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Zusammenfassung

Multistabile Wahrnehmung entsteht bei der Betrachtung mehrdeutiger Bilder,

wenn gegenstzliche Wahrnehmungen des Bildes spontan alternieren. Trotz gle-

ichbleibender Stimulation schlgt die Wahrnehmung unweigerlich frher oder spter

um. Es wird vermutet, dass diese seltsame Entkopplung zwischen Stimulation und

bewusster Wahrnehmung tiefe Einblicke in die neuronalen Ablufe geben knnte, mit

denen das Gehirn sensorische Information ver- und entschlsselt. Trotz erheblicher

experimenteller und theoretischer Fortschritte sind die Mechanismen, die der

multistabilen Wahrnehmung zugrundliegen, noch nicht vollstndig verstanden.

Bisherige Erklrungsanstze haben sich auf den Umschaltvorgang konzentriert und

mehrere plausible dynamische Mechanismen vorgeschlagen, unterliegen jedoch

wichtigen Beschrnkungen. Insbesondere erfllen sie die Skalierungseigenschaft der

multistabilen Wahrnehmung nicht, ein allgemeingltiger und erstaunlich robuster

experimenteller Befund ber die statistische Verteilung der Umschaltzeiten. Obwohl

die durchschnittlichen Umschaltzeiten verschiedener Betrachter und verschiedener

Bilder sich stark unterscheiden, bleibt die Form der Verteilungsdichte unverndert.

Die vorliegende Dissertation schlgt einen neuartigen Ansatz zur Erklrung multi-

stabiler Wahrnehmung vor, welcher diese einzigartige Skalierungseigenschaft in das

Zentrum der Betrachtung rckt.

Ganz allgemein verraten die zufllig verteilten Zeitpunkte von

Wahrnehmungsentscheidungen viel ber die zugrundelegende Dynamik neu-

ronaler Aktivitt. Im Zusammenhang mit Detektions- und Diskriminationsleis-
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tungen, kann der Zeitpunkt der Wahrnehmungsentscheidung als langsame und

rauschbehaftete Ansammlung sensorischer Informationen bis zum Erreichen einer

Wahrnehmungsschwelle beschrieben werden. Die Einfhrung dieses first-passage-

time Ansatzes hat zahlreiche wichtige Aspekte der neuronalen Ablufe enthllt,

denen Wahrnehmungsentscheidungen zugrundeliegen. Die vorliegende Disser-

tation bertrgt diesen Ansatz auf den Fall der multistabilen Wahrnehmung und

die Untersuchung ihrer charakteristischen Skalierungseigenschaft, indem sie die

Zeitpunkte des Umschaltens als first-passage-time Problem behandelt. Auf dem

Wege einer genauen, vergleichenden Analyse unterschiedlicher Zufallsablufe werden

die Ursachen der Skalierungseigenschaft der multistabilen Wahrnehmung erkannt

und beschrieben.

Die Auswirkungen dieser Einsichten werden dann benutzt, um einen neuartigen,

hierarchischen Mechanismus der multistabilen Wahrnehmung vorzuschagen, dessen

Wechselwirkungen sowohl top-down als auch bottom-up verlaufen. Whrend

anfngliche Wahrnehmungsentscheidungen hauptschlich von sensorischen Reizen,

durch bottom-up Wirkungen, bestimmt sind, wird der Umschaltvorgang von dem

vorherrschenden Wahrnehmungszustand, durch top-down Wirkungen, ausgelst.

Das sich daraus ergebende Modell erklrt die verfgbaren experimentellen Beobach-

tungen ber multistabile Wahrnehmung sowohl quantitativ als auch quantitativ

umfassend und mit einem bislang unerreichten Grad der Genauigkeit. Des weiteren

schliet die hierarchische Wechselwirkung, welche in der vorliegenden Dissertation

beschrieben ist, auch einige wichtige Aspekte anderer Theorien und Modelle mit

ein, welche die Wahrnehmungsentscheidungen und kortikale Informationsver-

arbeitung ganzheitlich betrachten. Aus diesem Grund knnte die beschriebene

hierarchische Wechselwirkungen ber die multistabile Wahrnehmung hinaus auch fr

weitere kognitive Phnomene von Bedeutung sein.



Abstract

Multistable perception is observed during the perception of ambiguous figures,

where spontaneous alternations between alternative perceptions of the figures

occur. Although the stimulus does not change, perception eventually and in-

eluctably reverses. It is thought that understanding this peculiar dissociation

between incoming sensory input and its conscious representation, may provide

considerable insights into the neural processes by which the brain encodes and

decodes information. Despite extensive experimental and theoretical advances, the

mechanisms underlying perceptual reversals are not fully understood.

Traditional modelling approaches have focused on characterizing this reversal

behaviour and have proposed several plausible underlying mechanisms, but suffer

from important limitations. In particular, they do not satisfy the scaling property

of multistable perception, a general and strikingly robust empirical aspect of re-

versal timing. Although average reversal times widely vary between observers and

experimental conditions, the shape of reversal times densities remains invariant.

This thesis proposes a novel approach to multistable perception that focuses on

this unique scaling property.

More generally, the stochastic timing of perceptual choice events reveals much

about the underlying dynamics of neural activity. In the context of detection and

discrimination tasks, choice events can be described as a gradual and noisy accu-

mulation of sensory information to a perceptual threshold. The introduction of this

‘first-passage-time’ framework has uncovered important aspects of neural mecha-
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nisms implementing perceptual decisions. This study adapts this approach to the

case of multistable perception, and to the study of its characteristic scaling property,

consider the timing of perceptual reversals from the perspective of a first-passage-

time problem. By means of a detailed comparative analysis of several random walk

models, the origins of the scaling property of multistable perception are identified

and discussed.

The implications of these results are then exploited to introduce a new hierarchical

mechanism of perceptual reversals, which features both bottom-up and top-down

interactions. While initial perceptual choices are mainly driven by the sensory in-

put, via bottom-up influences, reversal dynamics is driven by the current perceptual

state, via top-down influences. The resulting model accounts for the available be-

havioural data, qualitatively and quantitatively to a level of detail which had not

previously been achieved. Additionally, the hierarchical dynamics described in this

thesis rediscovers some important aspects of decision-making theories and of other

large-scale cortical models. Thus, the proposed hierarchical dynamics may carry

wider implications well beyond the study of multistable phenomena.
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1
Introduction

1.1 Perception and uncertainty

Our perception of the world relies on the translation of its physical attributes into

coherent and reliable mental representations. This implies, on the one hand, the

ability to form internal representations associated with the sensory input (encod-

ing), and on the other hand the ability to access these internal states by extracting

relevant information from the sensory input (decoding), which we progressively

learn from birth by interacting with our environment. In the context of perceptual

decision-making, the joint operation of both encoding and decoding processes is

necessary: our perception is often challenged by various forms of uncertainty, for

instance, a lack of prior knowledge about incoming information, a lack of incoming

information itself, or both. Sensory input is intrinsically ambiguous; prior knowl-

edge about the properties of the world is always needed to allow incoming stimuli to

be disambiguated and appropriately categorised. One could in principle interpret

the back and forth motion of an object as a deformation of the object itself, as

if it were gradually shrinking and growing, and conversely. The prior knowledge,

acquired through perceptual learning, that some objects are not likely to shrink or

grow, would help in resolving this specific ambiguity. The most plausible alternative

would then be uniquely selected, and other alternatives, dismissed [von Helmholtz,

1866, Barlow, 1990, Gregory, 2009].

Object recognition, for instance, requires knowledge about its physical attributes,

1



Chapter 1. Introduction 2

which may themselves widely differ between objects with the same function. It also

requires knowledge about alternative objects, which may share common character-

istic features, but differ in functions. Correct recognition of an object, and more

generally, correct interpretation of natural scenes, relies on the ability of our vi-

sual system to cope with these different sources of uncertainty, in order to propose

a stable and reliable perceptual representation in awareness at all times. How-

ever, in situations where incoming stimuli are corrupted by noise, inconsistencies

or ever-changing qualities, and may evoke alternative percepts, even extensive prior

knowledge about all possible interpretations may not be sufficient to make a reliable

perceptual decision.

1.2 Sources of variability

In addition to incoming sensory information being ambiguous and fluctuating,

neural responses at all levels of the visual processing chain, from the sensory level,

to higher stages of cognition, are also inherently noisy [Arieli et al., 1996, Tsodyks

et al., 1999]. Perception itself is stochastic: sensory inputs are not always faithfully

interpreted and perceptual decisions may have probabilistic outcomes. This is

well captured by the application of signal-detection theory to the psychophysics

of detection and discrimination tasks, in particular, when stimuli are weak and

close to detection thresholds [Swets, 1964, Green and Swets, 1966]. At the level

of single-neurons, the variability in the spiking activity of a single-neuron depends

on fluctuations of its ion-channels, which condition the release of action potentials

(also termed ‘channel noise’ [White et al., 2000]), and on the synaptic input it

receives from other neurons (also termed ‘synaptic noise’ [Destexhe and Paré,

1999]). Individual variability is then carried upwards to the level of neuron

populations, depending on the structure of interactions and correlations between

the neurons populating a given assembly, as well as on its size [Brunel and Hakim,

1999, Mattia and Del Giudice, 2002, Faisal et al., 2008]. Also, when considering

neural assemblies on increasingly large scales, fluctuations do not only build-up

in a bottom-up manner as a result of neural variability, but may also be affected



3 1.2. Sources of variability

by top-down influences, such as fluctuations in attention, or in other cognitive states.

The relative contributions to behavioural variability of noise from external or

sensory sources, are not well established. This constitutes a highly active area of

research, to which the present study provides additional contributions [Gold and

Shadlen, 2007, Ratcliff and McKoon, 2008, Nienborg and Cumming, 2009, Amitay

et al., 2013, Litwin-Kumar and Doiron, 2012, Wimmer et al., 2015]. While the

nature of processes involved in brain dynamics ineluctably results in noisy neural

and behavioural responses, such variability could in fact be an important func-

tional feature of neural computations underlying decision-making [Bogacz et al.,

2006, Ma et al., 2006, Beck et al., 2008, Fiser et al., 2010, Churchland et al., 2011,

Pouget et al., 2013, Haefner et al., 2016]. Stochastic dynamics may be desirable

for perceptual decisions to select the representation which best accounts for the

available sensory evidence, while simultaneously allowing for other alternatives to

be considered and even reversed to. If additional evidence is made available which

make the current interpretation of the stimulus somewhat improper, maintaining

this interpretation rather than switching to a more likely alternative - by ignoring

new sensory information or exclusively focusing on a subset of sensory information

- could have dramatic consequences.

Rather than simply interfering with neural computations, stochastic variations of

activity may act to appropriately balance the relative contributions of prior knowl-

edge and current sensory input to decision-making. Performances in the categori-

sation of sensory inputs would sensibly differ if one were to arbitrarily outweigh the

other, irrespectively of the nature of the stimulus. Perception is most stable and

least sensitive to changes in the environment when overly relying on prior knowl-

edge: even compelling environmental changes may not be reflected at the perceptual

level [Kersten et al., 2004, Pastukhov et al., 2013]. For instance, exotic stimuli may

be grossly misinterpreted on the basis of a slight similarity to a familiar stimulus,

rather than in terms of a new category. Conversely, perception is most sensitive and

least stable when overly relying on current sensory information: even uncompelling

environmental changes may be unduly reflected at the perceptual level. This could
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cause known stimulus to be interpreted in terms of a new category, rather than in

a known category, on the basis of slight dissimilarities with familiar stimuli.

This trade-off between perceptual stability and sensitivity is reminiscent of the

‘exploration-exploitation’ dilemma, originally formulated in the context of reinforce-

ment learning [Sutton and Barto, 1998]. For humans, animals or even commercial

organisations, survival and prosper development requires them to adapt to the many

unknowns and ever-changing properties of their environment. In a foraging scenario,

an exploitation-only strategy may result in the depletion of a given resource, while

an exploration-only strategy may result in insufficient accumulation of resources,

neither of which would be beneficial to thrive in the long term. Equivalently, op-

timal perceptual decisions in challenging conditions would require both strategies

to be adequately balanced, to ensure that changes in our perception can steadily

match changes in our environment.

1.3 Why study multistable perception?

Despite the seemingly artificial aspects of its practical implementation, which in-

volve the use of specific and somewhat unnatural stimuli, multistable phenomena

are thought to open a particularly convenient window on the stochastic and ex-

ploratory dynamics of perceptual inference [Leopold and Logothetis, 1999, Blake

and Logothetis, 2002, Sterzer et al., 2009, Pastukhov et al., 2013]. This is precisely

because even when stimulus qualities of multistable displays do not change, percep-

tual experience does in a particularly prominent fashion. This way, the mechanisms

underlying visual inference may be approached in a particular case, without hav-

ing to consider the more general and considerably more complex setting described

previously, where perception is modulated by an ever-changing environment.

Multistable stimuli are such that alternative interpretations of the stimulus inter-

change in time, as they can not be disambiguated. Perceptual choices are thus

continually reconsidered, remain ultimately inconclusive, and as a result, subjects

experience reportable switches in awareness. Importantly, reversals in perceptual

dominance are spontaneous: although volitional control can affect the duration
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of stable appearances, reversals ineluctably occur [von Helmholtz, 1866, Pastukhov

and Braun, 2007, Kornmeier et al., 2009]. Multistable situations may reflect the bal-

ance between ‘exploration’ and ‘exploitation’, spontaneously positioning perceptual

dynamics in a self-organised regime, optimally balancing stability and sensitivity.

This allows fluctuations to probe whether all possible interpretations of the stimu-

lus have been considered (exploration), while maintaining the current interpretation

stable (exploitation) [Kim et al., 2006, Pastukhov et al., 2013].

This suggests that unresolved ambiguities prompts sensory evidences to be contin-

uously re-evaluated, and confronted to the current state of awareness. Since all

sensory inputs are intrinsically ambiguous, multistability may be a hallmark of per-

ceptual inference, and also occur during the interpretation of natural scenes. One

characteristic of multistable displays is that they evoke substantially distinct states

in prior knowledge, making transitions between those states particularly sharp and

noticeable. Presumably, natural displays may evoke a more continuous and high-

dimensional set of alternative states, so that perceptual transitions would be com-

paratively smooth and unnoticeable.

In addition to such puzzling reversal behaviour, the temporal dynamics of multi-

stable displays is characterised by a vast array of experimental observations which

reveal much about the timing of underlying neural processes; they have been and

still are intensively discussed, but are not fully accounted for. Stable dominance

periods between reversals (or dominance durations) obey striking statistical prop-

erties, highly consistent across observers, display types and even for other sensory

modalities (e.g. for audition [Pressnitzer and Hupe, 2006, Winkler et al., 2012]

and touch [Carter et al., 2008]). The apparent generality of these findings further

supports the idea that the study of multistability can unveil fundamental insights

into the mechanisms of perceptual inference.
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Our study will focus on the following experimental observations:

• Reversal behaviour: competing percepts are mutually-exclusive, reversals

are spontaneous and stochastic [Leopold and Logothetis, 1999].

• Distribution of dominance durations: for fixed stimulus qualities, domi-

nance durations are Gamma-distributed, with coefficient of variation cv ≈ 0.6,

and skewness γ1 ≈ 2cv [Cao et al., 2016].

• Levelt’s propositions: average dominance durations can be modulated by

variation of input-levels, which can be summarized in two main characteristic

laws. First, relative variations in stimuli strength cause non-linear and asym-

metric modulations of dominance durations. In particular, stronger percepts

are more noticeably affected by such changes than weaker percepts (originally

known as Levelt’s second proposition). Second, greater absolute stimulus

strengths yields greater alternation rate (originally known as Levelt’s fourth

proposition) [Levelt, 1965, Klink et al., 2008, Brascamp et al., 2015].

• Scaling property: the distribution dominance durations consistently con-

serves its shape for different displays, observers and stimulus qualities, while

average dominance durations may considerably vary. This implies that the

coefficient of variation and skewness of dominance duration remain essentially

constant despite large variations of the mean.

• History-dependence: reversal sequences show weak but consistent se-

quential correlation between successive dominance durations [van Ee, 2009].

Longer-lasting correlations are also revealed in new experimental data by the

heterogeneity of reversal counts in different time windows (burstiness of re-

versal sequences) [Cao et al., 2015a,b].
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1.4 Current models of multistable perception

Current models of multistable perception reproduce several important aspects of

multistable perception, by employing neurophysiologically plausible assumptions

to generate a noisy attractor-like dynamics. Such models detail the possible mech-

anisms underlying perceptual reversals, usually by means of reduced ‘mean-field’

descriptions [Lehky, 1988, Wilson, 2007, Shpiro et al., 2007, Moreno-Bote et al.,

2010]. More detailed implementations using networks of spiking neurons have

also been proposed [Laing and Chow, 2002, Moreno-Bote et al., 2007]. In general,

current models rely on the following: local recurrent excitation, global mutual-

inhibition, exogenous fluctuations, and neural adaptation. Common adaptation

mechanisms in the models are usually related to synaptic dynamics (e.g. synaptic

depression), or channel dynamics (e.g. spike-frequency adaptation). Perceptual

outcomes are determined by the global activity of self-sustaining stable states

(attractors) obtained via recurrent excitation, where mutual-inhibition between

competing attractor states ensures the exclusivity of the dominant perceptual

appearance [Amit and Brunel, 1997]. Spontaneous transitions between attractor

states, implementing perceptual reversals can be obtained by adding a sufficient

amount of noise, or a sufficient amount of adaptation [Laing and Chow, 2002,

Moreno-Bote et al., 2007, Shpiro et al., 2009].

Both alternative mechanisms can be used independently to account for reversal

behaviour. However they must be appropriately balanced to reproduce the

observed distribution of dominance durations, but also the sequential correlation

between successive dominance periods. In particular, strong adaptation typically

produces reversal sequences with significantly greater correlation than those

observed experimentally [Lehky, 1988, Shpiro et al., 2009]. A regime where

perceptual reversals are mainly noise-driven as been reported to provide both

realistic distributions dominance and weak correlations in alternation sequences

[Brascamp et al., 2006, Moreno-Bote et al., 2007, Shpiro et al., 2009]. This regime

is also consistent the results from perturbation experiments, which suggest a

gradual weakening of the dominant visual appearance between reversals [Wolfe,
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1984, Nawrot and Blake, 1989, Petersik, 2002, Kang and Blake, 2010].

Note that although adaptation must be weak, it still plays an important role. If

noise were the sole driving force behind perceptual alternations, reversals statistics

would reduce to the well-known Kramer escape problem and dominance durations

would be exponentially distributed [Kramers, 1940, Moreno-Bote et al., 2007,

Shpiro et al., 2009, Gigante et al., 2009]. In this regime, however, reversals

are unlikely to occur before the system has started to adapt, for instance, in

the moments directly following the precedent reversal. Adaptation gradually

destabilize dominant and suppressed states, so that after some time, noise is able

to initiate the next perceptual switch. This can be seen as a refractory period,

which effectively limits the amount of extremely short reversal times, preventing

dominance durations to distribute exponentially.

The characteristic modulations of average dominance durations under variations

of stimulus strength (Levelt’s propositions), are perhaps the most commonly used

criterion to ascertain the validity of computational models of multistability. Since

Levelt’s original work, these propositions have been extensively studied, both

experimentally and theoretically, and have been subjected to several reformulations

as new evidence was made available [Levelt, 1965, Klink et al., 2008, Kang, 2009,

Brascamp et al., 2015]. In some instances, previously proposed models present a

good agreement with Levelt’s second proposition (see for instance [Laing and Chow,

2002, Wilson, 2007, Moreno-Bote et al., 2007]). In their studies, Laing and Wilson

established approximate formulas for the mean duration of dominance periods,

which explicitly depend on input-levels. These formulas provide an important

basis for the qualitative understanding of Levelt’s second proposition, in terms

of the characteristic profile of the adaptation mechanism shared by these models

[Brascamp et al., 2015]. However, it is important to note that the agreement

of these models with Levelt’s propositions is, in general, partial. They typically

explored restricted range of stimulus strength combinations, with only one of two

applied stimulus strengths being modulated.

Also, they have encountered difficulties in reproducing Levelt’s fourth proposi-
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tion. Contrary to experimental evidences, the reversal rate in adaptation-based

models is not a monotonic function of absolute stimulus strength, a result which

has prompted several detailed studies, without being confirmed experimentally

[Shpiro et al., 2007, Curtu et al., 2008, Seely and Chow, 2011, Brascamp et al., 2015].

An important limitation adaptation-based models is that they can not conciliate

modulations of average dominance durations with higher-order statistical properties

of reversal times sequences (i.e. the scaling property). Observed reversal sequences

obey consistent and striking statistical properties: mean dominance durations can

span across a few orders of magnitude (from the hundreds millisecond to nearly

100 seconds) depending on subjects, displays types and stimulus levels [Fox and

Herrmann, 1967, Borsellino et al., 1972, Walker, 1975, Zhou et al., 2004, Bras-

camp et al., 2005, Cao et al., 2016], higher-order moments of dominance durations

distributions scale proportionally with the mean. The distribution shape is thus

invariant and remains close to a gamma distribution (i.e. the coefficient of vari-

ation cv ∈ [0.4, 0.6] and the skewness γ1 ≈ 2cv) [Levelt, 1967, Blake et al., 1971,

Walker, 1975, De Marco et al., 1977, Murata et al., 2003, Pastukhov and Braun,

2007, Cao et al., 2016]. Also, sequential correlations between successive dominance

durations are generally non-significant, and at best, small (around 0.1, 0.2) [Fox

and Herrmann, 1967, Lehky, 1995, van Ee, 2009, Pastukhov et al., 2013].

As previously mentioned, in order to obtain the coefficient of variation obtained

experimentally, along with the weak correlation, adaptation-based models must

precisely balance the contributions of noise and adaptation to reversal dynamics

[Shpiro et al., 2009]. However, they can only maintain this balance over a narrow

regime, and therefore can only reproduce Levelt’s propositions at the expense of

the scaling property. Ideally, both results should be simultaneously verified.

1.5 Thesis outline

In this thesis, I present a new model of multistable perception, which resolves

several of the issues encountered by other models, by approaching the relationship
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between neural and behavioural fluctuations in a more comprehensive manner. The

results presented here are articulated around two peer-reviewed publications, and a

manuscript in preparation [Cao et al., 2014, 2016]. The originality of our approach

is that we considered the possibility that higher-order statistical properties,

such as the scaling property of mutistable perception, may provide important

constrains on the dynamics of the underlying neural systems. Furthermore, that

these properties may in turn provide additional constrains to design a perceptual

reversals mechanism, on the grounds that the adequate mechanism should preserve

such properties. Traditional models of multistable perception usually consider

a deterministic mechanism of perceptual reversals, to which external noise is

added and tuned to match the variability of behavioural responses. Instead,

we constrained the deterministic properties of our model by first examining the

properties of its fluctuations.

A common approach in the study of perceptual decisions is to represent the timing

of neural events as the time-to-threshold of a stochastic decision variable. It is

assumed that mechanisms underlying perceptual decisions can be reduced to a

random walk model, representing a gradual and noisy accumulation of sensory

evidences, evoked by the presentation of a stimulus. Perceptual choices occur when

the decision variable reaches a threshold level. These so-called diffusion-to-bound

models have been widely used in the modelling of two-alternatives forced choice

tasks (2AFC), a well-studied paradigm of perceptual decision-making [Ratcliff and

Smith, 2004, Smith and Ratcliff, 2009]. They explain response time distributions

for both correct and error responses as well as their dependence on motion

strength, allowing for a direct link between neural and behavioural dynamics to be

drawn. This approach is supported by a large body of neurophysiological studies

which have identified cortical areas predictive of perceptual choices and showing a

qualitatively similar dynamics as predicted theoretically (for instance, in parietal

and prefrontal cortical area [Kim and Shadlen, 1999, Schall, 2001, Sugrue and

Corrado, 2005, Gold and Shadlen, 2007, Shadlen and Kiani, 2013]).

The present study sought to extend this stochastic accumulation framework to the

case of multistable phenomena. The peculiar dissociation between stimulus and
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perceptual experience observed in multistable perception, along with the seemingly

random nature of reversal sequences, suggests the existence of a stochastic decision

variable driving perceptual dynamics from behind the scenes. Also, cortical sites

associated with, respectively, accumulating and evaluating competing evidence for

different forms of multistable displays appear to overlap with the sites identified for

2AFC tasks [Roitman and Shadlen, 2002, Knapen et al., 2011, Shadlen and Kiani,

2013]. This supports the idea that 2AFC tasks and multistable perception may to

some extent share common neural underpinnings, and further justifies an approach

in terms of a diffusion-to-bound model, to characterise the timing of neural events

underlying perceptual reversals.

From a modelling perspective, statistical physics and the theory of stochastic

processes constitute a natural and powerful way to bridge the gap between the

fluctuating dynamics of neural systems and the fluctuating dynamics of behavioural

responses. As a first step, we performed a detailed analysis of first-passage-time

properties for several random walk models, to determine which of these models

could satisfy the scaling property, and importantly, which dynamical features

allowed them to.

These results are presented in Chapter 2. We present our behavioural obser-

vations, as well as the minimum conditions for this property to be satisfied by

diffusion-to-bound models. The first-passage-time properties of several traditional

random walk models are analysed, and their ability to satisfy the scaling property,

discussed. We found that to obtain first-passage-time densities which widely differ

in their mean but conserve their shape as the stimulus is varied, the noise (or dif-

fusion coefficient) must obey a specific dependence on input-levels [Cao et al., 2016].

Then, we envisaged stochastic accumulation of activity as originating from

the collective activation in a finite ensemble of independent bistable units. Each

unit can become spontaneously active (or inactive), transition rates are modulated

by input-levels and occur according to a Poisson process. These discrete neural

units are thought to idealize the dynamics of discrete neural nodes such as cortical
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columns [Amit, 1995, Mattia et al., 2013]. Collective accumulation of activity in

an assembly of such bistable units realizes a birth-death process known as the

generalized Ehrenfest urn model. In this case, both mean and variability of the

collective dynamics naturally depend on input-levels, and share a common physical

origin, so that the scaling property is automatically satisfied.

These results are presented in Chapter 3, where we formally introduce the

generalized Ehrenfest process and derive several important analytical results [Cao

et al., 2014]. In particular, a recursive expression for the moments of the first-

passage-time density is obtained, the four first moments are explicitly derived and

compared to direct simulations. A regime identification is performed and reveals

a specific regime in which the Ehrenfest process reproduces the scaling property

as well as the characteristic Gamma-like shape of reversal times densities observed

in experiments. Importantly, we extend these results to the case of an assembly

interacting bistable units, corresponding to the dynamics of a multi-modular

cortical network, or cluster of interacting cortical columns.

We originally introduced the Ehrenfest urn model because of its natural

disposition to satisfy the scaling property. This is because when collectively

accumulating activity with bistable units obeying a Poisson statistics, both

deterministic and stochastic components of the dynamics have the same physical

origin and appropriately scale with input-level. Unexpectedly, we also found that

it could reproduce the characteristic distribution shape of observed reversal time

densities. In fact, the reasons underlying this result are not as straightforward.

In Chapter 4 we sought to clarify this issue by singling out the dynamical

properties expressed by the Ehrenfest process which may be responsible for the

shape of its of first-passage-time distribution. To this aim, we draw an additional

comparison with the statistics of two closely-related random walks. While sharing

some important characteristics of the Ehrenfest process, in that they also both

naturally satisfy the scaling property, they do not reproduce the desired distri-

bution shape, because both processes diffuse symmetrically. In contrast, when

operating far-from-equilibrium, the Ehrenfest process is non-Gaussian and diffuses
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asymmetrically. In addition, we propose a neurally plausible implementation of

the Ehrenfest process by a network of spiking-neurons.

Finally, we redesigned the mechanism underlying perceptual reversals, to allow

the resulting model to simultaneously reproduce the scaling property and Levelt’s

propositions. Similarly to previously proposed models, the activity of mutually

inhibited attractor states represents perceptual outcomes, and reversals are driven

by the joint action of a gradual destabilisation mechanism of the dominant percept,

and by noise. The critical difference with prior models is that we replaced the

combination of exogenous noise and deterministic self-adaptation by a discrete

random walk (the Ehrenfest process).

In a previous Chapter, we establish that this process could reproduce important

statistical properties of multistable perception, thanks to several key dynamical

features. To preserve these important features, we implemented perceptual in

a hierarchical manner, combining slow random walk, with fast winner-take-all

attractor dynamics [Cao et al., 2015a,b]. The former models the accumulating

dynamics of subconscious ‘evidence’ representation at the sensory level, and the

latter models the dynamics of conscious ‘decision’ representation at the behavioural

level. Reversals occur as a result of the joint dynamics between the two levels,

when the relative strength of mounting evidence sufficiently contradicts the current

perceptual state. Importantly, this sudden change of decision at the decision

level directly impacts the dynamics of the lower sensory level, reverting the

relative accumulation of evidence, and causing sensory populations to reorganise

accordingly. Evidence supporting the newly dominant state weakens, eventually

contradicting the decision and prompting another reversal.

Although akin to self-adaptation in its effects, our proposed mechanism reflects

a joint dynamics of sensory accumulation (supporting the suppressed percept)

driving the behavioural level via bottom-up projections, and of sensory habituation

(supporting the dominance percept) driven by the behavioural level via top-down

projections.

In Chapter 5, we present the detailed implementation of our hierarchical model
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of multistable perception. We illustrate the dynamics at each level the hierarchy

separately, before gradually introducing the specifics of our reversal mechanism,

as well as the governing equations of the model. The model is then fitted to

behavioural data up to third-order (mean, variance, and skewness). In particular,

the model provide simple mechanisms explaining all of Levelt’s propositions

accurately, along with the scaling property and shape of reversal time densities.

The structure and dynamics of our model is inspired and supported by the idea

that multistable appearances may reflect hierarchical interactions between visual

sensory areas encoding low-level stimulus informations, and high-level areas (non

necessarily visual) encoding high-level stimulus information [von Helmholtz, 1866,

Leopold and Logothetis, 1999, Sterzer and Rees, 2008, Hohwy et al., 2008, Gigante

et al., 2009, Kang and Blake, 2010].

Beside qualitatively and quantitatively accounting for experimental data to a level

of detail which had not previously been achieved, our model will propose several

important implications. Firstly, it predicts history-dependence effects on multiple

time-scales in agreement with new behavioural observations. Secondly, it relies on

neurophysiologically plausible assumptions which are consistent with observations

in non-human primates. Lastly, its operating regime reflects a dynamical mecha-

nisms which may be relevant to the study of perceptual inference in a more general

setting than multistable perception.

To conclude, Chapter 6 will relate several aspects of the model to their possi-

ble neurophysiological substrates, and examine its similarities with other important

models of perceptual decision-making. We will discuss the possible implications

this model may provide in the more general context of perceptual inference.



2

Scaling property of multistable perception

From an experimental point of view, the scaling property of reversal time densities

is known as a general and well established feature of all multistable phenomena, in

that it consistently pertains across observers, display types and stimulus qualities.

From a modelling point of view, however, this astonishing result has generally been

neglected, and remains largely unaccounted for. In an attempt to bridge this gap in

knowledge, we followed the intuition that the scaling property may provide impor-

tant clues on the qualitative nature and dynamical properties of neural structures

underlying multistable perception.

Here, we present a simplified approach to this issue in terms of a first-passage-time

problem, by assuming that the time between perceptual events reflects the stochas-

tic accumulation of activity in a neural population. First-passage-time statistics can

be modulated by changes in the stimulus strength and the scaling property may or

may not be satisfied. In the case of traditional drift-diffusion models, a sufficient

condition for the scaling property to hold is simply that dispersion rate (i.e. the rate

at which activity disperses) and drift rate (i.e. the rate at which average activity

accumulates) must remain proportional as stimulus strength vary.

15
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2.1 Behavioural approach

2.1.1 Invariance of shape

When subjected to ambiguous visual (or auditory) cues, observers (or listeners)

typically experience perceptual reversals between alternative interpretations of the

stimulus. In binocular rivalry, one of the most ancient and studied case of mul-

tistable perception, two different images (for instance, coloured gratings) are pre-

sented to one and the other eye. Rather than a fusion of both images, subjects

experience a series of perceptual alternations between the image presented to one

eye, and the other. Alternations are not regular, and form a sequence in which the

elapsed time between reversal appears, to some extent, random. The properties of

reversal times sequences for ambiguous displays have been studied intensively. The

average time between subsequent reversals can differ widely between subjects and,

for a given subject, can be strongly modulated by displays and stimulus qualities

such as input levels [Fox and Herrmann, 1967, Borsellino et al., 1972, Walker, 1975,

Zhou et al., 2004, Brascamp et al., 2005]. However, the shape of the corresponding

reversal times distributions, does not: it remains astonishingly invariant between

observers, regardless of displays, and stimulus qualities. In particular, it conserves a

characteristic Gamma-like shape (with the coefficient of variation cv ≈ 0.6 and the

skewness γ1 ≈ 2cv). [Levelt, 1967, Blake et al., 1971, Walker, 1975, De Marco et al.,

1977, Murata et al., 2003, Pastukhov and Braun, 2007]. This effect can be made

particularly evident when reversal time densities are normalised to their average

reversal duration (see Fig.2.1).

