For example, evi-
dence in favor of a hypothesis postulating the presence of a signal of
some sort in a particular ROI could be expressed by a better-than-
chance performance of a classi�er operating on data from that ROI.
However, this raises the question how can be determined what ex-
actly is better than chance?
Fortunately, classi�er accuracies for predicting the labels of data
samples are hardly any di�erent from accuracies (or equivalent er-
ror rates) of human observers performing a classi�cation task. Such
tasks are used in the majority of psychophysical experiments where
subjects judge the presence or absent of a signal, or associate a
stimulus with some category in a multi-alternative forced choice
design. This similarity allows to use the full bandwidth of statis-
tical methods developed for psychophysical research to be used for
inferential analysis of classi�er accuracies.
A simple case is the evaluation of accuracies across several sub-
jects. The analysis is performed individually for each subject and
afterwards the achieved accuracies are tested against the expected
chance performance using a one-sample t-test (see e.g. section 3.1.3
or Sterzer, Haynes, & Rees, 2008, for an example application). For
balanced datasets the chance-performance is 1

k , where k is the num-
ber of categories in the classi�cation task. For unbalanced datasets
the chance-performance can be substantially di�erent from that (see
Rieger et al., 2008, for a comprehensive discussion).
However, combining accuracies across subjects carries the risk of
comparing apples to oranges. It is in no way guaranteed that a
discrimination performance on two datasets from two di�erent sub-
jects is based on a similar or even the same signal. This applies to
both the spatial or temporal sources of the utilized signal as well
as its nature. The classi�er might pick-up di�erent signals in each
subject's dataset, which, despite being di�erent, are nevertheless
related to the experimental paradigm. Such situation would have a
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Figure 3.15.: Self-organizing map (SOM) structures derived from
brain responses along the ventral pathway to four visual stim-
ulus categories: faces, cats, shoes, and houses. For each of the
�ve areas a separate SOM was training with a total of 432 single
fMRI volume samples recorded during block-wise stimulus pre-
sentation. The non-linear vector quantization performed by the
SOMs reveals an evolving category-related signal. Starting at
the occipital pole, with no or very little clustering, the signal
becomes more re�ned while moving in anterior direction, with
a beginning separation of face and house conditions in occipital
fusiform gyrus. This is followed by clear category-related clus-
tering of the brain responses to all four conditions measured in
voxels in temporal occipital fusiform cortex. Even further ante-
rior in the posterior temporal fusiform cortex the speci�city of
the categorical clustering is substantially impaired.
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signi�cant impact on the validity of the conclusions drawn, which
typically aim at the underlying representation of information in the
brain.
Although this potential problem is equally present in single-subject
cross-validation analyses, it can be addressed more easily. The ma-
jor problem in multi-subject analyses is that the features in individ-
ual datasets cannot be easily aligned to each other and hence it is
very hard to identify common patterns in the brain responses. Such
common patterns would be a good source of con�dence that the re-
sults of a group analysis actually summarize similarly structured
multivariate models. However, the established approach of aligning
subjects anatomies and co-registering datasets by a�ne transforma-
tions is unlikely to achieve a voxel to voxel correspondence between
individuals. It is anyway questionable if such alignment is desired,
since the variability in (functional) brain anatomy makes it almost
impossible that two voxels measured in two di�erent humans actu-
ally sample the same set of neurons.

