
Otto-von-Guericke-Universität Magdeburg

Agent-based mechanism for smart distributed
dependability and security supervision and control

of Cyber-Physical Production Systems

Dissertation zur Erlangung des akademischen Grades

Doktoringenieur

(Dr.-Ing.)

von M.Sc. Hessamedin Bayanifar

geb. am 09.09.1988 in Babol

genehmigt durch die Fakultät für Maschinenbau

der Otto-von-Guericke-Universität Magdeburg

Gutachter: apl. Prof. Dr.‐Ing. habil. Arndt Lüder

 Jun. Prof. Dr. Sebastian Zug

Promotionskolloquium am 18.12.2017

Preface

Writing this thesis sent me through an adventure that in the end has provided me with many

lessons to learn. First, I want to thank Professor Kühnle for making this adventure possible and

for providing me with the opportunity to join the IAF institute in the Otto von Guericke

Universität Magdeburg.

Here, I would like to express my gratitude to my friends and colleagues at IAF institute for

supporting me throughout this journey. I need to show my special appreciation for all the friendly

and professional supports of Ronald who had always been there for me. I also need to thank my

friend and colleague Ambra for all her inspirations and friendly presence through this hard path,

and Yahia with whom I shared many parts of my journey.

Moreover, I want to acknowledge the supports and helps of Professor Lüder for supervising my

work and providing me with his valuable comments.

I also would like to thank my friends in my home country, specially Sheyda, Mohsen, Anahita,

and Hengame for never letting their sense of presence fade away because of the long distance

between us.

In the end I want to express my deepest love for my family and my parents who gave me life

and supported me through all the challenges I have faced.

Magdeburg, 26.10.2017

Hessamedin Bayanifar

Declaration of Honor

v

Declaration of Honor

I hereby declare that I produced this thesis without prohibited external assistance and that

none other than the listed references and tools have been used. I did not make use of any

commercial consultant concerning graduation. A third party did not receive any nonmonetary

perquisites neither directly nor indirectly for activities which are connected with the contents of

the presented thesis.

All sources of information are clearly marked, including my own publications.

In particular I have not consciously:

‐ Fabricated data or rejected undesired results

‐ Misused statistical methods with the aim of drawing other conclusions than those warranted

by the available data

‐ Plagiarized data or publications

‐ Presented the results of other researchers in a distorted way

I do know that violations of copyright may lead to injunction and damage claims of the author

and also to prosecution by the law enforcement authorities. I hereby agree that the thesis may

need to be reviewed with an electronic data processing for plagiarism. This work has not yet been

submitted as a doctoral thesis in the same or a similar form in Germany or in any other country.

It has not yet been published as a whole.

Magdeburg, 26.10.2017

Hessamedin Bayanifar

Abstract

vii

Abstract

Information and Communication Technologies, or for short ICTs, are growing and advancing

remarkably fast and along with this growth, their applications in various areas of human life and

activities is being radically extended. Likewise, industrial and productions systems have been no

exception in embracing these technologies to provide the organisations with better performance

and efficiency and as a result bringing strategic advantages.

The most recent contribution of ICTs in manufacturing is aiming at ever increasing convergence

of virtual world and the physical world by introducing the concepts of Cyber-Physical Systems

(CPS) and Internet of Things (IoT) into the manufacturing era, and giving rise to the fourth

industrial revolution, which is commonly known as the Industry 4.0. However, despite all the

potentials and capabilities, there are still major challenges to address. One of the main challenges

here is the dependability and security of these new systems, given their vast exposure to the

cyber space and internet, and increased complexity and versatility of their functionality.

Accordingly, this study intents to address this issue and make a contribution by proposing a

robust mechanism that enables distributed components to fulfil their own dependability and

security objectives by constantly and autonomously supervising and controlling their condition

and actions with regards to these two aspects (dependability and security).

Therefore, first the concept and the model for such mechanism has been modelled by taking

into account the features and attributes of the systems on which the mechanism is going to

applied. Consequently, the mechanism has been designed in the way that can inherently

demonstrate the same properties to assure highest effectiveness and performance. The main

properties considered were interoperability, scalability, modularity, autonomy, heterogeneity,

and context-awareness. For the next step which was the implementation of the mechanism,

Multi-Agent System approach was selected, given all the capabilities of these systems and

perfectly matching properties that this toolset enables.

As a result, and agent-based mechanism for autonomous and intelligent distributed

supervision and control of smart cyber-physical systems’ components has been developed and

implemented, and various use cases to test the mechanism were defined. And finally, the results

have been demonstrated.

Abstract

viii

Contents

ix

Contents

Chapter One .. 1

INTRODUCTION ... 1

1.1. Motivation ... 1

1.2. Research Hypotheses and Questions .. 3

1.3. Thesis Structure .. 8

Chapter Two .. 11

FUNDAMENTALS AND STATE OF THE ART .. 11

2.1. Smartness of Objects .. 11

2.1.1. Smart Objects .. 11

2.1.2. Cyber Physical Systems ... 12

2.1.3. Cyber Physical Systems Properties ... 17

2.2. Smartness of Manufacturing Systems .. 22

2.2.1. Towards the new Industrial Revolution .. 22

2.3. Multi-Agent Systems (MAS) as the toolset for Model Implementation 27

2.4. The DACS methodology .. 29

2.5. Jade platform .. 30

2.6. Dependability and Security of Smart Manufacturing Systems ... 33

2.6.1. Aspects of Dependability and Security ... 33

2.6.2. Dependability and Security issues of Cyber Physical Production Systems 38

2.6.3. State of the Art approaches to model and tackle Dependability and security Issues of

cyber physical production systems ... 42

2.7. Implementation approaches for dependability and security ... 52

Chapter Three ... 59

THE DEPENDABILITY AND SECURITY MODEL .. 59

3.1. The Dependability and security model ... 59

3.2. Contribution of smart system’s properties in the dependability and security mechanism 68

Chapter Four ... 77

Model Implementation and Use Cases ... 77

4.1. Using DACS to design the mechanism .. 77

4.2. The use cases for testing the mechanism ... 87

Contents

x

4.2.1. Constituent of the model production system ... 88

4.2.2. Failures associated with the case (conveyor) ... 91

4.3. The failure cases in this study ... 94

4.3.1. Case one: Scheduled maintenance ... 94

4.3.2. Case two: Item (wood block) is not present on time .. 96

4.4. Agents, interfaces, and their interactions... 97

4.5. Case three: A machine breakdown from a shopfloor (to test the ability of negotiation over

resources) ... 103

Chapter Five .. 107

Conclusion and discussion .. 107

5.1. Conclusion ... 107

5.2. Outlook ... 109

References .. 111

Appendix (codes for agents) ... 121

List of Figures

xi

List of Figures

Figure 1. A conveyor - pusher system for sorting wooden blocks.. 7

Figure 2. Wood blocks with magnets on them ... 7

Figure 3. Thesis Structure ... 9

Figure 4. Structure of Smart Systems (EPoSS) .. 11

Figure 5. Breakdown of hierarchical systems into heterarchy ... 15

Figure 6. redraw. CPS maturity model (from cps in manufacturing) .. 17

Figure 7. Compatibility Scale against device features (IEC 65/290/DC) 19

Figure 8. How ICTs grow to bring cyber world and real world together 22

Figure 9. Industry 4.0 components in comparison with legacy systems components 23

Figure 10. Advancement of the use of ICTs in manufacturing, from: a) Computer Integrated

Manufacturing (CIM), to b) Cyber physical systems (CPS), to c) Cloud-based manufacturing

systems (CMfg).. 26

Figure 11. Steps of DACS methodology .. 30

Figure 12. The overall structure of the JADE platform ... 31

Figure 13. JADE’s main container ... 32

Figure 14. Eclipse as the compiler used to develop and run JADE agents 32

Figure 15. Dependability and security tree... 34

Figure 16. Dependability and Security attributes and correlations .. 34

Figure 17. fault classification according to [7] .. 37

Figure 18. Elements of Fault Tree Analysis (FTA).. 42

Figure 19. An example of a risk level matrix ... 44

Figure 20. Sample of failure taxonomy ... 45

Figure 21. Example of Petri Net .. 46

Figure 22. Two-dimensional data sets and anomalies ... 48

Figure 23. DoS Attack anomaly ... 49

Figure 24. SQC example of anomaly ... 49

Figure 25. Steps in anomaly detection ... 49

Figure 26. Breakdown of automation hierarchy at MES level .. 56

List of Figures

xii

Figure 27. From traditional automation centralized and hierarchical structure towards PABADIS

and then to PABADIS'PROMISE... 56

Figure 28. The decision cycle as shown in .. 60

Figure 29. Components to form the database in the core of the model 62

Figure 30. The Dependability and Security Model ... 63

Figure 31. Agents structure for dependability and security mechanism development 80

Figure 32. Failure Data as categorized in the database .. 81

Figure 33. Monitoring Agents ... 84

Figure 34. Negotiation over utilization of other entities resources ... 86

Figure 35. agents in the main container ... 86

Figure 36. The Fischer model .. 87

Figure 37. Objects and sections associated with the case (Fischer model): a) objects and sensors

for the production system, and b) parts (wood blocks) and magnets ... 89

Figure 38. The structure of the control system .. 90

Figure 39. Failures database interface for adding, removing, editing failures and their data. One

the right, information for failures can appear .. 97

Figure 40. List of failures at any time .. 98

Figure 41. A monitoring agent's general behaviour ... 98

Figure 42. Analyser Agent's general behaviour .. 99

Figure 43. Analyzer agent’s activities for the case of conveyer breakdown 100

Figure 44. Analyzer agent's activities for the case of pusher robot's maintenance due 100

Figure 45. Decision Maker agent's behaviour .. 101

Figure 46. Decision Maker agent output for case two, the conveyer belt failure...................... 102

Figure 47. Decision Maker Agent activities dealing with the case pusher robot maintenance due

... 102

Figure 48. Hypothetical example for negotiation case ... 104

Figure 49. Offer Providers A, B, and C .. 105

Figure 50. decision maker agent's activities for the case three. .. 105

Figure 51. Negotiation over a failed resource .. 106

List of Tables

xiii

List of Tables

Table 1. Information to form the core of the model .. 62

Table 2. Control loop steps and the relationship with smart manufacturing systems' properties

... 69

Table 3. Table of agents and their behaviour, decisions, and interactions 77

Table 4. Components of the conveyor system, and their behaviour ... 89

Table 5. Failure information and action data ... 91

List of Tables

xiv

Abbreviations

xv

ABBREVIATIONS

ACL Agent Communications Language

BDI Belief‐Desire‐Intention agents

CAD Computer‐Aided Design

CIM Computer‐Integrated Manufacturing

CPPS Cyber Physical Production Systems

CPS Cyber Physical Systems

DACS Design of Agent‐based Control Systems

HMS Holonic Manufacturing System

I 4.0 “Industrie 4.0” paradigm

IA Intelligent Agent

IEC International Electrotechnical Commission

IIoT Industrial Internet of Things

IOT Internet of Things

JADE Java Agent DEvelopment framework

MAS Multi‐Agent Systems

PABADIS Plant Automation Based on Distributed Systems

PLC Programmable Logic Controller

RAMI 4.0 Reference Architecture Model for Industrie 4.0

VDE “Verband der Elektrotechnik Elektronik Informationstechnik

e.V.” (Europe’s technical‐scientific associations)

VDI “Verein Deutscher Ingenieure” (Assotioation of German engineers)

ZVEI “Zentralverband Elektrotechnik‐ und Elektronikindustrie e.V.” (German

Electrical and Electronic Manufacturers' Association)

Abbreviations

xvi

1. Introduction

1

CHAPTER ONE

INTRODUCTION

In the past few decades, the rise of information and communication technologies (ICT) and the

growth of artificial intelligence, and their increasing expansion over almost every aspect of

human life has been conspicuous and tangible. From medical sciences, to everyday

transportation, to children’s education systems, to humans’ endeavour in exploring the heavens

and other planets. Manufacturing systems too have not been an exception. Catching up with the

fast pace of advancements in higher degrees of machines’ smartness and ICTs technologies,

manufacturing systems in recent years are trying to step into an era where intelligence and

connectedness are almost ubiquitous. In this marathon of competing for benefiting from vast

underlying potentials and opportunities, as well as gaining strategic advantages, companies are

struggling to overcome various challenges. Among these challenges, one of the main questions

to be addressed has been “how to assure security and dependability of these systems given the

rather extreme dispersity, functional versatility, and exposure of the components to cyber

space?”

After contemplating this question and studying the issue, the second question formed which

has inspired my work in this thesis: “can smart components use this smartness to tackle with

their own security and dependability concerns?”.

This chapter is framing this thesis by first proving the motivation for this work, then forming

the research question and hypotheses accordingly, and finally providing an outline for rest of this

work.

1.1. Motivation

Humankind have always had the passion for transforming things into more valuable goods, and

this passion led them to develop industries. As time went by, industries witnessed several turning

points. Started with harnessing steam and water energy and developing production tools as the

first revolution in around 1784, followed by the introduction of manufacturing as mass

production by assigning labours specific repetitive tasks and using electricity and bringing about

the second revolution in around 1870, and continuing through the third revolution by

summoning electronics and IT techniques to start automation in manufacturing processes in

1. Introduction

2

1969, the industries have evolved significantly. Now, according to the Federal Ministry of

Education and Research, Germany (BMBF), industry is on the verge of its fourth revolution by

merging Internet of Things (IoT), and Internet of Service (IoS) into manufacturing, and enabling

an ever-increasing collaboration of virtual and physical world by introducing Cyber-Physical

Systems (CPSs) [1-2].

Equipped with smart objects and embedded systems, manufacturing components

demonstrate self-controllability and self-organizability, and are now capable of intelligently

cooperating and collaborating together to fulfil their tasks. Sensors and actuators are now more

extensively being used to assist physical components to provide a network of intelligent objects,

which is now being referred to as the Next Generation Network (NGN), and Wireless

Sensor/Actuator Networks (WSAN) assisted by IoT and Cloud technology, altogether playing

pivotal roles in enabling the abovementioned fourth industrial revolution, known as the Industry

4.0. This name genuinely came from “Zukunftsprojekt Industrie 4.0” as a project in 2011 in

Germany to develop high-tech methods in manufacturing [3]. Since then, it has gone up the chart

in research priorities, e.g. in Horizon 2020, The EU Framework Programme for Research and

Innovation, by the European Commission [4]. Also, a report in 2014 from Deutsche Bank

announced that an estimate from a joint research carried out by Fraunhofer institute and Bitkom

company suggests that through opportunities and applications of the new industrial revolution

(I4.0), the gross value added of the country can tremendously rise by aggregate of 267 Billion

euro by the year 2025 [5].

Industry 4.0 systems, which can also be referred to as smart distributed manufacturing

systems, or cyber-physical production systems (CPPSs), often consist of a large number of widely

dispersed loosely-coupled yet collaborating heterogeneous components, that are vastly

connected to and communicating with cyber spaces. To enhance their capabilities, these systems

try to exploit smart properties through enhancing their own intelligence and processing power,

or via accessing the internet and its vast options to enhance these properties. On the one hand,

using these properties and enhancing capabilities can provide a plethora of opportunities and

strategic advantages to manufacturing enterprises. On the other hand, however, vast dispersity

and exposure to cyber spaces as well as versatility of processes and systems’ structures raise

major vulnerabilities [6]. Hence, dependability and data security issues may diminish the

readiness to rely on such enormous capabilities. Therefore, to harness all capabilities, not just

through implementation, but also in real-time dependabilities and utmost security must be

1. Introduction

3

assured.

Moreover, an adaptable, learning tool to analyse and steadily improve all conditions that

accommodate all dependability and security needs, would represent an important contribution

to make smart manufacturing units’ applications more attractive.

This thesis accordingly aims at proposing a generic model for intelligent and autonomous

distributed dependability and security supervision and control that is broken down throughout

the system, and is to be carried out by smart components themselves in Industry 4.0

environments. To this aim, it adopts and harnesses smart manufacturing systems’ capabilities

and properties (i.e. interoperability, autonomy, scalability, modularity, heterogeneity, and

context-awareness), for maximizing its performance and versatility.

1.2. Research Hypotheses and Questions

Given the versatility and dynamic characteristic of the smart systems, and accordingly the need

for a powerful mechanism to assure the dependability and security in real-time, the following

research question and hypotheses are proposed:

Before introducing the hypotheses, giving proper definitions and explanations might be

necessary to understand what the mechanism mentioned above is.

From different uses of the word “intelligent” in the CIRP Encyclopedia of Production

Engineering, in the context of this thesis, “intelligence” refers to as the ability of learning,

reasoning, and acting upon the environment. The word “distributed” here suggests that this

mechanism is to be performed by intelligent components themselves (i.e. the task of supervision

and control is broken down among entities down to the levels of details). That accordingly

requires a clear definition of intelligent components. This thesis takes a manufacturing unit as its

case of an intelligent component, as shall later be described further in more details.

Question: Can an agent-based intelligent distributed dependability and security

supervision and control mechanism that inherits smart system properties enhance the

overall dependability and security of the system?

1. Introduction

4

Then it comes to the two attributes that in my work are expected to improve by the mean of

the proposed mechanism. Dependability as defined in [7], is the ability to deliver service that can

justifiably be trusted. A dependable system should be robust and stable, and perform without

interruption in the environment that due to its dynamic character may cause frequent

disturbances. The security objectives (with regards to information systems) on the other hand,

as determined by Federal Information Security Management Act (FISMA) [8], takes into account the

three major attributes known as CIA triad, that are namely: Confidentiality, Integrity, and

Availability. Confidentiality here means that no information should be revealed or disclosed by

an unauthorised entity. Integrity suggests that the information shall not undergo any undesirable

and unauthorised alteration. Lastly, availability refers to the readiness of the information at the

right time to the right entity. Together, dependability and security are to assure smooth, flawless,

and timely delivery of services within satisfactory specifications.

The second part of the question refers to smart systems’ properties (as appeared and explained

in [9]) that are thoroughly elaborated in the next chapter and are shortly defined bellow within

the scope and purpose of this thesis:

Context-Awareness: is the ability of components to understand the context in which they are

working. It can refer to the components’ environment, collaborations, physical status, or tasks,

goals etc.

Heterogeneity: refers to the diversity of structure or elements, as in smart systems components

of different format and structure or functionality are connected to the cyber space and

communicate with other components to fulfil their tasks.

Interoperability: this is an attribute for systems of heterogeneous and diverse components in

which components can easily collaborate and inter-operate. Depending on the component

definition, highly heterogeneous sets of constituents or collaborators may involve in interactions

which may require high interoperability.

Autonomy: as another intrinsic feature of smart units, autonomy is referred to as the ability of

components to fulfil their tasks and objectives without the need for other components or human

intervention. As in the perspective of this thesis, the proposed mechanism is to be exercised by

the components themselves.

1. Introduction

5

Scalability: is generally referred to as the ability of components to expand on or shrink their

resources and constituents the way that no significant effort as structural or application changes

or technological updates are demanded. As the dynamic characteristics of smart systems require

scalability, the dependability and security supervision and control mechanism would also see

scalability of its constituents as imperative to its proper and satisfactory functioning.

Modularity: components and systems can be called modular, if their constituent components

can be broken down and rearranged in different setups or replaced to serve various services and

enable various functionalities.

The suggested mechanism in this thesis and what the question is referring to must inherit these

properties and reflect them in its behaviour. After clarifying the question, the following

hypotheses are proposed:

H1: Additional properties and enhanced capabilities and constant connectedness to cyber space

increase risks in playing manufacturing on the base of smart manufacturing units.

Dependability and security may increase and risks may be lowered when given components

continuously monitor their behaviour and autonomously take proper actions through

harnessing and maturing the properties. Maturing these properties, in addition to reduce

the need for human intervention in the process of monitoring, reasoning, and action taking,

may enhance flexibility, stability, and responsiveness.

H2: A powerful tool for monitoring and analysing dependability as well as maturities of

properties and units can be established on the base of dynamic modelling. The model

architecture may be specified by expected contributions and resulting requirements. The

desired features for tool implementations may be provided by Multi-agent design pattern.

H3: A decision table for failure risks, disturbance cases, decisions for actions and inputs for

learning may be established. Using agents, adequate architecture may be implemented into

a learning experimentation environment for simulation or manufacturing scenarios and

evaluations of risks.

1. Introduction

6

H4: The implemented architecture can perform independent of input heterogeneity, reasoning

techniques in decision making, and knowledgebase generation and analysing approaches.

To test these hypotheses first the anticipated deliverables must be clearly defined, and

accordingly the expected mechanism must be developed. Beside reducing human intervention

which is on a par with higher autonomy (one of the properties), flexibility can be perceived as the

capacity of a system to adjust itself in response to changing requirements without significant

expense in terms of time, effort, cost, or performance [10], and responsiveness means

sufficiently timely reactions to disturbances and environmental stimuli.

Stability can generally be referred to as the property of an equilibrium in a dynamic system

[11], which in the scope of this work means the ability of the system to run flawless in the face

of disturbances. That implies, if due to any reason a failure (whether intentionally or

unintentionally) occurred, the system should not break down. To reach these enhancements the

mechanism then must enable the properties mentioned in the question section. This need

triggers the second and third hypothesis where using Multi-Agent Systems’ capabilities

implementing the desired mechanism is intended.

Performing independent of input heterogeneity, and techniques or approaches to construct

knowledgebase or analyse disturbances and react upon them suggest the universality and

applicability of the proposed mechanism regardless of the smart component type and the

environment or context in which it is performing.

Accordingly, this work takes into account developing a generic dependability and security

model plus an agent-based structure, and will test it against various types of failure modes to

subject the proposed mechanism to scrutiny to see if the hypotheses stand up.

The case component for this study (figures (1, and 2)) to demonstrate and analyse the

functionality and performance of the mechanism as mentioned above is a manufacturing unit

with a set of machines and conveyors, controlled by a programmable logical control (PLC), and

equipped with OPC UA server to receive sensor data. Monitoring input data is to be provided via

OPC UA server through a client agent.

1. Introduction

7

Figure 1. A conveyor - pusher system for sorting wooden blocks

Figure 2. Wood blocks with magnets on them

Failure cases will be generated both physically (i.e. making physical unapproved changes in the

system) and via simulation (i.e. by introducing anomalies in data communication or data that

come from sensors in the field) as different risk modes and type. Failure simulation will be used

to test the capability of negotiation over utilising another component’s resources.

One case for this study would be to introduce delays in the process. There would be accepted

and unaccepted delays according to the time intervals between sequences of actions. This case

represents a failure that can occur on the field level and actions are to be taken accordingly.

delays can be caused by a problem in conveyor (the part sticks on the way or the conveyor does

not work) or the pusher robot. Sensor are to be used to constantly provide data for monitoring

and as previously mentioned these data are gained by subscribing the OPC UA server that reads

the sensor data.

1. Introduction

8

The second case considers a KPI (Key Performance Indicators) related to the life cycle of the

assets. For some components in a system, there might be a limited number of operational actions

before every preventive maintenance call to maximize the performance and reliability of that

given component and avoiding a breakdown. In this case, for machines in our system (pusher

robots), a limited number of pushes will be defined before maintenance and when the number

is reached, the machine will send an anomaly not caused by a failure, but to call for maintenance

to prevent a possibly imminent failure.

To set up a knowledgebase for disturbance cases and identification thereof, as well as a table

of suggested sets of actions and decisions, this work adopts and modifies FMEA technique. FMEA

among the several techniques recommended by International Standard for Dependability

Management [12] is one of the most common and suggested techniques which in modified form

suits the requirements of this thesis adequately (as shall be described thoroughly in the following

chapters). Other techniques, according to the cases and policies, as well as dependability

objectives for specific components can be merged into the mechanism in for instance

dependability analysis as it can be inferred from the fourth hypothesis of this thesis and it will

accordingly be discussed how the model can perform irrespective of the system context, scale,

and approaches in forming its modules (for supervision, analysis, decision making, etc.).

Next section of this chapter outlines the thesis sections and structure.

1.3. Thesis Structure

Considering the research question and hypotheses, and the cases for concept implementation,

the rest of thesis will break down into following chapters:

Chapter two, which takes into account the fundamentals on this subject and the latest works

and studies done in this literature. It provides information on the movement of industries on the

path of gaining higher levels of smartness and accordingly the rise of dependability and security

concerns, as well as the potential approach in tackling these concerns which leads the thesis to

the third chapter.

In the chapter three, the concept and the structure of the proposed mechanism will be

addressed. Contribution of the smart systems properties into the model behaviour will be

defined along with the requirements to enable them. The dependability and security model will

be developed and elaborated on. A modified FMEA approach to develop the core database of

the model will be specified. Multi-Agent Systems will be introduced and discussed as the adopted

1. Introduction

9

tool to deliver the desired features of the model. Subsequently, the architecture for the

collaboration of different parts (Agents) of the model and a structure for implementing it will be

established.

Chapter four demonstrates the implementation procedure. In this chapter, the process of

programming and detailed structure and functions of agents that are collaborating with each

other will be presented.

In chapter five, the outcomes and results of the experiments will be shown and discussed as

well as the improvements that the proposed mechanism provides upon existing approaches for

dealing with dependability and security issues. In addition, suggestions for extending the

functionalities and the performance of the model will be presented.

The following diagram (figure (3)) summarized the thesis structure.

Figure 3. Thesis Structure

1. Introduction

10

2. FUNDAMENTALS AND STATE OF THE ART

11

CHAPTER TWO

FUNDAMENTALS AND STATE OF THE ART

2.1. Smartness of Objects

2.1.1. Smart Objects

Smart systems generally refer to devices that are ubiquitously connected and communicating

with one another and are capable of demonstrating degrees of intelligence and autonomy [13].

Their functionalities include collecting data from the environment, transmitting the acquired data

to their controlling unit to perform decision making process and develop instructions based on

the information received, and finally reacting on the environment according to the commands

provided by the controlling unit (figure (4)). Accordingly, the main constituent components of

smart systems are for the most part sensors for data acquisition, controllers for data processing,

reasoning and decision making, actuators for performing action, and means of communication

and data transmission between these entities [14]. These systems normally also have a power

source and are generally very energy efficient or even totally energy autonomous.

Figure 4. Structure of Smart Systems (EPoSS)

2. FUNDAMENTALS AND STATE OF THE ART

12

2.1.2. Cyber Physical Systems

The term Cyber-Physical systems (CPS) was first invented by Helen Gill in the year 2006, at

National Science Foundation (NSF) [15]. It may be that the notion of “cyber space” rose from this

term (cyber physical systems), given that CPS was coined earlier and carries broader roods and

concepts. However, it would be fair to associate both the terms “cyber space” and “cyber

physical systems” to the word “cybernetics”, which dates back to much older time, to about 70

years ago in 1948 by Norbert Wiener [16], who himself took remarkable part in stablishing the

theory of control systems.

Edward Ashford Lee, defines Cyber Physical Systems as “an integration of computation with

physical processes whose behaviour is defined by both cyber and physical parts of the system”.

In these systems, the behaviour of physical world and processes are influenced through the cyber

space in which supervision and control of physical activities are being carried out, and vice versa.

Such bilateral interactions are made possible typically via feedback loops. As Edward Lee puts,

Cyber Physical Systems deals more with the intersection of the virtual and real world, and not

the union of the two [17]. From the definitions given, CPSs and Smart systems have broad

similarities where cyber physical systems main focus is on the interactions of nodes and smart

entities.

Beside their structural similarities the behaviours of these systems, due to their extreme

heterogeneity, can vary significantly. However, smart systems share two behaviours as their main

commonality; firstly, they perform interactions with physical world, and secondly, they

communicate with each other. Such attributes enable them for performing in vast variety of

applications from as simple as controlling temperature, light or air pressure, to dealing with

significant environmental issues such as air or water pollution or business exercises. The federal

Networking and Information Technology Research and Development (NITRD) CPS Senior Steering

Group developed a list of the main practical uses of cyber physical systems in their vision

statement released in 2015 [18] which along with other studies are shortly described as follow:

Agriculture

Cyber physical systems can be harnessed to improve on responsiveness towards ever

increasing issues that agriculture industry is facing or will encounter in not very distant future.

The world’s population is estimated to exceed nine billion in just over 30 years. In addition to

that are other factors such as global warming and climate change as well as uncertainty of

weather as a more immediate factor. Beside these more general drivers are rather shocking

2. FUNDAMENTALS AND STATE OF THE ART

13

figures maintaining that in many cases a large amount of losses is being observed in the process

of reaching to consumers from production. All of these show the need for bringing higher

efficiency and smartness into this industry throughout the value chain and product life cycle from

bringing smartness in dealing with climate [19], to control of irrigation system [20,21], to

monitoring and analysis of the farm animals’ conditions [22]. This should ultimately diminish the

carbon footprint of this industry and aid it with moving towards higher sustainability and

environmental friendliness.

Building controls

cyber physical systems can enhance features related to buildings with regards to a variety of

factors ranging from the experiences of people who dwell in them to the environment in general,

by affording buildings higher levels of smartness. Considering inhabitants experience smart

safety systems, improved energy consumption and in case of net-zero energy buildings improved

energy generation to energy consumption ratio (can be gained through the use of solar energy

or other sources of energy generation and controlling and minimizing energy loss through for

instance smart heating and air conditioning, windows and shades control, timing of the use of

household appliances, etc.), features to assist aged people, as well as provision of better comfort

are some features to name [23-25].

Defence

with regards to defence and military practices, advance ICT technologies are considered

essential and sophisticated network of interacting components and entities play a heavy role in

an effective defence system. Among the areas of high importance with regards to the defence

section and associated technologies specified by The Department of Defence, smart and cyber

physical systems are to be seen as important enablers to at least three, according to the NITRD

CPS senior group [18]. These areas include engineering of resilient systems, areas of cyber

capabilities, and enhancing and advancing autonomy within defence systems throughout the

military operations.

Emergency response

another place that cyber physical systems can play a pivotal share deals with catastrophic

phenomena as natural disasters, etc. Hundreds of such cases occurs early which lead to tens of

2. FUNDAMENTALS AND STATE OF THE ART

14

billions of dollars of costs to be imposed on nations. Using smart sensor-actuator networks, and

CPS technologies, related agencies can be more responsive with regards to predicting and

reacting to emergency situations whether environmental, such as earthquakes, storms, or floods,

or caused by humans, for instance terrorist or cyber attacks [26,27]. By utilizing data acquired

through smart systems sensor networks and software application to analyse received data,

awareness towards the environment increases which increases the predictability of events that

may arise and provides times to generate more optimum and timely decisions to tackle or

prevent disasters.

Energy

As they are becoming more affordable and less costly to implement and due to changes in the

climate as a result of human activities like burning vast amount of fossil fuels, renewable sources

of energies, more specifically electricity, such as from the sun using solar panels and wind or wave

energy are becoming more broadly considered. This trend towards cleaner energy provision and

consumption has also led to more creative electric products such as electric cars and electricity

supply mechanisms for them.

