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Zusammenfassung

Diese Arbeit beschreibt einen neuen Ansatz für die Rekonstruktion von eindimen-
sionalen tiefenabhängigen Permittivitätsprofilen von planen, zylindrischen und kugelförmi-
gen Objekten, die von einer beliebigen TE oder TM polarisierten Welle beleuchtet
werden. Die Rekonstruktion von Permittivitätsprofilen von planen und nicht pla-
nen Objekten bildet die Basis für die Darstellung von beliebig geformten dielek-
trischen Körpern, wenn Antennen hoher Direktivität für die laterale Abtastung ver-
wendet werden. Die Hauptvorteile der neuen von uns vorgeschlagenen Technik sind,
dass eine eindeutige Lösung erreicht wird und das die Darstellung stark streuen-
der Objekte möglich wird. Ein weiterer Vorteil ist, dass die Auflösung des Bildes
im Raumbereich durch die Wahl der Bandbreite der gemessenen Reflektionsdaten
exakt eingestellt werden kann.

Für ein planes Objekt werden zunächst die Riccati-Differentialgleichungen, welche
das direkte Problem für den Fall von TE, TM und TEM Beleuchtung beschreiben,
untersucht. Diese Differentialgleichungen werden mit der von uns vorgeschlagenen
nichtlinearen Normierung invertiert, was einen Ausdruck für das tiefenabhängige
Permittivitätsprofil als Funktion der inversen Fourier-Transformation der gemesse-
nen Reflektionskoeffizienten im Frequenzbereich ergibt. Für zylindrische und kugelförmige
Objekte werden die der nichtlinearen Riccati-Differentialgleichung ähnlichen Gle-
ichungen für das direkte Problem für die Fälle der Beleuchtung mit TE- oder TM-
Wellen in den entsprechenden Koordinatensystemen abgeleitet. Die Formulierung in
Zylinderkoordinaten beziehungsweise Kugelkoordinaten ist vorteilhaft wenn Anten-
nen mit geringerer Direktivität zum Scannen verwendet werden, da zylindrische und
kugelförmige Geometrien die eindimensional oder zweidimensionale Krümmung des
Objekts berücksichtigen können und damit die Genauigkeit der Abbildung verbessern.
Um die für den planen Fall vorgeschlagene Methode für nicht plane Strukturen an-
wenden zu können, wird die Fourier-Transformationstechnik, die für plane Objekte
gültig ist, verallgemeinert und ihre Anwendbarkeit durch Veränderung der Form
des Transformationskernels auf beliebige Koordinatensysteme ausgedehnt. Diese
allgemeine Theorie für die Rekonstruktion wird dann auf die Fälle zylindrischer
und kugelförmiger Koordinaten angewendet, um die hergeleiteten Riccati-ähnlichen
Differentialgleichungen zu invertieren. Diese Inversion ergibt einen geschlossenen
Ausdruck für das radial variierende Permittivitätsprofil zylindrischer Objekte in
Form einer Hankel-Transformationder frequenzabhängigen Reflektionsdaten. Im
Fall kugelförmiger Objekte ist der geschlossene Ausdruck für das radial variierende
Permittivitätsprofil durch eine sphärische Fourier-Bessel-Transformation der Fre-
quenzbereichsreflektionsdaten gegeben.

Ein experimenteller Aufbau für die Darstellung inhomogener dielektrischer Körper
wird vorgestellt, der zerstörungsfrei arbeitet, da nur die Platzierung des Objektes
im Freiraum direkt vor der Antenne erforderlich ist. Mehrere simulierte und ex-
perimentelle Beispiele wurden untersucht, um die Gültigkeit der vorgeschlagenen
Technik nachzuweisen. Die Abweichung zwischen wahren und rekonstruierten Per-
mittivitätsprofilen ist für den Fall planer Objekte kleiner als 2% und beträgt für dem
Fall nicht planer Objekte zwischen 1% und 5%. Der Einfluss von Rauschen wurde
ebenfalls untersucht, und es konnte festgestellt werden, dass sogar Fehler von 2−5%
in den Reflektionsdaten eine recht genaue Abbildung erlauben, was die Stabilität
der von uns vorgeschlagenen Methode beweist.



Abstract

The present thesis describes a new approach for reconstructing one-dimensional
depth-dependent permittivity profiles of planar, cylindrical and spherical objects
illuminated by any arbitrary order TE or TM polarized wave. The reconstruction of
permittivity profiles of planar and non-planar objects forms the basis for the general
active microwave imaging of arbitrary shaped dielectric bodies if high directivity
antennas are used for the lateral scanning. The main advantages of our proposed
technique, as compared to previous approaches, are that it gives a unique solution,
and it is able to image the dielectric objects of higher contrast as well. Another
advantage of our proposed method is that the resolution of the imaging in the
spatial domain can precisely be controlled by varying the bandwidth of the measured
spectral domain reflection coefficient data.

For a planar medium, the non-linear Riccati differential equations describing the
direct problem for TEM , TE, and TM illuminations are first revised, and then these
equations are inverted using our proposed renormalization technique to obtain an
expression for the depth-dependent permittivity profile in terms of an inverse Fourier
transform of the spectral domain reflection coefficient data.

For the cylindrical and spherical objects, the non-linear Riccati-similar differ-
ential equations describing the direct problem formulation for any arbitrary order
TE and TM illumination are derived in their respective coordinate systems. The
formulation in the cylindrical and spherical coordinate system is advantageous if
less directive antennas are used for the scanning, as these cylindrical and spherical
geometries can take the 1−D and 2−D curvature of the object into account thus
improving the accuracy of the image. To apply our proposed method in case of
non-planar structures, the Fourier-transform technique valid for planar objects is
generalized and its applicability is extended to any arbitrary coordinate system by
changing the functional form of the transform kernel. The general theory of recon-
struction is then applied in the case of cylindrical and spherical coordinate system
to invert the derived non-linear Riccati-similar differential equations. This inver-
sion gives us a closed-form expression for the radially varying permittivity profile of
cylindrical objects in terms of a Hankel transform of the frequency-dependent reflec-
tion coefficient data. In case of spherical objects, the closed form expression of the
radially varying permittivity profile is obtained in terms of a spherical Fourier-Bessel
transform of the spectral domain reflection coefficient data.

An experimental setup is developed for the imaging of inhomogeneous dielectric
bodies, which is completely non-destructive in nature requiring the dielectric object
to be placed in free-space directly in front of the antenna. Several simulated and
experimental examples are considered to validate our proposed technique. The de-
viation between the actual and reconstructed permittivity profile is less than 2% in
case of planar media, while it is around 1−5% in case of non-planar structures. The
effect of noise is also considered and it is observed that even a 2 − 5% error in the
scattering data provides a reasonably accurate reconstructed image, which proves
the stability of our proposed method.
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Chapter 1

Introduction

1.1 Objective

In recent years the use of microwaves for the imaging of materials and biological
bodies, and for the remote sensing of underground metallic/non-metallic objects
has gained much attention. The microwaves refer to electromagnetic waves, whose
frequency lies in the range of 0.3GHz to 300GHz and they offer the access to
information related to electrical properties of the medium without making in situ
measurements. This electrical property is generally expressed as the permittivity,
whose accurate determination in materials and biological tissues leads to much other
useful informations. Some of the practical applications of imaging using microwaves
include, e.g., environmental studies of water content, aging and possible detection
of diseases in trees and forests [1, 2, 3], the nondestructive evaluation and charac-
terization of different food grains [4], geological investigations of the earth structure
as being seen from an exploration well in oil fields [5], and imaging of human or-
gans in biomedical microwave tomography [6, 7, 8]. The microwaves have also got
application in the field of remote sensing e.g., for the detection of anti-personnel
mines [9, 10]. In all of these applications, the determination of the permittivity
profile leads to the imaging of the corresponding medium or material.

In case of trees or forests, any vegetation canopy is composed of different com-
ponents, such as leaves, stems, branches, and trunks. Each of these components
has its own geometric and biophysical characteristics. Any disease in trees affects
these biophysical characteristics (such as water content and water potential), and
these characteristic have a strong influence on the permittivity values of the com-
ponents. It is, therefore, in principle possible to detect the disease in trees once
the permittivity of different vegetation layer is determined. Similarly, in case of
materials and different kinds of food grains, the determination of permittivity helps
in finding the moisture content. The moisture content in grains can favorably or
adversely affect both their quality and price and its accurate determination helps in
the characterization of these food grains.

In the areas of geophysical prospecting, oil can be distinguished from rock and
water by its permittivity value, and hence the accurate reconstruction of permittivity
profile as a function of position in the earth will indicate the location of oil.

In case of biological bodies, different soft tissues can in principle be imaged once
their permittivity profile is determined as the dielectric properties of these tissues
vary over a wide range (permittivity ranges from 5 to 50, compared to the varia-

1



2 CHAPTER 1. INTRODUCTION

tion of only a few percent of densities in soft tissues). The soft tissues such as fat,
lungs etc. present lower microwave absorption whereas the ultrasound energy suffers
the greatest attenuation in these tissues [11]. Similarly in the case of chest cavity
large discontinuities at lung surfaces limit the use of ultrasound, and low densities
limit the use of X-rays [12]. Hence these soft tissues can be imaged more appro-
priately using microwaves rather than using e.g. the ultrasound or X-rays. There
is also a possibility of detecting cancerous tissues using microwaves [13], as the di-
electric properties of these tissues, depending upon their water content, are quite
different from normal ones. Another advantage of using microwaves for biomedical
applications is that the photon energy of these radiations is too low to cause any ion-
ization to occur in biological tissues at ordinary intensity levels, and hence it allows
a virtually safe exploration of living tissues giving a possibility of even continuous
monitoring [6, 14].

For the remote sensing application, different underground metallic and non-
metallic objects can be characterized by different values of permittivity. As a matter
of fact, the use of microwaves helps in detecting anti-personnel mines, which are
sometimes non-metallic in nature and hence can not be detected by a simple metal
detector [9, 10]. It is also advantageous to use microwaves for the remote sensing
applications because they are able to penetrate more deeply into vegetation and
the ground than visible and infrared radiations, and hence they can yield better
information about the lower layers and the ground beneath. Sometimes, the use of
microwaves can give information, which is in addition to that available from vis-
ible and near-infrared regions. For example, the visible and near-infrared regions
give information about the molecular-resonance properties of the surface layer of
the vegetation or soil, while the microwave region allows a study of geometric and
bulk-dielectric properties.

As obvious from the above discussion, a primary objective in the field of imag-
ing and remote sensing using microwaves is the reconstruction of inhomogeneous
permittivity profiles of planar and non-planar objects and of layered media. The
common method for accomplishing this goal is to illuminate the object with electro-
magnetic waves, and measure the scattered fields (or some of their characteristics)
interacting with the medium, in order to obtain the image of the distribution of the
properties of the object from these measured fields. The overall process of imaging
using microwaves can be well understood with the help of Fig. 1.1, where we have
shown its application in the field of remote sensing. We assume that three different
layers of plastic mines exist inside the earth’s surface and our job is to detect and
reconstruct them. We illuminate the whole area with an electromagnetic plane wave
and measure the reflected signal with the help of a vector network analyzer as shown
in this figure. We then apply some kind of reconstruction algorithm to reconstruct
these different layers. The most difficult part in the overall imaging process is gener-
ally the development of an efficient reconstruction algorithm, and this thesis mainly
deals with this problem. This whole method of imaging or reconstruction using mi-
crowaves is called the microwave inverse scattering process, and it comes under the
general category of the so-called inverse problems. The name inverse comes from
the fact that the imaging or reconstruction is not achieved by any conventional or
direct procedure. As a matter of fact, even the scattered fields, which are needed
for reconstructions, are measured outside the medium, for instance on its boundary
because one does not have any access inside the medium. Inverse problems are en-
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Figure 1.1: A typical example of imaging

countered in several areas of applied sciences and engineering and can be defined in
a number of ways. Probably one of the best definitions could be as follows

The solution of an inverse problem entails determining unknown causes
based on observation of their effects. This is in contrast to the corre-
sponding direct problem, whose solution involves finding effects based
on a complete description of their causes.

The above definition can be well understood in our context of wave scattering,
where the electrical or physical properties of the medium are the causes, and the
scattered fields (or some of their characteristics) are the effects. Typically, inverse
problems emerge when one has indirect observations of a quantity, and one needs
some computational methods to determine this quantity. For the solution of any
inverse problem, it is however, very important to first formulate the corresponding
direct problem in a very precised way. This direct problem is then inverted using
some specialized imaging algorithms to obtain the desired parameter. In the case of
electromagnetic wave scattering, the two problems can be defined as follows

The direct problem This problem is concerned with determining the scattering
or reflection coefficient data from the knowledge of the incident field and prop-
erties of the scattering object.

The inverse problem Here one tries to determine the properties of the scatterer
(e.g. the permittivity profile) from the measurement of the scattering data for
a number of incident fields having varying characteristics.

One good distinction between the direct and inverse problems of wave scattering,
which is meaningful in remote sensing problems, was given by W.-M. Boerner et
al. [15].
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Whereas, on the one hand, in the direct problem of electromagnetic
scattering total a priori information on the size, shape and material
constituents of an object, together with the relative geometry of the
incident field vector and the object coordinate system, are given and
the scattered field vector is to be determined everywhere over the total
frequency or time domain; on the other hand, the inverse problem is
to reconstruct the size, shape and material characteristics of an a priori
unknown scattering object from the knowledge of the incident field vector
and the resulting scattered field data.

The main objective of this thesis is to propose a new approach for the recon-
struction of permittivity profiles of planar and non-planar objects, which is a basic
problem in the field of microwave imaging and remote sensing as discussed in previ-
ous paragraphs. We have mainly dealt with the depth-dependent (one-dimensional)
part of the reconstruction process, because these measurements can not generally
be carried out in situ. The main reason for this is that one does not have any di-
rect access inside the geometry of these objects, and hence it is not possible to go
with some kind of probe and carry out any direct measurement at each and every
point along depth of the object. On the other hand, lateral part of the reconstruc-
tion can be obtained using high directivity antennas and moving them mechanically
in two directions. These directive antennas can provide very narrow beam width
and hence it is, in principle, possible to focus the beam at large number of points
by means of some mechanical movement and scan the whole lateral (say X − Y )
plane. If these directive antennas are able to provide very narrow beam in both
X and Y directions, then this lateral scanning along with the proposed method for
reconstruction of depth-dependent permittivity profiles in the Cartesian coordinate
system should provide us enough information for the imaging of any planar shaped
dielectric object. Now imagine a situation, where the available antenna is highly
directive in only one direction (say along X axis), and we want to image an object
having a curved boundary with this kind of antenna. Under this kind of situation,
if we carry out the analysis in the simple Cartesian coordinate system then we may
loose some detailed information of the object specially along the direction in which
the beam is not highly directional. However, for these cases if we formulate the
whole problem in the cylindrical coordinate system, then low directivity of the an-
tenna in a particular direction (say along Y axis) can be compensated by taking the
one-dimensional curvature of the object into account along that direction. Hence,
the formulation of the problem under these circumstances will yield a more accurate
image in the cylindrical coordinate system than using e.g. a planar or Cartesian
coordinate system. Similarly we might have a situation, where the antenna is not
able to provide the directive beam in both the lateral (X and Y ) directions. For
this case, we will have to take into account the curvature of the object in both X
and Y directions and this can be achieved in a better way by analyzing the whole
problem in the spherical coordinate system. The formulation of the problem in the
spherical coordinate system can compensate for low directivity of the antenna in
both the lateral directions by taking the two-dimensional curvature of the object
into account and thus providing a better image under these situations. Hence, it
can be said that formulations in the cylindrical and spherical coordinate system are
quite helpful and provide a reasonably accurate image of the dielectric object under
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situations where the directivity of the available antenna is not very high.

It follows from the above discussion that a practical problem in case of imaging of
arbitrary shaped dielectric objects is the reconstruction of one-dimensional permit-
tivity profiles in the planar, cylindrical, and spherical coordinate system, and this
was the motivation behind our present research work. The one-dimensional scat-
tering model is also an idealized example that possesses a complete exact solution;
and the physical insight into the relations between the scattering data and the per-
mittivity profile can be obtained by considering this model. We have developed in
this work new algorithms to reconstruct the one-dimensional depth-dependent per-
mittivity profile of planar, cylindrical and spherical objects quite accurately from
the measurement of wide-band reflection coefficient data. As compared to previ-
ous approaches, our proposed method is having the advantage of providing a stable
solution of both low and high contrast dielectric object, and the resolution of the re-
construction in each case can be increased by simply increasing the bandwidth over
which spectral domain reflection coefficient data are measured. From the practical
point of view, we have proposed an experimental setup for the imaging of inho-
mogeneous dielectric bodies, which is completely non-destructive in nature. The
procedure generally requires placing the dielectric objects directly in front of the
antenna for the measurement of spectral domain reflection coefficient data. The
dielectric image of the object is obtained from the measured scattering data using
our proposed reconstruction algorithm.

The proposed reconstruction algorithm is quite general in nature and its ap-
plicability can be easily extended to any arbitrary coordinate system. It may be
mentioned that for all the cases considered here the relative permittivity is assumed
to be lossless and dispersionless, as our basic aim in this work is to obtain a stable
and unique solution in the closed-form for the inhomogeneous permittivity profiles
in different coordinate systems using an analytical and quasi-linear approach. The
lossy dielectric objects are generally frequency dependent, and determining both the
frequency and space-dependence of permittivity profiles will be too complicated to
handle analytically and that is the main reason for considering only lossless case in
this thesis.

This thesis is organized as follows. In the next two sections of this chapter, the
direct and inverse scattering problems are briefly discussed. The last section of this
chapter provides a state of the art of methods used for solving the general electro-
magnetic inverse scattering problems. The second chapter gives outline of the basic
electromagnetic theory and explains the interaction phenomenon of electromagnetic
waves with dielectric materials. The mathematical aspects of the inverse problem
are discussed, and some of the most common methods for solving inverse problems
are also briefly described. In the third chapter, the direct problem is formulated for
the planar, cylindrical, and spherical coordinate system in order to find an accurate
relationship between the one-dimensional depth-dependent permittivity profile of
planar and non-planar objects and the reflection coefficient measured at the outer
air-dielectric boundary. The fourth chapter describes in detail the proposed tech-
nique for solving the one-dimensional inverse scattering problem, and accordingly
the direct equations derived in the third chapter are inverted in order to find a
closed-form expression for the one-dimensional permittivity profile of planar and
non-planar objects in terms of an appropriate integral transform of the wide-band
reflection coefficient data. In the fifth chapter, we have reconstructed a number
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of permittivity profiles using both simulated and experimental reflection coefficient
data to validate our technique. This chapter also describes the effect of noise on the
overall reconstruction process by adding a few percent of random error to the simu-
lated reflection data at each frequency, and then using our algorithm to determine
the unknown permittivity profile from these noisy data. Finally, a summary of the
overall work is given in the sixth chapter.

1.2 The direct problem: electromagnetic scatter-

ing theory

The term scattering literally means throwing arbitrarily in all possible directions.
When an electromagnetic wave encounters any obstacle or object in its path, then
the original path of wave propagation changes and the wave scattering takes place.
In this process of wave scattering, the total field associated with the wave also
gets modified. Suppose that initially, when there is no obstacle present, a set of
sources in the homogeneous medium are emitting waves, which are described by the
incident electric and magnetic fields Eiand Hi respectively. Now, when some form
of obstacle is introduced into this field as shown in Fig. 1.2, then the total field E
or H is modified and is given by [16]

E = Ei + Es H = Hi + Hs (1.1)

where, Es and Hs are defined as the scattered electric and magnetic fields respec-
tively.

Figure 1.2: The effect of an ob-
stacle on the incident field Figure 1.3: The reflection and transmission

of waves

These scattered fields are fields external to the obstacle and can be thought
of as fields produced by the charges inside the object. Usually, in an electrically
neutral object, the algebraic sum of the positive and negative charges inside the
object is zero, and these positive and negative charges are so close that the net fields
produced by them cancel on the macroscopic scale in the absence of an incident field.
However, after application of an incident field on the obstacle, the internal positive
and negative charges get separated and the net fields produced by these charges are
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no longer zero on the macroscopic scale . These fields are called scattered fields and
they combine with the incident fields to produce a new total field, which further
affects the internal charges. This process continues until an equilibrium is reached,
resulting in some net value of the total field and the scattered field. Thus we can
say that in the presence of any obstacle, the total field is estimated by the vector
sum of the incident field and scattered field and the characteristics of the scattered
field will depend upon the physical properties of the scatterer. The direct problem
or the electromagnetic scattering theory is associated with the determination of the
scattered fields or some of their characteristics from the knowledge of the incident
fields and physical properties of the obstacle or medium through which they travel.
In the process of electromagnetic scattering, some of the incident wave gets reflected
from the obstacle and comes back towards the source; while the rest of it passes
through the obstacle and gets transmitted in the forward direction as shown in
Fig. 1.3. To account for the reflection and transmission properties of the medium,
the concept of reflection and transmission coefficients can be introduced as follows.
In Fig. 1.3, the total field in the region 1 can be considered as the sum of incident
and reflected fields, i.e.,

E = Ei + Er = Ei(1 + Γ) (1.2)

where, Γ is being interpreted as the reflection coefficient due to the scattering object
or the obstacle. Similarly in the region 3, the total field is given by E3 = Etran, and
the transmission coefficient T will be defined as

Et = T Ei (1.3)

assuming that the obstacle is lossless. The reflection and transmission coefficients
are generally called as scattering coefficients, and these are in general vector quanti-
ties being functions of wave number, position and properties of the scattering object.
It may be mentioned here that it is sometimes more convenient to work with the
scattering coefficients rather than the absolute field components because these coef-
ficients also have transmission line analogy and they can easily be measured in the
r.f and microwave frequency range using a vector network analyzer.

One of the basic aims of the scattering theory is to develop a forward or di-
rect model describing a relationship between the field components or scattering
coefficients, which can be easily determined or measured, and physical or electrical
properties (e.g. the dielectric permittivity) of the object, which are generally not
directly measurable. It may be mentioned here that the electromagnetic waves are
able to penetrate deeply into the inhomogeneous dielectric medium and hence the
reflection coefficient measured at the outer air-dielectric interface is the result of
multiple reflections between the top surface and various layers as well as internal
reflections between various layers. Because of these multiple reflections, the whole
process becomes nonlinear and any simple linear relationship between the scattering
parameter and the physical properties will not give the exact formulation. It is also
worth mentioning here that because of the vector nature of electromagnetic waves,
the direct problem formulation is also strongly dependent on the polarization of inci-
dent waves, both in planar and non-planar structures. We have taken both of these
phenomenon, i.e. multiple reflections and the dependence on the wave polarization,
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into account to formulate the direct problem in planar and non-planar structures,
which is described in detail in the third chapter of this thesis.

1.3 The inverse problem: microwave inverse scat-

tering

It was mentioned in the last section that introduction of a dielectric object in the
path of an electromagnetic field augments the total field, and this increase in field is
mainly attributed to the polarization of charges inside the dielectric object after the
application of an incident field. The fields produced by charges inside the dielectric
object are called scattered fields, and the scattering theory is mainly concerned with
finding these scattered fields from a knowledge of physical or electrical properties of
the dielectric object which interacts with the incident field. The inverse scattering
theory, on the other hand, is mainly concerned with finding the physical or electri-
cal properties of the object from a knowledge of scattered fields interacting with the
medium. These scattered wave fields are generally measured outside the object, and
the name inverse comes from the fact that the desired physical or electrical param-
eters are not directly measurable in this case. When an electromagnetic wave of the
microwave frequency range is used to explore the internal structure of the object,
then the overall process may be termed as the microwave inverse scattering. The
microwaves interact with electrical properties of an object normally expressed as the
permittivity, and one of the basic aims of the microwave inverse scattering process
is to determine the spatial distribution of permittivity function from a knowledge of
scattering parameters. As mentioned earlier, the microwave inverse scattering the-
ory finds applications in the field of imaging, remote sensing, and non-destructive
evaluation of materials and tissues, as in all these cases it is not possible to directly
measure the required parameters inside the object or media at each and every point.

The microwave inverse scattering may be considered as opposite to the direct
electromagnetic scattering theory described in the last section. Hence the solution
of an inverse scattering problem can be achieved by inverting the direct or forward
scattering model. This inversion, in principle, should give an expression of the elec-
trical properties of the object in terms of the measured scattered field (or some of
its characteristics). However, this inversion procedure is generally not very straight-
forward and does not always give a unique solution. The problem mainly arises
because the whole process of electromagnetic scattering is generally a non-linear
phenomenon, and hence the inversion of any accurate direct scattering model may
give rise to unstable solution unless special care is taken. The solution of the in-
verse scattering problem is often ill-posed and gives rise to ill-conditioned matrices if
some numerical methods are used to solve the problem. But as the inverse scattering
problems occur quite frequently in many areas of practical importance, hence some
special types of algorithms have been developed with the passage of time to solve
these problems under some special conditions. For example, the researchers who
have used numerical method to solve these inverse problems employ some special
routines in order to reduce the ill-conditioning of matrices. However, till now, no
method exists in the literature which is quite versatile in nature and works under
all situations. Hence, the field of microwave inverse scattering is still a grey area
for research, and many researchers have been working in this field to develop some
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accurate methods. In this thesis, we have proposed some new algorithms to obtain
a unique solution of the inverse scattering problem in different coordinate systems.
Our proposed method is quite versatile in the sense that it gives a reasonably accu-
rate image of dielectric objects of both low and high contrasts, and it is also not very
sensitive to the presence of noise in the measured scattering data. As our method is
based on an analytical formulation, hence we do not have to deal with the problem
of ill-posedness and ill-conditioning of matrices. Although our emphasis in this work
is mainly the solution of microwave inverse scattering problem, but the proposed
technique as such is quite general in nature and can be extended to solve the inverse
problems in other areas of research as well.

1.4 State of the Art

Over the last few decades, much research has been done in the field of inverse
scattering in general, and in the field of microwave inverse scattering in particular.
One of the early works in the field of inverse scattering was probably carried out
by Rutherford [17] in 1911, which ultimately led to the discovery of atomic nucleus.
Rutherford studied the path of the back-scattered α-particles from thin gold foils,
and showed that the only model of the atom which could account for these back-
scattered radiations is a small positively charged nucleus surrounded by negatively
charged cloud of electrons. After Rutherford’s experiment, the Schrödinger’s wave
equation was evolved in 1926 which provided a way of relating the state of a particle
to the potential influencing it at any time [18]. It was mainly due to the Rutherford’s
experiment and the invent of Schrödinger equation, that some early research in
the field of inverse scattering was related to the area of quantum mechanics where
many researchers tried to obtain an approximate inverse solution of the Schrödinger
equation. One of the pioneering works in this regard was done by Born in 1926, who
showed that provided the scattering interaction was weak, a particularly simple
relationship existed between the scattered field and the scattering potential. As the
Schrödinger equation can be transformed into an electromagnetic wave equation [17],
hence all concepts applied to the quantum mechanics problem also have relevance to
the microwave inverse scattering problem. As a matter of fact, many of the methods
used to solve microwave inverse scattering problems find roots in the quantum inverse
scattering as will be evident from the discussion in following paragraphs, where we
provide a brief historical survey of commonly used methods for solving microwave
inverse scattering problems.

Most of the methods available today to solve the microwave inverse scattering
problem could be broadly classified into two major categories. The first category
includes linear approximation methods, which are applicable for dielectric objects
with very low contrast only. The second category of methods use some numerical it-
erative techniques, which are computationally quite intense and are often associated
with a non-uniqueness and uncertainty of the achieved solution, but are accurate
enough to reconstruct higher permittivity objects as well. An overview of the most
common inverse methods applied to electromagnetic problems was given in a spe-
cial issue of IEEE − AP [15]. In this special issue, many papers including some
review articles relating to various aspects of the electromagnetic inverse scattering
were reported. Another review article concerning the inverse scattering problem was



10 CHAPTER 1. INTRODUCTION

written by Habashy et al. [5, 19], where they have described some early methods
used to solve mainly the one-dimensional inverse scattering problem.

The linear approximation methods are based on the assumption that the scat-
tered field is very weak as compared to the incident field, and hence these methods
are only valid for very weak scattering objects. This assumption is generally called
the Born approximation, which was probably named after the famous scientist Born
who proposed this kind of approximation in the field of quantum mechanics as
mentioned above. In one of very early papers, Wolf [20] showed that under Born
approximation and plane wave illumination, a two-dimensional tomographic image
of the dielectric object function could be reconstructed from the scattering data
collected by a linear array using angular diversity techniques in forward scattering.
This statement is generally known as the Fourier diffraction projection theorem, and
it forms the basis of the first-order diffraction tomography to find the approximate
tomographic or cross-sectional image of objects using microwaves [21, 22]. In the
year 1984, Slaney et al. [23] provided some simulated results to determine the do-
mains of applicability of this diffraction tomography method for the cross-sectional
imaging of dielectric objects. They established the fact that the first-order Born
approximations are only valid for objects where the product of the change in re-
fractive index and the diameter of the object is less than 0.35λ, where λ is the
wavelength of the interrogating plane wave. They introduced this restriction on
the dimension of the object to consider the fact that for Born approximation to
be valid, the change in phase between the incident field and the wave propagating
through the object should be less than π. After few years Chu et al. [24] proposed
the frequency diversity technique for the microwave diffraction tomography in both
forward and backward scattering to reduce the number of angular views. In their
paper, they mentioned that the wide-band microwave measurements in the back-
ward scattering are more suitable for reconstructing the edges of a scattering object
than the space diversity forward scattering method. They also argued that only
a total of four views in the backward scattering frequency diversity method could
provide a reasonably better quality of image than the forward scattering angular
diversity method which generally requires large number of views over 360o angle.
For the solution of one-dimensional inverse scattering problem, one of the early pa-
pers applying the linearization technique was reported by Tabbara et al. [25, 26].
In their papers, they used the Born approximation to arrive at some simple an-
alytical relations for reconstructing the one-dimensional permittivity profile from
the multifrequency reflecting coefficient data. After some years, Ge et al. [27] used
perturbational and high-frequency methods for the approximate reconstruction of
dielectric permittivity from reflection coefficient data. They observed that in the
high frequency region, the reflection coefficient was small and hence the approxi-
mate perturbational methods could work quite well in cases where only the general
shape of the dielectric profile was required. Later on, the inverse Born solution was
exemplified with experimental data of scattering by Carter et al. [28], and some
other researchers [29] tried to qualitatively reconstruct cylindrical dielectric objects
from the multi-frequency and multi-view scattering field data by making use of the
linear Born approximation. In the year 1989, Hopcraft et al. [30] used the geomet-
rical structure of the back-scattered fields to obtain an inverse solution of the one
dimensional inverse scattering problem. They reported that plotting the real and
imaginary parts of the backscattered field as a function of the wavenumber in the
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complex plane yields a circle, and from the radius and intercept of this circle some
properties of the scatterer could be deduced without any ambiguity. The method
presented by these authors is specially useful to find the value of permittivity at the
air-dielectric interface of inhomogeneous dielectric objects from the measurement
of spectral domain reflection coefficient data. In the early 90’s, many researchers
developed some algorithms along with prototype models based on the Born approx-
imation for the active microwave imaging of biological tissues. Broquetas et al. [14]
in 1991 presented a prototype model based on a cylindrical array of antennas to
measure the scattered field without any mechanical movement of either the body or
the antenna. Their algorithm was based on the bidimensional scalar formulation of
fields and they were able to image some weak scattering bodies using their setup.
In the year 1992, the same group of authors [11] presented algorithms for the ac-
tive microwave imaging of biomedical systems based on both planar and cylindrical
array configurations. In this paper, they mentioned that the planar system was
better from the point of view of stability of the reconstructed image and algorithm
simplicity, while the cylindrical geometry could give better resolution. It may be,
however, mentioned here that nowadays with the advent of many new methods and
due to the availability of high computational power, the inversion based upon the
first order Born approximations are not used quite often except probably in the case
of some imaging devices where they can easily give the qualitative sketch of the
scatterer’s structure.

The numerical methods, either in frequency or in time domain, are generally
used to solve the inverse scattering problem in a more exact way, and in most of
the cases they are able to reconstruct the objects with high contrast and with very
high value of permittivity. However, the problem with these methods is that they
generally take lot of computational time, and often may give rise to a non-unique
or unstable solution. The accurate solution of the inverse scattering problem was,
however, first developed by Gelfand, Levitan, and Marchenko [31] in the early 1950’s
for the inverse solution of Schrödinger equation in the field of the quantum-wave
mechanics. The method proposed by them is generally called the GLM method,
which is actually based on the analytical formulation and hence it cannot be called a
numerical method in the real sense. The GLM method is of significance because it
was the first method ever proposed to find an exact solution of the inverse scattering
problem, and many researchers used this analytical method in past in order to avoid
a strong dependence on the computational power. The GLM method is based on
the formulation of an integral equation relating the scattered potential to the non-
scattered one via some kernel or auxiliary function. This integral equation is solved
to construct the kernel from the scattered data, and from this kernel the profile
of the inhomogeneous object is determined. Some of the early papers using the
GLM technique in the field of electromagnetic inverse scattering were reported by
Jordan et al. [32, 33], who generally assumed the complex reflection coefficient as a
rational function of the wavenumber. However, the main problem with the GLM
method is that the integral equation in this case is solved by a differential-operator
technique, which generally leads to inaccurate results whenever the scattered data
are imprecise or incomplete [17]. The inversion scheme introduced by Balanis [34]
tried to avoid the step of differentiation, when he formulated the whole problem
directly in terms of the reduced electromagnetic wave equation rather than in terms
of the Schrödinger equation. The Balanis method was used by Jaggard et al. to
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reconstruct the one-dimensional refractive index profile of a dispersionless dielectric,
where they also mentioned that the numerical implementation of this method was
better than that of GLM and it was also robust with respect to noise [35, 36]. It may
be, however, mentioned, that the GLM method gives an analytical solution only
for a very small class of reflection coefficients in case of quantum inverse scattering,
hence this method can not be called an exact method for solving the microwave
inverse scattering problem in a more general sense [33, 37].

For obtaining a numerical solution, many researchers have tried to use some it-
erative methods based on a second order Born method, which generally gives an
accuracy of one order more than the simple Born method and is generally called
the distortive Born approximation. The distorted Born approximation can be basi-
cally thought of as a linear method with some added form of standard regulariza-
tion [17]. In one of very early papers, Roger [38] described the Newton-kantorovitch
algorithm which forms the basis of many distorted Born methods. As mentioned
in [38], the Newton-kantorovitch algorithm is a step-by-step procedure, which gen-
erally converges to the exact solution provided a good estimate of a priori infor-
mation is available. Many researchers have used the iterative methods based on
the distortive Born approximation for determining the one-dimensional permittivity
profiles of both continuous and discontinuous objects from the spectral domain re-
flection data [39, 40], and results for different polarizations using this method have
also been reported [41]. Habashy et al. [42] have used the distorted Born approxi-
mation method to obtain the radially varying permittivity profile in a cylindrically
stratified medium. The iterative technique using distorted Born approximation has
the advantage that a closed form solution can be obtained in some special cases, and
hence the computational requirement might be less as compared to other numeri-
cal methods [39, 40]. The other advantage of using the distortive Born approach
methods is that one might not need a very large number of a priori parameters
because of the linear approximation of the functional operator locally [38]. How-
ever, as previously mentioned, the inverse problems often give rise to ill-conditioned
matrices and hence most of the numerical methods used to solve these problems
try to make some special strategy to reduce the ill-conditioning. Joachimowicz et
al. have proposed that the ill-conditioning of the iterative procedure based on the
Newton-kantorovitch algorithm can be reduced by incorporating a priori informa-
tion such as an outer boundary of the object and upper and lower bounds of the
permittivity into these algorithms [28]. These authors have validated their recon-
struction algorithms with the real experimental data, and they have reported that
their iterative algorithms in the spatial domain provides an accurate image of even
high scattering objects with a very reasonable number of iterations [8]. The iterative
Born approach was used in the time-domain by Moghaddam et al. [43], where they
reported that this method gives accurate inversion and converges quite fast even for
objects of higher electrical dimensions and of higher contrast. In recent years many
researchers have used the iterative routines based on the the distorted Born method
or the Newton-kantorovitch algorithm [44, 45, 46] to improve the quality of the
reconstructed image in case of biomedical applications. Recently some researchers
have applied the first and second order Born approximation to solve the inverse scat-
tering problem in the field of remote sensing [47], where they have reconstructed the
rotationally symmetric permittivity profile from multi-frequency scattering data.

Some researchers have also implemented the numerical scheme in time domain to
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facilitate the iterative determination of constitutive parameters of inhomogeneous
dielectric objects from the reflected data [48, 49]. Their method is based upon a
space-time discretization of the integral equation for the reflected field, and for the
inversion they have mainly tried to utilize those values that can be determined most
accurately in the associate direct scattering problem [48]. In the year 1991, Caorsi
et al. presented an experimental imaging system making use of the multi-view scat-
tering data [50], where they measured the electric field at many angular positions by
rotating the region under test with respect to the measurement setup. From the the-
oretical point of view, they subdivided the nonlinear problem into two linear steps.
In the first step, they expressed the equivalent current density inside the region to
be investigated in terms of the permittivity function. The second step involved the
formulation of a linear integral equation representing the scattering field in terms of
the equivalent current density and a known Green function. They applied the mo-
ment method to transform the integral equation into a linear algebraic system. To
reduce the ill-conditioning problem, these authors solved the matrix equations via
a pseudoinverse transformation [51], which is a tool for regularizing such problems.
These authors reported that pseudoinverse matrices can be computed offline for a
given measurement setup resulting in an computationally inexpensive method. In
1990’s, many researchers have used the conjugate gradient method and its modi-
fied version for the imaging of dielectric objects [52, 45]. They have converted the
inverse scattering problem into a nonlinear optimization problem, which is based
on the minimization of a functional defined as the norm of discrepancy between
the measured and calculated scattering data for an estimated object function. The
conjugate gradient method involves the search for the minimum of a functional in a
direction suggested by its negative gradient and it is a nonlinear iterative method
in the sense that its new estimate is not a linear function of the past estimate. This
method has the advantage of having a rate of convergence practically insensitive to
the initial guess and it is well suited for ill-conditioned matrices [51]. It has been re-
ported that the gradient method is also effective in reconstructing strong scattering
objects, where the Newton-kantorovitch approach might not give very accurate re-
sult [52]. Recently, a number of researchers have used numerical techniques based on
the spectral-domain moment method [53, 54] for both quantitative and qualitative
microwave imaging of biological objects. This method is based on expanding the
unknown object function in a set of spatially shifted Gaussian basis function, and
ultimately the inverse scattering problem is formulated as a nonlinear optimization
problem, which is then solved by employing the modified gradient method. These
authors have reported a substantial reduction of the number of optimization vari-
ables for a given problem size thus enabling the implementation of this method for
electrically large object.

The microwave imaging has recently been applied to the detection of breast can-
cer, where the high contrast in permittivity between the normal breast tissues and
tumors is exploited. In [55], authors have used a number of small antennas to scan
the breast area, and the finite-difference-time-domain (FDTD) method has been
used to simulate the behavior of the antennas, with and without the breast model
present. In this paper, an algorithm has been presented to subtract the dominant
reflections from the outer skin of the breast, resulting in successful detection of
tumors. A clinical prototype for microwave imaging of the breast has also been de-
veloped [56], where the breast is illuminated by a 16 element antenna array through



14 CHAPTER 1. INTRODUCTION

a water-coupled interface. These authors have reported that their configuration
setup is a practical comfortable approach, and initial results of microwave-breast-
examinations performed on five volunteers were encouraging. It is worth mentioning
here that most of the iterative methods mentioned above linearize the exact integral
equation in order to solve the direct problem numerically. Because of this local lin-
earization mechanism, these methods are not really able to reconstruct the objects
of very high contrast. The other point to be noted here is that these numerical
methods generally use some kind of regularization parameter to obtain the stable
solution of the inverse problem. This additional constraint of regularization is quite
often achieved by putting the higher order derivatives of the object function to zero,
which is an indirect way of reconstructing only smooth kinds of profiles.

Most of the methods discussed in previous paragraphs to solve the inverse scat-
tering problems are based on the scattering integral equation (SIE), which basi-
cally relates the incident field with the scattered field and properties of the scat-
terer [25, 54]. For obtaining the inverse solution, the SIE is either solved using a
Born approximation, or discretized for a numerical solution. Apart from this SIE
approach, other category of methods also exist in the literature for solving inverse
scattering problems, which are based on the nonlinear Riccati-differential equation
(RDE) relating the spectral domain reflection coefficient data with properties of the
scatterer [17]. The main advantage of RDE based method is that the formulation
is carried out in terms of the reflection coefficient (rather than the field component),
which also has a transmission line analogy and can easily be measured (both mag-
nitude and phase) in the rf and microwave frequency range using a vector network
analyzer. The RDE method was originally introduced in the field of electromag-
netic inverse scattering about 50 years ago [57] for the approximate reconstruction
of impedance profiles with low contrast within TEM structures with an axially in-
dependent propagation constant. As the impedance can also be expressed in terms
of the material properties such as the relative permittivity [58], hence the recon-
struction of impedance profiles also leads to the determination of inhomogeneous
permittivity profiles. However, the RDE approach was initially able to reconstruct
dielectric objects of very low contrast only, as the original nonlinear differential
equation was simply linearized after ignoring the non-linear term, and the axial de-
pendence of the propagation constant was also not taken into account. After some
years, it was tried to take the axial dependence of the propagation constant into
account but the corresponding differential equation was still considered to be lin-
ear. This new formulation helped in obtaining the permittivity profiles of somewhat
higher contrast, but still the dielectric objects of high values of permittivity could
not be reconstructed and also the method did not work if the variation in the permit-
tivity was very large. The situation was same for quite long time until the so called
”Renormalization technique” was introduced by some researchers [59] to tackle the
nonlinearity of this differential equation in a different way. The overall idea of using
this renormalization technique was to solve the linear differential equation in terms
of an inverse hyperbolic tangent of the reflection coefficient function rather than in
terms of the reflection coefficient itself. Recently Cui et al. [60] used the microwave
networking technique to derive the nonlinear Riccati-differential equation, and then
later on they used the renormalization methods described above to obtain a solution
in a closed form [61] for the one-dimensional permittivity profile of planar objects in
terms of the Fourier transform of the reflection coefficient data. This idea somewhat
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relaxed the constraint that the variations in the permittivity of the material should
be very small, and the overall process also worked for strong scattering objects.
But for the quantitative reconstruction of permittivity profiles using this method, a
higher deviation between the exact and reconstructed values was observed if either
the depth of reconstruction or the variation in material properties was high.

In this thesis, we have extended the whole concept of renormalization techniques
and RDE approach to solve the one-dimensional inverse scattering problems applied
to the field of imaging and remote sensing. We have mainly put our attention on
reconstruction of the one-dimensional depth-dependent part of the inhomogeneity,
as this is generally the most difficult part of the overall imaging process since these
measurements can not be carried out in situ. Moreover, the general problem of
imaging of 3−D inhomogeneous dielectric objects reduces to this one-dimensional
part, if a number of high directivity antennas are used to scan the objects in other
two directions. Hence our proposed technique in combination with a lateral scanning
mechanism can, in principle, provide the standard image of any dielectric object.
Our approach is based on solving the exact non-linear Riccati differential equation in
a more flexible way than it has been done in past (see e.g. [59, 61]). The basic idea
is to solve the corresponding linear differential equation in terms of an arbitrary
function of the reflection coefficient [62] rather than using the inverse hyperbolic
tangent function as was done in previous papers. The exact form of this arbitrary
function is determined and optimized by means of an algebraic nonlinear transfor-
mation. The main advantage of our approach as compared to previously proposed
methods is that we isolate the nonlinearity of the associated inverse problem into
a nonlinear algebraic transformation, which can be optimized in a flexible way to
obtain a very accurate and unique image of both low and high contrast dielectric
objects in all cases.

Our other major contribution in this thesis is to generalize the above mentioned
RDE approach so that they could be applied to any arbitrary coordinate system.
This is really a new work in this field, as to the best of our knowledge, the RDE
approach have till now been applied only to objects in the Cartesian coordinate
system. The formulation of the problem in a non-Cartesian coordinate system will
clearly help to image the dielectric object of any arbitrary shape in a more accurate
way. To achieve our goal, the Fourier transform of the planar geometry is replaced
by a general kind of integral transform whose exact form of kernel is decided by the
particular geometry. This replacement is based on the fact that any pair of adjoint
kernels can be used for the direct and inverse transforms provided they satisfy certain
completeness properties over the spectral or spatial band of interest [63]. The new
pair of transform kernels replace the ideal delta sampling function (of the Fourier
transform) by a more flexible pulse-shaped pencil function. It has been observed that
this pencil function can be used to sample the unknown permittivity function of any
arbitrary shaped dielectric object provided it satisfies certain properties such as its
movability in the desired spatial band with minimum distortion. These properties
are, however, quite general ones and are found to be achievable in most of the
practical cases.

To validate the proposed theory of reconstruction, we have implemented it in case
of cylindrical and spherical coordinate systems. The formulation of the problem
in cylindrical and spherical coordinate systems helps to reconstruct the radially-
dependent permittivity profiles of those dielectric objects whose boundary coincides
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with these non-planar coordinate systems. These formulations in the non-planar
coordinate system also facilitates the use of less directive antennas by taking the
curvature of the object into account. The cylindrical coordinate system e.g. can
take the 1 − D curvature into account, while the 2 − D curvature is better dealt
with in the spherical coordinate system, if the available antennas are not highly
directional.

In order to formulate the problem in the cylindrical and spherical coordinate
system, the non-linear Riccati-similar differential equations in both coordinate sys-
tems for any arbitrary order TE and TM polarization are derived. These equations,
which basically relate an appropriately defined reflection coefficient to the radially
varying permittivity profile, do not exist in the literature and are new contribu-
tions to this field. The formulation of the problem for any arbitrary order TE or
TM mode illumination becomes necessary as the practical antenna arrangements
for illumination (transmitters) or measurement of scattering data (receivers) are not
generally able to excite or measure a single wave mode. An arbitrary illuminating
or scattered electromagnetic field can, however, be expanded into an infinite sum
of modes due to their completeness property (see e.g. [64]). A multiple illumina-
tion / multiview scenario can then be used to extract the necessary information on
the scattering of a certain TE or TM mode. After deriving the differential equa-
tions for any arbitrary order mode, these equations are inverted using our proposed
technique to reconstruct the one-dimensional depth-dependent permittivity profile
in the respective coordinate system in terms of an appropriate integral transform
of the wide-band spectral domain reflection coefficient data. We have started our
work with a cylindrical geometry illuminated by a lowest order mode and in the
initial stage the dependence of wave-number on the permittivity profile is ignored to
simplify the overall process [65, 66]. In a later stage, a coordinate transformation is
employed in order to achieve the better accuracy for reconstructing the dielectric ob-
jects of higher contrast [67, 68]. The overall formulation is finally extended to higher
order TE and TM modes [69]. In the cylindrical coordinate system, the lowest order
mode is equivalent to a transmission line mode [16] and this property is exploited
to analyze the one-dimensional radial structure using the classical transmission line
theory [70]. For the spherical geometry, we start with lower order illuminations to
simplify the analysis [71, 72] and then generalize our formulation for higher order
modes. The effects of noise on the overall reconstruction are also considered, and
the quality of the reconstructed image in each case is not found to be much sensitive
with respect to noise [73, 74].

The main advantages of our technique as compared to previously proposed meth-
ods to solve the microwave inverse scattering problems may be stated as follows. The
first advantage is that our method does not use any kind of linearization or Born
approximation, and hence dielectric objects of relative permittivity of as high as
100 can be reconstructed. The second advantage is that our method always pro-
vides a closed-form solution, and hence it does not require high computational time.
The third major advantage is that both continuous and discontinuous permittivity
profiles can be reconstructed using our proposed technique, as we do not have to
put any additional regularization constraint in our algorithm which is normally the
case in iterative methods as mentioned earlier. From the practical point of view, we
have proposed an experimental setup for the imaging of inhomogeneous dielectric
bodies, which is completely non-destructive and which does not require the mate-
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rial or medium to be confined inside some closed structures. This is in contrast to
other experimental prototypes developed in past by some researchers for the mi-
crowave imaging purposes, which are generally based on placing the target to be
imaged inside a water tank (to increase the lateral resolution) [8, 14]. We do not
always require the object under test to be placed inside a water tank or some other
medium having a high permittivity, as our proposed reconstruction algorithm allows
the resolution of the image in the spatial domain to be increased by simply increas-
ing the bandwidth of the measured spectral domain reflection coefficient data. Our
proposed setup of placing the dielectric object directly in front of the antenna has
also an advantage under situations, where it might be inconvenient or sometimes
even impossible to place the material under test (MUT) inside some tank or other
confined structures.

The details of our proposed technique for all three coordinate systems (Cartesian,
spherical and cylindrical) along with several reconstructed examples are presented
in subsequent chapters of this thesis. Here it may just be pointed out that after
combining results of all three major coordinate systems proposed in this thesis, it
is in principle possible to obtain a dielectric image of any arbitrary shaped inho-
mogeneous dielectric object in terms of an appropriate integral transform of the
wide-band reflection coefficient data.



