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Zusammenfassung

Das Forschungsgebiet Data Mining oder auch Wissensentdeckung in Daten-
banken ist als Antwort auf die Herausforderung entstanden, die enorm wach-
senden Datenbestände zu analysieren, die heutzutage von Unternehmen
und Forschungsinstitutionen gesammelt werden. Eine wichtige Aufgabe des
Data Minings ist die Klassifikation, wobei Fuzzytechniken zur Extraktion
von Klassifikationsregeln aus Daten wegen ihrer dem Menschen verständli-
chen Modellierung reizvoll sind.

Oftmals enthalten die zu analysierenden Datensätze keine Klasseninfor-
mation, und ihre Anzahl verbietet ein manuelles Kennzeichnen. Daher gibt
es ein steigendes Interesse an teilüberwachten Verfahren, die auch mit nur
teilweise vorhandener Klasseninformation lernen können. Leider verwenden
die meisten aktuellen Data-Mining-Verfahren überwachtes Lernen, und die
meisten teilüberwachten Verfahren erzeugen keine dem Menschen verständ-
lichen Modelle.

In dieser Arbeit stelle ich die Ideen der Fuzzyklassifikation und des
Lernens von Fuzzyklassifikatoren vor, wobei ich speziell deren Fähigkeiten
und Interpretierbarkeit betrachte und einige ihrer Eigenarten und Prob-
leme aufdecke. Weiterhin gebe ich einen Überblick über teilüberwachte
Lernverfahren mit einem Schwerpunkt auf Fuzzymethoden und untersuche
deren Schwächen insbesondere im Hinblick auf die Induktion interpretier-
barer Fuzzyregeln. Die wesentlichen Leistungen dieser Arbeit bestehen in
der Entwicklung eines evolutionären Algorithmus und spezialisierter Fit-
nessfunktionen, die das teilüberwachte Lernen interpretierbarer Fuzzyregeln
erlauben.





Abstract

The research area of Data Mining or Knowledge Discovery in Databases
has emerged in response to the challenges of analyzing the tremendously
growing datasets gathered nowadays by companies and research institutions.
Classification is one important task of data mining, where fuzzy techniques
to extract classification rules from data are appealing due to their human
understandable modeling.

Often, datasets to be analyzed do not contain class labels, and their size
renders manual labeling infeasible. Thus, there is an increasing interest in
semi-supervised methods that can learn from only partially labeled data.
Unfortunately, most current data mining methods are supervised, and most
current semi-supervised methods do not generate human understandable
models.

In this thesis we review the key concepts of fuzzy classification and fuzzy
classifier learning, with a focus on their capabilities and interpretability,
and reveal some common peculiarities and pitfalls. Furthermore, we review
approaches to semi-supervised learning with a stress on fuzzy methods,
and show their deficiencies, particularly for inducing interpretable fuzzy
rules. The main achievements of this thesis are the development of an
evolutionary algorithm and specialized fitness functions that allow semi-
supervised learning of interpretable fuzzy rules.





Contents

1 Introduction 1

2 Classification with Fuzzy Rules 5
2.1 Fundamentals of Classification . . . . . . . . . . . . . . . . . 6
2.2 Fuzzy Rules to Represent Classification Knowledge . . . . . . 9
2.3 Properties of Fuzzy Rules . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Representable Decision Boundaries . . . . . . . . . . . 17
2.3.2 Influence of the t-Norm . . . . . . . . . . . . . . . . . 19
2.3.3 Axis Parallelism Through Shared Fuzzy Sets . . . . . 22
2.3.4 Interpretability of Local Fuzzy Sets . . . . . . . . . . . 26
2.3.5 The Role of Rule Weights . . . . . . . . . . . . . . . . 27
2.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Probabilistic Interpretation of Fuzzy Classification Rules . . . 30
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Chapter 1

Introduction

Over the past decade, dramatic advances in information and sensor technol-
ogy could be witnessed. Increasing processor power, growing storage device
capacities, and the emergence of the world wide web enabled companies and
scientific and governmental institutions to collect, store and process large
archives of all kinds of data like numbers, tables, documents, images, and
sounds. However, it turned out that traditional ways to analyze data hardly
scale to those database sizes, and that transforming the abundance of data
into useful knowledge is therefore difficult. In reply to these challenges a new
area of research has emerged, which has been named “Knowledge Discovery
in Databases” or “Data Mining”. Fayyad et al. (1996) give the following
definition:

Knowledge Discovery in Databases (KDD) is a research area
that considers the analysis of large databases in order to iden-
tify valid, useful, meaningful, unknown, and unexpected rela-
tionships.

The stress lies on methods that help users, who often have a vague un-
derstanding of their data, to support their hypotheses and models, to find
other patterns or regularities hidden in the data, and to translate these
findings into human notions to give the users an understanding of their
data. A number of analysis tools for data mining have been established
over the past years. Some well-known methods are, for instance, statistics
(regression analysis, discriminant analysis etc.), time series analysis, deci-
sion trees, cluster analysis, neural networks, inductive logic programming,
and association rules.

1



2 Chapter 1. Introduction

However, characteristics and thus demands of current applications are
changing and call for new algorithms. In this introduction we outline which
important trends we see in the sources of the data to be analyzed, and
thus which trends we expect in the characteristics of the data. We argue
why fuzzy methods are well suited to deal with these changing demands,
and why lately these challenges consequently lead to a considerably growing
interest of the research community into semi-supervised learning methods.

Changing Data Characteristics

Most classical data mining methods, like decision trees and neural networks,
expect an input of single uniform tables of tuples of attribute values. In
many modern applications, however, the data to be analyzed come from
heterogeneous information sources: Many of the archives contain images,
texts, video, or even sound data. We certainly cannot expect to find data
mining algorithms that are generally applicable to all mentioned kinds of
information sources. The approaches will always strongly depend on some
kind of application-specific preprocessing to extract characterizing features
from the specific type of media. Additionally, to enable data mining in such
feature spaces we suppose that it is crucial to exploit any available a priori
knowledge, and thus to have algorithms that support to incorporate such
information.

As the data seldomly comes from well designed experiments or mea-
surements, it is often unevenly distributed in the input space and class
frequencies are often unbalanced. Furthermore, the data is often of low
quality. Algorithms must thus be able to deal with uncertainty and im-
precision. Missing values are also a common problem that data mining
algorithms should be able to handle. A special case of missing values are
missing class labels: The focusing of data mining methods on supervised
learning is a severe drawback in many real-world applications. In contrast
to the abundance of data available in the archives, labeling these data is of-
ten a problem. In many cases, the labels for the training samples have to be
assigned manually or determined by expensive analyses. Typical examples
of such domains include speech processing, image analysis, text classifica-
tion, or medical or biological applications. Labeling a complete dataset
can become an at least tedious if not infeasible task when there are many
objects—and in some applications “many” can easily mean tens of thou-
sands. With increasing sizes of the databases to be analyzed, learning from
data which is only partially labeled becomes more and more important.
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The Role Of Fuzzy Techniques

The outlined characteristics of the data—their quantity, complexity, di-
mensionality and imperfection—, the essential of extracting understand-
able patterns from these, and the need to incorporate available background
knowledge in that process make fuzzy techniques an interesting tool for
data mining (Kruse and Klose, 2002). They can transform between com-
puter representations and (naturally linguistic) human concepts, and thus
allow to “compute with words”. The inherent imprecision of words is not
necessarily a weakness, but on the contrary, can be crucial to model com-
plex systems. From our own experience we observed that many practical
applications have this certain robustness where full precision is not neces-
sary. In such cases, exaggerated precision can be a waste of resources, and
solutions obtained using fuzzy approaches might be easier to understand
and to apply. Good examples of models that gain their strengths by explic-
itly taking into account vagueness, imprecision or uncertainty are systems
based on fuzzy rules.

One important task in data mining is classification. Fuzzy if-then rules
have become popular for this task, as their use of linguistic variables is close
to human descriptions of structure in data. For data analysis we are looking
for procedures that can extract fuzzy rules from a dataset of examples.
Ideally, these rules allow to accurately classify new objects and describe
the structure of the data distribution in an understandable fashion. If we
apply such techniques, we must be aware of a tradeoff between precision and
interpretability. However, the results should not only be judged for their
accuracy, but also for their interpretability, as the ultimate goal of data
mining is to extract human understandable patterns. Not all fuzzy models
are equally suited to accurately solve the task at hand and still generate
interpretable models.

Semi-Supervised Learning

Most existing approaches to fuzzy rule extraction are supervised, i.e. they
expect that all examples are labeled. Unfortunately, as initially mentioned,
in many current domains it is not possible to access the labels for all objects.
In such cases, one usually confines the examples to a certain—hopefully
representative—fraction of the data and leaves the unlabeled data aside.
In spite of being unlabeled, the additional data might still bear valuable
information on the true distribution of the objects in the input space.

There have been several proposals for methods that exploit the remain-
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ing, otherwise discarded data to support the learning of a classifier. With
growing database sizes it is not surprising that there is an increasing inter-
est in approaches that are able to learn from partially labeled data. Nev-
ertheless, combinations of descriptive fuzzy classification rules and semi-
supervised learning have hardly been investigated.

Outline

In Chapter 2, we review the key concepts of fuzzy rule based classifiers.
There are a number of different ways to evaluate fuzzy rules. We describe
the influence of these alternatives on the approximation capabilities and
interpretability of fuzzy classifiers. We use these findings to motivate our
choices in our own implementation. In this chapter we consider the fuzzy
classifiers as given. Chapters 3 and 4 deal with approaches to automatically
extract fuzzy rules from example data. Since in this thesis the induction of
rules using evolutionary algorithms plays a prominent role, these methods
are described in a chapter of its own (Chapter 4).

In Chapter 5, we review previous work in the field of semi-supervised
learning. We focus on methods for semi-supervised learning of fuzzy mod-
els. However, little has been done on the extraction of interpretable fuzzy
rules from partially labeled data. We discuss whether those approaches are
suited for extension, and propose our own semi-supervised approaches for
fuzzy rule induction based on evolutionary algorithms in Chapter 6. The
functionality of all semi-supervised methods is illustrated and compared on
artificial datasets and data from the UCI repository of machine learning. In
Chapter 7, additionally two real-world applications are presented to show
the applicability of our approaches. Limitations and open questions are
discussed in Chapter 8.



Chapter 2

Classification with Fuzzy
Rules

When humans are to formulate their knowledge about dependencies they
will certainly use words, and often use if-then rules. If we want to build
systems that allow humans to introduce their prior knowledge, and that, vice
versa, produce output that is understandable to humans, it seems reasonable
to work with rules and natural language concepts. On the other hand,
language is always connected with vagueness, which is usually tried to be
avoided in computer systems. Humans, however, can easily handle this kind
of vagueness. Even more so, the achieved level of abstraction is one explicit
strength of natural language and often necessary to handle complex systems.
Fuzzy set theory is one approach to model natural language concepts in
automated systems.

This chapter shall give the reader a survey on classification based on
fuzzy if-then rules. In the next section, we introduce classification as a gen-
eral functional dependence that maps points from a feature space into a set
of classes. Section 2.2 briefly outlines fuzzy set theory. We argue that clas-
sic (“crisp”) set theory is not able to model linguistic concepts adequately.
The breakthrough of fuzzy techniques came mainly with fuzzy controllers,
where fuzzy sets are used in rules to describe functional relationships. As
we also show in Section 2.2, basically the same concepts can be used to
represent classification functions.

An interesting—however often neglected—aspect are the theoretical ca-
pabilities of fuzzy classifiers. Especially the use of linguistic terms in fuzzy

5



6 Chapter 2. Classification with Fuzzy Rules

rules leads to the erroneous belief that the system will “somehow” cope with
the uncertainties and manage to classify objects in the right way. But, of
course, there are exact numbers underlying the fuzzy sets. Thus, when fuzzy
rules are evaluated, there are sharp decision boundaries between classes.
Hence, it is important to have an intuition, how the final results of fuzzy
classification rules look like. This can help to avoid some peculiarities and
pitfalls. These issues are considered in Section 2.3, and are an important
prerequisite for the choice of the fuzzy model used in our fuzzy classifier
approach proposed in Chapter 6.

Another aspect important for our approach is an alternative interpre-
tation of membership degrees as probability densities. In Section 2.4, we
discuss the restrictions under which this interpretation is possible. We use
this reading of membership degrees in Chapter 6, when we derive our mea-
sures for semi-supervised learning.

2.1 Fundamentals of Classification

Let us consider a universe Ω = (A, C), consisting of a set of nd attributes
(or features) A = {Xi|i = 1, . . . , nd} and a set of nc classes C = {ci|i =
1, . . . , nc}. Let X = X1 × · · · × Xnd

be the nd-dimensional feature space
spanned by the attributes. The objects ω of our universe are characterized
by their feature vectors x ∈ X. We assume the classes to be mutually
exclusive and exhaustive, i.e. each object ω belongs to one and only one
class c ∈ C. The task of classification is to reconstruct or predict the class
cω of an object ω given its feature vector xω. A classifier can be defined as
a function

g : X → C. (2.1)

For this definition, it is irrelevant how function g is represented or where it
comes from. A central subject of pattern recognition is to discover models—
i.e. families of functions, that are suited to represent g for different prob-
lems—and to develop algorithms to learn these models from data. Learning
in this context means to choose an instance within a family of functions
that is optimal with respect to some given example data.

Optimality usually means that the total probability of error over the
feature space is minimal. Let us assume that the objects are randomly
chosen from some distribution, such that a feature vector x has a probability
P (x). Let us further assume that we know the probability Pg(error|x)
that g produces an error at point x in the feature space. Then the total
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probability of error is

Pg(error) =
∫

X

Pg(error|x)P (x)dx. (2.2)

Let P (ci|x) denote the posterior class probabilities at a point x in the fea-
ture space. Then an optimal classifier should predict the class with the
maximal posterior probability cmax(x) = argmaxc∈CP (c|x), and thus min-
imize P (error|x) = 1 − P (cmax(x)|x). However, the real probabilities are
generally unknown, and must thus be estimated from the example dataset.

Let us consider a dataset D = {ω1, . . . , ωn}. Each of the n objects ωi

has a corresponding pair (xωi , cωi) of feature vector and class label. A
reasonable estimation of Pg(error) is then

P̂g(error) =
1
n

∑
ω∈D

I(g(xi), cω), (2.3)

with an indicator function I that assumes value 1 for misclassifications:

I : C × C → {0, 1}, I(c, c′) =
{

0 if c = c′

1 else. (2.4)

P̂g(error) thus simply counts the number of errors (in relation to the total
number of classified objects). This definition is reasonable, if all misclas-
sifications cause equal costs,1 and if we use crisp labels as outputs of our
classifier function g, i.e. if g returns exactly one class c for every feature
vector x. In some situations, however, it might be desirable to get ex-
tra information about, e.g., the certainty or ambiguity of the classification.
Consider, for example, a classifier in a medical domain that shall distin-
guish between benign and malignant tumors. There might be cases, where
it is only slightly more probable that a tumor is benign. In such cases, if
we knew about the narrow decision of g, we might try to make additional
tests. However, g gives us no information about the certainty of the deci-
sion. Therefore, it can be advantageous to have a soft classifier (that is, a
classifier with soft labels), defined as

g̃ : X → IRnc , g̃(x) := (g̃c1(x), . . . , g̃cnc
(x))T ,

with g̃ci
: X → IR, i = 1, . . . , nc

(2.5)

1This is also called zero-one-loss. If misclassifications cause different costs, one usually
defines a cost or loss matrix that specifies the costs accompanied by an object ω of class
ci wrongly classified as cj , j 6= i. In that case, instead of minimizing the total error
probability, learning tries to minimize the corresponding expected costs.
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that returns a vector of real numbers, one for every class. A crisp classifier
g can be derived from g̃ by returning the class with the maximal output
value:

g : X → C, g(x) := argmax
c∈C

(g̃(x))c = argmax
c∈C

g̃c(x), (2.6)

where (g̃(x))c denotes that element of output vector returned by g̃ that
corresponds to class c. Depending on the definition of g̃, the outputs for the
classes can be interpreted as measures of certainty, and thus their relation
as a measure of ambiguity.

If g̃ maps the input data points to [0, 1]nc , it can formally be seen as
possibilistic labeling. If additionally

∑nc

i=1 g̃ci = 1 is fulfilled, the labels
are formally probabilistic. If the objects ω of the training dataset have
also possibilistic or probabilistic labels c̃ω ∈ [0, 1]nc , it is also common to
optimize the mean squared error between the true labels and the classifier
output:

Eg̃ =
∑
ω∈D

‖g̃(xω)− c̃ω‖2. (2.7)

If only the crisp labels cω are given, usually 1-in-n-encoding2 is used:

c̃1-in-n(c) = (c̃1(c), . . . , c̃nc
(c))T

c̃i(c) =
{

1, if c = ci

0, else.
(2.8)

Different scientific communities have proposed a variety of function classes
to represent classifiers g. These function classes differ, for example, in

• the motivating ideas and the theoretical foundations,

• the flexibility in adapting to class distributions,

• the support of soft labels (and how these can be interpreted),

• the complexity of corresponding learning algorithms, and

• the transparency of the represented separations to humans.

Especially for the last aspect, rule-based approaches have in general some
strengths. The representation of knowledge in the form of rules is intuitively
understandable. Especially fuzzy rules, which abstract from numbers and

2As in our notation nc denotes the number of classes, it could be called 1-in-nc-
encoding. However, this would be uncommon.
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use linguistic terms instead, are suited to represent expert knowledge in a
machine readable manner, and present the results of automatic methods
to humans in an interpretable way. Additionally, they naturally yield soft
labels that can be interpreted as similarities to prototypical cases. In the
next section we review the fundamentals of fuzzy set theory and fuzzy rules,
and show how they are used to represent classification functions g̃.

2.2 Fuzzy Rules to Represent Classification
Knowledge

If humans describe objects, they effectively use linguistic terms like, for in-
stance, small, old, long, fast. However, classical set theory is hardly suited
to define sets of objects that satisfy such linguistic terms. Let us, for exam-
ples, assume a person being assigned to the set of tall persons. If a second
person is only insignificantly smaller, it should also be assigned to this set,
and thus it seems reasonable to formulate a rule like “a person who is less
than 1mm smaller than a tall person is also tall” to define our set. How-
ever, if we repeatedly apply this rule, obviously persons of any size will be
assigned to the set of tall persons. Any threshold for the concept tall will be
hardly justifiable. On the other hand, it is easy to find persons that are tall
or small, respectively. Modeling the typical cases is not the problem, but
the penumbra between the concepts can hardly be appropriately modeled
with classical sets.

The main principle of fuzzy set theory is to generalize the concept of set
membership (Zadeh, 1965). In classical set theory a characteristic function

1IA : Ω → {0, 1}

1IA(ω) =

{
1, if ω ∈ A

0, else,
(2.9)

defines the memberships of objects ω ∈ Ω to a set A ⊂ Ω. In fuzzy set
theory the characteristic function is replaced by a membership function

µM : Ω → [0, 1], (2.10)

that assigns numbers to objects ω ∈ Ω according to their membership de-
gree to a fuzzy set M ⊂ X. A membership degree of one means that an
object fully belongs to the fuzzy set, zero means that it does not belong to
the set. Membership degrees between zero and one correspond to partial
memberships.
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Figure 2.1: Examples of typical fuzzy sets

Membership degrees can be used to represent different kinds of imper-
fect knowledge, including similarity, preference, and uncertainty. In fuzzy
classification rules, fuzzy sets are used to model similarity between attribute
values and prototypes, often described by linguistic terms. On the real scale,
very common fuzzy sets are so-called fuzzy numbers (or fuzzy intervals) that
assume a value of one for a single value a ∈ IR (or interval [a, b] ⊂ IR), and
have monotonously decreasing membership degrees with increasing distance
from this core. Fuzzy numbers can be associated with linguistic terms like,
for example, “approximately a”. In fuzzy rule based systems, typically pa-
rameterized membership functions are used, where these are in most cases
either triangular, trapezoidal, or Gaussian shaped (cf. Figure 2.1):

µx0,σ(x) = exp
(
− (x− x0)2

2σ2

)
. (2.11)

If the complete input range is covered by overlapping fuzzy sets, this is
called fuzzy partition. If their number is sufficiently small, the fuzzy sets
M are usually associated with linguistic terms, e.g. AM ∈ {small, medium,
large}. In the following, fuzzy sets M , their corresponding fuzzy mem-
bership functions µM and the associated linguistic terms AM will be used
interchangeably, where the correspondence is clear.

The linguistic terms can be used in the antecedents of fuzzy rules, which
in most cases are Boolean expressions of simple (fuzzy) clauses. The simple
clauses use the individual features x1, . . . , xnd

, and take the form “xi IS A”,
where A is a linguistic term. An example of a simple clause could thus be
“xi IS large”. The definition of the rules’ consequents can vary considerably.
Most types of fuzzy if-then systems use linguistic terms in the consequents,
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which is close to the original idea of linguistic reasoning. The widely used
model by Mamdani and Assilian (1975) uses consequents that take the form
“THEN y IS B”, where y is the output attribute and B is a linguistic term.
In MIMO systems (multiple inputs, multiple outputs), the consequents can
also be Boolean expressions of simple clauses.

A contrast to this are the fuzzy systems proposed by Takagi and Sugeno
(1985). In these systems, the consequents are functions of the input, i.e.
a consequent is defined as “THEN y = f(x)”. In MIMO systems, each
rules’ consequent can have several independent function definitions for the
output variables. The functions f are in most cases polynomials. Obviously,
this definition is further away from linguistic reasoning; the model is thus
sometimes called functional (instead of logical) model.

Depending on the rule structure, different inference mechanisms are nec-
essary. Virtually all classification systems based on fuzzy if-then rules—as
well as most neuro-fuzzy classification systems—use inference mechanisms
that are either derived from Takagi-Sugeno or Mamdani-Assilian fuzzy mod-
els. Generally, interpretation of (non-fuzzy) rule bases leads to evaluation of
individual rules by implication, and conjunctive aggregation of the results.
However, neither the Mamdani-Assilian, nor the Takagi-Sugeno model al-
lows such interpretation in a generalized (“fuzzified”) logic sense.3 Alterna-
tively, they can be interpreted on the basis of equality relations, which puts
them on the proper semantics of interpolation theory (Klawonn and Kruse,
1993). The antecedents of the fuzzy rules then describe vague prototypes or
prototypical cases. Intuitively, this means that the more similar a case is to
a prototype, the more similar should the system’s output be to some output
associated with the prototype. These kinds of fuzzy models have been used
in fuzzy control, and are probably the commercially most successful fuzzy
systems.

The underlying principle of any controller is to map (real-valued) inputs
to (real-valued) outputs. In the following sections, we show how Mamdani-
Assilian and Takagi-Sugeno MIMO systems are evaluated, and how they
can be used to represented (soft) classification functions g̃.

Mamdani-Assilian Fuzzy Systems

In practice, the antecedents of Mamdani-Assilian fuzzy systems are virtu-
ally always restricted to conjunctions of simple clauses. The r-th rule of a

3An interpretation in a narrower sense of fuzzy logic is possible, but unusual in fuzzy
control. The semantics, and the resulting inference calculations are, for example, dis-
cussed by Gottwald (1986); Gottwald and Pedrycz (1986); Gebhardt and Kruse (1993).
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rule base that describes the relation of nd inputs x1, . . . , xnd
to nc outputs

g̃1, . . . g̃nc
takes the form

Rr: IF x1 IS A1,i1,r
AND

x2 IS A2,i2,r
AND . . . AND

xnd
IS And,ind,r

THEN g̃1 IS B1,j1,r
AND . . . AND g̃nc

IS Bnc,jnc,r

WITH WEIGHT wr.

The Ad,i and Bd,j are linguistic terms associated with fuzzy sets µd,i and
νd,j . The first index defines on which (input or output) axis the fuzzy
sets are defined. The second index enumerates the fuzzy sets on this axis.
The indices id,r are needed, as fuzzy sets can be shared by several rules.4

However, for simplicity, in the following we use µd,r to denote the fuzzy set
(or linguistic term) that is used by rule r in dimension d, and νj,r to denote
the j-th output fuzzy set used in the r-th rule. A rule can additionally be
associated with a weight wr that intuitively specifies the relevance of the
rule. However, the use of rule weights are controversial, and thus this part
is often omitted. The effects of rule weights are discussed in Sections 2.3.5
and 2.4.

The first step in the evaluation of a fuzzy rule base of Mamdani or any
other type is called fuzzification. The attribute values xi ∈ Xi of the input
vector x are in general crisp values. These values are fuzzified by calculating
their degree of membership µi,j(xi) to the fuzzy sets defined on that feature
and used in the antecedents. These membership values are considered as
truth values of the simple clauses “xi is Ai,j”.

The next step in rule base evaluation is inference: the calculation of each
rules’ influence and combination of these. The activation (or firing strength)
of a rule is defined as the fuzzy truth value of its antecedent, determined by
evaluating the Boolean expression of the fuzzified inputs. In the Mamdani
case, we only have conjunctions of simple clauses. Conjunctions and dis-
junctions of fuzzy membership degrees are evaluated by so-called t-norms
and t-conorms, respectively:

Definition 2.1 A t-norm > : [0, 1]2 → [0, 1] is a commutative and asso-
ciative function that satisfies >(a, 1) = a and a ≤ b ⇒ >(a, c) ≤ >(b, c).

Definition 2.2 A t-conorm ⊥ : [0, 1]2 → [0, 1] is a commutative and as-
sociative function that satisfies ⊥(a, 0) = a and a ≤ b ⇒ ⊥(a, c) ≤ ⊥(b, c).

4E.g. i2,3 specifies the index of the fuzzy set in its enumeration that is used by the
third rule and the second dimension; if id,r = id,r′ , the corresponding fuzzy set is shared
by rules r and r′.
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For a, b ∈ {0, 1}, all t-norms (t-conorms) behave like the traditional conjunc-
tion (disjunction). For the values in between, however, different behaviors
are possible.

Let us use >(a1, . . . , an) = >(a1,>(a2, . . .>(an−1, an) . . .)) as a defini-
tion of n-ary t-norms. Then we define the activation of a rule:

Definition 2.3 The activation of a rule r is calculated as

actr(x) = > (µ1,r(x1), . . . , µnd,r(xnd
)) .

For the common t-norms minimum (>min), algebraic product (>prod), and
 Lukasiewicz t-norm (> Luka) we get

actmin
r (x) = min{µ1,r(x1), . . . , µnd,r(xnd

)}, (2.12)
actprod

r (x) = µ1,r(x1) · · · · · µnd,r(xnd
), (2.13)

act Luka
r (x) = max{1− nd + µ1,r(x1) + · · ·+ µnd,r(xnd

), 0}. (2.14)

A number of other t-norms have been proposed to achieve special charac-
teristics. However, they play a minor role in fuzzy classification.

As mentioned earlier, inference in Mamdani systems is a heuristic that
cannot be interpreted in a strict logic sense (but, under some restrictions,
as an interpolation between fuzzy control points). The intuitive idea is that
a rule’s influence on the output should increase with its activation level.
Therefore, Mamdani suggested to cut the consequent fuzzy sets νj,r at the
activation level, i.e. to use the minimum of both. More generally, any t-norm
can be used:

Definition 2.4 The output of a single fuzzy rule r is calculated by a
t-norm of consequent fuzzy set and activation:

νout
j,r (yj) = >(actr, νj,r(yj)).

If rule weights wr ∈ [0, 1] are used, the output is defined as

νout
j,r (yj) = >(>(actr, νj,r(yj)), wr).

The individual outputs are then aggregated over all nk rules of the rule base.
Mamdani suggested the maximum operation, however, any t-conorm could
be used here:

Definition 2.5 The output of a rule base for output j is calculated as
disjunctive aggregation of the rules’ outputs

νout
j (yj) = ⊥(νout

1,j (yj), . . . , νout
nk,j(yj)).
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The last step in rule base evaluation is defuzzification, which extracts a crisp
output value from the fuzzy outputs νout

j of the inference system. The most
usual approach to determine a representative value from a fuzzy set is to
calculate its center of gravity (COG)

g̃j = COG(νout
j ) =

∞∫
−∞

νout
j (y) · y dy

∞∫
−∞

νout
j (y) dy

. (2.15)

Other defuzzification methods, like maximum or mean of maximum method,
have been proposed for fuzzy controllers to achieve special control behaviors.
However, they play a minor role for fuzzy classification.

Takagi-Sugeno Fuzzy Systems

A common traditional approach to controller design exploits that systems
are often sufficiently simple that their behavior can be linearized in the
working points. The intuitive idea of building non-linear control functions
with Takagi-Sugeno fuzzy systems is to vaguely describe system states that
can be associated with a simple, preferably linear, control function. Each
of such states is described by a fuzzy rule. The task of the inference system
is to interpolate between these control functions. The general structure of
a Takagi-Sugeno fuzzy rule is

Rr: IF x1 IS A1,i1,r
AND

x2 IS A2,i2,r
AND . . . AND

xnd
IS And,ind,r

THEN g̃1 IS f1,r(x) AND . . . AND g̃nc
IS fnc,r(x)

WITH WEIGHT wr.

Again, the weight term is optional. The first steps of rule evaluation—
fuzzification of the inputs and determination of rule activation—are identical
to evaluation in Mamdani systems. However, the disjunctive aggregation of
rules’ outputs is replaced by calculating a weighted average of the output
functions:

Definition 2.6 The j-th output of a Takagi-Sugeno fuzzy rule based system
is calculated as

g̃j(x) =

nk∑
r=1

actr(x) · fj,r(x)

nk∑
r=1

actr(x)
.
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If rule weights are used, the output is calculated as

g̃j(x) =

nk∑
r=1

actr(x) · wr · fj,r(x)

nk∑
r=1

actr(x) · wr

.

Intuitively, the more one rule is activated in relation to the other rules, the
more the value of its consequent function influences the output. Rules with
greater weights also have increased influence. In contrast to Definition 2.4,
wr is not restricted to the unit interval, but can assume arbitrary positive
values. Notice that the output from Definition 2.6 is already a crisp value,
and hence defuzzification is not necessary in Takagi-Sugeno systems.

Classification with Mamdani or Takagi-Sugeno Fuzzy Systems

Although the definition of a classification function in Section 2.1 allows
arbitrary values for the outputs gj , most approaches restrict them to take
values from the unit interval [0, 1]. In that case, the vector (g1, . . . , gnc

) can
be interpreted as a possibilistic label. Thus, the linguistic formulation of
the consequent of a fuzzy classification rule is usually

R: IF . . . THEN class of object IS c,

represented internally by the 1-in-n-encoding

R: IF . . . THEN g1 = 0, . . . , gc = 1, . . . , gnc
= 0.

In Mamdani classification systems, this is in most cases modeled by using
consequent fuzzy sets νj,r that are crisp numbers, i.e. either 0 or 1, repre-
sented by membership functions 1I{0} and 1I{1}. In Takagi-Sugeno systems,
the crisp values gj are represented by output functions that are constants,
i.e. fi,r ≡ gi,r. It can easily be shown that in that case center of grav-
ity defuzzification of the aggregated output fuzzy set in Mamdani systems
(Eq. (2.15)) and weighted average in Takagi-Sugeno systems yield almost
the same outputs.5

Using these simplifications and Takagi-Sugeno rule evaluation, we define
the output of a base of fuzzy classification rules:

5They are only different, if several rules have identical consequents. In Mamdani
systems by Definition 2.5, these are combined by a t-conorm, and thus get “absorbed”.
In Takagi-Sugeno systems, such consequents “count double”.
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Definition 2.7 Let R = {R1, . . . , Rnk
} be a rule base of nk fuzzy if-then

classification rules of the form
Rr: IF x1 IS A1,r AND . . . AND xnd

IS And,r

THEN class of object IS cr WITH WEIGHT wr.

Let cj denote the class corresponding to the j-th output g̃j, and let > denote
the t-norm used to calculate the activation. Then the outputs of a fuzzy
system with >-sum inference are calculated as

g̃j(x) =

∑
Rr∈R∧cr=cj

actr(x) · wr∑
Rr∈R

actr(x) · wr
,

or, using >-max inference, as

g̃j(x) = max
Rr∈R∧cr=cj

actr(x) · wr.

This definition also applies if no rule weights are used. In that case, we
set wr = 1,∀r ∈ {1, . . . , nk}. For >, any t-norm can be used. The most
common inference schemes for fuzzy classification rules are prod-sum and
min-max.

2.3 Properties of Fuzzy Rules

One reason why fuzzy rules are popular with application experts is the
implicit abstraction from numbers. It seems easier to use linguistic terms,
where one does not have the need to specify exact values in the first place.
However, when a fuzzy classifier is applied to new data, usually a winner-
takes-all principle is used to determine a single class to which a tuple is
most similar. Therefore, there are always crisp borders between regions of
different predicted classes. In this section we discuss the shape of these
borders and show which class distributions can be represented by such a
system. This section shall give an intuition of what a fuzzy classifier can do
and cannot do, for which kind of datasets fuzzy classifiers are suited, and
what should be considered when one is created.

In Section 2.3.1, we review some theoretical results on the capabilities of
fuzzy classifiers. However, the corresponding proofs assume classifiers that
are rather uncommon in practice. In the remaining sections, we discuss the
decision boundaries of more realistic fuzzy classifiers. Section 2.3.2 considers
the influences of different t-norms used to calculate the rule activation. In
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Section 2.3.3, we show that globally defined (shared) linguistic terms can
lead to axis parallel borders, which is an often unwanted restriction, and can
even lead to an equivalence of fuzzy classifiers and lookup table classifiers
with hyperbox cells, if complete rule bases are used. One possibility to
circumvent these problems is to use locally defined fuzzy sets. Section 2.3.4
discusses the linguistic interpretability of such fuzzy sets. Finally the effects
of rule weights are discussed in Section 2.3.5. The results are summarized
in Section 2.3.6.

2.3.1 Representable Decision Boundaries

There are a number of proofs in fuzzy literature that fuzzy rule based sys-
tems are universal approximators. It can be shown for both, Mamdani
and Takagi-Sugeno systems, that they can approximate any continuous
(Riemann-integrable) function with arbitrary precision. Thus, we can also
approximate gc with arbitrary precision (for a survey, see Kuncheva, 2000a).
However, most of these proofs are only interesting as a theoretical result,
because they require vast numbers of fuzzy rules which is impractical in
realistic applications.

Hence, in this section we restrict ourselves to more realistic rule bases
with few rules only. For that case, Klawonn and Klement (1997) showed that
in a two-dimensional space any classification border of the form x2 = f(x1)
(i.e. g(x1, x2) = c1, if x2 > f(x1), and g(x1, x2) = c2, if x2 < f(x1)) can
be represented by two rules only. Although the authors considered only
monotonous functions and used several rules to assemble piecewise monoto-
nous functions, it can easily be shown that it is possible to construct a
pair of rules that can represent any function f . This result holds for any
t-norm > for antecedent evaluation, and for >-sum as well as for >-max
inference. In two-dimensional planes, any piecewise closed area can thus be
described by fuzzy rules. Therefore the area is split into rectangles such that
the boundary in the sections can either be expressed as x2 = f(x1) or as
x1 = g(x2). Each of these rectangles is then represented by two appropriate
fuzzy rules.

However, this works only in two dimensions. In higher dimensional do-
mains, the t-norm used plays a role. Klawonn and Klement investigated the
capabilities of classifiers with min-max inference. In that case, the decision
boundary is located where the activations of the minimally activated rules
of each class are equal. Due to the maximum aggregation, the location of
the decision boundary depends locally on the activations of two rules only.
For each of these rules, due to the minimum t-norm, the activation depends
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on the membership degrees of one antecedent fuzzy set only. Thus, the
shape of the border at this point is determined by the equality6

µi,r(xi) = µj,r′(xj). (2.16)

If different dimensions i and j are involved, i.e. if i 6= j, Eq. (2.16) defines
a curve in i and j. As all other dimensions yield higher (or at least equal)
membership degrees, they are (locally) negligible, and the curve is extended
to a cylindrical hypersurface orthogonal to Xi×Xj . If i = j, then Eq. (2.16)
holds for a fixed xi only.7 In that case, the decision boundary is locally
a hyperplane orthogonal to Xi. The fact that fuzzy min-max-classifiers
decide locally on the basis of at most two variables has been discussed in
detail in (von Schmidt and Klawonn, 1999). The authors conclude that it
is not possible to represent arbitrary decision boundaries in more than two-
dimensional spaces. However, their claims hold only locally. Although it
can be shown that the points with at most two relevant variables are dense
in X, it does not at all mean that the boundary depends on the same two
variables everywhere. Nothing is said about the size of those local areas and
the “global” appearance of the boundary. Thus the results of (von Schmidt
and Klawonn, 1999) give us little intuition of the general boundary shapes
of fuzzy min-max-classifiers.