3.5.1. Feature selection stability

It is nevertheless important to assess the structure of the multi-
variate models generated within a cross-validation analysis. This is
especially the case for algorithms involving feature selection proce-
dures. Feature selection, although in general bene�cial for the anal-
ysis of high-dimensional datasets, might lead to the weird situation
that a classi�er predicts the test data category labels with high ac-
curacy in each cross-validation fold, but across all folds exclusively
non-overlapping feature sets are used to achieve this performance.
Such behavior could be interpreted in the way that a number of
di�erent features carry redundant information and they are only
selected or rejected due to random variation in the noise pattern of
the data. However, it might also be the case that the utilized signal
really changes between cross-validation folds, which are typically
associated with di�erent parts of the experiment (i.e. experimental
runs) and hence might be in�uenced by e�ects of e.g. fading vigi-
lance. It is therefore very important to report the variability of the
feature sets and other measures as has been previously suggested
(O'Toole et al., 2007; Chen et al., 2006).
Figure 3.16 shows examples of ratios of cross-validation folds in
which any given feature was chosen by the corresponding feature
selection method used by some classi�ers listed in Table 3.1 (trained
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Figure 3.16.: Feature selection stability maps for the CATS vs.
SCISSORS classi�cation (using the dataset of Haxby et al., 2001).
The color maps show the fraction of cross-validation folds in
which each particular voxel is selected by various feature selec-
tion methods used by the classi�ers listed in Table 3.1: 5% high-
est ANOVA F -scores (A), 5% highest weights from trained SVM
(B), RFE using SVM weights as selection criterion (C), internal
feature selection performed by the SMLR classi�er with penalty
term 0.1 (D), 1 (E) and 10 (F). All methods reliably identify a
cluster of voxels in the left fusiform cortex, centered around MNI:
-34, -43, -20mm. All stability maps are thresholded arbitrarily
at 0.5 (6 out of 12 cross-validation folds).
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on the example dataset used in section 3.1.3). PyMVPA already
provides convenient methods to assess the stability of feature selec-
tions within cross-validation procedures. However, more research
is required to address information localization problems in di�erent
contexts. For example, when implementing a brain-computer inter-
face it is bene�cial to identify a set of features that provides both
an optimal generalization performance as well as a high stability
of spatial con�guration and accuracy across di�erent datasets, i.e.
to reduce the number of false-positive feature selections. On the
other hand, in a clinical setting one may want to identify all voxels
that could possibly contribute some information in a pre-surgery di-
agnostic tool and, thus, would focus on minimizing false-negatives
instead.

