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Abstract

In this thesis, we investigate various robustness issuspeaxch recognition
and spoken language understanding models in a telephceetspoken di-
alog system. We also show the feasibility of building a rapomsulti-domain
telephone-based spoken dialog system framework that cegaimelessly used
for multiple application domains in different languagesie/tusing domain-
dependent resources.

In automatic speech recognition, some level of robustnasshe achieved
by using domain-specific recognition resources. In addjttbe existence
of considerable acoustic similarity within speakers of sene gender, ac-
cent, and age-group suggests that the use of user-groupakpeacoustic
models can give improved recognition performance. In thesis, we group
users based on gender and accent to exploit the shared hacatteristics of
speakers in the same group. We show that a tremendous parfoenboost
can be obtained by efficiently tailoring gender-dependeoustic models
trained on native US-English speech data to the particidaalvcharacter-
istics of German-accented English speakers. We also deratmthe effec-
tiveness of cross-language accent adaptation where i@gean enrollment
data is used to adapt native US-English acoustic modelset@&t#rman ac-
cent. To use group-dependent acoustic models, one hascerdithe group
(i.e., gender and/or accent) of a speaker from a spokerantter Most cur-
rent approaches to accent recognition use accented spatctodrain an
accent recognizer. In this thesis, we demonstrate a higiospgance accent
recognizer that can be trained on a merger of native spedahofi&awo or
more languages. We also build a gender recognizer usindrakfesatures
and effectively use it to load the acoustic model correspantb the recog-
nized gender.



In the domain of spoken language understanding, we int®duocew ap-
proach to hierarchical semantic modeling that enrichescagrized utter-
ance with semantic information at various levels of detélie model is es-
sentially built by grouping semantically and hierarchigaklated low-level
concepts into higher level structures using prior domamvedge and train-
ing examples. The proposed model possesses a number atfgatamely,
it offers a remarkable ambiguity resolution ability, higlregictive power and
produces a structured, semantically rich information teatonvenient for
dialog management. Moreover, it is robust in that it sudcdlgsdeals with
utterances containing unseen observations, and a signifieacentage of
out-of-vocabulary words can be correctly labeled usingstiveounding con-
text. Besides, the model allows us to safely ignore semahtiarelevant
speech recognition errors. The model is also suited to piyopandle noisy
input containing false starts, filled pauses, hesitatietts,More importantly,
the model can be readily trained on completely unlabelea wéh relatively
less human supervision. The required additional humamteficdesign the
proposed hierarchical model is much less than the laboaadserror-prone
semantic annotation of a training data set or hand-craflisgmantic gram-
mar as no particular linguistic expertise is required. [kemnore, the re-
sulting hierarchical model outperforms the flat-conceptied@nd has been
successfully used in our demonstration system.

We demonstrate our approaches on two corpora in two apipiicdbmains;
namely, airline travel planning in English (©2001 Commutar Evaluation)
and train information inquiries in German (OERBA). Afterretully build-
ing the required recognition resources for each applinatie evaluate the
performance of the models in real-time use and the usabilitiye system as
a whole with actual test users. In general, the results oétsare promising
while rooms for improvement have been identified.

Most of the presented approaches in this thesis have bedislrtin appro-
priate international media.
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Chapter 1

Introduction

Speech is an efficient, high-capacity output channel thatdstly the preferred modal-
ity of communication in human-to-human interaction. Sjpeean also serve as a high-
capacity input medium in human-machine interaction as wasiputer users speak much
faster than they can type. As a communication medium, spisdble preferred mode of
interaction in hands and eyes busy environment (e.g. dyjyfior communication across
distances (e.g. through the telephone), in situations evimgrut terminals or keyboards
are unavailable and more importantly to people with visusdbilities. However, speech
is not always the best communication modality for human+nracinteraction due to the
inherently sequential nature of speech. In particulaikenlNeb-based graphical user in-
terfaces, there is no way to present more than one piece ahmation at a time. This
imposes significant cognitive demand on users as they haserédully listen to the list
of available options before they can proceed to the nexbractNevertheless, with care-
ful design, speech-enabled applications can provide tipgned service with reasonable
performance in a more natural way in situations where speettte preferred mode of
communication as noted above.

The telephone is one of the most available and the most witkdgd communication
device that plays a vital role for communication at a diséarihe ubiquity of speech and
the availability of the telephone can be put together in eptebne-based spoken dialog
system toward the goal of accessing information at anytinom fanywhere. In particu-
lar, telephone-based spoken dialog systems can be verpmeosolutions for handling
information inquiry services such as train timetable infation, weather information,
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airline travel planning, etc. in that they reduce waitinpdi extend opening hours and
users need not physically be at an Internet-connected PCa@eaavice station.

A telephone-based spoken dialog system mainly comprisas afterface to a tele-
phone network to deliver calls into the system, an autonsggech recognition engine for
recognizing a spoken utterance, a spoken language unagirgjacomponent to extract
the meaning of the recognized utterance, a mechanism foomss generation, an audio
output module for playing prompts and responses to therc@lg. via text-to-speech
synthesis), and a dialog manager to orchestrate the varmuponents.

As can be imagined, building a telephone-based spokengsgitem requires knowl-
edge and expertise from a large spectrum of discipline®flgrit involves tasks including
signal processing, automatic speech recognition, sp@kegubge understanding, speech
synthesis, dialog management, telephony interface dewnedat, etc. each of which is a
demanding task per se. In this thesis, we investigate varnolustness and performance
issues for automatic speech recognition and introduce aapgnoach that partly solves
the spoken language understanding problem. In order to detnabe the performance
of the various models that we build in this thesis, we set upgeslie, multi-domain
telephone-based spoken interaction system framework egisting standards, tools, ap-
plication programming interfaces, etc.

The steps taken are briefly described here as they will bgdelcribed in later chap-
ters. The first task involves the identification of suitalels, standards and APIs to
realize the envisaged system. One of the first design choieel® was to use the World
Wide Web Consortium’s (W3C) standard; namely, the VoiceeeXible Markup Lan-
guage (MoiceXML) to script the dialog between the caller #melsystem mainly due to
its convenience. To complement VoiceXML with advancedpk@ny control functions
we use the Call Control eXtensible Markup Language (CCXML)he same standard
body. To interpret the VoiceXML and CCXML documents, we aoga third party
framework that provides VoiceXML and CCXML interpretersiad) with open interfaces
for the integration of our own components. Then, we built@un components; namely,
the telephony interface component, the automatic speecgn&ion module along with
a grammar component and the semantic interpreter. Theskaréntegrated within the
VoiceXML framework. Once the system components are built iategrated, the corre-
sponding recognition resources are developed where cemtga contribution lies.
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1.1 Statement of the Problem

Many practical spoken dialog systems aim to provide infdromain a specific application
domain. For instance, ATISHemphill et al, 1990, Pegasusdue et al, 1994, Mercury
(Seneff and Polifroni2000), and the multi-site DARPACommunicator systems\@lker

et al, 2002 all play the role of a travel agent interacting with a usethi@ domain of air-
line travel planning and reservation. This is reasonalsldpmain-dependent applications
can achieve optimal performance by using domain-specsmuees. However, a spoken
dialog system framework should not be tied to one applicadimmain but should be used
for multiple application domains that use different domspecific resources. The sys-
tem then should be able to switch between applications amaliguages at runtime as
requested by the user.

The main objective of this thesis is to investigate varicaaustness issues in a spo-
ken dialog system and to build robust automatic speech retog and spoken language
understanding models. In addition to this, we show the Eelétgi of building a robust,
plug-and-play telephone-based spoken dialog system fvankghat can be used for mul-
tiple application domains in different languages whilengsilomain-specific resources.

By robustness we mean the ability of a system to gracefuléy deh unseen, unex-
pected, and/or degraded input. For instance, channehiacd environmental mismatch
have a serious negative influence in the performance of ameatic speech recognition
system. A robust system, therefore, should be one thateéstablork with a wide spec-
trum of users including foreign-accented speakers, atyasfeehannel and environmental
conditions, etc. without a significant loss of performance.

The automatic speech recognition component of a spokengd®lstem is one of
the most decisive components that determine the usefubmessiser acceptance of the
whole system. Therefore, building a robust and flexible sp@ecognizer is a key issue
in the development of a telephone-based spoken dialogrsygtetomatic speech recog-
nition per se is a challenging task and it becomes even monadéing when it has to be
performed over the telephone due to the bandwidth limitatibthe telephone channel.
Telephone uses an 8 kHz audio sampling rate, which may ceradity degrade the input
speech. Besides, different types of telephone handsethavayvarying microphone and
transmission qualityJunqua and Hatqri995 which makes the problem more difficult.

LAirline Travel Information System
2Defense Advanced Research Projects Agency



1. INTRODUCTION

Moreover, as the speech may come from an uncontrolled emieat, the background
noise could degrade the input speech further.

In general, the challenges of a telephone-based autonpack recognition task
include:

Acoustic variability that results from changes in traimend testing environment.

Intra-speaker variability due to changes in the speak#rigsical and emotional
state.

Inter-speaker variability that results from differendesiccent, dialect, vocal tract
size and shape.

Channel variability due to different kinds of telephongagatus with varying mi-
crophones and transmission quality.

The best recognition performance in a spoken dialog sys&m io principle, be
achieved by using speaker-dependent models specificdtlyed to the vocal character-
istics of each user of the system using a large amount ofitigitdata from each user.
This is, however, practically infeasible. On the other hanceasonable performance can
be obtained by using a speaker-independent model trainachage corpus that captures
a wide spectrum of speakers, environments, channels ardatpm domains. How-
ever, such a huge training data is often unavailable. A googpcomise to achieve some
level of robustness and better performance is to use dospaEoHic and group-dependent
recognition resources.

Although very essential, the correct recognition of whaagl alone can hardly serve
any purpose in a spoken dialog system without the correctpeeinension of what is
meant. A spoken language understanding (SLU) componergpiolken dialog system is
responsible to extract the intention of a user from a recaghutterance. SLU can be easy
for narrow application domains where users are restrigtétie way they can formulate
their requests and the vocabulary size is very small. Howéve spoken dialog system
allows a more natural conversation, the task becomes monant#ing because sponta-
neous speech often contains noisy input such as false, dideid pauses, hesitations,
etc. Moreover, the occurrence of words not seen in the trgidata of the model (i.e.
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out-of-vocabulary words) become inevitable. Hence, roiess in a spoken language un-
derstanding model involves dealing with these effects tdinadlanguage. Accordingly,
we introduce a robust semantic model that gracefully dedls noisy input and unseen
observations. The model essentially enriches the outptheotpeech recognizer with
semantic and hierarchical information that can later bel tiseasily infer the intention
underlying a spoken utterance in a given dialog state.

To guarantee an effective and caller-friendly remote at@seal-time information,
the design of a good telephony interface is vitally impartafithout a good telephony
interface, any speech-enabled application will be of naroitéd value to users. Dialog
design or the design of the system-caller interaction cao kighly influence the caller
experience and productivity of the system. If the dialogas intuitive to callers, users
may lose confidence in the system and the system may becomeediug to poor dialog
design. Therefore, the quality of the dialogs and the dial@gagement strategies are as
important as the quality of the other components making ypo#ten dialog system. As
a result, due effort needs to be put to design intuitive, naddike dialogs to allow users
to articulate their requests in a certain order in a choseticgtion domain.

Building systems that allow completely unconstrained anchén-like natural lan-
guage interactions is a very complex task as the currem statutomatic speech recog-
nition (ASR) and spoken language understanding techrnedagyie far from what the task
requires. Therefore, a system developer has to strikeghelyalance between the level of
flexibility that must be allowed and the recognition perfame of the system. One com-
promise is to allow varying degrees of freedom based on holwkesystem is working
with a user; i.e., using fairly relaxed language models aatbg control strategies under
normal circumstances and switching to more constrainechignars and dialog strategy
when task completion is at risk.

In summary, we aim to achieve robustness through:

* The use of group-dependent acoustic models based on gamdieccent to exploit
the shared vocal characteristics of a group of users.

« Effective utilization of prior domain knowledge to buildadels that can compen-
sate for recognition errors and natural language effeags (& using dialog state-
specific grammars (language models) and domain-specifiarg@mmodel).

* The use of a new, hierarchical semantic model that possess®us robustness
features. The model will be discussed in detail in Chafterhe main features of
the new semantic model is briefly summarized in the next@ecti
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1. INTRODUCTION

1.2 Contributions of the Thesis

The thesis covers a wide range of topics including speeabgretton, automatic gen-
der and accent identification, spoken language undersigndialog management, and
evaluation of a spoken dialog system. In addition, we set opuki-domain telephone-

based spoken dialog system framework that can use domeaifis@and group-dependent
recognition resources. The system is based on ©OptimTailée¥ML framework in
which we integrated our own telephony interface comporsrgech recognition engine
and spoken language understanding unit.

In summary, we consider the key contributions of this thesise the following.

1. (Chapters, 8): We introduce a new approach to semantic modeling that:

Unlike most conventional data-driven approaches to spédeguage under-
standing, requires no semantically labeled training data.

Captures hierarchical relationship between concepta uitt@rance.

Outperforms the conventional flat-concept approach imsesf performance,
ambiguity resolution ability, predictive power and infaation richness of the
output.

Effectively accounts for observations not seen in theningj data of the se-
mantic model.

Uses the encoded context to correctly label out-of-volzap{OOV) words.

Properly handles the effects of spontaneous speech suas#ations, false
starts, filled pauses, etc.

Allows us to safely ignore recognition errors in semarnlyciarelevant words
and frequently confused semantically equivalent expoassie.g. Six vs.
sixth, eighth vs. eight, yes vs. yeah, etc.).

Is easily extensible to include new requirements or bissimeles.

Can produce output at different levels of detail and is emment for dialog
management.



1.3 Application of Results

2. (Chapter2, 5, 8): Most current approaches to accent recognition use a aseab
consisting of accent sensitive phrases spoken by foreigakgps or a combination
of accented speech data and acoustic features such as,ahaw@gjon, pitch, for-
mant frequencies, etc. In this thesis, we introduce a hggfiepmance automatic
accent recognizer that can be trained on a merger of natiechpdata of two
or more accent groups. Experimental results show that &cekxted information
could be effectively captured from the native language cipeéa speaker. We also
investigate various cepstral features in search of thasteatle particularly suitable
for accent recognition.

3. (Chapter2, 5, 8): Pitch is known to be a very strong cue to reliably estimhee t
gender of an adult speaker from a spoken utterance. Howawetephone speech
the pitch information is either very weak or missing due @ Ifand-limiting effect
of the telephone channel. Therefore, we use cepstral fsatarbuild an automatic
gender recognition system that can reliably discern thelgeaof a speaker from
a single-word utterance. We also investigate various capfgatures in search
of those that are particularly suitable for gender recagmiin a telephone-based
spoken dialog system.

4. (Chapter, 5, 8): Though not particularly novel, we also demonstrate a more
productive use of within-language and cross-languagenaectaptation to tailor an
acoustic model trained on native US-English speech dakeetedcal characteristics
of German-accented English speakers.

5. (Chaptersh, 8): An extensive investigation in search of optimal paramsefer
the speech recognition models in our telephone-based sgh#kg system is also
presented.

1.3 Application of Results

The primary areas of concern in this thesis are robustngsessn speech recognition and
spoken language understanding components of a teleplameetispoken dialog system.



1. INTRODUCTION

One of the outputs of this work is a generic telephone-basekies dialog system frame-
work that can be used with different compatible recognitiesources for various appli-
cation domains in possibly different languages. The fraorkwean serve as a test-bed
for various scientific investigations on speech recognitesources. Besides, the frame-
work can be used in various application domains to provideahservice to users using
a more natural mode of interaction. Furthermore, new aghemto semantic modeling
and accent recognition are proposed which could be usedifaus application domains
in any language. The performance of the system and the moegelniilt are evaluated
with actual test users under real world conditions in twdiapfion domains. The frame-
work can also be extended for use in other applications ssisp@aker identification and
verification task.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows. In Chagtere present an organized
and integrated summary of literature relevant to the vartogpics of interest that show
what has been done and the significance of our work. We preseistorical overview
and state-of-the-art approaches to spoken dialog systirtmnatic speech recognition,
user-group dependent acoustic modeling and spoken laagunatgrstanding. In Chapter
3 we present a general description of the tools, methods ahditues that we will use
in carrying out the research. Chap#igprovides an overall description of the system; i.e.,
how the various components that make up the envisaged sgstetieveloped and put to-
gether. The architecture and a conceptual usage scendhie gfstem are also presented.
In Chapters we present the fundamentals of automatic speech recoguiibmg with the
description of the methods we use to exploit group-depencieracteristics to improve
speech recognition performance. Chaelescribes the new, proposed approach to se-
mantic modeling that partly solves the spoken languagerstateling problem. In Chap-
ter7 a brief description of spoken language interactions, dialdiatives, dialog control
strategies and dialog design principles is presented. ppmach we used to evaluate our
spoken dialog system is also described. The data used, plegigents carried out and
the discussions of the results obtained in the various @xeets are presented in Chapter
8. Finally, concluding remarks and recommendations arengiv€hapte.



Chapter 2

Review of State-of-the-Art Research

2.1 Introduction

In this chapter we provide a historical overview of the vasgdopics of interest in spoken
dialog systems. We also present analysis of the methodspgrdaches used in spoken
dialog system development, automatic speech recognaistomatic gender and accent
recognition, accent adaptation techniques and spokend@sgunderstanding as they re-
late to our work. We also provide a brief description of thetiragion and justification
for the various tasks undertaken in this endeavor withirctrgext of the state-of-the-art.

2.2 Spoken Dialog Systems

Research in dialog systems, in general, can be traced b#ok 1®60s. The early systems
such as BASEBALL Green et al.1963 and LUNAR (Woods et al.1972 were essen-
tially question answering systems in limited domains andndit have dialog capabilities.
In the 1970s systems such as SHRDMfograd 1972 and GUS Bobrow et al, 1977)
were developed that offered users the opportunity to ceeveith computer-based sys-
tems in order to perform a task or to get information usingiratlanguage interfaces.
However, the input modality in the earliest dialog systenas wyped natural language
(McTear, 2004). It is since the late 1980s that spoken dialog systems haegged as a
result of the two large government funded projects; nanmbke/DARPA program of the
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United States and the Esprit SUNDIAprogram of EuropeNicTear, 2004. The ATIS
(Hemphill et al, 1990 and the Communicatoalker et al, 2002 projects of DARPA
were mainly concerned with the domain of airline travel pliag while the SUNDIAL
project was concerned with flight and train schedules in BhgFrench, German and
Italian (Peckham1993. After SUNDIAL project, a number of projects in spoken digl
modeling have evolved such as Verbmobilghister 1993, RAILTEL (Bennacef et aJ.
1995, ARISE (Os et al, 1999, DISC Bernsen and Dybkjeed 997, and the Philips
automatic train timetable information systeAuét et al, 1995.

While ATIS and SUNDIAL projects focus on single domain inges and use less
flexible dialog strategies, the DARPA Communicator systamesmore advanced in that
they support mixed initiative conversational interactao provide meeting coordination
and travel planning services.

The core of the Communicator systems is based on MIT’s Hisgtd Galaxy Il archi-
tecture Geneff et al. 1998 where a number of servers interact with each other through
a hub. The Galaxy architecture is mainly composed of an aselieer that answers in-
coming calls, plays prompts and records incoming user jnplgpeech recognizer to
recognize spoken requests; a confidence server to detecej@atl misrecognized units
at the concept level using acoustic and language modelrésaftom the recognizer; a
text-to-speech (TTS) synthesis engine; a language gemgeatanguage understanding
component; a dialog manager and a back-end component. Abtkeof the Galaxy ar-
chitecture is a hub that acts as a router to send frames beseeeers. The use of such an
architecture established a standard for dozens of grougangoon dialog management
and speech recognition issues in the project.

Several systems have been developed under the multi-sigPB4rogram. They all
use the Galaxy architecture described above and targeathe application domain but
differ in a number of aspects. For instance:

» The CMU Communicator systerR(dnicky et al.2000 uses the Sphinx Il decoder
in a real-time mode, state-specific language models, anBhbenix parseiard
and Issarl996 using domain-specific semantic grammar.

e The AT&T Communicator systeniévin et al, 2000 uses the AT&T Watson con-
tinuous speech recognition engirg&h@rp et al.1997 that supports audio barge-in

1Speech UNderstanding in DIALog
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2.2 Spoken Dialog Systems

capabilities and the CHRONU®ieraccini and Levin1993! spoken language un-
derstanding system.

* MIT’s Mercury flight reservation systenséneff and Polifron2000 uses the TINA
(Seneff 1992 language understanding system and a dialog control gyréi@sed
on a set of ordered rules as a mechanism to manage compleacimes.

* The Communicator system of the University of Colorata¢d and Pellom1999
uses CMU’s Sphinx Il recognizer with a class trigram languagdel, a modified
version of the Phoenix parser and event-driven dialog mamagvhich the current
context of the system is used to decide what to do next.

Jupiter Zue et al, 2000 of MIT is another example of a conversational interface
using the Galaxy architecture which provides access tmenlieather information for
over 500 cities world wide over the telephone. Voyadelaés et al.1995 and Pegasus
(Zue et al, 1994 of MIT are other examples of domain-specific spoken diai@jesms in
the domains of urban navigation and online-airline red@marespectively.

The TRAINS @Allen et al, 1996 and its successor TRIPEdrguson and Aller1998
are other popular research efforts towards task-orierdedersational dialog systems de-
veloped at the University of Rochester. The TRAINS systerolires the scheduling of a
railroad freight system which is later extended to a moremerlogistics and transporta-
tion problem in the TRIPS project. Like the DARPA communaral RIPS consists of a
set of components that pass messages to one another thrbwdh asing the so-called
Knowledge Query and Manipulation Language (KQML). The comgnts of the system
can be divided into three groups; namely, modality procgssomponents, dialog man-
agement components and specialized reasoners. The mgo@dessing components
include speech recognition, speech generation, grapthisaliays and gestures while the
dialog management components are responsible for mandggrangoing conversation,
interpreting user communication in context and selectiegiext communicative actions
to perform in response. The specialized reasoners, on fiee band, help to solve hard
problems such as planning courses of actions, scheduliasg@fevents or simulating the
execution of plans.

LConceptual Hidden Representation of Natural Unconstds8peech

11
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The spoken dialog systems discussed above differ in thatectlre they use, the
complexity of the task they target, the type of initiativeyhsupport, the dialog control
strategy they employ and the system components they use.e\dowthey share one
common distinguishing feature — they are all domain or tasénted. When dealing
with domain-specific applications, the use of domain-déepahresources is beneficial to
achieve optimal recognition performance. However, a diagstem should be open to
support multiple application domains without compromggperformance. One of the ob-
jectives of this endeavor is, therefore, to build a robustithrlomain spoken dialog sys-
tem framework that covers multiple application domainssgay in different languages
while using domain-dependent resources.

Once the the envisaged framework that can robustly carrynediium-length dialogs
for multiple application domains while using domain-deghent resources is realized,
we investigate the various robustness issues in telepbased speech recognition and
spoken language understanding. In particular, we intreduoew approach to spoken
language understanding that essentially takes the oufpileospeech recognizer and
semantically enriches it with hierarchically structuratbrmation which make the output
convenient for dialog management.

For the sake of optimal performance, we use user-group depe¢mcoustic models
and dialog state-specific language models. We use VoiceXildialog authoring and
CCXML for writing the call handling policy. We use the Hidd&farkov Model Toolkit
(HTK) to build recognition resources and its multi-threddeP! (ATK) to build a real-
time speech recognizer integrated in a VoiceXML framewd¥e bring the convenience
of VoiceXML for dialog authoring and the flexibility and powef HTK-based speech
recognizers together to realize a robust telephone-bgsde@s language interaction sys-
tem. We also aim to keep the development cost (in monetamysidow.

2.3 Automatic Speech Recognition

Research in speech recognition technology can be tracddtbdlce 1950s. One of the
early speech recognizers is that of Bell Laboratori2avis et al, 1952 that recognizes
isolated digits from a single speaker by filtering the spesghal into first and higher
formant frequency bands and measuring the formant fregesme the vowel regions
of each digit. In the 1960s several special-purpose deviegs built for the purpose

12
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of recognizing a small number of isolated words in the ordet(G-100 words lagata

et al, 1963 Sakai and Doshitdl962. Speech recognition systems have become a topic
of great interest not only to researchers but also to thergepablic since the inspira-
tional movie of Stanley Kubrick "2001: A Space Odyssey" irt6&%vhere an intelligent
computer named "HAL" spoke in a human-like voice and was thisnderstand fluently
spoken speechllgang and Rabing2005. In 1970s advances in the use of pattern recog-
nition ideas in speech recognition was demonstratedidhko and Zagoruyko1970),
technigues of dynamic programming were advan&akoe and Chihd 978 and the use

of linear predictive coding (LPC) to speech recognition slagwn (takura 1975. Major
advances in large vocabulary speech recognition systevesstarted in the 1980s mainly
as a result of the advent of statistical methods such as tltehiMarkov model (HMM)
and stochastic language models.

In general, the various approaches that have been pursweditey years can be
broadly classified in to four classes; namely, template hadg statistical methods, artifi-
cial neural networks and knowledge-based approaches. |&smpatching and knowledge-
based approaches where competing paradigms in the 197@e. t8e 1980s, the statisti-
cal approach has become the dominant paradigm for autospetéch recognition mainly
due to its superior performance and ease of modeling.

Despite the significant advances in the various fields thatpeise a conversational
speech recognition, a machine that can pass the TuringTiesng, 1950 with perfor-
mance comparable to humans is still not a reality. Howepeesh technology in general
is mature enough to be successfully applied in task-orieapplication domains. This
study uses sub-word based HMMs and aims to achieve robustimtiht perform rea-
sonably well in real-time telephone-based applications.

2.4 Group-Dependent Acoustic Models

Due to differences in articulatory mechanisms there is eppaifference between the
voice of male and female speakers. At the same time, themn&sderable acoustic sim-
ilarity within speakers of the same gender due to similamVstructures. This suggests
that gender-specific models tailored to a group of usersarséime gender can perform
better than a gender-independent model.

13
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On the other hand, non-native speakers of a language oftentéeintroduce some
phonological and pronunciation patterns from their motbague while speaking a for-
eign language. This results in a noticeable pronunciatifberdnce between native speak-
ers and foreign speakers of a language. In this thesis, vee tefthis linguistic phe-
nomenon as accent. Accent is one of the most important fattat influence the perfor-
mance of speaker-independent (Sl) speech recognitiorragstext to gendeHansen
and Arslan1995. It has been reported itHang et al.20013 that a mismatch in accent
between the speakers used in testing and training can leatktB0% increase in word
error rate (WER). Therefore, the use of accent-dependentséic models in a spoken
dialog system is essential as people may need to commumght¢éhe system in a lan-
guage which is not their native. A number of studies have loaened out in this topic
and a brief overview of related researches in the field isgoriesl below.

Training accent-specific acoustic models using accentaliglan obvious and easy
approach to deal with accented speech. It has been showhlang( et al. 2003 that
training on a relatively small amount of German-accentedliEh from the Verbmobil
conversational meeting-scheduling task resulted in Bagmitly better performance than
a model trained on a large amount of native English trainirsgemal. In {Vang et al,
2003 and (Tomokiyo and Waibel2001), it has been shown that a model trained on a
merger of in-domain native and accented data performsrbetteccented speech. It
has also been shown ilidmokiyo and Waibel2001) that applying a few more forward-
backward iterations with accented data on a well-trainedker-independent model im-
proves recognition performance for accented speakers.

Applying speaker adaptation techniques such as Maximulibi&od Linear Regres-
sion (MLLR) (Leggetter and Woodland 9953 and Maximum a Posteriori (MAP) adap-
tation (Gauvain and Leel994 methods to adapt speaker-independent models trained on
native speech data to a particular accent are other popwdtraas. MLLR has been
successfully used inNang et al. 2003 and Tomokiyo and Waibel2001) on German-
accented and Japanese-accented English, respectivehevidg in both cases only a sin-
gle global transform was used to transform all models. Or@benan-accented English
task described infang et al.2003 it has been shown that MAP adaptation performs bet-
ter at decreasing WER than MLLR when more enroliment dataagable. However, it
has not been shown whether combining MAP and MLLR could yaetther performance
gain.

14
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Cross-language accent adaptation, where native speexhfdhe target accent group
is used as enrollment data, has been explorefiampkiyo and Waibel2001). However,
no performance gain was reported. Wang et al.2003 a model trained on a merger of
large amount of native English and native German speechudatg a common phoneme
set was investigated and only slight improvement in redogmivas reported. InLju and
Fung 2000 accent adaptation without accented data was investigathpt an English
model to Cantonese-accented English using native Care@pech data and promising
improvement in phoneme accuracy has been reported.

As can be observed, previous applications of MLLR to a grdugerman-accented
speakers, use only a single global transform to adapt allelsodt has also not been
shown whether combining MAP and MLLR could be more usefulergfore, in this the-
sis, we show a successful use of MLLR with multiple transfemvhere both mean and
variance are transformed by using a small amount of accetdtadto adapt a speaker-
independent model trained on native US-English speech dséaalso show that using
MLLR transformed models as an informative prior for MAP at@#jon boosts perfor-
mance. Moreover, we investigate the use of cross-languagmntadaptation where na-
tive German speech from a different domain (train informratnquiries) is used to adapt
a speaker-independent native US-English model in the doofaiirline travel planning.
At the same time, we try to capture variability due to bothdggrand accent by adapting
separate native US-English gender-dependent models &diraan accent.

We also investigate the use of MLLR adaptation techniquedaptacoustic models
trained on microphone-recorded data to the charactexistithe telephone channel using
a small amount of telephone-recorded data.

2.5 Automatic Gender Recognition

The task of an automatic gender recognition system is teedhisihe gender of a person
from a spoken utterance. Due to physiological differennascal tract length, vocal fold
size, larynx thickness, etc. adult male voices have lowwhpiange than adult female
voices Wu and Childers199]). Hence, the fundamental frequency (pitch) can be used
as a strong cue for gender recognitibhlienbrand et al.1995 Linke, 1973 Linville and

Fisher 1985 Murry and Singh1980. The fundamental frequency (FO) for adult male
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lies between 80—170 Hz while it lies between 150-260 Hz fattaglomen and between
300-500 Hz for childrenBaken and Orlikoff2000.

The approaches to automatic gender recognition can befedssito three broad
classes. The first approach uses gender-dependent featutess pitch. The second
approach uses cepstral features such as Mel-Frequencyr&e&zefficients (MFCCs) to
discern the gender of a speaker from a spoken utterance. hirdeapproach combines
pitch, cepstral, prosodic and other features for improwrfippmance.

In (Abdulla and Kasabgw001), average pitch frequency was used as a gender separa-
tion criterion and the system achieved 100% gender disgdtian accuracy with TIMIT
(Texas Instruments (T1l) and Massachusetts Institute ohfi@ogy (MIT)) continuous
speech corpus and Otago isolated words speech corpus.drtiisies that pitch is a very
strong source of information for gender identification ofithdnale and female speakers.

Another approach described iRdrris and Careyl996 combines hidden Markov
models and pitch estimation giving less than 1.0% identiboeerror rate with two sec-
onds of speech on three British English databases. Fuahty without optimization on
the OGI (Oregon Graduate Institute) multi-language databesulted in an average error
rate of 2.0%. Another approach based on Gaussian MixtureehiodTing et al, 2006
combines MFCCs and pitch information to improve the perfamoe of gender recogni-
tion and the system resulted in at most 3.3% recognitiorr eate on SRMC (Speaker
Recognition for Mobile Communication) database.

In (Slomka and Sridharari997) automatic gender identification systems using fu-
sion of multiple knowledge sources using a linear class#terinvestigated on speakers
of 11 languages from the OGI speech corpus. The best repacteotacy is 98.5% aver-
aged over all clean and adverse conditions. This suggestssthof multiple knowledge
sources gives improved results in adverse acoustic conditi

In (Harb and Chen2005 a system using a set of neural networks with acoustic and
pitch related features is built and a classification acguo&®0% is obtained for 1 second
speech segments, independent of the language and the tlodirihe speech. Using
multiple classifiers trained on different training datag ttlassification accuracy attains
98.5% for longer segments (5 seconds) on a subset of thelthwicd database.

A gender classification system proposed4ertg et al. 2006 is based on Gaussian
mixture models using combined parameters of pitch and RABIR (Relative Spectral
Transform - Perceptual Linear Prediction). The accuracthefresulting model is 95%
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on noisy speech and 98.3% on clean speech. The method ise@pobe robust to noise
and is independent of languages.

In (Metze et al. 2007, four approaches for age and gender recognition using tele
phone speech have been compared; namely, a parallel phaognizer, a system using
dynamic Bayesian networks to combine several prosodicfesta system based solely
on linear prediction analysis, and Gaussian mixture modated on MFCCs. It was
reported that the parallel phone recognizer is comparab&tiuman listener but loses
performance on short utterances. The system based on présauires has shown little
dependence on the length of the utterance.

Even though, pitch is a very strong cue to reliably estimhgegender of an adult
speaker from a spoken utterance, it is often very weak oringda telephone speech
due to the band-limiting effect of the telephone channelndég pitch may not be suit-
able for gender recognition in a telephone-based spokdagdgystem. Therefore, we
use cepstral features to build our automatic gender retiograystem based on Gaussian
Mixture Model (GMM). We investigate various cepstral faas; namely, Mel-Frequency
Cepstral Coefficients (MFCCs), Linear Prediction Cepsdafficients (LPCC) and Per-
ceptual Linear Prediction (PLP) features in search of tliloatare better suited for gen-
der identification. The resulting system should be capabieangnizing the gender of a
speaker given the first, very short, single word utterand¢k agceptable accuracy.

2.6 Automatic Accent Recognition

The purpose of an automatic accent recognition model idittbihg estimate the accent or
the language class of a speaker from a spoken utterance. Barwhstudies have been
conducted in this topic and a brief review of related redeeaiftorts is given below.

Teixeira et al.(1996 investigated a hidden Markov model (HMM) based system to
identify English accents from six different European co@st namely, Danish, Ger-
man, British English, Spanish, Italian and Portuguese agtblsal identification score
of 65.48% was reported suggesting the difficulty of the taBke model was built with
a relatively small corpus of about 200 isolated words spdikespeakers from the six
different countries.

Fung and Liu(1999 investigated the use of phoneme-class HMMs (stops, afe&;
fricatives, nasals, vowels, semi-vowels and glides) ttrdisiish Cantonese English from

17



2. REVIEW OF STATE-OF-THE-ART RESEARCH

native English. They reported that energy, formant and dnmehtal frequency are the
most discriminative features for identifying Cantoneseest. The use of English syl-
lable structure knowledge to help recognize three accesgedker groups of Australian
English — Viethamese, Lebanese and native speakers — vestigated inBerkling et al,
1998. The use of this knowledge improved accent identificatierfgpgmance signifi-
cantly by 6—7% absolute.

It has been shown irHansen and Arslari995 that by using multiple acoustic and
prosodic features, an accent classification rate of 81.5%ddwe achieved among four
different accent groups of American English — Turkish, @sie, German and native. The
rate increases to 88.9% when the test is limited to a knoweetkrord test-set. They
constructed and used an accent sensitive database augsistvords and phrases spoken
by foreign speakers of American English. They have alsodhibtat accent information is
most distinct at phoneme level, and the best features f@maatassification are energy,
duration, and spectral information.

In (Arslan and Hanserl997 it has been shown that the second and third formant
frequencies (F2 and F3) are good sources of informatiordtmtifying accents and sug-
gested that mel-scale frequency mapping is not partigutaritable for accent recogni-
tion. In another workArslan and Hanse(1996 achieved a 93% accent recognition rate
for four accents of American English using a phone-basediatisd word accent recog-
nizer on isolated word strings of 7—8 words. They built anddua database of foreign
language accents that consists of words and phrases thahane to be sensitive to
accent. This approach requires sufficient amount of trgidata to build phone models.