One common conclusion is that it might be reasonable to replace >min

with other t-norms offering more flexibility. Klawonn and Klement (1997);
von Schmidt and Klawonn (2000) suggest to use the  Lukasiewicz t-norm
> Luka, i.e.

> Luka : [0, 1]n → [0, 1]

> Luka(µ1, . . . , µn) = max{1− n +
n∑

i=1

µi, 0}. (2.17)

With appropriately constructed fuzzy sets, > Luka-max classifiers allow to
represent arbitrary separating hyperplanes

n∑
i=1

cixi = c (2.18)

6For our discussion we assume continuous membership functions and t-norms, and
thus between regions assigned to different classes there exists a region of equal activation
(in general, this region—i.e. the decision boundary—has a thickness of exactly one point).

7We assume that µ′i,r 6= µ′
i,r′ in dimension i.
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Figure 2.2: Influence of dimensionality on rule activation for different t-
norms. The graphs show the activations of two rules with triangular fuzzy
sets when we move from one rule center x to the other x′. Dimensionalities
are 1, 2, 3, 5, and 10, respectively.

in any finite domain, i.e. xi ∈ [ai, bi]. The intuitive idea is to use linear
membership functions for the fuzzy sets. Thus the right side of Eq. (2.17)
(yielding the activation of a rule) has almost the structure of the left side
of Eq. (2.18). The right side is given by a second rule (of another class)
with constant membership functions. The trick of the construction of the
fuzzy sets is to scale them appropriately, such that > Luka does not go into
“saturation”, i.e. such that it stays in the range (0, 1). In that way, the
decision boundary—i.e. the points of equal activations—has the shape of a
hyperplane.

2.3.2 Influence of the t-Norm

Although the fuzzy classifiers used in the proofs need few rules only, they
are of little practical use. In both cases, the constructed fuzzy sets differ
extremely from those commonly used to represent the linguistic concepts
in the antecedents, and thus linguistic interpretability will be lost. In the
two-dimensional case, the fuzzy sets are directly derived from the function
x2 = f(x1) of the decision boundary. However, if we already know f , or at
least have some mechanism to represent an arbitrary function in the fuzzy
sets, why don’t we use it directly? Analogously we can ask, why we might
wish to represent the hyperplanes with a > Luka-max fuzzy classifier, if this
does not increase interpretability, but rather even obscures the structure of
the hyperplane?

The original idea of fuzzy classifiers is to describe a functional depen-
dence with linguistic terms, which are therefore usually represented by in-
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a) >min, two dimensions b) >prod, two dimensions

c) >min, three dimensions d) >prod, three dimensions

Figure 2.3: Decision boundaries between partially overlapping rules.

terpretable parameterized fuzzy sets (like those in Fig. 2.1). It is common to
use triangular membership functions and fuzzy partitions, where the mem-
bership degrees of any two neighboring fuzzy sets add up to one. With these
assumptions, however, the  Lukasiewicz t-norm is rather useless in higher di-
mensional input domains. With more realistic fuzzy sets, > Luka goes rather
quickly into saturation, i.e. there are inputs where the rule activation is
zero, although all involved membership degrees are greater zero.

Figure 2.2 gives a comparison of the most common t-norms. Let us
assume that we have two rules each of which describes a prototype in nd-
dimensional space. Let the cluster centers be x = (x1, . . . , xnd

) and x′ =
(x′1, . . . , x

′
nd

). Let us further assume fuzzy sets that take their maximum
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a) >min b) >prod

Figure 2.4: Decision boundaries with Gaussian membership functions.

value at the center of one prototype and linearly decrease towards the center
of the other prototype. Figure 2.2 shows, how the rules’ activations change
when we move from x to x′, and which effect the dimensionality has (nd ∈
{1, 2, 3, 5, 10}). As >min is an (actually the only) idempotent t-norm, the
conjunction of the µi(xi) is equal to the individual membership values and
dimensionality does not decrease rule activation. In contrast to this, the
 Lukasiewicz t-norm > Luka quickly decays to zero when the dimensionality
is higher. The product >prod also decays rather quickly. However, for
a > 0 and b > 0 it always assumes positive values >prod(a, b) > 0, and thus
classification is still possible. Thus, in the following we consider >min and
>prod only, as they are more appropriate in practical applications.

The used t-norm has also an important influence on the decision bound-
aries. Figure 2.3 depicts the decision boundaries between two rules of dif-
ferent classes for >min (left column) and >prod (right column) for a two-
dimensional (upper row) and three-dimensional (lower row) input space. In
the three-dimensional plots, we show only one rule, such that the otherwise
hidden decision boundary between the rule boxes is exposed. Generally,
the borders for >prod are smoother than for >min. For the minimum, the
decision boundary is piecewise linear, just as the involved fuzzy sets. For
the product, the boundary can be described by hyperbola sections (cf. the
continued curves in Figure 2.3b). We discussed this in detail in (Nürnberger
et al., 1999b, 2000).

Obviously, apart from the t-norm used, the shape of the fuzzy sets plays
a dominant role for the shape of the decision boundary. If we use, for in-
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stance, Gaussian membership functions to approximate the fuzzy sets in
Figure 2.3b, we get decision boundaries as shown in Figure 2.4. The result-
ing boundaries are very smooth, in particular in combination with >prod.
Notice that Gaussian membership functions—in contrast to the triangular
fuzzy sets—are greater zero at any point, and thus the complete input space
is classified by the rules.

2.3.3 Axis Parallelism Through Shared Fuzzy Sets

Fuzzy membership functions in fuzzy rule based systems can be defined
either locally or globally . Globally means that a set of membership functions
is defined for the rule base, and that the antecedents of the rules link to these
definitions. In the local case, each rule has individual fuzzy set definitions,
which might be different for every rule.8 Globally partitioning the axes into
fuzzy sets generally makes the assignment of linguistic labels easier. Global
definitions are thus more commonly used. However, as we show in this
section, they also have severe disadvantages. The following lemma and the
theorem state the cause of some of the peculiarities.

Lemma 2.1 Let r and r′ be two fuzzy rules having antecedent fuzzy sets µi

and µ′i, i = 1, . . . , nd, and different classes in the consequents. Let µi and
µ′i be identical in one dimension i. Then the class boundary between the two
rules is parallel to dimension i in that sense that along each line parallel to
the unit vector ei either the same class is predicted or the activations of the
two rules are equal.

Proof: Let us assume w.r.o.g. that i=1, i.e. µ1 ≡ µ′1, and that at point
x = (x1, . . . , xnd

) act(x1, . . . , xnd
) > act′(x1, . . . , xnd

) holds. Let τ and
τ ′ denote the conjunctive aggregation of dimensions 2, . . . , nd, i.e. τ =
>(µ2(x2), . . . , µnd

(xnd
)) and τ ′ = >(µ′2(x2), . . . , µ′nd

(xnd
)). Then for any

t-norm > the following holds

act(x1, . . . , xnd
) > act′(x1, . . . , xnd

)
⇒ >(µ(x1), τ) > >(µ′(x1), τ ′) = >(µ(x1), τ ′)
⇒ τ > τ ′

⇒ ∀a ∈ [0, 1] : >(a, τ) ≥ >(a, τ ′)
⇒ ∀x′1 ∈ X1 : >(µ(x′1), τ) ≥ >(µ(x′1), τ ′)
⇒ ∀x′1 ∈ X1 : act(x′1, . . . , xnd

) ≥ act′(x′1, . . . , xnd
).

(2.19)
8Globally defined fuzzy sets are also called linguistic modeling, to stress that the

globally defined fuzzy sets are usually associated with linguistic terms. In contrast to
this, locally defined fuzzy sets that are known as approximative modeling.
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This means that by moving x along dimension X1, always the same rule (if
any) has the maximum activation, and thus we can find a boundary parallel
to X1.

As t-norms are in general not required to be strictly monotonous, we cannot
exclude the case that both activations take the same value. Such ambiguous
points can occur, if, for example, >min is used (cf. Figure 2.5).

A direct consequence of Lemma 2.1 is that rules with antecedents dif-
fering in one dimension i only have class boundaries that can be described
by sets of lines parallel to any of the other dimensions j 6= i. These lines
obviously span (one or more) hyperplanes orthogonal to ei. As Lemma 2.1
holds independently of the used t-norm and especially the shape of the fuzzy
sets, some potentially useful degrees of freedom for the class boundary can
be lost in the learning or fine-tuning process.

If we consider rule bases with more than two rules, the results can be
adopted in principle. As we showed in (Nürnberger et al., 1999b), this
leads to axis parallel class borders for complete rule bases. The positions of
the borders are determined by the points of intersection of the membership
functions. However, the exact shape of the fuzzy sets does not influence the
(crisp) classification.

Theorem 2.1 Let F be a fuzzy classifier with a >-max inference and glob-
ally defined fuzzy sets. If F has a complete rule base, i.e. if there is one
rule for ever possible combinations of fuzzy sets, then the input space X1 ×
· · · × Xnd

can be partitioned into a set of (possibly degenerate) hypercubes
A1,k1 × · · · ×And,knd

, such that for any two non-ambiguous points from one
hypercube the same rule has the maximal activation.

Proof: In each dimension i, let A′
i,ji

⊂ Xi be the subset, where fuzzy set
µi,ji

has the maximal degree of membership, i.e.

A′
i,ji

= {x ∈ Xi|∀j′i 6= ji : µi,j′i
(x) < µi,ji

(x)}. (2.20)

The Cartesian product A′
1,j1

× · · · ×A′
nd,jnd

can be associated with a rule

R: IF x1 is µ1,j1 AND . . . AND xnd
is µnd,jnd

THEN . . .

As the A′
i,ji

are pairwise disjunct by definition, the association of Cartesian
products and rules is bijective. Let us assume a point (x1, . . . , xnd

) ∈ A′
1,j1

×
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· · · ×A′
nd,jnd

. It follows that

∀i∀j′i : µi,ji
(xi) ≥ µi,j′i

(xi)
⇒ >(µ1,j1(x1), . . . , µnd,jnd

(xnd
)) ≥ >(µ1,j′1

(x1), . . . , µnd,j′nd
(xnd

))
⇒ actr(x1, . . . , xnd

) ≥ actr′(x1, . . . , xnd
)

(2.21)
If the point (x1, . . . , xnd

) is non-ambiguous, i.e. if exactly one rule has the
maximal activation, it follows that this must be rule Rr, i.e. actr > actr′ .

To complete the proof, we have to show that the Cartesian products
can be represented by hypercubes and that the whole input space can be
partitioned into such hypercubes. Let A′

i,0 denote the subset of Xi where
two or more fuzzy sets take the same value, i.e.

A′
i,0 = Xi\

⋃
ji

A′
i,ji

. (2.22)

We split each A′
i,ji

and A′
i,0 into (closed or open, possibly degenerate) con-

secutively numbered intervals Ai,ki
. We get

Ai,ki
∩Ai,k′i

= ∅ and
⋃
ki

Ai,ki
= Xi, (2.23)

and thus

X1 × · · · ×Xnd
= (

⋃
k1

A1,k1)× · · · × (
⋃
knd

And,knd
)

=
⋃

k1,...,knd

(A1,k1 × · · · ×And,knd
).

Figure 2.5 illustrates the results from this section in two dimensions for t-
norm >min (left column) and the strictly monotonous >prod (right column),
and for an equidistant fuzzy partition (upper row), and an irregular partition
that might, e.g., result from neuro-fuzzy learning (lower row).

Kuncheva (2000b) gives a similar proof that fuzzy classifiers are “look-up
tables in disguise”, like those in the right column of Figure 2.5. However, the
proof has a minor mistake, and therefore ignores the possibility of ambiguous
regions, which can occur with non-strict t-norms (e.g. >min), and which
cannot be represented by crisp look-up tables with hyperbox cells. A grid-
like structure can be found in all four figures. However, as can be seen in
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a) >min, regular grid b) >prod, regular grid

c) >min, irregular grid d) >prod, irregular grid

Figure 2.5: Complete rule bases (i.e. all nine possible rules) with different
t-norms. Notice the ambiguous regions colored in gray in a) and c).

the right column of Figure 2.5, only the fuzzy classifiers with >prod have
equivalent look-up tables with hyperbox cells. The >min classifier with
equidistant fuzzy sets in Figure 2.5a has ambiguous regions only on the
edges. These would vanish, if the outmost fuzzy sets were left- and right-
shouldered, respectively.9 By shifting the fuzzy sets, however, ambiguous
regions can occur at inner points as well (cf. Figure 2.5c). The problem
of ambiguity can dramatically decrease classification performance, as no
unique class label can be assigned to points lying in these regions.

9A fuzzy set µ is called left-shouldered, if ∃x1 : (x ≤ x1 ⇔ µ(x) = 1), and right-
shouldered, if ∃x1 : (x ≥ x1 ⇔ µ(x) = 1).
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In this section we considered only maximum aggregation of rules. If >-
sum inference is used, the situation generally changes, as we have to consider
the summation of overlapping rules of the same class. In such areas, a kind
of majority voting is performed by the weighted average. Although this can
lead to shifted class boundaries, it can be shown that similar effects can
occur.

It should be noted that forced axis parallelism as well as ambiguous re-
gions do not only occur in complete rule bases. Shared fuzzy sets—especially
in combination with non-strict t-norms—have a general tendency to this un-
desirable behavior. We thus conclude that local fuzzy set definitions and
strict t-norms like >prod might be preferable from a perspective of classifi-
cation abilities.

2.3.4 Interpretability of Local Fuzzy Sets

We argued that local (rule-wise) fuzzy set definitions have several advan-
tages over a global definition. However, it is generally assumed to be easier
to find interpretable linguistic labels for globally defined fuzzy sets, and
hence these are often preferred. This is certainly true, if the fuzzy parti-
tions have been defined in advance and associated with linguistic terms by
domain experts. However, if they are learned from data, the interpretability
of globally defined fuzzy sets can also be corrupted.10

In fact, we can always transform local and global fuzzy set definitions
into each other: trivially, if fuzzy sets are defined globally, we can also
define them directly (and possibly redundantly) in the rules. If, vice versa,
each of the nk rules of the rule base uses locally defined fuzzy sets, we
could also define them globally and link to them in the rules. In general,
this leads to nk fuzzy sets on each axis, which might be difficult to be
described linguistically (particularly if nk is large). Thus, interpretability is
not necessarily a questions of local or global fuzzy set definitions.

There have been some efforts to close the gap—or at least find good
tradeoffs—between accuracy and linguistic interpretability of fuzzy rules
(e.g., Casillas et al., 2002). One possibility is to use the fuzzy sets as they
were learned, and generate more detailed linguistic descriptions for them.
Often, linguistic hedges—like “very”, “more”, “above”—are used to enhance
linguistic labels (Maŕın-Blázquez and Shen, 2002). If the learning of the
fuzzy sets is, however, unrestricted, such descriptions might be difficult to
extract and of limited readability.

10Here, learning from data means either to create fuzzy sets from scratch or modify
initially defined fuzzy sets (see Section 3, and especially Section 3.1.2).
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An alternative approach to circumvent this problem is to restrict the
allowed modifications of locally defined fuzzy sets during learning such that
linguistic interpretation is possible afterwards. The commonly used mem-
bership function types, like parameterized triangular or Gaussian shapes,
can generally be seen as fuzzy numbers with associated linguistic descrip-
tions (see Section 2.2). One basic possibility to support the description with
linguistic terms of such fuzzy sets is to define a relative order on them. We
could thus define a relation operator larger as

µ > µ′
def.⇐⇒ ∃x0,∀x : (x ≥ x0 ⇒ µ(x) ≥ µ′(x)) ∧ (x ≤ x0 ⇒ µ(x) ≤ µ′(x).

For triangular membership functions, defined by foot points and tip (a, b, c),
this leads to the condition

µa,b,c > µa′,b′,c′ ⇔ (a > a′ ∧ b > b′ ∧ c > c′).

For example, the fuzzy sets in Figure 2.5 are ordered according to this
condition. We can assign linguistic labels like “small”, “medium”, “large”.
If a learning algorithm ensures widths and relative positions of fuzzy sets
such that they are ordered, it is generally easy to assign linguistic standard
descriptions, or relative descriptions like “slightly smaller than medium”.

2.3.5 The Role of Rule Weights

The use of rule weights in fuzzy rule bases is controversial. For instance,
Nauck and Kruse (1998); Nauck (2000) strongly argue against the use of
rule weights, as they might disturb interpretability of fuzzy systems. Their
main argument is that in most cases rule weights can be eliminated and
incorporated into the membership function. This would lead to systems
without weights, but with decreased interpretability, as the new fuzzy sets
are in general no longer normal, and different fuzzy sets might represent
the same linguistic terms. In contrast to this, Ishibuchi and Nakashima
(2000) argue for rule weights. Ironically, they refer to the argumentation
in (Nauck, 2000), but turn it ‘upside-down’: most neuro-fuzzy approaches
fine-tune the membership functions, which might disrupt the relation of
linguistic terms and fuzzy sets. Hence, they argue that when rule weights
can be interpreted as changed fuzzy sets, one could as well leave the fuzzy
sets unmodified and fine-tune the weights instead, which is in general the
easier task. As the relation of linguistic terms to fuzzy sets is maintained,
interpretability is maintained as well.
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a)
0.99 1.0 0.99
1.0 0.99 1.0
0.98 0.985 0.98

b)
0.99 0.985 0.99
0.985 0.99 0.985
0.98 0.985 0.98

c)
0.6 1.0 0.5
1.0 0.4 1.0
0.5 1.0 0.6

d)
0.6 1.0 0.5
1.0 0.4 1.0
0.5 1.0 0.6

Figure 2.6: The effects of rule weights. The tables show the weights of the
nine rules, Figures a), b) and c) use min-max, Figure d) uses prod-max
inference. Figures a) and b): Even very small changes lead to assignment
of the ambiguous regions to one or the other class (and thus major changes
compared to Figure 2.5c); Figures c) and d): Only minor changes of the
decision boundaries in spite of major weight changes: compare Figures a)
and c), and Figures d) and 2.5d), respectively.
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Obviously, these argumentations are contradicting. Interpretability is a
rather subjective and imprecise concept, and thus it is hard to say that one is
“right”. It should, however, be remarked that any (at least any positive) rule
weights can be eliminated and incorporated into the membership functions,
but only very specific changes of the fuzzy sets have their counterparts in
weight changes.

As weights are always defined for individual rules, and as (as argued in
Nauck, 2000) they can be seen as equivalent to modifications on the fuzzy
sets, we partially circumvent the problems of shared (i.e. globally defined)
fuzzy sets (cf. Section 2.3.3). Especially the possibly occurring ambiguous
regions for non-strict t-norms can be eliminated using rule weights: even the
slightest change of rule weights assigns the ambiguous region to the higher
weighted rule (cf. Figure 2.6). It is, however, questionable, whether such
impacts of slight changes can be considered interpretable. As can be seen
in Figure 2.6c, further changes of the rule weights have little effect. For
strictly monotonous t-norms like >prod the effects are even smaller.

Apart from the relaxation of the hyperbox cell structure of complete
rule bases, Ishibuchi argues that rule weights play an important role when
general and specific rules shall be used. General rules, i.e. rules that contain
“don’t cares” in the antecedent, are an important means to reduce the num-
ber of rules in high dimensional domains. They can for example result from
pruning techniques (e.g., Klose and Nürnberger, 1999). As adding terms to
the antecedents can only decrease rule activation, unweighted specific rules
are always dominated by the more general rules. By using rule weights, this
problem can be ameliorated.

We considered this aspect in (Nürnberger et al., 1999a). However, in-
stead of heuristically choosing rule weights, we suggest a mathematically
more founded motivation. The problem is that general rules cover a greater
hypervolume and a mechanism is needed to balance this. If we interpret
the fuzzy sets as probability density functions, we have to normalize their
integral to one. This can be done by rule weights. Because in this case the
rule weights have a clear probabilistic interpretation, interpretability of the
system is not disturbed. This alternative interpretation of rule weights is
discussed in Section 2.4.

2.3.6 Discussion

Generally, fuzzy rule based classifiers are able to approximate any decision
boundary with any precision. As, however, for the sake of interpretability
and readability the number of rules and the shape of membership functions
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is usually restricted, the resulting fuzzy classifiers have only limited repre-
sentation capabilities in practice. With the commonly used parameterized,
unimodal membership functions (i.e. fuzzy numbers), each rule vaguely de-
scribes a cluster in the input space.

We have argued for t-norms that yield positive values for positive inputs,
as opposed to > Luka, which for higher dimensional rules easily yields zero
activations in spite of positive membership degrees. For strict t-norms, am-
biguous regions do not occur, and hence >prod can be preferable to >min.
Additionally, the decision boundaries for >prod are often smoother and more
“natural”—particularly, when prod-sum inference is combined with Gaus-
sian membership functions.

Globally defined fuzzy sets are often preferred in fuzzy classifier designs,
as they are considered to be easier described with linguistic terms. How-
ever, global definitions bear the pitfall that decision boundaries might be
restricted to be axis parallel. In the extreme case of a complete rule base,
this results in an equivalence of fuzzy classifiers and lookup tables with hy-
perbox cells. This can be avoided by using local fuzzy set definitions. To
maintain the linguistic interpretability of (locally or globally defined) fuzzy
sets during learning, they have to meet certain conditions. In most cases,
linguistic descriptions can also be found for (a sufficiently small number of)
locally defined fuzzy sets, if the fuzzy sets are ordered as defined in Sec-
tion 2.3.4. Under this condition, locally defined fuzzy sets allow additional
degrees of freedom without sacrificing too much interpretability.

Rule weights can also interfere with interpretability. In Section 2.3.5, we
reviewed some of the arguments of flexibility versus interpretability. The
next section describes an alternative interpretation of rule weights, which
gives them a probabilistic foundation.

2.4 Probabilistic Interpretation
of Fuzzy Classification Rules

There are obvious structural similarities between fuzzy classification rules
and probabilistic classifiers like, for example, näıve Bayes or mixtures of
Gaussians classifiers. In fact, they can be shown to perform identical calcu-
lations under some restrictions. Following and extending our results from
(Nürnberger et al., 1999a), we show in the following sections that any näıve
Bayes classifier can be represented by a fuzzy classifier. Supplementary,
here we prove that—vice versa—any fuzzy classifier with t-norm >min can
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be represented as a näıve Bayes classifier.
In (Nürnberger et al., 1999a), our main motivation to transform a näıve

Bayes classifier into a (neuro-) fuzzy classifier was to improve the classifica-
tion performance of the former by the iterative learning algorithms of the
latter. In the context of this thesis, the results are of interest for a different
reason: showing that fuzzy classifiers can (under some weak constraints)
be transformed into näıve Bayes classifiers gives them a sound probabilistic
interpretation. We will need this probabilistic interpretation of the fuzzy
sets when we derive our semi-supervised algorithm in Chapter 6.

The following section gives a brief introduction to näıve Bayes classi-
fiers. Sections 2.4.2 and 2.4.3 describe how a näıve Bayes classifier can be
represented by a fuzzy classification system, and vice versa.

2.4.1 Näıve Bayes Classifiers

Näıve Bayes classifiers are an old and well-known type of classifiers (Good,
1965; Duda and Hart, 1973). They use a probabilistic approach that tries
to compute for a given tuple x ∈ X the conditional probabilities

P (C = c | x) = P (C = c | X1 = x1, . . . , Xnd
= xnd

) (2.24)

for classes c ∈ C. For a given example it predicts that class c with the
maximum posterior probability. In most cases, it is not possible to store
the conditional probabilities for any possible instantiation of x, e.g. in a
lookup table. For numeric attributes, this is obvious, and parameterized
density functions have to be used. But even in case of attributes with
finite domains (like symbolic attributes), the number of possible attribute
combinations grows exponentially with the number of dimensions, which
makes a lookup table approach infeasible in general. Therefore, Bayes rule
is used to invert the conditional probabilities11

P (C = c | X1 = x1, . . . , Xnd
= xnd

)

=
p(X1 = x1, . . . , Xnd

= xnd
| C = c) · P (C = c)

p(X1 = x1, . . . , Xnd
= xnd

)
(2.25)

The probability density function p(X1 = x1, . . . , Xnd
= xnd

) in the denomi-
nator must be strictly positive for this inversion to be possible. However, for

11For simplicity, we always use a probability density function p, although this is strictly
correct only, if there is at least one numeric attribute. If all attributes are symbolic, this
should be a probability P . The only exception is the class attribute, since it necessarily
has a finite domain.
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a given object to be classified, it must be greater zero, as we encountered
at least one instance with that attribute combination. Moreover, we are
mostly interested in the class ranking, and thus can completely neglect this
denominator. If needed, its influence can always be restored by normalizing
the distribution on the classes. It follows that we need only to consider

P (C = c | X1 = x1, . . . , Xnd
= xnd

)

=
1
S

p(X1 = x1, . . . , Xnd
= xnd

| C = c) · P (C = c),
(2.26)

with a normalization factor S that is constant for a fixed x. However, this
inversion does not decrease the size of the probability space. Therefore, the
crucial assumption is made that, for a fixed value of the class attribute,
any attribute Xd is independent of any other. Assuming that knowing the
class is enough to determine the probability distribution for an attribute
independently of any other attributes is a pretty strong, easily violated, and
thus “näıve” assumption. However, this assumption allows us to simplify
the above equation to

P (C = c | X1 = x1, . . . , Xnd
= xnd

) =
1
S
· p(X1 = x1 | C = c)

· . . .

· p(Xnd
= xnd

| C = c) · P (C = c). (2.27)

This is the fundamental formula underlying näıve Bayes classifiers. For
symbolic attributes Xd the conditional probabilities P (Xd = xd | C = c)
can be stored as conditional probability tables, which is feasible for single
attributes. Numeric attributes may be discretized and then treated like
symbolic attributes (Dougherty et al., 1995). However, they are usually
assumed to have a probability density that can adequately be described by
a Gaussian function and hence only the expected value and the variance of
the normal distribution need to be stored in this case. Näıve Bayes classifiers
are induced from a dataset D of sample cases by estimating the conditional
probabilities or probability densities by maximum likelihood estimation.

2.4.2 Converting Näıve Bayes into Fuzzy Classifiers

In this section we prove that any näıve Bayes classifier can be converted into
an equivalent fuzzy classifier. The reverse direction, i.e. the proof that any
fuzzy classifier can be transformed into a (possibly extended) näıve Bayes
classifier, is shown in the subsequent section. Both proofs are constructive.
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Theorem 2.2 Any näıve Bayes classifier can be represented by a fuzzy clas-
sification system, which uses either prod-sum or prod-max inference.

Proof: In contrast to probability densities, which can assume any positive
value, fuzzy membership functions are restricted to the unit interval [0, 1].
Additionally, fuzzy membership functions are usually required to have at
least one element which fully fulfills the concept described by the associated
linguistic term, i.e. ∃x : µ(x) = 1. Therefore, we define factors from the
conditional probability density functions p for each attribute Xd given the
class c

wv
c,d := sup

xd

{p(Xd = xd | C = c)}, (2.28)

and use these to define membership functions µc,d as

µc,d(xd) :=
1

wv
c,d

· p(Xd = xd | C = c). (2.29)

Furthermore, weights wp
c are set to the prior probability of class c ∈ C:

wp
c := P (C = c), (2.30)

and a rule weight wc is defined as the product of these weights

wc := wp
c ·

nd∏
d=1

wv
c,d. (2.31)

For each class c ∈ C we define a fuzzy rule

Rc: IF x1 IS µ1,c AND . . . AND
xnd

IS µnd,c

THEN class IS c WITH WEIGHT wc.

As we define only one rule per class, the results of prod-max and prod-sum
inference are equal (except for the normalizing denominator, see Defini-
tion 2.7). Here, we complete the proof for prod-max inference:

g̃c(x) = wc · actRc
(x) = wp

c ·
nd∏

d=1

wv
c,d · µc,d(xd)

= P (C = c) ·
nd∏

d=1

p(Xd = xd | C = c)

= P (C = c | X1 = x1, . . . , Xnd
= xnd

) · S. (2.32)

Apart from constant S—which is negligible, as we mentioned above—the
two models obviously perform the same calculations.
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2.4.3 Converting Fuzzy into Näıve Bayes Classifiers

The reversal of the Theorem 2.2 is not directly possible. However, we can
prove the following:

Theorem 2.3 A fuzzy classifier with prod-sum or prod-max inference can
be transformed into an equivalent näıve Bayes classifier, if each class is
described by exactly one rule.

Proof: Let us consider a rule base with one rule Rc per class c ∈ C. In that
case the reverse transformation is done similar to the proof above. When
we want to interpret fuzzy membership degrees as probability densities, we
have to normalize them such that the integral (or sum, in case of discrete
domains) over all possible values is one. Therefore, here the normalizing
constant is

vc,d :=
∫

Xd

µc,d(x)dx, (2.33)

and the conditional probability density functions are defined as

p(Xd = x | C = c) :=
1

vc,d
µc,d(x). (2.34)

As the prior probabilities must sum up to one, i.e.
∑

c∈C P (C = c) = 1, we
can define them from the rule weights wc as

P (C = c) = wc ·
nd∏

d=1

vc,d ·
1
k

, (2.35)

with a normalizing constant

k =
∑
c∈C

wc ·
nd∏

d=1

vc,d. (2.36)

With these definition we get

wc · actRc(x) = wc ·
nd∏

d=1

µc,d(xd)

= wc ·
nd∏

d=1

vc,d · p(Xd = x | C = c)

= k · P (C = c) ·
nd∏

d=1

p(Xd = x | C = c). (2.37)
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As we have one rule per class, again prod-sum and prod-max inference yield
equivalent results. For prod-sum inference, we have to normalize Eq. (2.37):

g̃c(x) =
wc · actRc(x)∑

c′∈C wc′ · actRc′ (x)

=
k · P (C = c) ·

∏nd

d=1 p(Xd = x | C = c)∑
c′∈C k · P (C = c′) ·

∏nd

d=1 p(Xd = x | C = c′)

=
P (C = c) ·

∏nd

d=1 p(Xd = x | C = c)∑
c′∈C P (C = c′) ·

∏nd

d=1 p(Xd = x | C = c′)
= P (C = c | X1 = x1, . . . , Xnd

= xnd
). (2.38)

Hence, the fuzzy classifier output g̃c(x) is equal to the output of a näıve
Bayes classifier as constructed by Eq. (2.33) to Eq. (2.36).

The proof shows that any fuzzy classifier with one rule per class can be
transformed into a näıve Bayes classifier. However, the strength of fuzzy
rule bases lies in the possibility to describe more complex classes with several
rules. If we consider such a rule base where classes are described with more
than one rule, they cannot be handled directly by a näıve Bayes classifier.
However, it is possible to split the classes into subclasses (or components).
Each subclass then corresponds to the examples described by one fuzzy rule,
which—according to Theorem 2.3—can be represented by a näıve Bayes
classifier. The posterior probabilities of these subclasses must be combined
to yield the classes’ probabilities. For this purpose, we define an extended
näıve Bayes classifier.

Definition 2.8 An extended näıve Bayes classifier is a tuple (nb, C, C′, k),
where C is a set of classes, and C′ a set of subclasses of C, k : C′ → C is a
surjective mapping that maps the subclasses c′ ∈ C′ to classes c ∈ C, and nb
is a näıve Bayes classifier that estimates P (C ′ = c′ | X = x). The extended
näıve Bayes classifier calculates the conditional probability of a class given
the attribute values as

P (C = c | X = x) = P (
∨

c′∈C′:k(c′)=c

(C ′ = c′) | X = x)

=
∑

c′∈C′:k(c′)=c

P (C ′ = c′ | X = x).

In the extended näıve Bayes classifier the conditional class probabilities
are no longer independent, i.e. for i 6= j, it does in general not hold that
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P (C = c | Xi = xi, Xj = xj) = P (C = c | Xi = xi) · P (C = c | Xj = xj).
However, the underlying classifier is still “näıve”.

Based on this definition, we can reverse Theorem 2.2. However, as the
inference mechanism must now combine the results of several rules for one
class, we have to restrict the type of fuzzy classifier to prod-sum inference.

Theorem 2.4 Any fuzzy rule based classifier with prod-sum inference ac-
cording to Definition 2.7 can be transformed into an equivalent extended
näıve Bayes classifier (nb, C, C′, k).

Proof: Let there be one subclass for each of the nk rules R1, . . . , Rnk
, i.e.

C′ = {c′1, . . . , c′nk
}, and let the mapping k be defined from the rules’ conse-

quents: k(c′j) := cRj
. Let nb be a näıve Bayes classifier for C ′, constructed

from the rule base as shown in the proof of Theorem 2.3.
We can rewrite the output of the resulting extended näıve Bayes classifier

as follows:

P (C = c | X = x) =
∑

c′∈C′:k(c′)=c

P (C ′ = c′ | X = x)

=
∑

c′∈C′:k(c′)=c

P (C ′ = c′) ·
∏nd

d=1 p(Xd = xd | C ′ = c′)∑
c′′∈C′ P (C ′ = c′′) ·

∏nd

d=1 p(Xd = xd | C ′ = c′′)

=

∑
c′∈C′:k(c′)=c wc′ · actRc′ (x)∑

c′∈C wc′ · actRc′ (x)
= g̃c(x). (2.39)

Thus, the output of the constructed extended näıve Bayes classifier is equal
to the output of the fuzzy classifier.

In addition to theorem 2.2, it should be noted that also any extended näıve
Bayes classifier has an equivalent prod-sum inference fuzzy classifier, which
has one rule per subclass, i.e. in general several rules per class.

2.4.4 Discussion

We have shown that any näıve Bayes classifier can be transformed into a
corresponding fuzzy rule based classifier, and that any fuzzy classifier with
prod-sum inference can be transformed into a (possibly extended) näıve
Bayes classifier.

Although they can be transformed into each other, it should be noted
that näıve Bayes classifiers and fuzzy classifiers will in general considerably
differ when trained from data. This is due to the different optimization
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criteria: näıve Bayes classifiers perform a maximum likelihood estimation
of the probability distribution (under the crude assumptions of conditional
independence), whereas most learning algorithms for fuzzy systems12 try to
optimize the performance, and thus the decision boundaries between classes.
In (Nürnberger et al., 1999a), we improved the performance of näıve Bayes
classifiers by transforming them into fuzzy classifiers and applying neuro-
fuzzy learning techniques.

Nonetheless, the equivalence of the approaches gives fuzzy classifica-
tion systems an alternative sound probabilistic basis. As we discussed in
Section 2.3.5, rule weights are usually hardly justifiable. In the transforma-
tions from näıve Bayes to fuzzy classifiers, and vice versa, rule weights get
a proper interpretation. As we can see from Eq. (2.31) and Eq. (2.35), they
serve two purposes. On the one hand, they are used to normalize the size
and thus influence of individual rules, and on the other hand they reflect
the prior probabilities of (sub-)classes.

The use of (fuzzy) rule weights as (probabilistic) normalization factors
might seem questionable, and it might seem at first that rule weights are
necessary to allow transformation of a fuzzy classifier. This is, however,
not the case. It should be noted that Theorem 2.4 allows to transform any
fuzzy rule based classifier with prod-sum inference into an (extended) näıve
Bayes classifier with equivalent outputs—including fuzzy classifiers without
rule weights (i.e. wj = 1, j = 1, . . . , nk).

The most relevant conclusion from our considerations is that fuzzy mem-
bership functions can—after appropriate normalization—be interpreted as
conditional probability density functions. This will be important in Chap-
ter 6, as it allows us to combine classifiers based on fuzzy set theory and
quality measures based on probability theory.