The precise shape of these distributions has been the subject of much debate

and detailed investigations [De Marco et al., 1977, Lehky, 1988, Zhou et al., 2004,

Brascamp et al., 2005, Shpiro et al., 2009], with several authors suggesting that

other distributions, such as the log-normal distribution or the Weibull distribution,

may provide better fitness to experimental observations than the traditionally used

Gamma distribution. This study presents new evidences which may help settling

this debate, by proposing a different way to probe the available data. Specifically,
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Figure 2.1: Illustration of the shape-invariance of reversal times distributions. Nor-

malised distributions of dominance durations appear to conserve their characteristic

shape, despite greatly different means. (Green dotted lines): continuous presentation,

mean dominance time ≈ 4.9s. (Red dotted lines): intermittent presentation with full

attention, mean dominance time ≈ 25.9s. (Blue dotted lines): intermittent presentation

with poor attention, mean dominance time ≈ 37.4s. Gamma distribution fits (solid lines)

yielded: c
(cont)
v = 0.51 ± 0.1, c

(full)
v = 0.52 ± 0.1, and cpoor

v = 0.51 ± 0.1. Reprinted from

[Pastukhov and Braun, 2007] with the author’s permission.

we looked at the relationship between the mean of reversal times distributions and

their higher-order moments. This is a simple but important nuance, which pro-

vides with a quantitative criterion other than the goodness-of-fit to identify which

distribution may be most suited to account for the available data. In particular,

it allowed us to disambiguate between two separate issues: the shape-invariance of

reversal time densities and the actual shape of said densities. On the one hand,

the constancy of distribution shape constitutes a ‘scaling property’, as it implies

that higher moments scale as appropriate powers of the mean. On the other hand,

the shape of the distribution imposes that higher moments take specific values in

order to match behavioural observations. Throughout the course of this disserta-

tion, we will justify that both issues should be tackled separately, and may indeed

reflect different underlying dynamical features, as far as the neural processes driving

conscious representations are concerned.
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2.1.2 Invariance of moments

A large part of this work consists of comparing the moments’ statistics of exper-

imentally obtained sequences of perceptual reversals, with simulated sequences

generated from a variety of models. A sequence of perceptual reversals obtained

from an experimental trial or a computational model, can be defined by the

sequence of random numbers {ri} corresponding to the absolute time at which

each perceptual reversal has been reported by the subject. The purpose of the

present study is to characterise the statistical properties of perceptual dominance

durations, which are simply defined by the difference ti = ri+1 − ri between

successive reversal times. The sequence {ti} of dominance durations therefore

corresponds to successive realisations t of a random variable T , with an associated

probability density function (p.d.f.) PT : the distribution of dominance durations,

or equivalently, the reversal time density.

We can obtain the mean (noted µ1), as well as higher-order central moments

(noted µk, k ≥ 2) of this distribution by computing ensemble averages (noted 〈·〉)
over all realisations of t.

µ1
.
= 〈t〉 =

∫ +∞

0

tPT (t)dt (2.1)

µk
.
= 〈(t− µ1)k〉 =

∫ +∞

0

(t− µ1)kPT (t)dt k ≥ 2 (2.2)

Rather than using central moments to characterise the shape of reversal times

densities, we use normalised moments. At second order in fluctuations, we introduce

the coefficient of variation cv (CV):

cv
.
=
µ

1/2
2

µ1

(2.3)

The CV of a given sequence of reversal times typically quantifies how regularly

perceptual reversals occur. If cv → 0, we have a near constant alternation rate,

meaning that times between subsequent reversals are almost the same and thus
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alternation sequences would appear very regular. If cv → 1, times between subse-

quent reversals will be close to a Poisson process, and thus alternation sequences

would appear very irregular. In the context of bistable perception, the CV of re-

versal sequences typically takes intermediate values (cv ≈ 0.6) [Fox and Herrmann,

1967, Walker, 1975, Pastukhov and Braun, 2007, Winkler et al., 2012]. The CV is

a natural choice for studying the scaling property, because as average dominance

periods may vary greatly, a dimensionless measure of fluctuations in the units of

the mean is more desirable.

At third order in fluctuations, we introduce the skewness, noted γ1:

γ1
.
=

µ3

µ
3/2
2

(2.4)

Observed reversal time densities are noticeably asymmetric, and typically right-

skewed, indicating that these densities have a right-tail longer than the left

tail. However, the skewness is seldom reported or discussed in experimental and

theoretical studies of multistable perception, perhaps because of the amount of

data required to obtain reliable estimates. If the shape-invariance is indeed an

emergent property of some underlying dynamical system, introducing this quantity

may offer insights in some of its properties, which in turn may correspond to

important functional features of corresponding processes at the neural level.

Formally, the scaling property requires the k-th central moment to scale with

the mean as follows [Okamoto and Fukai, 2001]:

k
√
µk

µ1

= constant k ≥ 2 (2.5)

At second and third order in fluctuations, this yields the following relations:

µ2 ∝ µ2
1 ⇒ cv = constant (2.6)

µ3 ∝ µ3
1 ⇒ γ1 = constant (2.7)

Furthermore, we will consider the ratio between the skewness and the CV rather
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than the skewness alone. This is because, for a Gamma distribution, or an Inverse

Gaussian distribution, two distributions which will appear recurrently throughout

this thesis, the skewness is proportional to the CV (γ1 = 2cv for the former, and

γ1 = 3cv for the latter). This rescaling of the skewness by the CV therefore allows

direct comparison between observed distributions of dominance durations and a

Gamma, or an inverse Gaussian distribution. In the following, this measure will be

a tie-breaker between the different types of distributions which have been commonly

used to fit behavioural data.

2.1.3 Experimental methods

All the relevant behavioural data presented in this study have been collected by

Dr. Alexander Pastukhov, under the supervision of Pr. Jochen Braun (Institute for

Cognitive Biology, Otto-von-Guericke Universität, Magdeburg), with the exception

of data on auditory streaming, provided by I. Winkler and S. Denham [Bregman,

1994, Winkler et al., 2012]. Here, we provide some additional details on how exper-

imental data relevant to this study have been collected. For the sake of consistency

and generality, several different paradigms of multistable perception have been used.

Figure 2.2: Examples of canonical multistable displays. (Left): In the kinetic-depth-

effect (KDE), dots moving on a plane can be perceived as a rotating sphere. Leftward

moving dots can be interpreted as forming the back surface of a leftward rotating sphere,

or alternatively, as forming the front surface of a rightward rotating sphere. (Middle):

In binocular rivalry, coloured grating with different orientations are presented to one and

the other eye, perception then alternates between the two gratings (Right): The Necker

cube, which in this particular orientation can be interpreted as having an outer vertex

pointing left upward (left) or right downward (right).
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Apparatus and General procedure

Stimuli were generated with MATLAB. Observers responded using a keyboard.

Background luminance was kept at 36 cd/m2. The experimental room was lit dimly

(ambient luminance at 80 cd/m2). For visual multi-stability, we considered situa-

tions in which strong retinal inputs are spontaneously suppressed: ‘motion-induced-

blindness’ or MIB, ‘binocular rivalry’ or BR [Campbell and Howell, 1972, Bonneh

et al., 2001, Leopold and Logothetis, 1999], spontaneous reversals of illusory rota-

tion in depth (‘kinetic depth effect’ or KDE) [Wallach and O’Connell, 1953, Sperling

and Dosher, 1994], spontaneous shifts in the apparent direction of motion (‘mov-

ing plaids’, MP) [Adelson and Movshon, 1982, von Gruenau and Dube, 2005], and

spontaneous changes in the three-dimensional appearance of line drawings (‘Necker

cube’ or NC) [Meng and Tong, 2004]. The data sets on KDE, NC, and MP, as well

as one of six data sets on BR, were published previously [Pastukhov and Braun,

2007, Pastukhov et al., 2013]. New data sets were collected on MIB and on BR

(by Dr. Alexander Pastukhov, under the supervision of Pr. Jochen Braun). For

auditory multi-stability, we considered spontaneous transitions between auditory

segregation and integration (‘auditory streaming’, [Bregman, 1994, Winkler et al.,

2012]). This data set was kindly provided by I. Winkler and S. Denham (personal

communication). For choice reaction tasks, we re-analyzed published information

on saccadic reaction times (’saccade reaction time’, or SRT) [Carpenter, 2012] and

on working memory retrieval times (‘memory reaction time’, or MRT) [Pearson

et al., 2014]. Both studies report timing densities for individual observers.

Binocular rivalry:

Six observers participated in the experiment (4 male, 2 female). Stimuli were dis-

played on an LCD screen (EIZO ColorEdge CG303W, resolution 2560×1600 pixels,

viewing distance was 104 cm, single pixel subtended 0.014◦, refresh rate 60Hz) and

were viewed through a mirror stereoscope. Chin and head rests were used to stabi-

lize viewing position.

Two grayscale circular orthogonally-oriented gratings (+45◦ and −45◦) were
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presented foveally to each eye. Gratings had diameter of 1.6◦, spatial period 2cyc/deg .

To avoid a sharp edge, grating contrast was modulated with Gaussian envelope

(starting inner radius 0.6◦, σ = 0.2◦). Tilt and phase of gratings was randomized

for each block. Five contrast levels were user: 6.25%, 12.5%, 25%, 50%, and 100%.

Contrast of each grating was systematically manipulated, so that each contrast

pair was presented in two blocks (50 blocks in total). Each block was two minutes

long and separated by a compulsory one-minute break. Observers reported on the

tilt of the visible grating by continuously pressing one of two arrow keys. They

were instructed to press only during exclusive visibility of one of the gratings, so

that mixed percepts were indicated by neither key being pressed (25± 8% of total

presentation time). To facilitate binocular fusion, gratings were surrounded by a

dichoptically presented square frame (outer size 9.8◦, inner size 2.8◦).

Motion-induced blindness:

Twenty observers participated in the experiment (12 male, 8 female). Stimuli were

presented on a CRT screen (Iiyama VisionMaster Pro 514, iiyama.com, resolution

1600×1200 pixels, refresh rate 100 Hz). The viewing distance was 73 cm so that each

pixel subtended approximately 0.019◦. Target was a yellow circle (diameter 0.2◦),

presented 1◦ above the fixation. Mask rotated at 1 Hz and consisted of 8 × 8 grid

of crosses (arm length 0.6◦, inter-cross distance 0.15◦). Observers reported episodes

of target disappearance by keeping the space key pressed for the entire duration of

the episode. Blocks lasted one minute and were separated by a compulsory 30 s . In

total, 32 experimental blocks were measured for each observer.

2.1.4 Behavioural observations

Average dominance durations

Experimental observations are summarized in Fig. 2.3. For individual observers,

mean dominance periods varied up to four-fold between the 25 contrast combina-

tions (a 5× 5 matrix of left and right eye contrasts), with mean dominance periods

typically decreasing for increasing stimulus strength. Between different observers,
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Figure 2.3: Illustration of the shape-invariance of reversal times distributions. A Stan-

dard deviation (SD) and mean µ1 of the distribution of dominance durations. Individual

values (round symbols) for 25 contrast combinations of binocular rivalry (BR) and 6 ob-

servers (different colors). Proportionality is maintained both across conditions (contrast

combinations) and across observers. Linear regression (colored lines) yields a highly con-

sistent cv = 0.66 ± 0.04 (mean ± SD). BC Normalized moments for the distribution of

dominance durations observed with different multistable perceptions: auditory stream-

ing (AS), binocular rivalry (BR), kinetic depth effect (KDE), motion-induced blindness

(MIB), moving plaids (MP), Necker cube (NC). Several stimulus conditions are shown

for BR and MP (see text). For comparison, saccade reaction time (SRT) and memory

reaction time (MRT) are included as well. B Coefficient of variation cv, as a function

of the mean µ1. All multistable situations exhibit comparable variability, with cv ≈ 0.6

(dashed line). C Skewness γ1, in multiples of cv, as a function of the mean µ1. All

multistable situations exhibit comparable skewness, with γ ≈ 2 cv (dashed line). Shaded

areas in B and C indicate one and two SEM across observers. Moreover, the distribution

in question is considerably more variable (‘wider’) and less skewed (‘shorter-tailed’) than

typical choice time distributions [Carpenter, 2012, Pearson et al., 2014]. Reprinted from

[Cao et al., 2016] with the co-authors’ permission.

mean dominance periods differed by a further factor of four, with some partici-

pants experiencing greater switching rates than others. Between different display

types, mean dominance periods ranged even more widely, as illustrated in Fig. 2.3

BC. Over six types of multistable visual displays (BR; kinetic depth effect, KDE;

motion-induced blindness, MIB; moving plaids, MB; Necker cube, NC) and one

multistable auditory scene (auditory streaming, AS), mean dominance periods var-

ied over two orders of magnitude, from under 1 s to over 100 s.
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The two choice reaction tasks illustrated here span the full range of human reaction

times, from 100 ms to 1 s (Fig. 2.3 BC).

Higher-order statistics

Multistable phenomena maintain a remarkably strict ‘scaling property’ over differ-

ent stimulus strengths, observers, and display types. The standard deviation of the

dominance distribution is (nearly) proportional to the mean, as illustrated by the

linear regression lines in Fig. 2.3 A. To assess the generality of this finding, this

results was established for a variety of different visual and auditory conditions: AS,

MIB, NC, and KDE, BR for stimulus contrasts c ∈ {0.06, 0.12, 0.25, 0.5, 0.6, 1.0},
and MP for continuous display, intermittent display, and intermittent display with-

out attention [Pastukhov and Braun, 2007]. In each case, we established the mean,

standard deviation (SD), CV, and skewness of the distribution of dominance pe-

riods. Fig. 2.3 BC illustrates the results in terms of the mean and SEM across

observers. The CV remained consistently near cv ≈ 0.6 (Fig. 2.3 B) and the skew-

ness remained consistently near γ1 ≈ 2 cv (Fig. 2.3 C). In other words, a scaling

property was consistently maintained over all investigated situations, with values

of the moments close to that of a Gamma distribution.

Note that the Log-normal or Inverse Gaussian are both significantly more skewed

(γ1 ≥ 3 cv). On the other hand, the Weibull distribution is significantly less skewed

than a Gamma distribution for intermediate values of the CV (γ1 < 2 cv if cv < 1);

a complete review of moment-ratio diagrams for these distributions can be found

in [Vargo and Leemis, 2010].

γ1

cv
= 2 (Gamma) (2.8)

γ1

cv
= 3 (Inverse Gaussian) (2.9)

γ1

cv
= 2 + eσ

2 ≥ 3 (Log-normal) (2.10)

For comparison, we established the same statistics for choice reaction times.
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In contrast to mean dominance periods, choice reaction times have very differ-

ent statistical properties. Firstly, a two-fold range of distribution means with

stimulus strengths or between observers appears typical [Carpenter, 2012, Pear-

son et al., 2014]. This is not nearly as variable as what is observed for typical

reversal times. Secondly, they distribute very differently, with distribution shapes

combining smaller variance (cv ≈ 0.2, i.e. sharper than in the multistable case)

with greater skewness (γ1 > 6 cv, i.e. with heavier tails than in the multistable

case). If multistability can be thought of as a limiting case of a discrimination task,

where competing percepts can not be disambiguated, such disparity in how the

timing of perceptual events are distributed would indicate that multistable displays

cause sensory evidences to be accumulated and evaluated in a radically different

manner. In that respect, multistable perception could be more than a fringe effect,

artificially crafted in laboratories. Understanding its peculiar statistics may reveal

a more general mechanism and provide strong constrains on the properties of the

underlying neural substrates.

The available behavioural data on multistable perception define a set of constrains

which can be summarised as follows:

• (i) Wide behavioural range: Distribution mean varies widely across conditions

and decreases with stimulus strength.

• (ii) Scaling property: Distribution shape is highly preserved across conditions

(stimulus strengths, observers, and display types)

• (iii) Distribution shape: Distribution variance is large (cv ≈ 0.6) while the

distribution skewness is small γ1 ≈ 2cv, in comparison to choice reaction

times, for instance.

The characterisation of the scaling property via its moments constitutes the basis

around which this study articulates. Throughout this work, results obtained from

each computational model will be systematically confronted to these experimental

evidences. In particular, Fig. 2.3 BC will be reproduced by computational models

and referred to on numerous occasions.
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2.2 Modelling approach

2.2.1 First-passage-time framework

The timing of perceptual events, such as reaction times or reversal times, is

thought to reflect the gradual, noisy accumulation of sensory information, such

that a perceptual decision, or reversal, occurs when sufficient amount of evidences

has been collected. A commonly used simplification is to reduce the dynamics

cortical populations performing this accumulation to the stochastic dynamics

of a single stochastic decision variable, corresponding to the level of activity in

neural populations driving the decision. Stimulus onset causes this activity to

accumulate, until a set threshold is reached and a decision ensues: this is known

as a first-passage-time (FPT) framework. While this approach may seem a crude

simplification, such framework provides a convenient and concise terms to model

the timing of perceptual events, and has proved successful in accounting for several

aspects of reaction times distributions in the context of motion-discrimination

tasks [Ratcliff and Smith, 2004, Smith and Ratcliff, 2009]. For a number of

stochastic processes, the FPT problem is mathematically tractable, providing a

direct quantitative link between neural dynamics and behaviour, and between

models’ properties and experimental constrains.

Our study sought to extend this diffusion-to-bound framework to the timing

of perceptual reversals. Our first objective was to compare the ability of various

stochastic processes to reproduce the scaling property of multistable perception.

Investigating the qualitative reasons behind their failure, or success to do so

allowed us to single-out the essential dynamical features from which the scaling

property may originate. As is the case in 2AFC tasks, multistable phenomena

may involve at least two decision variables (one corresponding to each perceptual

appearance). For instance, a given perceptual appearance would take dominance

when its associated decision variable gains a sufficient advantage over its concurrent

(evidence-biased competition). Presumably, following a reversal, these roles would
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be switched, so that the decision variable associated with the newly dominant

appearance decreases, while the decision variable associated with the newly

suppressed appearance increases, until a differential threshold is reached again and

the cycle starts anew.

A
c
ti
v
it
y
 (

a
.u

.)

x 0

θ

Figure 2.4: Illustration of the correspondence between first-passage-times and reversal

times during the presentation of an ambiguous display. Dominance periods for a given

perceptual appearance (e.g. the green gratings) correspond to the time-to-threshold (from

x0 to θ) of the decision variable associated with the currently suppressed perceptual

appearance (e.g. sensory evidences supporting the red grating), and conversely. Reversals

are initiated when the activity reaches a threshold, as marked by vertical dotted lines.

We first consider a simplified version of this framework, in which we are not

concerned with implementing the details of dominance reversals; this will be the

object of Chapter 5. We initially assume that the conclusion of one stochastic

accumulation coincides with the start of another such accumulation (see Fig. 2.4).

In order to study the scaling property, we only need to consider the properties

of the FPT density under the variation of a single input-level: this is enough to

obtain dominance periods matching the range of observed behaviour. Therefore,

it is also sufficient to consider the FPT statistics of only one of the two percepts,
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simply because we do not yet need to consider the joint-dependence of reversal

times on both input-levels (Levelt’s propositions). This will also be treated in

Chapter 5, where we will relax this assumption and detail the mechanisms driving

percept reversals, so that the subtleties of Levelt’s propositions can be addressed.

To summarize: in an initially reduced description, we consider the noisy accu-

mulation of activity, noted x(t), over time, in a neural population, reflecting the

accumulation of supporting evidences in favour of a given perceptual representation.

Assuming a time t0 directly following a perceptual reversal, so that the correspond-

ing percept is currently suppressed, and the activity in the supporting population

is at a low value of activity x(t0) = x0. We assume x(t) to gradually accumulate,

in a random-walk fashion, until it reaches a perceptual threshold θ, which we as-

sume triggers the next perceptual reversal, so that the associated percept now takes

dominance. This means that the time-to-threshold, or equivalently FPT, from x0

to θ, noted Tx0θ, of the decision variable supporting the suppressed representation,

corresponds to the dominance duration of the competing (then dominant) repre-

sentation. We will then examine the moments of the associated FPT distribution,

and whether they obey the scaling property under variations of stimulus strength.

2.2.2 Comparison criterion

In treating multistable phenomena as a first-passage time problem, we assume that

the stochastic intervals between spontaneous reversals characterize an underlying

random walk performed by microscopic states and reflected in collective accumula-

tion of activity. A large part of this Chapter consists of drawing both qualitative

and quantitative comparisons between the properties of first-passage-time densi-

ties (or equivalently reversal time densities) for different random walk models. In

general, the dynamics of random walks, such as drift-diffusion models, consist of a

deterministic component, reflecting to the average dynamics over many realisations

of the process, and a stochastic component, reflecting to the trial-to-trial variability

of the process. The time-to-threshold properties of different stochastic processes can

therefore be compared by studying the rate at which they accumulate activity over
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time, driven by the deterministic component, and the rate at which they disperse

activity over time, driven by the stochastic component. For a given random walk

x(t), the accumulation and dispersion rate can be defined as the time-derivative of

the infinitesimal mean 〈x(t)〉 and infinitesimal variance σx(t)
2 = 〈(x(t)− 〈x(t)〉)2〉,

respectively (here 〈·〉 denotes the ensemble average over multiple realizations of the

stochastic process x(t)):

νdrift
.
=

d

dt
〈x(t)〉 (2.11)

νnoise
.
=

d

dt
〈(x(t)− 〈x(t)〉)2〉 (2.12)

Depending on the type of diffusion process under study, such rates may be input-

dependent, meaning they may be modulated by the stimulus strength s, but also

state-dependent and change over time with the instantaneous activity x(t):

νdrift = νdrift(x, s), νnoise = νnoise(x, s) (2.13)

In particular, we expect that νdrift will increase for increasing stimulus strength,

so that the activity would accumulate at greater rate for stronger stimuli. This

implies that the mean FPT µ1 = 〈t〉 is expected to decrease with input s,

consistently with experimental observations. The same is true for the central

moments µ2 and µ3, as previously highlighted in Fig. 2.3 BC.

It is intuitive that FPT density depends sensitively on deterministic forces,

stochastic forces and on the activity range traversed. In particular, its shape will

depend on the balance between deterministic and stochastic forces. A change to any

single variable, deterministic force, stochastic force, or traversed range, will alter

the FPT density and all of its moments. For instance, changing the deterministic

force, by increasing or decreasing the input-level, will affect the accumulation rate

of sensory evidences, causing the distribution to shift its mean. Importantly, the

balance between deterministic and stochastic components of the dynamics will
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Figure 2.5: First-passage times (FPTs) of a threshold level θ by stochastic neuronal ac-

tivity x(t). In this framwork, a perceptual decision or reversal is triggered when x(t) ≥ θ
for the first time. A In a ‘drift-dominated regime’ (DDR), deterministic forces drive activ-

ity to θ (open arrow) and beyond. B In a ‘noise-dominated regime’ (NDR), deterministic

forces drive activity merely to a steady-state (filled arrow), some distance below θ (open

arrow). Thus, θ may be reached only with the help of stochastic forces (noise). AB: In

both regimes, individual realizations of neural activity x(t) develop from an initial level

(black dashed line) to a threshold level (blue dashed line, open arrows). Due to stochas-

tic factors, every realization reaches threshold at a different time (open circles). This

variability results in a probability distribution of FPT, which is illustrated on the right.

Determinstic forces may be visualized in terms of an energy landscape, which is shown

below. The sign of the energy gradient at threshold (open arrow) distinguishes drift- and

in NDRs. Reprinted from [Cao et al., 2016] with the co-authors’ permission.

also be sensitive to variations of any of these parameters. If this balance shifts in

favour of the former or the latter, so that threshold crossings become more regular,

or more irregular, we can expect the distribution shape to sharpen, or widen,

respectively. In general, first and higher moments will not change as to verify a

scaling property, as this would require changes in of the higher moments to scale

with changes of the mean.
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Therefore, one important point to consider is the manner in which a given

random walk model approaches and crosses a given threshold. Naturally, if a

specific distribution shape is to be obtained and maintained for a wide range

of stimulus strength, this should constrain the dynamics toward the reversal

threshold. The aim of this chapter is precisely to identify these constrains.

Some of the diffusion models under study may operate in two distinct regimens,

illustrated in Fig. 2.5. In a ‘drift-dominated regime’ (DDR), deterministic forces

dominate, and are sufficient to drive activity over the threshold. Stochastic

forces merely introduce some variability, reflected in the spread and overall shape

of the distribution. In a ‘noise-dominated regime’ (NDR), deterministic forces

drive activity toward a steady-state, which lies some distance below threshold.

Stochastic forces are needed to drive activity away from steady-state (filled arrow),

and over the threshold (open arrow). The difference is best appreciated in an

effective energy landscape: the energy gradient takes opposite sign at threshold

(Fig. 2.5 open arrows).

In a DDR, the threshold is located below the asymptotic value (xin > θ): this

will yields typical average FPT smaller than their characteristic time-constant τ

(so that 〈t〉 < τ). In a NDR, the threshold is located below the asymptotic value

(xin < θ): this will yields typical average FPT greater than their characteristic

time-constant τ (so that 〈t〉 > τ). This is because the typical relaxation time to

the asymptotic value effectively introduces a refractory period: the system must

first reach his asymptote, which it does in multiples of τ . Then, it must cross the

threshold with the aid of fluctuations around equilibrium.

Importantly, reversal times densities produced in a drift- or noise-dominated

regimes will be affected by changes in input-levels in a significantly different man-

ner. In the DDR, the threshold-crossing is ensured by the preponderance of the

deterministic component of the dynamics over its stochastic components. The av-

erage FPT will mostly depend on deterministic factors while the distribution shape

will depend on the balance between deterministic and stochastic factors. This bal-
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ance, and more specifically, whether or not it is maintained under modulation of

the stimulus strength, is a key element in replicating the statistical properties of

multistable dynamics.

Note that in the NDR, there is no such balance: threshold-crossing exclusively will

almost exclusively rely on the stochastic component of the dynamics, and specif-

ically in the amplitude of fluctuations around the steady-state. Therefore we can

already expect qualitative differences in how distribution shapes are modulated

with the stimulus strength, depending on whether the accumulation is performed

in either regime. As we will see in later chapters, several features of multistable dy-

namics strongly rely on the accumulation of sensory evidences operating in a DDR.

Also, in the limit of strong DDRs, i.e. when the threshold θ and the activity x(t),

also, remain far below the input-dependent asymptotic value xin(s), accumulation

and dispersion rates are independent of x(t) and become stationary:

νdrift(x, s)
x�xin−→ ν∗drift(s) (2.14)

νnoise(x, s)
x�xin−→ ν∗noise(s) (2.15)

In this case, the stationary drift and dispersion rates ν∗drift and ν∗noise , and the

threshold θ satisfy a simple relation, allowing for the required balance between

deterministic forces, stochastic forces, and activity range (or distance to threshold)

to be estimated. This provides a minimal criterion to compare how well different

diffusion processes may, a priori, satisfy the scaling property. Moreover, we can

explicit the correct interdependence between drift and noise terms, for which the

required balance between deterministic and stochastic forces can hold under large

stimulus strength modulations. We will see that, for a class of model which initially

could not produce scale-invariant FPT distributions, the necessary corrections can

be derived, and subsequently re-injected so that the scaling property is obtained.

2.2.3 Sufficient condition for the scaling property

For any drift-dominated accumulation (i.e. so that x� xin), the variance of FPTs

µ2 is proportional to variance of activity σ2
x at time 〈t〉, so that the respective
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coefficients of variation are approximately the same:

√
µ2 ∝ σx ⇒ c(t)

v ≈ c(x)
v (2.16)

Also, the drift and dispersion rates can be simply expressed as:

ν∗drift〈t〉 = θ

ν∗noise〈t〉 = σ2
x (2.17)

Using (2.16) and (2.17), we obtain an expression for the CV of dominance du-

rations as a function of the drift and dispersion rates:

c(t)
v =

σx
θ

=
√
ν∗noise/θν

∗
drift (2.18)

Experimental evidence shows that increased input decreases the mean FPT 〈t〉
through the threshold θ decreases. It follows that increased input must increase

accumulation rates ν∗drift , so that:

〈t〉 = θ/ν∗drift , ν∗drift = f(s), ∂f/∂s > 0 (2.19)

If ν∗noise remains constant with input (this is typically the case when a constant

noise parameter is assumed), it further follows that the variance at 〈t〉 decreases

with ν∗drift . This can be qualitatively understood from Fig. 2.6. As ν∗drift increases,

〈t〉 decreases, leaving less time for the distribution of x(t) to spread, so that the

variance of x(t) at time 〈t〉 (σ2
x), also decreases.

σ2
x ∝ f−1(s) (2.20)

Therefore, from (2.18), we expect the CV to decrease with the square root of
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ν∗drift , so that no scaling property is obtained:

cv ∝ f−
1/2(s) (2.21)

However, if both ν∗noise and ν∗drift increase with input in the same proportions, the

CV remains constant and the necessary condition for a scaling property is satisfied.

ν∗noise ∝ ν∗drift ∝ f(s) ⇒ cv ∝
√
ν∗noise/θ ν

∗
drift = const (2.22)

Note that for simplicity, we have established the sufficient condition for the scal-

ing property at second-order only. We will see in what follows that, in practice, in

all cases studied, this will be enough to provide sufficient qualitative understand-

ing. In principle, similar relations would be required for the skewness, and other

moments, which would presumably rely on higher-order equivalents of expressions

2.11 and 2.12.

In what follows we will see that, in the case of Gaussian diffusion models, the

required dependence of drift- and dispersion-rates to satisfy the scaling property

correspond to a modulation of the unit of time with input-levels. This naturally

changes the average first-passage-time without affecting the shape of the FPT dis-

tribution.

2.3 Gaussian diffusion-to-bound

In this section we compare the FPT of several continuous random walks x(t) whose

distribution obey the following Fokker-Planck equation (Gaussian drift-diffusion

processes, see [Risken, 1984]):

τ
∂p(x, t)

∂t
= − ∂

∂x
(µ(x, xin) p(x, t)) +

1

2

∂2

∂x2

(
σ2(x, xin) p(x, t)

)
(2.23)

where µ(x, xin) and σ(x, xin) represent ‘accumulation’ or ‘drift’ and ‘dispersion’ or

‘noise amplitude’, respectively. In general, both terms may depend on the cur-

rent state x and on external input xin (we restrict ourselves to drift and diffusion
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terms without any explicit dependence on time). Equation (2.23) describes the

temporal evolution of density p(x, t) over time under the influence of the drift and

diffusion coefficients. The drift can be thought as the deterministic component of

the dynamics, while the diffusion can be thought as the stochastic component of

the dynamics. The former tends to shift the density p(x, t) over time (for a time

interval dt, the shift will be ∼ µ(x, xin)dt), without affecting its shape, while the

latter tends to widen it over time (for a time interval dt, the width will increase

by ∼ σ(x, xin)
√
dt), as illustrated in Fig. 2.6, in a simpler case where drift and

diffusion terms are constant (also known as the Wiener process with drift).

x0

x0 + µdt

x0 + 2µdt

√
σ2dt

√
σ22dt

t = 0

t = dt

t = 2dt

Figure 2.6: Illustation of the effect of the drift and diffusion terms on the evolution

of a probability density p(x, t), initially set to p(x, 0) = δ(x − x0). In this example,

µ(x, xin) = µ and σ(x, xin) = σ (Wiener process with drift).

An equivalent description of equation (2.23) is known as the Langevin equation.

Rather than the evolution of the probability density of a random variable x, the

Langevin equation describes the temporal evolution of a single realisation of random

variable x. If one were to generate multiple realizations of x over time, the density
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p(x, t) would be retrieved. The stochastic differential equation for x is as follows:

τ
dx

dt
= µ(x, xin) +

√
τ σ(x, xin) ξ(t) (2.24)

where ξ(t) is a unitary Gaussian ‘white noise’ (i.e. distributed as N (0, 1) where N
is the normal distribution), defined as:

〈ξ(t)〉 = 0, 〈ξ(t) ξ(t′)〉 = δ(t− t′) (2.25)

Under this formulation, it is clear that the drift term accounts the deterministic

component of the dynamics, related to the average realisation over multiple trials,

while the diffusion term accounts for the stochastic component of the dynamics,

which differs from trial to trial. If we average out the stochastic component, we are

left with the drift alone. Perceptual decisions are commonly modelled in terms of

diffusion-like processes [Smith, 2000, Ratcliff and Smith, 2004, Smith and Ratcliff,

2009, Smith et al., 2014].

We start our analysis with two well-known and documented processes. The first

one is the ‘Wiener process with drift’ (WP), which accumulates linearly, and the

second one, the ‘Ornstein-Uhlenbeck process’ (OU), for which accumulation varies

with activity and vanishes for at equilibrium. Whereas mean accumulation (drift) is

assumed to vary with input, stochastic dispersion (noise) are usually kept constant.

Next, we will show that a ‘scaling property’ can not be obtained if only accumulation

rate, but not dispersion rate, changes with input. We then modify these processes,

to consider scenarios where accumulation and dispersion change proportionally with

sensory input s (through xin(s)), so that they obey the sufficient condition for the

scaling property derived in (2.22).

2.3.1 Standard Wiener process

We first study the scaling property in a WP with drift described by the following

Langevin equation:

τ
dx

dt
= xin +

√
τ σ ξ(t) (2.26)
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θθ

γ

Figure 2.7: WP with input-dependent drift and constant noise: normalized moments

of FPT density as functions of input xin and threshold θ, (both in units of σ). (Left):

coefficient of variation cv. (Right): skewness γ1 (in units of cv). Black curves mark

cv = 0.6. Dashed line marks a particular choice of threshold θ. Reprinted from [Cao

et al., 2016] with the co-authors’ permission.

Here, the drift term µ(x, xin) = xin is constant and non-vanishing, correspond-

ing to a linear integrator dynamics. The noise term σ is set to a constant. The

FPT distribution for this process is known to be an inverse Gaussian (or Wald)

distribution (see [Tuckwell, 1988/2008]). Assuming the initial condition x0 = 0, the

moments write:

µ1 =
θ τ

xin

(2.27)

cv =
σ√
xin θ

(2.28)

γ1 =
3σ√
xin θ

= 3 cv (2.29)

In order to ensure a threshold crossing within a finite time, the drift term xin

must be strictly positive. In these conditions, this means that the escape through

the absorbing barrier at threshold θ is always drift-dominated. Moments of the

FPT density as a function of the input level and the value of the threshold are

illustrated in Fig. 2.7.
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γθ=0.2

μ

Figure 2.8: WP with input-dependent drift and constant noise: scaling property and

FPT distribution shape as function of mean µ1 (format as in Fig. 2.3). For constant θ

(value given by inset), µ1 decreases as xin increases. The scalar property is not satisfied

for the CV, and the ratio γ1/cv 3 is too large. Reprinted from [Cao et al., 2016] with the

co-authors’ permission.

Whereas the mean FPT µ1 decreases with xin and increases with threshold θ,

the coefficient of variation cv decreases with both input xin and θ. The skewness is

consistently high with γ1 = 3cv. The experimentally observed ‘scaling property’ is

not reproduced (Fig. 2.8).

Alternatively, we can obtain the same formula for the CV as in (2.28) by comput-

ing the drift and diffusion rates for the WP using (2.11) and (2.12) and re-injecting

the obtained expressions in (2.18). The mean and variance of the WP are well-

known:

〈x(t)〉 =
xint

τ
(2.30)

〈x(t)2〉 − 〈x(t)〉2 =
σ2t

τ
(2.31)
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Therefore:

νdrift =
xin

τ
(2.32)

νnoise =
σ2

τ
⇒ cv =

σ√
xin θ

(2.33)

2.3.2 Modified Wiener Process

θθ

γ

Figure 2.9: WP with input-dependent drift and noise: normalized moments of FPT

density as functions of input xin and threshold θ (both in units of σ). (Left): coefficient

of variation cv. (Right): skewness γ1 (in units of cv). Black curves mark cv = 0.6. Dashed

line marks a particular choice of threshold θ. Reprinted from [Cao et al., 2016] with the

co-authors’ permission.

