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Abstract

In this thesis, we investigate various robustness issues ofspeech recognition

and spoken language understanding models in a telephone-based spoken di-

alog system. We also show the feasibility of building a robust, multi-domain

telephone-based spoken dialog system framework that can beseamlessly used

for multiple application domains in different languages while using domain-

dependent resources.

In automatic speech recognition, some level of robustness can be achieved

by using domain-specific recognition resources. In addition, the existence

of considerable acoustic similarity within speakers of thesame gender, ac-

cent, and age-group suggests that the use of user-group dependent acoustic

models can give improved recognition performance. In this thesis, we group

users based on gender and accent to exploit the shared vocal characteristics of

speakers in the same group. We show that a tremendous performance boost

can be obtained by efficiently tailoring gender-dependent acoustic models

trained on native US-English speech data to the particular vocal character-

istics of German-accented English speakers. We also demonstrate the effec-

tiveness of cross-language accent adaptation where nativeGerman enrollment

data is used to adapt native US-English acoustic models to the German ac-

cent. To use group-dependent acoustic models, one has to discern the group

(i.e., gender and/or accent) of a speaker from a spoken utterance. Most cur-

rent approaches to accent recognition use accented speech data to train an

accent recognizer. In this thesis, we demonstrate a high-performance accent

recognizer that can be trained on a merger of native speech data of two or

more languages. We also build a gender recognizer using cepstral features

and effectively use it to load the acoustic model corresponding to the recog-

nized gender.



In the domain of spoken language understanding, we introduce a new ap-

proach to hierarchical semantic modeling that enriches a recognized utter-

ance with semantic information at various levels of detail.The model is es-

sentially built by grouping semantically and hierarchically related low-level

concepts into higher level structures using prior domain knowledge and train-

ing examples. The proposed model possesses a number of features; namely,

it offers a remarkable ambiguity resolution ability, high predictive power and

produces a structured, semantically rich information thatis convenient for

dialog management. Moreover, it is robust in that it successfully deals with

utterances containing unseen observations, and a significant percentage of

out-of-vocabulary words can be correctly labeled using thesurrounding con-

text. Besides, the model allows us to safely ignore semantically irrelevant

speech recognition errors. The model is also suited to properly handle noisy

input containing false starts, filled pauses, hesitations,etc. More importantly,

the model can be readily trained on completely unlabeled data with relatively

less human supervision. The required additional human effort to design the

proposed hierarchical model is much less than the laboriousand error-prone

semantic annotation of a training data set or hand-craftinga semantic gram-

mar as no particular linguistic expertise is required. Furthermore, the re-

sulting hierarchical model outperforms the flat-concept model and has been

successfully used in our demonstration system.

We demonstrate our approaches on two corpora in two application domains;

namely, airline travel planning in English (©2001 Communicator Evaluation)

and train information inquiries in German (©ERBA). After carefully build-

ing the required recognition resources for each application, we evaluate the

performance of the models in real-time use and the usabilityof the system as

a whole with actual test users. In general, the results obtained are promising

while rooms for improvement have been identified.

Most of the presented approaches in this thesis have been published in appro-

priate international media.
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Chapter 1

Introduction

Speech is an efficient, high-capacity output channel that ismostly the preferred modal-

ity of communication in human-to-human interaction. Speech can also serve as a high-

capacity input medium in human-machine interaction as mostcomputer users speak much

faster than they can type. As a communication medium, speechis the preferred mode of

interaction in hands and eyes busy environment (e.g. driving), for communication across

distances (e.g. through the telephone), in situations where input terminals or keyboards

are unavailable and more importantly to people with visual disabilities. However, speech

is not always the best communication modality for human-machine interaction due to the

inherently sequential nature of speech. In particular, unlike Web-based graphical user in-

terfaces, there is no way to present more than one piece of information at a time. This

imposes significant cognitive demand on users as they have tocarefully listen to the list

of available options before they can proceed to the next action. Nevertheless, with care-

ful design, speech-enabled applications can provide the required service with reasonable

performance in a more natural way in situations where speechis the preferred mode of

communication as noted above.

The telephone is one of the most available and the most widelyused communication

device that plays a vital role for communication at a distance. The ubiquity of speech and

the availability of the telephone can be put together in a telephone-based spoken dialog

system toward the goal of accessing information at anytime from anywhere. In particu-

lar, telephone-based spoken dialog systems can be very economic solutions for handling

information inquiry services such as train timetable information, weather information,

1



1. INTRODUCTION

airline travel planning, etc. in that they reduce waiting time, extend opening hours and

users need not physically be at an Internet-connected PC or at a service station.

A telephone-based spoken dialog system mainly comprises ofan interface to a tele-

phone network to deliver calls into the system, an automaticspeech recognition engine for

recognizing a spoken utterance, a spoken language understanding component to extract

the meaning of the recognized utterance, a mechanism for response generation, an audio

output module for playing prompts and responses to the caller (e.g. via text-to-speech

synthesis), and a dialog manager to orchestrate the variouscomponents.

As can be imagined, building a telephone-based spoken dialog system requires knowl-

edge and expertise from a large spectrum of disciplines. Briefly, it involves tasks including

signal processing, automatic speech recognition, spoken language understanding, speech

synthesis, dialog management, telephony interface development, etc. each of which is a

demanding task per se. In this thesis, we investigate various robustness and performance

issues for automatic speech recognition and introduce a newapproach that partly solves

the spoken language understanding problem. In order to demonstrate the performance

of the various models that we build in this thesis, we set up a flexible, multi-domain

telephone-based spoken interaction system framework using existing standards, tools, ap-

plication programming interfaces, etc.

The steps taken are briefly described here as they will be fully described in later chap-

ters. The first task involves the identification of suitable tools, standards and APIs to

realize the envisaged system. One of the first design choicesmade was to use the World

Wide Web Consortium’s (W3C) standard; namely, the Voice eXtensible Markup Lan-

guage (VoiceXML) to script the dialog between the caller andthe system mainly due to

its convenience. To complement VoiceXML with advanced telephony control functions

we use the Call Control eXtensible Markup Language (CCXML) of the same standard

body. To interpret the VoiceXML and CCXML documents, we acquire a third party

framework that provides VoiceXML and CCXML interpreters along with open interfaces

for the integration of our own components. Then, we built ourown components; namely,

the telephony interface component, the automatic speech recognition module along with

a grammar component and the semantic interpreter. These arethen integrated within the

VoiceXML framework. Once the system components are built and integrated, the corre-

sponding recognition resources are developed where our scientific contribution lies.
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1.1 Statement of the Problem

1.1 Statement of the Problem

Many practical spoken dialog systems aim to provide information in a specific application

domain. For instance, ATIS1 (Hemphill et al., 1990), Pegasus (Zue et al., 1994), Mercury

(Seneff and Polifroni, 2000), and the multi-site DARPA2 Communicator systems (Walker

et al., 2002) all play the role of a travel agent interacting with a user inthe domain of air-

line travel planning and reservation. This is reasonable, as domain-dependent applications

can achieve optimal performance by using domain-specific resources. However, a spoken

dialog system framework should not be tied to one application domain but should be used

for multiple application domains that use different domain-specific resources. The sys-

tem then should be able to switch between applications and/or languages at runtime as

requested by the user.

The main objective of this thesis is to investigate various robustness issues in a spo-

ken dialog system and to build robust automatic speech recognition and spoken language

understanding models. In addition to this, we show the feasibility of building a robust,

plug-and-play telephone-based spoken dialog system framework that can be used for mul-

tiple application domains in different languages while using domain-specific resources.

By robustness we mean the ability of a system to gracefully deal with unseen, unex-

pected, and/or degraded input. For instance, channel, accent and environmental mismatch

have a serious negative influence in the performance of an automatic speech recognition

system. A robust system, therefore, should be one that is able to work with a wide spec-

trum of users including foreign-accented speakers, a variety of channel and environmental

conditions, etc. without a significant loss of performance.

The automatic speech recognition component of a spoken dialog system is one of

the most decisive components that determine the usefulnessand user acceptance of the

whole system. Therefore, building a robust and flexible speech recognizer is a key issue

in the development of a telephone-based spoken dialog system. Automatic speech recog-

nition per se is a challenging task and it becomes even more demanding when it has to be

performed over the telephone due to the bandwidth limitation of the telephone channel.

Telephone uses an 8 kHz audio sampling rate, which may considerably degrade the input

speech. Besides, different types of telephone handsets mayhave varying microphone and

transmission quality (Junqua and Haton, 1995) which makes the problem more difficult.

1Airline Travel Information System
2Defense Advanced Research Projects Agency
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Moreover, as the speech may come from an uncontrolled environment, the background

noise could degrade the input speech further.

In general, the challenges of a telephone-based automatic speech recognition task

include:

• Acoustic variability that results from changes in training and testing environment.

• Intra-speaker variability due to changes in the speaker’sphysical and emotional

state.

• Inter-speaker variability that results from differencesin accent, dialect, vocal tract

size and shape.

• Channel variability due to different kinds of telephone apparatus with varying mi-

crophones and transmission quality.

The best recognition performance in a spoken dialog system can, in principle, be

achieved by using speaker-dependent models specifically tailored to the vocal character-

istics of each user of the system using a large amount of training data from each user.

This is, however, practically infeasible. On the other hand, a reasonable performance can

be obtained by using a speaker-independent model trained ona huge corpus that captures

a wide spectrum of speakers, environments, channels and application domains. How-

ever, such a huge training data is often unavailable. A good compromise to achieve some

level of robustness and better performance is to use domain-specific and group-dependent

recognition resources.

Although very essential, the correct recognition of what issaid alone can hardly serve

any purpose in a spoken dialog system without the correct comprehension of what is

meant. A spoken language understanding (SLU) component in aspoken dialog system is

responsible to extract the intention of a user from a recognized utterance. SLU can be easy

for narrow application domains where users are restricted in the way they can formulate

their requests and the vocabulary size is very small. However, if a spoken dialog system

allows a more natural conversation, the task becomes more demanding because sponta-

neous speech often contains noisy input such as false starts, filled pauses, hesitations,

etc. Moreover, the occurrence of words not seen in the training data of the model (i.e.
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out-of-vocabulary words) become inevitable. Hence, robustness in a spoken language un-

derstanding model involves dealing with these effects of natural language. Accordingly,

we introduce a robust semantic model that gracefully deals with noisy input and unseen

observations. The model essentially enriches the output ofthe speech recognizer with

semantic and hierarchical information that can later be used to easily infer the intention

underlying a spoken utterance in a given dialog state.

To guarantee an effective and caller-friendly remote access to real-time information,

the design of a good telephony interface is vitally important. Without a good telephony

interface, any speech-enabled application will be of no or limited value to users. Dialog

design or the design of the system-caller interaction can also highly influence the caller

experience and productivity of the system. If the dialog is not intuitive to callers, users

may lose confidence in the system and the system may become futile due to poor dialog

design. Therefore, the quality of the dialogs and the dialogmanagement strategies are as

important as the quality of the other components making up a spoken dialog system. As

a result, due effort needs to be put to design intuitive, natural-like dialogs to allow users

to articulate their requests in a certain order in a chosen application domain.

Building systems that allow completely unconstrained and human-like natural lan-

guage interactions is a very complex task as the current state of automatic speech recog-

nition (ASR) and spoken language understanding technologies are far from what the task

requires. Therefore, a system developer has to strike the right balance between the level of

flexibility that must be allowed and the recognition performance of the system. One com-

promise is to allow varying degrees of freedom based on how well the system is working

with a user; i.e., using fairly relaxed language models and dialog control strategies under

normal circumstances and switching to more constrained grammars and dialog strategy

when task completion is at risk.

In summary, we aim to achieve robustness through:

• The use of group-dependent acoustic models based on genderand accent to exploit

the shared vocal characteristics of a group of users.

• Effective utilization of prior domain knowledge to build models that can compen-

sate for recognition errors and natural language effects (e.g. by using dialog state-

specific grammars (language models) and domain-specific semantic model).

• The use of a new, hierarchical semantic model that possesses various robustness

features. The model will be discussed in detail in Chapter6. The main features of

the new semantic model is briefly summarized in the next section.
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1.2 Contributions of the Thesis

The thesis covers a wide range of topics including speech recognition, automatic gen-

der and accent identification, spoken language understanding, dialog management, and

evaluation of a spoken dialog system. In addition, we set up amulti-domain telephone-

based spoken dialog system framework that can use domain-specific and group-dependent

recognition resources. The system is based on ©OptimTalk VoiceXML framework in

which we integrated our own telephony interface component,speech recognition engine

and spoken language understanding unit.

In summary, we consider the key contributions of this thesisto be the following.

1. (Chapters6, 8): We introduce a new approach to semantic modeling that:

• Unlike most conventional data-driven approaches to spoken language under-

standing, requires no semantically labeled training data.

• Captures hierarchical relationship between concepts in an utterance.

• Outperforms the conventional flat-concept approach in terms of performance,

ambiguity resolution ability, predictive power and information richness of the

output.

• Effectively accounts for observations not seen in the training data of the se-

mantic model.

• Uses the encoded context to correctly label out-of-vocabulary (OOV) words.

• Properly handles the effects of spontaneous speech such ashesitations, false

starts, filled pauses, etc.

• Allows us to safely ignore recognition errors in semantically irrelevant words

and frequently confused semantically equivalent expressions (e.g. six vs.

sixth, eighth vs. eight, yes vs. yeah, etc.).

• Is easily extensible to include new requirements or business rules.

• Can produce output at different levels of detail and is convenient for dialog

management.
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2. (Chapters2, 5, 8): Most current approaches to accent recognition use a database

consisting of accent sensitive phrases spoken by foreign speakers or a combination

of accented speech data and acoustic features such as energy, duration, pitch, for-

mant frequencies, etc. In this thesis, we introduce a high-performance automatic

accent recognizer that can be trained on a merger of native speech data of two

or more accent groups. Experimental results show that accent-related information

could be effectively captured from the native language speech of a speaker. We also

investigate various cepstral features in search of those that are particularly suitable

for accent recognition.

3. (Chapters2, 5, 8): Pitch is known to be a very strong cue to reliably estimate the

gender of an adult speaker from a spoken utterance. However,in telephone speech

the pitch information is either very weak or missing due to the band-limiting effect

of the telephone channel. Therefore, we use cepstral features to build an automatic

gender recognition system that can reliably discern the gender of a speaker from

a single-word utterance. We also investigate various cepstral features in search

of those that are particularly suitable for gender recognition in a telephone-based

spoken dialog system.

4. (Chapters2, 5, 8): Though not particularly novel, we also demonstrate a more

productive use of within-language and cross-language accent adaptation to tailor an

acoustic model trained on native US-English speech data to the vocal characteristics

of German-accented English speakers.

5. (Chapters5, 8): An extensive investigation in search of optimal parameters for

the speech recognition models in our telephone-based spoken dialog system is also

presented.

1.3 Application of Results

The primary areas of concern in this thesis are robustness issues in speech recognition and

spoken language understanding components of a telephone-based spoken dialog system.
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One of the outputs of this work is a generic telephone-based spoken dialog system frame-

work that can be used with different compatible recognitionresources for various appli-

cation domains in possibly different languages. The framework can serve as a test-bed

for various scientific investigations on speech recognition resources. Besides, the frame-

work can be used in various application domains to provide a real service to users using

a more natural mode of interaction. Furthermore, new approaches to semantic modeling

and accent recognition are proposed which could be used for various application domains

in any language. The performance of the system and the modelswe built are evaluated

with actual test users under real world conditions in two application domains. The frame-

work can also be extended for use in other applications such as speaker identification and

verification task.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows. In Chapter2 we present an organized

and integrated summary of literature relevant to the various topics of interest that show

what has been done and the significance of our work. We presenta historical overview

and state-of-the-art approaches to spoken dialog systems,automatic speech recognition,

user-group dependent acoustic modeling and spoken language understanding. In Chapter

3 we present a general description of the tools, methods and techniques that we will use

in carrying out the research. Chapter4 provides an overall description of the system; i.e.,

how the various components that make up the envisaged systemare developed and put to-

gether. The architecture and a conceptual usage scenario ofthe system are also presented.

In Chapter5 we present the fundamentals of automatic speech recognition along with the

description of the methods we use to exploit group-dependent characteristics to improve

speech recognition performance. Chapter6 describes the new, proposed approach to se-

mantic modeling that partly solves the spoken language understanding problem. In Chap-

ter7 a brief description of spoken language interactions, dialog initiatives, dialog control

strategies and dialog design principles is presented. The approach we used to evaluate our

spoken dialog system is also described. The data used, the experiments carried out and

the discussions of the results obtained in the various experiments are presented in Chapter

8. Finally, concluding remarks and recommendations are given in Chapter9.
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Chapter 2

Review of State-of-the-Art Research

2.1 Introduction

In this chapter we provide a historical overview of the various topics of interest in spoken

dialog systems. We also present analysis of the methods and approaches used in spoken

dialog system development, automatic speech recognition,automatic gender and accent

recognition, accent adaptation techniques and spoken language understanding as they re-

late to our work. We also provide a brief description of the motivation and justification

for the various tasks undertaken in this endeavor within thecontext of the state-of-the-art.

2.2 Spoken Dialog Systems

Research in dialog systems, in general, can be traced back tothe 1960s. The early systems

such as BASEBALL (Green et al., 1963) and LUNAR (Woods et al., 1972) were essen-

tially question answering systems in limited domains and did not have dialog capabilities.

In the 1970s systems such as SHRDLU (Winograd, 1972) and GUS (Bobrow et al., 1977)

were developed that offered users the opportunity to converse with computer-based sys-

tems in order to perform a task or to get information using natural language interfaces.

However, the input modality in the earliest dialog systems was typed natural language

(McTear, 2004). It is since the late 1980s that spoken dialog systems have emerged as a

result of the two large government funded projects; namely,the DARPA program of the
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2. REVIEW OF STATE-OF-THE-ART RESEARCH

United States and the Esprit SUNDIAL1 program of Europe (McTear, 2004). The ATIS

(Hemphill et al., 1990) and the Communicator (Walker et al., 2002) projects of DARPA

were mainly concerned with the domain of airline travel planning while the SUNDIAL

project was concerned with flight and train schedules in English, French, German and

Italian (Peckham, 1993). After SUNDIAL project, a number of projects in spoken dialog

modeling have evolved such as Verbmobil (Wahlster, 1993), RAILTEL (Bennacef et al.,

1995), ARISE (Os et al., 1999), DISC (Bernsen and Dybkjær, 1997), and the Philips

automatic train timetable information system (Aust et al., 1995).

While ATIS and SUNDIAL projects focus on single domain inquiries and use less

flexible dialog strategies, the DARPA Communicator systemsare more advanced in that

they support mixed initiative conversational interactionand provide meeting coordination

and travel planning services.

The core of the Communicator systems is based on MIT’s distributed Galaxy II archi-

tecture (Seneff et al., 1998) where a number of servers interact with each other through

a hub. The Galaxy architecture is mainly composed of an audioserver that answers in-

coming calls, plays prompts and records incoming user input; a speech recognizer to

recognize spoken requests; a confidence server to detect andreject misrecognized units

at the concept level using acoustic and language model features from the recognizer; a

text-to-speech (TTS) synthesis engine; a language generator; a language understanding

component; a dialog manager and a back-end component. At thecore of the Galaxy ar-

chitecture is a hub that acts as a router to send frames between servers. The use of such an

architecture established a standard for dozens of groups working on dialog management

and speech recognition issues in the project.

Several systems have been developed under the multi-site DARPA program. They all

use the Galaxy architecture described above and target the same application domain but

differ in a number of aspects. For instance:

• The CMU Communicator system (Rudnicky et al., 2000) uses the Sphinx II decoder

in a real-time mode, state-specific language models, and thePhoenix parser (Ward

and Issar, 1996) using domain-specific semantic grammar.

• The AT&T Communicator system (Levin et al., 2000) uses the AT&T Watson con-

tinuous speech recognition engine (Sharp et al., 1997) that supports audio barge-in

1Speech UNderstanding in DIALog
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capabilities and the CHRONUS (Pieraccini and Levin, 1993)1 spoken language un-

derstanding system.

• MIT’s Mercury flight reservation system (Seneff and Polifroni, 2000) uses the TINA

(Seneff, 1992) language understanding system and a dialog control strategy based

on a set of ordered rules as a mechanism to manage complex interactions.

• The Communicator system of the University of Colorado (Ward and Pellom, 1999)

uses CMU’s Sphinx II recognizer with a class trigram language model, a modified

version of the Phoenix parser and event-driven dialog manager in which the current

context of the system is used to decide what to do next.

Jupiter (Zue et al., 2000) of MIT is another example of a conversational interface

using the Galaxy architecture which provides access to online weather information for

over 500 cities world wide over the telephone. Voyager (Glass et al., 1995) and Pegasus

(Zue et al., 1994) of MIT are other examples of domain-specific spoken dialog systems in

the domains of urban navigation and online-airline reservation, respectively.

The TRAINS (Allen et al., 1996) and its successor TRIPS (Ferguson and Allen, 1998)

are other popular research efforts towards task-oriented conversational dialog systems de-

veloped at the University of Rochester. The TRAINS system involves the scheduling of a

railroad freight system which is later extended to a more complex logistics and transporta-

tion problem in the TRIPS project. Like the DARPA communicator, TRIPS consists of a

set of components that pass messages to one another through ahub, using the so-called

Knowledge Query and Manipulation Language (KQML). The components of the system

can be divided into three groups; namely, modality processing components, dialog man-

agement components and specialized reasoners. The modality processing components

include speech recognition, speech generation, graphicaldisplays and gestures while the

dialog management components are responsible for managingthe ongoing conversation,

interpreting user communication in context and selecting the next communicative actions

to perform in response. The specialized reasoners, on the other hand, help to solve hard

problems such as planning courses of actions, scheduling sets of events or simulating the

execution of plans.

1Conceptual Hidden Representation of Natural Unconstrained Speech
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The spoken dialog systems discussed above differ in the architecture they use, the

complexity of the task they target, the type of initiative they support, the dialog control

strategy they employ and the system components they use. However, they share one

common distinguishing feature – they are all domain or task oriented. When dealing

with domain-specific applications, the use of domain-dependent resources is beneficial to

achieve optimal recognition performance. However, a dialog system should be open to

support multiple application domains without compromising performance. One of the ob-

jectives of this endeavor is, therefore, to build a robust, multi-domain spoken dialog sys-

tem framework that covers multiple application domains possibly in different languages

while using domain-dependent resources.

Once the the envisaged framework that can robustly carry outmedium-length dialogs

for multiple application domains while using domain-dependent resources is realized,

we investigate the various robustness issues in telephone-based speech recognition and

spoken language understanding. In particular, we introduce a new approach to spoken

language understanding that essentially takes the output of the speech recognizer and

semantically enriches it with hierarchically structured information which make the output

convenient for dialog management.

For the sake of optimal performance, we use user-group dependent acoustic models

and dialog state-specific language models. We use VoiceXML for dialog authoring and

CCXML for writing the call handling policy. We use the HiddenMarkov Model Toolkit

(HTK) to build recognition resources and its multi-threaded API (ATK) to build a real-

time speech recognizer integrated in a VoiceXML framework.We bring the convenience

of VoiceXML for dialog authoring and the flexibility and power of HTK-based speech

recognizers together to realize a robust telephone-based spoken language interaction sys-

tem. We also aim to keep the development cost (in monetary terms) low.

2.3 Automatic Speech Recognition

Research in speech recognition technology can be traced back to the 1950s. One of the

early speech recognizers is that of Bell Laboratories (Davis et al., 1952) that recognizes

isolated digits from a single speaker by filtering the speechsignal into first and higher

formant frequency bands and measuring the formant frequencies in the vowel regions

of each digit. In the 1960s several special-purpose deviceswere built for the purpose
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of recognizing a small number of isolated words in the order of 10–100 words (Nagata

et al., 1963; Sakai and Doshita, 1962). Speech recognition systems have become a topic

of great interest not only to researchers but also to the general public since the inspira-

tional movie of Stanley Kubrick "2001: A Space Odyssey" in 1968 where an intelligent

computer named "HAL" spoke in a human-like voice and was ableto understand fluently

spoken speech (Juang and Rabiner, 2005). In 1970s advances in the use of pattern recog-

nition ideas in speech recognition was demonstrated (Velichko and Zagoruyko, 1970),

techniques of dynamic programming were advanced (Sakoe and Chiba, 1978) and the use

of linear predictive coding (LPC) to speech recognition wasshown (Itakura, 1975). Major

advances in large vocabulary speech recognition systems have started in the 1980s mainly

as a result of the advent of statistical methods such as the hidden Markov model (HMM)

and stochastic language models.

In general, the various approaches that have been pursued over the years can be

broadly classified in to four classes; namely, template matching, statistical methods, artifi-

cial neural networks and knowledge-based approaches. Template matching and knowledge-

based approaches where competing paradigms in the 1970s. Since the 1980s, the statisti-

cal approach has become the dominant paradigm for automaticspeech recognition mainly

due to its superior performance and ease of modeling.

Despite the significant advances in the various fields that comprise a conversational

speech recognition, a machine that can pass the Turing test (Turing, 1950) with perfor-

mance comparable to humans is still not a reality. However, speech technology in general

is mature enough to be successfully applied in task-oriented application domains. This

study uses sub-word based HMMs and aims to achieve robust models that perform rea-

sonably well in real-time telephone-based applications.

2.4 Group-Dependent Acoustic Models

Due to differences in articulatory mechanisms there is apparent difference between the

voice of male and female speakers. At the same time, there is considerable acoustic sim-

ilarity within speakers of the same gender due to similar vocal structures. This suggests

that gender-specific models tailored to a group of users in the same gender can perform

better than a gender-independent model.
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On the other hand, non-native speakers of a language often tend to introduce some

phonological and pronunciation patterns from their mothertongue while speaking a for-

eign language. This results in a noticeable pronunciation difference between native speak-

ers and foreign speakers of a language. In this thesis, we refer to this linguistic phe-

nomenon as accent. Accent is one of the most important factors that influence the perfor-

mance of speaker-independent (SI) speech recognition systems next to gender (Hansen

and Arslan, 1995). It has been reported in (Huang et al., 2001a) that a mismatch in accent

between the speakers used in testing and training can lead toover 30% increase in word

error rate (WER). Therefore, the use of accent-dependent acoustic models in a spoken

dialog system is essential as people may need to communicatewith the system in a lan-

guage which is not their native. A number of studies have beencarried out in this topic

and a brief overview of related researches in the field is presented below.

Training accent-specific acoustic models using accented data is an obvious and easy

approach to deal with accented speech. It has been shown in (Wang et al., 2003) that

training on a relatively small amount of German-accented English from the Verbmobil

conversational meeting-scheduling task resulted in significantly better performance than

a model trained on a large amount of native English training material. In (Wang et al.,

2003) and (Tomokiyo and Waibel, 2001), it has been shown that a model trained on a

merger of in-domain native and accented data performs better on accented speech. It

has also been shown in (Tomokiyo and Waibel, 2001) that applying a few more forward-

backward iterations with accented data on a well-trained speaker-independent model im-

proves recognition performance for accented speakers.

Applying speaker adaptation techniques such as Maximum Likelihood Linear Regres-

sion (MLLR) (Leggetter and Woodland, 1995a) and Maximum a Posteriori (MAP) adap-

tation (Gauvain and Lee, 1994) methods to adapt speaker-independent models trained on

native speech data to a particular accent are other popular methods. MLLR has been

successfully used in (Wang et al., 2003) and (Tomokiyo and Waibel, 2001) on German-

accented and Japanese-accented English, respectively. However, in both cases only a sin-

gle global transform was used to transform all models. On theGerman-accented English

task described in (Wang et al., 2003) it has been shown that MAP adaptation performs bet-

ter at decreasing WER than MLLR when more enrollment data is available. However, it

has not been shown whether combining MAP and MLLR could yieldfurther performance

gain.
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Cross-language accent adaptation, where native speech data of the target accent group

is used as enrollment data, has been explored in (Tomokiyo and Waibel, 2001). However,

no performance gain was reported. In (Wang et al., 2003) a model trained on a merger of

large amount of native English and native German speech datausing a common phoneme

set was investigated and only slight improvement in recognition was reported. In (Liu and

Fung, 2000) accent adaptation without accented data was investigatedto adapt an English

model to Cantonese-accented English using native Cantonese speech data and promising

improvement in phoneme accuracy has been reported.

As can be observed, previous applications of MLLR to a group of German-accented

speakers, use only a single global transform to adapt all models. It has also not been

shown whether combining MAP and MLLR could be more useful. Therefore, in this the-

sis, we show a successful use of MLLR with multiple transforms where both mean and

variance are transformed by using a small amount of accenteddata to adapt a speaker-

independent model trained on native US-English speech data. We also show that using

MLLR transformed models as an informative prior for MAP adaptation boosts perfor-

mance. Moreover, we investigate the use of cross-language accent adaptation where na-

tive German speech from a different domain (train information inquiries) is used to adapt

a speaker-independent native US-English model in the domain of airline travel planning.

At the same time, we try to capture variability due to both gender and accent by adapting

separate native US-English gender-dependent models to theGerman accent.

We also investigate the use of MLLR adaptation technique to adapt acoustic models

trained on microphone-recorded data to the characteristics of the telephone channel using

a small amount of telephone-recorded data.

2.5 Automatic Gender Recognition

The task of an automatic gender recognition system is to discern the gender of a person

from a spoken utterance. Due to physiological differences in vocal tract length, vocal fold

size, larynx thickness, etc. adult male voices have lower pitch range than adult female

voices (Wu and Childers, 1991). Hence, the fundamental frequency (pitch) can be used

as a strong cue for gender recognition (Hillenbrand et al., 1995; Linke, 1973; Linville and

Fisher, 1985; Murry and Singh, 1980). The fundamental frequency (F0) for adult male
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lies between 80–170 Hz while it lies between 150–260 Hz for adult women and between

300–500 Hz for children (Baken and Orlikoff, 2000).

The approaches to automatic gender recognition can be classified into three broad

classes. The first approach uses gender-dependent featuressuch as pitch. The second

approach uses cepstral features such as Mel-Frequency Cepstral Coefficients (MFCCs) to

discern the gender of a speaker from a spoken utterance. The third approach combines

pitch, cepstral, prosodic and other features for improved performance.

In (Abdulla and Kasabov, 2001), average pitch frequency was used as a gender separa-

tion criterion and the system achieved 100% gender discrimination accuracy with TIMIT

(Texas Instruments (TI) and Massachusetts Institute of Technology (MIT)) continuous

speech corpus and Otago isolated words speech corpus. This confirms that pitch is a very

strong source of information for gender identification of adult male and female speakers.

Another approach described in (Parris and Carey, 1996) combines hidden Markov

models and pitch estimation giving less than 1.0% identification error rate with two sec-

onds of speech on three British English databases. Further tests without optimization on

the OGI (Oregon Graduate Institute) multi-language database resulted in an average error

rate of 2.0%. Another approach based on Gaussian Mixture model in (Ting et al., 2006)

combines MFCCs and pitch information to improve the performance of gender recogni-

tion and the system resulted in at most 3.3% recognition error rate on SRMC (Speaker

Recognition for Mobile Communication) database.

In (Slomka and Sridharan, 1997) automatic gender identification systems using fu-

sion of multiple knowledge sources using a linear classifierare investigated on speakers

of 11 languages from the OGI speech corpus. The best reportedaccuracy is 98.5% aver-

aged over all clean and adverse conditions. This suggests the use of multiple knowledge

sources gives improved results in adverse acoustic conditions.

In (Harb and Chen, 2005) a system using a set of neural networks with acoustic and

pitch related features is built and a classification accuracy of 90% is obtained for 1 second

speech segments, independent of the language and the channel of the speech. Using

multiple classifiers trained on different training data, the classification accuracy attains

98.5% for longer segments (5 seconds) on a subset of the Switchboard database.

A gender classification system proposed in (Zeng et al., 2006) is based on Gaussian

mixture models using combined parameters of pitch and RASTA-PLP (Relative Spectral

Transform - Perceptual Linear Prediction). The accuracy ofthe resulting model is 95%
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on noisy speech and 98.3% on clean speech. The method is reported to be robust to noise

and is independent of languages.

In (Metze et al., 2007), four approaches for age and gender recognition using tele-

phone speech have been compared; namely, a parallel phone recognizer, a system using

dynamic Bayesian networks to combine several prosodic features, a system based solely

on linear prediction analysis, and Gaussian mixture modelsbased on MFCCs. It was

reported that the parallel phone recognizer is comparable to a human listener but loses

performance on short utterances. The system based on prosodic features has shown little

dependence on the length of the utterance.

Even though, pitch is a very strong cue to reliably estimate the gender of an adult

speaker from a spoken utterance, it is often very weak or missing in telephone speech

due to the band-limiting effect of the telephone channel. Hence, pitch may not be suit-

able for gender recognition in a telephone-based spoken dialog system. Therefore, we

use cepstral features to build our automatic gender recognition system based on Gaussian

Mixture Model (GMM). We investigate various cepstral features; namely, Mel-Frequency

Cepstral Coefficients (MFCCs), Linear Prediction CepstralCoefficients (LPCC) and Per-

ceptual Linear Prediction (PLP) features in search of thosethat are better suited for gen-

der identification. The resulting system should be capable of recognizing the gender of a

speaker given the first, very short, single word utterance with acceptable accuracy.

2.6 Automatic Accent Recognition

The purpose of an automatic accent recognition model is to reliably estimate the accent or

the language class of a speaker from a spoken utterance. A number of studies have been

conducted in this topic and a brief review of related research efforts is given below.

Teixeira et al.(1996) investigated a hidden Markov model (HMM) based system to

identify English accents from six different European countries; namely, Danish, Ger-

man, British English, Spanish, Italian and Portuguese and aglobal identification score

of 65.48% was reported suggesting the difficulty of the task.The model was built with

a relatively small corpus of about 200 isolated words spokenby speakers from the six

different countries.