2.5 Conclusions

In this chapter, we reviewed classification based on fuzzy if-then rules. Al-
though the application of such fuzzy classifiers is rather intuitive, there are
a number of variants, and some pitfalls that should be avoided to get inter-
pretable, yet flexible rule bases. Therefore, we discussed capabilities of fuzzy
classifiers and the influence of alternatives in the classifier design. One goal
was to motivate the choices of the fuzzy classifier model that we make in
Chapter 6 when we extend fuzzy classification to semi-supervised learning.

12See Chapter 3
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As we discussed in Section 2.3.2, it is advantageous, if t-norms are strict,
i.e. continuous and strictly monotonous. Being continuous is a prerequi-
site for smooth decision boundaries. The strict monotonicity ensures three
things. First, such t-norms assume positive (non-zero) values for any pos-
itive arguments, which is important for the coverage of the input space,
particularly if its dimensionality is high. In contrast, the practical appli-
cability of the non-strict t-norm > Luka is rather limited, because it leads
to a quick decay of rule activations to zero. Second, ambiguous regions
cannot occur with strictly monotonous t-norms—in contrast to, e.g., >min.
And third, the membership degrees in all dimensions affect the rule activa-
tion in any point, and thus t-norms like >prod generally yield smoother, less
“jaggedly” looking decision boundaries than, e.g., >min. This is particularly
true, if >prod is used in connection with Gaussian functions.

We showed that linguistic modeling, i.e. global definitions of fuzzy sets
can unintendedly restrict their decision boundaries to be axis parallel. Espe-
cially if complete rule bases are defined, fuzzy classifiers can become equiv-
alent to lookup tables. Thus less rules, with local fuzzy set definitions are
preferable to achieve higher flexibility. Usually, there is a tradeoff between
flexibility and interpretability. However, we argued that locally defined
fuzzy sets are still interpretable if the number of rules is reasonably small
and some restrictions are placed on the fuzzy membership functions.

If we have only one rule per class, >-sum and >-max inference yield
equivalent results. Differences only occur, where rules of one class overlap.
In such cases it is intuitive that the influences of several rules predicting
the same class should be weighted higher, as it is done in >-sum inference.
Although the differences are usually only subtle, in many cases >-sum yields
slightly smoother boundaries.

Hence, there are a number of good reasons to use prod-sum inference.
If we use prod-sum inference, this allows an alternative, probabilistic in-
terpretation of membership functions and rule weights. This result is very
important, as our semi-supervised approach in Chapter 6 requires interpre-
tation of the membership degrees as probability densities.



Chapter 3

Extracting Fuzzy Rules
from Data

In the preceding chapter we described how fuzzy rules are used for classi-
fication and which properties they have. So far, the rule bases have been
considered as given. This chapter deals with the aspects where such fuzzy
rules come from, and especially how they can be generated from example
data.

One basic method to obtain fuzzy rules is to create them manually, i.e. an
expert defines linguistic terms with adequate fuzzy sets on the attributes and
describes the classes by linguistic rules. This method stands out from the
other methods presented in this chapter as it is the only method that does
not use example data. It is still noteworthy because many other models,
like for instance, neural networks or statistical classifiers, do (in general) not
allow manual creation at all. Fuzzy rules are commonly said to be adequate
to model the experts’ prior knowledge, as it is one explicit goal of fuzzy
rule bases to serve as an interface between expert knowledge and machine
representation. However, even if a fuzzy rule base has been constructed by
hand, it is common—and very often necessary—to fine-tune and check the
rule base against some example data.

Fuzzy rules are often seen not only as a tool to classify new datasets, but
also as a tool for exploratory data analysis. In that case, transformation of
example data into interpretable rules is desirable. The task of extracting
rules (or other classification models) from data is commonly called learn-
ing. By far the most common learning paradigm in machine learning is
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supervised learning. The input for the supervised learning task consists of
a dataset of tuples together with corresponding class labels. The learning
task is to generalize the regularities found in the labeled example data.

The second important learning paradigm is unsupervised learning, i.e.
learning from example data without known class labels. The general task
of unsupervised learning is to reveal inherent structures in the data. It is
often assumed that the data is divided into a number of (a priori known
or unknown) classes, and the learning task is to reconstruct the class infor-
mation from the distribution of the example data. This task is known as
cluster analysis.

In both cases, learning is inductive, i.e. knowledge is generated by gen-
eralizing from specific cases (Mitchell, 1997). There exist both, supervised
and unsupervised, approaches to extract fuzzy rules from data. In the next
sections we present some of the most important methods.

3.1 Supervised Induction of Fuzzy Rules

There is a variety of methods that have been proposed to induce fuzzy rules
from data. They differ in the kind of extracted rule bases (e.g. whether they
use global or local fuzzy set definitions) and in the extent of a priori fixed
parts of the rule base (e.g. fixed fuzzy sets or fixed rules). In the following
sections we sketch the most common strategies, namely

• structure-based rule extraction with given fuzzy sets,

• fuzzy set (parameter) tuning given a rule base,

• identification of fuzzy sets and rules with grid-like structure, and

• formation of fuzzy graph-like rules.

Genetic or evolutionary algorithms are also often discussed for optimizing
or creating fuzzy systems. One advantage of evolution strategies is their
ability to modify and optimize model structure and parameters, whereas
most optimization strategies can only adapt model parameters. As we dis-
cuss in Section 6.1, this will be of some importance for the semi-supervised
approach proposed in this thesis. Therefore, the induction of fuzzy rules by
evolutionary algorithms will take its own chapter (cf. Chapter 4).
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3.1.1 Structure-Based Approach by Wang&Mendel

If the attributes are partitioned into linguistic terms and corresponding
fuzzy sets, an efficient and widely used algorithm to extract rules is that
proposed by Wang and Mendel (1992). The algorithm extracts rules in
conjunctive normal form with all attributes occurring in the antecedents.
Because it uses globally defined fuzzy sets, the number of possible different
antecedents, i.e. the number of rules in the complete rule base, is equal to the
product of the number of fuzzy sets in each dimension. Of these theoretically
possible rules, the algorithm creates those that yield the maximal activation
for at least one tuple of the example dataset.

In its basic form, the algorithm needs just one run over the training data
to find these rules. As t-norms are monotonous, the antecedent of the maxi-
mally activated rule can be constructed from the fuzzy sets that assume the
maximal membership degrees in the individual dimensions. Additionally,
the class of the pattern is registered for the rule. If the antecedent already
exists in the rule base, only the pattern’s class is counted for this rule. After
all patterns have been presented, the consequents of the rules are set to the
corresponding most frequent classes.

As this algorithm considers only the regions of maximal membership, the
input space is structured by a multi-dimensional grid. Thus, a single pattern
that falls into a grid cell triggers creation of the corresponding rule. Partial
overlapping of adjacent fuzzy rules is not considered in this basic algorithm.
As the number of grid cells – and with it the number of possible rules – grows
exponentially with increasing dimensionality, the algorithm often produces
too many, too specific rules. Therefore, a second rule learning stage is often
used to choose a representative subset of rules.

3.1.2 Fuzzy Set Learning with Fixed Rules

The algorithm by Wang&Mendel expects predefined fuzzy membership func-
tions on the attributes. These can, for example, be given by domain ex-
perts. In many cases, it is difficult to define appropriate fuzzy partitions
beforehand. This is especially true if rule learning is applied in a data
mining sense, and the goal is to extract previously unknown knowledge. If
knowledge about the attributes (and the specific classification task) is not
sufficient to define suited fuzzy sets, it is common to define fuzzy partitions
equidistantly on the attributes and associate them with linguistic terms like,
e.g., small, medium, large.

There are other approaches to find appropriate partitions, e.g. by (fuzzy)
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clustering. This can be done either separately for each attribute, on the
combined attributes of the input space, or even in input and output space
together (the latter is more common for fuzzy control). Fuzzy clustering
can not only be used to define fuzzy sets, but also for the (unsupervised)
extraction of fuzzy rules, as shown in Section 3.2.4.

In any case—no matter whether the fuzzy sets are defined manually, by
equidistant partitioning or by clustering—the performance of fuzzy rules can
usually be significantly increased by fine-tuning the underlying fuzzy sets.
Normally, parameterized membership functions are used. The optimization
task is then to adjust the parameters such that some performance measure
(e.g. classification rate) is maximized. There are a number of methods from
numerics that have been proposed for this task. However, many of the
common methods, as for example, gradient descent, rely on differentiable
functions. In case of fuzzy rule bases, the widely used min-max-inference
and triangular fuzzy sets cause problems due to non-differentiable points
and plateau areas. These problems have been investigated by Eitzinger
(2001). His proposal uses so-called bundle methods (Schramm and Zowe,
1992) that can deal with such cases.

Other approaches use work-arounds. For example, they use differen-
tiable membership functions like Gaussians, and use prod-sum inference,
or replace minimum and maximum operation by fuzzy variants that are
differentiable, e.g. the softmax

softmax(x1, . . . , xn) =
∑

i xi · eαxi∑
i eαxi

, (3.1)

where α determines how closely softmax approximates max. As α ap-
proaches ∞, softmax approaches the maximum function, for α = 0, softmax
calculates the mean, and if α approaches −∞, softmax approaches the min-
imum.

Some approaches use heuristics that simply ignore such areas, and still
yield reasonable results in most cases. One such example is NEFCLASS
that uses simple fuzzy set modification rules (Nauck and Kruse, 1997).

An important aspect of membership function tuning are the semantics
of the fuzzy sets. Especially if the fine-tuning is used after building the
rule base, and thus after fuzzy sets have been associated with linguistic
terms, the correspondence of such linguistic terms and underlying fuzzy
sets should be maintained. A variety of constraints is thus usually required
in the learning process, e.g. fuzzy sets must keep their relative order, must
overlap, or add up to one (see Nauck and Kruse, 1997).
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3.1.3 Forming Fuzzy Partitions and Grid-Like Rules

A common way to induce fuzzy rule bases from scratch, i.e. to learn them
completely from examples without prior definitions of rules or fuzzy sets, is
to learn in two stages. The induction starts with equidistantly defined fuzzy
partitions with standard linguistic labels. In the first stage, these fuzzy sets
are used with the Wang&Mendel algorithm to create rules. In the second
stage, the fuzzy sets are fine-tuned for this (now fixed) set of rules.

As rules and fuzzy set definition strongly depend on each other, learning
in two phases is sometimes not flexible enough. Higgins and Goodman
(1992, 1994) suggested an extension of the Wang&Mendel algorithm that
does not need a priori defined fuzzy sets. The algorithm starts with only
one fuzzy set per input dimension, and thus creates one rule only. Then
a split point is chosen where the current model makes the maximal error.
At this point, a new fuzzy set is introduced in every dimension. With the
resulting fuzzy partitions, Wang&Mendel is executed again. These steps—
finding a split point, refining the granulation of the input space, and creating
new rules based on this granulation—are iterated until sufficient precision
is reached or some other criterion is fulfilled.

3.1.4 Hyperbox-oriented Fuzzy Rule Learning

In Chapter 2 we have discussed properties of global granulations of the in-
put space. The restriction to a number of fuzzy sets that have meaningful
names and that are shared by all rules can make the rule base more read-
able. However, one loses some flexibility,1 which might in turn make a finer
granulation necessary, and thus lead to huge rule bases that are again hard
to read. In such cases rule bases with local definitions of the fuzzy sets
might be the better solution. Their rule-wise definition of the fuzzy sets
allows to increase complexity of the rules in those regions of the input space
only where extended flexibility is needed.

An algorithm that extracts such rules from data is the Fuzzy Min-Max
Neural Network (FMM) proposed by Simpson (1992, 1993). The approach
is hyperbox-oriented, i.e. each rule is associated with a hyperbox in input
space, within which the rule fully applies. The hyperboxes are represented
by pairs of minimal and maximal value in each dimension.2 The activation of

1For example, forced axis parallelism of decision boundaries, cf. Section 2.3.3.
2The name “Min-Max” classifier refers to these corner points of the hyperboxes. It

does not specify the inference mechanism, which is “average-max” in the original proposal
(Simpson, 1992).



44 Chapter 3. Extracting Fuzzy Rules from Data

the rule outside the hyperbox is controlled by a fuzzy membership function
and monotonously decreases with distance from the hyperbox. Simpson
suggests to use symmetrical trapezoidal membership functions with fixed
widths of the “rims”. All features are scaled into the unit interval [0, 1].
Let vr,j and wr,j denote the minimum and maximum value of the jth di-
mension of the rth hyperbox (rule), and let γ be the parameter that controls
the sensitivity, i.e. the behavior outside the interval [vr,j , wr,j ]. Then the
membership degree for dimension j for rule r is defined as3

µr,j(xj) =
1
2

(max{0, 1−min{0, γ(xj − wr,j)}}+

max{0, 1−min{0, γ(vr,j − xj)}}). (3.2)

The activation of a rule r is defined as the average membership degree

actr(x) =
1
nd

nd∑
j=1

µr,j(xj). (3.3)

The training algorithm, however, does not take into account the membership
function, but considers the hyperboxes (i.e. the min-max pairs) only. The
original algorithm iterates over the tuples once. For each tuple the following
steps are performed:

• Test if the tuple is already contained in a compatible hyperbox, where
a tuple is said to be compatible with a hyperbox if the labels of the
corresponding rule and tuple match. If such a hyperbox exists, proceed
to the next tuple.

• If no such hyperbox exists, find that hyperbox that is closest to the
tuple, compatible, and can be extended to contain the tuple. The
latter criterion involves a user-specified parameter θ that controls the
maximal allowed size of a hyperbox. The constraint is defined as

nd∑
j=1

(max{wr,j , xj} −min{vr,j , xj}) ≤ ndθ. (3.4)

If such a rule r exists, its minimum and maximum points for all di-
mensions j are updated to

v′r,j := min{vr,j , xj} and w′
r,j := max{wr,j , xj}. (3.5)

3Eq. (3.2) defines trapezoidals that are scaled in ordinate direction, such that the
membership degrees come from the range [0.5, 1]. The width of the rim is 1

γ
.
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If no compatible and extendable rule exists, a new hyperbox is created
and initialized to contain only the tuple, i.e. for all j, vr,j and wr,j are
both set to xj . The consequent of the corresponding rule is set to the
tuple’s label.

• If a new rule r has been added or if an existing rule r has been ex-
tended to contain the current tuple, it is checked for overlap with the
other rules. As the activation inside a hyperbox is 1, hyperboxes with
concurring consequents must not overlap to avoid ties. Thus for all
rules r′ with consequents different from rule r, it is checked if r and r′

overlap. If they do, the hyperboxes are contracted based on the “min-
imal adjustment principle”, i.e. that dimension and min-max point is
chosen that allows to resolve the overlap with a minimal change.

The induced rule bases often contain many rules, which are hardly inter-
pretable due to their number and the local fuzzy set definitions. The re-
sulting classifiers strongly depend on the ordering of the tuples and often
perform not very well on unseen data. However, the algorithm is one of the
classical induction approaches, and had considerable impact on fuzzy clas-
sifier research. A wide number of modifications and extensions have been
proposed, ranging from simple changes (e.g. process the tuples several times;
use different membership functions and t-norms) to more sophisticated de-
signs with adaptive resolutions (e.g., Rizzi et al., 1998). Berthold (2003) de-
vised an advanced approach that is based on similar mechanisms. His mem-
bership functions are, however, parameterized by 4-tuples (ar

j , b
r
j , c

r
j , d

r
j) that

define trapezoids, possibly degenerated to triangles (i.e. br
j = cr

j) or “don’t
cares” (i.e. ar

j = −∞, dr
j = +∞). This allows more general rules, which can

be crucial to get understandable rule bases for higher dimensional datasets.

3.1.5 Hybrid Methods of Rule Extraction

There are a number of approaches that combine several techniques to in-
duce interpretable fuzzy rules from data. Popular combinations include, for
example, fuzzy systems and neural networks (see below), or fuzzy systems
and evolutionary algorithms (as treated in more detail in Chapter 4). Other
hybrid approaches combine fuzzy techniques with classical machine learning
models (e.g. induction of decision trees, see below).
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Neuro-Fuzzy Approaches

Systems that combine neural networks and fuzzy systems have gained quite
a lot of attention over the past years. The motivating idea is to exploit
the learning ability of neural networks and the proximity of fuzzy systems
to human thinking. There are a number of possibilities how to combine
the two. The approaches can be divided into several groups (Nauck et al.,
1997):

• Fuzzy neural networks: These neural networks use fuzzy methods
to support learning—e.g. by using fuzzy rules to change the learn-
ing parameters (Halgamuge et al., 1994)—or work with fuzzy inputs
(Narazaki and Ralescu, 1991; Ishibuchi et al., 1995).

• Concurrent “neural/fuzzy systems”: neural network and fuzzy
system process the same task, but are constructed independently.
Usually the neural network preprocesses the inputs to, or postpro-
cesses the outputs from the fuzzy system.

• Cooperative neuro-fuzzy models: A neural network is used to de-
termine the parameters (rule weights and/or fuzzy sets) or the struc-
ture (rule base) of a fuzzy system. After the learning phase, the fuzzy
system works without the neural network.

• Hybrid neuro-fuzzy models: Neural network and fuzzy system are
combined into a homogeneous architecture, such that the system can
at any time be interpreted as a (specialized) neural network or as a
fuzzy system.

Most current neuro-fuzzy approaches are hybrid neuro-fuzzy models. This
architecture is especially suited for data analysis. The other hybridizations
either still have a black-box neural network as one part, or they lose their
learning ability once transformed into a fuzzy system. Hybrid neuro-fuzzy
models are transparent rule systems when interpreted as fuzzy systems,
and can still be trained without modifications. For a survey on neuro-fuzzy
models for data analysis see, e.g., (Klose et al., 2001).

An example of a neuro-fuzzy classification system is NEFCLASS (Nauck
and Kruse, 1995, 1997). NEFCLASS uses the Wang&Mendel approach to
induce fuzzy rules (and thus the structure of the neural network), and a
backpropagation-like parameter learning algorithm. Additionally, the cur-
rent implementations of the NEFCLASS approach have been extended by
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a number of features that make it more appropriate for real-world applica-
tions. The extensions include the treatment of missing values and the ability
to use data with both, numeric and symbolic attributes (Nauck and Kruse,
1999; Nauck et al., 1999). A lot of attention has been paid to the devel-
opment of automatic pruning strategies to get more compact and readable
rule bases. When a rule base is induced from data with the Wang&Mendel
algorithm, it often has too many rules and thus gives little insight into the
structure of the data. The pruning techniques implemented in NEFCLASS
have been shown to be effective in both, reducing the number of rules and
increasing generalization ability (Nauck et al., 1997; Klose et al., 1998; Klose
and Nürnberger, 1999).

Tree-based Approaches

Decision trees are a popular classifier approach, where the classification
knowledge is stored in a tree structure. The nodes are associated with
tests on the features and the leaves are associated with classes. A new case
is classified by descending from the root on the path that is given by the
outcomes of the tests in the nodes, until a leave is reached and the associated
class is assigned. What makes decision trees interesting for data analysis
is the existence of very efficient divide-and-conquer induction algorithms
(Breiman et al., 1984; Quinlan, 1993). The classification knowledge stored
in decision trees is rather transparent and interpretable, and additionally
the trees can be transformed into (crisp) rules.

This mechanism can be exploited in several ways to generate fuzzy rules.
Tests on numeric attributes lead to crisp thresholds, which are often unsat-
isfying. A natural extension of decision trees is thus to replace the tests
in the nodes with fuzzy queries. In such fuzzy decision trees, a case can
descend on several paths from the node to the leaves, with different degrees
of membership or compatibility according to the tests’ outcomes. The in-
duction algorithms for fuzzy decision trees are very similar to those of crisp
decision trees like ID3 or C4.5, just that the test selection measures are re-
placed by measures that can deal with fuzzy memberships (Janikow, 1998;
Chi and Yan, 1996; Yuan and Shaw, 1995; Wang et al., 1999). From the
resulting fuzzy decision trees fuzzy rules can be extracted.

The second group uses the standard decision tree algorithms to induce
crisp rules. These initial rules are then transformed into fuzzy rules, and
eventually postprocessing steps, like pruning or fine-tuning, are applied af-
terwards (Jäkel et al., 1999; Maher and Clair, 1993). These approaches are
often combined with neural networks or evolutionary optimization.
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3.2 Unsupervised Induction of Fuzzy Rules

The second important learning paradigm is unsupervised learning, i.e. learn-
ing from example data without known class labels. Generally speaking, the
task of unsupervised learning is to reveal inherent structure in the data.
Typical tasks of unsupervised learning are

• Compressing or approximating the distribution, e.g. by kernel
density estimation (Silverman, 1986), or by learning vector quantiza-
tion (LVQ, Kohonen, 1986).

• Dimensionality reduction: find lower dimensional substructures in
the data, e.g. with self organizing maps (SOMs, Kohonen, 1982, 1995).

• Dependency analysis: find (in)dependencies between features that
may hint to causal relations and can, for example, be extracted by
graphical models (Borgelt and Kruse, 2002),

• Cluster analysis: try to find or reconstruct the class information
from the inherent structure in the data (Jain and Dubes, 1988).

As cluster analysis ultimately assigns classes to objects, it is also referred to
as automatic or unsupervised classification. In the classifier context of this
thesis, cluster analysis is the most relevant unsupervised learning task. It
tries to find groups in the data such that objects in the same group are sim-
ilar to each other. As there is often some ambiguity when assigning objects
to clusters, there have been a number of fuzzy approaches to cluster analy-
sis which take into account partially overlapping clusters. In Sections 3.2.1
and 3.2.2, we outline some of the most important fuzzy cluster algorithms.
Section 3.2.3 deals with the question of cluster validity. The results of fuzzy
clustering can be transformed into fuzzy rules, and can therefore be used
for unsupervised extraction of fuzzy rules from data, as described in Sec-
tion 3.2.4.

3.2.1 Models with Point-Prototype Clusters

The fuzzy clustering algorithms considered in the following sections use an
unlabeled dataset D = {x1, . . . ,xn}, where the features are real-valued, i.e.
xj ∈ X = IRnd . The result of the algorithms is a nk × n matrix of cluster
memberships U = [uij ], where nk is the number of clusters and uij ∈ [0, 1]
specifies the degree to which object j belongs to cluster i. Usually, clusters
are expected to be non-empty: ∀i ∈ {1, . . . , nk} :

∑n
j=1 uij > 0. In fuzzy
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cluster analysis, we also distinguish between possibilistic or probabilistic
labels, where the membership degrees of an object are called probabilistic
if they sum up to one over all clusters, i.e. if ∀j ∈ {1, . . . , n} :

∑nk

i=1 uij = 1.
Additional to U , most algorithms produce a prototypical description of

the clusters. In case of point-prototype clusters, these are solely defined
by their positions in space. Thus, each cluster is associated with a cluster
center, represented by a vector vi ∈ IRnd . As clustering means grouping
similar objects, similarity must be measured. In point-prototype models
this is usually done with a distance measure

δA(x,x′) = ‖x− x′‖A =
√

(x− x′)T A(x− x′), (3.6)

with x,x′ ∈ IRnd and a positive-definite nd × nd matrix A (Mahalanobis
distance). If A is the identity matrix 1I, δA(x,x′) becomes the Euclidean
distance.

Probably the best known and most widely used fuzzy clustering algo-
rithm is fuzzy c-means (FCM, Bezdek, 1981). It tries to minimize the ob-
jective function

Jm(U,V ) =
nk∑

i=1

n∑
j=1

um
ij‖xj − vi‖2

A, (3.7)

where U are probabilistic cluster memberships,4 V = {v1, . . . , vk} is the set
of cluster prototypes, and m > 1 is a degree of fuzzification. The closer m
is to one, the crisper the cluster result will be. A very common choice is
m = 2.

The minimization of Jm is usually done by alternating optimization.
From a fixed set of prototypes V , the optimal cluster membership U can
be derived, as well as the optimal positions of the prototypes V for given
memberships U . Thus the optimization comprises the following steps:

1. Choose an appropriate number of clusters nk and a fuzzifier m.

2. Randomly choose initial cluster centers V .

3. Estimate new memberships U from V as

uij =

(
nk∑

i′=1

(
‖vi − xj‖A

‖vi′ − xj‖A

) 2
m−1

)−1

. (3.8)

4Fuzzy c-means is an extension of the hard c-means (or k-means) algorithm (Mac-
Queen, 1967). They basically minimize the same objective function. However, in k-means
the labels are crisp (i.e. uij ∈ {0, 1}), and thus constant m can be ignored.
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4. Estimate new cluster centers V from updated membership degrees U
as

vi =

∑n
j=1 um

ij xj∑n
j=1 um

ij

. (3.9)

5. Loop steps 3. and 4. until the change of the cluster centers is below
a threshold or the number of iterations exceeds some limit.

The algorithm can be guaranteed to converge, although not necessarily to
a global minimum of Jm.

Possibilistic c-means (PCM), a variant of FCM, assigns possibilistic la-
bels to the objects (Krisnapuram and Keller, 1993). The idea is that possi-
bilistic labels allow outliers to have low membership degrees to all clusters.
The objective function J is extended to

JPCM
m (U,V ) = Jm(U,V ) +

nk∑
i=1

wi

n∑
j=1

(1− uij)m, (3.10)

where the added term rewards high memberships and thus prevents uij = 0
as a trivial minimum of J . However, as has been shown in (Timm and Kruse,
2002; Timm, 2002), the global minimum of PCM puts all cluster centers to
the same point, and the algorithm thus depends on an optimization that
stops in local minima.

3.2.2 Models with Non Point-Prototype Clusters

Clusters that are only represented by their centers tend to be hyperspherical
and of similar size. If however, the clusters in the data are hyperellipsoidal
or of varying size, the results of FCM or PCM can be unsatisfying. An
obvious extension is to represent a cluster not only by its position, but also
by its shape. Gustafson and Kessel (1979) proposed a clustering algorithm
(GK) that for every cluster optimizes a positive definite nd × nd matrix Ai

which is used for the calculation of distances. With A = {A1, . . . , Ank
}

being the set of matrices, the objective function Eq. (3.7) is modified to

JGK
m (U,V ,A) =

nk∑
i=1

n∑
j=1

um
ij‖xj − vi‖2

Ai
. (3.11)

JGK
m (U,V ,A) is minimized with the additional constraint det(Ai) = ρi,

where ρi > 0 are user specified constants that regulate cluster sizes and
ensure that the Ai are positive definite.
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From fixed cluster memberships U and prototype centers V the optimal
Ai can be calculated through the fuzzy covariance matrices Ci defined as

Ci =

∑n
j=1 um

ij (xj − vi)(xj − vi)T∑n
j=1 um

ij

. (3.12)

The optimal Ai for given U and V is

Ai = (ρi det(Ci))
1

nd C−1
i . (3.13)

JGK
m (U,V ,A) is minimized with alternating optimization similar to FCM.

U is updated by Eq. (3.8) with the distances replaced by ‖ · ‖Ai , V is
updated by Eq. (3.9) and A is calculated by Eq. (3.13). As the objective
function JGK

m is more complex due to its high number of free parameters,
it is common to run FCM first and use its results to initialize U and V .

Gath and Geva (GG) suggested a different approach that replaces the
Mahalanobis distance d2(vi, xj) = ‖xj − vi‖2

A with an exponential distance
measure (Gath and Geva, 1989)

d2
Ci,GG(vi,xj) =

(√
det(Ci)

ρi

)
exp(

1
2
‖xj − vi‖2

C−1
i

), (3.14)

where Ci are the fuzzy covariance matrices calculated from Eq. (3.12) with
m = 1. In spite of this, this distance is used in Eq. (3.8) with m = 2:

uij =

(
nk∑

i′=1

(
dCi,GG(vi,xj)
dCi′ ,GG(vi′ ,xj)

)2
)−1

. (3.15)

There is a close relation of this distance measure to normal distributions, and
it is possible to interpret GG as maximum likelihood fitting of a Gaussian
mixture model to the data and thus allows probabilistic interpretation of
the cluster memberships (Bezdek et al., 1999).

3.2.3 Cluster Quality Measures

The unsupervised nature of clustering, i.e. its lack of an a priori, externally
defined objective makes it difficult to assess its results algorithmically. Clus-
tering algorithms partition the data no matter whether there are marked
clusters or not. Therefore the choice of the cluster shape and especially of
an appropriate number of clusters is quite important.
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Cluster quality measures try to quantify how good the discovered clusters
represent the data. The sum of squared distances between points x and
corresponding (closest) rule centers vi(x) is one measure of cluster quality:

Qssd =
∑
x∈X

‖x− vi(x)‖2. (3.16)

A reasonable way to judge cluster quality is to optimize the clusters with
respect to a given objective function J and number of clusters nk, and
then assess the result with a separate cluster quality measure. This second
measure should be independent of J in the sense that it is based on a
different rationale. Qssd is hardly suited as a cluster quality measure for
the algorithms described in this chapter because it has obvious similarities
to objective function J in Eq. (3.7). Actually, Qssd is minimized by (hard)
c-means clustering.

In the following sections we present two measures of cluster quality, the
Davies-Bouldin index and Dunn’s index. As we show in Chapter 5, they
also play a role in semi-supervised learning.

Davies-Bouldin Index

The measure proposed by Davies and Bouldin (1979) measures the ratio
of intra-cluster to inter-cluster distances. The measure thus gives good
values for compact clusters that are well separated. Let {D1, . . . ,Dk} be
a partition of the unlabeled dataset D into nk crisp clusters generated by
winner-takes-all defuzzification of U . Inter-cluster distance is the Euclidean
distance between two cluster centers vi and vi′

δDB
ii′ = ‖vi − vi′‖, (3.17)

and intra-cluster distance is defined as the average distance of the tuples Di

assigned to a cluster center i

αDB
i =

√
1
|Di|

∑
x∈Di

‖x− vi‖2. (3.18)

The intra-inter-cluster ratio for two clusters is defined as

ρDB
ii′ =

αDB
i + αDB

i′

δDB
ii′

. (3.19)
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The Davies-Bouldin index is calculated from the ratios of the nk clusters as

QDB =
1
nk

nk∑
i=1

max
i′ 6=i

ρDB
ii′ . (3.20)

Low values of ρDB
ii′ indicate that the clusters are small in comparison to their

distance. QDB sums up these values for each cluster and its nearest or most
overlapping neighbor. The better the clusters are separated, the smaller the
value of QDB will be.

Dunn’s Index

The idea of the index proposed by Dunn (1974) is similar to the Davies-
Bouldin index. However, intra- and inter-cluster distances are defined dif-
ferently. Intra-cluster distance is measured by the diameter of the cluster,
defined as5

αD
i = max

x,x′∈Di

‖x− x′‖. (3.21)

Inter-cluster distance is defined as the set distance

δD
ii′ = min

x∈Di,x′∈Di′
‖x− x′‖. (3.22)

Dunn’s index uses the ratio of smallest inter- to greatest intra-cluster dis-
tance

QD =
mini 6=i′ δ

D
ii′

maxi αD
i

. (3.23)

Good clusters are indicated by large values of QD. The main problem of
Dunn’s index is its sensitivity to noise. Due to the definition of diameter
and set distance, a single outlier can massively change the results. This
problem has been addressed by Dunn-like indices that replace the defini-
tions of diameter and set distance by more robust measures based on graph
theoretic concepts, like minimum spanning tree or relative neighborhood
graph (Pal and Biswas, 1997; Bezdek and Pal, 1998).

3.2.4 Converting Fuzzy Clusters to Fuzzy Rules

Fuzzy clustering can be used to reveal or reconstruct class information from
unlabeled data. The result is a soft assignment of the objects to the clusters.
In the scope of this thesis, however, we are interested in descriptions of the

5Note that the Euclidean distance in Eq. (3.21) can be replaced by any other metric.



54 Chapter 3. Extracting Fuzzy Rules from Data

structure in the form of interpretable fuzzy classification rules. Especially
in fuzzy control it has become popular to combine fuzzy clustering with
subsequent transformation of the clusters into fuzzy if-then rules. Every
cluster is turned into one fuzzy rule. The fuzzy sets are derived by projecting
the clusters onto the axes (Sugeno and Yasukawa, 1993; Klawonn and Kruse,
1997). For classification rules, only the antecedent fuzzy sets have to be
derived. The consequent, i.e. the predicted class cannot be derived from
unlabeled data. Thus, either an arbitrary label is used (e.g. the cluster
number), or the labels are chosen from additional background knowledge.

Strictly speaking, projecting a cluster j to axis i to get the corresponding
antecedent fuzzy set µi,j means to compute

µi,j(y) = sup{uj(x)|x ∈ X ∧ xi = y}, (3.24)

where membership degree uj(x) is calculated according to the update equa-
tions, i.e. let dj(·, ·) denote the distance function used in the corresponding
objective function and cluster j, then uj(x) is defined as (cf. Eq. (3.8) and
Eq. (3.15))

uj(x) =

 nk∑
j′=1

(
dj(vj ,x)
dj′(vj′ ,x)

) 2
m−1

−1

. (3.25)

However, computing Eq. (3.24) is rather cumbersome, and hence we usually
project only the given data and the corresponding cluster memberships, i.e.

µi,j(y) = sup{ucj |c = 1, . . . , nk ∧ (xj)i = y}, (3.26)

with sup(∅) := 0. The singular peaks that are defined by this equation
are either connected by computing the convex hull, or are approximated
by simpler parameterized functions, like triangles, trapezoids, or Gaussians.
Details of the approximation can, for example, be found in (Sugeno and
Yasukawa, 1993).

This projection works with any fuzzy clustering algorithm. However, in
most cases projecting leads to a certain loss of information, i.e. the Cartesian
product of the projected fuzzy sets is not equal to the original cluster mem-
berships. The smallest projection error can usually be achieved using FCM,
due to its spherical cluster shape. If, however, more flexibility is needed,
and thus GK or GG are used, the projection error can become rather large.
This error stems mostly from the rotation of the hyperellipsoidal clusters. A
reasonable compromise between flexibility of cluster shapes and projection
accuracy can be achieved by modifying the GK and GG models to extract
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axis parallel clusters, i.e. by restricting the fuzzy covariance matrices Ci to
diagonal matrices. As shown by Klawonn and Kruse (1995, 1997), this also
significantly simplifies the update scheme, as the matrix inversions are no
longer necessary.

In case of the GK algorithm, Ai in Eq. (3.13) becomes a diagonal matrix
with

a
(i)
dd =

(ρi

∏nd

d′=1

∑n
j=1 um

ij (xj,d′ − vi,d′)2)
1

nd∑n
j=1 um

ij (xj,d − vi,d)2
, (3.27)

and a
(i)
dd′ = 0 for d 6= d′. With Ai defined in this way, cluster member-

ships and prototype centers are computed as in the original version of GK
(Klawonn and Kruse, 1997).

In the GG model, which is—as mentioned above—closely related to mix-
tures of Gaussians, it can be shown that the diagonal entries of the matrices
Ci are computed as (fuzzy) variances

c
(i)
dd =

∑n
j=1 um

ij (xj,d − vi,d)2∑n
j=1 um

ij

, (3.28)

and c
(i)
dd′ = 0 for d 6= d′. Of course, the inverse matrices C−1

i needed
in Eq. (3.14) are also diagonal, and the diagonal elements are simply the
reciprocal values of c

(i)
dd . The update equations for U and V are again kept

as in the original algorithm (Klawonn and Kruse, 1997).
If the axis parallel version of the GG algorithm is used to cluster the

data and Gaussian fuzzy sets are used in the rules, the fuzzy set parameters
can be directly derived from cluster centers vi and fuzzy variances Ci.

Apart from projection errors, another problem of fuzzy rule bases ob-
tained from cluster analysis is their decreased comprehensibility. Since the
resulting fuzzy sets are not restricted to match any semantic interpretation,
they are often hardly linguistically interpretable.

3.3 Conclusions

In this chapter, we gave a survey on the most common techniques to in-
duce fuzzy rules from a dataset of examples. The most obvious difference
of the presented approaches is that between supervised and unsupervised
approaches. The algorithms of these two groups are applied to completely
different problems. Although we can in principle turn a supervised into an
unsupervised learning task by discarding the labels, this will in general not
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yield satisfying results. The other direction is not possible at all, as the
label information of the training data is not available. The main problem
of unsupervised learning is that its results strongly depend on the distance
measure used and the scaling of the data. It has commonly problems in find-
ing the right number of clusters. Thus, we can usually not guarantee that
the clusters in the data space correspond to meaningful classes of the ob-
jects. Especially if the dimensionality is high, similarity functions—playing
a central role in clustering—show strange behavior (see, e.q., Jiminez and
Landgrebe, 1998). This makes pure unsupervised learning only moderately
applicable to high-dimensional datasets. Supervised learning is generally
less sensitive to the number of dimensions.

