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Abstract
This thesis aims to study Costas arrays from different points of view. A
Costas array of size n is an n × n binary matrix such that no two of the
(n

2) line segments connecting 1s have the same length and slope. Costas
arrays are attractive, highly combinatorial objects with applications in radar
engineering and signal processing that motivates us to study them carefully.
Firstly, we investigated equivalent definitions and the methods, based on
finite fields, that allow us to construct Costas arrays for infinitely many sizes,
but not all sizes.
There are three main approaches currently being considered to study Costas
arrays; algebraic constructions based on finite fields by which we can
construct Costas arrays of sizes equal to or a bit less than prime powers
(systematically constructed). The other method is computer search, and
the third is heuristic techniques. The enumeration of all Costas arrays up
to size 29 has been completed via exhaustive search methods, revealing
that more than 90% of these arrays are of completely unknown origin,
called sporadic Costas arrays. So far, there is a general lack of research on
the properties of sporadic Costas arrays, indicating an unclear relationship
between sporadic Costas arrays and systematically constructed ones. One
possible approach to make a link between systematically constructed Costas
arrays and sporadic ones could be defining transformations that transform
systematically generated Costas arrays to sporadic ones and vice versa.
Our primary concern is to examine how it is possible to transform a given
Costas array to obtain another Costas array or create another array close to
being a Costas array and then examine the violation causes to the Costas
property. Then, we can investigate the possible ways to eliminate or reduce
these violation causes. We introduce a new transformation with the property
that we can obtain another Costas array by transforming a given one for some
Costas arrays. Surprisingly, some of the systematically constructed Costas
arrays produce sporadic Costas arrays after applying the transformation.
Costas arrays have perfect aperiodic properties, a solid property to ask,
namely permutation matrices with aperiodic autocorrelation of at most one.
By applying our new transformation on a given Costas array, we obtain a
new array with the property that the values of its aperiodic autocorrelation
function for all possible non-zero shifts are at most two. These arrays are
called almost Costas arrays.
We will also examine Costas arrays from permutation points of view and
prove that we could not construct a Costas array for a specific class of
permutation, namely odd permutation. The distinctness of all line segments
formed by joining pairs of ones in a given Costas array implies that a
permutation matrix fails to be a Costas array if and only if it includes
ones that form a (possibly degenerate) parallelogram. We refer to these
parallelograms as forbidden configurations. Therefore, a Costas array has
no forbidden configurations. Consequently, a permutation matrix is close to
being a Costas array if and only if it contains as few as possible forbidden
configurations. With this in mind, we investigate the number of forbidden
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configurations in some classes of permutation matrices and introduce a
transformation by which we can reduce the total number of forbidden
configurations for these classes.
We discover a close relationship between the class of odd permutations and
exponential Welch Costas arrays. Exponential Welch Costas arrays have
G-symmetric properties. We will show how G-symmetric arrays can be
constructed using transforming odd permutations. Moreover, we realized
that this transformation significantly reduces the number of forbidden
configurations in a given odd permutation array. This perspective also
helped us to construct a class of permutation polynomials over finite fields
that is differentially at most 6-uniform, meaning the permutation matrices
associated with this permutation polynomials have the property that for
all possible non-zero shifts, the periodic autocorrelation function values are
at most 6. These differentially 6-uniform mappings can be constructed
by transforming an inverse function over a finite field. We also observe
that constructing G-symmetric permutation matrices from odd permutations
leads to much fewer forbidden configurations, meaning the permutation
matrices associated with these transformed odd permutations are closer
to Costas arrays. Moreover, we will see that all G-symmetric Costas
arrays of even sizes can be found by applying this transformation on odd
permutations. This attitude allows us to search for G-symmetric Costas
arrays by checking the Costas property of

(
2n/2 ·

(n
2

)
!
)

permutation matrices
instead of n!, which results in a notable reduction in the search space.
In the last chapter, we discuss a surprising link between exponential Welch
Costas arrays and power mappings constructed over a finite field with
p elements, where p is a prime. We determine the maximal aperiodic
crosscorrelation of pairs of power mappings using an exhaustive search. In
some exceptional cases, we will provide theoretical proof for the maximal
crosscorrelation of the family of power mappings. We will discuss how
the maximal crosscorrelation of the family of power mappings is almost
the same as the maximal crosscorrelation of the family of exponential
Welch. This observation motivates us to extend the family of Welch
Costas arrays with the family of power mappings and then investigate the
maximal crosscorrelation of this extended family. We determine the maximal
crosscorrelation of this extended family by exhaustive search. Surprisingly,
the maximal crosscorrelation of this extended family is equal to the maximal
crosscorrelation of the family of exponential Welch, constructed over a finite
field with p elements, where p is not a safe prime. In the case where
p is a safe prime also, there is a close relationship that we will discuss.
Moreover, we will discuss why providing theoretical proof for our observed
results regarding the maximal crosscorrelation of this extended family can be
tremendously complex.
Families of arrays with low crosscorrelation properties are desirable for
application in multiuser and multiplexing systems. Therefore, families of
Costas arrays with low crosscorrelation are beneficial for such applications.
With this in mind, we will introduce a subfamily of Lempel-Golomb Costas
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arrays that indicate lower crosscorrelation than the family of all Lempel-
Golomb Costas arrays.
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Zusammenfassung

In dieser Dissertation sollen Costas-Matrizen aus verschiedenen
Blickwinkeln untersucht werden. Eine Costas-Matrix der Größe n ist
eine n × n 0-1-Matrix, bei der keine zwei der (n

2) Liniensegmente, die
Einsen verbinden, die gleiche Länge und Steigung haben. Costas-Matrizen
sind Interessant, kombinatorische Objekte mit Anwendungen in der
Radartechnik und der Signalverarbeitung, die uns dazu motivieren, sie
sorgfältig zu untersuchen. Zunächst untersuchten wir die äquivalenten
Definitionen und die auf endlichen Körpern basierenden Methoden, die es
uns erlauben, Costas-Matrizen für unendlich viele Größen, aber nicht für
alle Größen, zu konstruieren.
Derzeit werden drei Hauptansätze zur Untersuchung von Costas-Matrizen
erwogen: algebraische Konstruktionen auf der Grundlage der Theorie
endlicher Körper, mit denen wir Costas-Matrizen mit Größen gleich
oder etwas kleiner als Primzahlen konstruieren können (systematisch
konstruiert). Die zweite Methode ist die Computersuche, und die dritte
sind heuristische Techniken. Die Aufzählung aller Costas-Matrizen bis zur
Größe 29 wurde mit Hilfe erschöpfender Suchmethoden abgeschlossen,
wobei sich herausstellte, dass mehr als 90% dieser Matrizen völlig
unbekannten Ursprungs sind, nämlich die so genannten sporadischen
Costas-Matrizen. Bislang ist die Beziehung zwischen sporadischen
Costas-Matrizen und systematisch konstruierten Matrizen unklar. Ein
möglicher Ansatz, eine Verbindung zwischen systematisch konstruierten
Costas-Matrizen und sporadischen Matrizen herzustellen, könnte darin
bestehen, Transformationen zu definieren, die systematisch generierte
Costas-Matrizen in sporadische umwandeln und umgekehrt.
unser Hauptziel ist es, zu untersuchen, wie es möglich ist, eine gegebene
Costas-Matrix umzuwandeln, um eine andere Costas-Matrix zu erhalten
oder eine andere Matrix zu erstellen, die einer Costas-Matrix nahe
kommt, und dann die Ursachen der Verletzung der Costas-Eigenschaft
zu untersuchen. Anschließend können wir untersuchen, wie sich die
Ursachen für diese Verstöße beseitigen oder verringern lassen. Wir führen
eine neue Transformation ein, die einige Costas-Matrizen in andere Costas-
Matrix transformiert. Überraschenderweise ergeben einige der systematisch
konstruierten Costas-Matrizen nach Anwendung der Transformation
sporadische Costas-Matrizen.
Costas-Matrizen haben perfekte aperiodische Eigenschaften, was bedeutet,
dass diese Permutationsmatrizen eine aperiodische Autokorrelation von
höchstens eins haben. Durch Anwendung unserer neuen Transformation
auf eine gegebene Costas-Matrix erhalten wir eine neue Matrix mit der
Eigenschaft, dass die Werte ihrer aperiodischen Autokorrelationsfunktion
für alle möglichen Verschiebungen ungleich Null höchstens zwei sind. Diese
Matrizen werden als Fast-Costas-Matrizen bezeichnet.
Wir werden Costas-Matrizen auch unter Permutationsgesichtspunkten
untersuchen und beweisen, dass wir für eine bestimmte Klasse von
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Permutationen, nämlich ungerade Permutationen, keine Costas-Matrizen
konstruieren können. Die Unterscheidbarkeit aller Liniensegmente, die
durch das Verbinden von Paaren von Einsen in einer gegebenen Costas-
Matrize gebildet werden, impliziert, dass eine Permutationsmatrix dann
und nur dann keine Costas-Matrix ist, wenn sie Einsen enthält, die ein
(möglicherweise entartetes) Parallelogramm bilden. Wir bezeichnen
diese Parallelogramme als verbotene Konfigurationen. Eine Costas-
Matrix hat also keine verbotenen Konfigurationen. Folglich kommt eine
Permutationsmatrix einer Costas-Matrize nur dann nahe, wenn sie so wenige
verbotene Konfigurationen wie möglich enthält. Vor diesem Hintergrund
untersuchen wir die Anzahl der verbotenen Konfigurationen in einigen
Klassen von Permutationsmatrizen und führen eine Transformation ein, mit
der wir die Gesamtzahl der verbotenen Konfigurationen für diese Klassen
reduzieren können.
Wir entdecken eine enge Beziehung zwischen der Klasse der ungeraden
Permutationen und exponentiellen Costas-Matrizen. Exponentielle
Costas-Matrizen haben G-symmetrische Eigenschaften. Wir werden
zeigen, wie G-symmetrische Matrizen durch Transformation ungerader
Permutationen konstruiert werden können. Außerdem haben wir
festgestellt, dass diese Transformation die Anzahl der verbotenen
Konfigurationen in einer gegebenen Matrize mit ungeraden Permutationen
erheblich reduziert. Diese Perspektive hat uns auch geholfen, eine
Klasse von Permutationspolynomen über endlichen Körpern zu
konstruieren, die differentiell höchstens 6-uniform ist, was bedeutet,
dass die Permutationsmatrizen, die mit diesen Permutationspolynomen
verbunden sind, die Eigenschaft haben, dass für alle möglichen Nicht-
Null-Verschiebungen die periodischen Autokorrelationsfunktionswerte
höchstens 6 sind. Diese differentiell 6-uniformen Abbildungen können
durch Transformation einer Umkehrfunktion über einen endlichen Körper
konstruiert werden. Wir beobachten auch, dass die Konstruktion von
G-symmetrischen Permutationsmatrizen aus ungeraden Permutationen
zu viel weniger verbotenen Konfigurationen führt, was bedeutet, dass
die mit diesen transformierten ungeraden Permutationen verbundenen
Permutationsmatrizen näher an Costas-Matrizen sind. Außerdem werden
wir sehen, dass alle G-symmetrischen Costas-Matrizen gerader Größe
durch Anwendung dieser Transformation auf ungerade Permutationen
gefunden werden können. Diese Sichtweise ermöglicht es uns, nach
G-symmetrischen Costas-Matrizen zu suchen, indem wir die Costas-
Eigenschaft von

(
2n/2 ·

(n
2

)
!
)

statt n! Permutationsmatrizen überprüfen, was
zu einer beträchtlichen Reduzierung des Suchraums führt.
Im letzten Kapitel diskutieren wir eine überraschende Verbindung zwischen
exponentiellen Costas-Matrizen und Potenzabbildungen, die über einem
endlichen Körper mit p Elementen konstruiert sind, wobei p eine Primzahl
ist. Wir bestimmen die maximale aperiodische Kreuzkorrelation von
Paaren von Potenzabbildungen mit Hilfe einer erschöpfenden Suche. In
einigen Ausnahmefällen werden wir einen theoretischen Beweis für die
maximale Kreuzkorrelation der Familie der Potenzabbildungen liefern.
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Wir werden erörtern, dass die maximale Kreuzkorrelation der Familie der
Potenzabbildungen fast die gleiche ist wie die maximale Kreuzkorrelation
der Familie der exponentiellen Welch. Diese Beobachtung motiviert uns,
die Familie der Costas-Matrizen um die Familie der Potenzabbildungen
zu erweitern und dann die maximale Kreuzkorrelation dieser erweiterten
Familie zu untersuchen. Wir bestimmen die maximale Kreuzkorrelation
dieser erweiterten Familie durch erschöpfende Suche. Überraschenderweise
ist die maximale Kreuzkorrelation dieser erweiterten Familie gleich der
maximalen Kreuzkorrelation der Familie der exponentiellen Welch, die über
einem endlichen Körper mit p Elementen konstruiert wurde, wobei p keine
sichere Primzahl ist. Auch für den Fall, dass p eine sichere Primzahl ist, gibt
es eine enge Beziehung, die wir diskutieren werden. Außerdem werden
wir erörtern, warum ein theoretischer Beweis für die von uns beobachteten
Ergebnisse bezüglich der maximalen Kreuzkorrelation dieser erweiterten
Familie äußerst komplex sein kann.
Familien von Matrizen mit geringer Kreuzkorrelation sind für
Anwendungen in Multiuser- und Multiplexing-systemen wünschenswert.
Daher sind Familien von Costas-Matrizen mit geringer Kreuzkorrelation
für solche Anwendungen von Vorteil. In diesem Sinne werden wir
eine Unterfamilie von Costas-Matrizen einführen, die eine geringere
Kreuzkorrelation aufweisen als die Familie aller Costas-Matrizen.
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Chapter 1

Overview

In 1965, in the context of sonar detection, J. P. Costas studied a particular
class of permutations of n elements to improve the poor target detection
performance of radar (radio direction and range) and frequency hopping
sonar systems [25]. These classes are now known as Costas Arrays. Radars
signals are essentially used to determine the distance and the velocity of a
moving target, making them useful in many civil and military applications,
like air traffic control, geological observations, aircraft and ship navigation
and safety, measurement of speed in industrial applications, remote sensing,
surveillance, artillery location, and law enforcement. Roughly speaking, to
detect the distance and velocity of a moving target, a bunch of frequencies
will send towards a target, and then the time delay until the frequencies,
reflected from a target, is received back indicates the distance of the
target. Moreover, the target’s velocity can be computed by measuring the
doppler frequency shift of the reflected signal [75]. S. W. Golomb in [60]
explained that in a frequency hopping radar or sonar system, a signal
can be represented as an n-by-n permutation matrix, where the n rows
correspond to the n available frequencies from the set { f1, . . . , fn}, and the n
columns correspond to the n equal consecutive time intervals t1, . . . , tn. This
permutation matrix is constructed by placing a one at position (i, j) if and
only if frequency fi is transmitted in time interval tj. (Otherwise, 0). He also
explained that a good signal has the property that when its corresponding
permutation matrix is shifted, r units in time and s units in frequency, where r
and s are none-zero, have a low correlation with itself. Chapter 1 will discuss
the correlation properties of Costas arrays in more detail. Naturally, the first
question that comes into mind is how these permutation matrices could be
beneficial to improving these systems’ performance. The performance of a
radar system depends heavily on the following factors:

• The effect of delay resolution.