Chapter 2

Microwave Inverse Scattering
Theory

2.1 Basic formulas and definitions

2.1.1 The electromagnetic field in free space

The electromagnetic theory is mainly concerned with interrelated or coupled electric
and magnetic fields and this coupling effect occurs when the two fields are time
varying. Generally at lower frequencies i.e. when dimensions of the device or system
are small compared to the wavelength (L << λ), the spatial distribution of the
electromagnetic fields over the extent of the device is same as that of static fields
even when the actual fields vary with time. The electric and magnetic fields can,
therefore, be considered as uncoupled in this lower frequency range and hence the
electric circuit theory, which is much simpler than the complicated electromagnetic
theory, can be used for the analysis in this case. However, in the microwave frequency
range where the wavelength is of the order of the dimensions of the component
(L ≈ λ), the electric and magnetic fields are strongly coupled and the lumped
circuit element approximation of the standard circuit theory cannot be used for the
analysis in this case. The reason is that at such a high frequency, the phase of the
voltage or current changes significantly over the physical extent of the device. Hence
the electromagnetic field theory and the distributed element approximation is used
for the analysis in the microwave frequency range. The modern electromagnetic field
theory is based on the mathematical equations proposed by Maxwell in 1873 [75],
who hypothesized them solely from mathematical considerations . These Maxwell’s
equations, which are basically coupled equations involving electric and magnetic
fields, were validated experimentally by Hertz during the period 1887-1891 [58].
The general form of time-varying Maxwell’s equations in differential form can be
written as follows

∇× E =
−∂B
∂t

(2.1a)

∇×H =
∂D

∂t
+ J (2.1b)

∇ · E =
ρc

ε0

(2.1c)

18
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∇ ·B = 0 (2.1d)

where E is the electric field intensity in V/m, H is the magnetic field intensity in
A/m, D is the electric flux density in Coul./m2, B is the magnetic flux density
in Wb/m2, J is the electric current density in A/m2 and ρc is the electric charge
density in Coul./m3. It may be mentioned here that bold-faced letters in this thesis
always denote vector quantities. The meaning of all the above equations are briefly
described below.

The first equation (2.1a) means that a time-varying magnetic flux density ∂B
∂t

will
act as a source for the electric field E and that the E field produced by changing
B encircles it. The second equation (2.1b) implies that a time-changing electric
flux density ∂D

∂t
and and electric current J are both sources for the magnetic field

H and the H-field lines produced by these two sources encircle J and ∂D
∂t

. The
third equation (2.1c) means that the electric charge ρc is a source of E and that
the E lines begin and end on charges. Finally, the last equation (2.1d) implies that
there are no magnetic charges analogous to electric ones and that the B-field lines
always occur in closed loops. It may be concluded from the above discussion that
the ultimate source of electromagnetic field is the electric charge density ρc, but
because of coupling nature of (2.1) both E and H also act as source of each other.

The electric and magnetic field intensities in free-space are related with the
current density and flux densities by the following simple relationships

B = µ0H (2.2a)

D = ε0E (2.2b)

where µ0 = 4π ? 10−7 henry/m is the permeability of free-space, and ε0 = 8.854 ?
10−12 farad/m is the free-space permittivity. If the electromagnetic wave is passing
through any media other than the free space, then the behavior of passing wave will
be influenced and accordingly these parameters will be modified as discussed in the
next section.

Today, most of the analysis using the electromagnetic field theory involves the
solution of Maxwell’s equations with appropriate boundary conditions. It is mainly
because of the complexity and coupled nature of these Maxwell’s equations that the
electromagnetic field theory approach becomes more complicated and involved than
the circuit theory approach. However, nowadays because of the availability of high
computational power, these Maxwell’s equations can be solved quite accurately for
any arbitrary geometry using some numerical techniques. The numerical solution
gives the value of the electric and magnetic fields at any point inside the body of an
arbitrary shape, provided the boundary conditions are properly defined.

2.1.2 Interaction of electromagnetic waves with dielectric
materials

When the electromagnetic waves pass through certain material or medium, then
the characteristics of these waves get changed depending upon the properties of the
medium. The properties of any media or materials are described by the permeability
µ, permittivity ε, and conductivity σ. Materials having large values of σ are called
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conductors and those having small values of σ are called insulators or dielectrics.
Our main concern here is the interaction of electromagnetic waves with non-magnetic
dielectric materials, which are characterized by µr = 1, ε > ε0 and having σ ' 0.
An ideal dielectric material possesses no free charges and thus completely inhibits
the passage of steady electric current. The vacuum is also one example of dielectric.

In this section, different aspects of the interaction of electromagnetic waves with
dielectric materials are discussed. As the electric and magnetic fields basically repre-
sent the forces among charges, the fundamental interaction of electromagnetic field
with materials is due to the exertion of force by the applied fields on the charges in
the material. The dielectric as a whole is electrically neutral, but it is composed of
molecules, which in turn are composed of charged particles (nuclei and electrons),
and these particles are usually affected by the presence of an electric field. The
applied field influences the positively and negatively charged parts of a molecule op-
positely, and these parts are displaced in opposite directions from their equilibrium
positions, thus causing the molecule to become polarized. These displacements are,
however, limited by strong repulsive forces, caused by the altered charge distribution
within the molecule, so that the net shift is just a small fraction of the molecular
diameter. The molecule in such cases may be viewed as an electric dipole and when
the contribution from all such dipoles are summed up, then this changes the original
field distribution. The dipole behavior of a molecule can be attributed to three main
causes namely electronic, ionic and orientational polarization, which are explained in
detail in later part of this section. These three polarization mechanisms in materials
are generally used as the basis for an explanation of their dielectric behavior.

2.1.2.1 The electric dipole moment

A fundamental concept associated with the phenomenon of polarization is the elec-
tric dipole moment p, which is defined as follows

p = (r1 − r2)Q = Qd (2.3)

where r1 and r2 are the position vectors of the total positive and negative charges
Q and −Q, and d is the directed distance from the center of negative charge to
the center of positive charge associated with the electrically neutral atom. The
above formulation is also applicable to a pair of ions, in which case d is drawn from
the center of charge of the negative ion to the center of charge of the positive ion.
The presence of an electric dipole generally alters the electric field, which would
have otherwise existed. From the practical point of view, the effect of a single
polarized atom on the total electric field may be rather small (sometimes, it may be
negligible). However, if we consider the cumulative effect of large numbers of such
polarized atoms or ions, then the electric field created by these systems of charges
may be quite appreciable. If several neutral systems of charges are considered jointly,
then their combined electric moment may be written as [76]

p =
∑

j

pj (2.4)

where pj = qjdj is the dipole moment of the jth system, with qj as the total positive
charge of this jth system, and dj as the directed distance from the center of negative
charge to the center of positive charge of this system.
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2.1.2.2 The macroscopic electric field due to polarized dielectric molecules

The matter as a whole may be considered as consisting of electrons and positively
charged nuclei, and these elementary particles are quite small as compared to inter-
atomic spacings. The electric and magnetic fields associated with these particles are
called microscopic fields and these fields are generally not of much interest because
of their rapid variations in space and time. For this reason, the local average values
of fields known as macroscopic E and H are often considered, and in this thesis we
will mainly deal with these fields components, which satisfy Maxwell‘s equations for
all types of materials [76].

In an ideal dielectric, we can assume that there is no free charge and all of the
electrical charges present are associated with electric dipoles, which are usually called
bound charges. One key feature of these bound charges associated with electrically
neutral atoms in a dielectric is that their total sum is generally zero as these kinds of
charges arise from electrically neutral dipoles. These electrically neutral dipoles are
better described by the term molecule, which is considered to be the fundamental
building block of any dielectric material. If we consider any nth molecule, and if a
center of subgroup of positive charges qn1 is displaced by a distance dn1 from a center
of subgroup of negative charges −qn1 within this molecule, then it will contribute
an electric dipole moment, pn1 = qn1dn1 according to (2.3). The nth molecule may
consist of many subgroups of displaced charges (qni,−qni) displaced by a distance
dni, and hence the total dipole moment for the molecule in this case will be given
by, pn =

∑
i qnidni according to (2.4). This dipole moment pn causes a potential

at any distant point (x, y, z), as shown in Fig. 2.1, which is given by

Φn =
pn · r̃n

4πε0r̃
3
n

(2.5)

Figure 2.1: The dipole moment



22 CHAPTER 2. MICROWAVE INVERSE SCATTERING THEORY

Now, the volume V of the dielectric material is generally large enough, so that
it can be divided into N number of macroscopic volume elements dV , with each dV
containing M molecules. In this case, the vector sum of all the dipole moments in
dV can be written as

M∑
n=1

pn = P dV (2.6)

where P is called the polarization density, or sometimes simply the Polarization.
Accordingly, making use of (2.5) and (2.6), the potential at any arbitrary point
(x, y, z) due to all the elementary dipoles in the entire volume of the dielectric
material is given by the following expression [76]

Φ(x, y, z) =

∫
V

P(ι, ϑ, κ) · r̃dιdϑdκ
4πε0r̃

3 (2.7)

where (ι, ϑ, κ) are coordinates of the source point, r̃ is a vector drawn from the
source point to the observation point as shown in Fig. 2.1, and the observation
point (x, y, z) is assumed to be quite far away from each of dipoles in V (r̃ � dni) .
The above expression for the total potential can be mathematically manipulated to
obtain the following form as given in [76]

Φ(x, y, z) =

∫
S

P · dS
4πε0r̃

+

∫
V

(−∇S ·P)dV

4πε0r̃
(2.8)

where, ∇s is the conventional del operator at the source point (ι, ϑ, κ), and S is the
bounding surface of the dielectric material. The potential expression (2.8) will cause
an electric field, which is given by the following expression [76]

E(x, y, z) = −∇O

[∫
S

P · dS
4πε0r̃

+

∫
V

(−∇S ·P)dV

4πε0r̃

]
(2.9)

where, ∇O is the del operator at the observation point. The above expression basi-
cally represents the macroscopic electric field at any point external to the dielectric
material. However, it has been verified in [76] that the macroscopic electric field
is always given by the same formula (2.9), irrespective of whether the observation
point (x, y, z) is internal or external to the dielectric material. Meanwhile, equa-
tions (2.8) and (2.9) can also be interpreted in terms of the equivalent charges. The
first term on the right hand side of this equation can be considered as a surface den-
sity of bound electric charge %P = Pn distributed over S, while the second term may
be viewed as a volume density of bound electric charge ρP = −∇S · P distributed
throughout V .

2.1.2.3 The concept of general electric flux density and the local electric
field

In this section, we make use of the concept of equivalent charges given by (2.9) to
derive a general expression for the electric flux density. For this purpose, let us first
distinguish between the primary charges and the equivalent charges. The primary
charges may be regarded as charges present in a vacuum, while the equivalent charges
are defined for dielectric materials to take into the account the effect of polarization



2.1. BASIC FORMULAS AND DEFINITIONS 23

in order to consider these dipole moments as some sort of actual charges in a vacuum.
This means that in case of a vacuum or free-space only primary charges will be
present, while in dielectric materials both primary and equivalent charges might be
present. Now, let us consider a general electrostatic system consisting of two parts;
the volume V1 is occupied by the primary charges having density ρc, and the volume
V2 (bounded by the surface S2) is occupied by the electric dipoles representing the
dielectric materials. These volumes V1 and V2 may overlap as shown in Fig. 2.2.
The electric field in the first region (V1) will be simply the field intensity due to the

Figure 2.2: The primary charges and the electric dipoles

volume charge density ρc, while the electric field in the second region (V2) will be
be given by the expression (2.9) with S and V replaced by S2 and V2 respectively.
Now, if the entire electrostatic system, including dielectric materials, is viewed as a
distribution of primary charges of density ρc and equivalent bound charges of density
ρP = −∇ · P in a vacuum, then a total macroscopic electric flux density may be
defined as follows

D0(x, y, z) = ε0E(x, y, z)

= ε0E1(x, y, z) + ε0E2(x, y, z)

= D01(x, y, z) + D02(x, y, z)

(2.10)

where E is the total macroscopic electric field of the medium at the observation
point as shown in Fig. 2.2, and D01 and D02 are electric flux densities associated
with the primary charge distribution ρc and the equivalent charge distribution ρP

respectively. Both the flux densities satisfy Gauss’ law and hence the expression
involving these two quantities can be written as follows
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∇ ·D01 = ρc

∇ ·D02 = −∇ ·P
(2.11)

Now, under most of the practical situations, we are generally interested in the
total electric field E, and the electric flux density D01 associated with the primary
charges ρc. Keeping this in mind, equations (2.10) and (2.11) can be solved to give
the following expression for the macroscopic electric flux density

D = D01 = ε0E−D02

= ε0E + P
(2.12)

where E is the total macroscopic electric field of the medium, and P represents the
macroscopic volume density of electric dipole moments associated with dielectric
materials. It may be noted here that (2.12) is basically an expression for the gen-
eralized electric flux density D, wherein the macroscopic E represents the electric
field both inside and outside the materials. Equation (2.12) is quite general in the
sense that in the absence of dielectric materials, the polarization density P simply
becomes zero, and the expression (2.12) reduces to that of fields due to system of
primary charges only. This expression, however, represents the fields at the macro-
scopic level and to have the physical interpretation of the dielectric theory, it is
quite useful to relate the macroscopic P with its causes, which generally occur at
the microscopic level. To obtain a relationship between P and its real causes at
the microscopic level, the concept of local electric field Eloc is introduced, which is
basically the average field intensity acting on a given molecule within the dielectric.
This local field Eloc is usually determined by removing the molecule in question,
maintaining all other molecules in their time-averaged polarized positions, and cal-
culating the space-averaged electrostatic field in the space previously occupied by
the removed molecule. Following this procedure, the local field may be derived to
have the following expression [76]

Eloc = E +

(
γ

ε0

)
P (2.13)

where E is the macroscopic electric field and γ, which is basically the constant of
proportionality between the average local field and the total dipole moment, is called
the internal field constant. The formulation of the local electric field as in (2.13),
can be used to obtain a relationship between P and its causes for all three types of
polarization, as will be shown in following paragraphs.

2.1.2.4 The electronic polarization

This type of polarization occurs due to shifting of the electron cloud of an atom
relative to its nucleus in the presence of an electric field. Let us assume that the
nucleus is shifted by a distance d with respect to the center of the electron cloud,
due to the presence of a local electric field Eloc as shown below in Fig. 2.3. It is
assumed that the electrons originally form a cloud of constant charge density around
the nucleus, confined to a sphere of the radius r0. Now, if Ze is the total charge
on the nucleus, with Z being the atomic number and e the charge, then the force
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Figure 2.3: The electronic polarization

on this nucleus due to all other charges except its own electron cloud will be given
by ZeEloc. This force on the nucleus should be balanced by the restoring force due
to the electron cloud distribution Qd = Zed3/r3

0 within the radius d as shown in
Fig. 2.3. The expression for this restoring force can be derived using Coulomb’s law,

and is given by (Ze)2 d3/r3
0

4πε0d2 [76]. Under equilibrium condition, these both forces will
be equal, and this leads to the following expression for the electronic dipole moment
pe = Zed of the atom [77]

pe = αeEloc (2.14)

where,

αe = 4πε0r
3
0 (2.15)

is called the electronic polarizability of the atom. Sometimes, it may be difficult
to find an exact expression for αe in complicated cases, however its average value
could always be deduced, which would generally differ from (2.15) only by some
scaling factor. This implies that the induced electronic dipole moment in dielectric
materials is proportional to the local electric field as given by (2.14) in most of the
cases.

2.1.2.5 The ionic polarization

Sometimes, a molecule may consist of two different atoms which are joined together
by a chemical bond as shown in Fig 2.4(a). These kinds of molecules, in which two
distinct atoms A and B are arranged in-line, have generally a net dipole moment of
zero. However, the presence of an electric field in such molecules causes a relative
displacement of these charged atoms resulting in a net dipole moment 2δp as shown
in Fig 2.4(b). The effect of inducing dipole moment in these kinds of molecules is
called the ionic polarization. Suppose that d0 is the average interatomic spacing
between the centers of A and either of the B atoms and 2q is the net time-average
charge on the A atom. Now, if the the ions in Fig 2.4(a) are separated by a distance
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Figure 2.4: The ionic polarization

r in the absence of any electric field, then the net force on the lower B ion due to the
positive ion A and the other negative ion B is given by the following expression [76]

Fn0 =
(2q)(q)

4πε0r2
+

(−q)(q)
4πε0(2r)2

− 7q2dn−1
0

16πε0rn+1
(2.16)

where n is a constant, whose value depends on the ions being considered. The
first two terms on the right hand side of (2.16) represent the Coulomb’s attractive
forces between ions, while the third term indicates the net repulsive force due to the
electron clouds of adjacent ions. Under equilibrium, r = d0 and the net force given
by (2.16) would be zero. Now, suppose that the presence of an electric field Eloc shifts
the ion A by a distance δd closer to the upper B ion as shown in Fig 2.4(b). The
net force experience by the lower B ion in this case can be calculated using (2.16),
provided the distances d0, and r are replaced by d0 + δd. After this substitution,
this equation may be further simplified to obtain the following expression [76]

Fnd =
q2 δd

16πε0d3
0

[7(n+ 1)− 16] (2.17)

This force should be balanced by the external force −qEloc on the lower B ion
under the equilibrium condition. Making this equality and noting that pi = 2qδd is
basically the induced dipole moment for the entire molecule, we obtain the following
expression for the average induced dipole moment [76]

pi = αi Eloc (2.18)

where,

αi =
32πε0d

3
0

[7(n+ 1)− 16]
(2.19)
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is called the ionic polarizability of the molecule. Equation (2.18) is in general ap-
plicable to all kinds of non-polar molecules as well as the ionic crystals except that
some times a slight change in the magnitude of αi may be observed. It may be
noted here that the above analysis assumes that the major axis of orientation of
all the molecules is in a direction parallel to the applied electric field. However,
when the molecules are randomly oriented and this condition is not satisfied, then
the component of electric field which is in the direction of the major axis of crystal
should be considered.

2.1.2.6 The orientational polarization

The molecules having a permanent dipole moment are called polar molecules and
in the absence of an electric field, these moments are randomly oriented. The appli-
cation of an electric field exerts a torque on these polar molecules tending to align
them with the field and this effect is called the orientational polarization. However,
because of the thermal agitation effect, the molecules keep on colliding with each
other and break up this orientational pattern. The net result is that the all the
molecules are never completely aligned, except at very low temperatures. For a
quantitative description of this effect, consider a permanent dipole µ = qd making
an angle β with respect to the electric field Eloc as shown in Fig. 2.5. The potential

Figure 2.5: The orientational polarization

energy of the whole system here consisting of the dipole and the electric field is given
by the following expression [76]

W = −µ · Eloc (2.20)

It is observed from the above equation that the energy is minimum when the angle
between the dipole and the field is zero and it is maximum when this angle becomes
π. Hence it may be deduced that the preferred orientation for the dipoles is in
the direction of the applied field. At very low temperatures, the effect of thermal
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agitation will be negligible and all the permanent dipole moments can be considered
to be aligned with the field resulting in the value of orientational dipole moment
per molecule p0 approximately equal to µ. However, at normal temperatures the
orientation will never be complete, and the expression for the orientational dipole
moment per unit molecule is given by the following expression [76]

po = αoEloc (2.21)

where, αo = µ2/3kT is called the orientational polarizability of the molecule, with
k and T being the Boltzman’s constant and the temperature respectively.

2.1.2.7 The concept of relative permittivity

As can be easily seen from (2.14), (2.18), and (2.21), the dipole moment in all
three types of polarization is proportional to the local field. Hence for the materials
exhibiting all three types of polarizability, we may define an average polarization
per molecule as follows

p = αEloc (2.22)

where,

p = pe + pi + po (2.23)

is the sum of all the three individual dipole moments, and

α = αe + αi + αo (2.24)

is the total polarizability, being sum of all three contributions. Now, if N is the
density of molecules per cubic meter, then the volume density of dipole moments
will be given by

P = Np = NαEloc (2.25)

This equation may be combined with (2.13) to obtain the following expression for
the total polarization

P = χε0E (2.26)

where, χ is a dimensionless quantity, known as the dielectric susceptibility and is
given by the following expression [76]

χ =
Nα/ε0

1− γNα/ε0

(2.27)

where γ is called the internal field constant as used in (2.13), and α is defined
by (2.24). The expression for P as given by (2.26) may be used in (2.12) to express
the total electric flux density as follows

D = ε0(1 + χ)E = ε0εrE = εE (2.28)

where,



2.1. BASIC FORMULAS AND DEFINITIONS 29

εr = (1 + χ) (2.29)

is also a dimensionless quantity, and is called the relative permittivity or the relative
dielectric constant of the medium. The quantity ε = ε0εr in (2.28) is called the
total permittivity of the medium. As the field E and the flux density D are both
macroscopic quantities, the relative permittivity εr can be thought of as representing
the macroscopic electric behavior of the dielectric. The value of relative dielectric
constant will depend upon the value of polarization density P per unit field. In
case of gases, the molecules are generally far enough and so they cause a very low
polarization density resulting in a value of the relative dielectric constant close to
unity. In case of solids and liquids, however, the high density of molecules results
in a considerable value of P per unit applied field and so the value of the dielectric
constant as given by (2.27) and (2.29) should be taken into account to find the total
electric flux density in (2.28). When we use the expression given by (2.27), then
we may have to use one, two or three terms of (2.24) and (2.25) depending upon
whether the material under consideration consists of single type of atom, more than
one type of atoms, and whether its molecules contain permanent dipole moments.
As the distance between atoms in non-polar solids and liquids is generally not much
affected by the temperature, the relative dielectric constant in these cases can be
considered to be constant over a wide temperature range. However, in case of
polar solids and liquids, whose molecules possess permanent dipole moment, the
susceptibility or the relative permittivity can show a temperature dependence over
some range. In this thesis, we mainly deal with dielectric materials at around room
temperature and hence the temperature-dependence of the relative permittivity is
not of much relevance to us.

2.1.2.8 The effect of time-varying electromagnetic field

All the discussion so far in this section assumed that dielectric materials were under
the influence of static electric fields. In this section the results given earlier will
be extended to the time-harmonic case. However, we will limit our discussion to
linear and isotropic materials, as most of materials of our interest fall under this
category. In linear media, the polarization density P and the applied electric field
E are linearly related and the permittivity does not depend upon the strength of
the applied electric field. The isotropic materials are characterized by the scaler
value of permittivity so that P and E are parallel and point in the same direction.
For anisotropic materials, permittivity will have to be defined by a tensor relating
the three components of electric flux density D to the three components of E [78].
When a time-harmonic E is applied to linear and isotropic dielectric materials, then
it will result in a time-harmonic P. But, the induced P may not be in phase with
the local field because of the inertia exhibited by displaced charges and so we may
have to consider the phase factor of P. After a careful analysis, it has been observed
that for materials exhibiting only electronic and the ionic polarization, the permit-
tivity may be considered to be real and frequency independent in the microwave and
millimeter-wave range [76]. However, materials having strong orientational polariza-
tion (which is basically frequency dependent), exhibit complex permittivity and also
have dielectric losses in the microwave frequency range. Some common examples of
such kind of materials, which fall under this category are some liquids such as water
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and some crystalline solids. In this thesis, however, only lossless dielectric materi-
als having real values of permittivities will be considered. The reason being that
our main aim in this thesis is, basically, to propose analytical methods for the re-
construction of inhomogeneous permittivity profiles in different coordinate systems.
And it will be quite complicated and sometimes even impossible to consider both
position and frequency dependence of permittivity (lossy materials have generally
strong frequency dependence because of the orientational polarization phenomenon),
specially if some analytical method is used. Also the dielectric materials having low
loss can be considered as lossless for many practical applications. Meanwhile, the
concept of relative permittivity as given by (2.29) and the general electric flux den-
sity given by (2.28) can be used to generalize Maxwell’s equations (2.1) and (2.2)
with ε0 replaced by ε. This is definitely an advantage because then the situation
looks like as if no polarized molecules were present and all the basic formulas and
definitions applicable in free space can be applied to dielectric media as well with
just this replacement of ε0 by the total ε. It may be mentioned here that if the
material is conductive, then the electric current density J in (2.1b) may be replaced
by J = σE where σ is conductivity of the material. This factor σ may be combined
with the imaginary part of the ε to account for the losses in dielectrics. Similarly,
for magnetic materials, the free-space permittivity µ0 in (2.2a) may be replaced
by a more general µ = µ0µr, where µr is the relative permeability of the medium.
However, as mentioned earlier, only non-magnetic lossless dielectric materials will
be considered in this thesis, and hence σ = 0 and µr = 1 would be taken for all
future reference.

2.1.3 The scattering parameters

At low frequencies, where the wavelength is large compared to the circuit dimen-
sions, lumped equivalent circuit approach can be used and the voltage and current
can be defined uniquely at each and every point. These low frequency circuits can
be analyzed in a variety of ways and many sets of parameters such as impedance
or admittance parameters can be defined and accurately measured. However, at
microwave frequencies, where the circuits dimensions become comparable to the
wavelength, the lumped circuit approach does not work as the phase of the wave
may change along the line. The best way to analyze the circuits at microwave fre-
quencies would be to solve Maxwell’s equations along with the appropriate boundary
condition to obtain the field at each and every point in space. However, this analysis
is usually quite complicated and time-consuming and sometimes is not worth doing
for some simple structures. Generally, for circuits having two-conductors and sup-
porting TEM waves (such as coaxial cables), the voltage and current can be defined
uniquely even at higher frequencies, and many network concepts can be applied to
them by treating them as distributed components. If we are able to define equivalent
voltages and currents at some terminal pairs or ports for these transmission lines
at higher frequencies, then impedance or admittance matrices of the circuit theory
concept can be used to characterize these networks. However, for transmission lines
supporting non-TEM waves (such as waveguides), it is very difficult or rather im-
possible to define the voltage and current uniquely at any point [58]. As a matter
of fact, even for TEM-lines, the direct measurement of voltage and current waves
(both magnitude and phase) travelling in a given direction, is practically not feasible
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at microwave frequencies. Hence the whole definition of voltages and currents and
the formulation of impedance and admittance matrices at microwave frequencies
remains a mere theoretical concept. At microwave frequencies, a set of parameters
known as scattering parameters, which basically relate the incident waves on the
ports with the reflected and transmitted waves from the ports, are commonly used
for the analysis. The port may be any type of transmission line or transmission line
equivalent of a single propagating waveguide mode, and this may be thought of like
a ”two-terminal pair” of the conventional circuits [58]. The scattering parameters
(both magnitude and phase) can be very accurately measured over a wide band of
frequencies using e.g. a vector network analyzer, and they are also uniquely defined
for both TEM and non-TEM lines at a given reference plane. Let us consider an
N -port microwave network as shown below in Fig. 2.6, with the terminal plane tn
defined at a reference point on the nth port. The scattering parameters for this

Figure 2.6: The N-port microwave network

N -port network will be defined by a N ×N scattering matrix as follows [79]
b1
b2
...
bN

 =


S11 S12 . . . S1N

S21 S22 . . . S2N
...

...
. . .

...
SN1 SN2 . . . SNN



a1

a2
...
aN

 (2.30)

where an is the amplitude of the incident wave at the nth port, while bn represents
the scattered wave amplitude from the port n. Each port in Fig. 2.6 may represent a
transmission line or its equivalent corresponding to a single propagating waveguide
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mode. The scattering parameter Sii may be considered as the reflection coefficient
at the port i provided all other ports are matched, and the parameter Sij is the
transmission coefficient from port j to port i when all other ports are terminated in
matched loads. In a more concise form, (2.30) can also be written as follows

[b] = [S] [a] (2.31)

As the [S]-parameters defined by (2.30) and (2.31) relate both magnitude and phase
of the incident waves with that of reflected and transmitted waves, the location of
a phase reference plane tn is crucial for each port n as shown in Fig. 2.6. However,
if the reference plane is moved from the original positions, then we do not need to
measure or calculate the S parameters again, rather they may be easily modified
using simple mathematical relationships [58]. If we assume that the reference plane
in port m is shifted by a distance lm away from the original position, then the
original S parameters are modified as follows

S ′mm = e−2jβmlmSmm (2.32)

where Smm / S
′
mm basically represent the reflection coefficients at the port m pro-

vided all other ports are matched, and βm = 2π/λm is the propagation phase con-
stant for the mth line. A similar kind of relationship can be developed for general-
ized scattering parameters Smn [79]. It may be noted here that the above formula-
tion (2.32) holds good only if the frequency is constant throughout this operation. It
may be also mentioned here that in deriving (2.30) and (2.31), it is assumed that all
ports have the same characteristic impedance so that the power is directly propor-
tional to the square of the wave amplitude. The identical characteristic impedance
also helps in obtaining a symmetric S matrix for reciprocal networks. However, if
this is not the case, and if the port m is having its characteristic impedance as Z0m,
then the normalized wave amplitudes may be defined as follows

âm = am/
√
Z0m

b̂m = bm/
√
Z0m

(2.33)

These normalized wave amplitudes may then be used along with (2.30) to obtain the
S parameters for the multi-port network with unequal characteristic impedances of
each port. The normalization of wave amplitudes as in (2.33) is quite useful for the
analysis of non-uniform transmission lines as will be shown in the later part of this
thesis.

In equation (2.30), the S parameters are defined for an arbitrary number of
ports. However, the two-port networks shown in Fig. 2.7 are most commonly used
at microwave frequencies. It is also very common to have a cascade of two or
more of these types of two-port networks representing various microwave circuits.
Under these circumstances, when we have a cascade of two port junctions, it is more
convenient to represent each junction by a wave-amplitude transmission matrix [T ]
as shown in Fig. 2.7. The transmission matrix [T ] relates the incident and reflected
waves on the input port to those on the output port as follows[

a1

b1

]
=

[
T11 T12

T21 T22

] [
b2
a2

]
(2.34)
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Figure 2.7: A 2-port microwave network

The main advantage of this type of formulation defined by (2.34) is that the trans-
mission matrix [T ] of the cascade connection of two or more two-port networks
shown in Fig. 2.7 can simply be found by multiplying the [T ]-matrices of the indi-
vidual two-ports. The transmission matrix [T ] can be easily transformed into the
scattering matrix [S] using simple mathematical relationships [79].

2.1.4 The multiple reflections from inhomogeneous trans-
mission lines

In the last section, it was briefly mentioned that the scattering coefficient Smm

basically represents the reflection coefficient at the port m, provided all the other
ports in network are matched. If we have a junction of two transmission lines of
characteristic impedances Z1 and Z2 as shown in Fig. 2.8, then this junction behaves
like a 2-port network and the scattering parameter at the input port S11 will be equal

Figure 2.8: Reflection at the junction of two transmission lines

to the reflection coefficient Γ provided the second port is matched, i.e.,

Γ = S11 =
Z2 − Z1

Z2 + Z1

(2.35)

Now, suppose that the second transmission line of electrical length θ = βl and
of the characteristic impedance Z2, is terminated in a load impedance ZL 6= Z2.
This situation is depicted in Fig. 2.9, where it has also been shown that there will
be multiple reflections at both first and second junctions due to mismatching. The
total reflection coefficient Γ at the input line will basically be infinite sum of all
the partial reflections and transmissions. However, it is easily shown that for small
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Figure 2.9: Multiple reflections in a circuit with two junctions

reflections, the resultant reflection coefficient Γ can be found by considering only
first order reflections from both the junctions, i.e.

Γ = Γ1 + Γ3 e
−2jθ (2.36)

where the term e−2jθ is introduced to take into account the total phase shift 2θ,
which the incident wave undergoes in travelling the line up and down. It may
be noted here that the above approximation is valid only when the discontinuity
between the impedances Z1 , Z2 and Z2 , ZL is small [58]. This concept of small
reflection theory can be extended to analyze a multi-layered transmission line shown
in Fig. 2.10, where the impedance in each layer is assumed to be constant. In the

Figure 2.10: A multi-layered transmission line having a large number of homoge-
neous layers

limiting case, i.e., when the number of layers is quite large and the change in the
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impedance from one step to another dZ̄ is small, this multi-layered transmission
line approaches a continuously tapered line shown in Fig. 2.11. The normalized

Figure 2.11: A tapered transmission line

characteristic impedance of this tapered line

Z̄(x) = Z(x)/Z0 (2.37)

changes continuously over the length of the line, and it can basically represent
any general type of inhomogeneous transmission line. The incremental change in
the impedance dZ̄ in Figs. 2.10 and 2.11 will produce a local differential reflection
coefficient given by the following expression

dΓl =
Z̄ + dZ̄ − Z̄

Z̄ + dZ̄ + Z̄
' dZ̄

2Z̄
(2.38)

where it is assumed that dZ̄ is sufficiently small so that the the higher order terms
such as dZ̄2, dZ̄3, · · · can be neglected. Now, as mentioned earlier, the total re-
flection coefficient at the input x = 0 can be approximately estimated by summing
up all the individual terms such as (2.38) after taking into account their proper
phase shifts, as was done for the two-junction transmission line in (2.36). However,
this formulation will neglect all multiple reflections between individual differential
sections in Fig. 2.10. To take into account these multiple reflections, an exact dif-
ferential equation for the reflection coefficient Γ can be derived using the concept of
microwave network theory [79]. The region between x and x + dx in Fig. 2.10 can
be considered as a transmission line of length dx followed by a two-port network
[∂S] representing the junction between two impedances Z̄ and Z̄ + dZ̄ as shown in
Fig. 2.12. The total reflection coefficients at points x and x+ dx are supposed to be
given by Γ and Γ + dΓ respectively as shown in Fig. 2.10. If the circuit is assumed
to be lossless, then the S parameters of the junction in Fig. 2.12 is given by the
following expression
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Figure 2.12: A single section of the tapered transmission line

[∂S] =

[
S11 S12

S21 S22

]
=

[
dΓl

√
1− dΓ2

l√
1− dΓ2

l −dΓl

]
(2.39)

where the unitary property of the 2-port [S] matrix is used. As can be seen from
Fig 2.12, the second port of the junction [∂S] is not fully matched rather it is
terminated into an impedance characterized by the reflection coefficient Γ + dΓ.
This mismatching at the output port will modify the input reflection coefficient Γ̂
in Fig. 2.12 as follows [79]

Γ̃ = S11 −
S12S21(Γ + dΓ)

S22(Γ + dΓ)− 1
= dΓl +

[1− dΓ2
l ] (Γ + dΓ)

1 + dΓl(Γ + dΓ)
(2.40)

Now, equation (2.32) can be used to relate this intermediate parameter Γ̂ with the
reflection coefficient Γ in Fig. 2.12 as follows:

Γ = Γ̃e−2jβ dx (2.41)

Equations (2.40) and (2.41) can be combined together to arrive at the following
equation

Γe2jβ dx ' Γ [1 + j2β dx]

= dΓl +
[1− dΓ2

l ] (Γ + dΓ)

1 + dΓl(Γ + dΓ)
' dΓl +

[(Γ + dΓ)

1 + Γ dΓl

(2.42)

where the exponential function is expanded into Taylor’s series and the higher order
infinitesimals such as dx2, dΓ2

l , dΓ dΓl, dx dΓl, · · · etc. are neglected. Equation (2.42)
can be further simplified after neglecting the higher order terms of differentials,
and using (2.38) to arrive at the following exact differential equation involving the
reflection coefficient

dΓ

dx
= 2jβΓ− 1

2

(
1− Γ2

) d (ln Z̄)
dx

(2.43)

The above equation is called the Riccati equation and it is the exact equation, which
takes into account the multiple reflections within the inhomogeneous transmission
line. However, this equation is non-linear because of the presence of Γ2 term and
hence does not have any general solution. But, this equation can always be solved
numerically provided that we are able to specify the impedance Z̄(x) along the line.
The more complicated problem is of synthesis, where we are required to determine
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Z̄(x) for some given values of reflection coefficient data taking into account the non-
linearity of (2.43). As the normalized impedance can generally be related with the
permittivity profile, so the synthesis problem is of main concern to us in this thesis.
It will be shown in subsequent chapters of this thesis that these kinds of non-linear
synthesis problems can be solved using our proposed technique.

2.1.5 The integral transform

Integral transforms find application in many areas of science and engineering. The
basic aim of the integral transform method is to transform a given problem into one
that is easier to solve. They are, for example, very convenient tools for solving initial-
value and boundary-value problems in an easy way. A problem involving derivatives
can be reduced to a simpler problem involving only multiplication by polynomials
in the transform variable by taking an integral transform, solving the problem in
the transform domain, and then finding an inverse transform. There are many basic
theorems and quite involved theory regarding the integral transform, which can be
found in many books such as [63]. However, the conditions and criteria described
in these theorems are generally broad enough so that they are generally applicable
to most of the functions that arise in the field of science and engineering. Hence
we discuss here the use of the integral transform only from the application point of
view. In very general terms, an integral transform may be defined by the following
relationship [80]

H(s) =

∫ ∞

−∞
h(t)K(s, t) dt (2.44)

where a given function h(t) of domain t is said to have been transformed into another
function H(s) of domain s by this integral. The function H(s) is called the integral
transform of h(t), and K(s, t) is called the kernel of this transformation. The
function h(t) and the kernel K(s, t) must satisfy certain conditions to ensure the
existence and uniqueness of the transform H(s). There are a variety of kernels that
may be used in (2.44) to define a particular kind of integral transform. However,
two most widely used transforms, which would also be used in this thesis, are the
Fourier transform and the Hankel transform.

If a function h(t) is absolutely integrable in the interval (−∞,∞) i.e.
∫∞
−∞ |h(t)|dt <

∞, then its Fourier transform is defined as follows [63]

H(ω) = = [h(t);ω] =

∫ ∞

−∞
h(t)e−jωt dt (2.45)

where t and ω may be referred to as time and frequency domains respectively. The
domains t and ω are chosen arbitrarily and may be replaced by another pair of
domains, e.g. d and k known as distance and wavenumber domains respectively.
The only restriction is that the two domains should have dimensions opposite to
each other. In many practical cases, it is also required to determine the function
h(t) when its transform H(ω) is known. This is called the inverse Fourier transform
and is defined as follows

h(t) = =−1 [H(ω); t] =
1

2π

∫ ∞

−∞
H(ω)ejωt dω (2.46)



38 CHAPTER 2. MICROWAVE INVERSE SCATTERING THEORY

The inclusion of the constant factor 1/2π in (2.45) is arbitrary and it depends on
the convention used in definition of the Fourier transform and its corresponding
inverse. But once any particular convention is chosen, then it should be adhered to
throughout the analysis. One very easy way to test the correctness of a particular
definition of a Fourier transform pairs is by means of the following equation

h(t) = =−1 {= [h(t);ω] ; t} and H(ω) = =
{
=−1 [H(ω); t] ;ω

}
(2.47)

The above equation means that for the correct definition of transform pairs, if we
take the Fourier transform of any function h(t) and afterwards take its inverse trans-
form, then it should yield the original function. This statement also holds true for
the function H(ω) except that the order of transform and its inverse should be inter-
changed. A physical process can be described either in time domain or in frequency
domain, and hence h(t) and H(ω) may be considered as two different representa-
tions of the same function. Equations (2.45) and (2.46) are generally applicable to
continuous functions, i.e. when h(t) is given as a continuous function in the time
domain, then (2.45) can be used to transform this function into frequency domain
or vice-versa. However, in many practical situations, the functions h(t) (or H(ω))
are sampled, i.e. their values are specified over a finite number of discrete intervals.
Generally, the signals which are band-limited, can be sampled at fixed intervals of
time and the complete signal can be reconstructed from these samples provided the
sampling rate is at least twice the highest frequency component of the signal. It
is worth mentioning here that the same concept can be applied for sampling time-
limited frequency-domain signals, which generally forms the basis for taking inverse
Fourier transform of discrete frequency-domain samples. Once the signals are sam-
pled, then the formulas (2.45) and (2.46) are modified so that they are valid for
discrete signals. Since in real situations, we can only have finite number of sampled
values, hence the infinite limit integrals in (2.45) and (2.46) are replaced by a finite
discrete sum [63]. In our proposed work, we carry out measurements of the reflec-
tion coefficient data at a number of points over a wide frequency-domain and use
inverse discrete transform to convert these values into the real-space or virtual-time
domain. We, therefore, formulate here the definition of discrete Fourier transform
and its inverse from our perspective, in accordance with the theory given in many
standard books such as [63].

Let us suppose that we have N consecutive sampled values of a frequency-domain
function H(ω), which represent the measured values in a given frequency range, as
follows

Hm ≡ H(2πfm), fm ≡ m∆f, m = 0, 1, 2, . . . , N − 1 (2.48)

Now, we can assume that these N number of inputs will not be able to produce
more than N number of outputs and hence the function h(t) can be estimated at N
discrete values from N discrete values of F (ω) as follows

tn ≡
n

N∆f
n = 0, 1, 2, . . . , N − 1 (2.49)

The next step is to substitute (2.48) and (2.49) in (2.46) and approximate the infinite
integral by a finite discrete sum
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h(tn) ' 1

2π

N−1∑
m=0

Hme
j2πtnfm 2π∆f =

N−1∑
m=0

Hme
j2π n

N∆f
m∆f∆f

= ∆f
N−1∑
m=0

Hme
j2π mn

N = ∆f hn

(2.50)

where the summation

hn =
N−1∑
m=0

Hme
j2π mn

N (2.51)

is called the inverse discrete Fourier transform, which maps N complex numbers
(the Hm’s) into another N complex numbers (the hn’s) and does not depend on
any dimensional parameter such as ∆f . The corresponding direct discrete Fourier
transform can be similarly derived after combining (2.48), (2.49), and (2.45) and is
given by the following expression

Hm =
1

N

N−1∑
m=0

hne
−j2π mn

N (2.52)

which is of the same form as (2.51) except a change of sign in the exponential function
and a constant factor 1/N . Hence the routines for calculating discrete Fourier
transform and its inverse are not much different from each other and they can always
be interchanged with slight modifications. If we look closely at (2.50) and (2.51),
then it is observed that to compute the DFT (discrete Fourier transform) ofN points,
N2 complex multiplications are required, which is substantially high especially for
higher N . However, in mid-1960s, Cooley and Tukey developed an algorithm that,
under certain conditions, reduces the number of computations required to compute
a DFT for N points from N2 to Nlog2N [81]. This algorithm is known as the fast
Fourier transform (FFT), and today there are several variations of this algorithm,
but they all are based on the same principle [80]. As a matter of fact, nowadays many
standard packages such as MATLAB already have pre-built routines for calculating
FFT and IFFT, hence one does not need to spend much time in writing the whole
routine from scratch.

After Fourier transform, probably the another most popular transform is the
Hankel transform of order ν, which is defined as follows

F (s) ≡ Hν [f(r)] ≡
∫ ∞

0

f(r)rJν(sr) dr (2.53)

where, f(r) is a function defined for r ≥ 0 in the r-domain, F (s) is the corresponding
function in the s-domain, and Jν(sr) is the Bessel function of the first type and of
the order ν. The Hankel transform is quite useful when we are dealing with problems
that show circular symmetry, and it is the natural transform to be used in cylindrical
coordinate systems. The inverse transform corresponding to (2.53) is described by
the following relationship

f(r) ≡ H−1
ν [F (s)] ≡

∫ ∞

0

F (s)sJν(sr) ds (2.54)



40 CHAPTER 2. MICROWAVE INVERSE SCATTERING THEORY

As can be easily seen from (2.53) and (2.54), the Hankel transform and the its
inverse are quite symmetrical in nature. The most common cases of the Hankel
transform generally correspond to ν = 0 and ν = 1. As a matter of fact, the
Hankel transform of order ν = 0 can be considered as the two-dimensional Fourier
transform of a circularly symmetric function [80]. For discrete or sampled values
of a function, we can define the discrete Hankel transforms in a way similar to
that of discrete Fourier transforms defined earlier. However, for discrete values of
functions, equations (2.53) and (2.54) can always be integrated numerically provided
the number of points N is not very high and the time required for the operation is
within reasonable limit.

Finally, it may be noted here that besides Fourier and Hankel transforms, many
other types of kernels which satisfy certain conditions can also be chosen in (2.44)
to formulate other transforms according to our convenience. As a matter of fact,
the definition of integral transform as given by (2.44) can be made quite general so
that it is applicable to many complicated functions, as will be shown in the later
part of this thesis.

2.2 The inverse problem from the mathematical

point of view

The inverse problem was defined in the previous chapter as the one, which mainly
deals with finding the causes of a known consequence. It was also mentioned very
briefly that under normal circumstances it is difficult to obtain a very stable and
unique solution of an inverse problem. In this section, some mathematical im-
plications of solving an inverse problem are discussed. We start the section with
some common examples of inverse problems, which occur in mathematics and other
branches of science and engineering.

In basics mathematics, the direct problem is generally the multiplication of given
two numbers. The corresponding inverse problem may be to find a pair of factors
of a given number. It is interesting to note that like many inverse problems, the
factorization does not always seem to have a unique solution. As a matter of fact, the
whole notion of prime numbers is introduced to impose uniqueness on the solution of
this inverse problem. We can also explain the inverse problem with reference to an
example associated with the electromagnetic scattering. Assume that the behavior of
a field is described by a differential equation Pu = f , where f is a source and u is the
measuring parameter. Now suppose that we are able to measure u outside M , where
M is a region occupied by the medium. It is conventional in mathematics to consider
the problem of finding u in the case when P and f are given and hence it is called
the direct problem. With this convention in mind, the problem of determination of
f (which is basically the source) from u may be regarded as the inverse problem, as
it is exactly opposite to the one described previously. The mathematical models of
many physical phenomenon are described as inverse problems and they always come
paired with direct problems. We mainly discuss here the mathematical concepts
associated with the electromagnetic scattering problem. However, these concepts
are quite general and can be applied to other applications of inverse problems as
well. Because of the non-conventional nature of inverse problems in mathematical
terms, their solution is also sometimes uncertain and unstable.
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Mathematically, the scattering problem can be considered as a mapping between
two sets of functions [17]. One set of functions d form the elements of a data set D,
which basically represents the scattered field (or some of its characteristics). The
other set is represented by the object set O, which comprises of a set of functions o,
describing properties of the inhomogeneous object or medium. The direct scattering
problem consists of finding how the object set functions o are mapped to the data
set functions d. The mapping F is basically an operator which acts on the elements
o ∈ O to produce an element of a data set d ∈ D or F : O → D. If the operator and
properties of the medium are known, then the forward mapping from the object set
to data set is represented in mathematical terms as follows

D = {d : F (o) → d} (2.55)

The above mathematical equation basically means that the set D is the collection
of elements d such that the operator F maps o to d. The solution of an inverse
problem involves finding the inverse mapping or inverse operator F−1 : D → O
which constructs the object set from the data set. The inverse operator can thus be
considered as one which reconstructs the properties of the object, and if the data
set and this operator is known, then the object set can be defined as follows

O = {o : F−1(d) → o} (2.56)

The above equation basically means that if the inverse operator and the data sets
are known, then the object set can be reconstructed. The schematic diagram of both
forward and inverse mappings, which are given by (2.55) and (2.56) respectively is
shown below in Fig. 2.13. The complicated nature of inverse scattering problems

Figure 2.13: The forward and inverse scattering problems as mappings between two
sets

can be better understood, if the above relationship between the mapping and the
respective sets are related to the real scattering experiment. The object set O may
be regarded as a collection of points, where each point corresponds to a particular
value of the physical or electrical properties of the object. The data set D represents
a collection of points in such a way that each point corresponds to a complete set
of measured scattered field (or some of its characteristics) for a given object. This
means that if we are measuring the scattering parameters in frequency domain, then
each point of D represents a complete set of spectral domain scattering data corre-
sponding to any given dielectric object. It is in this sense that one element of object
set corresponds to a single element of the data set and vice-versa. The mapping
itself can be considered to be a model representing the real scattering phenomenon
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which is obtained from the wave propagation characteristics, and this information
is usually expressed in the form of either a differential or an integral equation. The
forward and inverse mapping between the object and data sets can be nonlinear in
many cases. As a matter of fact, the inverse scattering process is a nonlinear process
because of the multiple scattering phenomenon as discussed previously. For the in-
verse mapping case, one critical aspect is to study the effect of noise, as it becomes
sometimes very difficult to avoid some error in the measured scattering data under
practical situations. This noise consideration is important regarding stability of the
inverse solution. The other two important aspects regarding the solution of an in-
verse problem are uniqueness and existence. It may be mentioned here that many
inverse problems lead to a non-unique solution, because of the nonlinearity and com-
plexity involved in the whole process of mapping as explained above. The concept
of existence and uniqueness from the mathematical point of view was first studied
well by Hadamard [82] when he was working on differential equations, and in this
process he introduced the notion of well-posed and ill-posed problems. Hadamard
postulated that a mathematical model for a physical problem has to be well-posed
or properly posed in the sense that it had following three properties

1. There exists a solution of the problem (existence).

2. There is at most one solution of the problem (uniqueness).

3. The solution depends continuously on the data (stability).

The above definition means that any mathematical model, for which (at least) one
of the above properties does not hold, is called ill-posed [83]. Mathematically, the
existence of a solution requires that the inverse mapping should map elements from
the data set to those elements which are proper members of the object set, and it can
sometimes be enforced by enlarging the solution space. The inverse solution should
be unique in the sense that one point in the data set D corresponds to a single point
of the object set O. If a problem has more than one solution, then some informa-
tion about the model may be missing and in this case, additional properties such
as sign conditions can be built into the model. The requirement of stability is the
most important one, as this factor is associated with the effect of noise on the overall
reconstruction and a few percent of noise is almost unavoidable under practical mea-
suring situations. A stable inversion is one in which an infinitesimally small change
in the measured data gives rise to a correspondingly small change in the physical or
electrical properties of the object. If the changes in the reconstructed properties of
the object are large with even a small error in the measured scattering data, then the
inversion is considered to be unstable. The concept of non-uniqueness, instability,
and non-existence in an ill-posed problem is shown schematically in Fig. 2.14. As
can be seen from this figure, the inversion of the data here does not always yield a
unique point in the object set O (non-unique). The points, which are very close to
each other in the data set, do not map to points close to each other in object set
O (unstable). The inversion also sometimes maps data to points, which lie outside
the legitimate object set O (nonexistent). So, it is obvious from the above discus-
sion that it is very difficult or sometimes impossible to solve an ill-posed problem.
For a long time, research on ill-posed problems was neglected since they were not
considered relevant to the proper treatment of applied problems. However, many
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Figure 2.14: The concept of non-uniqueness, unstability and non-existence in an
ill-posed problem

inverse problems in the field of electromagnetic scattering and other relevant fields
are ill-posed under some circumstances [84]. In this sense, there is a close linkage
and interaction between research on inverse problems and ill-posed problems.