In Chapter 5, we present existing approaches to semi-supervised learn-
ing. One goal of the previous sections was to see, which fuzzy rule induction
algorithms are most promising for the extension to semi-supervised learning.
Semi-supervised approaches depend on an ability to reveal structure from
the distribution of the data points without consideration of the class labels.
Thus it is not surprising that unsupervised approaches have been proposed
as a basis for semi-supervised learning, and there are some extensions of
unsupervised (fuzzy) clustering to semi-supervised (fuzzy) clustering. How-
ever, there are also semi-supervised extensions of supervised algorithms,
like the generalized fuzzy min-max classifier (see Section 5.2.6). The suit-
ability of the rule learning approaches for extension to semi-supervision is
considered in Chapter 6, where we propose our semi-supervised algorithm
for fuzzy classification rule learning.

The next chapter deals with evolutionary algorithms, which are also
popular for fuzzy rule learning. We describe them in a separate chapter,
because they play a special role: depending simply on the fitness function
used, these algorithms can learn either supervised or unsupervised. As
we discuss in Section 6.1, this makes them especially interesting for semi-
supervised learning.



Chapter 4

Evolutionary Algorithms
for Fuzzy Rule Learning

Evolutionary algorithms (EA) have been established as a versatile class of
search and optimization techniques (Goldberg, 1989; Holland, 1975; Mitchell,
1998). Like artificial neural networks, they mimic mechanisms from nature.
However, the simulation of biological reproduction schemes in EA allows—in
contrast to, e.g., backpropagation learning in neural network—to optimize
not only parameters, but also model structure. This makes them well suited
for complex search spaces.

As they perform stochastic search using only a performance function,
evolutionary algorithms are largely problem independent. They can easily
be integrated with fuzzy techniques. However, it is necessary to understand
how optimization works in evolutionary algorithms to choose appropriate
encodings of potential solutions as chromosomes, to define a function to
assess the fitness of these chromosomes, and to choose reasonable operators
for selection, recombination, and mutation. Thus, we will briefly review the
relevant concepts of evolutionary algorithms in Section 4.1. In Section 4.2,
we review previous work on evolutionary algorithms for fuzzy rule learn-
ing. Section 4.3 summarizes and discusses the concepts and sets them into
relation to the fuzzy rule induction algorithms presented in the previous
chapter.

Our measures for semi-supervised learning of fuzzy rules call for a rather
capable non-linear optimization technique. As we show in Chapter 6, evo-
lutionary algorithms are well suited for this task.

57
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4.1 Introduction

All evolutionary algorithms share the same underlying ideas. They simulate
the development of a population of individuals over a number of generations.
Each individual can be interpreted as candidate solution for the problem
to be solved. Starting with a randomly initialized population, individu-
als which are fitter with respect to the problem have a higher probability
to survive or reproduce. By recombinations of good partial solutions and
by occasional mutations, evolutionary algorithms perform a stochastic, di-
rected and parallel search. However, the details of how candidate solutions
are encoded and how reproduction is modeled can be very different. There
are two distinct paradigms in evolutionary algorithms:

• Evolution strategies (ES) have been proposed by Rechenberg (1965,
1994) and Schwefel (1965). They focus on the phenotype in the sense
that the individuals directly encode the values of the parameters to
be optimized, and that mutation and recombination work directly on
these.

• Genetic algorithms (GA) have been introduced by Holland (1975)
and Goldberg (1989). In contrast to ES, they focus on the genotype
of the individuals, i.e. the chromosomes that encode the candidate so-
lutions are strings over a discrete (often binary) alphabet. GA opera-
tions are closer to biological genetics, i.e. mutation and recombination
directly affect the genes, ignoring the effect on the phenotype at first.

Both types will be described in the next two sections. Section 4.1.4 will
discuss differences and connections.

4.1.1 Evolution Strategies

The individuals in the original variants of evolution strategies hold a vec-
tor of genes which are (most often real-valued) parameters that are to be
optimized:

ḡ = (g1, . . . , gn) ∈ G, where usually G = IRn. (4.1)

The optimization task is formalized in a fitness function

Q : G → IR (4.2)

that assesses the quality of a candidate solution on a numeric scale. In ES,
the best solutions according to that fitness function are taken to the next
generation as seed points for better solutions.
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The most important operation in ES is mutation, i.e. random variation
of the parameter values. In nature, small deviations are more probable
than large changes. Thus, mutation in ES is performed by adding Gaussian
distributed noise with zero mean and standard deviation σ:

N0,σ =
1

σ
√

2π
· e−

x2

2σ2 . (4.3)

Usually, the genes of all children are modified in this way before they are
included in next generation’s population.

Parameters like σ that control the search characteristics are called strat-
egy parameters. Small values of sigma lead to a local exploration that helps
to find the optimum near the current values. Large values might help to
escape local minima. It has thus become usual to control the strategy pa-
rameters themselves in the evolution strategy. Each gene gi is associated
with a mutation parameter σi. In a mutation step, a gene is modified ac-
cording to its own step size:

g
(t+1)
i = g

(t)
i +N0,σi . (4.4)

Additionally, the strategy parameters are mutated. This can, for example,
be done by adding Gaussian noise with zero mean and a certain deviation
δ (e.g., Bäck et al., 1991):

σ
(t+1)
i = σ

(t)
i +N0,δ. (4.5)

The idea is that strategy parameters which are well suited for the search
space lead more often to good solutions than others, and thus have a higher
chance to survive. This helps to balance between exploration of the search
space (global search) and exploitation of good, already found solutions (local
search).

Recombination plays a central role in evolutionary algorithms, as it al-
lows to transfer information about good subsolutions to (and combine these
in) the next generation. In ES, there are two main variants:

• Discrete recombination: the genes of an offspring are copied from
either of the parents with equal probability.

• Intermediate recombination: the genes of an offspring are set to the
mean values of the corresponding parents’ genes.

The strategy parameters are modified in the same way.
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It has been shown that even the simplest (1+1)-ES—i.e. one parent and
one offspring compete—, even without mutation adaptation, is able to find
the global optimum in search space with probability one (see, e.g., Bäck
et al., 1991). Necessary prerequisite is that the mutation operation can
reach any point in search space with non-zero probability—and that the
algorithm runs long enough. However, since the proof says nothing about
the number of generations that are needed, it is not very helpful.

4.1.2 Genetic Algorithms

As in evolution strategies, the individuals in genetic algorithms are repre-
sented by a gene string ḡ = (g1, . . . , gn). However, similar to the four bases
Adenin, Thymin, Cytosin, and Guanin that nature uses to encode the ge-
netic information in the DNA, the gi stem from a discrete, usually even
binary alphabet gi ∈ {0, 1}. To get a candidate solution, the genotype must
first be translated into its corresponding phenotype. This usually means
that the parameters, which shall be be optimized, correspond to fixed sub-
strings of the chromosomes. Like in ES, the problem-specific fitness function
Q is defined on the phenotype.

Apart from the significantly different encoding of individuals in ES and
GA, they use other definitions of the genetic operators. Mutation, for exam-
ple, is specialized to real valued parameters in ES. In GA, mutation affects
the genes of the genotype without consideration of their meaning for the
phenotype. Thus, every gene can be affected by mutation with equal prob-
ability pmut. Let χ ∈ [0, 1] denote a uniformly distributed random variable.
Then mutation of a gene gi is defined as

g
(t+1)
i =

{
¬g

(t)
i , if χ < pmut

g
(t)
i , else.

(4.6)

While the purpose of mutation is to bring in new solutions to the gene
pool, recombination shall ideally pass the parents’ information about good
partial solutions to an offspring. The most common recombination oper-
ator is crossover. Let the bit strings of two parents be denoted by ḡ1 =
(g1,1, . . . , g1,n) and ḡ2 = (g2,1, . . . , g2,n), respectively. Then the so-called
one-point crossover, the most basic variant, randomly chooses a split point
i ∈ {1, n− 1} and produces an offspring with a bit string

ḡc = (g1,1, . . . , g1,i, g2,i+1, . . . , g2,n). (4.7)

In one-point crossover the probability of two genes to be copied into a child
depends on the position on the chromosome: the closer genes are to the
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ends of the bit string, the higher the probability that they are divided. E.g.
one-point crossover always separates a parent’s first and last gene gj,1 and
gj,n. To avoid this unwanted bias, two-point crossover can be used, where
two split points 1 ≤ i1 < i2 ≤ n are used to define an offspring

ḡc = (g1,1, . . . , g1,i1 , g2,i1+1, . . . , g2,i2−1, g1,i2 , . . . , g1,n). (4.8)

Some proposals extend this to multi-point crossover, and some suggest to
involve more than two parents.

In contrast to ES, where simply the best individuals reproduce, genetic
algorithms use more sophisticated selection schemes that also allow less
fit individuals to survive, although with a lower probability. Apart from
being biologically more plausible, the advantage of these selection schemes
is increased exploration of the search space and thus higher probabilities
to escape from local optima. The most widely used schemes include fitness
proportionate, rank-based, and tournament selection.

As the name suggest, in fitness proportionate selection the probability for
an individual to be selected for reproduction is proportional to the quality of
the solution it represents. LetQ(ḡj) denote the fitness of the j-th individual.
Then its selection probability P (ḡj) is defined as

P (ḡj) =
Q(ḡj)∑
j′ Q(ḡj′)

. (4.9)

Obviously, the values of the fitness function Q have to non-negative. This
can always be achieved by shifting (Q′ = Q + const) or by exponentiation
(Q′ = eQ). This reveals a major problem of fitness proportionate selection:
the selection probabilities strongly depend on the exact definition of the
fitness function. Additionally, it depends on the variance in the population.
Because this variance usually decreases over time, selection pressure also
decreases.

Rank-based selection tries to avoid these problems by considering solely
the relative ordering of the candidate solutions’ fitness values. It can be seen
as a transformation of Q: the candidate solutions are sorted by their fitness
Q in increasing order. The least fit individual is assigned a new fitness
Qrank = b with a bias b, the next best a value of b + 1, and so on. Selection
is then performed fitness proportionate with respect to Qrank. The bias b
controls selection pressure.

Good results, which are independent of transformations of Q and which
additionally do not require sorting of the population, can be achieved with
tournament selection (Goldberg, 1990; Mühlenbein and Schlierkamp-Voosen,
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1993). In tournament selection, two (or more) individuals are randomly cho-
sen from the population, and the fitter of them is selected. It often depends
on the problem—and the characteristics of the fitness function—, which
selection strategy yields the right balance between selection pressure and
population diversity. Comparisons of several strategies can, for example, be
found in (Goldberg and Deb, 1991; Blickle and Thiele, 1995).

4.1.3 Building Blocks and the Schema Theorem

The schema theorem is often used as an explanation of how genetic algo-
rithms function (Holland, 1975). A schema H is defined as a template with
fixed instantiations for a subset of the bit string, while the remaining bits
can take arbitrary values. The idea is that if a schema encodes information
about a good (partial) solution, the individuals that share this schema will
have above-average fitness, and thus a higher reproduction probability.

The evolution of schemata can be formally described (Holland, 1975;
Schaffer, 1987). Let L denote the length of the chromosomes, O(H) the
order of the schema (i.e. the number of fixed bits), and L(H) the defining
length (i.e. the distance between the first and last fixed bit position). Let
m(H, t) be the frequency of a schema at generation t. The averaged fitness
of all individuals at generation t is denoted with f̄(t), that of the individuals
with schema H with f(H, t). If we assume fitness proportionate selection,
the frequency of individuals with schema H after selection is

msel(H, t + 1) = m(H, t) · f(H, t)
f̄(t)

. (4.10)

The frequency of above average schemata will grow exponentially due to
f(H,t)

f̄(t)
> 1.1 Schemes might be disrupted by crossover or mutation. H is

disrupted by crossover, if the second parent does not contain the schema
(probability 1 − msel(H, t + 1)) and the operator affects the scheme. For
one-point crossover this means that the split point falls between first and
last bit of the schema, thus this probability is L(H)

L−1 . Crossover is applied
with probability pc. Mutation does not disrupt H if none of the O(H) bits
is changed. Because the probability of a bit change is the mutation proba-
bility pm, H survives mutation with probability (1 − pm)O(H). Putting all
together, we can estimate the probability that schema H survives from one

1Obviously, frequency is bound by 1. This is, however, no contradiction, as the average
fitness f̄(t) increases with time.
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generation to the next, i.e. that it is selected and not disrupted. Consid-
ering that H might also be generated from other schemata by crossover or
mutation, Eq. (4.10) can be extended to the inequality

m(H, t + 1) ≥ msel(H, t + 1) · (1− pm)O(H)

·
(

1− pc
L(H)
L− 1

(1−msel(H, t + 1))
)

= m(H, t) · f(H, t)
f̄(t)

· (1− pm)O(H)

·
(

1− pc
L(H)
L− 1

(
1−m(H, t) · f(H, t)

f̄(t)

))
. (4.11)

The effectiveness of genetic algorithms is often explained by the large
number of schemata that are tested in parallel in every generation (i.e. there
are by far more schemata than individuals), and the convergence to good
solutions. As can be seen in Eq. (4.11), necessary condition for the success
of a schema is not only its above-average fitness, but also a low order O(H)
(so mutation does no harm) and low defining length L(H) (so crossover does
not affect it). Schemata with low defining length and high average fitness
are called building blocks, as the solution is ideally assembled from these.

This explanation has been criticized for several reasons. For example, in
an initial population, schemata of order O occur with a probability of 1

2

O.
If we consider complex problems with large L, above-average schemata will
have accordingly large orders O(H), and their probability to occur initially
will be diminishingly small for realistic population sizes. For a survey of
other points of criticism see, e.g., (Whitley, 2001).

However, we can learn from the schema theorem and Eq. (4.11) what
might obstruct successful application of genetic algorithms. Although GA
do not take the meaning of the bits into consideration, an intelligent en-
coding can support them by keeping the relevant bits together and thus
keeping defining lengths of schemata short. Additionally, crossover and
mutation can be selected specifically for a problem, such that they do not
destroy partial solutions.

4.1.4 Discussion

The question which of the paradigms is superior is rather futile. Although
followers of both schools sometimes fiercely defend their model, there is—as
often—nothing like a free-lunch: It depends on the problem at hand, which
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strategy will work better. As a rule of thumb, genetic algorithms have their
strengths in discrete search spaces, like e.g. combinatorial problems. For
structure optimization, GA with variable chromosome lengths have been
proposed. For such cases, no direct ES counterpart exists. However, evolu-
tion strategies are generally better suited for (real-valued) parameter iden-
tification. As a matter of fact, there have been proposals to combine ideas
of both paradigms. The real-coded genetic algorithms are rather successful
examples (Eshelman, 1991; Schaffer and Eshelman, 1993). Besides real-
valued genes, they use specialized mutation and crossover operations. As
the induction of fuzzy rules implies learning of structure and parameters,
such hybrid, specialized evolutionary algorithms are highly interesting.

Although EA are sometimes promoted as problem independent opti-
mization algorithms that need nothing but a fitness function, they do in
general not work out of the box in more complex search spaces. This is
certainly the case for a challenging task like fuzzy rule base learning. Thus
well-considered design of encoding and genetic operators is necessary. The
next sections will present the most common approaches to evolutionary in-
duction of fuzzy rule-based systems.

4.2 Evolutionary Fuzzy Rule-Based Systems

The task of learning a rule base with evolutionary algorithms has been
considered in the machine learning community since the late 70’s (Grefen-
stette, 1994). Although since then a large number of chromosome encoding
schemes and genetic operators have been proposed, most of the approaches
can be classified into three main categories: the “Pittsburgh-style” (Smith,
1980), the “Michigan-style” (Holland and Reitman, 1978), and the iterative
rule learning (IRL) approach (Venturini, 1993). These approaches were first
proposed for crisp rule induction, however, they have been extended to the
learning of fuzzy rules.

Of these three approaches, the Pittsburgh-style approach is closest to
the basic genetic algorithm: the goal is to optimize a rule base, and thus
each chromosome represents an entire rule base. The performance of the
rule bases is assessed by a fitness function. By using appropriate genetic
operators, the population evolves towards better solutions. Finally, the
candidate solution with the highest fitness is chosen. Examples of fuzzy rule-
based systems that use Pittsburgh-style genetic learning include (Hoffmann
and Pfister, 1997; Carse et al., 1996; Pham and Karaboga, 1991; Thrift,
1991; Kinzel et al., 1994). The main drawback of this approach are the
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rather high computational demands due to the necessary evaluation of all
rule bases in every generation. Both other approaches, Michigan-style and
iterative rule learning, thus evolve individual rules.

The origin of Michigan-style approaches, namely the Cognitive System
One (CS-1) proposed by Holland and Reitman (1978), takes a special po-
sition in genetic algorithm learning: it does not only consider competition
amongst individuals with the goal of finding the single best individual. In-
stead, the individuals (i.e. the rules) are also cooperating, and the final so-
lution (i.e. the rule base) is assembled from individuals of the whole popula-
tion. Obviously, specialized fitness functions are necessary that prevent con-
vergence of all rules to the same optimum. CS-1 uses an epoch-based credit
apportionment algorithm to control cooperation and competition amongst
rules. The fitness of a rule depends on the number of covered tuples and on
the misclassification rate. Concurring rules, i.e. rules with antecedents that
describe intersecting areas, share their covered tuples and thus get lower
rewards. Thus, it pays for rules to evade to less covered areas of the search
space. An adequately implemented credit apportionment system should bal-
ance between cooperation and competition, and thus evolve rules with high
(joint) coverage and low misclassification rate. As the interaction between
individual rules is sometimes hardly predictable, the credit apportionment
system is the sore point of Michigan-style rule learning. It thus remains
the focus of research. Michigan-style approaches to fuzzy rule learning can,
for instance, be found in (Valenzuela-Rendón, 1991; Ishibuchi et al., 1999;
Bonarini, 1996; Parodi and Bonelli, 1993).

Like Michigan-style approaches, iterative rule learning tries to reduce
the search space by evolving individual rules instead of entire rule bases.
However, there is only competition amongst rules of one population, and
a single best rule according to a fitness measure is chosen. The rule is
inserted into a rule base, and the learning task is modified to take the
already covered examples into account. As the name suggests, this rule
creation and selection procedure is iterated until a satisfying rule base is
assembled (Venturini, 1993). Iterative rule learning divides the problem of
competition and cooperation into two stages: competition between rules of
a population and cooperation between new and already chosen rules. This
avoids the problems of credit apportionment. However, it is not trivial to
formalize optimality of a single rule in a fitness function. Fuzzy approaches
to evolutionary iterative rule learning can, for example, be found in (Cordón
et al., 1999, 1998; González and Pérez, 1999).

A fourth approach has been established in evolutionary induction of
fuzzy rule systems: genetic optimization of the fuzzy partitions in combina-
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tion with deterministic rule induction. The algorithm by Wang&Mendel (cf.
Section 3.1.1) is a rather efficient method for fuzzy rule induction. However,
it depends on prior definitions of fuzzy sets. Rule bases induced with inap-
propriate fuzzy partitions can afterwards hardly be healed by fine-tuning.
An alternative approach is proposed by Cordón et al. (2001): the chromo-
somes do not directly represent rules, but fuzzy partitions only, i.e. they
encode the granularity of the attributes, and scaling factors that allow non-
linear dilatations of the (otherwise equidistant) fuzzy partitions. Thus local
sensitivities can be varied under preservation of standard linguistic labels.
To measure the fitness of a chromosome, a rulebase is deterministically
generated by the Wang&Mendel algorithm using the encoded fuzzy parti-
tions. The quality of the obtained rule base is used as a fitness measure of
the chromosome. Due to the one-to-one relation of chromosomes and rule
bases, the algorithm is actually comparable to Pittsburgh-style learning.
However, search space size is significantly reduced, though at the cost of
decreased flexibility.

For the purpose of semi-supervised learning, the Pittsburgh-style ap-
proaches are most promising. In Michigan-style and iterative rule learning,
there is no objective function that is minimized for the rule base. Instead,
the final rule base results from the interplay of competition and cooper-
ation. This will become more critical, if labeled and unlabeled data are
considered in rule learning. Furthermore, these approaches hardly allow to
incorporate a quality measure that is independent of the learning mecha-
nism. Because our approach, that we present in Chapter 6, is based on the
Pittsburgh-approach, the section below discusses the chromosome encodings
and genetic operators of such rule learners in more detail.

4.2.1 Pittsburgh-Style Rule Induction

Pittsburgh-style learning of fuzzy if-then rule-based systems can be per-
formed on several levels of complexity:

• Optimization of fuzzy sets with fixed rule base,

• Optimization of fuzzy rules with fixed fuzzy partitions,

• Optimization of fuzzy rules and fixed fuzzy sets in stages, or

• Parallel optimization of fuzzy rules and fuzzy sets.

Obviously, these learning tasks place very different demands on the evolu-
tionary algorithm. In the following sections we present some of the most



4.2. Evolutionary Fuzzy Rule-Based Systems 67

common chromosome encodings and genetic operators that have been pro-
posed in literature.

When judging the suitability of the approaches for our problem at hand,
we have to keep in mind that many of them deal with fuzzy control. Fuzzy
rules for control and classification have rather similar structure (cf. Sec-
tion 2.2), and thus learning of fuzzy sets and antecedent clauses is transfer-
able. The fuzzy sets in the consequents of control rules are simply replaced
by class labels. If the defuzzified classification results, i.e. the crisp labels,
are used to estimate the misclassification rate of a rule base, fitness functions
defined on the basis of these misclassifications will usually have discontinu-
ities. This can complicate optimization in comparison to smoother fitness
functions in fuzzy control. Additionally, the problems in data analysis are
usually of much higher dimensionality than control applications, which again
makes classification harder in comparison to control. On the other hand,
the best consequent for a classification rule with a given antecedent can
be directly determined from the labeled data. Thus, in contrast to fuzzy
control, the consequents need not to be optimized, which decreases search
space size. Furthermore, classification problems can almost always be solved
in batch mode—in contrast to control problems where learning must often
be performed online, and sometimes even with a real plant in the control
loop. Thus, bigger populations and more generations are often affordable
in classification.

Optimization of Fuzzy Sets with Fixed Rule Base

If the rule base is given (e.g. by an expert), optimization of the fuzzy sets
refers to fine-tuning of the membership functions. This is a relatively easy
task, because setting up the rule base makes only sense within an approx-
imately fixed context, and thus the fuzzy set positions already must be al-
most correct. In such cases, other methods like e.g. gradient descent might
be more appropriate (cf. Section 3.1.2). However, evolutionary learning can
be a feasible alternative, if involved membership functions or learning ob-
jectives prohibit gradient descent. This can, for instance, be the case for
non-differentiable membership functions.

In almost all proposals parameterized fuzzy sets are used, and thus a
chromosome represents these parameters. In (Klose et al., 2000), we used
real-valued encodings of the parameters, but binary encodings have also
been successfully applied (see, e.g., Karr, 1991). The usual triangular,
trapezoidal, or Gaussian shapes of the fuzzy sets can be found. Mutation
affects either the bits in binary encodings or directly the parameter values
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in real-valued encodings. Accordingly, crossover exchanges bits or complete
parameters.

An alternative encoding of fuzzy sets has been devised by Kinzel et al.
(1994). They use a vertical view on the fuzzy sets, i.e. their fuzzy sets
are characterized by real-valued membership values at a fixed number of
sampling points of a domain. Crossover of two chromosomes thus transfers
the information, where a rule will or will not hold, from parents to child.
However, although a repair mechanism ensures convexity, linguistic inter-
pretability might be lost. Additionally, precision is limited by the number
of sampling points.

Optimization of Fuzzy Rules with Fixed Fuzzy Partitions

Because fixed fuzzy partitions are defined globally and a priori, these ap-
proaches always induce descriptive rule bases, i.e. rules that share the fuzzy
sets. For low-dimensional problems it is common to represent the rules in a
decision table with an entry for every possible antecedent (i.e. every fuzzy
set combination). Rule induction then means to assign appropriate con-
sequents to the antecedents. Additionally, a null value can be assigned to
deactivate a rule. An early fuzzy control example can be found in (Thrift,
1991). In any case, rule learning is a combinatorial problem that is generally
more challenging than fuzzy set tuning.

Mutation is performed by randomly replacing the values of the conse-
quents. If the decision tables are represented in a one-dimensional gene-
string, standard one- or two-point-crossover can be applied. However, ad-
jacent rules, i.e. rules with intersecting antecedents, can lie at quite dif-
ferent positions on a one-dimensional chromosome. In the terminology of
the schema theorem, such a schema with rules adjacent in the input space,
but separated on the gene-string, has a large defining length and thus high
probability to be destroyed by crossover. To support the genetic algorithm
in evolving building blocks of adjacent rules, specialized crossover operators
have been proposed that take spatial relations into account, e.g. by consid-
ering more-dimensional chromosome structures, where adjacent rules lie at
adjacent loci. For instance, Kinzel et al. (1994) suggest to randomly choose
a crossover-point in the decision table, and exchange all entries within an
also randomly chosen (Manhattan-) distance from that point. Thus adja-
cent rules have a higher probability to end up in the same offspring (see
Figure 4.1).

As the number of rules grows exponentially with the number of di-
mensions, representing rules in decision tables is not feasible in higher-
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parent #1 child #1
nm nb ze nm pm
nb NM nm ze nm
NB NM ZE pm pb
nm ZE pm pm pb
pb pm pb pb pm

nm nb ze nm pm
nb ZE nm ze nm
PM NB ZE pm pb
nm PM pm pm pb
pb pm pb pb pm

parent #2 −→ child #2
pb nm pb pm nm
ze ZE nm nb pb
PM NB ZE pm pb
pb PM pm pm nb
pm pm pb nb nm

pb nm pb pm nm
ze NM nm nb pb
NB NM ZE pm pb
pb ZE pm pm nb
pm pm pb nb nm

Figure 4.1: Point-radius crossover for two-dimensional decision tables. Each
table cell represents a rule, its value is the rule’s consequent. The letter
combinations stand for linguistic terms (n=negative, p=positive, b=big,
m=medium, ze=approx. zero). The entries with capital letters are chosen
for crossover and exchanged (cf. Kinzel et al., 1994).

dimensional spaces and thus other encodings are needed. In contrast to
fuzzy control where complete rule bases are commonly used, we are inter-
ested in small numbers of rules in classification. This often allows better
interpretability and in addition avoids the pitfall of look-up tables (cf. Sec-
tion 2.3.3). Partial rule bases are usually encoded as (variable sized) sets of
rules. Many approaches use a variable number of rules in the chromosomes,
but complete antecedents in each rule (e.g., Magdalena, 1997a).

To achieve even more flexibility, antecedents with variable numbers of
clauses can be used. For instance, Hoffmann and Pfister (1997) devised
a chromosome encoding inspired from messy GA (Goldberg et al., 1989).
The genes are pairs (i, j) of indexes, interpreted as fuzzy clauses “xi IS µi,j”.
Any set of such clauses where at least one input and one output variable
is included can be translated into a fuzzy rule: the input variables build
the antecedent, the output variable(s) build the consequent. Multiple occu-
rances of one input are interpreted as disjunction. A rule base is encoded
as a set of such rules, i.e. a chromosome is a set of sets of index pairs.

The specialized crossover operators are called cut and splice. The cut
operation randomly splits the parent sets into two parts,2 and the offspring
is assembled from two such subsets in the splice operation. Cut and splice
are performed on the level of rules and of clauses. Hoffman and Pfister report
the problem that cut and splice are rather destructive operations and that
the recombined rules are thus rather random. Similar to the point-radius-
crossover in decision tables, the authors suggest to match the rules before

2 Internally, the sets are stored as lists, although interpretation as rules is position
independent. However, the position in the lists is important in the genetic operations.
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mating. By restricting splits to “similar” rules, information can better be
passed from the parent rules to the offspring. Furthermore, recombination
of sets of clauses is performed less often than split and splice of complete rule
bases. The GA also has mutation operators: random changes are applied to
the linguistic terms, and additionally, random clauses can be deleted from
or inserted into rules.

Magdalena (1997b) proposed a different solution to the problem of pro-
tecting adjacent rules in crossover operations. He assumes the set of rules
to be in “virtual decision tables”, and then exchanges the rules in a vari-
able sized range of the tables between parents. The range is described by a
conjunction (over attributes) of disjunctions of linguistic terms (within an
attribute) that serves as a filter for the set of rules.

Optimization of Fuzzy Rules and Fixed Fuzzy Sets in Stages

A basic way two learn both, fuzzy sets and fuzzy rules, is subsequent appli-
cation of the approaches of the last sections. For instance, in (Kinzel et al.,
1994), the rules of an initial rule base are optimized with fixed fuzzy sets.
Afterwards, the set of rules is fixed and the fuzzy sets are fine-tuned. En-
codings and genetic operators are usually different in the two phases. The
separation into two stages reduces the complexity of the search space in
comparison to parallel optimization. However, due to the complex interac-
tions between rules and fuzzy sets, the globally optimal rule base might not
be reachable. This might be one of the reasons why Kinzel et al. found that
fuzzy set optimization after rule optimization does not have large effects on
the final results.

Parallel Optimization of Fuzzy Rules and Fuzzy Sets

Parallel optimization of fuzzy rules and fuzzy sets is certainly the most
challenging learning task. However, it allows to generate a rule base from
scratch. There have been proposals for both, descriptive or approximative
fuzzy rules. The Pittsburgh-style approaches for the induction of descriptive
fuzzy rules basically combine an encoding for fuzzy partitions and one for
rule bases in one chromosome. The genetic operators are adapted from
those of the separate approaches. Examples can be found in (Liska and
Melsheimer, 1994; Shi et al., 1999).

If approximative fuzzy rules are to be induced, the fuzzy set definitions
have to be stored with every rule. Cooper and Vidal (1994) suggest variable
length chromosomes, composed of fixed length rules. Each rule stores for



4.2. Evolutionary Fuzzy Rule-Based Systems 71

Figure 4.2: Chromosome encoding proposed by Carse et al. (1996). The
centers and widths of the fuzzy sets, denoted by µ and σ, are defined locally
in the rules.

every input and output dimension widths and centers of isosceles triangular
fuzzy sets, binary coded with 8 bits of precision. The authors claim that
genetic learning of approximative fuzzy rules failed due to a lack of appropri-
ate reproduction operators. As crossover makes only sense between similar
genes,3 they therefore suggest to crossbreed a rule of one parent with the
closest rule of the other parent (according to the Manhattan distances of
the rules’ centers). Mutation affects the bits as usual. Additionally, rules
can be added or deleted.

Many authors prefer real-valued to binary parameter encodings. They
report that convergence can often be reached faster, more robust and with
higher precision. The approach presented by Carse et al. (1996) uses a
chromosome encoding similar to (Cooper and Vidal, 1994), however with
centers and widths encoded as float values (cf. Figure 4.2). This allows
mutation operations in favor of small, less destructive changes.4

The crossover operation, called one (or two) point ordered crossover,
can be seen as a continuous version of the “virtual decision table” approach
in (Magdalena, 1997b). Let [ai, bi] be the range of attribute i, and let χ
denote a random number drawn from [0, 1]. A split point (c1, . . . , cnd

) ∈
[a1, b1] × [and

, bnd
] is randomly chosen. Let Cir denote the center of a rule

3 “In nature it would not make much sense for the mother’s gene for good vision to
combine with the father’s gene for curly hair.” (Cooper and Vidal, 1994)

4 The authors multiply the values with a factor uniformly drawn from the range
[0.9, 1.1], which gives different results than the adding of Gaussian noise common in
evolution strategies.
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Figure 4.3: One point ordered crossover (Carse et al., 1996).

r in dimension i. Then the parents’ rules are filtered according to the
condition

∀i : Cir < ci. (4.12)

The first child is assembled from the rules of parent A that fulfill, and of
rules from parent B that do not fulfill this condition. The second child is
assembled from the remaining rules, as illustrated in Figure 4.3.

If the split point is uniformly drawn from [a1, b1] × . . . × [and
, bnd

] with
nd ≥ 2, the hypervolume of the exchanged corner will in average be smaller
than that of the remainder. Therefore, Carse et al. suggest to compensate
the effects of growing dimensionality by choosing the split point as

ci = ai + (bi − ai) · χ
1

nd . (4.13)

The approach can be extended to two point ordered crossover by choosing
a second split point (c′1, . . . , c

′
nd

)

c′i = ci + (bi − ai) · χ
1

nd , (4.14)

and replacing Eq. (4.12) with the following condition

∀i : (ci < Cir < c′i) ∨ (Cir + bi − ai < c′i). (4.15)
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Instead of corners, hypercubes are exchanged in the two point version. Ob-
viously, in both cases rules with nearby centers will be split with lower
probability and can thus persist as building blocks.

4.2.2 Discussion

The evolution of approximative rules is in general significantly easier than
the induction of descriptive rules. The rules, i.e. the areas described by the
antecedents, are natural building blocks for good solutions. This is espe-
cially true for classification, where rules describe areas with homogeneous
class distributions. An approximative rule, which locally holds its fuzzy set
definitions, is thus a rather compact building block (and therefore stable
with respect to crossover). A descriptive rule, on the other hand, makes
only sense in connection with the fuzzy sets it refers to. If these are ex-
changed during crossover, the represented area in input space is very likely
to change substantially. Especially if more rules refer to the same fuzzy
sets—which is the idea of global fuzzy partitions—, interactions between
rules can be rather complex and may obstruct optimization.

As we discussed in Section 2.3.4, global fuzzy set definitions lead to a loss
of expressiveness which might be disproportionate in comparison to the gain
in comprehensibility. We therefore strongly argue for approximative rules.
It might be reasonable to abandon some degrees of freedom to support (or
gain) interpretability.

Most of the approaches in evolutionary fuzzy rule-based systems have
been devised in the early and mid 90’s. Some of the recent research activities
focus on special requirements of data analysis, like for instance, rule reduc-
tion in high-dimensional spaces (Cordón et al., 1999; Gómez-Skarmeta and
Jiménez, 1999; Ishibuchi et al., 1997). Another interesting topic treated by
Ishibuchi et al. (1997) is multi-objective optimization: if several, partially
contradicting objectives shall be optimized, traditional search methods fail.
Here evolutionary algorithms can be a feasible alternative (Ishibuchi et al.,
1997, 2001).

4.3 Conclusions

In this chapter we outlined the basic concepts of the most common evo-
lutionary algorithms, i.e. evolution strategies and genetic algorithms, and
how these powerful search mechanisms can be used for fuzzy rule-based
systems. We reviewed appropriate encodings and genetic operators, and
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stressed their importance for reliable learning and fast runtimes in spite of
complex search spaces.

One might wonder, why we did not divide this chapter into supervised
and unsupervised approaches, like we did in Chapter 3. Actually, there has
been a number proposals for unsupervised learning (i.e. clustering) with
evolutionary algorithms (e.g., Hall et al., 1994; Klawonn and Keller, 1998).
The reason not to make the distinction in this chapter is simply that it basi-
cally depends on the fitness function only, whether the search is supervised
or unsupervised. The encodings and genetic operators are identical. This
is one reason why evolutionary fuzzy rule induction seems to be suited for
semi-supervised learning: this kind of supervision can be seen as a blend of
supervised and unsupervised learning. In Chapter 6, we present measures
for semi-supervised learning that can directly be used as fitness functions
for an evolutionary fuzzy rule learner.



Chapter 5

Semi-Supervised Learning

The preceding chapters reviewed a number of common methods for the
extraction of fuzzy classification rules from data. The algorithms can be
divided into supervised and unsupervised approaches. Both paradigms for
learning have their drawbacks. The main drawback of supervised learning
obviously is its need for supervision, i.e. the need to present labels together
with the objects. The result of unsupervised learning, however, strongly
depends on a number of prior assumptions (explicit or implicit). Thus it
depends on an appropriate choice of e.g. attribute scaling, distance measure,
distribution function and expected number of classes or clusters, whether
the clusters found in the data space correspond to any meaningful classes
of objects. Hence in many cases unsupervised learning does not yield satis-
factory results and supervised learning is much more common in practice.
If labeling all objects is impractical, one usually confines the examples to a
certain—hopefully representative—fraction of the data and leaves the un-
labeled data aside.