Numerous studies are being published in this area [28-32] from implementation, to security

provision of smart grids, to their capabilities and future development, given the importance and

opportunities of bringing smartness into power systems. Using cyber physical systems and

through sensor networks and smart devices and approaches like smart metering infrastructure

or in short (SMI), power industry is moving towards harnessing the most out of integration of

these sources with hardly predictable behaviour.

In addition to smart metering system are smart and robust power grids using cyber physical

systems aided by multiagent systems, and smart distribution of electricity to consumers. In this

movement towards smartness, cyber physical systems are fair to be referred to as the best

enabler available from ICTs which can provide resilient and robust self-optimizable infrastructure

to generate and deliver appropriate services.

Healthcare

Likewise, heath care systems are growing in smartness using ICT [33-35]. Sensors are being

extensively used for gathering patients’ health information as Electronic Patient Records (EPR) as

mentioned in International Telecommunication Union (ITU) [36] or Electronic Health Records

(HER), and redundant analysis of data can be more easily avoided [37].

2. FUNDAMENTALS AND STATE OF THE ART

15

The support of the smart systems also goes beyond the diagnosing procedure and can offer

functions for treatment process as well for instance by directing patients to right health

specialists or entities timely and conveniently via any devices. Medication is now also able to be

personalized and accessible where patients can take the appropriate amount of the appropriate

type of medication at the right time.

Manufacturing and industry

One of the areas that is tremendously developing the use of ICTs and is seeking the

opportunities these technologies can afford is industry and more specifically manufacturing

section. Cyber-physical Production Systems (CPPSs) which drives Industry 4.0 is attracting so

much of researchers’ attention that has high on the agenda and funding list of many

industrialized countries.

That has triggered an enormous number of research studies, standardizations, etc. to be

carried out and published focusing on enabling, implementing, and taking into account the

possible opportunities of cyber physical production systems [38-46]. The use of Cyber Physical

Systems in this area will be discussed in much further details in following sections.

Figure 5. Breakdown of hierarchical systems into heterarchy [47]

Figure [5] shows the way cyber physical system can affect the hierarchical structure of legacy

automation systems. It is doing so by breaking down the top-down hierarchical architecture to

heterarchically communicating entities that are working towards common or shared goals.

2. FUNDAMENTALS AND STATE OF THE ART

16

Society

Water systems are harnessing smart systems to improve and provide solutions for water quality

and distribution management considering location of buildings and environmental contingencies

such as climate change, flood and other natural disasters, etc. and their prediction and

management. Along with water management, waste management and environmental

sustainability is also touched and considered by smart systems to control the entire waste cycle

from their collection to transportation, depositing and processing, and to monitor and control

the pollutions or environmental effects causes by various wastes.

Transportation

Cyber Physical Systems (CPS) and ICT technologies are being extensively used in scheduling and

safety of public transportation system and vehicles as well as smart parking systems such as

Parking Guidance Information Systems (PGI) or smart and E-Parking, etc. [48-50] all together

giving rise to what is commonly known as Intelligent Transportation Systems (ITS) [37].

Beside public transportation personal vehicles are extensively enjoying ICT technologies and

smart systems in their different parts such as engines, transmission system, suspension system,

their stability program, or in their safety features. Moreover, cars with autonomous driving

capabilities are vastly advancing by harnessing the capabilities of smart systems and their

interactions and collaborations.

All abovementioned areas as well as other aspects of smart systems’ broad applications such

as in education systems, economy, as well as in government, have led to the emergence of the

concept of Smart Cities which is targeted by increasing number of cities all around the world.

Bellow (figure (6)), shows the maturity model of a cyber physical system, according to [51].

Cyber physical systems’ maturity stages can be noted as basics, enabling transparency, improving

the level of understanding, enhancing decision making capabilities, and eventually the ability of

self-optimisation. The basics requires simply the general conditions within the organization and

its structures. Then moving upward in maturity levels, the necessities and requirements include

processing and comprehension of the acquired data and information, as well as communicational

and interoperability factors. Acquiring data and information accordingly demands real-time

generation of data and information with regards to the functions and behaviours of that cyber

physical system. On the other hand, information processing suggests the ability to derive and

cumulate knowledge and understanding from sets of data. Then it moves to information linking

2. FUNDAMENTALS AND STATE OF THE ART

17

which is about process adaptation on the basis of cooperation. The highest degree of maturity

can be obtained by independent cyber physical entities with the ability of making decisions,

solving problems, and interoperation and collaboration.

Figure 6. CPS maturity model (CPS in manufacturing)

2.1.3. Cyber Physical Systems Properties

Cyber Physical Systems along with their structure similarities, generally share a set of

properties to different degrees. To deliver their potentials, CPSs mature these properties that

they inherit thanks to advancements of ICTs. In general, New technological applications equipped

by cyber physical systems and Cloud technologies, are demonstrating higher level of agility,

better flexibility, and broader ubiquity and manifests a score of certain characteristics and

properties [9,52,53] that being discussed in this section.

First thing to see as the main property of cyber physical systems is that they enable heterarchy

and horizontal integration and collaboration along with hierarchical top-down and vertical

structure. This for sure demands much higher level of interoperability which is defined as the

ability of two or more systems or components to exchange information and to use the information

that has been exchanged [54], among components of any level of detail (LoD). This requirement

arises following the intrinsic heterogeneous characteristic entities that are interacting in CPSs,

and due to the existence of various sources of information and the involvement of a variety of

data formats. and a seamless cooperation of these entities, demands greater degrees of

interoperability which is going to be discussed further in details later in this section.

2. FUNDAMENTALS AND STATE OF THE ART

18

The next behaviour to be found in cyber physical systems is Decentralization, which in

manufacturing context is regarded as one of the outstanding features of the new industrial

revolution. For decentralization to become achievable presence of adequate autonomy is

imperative along with sufficient degrees of self-awareness and context-awareness, that are also

going to be discussed in more details within this section. In general, with autonomy components

can react on their own through what their receive from the environment and with self/context-

awareness, they can know and express themselves in the system. By exploiting these features

smart entities are enabled to make decisions on their own by interacting with other entities and

the environment where they perform.

With regards to the intentions of this study a number the most important of these properties

which are going to be used within this thesis are further elaborated bellow:

Context-awareness

ITU recommendation for Smart Ubiquitous Networks (SUN) defines context as “the information

that can be used to characterize the environment of a user”. Accordingly, it further defines

Context-Awareness as “a capability to determine or influence a next action in telecommunication

or process by referring to the status of relevant entities, which form a coherent environment as a

context”. [55] Context data can range from information about the environment where an object

is operating (e.g. temperature, noises, vibrations, humidity et.), object’s communications and

collaborations (e.g. the entities and devices with which the object is connected or cooperates,

data in communication, bandwidth used, etc.), or information about the operation and the

process, etc. These items can vastly vary in type or scale based on objects’ functionalities and

structure. Cyber physical systems are generally equipped with smart ICT devices and technologies

to gather context information. Examples can be obtaining data from various sensors, or via cloud.

Data acquired will then be processed and translated into a meaning full information based on

which analysis, reasoning and decision making can be carried out.

Heterogeneity

Heterogeneity is another intrinsic characteristic of cyber physical systems as these systems are

networks of communicating components of generally vastly diverse type and structure with

different constituent pieces of hardware of different make and computational power as well as

dissimilar software platform, communication mechanism, or programming languages used in

their architecture.

2. FUNDAMENTALS AND STATE OF THE ART

19

Such diversity is one of the major challenges in making interactions and collaborations between

these entities possible. Establishment of standards and proper semantics and ontologies help

overcoming heterogeneity.

Interoperability

Interoperability is defined by the Institute of Electrical and Electronics Engineers standards

glossary as “the ability of a system or a product to work with other systems or products without

special effort on the part of the customer” [56] and implementation of standards is the way to

enable interoperability. That suggests that heterogeneous entities, regardless of their

manufacturer would be capable of cooperating and collaborating in one or various distributed

applications, according to IEC 65/290/DC standard [57].

That definition puts interoperability high in the compatibility scale presented in IEC 65/290/DC

[57] as shown in figure below. That requires ICT devices to be capable of sharing information and

using the exchanged information for intended applications.

Figure 7. Compatibility Scale against device features (IEC 65/290/DC)

In order to reach interoperability, definition of ontologies as well as determining a model for

semantics to be share by interacting components, on the basis of approaches like defining key

performance indicators (KPIs) can be important.

2. FUNDAMENTALS AND STATE OF THE ART

20

Autonomy

Autonomy is another feature of cyber physical systems that is manifested by smart

components in various levels. It can be basically defined as the ability of an entity to struct and

perform its actions and behaviours without the need for human or other entity’s intervention.

Among aspects of autonomy the ability perceiving the environment through sensors or by any

means, reasoning on the data acquired from the environment and to react accordingly. In other

words, autonomy refers to the notion of collaboration with or to self-organisation to react with

regards to external stimuli, through setting up self-fed loop with the context in which the given

component performs.

Objects with high level of autonomy would be able to carry out self-reconfiguration and self-

optimization along with self-control to deliver higher expectations and more complex objectives

that match new industrial revolution’s criteria.

Scalability

Another property of Cyber physical systems is scalability in the sense that adding or removing

resources to and from the system should not require major effort. Scalability can cover a broad

range of attributes according to the system under consideration as the target of scalability.

It can be computational resources such as processing power or storage, software capabilities

and applications (for instance in cloud-based systems), addition or reduction of a set of features

or behaviours with regards to the dynamic requirements of the time and accordingly changes in

tasks and objectives of the system, pieces of equipment and expansion or shrinkage of the

capacity, range of coverage as in the case of monitoring and supervision of processes or other

components, updating databases in real-time and the ability of making use of the updated

knowledge, or changes in volume or number of variables in data acquired from the context via

additional sensors or cloud, etc.

Due to the dynamic nature of cyber physical systems and the growth of the desire for higher

levels of flexibility and adjustability in response to the need for either intentional strategic

changes for gaining more advantages, or unintentional ones such as in cases of breakdowns,

scalability becomes one of the main features of CPSs.

Modularity

A modular system consists of loosely coupled elements that when required, can be reorganized

in new setups or be interchanged with functionally similar elements irrespective of manufacturer,

2. FUNDAMENTALS AND STATE OF THE ART

21

or changed with elements of different functionality with little or no effort. CIRP encyclopaedia of

production engineering defines modularity as the compartmentalization of production functions

and requirements into operational units that can be manipulated between alternate production

schemes to achieve the most optimal arrangement to fit a given set of needs [58].

With regards to system and software engineering, ISO/IEC 12207 [59] calls modularity the

minimum coupling and maximum cohesion in a system, and in ISO/IEC/IEEE 24765 [60]

modularity has been defined as the degree to which a system or computer program is composed

of discrete components such that a change to one component has minimal impact on other

components. Modularity is an important supporting feature for enabling reconfigurability, and

customizability. In the language of industry 4.0, modularity is a necessary feature to possess,

which affords the system greater degrees of flexibility that is essential in ever increasingly

changing and dynamic context and environment. Modularity in parts of the system and its

resources (e.g. pieces of production equipment, transportation mechanism such as conveyors,

software applications, controlling systems, etc.) can bring better reconfigurability in the face of

stimuli. It also enhances the agility of the production system in responding to changes in the

product or service should it require.

Another main attribute of importance in the manufacturing era which stands out among the

characteristics of cyber physical systems is Real-time capability. This ability is to be enabled via

real time gathering and monitoring of data from sensors (which requires real-time availability

and accessibility of required data), analysing them, making decisions accordingly, and applying

these control decisions to the physical world using actuators. Service orientedness is the property

that should not be missed when it comes to smart and cyber physical systems, more specifically

with regards to the movement towards new industrial and manufacturing era. Vendor

independent and loosely coupled services provided via applications and networks is provided to

customers of these services in an ad hoc way. Provision of services via applications on the internet

and the concept of IoT (internet of things) along with other technologies make possible the

emergence of service oriented architecture (SOA) in manufacturing industries.

Within their concepts, cyber physical systems and Industry 4.0 have goal of bringing together

the virtual world and the physical world [51]. Accordingly, the fourth industrial revolution and

smart manufacturing has virtualization and representation of physical entities in cyber space as

one of its main attributes. Using sensor data collected from physical processes and producing

models in cyber world, associated engineers in process control and optimization, product

designers, managers, etc. can customize and optimise models and interactions between digital

2. FUNDAMENTALS AND STATE OF THE ART

22

(or virtual) twins of manufacturing resources and components in the virtual world by changing

and testing models via simulations and improving on them while the physical process are running.

This way manufacturing processes and parts’ design can be modified and improved upon faster

and with much lower costs, and responses to changes can be applied in a more efficient and

timely manner.

Figure 8. How ICTs grow to bring cyber world and real world together [51]

2.2. Smartness of Manufacturing Systems

To raise their strategic advantages and in order to gain higher competitiveness, manufacturing

systems are aiming at exploiting the latest and cutting-edge information and communication

technologies that are growing rapidly following the Moor’s law which indicates that computing

would exponentially increase in power and decline in their cost. This trend enabled

manufacturing systems to move into the era of automation and harness computers and logical

controllers to aid management, supervision and control of manufacturing processes through

approaches such as CIM (Computer Integrated Manufacturing), CAD/CAM (Computer Aided

Design/Manufacturing), etc.

2.2.1. Towards the new Industrial Revolution

In recent years, through the introduction of smart objects and embedded systems into

manufacturing enterprises and production practises, this industry is taking a revolutionary step

into a new era and paradigm known as Smart Manufacturing or as it is called in Germany, Industry

4.0 (which indicates the 4th industrial revolution). This new paradigm is about the convergence

2. FUNDAMENTALS AND STATE OF THE ART

23

of existing manufacturing systems and advanced ICT technologies to enable more flexible

processes, more advanced decision-making capabilities and in overall the manifestation and

continuous maturation of the previously mentioned properties within the manufacturing

organizations. NIST (National Institute of Standards and Technology), defines Smart

Manufacturing as “fully-integrated and collaborative manufacturing systems that respond in real

time to meet the changing demands and conditions in the factory, supply network, and customer

needs.” According to the Implementation Strategy Industry 4.0 stablished by industry

associations VDMA, ZVEI, and Bitkom [39], real-time availability of information through the

networking of all entities in value chain and enhancement of value stream based on provided

real-time data is of the fundamentals of this new paradigm. Such networks of interacting entities

from humans to objects and systems enables a dynamic value network which is capable of

performing real-time self-optimization with regards to desired criteria from resource utilization

to cost control or optimum time.

The main distinguishable difference between the legacy system and Industry 4.0 (for short

I4.0), is that in I4.0, objects instead of communicating with a centralized database, communicate

with their digitals twins and models in the cyber world, where all these digital twins and virtual

objects (VOs) are communicating together. The figure bellow, shows the way cyber physical

objects work in I4.0 structure. Explained in Rami 4.0 (Reference Architecture Model Industrie 4.0)

[38], an object is an I4.0 component when it has communication ability, and an “administrative

shell” that represents the object in virtual world and carries its functionality model.

Figure 9. Industry 4.0 components in comparison with legacy systems components

2. FUNDAMENTALS AND STATE OF THE ART

24

Major countries are now working on developing and integrating key enablers of this industrial

revolution. The main technologies based on which smart manufacturing is developing are cyber

physical systems, as well as Internet of Things (IoT), Big Data, Cloud Services, industrial Wireless

Sensor Actuator Networks (WSAN), etc. IoT usually refers to a network of interconnected

heterogeneous objects (sensors, actuators, smart devices, smart objects, RFID, embedded

computers, and so forth) uniquely addressable (for instance by IP), based on standard

communication protocols. It was further defined as a loosely coupled, decentralized system of

cooperating Smart Objects [61].

In Industrial Internet of Things (IIoT), IoT provides an internet-based integration for cyber-

physical objects that in this case are manufacturing resources and applications. It connects

machines and facilities embedded with sensors and actuators, RFID tags and readers, positioning

systems etc. and affords the industrial systems higher observability over the entire supply chain

and resources as well as operations, more autonomy and awareness of components, improved

Key Performance Indicators (KPIs), enhanced levels of maintenance, and way better level of data

collaboration and real-time reconfigurations triggered by dynamic environments.

Inferred from the abovementioned, a large amount of data is in transition within this system

that makes industrial Big Data to be frequently heard along with IIoT. The term industrial Big Data

suggests a great Volume of data of Various sources to be gathered at high Velocity (in real-time),

giving industrial Big Data its 3 dimensions (3Vs), and raising the need for decent analytical

methods to deal with this heterogeneity and largeness of data acquired in real-time. It also

requires large processing power, massive storage, and network capabilities [62].

Speaking of these requirements, cloud service with its ginormous capabilities is now

considered to be summoned to answer industries’ needs. Accordingly, the concept of Cloud

Manufacturing (CMfg) has emerged. One definition of Cloud manufacturing was brought in [63],

as a customer-centric manufacturing model that exploits on-demand access to a shared

collection of diversified and distributed manufacturing resources to form temporary and

reconfigurable production lines that enhance efficiency, reduce product lifecycle costs, and allow

for optimal resource loading in response to various and changing demands of customers by

flexibly defining and reconfiguring operational tasks.

2. FUNDAMENTALS AND STATE OF THE ART

25

CMfg is the application of cloud computing, Business Process Management (BPS), and IoT in

manufacturing, and considers CPS objects and shop floors [64] in a Service Oriented Architecture

(SOA). Cloud-based manufacturing deals with generally four types of services delivered to cloud

service customer typically by cloud providers and brokers:

Hardware as a service (HaaS), Infrastructure as a Service (IaaS), Platform as a Service (PaaS),

and Software as a Service (SaaS) i.e. a set of hardware provided normally by service provider as

requirements of cloud service implementation, an infrastructure and networking system in which

components (things) can connect, communicate, and collaborate (IaaS), a platform for e.g.

dealing with large amount of data (big data) and information processing, search engines (PaaS)

in the middleware, and various applications for enhancing the efficiency, and software packages

like CAD/CAM, ERP etc. (SaaS) [64].

Putting all in a nutshell, it can be perceived that CIM was more of an enabler for third industrial

revolution, whereas, CPS, IIoT, and CMfg are key enablers are Industry 4.0, illustrating that

manufacturing system is now going to be more decentralized, more service-centred, and relied

more on smart objects [65]. In figures below the structural differences between computer

integrated manufacturing, cyber physical systems, and cloud manufacturing is presented [66].

The evolution from centralized systems to being more decentralized and service oriented is

observable.

2. FUNDAMENTALS AND STATE OF THE ART

26

Figure 10. Advancement of the use of ICTs in manufacturing, from: a) Computer Integrated
Manufacturing (CIM), to b) Cyber physical systems (CPS), to c) Cloud-based manufacturing
systems (CMfg)

The mechanism to be presented in this thesis can be considered as an addition to the

intelligence and awareness of the digital twins of the industry 4.0 objects.

2. FUNDAMENTALS AND STATE OF THE ART

27

2.3. Multi-Agent Systems (MAS) as the toolset for Model Implementation

Intelligent Agents (IA) have emerged and become a point of interest for researchers in early

1990s. Due to their capabilities these agents and systems on the basis of them have grown

significantly, which led to the raise in their attraction specifically in the fields of computer science.

Soon the interest in agents started to spread way beyond the borders of computer science and

became a multi-disciplinary research area to be seen in engineering fields, medical science

research and applications, even psychological studies, and so forth. Agents are entities equipped

with computational power that are able to demonstrate degrees of autonomy, goal-oriented

decision making and the ability to find solutions for various problems they encounter.

To achieve their purposes, they may show reactive or even pro-active conduct in a dynamic

and hardly predictable environment they might be working. Despite their vast capabilities, often

due to rather inevitable limitations of individual agents, complex tasks and real-world objectives

are sought and carried out through collaboration of multiple intelligent agents. This community

of interacting and cooperating agents which might individually perform semi or fully

autonomously to fulfil their own objectives and to serve system’s global objectives is called a

Multi-Agent System or for short (MAS) [67].

Agents in a multi-agent system approach their goal by harnessing their smartness and

rationality ability to communicate and negotiate with one another in order to better collaborate

and perform responsibilities towards intended goals. Obviously, such behaviours from agents

demands them to possess sufficient understanding of the real world and the capability of rational

decision making. With this goal in mind, researchers introduced a system around late 1980s,

which is called Belief, Desire, Intention (BDI) and has ever since become the most common

approach in developing agents involved in multi-agent systems.

Agent’s beliefs are its knowledge and comprehension of the section of the real world it is

dealing with, and can be unique to individual agents, meaning that various agents might have

diverse beliefs about a context. On the other hand, is agent’s desire which tells the objectives of

that agent and all it aims to fulfil. These desires can be put into two groups: short-term desires

and long-term desires, where the latter provides the main structure of agent’s behaviours and is

more abstract than the former, short-term desires, which are derived from long-term goals and

are to deal with specific problems of any specific moment. Intentions are desires that the agent

has decided to achieve, and to achieve them it performs a series of actions that themselves might

2. FUNDAMENTALS AND STATE OF THE ART

28

be a part of a plan, which along with other plans are being performed by the agent to serve its

intentions. Intrinsically, intelligent agents (IA) demonstrate following properties [68]:

Autonomy: smart agents can control their actions and perform independently without a need

for help of other agents whether real world agents like humans or other smart agents in a system.

Responsiveness: using sensors to cumulate knowledge of the states and behaviours of its

environment and through actuators by which it can act upon its environment, intelligent agents

can respond to environmental stimuli with regards to the goals and desires they are programmed

to achieve.

Proactiveness: more advanced agents can be proactive in the sense that they might be capable

of estimating or predicting the state of their environment should they perform a specific action

or they may act upon what they have foreseen about their environment.

Goal-orientation: agents’ behaviours are goal driven which means their actions are planned to

let it reach its intentions and desires.

Smart behavior: here smart behaviour suggests that the agent has adequate knowledge of a

specific area as well as its environment and hence it is able to solve problems of that very field in

which it is an expert.

Social ability: as intelligent entities, agents are able to interact and collaborate with others,

including humans or other agents towards their goals and fulfilling their tasks and providing

expected services. This way they can use one another’s aid in predicting conditions they are

limited to predict solely, or accomplish tasks they could not otherwise have accomplished on

their own. That may require them to have an abstract knowledge of their counterparts or

components they cooperate with.

Learning capabilities: another interesting feature of the agents is that they are learning capable

which means they are adaptive and can incrementally cumulate and evolve their knowledge and

optimize themselves possibly without human intervention.

After determining the tool, the model is translated into an architecture composed of

interacting agents. To this aim a design methodology can be used for building the intended

architecture.

2. FUNDAMENTALS AND STATE OF THE ART

29

2.4. The DACS methodology

 Stands for Design of Agent-based Control Systems, DACS method is one of the most common

and thought after techniques which being used in developing multi-agent systems and mainly

focuses on the acting agents and their internal communications [69,70]. This technique can use

decision making approaches to produce a model from which agents can be characterized and

chosen. It takes the behaviours and features of agent systems into account and helps developing

agents and their interactions based on each specific cases and functionalities they need to serve.

This technique therefore can accommodate the needs in tools for developing an agent based

system by taking all the concepts of agent control systems into its consideration. Accordingly, in

order to deliver its goal, the DACS methodology follows three steps that are described as follow

[71]:

1. Analysing the decisions to be made. First step is to specify and analyse the controlling

decision that must be made throughout the processes by the agents. In addition, the

necessary decisions, their interdependencies are also important to be specified, since

agents’ interactions can be determined and designed based upon a constructed model of

these relations between decisions.

2. determination of agents. In this step, the agents required for delivering the decisions

specified in the last step will be identified to design an agent oriented system. Furthermore,

the decisions each of them should make will be assigned to them along with all their

deliverables and services they need to provide, as well as the requirements for their

interactions (i.e. when to interact, what to interact or share, with which other agents, etc.)

shall be specified.

3. Choosing interaction protocols. In the third step means of interaction between agents will

be defined and interaction protocols will be selected among the available agent-oriented

protocols.

Following these three steps results in structured design of interacting agents each of which has

sets of controlling decisions to take and objectives and responsibilities as well as various

interactions with other agents. The following figure shows the steps of DACS methodology and

outcomes thereof.

2. FUNDAMENTALS AND STATE OF THE ART

30

Figure 11. Steps of DACS methodology

2.5. Jade platform

First introduced by Research & Development department of Telecom Italia, JADE (Java Agent

DEvelopment framework) can be referred to as the most common agent-based middleware that

is being utilized these days. It provides a totally distributed platform with a flexible structure

which also makes extension and add-on installations easily possible [72]. Using this platform

enables developing fully agent-based real-time capable applications which can be used in any

environment. Being developed in Java, JADE has the advantage of enjoying all the capabilities of

this language as well as rich third-party libraries that are available, which makes using JADE and

agent programming easier for less experience people.

The following figure (12) depicts the structure of the JADE platform. As can be seen, it gives a

main container which dwells the Directory Facilitator agent and Agent Management system using

which agents can register themselves to the system, perform activities, and offer and provide

services. Their life cycle can also be easily managed as they can be stopped or terminated,

paused, move, etc.

The main container also hast a Container Table (CT) which is the list of registered containers to

the system and Global Agent Descriptor Table (GADT) which provides information about all the

registered agents in the platform.

2. FUNDAMENTALS AND STATE OF THE ART

31

Figure 12. The overall structure of the JADE platform

JADE platform can afford the programmers and agent-based system developers with following

capabilities and functionalities. It needs to be mentioned that JADE’s features are not limited to

the following list.

Firstly, JADE is fully distributed system with graphical tool. Agents can live on this platform,

running as different threads and located on various machines and they can communicate through

provided means. Also, the graphical tools can help with debugging and monitoring events or

communications that take place among agents. Secondly, it is in compliance with the FIPA

specifications. Since developers of this platform themselves contributed in FIPA standards

development, this platform also conforms to its specifications such as identification,

interoperability, etc. Implementations of both white pages and yellow pages is another feature

in this platform. White page and yellow page services are provided by Agent management system

(AMS) agent and Directory Facilitator (DF) agent respectively. Agents can register and offer their

services easily through the yellow page service by DF agent. There is also an effective, agent life-

cycle management. Agents when registered to the white page service of their platform can easily

be managed to start, stop, pause, die, migrate, etc.

Subscription mechanism exists for agents and other applications to receive notification about

events that occur in the platform. Moreover, supporting ontologies and content languages,

agents’ migration, wireless environments, etc. are some other features provided by JADE

platform. The following figure shows JADE’s interface and the main container.

2. FUNDAMENTALS AND STATE OF THE ART

32

Figure 13. JADE’s main container

To run JADE agents for this thesis, Eclipse has been chosen as the compiler in which

programming codes were written. It is considered as an integrated development environment

(IDE) and is known to be one of the most commonly and frequently used application for

developing JAVA programs. Eclipse offers a user friendly and customizable workspace easily

extendable using various plug-ins. This application itself is mostly written in JAVA and can used

for developing various different programming languages including JAVA. Below is a screenshot

of the Eclipse workspace while it was being used for the purpose of this thesis.

Figure 14. Eclipse as the compiler used to develop and run JADE agents

2. FUNDAMENTALS AND STATE OF THE ART

33

2.6. Dependability and Security of Smart Manufacturing Systems

Dependability and security have always been major challenges for ensuring a flawless and

robust performance in a system, and as far as these two aspects are concerned, with the

introduction of more complexity and transmission and exchange of information and data, the

system becomes increasingly vulnerable towards dependability and security issues. Accordingly,

with regards to the fact that smart manufacturing systems enabled by cyber physical systems are

generally comprised of a large number of heterogeneous and interconnected components and

are dealing with substantial amount of data flow among them as well as vast exposure to the

cyber space and internet, dependability and security gain exceedingly higher significance [73].

This is because inefficiency of these two aspects or the lack thereof may lead to costly or in cases

disastrous breakdowns of the system due to ineffective or tardy responses to failures and risks,

disclosure of critical information or loss of data integrity, incompetence in predicting coming

failures, etc.

2.6.1. Aspects of Dependability and Security

Dependability is a concept that according to the system in which it is considered, can cover a

variety of attributes such as reliability, stability, availability, safety, integrity, maintainability, etc.

It is in overall to be matured to assure that a given system is going to work flawless and without

unacceptable interruptions and will fulfil and deliver its objectives and services within satisfactory

specifications, costs, as well as timeliness.

The concept of security (concerning ICT security) can be perceived as the collection of tools,

policies, security concepts, security safeguards, guidelines, risk management approaches, actions,

training, best practices, assurance and technologies that can be used to protect the cyber

environment and organization and user's assets [74], on the other hand generally focuses on the

three main attributes known as CIA triad (i.e. Confidentiality, Integrity, and Availability).

[7] in IEEE Transactions on Dependable and Secure Computing, demonstrates the main

dependability and security attributes and their general (not definite) interrelations that are

summarized in the following figure.

2. FUNDAMENTALS AND STATE OF THE ART

34

Figure 15. Dependability and security tree

Figure 16. Dependability and Security attributes and correlations

These attributes can be defined as follow:

• Availability: suggests that services, resources, information, etc. must be available to the right

entity at the right time.

• Reliability: is defined as the ability of the entity to perform with consistency within the

desired condition and specification for an expected period of time.

• Safety: is to assure that assets (humans, equipment, etc.) or the environment are protected

from harms and hazards.

2. FUNDAMENTALS AND STATE OF THE ART

35

• Confidentiality: to protect and preserve the confidentiality of information means to ensure

that it is not made available or disclosed to unauthorized entities. In this context, entities

include both individuals and processes [ISO IEC 27000: 2014] [75].

• Integrity: it refers to accuracy and completeness. That means there should be no

unauthorized alteration.

• Maintainability: degree of effectiveness and efficiency with which a product or system can

be modified by the intended maintainers [ISO/IEC 25010: 2011] [76]. Modifications can be

repairs, corrections, updates and upgrades, enhancements and adaptations (e.g. of software

according to changes), etc.

Dependability and security, beside the abovementioned attributes, based on the system under

consideration can have broader objectives and are not limited to these aspects. For instance,

International Telecommunication Union (ITU) lists some of the main security goals of the ICT

networks as follow, and suggests careful attention to security considerations in all phases of

design, implementation, and in real-time while the system is working [77]:

• Only righteous entities should receive access to data and the network

• Each legal entity should have access to what it is authorized for

• Confidentiality of a given network should stand up to what is defined as expected level within

its policy objectives

• Components in a network should be only responsible for their own actions and not those of

others

• Adequate protection should be guaranteed for networks with regards to standing against

activities that unsought and/or are unauthorized

• All information related to security of any sort should be only accessible by authorized

entities;

• Network must be provided with plans with regards to tackling security related incidents;

• Network must have strategies available for restoring its normal behaviour and processes

should any security issue occurred and dealt with; and

• The structure of the network should allow a variety of security strategies and approaches of

any type and intensity to be applicable.

2. FUNDAMENTALS AND STATE OF THE ART

36

The concept and purpose of dependability and security is to assure acceptable delivery of

intended services. Ergo, the mechanism for guaranteeing dependability and security should

protect the component from anything that may pose risk to the delivery of adequate services.