An ill-posed problem in the linear algebra is defined by a system of equations

Ax = y (2.57)

where x and y are vectors and A is a matrix with a huge condition number [85].
This can be easily verified as follows. We assume that a unique solution exists for
each y, i.e. A is an invertible matrix. Our aim is to know the relative change in the
solution x with a small error in y. Suppose ỹ is a perturbation of the right hand side
y. The size of the perturbation relative to the size of y, measured in terms of a given
norm ‖.‖, is ‖y− ỹ‖/‖y‖. Let x be the unique solution of the system corresponding
to the right-hand side y, and let x̃ be that corresponding to the right hand side ỹ.
Then

‖x− x̃‖ = ‖A−1y − A−1ỹ‖ ≤ ‖A−1‖‖y − ỹ‖ (2.58)

Hence the matrix norm ‖A−1‖ gives a bound for the change in the solution arising
from a perturbation in the right-hand side. A relative measure of this change is
obtained as follows

‖x− x̃‖ ≤ ‖A−1‖‖y‖‖y − ỹ‖
‖y‖

≤ ‖A−1‖‖A‖‖x‖‖‖y − ỹ‖
‖y‖

(2.59)

From the above equation, we get

‖x− x̃‖
‖x‖

≤ cond(A)
‖y − ỹ‖
‖y‖

(2.60)

Where cond(A) = ‖A‖‖A−1‖ is called the condition number of the matrix A (with re-
spect to the norm ‖.‖). The condition number therefore gives an upper bound for the
relative error in the solution caused by a given relative error in the right hand side.
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For matrices with large condition numbers, i.e. ill-conditioned matrices, relatively
small perturbations in the right hand side gives rise to relatively large changes in the
solution. It is in this sense that ill-conditioned systems are said to be unstable. The
solution of such ill-conditioned systems is particularly challenging as the data of the
problem, which is represented on the right hand side of (2.57), invariably contains
errors. Sometimes a severely ill-conditioned matrix can give very unpleasant effects
even due to errors resulting from the representation of real numbers in a computer
in floating-point form. In general terms it can be said that a set of equations of the
form (2.57) is ill-conditioned when the matrix A is ’nearly singular’. An ill-posed
problem is quite often ill-conditioned and neither a simple nor a complicated refor-
mulation of the problem will improve the ill-conditioned problem significantly. In a
strict mathematical setting we are not able to solve an ill-posed problem and get the
correct solution. However, using a priori knowledge we are able to get an answer,
that hopefully is close to the correct solution. The study of ill-posed solutions in a
practical context has thus led to the development of techniques which incorporate
constraints in the inversion or reconstruction operation which have some physical
relevance to the problem being considered. These constraints are also referred to as
prior knowledge because they consist of information which is independent of data
set and therefore should be known a priori. A priori knowledge is quite useful as
this information is used to confine the reconstruction to solutions which are consid-
ered acceptable or sensible. Typical prior knowledge about the object can include
boundary conditions, smoothness conditions, positivity constraints or conformity to
certain statistical distributions of the scattering parameters [84]. The inclusion of
prior knowledge, which is shown in Fig. 2.15, helps in finding a stable solution in
many cases and is also commonly termed as regularization. There are many regu-

Figure 2.15: The effect of prior knowledge on the inversion

larization schemes available in literature [83] for solving operator equations of the
form (2.57). Many of these schemes define a regularization parameter in one way
or other in order to incorporate some prior information to obtain a stable solution.
The regularization parameter helps in reformulating the error function correspond-
ing to (2.57), which is then minimized to yield a stable inversion. There are many
techniques presently available to determine the correct value of the regularization
parameter for a given problem. The classical strategy, due to Morozov [86] e.g.,
determines the regularization parameter by solving numerically a nonlinear scalar
equation. There are some iterative algorithms such as the Landweber’s method [87],
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and the conjugant gradient method [83] to solve linear (or nonlinear) equations nu-
merically by making use of some regularization theory. One very common method
for adding a regularization parameter is to assume the object function to be smooth,
and thereby putting all the higher derivatives of this function equal to zero. The
details about all these methods of regularization is beyond the scope of this thesis
and can be found in many books such as [83]. However, it is worth mentioning here
that the general regularization theory plays a very significant role in the solution of
inverse problems, especially when the numerical approach is used.

2.3 The common methods for solving inverse scat-

tering problems

It was mentioned in previous sections that the solution of inverse problems is gen-
erally a complicated process because of non-linearity and non-uniqueness associated
with them. However, many methods exist today to solve these kinds of problems and
the choice of a particular solution depends upon the particular application and on
the availability of different resources. For example, linearized methods may be used
for simple geometries, where we just need an approximate solution. For complicated
geometries, we may turn to numerical methods, which require quite high amount
of computational power but give reasonably accurate results. In this section, we
briefly describe some of the most common methods used to solve inverse scattering
problems.

2.3.1 The Born approximation

It was mentioned in the previous chapter that the total electric field E can be written
as a linear sum of incident field Einc and the scattered field Escat. When we seek
scattered field solution of Maxwell’s equations, then under certain conditions the
difference between the incident and scattered fields may be assumed to be small
compared with the incident field, i.e. |Einc − Escat| � |Einc| and in this case the
total field may be approximated by the incident field. This assumption is generally
called the Born approximation and leads to linearization of the scattering interaction
phenomenon. This approximation holds as long as the intrinsic parameters (e.g.
permittivity, conductivity, permeability) of the scatterer are not much different from
the surrounding medium, i.e., the intrinsic parameters are a small perturbation
about the homogeneous surrounding medium. The solution of an inverse problem
using the Born approximation has mainly become popular because of the ease of its
implementation, its simple physical interpretation, and a simple linear relationship
between the scattered field and the scattering object parameters. We derive here the
basic formula of inversion using the Born approximation assuming that the medium
is having a variation of its intrinsic property (permittivity) in one-dimension only
(say, in the direction x).

Let us consider here the one-dimensional scalar Helmholtz equation, which gives
a plane wave solution of the electromagnetic fields. The wave is assumed to be
travelling in the direction x and a time-variation of ejωt is considered. If we consider
any rectangular component Ψ of this wave, then it will satisfy the following second-
order scalar wave equation [16]
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d2Ψ

dx2
+ k2

0εr(x)Ψ = 0 (2.61)

where k0 is the free-space wave number, and εr(x) represents the variation of relative
permittivity in the direction x. According to Born approximation, the permittiv-
ity εr(x) is just a small perturbation about the background homogeneous relative
permittivity εrb, i.e.

εr(x) = εrb + ∆εr(x) (2.62)

where ∆εr(x) is the variation of the relative permittivity of the scatterer about the
ambient value and its value is zero outside the scatterer. Now, after combining (2.61)
and (2.62), one obtains the following scalar wave equation in one-dimension

d2Ψ

dx2
+ k2

bΨ = −k2
0∆εr(x)Ψ (2.63)

where kb = k0
√
εrb is the wave number of the background medium. Equation (2.63)

is basically a one-dimensional non-homogeneous differential equation, whose homo-
geneous part describes the propagation of waves through the uniform medium and
whose homogeneous solution is called the incident field, which is given by the fol-
lowing expression

Ψinc = e±jkbx (2.64)

where the incident amplitude is normalized to unity, and the plus and minus signs
represent plane waves travelling in left and right directions respectively. The total
field is generally given by the sum of the incident field, and the scattered field which
is the solution of the non-homogeneous part of (2.63). Equation of type (2.63) can
be solved using the Green’s function g(x, x′) method [88], which is defined as the
solution of (2.63) after placing a point source at the point x′ and is mathematically
expressed as

d2g(x, x′)

dx2
+ k2

bg(x, x
′) = −δ(x− x′) (2.65)

where δ(x− x′) is the dirac delta function [63], which is very commonly used in the
engineering analysis. This function is singular at x = x′, but has a distinct sampling
property, i.e., ∫

x

f(x)δ(x− x0)dx = f(x0) (2.66)

The above property of the delta function can be exploited to express the asymptotic
integral representation of the wave function in terms of the Green’s function, i.e.
the non-homogeneous solution of (2.63) will be given as

Ψscat(x) = k2
0

∫
x′

∆εr(x
′)Ψ(x′)g(x, x′)dx′ (2.67)

where the Ψ appearing inside the integral is the sum of the incident field and the
scattered field in the presence of a scatterer. Now, the Fourier transform method can
be used to solve (2.63) for the Green’s function in k0 domain to obtain the following
expression [17]
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G(k0, x
′) =

∫ ∞

−∞
g(x, x′)e−jk0xdx =

e−jk0x′

k2 − k2
b

(2.68)

where the delta function’s property (2.66) is used in order to arrive at the above
equation. We then take the inverse Fourier transform of (2.68) and use the residue
property of integral to obtain an expression for g(x, x′) as follows

g(x, x′) =
j

2kb

ejkb(x−x′) (2.69)

where it is assumed that the scattered field is measured in the region x < x′. This
expression can now be combined with (2.67) to represent the scattering field as

Ψscat(x) =
jkb

2
ejkbx

∫ ∞

−∞

∆εr(x
′)

εrb

Ψ(x′)e−jkbx
′
dx′ (2.70)

The above equation according to (2.64) represents a wave propagating towards the
left and hence this expression gives the value of back-scattered reflection coefficient
as follows

R(kb) =
jkb

2

∫ ∞

−∞

∆εr(x
′)

εrb

Ψ(x′)e−jkbx
′
dx′ (2.71)

As mentioned previously the Ψ inside the integral in (2.71) represents the total field,
which is the sum of incident field and the scattered field. However, according to Born
approximation the field inside the integral can be approximated by the incident field
as given by (2.64) provided the scattering is weak and this gives rise to the following
simple expression for the reflection coefficient

R(kb) =
jkb

2

∫ ∞

−∞

∆εr(x
′)

εrb

e−j2kbx
′
dx′ (2.72)

If we define a new parameter ζ = 2kb, then (2.64) can be rewritten as

R(ζ)

jζ
=

1

4

∫ ∞

−∞

∆εr(x)

εrb

e−jζxdx (2.73)

It can be clearly seen from (2.73) that R(ζ)/jζ and ∆εr(x)
εrb

form a Fourier-transform
pair. Hence the unknown permittivity profile can be reconstructed by taking the
inverse Fourier transform of (2.73) as follows

∆εrec
r (x)

εrb

=
2

π

∫ ∞

−∞

R(ζ)

jζ
ejζxdζ (2.74)

which is the expression for the reconstructed permittivity profile in terms of the
measured reflection coefficient R(ζ) using the Born approximation. The main ad-
vantage of this inversion formula is that it can be written in closed form and only
requires inverse Fourier transform of the measured reflection coefficient data. We
can clearly observe from (2.73) and (2.74) that ∆εr

εrb
is a linear function of the re-

flection coefficient and its vice-versa is also true. It may be mentioned again that
this approximation for both forward and inverse problems are valid only for weak
scattering objects, i.e. objects for which ∆εr/εrb � 1, and | R(ζ) |� 1. Hence, the
Born approximation method cannot be used to obtain a very accurate quantitative
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inversion of the permittivity profile unless the contrast between the surrounding
medium and the scatterer is very small.

2.3.2 The distorted Born approximation

It was mentioned in the last sub-section that the Born approximation gives a very
simple linear relationship between the measured scattering data and the recon-
structed permittivity profiles. In the Born approximation, we generally take the
first order approximation of the total field and hence it is applicable only for weak
scattering objects, i.e. objects for which the permittivity is very close to that of
the surrounding medium. In the distorted Born approximation method, which can
also be called the second order Born approximation, we try to somewhat relax the
criterion of having the permittivity very close to that of the surrounding medium.
However, this method can only be applied when some a priori information about
the scatterer is available. If we incorporate this prior knowledge of the scatterer in
defining the total relative permittivity, then (2.62) will be modified as follows

εr(x) = εrb + εrp(x) + ∆εr(x) (2.75)

where εrp(x) is the prior knowledge. Now, the value of εr(x) as defined in (2.75) can
be substituted in (2.61) to obtain

d2Ψ

dx2
+ k2

0 [εrb + εrp(x)] Ψ = −k2
0∆εr(x)Ψ (2.76)

The above equation can be solved using Green’s function method as outlined in the
last section, but the problem is that the Green’s function is known only for few
sets of profiles corresponding to εrp(x). Another possibility is to simplify the overall
problem and to consider the priori function as a constant, i.e., εrp(x) = constant, say
the average of the a priori distribution, in which case the Green’s function should
satisfy the following equation

d2gp(x, x
′)

dx2
+ k2

pgp(x, x
′) = −δ(x− x′) (2.77)

where, k2
p = k2

0 [εrb + εrp] is the wave number taking into account both the back-
ground permittivity and a priori information. For this constant value of a priori
information, (2.76) reduces to

d2Ψ

dx2
+ k2

pΨ = −k2
0∆εr(x)Ψ (2.78)

As seen clearly, (2.78) is of the same form as (2.63) and hence the method proposed
in the previous section can be used to solve this equation to obtain

Ψscat(x) = k2
0

∫ ∞

−∞
∆εr(x

′)Ψ(x′)gp(x, x
′)dx′ (2.79)

Now, for solution of the forward problem and the corresponding inverse problem,
the field inside the integral in (2.79) is approximated by sum of the incident field
and the scattered field due to a prior information, i.e.,
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Ψscat(x) = k2
0

∫ ∞

−∞
∆εr(x

′)Ψm(x′)gp(x, x
′)dx′ (2.80)

where,

Ψm(x) = Ψinc + Ψscat
p (2.81)

and Ψscat
p is the field scattered from the inhomogeneity described by a priori distri-

bution of permittivity εrp. If we compare (2.80) with (2.67), then we find that both
equations have same mathematical form but the field inside the integral in (2.80)
also includes the scattering information due to a priori knowledge apart from the
incident field, whereas in (2.67) this field is simply replaced by the incident field for
the forward and inverse solutions. It is mainly because of this slight difference in
formulation as compared to the Born approach that the method described in this
section is called the distorted Born approximation. The inverse solution of (2.80)
cannot generally be written in closed form as both terms Ψm(x′) and gp(x, x

′) inside
the integral of this equation depend on the prior knowledge. As we are not able to
obtain a solution for the inverse problem in a closed form, so generally (2.80) may
be used as a forward scattering theory and some iterative method may be used for
its inversion. But then, there are many other methods which can give the direct
problem formulation in a more accurate way for both weak and strong mediums, so
it is not worthwhile to apply iterative techniques to this method. Hence, it can be
concluded that the distorted Born method can be used only in some special cases
of weak or transparent scattering objects, where we want an accuracy of one order
more than the simple Born method.

2.3.3 Numerical methods

In previous sections, we described methods which can be used to solve inverse scat-
tering problems in an approximate way. These methods generally do not account for
multiple scattering of the electromagnetic field inside a scatterer and are generally
applicable for dielectric objects of low contrast. However, in practice these kinds of
weak scatterers are not very common, and hence the methods described earlier could
be used only under some special circumstances. Generally some numerical methods
either in frequency or in time domain are used to solve the inverse scattering prob-
lem in more exact way, and in most of the cases they are able to reconstruct the
objects with high contrast and very high value of permittivity. But, these methods
are computationally quite intense and are often associated with a non-uniqueness
and uncertainty of the achieved solution. It may be mentioned here that even the
distorted Born method described in the last section may be considered a numerical
method, if some iterative algorithm is implemented using this scheme. But since
under some conditions, the distorted Born method may give a closed-form solution
hence we have not considered them under the category of numerical methods. How-
ever the point to be noted here is that it is very difficult to categorize each inverse
scattering technique in a very precise way, and some overlapping between different
inverse methods might always exist.

The numerical methods depend upon the accuracy of the formulation of direct
problem apart from any particular method for inversion. The whole strategy for
solving an inverse scattering problem using any numerical method is as follows.
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First of all, we try to formulate the direct problem of scattering in the most accu-
rate way. This direct or forward problem generally relates the parameters like the
permittivity profile of the scattering object and the scattering field or the reflection
coefficient data. We start with a particular estimate of the scattering object, which
is generally considered to be a priori information and solve the direct problem using
some numerical techniques. It may be mentioned here that nowadays many com-
mercial electromagnetic field simulators are available, which can solve these direct
problems up to any desired accuracy using a suitable numerical method. For exam-
ple, CST Microwave studio [89] is a fully featured software for the electromagnetic
analysis and design in the high frequency range. This software can be used to solve
the direct problem of many types of structures for the dielectric layered media, and
it can provide all the four S-parameters of these structures over a wide frequency
band. The simulated values of the scattering field or the reflection coefficient data
generated as a part of the direct problem solution are then compared with measured
values. At this stage, a cost function is defined, which represents the difference be-
tween simulated and measured values of the reflection coefficient data. Sometimes,
the definition of this cost function may include some additional information such
as smoothness properties to reduce the uncertainty or ill-posedness of the achieved
solution. The inclusion of this information is generally called the regularization, and
is a widely used technique for the solution of inverse problems. After the proper defi-
nition of the cost function, the scattering object is refined in successive steps subject
to minimization of this function at each iteration. The whole procedure is repeated
unless the required accuracy is achieved. The accuracy of any numerical method for
the solution of an inverse problem will mainly depend on the initial guess ( a priori
information), and on the accuracy of the measured data. If the initial guess is not
quite far from the actual value and if we are able to carry out the measurement of
reflection coefficient data quite accurately, then the reconstruction using numerical
methods may be quite accurate. However, as mentioned earlier, numerical methods
quite often give rise to a non-unique or unstable solution, which is mostly associated
with the non-linearity of the corresponding inverse problem and is most prevalent
when the measured data are inaccurate.

As mentioned earlier, the so called exact solution of the inverse scattering prob-
lem was first formulated by Gelfand and Levitan, while Marchenko also worked
independently at the same time for the development of this method. Hence today
this technique is collectively known as Gel’fand-Levitan-Marchenko (GLM) method
and the first inverse scattering solution using this method was developed for the
solution of Schrödinger equation of the quantum-wave mechanics. However, as the
Helmholtz wave equation can in general be re-casted into a Schrödinger equation
through a series of transformations, hence the GLM method can, in principle, also
be used to solve the electromagnetic inverse scattering problems. For example, we
can rewrite the standard Helmholtz equation (2.63) in the following form

d2Ψ

dx2
+ k2

0 (εrb + ∆εr(x)) Ψ = 0 (2.82)

Now, if we transform the independent variable x into an optical depth via the
Liouville transformation [17]
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s(x) =
√
εrb

∫ x

−∞

[
1 +

∆εr(x
′)

εrb

]1/2

dx′ =
√
εrb

∫ x

−∞
h(x′) d(x′) (2.83)

then (2.82) can be written into this variable s as

d2Ψ

ds2
+
d lnh

ds

dψ

ds
+ k2

0 Ψ = 0 (2.84)

In the next step, a new dependent variable is introduced

w =
√
h(s)ψ (2.85)

which transforms the original Helmholtz equation into the following Schrödinger
equation

d2w

ds2
+
(
k2

0 − V (s)
)
w = 0 (2.86)

where V (s) is called the potential function, and is defined as [17]

V (s) =
1

2

d2 lnh

ds2
+

1

4

(
d lnh

ds

)2

(2.87)

Once the basic Helmholtz equation is transformed into the Schrödinger equation
given by (2.86), the standard procedure of the GLM technique can be used for its
solution [17]. The method generally consists of dividing the solution into two parts,
one when the scattering potential function is zero and the other when it is non-zero.
Let us suppose that the solution corresponding to zero potential of (2.86) is denoted
by w0(s, k). Then the general solution of (2.86) is given by [17]

w(s, k) = w0(s, k) +

∫ s

−s

w0(y, k)K(s, y) dy (2.88)

The above equation is the starting pint of the GLM analysis. As obvious from this
equation, the solutions corresponding to zero and non-zero parts are related linearly
by means of an auxiliary or kernel function K(s, y). The solution corresponding to
zero part w0(s, k) is generally a well-known standard function, so the main task is
to calculate the auxiliary function K(s, y). But the problem is that this auxiliary
function can be uniquely computed only for certain class of the reflection coefficient
functions. The unknown potential is obtained after differentiating this auxiliary
function, i.e.,

V (s) = 2
dK(s, s)

ds
(2.89)

which is basically the solution of (2.86). So one of the major criterion for the
selection of the auxiliary function is that it should be differentiable. It can be
seen from above that once we have obtained the auxiliary function in closed form
and if it is differentiable, then the solution of Schrödinger equation (2.86) can be
obtained using (2.88) and (2.89). But the problem here is to find the unknown
permittivity function as it is related to the equivalent potential function V (s) by a
non-linear differential equation as observed from (2.83) and (2.87). Hence even if the
GLM method gives a unique solution for the quantum mechanics problem, it might
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not do so for the electromagnetic case because of the presence of this non-linear
differential equation. Another problem with the GLM method is that because
of the differentiation operation of the auxiliary function, imprecise or inaccurate
values of the scattered data may lead to quite inaccurate results. There are some
methods such as that proposed by Balanis [34], which try to avoid this differentiation
operation. However, these GLM type methods do not generally give a solution in
the closed form except for some special class of reflection coefficients [17], and hence
one is finally forced to look for some iterative numerical methods for a more general
solution. But then, for the iterative scheme, we do not have to use the complicated
GLM method as any standard electromagnetic field simulator can be used for this
purpose as mentioned earlier.

2.3.4 The Riccati-equation approach

The Riccati-equation takes its name from the mathematician Riccati, who approx-
imated the first order non-linear differential equation to the second degree, i.e., for
the approximation of any function f(x, y)

dy

dx
= f(x, y) ≡ P (x) +Q(x) y +R(x) y2 + · · · (2.90)

he took the nonlinear term y2 into account. The differential equations of the
form (2.90) are called Riccati equations, and they do not have any general solution
as they do not fall under the category of any of the classical linear equations. The
exact nonlinear Riccati equation to analyze the inhomogeneity of one-dimensional
planar structure in terms of the normalized characteristic impedance and the reflec-
tion coefficient has already been derived in Section 3.18 of this thesis and is given
by (2.43). For a lossless TEM structure, we can assume that the variation in the
normalized impedance Z̄(x) is mainly due to an axially varying permittivity pro-
file εr(x) and if this is the case, then the normalized impedance of (2.37) can be
expressed as

Z̄(x) =
1√
εr(x)

(2.91)

In the actual situation, the phase factor β in (2.43) will also depend linearly on the
permittivity profile εr(x). But in the very early stages, β was simply taken to be a
constant and the equation (2.43) was linearized after ignoring the Γ2 term to make
it a simple linear equation in terms of εr(x) (after using (2.91)) and the frequency-
dependent reflection coefficient Γ. This equation was then inverted to obtain the
permittivity profile of inhomogeneous transmission lines in terms of the Fourier
transform of the frequency domain reflection coefficient data. But this inversion
was valid only for very low-contrast dielectric structures1 because of ignoring the
two factors; i) axial dependence of β, and ii) the Γ2 term. In the second stage, it
was tried to take the εr(x)-dependence of the phase factor β, but the corresponding
differential equation was still considered to be linear. This new formulation helped
in obtaining the permittivity profiles of somewhat higher contrast, but still the

1this assumption can in fact be considered as similar to the Born approximation discussed
earlier.
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dielectric objects of high values of permittivity could not be reconstructed and also
the method did not work if the variation in the permittivity was very large.

After few years, the ”Renormalization technique” was introduced by some re-
searchers to tackle the nonlinearity of this differential equation in a different way.
The overall idea of using this renormalization technique was two fold: the first step
involved the coordinate transformation so as to recast the wave equation in terms
of an independent variable which effectively accounts for the change in wavelength
of the radiation as it passes through the scatterer2; the second step involved solving
the linear differential equation, but in terms of an inverse hyperbolic tangent of the
reflection coefficient function rather than in terms of the simple reflection coefficient
itself. The overall process is called the renormalization because the formula for the
reconstruction sums up the series, of which only the first two terms are obtained if
the above mentioned steps were not taken into account [59].

In this thesis, we have extended the whole concept of renormalization techniques
to solve the one-dimensional non-linear Riccati differential equation in a flexible way.
The main idea is to solve the corresponding linear differential equation in terms of an
arbitrary function of the reflection coefficient rather than solving it in terms of the
reflection coefficient or its inverse hyperbolic tangent function. The exact form of this
arbitrary function is determined and optimized by means of an algebraic nonlinear
transformation. With the help of our method, the accuracy of the imaging can be
increased by simply changing the form of the algebraic transformation. We have also
applied this Riccati-equation approach to cylindrical and spherical geometries, which
helps to reconstruct the one-dimensional radially-dependent permittivity profiles of
those dielectric objects whose boundary coincides with these non-planar coordinate
systems.

2For very weak scatterer this variable will be same as the real space variable, but in the case of
strong scattering object there will be a big difference.



Chapter 3

The Direct Problem Formulation

It has been mentioned in the last two chapters that the reconstruction of permittivity
profiles is basically an inverse scattering process, and that for the solution of an
inverse problem, first the corresponding direct problem has to be formulated. It was
also briefly described that the accuracy of an inverse problem solution in many cases
depends on the validity of the corresponding direct problem formulation. Hence the
direct problem formulation plays a very crucial role in the solution of an inverse
scattering problem. This chapter deals with the formulation of the direct problem
in detail for planar, cylindrical and spherical coordinate systems.

3.1 The planar geometry

First of all, we consider an inhomogeneous half-space medium in a planar coordinate
system as shown in Fig. 3.1. The inhomogeneity is considered only in one dimension,
i.e. the relative permittivity εr(x)varies only in the direction x in the region x ≥ 0
starting from εr0 at x = 0. It is assumed that the relative permittivity of the
background medium is same as that of free space i.e. εr(x) = 1 for x < 0, and hence
there will be a discontinuity at the interface x = 0. This lossless one-dimensional
medium can equally represent the filling of a transmission line or a waveguide. We
will consider here all the cases of illuminations viz. TEM, TE and TM.

3.1.1 TEM illumination

For this case, we assume that a monochromatic plane wave of wave number k0

is incident normally from the Left hand side at the interface x = 0 as shown in
Fig. 3.1. Since in real situations we can not have any access to the region x > 0
for the measurement, so we formulate the problem in such a way that the reflection
coefficient Γ is measured at the point x = 0. The inhomogeneous medium shown
in Fig. 3.1 can also be approximated by a number of homogeneous regions each of
length ∆x as shown in Fig. 3.2 provided the number of sections N is quite large, and
∆x is sufficiently small so that the permittivity can be considered to be constant
in each small region. This approximation is similar to that which was used in the
previous chapter to find multiple reflections from inhomogeneous transmission lines.
The direct problem is formulated here both for continuous and discontinuous media.
For continuous media, the permittivity changes continuously over the region and the
formulation is in the form of a nonlinear differential equation relating a very small

54
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Figure 3.1: The half-space inhomogeneous media

Figure 3.2: The half-space inhomogeneous media approximated by a number of
homogeneous layers

change in the permittivity profile to a differential change in the reflection coefficient
data. For discontinuous media, the permittivity is assumed to consist of a number
of layers and the direct problem formulation is based on the transmission matrix
formulation for each layer and then multiplying all these matrices together to obtain
the reflection coefficient of the combined structure.
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3.1.1.1 The discontinuous structure

For the direct problem formulation of discontinuous structures, we consider the N -
layered inhomogeneous media as shown in Fig. 3.2. This N -layered inhomogeneous
media can be replaced by N +1 cascaded sections1 as shown in Fig. 3.3, where each
section represents a junction between two layers of different permittivities and a
transmission line of length ∆x. We assume that each layer i is characterized by a
distinct value of relative permittivity εir, and the value of the relative permittivity
at the two ends are given by their surface values i.e. ε1

r = εr0 and εN+1
r = εrb as

shown in Fig. 3.2. We also assume that the relative permittivity of the background
is same as that of the free space i.e. ε0

r = 1 at x = 0. Our aim here is to calculate

Figure 3.3: The discontinuous media represented by N+1 cascaded sections

the scattering parameters or the reflection coefficient of combined sections at the
reference position x = 0. For this purpose, we represent each layer by a T -matrix,
which basically describes all the parameters of input port in terms of the parameters
of the output port. The main advantage of this kind of representation is that the [T ]
matrix of a number of cascaded sections can simply be determined by multiplying
the matrices of the individual sections altogether [79]. If we consider any ith section,
then its T -matrix is given by [79]

[
T i
]

=
[
T̂ i
] [

T̃ i
]

=

[
T̂ i

11 T̂ i
12

T̂ i
21 T̂ i

22

] [
ejθi

0

0 e−jθi

]
(3.1)

where
[
T̂ i
]
, i = 1, 2, . . . , N+1 is the T matrix of the junction between (i− 1)th and

ith layers having permittivities as εi−1
r and εi

r respectively, and
[
T̃ i
]
i = 1, 2, . . . , N

is the T matrix of the ith transmission line of electrical length θi, which is given by

θi = k0∆x
√
εi

r (3.2)

with k0 being the free space wave number. For the last section i.e. for i = N + 1,

[T i] =
[
T̂ i
]

as this section is described only by a junction and there is no transmission

line section. Our next task is to calculate the individual elements of the matrix
[
T̂ i
]
,

which basically represents a junction between two layers as shown in Fig. 3.4. The

1The last (N + 1th) section consists of only a junction between N th layer and the background
permittivity εrb as shown in Fig. 3.2.
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two layers having different permittivities can also be considered as two transmission
lines having different normalized or characteristic impedances as these parameters
are inter-related as follows

Z = η0Z̄ =
η0√
εr

⇒ Z̄ =
1
√
εr

(3.3)

where η0 = ωµ0/k0 =
√
µ0/ε0 ' 377 ohms is the intrinsic impedance of the free-

space, and Z̄ represents the normalized value of the actual characteristic impedance
Z. It may be mentioned here that the intrinsic impedance of a medium enters into
wave transmission and reflection problems in the same manner as the characteristic
impedance of transmission lines [16]. This equivalence of impedances is of great
advantage to us because it helps in analyzing the complex inhomogeneous media
using the concept of microwave transmission line theory, which is much more simpler
than the conventional field theory approach. Meanwhile, the two-port equivalent
circuit of the junction connecting two different layers can be drawn as shown in
Fig. 3.5, where Z1 and Z2 are impedances of two lines connected together and V1(I1)
and V2(I2) represent the voltages(currents) at port one and port two respectively.
Now, as the two lines connected together in Fig.3.5 are having different characteristic

Figure 3.4: A junction between
(i− 1)th and ith layers Figure 3.5: The two-port equivalent circuit

of a junction combining two lines having dif-
ferent characteristic impedances

impedances, hence we have to define normalized voltages as follows

V̄ +
1 =

V +
1√
Z1

V̄ −1 =
V −1√
Z1

V̄ +
2 =

V +
2√
Z2

V̄ −2 =
V −2√
Z2

(3.4)

where the bar represents the normalized quantity and this normalization is done in
order to make the power at each port directly proportional to square of the wave
amplitude and not dependent upon the characteristic impedance of the line [58].
The scattering parameters of this two-port network will be given by



58 CHAPTER 3. THE DIRECT PROBLEM FORMULATION

S11 =

(
V̄ −1
V̄ +

1

]
V̄ +
2 =0

=

(
V −1
V +

1

]
V +
2 =0

=
Z̄2 − Z̄1

Z̄2 + Z̄1

=

√
ε1

r −
√
ε2

r√
ε1

r +
√
ε2

r

(3.5a)

S22 =

(
V̄ −2
V̄ +

2

]
V̄ +
1 =0

=

(
V −2
V +

2

]
V +
1 =0

=
Z̄1 − Z̄2

Z̄1 + Z̄2

=

√
ε2

r −
√
ε1

r√
ε1

r +
√
ε2

r

= −S11 (3.5b)

S12 =

(
V̄ −1
V̄ +

2

]
V̄ +
1 =0

=

√
Z̄2

Z̄1

(
V −1
V +

2

]
V +
1 =0

=
2
√
Z̄1Z̄2

Z̄2 + Z̄1

=
2 4
√
ε1

rε
2
r√

ε1
r +

√
ε2

r

=
√

1− (S11)2

(3.5c)

S21 =

(
V̄ −2
V̄ +

1

]
V̄ +
2 =0

=

√
Z̄1

Z̄2

(
V −2
V +

1

]
V +
2 =0

=
2
√
Z̄1Z̄2

Z̄2 + Z̄1

=
2 4
√
ε1

rε
2
r√

ε1
r +

√
ε2

r

= S12

(3.5d)

where we have made use of (3.3) to define the normalized impedance in terms of the
relative permittivity. It may be noted from (3.5c) and (3.5d) that the normalization
also helps in obtaining a symmetrical [S] matrix, which is otherwise not possible if
the voltages are not normalized. The other interesting point to be noted from (3.5)
is that all the four S parameters of a junction, connecting two layers of different
impedances or difference permittivities, can be defined in terms of S11 and phase
of S22. Hence the general [S] matrix of a lossless junction combining two layers of
difference impedances can be written as

[S] =

[
S11 S12

S21 S22

]
=

[
S11

√
1− S2

11√
1− S2

11 −S11

]
(3.6)

The elements of this [S] matrix can be converted to [T ] matrix using the following
relationship [79]

T11 =
1

S12

, T12 = −S22

S12

, T21 =
S11

S12

, T22 =
[S2

12 − S11S22]

S12

(3.7)

Equations (3.5) and (3.7) can be combined to obtain the [T̂ ] matrix of ith junction
shown in Fig. 3.3, which basically connects the (i− 1)th and ith layers having relative
permittivities εi−1

r and εi
r respectively. The individual elements of this [T̂ i] matrix

are given by

T̂ i
11 = T̂ i

22 =

√
εi−1

r +
√
εi

r

2 4
√
εi−1

r εi
r

, T̂ i
12 = T̂ i

21 =

√
εi−1

r −
√
εi

r

2 4
√
εi−1

r εi
r

(3.8)

The values given by (3.8) can be substituted in (3.1) to obtain the [Ti] matrix of
any individual ith section of Fig. 3.3. The overall [T ] matrix of the inhomogeneous
media is given by multiplying [Ti] matrices of all the individual sections, i.e.,

[T ] =

[
T11 T12

T21 T22

]
=

N+1∏
i=1

[Ti] (3.9)
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Finally, the [S] matrix of the discontinuous inhomogeneous media is given by

[S] =

[
S11 S12

S21 S22

]
=

[
T21/T11 (T11T22 − T12T21) /T11

1/T11 −T12/T11

]
(3.10)

where individual elements of the [S] matrix are expressed in terms of the elements
of (3.9), and the total frequency-dependent reflection coefficient Γ(k0, x) of the dis-
continuous inhomogeneous dielectric media measured at (x = 0) is given by S11, i.e.,
Γ(k0, 0) = S11.

3.1.1.2 The continuous media

The last sub-section (equations (3.1)- (3.10)) described the direct problem formula-
tion for the discontinuous planar media. In this section, the direct problem is formu-
lated for the planar continuous inhomogeneous media. It was briefly mentioned in
the last sub-section that any continuous media can be replaced by a number of layers
provided each layer is quite thin, and with this approximation Figs. 3.1 and. 3.2 can
be considered as equivalent to each other. Now, let us consider a small section of the
continuous media between points x and x+ dx, and assume that the total reflection
coefficient at these two points are given by Γ and Γ + dΓ respectively as shown in
Fig. 3.1. The permittivity profile changes from εr(x) at x, to εr(x)+dεr(x) at x+dx,
and this results into the change of normalized impedance from Z̄ to Z̄ + dZ̄. This
small section of length dx can be analyzed using the concept of microwave network
theory as was done for the discontinuous case, and the equivalent circuit of this small
section is given by a transmission line of electrical length

√
εr(x)dx followed by a

2-port [∂S] matrix representing the junction between two layers of impedances Z̄ to
Z̄ + dZ̄ as shown in Fig. 3.6. To calculate the individual elements of [∂S] matrix,

Figure 3.6: The equivalent circuit of a small section of an inhomogeneous medium

we recall from the previous chapter that an incremental change in the normalized
impedance dZ̄ at the junction will produce a local differential reflection coefficient
dΓl which is basically equal to S11. But the normalized impedance is dependent
on the permittivity profile as per equation (3.3), which can be used to obtain the
expression for the local differential reflection coefficient in terms of the permittivity
profile as follows

S11 = dΓl =
Z̄ + dZ̄ − Z̄

Z̄ + dZ̄ + Z̄
' dZ̄

2Z̄
= −

√
εr(x)

2

dεr(x)

2εr(x)
√
εr(x)

= −dεr(x)

4εr(x)
(3.11)
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The above approximation holds good if the value of dZ̄ is quite small so that all
the higher order terms involving dZ̄ such as (dZ̄)2, (dZ̄)3, · · · can be neglected. The
elements of [∂S] in Fig. 3.6 as per equation (3.6) in terms of dΓl is given by

[∂S] =

[
dΓl

√
1− dΓ2

l√
1− dΓ2

l −dΓl

]
(3.12)

where the value of the local differential reflection coefficient dΓl is given by (3.11).
Now, as observed in Fig. 3.6, the output port of the junction defined by [∂S] matrix is
not matched rather it is terminated into an impedance characterized by a reflection
coefficient Γ + dΓ. According to the microwave network theory [79], if a circuit or
junction is not terminated into its characteristic impedance then this mismatching
at the output port will also modify the input reflection coefficient. The actual
expression for the input reflection coefficient of a circuit defined by [S] matrix and
terminated in a load impedance characterized by the reflection coefficient ΓL is given
by

Γi = S11 +
S12S21 ΓL

1− S22ΓL

(3.13)

For our case the [S] matrix is defined by (3.12), the load reflection coefficient ΓL

is given by Γ + dΓ, and the input reflection coefficient is given by the intermediate
parameter Γ̃ as seen in Fig. 3.6. These values may be substituted in (3.13) to obtain
an expression for the intermediate reflection coefficient as

Γ̃ = dΓl +
[1− dΓ2

l ] (Γ + dΓ)

1 + dΓl(Γ + dΓ)
' dΓl +

(Γ + dΓ)

1 + Γ dΓl

(3.14)

where the higher order infinitesimals such as dΓ2
l , dΓ dΓl, · · · are neglected. This

intermediate parameter Γ̃ in Fig. 3.6 is separated by an electrical length of
√
εr(x)dx

from the reflection coefficient Γ, and hence Γ̃ may be thought of as Γ whose reference
plane is shifted inward by this electrical length [58], i.e.,

Γ̃ = Γe2jk0

√
εr(x) dx ' Γ

[
1 + j2k0

√
εr(x) dx

]
(3.15)

where the second approximation on the right hand side is obtained by neglecting
higher order terms involving dx such as dx2, dx3, · · · etc. In the next step, equa-
tions (3.14) and (3.15) are equated to obtain

Γ
[
1 + j2k0

√
εr(x)dx

]
= dΓl +

(Γ + dΓ)

1 + Γ dΓl

VΓ(1 + Γ dΓl)
[
1 + j2k0

√
εr(x)dx

]
= dΓl(1 + Γ dΓl) + (Γ + dΓ)

VΓ(1 + Γ dΓl)
[
1 + j2k0

√
εr(x)dx

]
= dΓl(1 + Γ dΓl) + (Γ + dΓ)

VΓ + Γ2 dΓl + (Γ + Γ2 dΓl)
(
j2k0

√
εr(x)dx

)
= dΓl + Γ dΓ2

l + Γ + dΓ

(3.16)

Now again we neglect the higher order infinitesimals such as dΓ2
l , dΓldx, · · · as

was done in the derivation of (3.14) and simplify the above equation to obtain
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Γ2 dΓl + Γ
(
j2k0

√
εr(x)dx

)
= dΓl + dΓ

V
dΓ

dx
= Γj2k0

√
εr(x)−

dΓl

dx

(
1− Γ2

) (3.17)

The value of dΓl can be substituted from (3.11) in (3.17) to obtain the following
nonlinear Riccati differential equation for one-dimensional planar inhomogeneous
media illuminated by a TEM plane wave

dΓ(k0, x)

dx
= Γ(k0, x) j2k0

√
εr(x) +

1

4εr(x)

dεr(x)

dx

[
1− Γ2(k0, x)

]
(3.18)

where Γ(k0, x) is the frequency-dependent reflection coefficient, and εr(x) represents
the unknown one-dimensional permittivity profile of the dielectric media as shown
in Fig. 3.1.

3.1.2 TE-mode illumination

For the TEM illumination, it was assumed that a monochromatic plane wave of
wave number k0 is incident normally at the air-dielectric interface as described in
the previous section. Now, we consider a plane wave of wave number k0 incident
from the left hand side (LHS) at an angle θ on the air-dielectric interface at x = 0
as shown in Fig. 3.7. We will consider only the two cases here for these types of

Figure 3.7: Reflection at the air-dielectric interface

inclined illuminations; i) when the electric field of the incident wave is parallel to
the interface at x = 0 (TE case), and ii) when the magnetic field of the incident
wave is assumed to be parallel to the interface at x = 0 (TM -case). A wave of any
arbitrary polarization can be considered as a superposition of these two cases [16].
The TE case is considered in this section and the TM case will be considered in
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the next section. For the continuity of tangential electric and magnetic fields over
the entire air-dielectric interface in Fig. 3.7, the z variation of the fields in both air
and dielectric media should be same, or in other words the z directed propagation
constants should be same in air and dielectric, i.e.

βz = k0 sin θ (3.19)

where βz is the z directed propagation constant of the dielectric media. Using the
above equation, the component of the propagation constant of the dielectric media
in the direction of propagation is given by

β(x) =
√
β2 − β2

z = k0

√
εr(x)− sin2 θ (3.20)

where β = k0

√
εr(x) is the total propagation constant in the dielectric media. Now

for the TE case, the electric field of the incident wave is assumed to be parallel
to the air-dielectric interface, i.e. there is no component of electric field in the
direction of propagation (Ex = 0). If we solve Maxwell’s equations for this TE
mode illumination in the planar geometry, then the expression of the characteristic
wave impedance2 in the direction of propagation is given by [58]

Z(x) =
Ey

Hz

=
ωµ0

β(x)
(3.21)

where ω is the angular frequency, and a wave function of the form e−jβ(x) x is consid-
ered for the propagating wave in the x direction. The value of β(x) can be substi-
tuted from (3.20) into (3.21) to obtain the following expression for the normalized
impedance in the dielectric media for a TE case

Z̄(x) =
Z(x)

η0

=
ωµ0

k0

√
εr(x)− sin2 θ

1

η0

=
1√

εr(x)− sin2 θ
(3.22)

The direct problem formulation for the discontinuous structure can be formulated on
similar lines as was done for the TEM case. We will, however, concentrate here on
the direct problem formulation for the continuous case which is quite important for
the accurate solution of the corresponding inverse problem. For the TE illumination,
a small section of the continuous dielectric media between points x and x + dx of
Fig. 3.1 can be described by a microwave equivalent circuit as shown in Fig. 3.6,
which is similar to that of the TEM case . However, the electrical length of the
small transmission line section in this case will be given by

√
εr(x)− sin2θ as shown

in Fig. 3.8. The local differential reflection coefficient S11 = dΓl in Fig. 3.8 for the
TE illumination is given by (3.11), and the value of Z̄ is substituted from (3.22),
i.e.,

dΓl '
dZ̄

2Z̄
= −

√
εr(x)− sin2 θ

2

dεr(x)

2
[
εr(x)− sin2 θ

]√
εr(x)− sin2 θ

= − dεr(x)

4
[
εr(x)− sin2 θ

] (3.23)

2This characteristic impedance of the mode plays the same role in reflection problems as does
the characteristic impedance of transmission lines [16].
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Figure 3.8: Equivalent circuit of a small section of an inhomogeneous medium for
TE and TM polarizations

The other elements of ∂S in Fig. 3.8 are given by (3.12) after substituting the
value of dΓl from (3.23). The intermediate parameter Γ̃ in Fig. 3.8 is related to the
reflection coefficient Γ by

Γ̃ = Γe2jk0

√
εr(x)−sin2 θ dx ' Γ

[
1 + j2k0

√
εr(x)− sin2 θ dx

]
(3.24)

where the exponential function is expanded into its Taylor’s series and all the higher
order terms involving dx are neglected. In the next step, equations (3.24) and (3.14)
are combined to obtain the following differential equation in terms of the frequency-
dependent reflection coefficient Γ, and the local differential reflection coefficient dΓl

dΓ

dx
= Γj2k0

√
εr(x)− sin2 θ − dΓl

dx

[
1− Γ2

]
(3.25)

where again all the higher order infinitesimals are neglected as was done in the TEM
case. Finally the value of dΓl in the above equation is substituted from (3.23) to
obtain

dΓ(k0, x, θ)

dx
= Γ(k0, x, θ) j2k0

√
εr(x)− sin2 θ

+
1

4
[
εr(x)− sin2 θ

] dεr(x)

dx

[
1− Γ2(k0, x, θ)

] (3.26)

which is basically the nonlinear Riccati differential equation for one-dimensional
planar inhomogeneous media illuminated by a TE plane wave.

3.1.3 TM-mode illumination

The TM -illumination is quite similar to TE case discussed in the last section, where
a plane wave of wave number k0 is considered to be incident from the left hand side at
an angle θ on the air-dielectric interface as shown in Fig. 3.7. The component of the
propagation constant in the dielectric media along direction x are given by (3.20) for
the same reason as explained in the last section. However, in the TM -illumination
case, the magnetic field of the incident wave is assumed to be parallel to the air-
dielectric interface, i.e. there is no component of magnetic field in the direction of
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propagation (Hx = 0), which is contrary to the TE case where Ex was made equal
to zero. If we solve Maxwell’s equations for this TM mode illumination in the planar
geometry, then the expression for the characteristic wave impedance for these modes
in the direction of propagation is given by

Z(x) =
Ey

Hz

=
β(x)

ωε
(3.27)

The value of β(x) can be substituted from (3.20) into (3.27) to obtain the following
expression for the normalized impedance in the dielectric media for the TM case

Z̄(x) =
Z(x)

η0

=

√
εr(x)− sin2 θ

εr(x)
(3.28)

For the direct problem formulation in this case, a small section of the continuous
dielectric media between points x and x + dx of Fig. 3.1 can be described by a
microwave equivalent circuit shown in Fig. 3.8. The electrical length in this case is
same as in the TE case. However, the local differential reflection coefficient S11 = dΓl

in Fig. 3.8 is given by

dΓl '
dZ̄

2Z̄
=

εr(x)

2
√
εr(x)− sin2 θ

2 sin2 θ − εr(x)

2
√
εr(x)− sin2 θ [εr(x)]

2
dεr(x)

= −
[
εr(x)− 2 sin2 θ

]
4εr(x)

[
εr(x)− sin2 θ

] dεr(x)

(3.29)

where we have made use of (3.23) to express the value of dΓl in terms of Z̄, and (3.28)
is used to substitute the value of Z̄ and dZ̄. The other elements of ∂S in Fig. 3.8
for TM case are given by (3.12) after substituting the value of dΓl from (3.29). The
intermediate parameter Γ̃ in Fig. 3.8 can still be related to the reflection coefficient
Γ by (3.24) and this will lead to the differential equation (3.25), wherein the value
of dΓl can be substituted from (3.29) to obtain the following differential equation in
terms of frequency-dependent reflection coefficient

dΓ(k0, x, θ)

dx
= Γ(k0, x, θ) j2k0

√
εr(x)− sin2 θ

+
1

4εr(x)

dεr(x)

dx

[
εr(x)− 2 sin2 θ

][
εr(x)− sin2 θ

] [1− Γ2(k0, x, θ)
]

(3.30)

which is the nonlinear Riccati differential equation for the one-dimensional planar
inhomogeneous media illuminated by a TM plane wave. It may be noted here that
both differential equations (3.26) and (3.30) corresponding to TE and TM cases
reduce to (3.18) of the TEM case, when the angle θ = 0. This seems quite obvious
as when the angle θ in Fig. 3.7 is zero, then the situation is equivalent to that of
the normal wave incidence on the air-dielectric interface.
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3.2 The cylindrical geometry

The objects whose boundaries coincide with the cylindrical coordinate system can
better be described by considering them in the cylindrical geometry rather than in
the planar one. The formulation in the cylindrical coordinate system helps to obtain
a better image of the dielectric object, if the antenna used for the transmission and
reception are not highly directive. This is, in fact, a practical problem in the field of
imaging and remote sensing, as it is very common for the available antenna to have
less directivity along one of the lateral directions. If these types of antennas are used
to obtain an image of dielectric objects having a curved boundary, then we may loose
some detailed information of the object if the analysis is carried out in the Cartesian
coordinate system. On the contrary, if we analyze these structures in the cylindrical
coordinate system, then the one-dimensional curvature of the object can be locally
accounted for and this will provide more accurate image of the object. Hence it can
be said that formulation of the problem in the cylindrical coordinate system can
compensate for less directivity of the antenna in one of the lateral directions, thus
providing an accurate image of dielectric objects under these situations. We focus
our attention here on the cylindrical dielectric objects described by the outer radius
b, the inner radius ρ0, and a one-dimensional radially varying permittivity profile
εr(ρ) as shown in Fig. 3.9. The object is located between the conducting plates

Figure 3.9: The cylindrical dielectric media

Figure 3.10: A parallel plate ra-
dial waveguide

at z = 0 and z = a, and a monochromatic cylindrical wave of wave number k0 is
assumed to be incident from the outer free space (ρ > b). The reflection coefficient
Γ is measured at outer boundary of the dielectric object i.e., at ρ = b. This accounts
in fact to the case of outside illuminations of dielectric cylindrical objects and media
as, e.g., in the investigation of trees and biological bodies where we do not have any
access to inside regions and the only possibility is to measure at the outer boundary
of the dielectric object. In the present analysis, the direct problem is formulated
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in the cylindrical coordinate system for dielectric objects having one-dimensional
inhomogeneity in the radial direction, and illuminated by different lower order and
higher order TE and TM modes. It may be mentioned here that the direct problem
formulation in the cylindrical coordinate system is quite complicated as compared to
that derived in the planar geometry. The main reason for this complexity is the use
of Hankel functions to express the radially directed travelling waves in the cylindrical
geometry, whose properties are more involved than the simple exponential functions
commonly used to express the travelling waves in the planar coordinate system.
We start the whole analysis with the direct problem formulation for lower order
illuminations where the equations are somewhat simpler, and later on generalize
the overall formulation for any arbitrary order TEmn and TMmn cylindrical mode
illuminations.