In (Huang et al.2001g an accent recognition rate of 85% was reported using gender
dependent models to recognize four regional accents of Btandsing a Gaussian mix-
ture model with 32 components. This approach is essent@tyindependent, hence,
does not require phonetic labeling.

As can be observed, all of the above studies use accentedhsga& or a database
consisting of accent sensitive phrases spoken by foreigak&ps and/or acoustic features
such as energy, duration, fundamental and formant fregegnetc. to build models that
recognize accent from a spoken utterance. In this thesisnvestigate the feasibility
of building an accent recognizer on a merger of native speath of the target accent
groups. In particular, we take native speech data of EnglishGerman from two differ-
ent application domains, merge them together to form aitrgiset, and build an accent
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recognition model that can distinguish if a given Englistetgnce is accented or native.
This was motivated by our hypothesis that accent-relatedrmation could be effectively
captured from native speech data. Furthermore, we inastigarious acoustic features
to find out those that can detect accent more reliably.

2.7 Spoken Language Understanding

Spoken language understanding (SLU) has been a topic ohrodssince the 1970s
(Woods 1983 and spontaneous spoken language understanding has beanmtiot-
lar interest since the early 1990s when multiple reseatobrédories participated in the
DARPA-funded Air Travel Information System (ATIS) evaliat (Price 1990. In gen-
eral, the approaches in the domain of spoken language uadensg can be broadly
classified as data-driven, rule-based, and a combinatitredivo.

Data-driven approaches such as those implemented in CHFEEOMNWT&T (Pierac-
cini and Levin 1993, and Hidden Understanding Model (HUM) of BBWA{ller et al.,
1994 estimate model parameters from data by counting the fremes of transitions
between states, word observations while in each state arghstates start a sentence.
These statistical models are robust and perform well butirea large corpus of fully
annotated training examples, which is often not pracgcallailable. Another popular
statistical approach is the hidden vector state model of [i€@ge University He and
Young 2005 where state transitions between two states are decompuseseparate
stack operations that transform one state to the other. Aneble feature of the hid-
den vector state model is that it can be trained on "lightiyi@ated data and it captures
hierarchical structure.

Rule-based systems, on the other hand, such as those inmpézhie TINA of MIT
(Seneff 1992, PHOENIX of CMU (Ward and Issar1996), and GEMINI of SRI Dowd-
ing et al, 1994 use hand-crafted semantic rules to extract meaning fropokes utter-
ance. Rule-based systems do not require a large amount ahsieally annotated data
and they perform very well when the structure of the spokésramce is covered by the
grammar (rules). However, rule-based systems, in genamlyery expensive to build
and maintain since they require extensive manual involveraed expertise. Moreover,
they are not robust in the face of unexpected input.
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Different combinations of rule-based and statistical apphes have also been inves-
tigated. For instance, the generative HMM/CFG (contexd frammar) model described
in (Wang et al. 2005 integrates a knowledge-based approach into a statisti@aling
framework.

Statistical spoken language systems differ based on whiktéye encode hierarchical
structure or not. Various statistical approaches that @mdwverarchical structure in the
domain of SLU have been proposed @harniak 2001 Chelba and Jelingl200Q Erdo-
gan et al. 2002 Fine et al, 1998 Miller et al., 1994). All these models require a large
amount of annotated training data for parameter estimattule the hidden vector state
model He and Young2005 mentioned earlier encodes hierarchal structure and can be
built using only an abstract annotation for each utterance.

In this thesis, we describe an approach towards spoken dgegunderstanding that
requires no semantically annotated training data and eschgkrarchical structure. In
this approach, a spoken utterance is conceived as a hidgearsse of semantic concepts
expressed in words or phrases. Therefore, the problem cdrstaohding the meaning
underlying a spoken utterance in a dialog system can beymtved by decoding the
hidden sequence of semantic concepts from the observedrsasaf words. The notable
ability of hidden Markov models (HMMs) to estimate the prblhity of hidden events
from observed ones makes them a natural choice for this Kitask.

We propose a model that outputs hierarchically structueetbsitic information which
is suitable for dialog management. The idea we pursue isgtucalonger context, re-
solve ambiguity, and obtain more useful output by a hielaettorganization of low-
level semantic concepts into higher-level structures.ifgtance, low-level concepts like
MINUTES, HOUR_OF_DAY, PERIOD_OF_DAY, etc. can be organize form a high-
level concept called TIME which can further be used in a higbeel entity like AR-
RIVAL_TIME, DEPARTURE_TIME, etc. This kind of structure nde readily produced
by a dialog designer of a given application domain using dorkaowledge and training
examples. We show two different approaches that encoderelifft amount of context,
and compare each with the flat-concept model in terms of pedoce, predictive power,
ambiguity resolution ability and information richness bétoutput.
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2.8 Summary

2.8 Summary

In this chapter we reviewed the state-of-the-art in the fafldpoken dialog systems,
automatic speech recognition and spoken language undénsga The use of speaker-
dependent characteristics such as accent and gender rhageegnition has also been
reviewed. We also presented a historical overview and itapomilestones in the field

of spoken dialog systems and automatic speech recognitl@significance of our work

within the context of the state-of-the-art in each of theae &lso been pointed out.
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Chapter 3

Tools and Methods

3.1 Introduction

The research objective of this thesis is to deal with rolesgnssues in speech recogni-
tion and spoken language understanding components of &coofiain telephone-based
spoken dialog system. To that end, we set up a frameworkhioald be robust enough to
carry out medium-length spoken language interactions ustrs in multiple application
domains in different languages. In this chapter we disdussarious techniques, tools,
application programming interfaces, standards and frasmeswve use along with a justi-
fication of each. Besides, we describe the basic componéattetephone-based spoken
dialog system.
Briefly, an interaction with a telephone-based spoken dialstem involves:

» Capturing a spoken utterance from a user through a telephon

* Recognizing the spoken utterance

Understanding the meaning underlying the recognizedartte
» Performing an action based on the request
» Generating an appropriate response

* Playing the response back to the caller over the telephone.

A simplified architecture of a telephone-based spoken dialstem is depicted in
Figure3.1
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Spoken Language . | | Database
Understanding (SLU) »  Dialog Manager [ Interface
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Automatic Speech Generation
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Figure 3.1: A simplified architecture of a telephone-bageiken dialog system

In the sections that follow we describe each of the compangimbwn in Figure3.1
along with a description of the methods and tools used tall@ath component.

3.2 Automatic Speech Recognition

The automatic speech recognition component of a spokeagdgistem is responsible
to determine the orthographic representation of the mkslylisequence of words that
represent what the speaker might have said from the spegohlsiA typical speech
recognition system consist of the parts shown in Figige

Feature d Recognition
m Extraction bl (Decoding)
A
A 4
Transcriptions| ~ . Acoustic
» Training [— Model

Language Recognition
Model Network

A

A 4

Pronunciation
Model

Figure 3.2: Basic architecture of a speech recognitioresyst
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3.2 Automatic Speech Recognition

3.2.1 Feature Extraction

In speech recognition, feature extraction aims to extreehtost salient information from
the speech signal that are essential to the recognition pbkes utterance. It is a very
important task because all the other recognition processpend on the quality of the
features extractedlgnqua and Hatqri995. An ideal set of features for speech recog-
nition are those that are independent of environmentatr-speaker and intra-speaker
variability and yielding similar values for the same acauahit regardless of the person
who spoke the utterance and the situation in which it wasepakhile exhibiting reliable
variation between different acoustic units.

The first step in feature extraction is to convert the anafmgesh signal into digital
representation so that digital signal processing methadse used. This can be done in
two steps — sampling and quantization. Sampling reducearttant of data contained
in speech signals without loss of linguistic content by magkiepresentative samples from
the continuous signal at a rate that guarantees the reaotistr of the original waveform
from the samples. Telephone speech is filtered by the swichetwork, and only fre-
quencies less that 4 kHz are transmitted over the telephioe® [Thus, according to the
well-known Nyquist sampling theorem, a sampling rate of & KHe., 8000 amplitude
measurements for each second of speech) is sufficient épttehe speech.

Quantization is a process by which the real-valued ammitmeéasurements are as-
signed either 8-bit or 16-bit integer values. The 16-birespntation gives better fidelity
of a sampled waveform than the 8-bit representation. Howveue to the bandwidth lim-
itation of the telephone channel, telephone speech is tié@smitted as 8-bit samples.
Therefore, to improve the quality of the transmitted audmme encoding is performed
in which the audio data is first compressed to 8-bit samplasstnitted through the tele-
phone channel, and expanded at the receiving end to 13-i-bit samples. This is
called companding and comes in two variants — A-Lawdp-Law?. We then convert the
A-Law encoded telephone speech data, which has roughlyrdugspn of 13-bit linear
audio to 16-bit linear quantized audio for speech recogmitMore on audio transmission
over the telephone channel is presented in Seetidr?.3

LA-Law is a companding scheme used in European ISDN telephetneork
2p-Law is a companding scheme used in the US and Japan
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The next step is to transform the digitized speech wavefotma sequence of dis-
crete acoustic feature vectors, each of which represertsr&term speech signal. For
the duration covered by a single feature vector, the speasfefarm can be considered
stationary Young et al, 2006. The features extracted are generally spectral or cépstra
coefficients that condense the information in the speecaiaig a vector of real-valued
numbers Gold and Morgan2000.

We investigate various acoustic features such as Mel-ereguCepstral Coefficients
(MFCCs) Davis and Mermelsteir1i 980, Perceptual Linear Prediction (PLP) cepstral co-
efficients Hermansky 1990, Linear Predictive Coding (LPCAtal and Hanauerl9717)
features, and LPC-based Cepstral Coefficients (LP@@I,(1974 for speech recogni-
tion, gender recognition and accent detection. More orufeagxtraction is presented in
Section5.2.1

3.2.2 Acoustic Model

Acoustic model is a statistical representation of the atousalization of the phonemes
that make up each word which is influenced by the physicalgn@gs of the phonemes
and external factors that include environmental, chansgaker and contextual vari-
abilities. These information are learnt from the featuretors of the training speech
data during a process known as training. Acoustic modelagptincipal model used in
automatic speech recognition to recognize a spoken uttiergiven the feature vectors
corresponding to the unknown utterance.

3.2.2.1 Hidden Markov Model

Speech can be conceived as a hidden sequence of phoneseobag waveform. The
task of the required model is, therefore, to estimate thbaiiity of the hidden sequence
of phones from the observed signal. It is well-known thateid Markov model (HMM)

is an ideal choice for the task of estimating the probabiityhidden events from ob-
served ones. In HMM, speech is modeled as a sequence of hitiatess each of which
corresponds to a unit of recognition (phoneme, sub-phdog,with transitions between
states. Each state can produce a number of observationslexgcto a unique proba-
bility distribution, and each distinct observation can leegrated at any state. The state
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output probability distribution is often modeled as a nudtiate Gaussian mixture model
(GMM).

We opt for HMMs as they are proven to be powerful enough to cepe the most
important sources of speech ambiguity, and flexible enoogdilow the realization of
recognition systems with dictionaries of tens of thousasfdgords (Mori and Brugnara
1997. Hidden Markov models as used in speech recognition aceisied in more detalil
in Section5.2.3

We also use hidden Markov models to build the semantic magelgropose in this
thesis. In this case, a spoken utterance is conceived adarhgkquence of semantic
concepts expressed in words or phrases. Hence, the goal i@&ghired model is to deter-
mine the most likely sequence of the hidden semantic coatkat could have generated
the observed sequence of words. As noted earlier HMMs ag fidethis task.

3.2.2.2 Hidden Markov Modeling Toolkit (HTK)

The Hidden Markov Model Toolkit (HTK) — developed and distried by Cambridge
University Engineering Department (CUED) — is an open seuportable toolkit for
building and manipulating continuous density Gaussiartuméhidden Markov models.
The tools provide facilities for feature extraction, admusnodel training, testing and
analysis of results. The various tools in HTKoung et al, 2006 are used to build the
recognition resources that we use in our telephone-basd@smlialog system.

3.2.2.3 Application Toolkit for HTK (ATK)

ATK is a multi-threaded application programming interfadesigned to facilitate the
development of real-time, speech-enabled applicatioatsube HTK-derived resources
(Young 2007). The recognition resources including the acoustic moalelprepared off-
line using HTK and are provided to ATK as resources in a globafiguration file where
several HTK compatible acoustic models and other recagnittesources can be speci-
fied. This makes it suitable for a multi-domain spoken diadggtem framework where
the necessary recognition resources for various apmicdibmains and languages can be
built off-line and specified in the configuration file. Bessd&TK allows flexible use of
resources during the recognition process.

27



3. TOOLS AND METHODS

3.2.3 Language Model

The accuracy of the recognition hypotheses produced bydbesiic model can be fur-
ther improved by using a language model. A language modeistznof prior informa-
tion about what constitutes a possible word, what words i&etylto co-occur and in
what sequenceHuang et al.2001h. The acoustic model might produce several alterna-
tive similar words that can be disambiguated by the languageel using the encoded
prior knowledge. The language model also limits the numbguences that are actually
considered during the recognition process.

There are two approaches to language modeling; namelyngaaibased and statisti-
cal. Ingrammar-based approach, one has to specify altezaaia rules. Grammar-based
approaches can give good performance but are restrictivairihey dictate the way one
can formulate ones utterance. Moreover, since such a gracananever foresee all the
different utterance patterns that people may use in speatenspeech, they are not ap-
propriate for free, human-to-human like interaction. Heerein cases where a user has to
choose between a known set of limited words or phrases, thefuite state grammars
could be more reasonable to get better recognition perfocma

Statistical language models, on the other hand, providetzgtility distributionP(W)
over word string8V that reflects how frequently a string of woMkoccurs as a sentence
(Huang et al.2001h. The probability distribution depends on the amount oinirey
data available. Given enough amount of training data,s$tedil language models can be
more robust to spontaneous speech. However, sufficientr@nodtraining data is often
unavailable for each dialog state in a domain-dependeltgigystem; hence, a language
model built using insufficient data does not capture esskcdinstraints (grammatical or
domain-specific) and may not perform as good as grammadivasdels.

Associated with the inherent problem of data-sparsenessothing techniques are
often used in language modeling to assign reasonable gtibleslto events that have
never been observed in the training data but can occur in-aees

In this thesis, we use both bigram language models and hafigda finite state gram-
mars to see which of the two perform better in real-time ayapions. In bigram language
models the probability of a word depends on only the pregediord. Since what a user
may say in a dialog state can be known in advance using domawvlkdge, the use of
dialog state-specific language models and/or grammarslizeutask specific issues to
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constrain vocabularies at each point in a dialog may be usgimaximize recognition
and clarity of intent while allowing a certain degree of fieen. The use of language
models allows users to talk to the system in a fairly uncams&d manner. However,
since dialog state-specific bigram language models aneetlabn the transcriptions of
subsets of the training data, one can foresee the data tisntfy problem.

3.3 Spoken Language Understanding

The success of a spoken dialog system depends not only orotrexicrecognition of
a spoken utterance but also on the correct comprehensidmeahtention underlying
the spoken utterance. Automatic speech recognition sygstemmonly output the most
probable transcription of a spoken utterance or a list of Ntpoobable word sequences
and need not perform syntactic or semantic analysis on ttegrezed input. Therefore,
in a spoken dialog system there is often a separate unitghasponsible for inferring
what is meant from what is said.

In this thesis, we develop a new, robust hierarchical HMMdaasemantic concept
labeling model that essentially enriches the raw text dutpthe speech recognizer with
semantic information that can be used to infer the meanirggdfen utterance in a given
dialog state. The model is trained on semantically unlabdkta and offers a number
of features in terms of performance, ambiguity resolutibitityg and expressive power of
the output as discussed in Chaper

3.4 Dialog Management

The choice of an open VoiceXML framework is a key design denisn developing a
telephone-based spoken dialog system based on VoiceXMbawechosen ©OptimTalk
(OptimSys 2006 VoiceXML platform that consists of a Voice XML interpret@rCCXML
interpreter, and other abstract interfaces which allowoulsuild and integrate our own
ASR engine, telephony interface, grammar component, setiaterpreter, TTS sys-
tem, etc. VoiceXML 2.0 W3C, 2009 is used to author the dialogs and CCXML 1.0
(W3C, 2007 is used to write the call handling policy.
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3.4.1 \oiceXML

Voice eXtensible Markup Language (VoiceXML) is the World d&iWeb Consortium’s
(W3C'’s) standard that specifies how a dialog between a caliea speech-enabled appli-
cation is constructed and executed. VoiceXML is an atteimpgive developers the tools
they need to express a conversational interface usingrexiseb technologies and Inter-
net standardsSharma and Kunin2002. VoiceXML is convenient for dialog authoring
and provides features to support complex dialogs. Moredvamimizes client/server in-
teractions by specifying multiple interactions per docatrand separates user interaction
code from service logic.

3.4.2 JavaScript

ECMAScript (ECMA-262) is the scripting language that paes client-side scripting
capabilities to VoiceXML. We use JavaScript, which is an liempentation of the EC-
MAScript standard, to write a program that essentially eamsnd validates the seman-
tically enriched recognized utterance to extract meabiegring words or phrases to fill
one or multiple dialog slots and to update the state of thiegliaccordingly. We provide
the user some degree of control over the conversation bwialipthe user to respond
more flexibly to the system’s prompts; i.e., a user can pmvitbre than one piece of
information at a time to minimize the number of interactioeguired to complete a task.

3.4.3 \VoiceXML Interpreter

A VoiceXML interpreter is a piece of software that reads amtpsses VoiceXML doc-
uments as described by the VoiceXML language standadgydr 2001). Essentially,
the core of a VoiceXML interpreter implements the Form Iptetation Algorithm (FIA)
which specifies the procedure for walking through the varields of a form to drive the
interaction between the user and a VoiceXML document. TheeXiVL interpreter in
©OptimTalk is more than just an interpreter in that it loaks televant dialog document
from the Web server hosting the VoiceXML documents, and ete=cthe dialog by call-
ing appropriate methods of the various components of thesyso as to play prompts,
accept user input, and pass them on to a speech recogniioregdetermine what to do

30



3.5 Telephony Interface

next according to the instructions in the active VoiceXMLigt In short, it serves as the
dialog manager of the system as shown in FigliB

Telephony - > Dialog Manager | N _
Subsystem (VoiceXML Interpreter) >
A
Y
Output
Component

Y
> Input
Component

Figure 3.3: VoiceXML interpreter as a dialog manager

As can be seen, the VoiceXML interpreter orchestrates tha@eninteraction by ac-
tivating the various components of the system as appr@priAt more comprehensive
description of the system as a whole is given in Sedfiéh

3.5 Telephony Interface

The telephony subsystem is the interface between the aextetephone network and the
application. It consists of a telephony interface compdoaed a call control component.
The telephony interface component makes any telephonyvaaedaccessible to the
CCXML interpreter through a unified interface. The rules&ocepting and processing
incoming calls are described in a CCXML document. The CCXMieipreter executes
the commands in the CCXML document by calling the relevarthiods of the telephony
interface component for establishing a connection, ansgehe call, streaming audio
to the telephone and capturing the spoken input from the ater The telephony inter-
face component is implemented using the application progriamg interface standard to
access ISDN services — Common ISDN Application Programrhitegface (CAPH.

Lhttp://www.capi.org/pages/home.php; last accessedigepl7, 2009
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The uniform resource identifier (URI) to the initial dialogript of the application is
also specified in the CCXML document and the CCXML interprétstructs the dialog
manager to fetch and execute this document when a call ipescte

3.6 Speech Output

The output component wraps a text-to-speech (TTS) syrglegjine that synthesizes
prompts and responses to be played back to the caller oviaiépdone. We use ©Loquendo
TTS engine in our system to play prompts and responses tcstrs over the telephone

in English and German.

3.7 Database Interface

When an automated telephony system is based on a voice branest of the applica-
tion logic resides on a web servé&tdgar 2001) and the data reside on a database server.
MySQL database Server is used to build and store the dai@pasbe system is based on
dynamic content where PHP server-side scripting langusigsed to dynamically gen-
erate VoiceXML documents containing data stored in thelieta. PHP and MySQL
are both open source and form a very good combination fotingedata-driven applica-
tions. In order to process HTTP requests from the client aneesVoice XML documents
Apache Web server is used. Apache is also free and works walR#P and MySQL.

3.8 Evaluation Method

A vital and final step in spoken language interaction systerebpment is to evaluate
the usability and quality of the system. The quality and dgglof a spoken dialog
system is strongly related to user satisfaction which cdp be obtained from subjec-
tive judgements collected from test users in a quantifiaddien fwith questionnaires. We
use questionnaires based on SASSI (Subjective Assesshigmech System Interfaces)
(Hone and Grahan2001) and the recommendation of the International Telecommuni-
cation Union (ITU-T) (TU_T Rec. P.851L We also extract complementary information
about the performance of the various components of themsyfsten logged interactions.
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3.9 Summary

In this chapter, we described the components of a telephased spoken dialog system
in general and presented the various components of oumsystearticular. Besides, we
introduced the tools, techniques, standards, and APIs ei¢ou®alize the envisaged ro-
bust multi-domain, multilingual spoken dialog system. Tinedeling approaches we use
to build the required acoustic, language and semantic mddsk also been described. In
Chapters, 6, and7 we present more detailed descriptions on speech recognigmder
identification, accent recognition, spoken language wtdeding, and spoken langauge
interaction issues. The experiments conducted and thésediained will be discussed
in more detail in Chaptes.
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Chapter 4

System Description

4.1 Introduction

In this chapter, we present a fairly comprehensive desonf the telephone-based spo-
ken dialog system framework developed as part of this thegieneral, and the devel-
opment of the various components in particular. In Seddi@ we present a high-level
description of the system and its component parts as weltgs@al usage scenario that
shows how the various components work together in a dialegjee. Sectiod.3presents

a short description of how VoiceXML and CCXML standards céenpent each other and
work together. In Sectiod.4, we describe the implementation of the telephony interface
component in sufficient detail. Sectidnb describes the implementation and integration
of the input component consisting of an automatic speecbgratton engine, a gender
recognizer, a grammar component and a semantic interpféteally, a summary of the
chapter is presented in Sectidré.

4.2 Components of the System

A telephone-based spoken dialog system generally comdiatsinterface to a telephone
network, an automatic speech recognition engine, a spekeyuhge understanding com-
ponent, a mechanism for response generation, an audiotongulule and a dialog man-

ager. Similarly, our telephone-based spoken dialog systmmework comprises of:

1. Atelephony interface component to deliver and procelés ca
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2. An input component that consists of:

(a) A media source component to capture audio stream frorret@ghony inter-
face

(b) An automatic speech recognition engine to recognize vshsaid
(c) A gender-recognizer to identify the gender of a user feospoken utterance

(d) A grammar unit to prepare the grammar or the language el by the
speech recognizer

(e) A semantic interpreter to enrich the output of the speechgnizer with se-
mantic information so that the meaning underlying a spok&rance can be
easily extracted

3. An output component to synthesize the prompts and resgda$e played back to
the user

4. A back-end where the application logic, the databasetanditlog scripts reside
5. A dialog manager that orchestrates the various compsnent

The telephony interface component controls the ISDN tedagttard and is respon-
sible for, among other things, capturing audio stream frbom tser and playing au-
dio prompts to the user over the telephone. It is implemensdg CAPI (Common
ISDN Application Programming Interface) which enableslmapion developers to ac-
cess ISDN services without having to deal with the low-lé@EN details.

The core of the input component consists of an ATK-basedcspezzognizer which
also supports automatic gender recognition. The recagmésources; namely, the acous-
tic models, the language models and the pronunciationotiaties are prepared off-line
using HTK (Young et al, 2006. The grammar component reads each pre-compiled gram-
mar or language model file that is specified in each VoiceXMtuhoent and makes it
available to the ASR engine at runtime. The semantic inédeprenriches the recognized
utterance with semantic information to easily infer whanisant from what is said.

A high-level architecture of the system is depicted in Fegll. At the core of the
system is ©OptimTalk QptimSys 2006 — a VoiceXML framework that consists of a
VoiceXML interpreter, a CCXML interpreter, and other abstrinterfaces that allow us to
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build and integrate our own components. The VoiceXML intetgr in OptimTalk serves
as the dialog manager of the system as will be described imo&e&c2.1 In the following
sections, the terms dialog manager and VoiceXML interprate used interchangeably.

TELEPHONY SUBSYSTEM BACK-END
> Dialog Manager B
CCXML Interpreter .
P < (VoiceXML Interpreter ) < Web Server
A A N A
A 4 v
Telephony Interface [ _l -
Component TS Database Se
A
OUTPUT
COMPONENT
y
— Media Sink
Telephone
Network
A\ 4

Media
Source Semantic
| ' Interpreter

A\ 4
ASR < Grammar
Component
INPUT COMPONENT

Figure 4.1: High-level block diagram of the system

4.2.1 Typical Usage Scenario

The interaction of the various components of the system iy caut a telephone-based
spoken dialog can be described as follows:

1. A user calls the system and the telephony interface coemigrceives the call.

2. The initial CCXML document is loaded.
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3. The CCXML interpreter executes the commands in the dootiosgng the meth-
ods implemented in the telephony interface component.elictll is accepted, the
CCXML interpreter instructs the VoiceXML interpreter toald the dialog script
specified in the CCXML document.

4. The VoiceXML interpreter sends an HTTP request to the WalveS and the Web
Server delivers the requested document. From this pointhenyoice XML inter-
preter takes control of the interaction.

5. The VoiceXML interpreter executes the commands in thed®ML document.
During the interpretation, the Voice XML interpreter cahe methods of the various
components to make the interaction possible as follows:

» To play prompts, the dialog manager calls the methods obttiput com-
ponent to process prompts, perform text-to-speech (TTi&hsgis and store
the synthesized data in a so-called audio container thakentby the out-
put manager (part of the dialog manager). The output marthger sends
the audio container to the media sink component which stsdamaudio to
the telephony interface component. In the telephony iatertomponent, we
process the streamed audio as appropriate and play it ecvéglégphone.

* When user input is expected, the input component usesarrfidoé of the me-
dia source component provided by the Voice XML interpretestart capturing
audio input. The media source component also provides ttii@ atream re-
ceived from the telephony interface component to the spesignizer.

* When a spoken input is recognized, the recognition outpsent to the se-
mantic interpreter component that is responsible to erthelraw text output
of the speech recognizer with semantic information. Theseasitic infor-
mation are used to extract the meaning of the recognizethutte at a given
dialog state.

6. When all the required information in a dialog are obtajrtbd scripts on the web
server process the submitted parameters, perform sombagataperations and
generate a new VoiceXML document. This is then sent back éovisiceXML
interpreter for interpretation.
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7. When the dialog is finished the Voice XML interpreter imfarthe call control com-
ponent about the fact and the call is properly terminated.

8. The system continues running waiting for the next incajaall.

4.3 \VoiceXML and CCXML Working Together

When VoiceXML and CCXML are used together, CCXML providel cantrol functions
such as handling incoming calls, placing outgoing callgjdng multiple call legs, dis-
connecting calls, etc. while VoiceXML is used as a dialogemment. CCXML does not
provide any mechanism for interacting with callers dingbitlit whenever interaction with
a caller is required a CCXML session can initiate a separalegisession provided by
VoiceXML and connects the call to the VoiceXML dialog. Whére tVoiceXML dialog
completes successfully or fails, the VoiceXML interpretetifies the CCXML session
about the fact and the CCXML interpreter then terminate< e

In ©OptimTalk, the framework we use, the interconnectiotwaen the dialog man-
ager and the telephony subsystem is provided by a dialagiephony bridge facility.
This bridge translates the commands from the form produgetthdo telephony compo-
nent to the form understood by the dialog manager or viceau@ptimSys 2006.

A CCXML interpreter initiates a dialog using thedialogstart- element. Execution
of this element connects a dialog environment to a conneetnal instructs it to start in-
teracting with the caller. For some dialog environmentsaytake some time to initialize
the dialog environment and hence CCXML provides an optioprépare a dialog prior
to starting it using thecdialogprepare element.

4.4 The Telephony Interface Component

As its name suggests, the telephony interface componenidgan interface between
the system and a telephone network. The system is basedemrdted Services Digital
Network (ISDN) and the interface is implemented using CABbrfimon ISDN Appli-
cation Programming Interface). In the following sectiores pvovide a brief overview of
ISDN, introduce CAPI and discuss the implementation of #epghony interface compo-
nent.
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4.4.1 Overview of Integrated Services Digital Network (ISIN)

Integrated Services Digital Network (ISDN) is a system dji@il phone connections
that allows fast and reliable transfer of information in matifferent formats over the
existing telephone infrastructure. The distinguishirajdiees of ISDN are integrated ser-
vices (data, voice, images, and video), improved transarigsite, and better transmis-
sion quality as a result of end-to-end digital transmissibdata.

With ISDN, signaling information and data are conveyed tigto different channels.
All signaling data (for call establishment and release)teasmitted through a channel
called D-channel (Delta channel) while data and voice anesimitted through channels
called B-channels (Bearer channels).

There are two basic levels of ISDN service: Basic Rate lateriBRI) and Primary
Rate Interface (PRI). Basic Rate Interface is intended donéand small enterprizes and
consists of two bearer channels (each 64 kb/s) plus one dadtanel (16 kb/s) (2B+D)
for a total of 144 kb/s. For users with greater capacity neguents, the Primary Rate
Interface provides a channel structure which is typicaByBchannels plus one 64 kb/s
D-channel (23B+D) in USA and Japan; in Europe, Australia@ther parts of the world,
PRI consists of 30 B channels plus one 64 kb/s D-channel (B)B+

An incoming ISDN line is terminated at the customer premisea network termina-
tion device known as NT1. The network termination devicedaswire interface called
U-interface on the network side of the device and a 4-wirerfate called SO (also known
as S/T) interface on the terminal side. The purpose of th@arkttermination device is
to convert the 2-wire U-interface signal to the form recaguli by the SO interface.

4.4.2 Common ISDN Application Programming Interface (CAPI)

Common ISDN Application Programming Interface (CAPI) isragramming interface
that enables ISDN application developers to develop agipdios that use ISDN hardware
without having to deal with the low-level ISDN details. lgwides a uniform, independent
and easy to use interface for applications and offers a dréfteess to ISDN hardware
components.

Under Windows operating system the CAPI services are peavith a Dynamic Link
Library (DLL) known as "capi2032.dIl" for 32-bit Windowsalsed applications and is
usually included with most ISDN adapters. An applicatiomoaunicates to CAPI via
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4.4 The Telephony Interface Component

this library in order to use an ISDN card. The interface betwapplications and CAPI
consists of a set of CAPI functions. In order to understaedétephony interface com-
ponent, a brief overview of CAPI functions is presented mftiilowing subsections. The
main reference material for this section is Part | of the CA&tumentatioh

4421 CAPIFunctions

Before an application can attempt to use any CAPI servicaugt check whether CAPI
Is installed and is operational on the machine. The fund@ig®|_INSTALLED can be
used for this purpose. Prior to any communication betweeapglication and CAPI,
the application must register with CAPI using the CAPI_RBETER function. As the
application registers, CAPI assigns a unique applicatid@ApplID) to the application
and sets up a message queue that the application uses to aaatawith CAPI.

Communication between an application and CAPI is via messag message is a
piece of information that is exchanged between a regisegsptication and CAPI. A mes-
sage going from an application to CAPI is known as a REQUESITthe corresponding
answer from CAPI is known as a CONFIRMATION. A messagesatetl by CAPI is
known as an INDICATION and the corresponding acknowledgenseknown as a RE-
SPONSE. As can be observed, each REQUEST has a matching RUMFION, and
each INDICATION must have a corresponding RESPONSE. Evesysaige name ends
with a suffix (_ REQ, _CONF, _IND, RESP) to reflect the messwgpe.

Messages are communicated via message queues and arespdorethe order of
their arrival. There is exactly one message queue for CARIcttept messages from
an application and one for each registered applicationdeive messages from CAPI.
The application transfers its message by calling the CABT MESSAGE function and
reads new messages from its own queue using the function @G¥T_MESSAGE.

If a registered application wants to terminate its conmecto CAPI, the function
CAPI_RELEASE is used. When an application is released, teequsly used message
queues are freed. An application must disconnect all exjstonnections before issuing
a CAPI_RELEASE.

http://www.capi.org/download/capi20-1.pdf; last acmsFebruary 27, 2009
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4.4.2.2 Establishing a Connection

Establishing a connection involves creating a physicdl éind a logical link. Tablel.1
shows the message exchanges that take place between ticata@pband CAPI to create

a physical connection.

Table 4.1: Establishing a physical connection
Message Description
LISTEN_REQ The application sends LISTEN_REQ to be
formed when a call comes in.
LISTEN_CONF CAPI confirms — CAPI is ready to inform the ap-

plication when a call indication comes in.

CONNECT_IND

With an incoming call, the application receives

CONNECT_IND containing a PLCI number that

identifies the physical connection.

CONNECT_RESP

The application acknowledges.

CONNECT_ACTIVE_IND

CAPI sends CONNECT_ACTIVE_IND to indi
cate that the call was connected.

CONNECT_ACTIVE_RESR

The application acknowledges — physical connec-

tion is established.

To create a logical link, the message exchanges that take p&iween the application
and CAPI are shown in Tabke2

Table 4.2: Establishing a logical connection

Message

Description

CONNECT_B3_IND

CAPI indicates that a logical connection

ber identifying the logical connection.

CONNECT_B3_RESP

The application acknowledges.

CONNECT_B3_ACTIVE_IND | CAPIindicates that a logical connection of the

B channel is established.

CONNECT_B3_ACTIVE_RESR The application acknowledges — logical cg

nection is established.
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4.4 The Telephony Interface Component

Once both the physical and the logical links are set up, th@icgiion can send
DATA_B3 REQ messages and receive DATA_B3_IND messagesnt and receive au-
dio data within the logical connection as described in thd section.

4.4.2.3 Audio Transmission

In every connection, there are two streams of audio data stteam directed to a phone
line and the stream coming from a phone line. The specificemphtation of sending
and receiving audio data to and from a telephone line depemdise telephone interface
card used, which in our case is an ISDN card based on CAPI.

In this case, to send audio data to CAPI, the applications®ATA_ B3 REQ mes-
sages and CAPI confirms with DATA_B3_CONF. The audio datatscontained in the
message instead a 32-bit pointer is used to convey the adolrse data area.

To avoid the inherent delay that may occur if each messagehaglconfirmed before
receiving the next one, CAPI allows up to seven unconfirme@MAB3_REQ messages
which will be confirmed later in the order of their arrival.

Figure4.2shows the process of transmitting audio data to CAPI.

APPLICATION CAPI
DATA _B3_REQ(1) o B
DATA B3 REQ(2) e >
DATA B3 REQ(3) ® >

<«—————————————® DATA_B3_CONF(1)

DATA B3 REQ4) ¢ — >
. o+ DATA_B3_CONF(2)

DATA B3 REQG®) ¢ *
<% DATA B3_CONF@3)
« o DATA B3_CONF(4)

<« e DATA_B3_CONF(5)

Figure 4.2: Transmitting audio data to CAPI: CAPI allows opseven consecutive un-
confirmed DATA_B3_REQ messages which will later be confirrimethe order of their
arrival.
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Before sending the audio data synthesized by a TTS engin&Rd, @ is necessary to
convert the data to an appropriate format (A-Law format,unaase). p-Law and A-Law
are encoding schemes to encode 14-bit and 13-bit of sampkadinl 8-bit logarithmic
representation using the G.711 companding scheme. Conmgaisda scheme used to
reduce bandwidth requirements for transmitting audio d&tx the telephone channel,
where information is compressed at the sending end, trarezhthrough the telephone
channel, and expanded at the receiving end. p-Law is thelatdrused in the United
States and Japan while A-Law is the European standard. Mereas CAPI sends and
accepts each octet of A-Law or p-Law data in a reversed bérpitds necessary to reverse

the bits in each byte before streaming the audio data to CAPI.