We now modify the constant-σ WP so that a scaling property is satisfied, and

(2.22) holds. The correct mapping between noise and input is:

σ2 =
xin

α
(2.34)

So that the CV becomes:

cv =
1√
αθ

(2.35)

For a given threshold θ, constant α can be adjusted for the value of cv to match

with behavioural observations, i.e. cv 0.6. Moments of the FPT density as a

function of the input level and the value of the threshold are illustrated in Fig. 2.9.
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This time, as expected, the normalized moments cv and γ1 remain constant with

xin , while the mean FPT spans a wide range of values, as illustrated in Fig. 2.10.

γ

θ=0.09

μ

Figure 2.10: WP with input-dependent drift and noise: scaling property and FPT

distribution shape as function of mean µ1 (format as in Fig. 2.3). For constant θ (value

given by inset), µ1 decreases as xin increases. The scalar property is satisfied for both

the CV and the Skewness, but the ratio γ1/cv 3 is too large. Reprinted from [Cao et al.,

2016] with the co-authors’ permission.

The qualitative explanation is straightforward: in the previous case with con-

stant σ, increasing the input strength (or equivalently, the drift term xin) yields an

always steeper accumulation of activity, which in turns produces more and more

regular threshold-crossings. This is because for increasing input-levels, the balance

between the deterministic and stochastic components of the dynamics gradually

moves in favour the deterministic component, causing the CV to decrease beyond

the behavioural range. Our modification sets the amplitude of the noise terms to in-

crease as xin increases. This effectively restores the required balance, adaptively, for

different stimulus intensity, so that a wide range of mean FPT can be accessed with-

out breaking this balance. The skewness however, is too large to match behavioural

observations γ1/cv = 3, which corresponds to an inverse Gaussian distribution.
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2.3.3 Standard Ornstein-Uhlenbeck Process

We now study the scaling property in another widely used random walk model

described by the following Langevin equation:

τ
dx

dt
= xin − x+

√
τ σ ξ(t) (2.36)

This process is known as the OU process. In this case, the drift term µ(x, xin) =

xin − x depends, as in the WP, on the input strength, but is also state-dependent.

In particular, it depends negatively on the activity x(t), and vanishes when the

system reaches equilibrium, i.e. when x(t) = xin . For θ > xin , the drift vanishes

before the threshold is reached, and the system becomes noise-driven.

In both drift- and noise-dominates regimens, closed-form expressions for the mo-

ments of the FPT density exist, in terms of infinite series [Inoue et al., 1995], or

nested integrals [Brunel, 2000]. Moments and their respective dependence on the

input strength xin and the threshold value θ are illustrated in (Fig. 2.11).

θ θ

γ

Figure 2.11: OU process with state- and input-dependent drift and constant noise:

normalized moments of FPT density as functions of input xin and threshold θ (both in

units of σ). (Left): coefficient of variation cv. (Right): skewness γ1 (in units of cv). Black

curves mark cv = 0.6. Dashed line marks a particular choice of threshold θ. Reprinted

from [Cao et al., 2016] with the co-authors’ permission.

As in the case of the WP, the coefficient of variation cv varies with xin and
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γ
θ=0.2

μ

Figure 2.12: OU process with input-dependent drift and constant noise: scaling property

and FPT distribution shape as function of mean µ1 (format as in Fig. 2.3). For constant

θ (value given by inset), µ1 decreases as xin increases. The scalar property is not satisfied

for either the CV, or the Skewness. Reprinted from [Cao et al., 2016] with the co-authors’

permission.

the skewness γ1 . 3cv is too high (Fig. 2.12): the ‘scaling property’ can not be

obtained.

Computing the drift and diffusion rates for the OU process leads to the same con-

clusion as for the WP with constant noise. Mean and variance are also known:

〈x(t)〉 = xin(1− e− t
τ ) (2.37)

〈x(t)2〉 − 〈x(t)〉2 =
σ2

2
(1− e− 2t

τ ) (2.38)

We obtain the drift and dispersion rates:

νdrift =
xin

τ
e−

t
τ (2.39)

νnoise =
σ2

τ
e−

2t
τ (2.40)
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And in the limit of a DDR, we obtain:

ν∗drift =
xin

τ
(2.41)

ν∗noise =
σ2

τ
⇒ cv =

σ√
xin θ

(2.42)

2.3.4 Modified Ornstein-Uhlenbeck Process

The same linear dependence (2.34) of the infinitesimal variance on stimulus-level

can be used to insure the scaling property of the OU process.

γ

θ θ

Figure 2.13: OU process with input-dependent drift and noise: normalized moments

of FPT density as functions of input xin and threshold θ (both in units of σ). (Left):

coefficient of variation cv. (Right): skewness γ1 (in units of cv). Black curves mark

cv = 0.6. Dashed line marks a particular choice of threshold θ. Reprinted from [Cao

et al., 2016] with the co-authors’ permission.

Moments of the FPT density are illustrated in Fig. 2.13. The two separate

regimes are clearly visible: a regime where the threshold remains low and constant

and a regime where the threshold increases linearly with input strength. In the

limit of strong DDRs, we retrieve the FPT density of the modified WP (inverse

Gaussian).

As before, skewness γ1 ≈ 3 cv is consistently higher than experimentally observed

(Fig. 2.14, right).
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θ=0.09

μ

γ

Figure 2.14: OU process with input-dependent drift and noise: scaling property and

FPT distribution shape as function of mean µ1 (format as in Fig. 2.3). The scalar

property is satisfied for both the CV and the Skewness, but the ratio γ1/cv 3 is too large.

Reprinted from [Cao et al., 2016] with the co-authors’ permission.

2.4 Summary

To summarize, maintaining the proportionality ν∗noise ∝ ν∗drift ensures the constancy

of normalized moment in a DDR. When the threshold θ is held constant, this re-

quires the noise amplitude σ to become input-dependent. As explained by (2.18),

the variability in the FPT statistics depends on the variability in the accumula-

tion activity around the threshold. For the diffusive processes under consideration,

this variability increases over time (as ∼ σ
√
t). Therefore, assuming a constant

noise amplitude implies that the CV increases as average reversal times lengthen,

as illustrated in Fig. 2.15. If the noise becomes input-dependent, the shape of

the distribution can be maintained even when reversal times change significantly

(Fig. 2.16). Moreover, the correct dependence can be explicitly specified by the

expression (2.22), so that drift and dispersion rates ν∗drift and ν∗noise change in the

same proportions. For both modified WP and OU processes (see Fig. 2.10 and

Fig. 2.14), a scalar property is satisfied when operating in a DDR - i.e. distribu-

tions are shape-invariant. This constitute a necessary and sufficient condition for

the scaling property to hold, and equivalently for the FPT densities to allow large
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deviations of its mean, but not its shape, under variations of stimulus strength.

In other words, by injecting more noise in faster accumulations, and less noise in

slower accumulation, the balance between deterministic and stochastic factors can

be maintained, while average dominance durations vary over the behavioural range

observed in experiments.

Note that as previously mentioned (see end of Section 2.2.3), this can be done in

the case of Gaussian diffusion models by considering the rescaling of the unit of

time with stimulus strength xin : for a Gaussian drift-diffusion process, the trans-

formation t→ xin t would introduce a scaling factor
√
xin for the diffusion term.

Figure 2.15: Schematic mechanism for the scaling property. Mean activity x(t) accumu-

lates approximately as νdrift t (faster) or ν ′drift t (slower), and variance of activity as νnoiset

(faster) or ν ′noiset (slower), until threshold θ is reached. Coefficients of variation are ap-

proximately the same for time-to-threshold and for activity-to-threshold: ∆T/T ≈ ∆x/θ.

(Left): For slower drift ν ′drift = νdrift/2, but unchanged noise ν ′noise = νnoise , activity-to-

threshold is more variable, ∆x′ = ∆x
√

2. When noise is reduced in the same proportion,

ν ′noise = νnoise/2, the variability of activity-to-threshold remains unchanged, ∆x′ = ∆x.

(Right): With constant noise, FPT distributions have different shapes for different input-

levels.

Fluctuations are ubiquitous in neural systems, from the single-cell level up

to the behavioural level. The common stance with regards to such fluctuations



Chapter 2. Scaling property of multistable perception 46

Figure 2.16: Schematic mechanism for the scaling property. Mean activity x(t) accumu-

lates approximately as νdrift t (faster) or ν ′drift t (slower), and variance of activity as νnoiset

(faster) or ν ′noiset (slower), until threshold θ is reached. Coefficients of variation are ap-

proximately the same for time-to-threshold and for activity-to-threshold: ∆T/T ≈ ∆x/θ.

(Left) For slower drift ν ′drift = νdrift/2, but unchanged noise ν ′noise = νnoise , activity-to-

threshold is more variable, ∆x′ = ∆x
√

2. (Left) When noise is reduced in the same

proportion, ν ′noise = νnoise/2, the variability of activity-to-threshold remains unchanged,

∆x′ = ∆x. (Right): With input-dependent noise, FPT distributions have different shapes

for different input-levels.

usually is to first disregard them, and to consider a deterministic model describing

the average dynamics (mean-field or rate models). Noise is later introduced

as an external parameter to account for the observed variability, and is tuned

to optimally match empirical observations. Several studies have pointed out

the unrealistic nature of a constant-noise assumption, in the inter-spike interval

statistics of single-neuron models (see [Lánský and Sacerdote, 2001, Sacerdote and

Lansky, 2002]), or in finite-size networks of spiking neurons, where fluctuations

in activity depend on the average firing-rate (see [Mattia and Del Giudice,

2002, Buice and Chow, 2013, Deger et al., 2014]). A recent study investigating

scale-invariant fluctuations in diverse multistable situations, such as binocular

rivalry or in electroencephalogram recordings of the alpha-rhythm in humans,

also highlighted similar plausible functional reasons why fluctuations should scale

with input-strength or even with activity (e.g. state-dependent or multiplica-
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tive noise) [Freyer et al., 2012]. Specifically, that allowing transitions between

distinct states of activity whilst maintaining the CV of behavioural responses con-

stant may reflect the need for our visual system to represent uncertainty adaptively.
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3
The Ehrenfest Urn Model

In Chapter 2, we have shown that the scaling property could be obtained only if,

during the stochastic accumulation of activity leading to perceptual reversals, mod-

ulations of input strength affect accumulation and dispersion rates proportionally.

However, this dependence had to be artificially imposed. This motivates the intro-

duction a more ‘physical’ hypothesis to explain the origin of this dependence.

Presumably, both deterministic and stochastic components of the accumulating

process emerge as a collective property of fluctuating neural activity, which could

help to constrain neural dynamics to a more detailed level. Furthermore, the scaling

property is an extremely general and consistent observation, found to be valid across

observers, displays types and stimulus qualities. A model which comprehensively

accounts for this important empirical result may thus provide important insights

into fundamental neural processes underlying perceptual decision.

This led to the following question: is there a class of stochastic processes which

casually features such input-dependence of both the drift and the noise parameter?

As mentioned in [Lánský and Sacerdote, 2001], a natural way to ensure that drift

and dispersion rates remain proportional under varying stimulus condition would

be to consider the discrete equivalent processes which Gaussian diffusion processes

such as the WP and OU processes approximate. Specifically, we propose that these

continuous random walks are in fact performed by the collective dynamics of a

finite number of spontaneously active microscopic states. In this paradigm, drift

and dispersion share common physical origins: they both emerge at the population

49
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level as the macroscopic expression of fluctuating activity at the level of individual

microscopic states.

In this chapter, we introduce an example of such random walk, known as the general-

ized Ehrenfest urn model. When operating far-from-equilibrium, first-passage-times

of this process distribute exactly as observed in experiments, contrary to all other

stochastic processes scrutinized in this study.

3.1 Introduction

The scaling property of multistable perception comports two important aspects.

The first aspect is that the shape of reversal time densities is invariant under

a wide array of conditions, indifferently of observers, the type of display used,

or stimulus qualities. In particular, these different factors can greatly affect the

average reversal rate, whilst keeping the distribution shape unchanged. The second

aspect is that reversal time densities obey a particular shape, corresponding closely

to a Gamma distribution (up to the third moment, with cv ≈ 0.6 and γ1 ≈ 2cv).

We have already mentioned a simple and physically motivated hypothesis to

ensure that the first aspect is verified . Namely, we consider a birth-death process,

in which accumulation of activity is performed collectively, by an ensemble of

bistable units undergoing spontaneous transitions between active and inactive

states. The discreteness of such a representation automatically keeps normalized

moments constant. This is because when considering discrete and spontaneous

events, such as Poisson events, changes in events rate affect all orders of their

individual switching statistics. In terms of collective activity, both accumulation

and dispersion rates are then dependent on input-levels.

The origins of the second aspect of the scaling property, i.e. specific shape of re-

versal time densities is much less intuitive. Gaussian diffusion processes for instance

typically produce inverse Gaussian (or Wald) FPT distribution, with a longer tail

(γ1 ≈ 3cv). Even the discreteness of some processes, such as the Balanced Poisson
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process does not guarantee FPTs to be Gamma-distributed. These issues will be

the focus of Chapter 4, where we will propose additional comparative analyses.

In this chapter, we introduce a discrete birth-death process, the Ehrenfest urn

model, which satisfies both aspects of the scaling property. We present new analyt-

ical results, the moments at all order of its FPT density, and identify the different

operating regimes relevant to our study [Cao et al., 2014]. Additionally, these results

are generalized to a more neurophysiologically plausible case, where we consider in-

teractions within assemblies of bistable units.

3.2 Ehrenfest urn model

Introduced in 1907 as the famous ‘dog-flea’ model of diffusion [Ehrenfest, 1907], this

stochastic process provides a minimal model for the statistical dynamics of many

microscopic and mesoscopic systems [Karlin and McGregor, 1965, van Kampen,

1981, Cao et al., 2014]. It was originally created in the context of thermodynamics,

to propose a microscopic approach to the problem of heat exchange between two

thermostats.

Its first-passage-time properties have been previously studied by several authors,

who derived compact closed-form expressions for the mean FPT in special cases

(i.e. with particular start- and end-points, see [Bingham, 1991, Palacios, 1993]),

and in a more general case (for arbitrary start- and end-points [Dette, 1994]). In

this chapter, we derive an expression to recurrently obtain moments of the FPT at

any order from previous moments, and explicitly compute the first four moments

in the general case [Cao et al., 2014].

3.2.1 Definition

Following a previous study from Gigante [Gigante et al., 2009], we consider a

population of N bistable units, each of which switches spontaneously between two

distinct states of activity. The transitions are set by independent Poisson events

with rates ν+ = ν+(s) (activation) and ν− = ν−(s) (inactivation), depending on

the level of sensory input s (see Fig. 3.1). All orders of the individual switching
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statistics are input-dependent, not only the average switching rate. This renders

both accumulation and dispersion rate dependent on current activation x and input

level s, with important consequences for FPT moments. Additionally, we assume

that the ratio ν+/ν− grows monotonically with s, to ensure that the asymptotic

activity xin(s) = ν+
ν++ν−

of the population to monotonically increase with the input.

Individually, these locally bistable attractors model the dynamics of idealised

cortical columns, or clusters of recurrently connected neurons. In networks of

spiking-neurons, recurrent interactions can allow global self-sustaining states of

activity to be spontaneously accessed [Amit, 1995]. In such networks, as postulated

by our bistable units, transition rates between active and inactive states depend on

the strength of the incoming synaptic input Amit and Brunel [1997], Wang [2002],

Major and Tank [2004]. Collectively, they can be thought of as a multi-modular,

or clustered neural network [Litwin-Kumar and Doiron, 2012]. At a later stage of

this work, we will provide more plausible implementation of such neural structure,

in terms of a network of spiking neurons (see 4.5).

W

ν+

W ′

ν−

Figure 3.1: Schematic illustration of the individual switching properties between

metastable states for a single bistable node in an energy landscape description. Upward

transition rate ν+, and downward transition rate ν− depend of the size of the energy

barrier W(s), W(s)′, which themselves depends on input strength s. This is analogous to

Kramer’s escape problem with two metastable states. Specifically, transition rates obey

an Arrhenius-Van’t Hoff relation where W(s), W(s)′ are the corresponding activation

energies.

To describe the collective dynamics of a pool of N independent nodes, one must
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define the probability P (n, t) of having n active nodes at a given time t. The

variation dP (n, t) over a time dt can be expressed as follows:

dPn(t) = + (N − n+ 1)ν+Pn−1(t)dt+ (n+ 1)ν−Pn+1(t)dt

− (N − n)ν+Pn(t)dt− nν−Pn(t)dt (3.1)

Outward probability fluxes are counted negatively, and correspond to the tran-

sition n → n + 1, where one of the N − n inactive switches becomes active, or to

the transition n → n − 1, where one of the n active switches becomes inactive.

Inward probability fluxes are counted positively, and correspond to the transition

n− 1→ n, where one of the N − n+ 1 inactive switches becomes active, or to the

transition n+ 1→ n, where one of the n+ 1 active switches becomes inactive.

This yields the following master equation where we identify upward transitions rate

W+
n , and downward transition rates W−

n :

τ
dPn(t)

dt
= + [N − (n− 1)]λ︸ ︷︷ ︸

W+
n−1

Pn−1(t) + (n+ 1)µ︸ ︷︷ ︸
W−n+1

Pn+1(t)

− [(N − n)λ︸ ︷︷ ︸
W+
n

+ nµ︸︷︷︸
W−n

]Pn(t) (3.2)

Here, we have defined λ(s) = ν+
ν++ν−

= xin(s), the upward transition probability,

µ(s) = 1 − λ = ν−
ν++ν−

, the downward transition probability, and τ(s) = 1
ν++ν−

the

characteristic time-constant.

3.2.2 Detailed balance

The equilibrium distribution P ∗n for (3.2) can be obtained using the detailed balance

relation:

W−
n P

∗
n = W+

n−1P
∗
n−1 (3.3)
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We can iterate (3.3) to obtain:

P ∗n = P ∗0

n∏
k=1

W+
k−1

W−
k

= P ∗0
(N − (n− 1)) · · ·N

n · · · 1 λnµ−n

= P ∗0

(
N

n

)
λnµ−n (3.4)

Using the fact that λ+ µ = 1, the normalization condition yields:

1 =
∑
n

P ∗n =
P ∗0
µN

∑
n

(
N

n

)
λnµN−n

P ∗0 = µN (3.5)

We find that the equilibrium distribution is the binomial distribution with param-

eter λ.

P ∗n =

(
N

n

)
λn(1− λ)N−n (3.6)

Equivalently, one can pick independent n Bernouilli processes with parameter λ

(active nodes) and N −n Bernouilli processes with parameter 1−λ (the remaining

inactive nodes), with the
(
N
n

)
corresponding to the different ways to pick n active

nodes in the population. Note that the detailed balance condition (3.3) is true for

reversible Markov chains. This shows, a posteriori, that the GE process is reversible

at equilibrium, since the correct stationary distribution has been obtained, as also

shown in [Gigante et al., 2009]. Intuitively, this means that fluxes of upward and

downward transitions are the same around equilibrium.

3.2.3 Mean and variance of the Ehrenfest process

1st-order: average dynamics

At first-order, equation (3.2) follows a simple exponential profile. We can derive

the first-order solution for the average number of active nodes 〈n〉. Multiplying the
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original master equation (3.2) by n and summing over n:

τ
∑
n

n
dP (n, t)

dt
=
∑
n

n[N − (n− 1)︸ ︷︷ ︸
k

]λP (n− 1, t) +
∑
n

n (n+ 1)︸ ︷︷ ︸
k

µP (n+ 1, t)

−
∑
n

n[(N − n)λ+ nµ]P (n, t)

τ
d〈n〉
dt

=
∑
k

[
Nλ(k + 1)− λ(k2 − k) + µ(k2 − k)−Nλk + λk2 − µk2

]
P (k, t)

= Nλ− 〈n〉

Where the re-indexing k −→ k − 1 (in the first sum) and k −→ k + 1 (in the

second sum) has been used to allow the factorization by P (k, t). In terms of the the

fraction of active switches in the pool (x = n/N), we obtain, for initial condition

x0 = 0:

τ
d〈x〉
dt

= λ− 〈x〉

〈x〉 = λ(1− e−t/τ ) (3.7)

2nd-order: variance

The same procedure can be followed to obtain the variance 〈n2〉 − 〈n〉2 of this

process, this time, by calculating τ
∑

n n
2 dP (n,t)

dt
:

τ
d〈n2〉
dt

+ 2〈n2〉 = 2Nλ [Nλ− λ+ 1]−Nλ [2Nλ− 2λ+ 1] e−
t
τ (3.8)

From the method of variation of the parameter, we look for a solution of the form:

〈n2〉 = C0e
− 2t
τ −Nλ [2Nλ− 2λ+ 1] e−

t
τ +Nλ [Nλ− λ+ 1] (3.9)

The integration constant C0 can be obtained from the initial condition 〈n2〉(0) = 0:

C0 = (Nλ)2 −Nλ2 (3.10)
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Finally, using (3.9) and (3.10), the solution is (see also [Pribram, 1994] p274 for the

case n(0) 6= 0):

〈n2〉 − 〈n〉2 = Nλµ+Nλ(λ− µ)e−
t
τ −Nλ2e−

2t
τ

〈x2〉 − 〈x〉2 =
1

N

[
λµ+ λ(λ− µ)e−

t
τ − λ2e−

2t
τ

]
(3.11)

From (3.7) and (3.11), we can compute the drift and dispersion rates:

νdrift =
λ

τ
e−

t
τ

νnoise =
λ

τN
e−

t
τ

[
2λe−

t
τ − (λ− µ)

]
(3.12)

In a DDR, we see that the GE process should satisfy the scaling property as the

input strength λ varies:

ν∗drift =
λ

τ

ν∗noise =
λ

τN
⇒ c∗v =

1√
θN

(3.13)

3.2.4 General Solution

Equation (3.2) can be solved explicitly by introducing the generating function

Gi(z, t) of probability density Pij(t), the probability to be in j at time t, start-

ing from i at t = 0:

Gi(z, t) =
N∑
k=0

Pik(t)z
k (3.14)

Importantly, the derivative of Gi(z, t) with respect to z yields:

∂

∂z
Gi(z, t) =

N∑
k=0

kPik(t)z
k−1 (3.15)
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Therefore, defining the characteristic time τ = 1
ν++ν−

as well as upward transition

probability λ = ν+
ν++ν−

and downward transition probability µ = ν−
ν++ν−

τ
∂

∂t
Gi(z, t) + (λz + µ)(z − 1)

∂

∂z
Gi(z, t) = Nλ(z − 1)Gi(z, t) (3.16)

This effectively converted the Master Equation (3.2) into a partial differential equa-

tion on the generating function Gi(z, t) which we can solve using the method of

characteristics (see for instance [Cox and Miller, 1972]). Characteristic equations

are:

dt

τ
=

dz

(λz + µ)(z − 1)
=

dGi

Nλ(z − 1)Gi

(3.17)

Integrating the first characteristic equation in (3.17) gives us an appropriate change

of variable ξ(z, t) = e−t/τ z−1
λz+µ

, so that an arbitrary function f(ξ) satisfies the homo-

geneous equation associated with (3.16), i.e. with the right hand term set to zero.

The general solution can be found, via the methods of variation of parameters, to

be of the following form:

Gi(z, t) = (λz + µ)Nfi

[
e−t/τ

1− z
λz + µ

]
(3.18)

Where fi is to be determined from the initial condition Gi(z, 0) = zi. This corre-

sponds to the initial state Pi(0) = 1, i.e. starting with the i-th node active, and all

others, inactive:

fi(x) = (1 + λx)N−i(1− µx)i (3.19)
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Assuming initial condition i = 0, i.e. starting without any active nodes, the

generating function G0(z, t) writes:

G0(z, t) = (µ+ λz)N
[
1− λ(z − 1)

µ+ λz
e−t/τ

]N−n0

=
[
(λe−t/τ + µ) + λ(1− e−t/τ )z

]N
=

N∑
k=0

(
N

k

)(
λe−t/τ + µ

)N−k (
λ(1− e−t/τ )

)k
zk (3.20)

Finally, we can identify the probability P0k(t)
.
= Pk(t) in (3.20):

Pk(t) =

(
N

k

)(
λ(1− e−t/τ )

)k (
λe−t/τ + µ

)N−k
(3.21)

For t→∞, we retrieve the stationary distribution P ?
k (see (3.6)):

P ∗k =

(
N

k

)
λk(1− λ)N−k (3.22)

The general solution Pik(t) for an initial condition different from 0 is given by

(see detail of derivation in Appendix A):

Pik(t) =

(
N

k

)
λ

µ

k N∑
n=0

(
N

n

)
λnµN−nKi(n)Kk(n)e−

nt
τ (3.23)

Where Kn’s are Krawtchouk’s orthogonal polynomials, defined as a special case

of Gauss’ confluent hypergeometric function 2F1

Kn(x) = 2F1(−n,−x,−N, 1/λ) =
n∑
k=0

(−n)k(−x)k
(−N)kk!

(
1

λ
)k (3.24)

(3.25)

Here, we have defined the Pochhammer symbol, or the rising factorial, as:

(a)k = a(a+ 1) . . . (a+ k − 2)(a+ k − 1) (3.26)
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3.3 Moments of the first-passage-time density

3.3.1 First-passage-time density

In this section, we detail the derivation of exact analytical expressions for the mo-

ments of the FPT density for the GE process. We wish to solve the FPT problem

with respect to an absorbing threshold at a certain number θ ∈ (0, N ] of active

nodes. Closed-form expressions for the higher-order moments of the FPT density

exist [van Kampen, 1981, Gardiner, 1985], but include nested sums and products

that offer no advantage over direct numerical integrations. More convenient repre-

sentations are known only for special cases, such as x0 = 0, θ = N , or the limit of

N → ∞ [Saaty, 1961, Bingham, 1991, Flegg et al., 2008]. Here we overcome this

difficulty and derive manageable expressions for the moments of the FPT density.

To this end, we rewrite the Master Equation (3.2) in matrix notation:

τ
d~P (t)

dt
= Â ~P (t) (3.27)

Where we define the transition matrix:

Â =



−λ0 λ0 0 0

µ1 −(λ1 + µ1) λ1

0 µ2
. . . . . .

...
. . . . . .

...
. . . λN−2 0

−(λN−1 + µN−1) λN−1

0 . . . 0 µN −µN


(3.28)

Next, we consider the spectral decomposition of matrix Â by taking the Laplace

transform of Eq. (3.27). This defines a set of polynomials {Kn(x), n ∈ [0, N ]}
(the eigenvectors) satisfying N recurrence relations, where 0 < n ≤ N , and the

transition weights λn = (N − n)λ and µn = nµ.
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K0(x) = 1

−xτK0(x) = −λ0K0(x) + λ0K1(x)

−xτKn(x) = µnKn−1(x)− (λn + µn)Kn(x) + λnKn+1(x) n ≤ N (3.29)

This three-terms recurrence is obeyed by the confluent hypergeometric function

2F1(−n,−x,−N ; 1/λ), which can be verified by using one of Gauss’ contiguous

relations:

a(2F1(a+ 1, b, c; z)− 2F1(a, b, c; z)) =
(c− a)2F1(a− 1, b, c; z) + (a− c+ bz)2F1(a, b, c; z)

1− z
(3.30)

Because in our case, N is finite, the hypergeometric function reduces to a

Krawtchouk polynomial (see (3.25)). The Laplace transform F̂ij of the FPT distri-

bution Fij (starting in i and arriving for the first time in j, also assuming i < j) is

[Karlin and McGregor, 1959]:

F̂ij(x) =
Ki(−xτ)

Kj(−xτ)
(3.31)

Moments of the FPT distribution are obtained by calculating successive deriva-

tives of (3.31), evaluated in zero:

〈T nij〉 = (−1)nF̂
(n)
ij (0) (3.32)

3.3.2 Moments formulae

From (3.32), the derivation of moments mostly relies on calculating the derivatives of

the Pochhammer symbol (3.26), evaluated in zero. Up from the third order onwards,

these expressions involve the generalised harmonic numbersHn,r =
∑n

k=1 k
−r (direct

detailed derivations are presented in Appendix A).
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(x)
(1)
k

x→0−→ (k − 1)! (3.33)

(x)
(2)
k

x→0−→ 2(k − 1)!Hk−1,0 (3.34)

(x)
(3)
k

x→0−→ 3(k − 1)!(H2
k−1,0 −Hk−1,1) (3.35)

(x)
(4)
k

x→0−→ 4(k − 1)!(H3
k−1,0 − 3Hk−1,0Hk−1,1 + 2Hk−1,2) (3.36)

After deriving these relations via direct calculations, we sough to obtain a general

formula at any order. The generalisation is in fact straightforward. Indeed, the

generating function for the Pochhammer symbol is known in terms of the Stirling

numbers of the first kind, a combinatorial number, noted
[
n
k

]
(not to be confused

with the binomial coefficients):

(x)k =
k∑
r=0

[
k

r

]
xr (3.37)

Taking the m-th derivative of (3.37), and taking the limit x→ 0 leaves us only

the term of order m, so that:

dm

dxm
(x)k = m!

[
k

m

]
(3.38)

In particular, the Stirling number of the first kind in terms of the generalized

harmonic numbers Hn,r: [
k

m

]
=

(k − 1)!

(m− 1)!
w(k,m− 1) (3.39)

Where w’s are defined recursively by:w(k, 0) = 1

w(k,m) =
∑m−1

k=0 (1−m)kw(n,m− 1− k)

(3.40)
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Expression (3.40) indeed retrieves previously calculated expressions, (3.33),

(3.34),(3.35), and (3.36). Also, formula (3.32) can be further expanded by using the

n-th derivative of a quotient of function (as shown in [Xenophontos, 2007]). In our

case, since Kn(0) = 1 for all n, all quotients have vanished from the final equation.

The result is a recurrence formula for the n-th moment of the FPT distribution,

given all prior moments:

〈T nij〉 = (−τ)n
(
K

(n)
i (x)−K(n)

j (x)
)∣∣∣

x=0
−

n−1∑
k=1

(−τ)k
(
n

k

)
Kn−k
j 〈T kij〉 (3.41)

For the four first moments, we obtained:

〈Tij〉 =
(
K

(1)
j −K(1)

i

)∣∣∣
x=0

(3.42)

〈T 2
ij〉 =

(
(K

(2)
i −K(2)

j ) + 2K
(1)
j 〈Tij〉

)∣∣∣
x=0

(3.43)

〈T 3
ij〉 =

(
(K

(3)
j −K(3)

i )− 3K
(2)
j 〈Tij〉+ 3K

(1)
j 〈T 2

ij〉
)∣∣∣

x=0
(3.44)

〈T 4
ij〉 =

(
(K

(4)
i −K(4)

j ) + 4K
(3)
j 〈Tij〉 − 6K

(2)
j 〈T 2

ij〉+ 4K
(1)
j 〈T 3

ij〉
)∣∣∣

x=0
(3.45)

Using (3.41)-(3.45), we obtain the four first moments of the FPT distribution.

〈Tij〉 = τ

j∑
k=1

(−j)k − (−i)k
k(−N)k

1

λk
(3.46)

〈T 2
ij〉 = τ 2

j∑
k=1

(−i)k − (−j)k
k(−N)k

2Hk−1

λk
+ 2〈Tij〉〈T0j〉 (3.47)

〈T 3
ij〉 = τ 3

j∑
k=1

(−j)k − (−i)k
k(−N)k

3(H2
k−1,1 −Hk−1,2)

λk
(3.48)

+ 3
(
〈T 2

0j〉 − 2〈T0j〉2
)
〈Tij〉+ 3〈T0j〉〈T 2

ij〉

〈T 4
ij〉 = τ 4

θ∑
k=1

(−i)k − (−j)k
k(−N)k

4(H3
k−1,0 − 3Hk−1,0Hk−1,1 + 2Hk−1,2)

λk
(3.49)

+ 4(〈T 3
0j〉 − 6〈T 2

0j〉〈T0j〉+ 6〈T0j〉3)〈Tij〉

+ 6(〈T 2
0j〉 − 2〈T0j〉2)〈T 2

ij〉+ 4〈T0j〉〈T 3
ij〉
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3.3.3 Simulations

We can now express the mean µ1, coefficient of variation cv, skewness γ1 and kurtosis

κ of the FPT density, as a function of its raw moments calculated in the previous

section:

µ1 = 〈Tij〉 (3.50)

cv =

√
〈T 2

ij〉
〈Tij〉2

− 1 (3.51)

γ1 =
1

c3
v

[ 〈T 3
ij〉

〈Tij〉3
− 3c2

v − 1

]
(3.52)

κ =
1

c4
v

[ 〈T 4
ij〉

〈Tij〉4
− 4γ1c

3
v − 6c2

v − 1

]
(3.53)

Even higher-order moments can be worked out with comparable effort. The re-

cursive expression (3.41), as well as higher-order moments (3.47),(3.48) and (3.49)

are new. Only expression (3.46) for the first moment was published previously

[Dette, 1994]. In Fig. 3.2, Fig. 3.3 and Fig. 3.4, direct simulations of N stochas-

tic bistable columns are compared to the predictions of calculated expressions

(3.47),(3.48) and (3.49). Specifically, the mean µ1, coefficient of variation cv, skew-

ness γ1, and kurtosis κ of the FPT density are shown for different initial conditions

x0 ∈ {0, 0.2, 0.4} and different values of ν±. The latter values were chosen to set the

steady-state activation xin at various locations below or above the threshold θ/N

(xin − θ/N ∈ [−0.2,+0.2]). Our analytical formulae are indeed exact and show a

remarkable agreement with direct simulations.
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Figure 3.2: Agreement between the analytical expression of the coefficient of variation

(3.51) of the FPT and simulated realisations of the process, as a function of the dis-

tribution’s mean (3.50). Each symbol (circles) represents 160000 simulated FPTs, and

transition rates ν+ and ν− were varied to span λ−θ/N ∈ [−0.2,+0.2]. Threshold θ = 25,

number of nodes or columns N = 50, relaxation time τ = (ν+ + ν−)−1. Reprinted from

[Cao et al., 2014] with the co-authors’ permission.
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Figure 3.3: Agreement between the analytical expression of the skewness γ1 (3.52) of

the FPT and simulated realisations of the process, as a function of the distribution’s

mean (3.50). Each symbol (circles) represents 160000 simulated FPTs, with error bars

indicating SEM. Transition rates ν+ and ν− were varied to span λ− θ/N ∈ [−0.2,+0.2].