3.5.2. Statistical measures beyond accuracies
and t-tests

In general, it might be bene�cial to report statistical scores, such
as t-scores or signi�cance levels instead of plain accuracies. These
statistics incorporate additional, and important information about
the variance of the underlying results. However, the gold stan-
dard of reporting such analysis results is yet to be found, and sta-
tistical scores might also cause problems for some of the recently
proposed analysis strategies. For example, a p-value map of proba-
bilities of better-than-chance classi�cation accuracy generated dur-
ing a searchlight run must be considered as a massive multiple-
comparison problem, very much like an SPM result. Therefore it
also has to be subject of appropriate α-level adjustments.
However, there is more information available from classi�er cross-
validations than simple accuracies. Even for binary classi�cation
problems the plain fraction of correct classi�cations hides interest-
ing facts. As it was already mentioned, MVPA results are very sim-
ilar to those of psychophysical experiments. A look at the prevalent
analysis techniques in that �eld suggest that the methods derived
from the signal detection theory (Green & Swets, 1966) provide a
more comprehensive description of classi�er behavior. The well-
known d′-score and ROC curves (Swets, 1996) can be computed
from a classi�er's confusion matrix. A confusion matrix is gener-
ated by cross-tabulating actual classi�er predictions and prediction
targets (see e.g. �gure 3.13). Every classi�er that is implemented
in PyMVPA provides confusion matrices (single and accumulated
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across cross-validation folds) and hence can be easily analyzed in
this respect.
Moreover, a χ2-test on the confusion matrix provides a statistical
evaluation of the classi�er accuracy that is also applicable to multi-
class problems. Pereira et al. (2009) suggests that in case of a low
number of observations in the confusion matrix cells individual bi-
nomial tests might be more appropriate, given independent samples.
However, especially for fMRI data, independence is typically not the
case, due to the aforementioned temporal forward-contamination
of the signal by the sluggish BOLD-response. Currently there is
no generally accepted way to address this problem. Perhaps a
data-driven deconvolution approach can be used to achieve sample-
independence while preserving the advantages of MVPA that origi-
nate in the non-necessity of a priori models, but this is a hypothesis
that needs careful evaluation.
All statistical methods listed so far are mostly concerned with clas-
si�er prediction error or accuracies, but the demand for statistical
evaluation applies equally well for the parameters of a multivariate
model. Previous sections have shown that the interpretation of clas-
si�er sensitivities can provide additional insight into the functioning
of a particular information processing system. However, to derive
valid interpretation two requirements have to be ful�lled. First, the
multivariate model generated by the classi�er has been proven to
generalize to yet unseen data with reasonable performance. Second,
the assigned sensitivities are stable across cross-validation folds.
The �rst condition is critical since a model that does not general-
ize is not an appropriate description of the signal of interest and
hence its model parameters have to be considered meaningless. The
second condition is very similar to the aspects of feature selection
stability discussed earlier and primarily in�uence the conclusions
that can be drawn from a particular sensitivity distribution.
Validation of sensitivities with parametric tests is di�cult since
it is hard to justify (or even to make assumptions) about their
distribution under the null hypothesis. Fortunately, Monte-Carlo
permutation tests provide a way to estimate the corresponding dis-
tributions without having to make prior assumptions (Golland &
Fischl, 2003) � at the cost of a signi�cant increase in the demand
for computational resources.
To estimate the distribution of a classi�er sensitivity (or any other
measure) under the null hypothesis (i.e. no relevant signal in the
dataset) the classi�er is trained multiple times (usually several thou-
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sand times) on a dataset with permuted category labels. If there is
no relevant information in the dataset, the association between cat-
egory labels and data samples can be randomized without altering
the classi�er performance.
For a one-sided test the probability under the null hypothesis of
a given sensitivity derived from a classi�er trained on the dataset
with the original, unpermuted category labels is simply the fraction
of Monte-Carlo samples that is greater or equal than the respective
value. This technique provides a �exible way to assess the proba-
bility of any result, ranging from classi�er accuracies to sensitivity
measures (e.g. SVM or regression weights) to other feature-wise
scores, such as ANOVA F -scores.
However, estimating the null distribution is a computationally de-
manding task that can easily take days depending on the size of
the dataset and the complexity of the classi�cation task. Therefore
parametric tests remain attractive whenever reasonable assump-
tions about the distribution of the corresponding variable can be
made, and hence PyMVPA provides support for both types of sta-
tistical evaluation of analysis results.
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By now, numerous studies have illustrated the power of MVPA,
harnessing machine learning techniques based on statistical learning
theory to extract information about the functional properties of the
brain previously thought to be below the signal-to-noise ratio of
fMRI data (for reviews see Haynes & Rees, 2006; Norman et al.,
2006).
This thesis reviewed many advantages of MVPA over established
analysis procedures. It primarily emphasized two aspects. First,
being a multivariate technique it allows to access information in
the covariance structure of fMRI data that has been completely ig-
nored in the vast majority of studies that have been published over
the last two decades. The second aspect focused on the �exibility
of MVPA with respect to its independence of a priori assumptions
about the targeted signals. While prior knowledge can be built
into any MVPA-based analysis, the non-necessity to do so enables
researchers to discover meaningful brain response patterns that an
SPM-based analysis would rather accumulate into the residual vari-
ance. Moreover, this thesis could show that the model-free approach
is equally well applicable to other neuroimaging data modalities.
This represents a major advantage that should not be underesti-
mated, since it moves distinct research communities closer together
that have been specialized on a particular modality, and could po-
tentially help to intensify the exchange between them.
Although MVPA-based studies have already proven their potential
to advance the understanding of brain function in a number of �elds,
ranging from human memory to visual perception, it is important
to note that they were performed by relatively few research groups.
This may be due to the fact that very few software packages that
speci�cally address MVPA of fMRI data are available to a broad
audience. Such packages require a signi�cant amount of software
development, starting from basic problems, such as how to import
and process fMRI datasets, to more complex problems, such as the
implementation of classi�er algorithms. This results in an initial
overhead requiring signi�cant resources before actual neuroimaging
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datasets can be analyzed.
The main advance put forth in this dissertation project is undoubt-
edly the PyMVPA analysis framework. It aims to be a solid base for
conducting MVPA. In contrast to other software packages, such as
the 3dsvm plugin for AFNI (LaConte et al., 2005), it follows a more
general approach by providing a collection of common algorithms
and processing steps that can be combined with great �exibility.
Consequently, the initial overhead to start an analysis once the
fMRI dataset is acquired is signi�cantly reduced because the tool-
box also provides all necessary import, export and preprocessing
functionality.
It has been demonstrated that PyMVPA is speci�cally tuned to-
wards fMRI data analysis. But much like the great �exibility of the
MVPA techniques themselves, the generic design of the framework
allows to work with other data modalities equally well. The �exible
dataset handling encourages extensions to support other data for-
mats, while at the same time extending the mapping algorithms to
represent other data spaces and metrics, such as the sparse surface
sampling of EEG channels or MEG datasets (see Thulasidas, Guan,
& Wu, 2006; Guimaraes, Wong, Uy, Grosenick, & Suppes, 2007, for
examples of MVPA of these data modalities).
However, the key feature of PyMVPA is that it provides a uniform
interface to bridge from standard neuroimaging tools to machine
learning software packages. This interface makes it easy to extend
the toolbox to work with a broad range of existing software pack-
ages, which should signi�cantly reduce the need to recode available
algorithms for the context of brain-imaging research. Moreover, all
external and internal classi�ers can be freely combined with the
classi�er-independent algorithms for e.g. feature selection, making
this toolbox an ideal environment to compare di�erent classi�cation
algorithms.