In the opposite direction, CAPI signals all incoming datanirthe phone line with
DATA B3 _IND and the application acknowledges with DATA_B3ESP. The data is
not contained in the message instead a 32-bit pointer istosgsmmunicate the address

of the data area.

Figure4.3shows the process of receiving audio data from CAPI.

APPLICATION

CAPI

-
-

® DATA_B3_IND(1)

DATA_B3_RESP(1) ®

-
-

o

e DATA_B3_IND(2)

-

DATA_B3_RESP(2) ®

-

|

e DATA_B3_IND(3)

-

-

DATA_B3_RESP(3) ®

-
-

-
-

e DATA_B3_IND(4)

DATA_B3_RESP(4) e

e DATA B3_IND(5)

-
|

-

DATA_B3_RESP(5) ®

Figure 4.3: Receiving audio data from CAPI: For high datatghput, applications

should respond to DATA_B3_IND messages promptly

44



Chapter3/Chapter3Figs/receive.eps

4.4 The Telephony Interface Component

Before we send the received audio data from the phone lingetaatomatic speech
recognition system, we convert the audio data from A-Law@ebit linear PCM format
and reverse the bits in each byte of audio data.

4.4.3 The CAPI-based Telephony Interface

The telephony interface component is implemented as aaepdynamic link library and
is specified in a configuration file. The ©OptimTalk core exabie loads it at runtime.

The core of the telephony interface component is implenteasea Finite State Ma-
chine (FSM). A finite state machine consists of a set of stateset of possible input
events and a function that determines the transition froestate to another for a given
input event. The process begins at a start state and an ingnit which moves the state
machine to the next state based on the transition function.

In this implementation, the FSM is implemented as a two dsi@ral array where
one dimension corresponds to the states and the other donespecifies the input event
to be handled. Each array element consists a value thafiggebe new state the machine
moves to and an action to execute.

At the heart of the system is a function that can be called ooa to continually see
what CAPI messages are coming using the GET_MESSAGE functis described in
Section4.4.2.1 the GET_MESSAGE function gives two types of messages — O¥DI
TIONs and CONFIRMATIONs. The message in the queue is coaliywead in a loop
and when CAPI_GET_MESSAGE returns an event, the functiahgtocesses incoming
messages is called with the message as a parameter. If tiagedas an INDICATION,
the function translates the message into an input everttédiriite state machine and calls
the transition function with the input event and the messafyjthe message is a CON-
FIRMATION the corresponding request gets confirmed. Thdoise repeatedly until the
FSM sets the "finished" flag which signals disconnection.

The state diagram in Figur.4 shows the states and the inputs (telephony events)
considered in the system.
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S0 s2
IDLE START e CONNECT_IND PL_START

NI_IAILOV ID3NNOD

»

s4 S3
@ CONNECT_B3_IND PL_AGTIVE

aNI LO3NNOJSIa

JNIOV €9 L0ANNOD

DATA B3_IND DATA B3 REQ

f

5
LL_ACTIVE DISCONNECT B3 REQ LL_DISCONNECT

DISCONNECT B3_IND
87 X
PL_DISCONNECT
- DISCONNECT_B3_IND/ DISCONNECT_REQ

Figure 4.4: The finite state diagram

As can be seen in Figur#t4, the state machine is fired up with the init@Tl ART
event which moves the state machine to th8T EN state (i.e. the application issues
LISTEN_REQ and CAPI confirms with LISTEN_CONF). At théST ENstate CAPI is
ready to inform the application when a call indication conmes

When a new call comes in, the application receives a CONNEED which causes
a transition toPL_STARTSstate where the establishment of a physical link starts. The
application acknowledges the CONNECT _IND with CONNECT SREThen the appli-
cation receives a CONNECT_ACTIVE_IND message which shdaddacknowledged
with the corresponding CONNECT_ACTIVE_RESP message. T3 Ehen transits to
statePL_ACT IV Ewhere the physical link is fully established.

Once the physical connection is established, a logical ection over the B chan-
nel needs to be set up as described in Sectidi2.1 Hence, the application receives
a CONNECT_B3_IND message which the application should askedge with CON-
NECT_B3 RESP message to accept the logical connectiorig\point, the FSM tran-
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4.5 The Input Component

sits to state.L._STARTwhere the establishment of a logical link starts. Sooneatar] a
CONNECT_B3_ACTIVE_IND message comes and the applicatinawledges it with
the corresponding CONNECT_B3_ACTIVE_RESP message. Coesgly the FSM
transits to staté.L._ ACTIV E where the logical link is fully established. At this state,
the connection is fully established and hence it is possth#end and receive audio data
to and from CAPI as described in Sectiéd.2.3

The last two stated,L. DISCONNECTandPL _DISCONNECTare used for han-
dling disconnection or hang up.

When the call is completed, we de-initialize the connectod call the method that
fires up the FSM once again. When the FSM is fired, it transithéd ST EN state
listening for the next incoming call. This keeps the CCXMlerpreter running all the
time waiting for incoming calls.

4.5 The Input Component

The input component wraps the automatic speech recogrtigime and is implemented
as a separate dynamic link library. The grammar componeaiss implemented as a
separate library and is passed to the input component aimenOnce a spoken input is
recognized, the recognition result is sent to the semanteécpreter which is implemented
as part of the grammar component. The input component isfigaem a configuration
file and the ©OptimTalk core executable loads it at runtimée §rammar component
and the semantic interpreter are used along with the speedymizer and hence are
considered as parts of the input component.

In the sections that follow, we describe the ATK-based aatorrspeech recognition
engine, the gender recognizer, the grammar component argethantic interpreter. We
also give a helicopter view of the entire recognition predesSectiord.5.5

4.5.1 The ATK-based Speech Recognizer

ATK is a multi-threaded API designed to facilitate buildingal-time applications that
use HTK-derived recognition resourceéo(ng 2007). The core of ATK is based on
three fundamental objects — packets, buffers and compsneatkets are used for trans-
mitting a variety of information between asynchronouslg@xing threads (components)
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while buffers provide the channel for passing packets fromthread to another. The in-
formation in a packet could be speech waveforms, featur®ksg®r recognized phrases.
A componentin ATK is a task with its own thread, and it comnuanés with other threads
by passing packets of information via buffers. The blockydan in Figuret.5depicts the
components of the ATK-based speech recognition systemretied in the framework.

A

% ) Telephony Interface - M:dla Souice | Process Media Data Buffer Coder Component
Component v (Opti;nTaIk) (Create Wave Packets) (Wave Data) (ACode)

Y
Dialog Manager

" Semantic / Buffe'r Recognizer Component Buffer
(VoiceXML preter) | / Utterance (ARec) (Feature Vectors)
[}

Grammar Component
Resource Group
[}
Grammar | Pronunciation
Language Model Lpicﬁ}nary_J HMMSet

A

A\ 4

Figure 4.5: Block diagram of the ATK-based speech recognize

In ATK there are three main components; namely, an audicced#tSource) compo-
nent, a coder (ACode) component and a recognizer (ARec).

The primary function of the audio source component (ASouis¢o capture input
speech Young, 2007). As can be seen in Figu45, we do not use ATK’s ASource
component directly. Instead we use the media source impietien of ©OptimTalk.
The spoken input is captured and processed in the telephtenyace component and is
streamed to the input component through an interface theged to receive audio data.
The media source component calls the methods of this itenfepeatedly to stream
audio data to the speech recognizer. Then we organize tee/eécaudio stream into
wave packets and put the packets to the buffer which contleetaudio source to the

coder component.
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The coder component (ACode) then gathers the incoming waekeps and passes
them to the HTK module HParm that converts the observed #éicaignals to a series
of feature vectors using the signal processing operatiefiset in HsigP moduleYpung
et al, 2009. The extracted feature vectors are then placed in the rhilfé connects the
coder and the recognizer.

The task of the recognizer (ARec) is to generate a hypotloesidattice of hypothe-
ses for the underlying speech unit sequence from the sequEnabservation vectors
corresponding to the unknown utterance. It depends onw&riesource objects such as
HMMSet (AHmMmmSs), pronunciation dictionary (ADict), gramm@Gram) and optionally
an n-gram language model.

An HMMSet defines the actual hidden Markov model for eachdiatic unit which is
always initialized from one or more external file(s) spedifiea global configuration file.
In other words, the HMMSet defines the acoustic model. Ayaldtailed description on
acoustic modeling is presented in Cha@erThe inventory of the basic linguistic units
(e.g., phonemes, triphones) for which distinct HMMs ardtlimistored in a file and should
be specified in the configuration file as well. A pronunciatiictionary object defines
the phonemes that form each word in the vocabulary of thegrézer and it is usually
initialized from an external file. A grammar or a language elabject defines a network
of allowable word sequences. It can be loaded from an eXtilear created on the fly.

These recognition resources are stored in a resource ma(ig®lan) organized
into logical resource groups. At any one time, the recogrizzesing the resources in a
specific resource group. If the resource group is changefdaolyimember of the group
Is modified, a new resource group is recompiled for use by ¢hegnizer for the next
recognition task. A recognizer is instantiated with a name @ointers to an input buffer,
an output buffer and a resource manager.

4.5.2 The Gender Recognizer

As discussed in Sectidh4, due to similar articulatory mechanisms there is conslalera
acoustic similarity of voice within speakers of the samedgziwhile there exists appar-
ent difference between the voice of male and female speakéis suggests that using
gender-dependent acoustic models can give better recmgpirformance than gender-
independent acoustic models.
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To be able to use a gender-dependent acoustic model at myritishould be possible
to reliably estimate the gender of the user from a spokenantte. Our gender recognizer
is based on a Gaussian mixture model which will be describ&gctions.3.2

At the start of a dialog, there are two recognizers runningarallel — the first one
is used to recognize what is actually said and the secondsimeates the gender of the
speaker from the same acoustic input. The extract in Listisgows the first part of a
typical interaction where the gender recognizer is used.

Listing 1 Dialog extract

System: Hello! My name is KEY. | provide service in English an d
German. Which one do you prefer?

User:  German

System: Willkommen zum automatischen Bahnauskunftssyste m der
Universitat Magdeburg! Bitte nennen Sie Ihren Reiseplan!

User:

The gender of the speaker is estimated at the same time wlgmdferred language
(i.e. "German" in this example) is recognized from the fitsetance. Accordingly, the
gender-dependent model corresponding to the estimatedegamd the preferred lan-
guage is loaded. At the same time the semantic model andydsalipts corresponding
to the preferred language or application domain are loadeda result, the rest of the
dialog proceeds in the chosen language with a gender-depeadoustic model and a
domain-specific semantic model.

4.5.3 The Grammar Component

The Speech Recognition Grammar Specification (SRGS) foah®#3C is a standard
way to specify speech recognition grammars in VoiceXMLdabapplications. However,
HTK-based speech recognizers require grammar files in Hekdsdard Lattice Format
(SLF) and do not recognize SRGS. Therefore, we developegaae grammar com-
ponent to enable the use of grammar in the required standtirckl format within the
VoiceXML framework.
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In fact, an alternative approach would have been to convgraenmar written in
SRGS format into a form that can be used by an HTK-based speeolynizer at run-
time. However, this approach has not been pursued for twapresa First, an SRGS-
based grammar is written along with the semantic instrasteccording to the Semantic
Interpretation for Speech Recognition (SISR) specificatiBpparently, this involves a
considerable amount of human effort in writing complex gnaans along with semantic
instructions. We would like to keep the grammar writing easgl automate the semantic
tagging part. Second, we also intend to use dialog statefsgpleigram language models
as alternatives to grammars which makes the latter appioaohvenient.

The grammar component essentially gets the URI addresscbf grmammar file or
language model specified in the VoiceXML script and re-verttee content to a predefined
location temporarily on the disk so that it can be used in #ad recognition task. If the
recognized utterance matches the active grammar at a giakag cétate, the recognition
output is sent to the semantic interpreter as shown in Figuidf a match is not found,
then the application informs the user that no match is fourdl@mompts for a matching
input.

4.5.4 The Semantic Interpreter

Since we do not use SRGS for the reasons described in theopsesgction, we cannot
use its companion Semantic Interpretation for Speech Rewog specification which
defines the syntax and semantics of using semantic ingingcth SRGS. Instead, we
built our own statistical semantic interpreter which auétically adds semantic and hi-
erarchical information to the recognized utterance. T$isni fact, one of the key issues
we want to address in this thesis — to introduce an efficietfpanverful way to semantic
interpretation with a number of virtues as will be describe@hapter6.

The semantic model for each application domain is trainédired as described in
Chapter6 and is specified in the application. After the preferred laage is recognized
from the first spoken utterance, the corresponding semartitel is loaded for every
recognized utterance matching the active grammar. Thedfasle semantic interpreter
is to semantically enrich the output of the speech recogmizenable easy extraction of
the meaning underlying the recognized utterance in a giledoglstate. The core of the
semantic extraction algorithm is depicted in Listihg
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Listing 2 The semantic tagging algorithm

hmm.loadProbs(semantic_model) // load the semantic model corresponding
Il to the preferred language
hmm.readString(utterance) llread the recognized utteran ce

for all words:
hmm.addObservation(word)
path, joint_prob = hmm.viterbi()
obs_prob = hmm.obsProb()
for all (state, observation) i n path:
i f non_emitting(state):
i f isEntry(state):
print "("
el se if isExit(state):
print ") state
el se if emitting(state):
print observation, state
hmm.reset()

The trained semantic model consists of two text files — onsisting of the transition
probabilities and another consisting of emission proli#sl In Listing2, the function
"hmm.loadProbs()" loads these model files for a specifiediegimn domain. The func-
tion "hmm.readString()" reads the recognition output af #peech recognizer. Every
word in the utterance is checked if it is in the lexicon of thggder, otherwise it is marked
as "oov". The function "hmm.addObservation()" constructsellis of state transitions.
The hmm.Viterbi() implements the Viterbi algorithm to sgathe most likely sequence
of states through the trellis. The function hmm.reset(gteshe trellis and prepares the
HMM for the next utterance.

4.5.5 Summary of Recognition Events

In order to give a helicopter view of the events in the inpunponent, we provide a
summary of the main events in a dialog session as follows:

1. The input component is initialized; i.e.:
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10.

11.

12.

» The VoiceXML interpreter reads the name of the input congmarirom the
global configuration file, creates an instance of the inputoanent and ini-
tializes it.

* Initialize ATK which includes initializing the underlygnHTK libraries.

. When user input is expected, the VoiceXML interpretetsciie method of the

input component that is responsible to start voice inpuectbn.

. The input component starts capturing audio data usingn@nface of the media

source component.

. The media source component calls the methods of the thegomponent that are

responsible to receive audio data.

. The received audio data are organized into wave packeta@nstreamed to the

buffer that connects the audio source to the coder.

. The coder reads the buffer, extracts the required feammd makes the extracted

feature vectors available for the speech recognizer.

. The grammar component prepares the grammar specific tea gialog state and

makes it available to the speech recognizer.

. The recognizer hypothesizes the most likely utteraram the sequence of feature

vectors using a given set of recognition resources. Thegretion result is then
made available to the application through the output buffehe recognizer.

. When the recognition of an utterance is finished, the Yidk interpreter is in-

formed about the fact and the recognizer is temporarilytdp

The output of the recognizer is then passed to the setriatdrpreter that enriches
the raw text output with semantic information.

For the next run, the recognition resources are updaitdawiew dialog-specific
language model or grammatr.

When the next user input is expected, the recognizesstanted with an updated
resource group.
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13. Steps 2-12 are repeated until the dialog is finished oriteted.

4.6 Summary

In this chapter we presented a comprehensive descriptitimeadystem and the various
components that make up our telephone-based spoken dyetmpsframework. The im-
plementations of the components we have developed in thsssthnamely, the telephony
interface component, and the input component that coradfistspeech recognizer, a gen-
der recognizer, a grammar component and a semantic inter@me described. For the
sake of clarity, we left out some low-level details. Now that have described the test-
bed, the various models that make up a robust spoken diakigraywill be discussed in
the following chapters.
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Chapter 5

Automatic Speech Recognition and
Related Issues

5.1 Introduction

In this chapter we present the fundamentals of automatectpecognition, gender iden-
tification and accent detection along with a descriptiorhefdpproaches we use to utilize
speaker-dependent characteristics such as gender and sxaaprove speech recogni-
tion performance. In Sectidn 2, we describe speech recognition as a Bayesian inference
problem and we present an overview of hidden Markov mode$ad in automatic speech
recognition. As introduced in Secti®12, speech recognition consists of feature extrac-
tion, acoustic model training, language modeling and degpdHence, we present a
fairly detailed overview of these processes. Sectd@discusses the use of user-group
dependent acoustic models based on gender and accent twvargpeech recognition
performance in a spoken dialog system. We further desctib&aussian Mixture Model
(GMM) based gender and accent recognition models. Moretiveraccent recognition
approach we propose in this thesis; namely, using nativectpaata of two or more target
accent groups to train an accent recognizer is describefkedtion5.4, we present a brief
overview of Maximum Likelihood Linear Regression (MLLR) aMaximum a Poste-
riori (MAP) speaker adaptation techniques as they will bedulor accent and channel
adaptation. Finally, we summarize the chapter in Sedién
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5.2 Automatic Speech Recognition

Automatic speech recognition can be broadly defined as aepsoof transforming a
speech signal into a string of words. As noted earlier, aeratice can be conceived
as a hidden sequence of phones that are mentally formulat@avords. The hidden se-
quence is observed as a speech signal. The goal of the régnodel is, therefore, to
determine the most likely hidden sequence of phones that lioguistically meaningful
words from the observed speech signal. Due to their abdigstimate the probabilities of
hidden events (e.g. sequence of phones) from observed emgespeech signal) hidden
Markov models (HMMs) are ideal for this task.

The HMM-based speech recognition problem can be conceptdads a special case
of the Bayesian inference probledugafsky and Martin2008. The probability that the
utteranceV was spoken given the acoustic evidefean be formulated as:

(O[W) x P(W)
P(O)

argmaxXP(W|O) = argmaxp (5.1)
W W
Since the probability of the observation sequeR(®) doesn’t change with each sen-
tence hypothesis, the denominator of EquaSidrcan be ignored and the problem reduces
to:
W= arg\;Nma>P(W|O) = arg\]Nma>P(O|W) x P(W) (5.2)

P(O|W) in Equation5.2, is the observation likelihood computed by an HMM-based
acoustic model whil&(W) is the prior probability computed by a language model. The
most probable string of words for a given observation segeiénis, therefore, the one
for which the product of the two probabilities is maximum.

The main tasks involved in building an HMM-based speechgeitmn can be divided
into three major subtasks — feature extraction, modelitrgiand decoding (recognition).
Feature extraction is the first step that transforms thergbdespeech signal into a se-
guence of feature vectors. The training procedure estsrthte parameters of a set of
HMMs using training data and the associated transcripgsalting in an acoustic model.
The decoding task attempts to map the observed sequenawied@ectors to the hidden
underlying sequences of symbols using the trained acomstael and other recognition
resources. The acoustic model should be trained on a largardraf training data prior
to using the system to recognize a spoken utterance.
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5.2 Automatic Speech Recognition

A basic architecture of an automatic speech recognitiotesyss shown in Figure
5.1

0] . Recognition -
> E >
m » Feature 1 > (Decoding) I s W

Recognition Network

J I I

Training Acoustic Model Pronunciation Language Model

(Hnlgzllti:;nation) (P(OIW)) Model (P(W))

Y

Figure 5.1: A simplified architecture of an automatic speecwognition system

5.2.1 Feature Extraction

The purpose of feature extraction as mentioned in Se&iariis to transform a given
speech signal into a sequence of discrete acoustic feataters that are robust to acous-
tic, inter-speaker and intra-speaker variability but geresto linguistic contentGold and
Morgan 2000. Each acoustic feature vector represents spectral andyeiméormation
of a short-term speech signal. For the duration covered ygéesfeature vector, a speech
waveform can be assumed to be stationdioufg et al, 2006).

We look into various feature extraction methods in searctho$e features that are
better suited for speech recognition over the telephonedeyerecognition and accent
detection. In particular, Mel-Frequency Cepstral Coedfits (MFCCs) Davis and Mer-
melstein 1980, Perceptual Linear Prediction (PLP) cepstral coeffidghtermansky
1990, Linear Predictive Coding (LPC) featureAt&l and Hanauerl971; Itakura and
Saitg 1968 and LPC-based Cepstral Coefficients (LPCA&g(, 1974 are investigated.

A summary of the various feature extraction methods useldigithesis is presented
in Figure5.2
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Figure 5.2: Block diagram of feature extraction methods

A description of the feature extraction techniques showkigre5.2as they are used
in this thesis is presented below.

The computation of MFCCs consists of performing preemhasithe acoustic sig-
nal, dividing the incoming waveform into overlapping blgci&f 20-25 ms, and multi-
plying each block by a Hamming Window. The Fast Fourier Tiams (FFT) of the
windowed signal is computed and the square of the magnifuaethe power spectrum)
is fed to a series of filter bank channels. Then, Discreter@@osransform (DCT) is ap-
plied to the logarithm of the filter bank outputs. The Diser€osine Transform has a
notable effect in favor of the diagonal covariance assummptommonly used in HMM-
based acoustic modeling by de-correlating the featurelseridature vectors so that the
features can be assumed to be independent of each othdly Rireafirst and second time
differences (i.e., delta, and delta-delta coefficients)a@mputed to better model tempo-
ral variation of the speech spectrum. A feature vector igjly generated every 10 ms
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each containing 13 cepstral components, including the@ler cepstral coefficient and
the corresponding delta and delta-delta coefficients cmimgr39 dimensions.

Linear predictive coding (LPC) views speech as a linear imné4varying system,
where speech sample at discrete tims estimated as a linear combination of the pre-
vious p samples. The computation of LPC coefficients consist of ppeasis, frame
blocking, windowing, autocorrelation analysitakura and Saital 968 followed by LPC
analysis which converts the autocorrelation coefficiemit LPC parameter set. The re-
sulting LPC coefficients are highly correlated and the dmega@ovariance assumption
does no longer hold true. Consequently, using LPC-deriegdtcal coefficients (LPCC)
rather than the LPC coefficients directly can be more usefabbse the additional cep-
stral transformation de-correlates the features in fabtre@diagonal covariance assump-
tion. Therefore, the LPC parameters are transformed totreg¢geefficients which are
known to be more robust and reliable features for speeclyreton (Rabiner and Juang
1993 than the LPC coefficients. The cepstral coefficients are theighted by a ta-
pered window so as to minimize the sensitivity of the lowerdepstral coefficients to
the overall spectral slope and that of the high-order capstrefficients to noiseRabiner
and Juangl993. Finally, the first and second derivatives can be compueddtount for
the temporal information of the speech signal. A typicatdeavector of dimensionality
39 containing 13 cepstral coefficients including the eng¢egmn along with the delta and
delta-delta features is used for speech recognition. A mamngplete discussion on linear
predictive analysis can be found iMékhoul 1975 Rabiner and Juang993.

Perceptual Linear Prediction is an LP-based analysis rdetiiat incorporates the
known perceptual properties of human hearing; namelycatiband frequency resolu-
tion, preemphasis with an equal loudness curve, and therplewemodel of hearing.
To compute PLP cepstral coefficients, a Fourier transforfinssapplied to compute the
short-term power spectrum and the power spectrum is fedaiqerceptually motivated
filter bank. The resulting spectrum is multiplied by the ddaadness curve and raised
to the power of 0.33 to simulate the power law of heariBteyens1957). The all-pole
model of LPC is applied on the simulated auditory spectrugite a smooth and compact
approximation. Then cepstral coefficients are computedioprof the static coefficients,
the first and the second time differences between paramadtezs/over successive frames
— delta, and delta-delta coefficients are computed. As dbestin Hermansky 1990,
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PLP features are more suitable in noisy conditions due taskef different non-linearity
compression (the cube root) instead of the logarithm on Hee-bank output.

Besides, cepstral mean normalization (CMN) can be appbedetl with additive
noise and mismatch due to different microphone charatitsis

The experiments carried out using these features and gapatameters for speech
recognition are discussed in Sectid2.8 8.2.9and8.3.2 For gender recognition and
accent detection, the corresponding experiments arestisdun Section8.4.1and8.5.1,
respectively.

5.2.2 Hidden Markov Model: Overview

A hidden Markov model (HMM) is composed of a hidden procedsléakov chain) and
an observable process which associates the observediadeasire vectors to the states
of the hidden procesg@nqua and Hatoii995. A hidden Markov model is characterized
by a set of hidden states, a set of observations, state ttcamprobability distribution,
emission probability distribution and initial state distrition. The transition probabilities
between states model the temporal variability while thessian probabilities model the
spectral variability of speech. Figube3depicts a three-state, left-to-right hidden Markov
model.

az2 ass 44

ba(01) ba(02) ba(0s) bs(04)  ba(0s)

Observation
Sequence

Figure 5.3: HMM-based phone model: Adapted frovong 1996

As can be seen in Figu®3, each statg has an associated probability distribution
bj(or) which determines the probability of generating observatioat timet and each
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pair of states and j has an associated transition probabiffy. The model entry and
exit states are non-emitting and consequently have no bptpbability distribution as-
sociated with them. They are used to glue models (HMMs) taggetb form composite
HMMs that represent a word or an utterance.

In order to use HMMs for automatic speech recognition, tfueeamental problems
must be solvedJunqua and Hatori995 Rabiner and Juand993. These are:

Problem 1 (Evaluation): Given a sequence of observatioBs= 01,0y, ...,0r and
a modelA, how do we compute the probability that the model producedaiserved
sequence? This is a problem of evaluating how well a givenenothtches a given
observation sequence. The forward pass of the forwardvrckalgorithm Baum et al,
1970 can be used to solve this problem.

Problem 2 (Decoding): Given the observation sequenCe= 01,0, ...,0r and the
modelA, what is the single best state sequef@ce: qi1,0p, ...,dr in the model that best
explains the observations? This problem can be solved hatiterbi algorithm Viterbi,
1967). The Viterbi algorithm is based on dynamic programming #@ndoks through a
network of nodes for a sequence of HMM states that most glasmiresponds to the
input.

Problem 3 (Learning): Given the observation sequen@e= 01,0y, ...,0r and the
modelA, how do we adjust the model parameters to maximize the pilitigadd generat-
ing the observations? The Baum-Welch re-estimation dlgoriBaum et al. 1970 can
be used to solve this problem using a finite observation sexguas training data.

Further details on the above mentioned problems and thesjynding algorithms
can be found inJelinek 1976 Rabiner 1989 Rabiner and Juand.993 Wendemuth
2004 Young et al, 2006.

5.2.3 HMM-based Acoustic Modeling

As noted in the previous section, an HMM consists of a setatestand changes state
once every time unit. Each timdhat a statg is entered, a feature vectoris generated
with output probability densitp;(o;) (Young 1996. The transition from one state to the
other is probabilistic and the observation sequence isafsmbabilistic function of the
underlying states and state transitions.
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The goal of acoustic modeling is to estimate the transiti@mbabilities (A) and the
observation likelihoods (B) of each HMM such that the likelod of the training data is
maximized.

The likelihood of generating an observed feature vectouseceO = 01,0y, ...,07
while following a state sequen€@= g1, 0, ..., gt given some model can be estimated
by multiplying together all the acoustic likelihoods ane tinansition probabilities asso-
ciated with the given sequence as in Equabdh

P(O,QIA) = rlb e+ (5.3)

whereq(0) is the model entry state amdT + 1) is the model exit state.

In HMM, however, we only know the observation seque®and the underlying state
sequenc®) is hidden. Therefore?(O|A) can be found by summing EquatiétBover all
possible state sequences in the model. This can be efficieetiormed with the Baum-
Welch algorithm or forward-backward algorithm which is asiic implementation of
the Expectation-Maximization algorithm to find the Maximnkelihood estimate of
both the transition and observation probabiliti@slinek 1976 Rabiner 1989 Rabiner
and Juangl1993 Wendemuth2004 Young et al, 2006.

Equation5.3, can be re-written in the log domain to separate the A (tteomsproba-
bility) and B (observation likelihood) terms as:

logP(O,Q|A) = Z}Iogaq qt+1) + leogbq (5.4)

The observation likelihood distribution term in Equati®d can be represented by a
mixture of Gaussian probability distribution functionsevl the means, covariances and
mixture weights are to be learned from training data. Thelillood of an observation
vectoro; being generated at timtefrom an HMM statej (bj (o)) can be computed by
assuming that the possible values of each dimension of #tarfevectors is a weighted
mixture of multivariate Gaussians.

A multivariate Gaussian is defined by a D-component mearovecand a covari-
ance matrixx. The use of full co-variance matrix for acoustic likelihoestimation is
computationally expensive and requires much more traidaig. Therefore, diagonal
covariance matrix is commonly used that significantly reduihe required computation
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by assuming that the components of a feature vector arstatatiy uncorrelated. With
MFCCs, PLPs, and LPCCs this assumption is justified as dieclis Sectiorb.2.1

The acoustic likelihoot; (o) for a D-dimensional feature vectoris a weighted sum
of M component densities for a given HMM state with mean vegjgrand covariance
matrix Zjm given by:

M

bj(0) = 3 Wjm

=1 (2r)°[Zjm|
whereM is the number of Gaussian components per stajg,is the weight of therih
component in statg¢, andw > 0, Zmzl wjm = 1 for all j.

Before a model can be trained, a number of modeling decisiust be made includ-
ing the topology of the HMM, number of states per HMM, the tgd@utput probability
function and the initialization method. In our case, we espnt each monophone by
a hidden Markov model of three emitting states with leftitght topology, where each

exp(—%(ot — Hjm) " Zjn (0 — Wjm)) (5.5)

emitting state has two transitions: back to itself and toribet state as shown in Fig-
ure5.4. The left-to-right topology is generally used to accounttfte strong temporal
constraints in speecldnqua and Hatgri995. We use continuous density HMMEi{
porace 1982 where each observation probability distribution is reprged by a finite
mixture of Gaussian functions as described earlier.

ax=0.5 a3 =0.5 a1=0.5

Figure 5.4: An example HMM topology with initial transitiggrobabilities

The simplest way to initialize HMMs is with a flat start sche(Yeung et al, 2006
where the mean and the variance of each Gaussian is set tmba gean and variance
of the training data. In a flat start scheme, transition pbodhiges from an emitting state
back to itself and to the next state are set equiprobabldrahsition from the entry state
to the first emitting state is set to 1.0 and all other traosgiare set to zero as shown in
Figure5.4.
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Most often HMM training is done with speech utterances foroklphone-level tran-
scription of the training data is available but the exacirigrof phonetic segments is not
known. The segmentation of speech into phones and phoreradigt is done as part of
the training process. This type of training procedure wleaeh phone model is trained
embedded in an entire sentence is known as embedded trdihirafsky and Martin
2008 Young et al, 20086.

More on acoustic model training is presented in Sec@i@nl.2

5.2.4 Language Modeling

A language model is an important source of information timait$ the set of possible
sequences of words which are actually considered for a ge@gnition task. For every
word in the vocabulary of a given application, the languageehdefines the list of words
that can follow it with associated probability. As discusge Sectiorb.1, the termP(W)
represents the contribution of linguistic knowledge infibren of a language model in the
recognition process. For a sequence of waktis wi,wo, Ws, ..., Wy, P(W) is given by:

PW) = P(wg,Wo,...,W,) (5.6)
= P(wq)P(wWa|wyp)P(wa|w, Wo)...P(Wn|W1,Wo, ..., Wn_1) (5.7)
= l_l P(Wi|w, Wa, ..., Wi_1) (5.8)

whereP(w;|wy,wo, ...,wWi_1) is the probability thatv; will follow, given the fact that the
word sequencei;,Wo, ..., W;_1 has been observed. However, the conditional probability
P(w;i|wq, W, ...,w;_1) cannot be reliably estimated even for moderate valuegiétiang

et al, 2001h. In practice, therefore, an approximation is made whezgtobability of a
word is assumed to be dependent only on the precediigwords whera is either two
(bigram) or three (trigram).

Since the vocabulary of each application domain we consid#ris thesis is suffi-
ciently limited, we use backoff-bigram language models. igrdm language model is
essentially a matrix containing the probability of a giveord/being followed by another
calculated from a training corpus. Backoff is a smoothirghteque commonly used in
speech recognition. When there are not enough examplesartiaytar N-gram, back-
off uses lower order N-gram language models. For instanbenwhere are not enough
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examples of a particular trigram, bigram probabilities ased and when there are not
enough examples of a particular bigram, unigram prob&slare calculated.

5.2.5 Decoding

Decoding is a task of determining the sequence of words thste highest posterior
probability, given a sequence of observation vectors. Asieed in Sectioh.2, the best
sequence is the one that maximizes the product of the lareguaglel prior probability
and the acoustic likelihood given by:

W = argmaxP(W|0) = argmaxP(O|W) x P(W) (5.9)
W w

The acoustic model likelihood R(O|W) is described in Sectiob.2.3and the lan-
guage model prior P(W) is briefly described in Sectios.2.4 P(O|W) relies on some
incorrect independence assumption; i.e., successivevatsm vectors are assumed to be
independent of past observations and states. This assumypiterestimates the acoustic
likelihood (Jurafsky and Martin2008).

Therefore, it is desirable to balance the probabilitieshef acoustic model and the
language model by finding an optimal language model scadiowf (LMSF) that defines
how the language model log probabilities are scaled befag are combined with the
acoustic log probabilities. Introducing a language modalisg factor may result in an
increase in word insertion errors in the recognition outplid mitigate this effect, an
optimal word insertion penalty (WIP) is introduced. Conseatly, Equatiorb.9 can be
modified to:

W = arg\]Nma>P(O|W) x P(W)-MSRy | pN (5.10)

where N is the number of words in the utterance.

In practice, we do all computations in the log-domain, whnattiplications of proba-
bilities become additions which make the computation méfreient and avoids numeric
underflow for long sequences. Therefore, EquabdlD can be re-written in the log-
domain as:

W = argmaxogP(O|W) + LMSF x logP(W) +N x logW IP (5.11)
W
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The LMSF and WIP values are experimentally determined fehegpplication do-
main as will be described in Secti@®2.7.

The acoustic likelihood?(O|W) can be approximated by considering the most likely
state sequence which can efficiently be computed using ttegbvialgorithm. In large
vocabulary speech recognition systems, a complete Vigsdich slows the system and
beam searchLowerre 1976 is commonly used where unlikely candidates (paths) whose
partial path scores lie more than a beam-width below the $mmte are pruned at the
earliest stage.

5.3 User-Group Dependent Acoustic Models

An utterance conveys not only the intended message butésder-dependent informa-
tion such as gender, accent, age group, etc. As defined irb8&c4, accent as used in
this thesis refers to the linguistic phenomenon in whichcBmepronunciation patterns
from ones native language are introduced when speakingyfolanguage.