3.2.1 Radial transmission line approach

First of all, we consider the cylindrical dielectric object illuminated by a lowest
order TM mode of wave number k0 from the outer region (ρ > b). The lowest order
possible mode in a cylindrical structure supporting radial waves (Fig. 3.10) is the
TM00 mode. This mode is similar to the TEM mode in planar transmission lines
as it does neither have electric field nor magnetic field component in the direction
of propagation (radial direction ) [16]. It means that for the propagation of waves
in the radial direction as shown in Fig. 3.10, this mode can be considered as TEM
to ρ and the classical transmission line theory can be used for the analysis in this
case. The transmission line approach is clearly more simple and straightforward
than the field theory approach, which is quite involved and cumbersome. The radial
transmission line approach also helps in formulating the direct problem for layered
or discontinuous cylindrical structures, which is in turn an aid to determine the
value of permittivity at the air-dielectric interface, as will be shown in the next
chapter. The reflection coefficient is measured at the outer radius of the cylindrical
body at ρ = b, and the inward (towards the z axis) and outward travelling waves
are considered as incident and reflected waves respectively.

The wave function for the TM00 mode satisfying appropriate boundary condi-
tions for the radial parallel plate geometry shown in Fig. 3.10 is given by [16]

ΨTM
00 = H

(p)
0 (kρ) p = 1 or 2 (3.31)

where H
(1)
0 (kρ) is the Hankel function of the first kind of order zero representing an

inward travelling wave, H
(2)
0 (kρ) is the Hankel function of the second kind of order

zero representing an outward travelling wave, and

k = k0

√
εr(ρ) (3.32)

is the total propagation constant in the radially varying cylindrical dielectric media.
It may be noted from this equation that for the TM00 mode in the cylindrical dielec-
tric media, the radial propagation constant is axially and azimuthally independent
as there is no variation of the field in z and φ directions. The fields TM to z for this
mode would be obtained by making the magnetic vector potential z-dependent, i.e.

A = uz Ψ = uz Az;
∂Az

∂z
= 0 (3.33)
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where Ψ is defined by (3.31). The magnetic field components corresponding to (3.33)
for TM00 mode in the cylindrical coordinate system is computed from following
equation [16]

H = ∇×A

⇒ Hρuρ +Hφuφ +Hzuz =
1

ρ

∣∣∣∣∣∣
uρ ρuφ uz
∂
∂ρ

0 0

0 0 Az

∣∣∣∣∣∣ = −uφ
∂Ψ

∂ρ

(3.34)

where uρ, uφ, and uz are the unit vectors in ρ, φ, and z directions respectively, (3.33)
is used to substitute the value of A, and differentials ∂/∂z, ∂/∂φ are made equal to
zero because there is no variation in z and φ directions for this lowest order mode.
The above equation can be simplified to obtain following components

H−
ρ = 0 H+

ρ = 0 (3.35a)

H−
φ = −∂Ψ

∂ρ
= kH

(1)
1 (kρ) H+

φ = −∂Ψ

∂ρ
= kH

(2)
1 (kρ) (3.35b)

H−
z = 0 H+

z = 0 (3.35c)

where ”−” and ”+” superscripts represent inward and outward propagating waves
respectively, and the following relationship is used to compute the derivative of
Hankel function of order zero [90]

dH
(p)
0 (z)

dz
= −H(p)

1 (z) p = 1 or 2 (3.36)

The electric field components for the TM00 mode can be computed after expand-
ing one of the Maxwell’s curl equations in cylindrical coordinate system and putting
Hρ, Hz components equal to zero as per (3.35), i.e.

∇×H = jωεE

⇒ 1

ρ

∣∣∣∣∣∣
uρ ρuφ uz
∂
∂ρ

0 0

0 ρHφ 0

∣∣∣∣∣∣ = uz
1

ρ

∂

∂ρ
(ρHφ) = jωε [Eρuρ + Eφuφ + Ezuz]

(3.37)

where,

ε = ε0 εr(ρ) (3.38)

is the total permittivity of the cylindrical inhomogeneous medium. In the next step,
different components of the electric field are obtained after substituting the value of
Hφ from (3.35) in (3.37) to obtain

E−ρ = 0 E+
ρ = 0 (3.39a)

E−φ = 0 E+
φ = 0 (3.39b)
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E−z =
1

jωερ

∂

∂ρ

[
ρH−

φ

]
=

1

jωερ

∂

∂ρ

[
ρkH

(1)
1 (kρ)

]
=

k2

jωε
H

(1)
0 (kρ)

E+
z =

1

jωερ

∂

∂ρ

[
ρH+

φ

]
=

1

jωερ

∂

∂ρ

[
ρkH

(2)
1 (kρ)

]
=

k2

jωε
H

(2)
0 (kρ)

(3.39c)

where the following formula is used to compute the derivative of Hankel function of
order one [90]

d

dz

[
zH

(p)
1 (z)

]
= zH

(p)
0 (z) p = 1 or 2 (3.40)

It may be noted from (3.35) and (3.39) that although these equations represent
a wave travelling in the ρ direction, but both Eρ and Hρ components are zero and
hence this particular mode is also called TEM to ρ as mentioned earlier. It can also
be seen from (3.35) and (3.39) that the only non-zero field components for this mode
are Ez and Hφ, which for the inward travelling waves are given by

E−z =− jω µH
(1)
0 (kρ) (3.41a)

H−
φ =k H

(1)
1 (kρ) (3.41b)

Now, considering the inward travelling wave in Fig. 3.10, we can define a unique
voltage between the plates and a net radially directed current on one of the plates
at a given radius ρ

V (ρ)− = aE−z = −j a ω µH(1)
0 (kρ) (3.42a)

I(ρ)− = 2 πρH−
φ = 2 πρ k H

(1)
1 (kρ) (3.42b)

where a is the extent of the cylindrical object in the direction z as shown in Fig. 3.10,
and the expressions of the electric and magnetic fields as given by (3.41) are used.
The total voltage and current will be obviously given by the sum of both inward
and outward travelling waves. But before computing the total voltage and current
in this case, let us try to find expressions for the voltage and current derivatives
and their corresponding differential equations. Equations (3.42a) and (3.42b) can
be differentiated to obtain

dV

dρ
= j a ω µ kH

(1)
1 (kρ) = jω

µa

2πρ
I (3.43a)

dI

dρ
= 2 πk2 ρH

(1)
0 (kρ) = jω

2πε ρ

a
V (3.43b)

It may be noted here that in (3.43a) and (3.43b), we have dropped the ”−” su-
perscript because these equations are in general valid for both inward and outward
travelling waves as well as for total waves. Equations (3.43a) and (3.43b) are quite
similar in form as that of simple planar transmission line equations and hence they
are called radial transmission-line equations [16]. Meanwhile, both of these equa-
tions can be differentiated again to separate V from I
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d

dρ

(
ρ
dV

dρ

)
= jω

µa

2π

dI

dρ
= −ω2 µερ V (3.44a)

d

dρ

(
1

ρ

dI

dρ

)
= jω

2πε

a

dV

dρ
=
−ω2 µε

ρ
I (3.44b)

where the values of first order derivatives are substituted from (3.43a) and (3.43b).
These equations can be further simplified to obtain the second order differential
equations in terms of V and I

ρ2 d
2V

dρ2
+ ρ

dV

dρ
+ (kρ)2 V = 0 (3.45a)

ρ2 d
2(I/ρ)

dρ2
+ ρ

d(I/ρ)

dρ
+
[
(kρ)2 − 1

]
(I/ρ) = 0 (3.45b)

If we look carefully at above equations, then we can recognize that (3.45a) is a Bessel
equation of order 0 for V , and (3.45b) is a Bessel equation of order 1 for I/ρ. The
travelling wave solution of equations (3.45a) and (3.45b) can be written as

V (ρ) = V −0
H

(1)
0 (kρ)

H
(1)
0 (kb)

+ V +
0

H
(2)
0 (kρ)

H
(2)
0 (kb)

(3.46a)

I(ρ) = I−0
ρH

(1)
1 (kρ)

bH
(1)
1 (kb)

+ I+
0

ρH
(2)
1 (kρ)

bH
(2)
1 (kb)

(3.46b)

The above two equations represent the total voltage and current along a radial
transmission line. At this point, it is quite interesting to compare the above two
equations with the corresponding equations for the planar transmission lines. We
have Hankel functions here instead of the exponential functions because the prop-
agation along the radial direction in the cylindrical geometry is expressed in terms
of these functions. The presence of a second Hankel function in the denominator
of both equations can be explained by the fact that the reference position in this
case is taken at the outer boundary ρ = b. In case of planar transmission lines, the
reference position is generally taken at zero and since the value of the exponential
function is unity for the zero argument, nothing appears in the denominator there.
The correctness of (3.46a) and (3.46b) can also be tested by the fact that both of
these equations satisfy their respective differential equations (3.45a) and (3.45b).
Also in (3.46b) the distance ρ is normalized with respect to the outer radius b, so
that amplitudes I−0 and I+

0 have dimensions of the current. To obtain the expression
for the current in terms of the voltage, we combine (3.43a), (3.46a) and (3.46b) to
obtain
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dV

dρ
=

(
jω µa

2πρ

)
I(ρ) = −k

[
V −0

H
(1)
1 (kρ)

H
(1)
0 (kb)

+ V +
0

H
(2)
1 (kρ)

H
(2)
0 (kb)

]

⇒ I(ρ) =

(
−2πρk

jω µa

)[
V −0

H
(1)
1 (kρ)

H
(1)
0 (kb)

+ V +
0

H
(2)
1 (kρ)

H
(2)
0 (kb)

]

=
j2π

a

√
ε

µ

[
V −0

bH
(1)
1 (kb)

H
(1)
0 (kb)

ρH
(1)
1 (kρ)

bH
(1)
1 (kb)

+ V +
0

bH
(2)
1 (kb)

H
(2)
0 (kb)

ρH
(2)
1 (kρ)

bH
(2)
1 (kb)

] (3.47)

The above equation can be rewritten in the following form

I(ρ) =
V −0
Z−0

ρH
(1)
1 (kρ)

bH
(1)
1 (kb)

− V +
0

Z+
0

ρH
(2)
1 (kρ)

bH
(2)
1 (kb)

(3.48)

where,

Z−0 =
V −0
I−0

= − j a

2πb

√
µ

ε

H
(1)
0 (kb)

H
(1)
1 (kb)

(3.49)

is the characteristic impedance of the line for the inward travelling waves, and

Z+
0 = −V

+
0

I+
0

=
j a

2πb

√
µ

ε

H
(2)
0 (kb)

H
(2)
1 (kb)

(3.50)

is the characteristic impedance of the line for the outward travelling waves. It may
be noted from (3.49) and (3.50) that the characteristic impedance here depends
on the reference position ρ = b as well as on the direction of propagation and
hence the radial waveguide geometry shown in Fig. 3.10 may be considered to be
a non-uniform transmission line. Now, for considering the wave reflection in the
radial transmission line case, we assume that a lossless radial transmission line is
terminated in an arbitrary load impedance ZL at the reference position ρ = b as
shown in Fig. 3.11. The total voltage and current at the load is related by the load

Figure 3.11: Reflection from the radial transmission line

impedance, so at ρ = b, we have
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ZL =
V (b)

I(b)
=
V −0 + V +

0

V −
0

Z−
0

− V +
0

Z+
0

⇒
[
ZL

Z−0
− 1

]
V −0 =

[
ZL

Z+
0

+ 1

]
V +

0

(3.51)

where we have made use of (3.46a) and (3.48) to compute the values of V (b) and
I(b). From the above equation, the total reflection coefficient Γ may be defined as

Γ =
V +

0

V −0
=
Z+

0

Z−0

ZL − Z−0
ZL + Z+

0

=
1

αr

ZL − Z−0
ZL + Z+

0

(3.52)

where the factor αr is given by

αr =
Z−0
Z+

0

(3.53)

In the meantime, equations (3.46a) and (3.48) may be rewritten in terms of the
above defined factors Γ and αr

V (ρ) = V −0

[
H

(1)
0 (kρ)

H
(1)
0 (kb)

+ Γ
H

(2)
0 (kρ)

H
(2)
0 (kb)

]
(3.54a)

I(ρ) =
V −0
Z−0

[
ρH

(1)
1 (kρ)

bH
(1)
1 (kb)

− αr Γ
ρH

(2)
1 (kρ)

bH
(2)
1 (kb)

]
(3.54b)

Equations (3.54a) and (3.54b) are the exact expressions for the total voltage and
current on a radial transmission line with a reference surface defined at ρ = b. Now,
to simplify the overall analysis, the Hankel functions in (3.49) and (3.50) can be
replaced by their large argument asymptotic expressions as follows

Z−0 = − j a

2πb

√
µ

ε

√
2

jπkb
ejkb√

2
jπkb

1
j
ejkb

=
a

2πb

√
µ

ε

Z+
0 =

j a

2πb

√
µ

ε

√
2j
πkb

e−jkb√
2j
πkb

j e−jkb

=
a

2πb

√
µ

ε

(3.55)

where following relationships are used for the large argument approximation of Han-
kel functions of order n [16]

H(1)
n (x) '

√
2

jπx
j−n ejx

H(2)
n (x) '

√
2j

πx
jn e−jx

(3.56)

The approximations made in (3.55) hold true as long as we are not working very
close to the origin. It may be also mentioned here that the Hankel functions are not



72 CHAPTER 3. THE DIRECT PROBLEM FORMULATION

defined when their argument becomes zero and have some oscillatory behavior near
the origin. Hence this point should be kept in mind while doing analysis for radial
structures. Meanwhile as observed from (3.55), the characteristic impedance in
both −ρ and +ρ directions become equal when the large argument approximation is
used. Hence under these conditions, the expression for the characteristic impedance
reduces to

Z0 =
a

2πb

√
µ

ε
=

a

2πb
η0 Z̄ (3.57)

where,

Z̄ =
1√
εr(ρ)

(3.58)

is the normalized impedance for the radial cylindrical geometry. It may be men-
tioned here that for the large argument approximation, the factor αr in (3.54b) will
be unity as obvious from (3.53) and (3.55), and the expression for the reflection
coefficient (3.52) is reduced to

Γ =
ZL − Z0

ZL + Z0

(3.59)

It is interesting to note that expressions (3.58) and (3.59) become identical to the
planar case for the approximation considered here. However, the voltage and current
on the line are still given by the exact expressions (3.54a) and (3.54b) with the value
of αr taken as unity. The reflection coefficient in (3.59) is defined as the ratio of the
reflected (outgoing) to the incident (incoming) wave at the reference position of the
load (ρ = b) as shown in Fig. 3.11. However, this quantity can be defined at any
arbitrary point ρ on the radial line (0 < ρ ≤ b) as follows

Γ(ρ) =
V +

0

V −0

[
H

(2)
0 (kρ)

H
(2)
0 (kb)

H
(1)
0 (kb)

H
(1)
0 (kρ)

]
= Γ(b)

H
(2)
0 (kρ)H

(1)
0 (kb)

H
(1)
0 (kρ)H

(2)
0 (kb)

(3.60)

where we have made use of (3.54a). For considering the one-dimensional radial
inhomogeneity in terms of the reflection coefficient for both continuous and discon-
tinuous (stratified) cylindrical media, equations (3.58), (3.59) and (3.60) would be
mainly used in this thesis.

3.2.1.1 The stratified media

The cylindrical dielectric inhomogeneous media shown in Fig. 3.9 can be approx-
imated by a number of homogeneous regions each of thickness ∆ρ as shown in
Fig. 3.12 provided that the number of sections N is quite large, and ∆ρ is suf-
ficiently small so that the permittivity can be considered to be constant in each
small region. Now, for the TM00 radial mode illumination, this kind of cylindrical
media may also be considered as N -cascaded radial transmission lines as shown in
Fig. 3.13, and the equivalent 2-port network can be used to represent each layer as
shown in Fig. 3.14. The ith 2-port network basically consists of a junction between
two homogeneous layers of relative permittivities εi−1

r and εi
r, and a section of radial

transmission line of length ∆ρ. Our aim here is to calculate the scattering parame-
ters or the reflection coefficient of combined sections at the reference position ρ = b.
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Figure 3.12: The cylindrically stratified media

Figure 3.13: N-cascaded radial transmission lines

For this purpose, we represent each layer by a T -matrix so that the T -matrix of the
total cylindrical stratified media is simply computed by multiplying the matrices of
the individual sections altogether as explained in section 3.1.1.1 for the planar case.
The T -matrix of the ith section is given by
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Figure 3.14: The equivalent scattering parameter network for each layer

[
T i
]

=
[
T̂ i
] [

T̃ i
]

=

[
T̂ i

11 T̂ i
12

T̂ i
21 T̂ i

22

] [
T̃ i

11 T̃ i
12

T̃ i
21 T̃ i

22

]
(3.61)

where
[
T̂ i
]
, i = 1, 2, . . . , N +1 is the T matrix of the junction between the (i− 1)th

and the ith layer having permittivities εi−1
r and εi

r respectively, and
[
T̃ i
]
, i =

1, 2, . . . , N is the T matrix of the ith radial transmission line of length ∆ρ. For

the last layer i.e. for i = N + 1, [T i] =
[
T̂ i
]

as this layer is described only by a

junction and there is no transmission line section. As can be seen from (3.58), the
expression for the normalized impedance in the radial case (after applying asymp-
totic approximation) is of the same form as in the planar case. This means that for

any ith section, (3.9) and (3.8) can be used to compute the elements of
[
T̂ i
]

matrix,

i.e.

[
T̂ i
]

=


√

εi−1
r +

√
εi
r

2
4
√

εi−1
r εi

r

√
εi−1
r −

√
εi
r

2
4
√

εi−1
r εi

r√
εi−1
r −

√
εi
r

2
4
√

εi−1
r εi

r

√
εi−1
r +

√
εi
r

2
4
√

εi−1
r εi

r

 (3.62)

For the computation of the elements of the second matrix
[
T̃ i
]

in (3.61), we can

make use of (3.46a). If we take i = 1, i.e. the first section, then the incident and

Figure 3.15: A thin layer of the radial
transmission line

Figure 3.16: The equivalent [T̃ ] network
for this thin layer

reflected voltages on the two ports of this small section, as shown in Fig. 3.15 are
related as
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V +
2 (ρ) = V −1 (ρ)

H
(1)
0 [k(b−∆ρ)]

H
(1)
0 [k b]

(3.63a)

V −2 (ρ) = V +
1 (ρ)

H
(2)
0 [k(b−∆ρ)]

H
(2)
0 [k b]

(3.63b)

where the subscripts 1 and 2 represent the input and output ports respectively in
Fig. 3.15. Now, this layer of thickness ∆ρ can be represented by a [T ] matrix network
as shown in Fig. 3.16, and as per definition of this matrix, (3.63) can be rewritten
in the following form

[
V −1
V +

1

]
=

 H
(1)
0 [k b]

H
(1)
0 [k(b−∆ρ)]

0

0
H

(2)
0 [k b]

H
(2)
0 [k(b−∆ρ)]

 [V +
2

V −2

]
=

[
T̃ 1

11 T̃ 1
12

T̃ 1
21 T̃ 1

22

] [
V +

2

V −2

]
(3.64)

The above equation can next be generalized for any ith section

[
T̃ i
]

=

[
T̃ i

11 T̃ i
12

T̃ i
21 T̃ i

22

]
=

H
(1)
0 {ki[b−(i−1)∆ρ]}
H

(1)
0 [ki(b−i ∆ρ)]

0

0
H

(2)
0 {ki[b−(i−1)∆ρ]}
H

(2)
0 [ki(b−i ∆ρ)]

 (3.65)

where ki = k0

√
εi

r is the wave number for the ith section, and i = 1, 2, 3, · · · , N + 1.
It may be noted that for i = 1, the above equation reduces to (3.64), which verifies

the validity of the above equation. The value of the above
[
T̃ i
]

matrix along with

the
[
T̂ i
]

matrix of (3.62) is substituted in (3.61) to obtain the [T ] matrix of the ith

section. The overall [T ] matrix of the cylindrical stratified media shown in Fig. 3.12
is then obtained by multiplying [T i] matrices of all the individual sections, i.e.

[T ] =

[
T11 T12

T21 T22

]
=

N+1∏
i=1

[T i] (3.66)

Finally, the frequency-dependent reflection coefficient of the cylindrically strat-
ified media, measured at the outer radius ρ = b in Fig. 3.12 is computed from the
above [T ] matrix [79]

Γ (k0, b) = T21/T11 (3.67)

which is the direct problem formulation of the cylindrically layered media, with each
layer having a constant value of permittivity as shown in Figs. 3.12 and 3.13.

3.2.1.2 The continuous media

In the previous sub-section, the inhomogeneous cylindrical media was regarded as a
stack of homogeneous layers and accordingly an expression was derived for the total
reflection coefficient measured at the outer radius of the cylindrical object in terms
of the electrical properties of these homogeneous layers. It was also mentioned there
that when each homogeneous layer in Fig. 3.12 is sufficiently thin, the discontinuous
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media of Fig. 3.12 approaches the cylindrical continuous media of Fig. 3.9, and in
this case the length ∆ρ can be replaced by a differential length dρ. Now, let us
consider a small section of the continuous media between points ρ and ρ − dρ and
assume that the total reflection coefficient at these two points are given by Γ(k0, ρ)
and Γ(k0, ρ) − dΓ(k0, ρ) respectively as shown in Fig. 3.17. This local change in
the reflection coefficient can be attributed to either a change in the permittivity
profile from εr(ρ) − dεr(ρ) at ρ − dρ to εr(ρ) at ρ, or a change in the normalized
impedance from Z̄(ρ)− dZ̄(ρ) at ρ− dρ to Z̄(ρ) at ρ. Meanwhile, this small section
of length dρ can be analyzed using the concept of microwave network theory as
discussed in earlier sections, and the equivalent circuit of this thin layer can be
given by a transmission line of electrical length

√
εr(ρ) dρ followed by a 2-port [∂S]

matrix representing the junction between two layers of impedances Z̄(ρ) − dZ̄(ρ)
and Z̄(ρ) as shown in Fig. 3.18. The [∂S] matrix in Fig. 3.18 basically represents a

Figure 3.17: The radially inhomogeneous me-
dia

Figure 3.18: The equivalent circuit
of a small section of the radially in-
homogeneous media

lossless two-port junction and it was mentioned in section 3.1.1.1 that for such type
of junction, all the four S parameters can be expressed in terms of the parameter
S11 and the phase of S22 as per equation (3.6)

[∂S] =

[
S11

√
1− S2

11√
1− S2

11 −S11

]
(3.68)

The value of the local reflection coefficient S11 for this radial transmission line junc-
tion in the above equation is computed using (3.59) and (3.58)

S11 =
(Z̄ − dZ̄)− Z̄

(Z̄ − dZ̄) + Z̄
' − dZ̄

2Z̄
=
dεr(ρ)

4εr(ρ)
(3.69)

The above approximation holds quite good if the value of dZ̄ is reasonably small
so that all the higher order terms involving dZ̄ such as (dZ̄)2, (dZ̄)3, · · · can be
neglected. Now, as observed in Fig. 3.18, the output port of the junction [∂S] is
terminated into an impedance characterized by a reflection coefficient Γ− dΓ. This
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situation is similar to Fig. 3.6, and hence equation (3.13) can be used here to obtain
an expression for the intermediate reflection coefficient

Γ̃ = S11 +
[1− S2

11] (Γ− dΓ)

1 + S11(Γ− dΓ)
' S11 +

(Γ− dΓ)

1 + ΓS11

(3.70)

where the higher order infinitesimals such as S2
11, dΓS11, · · · are neglected. The

intermediate parameter Γ̃ in Fig. 3.18 may also be related to the reflection coefficient
Γ using (3.60)

Γ̃ = Γ
H

(1)
0 (kρ)H

(2)
0 [k(ρ− dρ)]

H
(2)
0 (kρ)H

(1)
0 [k(ρ− dρ)]

∼= Γ

[
1 + j

4dρ

πρH
(1)
0 (kρ)H

(2)
0 (kρ)

]
(3.71)

where the right most term in the above equation is obtained after expanding the
Hankel functions of argument k(ρ− dρ) in terms of its Taylor’s series and then ne-
glecting the higher order infinitesimals. In the next step, equations (3.70) and (3.71)
are combined together to eliminate the intermediate variable Γ̃

Γ

[
1 + j

4dρ

πρH
(1)
0 (kρ)H

(2)
0 (kρ)

]
= S11 +

(Γ− dΓ)

1 + ΓS11

VΓ(1 + ΓS11)

[
1 + j

4dρ

πρH
(1)
0 (kρ)H

(2)
0 (kρ)

]
= S11 (1 + ΓS11) + (Γ− dΓ)

VΓ + Γ2 S11 + (Γ + Γ2 S11)
j 4dρ

πρH
(1)
0 (kρ)H

(2)
0 (kρ)

= S11 + ΓS2
11 + Γ− dΓ

(3.72)

If in the above equation, the higher order infinitesimals are neglected, then it will
yield

Γ2 S11 + Γ
j 4dρ

πρH
(1)
0 (kρ)H

(2)
0 (kρ)

= S11 − dΓ

V
dΓ

dρ
+ Γ

j 4

π ρH
(1)
0 (kρ)H

(2)
0 (kρ)

=
S11

dρ

[
1− Γ2

] (3.73)

Finally the value of S11 can be substituted from (3.69) in (3.73) to obtain the
following nonlinear differential equation relating the frequency dependent reflection
coefficient Γ and the one-dimensional radially varying permittivity profile εr(ρ)

dΓ(k0, ρ)

dρ
+Γ(k0, ρ)

[
j 4

π ρH
(1)
0 (kρ)H

(2)
0 (kρ)

]
=

1

4εr(ρ)

dεr(ρ)

dρ

[
1− Γ2(k0, ρ)

]
(3.74)

which is the required direct problem formulation for the inhomogeneous cylindrical
media illuminated by a radial TEM mode. The above equation reduces to Riccati
equation (3.18) of the planar TEM case, except for a change in sign in the term
containing Γ(k0, ρ), when the zeroth order Hankel functions are replaced by their
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large argument asymptotic expressions. This is to be expected as the cylindrical
waves should behave like simple plane waves at large radii, and the change in sign
here is attributed to the fact that the direction of propagation of waves here is in
the −ρ direction (inward waves). The derivation of the above equation also proves
that all the basics of the classical transmission line theory can be applied to analyze
the propagation of radial waves in the cylindrical geometry for a TM00 cylindrical
mode illumination.

3.2.2 Higher order mode illuminations

In the last section, we described the method of the direct problem formulation for
the cylindrical geometry using the lowest order TM mode illumination. The main
advantage of using the lowest order TM illumination is that it does not have electric
or magnetic field in the direction of propagation and hence it is possible to carry
out the analysis using the classical transmission line theory. However, the practical
antenna arrangements for the illumination (transmitters) or measurement of scat-
tering data (receivers) are generally not able to excite or measure a particular lower
order mode. Hence it becomes necessary to formulate the problem for any general
TE or TM mode, as an arbitrary illuminating or scattered electromagnetic field
can be expressed as a superposition of all possible modes due to their completeness
property [64].

For example, let us assume that any particular solution of the general Helomholtz
equation

∇2 Ψ + k2 Ψ = 0 (3.75)

in the cylindrical coordinate system is given by Ψn. These solutions are generally
called the elementary wave functions, and form a discrete set in a given domain.
With each of the wave function Ψn, we can associate two vector solutions Mn and
Nn which are orthogonal to each other. These vectors Mn and Nn can be used to
represent the electric and magnetic fields, and may be thought of being produced
by electric and magnetic vector potentials respectively [16]. The electric vector
potential generally gives rise to TE set of modes, while the magnetic vector potential
produces TM set of modes. Any general electromagnetic field can then be expressed
as a superposition of TE and TM sets of modes. In mathematical form, an arbitrary
electric field can be written as [64]

E =
∑

n

(anMn + bnNn) (3.76)

where n represents the number of all possible modes which are valid solution of (3.75).
It has been proved that each vector Mn or Nn corresponding to a particular TE
or TM mode is orthogonal to the other valid mode. This orthogonality property
can be used to determine the coefficients of expansion in the above equation with
the help of equivalent current distribution [64]. To extract the information about a
particular TE or TM mode, a multiple illumination / multi-view scenario can be
used. For example, let us assume that the first 20 modes contribute significantly
to the total field under a particular situation. In this case, we can represent the
total electric field of (3.76) in terms of these 20 modes. We can then excite the
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object under test with illumination from say, 20 different angles, and the total field
(both amplitude and phase) can be measured at a given location in all the cases.
These measured values can then be used in accordance with (3.76) to find the actual
mode-distribution at a given position. It may be mentioned here that the measured
field at each position will be a combination of all possible modes, with each mode
having a distinct spatial dependence. Once we are able to determine the specific
contribution due to each TE or TM mode, then our proposed technique can be
employed for each individual mode.

In this section, we have formulated the direct problem for any arbitrary order
TEmn or TMmn illumination. The detailed analysis are carried out for the TEmn

mode, while for the TMmn case only the final result will be presented. The wave
functions for the TEmn mode satisfying appropriate boundary conditions in Fig. 3.10
are given by [16]

ΨTE
mn = (Fz)mn = sin (kzz) cos(nφ)H(p)

n (kρρ) p = 1 or 2 (3.77)

where m = 1, 2, 3 . . ., n = 0, 1, 2 . . ., H
(1)
n (kρρ) is the Hankel function of the first kind

of order n representing an inward travelling wave, H
(2)
n (kρρ) is the Hankel function

of the second kind of order n representing an outward travelling wave,

kρ =
√
k2 − k2

z (3.78)

is the radial propagation constant, k is the total propagation constant in the radially
varying dielectric media defined by (3.32), and

kz =
mπ

a
(3.79)

is the propagation constant in the z-direction. It may be mentioned here that for
the φ-direction, we have considered the cos(nφ) variations. However, for a complete
set of modes, those with the sin(nφ) variations must also be included. But as the
analysis is quite similar for both the cases, hence we choose only the former. The
electromagnetic fields for the TEmn to z mode are determined after making the
electric vector potential F z-directed, i.e.

F = uz ΨTE
mn = uz Fz (3.80)

The electric field components for the TEmn mode in the cylindrical geometry is
computed as [91]

E = −∇× F

⇒ Eρuρ + Eφuφ + Ezuz = −1

ρ

∣∣∣∣∣∣
uρ ρuφ uz
∂
∂ρ

∂
∂φ

∂
∂z

0 0 Fz

∣∣∣∣∣∣ = −uρ
1

ρ

∂Fz

∂φ
+ uφ

∂Fz

∂ρ

(3.81)

The above equation, along with the value of Fz substituted from (3.77) yields fol-
lowing electric field components

E−ρ =
n

ρ
sin (kzz) sin (nφ)H(1)

n (kρρ)

E+
ρ =

n

ρ
sin (kzz) sin (nφ)H(2)

n (kρρ)
(3.82a)
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E−φ = kρ sin (kzz) cos (nφ)H(1)
n

′
(kρρ)

E+
φ = kρ sin (kzz) cos (nφ)H(2)

n

′
(kρρ)

(3.82b)

E−z = 0 E+
z = 0 (3.82c)

where H
(p)
n

′
(kρρ) represents the first derivative of the corresponding Hankel function

H
(p)
n (kρρ). The magnetic field components for the TEmn mode can be computed by

expanding one of the Maxwell’s curl equations in the cylindrical coordinate system
and neglecting the Ez component as per (3.82), i.e.

∇× E = −jωµ0H

⇒ 1

ρ

∣∣∣∣∣∣
uρ ρuφ uz
∂
∂ρ

∂
∂φ

∂
∂z

Eρ ρEφ 0

∣∣∣∣∣∣ = −uρ
∂Eφ

∂z
+ uφ

∂Eρ

∂z
+ uz

1

ρ

[
∂

∂ρ
(ρEφ)−

∂Eρ

∂φ

]
= −jωµ0 [Hρuρ +Hφuφ +Hzuz]

(3.83)

The different components of the magnetic field are obtained from the above equation
after substituting the value of Eφ and Eρ from (3.82) in (3.83)

H−
ρ =

1

jωµ0

∂E−φ
∂z

=
kρkz

jωµ0

cos (kzz) cos (nφ)H(1)
n

′
(kρρ)

H+
ρ =

1

jωµ0

∂E+
φ

∂z
=

kρkz

jωµ0

cos (kzz) cos (nφ)H(2)
n

′
(kρρ)

(3.84a)

H−
φ = − 1

jωµ0

∂E−ρ
∂z

=
−nkz

jωµ0ρ
cos (kzz) sin (nφ)H(1)

n (kρρ)

H+
φ = − 1

jωµ0

∂E+
ρ

∂z
=
−nkz

jωµ0ρ
cos (kzz) sin (nφ)H(2)

n (kρρ)

(3.84b)

H−
z =

1

jωµ0ρ

[
∂E−ρ
∂φ

− ∂

∂ρ

(
ρE−φ

)]
=

k2
ρ

jωµ0

sin (kzz) cos (nφ)H(1)
n (kρρ)

H+
z =

1

jωµ0ρ

[
∂E+

ρ

∂φ
− ∂

∂ρ

(
ρE+

φ

)]
=

k2
ρ

jωµ0

sin (kzz) cos (nφ)H(2)
n (kρρ)

(3.84c)

It may be noted from (3.82) and (3.84) that for a general TEmn mode, Eρ and
Hρ components are not zero, which is in contrast to the lowest order TM mode
where both the electric and magnetic field components were zero in the direction of
propagation. After obtaining all field components for the general TEmn mode, our
next task is to formulate the direct or forward problem in such a way that the wave
incident from the outside (ρ > b) travels inside the dielectric object in the radial
direction towards the z-axis, and then it gets reflected from different layers of this
inhomogeneous object producing a net reflection coefficient at the outer air-dielectric
interface at ρ = b as shown in Fig. 3.9. The incident field components are related
to the complex conjugate of the corresponding reflected components as follows

E+
φ =

(
E−φ
)?

H+
z = −

(
H−

z

)? (3.85)
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where the superscript ”?” represents the complex conjugate, and we have made use
of the fact that Hankel functions of first and second kinds (of the same order) are
complex conjugate to each other. Our basic aim here is to look for a taper solution
of the following form

Hz = H−
z + Γ̃H+

z = H−
z − Γ̃

(
H−

z

)?
(3.86a)

Eφ = E−φ + Γ̃E+
φ = E−φ + Γ̃

(
E−φ
)?

(3.86b)

where Γ̃ is an intermediate reflection coefficient, and we have made use of (3.85).
The above two equations (3.86a) and (3.86b) basically mean that the total field
is represented as a sum of incident and reflected waves. Now, we try to reformu-
late (3.86a) and (3.86b) in order to have a form similar to that in the planar case.
For this purpose, we define the actual reflection coefficient in terms of Γ̃ as

Γ = −Γ̃
(H−

z )
?

(H−
z )

(3.87)

This value of Γ can be substituted in (3.86) to arrive at

Hz = H−
z

[
1− Γ̃

(H−
z )

?

H−
z

]
= H−

z [1 + Γ] (3.88a)

Eφ = E−φ

[
1 + Γ̃

(
E−φ
)?

E−φ

]
= −ZH−

z

[
1 + Γ̃

(
−E−φ
H−

z

)?(
(H−

z )
?

H−
z

)(
−H−

z

E−φ

)]

= −ZH−
z

[
1− Γ

Z?

Z

]
= −ZH−

z [1− αcΓ]

(3.88b)

where,

Z = ZTEmn
−ρ = −

E−φ
H−

z

= −jk0η0

kρ

H
(1)
n

′
(kρρ)

H
(1)
n (kρρ)

= η0 Z̄ (3.89)

is the wave impedance corresponding to radially directed incident waves, with Z̄
being the normalized value of the impedance for the TEmn mode, the variable αc

for the cylindrical media is defined as

αc =
ZTEmn

?

−ρ

ZTEmn
−ρ

= −
H

(2)
n−1(kρρ) −H

(2)
n+1(kρρ)

H
(1)
n−1(kρρ) −H

(1)
n+1(kρρ)

H
(1)
n (kρρ)

H
(2)
n (kρρ)

(3.90)

and the following formula is used for the computation of the first derivative of the
Hankel function of order n [90]

H(p)
n

′
(z) =

dH
(p)
n (z)

dz
=

1

2

[
H

(p)
n−1(z)−H

(p)
n+1(z)

]
p = 1 or 2 (3.91)

It can be observed from (3.88a) and (3.88b) that after the reformulation, these two
equations have similar form as in the planar case except for the factor αc. For
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the planar geometry, this factor αc is basically equal to unity as the impedance or
admittance for the propagating waves is generally real. In this thesis, we always
try to obtain the total field components in the form given by (3.88a) and (3.88b)
for both cylindrical and spherical geometry because of the above mentioned reason.
After defining the total field components in (3.88a) and (3.88b), our next task is to
obtain the radial derivative of these components and this is achieved after expanding
the Maxwell’s second curl equation into the cylindrical coordinate system for the
TEmn mode

∇×H = jωε0εr(ρ)E

⇒ 1

ρ

∣∣∣∣∣∣
uρ ρuφ uz
∂
∂ρ

∂
∂φ

∂
∂z

Hρ ρHφ Hz

∣∣∣∣∣∣ = jωε0εr(ρ) [Eρuρ + Eφuφ + Ezuz]

⇒ ∂ Hz

∂φ
− ∂

∂z
(ρHφ) = jωε0εr(ρ)ρEρ

∂ Hρ

∂z
− ∂ Hz

∂ρ
= jωε0εr(ρ)Eφ

∂

∂ρ
(ρHφ)−

∂ Hρ

∂φ
= 0

(3.92)

Our basic aim for solving (3.92) is to obtain an expression for the radial derivative
of Hz in terms of Eφ. This is achieved using one of the above equations as follows

∂ Hρ

∂z
− ∂ Hz

∂ρ
= jωε0εr(ρ)Eφ

⇒ ∂ Hz

∂ρ
=

[
ω2µ0ε0εr(ρ)− k2

z

jωµ0

]
Eφ =

−jk2
ρ

ωµ0

Eφ

(3.93)

where (3.84) and (3.82) are used for expressing the value of ∂Hρ/∂z in terms of Eφ.
The radial derivative of Eφ in terms of Hz is obtained using (3.84c)

[
∂Eρ

∂φ
− ∂

∂ρ
(ρEφ)

]
= jωµ0ρHz

⇒ ∂

∂ρ
(ρEφ) =

∂Eρ

∂φ
− jωµ0ρHz =

jn2ωµ0

ρk2
ρ

Hz − jωµ0ρHz

⇒ ∂

∂ρ
(ρEφ) = jωµ0ρ

(
n2

ρ2k2
ρ

− 1

)
Hz

(3.94)

After all these simplifications, equations (3.93) and (3.94) are written together

∂ (Hz)

∂ρ
=
−jk2

ρ

k0η0

(Eφ)

∂

∂ρ
(ρEφ) = jk0η0ρ

(
n2

ρ2k2
ρ

− 1

)
Hz

(3.95)
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At this juncture, it may be useful to give some physical interpretation of equa-
tion (3.95). Our aim here is basically to analyze the one-dimensional inhomogeneity
in the radial direction, and hence we have considered ∂/∂ρ derivatives in both of
these equations. Also, for the radial propagation of waves, the wave impedance in
the ρ-direction should be considered and this involves transverse electric and mag-
netic field components [58]. The transverse field components, which are possible in
the case of TE-illumination are Hz and Eφ as seen in (3.95). Meanwhile, the total
Eφ and Hz fields can be substituted from (3.88) in (3.95) to obtain

j
k2

ρ

k0

Z̄ (1− αcΓ) H−
z =

∂

∂ρ

(
(1 + Γ)H−

z

)
(3.96a)

jk0 ρ

[
1− n2

ρ2k2
ρ

]
(1 + Γ)H−

z =
∂

∂ρ

(
ρZ̄ (1− αcΓ)H−

z

)
(3.96b)

Now, our aim is to solve equations (3.96a) and (3.96b) simultaneously in order to
eliminate the common function H−

z , and this is done using the method proposed in
Appendix A, which yields

{
j
k2

ρ

k0

Z̄ (1− αcΓ)− ∂Γ

∂ρ

}[
ρZ̄ (1− αcΓ)

]
=

{
jk0 ρ

[
1− n2

ρ2k2
ρ

]
(1 + Γ)− ∂

∂ρ

[
ρZ̄ (1− αcΓ)

]}
(1 + Γ)

(3.97)

The above equation is simplified and rewritten into the differential equation form as

∂Γ

∂ρ
+

1

(1 + αc) ρZ̄



Γ2

[
jk0ρ

(
1− n2

ρ2k2
ρ

−
k2

ρ

k2
0

α2
cZ̄

2

)
+

∂

∂ρ

(
ραcZ̄

)]
+Γ

[
2jk0ρ

(
1− n2

ρ2k2
ρ

+
k2

ρ

k2
0

αcZ̄
2

)
+

∂

∂ρ

(
ρ(αc − 1)Z̄

)]
+

[
jk0ρ

(
1− n2

ρ2k2
ρ

−
k2

ρ

k2
0

Z̄2

)
− ∂

∂ρ

(
ρZ̄
)]


= 0

(3.98)

The different terms in (3.98) are computed separately and the values of Z̄ and αc

are substituted from (3.89) and (3.90). The terms involving derivatives in the above
equation are generally the most complicated ones and after some mathematical
manipulation, they are computed as

∂

∂ρ

(
ρZ̄
)

= jk0ρ

[
1−

H
(1)
n+1(kρρ)H

(1)
n−1(kρρ)

(H
(1)
n (kρρ))2

+
H

(1)
n+1(kρρ)−H

(1)
n−1(kρρ)

2H
(1)
n (kρρ)

∂

∂ρ

(
1

kρ

)] (3.99a)
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∂

∂ρ

(
ραcZ̄

)
= −jk0ρ

[
1−

H
(2)
n+1(kρρ)H

(2)
n−1(kρρ)

(H
(2)
n (kρρ))2

+
H

(2)
n+1(kρρ)−H

(2)
n−1(kρρ)

2H
(2)
n (kρρ)

∂

∂ρ

(
1

kρ

)] (3.99b)

where we have made use of (3.91), and the following properties of the Hankel function
for simplifications [90]

d

dz

[
znH(p)

n (z)
]

= znH
(p)
n−1(z) p = 1 or 2 (3.100a)

d

dz

[
H

(p)
n (z)

zn

]
= −

H
(p)
n+1(z)

zn
p = 1 or 2 (3.100b)

The value of the derivative ∂
∂ρ

(
ρ(αc − 1)Z̄

)
in (3.98) is computed from the difference

of (3.99a) and (3.99b). The common factor in (3.98) is computed as

(1 + αc) ρZ̄ = ρ
(
Z̄ + Z̄

?)
=

4k0

π k2
ρH

(1)
n (kρρ)H

(2)
n (kρρ)

(3.101)

where the following Wronskian formula for the Hankel function of nth order is
used [92] [

H(2)
n (z)H

(1)
n+1(z)−H(1)

n (z)H
(2)
n+1(z)

]
=

4

jπz
(3.102)

The other terms in (3.98) are computed using a step-by-step approach, and fi-
nally all individual terms of this equation are combined along with equations (3.99)
and (3.101) to obtain the following non-linear differential equation for the radially
varying frequency-dependent reflection coefficient Γ(k0, ρ) due to a TEmn illumina-
tion

∂Γ

∂ρ
+ Γ



4j

πρH
(1)
n (kρρ)H

(2)
n (kρρ)

− jπρ

8

∂kρ

∂ρ
(
H(1)

n (kρρ)H
(2)
n−1(kρρ) +H

(1)
n−1(kρρ)H

(2)
n (kρρ)

)
−
(
H(2)

n (kρρ)H
(1)
n+1(kρρ) +H

(2)
n+1(kρρ)H

(1)
n (kρρ)

)



=

{
jπρ

4
H(2)

n (kρρ)

[
H

(1)
n−1(kρρ)−

n

kρρ
H(1)

n (kρρ)

]
∂kρ

∂ρ

} [
1− αc Γ2

]
(3.103)

It may be observed here that the structural form of (3.103) is quite similar to that
of Riccati equation (3.26) of the planar case, and hence (3.103) will be called as the
Riccati-similar differential equation of the cylindrical geometry due to an arbitrary
order TEmn mode illumination. The other point to be noted here is that (3.103)
is a non-linear equation in Γ because of the presence of Γ2 term, and this non-
linearity takes into account the effect of multiple reflections from different layers of
the cylindrical dielectric inhomogeneous media.
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The analysis for an arbitrary order TMmn mode illumination in the cylindrical ge-
ometry can be carried out on similar lines as described above for the TEmn mode.
The final expression of the Riccati-similar non-linear differential equation for the
radially varying frequency-dependent reflection coefficient Γ(k0, ρ) due to a TMmn

illumination in the cylindrical geometry is given by

∂Γ

∂ρ
+ Γ



4j

πρH
(1)
n (kρρ)H

(2)
n (kρρ)

+
jπρk2

ρ

8εr(ρ)

∂

∂ρ

(
εr(ρ)

kρ

)


(
H(1)

n (kρρ)H
(2)
n−1(kρρ) +H

(1)
n−1(kρρ)H

(2)
n (kρρ)

)
−
(
H(2)

n (kρρ)H
(1)
n+1(kρρ) +H

(2)
n+1(kρρ)H

(1)
n (kρρ)

)



= −

{
jπρk2

ρ

4εr(ρ)
H(2)

n (kρρ)

[
H

(1)
n−1(kρρ)−

n

kρρ
H(1)

n (kρρ)

]
∂

∂ρ

(
εr(ρ)

kρ

)}[
1− αcΓ

2
]

(3.104)

where m = 0, 1, 2 . . ., n = 0, 1, 2 . . ., and all other symbols have same meaning as in
the TEmn case. The above described formulation for the TEmn and TMmn modes
helps in analyzing cylindrical structures having one-dimensional radially varying
permittivity profile, for any arbitrary order TE or TM mode illumination. The
formulation for any general order TE and TM mode is quite important, as any
practical excitation using a typical antenna setup produces a superposition of all
possible modes.