Fung and Liu(1999) investigated the use of phoneme-class HMMs (stops, affricates,

fricatives, nasals, vowels, semi-vowels and glides) to distinguish Cantonese English from
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native English. They reported that energy, formant and fundamental frequency are the

most discriminative features for identifying Cantonese accent. The use of English syl-

lable structure knowledge to help recognize three accentedspeaker groups of Australian

English – Vietnamese, Lebanese and native speakers – was investigated in (Berkling et al.,

1998). The use of this knowledge improved accent identification performance signifi-

cantly by 6–7% absolute.

It has been shown in (Hansen and Arslan, 1995) that by using multiple acoustic and

prosodic features, an accent classification rate of 81.5% could be achieved among four

different accent groups of American English – Turkish, Chinese, German and native. The

rate increases to 88.9% when the test is limited to a known three word test-set. They

constructed and used an accent sensitive database consisting of words and phrases spoken

by foreign speakers of American English. They have also noted that accent information is

most distinct at phoneme level, and the best features for accent classification are energy,

duration, and spectral information.

In (Arslan and Hansen, 1997) it has been shown that the second and third formant

frequencies (F2 and F3) are good sources of information for identifying accents and sug-

gested that mel-scale frequency mapping is not particularly suitable for accent recogni-

tion. In another workArslan and Hansen(1996) achieved a 93% accent recognition rate

for four accents of American English using a phone-based, isolated word accent recog-

nizer on isolated word strings of 7–8 words. They built and used a database of foreign

language accents that consists of words and phrases that areknown to be sensitive to

accent. This approach requires sufficient amount of training data to build phone models.

In (Huang et al., 2001a) an accent recognition rate of 85% was reported using gender-

dependent models to recognize four regional accents of Mandarin using a Gaussian mix-

ture model with 32 components. This approach is essentiallytext-independent, hence,

does not require phonetic labeling.

As can be observed, all of the above studies use accented speech data or a database

consisting of accent sensitive phrases spoken by foreign speakers and/or acoustic features

such as energy, duration, fundamental and formant frequencies, etc. to build models that

recognize accent from a spoken utterance. In this thesis, weinvestigate the feasibility

of building an accent recognizer on a merger of native speechdata of the target accent

groups. In particular, we take native speech data of Englishand German from two differ-

ent application domains, merge them together to form a training set, and build an accent
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recognition model that can distinguish if a given English utterance is accented or native.

This was motivated by our hypothesis that accent-related information could be effectively

captured from native speech data. Furthermore, we investigate various acoustic features

to find out those that can detect accent more reliably.

2.7 Spoken Language Understanding

Spoken language understanding (SLU) has been a topic of research since the 1970s

(Woods, 1983) and spontaneous spoken language understanding has been ofparticu-

lar interest since the early 1990s when multiple research laboratories participated in the

DARPA-funded Air Travel Information System (ATIS) evaluation (Price, 1990). In gen-

eral, the approaches in the domain of spoken language understanding can be broadly

classified as data-driven, rule-based, and a combination ofthe two.

Data-driven approaches such as those implemented in CHRONUS of AT&T (Pierac-

cini and Levin, 1993), and Hidden Understanding Model (HUM) of BBN (Miller et al.,

1994) estimate model parameters from data by counting the frequencies of transitions

between states, word observations while in each state and which states start a sentence.

These statistical models are robust and perform well but require a large corpus of fully

annotated training examples, which is often not practically available. Another popular

statistical approach is the hidden vector state model of Cambridge University (He and

Young, 2005) where state transitions between two states are decomposedinto separate

stack operations that transform one state to the other. A remarkable feature of the hid-

den vector state model is that it can be trained on "lightly" annotated data and it captures

hierarchical structure.

Rule-based systems, on the other hand, such as those implemented in TINA of MIT

(Seneff, 1992), PHOENIX of CMU (Ward and Issar, 1996), and GEMINI of SRI (Dowd-

ing et al., 1994) use hand-crafted semantic rules to extract meaning from a spoken utter-

ance. Rule-based systems do not require a large amount of semantically annotated data

and they perform very well when the structure of the spoken utterance is covered by the

grammar (rules). However, rule-based systems, in general,are very expensive to build

and maintain since they require extensive manual involvement and expertise. Moreover,

they are not robust in the face of unexpected input.

19



2. REVIEW OF STATE-OF-THE-ART RESEARCH

Different combinations of rule-based and statistical approaches have also been inves-

tigated. For instance, the generative HMM/CFG (context free grammar) model described

in (Wang et al., 2005) integrates a knowledge-based approach into a statisticallearning

framework.

Statistical spoken language systems differ based on whether they encode hierarchical

structure or not. Various statistical approaches that encode hierarchical structure in the

domain of SLU have been proposed in (Charniak, 2001; Chelba and Jelinek, 2000; Erdo-

gan et al., 2002; Fine et al., 1998; Miller et al., 1994). All these models require a large

amount of annotated training data for parameter estimationwhile the hidden vector state

model (He and Young, 2005) mentioned earlier encodes hierarchal structure and can be

built using only an abstract annotation for each utterance.

In this thesis, we describe an approach towards spoken language understanding that

requires no semantically annotated training data and encodes hierarchical structure. In

this approach, a spoken utterance is conceived as a hidden sequence of semantic concepts

expressed in words or phrases. Therefore, the problem of understanding the meaning

underlying a spoken utterance in a dialog system can be partly solved by decoding the

hidden sequence of semantic concepts from the observed sequence of words. The notable

ability of hidden Markov models (HMMs) to estimate the probability of hidden events

from observed ones makes them a natural choice for this kind of task.

We propose a model that outputs hierarchically structured semantic information which

is suitable for dialog management. The idea we pursue is to capture longer context, re-

solve ambiguity, and obtain more useful output by a hierarchical organization of low-

level semantic concepts into higher-level structures. Forinstance, low-level concepts like

MINUTES, HOUR_OF_DAY, PERIOD_OF_DAY, etc. can be organized to form a high-

level concept called TIME which can further be used in a higher-level entity like AR-

RIVAL_TIME, DEPARTURE_TIME, etc. This kind of structure can be readily produced

by a dialog designer of a given application domain using domain knowledge and training

examples. We show two different approaches that encode different amount of context,

and compare each with the flat-concept model in terms of performance, predictive power,

ambiguity resolution ability and information richness of the output.
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2.8 Summary

In this chapter we reviewed the state-of-the-art in the fieldof spoken dialog systems,

automatic speech recognition and spoken language understanding. The use of speaker-

dependent characteristics such as accent and gender in speech recognition has also been

reviewed. We also presented a historical overview and important milestones in the field

of spoken dialog systems and automatic speech recognition.The significance of our work

within the context of the state-of-the-art in each of these has also been pointed out.
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Chapter 3

Tools and Methods

3.1 Introduction

The research objective of this thesis is to deal with robustness issues in speech recogni-

tion and spoken language understanding components of a multi-domain telephone-based

spoken dialog system. To that end, we set up a framework that should be robust enough to

carry out medium-length spoken language interactions withusers in multiple application

domains in different languages. In this chapter we discuss the various techniques, tools,

application programming interfaces, standards and frameworks we use along with a justi-

fication of each. Besides, we describe the basic components of a telephone-based spoken

dialog system.

Briefly, an interaction with a telephone-based spoken dialog system involves:

• Capturing a spoken utterance from a user through a telephone

• Recognizing the spoken utterance

• Understanding the meaning underlying the recognized utterance

• Performing an action based on the request

• Generating an appropriate response

• Playing the response back to the caller over the telephone.

A simplified architecture of a telephone-based spoken dialog system is depicted in

Figure3.1.
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Figure 3.1: A simplified architecture of a telephone-based spoken dialog system

In the sections that follow we describe each of the components shown in Figure3.1

along with a description of the methods and tools used to build each component.

3.2 Automatic Speech Recognition

The automatic speech recognition component of a spoken dialog system is responsible

to determine the orthographic representation of the most likely sequence of words that

represent what the speaker might have said from the speech signal. A typical speech

recognition system consist of the parts shown in Figure3.2.

Figure 3.2: Basic architecture of a speech recognition system
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3.2 Automatic Speech Recognition

3.2.1 Feature Extraction

In speech recognition, feature extraction aims to extract the most salient information from

the speech signal that are essential to the recognition of a spoken utterance. It is a very

important task because all the other recognition processesdepend on the quality of the

features extracted (Junqua and Haton, 1995). An ideal set of features for speech recog-

nition are those that are independent of environmental, inter-speaker and intra-speaker

variability and yielding similar values for the same acoustic unit regardless of the person

who spoke the utterance and the situation in which it was spoken while exhibiting reliable

variation between different acoustic units.

The first step in feature extraction is to convert the analog speech signal into digital

representation so that digital signal processing methods can be used. This can be done in

two steps – sampling and quantization. Sampling reduces theamount of data contained

in speech signals without loss of linguistic content by taking representative samples from

the continuous signal at a rate that guarantees the reconstruction of the original waveform

from the samples. Telephone speech is filtered by the switching network, and only fre-

quencies less that 4 kHz are transmitted over the telephone lines. Thus, according to the

well-known Nyquist sampling theorem, a sampling rate of 8 kHz (i.e., 8000 amplitude

measurements for each second of speech) is sufficient for telephone speech.

Quantization is a process by which the real-valued amplitude measurements are as-

signed either 8-bit or 16-bit integer values. The 16-bit representation gives better fidelity

of a sampled waveform than the 8-bit representation. However, due to the bandwidth lim-

itation of the telephone channel, telephone speech is oftentransmitted as 8-bit samples.

Therefore, to improve the quality of the transmitted audio,some encoding is performed

in which the audio data is first compressed to 8-bit samples, transmitted through the tele-

phone channel, and expanded at the receiving end to 13-bit or14-bit samples. This is

called companding and comes in two variants – A-Law1 andµ-Law2. We then convert the

A-Law encoded telephone speech data, which has roughly the precision of 13-bit linear

audio to 16-bit linear quantized audio for speech recognition. More on audio transmission

over the telephone channel is presented in Section4.4.2.3.

1A-Law is a companding scheme used in European ISDN telephonenetwork
2µ-Law is a companding scheme used in the US and Japan

25



3. TOOLS AND METHODS

The next step is to transform the digitized speech waveform into a sequence of dis-

crete acoustic feature vectors, each of which represents a short-term speech signal. For

the duration covered by a single feature vector, the speech waveform can be considered

stationary (Young et al., 2006). The features extracted are generally spectral or cepstral

coefficients that condense the information in the speech signal to a vector of real-valued

numbers (Gold and Morgan, 2000).

We investigate various acoustic features such as Mel-Frequency Cepstral Coefficients

(MFCCs) (Davis and Mermelstein, 1980), Perceptual Linear Prediction (PLP) cepstral co-

efficients (Hermansky, 1990), Linear Predictive Coding (LPC) (Atal and Hanauer, 1971)

features, and LPC-based Cepstral Coefficients (LPCC) (Atal, 1974) for speech recogni-

tion, gender recognition and accent detection. More on feature extraction is presented in

Section5.2.1.

3.2.2 Acoustic Model

Acoustic model is a statistical representation of the acoustic realization of the phonemes

that make up each word which is influenced by the physical properties of the phonemes

and external factors that include environmental, channel,speaker and contextual vari-

abilities. These information are learnt from the feature vectors of the training speech

data during a process known as training. Acoustic model is the principal model used in

automatic speech recognition to recognize a spoken utterance given the feature vectors

corresponding to the unknown utterance.

3.2.2.1 Hidden Markov Model

Speech can be conceived as a hidden sequence of phones observed as a waveform. The

task of the required model is, therefore, to estimate the probability of the hidden sequence

of phones from the observed signal. It is well-known that hidden Markov model (HMM)

is an ideal choice for the task of estimating the probabilityof hidden events from ob-

served ones. In HMM, speech is modeled as a sequence of hiddenstates each of which

corresponds to a unit of recognition (phoneme, sub-phone, etc.) with transitions between

states. Each state can produce a number of observations according to a unique proba-

bility distribution, and each distinct observation can be generated at any state. The state
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output probability distribution is often modeled as a multivariate Gaussian mixture model

(GMM).

We opt for HMMs as they are proven to be powerful enough to copewith the most

important sources of speech ambiguity, and flexible enough to allow the realization of

recognition systems with dictionaries of tens of thousandsof words (Mori and Brugnara,

1997). Hidden Markov models as used in speech recognition are discussed in more detail

in Section5.2.3.

We also use hidden Markov models to build the semantic modelswe propose in this

thesis. In this case, a spoken utterance is conceived as a hidden sequence of semantic

concepts expressed in words or phrases. Hence, the goal of the required model is to deter-

mine the most likely sequence of the hidden semantic concepts that could have generated

the observed sequence of words. As noted earlier HMMs are ideal for this task.

3.2.2.2 Hidden Markov Modeling Toolkit (HTK)

The Hidden Markov Model Toolkit (HTK) – developed and distributed by Cambridge

University Engineering Department (CUED) – is an open source, portable toolkit for

building and manipulating continuous density Gaussian mixture hidden Markov models.

The tools provide facilities for feature extraction, acoustic model training, testing and

analysis of results. The various tools in HTK (Young et al., 2006) are used to build the

recognition resources that we use in our telephone-based spoken dialog system.

3.2.2.3 Application Toolkit for HTK (ATK)

ATK is a multi-threaded application programming interfacedesigned to facilitate the

development of real-time, speech-enabled applications that use HTK-derived resources

(Young, 2007). The recognition resources including the acoustic modelsare prepared off-

line using HTK and are provided to ATK as resources in a globalconfiguration file where

several HTK compatible acoustic models and other recognition resources can be speci-

fied. This makes it suitable for a multi-domain spoken dialogsystem framework where

the necessary recognition resources for various application domains and languages can be

built off-line and specified in the configuration file. Besides, ATK allows flexible use of

resources during the recognition process.
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3.2.3 Language Model

The accuracy of the recognition hypotheses produced by the acoustic model can be fur-

ther improved by using a language model. A language model consists of prior informa-

tion about what constitutes a possible word, what words are likely to co-occur and in

what sequence (Huang et al., 2001b). The acoustic model might produce several alterna-

tive similar words that can be disambiguated by the languagemodel using the encoded

prior knowledge. The language model also limits the number sequences that are actually

considered during the recognition process.

There are two approaches to language modeling; namely, grammar-based and statisti-

cal. In grammar-based approach, one has to specify alternatives via rules. Grammar-based

approaches can give good performance but are restrictive inthat they dictate the way one

can formulate ones utterance. Moreover, since such a grammar can never foresee all the

different utterance patterns that people may use in spontaneous speech, they are not ap-

propriate for free, human-to-human like interaction. However, in cases where a user has to

choose between a known set of limited words or phrases, the use of finite state grammars

could be more reasonable to get better recognition performance.

Statistical language models, on the other hand, provide a probability distributionP(W)

over word stringsW that reflects how frequently a string of wordsW occurs as a sentence

(Huang et al., 2001b). The probability distribution depends on the amount of training

data available. Given enough amount of training data, statistical language models can be

more robust to spontaneous speech. However, sufficient amount of training data is often

unavailable for each dialog state in a domain-dependent dialog system; hence, a language

model built using insufficient data does not capture essential constraints (grammatical or

domain-specific) and may not perform as good as grammar-based models.

Associated with the inherent problem of data-sparseness, smoothing techniques are

often used in language modeling to assign reasonable probabilities to events that have

never been observed in the training data but can occur in a test-set.

In this thesis, we use both bigram language models and hand-crafted finite state gram-

mars to see which of the two perform better in real-time applications. In bigram language

models the probability of a word depends on only the preceding word. Since what a user

may say in a dialog state can be known in advance using domain knowledge, the use of

dialog state-specific language models and/or grammars to utilize task specific issues to

28



3.3 Spoken Language Understanding

constrain vocabularies at each point in a dialog may be useful to maximize recognition

and clarity of intent while allowing a certain degree of freedom. The use of language

models allows users to talk to the system in a fairly unconstrained manner. However,

since dialog state-specific bigram language models are trained on the transcriptions of

subsets of the training data, one can foresee the data insufficiency problem.

3.3 Spoken Language Understanding

The success of a spoken dialog system depends not only on the correct recognition of

a spoken utterance but also on the correct comprehension of the intention underlying

the spoken utterance. Automatic speech recognition systems commonly output the most

probable transcription of a spoken utterance or a list of N most probable word sequences

and need not perform syntactic or semantic analysis on the recognized input. Therefore,

in a spoken dialog system there is often a separate unit that is responsible for inferring

what is meant from what is said.

In this thesis, we develop a new, robust hierarchical HMM-based semantic concept

labeling model that essentially enriches the raw text output of the speech recognizer with

semantic information that can be used to infer the meaning ofa given utterance in a given

dialog state. The model is trained on semantically unlabeled data and offers a number

of features in terms of performance, ambiguity resolution ability and expressive power of

the output as discussed in Chapter6.

3.4 Dialog Management

The choice of an open VoiceXML framework is a key design decision in developing a

telephone-based spoken dialog system based on VoiceXML. Wehave chosen ©OptimTalk

(OptimSys, 2006) VoiceXML platform that consists of a VoiceXML interpreter, a CCXML

interpreter, and other abstract interfaces which allow us to build and integrate our own

ASR engine, telephony interface, grammar component, semantic interpreter, TTS sys-

tem, etc. VoiceXML 2.0 (W3C, 2004) is used to author the dialogs and CCXML 1.0

(W3C, 2007) is used to write the call handling policy.
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3.4.1 VoiceXML

Voice eXtensible Markup Language (VoiceXML) is the World Wide Web Consortium’s

(W3C’s) standard that specifies how a dialog between a callerand a speech-enabled appli-

cation is constructed and executed. VoiceXML is an attempt to give developers the tools

they need to express a conversational interface using existing web technologies and Inter-

net standards (Sharma and Kunins, 2002). VoiceXML is convenient for dialog authoring

and provides features to support complex dialogs. Moreover, it minimizes client/server in-

teractions by specifying multiple interactions per document and separates user interaction

code from service logic.

3.4.2 JavaScript

ECMAScript (ECMA-262) is the scripting language that provides client-side scripting

capabilities to VoiceXML. We use JavaScript, which is an implementation of the EC-

MAScript standard, to write a program that essentially parses and validates the seman-

tically enriched recognized utterance to extract meaning-bearing words or phrases to fill

one or multiple dialog slots and to update the state of the dialog accordingly. We provide

the user some degree of control over the conversation by allowing the user to respond

more flexibly to the system’s prompts; i.e., a user can provide more than one piece of

information at a time to minimize the number of interactionsrequired to complete a task.

3.4.3 VoiceXML Interpreter

A VoiceXML interpreter is a piece of software that reads and processes VoiceXML doc-

uments as described by the VoiceXML language standard (Edgar, 2001). Essentially,

the core of a VoiceXML interpreter implements the Form Interpretation Algorithm (FIA)

which specifies the procedure for walking through the various fields of a form to drive the

interaction between the user and a VoiceXML document. The VoiceXML interpreter in

©OptimTalk is more than just an interpreter in that it loads the relevant dialog document

from the Web server hosting the VoiceXML documents, and executes the dialog by call-

ing appropriate methods of the various components of the system so as to play prompts,

accept user input, and pass them on to a speech recognition engine, determine what to do
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next according to the instructions in the active VoiceXML script. In short, it serves as the

dialog manager of the system as shown in Figure3.3.

Figure 3.3: VoiceXML interpreter as a dialog manager

As can be seen, the VoiceXML interpreter orchestrates the whole interaction by ac-

tivating the various components of the system as appropriate. A more comprehensive

description of the system as a whole is given in Section4.2.

3.5 Telephony Interface

The telephony subsystem is the interface between the external telephone network and the

application. It consists of a telephony interface component and a call control component.

The telephony interface component makes any telephony hardware accessible to the

CCXML interpreter through a unified interface. The rules foraccepting and processing

incoming calls are described in a CCXML document. The CCXML interpreter executes

the commands in the CCXML document by calling the relevant methods of the telephony

interface component for establishing a connection, answering the call, streaming audio

to the telephone and capturing the spoken input from the user, etc. The telephony inter-

face component is implemented using the application programming interface standard to

access ISDN services – Common ISDN Application ProgrammingInterface (CAPI)1.

1http://www.capi.org/pages/home.php; last accessed February 27, 2009
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The uniform resource identifier (URI) to the initial dialog script of the application is

also specified in the CCXML document and the CCXML interpreter instructs the dialog

manager to fetch and execute this document when a call is accepted.

3.6 Speech Output

The output component wraps a text-to-speech (TTS) synthesis engine that synthesizes

prompts and responses to be played back to the caller over thetelephone. We use ©Loquendo

TTS engine in our system to play prompts and responses to the users over the telephone

in English and German.

3.7 Database Interface

When an automated telephony system is based on a voice browser, most of the applica-

tion logic resides on a web server (Edgar, 2001) and the data reside on a database server.

MySQL database Server is used to build and store the database(s). The system is based on

dynamic content where PHP server-side scripting language is used to dynamically gen-

erate VoiceXML documents containing data stored in the database. PHP and MySQL

are both open source and form a very good combination for creating data-driven applica-

tions. In order to process HTTP requests from the client and serve VoiceXML documents

Apache Web server is used. Apache is also free and works well with PHP and MySQL.

3.8 Evaluation Method

A vital and final step in spoken language interaction system development is to evaluate

the usability and quality of the system. The quality and usability of a spoken dialog

system is strongly related to user satisfaction which can only be obtained from subjec-

tive judgements collected from test users in a quantifiable form with questionnaires. We

use questionnaires based on SASSI (Subjective Assessment of Speech System Interfaces)

(Hone and Graham, 2001) and the recommendation of the International Telecommuni-

cation Union (ITU-T) (ITU_T Rec. P.851). We also extract complementary information

about the performance of the various components of the system from logged interactions.
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3.9 Summary

In this chapter, we described the components of a telephone-based spoken dialog system

in general and presented the various components of our system in particular. Besides, we

introduced the tools, techniques, standards, and APIs we use to realize the envisaged ro-

bust multi-domain, multilingual spoken dialog system. Themodeling approaches we use

to build the required acoustic, language and semantic models have also been described. In

Chapters5, 6, and7 we present more detailed descriptions on speech recognition, gender

identification, accent recognition, spoken language understanding, and spoken langauge

interaction issues. The experiments conducted and the results obtained will be discussed

in more detail in Chapter8.
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Chapter 4

System Description

4.1 Introduction

In this chapter, we present a fairly comprehensive description of the telephone-based spo-

ken dialog system framework developed as part of this thesisin general, and the devel-

opment of the various components in particular. In Section4.2, we present a high-level

description of the system and its component parts as well as atypical usage scenario that

shows how the various components work together in a dialog session. Section4.3presents

a short description of how VoiceXML and CCXML standards complement each other and

work together. In Section4.4, we describe the implementation of the telephony interface

component in sufficient detail. Section4.5 describes the implementation and integration

of the input component consisting of an automatic speech recognition engine, a gender

recognizer, a grammar component and a semantic interpreter. Finally, a summary of the

chapter is presented in Section4.6.

4.2 Components of the System

A telephone-based spoken dialog system generally consistsof an interface to a telephone

network, an automatic speech recognition engine, a spoken language understanding com-

ponent, a mechanism for response generation, an audio output module and a dialog man-

ager. Similarly, our telephone-based spoken dialog systemframework comprises of:

1. A telephony interface component to deliver and process calls
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2. An input component that consists of:

(a) A media source component to capture audio stream from thetelephony inter-

face

(b) An automatic speech recognition engine to recognize what is said

(c) A gender-recognizer to identify the gender of a user froma spoken utterance

(d) A grammar unit to prepare the grammar or the language model used by the

speech recognizer

(e) A semantic interpreter to enrich the output of the speechrecognizer with se-

mantic information so that the meaning underlying a spoken utterance can be

easily extracted

3. An output component to synthesize the prompts and responses to be played back to

the user

4. A back-end where the application logic, the database and the dialog scripts reside

5. A dialog manager that orchestrates the various components.

The telephony interface component controls the ISDN telephony card and is respon-

sible for, among other things, capturing audio stream from the user and playing au-

dio prompts to the user over the telephone. It is implementedusing CAPI (Common

ISDN Application Programming Interface) which enables application developers to ac-

cess ISDN services without having to deal with the low-levelISDN details.

The core of the input component consists of an ATK-based speech recognizer which

also supports automatic gender recognition. The recognition resources; namely, the acous-

tic models, the language models and the pronunciation dictionaries are prepared off-line

using HTK (Young et al., 2006). The grammar component reads each pre-compiled gram-

mar or language model file that is specified in each VoiceXML document and makes it

available to the ASR engine at runtime. The semantic interpreter enriches the recognized

utterance with semantic information to easily infer what ismeant from what is said.

A high-level architecture of the system is depicted in Figure 4.1. At the core of the

system is ©OptimTalk (OptimSys, 2006) – a VoiceXML framework that consists of a

VoiceXML interpreter, a CCXML interpreter, and other abstract interfaces that allow us to
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build and integrate our own components. The VoiceXML interpreter in OptimTalk serves

as the dialog manager of the system as will be described in Section 4.2.1. In the following

sections, the terms dialog manager and VoiceXML interpreter are used interchangeably.

Figure 4.1: High-level block diagram of the system

4.2.1 Typical Usage Scenario

The interaction of the various components of the system to carry out a telephone-based

spoken dialog can be described as follows:

1. A user calls the system and the telephony interface component receives the call.

2. The initial CCXML document is loaded.

37

Chapter3/Chapter3Figs/system1.eps
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3. The CCXML interpreter executes the commands in the document using the meth-

ods implemented in the telephony interface component. If the call is accepted, the

CCXML interpreter instructs the VoiceXML interpreter to load the dialog script

specified in the CCXML document.

4. The VoiceXML interpreter sends an HTTP request to the Web Server and the Web

Server delivers the requested document. From this point on,the VoiceXML inter-

preter takes control of the interaction.

5. The VoiceXML interpreter executes the commands in the VoiceXML document.

During the interpretation, the VoiceXML interpreter callsthe methods of the various

components to make the interaction possible as follows:

• To play prompts, the dialog manager calls the methods of theoutput com-

ponent to process prompts, perform text-to-speech (TTS) synthesis and store

the synthesized data in a so-called audio container that is taken by the out-

put manager (part of the dialog manager). The output managerthen sends

the audio container to the media sink component which streams the audio to

the telephony interface component. In the telephony interface component, we

process the streamed audio as appropriate and play it over the telephone.

• When user input is expected, the input component uses an interface of the me-

dia source component provided by the VoiceXML interpreter to start capturing

audio input. The media source component also provides the audio stream re-

ceived from the telephony interface component to the speechrecognizer.

• When a spoken input is recognized, the recognition output is sent to the se-

mantic interpreter component that is responsible to enrichthe raw text output

of the speech recognizer with semantic information. These semantic infor-

mation are used to extract the meaning of the recognized utterance at a given

dialog state.

6. When all the required information in a dialog are obtained, the scripts on the web

server process the submitted parameters, perform some database operations and

generate a new VoiceXML document. This is then sent back to the VoiceXML

interpreter for interpretation.
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7. When the dialog is finished the VoiceXML interpreter informs the call control com-

ponent about the fact and the call is properly terminated.

8. The system continues running waiting for the next incoming call.

4.3 VoiceXML and CCXML Working Together

When VoiceXML and CCXML are used together, CCXML provides call control functions

such as handling incoming calls, placing outgoing calls, bridging multiple call legs, dis-

connecting calls, etc. while VoiceXML is used as a dialog environment. CCXML does not

provide any mechanism for interacting with callers directly but whenever interaction with

a caller is required a CCXML session can initiate a separate dialog session provided by

VoiceXML and connects the call to the VoiceXML dialog. When the VoiceXML dialog

completes successfully or fails, the VoiceXML interpreternotifies the CCXML session

about the fact and the CCXML interpreter then terminates thecall.

In ©OptimTalk, the framework we use, the interconnection between the dialog man-

ager and the telephony subsystem is provided by a dialog-to-telephony bridge facility.

This bridge translates the commands from the form produced by the telephony compo-

nent to the form understood by the dialog manager or vice versa (OptimSys, 2006).

A CCXML interpreter initiates a dialog using the<dialogstart> element. Execution

of this element connects a dialog environment to a connection and instructs it to start in-

teracting with the caller. For some dialog environments it may take some time to initialize

the dialog environment and hence CCXML provides an option toprepare a dialog prior

to starting it using the<dialogprepare> element.

4.4 The Telephony Interface Component

As its name suggests, the telephony interface component provides an interface between

the system and a telephone network. The system is based on Integrated Services Digital

Network (ISDN) and the interface is implemented using CAPI (Common ISDN Appli-

cation Programming Interface). In the following sections we provide a brief overview of

ISDN, introduce CAPI and discuss the implementation of the telephony interface compo-

nent.
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4.4.1 Overview of Integrated Services Digital Network (ISDN)

Integrated Services Digital Network (ISDN) is a system of digital phone connections

that allows fast and reliable transfer of information in many different formats over the

existing telephone infrastructure. The distinguishing features of ISDN are integrated ser-

vices (data, voice, images, and video), improved transmission rate, and better transmis-

sion quality as a result of end-to-end digital transmissionof data.

With ISDN, signaling information and data are conveyed through different channels.

All signaling data (for call establishment and release) aretransmitted through a channel

called D-channel (Delta channel) while data and voice are transmitted through channels

called B-channels (Bearer channels).

There are two basic levels of ISDN service: Basic Rate Interface (BRI) and Primary

Rate Interface (PRI). Basic Rate Interface is intended for home and small enterprizes and

consists of two bearer channels (each 64 kb/s) plus one deltachannel (16 kb/s) (2B+D)

for a total of 144 kb/s. For users with greater capacity requirements, the Primary Rate

Interface provides a channel structure which is typically 23 B channels plus one 64 kb/s

D-channel (23B+D) in USA and Japan; in Europe, Australia andother parts of the world,

PRI consists of 30 B channels plus one 64 kb/s D-channel (30B+D).

An incoming ISDN line is terminated at the customer premisesby a network termina-

tion device known as NT1. The network termination device hasa 2-wire interface called

U-interface on the network side of the device and a 4-wire interface called S0 (also known

as S/T) interface on the terminal side. The purpose of the network termination device is

to convert the 2-wire U-interface signal to the form recognized by the S0 interface.

4.4.2 Common ISDN Application Programming Interface (CAPI)

Common ISDN Application Programming Interface (CAPI) is a programming interface

that enables ISDN application developers to develop applications that use ISDN hardware

without having to deal with the low-level ISDN details. It provides a uniform, independent

and easy to use interface for applications and offers a unified access to ISDN hardware

components.

Under Windows operating system the CAPI services are provided via a Dynamic Link

Library (DLL) known as "capi2032.dll" for 32-bit Windows-based applications and is

usually included with most ISDN adapters. An application communicates to CAPI via
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this library in order to use an ISDN card. The interface between applications and CAPI

consists of a set of CAPI functions. In order to understand the telephony interface com-

ponent, a brief overview of CAPI functions is presented in the following subsections. The

main reference material for this section is Part I of the CAPIdocumentation1.

4.4.2.1 CAPI Functions

Before an application can attempt to use any CAPI service, itmust check whether CAPI

is installed and is operational on the machine. The functionCAPI_INSTALLED can be

used for this purpose. Prior to any communication between anapplication and CAPI,

the application must register with CAPI using the CAPI_REGISTER function. As the

application registers, CAPI assigns a unique application ID (ApplID) to the application

and sets up a message queue that the application uses to communicate with CAPI.

Communication between an application and CAPI is via messages. A message is a

piece of information that is exchanged between a registeredapplication and CAPI. A mes-

sage going from an application to CAPI is known as a REQUEST and the corresponding

answer from CAPI is known as a CONFIRMATION. A messages initiated by CAPI is

known as an INDICATION and the corresponding acknowledgement is known as a RE-

SPONSE. As can be observed, each REQUEST has a matching CONFIRMATION, and

each INDICATION must have a corresponding RESPONSE. Every message name ends

with a suffix (_REQ, _CONF, _IND, _RESP) to reflect the messagetype.

Messages are communicated via message queues and are processed in the order of

their arrival. There is exactly one message queue for CAPI toaccept messages from

an application and one for each registered application to receive messages from CAPI.

The application transfers its message by calling the CAPI_PUT_MESSAGE function and

reads new messages from its own queue using the function CAPI_GET_MESSAGE.

If a registered application wants to terminate its connection to CAPI, the function

CAPI_RELEASE is used. When an application is released, the previously used message

queues are freed. An application must disconnect all existing connections before issuing

a CAPI_RELEASE.

1http://www.capi.org/download/capi20-1.pdf; last accessed February 27, 2009
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4.4.2.2 Establishing a Connection

Establishing a connection involves creating a physical link and a logical link. Table4.1

shows the message exchanges that take place between the application and CAPI to create

a physical connection.

Table 4.1: Establishing a physical connection
Message Description

LISTEN_REQ The application sends LISTEN_REQ to be in-

formed when a call comes in.

LISTEN_CONF CAPI confirms – CAPI is ready to inform the ap-

plication when a call indication comes in.

CONNECT_IND With an incoming call, the application receives a

CONNECT_IND containing a PLCI number that

identifies the physical connection.

CONNECT_RESP The application acknowledges.

CONNECT_ACTIVE_IND CAPI sends CONNECT_ACTIVE_IND to indi-

cate that the call was connected.

CONNECT_ACTIVE_RESP The application acknowledges – physical connec-

tion is established.

To create a logical link, the message exchanges that take place between the application

and CAPI are shown in Table4.2.

Table 4.2: Establishing a logical connection
Message Description

CONNECT_B3_IND CAPI indicates that a logical connection is

coming. The message contains an NCCI num-

ber identifying the logical connection.

CONNECT_B3_RESP The application acknowledges.

CONNECT_B3_ACTIVE_IND CAPI indicates that a logical connection of the

B channel is established.

CONNECT_B3_ACTIVE_RESP The application acknowledges – logical con-

nection is established.
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Once both the physical and the logical links are set up, the application can send

DATA_B3_REQ messages and receive DATA_B3_IND messages to send and receive au-

dio data within the logical connection as described in the next section.

4.4.2.3 Audio Transmission

In every connection, there are two streams of audio data – thestream directed to a phone

line and the stream coming from a phone line. The specific implementation of sending

and receiving audio data to and from a telephone line dependson the telephone interface

card used, which in our case is an ISDN card based on CAPI.