• Doppler resolution.

• Noise immunity.

• Intentional and unintentional interference.

The Costas idea [27] was to transmit a single frequency fi from the
available frequencies of the set { f1, . . . , fn}, used only once, in a given time
interval tj in such a way that coincidences between the signal and its time
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and frequency-shifted copies is minimized. Therefore, the high delay and
doppler-resolution can be achieved, and since they are using a matched
filter (in radar systems, a matched filter (MF) is obtained by correlating
an omitted known signal with the reflected signal to examine the common
elements of the out-going signal), the received signal has noise immunity
[11]. It is well-known that crosscorrelation (CC) is a particular case of an
MF [113]. Due to the importance of signals and sets of signals with suitable
correlation properties in digital communication, S. W Golomb and Guang
Gong published a book including a comprehensive explanation of how
these signals are designed to satisfy the appropriate periodic and aperiodic
correlation constraints [56]. Chapter 1 will introduce the mathematical
definitions of what we explained so far, along with necessary definitions and
theorems that we will need to study Costas arrays.
BY HAND, John P. Costas found examples of Costas arrays of size up
to n = 12, but he could not construct one of size 13, which made
him think that Costas arrays existence may cease to exist from this size.
In their investigation into algebraic construction for Costas arrays, L. R.
Welch and A. Lempel found constructions and applications for them, and
Solomon W. Golomb provided both the first proofs of the validity of
the Welch and Lempel constructions and also new construction [54, 55].
After discovering the two main algebraic construction methods, the Welch
construction and the Golomb construction, together with some construction
techniques obtained by manipulating these constructions [9], there have been
no further discoveries of new algebraic constructions.
Although extensive research has been carried out on Costas arrays, many
fundamental questions are not yet answered, especially, do Costas arrays
exist for all sizes? This question was raised for the first time in a paper
by S. Golomb and H. Taylor in 1984, and it is still open [55]. S. W.
Golomb conjectured that the number of Costas arrays of size n monotonically
increases as n grows. This conjecture was reasonable because the number of
Costas arrays approximately doubled from n to n + 1 for n = 1, . . . , 12. Jerry
Silverman [106] computed the number of Costas arrays for every size up to
n = 18 and found that there are 21104 Costas arrays of size 16, but only 18276
Costas array of size 17. Then the conjecture is disproved by the fact that the
number of Costas arrays decreases from order n = 16 to order n = 17.
According to the two main constructions for Costas arrays, they can be
generated for infinitely many sizes but not for all sizes. To the best of
our knowledge, since 1984, the smallest sizes for which no Costas array
is currently known are 32 and 33. Referring to such difficulties, some
authors have mainly been interested in computer search for Costas arrays
[26, 40, 41, 43, 85, 99].
A computer search for Costas arrays has provided a significant opportunity
to enhance our understanding of the possible existence pattern for Costas
arrays. However, the generalisability of these methods is subject to certain
limitations. In particular, all Costas arrays have been found through
exhaustive search up to size 29, while the vast majority of them are sporadic
[41]. A Costas array is sporadic if it can not be constructed by one of the
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known systematic constructions. In other words, the sporadic Costas arrays’
origin remains unexplained. So far, however, there has been little discussion
about the relationship between sporadic Costas arrays and the systematically
constructed Costas arrays; this connection has been remained ambiguous,
which intrigued us to study this relation more carefully. Our primary
concern was to introduce a transformation that links a given systematically
constructed Costas array to a sporadic one and vice versa. Keeping this
objective in mind, we introduced a new transformation in this thesis, denoted
as Ak. This transformation exhibits the desired property mentioned earlier,
which will be extensively discussed in Chapter 3. As we mentioned in
the abstract section, Costas arrays are known for their perfect aperiodic
autocorrelation properties, and our transformation Ak also preserves this
perfect property for a considerable amount of systematically constructed
Costas arrays, more precisely, all Lempel-Golomb, logarithmic Welch Costas
arrays, and some systematically constructed Costas arrays and sporadic
ones. It is worth noting that, however, in the cases that our transformation
does not preserve the Costas property, it results in an array with the property
that for all possible non-zero shifts, the aperiodic autocorrelation function
value is at most two, let us call them almost Costas arrays.
A considerable amount of literature has been published on constructing
sequences and arrays with favourable correlation properties [2, 15, 16],
primarily based on finite fields, due to their numerous applications in radar
and sonar systems [81,83], communication systems, security systems [89,91],
data hiding, and critical cryptographic applications [52, 56, 61, 74, 78, 104];
let us call them perfect arrays and sequences [48, 72]. One essential step
towards constructing perfect arrays is to study the structural properties of
the known one, and these properties might be seen better if we interpret
them geometrically. Correll has considered this point of view in [112],
from which he studied the forbidden configurations in permutation matrices
that cause violations to the Costas property. The notion of the number of
forbidden configurations allows us to determine how close a permutation
matrix is to being a Costas array. The fewer forbidden configurations in a
given permutation matrix allow us to stay closer to a Costas array because
there are fewer violations to the Costas property. One natural question
that one can ask is, even if there exist such forbidden configurations in a
given permutation matrix, is there a way to eliminate or at least reduce the
violation causes. Chapter 4 will specifically address the investigation of
forbidden configurations within certain types of permutation matrices. To
mitigate the presence of these undesirable configurations, we will introduce
a transformation denoted as G. The primary aim of this transformation will
be to decrease the occurrence of such configurations within the matrices.The
experimental evidence confirms that applying this transformation might
considerably reduce the number of forbidden configurations.
The two main algebraic Constructions for Costas arrays, similar to the perfect
arrays’ construction within the aforementioned references, are based on
finite fields. Therefore, it makes much sense to consider the properties
of the associated polynomials over their underlying finite field. Since
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Costas arrays are permutation matrices with Costas property, we are
interested in permutation polynomials over finite fields that generate Costas
permutations. We will follow this perspective in chapter 4, and we will show
that certain permutations, namely odd permutations, fail to construct Costas
arrays. We will investigate the properties of these permutations that never
present Costas arrays.
Considerable effort has been devoted in the literature to study polynomials
over finite fields with good periodic correlation properties, partly due to their
applications in cryptography [95–98, 103, 105]. In this regard, polynomials
with low differential uniformity received considerable attention, among
which perfect non-linear (PN) and almost perfect non-linear (APN)
polynomials are the most interesting ones [31,46,66,67,71,122]. Konstantinos
Drakakis et al. in [37] and Daniel Panario et al. in [94] have already connected
APN permutations on Zn and Costas arrays. Konstantinos Drakakis et
al. in [37] also explained the main differences between APN mappings
and Costas permutations. Chapter 4 investigated a particular class of APN
permutations over integer ring Zn. Moreover, we will discuss that even if
our transformation G improves the aperiodic property of these matrices, in
the sense that we obtain arrays with fewer forbidden configurations, it harms
the periodic properties of these arrays. Although the periodic properties of
these arrays become worse after being transformed, it is possible to introduce
a class of permutation polynomials for which this transformation attains
differentially at most 6-uniform permutation polynomials over some finite
fields.
Arrays and sequences with good auto and crosscorrelation properties lie at
the core of many active sensing and communication systems [3, 110], e.g.,
multiple-input-multiple-output (MIMO) radar systems [63, 64], multiuser
and multiplexing systems and code-division multiple-access (CDMA)
cellular systems [13, 70, 73, 107, 109, 117]. A desirable family of two-
dimensional arrays has the property that each array within this family has
perfect autocorrelation property, and the crosscorrelation between any two
arrays of this family is as low as possible [111].
Costas arrays are defined by their perfect autocorrelation properties, whereas
they show poor crosscorrelation. In 1985, Freedman and Levanon studied
the crosscorrelation of Costas arrays, which showed that any two given
Costas arrays of the same size have a maximal crosscorrelation of at
least 2 [50]. After this discovery, the study of the crosscorrelation of
algebraically constructed Costas arrays became more focused by several
authors. The most comprehensive work on the maximal crosscorrelation
of algebraically constructed Costas arrays was done by Konstantinos
Drakakis et al. (2011) [39], in which they also proposed some conjectures
regarding the crosscorrelation of Welch and Lempel-Golomb constructions,
and they described that low crosscorrelation could be as essential as low
autocorrelation, as were also described in [44, 79]. Recently, Domingo
Gomez-Perez and Arne Winterhof settled some of the conjectures of Drakakis
et al.’s work [62]. Their spectacular method for proving these conjectures
reveals how Costas arrays’ crosscorrelation offers a rich mathematical



Chapter 1. Overview 5

behaviour, driving this subject to be worth studying as a mathematical
subject, regardless of its applications. With this in mind, we analysed power
mappings’ auto and crosscorrelation properties over a finite field. Firstly,
we computed exhaustively maximal aperiodic auto and crosscorrelation of
power mappings over a finite field with p elements for 5 ≤ p ≤ 271. We will
discuss several interesting observations regarding these computations in the
last chapter of this thesis. We will provide theoretical proof for some parts
of our observations of the crosscorrelation properties of these families while
providing complete proof, unfortunately, has stayed beyond our reach. The
main difficulty in doing so is that the system of equations we are dealing
with seems intractable and tremendously hard to solve.
Several attempts have been made to construct families of matrices
with low aperiodic autocorrelation function values at non-zero shifts
and low crosscorrelation between any two of the family members
[111]. These arrays have proven to be valuable in the field of digital
watermarking. By conducting computational analyses on the aperiodic auto
and crosscorrelation properties of power mappings, in conjunction with the
introduction of our new transformation Ak, we have successfully generated
a new collection of 2D arrays. These arrays exhibit aperiodic auto and
crosscorrelation function values of at most two. Specifically, leveraging
the capabilities of our transformation Ak, which enables the transformation
of a single permutation into a family of permutations, we applied this
transformation to the inverse permutation constructed over a finite field with
p elements. The objective was to construct a family of arrays characterized
by aperiodic auto and crosscorrelation values of at most two. Chapter 5
examines the auto and crosscorrelation properties of this family.
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Chapter 2

Introduction

This chapter provides the mathematical background required to study Costas
arrays and their correlation properties. We also discuss the approaches that
have been adopted so far to study Costas arrays.

2.1 Costas Arrays

There are several ways that Costas arrays can be defined. Each of them
offers some critical insight into a better understanding of the properties of
Costas arrays. Simply put, a Costas array of size n is an n × n binary matrix
such that there is exactly a single 1 in each row and each column (i.e., it is a
permutation matrix) and such that the line segments formed by joining pairs
of 1s are all distinct [55]. In other words, a Costas array is a permutation
matrix (permutation property) such that no two of the (n

2) line segments
connecting 1s have the same length and slope (Costas property). J. P. Costas
in [26] argued on basic engineering principles that the permutation property
of binary matrices is as essential as Costas property.
We think of a permutation as a bijective mapping from the set {1, 2, . . . , n}
to itself. There are different conventions that we can employ to assign a
permutation matrix to a permutation of {1, 2, . . . , n}. Let us define our
convention as follows.

Throughout this text, we denote by [n] and [n]− 1 the set of n elements of
the set {1, 2, . . . , n} and {0, 1, . . . , n − 1} respectively, for some n ∈ N.

Definition 2.1. Let f : [n] → [n], n ∈ N be a bijection, that is a permutation
of n elements. Then the corresponding permutation matrix of f , say A f = (ai,j),
i, j ∈ [n], is an n × n matrix where the entries are given by

ai,j =

{
1 if i = f (j)
0 otherwise.

Sometimes it will be more convenient to consider permutations as
permutation matrices. Definition 2.1 also tells us how to recover a
permutation from a given permutation matrix.
Let A = (ai,j), i, j ∈ [n], be a permutation matrix of size n. Then each
column has a unique element equal to 1 and 0’s elsewhere. Now we can
construct a permutation σA : [n] → [n], n ∈ N, σA(j) = i, if ai,j = 1. This
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means that each element of the permutation indicates the position of the 1 in
the corresponding column of the matrix. The following remark makes the
relation between a permutation matrix and its corresponding permutation
more explicit.

Remark 2.2. There is a bijection σ : Pn → { f : f is a bijection on n elements},
where Pn is the set of all permutation matrices of size n. More precisely, σA =
[ f (1), . . . , f (n)], where f (i) is the position of the nonzero entry in the ith column
of A, counting from top to bottom. It means f−1(i) = j ⇔ ai,j = 1.
Throughout this text, the terms "permutation matrix" and "permutation" will be
used interchangeably, and we will not distinguish between A and σA.

It is worthwhile to mention that it is customary to depict the 1’s and 0’s of a
permutation matrix as dots and blanks, respectively.

Example 2.3. Consider the permutation A = [1, 3, 6, 4, 5, 2, 7]. Suppose that f :
[7] −→ [7] is the permutation corresponding to the matrix A. Since f (1) = 1, we
have a dot in the first column and the first row. Similarly, since f (2) = 3, we have
a dot in the second column and third row. In this way, we obtain the matrix that
corresponds to the permutation f : [7] −→ [7] as follows

f (1)
f (6)
f (2)
f (4)
f (5)
f (3)
f (7)

1 2 3 4 5 6 7
•

•
•

•
•

•
•

The matrix representation of a Costas permutation allows us to understand
and visualize what it means by having distinct line segments that connect
pairs of dots. Let us call these line segments the displacement vectors.
Utilizing the following definition, we will be equipped to give the first formal
definition of a Costas array.

Definition 2.4 (Displacement vectors). Consider the permutation matrix A =
(ai,j), i, j ∈ [n], and let ai1,j1 and ai2,j2 , be two nonzero entries of A. Then if j1 < j2
we call the vector (j2 − j1, i2 − i1) the displacement vector between ai1,j1 and ai2,j2 .

Definition 2.5 (First definition of Costas arrays [55]). Let A = (ai,j), i, j ∈ [n],
be a permutation matrix of size n. Then A = (ai,j) is a Costas array if and only if
all displacement vectors of the form {(j2 − j1, i2 − i1), j1 < j2, j1, j2 ∈ [n]} are
distinct.

As Definition 2.5 expresses, a permutation f : [n] −→ [n] has the
Costas property if and only if the collection of all displacement vectors
{(i − j, f (i) − f (j)) : i, j ∈ [n], i > j} does not contain any duplication.
Therefore, a straightforward way to verify the Costas property is to group
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all displacement vectors according to their first coordinate and then check
if, in each such group, all the second coordinate values are distinct. The
mentioned verification procedure leads to the definition of the difference
triangle table of a permutation. In the following section, we will see how
the difference triangle could bring advantageous for checking the Costas
property in Definition 2.5.

2.2 Difference Triangle Table

The difference triangle table provides an easy way to check whether a given
permutation is a Costas array. The difference triangle applies for recording
the difference between pairs of entries of a given permutation.

Definition 2.6 (Difference Triangle Table). Let A = [ f (1), f (2), . . . , f (n)] be a
permutation matrix of size n, n ∈ N. Then the ith row of the difference triangle
table of A, let us denote by T(A), for 1 ≤ i ≤ n − 1, contains the following n − i
elements:

ti,j = f (i + j)− f (j), for 1 ≤ j ≤ n − i.

Example 2.7. Consider the permutation A = [1, 3, 6, 4, 5, 2, 7] in example 2.3. The
difference triangle table T(A) can be constructed as follows:

1 3 6 4 5 2 7
2 3 −2 1 −3 5
5 1 −1 −2 2
3 2 −4 3
4 −1 1
1 4
6

As shown in T(A), the elements above the line are the permutation’s elements. The
first row contains all the differences between adjacent elements, and the second row
contains the differences between elements when they are two positions apart, and
similarly, the other rows of T(A) have been constructed.