4.1. Attracting researchers to fathom the
full potential of MVPA

While the promising list of MVPA properties alone should be a
convincing argument to adopt these methods in the research pro-
cess, this is not guaranteed to happen automatically. O'Toole et
al. (2007) emphasize that basically the same technical advantages
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were already o�ered by the partial least squares (PLS; McIntosh,
Bookstein, Haxby, & Grady, 1996) method, 15 years ago. While it
is not clear what prevented PLS to become a standard method, it
nevertheless shows that it is important to undertake great endeav-
ors to advertise the advantages, demonstrate the power of MVPA,
and make it available to a broad scienti�c community.
The last aspect is most likely the one that still requires most of
the work. While the prospect of being able to do �brain reading�
already carries a certain level of attraction, it does not imply that
everybody can a�ord to adopt the technology. The statistical learn-
ing theory origin requires researcher who are already pro�cient with
SPM to familiarize themselves with a substantial amount of MVPA
background theory. To this end it requires appropriate literature
that explains valid analysis approaches of neuroimaging data. For-
tunately, very recently an initial set of articles covering this topic
for di�erent target audiences appeared (e.g. Pereira et al., 2009;
Mur, Bandettini, & Kriegeskorte, 2009).
However, knowledge about the theory is a critical requirement to
employ MVPA techniques, but it is again not su�cient. In this
thesis it has been argued that the necessary software development
is both costly, and moreover of questionable usefulness if the re-
sulting product is not publicly available and subject to intensive
peer-review. Here, PyMVPA is trying to provide a framework to
incorporate the necessary technology, while the framework itself is
aiming for a maximum of transparency (fully available source code,
tests, documentation, and examples) and accessibility.
Its intended audience is threefold. First, there are neuroscience re-
searchers interested in testing ML algorithms on neural data, e.g.
people working on brain-computer interfaces (BCI, see Lebedev &
Nicolelis, 2006; Birbaumer & Cohen, 2007). PyMVPA provides re-
searchers with the ability to execute complex analysis tasks in very
concise code. Second, it is also designed for ML researchers inter-
ested in testing new ML algorithms on neural data. PyMVPA o�ers
a highly-modularized architecture designed to minimize the e�ort of
adding new algorithms. Moreover, the availability of neuroscience-
related code-examples (like the ones presented in this thesis) and
datasets greatly reduces the time to get actual results. Finally,
PyMVPA is welcoming code contributors from both neuroscience
and ML communities interested in improving or adding modality-
speci�c functions or new algorithms. PyMVPA o�ers a community-
based development model together with a distributed version con-
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trol system and extensive reference documentation.
PyMVPA code is tested to be portable across multiple platforms,
and its limiting set of essential external dependencies in turn has
proven to be portable. In fact, PyMVPA only depends on a moder-
ately recent version of Python and the NumPy package. Although
PyMVPA can make use of other external software, the functionality
provided by them is completely optional. For an up-to-date list of
possible extensions the reader is referred to the PyMVPA project
website1. To allow for convenient installation and upgrade proce-
dures, the authors are providing binary packages for ten di�erent
operating systems, including various GNU/Linux distributions (in
their native package format), as well as installers for MacOS X and
Windows. This comprises PyMVPA itself and a number of addi-
tional packages (e.g. NumPy), if they are not available from other
sources for a particular target platform.
Although PyMVPA aims to be especially user-friendly it does not
provide a graphical user interface (GUI). The reason not to include
such an interface is that the toolbox explicitly aims to encourage
novel combinations of algorithms and the development of new anal-
ysis strategies that are not easily foreseeable by a GUI designer2.
The toolbox is nevertheless user-friendly, enabling researchers to
conduct highly complex analyses with just a few lines of easily read-
able code. It achieves this by taking away the burden of dealing with
low-level libraries and providing a great variety of algorithms in a
concise framework. The required skills of a potential PyMVPA user
are not much di�erent from neuroscientists using the basic building
blocks needed for one of the established fMRI analysis toolkits (e.g.,
shell scripting for AFNI, Lipsia, and FSL command line tools, or
Matlab-scripting of SPM functions).
Recent releases of PyMVPA added support for visualization of anal-
ysis results, such as, classi�er confusions, distance matrices, topog-
raphy plots and plotting of time-locked signals. However, while
PyMVPA does not provide extensive plotting support, it neverthe-
less makes it easy to use existing tools for MRI-speci�c data vi-
sualization. Similar to the data import PyMVPA's mappers make
it also trivial to export data into the original data space and for-