In this case, to send audio data to CAPI, the application sends DATA_B3_REQ mes-

sages and CAPI confirms with DATA_B3_CONF. The audio data is not contained in the

message instead a 32-bit pointer is used to convey the address of the data area.

To avoid the inherent delay that may occur if each message hadto be confirmed before

receiving the next one, CAPI allows up to seven unconfirmed DATA_B3_REQ messages

which will be confirmed later in the order of their arrival.

Figure4.2shows the process of transmitting audio data to CAPI.

Figure 4.2: Transmitting audio data to CAPI: CAPI allows up to seven consecutive un-

confirmed DATA_B3_REQ messages which will later be confirmedin the order of their

arrival.
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Before sending the audio data synthesized by a TTS engine to CAPI, it is necessary to

convert the data to an appropriate format (A-Law format, in our case). µ-Law and A-Law

are encoding schemes to encode 14-bit and 13-bit of sampled data in 8-bit logarithmic

representation using the G.711 companding scheme. Companding is a scheme used to

reduce bandwidth requirements for transmitting audio dataover the telephone channel,

where information is compressed at the sending end, transmitted through the telephone

channel, and expanded at the receiving end. µ-Law is the standard used in the United

States and Japan while A-Law is the European standard. Moreover, as CAPI sends and

accepts each octet of A-Law or µ-Law data in a reversed bit order, it is necessary to reverse

the bits in each byte before streaming the audio data to CAPI.

In the opposite direction, CAPI signals all incoming data from the phone line with

DATA_B3_IND and the application acknowledges with DATA_B3_RESP. The data is

not contained in the message instead a 32-bit pointer is usedto communicate the address

of the data area.

Figure4.3shows the process of receiving audio data from CAPI.

Figure 4.3: Receiving audio data from CAPI: For high data throughput, applications

should respond to DATA_B3_IND messages promptly
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Before we send the received audio data from the phone line to the automatic speech

recognition system, we convert the audio data from A-Law to 16-bit linear PCM format

and reverse the bits in each byte of audio data.

4.4.3 The CAPI-based Telephony Interface

The telephony interface component is implemented as a separate dynamic link library and

is specified in a configuration file. The ©OptimTalk core executable loads it at runtime.

The core of the telephony interface component is implemented as a Finite State Ma-

chine (FSM). A finite state machine consists of a set of states, a set of possible input

events and a function that determines the transition from one state to another for a given

input event. The process begins at a start state and an input event which moves the state

machine to the next state based on the transition function.

In this implementation, the FSM is implemented as a two dimensional array where

one dimension corresponds to the states and the other dimension specifies the input event

to be handled. Each array element consists a value that specifies the new state the machine

moves to and an action to execute.

At the heart of the system is a function that can be called in a loop to continually see

what CAPI messages are coming using the GET_MESSAGE function. As described in

Section4.4.2.1, the GET_MESSAGE function gives two types of messages – INDICA-

TIONs and CONFIRMATIONs. The message in the queue is continually read in a loop

and when CAPI_GET_MESSAGE returns an event, the function that processes incoming

messages is called with the message as a parameter. If the message is an INDICATION,

the function translates the message into an input event for the finite state machine and calls

the transition function with the input event and the message. If the message is a CON-

FIRMATION the corresponding request gets confirmed. This isdone repeatedly until the

FSM sets the "finished" flag which signals disconnection.

The state diagram in Figure4.4 shows the states and the inputs (telephony events)

considered in the system.
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Figure 4.4: The finite state diagram

As can be seen in Figure4.4, the state machine is fired up with the initialSTART

event which moves the state machine to theLISTEN state (i.e. the application issues

LISTEN_REQ and CAPI confirms with LISTEN_CONF). At theLISTENstate CAPI is

ready to inform the application when a call indication comesin.

When a new call comes in, the application receives a CONNECT_IND which causes

a transition toPL_STARTstate where the establishment of a physical link starts. The

application acknowledges the CONNECT_IND with CONNECT_RESP. Then the appli-

cation receives a CONNECT_ACTIVE_IND message which shouldbe acknowledged

with the corresponding CONNECT_ACTIVE_RESP message. The FSM then transits to

statePL_ACTIVEwhere the physical link is fully established.

Once the physical connection is established, a logical connection over the B chan-

nel needs to be set up as described in Section4.4.2.1. Hence, the application receives

a CONNECT_B3_IND message which the application should acknowledge with CON-

NECT_B3_RESP message to accept the logical connection. At this point, the FSM tran-
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sits to stateLL_STARTwhere the establishment of a logical link starts. Sooner or later, a

CONNECT_B3_ACTIVE_IND message comes and the application acknowledges it with

the corresponding CONNECT_B3_ACTIVE_RESP message. Consequently the FSM

transits to stateLL_ACTIVE where the logical link is fully established. At this state,

the connection is fully established and hence it is possibleto send and receive audio data

to and from CAPI as described in Section4.4.2.3.

The last two states,LL_DISCONNECTandPL_DISCONNECTare used for han-

dling disconnection or hang up.

When the call is completed, we de-initialize the connectionand call the method that

fires up the FSM once again. When the FSM is fired, it transits tothe LISTEN state

listening for the next incoming call. This keeps the CCXML interpreter running all the

time waiting for incoming calls.

4.5 The Input Component

The input component wraps the automatic speech recognitionengine and is implemented

as a separate dynamic link library. The grammar component isalso implemented as a

separate library and is passed to the input component at runtime. Once a spoken input is

recognized, the recognition result is sent to the semantic interpreter which is implemented

as part of the grammar component. The input component is specified in a configuration

file and the ©OptimTalk core executable loads it at runtime. The grammar component

and the semantic interpreter are used along with the speech recognizer and hence are

considered as parts of the input component.

In the sections that follow, we describe the ATK-based automatic speech recognition

engine, the gender recognizer, the grammar component and the semantic interpreter. We

also give a helicopter view of the entire recognition process in Section4.5.5.

4.5.1 The ATK-based Speech Recognizer

ATK is a multi-threaded API designed to facilitate buildingreal-time applications that

use HTK-derived recognition resources (Young, 2007). The core of ATK is based on

three fundamental objects – packets, buffers and components. Packets are used for trans-

mitting a variety of information between asynchronously executing threads (components)
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while buffers provide the channel for passing packets from one thread to another. The in-

formation in a packet could be speech waveforms, feature vectors, or recognized phrases.

A component in ATK is a task with its own thread, and it communicates with other threads

by passing packets of information via buffers. The block diagram in Figure4.5depicts the

components of the ATK-based speech recognition system integrated in the framework.

Figure 4.5: Block diagram of the ATK-based speech recognizer

In ATK there are three main components; namely, an audio source (ASource) compo-

nent, a coder (ACode) component and a recognizer (ARec).

The primary function of the audio source component (ASource) is to capture input

speech (Young, 2007). As can be seen in Figure4.5, we do not use ATK’s ASource

component directly. Instead we use the media source implementation of ©OptimTalk.

The spoken input is captured and processed in the telephony interface component and is

streamed to the input component through an interface that isused to receive audio data.

The media source component calls the methods of this interface repeatedly to stream

audio data to the speech recognizer. Then we organize the received audio stream into

wave packets and put the packets to the buffer which connectsthe audio source to the

coder component.
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The coder component (ACode) then gathers the incoming wave packets and passes

them to the HTK module HParm that converts the observed acoustic signals to a series

of feature vectors using the signal processing operations defined in HsigP module (Young

et al., 2006). The extracted feature vectors are then placed in the buffer that connects the

coder and the recognizer.

The task of the recognizer (ARec) is to generate a hypothesisor a lattice of hypothe-

ses for the underlying speech unit sequence from the sequence of observation vectors

corresponding to the unknown utterance. It depends on various resource objects such as

HMMSet (AHmms), pronunciation dictionary (ADict), grammar (AGram) and optionally

an n-gram language model.

An HMMSet defines the actual hidden Markov model for each linguistic unit which is

always initialized from one or more external file(s) specified in a global configuration file.

In other words, the HMMSet defines the acoustic model. A fairly detailed description on

acoustic modeling is presented in Chapter5. The inventory of the basic linguistic units

(e.g., phonemes, triphones) for which distinct HMMs are built is stored in a file and should

be specified in the configuration file as well. A pronunciationdictionary object defines

the phonemes that form each word in the vocabulary of the recognizer and it is usually

initialized from an external file. A grammar or a language model object defines a network

of allowable word sequences. It can be loaded from an external file or created on the fly.

These recognition resources are stored in a resource manager (ARMan) organized

into logical resource groups. At any one time, the recognizer is using the resources in a

specific resource group. If the resource group is changed or if any member of the group

is modified, a new resource group is recompiled for use by the recognizer for the next

recognition task. A recognizer is instantiated with a name and pointers to an input buffer,

an output buffer and a resource manager.

4.5.2 The Gender Recognizer

As discussed in Section2.4, due to similar articulatory mechanisms there is considerable

acoustic similarity of voice within speakers of the same gender while there exists appar-

ent difference between the voice of male and female speakers. This suggests that using

gender-dependent acoustic models can give better recognition performance than gender-

independent acoustic models.

49



4. SYSTEM DESCRIPTION

To be able to use a gender-dependent acoustic model at runtime, it should be possible

to reliably estimate the gender of the user from a spoken utterance. Our gender recognizer

is based on a Gaussian mixture model which will be described in Section5.3.2.

At the start of a dialog, there are two recognizers running inparallel – the first one

is used to recognize what is actually said and the second one estimates the gender of the

speaker from the same acoustic input. The extract in Listing1 shows the first part of a

typical interaction where the gender recognizer is used.

Listing 1 Dialog extract

System: Hello! My name is KEY. I provide service in English an d

German. Which one do you prefer?

User: German

System: Willkommen zum automatischen Bahnauskunftssyste m der

Universität Magdeburg! Bitte nennen Sie Ihren Reiseplan!

User: ...

The gender of the speaker is estimated at the same time when the preferred language

(i.e. "German" in this example) is recognized from the first utterance. Accordingly, the

gender-dependent model corresponding to the estimated gender and the preferred lan-

guage is loaded. At the same time the semantic model and dialog scripts corresponding

to the preferred language or application domain are loaded.As a result, the rest of the

dialog proceeds in the chosen language with a gender-dependent acoustic model and a

domain-specific semantic model.

4.5.3 The Grammar Component

The Speech Recognition Grammar Specification (SRGS) formatof W3C is a standard

way to specify speech recognition grammars in VoiceXML-based applications. However,

HTK-based speech recognizers require grammar files in HTK’sStandard Lattice Format

(SLF) and do not recognize SRGS. Therefore, we developed a separate grammar com-

ponent to enable the use of grammar in the required standard lattice format within the

VoiceXML framework.
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In fact, an alternative approach would have been to convert agrammar written in

SRGS format into a form that can be used by an HTK-based speechrecognizer at run-

time. However, this approach has not been pursued for two reasons. First, an SRGS-

based grammar is written along with the semantic instructions according to the Semantic

Interpretation for Speech Recognition (SISR) specification. Apparently, this involves a

considerable amount of human effort in writing complex grammars along with semantic

instructions. We would like to keep the grammar writing easyand automate the semantic

tagging part. Second, we also intend to use dialog state-specific bigram language models

as alternatives to grammars which makes the latter approachinconvenient.

The grammar component essentially gets the URI address of each grammar file or

language model specified in the VoiceXML script and re-writes the content to a predefined

location temporarily on the disk so that it can be used in the next recognition task. If the

recognized utterance matches the active grammar at a given dialog state, the recognition

output is sent to the semantic interpreter as shown in Figure4.5. If a match is not found,

then the application informs the user that no match is found and prompts for a matching

input.

4.5.4 The Semantic Interpreter

Since we do not use SRGS for the reasons described in the previous section, we cannot

use its companion Semantic Interpretation for Speech Recognition specification which

defines the syntax and semantics of using semantic instructions in SRGS. Instead, we

built our own statistical semantic interpreter which automatically adds semantic and hi-

erarchical information to the recognized utterance. This is, in fact, one of the key issues

we want to address in this thesis – to introduce an efficient and powerful way to semantic

interpretation with a number of virtues as will be describedin Chapter6.

The semantic model for each application domain is trained off-line as described in

Chapter6 and is specified in the application. After the preferred language is recognized

from the first spoken utterance, the corresponding semanticmodel is loaded for every

recognized utterance matching the active grammar. The taskof the semantic interpreter

is to semantically enrich the output of the speech recognizer to enable easy extraction of

the meaning underlying the recognized utterance in a given dialog state. The core of the

semantic extraction algorithm is depicted in Listing2.
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Listing 2 The semantic tagging algorithm
hmm.loadProbs(semantic_model) // load the semantic model corresponding

// to the preferred language

hmm.readString(utterance) //read the recognized utteran ce

for all words:

hmm.addObservation(word)

path, joint_prob = hmm.viterbi()

obs_prob = hmm.obsProb()

for all (state, observation) in path:

if non_emitting(state):

if isEntry(state):

print "("

else if isExit(state):

print ")", state

else if emitting(state):

print observation, state

hmm.reset()

The trained semantic model consists of two text files – one consisting of the transition

probabilities and another consisting of emission probabilities. In Listing2, the function

"hmm.loadProbs()" loads these model files for a specified application domain. The func-

tion "hmm.readString()" reads the recognition output of the speech recognizer. Every

word in the utterance is checked if it is in the lexicon of the tagger, otherwise it is marked

as "oov". The function "hmm.addObservation()" constructsa trellis of state transitions.

The hmm.Viterbi() implements the Viterbi algorithm to search the most likely sequence

of states through the trellis. The function hmm.reset() resets the trellis and prepares the

HMM for the next utterance.

4.5.5 Summary of Recognition Events

In order to give a helicopter view of the events in the input component, we provide a

summary of the main events in a dialog session as follows:

1. The input component is initialized; i.e.:
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• The VoiceXML interpreter reads the name of the input component from the

global configuration file, creates an instance of the input component and ini-

tializes it.

• Initialize ATK which includes initializing the underlying HTK libraries.

2. When user input is expected, the VoiceXML interpreter calls the method of the

input component that is responsible to start voice input collection.

3. The input component starts capturing audio data using an interface of the media

source component.

4. The media source component calls the methods of the the input component that are

responsible to receive audio data.

5. The received audio data are organized into wave packets and are streamed to the

buffer that connects the audio source to the coder.

6. The coder reads the buffer, extracts the required features and makes the extracted

feature vectors available for the speech recognizer.

7. The grammar component prepares the grammar specific to a given dialog state and

makes it available to the speech recognizer.

8. The recognizer hypothesizes the most likely utterance from the sequence of feature

vectors using a given set of recognition resources. The recognition result is then

made available to the application through the output bufferof the recognizer.

9. When the recognition of an utterance is finished, the VoiceXML interpreter is in-

formed about the fact and the recognizer is temporarily stopped.

10. The output of the recognizer is then passed to the semantic interpreter that enriches

the raw text output with semantic information.

11. For the next run, the recognition resources are updated with a new dialog-specific

language model or grammar.

12. When the next user input is expected, the recognizer is restarted with an updated

resource group.
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13. Steps 2-12 are repeated until the dialog is finished or terminated.

4.6 Summary

In this chapter we presented a comprehensive description ofthe system and the various

components that make up our telephone-based spoken dialog system framework. The im-

plementations of the components we have developed in this thesis; namely, the telephony

interface component, and the input component that consistsof a speech recognizer, a gen-

der recognizer, a grammar component and a semantic interpreter are described. For the

sake of clarity, we left out some low-level details. Now thatwe have described the test-

bed, the various models that make up a robust spoken dialog system will be discussed in

the following chapters.
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Chapter 5

Automatic Speech Recognition and

Related Issues

5.1 Introduction

In this chapter we present the fundamentals of automatic speech recognition, gender iden-

tification and accent detection along with a description of the approaches we use to utilize

speaker-dependent characteristics such as gender and accent to improve speech recogni-

tion performance. In Section5.2, we describe speech recognition as a Bayesian inference

problem and we present an overview of hidden Markov model as used in automatic speech

recognition. As introduced in Section3.2, speech recognition consists of feature extrac-

tion, acoustic model training, language modeling and decoding. Hence, we present a

fairly detailed overview of these processes. Section5.3 discusses the use of user-group

dependent acoustic models based on gender and accent to improve speech recognition

performance in a spoken dialog system. We further describe our Gaussian Mixture Model

(GMM) based gender and accent recognition models. Moreover, the accent recognition

approach we propose in this thesis; namely, using native speech data of two or more target

accent groups to train an accent recognizer is described. InSection5.4, we present a brief

overview of Maximum Likelihood Linear Regression (MLLR) and Maximum a Poste-

riori (MAP) speaker adaptation techniques as they will be used for accent and channel

adaptation. Finally, we summarize the chapter in Section5.5.
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5.2 Automatic Speech Recognition

Automatic speech recognition can be broadly defined as a process of transforming a

speech signal into a string of words. As noted earlier, an utterance can be conceived

as a hidden sequence of phones that are mentally formulated into words. The hidden se-

quence is observed as a speech signal. The goal of the required model is, therefore, to

determine the most likely hidden sequence of phones that form linguistically meaningful

words from the observed speech signal. Due to their ability to estimate the probabilities of

hidden events (e.g. sequence of phones) from observed ones (e.g. speech signal) hidden

Markov models (HMMs) are ideal for this task.

The HMM-based speech recognition problem can be conceptualized as a special case

of the Bayesian inference problem (Jurafsky and Martin, 2008). The probability that the

utteranceW was spoken given the acoustic evidenceO can be formulated as:

argmax
W

P(W|O) = argmax
W

P(O|W)×P(W)

P(O)
(5.1)

Since the probability of the observation sequenceP(O) doesn’t change with each sen-

tence hypothesis, the denominator of Equation5.1can be ignored and the problem reduces

to:

Ŵ = argmax
W

P(W|O) = argmax
W

P(O|W)×P(W) (5.2)

P(O|W) in Equation5.2, is the observation likelihood computed by an HMM-based

acoustic model whileP(W) is the prior probability computed by a language model. The

most probable string of words for a given observation sequence O is, therefore, the one

for which the product of the two probabilities is maximum.

The main tasks involved in building an HMM-based speech recognition can be divided

into three major subtasks – feature extraction, model training and decoding (recognition).

Feature extraction is the first step that transforms the observed speech signal into a se-

quence of feature vectors. The training procedure estimates the parameters of a set of

HMMs using training data and the associated transcription resulting in an acoustic model.

The decoding task attempts to map the observed sequence of feature vectors to the hidden

underlying sequences of symbols using the trained acousticmodel and other recognition

resources. The acoustic model should be trained on a large amount of training data prior

to using the system to recognize a spoken utterance.
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A basic architecture of an automatic speech recognition system is shown in Figure

5.1.

Figure 5.1: A simplified architecture of an automatic speechrecognition system

5.2.1 Feature Extraction

The purpose of feature extraction as mentioned in Section3.2.1is to transform a given

speech signal into a sequence of discrete acoustic feature vectors that are robust to acous-

tic, inter-speaker and intra-speaker variability but sensitive to linguistic content (Gold and

Morgan, 2000). Each acoustic feature vector represents spectral and energy information

of a short-term speech signal. For the duration covered by a single feature vector, a speech

waveform can be assumed to be stationary (Young et al., 2006).

We look into various feature extraction methods in search ofthose features that are

better suited for speech recognition over the telephone, gender recognition and accent

detection. In particular, Mel-Frequency Cepstral Coefficients (MFCCs) (Davis and Mer-

melstein, 1980), Perceptual Linear Prediction (PLP) cepstral coefficients (Hermansky,

1990), Linear Predictive Coding (LPC) features (Atal and Hanauer, 1971; Itakura and

Saito, 1968) and LPC-based Cepstral Coefficients (LPCC) (Atal, 1974) are investigated.

A summary of the various feature extraction methods used in this thesis is presented

in Figure5.2.
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Figure 5.2: Block diagram of feature extraction methods

A description of the feature extraction techniques shown inFigure5.2as they are used

in this thesis is presented below.

The computation of MFCCs consists of performing preemphasis on the acoustic sig-

nal, dividing the incoming waveform into overlapping blocks of 20–25 ms, and multi-

plying each block by a Hamming Window. The Fast Fourier Transform (FFT) of the

windowed signal is computed and the square of the magnitude (i.e., the power spectrum)

is fed to a series of filter bank channels. Then, Discrete Cosine Transform (DCT) is ap-

plied to the logarithm of the filter bank outputs. The Discrete Cosine Transform has a

notable effect in favor of the diagonal covariance assumption commonly used in HMM-

based acoustic modeling by de-correlating the features in the feature vectors so that the

features can be assumed to be independent of each other. Finally, the first and second time

differences (i.e., delta, and delta-delta coefficients) are computed to better model tempo-

ral variation of the speech spectrum. A feature vector is typically generated every 10 ms
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each containing 13 cepstral components, including the 0th order cepstral coefficient and

the corresponding delta and delta-delta coefficients comprising 39 dimensions.

Linear predictive coding (LPC) views speech as a linear but time-varying system,

where speech sample at discrete timet is estimated as a linear combination of the pre-

vious p samples. The computation of LPC coefficients consist of preemphasis, frame

blocking, windowing, autocorrelation analysis (Itakura and Saito, 1968) followed by LPC

analysis which converts the autocorrelation coefficients to an LPC parameter set. The re-

sulting LPC coefficients are highly correlated and the diagonal covariance assumption

does no longer hold true. Consequently, using LPC-derived cepstral coefficients (LPCC)

rather than the LPC coefficients directly can be more useful because the additional cep-

stral transformation de-correlates the features in favor of the diagonal covariance assump-

tion. Therefore, the LPC parameters are transformed to cepstral coefficients which are

known to be more robust and reliable features for speech recognition (Rabiner and Juang,

1993) than the LPC coefficients. The cepstral coefficients are then weighted by a ta-

pered window so as to minimize the sensitivity of the low-order cepstral coefficients to

the overall spectral slope and that of the high-order cepstral coefficients to noise (Rabiner

and Juang, 1993). Finally, the first and second derivatives can be computed to account for

the temporal information of the speech signal. A typical feature vector of dimensionality

39 containing 13 cepstral coefficients including the energyterm along with the delta and

delta-delta features is used for speech recognition. A morecomplete discussion on linear

predictive analysis can be found in (Makhoul, 1975; Rabiner and Juang, 1993).

Perceptual Linear Prediction is an LP-based analysis method that incorporates the

known perceptual properties of human hearing; namely, critical band frequency resolu-

tion, preemphasis with an equal loudness curve, and the power law model of hearing.

To compute PLP cepstral coefficients, a Fourier transform isfirst applied to compute the

short-term power spectrum and the power spectrum is fed intoa perceptually motivated

filter bank. The resulting spectrum is multiplied by the equal loudness curve and raised

to the power of 0.33 to simulate the power law of hearing (Stevens, 1957). The all-pole

model of LPC is applied on the simulated auditory spectrum togive a smooth and compact

approximation. Then cepstral coefficients are computed. Ontop of the static coefficients,

the first and the second time differences between parameter values over successive frames

– delta, and delta-delta coefficients are computed. As described in (Hermansky, 1990),
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PLP features are more suitable in noisy conditions due to theuse of different non-linearity

compression (the cube root) instead of the logarithm on the filter-bank output.

Besides, cepstral mean normalization (CMN) can be applied to deal with additive

noise and mismatch due to different microphone characteristics.

The experiments carried out using these features and various parameters for speech

recognition are discussed in Sections8.2.8, 8.2.9and8.3.2. For gender recognition and

accent detection, the corresponding experiments are discussed in Sections8.4.1and8.5.1,

respectively.

5.2.2 Hidden Markov Model: Overview

A hidden Markov model (HMM) is composed of a hidden process (aMarkov chain) and

an observable process which associates the observed acoustic feature vectors to the states

of the hidden process (Junqua and Haton, 1995). A hidden Markov model is characterized

by a set of hidden states, a set of observations, state transition probability distribution,

emission probability distribution and initial state distribution. The transition probabilities

between states model the temporal variability while the emission probabilities model the

spectral variability of speech. Figure5.3depicts a three-state, left-to-right hidden Markov

model.

Figure 5.3: HMM-based phone model: Adapted from (Young, 1996)

As can be seen in Figure5.3, each statej has an associated probability distribution

b j(ot) which determines the probability of generating observation ot at timet and each
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pair of statesi and j has an associated transition probabilityai j . The model entry and

exit states are non-emitting and consequently have no output probability distribution as-

sociated with them. They are used to glue models (HMMs) together to form composite

HMMs that represent a word or an utterance.

In order to use HMMs for automatic speech recognition, threefundamental problems

must be solved (Junqua and Haton, 1995; Rabiner and Juang, 1993). These are:

Problem 1 (Evaluation): Given a sequence of observationsO = o1,o2, ...,oT and

a modelλ, how do we compute the probability that the model produced the observed

sequence? This is a problem of evaluating how well a given model matches a given

observation sequence. The forward pass of the forward-backward algorithm (Baum et al.,

1970) can be used to solve this problem.

Problem 2 (Decoding): Given the observation sequenceO = o1,o2, ...,oT and the

modelλ, what is the single best state sequenceQ = q1,q2, ...,qT in the model that best

explains the observations? This problem can be solved with the Viterbi algorithm (Viterbi,

1967). The Viterbi algorithm is based on dynamic programming andit looks through a

network of nodes for a sequence of HMM states that most closely corresponds to the

input.

Problem 3 (Learning): Given the observation sequenceO = o1,o2, ...,oT and the

modelλ, how do we adjust the model parameters to maximize the probability of generat-

ing the observations? The Baum-Welch re-estimation algorithm (Baum et al., 1970) can

be used to solve this problem using a finite observation sequence as training data.

Further details on the above mentioned problems and the corresponding algorithms

can be found in (Jelinek, 1976; Rabiner, 1989; Rabiner and Juang, 1993; Wendemuth,

2004; Young et al., 2006).

5.2.3 HMM-based Acoustic Modeling

As noted in the previous section, an HMM consists of a set of states and changes state

once every time unit. Each timet that a statej is entered, a feature vectorot is generated

with output probability densityb j(ot) (Young, 1996). The transition from one state to the

other is probabilistic and the observation sequence is alsoa probabilistic function of the

underlying states and state transitions.
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The goal of acoustic modeling is to estimate the transition probabilities (A) and the

observation likelihoods (B) of each HMM such that the likelihood of the training data is

maximized.

The likelihood of generating an observed feature vector sequenceO = o1,o2, ...,oT

while following a state sequenceQ = q1,q2, ...,qT given some modelλ can be estimated

by multiplying together all the acoustic likelihoods and the transition probabilities asso-

ciated with the given sequence as in Equation5.3.

P(O,Q|λ) = aq(0)q(1)

T

∏
t=1

bq(t)(ot)aq(t)q(t+1) (5.3)

whereq(0) is the model entry state andq(T +1) is the model exit state.

In HMM, however, we only know the observation sequenceO and the underlying state

sequenceQ is hidden. Therefore,P(O|λ) can be found by summing Equation5.3over all

possible state sequences in the model. This can be efficiently performed with the Baum-

Welch algorithm or forward-backward algorithm which is a specific implementation of

the Expectation-Maximization algorithm to find the Maximum-Likelihood estimate of

both the transition and observation probabilities (Jelinek, 1976; Rabiner, 1989; Rabiner

and Juang, 1993; Wendemuth, 2004; Young et al., 2006).

Equation5.3, can be re-written in the log domain to separate the A (transition proba-

bility) and B (observation likelihood) terms as:

logP(O,Q|λ) =
T

∑
t=0

logaq(t)q(t+1) +
T

∑
t=1

logbq(t)(ot) (5.4)

The observation likelihood distribution term in Equation5.4can be represented by a

mixture of Gaussian probability distribution functions where the means, covariances and

mixture weights are to be learned from training data. The likelihood of an observation

vectorot being generated at timet from an HMM statej (b j(ot)) can be computed by

assuming that the possible values of each dimension of the feature vectors is a weighted

mixture of multivariate Gaussians.

A multivariate Gaussian is defined by a D-component mean vector µ and a covari-

ance matrixΣ. The use of full co-variance matrix for acoustic likelihoodestimation is

computationally expensive and requires much more trainingdata. Therefore, diagonal

covariance matrix is commonly used that significantly reduces the required computation
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by assuming that the components of a feature vector are statistically uncorrelated. With

MFCCs, PLPs, and LPCCs this assumption is justified as discussed in Section5.2.1.

The acoustic likelihoodb j(ot) for a D-dimensional feature vectorot is a weighted sum

of M component densities for a given HMM state with mean vectorµjm and covariance

matrixΣ jm given by:

b j(ot) =
M

∑
m=1

ω jm
1

√

(2π)D|Σ jm|
exp(−

1
2
(ot −µjm)TΣ−1

jm(ot −µjm)) (5.5)

whereM is the number of Gaussian components per state,ω jm is the weight of themth

component in statej, andω > 0, ∑M
m=1ω jm = 1 for all j.

Before a model can be trained, a number of modeling decisionsmust be made includ-

ing the topology of the HMM, number of states per HMM, the typeof output probability

function and the initialization method. In our case, we represent each monophone by

a hidden Markov model of three emitting states with left-to-right topology, where each

emitting state has two transitions: back to itself and to thenext state as shown in Fig-

ure 5.4. The left-to-right topology is generally used to account for the strong temporal

constraints in speech (Junqua and Haton, 1995). We use continuous density HMMs (Li-

porace, 1982) where each observation probability distribution is represented by a finite

mixture of Gaussian functions as described earlier.

Figure 5.4: An example HMM topology with initial transitionprobabilities

The simplest way to initialize HMMs is with a flat start scheme(Young et al., 2006)

where the mean and the variance of each Gaussian is set to the global mean and variance

of the training data. In a flat start scheme, transition probabilities from an emitting state

back to itself and to the next state are set equiprobable, thetransition from the entry state

to the first emitting state is set to 1.0 and all other transitions are set to zero as shown in

Figure5.4.
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Most often HMM training is done with speech utterances for which phone-level tran-

scription of the training data is available but the exact timing of phonetic segments is not

known. The segmentation of speech into phones and phone alignment is done as part of

the training process. This type of training procedure whereeach phone model is trained

embedded in an entire sentence is known as embedded training(Jurafsky and Martin,

2008; Young et al., 2006).

More on acoustic model training is presented in Section8.5.1.2.

5.2.4 Language Modeling

A language model is an important source of information that limits the set of possible

sequences of words which are actually considered for a givenrecognition task. For every

word in the vocabulary of a given application, the language model defines the list of words

that can follow it with associated probability. As discussed in Section5.1, the termP(W)

represents the contribution of linguistic knowledge in theform of a language model in the

recognition process. For a sequence of wordsW = w1,w2,w3, ...,wn, P(W) is given by:

P(W) = P(w1,w2, ...,wn) (5.6)

= P(w1)P(w2|w1)P(w3|w1,w2)...P(wn|w1,w2, ...,wn−1) (5.7)

=
n

∏
i=1

P(wi |w1,w2, ...,wi−1) (5.8)

whereP(wi |w1,w2, ...,wi−1) is the probability thatwi will follow, given the fact that the

word sequencew1,w2, ...,wi−1 has been observed. However, the conditional probability

P(wi|w1,w2, ...,wi−1) cannot be reliably estimated even for moderate values ofi (Huang

et al., 2001b). In practice, therefore, an approximation is made where the probability of a

word is assumed to be dependent only on the precedingi −1 words wherei is either two

(bigram) or three (trigram).

Since the vocabulary of each application domain we considerin this thesis is suffi-

ciently limited, we use backoff-bigram language models. A bigram language model is

essentially a matrix containing the probability of a given word being followed by another

calculated from a training corpus. Backoff is a smoothing technique commonly used in

speech recognition. When there are not enough examples of a particular N-gram, back-

off uses lower order N-gram language models. For instance, when there are not enough
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examples of a particular trigram, bigram probabilities areused and when there are not

enough examples of a particular bigram, unigram probabilities are calculated.

5.2.5 Decoding

Decoding is a task of determining the sequence of words that has the highest posterior

probability, given a sequence of observation vectors. As described in Section5.2, the best

sequence is the one that maximizes the product of the language model prior probability

and the acoustic likelihood given by:

Ŵ = argmax
W

P(W|O) = argmax
W

P(O|W)×P(W) (5.9)

The acoustic model likelihood –P(O|W) is described in Section5.2.3and the lan-

guage model prior –P(W) is briefly described in Section5.2.4. P(O|W) relies on some

incorrect independence assumption; i.e., successive observation vectors are assumed to be

independent of past observations and states. This assumption underestimates the acoustic

likelihood (Jurafsky and Martin, 2008).

Therefore, it is desirable to balance the probabilities of the acoustic model and the

language model by finding an optimal language model scaling factor (LMSF) that defines

how the language model log probabilities are scaled before they are combined with the

acoustic log probabilities. Introducing a language model scaling factor may result in an

increase in word insertion errors in the recognition output. To mitigate this effect, an

optimal word insertion penalty (WIP) is introduced. Consequently, Equation5.9 can be

modified to:

Ŵ = argmax
W

P(O|W)×P(W)LMSFWIPN (5.10)

where N is the number of words in the utterance.

In practice, we do all computations in the log-domain, wheremultiplications of proba-

bilities become additions which make the computation more efficient and avoids numeric

underflow for long sequences. Therefore, Equation5.10 can be re-written in the log-

domain as:

Ŵ = argmax
W

logP(O|W)+LMSF× logP(W)+N× logWIP (5.11)
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The LMSF and WIP values are experimentally determined for each application do-

main as will be described in Section8.2.7.

The acoustic likelihoodP(O|W) can be approximated by considering the most likely

state sequence which can efficiently be computed using the Viterbi algorithm. In large

vocabulary speech recognition systems, a complete Viterbisearch slows the system and

beam search (Lowerre, 1976) is commonly used where unlikely candidates (paths) whose

partial path scores lie more than a beam-width below the bestscore are pruned at the

earliest stage.

5.3 User-Group Dependent Acoustic Models

An utterance conveys not only the intended message but also speaker-dependent informa-

tion such as gender, accent, age group, etc. As defined in Section 2.4, accent as used in

this thesis refers to the linguistic phenomenon in which specific pronunciation patterns

from ones native language are introduced when speaking a foreign language.