One can easily verify that a displacement vector in a given permutation
matrix is associated with an element in its difference triangle table. Let
A = (ai,j), i, j ∈ [n], be a permutation matrix of size n, corresponds to a
permutation f : [n] −→ [n], and suppose that k, 1 ≤ k ≤ n − 1, is a given row
of T(A). Associated with an element f (j + k) − f (j), for some j in [n − k],
is the displacement vector (j + k − j, f (j + k)− f (j)) = (k, f (j + k)− f (j)),
as shown in figure 2.1. Therefore, we can conclude that the distinctness
of displacement vectors in a permutation A is equivalent to the distinct
elements in each row of T(A). The above discussion enables us to give an
equivalent definition for Costas arrays.
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a f (j),j

a f (j+k),j+k

(k, f (j + k)− f (j))

FIGURE 2.1: The displacement vector between two non-zero
entries of Permutation matrix A.

Definition 2.8 (Second definition of a Costas array). Let A be a permutation
matrix of size n, n ∈ N, with the corresponding permutation [ f (1), . . . , f (n)].
Then A is a Costas array if each row i, for 1 ≤ i ≤ n − 1, of the difference triangle
table of A contains distinct elements tij, for 1 ≤ j ≤ n − i.

According to Definition 2.8, the permutation A = [1, 3, 6, 4, 5, 2, 7] in example
2.7 is not a Costas array because, in the third row of T(A), the value 3 is
repeated twice. Let us provide an example of a Costas array.

Example 2.9. Consider the permutation A = [1, 3, 6, 2, 7, 8, 5, 4]. Its corresponding
permutation matrix and T(A) are as follows

1 3 6 2 7 8 5 4
2 3 −4 5 1 −3 −1
5 −1 1 6 −2 −4
1 4 2 3 −3
6 5 −1 2
7 2 −2
4 1
3

•
•

•
•

•
•

•
•

We can see that each row of T(A) is free of duplications, meaning A represents a
Costas array.

It can be seen how the difference triangle table of a permutation could bring
advantages to verifying the Costas property. According to the definition
of a difference triangle table, ∑n−1

k=1 (
n−k

2 ) = (n
3) comparisons of pairs of

values are needed to verify the Costas property. Analysis of the entries of a
difference triangle table have shown a strong connection between the entries
of the upper half of a difference triangle table and its lower half, leading
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to a drastic reduction in the number of pairs which are required to verify
to assure whether a given permutation is a Costas array [7]. W. Chang in
[18] showed that if the first

⌊
n−1

2

⌋
rows of a difference triangle table of a

permutation of size n do not contain any duplication, the remaining rows
are also duplication-free. The following theorem shows how this correlation
between the first and second half of a difference triangle table will reduce the
number of comparisons.

Theorem 2.10. Let A = [ f (1), f (2), . . . , f (n)] be a permutation matrix of size n,
where n ∈ N. Then the total number of entries in T(A) that need to be calculated
to verify the Costas property of A is

C(n) =


1
8
(n − 1)(3n − 1), n odd

3
8

n(n − 2), n even.

Proof. According to the W. Chang’s result in [18], we need to consider only
the first

⌊
n−1

2

⌋
of the rows. It can be seen that a row i contains n − i elements.

Let us first assume that n is odd, then we have
⌊

n−1
2

⌋
= n−1

2 . Then the total
number of entries is

⌊ n−1
2 ⌋

∑
i=1

(n − i) =
n−1

2

∑
i=1

(n − i)

=

n−1
2

∑
i=1

n −
n−1

2

∑
i=1

i

=
n(n − 1)

2
−
( (

n − 1
2

)(
n − 1

2
+ 1)

2

)
=

n(n − 1)
2

− (n − 1)(n + 1)
8

=
1
8
(n − 1)(3n − 1).

Now, if n is even, then
⌊

n−1
2

⌋
= n−2

2 . Then the total number of entries is

⌊ n−1
2 ⌋

∑
i=1

(n − i) =
n−2

2

∑
i=1

(n − i)

=
n(n − 2)

2
−

(
n − 2

2
)(

n − 2
2

+ 1)

2
=

3
8

n(n − 2).
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Drakakis et al. in [7] showed that the total number of entries in a difference
triangle table of a given permutation that must be calculated to verify the
Costas property could be further reduced by considering only a subset of
entries in the first

⌊
n−1

2

⌋
rows. We refer the reader to [7] for more details

on this result. The rest of this section will discuss more properties of the
difference triangle table of a permutation which we will use throughout our
study of Costas arrays.

Theorem 2.11 ([33]). Let A be a permutation matrix of size n, where n ∈ N. Then
the difference triangle of A contains precisely n − k elements equal to k in absolute
value, k = 1, . . . , n − 1.

Proof. By induction over n.
(i) Assume n = 2. Then T(A) has one of the following forms

σA = [1, 2]

1 2
1

σA = [2, 1]

2 1
-1

Clearly, the statement is true.
(ii) Assume the statement is true for n ≤ s, and let n = s + 1. Now we
construct a permutation of size s from σA by removing the largest element,
s + 1, which lies at the jth position in σA. This results in a new array
A′ with permutation σ′

A. By construction, σ′
A is a permutation of size s,

thus the difference triangle T(A′) satisfies the proposition to be proved by
induction. Then T(A′) contains s − k elements equal to k in absolute value,
k = 1, . . . , s − 1. Now we can insert the element s + 1 to its previous position
and construct again the σA from σ′

A. In other words, we can construct T(A)
from T(A′) by inserting some new elements in each row of T(A′). As we
can see, these new elements correspond to the differences between s + 1 and
all elements of the set {1, ..., s}. So, all these differences belong to the set
{±s,±(s − 1),±(s − 2), ...,±2,±1}. the positive or negative elements will
be chosen if the elements of {1, ..., s} appear before the jth position or after
the jth position, respectively. It is impossible to insert both the positive and
the negative of an element of the set {±s,±(s − 1),±(s − 2), ...,±2,±1} to
the rows of T(A). By way of contradiction let us assume both positive and
negative of an element appear in T(A), so there must exist two elements, say
ak and ak′ , where 1 ≤ k ≤ j − 1 and k′ ≥ j + 1 such that |(s + 1) − ak| =
|ak′ − (s + 1)|. As we can see, (s + 1) appears after ak, so |(s + 1) − ak| =
(s + 1)− ak. Similarly, |ak′ − (s + 1)| = (s + 1)− ak′ , because ak′ appears after
s + 1. Then (s + 1)− ak = (s + 1)− ak′ which implies that ak = ak′ , which is a
contradiction. Then T(A) will contain s − k + 1 = (s + 1)− k elements equal
to k, k = 1, ..., s − 1 in absolute value, plus one new element equals to +s or
−s.
This completes the proof.

Remark 2.12. The statement of the Theorem 2.11 holds when we have a Costas
array because the collection of all Costas arrays is a subset of the collection of all
permutation matrices.



12 Chapter 2. Introduction

Example 2.13. Let A = [3, 1, 6, 2, 5, 4] be a permutation matrix of size 6. Then, we
have

3 1 6 2 5 4
-2 5 -4 3 -1
3 1 -1 2
-1 4 -2
2 3
1

According to Theorem 2.11, there are precisely 6 − k elements equal to k in absolute
value, where k = 1, . . . , 5. For instance, if k = 1 then we must have 5 elements
equal to 1 in absolute value, which is highlighted in the difference triangle of A.
Similarly, if k = 2 then we must have 4 elements equal to 2 in absolute value, which
is checkable from the table.

The following theorem provides an important observation about Costas
arrays.

Theorem 2.14 ([33]). Let A = [ f (1), . . . , f (n)] be a Costas array of size n. Then
for any 1 ≤ s < t ≤ n, the part [ f (s), . . . , f (t)] of the permutation A, called
A′ = [ f (s), . . . , f (t)] has the Costas property, meaning all the displacement vectors
between dots are distinct; if it so happens that the elements of A′ are consecutive
integers, that is, there exists an element a ∈ N such that { f (s), . . . , f (t)} = {a, a+
1, ..., a + t − s − 1} then A′ represents a Costas array of size less than n, which is
[ f (s)− a + 1, ..., f (t)− a + 1].

Proof. It is clear that A′ has the Costas property because each row of T(A′)
is a subset of the same row of T(A). Moreover, if A′ contains consecutive
integers, then we can pick the smallest element of A′, say a, and scale A′ by
adding −a + 1 to each element in order to make the smallest element of A′

equal to 1, meaning we can construct A′′ = [ f (s)− a+ 1, ..., f (t)− a+ 1] from
A′ by adding −a+ 1 to each element of A′. Then A′′ represents a Costas array
because the differences between elements of A′′ and A′ are the same.

Remark 2.15. It would be worthwhile to note that when we have a Costas array of
size n, removing the element n from its corresponding permutation would not always
result in another Costas array of size n − 1 with the same ordering. For instance, let
A = [1, 3, 6, 4, 5, 2] be a permutation of size 6. Then T(A) is

1 3 6 4 5 2
2 3 -2 1 -3
5 1 -1 -2
3 2 -4
4 -1
1

As we can see, there are no duplicate entries in each row of T(A). So, A is a Costas
array. Now if we delete 6 and save the order of elements, we will have the following
difference triangle table for A′ = [1, 3, 4, 5, 2].
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1 3 4 5 2
2 1 1 -3
3 2 -2
4 -1
1

There are two duplicate entries in the first row. Thus, the permutation matrix A′ is
not a Costas array.

There are several natural ways to construct a Costas array by performing
some manipulations to an existing Costas array. Theorem 2.14 shows
one type of these manipulations. Suppose that we have a permutation
f : [n] → [n] such that f (1) = 1. Then by removing this element from the
beginning of the permutation sequence and then subtracting all the other
elements by one, we can construct a Costas array of one less size. We will
discuss several of these types of manipulations in section 2.5.

There is another possible way to think of a displacement vector in a
permutation matrix. Consider the displacement vector shown in figure 2.1.
If we shift the entry a f (j),j by i columns to the right and f (i + j)− f (j) rows
upwards, then the entries a f (j),j and a f (i+j),i+j will coincide. As we will see
in the next section, this point of view will allow us to utilize the definition
of crosscorrelation between two matrices to propose the third equivalent
definition of Costas array.

2.3 Cross and autocorrelation

As explained in the previous section, a displacement vector in a permutation
matrix A = (ai,j), i, j ∈ [n], between entries a f (j),j and a f (i+j),i+j , i + j ≤ n,
represents a shift that displaces a f (j),j to a f (i+j),i+j. In 1984, Solomon W.
Golomb and Herbert Taylor pointed out the number of such coincidences
can be computed using the autocorrelation function [60]. The autocorrelation
function provides information about repeating patterns in a given binary
matrix. There are two natural ways to regard a binary permutation matrix;
one is to think of it as an n-by-n grid and extend it with zeroes to cover
the entire euclidian plane, and the other is to consider the array on a torus,
meaning that tiling the entire plane using the matrix. These two ways of
consideration lead to the notion of the periodic and aperiodic autocorrelation
function.

Definition 2.16 (Autocorrelation function). For a binary matrix A = (ai,j), with
1 ≤ i, j ≤ n , for i, j ∈ Z let

a′i,j =

{
ai,j if 1 ≤ i, j ≤ n
0 otherwise.
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The aperiodic autocorrelation function value of A at horizontal shift r and vertical
shift s, for r, s ∈ Z, is given by

Ca
A(r, s) = ∑

i,j
a′i,ja

′
i+s,j+r.

and the periodic autocorrelation function of A at horizontal shift r and vertical shift
s, for r, s ∈ Z, is given by

Cp
A(r, s) = ∑

i,j
ai,ja1+(i+s−1 mod n),1+(j+r−1 mod n).

We note that, in the above definition, the autocorrelation function value at
horizontal shift r and vertical shift s is the number of coincidences between
1’s in the matrix A with the 1’s in a shifted version of A, in which all the
entries have been shifted r units to the right (to the left if r is negative),
and s units downwards (upwards if s is negative). It is immediate that the
aperiodic autocorrelation function satisfies the following condition:

• Ca
A(0, 0) = n.

• Ca
A(r, s) = 0, if |r| ≥ n or if |s| ≥ n.

• 0 ≤ Ca
A(r, s) < n, if (r, s) ̸= (0, 0).

The difference between the periodic and aperiodic autocorrelation functions
is essential to note. Roughly speaking, in the aperiodic case, we shift the
matrix and count the number of coincidences in the intersection part of the
matrix and its shifted version because everywhere outside the matrix is zero.
In contrast, in the periodic case, we consider the intersection part and the
parts wrapped around at the boundaries because we compute modulo the
size of the matrix. Let us provide an example that computes the value
of the autocorrelation function for a specific shift both periodically and
aperiodically.

Example 2.17. Let us compute the periodic and aperiodic autocorrelation function
value at shift (1,−2) for the permutation matrix A = [6, 1, 3, 5, 4, 2]. The shift
(1,−2) means that we shift the matrix by one column to the right and two rows
upwards, as shown in figure 2.2. Looking at the intersection, we see that one
pair of 1s coincide, showing Ca

A(1,−2) = 1. In order to compute the periodic
autocorrelation value at this shift, since we do the computations modulo 6, whenever
a 1’s entry leaves a boundary, it will be back to the matrix from the opposite side.
Therefore, the periodic shift of matrix A for the shift (1,−2) gives the following
matrix

1
0
0
0
0
0

0
0
1
0
0
0

0
1
0
0
0
0

0
0
0
0
0
1

0
0
0
1
0
0

0
0
0
0
1
0
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FIGURE 2.2: Aperiodic autocorrelation at shift (1,−2).

Now, if we place matrix A and its shifted version on top of each other, we see that the
1’s entries, shown in black, coincide, showing Cp

A(1,−2) = 2.

As briefly explained in the above example, we observe that the periodic
autocorrelation function of an array can be viewed as a sum of at most four
aperiodic autocorrelations.

Observation 2.18. Let A = (ai,j), 1 ≤ i, j ≤ n and n ∈ N, be a binary matrix.
The periodic autocorrelation function value of A at shifts 0 < r ≤ n − 1 and 0 <
s ≤ n − 1 is equal to the sum of four aperiodic autocorrelations. In other words, we
have

Cp
A(r, s) = Ca

A(r, s) + Ca
A(r − n, s) + Ca

A(r, s − n) + Ca
A(r − n, s − n).