Threshold θ = 25, number of nodes or columns N = 50, relaxation time τ = (ν+ + ν−)−1.

Reprinted from [Cao et al., 2014] with the co-authors’ permission.
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Figure 3.4: Agreement between the analytical expression of the kurtosis κ (3.53) of

the FPT and simulated realisations of the process, as a function of the distribution’s

mean (3.50). Each symbol (circles) represents 160000 simulated FPTs, with error bars

indicating SEM. Transition rates ν+ and ν− were varied to span λ− θ/N ∈ [−0.2,+0.2].

Threshold θ = 25, number of nodes or columns N = 50, relaxation time τ = (ν+ + ν−)−1.
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3.3.4 Low-Threshold Approximation

In the low-threshold limit, so that θ � N , we can get simple approximates for

E[T0θ] and E[T 2
0θ], and therefore, for the CV.

For the first moment:

E[T0θ] =
θ∑

k=1

(−θ)k
(−N)k

1

kνk+τ
k−1

=
θ

N

1

ν+

+
θ(θ − 1)

N(N − 1)

1

2 ν2
+τ

+
θ(θ − 1)(θ − 2)

N(N − 1)(N − 2)

1

3 ν3
+τ

2
+ . . .

=
θ

Nν+

(
1 +

θ − 1

N(1− 1/N)︸ ︷︷ ︸
∼N

1

2 ν+τ
+

(θ − 1)(θ − 2)

N2(1− 1/N)(1− 2/N)︸ ︷︷ ︸
∼N2

1

3 ν2
+τ

2
+ . . .

)

' θ

Nν+

(
1 +

θ − 1

N

1

2 ν+τ
+

(θ − 1)(θ − 2)

N2

1

3 ν2
+τ

2
+ . . .

)
(3.54)

Similarly, for the second moment and CV, using E[T0θ] = 〈T0θ〉 = θ
Nν+

:

E[T 2
0θ] '

θ(θ − 1)

(Nν+)2
+

(θ − 1)(θ − 2)

(Nν+)3τ
+ . . . (3.55)

CV [T0θ] '
1√
θ

(
1 +

θ − 1

2θ

〈T0θ〉
τ

)
(3.56)

Once again, in the DDR, 〈T0θ〉 � τ , and we retrieve the previous approximated

expression (3.13) by substituting θ → θN . When combining low-threshold and

drift-dominated regime, the CV of FPTs depend exclusively on the value of the

threshold, and increases as the mean FPT increases, when approaching the NDR.

3.4 Regime Identification

3.4.1 Drift- and noise-dominated regimens and the scaling

property

Recall that steady-state activity xin(s) (indirectly) represents sensory input. For

different combinations of xin and threshold θ/N , the analysis reveals curves of
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constant cv with two branches (Fig. 3.5, left). This qualitative picture changes

with neither population size N nor initial conditions (Fig. 3.5, right). To each

of these branches correspond a distinct operating regime, which differ greatly, not

only qualitatively, but also quantitatively.

To the lower, horizontal branch, corresponds a relatively low-threshold regime

(‘suprathreshold’, or DDR θ < xin). In this regime, cv remains nearly constant

when the threshold θ/N is fixed slightly above baseline activity x0 (red dashed line,

Fig. 3.6, left). Importantly, the threshold can be set to a fixed value without vio-

lating the constrain cv ≈ 0.6 (red shadings, Fig. 3.7, left) To the higher, diagonal

branch, correspond a high-threshold regime (‘subthreshold’, or NDR θ > xin). This

reflects the situation where the threshold θ/N is set slightly above steady-state

activity xin (blue dashed line, Fig. 3.6, left). In this case, the threshold can not

be set to a fixed value without violating the scaling property. Rather, it must be

adjusted, for different values of xin . Indeed, the distance-to-threshold (from the

steady-state value) θ/N − xin and must remain constant to satisfy cv ≈ 0.6 (blue

shadings, Fig. 3.7, left).

3.4.2 Drift- and noise-dominated regimens and the distri-

bution shape

Quantitatively, the two regimes differ greatly on several accounts: fluctuations far-

for-equilibrium (i.e. in the DDR), yields significantly different FPT statistics than

fluctuations around equilibrium (i.e. in the NDR). First, mean perceptual durations

〈T 〉 are comparatively fast (〈T 〉 � τ) in the DDR regime – as only the stochastic

accumulation of few additional active columns is needed in order to breach thresh-

old – and comparatively slow (〈T 〉 � τ) in the NDR regime – as fluctuations must

carry activity above the steady-state (Fig. 3.7, left). A telling difference concerns

the distribution shape (Fig. 3.6, right), with FPT distribution for the DDR being

significantly less skewed than in the NDR, for the same value of cv ∈ [0.5, 0.6].

The difference between both distribution can be made particularly salient by com-
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Figure 3.5: Areas of with near-constant coefficient of variation cv ≈ 0.6. (Left): Coeffi-

cient of variation cv of FPT distribution as a function of the steady state xin = λ (input

strength) and perceptual threshold θ. Curves with identical cv are marked in gray. Pop-

ulation size N = 100 and initial condition x0 = 0.2. (Right): Ranges with cv ∈ [0.5, 0.6]

for different initial conditions x0 = 0, 0.2, 0.4 (from dark to light shades, respectively).

Dotted lines mark values of x0, dashed line marks steady-state activity Nxin . Reprinted

from [Cao et al., 2014] with the co-authors’ permission.

paring the range of values for their skewness (Fig. 3.7, right). Whereas the FPT

distribution in the DDR corresponds to a Gamma distribution up to the third mo-

ment (γ1 ' 2cv), the NDR regime exhibits a refractory period of ' τ and a heavier,

exponential-like, tail (with γ1 & 3cv), characteristic of an inverse Gaussian distri-

bution. The reason is that the threshold is reached in two separate phases: first,

activity must reach the steady-state level and, second, so that fluctuations around

the steady-state can allow the system to cross the threshold. The second step is

similar to the - solely noise driven - escape from a potential-well [Kramers, 1940,

Hanggi et al., 1990].
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Figure 3.6: Operating regime for the scaling property. (Left): Time evolution of density

Pn(t) for x0 = 0.2 and xin [20 000 simulated realizations of x(t)]. Shadings indicate

10 percentile steps. The inset magnifies the initial dynamic. Either a suprathreshold

(dashed red) or a subthreshold (dashed blue) yields a cv = 0.55. (Right): The FPT

distribution is significantly less skewed in the suprathreshold (red histogram) than in

the subthreshold regime (blue histogram). Reprinted from [Cao et al., 2014] with the

co-authors’ permission.

3.4.3 Interacting pool

Linear self-excitation

Throughout this chapter, we have considered the collective accumulation of activity

in a finite assembly of bistable units. Additionally, we have assumed such units were

independent, for the sake of simplicity, so that exact analytical results could be

derived. In terms of neural populations, these units can be thought of as idealized

cortical columns, supporting a given perceptual appearance, or representation, of a

stimulus. From this perspective, assuming independence between units of the same

assembly would imply that they would correspond to unstructured representations

of independent stimulus features. To demonstrate the generality of our results, we

now relax this questionable assumption and consider an assembly of interacting

units. Recurrent interactions within the assembly of bistable units will provide

additional input to individual element, making transition rates ν± dependent on
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Figure 3.7: (Left): Threshold values θ/N required to obtain cv ∈ [0.5, 0.6] with different

mean FPTs 〈T 〉 in the supra- and subthreshold regimes (red and blue, respectively).

Shading represents different values of x0 ∈ {0, 0.2, 0.4}. (Right): Ratio between skewness

γ1 and cv of FPT distribution for ranges with cv ∈ [0.5, 0.6] and different values of

x0 ∈ {0, 0.2, 0.4}. Reprinted from [Cao et al., 2014] with the co-authors’ permission.

collective activity x(t) in a mean-field approximation.

In a strong DDR, where xin is high, and θ is low, it is sufficient to consider a linear

dependence of excitatory couplings:

ν+(x) = ν
(0)
+ + ν

(1)
+ x(t) (3.57)

Since in this regime, x(t) remains mostly in a narrow range just below threshold

(see for example inset in Fig. 3.6, left), the following results would pertain even

if higher-order terms of the Taylor expansion were to be included in Eq. (3.57).

This is because greater modulations of x(t) would be necessary for non-linear ef-

fects to be noticeable, which is not permitted in such a restricted range between

initial condition and threshold. Interestingly, greater coupling strength ν
(1)
+ leaves

the cv of the FPT essentially unchanged (see Fig. 3.8 A, top). Coupling decreases

mean FPTs, but mostly in the DDR regime (see Fig. 3.8 A, bottom), suggesting

that such coupling affects the dynamics far-from-equilibrium more than it affects

the dynamics around equilibrium.
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Such coupling introduces modulations of both the asymptotic value xin and the

characteristic time-scale τ . In the NDR, a sufficient increase of xin could effectively

push the system across the bifurcation to the DDR, so we compensate the changes in

xin due to increasing coupling strength by increasing the downward switching rate

ν
(0)
− . In the noise-dominated case, deviations of the mean FPT are less important,

because significant changes in the time-scale of the system have already occurred

during the approach to equilibrium, while in the drift-dominated case, changes of

time-scales occur as the system approaches and crosses the threshold.

Remarkably, the difference between the distribution shapes between DDR and NDR,

as expressed in the ratio γ1/cv is invariant with coupling strength and initial con-

ditions (see Fig. 3.8 B). Recurrent interactions between bistable units shift the

FPT distribution in time, without changing its shape. In effect, interactions scale

transitions rates νpm just as a progressive compression of the unit of time would do.

Time-scale modulation

To understand this compression of time-scales, we consider the effect of the coupling

(3.57) on the deterministic component of the dynamics. For ν
(1)
± = 0, we have a

simple exponential relaxation to asymptotic value λ0 = ν
(0)
+ /(ν

(0)
+ + ν

(0)
− ), with

characteristic time-scale τ0 = (ν
(0)
+ + ν

(0)
− )−1, so that the solution for the initial

condition x(t = 0) = 0 is:

x(t) = λ0(1− e−t/τ0) (3.58)

Therefore, we introduce the linear coupling into , which becomes a Riccati equa-

tion with constant coefficients depending on the non-interacting transition rates ν
(0)
±

and the recurrent coupling rates ν
(1)
± :

˙̃x = ν
(0)
+ − (ν

(0)
+ + ν

(0)
− − ν(1)

+ )x̃− (ν
(1)
+ + ν

(1)
− )x̃2 (3.59)

We introduce x±, the conjugate roots of the second-order polynomial Q(x) =

ax2 +bx+c = a(x−x+)(x−x−), where: a = −(ν
(1)
+ +ν

(1)
− ), b = −(ν

(0)
− +ν

(0)
− −ν(1)

+ ),
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Figure 3.8: Higher-order statistics of FPT for populations of interacting bistable units.

A (Top): comparison of coefficients of variation for interacting units, cv,int , and inde-

pendent units, cv,free , for various coupling values ν
(1)
+ . (Bottom): comparison of mean

FPT for the interacting units, 〈Tint〉 and the independent units 〈Tfree〉. Colors distin-

guish supra- and subthreshold regimes and hues indicate different initial conditions x0.

B Difference in the shape of FPT distribution shape between sub- and suprathreshold

regimes, as expressed by ∆γ1
cv

. Shading distinguishes initial conditions. The baseline rates

ν
(0)
± were chosen to obtain xin = 0.8 and τ = 1 with zero coupling (i.e. ν

(1)
+ = 0). In the

subthreshold regime, ν
(1)
+ > 0 were compensated by increasing the baseline inactivation

ν
(0)
− , such as to maintain xin = 0.8. For each dynamical regime, θ was set to main-

tain cv,free ≈ 0.6. Symbols represents mean and SEM from 5000 simulated realizations.

Reprinted from [Cao et al., 2014] with the co-authors’ permission.

c = ν
(0)
+ , as well as the discriminant ∆ =

√
b2 − 4ac. Using the factorised form of

the polynomial Q, we can integrate (3.59) by separation of variables with initial

condition x(t = 0) = 0:

x̃(t) = x−
1− e−

√
∆t

1− x−
x+
e−
√

∆t
(3.60)

We can easily verify that (
√

∆)−1
ν
(1)
± →0−→ τ0, so that (

√
∆)−1 is the new charac-

teristic time-scale for the coupled system. Similarly, the root x− corresponds to the
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+ = 0. Shaded traces correspond to the evolution of the probability

density for the fluctuating system (red: linearly coupled, black: uncoupled). Thick lines
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black: uncoupled). Dotted lines correspond to the solution obtained in (3.60)

new asymptotic value for the coupled system:

x− = − ν
(0)
+

ν
(1)
+ + ν

(1)
−

1

x+

= 2
ν

(0)
+

ν
(0)
+ + ν

(0)
− − ν(1)

+ +
√

∆

ν
(1)
± →0−→ λ0

The dynamics of the coupled system can be envisaged in two different ways.

A first interpretation is to consider an exponential relaxation toward a moving

asymptote value x−(t)
.
= x−

(
1− x−

x+
e−
√

∆t
)−1

, for a fixed time-scale
√

∆
−1

as in

(3.61). A second interpretation, which is more relevant for us, is to consider an

exponential relaxation toward a fixed asymptote x−, for a time-modulated time-

scale τ(t) , as in (3.62).

x̃(t) = x−(t)(1− e−t
√

∆) (3.61)

= x−(1− e−t/τ(t)) (3.62)
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We can identify the function τ(t) by inverting equation (3.62). We find a strictly

decreasing function of t, converging to the time-scale of the coupled system (
√

∆)−1.

As the activity rises, the characteristic time of the system progressively diminishes:

τ(t) =
1√
∆

[
1 +

1

t
√

∆
ln

(
x+ − x−e−t/τ
x+ − x−

)]−1

(3.63)

To summarize, introducing excitatory couplings in assemblies of bistable units,

only affects the mean FPT, and the shape of the FPT distribution is left essentially

invariant, in both drift- and noise-dominated regimens. In particular, stronger inter-

actions reduce the characteristic time-constant of the assembly, and yield stronger

modulations of the mean FPT in when the system is far-from-equilibrium (DDR)

than around equilibrium (NDR).

3.5 Summary

In this chapter, we have introduced a stochastic process belonging to different

class of random walks, i.e. a birth-death process, also known as the generalized

Ehrenfest process. We established new closed-form formulae for the first four

moments of its FPT distribution [Cao et al., 2016]. Note that only the first order

(average FPT) had previously been published [Dette, 1994].

We also performed a regime identification which revealed two separate regimens

for which the scaling property is obtained, i.e. CV remains constant at cv ≈ 0.6

while the distribution mean can shifts by an order of magnitude with sensory

input.These two regimens correspond to two threshold settings, corresponding

to two different dynamics in approaching and crossing the threshold (DDR and

NDR). Importantly, only in the DDR, is the characteristic Gamma-like shape

reported in a wide range of behavioural experiments also obtained.

A low and fixed threshold, placed just above baseline activation (θ/N −X0 � 1),

produces short mean durations (fractions of the relaxation time τ) and a

Gamma-like skewness γ1 ≈ 2 cv, precisely matching experimental observations

(see Fig. 4.2). A high and variable threshold, placed just above the steady-state
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activation (θ/N − X∞ � 1), predicts far longer mean durations (multiples of τ)

and significantly higher skewness γ1 ≥ 3 cv, at odds with experimental evidence.

The scaling property and the shape of the FPT distribution therefore depends

on the collective properties of the population of bistable units, as well as the

population size N and threshold placement θ. In contrast, the mean FPT reflects

the intrinsic dynamics of individual columns, and in particular, i.e. the relaxation

time τ . This additional degree of freedom may also help to explain the spurious

variation of reversal times between observers, as different observers typically have

different mean switching rates.

We conclude that such discrete accumulation of activity using a finite population of

bistable units, operating far-from-equilibrium, naturally explains both the scaling

property of multistable perception and the characteristic Gamma shape of reversal

time densities observed experimentally.



4
Scaling Property and Distribution Shape

In Chapter 2, we have established one of the key requirements for a scaling property

to be obtained. Namely, that the deterministic and stochastic components of the

random walk underlying perceptual reversals must obey and maintain a specific

balance. Therefore, a certain input-dependence of the noise appeared necessary and

was explicitly derived.

In Chapter 3, we have shown that the GE process could reproduce both the scal-

ing property and the distribution shape. This process accumulates activity with

bistable units, which ensures the scaling property. This is because the individual

dynamics of each bistable unit corresponds to the statistics of Poisson events, whose

rate depends on the input-levels. When input-levels change, not only does the av-

erage time between events changes, but also its variability as well as higher-order

moments. Consequently, both accumulation rate νdrift and dispersion rate νnoise

change proportionally with sensory sensory input, and the scaling property is nat-

urally obtained.

However, it does not ensure that the correct shape will be obtained for the FPT

density.

In this chapter, we primarily focus on the second aspect of the scaling property,

i.e. the specific shape of the FPT distribution, which rely on less intuitive factors,

and thus required a more detailed treatment. In order to understand how shorter-

tailed distributions may be obtained, we further investigate three different aspects

of the GE process which contributes to the shape of the distribution: granularity,

77
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local bistability, and far-from equilibrium operation. For this we will compare the

GE process to two other related random walks: a balanced Poisson process (BP) and

the process obtained in the diffusion limit of the GE process, a Cox-Ingersoll-Ross

process (CIR) [Cox et al., 1985, Tuckwell, 1988/2008].

4.1 Generalized Ehrenfest process

We have shown in Chapter 3 that the GE process is able, not only to reproduce

the scaling property, but also to account for the characteristic, Gamma-like shape

of observed reversal time densities. The perceptually relevant aspects of these

observations are illustrated in Fig. 4.1 and Fig. 4.2. As previously established,

the correct shape for the FPT distribution can only be obtained in the DDR, not

in the NDR. In contrast, the modified WP or OU processes produce scale-invariant

FPT distributions, but did not produce the correct distribution shape for any input

and threshold combination. In the modified OU process in particular, the FPT

distribution in both DDRs and NDRs is an inverse Gaussian (or Wald distribution),

with γ1 = 3cv, and only differ in terms of their mean FPT (see Fig. 2.13).

To single out which characteristics and conditions allow the GE process to

reproduce the characteristic Gamma-like FPT distribution, we propose the study

two other stochastic processes. Both processes are somewhat related to the GE,

in that they share some of its key features. In particular, while both BP and CIR

processes naturally satisfy the first aspect of the scaling property (invariance of

the shape as the mean varies), neither of them reproduce the second aspect of the

scaling property, i.e. correct shape of FPT distributions. The comparative analysis

of their FPT properties will indeed provide important additional indications, an

provide a intuitive account to this second and yet unexplained aspect of the scaling

property.

First, we introduce a Balanced Poisson process (BP), a discrete birth-death process

which also accumulates activity with discrete Poisson events, but is not limited

in size. Second, we introduce a Cox-Ingersoll-Ross process (CIR), a Gaussian

diffusion model which shares the exact same drift and dispersion rates as the GE,
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but is not discrete.

θ θ

γ

Figure 4.1: Generalised Ehrenfest process with N = 80 bistable units: normalized

moments of FPT density as functions of input xin and threshold θ (both in units of σ).

(Left): coefficient of variation cv. (Right): skewness γ1 (in units of cv). Black curves mark

cv = 0.6, black arrows mark several locations where a gamma distribution is obtained for

different average dominance times. Reprinted from [Cao et al., 2016] with the co-authors’

permission.

4.2 Balanced Poisson process

4.2.1 Definition and Master Equation

A (BP) process combines two independent Poisson processes contributing, respec-

tively, activity increments and decrements of unit size with homogeneous rates νE

and νI [Tuckwell, 1988/2008]. This process approximates excitatory and inhibitory

post-synaptic potentials incrementing and decrementing the membrane potential of

a neuron [Tuckwell, 1988/2008]. Excitatory (respectively inhibitory) spikes arrive

with a fixed rate νE (respectively νI), so that either spike counts form independent

Poisson processes NE(t) (respectively NI(t)). We consider the net activation at

time t, N(t) = NE(t)−NI(t), as well as its distribution Pn(t) (i.e. the probability

of having a net activity N(t) = n at time t). Within a small interval dt, we can
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γ
θ=0.075

μ

Figure 4.2: Generalised Ehrenfest process: scaling property and FPT distribution shape

as function of mean µ1 (format as in Fig. 2.3). For constant θ (value given by inset),

µ1 decreases as xin increases. The scalar property is satisfied for both the CV and the

Skewness, while the ratio γ1/cv 2 matches behavioural data. Reprinted from [Cao et al.,

2016] with the co-authors’ permission.

expect an increment with probability νEdt, and a decrement with probability νIdt,

or none with probability (1− νEdt)(1− νIdt). Therefore, the probability of having

a net activity n at a later time t+ dt is:

Pn(t+ dt) = Pn−1(t)νEdt+ Pn+1(t)νIdt− (1− νEdt)(1− νIdt)Pn(t) (4.1)

This yields the following differential equation:

dPn(t)

dt
= νEPn−1(t) + νIPn+1(t)− (νE + νI)Pn(t) (4.2)

Expression (4.2) is the Master Equation for the BP process. As previously

done for the GE process, we obtain the drift and dispersion rates (νdrift and νnoise ,

respectively) by solving differential equations for 〈n〉 and 〈n2〉. At first-order, we
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get:

d

dt

(∑
n

nPn(t)

)
=
d〈n〉
dt

= νE − νI

⇒ 〈n〉 = (νE − νI)t (4.3)

At second order, we get:

d

dt

(∑
n

n2Pn(t)

)
=
d〈n2〉
dt

= 2(νE − νI)〈n〉+ νE + νI

⇒ 〈n2〉 − 〈n〉2 = (νE + νI)t (4.4)

Thus, drift and dispersion rates are:

ν∗drift = νE − νI (4.5)

ν∗noise = νE + νI (4.6)

4.2.2 Exact solution

The analytical solution to equation (4.2) can be obtained using the generating

function, as defined in (3.16). In the case of the GE process, transition rates depend

on the number n of active switches in the pool, and the Master Equation becomes a

partial differential equation which must be solved by the method of characteristics.

Here, transition rates do not depend on the net activation n of the system. The

resulting differential equation for the generating function G(z, t) is slightly simpler

than for the GE process, and can be solved by separation of variables.

τ
∑
n

dPn(t)

dt
zn = τ

∂G(z, t)

∂t
=
(
λz +

µ

z
− 1
)
G(z, t) (4.7)

Where we have defined the characteristic time-constant τ = (νE+νI)
−1 as well as

the upward transition probability λ = νEτ and the downward transition probability

µ = νIτ , so that λ + µ = 1. We then solve the differential equation with initial
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condition P0(0) = 1, so that G(z, 0) = 1:

G(z, t) = e−
t
τ e

t
τ

(λz+µ
z

) (4.8)

Equation (4.8) can then be expanded in powers of z, so that the probability

Pn(t) can be identified. The solution is given by the following relation, where In(x)

is the modified Bessel function of the first kind (see Appendix A for details):

Pn(t) =

(
λ

µ

)n
2

e−
t
τ In

(
2
t

τ

√
λµ

)
(4.9)

4.2.3 First-passage-time distribution

The distribution of FPT T to a threshold θ from initial condition N(0) = 0, fθ(T ),

can also be expressed in terms of the modified Bessel function of the first kind

[Tuckwell, 1988/2008]:

fθ(t) = θ

(
νE
νI

)θ/2
e−(νE+νI)t

t
Iθ(2
√
νEνIt) (4.10)

The two first moments of the distribution are also known [Tuckwell, 1988/2008].

Alternatively, the CV can also be obtained from (2.18), using (4.5) and (4.6). For

the third raw moment, we made use of the following tabulated integral (see [Grad-

shteyn and Ryzhik, 1988], p700):

∫ ∞
0

xm+1e−αxIθ(βx)dx = (−1)m+1β−θ
dm+1

dαm+1


(
α−

√
α2 − β2

)θ
√
α2 − β2

 ;m ≥ 0

(4.11)

We obtain:

〈T 3〉 =

(
θ

νE − νI

)3

+ 3θ2 νE + νI
(νE − νI)4

+ 3θ
(νE + νI)

2

(νE − νI)5
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So that:

µ1 =
θ

νE − νI
(4.12)

cv =

√
νE + νI

θ (νE − νI)
(4.13)

γ1 = 3cv (4.14)

In this case, the stimulus strength is xin = (νE − νI)τ = λ − µ. As previously,

we consider the moments of the FPT density with respect to the threshold θ and

the input-level xin , as illustrated in Fig. 4.3. The FPT statistics of the BP process

is similar to that of the modified WP with drift and input-dependent noise.

θθ

γ

Figure 4.3: Balanced Poisson (BP) process: normalized moments of FPT density as

functions of input xin and threshold θ (both in units of σ). (Left): coefficient of variation

cv. (Right): skewness γ1 (in units of cv). Black curves mark cv = 0.6. Reprinted from

[Cao et al., 2016] with the co-authors’ permission.

Like the GE process, the dynamics of the BP process is composed of discrete

spontaneous events whose rates depend on the input-level. Similarly, the event

rate affects both the drift and the dispersion of the process, which is why the

stochastic component of the dynamics naturally depends on the input. A scaling

property is guaranteed (Fig. 4.4), provided sensory input s changes the event rates

in a proportional manner, so that the proportionality between accumulation and

dispersion is maintained, as required by (2.22). Again, the skewness γ1 = 3cv is
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larger than in experimental observations. This further confirms that the appropriate

input-dependence of the noise is necessary and sufficient for the scaling property,

but not for the distribution shape (we obtain an inverse Gaussian instead of a

Gamma distribution).

γθ=0.075

μ

Figure 4.4: BP process: scaling property and FPT distribution shape as function of

mean µ1 (format as in Fig. 2.3). For constant θ (value given by inset), µ1 decreases as

xin increases. The scalar property is satisfied for both the CV and the Skewness, but

the ratio γ1/cv 3 is too large. Reprinted from [Cao et al., 2016] with the co-authors’

permission.

4.3 Cox-Ingersoll-Ross process

4.3.1 System-size expansion

In this section, we derive a continuous equivalent of master equation (3.2) in the

limit of large number N of switches in the pool. For this, we use the system-size

expansion method [Hanggi et al., 1984]. The overall idea is that for a system of

sufficiently large size, the ensemble of accessible states forms a continuum: the

discrete nature of transitions between neighbouring states can be neglected, and

the system can be described in terms of a continuous stochastic process.
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We introduce the activity x (or fraction of active nodes in the pool):

x =
n

N
(4.15)

In our case, the size parameter is the total number of nodes N , and we wish to

derive a dynamical equation for the density p(x, t), i.e. the probability to have a

fraction x of active nodes at time t in the pool, from the the density P (n, t).

The change of variable n→ x requires these densities to scale as follows:

p(x, t) = NP (n, t) (4.16)

Also, we must scale the original transition rates between neighbouring states:

W±(n) = Nγ±(x) (4.17)

We can now rewrite the original master equation (3.2) as a Fokker-Planck equa-

tion by expanding over small parameter ε = 1/N :

1

N

∂p(x, t)

∂t
= [1− (x− ε)]ν+p(x− ε) + (x+ ε)ν−p(x+ ε)− [(1− x)ν+ + xν−]p(x)

= γ+(x− ε)p(x− ε) + γ−(x+ ε)p(x+ ε)− γ+(x)p(x)− γ−(x)p(x)

= − 1

N

∂

∂x

[
(γ+(x)− γ−(x))p(x)

]
+

1

2N2

∂2

∂x2

[
(γ+(x) + γ−(x))p(x)

]
τ
∂p(x, t)

∂t
= − ∂

∂x
[(λ− x)p(x)] +

1

2

∂2

∂x2

[
λ(1− x) + µx

N
p(x)

]
(4.18)

Recall that λ = xin(s) indirectly represents the sensory input s, we identify the

drift and diffusion terms:

µ(x, xin) = xin − x σ(x, xin) =

√
xin − (2xin − 1)x

N
(4.19)

One can also be rewrite the partial differential equation (4.18), as a stochastic

differential equation on variable x(t), also known as the Langevin equation, where

we define ξ(t), an unitary Gaussian white noise, i.e. normally distributed with mean
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zero and variance 1:

τ
dx

dt
= λ− x+

√
τ

√
λ(1− x) + µx

N
ξ(t) (4.20)

For both Eq.(4.18) and (4.20), taking the limit N → ∞ causes the diffusion

term to vanish. The dynamics is then reduced to its deterministic component, and

we recover the first-order approximation previously obtained in (3.7).

4.3.2 Scaling property in the CIR process

Interestingly, the reduction of the Master Equation (3.2) for the GE process, to a

Gaussian-diffusion type equation (expressions (4.18) and (4.20)) reveals a specific

dependence of the noise on the input-level and the state of the system. Recall that

here, the input corresponds to the asymptotic value of the process (i.e. the value

for which the drift vanishes), so that xin = λ. We can rewrite the infinitesimal

variance of the CIR process as:

σ2(x, xin) =
xin

N
− 2xin − 1

N
x (4.21)

Under this form, we see that the infinitesimal variance of the CIR process has two

separate components.

The first component (first term on the right hand side of (4.21)) consist of an

input-dependent additive noise. In fact, this dependence on xin is the same

we previously introduced in Chap. 2 (modified WP and OU processes). This

correction allowed these models to satisfy the scaling property, in contrast to their

unmodified, constant-noise counterparts. Since the GE process itself satisfies the

scaling property, it is not surprising that its continuous approximation in the

diffusion limit (the CIR process) would naturally exhibit this input-dependence of

the noise amplitude.

The second component (first term on the right hand side of (4.21)) consist of a

multiplicative noise term, both input- and state-dependent. The consequences of

this specific structure of fluctuations on the scaling property, and on the shape of
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the FPT distribution will be discussed in the next section.

Although it is clear that the CIR process will fulfil the scaling property, since its

infinitesimal variance already satisfies the required input-dependence, we can derive

the drift and dispersion rates νdrift and νnoise . The mean and variance for the CIR

process are known [Cox et al., 1985]. Here we take the initial condition x0 = 0.

〈x〉 = λ(1− e− t
τ ) (4.22)

〈x2〉 − 〈x〉2 =
1

N

[
λµ+ λ(λ− µ)e−

t
τ − λ2e−

2t
τ

]
(4.23)

Equations (4.22) and (4.23), which describe respectively the average dynamics of

the CIR process, and its variance, are identical to (3.7) and (3.11). This is because

the CIR process is simply a truncated version of the GE process, where fluctuations

from third-order onwards are neglected in the system-size expansion. Up to the

second order in fluctuations, both the GE process and the CIR process are identical

in how they accumulate and disperse activity. Drift and dispersion rates are also

the same (see (3.12)):

νdrift =
λ

τ
e−

t
τ

νnoise =
λ

τN
e−

t
τ

[
2λe−

t
τ − (λ− µ)

]
(4.24)

And in the limit of a DDR, we get:

ν∗drift =
λ

τ

ν∗noise =
λ

τN
⇒ c∗v =

1√
θN

(4.25)

The CIR process shows similar FPT statistics than the discrete GE model from

which it is derived (see Fig. 4.5). Isoclines of the CV also reveal two distinct

regimens in which the condition cv ≈ 0.6 can be obtained. As before, we will focus

on the DDR, where the threshold can be held constant, as opposed to the NDR,
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θ θ

γ

Figure 4.5: CIR process: normalized moments of FPT density as functions of input xin

and threshold θ (both in units of σ). (Left): coefficient of variation cv. (Right): skewness

γ1 (in units of cv). Black curves mark cv = 0.6. Reprinted from [Cao et al., 2016] with

the co-authors’ permission.

where the value of the threshold must be continuously adapted to the input-level.

Again, in a DDR, the value of the threshold must be kept low to obtain sufficiently

variable dominance durations.

Within these conditions, the scaling property is observed (see Fig. 4.6). How-

ever, unlike the GE process, the shape of the distribution corresponds to a inverse

Gaussian with γ1 ≈ 3cv. Since the CIR process is a Gaussian approximation of the

GE process, we deduce that differences in their FPT statistics correspond to the

non-Gaussian aspect of the latter. In the NDR, along the cv = 0.6 isocline, both

processes are equivalent and share qualitatively similar FPT statistics, indicating

that the GE is equivalent to a Gaussian process around steady-state. This is not

the case in the DDR, which reveals one of the key dynamical features uniquely

expressed by the GE process: when operated sufficiently far from equilibrium, it

diffuses asymmetrically.
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γθ=0.003

μ

Figure 4.6: CIR process: scaling property and FPT distribution shape as function of

mean µ1 (format as in Fig. 2.3). For constant θ (value given by inset), µ1 decreases as

xin increases. The scalar property is satisfied for both the CV and the Skewness, but

the ratio γ1/cv 3 is too large. Reprinted from [Cao et al., 2016] with the co-authors’

permission.

4.4 Distinguishing properties of the GE process

4.4.1 Overview

So far we have studied the FPT statistics of a number of random models. These

results are summarized in Table 4.4.1. This should highlight two important points.

Firstly, that the scaling property requires a specific balance between deterministic

and stochastic components of the dynamics to be observed and maintained, while

input modulations may cause large deviations of mean FPTs. Specifically, we

have shown in Chapter 2 that such modulations of the input-level must affect the

drift and dispersion rates (respectively ν∗drift and ν∗noise) in a proportional manner.

Processes such as the WP or OU processes, with constant noise amplitude, do

not satisfy the scaling property, and can be modified by assuming a certain

input-dependence of the noise amplitude, so that the scaling property is obtained.

When accumulating activity with bistable nodes, the input-dependence of events

rates ensures that drift and noise rates will vary in a proportional manner, as is
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the case for the BP process and the GE process. This is also highlighted by the

fact that the CIR process, which is obtained by taking the continuous limit of the

GE process, also inherits from the same input-dependence of the noise amplitude

as the modified WP and OU processes.