Given a spoken utterance, it is easy to tell the gender, accent and/or age-group of a

person with a high degree of accuracy regardless of the language spoken or the commu-

nication channel used. This suggests that there are common vocal features that a group

of speakers belonging to the same gender, accent, age-group, etc. share. Identifying and

using these vocal features to reliably estimate the gender,age or accent of a person auto-

matically from ones spoken utterance can be useful to improve speech recognition accu-

racy. This is particularly important in spoken dialog systems, as it is often the case that

there is considerable mismatch between training and actualusage environments in such

applications. For instance, a speaker-independent (SI) model built using speech samples

from a large group of native-speakers of English would perform very poorly with non-

native speakers with typical accent. In automatic speech recognition systems, as reported

in (Huang et al., 2001a) a mismatch in accent between the speakers used in testing and

training can lead to over 30% increase in word error rate (WER). It has also been reported

in (Tomokiyo, 2001) that on the same task, the word error rate is about 3–4 times higher

on strongly Japanese-accented or Spanish-accented English speakers than on native En-

glish speakers. This suggests that accent-specific acoustic models tailored to the vocal

characteristics of speakers in the same native language group, can perform much better

than a generic acoustic model.
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In this thesis, we group the users of the spoken dialog systembased on gender and

accent. In order to use accent-dependent and gender-dependent recognition resources, it

is necessary to accurately estimate the accent and the gender of a speaker from a spoken

utterance. To this end, we investigate various types of acoustic features in search of those

that could detect gender and accent better. Details of experiments and results are presented

in Sections8.4.1and8.5.1.

5.3.1 Gender and Accent Recognition

It is a well-grounded fact that the most salient cue for distinguishing adult male and female

speech is the fundamental frequency (F0) – pitch (Hillenbrand et al., 1995; Linke, 1973;

Linville and Fisher, 1985; Murry and Singh, 1980). However, in telephone speech much

of the low frequency energy is filtered out due to the band-limiting effect of the telephone

channel. Hence, the required pitch information is either missing or weak. Therefore, we

investigate various cepstral features commonly used in speech recognition in search of

those that are suitable to reliably estimate the gender of a speaker from a spoken utterance.

The results are quite promising as will be discussed in detail in Section8.4.1.

For accent recognition, various approaches that use eitheraccented speech data or

other linguistic and acoustic features to build accent recognition models have been pro-

posed as discussed in Section2.6. The novelty of our approach for accent detection is on

using native speech data of the target accent groups (viz. German and English) to train a

model that decides if an utterance is accented or native. Even though the task on which

we demonstrate the method is relatively simple, the approach can easily be extended to

detect multiple accents using available native speech corpora of the target accent groups.

The rationale for using native speech data instead of accented data for accent detection

is twofold. First, we believe that accent-related information could be effectively captured

from the native language speech of a speaker. Second, it is often hard to collect enough

amount of accented data to build a reliable model. Therefore, it would be an advantage,

if a reliable accent recognizer could be trained on existingspeech corpora containing na-

tive spoken utterances of different languages. The model webuilt can serve the purpose

with high accuracy as will be described in Section8.5.1.3. This further motivates the use

of cross-language accent adaptation, where native speech data of the target accent can
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be used as enrollment data to adapt speaker-independent (SI) models trained on native

speech data of another language (e.g., English).

The gender and accent recognition models are based on a Gaussian mixture model

(GMM) to recognize the gender or accent of a speaker given theparameters of a spoken

utterance. In the following section we describe Gaussian Mixture model as used in gender

and accent recognition.

5.3.2 Gaussian Mixture Model

A GMM can be modeled as a single-state hidden Markov model (HMM) with a Gaus-

sian mixture observation density with diagonal covariancematrix where there is no state

transition probability within the model as shown in Figure5.5.

Figure 5.5: A GMM modeled as a single-state HMM

The parameters of an utterance are modeled with mixture weights, mean vectors, and

variance parameters of the component densities. Assuming that successive observation

vectors are independent of past observations and states, the log likelihood of a modelλ
for an observation sequenceO = o1,o2, ...,oT is given by:

logp(O|λ) =
T

∑
t=1

logp(ot |λ) (5.12)
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whereP(ot |λ) for a D-dimensional feature vectorot is a weighted sum ofM component

densities for a given modelλ given by:

p(ot |λ) =
M

∑
m=1

ωmbm(ot) (5.13)

whereωm is themth mixture weight and∑M
m=1 ωm = 1.

Each component densitybm(ot) is a multivariate Gaussian function with mean vector

µm and covariance matrixΣm given by:

bm(ot) =
1

(2π)D/2|Σm|1/2
exp{−

1
2
(ot −µm)TΣ−1

m (ot −µm)} (5.14)

The objective is to find the modelλ that has the maximum a posteriori probability for

the input feature vector sequence O according to Equation5.12.

5.3.3 Gender and Accent Dependent Acoustic Models

The simplest approach to obtain gender and accent dependentacoustic models is to train

separate acoustic models for each gender and accent group using gender specific data or

accented speech data from the target accent group. Buildinggender-dependent models

using gender-specific data is feasible as long as enough training data is available for each

gender group. However, using accented speech to build accent-dependent models is not

feasible as collecting accented data in large enough amountto train reliable model is often

hard, if not impractical. Nevertheless, the presence of within-accent acoustic similarity

due to similar pronunciation pattern learnt from the same mother tongue suggests that

accent specific characteristics can be captured from some adaptation data to transform

the model parameters of the initial model to obtain accent-dependent models. Therefore,

we investigated the effectiveness of adapting speaker-independent and gender-dependent

models to the German accent and we obtained significant performance gain as will be

discussed in Section8.5.2.

Another possibility is to use cross-language accent adaptation, where native speech

data from the target accent group of users is used to adapt a speaker-independent model

trained on native speech data of another language. This is motivated by the fact that

accent-related information could be effectively capturedfrom native speech data of a

group of speakers as discussed in Section5.3.1. We show that promising performance
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gain can be obtained by using cross language accent adaptation as will be discussed in

Section8.5.3.

5.3.4 Channel Adaptation

In the absence of enough amount of telephone-recorded data in a given application do-

main, one may have to use microphone-recorded data to train SI models for use in a

telephone-based spoken dialog system. A commonsensical approach in such cases is to

"simulate" telephone quality speech from microphone-recorded speech data by introduc-

ing the obvious effects of the telephone channel into the training speech data.

Simulating telephone quality speech involves down sampling the audio data to 8 kHz

and applying a low-pass filter with a cutoff frequency of 3400Hz and a high-pass filter of

300 Hz to approximate the band-limiting effects of the telephone channel. Furthermore,

to approximate the loss due to the logarithmic encoding in the telephone channel, the

16-bit quantized signals are converted to A-Law companded signal and back to linearly

quantized 16-bit signal. We then built a SI model using the "simulated" training data.

However, the model so built performs not so well on actual telephone speech. Therefore,

we adapted the resulting speaker-independent model to the telephone channel character-

istics using a small amount of telephone recorded data to improve the performance of

the speech recognizer on actual telephone speech. A modest performance gain has been

achieved as will be discussed in Section8.16.

5.4 Speaker Adaptation Techniques: Overview

Speaker adaptation techniques use information provided inan adaptation data to adjust

the parameters (i.e., mean and variance of the Gaussian density functions) of the initial

model to reflect the characteristics of the current environment or speaker. Considering

the existence of within-accent acoustic similarity due to similar vocal characteristics of

speakers in the same group as discussed in Section5.3, adapting a speaker-independent

and gender-dependent acoustic models to a particular accent can give robust user-group

dependent acoustic models. A simplified schematic representation of speaker adaptation

as used in HMM-based speech recognition models is shown in Figure5.6.

70



5.4 Speaker Adaptation Techniques: Overview

Figure 5.6: Schematic representation of speaker adaptation as used in HMM-based speech

recognition systems

Maximum Likelihood Linear Regression (MLLR) and Maximum a Posteriori (MAP)

adaptation techniques are briefly described in Sections5.4.1and5.4.2. MAP and MLLR

are known as model-based adaptation methods because the acoustic model parameters

are modified based on the adaptation data from the new speaker(s) as opposed to speaker

normalization (also known as feature-based adaptation) methods where the input feature

vectors are normalized to match the parameters of the model.

5.4.1 Maximum Likelihood Linear Regression (MLLR)

Maximum Likelihood Linear Regression (Leggetter and Woodland, 1995b) estimates lin-

ear transformations for model parameters to maximize the likelihood of the adaptation

data. The transformations modify the component means and covariances in the initial

system so as to reduce the mismatch between the initial modelset and the adaptation

data.

For mixture component s, the transformation of the means is given by:

µ̂s = Wsξs (5.15)
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whereWs is the transformation matrix (i.e., ann× (n+ 1) matrix where n is the dimen-

sionality of the feature vectors) andξs is the extended mean vector given by:

ξs = [1 µ1 µ2 ... µn]
T

The transformation matrixWs is computed to maximize the likelihood of the adapta-

tion data using the Expectation-Maximization (EM) algorithm.

The probability density of a feature vectorot being generated by distributions is,

therefore, given by:

bs(ot) =
1

(2π)D/2|Σs|1/2
exp{−

1
2
(ot −Wsξs)

TΣ−1
m (ot −Wsξs)} (5.16)

Variance transformation can be applied using:

Σ̂ = BTHB (5.17)

whereB is the inverse of the Choleski factor ofΣ−1, so that

Σ−1 = CCT

and

B = C−1

H is then×n transformation matrix to be estimated.

When the adaptation data is very small a single global transform can be applied to

every Gaussian component in the model set. When enough adaptation data is available

and more rigorous transformation is required, a regressionclass tree can be used to cluster

acoustically similar Gaussians into regression classes, so that similar components can

share a common transform. This makes adaptation of distributions for which there were

no observations in the adaptation data possible (Young et al., 2006).

The adaptation of the transition probabilities and the mixture component weight will

have little effect on the final performance (Leggetter and Woodland, 1995a). However,

transformation of the diagonal covariance matrix can give performance improvement.

Further details on MLLR transformation can be found in (Gales, 1998; Leggetter and

Woodland, 1995b).
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5.4.2 Maximum a Posteriori (MAP) Adaptation

Maximum a Posteriori (MAP) (Gauvain and Lee, 1994) estimation (also known as Bayesian

adaptation) maximizes the a posteriori probability using prior knowledge about the model

parameter distribution. The prior information prevents large deviations of the parameters

unless the new training data provide strong evidence (Huang et al., 2001b). Generally, the

speaker-independent model parameter distribution is the prior information used in MAP

adaptation. Given good models and large amount of adaptation data, MAP can perform

better than MLLR. MAP is a re-estimation procedure; consequently, the adaptation data

required is larger than the amount required for MLLR transformation.

For a statej and a mixture componentm, the mean is computed as (Young et al.,

2006):

µ̂jm =
Njm

Njm + τ
µ̄jm+

τ
Njm+ τ

µjm (5.18)

whereµjm is the mean of the speaker-independent model and ¯µjm is the mean of the ob-

served adaptation data,τ is the weighting of the a priori knowledge to the adaptation

speech data, andN is the occupation likelihood of the adaptation data, given by:

Njm =
R

∑
r=1

Tr

∑
t=1

Lr
jm(t)

whereLr
jm(t) is the occupancy probability for statej and mixture componentm at timet

of sequencer.

The mean of the observed adaptation data ¯µjm is given by:

µ̄jm =
∑R

r=1 ∑Tr
t=1Lr

jm(t)or
t

∑R
r=1∑Tr

t=1Lr
jm(t)

More details on MAP adaptation technique can be found in (Gauvain and Lee, 1994;

Young et al., 2006).

MAP and MLLR can be effectively combined to improve the performance of a recog-

nizer further by using the MLLR transformed means as the priors for MAP adaptation.
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5.5 Summary

In this chapter we described a hidden Markov model (HMM) based speech recognition

with some details on feature extraction, acoustic modeling, language modeling and de-

coding. Gaussian mixture model (GMM) based gender and accent recognition models

using cepstral features are also described. The rationale for using native speech data of

two or more accent groups to train an accent recognizer are described. Then we discussed

the use of user-group dependent acoustic models in spoken dialog systems to achieve

robustness using gender-dependent and accent-specific models. Finally, we briefly de-

scribed the standard speaker adaptation techniques – MLLR and MAP since they will be

used for accent and channel adaptation in Sections8.5.2, 8.5.3and8.16. The results of

the experiments corresponding to this chapter are presented in Sections8.2, 8.3, 8.4 and

8.5.
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Chapter 6

Spoken Language Understanding

6.1 Introduction

Automatic speech recognition systems generally output themost probable transcription

of a spoken utterance or an N-best lattice of possible transcriptions and are not required

to perform the subsequent semantic and/or syntactic analysis. Even though the correct

recognition of a spoken utterance is vitally important, a spoken dialog system can hardly

serve any purpose using only the raw output of a speech recognizer. Therefore, spoken di-

alog systems incorporate a spoken language understanding (SLU) unit that is responsible

to infer the meaning underlying a recognized utterance.

One approach to SLU is to "enrich" the output of the speech recognizer with semantic

information so that the added information can later be used to infer what is meant from

what is said. A spoken utterance can be conceived as a hidden sequence of semantic

concepts expressed in words or phrases. The goal of the required model is, therefore,

to determine the most likely sequence of the hidden semanticconcepts that could have

generated the observed sequence of words. In other words, the problem of understanding

the meaning underlying a spoken utterance in a spoken dialogsystem can be partly solved

by decoding the hidden sequence of semantic concepts from the observed sequence of

words. This can efficiently be realized using hidden Markov model. In this chapter, we

introduce a new, robust, hierarchical, HMM-based approachto semantic concept labeling

that offers a number of advantages over the conventional flat-concept approach.

The rest of the chapter is organized as follows. After brieflyreviewing the different

approaches to spoken language understanding in Section6.2, we describe how the hidden
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6. SPOKEN LANGUAGE UNDERSTANDING

Markov model fits in the task of spoken language understanding in Section6.3. In Section

6.4, we describe the smoothing technique we use to account for the sparse data problem.

A description of a flat-concept semantic tagging model trained on semantically unlabeled

data is provided in Section6.5. In Section6.6, we extend the flat-concept model so as to

capture longer context and resolve ambiguity. Section6.7introduces a robust hierarchical

semantic concept labeling model that organizes low-level semantic concepts into higher-

level hierarchical structures. The hierarchical model is integrated in our spoken dialog

system and encodes longer context, offers better ambiguityresolution ability, has better

predictive power and provides semantically richer output than the flat-concept model.

Moreover, the required additional human effort to design the proposed model is much

less than the time and effort that would be required to semantically annotate the training

data which would also require a detailed analysis of the application domains to define

semantic labels and organize them into hierarchical structures.

6.2 Approaches to Spoken Language Understanding

As discussed in Section2.7, the approaches in the domain of spoken language under-

standing can be broadly classified as knowledge-based, statistical, and a combination of

the two. Knowledge-based systems rely on the lexical, syntactic, semantic, discourse, etc.

knowledge encoded in the system. These systems perform verywell when the structure

of the spoken utterance is covered in the knowledge stored inthe system. Nevertheless,

crafting the required syntactic and semantic knowledge in order to extract meaning from

a given utterance requires a great deal of expertise and heavy human involvement. More-

over, they are often fragile in the face of unexpected input.Examples of knowledge-based

systems include TINA of MIT (Seneff, 1992), PHOENIX of CMU (Ward and Issar, 1996),

and GEMINI of SRI (Dowding et al., 1994).

Statistical approaches, on the other hand, estimate model parameters from data by

counting the frequencies of transitions between states, word observations while in each

state and which states start a sentence. These statistical models are robust, require less

human supervision and expertise, and perform well. However, they require a large corpus

of fully annotated training examples, which is often not available for many application

domains. Examples of statistical systems include CHRONUS of AT&T ( Pieraccini and

Levin, 1993), and Hidden Understanding Model (HUM) of BBN (Miller et al., 1994).
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Another popular statistical approach that can be trained on"lightly" annotated data is

the hidden vector state model of Cambridge University (He and Young, 2005) where

state transitions between two states are decomposed into separate stack operations that

transform one state to the other.

Approaches to integrate knowledge-based approach into a statistical learning frame-

work have also been investigated. The generative HMM/CFG composite model described

in (Wang et al., 2005) is a typical example.

We can classify statistical spoken language understandingsystems into two categories

based on whether they can encode hierarchical information or not. Various statistical

approaches that encode hierarchical structure have been proposed in (Charniak, 2001;

Chelba and Jelinek, 2000; Erdogan et al., 2002; Fine et al., 1998; Miller et al., 1994).

However, all these models require a large amount of annotated training data for param-

eter estimation. The hidden vector state model (He and Young, 2005) mentioned earlier

encodes context using only an abstract annotation for each utterance.

The approach to spoken language understanding we propose inthis thesis does not

require semantically annotated training data, instead uses a commonplace prior domain

knowledge to counterbalance the lack of annotated trainingcorpus.

6.3 HMM in Spoken Language Understanding

Hidden Markov model (HMM) as used in speech recognition is described in Section5.2.2.

In HMM-based semantic concept labeling, the hidden states correspond to the semantic

concepts in a given application domain while the observation set corresponds to the set

of words in the lexicon of the system. The model parameters are the transition prob-

abilities between states, observation probabilities in each state and which states start a

sentence. These parameters should be given good initial values so that the Expectation-

Maximization (EM) algorithm could effectively be used to iteratively refine these param-

eters during training.

The HMM-based semantic labeling problem, like the HMM-based speech recognition

problem discussed in Section5.2, is essentially a Bayesian inference problem. Assuming

that the string of words
−→
W = w1,w2, ...,wn hypothesized by the speech recognizer was

generated by some hidden sequence of semantic concepts
−→
S = s1,s2, ...,sn, the goal is to
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assign the most likely sequence of semantic concept labels to the sequence of words in

the recognized utterance. Hence, the problem can be formulated as:

argmax
−→
S

P(
−→
S |

−→
W) = argmax

−→
S

P(
−→
W|

−→
S)×P(

−→
S)

P(
−→
W)

(6.1)

As we are interested in evaluating different sequences of semantic labels for the same

observation sequence, the denominator in Equation6.1 can be ignored. Therefore, the

problem reduces to:

argmax
−→
S

P(
−→
S |

−→
W) = argmax

−→
S

P(
−→
W|

−→
S)×P(

−→
S) (6.2)

Since it is hard to compute Equation6.2 directly, the following simplifying assump-

tions are commonly used.

• Independence assumption: the probability of a word in a sentence depends only on

its state and is independent of other words around it.

• First order Markov assumption: the probability of a state depends only on the pre-

vious state.

Consequently, Equation6.2reduces to:

argmax
−→
S

P(
−→
S |

−→
W) ≈ argmax

−→
S

n

∏
i=1

P(wi |si)×P(si|si−1) (6.3)

The semantic prior,P(si|si−1) in Equation6.3, models the probability of the system

to go to statesi given the preceding statesi−1 while the lexicalization model,P(wi |si),

represents the probability that the wordwi is emitted when the system is at statesi .

If we had a semantically annotated corpus, the maximum likelihood estimate of the

semantic prior and the lexicalization model can be computedby collecting frequencies

of transitions between states, word observations in each state and states that start a sen-

tence. In the absence of semantically labeled data, these parameters need to be learnt via

unsupervised training using the EM algorithm from unlabeled training data. The EM al-

gorithm iteratively maximizes the probability of the training sequences given initial HMM

parameter values and guarantees only local maximum. It depends heavily on the initial
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parameter values of the model; hence, it is crucial to determine a reasonable model struc-

ture and well-informed initial parameter values of the model. The use of prior domain

knowledge is particularly essential to provide good initial parameter values and define a

reasonable model topology.

A high-level description of the algorithm we used to train the HMM-based semantic

models is shown in Listing3.

Listing 3 The core of the training algorithm
hmm.loadProbs(initial_model)

hmm.readSeqs(training_data)

for k in range (0,maxIterations):

totalLogProb = hmm.count_seqs()

if change(totalLogProb) < threshold:

break

hmm.updateProbs()

hmm.saveProbs(trained_model)

In Listing 3, the function hmm.loadProbs() loads the initial model compiled as will

be described in Sections6.5, 6.6 and6.7 while hmm.readSeqs() reads the training data.

The parameter "maxIterations" denotes the number of training iterations specified to train

the model. One iteration of the Baum-Welch algorithm consists of "hmm.count_seqs()"

which computes the expected counts and "hmm.updateProbs()" which estimates the new

HMM parameters. If the change in total log likelihood between two iterations no longer

increases; i.e., the current model is at a local maximum, thetraining algorithm terminates.

Given a well-trained model, the highest probability semantic label sequence which

corresponds to the sequence of observed words can be computed by the Viterbi algorithm

(Viterbi, 1967) as described in Section4.5.4.

6.4 Smoothing

The occurrence of events in a test-set which were not seen in the training set is inevitable

in statistical methods that use a finite amount of training data. This phenomenon is com-

monly known as the the sparse data problem. Events that can normally occur in sponta-

neous conversation may not occur at all in a given training data. If these unseen events
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6. SPOKEN LANGUAGE UNDERSTANDING

are assigned zero probabilities, the system becomes very fragile and fails when these un-

foreseen events occur. Smoothing is a method used to combat the "zero probability" and

the data sparseness problem. There are a number of smoothingapproaches such as add-

one smoothing (also known as Laplace smoothing) (Lidstone, 1920), back-off smoothing

(Katz, 1987), deleted interpolation (Jelinek and Mercer, 1980), etc.

Smoothing, as used in this thesis for semantic modeling, allows a model to parse all ut-

terances including those that contain "unseen transitions" and "out-of-vocabulary" words

which otherwise could not be parsed. If we had a semanticallyannotated training corpus,

the maximum likelihood estimate of the semantic priorP(si|si−1) can be computed by

collecting frequencies of transitions between states, andsmoothing can be applied based

on these counts. However, since we do not have semantically annotated training data, we

compute the expected counts on the training corpus, with theforward-backward recursion

of the Baum-Welch algorithm. Then the smoothed parameters are computed on the basis

of the expected counts.

To smooth the transition probabilities we used the simple add-one smoothing tech-

nique which adds one to all counts before normalizing them into probabilities as shown

in Equation6.4.

P̂(si |si−1) =
Ĉ(si−1,si)+1.0

Ĉ(si−1)+C(si−1)
(6.4)

whereĈ(si−1,si) represents the expected counts of transitions from statesi−1 to state

si andĈ(si−1) represents the expected state occupation counts computed by the Baum-

Welch algorithm. C(si−1) represents the number of all possible transitions that leave

the statesi−1. Finally, a lower limit on all transition probabilities that are not explicitly

prohibited is imposed so that all possible utterances can besuccessfully parsed. We set

this value to a very small non-zero value –minProb= 10−7).

In order to smooth emission probabilities, we use a commonsensical approach where a

vocabulary item "oov" is introduced in classes such as CITY,STATE, AIRLINE, DUMMY,

etc. where the vocabulary list in the class is not exhaustive. All words not in the lexicon

are mapped to the "oov" word and the probability of the "oov" word in a concept class

is set to the sum of the probabilities of all words in that class that occur only once in the

training set. Since we do not have annotated data, the estimation of these probabilities

is based on the expected count of emitting the symbolwk in statesj (i.e., Ĉ(sj ,wk)), as
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computed by the Baum-Welch algorithm on the training data. An upper and lower limit

to the probability of the "oov" word are set such thatminProb< P̂(oov|sj) ≤ 0.8. These

values are empirically determined. Then, the probabilities in that class are normalized so

that they add up to one. This approach, though simple, servesthe purpose well as will be

discussed in Section8.6.

6.5 The Flat-Concept Model

A flat-concept model labels each word in an utterance with a corresponding semantic

label and does not encode hierarchical relationship between concepts. CHRONUS of

AT&T ( Pieraccini and Levin, 1993) and IBM’s fertility model (Pietra et al., 1997) are two

examples using the flat-concept model. In CHRONUS and similar approaches, the model

parameters are estimated by simply counting the relative frequencies from semantically

annotated training data, where each word is labeled with thestate (semantic class) it

belongs to. In this section we describe a flat-concept model where no annotated data is

required.

Modeling an application domain requires a precise identification of the activities, en-

tities, events, attributes and relations within the domainof discourse. In this thesis, we are

interested in two application domains; namely, airline travel planning in English and train

inquiries domain in German. A detailed list of concepts thatare relevant in each appli-

cation domain is identified using prior domain knowledge anddomain-specific example

sentences in the training data. As a result of the detailed domain analysis, we identified

over 76 semantic classes1 in the airline travel planning domain and 51 semantic classes in

the domain of train inquiries. Listing4 depicts a partial listing of concepts identified for

the airline travel planning domain. A complete list is provided in AppendixA for both

application domains.

Listing 4 Example list of semantic classes (semantic concepts) identified for the airline

travel planning domain
CITY_P1, CITY_P2, CITY_P3, STATE, COUNTRY, DAY_OF_WEEK, D AY_OF_MONTH,

MONTH, MINUTES, AMPM, HOUR_OF_DAY, FLIGHT_NUMBER, FLIGHT_CLASS, FROM, TO,

ON, AIRLINE_NAME, AIRPORT_NAME, ARRIVAL, DEPARTURE, YES, NO, DUMMY, ...

1The terms semantic class, semantic concept, semantic label, and semantic tag are used interchangeably

in this thesis
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As can be observed in Listing4, a single concept can be broken down into several

sub-concepts, in some cases. For instance, the concept CITYis modeled with three sub-

concepts – CITY_P1, CITY_P2 and CITY_P3 in order to capture multi-word city names

such as "New York City", "Washington D. C." or train stationssuch as "Berlin Zoologis-

cher Garten", etc.

The initial HMM for the flat-concept based approach is a fullyconnected network

such that any state (semantic concept) can follow any other state (semantic concept) with

equal probability as shown in Figure6.1.

Figure 6.1: A partial network depicting the initial flat-concept semantic model

The emission probabilities are initialized by classifyingthe words in the system’s

vocabulary into the known set of semantic classes manually such that a set of words

belonging to a semantic class are initially equiprobable.

As can be seen in Figure6.1, the INIT and the FINAL states mark the beginning and

end of the HMM and are non-emitting. The dotted arrows represent those transitions to
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and from other states that are not shown in the diagram. To account for the effects of

spontaneous speech such as stammering, hesitation, etc. and to allow multiple observa-

tions from the same state self-loops are initially permitted for all emitting states.

The state transitions for the following utterances can be easily traced in Figure6.1.

• (I would like to fly) DUMMY (from) FROM (Los) CITY_P1 (Angeles) CITY_P2

(California) STATE (to) TO (Boston) CITY_P2 (on) ON (May) MONTH (first)

DAY_OF_MONTH (at) AT (nine) HOUR_OF_DAY (p. m.) AMPM

• (Monday) DAY_OF_WEEK (June) MONTH (fifteen) DAY_OF_MONTH(early)

PERIOD_OF_DAY (in the) DUMMY (morning) PERIOD_OF_DAY

The initial model is too unconstrained to be of practical use. Therefore, it is essential

to introduce some informative structures by prohibiting arbitrary and unlikely state tran-

sitions based on prior domain knowledge and training examples. For instance, in order to

disambiguate words belonging to multiple semantic classes, some unlikely transitions can

be explicitly prohibited. For example, "twenty six" in "Maytwenty six" would be labeled

as DAY_OF_MONTH if the unlikely one-step transitions from MONTH to other con-

fusable states such as FLIGHT_NUMBER, ID_NUMBER, QUANTITY, HOUR, MIN-

UTES, etc. are explicitly prohibited. This may require several iterations of testing on a

training set in order to learn semantic structures from unannotated data. To simplify this

process, we implemented a model compiler that allows us to modify the model parame-

ters easily using a modeling language in order to generate a better initial model where the

transition probabilities are tuned based on prior domain knowledge.

The initial transition probabilities can be tuned as required using the keywords "all",

"high", "low", "only", "except", and "none". Tuning, in this context, is the process of

introducing constraints to modify the initial model structure using these keywords. An

excerpt of the model definition for the flat-concept model is given in Figure6.2.
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Figure 6.2: An excerpt of model definition for the flat-concept model

The keyword "all" means that all transitions out of a state are equally likely including

self-loops and "none" means no transition out of a state is possible (e.g. out of the FINAL

state). The keyword "except" as in ->except{FINAL} means that a one-step transition to

FINAL is prohibited while allowing all other transitions toany other state. The keyword

"only" is used to specify the only allowable transition(s) out of a state. The keyword

"high" assigns to a specified set of states a transition probability value which is twice as

much as the rest of the probabilities in that class and "low" assigns half as much. The

entries "city_p1.txt", "city_p2.txt", "day_of_month.txt", etc. in Figure6.2are simple text

files that contain the lexical items belonging to the sub-concepts CITY_P1, CITY_P2,

DAY_OF_MONTH, etc., respectively.

After a number of testing and tuning parameters on the training data, the initial model

becomes "good" enough for EM training. The training algorithm starts with the HMM

consisting of the "tuned" parameters as initial values and iteratively refines the model

until convergence is reached using the training data.
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6.5.1 Limitations of the Flat-Concept Model

The flat-concept model built in this way yields satisfactoryperformance for relatively

simple application domains. A detailed discussion of the experiments carried out and the

results obtained will be presented in Section8.6.3.

However, it suffers from the following main limitations:

• The output is less expressive as a single concept is often broken down into a se-

quence of low level concepts that are individually labeled.For instance, phrases

like "Tuesday November the eleventh two thousand nine" or multi-word city names

such as "New York City", etc. would be more informative if labeled as DATE and

CITY, respectively instead of simply providing a fragmented output containing each

word along with a corresponding atomic semantic label.

• Its predictive power is very weak as adjacent semanticallyrelated concepts are

loosely coupled.

• It does not allow any hierarchical grouping of concepts andthe encoded context is

quite narrow.

• Several iteration of testing and hand-tuning of model parameters may be required

on either a training or a development set before sufficient coverage can be achieved.

These shortcomings of the flat-concept model motivate a needfor models like the

ones we propose in this thesis where we capture longer context by grouping semantically

and hierarchically related low-level concepts into higherlevel structures. In this thesis,

we propose two approaches that target different levels of hierarchical organization of con-

cepts. In the following section, we describe a model that allows medium-level hierarchical

organization of concepts by grouping semantically relatedlow-level concepts together so

as to encode longer contextual information.

6.6 The Medium-level Hierarchical Model

In order to encode longer context, we use the detailed list ofconcepts that have been

identified in Section6.5 and we group two or more low-level concepts that describe a
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single semantic concept into a single cohesive unit. For instance, low-level concepts

HOUR_OF_DAY, MINUTES, AMPM describe a concept TIME, and low-level concepts

like MONTH, DAY_OF_MONTH, DAY_OF_WEEK and YEAR represent asingle con-

cept DATE, etc. As can be clearly seen, the knowledge required to determine which

attributes should belong together to form such a structure is a commonplace knowledge.

Accordingly, we identified 18 cohesive units containing semantically related low-level

concepts for the domain of airline travel planning and 11 forthe domain of train inquiries.

Listing 5 depicts a partial list of groups comprising a set of low-level concepts (attributes)

in the domain of airline travel planning.

Listing 5 Partial list of grouped semantic concepts
CITY: (CITY_P1, CITY_P2, CITY_P3, SPELT_CITY)

AIRPORT: (AIRPORT_NAME, AIRPORT_TYPE, AIRPORT_QUALIFIER, SPELT_AIRPORT)

DATE: (DAY_OF_MONTH, DAY_OF_WEEK, MONTH, YEAR)

TIME: (MINUTES, HOUR_OF_DAY, AMPM)

AIRLINE: (AIRLINE_QUALIFIER, AIRLINE_NAME)

CAR_INFO: (CAR, RENTAL_COMPANY, CAR_TYPE)

FLIGHT_INFO: (FLIGHT_CLASS, FLIGHT_NUMBER, FLIGHT_TYPE, FLIGHT_QUALIFIER)

HOTEL_INFO: (HOTEL_TYPE, HOTEL_QUALIFIER, LOCATION)

USER: (ID,ID_NUMBER,NAME_OF_USER)

PRICE: (FARE, AMOUNT_OF_MONEY, FARE_CLASS)

The rationale behind grouping of related sub-concepts together is threefold. First,

it improves the predictive power of the model since adjacentrelated concepts are well

coupled. Second, the model produces outputs that are semantically rich and more mean-

ingful. Third, it offers better ambiguity resolution powerthan the flat-concept model. For

instance, "twenty six" in "May twenty six" would not be confused with other possible

semantic labels such as MINUTES, QUANTITY, ID_NUMBER, etc.as DATE is a single

entity where the attributes DAY_OF_MONTH and MONTH are wellcoupled. Hence, the

model resolves ambiguities of this sort which otherwise hadto be manually tuned.

Each of these semantically organized units is modeled as a sub-network with two

non-emitting states that mark the entry and exit states of the sub-network. The transitions

between the states within a sub-network are initially ergodic which will later be refined

through tuning and training. The non-emitting states of sub-networks are used to glue a
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sub-network with other sub-networks and states in the global network. The initial global

HMM for the medium-level hierarchical model for each application domain is a fully

connected network such that any state or sub-network can follow any other state or sub-

network with equal probability. The global network has two more non-emitting states

INIT and FINAL that mark the entry and exit states of the network. A one-step transition

from the entry state to the exit state is explicitly prohibited to prevent non-emitting loops.

Figure6.3shows a partial structure of the HMM for the domain of airlinetravel plan-

ning. The dotted arrows represent the transitions to and from states and sub-networks that

are not shown in the diagram.

Figure 6.3: A partial structure of the initial medium-levelhierarchical model

It is easy to trace the state transitions for the following utterances in Figure6.3.
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• (I would like to fly) DUMMY (from) FROM (Los Angeles) CITY (California)

STATE (to) TO (Boston) CITY (on) ON (May first) DATE (at) AT (eight thirty

p. m.) TIME

• (Monday June fifteen) DATE (early morning) PERIOD_OF_DAY

The emission probabilities are initialized in the same way as in the flat-concept model

– by classifying the words in the vocabulary of the application domains into the known set

of lexical classes where all words belonging to a semantic class are initially set equiprob-

able.