If however, the remaining and otherwise discarded unlabeled data con-
tained some additional useful information, it would be an appealing idea
to use it to support the learning of the classifier. The idea of exploit-
ing the information in both labeled and unlabeled data is not new, and
early approaches of semi-supervised learning date back to the 1980’s (e.g.
Pedrycz, 1985). However, as argued above, with tremendously growing sizes
of datasets in real-world applications labeling all of the data becomes more
and more infeasible and the exploitation of additional unlabeled examples
gets increasingly interesting. Thus a growing number of publications, work-
shops and conference tracks on semi-supervised learning could be observed

75
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over the past years.
In this chapter, we deal with theoretical and practical aspects of semi-

supervised learning. In Section 5.1, we present explanations, why learning
from partially labeled data can work at all, and which preconditions are
necessary. The explanations are based on theoretical considerations on the
properties of the underlying structure of the data, and are supplemented
with intuitive examples. Section 5.2 reviews literature on semi-supervised
learning. As the goal of this thesis is semi-supervised learning of fuzzy clas-
sification rules, we focus on methods that allow to induce fuzzy models,
and present details of a number of approaches which are relevant in this
context. The capabilities and restrictions of the considered semi-supervised
approaches are demonstrated on a number of illustrative examples (Sec-
tion 5.3). In Section 5.4, we discuss their suitability to induce interpretable
fuzzy classification rules, and point out the need for a specialized approach.

5.1 Learning From Examples Without Labels?

One might wonder how a learner in a supervised scenario can benefit from
unlabeled examples. If their class is unknown, how should the learner adjust
its model? Supervised learning can be seen as the task to reconstruct (at
least partially) a probability distribution P (x, c) between objects x ∈ X and
class labels c ∈ C from a set of labeled examples Dl = {ωi = (xωi , cωi)|i =
1, . . . , nl}. As nl is finite, i.e. as we have only a limited set of examples,
this actually is an ill-posed problem. If we do not assume anything about
P , the only fact about P which we can derive from Dl is that P (ωi) >
0, i.e. the examples ωi are possible. Apart from this trivial finding, the
example data do not contain any information on how to generalize on unseen
data. Therefore, we always have to assume that P comes from some family
of probability distributions. Learning—supervised or unsupervised—then
means to estimate a specific P̂ given a family and given the example data.

Which family of probability distributions we choose depends on our as-
sumptions about the underlying processes that generated the data. In clas-
sification two major groups can be distinguished based on the way P can
be more efficiently represented (Ripley, 1996):

• The sampling paradigm assumes that P (x, c) can be efficiently rep-
resented as P (x | c). Methods following this paradigm—so-called
generative methods—model the probability distributions of each class
individually. A simple generative method is, for instance, the näıve
Bayes classifier.
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• The diagnostic paradigm assumes that P (x, c) can be efficiently rep-
resented as P (c | x). The associated diagnostic or discriminative
methods are closer to regression, i.e. they model c as a (noisy) func-
tion of x. An example of a simple classifier following the diagnostic
paradigm is logistic regression.

As we will see in the following sections, the assumptions about the under-
lying structures play an important role for the question, whether and how
additional unlabeled data can be beneficial. The theoretical considerations
of the next two subsections will be illustrated with two corresponding intu-
itive examples in Section 5.1.3.

5.1.1 The Sampling Paradigm

In the sampling paradigm it is assumed that P (x | c) can be efficiently
represented, i.e. it is assumed that objects of a class c generate a distinct
distribution in the input space X. Let us assume parameters π and θ that
determine class priors P (c | π) and conditional probability distributions
P (x | c, θ). With dependencies as in Figure 5.1a, we get the joint density
model

P (x, c | π, θ) = P (x | c, θ) · P (c | π). (5.1)

If π and θ are given, we can classify a pattern x using Bayes’ rule:

P (c | x, π, θ) =
P (c | π) · P (x | c, θ)∑

c′∈C P (c′ | π) · P (x | c′, θ)
. (5.2)

For the task of learning, i.e. the task of estimating π and θ, we could consider
the marginal distribution

P (x | π, θ) =
∑
c∈C

P (x | c, θ) · P (c | π), (5.3)

and maximize the likelihood function

L(D, π, θ) =
∏
ω∈D

P (xω, cω | π, θ). (5.4)

One possible extension to partially supervised learning is to consider the
joint likelihood over the labeled dataset Dl and the unlabeled dataset Du



78 Chapter 5. Semi-Supervised Learning

a)

θP� πP�
xP cP�

b)

µP� θP�
xP� cP

c)

µP�� θP�
xP� cP

Figure 5.1: Dependency assumptions between input and class label a) in the
sampling paradigm, b) in the diagnostic paradigm, and c) in the diagnostic
paradigm with regularization; from (Seeger, 2001).

(Seeger, 2001), defined as

L(Dl ∪ Du, π, θ) =
∏

ω∈Dl

P (xω, cω | π, θ) ·
∏

ω∈Du

P (xω | π, θ)

=
∏

ω∈Dl

P (xω | cω, θ)P (cω | π) ·
∏

ω∈Du

∑
c∈C

P (xω | c, θ)P (c | π), (5.5)

and try to maximize it, e.g. with the expectation-maximization (EM) algo-
rithm. There are a number of approaches that are in principle based on this
joint likelihood (Miller and Uyar, 1998; Larsen et al., 2002; Nigam et al.,
2000). In Section 5.2.2, we present the approach by Miller and Uyar.

5.1.2 The Diagnostic Paradigm

In the second model—the diagnostic paradigm—it is assumed that P (c | x)
can be efficiently modeled, i.e. that there is a (noisy) functional relationship
between inputs x and output c. This functional dependence is given by a
parameterized family of models P (c | x, θ). As can be seen in Figure 5.1b, a
parameter µ controls the distribution P (x | µ) of the input points x. Thus
we can reconstruct the complete distribution as

P (x, c | µ, θ) = P (c | x, θ) · P (x | µ). (5.6)

However, the dependence between µ and x is obviously not needed to predict
class c for a given input x.
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The joint likelihood of the complete dataset Dl ∪ Du is

L(Dl ∪ Du, µ, θ) = L(Dl, µ, θ) · L(Du, µ, θ)

=
∏

ω∈Dl

P (xω, cω | µ, θ) ·
∏

ω∈Du

P (xω | µ, θ)

=
∏

ω∈Dl

P (cω | xω, θ)P (xω | µ) ·
∏

ω∈Du

∑
c∈C

P (c | xω, θ)︸ ︷︷ ︸
=1

P (xω | µ)

=
∏

ω∈Dl

P (cω | xω, θ) ·
∏

ω∈Dl

P (xω | µ) ·
∏

ω∈Du

P (xω | µ)

=
∏

ω∈Dl

P (cω | xω, θ) ·
∏

ω∈Dl∪Du

P (xω | µ). (5.7)

From Eq. (5.7), we can conclude that P (θ | Dl,Du) = P (θ | Dl) and that
P (θ | Dl, µ) = P (θ | Dl). This means that neither existence of unlabeled
data Du nor any knowledge about the distribution of the input points P (x)
influence the estimation of the model parameters. Thus semi-supervised
learning is not directly applicable in this paradigm.

The problem of models following the diagnostic paradigm is apparently
the a priori independence of θ and µ. To remedy this problem, Seeger
(2001) suggests to modify the traditional diagnostic paradigm by allowing
dependencies between θ and µ as shown in Figure 5.1c. The conditional
prior P (θ | µ) allows to transfer information from µ—i.e. information we
extracted from Du—to θ, and thus makes the additional use of unlabeled
data feasible. However, the choice of an appropriate regularization is not
trivial. One idea of incorporating unlabeled data into diagnostic methods
could be to try to exploit redundancies between different views on the data.

5.1.3 An Intuitive Explanation

The preceding sections reflected on theoretical considerations, how an addi-
tional unlabeled dataset Du can help to improve estimation of P (c | x). In
this section, we give some more intuitive explanations how examples without
class label can be exploited.

In the sampling paradigm the class is assumed to be central in the under-
lying data-generating process: an object of a certain class c (e.g. “type of iris
flower”) is generated with a certain probability. This object will then form
observable features x (e.g. “petal length”). If the probability distributions
of these features are class-specific, we will find characteristic accumulations
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(i.e. clusters) in input space (Figure 5.2a). Therefore, the information about
the distribution in the input space, extracted from unlabeled data Du, can
be exploited to improve the estimation of cluster positions and shapes, and
thus accuracy of P (c | x) for unseen points.

How could a data-generating process falling into the diagnostic paradigm
look like? For a very simple example, let us assume we gather company
data, including the features (total) income and (total) expenses. Let the
class label c be profitability, with the (noiseless) functional dependence “c
is profitable, if income > expenses”. However, this relationship is assumed
to be unknown and shall be learned from example data. Obviously, the
class does not affect the distribution of the features (Figure 5.2b). Thus, if
we present random pairs income/expenses but withhold the corresponding
class labels, the classifier will have no chance to improve its model.

However, the data for randomly chosen companies is very probably
not uniformly distributed in the input space. More likely, most compa-
nies will be distributed around the line income

expenses = const (with const =
1+average yield). Considerably less companies will have income

expenses < 1. We
thus might be able to find a lower dimensional substructure in the data.
For this extraction of redundancy, both labeled and unlabeled data can be
exploited. From our updated knowledge about µ, we might also update our
expectations of class distributions.1

The artifice of modeling a dependence P (θ | µ) allows semi-supervised
diagnostic methods. Although it can be helpful in some situations, it will
very likely be misleading in situations where the modeled dependence does
not exist, and thus the use of Du can even decrease classifier performance.
However, the data generating process assumed in the diagnostic paradigm
seems to be more tailored to function approximation. In many classification
problems, an object’s class does have causal influence on the instantiations
of its features, and thus the sampling paradigm is appropriate. As shown
in Section 5.1.1, the corresponding generative methods can more naturally
be extended to partially supervised learning. Fortunately, the fuzzy rule
based classifiers considered in this thesis are generative, and thus, they can
be expected to profit from additional unlabeled data.

1Obviously, extraction of lower dimensional substructures makes more sense in a higher
(than two) dimensional feature space. In such cases, dimensionality reduction by, for
instance, principal component analysis (PCA) is a rather common preprocessing step. It
could be interpreted as an update of P (c | x, θ), such that P (c | x1, θ) = P (c | x2, θ)
iff x1 and x2 are projected on the same point in the subspace of the chosen principal
components. As PCA is performed on unlabeled data, it can exploit Dl ∪ Du, and
therefore PCA with subsequent supervised learning (using Dl only) is a way of partially
supervised learning.
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a) Iris data: each class is generated
by a characteristic probability dis-
tribution (sampling paradigm).

b) Company data: the distribution
of the examples is completely inde-
pendent from the class information
(diagnostic paradigm).

Figure 5.2: Intuitive examples for sampling and diagnostic paradigm.

5.2 Approaches to Semi-Supervised Learning

In most publications, Pedrycz’s approach of 1985 is cited as the first work
in the area of semi-supervised clustering. Twelve years later he revisited the
problem and published some extended results and more detailed discussion
of his 85’s ideas. In (Pedrycz and Waletzky, 1997) he stated that

“surprisingly, limited attention has been paid to the mechanisms
of partial supervision.”

Recently, partial supervision has obviously come into the focus of current re-
search in computational intelligence. There is a growing number of publica-
tions in this field, and successful applications of semi-supervised approaches
have been reported, for example in the field of image processing (Bensaid
et al., 1996) and especially in text classification (Nigam et al., 2000; Lan-
quillon, 2001). A number of different ideas have been proposed how to
combine the information of labeled and unlabeled data. Theses ideas can
be categorized into four main groups:

1. Labeled examples as seed points: a supervised classifier is used to
build a model from the class information of labeled points. The model
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is then used to apply labels to the unlabeled points, and is iteratively
re-learned. Approaches differ in the type of model used (e.g. point
prototypes, näıve Bayes classifiers or neural networks), and the speed
of applying the new labels (from one pattern per iteration to labeling
all unlabeled patterns in one step) (Bensaid et al., 1996; Gabrys and
Petrakieva, 2002; Lanquillon, 2001; Verikas et al., 2002).

2. Labeled examples as cluster labels: an unsupervised algorithm is
used to find structure in the dataset, e.g. by cluster analysis. Then the
clusters are labeled using the given labeled points. This can be done
in various ways (Bensaid and Bezdek, 1998; Park and Yae, 2002, see
also Section 5.2.5). The labeled points can also be used to guide the
clustering, e.g. the number of clusters (Amar et al., 1997; Gabrys and
Petrakieva, 2002). Dara et al. (2002) proposed to find low-dimensional
structures by training a self-organizing map from all available data in
an unsupervised manner. The map nodes are then labeled from the
labeled dataset.

3. Unlabeled examples for density estimation: the abundance of
unlabeled examples can be used for a more reliable estimation of the
probability density function in the input space. This is similar to the
second group, as cluster analysis also performs a kind of density es-
timation. However, approaches like (Skabar, 2002; Kothari and Jain,
2002) explicitly model and use the probability density function. A
different approach has been proposed in (Bennett and Demiriz, 1998;
Fung and Mangasarian, 1999) for the semi-supervised learning of sup-
port vector machines. Instead of using regions of high density to find
clusters, regions of data scarcity are used to find the optimal class bor-
ders. Verikas et al. (2002) propose a similar method for the learning
of feed-forward neural networks.

4. Specialized objective functions: there is a variety of approaches
which have specialized objective functions that can take into account
labeled and unlabeled examples, for example by adding a penalty term
for labeled examples that are assigned to wrong clusters (Pedrycz,
1985; Pedrycz and Waletzky, 1997; Timm, 2002). In (Demiriz et al.,
2002) a mixture of cluster dispersion and cluster impurity is optimized.
Our approach presented in Chapter 6 also belongs into this group.

This categorization can only give a rough overview. The borders between
the categories are not crisp, and many approaches could be assigned to more
than one category, depending on the point of view.
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A number of approaches have been proposed for models like neural net-
works or support vector machines, that are generally hardly human un-
derstandable. Little or no work has been done on the semi-supervised ex-
traction of (descriptive) fuzzy rules. In the following sections, we describe
details of a number of semi-supervised algorithms. The described meth-
ods have been chosen with respect to the goal of this thesis to construct
a semi-supervised fuzzy rule learner. Therefore, on one hand, we describe
generic methods that can be used with many—and thus also with fuzzy rule-
based—classifiers (Section 5.2.1). On the other hand, we describe methods
closely related to fuzzy rules, for example fuzzy clustering or mixture of
Gaussians classifiers (Sections 5.2.2 and 5.2.3).

5.2.1 Wrapper Methods

Some methods of semi-supervised learning can be seen as “wrappers” around
fully supervised classifiers, i.e. they are built on top of a supervised classifier
which is basically used without modifications. One method of handling a set
of partially labeled data is to discard the unlabeled data and use an arbitrary
supervised classifier on the remaining labeled data. Although this form of
learning obviously cannot really be called semi-supervised, currently it is
the most common method to deal with partially labeled data in practice.
In our experiments, this approach will be considered as a benchmark for
other methods.

Static labeling (Gabrys and Petrakieva, 2002) is another method that can
be used with any supervised classifier. Initially, the classifier is also induced
on the labeled data only. Then the obtained classifier is used to label the
unlabeled data. The resulting completely labeled dataset is used to induce
the final classifier. It should be noted that, although static labeling can be
performed with any classifier, it does not seem to make sense with every
classifier, as initial errors will likely be reproduced in the final classifier. In
(Gabrys and Petrakieva, 2002) this approach is used in combination with a
nearest neighbor classifier.2

As mentioned in Section 5.1.3, the unlabeled data can be used for regu-
larization in preprocessing steps, like, for example, for dimensionality reduc-
tion. All available data could be processed by principle component analysis
(PCA) or self-organizing maps (SOM), and an arbitrary supervised classifier
be applied to the labeled data in the resulting subspace (see, for example,

2Nearest neighbor classification seems not to profit from static labeling in a semi-
supervised setting: In (Gabrys and Petrakieva, 2002), it performs equally or even worse
than the benchmark method of discarding the unlabeled data.
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Dara et al., 2002). However, as the meaning of the attributes is usually lost
in the subspace transformation, this method is of limited interest for the
induction of understandable fuzzy rules.

The most promising wrapper methods—and those which really deserve
the name “wrapper”—are the (non-static) iterative labeling approaches.
They rely on a fully supervised classifier, which is required to return some
kind of confidence information about its decisions.3 The classifier, called
the base classifier, is enclosed in a loop with the following steps:

1. Start with a labeled dataset Dl, an unlabeled dataset Du, and an
initially empty set Dl′. Build an initial classifier from Dl only.

2. Apply the current classifier to Du.

3. Use predicted labels and confidence values to assign labels to one or
more points from Du. Remove these points from Du and add them to
Dl′.

4. Build a classifier from Dl ∪ Dl′.

5. While Du is not empty, jump to 2.

There are several alternative ways how to choose the patterns to be labeled
in step 3. Gabrys and Petrakieva suggest to use only one pattern at a
time, i.e. that pattern which has been classified with the highest degree of
confidence (Gabrys and Petrakieva, 2002).4 This approach can be varied
by selecting the b most confidently classified examples, where b > 1 is a
fixed number. Instead of a fixed number of examples, the algorithm can
also choose examples based on the relative confidence values. For example,
with confmax as the highest confidence obtained in step 2, and a constant
α ∈ [0, 1], the algorithm could select all ω ∈ Du with conf(ω) ≥ α · cmax for
labeling in step 3.

If the base classifier assigns soft labels (e.g. posterior class probabilities)
and if it can also learn from input data with soft labels, the iterative labeling
can be slightly modified. In contrast to the algorithm described above, all
unlabeled examples are (re-)labeled in each iteration based on the current
classifier (see, for example, Lanquillon, 2001):

3Depending on the type of classifier, this confidence can be derived from, for example,
the distance to the nearest neighbor, a posterior probability, a fuzzy membership degree,
etc.

4As they combine this rule with a nearest neighbor classifier, this approach becomes
similar to agglomerative single-linkage clustering (Jain and Dubes, 1988) in the sense
that it tends to build chain-like instead of compact structures. This makes this approach
rather sensitive to noise.
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1. Start with a labeled dataset Dl, an unlabeled dataset Du. Build an
initial classifier from Dl only.

2. Apply the current classifier to Du.

3. Assign the predicted soft labels to all points from Du.

4. Build a classifier from Dl ∪ Du.

5. Repeat from 2, until the labels of Du converge (or another stopping
criterion is fulfilled).

An extension of this scheme is presented by Verikas et al. (2002). Instead
of directly using the predicted soft labels in step 3, they build an average
of the labels over the k nearest neighbors of an unlabeled example. For this
averaging, they use the (crisp) labels of the labeled examples and the soft
labels determined by the base classifier (a feed-forward neural network).

5.2.2 Gaussian Mixtures and Joint Likelihood

Miller and Uyar proposed a semi-supervised learning algorithm for a general-
ized mixture of Gaussians classifier (Miller and Uyar, 1997, 1998). Mixture
of Gaussians classifiers model posterior class probabilities by superimposing
a number of Gaussian density distributions each of which is associated with
a soft (probabilistic) class label. The posterior class probabilities of these
classifiers are defined as

P (c | x) =
nk∑

m=1

(
P (m)p(x | θm)∑nk

m′=1 P (m′)p(x | θm′)

)
P (c | m), (5.8)

where p is a Gaussian density function, parameterized by component specific
mean values and covariance matrices θm = (µm, Σm), i.e.

p(x | θm) =
1√

det(2πΣm)
exp

(
−1

2
(x− µm)T Σ−1

m (x− µm)
)

. (5.9)

The nk components are mixed with non-negative priors P (m),
∑

m P (m) =
1. The relation of components m to classes c is controlled by the posteriors
P (c | m),

∑
c P (c | m) = 1.5 These can be interpreted as soft labels of the

components.

5In contrast to this generalized model, in the original model the components are crisply
assigned to the classes, i.e. P (c | m) ∈ {0, 1}.
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Basis of the semi-supervision is the joint log likelihood over labeled and
unlabeled data, as introduced in Section 5.1.1 (cf. Eq. (5.5)). In the follow-
ing, we present the method proposed by Larsen et al. (2002), which uses a
subtle modification of the joint log likelihood. Larsen et al. extended the
joint likelihood by a factor α to balance between labeled and unlabeled data.
They then try to maximize the joint log likelihood

log L(Dl ∪ Du, θ)

=
∑

ω∈Dl

log p(xω, cω | θ) + α
∑

ω∈Du

log p(xω | θ)

=
∑

ω∈Dl

log
nk∑

m=1

p(xω | m, θ)P (cω | m, θ)P (m)

+ α
∑

ω∈Du

log
nk∑

m=1

p(xω | m, θ)P (m). (5.10)

They use the EM algorithm initialized as followed:

• The input vectors x of nk randomly chosen examples are taken as
initial mean vectors. All initial covariance matrices Σm are estimated
from the combined data Dl ∪ Du.

• The component priors P (m) are set to 1
nk

.

• The class priors P (c) are set from the class frequencies in Dl, the class-
component posteriors are set to the same values P (c | m) = P (c).

Starting from these initial values, the final values are gained by iterating
a number of updating steps. First it is determined how the probability
mass of the examples is distributed to the components. The corresponding
component posteriors for the labeled data ω ∈ Dl are defined as

P (m | xω, cω) =
p(xω | θm)P (cω | m)P (m)∑nc

m′=1 p(xω | θm′)P (cω | m′)P (m′)
, (5.11)

and those for the unlabeled data ω ∈ Du as

P (m | xω) =
p(xω | θm)P (m)∑nc

m′=1 p(xω | θm′)P (m′)
. (5.12)

Next, the mean vectors are updated:

µm =
∑

ω∈Dl xωP (m | xω, cω) + α
∑

ω∈Du xωP (m | xω)∑
ω∈Dl P (m | xω, cω) + α

∑
ω∈Du P (m | xω)

. (5.13)
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With these new mean vectors and Sω
m = (xω − µm)(xω − µm)T the new

covariance matrices are estimated as6

Σm =
∑

ω∈Dl Sω
mP (m | xω, cω) + α

∑
ω∈Du Sω

mP (m | xω)∑
ω∈Dl P (m | xω, cω) + α

∑
ω∈Du P (m | xω)

. (5.14)

Finally, the component priors and class-component posteriors are updated
as

P (m) =
∑

ω∈Dl P (m | xω, cω) + α
∑

ω∈Du P (m | xω)
nl + αnu

and (5.15)

P (c | m) =
∑

ω∈Dl∧cω=c P (m | xω, cω)∑
ω∈Dl P (m | xω, cω)

. (5.16)

These steps are repeated until convergence.
The core equations of this semi-supervised learning algorithm are ob-

viously Eq. (5.11) and (5.12). The unlabeled examples are distributed to
the components based solely on the components’ priors and density func-
tions. For the labeled examples these probabilities degrees are increased or
decreased depending on P (cω | m), i.e. based on the compatibility of the
class labels of examples and components.

5.2.3 Extensions to Fuzzy Clustering

Semi-Supervised FCM: ssFCM

Bensaid et al. (1996) proposed an extension of the fuzzy c-means algorithm
(cf. Section 3.2.1). Datasets Du and Dl are concatenated with a common
membership matrix U with nl + nu columns and nc rows (i.e. one row for
each class c ∈ C). The labels of Dl are presumed to be correct. This is
taken into account by setting the corresponding columns in U to the 1-in-n
encoded class labels, i.e. let jω denote the column index corresponding to
object ω, then

uijω
=
{

1, if cω = ci

0, else. (5.17)

These columns are fixed, i.e. they are ignored while updating U from the
current cluster prototypes V (cf. Chapter 3.2, Eq. (3.8)). With the fixed

6In (Larsen et al., 2002), the EM algorithm of (Miller and Uyar, 1997) is extended
in two ways to improve robustness and generalizability. First, means and covariances
are estimated from independent splits of the data. Second, the covariances are slightly
regularized towards the initial covariance matrix estimated from the complete dataset.
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memberships for Dl, Eq. (3.9) for updating the prototypes V remains un-
changed. Instead of randomly initializing V , the labeled examples are used
as initial centers, i.e. an initial V is calculated from Eq. (3.9) with uijω = 0
for rows corresponding to unlabeled objects ω ∈ Du.

As the influence of the labeled examples can easily be overwhelmed if
|Du| � |Dl|, Bensaid et al. suggest to use weights αω for the labeled exam-
ples ω to balance the influences of Du and Dl. Thus Eq. (3.9) is replaced
by

vi =

∑
ω∈Dl∧cω=ci

αωxω +
∑

ω∈Du um
ijω

xω∑
ω∈Dl∧cω=ci

αω +
∑

ω∈Du um
ijω

. (5.18)

If nothing is known about the reliability of individual examples or classes,
the same αω is chosen for all ω ∈ Dl. Obviously, if αω are positive integers,
Eq. (5.18) is equal to Eq. (3.9) for a dataset with αω copies of each labeled
example ω. The authors give only some vague hints on how to choose these
weights: αω should be large, if Dl is small, and small, if the reliability of
the labels is low.

The idea of this approach simply is to trust the labeled examples, and
fix them in the (otherwise almost unmodified) FCM clustering algorithm.
Trusting the labeled examples of course is reasonable. The problem is that,
as the authors also remark, this approach expects the labeled examples to
be good estimations of the (final) cluster prototypes. If the chosen (or given)
labeled examples are untypical for their cluster, they will unwantedly attract
the prototype. On the other hand, if they already were good estimations of
the cluster centers, it would not be necessary to take the additional unla-
beled data into account, and we could simply use any supervised approach
on them.

The authors note that the straightforward modification of the update
equations interferes with the minimization of an objective function, like
J from Eq. (3.7) that the original FCM is based on. Alternatively, the
approach of the following section puts the focus on the extension of the
objective function, and derives modified update rules.

Partially Supervised Gustafson and Kessel

The approach by Pedrycz (1985); Pedrycz and Waletzky (1997) extends the
objective function of Gustafson and Kessel (see Eq. (3.11)). In the same
way as in the previous section, the (input vectors of the) datasets Du and
Dl are assumed to be joined in a matrix X. Additionally, a vector ~b = [bj ]
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with binary entries

bjω
=
{

1, if ω ∈ Dl

0, else (5.19)

marks the labeled examples. A matrix F contains the known labels in 1-in-n
encoding (cf. Eq. (5.17)). The original Gustafson&Kessel objective function
JGK

m is extended by adding a penalty term

Jm(U,V ,A) = JGK
m (U,V ,A) + α

nk∑
i=1

n∑
j=1

(uij − fijbj)m‖xj − vi‖2
Ai

, (5.20)

where α is intended to balance the influence of the labeled data. Let us de-
fine two weighting constants αu and αl for the unsupervised and supervised
part of the objective function, with αu = 1

1+α , αl = α
1+α . Then minimizing

Eq. (5.20) is equal to minimizing

Jm(U,V ,A) = αuJGK
m (U,V ,A) + αl

nk∑
i=1

n∑
j=1

(uij − fijbj)m‖xj − vi‖2
Ai

.

(5.21)
Intuitively, the additional term penalizes labeled points that have low mem-
bership degrees to the cluster suggested by their label.

The update rules for V and A which result from minimizing Jm re-
main identical to those of minimizing JGK

m (cf. Eq. (3.9), Eq. (3.12), and
Eq. (3.13)). The modified update rule for U (for m = 2) can be shown to
be (Pedrycz and Waletzky, 1997)

uij = αu 1 + α(1− bj

∑nk

i′=1 fi′j)∑nk

i′=1

‖vi−xj‖2Ai

‖vi′−xj‖2A
i′

+ αlfijbj . (5.22)

For unlabeled examples (i.e. for bj = 0) this leads to the original update
rule (cf. Eq. (3.8))

uij =
1∑nk

i′=1

‖vi−xj‖2Ai

‖vi′−xj‖2A
i′

. (5.23)

Because we assume 1-in-n encoding, it follows that ∀j :
∑nk

i=1 fij = 1, and
thus the labeled examples are updated with

uij = αu 1∑nk

i′=1

‖vi−xj‖2Ai

‖vi′−xj‖2A
i′

+ αlfij . (5.24)
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As expected, for α = 0 (and thus αu = 1, αl = 0), the labels of Dl are com-
pletely ignored. Interestingly, for α → ∞ (and thus αu → 0, αl → 1), the
fuzzy ISODATA with partial supervision becomes equal to ssFCM (except
that the Ai are identity matrices in ssFCM). For intermediate values of α,
the memberships of the labeled data are more or less pushed towards their
corresponding clusters (by multiplying the normally resulting memberships
with αu and adding the differences to the membership corresponding to the
label).

Both approaches expect that each class can be represented by one clus-
ter, i.e. nk = nc. If a class cannot be appropriately described by one
cluster, the algorithms will perform significantly worse (see Section 5.3.1 for
an example). Timm (2002) proposed a similar approach, with a modified
objective function taking the form

Jm(U,V ,A) = JGK
m (U,V ,A) + α

nk∑
i=1

n∑
j=1

(1− class(i, j)) um
ij , (5.25)

where class(i, j) is defined to take value 1, if the j-th example is labeled and
its class is represented by the i-th cluster, or value 0 else. This leads to the
update rule

uij =
1∑nk

i′=1

(
‖vi−xj‖2Ai

+α(1−class(i,j))

‖vi′−xj‖2A
i′

+α(1−class(i′,j))

) 1
m−1

(5.26)

for the membership matrix U . The updating scheme for the cluster proto-
types V and A remains unchanged. Timm used this approach for clustering
of fully labeled datasets, but he mentions that it can also be applied to semi-
supervised learning. Although the function class(·, ·) allows several clusters
to belong to one class, correspondence has to be defined in advance.

Gaussian Mixtures Revisited

The approach described in Section 5.2.2 was based on an EM optimization
of the joint log likelihood derived from the sampling paradigm assumption
(cf. Section 5.1.1). The performed update steps are very close to those of the
alternating optimization in fuzzy clustering. For a better comparison of the
generalized Gaussian mixtures approach to the semi-supervised clustering
approaches described in this section, we rewrite Eqs. (5.11) to (5.16) on the
basis of the Gaussian distance function used in Gath&Geva fuzzy clustering
(cf. Eq. (3.14) in Section 3.2.2).
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Let us replace mean vectors µm by prototype vectors vm and covariance
matrices Σm by Cm. Using Eq. (5.9) we get

p(x | θm)P (m)

=
1√

det(2πCm)
exp

(
−1

2
(x− vm)T C−1

m (x− vm)
)

P (m)

=

(√
(2π)nd det(Cm)

P (m)
exp

(
1
2

(x− vm)T C−1
m (x− vm)

))−1

=

(
(2π)

nd
2

P (m)

√
det(Cm) exp

(
1
2

(x− vm)T C−1
m (x− vm)

))−1

=
(
d2

Cm,GG(vm,x)
)−1

, with ρm =
P (m)

(2π)
nd
2

, (5.27)

i.e. the reciprocal value of the distance function used in Gath&Geva clus-
tering is equal to the component contribution p(x | θm)P (m). We can now
insert this equivalence into the membership update equation Eq. (3.15):

umj =

(
nk∑

m′=1

d2
Cm,GG(vm, xj)

d2
Cm′ ,GG(vm′ , xj)

)−1

=
1

d2
Cm,GG(vm,xj)∑nk

m′=1
1

d2
C

m′ ,GG(vm′ ,xj)

=
p(xj | θm)P (m)∑nk

m′=1 p(xj | θm′)P (m′)
Eq. (5.12)

= P (m | xj). (5.28)

We see that the membership degrees umj of tuples j to clusters m calcu-
lated by Gath&Geva are identical to Eq. (5.12), the EM estimation of the
probability P (m | xj) that an unlabeled tuple j belongs to component m.

If we want to extend Gath&Geva to semi-supervised clustering, we con-
sequently can define the membership update function for the labeled data
as umj = P (m | xj , cj), according to Eq. (5.11). It can easily be shown
that with these definitions the updating of prototypes (i.e. mean values
and covariances) remains identical in Gaussian mixture fitting and (then
semi-supervised) Gath&Geva. The balancing factor α can be represented
by tuple weights for the unlabeled data. In contrast to the algorithm pre-
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sented in Section 3.2.2, the cluster sizes ρm are not fixed in advance, but
change with updated component priors P (m).

We have seen in the previous sections that for FCM and Gustafson&Kes-
sel the membership update equations for the unlabeled data remain equal in
the unsupervised and the semi-supervised versions. Thus we now compare
the update equations for the labeled examples with those resulting for the
semi-supervised Gath&Geva clustering.

The membership degrees for labeled data are updated in two steps. First,
the class-cluster correspondences are estimated, which can be seen as deter-
mining (soft) labels lmc of the clusters:

lmc := P (c | m) =
∑

ω∈Dl∧cω=c P (m | xω, cω)∑
ω∈Dl P (m | xω, cω)

=

∑nl

j=1 I(c, cj)umj∑nl

j=1 umj
, (5.29)

with an indicator function I(c, c′) that assumes value one if c = c′ and zero
otherwise. These labels then are used to update the membership degrees of
the labeled examples as follows:

umj = P (m | xj , cj)

=
p(xj | m)P (m)P (cj | m)∑nk

m′=1 p(xj | m′)P (m′)P (cj | m′)

=
p(xj | m)P (m)lmj∑nk

m′=1 p(xj | m′)P (m′)lmj′

=
1

d2
Cm,GG(vm,xj)

lmj∑nk

m′=1
1

d2
C

m′ ,GG(vm′ ,xj)
lm′j

=

(
nk∑

m′=1

d2
Cm,GG(vm, xj)l−1

mj

d2
Cm′ ,GG(vm′ , xj)l−1

m′j

)−1

. (5.30)

This can be seen as another variant of semi-supervised fuzzy clustering. No-
tice that if we replace the soft labeling of Eq. (5.29) by crisp labeling fixed
to a one-to-one correspondence of clusters and classes, i.e. lmc = I(m, c),
Eq. (5.30) becomes equal to the ssFCM approach (cf. Section 5.2.3). How-
ever, the semi-supervised mixtures of Gaussians approach allows to use
more clusters than classes and does not need initial assignments of clusters
to classes (in contrast to, e.g., the approach by Timm (2002)).
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5.2.4 An Approach Based on Dispersion and Impurity

All previously presented approaches have in common that their objective
functions basically use the same term for the unsupervised part of learning:
the customary weighted sum of squared distances

∑nk

i=1

∑n
j=1 um

ij‖xj−vi‖2
A

(cf. Section 3.2.1, Eq. (3.7)). Then this term is combined with a second
term that incorporates the information from the labeled examples.

Demiriz et al. (1999, 2002) explicitly combine a measure of cluster dis-
persion and a measure of cluster impurity for their semi-supervised cluster-
ing approach. The cluster dispersion is calculated from all tuples Dl ∪ Du,
ignoring the known labels. Demiriz et al. propose to use the inverse Davies-
Bouldin index, which is described in Section 3.2.3. The Davies-Bouldin
index is more common for cluster validation. However, here it is used to
measure how well the rules cover the tuples in input space, which can be
characterized by small, well separated clusters.

Cluster impurity, on the other hand, measures how the known labels
are distributed to the clusters (i.e. the influence regions of the rules). A
very simple measure of impurity would be the number of misclassifications.
However, more sophisticated measures take the distribution of misclassifi-
cation into account, and prefer configurations where the misclassifications
are concentrated in a few clusters. Demiriz et al. use the Gini-Index which
is well known for the induction of decision trees (Breiman et al., 1984). Let
Xil denote the labeled examples of class l assigned to cluster i (i.e. cluster
i yields maximal activation), and let Xi be the total number of labeled ex-
amples assigned to cluster i. Then the Gini-index for a cluster i is defined
as

ginii = 1−
nc∑

l=1

(
|Xil|
|Xi|

)2

. (5.31)

The impurity measure is combined from the nk rules’ Gini-indexes:

impurity =
nk∑

i=1

|Xi|
|X|

· ginii. (5.32)

The objective function for the semi-supervised algorithm is a linear combi-
nation of the two measures:

JDB = α · impurity + (1− α) · dispersion, α ∈ [0, 1]. (5.33)

To use the found clusters for classification, the label for any non-empty
cluster is chosen as the majority class of labeled points belonging to that
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cluster. Each unlabeled object is supposed to belong to the nearest cluster
prototype.