Name Type ν∗drift ν∗noise Scaling prop. cv ≈ 0.6 & γ1 ≈ 2cv

WP Gaussian xin
τ

σ2

τ
– –

OU Gaussian xin
τ

σ2

τ
– –

Mod. WP Gaussian xin
τ

xin
τα

X –

Mod. OU Gaussian xin
τ

xin
τα

X –

CIR Gaussian ν+
ν+
N

X –

BP Infinite Birth-Death νE − νI νE + νI X –

GE Finite Birth-Death ν+
ν+
N

X X

Table 1 Comparison of investigated random-walk processes, ordered in

three sections (separated by double lines). Processes with constant noise

amplitude do not satisfy the scaling property (WP and OU). Processes

with input-dependent noise amplitude (modified WP, modified OU, CIR

and BP): normalized moments remain constant with input and a scaling

property is obtained (in the DDR), because accumulation rate ν∗drift and

dispersion rate ν∗noise increase with input in the same proportions. The

scaling property, as well as the distribution shape, is uniquely obtained

by a finite birth-death process, the GE process.

Secondly, that the characteristic, Gamma-like shape of observed reversal times

densities, which implies that the skewness obeys the relation γ1 ≈ 2cv, can only be

obtained by the GE process. We propose that the success of this model in repro-

ducing the observed statistics of multistable perception, including the characteristic

Gamma-like shape, relies on several key features:

• Granularity : Stochastic accumulation of activity is performed collectively by
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a finite number N of microscopic units

• Local bistability : Microscopic states are locally bistable units with sponta-

neous activation and inactivation rates (ν+ and ν−, respectively)

• Input-dependence: The relative rate ν+/ν−, and thus also the steady-state

activation xin = ν+/(ν− + ν+), grows with sensory input s.

• Far-from-equilibrium regime: Both initial and threshold activation are com-

paratively small and far from steady-state, x0 < θ � xin

4.4.2 Granularity, finite-size effects

In the GE process, changes in activity are produced by discrete increments and

decrements, which originate within a finite population of spontaneously bistable

units. Note that in the Master Equation (3.2) transition rates between activity

states depend on the number n of active units. Upward transition rates, given n

active units, depend on the number N − n of inactive units, which may undergo

an upward transition, so that the total increment rate is: W+
n = (N − n)ν+ =

Nν+(1 − x). If n units are active, each of these units may undergo a downward

transition, so that the total decrement rate is: W−
n = nν− = Nν−x. This means

that if the population depleted, i.e. fully inactive, only upward transitions may

occur. Conversely, if the population is saturated, i.e. fully active, only downward

transitions may occur. This means that whenever the population activity is close to

zero and accumulates towards a comparatively large equilibrium value xin , negative

accumulation caused by active units switching downwards will be negligible (see

Fig. 4.7)

The drift term µ(x, xin), as well the dispersion term σ(x, xin), in the Fokker-

Planck description of the CIR process, both depend on the activity and input-level.

As mentioned previously, the variance σ2(x, xin) is composed of an additive, input-

dependent component, and of a multiplicative, input-dependent component (see

(4.21)).

A direct consequence of this particular noise structure, is that the variance of
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·ν ··ν+ ·

Figure 4.7: Increment and decrement rates depend on the input-level xin and the activity

x. (Left): Increment rate, counted positively (red) increases with xin and decreases with

x. Large increment rates are obtained in the region x � xin , where decrement rates

are negligible. (Right): decrement rate, counted negatively (blue) increases with xin and

decreases with x. Large decrement rates are obtained in the region x � xin , where

increment rates are negligible. Reprinted from [Cao et al., 2016] with the co-authors’

permission.

the process σ2(x, xin), unlike the drift µ(x, xin), is non-monotonic over the whole

(x, xin)-space. For instance, if x < 0.5, σ2(x, xin) increases for increasing xin , but,

if x < 0.5, σ2(x, xin) decreases for increasing xin . We know that to satisfy the scal-

ing property, the variance of the process should increase for increasing input-level

(as explained in Fig. 2.16), therefore, the multiplicative noise term implies that

x < θ < 0.5.

Furthermore, the scaling property requires that variations of the drift µ(x, xin)

caused by variations of xin or x must be appropriately matched by the variations

of σ2(x, xin), so that the condition νdrift ∝ νnoise may hold. This effectively imposes

boundaries on the range of value that the activity will take from the initial condition

x0 to the threshold θ (see Fig. 4.8).

When assuming an initial condition so that x0 < θ < 0.5, but where x0 is

significantly greater than zero, both the drift and variance of the process increase

with the input xin , and with the activity x as it accumulates towards the threshold.
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Figure 4.8: Drift µ(x, xin) and variance σ2(x, xin) of the GE process as a function of

the activity x and input-level xin . Dotted lines mark the position of the initial activity

and threshold. Shaded areas correspond to the NDR (θ > xin) A (Left): when the

initial activity x0 is significantly greater than zero, the drift increases with input level

xin (as the difference between total increment and decrement rates, see Fig. 4.7) and as

activity x grows from x0 to θ (dashed arrow). (Right): The variance increases as the sum

between total increment and decrement rates, but comparatively less (dashed arrow). B

For x � 0.5, both drift (left) and dispersion (right) increase in a proportional manner

(dashed arrows), ensuring that normalized moments remain constant. Adapted from [Cao

et al., 2016] with the co-authors’ permission.
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However, the increase in the drift term is comparatively greater than the increase

of the dispersion term (Fig. 4.8 A). When assuming x0 < θ � 0.5, so that the

initial activity is close to zero, the increase in both drift and dispersion, as both the

input level and the activity increase, are comparable (see Fig. 4.8 B). Therefore,

in order to satisfy the scaling property, i.e. to maintain the balance between the

deterministic component of the dynamics, not only the range [x0, θ] must be small,

but also, the initial value x0 must be close enough to zero. This ensures a sufficiently

strong input-dependence of the dispersion of the process, with respect to the drift.

This ties in with the conclusion of the regime identification performed in Chapter 3

(see Fig. 3.7): both the scaling property, and the distribution shape (with γ1 ≈ 2cv)

were best verified when considering a strong DDR, with an initial condition close

to zero.

4.4.3 Asymmetric dispersion far-from-equilibrium

The CIR process, and the GE process, from which the former is derived, can be

considered identical up to the second-order in fluctuations. In other words, their

average dynamics, as well as the dynamics of their variance, is the same (see (3.7),

(3.11), (4.22), and (4.23)). Both models obey the scaling property under the same

assumptions, while only the GE model can reproduce FPT densities with the same

skewness as those observed experimentally. Note that the same observation is also

valid for the modified OU process introduced in Chapter 2. All three processes

have the same FPT distributions in the noise-dominated regime, corresponding to

an inverse Gaussian distribution (see Fig. 2.13, Fig. 4.5 and Fig. 4.1), and differ

in the drift-dominated regime, where only the GE has a Gamma-like FPT distri-

bution.

To understand why this is so, one must also consider fluctuations up to the third-

order (skewness). Indeed, both modified OU and CIR processes assume a Gaussian

random walk dynamics with normally distributed steps; thus, by definition, the

probability density of the process, at any given time, is symmetric. In the GE pro-

cess, the temporal evolution of the probability density corresponds to a binomial

distribution, with a time-varying parameter p = λ(1− e− t
τ ) (see (3.21)). The bino-
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mial distribution is often well approximated by a normal distribution (specifically,

N (np, np(p − 1)), where n is the number of realisation of the Bernouilli random

variable), and therefore, one could think that the GE process also diffuses symmet-

rically, in the manner of a Gaussian random walk.

The skewness of a binomial distribution of parameter p is given by the formula:

γbinom.
1 =

1− 2p√
np(1− p)

(4.26)

For a sufficiently large number of realisations n, the above expression should

tend to zero. However, this is not the case in the situations we are considering,

where the initial activity is very close to zero. In this case, the binomial distribution

is right-skewed. Moreover, our process accumulates activity up to a low-threshold,

in a strong DDR, which implies t � τ , and thus the parameter p remains close

enough to zero for the distribution to remain skewed.

The asymmetric nature of the diffusion in the vicinity of the boundary can be

qualitatively understood by considering the case where the assembly of bistable

units is fully depleted, and accumulates activity towards a sufficiently distant

steady-state. Over time, the distribution of activity is expected to shift in the

direction of the steady-state under the influence of the drift (or deterministic

component of the dynamics). However, the total decrement rate, which is propor-

tional to the number of active units, is initially equal to zero, simply because the

population is completely inactive: there is no bistable unit left to deactivate. For

this reason, the stochastic component of the dynamics, can only disperse activity

in the same direction as the drift, resulting in an asymmetric diffusion (Fig. 4.9

A).

The same reasoning hold as long as the initial value of activity is close enough to

zero so that positive accumulation is strong and negative accumulation negligible

(see Fig. 4.7). Such non-Gaussian, asymmetric dispersion, thins out realizations

lingering near the initial value, keeping the activity distribution compact and

asymmetric. The comparatively compact dispersion of activity then translates into
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Figure 4.9: GE process of fractional activity x(t) in a population of N = 80 units.

Units are bistable and activate or inactivate spontaneously with rates ν+ = 0.008 Hz

and ν− = 0.002 Hz , respectively. (Top): Accumulation begins at x0 = 0.05 and ends at

θx = 0.15. Note that activity remains well below the steady-state activity level xin =

ν+/(ν+ + ν−). (Bottom-right): Distribution of activity x(t) at different times t, with

darker hues representing later times. Asymmetric dispersion reflects the constraint x0 0.

Reprinted from [Cao et al., 2016] with the co-authors’ permission.

a short-tailed FPT distribution with skewness γ1 ≈ 2cv. These late realizations

are precisely those which, if the diffusion was symmetric, would accumulate in the

tail of the FPT distribution, thereby increasing its skewness, as has been the case

for all other models scrutinized in this study but the GE process. This boundary

effect is also apparent in Fig. 4.1 (Right): the appropriate distribution, with

γ1 ≈ 2cv, becomes increasingly difficult to obtain for a wide range of average FPT
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if one assumes larger initial condition for the activity.

ν

ν

E

I

Figure 4.10: (Top) : BP process counting independent increments and decrements with

rates νE = 0.64 Hz and νI = 0.16 Hz , respectively. (Top): Accumulation begins at n0 = 4

and ends at θn = 12. Five realizations are shown (different shadings). (Bottom-right):

Distribution of activity x(t) at different times t, with darker hues representing later times.

Here, dispersion is symmetric, allowing low activity (including negative counts) to remain

probable. Reprinted from [Cao et al., 2016] with the co-authors’ permission.

In comparison, the BP process, which also accumulates activity in a sequential

manner - in the sense that increments and decrements of activity follow from sponta-

neous and discrete events - and thus satisfies the scaling property, disperses activity

in symmetrically and produces FPT distributions with heavier-tails than those ob-

served experimentally (Fig. 4.9 B). The qualitative difference between the GE and

Poisson process is somewhat more salient when observing the evolution over time

of their respective probability densities [pn(t) (compare Fig. 4.9 and Fig. 4.10).

There, we matched the increment and decrement rates of the Poisson process, so
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that maximum increment and decrement rates in the GE process are identical. For

the BP process, we set νE = 0.64Hz and νI = 0.16Hz. For the GE process, with

N = 80 bistable units, the maximum increment rate is obtained assuming all units

are inactive and the maximum decrement rate is obtained assuming all units are

active, which yields ν+ = 0.008Hz and ν− = 0.002Hz.

This is because unlike the GE process, increments and decrements are generated

by a counting process which does not assume any boundary. There is no saturation

effect, because there is no upper limit on the number of Poisson events producing

increments of activity with rate νE. Similarly, there is no depletion effect, because

there is no lower limit on the number of Poisson events producing decrements of

activity with rate νI : compared to a GE process, more realisations are allowed to

diffuse around the origin, and ultimately accumulate in the tail of the FPT distri-

bution, yielding a greater skewness.

4.5 Neurally plausible realization of a GE process

As previously mentioned, our postulated bistable units are thought to idealize the

dynamics of local attractors assemblies. They constitute an abstract model for

the dynamics of recurrently connected neural structures, such as cortical columns.

Qualitatively similar assemblies have already been implemented in networks of

spiking-neurons, with recurrent excitation allowing the formation of self-sustaining

high-activity states, and with transitions between states modulated by the level of

synaptic activity [Amit, 1995, Amit and Brunel, 1997].

The GE process could be thought of as a collection of such assemblies. Note that

we have shown that the GE process conserves its relevant dynamical properties

when considering interactions between bistable units (see 3.4.3). The resulting

structure forms a multi-modular, or clustered neural network, composed of either

independent of coupled recurrent attractor subnetworks (similarly to [Litwin-

Kumar and Doiron, 2012]). We now propose a spiking-neuron implementation of

the GE process and study how it collectively accumulates activity, compared to a

non-clustered network, i.e. which is not formed of a collection of locally bistable



99 4.5. Neurally plausible realization of a GE process

subnetworks.

The results of this simulation are illustrated in Fig. 4.11 A. Each such

assembly was composed of recurrently and strongly coupled spiking neurons.

Bistable attractor dynamics was achieved by balancing excitatory and inhibitory

projections within each of these assemblies. In total, 20 sub-networks where

simulated, with each comprising 125 excitatory leaky-integrate-and-fire neurons

(‘foreground’), which were weakly coupled to an additional 875 excitatory neurons

(‘background’), as well as 250 inhibitory neurons. Overall connection probability

between any two neurons was c = 80%.

Spontaneous activations and inactivations in ‘foreground’ activity between a low

state of approximately 3 Hz and a high state of approximately 40 Hz occurred,

driven by endogeneous activity fluctuations (finite-size noise). For each of the

20 bistable units, local switching rates changed with external input, typically

increasing for increasing input-levels.

Collective stochastic accumulation of activity from a near quiescent state, to

a near saturated state was obtained, among the population of bistable units, by

abruptly altering the level of external stimuli. This caused the overall steady-state

in the population to raise from a near-quiescent state (fraction of active units

close to zero), to a fully-active state (fraction of active units close to one), with

corresponding low and high states of activity. The spike raster in Fig. 4.11 A

shows individual assemblies successively activating at different (random) times

and, superimposed, the gradual accumulation of average activity in the network

(mean instantaneous firing rate over all assemblies, noted r(t) in the figures).

Average collective activity accumulates according to a predictable exponential

profile, however, this simple behaviour of the average is deceptive. The detailed

microscopic dynamics at the single-neuron level, as well as the detailed mesoscopic

dynamics at the level of the ensemble of bistable assemblies is considerably more

complex, as described from a more analytical perspective in Chapter 3. If the

threshold for collective activity is low, so that the entire accumulation proceeds far
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Figure 4.11: Stochastic accumulation of collective activity by modular assemblies of

spiking neurons. A: strongly coupled assemblies expressing bistable attractor dynamics.

Spike raster of five representative neurons per assembly (left ordinate) and collective activ-

ity r(t) of all assemblies (red trace, right ordinate). Assemblies transition spontaneously

and abruptly from inactive to active states (see text for details). B: weakly coupled as-

semblies without bistable dynamics. The activity of each assembly fluctuates about a

steady-state level which rises progressively due to external input. Collective activity r(t)

is comparable to A (blue trace, right ordinate). Reprinted from [Cao et al., 2016] with

the co-authors’ permission.

from steady-state, the first-passage times of collective activity will reproduce the

scaling property of multi-stable perception.

For comparison, we also illustrate an alternative scenario which accumulates



101 4.5. Neurally plausible realization of a GE process

collective activity in a comparable way in terms of the instantaneous activity r(t)

(Fig. 4.11 B). There, in contrast with the previous case, the network consisted of

weakly coupled assemblies of spiking neurons, which did not express local bistable

attractor properties. Rather than transitioning between two states of low and high

firing rate , each assembly saw its activity fluctuating, also under the influence of

endogenous, finite-size noise, around a single steady-state. The position of this

steady-state was set by external input, so that collective stochastic accumulation

from a low to a high activity state could be simulated by gradually increasing

the external input. The spike raster shows individual assemblies becoming

progressively more active and, superimposed, the collective activity from all

assemblies. While the accumulation of activity in either scenario (4.11AB) was

comparable in terms of r(t), the scaling property could not be obtained in the case

of weakly coupled assemblies, because of the absence of the local attractor property.

For strongly coupled assemblies, excitatory synaptic efficacy between ‘fore-

ground’ neurons, ‘background’ neurons’, and between the two was Jfore = 0.618mV ,

Jback = 0.438mV , and Jinter = 0.402mV , respectively. Inhibitory synaptic efficacy

was JI = −1.50mV and the efficacy of excitatory synapses onto inhibitory neurons

was JIE = 0.560mV . Finally, ‘foreground’ neurons, ‘background neurons’, and

‘inhibitory neurons’ each received independent Poisson spike trains of 2340Hz ,

2280Hz , and 2280Hz , respectively. Other settings were as in [Mattia et al., 2013].

Weakly coupled assemblies were obtained by reducing synaptic efficacies

Jfore = 0.566 mV and Jback = 0.431 mV, as well as increasing efficacies

Jinter = 0.409 mV (to maintain overall level of activity). For ‘foreground’ neurons

(each with external Poisson inputs of 2400 Hz ) the firing rate was approximately

3 Hz . To reproduce the gradual accumulation of activity by strongly coupled

assemblies, we increased (at a suitable pace) external Poisson inputs to 2760 Hz ,

eventually raising the firing rate to approximately 30 Hz .

By construction, the alternative scenarios illustrated by Figs. 4.11 AB are

indistinguishable in terms of the time-varying average spike rate r(t). Neverthe-
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less, even at the single-cell level, a bistable dynamics of individual assemblies is

detectable in terms of the variability of firing rates ∆r(t) and the distribution of

inter-spike-intervals. To support this last statement, we provide a comparative

analysis of the spiking activity of ‘foreground’ neurons with a population of non-

homogeneous Poisson point processes, or ‘surrogate’ neurons. Statistics of spiking

activity within the ‘surrogate’ population was generated to exactly match the in-

stantaneous average firing rate r(t) measured in the ‘foreground’ population. For

strongly coupled assemblies expressing a local bistable attractor property, the stan-

dard deviation ∆r(t) of the instantaneous firing rate showed a significant increase

during the rising phase of the accumulation, i.e. as soon as the abrupt change in

external stimulus level occurred (Figs. 4.12, Left, red trace). For weakly coupled

assemblies, the standard deviation of the instantaneous firing rate remained com-

parable to the one measured in the surrogate population of inhomogeneous Poisson

spikes (Figs. 4.12, Left, blue trace). Additionally, we observed important differ-

ences in the distribution of interspike-intervals between spike trains obtained in

both weakly and strongly coupled scenarios and the surrogate population. The

inter-spike-interval distribution for the network constituted of locally bistable at-

tractors emphasized extremes (short and long intervals) at the expense of the middle

(Figs. 4.12, Right). This clearly reflects the local bistable dynamics of recurrently

interacting cortical columns, with short ISI corresponding to the hight firing-rate

within active bistable units, and long ISI corresponding to the low firing-rate of the

(few) bistable units which remained inactive despite the rising activity of the whole

network. In weakly coupled units, the statistics of ISI mostly resembles that of a

corresponding inhomogeneous Poisson with same average firing rate.

4.6 Summary

To summarize, recall that the scaling property presents two separate aspects: the

invariance of shape of reversal time densities on the one hand, and the charac-

teristic shape of reversal time densities, on the other hand. The first aspect has

been discussed in details in Chapter 2 and 3, and can be ensured by considering



103 4.6. Summary

�

Δ
Δ

Figure 4.12: Comparison to inhomogeneous Poisson statistics. (Left): Standard devi-

ation ∆r of mean firing rate r(t) in Figs. 4.11 AB (red and blue trace, respectively),

computed in 100 ms sliding windows relative to the SD ∆rPoisson of inhomogeneous

Poisson processes reproducing the observed r(t). The SD may be computed either over

neurons or over trials. (Right): Distribution of inter-spike intervals (ISI) in Figs. 4.11

AB (red and blue trace, respectively), relative to the ISI distribution of inhomogeneous

Poisson processes. Colored shading indicates the SD of ISI density. Reprinted from [Cao

et al., 2016] with the co-authors’ permission.

the accumulation of activity with locally bistable units, because both accumulation

dispersion rate change proportionally with sensory sensory input.

In this chapter we have focused on the second aspect of the scaling property. Com-

paring the GE process to the BP and CIR process, both of which satisfy the first,

but not the second aspect of the scaling property, allowed us to single out the the

key requirements allowing the GE process to uniquely satisfy both aspects. Specif-

ically, the GE process must operate in a far-from-equilibrium, low-threshold regime,

to ensure that collective accumulation of activity disperses asymmetrically. Further-

more, that asymmetric dispersion can only be obtained when considering discrete

accumulation in a finite assembly of bistable units.

It is worth mentioning that two previous attempts to model multistable perception

by considering stochastic accumulation of activity in finite populations of bistable

units [Taylor and Aldridge, 1974, Gigante et al., 2009] failed to reproduce this statis-

tics, because neither operated far enough from equilibrium. In the context of the

timing of perceptual reversals, this asymmetric, non-Gaussian feature of the GE

process accounts for the third-order statistics of dominance durations (the skew-

ness, γ1 ≈ 2cv).



Chapter 4. Scaling Property and Distribution Shape 104

The concept of non-diffusivity has recently been invoked on the basis that the

higher-order properties of a variety of multistable biological processes may reflect

correlated underlying stochastic processes [Freyer et al., 2009]. Descriptions of the

Fokker-Planck or Langevin type, which rely on the diffusion approximation, as-

sume uncorrelated fluctuations within the population they describe. They are more

characteristic of systems fluctuating around equilibrium, and typically interacting

on a short-range. This is at odds with many aspects of brain dynamics, which is

typically out-of-equilibrium, distributed, and hierarchical. This chapter highlighted

similar concepts, in that far-from-equilibrium operation, in a regime where fluctu-

ations become non-Gaussian may be necessary to capture all aspects of perceptual

dynamics.



5
Hierarchical Multistable Dynamics

In previous chapters, we have modelled the timing of perceptual reversals from the

perspective of a first-passage-time problem, and used various diffusion-to-bound

models to represent the accumulation of neural activity leading to a reversal. We

identified the dynamical regimes in which some stochastic processes may be able to

reproduce the empirical statistics of reversal times. Until now, in this admittedly

oversimplified framework, we assumed perceptual reversals to occur automatically

and did not seek to implement the mechanism driving perceptual reversals. These

reductions were necessary in order to comprehensively account for important as-

pects of the fluctuating neural dynamics underlying multistable perception. This

allowed us to identify which aspects of such stochastic dynamics may be at the

origins of the puzzling scaling property observed in behavioural experiments. This

extended preliminary study prepared the ground for an adequate implementation of

a reversal mechanism, so that properties such as the scaling property would pertain

in the resulting model.

Here, we show that the well-established and somewhat counter-intuitive experimen-

tal observations known as ‘Levelt’s propositions’, along with the scaling property,

fully constrain the hierarchical structure and dynamics driving perceptual reversals.

Our model quantitatively accounts for important aspects of behavioural observa-

tions, and uncovers simple qualitative mechanisms to explain Levelt’s propositions,

the scaling property, and the characteristic Gamma shape of reversal time densities.

Additionally, our hierarchical model predicts unexpected non-stationary properties

105
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in alternation series. Preliminary results are proposed which confirm this predic-

tions in experimental observations.

5.1 Introduction

The mechanisms underlying perceptual reversals constitute the core of an ongoing,

and long-standing debate for which a definite solution has not yet been formulated.

A common denominator to all proposed theories is that multistability arises

from the structure and dynamics of interactions between the respective neural

substrates representing alternative perceptual appearances. The extensive amount

of observations from perceptual experiments have provided evidences for several

processes thought to contribute to reversal dynamics, which have guided theoretical

studies in designing computational models. Here, we will present the results which

are most relevant to our proposal.

A first important point is the existence of a fast and a slow time-scale in

perceptual dynamics: reversals are typically much shorter the typical time between

reversals. Although some multistable displays, such are binocular rivalry, are more

prone to indeterminate or mixed percepts (e.g. binocular fusion or piecemeal

rivalry in BR), they typically occur with small predominance [Hollins, 1980,

van Ee, 2009, Pastukhov and Klanke, 2016]. Perceptual appearances are mostly

mutually-exclusive, so that only one, or the alternative is reported at a time.

This indicates that perceptual competition is resolved categorically and rapidly.

In models of multistable perception, such ‘winner-take-all’ behaviour is achieved

by assuming strong mutual-inhibition between alternative representations of the

stimulus [Lehky, 1988, Laing and Chow, 2002, Wilson, 2003, Seely and Chow,

2011]. Competition between the relevant neural substrates may not be restricted

to a single cortical locus, but distributed across several cortical loci [Sterzer et al.,

2009]. Strong competitive interactions could thus potentially result from the

multiplicity of mutually-inhibited populations encoding alternative percepts.

In contrast, the dynamics of sensory representations leading to perceptual reversals



107 5.1. Introduction

is comparatively slow, suggesting the existence of a separate adaptation mechanism,

and destabilizing the current state of alternative perceptual representations. This

is consistent with the results of perturbation experiments which reveal that in

between successive reversals, the dominant visual appearance gradually weakens,

and becomes increasingly prone to experimenter-induced reversals [Wolfe, 1984,

Nawrot and Blake, 1989, Petersik, 2002, Kang and Blake, 2010]. Presumably,

adaptation may be a joint and differential process, in the sense that while support

for the currently dominant appearance ‘adapts’, support for the alternative (and

currently suppressed) appearance ‘recovers’. When a critical difference in activity

is reached, a perceptual reversal is initiated.

In addition to reversal behaviour, the stationary statistics of dominance dura-

tions (i.e. for continuous presentation with constant input-levels) have been investi-

gated extensively. In previous chapters, we only discussed modulations of the aver-

age dominance durations from the perspective of the scaling property, and did not

consider their precise dependence on stimuli strengths. Under variations of input-

levels, average dominance duration obey peculiar and somewhat counter-intuitive

properties, on which we now further elaborate. These properties, also know as

Levelt’s propositions, are a hallmark of binocular rivalry, and have been studied in

great amount of detail since their initial discovery [Levelt, 1965]. In particular, they

have been the subject to several reformulations, motivated by the inclusion of new

experimental evidence [Brascamp et al., 2006, Klink et al., 2008, Kang, 2009, Bras-

camp et al., 2015]. In Levelt’s seminal study, which focused on binocular rivalry,

only a restricted range of stimulus contrasts had been explored and his propositions

had not yet been tested for other types of perceptual rivalry. Under their latest

form, only two out of the four original propositions were retained as the ‘core laws

of binocular rivalry ’ (see [Brascamp et al., 2015] for an comprehensive review), be-

cause Levelt’s propositions I and III are included in the reformulation of proposition

II.

Here, for the clarity of the argument, we chose to formulate these as follows:

• Levelt’s proposition I (L1): increasing the contrast to one eye increases the
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average dominance for this eye’s stimulus, and also reduces the dominance of

the other eye’s stimulus.

L1 thus corresponds to the sign of modulations of average dominance dura-

tions.

• Levelt’s proposition II (L2): increasing the difference between stimulus

strengths modulates the average dominance of the stronger percept more that

the average dominance of the weaker percept.

L2 thus corresponds to the amplitude of modulations of average dominance

durations.

• Levelt’s proposition IV (L4): increasing the average stimulus strength while

keeping the difference constant will reduce the average dominance durations

for both percepts.

Note that these propositions are not exclusive to binocular rivalry, and are

consistent with results obtained for other types of multistable displays. For other

types of rivalry however, the parameter corresponding to the strength of the stimuli,

i.e. the equivalent of the ‘contrast’ in binocular rivalry, may be different. In the

case of kinetic depth effect, for instance, one can instead vary the luminance of

leftward or rightward moving dots [Klink et al., 2008].

Current models of multistable perception have generally been designed and tested

on the basis of the experimental observations presented above. In addition, our

study includes the observations presented in Chapter 2 (scaling property and shape

of reversal time densities, see Fig. 2.3).
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5.2 Competition, adaptation and noise

Current models of multistable perception implement perceptual reversals using a

balance between three main elements: competition, adaptation, and noise. Com-

petition and perceptual exclusivity are obtained by mutual-inhibition between at-

tractor states representing alternative percepts. The mechanism implementing per-

ceptual reversals combines fast stochastic dynamics in a double-well attractor land-

scape with slow deterministic modulations of the energy landscape (adaptation).

Such models can reproduce reversal behaviour with realistic distributions of dom-

inance durations [Lehky, 1988, Laing and Chow, 2002, Moreno-Bote et al., 2007,

Shpiro et al., 2007, 2009]. For restricted ranges of input-levels combinations, they

can also provide a good, albeit partial, qualitative and quantitative agreement with

Levelt’s original propositions [Laing and Chow, 2002, Wilson, 2007, Moreno-Bote

et al., 2007]. In particular, to reproduce L2, it is generally assumed that one con-

trast is kept fixed and at a high level, and to reproduce L4, contrast levels are

assumed to be equal. However, more recent formulations of Levelt’s propositions

suggest that all combinations of contrast levels should be tested [Klink et al., 2008,

Brascamp et al., 2015]. For extended range of contrast modulations, they have

also predicted deviations from L4 which have not yet been, and may be difficult to

verify experimentally [Shpiro et al., 2007, Curtu et al., 2008, Seely and Chow, 2011,

Brascamp et al., 2015].

A notable shortcomings of current models is that they do not comply to the scaling

property, which may present a more challenging constrain than the overall shape of

reversal time densities, which are generically reproduced by mutual inhibition mod-

els with noise and adaptation [Kim et al., 2006]. Although several variants of these

models have been introduced and rigorously analysed, here we illustrate this impor-

tant limitation by proposing a simplified description of their dynamics. Perceptual

reversals correspond to a noise-driven transition, and occur when the current state

has been sufficiently destabilised by adaptation. This can be approximated as an

escape process from a potential well of slowly changing depth, or equivalently, across

a moving threshold. Formally, we assume that the instantaneous escape probabil-
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ity reflects normally distributed noise with mean zero and variance σ2. We then

compute the instantaneous probability that the noise exceeds the distance to the

(time-varying) threshold θ(t):

pesc(t) =
ν√
2π

∫ ∞
(xss−θ(t))/σ

e−x
′/2 dx′

where ν is an escape rate. Dividing time into discrete intervals ∆t, we approximate

the FPT density f(t) as

ln f(t) = ln [pesc(n∆t)] +
n−1∑
i=0

ln [1− pesc(i∆t) ∆t] ,

and evaluate the moments numerically (see Fig. 5.1).

γ

θ θ

Figure 5.1: Adaptive threshold escape process: normalized moments of FPT density

as functions of input xin and threshold θ (both in units of σ). (Left): coefficient of

variation cv. (Right): skewness γ1 (in units of cv). Black curves mark cv = 0.6. Black

arrows indicate a particular combination of threshold and input-level for which a Gamma

distribution is obtained. Reprinted from [Cao et al., 2016] with the co-authors’ permission.

Fig. 5.1 shows that Gamma-like reversal times densities can be indeed be

obtained by precisely matching adaptation rate, input strength, and noise ampli-

tude, so that both the experimentally observed CV and skewness are reproduced

(black arrow, cv ≈ 0.6 and γ1 ≈ 2 cv). However, when input-levels are lowered, to

obtain longer reversal times, adaptation no longer sufficiently assists perceptual
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reversals and transitions become noise-dominated. FPTs become more and more

irregular, causing the CV to rise significantly above the typical value observed in

experiments. As a result, the shape of the distribution can not be maintained over

the whole range of mean dominance durations imposed by experimental data, and

the scaling property is not satisfied, as illustrated in Fig. 5.2.
γ

θ=0.5

μ

Figure 5.2: Adaptive threshold escape model: scaling property and FPT distribution

shape as function of mean µ1 (format as in Fig. 2.3). For constant θ (value given by

inset), µ1 decreases as xin increases. The scalar property is satisfied for both the CV

and the Skewness, but the ratio γ1/cv 3 is too large. Black arrows indicate a particular

input-level for which a Gamma distribution is obtained. Reprinted from [Cao et al., 2016]

with the co-authors’ permission.

In what follows, we combine the knowledge gained from previous models with the

new results established in previous chapters of this thesis, to propose a new model

of multistable perception which simultaneously reproduces Levelt’s proposition and

both aspects of the scaling property (shape-invariance and Gamma-like shape of

reversal time densities).
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5.3 Qualitative hierarchical dynamics

To account for all order of the observed statistics of multistable perception, we

propose to replace the slow, deterministic process of current models (adaptation)

by a stochastic accumulation performed by the GE process. Indeed, we have

establisehd in Chapter 3 that the FPT statistics of the GE process could reproduce

important properties of reversal time densities (scaling property and Gamma-like

shape). We do not see a need to change the fast, stochastic processes of current

models, which allow perceptual reversals to occur on a significantly shorter

time-scale than typical reversal times.

This idea of a ‘noisy adaptation’ mechanism has also been suggested by several

authors. For instance, an effect known as stochastic resonance: the time-course

of perceptual reversals can be ‘enslaved’ to slow oscillations of input strength

[Kim et al., 2006]. For an appropriate frequency (approximately half of the

average dominance period), perceptual dynamics resonates and is driven near-

deterministically by input oscillations. The same effect could be obtained in

computational models available at the time of this last study (e.g. the astable

oscillator and noise-driven attractor model [Lehky, 1988, Wilson, 2003, 2007]),

with the important condition that some noise had to be introduced at the

level of adaptation variables, not at the level of variables encoding perceptual

states. A similar proposal has been made by van Ee, who has argued that

reversal timing reflects a slow random walk rather than a deterministic relax-

ation, on the grounds that reversal timing is not entirely memoryless [van Ee, 2009].

The questions we now need to address are the following: how can we conciliate

a slow dynamics of stochastic accumulation by the GE process, which reproduces

the observed statistics of reversal time, with the fast dynamics implementing

perceptual reversals? And how can we ensure that the interplay between both

aspects of the dynamics will not compromise the peculiar dynamical properties on

which the scaling property and the shape of reversal times densities rely?

A simple solution to these questions is to assume that neural populations perform-
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ing the integration, or accumulation of sensory evidences, and those performing

perceptual decision, are located at different levels in the hierarchy of visual

processing. If accumulation and decision mechanisms are kept separate, and an

appropriate structure of projections between levels is used, we can ensure that

stochastic sensory accumulation leading to perceptual reversals will behave exactly

as described in Chapter 3.

In the following section, we first present our new model of multistable percep-

tion from a qualitative angle. We describe the different levels of the hierarchy and

illustrate their respective roles in perceptual dynamics. Next, we explain how the

structure of interactions between the different constituents of the model is con-

strained by experimental observations, i.e. the scaling property, the Gamma-like

shape of reversal time densities, and Levelt’s proposition. Before introducing the

model formally, from the perspective of its governing equations, we provide exam-

ples of its characteristic dynamics in situations relevant to our argumentation.