Once we define the model structure, it may be necessary to biasthe initial transition

probabilities of the HMM to help the disambiguation of some lexical items that belong

to multiple semantic classes which the modeling approach could not resolve on its own.

This can be done by performing preliminary tests on the training or a development data

and introducing necessary constraints as required until the training data is sufficiently

covered. To provide easy tuning and to keep the cost of tuninglow, we extended the

model compiler introduced in Section6.5 so that it accommodates the new modeling

approach. An excerpt of the model definition for the medium-level hierarchical model is

shown in Figure6.4.

As described in the previous section the initial model transition probabilities can be

easily tuned as required using the keywords "all", "high", "low", "except", "only" and

"none". As a convention, the entry state of a sub-network is denoted by the name of the

concept (e.g. CITY) and the exit state is denoted by a tilde followed by the name of the

concept (e.g.∼CITY).

Given a "well-informed" initial model tuned as described above, the EM algorithm

can be used to further refine the model parameters.

The data used, the experiments carried out, the results obtained and some illustrative

examples for the medium hierarchical model will be discussed in Section8.6.4.

The medium-hierarchical model offers better ambiguity resolution ability and pro-

duces more structured output than the flat-concept model. However, it can further be

extended to encode more hierarchical relationship of concepts. For instance, the con-

cepts FROM and TO have strong hierarchical relation with theconcepts CITY and AIR-

PORT and when combined represent higher-level semantic information such as DEPAR-

TURE_LOC and ARRIVAL_LOC which were unavailable in the models discussed above.
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Figure 6.4: (Mengistu et al., 2008a): A partial model definition for the medium-level

hierarchical model
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6.7 The Hierarchical Model

In this section we extend the modeling approach discussed inSection6.6 further by in-

cluding hierarchically related concepts into similar cohesive units discussed in the pre-

vious section. The hierarchical extension of the model provides additional, higher-level

semantic concepts such as DEPARTURE, ARRIVAL, etc. information and hence provides

a richer semantic output.

The modeling approach described in this section involves two stages. First, as de-

scribed in Section6.5we define a detailed ontology of each application domain by iden-

tifying the relevant concepts and their interrelationships, then we group semantically and

hierarchically related concepts together into units called super-concepts. For example,

the high-level concept TIME can further be put into a higher-level entity called AR-

RIVAL_TIME or DEPARTURE_TIME. This kind of structure can bereadily produced

by a dialog designer of a given application domain using domain knowledge and training

examples.

The initial global HMM consists of an ergodic network of sub-networks and single

state nodes similar to the one described in Section6.6. An example sub-network (LOCA-

TION) that can represent phrases like "Washington Dulles International Airport", "Los

Angeles California", etc. is shown in Figure6.5.

Figure 6.5: (Mengistu et al., 2008b): A sub-network (LOCATION) that contains single

state concepts (COUNTRY and STATE) and sub-networks (CITY and AIRPORT)
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As can be seen in Figure6.5 a sub-network (e.g., LOCATION) can contain other

sub-networks (e.g., CITY and AIRPORT). When sub-networks are used in many other

bigger sub-networks the model gets more complex. In order todeal with the consequent

data sparsity problem sub-networks can be tied to enable sharing of emission and inter-

nal transition probabilities. For instance, the multi-word concept CITY is expected to

have the same internal transition and emission probabilities regardless of whether it is in

a departure location (DEPARTURE_LOC) or arrival location (ARRIVAL_LOC). When

sub-networks are tied, all the data that would have been usedto estimate the individual

untied parameters are pooled together to estimate the parameters of the tied sub-network.

We refer to these kinds of tied sub-networks that are defined once and reused in dif-

ferent super-concepts as macros. For example, LOCATION_MACRO can be used in

ARRIVAL_LOC, DEPARTURE_LOC or as a self-contained entity LOCATION.

As is the case with the other modeling methods, biasing some transition probabilities

may be necessary with the help of domain and linguistic knowledge to obtain better initial

models. This process is simplified with the use of an extendedversion of the modeling

language described in Section6.5where one can easily modify the initial transition proba-

bilities with the keywords "none", "except", "high", "low", "only" and "all". Accordingly,

the model compiler is extended to accommodate the new features. Figure6.6 depicts an

excerpt of the hierarchical model definition for the airlinetravel planning domain.

In Figure6.6, CITY_MACRO and AIRPORT_MACRO are sub-structures that hold

semantically related information together. LOCATION_MACRO is an example of a

nested macro containing other smaller macros – AIRPORT_MACRO and CITY_MACRO.

As a convention, the entry state of a sub-network is denoted by the name of the sub-

network itself (e.g. CITY_MACRO) and the exit state is denoted by∼ followed by

the macro name (e.g.∼CITY_MACRO). The notation "->return" marks the end of

a macro definition. To use a macro in another sub-structure weuse a notation like

LOC_CITY=>CITY_MACRO to mean CITY_MACRO is reused as LOC_CITY. A one-

step transition to the exit state of a sub-network directly from the entry state is explicitly

prohibited with constraints like "->except{∼CITY_MACRO}" to prevent non-emitting

loops. As described in Section6.5, "city_p1.txt", "city_p2.txt", "arrival.txt", etc. are

simple text files that contain the lexical items belonging tothe sub-concepts CITY_P1,

CITY_P2, ARRIVAL, etc. The required additional human effort and expertise to design
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Figure 6.6: (Mengistu et al., 2008b): Excerpt of model prototype for the domain of airline

travel planning
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the described hierarchical model is clearly much less than would be required to semanti-

cally annotate the training data which would also require detailed analysis of the applica-

tion domains to define semantic labels and organize them intosuper-concepts. Besides,

the cost of producing such an organization is much less than hand-crafting a semantic

grammar as no particular linguistic (syntactic and semantic) expertise is required – only a

commonplace prior domain knowledge is assumed.

Another robust feature of the hierarchical model is that it can label out-of-vocabulary

words (unseen vocabulary items in the training data) correctly. The example in Listing6

illustrates this clearly. Given that city name "Addis Ababa" and airline name "Ethiopian"

were not seen in the training corpus, the utterance "I’m looking for a flight from Ad-

dis Ababa to Frankfurt Germany on September the twenty thirdlate in the afternoon on

Ethiopian airlines" would be labeled as shown in Listing6.

Listing 6 Example output of the hierarchical model
(I’m looking for a) DUMMY (flight) FLIGHT_INFO

(from oov[Addis] oov[Ababa]) DEPARTURE_LOC

(to Frankfurt Germany) ARRIVAL_LOC

(on September the twenty third) DATE_INFO

(late in the afternoon) TIME_INFO

(on oov[Ethiopian] airlines) AIRLINE

The notation oov[...] in Listing6 denotes an out-of-vocabulary word. As can be seen,

in addition to providing a more useful and structured output, the hierarchical model can

correctly label out-of-vocabulary words using the surrounding context. Moreover, the

output can also be made to show the low-level concepts withinthe high-level structure.

For instance, the detailed output for the DEPARTURE_LOC in the above example would

look like:

Listing 7 Sample detailed output of the hierarchical model
((from) FROM (((oov[Addis]) CITY_P1 (oov[Ababa]) CITY_P2 ) CITY_MACRO)

LOCATION_MACRO) DEPARTURE_LOC.
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In Section8.6.5we will present more illustrative examples and a detailed discussion

of the data used, the experiments conducted and the results obtained for the hierarchical

model.

6.7.1 Robustness to Noisy Data

Spoken language understanding can be easy for simple application domains where users

are restricted in the choice of their formulation of a spokenrequest and the vocabulary

size is very small. However, if a dialog system allows human-to-human like conversation

the task becomes more challenging due to the natural phenomena of spontaneous speech

such as hesitations, false starts, filled pauses, etc. that introduce undesirable noise. Hence,

a spoken language understanding model must be robust to properly deal with these effects

of natural language.

Listing 8 shows some noisy utterances from the DARPA Communicator corpus along

with the corresponding output of the hierarchical model.

Listing 8 Example noisy utterances and the corresponding tagged output of the hierarchi-

cal model
no no no no not at six thirty I’d like to arrive at six thirty.

( no no no no not) NO (at six thirty) TIME_INFO (I’d like to) DUMMY (arrive

at six thirty) ARRIVAL_TIME

___________________________________________________ _______________________

United Airlines from Los Angeles to from to to London.

(United Airlines) AIRLINE (from Los Angeles) DEPARTURE_LO C (to) TO ( from)

FROM (to to London) ARRIVAL_LOC

___________________________________________________ _______________________

I’d like to arrive leave early morning.

(I’d like to) DUMMY ( arrive) ARRIVAL (leave early morning) DEPARTURE_TIME

___________________________________________________ _______________________

I’d like to fly from Los Las Vegas to oh never mind um Tucson to Las Vegas

(I’d like to fly) DUMMY (from Los Las Vegas) DEPARTURE_LOC (to oh oov[never]

oov[mind] um) DUMMY (Tucson) LOCATION (to Las Vegas) ARRIVAL_LOC
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As can be seen, each of the utterances in Listing8 contain some form of undesirable

noise – repetitions, self-repairs, interjections, etc. However, the hierarchical model can

gracefully deal with these as can be seen in the examples. In fact, the output of the

hierarchical model has to be analyzed within the context of adialog state so that some

ambiguities can be resolved internally or with explicit confirmations. This can help us to

analyze only the relevant information at a given dialog state and safely ignore everything

else. In the last example, for instance, there is a conflict; i.e., Las Vegas is labeled as

both departure and arrival location. Hence, the dialog management program can confirm

it explicitly (e.g. "Do you want to fly to Las Vegas or from Las Vegas?") or use some rules

to resolve conflicts of this sort. Note also that the two out-of-vocabulary words (never,

and mind) are correctly labeled in the last example. The output of a speech recognition

engine could also be noisy, and hence the model should be robust to deal with recognition

errors.

6.8 Summary

In the first three sections of this chapter, we introduced thespoken language understanding

problem, reviewed related approaches to spoken language understanding and described

HMMs as used in spoken language understanding. The remaining sections in this chap-

ter describe our HMM-based approach to semantic concept labeling at three different but

interrelated levels. We started with the conventional flat-concept approach and incremen-

tally extended it to encode more context at different levelsof hierarchy. The hierarchical

models offer better ambiguity resolution ability, higher predictive power, and produce

more structured, semantically richer information than theflat-concept model. Moreover,

the hierarchical models are more robust to the effects of natural language than the con-

ventional flat-concept model. It has also been shown that out-of-vocabulary words could

be more correctly labeled with the hierarchical model than with the flat-concept model.

All the described approaches can be readily trained on unlabeled data with relatively

less human supervision. We also introduced a modeling language and a model compiler

that essentially minimize the required level of human effort by allowing users to easily

tune the initial model parameters. Tuning of initial model parameters using prior domain

knowledge and training examples is essential to provide a well-informed initial model

to the EM algorithm. The effort is shifted from the laboriousand error-prone manual
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semantic labeling of the full training corpus to manually designing semantic models at

a required level of hierarchy using ones prior domain knowledge and training examples.

The detailed analysis of the application domains to define semantic labels and organize

them into super-concepts must be done anyway, even for manually labeling the training

data. Hence, the required additional effort to design the hierarchical model is considerably

low.
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Chapter 7

Spoken Language Interaction

7.1 Introduction

As discussed in the previous chapters, the performance of a telephone-based spoken di-

alog system depends on the performance of the underlying technologies that include au-

tomatic speech recognition, spoken language understanding, text to speech synthesis and

the telephony interface. Dialog quality and dialog management strategy are equally im-

portant as the overall usability and acceptability of any dialog system mainly depends on

these. In the preceding chapters we have discussed the general architecture, the automatic

speech recognition and the spoken language understanding components of our telephone-

based spoken dialog system framework. In this chapter we describe the fundamentals of

spoken language interaction and related issues.

The rest of the chapter is organized as follows. In Section7.2, we describe spoken

language interaction and the essential characteristics ofa dialog. Dialog management

issues are discussed in Section7.3followed by the discussion of dialog design principles

in Section7.4. VoiceXML and VoiceXML-based spoken dialog systems in general are

reviewed in Section7.5. In Section7.6, we discuss the dialog system evaluation procedure

we used to evaluate the quality and usability of our framework.
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7.2 Spoken Language Interaction: Overview

Historically, research in spoken language interaction hasfollowed two main lines of

thought; namely, discourse analysis and conversation analysis. Discourse analysis (Searle,

1976), views dialog as a rational cooperation and assumes that utterances in a conversation

are well-formed sentences and ignores the disfluencies of spoken language. Conversation

analysis (Levinson, 1983; Sacks, 1992), on the other hand, views dialog as a social in-

teraction in which the phenomena of spontaneous speech suchas hesitations, false starts,

filled pauses, abrupt shift of focus, etc. are taken into consideration. As can be noted,

an ideal spoken dialog system should, in principle, consider all the disfluencies that are

inherent in natural conversation. However, in practice, the design of a dialog system is

constrained by the limitations of the underlying technologies such as automatic speech

recognition, speech understanding, speech synthesis, etc. Hence, generally man-machine

interactions are more constrained and less complex than human-to-human communica-

tions.

Spoken language interaction is a complex joint activity characterized by turn taking,

speech acts, grounding, shift in dialog initiative and other discourse phenomena such as

ellipsis, anaphora, etc. In the sections that follow, we describe these features briefly.

7.2.1 Turn-taking

Turn-taking (Sacks et al., 1974) is a fundamental organization of conversation by which

participants alternate in "taking the floor". A dialog participant in a human-to-human

communication signals the desire to take, maintain or yielda turn by a verbal or non-

verbal signal, such as eye contact, a pause or another means.Human-to-human com-

munication appears to be very permissive, with a rich array of turn-taking cues (Baber,

1993). Back-channels such as "hmm", "uh-huh", "yeah", etc. are often used to indicate

that the listener is actively listening and encourage the speaker to continue talking. One

approach to manage turn-taking in man-machine interactionis pairing the utterances of

the dialog partners where the first part of the pair requires the second part of the pair for a

meaningful interaction to occur. These pairs are known as adjacency pairs (Schegloff and

Sacks, 1973). Adjacency pairs are two subsequent matching utterances produced by dif-

ferent speakers constituting a dialog exchange such as question-answer, greeting-greeting,

statement-acknowledgement, etc.
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7.2.2 Speech Acts

Each turn or utterance in a dialog is equivalent to an action being performed by the speaker

(Austin, 1962). An utterance can change the state of the world as in "I now pronounce you

husband and wife" which results in a new social reality. Speech act theory describes an

utterance in a dialog at three levels; namely, locutionary,illocutionary and perlocutionary

acts. A locutionary act is simply the act of uttering a meaningful utterance. An illocu-

tionary act, on the other hand, is the real action performed by the utterance as in asking,

welcoming, informing, apologizing, warning, etc. A perlocutionary act is the effect(s) of

the utterance on the listener, who is, for instance, welcomed, informed, or warned. The

term speech act is generally used to describe illocutionaryacts rather than either of the

other two (Jurafsky and Martin, 2008).

7.2.3 Grounding

As a dialog is a collaborative process to perform a common task, it is necessary that the

participants establish a common ground (Stalnaker, 1978) so that possible misunderstand-

ings can be repaired early and the dialog participants get evidence that their intention is

understood by each other. The listener must somehow make it clear (ground) that the

speaker’s intention is understood.Clark and Schaefer(1989) introduce a concept of con-

tribution which has two phases – presentation and acceptance. In a spoken dialog system,

the speaker (the user) presents an utterance in the presentation phase. In the acceptance

phase the listener (the system) has to ground explicitly or implicitly to indicate whether

correct understanding has been achieved.

7.2.4 Dialog Acts

Speech acts do not model the key features of conversations such as grounding, contribu-

tions, adjacency pair, etc. (Jurafsky and Martin, 2008). Therefore, a higher level concept

that bears the relationship of an utterance with the neighboring dialog turns is used. This

construct is known as a dialog act (Bunt, 1994). It indicates the function of an utterance

in a given dialog. Dialog acts are a finite set of labels applied to utterances in a discourse

such as YES-NO QUESTION ("Would you like to fly on May first?"),REQUEST ("I
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would like to fly from Hartford to Boston on May first"), OPINION ("I think the com-

puter is not listening to me"), INTRODUCTION ("My name is KEY"), BACKCHANNEL

("uh-huh").

7.2.5 Ellipsis and Anaphora

In natural language dialogs, utterances normally contain discourse phenomena known

as ellipsis and anaphora. Anaphora is the phenomenon of a linguistic expression used

when a speaker wants to refer back to something mentioned earlier in the conversation.

For instance, in the sequence of utterances "I am looking forflights to Boston" "I want

to arrive there early in the morning", the adverb ’there’ in the second utterance refers

to ’Boston’ which is mentioned in the preceding utterance. The process of associating

’there’ with ’Boston’ in the above example is known as anaphora resolution.

Ellipsis is a fragment of a sentence where a word or a phrase isleft-out and the missing

part should be inferred or extracted from previous utterances or context. For instance, in

the fragment "Are there any to San Francisco?", one has to fillin the missing word to

get what is meant from dialog context and general knowledge.In the above example it

appears that ’flights’ might be the missing word if the discourse history was about flights.

As can be inferred, to resolve ellipsis and anaphora, it is essential to keep the discourse

history and use them to resolve these discourse phenomena.

7.3 Dialog Management

Dialog management provides a lucid overall structure to a spoken interaction that goes

beyond a single turn and properly manages a spoken language interaction between the

dialog participants.

7.3.1 Dialog Initiative

Dialog initiative refers to who has the conversational leadin a dialog (Walker and Whit-

taker, 1990) or who is in control of the dialog. In human-to-human conversation each

participant may alternately own initiative to direct the flow of the conversation. This type
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of interaction where a shift in dialog initiative can take place from one participant to the

other in the course of a dialog freely is referred to as mixed-initiative.

In man-machine interaction, the initiative does not changebetween the system and

the user as freely as it does in human-to-human conversations. In many implemented

commercial systems, the system owns the conversational lead and directs the dialog by

asking questions to elicit information from the user and therole of the user in the dialog

is limited to responding to the system prompts. These kind ofsystems are referred to as

system-initiative or system-directed. An example of system-directed dialog is presented

below.

System: What is your departure city?

User: London

System: What is your arrival city?

User: Berlin

System: On what day do you wish to travel?

User: tomorrow

System: At what time?

User: nine p. m.

System-directed dialogs have a virtue of simplicity. Sincethe vocabulary and gram-

mar at any point in a dialog are very small and can be specified in advance, the speech

recognizer and the semantic interpreter can be more accurate. The added accuracy and

simplicity of the dialog makes them particularly suitable for novice users. However, such

a dialog structure is not natural, puts grave restriction onthe user, and is not suitable for

frequent users as the dialog advances very slowly.

On the other extreme are user-directed systems where the user always has control

over the conversation and the system passively answers the user questions. User-initiative

systems are difficult to realize as they require comprehensive speech recognition and lan-

guage understanding capability in order to understand requests from a potentially wide

spectrum of users and application domains. The system should also have the ability to

keep record of the previous utterances to answer ellipticaland anaphoric questions that

may follow. An example of user-directed dialog is given below.

User: How many flights are there today?

System: Fifty five
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User: How many of them are departing from Boston?

System: Five

User: And to San Francisco?

System: Seven

Mixed initiative systems, in principle, should allow shifts of initiative between the

user and the system freely. However, most implemented "mixed-initiative" systems use

the term in a restricted sense – that is, the system maintainsthe control of the dialog but

the users are given some freedom to give more than the requested information at a time.

For instance:

System: Please tell me your departure and destination?

User: I want to fly from London to Berlin on next Tuesday

System: Next Tuesday, at what time?

User: nine p. m.

As can be noted, mixed-initiative systems can use system-initiative strategy while

giving the users more freedom of expression. The dialog strategy we employ adopts the

latter approach and attempts to give the user freedom to provide more information in a

single utterance and the system guides the user to fill missing information. A typical

dialog scenario is given below:

System: What is your travel plan?

User: I want to fly from Hartford to Boston on May twenty first

System: Would you like to fly from Hartford to Boston?

User: Yes

System: At what time would you like to fly on May first?

User: No, I want to fly on May twenty first early in the morning

System: Would you like to fly on May twenty first early mornin g?

User: Yes

System: Do you have any airline preference?

User: No

System: OK. Just a moment ....
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7.3.2 Dialog Control

Dialog control strategies specify the dialog flow logic in spoken dialog systems. The

commonly used dialog control strategies include finite-state based, frame-based, plan-

based (Allen, 1979; Cohen and Perrault, 1979) and information-state based (Traum and

Larsson, 2000) approaches. In practice, finite-state and frame-based approaches are the

most commonly used ones mainly because of their relative simplicity. Table7.1shows the

dialog control strategy commonly used (X) for the various types of initiatives discussed

in Section7.3.1.

Table 7.1: Initiative and dialog control strategy
Initiative

Dialog Strategy System User Mixed

Finite State X - -

Frame-based X - X

Information-state - X X

Plan-based - X X

Finite-state based dialog control is the most straight forward dialog control approach

where a dialog is expressed as a network of nodes connected byarcs. The nodes represent

the dialog states and the arcs represent the transitions between the dialog states as shown

in Figure7.1.

Figure 7.1: An example finite-state based dialog control architecture

Despite its simplicity, the approach quickly becomes inefficient when the number of

dialog states and the transitions between the states increases as the model rapidly becomes
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unmanageable. Nevertheless, finite-state based control remains to be suitable for small-

scale, well-structured and system-initiative applications.

Frame-based systems are based on the slot-filling concept where slots are filled with

information that is elicited from the user. The required information is fixed but the di-

alog flow is flexible. The system asks the user a series of questions to gather informa-

tion that are required to fill one or more dialog slots. When all the required information

are obtained, the system performs a database query or other required operation. Frame-

based approach allows filling multiple dialog slots from a single utterance giving the user

some degree of freedom to formulate his/her request in any order. However, the amount

of dialog context that can be encoded is still limited, and itis difficult to model more

complex conversations. Human communication over the telephone lacks the richness

of face-to-face communication and is often task-oriented and limited to short phrases

(Fielding and Hartley, 1987). Therefore, frame-based approach appears to be adequate

for telephone-based and task-oriented interactions. The dialog control strategy we use in

the two demonstration application domains is mainly frame-based which is well-suited to

carry out medium-sized interactions and allows us to achieve limited "mixed-initiative"

dialog capability. In some cases, when task-completion is at risk, we fall back to the

system-initiative dialog strategy and solicit information piece by piece, one at a time.

Even though the frame-based approach is good enough for domain-specific conver-

sations, a more complex dialog control strategy such as the information state model

(Traum and Larsson, 2000) is required to extend a dialog system beyond a specific do-

main. Information-state based dialog control is built on anabstract concept known as an

information-state. An information state contains a representation of the dialog history, the

common ground of the dialog participants, the actions that can be taken next, etc. The

information-state architecture also contains a set of dialog moves that trigger a set of up-

date and selection rules and a control structure for deciding which update rules to apply at

a given point. The update rules modify the information stateof the system when the user

produces an utterance and the selection rules select the next dialog move to be executed.

For instance, when a question is recognized, an update rule may specify the need to an-

swer the question; when a proposal is recognized an update rule may specify the need to

update the information state with the new information and toperform grounding. As can

be observed, it is necessary to decide if an utterance is a question, a proposal, a rejection,

a suggestion, etc. given a recognized utterance. Our semantic concept labeling model
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discussed in Chapter6 can effectively decide if an utterance is a question, a request or a

negation as in the following example and can be extended for use in an information-state

framework.

(Do you have a) QUESTION (flight) FLIGHT_INFO (that) DUMMY

(leaves in the morning) DEPARTURE_TIME

Plan-based approach to dialog control is an advanced approach based on the plan-

based theories of communicative action and dialog (Allen and Perrault, 1980; Allen, 1979;

Appelt, 1985; Cohen and Levesque, 1990; Cohen and Perrault, 1979). The plan-based the-

ories state that the speaker’s speech act is part of a plan andthat it is the listener’s job to

identify and respond appropriately to this plan (Bui, 2006). The approach is based on

the view that a dialog is goal oriented and an utterance in a dialog is performing speech

acts (Searle, 1976) to achieve these goals. The task of the agent listening to the utterance

is, therefore, to discover the underlying plan of the speaker and react appropriately. For

instance, an utterance "I want to attend a conference in Hamburg Germany from the fif-

teenth to the eighteenth of December" in an airline booking system could be interpreted

by a plan-based agent as follows. The user wants to fly to Hamburg, and the departure

date should be at least a day before the fifteenth and the return flight should be at least

one day after the eighteenth of December.

7.4 Dialog Design

The dialog interface is the only way users can communicate with a spoken dialog system,

hence interface design is one of the most important part of any speech-based application.

A good interface contributes to the success of a spoken dialog system in that it enhances

the user experience and the usability of the system.

Speech-based applications do not enjoy the flexibility and richness of web-based

Graphical User Interfaces (GUIs) that can present a lot of information in parallel screens

with a number of ways to enable easy navigation and selectionof options. In GUI-based

systems, the user can see a lot of items to get to the desired information easily. Moreover,

users can initiate and terminate each step at their own pace.Simplicity, consistency and

flexibility are other virtues of GUIs. However, speech is inherently sequential and some

of the features we have in GUIs are not easily available. For instance, there’s no way to
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present more than one piece of information at a time, users would have to carefully listen

to various lists, options, prompts, etc. before they can proceed to the next action and the

amount of information that can be offered is limited by the amount of information that

can be retained in the ’short-term memory’ of the users. However, with careful design,

spoken dialog systems can provide the required service withreasonable performance in a

more natural way. Combining GUIs and speech interfaces can be more helpful, in some

applications.

Shneiderman(1997) introduces the "eight golden rules" described below that can be

used in the design of man-machine dialogs.

1. Strive for consistency: The required actions in similar situations should be consis-

tent; the terminology used in prompts, menus, and help screens should be similar;

and consistent commands should be used throughout.

2. Enable frequent users to use shortcuts: As the frequency of use increases, so

does the user’s desire to reduce the number of interactions and to increase the pace

of interaction. Hence, the use of shortcuts is handy for expert users.

3. Offer informative feedback: For every user action, there should be some system

feedback. For frequent and minor actions, the response can be modest, while for

infrequent and major actions, the response should be more informative.

4. Design dialog to yield closure: Each sequence of actions should be organized

into a group with a beginning, middle, and end. The informative feedback at the

completion of a group of actions is important because it gives the user a satisfaction

of accomplishment and a sense of relief.

5. Offer simple error handling : As much as possible, design the system to prevent

serious errors. However, since errors are inevitable in spoken dialog systems, the

system should be able to detect the error and offer simple, comprehensible mecha-

nisms for handling the error.

6. Permit easy reversal of actions: Let the user know that errors can be undone and

actions are reversible. This feature encourages exploration of unfamiliar options.

The units of reversibility may be a single action, a data entry, or a complete group

of actions.
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7. Support internal locus of control: Design the dialog to make users think that they

are in control of the conversation and the system responds totheir actions not the

other way round.

8. Reduce short-term memory load: The limitation of human information process-

ing in short-term memory requires that outputs be kept simple and consolidated.

Another set of principles related to the ergonomic design ofdialog between user and

interactive systems is the ISO 9241 part 110 (ISO9241-110, 2006) that is summarized

below.

1. Suitability for the task : A dialog is suitable for a task when it supports the user to

complete the task effectively and efficiently.

2. Self-descriptiveness: A dialog is self-descriptive if its users can tell which dialog

and dialog-state they are in at anytime. The dialog should make it clear what the

user should do next.

3. Conformity with user expectations: A dialog conforms with user expectations

if it behaves according to the contextual needs of the user and avoids unexpected

behavior.

4. Suitability for learning : A dialog is suitable for learning when new users can

begin effective interaction easily and the system guides the user in learning to use

the system.

5. Controllability : A dialog is controllable when the user is able to initiate and control

the direction and pace of the interaction until the interaction goal has been achieved.

6. Error tolerance : A dialog is error-tolerant if the intended result can be achieved

even with erroneous input with minimal corrective actions by the user.

7. Suitability for individualization : A dialog is capable of individualization when

users can modify interaction and presentation of information to suit their individual

capabilities and needs.

We have considered the above two sets of principles as guidelines in designing the

dialogs in our system.
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7.5 VoiceXML

As has been mentioned in Chapters3 and 4, we use VoiceXML as a dialog scripting

language in our application, hence we describe it further inthis section. VoiceXML is

an XML-based dialog scripting language standardized by theWorld Wide Web Consor-

tium (W3C) to create speech interfaces mainly for telephoneapplications. A VoiceXML

document contains a set of dialogs organized in a form or a menu.

A form consists of a set of form items – namely, input items andcontrol items. In-

put items (e.g.<field>) are elements for collecting user input and control items (e.g.

<block>) contain procedural items for audio output or computation.A menu presents

a list of choices that the user can choose from and the links tothe next dialogs to be

executed. A simple VoiceXML dialog script based on forms is depicted in Listing9.

A VoiceXML document is processed as described in the VoiceXML specification

(W3C, 2004) by a VoiceXML interpreter. A VoiceXML interpreter implements, among

other things, the Form Interpretation Algorithm (FIA) thatspecifies the procedure for

walking through the various fields of a form to drive the interaction between the user and

the system. The VoiceXML interpreter fetches the dialog scripts from the Web Server,

accepts values extracted from the spoken input to fill various dialog states and determines

what to do next according to the instructions in the dialog script. Depending upon the

input received, the VoiceXML interpreter may load another dialog script from the Web

Server or submit the collected information to the Web Serverto query the database and

present information back to the user. The VoiceXML interpreter may also issue basic tele-

phony functions like<disconnect> and<transfer>. However, for advanced call control

operations, the Call Control eXtensible Markup Language (CCXML) of W3C is com-

monly used.

The communication between the application server and the VoiceXML interpreter is

via HTTP – the HTTP methods POST and GET are used to submit results obtained from

the user and to request a new VoiceXML document.
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Listing 9 Simple VoiceXML dialog script
<?xml version="1.0" encoding="UTF-8"?>

<vxml version="2.0" xmlns="http://www.w3.org/2001/vxm l" application="root.vxml">

<form id="intro">

<block>

<prompt>

Hello! My name is KEY!

I provide service in English and German! Which one do you pref er?

</prompt>

<goto next="#form_1"/>

</block>

</form>

<form id="form_1">

<field name="language">

<grammar src="http://localhost/language.slf" type="ap plication/x-slf"/>

<filled>

<if cond="language == ’english’">

<prompt> Welcome to the Airline Travel Planning System of Ma gdeburg University!

</prompt>

<goto next="airline_main.vxml"/>

<elseif cond="language ==’german’"/>

<prompt> <voice name="Katrin ">

Willkommen zum automatischen Bahnauskunftssystem der Uni versität Magdeburg!

</voice>

</prompt>

<goto next="http://localhost/german/train_main.vxml" />

</if>

</filled>

</field>

</form>

</vxml>
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In general, a VoiceXML-based application consists of:

• A telephony interface to deliver calls into the system

• A VoiceXML interpreter that executes the dialog by activating the ASR engine

to collect spoken input, semantic interpreter to extract the meaning of a spoken

utterance, TTS system to play prompts and responses, etc.

• An application server (typically, a Web server), where theapplication logic resides,

and may contain interfaces to a database server

• For advanced call control functions, a CCXML interpreter is often used to process

CCXML documents that specify the call control policy.

The architecture of our system has been described in more detail in Chapter4, how-

ever, for quick reference we provide a simplified architecture of VoiceXML-based appli-

cations in Figure7.2.

Figure 7.2: A simplified architecture of VoiceXML-based applications

One strong virtue of VoiceXML is that it is built around the existing web technologies,

hence it is completely interoperable with many existing infrastructures (e.g. Web infras-

tructures), protocols (HTTP, TCP/IP) and standards (XML) that have made the Internet
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ubiquitous. VoiceXML separates user interaction scripts from service logic. The server-

side logic manages interactions with back-end applications such as database servers and

creates VoiceXML documents as appropriate using standard Web development technolo-

gies. This feature also distinguishes VoiceXML from other proprietary spoken dialog

environments that require special languages and application programming interfaces to

access Web servers and external databases and applications. Moreover, VoiceXML pro-

vides features to support limited "mixed-initiative" dialogs in a frame-based architecture

as described in Section7.3.2. Detailed description of the W3C VoiceXML specification

can be found at VoiceXML 2.0 Specification1.

7.6 Evaluation

Spoken dialog system evaluation is a necessary step in orderto assess the usability and

quality of the system and it helps developers to identify problems that should be fixed to

make the system more useful. The evaluation of spoken dialogsystems is considerably

more complicated and difficult than their graphical counterparts due to the unrealistically

high expectation of users which follows their natural spontaneous daily experience in

human-to-human communication. On the other hand, due to thelimitations of the various

technologies that constitute a spoken dialog system, thereis often noticeable difference

in performance between man-machine and human-to-human communication which may

lead to less user satisfaction.

User satisfaction is one of the most important metric of spoken dialog system evalua-

tion which is related to the quality and usability of the system. Quality is a compromise

between what the user expects or desires, and the characteristics he/she perceives while

using the system (Möller et al., 2007). Therefore, quality measurements can only be ob-

tained from subjective judgements given by human users collected in a quantifiable form

with questionnaires. However, the perceived quality of a system is influenced by usage

environments (environmental factors), expertise of the user (agent factor), the complexity

of the task offered by the system (task factors), as well as non-physical contextual factors

(Möller, 2005).

1http://www.w3.org/TR/voicexml20/; last accessed February 27, 2009
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Usability, as defined by ISO 9241, is the effectiveness, efficiency and satisfaction with

which users accomplish tasks. Effectiveness refers to the output of the interaction while

efficiency refers to the amount of resources expended to achieve the desired goal.

User satisfaction rating can be measured by inviting users to interact with the system to

perform a task, and then asking them to complete one or more quantifiable post-interaction

questionnaire(s) and average responses over all questionsto get a total user satisfaction

rating.