Proof. According to the definition of the periodic autocorrelation function we
have

Cp
A(r, s) =

n

∑
i=1

n

∑
j=1

(
ai,j · a1+(i+s−1 mod n),1+(j+r−1 mod n)

)
=

n

∑
i=1

1≤i+s≤n

n

∑
j=1

1≤j+r≤n

(ai,j · ai+s,j+r)

+
n

∑
i=1

1≤i+s≤n

n

∑
j=1

n+1≤j+r≤2n−1

(ai,j · ai+s,j+r)

+
n

∑
i=1

n+1≤i+s≤2n−1

n

∑
j=1

1≤j+r≤n

(ai,j · ai+s,j+r)

+
n

∑
i=1

n+1≤i+s≤2n−1

n

∑
j=1

n+1≤j+r≤2n−1

(ai,j · ai+s,j+r)

= Ca
A(r, s) + Ca

A(r − n, s) + Ca
A(r, s − n) + Ca

A(r − n, s − n).
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Regarding the above observation, we can conclude that the periodic
autocorrelation gives an upper bound for the aperiodic one. Making
this relation between periodic and aperiodic autocorrelation could bring
advantages that we will discuss in the following chapters. In order to see all
the values of the aperiodic autocorrelation (periodic) in one glance, it would
be more convenient if we record all these values in a (2n − 1)-by-(2n − 1)
matrix. We follow [119] in introducing the autocorrelation matrix. Let us
denote this matrix by Ca

A (Cp
A), called the autocorrelation matrix of A. Each

entry of autocorrelation matrix shows the autocorrelation function value for
a particular shift.

Example 2.19. Let A = [6, 1, 3, 5, 4, 2] be the permutation matrix in example 2.17
with the following matrix

•
•

•
•

•
•

The aperiodic autocorrelation matrix of A =
(
ai,j
)
, i, j ∈ [11], can be constructed as

follows:
For |r| ≤ 5 and |s| ≤ 5, we put the autocorrelation function’s value at shift (r, s) in
entry a6+s,6+r. Then we have

Ca
A =



0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 2 0 0 0
0 0 0 0 2 0 1 0 0 1 0
0 1 0 1 0 0 1 0 2 0 0
0 0 0 0 0 6 0 0 0 0 0
0 0 2 0 1 0 0 1 0 1 0
0 1 0 0 1 0 2 0 0 0 0
0 0 0 2 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0


As shown in Ca

A, the central position corresponds to the shift (0, 0). For (0, 0) shift,
we place the matrix on top of itself. Therefore, Ca

A counts the number of 1s in matrix
A. We saw in example 2.17 that Ca

A(1,−2) = 1, so the entry a4,7 shows this value,
which is 1. Similarly, the Cp

A can be constructed as follows:
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Cp
A =



1 1 2 1 1 0 1 1 2 1 1
2 1 0 1 2 0 2 1 0 1 2
0 2 2 2 0 0 0 2 2 2 0
2 1 0 1 2 0 2 1 0 1 2
1 1 2 1 1 0 1 1 2 1 1
0 0 0 0 0 6 0 0 0 0 0
1 1 2 1 1 0 1 1 2 1 1
2 1 0 1 2 0 2 1 0 1 2
0 2 2 2 0 0 0 2 2 2 0
2 1 0 1 2 0 2 1 0 1 2
1 1 2 1 1 0 1 1 2 1 1


As in example 2.17, we have Cp

A(1,−2) = 2, which shows the entry a4,7 of Cp
A is

equal to 2. It can be seen that entry a8,7 in Cp
A equals 2, which shows Cp

A(1, 2) = 2.
Moreover, by utilizing Observation 2.18, one can easily conclude that

Cp
A(1, 2) = Ca

A(1, 2) + Ca
A(−5, 2) + Ca

A(1,−4) + Ca
A(−5,−4)

= 2 + 0 + 0 + 0
= 2.

This example also indicates the connection between periodic and aperiodic
autocorrelation functions.

Definition 2.20. Let A =
(
ai,j
)
, i, j ∈ [n], be a permutation matrix of size n. We

define a (2n − 1)-by-(2n − 1) matrix by placing the value of Ca
A(r, s), for a given

shift (r, s), |r| ≤ n − 1, |s| ≤ n − 1, at position an+s,n+r, called the aperiodic
autocorrelation matrix of A, Ca

A. Similarly, we define the periodic autocorrelation
matrix, Cp

A.

Matlab provides valuable tools to visualize the autocorrelation matrix. We
visualized Cp

A in example 2.19 in Figure 2.3. In the first figure, the x-axis
shows the values of the periodic autocorrelation function, and the y-axis
depicts the distribution of these elements. In the second figure, we can
see also the distribution of the autocorrelation function’s values in a three-
dimensional plot.

Remark 2.21. For convenience, we say the periodic autocorrelation of a matrix of
size n is equal to x, where x = max{Cp

A(r, s) : |r| ≤ n, |s| ≤ n, (r, s) ̸= (0, 0)}.
The value x is also known as off-peak autocorrelation. We adopt the same convention
for the aperiodic one.

One can quickly verify that if aperiodic autocorrelation of a matrix is at
least 2, there exist a non-zero shift by which at least two pairs of dots will
coincide, meaning there are at least two displacement vectors in the given
matrix with the same length and slope, which is a violation of the Costas
property. Therefore, we have the following equivalent definition for Costas
arrays.
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FIGURE 2.3: The visualization of Cp
A in example 2.19.

Definition 2.22 (Third definition of Costas array). Let A be a permutation
matrix of size n, where n ∈ N. Then A is a Costas array if for any pairs of integers
(r, s) ̸= (0, 0), the aperiodic autocorrelation function of A satisfies

Ca
A(r, s) ≤ 1.

From the equivalent definitions of the Costas array, we can conclude the
following.

Remark 2.23. Let A = (ai,j), i, j ∈ [n], be a permutation matrix of size n. It is easy
to see that any element ti,j in the row i of the difference triangle table of matrix A
represents a displacement vector (i, f (i + j)− f (j)) between non-zero entries a f (j),j
and a f (i+j),i+j. Therefore, we have l repetitions in a row of a difference triangle table
if and only if we have l equal displacement vectors if and only if there is a non-zero
shift (r, s), |r| ≤ n− 1, |s| ≤ n− 1, for which the aperiodic autocorrelation function
value is equal to l.

As in Definition 2.16, if we have another permutation matrix B =
(
bi,j
)
,

i, j ∈ [n], we can similarly define the crosscorrelation function by substituting
the shifted version of A by shifted version of B. Let us denote A and B’s
aperiodic crosscorrelation (periodic) at shift (r, s) by Ca

A,B(r, s) (Cp
A,B(r, s)).

We also use the exact definition, as in Definition 2.20, to define the aperiodic
(periodic) crosscorrelation matrix, denoted by Ca

A,B (Cp
A,B ). Let us define

aperiodic crosscorrelation (periodic) between two matrices.

Definition 2.24 (Crosscorrelation). For binary matrices A =
(
ai,j
)

and B =(
bi,j
)
, with 1 ≤ i, j ≤ n, for i, j ∈ Z let

a′i,j =

{
ai,j if 1 ≤ i, j ≤ n
0 otherwise.

and

b′i,j =

{
bi,j if 1 ≤ i, j ≤ n
0 otherwise.
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The aperiodic crosscorrelation function value between A and B at at horizontal shift
r and vertical shift s is given by

Ca
A,B(r, s) = ∑

i,j
a′i,jb

′
i+s,j+r, f or r, s ∈ Z.

and the periodic crosscorrelation function value between A and B at horizontal shift
r and vertical shift s is given by

Cp
A,B(r, s) = ∑

i,j
ai,jb1+(i+s−1 mod n),1+(j+r−1 mod n), f or r, s ∈ Z.

Definition 2.24 shows that for n × n binary matrices A and B, and for
each possible shift (r, s), their aperiodic crosscorrelation (periodic), Ca

A,B(r, s)
(Cp

A,B(r, s)), is defined as the number of overlapping ones between A and
a shifted version of B, which has been shifted r columns horizontally
to the right (left), if r is positive (negative), and s rows vertically
upward (downward), if s is positive (negative). Therefore, the aperiodic
crosscorrelation (periodic) matrix is a (2n − 1) × (2n − 1) matrix whose
entries are Ca

A,B(r, s) (Cp
A,B(r, s)), 0 ≤ |r|, |s| ≤ n − 1. Let us provide

an example of how we can compute the crosscorrelation of two different
matrices.

Example 2.25. Let A = [6, 4, 5, 1, 3, 2] and B = [3, 1, 4, 2, 5, 6] be two
permutations with the following corresponding matrices

A =


0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0

 , B =


0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


In order to compute the aperiodic crosscorrelation value at shift (1,−2),
Ca

A,B(1,−2), we shift the matrix B by one column to the right and two rows
upwards, and then we place matrix A and the shifted version of the matrix B on
top of each other, as shown in the following figure, and we count the number of
overlapping ones.
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As shown in the above figure, none of the ones is overlapped, meaning
Ca

A,B(1,−2) = 0. We also can construct the aperiodic crosscorrelation matrix as
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follow.

Ca
A,B =



0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 2 0 0 0 0
0 1 0 0 0 1 0 0 2 0 0
0 0 2 0 0 1 0 1 0 0 1
1 0 0 1 1 0 0 2 0 1 0
0 1 0 0 0 1 2 0 0 1 0
0 0 0 2 0 0 0 1 1 0 0
0 0 0 0 1 2 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0


The red entry in matrix Ca

A,B shows the value of Ca
A,B(1,−2).

2.4 Symmetry

The relevance between a permutation matrix of size n × n and the
permutation of the set [n] allows us to consider Costas arrays as permutations
in Sn. Recall that Sn is the symmetric group of degree n and consists of all
permutations of the set [n]. The purpose of this section is to explain how we
can construct a new Costas array from a given one. As we know from group
Theory, an action turns a group into a set of symmetries of an object. The
concept of symmetry reflects a group action. In order to understand how we
can construct new Costas arrays from a given one, we utilize the concept of
group actions, and we refer the reader to [100] and [45] for more detail.

Definition 2.26 (Action [100]). Let (G, ⋆) be a group, and X a set. A left action of
G on X is a map

α : G × X −→ X
(g, x) 7−→ g.x

where we write α(g, x) = g.x such that

1. g1.(g2.x) = (g1 ⋆ g2).x for all x ∈ X and g1, g2 ∈ G,

2. e.x = x for all x ∈ X, where e is the identity element of G.

We say that G acts on X.

Since there may be many different actions of a group G on a given set X,
the notation of x.g is vague. In context, however, this will not cause any
difficulty. One way to think of an action is to visualize that the group G move
the points in X around. The first condition says that instead of applying the
element g2 and then g1, we can apply g1 ⋆ g2, and the second condition says
that the identity element results in no movement.
Recall that if a group G acts on a set X, the (distinct) orbits of G partition G,
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where for a fixed element x ∈ X, the orbit of x (under G) is defined as

OrbG(x) = {y ∈ X | y = g.x for some g ∈ G} = {g.x | g ∈ G} ⊆ X.

In order to define an equivalence relation on the set of Costas arrays of a
given size, we will use the Orbit-Stabilizer Theorem. The Orbit-Stabilizer
Theorem expresses that if a group G acts on a set X, once we know the
number of possible ways to send an element x ∈ X to itself, we also know
the number of ways of sending x to any other elements in its orbit. We recall
that if G is a group acting on a set X on the left, the stabilizer in G of x ∈ X is
defined as

StabG(x) = Gx := {g ∈ G | g.x = x}.

Theorem 2.27 (Orbit Stabilizer Theorem [100]). Assume that G is a finite group
acting on a set X (on the left). Then for any x ∈ X,

|G| = |OrbG(x)| · |StabG(x)|

Proof. It is easy to check that StabG(x) is a subgroup of G, so by Lagrange’s
Theorem we can conclude that

|G| = [G : StabG(x)] · |StabG(x)|.

Therefore, it is sufficient to prove that

[G : StabG(x)] = |OrbG(x)|.

For doing so, we will define a bijection between these two sets. Let us define

ϕ : [G : StabG(x)] −→ OrbG(x)
aStabG(x) 7−→ a.x

for any a ∈ G. We need to show that ϕ is well defined, one-to-one, and onto.
Let us assume that for a, b ∈ G, aStabG(x) = bStabG(x). To see ϕ is well
defined we need to show that ϕ(aStabG(x)) = ϕ(bStabG(x)).
Since aStabG(x) = bStabG(x), we know that a ∈ bStabG(x) so that a = bh for
some h ∈ StabG(x). Notice that h ∈ StabG(x) then h.x = x. Then

ϕ(aStabG(x)) = a · x = (bh) · x = b · (h · x) = b · x = ϕ(bStabG(x))

which proves that ϕ is well defined.
Suppose that y = g · x ∈ OrbG(x). Then ϕ(gStabG(x)) = g · x = y and we
conclude that ϕ is onto.
Finally, suppose that ϕ(aStabG(x)) = ϕ(bStabG(x)). Then a · x = b · x and so

x = e · x = (a−1a) · x = a−1 · (a · x) = a−1 · (b · x) = (a−1 · b) · x

Thus a−1 · b ∈ StabG(x). Therefore, (a−1 · b)StabG(x) = StabG(x) and so
aStabG(x) = bStabG(x) which completes the proof.
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In the rest of this section, we will examine how we can construct a new Costas
array from a given one by the action of dihedral group of degree four. We
refer the reader to [45] for more details on dihedral groups. Recall that a
dihedral group of degree four, denoted by D8, is the group of symmetries of
the square. The group D8 contains eight elements, four rotational symmetries
and four reflection symmetries. The rotations are given by rotating the square
by 0◦, 90◦, 180◦, and 270◦, and the four reflections are defined along the four
axes: the reflections around diagonals and the reflection around the centre of
the square vertically or horizontally.
The elements of D8 act on any n × n permutation matrix by rotating and
reflecting the position of the entries. The transpose of a matrix A = (ai,j),
1 ≤ i, j ≤ n, can be obtained by reflecting the entries along its main diagonal,
which let us denote by T . In what follows, T stands for the map

T : Xn −→ Xn

A = (aij) 7−→ T(A) := (aj,i),

where Xn denotes the set of all permutation matrices of size n. Consider
the vertical reflection of a permutation matrix, denoted by S , which can be
defined using the following map

S : Xn −→ Xn

A = (aij) 7−→ S(A) := (ai,n+1−j).

One can show that
〈

a, b|a2 = b2 = (ab)4 = 1
〉

gives a representation of D8 in
terms of two generators a = T and b = S of order 2. Let us provide an
example showing how T and S generate D8.

Example 2.28. Let A = [3, 1, 6, 2, 5, 4] be a permutation matrix of size 6. Then
each of the elements of D8 that transfers A are illustrated in the Figure 2.4. In other
words, letting D8 act on the checkerboard of A, which is shown as Identity matrix
in Figure 2.4, we obtain the action of the elements in the dihedral group D8 on A.
By checking the difference triangle table of each permutations we can see that Costas
property holds in all cases.

Remark 2.29. According to Example 2.28, one can verify that the elements of the
Dihedral group D8 are generated by S and T . Then

D8 = {I,S , T ,ST , T S ,ST S , T ST ,ST ST }.

Let us explain how the Dihedral group D8 in Example 2.28 acts on the set of
all Costas arrays by which the Costas property remains invariant.

Theorem 2.30 ([33]). Suppose that Cn is the set of all Costas arrays of size n, where
n ∈ N. Then, the Dihedral group D8 acts on Cn.

Proof. Consider the Dihedral group D8 generated with two elements S and
T . To see the group D8 acts on Cn, we will define the following map and one
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FIGURE 2.4: The action of D8 on Costas array A
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can easily verify that how the two condition in Definition 2.26 are satisfied.

α : D8 × Cn −→ Cn

(x, A) 7−→ x.A := x(A).