Given a spoken utterance, it is easy to tell the gender, aecetior age-group of a
person with a high degree of accuracy regardless of the &gespoken or the commu-
nication channel used. This suggests that there are comouai features that a group
of speakers belonging to the same gender, accent, age;gtoughare. Identifying and
using these vocal features to reliably estimate the geaderpr accent of a person auto-
matically from ones spoken utterance can be useful to ingspeech recognition accu-
racy. This is particularly important in spoken dialog syss$e as it is often the case that
there is considerable mismatch between training and agsage environments in such
applications. For instance, a speaker-independent (Silehbwilt using speech samples
from a large group of native-speakers of English would penfeery poorly with non-
native speakers with typical accent. In automatic speeabgr@tion systems, as reported
in (Huang et al.20013 a mismatch in accent between the speakers used in testihg an
training can lead to over 30% increase in word error rate (WERas also been reported
in (Tomokiyo, 2001]) that on the same task, the word error rate is about 3—4 tingésih
on strongly Japanese-accented or Spanish-accented leagéakers than on native En-
glish speakers. This suggests that accent-specific acaustiels tailored to the vocal
characteristics of speakers in the same native languagg goan perform much better
than a generic acoustic model.
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In this thesis, we group the users of the spoken dialog sybssad on gender and
accent. In order to use accent-dependent and gender-dagerdognition resources, it
is necessary to accurately estimate the accent and thergefralepeaker from a spoken
utterance. To this end, we investigate various types ofsteofeatures in search of those
that could detect gender and accent better. Details of eRpats and results are presented
in Sections8.4.1and8.5.1

5.3.1 Gender and Accent Recognition

Itis awell-grounded fact that the most salient cue for dgatiishing adult male and female
speech is the fundamental frequency (FO) — pitdtiénbrand et al.1995 Linke, 1973
Linville and Fishey 1985 Murry and Singh1980. However, in telephone speech much
of the low frequency energy is filtered out due to the bandtiing effect of the telephone
channel. Hence, the required pitch information is eithessinig or weak. Therefore, we
investigate various cepstral features commonly used ie@dpescognition in search of
those that are suitable to reliably estimate the genderpéaker from a spoken utterance.
The results are quite promising as will be discussed in det&ection8.4.1

For accent recognition, various approaches that use attmnted speech data or
other linguistic and acoustic features to build accentgadmn models have been pro-
posed as discussed in SectB. The novelty of our approach for accent detection is on
using native speech data of the target accent groups (vian&@eand English) to train a
model that decides if an utterance is accented or nativen Ehaugh the task on which
we demonstrate the method is relatively simple, the apprcaa easily be extended to
detect multiple accents using available native speechocamf the target accent groups.
The rationale for using native speech data instead of aedatdta for accent detection
is twofold. First, we believe that accent-related inforimatcould be effectively captured
from the native language speech of a speaker. Second, ieis bérd to collect enough
amount of accented data to build a reliable model. Therefoveould be an advantage,
if a reliable accent recognizer could be trained on exis$ipgech corpora containing na-
tive spoken utterances of different languages. The modddwilecan serve the purpose
with high accuracy as will be described in Sect®b.1.3 This further motivates the use
of cross-language accent adaptation, where native spedahotithe target accent can
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be used as enrollment data to adapt speaker-independg¢mh@8els trained on native
speech data of another language (e.g., English).

The gender and accent recognition models are based on ai&auosgture model
(GMM) to recognize the gender or accent of a speaker givepanameters of a spoken
utterance. In the following section we describe Gaussiatilvé model as used in gender
and accent recognition.

5.3.2 Gaussian Mixture Model

A GMM can be modeled as a single-state hidden Markov modelNHIMith a Gaus-
sian mixture observation density with diagonal covariamedrix where there is no state
transition probability within the model as shown in Fig&:é.

0.9
6—1@ 0.1

Figure 5.5: A GMM modeled as a single-state HMM

The parameters of an utterance are modeled with mixturehtgighean vectors, and
variance parameters of the component densities. Assurhaigsticcessive observation
vectors are independent of past observations and staeekgtikelinood of a modeA
for an observation sequen€e= 01,0y, ..., 07 IS given by:

.
logp(O[A) = Zlogp(otlk) (5.12)
t=
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whereP(o;|A) for a D-dimensional feature vectoy is a weighted sum d¥1 component
densities for a given modalgiven by:

M
p(atA) = > wmbm(or) (5.13)

m=1
wherewn, is them™ mixture weight ang™M_; cwm = 1.

Each component densiby, (o) is a multivariate Gaussian function with mean vector
Mm and covariance matrix,, given by:

(@) = 55 /i‘zmwzexp{—%(ot — ) TE k(0 — b} (5.14)

The objective is to find the modalthat has the maximum a posteriori probability for
the input feature vector sequence O according to Equétibh

5.3.3 Gender and Accent Dependent Acoustic Models

The simplest approach to obtain gender and accent depeactautic models is to train
separate acoustic models for each gender and accent grmgpgesnder specific data or
accented speech data from the target accent group. Buitpinder-dependent models
using gender-specific data is feasible as long as enougiingadata is available for each
gender group. However, using accented speech to build adependent models is not
feasible as collecting accented data in large enough antotrain reliable model is often
hard, if not impractical. Nevertheless, the presence diimiaccent acoustic similarity
due to similar pronunciation pattern learnt from the saméherotongue suggests that
accent specific characteristics can be captured from somyatattbn data to transform
the model parameters of the initial model to obtain accepeddent models. Therefore,
we investigated the effectiveness of adapting speakepiendent and gender-dependent
models to the German accent and we obtained significantrpeafice gain as will be
discussed in Sectiod.5.2

Another possibility is to use cross-language accent atdaptavhere native speech
data from the target accent group of users is used to adamakespindependent model
trained on native speech data of another language. This isvated by the fact that
accent-related information could be effectively captuhesh native speech data of a
group of speakers as discussed in Seci@11l We show that promising performance
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gain can be obtained by using cross language accent adaypéatiwill be discussed in
Section8.5.3

5.3.4 Channel Adaptation

In the absence of enough amount of telephone-recorded matgiven application do-
main, one may have to use microphone-recorded data to tiamo8els for use in a
telephone-based spoken dialog system. A commonsensigalagh in such cases is to
"simulate” telephone quality speech from microphone+@ed speech data by introduc-
ing the obvious effects of the telephone channel into theitrg speech data.

Simulating telephone quality speech involves down samgphe audio data to 8 kHz
and applying a low-pass filter with a cutoff frequency of 34and a high-pass filter of
300 Hz to approximate the band-limiting effects of the talepe channel. Furthermore,
to approximate the loss due to the logarithmic encoding entédiephone channel, the
16-bit quantized signals are converted to A-Law compandgthsand back to linearly
quantized 16-bit signal. We then built a SI model using thenigated" training data.
However, the model so built performs not so well on actuagbbne speech. Therefore,
we adapted the resulting speaker-independent model teldgyehone channel character-
istics using a small amount of telephone recorded data teowepthe performance of
the speech recognizer on actual telephone speech. A maeléstrpance gain has been
achieved as will be discussed in Sect&th6

5.4 Speaker Adaptation Techniques: Overview

Speaker adaptation techniques use information provideoh iadaptation data to adjust
the parameters (i.e., mean and variance of the Gaussiaitydemstions) of the initial
model to reflect the characteristics of the current envireminor speaker. Considering
the existence of within-accent acoustic similarity dueitoilar vocal characteristics of
speakers in the same group as discussed in Sesi®hmdapting a speaker-independent
and gender-dependent acoustic models to a particular acaergive robust user-group
dependent acoustic models. A simplified schematic reptasen of speaker adaptation
as used in HMM-based speech recognition models is showrguré&s.6.
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Speaker-independent Model

o5 e

Adaptation
Data

Adapted Model

Figure 5.6: Schematic representation of speaker adapitiased in HMM-based speech
recognition systems

Maximum Likelihood Linear Regression (MLLR) and Maximum asieriori (MAP)
adaptation techniques are briefly described in Sectohdand5.4.2 MAP and MLLR
are known as model-based adaptation methods because tiacnodel parameters
are modified based on the adaptation data from the new siggpiieropposed to speaker
normalization (also known as feature-based adaptatiothads where the input feature
vectors are normalized to match the parameters of the model.

5.4.1 Maximum Likelihood Linear Regression (MLLR)

Maximum Likelihood Linear Regressiohéggetter and Woodland995h estimates lin-
ear transformations for model parameters to maximize #editiood of the adaptation
data. The transformations modify the component means avariances in the initial
system so as to reduce the mismatch between the initial nsadeind the adaptation
data.

For mixture component s, the transformation of the meansengy:

ﬂs — WSES (515)
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whereWs is the transformation matrix (i.e., anx (n+ 1) matrix where n is the dimen-
sionality of the feature vectors) addis the extended mean vector given by:
Es=1[1 p to ... W'
The transformation matri¥\s is computed to maximize the likelihood of the adapta-
tion data using the Expectation-Maximization (EM) algiomit.
The probability density of a feature vectoy being generated by distributianis,
therefore, given by:

1 1
bs(or) = WGXP{—E(Q —Weks) "t (0 —Waks) } (5.16)

(2m

Variance transformation can be applied using:
5 =B"HB (5.17)
whereB is the inverse of the Choleski factor Bf 1, so that
s-t=ccCT

and
B=Cc!

H is then x ntransformation matrix to be estimated.

When the adaptation data is very small a single global toainsican be applied to
every Gaussian component in the model set. When enoughadidaptlata is available
and more rigorous transformation is required, a regressass tree can be used to cluster
acoustically similar Gaussians into regression classesha similar components can
share a common transform. This makes adaptation of disimifor which there were
no observations in the adaptation data possi¥ieiQg et al, 2006.

The adaptation of the transition probabilities and the mrixcomponent weight will
have little effect on the final performanceeggetter and Woodland 995g. However,
transformation of the diagonal covariance matrix can gigggrmance improvement.
Further details on MLLR transformation can be found @ales 1998 Leggetter and
Woodland 1995h.
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5.4 Speaker Adaptation Techniques: Overview

5.4.2 Maximum a Posteriori (MAP) Adaptation

Maximum a Posteriori (MAP)Gauvain and Legl 994 estimation (also known as Bayesian
adaptation) maximizes the a posteriori probability usingnknowledge about the model
parameter distribution. The prior information preventgéadeviations of the parameters
unless the new training data provide strong evidertteafg et al.2001h. Generally, the
speaker-independent model parameter distribution is riloe ipformation used in MAP
adaptation. Given good models and large amount of adaptdéta, MAP can perform
better than MLLR. MAP is a re-estimation procedure; consedly, the adaptation data
required is larger than the amount required for MLLR transifation.

For a state] and a mixture componemn, the mean is computed a¥oung et al,
2006:

Njm

T
fim = ~ 5.18

Him Iljm ij+TUJm ( )
wherepjm is the mean of the speaker-independent modelgrds the mean of the ob-
served adaptation data,is the weighting of the a priori knowledge to the adaptation

speech data, ard is the occupation likelihood of the adaptation data, given b

R T

Njm = r;t; Lim(t)

whereLEm(t) is the occupancy probability for stajeand mixture componemh at timet
of sequence.
The mean of the observed adaptation qgtais given by:

_ SR Lim(t)of
Hjm =
Zr 1Zt 1 Jm(t)
More details on MAP adaptation technique can be found@Gauvain and Leel994
Young et al, 2006.

MAP and MLLR can be effectively combined to improve the parfance of a recog-
nizer further by using the MLLR transformed means as therpifir MAP adaptation.
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5. AUTOMATIC SPEECH RECOGNITION AND RELATED ISSUES

5.5 Summary

In this chapter we described a hidden Markov model (HMM) Hasgeech recognition
with some details on feature extraction, acoustic modelagguage modeling and de-
coding. Gaussian mixture model (GMM) based gender and &ceeagnition models
using cepstral features are also described. The ratiooalgsfng native speech data of
two or more accent groups to train an accent recognizer a&ided. Then we discussed
the use of user-group dependent acoustic models in spoldrgdystems to achieve
robustness using gender-dependent and accent-specifiglsndeinally, we briefly de-
scribed the standard speaker adaptation techniques — MhdR/AP since they will be
used for accent and channel adaptation in Seci#b<® 8.5.3and8.16 The results of
the experiments corresponding to this chapter are preséntgections8.2 8.3 8.4and
8.5.
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Chapter 6

Spoken Language Understanding

6.1 Introduction

Automatic speech recognition systems generally outputrtbst probable transcription
of a spoken utterance or an N-best lattice of possible trgptgmns and are not required
to perform the subsequent semantic and/or syntactic a@esaligven though the correct
recognition of a spoken utterance is vitally important, akgm dialog system can hardly
serve any purpose using only the raw output of a speech remgiiherefore, spoken di-
alog systems incorporate a spoken language understar&lit) (nit that is responsible
to infer the meaning underlying a recognized utterance.

One approach to SLU is to "enrich" the output of the speecbgizer with semantic
information so that the added information can later be usadfer what is meant from
what is said. A spoken utterance can be conceived as a higdprersce of semantic
concepts expressed in words or phrases. The goal of theredguiodel is, therefore,
to determine the most likely sequence of the hidden semaaticepts that could have
generated the observed sequence of words. In other woedgrablem of understanding
the meaning underlying a spoken utterance in a spoken dsgkigm can be partly solved
by decoding the hidden sequence of semantic concepts freraliberved sequence of
words. This can efficiently be realized using hidden Markaxdel. In this chapter, we
introduce a new, robust, hierarchical, HMM-based apprdacemantic concept labeling
that offers a number of advantages over the conventionatdlatept approach.

The rest of the chapter is organized as follows. After brieglyiewing the different
approaches to spoken language understanding in Sécgowe describe how the hidden
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6. SPOKEN LANGUAGE UNDERSTANDING

Markov model fits in the task of spoken language understgndiBectior.3. In Section
6.4, we describe the smoothing technique we use to accountdéasptarse data problem.
A description of a flat-concept semantic tagging model &dion semantically unlabeled
data is provided in Sectiof.5. In Section6.6, we extend the flat-concept model so as to
capture longer context and resolve ambiguity. Seddidimntroduces a robust hierarchical
semantic concept labeling model that organizes low-lexelantic concepts into higher-
level hierarchical structures. The hierarchical modehtiggrated in our spoken dialog
system and encodes longer context, offers better ambigestylution ability, has better
predictive power and provides semantically richer outpatntthe flat-concept model.
Moreover, the required additional human effort to desiga pnoposed model is much
less than the time and effort that would be required to seigellyt annotate the training
data which would also require a detailed analysis of theiegibn domains to define
semantic labels and organize them into hierarchical sirast

6.2 Approaches to Spoken Language Understanding

As discussed in Sectio2.7, the approaches in the domain of spoken language under-
standing can be broadly classified as knowledge-basedtsalt and a combination of
the two. Knowledge-based systems rely on the lexical, syiatasemantic, discourse, etc.
knowledge encoded in the system. These systems performmetiyvhen the structure

of the spoken utterance is covered in the knowledge storéteigystem. Nevertheless,
crafting the required syntactic and semantic knowledgedeioto extract meaning from

a given utterance requires a great deal of expertise ang Iegwan involvement. More-
over, they are often fragile in the face of unexpected inexamples of knowledge-based
systems include TINA of MIT$eneff 1992, PHOENIX of CMU (Ward and Issar1996),

and GEMINI of SRI Dowding et al, 1994).

Statistical approaches, on the other hand, estimate madeineters from data by
counting the frequencies of transitions between states] wbservations while in each
state and which states start a sentence. These statistcklsrare robust, require less
human supervision and expertise, and perform well. Howéhey require a large corpus
of fully annotated training examples, which is often notikalde for many application
domains. Examples of statistical systems include CHRONUAT&T ( Pieraccini and
Levin, 1993, and Hidden Understanding Model (HUM) of BBM{ller et al., 1994).
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6.3 HMM in Spoken Language Understanding

Another popular statistical approach that can be trainedlightly” annotated data is
the hidden vector state model of Cambridge Universig @nd Young 2005 where
state transitions between two states are decomposed ipéoase stack operations that
transform one state to the other.

Approaches to integrate knowledge-based approach intatiatstal learning frame-
work have also been investigated. The generative HMM/CHGpusite model described
in (Wang et al.2009 is a typical example.

We can classify statistical spoken language understarsystgms into two categories
based on whether they can encode hierarchical informatiarob Various statistical
approaches that encode hierarchical structure have bepoged in Charniak 200%,
Chelba and Jelinek00Q Erdogan et aJ.2002 Fine et al, 1998 Miller et al., 1994.
However, all these models require a large amount of anrbteaeing data for param-
eter estimation. The hidden vector state moétg &nd Young2005 mentioned earlier
encodes context using only an abstract annotation for eietance.

The approach to spoken language understanding we propdbes ithesis does not
require semantically annotated training data, instead assommonplace prior domain
knowledge to counterbalance the lack of annotated traicamgus.

6.3 HMM in Spoken Language Understanding

Hidden Markov model (HMM) as used in speech recognition sedbed in Sectiob.2.2

In HMM-based semantic concept labeling, the hidden stadegspond to the semantic
concepts in a given application domain while the obsermagiet corresponds to the set
of words in the lexicon of the system. The model parametezstteg transition prob-
abilities between states, observation probabilities ichestate and which states start a
sentence. These parameters should be given good initis@valb that the Expectation-
Maximization (EM) algorithm could effectively be used tenatively refine these param-
eters during training.

The HMM-based semantic labeling problem, like the HMM-lzhsggeech recognition
problem discussed in Secti@2, is essentially a Bayesian inference problem. Assuming
that the string of word§V — w1, Wo, ..., Wn hypothesized by the speech recognizer was
generated by some hidden sequence of semantic congeptsl,SQ, ...,Sn, the goal is to
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6. SPOKEN LANGUAGE UNDERSTANDING

assign the most likely sequence of semantic concept labeletsequence of words in
the recognized utterance. Hence, the problem can be foreades:
— — —
argma>P(§|W) = argmaxP(W| S)j P(S) (6.1)
3 s P(W)

As we are interested in evaluating different sequencesméréc labels for the same
observation sequence, the denominator in Equdidrcan be ignored. Therefore, the
problem reduces to:

argmaP(§|W) = argmaP(W|§) X P(g) (6.2)
s s
Since it is hard to compute Equatiér? directly, the following simplifying assump-

tions are commonly used.

* Independence assumption: the probability of a word in éesee depends only on
its state and is independent of other words around it.

* First order Markov assumption: the probability of a statépehds only on the pre-
vious state.

Consequently, Equatio®i2 reduces to:

arglnaP(g\W) A arglnaxﬁ P(wi|s) x P(si|s—1) (6.3)
S S =

The semantic prio?(s|s_1) in Equation6.3 models the probability of the system
to go to states given the preceding state 1 while the lexicalization modelR(w;i|s ),
represents the probability that the wardis emitted when the system is at state

If we had a semantically annotated corpus, the maximumiliged estimate of the
semantic prior and the lexicalization model can be compbtedollecting frequencies
of transitions between states, word observations in eath and states that start a sen-
tence. In the absence of semantically labeled data, theampters need to be learnt via
unsupervised training using the EM algorithm from unlatlétaining data. The EM al-
gorithm iteratively maximizes the probability of the traig sequences given initial HMM
parameter values and guarantees only local maximum. ltndispleeavily on the initial
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6.4 Smoothing

parameter values of the model; hence, it is crucial to detera reasonable model struc-
ture and well-informed initial parameter values of the modehe use of prior domain
knowledge is particularly essential to provide good ihipiarameter values and define a
reasonable model topology.

A high-level description of the algorithm we used to traie tHMM-based semantic
models is shown in Listing.

Listing 3 The core of the training algorithm
hmm.loadProbs(initial_model)

hmm.readSeqs(training_data)
for k in range (0,maxlterations):
totalLogProb = hmm.count_seqs()
i f change(totalLogProb) < threshold:
br eak
hmm.updateProbs()
hmm.saveProbs(trained_model)

In Listing 3, the function hmm.loadProbs() loads the initial model cdetpas will
be described in Sectior&5, 6.6 and6.7 while hmm.readSeqs() reads the training data.
The parameter "maxlterations” denotes the number of trgiibérations specified to train
the model. One iteration of the Baum-Welch algorithm cassié "hmm.count_seqs()"
which computes the expected counts and "hmm.updatePtoldsgh estimates the new
HMM parameters. If the change in total log likelihood betwéwo iterations no longer
increases; i.e., the current model is at a local maximunty#aeing algorithm terminates.

Given a well-trained model, the highest probability sentalabel sequence which
corresponds to the sequence of observed words can be cahfgyutee Viterbi algorithm
(Viterbi, 1967) as described in Sectigh5.4

6.4 Smoothing

The occurrence of events in a test-set which were not seé itndaining set is inevitable
in statistical methods that use a finite amount of trainingd&his phenomenon is com-
monly known as the the sparse data problem. Events that camaiip occur in sponta-
neous conversation may not occur at all in a given training.dHd these unseen events
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6. SPOKEN LANGUAGE UNDERSTANDING

are assigned zero probabilities, the system becomes \agyefland fails when these un-
foreseen events occur. Smoothing is a method used to cohe&tdro probability” and
the data sparseness problem. There are a number of smoafipngaches such as add-
one smoothing (also known as Laplace smoothibhgjgtone 1920, back-off smoothing
(Katz, 1987, deleted interpolationJelinek and Mercerl980), etc.

Smoothing, as used in this thesis for semantic modelingyalh model to parse all ut-
terances including those that contain "unseen transitimg "out-of-vocabulary” words
which otherwise could not be parsed. If we had a semantiealptated training corpus,
the maximum likelihood estimate of the semantic piRig|s_1) can be computed by
collecting frequencies of transitions between states,samaothing can be applied based
on these counts. However, since we do not have semanticallytated training data, we
compute the expected counts on the training corpus, witfotimeard-backward recursion
of the Baum-Welch algorithm. Then the smoothed parametersamputed on the basis
of the expected counts.

To smooth the transition probabilities we used the simp-@ue smoothing tech-
nique which adds one to all counts before normalizing theim pmobabilities as shown
in Equation6.4.

5 i B é(Sifl,Si)—l—l.O
Pais-1)= C(si-1) +C(s-1) 4

Whereé(s—,l,s—) represents the expected counts of transitions from s{ajeto state
S andé(s_l) represents the expected state occupation counts compytibe [Baum-

Welch algorithm. C(s_1) represents the number of all possible transitions thateleav
the states_;. Finally, a lower limit on all transition probabilities thare not explicitly
prohibited is imposed so that all possible utterances casubeessfully parsed. We set
this value to a very small non-zero valueninProb= 10"7).

In order to smooth emission probabilities, we use a commwisal approach where a
vocabulary item "oov" is introduced in classes such as CETATE, AIRLINE, DUMMY,
etc. where the vocabulary list in the class is not exhausthewords not in the lexicon
are mapped to the "oov" word and the probability of the "oodtavin a concept class
is set to the sum of the probabilities of all words in that sldsat occur only once in the
training set. Since we do not have annotated data, the d&iimat these probabilities
is based on the expected count of emitting the symipah states; (i.e., é(Sj,Wk)), as
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6.5 The Flat-Concept Model

computed by the Baum-Welch algorithm on the training data.ufper and lower limit
to the probability of the "oov" word are set such tha@inProb< P(ooVs;) < 0.8. These
values are empirically determined. Then, the probabdlitiethat class are normalized so
that they add up to one. This approach, though simple, sémegsurpose well as will be
discussed in Sectiod.6.

6.5 The Flat-Concept Model

A flat-concept model labels each word in an utterance withreesponding semantic
label and does not encode hierarchical relationship betweacepts. CHRONUS of
AT&T (Pieraccini and Levinl993 and IBM’s fertility model Pietra et al.1997) are two
examples using the flat-concept model. In CHRONUS and simgaroaches, the model
parameters are estimated by simply counting the relateguigncies from semantically
annotated training data, where each word is labeled withstate (semantic class) it
belongs to. In this section we describe a flat-concept motiekgvno annotated data is
required.

Modeling an application domain requires a precise ideation of the activities, en-
tities, events, attributes and relations within the donadidiscourse. In this thesis, we are
interested in two application domains; namely, airlingetglanning in English and train
inquiries domain in German. A detailed list of concepts tnat relevant in each appli-
cation domain is identified using prior domain knowledge dothain-specific example
sentences in the training data. As a result of the detailedadto analysis, we identified
over 76 semantic classes the airline travel planning domain and 51 semantic clagse
the domain of train inquiries. Listing depicts a partial listing of concepts identified for
the airline travel planning domain. A complete list is piaed in AppendixA for both
application domains.

Listing 4 Example list of semantic classes (semantic concepts)ifaehtor the airline

travel planning domain

CITY_P1, CITY_P2, CITY_P3, STATE, COUNTRY, DAY_OF WEEK, D AY_OF MONTH,
MONTH, MINUTES, AMPM, HOUR_OF DAY, FLIGHT _NUMBER, FLIGHILASS, FROM, TO,
ON, AIRLINE_NAME, AIRPORT_NAME, ARRIVAL, DEPARTURE, YES, NO, DUMMY, ...

1The terms semantic class, semantic concept, semantic séadsesemantic tag are used interchangeably
in this thesis
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6. SPOKEN LANGUAGE UNDERSTANDING

As can be observed in Listirdy a single concept can be broken down into several
sub-concepts, in some cases. For instance, the concepti€mydeled with three sub-
concepts — CITY_P1, CITY_P2 and CITY_P3 in order to captuddtimvord city names
such as "New York City", "Washington D. C." or train statiangh as "Berlin Zoologis-
cher Garten", etc.

The initial HMM for the flat-concept based approach is a fulbnnected network
such that any state (semantic concept) can follow any othts gsemantic concept) with
equal probability as shown in Figuéel

DAY_OF
MONTH

Figure 6.1: A partial network depicting the initial flat-ampt semantic model

The emission probabilities are initialized by classifyitigg words in the system’s
vocabulary into the known set of semantic classes manuaftth shat a set of words
belonging to a semantic class are initially equiprobable.

As can be seen in Figu&l, the INIT and the FINAL states mark the beginning and
end of the HMM and are non-emitting. The dotted arrows regrethose transitions to
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6.5 The Flat-Concept Model

and from other states that are not shown in the diagram. Touatdor the effects of
spontaneous speech such as stammering, hesitation, dtto atlow multiple observa-
tions from the same state self-loops are initially perrdifta all emitting states.

The state transitions for the following utterances can lséyetraced in Figures.1

* (I would like to fly) DUMMY (from) FROM (Los) CITY_P1 (Angels) CITY_P2
(California) STATE (to) TO (Boston) CITY_P2 (on) ON (May) MO'H (first)
DAY_OF_MONTH (at) AT (nine) HOUR_OF_DAY (p. m.) AMPM

* (Monday) DAY_OF_WEEK (June) MONTH (fifteen) DAY_OF_MONTt¢arly)
PERIOD_OF_DAY (in the) DUMMY (morning) PERIOD_OF_DAY

The initial model is too unconstrained to be of practical. udgerefore, it is essential
to introduce some informative structures by prohibitingitary and unlikely state tran-
sitions based on prior domain knowledge and training exam#or instance, in order to
disambiguate words belonging to multiple semantic classeae unlikely transitions can
be explicitly prohibited. For example, "twenty six" in "Mayenty six" would be labeled
as DAY_OF_MONTH if the unlikely one-step transitions fromOMWTH to other con-
fusable states such as FLIGHT_NUMBER, ID_NUMBER, QUANTI|TFYOUR, MIN-
UTES, etc. are explicitly prohibited. This may require sevéerations of testing on a
training set in order to learn semantic structures from upgated data. To simplify this
process, we implemented a model compiler that allows us wifjnthe model parame-
ters easily using a modeling language in order to generag¢terinitial model where the
transition probabilities are tuned based on prior domaovwkadge.

The initial transition probabilities can be tuned as regdiusing the keywords "all”,
"high", "low", "only", "except", and "none". Tuning, in thicontext, is the process of
introducing constraints to modify the initial model struiet using these keywords. An
excerpt of the model definition for the flat-concept modeliv&g in Figure6.2
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6. SPOKEN LANGUAGE UNDERSTANDING

INIT
-> except{FINAL}

CITY_P1

-> except{STATE} high{CITY_P2}
"city p1.txt"

CITY_P2

-> except{CITY_QUALIFIER}
"city_p2.txt"

CITY_P3

-> all

"city_p3.txt"

DAY _OF MONTH
-> except{FLIGHT _NUMBER,QUANTITY} high{DAY_OF MONTH}
"day_of _month.txt"

TO
> except{DUMMY} high{CITY_P1,CITY_P2,HOUR_OF DAY}
"to. txt"

FINAL
-> none

Figure 6.2: An excerpt of model definition for the flat-concemdel

The keyword "all" means that all transitions out of a stateeaqually likely including
self-loops and "none" means no transition out of a statessipte (e.g. out of the FINAL
state). The keyword "except" as inexcept{FINAL} means that a one-step transition to
FINAL is prohibited while allowing all other transitions smy other state. The keyword
"only" is used to specify the only allowable transition(s)t of a state. The keyword
"high" assigns to a specified set of states a transition fibtyavalue which is twice as
much as the rest of the probabilities in that class and "losglgns half as much. The
entries "city_pl1.txt", "city_p2.txt", "day_of_monthttxetc. in Figure6.2are simple text
files that contain the lexical items belonging to the subeemis CITY_P1, CITY_P2,
DAY_OF_ MONTH, etc., respectively.

After a number of testing and tuning parameters on the trgidata, the initial model
becomes "good" enough for EM training. The training aldomtstarts with the HMM
consisting of the "tuned" parameters as initial values aerhiively refines the model
until convergence is reached using the training data.
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6.6 The Medium-level Hierarchical Model

6.5.1 Limitations of the Flat-Concept Model

The flat-concept model built in this way yields satisfactperformance for relatively
simple application domains. A detailed discussion of theeexnents carried out and the
results obtained will be presented in Sect#.3

However, it suffers from the following main limitations:

« The output is less expressive as a single concept is oftgkebrdown into a se-
guence of low level concepts that are individually label&dr instance, phrases
like "Tuesday November the eleventh two thousand nine" dtirmord city names
such as "New York City", etc. would be more informative if ééd as DATE and
CITY, respectively instead of simply providing a fragmehteitput containing each
word along with a corresponding atomic semantic label.

* Its predictive power is very weak as adjacent semantiaalgted concepts are
loosely coupled.

« It does not allow any hierarchical grouping of concepts dr@dencoded context is
quite narrow.

» Several iteration of testing and hand-tuning of model peaters may be required
on either a training or a development set before sufficiemti@age can be achieved.

These shortcomings of the flat-concept model motivate a farethodels like the
ones we propose in this thesis where we capture longer ddmtexouping semantically
and hierarchically related low-level concepts into higlesel structures. In this thesis,
we propose two approaches that target different levelssslhchical organization of con-
cepts. In the following section, we describe a model thatxalmedium-level hierarchical
organization of concepts by grouping semantically rel&wedlevel concepts together so
as to encode longer contextual information.

6.6 The Medium-level Hierarchical Model

In order to encode longer context, we use the detailed listoocepts that have been
identified in Sectior6.5 and we group two or more low-level concepts that describe a
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single semantic concept into a single cohesive unit. Fdaite, low-level concepts
HOUR_OF_DAY, MINUTES, AMPM describe a concept TIME, and ksvel concepts
like MONTH, DAY_OF_MONTH, DAY_OF_WEEK and YEAR representsingle con-
cept DATE, etc. As can be clearly seen, the knowledge rediumedetermine which
attributes should belong together to form such a structiaecommonplace knowledge.

Accordingly, we identified 18 cohesive units containing setically related low-level
concepts for the domain of airline travel planning and 1Xterdomain of train inquiries.
Listing 5 depicts a partial list of groups comprising a set of low-l@ancepts (attributes)
in the domain of airline travel planning.

Listing 5 Partial list of grouped semantic concepts
CI TY: (CITY_P1, CITY_P2, CITY_P3, SPELT CITY)

Al RPORT: (AIRPORT NAME, AIRPORT TYPE, AIRPORT QUALIFIER, SPELT AIRPORT)
DATE: (DAY_OF _MONTH, DAY OF WEEK, MONTH, YEAR)

TI ME: (MINUTES, HOUR_OF DAY, AMPM)

Al RLI NE: (AIRLINE_QUALIFIER, AIRLINE_NAME)

CAR | NFO (CAR, RENTAL_COMPANY, CAR_TYPE)

FLI GHT_I NFO (FLIGHT_CLASS, FLIGHT NUMBER, FLIGHT TYPE, FLIGHT QUALIFIER)
HOTEL_| NFO (HOTEL_TYPE, HOTEL_QUALIFIER, LOCATION)

USER: (ID,ID_NUMBER,NAME_OF USER)

PRI CE: (FARE, AMOUNT OF MONEY, FARE_CLASS)

The rationale behind grouping of related sub-conceptstihegas threefold. First,
it improves the predictive power of the model since adjacefdted concepts are well
coupled. Second, the model produces outputs that are sealjntich and more mean-
ingful. Third, it offers better ambiguity resolution powtan the flat-concept model. For
instance, "twenty six" in "May twenty six" would not be cos@d with other possible
semantic labels such as MINUTES, QUANTITY, ID_NUMBER, &s.DATE is a single
entity where the attributes DAY _OF _MONTH and MONTH are welupled. Hence, the
model resolves ambiguities of this sort which otherwise todale manually tuned.

Each of these semantically organized units is modeled ad-aetwork with two
non-emitting states that mark the entry and exit stateseo$ti-network. The transitions
between the states within a sub-network are initially ergadich will later be refined
through tuning and training. The non-emitting states ofsatworks are used to glue a
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sub-network with other sub-networks and states in the djlodiavork. The initial global
HMM for the medium-level hierarchical model for each apation domain is a fully
connected network such that any state or sub-network cawfainy other state or sub-
network with equal probability. The global network has tworam non-emitting states
INIT and FINAL that mark the entry and exit states of the nakw@\ one-step transition
from the entry state to the exit state is explicitly prohebito prevent non-emitting loops.

Figure6.3shows a partial structure of the HMM for the domain of airlirevel plan-
ning. The dotted arrows represent the transitions to amd §tates and sub-networks that
are not shown in the diagram.

Figure 6.3: A partial structure of the initial medium-leveérarchical model

It is easy to trace the state transitions for the followingrances in Figuré.3.

87


Chapter6/Chapter6Figs/contextual_model.eps

6. SPOKEN LANGUAGE UNDERSTANDING

* (I would like to fly) DUMMY (from) FROM (Los Angeles) CITY (Chfornia)
STATE (to) TO (Boston) CITY (on) ON (May first) DATE (at) AT (ght thirty
p. m.) TIME

* (Monday June fifteen) DATE (early morning) PERIOD_OF_DAY

The emission probabilities are initialized in the same wainahe flat-concept model
— by classifying the words in the vocabulary of the applmatiomains into the known set
of lexical classes where all words belonging to a semaraisscare initially set equiprob-
able.

Once we define the model structure, it may be necessary tdHgasitial transition
probabilities of the HMM to help the disambiguation of soregital items that belong
to multiple semantic classes which the modeling approacikdawot resolve on its own.
This can be done by performing preliminary tests on the iingior a development data
and introducing necessary constraints as required uritrdining data is sufficiently
covered. To provide easy tuning and to keep the cost of tulmwgwe extended the
model compiler introduced in Sectidh5 so that it accommodates the new modeling
approach. An excerpt of the model definition for the mediewel hierarchical model is
shown in Figures.4.

As described in the previous section the initial model tit@os probabilities can be
easily tuned as required using the keywords "all", "hightw", "except"”, "only" and
"none". As a convention, the entry state of a sub-networlersoted by the name of the
concept (e.g. CITY) and the exit state is denoted by a tiltlevi@d by the name of the
concept (e.g~CITY).

Given a "well-informed" initial model tuned as describedad, the EM algorithm
can be used to further refine the model parameters.