The SASSI (Subjective Assessment of Speech System Interfaces) (Hone and Graham,

2001) questionnaire for evaluating systems with speech input capability and the recom-

mendation of the International Telecommunication Union (ITU-T) (ITU_T Rec. P.851)

for evaluating telephone services based on speech technology are two popular de-facto

standards for collecting user judgements on which we based our evaluation question-

naires. The questionnaires used in this evaluation are adapted from (Möller et al., 2007)

and are given in AppendixB. Another well-known model for predicting quality judge-

ments on the basis of collected interaction parameters is the PARADISE (PARAdigm for

DIalog System Evaluation) model of AT&T (Walker et al., 2000).

The evaluation experiment we used consisted of four parts:

• A short oral presentation (for about 2 minutes) is given to each user about the dialog

system and the purpose of the experiment.

• Each user fills an initial questionnaire through which general information about the

test participants including their background knowledge and experience is solicited.

• The author calls the system and performs a demonstration interaction with the sys-

tem to give the subjects some idea of what an interaction could look like, how

recognition errors can be corrected, etc.

• Each user makes two calls to the system and performs two goal-oriented interac-

tions – one in English and another in German. The English service is on airline

travel planning and the German service is on Train information inquiries. After the

interactions, the user is asked to complete a questionnairethat is designed to solicit

the current impression of the user after using the system.

The subjects of the experiment are 20 native German speakers(10 male and 10 female)

most of which are either students or employees of the University in the age range of 18-30.

50% of the subjects already had successful but unpleasant experience with other spoken
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dialog systems in various application domains and most of the subjects (90%) have little

knowledge about speech recognition and speech synthesis technology.

We prepared 10 English and 10 German dialog scenarios with brief task description

as in the example below.

You live in Hartford [Connecticut] and you want to fly to Bost on

[Massachusetts] to visit a friend. You want to fly on June fif teen

[2009] in the morning. Book a flight, if available, on that da te and

time on United Airlines.

The exact formulation of the requests is left to the test users. The order and the number

of relevant information a user wishes to convey in the first utterance is also not predefined.

After the first request, the system guides the user to fill the missing dialog slots. However,

the user can use commands like "help" or "start over" at any point, if necessary.

To complement the subjective evaluation, we also log each interaction and extract rel-

evant interaction parameters such as number of user turns, number of system turns, num-

ber of correction turns, number of completed tasks, etc. that can describe the interaction

quantitatively.

The detailed analysis of the results obtained using both subjective and objective eval-

uation are presented in Section8.7.

7.7 Summary

In this chapter we presented an overview and the basic features of spoken language inter-

actions such as turn-taking, grounding, speech acts, dialog acts and the common discourse

phenomena known as ellipsis and anaphora. Besides, we discussed dialog initiatives, dia-

log control strategies and dialog design principles. The rationale for using VoiceXML and

the dialog system evaluation method we adopted to evaluate the usability of our telephone-

based spoken dialog system were also explained.
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Chapter 8

Experiments and Discussion of Results

8.1 Introduction

In the previous chapters, we discussed various combinationof techniques to achieve ro-

bustness in speech recognition and introduced a new approach to robust spoken language

understanding. In this chapter, we discuss the experimentsconducted to build and eval-

uate the required models to realize a robust telephone-based spoken dialog system and

discuss experimental results. We also evaluate the variousmodels and the integrated sys-

tem as a whole in real-time interaction scenarios with actual test users in two application

domains in two languages. The considered application domains are airline travel planning

in English and train information inquiries in German.

The experiments conducted can be broadly classified into four major categories; namely,

speech recognition experiments, gender and accent relatedissues, spoken language under-

standing experiments and evaluation of the demonstration system. Most of the approaches

discussed in this chapter have been published in appropriate international media.

8.2 Speech Recognition: English

In the sections that follow, we describe the development experiments conducted in search

of optimal parameters for acoustic and language models for the airline travel planning

domain in English.
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8.2.1 Data Description: English Speech Data

The data used to build the acoustic, language and semantic models for the airline travel

planning application domain in English consists of a total of 22 hours of telephone speech

and the associated transcriptions from the DARPA Communicator 2001 Evaluation corpus

(Walker et al., 2003) procured from Linguistic Data Consortium. The corpus consists of

utterances recorded as several users interacted with eight1 different airline travel planning

dialog systems via telephone.

We held out 2 hours of speech consisting of 1,987 utterances spoken by 14 speakers

(4 male and 10 female) as a development test-set. To effectively use the limited data we

have, we use 5-fold cross-validation technique where we divided the remaining 20 hours

of speech into 5 subsets and in each run, one of the 5 subsets isused as a test-set and the

other 4 subsets are put together to form a training set. Then the average word accuracy

across all 5 tests is computed. Table8.1 describes the 5 partitions of the 20-hour speech

data.

Table 8.1: Data description: 5-fold cross-validation
No. of Speakers

Set Male Female No. of Utterances

Set-1 10 25 4143

Set-2 7 18 3529

Set-3 7 18 3086

Set-4 7 18 3508

Set-5 7 18 3605

The held-out development test-set is used in order to determine optimal values for

various feature extraction, acoustic and language modeling parameters. In the experi-

ments that follow in Sections8.2.5, 8.2.6, 8.2.7and8.2.8we use all except the first set

as training data spoken by 100 speakers (28 male and 72 female) and the held-out data as

development test-set.

A significant amount of the speech data described above contain long silences and

non-speech, noisy segments at the beginning of the utterances which could result in poor

1AT&T, BBN, CMU, IBM, Lucent Bell Labs, MIT, SRI and University of Colorado at Boulder
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performance. Therefore, as part of the data preparation, wewrote a small program to

remove these silence segments using the sox utility (Norskog, 1995).

8.2.2 Acoustic Model Training

8.2.2.1 Context-Independent Models

The initial prototype of each context-independent monophone is represented as a hidden

Markov model (HMM) of 3 emitting states with left-to-right topology with one Gaussian

component per state and no skip transitions as can be seen in Figure8.1.

Figure 8.1: Initial context-independent monophone model

In this work, only diagonal covariance matrix systems are considered where the fea-

tures in each feature vector are assumed uncorrelated. The monophone set consists of 42

HMMs including silence and short pause (sp).

The HMMs are initialized with the flat-start scheme as described in Section5.2.3.

Then, the parameters of the models are re-estimated in 2 consecutive runs of the Baum-

Welch algorithm using the monophone transcription of the training data. To handle im-

pulsive noises in the training data, extra transitions are added from state 2 to 4 and from

state 4 to 2 in the silence model. The backward transition provides a mechanism to absorb

impulsive noises without exiting the silence model. Besides, in order to account for any

pauses introduced by the speaker between words of an utterance, a one state short pause

(sp) model is created whose emitting state is tied to the center state of the silence model.

This short pause model (also called tee-model) has a direct transition from entry to exit

state. Then 2 more iterations of the Baum-Welch algorithm are run. As the pronuncia-

tion dictionary contains some words with multiple pronunciations, a new transcription is
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generated that best matches the acoustic evidence by running the Viterbi algorithm over

the training data (known as forced-alignment) (Jurafsky and Martin, 2008; Young et al.,

2006).

We then increment the number of Gaussian components up to thedesired number.

As will be discussed in Section8.2.4, 32 mixture components per state give optimal per-

formance. To increment the number of Gaussian components, the component with the

largest mixture weight is cloned, the weight is divided by 2 and the means are perturbed

by a small fraction of the standard deviation (typically +/-0.2σ). The resulting HMMs

are then re-estimated with 4–8 consecutive runs of the Baum-Welch algorithm. This is

repeatedly done until we have estimated the models with the required number of mixtures.

8.2.2.2 Context-Dependent Models

As context-independent models do not capture phonetic context, their phonetic discrim-

ination ability is poor. Therefore, in order to achieve goodphonetic discrimination, it is

common to use triphones where every phone has a distinct HMM model for every unique

pair of left and right neighbors. We consider word-internaltriphone models where context

does not span word boundaries and cross-word triphone models where word boundaries

are ignored.

The single-Gaussian monophone models trained as describedin the previous section

are used to generate triphone prototypes. The transition probability matrix is tied across

all triphones of a phone. The resulting triphone model parameters are re-estimated with

the Baum-Welch algorithm with a triphone list and triphone transcriptions.

When triphones are used, usually training data becomes insufficient as there are too

many models whose parameters must be estimated, hence it is necessary to reduce the

number of parameters in an HMM. Diagonal covariance assumption and parameter tying

are commonly used methods to reduce the number of parametersthat ought to be esti-

mated. Tying (Bahl et al., 1983) is a method where two or more states that represent

similar acoustic data are clustered together to create tiedstates. When states are tied, all

the data which would have been used to estimate each individual untied parameter are

effectively pooled leading to more robust estimates for theparameters of the tied state

(Young et al., 2006). Decision tree based clustering, which will be briefly discussed in

Section8.2.6, is used to identify the states that can be tied together.
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Once we have single-Gaussian, tied-state triphones, the next step is to increment the

number of Gaussian mixture components. For triphones as well, it was experimentally

found that 32 Gaussian mixtures per state is optimal as will be shown in Section8.2.4.

We start with single Gaussian per state and increment the number of Gaussian components

as described in section8.2.2.1.

8.2.3 Initial Parameter Settings

The initial setting for the HTK parameters used in the experiments that follow is given

below.

SOURCEKIND = WAVEFORM # Defines the natural form of the input data

SOURCEFORMAT = WAV # Defines the format of the speech data

SOURCERATE = 1250 # Sampling rate (in 100 ns = 8 kHz)

ZMEANSOURCE = TRUE # Removes DC offset from the input audio

at the frame level

ENORMALISE = FALSE # Energy Normalization

TARGETKIND = MFCC_E_D_A # Defines the parameter kind and the

coefficients to use

WINDOWSIZE = 250000 # Window length (25 ms)

TARGETRATE = 100000 # Frame rate (10 ms)

NUMCHANS = 26 # Number of filter bank channels

NUMCEPS = 12 # Number of cepstral features

USEHAMMING = TRUE # Use of Hamming function for windowing

PREEMCOEF = 0.97 # Pre-emphasis coefficient

CEPLIFTER = 22 # Cepstral liftering coefficient

Word insertion penalty (WIP) and language model scale factor (LMSF) discussed in

Section5.2.5are set to -4 and 12, respectively. For the triphone models weset the outlier

threshold (RO) and the log-likelihood threshold (TB) that will be discussed in Section

8.2.6to 200 and 1000, respectively. These values are "informed initial parameters" deter-

mined from preliminary experiments on the development set.

In the experiments that follow, the parameters that are found to be more useful in a

given experiment are used in the subsequent experiments.
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8.2.4 Number of Gaussian Mixture Components

When there is a huge amount of training data covering a wide spectrum of speakers,

environments, and application domains, training acousticmodels using a large number

of Gaussian mixture components can improve the performanceof speaker-independent

acoustic models. However, the gain in recognition accuracyis at the expense of speed

since computation of too many Gaussian parameters may slow down the recognition pro-

cess. Therefore, the number of Gaussian mixtures components to use in a real-time system

is a trade-off between accuracy and speed.

In order to determine an optimal number of Gaussian mixture components for our

setup, we investigate number of Gaussian mixture components from 4 to 48 by steps of 4.

Figure8.2shows the results of the experiments.

Figure 8.2: Number of Gaussian mixture components for monophone (MONO), word-

internal (WINT) triphone and cross-word (XWRD) triphone based models

As can be seen, the performance gain that can be achieved by using Gaussian mixture

components greater than 32 is quite insignificant at the expense of more computation.

Since the models are for real-time use, speed of recognitionis of paramount importance.

Hence, as a compromise we use 32 Gaussian mixture componentsfor all (monophone,

word-internal and cross-word triphone) models which may incur little loss of recognition

accuracy.
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8.2.5 Feature Extraction

In order to determine the optimal feature parameters and values to build a robust acoustic

model, we carried out a series of experiments on the development test-set. Mainly, we

investigated the use of power spectrum versus magnitude spectrum, the 0th order cepstral

coefficient versus absolute energy, the use of cepstral meannormalization, etc. We also

investigate PLP and LPCC features discussed in Section5.2.1in addition to MFCCs. In

the following sections we discuss the results of selected experiments.

8.2.5.1 Power versus Magnitude Spectrum

In this subsection, the effect of computing MFCCs from the magnitude spectrum and the

power spectrum of the Fourier Transform is investigated.

Table 8.2: Power vs. magnitude spectrum. The notation MONO stands for monophone

models, WINT stands for word-internal and XWRD for crossword triphone models. USE-

POWER = TRUE means use power spectrum instead of magnitude
USEPOWER HMMTYPE Accuracy (%)

FALSE MONO 74.98

TRUE MONO 76.07

FALSE WINT 79.38

TRUE WINT 80.12

FALSE XWRD 78.24

TRUE XWRD 78.99

As can be seen in Table8.2, using the power spectrum yields better results than the

magnitude spectrum in all the cases. This may be attributed to the fact that power spec-

trum causes large variation in amplitude between voiced andunvoiced speech (since

magnitude is squared) as well as smaller variations betweendifferent articulations of

phonemes (O’Shaughnessy, 2000). Hence, the information needed to determine the pho-

netic identity of a portion of speech could be captured better in power spectrum than in

magnitude spectrum.
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8.2.5.2 Mel-Frequency Cepstral Coefficients (MFCCs)

In addition to the first twelve basic Mel-frequency cepstralcoefficients, a feature vector

can consist of an energy term and information about the rate of change of spectral features.

The energy term can be the log of the signal energy or the 0th cepstral coefficient. We

investigate the effect of using the 0th cepstral coefficient which is often discarded instead

of the log energy as energy term, and the effect of applying cepstral mean normalization.

Table8.3presents the results of selected experiments on the development set

Note: Since using the power spectrum was found more useful inthe previous section,

we set USEPOWER = TRUE in the subsequent experiments.

Table 8.3: MFCC Parameters. The notation _E stands for log ofthe signal energy, _0

represents the 0th order cepstral coefficient, _D stands for∆ coefficients, and _A for∆∆
coefficients while _Z represents CMN

HMMTYPE TARGETKIND Accuracy (%)

MONO

MFCC_E_D_A 76.07

MFCC_E_D_A_Z 76.17

MFCC_0_D_A 79.12

MFCC_0_D_A_Z 81.07

WINT

MFCC_E_D_A 80.12

MFCC_E_D_A_Z 79.53

MFCC_0_D_A 82.45

MFCC_0_D_A_Z 82.62

XWRD

MFCC_E_D_A 78.99

MFCC_E_D_A_Z 78.96

MFCC_0_D_A 82.32

MFCC_0_D_A_Z 83.50

As can be clearly seen in Table8.3using the 0th cepstral coefficient as the energy term

yields significantly improved results in all the cases. Traditionally the 0th MFCC coeffi-

cient is considered futile and is often replaced with the logof the signal energy. However,

as we observed in a series of experiments in various applications the 0th coefficient is

more useful; hence, should be not be simply ignored. The 0th coefficient contains a col-
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lection of average energies of each frequency band in the signal that is being analyzed

(Fang and Guoliang, 2000).

It can also be observed that cepstral mean normalization (CMN), which is used to

handle mismatch in channel conditions, gives a performanceboost when used with the

0th coefficient. For telephone recordings where the microphoneand transmission quality

of each apparatus is different, CMN can provide significant robustness. CMN also miti-

gates the effect of additive noise. One drawback of CMN is that it does not discriminate

silence and speech in computing the utterance mean (Huang et al., 2001b). Preliminary

experiments conducted before removing the silence and non-speech noisy segments in the

input utterances resulted in degraded performance with CMN. It has also been suggested

in (Alsteris and Paliwal, 2005) that CMN is effective when applied to utterances longer

than 2-4 seconds.

8.2.5.3 Filter-bank Channels and Window Size

A filter-bank is a collection of filters that separates the input signal into a number of

frequency bands where the signal energy is measured. The number of filter-bank channels

and the spacing of their central frequency (logarithmic vs.linear) are essential factors that

affect the quality of the features extracted from a speech signal. The number of filters

should be large enough to resolve the speech spectrum effectively and small enough to

allow that all the bands have sufficient filter bandwidth. Thenumber of filters varies for

different implementations from 24 to 40 (Huang et al., 2001b). We investigated various

sensible values (in the range of 24 to 30) in an attempt to find optimal values for the

various models. As a result 26 is found to be optimal for the monophone and triphone

models.

In feature extraction, window size and frame rate are also important parameters. A

window should be long enough to capture sufficient salient information to calculate the

desired parameters and short enough to maintain the assumption that a signal is short-

time stationary. In practice, window size is on the order of 20 ms to 30 ms (Huang et al.,

2001b). In an attempt to find an optimal window size for each model, aseries of sensible

window size values in the range of 20 ms to 30 ms have been triedand it was found

that 20 ms and 25 ms are optimal values to capture the salient short-time events for the
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monophone models and triphone models, respectively. Table8.4shows the window size

and the number of filters at which better results are achievedfor the various models.

Table 8.4: Number of filters and window size
HMMTYPE NUMCHANS WINDOWSIZE Accuracy (%)

MONO 26 20 81.75

WINT 26 25 82.62

XWRD 26 25 83.50

8.2.5.4 Cepstral Liftering

Since higher order Mel-frequency cepstral coefficients areusually numerically small, cep-

stral liftering is applied in order to re-scale cepstral coefficients so that all dimensions have

about the same magnitude. However, as described in (Paliwal, 2005) liftering of cepstral

coefficients has no effect when used with continuous observation density hidden Markov

models. Our experiments on the development set are also in agreement with the fact that

cepstral liftering has little effect on the performance of continuous observation density

HMMs.

8.2.6 Clustering: Triphones

To distinguish clusters and tie acoustically similar states within triphone sets, we use a

phonetic decision tree that is based on asking phonetic questions about the left and right

contexts of each triphone. A phonetic decision tree is a binary tree in which a yes/no

question about phonetic context is attached to each node. The tree is used to recursively

partition a set of states into subsets by answering the questions as appropriate for the

triphone context in which each state occurs (Nock et al., 1997). Those states that end at

the same leaf node are judged to be acoustically similar and are then tied.

When clustering, one needs to look for appropriate values for the stopping criteria;

namely, the outlier threshold (denoted by RO in HTK) and the threshold specifying the

increase in log likelihood that has to be achieved by any question at any node (denoted by

TB in HTK). These values affect the degree of tying and the number of states output in

the clustered system (Young et al., 2006).
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The outlier threshold determines the minimum number of triphone states each leaf

in the decision tree must have. This means each cluster must have at least this value of

samples associated with it, otherwise it is merged with its next nearest cluster. On the

other hand, if a split in the decision tree increases the log-likelihood by less than the value

denoted by TB, splitting stops and the decision tree is complete.

In order to determine the optimal values for TB (keeping the value of RO at 200), we

investigated values from 800 to 1200 by steps of 100 and 1000 (i.e., the value used in the

experiments so far) was found optimal for both crossword andword-internal triphones.

8.2.7 Language Modeling

Due to the incorrect independence assumptions used in acoustic modeling, the acoustic

models are underestimated as discussed in Section5.2.5. Therefore, it is desirable to

balance the probabilities of the acoustic model and the language model. This is often

done by finding an optimal language model scaling factor (LMSF) that defines how the

language model log probabilities are scaled before they arecombined with the acoustic log

probabilities. In other words, the language model scaling factor (also known as language

weight) balances the acoustic and language model scores in word sequence likelihood

computations.

Adjusting the language model scaling factor may result in more insertion errors, as the

decoder prefers a greater number of shorter words to long ones. One can control the rate

of word insertion and word deletion rate, by adjusting the word insertion penalty (WIP).

A very large word insertion penalty reduces the word insertion rate and increases the

word deletion rate, and a very small penalty has the oppositeeffect (Rabiner and Juang,

1993). A value for word insertion penalty is experimentally determined at a point where

the insertion and deletion errors are nearly equal.

We looked for the optimal values in the range 10 to 20 for the language model scaling

factors and -4 to -12 for word insertion penalties on the development test-set to find the

point where the number of insertion and deletion errors are nearly equal. Table8.5shows

the performance of the various models at the optimal values.
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Table 8.5: Language model scaling factor and word insertionpenalty
HMMTYPE LMSF WIP Accuracy (%)

MONO 12 -4 81.75

WINT 16 -8 84.02

XWRD 16 -9 85.46

8.2.8 Comparison of MFCC, PLP and LPCC Features

In the preceding experiments, we used the MFCC features. As described in5.2.1PLP

and LPCC features are also quite suitable for speech recognition. Hence, we investigated

these features to see how well they perform in our setup. Table8.6shows the performance

of the models using these features on the development test-set.

Table 8.6: Comparison of features
Feature HMMTYPE Accuracy (%)

MFCC_0_D_A_Z

MONO 81.75

WINT 84.02

XWRD 85.46

PLP_0_D_A_Z

MONO 81.72

WINT 83.67

XWRD 84.60

LPCC_E_D_A_Z

MONO 81.00

WINT 84.76

XWRD 85.06

As can be observed, the models based on the three different front-ends give quite

comparable results.

8.2.9 Evaluation: English

Using the optimal values found for the various parameters inthe development experi-

ments, we performed 5-fold cross-validation experiments.Table8.7presents the results.

As can be seen in Table8.7and Figure8.3, MFCC, PLP and LPCC-based models give

quite comparable performance.
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Table 8.7: Performance of the English system: 5-fold cross validation
Feature HMMTYPE Accuracy (%)

Set-1 Set-2 Set-3 Set-4 Set-5 Mean

MFCC_0_D_A_Z

MONO 82.58 83.99 78.94 87.07 81.7082.86

WINT 85.66 86.93 82.27 90.13 84.9085.98

XWRD 86.75 88.60 83.02 90.78 85.7786.98

PLP_0_D_A_Z

MONO 82.48 84.12 78.89 86.82 81.5182.76

WINT 87.11 86.74 81.76 89.86 84.5786.06

XWRD 87.47 87.85 81.89 90.41 85.7386.67

LPCC_E_D_A_Z

MONO 82.04 84.03 77.55 86.53 83.1982.67

WINT 86.12 87.05 81.20 89.25 87.6986.26

XWRD 86.28 87.42 81.51 89.80 87.9486.59

Figure 8.3: Comparison of MFCC, PLP and LPCC-based featuresfor speech recognition

For telephone-based speech recognition, the performance of the models based on the

features discussed in Section5.2.1 is quite good. By using gender-dependent acoustic

models, dialog state-dependent language models or grammars and ignoring semantically

irrelevant filler phrases the performance can be even betterin real-time application. How-

ever, since these models are trained on native US-English speech, they perform rather

poorly for non-native speech as will be discussed in Section8.5.2.3. Hence we need to
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tailor these models to suit the vocal characteristics of thetarget users of the system as will

be discussed in Sections8.4, 8.5.1, 8.5.2, and8.5.3.

8.3 Speech Recognition: German

8.3.1 Data Description

The German speech recognizer is built using 15 hours of speech data spoken by 101

(40 female and 61 male) speakers from the German domain-dependent speech database

©"Erlanger Bahnansage" (ERBA) obtained from the Bavarian Archive for Speech Signals

(BAS)1. The speech data was recorded with close-talking microphone in a quiet office

environment at 16 kHz sampling rate in the domain of train information inquiries. The

test-set consist of 100 unique utterances spoken by 5 (2 female and 3 male) native-German

speakers. Each speaker is recorded twice – one under the samerecording conditions as

ERBA and another recorded over a public telephone line – giving a total of over 1000

utterances.

An ideal corpus for spoken dialog systems would be one containing natural spon-

taneous speech as in everyday conversations, or recorded from Wizard of Oz simula-

tions and/or mixed-initiative human-computer interactions. The ERBA corpus is pre-

pared mainly taking acoustic and domain coverage into consideration and consists of read

speech in a quiet office environment and is not directly suitable for building acoustic mod-

els for use in a spoken dialog system. As an effort to make the data suitable for a dialog

system we recorded additional 204 utterances (e.g. utterances consisting of "ja", "nein",

etc.) from 3 female and 6 male speakers with close talking microphone. We use 136 of

these utterances from 2 female and 4 male speakers in the training set and the rest in the

test-set.

We intend to investigate if one can build a usable acoustic model from "simulated"

telephone-quality speech for use in a telephone-based spoken interaction system. Tele-

phone quality speech can be simulated from microphone recorded data by introducing the

obvious effects of the telephone channel such as band-limiting, down sampling to 8 kHz,

etc. as described in Section5.3.4.
1http://www.phonetik.uni-muenchen.de/Bas/
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The language model used is a back-off bigram language model trained on the tran-

scriptions of the training utterances.

8.3.2 Evaluation: German

We carried out preliminary experiments using a small part ofthe training data as a devel-

opment set to find optimal parameters for the German system. Most of the parameters that

were found optimal for the English system were also found good for the German system.

Additional parameters are set to introduce the band-limiting effect of the telephone chan-

nel that discards any information of the speech spectrum within 0–300 Hz and 3400–4000

Hz bands. Considering the specific set of German phonemes andtheir phonetic charac-

teristics, we also modified the phonetic questions used to generate the phonetic decision

tree used for clustering. The results of a final evaluation onthe test-set are given in Table

8.8.

Table 8.8: Performance of the German system on the evaluation test-set
Feature HMMTYPE Accuracy (%)

MFCC_0_D_A_Z

MONO 84.42

WINT 88.02

XWRD 89.30

PLP_0_D_A_Z

MONO 84.46

WINT 88.33

XWRD 89.55

LPCC_E_D_A_Z

MONO 85.57

WINT 89.45

XWRD 90.03

In general, it can be seen that the performance of MFCC, PLP and LPCC based mod-

els are comparable, although linear prediction derived cepstral coefficients slightly out-

perform MFCC and PLP-based models. We observed that CMN is particularly essential

to mitigate the effect of channel mismatch. However, these models under-perform on

actual telephone speech as will be discussed in Section8.16.
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8.4 Gender in Speech Recognition

8.4.1 Gender Recognition

Due to differences in articulatory mechanisms between maleand female speakers, it is

easy to discern the gender of a speaker given an utterance with a high degree of accuracy.

If a spoken dialog system can reliably tell the gender of a speaker from a spoken utterance,

then gender-dependent models that are tailored to the vocalcharacteristic of speakers

in the same gender can be used so as to obtain better recognition performance. In the

following sections we describe the approach we used to builda gender recognizer used in

our system.

8.4.1.1 Data Description

The gender recognizer we build should be able to robustly estimate the gender of a speaker

from a single short utterance. Therefore, the data used to train the gender recognition

model consists of 6250 single-word utterances such as "yes", "yeah", "no", "Boston", etc.

spoken by 28 male and 72 female speakers extracted from the training set (i.e., the merger

of Set-2, Set-3, Set-4, and Set-5) described in Section8.2.1. For testing purposes, we

extracted 1750 single-word utterances from the test-set (i.e., set-1) spoken by 10 male

and 25 female speakers. The transcriptions of each utterance is changed to either "Male"

or "Female" according the gender of the speaker.

8.4.1.2 Gender Recognition Experiments

The most salient cue for distinguishing adult male and female speech is the fundamental

frequency (F0) – pitch as discussed in Section2.5. However, in telephone speech much

of the low frequency energy is filtered out, hence the required pitch is either missing or

weak. Therefore, as an alternative, we use the common cepstral features used in speech

recognition to estimate the gender of a speaker given a spoken utterance.

The gender recognizer described in this thesis is based on a Gaussian Mixture Model

(GMM) discussed in Section5.3.2using cepstral features to decide the gender of a speaker

from the first, short utterance in a dialog session. The number of Gaussian mixture com-

ponents required to adequately train the model and the number of iteration between each

Gaussian increment were experimentally found to be 32 and 4,respectively. In order to
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find out which features and coefficients yield better result,we investigate MFCC, LPCC,

and PLP features with 39 coefficients extracted as describedin Section5.2.1and the re-

sults are shown in Table8.9.

Table 8.9: GMM-based gender recognizer
Feature Kind Accuracy (%)

MFCC_E_D_A 71.31

MFCC_0_D_A 96.34

PLP_E_D_A 92.06

PLP_0_D_A 95.71

LPCC_E_D_A 92.86

As can be seen in Table8.9, MFCC feature vectors including the 0th cepstral coef-

ficient as the energy term give the best result while MFCC features with the log of the

signal energy give the worst result. The use of 0th cepstral coefficient is also shown to be

more useful for speech recognition as described in Section8.2.5.2. A likely conjecture is

that MFCC features along with the 0th cepstral feature as the energy term encode more

gender-specific information sufficient to recognize the gender of a speaker from a single-

word utterance over the telephone with acceptable performance – 96.34% than the other

features investigated.

From the confusion matrix in Table8.10, one can observe that both male and female

speakers are identified at a comparable accuracy, although female speakers are slightly

better recognized than male speakers.

Table 8.10: Gender recognition confusion matrix using MFCC_0_D_A
Male Female

Male 95.77% 4.23%

Female 3.31% 96.69%
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8.4.2 Gender-Dependent Acoustic Modeling

8.4.2.1 Data Description

A straight forward approach to take advantage of gender recognition to improve speech

recognition performance is to train gender-dependent acoustic models. For this purpose,

we split the training data (i.e., the merger of Set-2, Set-3,Set-4 and Set-5) into two gender-

dependent sets – "female training set" consisting of 10,133utterances spoken by 72 fe-

male speakers and "male training set" consisting of 3,594 utterances spoken by 28 male

speakers. For evaluation, we split the test-set (i.e., Set-1) also into two gender-dependent

sets – "female test-set" consisting of 3,107 utterances spoken by 25 speakers and "male

test-set" consisting of 1,036 utterances spoken by 10 speakers.

8.4.2.2 Gender-Dependent Models

To measure how well the speaker-independent model performsfor a given male or female

user, we evaluated the performance of the MFCC-based SI model on the "male-only" and

"female-only" test-sets as shown in Table8.11. For reasons that will become evident in

Section8.5.2, we use monophone models.

Table 8.11: Performance of the SI model on separate male-only and female-only test-sets
HMMTYPE Gender Accuracy (%)

MONO Male 79.57

MONO Female 83.73

To see if gender-dependent models give better performance,we train separate male

and female acoustic models and evaluated them on the corresponding gender-dependent

test data. The results are shown in Table8.12.

Table 8.12: Performance of gender-dependent acoustic models
HMMTYPE Gender Accuracy (%)

MONO Male 80.47

MONO Female 84.66

It can be seen in Tables8.11and8.12that the performance of the gender-dependent

models perform better than the SI model. In general, the gender-dependent models are
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quite good for telephone-based speech recognition. However, as mentioned earlier, these

models perform rather poorly for non-native speakers of English. In the following sec-

tions, we discuss the approaches we used to deal with non-native speech.

8.5 Accent in Speech Recognition

8.5.1 Accent Recognition

In multi-user systems that serve people with different demographic and sociolinguistic

background, discerning the gender and the accent of a speaker from a spoken utterance

may be useful to load proper acoustic models specifically tailored to the vocal character-

istics of a particular group of speakers. A straight forwardapproach to build an accent

recognizer is to train the model on accented speech data collected from different groups

of non-native speakers of a language. However, accented speech is rarely available in

enough amount to build a reliable accent recognizer. Therefore, in this experiment we

show the feasibility of training an accent recognizer on native speech data of the target

accent groups. In particular, we train a GMM-based accent recognizer with 32 com-

ponents on a merger of native German and native English speech data and we use the

resulting model to distinguish if a given English utteranceis accented or native.

8.5.1.1 Data Description

The training data used for accent recognition consists of over 17,800 English utterances

spoken by 135 native US-English speakers drawn from the DARPA 2001 Communicator

Evaluation corpus (Walker et al., 2003) and over 10,300 German utterances from ©ERBA

speech corpus described in Section8.3.1and additional utterances recorded at our labo-

ratory. The test-set consists of 1200 German-accented English utterances recorded from

30 (15 male and 15 female) native German speakers over the telephone and 1800 native

English utterances selected from the held-out developmenttest-set described in Section

8.2.1giving a total of 3000 utterances. Since the German trainingdata is microphone-

recorded, it was converted to a "simulated" telephone quality speech before it was used

to train the desired model. The transcriptions of the utterances in the training set consist

of either "German" or "English" based on the language of the spoken utterance while the
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transcriptions of the test data are set to either "German" or"English" based on whether a

given English utterance was spoken by a German-accented or anative English speaker.

8.5.1.2 Training

We trained one GMM for each langauge (accent class); namely,one for English and

another for German. The initial prototype of each GMM is represented as a single-state

HMM with one Gaussian component where there is no state transition probability within

the model. We model silence as a hidden Markov model (HMM) of 3emitting states with

left-to-right topology with one Gaussian component per state and no skip transitions.

The parameters of the initial models are re-estimated in 2 consecutive runs of the

Baum-Welch algorithm using the training data and the associated transcription. The tran-

scription of the training data, as noted in Section8.5.1.1indicates the language of each

spoken utterance in the training data – i.e., either German or English. To handle impul-

sive noises in the training data, two more transitions are introduced from state 2 to 4 and

from state 4 to 2 in the silence model. The backward transition provides a mechanism to

absorb impulsive noises without exiting the silence model.Then 2 more iterations of the

Baum-Welch algorithm are run.

Finally, we convert the single-Gaussian models to 32-mixture component models as

described in Section8.2.2.1. After each mixture increment, the resulting models are re-

estimated with 4 consecutive runs of the Baum-Welch algorithm until we have estimated

the models with the required number of mixtures.

8.5.1.3 Accent Recognition Experiments

In order to find out which features and coefficients are best suited for accent detection,

we investigated the use of MFCC, PLP and LPCC features where each feature vector is

composed of the basic 12 static coefficients and the energy (or 0th order coefficient) with

and without the corresponding delta and delta-delta coefficients. The performance of the

resulting models is shown in Table8.13.

As can be seen in Table8.13, generally LPCC-based models outperform MFCC and

PLP based models for accent recognition. In particular, LPC-derived cepstral coefficients

consisting of 12 cepstral coefficients and the energy term without the delta and delta-delta

coefficients yield the best performance. The better performance of LPCCs for accent
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Table 8.13: Performance of MFCC, PLP and LPCC features on accent detection
Feature Kind Coefficients Accuracy (%)

MFCC

_E 63.80

_0 82.57

_0_D 83.77

_0_D_A 81.83

PLP

_E 61.87

_0 82.97

_0_D 83.37

_0_D_A 83.73

LPCC

_E 90.33

_E_D 88.37

_E_D_A 87.10

recognition may be attributed to the fact that LPC-based techniques nicely model the

speech production process of the vocal tract which is highlyvariable both across lan-

guages and regional accents. Since speakers with foreign accents usually introduce some

acoustic and phonological features from their native languages into the speech produc-

tion process, the accent of a speaker can be robustly estimated using a speech production

model trained on the native speech data of the target accent groups.