1http://www.pymvpa.org/installation.html#dependencies
2Nothing prevents a software developer from adding a GUI to the toolbox
using one of the many GUI toolkits that interface with Python code, such
as PyQT (http://www.riverbankcomputing.co.uk/software/pyqt/) or wx-
Python (http://www.wxpython.org/).
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mat, e.g. using a reverse-mapped sensitivity volume as a statistical
overlay, in exactly the same way as a statistical parametric map
derived from a conventional analysis. This way PyMVPA can fully
bene�t from the functionality provided by the numerous available
MRI toolkits.
The features of PyMVPA outlined here cover only a fraction of the
currently implemented functionality. More information is, however,
available on the PyMVPA project website, which contains a user
manual with an introduction into the main concepts and the de-
sign of the framework, a wide range of examples, a comprehensive
module reference as a user-oriented summary of the available func-
tionality, and �nally a more technical reference for extending the
framework.

4.2. Powerful methods for cognitive
neuroscience

The emerging �eld of MVPA of fMRI data is beginning to comple-
ment the established analysis techniques and has great potential for
novel insights into the functional architecture of the brain. How-
ever, there are a lot of open questions how the wealth of algorithms
developed by those motivated by statistical learning theory can be
optimally applied to brain-imaging data.
An important aspect of this topic are the underlying intentions of
cognitive neuroscience research. The ultimate goal is to understand
how the brain works, and this goal has important implications on
almost every single step of an analysis procedure. Consider for ex-
ample a feature selection algorithm. In ML research, feature selec-
tion is usually performed to remove unimportant information from
a dataset that does not improve, or even has a negative impact on
the generalization accuracy of a particular classi�er. In the neuro-
science context, however, the primary focus is not on the accuracy
level, but on the structure and origin of the information that al-
lows for correct predictions to be made (the accuracy simply has to
be reasonably high to allow for an interpretation of the model at
all). It therefore has signi�cant side-e�ects on the conclusions that
can be drawn from an analysis, when carelessly removing features
providing redundant information, and hence, it would be of great
value to have a set of techniques that acknowledges the speci�cs
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of cognitive neuroscience research, to provide researchers with the
tools to access the full structure of brain-response patterns.
The current lack of a gold standard for MVPA demands software
that allows one to apply a broad range of available techniques and
test an even broader range of hypotheses. PyMVPA tries to reach
this goal by providing a unifying framework that allows to easily
combine a large number of basic building blocks in a �exible manner
to help neuroscientists to do rapid initial data exploration, and
consecutive custom data analysis. PyMVPA even facilitates the
integration of additional algorithms in its framework that are not
yet discovered by neuro-imaging researchers.
An important direction for future developments is moving from
the localization and description of brain-response patterns to the
modeling of the system dynamics of the brain or its subsystems.
This thesis already o�ered some examples of the analysis of spatio-
temporal patterns to predict or explain their association with cer-
tain experimental conditions. However, MVPA is not limited to
simple classi�cation tasks. Multivariate regression-variants are able
to build models that link the brain response patterns themselves.
Investigating the temporal relationship of signals from distinct brain
areas would allow for an in-depth analysis of the functional connec-
tivity structure of the brain.
A related topic is cross-modal data analysis. The �exibility of
MVPA with respect to the analysis of several data modalities that
has been shown in this thesis, allows researchers to target the joint
analysis of multiple neural datasets, to combine the advantages of
each brain activity measure (see Halchenko, 2009, for a �rst example
of a cross-modal data analysis with PyMVPA). However, candidate
data modalities are by no means limited to the neuroimaging do-
main. It is long known, that e.g. eye-movement patterns re�ect
conscious and unconscious cognitive processes (see e.g. Hayhoe &
Ballard, 2005; Ferreira, Apel, & Henderson, 2008, for reviews), and
hence might also provide valuable information.
An important topic that has yet to be confronted by PyMVPA is the
problem of model selection. Most MVPA-based studies published so
far successfully used linear classi�ers and found no practical advan-
tages of non-linear algorithms (see e.g. D. D. Cox & Savoy, 2003,
for an evaluation of linear vs. non-linear classi�ers). However, when
moving forward to the description of system dynamics non-linear
techniques will probably become necessary. One particular prob-
lem of non-linear classi�ers is that they require a sensible setting
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of their hyper-parameters to achieve optimal results. In PyMVPA
only Gaussian process regression currently has the ability to guide
the selection of hyper-parameters. Uniform model selection for ML
methods within PyMVPA is planned for the next major release
of the project. It will provide the facility to automatically search
for the best set of parameters for each classi�er without sacri�cing
unbiased estimates of the generalization performance.