We will show that if A is a Costas array then T (A) and S(A) are Costas
arrays. Moreover, since all the elements of D8 are different compositions of
S and T , then for any x ∈ D8, we can conclude that x(A) is a Costas array.
Hence, the image of the map α belongs to Cn.
Let us assume that A is a Costas array with corresponding permutation
σ(A) = [ f (1), . . . , f (n)]. By the definition of S , one can verify that
S(A) corresponds to the permutation σ(S(A)) = [ f (n), . . . , f (1)]. So, the
difference triangle table of σ(S(A)) is the same as the difference triangle table
of σ(A), but with opposite entry signs. Then S(A) is a Costas array.
We claim that T (A) has the Costas property. Assume it is not a Costas array.
Then, according to Definition 2.5, we can find two pairs of 1’s such that the
displacement vectors between them are equal. By noting that the transpose
of A corresponds to the inverse permutation, one can check that

σ(T (A)) = [ f−1(1), . . . , f−1(n)].

To show that T (A) has the Costas property, let us assume that two pairs of
1’s have the following equal displacement vectors

( f−1(i + k)− f−1(i), k)

( f−1(j + k)− f−1(j), k),
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where 1 ≤ i + k, j + k ≤ n. Thus, this requires:

f−1(i + k)− f−1(i) = f−1(j + k)− f−1(j). (2.1)

According to the last equality, we have the following results:

1) There exists an element 1 ≤ x ≤ n such that f−1(i + k) = x. Then
f (x) = i + k

2) There exists an element 1 ≤ y ≤ n such that f−1(i) = y. Then f (y) = i

3) There exists an element 1 ≤ w ≤ n such that f−1(j + k) = w. Then
f (w) = j + k

4) There exists an element 1 ≤ z ≤ n such that f−1(j) = z. Then f (z) = j

Substituting the above values in (2.1) yields x − y = w − z. Now from 1
and 2 we can conclude that f (x) − f (y) = k. Similarly, from 3 and 4 we
have f (w) − f (z) = k. Then the displacement vectors ( f (x) − f (y), x − y)
and ( f (w)− f (z), w − z) are equal, which is a contradiction because all the
displacement vectors in A should be distinct. Then T (A) is a Costas array.
Therefore, we can conclude that D8 acts on Cn.

Remark 2.31. Since the group D8 acts on the set Cn, then the (distinct) orbits of
D8 partition Cn. Thus, the equivalence class of A is the OrbD8(A) of A under the
action of D8.

Theorem 2.32 ([119]). Let A be a Costas array of size n, where n ∈ N. Consider
the functions T and S in Example 2.28. Then, |OrbD8(A)| = 8 if both A ̸= T (A)
and A ̸= ST S(A) hold, and |OrbD8(A)| = 4 otherwise; hence, we can construct
3 or 7 more Costas arrays from a given one.

Proof. One can verify that the orbit of A under the action of D8 is the set

O(A) = {I(A), T S(A),ST ST (A),ST (A), T (A), T ST (A),ST S(A),S(A)}.

We claim that O(A) has 8 elements if A ̸= T (A) and A ̸= ST S(A), and
4 elements otherwise. To do so, we know that the Orbit Stabilizer Theorem
2.27 gives |OrbD8(A)| · |StabD8(A)| = 8. Then, to complete the proof, it is
enough to prove that

|StabD8(A)| =
{

1 if A ̸= T (A) and A ̸= ST S(A)

2 otherwise.

Since A is a permutation matrix, A ̸= S(A). So, S /∈ StabD8(A). We want to
show that A ̸= T ST (A). Let A = (aij) for 1 ≤ i, j ≤ n. We obtain:

T ST (A) = T ST
((

ai,j
))

= T S
((

aj,i
))

= T
((

aj,n+1−i
))

=
(
an+1−i,j

)
,

and since A is a permutation matrix then (an+1−i,j) ̸= (ai,j). Hence, A ̸=
T ST (A). We will show that ST ST , ST and T S are not in StabD8(A). By
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way of contradiction, suppose that ST ST ∈ StabD8(A). Let A be a Costas
array of size n. If we apply the transformation ST ST on A, we obtain

ST ST
((

ai,j
))

= ST S
((

aj,i
))

= ST
((

aj,n+1−i
))

= S
((

an+1−i,j
))

=
((

an+1−i,n+1−j
))

.

Therefore, the permutation sequence corresponding to the matrix ST ST (A)
is [n + 1 − f (n), n + 1 − f (n − 1), . . . , n + 1 − f (2), n + 1 − f (1)]. We claim
that ST ST (A) is not a Costas array if ST ST (A) = A, which is a
contradiction because the action of D8 on a set of Costas arrays will preserve
the Costas property as shown in Theorem 2.30. If ST ST (A) = A then for
all 1 ≤ j ≤ n we have n + 1 − f (n + 1 − j) = f (j). Substituting j = 1, 2, and
then we have

n + 1 − f (n) = f (1) (2.2)
n + 1 − f (n − 1) = f (2) (2.3)

Subtracting (2.3) from (2.2) yields f (n)− f (n − 1) = f (2)− f (1), violating
the Costas property because the values f (n) − f (n − 1) and f (2) − f (1)
appear in the first row of the difference triangle table of A and can not be
equal if A is a Costas array. Therefore, ST ST /∈ StabD8(A). Consequently,
ST /∈ StabD8(A) because StabD8(A) is a subgroup. What is left is to show
that T S /∈ StabD8(A). Since StabD8(A) is a subgroup, it follows that if
T S ∈ StabD8(A), so is (T S)−1. But (T S)−1(A) = S−1T −1(A) = ST (A),
which is due to the fact that S2 = T2 = 1, and we already showed that
ST /∈ StabD8(A). Subsequently, T S /∈ StabD8(A).
Therefore, |StabD8(A)| < 3. Then if T ∈ StabD8(A) or ST S ∈ StabD8(A) we
have |StabD8(A)| = 2, and otherwise |StabD8(A)| = 1.

2.5 Construction Techniques

As we explained in the Overview section, although the foundation of
Costas arrays was completely application-oriented, they offer interesting
mathematical problems. There are two basic approaches currently being
adopted to study Costas arrays. One is the finite field-based construction
approach, and the other is computer search.
This section explains these construction methods and the submethods
obtained by manipulating the existing constructions. Moreover, we review
the main properties of finite fields that we will use and refer to [77] for more
details in the theory of finite fields for interested readers, and we provide a
summary of the search algorithms’ results.
We follow [114] in assuming that all known Costas arrays can be divided up
into three distinct categories:
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1) Generated: A Costas array is called generated if it can be obtained
using an algorithm that guarantees the existence of a Costas array and
can be constructed using an algebraic technique.

2) Emergent: A Costas array is considered emergent if the array emerges
from manipulating a generated (or emergent) Costas array.

2) Sporadic: A Costas array is sporadic if it has been found through an
exhaustive search and is of a completely unknown origin.

After reviewing some basic properties of a finite field, we will discuss these
three categories in this chapter.
Let us recall some basic facts about finite fields, and for more details, we refer
the reader to [77]. Let p be a prime number. For every power pr of p, where
r ≥ 1 is a positive integer, there exists a field denoted by Fpr having exactly
pr elements; and there is essentially only one such field up to isomorphism. If
r = 1, Fp is the set of integers {0, 1, ..., p − 1} modulo p under the operation
of addition and multiplication. A fundamental fact about a finite field Fq,
where q = pr, is that the multiplicative group of Fq denoted by F⋆

q (the set
of nonzero elements of Fq) is cyclic. Therefore, F⋆

q has a generator such that
all its successive powers run through all nonzero elements of the field Fq. A
generator of F⋆

q is called a primitive element, and there are ϕ(q − 1) distinct
primitive elements in Fq where ϕ(x) is the Euler’s totient function, that gives
the number of positive integers less than x relatively prime to x. For further
reference, we state the following lemma.

Lemma 2.33 ([86]). If α is a primitive element of Fq then αt is a primitive element
of Fq if and only if gcd(t, q − 1) = 1.

2.5.1 The Welch Construction

The Welch Costas arrays were first found by Edgar Gilbert in 1965 [53] and
rediscovered in 1982 by Lloyd R. Welch. As we mentioned before, it was S.
W. Golomb who proved the validity of this construction [55].

Theorem 2.34 (Exponential Welch Construction [55]). Let α be a primitive
element of Fp, with p a prime and let c be an element of the set {0, 1, 2, ..., p − 2}.
Then the (p − 1) × (p − 1) permutation matrix, denoted by Wexp

1 (p, α, c), with
aij = 1 if and only if i ≡ αj+c (mod p), where 1 ≤ i ≤ p − 1, 0 ≤ j ≤ p − 2, is a
Costas array.

Proof. Let us fix an element c ∈ {0, 1, 2, ..., p − 2}. Since i 7−→ αi+c (mod p) is
a permutation of {1, 2, . . . , p − 1} for 0 ≤ i ≤ p − 2, we have a permutation
matrix. On the contrary, suppose that Wexp

1 (p, α, c) is not a Costas array.
Then, there are at least two equal values in a row k, 1 ≤ k ≤ p − 2, of
T(Wexp

1 (p, α, c)), as in Remark 2.23. Assume that for some 1 ≤ s < t ≤ p − 1,
we have(

αs+c+k mod p
)
−
(
αs+c mod p

)
=
(

αt+c+k mod p
)
−
(
αt+c mod p

)
.
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Then, we have

αs+c
(

αk − 1
)

mod p = αt+c
(

αk − 1
)

mod p.

Since
(
αk − 1

)
̸≡ 0 mod p and 1 ≤ s < t ≤ p − 1, this requires s = t, which

gives a contradiction. Then Wexp
1 (p, α, c) is a Costas array.

Example 2.35. Consider the exponential Welch construction, as in 2.34, for p = 11,
α = 2 and c = 0. The permutation Wexp

1 (11, 2, 0) = [1, 2, 4, 8, 5, 10, 9, 7, 3, 6] is
obtained by raising 2 to successive powers modulo 11 from 0 to 9. The constant c
in the definition of exponential Welch suggests it does not matter from which point
we can start and any cyclic shift of the permutation is still an exponential Welch,
so it is a Costas array. Let us take c = 3; then, we construct the permutation
Wexp

1 (11, 2, 3) = [8, 5, 10, 9, 7, 3, 6, 1, 2, 4], obtained by a cyclic shift of the elements
in Wexp

1 (11, 2, 0) that sends the first third elements to the end of Wexp
1 (11, 2, 0). Let

us construct T(Wexp
1 (11, 2, 0)) and T(Wexp

1 (11, 2, 3)) as follows:

1 2 4 8 5 10 9 7 3 6
1 2 4 −3 5 −1 −2 −4 3
3 6 1 2 4 −3 −6 −1
7 3 6 1 2 −7 −3
4 8 5 −1 −2 −4
9 7 3 −5 1
8 5 −1 −2
6 1 2
2 4
5
8 5 10 9 7 3 6 1 2 4
−3 5 −1 −2 −4 3 −5 1 2
2 4 −3 −6 −1 −2 −4 3
1 2 −7 −3 −6 −1 −2
−1 −2 −4 −8 −5 1
−5 1 −9 −7 −3
−2 −4 −8 −5
−7 −3 −6
−6 −1
−4

We can see that each row of these difference triangle tables is free of duplication,
meaning Wexp

1 (11, 2, 0) and Wexp
1 (11, 2, 3) are Costas arrays.

Remark 2.36. According to the assumption of Theorem 2.34, the corresponding
permutation to the exponential Welch Costas array is

Wexp
1 = [αj+c (mod p)] for 0 ≤ j ≤ p − 2 and c ∈ {0, 1, . . . , p − 2}.

Lemma 2.37. If there is a dot in any of the four corners of an n × n Costas array
of size n, with n ∈ N. Then we can remove this dot and its corresponding row and
column to obtain an (n − 1)× (n − 1) Costas array.
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Proof. Clearly, any violation of the Costas property in reduced version would
already be presented in the original pattern.

The following theorem is an immediate result of Lemma 2.37, from which we
obtain an emergent Costas array.

Theorem 2.38 (Wexp
2 (p, α) exponential Welch). Let α be a primitive element of

Fp, where p is a prime, then permutation [
(
αj mod p

)
− 1] for 1 ≤ j ≤ p − 2 is a

Costas array, denoted by Wexp
2 (p, α).

Proof. Let Wexp
1 (p, α, 0) be an exponential Costas array. Since α0 = 1 ≡

1 (mod p), we always have a dot at top left corner of Wexp
1 (p, α, 0). Regarding

lemma 2.37, we can remove this dot and its corresponding row and column
to obtain a Costas array of size p − 2.

Theorem 2.39 (Wexp
3 (p, α) exponential Welch). Suppose that 2 is a primitive

element of Fp, where p is a prime. Then, the permutation [
(
αj mod p

)
− 2] for

2 ≤ j ≤ p − 1 is a Costas array of size p − 3, denoted by Wexp
3 (p, α).

Proof. Since 2 is a primitive element of Fp, 20 ≡ 1 (mod p), and 21 ≡
2 (mod p). Therefore, we can construct a Wexp

1 (p, α, 0) for which there are
two dots at positions a1,1 and a2,2. Thus we can remove these dots together
with their corresponding row and columns to obtain a Costas array of size
p − 3.

The table below illustrates all variants of exponential Welch Costas arrays’
constructions.

TABLE 2.1: The exponential Welch Costas arrays’ construction
and its submethods. α is a primitive element of the finite field
Fp, where p is a prime. (i, j) stands for the dot’s position in
the permutation matrix, where i shows the row number and j

shows the column number of the matrix.

Constructions Variants Size Remarks

Exponential Welch

Wexp
1 p − 1 -

Wexp
2 p − 2

If c = 0, there is a corner
dot at position (1, 1),

which can be removed.

Wexp
3 p − 3

If α = 2, there are dots at
positions (1, 1) and (2, 2).
Then dot at position (2, 2)

after removing dot at
position (1, 1) is deletable.

According to theorem 2.30, we know that the transpose of an exponential
Welch Costas array is again a Costas array, called logarithmic Welch. We
follow [37] to propose the following theorem.
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Theorem 2.40 (Logarithmic Welch array [37]). Let α be a primitive element of
Fp, with p a prime and c be an element of the set {0, 1, 2, ..., p − 2}. Then the
(p − 1) × (p − 1) permutation matrix, denoted by W log

1 (p, α, c), with aij = 1 if
and only if i ≡ c + logα j mod (p − 1), where 1 ≤ j ≤ p − 1, 0 ≤ i ≤ p − 2, is a
Costas array.

Proof. Suppose that W log
1 (p, α, c) = [(c + logα j) mod (p − 1)] for 1 ≤ j ≤

p − 1 and a fixed c in {0, 1, 2, ..., p − 2}. By way of contradiction, assume that
W log

1 (p, α, c) is not a Costas array. Then, at least a row k, 1 ≤ k ≤ p − 2,
of T(W log

1 (p, α, c)) with at least one repeated entry exists. Thus, for some
1 ≤ i < l ≤ p − 1, we have

(logα (i + k)− logα i) mod p − 1 = (logα (l + k)− logα l) mod p − 1

if and only if we have

logα
i+k

i ≡ logα
l+k

l mod p − 1 ⇔ ik ≡ lk mod p − 1 ⇔ i ≡ l mod p − 1.

Since 1 ≤ i, l ≤ p− 1, this forces i = l, which gives a contradiction. Therefore,
W log

1 (p, α, c) is a Costas array.