Similarly, in (Wong and Sridharan, 2001) it has been shown that LPCC-based fea-

tures consistently outperformed MFCCs in language identification task. It has also been

suggested in (Arslan and Hansen, 1997) that mel-scale based analysis is not particularly

suitable for accent detection.

Further observation in Table8.13shows that there is a drastic gain in performance

when the 0th order cepstral coefficient is used as energy term instead of the log energy

in MFCC and PLP. The 0th coefficient represents the average energy in the speech frame

and we consistently observed that it is more useful than the log energy in different appli-

cations. With LPCC, the dynamic features – namely, delta anddelta-delta coefficients do

not appear to be useful for accent detection.

It’s interesting to observe in the confusion matrix in Table8.14that German-accented

speakers are identified at a much better rate (96.25%) than native speakers (85.28%).
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This further confirms our hypothesis that accent-related information can be effectively

captured from native speech data.

Table 8.14: Accent recognition confusion matrix using LPCC_E
Native German-accented

Native 85.28% 14.72%

German-accented 3.75% 96.25%

8.5.2 Accent Adaptation Using Accented Data

The performance of the acoustic models trained on native-USEnglish data degrades

significantly when used with actual users with German accentas can be seen in Sec-

tion 8.5.2.2. Therefore, in order to obtain robust acoustic models that can perform well

with accented speakers, we adapt the speaker-independent and gender-dependent models

trained on native data to the vocal characteristics of German-accented speakers.

It has been reported in (He and Zhao, 2001) that triphones trained on native speech

are not appropriate for use with non-native speech. In fact,our preliminary experiments

also revealed that monophones outperform triphones in recognizing non-native speech.

Therefore, in the experiments described in the following sections, we used the context-

independent monophone models built as described in Section8.1as the seed models.

8.5.2.1 Data Description

The enrollment set consisting of 600 English utterances recorded over the telephone from

10 male and 10 female native German speakers (i.e., 30 utterances from each speaker)

using prompts drawn from the English training-set. The test-set consists of 600 English

utterances recorded over the telephone from 5 male and 5 female native German speakers

(i.e., 60 utterances from each speaker) using prompts drawnfrom the English test-set (i.e.,

Set-1).
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8.5.2.2 Baseline Performance

A summary of the results of the SI, and gender-dependent monophone models trained

on native US-English data on the German-accented English test-set is presented in Table

8.15.

Table 8.15: The performance of the SI and gender-dependent seed models on accented

speech
Acoustic Model Accuracy (%)

Speaker-Independent (SI) 61.40

Gender-Dependent (Female) 60.05

Gender-Dependent (Male) 62.29

As can be observed, the performance of the native models on accented speech is very

poor compared to the performance of the models on native speech described in Section

8.2.9.

8.5.2.3 Accent Adaptation Experiments

We obtained significant boost in performance by using the standard speaker adaptation

techniques; namely, MLLR, MAP and MLLR followed by MAP, where we use German-

accented English speech as adaptation data to adapt the native English SI and gender-

dependent acoustic models. For MLLR, optimal performance was obtained with 42 re-

gression classes where both means and diagonal covariancesare transformed. Figure8.4

summarizes the results obtained.

As can be observed in Figure8.4 MLLR alone resulted in 11.01% absolute (28.52%

relative) WER reduction for the SI model. On the gender-dependent models, we obtained

9.69% absolute (24.26% relative) and 17.44% absolute (46.25% relative) WER reduc-

tion for female and male models, respectively. Comparable improvement could also be

achieved with two iterations of MAP adaptation. However, the best results were achieved

by applying three iterations of MAP adaptation on the MLLR transformed models where

14.5% absolute (37.56% relative), 13.47% absolute (33.72%relative), and 20.19% ab-

solute (53.54% relative) WER reduction with SI, female and male models are obtained,

respectively. It can also be observed that the accent-adapted male models perform much

better than the accent-adapted female models. Our speculation based on the analysis of

the recorded data is that the male speakers spoke with more natural accent, hence more
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Figure 8.4: Speech recognition performance improvement for non-native speakers due to

MLLR, MAP and MLLR+MAP adaptation

accent-related information could be obtained. On the otherhand, most of the female

speakers tried to imitate native speakers, hence were less accented than the male speak-

ers.

8.5.3 Cross-language Accent Adaptation

Motivated by the successful utilization of native speech data from two target accent groups

(German and native US-English) to train an accent recognizer that detects accent from a

spoken utterance as described in Section8.5.1, we hope to obtain performance gain by

using native German speech data as enrollment set to adapt models trained on native US-

English speech. This is referred to as cross-language accent adaptation. Cross-language

accent adaptation is helpful in cases where it is hard to collect accented speech in a given

application domain. Often native speech data from a target accent group is more available

than accented speech data. In this section, we show the use ofnative German speech data

to adapt speaker-independent and gender-dependent modelstrained on native US-English

data to the German accent.
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8.5.3.1 Data for Cross-language Accent Adaptation

The enrollment data for cross-language accent adaptation consist of 600 German utter-

ances recorded over the telephone from 10 male and 10 female native German speakers

using prompts drawn from the transcriptions of the test-setin the ©ERBA distribution.

The evaluation-set consists of 600 German-accented English utterances described in Sec-

tion 8.5.2.1.

In order to use cross-language accent adaptation, we first constructed an approximate

mapping between the phoneme sets of German and English. We then built an auxiliary

pronunciation dictionary that defines the pronunciation ofthe German words in the adap-

tation set with English phonemes.

8.5.3.2 Cross-language Accent Adaptation Experiments

The enrollment data is force-aligned using the English SI monophone model and the aux-

iliary pronunciation dictionary to produce the monophone transcription of the enrollment

data. For MLLR, two global transforms (one for silence and another for speech mod-

els) where both means and covariances are transformed give improved result. Figure8.5

summarizes the results obtained.

Figure 8.5: Speech recognition performance improvement for non-native speakers using

cross-language accent adaptation
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As can be seen in Figure8.5, when MAP is applied on MLLR transformed means and

covariances, we obtain 6.8% absolute (17.62% relative), 13.04% absolute (34.58% rela-

tive), and 7.15% absolute (17.90% relative) WER reduction for the SI, male and female

models, respectively. Although the performance gain is remarkable, the improvement we

could get using cross-language approach is relatively lessthan we achieved using accented

data as demonstrated in Section8.5.2. One explanation is that the phoneme mapping is

neither one-to-one nor accurate as some German phonemes do not have a counterpart in

English and vice versa.

8.5.4 Channel Adaptation

The acoustic models for the German system were trained and evaluated on simulated tele-

phone quality speech. Experiments show that these models donot perform well on actual

telephone speech. Therefore, we use maximum likelihood linear regression adaptation

technique to adapt the models to the telephone channel usingsome telephone recorded

speech data with the hope of improving performance of the adapted models on telephone

speech.

8.5.4.1 Data Description

We recorded 300 German utterances from 5 male and 5 female native German speakers

over the telephone using prompts drawn from the training setof the German speech corpus

(ERBA) for the purpose of channel adaptation.

The 600 German-accented English utterances from 10 male and10 female speakers

described in Section8.5.2.1are used to evaluate how well the speaker-independent (SI)

and gender-dependent models trained on simulated telephone-quality speech perform on

actual telephone speech.

8.5.4.2 Effect of Channel Adaptation

Table8.16summarizes the performance of the monophone speaker-independent and gender-

dependent models on actual telephone speech before and after channel adaptation.

As can be seen, there is apparent performance gain after MLLRadaptation. The

MLLR adaptation (with 42 regression classes and transformation of both mean and di-

agonal covariance parameters) may have captured some effects of the telephone channel
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Table 8.16: Performance gain due to channel adaptation
Acoustic Model Before (Accuracy (%)) After (Accuracy (%))

SI 76.94 79.87

GD (Male) 78.72 82.03

GD (Female) 79.00 80.30

that were not captured with the simulation procedure we described in Section5.3.4. The

actual performance of the gender-dependent models in real-time use will be discussed in

Section8.7.

8.6 Spoken Language Understanding

In the previous sections, we investigated various approaches to build robust speech recog-

nition models that decode a given acoustic signal into a sequence of words which is hope-

fully close to the correct transcription of the spoken utterance. However, the raw output

of a speech recognizer can merely serve any purpose in a spoken dialog system without

a process that converts the output of the speech recognizer into a meaningful sequence of

semantic concepts that connote what is meant from what mighthave been said. In this

section, we describe the experiments conducted and the results obtained using different

but interrelated semantic concept labeling approaches discussed in Chapter6.

8.6.1 Data Description

The semantic model for the domain of airline travel planningwas trained on the tran-

scriptions of 8000 utterances drawn from the merger of set-2, set-3, set-4 and set-5 of the

data described in Section8.2.1. The evaluation test-set consists of 1000 selected from

the transcriptions of set-1. The selection mainly excludedrepetitions of short utterances

such as "yes", "no", etc. An interesting feature of the data in the DARPA 2001 Com-

municator Evaluation Corpus is that it consists of spontaneous utterances – consisting of

filled pauses, repetitions, repairs, false starts, ungrammatical utterances, etc. Table8.17

describes the training and test-sets used for the domain of airline travel planning.

As can be seen, there are 79 distinct out-of-vocabulary words (OOVs) in the test-set.

In general, there are 139 occurrences of these OOVs in the test-set.
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Table 8.17: Description of data for the airline travel planning domain (Communicator)

Set No. of utterances No. of unique words Avg. No. of words per

utterance

Training 8000 914 4.04

Test 1000 579 (79 OOVs) 8.98

On the other hand, the model for the train inquiries domain was trained on the tran-

scriptions of 8000 utterances drawn from the 10,000-utterance training set described in

Section8.3.1. The transcriptions of the first 900 utterances from the remaining 2000 were

added to the 100-utterance test-set described in Section8.3.1 to form a 1000-sentence

evaluation set. The utterances in the domain of train inquiries are read, relatively long,

well-structured, and grammatically well-formed sentences. Table8.18describes the data

used to build and evaluate the German semantic model.

Table 8.18: Description of data for train information inquiries domain (ERBA)

Set No. of utterances No. of unique words Avg. No. of words per

utterance

Training 8000 920 12.26

Test 1000 829 (9 OOVs) 11.76

8.6.2 Performance Measures

The performance of the semantic models is evaluated using precision, recall and F-measure.

Precision (P) is the percentage of correctly labeled concepts out of all labeled concepts

given by the system. Recall (R) is the percentage of correctly identified concepts actually

present in the reference annotation. By correct we mean thatboth the boundaries of the

concept and the label are correct.

Precision=
Number o f correctly labeled concepts

Total number o f labeled concepts given bythesystem
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Recall=
Number o f correctly labeled concepts

Total number o f labeled concept chunks in the re f erenceannotation

To illustrate the two measures we use the following example.Suppose that the utter-

ance "I’d like to fly on Air Canada" is tagged by a model as:

(I’d like to fly) DUMMY

(on) ON

(Air) AIRLINE_NAME

(Canada) COUNTRY

And the reference annotation consists of:

(I’d like to fly) DUMMY

(on) ON

(Air Canada) AIRLINE_NAME

Since two out of the four labeled output are correct, the precision is 50% while the

recall is 66.67% since two of the three chunks in the reference are correctly identified.

F-measure (van Rijsbergen, 1975) is a weighted harmonic mean of precision and recall

as defined by Equation8.1.

F =
2PR

P+R
(8.1)

8.6.3 The Flat-Concept Model

It has been described in Section6.5that the first step in semantic modeling involves iden-

tifying the relevant entities, events, attributes and relations within the domain of discourse

using prior domain knowledge and example utterances. Theseidentified semantic classes

represent the semantic concepts in the application domain and each semantic class con-

stitutes a set of lexical items used in the domain. Therefore, the words in the system’s

vocabulary are classified into the identified set of semanticclasses such that all words

belonging to a semantic class are initially equiprobable.

In HMM-based semantic concept labeling, the hidden states correspond to the seman-

tic classes (tags or labels) in a given application domain while the observation set corre-

sponds to the set of words in the lexicon of the system. The task of the required model
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is to determine the most likely sequence of semantic labels that could have generated the

sequence of words in a recognized utterance.

In Section6.5.1, it has been noted that the flat-concept model cannot capturethe

hierarchical relationship of words across states. However, for relatively simple application

domains, it can give adequate performance as can be seen in the next sections.

8.6.3.1 Initial Flat-Concept Models

We start with an ergodic model where all transitions to and from any state (semantic class)

are equally likely including self-loops. The only restriction is that a one-step transition

from the entry to the exit state of the global HMM is prohibited to prevent non-emitting

loops as described in Section6.5. As can be seen in Table8.19, this very basic model,

where little domain-specific constraints are imposed, gives a modest performance which

can be considered as a baseline for the flat-concept model.

Table 8.19: Performance of the ergodic initial models

Data P (%) R (%) F-Measure (%)

Communicator 71.49 70.44 70.96

ERBA 80.26 83.64 81.92

This model is too unconstrained and it is often useful to introduce some informative

structures by prohibiting arbitrary and unlikely state transitions based on prior domain

knowledge and training examples. This enables us to train the model more efficiently on

semantically unannotated training data. We use the term "tuning" to refer to the process of

introducing constraints in the model. This is efficiently done with the model compiler and

the modeling language introduced in Section6.5 using the keywords "except", "none",

"only", "high", "low" and "all" .

After the required tuning of model parameters, the performance of the flat-concept

models is given in Table8.20.

As can be seen in Tables8.19and8.20, introducing prior knowledge-based constraints

into the model definition results in a substantial gain in performance – 13.78% and 12.26%

absolute improvement in F-measure for the Communicator andERBA tasks, respectively.
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Table 8.20: Performance of the tuned flat-concept initial models

Data P (%) R (%) F-Measure (%)

Communicator 89.47 80.49 84.74

ERBA 94.61 93.76 94.18

The performance can further be improved with EM training. Infact, the tuning of initial

model parameters is very important because the EM algorithmheavily depends on these.

8.6.3.2 Trained Flat-Concept Models

It was found that the best performance for the English model (Communicator) was ob-

tained after six iterations of training as shown in Figure8.6while a single iteration of the

EM algorithm was sufficient for the German models (ERBA). This phenomenon where

we achieve the best performance in the first few training iterations is referred to as early

maximum (Elworthy, 1994).

Figure 8.6: Performance of the flat-concept model as a function of number of training

iterations (in the Communicator domain)

As can be seen in Figure8.6, the major performance boost is achieved in the first

iteration, afterwards minor gains are obtained until the sixth iteration and starts to de-
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cline gradually. After training and smoothing of transition and emission probabilities as

described in Section6.4, the performance of the models is shown in Table8.21.

Table 8.21: Performance of the flat-concept models after training and smoothing
Data P (%) R (%) F-Measure (%)

Communicator 92.63 93.96 93.29

ERBA 94.55 95.46 95.00

As can be seen, in Table8.21, the performance of the flat-concept model is signifi-

cantly improved after training and smoothing and is quite satisfactory for both application

domains. However, in order to achieve this level of performance, a substantial number of

preliminary testing on the training data had to be performedto tune the model so as to

resolve many sources of ambiguities.

Furthermore, as described in Section6.5.1 the flat-concept model provides a frag-

mented output where each word is labeled with a corresponding atomic semantic label

and, therefore, is less informative as can be noted in the following example in German1.

Listing 10 Example output of the flat-concept semantic model
(ich möchte gerne) DUMMY (am) ON (sechs) DAY_OF_MONTH (und) CONNECTIVE

(zwanzigsten) DAY_OF_MONTH (zweiten) MONTH (um) AT (neun) HOUR_OF_DAY

(Uhr) HOUR (drei) MINUTES (und) CONNECTIVE (zwanzig) MINUT ES (die) DUMMY

(schnellste) MODIFIER (Direktverbindung) TRAIN_CONNECT ION (von) FROM

(Düsseldorf) CITY_1 (nach) TO (Magdeburg) CITY_1 (Neustad t) CITY_2

In the above example, the phrase "sechs und zwanzigsten zweiten"2 represents a

DATE concept and the phrase "neun Uhr drei und zwanzig"3 represents a TIME concept,

etc. Obviously, it would be more informative if these are labeled as DATE and TIME,

respectively, while encapsulating the low-level details inside.

Finally, as can be clearly seen in Figure8.7, the gain in performance after training (and

smoothing) for the Communicator application domain is muchmore substantial than for

the ERBA domain. This is due to the occurrence of more number of unseen observations

and out of vocabulary words in the Communicator domain than in the ERBA domain

1Translation of the German utterance: I would like the fastest direct connection from Düsseldorf Airport

to Magdeburg Neustadt on February twenty sixth at 9:23 a. m.
2twenty sixth of February
39:23 a.m.
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which are properly handled by the smoothing technique described in Section6.4. More

discussion on this is given in the next section.

Figure 8.7: Performance of the the baseline, tuned and trained flat-concept models for

Communicator and ERBA application domains

8.6.4 The Medium-level Hierarchical Model

In order to combat the problems associated with the flat-concept modeling approach, we

organize semantically related concepts into higher-levelconcepts such as DATE, TIME,

FLIGHT_INFO, etc. as described in Section6.6. We refer to this model as medium-

level hierarchical model as it captures the context within semantically related concepts.

The experiments that follow describe the performance of themedium-level hierarchical

models for both airline travel planning and train information inquiries domains.

8.6.4.1 Initial Medium-level Hierarchical Models

The performance of the initial medium-hierarchical modelsafter introducing the neces-

sary constraints in the model definition as described in Section 6.6 is depicted in Table

8.22.
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Table 8.22: Performance of the medium-level hierarchical initial models

Data P (%) R (%) F-Measure (%)

Communicator 96.77 83.61 89.71

ERBA 96.73 95.10 95.91

As can be observed, tuning of model parameters alone can result in a working model

with acceptable performance. However, a model that solely relies on engineering the

model could require a lot of human effort to tune the model parameters which could

otherwise be learnt from the training data. Moreover, the model so built could be brittle

in the face of unseen transitions and out-of-vocabulary (OOV) words. Therefore, we aim

at introducing only the obvious and most important constraints and let the EM algorithm

refine the model parameters during training.

It can also be noted in Table8.22that the recall for the airline travel planning domain,

is quite low. This is because the test-set consists of a significant number of utterances

that could not be parsed due to unseen observations in the training data. This is, in turn,

attributed to the inherent data sparseness problem and the inevitability of OOV words

in spontaneous spoken utterances. To make the model robust to unseen observations

and OOV words, we use the smoothing technique discussed in Section 6.4 to adjust the

probabilities of observations to obtain reasonable probabilities for unseen data.

8.6.4.2 Trained Medium-level Hierarchical Models

Using the EM training algorithm and the smoothing techniquedescribed in Section6.4,

the model parameters are refined and all the sentences including those containing unseen

observations could be effectively parsed. Only a single iteration of the EM algorithm was

used as further iterations were found to be counterproductive. The results obtained after

training and smoothing are summarized in Table8.23.

Table 8.23: Performance of the medium-level hierarchical model after training and

smoothing

Data P (%) R (%) F-Measure (%)

Communicator 96.82 96.64 96.73

ERBA 96.96 96.68 96.82
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In addition to the additional performance gain after training and smoothing, the result-

ing model is quite robust to unseen observations and can correctly label out-of-vocabulary

words using the surrounding context. Moreover, the output is semantically more informa-

tive as can be observed in the following examples.

The output of the medium-level hierarchical model on the example utterance given in

Listing 10 is shown in Listing11which is much more structured and informative than the

output of the flat-concept model.

Listing 11 Example output of the medium-level hierarchical semantic model in German
(ich möchte gerne) DUMMY (am) ON (sechs und zwanzigsten zwei ten) DATE

(um) AT (neun Uhr drei und zwanzig) TIME (die) DUMMY (schnell ste) MODIFIER

(Direktverbindung) CONNECTION (von) FROM (Düsseldorf Flu ghafen) LOCATION

(nach) TO (Magdeburg Neustadt) LOCATION

Listing 12 shows an example in the domain of airline travel planning. Given that the

departure location Berlin Tegel was not seen in the trainingdata, the sentence "Do you

have a flight from Berlin Tegel to Washington Dulles Airport on September the twenty

ninth in the morning?" would be labeled as:

Listing 12 Example output of the medium-level hierarchical semantic model for the do-

main of Airline Travel Planning
(Do you have a) QUESTION (flight) FLIGHT_INFO (from) FROM

(oov[Berlin] oov[Tegel]) CITY (to) TO

(Washington Dulles Airport) AIRPORT (on) ON

(September the twenty ninth ) DATE (in the morning) PERIOD_O F_DAY

As can be seen, the model is robust in that the OOV informationconsisting of two

adjacent words (i.e. Berlin Tegel) could be correctly labeled using the surrounding context

and the resulting tagged output is structured and semantically appealing.

8.6.5 The Hierarchical Model

The hierarchical model extends the medium-level structurefurther by grouping semanti-

cally as well as hierarchically related concepts together so as to improve the ambiguity
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resolution ability and the predictive power of the model andobtain more structured output

by a hierarchical organization of concepts into higher-level structures.

The model for each application domain is constructed and tuned as described in Sec-

tion 6.7. Then, we train the tuned initial hierarchical model of eachapplication domain

with the EM algorithm and apply the smoothing method described in Section6.4. The

best performance was observed after only one iteration of training on the tuned initial

models for both application domains. This is because with good initial estimates, the EM

training improves performance only for a few number of iterations – the patternElworthy

(1994) termed "early maximum". The experiments that follow describe the performance

of the hierarchical models evaluated at two different levels of hierarchy.

8.6.5.1 Trained Hierarchical Models

The performance of the hierarchical model is evaluated at two levels of detail. First, we

measure how well the model identifies the structured units ofinformation such as RE-

QUEST, ARRIVAL_LOC, DEPARTURE_TIME, etc. without considering the low-level

details in each structure such as CITY_P1, CITY_P2, HOUR, MINUTES, etc. Tables

8.24shows the performance of the hierarchical model after training and smoothing on the

high-level tag-set for the two application domains.

Table 8.24: Performance of the hierarchical model on structured (high-level) tag-set
Model P (%) R (%) F-Measure (%)

Communicator 95.07 96.25 95.66

ERBA 96.06 96.27 96.16

Second, in order to compare the performance of the hierarchical model and the flat-

concept model using the same tag-set, we generate a detailedoutput using the hierarchical

model, take only the low-level concepts, resolve name differences of similar concepts

between the two models, and evaluate the performance using the reference annotation of

the flat-concept model. Table8.25depicts the result on the tag-set used in the flat-concept

model.

As can be observed, the hierarchical model outperforms the flat-concept model by

about 2.99% and 3.98% absolute in F-measure (compare with Table 8.21) in the airline

travel planning and train inquiries domains, respectivelyas can be seen in Figure8.8.
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Table 8.25: Performance of the hierarchical model on low-level tag-set
Model P (%) R (%) F-Measure (%)

Communicator 96.08 96.48 96.28

ERBA 98.88 99.08 98.98

Figure 8.8: Comparison of the performance of the flat-concept and hierarchical models in

F-measure

The very high performance of the German semantic model is mainly because both the

training and test data are very structured utterances and contain less sources of ambiguity;

hence, it can be modeled by the hierarchical approach with a high degree of accuracy.

8.6.5.2 Example Outputs of the Hierarchical Model

The hierarchical model has the virtue of providing semantically labeled information at

several levels of detail as required. For instance, given the utterance:

"leaving San Francisco on November eleventh traveling to Bo ston

leaving in the afternoon on flight eleven seventy"

The model can produce a higher-level output as shown in Listing13.
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Listing 13 Communicator (Level 1): Structured (high-level) output
(leaving San Francisco) DEPARTURE_LOC

(on November eleventh)DATE_INFO

(traveling) DUMMY (to Boston) ARRIVAL_LOC

(leaving in the afternoon) DEPARTURE_TIME

(on) ON (flight eleven oov[seventy])FLIGHT_INFO

As can be noted, the hierarchical model provides additionalhigher-level information

such as ARRIVAL_LOC, DEPARTURE_TIME, etc. which we could not directly obtain

using either the medium-level hierarchical or the flat-concept model. Moreover, the model

is robust in that unknown words could be correctly labeled asin the example above where

"seventy" was not seen in the training data but was correctlylabeled using the surrounding

context.

The model can also produce a detailed low-level output as shown in Listing14.

Listing 14 Communicator (Level 2): Detailed (low-level) output
((leaving) DEPARTURE

(((San) CITY_P1 (Francisco) CITY_P2) CITY_MACRO) LOCATIO N_MACRO) DEPARTURE_LOC

(((on) ON

((November) MONTH (eleventh) DAY_OF_MONTH) DU_MACRO) DAT E_MACRO) DATE_INFO

(traveling) DUMMY

((to) TO (((Boston) CITY_P2)CITY_MACRO)LOCATION_MACRO) ARRIVAL_LOC

((leaving) DEPARTURE (((in the) DUMMY

(afternoon) PERIOD_OF_DAY)POD_MACRO) TIME_MACRO) DEPARTURE_TIME (on) ON

((flight) FLIGHT_QUALIFIER (eleven oov[seventy]) FLIGHT _NUMBER) FLIGHT_INFO

As a remark, the hierarchical model could correctly label 66.9% (93 out of 139 occur-

rences) of OOVs in the airline travel planning domain.

Given the utterance (in the domain of train information inquiries1):

"Welches ist die schnellste Zugverbindung zwischen Kobern Gondorf

und Esslingen frühestens übermorgen um acht Uhr fünfzehn"

The model can produce a detailed output as shown in15.

1Translation: Which is the fastest train connection betweenKobern Gondorf and Esslingen at the earli-

est of the day after tomorrow at eight fifteen a. m.
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Listing 15 ERBA (Level 2) Detailed (low-level) output
((welches) QUESTION (ist) DUMMY) REQUEST

((die) DUMMY

(schnellste) MODIFIER (Zugverbindung) TRAIN_CONNECTION )CONNECTION_INFO

((zwischen) BETWEEN ((Kobern) CITY_1 (Gondorf) CITY_2) CI TY_MACRO

(und) CONNECTIVE ((Esslingen) CITY_1)CITY_MACRO) ROUTE

(((frühestens) MODIFIER (übermorgen)DAY_OF_WEEK) DATE_ MACRO) DATE_INFO

(((um) AT

((acht)HOUR_OF_DAY (Uhr) HOUR (fünfzehn) MINUTES) TIME_M ACRO)) TIME_INFO

A graphical representation of the example in Listing15where the leaf nodes represent

the low-level semantic concepts is shown in Figure8.9.

Figure 8.9: Example graphical representation of a detailedoutput of the hierarchical

model
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8.6.6 Model Complexity

A semantic labeling task would be very simple, if every word belongs to one and only

one semantic class. However, a word can have multiple sensesin different contexts. For

instance, the word "to" has different senses in "I would liketo", "to Frankfurt", "quarter

to ten", etc. and thus should be labeled accordingly. Although one can think of various

other ways to gauge the complexity of a model or a task, we measure complexity in two

ways:

• The performance of an unconstrained model that defines onlythe semantic classes

and the lexical items in each class

• The average number of possible labels that a model can assign to a word in the

lexicon of the application.

It has been shown in Section8.6.3.1that an unconstrained ergodic flat-concept model

gives 70.96% and 81.92% in F-measure showing that the Germantask is relatively easier

than the English one because the Communicator corpus consists of spontaneous utter-

ances as opposed to ERBA which consists of well-structured,read utterances.

The average number of labels that any word in the vocabulary of a given application

domain can assume in the flat and the hierarchical models is given in Table8.26.

Table 8.26: Average number of possible labels for a word in the flat and the hierarchical

models
Model Communicator (English) ERBA (German)

Flat 1.3 1.1

Hierarchical 1.73 1.54

It can be observed in Table8.26 that the English task is relatively more ambiguous

than the German task. It can also be noted that the hierarchical model is more complex

as different senses of a word in different contexts are introduced. For instance, phrases

"Septemberthe nineteenth", "earlyin the morning", "twenty thirdof May", "at nine a.

m.", "at j. f. k. airport", "airport hotel", etc. consist of context-sensitive versions of

words such asin, the, o f, at, airport, etc. that must be labeled according to the context

of their use.
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The values in Table8.26do not consider the higher level context; i.e., they do not dis-

tinguish between arrival, departure and other cities. However, the task requirement of the

hierarchical model is higher as we would like to know whethera given date, time, city, etc.

is ARRIVAL_DATE, DEPARTURE_TIME, ARRIVAL_LOC, etc. usingthe surrounding

context. Hence, the complexity of the hierarchical model can be measured by computing

the average number of times that a word which is tied to a sub-network occurs in different

sub-structures. For instance, a city can occur in about five super-concepts in the domain of

train information inquiries – in ARRIVAL_LOC, in DEPARTURE_LOC, in CONNEC-

TION when the city is a connecting station, in ROUTE when referring to possible routes

between two cities or in LOCATION when there is no further contextual information.

This means every city can have five different possible labelsin different contexts. There-

fore, as a measure of the complexity of the hierarchical models, we compute the average

number of possible tags that a tied word can have for the two application domains. This

value is 5.61 for train inquiries domain and 2.92 for airlinetravel planning. This measure

tells only the complexity of the model and does not mean that the German task is harder

than the English task.

8.7 Evaluation of the Demonstration System

In the previous sections, we discussed the speech recognition and spoken language un-

derstanding components of our telephone-based spoken dialog system. We applied the

acoustic, language and semantic models discussed above in real-time test settings where

test subjects are invited to interact with the system to perform predefined information

inquiry tasks. In the following section, we present the evaluation procedure used and

discuss the results obtained.

Since user satisfaction is inherently subjective, the coreof the evaluation procedure is

based on collecting judgements from test users using a list of questions compiled based

on the SASSI (Hone and Graham, 2001) questionnaire and the ITU-T Rec. P.851 (ITU_T

Rec. P.851) recommendation. Complementary information are obtainedfrom logged

interaction parameters.
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8.7.1 Example Interaction

We prepared two test-cases for each user (for a total of 20 test subjects) – one in English

in the domain of airline travel planning and the other in German in the domain of train

information inquiries. The first expected spoken input fromthe user is a choice of the

preferred language – English or German. This input is used torecognize the preferred

language and to estimate the gender of the speaker from the same acoustic input so as

to load the corresponding semantic model and gender-dependent acoustic model for the

rest of the dialog. Listing16 shows an example interaction in the domain of airline travel

planning.

Listing 16 Typical example interaction

System: Hello! My name is KEY. I provide service in English an d German.

Which one do you prefer?

User: English

System: Welcome to the Airline travel planning system of Uni versity

Magdeburg! What is your travel plan?

User: I want to fly from San Francisco to Washington D. C. on De cember

eleven.

System: Would you like to fly from Toronto to Washington D. C. ?

User: no from San Francisco.

System: Would you like to fly from San Francisco to Washingto n D. C.?

User: yes

System: At what time do you want to fly?

User: three p. m.

System: Would you like to fly on December eleven at three p. m. ?

User: yes

System: Do you have any airline preference?

User: Delta airlines

System: Do you want to fly on Delta Airlines?

User: yes

System: Just a second! I have flight four hundred and ninety f ive from San

Francisco to Washington D. C. on Delta Airlines. Check-in ti me is

at three p. m. This is the only available flight. Please choos e

change for another flight, book to book the flight, or exit to quit.

User: exit

System: Thank you for calling! Good-bye.
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8.7.2 Subjective Evaluation

The questionnaire (in AppendixB) contains 40 questions; 38 of which are rated on a 5-

point Likert scale shown in Figure8.10. The value 5 corresponds to the most positive and

1 to the most negative response on the scale. Some of the statements were expressed posi-

tively and others negatively in order to minimize the possible bias of responses. "Strongly

Agree" is the most positive response for positive statements while "Strongly Disagree" is

the most positive response for negative statements as disagreement to a negative question

expresses a positive attitude.

Most negative1 2 3 4 5 Most positive

Figure 8.10: A 5-point Likert scale

For analysis purposes, we group the 38 questions into eight major categories based on

what the questions are intended to elicit – task efficiency, speech input and output quality,

reliability, cooperativity, dialog efficiency, user satisfaction, task ease and acceptability.

The last two questions ask the users which of the two servicesthey liked more and to rate

their overall impression about the system on a continuous scale. In the following sections

we present and discuss the results of the evaluation in termsof these categories.

8.7.2.1 Task Efficiency

Task efficiency consists of factors such as task success, completeness and clarity of the

provided information, suitability of the system for the task and efficiency. The questions

that are intended to elicit these information and the percentage of respondents by response

category for each question are given in Table8.27.