As these assignments of objects to clusters are crisp, the objective func-
tion JDB has many steps and is not differentiable. Thus alternating opti-
mization as in the other approaches is not feasible. The authors propose a
evolutionary algorithm for minimization of JDB . They use Pittsburgh-style
chromosomes that represent the nk nd-dimensional cluster centers as floats.
The algorithm is rather straightforward, with unspecialized operators taken
from the GAlib (Wall, 1999). Details can be found in (Demiriz et al., 2002).

5.2.5 Semi-Supervised Point-Prototype Clustering

Bensaid and Bezdek (1998); Labzour et al. (1998) propose a semi-supervised
point-prototype clustering algorithm that is based on the fuzzy c-means
algorithm. The algorithm, called ssPPC, first overpartitions the unlabeled
input patterns in a fully unsupervised manner using fuzzy c-means (although
the authors remark that any point-prototype cluster algorithm can be used).
Then the resulting clusters are labeled based on the labeled examples. In a
final step, the unlabeled tuples are labeled based on their memberships to
the clusters.

The algorithm performs the following steps:

• Cluster Du with fuzzy c-means. The number of clusters nk is heuristi-
cally chosen as nl, i.e. there is one cluster for each labeled example. Let
V = {v1, . . . , vnk

} denote the resulting cluster prototypes and U(nk,nu)

the matrix of cluster memberships.

• Assign class labels to the cluster prototypes vi. The labels of the pro-
totypes L(nk,nc) can be possibilistic, i.e. lij ∈ [0, 1]. Three alternative
strategies have been proposed to find labels (Labzour et al., 1998):

A. For each prototype vi find the nearest labeled example from Dl

and adopt its (crisp) label.

B. Assign each labeled example to its nearest prototype. Let Dl
j

be the labeled examples of class j, and Dl
ij ⊂ Dl

j the subset
assigned to prototype vi. Use their fraction to define possibilistic
class labels:

lij =
Dl

ij

Dl
j

. (5.34)
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C. The distance between a prototype vi and Dl
j is measured as

dij = minω∈Dl
j
{‖vi − xω‖}. The labels for the prototype are

defined as the ratio between the class distances:

lij =
1

nc − 1

(
1− dij∑nk

i′=1 di′j

)
. (5.35)

• Compute the labels ûlj , j = 1, . . . , nu for the unlabeled tuples ω ∈ Du

by aggregating the prototype labels and the tuples’ cluster member-
ships:

ûlj = min

{
1,

nk∑
k=1

lklukj

}
. (5.36)

If necessary, crisp labels are generated from ûlj by winner-takes-all
defuzzification.

Bensaid et al. use this approach for transduction, i.e. they label only the
unlabeled fraction of the example data. Application to new data was not
intended, however, it is possible by calculating memberships U for new data
from the given prototype positions.

As this approach allows multiple clusters for each class, it performs bet-
ter on datasets that need this flexibility. Therefore, the authors call their
approach the “successor” of their proposal in (Bensaid et al., 1996, see
Section 5.2.3), although the underlying mechanisms are obviously rather
different. Additionally, due to the initial overpartitioning, ssPPC cannot
appropriately take the density information of the unlabeled data into ac-
count. The experiments on artificial datasets in Section 5.3 underline this
problem.

5.2.6 Generalized Fuzzy Min-Max Classifier

In Section 3.1.4, we presented the fuzzy min-max classifier as the proto-
type of hyperbox oriented fuzzy rule learners (Simpson, 1992). Gabrys and
Bargiela (2000) extended that scheme to semi-supervised learning.7 The
performed modifications to the original operations (initialization of new

7The extension to semi-supervised learning is only one aspect among several proposed
modifications and enhancements. For instance, the authors suggest to use hyperboxes as
input patterns. However, as we consider only input points, i.e. the “special case” of zero-
volume hyperboxes, we leave these considerations apart. Furthermore, the membership
function from Eq. (3.2) is modified to a “normal” trapezoid, and the average operator
from Eq. (3.3) is replaced by the more common t-norm >min. These changes affect
fuzzy inference, but have no impact on the rule induction. The maximum hyperbox size
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rules, expansion, overlap test, and contraction) are astonishingly straight-
forward:

• First, the definition of compatibility between hyperboxes and tuples
is modified. If the label of a tuple is unknown, or if a hyperbox con-
tains only unlabeled tuples and thus its consequent label is unknown,
then there is no information that the tuple is not compatible to the
hyperbox. Therefore, these cases are defined as compatible.

• The first labeled example that is added to a hyperbox defines the
corresponding rule’s consequent.

• Unlabeled hyperboxes are tested for overlap with any other hyperbox
because they might assume any label. The expansion and contraction
operations remain unchanged.

The algorithm is successfully applied a “toy dataset” and the Iris data. A
similar semi-supervised extension of the original fuzzy min-max classifier
scheme is presented by Kulkarni et al. (2002). The authors basically em-
ploy the same semi-supervised operations, but use hyperspheres instead of
hyperboxes as prototype shapes.

5.3 Capabilities and Limitations

In the previous sections, we presented a variety of methods which learn
from labeled and unlabeled data. They have in common that they either
induce fuzzy rules or fuzzy cluster prototypes, or are general enough to
be extended to fuzzy classifier learning. Before we further discuss their
suitability for the semi-supervised learning of interpretable fuzzy rules on
realistic problems, we demonstrate and compare their classification abilities
on several illustrative example datasets. The results from our empirical
evaluation and the discussion in Section 5.4 show the need for our specialized
approach proposed in Chapter 6.

So far, there are no publicly available and commonly agreed on bench-
mark datasets for semi-supervised classifiers. The usual way of testing the
methods uses the datasets of the UCI machine learning repository (Blake
and Merz, 1998), and treats an arbitrarily chosen random subset as un-
labeled. However, evenly distributed missing labels are neither the most

constraint Eq. (3.4) is modified to limit the maximum instead of the average width of
a hyperbox. Finally, the dataset is processed several times, with adapted (decreasing)
maximum size from run to run. Thus, more specific rules will be learned in later epochs.
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Abbr. Method Section
GG axis-parallel Gath&Geva fuzzy clustering 3.2.2

NEFCLASS NEuro Fuzzy CLASSification 3.1.5
ssFCM semi-supervised FCM 5.2.3
ssPPC semi-supervised point-prototype clustering 5.2.5
ssGK semi-supervised Gustafson&Kessel 5.2.3

ssMoG semi-supervised mixtures of Gaussians 5.2.2
DBG Davies-Bouldin / Gini index based approach 5.2.4

GFMM generalized fuzzy min-max classifier 5.2.6

Table 5.1: Compared algorithms: GG is unsupervised, NEFCLASS is su-
pervised, the other six methods are semi-supervised.

realistic case in practice, nor the case in which semi-supervised learning can
be expected to yield its best results. Another problem is that most UCI
datasets are rather small. Therefore, it is not uncommon that in publica-
tions the labels of 50 (or more) percent of the data are used for learning.
From the practical point of view, the main motivation for semi-supervised
learning algorithms is of course their capability to work in cases where
|Du| � |Dl|.8 Unfortunately, for real-world problems with small numbers
of possibly less representative labeled examples the underlying ground truth
for the unlabeled data is often not available, and fair comparison of algo-
rithms by e.g. the number of misclassifications thus is not possible.

Therefore, we compare the algorithms on two kinds of test datasets.
First, we use several artificial datasets. In these examples, the distribu-
tion of the data as well as the choice of the labeled subset are designed
to raise several difficulties for supervised (on the labeled subset) or unsu-
pervised methods. These examples help to illustrate how the presented
semi-supervised methods cope with these problems and which deficiencies
they have. Additionally, we adopt the common test procedure of applying
the algorithms to datasets from the UCI machine learning repository with
randomly hidden labels.

Table 5.1 lists all methods considered in the following experiments. As a
benchmark for the semi-supervised approaches, we additionally present the
results of applying a pure supervised and a pure unsupervised algorithm to

8If someone has already labeled 50% of the data, he or she can probably as well label
all of it. Or, from the learner’s side: if 50% of the data are not sufficient to learn the
model in a fully supervised manner, then the remaining 50% will probably not be of much
help either (especially as they are unlabeled).
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the datasets. As a supervised algorithm we use the well-known neuro-fuzzy
classifier NEFCLASS (Nauck and Kruse, 1997, cf. Section 3.1.5). The un-
labeled examples cannot be used for supervised learning and thus they are
discarded when inducing a fuzzy classifier with NEFCLASS. As a bench-
mark for an unsupervised method we use the axis-parallel Gath&Geva (GG)
fuzzy clustering algorithm (cf. Section 3.2.2). It is applied to the union of
unlabeled examples plus labeled examples with ignored labels. The result of
GG can in principle be transformed into a set of fuzzy rules, e.g. as described
in Section 3.2.4.

The semi-supervised algorithms have been implemented according to the
descriptions by their authors. One relevant modification refers to the imple-
mentation of Pedrycz’s approach (ssGK), where we restricted the clusters to
be axis-parallel, i.e. only the variances, but not the covariances are updated
from the membership matrix. This helps to keep projection loss small when
generating fuzzy rules (cf. Section 3.2.4). The parameters of the algorithms
have been chosen according to their authors’ recommendations. We tried to
find robust sets of parameters. For each method, we tested the suitability
of the parameters on a few test runs and kept set of parameters for all runs.

For the unsupervised GG, we assumed a one-to-one relation of clusters
to classes, like in its semi-supervised relatives ssFCM and ssGK. As ssMoG
allows to learn the labels of clusters, we generally set the number of clusters
to two times the number of classes. For ssPPC, we follow the authors’
suggestion to set the number of clusters to the number of labeled examples.
For the labeling of the clusters, we implemented the second proposed scheme
(see Eq. (5.34) in Section 5.2.5), because the authors reported the best
results for it (Labzour et al., 1998).

5.3.1 Artificial Benchmark Datasets

In this section, we present three artificial datasets and the results of the
algorithms described in this chapter. All three datasets have two input
dimensions and two classes, marked by “◦” and “4”.

The first artificial dataset demonstrates how unsupervised learning fails
due to the lack of guidance. The structure in the data does contain almost
no information about the class distribution.9 The second dataset shows a
situation where unsupervised learning works even better than supervised
learning, i.e. we could say that hiding the class information improves the

9In the terminology of Seeger (2001)—cf. Section 5.1—this distribution could be better
modeled with a diagnostic than with a generative model.
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Figure 5.3: First artificial dataset: the distribution of the unlabeled exam-
ples hardly reflects the class structure.

results.10 There are two well separated clusters that will be found by most
unsupervised clustering algorithms. The problem of the given class labels
is that they are not very representative for the classes, and thus mislead
the supervised classifier. The third dataset increases the complexity of the
problem by splitting one of the classes into two clusters. Therefore, at least
two rules (i.e. prototypes) are needed to represent this class. This dataset
will obviously be a challenge to those algorithms that allow to learn only
one prototype per class. Additionally, the chosen labeled examples are not
very representative and the clusters overlap.

Artificial Dataset I

Figure 5.3 shows 500 tuples from the first dataset that are used to train the
classifiers. The two classes “◦” and “4” are equally probable. The classes
lie in two clusters side by side. 10% of the tuples have randomly been chosen

10This claim is, of course, a little ostentatious: We use two completely different clas-
sifiers and learn from different parts of the available data. Thus, we can not objectively
measure the effect of hiding the class labels.
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a) GG (20.2% errors) b) NEFCLASS (5.2% errors)

c) ssFCM (10.6% errors) d) ssGK (14.8% errors)

Figure 5.4: Experimental results on 1st artificial dataset.

to build the labeled dataset Dl.11 The corresponding points are drawn
colored and slightly bigger. The class labels of the remaining 450 tuples
have been discarded to form the unlabeled data Du (however, the labels
are shown by black symbols in Figure 5.3). The given labeled examples are
sufficient to solve the classification task in a supervised manner from Dl

only. However, as the clusters lie very close and even slightly overlap, they
can hardly be found in the density distribution of the points. Hence, we
can expect unsupervised learning to perform rather bad on this dataset.

11“◦” occurs 28 times, “4” 22 times.
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e) ssPPC (1.4% errors) f) ssMoG (7.8% errors)

g) DBG (1.8% errors) h) GFMM (13.2% errors)

Figure 5.4: Experimental results on 1st artificial dataset (continued).

The joint partially labeled dataset Dl∪Du was used to induce the classi-
fiers. The induced models have been applied to an independent test dataset
of 500 tuples from the same distribution. The results are shown in Fig-
ure 5.4. Misclassified points are shown in red with the symbol that corre-
sponds to their true class label. Additionally, the decision boundaries are
shown. The background color of the diagrams relates to the activation of a
rule or to the distance from the prototype center.

The unsupervised GG located two clusters on the principle axis of the
point cloud (Figure 5.4a). However, the resulting decision boundary only
hardly relates to the underlying true class boundary. Thus GG performs
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rather bad on the test data. The supervised NEFCLASS is able to construct
quite a good decision boundary from the labeled data Dl only (Figure 5.4b).
Due to its global fuzzy set definitions and the min-max inference scheme,
we can observe that the decision boundary is forced to be axis-parallel and
that (shown in white) there is an ambiguous triangular region with a tie
of two or more rules.12 In Figures 5.4c and 5.4d, it can be seen that the
influence of the additionally used labels allows ssFCM and ssGK to slightly
rotate the decision boundary, and thus the number of misclassifications is
reduced compared to GG. It should be noted that further increasing the
weight of the labeled examples by changing the parameters does not help
to rotate the boundary any further because the cluster centers are already
close to the centers of the labeled examples, i.e. the center of class “◦” is
above the center of class “4”.

The result of ssPPC, shown in Figure 5.4e, is one of the best on this first
dataset. The boundary is very flexible, due to the high number of cluster
prototypes (i.e. nk = |Dl| = 50). The idea of the ssMoG approach is close
to that of the semi-supervised clustering approaches. However, it performs
better because the probability of misclassifications is explicitly taken into
account (Figure 5.4f). Because the Gini index also explicitly measures im-
purity, DBG also successfully separates the points from Dl and thus also
generates a good decision boundary for this test dataset (Figure 5.4g). The
measure induces a model with two prototypes only. GFMM produces the
most jagged decision boundary of the compared methods (Figure 5.4h).
The two yellow, class “◦” hyperboxes that lie completely in the blue, class
“4” area significantly degrade the performance. Such hyperboxes can re-
sult from the semi-supervised learning algorithm. It builds hyperboxes from
the unlabeled data and then labels them from the first labeled tuple. If this
seed tuple is an outlier, large hyperboxes with wrong labels can be created.
And, even worse: once labeled incorrectly the hyperbox will shrink if it
contains contradicting tuples, and grow again if unlabeled tuples lie next
to it. However, it can never disappear. Actually, the two hyperboxes in
Figure 5.4h that degrade performance do not contain a single example of
class “4”. Additionally, if no labeled tuple falls into a hyperbox, it remains
unlabeled (as for example the shaded gray areas in Figure 5.4h).

12Notice, however, that this might partially be overcome by the pruning strategies of
the more recent NEFCLASS versions.
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Figure 5.5: Second artificial dataset: untypical labeled examples.

Artificial Dataset II

The second dataset, depicted in Figure 5.5, demonstrates a situation where
the unlabeled data contains more information on the optimal decision bound-
aries than the labeled fraction of the data. As unsupervised learning can
exploit Du and Dl (with discarded labels), but pure supervised methods
can only make use of Dl, we have the rather uncommon situation that
unsupervised learning works even better than supervised learning.

The training dataset has 1000 points, 750 of class “◦” and 250 of class
“4”. The classes build two well separated clusters that should easily be
identified by most unsupervised clustering algorithms. 2% of the labels are
assumed to be known, i.e. 10 examples of each class. The problem of the
given class labels is that they do not characterize the classes very well. A
supervised classifier which can only learn from Dl thus is easily misled.

Figure 5.6 shows the results of applying the induced models to an in-
dependent test dataset. As can be seen in Figure 5.6a, the unsupervised
GG has no problems in identifying the cluster structure and performs very
well on this dataset. In contrast to this, the performance of NEFCLASS
is significantly worse (Figure 5.6b). Using the few labeled points only, the
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a) GG (1.4% errors) b) NEFCLASS (11.3% errors)

c) ssFCM (3.1% errors) d) ssGK (1.7% errors)

Figure 5.6: Experimental results on 2nd artificial dataset.

best a supervised classifier can do is to split the data in the middle between
the observed classes. Actually, NEFCLASS creates four fuzzy rules for the
labeled examples and keeps these initial rules without any fine-tuning, as
they already perform perfect on Dl. However, this leads to many misclassi-
fied points on the whole dataset because the decision boundary should not
be set to the middle between the shown labeled examples, but rather at the
line of the lowest data density. This second example dataset might seem to
be “unfair” for the supervised NEFCLASS in the sense that no supervised
algorithm would have a chance to build a proper separating line. However,
in practice such situations might be rather common if the data is labeled by
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e) ssPPC (6.2% errors) f) ssMoG (0.4% errors)

g) DBG (0.9% errors) h) GFMM (46.7% errors)

Figure 5.6: Experimental results on 2nd artificial dataset (continued).

hand. Manually given labels are often defined for those objects that differ
most significantly from the other classes, and not for those that are typical
for their own class.

The partially supervised algorithms perform rather well on this dataset.
The result of the semi-supervised ssGK (Figure 5.6d) is almost identical
to that of the unsupervised GG. The result of ssFCM is slightly worse
(Figure 5.6c). This can partially be explained by the more rigid cluster
shape of the underlying FCM. However, it can be observed that the center of
the left (yellow) cluster is not located at the center of the points of class “◦”.
Instead, it is rather strongly attracted by the labeled examples of “◦”, an
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effect of setting the membership of labeled points to corresponding clusters
to one. Actually, the original fully unsupervised FCM would perform better
than ssFCM on this example because it yields better estimates of the cluster
centers. The objective function of ssFCM can be seen as a special case of the
one ssGK uses. Accordingly, the performance of ssGK degrades, when the
influence of the labeled points is increased. Hence, both algorithms depend
on “good-natured” labeled points.

When we compare the results of ssPPC in Figure 5.4e and Figure 5.6e,
we might be irritated by the simplicity of the decision boundary in the latter,
where it is almost a straight line. Actually, to 8 out of nk = |Dl| = 20 clusters
Eq. (5.34) assigns labels with ∀j ∈ C : lij = 0. This means that most clusters
that are positioned at unlabeled points are, in fact, completely ignored. The
remaining clusters lie close to the labeled points. The resulting decision
boundary is close to, e.g., that of näıve Bayes classification from Dl only.
Obviously, ssPPC depends on labeled examples that are well distributed in
Du. However, it is less important that their center coincides with the center
of the class.

The class boundary which results from ssMoG is almost perfect (Fig-
ure 5.6f). The better performance in comparison to GG can mostly be
attributed to the higher flexibility due to four mixtures instead of two clus-
ters, and the ability of ssMoG to adapt a priori probabilities (i.e. cluster
sizes). As on the first dataset, DBG again yields one of the best results (Fig-
ure 5.6g). As practically any reasonable set of clusters allows to separate
the two classes for the 20 labeled examples only, the impurity measure does
not contribute to the specific solution.13 Thus, the (almost perfect) location
of the decision boundary is determined mostly by the Davies-Bouldin index.

The weakest result on this dataset is generated by GFMM. As can
be seen in Figure 5.6h, GFMM failed to label the hyperboxes in between
the labeled points. Thus 45.2% of the data are not classified at all. As a
matter of fact, the original FMM applied to the labeled data only would
have performed better on this dataset.

Artificial Dataset III

The third artificial dataset, shown in Figure 5.7, combines the challenges of
the first two datasets, i.e. overlapping, hard-to-separate clusters and mod-
erately representative labeled examples. Additionally, the complexity is

13Notice that impurity, i.e. the Gini-index, is calculated from the labeled examples only.
All faultless solutions yield the same minimal impurity and thus the same contribution
to the fitness function independently of the chosen weight in Eq. (5.33).
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Figure 5.7: Third artificial dataset: untypical examples, overlapping clus-
ters, and two clusters for one class.

increased. Class “4” is split into two clusters and thus requires at least
two rules to be adequately described. It should be noted that this exam-
ple will mostly illustrate a principle problem of ssFCM and ssGK, namely
the inability to model classes with more than one cluster. However, the 40
given labeled examples allow relatively good results with pure supervised
methods.

Although generally, we assumed a one-to-one relationship of clusters to
classes for the unsupervised GG, the results presented in Figure 5.8a are
generated with three clusters to help to identify the true clusters.14 How-
ever, even with three clusters, GG fails to find the underlying structure
in the data. Obviously, the overlapping clusters are hard to find without
the guidance of labeled examples. The supervised NEFCLASS has prob-
lems to find appropriate rules in areas without presented (labeled) examples
(Figure 5.8b).

The partial supervision of ssFCM and ssGK could potentially help to

14With two clusters, the results look rather similar to Figure 5.8d and the error raises
to about 30%.
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a) Unsupervised GG (19.9% errors) b) NEFCLASS (24.1% errors)

c) ssFCM (40.0% errors) d) ssGK (32.9% errors)

Figure 5.8: Experimental results on 3rd artificial dataset.

separate the two overlapping clusters. However, both approaches do not
allow to induce more than one cluster per class. As can be seen in Fig-
ures 5.8c and 5.8d, this significantly deteriorates the performances of these
semi-supervised algorithms on this dataset. Notice that in both approaches
the blue cluster is attracted to a certain degree by the labeled examples of
the lower right cluster.

In comparison to the second dataset, the labeled examples are spread
better within the unlabeled examples, and the effect of “empty” clusters
in ssPPC is less apparent. The result shown in Figure 5.8e is rather good.
However, it shows a tendency of ssPPC to overfitting due to the highly
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e) ssPPC (10.4% errors) f) ssMoG (3.1% errors)

g) DBG (4.3% errors) h) GFMM (17.1% errors)

Figure 5.8: Experimental results on 3rd artificial dataset (continued).

flexible decision boundary. Obviously, this boundary is pretty close to that
resulting from nearest neighbor classification from Dl alone. This is not
surprising, as ssPPC does not really seek for structure, but effectively uses
the distance from the labeled examples.

Figure 5.8f depicts the results of ssMoG, which nicely approximates the
underlying distribution of the example dataset. Again, this approach yields
the best result of the compared methods. The result of DBG is slightly worse
(Figure 5.8g). However, considering the more restricted cluster shape, the
result is very good. The last compared semi-supervised method, GFMM,
performed better than on the second dataset. It still generates hyperboxes
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from unlabeled examples that remain unlabeled and thus unavoidably pro-
duces errors. The error for these rejected tuples could be reduced simply
by guessing their class label (or that of the containing hyperbox). However,
this does obviously not help to reveal the structure of the dataset.

5.3.2 Empirical Results on the Iris Dataset

Additionally to the artificial examples, we compared the performance of the
algorithms on Fisher’s well-known “real-world” Iris dataset, which can be
found in the UCI machine learning repository (Blake and Merz, 1998). The
dataset contains three classes of iris plant that are described by four numeric
attributes, namely petal and sepal lengths and widths. The dataset has 150
examples. In the experiments, different random fractions of the labels have
been hidden to the learning algorithms. The fractions have been chosen to
be 4%, 8%, 20%, 40% and 100%. For the experiments the following steps
are performed:

for run = 1 . . . 20 do
Randomly split the data into training and test set (75 cases each).
for all percentages p ∈ {4, 8, 20, 40, 100} do

Randomly choose p% labeled examples of the training dataset as Dl,
discard the labels of the remaining tuples to form Du.
for all classifier approaches CA do

Induce a classifier with CA (for the semi-supervised approaches,
use Dl∪Du; for NEFCLASS, use Dl only; for GG use the complete
training data with discarded labels).
Apply the classifier to the test dataset.

end for
end for

end for

Figure 5.9 summarizes the results. The abscissa shows the percentage of
labeled examples, the ordinate shows the number of misclassifications. The
black lines mark the mean error averaged over the twenty runs. The darker
corridors mark 1st and 3rd quartiles, the brighter corridors are spanned by
the minimal and maximal errors observed during the 20 runs.

The two extremes—pure unsupervised and pure supervised learning—
mark the poles in between which most semi-supervised results lie. The
unsupervised GG has a fair performance. As it does not depend on the
chosen labeled subset, its performance is constant over the size of Dl (Fig-
ure 5.9a). The fully supervised NEFCLASS clearly outperforms GG when it
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gets enough—10% or more—labeled examples. However, with less examples
performance quickly degrades (Figure 5.9b).

Almost all considered semi-supervised approaches succeed to induce clas-
sifiers which are better than NEFCLASS for few labeled examples, and
better than GG for greater fractions of available labels. The only clear
exception is GFMM, which performs mediocre for 100% known labels, but
unacceptably bad in the presence of many unknown labels (Figure 5.9h).
The other approaches are rather similar and generally suited to point out
the advantage of semi-supervised learning.

Although most of the approaches have a better average error than GG,
the spread from minimal to maximal error is quite large for some of them.
The narrowest corridor can be observed for ssGK, which shows the best
overall performance on this dataset (Figure 5.9d). DBG and ssMoG, which
both did very well on the artificial datasets, perform slightly worse than
ssGK. Especially DBG seems to have problems with 20% or less labeled
examples (Figure 5.9g). As argued above, finding solutions with no train-
ing errors (and thus minimal impurity) is easily possible for the Iris data
and small labeled subsets Dl. Hence, the cluster positions will mainly be
determined by the Davies-Bouldin index, which seems to be less adequate
for this dataset.

5.4 Discussion

This chapter gave a survey of existing approaches to semi-supervised learn-
ing. As the goal of this thesis is to develop an algorithm for the semi-
supervised induction of fuzzy classification rules, the survey was focused on
methods that induce—or can be modified to induce—fuzzy classifiers. To
our knowledge, in spite of a number of different proposals, GFMM seems
to be the only semi-supervised method that explicitly generates a set of
fuzzy rules. The overall performance of GFMM, however, was rather disap-
pointing. The other methods have been designed to extract non-rule models
like fuzzy (point- or non point-prototype) clusters or mixtures of Gaussians.
Some of these algorithms showed rather good performances, and all of their
induced models can in principle be transformed into fuzzy rules. The ulti-
mate objective of fuzzy rule-based classification is the learning of readable
and interpretable rule bases. In the following, we therefore discuss the suit-
ability of the models for this goal. The following aspects are considered:

• Expressiveness: How flexible is the induced model? What kind of
distribution and decision boundaries can be modeled? How capable
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Figure 5.9: Experimental results on Iris dataset. The graphs show the
error vs. the percentage of labeled examples; black line: mean error, dark
corridor: 1st/3rd quartile, bright corridor: minimal/maximal error.

are single rules/clusters? How flexible is the model induced by the
interaction of rules/clusters?

• Interpretability: How difficult is it to transform the model into a
fuzzy rule base? How readable will this rule base be? How many rules
does it have? Will it let the user gain insight into the data?

• Semi-supervised learning: How capable was the semi-supervised
learning algorithm? Does it depend on the representativeness of the
examples? How strongly does it respect the information of the labeled
data Dl?

The results which are discussed in the next sections are summarized in
Table 5.2.
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Figure 5.9: Experimental results on Iris dataset (continued).

5.4.1 Expressiveness of Induced Model

As mentioned in Chapter 2, fuzzy classifiers can approximate arbitrary class
boundaries with arbitrary precision. The proofs require that either the
number of fuzzy rules must be unrestricted or that the membership functions
must be flexible enough. In practice both are limited—and thus also the
approximation capabilities. However, as there are significant differences
between the models, we compare the flexibility of individual clusters (or
membership functions), and the flexibility of the class boundaries, i.e. of
the results of the interacting rules.

Three of the models, namely ssFCM, ssPPC and DBG, consider only
point-prototypes and isotropic distances. They are not able to model shape
or size of clusters. The remaining models allow more flexible cluster shapes,
either as fuzzy hyperellipsoids (ssGK and ssMoG) or fuzzy hyperboxes
(GFMM). However, even point-prototypes can yield very complex cluster
shapes, as we observed for ssPPC; the aggregation of a large number of
simple clusters allows this method to generate very flexible decision bound-
aries. GFMM is also able to create a large number of rules and thus to
represent rather arbitrary boundaries. DBG and ssMoG normally use a
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ssFCM ssGK ssPPC ssMoG DBG GFMM
Expressiveness (5.4.1):
Cluster shapes ◦ + ◦ + ◦ +
Complex clusters − ◦ ++ ++ + ++
Interpretability (5.4.2):
Convert to fuzzy sets + ◦ + ++ + ++
Linguistic interpretability + + − ◦ + −
Interpretab. of rule base + + −− − + −
Semi-supervised learning (5.4.3):
Overall performance ◦ + + ++ ++ −−
Untypical examples ◦ + − ++ ++ −−
Respecting errors on Dl − − + + ++ (++)

++: very good +: good ◦: neutral −: bad −−: very bad

Table 5.2: Comparison of the considered approaches

smaller number of clusters (or Gaussians, respectively). However, as the
maximum number of clusters to be used is specified by the user, it can be
adapted to the required expressiveness. Since the cluster shape of DBG
is more restricted than that of ssMoG or GFMM, and since its number
of clusters is generally smaller and their aggregation is crisp,15 the overall
flexibility of DBG is slightly smaller than that of ssPPC, ssMoG or GFMM.

The strict cluster-class correspondence of ssFCM and ssGK wastes much
of the flexibility of fuzzy classifiers. While ssGK can partially compensate
for that weakness by its more flexible cluster shape, ssFCM can only re-
present Euclidean Voronoi cells. This means that for any problem to be
perfectly modeled with ssFCM, each pair of classes has to be linear separa-
ble, what is obviously a strong restriction.

5.4.2 Interpretability of Transformed Rule Base

One common motivation for using fuzzy methods is the demand for expli-
cable data analysis results that can be understood by human experts and,
for example, be checked for plausibility. However, the models generated by
fuzzy methods somewhat differ in their interpretability.

As we want classification knowledge represented in form of fuzzy rules,
for all models except GFMM the first problem is to transform clusters into

15Both, ssPPC and ssMoG, use soft labels of the clusters, and thus aggregation of rules
is weighted.
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fuzzy membership functions and rules. In GFMM each hyperbox corre-
sponds to a fuzzy rule with trapezoidal membership function and >min-
conjunction. For the cluster approaches, the projection method described
in Section 3.2.4 can be used. As we restricted the non point-prototype
methods ssGK and ssMoG to axis-parallel clusters, the projection errors
should be reasonably small. However, instead of projecting the clusters in
combination with >min-conjunction, the mixtures found by ssMoG can be
directly transformed into fuzzy rules with prod-sum inference (analogous to
the transformation of näıve Bayes classifiers discussed in Section 2.4). In
this case, the Gaussian distributions in the input dimensions can be inter-
preted as membership functions.

As we will show in Chapter 6, models with isotropic distances can be
transformed into products of Gaussians with (arbitrary but) constant vari-
ances. Thus the clusters of ssFCM, ssPPC, and DBG can also be directly
transformed into fuzzy rules with >prod-conjunction, without the need of
projecting them. However, the constant width of the resulting membership
functions does not reflect different cluster sizes or shapes.

All compared approaches yield local (i.e. rule-wise) definitions of mem-
bership functions. In general, it is much easier to find linguistic descriptions
for globally defined membership functions shared by all rules. However, for
ssFCM and ssGK, nk = nc membership functions are created for each in-
put dimension, i.e. one for each class. If the number of classes is small,
generating linguistic description—like “small”, “medium”, “large”—will be
possible in most cases. DBG and ssMoG also usually induce small numbers
of clusters (and thus membership functions). Especially DBG autonomously
reduces the number of clusters. Additionally, as all resulting membership
functions share the same constant width, there are no situations where one
fuzzy sets is included in another. Such situations are much harder to be
described linguistically than just relative orderings. Although ssPPC also
uses fuzzy sets with constant widths, due to the extreme overpartitioning
with nk = |Dl| clusters it generates far too many membership functions to
be described linguistically. The same holds for GFMM, where additionally
inclusions of fuzzy sets frequently occur.

The interpretability of the data analysis result—i.e. the interpretability
of the rule base as a whole—depends to a great extent on the interpretabil-
ity of single rules and on their number. Hence, the high number of rules
in ssPPC and GFMM massively degrades interpretability and readability
of the rule base. With respect to this, approaches like ssFCM, ssGK, ss-
MoG, or DBG have clear advantages. The interpretability of ssMoG is,
however, massively spoiled by the posteriors P (c | m), which have to be
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translated into fuzzy consequents. This means that one rule does in general
not describe a single class, but a mixture of classes. The decision boundaries
that result from aggregation of such rules become rather unpredictable. The
same problem arises for the soft labels that ssPPC calculates for its clusters.

Obviously, none of the approaches was intended to generate member-
ship functions that are suited for linguistic description. Another common,
yet very potent means to achieve interpretable, readable rule bases is the
use of “don’t cares”, i.e. specifying only a subset of the dimensions in the
antecedents. This helps to make rules more general on the one hand and
easier graspable for humans on the other hand. However, this possibility is
not used in any of the presented approaches.

5.4.3 Semi-Supervised Learning Capabilities

An aspect that is even more relevant than expressiveness and interpretability
in the context of this thesis is the ability of the methods to learn from
partially labeled data. We pointed out that semi-supervised learning can
be expected to be most effective in situations where many unlabeled, but
only few labeled, possibly untypical examples are available for inducing a
classifier. Thus one question is whether an algorithm is able to cope with
such situations. The unsupervised component of semi-supervised learning
(as well as any pure unsupervised learning) relies on assumptions about
the nature of the data (cf. Section 5.1). Consequently, another important
question is how a semi-supervised learning algorithm will behave if these
assumptions are false. Although a performance decrease can hardly be
avoided in such situations, it is desirable that the result of learning from
Dl ∪ Du is not (or at least not much) worse than pure supervised learning
from Dl alone.

The overall performance of the algorithms can hardly be judged, as it
obviously strongly depends on the data at hand which algorithm will be
best. In our case, it depends on the weighting of the considered example
datasets. However, we can say that ssMoG and DBG yielded rather good
results on each example. On the Iris dataset, ssGK was in front. The only
clear exception was GFMM, which regularly performed rather bad.

The second artificial dataset illustrates a scenario of learning from exam-
ples which might be characteristic for their class, however not prototypical,
i.e. which do not lie near the center of their class. On this dataset ssMoG
and DBG performed best,16 followed by ssGK, ssFCM, and ssPPC (in that

16The slight performance difference between ssMoG and DBG on the second artificial



5.4. Discussion 117

order). GFMM again lies clearly behind. The sequence of the other ap-
proaches is not surprising, when we look at the underlying methods. DBG
crisply assigns the examples to the clusters. The labels are only taken into
consideration in the impurity measure. Once the labeled examples have
been assigned to their correct corresponding clusters, impurity is constant
and the exact position of the examples does not influence the position of the
clusters. The mechanism used in ssMoG can be seen as a similar, but soft-
ened version of DBG. In contrast to these algorithms, in ssFCM the labeled
examples always directly influence the prototype estimation, because their
membership is fixed at one. As the labeled tuples are often weighted to
compensate for the smaller size of Dl, untypical examples can significantly
worsen the result. The same idea is basically used in ssGK. As, however,
a factor is introduced in ssGK to balance between pure unsupervised and
ssFCM-like semi-supervised learning, the effect is less marked. Lastly, the
decision boundary of ssPPC is mostly determined by the distances from the
labeled examples. Hence, it is obvious that untypical examples affect the
result rather severely.

In Table 5.2, the ability of a semi-supervised algorithm to perform at
least as good as pure supervised learning on the labeled examples only is
named the ability to “respect the errors on Dl”. Although this means not
necessarily the same, we wanted to express whether an approach is able
to extract the information contained in Dl. The difference between the
two abilities is most obvious for GFMM. It is probably the best of the
presented algorithm to avoid errors on Dl (hence the “++” in Table 5.2),
because it does not stop splitting the hyperboxes before the error on Dl is
zero. However, looking at the result on the first artificial dataset shows that
it can create (almost absurd) rules with a generalizing performance much
worse than pure supervised learning.