5.3.1 Levels of hierarchy

As previously mentioned, we assume two separate levels: an evidence level where

sensory information is integrated, and a decision level where perceptual decision are

performed. Both levels are populated by assemblies of bistable units, and therefore

produce realizations of a GE process. At the evidence level, we assume bistable

units to be independent - or weakly coupled - with individual transition rates di-

rectly mapped to stimulus strength. At the decision level, we assume strong recur-

rent connections between units as to obtain a global attractor property, i.e. so that

the entire assembly can either be in a low or high activity state, with most units

being inactive or active, respectively. To a given ‘decision pool’ (DP), we associate

a perceptual representation, which we consider to be dominant when fully active,

and suppressed when fully inactive, For each DP, we define, at the evidence level, an

associated ‘evidence pool’ (EP), also composed of a finite number of bistable units,

projecting excitatory, bottom-up projections to the DP. Global activation in a given

DP, or equivalently, dominance of a given perceptual representation in awareness,
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Figure 5.3: Model architecture (schematic). A Microscopic scale : A neuron as-

sembly expressing ‘attractor dynamics’ (cartoon and spike raster) can be idealized as a

stochastically bistable unit with activity (blue trace) transitioning spontaneously between

‘low’ and ‘high’ states (up and down arrows). (bc) Hierarchy of representations:

Multiple bistable units can form pools to encode different levels of perceptual represen-

tations, from low-level stimulus components to high-level, structured perceptions. B

Mesoscopic scale Evidence pool (EP): if units are unconnected, collective activity (blue

trace) accumulates or dissipates stochastically in discrete steps, reflecting individual unit

transitions. Spike rasters illustrate the activity of individual units (10 neurons per unit).

C Macroscopic scale Decision pool (DP): if units are recurrently connected, collective

activity (blue trace) is bistable with self-sustaining ‘low’ and ‘high’ states.
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will depend on the number of active units in the associated EP. Additionally, we

assume individual transitions rates in the DP to be large, compared to the transi-

tion rates in the associated EP. This results in slow accumulation of evidences to

drive fast global activation in the associated DP, effectively implementing a hierar-

chical, FPT-like mechanism. These different levels of the hierarchy of perceptual

representations used in our approach are illustrated in Fig. 5.3 and correspond

qualitatively to different scales of cognitive resolution. As such, they reflect three

different scales of stochastic dynamics:

Individual bistable units, which idealize the dynamics of recurrently connected as-

semblies or neurons, or cortical columns, reflect sensory dynamics on a ‘microscopic

scale’ (Fig. 5.3 A). Assemblies of bistable units within an EP, at the evidence

level, reflect dynamics on a ‘mesoscopic scale’ (Fig. 5.3 B). There, accumulation

of activity corresponds to the collectively evoked response of low-level, unstructured

sensory representations of the stimulus’ features. Assemblies of bistable units within

a DP, at the decision level (or behavioural level), reflect dynamics on a ‘macroscopic

scale’ (Fig. 5.3 C). A DP possesses an all-or-none global attractor property, rep-

resenting to the presence (when fully active) or absence (when fully inactive) in

awareness of the associated representation of the stimulus. DPs can be thought of

as encoding high-level, structured perceptual representations of the stimulus When

sufficient supporting evidences have been collected in an EP, the associated DP may

transit to the active state (see joint dynamics in Fig. 5.3 BC).

5.3.2 Interactions within hierarchy

Here, we propose a brief overview of the structure of interactions in our model,

which can be distinguished in two classes: competitive interaction between

alternative representations, and hierarchical interactions between the evidence and

decision level. Competitive interactions will appear at the decision level, and are

nearly identical to that of other models, in that we use self-excitation and mutual

inhibition to achieve categorical, mutually-exclusive perceptual decisions and fast

reversals.

Hierarchical interactions feature both feedforward (bottom-up) and feedback
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(top-down) influences. We consider two types of feedforward projections from the

evidence level to the decision level: specific feedforward excitation, and non-specific

feedforward inhibition. The former is implicitly illustrated in Fig. 5.3: specific

feedforward excitation carries sensory evidences supporting a given representation

(or pro-evidence), from a given EP to its associated DP, selectively, causing

the corresponding representation to take dominance. Non-specific feedforward

inhibition, on the other hand, carries non-supporting sensory evidences (or

anti-evidence), from a given EP to all other competing DPs, non-selectively. In

other words, a given percept can be positively biased by its corresponding set of

sensory evidences, but can also be negatively biased by the set of sensory evidences

corresponding to any other competing percept. The net flux between pro- and

anti-evidence defines a relative evidence-bias, with important consequences for the

resulting dynamics: perceptual choices and reversals will not solely depend on the

absolute amount of evidence, but on the relative amount of evidence. Specifically,

perceptual reversals will be initiated when a ‘differential threshold’ is reached, i.e.

when the evidence supporting the suppressed representation sufficiently overcome

that of the dominant representation.

We also consider specific feedback inhibition from the decision level to the evidence

level, which is the key element implementing reversal behaviour. Each DP, upon

taking dominance, selectively inhibits its associated EP. As a result, directly

following a reversal, the EP supporting the newly dominant percept habituates,

while the EP supporting the newly suppressed percept, and now free from such

inhibition, recovers. This joint, differential and antiphasic dynamics of sensory

evidences will be central in several aspects of the discussion below.

Indeed, this implies that time intervals between successive durations depends on

the time-course of both habituation and recovery processes, which themselves

depend on contrast-levels. As a result, dominance durations will also directly

depend on both contrasts, as required by Levelt’s propositions. Also, we can

describe the time between reversals as the first-passage-time of a single variable,

the evidence-bias (differential activity between EPs). Therefore, the important

requirements underlying the scaling property discussed in Chapter 4, i.e. far-from-
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equilibrium operation and low-threshold condition, can be easily transposed to our

model’s dynamics.

5.3.3 Qualitative description of dynamical behaviour

For the sake of clarity, we illustrate the characteristic dynamics of our model at the

evidence and decision levels in the context of an unambiguous decision. We will

then extend this circuitry to the case of ambiguous stimuli inducing multistable

perception.

An unambiguous stimulus condition is modelled here by assuming that only one

DP receives support from its associated EP at the evidence level, so that only one

perceptual representation can be selected for this stimulus (Fig. 5.4).

When receiving sufficient support from its associated EP, a DP can become

active, and the corresponding representation takes dominance in awareness. At

the evidence level, other sets of bistable units, which do not necessarily support

any specific higher-order representation, may also be activated by the stimulus

and contribute to perceptual dynamics through non-specific feedforward inhibition.

These projections are termed ‘non-specific’ in the sense that they are common to

the whole decision level, not to a specific DP. This is to account for the fact that,

for instance, noise or ‘distractors’ present in the stimulus may impair perceptual

choices, by inhibiting the decision layer, thereby reducing its sensitivity. When

evidence accumulation is somewhat conflicting, in the sense that it is not exclusively

supporting a given representation, more evidences would have to be collected for

a decision to be reached. Fig. 5.4 also highlights the role of specific top-down

inhibitory projections in implementing an habituation, or perceptual adaptation

mechanism. Following a perceptual choice, the EP corresponding to the dominant

percept are gradually suppressed. Note that this mechanism may not necessarily

be engaged in truly unambiguous situations [Yuille and Kersten, 2006]. Here we

exaggerate its effect for illustrative purposes, to highlight the similarity between

this percept-driven habituation mechanism and the adaptation mechanism used in

previous models, which will be of particular relevance in the case of an ambiguous
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Figure 5.4: Perceptual dynamics at the macroscopic level: hierarchical interactions

between evidence and decision pools reproduce perceptual dynamics of human observers.

To account for perceptual adaption, EPs receive feedforward excitation from stimulus

components (arrows) and feedback inhibition from the associated DPs. To reproduce an

evidence-biased competition, DPs (dark blue, dark red) receive feedforward excitation

from supporting evidence pools (light blue, light red), feedforward inhibition from other

evidence units (gray), and horizontal inhibition from other decision pools.

Joint response to unambiguous stimulation: When stochastic accumulation of activity

by evidence units (lower blue trace) reaches a differential threshold, this triggers global

activation in the associated DP (upper blue trace) which, in turn, limits accumulation in

the associated EP via feedback inhibition (lower blue trace). Spike rasters illustrate the

activity of individual decision or evidence units (10 neurons per unit).

stimulus.

In the case where an unambiguous stimulus is presented, perceptual decision will - if

at all - be unequivocal: accumulation of activity in the whole evidence level provides

supporting evidences to only one possible interpretation of the stimulus. This simple

detection circuit can be extended to the context of multi-stable perception and

naturally produce percept alternations at the decision level. For this we only need to

specify how the ambiguity of a stimulus translates in our model: some stimulus may

drive stochastic accumulation not only in one, but in two distinct EPs, supporting

two distinct and mutually-inhibited DPs.
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Figure 5.5: Joint response to ambiguous stimulation (details of hierarchical interactions

and raster plots are as in Fig. 5.4): Competing stochastic accumulations of evidence units

(lower blue and red traces) trigger simultaneous on- and offsets (perceptual reversals) in

competing decision pools (upper blue and red traces). Each reversal shifts feedback

inhibition from one evidence pool to another, reversing the previous accumulation trends

in both pools (lower blue and red traces). The concomitant habituation/recovery phases

are clearly visible between reversals. Each phase continues until differential evidence

activity reaches a threshold.

Contrary to the unambiguous case, accumulation of activity at the evidence

level is conflicting, in the sense that two mutually exclusive interpretations of the

stimulus are simultaneously supported. This conflict between sensory evidences

induces competition between the two percepts at the decision level. In this

instance, the non-specific feedforward inhibition plays an important role. As

previously mentioned, it implements an evidence-biased competition between

representations. Perceptual dynamics is driven by differential accumulation of

a ‘net flux’ of sensory evidence: reversals occur when a differential threshold of

activity is reached at the evidence level (as opposed to an absolute threshold).

In other words, competing appearances switch when the activity in one of the

two EPs has increased sufficiently over the other (and vice-versa). The best

supported decision pool then takes dominance, suppressing the other decision
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pool via cross-inhibitory projections. Feedforward inhibition is commonly used in

computational models of decision-making, in the context 2AFC tasks for instance

[Mazurek et al., 2003, Bogacz et al., 2006, Larsen and Bogacz, 2010]. Some

experimental evidence (local field potential recordings in monkeys) indicate that

such ‘pro evidence’ (i.e. sensory evidences supporting a given decision) and ‘anti

evidence’ (i.e. supporting a competing decision) are conveyed independently and

that the net-flux is computed locally in higher-order association areas [Bollimunta

and Ditterich, 2012].

Following a perceptual reversal, evidences supporting the newly dominant repre-

sentation are forced to habituate downwards, driven by the dominant appearance

through top-down inhibition. Simultaneously, evidences supporting currently

suppressed representation can recover upwards: they are not subject to perceptual

adaptation, simply because their associated DP is inactive. The differential

activity threshold may be reached again, this time, in favour of the currently

suppressed representation, and another perceptual reversal follows, starting the

cycle anew (Fig. 5.5). It is important to note that while the initial percept

selection is mostly driven the stimulus via bottom-up excitation, percept alterna-

tions are not solely stimulus-driven, but rather jointly driven by both bottom-up

and top-down (percept-driven) signals. This supports the idea that multistable

perception reflects hierarchical interactions between neural populations processing

low- and high-level stimulus features [von Helmholtz, 1866, Leopold and Logo-

thetis, 1999, Sterzer et al., 2009, Kang and Blake, 2010, Kornmeier and Bach, 2012].

In the proposed hierarchical structure, percept alternations naturally emerge

when neural circuits implementing percept selection in unambiguous viewing

conditions are subjected to ambiguous viewing conditions, where ambiguities in

the stimulus can not be resolved. Here, conflicting stimulus integration at the

evidence level drives perceptual dynamics at the decision level, and the statistics

of reversal times directly reflect the statistics of stochastic accumulation in EPs.

The present study distances itself from previous models in that adaptation is

not implemented as an external (‘ad-hoc’) and passive mechanism, but rather as
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an internal and active mechanism, emerging from the structure of interactions

within the model’s hierarchy. In adaptation-based models, adaptation variables

are usually adiabatically coupled to decision variables: when one takes dominance,

the associated adaptation current slowly builds up, gradually weakening the

dominant representation, until a perceptual reversal is initiated by external noise.

Importantly, the strength of adaptation currents evolve on a fixed time-scale, are

set and tuned by an external parameter, and only indirectly depend on input-levels.

A direct consequence is that longer time-scales obtained experimentally (i.e. longer

than the time-scale of adaptation itself) can not be reached without violating the

scalar property, because the system invariably moves from an adaptation-driven

regime (comparable to the DDR we have described in Chapters 2-3), to a NDR.

Our mechanism of perceptual adaptation, implemented by a joint dynamics

of evidence accumulation and of evidence habituation, resolves these issues. It is

equivalent to an adaptation in that it drives perceptual alternations by reversing

the net drive received by each decision pool after a new percept has taken

dominance, weakening the dominant representation and allowing the suppressed

representation to eventually take dominance again. The EP supporting the newly

dominant percept habituates downwards, driven by top-down, percept-specific

feedback inhibition, therefore reducing the amount of supporting evidences.

Meanwhile, the EP supporting the newly suppressed percept recovers upwards,

driven by bottom-up feedforward excitation, therefore increasing the amount of

supporting evidences. The difference is that here, the strength of habituation and

accumulation ‘currents’ implementing perceptual adaptation do not only depend on

fixed projections weights, but also directly depend on input-levels: both recovery

and habituation evolve towards a steady-state which varies with stimulus intensity

(see Fig. 5.6). Furthermore, through the individual transition rates of bistable

units, the characteristic time-scale of EPs also depends on input-levels. This allows

for dominance durations to be mutually dependent on both stimulus strength, and

will constitute the basis for the explanation of Levelt’s propositions in a future

section. To be more precise, the recovery of suppressed sensory evidences is faster
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when the corresponding contrast increases, so that the dominance time of the

currently dominant percept will be shortened. Conversely, the habituation of

dominant sensory evidences is slower when the corresponding contrast increases,

so that the dominance time of the currently dominant percept will be lengthened.
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Figure 5.6: Schematic illustration (arbitrary units) of the joint dynamics of sensory

evidences in their respective energy landscapes, or ‘nested attractor’, following a reversal

where percept X (blue) as been suppressed and percept Y (red) has taken dominance.

When a sufficient difference in activity is reached (differential threshold), another reversal

occurs, and the situation is reversed. (Left): Activity in evidence population x (blue),

supporting percept X. Lighter hues indicate larger contrast value cx (Right): Activity in

evidence population y (red), supporting percept Y . Lighter hues indicate larger contrast

value cy.

To summarize, in our model, perceptual reversals occur as a natural by-product

of mutual interactions between sensory representations, and categorical repre-

sentations. The dynamics of sensory evidences drives perceptual decisions in a

bottom-up manner, and, in a top-down manner, current perceptual states cause

sensory evidences to reorganise. Directly following a reversal, the decision fully

agrees with the evidence, in the sense that the ‘best’ supported percept - with

the most associated evidence - is indeed dominant, and the other, suppressed.

Due to specific feedback inhibition, the dominant percept then gradually loses its



123 5.4. Formal hierarchical dynamics

support, while the suppressed percept regains its support. This eventually results

in an increasingly compelling contradiction, where the current perceptual state to

no longer agrees with the evidence, which culminates in the form of a perceptual

reversal.

5.4 Formal hierarchical dynamics

5.4.1 Dynamical equations

Figure 5.7: Structure of the hierarchical model

In this section, we detail the equations governing our model’s dynamics. All

populations in our model (EPs or DPs) obey the Master Equation for the GE

process (3.2). For a pool indexed by ”p” of Np stochastic nodes with rates ν
(p)
± , the

temporal evolution of the probability Pnp(t) to find np active nodes at a given time
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t is:

dPnp(t)

dt
=ν

(p)
+ [Np − (np − 1)]Pnp−1(t) + ν

(p)
− (np + 1)Pnp+1(t)

− [ν
(p)
+ (Np − np) + ν

(p)
− np]Pnp(t) (5.1)

In all simulations, we set the number of units in each pool to 25. For individual

switching rates, we assume that spontaneous transitions of bistable units correspond

to an escape process (as depicted in Fig. 3.1), so that they obey an Arrhenius-like

equation (as in Kramer’s escape problem):

ν
(p)
± [Up(t)] =

1

2τp
e±

Up(t)

2 (5.2)

Where we define Up(t) the total incoming activity to pool ”p”, which varies

overtime, and will depend on the network’s interaction constants. For example, if

Up(t) = 0, both energy wells in Fig. 3.1 would have the same depths, and ν+ = ν−.

If Up(t) < 0, because of the opposite sign in expression 5.2, ν+ < ν− and the energy

well corresponding to the inactive state is deeper than the one corresponding to

the active state, because. Therefore there will be more downward transitions than

upward transitions (same as Fig. 3.1). Also, the characteristic time-constant for

each pool is defined for as:

τ (0)
p =

[
ν

(p)
+ (0) + ν

(p)
− (0)

]−1

(5.3)

The instantaneous time-constant at time t for each pool is therefore:

τp(t) =
[
ν

(p)
+ (Up(t)) + ν

(p)
− (Up(t))

]−1

= τ (0)
p sech [Up(t)] (5.4)



125 5.4. Formal hierarchical dynamics

And the instantaneous asymptotic state xin takes the form of a sigmoid function:

xin =
ν

(p)
+ (Up(t))

ν
(p)
+ (Up(t)) + ν

(p)
− (Up(t))

=
1

1 + exp
(
−Up(t)

2

)
= φ (Up) (5.5)

Where we have defined a scaled sigmoid function φ(x) = (1 + exp (−2x))−1

We now define population activities for the evidence level with lower-case letters:

x(t) = nx(t)
Nx

and y(t) = ny(t)

Ny
Associated decision populations are identified with

upper-case letters: X(t) = nX(t)
NX

and Y (t) = nY (t)
NY

.

Incoming activity to pools (x, y,X, Y ) are defined as at any time t by the following

relations:

Ux(t) = f(cx)−WI,fbX(t)

Uy(t) = f(cy)−WI,fbY (t)

UX(t) = WE,decX(t)−WI,decY (t) +WE,ff x(t)−WI,ff (x(t) + y(t)) + θdec

UY (t) = WE,decY (t)−WI,decX(t) +WE,ff y(t)−WI,ff (x(t) + y(t)) + θdec

This corresponds to a mean-field approximation, where we consider that the in-

coming activity to each pool of bistable units is the weighted sum of afferent average

activities, with the value of weights correspond to the synaptic coupling between

interacting pools (see Fig. 5.7). In total, the model consists of 11 independent

parameters, which we summarise here:

• τint : EPs characteristic time-constant.

• τdec: DPs characteristic time-constant.

• WE,dec: excitatory self-coupling of decision pools, which replaces recurrent

connectivity between bistable units in DPs.



Chapter 5. Hierarchical Multistable Dynamics 126

• WI,dec: mutual inhibition between decision pools, corresponding to the fact

competing representations are mutually exclusive.

• WE,ff : specific bottom-up excitation received by decision pools, from their

associated supporting evidence pools.

• WI,fb : specific top-down inhibition received by supporting evidence pools,

from their associated decision pools.

• WI,ff : non-specific bottom-up inhibition from the evidence level to the decision

level.

• θdec: an offset parameter to the decision layer, setting the shape of the energy

landscape for zero-input.

For instance, negative values of θdec corresponds to a deeper well for the in-

active state, so that the decision pool remains inactive when no stimulus is

present.

• f(cx,y): evidence layer input, where cx and cy correspond to the ‘contrast’, or

stimulus strength to evidence pools x and y respectively.

For the optimisation procedure to behavioural data described in a later section,

a logarithmic input-mapping was used: f(c) = α log(c + γ) + β, with c, the

contrast.

5.4.2 Analysis of decision level: perceptual threshold and

switching behaviour

To understand how the perceptual decision threshold is implemented at the decision

level, and can be reached by accumulation of activity in the evidence layer, we need

to look at the how the fixed points of a given decision pool evolve under such

accumulation. For this, we can use the deterministic approximation of the Master
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Equation for one of the decision pools, for instance X:

dX(t)

dt
= ν

(X)
+ −

(
ν

(X)
+ + ν

(X)
−

)
X(t)

τX(t)
dX(t)

dt
= φ [WEX(t)−WIY (t) +WE,ff x(t)−WI,ff (x(t) + y(t)) + θdec]−X(t)

= φ [WE(X(t)− UX(t))]−X(t)

Where we have set, UX(t) = 1
WE

(WIY (t) −WE,ff x(t) + WI,ff (x(t)− y(t)) + θdec).

Therefore, X(t) will be drawn towards one of the fixed point(s), Xss defined as the

solutions of the following equation:

Xss = φ [WE(Xss − UX(t))] (5.6)

Depending on the value of UX(t), and assuming WE > 2 (so that the slope of

function φ in zero is greater than one), this equation can have one or two stable

fixed points: a low activity fixed point where Xss ≈ 0, and a high activity fixed

point where Xss ≈ 1. UX(t) corresponds to the position of the inflexion of the

transfer function φ.

The competing decision pool Y satisfies the same equations where variables X and

Y as well as x and y have been exchanged.

Starting from the low-activity fixed point, we obtain the reversal threshold by

determining the value of the evidence-bias which would trigger a perceptual reversal,

i.e. the value ∆(t) = x(t)−y(t) for which the low-activity fixed point is destabilised,

so that the activity of the decision pool X(t) must switch to the high-activity state.

This situation is illustrated in Fig. 5.8.

The value of UX(t) for which the low-activity fixed point disappears, U↑ can be

obtained numerically, for a given value of the self-excitatory weight WE. Defining

the perceptual threshold θ as the value of ∆(t) so that UX(t) = U↑, and Z(t) =

(x(t) + y(t))/2, the average activation at the evidence level, we obtain:

θ =
2

WE,ff

(WI,dec − θdec − U↑WE,dec)−
2

WE,ff

(WE,ff − 2WI,ff )Z(t) (5.7)
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Figure 5.8: Destabilization of the low-activity fixed point: Dotted diagonal line cor-

responds to the identity function X̃ = X. Thick black line corresponds to the function

X̃ = φ [X − UX(t)]. Thick red line corresponds to the function X̃ = φ [X − U↑]. Thick

left-point arrow corresponds to the shift of the activation function, driven by the accumu-

lation of activity in the evidence pool, i.e. when the evidence bias ∆(t) = x(t)− y(t) in-

creases. For U(t) > U↑, the activation in pool X is near zero (black dot). For UX(t) < U↑,

the low-activity fixed point vanishes, and the decision pool activity is drawn towards the

high-activity fixed point (arrowed red dots).

The perceptual threshold thus has a constant component and a time-dependent

component, so that θ = θ0 − θ1Z(t) with:

θ0 =
2

WE,ff

(WI,dec − θdec − U↑WE,dec) (5.8)

θ1 =
2

WE,ff

(WE,ff − 2WI,ff ) (5.9)

Note that expression (5.7) does not take into account the fluctuating dynamics

in DPs, and thus overestimates the value of effective reversal thresholds . This is

because as U(t) −→ U↑, and the low-activity attractor becomes shallower, finite-size

fluctuations may drive the decision pool activation over the energy barrier which

separates it from the high-activity attractor; as a result, the effective threshold will

be smaller than expected in our deterministic approximation.
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However, expression (5.7) is useful in that it exposes the dependence of the threshold

on the average activity Z(t) in the evidence pools, which will be of relevance in later

sections of this chapter. In particular, for the set of parameters which provides the

optimal fit to the experimental data, we obtain WE,ff > 2WI,ff , and thus θ1 > 0,

so that the threshold for perceptual reversals tends to decrease with Z(t). This

introduces a degree of adaptive sensitivity at the decision level: if the average level

of evidence increases, the reversal threshold decreases. The decision layer thus

becomes more sensitive as activity increases, because a smaller evidence-bias is

required for a perceptual reversal to ensue.

5.4.3 Analysis of evidence level: evidence-bias

One important feature of our model of multistable perception is that the joint dy-

namics of accumulation and habituation, analogous to adaptation currents in other

models is input-dependent. This is because the increment and decrement rates

in either the recovering or habituating pools depend on the contrast strengths cx

and cy. In this section, we propose a deterministic toy-model for the FPT of the

evidence-bias ∆
.
= x(t)− y(t), which will prove useful in understanding the proper-

ties of average dominance durations under stimulus modulations (and in particular,

Levelt’s proposition II). For the sake of clarity, let us assume that population X is

currently inactive (the associated representation is therefore suppressed) and pop-

ulation Y is currently active (the associated representation is therefore dominant),

so that the corresponding evidence pools x and y are recovering upwards, and ha-

bituating downwards respectively.

Specifically, the evidence pool supporting the currently suppressed percept recovers

towards an asymptotic value xin and the evidence pool supporting the currently

dominant percept habituates towards an asymptotic value yin . xin depends on the
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contrast level cx = csup and yin depends on the contrast level cy = cdom

xin(csup) =
ν

(x)
+ (csup)

ν
(x)
+ (csup) + ν

(x)
− (csup)

(5.10)

yin(cdom) =
ν

(y)
+ (cdom)

ν
(y)
+ (cdom) + ν

(y)
− (cdom)

(5.11)

In the deterministic limit, the evolution equations for x and y are simple expo-

nential relaxations towards their respective asymptotic values, given by (5.10) and

(5.11), with their respective time constant τx and τy:

τx
dx

dt
= xin − x (5.12)

τy
dy

dt
= yin − x (5.13)

We further reduce this description by assuming that the habituation and re-

covery processes exactly mirror each other, i.e. that ν
(x)
+ = ν

(y)
−

.
= ν+ and

ν
(y)
+ = ν

(x)
−

.
= ν−. Using (5.12) and (5.13), we obtain the following equation for

the dynamics of the evidence-bias:

τ∆
d∆(t)

dt
= ∆in −∆(t) (5.14)

τ∆ =
1

ν+ + ν−
(5.15)

∆in =
ν+ − ν−
ν+ + ν−

= xin(csup)− yin(cdom) (5.16)

Where we have introduced the quantity ∆in , the asymptotic evidence-bias.

Perceptual reversals occur when the evidence bias reaches a threshold θ. Recall that

here, we have assumed X to be suppressed and Y to be dominant, and defined the

evidence bias accordingly: during the dominance of Y , ∆(t) evolves from −θ to θ

(during the dominance of X, ∆in → −∆in and ∆(t) evolves from θ to −θ). There-

fore, assuming ∆in > θ, the average FPT for the evidence-bias, or equivalently, the

duration of the current dominance, Tdom, is simply that of an exponential relaxation:

Tdom = τ∆ ln

(
∆in + θ

∆in − θ

)
(5.17)
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The duration of the current dominance phase Tdom obeys a simple relation to stim-

ulus strength, with three important properties.

Firstly, it depends on both contrasts, through the asymptotic evidence bias ∆in

and the characteristic time τ . This is because the accumulation of activity driving

reversals is differential, therefore the current dominance depends as much on the

recovery time of the EP supporting the suppressed percept as on the habituation

time of the EP supporting the dominant percept (see caption in Fig. 5.9 AB).

Secondly, it depends non-linearly on ∆in , meaning that for a given change of the

contrasts, the corresponding modulations of Tdom may have different amplitudes de-

pending on the value of ∆in is small (i.e. when Tdom is long, and the corresponding

percept is strong), or large (i.e. when Tdom is short and the corresponding percept

is weak). Thirdly, the value of the differential reversal threshold θ also depends on

both contrasts, because the average activity at the evidence level Z(t) does (see

also, (5.7)).

Importantly, ∆in , mostly depends on the difference between contrasts, while θ

mostly depends on the sum of contrasts. This observation will be useful when

discussing the mechanism of Levelt’s propositions, because L2 corresponds to rel-

ative variations of contrasts (and thus to modulations of ∆in) and L4 corresponds

to absolute variations of contrasts (and thus to modulations of θ).

Naturally, the assumption required to obtain (5.17), namely that habituation and

recovery processes exactly mirror each other is generally inadequate. However, as

will be shown in the next sections, this expression is sufficient to qualitatively cap-

ture important aspects of Levelt’s propositions.

5.5 Agreement with behavioural data

5.5.1 Model optimization

Here, we provide some details on the optimization procedure carried out to fit the

model’s statistics to the available behavioural data. The data initially consisted of

the mean dominance times µ1, the CV cv and the ratio between the skewness and
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Figure 5.9: AB Deterministic evidence activities (top, red and blue traces) and dif-

ferential activity, or evidence-bias (bottom, black traces), over two successive dominance

periods. Activities recover, or habituate, exponentially until a differential threshold θ

is reached. Dotted curves extrapolate the exponential time-courses to their respective

steady-states, which reflect input, csup (recovering evidence), or input minus feedback

inhibition, cdom −wfb (habituating evidence). Dominance durations are controlled by the

range between steady-states, ∆in : A When the contrast of the perceptually suppressed

input (here, corresponding to blue traces) is incremented by ∆c, ∆in increases and Tdom

decreases. B When the perceptually dominant input is incremented by a same amount

∆c, ∆in decreases so that Tdom increases.



133 5.5. Agreement with behavioural data

CV γ1/cv, obtained for a binocular rivalry display. Note that due to the noisiness of

experimental data in terms of the skewness, and to ensure the convergence of the fit,

we later assumed that the relation γ1 = 2cv was exactly satisfied. For each observer,

25 values were collected for each quantities, corresponding to a 5×5 array of contrast

combinations between the following values: [6.25%, 12.5%, 25%, 50%, 100%]. Aver-

age dominance times were individually normalized, and averaged over observers.

Higher-order moments were averaged over observers. In addition, the average cor-

relation between successive durations (at lag 1) over the whole dataset was included

in the optimisation procedure, for the following reason: although generally mod-

est, the correlation reported in experiments is consistently positive (as reviewed in

[van Ee, 2009]), and alternative statistical measures have been introduced which es-

tablish a subtle but robust history-dependence in alternation series (‘cummulative

history’ [Pastukhov and Braun, 2011]). This new line of evidence will be further

confirmed in a later section of this chapter, we will further contribute to this new

line of evidence with theoretical predictions corroborated by new observations.

The experimental dataset therefore consisted of three 5×5 arrays (X
(exp.)
i , i ∈ [1, 3]

for the mean, CV and skewness of the average observer), and a scalar X̄
(exp.)
4 for

the correlation, with X̄ the matrix average of X. The corresponding simulated

dataset X
(sim.)
i , i ∈ [1, 3] (for the moments) and X̄

(sim.)
4 (for the correlation) were

constructed accordingly. Alternation series were generated from the model by aver-

aging over 10 trials of 2 minutes durations each, to match experimental conditions.

The fit error, or mean residual R̄, was computed as follows:

R̄ =
1

4

4∑
i=1

wiδ̄i

δi =

∣∣∣∣X(exp.)
i −X(sim.)

i

X̄
(exp.)
i

∣∣∣∣ i ∈ [1, 3]

δ4 =

∣∣∣∣X̄(exp.)
4 − X̄(sim.)

4

X̄
(exp.)
4

∣∣∣∣

A total of around 400 minimizations of the mean residual R̄ starting from

random initial configurations of the model parameters were performed using a
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stochastic gradient descent algorithm [Spall, 2003]. We used the following weighting

w = [1, 1, 1, 1/4], to prioritize the fit of moments surfaces and ensure some correla-

tions were obtained for the optimised parameter set of the model.

Note that we did not fit the entire ‘correlation-surface’. This is an important detail,

because although we required the model to produce some correlations, we did not

specified the structure of correlations observed in the data.

The average fit error Ē is related to the average residual R̄ by:

Ē =

∑
iwiδ̄i∑
iwi

=
16

13
R̄

For the optimal parameter set, this resulted in an average fit error, of about 15%

with the ‘mean observer’ dataset. Supplementary details on the optimization pro-

cedure, including the optimal set of parameters, can be found in Appendix B.

5.5.2 Fit results: average dominance durations

Fig. 5.10 illustrates the agreement between experimental data, and simulations

of our model, using an optimized parameter set (for details on parameters opti-

mization, see B). The quantitative match between simulations and experiments is

remarkable for all combinations of contrasts, illustrating that our model complies

to all of Levelt’s propositions.

5.5.3 Levelt’s Proposition I and II

Our optimized model not only provides quantitative account of L1 and L2

(Fig. 5.10 A), but also allows a straightforward qualitative insight in their origins.

Since the model always operates in a DDR, alternations are mainly driven by

deterministic factors and we can study the properties of average reversal times

by neglecting fluctuations, i.e. we assume that the number of bistable units is

extremely large. In this case, the accumulation of activity at the evidence level

reduces to the toy-model we described in 5.4.3, and use expression (5.17) to

characterise the average duration of the current dominance.

L2 states that increasing stimulus strength to one eye modulates the dominance
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Figure 5.10: Mean dominance durations vary characteristically with dominant and sup-

pressed stimulation (“Levelt’s propositions”, L1, L2, L4). Our model explains these ob-

servations by concomitant habituation of dominant evidence, and recovery of suppressed

evidence, until a differential threshold is reached. A Mean dominance duration Tdom

increases with contrast cdom of dominant input and decreases with contrast csup of sup-

pressed input, in both experiment (left) and model (right). Both trends are exacerbated

when suppressed input is weaker (csup < cdom). Dotted lines mark the equidominance

condition (csup = cdom) B Activity of evidence pools (red and blue traces) over several

dominance periods. Stochastic reversals with variable thresholds θ (black lines) of finite

system, with N = 25 units per pool (left) and deterministic reversals with fixed θ of

infinite system, with N →∞ (right).
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duration of both percepts, and also that if one of the two percepts is predominant,

modulations will be of greater amplitude for this percept than for the weaker one.

We therefore consider the situation in which the relative perceptual dominance

is unbalanced, so that one percept can be considered strong (with a long average

dominance duration) and the other one, weak (with a short average dominance

duration) (Fig. 5.10 B).