It is worth noting that the existence of logα j mod (p − 1) in the above
theorem can be attributed to the discrete logarithm problem. Since α is a
primitive element, every non-zero element j in Fp can be expressed as a
power of α. In other words, there exists an integer x such that j ≡ αx mod (p).
By taking the logarithm of both sides with a base of α, we obtain logα j ≡
x mod (p − 1). This demonstrates that for any non-zero element j in Fp, it
is always possible to find a logarithm base α modulo (p − 1), denoted as
logα j mod (p − 1), due to the fact that α is a primitive element capable of
generating all non-zero elements in Fp.

Remark 2.41. Theorems 2.38 and 2.39 hold naturally for logarithmic Welch Costas
arrays as well.

Theorems 2.34 and 2.40 show the two sets of exponential and logarithmic
Welch Costas arrays, which form the Welch construction together. As
mentioned earlier, we obtain a logarithmic Welch array by transposing an
exponential Welch Costas array. It is worth noting that the transpose of an
exponential Welch Costas array, Wexp

1 (p, α, c), with parameters (p, α, c) is not
expressible as a logarithmic Welch Costas array with the same parameters
regarding our definition of logarithmic Welch. Let us provide an example to
make it easier to understand how transposing an exponential Welch can be
expressible by a logarithmic Welch Costas array with different parameter c.

Example 2.42. Since 7 is a primitive element in F11, for 0 ≤ j ≤ 9 and
c = 2, we can construct an exponential Welch Costas array Wexp

1 (11, 7, 2) =
[5, 2, 3, 10, 4, 6, 9, 8, 1, 7]. As in the proof of theorem 2.30, we know that the transpose
of a permutation f is defined by f−1. One can easily verify that the transpose
of Wexp

1 (11, 7, 2) is [9, 2, 3, 5, 1, 6, 10, 8, 7, 4]. Let us construct the logarithmic
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Welch Costas array with the same parameters, W log
1 (11, 7, 2). Using the following

calculations

(2 + log7 1) mod 10 = 2, (2 + log7 2) mod 10 = 5,
(2 + log7 3) mod 10 = 6, (2 + log7 4) mod 10 = 8,
(2 + log7 5) mod 10 = 4, (2 + log7 6) mod 10 = 9,
(2 + log7 7) mod 10 = 3, (2 + log7 8) mod 10 = 1,
(2 + log7 9) mod 10 = 0, (2 + log7 10) mod 10 = 7,

we can construct W log
1 (11, 7, 2) = [2, 5, 6, 8, 4, 9, 3, 1, 0, 7]. In order to have

a permutation from 1 to p − 1, we add all the elements of W log
1 (11, 7, 2) by

1 to acquire [1, 4, 5, 7, 3, 8, 2, 10, 9, 6]. As we can see
(
Wexp

1 (11, 7, 2)
)T ̸=

W log
1 (11, 7, 2), where T stands for the transpose operation. A trivial verification

show that W log
1 (11, 7, 8) = [8, 1, 2, 4, 0, 5, 9, 7, 6, 3], from which, by adding all the

elements of W log
1 (11, 7, 8) by one, we obtain

(
Wexp

1 (11, 7, 2)
)T

= W log
1 (11, 7, 8)

The permutation matrices of Wexp
1 (11, 7, 2) and W log

1 (11, 7, 8) are as follows,
respectively:

•
•

•
•

•
•

•
•

•
•

Wexp
1 (11, 7, 2)

•
•

•
•

•
•

•
•

•
•

W log
1 (11, 7, 8)

As one can see, matrix W log
1 (11, 7, 8) is obtained by transposing matrix

Wexp
1 (11, 7, 2).

In general, the following holds:

Observation 2.43. The transpose of Wexp
1 (p, α, c) is W log

1 (p, α,−c mod (p − 1)).

Proof. One can check that an exponential Welch Costas array Wexp
1 (p, α, c)

can be represented by the bijection f : {0, 1, . . . , p − 2} → {1, 2, . . . , p − 1},
which is defined by the formula f (i) = αi+c mod p. By taking logarithm
base α from both sides of this equation, we can see f−1 : {1, 2, . . . , p − 1} →
{0, 1, . . . , p − 2} can be defined by f−1(i) = (−c + logα i) mod (p − 1).

Therefore,
(
Wexp

1 (p, α, c)
)T

= W log
1 (p, α,−c mod (p − 1)).
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There are two interesting observations about Welch Costas arrays. Firstly,
Welch Costas arrays are singly periodic, meaning all circular shifts of the
columns of an exponential Welch Costas array are also Costas arrays, and
all circular shifts of the rows of a logarithmic Welch Costas array are also
Costas arrays [99]. The single periodicity of these arrays results from the
effect of parameter c, which is called the offset. In 1984, Golomb and Taylor
conjectured that singly periodicity characterizes the Welch construction [60].
This conjecture is still open. Secondly, exponential Costas arrays have the
glide-reflection symmetric property, known as G-symmetric [47]. Let us
define what we mean by G-symmetric, and then we will discuss this property
of exponential Welch. We introduce the notion of glide-reflection symmetry,
following Tuvi Etzion [47]. He also provided several valuable constructions
of combinatorial designs in which Costas arrays play an essential role, which
we will discuss in the next chapter.

Definition 2.44 (G-symmetric property [47]). Let A = [ f (1), f (2), . . . , f (n)] be
a permutation matrix of size n. We say A has G-symmetric property if the following
holds:

• If n is an even integer and f
(
i + n

2

)
+ f (i) = n + 1 for 1 ≤ i ≤ n

2 .

• If n is an odd integer, f (n+1
2 ) = n+1

2 and f
(

i + n+1
2

)
+ f (i) = n + 1 for

1 ≤ i < n+1
2 .

It can be easily seen that exponential Welch Costas arrays have the G-
symmetric property. Let p be a prime and α be a primitive element in
Fp. As in Definition 2.34, the permutation matrix A = [αc+i (mod p)], for
0 ≤ i ≤ p − 2, is an exponential Welch Costas array of size p − 1. Since p − 1
is even, it is sufficient to show that

αi+c (mod p) + αi+c+
p−1

2 (mod p) = p

for 1 ≤ i ≤ p−1
2 . This is true because α

p−1
2 = −1 over Fp and

αi+c + αi+c
p−1

2 ≡ αi+c(1 + α
p−1

2 ) ≡ 0 (mod p).

Lemma 2.45 ([119]). Let A = [ f (1), f (2), ..., f (n)] be a G-symmetric Costas array
of even size n. Let T1, T2, T3 and T4 be the triangular regions of the difference triangle
table of A showed in the following figure
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The row i of T1 and T2 regions contain n−2i
2 elements, and T3 contains i elements.

Then

1) T2 = −T1

2) The T3 region’s elements in a row k, 1 ≤ k ≤ n
2 − 1, are the same as the T4

region’s elements in row n − k.

Proof. For 1, let k be a row of T(A), where 1 ≤ k ≤ n
2 − 1. Then the elements

in T2 region for this row are of the form

f (j + k)− f (j) for n
2 + 1 ≤ j ≤ n − k. (2.4)

Equivalently, 2.4 is equal to

f (n
2 + j + k)− f (n

2 + j) for 1 ≤ j ≤ n
2 − k. (2.5)

Since A is G-symmetric, 2.5 is equal to

n + 1 − f (j + k)− (n + 1 − f (j)) for 1 ≤ j ≤ n
2 − k. (2.6)

Therefore, T2 = −T1.
For 2, it can be seen that T3 region’s elements in a row k, 1 ≤ k ≤ n

2 − 1, are
of the form

f (n
2 + j)− f (n

2 + j − k) for 1 ≤ j ≤ k. (2.7)

Since A is G-symmetric, 2.7 is equal to

n + 1 − f (j)− (n + 1 − f (n − k + j)) = f (n − k + j)− f (j) for 1 ≤ j ≤ k,

which can be seen these are exactly the elements of row n − k of T(A) for
n
2 + 1 ≤ k ≤ n − 1.

2.5.2 Lempel-Golomb Construction

The previous section discussed one of the main algebraic constructions,
Welch construction, and in this section, we will discuss the other one, the
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Lempel-Golomb construction. This construction works with two primitive
elements of a finite field. These two primitive elements are not necessarily
distinct. The case where two primitive elements are equal was pointed out
by Lempel and Welch, and S. W. Golomb has generalized this method by
taking two distinct primitive elements.

Theorem 2.46 (Lempel-Golomb Construction G2 [55]). Let α and β be two
primitive elements of Fq with q > 2. Then the (q − 2) × (q − 2) permutation
matrix with aij = 1 if and only if αi + βj = 1, 1 ≤ i, j ≤ q − 2, is a Costas array.

Proof. Our proof starts with the observation that this construction gives a
permutation matrix, let us say A. If it is not a permutation matrix, then there
is at least one row or one column with at least two non-zero entries. There is
no loss of generality in assuming ai1 j = 1 and ai2 j = 1. Therefore, αi1 + βj = 1
and αi2 + βj = 1, and hence αi1 = αi2 . Since 1 ≤ i1, i2 ≤ q − 2, we can
conclude that i1 = i2. So, this is a permutation matrix. From αi + βj = 1, we
deduce that

αi + βj = 1 ⇔ βj = 1 − αi ⇔ logβ βj = logβ(1 − αi) ⇔ j = logβ(1 − αi).

Suppose this construction does not give a Costas array. Then, at least one
row k, 1 ≤ k ≤ q − 3, of T(A), containing a repeated value, exists. Assume
that for some 1 ≤ s < l ≤ q − 2, we attain the repeated values in row k as
follows:

logβ(1 − αs+k)− logβ(1 − αs) = logβ(1 − αl+k)− logβ(1 − αl),

if and only if

logβ

(
1−αs+k

1−αs

)
= logβ

(1−αl+k

1−αl

)
⇔
(

1−αs+k

1−αs

)
=
(

1−αl+k

1−αl

)
.

By elementary calculation, we obtain

αs(αk − 1) = αl(αk − 1).

Since αk − 1 ̸= 0, this implies that αs = αl, and hence s = l. Therefore, A is in
fact a Costas array.

Remark 2.47. In Theorem 2.46, primitive elements α and β are not necessarily
distinct. The case where α = β is known as Lempel construction. Let us denote this
family by L2.

Example 2.48. Consider the quotient ring F3[x]
(x2+1) . Since x2 + 1 is an irreducible

polynomial over F3, this quotient ring is the finite field with 9 elements. One can
check that this field contains the following elements

{0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2}.
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One can verify that the elements x+ 1 and 2x+ 1 are generators of the multiplicative
group of F9, because all their successive powers run through all non-zero elements of
F9. Therefore, we can construct a Lempel-Golomb Costas array of size 7 as follows

(x + 1)1 + (2x + 1)6 = 1

(x + 1)2 + (2x + 1)3 = 1

(x + 1)3 + (2x + 1)2 = 1

(x + 1)4 + (2x + 1)4 = 1

(x + 1)5 + (2x + 1)5 = 1

(x + 1)6 + (2x + 1)1 = 1

(x + 1)7 + (2x + 1)7 = 1

•
•

•
•

•
•

•

Similar to Welch construction, we also can remove corner dots in some cases
to obtain Costas arrays of size less than q − 2. The systematic study of these
constructions was reported by W. S. Golomb et al. in 2007 [57]. Table 2.2
collected these constructions together with a construction introduced by W.
S. Golomb labelled as T4 in [59].

2.6 Heuristic Constructions

In Remark 2.15, we saw that removing a dot and its corresponding row and
column in the middle of a permutation matrix could be problematic, while
Lemma 2.37 showed that removing the corner dots is always possible to
obtain a Costas array of smaller sizes. A natural question arises here is it
possible to add a corner dot and still have the Costas property? The answer
to this question resulted in some heuristic methods by which some Costas
arrays have been constructed via adding corner dots and checking whether
or not the extended matrix is a Costas array. A more detailed study of
these constructions can be found in [35].The most famous heuristic method is
the Rickard construction which discovered four previously unknown Costas
arrays, two Costas arrays of size 29, one of size 36 and one of size 42 [99].

Definition 2.49 (Rickard Welch construction). Let α be a primitive element of
the finite field Fp, where p is a prime. Consider a (p − 1)-by-(p − 1) Costas array
Wexp

1 (p, α, c), as in Theorem 2.34, and add an empty row at the bottom to attain
a p-by-(p − 1) matrix. By cyclically shifting the rows of this matrix l times and
appending a column to the right of this matrix with a dot in row l, we construct a
new permutation matrix of size p − 1, which may be a Costas array.

Definition 2.50 (Rickard Golomb construction). Let α and β be two primitive
elements of the finite field Fq, where q is a prime power, and let A =

(
ai,j
)
, 1 ≤

i, j ≤ q − 2, be a Lempel-Golomb Costas array, as in Theorem 2.46. Consider a
q − 1-by-q − 1 matrix obtained by appending an empty row at the bottom and then
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TABLE 2.2: The Lempel-Golomb construction’s submethods. α
and β are two primitive elements of the finite field Fq, where
q is a prime power. (i, j) stands for the dot’s position in the
permutation matrix, where i shows the row number and j

shows the column number of the matrix.

Constructions Variants Size Remarks

Lempel L3 q − 3
If α = 2, then a dot at position
(q − 2, q − 2) can be removed as

a corner dot.

Golomb

G3 q − 3
If α1 + β1 = 1, then dot at

position (1, 1) can be removed
as a corner dot.

G4 q − 4

If q = 2m, and α1 + β1 = 1,
which implies that α2 + β2 = 1.
Then dots at position (1, 1) and

(2, 2) can be removed.

G⋆
4 q − 4

If α1 + β1 = 1 and α2 + β−1 = 1.
Then dot at position (2, q − 2)
after removing dot at position

(1, 1) is deletable.

G⋆
5 q − 5

If α1 + β1 = 1 and α2 + β−1 = 1,
then this implies also

α−1 + β2 = 1, thus dots at
positions (1, 1), (2,−1) and

(−1, 2) are deletable.

Taylor T4 q − 4
If α2 + α1 = 1. Then the dots at
positions (1, 2) and (2, 1) can be

removed simultaneously.

an empty column to the right of A. Any cyclic shift of the rows and columns s
and t times, respectively, and adding a dot at position (s, t) will result in a new
permutation matrix, which may be a Costas array.

J. K. Beard et al. in [9] provided two new heuristic methods to generate
Costas arrays, called "Inhom. Add 1" and "Inhom. Sub 1". We refer the
reader to [9] for more details on these constructions.

Definition 2.51 (Inhom. Add 1 [9]). Let α and β be two primitive elements of Fq,
where q is a prime power, and let γ be an element in Fq. Let c1 and c2 be elements of
the set {0, 1, . . . , q − 2}. Then we can construct a permutation matrix of size q − 1,
with aij = 1 if and only if for 0 ≤ i, j ≤ q − 2, αi+c1 + βj+c2 = γ and αi+c1 ̸= γ,
and if αi+c1 = γ, we add a one at position (i, j), where j is the corresponding integer
for which βj+c2 = γ. This permutation matrix may be a Costas array.

Example 2.52. Let 2 be the primitive element in F5. Consider γ = 2 and c1 =
c2 = 0, then we can construct a 4 × 4 matrix A by placing a dot at position (i, j),
for 0 ≤ i, j ≤ 3, if 2i + 2j = 2 and 2i ̸= 2. Then, we have a0,0 = a2,3 = a3,2 = 1,
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and since 21 = 2, we also place a dot at position (1, 1), a1,1 = 1. One can easily
verify that the corresponding permutation to matrix A is [1, 2, 4, 3], representing a
Costas array.