3.3 The spherical geometry

The previous two sections of this chapter described the procedure for the direct
problem formulation in planar and cylindrical objects. However, many dielectric
objects have boundaries coinciding with the spherical coordinate system and these
objects can better be described by considering them in the spherical geometry rather
than in the planar or cylindrical ones. The formulation in the spherical coordinate
system also provides a better image of dielectric objects, when the available antenna
is not highly directive. This is specially true in cases when the object is having a
curved boundary and the antenna is not able to provide a very high localized beam.
These kinds of curved structures have been mostly analyzed in the past using a
plane-wave approximation, which is true only in those cases where the antenna is
highly directive in both the lateral directions. However, under practical situations
it is very difficult to obtain such kinds of antennas. Hence it looks more suitable
to use the commonly available antennas, which are less directive, and formulate the
overall problem in a non-planar coordinate system rather than in a planar one. In
the last section, it was mentioned that the cylindrical geometry could take the one-
dimensional curvature into account and hence this was suitable for cases where the
antenna can provide the highly directive beam in only one direction. Now, suppose
the available antennas are less directive in both the lateral directions. In this case,
it looks more appropriate to analyze the inhomogeneity in the spherical coordinate
system as it can take the two-dimensional curvature into account, and hence it can
compensate for the antenna’s directivity in both the lateral directions. Now, since
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the cross-sectional image of the spherical object can be obtained using e.g., a number
of antennas or using a multi-view approach, hence the whole problem of imaging
reduces to that of reconstructing the depth-dependent part of the inhomogeneity. In
this section, we have formulated the direct problem to analyze this depth-dependent
inhomogeneity by considering a spherically shaped inhomogeneous dielectric object
as shown in Fig. 3.19. The depth-dependent permittivity profile εr(r) of this object
changes in the r direction, and the inner radius of the dielectric object is taken as r0
as shown in this figure. In the limiting case, the radius r0 approaches zero. However,
care is being taken so that this inner radius is never made equal to zero to avoid
the singularity of spherical Hankel functions. The typical geometry of the spherical
coordinate system in shown in Fig. 3.20. A monochromatic spherical wave of wave
number k0 is assumed to be incident from the the outer free space (r > a) and the
reflection coefficient Γ is measured at outer boundary of the dielectric object i.e., at
r = a as shown in Fig. 3.19. The measurement of the reflection coefficient is chosen
to be carried out at the outer diameter of the spherical object, because in most of
the practical situations e.g. in case of imaging of different vegetation canopies, we
do not have any access to the inside regions of the unknown object or media and
the only feasibility is to measure at the outer boundary.

Figure 3.19: The spherical object, whose
one-dimensional permittivity profile changes
in the r-direction

Figure 3.20: The spherical coordi-
nate system

In the present analysis, the direct problem is formulated in the spherical coor-
dinate system for dielectric objects having one-dimensional inhomogeneity in the
r- direction, and illuminated by any arbitrary order TE or TM mode. It may be
mentioned here that the transmission of waves in the r direction in spherical co-
ordinate system is described by the spherical Hankel functions. Since the waves
are supposed to be incident from the outer free space and reflection coefficient is
measured at the outer radius of the spherical body, hence the inward and outward
travelling waves are considered as incident and reflected waves respectively for all
the cases described here. We will consider here the detailed analysis for any arbi-
trary order TMmn spherical mode illumination, and equation for the TEmn spherical
mode will simply be presented. These equations will be simplified for lower order
mode illuminations for both TE and TM cases.
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3.3.1 Higher order mode illuminations

It was mentioned in the cylindrical case that any arbitrary electromagnetic field
could be represented as a superposition of its TE and TM parts. The same the-
ory applies to the spherical coordinate system, as the general Helmholtz equation
given by (3.75) can be formulated in the spherical geometry as well. As already
mentioned, it is usually not feasible to excite a particular TE or TM mode using
a practical antenna setup. Hence, it becomes necessary to formulate the problem
for any arbitrary order TEmn or TMmn mode. An arbitrary electromagnetic field
produced by a typical antenna can be decomposed into all possible TEmn and TMmn

modes due to the completeness property [64]. The information on the scattering of
a certain TE or TM mode can be obtained after illuminating the object from say,
multiple directions, and separating the contribution due to each particular mode.

In the spherical coordinate system, an arbitrary field is generally represented
in terms of TE to r, and TM to r modes. This is in contrary to the planar and
cylindrical coordinate systems, where an arbitrary field is generally represented in
terms of TE to z, and TM to z modes. These r mode sets are somewhat simpler in
case of spherical geometry, and hence are considered here for further analysis. We
will present the full analysis for a TMmn to r case, and for a TEmn to r case only
final result would be presented. The wave function used to generate TMmn to r
spherical modes, considering even tesseral harmonics3, is given by [16]

ΨTM
mn = (Ar)mn = Pm

n (cos θ) cosmφĤ(p)
n (kr) p = 1 or 2 (3.105)

where, Ar is the r-directed magnetic vector potential, n = 1, 2, 3, . . .; m = 0, 1, 2, . . . , n;
Pm

n (cos θ) is the associated Legendre function of the first kind [92],

k = k0

√
εr(r) (3.106)

is the total propagation constant in the spherical dielectric media, and

Ĥ(p)
n (kr) = kr h(p)

n (kr) p = 1 or 2 (3.107)

is a special type of spherical Hankel function defined by Schelkunoff [93], with

h
(p)
n (kr) being the standard definition of the spherical Hankel function [92]. For

the wave function defined in terms of a magnetic vector potential (3.105), the mag-
netic field components are computed as [91]

H = ∇×A

⇒ Hrur +Hθuθ +Hφuφ =
1

r2 sin θ

∣∣∣∣∣∣
ur ruθ r sin θuφ
∂
∂r

∂
∂θ

∂
∂φ

Ar 0 0

∣∣∣∣∣∣
= uθ

1

r sin θ

∂Ar

∂φ
− uφ

1

r

∂Ar

∂θ

(3.108)

3The functions Pm
n (cos θ) cos mφ and Pm

n (cos θ) sinmφ are called even and odd tesseral har-
monics respectively because of their similarity with sinusoidal functions, and also due to fact that
these sets form a complete orthogonal set on the surface of a sphere.



88 CHAPTER 3. THE DIRECT PROBLEM FORMULATION

where ur, uθ, and uφ are unit vectors in r, θ, and φ directions respectively. The
above equation is simplified to obtain

H−
r = 0 H+

r = 0 (3.109a)

H−
θ =

−m
r sin θ

Pm
n (cos θ) sinmφ Ĥ(1)

n (kr)

H+
θ =

−m
r sin θ

Pm
n (cos θ) sinmφ Ĥ(2)

n (kr)
(3.109b)

H−
φ =

−1

r
Pm

′

n (cos θ) cosmφ Ĥ(1)
n (kr)

H+
φ =

−1

r
Pm

′

n (cos θ) cosmφ Ĥ(2)
n (kr)

(3.109c)

where,

Pm
′

n (cos θ) =
d

dθ
[Pm

n (cos θ)] (3.110)

represents the first order derivative of Pm
n (cos θ). The electric field components for

this mode are obtained by expanding one of the Maxwell’s curl equations in the
spherical coordinate system and making Hr component to zero as per (3.109), i.e.

∇×H = jωεE

⇒ur
1

r sin θ

[
∂

∂θ
(sin θHφ)−

∂Hθ

∂φ

]
− uθ

1

r

∂

∂r
(rHφ) + uφ

1

r

∂

∂r
(rHθ)

= jωε [Erur + Eθuθ + Eφuφ]

(3.111)

where ε = ε0εr(r) is the total permittivity in the spherical dielectric media. The
above equations are solved after substituting the value of Hθ and Hφ from (3.109)
and this yields the following electric field components

E−r =
1

jωε r sin θ

[
∂

∂θ

(
sin θH−

φ

)
− ∂H−

θ

∂φ

]
=

1

jωε0εr(r)

[
∂2

∂r2
+ k2

]
A−r

E+
r =

1

jωεr sin θ

[
∂

∂θ

(
sin θH+

φ

)
− ∂H+

θ

∂φ

]
=

1

jωε0εr(r)

[
∂2

∂r2
+ k2

]
A+

r

(3.112a)

E−θ =
− 1

jωε r

∂

∂r

[
rH−

φ

]
=

1

jωε0εr(r) r
Pm

′

n (cos θ) cosmφ Ĥ(1)
′

n (kr)

E+
θ =

− 1

jωε r

∂

∂r

[
rH+

φ

]
=

1

jωε0εr(r) r
Pm

′

n (cos θ) cosmφ Ĥ(2)
′

n (kr)

(3.112b)

E−φ =
1

jωε r

∂

∂r

[
rH−

θ

]
=

−m
jωε0εr(r)r sin θ

Pm
n (cos θ) sinmφ Ĥ(1)

′

n (kr)

E+
φ =

1

jωε r

∂

∂r

[
rH+

θ

]
=

−m
jωε0εr(r)r sin θ

Pm
n (cos θ) sinmφ Ĥ(2)

′

n (kr)

(3.112c)

where

Ĥ(p)
′

n (kr) =
d

dr

[
Ĥ(p)

n (kr)
]

p = 1 or 2 (3.113)
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is the first order derivative of the spherical Hankel function of order n. Equa-
tions (3.112b) and (3.112c) directly follow from (3.109). However. for the deriva-
tion of (3.112a), we have used the following scalar Helmholtz equation for the r
component of the magnetic vector potential in the spherical coordinate system [16]

∂2Ar

∂r2
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Ar

∂θ

)
+

1

r2 sin2 θ

∂2Ar

∂φ2
+ k2Ar = 0 (3.114)

The second order derivative ∂2Ar

∂r2 in (3.112a) is expressed in terms of the wave
function Ar using (B.11) as follows

∂2Ar

∂r2
= k2

[
n(n+ 1)

k2r2
− 1

]
Ar (3.115)

The above equation is then substituted in (3.112a) to obtain Er components

E−r =

[
n(n+ 1)

jωε0εr(r) r2

]
Pm

n (cos θ) cosmφĤ(1)
n (kr)

E+
r =

[
n(n+ 1)

jωε0εr(r) r2

]
Pm

n (cos θ) cosmφĤ(2)
n (kr)

(3.116)

After obtaining all field components for this mode, our next task is to formulate the
direct or forward problem in such a way that the wave incident from the free space
(r ≥ a) travels inside the dielectric object in the radial direction towards the origin,
and then it gets reflected from different layers of this inhomogeneous spherical object
producing a net reflection coefficient at the outer air-dielectric interface at r = a as
shown in Fig. 3.19. The formulation of the direct problem here will include the effect
of multiple reflections from different layers of the spherical inhomogeneous media as
was the case in planar and cylindrical structures. If we look at equations (3.109)
and (3.112), then we can relate the incident field components with the corresponding
reflected components as follows

H+
θ =

(
H−

θ

)?
E+

φ = −
(
E−φ
)? (3.117)

It may be noted that our aim here is to analyze the inhomogeneity in the r-direction,
and hence we have considered Hθ andEφ components in (3.117), which are used to
define the radially directed impedance in the spherical geometry. Now, to consider
this radial inhomogeneity using the reflection theory, we define the field components
as

Hθ = H−
θ + Γ̃H+

θ = H−
θ + Γ̃

(
H−

θ

)?
(3.118a)

Eφ = E−φ + Γ̃E+
φ = E−φ − Γ̃

(
E−φ
)?

(3.118b)

where Γ̃ is an intermediate reflection coefficient, and we have made use of (3.117).
This factor Γ̃ is reformulated to have the following form
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Γ = Γ̃

(
H−

θ

)?
H−

θ

(3.119)

This value of Γ can be substituted in (3.118) to arrive at

Hθ = H−
θ

[
1 + Γ̃

(
H−

θ

)?
H−

θ

]
= H−

θ [1 + Γ] (3.120a)

Eφ = E−φ

[
1− Γ̃

(
E−φ
)?

E−φ

]
= ZH−

θ

[
1− Γ̃

(
E−φ
)?(

H−
θ

)? (H−
θ

)?
H−

θ

H−
θ

E−φ

]

= ZH−
θ

[
1− Γ

Z?

Z

]
= ZH−

θ [1− αsΓ]

(3.120b)

It may be noted here that after the reformulation of the reflection coefficient in (3.119),
equations (3.120a) and (3.120b) have the standard form as in the planar and cylin-
drical cases. The impedance Z for the inward travelling waves in above equations
is defined as

Z = ZTMmn
−r =

E−φ
H−

θ

= − jη0

k0 εr(r)

Ĥ
(1)

′

n (kr)

Ĥ
(1)
n (kr)

(3.121)

where the values ofHθ and Eφ are substituted from (3.109) and (3.112), and αs = Z?

Z
.

Now, for considering the radial inhomogeneity here, the radial derivatives of Eφ and
Hθ are needed. The radial derivative of Hθ is defined using (3.112c). For the
computation of radial derivative of Eφ, the Maxwell’s second curl equation ∇×E =
−jωµ0H has to be expanded into the spherical coordinate system for the TMmn

mode, and this gives

[
∂

∂θ
(sin θ Eφ)−

∂Eθ

∂φ

]
= 0 (3.122a)[

∂

∂r
(r Eφ)−

1

sin θ

∂Er

∂φ

]
= jωµ0 r Hθ (3.122b)[

∂Er

∂θ
− ∂

∂r
(r Eθ)

]
= jωµ0 r Hφ (3.122c)

Equation (3.122b) is next solved to compute the radial derivative of Eφ in term of
Hθ

∂

∂r
(rEφ) = jωµ0 rHθ +

1

sin θ

∂Er

∂φ

= jωµ0 rHθ +
n(n+ 1)

jωε0εr(r) r
Hθ =

[
n(n+ 1)− k2r2

jωε0εr(r) r

]
Hθ

(3.123)

where (3.116) is used to compute the φ-derivative of Er. Meanwhile, (3.123) is writ-
ten together along with (3.112c) in terms of the common variable H−

θ using (3.120)
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jk0r εr(r)Z̄ (1− αsΓ)
[
H−

θ

]
=

∂

∂r

[
r (1 + Γ)H−

θ

]
(3.124a)[

n(n+ 1)− k2r2

jk0r εr(r)

]
(1 + Γ)

[
H−

θ

]
=

∂

∂r

[
rZ̄ (1− αsΓ)H−

θ

]
(3.124b)

where,

Z̄ =
ZTMmn
−r

η0

=
−j

(2n+ 1)
√
εr(r)

[
(1 + n) Ĥ

(1)
n−1(kr)− n Ĥ

(1)
n+1(kr)

]
Ĥ

(1)
n (kr)

(3.125)

is the normalized impedance for the TMmn spherical mode, and

αs =
Z̄?

Z̄
= −

[
(1 + n) Ĥ

(2)
n−1(kr)− n Ĥ

(2)
n+1(kr)

]
[
(1 + n) Ĥ

(1)
n−1(kr)− n Ĥ

(1)
n+1(kr)

] Ĥ(1)
n (kr)

Ĥ
(2)
n (kr)

(3.126)

Our next task is to solve (3.124a) and (3.124b) to eliminate the common variable
H−

θ , and for doing this the method proposed in Appendix A can be used to obtain

r (1 + Γ)

[
n(n+ 1)− k2r2

jk0r εr(r)
(1 + Γ)− (1− αsΓ)

∂

∂r

(
rZ̄
)

+ rZ̄

(
αs
∂Γ

∂r
+ Γ

∂αs

∂r

)]
+ rZ̄ (1− αsΓ)

[
1 + Γ + r

∂Γ

∂r
− jk0r εr(r)Z̄ (1− αsΓ)

]
= 0

(3.127)

The above equation is simplified to combine the terms containing Γ, Γ2, and ∂Γ/∂r
etc . . .

∂Γ

∂r
+

1

(1 + αs) rZ̄



Γ2

[
n(n+ 1)− k2r2

jk0rεr(r)
− jk0rεr(r)α

2
sZ̄

2 + r
∂

∂r

(
αsZ̄

)]

+Γ


2 [n(n+ 1)− k2r2]

jk0rεr(r)
+ j2k0rεr(r)αsZ̄

2

+ r
∂

∂r

(
(αs − 1)Z̄

)


+

[
n(n+ 1)− k2r2

jk0r εr(r)
− jk0r εr(r)Z̄

2 − r
∂Z̄

∂r

]


= 0

(3.128)

The different terms in (3.128) are computed after substituting the values of Z̄ and
αs from (3.125) and (3.126). The derivative ∂Z̄

∂r
, after some simplifications, is given

by
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∂Z̄

∂r
=

−j
(2n+ 1)



2n(n+ 1)(2n+ 1)

k0r2 εr(r)
− k0(2n+ 1) − k0n

Ĥ
(1)2

n+1(kr)

Ĥ
(1)2
n (kr)

− k0(n+ 1)
Ĥ

(1)2

n−1(kr)

Ĥ
(1)2
n (kr)

− 1

2εr(r)
√
εr(r)

dεr(r)

dr

·


[
(1 + n) Ĥ

(1)
n−1(kr)− n Ĥ

(1)
n+1(kr)

]
Ĥ

(1)
n (kr)




(3.129)

Similarly the other derivative ∂
∂r

(
αsZ̄

)
in (3.128) can be simplified to give

∂

∂r

(
αsZ̄

)
=

j

(2n+ 1)



2n(n+ 1)(2n+ 1)

k0r2 εr(r)
− k0(2n+ 1)− k0n

Ĥ
(2)2

n+1(kr)

Ĥ
(2)2
n (kr)

− k0(n+ 1)
Ĥ

(2)2

n−1(kr)

Ĥ
(2)2
n (kr)

− 1

2εr(r)
√
εr(r)

dεr(r)

dr

·


[
(1 + n) Ĥ

(2)
n−1(kr)− n Ĥ

(2)
n+1(kr)

]
Ĥ

(2)
n (kr)




(3.130)

The other terms in (3.128) may be computed as

jk0r εr(r)Z̄
2 =

j 2k0rn(n+ 1)

(2n+ 1)2

Ĥ
(1)
n−1(kr) Ĥ

(1)
n+1(kr)

Ĥ
(1)2
n (kr)

− jk0r

(2n+ 1)2Ĥ
(1)2
n (kr)

[
(n+ 1)2Ĥ

(1)2

n−1(kr) + n2 Ĥ
(1)2

n+1(kr)
] (3.131a)

jk0r εr(r)α
2
sZ̄

2 =
j 2k0rεr(r)n(n+ 1)

(2n+ 1)2

Ĥ
(2)
n−1(kr) Ĥ

(2)
n+1(kr)

Ĥ
(2)2
n (kr)

− jk0r

(2n+ 1)2Ĥ
(2)2
n (kr)

[
(n+ 1)2Ĥ

(2)2

n−1(kr) + n2 Ĥ
(2)2

n+1(kr)
] (3.131b)

1

(1 + αs) Z̄
=

√
εr(r) Ĥ

(1)
n (kr) Ĥ

(2)
n (kr)

2
(3.131c)

j2 k0r εr(r)αsZ̄
2 = − j2n(n+ 1)

(2n+ 1)
√
εr(r)

[
Ĥ

(1)
n−1(kr)

Ĥ
(1)
n (kr)

+
Ĥ

(1)
n+1(kr)

Ĥ
(1)
n (kr)

]

+
j2k0 r

(2n+ 1)

[
(n+ 1)Ĥ

(1)
n−1(kr)Ĥ

(2)
n−1(kr)

Ĥ
(1)
n (kr)Ĥ

(2)
n (kr)

+
n Ĥ

(1)
n+1(kr)Ĥ

(2)
n+1(kr)

Ĥ
(1)
n (kr)Ĥ

(2)
n (kr)

] (3.132)

The derivative ∂
∂r

(
(αs − 1)Z̄

)
in (3.128) can be expressed using (3.129) and (3.130),

and finally all individual terms computed above are combined together in (3.128)
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to obtain the following nonlinear differential equation for the spherical geometry in
terms of a frequency-dependent reflection coefficient Γ(k0, r)

∂Γ

∂r
+ Γ



j2k0

√
εr(r)

Ĥ
(1)
n (kr) Ĥ

(2)
n (kr)

− j

4εr(r)(2n+ 1)

dεr(r)

dr (1 + n)
[
Ĥ(2)

n (kr) Ĥ
(1)
n−1(kr) + Ĥ(1)

n (kr) Ĥ
(2)
n−1(kr)

]
−n
[
Ĥ(2)

n (kr) Ĥ
(1)
n+1(kr) + Ĥ

(2)
n+1(kr) Ĥ

(1)
n (kr)

]



= − j

4εr(r)

dεr(r)

dr

Ĥ
(2)
n (kr)

(2n+ 1)

[
nĤ

(1)
n+1(kr)− (n+ 1)Ĥ

(1)
n−1(kr)

] [
1− αs Γ2

]
(3.133)

The above equation is the Riccati-similar differential equation due to a TMmn

spherical mode illumination, and it provides a direct relationship between the one-
dimensional radially varying permittivity profile of spherical dielectric objects, and
the frequency-dependent reflection coefficient data measured at the outer air-dielectric
boundary.

The analysis for an arbitrary order TEmn mode illumination in the spherical co-
ordinate system can be carried out on similar lines as described above for the TMmn

mode. The final expression of the Riccati-similar non-linear differential equation
for the radially varying frequency-dependent reflection coefficient Γ(k0, r) due to a
TEmn illumination in the spherical geometry is given by

∂Γ

∂r
+ Γ



j2k0

√
εr(r)

Ĥ
(1)
n (kr) Ĥ

(2)
n (kr)

+
j

4εr(r)(2n+ 1)

dεr(r)

dr (1 + n)
[
Ĥ(2)

n (kr) Ĥ
(1)
n−1(kr) + Ĥ(1)

n (kr) Ĥ
(2)
n−1(kr)

]
−n
[
Ĥ(2)

n (kr) Ĥ
(1)
n+1(kr) + Ĥ

(2)
n+1(kr) Ĥ

(1)
n (kr)

]



=

j

4εr(r)

dεr(r)

dr

Ĥ
(2)
n (kr)

(2n+ 1)

[
nĤ

(1)
n+1(kr)− (n+ 1)Ĥ

(1)
n−1(kr)

] [
1− αs Γ2

]
(3.134)

where n = 0, 1, 2 . . .. The above described formulation for the TEmn and TMmn

modes helps in analyzing cylindrical structures having one-dimensional radially vary-
ing permittivity profile, for any arbitrary order TE or TM mode illumination.

3.3.2 Lower order mode illuminations

In the last sub-section, we have formulated the direct problem for spherical dielec-
tric objects illuminated by any arbitrary order TEmn or TMmn mode. As can be
seen from equations (3.133) and (3.134), the formulation for any higher order mode
is quite complicated in the case of spherical geometry. However, for lower order
illuminations these equations reduce to very simple forms. The simplicity is mainly
obtained because of the fact that the spherical Hankel functions of lower order can
be replaced by the exponential functions. In this section, we obtain specialized
forms of (3.133) and (3.134) for lower order modes. The lowest possible TM to r
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mode in the spherical geometry is TM01 mode and the wave function for this mode,
considering even tesseral harmonics, is given by [16]

ΨTM
01 = (Ar)01 = cos θ Ĥ

(p)
1 (kr) p = 1 or 2 (3.135)

where,

Ĥ
(1)
1 (kr) = −ejkr

(
1 +

j

kr

)
(3.136)

is the spherical Hankel function of the first kind of order one representing an inward
travelling wave, and

Ĥ
(2)
1 (kr) = −e−jkr

(
1− j

kr

)
(3.137)

is the spherical Hankel function of the second kind of order one representing an
outward travelling wave. From (3.135), (3.136) and (3.137), it can be seen that for
this lower order illumination the associated Legendre functions are replaced by the
simple trigonometric functions, and the spherical Hankel functions are replaced by
the exponential functions. It is mainly because of these substitutions that equations
for the lower order mode become simpler in form than corresponding equations for
the higher order modes. The expression for the normalized impedance and the factor
αs for the TM01 to r mode is given by

Z̄TM01
−r =

1√
εr(r)

[
j

kr
+

1

(1 + j/kr)

]
(3.138)

αTM01
s =

ZTM01
?

−r

ZTM01
−r

=
k3r3 − j

k3r3 + j
(3.139)

The simpler forms of (3.138) and (3.139) can be appreciated if we compare these
equations with (3.125) and (3.126) of the corresponding higher order mode illu-
minations. The analysis of this lower order spherical mode illumination using the
procedure laid down in the last section will yield (3.128) with n = 1. The value of Z̄
and αs can then be substituted from (3.138) and (3.139) into the reduced equation,
and this finally leads to

∂Γ

∂r
+ Γ

[
2jk3r2

(k2r2 + 1)
+

j

2k3r3εr(r)

dεr(r)

dr

]
= − (j + k3r3)

4k3r3εr(r)

dεr(r)

dr

[
1− αs Γ2

]
(3.140)

which is the Riccati-similar nonlinear differential equation for the spherical geometry
due to a TM01 mode illumination.

The analysis for the lower order TE mode illumination can also be carried out
in a similar way as described above for the TM case, and this leads to the follow-
ing nonlinear differential equation in terms of the frequency-dependent reflection
coefficient Γ(k0, r) for a TE01 to r spherical mode illumination

∂Γ

∂r
+ Γ

[
2jk3r2

(k2r2 + 1)
− j

2k3r3εr(r)

dεr(r)

dr

]
=

(j + k3r3)

4k3r3εr(r)

dεr(r)

dr

[
1− αs Γ2

]
(3.141)



Chapter 4

The Inverse Solution

The last chapter discussed in detail the direct problem formulation of planar, cylin-
drical and spherical objects to analyze the one-dimensional inhomogeneity. In this
chapter, we will describe in detail the proposed technique to invert those direct prob-
lems. It has already been mentioned that the reconstruction of permittivity profiles
is basically an inverse process and hence proposing an appropriate algorithm for the
inversion of the corresponding direct problem is the most crucial part in the whole
reconstruction process. We start this section with a simple planar geometry, and
then consequently cylindrical and spherical geometries are considered to obtain a
closed-form expression for the depth-dependent permittivity profile in each case.

4.1 The planar geometry

First of all, we take the planar inhomogeneous medium considered in section 3.1,
and described by the Fig. 3.1. We assume that the one-dimensional unknown per-
mittivity profile is given by εr(x) in the region x ≥ 0 starting from εr0 at x = 0. It
is assumed that the relative permittivity of the background medium is same as that
of free space i.e. εr(x) = 1 for x < 0, and hence there will be a discontinuity at the
interface x = 0. We consider here all cases of illuminations viz. TEM, TE and TM.

4.1.1 TEM illumination

For the TEM -case, a monochromatic plane wave of wavenumber k0 is incident nor-
mally from the Left hand side at the interface x = 0 as shown in Fig. 3.1. The exact
Riccati non-linear differential equation for the one-dimensional planar inhomoge-
neous media illuminated by a TEM plane wave has been derived in section 3.1.1
and is given by (3.18). This equation is basically a non-linear one in Γ because of
the presence of Γ2 term and hence it does not have any general analytical solution.
However, for the direct problem solution, (3.18) can always be solved numerically
for a given permittivity profile to obtain the frequency-dependent reflection coeffi-
cient data. But as mentioned earlier, the basic aim of our work is to seek a stable
inversion of (3.18), which is much more complicated process as compared to the di-
rect problem solution. To describe our proposed technique of inversion, the Riccati
equation for the TEM case (3.18) is rewritten in the following form

95
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1

(1− Γ2)

dΓ

dx
= j2k0

√
εr(x)

Γ

(1− Γ2)
+

1

4εr(x)

dεr(x)

dx
(4.1)

In the next step, a virtual reflection coefficient Γ̂ is introduced as the solution of a
linearized version of (4.1), which is called the auxiliary equation

dΓ̂

dx
= j2k0

√
εr(x) Γ̂ +

1

4εr(x)

dεr(x)

dx
(4.2)

The substraction of (4.1) from (4.2) gives[
dΓ̂

dx
− 1

(1− Γ2)

dΓ

dx

]
= j2k0

√
εr(x)

[
Γ̂− Γ

(1− Γ2)

]
(4.3)

For equation (4.3) to be satisfied for all values of
√
εr(x), the terms in parenthesis

on both sides of this equation should be zero. This can be achieved only if

Γ̂ = tanh−1 Γ, and Γ̂ =
Γ

(1− Γ2)
(4.4)

where we have made use of the following relationship

d

dx
tanh−1 Γ(x) =

1

1− Γ2(x)

dΓ(x)

dx
(4.5)

Equation (4.4) can not be fulfilled because of the following. Let us expand the
inverse hyperbolic tangent function into its Taylor series as shown below, and then
try to find out the conditions under which (4.4) may be valid approximately

tanh−1 Γ = Γ +
Γ3

3
+

Γ5

5
+ · · ·

⇒ 1− Γ2

Γ
tanh−1 Γ =

(
1− Γ2

) (
1 +

Γ2

3
+

Γ4

5
+ · · ·

)
= 1− 2

3
Γ2 − 2

15
Γ4 + · · ·

(4.6)

The above equation suggests that (4.4) will be approximately satisfied only when all
the terms starting from its second order on the right hand side of (4.4) are negligible.
Form this discussion, it is clear that (4.3) can never be made exactly satisfied as the
higher order terms involving Γ are not zero under any circumstance. However, this
equation can be approximated in two ways. The first approach is to make the virtual
reflection coefficient Γ̂ = tanh−1 Γ, in which case the left hand side (LHS) of (4.3)
would be exactly satisfied but the right hand side (RHS) has to be approximated.
The second choice is to make Γ̂ = Γ

(1−Γ2)
, which will make the RHS of (4.3) exactly

zero but in this case the LHS of this equation has to be approximated. In past all
the authors who used this method have either taken the first approximation (i.e.
Γ̂ = tanh−1 Γ) (see e.g. [59]), or have simply neglected the Γ2 term (e.g. [60], [94]),
to solve these kinds of inverse problems. This is obviously biased in one direction.
Another possibility could be to consider the second approximation (i.e. Γ̂ = Γ

(1−Γ2)
),

which would be then biased in the other direction.
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Our approach for solving the exact nonlinear differential equation (4.1), however,
does not involve any approximation at the first instance. We choose the linearized
version of (4.1) in terms of a virtual reflection coefficient Γ̂, and the exact relationship
between Γ and Γ̂ can be found later on depending on our requirement. For example,
if we just want a qualitative reconstruction of the image, then we can select a
very simple relationship between Γ and Γ̂. On the other hand, if a very accurate
quantitative image of the dielectric object is required, then in that case the virtual
reflection coefficient Γ̂ might be a complicated function of Γ. Hence using our
proposed method, we have a choice of selecting the virtual reflection coefficient and
the corresponding linear differential equation in a flexible way. We have observed
that the following relationship between Γ and Γ̂ provides a solution, which is very
close to optimum

Γ̂ =
1

2

[
tanh−1 Γ +

Γ

(1− Γ2)

]
(4.7)

As a matter of fact, we have found that the above choice gives us much better
result than previously used approaches for all cases of practical importance, as will
be shown in some of the reconstructed examples in the next chapter. The above for-
mula (4.7) works quite well for numerical examples, i.e., cases where the measured
reflection coefficient data is given over a frequency band. However, sometimes we
are given the reflection coefficient function in an analytical form and our job is to
to find the equivalent impedance or the permittivity profile. One practical example
for this kind of situation is e.g. the conventional filter design, where the reflec-
tion coefficient is given as a function of frequency or the wavenumber to define the
passband characteristics, and it is required the find the optimum impedance profile
corresponding to these passband characteristics [79]. Under these circumstances,
it would be quite complicated to use (4.7) because of the presence of a hyperbolic
trigonometric function. We have tried to find an alternative form of (4.7) for such
cases, and this is given by

Γ̂ =
Γ

(1− Γ2)
− 1

3
Γ3 (4.8)

The above equation is obtained after substituting the value of hyperbolic tangent
function from (4.6) in (4.7)

tanh−1 Γ '
(

Γ

(1− Γ2)

) (
1− 2

3
Γ2

)
⇒ 1

2

[
tanh−1 Γ +

Γ

(1− Γ2)

]
=

1

2

{
Γ

(1− Γ2)

[
1 + 1− 2

3
Γ2

]}
=

Γ

(1− Γ2)
− 1

3
Γ3 − 1

3
Γ5 · · ·

(4.9)

It may be observed from (4.9) that in deriving (4.8), the higher order terms of Γ
starting from Γ4 are disregarded. However, this has been done just to ease the
complexity involved, otherwise we are free to choose as many terms as we want in
order to increase the accuracy. It is mainly this flexibility of choosing the algebraic
transformation between the measured Γ and virtual Γ̂, that gives our method an
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edge over other available methods for solving inverse problems. So the advantage
of the above suggested technique is that we separate the nonlinearity of the exact
Riccati equation into a nonlinear algebraic transformation, which relates the actual
measurable reflection coefficient Γ and the virtual reflection coefficient Γ̂. The choice
of an algebraic transformation will be generally a compromise between the accuracy
required and the complexity involved. The virtual Γ̂ is not directly measurable, but
it renders the differential equation relating the unknown permittivity profile to this
virtual reflection coefficient linear (4.2). Our whole process of the reconstruction
can be visualized more clearly as in Fig. 4.1. The important thing to be noted here

Figure 4.1: Schematic diagram for the direct and inverse problems

is that the proposed technique is based on compensating the difference between the
original nonlinear Riccati equation (4.1) and the auxiliary linear one (4.2) via a
nonlinear transformation, which in our case is given by (4.7). However, there are no
severe constraints on the choice of the virtual reflection coefficient and the related
auxiliary linear differential equation. The choice of the auxiliary equation (4.2) in
our case after disregarding the quadrature term in (4.1) is just one possibility, and
for this choice the required transformation is given by (4.7). Other choices for the
selection of a virtual reflection coefficient and the corresponding auxiliary equation
are possible as long as an appropriate transformation between the measurable and
virtual reflection coefficients can be found.

After obtaining an optimum nonlinear transformation between the actual and
the virtual reflection coefficient as discussed above, our next task is to integrate
the auxiliary equation (4.2) involving the virtual reflection coefficient Γ̂. For this
purpose, we first consider the case when there is no discontinuity at the at the
outer air-dielectric interface, i.e. εr(0) = 1 in Fig. 3.1. After obtaining a closed-
form solution for this special case, the expression is generalized for any value of
permittivity at the outer air-dielectric interface.

4.1.1.1 The special case with a continuity at the air-dielectric interface

For this case, we integrate (4.2) taking εr(0) = 1 in Fig. 3.1. The auxiliary equa-
tion (4.2) is clearly a linear differential equation, and hence it can be integrated
from infinity to a finite point x to have a general solution of the following form [95]
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Γ̂(k0, x) exp

[
−
∫ x

∞
j2k0

√
εr(x′) dx

′
]

=

∫ x

∞

{
1

4εr(x′)

dεr(x
′)

dx′
exp

[
−
∫ x′

∞
j2k0

√
εr(x′′) dx

′′

]}
dx′ + C (4.10)

where the constant C is the integration constant to be determined using an appro-
priate boundary condition, x′ and x′′ are dummy integration variables. The above
equation can be used to analyze the one-dimensional inhomogeneous object of any
arbitrary depth, and in the real situation the upper limit ∞ of the integral may be
replaced by the approximate extent of the inhomogeneity. Now, let us suppose that
the value of the reflection coefficient at infinity is given by Γ∞, and if we use this
boundary condition to compute the constant C in the above equation, then (4.10)
reduces to

Γ̂(k0, x) = Γ̂∞ exp

[∫ x

∞
j2k0

√
εr(x′) dx

′
]

+

∫ x

∞

{
1

4εr(x′)

dεr(x
′)

dx′
exp

[∫ x

x′
j2k0

√
εr(x′′) dx

′′
]}

dx′ (4.11)

Under the real situations the value of Γ̂∞ can be quite often taken as zero. For
example, if we are measuring the reflection coefficient of dielectric materials in a
waveguide or in a coaxial airline, then we can always put a matched load at the end
and this will make Γ̂∞ as zero. The same concept can also be applied to the free-
space measurements, where the sample is generally placed in an anechoic chamber
and the end of the sample matches with the surrounding medium thus producing
a net reflection coefficient of zero there. It may be, however, noted that (4.11) can
be solved for any arbitrary boundary condition and making Γ̂∞ equal to zero is just
one of the possibilities. Equation (4.11) for the boundary condition Γ̂∞ = 0 reduces
to

Γ̂(k0, x) =

∫ x

∞

{
1

4εr(x′)

dεr(x
′)

dx′
exp

[∫ x

x′
j2k0

√
εr(x′′) dx

′′
]}

dx′ (4.12)

We are here basically looking for an expression for the frequency-dependent reflection
coefficient measured at x = 0 in Fig. 3.1, as in real situations we can measure the
reflection coefficient data only at the interface, and for this case Γ̂(k0, 0) = R̂(k0)
from (4.12) will be given by

R̂(k0) = −
∫ ∞

0

{
1

4εr(x)

dεr(x)

dx
exp

[
−j2k0

∫ x

0

√
εr(x′) dx

′
]}

dx (4.13)

It can be easily observed that it is not possible to separate the space and frequency
variable explicitly in the above equation because of the presence of

√
εr(x) term,

which is unknown, inside the exponential. For this purpose, we introduce here a
virtual space variable

l = 2

∫ x

0

√
εr(x′) dx

′ (4.14)
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which may be also thought of as the electrical length. This variable l is substituted
in (4.13) to obtain

R̂(k0) = −
∫ ∞

0

[
1

8 εr(x)
√
εr(x)

dεr(x)

dx

]
exp [−jk0 l] dl (4.15)

where we have also expressed dx in terms of dl using (4.14). The form of (4.15) now
looks quite familiar and it can be compared with the standard Fourier transform
equation (2.45) defined in chapter 2. After this comparison, we can recognize that
the terms in the parenthesis on the RHS of (4.15) basically represents the inverse
Fourier transform of Γ(k0), i.e.,

r̂(l) = =−1
[
R̂(k0)

]
= − 1

8 εr(x)
√
εr(x)

dεr(x)

dx
(4.16)

It may be noted here that r̂(l) is usually a causal function and hence its limit starts
from zero rather than −∞ in (4.15). The other point to be noted is that the Fourier-
transform pair is defined here in the wavenumber-distance domain rather than in the
conventional frequency-time domain. But this does not make any difference as long
as the same convention is used throughout the analysis. Meanwhile, for l ≥ 0, (4.16)
can be rewritten as

r̂(l) 2
√
εr(x) dx = −1

4

dεr(x)

εr(x)
(4.17)

The above equation may be combined with the differential dl taken from (4.14) to
obtain

d ln εr(x) = −4 r̂(l) dl (4.18)

This equation can be integrated from the starting point x = 0 to any arbitrary
electrical length l

εr(l) = exp

[
−4

∫ l

0

r̂(l′) dl′
]

(4.19)

where l′ is a dummy integration variable corresponding to x′ using (4.14). As can
be seen from (4.19), this equation gives the value of the permittivity in terms of
the electrical length l. To obtain the value of one-dimensional inhomogeneous per-
mittivity profile in terms of the actual depth x, we have to transform the electrical
distance l into the real depth x. This transformation is achieved using our proposed
numerical algorithm described in the later part of this chapter.

4.1.1.2 The general case with a discontinuity at the air-dielectric inter-
face

In the last section, we discussed a special case when the surface value of the per-
mittivity at the air-dielectric interface was unity, i.e. εr(0) = 1. However in most
practical cases, there is always a discontinuity at the interface x = 0 as shown in
Fig. 3.1. To take into account this discontinuity, we have to modify the formula
given by (4.19). It was mentioned in section 3.1.1.1 that a discontinuous junction
between two layers of different permittivities can be represented by a [S] parameter
network given by (3.6). The equivalent [S] parameter network of the discontinuous
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Figure 4.2: The equivalent [S] parameter network of the permittivity discontinuity
at the interface

media at x = 0 is shown in Fig. 4.2. The value of S11 in Fig. 4.2 is given by (3.5a),
which for our case reduces to

S11 =
1−√εr0

1 +
√
εr0

(4.20)

where we have taken the background medium as air. The parameter R0(k0) in
Fig. 4.2 now represents the reflection coefficient of the equivalent continuous medium
after taking the discontinuity at the air-dielectric interface into account as shown in
Fig. 4.3. Now using (3.13), we can express the input reflection coefficient R(k0) in

Figure 4.3: The continuous medium after taking the permittivity discontinuity into
account

terms of S11 and R0(k0) of Fig. 4.2



102 CHAPTER 4. THE INVERSE SOLUTION

R(k0) = S11 +
(1− S2

11) R0(k0)

1 + S11R0(k0)
(4.21)

The above equation can be mathematically manipulated to arrive at the following
relationship

R0(k0) =
R(k0)− S11

1− S11R(k0)
(4.22)

where S11 is given by (4.20). As R0(k0) is the reflection coefficient of an equivalent
continuous medium, hence the technique presented in section 4.1.1.1 can now be used
for the reconstruction. If R̂0(k0) is the virtual reflection coefficient corresponding to
the transformed reflection coefficient R0(k0), then using (4.17) we can write

d ln εr(x) = −4 r̂0(l) dl (4.23)

where r̂0(l) is the inverse Fourier transform of R̂0(k0). This equation can be inte-
grated for any arbitrary depth x

εr(l) = εr0 exp

[
−4

∫ l

0

r̂0(l
′) dl′

]
(4.24)

which is the required formula to reconstruct the one-dimensional permittivity profile
of a planar half-space medium having a discontinuity at the air-dielectric interface.

It may be noted here that the above equation reconstructs the permittivity profile
in terms of the electrical length l, but as l is basically a function of x given by (4.14)
hence the profile in (4.24) can be also thought of as a function of the physical depth
x. The exact relationship between the electrical length l and the physical depth x
is given by a numerical algorithm presented in section 4.1.1.3. Now, corresponding
to (4.24), when there is no discontinuity i.e. when εr(0) = 1, then this equation
reduces to (4.19) as it should be. The overall technique for the reconstruction of
one-dimensional permittivity profile can thus be summarized as follows. First we
measure the reflection coefficient data R(k0) (both magnitude and phase) of any
dielectric sample or medium over a wide frequency band using a vector network
analyzer. The measurement can be carried out either in a transmission line medium
or in the free-space. For the measurement in the transmission line medium, the
dielectric sample is machined to fit inside a waveguide or a coaxial airline section.
The waveguide measurements are simpler because the machining is not very crucial
in this case, but the airline setup is preferred in situations where the wide-band data
are required. The free-space measurements are totally non-destructive in nature as
no machining is required in this case, and the flat sample can directly be placed in
front of the antenna. However, the free-space measurements are more prone to errors
because of the hostile measuring conditions, and hence special care has to be taken
to calibrate the network analyzer in order to obtain a better accuracy. We have
carried out the measurement of different dielectric samples both in the transmission
line medium and in the free-space, the details about which are given in the next
chapter. Here it may just be pointed out that the transmission line measurements
are more suitable for the characterization of dielectric materials, while the free-space
method looks more appropriate for the imaging applications where the totally non-
destructive measurements are required. After the measurement of spectral-domain
reflection data R(k0) using any of the methods discussed above, it is transformed to
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R0(k0) for each frequency using (4.22). The surface value of permittivity εr0 in (4.22)
is determined using a separate method described in the next section. The nonlinear
transformation given by (4.8) is used to define a virtual reflection coefficient R̂0(k0)
corresponding to R0(k0). Finally the inverse Fourier transform of R̂0(k0) is taken to
obtain r̂0(l) and this value is then used in (4.24) to obtain the required permittivity
profile as a function of the electrical depth l.

4.1.1.3 Numerical algorithm for transforming the virtual space variable
into the actual physical distance

Equations (4.19) and (4.24) both give the expression of the permittivity profile as a
function of the virtual space variable l. However, to reconstruct the actual depth-
dependent permittivity profile, we have to convert the electrical distance l into the
actual depth x. In this section, we present an algorithm for this purpose based
on (4.14) and (4.24). Let us define

g(l) =

[
−4

∫ l

0

r̂0(l
′) dl′

]
(4.25)

Equation (4.24) then reduces to

εr(l) = εr0 exp [g(l)] (4.26)

Now, under real practical situations, we measure the reflection coefficient data over
a wide frequency band and then use some kind of FFT routine to compute its inverse
Fourier transform. This means that we will get the discrete values of r̂0(l) in (4.25) at
a constant step size, say ∆ l. The exact value of ∆ l will of course depend upon the
bandwidth over which the measurements are carried out; greater the bandwidth,
higher the resolution in space domain. After having obtained the values of r̂0(l)
at an interval of step-size ∆ l, we use a simple trapezoidal integration routine to
evaluate (4.25) starting from its initial value, g(0) = 0 [96]

1. When x = 0, l = 0 according to (4.14).

2. At l = l1 = ∆ l,

g(l1) = −2∆ l [r̂0(0) + r̂0(∆ l)]

εr(l1) = εr0 exp [g(l1)]

But l1 corresponds to x1 via (4.14), hence the same trapezoidal integration
routine used to evaluate (4.25) can be used to compute (4.14) as well, and this
yields

x1 =
∆ l[√

εr0 +
√
εr(l1)

]
3. The above equations can be generalized for l = ln = n∆ l

g(ln) = g(ln−1)− 2∆ l {r̂0 [(n− 1)∆ l] + r̂0 [n∆ l]} (4.27a)

εr(ln) = εr0 exp [g(ln)] (4.27b)

xn = xn−1 +
∆ l[√

εr(ln−1) +
√
εr(ln)

] (4.27c)
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where ln corresponds to xn via (4.14). With the help of (4.27a), (4.27b), and (4.27c),
the exact permittivity profile εr(x) can be reconstructed as a function of physical
distance x in subsequent steps starting from εr0 at x = 0.

4.1.1.4 Determination of the permittivity at the air-dielectric interface

From (4.20), (4.22) and (4.24), it is evident that for the evaluation of both R0(k0)
and εr(x), we need to first determine the surface value of the permittivity at the air-
dielectric interface i.e. εr0 or the equivalent reflection coefficient. Here we present
two methods, which can be employed for computing these parameters.

The first method is an analytical one and it involves plotting the real and imag-
inary parts of the reflection coefficient as a function of the wavenumber k0. It has
been shown in [30] that if we plot the real and imaginary parts of the reflection
coefficient data in a complex plane in the high frequency region, then it yields a
circle shifted along the real axis. As we can directly measure both the real and
imaginary parts of the reflection coefficient data as a function of the wavenumber k0

using a vector network analyzer, hence both the radius r and the intercept c along
the real axis of this circle can be quite accurately determined. The local reflection
coefficient due to a discontinuity at the outer air-dielectric interface S11 of Fig. 4.2
can be defined in terms of r and c according to [30]

S11 =
(r2 − c2 − 1) +

√
(r2 − c2 − 1)2 − 4c2

2 c
(4.28)

The permittivity at the outer air-dielectric interface can be written in terms of the
above defined S11 using (4.20)

εr0 =

[
1− S11

1 + S11

]2

(4.29)

As can be seen from (4.28) and (4.29), the surface value of the permittivity εr0 can
be determined using these two formulas once we are able to calculate the values of
r and c. The main advantage of this method is that it is stable, and is not much
sensitive to a change in phase measurements of the reflection coefficient data. These
properties are quite significant under some conditions, e.g. for the measurement of
the reflection coefficient data in the free-space where it is very difficult to measure
the phase quite accurately.

The second method for the reconstruction of permittivity at the air-dielectric
interface is based on the behavior of the maximum of modulus of the reflection co-
efficient data [97]. For a layered media, it can be shown that addition of each layer
to the overall permittivity profile results in increasing the maximum of modulus of
the reflection coefficient data, and this increase is directly proportional to the step
size. It means that different layers of a discontinuous permittivity profile can be
reconstructed successively so as to minimize the maximum of modulus of the reflec-
tion coefficient data for the remaining region in the frequency band of operation.
We use this concept here to determine the surface value of permittivity εr0. The
expression for the reflection coefficient after excluding the air-dielectric interface is
given by (4.22)
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R0(k0) =
R(k0)

[
1 +

√
εr0

]
−
[
1−√εr0

][
1 +

√
εr0

]
−R(k0)

[
1−√εr0

] (4.30)

where we have made use of (4.20) to substitute the value of the local reflection
coefficient due to the discontinuity at the interface. The above function is optimized
using the criterion

max |R0(k0)| → min (4.31)

over the given frequency band to obtain the value of εr0. This algorithm has been
implemented using a built-in MATLAB function, and it just takes few seconds to
recover the correct value of εr0 provided the reflection coefficient data is given over
a wide frequency band. This method of optimization works quite well under most
practical situations, and normally gives more accurate result as compared to the
previously discussed analytical method because there is no scope of human made
error such as the computation of correct values of r and c in (4.28). However, the
noise sensitivity of this method is not so good as compared to the corresponding
analytical method. It can thus be said that when the measurement is carried out
in an unfriendly environment such as free-space, where there is a large scope of
error and our aim is to obtain an approximate image of the dielectric object then
the analytical method given by (4.28) and (4.29) may be used. However, when
the measurement is carried out in a closed medium such as in a waveguide or in a
coaxial airline, then the numerical method given by (4.30) and (4.31) are preferable
for the quantitative characterization of dielectric materials. Finally, it may be also
mentioned here that both the analytical and numerical technique presented in this
section can be used to determine quite accurately the relative permittivity of a
homogeneous piece of dielectric material.