In figure 15, these causes of service inadequacy are categorized as threats, that are failures,

faults, and errors. In general, faults are reasons for the occurrence of errors and one or more

errors may lead to failures. Failures eventually may cause the system to fail in delivering the

required output. Understood thus, in order to maintain the consistency of satisfactory

fulfilment of services in a system, vulnerabilities of the system that may be compromised by

faults, the associated errors, and consequent failures should be well understood.

To understand faults, failures, and errors, [7] provides thorough classifications that come very

helpful both in categorizing them in almost any given system, and to determine them accordingly.

For instance, it can be seen that faults can be classified based on various criteria such as phases

of the system i.e. when it is performing or at the time of development (e.g. maintenance);

whether it is originated within the system or it is caused from a change outside the boundaries

of the system; if it is intentional, accidental, hardware or software related (i.e. physical devices,

or programs and data), etc.

2. FUNDAMENTALS AND STATE OF THE ART

37

Figure 17. fault classification according to [7]

2. FUNDAMENTALS AND STATE OF THE ART

38

To tackle these threats the dependability and security mechanism should first be capable of

detecting faults and errors should any occur. Also, predictable failures and associated faults and

error should be foreseen to be dealt with adequate preventive exercises. Furthermore, the

mechanism should be ready to perform proper actions in a timely manner in cases of any fault

occurrence. The right action should provide the system with stability and should remove the

failure and its causes. The feasibility of these actions relies on the two major properties in the

system:

✓ Firstly, the system must be observable

✓ Secondly, the system must be controllable and reconfigurable

The former suggests that components of the system must be observable to dependability and

security mechanism so that should anything out of the approved context occurred, it can be

detected within acceptable time. That includes factors that can affect the performance of the

system both internal (from within the system, e.g. components and communications among

them), and external (outside the boundaries of the system, e.g. the environment). Observability

can be fulfilled using proper sensor networks, accessing and reading data communication flow

between entities, etc.

The latter property, which is controllability and reconfigurability refers to the ability of being

changed, replaced, or fixed when an undesirable phenomenon takes place. Alteration should be

easy to make by the controller. For instance, compromised computers or codes must be

reconfigurable and physical components must be changeable. This property plays a crucial role

in making system stabilization feasible when due to a failure, a constituent component has

become unstable.

2.6.2. Dependability and Security issues of Cyber Physical Production Systems

Cyber physical production systems are manifestations of cyber physical systems in

manufacturing and production environment and context. Hence, in order to find dependability

and vulnerability of these systems it would be reasonable to investigate risks that are posed to

cyber-physical systems.

Cyber physical systems as it can be perceived from their name, generally consist of three layers

[78-80] that are namely: physical layer, cyber layer, and the integration layer or communication

layer. Accordingly, each of these layers can have their own concerns and susceptibilities with

2. FUNDAMENTALS AND STATE OF THE ART

39

respect to dependability and security. Due to the enormous potential advantages of these

systems, numerous studies have recently been dedicated to delve into finding CPS and Smart

systems’ vulnerabilities [74, 78, 79, 81-95].

Physical layer

Physical layer often consists of physical naturally tangible assets like pieces of equipment,

machines, transportation vehicles, parts, materials, etc. (in general various sources of

information generation), as well as sensors and actuators. Due to any type of fault (e.g.

intentional, accidental, etc.) for example some sensors may stop working, creating a coverage

hole. In some cases, one or more sensors may be influenced by attackers to generate ill data, or

may be replaced by a malicious one to send erroneous data to the system, causing interruption

in decision making processes and bringing damages to the system.

Sometimes sensors are connected to a sink node or base and these nodes are the victim of

faults which may lead to more serious conditions, especially if for instance due to higher data

flow, they are spotted by adversaries and be compromised for intentional undesirable influences

or for eavesdropping confidential data. Sensor can also stop providing data if their power source

runs out. Though extremely energy efficient, some smart objects or sensor may run out of battery

or power due to various reasons. An intentional reason can be Denial of Sleep (DoS, not to be

confused with the other DoS (Denial of Service) attack) attack in which an adversary keeps the

device unnecessarily working until its power source depletes and is no longer capable of

performing. In general, the higher the geographical dispersity and exposure, the more the

vulnerability of the physical infrastructure. However, due to the distributed, disperse, and

ubiquitous nature of cyber physical systems, “security by obscurity” or in other word isolation of

properties in designing the system, may not be the optimum way of protecting it from threats

anymore [96]. Therefore, to exploit the advantages of smart systems and CPSs more efficient

approaches must be sought. Physical properties can also be subject to vandalism (in deliberate

cases) or environmental undesirable changes (in undeliberate cases) as examples of external

faults. Internal faults on the other hand may include breakdown of constituent components,

human errors, equipment malfunction, etc. which can vary vastly based on a system’s

functionality, constituents, or scale. Failures may occur in electronics and electrical facilities such

as in electronic circuits, power system (e.g. loss of power supply, or changes in voltage and/or in

electric current), mechanical failures due to inadequate or no maintenance or harsh working

environment such as high pressure or temperature, etc.

2. FUNDAMENTALS AND STATE OF THE ART

40

Communication layer

Next area of vulnerability in cyber physical systems is the connection or integration layer. This

layer’s issues are more distinctively concerns of CPSs, and widely include dependability and

security attributes of the flow of information between physical entities and cyber space

(applications, database, decision making unit, etc.).

Maintaining dependability and security in this layer can become even more critical when the

heterogeneity of the components and service providers rises. A reason for this can be due to for

instance different standards used by different manufacturers for integrated components of a

CPS. That means every component can have its own concerns with regards to dependability and

security when deployed and integrated in a cyber physical system. In addition, given that mostly

involved interacting heterogeneous components’ behaviours are like black boxes, there is a

possibility of encountering unexpected behaviours when they are summoned. Taking smart cars

as an example, the largest number of issues and bugs that further exploited to make attacks

possible, could be traced back to the communication layer between smart entities that had been

produced by dissimilar manufacturing companies and vendors.

Integration layer generally uses open standard protocols for communication that despite being

implemented and widely used for years, there are still security issues and concerns in using them.

Denial of Service (DoS), or Distributed DoS (DDoS) attacks are of most common types of security

attacks in CPSs. In these cases, the attacker by consuming the bandwidth, blocks the data from

being delivered to righteous destination.

Eavesdropping compromises confidentiality by getting into the system (e.g. as a result of IP

spoofing). One of the well-known types of attacks that may compromise confidentiality of the

data and may involve eavesdropping is Man-in-the-Middle attack or for short (MITM) in which

the attacker secretly compromises the communication between two entities that perceive that

are communicating directly with one another.

Masquerading is to deceive an agent to get data from it. Cloning happens when a malicious

entity replicates a righteous one and gets access to the system or even takes the place of the

right entity. Then a replaced malicious entity can deny interactions or service after negotiations

with other agents and causes conflicts in resource allocations etc. This type of risk is called

repudiation.

Or as in the risk of manipulation, agents and data may be misleadingly manipulated to send ill

data on behalf of for instance, an agent or a sensor. Social Engineering and Phishing is another

common risk that is on the top of the security and vulnerability list of top 10 threats and

2. FUNDAMENTALS AND STATE OF THE ART

41

countermeasures of Industrial Control Systems (ICSs) according to Federal Office for Information

Security recommendation: IT in production. Social Engineering involves disclosure of confidential

information to an unauthorised entity. An example of such attacks is phishing mails that contain

malwares like trojans etc. in their content that will be installed once opened or direct the target

to malicious web addresses.

Another issue that can undermines the dependability of Cyber Physical Systems would touch

the essentiality of real-timing in some systems. Delay in communication and transmission of

important data or loss of data packages may introduce severe undesirable effects at considerable

expenses to the system. Exposure of the topology of the system also may pose threats to its

dependability and security since more important nodes can be founds and be targeted by

adversaries. One way of learning about an important node (e.g. sink node) is the connections and

data traffic on this node, and a way that to some extent may help to prevent the conspicuousness

of such node is to use aggregate nodes or intermediate nodes to connect to less important nodes,

filter the data received from them, and communicate it to the terminal node [79,97].

Cyber layer

As far as the cyber space is concerned various vulnerabilities with regards to information and

application are generally involved. Cyber entities in cyber physical systems may include digital

twin and cyber representatives of physical entities, applications for analysing large amounts of

data acquired from various sources and providing control and decision-making support, data

storages, resources for computational supports, etc.

Similar to the integration layer, due to multi-vendor characteristic of cyber physical systems,

each cyber entity may have its own short comings in terms of security and dependability.

Improper integration for presence of vast heterogeneity is one of the vulnerabilities.

Applications’ bugs may be another factor to pose risk to dependability of the system or to be

exploited by adversaries and bring security challenges and cause significant costs.

Furthermore, various security risks that were discussed in previous layer (communication and

integration) can also compromise the security of information and data flow in this layer.

Unauthorized access to information and data bases, DoS attacks through for instance keeping

control and computational resources engaged and overloaded by making repetitive requests so

that the provision of appropriate service to the right entities are prohibited or delayed, viruses

and malwares to control and compromise devices, are some major examples of security risks.

2. FUNDAMENTALS AND STATE OF THE ART

42

2.6.3. State of the Art approaches to model and tackle Dependability and security Issues of
cyber physical production systems

So far, the structure of cyber physical and cyber physical production systems has been shown

and dependability and security issues associated with these systems were discussed. Given the

vast potential advantages of using CPSs and the move into the fourth industrial revolution which

as was shown is based on CPSs, numerous studies have been dedicated to propose solutions for

coping with issues and assuring dependability and security of CPSs and CPSs in manufacturing

systems and also international standards and recommendations are being released every year by

various international organizations and unions to provide a thorough insight into what issues are

and what might help in identifying, and dealing with them [89,98-111].

There are also methods for modelling and analysis of dependability and security in a system.

The following are some of the main techniques suggested by IEC 60300-3-1 international

standard [12]:

Fault Tree Analysis (FTA)

FTA is a top-down approach that analyses faults and undesirable states in a given system

through the propagation of a set of lower-level errors. It helps finding logical connections

between events that can lead to an unwanted condition or failure. The tree is normally developed

using a set of symbols to indicate the types of events and gates (relationships).

Figure 18. Elements of Fault Tree Analysis (FTA)

2. FUNDAMENTALS AND STATE OF THE ART

43

Basic events are generally errors that occur in an entity within a given system. External events

are those type of phenomena which are expected to happen. Undeveloped ones are not

considered important or there is not sufficient data about them. Conditioning events are

restrictions influencing the logic gates. Intermediate events are for inclusion of extra information

for events.

For gates, and/or gates respectively means the occurrence of an event depends on the

occurrence of all inputs, or one or more (any) of them. Exclusive Or on the other hand suggests

that an event happens only if one, and only of the inputs happen. Priority-And Gate comes when

the order of inputs matters in order for an output to occur. Inhibit Gate ties the occurrence of an

output to the occurrence of an input with a conditional input event.

Transfer “In” and “Out” are used to connect events of two related tree.

Event Tree Analysis (ETA)

ETA is a method that investigates the consequences stemmed from a starting event, and

assesses the probabilities corresponding to each possible resulting event that may occur

subsequently [107]. This bottom-up inductive technique also identifies the degree of

successfulness of mitigations and evaluates various scenarios with different probabilities of

happening. Some of the advantages of this method are the ease of use, functionality at various

levels of details, computerizability and the existence of commercial supporting software

applications, simultaneous consideration of various failures and success/unsuccess scenarios,

and simple mathematical approach, which is a set of multiplications in estimation of probabilities

in every path:

Probability of a path = ∏ 𝐸𝑣𝑒𝑛𝑡𝑖
𝑛
𝑖=1 , Where event i denotes the events in that path.

This technique can go hand in hand with Fault Tree Analysis as a combined method to increase

performance. This joint method that is named by [112] as ET with boundary conditions, can have

each Event Tree branch represented by a Fault Tree.

Markov Analysis

Markov technique suits well with dependability evaluation of complex systems. It considers the

current state of the given system irrespective of the previous events that occurred, and from that

derives a model of the next state of the failure or repair and maintenance strategies dealing with

2. FUNDAMENTALS AND STATE OF THE ART

44

each component. This property of Markov model which is also known as Markov Property, can

be mathematically shown as:

𝑷{𝑺(𝒕𝒏) = 𝒔𝒏|𝑺(𝒕𝒏−𝟏) = 𝒔𝒏−𝟏, 𝑺(𝒕𝒏−𝟐) = 𝒔𝒏−𝟐, … , 𝑺(𝒕𝟏) = 𝒔𝟏}

= 𝑷 {𝑺(𝒕𝒏) = 𝒔𝒏|𝑺(𝒕𝒏−𝟏) = 𝒔𝒏−𝟏}

Which indicates that the state of the system at time tn only depends on the state of the state

of the state of the system at t = tn-1, and not the previous states. Markov Chain is the simplest

form of Markov Model that uses Markov Property that suggests in a system with a random

variable, finding this variables distribution only requires knowing the distribution of the previous

state.

Failure Mode and Effect Analysis (FMEA)

Developed at late 1950s by reliability engineers of NASA for aerospace design in military

context [113], FMEA is one of the most utilized techniques to investigates possible failures modes

that can arise in a system, and their effects therein.

This bottom-up method studies various failure mode by taking into account parameters

namely: probability, severity, detectability, and associates a risk level to each failure accordingly

as well as the Risk Priority Number or for short (RPN) which is generally the multiplication of the

quantified values of the abovementioned three parameters.

𝑅𝑃𝑁 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ∗ 𝐷𝑒𝑡𝑒𝑐𝑎𝑡𝑏𝑖𝑙𝑖𝑡𝑦)

A sample of a risk level matrix is shown below:

Low Moderate Severity

High Unacceptable 1 2 3 4 5 6

P
ro

b
ab

ili
ty

1

2

3

4

5

Figure 19. An example of a risk level matrix

2. FUNDAMENTALS AND STATE OF THE ART

45

The probability ranges from extremely unlikely when the chance is almost next to zero for that

failure to happen, to frequent where the failure is virtually inevitable. Similarly, severity falls into

the range from no relevant influence on the system, to almost catastrophic with regards to safety,

the output of the system, etc.). Detectability as the third parameter goes from certainly

detectable to undetectable (failure might be latent for a period of time that can be included in

this analysis).

In this technique, failures can be classified in various forms based on the type of object under

consideration (a sample of a failure taxonomy can be seen in figure bellow), and a worksheet is

also being developed in which there are information about lists of failure modes, their potential

causes, the components to which the failures are related, the possible effects of the failures,

ways of detection, risk level, actions and recommendation in mitigating or removing the failure,

etc. using which failures are documented.

Figure 20. Sample of failure taxonomy

 Failure Mode, Effect, and Criticality Analysis (FMECA)

FMECA is an extension of FMEA technique which includes criticality analysis as well. In this

technique, the probability and the severity of the consequences of a failure are also brought into

the spotlight in order to help focusing mitigating actions on where they have highest values and

outcomes.

Functional Failure Analysis (FFA)

Used in early design stages of development, this technique takes into account the constituent

elements and functionalities of the component under consideration to recognize and analyse the

possible hazards and failures. In other words, FFA intends to specify those system activities and

2. FUNDAMENTALS AND STATE OF THE ART

46

functions that may lead to failures or threats. It accordingly categorizes those functions based on

their degree of seriousness and severity. Using this technique, failures can fall into three

categories which are as follow:

1) the functionality is not delivered when asked for

2) the functionality is delivered when it is not asked for; and

3) faulty functioning.

Similar to FMEA technique, this method too gives tables as its output with required information

about various actions and functions, associated threats and errors and their description, the

operations involved, the effects that each failure might have in addition to methods of dealing

with them. It also can provide the methods of analysis approved by policies with regards to the

system.

Petri Net analysis

Introduced in 1962 by Carl Adam Petri in his dissertation, Petri Nets are mathematical

modelling techniques utilized for describing distributed systems. It is a bipartite graph including

sets of events and states, represented respectively as bars and circles. Bars are called transitions,

and circles are called places (sometimes Petri Nets are called Place-Transition Nets). There are

also Arcs which connect places and bars. No two places or two bars can directly connect, and

place before and after each transition are respectively called Input and Output places.

Figure 21. Example of Petri Net [114]

Places can contain a number of tokens (called marks and are generally represented as black

dots) and distribution of tokens in places is called marking. After each transition from a state

(place) to another, a number of tokens can move from input place to the output place (called

2. FUNDAMENTALS AND STATE OF THE ART

47

firing, causes a change in markings and means the state of the system has changed) if the

transition is possible. Given that firing in Petri Net is nondeterministic and tokens may happen to

be anywhere in the net, this tool can be seen as a powerful tool for modelling concurrent

behaviours.

Often one or more of these modelling techniques, along with other approaches for prevention,

detection, mitigation, removal, etc. of risks and failures have been adopted in dealing with

dependability and security issues of cyber physical systems. The following are some risk detection

approaches with regards to cyber physical systems.

Anomaly Detection

Anomalies in data-mining are deviations in data patterns from what is considered normal, and

anomaly detection is the process of finding these unexpected patterns using various methods

and approaches [115, 116]. In anomaly detection, the first step then would be to know what is

expected and approved in a given system and then to monitor its behaviour to find any deviation

from this approved normal state or data pattern. Below are some examples of anomalies found

within two different sets of data, two of which are one dimensional and the other one is a two-

dimensional data set.

In the first one, anomalies are shown for a two-dimensional data set where variables on

horizontal and vertical axes are related and their values against one another are expected to fall

into expected regions (shown whit circles) to be considered as normal. There are also observed

samples and patterns that are far enough from the approved regions to be called anomalies. The

second one (figure (23), from [117]) shows anomalies in data volume in the form of unreasonable

escalation of bandwidth use which in this case denotes the occurrence of DDoS attack to the

system. In the last example anomalies are distinguished as data samples that fall out of control

limits which can be defined statistically to assure that the observed values can demonstrate

correctly the behaviour of the system under control.

There are several factors that are important in anomaly detection. One of them is the type of

input data or in other term, data instances that are being monitored. Instances can be patterns,

events, vector etc. and can have attributes of various types such as binary, or continuous. There

can also be interrelated instances of data with multiple attributes or single attributes.

The other important factor is the type of anomaly. [116] gives three different classes to

anomalies to distinguish their nature:

2. FUNDAMENTALS AND STATE OF THE ART

48

3. Point anomalies

When a single data instance is to be seen as anomaly when compared to the other part of

data, it can be called a point anomaly, which is the most common type used in analysing

components behaviour.

4. Contextual anomalies

These types of anomalies refer to instances that are regarded as anomalous in some

contexts and not others. To specify these anomalies there are two attributes to consider in

defining the problem.

- Contextual attributes, which is to be defined to plot the context; for instance, values to

define a location.

- Behavioural attributes, that is not the context but happens within the context; for

instance, the average temperature of each location (context).

Here, a temperature can be acceptable for one context and not the other.

5. Collective anomalies

As can be implied from the term, this type of anomaly refers to occasions where a collection

of values is seen as anomaly among all data acquired. In this case a single data instance

may not be regarded as an anomaly.

Figure 22. Two-dimensional data sets and anomalies

2. FUNDAMENTALS AND STATE OF THE ART

49

Figure 23. DoS Attack anomaly [117]

Figure 24. SQC example of anomaly

Various reasons and causes can lead to such deviation which might be a malicious attack or of

an accidental cause, which can be investigated and categorized using the approaches shown in

section (2.6.1). The steps in this approach can be shown as follow:

Figure 25. Steps in anomaly detection

2. FUNDAMENTALS AND STATE OF THE ART

50

Parametrizing the behaviour: there is a need for understanding the behaviour of the system

that is being monitored and parametrizing the values that are to be considered.

Modelling the anomalies: this step is to build model of approved and unapproved states of the

system, expected data patterns, and to define the thresholds.

The third step, looking for anomalies, is to compare the real-time state of the system with the

approved state and detects if an anomaly occurred in observed data patterns or if a threshold

exceeded in the defined values.

Anomaly detection can target a broad range of issues with respect to both dependability and

security. Some examples are intrusion detection, fault or damage detection, or other non-

industrial cases might be anomalies in medical information received from a patient, or fraud

detection.

As was said above, Intrusion detection is one of the applications of anomaly detection

techniques and is referred to as spotting and finding out adversaries’ activities in breaking into a

computer system or network, etc. [118]. What makes anomaly detection techniques particularly

useful for detection of intrusions into the system is that the systems under intrusion attacks

behave differently when compared to the same systems in their regular conditions, and anomaly

detection is all about finding deviations in systems behaviours and data patterns from what is

considered a normal and approved status. However, there are some main challenges for this

technique to overcome, the most important of which is an enormous amount of data being

poured in for analysis. With this matter in consideration, sufficient computational resources can

be imperative to successful analyses and reliable outcomes. Another issue to overcome is online

real-time capability since data is usually being streamed.

Next challenge for anomaly detection in intrusion detection techniques is to deal with the rate

of false alarm. This is due to the immense volume of input data which can make even small

percentages of false alarm an intimidation deal for the analyser agent. Various data labelling can

be used depending on whether the anomaly detection is going to be unsupervised, semi-

supervised or supervised. But given that in many cases “normally behaving” data’s label is

available, ill data and intrusions stand out as unlabelled and that thus makes semi-supervise and

unsupervised methods as more preferable when it comes to intrusion detection.

Another area where anomaly detection comes in hand, and is also the focus of this study, is

dealing with failures associated with industrial units and systems, pieces of equipment,

machinery, networks, etc. Failures in manufacturing units can vary. For example, exploitation of

2. FUNDAMENTALS AND STATE OF THE ART

51

industrial equipment for longer time than they can afford without running maintenance can

cause machines to deviate from delivering expected specification. This deviation in behaviour, if

not detected and treated, may deteriorate into further damages which may be tremendous in

cost or possible hazards that may arise. Data here is usually acquired through sensors that are

placed throughout the system to provide a model of how components are behaving. These data

will then be analysed to detect failures and damages. Anomaly detection techniques are indeed

very common in finding failures and errors in industrial systems and to identify how healthy

system is performing.

In case of fault detection, mechanical units should be constantly monitored for their

performance. Instances of these units can be motors, pipelines, valves, ventilation systems wind

turbines etc. which may demonstrate defect functioning due to partial breakdowns or wears, or

a variety of unexpected phenomena. On the other hand, defects (as anomalies) might occur in

the structure an equipment, i.e. rusts or cracks may appear on a surface or distortion may occur

to metallic components due to heat or pressure.

Wireless Sensor Networks (WSN) is another area of technology which has found its way into

many aspects of human life, especially in industries. Accordingly, duo to its characteristics and

large data flow of a variety of formats and type, they have gone under the spotlight of researchers

and data analysts. As far as sensor networks are concerned, anomalies found in sensor data can

have several connotations. They are either demonstrative of adversary activities or failures (or

such phenomena) in the network, or are caused by sensors malfunction itself, or in some cases

both of the above.

Like before, various challenges exist when it comes to anomaly detection approaches in

wireless sensor networks that should be taken into account in analysing streamed data that are

being received from sensors. One of these challenges is noises in data that can be associated with

the environment in which the network is working, or limitations or bugs in communication

infrastructure, etc. Similar to noises in data, for the same reasons data or package loss may occur

while network is operating. Noises and data losses also create a challenge for anomaly detection

mechanism to understand which anomaly is actually stemmed from a failure and is to be taken

seriously, and what anomaly is indeed come only due to some noises for instance.

Furthermore, given the computational resource limitations the detection approach should be

designed and programmed in way that requires least resources, since they should perform online

2. FUNDAMENTALS AND STATE OF THE ART

52

similar to sensor data that are being streamed. Another matter to consider is that often sensor

data are acquired from distributed sources. This fact implies that analysers should be capable of

dealing with this issue for instance by summoning data mining techniques suited for such

conditions [119].

Sequential/Change Detection

In this technique of detection input and output sequences are the keys to determine whether

the system is compromised. This is being done by making a comparison between output

sequence observed with the anticipated output corresponding to a certain input sequence. In

order to implement this method accordingly there are two steps required [120]:

• A model describing system’s functionality and characteristics

• A proper algorithm to be used for detection

 Sequential detection and change detection rely on two slightly different approaches. And are

based on different hypotheses [121]. In change detection technique, as inferred from its name

the presumption is that the starting point is what is approved and changes are to be spotted and

caught in any time. In the sequential detection on the other hand a given sequence of time can

be observed as either normal or as at risk. Under the assumption that false alarms’ probability is

constant and not changing, Sequential Probability Ratio Test (SPRT) technique can be used to

solve the problem.

There are also some other approaches that might be of interest of organizations to be used for

modelling dependabilities and security of the given system among which Probabilistic

dependence graph for understanding faults and their location [122], HAZard and OPerability

studies (HAZOP) [101] for evaluating safety threats and hazards for employees based on pieces

of equipment and functionalities or operations, or Reliability Block Diagram (RBD) [123], which

studies the components and the connections between them.

2.7. Implementation approaches for dependability and security

Various implementation approaches have been adopted to guarantee dependability and

security of cyber physical systems to different degrees and in different context. In this section

some of the major approaches are presented and discussed and the shortcomings of these

2. FUNDAMENTALS AND STATE OF THE ART

53

current approaches that are going to be addressed by the mechanism presented in this thesis will

be pointed out. In additions potential underlying opportunities and capabilities that the proposed

approach may afford are going to be presented.

Methods of implementation usually adopt one or more of the approaches of identification and

detection in combination with modelling and categorization techniques presented above in this

chapter.

In [89] a sensor actuator network was used along with an information system by which

predefined security-related context data and sensor data are kept. Accordingly, based on

predefined sets of anticipated reactions actuators will get involved in reacting to a security

threat. To build the context information Wan and Alagar suggest five main questions which

require answer to almost sufficiently grasp the right context. However, based on the application

more questions can be asked to include more dimensions of the context. Question number one

is that WHO is accessing the information, then the second question is that WHAT is being

accessed or is asked for by an entity or a client. Next question is from WHERE the request or

attempt is made for accessing information, and WHEN it is taking place. And the last question is

WHY is the information being accessed.

Each question has a type of value as its answer and therefore, context can be represented as

ordered pairs of (Di, Vi), where Di ϵ dimensions, and Vi ϵ values. For instance, context c can be

described as:

𝑐 = [Where: city name, Who: ID, When: date/time],

which can describe a client and the place and time of its access. Such context labelling can

detect and restricts unauthorized accesses to information and resources.

To construct a dependability model at run-time, authors in [105] develop an agent-based

approach along with wireless sensor networks. In doing so, they combine and use failure mode

and effect analysis (FMEA) for analysing dependability and agent ontology to analyse

dependability of the system in real-time. In addition, environmental monitoring is to be

performed using wireless sensor network over UDP and agent system. Accordingly, five sets of

agents were developed to form the dependability model in real-time:

• Agents to collect and store sensed data

2. FUNDAMENTALS AND STATE OF THE ART

54

• Agents to negotiate if needed to eliminate conflicts between received data

• Agents to process cumulated data for data validation and processing

• Agents to diagnose the systems ontologically with regards to failures, and

• Agents to manage ontology

Another agent-based approach which came earlier in 2010 [124] adopts EPS/EAS, that are the

shortened versions of Evolvable Production System and Evolvable Assembly System concepts;

the former expands on the latter to encompass a broader framework within the system. The

approach tries to enable adaptability of the components to the changing environment as well as

its evolution in making the system more resilient. That of course require the system to be

evolvable which means it should be capable of addressing the need for changes in requirements

should the situation requires.

The use of agent-based architecture, which is stemmed from the domain of Distributed

Artificial Intelligence (DAI), due to their features and capabilities that are going to be more

thoroughly discussed in following chapters (as the approach of this thesis is also based on multi-

agent systems), have also been seen in developing decentralized control system which also show

certain degrees of improvement in robustness and dependability. For instance, in [98] agent-

based approach for developing a distributed sensor-controller coordination was suggested in

conjunction with Adaptive Distributed Optimization algorithm (ADOM) to provide more stability

and robustness in the system (with more focus on micro grid systems) to achieve the following

features:

• completeness, which points out the ability to reach globally optimum solution,

• low overhead, to arrive to the solution by locally available data,

• and the capability of finding solutions with limited delay.

Also, in industrial systems various methods have been adopted in implementing agent-based

distributed control architecture. One of the earliest attempts in this area using agents, indeed

the earliest attempt, to transform hierarchy to heterarchy was presented by Duffie andPiper in

1986 in [125] by suggesting agents for resources, work pieces, humans, and control units to carry

out scheduling. Another early approach to be named is Holonic Manufacturing (HM) which using

agents, provides a network of widely distributed and highly heterogeneous collaborative and

intelligent autonomous components, that are capable of sharing ontology knowledge in a service

2. FUNDAMENTALS AND STATE OF THE ART

55

oriented architecture supporting big data analysis, altogether enabling the integration of

enterprise hierarchy (vertical integration from shop floor to managerial systems), Value chain

(vertical integration throughout the supply chain), the life cycle from ideas and design to

manufacturing, delivering, using and remanufacturing of products, and the integration of virtual

and physical world [126].

This idea broadens the environment to a collaborative condition in which various factories’

facilities as represented by agents (holons) contribute in negotiate upon scheduling and

delivering customer orders as a multi-factory system [127], which gives rise to more flexibility.

Furthermore, due to high scalability, multi-agent systems provide easy integration, auto-

configuration, and detachment of components (controlling and controllable entities) without the

need of any major changes in the system. This ability also enables ubiquitous monitoring, control

and decision-making ability. Another feature of holonic manufacturing systems (HMS) and MAS

is the ability of reducing complexity through the support of self-similarity that is demonstrated

both horizontally and vertically by the well-known architecture of the holonic manufacturing,

“Product-Resource-Order-Staff Architecture (PROSA) [128]. The holonic architecture then further

improved by the introduction of ADACOR [129] that was designed to responds to agile and

adaptive manufacturing needs, that later revised and evolved through ADACOR2 [130], inspired

by biological and evolutional theories to provide higher self-organizability using MAS. The

evolution paradigm of HMS architecture is providing more linkages with the concept of CPS and

intelligent products [131].

Another agent-based approach which was presented in 2001 by Sauter and Massotte [132]

based on a European research project is called PABADIS (Plant Automation Based on Distributed

Systems). This system which adopts CMU approach (which stands for Cooperative Manufacturing

Units) attempts to expand the presence of distributed intelligence at all levels of controlling

process, and to break down the deeply centralized and offline hierarchical structure of traditional

automation and control systems. It was done through using mobile software agents within agent

platforms connected with control devices.

The focus of PABADIS unlike holonic manufacturing systems (which mostly target control level)

is on MES level (Manufacturing Execution System) in the way that it breaks it into two parts; a

centralized part integrated with the ERP level (enterprise resource planning), and a decentralized

part comprised of mobile agents.

2. FUNDAMENTALS AND STATE OF THE ART

56

Figure 26. Breakdown of automation hierarchy at MES level [132]

Following the PABADIS approach, later another approach called PABADIS’PROMISE (PABADIS

based Product Oriented Manufacturing Systems for Re-Configurable Enterprises) stemmed from

and is added to it which uses mobile agents as well as Radio Frequency Identification (RFID)

technologies at the field level [133].