The data used, the experiments carried out, the resultsiedtand some illustrative
examples for the medium hierarchical model will be discdsee&SectiornB.6.4

The medium-hierarchical model offers better ambiguityohason ability and pro-
duces more structured output than the flat-concept modelveMer, it can further be
extended to encode more hierarchical relationship of qasceFor instance, the con-
cepts FROM and TO have strong hierarchical relation withcihvecepts CITY and AIR-
PORT and when combined represent higher-level semantomation such as DEPAR-
TURE_LOC and ARRIVAL_LOC which were unavailable in the mtsidiscussed above.
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6.6 The Medium-level Hierarchical Model

INIT
-> except{FINAL}

CITY
{
CITY
>except{~CITY}
CITY_P1
->all high{CITY_ P2} low{~CITY}
“city_pl.txt”
CITY_P2
->all high{CITY_P3,~CITY} low{CITY_PI}
“city_p2.txt”
CITY_P3
->all high{CITY_P3, ~CITY}
“city_p3.txt”
SPELT_CITY
->all high{SPELT CITY}
“spelt_city.txt
~CITY
->none

)
->except{INIT} high{AIRPORT, STATE, COUNTRY}
DATE
{
DATE
—>except{~DATE}
MONTH
->all high{DAY_OF_MONTH}
“month.txt”
DAY_OF MONTH

~DATE
->none

)

>except{INIT}

TO

->except{INIT} high{CITY,AIRPORT}

“to.txt”

FINAL
->none

Figure 6.4: Mengistu et al. 20083: A partial model definition for the medium-level
hierarchical model
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6.7 The Hierarchical Model

In this section we extend the modeling approach discuss&eation6.6 further by in-
cluding hierarchically related concepts into similar caikie units discussed in the pre-
vious section. The hierarchical extension of the model iolessadditional, higher-level
semantic concepts such as DEPARTURE, ARRIVAL, etc. infdaromeand hence provides
a richer semantic output.

The modeling approach described in this section involves $tages. First, as de-
scribed in Sectio®.5we define a detailed ontology of each application domain by-id
tifying the relevant concepts and their interrelationshipen we group semantically and
hierarchically related concepts together into units calaper-concepts. For example,
the high-level concept TIME can further be put into a higlesel entity called AR-
RIVAL_TIME or DEPARTURE_TIME. This kind of structure can beadily produced
by a dialog designer of a given application domain using dorkaowledge and training
examples.

The initial global HMM consists of an ergodic network of smetworks and single
state nodes similar to the one described in Sed@iénAn example sub-network (LOCA-
TION) that can represent phrases like "Washington Dullésrivational Airport”, "Los
Angeles California”, etc. is shown in Figuéeb.

ENTRY STATE

EXIT STATE

Figure 6.5: Mengistu et al.2008h: A sub-network (LOCATION) that contains single
state concepts (COUNTRY and STATE) and sub-networks (CliY AIRPORT)
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6.7 The Hierarchical Model

As can be seen in Figuré.5 a sub-network (e.g., LOCATION) can contain other
sub-networks (e.g., CITY and AIRPORT). When sub-networnkswsed in many other
bigger sub-networks the model gets more complex. In ordde#d with the consequent
data sparsity problem sub-networks can be tied to enablinghaf emission and inter-
nal transition probabilities. For instance, the multi-diaoncept CITY is expected to
have the same internal transition and emission probasiliegardless of whether it is in
a departure location (DEPARTURE_LOC) or arrival locati®/fRRIVAL_LOC). When
sub-networks are tied, all the data that would have been tasestimate the individual
untied parameters are pooled together to estimate the pteesof the tied sub-network.
We refer to these kinds of tied sub-networks that are defimex @nd reused in dif-
ferent super-concepts as macros. For example, LOCATIONCR@ can be used in
ARRIVAL_LOC, DEPARTURE_LOC or as a self-contained entit CATION.

As is the case with the other modeling methods, biasing scansition probabilities
may be necessary with the help of domain and linguistic kedgs to obtain better initial
models. This process is simplified with the use of an extenv@esion of the modeling
language described in Secti6rbwhere one can easily modify the initial transition proba-
bilities with the keywords "none", "except", "high", "low"only" and "all". Accordingly,
the model compiler is extended to accommodate the new fsatliigures.6 depicts an
excerpt of the hierarchical model definition for the airlirevel planning domain.

In Figure6.6, CITY_MACRO and AIRPORT_MACRO are sub-structures thatdhol
semantically related information together. LOCATION_MRO is an example of a
nested macro containing other smaller macros — AIRPORT_Ria@nd CITY_MACRO.
As a convention, the entry state of a sub-network is denoyethé name of the sub-
network itself (e.g. CITY_MACRO) and the exit state is destbby ~ followed by
the macro name (e.g~CITY_MACRO). The notation ">return" marks the end of
a macro definition. To use a macro in another sub-structuraiseea notation like
LOC_CITY=>CITY_MACRO to mean CITY_MACRO isreused as LOC_CITY. A one-
step transition to the exit state of a sub-network direathyf the entry state is explicitly
prohibited with constraints like *>except{~CITY_MACRO}" to prevent non-emitting
loops. As described in Sectighb, "city pl.txt", "city p2.txt", "arrival.txt", etc. are
simple text files that contain the lexical items belongindhe sub-concepts CITY_P1,
CITY_P2, ARRIVAL, etc. The required additional human effand expertise to design
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6. SPOKEN LANGUAGE UNDERSTANDING

INIT
-> except{FINAL}
=>CITY_MACRO
{
CITY_MACRO
-> except{~CITY_MACRO}
CITY_ Pl
-> all high{CITY_P2} low{~CITY_MACRO}
"city pl.txt"
CITY_P2
-> all high{CITY_P3,~CITY_MACRO} low{CITY_P1}
"city p2.txt"
CITY_P3
-> all high{CITY_ P3,~CITY_ MACRO}
"city p3.txt"
~CITY_MACRO
-> none
¥
-> return
=>AIRPORT_MACRO
{
AIRPORT MACRO
->except{~AIRPORT_MACRO}

~AIRPORT_MACRO
->none
K
->return
=>LOCATION_ MACRO
{
LOCATION_MACRO
-> except{~LOCATION_MACRO}
LOC CITY=>CITY_MACRO
-> all high{STATE,COUNTRY }
LOC_AIRPORT=>AIRPORT_MACRO
->all
STATE
-> all high{STATE,~LOCATION_MACRO}
"states.txt"
COUNTRY
-> all high{~LOCATION_ MACRO}
"countries.txt"
~LOCATION_MACRO
-> none
i
-> return
ARRIVAL LOC
{
ARRIVAL LOC
-> only{ALOC_ARRIVE,ALOC_TO}
ALOC_ARRIVE
-> except{~ARRIVAL_ LOC}
"arrival.txt"

ALOCATION=>LOCATION_MACRO
-> only{~ARRIVAL LOC}
~ARRIVAL_LOC

-> none

-=> all

FINAL
->none

Figure 6.6: Mengistu et al.2008h: Excerpt of model prototype for the domain of airline
travel planning
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6.7 The Hierarchical Model

the described hierarchical model is clearly much less thaulavbe required to semanti-
cally annotate the training data which would also requirtaitedd analysis of the applica-
tion domains to define semantic labels and organize thenmsuqter-concepts. Besides,
the cost of producing such an organization is much less tlaawl-erafting a semantic
grammar as no particular linguistic (syntactic and sensaptipertise is required — only a
commonplace prior domain knowledge is assumed.

Another robust feature of the hierarchical model is thaai abel out-of-vocabulary
words (unseen vocabulary items in the training data) ctyethe example in Listing
illustrates this clearly. Given that city name "Addis Ababad airline name "Ethiopian”
were not seen in the training corpus, the utterance "I'm ilogkor a flight from Ad-
dis Ababa to Frankfurt Germany on September the twenty thtelin the afternoon on
Ethiopian airlines" would be labeled as shown in Listéig

Listing 6 Example output of the hierarchical model
I'm looking for a) DUMMY (flight) FLIGHT INFO

(

(from oov[Addis] oov[Ababa]) DEPARTURE_LOC
(to Frankfurt Germany) ARRIVAL LOC
(
(
(

on September the twenty third) DATE_INFO
late in the afternoon) TIME_INFO
on oov[Ethiopian] airlines) AIRLINE

The notation oov][...] in Listing denotes an out-of-vocabulary word. As can be seen,
in addition to providing a more useful and structured outthe hierarchical model can
correctly label out-of-vocabulary words using the surming context. Moreover, the
output can also be made to show the low-level concepts wittgrhigh-level structure.
For instance, the detailed output for the DEPARTURE_LOQsdbove example would
look like:

Listing 7 Sample detailed output of the hierarchical model
((from) FROM (((oov[Addis]) CITY_P1 (oov[Ababa]) CITY_P2 ) CITY_MACRO)

LOCATION_MACRO) DEPARTURE_LOC.
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In Section8.6.5we will present more illustrative examples and a detailestuksion
of the data used, the experiments conducted and the resimed for the hierarchical
model.

6.7.1 Robustness to Noisy Data

Spoken language understanding can be easy for simple appticlomains where users
are restricted in the choice of their formulation of a spokeguest and the vocabulary
size is very small. However, if a dialog system allows hurt@ituman like conversation
the task becomes more challenging due to the natural pher@aiepontaneous speech
such as hesitations, false starts, filled pauses, etcninatiuce undesirable noise. Hence,
a spoken language understanding model must be robust terpraleal with these effects
of natural language.

Listing 8 shows some noisy utterances from the DARPA Communicat@usoalong
with the corresponding output of the hierarchical model.

Listing 8 Example noisy utterances and the corresponding taggedtaftfhe hierarchi-

cal model
no no no no not at six thirty I'd like to arrive at six thirty.

(no no no no not) NO (at six thirty) TIME_INFO (I'd like to) DUMMY (arrive
at six thirty) ARRIVAL_TIME

United Airlines from Los Angeles to fromto to London.

(United Airlines) AIRLINE (from Los Angeles) DEPARTURE_LO C (to) TO (from
FROM (o to London) ARRIVAL LOC

I'd like to arrive leave early morning.

('d like to) DUMMY ( arrive) ARRIVAL (leave early morning) DEPARTURE_TIME

I'd like to fly from Los Las Vegas to oh never mind um Tucson to Las Vegas

('d like to fly) DUMMY (from Los Las Vegas) DEPARTURE LOC (to oh oov[ never]
oov[ mi nd] um DUMMY (Tucson) LOCATION (to Las Vegas) ARRIVAL _LOC
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As can be seen, each of the utterances in LisBicgntain some form of undesirable
noise — repetitions, self-repairs, interjections, etc.wkeleer, the hierarchical model can
gracefully deal with these as can be seen in the examplesactn the output of the
hierarchical model has to be analyzed within the context diadog state so that some
ambiguities can be resolved internally or with explicit ionations. This can help us to
analyze only the relevant information at a given dialogestatd safely ignore everything
else. In the last example, for instance, there is a confliet; Las Vegas is labeled as
both departure and arrival location. Hence, the dialog mpameent program can confirm
it explicitly (e.g. "Do you want to fly to Las Vegas or from Lagyas?") or use some rules
to resolve conflicts of this sort. Note also that the two out«mcabulary words (never,
and mind) are correctly labeled in the last example. Theuwutpa speech recognition
engine could also be noisy, and hence the model should bstrtmbdeal with recognition
errors.

6.8 Summary

In the first three sections of this chapter, we introducedfiz&ken language understanding
problem, reviewed related approaches to spoken languadgrstanding and described
HMMs as used in spoken language understanding. The rengaseictions in this chap-
ter describe our HMM-based approach to semantic conceglifgoat three different but
interrelated levels. We started with the conventionaldlatcept approach and incremen-
tally extended it to encode more context at different leeélsierarchy. The hierarchical
models offer better ambiguity resolution ability, higheegictive power, and produce
more structured, semantically richer information thanftaeconcept model. Moreover,
the hierarchical models are more robust to the effects afrabntanguage than the con-
ventional flat-concept model. It has also been shown thabubcabulary words could
be more correctly labeled with the hierarchical model thah the flat-concept model.
All the described approaches can be readily trained on efddldata with relatively
less human supervision. We also introduced a modeling Eggyand a model compiler
that essentially minimize the required level of human effiyr allowing users to easily
tune the initial model parameters. Tuning of initial modatgmeters using prior domain
knowledge and training examples is essential to provide l&kimfermed initial model
to the EM algorithm. The effort is shifted from the laborioaisd error-prone manual
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6. SPOKEN LANGUAGE UNDERSTANDING

semantic labeling of the full training corpus to manuall\sigaing semantic models at
a required level of hierarchy using ones prior domain knadg&and training examples.
The detailed analysis of the application domains to defimeaseic labels and organize
them into super-concepts must be done anyway, even for rhatalaeling the training
data. Hence, the required additional effort to design teednchical model is considerably
low.
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Chapter 7

Spoken Language Interaction

7.1 Introduction

As discussed in the previous chapters, the performanceeaé&phone-based spoken di-
alog system depends on the performance of the underlyihgédagies that include au-
tomatic speech recognition, spoken language understgeixt to speech synthesis and
the telephony interface. Dialog quality and dialog manageinstrategy are equally im-
portant as the overall usability and acceptability of arglaly system mainly depends on
these. In the preceding chapters we have discussed theabaraitecture, the automatic
speech recognition and the spoken language understaraimgpnents of our telephone-
based spoken dialog system framework. In this chapter weridbeshe fundamentals of
spoken language interaction and related issues.

The rest of the chapter is organized as follows. In Secti@we describe spoken
language interaction and the essential characteristies@élog. Dialog management
issues are discussed in SectibBfollowed by the discussion of dialog design principles
in Section7.4. VoiceXML and VoiceXML-based spoken dialog systems in gahare
reviewed in Sectiofd.5. In Section7.6, we discuss the dialog system evaluation procedure
we used to evaluate the quality and usability of our framéwor
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7. SPOKEN LANGUAGE INTERACTION

7.2 Spoken Language Interaction: Overview

Historically, research in spoken language interaction folewed two main lines of
thought; namely, discourse analysis and conversatioysisaDiscourse analysiSéarle
1976, views dialog as a rational cooperation and assumes tiegantes in a conversation
are well-formed sentences and ignores the disfluenciesoiesdanguage. Conversation
analysis Levinson 1983 Sacks 1992, on the other hand, views dialog as a social in-
teraction in which the phenomena of spontaneous speechasuusitations, false starts,
filled pauses, abrupt shift of focus, etc. are taken into iclemation. As can be noted,
an ideal spoken dialog system should, in principle, comsilehe disfluencies that are
inherent in natural conversation. However, in practice, design of a dialog system is
constrained by the limitations of the underlying technasgsuch as automatic speech
recognition, speech understanding, speech synthesigjetce, generally man-machine
interactions are more constrained and less complex thammioahuman communica-
tions.

Spoken language interaction is a complex joint activityrabterized by turn taking,
speech acts, grounding, shift in dialog initiative and otliscourse phenomena such as
ellipsis, anaphora, etc. In the sections that follow, wecdbe these features briefly.

7.2.1 Turn-taking

Turn-taking Sacks et al.1974) is a fundamental organization of conversation by which
participants alternate in "taking the floor". A dialog peipant in a human-to-human
communication signals the desire to take, maintain or yéetdrn by a verbal or non-
verbal signal, such as eye contact, a pause or another méamsan-to-human com-
munication appears to be very permissive, with a rich arfaym-taking cues Baber
1993. Back-channels such as "hmm", "uh-huh”, "yeah", etc. dé®naused to indicate
that the listener is actively listening and encourage tleaker to continue talking. One
approach to manage turn-taking in man-machine interacsigriring the utterances of
the dialog partners where the first part of the pair requitesecond part of the pair for a
meaningful interaction to occur. These pairs are known ggadcy pairs$chegloff and
Sacks 1973. Adjacency pairs are two subsequent matching utteranoesiped by dif-
ferent speakers constituting a dialog exchange such asquasswer, greeting-greeting,
statement-acknowledgement, etc.
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7.2.2 Speech Acts

Each turn or utterance in a dialog is equivalent to an actendperformed by the speaker
(Austin, 1962. An utterance can change the state of the world as in "l nawguince you
husband and wife" which results in a new social reality. $pegct theory describes an
utterance in a dialog at three levels; namely, locution#dogutionary and perlocutionary
acts. A locutionary act is simply the act of uttering a megfuhutterance. An illocu-
tionary act, on the other hand, is the real action performethé utterance as in asking,
welcoming, informing, apologizing, warning, etc. A penionary act is the effect(s) of
the utterance on the listener, who is, for instance, welachnméormed, or warned. The
term speech act is generally used to describe illocutionaty rather than either of the
other two Qurafsky and Martin2008.

7.2.3 Grounding

As a dialog is a collaborative process to perform a commdx tas necessary that the
participants establish a common groutalnaker1978 so that possible misunderstand-
ings can be repaired early and the dialog participants gdepege that their intention is
understood by each other. The listener must somehow maleait (ground) that the
speaker’s intention is understoddlark and Schaefg1989 introduce a concept of con-
tribution which has two phases — presentation and acceptama spoken dialog system,
the speaker (the user) presents an utterance in the prégenqthase. In the acceptance
phase the listener (the system) has to ground explicitlynlicitly to indicate whether
correct understanding has been achieved.

7.2.4 Dialog Acts

Speech acts do not model the key features of conversatichsasugrounding, contribu-
tions, adjacency pair, etclifrafsky and Martin2008. Therefore, a higher level concept
that bears the relationship of an utterance with the neighalialog turns is used. This
construct is known as a dialog a@unt, 1994). It indicates the function of an utterance
in a given dialog. Dialog acts are a finite set of labels ajpigiteutterances in a discourse
such as YES-NO QUESTION ("Would you like to fly on May first?REQUEST ("l
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would like to fly from Hartford to Boston on May first"), OPINNMD ("I think the com-
puter is not listening to me"), INTRODUCTION ("My name is KE)YBACKCHANNEL
("uh-huh").

7.2.5 Ellipsis and Anaphora

In natural language dialogs, utterances normally contanodirse phenomena known
as ellipsis and anaphora. Anaphora is the phenomenon ogfaisdtic expression used
when a speaker wants to refer back to something mention&draarthe conversation.
For instance, in the sequence of utterances "I am lookindjiggrts to Boston" "l want
to arrive there early in the morning", the adverb 'there’ ne tsecond utterance refers
to 'Boston’ which is mentioned in the preceding utterancée process of associating
'there’ with 'Boston’ in the above example is known as anaphesolution.

Ellipsisis a fragment of a sentence where a word or a phrasg-isut and the missing
part should be inferred or extracted from previous uttezarar context. For instance, in
the fragment "Are there any to San Francisco?", one has tm file missing word to
get what is meant from dialog context and general knowledigehe above example it
appears that 'flights’ might be the missing word if the disseuhistory was about flights.
As can be inferred, to resolve ellipsis and anaphora, itsemsl to keep the discourse
history and use them to resolve these discourse phenomena.

7.3 Dialog Management

Dialog management provides a lucid overall structure toakep interaction that goes
beyond a single turn and properly manages a spoken langotagadtion between the
dialog participants.

7.3.1 Dialog Initiative

Dialog initiative refers to who has the conversational lead dialog Walker and Whit-
taker 1990 or who is in control of the dialog. In human-to-human cosetion each
participant may alternately own initiative to direct thealof the conversation. This type
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of interaction where a shift in dialog initiative can takea@ from one participant to the
other in the course of a dialog freely is referred to as mixetigative.

In man-machine interaction, the initiative does not chabgeveen the system and
the user as freely as it does in human-to-human conversatisnmany implemented
commercial systems, the system owns the conversatiorchiled directs the dialog by
asking questions to elicit information from the user andrtiie of the user in the dialog
is limited to responding to the system prompts. These kinglysefems are referred to as
systeme-initiative or system-directed. An example of systéirected dialog is presented
below.

System:  What is your departure city?

User: London

System: What is your arrival city?

User: Berlin

System: On what day do you wish to travel?
User: tomorrow

System: At what time?

User: nine p. m.

System-directed dialogs have a virtue of simplicity. Sittoe vocabulary and gram-
mar at any point in a dialog are very small and can be specifietivance, the speech
recognizer and the semantic interpreter can be more aecuféie added accuracy and
simplicity of the dialog makes them particularly suitalde fiovice users. However, such
a dialog structure is not natural, puts grave restrictiothenuser, and is not suitable for
frequent users as the dialog advances very slowly.

On the other extreme are user-directed systems where thealggys has control
over the conversation and the system passively answersénguestions. User-initiative
systems are difficult to realize as they require comprekersgpeech recognition and lan-
guage understanding capability in order to understandestqurom a potentially wide
spectrum of users and application domains. The system dladsd have the ability to
keep record of the previous utterances to answer elliptiocdlanaphoric questions that
may follow. An example of user-directed dialog is given belo

User: How many flights are there today?
System:  Fifty five
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User: How many of them are departing from Boston?
System: Five
User: And to San Francisco?

System:  Seven

Mixed initiative systems, in principle, should allow skifof initiative between the
user and the system freely. However, most implemented 'thixidiative” systems use
the term in a restricted sense — that is, the system mairteansontrol of the dialog but
the users are given some freedom to give more than the reguesbrmation at a time.
For instance:

System: Please tell me your departure and destination?

User: | want to fly from London to Berlin on next Tuesday
System: Next Tuesday, at what time?
User: nine p. m.

As can be noted, mixed-initiative systems can use systé@mtive strategy while
giving the users more freedom of expression. The dialogesfyave employ adopts the
latter approach and attempts to give the user freedom tdgeawore information in a
single utterance and the system guides the user to fill nggsfiormation. A typical
dialog scenario is given below:

System: What is your travel plan?

User: | want to fly from Hartford to Boston on May twenty first
System: Would you like to fly from Hartford to Boston?

User: Yes

System: At what time would you like to fly on May first?

User: No, | want to fly on May twenty first early in the morning

System: Would you like to fly on May twenty first early mornin g?
User: Yes

System: Do you have any airline preference?

User: No

System: OK. Just a moment ....
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7.3.2 Dialog Control

Dialog control strategies specify the dialog flow logic irokpn dialog systems. The
commonly used dialog control strategies include finiteéestaased, frame-based, plan-
based Allen, 1979 Cohen and Perraylft979 and information-state based@iraum and
Larsson 2000 approaches. In practice, finite-state and frame-baseagpipes are the
most commonly used ones mainly because of their relativplgiity. Table7.1shows the
dialog control strategy commonly used ) for the various types of initiatives discussed
in Section7.3.1

Table 7.1: Initiative and dialog control strategy

Initiative
Dialog Strategy =~ System User Mixed
Finite State v - -
Frame-based v - v
Information-state - v v
Plan-based - v v

Finite-state based dialog control is the most straight émdadialog control approach
where a dialog is expressed as a network of nodes connectrd$yThe nodes represent
the dialog states and the arcs represent the transitiongéetthe dialog states as shown
in Figure7.1

Greetings

What is your departure city ?

What s your arrival city?

Do you want to fly from
<CITY-1>to <CITY-2>?

On what date do you want  Atwhat time do you want Do you want to fly on
to travel? to fly? <DATE> at <TIME>?

Figure 7.1: An example finite-state based dialog contrdiigecture

Despite its simplicity, the approach quickly becomes icedfit when the number of
dialog states and the transitions between the states ses@a the model rapidly becomes
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unmanageable. Nevertheless, finite-state based contnaiime to be suitable for small-
scale, well-structured and system-initiative applicasio

Frame-based systems are based on the slot-filling concepeveiots are filled with
information that is elicited from the user. The requirecbmfiation is fixed but the di-
alog flow is flexible. The system asks the user a series of igmssto gather informa-
tion that are required to fill one or more dialog slots. Whdrited required information
are obtained, the system performs a database query or etj@red operation. Frame-
based approach allows filling multiple dialog slots fromragée utterance giving the user
some degree of freedom to formulate his/her request in asgroHowever, the amount
of dialog context that can be encoded is still limited, ant itlifficult to model more
complex conversations. Human communication over the helep lacks the richness
of face-to-face communication and is often task-oriented bmited to short phrases
(Fielding and Hartley1987. Therefore, frame-based approach appears to be adequate
for telephone-based and task-oriented interactions. Tdlegicontrol strategy we use in
the two demonstration application domains is mainly framased which is well-suited to
carry out medium-sized interactions and allows us to aehienited "mixed-initiative"
dialog capability. In some cases, when task-completiort issk, we fall back to the
systeme-initiative dialog strategy and solicit informatipiece by piece, one at a time.

Even though the frame-based approach is good enough foridepecific conver-
sations, a more complex dialog control strategy such asrtfegmation state model
(Traum and Larssqr2000 is required to extend a dialog system beyond a specific do-
main. Information-state based dialog control is built oralstract concept known as an
information-state. An information state contains a repnéation of the dialog history, the
common ground of the dialog participants, the actions thatlme taken next, etc. The
information-state architecture also contains a set obdiahoves that trigger a set of up-
date and selection rules and a control structure for degiimch update rules to apply at
a given point. The update rules modify the information stdite system when the user
produces an utterance and the selection rules select theliatdg move to be executed.
For instance, when a question is recognized, an update rayespecify the need to an-
swer the question; when a proposal is recognized an updatenay specify the need to
update the information state with the new information angdegdorm grounding. As can
be observed, it is necessary to decide if an utterance isstiguea proposal, a rejection,
a suggestion, etc. given a recognized utterance. Our sentamicept labeling model
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discussed in Chaptércan effectively decide if an utterance is a question, a retoiea
negation as in the following example and can be extendeds®iruan information-state
framework.

(Do you have a) QUESTION (flight) FLIGHT INFO (that) DUMMY
(leaves in the morning) DEPARTURE_TIME

Plan-based approach to dialog control is an advanced agptmssed on the plan-
based theories of communicative action and diakdip6 and Perrau)t198Q Allen, 1979
Appelt 1985 Cohen and Levesqu#&99Q Cohen and Perrault979. The plan-based the-
ories state that the speaker’s speech act is part of a plathand is the listener’s job to
identify and respond appropriately to this pldu{, 200§. The approach is based on
the view that a dialog is goal oriented and an utterance irakglis performing speech
acts Gearle 1976 to achieve these goals. The task of the agent listeningetatiierance
is, therefore, to discover the underlying plan of the speake react appropriately. For
instance, an utterance "l want to attend a conference in iHegrtBermany from the fif-
teenth to the eighteenth of December" in an airline bookysgesn could be interpreted
by a plan-based agent as follows. The user wants to fly to Hegnland the departure
date should be at least a day before the fifteenth and thenrigint should be at least
one day after the eighteenth of December.

7.4 Dialog Design

The dialog interface is the only way users can communicateaspoken dialog system,
hence interface design is one of the most important partyspeech-based application.
A good interface contributes to the success of a spokenglgistem in that it enhances
the user experience and the usability of the system.

Speech-based applications do not enjoy the flexibility andness of web-based
Graphical User Interfaces (GUIs) that can present a lotfofimation in parallel screens
with a number of ways to enable easy navigation and seleofioptions. In GUI-based
systems, the user can see a lot of items to get to the desforthattion easily. Moreover,
users can initiate and terminate each step at their own [&ioglicity, consistency and
flexibility are other virtues of GUIs. However, speech isengntly sequential and some
of the features we have in GUIs are not easily available. Fstance, there’s no way to
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7. SPOKEN LANGUAGE INTERACTION

present more than one piece of information at a time, useutddave to carefully listen
to various lists, options, prompts, etc. before they camged to the next action and the

amount of information that can be offered is limited by theoamt of information that
can be retained in the 'short-term memory’ of the users. Hewewvith careful design,
spoken dialog systems can provide the required serviceregibonable performance in a
more natural way. Combining GUIs and speech interfaces eandre helpful, in some
applications.

Shneidermar§1997 introduces the "eight golden rules" described below tlaat lze
used in the design of man-machine dialogs.

1.

Strive for consistency The required actions in similar situations should be c®nsi
tent; the terminology used in prompts, menus, and help ssreleould be similar;
and consistent commands should be used throughout.

. Enable frequent users to use shortcuts As the frequency of use increases, so

does the user’s desire to reduce the number of interactimhsoancrease the pace
of interaction. Hence, the use of shortcuts is handy for exsers.

. Offer informative feedback: For every user action, there should be some system

feedback. For frequent and minor actions, the response eandolest, while for
infrequent and major actions, the response should be mimeriative.

. Design dialog to yield closure Each sequence of actions should be organized

into a group with a beginning, middle, and end. The informeafeedback at the
completion of a group of actions is important because itgite user a satisfaction
of accomplishment and a sense of relief.

. Offer simple error handling: As much as possible, design the system to prevent

serious errors. However, since errors are inevitable ikkespalialog systems, the
system should be able to detect the error and offer simplapoehensible mecha-
nisms for handling the error.

. Permit easy reversal of actions Let the user know that errors can be undone and

actions are reversible. This feature encourages expborafi unfamiliar options.
The units of reversibility may be a single action, a datayemtr a complete group
of actions.
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7. Support internal locus of control: Design the dialog to make users think that they
are in control of the conversation and the system respontietoactions not the
other way round.

8. Reduce short-term memory load The limitation of human information process-
ing in short-term memory requires that outputs be kept smpld consolidated.

Another set of principles related to the ergonomic desigdialibg between user and
interactive systems is the ISO 9241 part 11909241-1102006 that is summarized
below.

1. Suitability for the task: A dialog is suitable for a task when it supports the user to
complete the task effectively and efficiently.

2. Self-descriptiveness A dialog is self-descriptive if its users can tell which ldig
and dialog-state they are in at anytime. The dialog shoulklenitaclear what the
user should do next.

3. Conformity with user expectations A dialog conforms with user expectations
if it behaves according to the contextual needs of the usgrasnids unexpected
behavior.

4. Suitability for learning : A dialog is suitable for learning when new users can
begin effective interaction easily and the system guidesuer in learning to use
the system.

5. Controllability : A dialog is controllable when the user is able to initiatd aontrol
the direction and pace of the interaction until the intacarctjoal has been achieved.

6. Error tolerance: A dialog is error-tolerant if the intended result can beieebd
even with erroneous input with minimal corrective actiogghte user.

7. Suitability for individualization : A dialog is capable of individualization when
users can modify interaction and presentation of inforameto suit their individual
capabilities and needs.

We have considered the above two sets of principles as gugdeln designing the
dialogs in our system.
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7.5 VoiceXML

As has been mentioned in Chapt&snd4, we use VoiceXML as a dialog scripting
language in our application, hence we describe it furthehis section. VoiceXML is
an XML-based dialog scripting language standardized by¥bdd Wide Web Consor-
tium (W3C) to create speech interfaces mainly for telephapmications. A VoiceXML
document contains a set of dialogs organized in a form or aumen

A form consists of a set of form items — namely, input items eadtrol items. In-
put items (e.g.<field>) are elements for collecting user input and control itemg. (e
<block>) contain procedural items for audio output or computatinmenu presents
a list of choices that the user can choose from and the linkbeémext dialogs to be
executed. A simple VoiceXML dialog script based on formsapidted in Listing.

A VoiceXML document is processed as described in the Voic&Xdpecification
(W3C, 2009 by a VoiceXML interpreter. A VoiceXML interpreter implemes, among
other things, the Form Interpretation Algorithm (FIA) thedecifies the procedure for
walking through the various fields of a form to drive the iaigion between the user and
the system. The VoiceXML interpreter fetches the dialogpssrfrom the Web Server,
accepts values extracted from the spoken input to fill varghalog states and determines
what to do next according to the instructions in the dialogpsc Depending upon the
input received, the VoiceXML interpreter may load anothidaly script from the Web
Server or submit the collected information to the Web Setoaquery the database and
present information back to the user. The VoiceXML intet@renay also issue basic tele-
phony functions like<disconnect and<transfer-. However, for advanced call control
operations, the Call Control eXtensible Markup Languag€X®IL) of W3C is com-
monly used.

The communication between the application server and thee¥ML interpreter is
via HTTP — the HTTP methods POST and GET are used to submitsetitained from
the user and to request a new VoiceXML document.
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Listing 9 Simple VoiceXML dialog script

<?xml version="1.0" encoding="UTF-8"?>
<vxml version="2.0" xmlns="http://www.w3.0rg/2001/vxm " application="root.vxml">

<form id="intro">

<block>

<prompt>

Hello! My name is KEY!

| provide service in English and German! Which one do you pref er?
</prompt>

<goto next="#form_1"/>

</block>

</form>

<form id="form_1">
<field name="language">

<grammar src="http://localhost/language.slf' type="ap plication/x-slf"/>

<filled>

<if cond="language == ’english™>

<prompt> Welcome to the Airline Travel Planning System of Ma gdeburg University!
</prompt>

<goto next="airline_main.vxml"/>

<elseif cond="language =='german™/>

<prompt> <voice hame="Katrin ">

Willkommen zum automatischen Bahnauskunftssystem der Uni versitat Magdeburg!
</voice>

</prompt>

<goto next="http://localhost/german/train_main.vxml" >
<[if>

<ffilled>

<[field>

</form>

<fvxml>
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7. SPOKEN LANGUAGE INTERACTION

In general, a VoiceXML-based application consists of:

A telephony interface to deliver calls into the system

A VoiceXML interpreter that executes the dialog by actingtthe ASR engine
to collect spoken input, semantic interpreter to extraet tieaning of a spoken
utterance, TTS system to play prompts and responses, etc.

An application server (typically, a Web server), wheredpelication logic resides,
and may contain interfaces to a database server

For advanced call control functions, a CCXML interpreteoften used to process
CCXML documents that specify the call control policy.

The architecture of our system has been described in moad aeChapter4, how-
ever, for quick reference we provide a simplified architextof VoiceXML-based appli-
cations in Figure/.2

N
wxml
CCXML Interpreter |« »  VoiceXML Interpreter le——————HTTP—— S
f s O
° ;‘E’% Web Server
Telephony " d 2 3 & 5§
Interface F ol < < 38
?»E
s [
Telephone
Database Server
Network

Figure 7.2: A simplified architecture of VoiceXML-based &pations

One strong virtue of VoiceXML is that it is built around theigting web technologies,
hence it is completely interoperable with many existingasfructures (e.g. Web infras-
tructures), protocols (HTTP, TCP/IP) and standards (XMigtthave made the Internet
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ubiquitous. VoiceXML separates user interaction scripaef service logic. The server-
side logic manages interactions with back-end applicatguch as database servers and
creates VoiceXML documents as appropriate using standatnd&velopment technolo-
gies. This feature also distinguishes VoiceXML from otheogietary spoken dialog
environments that require special languages and applicatiogramming interfaces to
access Web servers and external databases and applicdfioreover, Voice XML pro-
vides features to support limited "mixed-initiative" digk in a frame-based architecture
as described in Sectioh3.2 Detailed description of the W3C VoiceXML specification
can be found at VoiceXML 2.0 Specificatitin

7.6 Evaluation

Spoken dialog system evaluation is a necessary step in tréessess the usability and
quality of the system and it helps developers to identifybpems that should be fixed to
make the system more useful. The evaluation of spoken d@jisgms is considerably
more complicated and difficult than their graphical coup&ets due to the unrealistically
high expectation of users which follows their natural spoebus daily experience in
human-to-human communication. On the other hand, due tiontitations of the various
technologies that constitute a spoken dialog system, ieeyten noticeable difference
in performance between man-machine and human-to-humamuaaioation which may
lead to less user satisfaction.

User satisfaction is one of the most important metric of gmodtialog system evalua-
tion which is related to the quality and usability of the st Quality is a compromise
between what the user expects or desires, and the chasticeehe/she perceives while
using the system\{éller et al, 2007). Therefore, quality measurements can only be ob-
tained from subjective judgements given by human usersaell in a quantifiable form
with questionnaires. However, the perceived quality of steay is influenced by usage
environments (environmental factors), expertise of thex (sgent factor), the complexity
of the task offered by the system (task factors), as well aspirysical contextual factors
(Mdller, 20095.

http://www.w3.0rg/TR/voicexml20/; last accessed Feby2¥, 2009
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Usability, as defined by ISO 9241, is the effectiveness,ieffy and satisfaction with
which users accomplish tasks. Effectiveness refers to ukguo of the interaction while
efficiency refers to the amount of resources expended t@eeline desired goal.