As can be seen in Table8.27, the majority of the respondents agree on the complete-

ness and clarity of the information provided by the system. However, it is not obvious to

draw conclusions from the other two questions. Although more respondents show a posi-

tive attitude to these questions, the percentage of undecided respondents for each question

is significant. Nevertheless, as can be seen in Figure8.11that depicts the mean of the re-

sponses for each question and the average of the means, one can see that task efficiency

is well on the positive side of the scale. The bold horizontalline in Figure8.11shows the

average of the means (3.66).
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Table 8.27: Task efficiency: percentage of respondents by response category
Question Strongly

Agree (%)

Agree

(%)

Undecided

(%)

Disagree

(%)

Strongly Dis-

agree (%)

1(a): The system did exactly

what I requested

0 45 30 25 0

1(b): The information pro-

vided by the system was

clear

40 40 10 10 0

1(c): The provided informa-

tion was complete

50 40 5 5 0

1(d): The system could ef-

ficiently provide information

inquiry services

0 35 35 25 5

Figure 8.11: Task efficiency: mean of responses for each question on a 5-point Likert

scale where 5 corresponds to the most positive and 1 to the most negative response

8.7.2.2 Speech Input and Output Quality

Speech input and output quality comprises of factors that have to do with speech recog-

nition performance, understanding ability of spoken requests, naturalness of synthesized

speech and the speed of interaction. The questions that are intended to elicit these in-

formation and the percentage of respondents by response category for each question are

given in Table8.28.
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Table 8.28: Speech input and output quality: percentage of respondents by response cat-

egory
Question Strongly

Agree (%)

Agree

(%)

Undecided

(%)

Disagree

(%)

Strongly

Disagree (%)

2(a): I felt well under-

stood by the system

0 5 35 40 20

2(b): I had to concentrate

to acoustically understand

the system

5 35 10 35 15

2(c): The system voice

sounded natural

5 45 15 25 10

2(d): The system reacted

too slowly

0 45 25 30 0

As can be noted, 60% of the respondents disagree with the statement "I felt well

understood by the system". This question entails the performance of both speech recog-

nition and speech understanding components of the system. Since the spoken language

understanding unit takes the speech recognition result as its input, the output depends on

the quality of the recognized input. From the logged information, we could see that the

SLU unit (semantic model) labeled its input almost always correctly, however, there were

significant number of recognition errors mainly in the German system. As can be seen

from the objective evaluation in Section8.7.3and our observation, the performance of

the system for the German service was suboptimal for reasonsto be discussed in Section

8.7.2.10, while the performance of the system for the English servicewas impressive in

most cases. The difference in performance of the two services seems to be the reason why

a significant percentage (35%) of respondents are undecidedon this question. Moreover,

most users performed the English airline travel planning task first and the German train

information inquiries task last which was in some cases unpleasant. The phenomenon

called "recency effect", where the last experience has greater influence on the overall im-

pression, might be the reason why some respondents disagreewith the first question even

when the English interaction was quite good.

As can be seen in Figure8.12which depicts the mean of responses for each question

on a 5-point Likert scale, the average of the means for the speech input and output quality
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category is 2.85 which is on the negative side of the scale. This can be attributed mainly

to the weakness of the speech recognition model used for German service.

Figure 8.12: Speech input and output quality: mean of responses for each question on a

5-point Likert scale where 5 corresponds to the most positive and 1 to the most negative

response

8.7.2.3 Reliability

We define reliability as consisting of factors that are related to the ability of a system to

perform the required task(s), frequency of errors and consistency of the system’s behavior

in different situations. The two questions that are intended to elicit these information and

the percentage of respondents by response category for eachquestion are given in Table

8.29

Table 8.29: Reliability: percentage of respondents by response category
Question Strongly

Agree (%)

Agree

(%)

Undecided

(%)

Disagree

(%)

Strongly

Disagree (%)

3(a): The system made

many errors

10 40 30 20 0

3(b): The system is unre-

liable

5 5 35 40 15
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As can be seen in Table8.29, 50% of the respondent believe that the system made

many errors while 30% are undecided. On the other hand, 55% ofthe respondents believe

that the system is reliable while 35% are undecided. This sounds conflicting but it some-

how tells the fact that the users could successfully complete the task even with recognition

errors. The disparity in performance of the two services in English and German, may ex-

plain the high percentage of undecided respondents for the two questions. The average

of the means, however, is 3.1 which is slightly on the positive side of the scale as can be

seen in Figure8.13.

Figure 8.13: Reliability: mean of responses for each question on a 5-point Likert scale

where 5 corresponds to the most positive and 1 to the most negative response

8.7.2.4 Cooperativity

We group factors relating to ease of recovering from errors,reversibility of actions, help-

fulness in case of confusion, error tolerance and human-like behavior into the category

cooperativity. The questions that are intended to elicit these information are given in

Table8.30along with the percentage of respondents by response category.

As can be seen in Table8.30, most respondents (75%) agree that the system behaved

in a cooperative way but 45% agree and 40% disagree on whetherthe system allowed

them to easily recover from errors. On the other hand, 55% of the respondents believe

that the system’s behavior is not human-like while 30% of respondents are undecided on

this question.

As can be seen in Figure8.14which depicts the mean of responses for each question

on a 5-point Likert scale, the average of the means is 3.1 which is slightly on the positive

side of the scale.
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Table 8.30: Cooperativity: percentage of respondents by response category
Question Strongly

Agree (%)

Agree

(%)

Undecided

(%)

Disagree

(%)

Strongly

Disagree

4(a): I was able to recover

easily from errors

10 35 15 40 -

4(b): The system behaved

in a cooperative way

20 55 10 10 5

4(c): The system reacted

like a human

- 15 30 35 20

Figure 8.14: Cooperativity: mean of responses for each question on a 5-point Likert scale

where 5 corresponds to the most positive and 1 to the most negative response

8.7.2.5 Dialog Efficiency

We define dialog efficiency as a parameter that comprises of factors such as dialog flow,

dialog symmetry, controllability, transparency of the system behavior, etc. The questions

that are intended to elicit these information and the percentage of respondents by response

category for each question are given in Table8.31.

As can be observed, most respondents (95%) believe that theywere not lost in the

dialog flow while the remaining 5% are undecided, and 85% of the respondents always

knew what the system expected from them. 65% of the respondents believe that the

dialog was balanced between the system and themselves. 55% of the respondents judge
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Table 8.31: Dialog efficiency: percentage of respondents byresponse category
Question Strongly

Agree (%)

Agree

(%)

Undecided

(%)

Disagree

(%)

Strongly

Disagree (%)

5(a): I got easily lost in

the dialog flow

0 0 5 55 40

5(b): The dialog was ir-

regular

0 50 20 25 5

5(c): I could direct the di-

alog as I wanted

0 20 30 30 15

5(d): The dialog was too

long

5 5 35 45 10

5(e): The dialog quickly

led to the desired aim

0 10 55 25 10

5(f): The dialog was bal-

anced between me and the

system

5 60 15 20 0

5(g): I always knew what

to say to the system

5 55 10 30 0

5(h): I felt in control of

the interaction with the

system

5 25 40 25 5

5(i): I was not always sure

what the system expected

from me

0 10 5 50 35

the dialog length positively while 35% are undecided. On theother hand, 50% of the

respondents judge the dialog as irregular while 20% are undecided.

As can be seen in Figure8.15, which shows the mean of responses for each question

on a 5-point Likert scale, the average of the means for the questions in dialog efficiency

category is 3.31 which is well on the positive side of the scale.
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Figure 8.15: Dialog efficiency: mean of responses for each question on a 5-point Likert

scale where 5 corresponds to the most positive and 1 to the most negative response

8.7.2.6 User Satisfaction

We define user satisfaction as a set of factors that are related to the usefulness of the

system, the pleasantness of the interaction, the friendliness of the system and the confor-

mance of the system to user expectations. The questions thatare believed to influence

or are directly related to user satisfaction are listed in Table 8.32with the percentage of

respondents by response category.

As can be seen in Table8.32, 75% of the respondents believe that the system is use-

ful; 85% have a positive opinion about the friendliness of the system. 55% think the

interaction was fun while 25% are undecided. 55% of the respondents voted that they

are satisfied with the system while 20% are undecided. However, there seems to be room

for improvement in terms of pleasantness of the system, and conformance of the systems

reaction to user expectations.

As a remark, user satisfaction heavily depends on user attitude. Some users have a

huge expectation which cannot be met by any current spoken dialog system which follows

their natural spontaneous daily experience in human-to-human communication. However,
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Table 8.32: User satisfaction: percentage of respondents by response category
Question Strongly

Agree (%)

Agree

(%)

Undecided

(%)

Disagree

(%)

Strongly

Disagree (%)

6(a): The interaction with

the system was pleasant

0 40 10 40 10

6(b): I felt relaxed 5 25 35 30 5

6(c): The interaction was

fun

15 40 25 15 5

6(d): The system is useful25 50 10 10 5

6(e): The system is

friendly

40 45 5 5 5

6(f): The system always

reacted as expected

0 10 25 65 5

6(g): Overall, I am satis-

fied with the system

0 55 20 20 5

due to the limitations of the various technologies that constitute a spoken dialog system,

there is often noticeable difference in performance between man-machine and human-to-

human communication. On the other hand, some users underestimate a spoken dialog

system and tend to speak only single-word utterances, very loudly which could be coun-

terproductive as it may introduce recognition errors (due to so-called Lombard effect). As

a result the interaction takes longer. Some think it is weirdto talk to a machine with full

sentences, etc. All these factors may lead to less user satisfaction. Nevertheless, it is in-

teresting to see that the system is rated positively as can beseen in Figure8.16that shows

the mean of responses for each question in this category on Likert scale. The average of

the means of responses for this category is 3.26 which is on the positive side of the scale.

8.7.2.7 Task Ease

We define task ease as comprising of factors such as ease of use, learnability, flexibility,

cognitive demand and comfort of interaction. The questionsthat are intended to elicit

these information and the percentage of respondents by response category are shown in

Table8.33.
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Figure 8.16: User satisfaction: mean of responses for each question on a 5-point Likert

scale where 5 corresponds to the most positive and 1 to the most negative response

Table 8.33: Task ease: percentage of respondents by response category
Question Strongly

Agree (%)

Agree

(%)

Undecided

(%)

Disagree

(%)

Strongly

Disagree (%)

7(a): The system is diffi-

cult to use

0 15 5 60 20

7(b): It is easy to learn to

use the system

50 35 5 10 0

7(c): Information inquiry

via speech was comfort-

able

10 50 15 10 15

7(d): The system is too in-

flexible

5 35 35 25 0

7(e): A high level of

concentration is required

when using the system

5 55 30 10 0

As can be observed in Table8.33, 80% of the respondents find the system easy to use

and 85% rate the system as easy to learn. 60% of the respondents think it is comfortable

to do information inquiry via speech while 35% of the respondents don’t think so. In
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terms of flexibility and cognitive demand, the system is moreor less rated on the negative

side of the scale. In general, as can be seen in Figure8.17the average of the means of

responses in these category on a 5-point Likert scale is 3.33which is well on the positive

side of the scale.

Figure 8.17: Task ease: mean of responses for each question on a 5-point Likert scale

where 5 corresponds to the most positive and 1 to the most negative response

8.7.2.8 Acceptability

We define acceptability as a set of factors that are related tohelpfulness of the system

for information inquiry, if it would be preferred to other methods, if the users would like

to use the system again, etc. The questions in Table8.34 are intended to elicit these

information.

As can be seen in Table8.34, 50% of the users believe that the system is helpful for

information inquiry services, while 30% are undecided. 35%of the users would use the

system again in the future while 40% of the respondents are undecided. On the other

hand, a significant percentage of the respondents (60%) prefer to do information inquiry

in a different way, while 35% are undecided. This clearly indicates that we could not

beat the graphical user interface (GUI) yet with which most of the respondents are very

familiar. However, this is understandable in the sense thatit is not easy to take users away

from their comfort zone – away from the system which they use on a daily basis.
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Table 8.34: Acceptability: percentage of respondents by response category
Question Strongly

Agree (%)

Agree

(%)

Undecided

(%)

Disagree

(%)

Strongly

Disagree (%)

8(a): The system is not

helpful for information in-

quiry services

0 20 30 30 20

8(b): I prefer to do infor-

mation inquiry in a differ-

ent way

20 40 35 5 0

8(c): I would use the sys-

tem again in the future

5 30 40 20 5

As can be seen in Figure8.18, the average of the means of responses in this category

is 2.95 which is slightly to the negative side of the scale mainly because most users prefer

to do information inquiry in a different way.

Figure 8.18: Acceptability: mean of responses for each question on a 5-point Likert scale

where 5 corresponds to the most positive and 1 to the most negative response

8.7.2.9 Overall Impression

Finally, the users are asked to rate their overall impression about the system after perform-

ing airline travel planning task in English and train information inquiry task in German.

This parameter was evaluated by the test subjects on a continuous rating scale from "bad"
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to "excellent" (0-100) as shown in Figure8.19. The categories on the continuous scale

correspond to: bad (0-20), poor (20-40), fair (40-60), good(60-80), and excellent (80-

100) (Xie et al., 2007).

Figure 8.19: A continuous rating scale

As can be seen in Figure8.20, 55% of the test subjects rated their impression as

"good", 30% rated it as "fair", while 15% of the users rated itas poor. In general, the

mean rating is 56.45% which is in the range of fair to good. We believe this is a good

impression for a first round evaluation.

Figure 8.20: Overall impression of the interactions with the KEY system: on a continuous

rating scale from "bad" to "excellent" (0-100)

8.7.2.10 Comparison of the English and the German Services

In order to elicit which of the two services is preferred, we included one question asking

which of the two services was more likeable. As a result, 65% of the test subjects (13
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subjects) liked the English system more while 10% of the testsubjects (2 subjects) pre-

ferred the German service, 20% of the subjects (4 subjects) rated both services as equally

good, while 5% (1 subject) didn’t like both. Even though English is not the preferred

language of the users, the system performed better with English models mainly because

the acoustic model was robust enough to work with the typicalaccent of native German

speakers.

On the other hand, the techniques we applied to use microphone recorded data for

telephone-based spoken dialog system proved ineffective.We believe that there are three

likely reasons for the suboptimal performance of the Germanacoustic model in real-time

despite the reasonable performance reported in Section8.3.2. First, the corpus used for

the intended purpose was collected in a quiet office environment which is considerably

different from the test setting. Even though, we used cepstral mean normalization to

compensate for channel mismatch and additive noise, the performance was still poor.

Second, the corpus contains little of the most commonly useddialog utterances such as

"ja" and "nein" and hence are under-represented and were often misrecognized. Third,

our system doesn’t allow barge-in for the reasons that will be described in section8.7.4

and when the user takes the turn too early before the system isfinished with its turn, the

input could be ignored or misrecognized. Besides, some of the grammar files used for the

German system are quite big and take a while (about a second after the system prompt is

finished) before the recognizer is ready for taking the spoken input. These issues need to

be investigated further.

8.7.3 Objective Evaluation

In addition to the information we obtained using subjectiveevaluation, we obtain com-

plementary information from interaction parameters extracted from the logged interac-

tion data while the test subjects interacted with the system. The important information

extracted for this purpose from the transcription of the recorded interaction are: aver-

age number of system turns, average number of user turns, average number of words per

system turn, average number of words per user turn, average number of user correction

turns, task completion rate and gender recognition error rate for each service (English and

German).
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Table 8.35: Interaction parameters
Service

Parameter English German

Total number of test calls 20 20

Avg. no. of system turns 13.45 19.8

Avg. no. of user turns 12.45 18.85

Avg. no. of words per system turn 12.73 9.65

Avg. no. of words per user turn 4.19 3.47

Avg. no. of user correction turns 2.95 7.85

Task completion rate 95% 80%

Gender recognition rate 90% 80%

As can be seen in Table8.35, the average number of system and user turns for the

German system is higher than that of the English service eventhough the task is relatively

simpler. It can also be observed that the average number of user correction turns is quite

high in the German version which is 7.85 as opposed to that of the English service which

has an average correction turn of 2.95. This tells that the German acoustic model is not

good enough for real-time use in a telephone-based spoken dialog system. The average

number of words per user utterance is 4.19 and 3.47 for the German and English services,

respectively. In fact, some of the confirmation user turns are single-word utterances such

as "yes" or "ja".

The English service had a task completion rate of 95% while the German service had

a task completion rate of 80%. The gender recognition systemcould correctly identify

the gender of most of the female test subjects correctly but failed to correctly detect the

gender of some male subjects from the first single-word utterance in which case the users

were asked to hang up and dial again.

In general, the performance of the English service is observed to be much better than

the German service.

8.7.4 Known Limitation

The main limitation of our telephone-based spoken dialog system is its inability to support

barge-in due to the undesirable effect of acoustic echo where the system prompts played
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through the earpiece of a telephone handset is captured by the microphone of the same

handset. As a result, the prompt is captured as audio input bythe telephony interface

component and streamed to the speech recognizer. In order todeal with this effect, we

turn the speech recognizer off when prompts are played and turn it on when input from

the user is expected. This works fine but at the expense of barge-in and introduces a little

bit of latency as the system prompt should finish before the speech recognizer is ready to

process the next input.

There are echo cancelation algorithms that basically analyze outgoing audio data as

well as incoming audio data in order to filter echo signals from incoming audio streams.

This obviously introduces latency and takes some serious amount of system resources.

Therefore, most of the time, echo cancelation is done in hardware such as server-grade

ISDN boards, etc. Hence, the problem we are facing could be solved by either imple-

menting an echo cancelation algorithm (which has its drawbacks, as discussed above) or

using ISDN boards with echo cancelation capabilities.

8.8 Summary

In this chapter we described the data used, the methods employed, the experiments con-

ducted and the results obtained in the various experiments.Analyses and discussions of

the results were also given in the respective sections. The experiments conducted include

automatic speech recognition, automatic gender identification, accent recognition, accent

adaptation, spoken language understanding and evaluationof the demonstration system.

The results obtained are promising while rooms for improvement and areas for further

investigation have been identified.
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Chapter 9

Conclusions and Recommendations

9.1 Conclusions

This thesis aimed at investigating the feasibility of building a robust, multi-domain, and

multi-lingual telephone-based spoken dialog system framework that possesses sufficient

robustness to carry out successful spoken language interactions in different application

domains. To this end, we built the various components of a telephone-based spoken di-

alog system; namely, a telephony interface component, a speech recognition engine, a

gender recognizer, a grammar component and a spoken language understanding unit. The

required acoustic, language and semantic models are also carefully built. These are then

integrated within a VoiceXML framework – ©OptimTalk (OptimSys, 2006). The inte-

grated system can be used for multiple application domains and/or languages by switch-

ing between the required recognition resources in real-time. A complete description of

the system is presented in Chapter4 with some implementation details left out.

Robustness can be achieved through proper acoustic, language and semantic model-

ing, where robustness in acoustic modeling is of paramount importance for the overall

success of a spoken dialog system. Human-speech recognition ability is little affected

by channel mismatch, inter-speaker and intra-speaker variability, background noise, etc.

However, these have a serious negative influence on the performance of an automatic

speech recognizer. A robust speech recognizer should be able to cope with these problems

and provide the required service even when the spoken input is unforeseen or degraded.

An approach to obtain some level of robustness is to use domain and user-group depen-
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dent acoustic models. To this end, we carefully built acoustic models while investigating

better features and feature parameters for telephone-based spoken dialog system.

We built a Gaussian mixture model (GMM) based gender recognizer using Mel-

frequency cepstral features (MFCC) with the 0th coefficient as the energy term and the

dynamic features which gave better performance than PLP andLPCC based systems. We

opted for cepstral features for gender recognition becausethe most salient cue for dis-

tinguishing adult male and female speech (i.e. the fundamental frequency (F0)) is either

missing or weak in telephone speech due to the band-limitingeffect of the telephone

channel. The gender recognizer is used to estimate the gender of a speaker from a spoken

utterance so that gender-dependent acoustic models which perform better than a speaker-

independent model could be used.

Since the target users of the system are native German speakers, the acoustic model

that is trained on native English speech data is tailored to the particular vocal charac-

teristics of German-accented English speakers. The use of afew number of maximum

a posteriori (MAP) adaptation on top of maximum likelihood linear regression (MLLR)

transformed models gives a tremendous boost in performancefor each gender group.

Moreover, multiple transforms where both mean and diagonalcovariance are transformed

is found to be more productive than a single global transformin our setup. We also

demonstrated the feasibility of training an accent recognizer on native speech data of the

target accent groups. The model trained on native German andUS-English data can de-

tect accent from a spoken English utterance with high accuracy using linear predictive

coding cepstral coefficients (LPCC) and the energy term. Motivated by this success, we

further investigated the use of cross-language accent adaptation where native German

speech data is used to adapt the English acoustic model. Thisresulted in remarkable

performance gain.

On the other hand, although widely used, simulating telephone quality speech from

microphone recorded data by introducing the obvious effects of the telephone channel

and using a small amount of telephone recorded data to further adapt a model trained

on "simulated" data to the telephone channel did not seem to be effective. Despite the

performance gain we observed after channel adaptation on telephone recorded test-set,

the resulting model under-performed in real-time tests. This may be attributed to the

considerable channel and acoustic mismatch between the training and test environments

that could not be handled by the approaches we employed and the under-representation
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of some frequently used dialog utterances in the training corpus. Further investigation in

this regard is required.

In terms of language modeling, we tried to strike a balance between the conflicting

requirements of usability and naturalness of interactions. Naturalness and freedom of

expression may hinder usability and task completion (Pieraccini and Huerta, 2005) due

to more recognition errors. Allowing users to say anything at any point in a dialog is too

luxurious and is prohibitive as it entails more speech recognition errors and it makes error

recovery difficult. Therefore, we made one reasonable assumption; i.e., telephone-based

interactions are often task-oriented. Consequently, in order to execute a dialog about a

task, a set of well-structured operations are required. It follows that it is practical to use

domain and dialog-state dependent language models or grammars instead of a universal

language model (or grammar) for the whole system.

The use of dialog state-specific language models instead of grammars in order to give

more freedom to users resulted in relatively poor recognition performance mainly because

of the insufficiency of training data to train bigram language models for each dialog state

as the training data had to be split into a number of subsets. Therefore, we finally resorted

to using comprehensive dialog state-specific grammars thatcan more or less give the

required freedom without compromising usability. The users are allowed to provide more

than one information at a time and can use universal commandslike "start over" or "help"

at any point.

Regarding semantic modeling, we described three differentbut interrelated HMM-

based approaches to semantic concept labeling; namely, flat-concept, medium-level hi-

erarchical and hierarchical models. We started with the flat-concept approach and incre-

mentally extended it to encode more context at different levels of hierarchy by grouping

semantically and hierarchically related low-level concepts into higher level structures us-

ing prior domain knowledge and training examples. The hierarchical models offer better

ambiguity resolution ability, more predictive power and produce semantically richer infor-

mation than the flat-concept model. Moreover, the hierarchical models are robust in that

out-of-vocabulary words could be more correctly labeled using the surrounding context

and can gracefully ignore semantically irrelevant speech recognition errors. This allows

us to focus on content-bearing concepts to easily infer the meaning of what might have

been said. Besides, the hierarchical models can robustly handle noisy input due to the

natural phenomena of spontaneous speech such as hesitations, false starts, filled pauses,
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etc. that introduce undesirable noise. In addition, the hierarchical models are easily ex-

tensible to include new requirements and can produce outputat different levels of detail

as required.

All the described approaches can be readily trained on unlabeled data with relatively

less human supervision. The required additional human effort to design the proposed

hierarchical models is obviously much less than the laborious and error-prone semantic

annotation of the training data which would also require a detailed analysis of the appli-

cation domains to define semantic labels and organize them into hierarchically structured

concepts. To keep the human effort low, we implemented a model compiler that allows

us to easily tune a model based on example sentences and priordomain knowledge. The

success of our modeling approach relies mainly on the use of apriori commonplace do-

main knowledge to build an informed initial model that can further be trained using the

EM algorithm. In order to account for unseen observations and out-of-vocabulary words

we smooth transition and emission probabilities. The hierarchical model outperforms the

flat-concept model and has been successfully used in our demonstration system.

Finally, once the required models are built and optimized, they are plugged into the

telephone-based spoken dialog system framework and the performance of the system as a

whole is evaluated with actual test users. Since user satisfaction is inherently subjective,

the core of the evaluation method is based on collecting judgements from test users using

a list of questions compiled based on the de-facto standardsSASSI questionnaire and the

ITU-T Rec. P.851. We also obtained complementary information from logged interac-

tion parameters. We analyzed the responses of the test-users for the various questions in

eight major categories based on what the questions are intended to elicit; namely, task ef-

ficiency, speech input and output quality, reliability, cooperativity, dialog efficiency, user

satisfaction, task ease, and acceptability. The system is rated mostly on the positive side

of a 5-point Likert scale. The overall impression of the testusers after using the system

for the two application domains in the two languages was evaluated on a continuous rating

scale from "bad" to "excellent" (0-100). 55% of the users rated their impression as good

while 30% rated it as fair which makes a big majority (85%). 15% of the test users rated

their impression as poor. It is noteworthy, however, that there was clear disparity in the

quality of the two services – as the German acoustic models were unsuitable for the task.
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9.2 Recommendations

Future work could focus on a number of issues concerning acoustic, language and se-

mantic modeling. An interesting extension of the semantic model we proposed in this

thesis could be to introduce a feature that will enable the system to automatically learn

out-of-vocabulary (OOV) words and unseen transitions as and when they occur. In order

to avoid learning the wrong information in the case of wrong semantic labeling of OOV

words, a confidence measure could be computed to gauge the likelihood of the OOV word

belonging to the hypothesized semantic concept. If the computed value is less than a pre-

defined threshold, the system could ask the user to confirm if the hypothesized semantic

concept for the new word is correct before updating the model. Otherwise, the system

could automatically update the model without the intervention of the user. Using confi-

dence measures at acoustic level may also be useful to reducethe number of necessary

confirmation turns.

One drawback of the approach we used in building the proposedsemantic modeling,

is that the classification of vocabulary items into the identified set of semantic classes is

done manually. An automatic approach to do this is desirableto minimize the human

effort involved in this regard.

The correct identification of a speaker’s gender is indispensable so that acoustic mod-

els tailored to each gender group can be used to achieve improved performance. Hence,

the performance of the gender recognizer we built in this thesis may be further improved

using other features in addition to cepstral features to obtain performance as close to that

of humans as possible. Besides, a nice to have feature in a spoken dialog system is on-

line speaker adaptation where the first few utterances of a speaker are used to adapt the

acoustic model for a duration of a dialog. This is typically useful for long interactions.
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Appendix A

List of Semantic Classes

Airline Travel Planning Domain

Listing 17 List of low-level semantic classes in the domain of airline travel planning
AIRLINE_NAME, AIRLINE_QUALIFIER, AIRPORT_QUALIFIER, AI RPORT_NAME,

AIRPORT_TYPE, AMOUNT_OF_MONEY, CONNECTIVE, BETWEEN, CAR, CAR_TYPE,

PICK_UP, DROP_OFF, RENTAL, RENTAL_COMPANY, CITY_P1, CITY_P2,

CITY_P3, CITY_QUALIFIER, COMMAND, COUNTRY, PREFERENCE, DAY_OF_MONTH,

DATE_QUALIFIER, DAY_OF_ WEEK, MONTH, YEAR, DEPARTURE, ARRIVAL, DUMMY,

FINISHED, FLIGHT_QUALIFIER, FLIGHT_CLASS, FLIGHT_NUMBE R, FLIGHT_TYPE,

AT, FROM, TO, HOTEL_QUALIFIER, HOTEL_TYPE, HOTEL_ROOM, ROOM_TYPE,

ON, IN, HOUR_OF_DAY, MINUTES, AMPM, PERIOD_OF_DAY, TIME_QUALIFIER,

ID, ID_NUMBER, USER_NAME, ITINERARY, PLACE_INDICATOR, NEXT, MODIFIER,

OPTION, PRICE, FARE_CLASS, RETURN, QUANTITY, RESERVATION, REQUEST,

STATE, SPELT_CITY, SPELT_AIRPORT, QUALIFIER, SEGMENT, YE S, NO, PLANE,

NUMBER, TICKET, QUESTION, TRAVEL, TRAVEL_TYPE, INFORMATION, STREET
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A. LIST OF SEMANTIC CLASSES

Train Inquiries Domain

Listing 18 List of low-level semantic classes in the domain of train inquiries
CITY_PRE, CITY_1, CITY_2, CITY_POST, PLACE_INDICATOR, IN , BETWEEN,

DIRECTION, DEPARTURE, DEPARTURE_INFO, ARRIVAL, ARRIVAL_INFO, FROM, TO,

BACK, DAY_OF_MONTH, MONTH, HOLIDAY, DAY_OF_WEEK, DAY_TYPE, ON, NUMBER_OF,

DAYS, WEEK, MINUTES, HOUR, HOUR_OF_DAY, TIME_SPECIFIER, PERIOD_OF_DAY,

AROUND, QUALIFIER, TIME_QUALIFIER, SERVICE, QUESTION, MO DIFIER, TRAVEL,

AT, TICKET, TRAIN, TRAIN_CLASS, TRAIN_TYPE, PRICE_ TYPE, D ELAY, DUMMY,

TIME_FREQUENCY, TRAIN_CONNECTION, TRAIN_CHANGE, IN_TRAIN_SERVICE, YES, NO,

CONNECTIVE
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Appendix B

The Questionnaire

Adapted from (Möller et al., 2007)

1. Task Efficiency

(a) The system did exactly do what I requested.

("Das System tat genau das, was ich von ihm verlangte.")

strongly agree agree undecided

disagree strongly disagree

(b) The information provided by the system was clear.

("Die vom System gelieferten Informationen waren klar und deutlich.")

strongly agree agree undecided

disagree strongly disagree

(c) The provided information was complete.

("Die gelieferten Informationen waren vollständig.")

strongly agree agree undecided

disagree strongly disagree

(d) The system could efficiently provide information inquiry services.

("Mit dem System lassen sich gewünschte Informationen effizient erfragen")

strongly agree agree undecided

disagree strongly disagree
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2. Speech Input and Output Quality

(a) I felt well understood by the system.

("Ich fühlte mich gut vom System verstanden.")

strongly agree agree undecided

disagree strongly disagree

(b) I had to concentrate to acoustically understand the system.

("Ich musste mich konzentrieren, um das System akustisch zuverstehen.")

strongly agree agree undecided

disagree strongly disagree

(c) The system voice sounded natural.

("Die Stimme des Systems klang natürlich.")

strongly agree agree undecided

disagree strongly disagree

(d) The system reacted too slowly.

("Das System reagierte zu langsam.")

strongly agree agree undecided

disagree strongly disagree

3. Reliability

(a) The system made many errors.

("Das System machte viele Fehler.")

strongly agree agree undecided

disagree strongly disagree

(b) The system in unreliable.

("Das System ist unzuverlässig.")

strongly agree agree undecided

disagree strongly disagree

4. Cooperativity

(a) I was able to recover easily from errors.

("Ich konnte auftretende Fehler leicht beheben.")

strongly agree agree undecided

disagree strongly disagree
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(b) The system behaved in a cooperative way.

("Das System verhielt sich kooperativ.")

strongly agree agree undecided

disagree strongly disagree
(c) The system reacted like a human.

("Das System reagierte wie ein Mensch.")

strongly agree agree undecided

disagree strongly disagree

5. Dialog Efficiency
(a) I got easily lost in the dialog flow.

("Ich konnte leicht den Gesprächsfaden verlieren.")

strongly agree agree undecided

disagree strongly disagree

(b) The dialog was irregular.

("Das Gesprálch verlief holprig.")

strongly agree agree undecided

disagree strongly disagree

(c) I could direct the dialog as I wanted.

("Ich konnte das Gespräch wie gewünscht lenken.")

strongly agree agree undecided

disagree strongly disagree

(d) The dialog was too long.

("Das Gespräch war zu lang.")

strongly agree agree undecided

disagree strongly disagree

(e) The dialog quickly led to the desired aim.

("Das Gespräch führte schnell zum gewünschten Ziel.")

strongly agree agree undecided

disagree strongly disagree

(f) The dialog was balanced between me and the system.

("Die Gesprächsanteile waren gleich verteilt zwischen mirund dem System.")

strongly agree agree undecided

disagree strongly disagree
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(g) I always knew what to say to the system.

("Ich wusste zu jeder Zeit, was ich dem System sagen konnte.")

strongly agree agree undecided

disagree strongly disagree

(h) I felt in control of the interaction with the system.

("Ich hatte has Gefühl, das ich die Kontrolle über das Systemhatte, während

ich es benutzte.")

strongly agree agree undecided

disagree strongly disagree

(i) I was not always sure what the system expected from me.

("Ich wusste nicht immer, was das System von mir verlangte.")

strongly agree agree undecided

disagree strongly disagree

6. User Satisfaction

(a) The interaction with the system was pleasant.

("Die Interaktion mit dem System war angenehm.")

strongly agree agree undecided

disagree strongly disagree

(b) I felt relaxed.

("Ich fühlte mich entspannt.")

strongly agree agree undecided

disagree strongly disagree

(c) The interaction was fun.

("Die Interaktion hat Spaß gemacht.")

strongly agree agree undecided

disagree strongly disagree

(d) The system is useful.

("Das System ist nützlich.")

strongly agree agree undecided

disagree strongly disagree

(e) The system is friendly.

("Das System ist freundlich.")

strongly agree agree undecided

disagree strongly disagree
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(f) The system always reacted as expected.

("Das System reagierte immer wie erwartet.")

strongly agree agree undecided

disagree strongly disagree

(g) Overall, I am satisfied with the system.

("Ich bin insgesamt mit dem System zufrieden.")

strongly agree agree undecided

disagree strongly disagree

7. Task Ease

(a) The system is difficult to use.

("Das System lässt sich nur schwer bedienen.")

strongly agree agree undecided

disagree strongly disagree

(b) It is easy to learn to use the system.

("Die Benutzung des Systems lässt sich leicht erlernen.")

strongly agree agree undecided

disagree strongly disagree

(c) Information inquiry via speech was comfortable.

("Die Anfrage von Informationen mittels Sprache war komfortabel.")

strongly agree agree undecided

disagree strongly disagree

(d) The system is too inflexible.

("Das System ist zu unflexibel.")

strongly agree agree undecided

disagree strongly disagree

(e) A high level of concentration is required when using the system.

("Ich musste mich sehr auf die Interaktion mit dem System konzentrieren.")

strongly agree agree undecided

disagree strongly disagree
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8. Acceptability

(a) The system is not helpful for information inquiry services.

("Das System ist nicht hilfreich für Informationen AnfrageDienstleistungen.")

strongly agree agree undecided

disagree strongly disagree

(b) I prefer to do information inquiry in a different way.

("Ich würde die Informationen lieber auf eine andere Weise beschaffen.")

strongly agree agree undecided

disagree strongly disagree

(c) I would use the system again in the future.

("Ich würde das System in Zukunft wieder benutzen.")

strongly agree agree undecided

disagree strongly disagree

9. Which of the two services did you like more?

The English Airline Travel Planning System.

The German Train Information Inquiry System.

Both are equally good.

I didn’t like both.

10. Overall impression of the interaction with the KEY system.

("Gesamteindruck der Interaktion mit dem KEY System.")
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