The reason that DBG performs extremely well on the considered ex-
amples lies in the combination of impurity and dispersion measure. The
Gini index as impurity measure, which is usually weighted higher than dis-
persion, explicitly respects the errors on Dl. As long as the clusters are
consistent with Dl, DBG tries to fit their position to the unlabeled data Du

by using the Davies-Bouldin dispersion measure. In ssMoG, the error for
the labeled examples is minimized by maximizing the probability that the
labels were generated by the modeled distribution—a direct consequence of
the maximum likelihood principle used. As long as these probabilities are
high, the distribution is adapted to the densities of the unlabeled points

dataset is mostly due to the different cluster shapes.
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(which is why the closeness of the labeled points to the cluster centers is of
secondary importance).

The mechanisms in DBG or ssMoG to exploit the labeled data are quite
different than those for ssFCM or ssGK. Intuitively, in ssFCM and ssGK
any labeled point tries to influence its corresponding cluster, such that it
belongs to this cluster with a higher membership degree. Although this
seems reasonable to reduce the error for a single example, it can lead to
higher error rates for other involved tuples, especially for ssFCM where
only the centers are updated. The effect of this can be seen in the first
artificial dataset. To model the linear decision boundary, the center of the
first class (“4”) would have to be right of and slightly above the center
of the second class (“◦”). However, the labeled examples—and thus the
cluster centers—of the first class lie below that of the second class, and
therefore the decision boundary becomes tilted to the wrong side. Similar
effects can be observed on the third dataset.

The last considered algorithm, ssPPC, performs almost perfect on the
first dataset. Actually, ssPPC performs more like a supervised than like
a semi-supervised algorithm: the extreme overpartitioning is closer to sub-
sampling than to revealing underlying cluster structure; as the soft cluster
labels are based on the isotropic distances of Dl only, the structural infor-
mation is hardly exploited. The clusters from the overpartitioning define a
set of Voronoi cells. As they are learned unsupervised, there is no guarantee
that the cell borders coincide with the class borders.17 Thus ssPPC does
not guarantee small error rates on Dl, especially if nk is small.

5.5 Conclusions

This chapter dealt with the current research area of semi-supervised learn-
ing. We gave theoretical considerations, why it is possible that examples
without class labels can support a learning algorithm in finding better de-
cision boundaries, and which characteristics the underlying data-generating
process must possess. The artificial datasets give an idea of the character-
istics that allow successful learning from partially labeled data. The best
improvements can be expected, if the labeled examples are too few and too
unrepresentative for pure supervised learning, and if the density distribu-
tion of the (unlabeled) data corresponds with the classes (i.e. if the sampling
paradigm is appropriate for the data).

17Notice, however, that the resulting decision boundary is generally smooth due to the
soft labels.
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We presented a number of existing approaches to semi-supervised learn-
ing, with a stress on methods related to fuzzy set theory. On our exam-
ples, the methods were able to outperform pure supervised or unsupervised
learning in most cases. However, in spite of the diversity of approaches,
we argued in Section 5.4 that none of these algorithms is fully appropriate
for the semi-supervised induction of readable and interpretable rule based
fuzzy classifiers. In the next chapter, we formulate the requirements for a
semi-supervised learning algorithm for fuzzy classification rules, and present
our approach to this task.
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Chapter 6

Evolutionary
Semi-Supervised Fuzzy
Classification

The preceding chapter gave a survey and discussion of existing algorithms
for semi-supervised classifier learning, with a focus on fuzzy methods. How-
ever, as we pointed out in Section 5.4, none of these approaches is fully suited
for the semi-supervised induction of interpretable fuzzy classification rules.
In Section 6.1, we list requirements that should be met by a semi-supervised
fuzzy rule learner. From these requirements we derive characteristics that
an improved model should possess, taking into account the findings from

• Chapter 2 about properties of fuzzy classification rules, from

• Chapter 5 about potential approaches to semi-supervised learning,
and from

• Chapters 3 and 4 about appropriate rule learning methods.

We come to the conclusion that the requirements are matched best with an
evolutionary algorithm for rule learning. The details of our rule learning
framework are described in Section 6.2.

One appealing feature of evolutionary algorithms is their flexibility re-
garding the optimized fitness function. In Sections 6.3 and 6.4, we propose
two alternative fitness functions that assess the quality of a fuzzy rule base
with respect to a set of partially labeled data. Although the approaches

121
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are rather different in their details, they share similar basic ideas how to
incorporate labeled and unlabeled examples into the fitness function. The
first approach is an extension of the algorithm by Demiriz et al. (cf. Sec-
tion 5.2.4). The second approach is based on the Minimum Description
Length (MDL) principle. We evaluate the performance of the approaches in
Section 6.5 and compare it to those of the algorithms presented in Chapter 5.

6.1 Requirements and Preferences

Ultimately, we want to develop an algorithm that allows to induce inter-
pretable fuzzy classification rules in a semi-supervised manner. Therefore,
as in Section 5.4, we consider three aspects: expressiveness, interpretabil-
ity, and semi-supervised learning capabilities. The underlying fuzzy models
should be flexible enough to cope with the problems discussed in the previ-
ous chapter. The semi-supervised learning method should be able to induce
a model from partially labeled datasets with various characteristics. The
resulting fuzzy rule bases should remain interpretable, i.e. they should let a
human expert gain insights into the analyzed data.

In Chapter 5, we pointed out that semi-supervised learning can have sig-
nificant advantages over pure supervised learning, when few labeled exam-
ples Dl are available and when the abundantly available unlabeled data Du

have a certain inherent cluster structure. Especially, if the labeled examples
are unrepresentative, supervised learning from Dl alone yields unsatisfying
results. If an algorithm is able to cope with such cases—like, for example
ssMoG or DBG—, the benefits of semi-supervised learning become most
evident.

On the other hand, we can generally not rule out the possibility that
there is no—or, even worse, misleading—inherent structure in the example
data. Ideally, a semi-supervised algorithm should in no case perform worse
than supervised learning fromDl alone. Although this cannot be guaranteed
in general, it seems to be reasonable to reduce the errors on the given labeled
examples Dl, and use Du only to an extent that is consistent with Dl. In
DBG, this has been realized by explicitly modeling and combining measures
of impurity and dispersion. We adopt this procedure in our approaches, as
it allows fine and intuitive control of the use of Dl and Du. Especially the
dispersion measure must obviously be suited for the underlying fuzzy model.

In Section 2.3, we discussed the characteristics of fuzzy rule bases that
help to maintain interpretability without losing too much expressiveness.
Some of the characteristics to improve interpretability might at the same
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time even improve the performance of the rule base. Rule bases with small
numbers of rules, for example, are generally more readable, and often gen-
eralize better on unseen data. Similarly, the use of “don’t cares” eliminates
attributes from the antecedents, which makes rules much easier to read, and
often improves generalization ability. An algorithm should be able to adapt
the size of the rule base and the use of “don’t cares” to the complexity of
the learning task.

Fuzzy consequents—corresponding to soft cluster labels or component
posteriors—can be a means of more flexibility for the decision boundary
(cf., for example, ssPPC or ssMoG). However, they can easily destroy inter-
pretability. Similarly, rule weights should be used with deliberation. How-
ever, if they are used with the proper semantic of normalization factors
as shown in Section 2.4, they can help to compensate effects of different
numbers of attributes in the antecedents.

For effective semi-supervision it is necessary that the rules can ade-
quately capture the cluster structure. The model should allow smooth
“natural” cluster shapes. For interpretability it is also advisable that the
rules are fitted to the data. Additionally the resulting decision boundaries
should behave intuitively predictable. From our findings in Section 2.3, this
suggests to use Gaussian membership functions together with the product
t-norm >prod.

Globally defined fuzzy sets are usually easier described linguistically.
However, this can often significantly limit flexibility. As we assume that a
high measure of flexibility might be needed to sufficiently capture cluster
structure, we prefer locally defined fuzzy sets. With appropriate restrictions
on their sizes and relative positions, they can usually still be represented by
linguistic terms (cf. Section 2.3.4).

As mentioned earlier, we decided to use an evolutionary algorithm for
fuzzy rule induction. The use of an EA is another reason to use locally
instead of globally defined fuzzy sets, since these can be more efficiently
encoded in chromosomes (cf. Section 4.2.2).

Generally, evolutionary algorithms are computationally more demanding
than other approaches. Why did we still decide to use an evolutionary
algorithm? In Chapter 3, a variety of non-evolutionary methods has been
presented, some of which have been extended to semi-supervised learning in
Chapter 5. However, not all the alternative methods are equally appropriate
to be extended to semi-supervision. The initial fuzzy partitions, for instance,
that are a priori defined in structure based approaches (cf. Section 3.1.1)
might lead to premature assignment of unlabeled examples to classes and
thus make it difficult to identify the underlying cluster structure. Fuzzy
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decision trees (cf. Section 3.1.5) consider only single attributes in one stage.
This often allows reasonable splits for labeled examples. However, this
procedure is less suited to identify cluster structure. GFMM is a semi-
supervised extension of a hyperbox oriented approach (cf. Section 3.1.4).
As shown on the example datasets of Section 5.3, the iterative processing of
examples leads to premature assignments of unlabeled examples to labeled
hyperboxes, which often cannot be restored in later stages. We conclude
that these approaches to fuzzy rule induction are less suitable for semi-
supervised learning.

Many of the semi-supervised approaches for learning fuzzy models have
been extended from fuzzy cluster analysis. Nevertheless, there are a number
of reasons that speak for evolutionary rule learning in comparison to search
techniques like, for example, alternating optimization. One advantage of
using an evolutionary algorithm for fuzzy rule learning is that it can directly
use quite different quality measures. On one hand, this is rather convenient,
because in contrast to gradient descent or alternating optimization, it is not
necessary to build the derivatives of the objective functions. On the other
hand, this aspect becomes indispensable if the objective function is non-
differentiable, as those presented in Sections 6.3 and 6.4.

Seeger (2001) hypothesized that semi-supervised learning is much more
prone to convergence in local minima. The “strong” guidance from the
labeled examples might overwhelm the “weak” guidance from the unlabeled
examples. The random search of evolutionary algorithms might increase
chances to escape local minima and thus to cope with that problem.

Although we considered only numeric attributes, practical applications
often have mixed numeric and symbolic features. An evolutionary algorithm
can in principle be extended to symbolic features, if the genetic operators
and the objective function are modified to take such features into account.
This is in general more difficult for methods like alternating optimization.

The most important advantage of evolutionary algorithms is their abil-
ity to optimize not only (numeric) parameters, but to learn also structural
aspects of the model, like the number of rules or the use of “don’t cares”
in the antecedents. Hence, they can adapt the flexibility of the model to
the complexity of the task. They easily allow to incorporate constraints
on the fuzzy sets or rules to maintain interpretability without modifying
the objective function. For our goal of understandable fuzzy rules, an evo-
lutionary algorithm thus offers the learning capabilities necessary for the
semi-supervision, and the possibility to control the interpretability of the
resulting rule base.
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6.2 An Evolutionary Algorithm
for Rule Induction

In this section, we describe implementation aspects of our rule learning
framework based on an evolutionary algorithm. We describe how the fuzzy
rule base is encoded in the chromosomes and which genetic operators have
been chosen. The measures that are presented in Sections 6.3 and 6.4 for
the semi-supervised assessment of fuzzy rule bases can be used directly as
fitness functions in the evolutionary rule learner.

As discussed in Section 4.2, Michigan-style and iterative rule learning
approaches require specially adapted fitness functions to control cooper-
ation between rules. This restriction is dropped in Pittsburgh-style ap-
proaches, which simplifies the design of objective functions specialized for
semi-supervised learning. We thus implemented a Pittsburgh-style rule
learner similar to the approach by Carse et al. (cf. Section 4.2.1). It si-
multaneously learns fuzzy sets and fuzzy rules, which allows very flexible
adaptation of the candidate solutions. In the following sections, we de-
scribe similarities and differences of the proposal by Carse et al. and our
implemented approach.

Encoding of the Rule Bases

In our Pittsburgh-style approach, each chromosome encodes a complete rule
base as depicted in Figure 6.1. We use approximative fuzzy rules, i.e. each
rule holds its own fuzzy set definitions. We pointed out before that approx-
imative fuzzy rules have certain appealing properties for a semi-supervised
fuzzy model. Additionally, the local definition of fuzzy sets significantly
supports evolutionary learning. Each rule consists of the parameters of the
antecedent fuzzy sets for every dimension and an integer for the consequent
class.1 We use Gaussian membership functions, requiring two parameters
center and width. A special value is used to signal a “don’t care” in a di-
mension of an antecedent. The rules are simply concatenated to build the
rule base. Hence, the chromosomes can vary in length, depending on the
number of rules.

The initial population of chromosomes is created by generating a user-
specified number of rule bases. The number of rules in a rule base is ran-
domly chosen in some given limits. The centers and widths are randomly

1The approach by Carse et al. was proposed for fuzzy control. Hence, their consequents
are fuzzy sets.
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Figure 6.1: Chromosome encoding used in our approach.

chosen such that the fuzzy sets lie in the attribute ranges.

Selection Operator

The selection operator determines the probability for an individual of the
current population to reproduce, i.e. to be transferred to the next genera-
tion, eventually after mating with another individual and/or mutation.

We chose tournament selection as selection operator: two chromosomes
are randomly chosen from the pool and the fitter of the two is taken. This
operator is more robust compared to fitness proportionate approaches, as it
does not depend on the scaling of the fitness function, and computationally
cheaper than rank based selection, which implies sorting the chromosomes
by fitness (cf. Section 4.1.2).

Additionally, an elitist strategy is used, i.e. the best rule base of the
population is copied to the next generation without modifications.

Crossover Operator

In genetic algorithms, recombination of individuals is the key mechanism
to sift through the search space for good combinations of partial solutions.
Formal considerations of these mechanisms in the schema theorem show
the importance of building blocks, i.e. of partial solutions that have high
average fitness and high probability to remain intact during crossover (cf.
Section 4.1.3).

In accordance with this, a good crossover operator should produce valid
offsprings that preserve good partial solutions from their parents. In our
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case of approximative fuzzy rules, obviously the rules or combinations of
rules lend themselves as natural building blocks. The ordinary (one point
or two point) crossover most likely preserves information from genes that
lie close to each other on the chromosome. As discussed in Section 4.2,
rules generally describe multi-dimensional regions in input space and thus
cannot be ordered on one-dimensional chromosomes. Good combinations of
adjacent rules are therefore easily separated by ordinary crossover.

Carse et al. (1996) proposed so-called one or two point ordered crossover
as a solution to that problem (compare Figure 4.3 in Section 4.2.1). In this
approach every axis is randomly split into two intervals and one of them
is chosen. In the child’s rule base we copy the rules of one parent lying
inside the intersection of these intervals, and the rules of the other parent
lying outside. The resulting rule base of the child chromosome is covered
with rules from the whole rule space, and neighboring rules have a higher
probability to survive together. The number of rules may change by this
procedure.

We initially used this crossover operator (Klose and Kruse, 2002). How-
ever, we found that it bears some pitfalls and thus modified it (Klose,
2003b). First, it is not rotation invariant. This can easily be seen for
the one-point version (cf. Eq (4.12)): rules with centers in (a1, . . . , an) and
(b1, . . . , bn) are always separated, as ai < ci is true for all i (and ci 6= ai),
and bi < ci is false for all i. Other pairs of diametric hyperbox corners are,
however, never separated, because they have at least one dimension with
Cir = bi, thus Cir ≮ ci, and consequently condition Eq. (4.12) is false for
all hyperbox corners except (a1, . . . , an). This rotation dependence is not
cured by the two-point version, as the exchanged hyperboxes still lie along
the main diagonal (from (a1, . . . , an) to (b1, . . . , bn)).

Additionally, the exchanged subspaces have rather different shapes, es-
pecially if dimensionality is high. The normalization of the random variable
in Eq. (4.13) is reasonable to balance the sizes of the exchanged hyperbox
and the remainder of the input space. It leads, however, to other side ef-
fects. Let us for example, assume ten input dimensions. Then the average
length for an edge of the hyperbox will be 0.50.1 > 93% of the attribute
range. Eighty percent of the edges will be longer than 85%, and twenty
percent even longer than 97% of their attribute range. Thus, rules from
a rather large contiguous and compact area (namely a hypercube) of the
input space are copied from one parent. The remainder of the input space
is made up of the “margins”. While its average hypervolume is equal to
that of the hyperbox, adjacent rules from the second parent are more likely
to be separated.
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Figure 6.2: Modified one point ordered crossover (cf. Figure 4.3).

Although some of the problems could be eliminated,2 the asymmetry of
hyperbox subspace and its complement is a general problem. We suggest
to use shapes for the subspaces that have similar probabilities for nearby
rules of both parents to be jointly copied to the offspring. We therefore
modified the crossover by defining a random hyperplane and choosing the
rules that have their center on one or the other side (see Figure 6.2). The
hyperplane is defined by a random normal vector and a random distance
of the hyperplane to the center of the input space. The approach is obvi-
ously rotation invariant due to the random orientation of the hyperplane.
The distance to the center is restricted such that the hypervolumes of the
exchanged subspaces are approximately balanced.

Mutation

Our algorithm optimizes both, structure of the rule base and parameters of
the fuzzy sets, and hence the mutation operator also affects structure and
parameters. Structural mutation changes the number of rules. Rules are

2Rotation invariance, for example, could be achieved by choosing for each dimension
a random relation operator < or > for Eq. (4.12).
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deleted with a certain small probability. Subsequently, new random rules
might be created and added to the rule base. For the fuzzy sets, mutation is
performed by overlaying the parameters, i.e. centers and width of the fuzzy
sets, with small Gaussian distributed noise (cf. Section 4.1.1). Additionally,
there is a small chance that fuzzy sets are set to the special value for “don’t
care” (or that “don’t cares” are reverted to fuzzy sets). The probability of
parameter mutations is much higher than that of structure mutations.

Repair Mechanism

To enable linguistic interpretation of the fuzzy sets after learning, the posi-
tions and sizes of the fuzzy sets must be restricted. because crossover and
mutation can violate these restriction, we implemented a repair mechanism
that checks the fuzzy sets of every dimension after those operations.

We pointed out in Section 2.3.4 that linguistic interpretability can be
achieved by requiring that the fuzzy sets are ordered. The order of the
fuzzy sets is given by a definition of larger, i.e. a fuzzy set µA is larger
than a fuzzy set µB , if there is an intersection point x0 such that µA(x) is
larger for all points x left of x0 and µB(x) is larger for all points x right
of x0. For fuzzy sets ordered according to this relation we can assign the
usual labels (e.g. small, medium, large) or mixtures of these (e.g. small to
medium). Our repair mechanism subsequently tests pairs of fuzzy sets in
the order of their centers. If a conflict between adjacent fuzzy set occurs,
its parameters are shifted to restore the ordering. To avoid directional bias,
in every generation the fuzzy sets are either tested and corrected from right
to left, or from left to right.

6.3 Modified Davies-Bouldin Index

The semi-supervised approach by Demiriz et al., described in Section 5.2.4,
performed rather good on our examples (cf. Section 5.4). The combination
of the Davies-Bouldin index as explicit measure of dispersion and the Gini
index as explicit impurity measure gave the algorithm balanced control be-
tween supervised and unsupervised learning. The authors used this measure
in combination with a simple genetic algorithm. However, the approach is
restricted to point-prototypes and isotropic distances. In this section, we
propose an extension of this approach that is suited to serve as a fitness
function for our proposed evolutionary fuzzy rule learner.

A dispersion measure is calculated from the coordinates of all available
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tuples Dl ∪ Du, ignoring the known class labels of Dl. Its purpose is to
measure how well the rules are matched to the tuples in the input space.
The inverse Davies-Bouldin index proposed by Demiriz et al. (1999, 2002)
measures the relation of inner-cluster to inter-cluster distances. The defini-
tions are based on Euclidean distances, and are thus not suited to consider
the variable sizes and shapes of fuzzy rules. However, for Gaussian member-
ship functions with fixed widths σ and >prod as conjunction operator, there
is a close relationship between distance from rule center c and (negative
logarithm of) rule activation:

− ln act(x) = − ln (µ1(x1) · · · · · µnd
(xnd

))

= − ln
(

exp
(
− (x1 − c1)2

2σ2

)
· · · · · exp

(
− (xnd

− cnd
)2

2σ2

))
(6.1)

= − ln
(

exp
(
− (x1 − c1)2 + · · ·+ (xnd

− cnd
)2

2σ2

))
=

1
2σ2

‖x− c‖2.

Generally, activations take shape and size of fuzzy rules into account. Thus,
we define a modified Davies-Bouldin index based on activations (Klose,
2003a). Let Xi be the set of tuples assigned to cluster vi. The inner-
cluster distance, originally defined as the average distance of the tuples to
their cluster

αi =
√

1
|Xi|

∑
x∈Xi

‖x− vi‖2, (6.2)

is replaced by the average activation

α̂i = − 1
|Xi|

∑
x∈Xi

ln acti(x). (6.3)

The original inter-cluster distance is simply the Euclidean distance between
two cluster centers vi and vi′

δii′ = ‖vi − vi′‖. (6.4)

Due to the rule shapes, we cannot use this distance. However, the closer—
and thus the more overlapping—two rules i and i′ are, the higher the ac-
tivations will be that tuples of rule i yield for rule i′. Hence we define the
average activation that tuples from rule i yield for rule i′:

α̂ii′ = − 1
|Xi|

∑
x∈Xi

ln acti′(x). (6.5)
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We then approximate the intra-cluster distance based on the combined av-
erage activations

δ̂ii′ =
1
2

(α̂ii′ + α̂i′i). (6.6)

The inner-cluster to inter-cluster ratio for two clusters is defined as

ρ̂ii′ =
α̂i + α̂i′

δ̂ii′
. (6.7)

From this we get an alternative dispersion measure

dispersion = D̂B =
1
k

k∑
i=1

max
i′ 6=i

ρ̂ii′ . (6.8)

The impurity, i.e. the Gini index, is calculated from the assignment of
labeled examples to rules. Because only the crisp class after winner-takes-
all defuzzification, but not the shape of rules, is considered to calculate
impurity, the Gini index can be used without modifications as described in
Section 5.2.4.

The fitness function is a linear combination of the two measures:

fitness = α · impurity + (1− α) · dispersion, α ∈ [0, 1]. (6.9)

This fitness can directly be inserted into our evolutionary framework.

6.4 A Measure Based on the MDL Principle

Although the performance of the DBG approach was rather good, we have
some reservations about the combination of impurity and dispersion mea-
sure. The measures are derived from rather different underlying theories.
As our evolutionary framework uses tournament selection, monotonic trans-
formations of the fitness function—like, for example, scaling, squaring or
taking the logarithm—do not affect the results. However, as we linearly
combine two measures, such transformations of the individual measures do
matter. Therefore, we prefer to use measures that are derived within the
same theoretic framework.

The Minimum Description Length (MDL) principle is an information
theoretic approach for statistical model selection that allows to compare
models of different complexity (Rissanen, 1983, 1989). In this section, we
propose a fitness function that is based on the MDL principle. This makes
it possible to measure impurity and dispersion, and additionally regularize
model complexity in one single theoretic context.
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Minimum Description Length Principle (MDL)

Statistical model selection tries to find for a given dataset the optimal model
within competing families of models. Maximum likelihood is not well suited
for this problem as it generally chooses the model with the greatest flex-
ibility. This model, however, will tend to overfit the data and have poor
generalization ability.

The Minimum Description Length Principle suggests to choose the model
that yields the shortest description of data. The idea of the MDL princi-
ple is that the data has to be transmitted from an (imaginary) sender to
an (imaginary) receiver across a communication channel. Structure in the
data can be used for more efficient codes that result in shorter messages.
However, both sender and transmitter need to know the encoding scheme
of the data. Thus the message is compound by first transmitting the cod-
ing scheme, and then—using this scheme—the data. Complex models need
a longer coding scheme, as more free parameters have to be transmitted.
However, the resulting data part of the message will usually be shorter. The
model with the shortest overall message length is chosen, as it is assumed
to give the best description of the structure in the data.

In the following we describe how a fuzzy rule base can be interpreted as
an encoding scheme and used to efficiently transmit data. The transmission
of labeled and unlabeled data naturally leads to a measure that allows to
assess the quality of rule bases with varying numbers of rules in the context
of partially labeled data.

In our case, the competing models are rule bases, i.e. the structure in the
data is described by sets of fuzzy rules. This structure can be exploited to
transmit the tuples. Instead of directly transmitting a tuple’s coordinates
and its class label, we first transmit which rule is used to transmit the tuple.
For each rule, sender and receiver agree on an encoding where more probable
coordinate values and class labels are associated with shorter codes. If the
structure defined by the code matches the distribution of the points better,
the average code length per tuple will be smaller.

If symbols from a finite set A with a probability distribution P shall
be transmitted across a (noiseless) communication channel, Huffman’s al-
gorithm allows to construct the corresponding optimal binary prefix code
(Cover and Thomas, 1991). The length of a transmission can be calculated
by summing up the code lengths for the symbols of the transmitted message.

We should note that the MDL principle is used only as a measure to
compare models. We are generally not interested in actually transmitting
the data. Thus, we do not construct a code, but for simplicity estimate the
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code lengths of symbols a ∈ A as

lP (a) = − log2 P (a), (6.10)

which can be shown to be the theoretic lower bound for any code and which
is usually close to the length resulting from Huffman coding. Thus, for each
part of a message we have to choose an appropriate probability distribution
over all possible alternatives. The code length in bits of an instantiation a
is calculated as lP (a).

In our case, the complete message consists of the following parts:

• the rule base (the encoding), e.g. the number of dimensions, the num-
ber of rules, the fuzzy sets used in a rule. This information is used to
transmit

• the data tuples (the data itself), e.g. the index of the rule that is used
to encode this tuple, the class labels and the exact values of the tuple
using a rule specific code.

The following sections will detail the parts of the message. It is advanta-
geous for the encoding to treat labels and coordinates separately. Thus we
describe the lengths of rule base, class labels, and tuple coordinates in in-
dividual sections. These three parts of the message correspond to measures
of complexity, impurity, and dispersion, respectively.

Message Length of the Rule Base

The first part of the message is the definition of the rule base, i.e. the
specification of the structure which would enable the receiver to reconstruct
the optimal code used to transmit the data itself. However, as we mentioned
before, we do not actually want to transmit the data, and thus we can make
some simplifications. Some parts of the description—like, for example, the
domain description—have equal length for any competing model. Hence it
can be ignored when we compare message lengths.

The variable part of the rule base consists of fuzzy sets and rules. We
assume that the parameter values of the fuzzy sets are equally probable
within their given ranges, and that these ranges have a resolution of s steps.3

Thus, every value has a probability of ppar = 1
s , and the corresponding

code length is lpar = − log2 ppar = log2 s. As s is constant and the number

3A quantization into s steps means that we define borders xi = a + b−a
s

i, i ∈ [0, s],
and consider intervals zi = (xi−1, xi], i ∈ [1, s].
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of parameters per fuzzy set is constant, the length of a fuzzy set lfset is
constant, too.

We encode whether a specific dimension of a rule is given by a fuzzy set
or set to the special symbol “don’t care”. If we assume a probability pdc for
“don’t cares”, the length for a single dimension of a rule is

ldim(r, d) =

{
− log2 pdc, if dim d in rule r is “don’t care”
lfset − log2(1− pdc) else.

(6.11)
The lengths of a single rule and a complete rule base are thus

lrule(r) =
nd∑

d=1

ldim(r, d), and (6.12)

lbase =
nk∑

r=1

lrule(r), (6.13)

respectively. Obviously, this part of the message measures complexity of the
rule base, i.e. the number of rules and the complexity of the antecedents.

Message Length of the Data

As shown in Section 2.4, we can interpret fuzzy membership values as proba-
bility densities. We use this interpretation to transmit the tuple coordinates.

Let us first assume that we want to transmit a value x without any
knowledge of the distribution of values. Analogous to the parameters of the
fuzzy sets, we set up a precision of s steps for the range [a, b], and thus
need log2 s bits to encode x. However, the code lengths can be optimized
if we assume that the values come from a probability distribution with
probabilities proportional to the membership function. The probability of a
certain value x, or more precisely the probability that x lies in its containing
interval zx = (xi−1, xi], xi−1 < x ≤ xi, is

P (zx) =

∫ xi

xi−1
µ(t)dt∫ b

a
µ(t)dt

. (6.14)

For large s, we have small intervals zx and can thus approximate the integral

∫ xi

xi−1

µ(t)dt ≈ (xi − xi−1) · µ(xi) =
b− a

s
· µ(xi) ≈

b− a

s
· µ(x). (6.15)
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The second approximation uses that x ≈ xi and assumes that the member-
ship function µ is sufficiently smooth. We thus approximate the code length
to transmit a value x using a fuzzy set µ by

lµ(x) = −log2P (zx) = log2 s + log2

∫ b

a
µ(t)dt

b− a
− log2 µ(x). (6.16)

Obviously, for “don’t cares”, i.e. for µ ≡ 1, we get lµ(x) = log2 s, as we al-
ready argued above. Thus we can use Eq. (6.16) for all fuzzy sets, including
“don’t cares”. To transmit a tuple x using a rule r we need a message of
length

ltuple(x, r) =
nd∑

d=1

lµd,r
(xd)

= nd log2 s +
nd∑

d=1

log2

∫ b

a
µd,r(t)dt

b− a
−

nd∑
d=1

log2 µd,r(xd)

= nd log2 s +
nd∑

d=1

log2

∫ b

a
µd,r(t)dt

b− a
− log2 actr(x) (6.17)

This part measures cluster dispersion. The closer the tuples lie to the centers
of the membership functions of their rules (i.e. the better the rules are
adapted to the data), the higher the (average) rule activation, and hence
the shorter the (average) code length. Eq. (6.17) is used for encoding the
coordinates of both, labeled and unlabeled tuples. For each tuple ω, we use
rule rω that yields the shortest code:

ltuples(Du ∪ Dl) =
∑

ω∈Du∪Dl

ltuple(xω, rω). (6.18)

Strictly speaking, we also have to transmit the indices of the used rules.
However, as the corresponding message length is small and almost constant,
we neglect it. Notice that although the chosen precision s affects the message
length, it adds a constant term only and can thus be ignored.

Message Length of the Class Labels

The next part of our message are the class labels of the tuples. We first
consider the labeled examples Dl. A basic way to encode their labels would
be to assume equal probabilities P (c) = 1

nc
, which leads to a description
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length of n · log2 nc for n examples. However, this encoding can usually
be improved by first transmitting the class frequencies and use these for
an optimized code. We assume that any division of the n objects into nc

classes is equally probable. From combinatorics we know that there are
(n+nc−1)!
n!(nc−1)! possible divisions. We assume these divisions to be enumerated,

such that by simply transmitting the index of the division, the receiver can
reconstruct the class frequencies Nc1 to Ncnc

. To assign the labels to the
tuples with knowledge of the class frequencies, we can permute the tuples
appropriately and the assign class c1 to the first Nc1 tuples, class c2 to the
next Nc2 tuples, and so on. Because permutations of tuples within a class
are irrelevant, only n!

Nc1 ! Nc2 ! ... Ncnc
! permutations are different. If we use

this scheme to transmit the tuples the necessary length is

l′labels = log2
(n + nc − 1)!
n!(nc − 1)!

+ log2
n!

Nc1 ! Nc2 ! . . . Ncnc
!
. (6.19)

The second term of this description length grows for heterogeneous class
frequencies, and takes the minimal value zero, if only one class is present in
the considered dataset. We have not yet exploited that we already transmit-
ted which rule is used for which tuples, and that in good rules the majority
of tuples belongs the same class. Instead of using l′labels for the complete
set of tuples, we can significantly reduce the description length, if we ap-
ply Eq. (6.19) to the tuples of each rule individually. Thus, the number of
objects n becomes Nr, i.e. the number of objects assigned to rule r; class
frequencies Nc are replaced by Nr,c, denoting the number of objects of class
c assigned to rule r. The description length is then calculated as

l′′labels =
nk∑

r=1

log2
(Nr + nc − 1)!
Nr!(nc − 1)!

+
nk∑

r=1

log2
Nr!

Nr,c1 ! Nr,c2 ! . . . Nr,cnc
!
. (6.20)

Eq. (6.20) describes only labeled examples. For the examples from Du, the
labels are unknown. We assume that these examples should be transmitted
with the minimal possible effort, and thus assume them to belong to the
majority class cmax(r) of a rule r. With Nr,? denoting the number of unla-
beled tuples assigned to rule r, we get the final description length for the
class labels as

llabels =
nk∑

r=1

log2
(Nr + nc − 1)!
Nr!(nc − 1)!

+
nk∑

r=1

log2
Nr!

(Nr,cmax(r)+Nr,?)!
∏

c∈C,c6=cmax(r)(Nr,c!)
. (6.21)
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Misclassified labeled tuples make that part of the message longer, as the
probability distribution of the corresponding rule becomes more heteroge-
neous, and thus this part of the measure quantifies rule impurity.

Message Length as Fitness Function

The total description length of the (considered parts of the) message is
simply the sum of the single lengths:

ltotal = lbase + ltuples + llabels. (6.22)

One initial motivation for using the MDL principle was to avoid seemingly
subjective weights. However, this leaves the user with little control over the
learning. For instance, more dimensions inevitably increase ltuples, and can
thus overwhelm the influence of the labels. Similarly, the relation of the
lengths of the three parts depends on the sizes of Dl and Du.

As the different influences, like the number of dimensions or the size
of the unlabeled dataset, basically linearly affect the respective message
parts, we suppose that multiplicative scaling of the parts does not interfere
too much with the unified theoretic context of MDL. For the evolutionary
learning it is only important that scaling yields an appropriate ranking of
the solutions.

As we mentioned in the descriptions of the message parts, their lengths
can also be seen individually as measures of complexity, cluster dispersion
and cluster impurity. Since weighting of the individual parts of the message
can be important to balance their influence on the learning, we define the
fitness function as

fitness(R,D) = wbase · lbase + wtuples · ltuples + wlabels · llabels. (6.23)

Empirically we found that a choice of wbase ≈ wlabels ≈ 1 and wtuples ≈
llabels

ltuples
yields reasonable balance between the measures. Obviously, we do

not know llabels or ltuples in advance. In practice, we thus performed several
runs with different values for wtuples to see in which range llabels and ltuples

lie. Based on these observations, we chose wtuples. In most cases, the results
were rather robust with regard to the exact values of the weights.

6.5 Empirical Evaluation

In this section, we apply the semi-supervised algorithms proposed in this
chapter to the datasets of Section 5.3, and compare it to the approaches of
Chapter 5.
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We use the evolutionary rule learning framework with the two measures
proposed. Additionally, we use two variants, once with fuzzy membership
functions of fixed widths, and once with variable widths (i.e. only regularized
by the repair mechanism). Accordingly, we compare the following methods:

• modDBG: the fitness function based on the Gini index and the mod-
ified Davies-Bouldin index (Section 6.3).

• modDBG/fixed: same as modDBG, however with fixed widths of
fuzzy sets.

• ssMDL: the fitness function derived from the Minimum Description
Length Principle (Section 6.4).

• ssMDL/fixed: same as ssMDL, however with fixed widths of fuzzy
sets.

6.5.1 Artificial Benchmark Datasets

The purpose of the artificial datasets, which we described in detail in Sec-
tion 5.3, was to illustrate situations where pure supervised or unsupervised
methods perform poorly, and to compare how the different semi-supervised
approaches can cope with these situations. In the following, we present
the results from applying our semi-supervised algorithms to these artificial
datasets.