4.1.2 TE-mode illumination

For the TE case, a plane wave of wave number k0 is assumed to be incident from
the left hand side (LHS) at an angle θ on the air-dielectric interface as discussed in
section 3.1.2. The exact Riccati equation for the TE case is given by (3.26), and this
equation can be inverted using the same procedure as discussed in the last section
for the TEM case. However, to take the incidence angle θ into account in (3.26),
we define the effective value of permittivity as

ε̃r(x) =
[
εr(x)− sin2 θ

]
(4.32)

An auxiliary equation corresponding to (3.26) in terms of this effective value of
permittivity and a virtual reflection coefficient Γ̂(k0, x, θ) can be written as

dΓ̂(k0, x, θ)

dx
= Γ̂(k0, x, θ) j2k0

√
ε̃r(x) +

1

4 ε̃r(x)

dε̃r(x)

dx
(4.33)

which is identical in form to (4.1), except that εr(x) is replaced by ε̃r(x) and the
reflection coefficient Γ in this case also depends on the angle θ. The transformation
between the actual reflection coefficient Γ(k0, x, θ) and the virtual one Γ̂(k0, x, θ) is
still defined by (4.7). As the form of (4.33) is the same as (4.1), hence to analyze the
one-dimensional inhomogeneity of a dielectric object having a discontinuity at the
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air-dielectric interface and illuminated by a TE plane wave, we can modify (4.18)
to write into the following form

d ln ε̃r(x) = −4 r̂0(l, θ) dl (4.34)

where r̂0(l, θ) is the inverse Fourier transform of R̂0(k0, θ) = Γ̂0(k0, 0, θ). The virtual
space variable l in the TE case is related to the physical distance x as

l = 2

∫ x

0

√
ε̃r(x′) dx

′ (4.35)

The value of Γ̂0(k0, 0, θ) is obtained after integrating (4.33) with an appropriate
boundary condition and then evaluating this integral for x = 0, as was done in the
TEM case. The virtual reflection coefficient Γ̂(k0, x, θ) is clearly transformed here
into Γ̂0(k0, x, θ) to take into account the discontinuity at the air-dielectric interface as
explained in the previous TEM case. The discontinuity at the interface is modelled
by an equivalent microwave network as shown in Fig. 4.2 and 4.3. However, for the
TE case, the local reflection coefficient S11 in Fig. 4.2 is defined using (3.5a) with
the value of Z̄ given by (3.22), i.e.

S11 =
Z̄2 − Z̄1

Z̄2 + Z̄1

=
cos θ −

√
εr0 − sin2 θ

cos θ +
√
εr0 − sin2 θ

(4.36)

The value of Γ̂0(k0, x, θ) in terms of Γ̂(k0, x, θ) for the TE case is thus obtained
using (4.22), with the value of S11 given by (4.36). Meanwhile, (4.34) is integrated
from the initial point x = 0 to any arbitrary point x

εr(x) = sin2 θ +
[
εr0 − sin2 θ

]
exp

[
−4

∫ l

0

r̂0(l
′) dl′

]
(4.37)

which is the required expression for the depth-dependent one-dimensional permit-
tivity profile of a dielectric object illuminated by a TE plane wave. This expression
reduces to (4.24) for the angle θ = 0, which also verifies this formulation.

4.1.3 TM-mode illumination

The TM -illumination is quite similar to TE case in the sense that a plane wave of
wave number k0 is also considered here to be incident from the left hand side at an
angle θ on the air-dielectric interface as discussed in section 3.1.3. The exact Riccati
equation for the TM case, however, is given by (3.30), and an auxiliary equation
corresponding to this equation can be written as

dΓ̂(k0, x, θ)

dx
= Γ̂(k0, x, θ) j2k0

√
ε̃r(x) +

1

4 [ε̃r(x)]

[
ε̃r(x)− sin2 θ

][
ε̃r(x) + sin2 θ

] dε̃r(x)

dx
(4.38)

where ε̃r(x) is the effective value of permittivity, defined by (4.32). The virtual reflec-
tion coefficient Γ̂(k0, x, θ) in the above equation is related with its actual reflection
coefficient Γ(k0, x, θ) using the transformation given by (4.7). Equation (4.38) is
integrated in terms of Γ̂(k0, x, θ) using the same boundary condition as given in the
TEM case, and then this integral is evaluated at x = 0 to obtain the value of the
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reflection coefficient data at the interface, i.e. R̂0(k0, θ) = Γ̂0(k0, 0, θ). We consider
here the general case with a discontinuity at the air-dielectric interface, and for this
purpose the equivalent microwave network shown in Fig. 4.2 and 4.3 will be used.
For the TM case, the local reflection coefficient S11 in Fig. 4.2 is defined using (3.5a)
with the value of Z̄ given by (3.28), i.e.,

S11 =
Z̄2 − Z̄1

Z̄2 + Z̄1

=

√
εr0 − sin2 θ − εr0 cos θ√
εr0 − sin2 θ + εr0 cos θ

(4.39)

After recovering the value of S11 by (4.39), the virtual reflection coefficient R̂(k0, θ) is
transformed to R̂0(k0, θ) using the bilinear transform (4.22) to take into account the
surface discontinuity. Once we have determined the value of this frequency-domain
virtual reflection coefficient R̂0(k0, θ), then we can directly write its equivalent ex-
pression in the virtual-space domain with the help of (4.15), (4.16) and (4.38)

r̂0(l, θ) = =−1
[
R̂0(k0, θ)

]
= − 1

8 ε̃r(x)
√
ε̃r(x)

[
ε̃r(x)− sin2 θ

][
ε̃r(x) + sin2 θ

] dε̃r(x)

dx
(4.40)

where l is still defined by (4.35), and r̂0(l, θ) is the inverse Fourier transform of
R̂0(k0, θ). The above equation can be integrated from the initial point x = 0 to any
arbitrary point x

[εr(x)]
2

εr(x)− sin2 θ
=

[εr0]
2[

εr0 − sin2 θ
] exp

[
−4

∫ l

0

r̂0(l
′) dl′

]
(4.41)

If we compare the above equation with (4.37) and (4.24), then clearly its form looks
complicated as compared to the corresponding TEM and TE cases. However, the
above equation can be simplified using the fact that the value of εr(x) is greater
than unity, and that the value of sin θ always lies between 0 and 1. Keeping this
information in mind, the left hand side of (4.41) can be rewritten as

[εr(x)]
2

εr(x)− sin2 θ
= εr(x)

[
1 +

sin2 θ

εr(x)
+ · · ·

]
'
[
εr(x) + sin2 θ

]
(4.42)

The above equation can now be substituted in (4.41) to obtain

εr(x) = − sin2 θ +
[εr0]

2[
εr0 − sin2 θ

] exp

[
−4

∫ l

0

r̂0(l
′) dl′

]
(4.43)

which is the required expression for the one-dimensional permittivity profile of a
dielectric object illuminated by a TM plane wave. This expression also reduces to
the TEM case of (4.24), if the angle θ in the above expression becomes zero, which
also verifies the validity of (4.43).

4.2 The RDE technique applied to non-planar

structures

In the last section, the nonlinear Riccati-differential-equation (RDE) derived in sec-
tion 3.1 was inverted to obtain an expression in a closed-form for the one-dimensional



108 CHAPTER 4. THE INVERSE SOLUTION

permittivity profile in terms of an inverse Fourier transform of the spectral domain
reflection coefficient data. This analytical approach, generally called the Riccati-
differential-equation (RDE) technique, works quite well in the Cartesian coordinate
system and it normally leads to a unique reconstruction of permittivity profiles with
moderate contrasts. However, to the best of our knowledge, these kinds of analyti-
cal approaches are not available in literature for cylindrical or spherical coordinate
systems. In this thesis, one of our main aims is to generalize this RDE technique
so that it can be applied to non-planar (e.g. cylindrical or spherical) structures as
well. This is achieved by relaxing the function form of the transform kernel1. Any
pair of adjoint kernels satisfying certain completeness properties over the spatial and
spectral (or temporal) range of interest, can be used to construct a direct and an
inverse transformation in a flexible fashion which suits itself to any coordinate sys-
tem [63]. These transformations can then be used to reconstruct spatially dependent
permittivity profiles by making use of time or frequency dependent scattering data.
The resolution of the reconstruction can be made arbitrary by controlling the spec-
tral range over which the scattering data are measured. We start this section with
revisiting the Fourier-transform approach used in the Cartesian coordinate system,
which helps in extracting the basic concepts on which the proposed approach de-
pends. In the next step, these concepts are generalized by relaxing the kernel form
of the Fourier direct and inverse transforms giving rise to a new kind of integral
transform, which can be used in both Cartesian and other coordinate systems.

4.2.1 Generalization of the one dimensional Fourier trans-
form technique

For the one-dimensional planar half-space medium shown in Fig. 3.1, the nonlinear
differential equation was derived in section 3.1 for the reflection coefficient consider-
ing both normal and oblique incidences. In this section, we try to make the overall
situation more general by considering a one-dimensional permittivity profile as a
part of the half-space medium (x ≥ 0) shown in Fig. 4.4, where the inhomogeneity
is assumed to extend from x = x1 to x = x2 only with jumps at both ends. This
half-space is supposed to be illuminated with a monochromatic plane wave of an-
gular frequency ω from the left hand side (x < 0). For normal and both oblique
incidences (parallel and perpendicular polarizations), a spatially dependent reflec-
tion coefficient Γ(x) can be defined, which satisfies the following nonlinear Riccati
differential equation

dΓ

dx
+ j

(ω
c

)
f [εr(x)] Γ(x) +

[
1− Γ2(x)

]
g [εr(x)] = 0 (4.44)

where the wave-number k0 of section 4.1 is replaced here with the angular frequency
ω (k0 = ω/c), f and g are functions of the unknown permittivity profile εr(x),
and g vanishes identically for x < x1 and x > x2

2. By comparing the above
equation with (3.18), (3.26) and (3.30) of the planar case, it is obvious that (4.44)
is quite general in nature satisfying both normal and inclined illuminations. It has

1which is basically an exponential function in case of the Fourier transform.
2The reason being that this function g is generally proportional to the derivative dεr(x)

dx , which
reduces to zero when there is no change in the permittivity any more.
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Figure 4.4: A general one-dimensional permittivity profile considered in a Cartesian
coordinate system

been shown in section 4.1 that a nonlinear differential equation such as (4.44) can
be linearized, if we transform Γ(x) into a new variable Γ̂(x) through a nonlinear
transformation

Γ̂ = N [Γ(x)] (4.45)

where ˆΓ(x) is the solution of the following linear differential equation

dΓ̂

dx
+ j

(ω
c

)
f [εr(x)] Γ̂(x) + g [εr(x)] = 0 (4.46)

Equation (4.46) can be readily solved using the method explained in section 4.1.1.1
to arrive at

Γ̂(ω, x) =

∫ t2

t

G [εr(t
′)] exp (jω t′) dt′ (4.47)

where,

t(x) =
1

c

∫ x

x1

f [εr(x
′)] dx′ ; t2 = t (x2) (4.48)

is an intermediate dummy time variable equivalent to the dummy space variable
explained in section 4.1.1.1, and

G [εr(t)] ≡ c g [εr(x)] (4.49)

Now, let R(ω) and R̂(ω) be the values of Γ(ω, x) and Γ̂(ω, x) at x = x1 respec-
tively. As already mentioned, g [εr(x)] vanishes identically for x < x1 and x > x2,
hence the integration involved in R̂(ω) can be relaxed to
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R̂(ω) =

∫ t2

t1

G [εr(t
′)] exp (jω t′) dt′

=

∫ ∞

−∞
G [εr(t

′)] exp (jω t′) dt′
(4.50)

The permittivity profile function can then be obtained via an inverse Fourier
transform of R̂(k0), i.e.

G [εr(t)] =
1

2π

∫ ∞

−∞
R̂(ω) exp (−jω t) dω (4.51)

where R̂(ω) is related to the measurable reflection coefficient R(ω) via the nonlinear
transformation (4.45). The exact permittivity profile εr(x) can, of course, be easily
obtained from this function G [εr(t)] using some kind of numerical algorithm as
proposed in section 4.1.1.3.

In order to be able to generalize the above presented technique of reconstructing
εr(x) via an inverse Fourier transform of Γ̂(ω), we need to consider this procedure
with some more details. Let us first distinguish between the original profile function
G1(t

′) ≡ G [εr(t
′)] appearing in (4.50), and the reconstructed one G2(t) ≡ G [εr(t)]

appearing in (4.51), i.e. we define

R̂(ω) =

∫ t2

t1

G1(t
′) exp (jω t′) dt′ (4.52a)

G2(t) =
1

2π

∫ ∞

−∞
R̂(ω) exp (−jω t) dω (4.52b)

If we insert (4.52a) into (4.52b), then it will express G2(t) in terms of G1(t) as a
convolution, i.e.

G2(t) =

∫ t2

t1

G1(t
′)

[
1

2π

∫ ∞

−∞
exp (−jω t) exp (jω t′) dω

]
dt′ (4.53)

Form the above equation, it can be concluded that G1(t) and G2(t) are identical
because [

1

2π

∫ ∞

−∞
exp [−jω (t− t′)]

]
= δ(t− t′) (4.54)

and this delta function is used to sample the permittivity function G1(t
′) at t = t′.

After analyzing the Fourier-transform technique in detail, let us now try to re-
place the Fourier kernels 1

2π
exp (−jω t) and exp (jω t′) with some other generalized

functions K(ω, t) and K̃(ω, t′), respectively, and the infinite integral in (4.54) is re-
placed with a finite (band-limited) one. This means that instead of (4.52a), R̂(ω) is
now related to the original permittivity profile function G1(t) by

R̂(ω) =

∫ t2

t1

G1(t
′) K̃(ω, t′) dt′ (4.55)

and instead of (4.52b), G2(t) is reconstructed from R̂(ω) according to
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G2(t) =

∫ ω2

ω1

R̂(ω)K(ω, t) dω (4.56)

With these modifications, G2(t) will then be related to G1(t) by

G2(t) =

∫ t2

t1

G1(t
′)D(t, t′) dt′ (4.57)

where,

D(t, t′) =

∫ ω2

ω1

K(ω, t) K̃(ω, t′) dω (4.58)

If we compare (4.58) with (4.54), then it is observed that the ideal functional form of
D(t, t′) is given by a delta function δ(t− t′), which can now be relaxed to other more
practical and flexible forms by properly choosing K(ω, t) and K̃(ω, t′). All what
we need for the reconstruction is a pulse-shaped functional form like that shown in
Fig. 4.5 with a maximum at t̂ and pulse width τ , which can be moved between t1 and
t2 by changing t 3. This will allow the reconstruction with a resolution corresponding
to the pulse width τ as can be further explained with reference to Fig. 4.6. As a

Figure 4.5: A typical shape of
the pulse-like function occupying a
narrow region between the speci-
fied limits

Figure 4.6: The reconstructed permittivity
profile function with the moving pulse

matter of fact, both the height and width of this pulse will strongly depend upon the
full bandwidth over which the measurements are carried out, and generally greater
the bandwidth, higher the resolution. If we look at (4.57), then it basically tells us
that G2(t) is the integral of the product of G1(t

′) and D(t, t′) with respect to t′. But
if we assume that D(t, t′) is a pulse-like function as shown in Fig. 4.5, then G2(t) will
be proportional to the average of G1(t

′) around t̂(t) over the narrow occupation τ of
D(t, t′). Consequently, G2(t) may be considered as the reconstruction of G1(t

′) in an
average sense. If the original function G1(t

′) does not change appreciably within the
narrow occupation τ , G2(t) will be then a good approximation of G1(t

′). However,
if this is not the case, then one may lose the fine details of G1 through this averaging
process.

The above mentioned features of D(t, t′) are general ones. Other concrete fea-
tures must however be discussed in order to judge on the quality of the reconstruc-
tion. The first important feature is the movability of D(t, t′) as a function of t′ by

3It may be noted here that t̂ is always a function of t because the position of the maxima must
move over the whole range between t1 and t2, but in some cases the pulse width τ may also change
with t due to some distortion in the pulse-shape when we move from one end to another.
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using t as a moving parameter. In order to be able to reconstruct the profile over the
range [t1, t2], we must be able to let the peak of the pulse t̂(t) change between t1 and
t2 by changing t. The second feature is the distortion (or spreading out) which may
occur to D(t, t′) as it moves from t1 to t2. Hence care must be taken to minimize this
distortion in order to have approximately the same reconstruction resolution over
the whole range [t1, t2]. Any pulse-shaped function of the form D(t, t′) = d(t′ − t)
will provide us with a complete coverage of the range [t1, t2] with the same resolu-
tion, because such a function can move along the t′ axis without much distortion in
its shape as we change the variable t.

4.2.2 Extending the validity of the analysis to a general one-
dimensional case

In order to be able to reconstruct the one-dimensional permittivity profile in other
coordinate systems, e.g. cylindrical, spherical or even specially designed coordinate
systems, we may follow the same guiding lines as in the Cartesian case discussed in
the previous sub-section. The step-by-step approach for the reconstruction of the
permittivity profile of a general one-dimensional case can be described as follows.

1. Write down the non-linear differential equation describing a scattering param-
eter (e.g. a properly defined reflection coefficient Γ) in terms of the unknown
(looked for) permittivity profile.

2. Look for an auxiliary quantity Γ̂ which satisfies a linearized version of the above
mentioned differential equation and is related to the original (measurable)
reflection coefficient Γ via a non-linear transformation.

3. Transform the linear differential equation for Γ̂ in order to arrive at an inte-
gration of the form

Γ̂(ω, x) =

∫ t2

t(x)

G [εr(x
′)] K̃(ω, t′) dt′ (4.59)

where t(x) is a functional of εr(x), and t2 = t(x2).

4. After measuring the reflection coefficient R(ω) = Γ(ω, x1), we convert these
measurements to frequency-dependent auxiliary data R̂(ω) = Γ̂(ω, x1) over
the range [ω1, ω2] by making use of the already determined nonlinear transfor-
mation between Γ and Γ̂.

5. For the function K̃(ω, t′) appearing in (4.59), look for a corresponding function
K(ω, t), which produces the sampling function D(t, t′) given by

D(t, t′) =

∫ ω2

ω1

K(ω, t) K̃(ω, t′) dω (4.60)

with the properties described before.
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6. In terms of the already determined R̂(ω), construct a transformation g(t)
according to

g(t) =

∫ ω2

ω1

R̂(ω)K(ω, t) dω (4.61)

7. The transformation g(t) is then a fair reconstruction of G [εr(x)] within the
framework of the analysis given before, i.e.

g(t) =

∫ t2

t1

G (t′) D(t, t′)d t′

∼= G
[
t̂(t)
] ∫ t2

t1

D(t, t′)d t′ = G
[
t̂(t)
]
d
[
t̂(t)
] (4.62)

At this end we would like to give following remarks about the two kernels described
above, which should be taken into consideration before applying the proposed tech-
nique to practical problems.

1. The kernel of the inverse transformation K(ω, t) can be flexibly chosen. How-
ever, it must satisfy the orthogonality and completeness properties and gener-
ally its choice will determine the functional form of D(t, t′). In this thesis, we
have always taken some standard integral transforms such as a Fourier trans-
form or a Hankel transform whose orthogonality and completeness properties
are well proved in the literature. Furthermore, the frequency range over which
the inverse transformation is integrated, is equal to that of the measurement
range of the spectral data, namely ω1 ≤ ω ≤ ω2. This last characteristic
can be systemized by considering K(ω, t) being multiplied by a pulse function
u(ω − ω1)− u(ω − ω2).

2. The kernel of the direct transformation K̃(ω, t′) is determined according to the
type of differential equation describing Γ̂(ω, x), we arrived at. To check the
correctness of this kernel, it should be substituted in (4.60) along with K(ω, t)
and the shape of the functional D(t, t′) should be considered along with its
properties. If this functional is having a pulse-shaped form and satisfies the
properties mentioned in section 4.2.1, then our proposed technique can be
applied in that particular case.

4.3 The cylindrical geometry

The direct problem formulation of cylindrical dielectric objects with different lower
and higher order TE and TM illuminations was discussed in detail in section 3.2.
In this section, the inversion procedure is described for the dielectric objects defined
by Fig. 3.9, and our main aim is to find an expression in closed-form for the one-
dimensional radially varying permittivity profile εr(ρ) of these objects in terms of
an integral transform of the reflection coefficient data. It will be assumed that the
measurement of the reflection coefficient data is carried out on the outer radius of the
object, i.e. at ρ = b in Fig. 3.9, as mentioned in the last chapter. It was mentioned in
section 3.2 that because of the presence of Hankel functions in cylindrical coordinate
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system the formulation is quite complicated as compared to the planar case, and
hence it is to be expected that the inverse solution for the cylindrical objects would
also be quite involved. As was the case in the direct problem formulation, we start
with a radial transmission line mode illumination, where the analysis is somewhat
simpler. In the next part, more general expressions valid for any arbitrary order TE
and TM cylindrical mode illumination will be derived.

4.3.1 Radial transmission line approach

Firstly we consider the dielectric object illuminated by a lowest order TM00 mode,
in which case the classical transmission line approach can be used to analyze the
one-dimensional inhomogeneity as described in section 3.2.1. The non-linear differ-
ential equation for the radial mode illumination has been derived in section 3.2.1,
and is given by (3.74). This equation is similar in form as the corresponding equa-
tion (3.18) of the planar TEM case, except that in 3.2.1 the exponential function
of the Cartesian case are replaced by the Hankel functions. Hence our general the-
ory of reconstruction described in section 4.2 can be used here for the inversion.
To apply this theory, first of all we write an auxiliary linear differential equation
corresponding to (3.74) in terms of the virtual reflection coefficient Γ̂(k0, ρ)

dΓ̂(k0, ρ)

dρ
+ Γ̂(k0, ρ)

[
j 4

π ρH
(1)
0 (kρ)H

(2)
0 (kρ)

]
=

1

4εr(ρ)

dεr(ρ)

dρ
(4.63)

The relationship between Γ and Γ̂ is defined using a nonlinear transformation given
in (4.7). The above differential equation can be integrated from an inner radius
ρ = ρ0 of the cylindrical dielectric object shown in Fig. 3.9 to an arbitrary radius ρ
to obtain the general solution of the following form

Γ̂(k0, ρ) exp

[∫ ρ

ρ0

j 4

π ρ′H
(1)
0 (kρ′)H

(2)
0 (kρ′)

dρ′

]

=

∫ ρ

ρ0

{
1

4εr(ρ′)

dεr(ρ
′)

dρ′
exp

[∫ ρ′

ρ

j 4

π ρ′′H
(1)
0 (kρ′′)H

(2)
0 (kρ′′)

dρ′′

]}
dρ′ + C (4.64)

where the constant C is the integration constant, which can determined when the
boundary conditions are specified, and ρ′ and ρ′′ are dummy integration variables.
The inner radius ρ = ρ0 may be taken to approach zero under some situations but
it cannot be put exactly equal to zero as the Hankel functions are infinite for zero
argument. However, when it is necessary to determine its value near origin, then the
Hankel functions may be replaced by their small argument asymptotic expressions
and the total integral may be computed analytically in a very small region near the
origin. Meanwhile, supposing that the value of the reflection coefficient at the inner
radius is Γ (ρ0), the constant C in the above equation can be determined and in that
case (4.64) will reduce to

Γ̂(k0, ρ) = Γ̂ (ρ0) exp

[
−
∫ ρ

ρ0

j 4

π ρ′H
(1)
0 (kρ′)H

(2)
0 (kρ′)

dρ′

]
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+

∫ ρ

ρ0

{
1

4εr(ρ′)

dεr(ρ
′)

dρ′
exp

[∫ ρ′

ρ

j 4

π ρ′′H
(1)
0 (kρ′′)H

(2)
0 (kρ′′)

dρ′′

]}
dρ′ (4.65)

For the further evaluation of this integral, we assume here that the value of the
reflection coefficient at the inner radius of the object is zero, i.e. Γ (ρ0) = 0. This
boundary condition can be satisfied when e.g., the cylindrical structure under test
becomes heavily lossy (dielectric loss) for ρ < ρ0, and hence all the input power
gets absorbed at the radius Γ (ρ0) making the reflection coefficient to be zero at this
point. It may be, however, pointed out that the overall formulation derived here
can also be made valid for other boundary conditions with only few modifications.
After applying the boundary condition Γ (ρ0) ≡ Γ̂ (ρ0) = 0, (4.65) can be evaluated
at the outer boundary of the dielectric object ρ = b, i.e.,

R̂(k0) = Γ̂(k0, b)

=

∫ b

ρ0

{
1

4εr(ρ′)

dεr(ρ
′)

dρ′
exp

[∫ ρ′

b

j 4

π ρ′′H
(1)
0 (kρ′′)H

(2)
0 (kρ′′)

dρ′′

]}
dρ′ (4.66)

It may be mentioned here that when there is a discontinuity at the interface
ρ = b, then we have to modify the actual measured reflection coefficient Γ(k0, b)
of (4.66) before proceeding further as discussed in section 4.1.1.2 for the planar
case. The discontinuity at the junction of the radial transmission lines of different
permittivities can be modelled by a two-port [S] parameter network as discussed
in section 3.2.1.1 and going by this convention, the reflection coefficient R(k0) =
Γ(k0, b) can be transformed to R0(k0) of an equivalent continuous media using (4.22)

R0(k0) =
R(k0)− S11

1− S11R(k0)
(4.67)

The value of S11 in our case is given by

S11 =
1−

√
εr(b)

1 +
√
εr(b)

(4.68)

where εr(b) is the surface value of the permittivity as discussed earlier. The two equa-
tions given above can be understood quite well with the help of Fig. 4.2 and 4.3.
It may be noted here that generally in all practical cases, a discontinuity at the
surface exists and hence the procedure described in section 4.1.1.2 for the planar
case should always be followed for non-planar structures also. Once we have ob-
tained an expression for R0(k0) representing a continuous medium, we can obtain
its corresponding virtual component R̂0(k0) using the transformation (4.7) and in
this case R̂(k0) of (4.66) will simply be replaced by R̂0(k0) without changing any
other parameter. Now, for a proper solution of (4.66) we introduce a virtual time
variable t according to

t =
ρ

c

√
εr(ρ), ⇒ dt =

1

c

√
εr(ρ)

[
1 +

ρ

2εr(ρ)

dεr(ρ)

dρ

]
dρ

∼=
1

c

√
εr(ρ) dρ

(4.69)
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The above approximation holds good as long as the relative change in the per-
mittivity profile dεr(ρ)/dρ is not too large with respect to the actual value of the
permittivity εr(ρ). This approximation is in fact quite general. We may recall from
the last chapter that also in the case of planar cartesian media, the differential
change in the absolute permittivity profile was assumed to be moderate. The vir-
tual time variable t given by (4.69) is similar to the virtual space variable introduced
earlier in section 4.1.1.1 for the Cartesian case. The variable t and its derivative
given by (4.69) can then be substituted in (4.66) to obtain

R̂0(ω) =

∫ t0

tb

{
c

4ε̃r(ρ)
√
ε̃r(ρ)

dε̃r(ρ)

dρ
∗ exp

[∫ t′

tb

4j

πt′′H
(1)
0 (ωt′′)H

(0)
n (ωt′′)

dt′′

]}
dt′

(4.70)
where,

tb =
b

c

√
εr(b), and t0 =

ρ0

c

√
εr(ρ0) (4.71)

are the values of t at both ends. The inner integral in the above equation can be
computed using the formula given by (C.4), which reduces to∫ t′

tb

4j

πt′′H
(1)
0 (ωt′′)H

(2)
0 (ωt′′)

dt′′ = ln

[
H

(1)
0 (ωt′)H

(2)
0 (ωtb)

H
(2)
0 (ωt′)H

(1)
0 (ωtb)

]
(4.72)

The value of the above integral can be substituted in (4.70) yielding

R̂0(ω) =

∫ t0

tb

{[
c

4εr(ρ′)
√
εr(ρ′)

dεr(ρ
′)

dρ′

]
H

(1)
0 (ωt′)H

(2)
0 (ωtb)

H
(2)
0 (ωt′)H

(1)
0 (ωtb)

}
dt′ (4.73)

The above equation can now be written in the following form in order to apply the
general theory of reconstruction described in section 4.2.2

R̂0(ω) =

∫ t0

tb

G (t′) K̃ (ω, t′) dt′ (4.74)

where,

G (t′) ≡ c g [εr(ρ
′)] =

[
c

4εr(ρ′)
√
εr(ρ′)

dεr(ρ
′)

dρ′

]
(4.75)

is the time-domain equivalent of the permittivity function g [εr(ρ
′)], and

K̃ (ω, t′) =
H

(1)
0 (ωt′)H

(2)
0 (ωtb)

H
(2)
0 (ωt′)H

(1)
0 (ωtb)

(4.76)

is the kernel of the frequency domain reflection coefficient R̂0(ω). As clearly seen,
it is a function of spectral and spatial variables ω and t′ only, with no dependence
on the variable εr(ρ). The main aim of writing (4.73) in the form given by (4.74)
is to be able to use the general one-dimensional integral transform technique given
in section 4.2.2 for the reconstruction of εr(ρ). As clearly mentioned there, after
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obtaining the kernel K̃ (ω, t′) given by (4.76), we have to look for the corresponding
function K (ω, t) which produces a sampling function given by

D (t, t′) =

∫ ω̂

0

K (ω, t) K̃ (ω, t′) dω (4.77)

This function should satisfy certain properties as described in section 4.2.1, which
we have to verify. But before doing that, we have to also choose a particular kernel
K (ω, t), which suits our needs here. One obvious choice for this is the truncated
Hankel transform of order zero, which looks quite natural in the cylindrical coordi-
nate system and whose completeness and orthogonal properties are also well estab-
lished [80]. Using this Hankel transform, the spectral-domain reflection coefficient
of (4.74) is transformed to the spatial domain

r̂0(t) =

∫ ω̂

0

R̂0(ω)K (ω, t) dω =

∫ ω̂

0

R̂0(ω) J0(ωt)ω dω (4.78)

where J0 is the Bessel function of order zero, and ω̂ is the highest frequency at which
the reflection coefficient data is measured. Meanwhile, the value of K̃ and K can
be substituted from (4.76) and (4.78) into (4.77) to obtain an exact expression for
the sampling function

D (t, t′) =

∫ ω̂

0

{
ωH

(1)
1 (ωt′)H

(2)
0 (ωtb) J0(ωt)

H
(2)
0 (ωt′)H

(1)
0 (ωtb)

}
dω (4.79)

The ideal form of D(t, t′) should clearly be a delta function δ(t− t′), which can be
used to sample the permittivity function G [t] according to

r̂0(t) =

∫ t0

tb

G (t′) D (t, t′) dt′ (4.80)

where, (4.74) and (4.77) are substituted in (4.78) to arrive at the above equation. But
under practical situations, the form of this function can be relaxed to other pulse-
shaped functions as described in section 4.2.1 provided it satisfies certain criteria.
To check those criteria, let us study the shape of this function and try to examine
its properties in detail. We have plotted the function D (t, t′) versus the electrical
length L′ = t′ ∗ c = ρ′

√
εr(ρ′) for different values of the sampling variable L ≡ (t ∗ c)

in Figs. 4.7 to 4.9.
It may be clearly noted here that in all these figures, the physical distance ρ is

expressed in cm, while the permittivity profile εr(ρ) is a dimensionless quantity. We
have considered about 800 points in the frequency range from 50MHz to 40GHz
in these figures, and the outer radius of the cylindrical dielectric object is taken
as 10 cm with the value of the relative permittivity εr(b) = 4. However, it may
be mentioned here that in these plots the actual parameter is the electrical length
L ≡ ρ

√
εr(ρ), and hence these plots may be valid for other combinations of radii

and εr(ρ) as well provided that the product of these two variables remains the same.
This, in fact, also shows the flexibility of our reconstruction procedure as we do not
have to compute and plot the sampling function D (t, t′) every time, and also we do
not need any a− priori information about the unknown permittivity profile to plot
this function. It can be observed from Figs. 4.7 to 4.9 that the sampling function
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Figure 4.7: The plot of the sampling
function for L ≡ c ∗ t = 38

Figure 4.8: The plot of the sampling
function for L ≡ c ∗ t = 20.0

Figure 4.9: The plot of the sampling
function for L ≡ c ∗ t = 4.0

Figure 4.10: The variation of sampling
function maxima L

′
= L̂(L) ≡ t̂(t) with

the transformed variable L ≡ c ∗ t

D (t, t′) of (4.101) has always a pulse shape with a maximum value at t′ = t̂(t). The
position of this maximum t̂(t) varies with the moving parameter L ≡ c ∗ t. To find
the exact relationship between the position of the maximum t̂ and the transform
variables t = L/c, we compute (4.79) for a number of values of t and plot them
as shown in Fig. 4.10. As observed from this figure, there is a linear relationship
between the position of the maxima and the transform variable t. Its mathematical
form can be written as

t′ = t̂ = tb − (0.5 ? t) (4.81)

which is the required formula to find the position of exact maxima in terms of the
sampling variable t, with the value of tb given by (4.71). The above equation can
be verified from Figs. 4.7-4.9, where it can be seen that the position of maxima t̂(t)
in all these figures satisfies (4.81) with tb = 20/c. It may be mentioned here that
in Figs. 4.7-4.9, we have chosen the optimum value of all the parameters such as
bandwidth, frequency-step etc., and hence our reconstruction theory seems to be
working fine. However, in real situations, we have to first optimize all these values
before applying our proposed theory of reconstruction. To find these optimized
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values, it is very important to study the effect of all the parameters on the image
reconstruction and to find their limiting values in each case. Here, we try to analyze
the effect of these parameter on the reconstructed image both from the qualitative
and quantitative point of view. First of all, we study the effect of bandwidth of the
spectral domain reflection coefficient data on the reconstruction. In Fig. 4.11, we
have plotted the sampling function for different values of the sampling parameter L
when the bandwidth of the reflection data varies from 50MHz to 10GHz keeping all
the other parameters same as in Fig. 4.7-4.9. After comparing this plot with previous
figures (4.7-4.9), it can be said that the width of the sampling function increases
with a decrease in the spectral bandwidth. This point can be further clarified from

Figure 4.11: The plot of the sampling
function using a frequency band from
50MHz to 10GHz

Figure 4.12: The plot of the sampling
function using a frequency band from
50MHz to 4GHz

Fig. 4.12, where the bandwidth is decreased to 4GHz keeping all other parameters to
be same, and as clearly seen, the decrease in bandwidth results into further widening
of the sampling function. Now, we may recall from section 4.2 that the actual image
is reconstructed assuming that the original function does not change appreciably
within the narrow occupancy of the sampling pulse. This assumption is valid as
long as the width of the sampling function is very less. But when the pulse becomes
too wide, then we may loose the fine details of the object specially if it is a rapidly
varying function. The other point to be noted here is that the resolution of the image
in the spatial domain is inversely proportional to width of the sampling function.
This is due to the fact that in a given space-band now less number of samples
can be accommodated with each sample occupying a large portion of the available
space. Now as the width of this pulse-function is dependent on the bandwidth,
hence the resolution of the image can be increased by increasing the band-width
of the spectral domain measured data which is in agreement with our statement
given in section 4.2. One very important factor for our proposed reconstruction
theory to work is the movability of the sampling function as mentioned earlier. It
may be noted from Figs. 4.11 and 4.12 that the movability property of the sampling
function is still satisfied because D(t, t′) moves from one end to another with L
as the moving parameter. The shape of the function is also approximately intact
during this process. Hence, in both of these cases the object can still be in principle
reconstructed except for the fact that the resolution of the image will be less and the
deviation between the actual and the reconstructed function might be high. But,
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if the bandwidth of the measured spectral reflection data is further reduced, then a
situation might occur where the proposed theory of reconstruction completely fails
per se. This can be visualized in Fig. 4.13, where the bandwidth is reduced to 1GHz
keeping other parameters same as in previous figures. It can be seen from this plot

Figure 4.13: The plot of the sampling
function using a frequency band from
50MHz to 1GHz

Figure 4.14: The plot of the sampling
function using a frequency band from
50MHz to 1GHz with a different range
of L′

that the shape of the sampling function is completely distorted and its movability
property is also not well satisfied when the bandwidth of spectral data is reduced
to such an extent. However, one interesting point to be noted is that the reflection
coefficient data measured in the same frequency band can be used quite accurately
for the image reconstruction, if the electrical dimension of the object is high. This
can be seen in Fig. 4.14, where the bandwidth is same as in the previous plot but
the electrical dimension of the object is high. The shape of the sampling function
now looks sensible, and the function is also movable with the change in parameter
L without much distortion. Hence our reconstruction theory can now be applied.
From the above discussion, it can be concluded that the bandwidth is a very critical
parameter and its optimum value should be well determined for a given problem
before applying our reconstruction theory.

The other parameter, which is also sometimes important is the frequency step
over which the scattering data are measured. Generally, this step-size should not
be made too high otherwise it may lead to a false image under some situations.
The situation can be better understood from Figs. 4.15 and 4.16. Both of these
figures represent object of the same electrical dimension and the measurement of
reflection coefficient data is also carried out over the same frequency band. However,
in Fig. 4.15 a step-size of 500MHz is selected, while in Fig. 4.16 the step-size is
reduced to 200MHz. It basically means that in the former, less number of data
points are selected in a given frequency band as compared to later. It can be
clearly observed that Fig. 4.16 shows a sampling function as expected, while in
the other plot we get two peaks which is totally undesirable and may lead to a
false image detection. The presence of two peaks for an increased step-size can be
explained by the fact that generally in the frequency domain technique, the largest
possible depth of reconstruction is decided by the frequency step [97]. In other words,
when the frequency-step of the spectral domain is substantially increased, then the
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Figure 4.15: The plot of the sampling
function using a frequency band from
50MHz to 40GHz with a step-size of
500MHz

Figure 4.16: The plot of the sampling
function using a frequency band from
50MHz to 40GHz with a step-size of
200MHz

effective spatial dimension of the object which can be accurately reconstructed will
be reduced. This can be explained with the help of Fig. 4.15, where if we divide
the whole region into two parts then one peak will be observed in each each region
and hence our proposed theory can then be applied quite accurately in each of these
regions. The problem of false or ambiguous image can, however, be avoided if always
measure the spectral data at a large number of points in a given frequency band.

From the above discussion, it follows that if we choose the optimized values of
all the parameters then the sampling function D(t, t′) can be used to sample the
permittivity function G [εr(ρ

′)] of (4.80) at t′ = t̂ according to

G (t) =
r̂0
[
t(t̂)
]∫ t0

tb
D
(
t(t̂), t′

)
dt′

(4.82)

where t
(
t̂
)

is the inverse function of t̂(t) and it should be computed according
to (4.81). It may be noted here that the maximum value of D(t, t′) in Figs. 4.11-
4.15 varies with the variable t ≡ L as well as with the change in spectral bandwidth.
This occurs mainly due to the change in the value of the Bessel function J0 in (4.79).
However, from (4.78) it can be seen that any change in t or in spectral bandwidth
also produces a corresponding change in r̂0 (t). This change in r̂0 (t) compensates
for the change in the magnitude of the sampling function D(t, t′), and hence this
does not have any significant effect on the permittivity function G (t) as per (4.82).
Once we have computed the sampled values of G (t) using (4.82), we can make use
of (4.75) and (4.69) to obtain

4G (t′) dt′ =
dεr(ρ)

εr(ρ)
(4.83)

The above equation can be integrated from the boundary value tb to any arbitrary
value t to obtain the required formula for the one-dimensional radially varying per-
mittivity profile

εr(t) = εr(b) ∗ exp

[
4

∫ t

tb

G (ξ) dξ

]
(4.84)



122 CHAPTER 4. THE INVERSE SOLUTION

The above equation applied for the cylindrical geometry may be compared to the
corresponding equation (4.24) of the planar case. It is quite interesting to note the
similarity in their basic form despite the lot of complexity involved in deriving the
analytical relationship (4.84).

The permittivity profile given as a function of the variable t in (4.84) can be
converted to the actual radial distance using a numerical algorithm based on (4.69)
and (4.84). The overall procedure is quite similar as proposed in section 4.1.1.3
for the planar case, hence we present here only basic formulas for finding the radial
distance ρ successively from the virtual time variable t. We assume that the sampled
values G (t) of (4.82) are available at a time-step of ∆t = tn−tn−1 for n = 1, 2, . . . , N
and let us also assume

f(t) =

[
4

∫ t

tb

G (ξ) dξ

]
(4.85)

With the help of equations (4.85), (4.69), and (4.84), we can write

f(tn) = −2∆t [G (tn−1) +G (tn)] (4.86a)

εr(tn) = εr(b) ∗ exp [f(tn)] (4.86b)

ρn = ρn−1 −
2 ∆t c[√

εr (tn−1) +
√
εr (tn)

] (4.86c)

where tn corresponds to ρn via (4.69). The exact permittivity profile εr(ρ) can be
reconstructed as a function of radial distance ρ in subsequent steps starting from
εr(b) at ρ = b using (4.86a), (4.86b) and (4.86c).

From (4.68) and (4.84), it is seen that for the evaluation of both R0(k0) and εr(ρ),
we have to first determine the surface value of the permittivity at the air-dielectric
interface i.e. εr(b). We have presented a numerical technique for reconstructing
the surface value of permittivity in planar structures in section 4.1.1.4. The same
procedure can be extended to determine the surface value of permittivity in radial
geometry as well. Hence the reflection coefficient of the cylindrical inhomogeneous
region shown in Fig. 3.9 and 3.10, after excluding the first air-dielectric interface at
ρ = b can be written using (4.67) and (4.68) as

R1(k0) =
[R(k0) + 1]

√
εr(b) + [R(k0 − 1]

[R(k0) + 1]
√
εr(b) − [R(k0 − 1]

(4.87)

As explained in detail in section 4.1.1.4, the above function is optimized using
the criterion

max |R1(k0)| → min (4.88)

over the given frequency band to obtain the value of εr(b). This algorithm has been
implemented using a built-in MATLAB function, and it gives the reasonably accu-
rate value of the permittivity at the air-dielectric interface provided the reflection
coefficient data is measured over a wide frequency band.

4.3.2 Higher order mode illuminations

In the last section, we discussed in detail the procedure of reconstructing a cylindrical
dielectric object illuminated by a radial transmission line (TM00) mode. However,
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as mentioned earlier in section 3.2.2, it is not always possible to excite a particular
lower order mode using practical antenna arrangements. But, an arbitrary electro-
magnetic field can be decomposed into a number of TE and TM modes. Hence it
becomes necessary to obtain a solution which works for any arbitrary order TE or
TM mode illumination. This section describes in detail the process of inversion for
any arbitrary order TEmn-mode illumination. As the analysis for the TMmn-mode
is quite similar, hence only the final expressions for the higher order TMmn-mode
illuminations are presented. The corresponding Riccati-similar non-linear differen-
tial equation of the cylindrical geometry due to a higher order TEmn illumination
is given by (3.103). Putting α = 1, this equation can be rewritten in the following
form to make use of our proposed renormalization technique discussed in section 4.1

1

[1− Γ2]

∂Γ

∂ρ
+

Γ

[1− Γ2]



4j

πρH
(1)
n (kρρ)H

(2)
n (kρρ)

− jπρ

8

∂kρ

∂ρ
(
H(1)

n (kρρ)H
(2)
n−1(kρρ) +H

(1)
n−1(kρρ)H

(2)
n (kρρ)

)
−
(
H(2)

n (kρρ)H
(1)
n+1(kρρ) +H

(2)
n+1(kρρ)H

(1)
n (kρρ)

)



=

{
jπρ

4
H(2)

n (kρρ)

[
H

(1)
n−1(kρρ)−

n

kρρ
H(1)

n (kρρ)

]
∂kρ

∂ρ

}
(4.89)

The selection α = 1 is, in fact, valid for regions away from the origin in Fig. 3.9 as
α in (3.90) approaches unity when the Hankel functions are replaced by their large
asymptotic equivalents. As a matter of fact, even for cases when the argument of
Hankel functions in (3.90) is small and the exact value of alpha is not unity, mul-
tiplying a very small number like Γ2 with a unity or a number close to 1 does not
make much difference provided that |α| ≤ 1. Once we have justified the substitu-
tion of α by unity in (4.89), we can compare this equation with the corresponding
equation (4.1) of the planar case. It is interesting to observe that both equations are
structurally similar in form from the the point of view of the presence of Γ, Γ2 term,
although (4.89) looks quite complicated because of the involvement of different Han-
kel functions. However, the complicity of (4.89) does not deter us from applying the
same renormalizaiton technique used earlier to solve (4.1) of the planar case. Hence
using the same convention as in the planar case of section 4.1 to solve (4.89), we may
define an auxiliary linear equation in terms of a virtual reflection coefficient Γ̂(k0, ρ)
corresponding to (4.89). An appropriate linearized version of (4.89) in terms of Γ̂(ρ)
can be written as

∂Γ̂

∂ρ
+ Γ̂



4j

πρH
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n (kρρ)H
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− jπρ
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∂ρ
(
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n (kρρ)
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−
(
H(2)

n (kρρ)H
(1)
n+1(kρρ) +H
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n+1(kρρ)H

(1)
n (kρρ)

)



=

{
jπρ

4
H(2)

n (kρρ)

[
H

(1)
n−1(kρρ)−

n

kρρ
H(1)

n (kρρ)

]
∂kρ

∂ρ

}
(4.90)
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where kρ is the radial propagation constant defined by (3.78), and it can be rewritten
for the general TEmn illumination as

kρ =

√
k2

0 εr(ρ)−
(mπ
a

)2

(4.91)

To proceed further, we note that in (4.90) if we replace Hankel functions by their
large argument asymptotic approximations then the second term involving Γ̂ will be
zero and this equation reduces to

∂Γ̂

∂ρ
+ Γ̂

[
4j

πρH
(1)
n (kρρ)H

(2)
n (kρρ)

]

=

{
jπρ

4
H(2)

n (kρρ)

[
H

(1)
n−1(kρρ)−

n

kρρ
H(1)

n (kρρ)

]
∂kρ

∂ρ

} (4.92)

It may be noted here that under situations when the Hankel functions can not
be replaced by their large argument asymptotic expressions, the virtual reflection
coefficient Γ̂ satisfying the linear differential equation (4.92) can be redefined in order
to minimize the difference between this equation and its corresponding nonlinear
version (4.89). This flexibility of choosing the form of transformation between Γ and
Γ̂ is, in fact, the main advantage of our proposed method as it eases the complexity
involved in obtaining the required solution without compromising on the accuracy.
Meanwhile, the differential equation (4.92) can be integrated from the inner radius
ρ = ρ0 to an arbitrary radius ρ assuming Γ(k0, ρ0) = 0 as explained in the last
section. The evaluation of this integral at the outer radius of the cylindrical dielectric
object is given by R̂(k0) = Γ̂(k0, b)

R̂(k0) =

∫ b

ρ0


jπρ′

4
H(2)

n (kρ′ρ
′)

[
H

(1)
n−1(kρ′ρ

′)− n

kρρ′
H(1)

n (kρ′ρ
′)

]
∂kρ′

∂ρ′

exp

[∫ ρ′

b

4j

πρ′′H
(1)
n (kρ′′ρ′′)H

(2)
n (kρ′′ρ′′)

dρ′′

]
 dρ′ (4.93)

As evident from (4.91), the radial propagation constant for the higher order cylin-
drical mode illuminations also depends on the z-direction, and because of this de-
pendence it is difficult to separate the spectral variable k0 from the spatial variable
function εr(ρ) in an explicit way. However, in order to apply our proposed technique,
all terms containing εr(ρ) have to be explicitly defined and separated. To achieve
this goal, let us try to rewrite (4.91) in the following form

kρ = k0

√
εr(ρ)−

(
mπ

ak0

)2

= k0

√
εr(ρ)−

(
m

2āk̄0

)2

= k0

√
εr(ρ)− δ2 = k0

√
ε̃r(ρ)

(4.94)

where

δ =
m

2āk̄0

(4.95)
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is an intermediate parameter,

ε̃r(ρ) = εr(ρ)− δ2 (4.96)

will be called the effective value of radially varying permittivity profile, ā = a
ρ0

is

the normalized length of the cylindrical object, and k̄0 =
k0 ρ0

2π
is the normalized

value of the free-space wavenumber. It may be observed from (4.95) and (4.96) that
the constant δ, and hence ε̃r(ρ), still depends on the spectral variable k̄0. For a
systematic solution of the inverse problem, these parameters should be frequency
independent, which is not generally true and this necessitates introducing some
simplifying assumptions. One possibility may be to substitute the average value of
k̄0 in (4.95) to compute δ over which the scattering data measurements are carried
out. It has been observed, however, that the overall reconstruction process is much
sensitive to the lower value of k̄0. As a matter of fact, the reconstruction is quite
good, if the value of k̄0 in (4.95) is taken as three to four times of the lowest value
of the wavenumber4 at which the actual measurement is carried out. Once we have
selected the value of k̄0 in (4.95) according to the above described criterion, the
effective permittivity ε̃r(ρ) in (4.96) may be considered to be frequency-independent
and in this case, (4.93) reduces to

R̂0(k0) =

∫ ρ0

b



jπρ′k0

8
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−H(1)
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· exp
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√
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]
H

(2)
n

[
k0ρ′′

√
ε̃r(ρ′′)

]dρ′′



dρ′

(4.97)
where we have modified the reflection coefficient data to R̂0(k0) in order to take into
account the discontinuity at the air-dielectric interface, and this modified reflection
data is related to R̂(k0) of (4.93) by equations (4.67) and (4.68). Now, for the
proper solution of (4.97), we can introduce a virtual time variable t = ρ

c

√
ε̃r(ρ) as

described in the last section, and this leads to

R̂0(ω) =

∫ t0

tb


[

π c

8ε̃r(ρ′)
√
ε̃r(ρ′)

dε̃r(ρ
′)

dρ′

]
j
H

(2)
n (ωtb)

H
(1)
n (ωtb)

H(1)
n (ωt′)

∗
[
nH(1)

n (ωt′)− ωt′H
(1)
n−1(ωt

′)
]
 dt′

≡
∫ t0

tb

G (t′) K̃ (ω, t′) dt′

(4.98)

where, the inner integral in (4.97) has been computed using the formula given
by (C.4). The spectral domain function R̂0(ω) defined by (4.98) can be converted
to its equivalent time-domain by using the Hankel transform of the nth order, i.e.,

4It has been of course assumed here that the lowest value of k̄0 is never made equal to zero as
the Hankel functions are not defined for zero argument.
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r̂0(t) =

∫ ω̂

0

R̂0(ω)K (ω, t) dω =

∫ ω̂

0

R̂0(ω) Jn(ωt)ω dω (4.99)

where Jn is the Bessel function of order n. The value of R̂0(ω) can be substituted
from (4.98) into the above equation, which yields

r̂0(t) =

∫ t0

tb

G (t′) D (t, t′) dt′ (4.100)

where the order of integration is interchanged, and
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]}

dω

(4.101)

is the sampling function, whose actual shape and behavior is still to be ascertained.
To plot this sampling function for different values of t, we define the normalized
values of the frequency, and virtual time variable in terms of the inner radius ρ0 of
the cylindrical dielectric object shown in Fig. 3.9, i.e.,

t̄ = ρ̄
√
ε̃r(ρ) =

ρ

ρ0

√
ε̃r(ρ) (4.102a)

ω̄ = k̄0 =
k0 ρ0

2π
=

ω ρ0

2π c
(4.102b)

⇒ ω̄ t̄ =
ω

2π

ρ
√
ε̃r(ρ)

c
=
ω t

2π
(4.102c)

Now, let us assume (just as an illustrating example) that the inhomogeneity of
the cylindrical dielectric object varies between the inner radius ρ0 and 2ρ0 i.e.,
the normalized radial distance ρ̄ of (4.102) varies between 1 and 2. Hence the
normalized quantity t̄ as per (4.102a) should vary between 2 ∗

√
ε̃r(b) and 15. For

any typical permittivity profile ε̃r(ρ) in the inhomogeneous region, let us assume
that the wavelength is changed from∞ to one-tenth of the inner radius of the object
under consideration. After assigning all these values, we compute and plot D (t, t′)
of (4.101) for different values of sampling variable t as shown in Figs. 4.17-4.20
assuming a TE11 mode illumination. It can be clearly seen from these figures that
the sampling function in all cases is well behaved. However as mentioned earlier, in
all these figures the wavelength is changed from ∞ to one-tenth of the inner radius
of the object under consideration, which is basically equivalent to a very wide-
bandwidth. These values are in fact optimum ones. If we decrease the bandwidth of
the spectral domain data, then the pulse-width of these sampling functions increases
as shown in Fig. 4.21 and hence the resolution of the reconstructed image will be less.
The effect of bandwidth on the reconstructed image can better be described with
the help of Fig. 4.22, where we have used the reflection coefficient data of different
bandwidths. In this figure, the sampling function is plotted for t̄ = 3.0 using three

5In the real situation, this normalized quantity t̄ varies between 2 ∗
√

ε̃r(b) and 1 ∗
√

ε̃r(ρ0),
but since the value of the relative permittivity at the inner radius ε̃r(ρ0) may not be known in
advance, hence this value is taken as unity to avoid any ambiguity.
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Figure 4.17: The plot of the sampling
function for t̄ = 0

Figure 4.18: The plot of the sampling
function for t̄ = 1.0

Figure 4.19: The plot of the sampling
function for t̄ = 3.0

Figure 4.20: The plot of the sampling
function for t̄ = 6.0

Figure 4.21: The plot of the sampling
function for k̄0 = 0.02 : 0.02 : 1.0

Figure 4.22: The plot of the sampling
function at t̄ = 3.0 for spectral data of
different bandwidths

different ranges of reflection coefficient data. It can be seen from this figure that as
the bandwidth decreases, the pulse gets wider and wider. Finally, a stage is reached
where the sampling function is totally distorted and the original function cannot be
recovered from the reflection data if the bandwidth is so low. It may be, however,
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mentioned here that the lowest limit of the bandwidth which can used to recover the
unknown function will generally depend upon the electrical dimension of the object
and hence it should be determined in advanced for a particular problem before
applying our technique. In Fig. 4.23, we have plotted the sampling function for a

Figure 4.23: The plot of the sampling
function for a TE case

Figure 4.24: The plot of the sampling
function for a TM case

TE case using different values of the moving parameter t̄ and Fig. 4.24 represents
a TM case. In both of these figures, the wavelength is changed from ∞ to one-fifth
of the inner radius of the object under consideration. It can be seen from these
figures that even at this bandwidth, the shape of the sampling function is very
close to a practical delta function and hence it can be very conveniently used to
sample the permittivity function. In Fig. 4.25, we have considered a higher order

Figure 4.25: The plot of the sampling
function for for different values of t̄

Figure 4.26: The plot of the sampling
function for a TM case with different fre-
quency steps

TM illumination to see the effect of bandwidth on the movability property of the
sampling function. The bandwidth in this plot is taken as quite low (equivalent to
k̄0 = 0.02 : 0.02 : 0.250) for all the cases. It can be observed from this plot that
when the bandwidth is very low then the sampling function does not move with the
parameter t̄, and hence this function cannot be used for the sampling any more. It
was mentioned in the last section that the step-size of the spectral data can also
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have adverse effect on the image especially if its value gets too high. This can also
be observed in Fig. 4.26, where we have plotted the sampling function for a higher
order TM case with two different frequency steps. The solid curve in this plot
corresponds to the same step-size as in Fig. 4.24 for t̄ = 8.0, while the dashed curve
represents the sampling function for same t̄ and bandwidth but with a higher value
of the step-size. As observed from this figure, a number of peaks are now available
in the same band which is obviously undesirable and should be avoided under all
practical considerations. It may be mentioned here that in all the plots the variable
t and t′ always represent normalized values unless specified otherwise.