Figure 27. From traditional automation centralized and hierarchical structure towards PABADIS
and then to PABADIS'PROMISE

The aim is to take the aspects of manufacturing processes to their maximum flexibility and

application versatility and efficiency, and broaden the boundaries of the enterprise value chain

to encompass other collaborating companies as well. Furthermore, all these goals put the focus

on order-based manufacturing to the extent that PABADIS’PROMISE forms and calls its vision as

“The Order is the Application”.

As can be seen, various approaches have targeted the enhancement of production systems

with regards to their robustness towards dynamic behaviours and changes in the environment,

as well as dependability issues like possible failures, and security threats and risks. However,

2. FUNDAMENTALS AND STATE OF THE ART

57

there is still a lack of a coherent, flexible, and smart mechanism for assuring dependability and

security issues which is scalable, autonomous, and interoperable throughout the process of

inspection and reaction. The following is the list of objectives and features that mechanism

proposed in this thesis aims to accomplish:

A) using agent-based design the mechanism will be broken down into independent yet

collaborating modules that are scalable. Meaning that the mechanism can be expanded or

shrunk at will with no considerable effort. Furthermore, as an emergent property, it should

demonstrate the potential to dwell various approaches for various issues that may arise in

a component.

B) Each module performs as a black box the behaviour of which is to be chosen based on the

preferences and policies of the organization and developer. That means the mechanism

should be flexibly used in heterogeneous systems and inherit heterogeneity from

monitoring process by monitoring entities, to identification approaches, to measurement,

and finally to decision making algorithms and reactions.

C) The mechanism should be potentially capable of integrating layers of automation pyramid

through learning capabilities and reconfigurability.

D) The mechanism should demonstrate inherit features of industry 4.0

In this chapter, the state of the art for understanding the smart and cyber physical systems and

their behaviours and properties, as well as their capabilities and possible applications have been

broadly presented. More thoroughly, the contribution of the advancement of ICTs and smart

cyber physical systems in manufacturing area was discussed. Furthermore, dependability and

security features and aspects in general and in particular for these systems have been classified,

the possible issues and risks in every layer of CPSs were shown, and the ways of dealing with

them or modelling them have been introduced.

The next chapter provides the concept and structure of the intelligent and distributed

dependability and security mechanism proposed and presented by this thesis and discusses its

behaviours and properties.

2. FUNDAMENTALS AND STATE OF THE ART

58

3. THE DEPENDABILITY AND SECURITY MODEL

59

CHAPTER THREE

THE DEPENDABILITY AND SECURITY MODEL

To assure maximum dependability throughout an enterprise, the adopted approach must

cover all incorporated components, all information flows among them as well as the addressed

cyber areas, networks, databases and servers. In the previous chapter it was shown that some

methods have been suggested for classifying dependability and security issues and threats,

approaches were suggested for modelling dependability in cyber physical systems, and ways of

dealing with various types of dependability and security risks were taken into account either

application specific or to some extent general.

Here our purpose is to introduce a mechanism which intends to tackle dependability and

security issues by harnessing the properties of cyber physical and smart systems. A mechanism

that can encompass the previously discussed techniques and approaches within its modules and

adopt them based on the application and system for which it is summoned. The suggested

approach is to provide bed and a platform for collaboration of various techniques in an intelligent

and automated fashion in enhancing the dependability and security of cyber physical systems,

specifically in manufacturing context.

Accordingly, this chapter will first introduce the proposed dependability and security model

and its constituents. Subsequently, the contribution of the properties (as discussed in the

previous chapter) of smart and cyber physical systems will be discussed. Afterwards, Multi-Agent

Systems (MAS) as the proposed toolset for enabling this mechanism is to be introduced. The

chapter will then end with proposing the agent based dependability and security mechanism and

its modules along with the approaches used for this thesis’s use.

3.1. The Dependability and security model

To the aim of this thesis, a distributed Dependability and Security Model is proposed that can

be an instance of the encapsulated decision cycle (elaborated in [134] shown in the figure (28))

for covering the entire network, every unit and component down to all levels of detail (LoD). As

can be seen from the figure, the first step is network strategy and related objectives within all

levels. These levels go from network design and operations. Then next is monitoring of these

processes and the information flow within the network. Behaviours are being analysed and

3. THE DEPENDABILITY AND SECURITY MODEL

60

undesirable activities that are found will be treated and dealt with as the loop reaches

improvement step. If improvement (level one reaction) did not satisfactorily solve the issue, the

next step which is adaptation will be deployed where restructuring (level two reaction) takes

place. Through each step decision would vary from an action among categorized actions or no

action.

Figure 28. The decision cycle as shown in

Derived from the decision cycle shown and explained above, the dependability and security

model (figure (30)), is developed to perform the intended task of supervision and control of smart

systems. It contains a core, a control loop [135], and is communicating with the cyber space. In

fact, the model is placed in the virtual space as a part of components intelligence. For this reason,

it should be equipped with proper information about the component, the context in which it is

performing, as well as its dependability and security objectives. The model’s core consists of two

main parts [136]:

• Object description, and

• Risk model

Object description, is to give the component information about itself and the environment. In

other word, it gives the component adequate self-awareness and context-awareness. The former

3. THE DEPENDABILITY AND SECURITY MODEL

61

is about what elements and modules constitute the component’s structure, what are its tasks

and expected behaviours going to be, what are the desirable specifications of the services they

are ought to deliver, how the given task is going to be performed stepwise, how much data should

be generated or sent, acceptable internal heat, vibration, etc. On the other hand, the latter takes

into account component’s external-awareness or context-awareness which can refer to the

environment’s characteristics i.e. noise, heat, moisture, etc. or the collaborations and type of

interactions that the component has with other components of any type or constituent, the

anticipated and approved data flow, the operations that it is taking part fulfilling, etc.

Risk model as another main inclusion within the model’s core deals with required data with

regards to failures and errors i.e. how to detect them should anything occur, how to identify and

measure their possible effects on the system and their criticality and severity, what are the

countermeasures and how to react to and mitigate them, and bring system back to its normal

behaviour. The risk model is to be chosen by the developer based on the component type and

constituents, its structure and type of tasks it is performing, as well as the dependability and

security objectives and standards it needs to hold up to with regards to the organization’s

policies. Some of the main risk and dependability modelling techniques and approaches, along

with detection methods and mechanisms were presented and explained in the previous chapter

(section 2.6.3) which can provide the appropriate intended input for the core model. This study

is going to use Failure Mode and Effect Analysis (FMEA) technique and modify its output table

based on the use cases (which are going to be presented in the next chapter) to provide necessary

risk information, and anomaly detection is going to be the chosen method for monitoring and

detecting the errors and failures.

The model’s core is to support the improvement process which is going to be carried out

through the control loop. The required data to build and develop the core of the mechanism are

to be imported from the cloud/ cyber space or sensed through implemented sets of sensors,

together forming the component’s self-awareness and context-awareness. The data can also be

edited, added or removed manually in real-time through established interfaces and be utilized

by the component as shall be described thoroughly later in development and implementation

section. Furthermore, in this mechanism, self-optimization can occur via sharing knowledge with

all other smart units, and updating one’s own structure and database through continuous

feedbacks as it provides a loop to update on its performance and knowledge.

3. THE DEPENDABILITY AND SECURITY MODEL

62

Table 1. Information to form the core of the model

Objects Description Risk Model

▪ Objectives

▪ Task description

▪ Structure and modules

▪ Environment and position

▪ Collaborations

▪ …

▪ What are the Dependability and security objectives?

▪ What are the vulnerabilities and their probabilities?

▪ How can they be detected?

▪ What are the effects and their severity?

▪ Who must be alarmed at occurrence

▪ How can they be terminated?

▪ How can they be prevented in the future?

For this thesis following information are to form the core database from which the control loop

will be fed. These components are also to be scaled and updated. Later in the next chapter the

thesis with elaborate more on each of these components.

Figure 29. Components to form the database in the core of the model

The Control Loop of the mechanism in direct communication and to be fed by the core is to

carry out the task of supervision and control. This process is being done constantly and repeatedly

and consists of two main parts:

• Inspection process (i.e. monitoring, detecting anomalies, and identifying the failure mode,

and measuring the risk), and

• Reaction process (i.e. providing alarms, taking action, and doing the Reconfiguration and

reporting subsequently)

These steps are to be done in real-time. moreover, all of them shall be performed fully- or semi-

3. THE DEPENDABILITY AND SECURITY MODEL

63

autonomously through smart components themselves using sensors and actuators and with

constant access and communication to the model’s core, which is dwelled in the virtual world

and can be in communication in other components’ models. In this way components will be

capable of sharing and caring for dependability and security objectives of the whole system

beside objectives of their own. Figure (30) shows the dependability and security mechanism’s

components. The diagram may invoke the idea of PDCA (Plan-Do-Check-Act) concept which

targets continuous improvement of the production process starting with planning a change, to

implementing it, checking the results and acting accordingly. Whereas the mechanism here

constantly looks for failures and anomalies to identify and act upon them. Therefore, despite

having similarities, the two mechanisms serve different purposes.

Figure 30. The Dependability and Security Model

Monitoring:

The starting point in this smart distributed dependability and control mechanism is monitoring.

This functionality is to be carried out in a semi/fully autonomous manner, by exploiting the data

acquisition resources such as sensors, etc. and the information available in the model’s core that

the smart entities are harnessing. Intelligent objects continuously and within real-time observe

the present and existing status of parameters to guarantee that all parameters are conforming

to and following the accepted determined values. The variables are to be specified and

3. THE DEPENDABILITY AND SECURITY MODEL

64

parametrised based upon the context in which the object is performing and the component’s

description itself, and hence the components’ self/ and context-awareness should be updated in

real-time. Components will have the knowledge of the deliverables (i.e. tasks and services, etc.)

they are ought to provide and the satisfactory outcomes with desirable specifications. One the

other hand they are context-aware and know their environment, interactions and the expected

behaviour of the entities they work with, the righteous and authorized entities and the type of

access they are limited to have (whether its accessing data or administrative rights to change or

modify anything in the system), the data flow and bandwidth that is anticipated to be consumed

and a given time, the ambient parameters such as vibration, temperature, moisture, etc. and

many other variables that can vastly defer based on the component’s type and constituent, or

the openness and exposure and possible accessibility of physical or cyber parts of the component

to possible adversaries, and so on.

As mentioned before the technique that is going to be used for detecting issues and failures is

anomaly detection. Monitoring phase looks for anomalies in every relative layer of cyber physical

system (i.e. virtual space, real world object, and integration layer) related to the component.

Taking the inherent heterogeneity of cyber physical system’s components into account (being

physical and/or virtual (a software application, a machine, a sensor actuator network, etc.),

communication and data transition mechanism (platform and infrastructure, type data being

communicated, protocols, language, etc.), type of service (physical or computational), scale and

level of details, etc.), models and approaches for monitoring the values can vary remarkably. The

application of finding anomalies can also be broaden to perform preventive (scheduled and done

routinely) and even predictive maintenance which is more cost effective. Predictive approaches

and proactive mitigation or protection can be carried out for instance through monitoring

physical parameters such as vibration or surface wear etc. or slight shifts in output specification

(e.g. suggesting the need for recalibration), or through using data mining techniques to find

anomalies or deviations in patterns which themselves are not denoting a failure but suggest or

help to foresee an imminent risk.

A simple example can be that a sink sensor node and a rolling machine (though can be on the

same shop floor), a CRM datacentre in the cloud, a casting line, and an inventory of dairy

products, have different parameters to supervise and monitor. Components can also

interoperate in performing the act of monitoring. They can collaborate in monitoring subsystems

and subcomponents, or groups of sensors and actuators that together constitute a WSAN. Also

3. THE DEPENDABILITY AND SECURITY MODEL

65

in a group of components, on entity’s monitoring agent can also find anomalies in its

collaborative component, e.g. by receiving no, or a series of broken data from it. In addition, due

modular nature of the system, resources and methods (models, sensors, etc.) used in monitoring

a component or system (e.g. actuator, machine, unit, etc.) can be used in monitoring other

systems of related more or less complex components, or in various setups. That gives rise to the

need for the scalability of the monitoring mechanism. The dynamic nature of the distributed

manufacturing systems provokes changes in structure, setups, addition or removal of resources,

etc. that requires the monitoring mechanism to be accordingly scalable.

Detecting:

Using the risk model and information available, anomalies found through sensors and

monitoring resources that continuously and in real-time make observation over the component’s

constituents behaviours, will be identified by comparing the stream of received anomalies from

monitoring entities with the list of anomalies and associated failure modes. In cyber-physical

systems, due to the often extreme heterogeneity of entities, risks characteristics, security and

dependability issues, threats and failures can and often are accordingly significantly different.

Hence, approaches for detection and identification of the issues and anomalies varies as well.

These methods can include data-mining techniques to monitor object’s behaviour and data

pattern to for instance predict if it is going to cause a failure, can be thresholds defined as

maximum/ minimum acceptable values. They can be specification limits to statistically control

the calibration of a machine or equipment, or might simply be checking some Boolean variables.

There can also be various statistical approaches (e.g. statistical quality control using specification

limits) to assist with detecting changes and whether or not they are acceptable.

Components can be constituted from, or themselves be a constituent of other components.

They also collaborate in order to deliver various services. This fact suggests components to have

high interoperability to collaborate in detecting risks, should one or more arise. Moreover,

detection resources and databases, can work and be used in a modular way. For instance,

databases for various detection methods for various risks can be put together to be applied in

new setups and situations or for difference components.

Measuring:

To be carried out autonomously by the components, the process of measuring is done using

identified failure mode in detection step and information available in the database. There might

3. THE DEPENDABILITY AND SECURITY MODEL

66

be a need for collaboration with other entities should the information for measuring a specific

failure mode was not adequate. To perform the measuring process, there can be various

approaches to model risks and failures within components’ dependability and security model.

Risk assessment and modelling techniques such as Fault Tree Analysis (FTA), FMEA, any other

models (more common of which have been presented and described earlier in chapter two,

section (2.6.3), etc. can be used solely or in conjunction with one another to deliver the

measurement purposes. Measurement can be of the severity of the risk, possible side-effects to

the system and to the other components in collaboration with the compromised or failed

component. Likewise, the component which the compromised component is a constituent of

should also be taken into the account, since the failure may propagate through other

components.

Similar to other steps, this phase too is sensitive to the heterogeneity of components, as well

as the context in which they work, the scale of the system and how elaborate it is, etc. which

implies that for example the criteria based on which the measurement is taken or the parameters

might change from one component to the other, or the risk model given that for various failures

or components different risk models might be preferable, may be different. Accordingly, the

measurement mechanism should match its decisions and parameters in real-time with the

changing scale or dynamic behaviour of the system. That means the risk data base, and context

information should be also updated in real-time.

Alarming:

After detection, identification and measuring of the failure that has taken place, it then comes

the reaction steps. The compromised component, having measured the severity and likely side-

effects of the failure (i.e. the possible damages to other entities and components e.g. those with

which this component is collaborating or components of higher level), will start providing alarms

for other relevant entities. Here, the relevant entities could be other components in direct

communication with failed object, entities related to mitigation of the failure e.g. maintenance

unit or inventory, or sets of transportation components like automatic guide vehicles etc. or any

other entity that might in some ways be related to the issue.

For components to know the relevant entities the first essential requirement would be an

adequate degree of context-awareness, and adequate is some cases depending on the

component under consideration and its tasks and type might go well beyond its immediate

3. THE DEPENDABILITY AND SECURITY MODEL

67

environment. For instance, in cases where fixation or replacement of resources are involved. In

addition, the process can get more complicated when an elaborate network or even networks of

interacting components are considered (e.g. a complicated wireless sensor actuator networks

with many sink nodes). This consequently may raise the need for interoperability of

heterogeneous component higher given that complex propagation of alarms among entities may

demand it to keep the alarming mechanism flawless. Moreover, as a result of a flexible and

dynamic nature of cyber physical systems, the alarming mechanism should allow flexibility and

scalability as well as context-awareness to perform satisfactorily throughout the component’s

lifetime.

Taking action:

Taking action as one of the most important steps in intelligent dependability and security

mechanism is about making decisions and sending commands, requests, or informative messages

to the actuators and right entities accordingly. The decisions are to be made based on the stream

of information received from analyser and measurement section of the mechanism and by

retrieving appropriate information from the database according to the risk model and possibly

suggested countermeasure appropriate to the occurred failure mode which might have already

been categorized and listed. In some cases, there might be a need for negotiations with other

components to find the globally optimum solution for a given failure. Actions might also involve

cooperation of several components in mitigating an issue. For instance, in order to provide higher

robustness in a distributed control system, multiple controllers can cooperate in making

decisions in predicting the next state of the system based on current or previous states should

noise or package loss occurred since one controller’s prediction might not be reliable in some

cases [98,137,138].

The act of decision making and taking action shall be carried out in a semi/fully autonomous

manner, which suggest that the component should have sufficient degree of self/ and context-

awareness, knowledge about risks and failures and a model to how to deal with them, as well as

information about entities that are relevant in mitigating a problem. In addition, interoperability

among all these entities play a key role in more effective decisions, solutions, and reactions. This

step also requires the components to be aware of and flexible to changes that happen within the

system. These changes might be the size of the system e.g. new components that are added to

3. THE DEPENDABILITY AND SECURITY MODEL

68

or removed from the system, applications and tasks that are being performed, change in eligible

entities to have access to any data, etc.

There might also be a need for the capability of negotiation to a sufficient extent e.g. for

resource substitution, which is going to be discussed further in details in the phase of

implementation in the next chapter.

Reconfiguration:

The last phase in the control loop would be “reconfiguration” which following the actions taken

as countermeasure and for mitigation of a failure, deals with updating the model’s database with

reports and feedbacks, and also preparing the failed or broken-down component to be

reconfigured into the system to continue its tasks or be reused in other configurations. An

example can be of a wireless sensor network with several sink nodes where one node is

compromised and infected by a malicious activity of an adversary to eavesdrop on confidential

data or to interrupt a functionality. After detection of such ill activity and blocking it and

disinfecting the node or component, it can be reloaded with appropriate codes for going back

into the system and be reused. The feedbacks and reports provided to the database can give the

component’s model the capability of self-optimization with regards to dealing with future failures

or foreseeing them and preventing them, or provide more accurate detections and

identifications, measurements, and reactions.

The dependability and security model with the properties shown, requires a toolset capable of

backing such properties. Accordingly, for reasons that are going to be discussed, Multi-Agents

Systems (MAS) are top candidates.

3.2. Contribution of smart system’s properties in the dependability and security
mechanism

It has been noted that the dependability and security model is adopting smart systems’

properties to enhance its performance. Now we are going to discuss how the influence of these

properties are going to be demonstrated in the behaviour of the proposed dependability and

security mechanism. The following table shows how each property contributes in each step of

the control loop from inspection to reaction, and what might be the requirements for making

these contributions feasible.

3. THE DEPENDABILITY AND SECURITY MODEL

69

Table 2. Control loop steps and the relationship with smart manufacturing systems' properties

 Contribution Requirements / method

Monitoring: constantly checking the related parameters defined in the core model to find risks

Context-awareness • Parameters are derived from the

context.

• The component knows its context and

what is approved within the context.

• The component also knows its

constituents and its own proper

behaviour (internal context-awareness)

• Values are to be

defined based on

components type and

constituents and its

tasks

• Data is to be acquired

via sensors/ cloud

Interoperability • To be seen both hierarchically and

heterarchically through collaborations

of modules of the monitoring unit of the

mechanism irrespective of type,

parameters, internal structure (e.g.

codes or language), etc.

• Components’ interoperation does not

require tight coupling between them

• Using standards and

shared semantics

• Using proper

ontologies

Autonomy • Performance of each monitoring

operator is not depended on other

entities.

• Each component autonomously

performs the monitoring procedure

using its tools

• Connection to the core

(database, topography)

to know what to

monitor.

• Sensors, servers, to

receive data from

• Intelligent Agents to

perform the monitoring

and communication

Modularity • Monitoring resources to be used in

various setups to modify and enhance

monitoring task

• Monitoring unit is composed of

independent interacting modules that

may be interacting

• To be carried out by

intelligent agents

3. THE DEPENDABILITY AND SECURITY MODEL

70

Scalability • Monitoring resources (modules) can be

added or removed

• Expansion or shrinkage of the system

can easily be supported by extension or

reduction of monitoring entities

• Parameters and values

to be monitored by

intelligent agents

• Each agent can be in

charge of one or a

group of related values,

so changing

parameters can be

supported by adding or

removing agents

Heterogeneity • Monitoring modules can be utilized for

objects of any form and type consisting

heterogeneous constituents

• Each monitoring agent can observe

values from totally different sources

and communicate the anomalies to

analyser

• Agents communication

language

• Semantic definition

Detecting: Finding anomalies/risks by comparing real-time status with approved parameters

Context-awareness • Real time data from context is to be

compared with the expected context

• Definition of anomalies

and upgrading them for

use of analyser agent

has access to real-time

context’s approved

parameters’ values

• Sensors, cyber space

etc. to acquire data

Interoperability • Irrespective of heterogeneity of

constituents each monitoring agent

communicates with detection unit

where with collaboration of database

agent failures will be detected

• Shared semantic/

ontology

• Definition of anomalies

• Updated database

Autonomy • Detection mechanism is autonomous

through interactions between

monitoring, analyser, and database

agents

• Context-awareness

• Agents interaction

• Updated Database

3. THE DEPENDABILITY AND SECURITY MODEL

71

Modularity • Anomaly data are stored in a modular

and tabular way

• Sources of data are work as

independent modules

• Modular risk Data-base

• Modular monitoring

agents

Scalability • Database for anomalies and failures is

scalable in real-time

• Analyser agents with different adopted

detection approaches can be added or

removed

• Independent analyser

agents

• Updatable database

agent

Heterogeneity • Failures of heterogeneous sort can be

parametrised and detected, based on

components and their constituents

• Detection methods can differ or several

detection approaches can be used for

various failures within one component

• Use of independent

intelligent agents for

detection process

• Proper definition of

failures and detection

methods in the

database

Measuring: When detected, identifying the risk type, its severity, impacts, occurrence

frequency, using assessments methods such as FMEA/FTA

Context-awareness • Using the context data and topography

of the context (internal structure and

external collaborations) failures effects

will be measured

• Updating context data

• Updating topography

of the system

Interoperability • In cases where the measurement

cannot be done by one agent,

components can collaborate over

estimating a more accurate

measurement

• Via agents’

collaboration

• Semantic definition

Autonomy • Done by the component itself using one

or more agents through the risk

model/s used by various agent for

different failures or sub-components

• Developing risk models

in the model core

Modularity • Measurement resources/ agents may

be shared or reused in various or new

setups

• Risk data are to be accessible in

modular way

• Risk categories to be

modularly saved

• Assessment and

modelling methods to

3. THE DEPENDABILITY AND SECURITY MODEL

72

be used by various

agents

Scalability • Risk measurement models and criteria

can be updated or replaced

• Measurement agents can be added or

removed

• Scalable database

• Various agents for

various assessment

approaches

Heterogeneity • Various objects or failures may require

different techniques that can be

supported by agents carrying out the

measurement

• Risk model definition

• Using Intelligent Agents

Alarm: Alarming right entities, i.e. people, or components that may be affected by the risk

Context-awareness • Right entities to be alarmed are to be

known through component’s

knowledge of its topography

• Information about

component’s internal

constituents as well as

external collaboration

should be updated in

real-time

Interoperability • Sending or receiving alarms between

entities does not require tight coupling

among them and can occur irrespective

of their type

• Alarms may flow through various

entities and to reach their aimed

destination

• Proper semantic

definition

• Proper communication

language

Autonomy • Done by agents after measuring risks

and finding the right entities from the

context

• Understanding the

context

• Agents’ collaboration

on steps that comes

beforehand (finding,

identifying, database,

etc.)

Modularity • Alarming resources can be modular and

reused elsewhere in other setups

• Modular alarming

resource (database,

etc.)

3. THE DEPENDABILITY AND SECURITY MODEL

73

Scalability • methods/agents to be added or

removed

• database for alarming will be scalable to

support dynamic changes in the

component

• Scalable alarm resource

(database, etc.)

Heterogeneity • Alarm messages communication

operates irrespective of components

type, objective, etc.

• Proper semantic

definition

Action: Making globally optimum decisions and defending against/fixing measured risks.

Context-awareness • Decision is aimed at being more globally

optimum context-wise

• Knowing the context, negotiations or

requests can take place for performing

or fulfilling the reactions or for fixation

process

• Updated context and

topography data

• Communication tools

• Proper decision models

Interoperability • Component can collaborate with other

components in performing a reaction or

send requests to other entities for

fixation process

• Component’s constituents can

collaborate in performing actions

• Components can negotiate over

free/available resources they possess to

fulfil tasks of the failed resource

• Proper semantic and

ontology definition

• Context and self-

awareness

• Proper communication

language tools (e.g.

agent communication

language)

Autonomy • Decisions are taken autonomously by

the component (or it negotiates if

necessary)

• Actions are done through commands

that are the outcome of decision maker

agent to actuators

• Requests and negotiations can be

carried out by the components

• Enough understanding

of the context by the

component

• Stablishing proper

communication

platform (agents)

• Definition of proper

semantics

Modularity • There can be one or more decision

maker agent with various decision-

making approaches that can be used or

reused in new setups

• Intelligent agents for

decision making and

acting process

3. THE DEPENDABILITY AND SECURITY MODEL

74

• Database for decision making and

acting/ reacting process will be set up in

modular way according to components,

or their constituents type, etc.

• Updatable database

agent in real-time

Scalability • Decision making and acting resources

can be scalable as in terms of agents

that perform the actions, actuators that

carry out the commands, as well as the

database that provides data about

context, failures and countermeasures,

entities to negotiate, etc. to match the

dynamics nature of the components

Scalable database

Registration of decision

making agents of various

required approaches or

functionalities

Heterogeneity • Various types of strategies, approaches

or kind of countermeasure can be

applied according to the components

and their constituents. Different agents

harnessing different resources can be

used for one component, controlling its

various, perhaps heterogeneous parts

• Proper semantic

definition

• Intelligent agents

carrying out decision

making and acting

process

Reconfiguration: providing feedback to the model and preparing the component to be reused

Context-awareness • To be done based on context

requirements

• Via updating the risk

model

• Via updating the other

parts of the system

(adding more

monitoring resource,

etc.)

Interoperability • Providing understandable feedbacks to

others/ receiving required data

• Via model and semantic

definition

Autonomy • Semi/fully autonomous and done by

agents or humans (if necessary)

• Standard model

development

• Agents/ humans, etc.

Modularity • Mechanism’s modules may change or

reconfigure for reuse or improvement

after a failure occur

• Modular components

3. THE DEPENDABILITY AND SECURITY MODEL

75

Scalability • Based on the needs and decisions, the

mechanism may shrink in size or expand

in different parts to address failures

better or to prevent them, etc.

• The database accordingly can expand or

shrink

• Scalable model and

database

• Agents in different

sections of the

mechanism to be

added to removed

Heterogeneity • Reconfiguration process and objectives

can vary vastly based on the component

type and its constituents

• Model development

In the next chapter the implementation of the agent based structure of the mechanism is going

to be shown and discussed along with the platform and applications used for developing agents

and their behaviours. However before doing so, using DACS technique, agents’ identification,

decisions and behaviours, as well as their responsibilities and interactions will be specified. The

cases of failure will be elaborated and the mechanism’s behaviour in monitoring and detecting,

identifying, and reacting to these failures will be demonstrated. In addition, an extra case will be

simulated to show the negotiations and interactions over using a resource offered by some other

components.

3. THE DEPENDABILITY AND SECURITY MODEL

76

4. MODEL IMPLEMENTATION AND USE CASES

77

CHAPTER FOUR

MODEL IMPLEMENTATION AND USE CASES

In this chapter, the model implementation using multi agent systems (MAS) in JADE platform

will be presented in details and the system under consideration and the failure case scenarios

thereof which are going to be tested will be discussed.

4.1. Using DACS to design the mechanism

Even though the DACS methodology is designed originally for production control systems, it is

abstract and powerful enough to encompass almost all multi-agent systems design, given that

decision making and communication can be seen as two of the main features of almost all multi

agent systems.

Accordingly, the following table can be formed to help us design the dependability and security

mechanism in terms of intelligent agents and their behaviours, decisions, and interactions. The

table structure is borrowed from the survey on agent design patterns for productions system

control by Lüder et. Al. [139]

Table 3. Table of agents and their behaviour, decisions, and interactions

Decisions Intended behaviour Supervision and control of the dependability and

security of the component under consideration

Decisions Reacting to observed anomalies

Agents Database Agent

(Risk Model, info)

(DBA)

Behaviour • Storing and modifying risk data via

a user interface/ automatically

• Storing and modifying reactions’

suggestions and requirements via a

user interface/ automatically

Decisions •

Monitoring agent/s

(MA)

Behaviour • Receiving values and comparing

them with the approved pattern

Decisions • Whether a value or pattern is

considered an anomaly

4. MODEL IMPLEMENTATION AND USE CASES

78

Analyzer agent level

one

(AZ1)

Behaviour • Receiving the anomaly and

identifying it

• Receiving alarms from other

components

Decisions • What should be sent to decision

maker

Decision Maker

Agent level one

(DM1)

Behaviour • React on the identified failure or

alarm received

Decisions • What is the immediate action

• Who to alarm

• How to mitigate or fix the issue

Assessment agent

(ASA)

Behaviour • Measuring the severity of the risk

Decisions • What factors should be considered

Topography agent

(TPG)

Behaviour • Provides and updates a dataset of

network of connections of

components

Decisions •

Analyzer agent level

two

(AZ2)

Behaviour • Receiving the anomaly and

identifying it

• Receiving alarms from other

components

• Tackle anomalies that are unknown

or negotiate over identifying

failures

Decisions • What should be sent to decision

maker

Decision Maker

Agent level two

(DM2)

Behaviour • React on the identified failure or

alarm received

Decisions • What is the immediate action

• Who to alarm

• How to mitigate or fix the issue

• What to negotiate about

• Who to negotiate with and what

are the constraints

4. MODEL IMPLEMENTATION AND USE CASES

79

 MA – Server Client

(OPC-UA client)/

field etc.

Protocol

Exchanged info Real-time sensor data

Interactions MA – AZ1

Protocol Inform

Exchanged info The anomaly/ies found

AZ1 – DBA

Protocol

Exchanged info Accessing the risk data (anomaly/ies:

failure)

AZ1 – DM1

Protocol Inform

Exchanged info Identified failure

AZ1 – AZ2

Protocol Inform

Exchanged info Anomaly data for identification

AZ2 – middleware

(negotiation)

Protocol Request/Inform

Exchanged info Negotiation over anomalies‘

identification

AZ2 – DM1

Protocol

Exchanged info Identified failure

DM1 – DBA

Protocol

Exchanged info Requirements

Resources

Actions

Alarms

Units to call

DM1 – ASA

Protocol Inform

Exchanged info Risk severity

DM1 – DM2

Protocol Inform

Exchanged info The failure to deal with

DM1 – (AZ1 other

componenets)

Protocol Inform

Exchanged info Sending alarm (failure)

DM2 – DBA

Protocol

Exchanged info Requirements

Resources

Actions

Alarms

Units to call

4. MODEL IMPLEMENTATION AND USE CASES

80

DM2 – Middleware

(negotiation)

Protocol CFP/Inform/ …

Exchanged info Negotiation over resources

Negotiation over optimum decision

Doing so, the following lists the agents that are defined to specify the model, and their task

description. Figure (31), shows their overall structure and collaborations’ relations [6]. It needs

to be mentioned that the number of agents may vary according to the case. For instance,

monitoring task can be split among agents each of which monitor one variable or a group of

related variables. On the other hand, data base is more likely to be presented by only one agent.