The first aspect of Levelt’s propositions is that changing the contrast to one

eye changes the average dominance for both percepts, in opposite directions

(L1). This feature naturally follows from the architecture of the model, because

perceptual switches are driven by the difference of activity between EPs. Recall

that, following a reversal, the EP associated with the newly dominant percept

habituate downwards, while the EP associated with the newly suppressed percept

recovers upwards. The next reversal is initiated when the differential threshold

is reached again. As a result, a given dominance duration depends as much on

the time-course of the habituation phase in its supporting EP as on the recovery

phase in the conflicting EP (i.e. the EP supporting the alternative percept). From

expression (5.17), we see that average dominance durations, assuming a fixed

reversal threshold θ, mainly depends on the value of the asymptotic evidence bias

∆in , which itself depends on both input-levels csup and cdom : it increases with csup

and decreases with cdom . This means that increasing the input-level to the EP

supporting the currently suppressed percept accelerates its recovery and therefore

shortens the current dominance Tdom (see Fig. 5.9 A). Conversely, increasing the

input-level to the EP supporting the currently dominant percept slows down its

habituation and therefore lengthen the current dominance Tdom (see Fig. 5.9 B),

consistently with L1.

The second aspect of Levelt’s propositions is that modulations of average domi-

nance durations have different amplitude depending on whether the dominant per-

cept is strong or weak. This is well captured by the approximated expression of Tdom

5.7 obtained in the deterministic reduction of our model. At the evidence level, dur-
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Figure 5.11: Modulations of average dominance Tdom with the asymptotic evidence bias

∆in explain L2. Enlarging the range ∆in accelerates the growth of differential activity

and curtails dominance periods Tdom (and vice versa), see Equation (5.17). Because the

dependence is hyperbolic, differential changes to smaller ranges ∆in entail larger effects

on Tdom (and vice versa).



Chapter 5. Hierarchical Multistable Dynamics 138

ing the dominance of a stronger percept, both recovery and habituation processes

are slow, because the asymptotic evidence-bias ∆in is small, and therefore, Tdom

is long. Conversely, during the dominance of a weaker percept, both recovery and

habituation processes are fast, because the asymptotic evidence-bias ∆in is large,

and therefore, Tdom is short. Also, the dependence of Tdom on ∆in is hyperbolic:

as a result, stronger percepts show larger modulations than weaker ones, under

the same change in input strength, consistently with L2 (see Eq. 5.7, Fig. 5.9

AB and Fig. 5.11). Other models have reached similar qualitative conclusions:

they usually assume adaptation to follow an exponential profile, which yields the

same asymmetry in modulations of dominance duration between weak and strong

percepts [Brascamp et al., 2015]. Approximated expressions for the average domi-

nance duration have previously been obtained by several authors [Laing and Chow,

2002, Wilson, 2007]. These expression are formally similar to the expression (5.17)

we obtained in Section 5.4.3, in that they all reflect the first-passage-time of an

exponentially relaxing variable. Here, it is the evidence-bias ∆(t) which relaxes

exponentially towards ∆in (Fig. 5.9 AB, bottom).

Quantitatively, our model provides a complete account for Levelt’s propositions: it

was fitted to experimental data for all combinations contrasts. In other models, L2

is obtained by varying only one of the two contrasts, while the other one remains

fixed (at high level), providing a good albeit partial fit [Laing and Chow, 2002,

Wilson, 2007].

Note that, although we have not explicitly considered the input-dependence of the

characteristic time-constants for both recovery and habituation processes it does

not conflict with the overall picture described here. Increasing the input-level for

csup and cdom respectively shortens and lengthens the time-scale of the correspond-

ing processes, and thus affect average dominance durations in the same direction

than variations off ∆in , only to a lesser extent. This can also be seen from Eq.

(5.17): modulations of Tdom are linear in τ and hyperbolic in ∆in .
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5.5.4 Levelt’s Proposition IV

As illustrated by Fig. 5.10 A, not only L1 and L2, but also L4 are well repro-

duced by our model. The qualitative explanation of L4, however, differs from that

proposed by other models [Moreno-Bote et al., 2007, Wilson, 2007, Shpiro et al.,

2007, Curtu et al., 2008, Seely and Chow, 2011]. In adaptation-based models, varia-

tions of inputs induce modulations of dominance durations by directly acting on the

relative stability of percepts. For instance, increasing contrasts together tends to

make the suppressed percepts less stable, yielding greater reversal rates. However,

to some extent, it also tends to make the dominant percept more stable. A direct

consequence of this is that modulations of dominance durations under variations

of input strength are not always strictly monotonic and may deviate from L4 at

low contrast levels (i.e. reversal rates decrease for increasing contrasts, rather than

increase). This is because high- and low-contrast reversals may be prompted in

two different manners: they can be initiated by the upward switching of the sup-

pressed percept (‘escape’), or by the downward switching of the dominant percept

(‘release’) Curtu et al. [2008]. Compliance of these models to L4 generally require

extra-assumptions to balance the system’s sensitivity between adaptation currents

and input-levels, such as a restriction or pre-processing of inputs (as thoroughly

reviewed in [Seely and Chow, 2011]).

These results led to the proposal that L4 may in fact no longer be valid for low-

contrasts and called for additional experimental data. However there is some evi-

dence of that L4 is valid down to detection levels [van Ee, 2009]. It has also been

noted that such deviations from L4 may be challenging to verify, as they would

typically occur in a narrow range close to detection thresholds, making it difficult

to sample experimentally [Brascamp et al., 2015].

The data presented in this study, in both the experiment and the model, also

seem to support the validity of L4 (see Fig. 5.10, left). Here, we propose an

alternative mechanism to account for these results. An important feature of the

model is that modulations of average dominance durations do not reflect a static,

but a dynamic change of the energy landscape. In previous models, changes in
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Figure 5.12: Mean dominance durations decrease with stimulation (“Levelt’s 4th propo-

sition”). Our model explains this observation in terms heightened competition between

decision pools reducing differential thresholds for evidence pools. A Average differen-

tial evidence activity in model simulations, just prior to reversals, as a function of input

contrasts cdom and csup . B Theoretical reversal threshold θeff of decision populations

(Eq. 5.7), as a function of input contrasts. C Average activity of evidence pools (solid

traces) over several dominance periods (deterministic system with N → ∞). Left: for

low input contrast, evidence activity recovers and habituates over a lower and broader

range (dashed lines), increasing dominance periods. Right: for high input contrast, evi-

dence activity traverses a higher and narrower range (dashed lines), decreasing dominance

periods.
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input-levels directly affect the stability of dominant and suppressed appearances

by shaping the depth of the energy wells (steady-states), making them more or

less stable. In constrast, in our model, the stability of decision pools between

reversals does not change. Rather, changes in input-levels affect the time-course

of the habituation and recovery processes, which results in modulations of average

dominance periods and explains L2. In the case of L4, we suggest that a different

mechanism may be at work.

We have mentioned in Section 5.4.3 that the differential threshold has a con-

stant and a time-varying component, θ = θ0 − θ1Z(t). This means that variations

of the average stimulus strength modulate the sensitivity of the decision level: de-

pending on the level of activity at the evidence level (which itself depends on the

input-levels), the value of the reversal threshold changes. From the approximate

expression of the perceptual threshold obtained from the deterministic limit of the

model (see (5.7)), we have learned that the effective value of the perceptual thresh-

old depends on the average activity Z(t) at the evidence level. This dependence is

weighted by a pre-factor θ1 = WE,ff − 2WI,ff , which corresponds to the net balance

between feedforward excitation (provided by each evidence pool to its associated

decision pool), and feedforward inhibition (provided by the whole evidence level to

the whole decision level). In particular, for our optimal parameter set, θ1 > 0: as

Z(t) varies overtime, the effective evidence-bias required for a perceptual reversal to

ensue, will also vary overtime. This is an important aspect of the model’s dynamics

which will be further detailed in a later section of this chapter, when discussing the

origins of the small but consistent sequential correlation between successive domi-

nance durations.

Also, when the sum of either stimulus strength increases, the average activity 〈Z〉
increases. This is simply because when doing so, asymptotic values for both evi-

dence pools increase, shifting the average level of activity upwards. Therefore, the

average threshold 〈θ〉 (e.g. over an entire trial), decreases with increasing stimulus

strength. Shorter reversal thresholds naturally yield shorter dominances, consis-

tently with L4.
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This means the decision layer becomes more sensitive as the amount of total ev-

idence increases because a lesser evidence-bias is needed to trigger a perceptual

switch (Fig. 5.12).
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Figure 5.13: Dominance time modulations in the context of Levelt’s fourth proposition

arise from threshold modulations. Dotted white lines mark the equidominance cdom =

csup . A WE,ff = 2WI,ff so that the threshold no longer depends on the average activity

Z in the evidence pools. As a result, we observe no modulations of dominance durations

along the equidominance. B WE,ff > 2WI,ff so that the threshold varies with the average

activity Z. We observe visible modulations of the average dominance duration along the

equidominance.

To further confirm the role of threshold modulations in reproducing L4, we can

examine the changes of the average threshold 〈θ〉 with the average evidence ac-

tivity 〈Z〉, in two different cases: the case where WE,ff = 2WI,ff , and the case

WE,ff > 2WI,ff . In the former case, θ1 = 0, and as a result, we do not observe

modulations of dominance durations for a simultaneous increase of both contrasts

Fig. 5.13 A. In the latter case, θ1 > 0 and a decrease of average dominance dura-

tions as both contrasts increase are clearly Fig. 5.13 B.

Note that although the characteristic relaxation times for both recovery and habit-

uation processes do depend on input-levels, time-scale modulations do not signifi-

cantly contribute to L4. This is because, as previously mentioned, an increase of

both contrast cdom and csup have opposite effects on the time-scale of their respective

processes, and essentially cancel each other out: suppressed evidences have a faster
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recovery, but this is balanced by dominant evidences having a slower habituation.

Therefore, our model suggests that L4 may correspond to changes in the sensitivity

of observers to perceptual reversals.

Note that situations where L4 is not observed (as in Fig. 5.13 A), and where L4

is particularly salient (as in Fig. 5.13 B), have both been reported experimentally

(see [Moreno-Bote et al., 2010] and [Kang, 2009], respectively). Interestingly, it has

been suggested that both situations may reflect differences in how incoming stimuli

strengths are normalized [Brascamp et al., 2015]. Our results support this recent

conjecture in that a continuous transition between these two cases is obtained by

modulating the relative contribution of specific feedforward excitation (relaying the

activity of one EP) and of non-specific feedforward inhibition (relaying the activity

of the sum of the two EPs).

5.5.5 Fit results: scaling property and distribution shape

In this chapter we have extended the reduced one-dimensional FPT framework

developed in Chapter 2-4, to two dimensions, where two competing percepts

explicitly compete for dominance. We have previously established that the GE

process, when operating in a drift-dominated regime, could satisfy all aspects

of the scaling property [Cao et al., 2016]. This requires, in particular, that the

threshold remains small compared to its asymptotic value, to ensure accumulation

proceeds sufficiently far from equilibrium. The structure of interactions within the

model carefully preserves this regime, so that for most combinations of input-levels

our model satisfies the scaling property, along with the characteristic Gamma-like

shape.

This is because the process driving perceptual reversals, the evidence-bias, is

simply the difference of two antiphasic GE processes, so that the time between

successive reversals corresponds to its FPT to the perceptual threshold θ. Accu-

mulation of evidence remains in a in a drift-dominated regime for all combinations

of contrasts, and reversal thresholds remain small compared to the asymptotic

evidence-bias (θ � ∆in). Even in the case of extremely unbalanced contrasts,

where changes in the CV indicate the proximity of the the noise-dominated regime,
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Figure 5.14: The distribution shape of dominance periods remains almost unchanged

over a wide range of input contrast (‘scaling property’), implying that input proportion-

ally impacts drift and noise of an underlying stochastic accumulation. A Coefficient of

variation of dominance times Tdom as a function of input contrasts cdom and csup , in both

experiment (left) and model (right). For symmetric input contrasts (dashed line), the

coefficient of variation remains essentially unchanged at cv ≈ 0.5. Variability changes

only for highly asymmetric contrasts, decreasing when csup � cdom and increasing when

csup � csup . B Ratio between the skewness and CV of dominance times Tdom as a func-

tion of input contrasts cdom and csup . Note that due to the noisiness of experimental data

in terms of the skewness, and to ensure the convergence of the fit, we have assumed that

the relation γ1 = 2cv was exactly satisfied. As for the CV, the skewness in simulated

alternation series remained essentially unchanged, for symmetric input contrasts (dashed

line), at γ1 ≈ 2cv. For highly asymmetric contrasts, csup � cdom or csup � csup , the

skewness slightly decreased.
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threshold-crossings at the evidence level remain consistently sharp. The sharpness

of reversals at both levels of the hierarchy clearly appears when observing the

average behaviour of activity before and after reversals (see transition-triggered

averages in Appendix B). As a result, our optimised model fits well the statistics

of behavioural data at second-order (CV) and third-order (skewness). The scaling

property is obtained, and reversal time densities are close to a Gamma distribution,

as illustrated in Fig. 5.14).

We now conclude this section by making some additional remarks.

Note that the scaling property of multistable perception is not strictly satisfied for

all contrast combinations. In particular, in both experiments and simulations, the

CV changes most for relative modulation of contrasts (i.e. changes in the difference

between contrasts): weak percepts have greater CV than average, and strong per-

cepts have lower CV than average (see Fig. 5.14 A). As previously mentioned, this

could suggest vicinity of the boundary with a single fixed point regime, where only

one percept is reported and reversals no longer occur. On the other hand, we there

are no significant variations of the CV when both contrasts increase simultaneously,

in seemingly apparent contradiction with the results established in Section 5.5.4.

Indeed, if this causes the threshold to gradually shrink, we should also expect the

CV to increase, as would be the case in the one-dimensional FPT problem discussed

in previous chapters.

However, in this case we consider the FPT of ∆(t) = x(t) − y(t), which consists

two independent GE processes, for which the variance is the sum of the variances of

process x(t) and y(t). This effectively increases the value of the threshold required

to obtain cv ≈ 0.6, so that small variations of the threshold do not affect the CV as

severely as for a one-dimensional process. However, the analysis of the FPT prob-

lem for ∆(t), i.e. obtain the FPT moments in the (∆in , θ)-space, would be required

to confirm this intuition.

The scaling property is also not strictly satisfied for the ratio of skewness and CV,

in similar conditions, i.e. when contrasts are most unbalanced (see Fig. 5.14 B).

In these conditions, the resulting reversal time densities becomes closer to a Weibull
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distribution (with γ1 . 2 cv). As noticeable in our initial observations (see Fig. 2.3

C), experimental data for the ratio of skewness and CV is considerably more dis-

tributed around its average. In particular, for the binocular rivalry experiment, it

spreads widely across the average value, within the range cv . γ1 . 3 cv. In the case

of the moving plaids, a fraction of the data lies well below the average value, with

cv . γ1 . 2 cv. While further data collection would be required to draw definite

conclusions at this order of the statistics, it may be interesting to verify whether the

data for which γ1 ' cv corresponds to strongly unbalanced situations, as predicted

by our model.

5.6 Non-stationary dynamics

We have shown in previous sections that discrete stochastic dynamics, embedded in

a hierarchical model, can reproduce reversal behaviour, as well as all known char-

acteristics of the stationary statistics of alternation series obtained experimentally.

Quantitative agreement with Levelt’s propositions, the scaling property and the

stereotypical shape of reversal time densities is remarkable, and simple qualitative

mechanisms which may explain these important empirical observations have been

proposed.

Even in stationary conditions, i.e. continuous viewing and constant stimulus qual-

ities within trials, the models predicts interesting non-stationary behaviour. In

particular, slow modulations of the stochastic dynamics at the sensory level intro-

duce some degree of short-term memory at the perceptual level. In this section,

we propose a preliminary study of non-stationary properties in alternation series

produced by the model and confront our predictions to additional analysis of be-

havioural data.

5.6.1 Correlations and structure of correlations

Until recently, the general consensus was that successive dominance and suppression

periods were statistically independent and sequences of perceptual alternations were

‘memoryless’, and sequential correlations recorded in experiments were deemed too
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small to be significant [Fox and Herrmann, 1967, Borsellino et al., 1972, Walker,

1975, Lehky, 1995, Pastukhov and Braun, 2007]. Recent studies have put this into

question, by reporting consistently small but significant correlations [van Ee, 2009,

Pastukhov and Braun, 2011, Pastukhov et al., 2013]. Adaptation-based models

generally produce correlated alternation sequences, except when adaptation is not

sufficient to drive perceptual reversals. In this case reversals are mostly noise-driven,

and correlations can be sufficiently reduced. This led to the proposition that adap-

tation does not trigger perceptual reversals alone, but destabilises the steady-state

enough to allow noise-driven transitions to occur [Brascamp et al., 2006, Moreno-

Bote et al., 2007]. However, we have shown that setting such balance between

adaptation and noise would eventually conflict with the scaling property, for in-

stance when attempting to obtain longer average dominances durations. Moderate

correlations can also obtained when dominance durations are modulated by slow

changes of a ‘memory’ component of the dynamics, as proposed in [Gigante et al.,

2009].

Here, we propose that correlations may be explained by an alternative mechanism.
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Figure 5.15: Successive dominance periods become correlated at sufficiently high stim-

ulus contrast. Correlation coefficient c of successive dominance periods increases with

contrast, cdom and csup , in experimental (left) and simulated data (right).

As illustrated in Fig. 5.15, the model predicts, in some cases, a small but sig-

nificant correlation coefficient between successive dominance durations (i.e. lag 1

correlation coefficient). For both observed and simulated series of dominance du-



Chapter 5. Hierarchical Multistable Dynamics 148

rations, the serial correlation coefficient was computed as follows: we consider a

sequence {Ti} of dominance durations, and extract the sequence {T (α)
i } of domi-

nances corresponding to percept α ∈ [X, Y ], i.e. one or the other percept, as well

as the sequence {T (α)∗

i } of the directly following dominances. We also note T (α) the

average dominance of the sequence {T (α)
i } and T (α∗) the average dominance of the

sequence {T (α∗)
i }. The correlation c is then obtained as:

c =
〈(T (α)

i − T (α))(T
(α∗)
i − T (α+1))〉√

〈(T (α)
i − T (α))2〉〈(T (α∗)

i − T (α∗))2〉
(5.18)

As explained in Section 5.5, the correlation obtained in experimental alternation

sequences was also included in the optimization of the model’s parameters, therefore

the existence of overall correlations should not be surprising. However, the model

was only constrained to the average correlation over the whole range of contrast not

to the whole ‘correlation-surface’, unlike the moments (mean, CV and skewness),

for which a 5×5 array was used. A smaller weight was used for the correlation than

for moments, to prioritize the fit of moments’ surfaces. This means that although

the optimised model was tuned to produce some correlations, we made no extra

assumption with respect to the structure of these correlations, and how they may

depend on contrasts variations. In particular, the model predicts such correlation

to be near zero at low contrast, and to increase with contrast, reaching a maximum

near 0.2 in the maximum contrast condition. This trend was corroborated by ad-

ditional observations on the available experimental data. That correlations would

only become apparent only in high contrast conditions, when dominance times are

short, may be the sign of an intrinsic short-term memory, with a characteristic

time-scale shorter than average dominance durations obtained for moderate and

low contrast values.

We next examined how successive dominance periods within an alternation sequence

were paired together. If successive dominance durations were statistically indepen-

dent, and their correlation equal to zero, then the sequence of dominance durations

Ti should be well described by a renewal process. Formally, this means that the

joint distribution between a given dominance duration Ti and the next, Ti+1, should
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factorize as follows:

P (Ti, Ti+1) = P (Ti)P (Ti+1) (5.19)

If successive dominance durations, however, carry some degree of statistical de-

pendence, the joint probability will not factorize. To asses whether the sequence

dominance durations generated by our model, and those observed in experiments

correspond, or depart from the statistical of a renewal process, we define the ‘cor-

relation map’ ∆P as follows [Schwalger, 2013]:

∆P = P (Ti, Ti+1)− P (Ti)P (Ti+1) (5.20)

∆P should be identically zero if a sequence of dominance durations was gener-

ated by a renewal processes, and if not, it should reveal the underlying structure

of correlations, which add up to the correlation coefficient. Another relevant quan-

tity is the conditional expectation 〈Ti+1|Ti〉, i.e. the average dominance duration

following a dominance of given duration Ti: the derivative of 〈Ti+1|Ti〉 evaluated at

the average dominance provides an approximate value for the correlation coefficient

[Schwalger, 2013].

We obtained the following result: in the alternation sequences obtained from our

optimised model, pairs of successive dominances are structured differently when con-

sidering low-contrast stimuli or high-contrast stimuli. At low contrast, the sequence

of dominance duration is close to that of a renewal process (Fig. 5.16 A), and dom-

inance pairs are unstructured, as if they were generated by a renewal process. This

is not the case at high contrast: we observe a deficit of short-long/long-short pairs

of dominances, balancing an excess of short-short and long-long pairs of dominances

(Fig. 5.16 B). This shows that dominances of similar durations tend to follow each

other, which explains the correlations obtained for stronger stimuli. Remarkably,

this prediction was confirmed in behavioural alternation series, where the same qual-

itative trend was observed (Fig. 5.16 AB, left). At high contrast, the slope of the

conditional expectation 〈Ti+1|Ti〉 is clearly positive around the average dominance

durations, in both sets of experimental and simulated data, indicating a significant

and positive correlation.
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Figure 5.16: Correlations show a characteristic pattern for high stimulus contrast in

both experimental (left) and simulated data (right). Excess joint probability ∆P (see

(5.20)) of successive dominance durations Ti and Ti+1 (contour plots) and conditional

expectation 〈Ti+1|Ti〉 (red curves), in units of the mean dominance duration 〈T 〉. A

Correlation map for low stimulus contrast, cdom = csup < 0.125 reflects that of a renewal

process. B Correlation map for high stimulus contrast, cdom = csup > 0.5 reflects that of

a non-renewal process.
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We next looked for further evidences of long-lasting memory effects at the different

levels of the model’s hierarchy, in an attempt to identify the dynamical mechanisms

at the source of this peculiar correlation structure, and to determine the charac-

teristic time-scales at which they operate (Fig. 5.17). For this we computed the

mean expected dominance duration preceding and following each dominance pe-

riod 〈Ti+j|Ti〉, this time for values of j ≥ 1. In addition, to determine whether

dominances of typically long or short duration contributed to non-renewal effects

in the same manner, we sorted dominances durations in octiles, and computed

mean expected durations for each octile separately (Fig. 5.17 A). We applied the

same procedure at the evidence level, this time by observing the average activity

Zi =
(
x+y

2

)
(ti) in the evidence pool, at reversal times ti, also sorted in the same

octiles as previously (Fig. 5.17 B).
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Figure 5.17: A Conditional expectation for successive dominance durations at the de-

cision level, 〈Ti±j |Ti〉. B Conditional expectation for average evidence activity at the

evidence level, 〈Zi±j |Zi〉 (j ≥ 1). For high contrast levels, dominance periods are sorted

into octiles, from shortest (beige) to longest (black), the averages of each cohort, and

of the preceding and succeeding cohorts, are shown as a function of average lag time.

Durations are in units of the overall average, 〈T 〉.

These results show that, for extreme samples of the distribution of dominance

durations, memory effects may range up to 3 times the average dominance duration,

explaining the ”clustered” structure of alternation series. Dominances of particu-
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larly shorter (or longer) durations than the average could indeed be observed in

consecutive sequences. Interestingly, a similar effect was observed in the evidence

layer. Average activity was found to be the highest (resp. lowest) when measured

at a reversal preceding the shortest (resp. longest) dominance durations. This effect

was visible for up to 3 preceding and succeeding average dominances. This clearly

pinpoints the origins of correlation in macroscopic alternation sequences to a slow,

noisy drift of average activity at the level of sensory evidences. This is consistent

with the idea that noise in slow adaptation currents can produce significant positive

serial correlation in stochastic sequences, such as in multistable perception, or in

the statistics of spiking neurons [Lehky, 1988, van Ee, 2009, Schwalger, 2013].

5.6.2 Slow fluctuating drift of sensory evidences

The correlation structure of alternation series arises naturally from the hierarchical

structure of our model. We know from Section 5.5.4 that the dependence of the

reversal threshold on average evidence activity induce modulations of average

reversal times. Indeed, the average effective threshold 〈θeff 〉 decreases for increasing

input strength, because the average activity in evidence populations 〈Z〉 increases,

providing a qualitative explanation for L4. Importantly, within a given alternation

series, where contrasts are fixed (here we assume contrasts are high, so that we

obtain significant correlations), the effective reversal threshold also varies as Z(t)

varies.

Typically, higher values of Zi (the value of Z(t) at reversal times ti) will yield

smaller values of θeff : the decision level becomes increasingly sensitive when

supported by larger activity at the evidence level (Fig. 5.18 A). This slow and

fluctuating drift of average sensory evidences is precisely what produces this

short-term history-dependence effect. While the evidence bias ∆(t) drives per-

ceptual alternations, the average sensory activity Z(t) fluctuates, slowly hovering

around its average value 〈Z〉 (Fig. 5.18 B). The effective threshold varies locally,

which translates into ‘bundles’ of dominances of comparable length. During trial

segments where Z(t) < 〈Z〉, reversal thresholds will be consistently larger than

average, and dominance periods, longer (Fig. 5.18 C). Conversely, during trial
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segments where Z(t) > 〈Z〉 , reversal thresholds will be consistently smaller than

average, and dominance periods, shorter (Fig. 5.18 D).

However, since fluctuations of Z(t) are also present for low and moderate

contrast, and could therefore potentially yield similar threshold modulations, why

do we not observe the same correlation between local fluctuations of average

activity and local fluctuations of the threshold? The answer lies in how fast Z(t)

returns back to its average value over time. Recall that, in Fig. 5.18 A, we observe

a significant correlation between activity and effective threshold, for values Zi of

Z(t) measured at reversal times ti. Between reversals, the average activity Z(t)

keeps fluctuating around its average value, typically relaxing towards it whenever

deviations have occurred. Consider the case where Z(t) has strongly deviated from

its average, driven by the fluctuations of evidences. When dominance periods are

short, as is the case at high contrast, and Z(t) > 〈Z〉, it may take several successive

dominance for Z(t) to reach its average again. In the meantime, for each reversal

that occurs, Zi is still be greater than average and the next dominance will also

often be shorter than average. When dominance periods are long, however, as

is the case for low and moderate contrasts, Z(t) may be able to fully relax from

deviations from its average value within a single dominance, and may even become

smaller than 〈Z〉. Therefore a short dominance may not be systematically followed

by a short dominance, but also by an average, or even a longer dominance. In other

words correlations are suppressed when the modulation rate of average sensory

activity is faster than the average reversal rate.

5.7 Summary

In this chapter, we have presented the main objective of this thesis, which was

to propose a model of bistable perception able to reproduce the all aspects of the

statistics of reversal times, and in particular, the scaling property. Adaptation-

based models are unable to do so because the balance between adaptation and
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Figure 5.18: Our model explains the structure of observed correlations in terms of a slow

drift of evidence activities. A Joint distribution of effective threshold θeff for differential

evidence activity, revealing systematic dependence. B: representative simulation sequence

with evidence activities, x(t) and y(t) (blue and red traces), of finite system (N = 25).

Note slow drift of combined activity, Z = x(t)/2+y(t)/2, with periods above- and below-

average, 〈Z〉. C Differential activity (or evidence-bias) ∆(t) = x(t)−y(t) during a period

of lower activity and longer dominance periods, due to higher θeff . D Differential activity

during a period of higher activity and shorter dominance periods, due to lower θeff

noise they rely on is not robust to changes in stimulus strength. In our model, at

the decision level, competition is implemented in the same manner via mutual inhi-

bition. The difference is that we replaced self-adaptation by a stochastic integration

at a lower level of representation (evidence level), which does not compromise the

FPT statistics. Reversals are now driven by the accumulation of an evidence-bias

∆(t) to the perceptual threshold, i.e. the difference in activity between evidence

populations supporting either competing percept. There are two independent com-

ponents in the dynamics of the evidence-bias: the recovery of evidences supporting

the suppressed percepts, and the habituation of evidences supporting the dominant

percept. One important consequence of this differential integration process is that,

unlike adaptation, its temporal properties can be modulated without affecting the
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stability of perceptual representations at the decision level. This leaves the balance

between deterministic and stochastic components of the dynamics unchanged, so

that the scaling property is verified nearly independently of average dominance du-

rations.

Our new model of multistable perception proposes detailed and comprehensive ac-

counts for important statistical properties of the available behavioural data. In

particular, it explains, both quantitatively and qualitatively, the peculiar input-

dependence of average dominance durations, also known as Levelt’s propositions.

The scaling property, as well as the stereotypical distribution shape of distribution

of dominance durations, are also obtained over most of the range of contrast com-

binations. Furthermore, the model reveals a specific structure of correlations in

alternation series, and identify its origins to a simple mechanism: a slow and noisy

modulation of sensory evidences. This prediction was confirmed in behavioural

data, where the same qualitative contrast-dependence of correlations was observed.

To conclude this study, we will discuss how the constrains imposed by behavioural

data on the model’s dynamics can be understood in the light of neurophysiological

evidences and of other important aspects of perceptual decision-making.
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6
Conclusions

Throughout this dissertation, I have presented the path of investigations which led

to the proposal of a new model of multistable perception. The original objective

of the study to reproduce scale-invariant reversal sequences, as observed in experi-

ments, was successfully met. The resulting model provides a remarkable fit to the

stationary statistics of dominance durations for the first three moments (mean,

CV and skewness), for all combinations of stimulus strengths. At first-order,

Levelt’s propositions (under their most recent reformulation) are all well accounted

for, both qualitatively and quantitatively. At second and third order, the scaling

property is satisfied, and reversal time densities correspond to a Gamma distri-

bution (with cv ≈ 0.6 and the skewness γ1 ≈ 2cv), consistently with behavioural

observations. To the best of my knowledge, this model is the first to reproduce the

available experimental data to this level of detail. Previously introduced models

only partially explain Levelt’s propositions, usually for restricted combinations

of stimulus strength. Importantly, they operate in a narrow noise-driven regime

which prevents the scaling property from holding when average reversal rates vary,

as is necessary to reproduce Levelt’s propositions.

Additionally, our model carries several interesting implications beyond our orig-

inal objectives. The model predicts non-stationary aspects of reversal sequences

on a range of time-scales which had not been previously considered, partly be-

cause sequential correlations reported by experiments were generally considered

157
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too weak. This lack of correlation has often justified the necessity for prior models

to be confined to a noise-dominated regime. In contrast, our model operates in

a strictly drift-dominated regime, where sequential correlations in alternation se-

ries arise from the non-stationary nature of the underlying dynamics. Perceptual

alternations are thus not entirely memoryless, with effects of history-dependence

sometimes lasting over several dominance periods. At high stimulus strength, al-

ternation series become ‘bursty’, forming groups of successive dominance periods of

comparable durations.

Our proposed framework relies on plausible neurophysiological assumptions which

are consistent with observations reported in non-human primates. Furthermore,

our model’s architecture and dynamics rediscover some important aspects of cur-

rent models of decision-making. As such, it could constitute a suitable framework

to study continuous detection and discrimination tasks in changing environments,

where sensory inputs may reflect the simultaneous representation of multiple and

subtly entangled stimuli.

Macroscopic laws reflect the nature of underlying processes

The unquestionable complexity of the brain’s structure and dynamics, along with

the autonomous nature of its development, from single-cells to functional networks,

is perhaps one of the most salient instance of self-organization in nature. Several

aspects of brain dynamics are known to reproduce hallmarks of critical behaviour,

such as multistability and scale-invariant fluctuations, which may reflect functional

imperatives of neural systems [Beggs and Plenz, 2003, Petermann et al., 2009,

Freyer et al., 2012, Hesse and Gross, 2014]. Similarly, multistable phenomena

are thought to reveal the self-organized nature of perceptual representations, and

reversal behaviour to manifest a self-induced instability ensuring that all plausible

interpretations of the stimulus are explored [Friston et al., 2012, Pastukhov et al.,

2013]. For systems operating at criticality, dynamical properties at different scales

are singularly linked, in that the qualitative nature, rather than the details of

their microscopic constituents, can directly reflect the emergence of macroscopic

laws. Prior models have focused on detailing the mechanism underlying reversal
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behaviour, and generally rely on mean-field assumptions which precludes them

from interpreting macroscopic fluctuations as an emergent property of collective

microscopic dynamics. In contrast, this thesis shows that the scaling property

of multistable perception constrained the qualitative properties and dynamics of

the underlying neural processes at different levels of the hierarchy of perceptual

representation.

The first aspect of the scaling property, i.e. the invariance of shape of reversal

times densities, is ensured by assuming spontaneous activity in metastable units at

a microscopic scale (see Chapter 2-3). The second aspect of the scaling property,

i.e. the specific Gamma-like shape of reversal times densities, requires stochastic

accumulation at the mesoscopic scale to operate in a far-from-equilibrium and

transient operating regime (see Chapter 4). Finally, at the macroscopic scale, or

behavioural level, a specific structure of hierarchical interactions, featuring both

feedforward and feedback projections was required to implement perceptual rever-

sals, whilst preserving the higher-order statistics of alternation sequences (Chap. 5).

Microscopic scale, local attractors

At the very basis of our approach lies the idea that patterns of brain activity evoked

by external stimulation correspond to the activation of ‘pre-existing’ states, and that

such states can be also accessed spontaneously even in the absence of stimulation.

We used stochastic bistable units to represent the dynamics of those states. Indi-

vidually, these units can be thought of as local attractor networks, with which they

share some fundamental properties: local bistability, noise-driven transitions, and

input-dependent transition rates [Amit, 1995]. Attractor assemblies seem particu-

larly well-suited to describe spontaneous brain activity: given adequately balanced

recurrent excitation and inhibition, such networks become bistable may sponta-

neously transit between a ‘low’ or ‘high’ state of activity, driven by endogenous

fluctuations. Transition rates between the two coexisting states typically depend

on incoming synaptic activity and on the strength of recurrent connections [Amit
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and Brunel, 1997].

The columnar organisation of cortical neurons, the structure of synaptic connections

within cortical columns, and of lateral projections between neighbouring columns

or clusters of columns, suggest a highly heterogeneous connectivity map dominated

by local recurrent projections: a key feature of local attractor assemblies [Douglas

et al., 1995, Douglas and Martin, 2007]. Although it is currently not known whether

neural assemblies actually behave as stereotypically as our hypothetical metastable

units do, evidences of sequential transitions between distinct modes of activity have

been reported in recordings of cortical neurons in premotor, parietal and visual

areas of primates [Abeles et al., 1995, Mattia et al., 2013, Latimer et al., 2015].

Mesoscopic and macroscopic scale, ‘nested attractors’

At the mesoscopic scale, when considering of a finite population of bistable units, we

have seen that behavioural statistics impose strict conditions on the accumulation

of activity leading to perceptual reversals. Although we have assumed that bistable

units within the same pool do not interact, the energy landscape corresponding

to the evolution of population activity is uneven, and the diffusion not necessarily

homogeneous: in fact, this is only the case at and around steady-state activity.