User satisfaction rating can be measured by inviting usargeract with the system to
perform a task, and then asking them to complete one or mamifjable post-interaction
questionnaire(s) and average responses over all questiges a total user satisfaction
rating.

The SASSI (Subjective Assessment of Speech System Inésjfgtone and Graham
2007 questionnaire for evaluating systems with speech inppéloiity and the recom-
mendation of the International Telecommunication UnioiJAT) (ITU_T Rec. P.85)1
for evaluating telephone services based on speech tedyate two popular de-facto
standards for collecting user judgements on which we basecdealuation question-
naires. The questionnaires used in this evaluation aretedifom Moller et al, 2007)
and are given in AppendiB. Another well-known model for predicting quality judge-
ments on the basis of collected interaction parameter®iPARADISE (PARAdigm for
Dlalog System Evaluation) model of AT& Walker et al, 2000.

The evaluation experiment we used consisted of four parts:

» A short oral presentation (for about 2 minutes) is giveratcheuser about the dialog
system and the purpose of the experiment.

» Each user fills an initial questionnaire through which gahmformation about the
test participants including their background knowledge experience is solicited.

» The author calls the system and performs a demonstratieraction with the sys-
tem to give the subjects some idea of what an interactiondctodk like, how
recognition errors can be corrected, etc.

» Each user makes two calls to the system and performs twegymalted interac-
tions — one in English and another in German. The Englishiceiig on airline
travel planning and the German service is on Train inforamaitnquiries. After the
interactions, the user is asked to complete a questiontiatés designed to solicit
the current impression of the user after using the system.

The subjects of the experiment are 20 native German spe@kensale and 10 female)
most of which are either students or employees of the Unityensthe age range of 18-30.
50% of the subjects already had successful but unpleaspatierce with other spoken
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dialog systems in various application domains and most@stibjects (90%) have little
knowledge about speech recognition and speech synthekisdiegy.

We prepared 10 English and 10 German dialog scenarios wihtask description
as in the example below.

You live in Hartford [Connecticut] and you want to fly to Bost on
[Massachusetts] to visit a friend. You want to fly on June fif teen
[2009] in the morning. Book a flight, if available, on that da te and

time on United Airlines.

The exact formulation of the requests is left to the testaisEne order and the number
of relevant information a user wishes to convey in the firsgnaince is also not predefined.
After the first request, the system guides the user to fill tlesimg dialog slots. However,
the user can use commands like "help"” or "start over" at amtgpgbnecessary.

To complement the subjective evaluation, we also log edelnantion and extract rel-
evant interaction parameters such as number of user twrngyer of system turns, num-
ber of correction turns, number of completed tasks, et¢.daia describe the interaction
quantitatively.

The detailed analysis of the results obtained using botfestite and objective eval-
uation are presented in SectiBry.

7.7 Summary

In this chapter we presented an overview and the basic Esatirspoken language inter-
actions such as turn-taking, grounding, speech acts,gl@ts and the common discourse
phenomena known as ellipsis and anaphora. Besides, wesdestdialog initiatives, dia-
log control strategies and dialog design principles. Thiemale for using VoiceXML and
the dialog system evaluation method we adopted to evaloatgsability of our telephone-
based spoken dialog system were also explained.
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Chapter 8

Experiments and Discussion of Results

8.1 Introduction

In the previous chapters, we discussed various combinafitechniques to achieve ro-

bustness in speech recognition and introduced a new agptoacbust spoken language
understanding. In this chapter, we discuss the experincemucted to build and eval-

uate the required models to realize a robust telephonedtsszken dialog system and
discuss experimental results. We also evaluate the vamauakels and the integrated sys-
tem as a whole in real-time interaction scenarios with dd¢ast users in two application

domains in two languages. The considered application dusae airline travel planning

in English and train information inquiries in German.

The experiments conducted can be broadly classified intari@jor categories; namely,
speech recognition experiments, gender and accent résateel, spoken language under-
standing experiments and evaluation of the demonstraygtes. Most of the approaches
discussed in this chapter have been published in apprepniggrnational media.

8.2 Speech Recognition: English

In the sections that follow, we describe the developmeneerpents conducted in search
of optimal parameters for acoustic and language modelshirline travel planning
domain in English.
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8.2.1 Data Description: English Speech Data

The data used to build the acoustic, language and semantielsfor the airline travel
planning application domain in English consists of a tot@2hours of telephone speech
and the associated transcriptions from the DARPA Commtmi@®01 Evaluation corpus
(Walker et al, 2003 procured from Linguistic Data Consortium. The corpus tst8f
utterances recorded as several users interacted witH iiffierent airline travel planning
dialog systems via telephone.

We held out 2 hours of speech consisting of 1,987 utteranuaees by 14 speakers
(4 male and 10 female) as a development test-set. To efdginse the limited data we
have, we use 5-fold cross-validation technique where weleid/the remaining 20 hours
of speech into 5 subsets and in each run, one of the 5 subsetsdsas a test-set and the
other 4 subsets are put together to form a training set. Tine@average word accuracy
across all 5 tests is computed. TaBlé describes the 5 partitions of the 20-hour speech
data.

Table 8.1: Data description: 5-fold cross-validation
No. of Speakers

Set Male Female No. of Utterances

Set-1 10 25 4143
Set-2 7 18 3529
Set-3 7 18 3086
Set-4 7 18 3508
Set-5 7 18 3605

The held-out development test-set is used in order to dateroptimal values for
various feature extraction, acoustic and language maglg@larameters. In the experi-
ments that follow in Section8.2.5 8.2.6 8.2.7and8.2.8we use all except the first set
as training data spoken by 100 speakers (28 male and 72 feamal¢he held-out data as
development test-set.

A significant amount of the speech data described above ioolotag silences and
non-speech, noisy segments at the beginning of the utesamisich could result in poor

LAT&T, BBN, CMU, IBM, Lucent Bell Labs, MIT, SRI and Universjtof Colorado at Boulder
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performance. Therefore, as part of the data preparationynwée a small program to
remove these silence segments using the sox utiorgkog 1995.

8.2.2 Acoustic Model Training
8.2.2.1 Context-Independent Models

The initial prototype of each context-independent monaoghis represented as a hidden
Markov model (HMM) of 3 emitting states with left-to-righapology with one Gaussian
component per state and no skip transitions as can be seeajunmeB.1

a2 =0.5 az=0.5 au=05

Figure 8.1: Initial context-independent monophone model

In this work, only diagonal covariance matrix systems anesadered where the fea-
tures in each feature vector are assumed uncorrelated. ®hephone set consists of 42
HMMs including silence and short pause (sp).

The HMMs are initialized with the flat-start scheme as désaiin Sectiorb.2.3
Then, the parameters of the models are re-estimated in 2coiige runs of the Baum-
Welch algorithm using the monophone transcription of tianing data. To handle im-
pulsive noises in the training data, extra transitions dded from state 2 to 4 and from
state 4 to 2 in the silence model. The backward transitioniges a mechanism to absorb
impulsive noises without exiting the silence model. Besjde order to account for any
pauses introduced by the speaker between words of an wéerammne state short pause
(sp) model is created whose emitting state is tied to theecestate of the silence model.
This short pause model (also called tee-model) has a dnaatsition from entry to exit
state. Then 2 more iterations of the Baum-Welch algorithenren. As the pronuncia-
tion dictionary contains some words with multiple pronati@ns, a new transcription is
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generated that best matches the acoustic evidence by gutiv@rViterbi algorithm over
the training data (known as forced-alignmerdyifafsky and Martin2008 Young et al,
2006.

We then increment the number of Gaussian components up tdesieed number.
As will be discussed in Sectidh2.4 32 mixture components per state give optimal per-
formance. To increment the number of Gaussian compondm@s;amponent with the
largest mixture weight is cloned, the weight is divided byn2l she means are perturbed
by a small fraction of the standard deviation (typically 8/20). The resulting HMMs
are then re-estimated with 4-8 consecutive runs of the Bélahch algorithm. This is
repeatedly done until we have estimated the models wittetipgired number of mixtures.

8.2.2.2 Context-Dependent Models

As context-independent models do not capture phonetieggrtheir phonetic discrim-
ination ability is poor. Therefore, in order to achieve gginetic discrimination, it is
common to use triphones where every phone has a distinct HMieihfor every unique
pair of left and right neighbors. We consider word-intemi@hone models where context
does not span word boundaries and cross-word triphone sadhedre word boundaries
are ignored.

The single-Gaussian monophone models trained as desanilteel previous section
are used to generate triphone prototypes. The transitimgpility matrix is tied across
all triphones of a phone. The resulting triphone model patans are re-estimated with
the Baum-Welch algorithm with a triphone list and triphoranscriptions.

When triphones are used, usually training data becomeffizient as there are too
many models whose parameters must be estimated, henceetassary to reduce the
number of parameters in an HMM. Diagonal covariance assomphd parameter tying
are commonly used methods to reduce the number of parantle&treught to be esti-
mated. Tying Bahl et al, 1983 is a method where two or more states that represent
similar acoustic data are clustered together to createstetds. When states are tied, all
the data which would have been used to estimate each indivithtied parameter are
effectively pooled leading to more robust estimates forghemeters of the tied state
(Young et al, 200§. Decision tree based clustering, which will be briefly dissed in
Section8.2.6 is used to identify the states that can be tied together.
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Once we have single-Gaussian, tied-state triphones, tttestep is to increment the
number of Gaussian mixture components. For triphones ds itvelas experimentally
found that 32 Gaussian mixtures per state is optimal as wikHtown in Sectio8.2.4
We start with single Gaussian per state and increment théauof Gaussian components
as described in sectid2.2.1

8.2.3 Initial Parameter Settings

The initial setting for the HTK parameters used in the experits that follow is given
below.

SOURCEKIND = WAVEFORM # Defines the natural form of the input data
SOURCEFORMAT = WAV # Defines the format of the speech data
SOURCERATE = 1250 # Sampling rate (in 100 ns = 8 kHz)
ZMEANSOURCE = TRUE # Removes DC offset from the input audio

at the frame level

ENORMALISE = FALSE # Energy Normalization

TARGETKIND = MFCC_E_D_A # Defines the parameter kind and the
coefficients to use

WINDOWSIZE = 250000 # Window length (25 ms)

TARGETRATE = 100000 # Frame rate (10 ms)

NUMCHANS = 26 # Number of filter bank channels
NUMCEPS =12 # Number of cepstral features
USEHAMMING = TRUE # Use of Hamming function for windowing
PREEMCOEF = 0.97 # Pre-emphasis coefficient

CEPLIFTER =22 # Cepstral liftering coefficient

Word insertion penalty (WIP) and language model scale fgtt®ISF) discussed in
Section5.2.5are set to -4 and 12, respectively. For the triphone modelksatvthe outlier
threshold (RO) and the log-likelihood threshold (TB) thall Wwe discussed in Section
8.2.6t0 200 and 1000, respectively. These values are "informgdliparameters” deter-
mined from preliminary experiments on the development set.

In the experiments that follow, the parameters that areddorbe more useful in a
given experiment are used in the subsequent experiments.
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8.2.4 Number of Gaussian Mixture Components

When there is a huge amount of training data covering a wigetspm of speakers,
environments, and application domains, training acousbdels using a large number
of Gaussian mixture components can improve the performahspeaker-independent
acoustic models. However, the gain in recognition accura@t the expense of speed
since computation of too many Gaussian parameters may slawv the recognition pro-
cess. Therefore, the number of Gaussian mixtures comp®toemse in a real-time system
is a trade-off between accuracy and speed.

In order to determine an optimal number of Gaussian mixtar@ponents for our
setup, we investigate number of Gaussian mixture competieamh 4 to 48 by steps of 4.
Figure8.2shows the results of the experiments.
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Figure 8.2: Number of Gaussian mixture components for mbanp (MONO), word-
internal (WINT) triphone and cross-word (XWRD) triphonesbd models

As can be seen, the performance gain that can be achievedigy@sussian mixture
components greater than 32 is quite insignificant at the resgp@f more computation.
Since the models are for real-time use, speed of recogngiohparamount importance.
Hence, as a compromise we use 32 Gaussian mixture compdaoeials (monophone,

word-internal and cross-word triphone) models which mayirittle loss of recognition
accuracy.
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8.2.5 Feature Extraction

In order to determine the optimal feature parameters angegdb build a robust acoustic
model, we carried out a series of experiments on the devedaptest-set. Mainly, we
investigated the use of power spectrum versus magnituaerspe the &' order cepstral
coefficient versus absolute energy, the use of cepstral meamnalization, etc. We also
investigate PLP and LPCC features discussed in Sebt@din addition to MFCCs. In
the following sections we discuss the results of selectgeements.

8.2.5.1 Power versus Magnitude Spectrum

In this subsection, the effect of computing MFCCs from thgniude spectrum and the
power spectrum of the Fourier Transform is investigated.

Table 8.2: Power vs. magnitude spectrum. The notation MOtd@ds for monophone
models, WINT stands for word-internal and XWRD for crosssMsiphone models. USE-

POWER = TRUE means use power spectrum instead of magnitude
USEPOWER HMMTYPE Accuracy (%)

FALSE MONO 74.98
TRUE MONO 76.07
FALSE WINT 79.38
TRUE WINT 80.12
FALSE XWRD 78.24
TRUE XWRD 78.99

As can be seen in TabR2, using the power spectrum yields better results than the
magnitude spectrum in all the cases. This may be attribwtéloet fact that power spec-
trum causes large variation in amplitude between voiced laniced speech (since
magnitude is squared) as well as smaller variations betwigésrent articulations of
phonemes@’'Shaughnessy2000. Hence, the information needed to determine the pho-
netic identity of a portion of speech could be captured bett@ower spectrum than in
magnitude spectrum.

121



8. EXPERIMENTS AND DISCUSSION OF RESULTS

8.2.5.2 Mel-Frequency Cepstral Coefficients (MFCCs)

In addition to the first twelve basic Mel-frequency cepsteefficients, a feature vector
can consist of an energy term and information about the fatieamge of spectral features.
The energy term can be the log of the signal energy or thedpstral coefficient. We
investigate the effect of using th&@epstral coefficient which is often discarded instead
of the log energy as energy term, and the effect of applyipgtcal mean normalization.
Table8.3 presents the results of selected experiments on the deweldset

Note: Since using the power spectrum was found more usefbkiprevious section,
we set USEPOWER = TRUE in the subsequent experiments.

Table 8.3: MFCC Parameters. The notation _E stands for Idgeosignal energy, 0
represents the®order cepstral coefficient, D stands forcoefficients, and _A foAA

coefficients while _Z represents CMN
HMMTYPE TARGETKIND Accuracy (%)

MFCC_E D _A 76.07
MFCC E D A Z 76.17
MONO - =
MFCC 0 D _A 79.12
MFCC 0 D A Z 81.07
MFCC _E_D_A 80.12
MFCC E D A Z 79.53
WINT - =
MFCC_0_D_A 82.45
MFCC 0 D A Z 82.62
MFCC_E D _A 78.99
MFCC E D A Z 78.96
XWRD - =
MFCC 0 D _A 82.32

MFCC 0 D A Z 8350

As can be clearly seen in Tal8e3using the 8" cepstral coefficient as the energy term
yields significantly improved results in all the cases. Twadally the 6" MFCC coeffi-
cient is considered futile and is often replaced with thedbtihe signal energy. However,
as we observed in a series of experiments in various applisathe ¢ coefficient is
more useful; hence, should be not be simply ignored. Thedefficient contains a col-
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lection of average energies of each frequency band in theaktpat is being analyzed
(Fang and Guoliang000.

It can also be observed that cepstral mean normalizationN)cMhich is used to
handle mismatch in channel conditions, gives a perform&oost when used with the
0h coefficient. For telephone recordings where the microplammktransmission quality
of each apparatus is different, CMN can provide significabustness. CMN also miti-
gates the effect of additive noise. One drawback of CMN is ithtdoes not discriminate
silence and speech in computing the utterance midaarfg et al.2001b. Preliminary
experiments conducted before removing the silence andgpeaeh noisy segments in the
input utterances resulted in degraded performance with CiviNas also been suggested
in (Alsteris and Paliwal2005 that CMN is effective when applied to utterances longer
than 2-4 seconds.

8.2.5.3 Filter-bank Channels and Window Size

A filter-bank is a collection of filters that separates theuinpignal into a number of
frequency bands where the signal energy is measured. Thieenwffilter-bank channels
and the spacing of their central frequency (logarithmidivear) are essential factors that
affect the quality of the features extracted from a speeghasi The number of filters
should be large enough to resolve the speech spectrumieslgcind small enough to
allow that all the bands have sufficient filter bandwidth. Hluenber of filters varies for
different implementations from 24 to 46l¢gang et al.20010h. We investigated various
sensible values (in the range of 24 to 30) in an attempt to fpttdhal values for the
various models. As a result 26 is found to be optimal for theophone and triphone
models.

In feature extraction, window size and frame rate are algmmant parameters. A
window should be long enough to capture sufficient saliefarmation to calculate the
desired parameters and short enough to maintain the assuntipat a signal is short-
time stationary. In practice, window size is on the order@f®s to 30 msKuang et al.
20018. In an attempt to find an optimal window size for each modskes of sensible
window size values in the range of 20 ms to 30 ms have been anedit was found
that 20 ms and 25 ms are optimal values to capture the sahentsme events for the
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monophone models and triphone models, respectively. Babblghows the window size
and the number of filters at which better results are achiéweithe various models.

Table 8.4: Number of filters and window size
HMMTYPE NUMCHANS WINDOWSIZE Accuracy (%)

MONO 26 20 81.75
WINT 26 25 82.62
XWRD 26 25 83.50

8.2.5.4 Cepstral Liftering

Since higher order Mel-frequency cepstral coefficientsuateally numerically small, cep-
stral liftering is applied in order to re-scale cepstralforents so that all dimensions have
about the same magnitude. However, as describedalval 2005 liftering of cepstral
coefficients has no effect when used with continuous observdensity hidden Markov
models. Our experiments on the development set are alsoeemgnt with the fact that
cepstral liftering has little effect on the performance ohtinuous observation density
HMMs.

8.2.6 Clustering: Triphones

To distinguish clusters and tie acoustically similar statéthin triphone sets, we use a
phonetic decision tree that is based on asking phonetidignesabout the left and right
contexts of each triphone. A phonetic decision tree is arpitr@e in which a yes/no
question about phonetic context is attached to each nodetré&a is used to recursively
partition a set of states into subsets by answering the igmesas appropriate for the
triphone context in which each state occud®¢k et al, 1997). Those states that end at
the same leaf node are judged to be acoustically similar emthan tied.

When clustering, one needs to look for appropriate valueshi® stopping criteria;
namely, the outlier threshold (denoted by RO in HTK) and tiveshold specifying the
increase in log likelihood that has to be achieved by anyttpreat any node (denoted by
TB in HTK). These values affect the degree of tying and the Inemof states output in
the clustered systenygung et al, 2006).
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The outlier threshold determines the minimum number ohtrige states each leaf
in the decision tree must have. This means each cluster raustdt least this value of
samples associated with it, otherwise it is merged with é&st mearest cluster. On the
other hand, if a splitin the decision tree increases thdikaithood by less than the value
denoted by TB, splitting stops and the decision tree is cetapl

In order to determine the optimal values for TB (keeping thkig of RO at 200), we
investigated values from 800 to 1200 by steps of 100 and 1i080the value used in the
experiments so far) was found optimal for both crosswordwaodi-internal triphones.

8.2.7 Language Modeling

Due to the incorrect independence assumptions used intacousdeling, the acoustic

models are underestimated as discussed in Sebtba Therefore, it is desirable to

balance the probabilities of the acoustic model and theuagg model. This is often

done by finding an optimal language model scaling factor (Byithat defines how the

language model log probabilities are scaled before thegardined with the acoustic log

probabilities. In other words, the language model scalaugdr (also known as language
weight) balances the acoustic and language model scoresroh sequence likelihood

computations.

Adjusting the language model scaling factor may result inemasertion errors, as the
decoder prefers a greater number of shorter words to long, ddee can control the rate
of word insertion and word deletion rate, by adjusting thediasertion penalty (WIP).
A very large word insertion penalty reduces the word ineartiate and increases the
word deletion rate, and a very small penalty has the oppeffitet (Rabiner and Juang
1993. A value for word insertion penalty is experimentally detened at a point where
the insertion and deletion errors are nearly equal.

We looked for the optimal values in the range 10 to 20 for tingleage model scaling
factors and -4 to -12 for word insertion penalties on the tigpreent test-set to find the
point where the number of insertion and deletion errors aeglyn equal. Tabl8.5shows
the performance of the various models at the optimal values.
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Table 8.5: Language model scaling factor and word insep@nmalty
HMMTYPE LMSF WIP Accuracy (%)

MONO 12 -4 81.75
WINT 16 -8 84.02
XWRD 16 -9 85.46

8.2.8 Comparison of MFCC, PLP and LPCC Features

In the preceding experiments, we used the MFCC features. e8eritbed in5.2.1PLP
and LPCC features are also quite suitable for speech reomgniHence, we investigated
these features to see how well they perform in our setup eBabshows the performance
of the models using these features on the developmentdest-s

Table 8.6: Comparison of features

Feature HMMTYPE Accuracy (%)
MONO 81.75
MFCC 0 D A Z  WINT 84.02
XWRD 85.46
MONO 81.72
PLP. O DA Z WINT 83.67
XWRD 84.60
MONO 81.00
LPCC E D A Z WINT 84.76
XWRD 85.06

As can be observed, the models based on the three diffe@ntdnds give quite
comparable results.

8.2.9 Evaluation: English

Using the optimal values found for the various parameterhéndevelopment experi-
ments, we performed 5-fold cross-validation experimenable8.7 presents the results.

As can be seen in Tab&7and Figure8.3, MFCC, PLP and LPCC-based models give
quite comparable performance.

126



8.2 Speech Recognition: English

Table 8.7: Performance of the English system: 5-fold cradislation
Feature HMMTYPE Accuracy (%)
Set-1 Set-2 Set-3 Set-4 Set-5 Mean
MONO 82.58 83.99 78.94 87.07 81.7B2.86
MFCC_O0 D A Z  WINT 85.66 86.93 82.27 90.13 84.9(85.98
XWRD 86.75 88.60 83.02 90.78 85.786.98
MONO 82.48 84.12 78.89 86.82 81.5B2.76
PLP 0 D A Z WINT  87.11 86.74 81.76 89.86 84.5786.06
XWRD 87.47 87.85 81.89 90.41 85.736.67
MONO 82.04 84.03 77.55 86.53 83.182.67
LPCC_E D AZ WINT 8612 87.05 81.20 89.25 87.696.26
XWRD 86.28 87.42 81.51 89.80 87.946.59

Mean performance of MFCC, PLP and LPCC-based models
5-fold cross-validation experiments
88
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Figure 8.3: Comparison of MFCC, PLP and LPCC-based feafarespeech recognition

For telephone-based speech recognition, the performdribe mmodels based on the
features discussed in SectiérR.1is quite good. By using gender-dependent acoustic
models, dialog state-dependent language models or grasrandrignoring semantically
irrelevant filler phrases the performance can be even hatteal-time application. How-
ever, since these models are trained on native US-Englisbckp they perform rather
poorly for non-native speech as will be discussed in Se@iér2.3 Hence we need to
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tailor these models to suit the vocal characteristics ofdhget users of the system as will
be discussed in SectioB8s4, 8.5.1, 8.5.2 and8.5.3

8.3 Speech Recognition: German

8.3.1 Data Description

The German speech recognizer is built using 15 hours of spéata spoken by 101
(40 female and 61 male) speakers from the German domaimdepespeech database
©"Erlanger Bahnansage" (ERBA) obtained from the Bavariachive for Speech Signals
(BAS)!. The speech data was recorded with close-talking micropliora quiet office
environment at 16 kHz sampling rate in the domain of traiminfation inquiries. The
test-set consist of 100 unique utterances spoken by 5 (déeand 3 male) native-German
speakers. Each speaker is recorded twice — one under thersaanding conditions as
ERBA and another recorded over a public telephone line -hgia total of over 1000
utterances.

An ideal corpus for spoken dialog systems would be one ceinginatural spon-
taneous speech as in everyday conversations, or recordedWfizard of Oz simula-
tions and/or mixed-initiative human-computer interactio The ERBA corpus is pre-
pared mainly taking acoustic and domain coverage into densfion and consists of read
speech in a quiet office environment and is not directly bletéor building acoustic mod-
els for use in a spoken dialog system. As an effort to make alte shitable for a dialog
system we recorded additional 204 utterances (e.g. uttesaconsisting of "ja", "nein",
etc.) from 3 female and 6 male speakers with close talkingopltone. We use 136 of
these utterances from 2 female and 4 male speakers in thengaet and the rest in the
test-set.

We intend to investigate if one can build a usable acoustidehfsxom "simulated"
telephone-quality speech for use in a telephone-basederpoteraction system. Tele-
phone quality speech can be simulated from microphonededatata by introducing the
obvious effects of the telephone channel such as banddigndown sampling to 8 kHz,
etc. as described in Sectiéi3.4

http://www.phonetik.uni-muenchen.de/Bas/
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8.3 Speech Recognition: German

The language model used is a back-off bigram language moaeét on the tran-
scriptions of the training utterances.

8.3.2 Evaluation: German

We carried out preliminary experiments using a small patheftraining data as a devel-
opment set to find optimal parameters for the German systevst M the parameters that
were found optimal for the English system were also founddgoothe German system.
Additional parameters are set to introduce the band-ingiéffect of the telephone chan-
nel that discards any information of the speech spectrumm@-300 Hz and 3400—-4000
Hz bands. Considering the specific set of German phonemethaingphonetic charac-

teristics, we also modified the phonetic questions usedtergée the phonetic decision
tree used for clustering. The results of a final evaluatiothertest-set are given in Table
8.8

Table 8.8: Performance of the German system on the evaluiasd-set

Feature HMMTYPE Accuracy (%)
MONO 84.42
MFCC 0 D A Z  WINT 88.02
XWRD 89.30
MONO 84.46
PLP_O DA Z WINT 88.33
XWRD 89.55
MONO 85.57
LPCC_E D A Z WINT 89.45
XWRD 90.03

In general, it can be seen that the performance of MFCC, PdR.BEC based mod-
els are comparable, although linear prediction derivestcabcoefficients slightly out-
perform MFCC and PLP-based models. We observed that CMNriEplarly essential
to mitigate the effect of channel mismatch. However, theselets under-perform on
actual telephone speech as will be discussed in Se8tidh
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8.4 Gender in Speech Recognition

8.4.1 Gender Recognition

Due to differences in articulatory mechanisms between matefemale speakers, it is
easy to discern the gender of a speaker given an utterantawigh degree of accuracy.
If a spoken dialog system can reliably tell the gender of akpefrom a spoken utterance,
then gender-dependent models that are tailored to the wheahcteristic of speakers
in the same gender can be used so as to obtain better recogpéiformance. In the
following sections we describe the approach we used to bugieinder recognizer used in
our system.

8.4.1.1 Data Description

The gender recognizer we build should be able to robustiymeast the gender of a speaker
from a single short utterance. Therefore, the data usedato tine gender recognition
model consists of 6250 single-word utterances such as,"yesdh", "no", "Boston”, etc.
spoken by 28 male and 72 female speakers extracted fronaihenty set (i.e., the merger
of Set-2, Set-3, Set-4, and Set-5) described in Se@i@rll For testing purposes, we
extracted 1750 single-word utterances from the test-st get-1) spoken by 10 male
and 25 female speakers. The transcriptions of each uterammbhianged to either "Male"
or "Female" according the gender of the speaker.

8.4.1.2 Gender Recognition Experiments

The most salient cue for distinguishing adult male and fenspkech is the fundamental
frequency (FO) — pitch as discussed in Secdh However, in telephone speech much
of the low frequency energy is filtered out, hence the reguaiéch is either missing or
weak. Therefore, as an alternative, we use the common eéfestures used in speech
recognition to estimate the gender of a speaker given a spgkerance.

The gender recognizer described in this thesis is based @ussian Mixture Model
(GMM) discussed in Sectidh. 3.2using cepstral features to decide the gender of a speaker
from the first, short utterance in a dialog session. The numb&aussian mixture com-
ponents required to adequately train the model and the nuoiflderation between each
Gaussian increment were experimentally found to be 32 anespectively. In order to
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find out which features and coefficients yield better resudt investigate MFCC, LPCC,
and PLP features with 39 coefficients extracted as descib8dction5.2.1and the re-
sults are shown in Tabig.9.

Table 8.9: GMM-based gender recognizer
Feature Kind Accuracy (%)

MFCC_E_D_A 71.31
MFCC_0 D A 96.34

PLP._E D A 92.06
PLP. 0 D A 95.71
LPCC_E D A 92.86

As can be seen in TabR9, MFCC feature vectors including thé&"Gcepstral coef-
ficient as the energy term give the best result while MFCCurest with the log of the
signal energy give the worst result. The use Bfd@pstral coefficient is also shown to be
more useful for speech recognition as described in Se8t®/5.2 A likely conjecture is
that MFCC features along with thé"Gcepstral feature as the energy term encode more
gender-specific information sufficient to recognize thedgerof a speaker from a single-
word utterance over the telephone with acceptable perfocma 96.34% than the other
features investigated.

From the confusion matrix in TabB 10 one can observe that both male and female
speakers are identified at a comparable accuracy, althamghlé speakers are slightly
better recognized than male speakers.

Table 8.10: Gender recognition confusion matrix using MEGM_ A
Male Female
Male 95.77% 4.23%
Female 3.31% 96.69%

131



8. EXPERIMENTS AND DISCUSSION OF RESULTS

8.4.2 Gender-Dependent Acoustic Modeling
8.4.2.1 Data Description

A straight forward approach to take advantage of gendemgraton to improve speech
recognition performance is to train gender-dependentsimomodels. For this purpose,
we split the training data (i.e., the merger of Set-2, S&e?;4 and Set-5) into two gender-
dependent sets — "female training set" consisting of 10ut&3ances spoken by 72 fe-
male speakers and "male training set" consisting of 3,5&ftarices spoken by 28 male
speakers. For evaluation, we split the test-set (i.e.1patso into two gender-dependent
sets — "female test-set" consisting of 3,107 utterancekespby 25 speakers and "male
test-set" consisting of 1,036 utterances spoken by 10 spgak

8.4.2.2 Gender-Dependent Models

To measure how well the speaker-independent model perfiamasgiven male or female
user, we evaluated the performance of the MFCC-based Sllrandlee "male-only" and
"female-only" test-sets as shown in TaBld1 For reasons that will become evident in
Section8.5.2 we use monophone models.

Table 8.11: Performance of the SI model on separate majeamial female-only test-sets
HMMTYPE Gender Accuracy (%)

MONO Male 79.57
MONO Female 83.73

To see if gender-dependent models give better performavedrain separate male
and female acoustic models and evaluated them on the condisijy gender-dependent
test data. The results are shown in TaRlE2

Table 8.12: Performance of gender-dependent acousticlsmode
HMMTYPE Gender Accuracy (%)
MONO Male 80.47
MONO Female 84.66

It can be seen in Tablé&s11land8.12that the performance of the gender-dependent
models perform better than the SI model. In general, the gredependent models are
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quite good for telephone-based speech recognition. Hawasenentioned earlier, these
models perform rather poorly for non-native speakers ofliBhg In the following sec-
tions, we discuss the approaches we used to deal with noresgieech.

8.5 Accentin Speech Recognition

8.5.1 Accent Recognition

In multi-user systems that serve people with different dgraphic and sociolinguistic
background, discerning the gender and the accent of a gpiakea spoken utterance
may be useful to load proper acoustic models specificallgred to the vocal character-
istics of a particular group of speakers. A straight forwapgproach to build an accent
recognizer is to train the model on accented speech datectad from different groups
of non-native speakers of a language. However, accentextispe rarely available in
enough amount to build a reliable accent recognizer. Thegein this experiment we
show the feasibility of training an accent recognizer onveaspeech data of the target
accent groups. In particular, we train a GMM-based accerdgmizer with 32 com-
ponents on a merger of native German and native English Bp#sgta and we use the
resulting model to distinguish if a given English utteramcaccented or native.

8.5.1.1 Data Description

The training data used for accent recognition consists ef @v,800 English utterances
spoken by 135 native US-English speakers drawn from the BAR®1 Communicator
Evaluation corpusWalker et al, 2003 and over 10,300 German utterances from ©ERBA
speech corpus described in Sect®B.1and additional utterances recorded at our labo-
ratory. The test-set consists of 1200 German-accenteddbngiterances recorded from
30 (15 male and 15 female) native German speakers over gghtsle and 1800 native
English utterances selected from the held-out developtestiset described in Section
8.2.1giving a total of 3000 utterances. Since the German traidiig is microphone-
recorded, it was converted to a "simulated" telephone tyusfieech before it was used
to train the desired model. The transcriptions of the uttega in the training set consist
of either "German" or "English" based on the language of gaken utterance while the
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transcriptions of the test data are set to either "GermahEnglish" based on whether a
given English utterance was spoken by a German-accentedadiva English speaker.

8.5.1.2 Training

We trained one GMM for each langauge (accent class); namaky,for English and
another for German. The initial prototype of each GMM is es@nted as a single-state
HMM with one Gaussian component where there is no stateiti@mprobability within
the model. We model silence as a hidden Markov model (HMM) efri@tting states with
left-to-right topology with one Gaussian component peteséad no skip transitions.

The parameters of the initial models are re-estimated inr&s@cutive runs of the
Baum-Welch algorithm using the training data and the asseditranscription. The tran-
scription of the training data, as noted in Sect®h.1.lindicates the language of each
spoken utterance in the training data — i.e., either Germdtnglish. To handle impul-
sive noises in the training data, two more transitions amduced from state 2 to 4 and
from state 4 to 2 in the silence model. The backward tramsfiiovides a mechanism to
absorb impulsive noises without exiting the silence modieken 2 more iterations of the
Baum-Welch algorithm are run.

Finally, we convert the single-Gaussian models to 32-mé&tiomponent models as
described in SectioB.2.2.1 After each mixture increment, the resulting models are re-
estimated with 4 consecutive runs of the Baum-Welch allgoritintil we have estimated
the models with the required number of mixtures.

8.5.1.3 Accent Recognition Experiments

In order to find out which features and coefficients are begtddor accent detection,
we investigated the use of MFCC, PLP and LPCC features wiesie feature vector is
composed of the basic 12 static coefficients and the enerdy{order coefficient) with
and without the corresponding delta and delta-delta coefiis. The performance of the
resulting models is shown in Tab8e13

As can be seen in TabR13 generally LPCC-based models outperform MFCC and
PLP based models for accent recognition. In particular,dde@ved cepstral coefficients
consisting of 12 cepstral coefficients and the energy tertimoui the delta and delta-delta
coefficients yield the best performance. The better perdoice of LPCCs for accent
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Table 8.13: Performance of MFCC, PLP and LPCC features oenacletection
Feature Kind Coefficients Accuracy (%)

E 63.80
0 82.57

MFCC -
0D 83.77
0D A 81.83
E 61.87
0 82.97

PLP -
0D 83.37
"0DA 83.73
E 90.33
LPCC _E.D 88.37
"EDA 87.10

recognition may be attributed to the fact that LPC-basetirtegies nicely model the

speech production process of the vocal tract which is highlyable both across lan-

guages and regional accents. Since speakers with foreagmizcusually introduce some
acoustic and phonological features from their native laggs into the speech produc-
tion process, the accent of a speaker can be robustly estimaing a speech production
model trained on the native speech data of the target acoaumps)

Similarly, in (Wong and Sridharar200]) it has been shown that LPCC-based fea-
tures consistently outperformed MFCCs in language ideatifin task. It has also been
suggested inArslan and Hanserl 997 that mel-scale based analysis is not particularly
suitable for accent detection.