The number of Analyser and decision-making agents can also be based on the number of different

approaches or algorithms used for each phase (which itself might be based on the heterogeneity

of the issues).

Figure 31. Agents structure for dependability and security mechanism development

Agents supporting the model core

Status/topography manager: Updates the status of components as main part of context-

awareness. Knows all approved contexts, authorities, topography of the system, etc. The

4. MODEL IMPLEMENTATION AND USE CASES

81

component should know what are its constituents and what is to be monitored. In addition, it

should know with whom it is collaborating. That is to let the component be aware of other

components that must be alarmed when it is necessary.

Database: Stores components’ models and risk data. Data are stored in modules for each type

of risk to be accessed by analysers and assessment agents. Other components when authorized,

have access to some of the data during negotiation or when they are new to the system, to get

updated with vulnerabilities and measures, etc.

Risk data here are all the information that might be important for the control loop of the

dependability and security mechanism. That means, the database should have data required for

identifying risks based on anomalies detected. It should also have information associated with

risk measurement, and countermeasure suggestions, or in other word data that assist decision

making process. These data include: information about resources that will breakdown are

necessary to replace in order to avoid or mitigate delays in delivering the expected services;

information about fixation requirements and other units that might need to be involved in

fulfilling those requirements.

Various methods can be used based on applications and/ or the interest of the developer to

organize and form the database. Some of these methods have been introduced in chapter two.

This study forms failure information in the database by developing a table (which is a modified

instance of FMEA table) of failures, and data about their detection and identification, their effects

and severity (data useful for calculating severity), requirements, etc. which are shown (figure

(32)) and described below:

Figure 32. Failure Data as categorized in the database

4. MODEL IMPLEMENTATION AND USE CASES

82

• Anomalies: a list of expected anomalies associated with each failure is to be stored and

updated to feed the identifier agent with the required data.

• Actions: possible suggestions for actions to be taken should a failure or error have

occurred. For some problems, some actions can be definite. For instance, a machine in a

line breaks down and one of the actions might be to turn of the conveyor that takes parts

to it for processing. Complicated actions may require more complicated decision-making

procedures that may involve negotiations to other intelligent components or human

intervention in cases that no proper action was found by the system.

• Requirements: some of the failures may contributes in breakdowns which the fixation

procedure may require spare parts, or depending on the type and constituents of the

component may have other requirements. These requirements are being listed and

categorized for individual failures.

• Alarms: updatable list of entities to be alarmed in cases of different failure occurrences is

required to be stored in the database to be accessed by decision maker agent or other

possible authorized entities.

• Resources: the tasks that were to be fulfilled by failed component might be urgent in some

cases and not sufficient time might be available to wait until the failed component is

repaired or replaced. Some component may be unjustifiably costly to replace and may also

be timely to repair. For such or similar scenarios there should be information about the

type of resource needed to fulfil the halted task to avoid possible delays in service delivery.

This information can then be accessed by for instance decision maker to find a temporary

substitute or make a right decision about it.

• Requirement holders: are possible entities or components that may have the requirements

discussed above. It can be inventory unit, maintenance unit, etc.

• Severity: as described in chapter two, FMEA or some other risk modelling technique also

considers the severity of failures in assessing them. Depending on the application etc. the

technique can be different.

Assessment Agent: Receives data from the analyser and assesses the risks (if necessary, by

negotiating with other components’ assessors), and by receiving context data from TS manager.

Here the risk should be assessed after it is identified by analyser. Assessment and level of the risk

4. MODEL IMPLEMENTATION AND USE CASES

83

can depend on its effect on the component itself and its modules, as well as other components

with which it is working or it is a constituent of.

Effects are defined based on the topology data, i.e. which higher level components might be

affected, or what other object might be compromised, given their relationship with the failed

component. The severity accordingly can be determined as follow:

probability [] p = {P0, P1, …, Pi};

Severity [] s = {S0, S1, …, Si};

Double totalSeverity = 0;

for (int i = 0; i < p.length; i++) {

totalSeverity = totalSeverity + p [i] * s [i];

}

Where Pi and Si respectively indicate the probability and the severity of losses to each of the

other components, that are collaborating with the compromised component (in cases where

there is a possibility of risk propagation or a failure causing other failures to other components

in collaboration with it). Other information to record after each risk it the time, and its new

occurrence value (OccurrenceCount ++).

Agents supporting the control loop:

Data filter: Filtering out redundancies. Looking for useful data among loads of data. In cases, it

might happen that a large amount of data is available and not all of these data are desirable for

monitoring and analysis or storing.

Monitoring: Looking for anomalies and risks, by comparing the data of the current-state with

what is approved for the current-state’s contexts. Then sends the detected cases to the analyser.

There can be any number of monitoring agents based on the system under consideration. Each

agent can be checking one or more values that are parametrized to describe a state of a process

or one or more constituents of the component etc. changes in these values if considered as

anomalies such as if a threshold exceeds, or an approved trend is violated.

Agent-based monitoring makes it possible that without any significant effort, monitoring

mechanism become scalable and breaks down into level of details and be performed totally

4. MODEL IMPLEMENTATION AND USE CASES

84

heterogeneously. That means scalability of the system and dynamic changes in the size of the

system or its constituents will not affect performance of the monitoring mechanism, given that

agents can be easily added and removed for checking any new parameter from any new

constituent that has been added to or removed from the system or has changed or replaced by

a component of different manufacture or parameters.

Figure 33. Monitoring Agents

In cases, where the system has OPC-UA (Open Platform Communication-Unified Architecture)

implemented, the monitoring agent subscribes to it as a client to receive the sensor or control

data required. OPC UA provides an information transition standard which enables a dependable

and secure communication of data among industrial components. One of the benefits of this

standard is the ability to perform independent of the platform and to make possible the data

exchange and interaction of components of different developers irrespective of operating

systems used. This standard has been made on the basis of specifications defined in collaboration

with manufacturers is based on specifications that were developed in close cooperation between

manufacturers, people and organizations which performs relative research studies and actual

utilizers of this standard to reach the best outcome in its development. OPC UA was introduced

as a more capable successor for the already popular OPC which was commonly used in various

areas, more specifically industrial automation. Among its new capabilities scalability, platform-

independence, and service-orientedness of its architecture are some to stand out.

OPC UA has an event-based alarming mechanism that can inform the client (i.e. here the client

can be monitoring agent or various monitoring agents each of which might be responsible for

one or more values) if a certain condition in a certain part of the system is not met. This

mechanism in OPC-UA is configurable by the client, and is scalable. Another feature to note is

4. MODEL IMPLEMENTATION AND USE CASES

85

that on OPC UA server there might be innumerable amount of data and values associated to

numerous variables. However, the client can subscribe to receive and monitor only values that

are of the interest of the dependability and security mechanism. The rest of the data which is

unnecessary will be easily filtered out.

Data-analyser: The analyser task can be broken into simpler and more complex problems.

More complication may arise from lack of sufficient anomaly data or lack of rich risk information

in database. That can, as shown in the figure (31), give rise to developing two separate analysers

one for simpler and one for more complicated issues. In the abovementioned figure, they are

called respectively analyser level one and analyser level two. For simpler problems and provision

of quicker responses, data analyser level one does the identification and measurement of risks.

It communicates with the assessment agents and the database to provide proper input for

decision maker agent.

Data analyser level two on the other hand is for more complicated problems where analyser

level one is incapable of identifying and measuring them and hence it hands the problem to the

level two analyser with more abilities. If needed this analyser performs negotiations with other

components’ agents to provide best global data of the risk to feed the decision maker agent for

right decisions and actions.

Decision-making agent: similar to data analyser agent, as shown in figure (31), decision making

can also be separated into two levels corresponding to simpler and more complicated issues,

performed by respectively level one and level two decision maker agents. For simpler reactions

and quicker responses, the former will be responsible. After supplied with proper risk

information, decision maker agent releases alarm to right entities and send proper commands to

actuators to apply right corrective actions, and reconfiguration when needed. Feedback is then

being provided to the core model.

 To provide more advanced decisions, higher level reactions and alarming, decision-making

agent level two is to be summoned. If needed, it asks for collaboration of other agents and

components’ resources to solve a problem. These collaborations can be in terms of asking for

fixation, requesting spare parts from inventories, etc. It can also make inquiry from other units

for making use of perhaps the same resource that has broken down within this component to

make sure of meeting the deadlines for proper service delivery (figure (34)). Feedback is then

being provided to the core model.

4. MODEL IMPLEMENTATION AND USE CASES

86

Figure 34. Negotiation over utilization of other entities resources

The following figure shows the agents developed for the dependability and security mechanism

in the main container of the JADE platform. The offer provider agents are later going to be

discussed further in more details. These agents are designed to provide negotiation over

resources as previously mentioned.

Figure 35. agents in the main container

4. MODEL IMPLEMENTATION AND USE CASES

87

4.2. The use cases for testing the mechanism

Figure 36. The Fischer model

The case chosen to demonstrate the functionality of dependability and security mechanism is

the Fischer conveyor model as shown in the figure (36). The system consists of a loading station

where objects (wood blocks) arrive, and tables where objects are destined. It also contains two

pusher robots and conveyor belts as well as a number of sensors to provide data.

The process within this system runs as follow: wood blocks can be a representative of a pallet

of products to be transported to different stations based on the type of the products. And

different tables (stations) can represent machines or work stations where the received products

will be processed. The pallets (wood blocks) will be loaded into the loading station and will then

reach the conveyor belt via a small band, and then after being identified (to know that which

stations, here table, is its determined destination), it moves towards its destined table via

conveyor belts and pusher robots that will push the wood block to the specified table. The system

(i.e. Fischertechnik model) represents order-based products as its throughput. And the outcome

might be delivered products to destination, or products that are going to be processed or

customized to the will of the end users and customers.

It must be added that the system conforms to Industry 4.0 specifications. The system is also

capable of providing self-optimization with regards to productivity increase by e.g. optimizing the

4. MODEL IMPLEMENTATION AND USE CASES

88

speed of conveyor belts. Furthermore, agent-based control has been previously developed for

this system which provides flexibility in its control of processes, resource management and order

organization.

Along this process various cases of disturbances and interruptions may occur in the case of

failures, errors and malfunctions. These cases will be categorized and arranged in a table to form

the information needed to start and develop the database for the mechanism. It will be discussed

further and the cases will be derived from the table of failures. Here the goal of this modelled

production system is to have maximum productivity and to have a satisfactory level of

robustness. It will further be shown how the dependability and security mechanism can deal with

issues associated with this case to provide a distributed and intelligent autonomous supervision

and control whose behaviour matches with smart systems properties.

4.2.1. Constituent of the model production system

Within this section the different parts and sections of the system and their functionality with

be shown and presented through figures and tables below. Moreover, since the system is

equipped with various sensor and identification magnets, they are also going to be specified, and

in the next section these sensors will be used as means of data provision for monitoring agents

for detecting anomalies.

4. MODEL IMPLEMENTATION AND USE CASES

89

Figure 37. Objects and sections associated with the case (Fischer model): a) objects and sensors
for the production system, and b) parts (wood blocks) and magnets

Table 4. Components of the conveyor system, and their behaviour

number component sensors functionality

1 Table one One sensor Taken/ free

2 Table two One sensor Taken/ free

3 Table three One sensor Taken/ free

4 Conveyor belt Motor Moving/ not moving

4. MODEL IMPLEMENTATION AND USE CASES

90

5 Loader belt Motor, one sensor and

one magnet

Moving/ not moving

6 Loading station Two sensors With parts/ without parts

7 Object identifier Two sensors for magnet Identifies the object

8 Pusher robot one Two sensors

Motor

Pushing the item to the

destined table

9 Pusher robot two Two sensors

Motor

Pushing the item to the

destined table

10 Button Either on, or off -

11 Wood block Four marks, and

One/two magnets

Going to specified table

the following figure shows various part of the control system of our model production system.

The items specified in the photo are as follow:

1. BUS coupler

2. Raspberry Pi programable logical controller (PLC)

3. Switch

4. Power source

Figure 38. The structure of the control system

4. MODEL IMPLEMENTATION AND USE CASES

91

4.2.2. Failures associated with the case (conveyor)

In order to specify the failures that are possible to occur within this system, using categorization

explained in chapter two, we pointed out some of the risks and by adopting FMEA technique a

table of risk information (on the basis of FMEA table and modified to the needs and necessities

of this thesis and the proposed model) was formed to feed the system with required data that

will be used by developed agents within the dependability and security mechanism designed to

monitor and control the system.

As previously discussed, the required information in the table are: the anomalies (for

monitoring, and identifier agent), failure modes (for identifier), and information that are

necessary for decision making that include (but not limited to): Possible immediate actions,

corrective or mitigating actions, fixation requirements, resources to look for and negotiate upon,

involved entities for fixation process (transportation, inventory, maintenance unit, etc.), and

entities to be alarmed (such as those that may need to alter their behaviours according to this

failure, etc.). depending on the system under consideration or methods adopted for different

parts of the mechanism, the information needed might change which all can be included in the

database (risk model agent) and be altered through the user interface.

To develop this table, we can categorise the failures according to level of details and modules

that are included in the system and shown in the figure (37) and listed in table (4).

Table 5. Failure information and action data

Failures information items

Conveyor belt has

delay

Object Conveyor belt

Description Item does not reach to the specified pusher on time

and timely arrival to the desired table may be

violated

Anomalies Pusher sensor

0 < Time violation < a (a = buffer time)

Severity •

Immediate Actions no action

Corrective Actions Call for maintenance team to check the belt/ motor

Resource Failed none

Alarms Maintenance unit (request), staff in charge of this

unit (inform)

4. MODEL IMPLEMENTATION AND USE CASES

92

Involved entities Maintenance unit

Conveyor belt

stops working

Object Conveyor belt

Description Item does not reach the specified pusher on time

and it didn’t get to the destination table. The buffer

time between two items is violated

Anomalies Pusher sensor

Table sensor

Time violation > a (a = buffer time)

Severity •

Immediate Actions Stop the conveyor

Corrective Actions Reschedule the process

Call for maintenance

Call the inventory for necessary parts

Resource Failed None for negotiation

Alarms Control unit (inform),

maintenance unit (request),

inventory unit,

staff in charge of this unit (inform)

Involved entities Maintenance

inventory

Pusher robot pi

does not work

Object Pusher pi

Description Object arrives at pusher but the pusher does not

push it to the right table where it is expected

Anomalies Table sensor

Time violation

Severity •

Immediate Actions Stop the process

Corrective Actions Send Request to inventory unit (parts) and

maintenance unit (repair)

Resource Failed •

Alarms Control unit

Involved entities Inventory

Maintenance

Control unit

Object Pusher pi

4. MODEL IMPLEMENTATION AND USE CASES

93

Pusher pi

maintenance call

due

Description The machine requires maintenance after a period of

work to maximizes its productivity and satisfies

certain related KPIs

Anomalies Number of pushes = a

Severity •

Immediate Actions Stop the line

Corrective Actions Call for maintenance

Resource Failed none

Alarms Maintenance (request), staff in charge of this unit

(inform)

Involved entities Maintenance unit

Control unit

Intrusion Attack

(DoS) to control

data

Object Controller unit

Description The control data may be compromised by an

adversary or an attack. That may pose thread to the

entire system as partial or total breakdowns, or

cause information leakage

Anomalies Data traffic > t (expected bandwidth consumption at

a specific moment)

Severity •

Immediate Actions Trace the compromised channel

Report the compromised channel

Corrective Actions Change the channel

Fix the compromised entity

Resource Failed •

Alarms Control unit (inform)

Control unit (request)

Staff in charge of this unit (inform)

Involved entities Control unit

IT unit

Part is not in the

loading section on

time

Object Loading station

Description Blocks have not been loaded in the loading station

and therefore are not ready to go on the conveyor

towards the specified tables

Anomalies Loading station sensors

Severity •

Immediate Actions Stop the line

4. MODEL IMPLEMENTATION AND USE CASES

94

Call the unit staff

Corrective Actions Inform control unit

Reschedule the process

Resource Failed •

Alarms Control unit

Staff in charge of this unit

Involved entities Control unit

Staff in charge of this unit

4.3. The failure cases in this study

Out of the failures listed above, the cases below are chosen to demonstrate some different

type of cases that can be considered.

4.3.1. Case one: Scheduled maintenance

One of the essential practices as a basis of management is to assess the performance of the

system and/or the pieces of equipment. The importance of assessing the performance lays within

the fact that it reveals how much the current performance needs to be enhanced to reach the

desired performance levels. This therefore suggests that for assessing the performance KPIs (or

Key Performance Indicators) must be chosen wisely to help focusing on the appropriate actions

to improve the performance with respect to the system and its objectives. Some of the most

important KPIs can be related to asset performance and asset reliability. Examples of some of

these indicators can be as follow:

• OEE (Overall Equipment Effectiveness): Availability * performance * quality

• TEEP (Total Effective Equipment Performance): measures OEE against loading time

• MTBF (Mean Time Between Failures): (Total up time) / (number of breakdowns)

• MTTR (Mean Time to Repair): (Total down time) / (number of breakdowns)

One of the major ways of assuring the performance of machines and pieces of equipment is to

make sure that they are in good health. This is where the concept of preventive maintenance can

get importance since it aims at avoiding failures and breakdowns to take place. Preventive

maintenance is a scheduled program and routine guarantee maximum availability of machines

and devices, and minimum errors and failures. To do so, this program regularly looking after

machines and equipment.

4. MODEL IMPLEMENTATION AND USE CASES

95

Preventive maintenance might bring the company some costs. However, the gains outweigh

the losses remarkably. Below are listed some of the main costs and benefits of practising

preventive maintenance [140, 141].

Expenses:

• Cost of personnel for managing and timing

• Cost of personnel for doing the maintenance procedure

• The time at which the machine or device is not performing due to its maintenance

procedure which leads to loss of production for that period.

• Expenses related to the material used for this procedure

Benefits:

• Less deviations from acceptable service will occur

• Fixation expenditures which are often remarkably costly will be avoided

• Higher percentage of machines’ outputs will conform to required specifications, which

means lower costs of redoing jobs

• Higher level of safety can be obtained

Comparing costs and benefits of preventive maintenance, first thing to notice is that the costs

of performing maintenance are usually much lower than fixation costs that may arise by lack of

taking sufficient care. A rather clear example could be the comparison between the costs of

lubrication for a machine and the cost of replacing a motor that can fail otherwise which may

propagate and cause more damages and harms to other sections, or pose safety threats to

operators and personnel in its vicinity. It can be suggested that in most case the same result can

be extrapolated.

The way preventive maintenance performances can help avoiding defects might for instance

be to prevent cumulative and gradual wears, misalignments, calibration issues, etc. that may

come about by intense exploitation of that device or by environmental factors like moisture,

heat, vibration, to name a few.

Performing preventive maintenance is normally in the form of scheduled maintenance

activities. This scheduled routine can be planned on the basis of various factor that can depend

on the type and functionality of the equipment, as well as the conditions under which it is working

and performing. The most common of these factors are as follow:

• Aggregate number of hours the device operates

4. MODEL IMPLEMENTATION AND USE CASES

96

• The number of parts produced or number of operations performed

• The number on/ offs

In this case the criteria for the pusher robots are defined as the number of pushes at which the

preventive maintenance of for the system shall be called.

4.3.2. Case two: Item (wood block) is not present on time

Another common issue that may arise is delay in the execution of processes where it is

supposed to be at a specific time. Delays may be caused by various different failures, and in the

case of this thesis where the part should start in the loading section and then reach to specified

destination table via conveyors and pushers, delays can be as follow:

• Delay in reaching the loading station

• Delay in reaching the pusher

• Delay in reaching the destination table

Each of these cases can occur due to failures specified in the table above (table (5)) and can be

distinguished via specific types of anomalies associated with them. These anomalies are to be

detected using sensors at each step to identify the presence of wood blocks with magnets placed

on them.

The experiment takes two level of delays:

1. Delay that is less than the buffer time (time till the next work piece be placed on the

conveyor)

2. Delay that exceeds buffer time

The monitoring agent which is reading sensors as a client of OPC UA server and is responsible

for variables related to such failure, is programmed with the timings required for the process

under consideration. In this case the buffer time is set to 10 seconds and the normal expected

time should be 5 second after the start of the process.

In the case of the acceptable delay within the buffer time, the process does not need to stop and

only rescheduling the process might be necessary to keep the buffer time. So, when the item

(wood block) does not appear on time, the monitoring agent sends a message to analyser

reporting the delay to reschedule the timing of the process. Also, the unit staff will be called to

check the possible cause of this delay.

4. MODEL IMPLEMENTATION AND USE CASES

97

When the delay consumes the accepted delay time, the process will stop following the anomaly

message generated and sent by the monitoring agent, and based on the anomaly the failure will

be found and dealt with accordingly.

4.4. Agents, interfaces, and their interactions

As previously demonstrated in this chapter, the agents were specified using DACS methodology

and their behaviours, responsibilities, objectives, communications, etc. were determined. For the

sake of practicality interfaces have been designed to demonstrated their behaviours in dealing

with the failure cases described above within the system under consideration (the conveyor).

Agents’ communications will also be presented.

The first step after developing a table of required data for failures (which can be developed

through any known or preferable technique, among which FMEA was preferred for this study), is

to provide the model with the ability to read and store these pieces of information as well as to

edit, add or to remove them. To that aim, main ontology class was developed for all the failures

to share including the variables defined for the failures which are namely: name (mode),

anomalies (to help with detection), actions to take, resources that is failed (for substitution and

negotiation with others over this failed resource), requirements (which might be needed for

fixation). This way every failure class extending failure mode ontologies can easily be added to

the list. In addition, to make it easier for real-time changes in failure modes data base, interfaces

were developed as figures bellow:

Figure 39. Failures database interface for adding, removing, editing failures and their data. One
the right, information for failures can appear

4. MODEL IMPLEMENTATION AND USE CASES

98

Figure 40. List of failures at any time

All the failures added to the database through any means can be seen in the interface shown in

figure (40), and using the interface in figure (39) failures can be modified or scaled in real-time.

Also, information about any given failures can be shown and checked in the panel on the right

side of the figure (39). Components can be saved with their collaborations using which failure

propagation and alarm signals can be accordingly generated.

The monitoring agent for this case experiment as said before is a client of OPC-UA server which

reads the sensor and control data. Each monitoring agent, responsible for one or a group of

related variables and parameters, will prepare a “INFORM” message to analyser once they found

an anomaly in the data, and the message ID will be “anomaly report” so that the analyser knows

what is the purpose of this message and distinguish it from alarm messages.

Figure 41. A monitoring agent's general behaviour

Analyser is constantly looking for messages as “ID: Alarm” from other components’ decision

maker agent, or as “ID: anomaly report” from the component’s own monitoring system. Once it

4. MODEL IMPLEMENTATION AND USE CASES

99

receives the message from monitoring agent, using the capability of having access to risk data, it

looks for the type of failure (i.e. failure mode) according to the array of anomalies it received. In

the next step, it prepares an “INFORM” message with failure data as its content for the decision

maker agent.

Figure 42. Analyser Agent's general behaviour

As can be seen from the figures below (figures (43 and 44)) analyser agent reacts to the set of

anomalies received from the monitoring agent for each case (Conveyer breakdown, and pusher

robot’s maintenance due), the way that is shown in the diagram above (figure (42)) Anomalies

are specified for monitoring agents based on the risk model so that they know what each

deviation from the approved behaviour means as an anomaly. On the other hand, analyser agent

should figure out what each set or array of anomalies can mean as a failure. The results are then

sent to the decision maker agent with the proper conversation ID (failuremodes), for further

decisions on actions and countermeasures.

4. MODEL IMPLEMENTATION AND USE CASES

100

Figure 43. Analyzer agent’s activities for the case of conveyer breakdown

Figure 44. Analyzer agent's activities for the case of pusher robot's maintenance due

Next agent to involve is the Decision-Making agent that is constantly looking for a signal of a

failure to react to it. It retrieves the required information from the failure database on how to

react, who to alarm, what to negotiate on (if there is a resource to negotiate on) and who to

negotiate with. The behaviour of the decision-making agent is shown in the following figure. It

constantly looks for messages to react to. Messages can generally be either from analyser to with

“INFORM” template to notify the decision maker of a failure, or they can be “CFP” (call for

proposal) messages from negotiations over resources.

In case of messages from analyser, the message ID can be either “alarm”, or “failure modes”,

where the two may trigger different sets of behaviour. In case of the former, there might be

actions needed to avoid receiving harm from the compromised entity or to stop the running

process since the compromised collaborator is not capable of providing service at the expected

4. MODEL IMPLEMENTATION AND USE CASES

101

time. The latter on the other hand, requires more considerations such as fixations, requirements

and requirement holders (e.g. spare part and inventory unit), resource substitutions and

negotiations, alarm provisions, etc.

Figure 45. Decision Maker agent's behaviour

When negotiation is required, in our case, the decision maker looks into directory facilitator

(DF) agent which provides the yellow page service to see if any service (in this case free resource

of the same specification to that of the failed one) is available for use. After finding the list of

service providers negotiation can start based on various criteria such as finding the lowest cost,

fastest service, or quality, or using more sophisticated algorithms to find an optimum solution in

a multi-criteria decision-making (MCDA) context, where there might various and possibly

4. MODEL IMPLEMENTATION AND USE CASES

102

conflicting criteria of which an optimum answer is desired and aimed. In the next case negotiation

will be taken into more detailed account.

In the two examples related to the conveyer system the activities of the decision maker agent

are shown in the figures below (figures (46 and 47)). Once the message from analyser has been

received (identifying the failure that took place), activities of decision maker starts to mitigate

the issue and provide solutions if there are any available.

Figure 46. Decision Maker agent output for case two, the conveyer belt failure.

Figure 47. Decision Maker Agent activities dealing with the case pusher robot maintenance due

4. MODEL IMPLEMENTATION AND USE CASES

103

4.5. Case three: A machine breakdown from a shopfloor (to test the ability of negotiation
over resources)

An example to demonstrate this mechanism is a job-shop unit as an intelligent component with

several automated robots, along with multi-agent systems implemented for controlling the

processes. The monitoring agent, through its subscribed agents that monitor various sensors

data, constantly checks the behaviour of the sub-components and the process. A possible failure

can be an accidental breakdown of one of the robot’s arms, causing it to stop working properly.

Taking the assumption that the robot was being monitored through 5 sensors namely S1, …, S5,

and an anomaly is detected in sensors S2 and S4 indicates that the arm of that robot is broken-

down, the analyser identifies the issue after checking anomaly data from the monitoring agent

against its library of failure modes and their associated anomaly cases. The next step would then

be to measure the total severity of this failure in the system.

The arm causes the robot not to work well, and malfunctioning of the robot may bring delay to

production process for the unit in which it is performing. Also, in its collaboration with other

entities this failure may cause damage to components next to it. Based on the severity and

probability of each of these cases, the total severity would be calculated as the sum of the

product of the probability of each case and its severity if that case occurs. The next step would

be to trigger the decision-making process. The Analyzer sends the failure ID and the severity to

decision-making agent which sends a request to the assessment agent and database to retrieve

the required data for releasing alarms to right entities (e.g. higher level component, other robots

to stop if necessary, and so on), performing countermeasure/fixation (e.g. requirements and

other components that provide them), in this example parts are needed to change the broken

arm, inventory units that have them, maintenance teams, and perhaps transportation units. If

several options are available, the decision maker choses the most favourable one (i.e. cheapest,

fastest, etc. depending on the priorities).

The next step is to find a substitute (robot/ a unit that has the same robot or can perform the

same task). A request as a call for proposal (CFP) will be sent to get offers among available

components with desirable resources to perform the task. When found, the decision-making

agent will start negotiations with those components to make decisions on the best deal seen its

priorities. After locating the alternative resource, ways of transportation (e.g. conveyors, AVGs,

trucks, etc.), will be chosen to send the parts (that had to be processed by the broken robot) to

the alternative resource. A Feedback of this process will be sent back for updating the model.

4. MODEL IMPLEMENTATION AND USE CASES

104

Figure 48. Hypothetical example for negotiation case

To perform the negotiations after detections and identification an extra agent was developed

as “offer simulator” through with desired number of offer providers could be simulated. For this

example, three offer providers were created as shown in the figure (49) that are namely: Offer

Provider A, B, and C. These providers will register their service to the directory facilitator agent

where yellow page service is being provided. For this case, offers are only compared based on

the cost of substitution offered by the provider and the decision is to be made based on the

lowest cost.

4. MODEL IMPLEMENTATION AND USE CASES

105

Figure 49. Offer Providers A, B, and C

The prices offered by these offer providers are set to be respectively 640, 550, and 780 unit. The

following figure shows the activities of the decision maker agent when receiving the message from

analyser agent and its final decision and negotiation results. Furthermore, figure (51) demonstrates the

process of negotiation between the decision maker and offer providers to pick the provider with the best

price among all offers. The diagram is provided via sniffer tool available in JADE platform.

Figure 50. decision maker agent's activities for the case three.

4. MODEL IMPLEMENTATION AND USE CASES

106

Figure 51. Negotiation over a failed resource

5. CONCLUSION AND DISCUSSION

107

CHAPTER FIVE

CONCLUSION AND DISCUSSION

5.1. Conclusion

The convergence of ICTs technologies and industrial practices in recent decades has led to

tremendous advancements and innovations in industries including manufacturing industries. The

last movement that is pushing the boundaries in bringing smartness and autonomy into the realm

of machines and industrial systems. In this path, the engagement of Cyber-Physical Systems,

networks of loosely coupled smart semi/fully autonomous communicating entities, and

considerably higher exposure to cyber space and internet requires industrial organizations to

equip their systems with sufficiently capable security and dependability mechanisms to assure

smooth and seamless performance within such dynamic and open context. Lack of a mechanism

to catch up with such changing environment, and application and behavioural flexibility has

created concerns and posed a hindrance to fully enjoy the intrinsic and potential capabilities of

new industrial and manufacturing era.

This thesis has accordingly aimed at addressing this issue by developing a mechanism which is

capable of handling dependability and security problems of systems irrespective of their

flexibility and changing behaviours, their dispersity and distributed nature, their heterogeneity,

their level of exposure, etc. In other words, a mechanism which inherits and is capable of

demonstrating the behaviours and properties of smart systems to possibly fit best with the

characteristics and needs of them. This idea, which was driven from the lack a generic approach

in addressing the abovementioned issues, led to the research question of this thesis.