After having optimized all parameters such as the bandwidth and the step-size,
we can see from Figs. 4.17-4.24 that the position of maxima t̂(t) of the sampling
function always changes with the moving parameter t. In Fig. 4.27 we have plotted
the position of this maxima as a function of the transformed variable t, and this
curve follows (4.81) with tb = 6/c. From this curve, it can be said that one required
feature of the sampling function, which is the movability as described in section 4.2.1
is satisfied by (4.101). The other important feature, which should be satisfied by
the sampling function, is the minimum distortion (or spreading out) as we move
over the desired band of interest. This effect can be visually seen from Fig. 4.17-
4.24, where it is observed that the shape of the sampling function D (t, t′) is almost
constant as it moves from one end of the region to the other end. To have some idea
about the distortion in quantitative term, we plot the 3 − dB pulse width6 of the
sampling function corresponding to Fig. 4.17-4.20 versus the transform variable t as
shown in Fig. 4.28. It can be seen from this figure that the width of sampling pulse

Figure 4.27: The variation of sampling
function maxima with the transformed
variable t

Figure 4.28: The 3dB pulse-width of the
sampling function v/s the position of its
maximum

remains almost constant, while the position of the maximum changes from one end
to another.

From the above discussion, it can be concluded that the sampling function
D(t, t′) defined by (4.101) is pulse-shaped which is movable along the t′ axis without
much distortion, and hence it can be used to sample the permittivity function G [t′]
of (4.100) over the whole range with the same resolution. Once we have determined

6the width of the sampling function when the amplitude has fallen to 3dB of its maximum
value.
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the sampled values of G (t), we can make use of (4.69) and (4.98) to obtain the
required formula for the reconstruction due to a TEmn illumination

εr(t) = δ2 +
[
εr(b)− δ2

]
∗ exp

[
8

π

∫ t

tb

G (ξ) dξ

]
(4.103)

The permittivity profile given by the above formula in terms of variable t can be
converted to the radial distance ρ using an algorithm based on (4.86) with some
modifications.

The analysis for the TMmn illumination can be carried out on similar lines as given
above for the general TEmn case. The form of the sampling function for the higher
order TM case is same as given by (4.101) except for a change of sign. The final
closed-form expression of the radially varying permittivity profile due to a TMmn

illumination is given by

εr(t) = − δ2 +
[εr(b)]

2

[εr(b)− δ2]
∗ exp

[
8

π

∫ t

tb

G (ξ) dξ

]
(4.104)

4.4 The spherical geometry

After describing the inversion procedure for planar and cylindrical objects in the
last two sections, we present here the technique to invert the radially varying one-
dimensional permittivity profiles of spherical dielectric objects shown in Fig. 3.19.
As mentioned in section 3.3, a monochromatic spherical wave of wave number k0 is
assumed to be incident from the outer free space (r > a) and the reflection coefficient
Γ is measured at outer boundary of the dielectric object i.e., at r = a as shown in
Fig. 3.19. Our basic aim is this section will be to derive closed-form expressions for
the one-dimensional radially varying permittivity profile εr(r) of spherical objects in
terms of an appropriate integral transform of the reflection coefficient data measured
at r = a, due to lower and higher order TE and TM illuminations. As was the case
in the direct problem formulation, we consider here the detailed analysis for any
arbitrary order TMmn and TEmn spherical mode illuminations.

It was mentioned in section 3.3.1 that an arbitrary field in the spherical coordi-
nate system can be decomposed in terms of TE to r and TM to r modes. It is very
important to formulate the problem for any arbitrary order TE and TM modes as it
is not always possible to excite a particular order mode. In this section, we describe
the general procedure of inverse solution due to higher order spherical TMmn mode
illuminations. As the overall procedure for the spherical TEmn-mode illuminations
is quite similar to that of the spherical TMmn case, hence the details will be given
only for one case. The Riccati-similar non-linear differential equation in the spher-
ical coordinate system due to a higher order TMmn illumination is given by (3.133)
as derived in section 3.3.1. This equation can be rewritten, after substituting the
value of α by its asymptotic value (unity), in the following form to make use of our
proposed reconstruction technique
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(4.105)

An auxiliary linear differential equation corresponding to (4.105), and describing a
virtual reflection coefficient Γ̂ can be written as
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(1)
n−1(kr)

]
(4.106)

The relationship between the actual measurable reflection coefficient Γ of (4.105)
and the virtual Γ̂ of (4.106) can be obtained using an optimized nonlinear transfor-
mation (4.7) as explained in previous sections. Now, the second term involving Γ̂ on
the left hand side of (4.106) reduces to zero if we replace spherical Hankel functions
by their large argument asymptotic approximations. Hence, the actual differential
equation for the spherical TMmn case will reduce to

∂Γ̂

∂r
+ Γ̂

[
j2k0

√
εr(r)

Ĥ
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− (n+ 1) Ĥ
(1)
n−1(kr)

]
(4.107)

It may be noted here that even under situations when the spherical Hankel func-
tions can not be replaced by their large argument asymptotic expressions, the virtual
reflection coefficient Γ̂ satisfying the linear differential equation (4.107) can be rede-
fined in order to minimize the difference between this equation and its corresponding
nonlinear version (4.105) as explained in the previous section for the cylindrical case.
The above equation can be integrated from the inner radius r = r0 of the spherical
dielectric object shown in Fig. 3.19 to an arbitrary radius r using the boundary
condition Γ(k0, r0) = 0

Γ̂(k0, r) =

∫ r

r0


− j

4εr(r′)

dεr(r
′)

dr′

[
n Ĥ
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(4.108)
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This integral is evaluated at the outer radius yielding

R̂0(k0) = Γ̂(k0, a) =

∫ a
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(4.109)
where we have modified the reflection coefficient data to R̂0(k0) in order to take into
account the discontinuity at the air-dielectric interface, and this modified reflection
data is related to R̂(k0) corresponding to (4.108) by equations (4.67) and (4.68).
In the next step, a variable transformation is introduced for the proper solution
of (4.109), as was done in cylindrical geometries, and for this purpose the virtual
time variable t is now defined as

t =
r

c

√
εr(r), ⇒ dt ∼=

1

c

√
εr(r) dr (4.110)

which holds reasonably good for moderate values of dεr(r)/dr. If we substitute (4.110)
in (4.109), then it yields
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(1)
n−1(ωt

′)
]

Ĥ
(2)
n (ωt′)

(2n+ 1)
∗ exp

[∫ t′

ta

j2ω

Ĥ
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(4.111)
The inner integral in (4.111) can be evaluated using (C.9), which reduced to
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The value of the above integral can be substituted into (4.111), which yields
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The above equation can now be written in our standard form in order to apply the
general theory of reconstruction described in section 4.2.2

R̂0(ω) =

∫ t0

ta

G (t′) K̃ (ω, t′) dt′ (4.114)

where,

G (t′) ≡ c g [ε̃r(ρ
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]
(4.115)
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is an explicit function of εr(r
′), and
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(4.116)

is the kernel of the spectral domain integral R̂(ω). Our next task is to look for an
appropriate transform or kernel in order to convert the spectral domain function
R̂(ω) into its equivalent time-domain. In this thesis, we have proposed a special
kind of spherical Fourier-Bessel transform which looks more suitable to account for
the one-dimensional radial variation in the spherical coordinate system. The actual
expressions for this transform has been derived in appendix D. Making use of this
transform we obtain

r̂0(t) ≡
∫ ω̂

0

R̂0(ω)K (ω, t) dω =

∫ ω̂

0

R̂0(ω) j0(ωt)ω
2 dω (4.117)

where j0(ωt) is the spherical bessel function of order zero [91], and R̂(ω) is defined
using (4.113). The above equation can be combined with (4.113), and (4.114) to
obtain

r̂0(t) =

∫ t0

ta

G (t′) D (t, t′) dt′ (4.118)

where G (t′) is defined using (4.115), and
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(4.119)

is the sampling function for the TMmn spherical mode, whose actual shape and
behavior has to be determined before proceeding further. To study the behavior of
this function D (t, t′), the frequency and time variables are normalized using (4.102)
with ρ and ε̃r(ρ) replaced by r and εr(r) respectively. In Fig. 4.29, we have plotted
this sampling function for a lower order TM mode using a wide-band spectral data
(the wavelength varying from ∞ to one-fifth of the inner radius of the object under
consideration, which is equivalent to 0 ≤ k̄0 ≤ 5.0 ). At this bandwidth, the function
can clearly seen to be of narrow width which is also movable with the sampling
parameter t̄. The same function is plotted in Fig. 4.30 using the spectral data of
somewhat lower band (0 ≤ k̄0 ≤ 0.75). The function is still pulse-shaped but it is
now spread-out due to lowering of the bandwidth. But if the bandwidth is further
reduced (say, 0 ≤ k̄0 ≤ 0.25), then the shape of this function is totally distorted as
shown in Fig. 4.31. The function in this figure also does not move any longer with
the change in parameter t̄. Hence at this stage, this function can not be used to
sample the unknown function. In Fig. 4.32, we have plotted the sampling function
for an object of higher electrical size using the TM02 illumination. The bandwidth
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Figure 4.29: The plot of the sampling
function for different values of t̄ using a
wide-band spectral data

Figure 4.30: The plot of the sampling
function using the spectral data of low
bandwidth

Figure 4.31: The plot of the sampling
function when the spectral bandwidth
becomes very low

Figure 4.32: The plot of the sampling
function for k̄0 = 0.01 : 0.01 : 5.0

Figure 4.33: The plot of the sampling
function using a larger step-size

Figure 4.34: The plot of the sampling
function for a TE01 mode

for this case is same as considered in Fig. 4.29. To see the effect of the step-size in
the spherical case, we have plotted the sampling function for two different values of
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the transform variable t̄ in Fig. 4.33. It can be seen from this plot that an increase
in the step-size might lead to a false determination of the target as now many peaks
are present in the given spatial range. After considering different TM cases, we
have plotted the shape of this sampling function for TE cases as well. Figs. 4.34
and 4.35 show the sampling function using a lower order TE illumination for two

Figure 4.35: The plot of the sampling
function for a TE01 mode

Figure 4.36: The plot of the sampling
function for a TE02 mode

objects of different electrical sizes. In Fig. 4.36, we have considered a higher order
TE illumination. The spectral data of wide frequency band are utilized in these
cases, and it can be observed from these figures that even for a TE case the shape
of the sampling function is very close to a delta function and its movability property
is also satisfied. However, if the bandwidth of the spectral data is reduced then

Figure 4.37: The plot of the sampling
function for a higher order TE illumina-
tion with low bandwidth

Figure 4.38: The plot of the sampling
function for a higher order TE illumina-
tion with a very low bandwidth

these pulses get distorted as observed from Fig. 4.37 and 4.38. The position of the
maximum of sampling function t̂(t̄) is related linearly with the sampling parameter
t̄ as shown in Fig. 4.39. This situation is similar as was the case in the cylindrical
geometry, and this curve fits (4.81) with the value of t̄b = 25.0. In Fig. 4.40, we
have plotted the 3-dB pulse-width of the sampling function versus the position of
its maximum. It can be seen from this figure that the pulse-width remains almost
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Figure 4.39: The variation of the sam-
pling function maxima with the trans-
formed variable t̄

Figure 4.40: The 3dB pulse-width of the
sampling function v/s the position of its
maximum

constant as we move over the whole range of the electrical distance t′, which basically
guarantees the shape of the function in quantitative term. Once we have determined
the basic shape and characteristics of the sampling function D (t, t′) as given above,
it can be used to sample the function G (t′) of (4.118) according to

G (t) =
r̂0
[
t(t̂)
]∫ t0

ta
D
(
t(t̂), t′

)
dt′

(4.120)

After determining the sampled values of G (t) as per (4.120), we can make use
of (4.115) and (4.110) to obtain

4G (t′) dt′ =
dεr(r)

εr(r)
(4.121)

which can be integrated from the boundary value ta to any arbitrary value t to
obtain the required formula for the one-dimensional radially varying permittivity
profile of spherical objects illuminated by a TMmn mode

εr(t) = εr(a) ∗ exp

[
4

∫ t

ta

G (ξ) dξ

]
(4.122)

The intermediate variable t of the above equation is transformed into the radial
distance r using a numerical algorithm similar to described in section 4.1.1.3.

It may be mentioned here that the the radial propagation constant k in the
spherical geometry is independent of the axial or azimuthal direction even for higher
order modes. Hence the basic form of (4.122) remains the same for higher order
TEmn modes as well as for lower order TE and TM spherical modes. However, the
form of the sampling function (4.119) will be different for each mode. Hence, before
using the expression given by (4.122) for the reconstruction, it is necessary to have
a look at the shape of the sampling function for the particular mode. However,
the overall method of reconstruction for any spherical mode is exactly similar as
described above for the TMmn case.



Chapter 5

Reconstructed Examples

The basic theory and all the details about our proposed technique to reconstruct
the one-dimensional permittivity profiles of planar and non-planar dielectric objects
have been discussed in the previous chapters. In this chapter, we have reconstructed
different kinds of permittivity profiles in planar, cylindrical and spherical coordinate
systems to validate the proposed technique. Firstly, we have considered simulated
examples, where the reflections coefficient data have been synthetically generated
for a given permittivity profile by either solving numerically the exact non-linear
differential equations or by using the [T ] matrix method described in chapter 3.
This is followed by the experimental examples, where the reflection coefficient data
of many known dielectric samples have been measured over a wide frequency band
both in transmission lines and in the free-space. The dielectric samples of different
permittivities have been stacked together in different combinations in order to obtain
a multi-layer structure, and accordingly the reflection coefficient data of this multi-
layer dielectric media have also been measured. Both in case of simulated and
experimental examples, the permittivity profile is reconstructed from the reflection
coefficient data using the proposed inverse algorithm, and is then compared with
the actual profile.

5.1 Simulated results

First of all, we consider here the planar dielectric objects having the one-dimensional
depth-dependent permittivity variation. Afterwards, the cylindrical and spherical
dielectric objects, whose relative permittivity changes in the radial direction, are
considered.

5.1.1 Planar geometry

We start this section with an analytical example, whose reflection coefficient is given
by the following single pole expression

Γ (k0) =
1

(1 + j2 k)
(5.1)

where k = k0

√
εr(x), and the relaxation distance λ has been chosen equal to 2.0.

To reconstruct the permittivity profile corresponding to above expression of the

137



138 CHAPTER 5. RECONSTRUCTED EXAMPLES

reflection coefficient, we first try to ascertain whether the permittivity is contin-
uous at the air-dielectric interface. From the above equation, it is obvious that
limk0→∞ Γ (k0) = 0. This means that in the high frequency region, plotting the real
and imaginary parts of this reflection coefficient in the complex plane yields a point
r = 0, c = 0, where r and c are defined in the same way as in section 4.1.1.4. If we
substitute these values in (4.28), then we have

S11 = lim
c→0
(r=0)

(r2 − c2 − 1) +
√

(r2 − c2 − 1)2 − 4c2

2 c

= lim
c→0

(−c2 − 1) +
√

(−c2 − 1)2 − 4c2

2 c

= lim
c→0

(−c2 − 1) + (−c2 + 1)

2 c
= 0

(5.2)

Hence in the limiting case the value of S11 reduces to zero. If we substitute this
value in (4.20), then the value of the permittivity at the air-dielectric interface is
computed as unity. The virtual reflection coefficient Γ̂ (k0) corresponding to the
above Γ (k0) can be derived using (4.8) and is given by

Γ̂ (k0) =
1

4 jk (jk + 1)
+

1

2 (jk + 1)
− 1

24 (jk + 1/2)3 (5.3)

The inverse Fourier transform of the above equation yields [63]

r̂ (l) =
1

4

(
1 + e−l

)
− 1

48
l
2

e−l/2 (5.4)

where l = x
√
εr(x) is the normalized electrical length, with x being normalized in

terms of λ. The expression for the permittivity profile in terms of l can now be
derived using (5.4) and (4.19)

εr(l) = exp

{
−1
[
1 + l − e−l

]
+

1

12

[
e−l/2

(
−2l

2 − 8l − 16
)

+ 16
]}

(5.5)

The electrical length l is converted to the physical distance x using the numerical
algorithm proposed in section 4.1.1.3. The permittivity profile εr(x) corresponding
to the reflection coefficient (5.1) is finally plotted as a function of the normalized
distance x using (5.5) and (4.27) as shown in Fig. 5.1. In this figure, the exact
permittivity profile corresponding to (5.1) is also plotted, which is basically given
by [94]

εr(x) = (1 + 3x)−4/3 (5.6)

For the comparison of our method with previous ones, we have also plotted the
permittivity profile reconstructed by Cui et.al. [94] in this graph. It can be clearly
seen from this curve that the reconstructed permittivity profile using our method
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Figure 5.1: Exact and reconstructed permittivity profiles for an analytical case

is very close to the actual one and is definitely much better than using e.g., the
previously proposed method Cui [94].

After considering the analytical example as described above, we consider here
a number of numerical examples for the validation of our technique. In all these
examples, we synthetically generate the actual reflection coefficient data after solving
the exact nonlinear Riccati differential equation (3.18) using MATLAB for a given
permittivity profile. These data are then used to reconstruct the permittivity profile
using the proposed technique. The numerical examples are more versatile in nature
than analytical ones as we can consider many kinds of permittivity profiles using
this method and comparison of the reconstructed profile with the actual one gives
an idea about the applicability of the proposed method of reconstruction. Firstly,
a linearly varying permittivity profile with a very high contrast (4 : 1), which is
continuous at the air-dielectric interface i.e. εr0 = 1 is considered as shown in
Fig. 5.2. This figure shows the plots of exact and reconstructed permittivity profiles
using our method (4.7) (present), using Γ̂ = Γ/ (1− Γ2) (approach 1), and using
Γ̂ = tanh−1 Γ (approach 2). It can be seen from this figure that the approach 1
reconstructs the permittivity profile which is always higher than its exact value.
On the other hand if we use the approach 2, then the reconstructed values of the
permittivity profile are lower than actual. However, if we use our method then there
is much better agreement between the exact and the reconstruction permittivity
profile than using e.g. the two approaches described above. As a matter of fact,
the proximity between the exact and reconstructed permittivity profile using our
approach is so high that sometimes it is difficult to distinguish between them as can
be further seen in Figs. 5.3 to 5.6. Fig. 5.3 shows a linearly varying permittivity
profile with a positive slope and a discontinuity at the outer air-dielectric interface.
The good agreement between the actual and the reconstructed permittivity profile
can be observed from this figure. In Fig. 5.4, another linearly varying profile with a
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Figure 5.2: Exact and reconstructed permittivity profiles using different approaches

Figure 5.3: Exact and reconstructed permittivity profiles for a linear case

very high value of relative permittivity and a negative slope is reconstructed. It can
be seen that our method is able to give a reasonably good result even for scattering
objects whose relative permittivity approaches 100. For both of these cases, the
formula given by (4.24) is used for the reconstruction. After considering the linearly
varying profiles, two nonlinearly varying permittivity profiles are considered for the
reconstruction as shown in Figs. 5.5 and 5.6. In Fig. 5.5 we have considered a
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Figure 5.4: Exact and reconstructed permittivity profiles for a very high value of
permittivity

Figure 5.5: Exact and reconstructed permittivity profiles for a nonlinear case

sinusoidal variation, while Fig. 5.5 represents a cosine variation. It can be seen
from these two curves that our method works quite well even for non-linear cases,
where the rate of change of permittivity is very high. It may be noted that in
all numerical examples presented here, around 100 reflection coefficient data points
covering the spectral range from infinity to one-tenth of the maximum depth of
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Figure 5.6: Exact and reconstructed permittivity profiles for a nonlinear case with
a discontinuity at the air-dielectric interface

reconstruction have been used in conjunction with our technique. The distance
in all plots (Fig. 5.2- 5.6) is normalized with respect to the maximum depth over
which the permittivity profile is to be determined. The error between the exact
and reconstructed permittivity profile in the above examples is less than 1% in
all cases. After reconstructing the continuous permittivity profiles, we consider
some layered (discontinuous) profiles which occur more frequently in nature. The
reflection coefficient data for these kinds of layered permittivity profiles cannot be
generated by solving the Riccati equation, as the derivative of the permittivity
profile cannot be explicitly defined for these cases. The technique presented in
section 3.1.1.1 is used to simulate the reflection coefficient data for these kinds
of discontinuous permittivity profiles. We first consider the two-layer and three-
layer dielectric media as shown in Figs. 5.7 and 5.8, where both the actual and
reconstructed permittivity profiles are shown. The reflection coefficient data for
these two cases lie in the range from 50 MHz to 40 GHz with a step-size of 50
MHz. In Figs. 5.9 and 5.10, we have reconstructed the permittivity profile of multi-
layered media having a quite high value of permittivity with larger contrast. The
reflection coefficient data used for these two cases lie in the range of 5 MHz to 10
GHZ with a step of 5 MHz. It can be seen from Figs. 5.7 to 5.10 that even for
layered (discontinuous) media, there is very good agreement between the exact and
reconstructed permittivity profiles using our method. This is, in fact, one of the
major advantages of our method because many other methods which have been
presented in the past fail to reconstruct rapidly varying or step-like permittivity
profiles very accurately. As a matter of fact, even the numerical methods which
are normally used to reconstruct high contrast dielectric objects incorporate some
kinds of smoothness criterion for a stable convergence, and hence these methods
have problem in determining very sharp steps [7]. It may be mentioned here that
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Figure 5.7: Exact and reconstructed permittivity profiles for the dielectric media
with two layers

Figure 5.8: Exact and reconstructed permittivity profiles for the dielectric media
with three layers

it is very common to observe some kind of overshoots at the discontinuity if some
FFT and IFFT routines are used. This can also be seen in Figs. 5.7 to 5.10, if we
look carefully at these graphs. This kind of overshoot effect is generally observed
in all the layered structures, which occurs mainly due to limited bandwidth and
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Figure 5.9: Exact and reconstructed permittivity profiles for the dielectric multi-
layered media with high contrast

Figure 5.10: Exact and reconstructed permittivity profiles for the dielectric multi-
layered media with quite high value of permittivity

large step-size. It is a general rule that the resolution of the reconstructed profile
is directly proportional to the bandwidth over which the reflection coefficient data
have been measured. The maximum depth which can be accurately reconstructed
depends on the other hand on the minimum step-size.
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Figure 5.11: Exact and reconstructed permittivity profiles with different bandwidths

In our method, the permittivity profile is first reconstructed in terms of the vir-
tual space variable l which is proportional to the permittivity profile as per (4.14).
As the relative value of the permittivity is always assumed to be greater than unity,
hence the resolution in the real space domain will always be more than in the virtual
space domain. This is also one of the reasons for a very good match between the
actual and the reconstructed permittivity profiles in Figs. 5.7 to 5.10, where we can-
not even observe the bumps at the edges due to very high resolution. However, even
in our case when the bandwidth of the reflection coefficient data becomes very low,
then the distortion is observed in the reconstructed profile, specially some bumps are
present at the edges. This can be seen in Fig. 5.11, where the permittivity profile
is reconstructed for two values of spectral bandwidths. The dashed curve in this
figure represents the reconstructed profile corresponding to a spectral bandwidth of
20 GHZ, while the dotted curve corresponds to 5 GHz bandwidth. The discrep-
ancy between the exact and the reconstructed values can be clearly observed in this
figure, when the bandwidth is decreased from 20 GHz to 5 GHZ keeping the same
frequency-step. The concept of virtual space (time) variable or the electrical length
also affects the physical depth which can be reconstructed with a reasonable amount
of accuracy. The electrical length will be generally higher for objects having large
value of permittivity. This means that objects having high values of permittivity
may require somewhat lower values of the step-size in the frequency domain. The
effect of this step-size can be further explained with the help of Fig. 5.12, where re-
constructed:1 represents the determined permittivity profile using the step-size of 10
MHz while reconstructed:2 is the profile obtained if a step-size of 40 MHz is used for
a fixed bandwidth of 20 GHz. It can be clearly seen from these curves that decreas-
ing the step-size from 40 MHz to 10 MHz (for the same bandwidth) significantly
increases the accuracy of the overall reconstruction. But as the range of the relative
permittivity may not always be known in advance, hence it is always advisable to
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Figure 5.12: Exact and reconstructed permittivity profiles for the dielectric layered
media using two different values of frequency steps

to take larger number of measurement data points of the reflection coefficient in the
given frequency band. It may finally be mentioned that in all the examples discussed
here, the permittivity at the air-dielectric interface has been first determined using
the numerical method presented in section 4.1.1.4. The one-dimensional permittiv-
ity profile in terms of the electrical length has then been reconstructed starting from
this initial value using (4.24). The electrical length has been transformed into the
actual physical depth using the algorithm presented in section 4.1.1.3.

5.1.2 Cylindrical geometry

In this section, a number of radially varying permittivity profiles of cylindrical ob-
jects for both TE and TM illuminations are considered to show the validity of our
technique in the case of cylindrical geometry. Firstly we consider a TM00 illumina-
tion, and reconstruct a linearly varying permittivity profile with a continuity at the
outer air-dielectric interface (εr(0) = 1) using two different approaches as shown in
Fig. 5.13. In this figure, we have not used any coordinate transformation such as
given by (4.69). To separate the spectral and spatial variables, we have, however,
approximated the actual wavenumber k of (3.32) in two ways. The first approach
(approach 1) in this figure assumes the wavenumber k to be equal to the free-space
value k0 multiplied by the square root of the average value of the permittivity at
two ends. In the second approach, (approach 2) the value of k is simply taken to be
equal to k0 . It can be seen from this graph that the reconstruction using the first
approach is better and resembles closely the exact permittivity profile as compared
to the second one. This behavior of reconstructed profiles looks quite logical as the
first approach provides an accuracy of one order more as compared to the second
method. After ascertaining the fact that the first approach works better, two more
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Figure 5.13: Exact and reconstructed permittivity profiles using two approaches in
the cylindrical geometry

Figure 5.14: Exact and reconstructed permittivity profiles with a discontinuity at
the air-dielectric interface

examples have been considered as shown in Figs. 5.14 and 5.15 using this approach.
As can be clearly seen from these two figures, the radially varying permittivity pro-
files with moderate contrasts can be accurately reconstructed as well. However,
there are two problems with this approach. The first problem is that we have to
know the permittivity values at both ends of the object in advance. The permittivity
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Figure 5.15: Exact and reconstructed permittivity profiles using a lower order TM
illumination

at the outer end (air-dielectric boundary) may be determined using methods given
in section 4.3.1, but knowing the value of the permittivity at the other end of the
object might be difficult under practical situations. The second problem is that the
method might not give an accurate reconstruction if the contrast in permittivity at
the two ends of the object is very high.

To solve the above mentioned problem, a coordinate transformation is intro-
duced, and accordingly an intermediate virtual time variable t has been defined as
described in section 4.3.1. After the introduction of this virtual time variable, we
do not require any approximation of the wavenumber k at the first instance. The
reason is that the variable t can take into account the permittivity profile, and actual
reconstruction can be carried out in terms of this intermediate variable t without
having any knowledge of the permittivity value at two ends in advance. The per-
mittivity profile in terms of the physical depth can then be reconstructed using our
numerical algorithm described in section 4.3.2. As a matter of fact, this coordinate
transformation also helps in separating the spectral and spatial variables more ac-
curately for the solution of inverse problem as explained in sections. 4.3.1 and 4.3.2.
As we do not require any approximation of k, hence the permittivity profiles of quite
high values with moderate contrasts can be reconstructed as well. This can be seen
in the following examples, where we have used (4.103) and (4.104) to reconstruct
the permittivity profile in terms of t, and then the numerical algorithm (4.86) has
been used to convert this intermediate variable into the physical distance. First
we consider the higher order TE mode illumination to reconstruct the permittivity
profiles of cylindrical objects having quite high values of permittivity as shown in
Figs. 5.16 and 5.17. From these two figures, it can be observed that the reconstructed
profiles are in very close agreement with their exact values even when the relative
permittivity value is as high as 100. It may be mentioned here that for higher order
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Figure 5.16: Exact and reconstructed permittivity profiles using a higher order TE
illumination

Figure 5.17: Exact and reconstructed permittivity profiles for for a quite high value
of permittivity (TE mode)

modes, the formulas for reconstruction are quite complicated because of the depen-
dence of radial propagation constant on the axial length as seen in (4.91). However,
after comparing (4.103) of the TE case with the corresponding equation (4.104) of
the TM case, it is observed that the reconstruction using a higher order TE illu-
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mination is somewhat simpler than that of a higher order TM illumination. The
expression for the TM illumination is more involved because the impedance in this
case is dependent in more complicated way on the radial propagation constant and
the permittivity profile [16]. Hence under situations when the length of the object
can not be considered to be infinite and the axial dependence of the radial propa-
gation constant cannot be avoided, it is preferable to use a TE rather than a TM
illumination because of its simpler expression. Another parameter, which is also
sometimes very critical for the reconstruction of the finite length cylindrical object
is the lowest value of the free-space wavenumber k0 over which the measurements are
carried out. Ideally this value should be zero ( see e.g. (4.100) ). However, since the
Hankel functions are infinite when their arguments approach zero, so we normally
skip this point and start from any finite value close to zero. Another possibility
is to replace the Hankel functions by their small argument asymptotic expressions
and to compute the corresponding equations analytically near the zero argument
region. The selection of the lowest value of this free space wave number normally
depends on two factors. When the starting value of k0 is taken as very low then it
might give some ambiguous value of the effective radially varying permittivity pro-
file ε̃r(ρ). This is because of the fact that to make the effective permittivity profile
ε̃r(ρ) frequency-independent, the value of k̄0 in (4.95) is taken as three to four times
of the lowest value of the free-space wavenumber as mentioned in section 4.3.2. But
when the lowest value of k̄0 is chosen as very small, then it might make the value of
the intermediate parameter δ of (4.96) large as compared to the exact permittivity
profile εr(ρ) resulting in ambiguity. On the other hand, if we take this value to be
quite high, then the reconstruction may not be accurate, as our inverse algorithm is
quite sensitive to the lower values of k̄0 as discussed earlier. Thus, a trade off has to
be made in order to optimize this lower value of k̄0. In all the examples considered
here for higher order TE and TM cylindrical mode illuminations, the lowest value
of k̄0 is taken in the range of 0.1− 0.2. The length of all cylindrical objects is taken
as ten times the inner radius of the object, i.e. ā = 10 in (4.95).

After considering the higher order TE illumination, we try to reconstruct some
profiles using higher order TM illuminations. Firstly we take a simple case of linearly
varying permittivity profile as shown in Fig. 5.18, where the axial dependence of
the radial propagation constant is taken into account. The agreement between
the reconstructed and the exact permittivity profile is certainly quite good for this
case as obvious from the figure. Similarly, Fig. 5.19 shows a permittivity profile
considering a higher order TM illumination for a nonlinear case. As evident from
this plot, the agreement between the original and reconstructed profiles is not as
good as it was for the linear case. This is because of the fact that the spatial
derivative of the relative permittivity is reasonably high in this case. However,
the agreement between the exact and the reconstructed profiles is still acceptable
provided that the absolute value of the relative permittivity is also reasonably high.
This is obvious from Fig. 5.20, where again a higher order TM illumination has
been used but the agreement between the exact and the reconstructed permittivity
profile in this case is better than e.g. in Fig. 5.19. This phenomenon may be
explained with the help of (4.69), where it is seen that when the absolute value
of the relative permittivity is high as compared to its spatial derivative, then the

factor
[

1
εr(ρ)

dεr(ρ)
dρ

]
becomes reasonably small as compared to unity and hence it
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Figure 5.18: Exact and reconstructed permittivity profiles for the linear case (TM
mode)

Figure 5.19: Exact and reconstructed permittivity profiles for the nonlinear case
(TM mode)

can be safely neglected. It may be noted here that the reflection coefficients data
are supposed to be measured at the outer radius (ρ̄ = b/ρ0 = 2), and hence the
reconstruction process in all the plots always starts from the outer air-dielectric
boundary making the reconstructed profile more deviated from the exact one as one
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Figure 5.20: Exact and reconstructed permittivity profiles for the nonlinear case
with a reasonably high value of permittivity (TM mode)

moves towards the inner radius (ρ̄ = 1).

In all the above considered examples, error- and noise-free scattering data have
been synthetically produced by solving the nonlinear Riccati-similar differential
equations for known permittivity profiles using MATLAB. However, usually the
measurement data may have some inherent noise in it due to many factors and
hence it becomes necessary to study the effect of noise on the overall reconstruc-
tion. This is done by adding few percent random error to the calculated reflection
coefficient data, i.e.,

Γ(k0)(new) = Γ(k0) + {[(RAND − 0.5) ∗ 0.01p] + j ∗ [(RAND − 0.5) ∗ 0.01p]}
(5.7)

where Γ(k0) is the simulated reflection coefficient, RAND is a uniformly distributed
random number satisfying 0 ≤ RAND ≤ 1, and p is the percentage error. The
random error is added to the simulated spectral domain reflection coefficient data
at each frequency. As the random error is added to both the real and imaginary parts
of the reflection coefficient data as per (5.7), hence the noise is introduced in both
the amplitude and phase of the simulated data. The reconstructed permittivity
profile using the noisy scattering data for a higher order TM mode is shown in
Fig. 5.21 along with its exact profile. As observed from this example, even with 2%
random noise in the scattering data, there is a very good match between the exact
and reconstructed profiles. It may be mentioned here that in Figs. 5.13 to 5.21,
around 100 to 150 data points covering the spectral wavelength range from infinity
down to one fifth of the inner diameter of the cylindrical object have been used for
the reconstruction of the radially-varying permittivity profile. The radial distance in
all these plots is normalized with respect to the inner radius of the cylindrical object
under consideration as given by (4.102). To see the effect of noise on the permittivity
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Figure 5.21: Exact and reconstructed permittivity profiles with 2% random noise

Figure 5.22: Exact and reconstructed permittivity profiles with different noise levels

reconstruction, we consider here few more examples. For this purpose, We make use
of the radial transmission line mode described in section 4.3.1. Fig. 5.22 shows
the exact and reconstructed permittivity profiles with 2% and 5% added random
noise. It can be observed from this figure that with 2% added noise, the matching
between the reconstructed and exact profile is so good that it is even difficult to
distinguish between them. Even when the error in the simulated data is increased
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to 5%, the reconstructed profile is within affordable limit. Figs. 5.23 and 5.24 show

Figure 5.23: Exact and reconstructed permittivity profiles with 3% random error

the effect of noise for somewhat higher values of permittivity profiles. In Fig. 5.23

Figure 5.24: Exact and reconstructed permittivity profiles with 6% random error

we have added 3% noise to the simulated reflection coefficient data, while Fig. 5.24
shows the reconstructed permittivity profile with 6% added noise. In Figs. 5.22
to 5.24, we have considered 1000 reflection coefficient data points starting from 20
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MHz to 20 GHz, and the dashed line in all these plots represents the reconstructed
permittivity profile from the noisy scattering data. It may be noted here that

Figure 5.25: The magnitude of reflection coefficient data along with the added noise

when we add the random error to the reflection coefficient data as per (5.7), then
sometimes the level of the added noise becomes quite significant as compared to
the actual scattering data. This can be seen in Figs. 5.25 and 5.26, where we have

Figure 5.26: The phase of the reflection coefficient data along with the added noise

plotted the amplitude and phase of the reflection coefficient data along with the
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added noise level which basically corresponds to Fig. 5.24. It can be observed from
Fig. 5.25 that at higher frequencies, the magnitude of the reflection coefficient data
is small and hence the added noise of 6% becomes quite significant. But as observed
in Fig. 5.24, the difference between the exact and the reconstructed profile is less
than 5% even when the noise level becomes quite significant. Hence it can be said
that our method is not much sensitive to the addition of noise in the measured
scattering data. It is worthy noting here that the inverse problems are generally
very ill-poised and so they are quite sensitive to the measuring data. Sometimes
even a small change in the measuring data may result in very large deviation in the
reconstructed parameter specially when some numerical methods are used for the
inverse solution. The ruggedness and insensitivity to noise of the input measuring
data is also one of the main advantages of our method.

After considering a number of continuous permittivity profiles for the cylindrical
geometry using both TE and TM illuminations as given above, we try to reconstruct
few layered permittivity profiles. For these cases also the radial transmission line
approach described in section 4.3.1 is used.

It has already been mentioned previously that the radial transmission line ap-
proach helps in simulating the reflection coefficient data for discontinuous or layered
permittivity profiles, which is otherwise not possible using the so called Riccati-
equation approach. Figs. 5.27 and 5.28 show the exact and reconstructed permit-

Figure 5.27: Exact and reconstructed permittivity profiles for the layered cylindrical
media

tivity for a step-like radial profile with a discontinuity at the outer air-dielectric
interface (ρ = b). As mentioned earlier, the reconstructed process starts from the
outer radius (ρ = b) of the cylindrical object and different layers are reconstructed in
subsequent steps as we move towards the origin. The value of the permittivity at the
air-dielectric interface εr(b) for these two examples is first determined using (4.87)
and (4.88), and the exact permittivity profile as a function of the radial distance
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Figure 5.28: Exact and reconstructed permittivity profiles for the layered cylindrical
media

is reconstructed starting from εr(b) using (4.84) and (4.86). It can be seen from
both curves that the reconstructed permittivity layers resemble very closely to the
exact ones near the outer radius, but they deviate from the original values as we go
very near to the origin. This is to be expected as every inverse method has some
maximum depth over which the permittivity profile can be reconstructed quite ac-
curately and after some distance, the results start deteriorating. This is because the
information gained becomes weaker and weaker as we go away from the boundary,
where actual measurements are carried out. The other reason for this deviation here
is probably also the behavior of Hankel functions near the origin. We have tried
to compute the Hankel functions numerically near the origin by substituting a very
small value as its argument, but even then the behavior of these functions cannot
be guaranteed when its argument becomes very small. It may be mentioned here
that the Hankel functions can also be replaced by their low asymptotic expressions
for computing this integral analytically near the origin. For both examples, the
reflection coefficient data in the range from 50 MHz to 15 GHz with a step 50 MHz
have been used. These data were generated using the direct method proposed in
section 3.2.1.1. It may be also mentioned here that in Fig. 5.27 the value of the
relative permittivity is more, and hence the resolution of the reconstructed profile
for this case in the real space domain will be high as compared to Fig. 5.28 when the
reflection coefficient data over the same frequency range are used in both the cases.
It is mainly due to this high resolution that the resemblance between the exact and
the reconstructed permittivity profile is better in Fig. 5.27 than in Fig. 5.28.
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5.1.3 Spherical geometry

In this section, we reconstruct the one-dimensional radially-varying permittivity pro-
files of spherical objects using methods described in sections 3.3 and 4.4. Firstly,
we consider the permittivity profile reconstruction using lower order TE and TM
illuminations. Fig. 5.29 shows the exact and the reconstructed profiles for a spher-

Figure 5.29: Exact and reconstructed permittivity profiles for the spherical TM01

case

ical object having low permittivity value, while in Fig. 5.30, we have reconstructed
a profile for reasonably high value of relative permittivity by making use of a TM01

illumination. It can be seen from these two plots that for the lower order TM il-
lumination, the reconstructed profile matches well with the exact profile for both
low and high values of permittivity. For these two cases, the reflections coefficient
data have been generated after solving the nonlinear differential equation (3.140)
numerically. These simulated reflection coefficient data have then been used in the
algorithm presented in section 4.4 to reconstruct the unknown permittivity profile.
Fig. 5.31 shows the exact and reconstructed permittivity profile using a spheri-
cal TE01 illumination. The reflection coefficient data for this case is generated by
solving (3.141). From this figure, it can be seen that even for very high dielectric
contrast our method works quite well and a good agreement between the exact and
the reconstructed permittivity is achieved.

Next, we reconstruct some permittivity profile using higher order illuminations.
In Fig. 5.32 we have reconstructed a permittivity profile using a TE11 illumination,
while Fig. 5.33 shows the exact and reconstructed permittivity profiles for a TE12

illumination. The accuracy of the reconstructed permittivity profiles in both cases
show that our method can be used to reconstruct the permittivity profile for any
arbitrary order illumination provided that we are able to measure the scattering
data for the particular mode with sufficient accuracy. The suitability of a method
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Figure 5.30: Exact and reconstructed permittivity profiles for the spherical TM01

case

Figure 5.31: Exact and reconstructed permittivity profiles for the spherical TE01

case

for any arbitrary order illumination is definitely advantageous in many situations as
a general electromagnetic field produced by an antenna setup is a combination of
all possible modes. It is, however, in principle possible to separate the information
corresponding to each mode due to the orthogonal properties exhibited by them [64].
We have also observed that sometimes it is advantageous to illuminate the dielectric
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Figure 5.32: Exact and reconstructed permittivity profiles for the spherical TE11

case

Figure 5.33: Exact and reconstructed permittivity profiles for the spherical TE12

case

object with different modes and then take average of the individual reconstructions.
This is evident from Fig. 5.34, which shows the exact and reconstructed radially-
varying permittivity profiles of the cylindrical dielectric object using a TEm1 and
TEm2 illuminations. In this figure, we have also plotted the reconstructed permit-
tivity profile using the average of these two illuminations and it can be seen that
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Figure 5.34: Exact and reconstructed permittivity profiles for the spherical TE case
with different mode illuminations

the averaging process helps in obtaining a better accuracy. This behavior can be
explained by the fact that waves of different order modes might have different noise
behavior producing the deviation above and below the exact profile, and hence the
averaging process might help in neutralizing the error up to some extent. The other
point to be noted here is that the radial propagation constant in the spherical ge-
ometry does not depend on the θ or φ-direction even for higher order modes.

After considering higher order TE cases, we reconstruct few permittivity profiles
using higher order TM mode illumination. Fig. 5.35 shows a reconstructed permit-
tivity profile using a TM11 mode for a moderate contrast, while Fig. 5.36 shows
a reconstructed permittivity profile using a TM12 mode for a dielectric object of
higher contrast. Both of these figures also show the exact permittivity profiles for
comparison. It can be seen that there is a reasonably good agreement between the
exact and reconstructed profiles for both low and high contrast dielectric objects.
In Fig. 5.37, we have reconstructed a nonlinearly varying permittivity profile using
a TM11 illumination. It can be seen from this curve that although the agreement
between the exact and reconstructed permittivity profiles in this case is not as good
as it was in the linear case, but the reconstructed data are still lying within 3− 4%
of the exact values.