Further observation in Tabl@.13 shows that there is a drastic gain in performance
when the 8§ order cepstral coefficient is used as energy term insteableolog energy
in MFCC and PLP. The'd coefficient represents the average energy in the speecle fram
and we consistently observed that it is more useful thanapehergy in different appli-
cations. With LPCC, the dynamic features — namely, deltadstich-delta coefficients do
not appear to be useful for accent detection.

It's interesting to observe in the confusion matrix in TaBlé4that German-accented
speakers are identified at a much better rate (96.25%) thie rspeakers (85.28%).
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This further confirms our hypothesis that accent-relatédrimation can be effectively
captured from native speech data.

Table 8.14: Accent recognition confusion matrix using LPEC
Native German-accented

Native 85.28% 14.72%
German-accented 3.75% 96.25%

8.5.2 Accent Adaptation Using Accented Data

The performance of the acoustic models trained on nativeEd§ish data degrades
significantly when used with actual users with German acesntan be seen in Sec-
tion 8.5.2.2 Therefore, in order to obtain robust acoustic models thatperform well
with accented speakers, we adapt the speaker-indepenmakegeader-dependent models
trained on native data to the vocal characteristics of Gerataented speakers.

It has been reported irHe and Zhap2001) that triphones trained on native speech
are not appropriate for use with non-native speech. In taatpreliminary experiments
also revealed that monophones outperform triphones ingrezimg non-native speech.
Therefore, in the experiments described in the followinctises, we used the context-
independent monophone models built as described in Segtias the seed models.

8.5.2.1 Data Description

The enrollment set consisting of 600 English utterancesrdsx over the telephone from
10 male and 10 female native German speakers (i.e., 30 mtesdrom each speaker)
using prompts drawn from the English training-set. The-$estconsists of 600 English
utterances recorded over the telephone from 5 male and Gderative German speakers
(i.e., 60 utterances from each speaker) using prompts drawnthe English test-set (i.e.,
Set-1).
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8.5.2.2 Baseline Performance

A summary of the results of the SI, and gender-dependent ptmr@ models trained
on native US-English data on the German-accented Englstsét is presented in Table
8.15

Table 8.15: The performance of the SI and gender-dependedtrmodels on accented
speech

Acoustic Model Accuracy (%)
Speaker-Independent (SI) 61.40
Gender-Dependent (Female) 60.05
Gender-Dependent (Male) 62.29

As can be observed, the performance of the native modelsaamtesr speech is very
poor compared to the performance of the models on nativeckpdescribed in Section
8.2.9

8.5.2.3 Accent Adaptation Experiments

We obtained significant boost in performance by using thedstal speaker adaptation
techniques; namely, MLLR, MAP and MLLR followed by MAP, wigewe use German-
accented English speech as adaptation data to adapt the Eatylish SI and gender-
dependent acoustic models. For MLLR, optimal performanas wbtained with 42 re-
gression classes where both means and diagonal covar@amcgansformed. Figuri@4
summarizes the results obtained.

As can be observed in FiguB24 MLLR alone resulted in 11.01% absolute (28.52%
relative) WER reduction for the SI model. On the gender-depat models, we obtained
9.69% absolute (24.26% relative) and 17.44% absolute %46.&lative) WER reduc-
tion for female and male models, respectively. Comparabj@ovement could also be
achieved with two iterations of MAP adaptation. Howevee, iest results were achieved
by applying three iterations of MAP adaptation on the MLLBRsformed models where
14.5% absolute (37.56% relative), 13.47% absolute (33.7&d8&tive), and 20.19% ab-
solute (53.54% relative) WER reduction with SI, female aralermodels are obtained,
respectively. It can also be observed that the accent-edapale models perform much
better than the accent-adapted female models. Our speculased on the analysis of
the recorded data is that the male speakers spoke with marehaccent, hence more
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Accent Adaptation
(MLLR, MAP and MLLR+MAP)
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Figure 8.4: Speech recognition performance improvementda-native speakers due to
MLLR, MAP and MLLR+MAP adaptation

accent-related information could be obtained. On the oftfaerd, most of the female
speakers tried to imitate native speakers, hence were desat@d than the male speak-
ers.

8.5.3 Cross-language Accent Adaptation

Motivated by the successful utilization of native speedadi@m two target accent groups
(German and native US-English) to train an accent recogtiiet detects accent from a
spoken utterance as described in Sec8dnl, we hope to obtain performance gain by
using native German speech data as enrollment set to adaeisimained on native US-
English speech. This is referred to as cross-language taadaptation. Cross-language
accent adaptation is helpful in cases where it is hard tecbiccented speech in a given
application domain. Often native speech data from a taxgsra group is more available
than accented speech data. In this section, we show the ns¢ivid German speech data
to adapt speaker-independent and gender-dependent nradtedsi on native US-English
data to the German accent.
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8.5.3.1 Data for Cross-language Accent Adaptation

The enrollment data for cross-language accent adaptabiosist of 600 German utter-
ances recorded over the telephone from 10 male and 10 feratie iGerman speakers
using prompts drawn from the transcriptions of the testirséthe ©ERBA distribution.
The evaluation-set consists of 600 German-accented Bnglisrances described in Sec-
tion8.5.2.1

In order to use cross-language accent adaptation, we finstrcwted an approximate
mapping between the phoneme sets of German and English. aiebthit an auxiliary
pronunciation dictionary that defines the pronunciatiothefGerman words in the adap-
tation set with English phonemes.

8.5.3.2 Cross-language Accent Adaptation Experiments

The enrollment data is force-aligned using the English Shoplnone model and the aux-
iliary pronunciation dictionary to produce the monophaa@scription of the enrollment
data. For MLLR, two global transforms (one for silence andthar for speech mod-
els) where both means and covariances are transformedngpreved result. Figur8.5
summarizes the results obtained.

Cross-Language Accent Adaptation
80
(MLLR, MAP and MLLR+MAP)
Hl Baseline
H MLLR
B mAP
B MLLR+MAP

75.33

70

67.2

Accuracy (%)

50
sl GD (Female) GD (Male)

Model

Figure 8.5: Speech recognition performance improvementdo-native speakers using
cross-language accent adaptation
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As can be seen in FiguB5, when MAP is applied on MLLR transformed means and
covariances, we obtain 6.8% absolute (17.62% relative4P8 absolute (34.58% rela-
tive), and 7.15% absolute (17.90% relative) WER reductmrttie Sl, male and female
models, respectively. Although the performance gain isarable, the improvement we
could get using cross-language approach is relativelytthesswe achieved using accented
data as demonstrated in Sect®®.2 One explanation is that the phoneme mapping is
neither one-to-one nor accurate as some German phonemes dave a counterpart in
English and vice versa.

8.5.4 Channel Adaptation

The acoustic models for the German system were trained ahdaggd on simulated tele-
phone quality speech. Experiments show that these modelstqueerform well on actual
telephone speech. Therefore, we use maximum likelihoaghtimegression adaptation
technique to adapt the models to the telephone channel esimg telephone recorded
speech data with the hope of improving performance of thptadamodels on telephone
speech.

8.5.4.1 Data Description

We recorded 300 German utterances from 5 male and 5 female &z¢rman speakers
over the telephone using prompts drawn from the trainingfa&e German speech corpus
(ERBA) for the purpose of channel adaptation.

The 600 German-accented English utterances from 10 mald@feimale speakers
described in SectioB.5.2.1are used to evaluate how well the speaker-independent (SI)
and gender-dependent models trained on simulated telepipaadity speech perform on
actual telephone speech.

8.5.4.2 Effect of Channel Adaptation

Table8.16summarizes the performance of the monophone speakerendept and gender-
dependent models on actual telephone speech before andradtenel adaptation.

As can be seen, there is apparent performance gain after Middptation. The
MLLR adaptation (with 42 regression classes and transfoomaf both mean and di-
agonal covariance parameters) may have captured soméesedfabe telephone channel
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Table 8.16: Performance gain due to channel adaptation
Acoustic Model Before (Accuracy (%)) After (Accuracy (%))

Sl 76.94 79.87
GD (Male) 78.72 82.03
GD (Female) 79.00 80.30

that were not captured with the simulation procedure werdsest in Sectiorb.3.4 The
actual performance of the gender-dependent models irinealuse will be discussed in
Section8.7.

8.6 Spoken Language Understanding

In the previous sections, we investigated various appesthbuild robust speech recog-
nition models that decode a given acoustic signal into aesszpiof words which is hope-
fully close to the correct transcription of the spoken w@hee. However, the raw output
of a speech recognizer can merely serve any purpose in arspadeg system without
a process that converts the output of the speech recognipest meaningful sequence of
semantic concepts that connote what is meant from what rhigye been said. In this
section, we describe the experiments conducted and thiksrestained using different
but interrelated semantic concept labeling approachesissed in Chaptes.

8.6.1 Data Description

The semantic model for the domain of airline travel plannives trained on the tran-
scriptions of 8000 utterances drawn from the merger of seef23, set-4 and set-5 of the
data described in Sectidh2.1 The evaluation test-set consists of 1000 selected from
the transcriptions of set-1. The selection mainly excluagzktitions of short utterances
such as "yes", "no", etc. An interesting feature of the datthe DARPA 2001 Com-
municator Evaluation Corpus is that it consists of sportasaitterances — consisting of
filled pauses, repetitions, repairs, false starts, ungraiical utterances, etc. TabBel7
describes the training and test-sets used for the domainiagdaravel planning.

As can be seen, there are 79 distinct out-of-vocabulary sv@@DVs) in the test-set.
In general, there are 139 occurrences of these OOVs in thedes
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Table 8.17: Description of data for the airline travel plemgndomain (Communicator)

Set No. of utterances No. of unique words Avg. No. of words per
utterance

Training 8000 914 4.04

Test 1000 579 (79 OOVs) 8.98

On the other hand, the model for the train inquiries domaia tk@ned on the tran-
scriptions of 8000 utterances drawn from the 10,000-uttsrdraining set described in
Section8.3.1 The transcriptions of the first 900 utterances from the reimg 2000 were
added to the 100-utterance test-set described in Se8t®hfto form a 1000-sentence
evaluation set. The utterances in the domain of train inegiiare read, relatively long,
well-structured, and grammatically well-formed sentenckable8.18describes the data
used to build and evaluate the German semantic model.

Table 8.18: Description of data for train information inges domain (ERBA)

Set No. of utterances No. of unique words Avg. No. of words per
utterance

Training 8000 920 12.26

Test 1000 829 (9 O0Vs) 11.76

8.6.2 Performance Measures

The performance of the semantic models is evaluated usawojsoon, recall and F-measure.
Precision (P) is the percentage of correctly labeled casceyt of all labeled concepts
given by the system. Recall (R) is the percentage of coyradtintified concepts actually
present in the reference annotation. By correct we mearbtitatthe boundaries of the
concept and the label are correct.

Numberof correctlylabeled concepts

Precision= .
Total number of labeled concepts given bythe system

142



8.6 Spoken Language Understanding

Numberof correctlylabeled concepts

Recall= - -
Total number of labeled concept chunksinthe re f erencetaion

To illustrate the two measures we use the following exampilgpose that the utter-
ance "I'd like to fly on Air Canada" is tagged by a model as:

I'd like to fly) DUMMY
on) ON

Air) AIRLINE_NAME
Canada) COUNTRY

~ o~ o~ o~

And the reference annotation consists of:

(I'd like to fly) DUMMY
(on) ON
(Air Canada) AIRLINE_NAME

Since two out of the four labeled output are correct, theiprac is 50% while the
recall is 66.67% since two of the three chunks in the refexeme correctly identified.

F-measurevan Rijsbergenl975 is a weighted harmonic mean of precision and recall
as defined by Equatiod. 1

_ 2PR

F
P+R

(8.1)

8.6.3 The Flat-Concept Model

It has been described in Sectiérbthat the first step in semantic modeling involves iden-
tifying the relevant entities, events, attributes andtretes within the domain of discourse
using prior domain knowledge and example utterances. Tideséfied semantic classes
represent the semantic concepts in the application donmaireach semantic class con-
stitutes a set of lexical items used in the domain. Therefii@ words in the system’s
vocabulary are classified into the identified set of semasiisses such that all words
belonging to a semantic class are initially equiprobable.

In HMM-based semantic concept labeling, the hidden stategsspond to the seman-
tic classes (tags or labels) in a given application domairevthe observation set corre-
sponds to the set of words in the lexicon of the system. THedhthe required model
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Is to determine the most likely sequence of semantic labalsdould have generated the
sequence of words in a recognized utterance.

In Section6.5.], it has been noted that the flat-concept model cannot cagitere
hierarchical relationship of words across states. Howéverelatively simple application
domains, it can give adequate performance as can be seannexhsections.

8.6.3.1 Initial Flat-Concept Models

We start with an ergodic model where all transitions to andfany state (semantic class)
are equally likely including self-loops. The only restract is that a one-step transition
from the entry to the exit state of the global HMM is prohibit® prevent non-emitting
loops as described in Secti@5. As can be seen in TabR19 this very basic model,
where little domain-specific constraints are imposed, garenodest performance which
can be considered as a baseline for the flat-concept model.

Table 8.19: Performance of the ergodic initial models

Data P(%) R (%) F-Measure (%)
Communicator 71.49 70.44 70.96
ERBA 80.26 83.64 81.92

This model is too unconstrained and it is often useful tooietice some informative
structures by prohibiting arbitrary and unlikely statensiions based on prior domain
knowledge and training examples. This enables us to tramibdel more efficiently on
semantically unannotated training data. We use the temirigi to refer to the process of
introducing constraints in the model. This is efficientlynéavith the model compiler and
the modeling language introduced in Sect®b using the keywords "except”, "none",
"only", "high", "low" and "all" .

After the required tuning of model parameters, the perforreaof the flat-concept
models is given in Tabl8.20

As can be seen in Tabl8s19and8.20 introducing prior knowledge-based constraints
into the model definition results in a substantial gain irffgrenance — 13.78% and 12.26%
absolute improvement in F-measure for the CommunicatoERIA tasks, respectively.
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Table 8.20: Performance of the tuned flat-concept initiatlai®

Data P (%) R (%) F-Measure (%)
Communicator 89.47 80.49 84.74
ERBA 9461 93.76 94.18

The performance can further be improved with EM trainingfalet, the tuning of initial
model parameters is very important because the EM algotitewmily depends on these.

8.6.3.2 Trained Flat-Concept Models

It was found that the best performance for the English modeh{municator) was ob-
tained after six iterations of training as shown in Fig8réwhile a single iteration of the
EM algorithm was sufficient for the German models (ERBA).sThhenomenon where
we achieve the best performance in the first few trainingitens is referred to as early
maximum Elworthy, 1994).

95
A
I
90

85+

& Precision (%)
-*-Recall (%)
¥ F-Measure (%)

Performance (%)

80

0 1 2 3 4 5 6 7 8
No. of Training Iterations

Figure 8.6: Performance of the flat-concept model as a fonaif number of training
iterations (in the Communicator domain)

As can be seen in Figui@6, the major performance boost is achieved in the first
iteration, afterwards minor gains are obtained until thehsiteration and starts to de-
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cline gradually. After training and smoothing of transitiand emission probabilities as
described in SectioB.4, the performance of the models is shown in TehZL

Table 8.21: Performance of the flat-concept models afteritiggand smoothing

Data P(%) R (%) F-Measure (%)
Communicator 92.63 93.96 93.29
ERBA 9455 95.46 95.00

As can be seen, in TabR21, the performance of the flat-concept model is signifi-
cantly improved after training and smoothing and is quitestectory for both application
domains. However, in order to achieve this level of perfaroga a substantial number of
preliminary testing on the training data had to be perforrmetine the model so as to
resolve many sources of ambiguities.

Furthermore, as described in Sectiéb.1the flat-concept model provides a frag-
mented output where each word is labeled with a correspgratiomic semantic label
and, therefore, is less informative as can be noted in thewolg example in Germén

Listing 10 Example output of the flat-concept semantic model
ich mdchte gerne) DUMMY (am) ON (sechs) DAY _OF MONTH (und) CONNECTIVE

(
(zwanzigsten) DAY_OF_MONTH (zweiten) MONTH (um) AT (neun) HOUR_OF DAY
(Uhr) HOUR (drei) MINUTES (und) CONNECTIVE (zwanzig) MINUT ES (die) DUMMY
(

(

schnellste) MODIFIER (Direktverbindung) TRAIN_CONNECT ION (von) FROM
Dusseldorf) CITY_1 (nach) TO (Magdeburg) CITY_1 (Neustad t) CITY_2

In the above example, the phrase "sechs und zwanzigstetenfeiepresents a
DATE concept and the phrase "neun Uhr drei und zwarizigpresents a TIME concept,
etc. Obviously, it would be more informative if these aredigldl as DATE and TIME,
respectively, while encapsulating the low-level detailsde.

Finally, as can be clearly seen in Fig@&&, the gain in performance after training (and
smoothing) for the Communicator application domain is mondre substantial than for
the ERBA domain. This is due to the occurrence of more numbengeen observations
and out of vocabulary words in the Communicator domain tmatheé ERBA domain

Translation of the German utterance: | would like the fastesct connection from Diisseldorf Airport

to Magdeburg Neustadt on February twenty sixth at 9:23 a. m.
twenty sixth of February
39:23 a.m.
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which are properly handled by the smoothing technique de=tin Sectior6.4. More
discussion on this is given in the next section.

The Flat -Concept Model

100
B Baseline

B Tuned Initial
O Trained

93.29

90

80

% F-Measure

70

60
Communicator ERBA

Models

Figure 8.7: Performance of the the baseline, tuned andetidiat-concept models for
Communicator and ERBA application domains

8.6.4 The Medium-level Hierarchical Model

In order to combat the problems associated with the flat-@otnmodeling approach, we
organize semantically related concepts into higher-legacepts such as DATE, TIME,
FLIGHT_INFO, etc. as described in Sectiéb. We refer to this model as medium-
level hierarchical model as it captures the context witl@mantically related concepts.
The experiments that follow describe the performance ohtledium-level hierarchical
models for both airline travel planning and train infornoatinquiries domains.

8.6.4.1 Initial Medium-level Hierarchical Models

The performance of the initial medium-hierarchical modsdtsr introducing the neces-
sary constraints in the model definition as described ini@2&.6 is depicted in Table

8.22
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Table 8.22: Performance of the medium-level hierarchigitibil models

Data P(%) R (%) F-Measure (%)
Communicator 96.77 83.61 89.71
ERBA 96.73 95.10 95.91

As can be observed, tuning of model parameters alone calt iresuvorking model
with acceptable performance. However, a model that sokdlgs on engineering the
model could require a lot of human effort to tune the modehpeaters which could
otherwise be learnt from the training data. Moreover, thel@hgo built could be brittle
in the face of unseen transitions and out-of-vocabulary\(D@&ords. Therefore, we aim
at introducing only the obvious and most important constsaand let the EM algorithm
refine the model parameters during training.

It can also be noted in Tab&22that the recall for the airline travel planning domain,
is quite low. This is because the test-set consists of afsgignt number of utterances
that could not be parsed due to unseen observations in thenggalata. This is, in turn,
attributed to the inherent data sparseness problem anch¢héability of OOV words
in spontaneous spoken utterances. To make the model rabusiseen observations
and OOV words, we use the smoothing technique discussedciio86.4 to adjust the
probabilities of observations to obtain reasonable pribitiab for unseen data.

8.6.4.2 Trained Medium-level Hierarchical Models

Using the EM training algorithm and the smoothing technidascribed in Sectiof.4,
the model parameters are refined and all the sentencesimglinbse containing unseen
observations could be effectively parsed. Only a singlaiten of the EM algorithm was
used as further iterations were found to be counterprogeiciihe results obtained after
training and smoothing are summarized in TehR23

Table 8.23: Performance of the medium-level hierarchicadeh after training and
smoothing

Data P (%) R (%) F-Measure (%)
Communicator 96.82 96.64 96.73
ERBA 96.96 96.68 96.82
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In addition to the additional performance gain after tnagnand smoothing, the result-
ing model is quite robust to unseen observations and caaattyfabel out-of-vocabulary
words using the surrounding context. Moreover, the oupsémantically more informa-
tive as can be observed in the following examples.

The output of the medium-level hierarchical model on thexgxa utterance given in
Listing 10is shown in Listingl1 which is much more structured and informative than the
output of the flat-concept model.

Listing 11 Example output of the medium-level hierarchical semanticlehin German

(ich mochte gerne) DUMMY (am) ON (sechs und zwanzigsten zwei ten) DATE

(um) AT (neun Uhr drei und zwanzig) TIME (die) DUMMY (schnell ste) MODIFIER
(Direktverbindung) CONNECTION (von) FROM (Dusseldorf Flu ghafen) LOCATION
(nach) TO (Magdeburg Neustadt) LOCATION

Listing 12 shows an example in the domain of airline travel planningze@ithat the
departure location Berlin Tegel was not seen in the traidiag, the sentence "Do you
have a flight from Berlin Tegel to Washington Dulles Airport 8eptember the twenty
ninth in the morning?" would be labeled as:

Listing 12 Example output of the medium-level hierarchical semantcleh for the do-

main of Airline Travel Planning

(Do you have a) QUESTION (flight) FLIGHT INFO (from) FROM

(oov[Berlin] oov[Tegel]) CITY (to) TO

(Washington Dulles Airport) AIRPORT (on) ON

(September the twenty ninth ) DATE (in the morning) PERIOD_O F DAY

As can be seen, the model is robust in that the OOV informatamrsisting of two
adjacent words (i.e. Berlin Tegel) could be correctly laalsing the surrounding context
and the resulting tagged output is structured and seméwptaggpealing.

8.6.5 The Hierarchical Model

The hierarchical model extends the medium-level struduntéer by grouping semanti-
cally as well as hierarchically related concepts togetbesissto improve the ambiguity
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resolution ability and the predictive power of the model abthin more structured output
by a hierarchical organization of concepts into higheeletructures.

The model for each application domain is constructed andd@s described in Sec-
tion 6.7. Then, we train the tuned initial hierarchical model of eagplication domain
with the EM algorithm and apply the smoothing method degctiim Sectior6.4. The
best performance was observed after only one iterationagfitrg on the tuned initial
models for both application domains. This is because witidgnitial estimates, the EM
training improves performance only for a few number of itienas — the patterilworthy
(1999 termed "early maximum®. The experiments that follow désethe performance
of the hierarchical models evaluated at two different Isélhierarchy.

8.6.5.1 Trained Hierarchical Models

The performance of the hierarchical model is evaluated atiéwels of detail. First, we
measure how well the model identifies the structured unit:fofmation such as RE-
QUEST, ARRIVAL_LOC, DEPARTURE_TIME, etc. without considieg the low-level
details in each structure such as CITY_P1, CITY_P2, HOURNWITES, etc. Tables
8.24shows the performance of the hierarchical model afteritrgiand smoothing on the
high-level tag-set for the two application domains.

Table 8.24: Performance of the hierarchical model on gireck (high-level) tag-set

Model P (%) R (%) F-Measure (%)
Communicator 95.07 96.25 95.66
ERBA 96.06 96.27 96.16

Second, in order to compare the performance of the hie@kchiodel and the flat-
concept model using the same tag-set, we generate a detatfaa using the hierarchical
model, take only the low-level concepts, resolve name wiffees of similar concepts
between the two models, and evaluate the performance usemgference annotation of
the flat-concept model. Tab&25depicts the result on the tag-set used in the flat-concept
model.

As can be observed, the hierarchical model outperforms #tedncept model by
about 2.99% and 3.98% absolute in F-measure (compare witle 821) in the airline
travel planning and train inquiries domains, respectiaszan be seen in Figuges.
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Table 8.25: Performance of the hierarchical model on lovelleag-set

Model P (%) R (%) F-Measure (%)
Communicator 96.08 96.48 96.28
ERBA 98.88 99.08 98.98

Flat vs. Hierarchical Model

B Flat
B Hierarchical

F-Measure (%)

Communicator ERBA

Application Domain

Figure 8.8: Comparison of the performance of the flat-conaeg hierarchical models in
F-measure

The very high performance of the German semantic model islgnbecause both the
training and test data are very structured utterances artdiodess sources of ambiguity;
hence, it can be modeled by the hierarchical approach withradegree of accuracy.

8.6.5.2 Example Outputs of the Hierarchical Model

The hierarchical model has the virtue of providing semaitiyjdabeled information at
several levels of detail as required. For instance, givernutterance:

"leaving San Francisco on November eleventh traveling to Bo ston
leaving in the afternoon on flight eleven seventy"

The model can produce a higher-level output as shown infng4iB.
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Listing 13 Communicator (Level 1): Structured (high-level) output
leaving San Francisco) DEPARTURE_LOC

(
(on November eleventh)DATE_INFO

(traveling) DUMMY (to Boston) ARRIVAL _LOC
(

(

leaving in the afternoon) DEPARTURE_TIME
on) ON (flight eleven oov[seventy])FLIGHT INFO

As can be noted, the hierarchical model provides additibitgder-level information
such as ARRIVAL_LOC, DEPARTURE_TIME, etc. which we couldtmiirectly obtain
using either the medium-level hierarchical or the flat-aptenodel. Moreover, the model
is robust in that unknown words could be correctly labelenh éise example above where
"seventy" was not seen in the training data but was corréatlgied using the surrounding
context.

The model can also produce a detailed low-level output asshoListing 14.

Listing 14 Communicator (Level 2): Detailed (low-level) output

((leaving) DEPARTURE
(((San) CITY_P1 (Francisco) CITY_P2) CITY_MACRO) LOCATIO N_MACRO) DEPARTURE_LOC
(((on) O

((November) MONTH (eleventh) DAY_OF MONTH) DU_MACRO) DAT E_MACRO) DATE_INFO
(travellng) DUMMY
(
(
(
(

(to) TO (((Boston) CITY_P2)CITY_MACRO)LOCATION_MACRO) ARRIVAL_LOC

(leaving) DEPARTURE (((in the) DUMMY

afternoon) PERIOD_OF_DAY)POD_MACRO) TIME_MACRO) DEPARTURE_TIME (on) ON
(flight) FLIGHT_QUALIFIER (eleven oov[seventy]) FLIGHT _NUMBER) FLIGHT_INFO

As a remark, the hierarchical model could correctly labe®86(93 out of 139 occur-
rences) of OOVs in the airline travel planning domain.
Given the utterance (in the domain of train information imigs'):

"Welches ist die schnellste Zugverbindung zwischen Kobern Gondorf
und Esslingen friihestens bermorgen um acht Uhr flinfzehn"

The model can produce a detailed output as shovlrbin

Translation: Which is the fastest train connection betwéelmern Gondorf and Esslingen at the earli-
est of the day after tomorrow at eight fifteen a. m.
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Listing 15 ERBA (Level 2) Detailed (low-level) output

((welches) QUESTION (ist) DUMMY) REQUEST

((die) DUMMY

(schnellste) MODIFIER (Zugverbindung) TRAIN_CONNECTION JCONNECTION_INFO
((zwischen) BETWEEN ((Kobern) CITY_1 (Gondorf) CITY_2) CI TY_MACRO

(und) CONNECTIVE ((Esslingen) CITY_1)CITY_MACRO) ROUTE

(((fruhestens) MODIFIER (tbermorgen)DAY_OF WEEK) DATE_ MACRO) DATE_INFO
((um) A

((ach )HOUR_OF_DAY (Uhr) HOUR (flinfzehn) MINUTES) TIME_M  ACRO)) TIME_INFO

A graphical representation of the example in Listirfigvhere the leaf nodes represent
the low-level semantic concepts is shown in Fig8re

TIME_INFO |

REQUEST CONNECTION_INFO ROUTE DATE_INFO
DATE_MACRO TIME MACRO

— 1 T
|BETWEEN || CITY 1 || cITY.2 || AND || CITY 1 |
zwischen Kobern ~ Gondorf und Esslingen

|F|ER TRAIN_CONNECTION AT "01;';?0" HOUR MINUTES

die schnellste  Zugverbindung um acht Uhr finfzehn

| QUESTION | | DuMmY | m DAY_OF_WEEK

Welches ist friihestens bermorgen

Figure 8.9: Example graphical representation of a detagigput of the hierarchical
model
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8.6.6 Model Complexity

A semantic labeling task would be very simple, if every woedomgs to one and only
one semantic class. However, a word can have multiple semsifferent contexts. For
instance, the word "to" has different senses in "I would tik¢ "to Frankfurt”, "quarter

to ten", etc. and thus should be labeled accordingly. Algoone can think of various
other ways to gauge the complexity of a model or a task, we anea®mplexity in two

ways:

» The performance of an unconstrained model that definestbalgemantic classes
and the lexical items in each class

» The average number of possible labels that a model canragsig word in the
lexicon of the application.

It has been shown in Sectidh6.3.1that an unconstrained ergodic flat-concept model
gives 70.96% and 81.92% in F-measure showing that the Getamskris relatively easier
than the English one because the Communicator corpus t®$ispontaneous utter-
ances as opposed to ERBA which consists of well-structwesadl utterances.

The average number of labels that any word in the vocabulaaygiven application
domain can assume in the flat and the hierarchical modelsas @i Table8.26

Table 8.26: Average number of possible labels for a word énfldt and the hierarchical
models

Model Communicator (English) ERBA (German)
Flat 1.3 11
Hierarchical 1.73 1.54

It can be observed in TabR26that the English task is relatively more ambiguous
than the German task. It can also be noted that the hierataihicdel is more complex
as different senses of a word in different contexts are ¢htced. For instance, phrases
"Septembethe nineteenth"”, "earlyn the morning", "twenty thirdof May", "at nine a.
m.", "atj. f. k. airport”, "airport hotel", etc. consist of context-sensitive versions of
words such af, the of, at, airport, etc. that must be labeled according to the context
of their use.
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The values in Tabl8.26do not consider the higher level context; i.e., they do nst di
tinguish between arrival, departure and other cities. Hawnehe task requirement of the
hierarchical model is higher as we would like to know whethgiven date, time, city, etc.
is ARRIVAL_DATE, DEPARTURE_TIME, ARRIVAL_LOC, etc. usinghe surrounding
context. Hence, the complexity of the hierarchical modelloa measured by computing
the average number of times that a word which is tied to a siwark occurs in different
sub-structures. For instance, a city can occur in abouttigersconcepts in the domain of
train information inquiries — in ARRIVAL_LOC, in DEPARTURHE.OC, in CONNEC-
TION when the city is a connecting station, in ROUTE when méfigy to possible routes
between two cities or in LOCATION when there is no further otual information.
This means every city can have five different possible laipedsfferent contexts. There-
fore, as a measure of the complexity of the hierarchical spee compute the average
number of possible tags that a tied word can have for the tyticgtion domains. This
value is 5.61 for train inquiries domain and 2.92 for airlireel planning. This measure
tells only the complexity of the model and does not mean t@aGerman task is harder
than the English task.

8.7 Evaluation of the Demonstration System

In the previous sections, we discussed the speech reamgaitid spoken language un-
derstanding components of our telephone-based spokesgdsgstem. We applied the
acoustic, language and semantic models discussed abozalitime test settings where
test subjects are invited to interact with the system toquarfpredefined information
inquiry tasks. In the following section, we present the ea#ibn procedure used and
discuss the results obtained.

Since user satisfaction is inherently subjective, the obtke evaluation procedure is
based on collecting judgements from test users using aflgi@stions compiled based
on the SASSItdone and Grahan2001) questionnaire and the ITU-T Rec. P.83TIY_T
Rec. P.85)1recommendation. Complementary information are obtainech logged
interaction parameters.

155



8. EXPERIMENTS AND DISCUSSION OF RESULTS

8.7.1 Example Interaction

We prepared two test-cases for each user (for a total of 28ubgects) — one in English
in the domain of airline travel planning and the other in Gannm the domain of train
information inquiries. The first expected spoken input friva user is a choice of the
preferred language — English or German. This input is useédognize the preferred
language and to estimate the gender of the speaker from the geoustic input so as
to load the corresponding semantic model and gender-depeadoustic model for the
rest of the dialog. Listind.6 shows an example interaction in the domain of airline travel
planning.

Listing 16 Typical example interaction

System: Hello! My name is KEY. | provide service in English an d German.
Which one do you prefer?

User: English

System: Welcome to the Airline travel planning system of Uni versity
Magdeburg! What is your travel plan?

User: | want to fly from San Francisco to Washington D. C. on De cember

eleven.

System: Would you like to fly from Toronto to Washington D. C. ?

User: no from San Francisco.

System: Would you like to fly from San Francisco to Washingto n D. C.?

User: yes

System: At what time do you want to fly?

User: three p. m.

System: Would you like to fly on December eleven at three p. m. ?
User: yes

System: Do you have any airline preference?

User: Delta airlines

System: Do you want to fly on Delta Airlines?

User: yes

System: Just a second! | have flight four hundred and ninety f ive from San
Francisco to Washington D. C. on Delta Airlines. Check-in ti me is
at three p. m. This is the only available flight. Please choos e
change for another flight, book to book the flight, or exit to quit.

User:  exit

System: Thank you for calling! Good-bye.
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8.7.2 Subjective Evaluation

The questionnaire (in AppendB) contains 40 questions; 38 of which are rated on a 5-
point Likert scale shown in Figu@1Q The value 5 corresponds to the most positive and
1 to the most negative response on the scale. Some of thmstattewere expressed posi-
tively and others negatively in order to minimize the pokesiias of responses. "Strongly
Agree" is the most positive response for positive statemehile "Strongly Disagree" is
the most positive response for negative statements agdesagnt to a negative question
expresses a positive attitude.

Most negative1| Most positive

Figure 8.10: A 5-point Likert scale

For analysis purposes, we group the 38 questions into eigjurroategories based on
what the questions are intended to elicit — task efficiergesh input and output quality,
reliability, cooperativity, dialog efficiency, user sd#istion, task ease and acceptability.
The last two questions ask the users which of the two serthegsliked more and to rate
their overall impression about the system on a continuoaile stn the following sections
we present and discuss the results of the evaluation in tefthese categories.

8.7.2.1 Task Efficiency

Task efficiency consists of factors such as task succesgleteness and clarity of the
provided information, suitability of the system for thekamd efficiency. The questions
that are intended to elicit these information and the peeggnof respondents by response
category for each question are given in TaBI27.

As can be seen in Tab&27 the majority of the respondents agree on the complete-
ness and clarity of the information provided by the systemmweler, it is not obvious to
draw conclusions from the other two questions. Althoughewespondents show a posi-
tive attitude to these questions, the percentage of uneeécaspondents for each question
is significant. Nevertheless, as can be seen in Fifur&that depicts the mean of the re-
sponses for each question and the average of the means,roeeecthat task efficiency
is well on the positive side of the scale. The bold horizolte in Figure8.11shows the
average of the means (3.66).
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Table 8.27: Task efficiency: percentage of respondentssporese category

Question Strongly Agree Undecided Disagree Strongly Dis-
Agree (%) (%) (%) (%) agree (%)

1(a): The system did exactlyO 45 30 25 0

what | requested

1(b): The information proq 40 40 10 10 0

vided by the system waks

clear

1(c): The provided informa; 50 40 5 5 0

tion was complete

1(d): The system could ef-0 35 35 25 5

ficiently provide information

inquiry services

Task Efficiency

IN

w
I

N
I

Mean Response (1-5)

1(a) 1(b) 1(c) 1(d)
Question 1D

Figure 8.11: Task efficiency: mean of responses for eachtignesn a 5-point Likert
scale where 5 corresponds to the most positive and 1 to thenmegative response

8.7.2.2 Speech Input and Output Quality

Speech input and output quality comprises of factors thee i do with speech recog-
nition performance, understanding ability of spoken retgienaturalness of synthesized
speech and the speed of interaction. The questions thahtmded to elicit these in-
formation and the percentage of respondents by responsgocgtfor each question are
given in Table8.28
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Table 8.28: Speech input and output quality: percentagesgfandents by response cat-

egory
Question Strongly  Agree Undecidedisagree Strongly
Agree (%) (%) (%) (%) Disagree (%)
2(a): | felt well under-| O 5 35 40 20
stood by the system
2(b): I had to concentrate5 35 10 35 15
to acoustically understand
the system
2(c): The system voice5 45 15 25 10
sounded natural
2(d): The system reacted0 45 25 30 0
too slowly

As can be noted, 60% of the respondents disagree with thenstat "I felt well
understood by the system". This question entails the pedoce of both speech recog-
nition and speech understanding components of the systame $ie spoken language
understanding unit takes the speech recognition resul$ agput, the output depends on
the quality of the recognized input. From the logged infaiiorg we could see that the
SLU unit (semantic model) labeled its input almost alwaysexily, however, there were
significant number of recognition errors mainly in the Gennsgstem. As can be seen
from the objective evaluation in Sectié7.3and our observation, the performance of
the system for the German service was suboptimal for reasdres discussed in Section
8.7.2.10 while the performance of the system for the English serwias impressive in
most cases. The difference in performance of the two sesgieems to be the reason why
a significant percentage (35%) of respondents are undeoi#ds question. Moreover,
most users performed the English airline travel plannirsg fast and the German train
information inquiries task last which was in some caseseagant. The phenomenon
called "recency effect”, where the last experience haggradluence on the overall im-
pression, might be the reason why some respondents disaghetbe first question even
when the English interaction was quite good.