Following the question four hypotheses were presented to for implementing and testing

mechanism to reach an answer for the research question. First step was to develop the model

Question: Can an agent-based intelligent distributed dependability and security

supervision and control mechanism that inherits smart system properties enhance the

overall dependability and security of the system?

5. CONCLUSION AND DISCUSSION

108

and defining the properties it had to show and therefore as an instance of the decision cycle

(explain in chapter three), the model and the concept was formed, and subsequently the

contribution of each properties in every functional behaviour of the mechanism was determined.

The stablished model could enable the mechanism to encompass the entire system as it was

capable being broken down and applied into all levels of details within a given system where each

smart component can be constituted from or be a constituent of other smart components and

therefore the model needed both vertical and horizontal integration.

Subsequent to the model development was an implementation method capable of delivering

the model’s requirements. Hence, multi-agent systems were used as a perfect candidate to

provide the solution to implement the model and develop the mechanism. This tool was opted

given all its capabilities which made them fit perfectly for this mechanism’s needs. Accordingly,

using DACS methodology agents to carry out the decisions and responsibilities, as well as their

communications were identified and defined, and the agent-based structure of the dependability

and security mechanism was developed.

The next hypothesis points out the capability of the mechanism to be applied irrespective of

the heterogeneity of components and the changing scale of the components, or the approaches

summoned to establish each module of the mechanism. That suggests from the starting point,

any component of heterogeneous type and variety of scale can be added or removed and the

rest of the mechanism will perform without a need for major changes. The identification

approach used by analyser can be flexibly scaled or chosen based on the requirements and

policies at the developer’s choice. Database development and risk models to be used for

classification of threats and failures can be flexibly chosen based on the system’s needs, and last

but not least is the decision-making process which again can adopt decision-making approaches

appropriate to the policies or economical approaches of the system under consideration, the

scale of the system, objectives of the system or the developer’s preferences. Ergo, this hypothesis

too can be proven given the modular nature of the mechanism makes it sufficiently flexible to be

used in any context and not just in manufacturing enterprises.

As it has been shown and discussed, through the collaboration of intelligent agents, the

processes of inspection and reaction, from monitoring, detecting, identification, to making

decisions and performing necessary reactions are done autonomously and constantly through

the methods and behaviours used in designing these agents.

5. CONCLUSION AND DISCUSSION

109

In the end, by fulfilling the requirements to prove proposed hypotheses, the answer to the

research question is positive since the mechanism can afford given systems various

enhancements listed as follow:

A) Distributed components can carry out their own dependability and security supervision and

control constantly and autonomously in a self-optimizing manner through a feedback loop

to update the database.

B) The mechanism is flexible and responsive towards changes, which means it can be easily

scaled without the need to apply major changes. That means system can grow in size or

shrink, and irrespective of the type of components added or removed the mechanism can

also flexibly be scaled.

C) The mechanism works as the collaboration of autonomous entities and modules, and the

approaches in developing the behaviours of each module does not affect the mechanisms

overall behaviour or other modules’ behaviours. Each module can work as a black box

which suggests its internal algorithms are not of other modules’ concern.

D) The mechanism can bring together various techniques for different cases of failures which

empowers it in dealing with elaborate components made of heterogenous sub-

components and constituent.

5.2. Outlook

In this section, a number of suggestions for improving and expanding the model will be

presented. As noted before, various parts of the model are designed in a modular way

independent of other modules. That means, different monitoring agents which work

independently checking completely different parameters and looking for anomalies in data

patterns from different sources of data, detected anomalies can be sent to any analyser designed

through various preferred algorithms for the type of system or in accordance to dependability

and security objectives. Here, data mining methods can help with improving the capability of

monitoring agents and analysers to find anomalies in data pattern or to predict possible or likely

future failures to act in a preventive manner as well as reactive.

Also, more sophisticated algorithms than the ones used in the cases shown here for decision

making and negotiations. Various methods like Multi-Criteria Decision Analysis (MCDA) or Multi-

Attribute Decision Making (MADM) can support and aid decisions maker agents with reaching to

5. CONCLUSION AND DISCUSSION

110

solutions closer to globally optimum answers for complex cases in real world where conflicting

criteria such as cost and time, etc. may be involved. Furthermore, methods for agents’

collaboration in finding failures associated with uncategorized anomalies in a network of

interacting components can be studied further as well as methods for decision making agents’

collaborations of various entities for finding solutions over complex failure case where decision

maker agent of the compromised component is not capable of finding solution on solving the

issue due to lack of sufficient data, or resources to act upon the occurred failure.

REFERENCES

111

REFERENCES

[1] DIN/DKE/VDE, "GERMAN STANDARDIZATION ROADMAP: Industry 4.0," DIN,

Germany2016.

[2] Germany Trade And Invest, "INDUSTRIE 4.0: smart manufacturing for the future."

[3] BMBF, "Zukunftsbild „Industrie 4.0“," Bundesministerium für Bildung und Forschung,

Germany2013.

[4] B. Bagheri, S. Yang, H.-A. Kao, and J. Lee, "Cyber-physical Systems Architecture for Self-

Aware Machines in Industry 4.0 Environment," IFAC-PapersOnLine, vol. 48, pp. 1622-

1627, 2015.

[5] S. Heng, "Industry 4.0: Huge potential for value creation waiting to be tapped," Deutsche

Bank Research, Germany2014.

[6] Hermann Kuhnle and Hessamedin Bayanifar, "Enhancing Dependabilities of Smart Units

in Industry 4.0 Contexts: A Multiagent System Approach," International Journal of

Advances in Science, Engineering and Technology(IJASEAT), vol. 5, pp. 38-44, 2017.

[7] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, "Basic concepts and taxonomy of

dependable and secure computing," IEEE Transactions on Dependable and Secure

Computing, vol. 1, pp. 11-33, 2004.

[8] "E-GOVERNMENT ACT OF 2002," ed. United State of America, 2002, p. 72.

[9] H. Kühnle and G. Bitsch, "Smart Manufacturing Units," pp. 55-70, 2015.

[10] "Flexibility," in CIRP Encyclopedia of Production Engineering, L. Laperrière and G. Reinhart,

Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 524-524.

[11] M. Colledani, "Statistical Process Control," in CIRP Encyclopedia of Production

Engineering, L. Laperrière and G. Reinhart, Eds., ed Berlin, Heidelberg: Springer Berlin

Heidelberg, 2014, pp. 1150-1157.

[12] International Electrotechnical Commission, "IEC 60300-3-1:2003 " in Dependability

management - Part 3-1: Application guide - Analysis techniques for dependability - Guide

on methodology, ed, 2003, p. 126.

[13] J.-P. Vasseur and A. Dunkels, "Chapter 1 - What Are Smart Objects?," in Interconnecting

Smart Objects with IP, ed Boston: Morgan Kaufmann, 2010, pp. 3-20.

[14] EPoSS – The European Technology Platform on Smart Systems Integration, "ETP Self

assessment," 2013.

[15] Edward A. Lee, "The Past, Present and Future of Cyber-Physical Systems: A Focus on

Models," Sensors, vol. 15, p. 33, 2015.

[16] Norbert Wiener, Cybernetics: Or Control and Communication in the Animal and the

Machine: MIT Press, 1948.

REFERENCES

112

[17] S. A. S. Edward Ashford Lee, Introduction to Embedded Systems - A Cyber-Physical Systems

Approach, second edition ed., 2015.

[18] Networking and Information Technology Research and Development (NITRD), "Cyber

Physical Systems (CPS SSG)," 2015.

[19] J. Tissier and J.-Y. Grosclaude, "What About Climate-Smart Agriculture?," in Climate

Change and Agriculture Worldwide, E. Torquebiau, Ed., ed Dordrecht: Springer

Netherlands, 2016, pp. 313-324.

[20] A. Rabadiya Kinjal, B. Shivangi Patel, and C. Chintan Bhatt, "Smart Irrigation: Towards Next

Generation Agriculture," in Internet of Things and Big Data Analytics Toward Next-

Generation Intelligence, N. Dey, A. E. Hassanien, C. Bhatt, A. S. Ashour, and S. C. Satapathy,

Eds., ed Cham: Springer International Publishing, 2018, pp. 265-282.

[21] C. Goumopoulos, "An Autonomous Wireless Sensor/Actuator Network for Precision

Irrigation in Greenhouses," in Smart Sensing Technology for Agriculture and

Environmental Monitoring, S. C. Mukhopadhyay, Ed., ed Berlin, Heidelberg: Springer

Berlin Heidelberg, 2012, pp. 1-20.

[22] A. Sieber, A. Nafari, R. Konrad, P. Enoksson, and M. Wagner, "Wireless Platform for

Monitoring of Physiological Parameters of Cattle," in Smart Sensing Technology for

Agriculture and Environmental Monitoring, S. C. Mukhopadhyay, Ed., ed Berlin,

Heidelberg: Springer Berlin Heidelberg, 2012, pp. 135-156.

[23] S. Das, "Technology for SMART HOME," in Proceedings of International Conference on

VLSI, Communication, Advanced Devices, Signals & Systems and Networking (VCASAN-

2013), V. S. Chakravarthi, Y. J. M. Shirur, and R. Prasad, Eds., ed India: Springer India, 2013,

pp. 7-12.

[24] S. J. Lee, H. C. Kim, S. M. Ko, and Y. G. Ji, "A Study of Properties and Services of a Smart

Home for the Elderly," in HCI International 2013 - Posters’ Extended Abstracts:

International Conference, HCI International 2013, Las Vegas, NV, USA, July 21-26, 2013,

Proceedings, Part II, C. Stephanidis, Ed., ed Berlin, Heidelberg: Springer Berlin Heidelberg,

2013, pp. 656-660.

[25] P. Stieninger, "The Smart Building in the Smart City," in Integration of Nature and

Technology for Smart Cities, P. E. R. L. B. D. C. C. A. Ahuja, Ed., ed Cham: Springer

International Publishing, 2016, pp. 333-349.

[26] N. Bansal, M. Mukherjee, and A. Gairola, "Smart Cities and Disaster Resilience," in From

Poverty, Inequality to Smart City: Proceedings of the National Conference on Sustainable

Built Environment 2015, F. Seta, J. Sen, A. Biswas, and A. Khare, Eds., ed Singapore:

Springer Singapore, 2017, pp. 109-122.

[27] G. L. Foresti, M. Farinosi, and M. Vernier, "Situational awareness in smart environments:

socio-mobile and sensor data fusion for emergency response to disasters," Journal of

Ambient Intelligence and Humanized Computing, vol. 6, pp. 239-257, 2015/04/01 2015.

REFERENCES

113

[28] I. Friedberg, K. McLaughlin, and P. Smith, "Towards a Cyber-Physical Resilience

Framework for Smart Grids," in Intelligent Mechanisms for Network Configuration and

Security: 9th IFIP WG 6.6 International Conference on Autonomous Infrastructure,

Management, and Security, AIMS 2015, Ghent, Belgium, June 22-25, 2015. Proceedings,

S. Latré, M. Charalambides, J. François, C. Schmitt, and B. Stiller, Eds., ed Cham: Springer

International Publishing, 2015, pp. 140-144.

[29] M. U. Tariq, S. Grijalva, and M. Wolf, "A Service-Oriented, Cyber-Physical Reference Model

for Smart Grid," in Cyber Physical Systems Approach to Smart Electric Power Grid, K. S.

Khaitan, D. J. McCalley, and C. C. Liu, Eds., ed Berlin, Heidelberg: Springer Berlin

Heidelberg, 2015, pp. 25-42.

[30] Smart Power Systems and Renewable Energy System Integration: Springer, Cham, 2016.

[31] I. Akkaya, Y. Liu, and E. A. Lee, "Modeling and Simulation of Network Aspects for

Distributed Cyber-Physical Energy Systems," in Cyber Physical Systems Approach to Smart

Electric Power Grid, S. K. Khaitan, J. D. McCalley, and C. C. Liu, Eds., ed Berlin, Heidelberg:

Springer Berlin Heidelberg, 2015, pp. 1-23.

[32] B. B. Gupta and T. Akhtar, "A survey on smart power grid: frameworks, tools, security

issues, and solutions," Annals of Telecommunications, vol. 72, pp. 517-549, 2017/10/01

2017.

[33] D. Sonntag, S. Zillner, C. Schulz, M. Weber, and T. Toyama, "Towards Medical Cyber-

Physical Systems: Multimodal Augmented Reality for Doctors and Knowledge Discovery

about Patients," in Design, User Experience, and Usability. User Experience in Novel

Technological Environments: Second International Conference, DUXU 2013, Held as Part

of HCI International 2013, Las Vegas, NV, USA, July 21-26, 2013, Proceedings, Part III, A.

Marcus, Ed., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 401-410.

[34] A. Ariani and S. Soegijoko, "The Development of Cyber-Physical System in Health Care

Industry," in Computational Intelligence for Decision Support in Cyber-Physical Systems,

H. Z. Khan, S. A. B. M. Ali, and Z. Riaz, Eds., ed Singapore: Springer Singapore, 2014, pp.

107-148.

[35] M. I. Pramanik, R. Y. K. Lau, H. Demirkan, and M. A. K. Azad, "Smart health: Big data

enabled health paradigm within smart cities," Expert Systems with Applications, vol. 87,

pp. 370-383, 2017/11/30/ 2017.

[36] International Telecommunication Union, "Overview of smart sustainable cities

infrastructure," 2015.

[37] L. G. Anthopoulos, "The Smart City in Practice," in Understanding Smart Cities: A Tool for

Smart Government or an Industrial Trick?, L. G. Anthopoulos, Ed., ed Cham: Springer

International Publishing, 2017, pp. 47-185.

[38] ZVEI, "Referenzarchitekturmodell Industrie 4.0 (RAMI 4.0)," ed, 2016.

[39] Bitkom / VDMA / ZVE, "Implementation Strategy Industrie 4.0," 2016.

REFERENCES

114

[40] D. P. F. Möller, "Digital Manufacturing/Industry 4.0," in Guide to Computing

Fundamentals in Cyber-Physical Systems: Concepts, Design Methods, and Applications, ed

Cham: Springer International Publishing, 2016, pp. 307-375.

[41] J. Lee, B. Bagheri, and H.-A. Kao, "A Cyber-Physical Systems architecture for Industry 4.0-

based manufacturing systems," Manufacturing Letters, vol. 3, pp. 18-23, 2015.

[42] H. Kühnle, "Distributed Manufacturing (DM) - Smart Units and Collaborative Processes,"

International Journal of Social, Behavioral, Educational, Economic, Business and Industrial

Engineering, vol. 9, pp. 1229-1241, 5/ 2015.

[43] G. B. Hermann Kühnle, Foundations & Principles of Distributed Manufacturing: Elements

of Manufacturing Networks, Cyber-Physical Production Systems and Smart Automation:

Springer International Publishing, 2015.

[44] H. Kuehnle, "Smart units in Distributed Manufacturing (DM)–Key properties and

upcoming abilities," in 18th Annual Cambridge International Manufacturing Symposium,

2014.

[45] H. Kühnle, "Distributed Manufacturing: Paradigms, Concepts, Solutions and Examples," in

Distributed Manufacturing: Paradigm, Concepts, Solutions and Examples, H. Kühnle, Ed.,

ed London: Springer London, 2010, pp. 1-9.

[46] Alasdair Gilchrist, Industry 4.0: The Industrial Internet of Things: Apress, 2016.

[47] VDI/VDE, "Cyber-Physical Systems: Chancen und Nutzen aus Sicht der Automation," 2013.

[48] P. Tomar, G. Kaur, and P. Singh, "A Prototype of IoT-Based Real Time Smart Street Parking

System for Smart Cities," in Internet of Things and Big Data Analytics Toward Next-

Generation Intelligence, N. Dey, A. E. Hassanien, C. Bhatt, A. S. Ashour, and S. C. Satapathy,

Eds., ed Cham: Springer International Publishing, 2018, pp. 243-263.

[49] M.-F. Tsai, Y. C. Kiong, and A. Sinn, "Smart service relying on Internet of Things technology

in parking systems," The Journal of Supercomputing, 2016/09/19 2016.

[50] Z. Xiong, H. Sheng, W. Rong, and D. E. Cooper, "Intelligent transportation systems for

smart cities: a progress review," Science China Information Sciences, vol. 55, pp. 2908-

2914, 2012/12/01 2012.

[51] L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh, S. Kumara, G. Reinhart, et al., "Cyber-

physical systems in manufacturing," CIRP Annals - Manufacturing Technology, 2016.

[52] A. Gilchrist, "Introducing Industry 4.0," in Industry 4.0: The Industrial Internet of Things,

ed Berkeley, CA: Apress, 2016, pp. 195-215.

[53] B. V.-H. a. D. Hess, "Guest Editorial Industry 4.0; Prerequisites and Visions," IEEE

Transactions on Automation Science and Engineering, vol. 13, pp. 411-413, 2016.

[54] Institute of Electrical and Electronics Engineers, "IEEE Standard Computer Dictionary: A

Compilation of IEEE Standard Computer Glossaries," IEEE Std 610, pp. 1-217, 1991.

[55] International Telecommunication Union, "Smart ubiquitous networks – Context-

awareness framework," 2013.

REFERENCES

115

[56] IEEE, "IEEE Standard Glossary of Software Engineering Terminology," 1990.

[57] INTERNATIONAL ELECTROTECHNICAL COMMISSION, "TC65: INDUSTRIAL PROCESS

MEASUREMENT AND CONTROL," in ISO/IEC 65/290/DC, ed, 2002.

[58] "Changeable Manufacturing Systems," in CIRP Encyclopedia of Production Engineering, L.

Laperrière and G. Reinhart, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,

pp. 163-163.

[59] International Electrotechnical Commission, "ISO/IEC 12207:2008; Systems and software

engineering -- Software life cycle processes," ed, 2008, p. 123.

[60] I. E. Commission, "ISO/IEC/IEEE International Standard - Systems and software

engineering--Vocabulary," in ISO/IEC/IEEE 24765:2017(E), ed, 2017, pp. 1-541.

[61] Internet of Things Based on Smart Objects: Springer International Publishing, 2014.

[62] R. F. Babiceanu and R. Seker, "Big Data and virtualization for manufacturing cyber-physical

systems: A survey of the current status and future outlook," Computers in Industry, vol.

81, pp. 128-137, 2016.

[63] H. S. Kang, J. Y. Lee, S. Choi, H. Kim, J. H. Park, J. Y. Son, et al., "Smart manufacturing: Past

research, present findings, and future directions," International Journal of Precision

Engineering and Manufacturing-Green Technology, vol. 3, pp. 111-128, 2016.

[64] O. Skarlat, M. Borkowski, and S. Schulte, "Towards a methodology and instrumentation

toolset for cloud manufacturing," 2016 1st International Workshop on Cyber-Physical

Production Systems (CPPS), pp. 1-4, 2016.

[65] B. Esmaeilian, S. Behdad, and B. Wang, "The evolution and future of manufacturing: A

review," Journal of Manufacturing Systems, vol. 39, pp. 79-100, 2016.

[66] C. Yu, X. Xu, and Y. Lu, "Computer-Integrated Manufacturing, Cyber-Physical Systems and

Cloud Manufacturing – Concepts and relationships," Manufacturing Letters, vol. 6, pp. 5-

9, 2015.

[67] "Agent Systems," in CIRP Encyclopedia of Production Engineering, L. Laperrière and G.

Reinhart, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 33-33.

[68] R. Unland, "Chapter 1 - Software Agent Systems A2 - Leitão, Paulo," in Industrial Agents,

S. Karnouskos, Ed., ed Boston: Morgan Kaufmann, 2015, pp. 3-22.

[69] S. Bussmann, N. R. Jennings, and M. Wooldridge, "The DACS Methodology for Production

Control," in Multiagent Systems for Manufacturing Control: A Design Methodology, S.

Bussmann, N. R. Jennings, and M. Wooldridge, Eds., ed Berlin, Heidelberg: Springer Berlin

Heidelberg, 2004, pp. 117-186.

[70] A. Lüder and M. Foehr, "Chapter 10 - Identification and Implementation of Agents for

Factory Automation Exploiting Mechatronical Concepts for Production System Structuring

A2 - Leitão, Paulo," in Industrial Agents, S. Karnouskos, Ed., ed Boston: Morgan Kaufmann,

2015, pp. 171-190.

REFERENCES

116

[71] P. N. R. J. Dr. Stefan Bussmann, Professor Michael Wooldridge, Multiagent Systems for

Manufacturing Control: A Design Methodology: Springer Berlin Heidelberg, 2004.

[72] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent Systems with JADE

(Wiley Series in Agent Technology): John Wiley \& Sons, 2007.

[73] H. Kühnle and H. Bayanifar, "An approach to develop an intelligent distributed

Dependability and Security supervision and control for industry 4.0 systems," Asian

Journal of Information and Communications, vol. 9, p. 8, 2017.

[74] international telecommunication Union, "Overview of cybersecurity," 2008.

[75] International Electrotechnical Commission, "Information technology -- Security

techniques -- Information security management systems -- Overview and vocabulary," in

ISO/IEC 27000:2014, ed, 2014.

[76] international Electrotechnical Commission, "Systems and software engineering -- Systems

and software Quality Requirements and Evaluation (SQuaRE) -- System and software

quality models," in ISO/IEC 25010:2011, ed, 2011, p. 34.

[77] International Telecommunication Union, "Security in Telecommunications and

Information Technology: An overview of issues and the deployment of existing ITU-T

Recommendations for secure telecommunications," 2015.

[78] L. Zhang, Q. Wang, and B. Tian, "Security threats and measures for the cyber-physical

systems," The Journal of China Universities of Posts and Telecommunications, vol. 20,

Supplement 1, pp. 25-29, 8// 2013.

[79] M. E. Karim and V. V. Phoha, "Cyber-physical Systems Security," pp. 75-83, 2014.

[80] A. Giordano, G. Spezzano, and A. Vinci, "A Smart Platform for Large-Scale Cyber-Physical

Systems," in Management of Cyber Physical Objects in the Future Internet of Things:

Methods, Architectures and Applications, A. Guerrieri, V. Loscri, A. Rovella, and G. Fortino,

Eds., ed Cham: Springer International Publishing, 2016, pp. 115-134.

[81] G. Wu, J. Sun, and J. Chen, "A survey on the security of cyber-physical systems," Control

Theory and Technology, vol. 14, pp. 2-10, 2016.

[82] F. O. f. I. Security, "Industrial Control System Security: Top 10 Threats and

Countermeasures 2016," 2016.

[83] Z. DeSmit, A. E. Elhabashy, L. J. Wells, and J. A. Camelio, "Cyber-physical Vulnerability

Assessment in Manufacturing Systems," Procedia Manufacturing, vol. 5, pp. 1060-1074,

// 2016.

[84] S. Huang, C.-J. Zhou, S.-H. Yang, and Y.-Q. Qin, "Cyber-physical system security for

networked industrial processes," International Journal of Automation and Computing,

vol. 12, pp. 567-578, 2015.

[85] G. Sabaliauskaite and A. P. Mathur, "Aligning Cyber-Physical System Safety and Security,"

pp. 41-53, 2015.

[86] T. S. S. O. ITU, "Security framework for cloud computing," ed, 2015, p. 30.

REFERENCES

117

[87] S. Karnouskos, "Chapter 6 - Industrial Agents Cybersecurity," in Industrial Agents, ed

Boston: Morgan Kaufmann, 2015, pp. 109-120.

[88] L. J. Wells, J. A. Camelio, C. B. Williams, and J. White, "Cyber-physical security challenges

in manufacturing systems," Manufacturing Letters, vol. 2, pp. 74-77, 4// 2014.

[89] K. Wan and V. Alagar, "Context-Aware Security Solutions for Cyber-Physical Systems,"

Mobile Networks and Applications, vol. 19, pp. 212-226, 2014.

[90] M. Burmester, E. Magkos, and V. Chrissikopoulos, "Modeling security in cyber–physical

systems," International Journal of Critical Infrastructure Protection, vol. 5, pp. 118-126,

12// 2012.

[91] H. L. Huiyingh and X. Zhou, "Study on Security Architecture for Internet of Things," in

Applied Informatics and Communication, D. Zeng, Ed., ed: Springer Berlin Heidelberg,

2011, pp. 404-411.

[92] R. Dorociak and J. Gausemeier, "Methods of Improving the Dependability of Self-

optimizing Systems," in Dependability of Self-Optimizing Mechatronic Systems, J.

Gausemeier, F. J. Rammig, W. Schäfer, and W. Sextro, Eds., ed Berlin, Heidelberg: Springer

Berlin Heidelberg, 2014, pp. 37-171.

[93] B. Vogel-Heuser and S. Rösch, "Integrated Modeling of Complex Production Automation

Systems to Increase Dependability," pp. 363-385, 2014.

[94] R. Dorociak, T. Gaukstern, J. Gausemeier, P. Iwanek, and M. Vaßholz, "A methodology for

the improvement of dependability of self-optimizing systems," Production Engineering,

vol. 7, pp. 53-67, 2012.

[95] M. Missbach, T. Staerk, C. Gardiner, J. McCloud, R. Madl, M. Tempes, et al., "Securing SAP

on the Cloud," pp. 75-120, 2016.

[96] A. H. a. J. L. a. F. L. a. B. Luo, "Cyber-Physical Systems Security -- A Survey," IEEE Internet

of Things Journal, vol. PP, p. 30, 2017.

[97] Q. Z. a. C. R. a. T. Başar, "A hierarchical security architecture for cyber-physical systems,"

2011 4th International Symposium on Resilient Control Systems, pp. 15-20, 2011.

[98] F. Hu, Y. Lu, A. V. Vasilakos, Q. Hao, R. Ma, Y. Patil, et al., "Robust Cyber–Physical Systems:

Concept, models, and implementation," Future Generation Computer Systems, vol. 56,

pp. 449-475, 2016.

[99] International Electrotechnical Commission, "Dependability management – Part 3-1:

Application guide – Analysis techniques for dependability – Guide on methodology," in

IEC 60300-3-1, ed, 2003.

[100] I. O. f. S. International Electrotechnical Commission, "Information technology -- Security

techniques -- Information security management systems -- Overview and vocabulary," in

ISO/IEC 27000:2016, ed, 2016, p. 34.

[101] International Electrotechnical Commission, "Hazard and operability studies (HAZOP

studies) - Application guide," in IEC 61882:2016, ed, 2016.

REFERENCES

118

[102] International Electrotechnical Commission, "Application of Markov techniques," in IEC

61165:2006, ed, 2006, p. 67.

[103] international Electrotechnical Commission, "Analysis techniques for system reliability -

Procedure for failure mode and effects analysis (FMEA)," in IEC 60812:2006, ed, 2006, p.

93.

[104] International Electrotechnical Commission, "Fault tree analysis (FTA)," in IEC 61025:2006,

ed, 2006, p. 103.

[105] T. Sanislav, G. Mois, and L. Miclea, "An approach to model dependability of cyber-physical

systems," Microprocessors and Microsystems, vol. 41, pp. 67-76, 2016.

[106] C. A. Boano, K. Römer, R. Bloem, K. Witrisal, M. Baunach, and M. Horn, "Dependability for

the Internet of Things—from dependable networking in harsh environments to a holistic

view on dependability," e & i Elektrotechnik und Informationstechnik, vol. 133, pp. 304-

309, 2016/11/01 2016.

[107] B. P. Douglass, "Chapter 6 - Dependability Architecture," in Real-Time UML Workshop for

Embedded Systems (Second Edition), ed Oxford: Newnes, 2014, pp. 149-177.

[108] I. Silva, R. Leandro, D. Macedo, and L. A. Guedes, "A dependability evaluation tool for the

Internet of Things," Computers & Electrical Engineering, vol. 39, pp. 2005-2018,

2013/10/01/ 2013.

[109] P. Barger, J.-M. Thiriet, M. Robert, and J.-F. Aubry, "Dependability Study in Distributed

Control Systems Integrating Smart Devices," IFAC Proceedings Volumes, vol. 37, pp. 67-

72, 2004/06/01/ 2004.

[110] C. W. Axelrod, "Managing the risks of cyber-physical systems," 2013 IEEE Long Island

Systems, Applications and Technology Conference (LISAT), pp. 1-6, 2013.

[111] C. Schmittner, T. Gruber, P. Puschner, and E. Schoitsch, "Security Application of Failure

Mode and Effect Analysis (FMEA)," in Computer Safety, Reliability, and Security: 33rd

International Conference, SAFECOMP 2014, Florence, Italy, September 10-12, 2014.

Proceedings, A. Bondavalli and F. Di Giandomenico, Eds., ed Cham: Springer International

Publishing, 2014, pp. 310-325.

[112] R. F. Stapelberg, Handbook of Reliability, Availability, Maintainability and Safety in

Engineering Design: Springer London, 2009.

[113] D. Natarajan, "Failure Mode and Effects Analysis," in Reliable Design of Electronic

Equipment: An Engineering Guide, D. Natarajan, Ed., ed Cham: Springer International

Publishing, 2015, pp. 31-44.

[114] W. Reisig, "An Example," in Understanding Petri Nets: Modeling Techniques, Analysis

Methods, Case Studies, W. Reisig, Ed., ed Berlin, Heidelberg: Springer Berlin Heidelberg,

2013, pp. 3-12.

[115] S. Agrawal and J. Agrawal, "Survey on Anomaly Detection using Data Mining Techniques,"

Procedia Computer Science, vol. 60, pp. 708-713, 2015/01/01/ 2015.

REFERENCES

119

[116] V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection: A survey," ACM Comput.

Surv., vol. 41, pp. 1-58, 2009.

[117] C. Joslyn, S. Choudhury, D. Haglin, B. Howe, B. Nickless, and B. Olsen, Massive scale cyber

traffic analysis: a driver for graph database research, 2013.

[118] V. V. Phoha, "Internet Security Dictionary," V. V. Phoha, Ed., ed: Springer New York, 2002.

[119] V. C. a. S. P. a. M. G. a. B. Maglaris, "Hierarchical Anomaly Detection in Distributed Large-

Scale Sensor Networks," 11th IEEE Symposium on Computers and Communications

(ISCC'06), pp. 761-767, 2006.

[120] C. K. a. W. L. a. I. Hwang, "Security analysis for Cyber-Physical Systems against stealthy

deception attacks," 2013 American Control Conference, pp. 3344-3349, 2013.

[121] X. Y. a. J. L. a. P. M. a. W. Y. a. X. F. a. W. Zhao, "A Novel En-route Filtering Scheme against

False Data Injection Attacks in Cyber-Physical Networked Systems," 2012 IEEE 32nd

International Conference on Distributed Computing Systems, pp. 92-101, 2012.

[122] G. K. Baah, A. Podgurski, and M. J. Harrold, "The Probabilistic Program Dependence Graph

and Its Application to Fault Diagnosis," IEEE Trans. Softw. Eng., vol. 36, pp. 528-545, 2010.

[123] S. Bernardi, J. Merseguer, and D. C. Petriu, "Dependability Analysis Techniques," in Model-

Driven Dependability Assessment of Software Systems, S. Bernardi, J. Merseguer, and D.