Since accumulation of activity must proceed far-from-equilibrium, population

dynamics is constrained to a transient wandering in an heterogeneous and granular

energy landscape. The implications of these characteristic features are perhaps

more compelling when considering both evidence and decision level, to include the

macroscopic scale at which perceptual reversals are observed.

In this context, slow transient dynamics emerges at the level of evidence pools,

from successive stochastic hopping between local attractors. Accumulation of

evidences ultimately drives transitions between global attractor states, observed

in the form of perceptual reversals at the level of decision pools. This realises

a ‘chaotic itinerancy’, in a ‘nested attractor’ landscape (i.e. ‘attractors within

attractors’), during which a limited repertoire of accessible states is explored until

a perceptual decision occurs, or in multistable perception, a perceptual reversal

[Durstewitz and Deco, 2008, Gigante et al., 2009, Braun and Mattia, 2010, Friston
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et al., 2012].

A similar type of slow, transient dynamics between distinct modes of activity

has been implemented in networks of spiking-neurons, using an heterogeneous,

clustered structure of connectivity forming a number of functional subnetworks

[Litwin-Kumar and Doiron, 2012]. This is qualitatively equivalent to the result

discussed in Section 3.4.3, we have proposed an extension of the Ehrenfest process

which consider the collective dynamics of interacting bistable units, which can

be thought of as an heterogeneous, multi-modular cortical network, or cluster of

interacting cortical columns.

Patterns of interactions observed within cortical circuits are consistent with the

picture proposed by clustered attractor networks. At the scales considered by such

models, attractor-like states are observed in the form of spatially distributed and

transient patterns of activity, rather than localised steady-states [Braun and Mattia,

2010, Wang, 2012]. Anatomical studies reveal similar ‘patchy’ patterns of connec-

tivity in superficial layers of primates’ visual cortex [Lund et al., 2003, Tanigawa

et al., 2005]. Remarkably, both spontaneous and evoked patterns of brain activity

observed in imaging studies seem to directly reflect this peculiar organisation: while

such activity is undeniably stochastic, it is far from random. The spatiotemporal

structure of spontaneous neuronal responses is closely related to that of evoked

responses; this led to the suggestion that spontaneous cortical dynamics rehearses

reproducible patterns from a limited repertoire, autonomously revisiting states that

may have been previously explored under sensory stimulation [Kenet et al., 2003,

Beggs and Plenz, 2004, Han et al., 2008, Luczak et al., 2009, Berkes et al., 2011]. In a

recent imaging study, transient brain activity during perceptual rivalry was reduced

to sequential activation between a finite number of distributed stable activity states

[Watanabe et al., 2014]. Reconstruction of the associated energy landscape revealed

a ‘nested attractor’-like structure, in which exploration of intermediate local minima

allowed transitions between more segregated, larger basins of attractions. Neuro-

physiological evidences therefore appear to support a ‘nested attractor’ framework

to describe and for which this thesis proposed an effective implementation.
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Top-down influences balance ‘Exploration’ and ‘Exploitation’

A growing body of evidence supports the idea that multistability arises from

interplay between neural processes at different levels of the hierarchy of visual

processing, and involve mutual interactions between both low- and high-level

representations of the stimulus’ properties. [Leopold and Logothetis, 1999, Blake

and Logothetis, 2002, Sterzer et al., 2009, Kornmeier et al., 2009, Kornmeier and

Bach, 2012]. The ineluctability and inherent stochasticity of reversal behaviour

may reflect a perceptual analogue of the ‘exploration-exploitation dilemma’, in

that stochastic exploration adjusts the relative contribution of prior knowledge

and current sensory input [Leopold and Logothetis, 1999, Hohwy et al., 2008,

Sundareswara and Schrater, 2008, Moreno-Bote and Knill, 2011]. Perception may

operate in a marginally stable regime to reach an optimal compromise between

perceptual stability and sensitivity, to ensure a continued representation of the

stimulus while allowing alternative interpretations to be considered [Friston et al.,

2012, Pastukhov et al., 2013].

For prior models relying on a self-adaptation mechanism to implement perceptual

reversals, this specific operating point typically lies in a narrow parameter range

in the vicinity of an oscillatory bifurcation, with the important drawback that

the scaling property can not be satisfied (see Section 5.2). Comparatively, our

hierarchical model expresses this balance between exploration and exploitation in

a more robust manner. On the one hand, conscious perceptual dynamics is very

sensitive to changes in the subconscious dynamics of sensory evidences, perceptual

thresholds are small, and only a few activations (or inactivations) are needed to

initiate perceptual reversals. On the other hand, dominant appearances are not eas-

ily destabilised by endogenous noise, and remain stable between successive reversals.

In our proposed framework, the regime in which reversal behaviour occurs re-

veals a joint and coordinated hierarchical dynamics between evidence-driven influ-

ences and decision-driven influences. While initial percept selection directly results

from feedforward excitation, reversals result from a combination of feedforward
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excitation, and feedback inhibition. Between successive reversals, sensory dynam-

ics consists of two separate and antiphasic components: evidences supporting the

currently suppressed percept recover, while evidences supporting the alternative

(dominant) percept habituate, driven by the current perceptual state. In that sense,

the resulting dynamics highlights an ‘exploration’/‘exploitation’ balance, with top-

down influences playing a central, albeit not exclusive role in enabling exploratory

behaviour. Changes in perception at a higher-level of cognition prompt the re-

organisation of earlier sensory areas: while the dominant appearance is steadily

maintained, a stochastic exploration is carried out at the lower-level [Leopold and

Logothetis, 1999]. The idea that sensory information supporting alternative or dom-

inant appearances is continuously integrated and discarded (‘explained away’), has

previously been highlighted by several authors in a comparable way [Sundareswara

and Schrater, 2008, Hohwy et al., 2008].

Whether perceptual reversals result from bottom-up ‘passive’ neural processes such

as self-adaptation, or from top-down ‘active’ cognitive processes such as attention,

is not definitely known, and remains an active topic of research and debate. Evi-

dences in support of both alternative have been reported, and some experimental

studies suggest that they may not mutually exclusive and could cooperatively con-

tribute to reversal dynamics [Lumer and Rees, 1999, Kornmeier et al., 2009, Wang

et al., 2013]. Interestingly, several authors have formulated qualitative mechanisms

to incorporate both bottom-up and top-down influences in an attractor-like picture,

in which the energy landscape associated with perceptual choices is continuously re-

shaped by both unconscious sensory integration and conscious experience [Friston,

2003, Hohwy et al., 2008, Friston, 2010, Friston et al., 2012, Kornmeier and Bach,

2012, Wang, 2012]. Our proposed framework explicitly materializes this scenario:

the profile of the energy landscape associated with accumulation of sensory evidence

between reversals is not static, rather, it adapts with incoming sensory input, via

bottom-up influences, and conscious experience, via top-down influences.

It is interesting to note that our model offers an alternative perspective on the

exploration-exploitation dilemma, as originally formulated in reinforcement learn-

ing, and as practically implemented in Bayesian models of multistable perception:
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it does not assume exploratory behaviour to reflect a stochastic rule, such as neural

sampling [Sutton and Barto, 1998, Sundareswara and Schrater, 2008, Moreno-Bote

and Knill, 2011]. Here, exploration emerges as a natural by-product of our model’s

hierarchical and reciprocal structure of interactions. This suggests that, in con-

trast to the passive self-adaptation mechanism used in previous models, our active,

percept-driven habituation mechanism may be interpreted in terms of an inferential

process, such as predictive coding [Hohwy et al., 2008].

Relation to probabilistic inference by sampling

Fluctuations in neural activity may serve an important functional role in the neural

computations underlying perceptual decisions. In agreement with Helmholtz’s

seminal intuition that visual perception is an inference process, there is mounting

evidence that such variability can enable neural circuits to perform perceptual

decisions probabilistically, by representing sensory uncertainty in the form of

probability distributions [von Helmholtz, 1866, Hoyer and Hyvärinen, 2003, Knill

and Pouget, 2004]. The way such mechanisms are effectively achieved within neural

assemblies constitute an increasingly active area of research [Hoyer and Hyvärinen,

2003, Fiser et al., 2010, Haefner et al., 2016, Orbán et al., 2016]. Fluctuations in the

firing activity of a single-neuron may directly reflect an inherent uncertainty of the

quantity or object it represents [Deneve, 2008a,b, 2012]. In probabilistic population

codes, fluctuations in individual firing activity over a whole neural population can

represent uncertainty in terms of a complete probability distribution [Ma et al.,

2006, Beck et al., 2008, Pouget et al., 2013]. There is also mounting evidence

that neural circuits implements approximate probabilistic inference by means of

stochastic sampling [Hoyer and Hyvärinen, 2003, Fiser et al., 2010, Moreno-Bote

and Knill, 2011, Gershman et al., 2012, Haefner et al., 2016, Orbán et al., 2016].

The present study highlights a situation in which the transient nature of

nonequilibrium fluctuations are of particular importance to account for important

aspects of behavioural data (see Chapters 4). This is qualitatively different from

perceptual transitions in adaptation-based models, in which reversals are generally



165

noise-dominated, and reflect fluctuations around equilibrium. These dynamical

features are not exclusive to multistable perception, and have already been dis-

cussed in the broader context of perceptual decision-making. It has been proposed

that stochastic transient dynamics across metastable attractors may reflect neural

processes involved in cognition more realistically than classical fixed-point attractor

states [Durstewitz and Deco, 2008, Braun and Mattia, 2010, Friston et al., 2012,

Wang, 2012]. Given the inherent non-stationary nature of cortical activity, that the

reproduction of important statistical features of multistable perception was only

possible in this regime, may not be incidental: far-from-equilibrium operation may

indeed reflect a functional feature of neural representations underlying perceptual

dynamics.

It has long been understood that Bayesian inference can be approximated by

stochastic systems assembled from discrete, binary components (variantes of Boltz-

mann machines; [Hinton and Sejnowski, 1986], Learning and relearning in Boltz-

mann machines; Markov random fields; [Robert and Casella, 1998, Hinton, 2014]),

not unlike the discrete, bistable units postulated here. It has also been pointed out

that such systems would naturally exhibit multi-stability, as well as other top-down

effects during perceptual inference [Gershman et al., 2009, 2012, Hinton, 2014].

However, these models are of limited practical value, because they converge very

slowly, The reason is that the dynamics operates near equilibrium (Glauber dynam-

ics), where the state space is extremely large.

In this context, E. T. Jayne’s information-theoretic approach to statistical physics

appears to have important consequences, for his approach can be applied to study

fluctuations in discrete stochastic systems (which are capable of approximating sta-

tistical inference) by extending the principle of entropy maximization to the path

entropy of microtrajectories [Jaynes, 1983, Ghosh et al., 2006, Pressé et al., 2013].

A key concept is potency (or caliber), which measures the fraction of all micro-

trajectories that lead to a substantial change in the systems macrostate. The two

aspects of greatest interest in the present context are that (i) potency grows with

distance from equilibrium and (ii) potency decreases with system size. Thus, the
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principles of maximum caliber imply that fluctuations in a smaller system, operat-

ing farther from equilibrium, will shift macrostates faster and more reliably than

fluctuations in larger system near equilibrium. In other words, there may be com-

pelling physical reasons for approximating perceptual inference with a dynamical

system that operates (i) far from equilibrium and (ii) with a small population of

discrete units, both of which we important requirements for our model to reproduce

the stastistics of multistable perception.

Inter-individual disparities

An additional interesting implication of our model concerns the inter-individual

disparity of reversal rates, a long-known and remarkable feature of perceptual

rivalry. For the same rivalry display, average reversal rates between subjects can

span over an order of magnitude [Fox and Herrmann, 1967, Walker, 1975]. The

reasons for such differences are not well understood. Recent imaging studies

have proposed that such inter-individual differences in perceptual timing may in

fact reflect anatomical differences: grey matter density in brain areas mediating

perceptual rivalry (notably in the superior parietal lobule) was shown to signifi-

cantly correlate with reversal rate [Kanai et al., 2011, Kleinschmidt et al., 2012,

Watanabe et al., 2014]. These results have usually been interpreted in terms of the

strength and nature of connectivity between these areas and earlier sensory areas

[Kleinschmidt et al., 2012, Megumi et al., 2015].

Another study reports strong correlations between concentrations of γ-

Aminobutyric acid (GABA) - the principal inhibitory neurotransmitter - in

visual areas, and average reversal times for three types of multistable displays

(BR, MIB and KDE) Van Loon et al. [2013]. The authors were able to reproduce

these results in an adaptation-based model by modulating the strength of mutual-

inhibition.

Here we contribute to this debate by proposing an alternative - and compatible

- perspective on this issue. Note that, in the GE process, the characteristic time

of evidence pools can be set to arbitrarily small or large values, without compro-
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mising its overall dynamics or the statistics of alternation sequences. Differences in

the individual activation rates of bistable units, which intrinsically define the char-

acteristic time-scale of collective activation, could account for the wide differences

in average reversal rate reported between observers.

There are several ways in which this time-constant could be modulated. First, since

bistable units can be thought of as a recurrently coupled network of neurons, differ-

ent degrees of self-excitation would yield shallower or deeper basins of attraction,

and thereby faster or slower individual transition rates, respectively. Second, the

level of interactions between bistable nodes has a direct effect on the characteristic

time-scale at which the evaluation of sensory evidence operates, whilst preserving

higher-order properties (as discussed in Section 3.4.3). Finally, recall that, during

the habituation phase, when evidence supporting the dominant percept is gradually

suppressed, the characteristic time-scale of habituation would also be affected by

the weight of top-down inhibition: a stronger coupling could in principle reduce the

average dominance period (as also suggested in [Kleinschmidt et al., 2012]).

Limitations and outlook

To capture more qualitative aspects of multistable perception, our approach

remained intentionally simplistic, and therefore may not reproduce all details of

more elaborate experiments. For instance, events occurring on a much shorter

characteristic time-scale than that of the individual bistable units can not be

well captured in the collective dynamics. This prevents the model, under its

present form, to account for experimental results involving fast transient stimulus.

One solution could be to include different types of bistable units at the evidence

level, some with fast switching rates, others with low switching rates, or to

consider inhomogeneous interactions, similarly to clustered attractor networks

[Litwin-Kumar and Doiron, 2012].

Conversely, particularly slow modulations such as critical slowing can not be

readily obtained [Leopold and Maier, 2012]. Here, the solution would require

slow memory pools to be introduced, as previous proposed in a previous model of

multistability [Gigante et al., 2009].
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There is also no explicit spatial dimension in the model. Experiments involving

spatially extended stimuli, for which perceptual grouping may play a role and

produce effects such as ‘piecemeal rivalry’ and ‘travelling waves’ are thus out of

the model’s scope. These issues have already been investigated in traditional

energy-well models, by considering that ‘complete’ rivalry of large stimuli could be

represented by the interaction between ‘partial’ or ‘local’ rivalries responding to

different regions of the stimulus [Kang, 2009]. A similar extension could also be

considered for the present model.

Our approach sought to generalise the picture offered by drift-diffusion models,

and provide a neurophysiological basis for the stochastic decision variables thought

to underlie perceptual decisions. By reconciling the dynamics of neural attractor

assemblies and of stochastic diffusion-to-bound within a hierarchical structure,

our practical implementation of a ‘nested attractor’ confirmed the promising

nature of such framework, as predicted by several authors [Gigante et al., 2009,

Braun and Mattia, 2010]. Gratifyingly, our model expresses important features of

decision-making theories and may carry important implications beyond the context

of multistable perception.

Presumably, visual interpretation of natural scenes involves a general disam-

biguation mechanism, which becomes increasingly engaged as the uncertainty

about the true nature of the stimulus increases [Yuille and Kersten, 2006, Sterzer

and Rees, 2008, Wang et al., 2013, Pastukhov et al., 2013]. Multistable perception

can be thought of as being positioned at one end of this ‘spectrum’ of increasing

stimulus uncertainty, in that it reflects a perfectly ambiguous scenario where

the action of this mechanism phenomenally affects perceptual dynamics, making

perceptual reversals particularly noticeable. However, multistability may be

a widespread feature of perceptual dynamics and operate unnoticed in many

situations, for instance, when considering real-world stimuli where competition

between multiple subtly ambiguous elements would not trigger reportable conscious

changes [Deco et al., 2007, Pastukhov et al., 2013]. Therefore, neural processes un-
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derlying multistable perception may operate on the basis than the disambiguation

mechanism which allows correct categorization of all visual inputs.

The success of the present study in accounting for empirical observations of mul-

tistable phenomena, in a mechanically simple and neurophysiologically plausible

manner, suggests that we may have, at least in parts, uncovered the dynamical

mechanisms and neural circuits of perceptual inference. We therefore expect that

our models architecture and dynamics could be extended to perform perceptual

decisions in increasingly complex and ecologically realistic scenarios.

At this point, I see two main research directions to further develop of this

framework. A first direction would be to consider continuous classification

tasks in changing environments and a second direction would consider complex,

high-dimensional stimuli, with a large number of relevant features. Both directions

could eventually be combined into a comprehensive theory of normal vision.

Consider an environment with two alternating stimuli appearing and disappearing

at random times. In this simple case, the identity of the current stimulus can

be inferred optimally, for example by means of a sequential probability ratio

test (SPRT) [Wald, 1947]. In more challenging situations with multiple stimulus

alternatives and/or stimulus statistics that change over time, the computational

demands of optimal inference grow prohibitively [Moran, 2015]. Even under such

conditions, optimal inference can be approximated by stochastic dynamical systems

that incorporate either non-linear interactions to satisfy additional time-dependent

constraints [Deneve, 2012, Veliz-Cuba et al., 2016] or time-dependent perceptual

threshold (see for instance [Hanks et al., 2011, Drugowitsch et al., 2012]). In

view of the close resemblance between these systems and the model proposed

here, it is evident that the present model could readily be adapted to performing

continuous inference in a changing environment. For example, one adaptation

beneficial for inference could be to match the switching rates of evidence units

to the presentation times of the stimuli in question, and another one could be

to employ feedback inhibition to suppress (explain away) evidence for already

discriminated stimuli, such as to increase sensitivity for other stimuli.
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Generalizing optimal inference to high-dimensional stimuli with multiple relevant

features is mathematically challenging and the equivalence of stochastic dynamical

models has not been established [Bitzer et al., 2014, Veliz-Cuba et al., 2016].

However, multiple-choice discriminations can be realized by coupling several

diffusion models (each accumulating evidence for a different choice) by means of

hierarchical interactions [Mazurek et al., 2003, Bogacz et al., 2006, Ditterich, 2010,

Bollimunta and Ditterich, 2012]. Similar extensions could be envisaged for our

model, creating a hierarchical architecture very much akin to a global neuronal

workspace [Dehaene and Changeux, 2011]: unconscious sensory nodes projecting

onto higher-level assemblies which, in turn, relay decisional outcomes back to

sensory nodes.

The model we have introduced in this thesis, although introduced to solve the

particular case of multistable perception, appears adaptable and generalizable in

ways which are compatible with recent advances in theories of perceptual decision

making, and . The question of whether our proposed framework can be successfully

transposed to more general situations, and ultimately, to normal vision, offers truly

exciting future research prospects.
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Appendix A

General solution of the Ehrenfest process

We derive the formula for Pik(t), the probability to start with i active nodes at time

t = 0 and have k active nodes at time t. For this, we start from the probability

generating function ((3.18)):

Gi(z, t) = (λz + µ)N
[
1 + λ

1− z
λz + µ

e−t/τ
]N−i [

1− µ 1− z
λz + µ

e−t/τ
]i

(A.1)

To expand this in powers of z and identify Pik(t), we use the generating function

of Krawtchouk polynomials:

(
1− µ

λ
x
)i

(1 + x)N−i =
N∑
n=0

(
N

n

)
Kn(i)xn (A.2)

We recall:

Kn(x) = 2F1(−n,−x,−N, 1/λ) =
n∑
k=0

(−n)k(−x)k
(−N)kk!

(
1

λ
)k (A.3)
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Gi(z, t) =
N∑
n=0

(
N

n

)
Kn(i)λnµN−n(1− z)n(1 +

λ

µ
z)N−ne−

nt
τ

=
N∑
n=0

(
N

n

)
Kn(i)λnµN−n

N∑
k=0

(
N

k

)
λ

µ

k

Kk(n)e−
nt
τ zk

=
N∑
k=0

[(
N

k

)
λ

µ

k N∑
n=0

(
N

n

)
λnµN−nKi(n)Kk(n)e−

nt
τ

]
zk

Where we have used expression (A.2) twice, and also the identity Kn(i) = Ki(n).

We can identify the probability Pik(t) as:

Pik(t) =

(
N

k

)
λ

µ

k N∑
n=0

(
N

n

)
λnµN−nKi(n)Kk(n)e−

nt
τ (A.4)

Details on FPT moments derivation

To calculate the mean first-passage-time, we start from expression (3.32). At first-

order, we have

d

dx

(
Ki(x)

Kj(x)

)∣∣∣∣
x=0

=
K ′i(x)Kj(x)−K ′j(x)Ki(x)

K2
j (x)

∣∣∣∣
x=0

= [K ′i(x)−K ′j(x)]
∣∣
x=0

(A.5)

We now need to calculate the derivatives of the Krawtchouk polynomials with

respect to x, which actually reduces to calculating the derivative of the pochammer

symbol. For this, we introduce the first-order derivative of the Gamma function,

also known as the Digamma function:

ψ0(x+ 1) = ψ0(x) +
1

x
(A.6)

By using the recurrence relation defined by (A.6), we can evaluate the derivative
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of the Pochhammer symbol (3.26) in zero as follows:

d

dx
(x)k = (x)k(ψ0(x+ k)− ψ0(x)) = (x)k ·

k−1∑
r=0

1

x+ r

= (x)k

(
(x+ 1) . . . (x+ k − 1)

x(x+ 1) . . . (x+ k − 1)
+ · · ·+ x(x+ 1) . . . (x+ k − 2)

x(x+ 1) . . . (x+ k − 1)

)
= (x+ 1) . . . (x+ k − 1)︸ ︷︷ ︸

x→0−→(k−1)!

+ · · ·+ x(x+ 1) . . . (x+ k − 2)︸ ︷︷ ︸
x→0−→0

(A.7)

This takes the simple form:

d

dx
(x)k

∣∣∣∣
x=0

=

(k − 1)! if k > 0,

0 if k = 0.

(A.8)

Similarly, at second order:

d2

dx2

(
Ki(x)

Kj(x)

)∣∣∣∣
x=0

= [K ′′i (x)−K ′′j (x)− 2(K ′i(x)−K ′j(x))K ′j(x)]
∣∣
x=0

(A.9)

For the Pochhammer symbol:

d2

dx2
(x)k = (x)k[ψ0(x+ k)− ψ0(x)]2 + (x)k[ψ1(x+ k)− ψ1(x)]

= (x)k


(
k−1∑
r=0

1

x+ r

)2

−
k−1∑
r=0

(
1

x+ r

)2


= 2(x)k

k−1∑
r,r′=0
r<r′

1

x+ r

1

x+ r′
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As before, we can explicit further explicit the sum:

∑
r<r′

1

x+ r

1

x+ r′
=

[
1

x

1

x+ 1
+

1

x

1

x+ 2
+ . . .

+
1

x+ 1

1

x+ 2
+

1

x+ 1

1

x+ 3
+ . . .

+
1

x+ 2

1

x+ 3
+

1

x+ 2

1

x+ 4
+ . . .

]
=

[
(x+ 2)(x+ 3) . . . (x+ k − 1) + (x+ 1)(x+ 3) . . . (x+ k − 1) + . . .︸ ︷︷ ︸

+ x(x+ 3) . . . (x+ k − 1) + x(x+ 2)(x+ 4) . . . (x+ k − 1) + . . .

+ . . . ]
1

(x)k

Again, most terms will vanish when taking the limit x −→ 0, except the under-

braced expression We introduce the harmonic number Hn =
∑n

k=1 k
−1, and finally

obtain

d2

dx2
(x)k = 2(k − 1)!

[
1 +

1

2
+ · · ·+ 1

k − 1

]

=

2(k − 1)!Hk−1 if k > 0,

0 if k = 0.

(A.10)

The same method was used to obtain the two following orders.

General solution of the balanced Poisson process

We start from the generating distribution (4.8), which we expand in powers of z

using the binomial formula:
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τ e
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τ
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τ

∑
n

∑
k

(
t

τ

)2k+n
(√
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=
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{(
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zn (A.11)

Due to the negative powers in z, each coefficient in the power expansion is

defined by an infinite series which can be identified to the modified Bessel function

of the first kind In(x).

Equilibrium distribution of the CIR process

After a change of variable y = λ(1− x) + µx in the Fokker-Planck equation for the

CIR process (4.18):

τ
∂p(y, t)

∂t
= −dy

dx

∂

∂y

[(
λ− λ− y

λ− µ

)
p(y)

]
+

1

2N

(
dy

dx

)2
∂2

∂y2
[yp(y)] (A.12)

= − ∂

∂y
[(2λµ− y)p(y)] +

1

2

∂2

∂y2

[
(λ− µ)2

N
yp(y)

]
(A.13)

We obtain the stationary solution pst by integrating (A.13) with the time-

derivative set to zero:

pst = C · y 4λ
σ2
−1e−

2y

σ2 (A.14)

Where σ2 = (λ−µ)2

N
, and C =

[
Γ(4λ

σ2 )σ
2

2

4λ
σ2

]−1

an integration constant we deter-

mine by normalisation of pst . After reverting the change of variable, we obtain:

pst =
1

Γ(4λ
σ2 )σ

2

2

4λ
σ2

(λ− (λ− µ)x)
4λ
σ2
−1 e−

2
σ2

(λ−(λ−µ)x) (A.15)
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We can compare this distribution to the binomial distribution of parameter λ,

the stationary distribution for the Ehrenfest process (3.6):

Figure A.1: Comparison of the stationary distributions for the CIR (solid grey line) and

the Ehrenfest process (dotted red line), with λ = 0.78 and µ = 1− λ, with N = 20 (left)

and N = 40 (right).

Alternative FPT moments formulae (numerical)

Here, we detail the method to obtain the moments of the first-passage-time density

for the Fokker-planck equation with drift µ(x, xin and diffusion σ2(x, xin :

∂p(x, t)

∂t
= − ∂

∂x
(µ(x, xin) p(x, t)) +

1

2

∂2

∂x2

(
σ2(x, xin) p(x, t)

)
(A.16)

Starting with an initial condition x0, we want to know the time T (x0) for the

system to reach a certain threshold θ. T (x0) is a random variable with probability

distribution g(t, x0).

The density g(t, x0) satisfies the associated backward Fokker-Planck equation:

∂g(t, x0)

∂t
= +µ(x0, xin)

∂

∂x0

g(t, x0) + σ2(x0, xin)
∂2

∂x2
0

g(t, x0) (A.17)

Defining the n-th moment of random variable T (x0) as: Tn(x0) =∫∞
0
tng(t, x0)dt, we can obtain the mean and variance of the first-passage time

by solving the following set of equation (using the fact that T0 = 1 by normali-

sation of distribution g) [Tuckwell, 1988/2008]. We can therefore obtain moments
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recursively:

− 1

σ2(x0, xin)
=

µ(x0, xin)

σ2(x0, xin)
T ′1(x0) + T ′′1 (x0)

−2
T1(x0)

σ2(x0, xin)
=

µ(x0, xin)

σ2(x0, xin)
T ′2(x0) + T ′′2 (x0)

Setting ψ(x) =
∫ x
∞ dy

µ(x0,xin
σ2(x0,xin

leads to the following integral formulae, which can

be evaluated numerically:

T1(x0) =

∫ θ

x0

dx

[∫ x

0

dy
eψ(y)

σ2(x0, xin)

]
e−ψ(x)

T2(x0) =n

∫ θ

x0

dx

[∫ x

0

dy
T1(y)

σ2(x0, xin)
eψ(y)

]
e−ψ(x)
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Optimized parameters

Optimized model parameters are summarized here.

τint τdec WE,dec WI,dec WE,ff WI,ff

1.9494 0.017669 15.2053 33.3775 152.1868 32.1033

WI,fb θdec α β γ

2.3402 -4.9383 0.65552 0.082017 0.070875

Vicinity of optimal parameters set

To confirm that the fit with experimental data obtained from the minimization

procedure was indeed optimal, and could not be further improved, we studied the

behaviour of the fit error in the vicinity of the optimal parameter set.

For each parameter αi, 10 values α
(j)
i in are picked in the direct vicinity of the

optimal parameter αopt
i . For each α

(j)
i , the fit error R̄(j) is computed, defining a

scatter plot of the pairs (α
(j)
i , R̄(j)) which is approximated by a quadratic function.

For most parameters the estimated quadratic function is convex, so that the corre-

sponding coefficient of the Hessian matrix associated with the fit error is positive.

Also, the estimated extremum for each parabola is close to the corresponding opti-

mal parameter. These results indicate that this parameter set is indeed a minimum

for the fit error.
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a.1 a.2 a.3 a.4

a.5 a.6 a.7 a.8

a.9 a.10 a.11 b

c

Figure B.1: Results of the optimization algorithm. (a.1-11): For each of the 11 pa-

rameter, blue dot corresponds to the value of the parameter at the outcome of one min-

imization, a red circle highlights to the optimal parameter value. (a.1): Evidence pools

time-constant (s). (a.2): Decision pools time-constant (s). (a.3): Decision pools self-

excitation. (a.4): Decision pools mutual-inhibition. (a.5): Specific feedforward excita-

tion. (a.6): Specific feedback inhibition. (a.7): Unspecific feedforward inhibition. (a.8):

Decision layer offset (constant input). (a.9-11): α, β and γ the input-mapping parame-

ters. (b) Each colored dot corresponds to one minimization in the space (WE,ff ,WI,dec),

corresponding to the bifurcation parameters of the model. Colors represent the fit error

(blue-to-red, low-to-high fit error). Minimizations form a dense group showing the oscilla-

tory regime, where perceptual alternations are obtained. (c): Histogram of minimizations

vs. fit error.
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Figure B.2: For each panel, corresponding to each parameter αi: blue dots correspond

to the position of the pairs (α
(j)
i , R̄(j)). A red cross indicates the position of the pair

(αopt
i , R̄opt). Red solid curves represent the quadratic approximation of the scatter

plot passing through (αopt
i , R̄opt), red dotted curves represent the standard deviation

between the quadratic approximation and the (α
(j)
i , R̄(j)) pairs. A green circle locates

the position of the estimated extrema, whose is indicated in green brackets (left) with

the value corresponding estimated fit error (right).



Appendix B. Appendix B 184



C
Appendix C

Transition-triggered averages

A convenient way to verify that the model operates in its intended regime, is to

study transition-triggered averages, or in other words, the average values of activity

in evidence and decision pools preceding and succeeding perceptual reversals, are .

The following figures confirm that evidence pools cross the perceptual threshold

in a DDR, driving a fast and sharp transition at the level of decision pools. The

drift-dominated approach to the threshold is best appreciated when observing the

dynamics of the evidence-bias ∆(t) = x(t) − y(t). The position of the differential

threshold is well-defined and the reorganisation of sensory evidences, where the

habituation and recovery phases are reversed, immediately follows perceptual re-

versals.

Three different situations are proposed: when both contrasts are low (see Fig. C.1),

when both contrasts are high (see Fig. C.2), and when one contrast is low, and the

other high (see Fig. C.3). Note that for increasing contrasts the average activity

of evidence pools is increased, and reversal threshold decrease. Also, transitions are

sharper for increasing contrast, as is made apparent by the slope of the evidence-bias

at the threshold.
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Figure C.1: Transition-triggered averages in the low contrasts condition (both contrasts

set to 0.0625%), reversal times are centred at t = 0. Dominance duration statistics (mean,

CV and skewness) for percept X and Y are indicated at the top. Left column: activities

in pools associated with percept X (blue) losing dominance. Right column: activities

in pools associated with percept Y (red) losing dominance. Top: Decision pools activity.

Middle: Evidence pools activity. Bottom: Evidence-bias ∆.
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Figure C.2: Transition-triggered averages in the high contrasts condition (both contrasts

set to 100%), reversal times are centred at t = 0. Dominance duration statistics (mean,

CV and skewness) for percept X and Y are indicated at the top. Left column: activities

in pools associated with percept X (blue) losing dominance. Right column: activities

in pools associated with percept Y (red) losing dominance. Top: Decision pools activity.

Middle: Evidence pools activity. Bottom: Evidence-bias ∆.
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Figure C.3: Transition-triggered averages in the unbalanced contrasts condition (con-

trasts for percept X (blue) set to 0.0625%, contrast for percept Y (red) set to 100%),

reversal times are centred at t = 0. Dominance duration statistics (mean, CV and skew-

ness) for X and Y are indicated at the top, here X is weak, has short dominances and

slightly lower CV; Y is strong, has long dominances and slightly greater CV. Left col-

umn: activities in pools associated with X losing dominance. Right column: activities

in pools associated with Y losing dominance. Top: Decision pools activity. Middle:

Evidence pools activity. Bottom: Evidence-bias ∆.
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A. Destexhe and D. Paré. Impact of network activity on the integrative properties of neocortical

pyramidal neurons in vivo. J. Neurophysiol., 81(4):1531–1547, 1999.

H. Dette. On a generalization of the Ehrenfest urn model. J. Appl. Probab., 31(4):930–939, 1994.

J. Ditterich. A comparison between mechanisms of multi-alternative perceptual decision mak-

ing: Ability to explain human behavior, predictions for neurophysiology, and relationship with

decision theory. Frontiers in Neuroscience, 4:1–24, 2010.

R. Douglas, C. Koch, M. Mahowald, K. Martin, and H. Suarez. Recurrent excitation in neocortical

circuits. Science, 269(5226):981–985, 1995.

R. J. Douglas and K. A. C. Martin. Recurrent neuronal circuits in the neocortex. Current Biology,

17(13):496–500, 2007.

J. Drugowitsch, R. Moreno-Bote, A. K. Churchland, M. N. Shadlen, and A. Pouget. The cost

of accumulating evidence in perceptual decision making. The Journal of neuroscience : the

official journal of the Society for Neuroscience, 32(11):3612–3628, 2012.

D. Durstewitz and G. Deco. Computational significance of transient dynamics in cortical networks.

Eur. J. Neurosci., 27:217–27, 2008.
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