Definition 2.53 (Inhom. Sub 1 [9]). Let α and β be two primitive elements of Fq,
where q is a prime power, and let γ be an element in Fq. Let c1 and c2 be elements of
the set {0, 1, . . . , q − 2}. Then we can construct a permutation matrix of size q − 1,
with aij = 1 if and only if for 0 ≤ i, j ≤ q − 2, αi+c1 − βj+c2 = γ and αi+c1 ̸= γ,
and if αi+c1 = γ, we add a one at position (i, j), where j is the integer for which
βj+c2 = −γ mod q. This permutation matrix may be a Costas array of size q − 1.

The other heuristic constructions obtained by adding corner dots can be
found in the following table.

Constructions Variants Size Remarks

Welch W0 p Add a corner dot to
Wexp

1 (p, α, c).

Taylor T1 q − 1 Add a corner dot to G2.
T0 q Add two corner dots to G2.

TABLE 2.3: Heuristic Constructions obtained by adding corner
dots

2.7 Search methods for Costas arrays

As mentioned in the overview section, Costas arrays have been found
exhaustively up to size 29. It is worth mentioning that the total run-time
of the search for n = 29 on a single CPU required the equivalent of 366.55
years, while the real-time required was approximately 230 days due to the
high parallelization of the tasks [41]. In 2009, Drakakis et al. published a
paper in which they described the size of Costas property checking grows
exponentially with n. Thereby, the problem of checking the Costas property
is impossible to tackle through the exhaustive search when n becomes large
[7]. Databases to various sizes of Costas arrays have been available for
many years. James Beard provided a Database of all known Costas arrays
up size 1030, which is by far the most extensive database than any other
Databases. It is also uploaded to IEEE DataPort [10]. A user-friendly and
very powerful GUI extraction utility accompanies the Database. In this
thesis, we took advantage of this database on many occasions. Let us denote
the number of Costas arrays of size n by Cn. Table 2.4 illustrates all known
values of Cn for sizes 1 through 31 and some extractable information from the
Database. Specifically, the number of Costas arrays with diagonal symmetry
(there is a dot at position (i, j) if and only if there is a dot at position (j, i))
and G-symmetric property and the number of equivalence classes of each
size. In order to understand better the numbers in Table 2.4 , take size
10 as an example. We have 277 equivalence classes in which there are 14
inequivalent Costas arrays with diagonal symmetry, showing 277− 14 = 263
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equivalence classes contain eight elements and 14 equivalence classes contain
four elements. It follows then that we have 263 × 8 + 4 × 14 = 2160 Costas
arrays of size 10.

TABLE 2.4: Known Costas arrays enumeration for sizes 1
through 33

Cn is the number of Costas arrays of size n, the third column
shows the number of equivalence classes for each size n,
and the fourth and fifth columns illustrate the number of
inequivalent Costas arrays of size n with diagonal symmetry

and G-symmetric properties, respectively.

Size Cn
Equivalence

Classes
Diagonal

Symmetry G-symmetry

1 1 1 1 1
2 2 1 1 1
3 4 1 1 0
4 12 2 1 2
5 40 6 2 1
6 116 17 5 4
7 200 30 10 0
8 444 60 9 3
9 760 100 10 0

10 2160 227 14 24
11 4368 555 18 0
12 7852 990 17 44
13 12828 1616 25 4
14 17252 2168 23 31
15 19612 2467 31 0
16 21104 2648 20 77
17 18276 2294 19 0
18 15096 1892 10 29
19 10240 1238 6 0
20 6464 810 4 3
21 3536 446 8 0
22 2052 259 5 55
23 872 114 10 0
24 200 25 0 0
25 88 12 2 0
26 56 8 2 0
27 204 29 7 0
28 712 89 0 84
29 164 23 5 0
30 ≥664 ≥85 ≥4 ≥60
31 ≥8 ≥1 ≥0 ≥0

In table 2.4, we used the sign ≥ for Costas arrays of sizes 30 and 31 because
the enumeration of these sizes have not been completed. In order to answer
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the question do Costas arrays exist in all sizes?, we need to introduce a lower
bound for Cn for every n > 0, which naturally can be seen as a decision
problem. Drakakis showed that this decision problem lies in NP [35].
In 2014, Soltanalian et al. in [108] proposed a sparse formulation of the Costas
array search problem, by which they considered the Costas array search
problem as an optimization problem. Although their proposed optimization
problems are NP-hard, they believe that their formulation may result in
more effective control of the Costas array search problem than the brute-force
methods.
One can naturally think of the Costas arrays search problem as constraint
satisfaction problems (CSPs). CSPs are multi-variable combinatorial
problems that can be used when we formulate a problem using a set of
decision variables and a set of constraints between variables. The goal
is to find an assignment of values to the variables in such a way that
these values satisfy a set of constraints. David Vulakh et al. (2022) have
recently developed a search algorithm that reduces the time-to-first solution
of finding a Costas array of size 16 by a factor of over 300 [116]. They
proposed an Ant Colony Optimization (ACO) algorithm for combinatorial
CSPs, called m-Dimensional Relative Ant Colony Optimization (mDRACO),
concentrating on the Costas array search problem. There have been several
developed algorithms to reduce the time complexity of the Costas array
search problem, most of which show better performance in finding a solution
than the brute-force methods, but none of them could find an example of a
Costas array of size 32 so far [1, 4, 17, 20, 29, 30, 121].
It was always a challenging problem to predict the asymptotic behaviour
of Cn. The study of the asymptotic behaviour of Cn has been considered as
studying the density of Costas arrays, denoted by D(n), in Costas arrays’
literature [22]. The density is defined as

D(n) ≡ Cn

n!
.

Golomb and Taylor proposed the first conjecture about the asymptotic
behaviour of Costas arrays [54]. They conjectured that the density of Costas
arrays among permutation matrices tends to zero. In other words,

Cn

n!
→ 0 as n → ∞.

In 1989, Davies published a paper in which he proved

Cn

n!
≤ O(1)

n
.

This result can be found in [28]. Numerical evidence suggested a much
faster decay than davies’ bound [22], and Drakakis conjectured that the
density of Costas arrays decays exponentially [34]. This exciting and core
problem of Costas arrays is proved recently by Lutz Warnke, Bill Correll,
and Christopher N. Swanson in [118].
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2.8 Sporadic Costas arrays

As mentioned in the overview chapter, the vast majority of known Costas
arrays up to size 27 are sporadic (are currently unexplained). Little is
known about sporadic Costas arrays, and it is not clear whether they
occur accidentally in small sizes or if there is an undiscovered construction
technique for these arrays. Ken Taylor et al. provided Table 2.5 in [114]
for categorizing the Costas arrays database into three distinct categories,
introduced in subsection 2.5.

TABLE 2.5: Categorizing the equivalence classes of Costas
arrays database according to their origin

(Here the second and third columns show the number of
generated and emergent equivalence classes, respectively, and
the last column illustrates the number of sporadic Costas arrays

of size n.)

Size Equivalence
Classes Generated Emergent Sporadic

1 1 1 0 0
2 1 1 0 0
3 1 1 0 0
4 2 2 0 0
5 6 4 2 0
6 17 7 10 0
7 30 3 27 0
8 60 2 58 0
9 100 5 83 12

10 227 14 151 112
11 555 5 163 387
12 990 14 145 831
13 1616 1 76 1539
14 2168 5 27 2136
15 2467 15 10 2442
16 2648 34 11 2603
17 2294 8 18 2267
18 1892 27 5 1860
19 1238 0 2 1281
20 810 3 1 806
21 446 20 1 425
22 259 56 9 194
23 114 6 10 98
24 25 1 1 23
25 12 7 0 5
26 8 4 2 2
27 29 28 0 1
28 89 88 1 0
29 29 17 6 1
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As Table 2.5 indicates, the first sporadic Costas arrays occur at size 9,
and size 19 is the first size for which no generated arrays exist. It is
apparent from Table 2.5 that very few Costas arrays belong to the generated
category, showing the necessity of further work in analyzing the Costas
arrays’ properties in each category. After size 8, the first sizes for which
no sporadic Costas arrays exist are 28 and 29, and for size 27, only one
equivalence class of sporadic Costas arrays exists. J. Silverman et al. in [106]
developed a probabilistic estimation formula to predict the total number of
Costas arrays in each size (Cn), from which they predicted the peak in Cn
at size 16. Moreover, they observed that there is the possibility that for
n ≥ 30, the total number of Costas arrays for some of these sizes could be
zero. Therefore, there is also the possibility that sporadic Costas arrays cease
to exist from specific sizes onwards [34].
The more we understand the properties of sporadic Costas arrays, the more
explanation we can provide for the Costas arrays’ origin, which may lead
to the discovery of a new generation technique. We will follow this point
of view in the next chapter, in which we introduce a new transformation by
which we can explain the origin of some of these sporadic Costas arrays.
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A new transformation for Costas
arrays

Numerous studies have attempted to find structural properties on Costas
arrays. Structural properties of Costas arrays will provide a better
understanding of Costas arrays and could lead to finding new construction
methods [23, 24, 58, 69]. Another possible approach to achieve a deeper
understanding of the Costas arrays properties would be finding matrices
close to being Costas arrays and then investigating the properties that
cause the violation of the Costas property. There are several ways to
define when a given permutation matrix is close to being a Costas array.
Several authors have introduced definitions derived from relaxing the Costas
arrays definition. These types of relaxation can be used to construct two-
dimensional synchronization patterns with good autocorrelation properties.
Section 2.3 explained that a Costas array of size n has a 3-valued aperiodic
autocorrelation function, namely with valued 0, 1, and n (at (0, 0) shift).
In 1990, Tuvi Etzion in [47] introduced the concept of binary permutation
matrices of size n, which has a 4-valued autocorrelation function (with
values 0, 1, 2, and n). An n × n binary permutation matrix has a 4-valued
aperiodic autocorrelation function if and only if each pattern of three ones
occurs at most once in the given matrix. In his work, he proposed several
combinatorial designs derived from Costas arrays with the property that the
aperiodic autocorrelation function has four values. In another attempt to
relax the definition of Costas arrays, in 2003, Oscar Moreno published a paper
introducing the concept of generalized Costas arrays (permutation matrices
with maximum aperiodic auto- and crosscorrelation function values of 2),
which their constructions and properties are of some interest [80].
This chapter’s primary purpose is to introduce a new transformation
with the property that, after applying this transformation on the existing
Costas arrays, we always obtain permutation matrices with the maximum
aperiodic autocorrelation functions value of at most two at none-zero shifts.
Surprisingly, this transformation leaves the Costas property invariant for
most of the generated Costas arrays, some of the emergent, and some of the
sporadic ones. There are examples of generated and emergent Costas arrays
with the property that the transformed matrices belong to the sporadic
category, meaning that this transformation explains how some of these
sporadic Costas arrays are obtained. Consequently, we can reduce the
total number of sporadic equivalence classes in Table 2.5 and consider
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them emergent Costas arrays. Before going through the details of our new
transformation, we will examine the maximum number of common points
between two given Costas arrays, from which we can decide if there would
be a transformation that links a given Costas array into another one, how
many points need to be changed using this transformation.
It is required to explain how we use the Database of all known Costas arrays
in this chapter. The database root folder contains the subfolders \Searches
and \generated. For convenience, we consider Costas arrays in two classes.
The \generated subfolder contains all generated and emergent Costas
arrays, and we mean by none-generated the Costas arrays in the \searches
subfolder, which are not in the \generated subfolder. We performed all our
computations through this chapter on both classes.

3.1 Transforming the existing Costas arrays

As we mentioned in the introductory chapter, we think of a permutation
as a rearrangement of the elements of the set {1, 2, . . . , n} into a one-to-one
correspondence with {1, 2, . . . , n} itself. To construct a Costas array from
a given one, one may ask, what is the smallest set of values of a given
Costas permutation that need to be rearranged to obtain another Costas
permutation? This question also can be asked differently. What is the size
of the set of common points of two given Costas permutations? Answering
the second question will reveal the minimum set of dots that need to be
rearranged to transform a given Costas permutation into another one. Let
us provide the precise definition of the common points between any two
permutations of size n.

Definition 3.1 (Common points). Let σ : [n] −→ [n] and γ : [n] −→ [n] be two
permutations of size n. Let us denote the number of common points between σ and
γ by CP(σ, γ), which is given by

CP(σ, γ) = #{i | σ(i) = γ(i)},

where #A denotes the cardinality of a set A.

It is also informative if we know the distributions of the number of common
points between any two Costas arrays of size n.

Definition 3.2 (The distribution of the number of common points). Let us
denote a subset of all permutation matrices of size n with t elements by Xn = {σi :
σi : [n] −→ [n] is a bijection and 0 ≤ i ≤ t}. We define for 0 ≤ k ≤ n − 1,

DXn(k) = #{(σi, σj) | σi, σj ∈ Xn, 0 ≤ i < j ≤ t, and CP(σi, σj) = k}.

That is, DXn(k) is the number of distinct pairs of elements in Xn that have exactly k
common points. Note that since CP(σi, σj) = CP(σj, σi), we choose i < j in order
to avoid over-counting.The set {(k, DXn(k) : 0 ≤ k ≤ n − 1} is the distribution set
of the number of common points.
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It is worth noting that the number of common points between two given
Costas arrays is equal to the value of their crosscorrelation function at (0, 0)
shift (origin). Drakakis in [36] explained why there is a particular interest
in the value of crosscorrelation at the origin. Firstly, this value is the only
practical value in a multiuser system where users’ clocks are synchronized.
Secondly, it is often easier to compute than a given non-zero shift. This
section will discuss the crosscorrelation properties of Costas arrays at the
origin. Moreover, we provide the most critical observations regarding the
crosscorrelation value at the origin (the number of common points between
any two Costas arrays).
Let us denote the set of all Costas arrays of size n by Cn. Regarding Definition
3.2, the distribution set of the number of common points of any two elements
of Cn is {(k, DCn(k)) : 0 ≤ k ≤ n − 1}, and let us denote this set by DCn . We
did a computer search to compute the values mentioned above using the
Database of all known Costas arrays from size 2 through 100. We picked
any two Costas arrays of a given size n and calculated the number of points
they had in common. The more dots any two Costas arrays have in common,
the fewer rearrangement we need to apply to transform a Costas array into
another one. Therefore, we found the maximum value among the number of
common dots of any two given Costas arrays of size n, showing at least how
many dots need to rearrange to transform a Costas array into another one.
Table 3.1 collected all the values mentioned above.