C. Petriu, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 73-90.

[124] L. Ribeiro, J. Barata, G. Cândido, and M. Onori, "Evolvable Production Systems: An

Integrated View on Recent Developments," in Proceedings of the 6th CIRP-Sponsored

International Conference on Digital Enterprise Technology, G. Q. Huang, K. L. Mak, and P.

G. Maropoulos, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 841-854.

[125] N. A. Duffie and R. S. Piper, "Nonhierarchical control of manufacturing systems," Journal

of Manufacturing Systems, vol. 5, p. 141, 1986/01/01/ 1986.

[126] Service Orientation in Holonic and Multi-Agent Manufacturing vol. 640: Springer

International Publishing Switzerland, 2016.

[127] I. Badr, "Integrated Scheduling for Make-to-Order Multi-factory Manufacturing: An

Agent-Based Cloud-Assisted Approach," in Service Orientation in Holonic and Multi-Agent

Manufacturing, T. Borangiu, D. Trentesaux, A. Thomas, and D. McFarlane, Eds., ed Cham:

Springer International Publishing, 2016, pp. 277-284.

[128] H. Van Brussel, J. Wyns, P. Valckenaers, L. Bongaerts, and P. Peeters, "Reference

architecture for holonic manufacturing systems: PROSA," Computers in Industry, vol. 37,

pp. 255-274, 11// 1998.

[129] P. Leitão and F. Restivo, "ADACOR: A holonic architecture for agile and adaptive

manufacturing control," Computers in Industry, vol. 57, pp. 121-130, 2// 2006.

[130] J. Barbosa, P. Leitão, E. Adam, and D. Trentesaux, "Dynamic self-organization in holonic

multi-agent manufacturing systems: The ADACOR evolution," Computers in Industry, vol.

66, pp. 99-111, 1// 2015.

REFERENCES

120

[131] D. Trentesaux and P. Millot, "A Human-Centred Design to Break the Myth of the “Magic

Human” in Intelligent Manufacturing Systems," in Service Orientation in Holonic and

Multi-Agent Manufacturing, T. Borangiu, D. Trentesaux, A. Thomas, and D. McFarlane,

Eds., ed Cham: Springer International Publishing, 2016, pp. 103-113.

[132] T. S. a. P. Massotte, "Enhancement of distributed production systems through software

agents," ETFA 2001. 8th International Conference on Emerging Technologies and Factory

Automation. Proceedings, 2001.

[133] J. P. a. A. L. a. H. Kuhnle, "The PABADIS'PROMISE architecture - a new approach for flexible

manufacturing systems," 2005 IEEE Conference on Emerging Technologies and Factory

Automation, vol. 1, p. 6, 2005.

[134] H. Kühnle and G. Bitsch, "Core Models, Principles, and Networks’ Structuring," in

Foundations & Principles of Distributed Manufacturing: Elements of Manufacturing

Networks, Cyber-Physical Production Systems and Smart Automation, ed Cham: Springer

International Publishing, 2015, pp. 27-53.

[135] H. Kühnle and H. Bayanifar, "Smart Manufacturing – Expanding the Systems Approach

onto Complex Networks," presented at the 13th International Conference on Industrial

Engineering (IIEC 2017), Iran, 2017.

[136] H. Kühnle, U. Bergmann, M. Heinicke, G. Wagenhaus, H. Bayanifar, I. Muhammed, et al.,

Lecture notes in manufacturing systems design and manufacturing process organisation -

selected chapters from factory operations, factory planning, manufacturing enterprise

organisation & cyber physical production: Göttingen Cuvillier Verlag, 2017.

[137] F. Z. a. K. S. a. W. W. a. V. Mooney, "Task Scheduling for Control Oriented Requirements

for Cyber-Physical Systems," 2008 Real-Time Systems Symposium, pp. 47-56, 2008.

[138] Z. Wei, M. S. Branicky, and S. M. Phillips, "Stability of networked control systems," IEEE

Control Systems, vol. 21, pp. 84-99, 2001.

[139] A. C. Lüder, Ambra. Zawisza, Jacek. Rosendahl, Ronald, "Design Pattern for Agent Based

Production System Control – a Survey (I)," in 13th Conference on Automation Science and

Engineering, China, 2017, p. 16.

[140] S. O. Duffuaa and A. Raouf, "Preventive Maintenance, Concepts, Modeling, and Analysis,"

in Planning and Control of Maintenance Systems: Modelling and Analysis, S. O. Duffuaa

and A. Raouf, Eds., ed Cham: Springer International Publishing, 2015, pp. 57-94.

[141] D. F. Percy, "Preventive Maintenance Models for Complex Systems," in Complex System

Maintenance Handbook, K. A. H. Kobbacy and D. N. P. Murthy, Eds., ed London: Springer

London, 2008, pp. 179-207.

Appendix

121

APPENDIX (CODES FOR AGENTS)

Agent: FailureModes

package multiAgentSystems;

import jade.content.Concept;

public class FailureModes implements Concept {

 private static final long serialVersionUID = 1L;

public String name;
public String identification;
public String requirements;
public String action;
public String resourceNeeded;
public String entitiesToCall;

public String getName() {
 return name;
}
public void setName(String name) {
 this.name = name;
}
public String getIdentification() {
 return identification;
}
public void setIdentification(String identification) {
 this.identification = identification;
}
public String getRequirements() {
 return requirements;
}
public void setRequirements(String requirements) {
 this.requirements = requirements;
}
public String getAction() {
 return action;
}
public void setAction(String action) {
 this.action = action;
}
public String getResourceNeeded() {
 return resourceNeeded;
}
public void setResourceNeeded(String resourceNeeded) {
 this.resourceNeeded = resourceNeeded;
}
public String getEntitiesToCall() {
 return entitiesToCall;
}
public void setEntitiesToCall(String entitiesToCall) {
 this.entitiesToCall = entitiesToCall;
}
}

Appendix

122

Agent: FailureModesOntology

package multiAgentSystems;

import jade.content.onto.BasicOntology;
import jade.content.onto.Ontology;
import jade.content.onto.OntologyException;
import jade.content.schema.ConceptSchema;
import jade.content.schema.ObjectSchema;
import jade.content.schema.PrimitiveSchema;

public class FailureModesOntology extends Ontology {

 public static final String OntologyName = "FailureModesOntology";

 public static final String Failure = "failure";
 public static final String Failure_Name = "name";
 public static final String Failure_Identification = "identification";

 public static final String Failure_Actions = "actions";
 public static final String Failure_Requirements = "requirements";

 // The singleton instance of this ontology
 private static Ontology theInstance = new FailureModesOntology();
 // Retrieve the singleton failuremodes ontology instance
 public static Ontology getInstance() {
 return theInstance;
 }

 // Private constructor
 private FailureModesOntology() {
 // The FailureModes ontology extends the basic ontology
 super(OntologyName, BasicOntology.getInstance());
 try {
 add(new ConceptSchema(Failure), FailureModes.class);

 // Structure of the schema for the Failure concept
 ConceptSchema cs = (ConceptSchema) getSchema(Failure);

 cs.add(Failure_Name, (PrimitiveSchema) getSchema(BasicOntology.STRING));

 cs.add(Failure_Identification, (PrimitiveSchema) getSchema(BasicOntology.STRING), 0,
 ObjectSchema.UNLIMITED);

 cs.add(Failure_Requirements, (PrimitiveSchema)
 getSchema(BasicOntology.STRING), 0, ObjectSchema.UNLIMITED);

 }

 catch (OntologyException oe) {
 oe.printStackTrace();
 }
 }

 private static final long serialVersionUID = 1L;

}

Appendix

123

Agent: FailureModes (fm1)

package failures;

import multiAgentSystems.FailureModes;
import multiAgentSystems.Fmea;

public class Fm1 extends FailureModes {

 private static final long serialVersionUID = 1L;

 public Fm1() {
 // failure mode
 this.name = "convayor belt C1 delay";
 // adding anomalies to the list for identification
 java.util.ArrayList<String> anomalies = new java.util.ArrayList<String>();
 String a1 = new FailureModes().getIdentification();
 String a2 = new FailureModes().getIdentification();

 a1 = "sensor p1";
 a2 = "delay";

 anomalies.add(a1);
 anomalies.add(a2);

 Fmea.anomalyList.put(anomalies, this.name);

 // suggested countermeasure required
 this.action = "Call maintenance";

 // adding requirements to the list
 java.util.ArrayList<String> requiredParts = new java.util.ArrayList<String>();
 String r1 = new FailureModes().getRequirements();
 String r2 = new FailureModes().getRequirements();

 r1 = "Belt";
 r2 = "motor";

 requiredParts.add(r1);
 requiredParts.add(r2);

 // Resource to look for

 this.resourceNeeded = null;

 /**
 sending data to include each of this failure's
 properties in the list to be used by other agents
 */

 Fmea.reqList.put(this.name, requiredParts);
 Fmea.names.add(this.name);
 Fmea.actionList.put(this.name, this.action);
 Fmea.failure_Resource.put(this.name, this.resourceNeeded);
 }
}

Appendix

124

Agent: FailureModes (fm2)

package failures;

import multiAgentSystems.FailureModes;
import multiAgentSystems.Fmea;

public class Fm2 extends FailureModes {

 private static final long serialVersionUID = 1L;

 public Fm2() {

 // failure mode
 this.name = "convayor belt C2 delay";
 // adding anomalies to the list for identification
 java.util.ArrayList<String> anomalies = new java.util.ArrayList<String>();
 String a1 = new FailureModes().getIdentification();
 String a2 = new FailureModes().getIdentification();

 a1 = "sensor p2";
 a2 = "delay";

 anomalies.add(a1);
 anomalies.add(a2);

 Fmea.anomalyList.put(anomalies, this.name);

 // suggested countermeasure required
 this.action = "Call maintenance";
 // adding requirements to the list
 java.util.ArrayList<String> requiredParts = new java.util.ArrayList<String>();
 String r1 = new FailureModes().getRequirements();
 String r2 = new FailureModes().getRequirements();

 r1 = "Belt";
 r2 = "motor";

 requiredParts.add(r1);
 requiredParts.add(r2);

 // Resource to look for

 this.resourceNeeded = null;

 /**
 sending data to include each of this failure's
 properties in the list to be used by other agents
 */

 Fmea.reqList.put(this.name, requiredParts);
 Fmea.names.add(this.name);
 Fmea.actionList.put(this.name, this.action);
 Fmea.failure_Resource.put(this.name, this.resourceNeeded);

 }
}

Appendix

125

Agent: FailureModes (fm3)

package failures;

import multiAgentSystems.FailureModes;
import multiAgentSystems.Fmea;

public class Fm3 extends FailureModes {

 private static final long serialVersionUID = 1L;

 public Fm3() {
 // failure mode
 this.name = "conveyor C1 breakdown";
 // adding anomalies to the list for identification
 java.util.ArrayList<String> anomalies = new java.util.ArrayList<String>();
 String a1 = new FailureModes().getIdentification();
 String a2 = new FailureModes().getIdentification();
 String a3 = new FailureModes().getIdentification();

 a1 = "sensor p1";
 a2 = "sensor T1";
 a3 = "TV"; // time violation

 anomalies.add(a1);
 anomalies.add(a2);
 anomalies.add(a3);

 Fmea.anomalyList.put(anomalies, this.name);

 // suggested countermeasure required
 this.action = "Stop the line"; // add the rest in a hash map

 // adding requirements to the list
 java.util.ArrayList<String> requiredParts = new java.util.ArrayList<String>();
 String r1 = new FailureModes().getRequirements();
 String r2 = new FailureModes().getRequirements();

 r1 = "belt";
 r2 = "motor";

 requiredParts.add(r1);
 requiredParts.add(r2);

 // Resource to look for

 this.resourceNeeded = null;

 /**
 sending data to include each of this failure's
 properties in the list to be used by other agents
 */

 Fmea.reqList.put(this.name, requiredParts);
 Fmea.names.add(this.name);
 Fmea.actionList.put(this.name, this.action);
 Fmea.failure_Resource.put(this.name, this.resourceNeeded);

 }
}

Appendix

126

Agent: FailureModes (fm4)

package failures;

import multiAgentSystems.FailureModes;
import multiAgentSystems.Fmea;

public class Fm4 extends FailureModes {

 private static final long serialVersionUID = 1L;

 public Fm4() {
 // failure mode
 this.name = "conveyor C2 breakdown";
 // adding anomalies to the list for identification
 java.util.ArrayList<String> anomalies = new java.util.ArrayList<String>();
 String a1 = new FailureModes().getIdentification();
 String a2 = new FailureModes().getIdentification();
 String a3 = new FailureModes().getIdentification();

 a1 = "sensor p2";
 a2 = "sensor T2";
 a3 = "TV"; // time violation

 anomalies.add(a1);
 anomalies.add(a2);
 anomalies.add(a3);

 Fmea.anomalyList.put(anomalies, this.name);

 // suggested countermeasure required
 this.action = "Stop the line"; // add the rest in a hash map

 // adding requirements to the list
 java.util.ArrayList<String> requiredParts = new java.util.ArrayList<String>();
 String r1 = new FailureModes().getRequirements();
 String r2 = new FailureModes().getRequirements();

 r1 = "belt";
 r2 = "motor";

 requiredParts.add(r1);
 requiredParts.add(r2);

 // adding entities to the list
 java.util.ArrayList<String> invEnt = new
java.util.ArrayList<String>();
 String i1 = new FailureModes().getEntitiesToCall();
 String i2 = new FailureModes().getEntitiesToCall();

 i1 = "inventory";
 i2 = "maintenance";

 invEnt.add(i1);
 invEnt.add(i2);

 // Resource to look for

Appendix

127

 this.resourceNeeded = null;

 /**
 sending data to include each of this failure's
 properties in the list to be used by other agents
 */

 Fmea.reqList.put(this.name, requiredParts);
 Fmea.names.add(this.name);
 Fmea.actionList.put(this.name, this.action);
 Fmea.failure_Resource.put(this.name, this.resourceNeeded);
 Fmea.involvedentities.put(this.name, invEnt);

 }
}

Agent: FailureModes (fm5)

import multiAgentSystems.FailureModes;
import multiAgentSystems.Fmea;

public class Fm5 extends FailureModes {

 private static final long serialVersionUID = 1L;

 public Fm5() {
 // failure mode
 this.name = "Pusher Robot P1 stopped working";
 // adding anomalies to the list for identification
 java.util.ArrayList<String> anomalies = new java.util.ArrayList<String>();
 String a1 = new FailureModes().getIdentification();
 String a2 = new FailureModes().getIdentification();

 a1 = "sensor T1";
 a2 = "TV";

 anomalies.add(a1);
 anomalies.add(a2);

 Fmea.anomalyList.put(anomalies, this.name);

 // suggested countermeasure required
 this.action = "Stop the line";

 // adding requirements to the list
 java.util.ArrayList<String> requiredParts = new java.util.ArrayList<String>();
 String r1 = new FailureModes().getRequirements();
 String r2 = new FailureModes().getRequirements();

 r1 = "pusher arm";
 r2 = "motor";

 requiredParts.add(r1);

Appendix

128

 requiredParts.add(r2);

 // Resource to look for

 this.resourceNeeded = null;

 /**
 sending data to include each of this failure's
 properties in the list to be used by other agents
 */

 Fmea.reqList.put(this.name, requiredParts);
 Fmea.names.add(this.name);
 Fmea.actionList.put(this.name, this.action);
 Fmea.failure_Resource.put(this.name, this.resourceNeeded);
 }
}

Agent: FailureModes (fm6)

package failures;

import multiAgentSystems.FailureModes;
import multiAgentSystems.Fmea;

public class Fm6 extends FailureModes {

 private static final long serialVersionUID = 1L;

 public Fm6() {

 // failure mode
 this.name = "Pusher Robot P2 stopped working";
 // adding anomalies to the list for identification
 java.util.ArrayList<String> anomalies = new java.util.ArrayList<String>();
 String a1 = new FailureModes().getIdentification();
 String a2 = new FailureModes().getIdentification();

 a1 = "sensor T2";
 a2 = "TV";

 anomalies.add(a1);
 anomalies.add(a2);

 Fmea.anomalyList.put(anomalies, this.name);

 // suggested countermeasure required
 this.action = "Stop the line";
 // adding requirements to the list
 java.util.ArrayList<String> requiredParts = new java.util.ArrayList<String>();
 String r1 = new FailureModes().getRequirements();
 String r2 = new FailureModes().getRequirements();

Appendix

129

 r1 = "pusher arm";
 r2 = "motor";

 requiredParts.add(r1);
 requiredParts.add(r2);

 // Resource to look for

 this.resourceNeeded = null;

 /**
 sending data to include each of this failure's
 properties in the list to be used by other agents
 */

 Fmea.reqList.put(this.name, requiredParts);
 Fmea.names.add(this.name);
 Fmea.actionList.put(this.name, this.action);
 Fmea.failure_Resource.put(this.name, this.resourceNeeded);

 }

}

Agent: FailureModes (fm7)

package failures;

import multiAgentSystems.FailureModes;
import multiAgentSystems.Fmea;

public class Fm7 extends FailureModes {

 private static final long serialVersionUID = 1L;

 public Fm7() {
 // failure mode
 this.name = "Pusher Robot P1 maintainance due";
 // adding anomalies to the list for identification
 java.util.ArrayList<String> anomalies = new java.util.ArrayList<String>();
 String a1 = new FailureModes().getIdentification();

 a1 = "P1PN 3";

 anomalies.add(a1);

 Fmea.anomalyList.put(anomalies, this.name);

 // suggested countermeasure required
 this.action = "Stop the line";

 // adding requirements to the list
 java.util.ArrayList<String> requiredParts = new java.util.ArrayList<String>();
 String r1 = new FailureModes().getRequirements();

Appendix

130

 r1 = null;

 requiredParts.add(r1);

 // adding entities to the list
 java.util.ArrayList<String> invEnt = new java.util.ArrayList<String>();
 String i1 = new FailureModes().getEntitiesToCall();
 String i2 = new FailureModes().getEntitiesToCall();

 i1 = "control unit";
 i2 = "maintenance";

 invEnt.add(i1);
 invEnt.add(i2);

 // Resource to look for

 this.resourceNeeded = null;

 /**
 sending data to include each of this failure's
 properties in the list to be used by other agents
 */

 Fmea.reqList.put(this.name, requiredParts);
 Fmea.names.add(this.name);
 Fmea.actionList.put(this.name, this.action);
 Fmea.failure_Resource.put(this.name, this.resourceNeeded);
 Fmea.involvedentities.put(this.name, invEnt);
 }
}

Agent: FailureModes (fm8)

package failures;

import multiAgentSystems.FailureModes;
import multiAgentSystems.Fmea;

public class Fm8 extends FailureModes {

 private static final long serialVersionUID = 1L;

 public Fm8() {
 // failure mode
 this.name = "Pusher Robot P2 maintainance due";
 // adding anomalies to the list for identification
 java.util.ArrayList<String> anomalies = new java.util.ArrayList<String>();
 String a1 = new FailureModes().getIdentification();

 a1 = "P2PN 3";

 anomalies.add(a1);

 Fmea.anomalyList.put(anomalies, this.name);

Appendix

131

 // suggested countermeasure required
 this.action = "Stop the line";

 // adding requirements to the list
 java.util.ArrayList<String> requiredParts = new java.util.ArrayList<String>();
 String r1 = new FailureModes().getRequirements();

 r1 = null;

 requiredParts.add(r1);

 // Resource to look for

 this.resourceNeeded = null;

 /**
 sending data to include each of this failure's
 properties in the list to be used by other agents
 */

 Fmea.reqList.put(this.name, requiredParts);
 Fmea.names.add(this.name);
 Fmea.actionList.put(this.name, this.action);
 Fmea.failure_Resource.put(this.name, this.resourceNeeded);

 }
}

Agent: FailureModes (fm9)

package failures;

import multiAgentSystems.FailureModes;
import multiAgentSystems.Fmea;

public class Fm9 extends FailureModes {

 private static final long serialVersionUID = 1L;

 public Fm9() {

 // failure mode
 this.name = "Intrusion DOS";
 // adding anomalies to the list for identification
 java.util.ArrayList<String> anomalies = new java.util.ArrayList<String>();
 String a1 = new FailureModes().getIdentification();

 a1 = "DTV"; //data traffic violation

 anomalies.add(a1);

 Fmea.anomalyList.put(anomalies, this.name);

Appendix

132

 // suggested countermeasure required
 this.action = "change the channel"; //add

 // adding requirements to the list
 java.util.ArrayList<String> requiredParts = new java.util.ArrayList<String>();
 String r1 = new FailureModes().getRequirements();

 r1 = null;

 requiredParts.add(r1);

 // Resource to look for

 this.resourceNeeded = null;

 /**
 sending data to include each of this failure's
 properties in the list to be used by other agents
 */

 Fmea.reqList.put(this.name, requiredParts);
 Fmea.names.add(this.name);
 Fmea.actionList.put(this.name, this.action);
 Fmea.failure_Resource.put(this.name, this.resourceNeeded);

 }
}

Agent: FailureModes (fm10)

package failures;

import multiAgentSystems.FailureModes;
import multiAgentSystems.Fmea;

public class Fm10 extends FailureModes {

 private static final long serialVersionUID = 1L;

 public Fm10() {
 // failure mode
 this.name = "Part is not loaded";
 // adding anomalies to the list for identification
 java.util.ArrayList<String> anomalies = new java.util.ArrayList<String>();
 String a1 = new FailureModes().getIdentification();

 a1 = "sensor L";

 anomalies.add(a1);

 Fmea.anomalyList.put(anomalies, this.name);

 // suggested countermeasure required
 this.action = "Stop the line"; // add the rest in a hash map

Appendix

133

 // adding requirements to the list
 java.util.ArrayList<String> requiredParts = new java.util.ArrayList<String>();
 String r1 = new FailureModes().getRequirements();

 r1 = null;

 requiredParts.add(r1);

 // Resource to look for

 this.resourceNeeded = null;

 /**
 sending data to include each of this failure's
 properties in the list to be used by other agents
 */

 Fmea.reqList.put(this.name, requiredParts);
 Fmea.names.add(this.name);
 Fmea.actionList.put(this.name, this.action);
 Fmea.failure_Resource.put(this.name, this.resourceNeeded);

 }
}

Agent: FailureModes (fm11)

package failures;

import multiAgentSystems.FailureModes;
import multiAgentSystems.Fmea;

public class Fm11 extends FailureModes {

 private static final long serialVersionUID = 1L;

 public Fm11() {
 // failure mode
 this.name = "Robot B Breakdown";
 // adding anomalies to the list for identification
 java.util.ArrayList<String> anomalies = new java.util.ArrayList<String>();
 String a1 = new FailureModes().getIdentification();
 String a2 = new FailureModes().getIdentification();

 a1 = "sensor a1";
 a2 = "sensor m1";

 anomalies.add(a1);
 anomalies.add(a2);

 Fmea.anomalyList.put(anomalies, this.name);

 // suggested countermeasure required
 this.action = "Stop the line"; // add the rest in a hash map

Appendix

134

 // adding requirements to the list
 java.util.ArrayList<String> requiredParts = new java.util.ArrayList<String>();
 String r1 = new FailureModes().getRequirements();
 String r2 = new FailureModes().getRequirements();

 r1 = "robot b arm";
 r2 = "motor";

 requiredParts.add(r1);
 requiredParts.add(r2);

 // adding entities to the list
 java.util.ArrayList<String> invEnt = new java.util.ArrayList<String>();
 String i1 = new FailureModes().getEntitiesToCall();
 String i2 = new FailureModes().getEntitiesToCall();

 i1 = "inventory";
 i2 = "maintenance";

 invEnt.add(i1);
 invEnt.add(i2);

 // Resource to look for

 this.resourceNeeded = "machine B";

 /**
 sending data to include each of this failure's
 properties in the list to be used by other agents
 */

 Fmea.reqList.put(this.name, requiredParts);
 Fmea.names.add(this.name);
 Fmea.actionList.put(this.name, this.action);
 Fmea.failure_Resource.put(this.name, this.resourceNeeded);
 Fmea.involvedentities.put(this.name, invEnt);

 }
}

Agent: FMEA (database)

package multiAgentSystems;

import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.GridLayout;
import java.awt.Toolkit;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.ArrayList;
import java.util.HashMap;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JOptionPane;

Appendix

135

import javax.swing.JPanel;
import javax.swing.JTextArea;

import failures.*;
import jade.content.lang.Codec;
import jade.content.lang.sl.SLCodec;
import jade.content.onto.Ontology;
import jade.core.Agent;
import jade.core.behaviours.OneShotBehaviour;

public class Fmea extends Agent {

 private Codec codec = new SLCodec();
 private Ontology ontology = FailureModesOntology.getInstance();

 /**
 *
 */
 private static final long serialVersionUID = 1L;

// list of the modes
 public static jade.util.leap.ArrayList names = new jade.util.leap.ArrayList();
// anomalies and their modes in a list (for identification)
 public static HashMap<java.util.ArrayList<String>, String> anomalyList= new
HashMap<java.util.ArrayList<String>, String>();
// list of failure modes and fixation requirements
 public static HashMap<String, ArrayList<String>> reqList = new HashMap<String,
ArrayList<String>>();
// list of failure modes and fixation requirements
 public static HashMap<String, ArrayList<String>> involvedentities = new HashMap<String,
ArrayList<String>>();
// list of failure modes and solution actions
 public static HashMap<String, String> actionList= new HashMap<String, String>();
// resource to look for when a failure occur
 public static HashMap<String, String> failure_Resource= new HashMap<String, String>();
// entities in collaborations for alarms and risk calculation
 static jade.util.leap.ArrayList collaborations = new jade.util.leap.ArrayList();

 String list;

 // Failures as subclasses to be instantiated here
 FailureModes[] fm = {new Fm1(), new Fm2(), new Fm3(),
 new Fm4(), new Fm5(), new Fm6(),
 new Fm7(), new Fm8(), new Fm9(),
 new Fm10(), new Fm11()};

 private FailureGui myGui;
 private FModes myfmealist;

 public void setup() {

 getContentManager().registerLanguage(codec);
 getContentManager().registerOntology(ontology);

 myGui = new FailureGui(this);
 myGui.showGui();

 myfmealist = new FModes(this);
 myfmealist.showGui();

Appendix

136

 System.out.println("------------------------");
 System.out.println(names);
 System.out.println(reqList);
 System.out.println(anomalyList);
 System.out.println(actionList);
 System.out.println(failure_Resource);
 System.out.println(involvedentities);
 System.out.println("------------------------");

 }

 public void updateCatalogue(final String fName, final String fAction,
 final String fResource, final ArrayList<String> anomalies,
 final ArrayList<String> reqs) {
 addBehaviour(new OneShotBehaviour() {
 /**
 *
 */
 private static final long serialVersionUID = 1L;

 public void action() {

 names.add(fName);
 anomalyList.put(anomalies, fName);
 reqList.put(fName, reqs);
 actionList.put(fName, fAction);
 failure_Resource.put(fName, fResource);
 System.out.println("---------------------");
 System.out.println("New failureMode has been added: ");
 System.out.println("Name: " + fName);
 System.out.println("Anomalies: " + anomalies);
 System.out.println("Requirements: " + reqs);
 System.out.println("Resource to seek: " + fResource);
 System.out.println("Action: " + fAction);
 System.out.println("---------------------");
 }
 });
 }

 public void removeFromCatalogue(final String fName) {
 addBehaviour(new OneShotBehaviour() {
 /**
 *
 */
 private static final long serialVersionUID = 1L;

 public void action() {
 names.remove(fName);
 reqList.remove(fName);
 actionList.remove(fName);
 failure_Resource.remove(fName);

for (java.util.ArrayList<String> checkKey : anomalyList.keySet()) {

 if (anomalyList.get(checkKey).equalsIgnoreCase(fName)) {
 anomalyList.remove(checkKey);
 }
 }
 System.out.println(fName + " has been removed from FMEA database ");

Appendix

137

 }
 });
 }

 public void printCatalogue() {
 addBehaviour(new OneShotBehaviour() {
 /**
 *
 */
 private static final long serialVersionUID = 1L;

 public void action() {

 System.out.println("------------------------");
 System.out.println(names);
 System.out.println(list);
 System.out.println(reqList);
 System.out.println(anomalyList);
 System.out.println(actionList);
 System.out.println(failure_Resource);
 System.out.println("------------------------");
 }
 });
 }

 class FModes extends JFrame {

 /**
 *
 */
 private static final long serialVersionUID = 1L;

 private JTextArea fminfo;
 private JLabel label;
 private JLabel label2;

 FModes(Fmea fmea) {
 super(fmea.getLocalName());

 JPanel p = new JPanel();
 p.setLayout(new GridLayout(2,1));

 label = new JLabel(" Failure Modes");
 label2 = new JLabel("------------------------------------");
 p.add(label);
 p.add(label2);

 getContentPane().add(p, BorderLayout.NORTH);

 fminfo = new JTextArea(20,20);
 p.add(fminfo);
 getContentPane().add(fminfo, BorderLayout.CENTER);

 JButton refButton = new JButton("Refresh");
 p.add(refButton);
 getContentPane().add(refButton, BorderLayout.SOUTH);

Appendix

138

 refButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ev) {
 try {
 fminfo.setText("");
 list = "";
 for (int i = 0; i < names.size(); i++) {
 list = list + names.toArray()[i] + "\n";
 }

 fminfo.setText(list);

 }
 catch (Exception e) {
 JOptionPane.showMessageDialog(FModes.this, "Invalid values. "+e.getMessage(), "Error",
JOptionPane.ERROR_MESSAGE);
 }
 }
 });
 }

 public void showGui() {
 pack();
 Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
 int centerX = (int)screenSize.getWidth() / 2;
 int centerY = (int)screenSize.getHeight() / 2;
 setLocation(centerX - getWidth() / 2, centerY - getHeight() / 2);
 super.setVisible(true);
 }
 }
}

Agent: FMEA (interface)

package multiAgentSystems;

import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.GridLayout;
import java.awt.Toolkit;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.JTextArea;
import javax.swing.JTextField;

class FailureGui extends JFrame {
 /**
 *
 */

Appendix

139

 private static final long serialVersionUID = 1L;

 private Fmea myAgent;
 java.util.ArrayList<String> anomalies = new java.util.ArrayList<>();
 java.util.ArrayList<String> reqs = new java.util.ArrayList<>();
 private JTextField nameField, anomalyField, reqField, resField, actionField;
 private JTextArea info;
 java.util.ArrayList<String> anomaly;

 FailureGui(Fmea fmea) {
 super(fmea.getLocalName());

 myAgent = fmea;

 JPanel p = new JPanel();
 p.setLayout(new GridLayout(6, 4));

 p.add(new JLabel(" Failure Mode: "));
 nameField = new JTextField(20);
 p.add(nameField);

 p.add(new JLabel(" Anomalies List (as): a1, a2, ..., an"));
 anomalyField = new JTextField(20);
 p.add(anomalyField);

 p.add(new JLabel(" Requirements List (as): r1, r2, ..., rn"));
 reqField = new JTextField(20);
 p.add(reqField);

 p.add(new JLabel(" Failed Resource: "));
 resField = new JTextField(20);
 p.add(resField);

 p.add(new JLabel(" Action: "));
 actionField = new JTextField(20);
 p.add(actionField);

 getContentPane().add(p, BorderLayout.CENTER);

 info = new JTextArea(5,25);

 p.add(info);
 getContentPane().add(info, BorderLayout.EAST);