Artificial Dataset I

The first artificial dataset contains almost no cluster structure that unsu-
pervised methods could exploit to find the class boundaries. However, given
the labeled examples, it is a rather easy supervised learning task. Not all
semi-supervised algorithms are equally capable of dealing with such data.
For instance, ssFCM and ssGK even made errors on the (linearly separable)
labeled examples. All approaches presented in this chapter succeed to sepa-
rate the labeled examples. However, they differ in the shape of the decision
boundaries, and thus in their generalization errors. Both approaches based
on the modified Davies Bouldin index (modDBG) are close to the optimal
separating line. Figure 6.3b shows a general problem of modDBG: it tends
to learn degenerated rules and thus, apart from two rules that almost per-
fectly fit the problem, creates two further rules which are much wider than
high. They lead to “bulges” in the decision boundary. Although they do not
degrade performance on this dataset, they are certainly not desirable. The
version with fixed widths of the fuzzy sets (modDBG/fixed) is safe from this
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a) modDBG/fixed (2.6% errors) b) modDBG (1.4% errors)

c) ssMDL/fixed (5.2% errors) d) ssMDL (3.2% errors)

Figure 6.3: Experimental results on 1st artificial dataset.

behavior. However, it needs more rules to approximate the distribution. In
spite of a slightly higher error, ssMDL uses only three rules on this dataset
to describe a rather smooth and close to optimal decision boundary. Its
fixed widths version (ssMDL/fixed) has more difficulties to generalize the
linearly separable decision boundary.
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a) modDBG/fixed (0.9% errors) b) modDBG (2.6% errors)

c) ssMDL/fixed (0.1% errors) d) ssMDL (0.1% errors)

Figure 6.4: Experimental results on 2nd artificial dataset.

Artificial Dataset II

The second artificial dataset demonstrates a situation where semi-supervised
learning has supposedly the highest potential: there is some cluster struc-
ture in the unlabeled data, but the labeled examples given are untypical
for the cluster prototypes. In such situations, pure supervised learning will
perform poorly. This semi-supervised learning task is solved virtually per-
fect by both versions of ssMDL (Figure 6.4c and 6.4d), and only slightly
worse by modDBG/fixed (Figure 6.4a). Although the modDBG version



6.5. Empirical Evaluation 141

a) modDBG/fixed (4.2% errors) b) modDBG (5.9% errors)

c) ssMDL/fixed (4.3% errors) d) ssMDL (3.4% errors)

Figure 6.5: Experimental results on 3rd artificial dataset.

with variable widths produces more errors near the decision boundary, it
still succeeds to adequately identify the cluster structure (Figure 6.4b).

Artificial Dataset III

The third dataset combines the challenges of the first two datasets and
adds complexity, because one of the classes is split into two clusters. In
spite of the restrictions that we imposed on the fuzzy sets, all four tested
variants perform rather well. The error rates are similar to those of the
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Figure 6.6: Fuzzy sets of the rule base learned by ssMDL (cf. Figure 6.4d)
and possible linguistic descriptions.

R1: IF x1 IS small AND x2 IS very large THEN class IS 4
R2: IF x1 IS medium AND x2 IS large THEN class IS ◦
R3: IF x1 IS medium AND x2 IS very small THEN class IS ◦
R4: IF x1 IS large AND x2 IS small THEN class IS 4

Table 6.1: Rule base learned by ssMDL.

best approaches of the previous chapter (namely DBG and ssMoG). The
best results are achieved by both versions of ssMDL, whereas the variable
widths of modDBG lead to degenerated fuzzy sets and thus deformations
of the decision boundary.

Figure 6.6 and Table 6.1 exemplary show the rule base learned on the
third artificial dataset by ssMDL (variable widths). The restrictions applied
to the fuzzy sets allow to assign linguistic terms derived from the standard
partitioning. Although this has been done manually in this example, the
ordering of the fuzzy sets greatly simplifies the algorithms mentioned in
Section 2.3.4.

6.5.2 Empirical Results on the Iris Dataset

As can be seen in Figure 6.7, the performance of our proposed semi-super-
vised fuzzy classifier approaches on the Iris dataset is similar to the bet-
ter approaches of Chapter 5. There is one exception: the performance of
modDBG is disappointing on this dataset. Obviously, the tendency to de-
generated fuzzy sets is more critical with the higher number of dimensions
(and probably also the rather low number of tuples). When we compare the
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Figure 6.7: Experimental results on Iris dataset. The graphs show the
error vs. the percentage of labeled examples; black line: mean error, dark
corridor: 1st/3rd quartile, bright corridor: minimal/maximal error.

two variants of ssMDL, the increased flexibility of fuzzy models with mem-
bership functions of variable width pays only for more labeled examples.
Although the average performance of ssMDL is equal or better than that of
ssMDL/fixed, the former has a tendency to overfitting when learning from
few labeled examples.4

6.6 Discussion

In Section 5.4 of the previous chapter, we compared advantages and draw-
backs of existing approaches and discussed their suitability for semi-super-
vised induction of fuzzy rule based classifiers. In this chapter, we listed re-
quirements for a specialized approach, and proposed an evolutionary learn-
ing scheme and two alternative semi-supervised fitness functions. Conse-

4Recall that labeling 4% and 8% of the examples result in only one or two examples
per class, respectively.



144 Chapter 6. Evolutionary Semi-Supervised Fuzzy Classification

modDBG modDBG ssMDL ssMDL
(fixed) (variable) (fixed) (variable)

Expressiveness (6.6):
Cluster shapes ◦ + ◦ +
Complex clusters + ++ + ++
Interpretability (6.6):
Convert to fuzzy sets + ++ + ++
Linguistic interpretability + + + +
Interpretab. of rule base + − + ++
Semi-supervised learning (6.6):
Overall performance ++ ◦ ++ ++
Untypical examples ++ + ++ ++
Respecting errors on Dl ++ ++ ++ ++

++: very good +: good ◦: neutral −: bad −−: very bad

Table 6.2: Comparison of the proposed approaches (cf. Table 5.2)

quently, we have to assess the approaches in the same categories—expressive-
ness, interpretability, and semi-supervised learning capabilities—to see how
close we came to our objective of semi-supervised fuzzy classifier learning.
The results discussed in the next sections are summarized in Table 6.2.

Expressiveness of Induced Model

The flexibility of the cluster shapes of the approaches depends on the restric-
tions that are put on the fuzzy sets. The approaches with constant widths
have generally less flexible cluster shapes. As argued in Section 6.3, fixed
widths lead to the calculation of Euclidean distances. The decision bound-
ary is defined by the interplay of individual rules. The use of Euclidean
distances leads to piecewise linear decision boundaries (i.e. Voronoi cells).
This still allows to model rather flexible and complex clusters. The flexi-
bility can be increased by allowing fuzzy sets of variable widths. However,
the flexibility of the two non-fixed variants is less than that of, for instance,
ssMoG, which does not restrict the fuzzy sets for linguistic interpretability,
and additionally allows soft labels. Still, we consider the flexibility of the
models representable by modDBG and ssMDL to be very good.
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Interpretability of Transformed Rule Base

As the proposed evolutionary algorithm directly generates rules with local
fuzzy set definitions, the problem of converting clusters to fuzzy sets does not
appear. This is also true for the approaches with fixed widths. However,
because constant, but arbitrary widths are chosen for all fuzzy sets, the
resulting membership functions do not reflect different cluster sizes or shapes
in the data.

The evolutionary algorithm generates local definitions of fuzzy sets,
which are in general more difficult to describe linguistically. On the other
hand, the relative order of the fuzzy sets is guaranteed during learning by
the repair mechanism. Together with the usually small number of rules—
and thus fuzzy sets per dimension—it is usually possible to find adequate
linguistic descriptions (cf. Section 2.3.4).

The small number of fuzzy sets generally also improves readability and
thus interpretability of the complete rule base. As we consider interpretabil-
ity as the degree to which a human expert gains insight into the data at
hand by looking at the rules and the fuzzy set definitions, the models dif-
fer. The ssMDL approach with variable widths yields rather good cluster
descriptions, with fuzzy sets adapted to the shape of the data distribution.
This is not possible for the fixed widths approaches. Because the fuzzy sets
induced by modDBG tend to be degenerated, the interpretability of the
resulting rule base is significantly degraded.

Although the ssMDL algorithms had the possibility to use “don’t cares”,
this has not been used in the presented results. The length of the tuple
description can in in most cases be reduced by adapting the corresponding
fuzzy sets to the data. Thus, “don’t cares” reduce the length of the rule base
description but generally increase the length of the tuple description. They
are only useful, if either the tuples described by one rule cover almost the
complete input range, or if the weight of the rule base wbase is excessively
high. In this case, however, classification results are often substantially
degraded, since for semi-supervision the mechanism of fitting the rules to
the data is crucial.

Semi-Supervised Learning Capabilities

With the exception of the variable widths modDBG, all observed perfor-
mances where similar to those of DBG or ssMoG, and hence we also grade
them as very good. The overall performance of the variable widths modDBG
is obviously impaired by the weak performance on the Iris dataset. This
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example might be less adequate to test semi-supervised learning, since it is
rather small and we use randomly chosen labeled examples. However, the
other algorithms prove that better performances are possible.

The proposed approaches use fitness functions that can be seen as com-
binations of measures of cluster impurity and dispersion. We argued in
Section 6.1 that this can be useful to ensure good exploitation of the infor-
mation in Dl on the one hand, and adaptation of the clusters to Du on the
other hand, as long as it complies with the labeled examples. Accordingly,
the proposed methods showed good performance on the artificial examples,
with the exception of the variable width modDBG that had problems to
adapt its rules to the data.

6.7 Conclusions

All algorithms that we proposed in this chapter were successful in learning
fuzzy classification rules from partially labeled data. The most promising
approach seems to be ssMDL with variable fuzzy set widths. It constantly
yielded very good results. In contrast to the fixed width approaches, which
learn only cluster centers, and in contrast to modDBG with flexible widths,
the resulting fuzzy sets and rules of ssMDL correspond nicely with the
distribution of the points. This supports interpretability of the rule base.

Although the flexibility of the fuzzy sets was restricted to maintain inter-
pretable fuzzy sets, the performance is competitive or even superior to the
semi-supervised approaches presented in the previous chapter. We suppose
that this is mainly due to the combination of the underlying (restricted, but
still) flexible fuzzy model, the adaptable mixture of impurity, dispersion and
complexity measures, and the powerful evolutionary search algorithm.

The examples of this chapter were rather simple and mainly intended
to be illustrative. In the next chapter, we show the applicability of the
proposed algorithms on two more complex semi-supervised real-world prob-
lems.



Chapter 7

Applications of
Semi-Supervised Fuzzy
Classification

In this chapter, we present two real-world applications of the methods pro-
posed in previous chapter. Both applications come from the field of image
processing. In spite of their quite different characteristics, they have in com-
mon that large numbers of examples can be generated, but labels are not
readily available. This problem frequently occurs in many image processing
tasks. In cases where examples are chosen and labeled manually, these are
usually scarce and often untypical for the class prototypes. Hence, super-
vised learning can be expected to perform suboptimal and there might be
room for improvements by applying semi-supervised learning.

The application presented first is targeted at supporting object track-
ing in images. In this context, semi-supervised learning is used for image
segmentation (Section 7.1). The second application supports an aerial im-
age analysis system by filtering object primitives and only pass the most
promising primitives to the subsequent analysis chain (Section 7.2).

147
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7.1 Semi-Supervision in a Man-Machine In-
terface

The system described in the following sections has been designed and im-
plemented in a Ph.D. thesis by Schneider (2001) as a computer-based in-
teractive medium to convey spatial information to blind people. The first
usable prototype of the system was presented in (Schneider and Strothotte,
2000). The prototype can be used by a blind pedestrian to learn information
needed by him or her to travel through an unfamiliar part of a city. The
system enables the user to explore and learn the area. Firstly, the system
allows a user to get an overview of routes, intersections and buildings. The
main focus, however, is on letting the user learn routes after selecting them.

The original man-machine interface of the system is based on a manually
adjusted segmentation algorithm. However, changing lighting conditions
make an automatic adjustment preferable. To keep the necessary efforts
of manual labeling low, we tried to apply semi-supervised learning to the
problem. The following sections describe our collaborative work on a semi-
supervised extension of the system (Klose and Schneider, 2001).

7.1.1 Application Domain

The idea of the system described here is to convey spatial information by
constructive exploration. Schneider defined constructive exploration as a
method for people to learn spatial information by (partially) reconstructing
it with building blocks, guided by an interactive computer system. Methods
currently used, such as verbal descriptions or tactile maps, are not fully
adapted to the users’ needs. In comparison to these methods, the examined
“hands-on” approach should give blind people a better understanding of
spatial layout.

A constructive exploration system was developed which lets users build
routes from game piece-like objects called “route bricks.” The route bricks
are placed on a pad with a tactile grid representing the map. The map itself
is only present in digital form inside of the computer and is conveyed to the
user during interaction through speech and sound. After selecting a route
by placing a start and a target object on the pad, the user can place one
route brick after the other, guided by the system which has calculated the
route from map data. One side of a brick can be snapped to a peg at the
end of the previous one. A newly placed brick can be rotated with the peg
of the previous one as the axis, so the system only has to convey the angle
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Figure 7.1: The planned path on the computer and the exploration interface

to the user by sound.
In order to react to users placing or moving objects, the system has to

track the objects. It does so by image processing: A camera is placed over
the pad facing downwards. A simple, but robust approach based on color
segmentation is used. Since the system processes color rather than grey-
scale images, the objects can be discriminated solely by their respective
color. Since the object shapes are already known and can be reduced to
points in case of the route end objects and lines in case of the route bricks,
segmentation and measurement of areas can be done in one sweep, leading
to a highly interactive system on current PC hardware.

Color segmentation also facilitates the discrimination of areas belonging
to interaction objects versus those caused by shadows or belonging to other
objects, such as the hand. This, in turn, increases the recognition rate,
which needs to be rather high, since blind users are not able to detect
recognition errors by visual feedback in form of, e.g., graphical cursors on
a screen. In the same vein, calibration must be automatic, possibly after
setting certain parameters when the system is set up for the first time.

In the first prototype of the system, each color to segment was preset
manually to one subspace of the color space. To the human who is setting
up the system, each subspace corresponded conceptually to the color of
a certain brick, e.g., to the perceived “yellow” of the route bricks. With
this approach, the color subspaces had to be readjusted when the lighting
condition changed. Even with light constant in time, it varies over the
space of the pad due to shadows and the light source not being positioned
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Figure 7.2: The areas of the sample image used as labeled data.

directly over the pad. We therefore investigated ways to let the system learn
color values for segmentation in the current set-up after giving it only a few
prototypical color values.

7.1.2 Semi-Supervised Image Segmentation

Image segmentation is often performed in an unsupervised manner (cf.
Bezdek et al., 1993, for a survey). Pixels are usually treated as individ-
ual objects. Their color values in an appropriate color space are used as
attributes. In domains with well differentiable objects (and object appear-
ances) this is a feasible approach. However, if clusters overlap, unsupervised
segmentation has difficulties in finding the correct class borders. Addition-
ally, the labels of the clusters still have to be assigned manually.

On the other hand, we could use supervised classification. The main
drawback of supervised classification is the need for labeled training data.
The images taken from the camera in the application have a resolution of
300 × 300 pixels, i.e. we have a maximum of 90′000 pixels per image that
require class labels. Additionally, we can gather arbitrary many sample
images with different lighting and camera conditions. Obviously, not all the
data can be labeled manually, and thus suggest to use a semi-supervised
approach.

The task is to identify green and blue markers, and yellow building blocks
and distinguish them from the background. Bensaid et al. (1996) applied
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a)

b)

Figure 7.3: (a) The segmentation result on one of the training images, (b)
and the result on a test image.

their ssFCM approach1 to image segmentation. However, as discussed in
Section 5.4, ssFCM lacks the flexibility to model multi-cluster classes. As
we expect rather complex classes—especially for the background class—, we
apply ssMDL to this problem (cf. Section 6.4).

Our test dataset comprises three images under varying lighting condi-
tions, which we clipped to 230× 170 pixels. Figure 7.2 shows one example

1cf. Section 5.2.3
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image. The regions shown in that image are cut out as examples. That
is, we used one example region per class (green, blue, yellow), and seven
background examples. Each region has a size of 8× 8 pixels, totaling in 640
labeled examples. Notice that we labeled examples from one image only.
The remaining pixels of that image and all pixels of the other examples im-
ages were used as unlabeled examples. For performance reasons we reduced
the unlabeled examples to a random subset of 15′000 pixels.

To balance the influences of labeled and unlabeled examples, we set
wlabels = 2 · wbase = 100 · wtuples (cf. Section 6.4). Fig. 7.3a shows the
classification result on the image that we used to extract the labeled exam-
ples. Pixels classified as background are depicted in black and white, the
other classes are tinted in their respective colors. Fig. 7.3b shows the result
of applying the induced model to an independent test image. As can be
seen, the results are both excellent, although the pixels in the test image
are generally darker, and there are more shadows.

The learned rule base has eight rules: one for each marker class, and
five to describe the background. This demonstrates the complexity of this
class, which could not adequately be modeled with ssFCM or ssGK.

The evolutionary learning from the total of 15′640 examples takes a
while,2 and is thus not suited for interactive application. It should, however,
be noted that the speed of applying the learned rule bases is much faster.
Hence, they can be used for image segmentation in realtime.

7.2 Filtering Object Primitives
in Image Analysis

This application considered in the following sections has been studied in a
cooperation with the Research Institute for Optronics and Pattern Recog-
nition (FGAN/FOM) in Ettlingen/Germany. The focus of this project was
the analysis of aerial images to extract man-made structures, such as air-
fields. Results of the cooperation are described in (Klose et al., 1999, 2000).
In these publications we had a different view on the problem and applied
pure supervised learning. However, as we explain in the following, it might
be more appropriate to consider the task as semi-supervised.

2 The learning of the reported result used a pool of 200 chromosomes and 50 genera-
tions, which took about 15 min on an AMD Athlon 1GHz
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Figure 7.4: Example SAR image

7.2.1 Application Domain

The automatic identification of man-made objects in remotely sensed im-
ages is still a challenging task. In the framework of structural analysis of
complex scenes a blackboard-based production system (BPI) has been de-
veloped at FGAN-FOM (Lütjen, 1986). In this system transformations of
the simple objects extracted from SAR (synthetic aperture radar) images
into more complex objects are controlled by production rules. A produc-
tion net proceeds stepwise according to a model and produces intermediate
results with an increasing degree of abstraction (Schwan et al., 1998; Schärf
et al., 1998). For instance, the abstraction degrees for the construction of a
runway are

edges ⇒ lines ⇒ long lines ⇒ parallel lines ⇒ runways.

The image analysis is based on line segments as object primitives, which is
typical for the extraction of man-made objects. Figure 7.4 shows a typi-
cal SAR image of an airfield. The result of gradient-based edge detection3

3 The edge extraction algorithm used was proposed by Burns et al. (1986). Especially
in noisy images, this operator has a tendency of extracting high numbers of short line
segments.
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Figure 7.5: 37′659 line segments extracted from the SAR image in Figure 7.4
by Burns’ edge detector

applied to the SAR image is shown in Figure 7.5. As the resolution of the
images is rather high, the edge detector extracts more than 37′000 edges
on this image, which have to be considered during the structural analysis.
Although only a fraction of the lines are used to construct, e.g., the runway,
the analyzing system has to take all of the lines into account. Unfortu-
nately, time consumption is typically at least O(n2). Although the system
is usually successful in extracting the desired structures from single images,
the runtimes are too high to process image data of larger areas.

The idea was that the production process could significantly be sped up
if only the most promising primitive objects are identified and the analysis is
started with them. This was done by extracting features from the image that
describe the primitive objects and that allow to train a classifier that decides
which lines can be discarded. Experiments showed that in the case of line
primitives the regions next to the lines bear useful information. Therefore
rectangular windows with an orthogonal distance d adjacent to the lines
are constructed. The gradient across the edge is used to define the line
direction and to uniquely distinguish between the left and right window (see
figure 7.6). For each line segment a set of statistical (e.g. mean, standard
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Figure 7.6: The regions next to line used to calculate texture features.

deviation) and textural features (e.g. energy, entropy) is calculated from the
gray values in the region. From this set of features, we chose the 8 most
important ones.

The initial idea in our project was to apply the analysis process for a
number of images on the complete set of object primitives. The runways
extracted this way are used to divide the lines into those that were used for
the construction of complex structures (the positive class) and those that
were not (the negative class). We tried to learn to differentiate between the
classes with a number of classifier approaches. However, it turned out that
the problem can hardly be solved directly by most classifiers. The classes
were extremely unbalanced. For the image shown, only 20 lines were used
to build the runway and are thus used as positive examples. Moreover, the
classes were strongly overlapping, and thus almost any classifier approach
simply predicts the majority class for any input, because this leads to an
extremely low error rate of 20

37′659 ≈ 0.05%. Although it is seemingly per-
fect, this result is obviously completely useless, as it filters out all object
primitives, and thus hinders any object recognition.

We concluded that a classifier has to take into account the special se-
mantics of the task. Misclassifications of the positive and negative class
have to be treated differently. As a matter of fact, every missed positive
can turn out to be very expensive. Too many false negatives4 can com-
pletely prevent the correct recognition of objects, whereas false positives5

lead ‘only’ to considerably longer execution times. We considered this asym-
metry in a misclassification cost matrix. This matrix was integrated into
the NEFCLASS rule learning and pruning algorithms, which allowed suc-
cessful application of NEFCLASS on this task. Although the classification

4False negatives, i.e. positives classified as negatives, refer to runway primitives that
are discarded.

5False positives, i.e. negatives classified as positives, result in superfluous primitives
that have to be considered in the production process.
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was not perfect, in most cases all (or at least enough) relevant object prim-
itives were classified as positive, while the total number of line segments to
be processed was significantly reduced (Klose et al., 2000).

7.2.2 Semi-Supervised Line Filtering

Although the obtained error rates seemed to be rather high for a classifica-
tion problem, the image processing experts were quite content.6 It turned
out that they were actually glad about some of the false positives: the edges
of taxiways, parking lots, or roads—having characteristics very similar to
those of runway edges—are also needed in later processing stages. However,
this means that the classification problem was actually ill-posed: although
these additional object primitives should in fact be positive examples, they
appear as negative examples in the training dataset. This makes the learn-
ing task harder for the classifier, as it—in spite of the included asymmetric
misclassification costs—still tries to separate positives from negatives.

We thus conclude that it might be more appropriate to understand the
problem as one of semi-supervised learning. The runway segments plus sim-
ilar primitives like taxiways make up the positive examples, although only
a part of them is labeled. Additionally, we manually label some negative
examples, i.e. line segments that should be discarded during the analysis
process. A semi-supervised learning algorithm is then applied to the cor-
pus of unlabeled data plus the few labeled examples. The algorithm should
learn to separate the labeled examples, and additionally locate the decision
boundary according to the structure of the unlabeled examples.

Figure 7.7 shows the line segments that we manually labeled as posi-
tive and negative examples, respectively. Altogether, we labeled only 155
examples (out of 37′659). Obviously, the dataset has the mentioned chal-
lenges for semi-supervised learning: extremely few labeled examples, and
manually given labels that are probably neither prototypical for their re-
spective classes, nor do they cover the complete spectrum of occurring edge
segment characteristics. We applied our semi-supervised evolutionary fuzzy
rule learner with the MDL based fitness function and variable widths of
fuzzy membership functions (ssMDL), which was presented in the previous
chapter.

As the number of unlabeled examples exceeds the number of labeled
examples by far, we have to balance the influences of the parts of the quality

6On some images about 50% of the examples were classified as positive, and thus
the (unweighted) error rate was about the same. However, this still means halving the
number of the object primitives.
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Figure 7.7: Manually labeled examples: 57 positive examples (runway line
segments, in yellow), 98 negative examples (in cyan).

measure (cf. Section 6.4). For the presented result, we set the weight wlabels

of the impurity measure to ten times the weight wbase of the rule base
length, and to 2000 times the weight wtuples of the dispersion measure,
which brings the individual message lengths to roughly the same ranges.
On this dataset, ssMDL was not too sensitive to changes of the weights.
Figure 7.8 depicts the 3′878 line segments that ssMDL classified as positive.
On the labeled examples, it produced 5 errors (3.2%). It can be seen that the
line segments necessary to construct runway, taxiways, and traffic system
have been successfully identified. The number of potentially relevant object
primitives was reduced to 10.3%, which leads to a significantly decreased
processing time.

As a comparison, we alternatively treated the problem by pure super-
vised learning. To reduce the influence of the learning algorithm, we again
applied ssMDL to the problem. However, we presented only the 155 la-
beled examples for learning, and still used a higher weight for the impurity
measure. In this way, ssMDL works as a pure supervised rule learner. It
produced the same number of misclassifications, i.e. 5, or 3.2%. However,
it could not take the unlabeled data into account for locating the decision
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Figure 7.8: 3′878 lines classified as positive by semi-supervised ssMDL.

boundary. On this image, it extracted 6′994 lines as possible runway or
traffic system primitives, only a reduction to 18.6%. The resulting positive
lines are shown in Figure 7.9. Obviously, the segments extracted by this
classifier are also sufficient to construct the desired objects. Although the
results of the two classifiers look rather similar, it can clearly be seen that
there are many more spurious positive edge segments in Figure 7.9.

It should be noted that we presented the results of reclassification, i.e.
we applied the classifier to the data it was trained on. Error rates estimated
from reclassification are usually optimistically biased, and thus less credible.
However, we suppose that our application is less prone to this optimistic
bias. The main problem of reclassification is that of overfitting: a classifier
could ‘memorize’ the examples’ labels instead of revealing the underlying
regularities. However, most of the data in our application do not have a
class label. In case of the supervised application of ssMDL, the unlabeled
data were not used at all. In case of semi-supervised learning, only their
positional information is used. Thus, the results are still meaningful (apart
from the certainly optimistically estimated 3.2% errors on the labeled data).
Another typical problem of semi-supervised learning can also be seen: since
the labels of the unlabeled data are indeed unknown, we can hardly estimate
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Figure 7.9: 6′994 lines classified as positive by pure supervised learning.

the overall error rate. However, in image analysis applications like ours, we
can often at least visually inspect the results.

The alternative interpretation of the line filtering problem as a semi-
supervised learning task yields a feasible solution, comparable to the results
of our previous approach using asymmetric error costs (Klose et al., 1999,
2000). The semi-supervised learning from labeled and unlabeled data re-
sulted in a much more selective classifier than the pure supervised approach.
However, as already mentioned, we can only visually assess the classification
results, because we do not have true class labels.

7.3 Conclusions

We have shown the applicability of our proposed semi-supervised rule learner
on two real-world problems. In the first example, the goal was to learn an
image segmentation. Using a semi-supervised technique should help to re-
duce the number of labeled examples required. Although one class was
rather complex, ssMDL accomplished this goal. In the second example, we
managed to filter relevant object primitives in a semi-supervised manner,



160 Chapter 7. Applications of Semi-Supervised Fuzzy Classification

in spite of unbalanced class frequencies and strong overlap.
The examples showed that the evolutionary learning algorithm is also

applicable to large datasets as they occur in real-world datasets, and that
the MDL based measure allows to exploit the structural information in the
unlabeled data.
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Conclusions

In this chapter, we summarize the contributions of this thesis to the field of
semi-supervised fuzzy classification. Additionally, we discuss open questions
and possible directions for further work.

8.1 Contributions

Fuzzy if-then rules are a well-known way to represent classification knowl-
edge. In projects we regularly experienced that fuzzy rule-based classifiers
are popular with application experts for their intuitive mode of operation,
and the quality and interpretability of the results. Our contributions to
this field of research are two-fold. On one hand, we analyzed capabilities
and properties of fuzzy classification rules (Chapter 2). On the other hand,
we investigated approaches for semi-supervised learning, and devised an
approach for inducing interpretable fuzzy classification rules from partially
labeled data (Chapters 5 and 6).

Fuzzy Rule-Based Classifiers

The two main aspects considered in this thesis might seem to be only loosely
coupled at first sight. However, they bear substantial relation. For instance,
the choice of the fuzzy classifier model that we extended to semi-supervised
learning in Chapter 6 depended on our findings of Chapter 2.

Although the application of fuzzy classifiers is rather intuitive, there are
some pitfalls that should be avoided to get interpretable, yet flexible rule

161
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bases. For instance, we showed that global definitions of fuzzy sets can un-
intendedly restrict their decision boundaries to be axis parallel. Especially
if complete rule bases are defined, fuzzy classifiers can become equivalent to
lookup tables with hyperbox cells. Thus less rules, and local fuzzy set defini-
tions are preferable to achieve higher flexibility. Usually, there is a tradeoff
between flexibility and interpretability. However, we showed that locally
defined fuzzy sets are still interpretable if the number of rules is reason-
ably small and some weak restrictions are placed on the fuzzy membership
functions.

We showed an alternative interpretation of rule weights. If we use >prod

as t-norm, the calculations of fuzzy rule based classifiers and näıve Bayes
classifiers have strong similarities. This allows an interpretation of rule
weights that is based on probability theory. The role of weights to compen-
sate for different sizes of membership functions and different class frequen-
cies gets a clear foundation in probability theory.

This result was very important for our semi-supervised approach, as the
minimum description length principle requires that we can interpret the
membership degrees as probabilities.

Semi-Supervised Fuzzy Classification

In this thesis, our investigations in capabilities and characteristics of fuzzy
classifiers served as a prerequisite for the development of our rule learning
approach. However, the main focus of this thesis lies on semi-supervised
methods.

We discussed theoretical and intuitive considerations in which situations
semi-supervised learning can be expected to improve the results of super-
vised or unsupervised learning. Important aspects include:

• Does the underlying process that generates the data falls in the sam-
pling or in the diagnostic paradigm? The data distribution must bear
some inherent structure to make semi-supervised learning feasible.

• How many labeled and unlabeled examples are available? As there
is substantially less information contained in the unlabeled examples,
their number should be much higher than that of the labeled fraction
of the dataset.

• Are the labeled examples already representative for their classes? In
that case pure supervised learning might work as well, and the room
for improvement by semi-supervised techniques is much smaller. In
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general, manually labeled examples can usually be expected to be less
representative.

The theoretical and intuitive considerations were empirically backed by ar-
tificial datasets that illustrated the challenges for semi-supervised learning.

Although a number of approaches have been proposed for learning from
partially labeled data, little has been done on the induction of models that
are interpretable in a sense of knowledge discovery. Therefore, we were
interested in a semi-supervised algorithm for learning fuzzy classification
rules. We reviewed a number of existing approaches that either induce
fuzzy models or that use models related to fuzzy techniques. We discussed
the capabilities and shortcomings of these approaches on several (artificial
and real-world) datasets with respect to

• Expressiveness, i.e. the kind of decision boundaries that can be repre-
sented by the models,

• Interpretability, i.e. the readability of the rules, when the models are
transformed to (or interpreted as) fuzzy rule bases, and

• Semi-supervised learning capabilities, i.e. how the approaches cope
with the challenges of partially labeled datasets.

We found that none of the approaches is in all aspects suitable for the semi-
supervised learning of interpretable fuzzy classification rules. From these
findings we derived requirements for a semi-supervised fuzzy classification
rule learner.

We implemented an evolutionary fuzzy rule learning framework. Two
alternative measures were developed that can be used as fitness functions
for the rule learner. One measure is based on a semi-supervised (non-fuzzy)
clustering approach by Demiriz et al. (2002), which was generalized to work
with fuzzy rules. The other approach is based on the Minimum Descrip-
tion Length principle, which allowed to measure dispersion, impurity, and
complexity in one theoretic framework.

Especially the MDL based measure yielded convincing results on the
example datasets. In Chapter 7, we also successfully applied it to two real-
world problems.

8.2 Limitations and Further Work

Although a variety of alternative possibilities have been considered and
empirically evaluated in the course of this dissertation, there are a number
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of questions and topics that remain open or newly arose:

• Initially, we thought that the unifying theoretic framework of MDL
allows to define a measure for semi-supervised learning that—in con-
trast to, e.g., the Davies-Bouldin/Gini index approach—needs no bal-
ancing weights. However, it turned out that weights are necessary
for several reasons: It depends on the dimensionality of the dataset,
the cardinality of the unlabeled data, the distinctiveness of the inher-
ent structures (with respect to the class information), and, last but
not least, prior knowledge about the quality of the labeled and un-
labeled examples, which influence the unlabeled data should have on
the classifier learning. We suppose that some kind of balancing is thus
unavoidable.

It might be interesting to apply multi-objective learning methods to
induce alternative pareto-optimal results the user can choose from.
Evolutionary algorithms can be much easier extended to this kind of
search than other learning techniques. As a first step, it might also
be interesting to vary the weights over time. It could be analyzed,
whether the algorithm produces better results or converges faster, if
it, for instance, starts with a higher weight on impurity to learn to
classify the labeled examples first, and then gradually increase the
dispersion or complexity weights to try to adapt to the unlabeled
examples or to reduce complexity.

• Our evolutionary algorithm relies on parameter mutation and the im-
proved one-point ordered crossover operator to evolve its candidate
solutions. In our current implementation the strategy parameters, i.e.
the operator probabilities and mutation widths, are empirically chosen
in advance and not changed during learning. Especially in evolution
strategies, it is common to evolve these strategy parameters, too. Al-
though our implementation never needed more than a few hundred
generations until convergence, such more advanced techniques might
improve learning speed.

• Although “don’t cares” are an important means for cutting down the
complexity of rule bases, they have merely been used by the algorithms
on our example. We suppose that the reason for this lies in a differ-
ent meaning of “don’t cares” in our learning algorithm and in pure
supervised learning: in supervised learning, “don’t cares” are gener-
ally introduced, if an attribute can be removed from the antecedent
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without (substantially) degrading the classification performance. The
MDL based measure introduces a “don’t care” only where the as-
sumption of a uniform distribution is more appropriate than that of
a Gaussian distribution. If more compact rule bases are required, it
might worth considering to label the points with the semi-supervised
model first (with no or few “don’t cares”), and then continue learn-
ing with the now labeled dataset and a higher weight on complexity
punishment.

• On the given examples, our algorithms outperformed most of the com-
pared supervised, unsupervised, or semi-supervised methods. How-
ever, we are well aware that there is “no such thing as a free lunch”.
There are always other situations, where our algorithms will perform
inferior. As we have shown in Chapter 2.4, fuzzy classifiers use the
same näıve assumptions as their probabilistic counterparts. If, for
example, these assumptions are massively violated for the unlabeled
examples, the algorithm will hardly be able to improve its results by
learning from them.

Cozman and Cohen (2002) investigated situations, where additional
unlabeled examples even degraded the classification result in compar-
ison to pure supervised learning from the labeled examples. They
considered, however, randomly drawn and thus more or less proto-
typical labeled examples. Nevertheless, one should be aware of such
problems as well.

Hence, before semi-supervised techniques are applied, a domain expert
should try to answer the following questions from his prior knowledge:
Is the underlying process generative—i.e. do the classes influence the
attributes, or do the attributes determine the class? How have the
examples been labeled, and how representative are they? And, can
the data distribution be appropriately described by the used classi-
fier model? In this thesis, we tried to impart an understanding of
semi-supervised learning that enables these questions to be intuitively
answered. It is an issue for future research to further analyze and
more formally define situations and circumstances under which the
application of semi-supervised learning is promising.
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A. Bonarini. Evolutionary learning of fuzzy rules: Competition and cooper-
ation. In W. Pedrycz, editor, Fuzzy Modelling: Paradigms and Practice,
pages 265–284. Kluwer Academic Publishers, Norwell, MA, 1996.

C. Borgelt and R. Kruse. Graphical Models – Methods for Data Analysis
and Mining. J. Wiley & Sons, Chichester, 2002.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth, Belmont, CA, 1984.

J. Burns, A. Hanson, and E. Riseman. Extracting straight lines. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 8:425–455,
1986.

B. Carse, T. C. Fogarty, and A. Munro. Evolving fuzzy rule based controllers
using genetic algorithms. Fuzzy Sets and Systems, 80:273–293, 1996.

J. Casillas, O. Cordon, F. Herrera, and L. Magdalena, editors. Trade-
off between Accuracy and Interpretability in Fuzzy Rule-based Modelling.
Physica-Verlag, Heidelberg, 2002.

Z. Chi and H. Yan. ID3-derived fuzzy rules and optimal defuzzication for
handwritten numeral recognition. IEEE Transactions Fuzzy Systems, 4
(2):24–31, 1996.

M. G. Cooper and J. J. Vidal. Genetic design of fuzzy controllers: the
cart and jointed pole problem. In Proc. 3rd IEEE International Confer-
ence on Fuzzy Systems (FUZZ-IEEE94), pages 1332–1337. IEEE Press,
Piscataway, NJ, 1994.
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