It may be mentioned here that in Figs. 5.29 to 5.37, the reflection coefficient data
used for the reconstruction represent error- and noise-free values, which have been
generated by solving numerically the corresponding nonlinear differential equations
derived in section 3. However, in real situations, the actual measurement data may
have some inherent noise in it, and to study the effect of noise on the overall re-
construction, we have added 1% and 2% random noise to the simulated reflection
coefficient data. The noise is added to both the amplitude and phase of the uncor-
rupted reflection coefficient data as per (5.7), and the reconstructed profile from this
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Figure 5.35: Exact and reconstructed permittivity profiles for the spherical TM11

case

Figure 5.36: Exact and reconstructed permittivity profiles for the spherical TM12

case

noisy data is shown Fig. 5.38. It can be seen from this curve that although the added
noise affects the reconstructed permittivity profile, but this deviation in the output
parameter is proportional to the error in the input scattering data thus producing
a stable inversion. It may be noted here that the percentage error added to the
uncorrupted data in Fig. 5.38 is independent of the magnitude of exact scattering
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Figure 5.37: Exact and reconstructed (non-linear) permittivity profiles for the spher-
ical TM11 case

Figure 5.38: Exact and reconstructed permittivity profiles from the noisy scattering
data for the spherical TM11 case

data. This means that when the magnitude of the scattering data is low, then even
2− 3% error added to the uncorrupted data as per (5.7) might be quite significant.
To see the effect of noise, which is in proportion to the magnitude of the exact scat-
tering data, we have added here one more plot as shown in Fig. 5.39. In this figure,
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Figure 5.39: Exact and reconstructed permittivity profiles for the spherical TE11

case with 5% and 25% relative error in the scattering data

a maximum relative error of up to 25% of the scattering data is added to the exact
simulated values over the whole frequency band. It can be clearly observed from this
curve that even for such a high level of noise, the reconstruction permittivity profile
is within the prescribed limit. The stability of the proposed technique to solve the
inverse scattering problem with even high percentage of noise in the measuring data
is the main advantage of our method as compared to the numerical iterative rou-
tines, which are generally associated with ill-posedness and where sometimes even a
small drift in the input data might produce a large change in the output parameter.

5.2 Experimental results

In this section, we reconstruct a number of permittivity profiles from the measured
reflection coefficient data. At microwave frequencies, the reflection coefficient data
are generally measured using a vector network analyzer (VNA). Any modern V NA
can make measurements of complex reflection coefficients or S-parameters over a
wide frequency band on 2-port microwave networks. The analyzer applies a signal
that is transmitted through the test device, or reflected from its input, and then
compares it with the incident signal generated by the swept RF source. The signals
are then applied to a receiver for measurement, signal processing and display [98].
One very important aspect of making measurements using a VNA is its calibration
or error-correction procedure. Components of the measurement setup, such as in-
terconnecting cables and adapters, introduce variations in the measured magnitude
and phase that can mask the actual response of the device under test (DUT). The
calibration is an accuracy enhancement procedure that removes the systematic er-
rors (repeatable measurement variations) in the test setup. The analyzer measures
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known standard devices e.g. a short, open or a matched load, and uses the results of
these measurements to characterize the system. The number of standards required
may depend upon the particular situation. The one-port measurement, for exam-
ple, normally requires three known standards, while full two-port measurement may
require four or more standards. At present, the methods available in the literature
for the measurement of reflection coefficient or S parameters of dielectric materials
using VNA can be broadly classified into two main groups

1. The transmission line measurements, which mainly involve placing the mate-
rial under test (MUT) either in the coaxial airline or in a waveguide; and

2. Free-space measurements.

The first group of methods are generally more common because in this case a small
sample of MUT can be machined and directly placed inside the transmission line
media in which the electromagnetic energy is confined and well defined. The other
main reason for the popularity of these group of methods is the availability of accu-
rate calibration standards, which helps making the measurements of S parameters
with sufficient accuracy. In this group, the waveguide methods are normally used
under situations where the scattering data over a narrow band (e.g. X-band or Ku
band) are sufficient. However as mentioned in previous chapters, to determine the
inhomogeneous one-dimensional permittivity profiles using our technique, the reflec-
tion coefficient data over a wide frequency band are generally required. Hence we
have used the coaxial airline technique, where the sample is machined in the form
of a cylinder, and is fitted inside the coaxial transmission line in order to measure
the reflection coefficient data over a wide frequency range (dc to 18 GHz).

The main advantage of the second group of method (free-space technique) is that
it is totally non-destructive and non-contacting. Hence the free-space measurement
techniques can work even under hostile environments. It may be mentioned here that
although in the transmission line measurements, the MUT is not destroyed during
measurement, it must be however machined to fit precisely into the waveguide or the
coaxial line. We have measured the reflection coefficient data of different dielectric
samples in the coaxial airline as well as in free-space, and have used these measured
data to reconstruct the permittivity profile. Here, first we take up the coaxial
airline measurements for the reconstruction, and then later on free-space techniques
are considered.

5.2.1 Coaxial airline measurements

In this case, coaxial airlines are basically used as sample holders. The small samples
of the dielectric MUT are machined precisely to fill the cross-section of 20 cm coaxial
airline manufactured by Maury Microwave Corporation as shown in Fig. 5.40. The
measurement setup using this coaxial airline and the vector network analyzer is
shown in Fig. 5.41. The two ports of the airline are connected to the vector network
analyzer. The full two-port calibration is achieved using Open-Short-Match-Thru
method. In this method, the open, short and matched load are first connected to
each port and measured. Next, a through connection is achieved by connecting
both the ports of the network analyzer together without connecting the device-
under-test (DUT) and its characteristics are measured. Finally, the characteristics
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Figure 5.40: The 20 cm coaxial airline manufactured by Maury Microwave Corpo-
ration

Figure 5.41: The measurement setup using the coaxial airline and the vector network
analyzer

of all these four standards are used in the 12-error term model to measure the four S
parameters of DUT quite accurately under real situations. The only problem with
these airline measurements is that material should be machined quite precisely to fit
inside the cross-section, and any air-gaps should be avoided as they can sometimes
affect the results quite significantly. The reflection coefficient data in our case have
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been measured from 40 MHz to 18 GHz with a step of 40 MHz using the Rohde
& Schwarz ZVR vector network analyzer. We have taken three different lossless
dielectric samples, whose relative permittivity is known and is almost constant over
the measured frequency range. These materials are machined quite precisely in the
form of coaxial cylinders so that they can be fitted inside the airline with minimum
air-gap.

Our basic aim here is to reconstruct the depth-dependent permittivity profile
of multi-layered dielectric media. It means that both thickness and the permit-
tivity values of different dielectric layers are determined from the measurement of
reflection coefficient data using the proposed technique. First we take the teflon

Figure 5.42: Exact and reconstructed permittivity profiles of two-layer dielectric
media (teflon-Air) from the measured reflection coefficient data in a coaxial airline

and PVC samples individually, representing two-layer dielectric media (dielectric-
air), and make use of our algorithm to reconstruct the relative permittivity and
the thickness of each layer from the measured reflection coefficient data. The exact
and reconstructed permittivity profile for these two samples are shown in Figs. 5.42
and 5.43 respectively, where it can be seen that overall reconstruction is reason-
ably good except at the interface between two layers which is because of a limited
bandwidth. It may be noted here that the distance in all the plots here basically
represents the thickness of each dielectric layer. Fig. 5.44 shows the reconstructed
permittivity profile for the third dielectric sample, whose relative permittivity is also
known in advance. It can be observed from figure 5.44 that the agreement between
the exact and the reconstructed permittivity profile is not as good in this case as
the earlier two examples. The reason for the discrepancy is mainly due to the fragile
nature of this dielectric material, which is somewhat difficult to machine accurately
and hence some air-gaps are unavoidable. It may be noted from these three figures
that our method is able to determine both the relative permittivity and the thick-
ness of individual dielectric samples quite accurately from the reflection coefficient
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Figure 5.43: Exact and reconstructed permittivity profiles of two-layer dielectric
media (PVC-Air) from the measured reflection coefficient data in a coaxial airline

Figure 5.44: Exact and reconstructed permittivity profiles of a two-layer dielectric
media from the measured reflection coefficient data in a coaxial airline

measurement data. After measuring the dielectric materials individually, we place
these materials together in different combinations in the airline to see the effect of
multi-layer inhomogeneity on our method. Firstly, we put teflon and PVC samples
together in the airline and reconstruct the permittivity profile of this combination
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Figure 5.45: Exact and reconstructed permittivity profiles of three-layer dielectric
media from the measured reflection coefficient data in the coaxial airline

using our method. The reconstructed permittivity profile along with its exact value
is shown in Fig. 5.45 and as seen from this figure, the deviation is more in this multi-
layer media as compared to the individual layers shown in previous figures. This
deviation can be attributed to the placement of different layers in the airline and also
their alignment with respect to each other. The length of the airline is 20 cm while
the total length of samples in this case comes out to be only 7 cm. Hence the sam-
ples can not be fixed very accurately on both the ends, and due to this reason there
might be some air-gaps between different samples in the axial direction which con-
tributes to the error in measurements. Figs. 5.46 and 5.47 show two more examples
of three-layer dielectric media with different combinations. From these two curves,
it can be established that profiles of both ascending and descending values can be
reconstructed without any major difference in the overall result. After considering
two-layer and three-layer dielectric media, we consider multi-layer permittivity pro-
files as shown in Figs. 5.48 and 5.49. For these two cases, we have taken different
samples of all three dielectric materials and placed them together in the airline. In
Fig. 5.48 the three samples are arranged in descending order with respect to their
permittivity values, while Fig. 5.49 represents the three-layer profile in arbitrary
order. It is seen from these two figures that even for the multi-layered dielectric me-
dia, different permittivity layers can be reconstructed with a reasonable amount of
accuracy and this accuracy can be increased by minimizing the air-gap in both axial
and circumferential direction. It may be mentioned here that in Figs. 5.42- 5.49, the
error between the exact and the reconstructed permittivity values is around 2 to 3
%.

After measuring the reflection coefficient data in the frequency domain using the
VNA, we also used the time-domain reflectometer Agilent 54754A Differential TDR
model to measure the reflection coefficient data in the coaxial airline. The advantage
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Figure 5.46: Exact and reconstructed permittivity profiles of three-layer dielectric
media from the measured reflection coefficient data in the coaxial airline

Figure 5.47: Exact and reconstructed permittivity profiles of three-layer dielectric
media from the measured reflection coefficient data in the coaxial airline

of TDR measurement is that the relative permittivity of the dielectric material can
be determined in a straight forward manner by simply reading the electrical length
∆x from the instrument and dividing this length by the physical depth d of the
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Figure 5.48: Exact and reconstructed permittivity profiles of multi-layer dielectric
media from the measured reflection coefficient data in the coaxial airline

Figure 5.49: Exact and reconstructed permittivity profiles of multi-layer dielectric
media from the measured reflection coefficient data in the coaxial airline

object, i.e.

εr =

[
∆x

d

]2

(5.8)

The value of ∆x can be directly read from the TDR as can be seen in Figs. 5.50
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Figure 5.50: The TDR measurement of a single-layer dielectric material

Figure 5.51: The TDR measurement of a single-layer dielectric material

to 5.52 and this value is substituted in (5.8) to determine the relative permittivity
of the particular dielectric material. It may be mentioned here that Figs. 5.50
to 5.52 represent the direct output of the TDR, and hence the resolution in these
figures is not very good. Meanwhile, the reconstructed relative permittivity of these
three samples are plotted in Fig. 5.53 along with their respective actual values
and the the typical accuracy for all the three cases is about 2 − 3%. It may be,
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Figure 5.52: The TDR measurement of a single-layer dielectric material

Figure 5.53: Actual and reconstructed relative permittivities of three samples from
the TDR measurements

however, mentioned here that the TDR method can only determine the relative
permittivity of single layer material provided its length d is accurately known. For
multi-layer media, the inhomogeneity can be seen in time domain to have some idea
in the qualitative term, but the method as such is not suitable for determining the
quantitative values of permittivity of different layers very accurately as this approach
does not take into account the effect of multiple reflections.
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5.2.2 Free-space measurements

In the free-space measurement technique, large flat samples of the material under
test (MUT) are placed in an anechoic chamber, either in front of the antenna or
between a pair of antennas for the reflection and transmission measurements re-
spectively. As no machining is required in this case, hence this method is suitable
for materials which are fragile in nature and cannot be machined precisely. The
sample of MUT is not contained in any fixture here, hence the error from possible
air-gaps is not a concern. The free-space measurements can be carried out in ex-
tremely high temperatures or other hostile environments, and because of the use of
large planar sheets in this case, this method is compatible for characterization of
materials used e.g., in radar applications. The free-space method also looks more
suitable for the imaging and remote sensing applications, where the containment of
the object under test inside any transmission media is not feasible. However, one
of the main problems in using a free-space technique is the introduction of various
errors in measurements, and the requirement of special calibration considerations to
overcome these errors. The inaccuracies in free-space measurements are due to two
main sources of errors:

1. The diffraction effects at the edges of the material specimen/sample;

2. The multiple reflection between the antenna aperture and the sample surface.

The amount of error present depends on the measurement configuration employed,
which can be classified into two categories: near field focussed system and far field
system. The near field systems use the spot-focusing lens antennas, which produce
a localized beam at the sample surface to minimize the diffraction effects from the
sample and the calibration standards. However, this method is limited by the depth
of focus of the antenna and only very thin samples can be used for this setup [99].
The other problem with this method is the requirement of special type of spot-
focussing antennas which are not commonly available. These antennas are custom-
made having two-equal plano-convex lenses mounted back to back in a conical horn
antenna. One plano-convex lens gives an electromagnetic plane wave and the other
plano-convex lens focuses the electromagnetic radiation at the focus. These antennas
have characteristics such that the electromagnetic fields in the neighborhood of focal
plane can be assumed to be a plane wave in character.

In the far field measurement systems, the samples are placed in the far field of the
antenna’s radiation pattern. This configuration obviously increases the amount of
perimeter diffraction, but it is still the most common way of measuring the free space
reflection coefficient at microwave frequencies [100]. The popularity of this method
is probably due to its simple setup, its applicability to thicker samples, and no need
for special types of lens antennas. The edge-diffraction effect in this case can be
minimized by making the transverse dimensions of the sample much larger than the
antenna aperture. The effects of multiple reflection can be eliminated by a special
type of signal processing technique known as time-domain gating, which is available
in most of the modern network analyzers. The time-domain gating is implemented
by converting the frequency-domain reflection coefficient data into time-domain by
taking its inverse Fourier transform. The gating is then applied over the main
path of the reflection data, which is equivalent to applying a low-pass filtering in
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the spatial domain. The basic idea here is that the multiple reflected signals can be
differentiated in the spatial-domain as they will arrive at different time intervals. We
can then choose the portion of the signal, which has travelled through the main path
and separate it out from the other unwanted portions. These gated time-domain
data are converted to the frequency-domain by taking the Fourier transform. The
gating procedure can also be implemented manually if this facility is not available in
the network analyzer, by making use of standard FFT (Fast Fourier transform) and
IFFT routines. We have used the far field system for the measurement of reflection
coefficient data of different dielectric samples in the free-space. As we are only
interested in the reflection coefficient or S11, hence the standard one-port calibration
(short-offset short-matched load) involving three standards is employed [100]. The
matched load in this case is achieved by an empty room, as the propagating free
space wave will meet the free space at the sample reference plane producing a net
reflection coefficient of zero at this position. Hence this situation becomes equivalent
to the placement of an absorbing plate at the reference plane. The accuracy of
the measurement will, of course, depend upon the reflectivity characteristic of the
absorber material placed in the anechoic chamber. The second standard (short) in
the free-space is a metallic plate placed at the reference position, which produces a
net reflection coefficient of −1. The transverse dimension of this plate is taken to
be equal to that of the actual sample to avoid any shadow effects under the actual
measuring condition. For obtaining the third standard, this conducting plate is
shifted by an offset length d to produce a reflection coefficient given by ejπ(1+4d/λ0).
It is preferable to choose this distance d equal to the quarter wavelength (d = λ0/4),
where λ0 is the free-space wavelength corresponding to the middle frequency over
which the reflection coefficient data are measured. The whole idea of choosing d
this way is to simulate an open condition producing a net reflection coefficient of
+1 at the reference plane. It may be mentioned here that the positioning of the
reference plane is very critical in the free-space measurement system and this has
specially a big influence on the phase measurements. Hence a special care must
be taken to accurately position the metallic calibration plate and the sample. For
our measurement, the one-port calibration kit for coaxial line of the vector network
analyzer has been modified by defining standards as described above. The sample
was placed in the far field of the antenna, where the electromagnetic fields can be
assumed to be a plane wave in character. The setup for measuring the reflection
coefficient data is shown in Fig. 5.54. The one-port of the vector network analyzer is
connected to the Horn antenna through a cable and a coaxial-to-waveguide adapter.
The measurements have been carried out in X and Ku bands using two different
pyramidal Horn antennas. The front view of the measurement setup using the
Wiltron 37347A vector network analyzer, the coax-to-waveguide adapter and a Horn
antenna is shown in Fig. 5.55. The inside view of the setup having a horn and the
dielectric sample (all in the anechoic chamber) is shown in Fig. 5.56. For placing
such a large sample inside the anechoic chamber, we have fabricated a mechanical
stand shown in Fig. 5.57. This stand includes a mechanism to accurately position
the metallic plate and the dielectric sample. The reference position for placing the
calibration standards and the sample is chosen around one meter away from the
aperture of antenna to satisfy the far-field condition in both X and Ku bands. We
have used the metallic plate of 1 square meter for the calibration, and the samples
were also taken of the same transverse dimension to avoid any ambiguity. This
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Figure 5.54: Schematic diagram of the measurement system

Figure 5.55: Actual measurement setup from the front

transverse dimension of 1 square meter is quite large as compared to the maximum
horn aperture1, and hence the edge-diffraction effects are minimized.

The offset lengths for the X-band and Ku-band measurements were taken as 5
cm and 4 cm respectively, which are approximately equal to one-quarter wavelengths
at the mid-frequency in their respective frequency bands.

1The highest aperture of the X band pyramidal Horn being used in our setup is 109 mm.
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Figure 5.56: The measurement setup inside the anechoic chamber

Figure 5.57: The mechanical stand with the dielectric sample

To test the accuracy of our measurement setup, the metallic plate (short) was
placed at the reference position after the calibration was done. The characteristics
obtained for this short for the X-band are shown in Figs. 5.58 and 5.59. It can
be seen from both figures that the magnitude and phase of the measured reflection
coefficient inX band are 0.0±0.4dB and±180.0±2o respectively. The characteristics
of the short in the Ku-band also show the same behavior. The magnitude of the
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Figure 5.58: The magnitude of the reflection coefficient for the metallic plate placed
at the reference point for X band

Figure 5.59: The phase of the reflection coefficient for the metallic plate placed at
the reference point for X band

reflection coefficient for an empty room after calibration is less that −50 dB in
both the frequency bands. After verifying the calibration procedure, the dielectric
samples were measured. Because of the problem in obtaining the dielectric pieces
of larger transverse dimension, we could obtain only two samples of teflon and PVC
each of 1 square meter cross-section and about 1.5 cm thick. The samples were
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taken of the same transverse dimension as that of the metallic calibration plate
in order to have the same condition. The time-domain gating of the VNA was
applied in order to avoid any multiple reflections and to remove ripples from the
measured reflection data. To see the effect of time-domain gating, we have plotted

Figure 5.60: The magnitude of the reflection coefficient of the teflon sample in Ku
band with and without time-gating

the magnitude of the reflection coefficient data of teflon sample in Ku band with
and without the time-domain gating as shown in Fig. 5.60. The ripples can clearly
be seen in the raw data with no gating, which disappear after the application of
time-domain gating. The reflection coefficient in the time-domain as seen on VNA
is plotted in Fig. 5.61, where many side lobes occurring due to multiple reflections
can be observed. To remove the effect of these multiple reflections, the gating is
applied in the time-domain along the main path and then the Fourier transform is
taken to obtain the frequency-domain reflection coefficient data with time-gating.
Figs. 5.62 and 5.63 show the magnitude and phase of the reflection coefficient data of
PVC sample measured in X band with time-domain gating. It can be observed from
these two figures that the free-space calibration technique along with the applied
time-domain gating is able to measure the reflection data with minimum ripples.
Finally, we have reconstructed the relative permittivity of both teflon and PVC
samples from the measured frequency-domain reflection coefficient data using our
proposed algorithm as shown in Figs. 5.64 and 5.65. In both of these examples, first
the analytical method presented in section 4.1.1.4 has been used to determine the
value of permittivity at the air-dielectric interface, and then the formulas derived
in section 4.1.1.2 and 4.1.1.3 have been used to reconstruct the permittivity profile
staring from this initial value. Since in both of these cases, we have only one layer
of dielectric material hence our aim is basically to determine the thickness and εr of
these materials. But as can be seen from these figures, the reconstructed permittivity
profile (both the value of the relative permittivity and the thickness of the material)
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Figure 5.61: The reflection coefficient data of the teflon for Ku band in time-domain

Figure 5.62: The magnitude of the reflection coefficient data of PVC sample in X
band with time-gating

is not as good (typical accuracy in this case is 5%) as it was e.g. in the airline case.
The reason for this discrepancy in two-fold. The first reason is that the positioning
of calibration standards and the material sample is quite problematic in free-space
measurements. We have observed that sometimes even an error of the order of one-
tenth of a millimeter can make a big difference specially on the phase measurements.
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Figure 5.63: The phase of the reflection coefficient data of PVC sample in X band
with time-gating

Figure 5.64: The reconstructed permittivity profile of the teflon sample from the
reflection data measured in free-space

We have used the offset-short method for the calibration. In this case it is difficult
to define precisely the offset length. In addition, accurately placing the short and
sample at the specified position using our manual method has also been a problem.
The metallic plates and samples are also quite big in the transverse dimension and
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Figure 5.65: The relative permittivity of the PVC sample reconstructed from the
measured reflection data in free-space

hence sometimes it might be difficult to maintain their position exactly in one plane
unless some precaution is taken to hold them tightly at the reference plane. This
problem of positioning can probably be solved up to much extent by making the
whole setup automatic and controlling the reference position of the standards and
the sample by means of a servomotor. The second reason for the high amount of
error in the free-space case as compared to the coaxial airline is due to the limited
bandwidth available in former. We have used the Horn antenna for the measurement
and as it is known, these antennas can work over a limited frequency band (e.g. X
band, Ku band etc.). It has already been mentioned in the earlier chapters that
we basically take IFFT of the frequency-domain reflection coefficient data and for
the proper functioning of IFFT routing or the inverse Fourier transform method,
the values of the spectral-domain function over a wide frequency band staring from
dc or very low frequency are required. But using our present setup, we are able
to measure the reflection coefficient data either in X band or Ku band only, hence
the IFFT routines don’t seem to function quite well. The problem is that due to
the limited bandwidth the resolution of the reconstruction in the space-domain is
not very good. This resolution problem can possibly be solved in two ways. The
first way is to use some special antennas which can work over a wide frequency
band. In this case the directivity or gain of the antennas should also be high so that
enough power is able to reach the material under test under the far-field condition.
The second way is probably to take the thicker samples (in our case it was 1.5 cm
only) for measurements. If we take thick samples, then high resolution would not
be required in the spatial domain and hence low-band antennas can be used. But
as mentioned earlier we also require the large transverse dimension (1 × 1 meter)
to minimize the diffraction problem and if we make these samples thicker, then
the materials would be quite bulky and difficult to handle. Hence from the above
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discussion, it can be concluded that under practical situations it might be difficult
to characterize the dielectric materials very accurately using the free-space method,
but the overall technique works in principle and it can definitely be used to image
the dielectric objects qualitatively if not quantitatively. The other advantage of our
method as compared to e.g. [99] is that our setup works for thick as well as thin
samples, and hence it can also be used to image the multi-layer dielectric media
provided the calibration and the measurement are done very accurately. It may also
be mentioned here that our setup for the free-space measurement uses only one horn
antenna, along with the vector network analyzer and a coaxial-waveguide adapter,
which is simpler than the setup used e.g. in [100].

It has already been mentioned that the vector network analyzer (VNA) model
used in our setup has a time-domain facility, which was basically used to remove
ripples in the spectral-domain measured data by means of time-domain gating. We
have recently explored the possibility of using the time-domain measurements of
VNA to determine the relative permittivity of single layer dielectric materials, and
it works provided certain criteria are satisfied. These time-domain measurements
seem to be specially advantageous in the band-limited case, where our proposed
technique does not give good results. The overall idea of making use of these time-
domain measurements is as follows. It can be readily proved that the reflection
coefficient data measured over a frequency band e.g. in X-band is equivalent to
exiting the device under test (DUT) with a sinc pulse. The width of this pulse
depends upon the bandwidth of the spectral domain signal in such a way that higher
the bandwidth, the lower the pulse-width. This means that when we measure the

Figure 5.66: The approximate shape of the spectral domain function in time-domain

dielectric material using e.g. a horn antenna (which is band-limited) and observe
the reflection coefficient data on VNA in the time-domain, then a typical graph
may look like as shown in Fig. 5.66. The width δτ in this figure depends upon the
bandwidth as mentioned earlier, and the spacing between two peaks ∆t will basically
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Figure 5.67: The measured reflection coefficient of a 5 cm thick sample in time-
domain

correspond to the electrical length of the dielectric material under test (MUT), i.e.,

∆t =
∆x

√
εr

c
(5.9)

where ∆x and εr are the thickness and the relative permittivity of the MUT re-
spectively. Hence if we are able to measure ∆t, then the permittivity εr can be
determined from this equation provided the thickness of the material ∆x is known.
However, this whole method can work only if the width of the sinc pulse δτ is much
smaller than the time interval ∆t, so that we can observe very sharply the reflection
from the two edges of the dielectric sample in the time-domain.

To satisfy this criterion, either the spectral bandwidth should be large enough
to make the width δτ quite small, or the dielectric MUT of higher thickness should
be chosen in order to make ∆t larger. This can be also explained with respect to
Fig. 5.61, where we have plotted the time-domain reflection coefficient data of the
teflon sample (1.6 cm thick) as seen on VNA for the Ku band. We can see only
one peak in this curve because this sample is quite thin. For the permittivity of the
order of 2.0 the value of ∆t as per (5.9) comes out to be around 0.076 ns, which is
much less than the pulse-width (' 0.62ns) of the sinc function in this figure.

For the proper application of the proposed time-domain method, we also mea-
sured some thicker dielectric samples. The time-domain measurement of one of these
samples, which is approximately 5 cm thick is shown in Fig. 5.67. The two peaks
can be clearly seen in this figure and ∆t in this case is very accurately determined
with help of two markers (the facility available in the VNA). After computing ∆t,
the relative permittivity is determined with the help of (5.9) and this has been
plotted in Fig. 5.68 along with its exact value. We also measured the time-domain
reflection coefficient data for another dielectric sample, which is 5.30 cm thick. The
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Figure 5.68: The reconstructed value of relative permittivity from the time-domain
reflection coefficient data

Figure 5.69: The reconstructed value of relative permittivity from the reflection
coefficient data measured in time-domain

exact and reconstructed profile for this case has been shown in Fig. 5.69. It can be
seen from both figures that this simple time-domain technique works in principle
as long as the sample is reasonably thick. However, it is to be noted here that for
this technique to work, we should know accurately the thickness of the dielectric
material in advance and hence this method cannot work for the inhomogeneous or
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multi-layer dielectric media. Another reason for the unsuitability of this method in
case of multi-layer media is that it cannot take into account the effect of multiple
reflections. Finally, it may be mentioned that the TDR method used in the previous
section for the time-domain airline measurement, does not seem to work for free-
space measurement. The reason is that because of the presence of the horn antenna
in our measurement setup, not enough power is probably able to pass through this
band-pass antenna and hence the effect of dielectric material placed in the far-field
of antenna cannot be observed on the screen of TDR.
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Summary

In this thesis, a new method for the reconstruction of one-dimensional depth de-
pendent permittivity profiles in planar and non-planar dielectric objects has been
presented. The reconstruction of permittivity profiles is a basic problem in the field
of microwave imaging and remote sensing. The determination of depth-dependent
inhomogeneity of dielectric objects is generally the most difficult part of the mi-
crowave imaging process as these measurements cannot be carried out in-situ. The
cross-sectional dielectric image of the object, on the other hand, can be obtained
by means of lateral scanning if a number of high-directivity antennas are used.
Hence our technique in combination with the lateral scanning methods can provide
a complete image of any arbitrary shaped dielectric object. We have shown in this
work that the resolution of the reconstructed image in the spatial domain can be
quantitatively controlled by varying the bandwidth of the spectral domain reflec-
tion coefficient data. A unique solution can be obtained using our method as it
isolates the non linearity associated with inverse problems into a simple algebraic
transformation. On the other hand, the method is not based on the so-called Born
approximation and hence it can be used to reconstruct dielectric objets of higher
contrasts as well.

For the implementation of our proposed scheme, we have first considered an inho-
mogeneous dielectric object in the Cartesian coordinate system. The direct problem
has been formulated for this kind of geometry taking into account multiple reflec-
tions between different layers of the dielectric object. The formulation is in the form
of nonlinear Riccati differential equations relating the spectral domain reflection co-
efficient to the inhonmogeneous permittivity profile for different polarizations. An
improved renormalization technique has been presented for the solution of these
nonlinear differential equations representing the one-dimensional inverse scattering
problems. Accordingly a closed-form expression has been obtained to determine
the one-dimensional permittivity profile in terms of an inverse Fourier transform of
the spectral domain reflection coefficient data. The permittivity profile is gener-
ally reconstructed starting from its value at the air-dielectric interface. Hence two
methods have also been presented to determine the value of the permittivity at the
air-dielectric interface from the reflection coefficient data. This whole process of
determining the permittivity profile from the reflection coefficient data is generally
called the Ricatti-differential-equation (RDE) approach, as the overall technique is
based on the inversion of this RDE making use of the frequency-dependent reflection
coefficient data.
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The above mentioned RDE approach was applied till now only to planar objects.
We have generalized this RDE approach so that they can be applied to analyze the
one-dimensional inhomogeneity of non-planar structures as well by simply relaxing
the functional form of the transform kernel. After extending the applicability of
RDE technique to the general one-dimensional case, we have numerically validated
the theory in the case of cylindrical and spherical coordinate systems. For this pur-
pose, the Riccati-similar nonlinear differential equations for different TE and TM
illuminations have first been derived in these non-planar coordinate systems. They
relate the one-dimensional radially varying permittivity profile in each case to the
appropriately defined frequency-dependent reflection coefficient data. The formula-
tions have been started with the lower order illumination for the radially directed
waves in cylindrical and spherical structures, and then have been generalized for
arbitrary order TE and TM modes. A linearized version of these differential equa-
tions has been introduced in terms of a virtual reflection coefficient, and an optimum
algebraic transformation between the actual and the virtual reflection coefficient has
been found. The introduced linear equations have been solved using an appropri-
ate boundary condition to obtain an integral form of the spectral domain reflection
coefficient function in each case. For the proper and accurate inversion of these equa-
tions, a coordinate transformation in the spatial domain has also been introduced,
which converts the real space variable into a virtual time variable. One of the aims
of this coordinate transformation is to take into account the change in wavelength
as the wave travels inside the dielectric inhomogeneous media. After incorporating
the above variable transformation, the spectral domain reflection coefficient acquires
the form of an integral equation whose kernel is a function of the angular frequency
and the virtual time-variable. At this stage, a suitable integral transform1 has been
introduced to convert the reflection coefficient function from the spectral domain
into a spatial domain. The kernel of this transform has been combined with the ker-
nel of the spectral domain reflection coefficient function determined earlier to obtain
the form of a sampling function for each particular case. The shape of this sampling
function has been plotted for various lower and higher order TE and TM modes
in both cylindrical and spherical coordinate systems. Interestingly this function has
always been found to be pulse-shaped possessing all the characteristics as proposed
by us in the theory. After ascertaining the shape of the sampling function for each
case, the virtual-time domain permittivity profile function in each coordinate sys-
tem has been reconstructed in terms of the spatial domain reflection coefficient data.
Finally, the one-dimensional radially varying permittivity profile in both cylindrical
and spherical coordinate system has been determined from the virtual-time domain
permittivity function using a numerical algorithm.

To validate our technique, several examples (both simulated and experimental)
have been considered in this thesis. In the case of planar Cartesian media, the simu-
lated reflection coefficient have been obtained by either numerically solving the exact
non-linear Riccati differential equation, or by using the the transmission-matrix for-
mulation. The permittivity profile for both continuous and layered dielectric media
have been reconstructed from these simulated frequency-domain reflection coefficient
data using our technique. The error between the actual and reconstructed permit-

1The form of this integral transform is the Hankel transform in the case of cylindrical geometry,
while it is the spherical Fourier-Bessel transform in the case of spherical geometry.
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tivity profile has been found to be less than 1 % in the case of continuous media, and
less than 2% in case of layered media. The larger deviation between the actual and
reconstructed permittivity profile in the case of layered media is mainly due to a
step change in the permittivity values from one layer to another. For cylindrical and
spherical structures, the reflection coefficient data have been generated by solving
numerically our derived Riccati-similar nonlinear differential equations for a number
of linearly and non-linearly varying permittivity profiles in their respective coordi-
nate systems. The radially varying permittivity profiles in both cylindrical and
spherical coordinate system have been reconstructed from these simulated reflected
coefficient data using our method with an accuracy of less than 2%. In the case of
cylindrical media, the layered structures have also been considered using the radial
transmission line theory and the deviation between the actual and the reconstructed
permittivity profiles in this case has been found to be 5%. This larger deviation in
the case of cylindrical stratified media has been mainly due to a high rate of change
of the permittivity profile. Finally, the effect of noise has also been considered and
it has been observed that even a 2− 5% error in the simulated reflection data does
not affect the reconstructed profile to a large extent. This is specially advantageous
in the real time measuring condition, where few percent error in the measurement
data is unavoidable.

To validate our method experimentally, reflection coefficient data of some di-
electric samples have been measured in the coaxial airline and in free-space using
the vector network analyzer (VNA). The coaxial airline media gives the reflection
coefficient data over a wide frequency band. On the other hand, the free-space mea-
surements simulate more accurately real-time applications such as the imaging of
dielectric bodies or the characterization of dielectric materials used for radar applica-
tions. In the case of coaxial airline, both single and multi-layered dielectric materials
have been used and the permittivity profile in each case has been reconstructed with
a deviation of less than 2%. In the free-space, a simple setup has been used to cali-
brate the V NA and measure the reflection coefficient data. The accuracy here has
not been good enough as compared to transmission line measurements due to the
problem of correctly positioning the reference plane and the edge-diffraction. The
spectral domain reflection coefficient data of two dielectric samples in X and Ku
bands have been measured in free-space using the above mentioned setup. The per-
mittivity values of these samples have been determined using the proposed method.
Time-domain measurements have also been carried out for some dielectric samples
in free-space, and the permittivity values of these materials from the time-domain
curves have been determined using a very simple method. It has been observed
that these time-domain data can be used to determine the relative permittivity of
single-layer dielectric materials even under very hostile measuring conditions. The
typical accuracy in the determination of relative permittivity of dielectric materials
from the free-space reflection coefficient measured data has been found to be about
5%.



Appendix A

The solution of two simultaneous
differential equations having a
common factor

Let x be an independent variable and we have a set of equations defined as follows

g1 f =
∂

∂x
(g2 f) (A.1a)

g3 f =
∂

∂x
(g4 f) (A.1b)

where f , g1, g2, g3, and g4 are all implicit functions of x. Our task here is to solve
both equations (A.1a) and (A.1b) simultaneously in order to eliminate the common
function f . This is done in following steps.

First, we expand the right hand sides of (A.1) to obtain

g1f = g2
∂f

∂x
+ f

∂g2

∂x
⇒ ∂f

∂x
=

(
g1 − ∂g2

∂x

)
f

g2

(A.2a)

g3f = g4
∂f

∂x
+ f

∂g4

∂x
⇒ ∂f

∂x
=

(
g3 − ∂g4

∂x

)
f

g4

(A.2b)

In the next step, the expressions of ∂f
∂x

from both (A.2a) and (A.2b) are combined
together to yield

(g1 − g2
′) f

g2

=
(g3 − g4

′) f

g4

(A.3)

where g2
′ and g4

′ represent derivatives of g2 and g4 respectively with respect to
the independent variable x. Finally, the above equation is further simplified after
eliminating the common function f from both sides of (A.3) to obtain the following
expression

(g1 − g2
′) g4 = (g3 − g4

′) g2 (A.4)

which is the required solution obtained after solving both (A.1a) and (A.1b) simul-
taneously.
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Appendix B

The derivatives of the spherical
Hankel functions

B.1 The first order derivative

The recurrence formula involving the first order derivative of the standard spherical
Hankel function of order n and argument z is given by [91]

d

dz

[
h(p)

n (z)
]

=
1

(2n+ 1)

[
nh

(p)
n−1(z)− (n+ 1)h

(p)
n+1(z)

]
p = 1 or 2 (B.1)

The above equation can be used for the derivation of the first order derivative of a
spherical Hankel function defined by (3.107) as given below
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(p)
n+1(z)

]
(B.2)

Hence our final formula for the first order derivative of the spherical Hankel function
of order n reduces to

d

dz

[
Ĥ(p)

n (z)
]

=
1

(2n+ 1)

[
(1 + n) Ĥ

(p)
n−1(z)− n Ĥ

(p)
n+1(z)

]
(B.3)

B.2 The second order derivative

The first order derivative of the standard spherical Hankel function of order n and
argument z, in terms of the corresponding function of a lower order is given by [91]

d

dz

[
zn+1 h(p)

n (z)
]

= zn+1 h
(p)
n−1(z) p = 1 or 2 (B.4)
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FUNCTIONS

Now for our definition of the spherical Hankel function defined by (3.107), the above
equation reduces to

d

dz

[
znĤ(p)

n (z)
]

= znĤ
(p)
n−1(z) p = 1 or 2

⇒ d

dz

[
Ĥ(p)

n (z)
]

= Ĥ
(p)
n−1(z)−

n

z
Ĥ(p)

n (z)

(B.5)

For obtaining the second order differential of the spherical Hankel functions, the
above equation can be differentiated again to obtain

d 2

dz2

[
Ĥ(p)

n (z)
]

=
d

dz

[
Ĥ

(p)
n−1(z)

]
− n

d

dz

[
Ĥ

(p)
n (z)

z

]
(B.6)

The terms on the right hand side of (B.6) may be individually computed as

d

dz

[
Ĥ

(p)
n−1(z)

]
= Ĥ

(p)
n−2(z)−

(n− 1)

z
Ĥ

(p)
n−1(z)

n
d

dz

[
Ĥ

(p)
n (z)

z

]
=
n

z

d

dz

[
Ĥ(p)

n (z)
]
− n

z2

[
Ĥ(p)

n (z)
]

=
n

z

[
Ĥ

(p)
n−1(z)

]
− n(n+ 1)

z2

[
Ĥ(p)

n (z)
]

(B.7)

where we have made use of (B.5) to compute the first derivatives for orders n
and n − 1. In the next step, both the individual terms of the above equation are
substituted in (B.6) to obtain

d 2

dz2

[
Ĥ(p)

n (z)
]

=
n(n+ 1)

z2

[
Ĥ(p)

n (z)
]

+ Ĥ
(p)
n−2(z)−

(2n− 1)

z

[
Ĥ

(p)
n−1(z)

]
(B.8)

Now we can use another recurrence formula of the spherical Hankel functions given
as [91]

(2n+ 1)

z
Ĥ(p)

n (z) = Ĥ
(p)
n−1(z) + Ĥ

(p)
n+1(z) (B.9)

The above equation for the spherical Hankel functions of order n− 1 reduces to

Ĥ
(p)
n−2(z)−

(2n− 1)

z
Ĥ

(p)
n−1(z) = −Ĥ(p)

n (z) (B.10)

The above equation can be finally combined with (B.8) to obtain

d 2

dz2

[
Ĥ(p)

n (z)
]

=

[
n(n+ 1)

z2
− 1

]
Ĥ(p)

n (z) p = 1 or 2 (B.11)

which is the required formula for the second order derivative of the spherical Hankel
function.



Appendix C

Integral containing two Hankel
functions

C.1 The cylindrical Hankel functions

The Wronskian formula for the cylindrical Hankel functions of order n is given by [90]

H(1)
n (z)H(2)′

n (z)−H(2)
n (z)H(1)′

n (z) = − 4j

πz
(C.1)

where the prime ′ indicates the first order derivative. The above equation can be
rewritten as

1

H
(2)
n (z)

d

dz

[
H(2)

n (z)
]
− 1

H
(1)
n (z)

d

dz

[
H(1)

n (z)
]

= − 4j

πz H
(1)
n (z)H

(2)
n (z)

(C.2)

Now, when z = ω t, then the above equation will be modified to

⇒ 1

H
(2)
n (ωt)

d

dt

[
H(2)

n (ωt)
]
− 1

H
(1)
n (ωt)

d

dt

[
H(1)

n (ωt)
]

= − 4j ∗ ω
πω tH

(1)
n (ωt)H

(2)
n (ωt)

⇒ d

dt

[
lnH(2)

n (ωt)
]
− d

dt

[
lnH(1)

n (ωt)
]

= − 4j

π tH
(1)
n (ωt)H

(2)
n (ωt)

⇒ d

dt

{
ln

[
H

(1)
n (ωt)

H
(2)
n (ωt)

]}
=

4j

πtH
(1)
n (ωt)H

(2)
n (ωt)

(C.3)

If we integrate the above equation, then it will reduce to∫
t

4j

π tH
(1)
n (ωt)H

(2)
n (ωt)

dt = ln

[
H

(1)
n (ωt)

H
(2)
n (ωt)

]
(C.4)

which is the required formula for the integral containing two cylindrical Hankel
functions of order n.

C.2 The spherical Hankel functions

The Wronskian formula for the spherical Hankel functions of order n is given by [101]

h(1)
n (z)

d

dz
h(2)

n (z)− h(2)
n (z)

d

dz
h(1)

n (z) = −2j

z2
(C.5)
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In this thesis, we have used a special type of spherical Hankel functions defined as

Ĥ(p)
n (z) = z h(p)

n (z) p = 1 or 2 (C.6)

The Wronskian formula for this type of spherical Hankel function can be derived as
follows

Ĥ(1)
n (z)

d

dz
Ĥ(2)

n (z)− Ĥ(2)
n (z)

d

dz
Ĥ(1)

n (z) =

z h(1)
n (z)

[
h(2)

n (z) + z
d

dz
h(2)

n (z)

]
− z h(2)

n (z)

[
h(1)

n (z) + z
d

dz
h(1)

n (z)

]
= z2

[
h(1)

n (z)
d

dz
h(2)

n (z)− h(2)
n (z)

d

dz
h(1)

n (z)

]
= −2j (C.7)

where we have substituted the value of (C.5) to arrive at the last expression of (C.7).
When z = ω t, then the above equation will be modified into

Ĥ(1)
n (ωt)

d

dt
Ĥ(2)

n (ωt)− Ĥ(2)
n (ωt)

d

dt
Ĥ(1)

n (ωt) = −2j ∗ ω

⇒ 1

Ĥ
(2)
n (ωt)

d

dt
Ĥ(2)

n (ωt)− 1

Ĥ
(1)
n (ωt)

d

dt
Ĥ(1)

n (ωt) =
−2j ω

Ĥ
(1)
n (ωt) Ĥ

(2)
n (ωt)

⇒ d

dt

{
ln

[
Ĥ

(1)
n (ωt)

Ĥ
(2)
n (ωt)

]}
=

2j ω

Ĥ
(1)
n (ωt) Ĥ

(2)
n (ωt)

(C.8)

The above equation can be integrated to obtain∫
t

2 j ω

Ĥ
(1)
n (ωt) Ĥ

(2)
n (ωt)

dt = ln

[
Ĥ

(1)
n (ωt)

Ĥ
(2)
n (ωt)

]
(C.9)

which is the required formula for the integral containing two spherical Hankel func-
tions of order n.



Appendix D

The spherical Fourier-Bessel
transform

The 3-dimensional Fourier-transform and its corresponding inverse can be given by

F (kx, ky, kz) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x, y, z) e−j(kx x+ky y+kz z) dx dy dz (D.1a)

f(x, y, z) =
1

8π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
F (kx, ky, kz) e

j(kx x+ky y+kz z) dkx dky dkz (D.1b)

where kx, ky and kz are the wavenumbers along the three coordinate axes x, y and z
respectively. The above 3-dimensional transform can be converted to the spherical
coordinate system using the following coordinate transformation

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ

dx dy dz = r2 sin θ dr dθ dφ
(D.2)

The corresponding spectral domain coordinate transformation is given by

kx = β sinα cos γ, ky = β sinα sin γ, kz = β cosα

dkx dky dkz = β2 sinα dβ dα dγ
(D.3)

where β, α, and γ are the equivalent spectral components in the spherical coordinate
system. We can use (D.2) and (D.3) to evaluate the kernel of (D.1) into the spherical
coordinate system

kx x+ ky y + kz z = β r [sinα sin θ cos γ cosφ+ sinα sin θ sin γ sinφ+ cos θ cosα]

= β r [sinα sin θ cos(φ− γ) + cos θ cosα]

(D.4)

The above equation along with (D.2) and (D.3) can be substituted in (D.1a) to
obtain

F (β, α, γ) =

∫
φ

∫
θ

∫
r

f(r, θ, φ) e−jβr sin α sin θ cos(φ−γ) e−jβr cos θ cos αr2 sin θ dr dθ dφ

(D.5)
For objects, which are symmetrical in the φ direction, (D.4) will reduce to

kx x+ ky y + kz z ∼= β r [sinα sin θ + cos θ cosα] = β r cos( θ − α) (D.6)
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The above equation can be substituted in (D.5), which yields

F (β, α) = 2π

∫
r

∫
θ

f(r) e−jβr cos(θ−α) r2 sin θ dr dθ (D.7)

The exponential function in (D.7) can be evaluated in terms of its series expan-
sion [91]

e−jβr cos(θ−α) =
∞∑

n=0

(2n+ 1) jn Pn [cos(θ − α)] jn (−β r) (D.8)

where Pn is the Legendre polynomial, and jn represents the spherical Bessel function
of order n. The value of the exponential can be substituted from (D.8) into (D.7)

F (β, α) = 2π

∫
r

∫
θ

f(r)
∞∑

n=0

(2n+ 1) jn Pn [cos(θ − α)] jn (−β r) r2 sin θ dr dθ

= 2 π

∫ ∞

0

f(r) r2

∞∑
n=0

{
(2n+ 1) jn

[∫ π

0

Pn [cos(θ − α)] sin θ dθ

]
jn (−β r)

}
dr

(D.9)

The above equation can be simplified using the following property of the Legendre
function integral [91]∫ π

0

Pn (cos θ) sin (mθ) dθ

=

 2
(m+ n− 1)(m+ n− 3) · · · (m− n+ 1)

(m+ n)(m+ n− 2) · · · (m− n)
; if n < m and (m+ n) is odd

= 0; otherwise

(D.10)

We have made use of the above equation to compute the inner integral∫ π

0

Pn [cos(θ − α)] sin θ dθ (D.11)

of (D.9).
After comparing (D.11) with (D.10), we find that in our case m = 1 and hence

the integral (D.11) will be non-zero if and only if n = 0 and for all other values of n
the value of this integral will be zero as per (D.10). Hence for the integral (D.11),
we can write∫ π

0

Pn [cos(θ − α)] sin θ dθ =


∫ π

0

sin θ dθ = 2; if n = 0

= 0; otherwise

(D.12)

where we have made use of the fact that P0 [cos(θ − α)] ≡ 1 [91]. We can substitute
the value of integral (D.12) into (D.9) and this yields

F (β, α) ≡ F (β) = 2π

∫ ∞

0

2 f(r) r2 j0 (−β r) dr

= 4 π

∫ ∞

0

f(r) r2 j0 (β r) dr

(D.13)
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where the relationship j0(−z) = j0(z) is used.
Now, to compute the second integral (D.1b), we can follow the same procedure

as for computing (D.1a) and going by this convention we can rewrite (D.1b) in the
following form

f(r, θ) =
1

4π2

∫ ∞

0

∫ π

0

F (β) ejβr cos(θ−α) β2 sinα dβ dα (D.14)

If we compare the above equation with (D.7), then it is observed that both equations
have similar form and hence the procedure used for simplifying (D.7) can also be
used here to reduce (D.14) to the following form

f(r) =
1

2π2

∫ ∞

0

F (β) β2 j0 (β r) dβ (D.15)

Let us now try to scale (D.13) and (D.15) by a common factor as follows

F̄ (β) =
F (β)√

2π
; f̄(r) =

√
2π f(r) (D.16)

With the scaling factor defined above, equations (D.13) and (D.15) can be rewritten
as

f(r) =

∫ ∞

0

F (β) j0 (β r) β2 dβ, and (D.17a)

F (β) =
2

π

∫ ∞

0

f(r) j0 (β r) r2 dr (D.17b)

Equations (D.17a) and (D.17b) are called spherical Fourier-Bessel transform pairs
in a more general sense. It may be mentioned here that in (D.17a) and (D.17b), the
variables r and β may always be replaced by t andω without any loss of generality.
The orthogonality of the above kernel can be ascertained by the following closure
relationship [92]

2a2

π

∫ ∞

0

jn (a r) jn (b r) r2 dr = δ(a− b) (D.18)

Hence it can be concluded that the spherical Fourier-Bessel transform given
by (D.17a) and (D.17b) can be used for the analysis in the spherical coordinate
system in a similar way as that of Hankel transform and the Fourier transform used
in the cylindrical and the cartesian coordinate system respectively.
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