 JButton addButton = new JButton("Add");
 JButton removeButton = new JButton("Remove");
 JButton printButton = new JButton("Print Info");

 addButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ev) {
 try {
 String inputAnomalies = anomalyField.getText().trim();
 String[] anomaliessplit = inputAnomalies.split("\\, ");

 for (int i = 0; i < anomaliessplit.length; i++) {
 anomalies.add(anomaliessplit[i]);
 }

Appendix

140

 String inputRequiremetns = reqField.getText().trim();
 String[] reqssplit = inputRequiremetns.split("\\, ");

 for (int i = 0; i < reqssplit.length; i++) {
 reqs.add(reqssplit[i]);
 }

 String fResource = resField.getText().trim(); //failed resource
 String fName = nameField.getText().trim(); // failureMode
 String fAction = actionField.getText().trim(); // action needed

 myAgent.updateCatalogue(fName, fAction, fResource, anomalies, reqs);
 anomalyField.setText("");
 nameField.setText("");
 resField.setText("");
 reqField.setText("");
 actionField.setText("");

 }
 catch (Exception e) {
JOptionPane.showMessageDialog(FailureGui.this, "Invalid values. "+e.getMessage(), "Error",
JOptionPane.ERROR_MESSAGE);
 }
 }
 });

 removeButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ev) {
 try {
 String fName = nameField.getText().trim();

 myAgent.removeFromCatalogue(fName);
 anomalyField.setText("");
 nameField.setText("");
 resField.setText("");
 reqField.setText("");
 actionField.setText("");

 }
 catch (Exception e) {
JOptionPane.showMessageDialog(FailureGui.this, "Invalid values. "+e.getMessage(), "Error",
JOptionPane.ERROR_MESSAGE);
 }
 }
 });

 printButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ev) {
 try {

 myAgent.printCatalogue();

 String fName = nameField.getText().trim();

for (java.util.ArrayList<String> checkKey : Fmea.anomalyList.keySet()) {

if (Fmea.anomalyList.get(checkKey).equalsIgnoreCase(fName)) {
 anomaly = checkKey;
 }}

Appendix

141

 info.setText("Actions to take: " + Fmea.actionList.get(fName).toString() + "\n"
 + "Requirements: " + Fmea.reqList.get(fName).toString() + "\n"
 + "Anomalies list: " + anomaly.toString() + "\n"
 + Fmea.collaborations.toString()); //+

 anomalyField.setText("");
 nameField.setText("");
 resField.setText("");
 reqField.setText("");
 actionField.setText("");

 }
 catch (Exception e) {
JOptionPane.showMessageDialog(FailureGui.this, "Invalid values. "+e.getMessage(), "Error",
JOptionPane.ERROR_MESSAGE);
 }
 }
 });

 p = new JPanel();
 p.add(addButton);
 p.add(removeButton);
 p.add(printButton);
 getContentPane().add(p, BorderLayout.SOUTH);

 // Make the agent terminate when the user closes
 // the GUI using the button on the upper right corner
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 myAgent.doDelete();
 }
 });

 setResizable(false);
 }

 public void showGui() {
 pack();
 Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
 int centerX = (int)screenSize.getWidth() / 2;
 int centerY = (int)screenSize.getHeight() / 2;
 setLocation(centerX - getWidth() / 2, centerY - getHeight() / 2);
 super.setVisible(true);
 }
}

Agent: Analyzer

package multiAgentSystems;

import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.GridLayout;
import java.awt.Toolkit;
import java.util.Collections;

Appendix

142

import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JTextArea;

import jade.core.AID;
import jade.core.Agent;
import jade.core.behaviours.CyclicBehaviour;
import jade.lang.acl.ACLMessage;
import jade.lang.acl.MessageTemplate;

public class Analyzer extends Agent {

 /**
 *
 */
 private static final long serialVersionUID = 1L;

 static String failure;
 String failureMode;
 private AnGui myGui;
 private StringBuilder stringBuilder;

 public void setup(){

 //says hello!
 System.out.println("------------------------");
 System.out.println("Analyzer agent" + getAID().getLocalName() + " is on");

 myGui = new AnGui(this);
 myGui.showGui();

 String interfacepreview = "Analyzer agent is on";
 stringBuilder = new StringBuilder (interfacepreview);
 myGui.info.setText(stringBuilder.toString());

 // Analyzer Agent reads the messages from Monitoring and does its tasks
 addBehaviour(new ReceiveAnomalies());

 System.out.println("------------------------");

 }

 /**
 System.out.println("Sorted as compared with FMEA database" + monReport);
 failure = Fmea.anomalyList.get(monReport);
 System.out.println("the failure associated with received anomalies is: " + failure);
 */

 private class ReceiveAnomalies extends CyclicBehaviour {
 /**
 *
 */
 private static final long serialVersionUID = 1L;

 @Override
 public void action() {

Appendix

143

 // Checking for messages from Monitoring Agent or others (Alarms)
 MessageTemplate mt = MessageTemplate.MatchPerformative(ACLMessage.INFORM) ;

 jade.lang.acl.ACLMessage msg = myAgent.receive(mt);

 if (msg != null) {

 // Message received. Process it
 String cId = msg.getConversationId(); //

 if (cId.equalsIgnoreCase("AnomalyReport")) {

 String monitoringReport = msg.getContent();

System.out.println("Analyzer agent has received set of anomalies from "
 +
msg.getSender().getLocalName() + ": " + monitoringReport);

 stringBuilder.append("\n" + "---------------"
 + "\n" + "Analyzer has received a set of anomalies from "
 + msg.getSender().getLocalName() + "\n" + "Anomalies: " + monitoringReport
 + "\n" + "---------------");
 myGui.info.setText(stringBuilder.toString());

// comparing the anomaly set received with the list available in FMEA database

 for (java.util.ArrayList<String> check : Fmea.anomalyList.keySet()) {
 failure = Fmea.anomalyList.get(check);

// sets are sorted to make sure the strings are found equal even if the items order in them
are different

 Collections.sort(check);

 if (monitoringReport.equalsIgnoreCase(check.toString())) {

 failureMode = failure;
System.out.println("the failure associated with anomalies received is: "
 + failureMode);
 System.out.println("------------------------");

 stringBuilder.append("\n" + "---------------"
 + "\n" + "the failure associated with anomalies received is: " + failureMode
 + "\n" + "---------------");

myGui.info.setText(stringBuilder.toString());

// Sending message to Decision Maker level one
 ACLMessage informDM = new ACLMessage(ACLMessage.INFORM);
 informDM.addReceiver(new AID("DecisionMakerAgent", AID.ISLOCALNAME));
 informDM.setContent(failureMode);
 informDM.setConversationId("FailureModes");
 informDM.setOntology("FailureModesOntology");
 send(informDM);

 stringBuilder.append("\n" + "---------------"
 + "\n" + "Informative message has been sent to: " + "DecisionMakerAgent"
 + "\n" + "Message content: " + failureMode
 + "\n" + "Message ID: " + informDM.getConversationId()
 + "\n" + "---------------");

Appendix

144

 myGui.info.setText(stringBuilder.toString());

 }
 }

 if (failureMode == null) {

 System.out.println("Send message to analyzer LVL 2");

 //Send message to Analyzer LVL2

 }
 }

 else if (cId.equalsIgnoreCase("Alarms")) {

 // Restore information about alarms and send message to DM

 }

 else {
 //output the message information
 System.out.println("message from an unknown source!");
 System.out.println("the sender of the message is: " + msg.getSender());
 System.out.println("the content of the message is: " + msg.getContent());
 System.out.println("---------------------------");
 }
 }
 }
 }

 class AnGui extends JFrame {

 private static final long serialVersionUID = 1L;

 private JTextArea info;

 AnGui(Analyzer an) {
 super(an.getLocalName());

 JPanel p = new JPanel();
 p.setLayout(new GridLayout(2,1));

 p.add(new JLabel(" Analyzer agent output "));
 info = new JTextArea(10,50);
 p.add(info);
 getContentPane().add(p, BorderLayout.CENTER);
 getContentPane().add(info, BorderLayout.CENTER);
 }

 public void showGui() {
 pack();
 Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
 int centerX = (int)screenSize.getWidth() / 2;
 int centerY = (int)screenSize.getHeight() / 2;
 setLocation(centerX - getWidth() / 2, centerY - getHeight() / 2);
 super.setVisible(true);
 }
 }
}

Appendix

145

Agent: DecisionMakingAgent

package multiAgentSystems;

import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.GridLayout;
import java.awt.Toolkit;
import java.util.ArrayList;
import java.util.HashMap;

import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JTextArea;

import jade.core.AID;
import jade.core.Agent;
import jade.core.behaviours.Behaviour;
import jade.core.behaviours.CyclicBehaviour;
import jade.core.behaviours.OneShotBehaviour;
import jade.domain.DFService;
import jade.domain.FIPAException;
import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain.FIPAAgentManagement.ServiceDescription;
import jade.lang.acl.ACLMessage;
import jade.lang.acl.MessageTemplate;

public class DecisionMakerAgent extends Agent {

 /**
 *
 */
 private static final long serialVersionUID = 1L;

 static String action;
 static ArrayList<String> involvedEntitiZ;
 static ArrayList<String> reqsForThisFailure;
 static HashMap<String, Integer> offerPrice = new HashMap<String, Integer>();
 String fmReport;
 StringBuilder stringBuilder;
//The name of the resource to look for
 String failedResource;
// The list of components who may have them
 private AID[] offerProviders;

 private DmGui myGui;

 public void setup(){

 //says hello!

System.out.println("------------------------");
System.out.println("Decision Making agent" + getAID().getLocalName() + " is on");

 /**
 This behaviour receives the message from Analyzer Agent and
 finds the solutions and requirements from FMEA database
 */

Appendix

146

 myGui = new DmGui(this);
 myGui.showGui();

 String interfacepreview = "Decision Making agent is on";
 stringBuilder = new StringBuilder (interfacepreview);
 myGui.info.setText(stringBuilder.toString());

 addBehaviour(new ReceiveFailureMode());

 //This behaviour starts searching and negotiating over available resources
 addBehaviour(new CyclicBehaviour(){

 private static final long serialVersionUID = 1L;

 @Override
 public void action() {

 failedResource = Fmea.failure_Resource.get(fmReport);
 if (failedResource != null) {
 System.out.println(failedResource);
 //Beginning of negotiation
 addBehaviour(new OneShotBehaviour(){

 private static final long serialVersionUID = 1L;

 @Override
 public void action() {

 System.out.println("Target resource is "+ failedResource);

 System.out.println("Trying to access "+ failedResource);
 // Update the list of seller agents
 DFAgentDescription template = new DFAgentDescription();
 ServiceDescription sd = new ServiceDescription();
 sd.setType("Offer-Providing");
 template.addServices(sd);
 try {
 DFAgentDescription[] result = DFService.search(myAgent, template);
 System.out.println("Found the following seller agents:");
 offerProviders = new AID[result.length];
 for (int i = 0; i < result.length; ++i) {

 offerProviders[i] = result[i].getName();

 System.out.println(offerProviders[i].getName());
 }
 }
 catch (FIPAException fe) {
 fe.printStackTrace();
 }

 // Perform the request
 myAgent.addBehaviour(new RequestPerformer());
 }

 });

 }
 }
 });

Appendix

147

 System.out.println("------------------------");
 }

 private class ReceiveFailureMode extends CyclicBehaviour {

 /**
 *
 */
 private static final long serialVersionUID = 1L;

 public void action() {

 MessageTemplate mt =
 MessageTemplate.and(
 MessageTemplate.MatchPerformative(ACLMessage.INFORM),
 MessageTemplate.MatchSender(new AID("Analyzer",
 AID.ISLOCALNAME))) ;

 jade.lang.acl.ACLMessage msgFromAnalyzer = myAgent.receive(mt);

 if (msgFromAnalyzer != null) {
 // Message received. Process it
 String cId = msgFromAnalyzer.getConversationId();

 if (cId.equalsIgnoreCase("FailureModes")) {

 fmReport = msgFromAnalyzer.getContent();

 action = Fmea.actionList.get(fmReport);
 reqsForThisFailure = Fmea.reqList.get(fmReport);
 involvedEntitiZ = Fmea.involvedentities.get(fmReport);
System.out.println("Decision Maker Received a failure mode From Analyzer: " + fmReport);

 // Write on the interface
 stringBuilder.append("\n" + "---------------"
 + "\n" + "Message was received from " +
msgFromAnalyzer.getSender().getName() + " : " + fmReport
 + "\n" + "---------------");
 myGui.info.setText(stringBuilder.toString());

 //prepare alarms

 for (int i = 0; i < Fmea.collaborations.size(); i++) {

String receiver = (String) Fmea.collaborations.get(i);
String msgContent = myAgent.getAID().getLocalName() + " has failed. The failure is: " +
fmReport;

 // Sending alarms to others in collaboration
 ACLMessage alarmCollaborators = new ACLMessage(ACLMessage.INFORM);
 alarmCollaborators.addReceiver(new AID(receiver, AID.ISLOCALNAME));
 alarmCollaborators.setConversationId("Alarms");
 alarmCollaborators.setContent(msgContent);
 alarmCollaborators.setOntology("FailureModesOntology");
 send(alarmCollaborators);

 stringBuilder.append("\n" + "---------------"
 + "\n" + "Alarm Message has been sent to: " + receiver
 + "\n" + "---------------");

Appendix

148

 myGui.info.setText(stringBuilder.toString());
 }

 if (action != null) {

 System.out.println("countermeasure for identified failure is: " + action);

 stringBuilder.append("\n" + "---------------"
 + "\n" + "Action to be taken is: " + action
 + "\n" + "---------------");
 myGui.info.setText(stringBuilder.toString());

 }
 else {

 System.out.println("no action is identified for this agent. Message will be sent to
DecisionMaker level 2");
 stringBuilder.append("\n" + "---------------"
 + "\n" + "Action to be taken is: none"
 + "\n" + "---------------");
 myGui.info.setText(stringBuilder.toString());

 }

 if (involvedEntitiZ != null) {

 stringBuilder.append("\n" + "---------------"
 + "\n" + "Envolved Entities Are: " + involvedEntitiZ
 + "\n" + "---------------");

 myGui.info.setText(stringBuilder.toString());

 for (int i = 0; i < involvedEntitiZ.size(); i++) {

 // The failed unit (The use case: The conveyer system)
 String failedUnit = "The Conveyer System";
 /**
 Since there is only one component involved in this example
 there is no list of components to identify specifically for
 a given failure, to be chosen and sent to locate the failure.
 */

 String receiver = (String) involvedEntitiZ.get(i);
 String msgContent = "Component: " + failedUnit + "--- Failure Mode: " + fmReport;

 // Sending alarms to others in collaboration
 ACLMessage askForHelp = new ACLMessage(ACLMessage.REQUEST);
 askForHelp.addReceiver(new AID(receiver, AID.ISLOCALNAME));
 askForHelp.setConversationId("Fixation");
 askForHelp.setContent(msgContent);
 askForHelp.setOntology("FailureModesOntology");
 send(askForHelp);

 stringBuilder.append("\n" + "Request message has been sent to: " + receiver
 + "\n" + "Content: " + msgContent);

 myGui.info.setText(stringBuilder.toString());
 }
 } else {

Appendix

149

 stringBuilder.append("\n" + "---------------"
 + "\n" + "Envolved Entities Are: none"
 + "\n" + "---------------");

myGui.info.setText(stringBuilder.toString());

 }

 if (reqsForThisFailure != null) {

System.out.println("Requirements for fixation of the identified failure is: " +
reqsForThisFailure);

 stringBuilder.append("\n" + "---------------"
 + "\n" + "Requirements for fixation are: " + reqsForThisFailure
 + "\n" + "---------------");
 myGui.info.setText(stringBuilder.toString());

 //a hypothetical inventory as a receiver
 String receiver = new String("inventory");
 /**
 This is a hypothetical inventory to show the behaviour since
 there is no real inventory in the test, otherwise instead of this
 there had to be the address (agent ID) of the inventory unit.
 */

 // Sending alarms to others in inventory
 ACLMessage askForRequirements = new ACLMessage(ACLMessage.REQUEST);
 askForRequirements.addReceiver(new AID(receiver, AID.ISLOCALNAME));
 askForRequirements.setConversationId("Fixation");
 askForRequirements.setContent(reqsForThisFailure.toString());
 askForRequirements.setOntology("FailureModesOntology");
 send(askForRequirements);

 stringBuilder.append("\n" + "---------------"
 + "\n" + "Request message has been sent to: " + receiver
 + "\n" + "Content: " + reqsForThisFailure.toString()
 + "\n" + "---------------");

 myGui.info.setText(stringBuilder.toString());

 /**
 there might be a group of inventories or more requirement providers
 which can demand a loop code through a list which each item matching
 specific requirements
 */

 }

 else {

 System.out.println("no requirements are identifies for this failure mode");

 }

 System.out.println("------------------------");

 }

 else if(cId.equalsIgnoreCase("Alarms")) {

Appendix

150

 // retrieve action from FMEA Alarm Actions
 }

 else {

//output the message information
System.out.println("message from an unknown source!");
System.out.println("the sender of the message is: " + msgFromAnalyzer.getSender());
System.out.println("the content of the message is: " + msgFromAnalyzer.getContent());
System.out.println("---------------------------");
 }
 }

}
 }

 private class RequestPerformer extends Behaviour {
 /**
 *
 */
 private static final long serialVersionUID = 1L;
 private AID bestProvider; // The agent who provides the best offer
 private int lowestCost; // The best offered price
 private int repliesCnt = 0; // The counter of replies from seller agents
 private MessageTemplate mt; // The template to receive replies
 private int step = 0;

 public void action() {
 switch (step) {
 case 0:

 // Send the cfp to all sellers
 ACLMessage cfp = new ACLMessage(ACLMessage.CFP);
 for (int i = 0; i < offerProviders.length; ++i) {
 cfp.addReceiver(offerProviders[i]);
 }
 cfp.setContent(failedResource);
 cfp.setConversationId("Resource-Utilization");
 cfp.setReplyWith("cfp"+System.currentTimeMillis()); // Unique value
 myAgent.send(cfp);
 // Prepare the template to get proposals
 mt = MessageTemplate.and(MessageTemplate.MatchConversationId("Resource-Utilization"),

 MessageTemplate.MatchInReplyTo(cfp.getReplyWith()));
 step = 1;

break;
case 1:
 // Receive all proposals/refusals from seller agents
 ACLMessage reply = myAgent.receive(mt);
 if (reply != null) {
 // Reply received
 if (reply.getPerformative() == ACLMessage.PROPOSE) {
 // This is an offer

 int price = Integer.parseInt(reply.getContent());
 String sendername = reply.getSender().toString();
 offerPrice.put(sendername, price);

Appendix

151

 if (bestProvider == null || price < lowestCost) {
 // This is the best offer at present
 lowestCost = price;
 bestProvider = reply.getSender();
 }
 }
 repliesCnt++;
 if (repliesCnt >= offerProviders.length) {
 // We received all replies
 step = 2;
 }
 }
 else {
 block();
 }
 break;
 case 2:
 // Send the purchase order to the seller that provided the best offer
 ACLMessage order = new ACLMessage(ACLMessage.ACCEPT_PROPOSAL);
 order.addReceiver(bestProvider);
 order.setContent(failedResource);
 order.setConversationId("Resource-Utilization");
 order.setReplyWith("order"+System.currentTimeMillis());
 myAgent.send(order);
 // Prepare the template to get the purchase order reply
 mt = MessageTemplate.and(MessageTemplate.MatchConversationId("Resource-Utilization"),

 MessageTemplate.MatchInReplyTo(order.getReplyWith()));
 step = 3;
 break;
 case 3:
 // Receive the purchase order reply
 reply = myAgent.receive(mt);
 if (reply != null) {
 // Purchase order reply received
 if (reply.getPerformative() == ACLMessage.INFORM) {
 // Purchase successful. We can terminate
 System.out.println(failedResource + " successfully purchased from agent "
 + reply.getSender().getName());
 System.out.println("Price = " + lowestCost);

 stringBuilder.append("\n" + "Failed resource is: " + failedResource
 + "\n" + " --------------- "
 + "\n" + " --- Negotiation Reaults --- "
 + "\n" + " Available offerces were: " + offerPrice.values()
 + "\n" + failedResource + " is to be substituted from: "
 + "\n" + reply.getSender().getName()
 + "\n" + "price = " + lowestCost);

 myGui.info.setText(stringBuilder.toString());

 }
 else {
 System.out.println("Attempt failed: requested resource is not available anymore.");
 }

 step = 4; // TODO double check this
 fmReport = null;
 failedResource = null;
 repliesCnt = 0;

Appendix

152

 }
 else {
 block();
 }
 break;
 }
 }

 public boolean done() {
 if (step == 2 && bestProvider == null) {
 System.out.println("Attempt failed: "+failedResource+" not available for sale");
 }
 return ((step == 2 && bestProvider == null) || step == 4);
 }
 } // End of inner class RequestPerformer

class DmGui extends JFrame {

 /**
 *
 */
 private static final long serialVersionUID = 1L;

 private JTextArea info;

 DmGui(DecisionMakerAgent dm) {
 super(dm.getLocalName());

 JPanel p = new JPanel();
 p.setLayout(new GridLayout(2,1));

 p.add(new JLabel(" Negotiation Result "));
 info = new JTextArea(10,50);
 p.add(info);
 getContentPane().add(p, BorderLayout.CENTER);
 getContentPane().add(info, BorderLayout.CENTER);
}

 public void showGui() {
 pack();
 Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
 int centerX = (int)screenSize.getWidth() / 2;
 int centerY = (int)screenSize.getHeight() / 2;
 setLocation(centerX - getWidth() / 2, centerY - getHeight() / 2);
 super.setVisible(true);
 }
}

}

Agent: Monitoring agent

package multiAgentSystems;

import java.util.Collections;

Appendix

153

import jade.core.AID;
import jade.core.Agent;
import jade.core.behaviours.OneShotBehaviour;
import jade.lang.acl.ACLMessage;

public class Monitor extends Agent {

 /**
 *
 */
 private static final long serialVersionUID = 1L;

 static java.util.List<String> errors;
 private MonitoringGui myGui;

 public void setup(){

 System.out.println("------------------------");
 System.out.println("Monitoring agent " + getAID().getLocalName() + " is on");

 errors = new java.util.ArrayList<String>();
 myGui = new MonitoringGui(this);
 myGui.showGui();
 System.out.println("------------------------");

 }

 public void monitoredValues(final java.util.List<String> anomalies) {
 addBehaviour(new OneShotBehaviour() {
 /**
 *
 */
 private static final long serialVersionUID = 1L;

 public void action() {
 errors = anomalies;
 System.out.println("Anomalies found as: " + anomalies);
 if (errors != null) {

 Collections.sort(errors);
 String report = errors.toString();
 System.out.println("Monitoring agent found " +
errors.size() + " anomalies: " + errors);

 ACLMessage inform = new ACLMessage(ACLMessage.INFORM);
 inform.addReceiver(new AID("Analyzer", AID.ISLOCALNAME));
 inform.setContent(report);
 inform.setConversationId("AnomalyReport"); // to distinguish
anomaly inform message from alarms
 inform.setOntology("FailureModesOntology");
 send(inform);
 System.out.println("message sent to Analyzer: " +
inform.getContent());

 }
 }
 }
);
 }
 }

Appendix

154

Agent: Monitoring agent (interface)

package multiAgentSystems;

import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.GridLayout;
import java.awt.Toolkit;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.util.Arrays;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.JTextField;

class MonitoringGui extends JFrame {
 /**
 *
 */
 private static final long serialVersionUID = 1L;

 private Monitor myAgent;

 private JTextField anomalyField;

 MonitoringGui(Monitor monitor) {
 super(monitor.getLocalName());

 myAgent = monitor;

 JPanel p = new JPanel();
 p.setLayout(new GridLayout(1, 2));
 p.add(new JLabel("Anomalies List"));
 anomalyField = new JTextField(20);
 p.add(anomalyField);

 getContentPane().add(p, BorderLayout.CENTER);

 JButton addButton = new JButton("Add");
 addButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ev) {
 try {
 String input = anomalyField.getText().trim();
 String[] titlesplit = input.split("\\, ");
 java.util.List<String> title = Arrays.asList(titlesplit);

 myAgent.monitoredValues(title);
 anomalyField.setText("");

 }
 catch (Exception e) {
JOptionPane.showMessageDialog(MonitoringGui.this, "Invalid values. "+e.getMessage(), "Error",
JOptionPane.ERROR_MESSAGE);

Appendix

155

 }
 }
 });
 p = new JPanel();
 p.add(addButton);
 getContentPane().add(p, BorderLayout.SOUTH);

 // Make the agent terminate when the user closes
 // the GUI using the button on the upper right corner
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 myAgent.doDelete();
 }
 });

 setResizable(false);
 }

 public void showGui() {
 pack();
 Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
 int centerX = (int)screenSize.getWidth() / 2;
 int centerY = (int)screenSize.getHeight() / 2;
 setLocation(centerX - getWidth() / 2, centerY - getHeight() / 2);
 super.setVisible(true);
 }
}

Agent: Offer simulator agent

package multiAgentSystems;

import jade.core.Agent;
import jade.core.behaviours.*;
import jade.lang.acl.ACLMessage;
import jade.lang.acl.MessageTemplate;
import jade.domain.DFService;
import jade.domain.FIPAException;
import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain.FIPAAgentManagement.ServiceDescription;

import java.util.*;

public class OfferSimulator extends Agent {
 /**
 *
 */
 private static final long serialVersionUID = 1L;
 // saving offers
 private Hashtable<String, Integer> catalogue;
 // The GUI for offer providers
 private OfferSimulatorGui myGui;

 protected void setup() {

 catalogue = new Hashtable<String, Integer>();

 myGui = new OfferSimulatorGui(this);

Appendix

156

 myGui.showGui();

 // Register the offer in the yellow pages
 DFAgentDescription dfd = new DFAgentDescription();
 dfd.setName(getAID());
 ServiceDescription sd = new ServiceDescription();
 sd.setType("Offer-Providing");
 sd.setName("Resource-Negotiation");
 dfd.addServices(sd);
 try {
 DFService.register(this, dfd);
 }
 catch (FIPAException fe) {
 fe.printStackTrace();
 }

 // Add the behaviour for queries from decisionmaker
 addBehaviour(new OfferRequestsServer());

 // Add the behaviour for requests from decisionmaker
 addBehaviour(new PurchaseOrdersServer());
 }

 protected void takeDown() {

 try {
 DFService.deregister(this);
 }
 catch (FIPAException fe) {
 fe.printStackTrace();
 }
 // Close the GUI
 myGui.dispose();

System.out.println("Offer Simulator-agent "+getAID().getName()+" is terminating.");
 }

 public void updateCatalogue(final String resName, final int cost) {
 addBehaviour(new OneShotBehaviour() {
 /**
 *
 */
 private static final long serialVersionUID = 1L;

 public void action() {
 catalogue.put(resName, new Integer(cost));
 System.out.println(resName+" inserted into catalogue. Price = "+cost);
 }
 });
 }

 private class OfferRequestsServer extends CyclicBehaviour {
 /**
 *
 */
 private static final long serialVersionUID = 1L;

 public void action() {

Appendix

157

 MessageTemplate mt = MessageTemplate.MatchPerformative(ACLMessage.CFP);
 ACLMessage msg = myAgent.receive(mt);
 if (msg != null) {
 // Mesg received
 String resName = msg.getContent();
 ACLMessage reply = msg.createReply();

 Integer cost = (Integer) catalogue.get(resName);
 if (cost != null) {
 // The requested resource is available. Reply with the price
 reply.setPerformative(ACLMessage.PROPOSE);
 reply.setContent(String.valueOf(cost.intValue()));
 }
 else {
 // The requested resource is NOT available.
 reply.setPerformative(ACLMessage.REFUSE);
 reply.setContent("not-available");
 }
 myAgent.send(reply);
 }
 else {
 block();
 }
 }
 }

 private class PurchaseOrdersServer extends CyclicBehaviour {
 /**
 *
 */
 private static final long serialVersionUID = 1L;

 public void action() {
 MessageTemplate mt =
MessageTemplate.MatchPerformative(ACLMessage.ACCEPT_PROPOSAL);
 ACLMessage msg = myAgent.receive(mt);
 if (msg != null) {
 // ACCEPT_PROPOSAL Msg received
 String resName = msg.getContent();
 ACLMessage reply = msg.createReply();

 Integer cost = (Integer) catalogue.remove(resName);
 if (cost != null) {
 reply.setPerformative(ACLMessage.INFORM);
 System.out.println(resName+" sold to agent "+msg.getSender().getName());
 }
 else {

 // The requested resource is not available anymore for some reasons.
 reply.setPerformative(ACLMessage.FAILURE);
 reply.setContent("not-available");
 }
 myAgent.send(reply);
 }
 else {
 block();
 }
 }
 }
}

Appendix

158

Agent: Offer simulator agent (interface)

package multiAgentSystems;

import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.GridLayout;
import java.awt.Toolkit;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.JTextField;

class OfferSimulatorGui extends JFrame {
 /**
 *
 */
 private static final long serialVersionUID = 1L;

 private OfferSimulator myAgent;

 private JTextField resField, costField;

 OfferSimulatorGui(OfferSimulator a) {
 super(a.getLocalName());

 myAgent = a;

 JPanel p = new JPanel();
 p.setLayout(new GridLayout(2, 2));
 p.add(new JLabel("Resource Name:"));
 resField = new JTextField(15);
 p.add(resField);
 p.add(new JLabel("Cost:"));
 costField = new JTextField(15);
 p.add(costField);
 getContentPane().add(p, BorderLayout.CENTER);

 JButton addButton = new JButton("Add");
 addButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ev) {
 try {
 String title = resField.getText().trim();
 String price = costField.getText().trim();
 myAgent.updateCatalogue(title, Integer.parseInt(price));
 resField.setText("");
 costField.setText("");
 }
 catch (Exception e) {

Appendix

159

JOptionPane.showMessageDialog(OfferSimulatorGui.this, "Invalid values. "+e.getMessage(),
"Error", JOptionPane.ERROR_MESSAGE);
 }
 }
 });
 p = new JPanel();
 p.add(addButton);
 getContentPane().add(p, BorderLayout.SOUTH);

 // Make the agent terminate when the user closes
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 myAgent.doDelete();
 }
 });

 setResizable(false);
 }

 public void showGui() {
 pack();
 Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
 int centerX = (int)screenSize.getWidth() / 2;
 int centerY = (int)screenSize.getHeight() / 2;
 setLocation(centerX - getWidth() / 2, centerY - getHeight() / 2);
 super.setVisible(true);
 }
}