As can be seen in Figu&12which depicts the mean of responses for each question
on a 5-point Likert scale, the average of the means for thecp@put and output quality
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category is 2.85 which is on the negative side of the scales ddn be attributed mainly
to the weakness of the speech recognition model used for &eservice.

Speech Input and Output Quality

Mean Response (1-5)

| ]

14

2(a) 2(b) 2(c) 2(d)
Question ID

Figure 8.12: Speech input and output quality: mean of resp®for each question on a
5-point Likert scale where 5 corresponds to the most pasémnd 1 to the most negative
response

8.7.2.3 Reliability

We define reliability as consisting of factors that are esdai the ability of a system to
perform the required task(s), frequency of errors and st@iscy of the system’s behavior
in different situations. The two questions that are intehideelicit these information and

the percentage of respondents by response category fogeashkion are given in Table
8.29

Table 8.29: Reliability: percentage of respondents byorsp category

Question Strongly  Agree Undecidedisagree Strongly
Agree (%) (%) (%) (%) Disagree (%)
3(a): The system madelO 40 30 20 0

many errors
3(b): The system is unre
liable

1
ol
ol

35 40 15
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As can be seen in TabR29 50% of the respondent believe that the system made
many errors while 30% are undecided. On the other hand, 55Peoéspondents believe
that the system is reliable while 35% are undecided. Thisd®gonflicting but it some-
how tells the fact that the users could successfully coraphet task even with recognition
errors. The disparity in performance of the two servicesnglish and German, may ex-
plain the high percentage of undecided respondents fomtbejtiestions. The average
of the means, however, is 3.1 which is slightly on the posiside of the scale as can be
seen in Figurs.13

Reliability

IS

Mean Response (1-5)
~

5B

3(a) 3(b)
¢ Question ID

Figure 8.13: Reliability: mean of responses for each goesin a 5-point Likert scale
where 5 corresponds to the most positive and 1 to the mostinegasponse

8.7.2.4 Cooperativity

We group factors relating to ease of recovering from ermangersibility of actions, help-
fulness in case of confusion, error tolerance and humanHdghavior into the category
cooperativity. The questions that are intended to eliagiséhinformation are given in
Table8.30along with the percentage of respondents by response cgtego

As can be seen in Tab&30 most respondents (75%) agree that the system behaved
in a cooperative way but 45% agree and 40% disagree on whitthesystem allowed
them to easily recover from errors. On the other hand, 55% @féspondents believe
that the system’s behavior is not human-like while 30% opoeslents are undecided on
this question.

As can be seen in Figu&14which depicts the mean of responses for each question

on a 5-point Likert scale, the average of the means is 3.1wikislightly on the positive
side of the scale.
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Table 8.30: Cooperativity: percentage of respondents §yyarese category

Question Strongly  Agree Undecidedisagree Strongly
Agree (%) (%) (%) (%) Disagree
4(a): 1 was able to recoverl0 35 15 40 -
easily from errors
4(b): The system behaved20 55 10 10 5
in a cooperative way
4(c): The system reacted 15 30 35 20
like a human
Cooperativity
5
o4
N

4(a) 4(b)
Question ID

Figure 8.14: Cooperativity: mean of responses for eachtounesn a 5-point Likert scale
where 5 corresponds to the most positive and 1 to the mostinegasponse

8.7.2.5 Dialog Efficiency

We define dialog efficiency as a parameter that comprisesctdriasuch as dialog flow,
dialog symmetry, controllability, transparency of thetgys behavior, etc. The questions
that are intended to elicit these information and the peeggnof respondents by response
category for each question are given in Ta®I81

As can be observed, most respondents (95%) believe thatnbéey not lost in the
dialog flow while the remaining 5% are undecided, and 85% efréspondents always
knew what the system expected from them. 65% of the resptmdatieve that the
dialog was balanced between the system and themselves. B r@spondents judge
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Table 8.31: Dialog efficiency: percentage of respondentebygonse category

Question Strongly  Agree Undecidedisagree Strongly
Agree (%) (%) (%) (%) Disagree (%)

5(a): | got easily lost in O 0 5 55 40

the dialog flow

5(b): The dialog was ir 0 50 20 25 5

regular

5(c): | could direct the di{ O 20 30 30 15

alog as | wanted

5(d): The dialog was too 5 5 35 45 10

long

5(e): The dialog quickly 0 10 55 25 10

led to the desired aim

5(f): The dialog was balt 5 60 15 20 0

anced between me and the

system

5(g): | always knew what 5 55 10 30 0

to say to the system

5(h): | felt in control of| 5 25 40 25 5

the interaction with the

system

5(i):  was not always sure 0 10 5 50 35

what the system expected

from me

the dialog length positively while 35% are undecided. Ondteer hand, 50% of the
respondents judge the dialog as irregular while 20% arecidee.

As can be seen in Figu&15 which shows the mean of responses for each question
on a 5-point Likert scale, the average of the means for thetepres in dialog efficiency
category is 3.31 which is well on the positive side of the scal
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Dialog Efficiency

Mean Response (1-5)

14
5(a) 5(b) 5(c) 5(d) 5(e) 5(f) 5(g) 5(h) 5(i)
Question ID

Figure 8.15: Dialog efficiency: mean of responses for ea@stjpn on a 5-point Likert
scale where 5 corresponds to the most positive and 1 to thernagative response

8.7.2.6 User Satisfaction

We define user satisfaction as a set of factors that are detatéhe usefulness of the
system, the pleasantness of the interaction, the frieesiiof the system and the confor-
mance of the system to user expectations. The questionarhdtelieved to influence
or are directly related to user satisfaction are listed ibl&@8.32with the percentage of
respondents by response category.

As can be seen in TabB32 75% of the respondents believe that the system is use-
ful; 85% have a positive opinion about the friendliness @& ystem. 55% think the
interaction was fun while 25% are undecided. 55% of the nedpots voted that they
are satisfied with the system while 20% are undecided. Howthare seems to be room
for improvement in terms of pleasantness of the system, anfbomance of the systems
reaction to user expectations.

As a remark, user satisfaction heavily depends on useudstit Some users have a
huge expectation which cannot be met by any current spoledogisystem which follows
their natural spontaneous daily experience in human-todmcommunication. However,
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Table 8.32: User satisfaction: percentage of respondgnissponse category

Question Strongly  Agree Undecidedisagree Strongly
Agree (%) (%) (%) (%) Disagree (%)

6(a): The interaction with O 40 10 40 10

the system was pleasant

6(b): | felt relaxed 5 25 35 30 5

6(c): The interaction was 15 40 25 15 5

fun

6(d): The system is useful25 50 10 10 5

6(e): The system i$40 45 5 5 5

friendly

6(f): The system always0 10 25 65 5

reacted as expected

6(g): Overall, | am satist 0 55 20 20 5

fied with the system

due to the limitations of the various technologies that titute a spoken dialog system,
there is often noticeable difference in performance betwean-machine and human-to-
human communication. On the other hand, some users unidesigsta spoken dialog
system and tend to speak only single-word utterances, gediy which could be coun-
terproductive as it may introduce recognition errors (dugd-called Lombard effect). As
a result the interaction takes longer. Some think it is wearthlk to a machine with full
sentences, etc. All these factors may lead to less usefasaitts. Nevertheless, it is in-
teresting to see that the system is rated positively as cardiein Figuré.16that shows
the mean of responses for each question in this categorykamtlscale. The average of
the means of responses for this category is 3.26 which isepdbkitive side of the scale.

8.7.2.7 Task Ease

We define task ease as comprising of factors such as ease, ddarsebility, flexibility,
cognitive demand and comfort of interaction. The questitias are intended to elicit
these information and the percentage of respondents bgnssategory are shown in
Table8.33
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User Satisfaction

1-5)
N

w

Mean Response (

N
I

6(a) 6(b) 6(c) 6(d) 6(e) 6(f) 6(g)
Question ID

Figure 8.16: User satisfaction: mean of responses for eaektign on a 5-point Likert
scale where 5 corresponds to the most positive and 1 to thernagative response

Table 8.33: Task ease: percentage of respondents by respategjory

Question Strongly  Agree Undecidedisagree Strongly
Agree (%) (%) (%) (%) Disagree (%)

7(a): The system is diffi; O 15 5 60 20

cult to use

7(b): It is easy to learn to 50 35 5 10 0

use the system

7(c): Information inquiry| 10 50 15 10 15

via speech was comfort-

able

7(d): The systemistooin-5 35 35 25 0

flexible

7(e): A high level ofl 5 55 30 10 0

concentration is required

when using the system

As can be observed in Tab833 80% of the respondents find the system easy to use
and 85% rate the system as easy to learn. 60% of the resperteitit is comfortable
to do information inquiry via speech while 35% of the respamd don’t think so. In
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terms of flexibility and cognitive demand, the system is narkess rated on the negative
side of the scale. In general, as can be seen in Figuréthe average of the means of
responses in these category on a 5-point Likert scale isv@h@&h is well on the positive
side of the scale.

Task Ease

IN

w
I

N
I

Mean Response (1-5)

7(a) 7(b) 7(c) 7(d) 7(e)
Question ID

Figure 8.17: Task ease: mean of responses for each questiarbepoint Likert scale
where 5 corresponds to the most positive and 1 to the mostinegasponse

8.7.2.8 Acceptability

We define acceptability as a set of factors that are relatdeligfulness of the system
for information inquiry, if it would be preferred to other mheds, if the users would like
to use the system again, etc. The questions in Tal3d are intended to elicit these
information.

As can be seen in TabB34 50% of the users believe that the system is helpful for
information inquiry services, while 30% are undecided. 3&0he users would use the
system again in the future while 40% of the respondents ageaided. On the other
hand, a significant percentage of the respondents (60%grpgetio information inquiry
in a different way, while 35% are undecided. This clearlyi¢ates that we could not
beat the graphical user interface (GUI) yet with which mdshe respondents are very
familiar. However, this is understandable in the senseitishot easy to take users away
from their comfort zone — away from the system which they usa daily basis.
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Table 8.34: Acceptability: percentage of respondents bgarse category

Question Strongly  Agree Undecidedisagree Strongly
Agree (%) (%) (%) (%) Disagree (%)
8(a): The system is nqt0 20 30 30 20

helpful for information in-
quiry services

8(b): I prefer to do infor-| 20 40 35 5 0
mation inquiry in a differ-
ent way

8(c): 1 would use the sys
tem again in the future

T
a1

30 40 20 5

As can be seen in Figug18 the average of the means of responses in this category
is 2.95 which is slightly to the negative side of the scalentydbecause most users prefer
to do information inquiry in a different way.

Acceptability

IS

w
|

N
¢

Mean Response (1-5)

8(a) 8(b) 8(c)
Question ID

Figure 8.18: Acceptability: mean of responses for eachtgpresn a 5-point Likert scale
where 5 corresponds to the most positive and 1 to the mostinegasponse

8.7.2.9 Overall Impression

Finally, the users are asked to rate their overall impressimut the system after perform-
ing airline travel planning task in English and train inf@tion inquiry task in German.
This parameter was evaluated by the test subjects on a oon8irating scale from "bad"
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to "excellent" (0-100) as shown in Figu819 The categories on the continuous scale
correspond to: bad (0-20), poor (20-40), fair (40-60), g¢@@-80), and excellent (80-
100) Xie et al, 2007).

bad poor fair good excellent

Figure 8.19: A continuous rating scale

As can be seen in Figur@.20 55% of the test subjects rated their impression as
"good", 30% rated it as "fair", while 15% of the users ratedstpoor. In general, the
mean rating is 56.45% which is in the range of fair to good. &hele this is a good
impression for a first round evaluation.

Overall impression

70

60

55
50
40
30
30
20
15

) I

0

Bad [0-20] Poor [20-40] Fair [40-60] Good [60-80]  Excellent [80-100]

Respondents (%)

Scale

Figure 8.20: Overall impression of the interactions with KEY system: on a continuous
rating scale from "bad" to "excellent" (0-100)

8.7.2.10 Comparison of the English and the German Services

In order to elicit which of the two services is preferred, weluded one question asking
which of the two services was more likeable. As a result, 65% e test subjects (13
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subjects) liked the English system more while 10% of the gabjects (2 subjects) pre-
ferred the German service, 20% of the subjects (4 subjeate) both services as equally
good, while 5% (1 subject) didn’t like both. Even though Esiglis not the preferred
language of the users, the system performed better withidbnglodels mainly because
the acoustic model was robust enough to work with the ty@cakent of native German
speakers.

On the other hand, the techniques we applied to use micreptemorded data for
telephone-based spoken dialog system proved ineffedecbelieve that there are three
likely reasons for the suboptimal performance of the Geraustic model in real-time
despite the reasonable performance reported in Se8t®hR First, the corpus used for
the intended purpose was collected in a quiet office envierirwhich is considerably
different from the test setting. Even though, we used capstean normalization to
compensate for channel mismatch and additive noise, tHerpeance was still poor.
Second, the corpus contains little of the most commonly usaldg utterances such as
"ja" and "nein" and hence are under-represented and weza oftsrecognized. Third,
our system doesn’t allow barge-in for the reasons that weiltlbscribed in sectio8.7.4
and when the user takes the turn too early before the systénisised with its turn, the
input could be ignored or misrecognized. Besides, somesoftammar files used for the
German system are quite big and take a while (about a sectsrdla system prompt is
finished) before the recognizer is ready for taking the spakput. These issues need to
be investigated further.

8.7.3 Objective Evaluation

In addition to the information we obtained using subjectvaluation, we obtain com-
plementary information from interaction parameters et&gd from the logged interac-
tion data while the test subjects interacted with the systéhe important information

extracted for this purpose from the transcription of theorded interaction are: aver-
age number of system turns, average number of user turmagaveumber of words per
system turn, average number of words per user turn, averagéer of user correction
turns, task completion rate and gender recognition erterfos each service (English and
German).
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Table 8.35: Interaction parameters

Service

Parameter English German
Total number of test calls 20 20
Avg. no. of system turns 13.45 19.8
Avg. no. of user turns 12.45 18.85
Avg. no. of words per system turn  12.73 9.65
Avg. no. of words per user turn 4.19 3.47
Avg. no. of user correction turns 2.95 7.85
Task completion rate 95% 80%
Gender recognition rate 90% 80%

As can be seen in TabR 35 the average number of system and user turns for the
German system is higher than that of the English service agrgh the task is relatively
simpler. It can also be observed that the average numbeeotcosrection turns is quite
high in the German version which is 7.85 as opposed to thdteEnglish service which
has an average correction turn of 2.95. This tells that then@e acoustic model is not
good enough for real-time use in a telephone-based spokérgdsystem. The average
number of words per user utterance is 4.19 and 3.47 for then@eand English services,
respectively. In fact, some of the confirmation user turessangle-word utterances such
as "yes" or "ja".

The English service had a task completion rate of 95% whae3dbrman service had
a task completion rate of 80%. The gender recognition sysiaumd correctly identify
the gender of most of the female test subjects correctlydlgd to correctly detect the
gender of some male subjects from the first single-word artie in which case the users
were asked to hang up and dial again.

In general, the performance of the English service is oleskte be much better than
the German service.

8.7.4 Known Limitation

The main limitation of our telephone-based spoken dial@gesy is its inability to support
barge-in due to the undesirable effect of acoustic echo evther system prompts played
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through the earpiece of a telephone handset is capturedehyitrophone of the same
handset. As a result, the prompt is captured as audio inptihdyelephony interface
component and streamed to the speech recognizer. In ordeatawvith this effect, we
turn the speech recognizer off when prompts are played andttan when input from
the user is expected. This works fine but at the expense oébargnd introduces a little
bit of latency as the system prompt should finish before tleesp recognizer is ready to
process the next input.

There are echo cancelation algorithms that basically aeabyitgoing audio data as
well as incoming audio data in order to filter echo signalsifiacoming audio streams.
This obviously introduces latency and takes some seriousuatrof system resources.
Therefore, most of the time, echo cancelation is done invisarel such as server-grade
ISDN boards, etc. Hence, the problem we are facing could beddy either imple-
menting an echo cancelation algorithm (which has its drakdaas discussed above) or
using ISDN boards with echo cancelation capabilities.

8.8 Summary

In this chapter we described the data used, the methods peaplthe experiments con-
ducted and the results obtained in the various experimémalyses and discussions of
the results were also given in the respective sections. Xperenents conducted include
automatic speech recognition, automatic gender idertiicaaccent recognition, accent
adaptation, spoken language understanding and evalu#tibe demonstration system.
The results obtained are promising while rooms for improsetand areas for further
investigation have been identified.
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Chapter 9

Conclusions and Recommendations

9.1 Conclusions

This thesis aimed at investigating the feasibility of buitgla robust, multi-domain, and
multi-lingual telephone-based spoken dialog system fraonle that possesses sufficient
robustness to carry out successful spoken language itiracen different application
domains. To this end, we built the various components ofepteine-based spoken di-
alog system; namely, a telephony interface component, ecbpecognition engine, a
gender recognizer, a grammar component and a spoken langodgrstanding unit. The
required acoustic, language and semantic models are alstwilbabuilt. These are then
integrated within a VoiceXML framework — ©OptimTallOptimSys 2006. The inte-
grated system can be used for multiple application domaidfoa languages by switch-
ing between the required recognition resources in reatidh complete description of
the system is presented in Chapterith some implementation details left out.
Robustness can be achieved through proper acoustic, lgagual semantic model-
ing, where robustness in acoustic modeling is of paramaupbitance for the overall
success of a spoken dialog system. Human-speech recogaltibty is little affected
by channel mismatch, inter-speaker and intra-speakeahiéity, background noise, etc.
However, these have a serious negative influence on therpenfice of an automatic
speech recognizer. A robust speech recognizer should beématbpe with these problems
and provide the required service even when the spoken ispuiforeseen or degraded.
An approach to obtain some level of robustness is to use doamal user-group depen-
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dent acoustic models. To this end, we carefully built adousbdels while investigating
better features and feature parameters for telephonetisas&en dialog system.

We built a Gaussian mixture model (GMM) based gender re@egnising Mel-
frequency cepstral features (MFCC) with tH8 Boefficient as the energy term and the
dynamic features which gave better performance than PLR.BGG based systems. We
opted for cepstral features for gender recognition becthesenost salient cue for dis-
tinguishing adult male and female speech (i.e. the fundsmhé&equency (F0)) is either
missing or weak in telephone speech due to the band-liméffert of the telephone
channel. The gender recognizer is used to estimate the gehaspeaker from a spoken
utterance so that gender-dependent acoustic models whitdrm better than a speaker-
independent model could be used.

Since the target users of the system are native German spetke acoustic model
that is trained on native English speech data is tailoredh¢opiarticular vocal charac-
teristics of German-accented English speakers. The usdevf aumber of maximum
a posteriori (MAP) adaptation on top of maximum likelihoaaelar regression (MLLR)
transformed models gives a tremendous boost in performimceach gender group.
Moreover, multiple transforms where both mean and diagomadriance are transformed
is found to be more productive than a single global transforrmour setup. We also
demonstrated the feasibility of training an accent recogmon native speech data of the
target accent groups. The model trained on native Germat&dnglish data can de-
tect accent from a spoken English utterance with high acguusing linear predictive
coding cepstral coefficients (LPCC) and the energy term.i\ted by this success, we
further investigated the use of cross-language accenttaitap where native German
speech data is used to adapt the English acoustic model. r@$udted in remarkable
performance gain.

On the other hand, although widely used, simulating telaphguality speech from
microphone recorded data by introducing the obvious effettthe telephone channel
and using a small amount of telephone recorded data to fuailtegpt a model trained
on "simulated" data to the telephone channel did not seene teffiective. Despite the
performance gain we observed after channel adaptationle@phtene recorded test-set,
the resulting model under-performed in real-time testsis Thay be attributed to the
considerable channel and acoustic mismatch between thengand test environments
that could not be handled by the approaches we employed anghtirer-representation

174



9.1 Conclusions

of some frequently used dialog utterances in the trainimgus Further investigation in
this regard is required.

In terms of language modeling, we tried to strike a balandevden the conflicting
requirements of usability and naturalness of interactioNaturalness and freedom of
expression may hinder usability and task complet®reiaccini and Huert2005 due
to more recognition errors. Allowing users to say anythingrey point in a dialog is too
luxurious and is prohibitive as it entails more speech radam errors and it makes error
recovery difficult. Therefore, we made one reasonable agsom i.e., telephone-based
interactions are often task-oriented. Consequently, deoto execute a dialog about a
task, a set of well-structured operations are requiredllibws that it is practical to use
domain and dialog-state dependent language models or gaesnnstead of a universal
language model (or grammar) for the whole system.

The use of dialog state-specific language models insteachofrgars in order to give
more freedom to users resulted in relatively poor recognipierformance mainly because
of the insufficiency of training data to train bigram langaagodels for each dialog state
as the training data had to be splitinto a number of subséesefore, we finally resorted
to using comprehensive dialog state-specific grammarsciratmore or less give the
required freedom without compromising usability. The gs®e allowed to provide more
than one information at a time and can use universal commnided'start over” or "help"
at any point.

Regarding semantic modeling, we described three diffdoahinterrelated HMM-
based approaches to semantic concept labeling; namefgofiaept, medium-level hi-
erarchical and hierarchical models. We started with thecfiaicept approach and incre-
mentally extended it to encode more context at differerglewof hierarchy by grouping
semantically and hierarchically related low-level cortegpto higher level structures us-
ing prior domain knowledge and training examples. The Ingttiaal models offer better
ambiguity resolution ability, more predictive power andguce semantically richer infor-
mation than the flat-concept model. Moreover, the hieraathmodels are robust in that
out-of-vocabulary words could be more correctly labeleahigishe surrounding context
and can gracefully ignore semantically irrelevant speeclognition errors. This allows
us to focus on content-bearing concepts to easily infer thanmmg of what might have
been said. Besides, the hierarchical models can robustigli&anoisy input due to the
natural phenomena of spontaneous speech such as hesitédise starts, filled pauses,
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etc. that introduce undesirable noise. In addition, theanafical models are easily ex-
tensible to include new requirements and can produce oatplifferent levels of detalil
as required.

All the described approaches can be readily trained on efddldata with relatively
less human supervision. The required additional humarrteffodesign the proposed
hierarchical models is obviously much less than the lalusr@and error-prone semantic
annotation of the training data which would also require itk analysis of the appli-
cation domains to define semantic labels and organize thenhi@rarchically structured
concepts. To keep the human effort low, we implemented a humgepiler that allows
us to easily tune a model based on example sentences and@main knowledge. The
success of our modeling approach relies mainly on the usgpabda commonplace do-
main knowledge to build an informed initial model that cartlier be trained using the
EM algorithm. In order to account for unseen observatiorsaurt-of-vocabulary words
we smooth transition and emission probabilities. The nadriaal model outperforms the
flat-concept model and has been successfully used in ourmgmton system.

Finally, once the required models are built and optimizedytare plugged into the
telephone-based spoken dialog system framework and tfepance of the system as a
whole is evaluated with actual test users. Since user aetigh is inherently subjective,
the core of the evaluation method is based on collectinggodmts from test users using
a list of questions compiled based on the de-facto stan@&&SI| questionnaire and the
ITU-T Rec. P.851. We also obtained complementary inforomatiom logged interac-
tion parameters. We analyzed the responses of the testfase¢he various questions in
eight major categories based on what the questions arededen elicit; namely, task ef-
ficiency, speech input and output quality, reliability, peaativity, dialog efficiency, user
satisfaction, task ease, and acceptability. The systeatasl mostly on the positive side
of a 5-point Likert scale. The overall impression of the testrs after using the system
for the two application domains in the two languages wasuastatl on a continuous rating
scale from "bad" to "excellent” (0-100). 55% of the usersdaheir impression as good
while 30% rated it as fair which makes a big majority (85%)%L6f the test users rated
their impression as poor. It is noteworthy, however, thateéhwvas clear disparity in the
quality of the two services — as the German acoustic modeis uresuitable for the task.
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9.2 Recommendations

Future work could focus on a number of issues concerningsiicpuanguage and se-
mantic modeling. An interesting extension of the semantoceh we proposed in this
thesis could be to introduce a feature that will enable trstesy to automatically learn
out-of-vocabulary (OOV) words and unseen transitions asvamen they occur. In order
to avoid learning the wrong information in the case of wroamantic labeling of OOV
words, a confidence measure could be computed to gaugeehbadiéd of the OOV word
belonging to the hypothesized semantic concept. If the coegovalue is less than a pre-
defined threshold, the system could ask the user to confirneihypothesized semantic
concept for the new word is correct before updating the mo@¢herwise, the system
could automatically update the model without the interimnof the user. Using confi-
dence measures at acoustic level may also be useful to réldeiceimber of necessary
confirmation turns.

One drawback of the approach we used in building the propssedntic modeling,
is that the classification of vocabulary items into the idfeatt set of semantic classes is
done manually. An automatic approach to do this is desirablainimize the human
effort involved in this regard.

The correct identification of a speaker’s gender is indispbtle so that acoustic mod-
els tailored to each gender group can be used to achieve veghperformance. Hence,
the performance of the gender recognizer we built in thisighenay be further improved
using other features in addition to cepstral features tainlgerformance as close to that
of humans as possible. Besides, a nice to have feature inkarsplialog system is on-
line speaker adaptation where the first few utterances oéakgp are used to adapt the
acoustic model for a duration of a dialog. This is typicalgetul for long interactions.
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Appendix A

List of Semantic Classes

Airline Travel Planning Domain

Listing 17 List of low-level semantic classes in the domain of airlirevel planning

AIRLINE_NAME, AIRLINE_QUALIFIER, AIRPORT_QUALIFIER, Al RPORT_NAME,
AIRPORT_TYPE, AMOUNT_OF_MONEY, CONNECTIVE, BETWEEN, CBRR_TYPE,
PICK_UP, DROP_OFF, RENTAL, RENTAL_COMPANY, CITY_P1, CITY P2,

CITY_P3, CITY_QUALIFIER, COMMAND, COUNTRY, PREFERENCE, BY_OF_MONTH,
DATE_QUALIFIER, DAY_OF_ WEEK, MONTH, YEAR, DEPARTURE, ARRL, DUMMY,
FINISHED, FLIGHT_QUALIFIER, FLIGHT_CLASS, FLIGHT_NUMBE R, FLIGHT_TYPE,
AT, FROM, TO, HOTEL_QUALIFIER, HOTEL_TYPE, HOTEL_ROOM, ROM_TYPE,
ON, IN, HOUR_OF_DAY, MINUTES, AMPM, PERIOD_OF DAY, TIME_QALIFIER,

ID, ID_NUMBER, USER_NAME, ITINERARY, PLACE_INDICATOR, NEXT, MODIFIER,
OPTION, PRICE, FARE_CLASS, RETURN, QUANTITY, RESERVATION REQUEST,
STATE, SPELT_CITY, SPELT_AIRPORT, QUALIFIER, SEGMENT, YES, NO, PLANE,
NUMBER, TICKET, QUESTION, TRAVEL, TRAVEL_TYPE, INFORMATON, STREET
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Train Inquiries Domain

Listing 18 List of low-level semantic classes in the domain of trainuings

CITY_PRE, CITY_1, CITY_2, CITY_POST, PLACE_INDICATOR, IN , BETWEEN,
DIRECTION, DEPARTURE, DEPARTURE_INFO, ARRIVAL, ARRIVALINFO, FROM, TO,
BACK, DAY_OF MONTH, MONTH, HOLIDAY, DAY_OF WEEK, DAY_EYFON, NUMBER_OF,
DAYS, WEEK, MINUTES, HOUR, HOUR_OF_DAY, TIME_SPECIFIER, ERIOD_OF DAY,
AROUND, QUALIFIER, TIME_QUALIFIER, SERVICE, QUESTION, MODIFIER, TRAVEL,
AT, TICKET, TRAIN, TRAIN_CLASS, TRAIN_TYPE, PRICE_ TYPE, D ELAY, DUMMY,
TIME_FREQUENCY, TRAIN_CONNECTION, TRAIN_CHANGE, IN_TR4 SERVICE, YES, NO,

CONNECTIVE
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Appendix B

The Questionnaire

Adapted from Moller et al, 2007)

1. Task Efficiency

(@)

(b)

()

(d)

The system did exactly do what | requested.

("Das System tat genau das, was ich von ihm verlangte.”)
 Strongly agree agree undecided

- disagree  Strongly disagree

The information provided by the system was clear.

("Die vom System gelieferten Informationen waren klar uedttich.")
 Strongly agree agree undecided

- disagree o strongly disagree

The provided information was complete.

("Die gelieferten Informationen waren vollstandig.")

 Strongly agree agree undecided

- disagree o strongly disagree

The system could efficiently provide information inquservices.
("Mit dem System lassen sich gewlnschte Informationenieffizrfragen")
 strongly agree agree undecided

- disagree o strongly disagree
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2. Speech Input and Output Quality

(@)

(b)

()

(d)

| felt well understood by the system.

("lch fuhlte mich gut vom System verstanden.")
 Strongly agree agree o undecided
disagree o Strongly disagree

| had to concentrate to acoustically understand theegyst
("lch musste mich konzentrieren, um das System akustiselemiehen.")
 Strongly agree agree o undecided
 disagree o strongly disagree

The system voice sounded natural.

("Die Stimme des Systems klang naturlich.")

 Strongly agree agree o undecided

- disagree o strongly disagree

The system reacted too slowly.

("Das System reagierte zu langsam.")

o strongly agree magree nundecided

- disagree o strongly disagree

3. Reliability
(&) The system made many errors.

("Das System machte viele Fehler.")
 Strongly agree agree o undecided
- disagree o strongly disagree

(b) The system in unreliable.

("Das System ist unzuverlassig.")
o strongly agree magree nundecided
- disagree o strongly disagree

4. Cooperativity
(&) I'was able to recover easily from errors.

("Ich konnte auftretende Fehler leicht beheben.")
 Strongly agree agree o undecided
- disagree o strongly disagree
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(b)

(©)

The system behaved in a cooperative way.

("Das System verhielt sich kooperativ.")

o Strongly agree Cagree mundecided
- disagree  Strongly disagree

The system reacted like a human.

("Das System reagierte wie ein Mensch.")

7 Strongly agree agree undecided
 disagree o strongly disagree

5. Dialog Efficiency

(@)

(b)

()

(d)

(€)

(f)

| got easily lost in the dialog flow.

("lch konnte leicht den Gesprachsfaden verlieren.”)

o Strongly agree magree mundecided
- disagree  Strongly disagree

The dialog was irregular.

("Das Gesprizh verlief holprig.")

 Strongly agree agree undecided
- disagree  Strongly disagree

| could direct the dialog as | wanted.

("Ich konnte das Gesprach wie gewinscht lenken.")

0 Strongly agree agree undecided
- disagree o strongly disagree

The dialog was too long.

("Das Gesprach war zu lang.")

o Strongly agree magree mundecided
- disagree o strongly disagree

The dialog quickly led to the desired aim.

("Das Gesprach fuhrte schnell zum gewlnschten Ziel.")
o Strongly agree magree mundecided
- disagree  Strongly disagree

The dialog was balanced between me and the system.
("Die Gesprachsanteile waren gleich verteilt zwischenund dem System.")
 Strongly agree agree undecided
 disagree  Strongly disagree
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(9) I always knew what to say to the system.
("lch wusste zu jeder Zeit, was ich dem System sagen konnte."
o strongly agree magree nundecided
disagree o Strongly disagree

(h) Ifeltin control of the interaction with the system.
("Ich hatte has Gefuhl, das ich die Kontrolle Gber das Sydtatte, wéhrend
ich es benutzte.")
o strongly agree magree nundecided
- disagree o strongly disagree

() 1was not always sure what the system expected from me.
("lch wusste nicht immer, was das System von mir verlangte.”
o strongly agree magree nundecided
disagree o strongly disagree

6. User Satisfaction

(a) The interaction with the system was pleasant.
("Die Interaktion mit dem System war angenehm.")
o strongly agree magree nundecided
disagree o Strongly disagree

(b) Ifelt relaxed.
("Ich fahlte mich entspannt.”)
o strongly agree magree o undecided
disagree o strongly disagree

(c) The interaction was fun.
("Die Interaktion hat Spald gemacht.")
 Strongly agree agree o undecided
- disagree o strongly disagree

(d) The system is useful.
("Das System ist nutzlich.")
 Strongly agree agree o undecided
- disagree o strongly disagree

(e) The system is friendly.
("Das System ist freundlich.")
o strongly agree magree nundecided
 disagree o strongly disagree
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() The system always reacted as expected.
("Das System reagierte immer wie erwartet.")
o Strongly agree Cagree mundecided
- disagree  Strongly disagree
(g) Overall, | am satisfied with the system.
("Ich bin insgesamt mit dem System zufrieden.")

o strongly agree Cagree mundecided
- disagree  Strongly disagree
7. Task Ease

(a) The system is difficult to use.
("Das System lasst sich nur schwer bedienen.")
o Strongly agree Cagree mundecided
- disagree o strongly disagree
(b) Itis easy to learn to use the system.
("Die Benutzung des Systems lasst sich leicht erlernen.”)
o strongly agree Cagree mundecided
- disagree - Strongly disagree
(c) Information inquiry via speech was comfortable.
("Die Anfrage von Informationen mittels Sprache war korntdibel.")
o Strongly agree Cagree mundecided
- disagree  Strongly disagree
(d) The system is too inflexible.
("Das System ist zu unflexibel.")
o strongly agree Cagree mundecided
- disagree  Strongly disagree

(e) A high level of concentration is required when using ty&tem.
("Ich musste mich sehr auf die Interaktion mit dem Systenekaotrieren.")
 Strongly agree agree undecided
- disagree o strongly disagree
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8.

10.

Acceptability

(&) The system is not helpful for information inquiry seesc
("Das System st nicht hilfreich fur Informationen AnfraDeenstleistungen.")
 Strongly agree agree o undecided
disagree o Strongly disagree

(b) | prefer to do information inquiry in a different way.
("Ich wirde die Informationen lieber auf eine andere Wemsschaffen.")
 Strongly agree agree o undecided
 disagree o strongly disagree

(c) 1'would use the system again in the future.
("Ich wiirde das System in Zukunft wieder benutzen.")
 Strongly agree agree o undecided
- disagree o strongly disagree

. Which of the two services did you like more?

 The English Airline Travel Planning System.

0 The German Train Information Inquiry System.
n Both are equally good.

| didn’t like both.

Overall impression of the interaction with the KEY syste
("Gesamteindruck der Interaktion mit dem KEY System.")

bad poor fair good excellent
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