4.3. O�ering the blueprint of a
mind-reader

With the recent increase in attention of the neuroscience commu-
nity, discussions about the application of MVPA to neural datasets
are often accompanied by the concepts of �decoding� (Kamitani &
Tong, 2005) or �mind-reading� (Norman et al., 2006). There is even
a begining discussion about the ethical consequences of the ability
to read people's minds (Haynes & Rees, 2006). While these con-
cepts are �rst of all quite fancy labels, and undoubtedly contributed
to the perceived attractiveness of the method, it is nevertheless im-
portant to re�ect on their implications.
What does it mean, if a classi�er is able to reliably predict whether
a person was looking at the image of a house or a cat, solely from
fMRI data that has been recorded at that time? Is it the case that
this classi�er can now predict any visual stimulation by reading it
out from this person's brain, given that an fMRI dataset is avail-
able? Does it mean that the classi�er identi�ed the true encoding
algorithm of object category information in the brain? Or does it
just mean that the classi�er identi�ed the location of object cate-
gory processing in the brain? The answer to all those question is
either no, or we don't know.
The reason for this becomes obvious if one looks at the technical
implementation of this problem. When training a classi�er on this
binary house vs. cat problem it eventually will extract a model of
the multivariate fMRI signal that allows it to perform this predic-
tion on an independent dataset. However, this fact does not even
justify to conclude that the classi�er is able to discriminate between
houses and cats. The classi�er is simply distinguishing between two
di�erent patterns in the fMRI data, but we don't know what stim-
ulus property is re�ected in the data. With respect to this example
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it could equally likely be the di�erence of stimuli with and without
fur, or even the desire cuddle the stimulus object � with a dramatic
impact on the correct interpretation.
In the context of psychological experiments this problem is all but
new. Confounds always limit the interpretability of experimental
results, and there are ways to conduct more appropriate variants of
this example paradigm that allow to draw more speci�c conclusion
(i.e. by adding control conditions).
However, with respect to deciphering the encoding of information
in the brain it is important to consider the origin of the data, even
given an appropriate experimental paradigm and stimuli. In the
case of fMRI data it is still not completely understood what exactly
is represented by the BOLD-response � whether it is the �ring of
neurons that are sampled by a particular voxel, or if it is rather the
magnitude of inhibitory input from spatially distinct areas (Heeger
& Ross, 2002). Therefore conclusions drawn from the identi�ed
structure of patterns in the fMRI signal may not be equally applica-
ble to the pattern of neuron �ring in the corresponding brain-tissue.
In that sense MVPA-based studies have to obey the same princi-
ples as those employing SPM analysis procedures. Moreover, the
same guidelines for conclusion-drawing apply. Speci�cally, studies
observing an involvement of a certain brain area in a speci�c clas-
si�cation cannot easily infer the nature of this involvement from
other studies having shown a contribution of that area in some
other cognitive task (i.e. inverse conclusions, Poldrack, 2006).
Logothetis (2008) summarizes the situation in very few words: �In
fact, fMRI is not and will never be a mind reader. . . �. Even if one
does not completely follow this strong oppinion, giving all men-
tioned limitations, MVPA is far from becoming, or even already
being a general purpose mind-reader. This fact is of signi�cant im-
portance for the application of MVPA in the context of lie-detection,
and the reader is refered to an interesting discussion about the im-
pact of deception on the �decodability� of lies (Sip, Roeppstor�,
McGregor, & Frith, 2008a; Haynes, 2008; Sip, Roeppstor�, McGre-
gor, & Frith, 2008b).
Nevertheless, MVPA represents a major step forward in the analy-
sis of the brain, and its current applications prepare the ground for
an even larger step. Many possibilities have not been mentioned in
this thesis, such as the con�rmatory analysis of models describing
the structure and behavior of subsystems of the brain (e.g. Kay,
Naselaris, Prenger, & Gallant, 2008, for an example of reconstruct-
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ing hundreds of individual images from brain response patterns by
employing a relatively simple model of the signal processing in the
visual system). Many additional studies o�ering high-level descrip-
tions of brain function will be necessary, because otherwise even if
we know all the nitty-gritty details to readout every bit of informa-
tion from the brain, we might still not know how the mind really
works (Mausfeld, 2007).
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