TABLE 3.1: The distributions of the number of common points:
the second column shows the set of ordered pairs {(k, DCn(k))},
and the third column illustrates the maximum value of the

distribution set, denoted by MDCn .

size {(k, DCn(k))} MDCn

1
2 {(0, 1)} 0
3 {(0, 2), (1, 4)} 1
4 {(0, 34), (1, 16), (2, 16)} 2
5 {(0, 274), (1, 336), (2, 114), (3, 56)} 3

6 {(0, 2508), (1, 2360), (2, 1346), (3, 380),
(4, 76)} 4

7 {(0, 6960), (1, 7434), (2, 3706), (3, 1448),
(4, 280), (5, 72)} 5

8 {(0, 37228), (1, 34508), (2, 18634), (3, 5832),
(4, 1644), (5, 348), (6, 152)} 6

9 {(0, 103298), (1, 106336), (2, 53754), (3, 19040),
(4, 4584), (5, 1136), (6, 192), (7, 80)} 7

10
{(0, 847198), (1, 841152), (2, 444490),
(3, 147832), (4, 39612), (5, 8532),

(6, 2364), (7, 364), (8, 176)}
8

11
{(0, 3388642), (1, 3509484), (2, 1811978),
(3, 619920), (4, 162156), (5, 36220),
(6, 6780), (7, 1920), (8, 288), (9, 140)}

9
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size {(k, DCn(k))} MDCn

12
{(0, 11142006), (1, 11279432), (2, 5794372),
(3, 1959320), (4, 512220), (5, 107680), (6, 22152)

, (7, 3928), (8, 1636), (9, 144), (10, 136)}
10

13

{(0, 29478750), (1, 30215332), (2, 15544376),
(3, 5303360), (4, 1371972), (5, 291260),
(6, 54624), (7, 9816), (8, 1752), (9, 932),

(10, 116), (11, 88)}

11

14

{(0, 53281396), (1, 54584180), (2, 28152398),
(3, 9657464), (4, 2491284), (5, 522488),
(6, 96692), (7, 16944), (8, 3108), (9, 660),

(10, 360), (11, 32), (12, 120)}

12

15

{(0, 68683920), (1, 70601982), (2, 36441728),
(3, 12502000), (4, 3241664), (5, 685844),
(6, 122844), (7, 20924), (8, 3484), (9, 780),

(10, 140), (11, 56), (12, 24), (13, 76)}

13

16

{(0, 79791926), (1, 81701472), (2, 42079462),
(3, 14417132), (4, 3735092), (5, 784540),
(6, 140688), (7, 23248), (8, 4204), (9, 696),
(10, 276), (11, 60), (12, 24), (13, 12), (14, 24)}

14

17

{(0, 59541992), (1, 61312788), (2, 31698134),
(3, 10904332), (4, 2820384), (5, 592200),
(6, 106484), (7, 17268), (8, 2732), (9, 500),
(10, 56), (11, 28), (12, 4), (13, 16), (14, 16),

(15, 16)}

15

18

{(0, 40454286), (1, 41861516), (2, 21681450),
(3, 7494292), (4, 1947684), (5, 409116),
(6, 74708), (7, 11908), (8, 1756), (9, 272),

(10, 44), (11, 20), (12, 8)}

12

19
{(0, 18556592), (1, 19244758), (2, 10013594),
(3, 3468588), (4, 906476), (5, 192392), (6, 34472),

(7, 5732), (8, 940), (9, 120), (10, 16)}
10

20
{(0, 7384300), (1, 7661228), (2, 3992648),
(3, 1390936), (4, 365328), (5, 77480),
(6, 13616), (7, 2492), (8, 356), (9, 32)}

9

21
{(0, 2196898), (1, 2298068), (2, 1199254),

(3, 418228), (4, 110012), (5, 22764), (6, 3968),
(7, 572), (8, 108), (10, 4), (11, 4)}

11

22
{(0, 766072), (1, 751188), (2, 411002),

(3, 134120), (4, 33780), (5, 6724), (6, 1156),
(7, 252), (8, 12), (9, 4), (10, 16)}

10

23
{(0, 134848), (1, 139604), (2, 72360),
(3, 24592), (4, 6296), (5, 1540), (6, 372),

(7, 100), (8, 8), (11, 32), (21, 4)}
21

24 {(0, 7288), (1, 6976), (2, 3960), (3, 1256),
(4, 364), (5, 48), (6, 4), (7, 4)} 7

25 {(0, 1032), (1, 1876), (2, 488), (3, 184), (4, 248)} 4
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size {(k, DCn(k))} MDCn

26 {(0, 624), (1, 492), (2, 304), (3, 100), (4, 20)} 4

27 {(0, 7784), (1, 7084), (2, 2954), (3, 2208),
(4, 280), (5, 156), (6, 72), (13, 168)} 13

28
{(0, 128744), (1, 50984), (2, 49532), (3, 8712),
(4, 13920), (5, 452), (6, 72), (7, 20), (8, 8),

(14, 672)}
14

29 {(0, 3704), (1, 4176), (2, 2706), (3, 1804),
(4, 476), (5, 384), (6, 24), (7, 8), (9, 84)} 9

30 {(0, 110592), (1, 52968), (2, 37220), (3, 8972),
(4, 2868), (5, 3116), (6, 3656), (7, 4), (10, 720)} 10

31 {(0, 12), (1, 8), (2, 4), (3, 4)} 3
32
33
34 {(0, 96), (1, 32), (2, 50), (3, 4), (4, 8)} 4

35
{(0, 4568), (1, 6056), (2, 4116), (3, 1668),
(4, 632), (5, 432), (7, 288), (8, 72), (11, 336),

(17, 168)}
17

36
{(0, 216906), (1, 75992), (2, 61096), (3, 12280),

(4, 14648), (5, 656), (6, 5236), (7, 16),
(12, 2592), (18, 864)}

18

37 {(0, 44), (1, 128), (2, 68), (3, 24), (4, 12)} 4
38 {(0, 84), (1, 100), (2, 44), (3, 28), (4, 4), (5, 16)} 5

39
{(0, 17000), (1, 20388), (2, 6112), (3, 3636),
(4, 832), (5, 384), (6, 768), (7, 928), (9, 704),

(19, 288)}
19

40
{(0, 454766), (1, 154276), (2, 155220), (3, 26216),

(4, 25876), (5, 1304), (6, 260), (7, 64),
(8, 9600), (10, 5124), (20, 1280)}

20

41 {(0, 4396), (1, 4560), (2, 4444), (3, 2164),
(4, 1448), (5, 1156), (13, 168)} 13

42
{(0, 280616), (1, 100040), (2, 102428), (3, 16340),

(4, 4144), (5, 848), (6, 17780), (7, 40),
(8, 20), (9, 8), (14, 1512)}

14

43

44 {(0, 396), (1, 468), (2, 152), (3, 76), (4, 8), (5, 24),
(6, 4)} 6

45 {(0, 61294), (1, 62488), (2, 28088), (3, 9524),
(4, 356), (5, 8), (6, 1456), (7, 92)} 7

46
{(0, 926632), (1, 391408), (2, 684030),
(3, 65456), (4, 16380), (5, 3328), (6, 596),

(7, 88), (8, 16), (9, 8), (10, 4)}
10

47
{(0, 312), (1, 2952), (2, 1022), (3, 904), (4, 768),
(5, 1280), (6, 256), (7, 512), (8, 64), (11, 320),

(15, 128), (23, 128)}
23

48
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size {(k, DCn(k))} MDCn

49

50 {(0, 616), (1, 372), (2, 182), (3, 96), (4, 24),
(5, 36)} 5

51
{(0, 78024), (1, 89380), (2, 38360), (3, 14804),
(4, 2040), (5, 684), (6, 1252), (12, 288),

(25, 624)}
25

52
{(0, 1599134), (1, 572884), (2, 642816),
(3, 96684), (4, 203408), (5, 5272), (6, 836),
(7, 156), (8, 48), (9, 12), (10, 4), (26, 2496)}

26

53 {(1, 16), (2, 4), (3, 8)} 3
54
55 {(0, 2), (1, 4)} 1

56 {(0, 846), (1, 820), (2, 432), (3, 100), (4, 52),
(5, 4), (11, 24)} 11

57 {(0, 162300), (1, 158196), (2, 65456),
(3, 27932), (4, 5532), (5, 2520), (6, 20), (12, 784)} 12

58
{(0, 2366500), (1, 1007164), (2, 1772310),
(3, 166352), (4, 41752), (5, 8544), (6, 1388),

(7, 376), (8, 48), (9, 8), (10, 8)}
10

59
{(0, 10000), (1, 13524), (2, 10988), (3, 9820),
(4, 2316), (5, 1252), (7, 1024), (8, 260), (9, 288),

(11, 864), (14, 128), (19, 288), (29, 288)}
29

60

{(0, 1084490), (1, 348472), (2, 260276),
(3, 56416), (4, 58300), (5, 3040), (6, 29300),
(7, 60), (8, 16), (9, 8), (10, 5760), (12, 14400),

(13, 8), (20, 2880), (30, 1920)}

30

61 {(1, 34), (2, 12), (3, 8), (7, 4), (14, 8)} 14

62 {(0, 7452), (2, 7452), (3, 1728), (5, 1944),
(6, 2268), (8, 1728), (15, 216), (20, 432)} 20

63

64 {(0, 334), (1, 348), (2, 168), (3, 64), (4, 16),
(5, 8), (6, 4), (7, 4)} 7

65
{(0, 27980), (1, 28236), (2, 26896), (3, 19380),

(4, 4204), (5, 6212), (6, 408), (7, 404),
(8, 800), (21, 440)}

21

66
{(0, 1853676), (1, 643092), (2, 713632),

(3, 105648), (4, 26160), (5, 5424), (6, 131752),
(7, 104), (8, 28), (9, 4), (22, 3960)}

22

67 {(1, 4), (2, 2)} 2
68 {(0, 204), (1, 172), (2, 88), (3, 28), (5, 4)} 5

69
{(0, 90456), (1, 81520), (2, 33456),

(3, 11988), (4, 1308), (5, 296), (6, 1440),
(9, 3120), (13, 1872)}

13



3.1. Transforming the existing Costas arrays 47

size {(k, DCn(k))} MDCn

70
{(0, 2931864), (1, 1079716), (2, 1421108),
(3, 178104), (4, 45628), (5, 8896), (6, 1480),

(7, 276), (8, 48), (9, 12), (10, 58804), (14, 25200)}
14

71

{(0, 46956), (1, 45644), (2, 58008), (3, 26928),
(4, 16504), (5, 13360), (6, 2888), (7, 2448),
(8, 2016), (9, 3456), (10, 1152), (11, 1536),
(14, 1152), (17, 1536), (23, 1248), (35, 624)}

35

72

{(0, 3443916), (1, 1092004), (2, 920760),
(3, 184208), (4, 139660), (5, 9672), (6, 84720),

(7, 192), (8, 46696), (9, 20), (10, 8),
(12, 20736), (18, 13824), (24, 10368), (36, 3456)}

36

73
74
75 {(0, 2), (1, 4)} 1
76 {(0, 88), (1, 100), (2, 68), (3, 12), (5, 4), (8, 4)} 8

77
{(0, 44712), (1, 69032), (2, 47976), (3, 44024),
(4, 8280), (5, 9268), (6, 96), (7, 4), (8, 864),

(9, 576), (25, 624)}
25

78
{(0, 3731488), (1, 1306564), (2, 1455990),
(3, 217136), (4, 53912), (5, 11276),
(6, 269604), (7, 232), (8, 72), (26, 5616)}

26

79
{(1, 16512), (3, 6656), (5, 2560), (7, 3200),
(9, 1408), (11, 512), (15, 896), (19, 640),

(39, 256)}
39

80 {(0, 1402), (1, 1268), (2, 608), (3, 124), (4, 60),
(5, 20), (6, 4)} 6

81 {(0, 553160), (1, 634712), (2, 232440),
(3, 102488), (4, 16112), (5, 2604), (6, 6404)} 6

82
{(0, 9469656), (1, 3956284), (2, 7222472),

(3, 661016), (4, 164608), (5, 32944), (6, 5520),
(7, 892), (8, 108), (9, 16), (10, 4)}

10

83
84
85

86 {(0, 1004), (1, 756), (2, 464), (3, 208),
(4, 76), (5, 32), (6, 12), (8, 4)} 8

87
{(0, 415780), (1, 593628), (2, 327372),

(3, 141208), (4, 24756), (5, 11896), (6, 6720),
(7, 16720), (9, 4000), (21, 4160), (43, 1680)}

43

88

{(0, 13078044), (1, 4562004), (2, 5058788),
(3, 759756), (4, 889228), (5, 37940), (6, 6644),
(7, 1024), (8, 348616), (9, 24), (10, 8), (11, 4),

(22, 28160), (44, 7040)}

44

89
90
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size {(k, DCn(k))} MDCn

91
92
93

94 {(0, 404), (1, 300), (2, 280), (3, 100), (4, 36),
(13, 8)} 13

95

{(0, 134588), (1, 154096), (2, 148252),
(3, 124060), (4, 41192), (5, 23600), (6, 8324),
(7, 12416), (9, 4096), (11, 4352), (13, 1024),
(14, 1024), (15, 1088), (23, 2688), (31, 1088),

(47, 1088)}

47

96

{(0, 10803132), (1, 3478556), (2, 2914324),
(3, 578864), (4, 438592), (5, 28256), (6, 398352),

(7, 700), (8, 73840), (9, 8), (12, 98304),
(16, 18432), (24, 24576), (32, 9216), (48, 6144)}

48

97

98 {(0, 900), (1, 732), (2, 410), (3, 172),
(4, 36), (5, 16), (6, 4), (11, 8)} 11

99

{(0, 543828), (1, 582684), (2, 244352),
(3, 112500), (4, 32884), (5, 5972), (6, 1608),
(7, 172), (9, 9920), (10, 3200), (12, 1600),

(19, 6720), (24, 800), (49, 1680)}

49

100

{(0, 17216724), (1, 5943400), (2, 5976400),
(3, 992684), (4, 1749668), (5, 50832), (6, 9004),
(7, 1268), (8, 236), (9, 44), (10, 160008),

(19, 8), (20, 80000), (50, 8000)}

50

Table 3.1 can provide a comprehensive review of the crosscorrelation
properties of Costas arrays at origin. Several authors have studied
the crosscorrelation properties of Costas arrays and their importance in
applications where low aperiodic crosscorrelation is essential. Although
most parts of Table 3.1 can be explained using results in the references
mentioned earlier, several questions remain unanswered at present. Chapter
1 reviewed most of these studies, and we will provide more details
in this section. In 1990, Titlebaum et al. in [115] studied the
crosscorrelation of Welch Costas arrays, showing that the maximum value
of the crosscorrelation function of any two Welch Costas arrays of size p − 1
is at most p−1

2 , and they also showed that if the prime p is of the form 4k + 1
for some integer k, the maximum value can be obtained by a specific choice of
primitive elements. Drakakis et al. in [39] also discussed the maximum value
of the crosscorrelation of Welch Costas arrays at origin more thoroughly,
providing proof and explanation also for the prime number p of the form
4k − 1 for some integer k. We refer the reader to [39] for the proof of the
following theorem.

Theorem 3.3 ([39]). Let α1 and α2 be two distinct primitive elements of the finite
field Fp, where p is a prime and let Wexp

1 (p, α1, c) and Wexp
1 (p, α2, c), where

c ∈ {0, 1, . . . , p − 2}, be two exponential Welch Costas arrays with corresponding
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matrices A and B, respectively. Let w be the smallest prime divisor of p−1
2 . Then, for

any vertical shift 2 − p ≤ r ≤ p − 2 we obtain

max Ca
A,B(r, 0) =

p − 1
w

.

Let us note that the above theorem discusses more than crosscorrelation
at the origin while also considering possible shifts in one direction. The
following theorem indicates which choice of primitive elements leads to
the maximum value of the common points between any two Welch Costas
arrays. We will provide more straightforward proof for the following
theorem than the proof in [115].

Theorem 3.4 ([115]). Given any prime p, suppose that p is of the form 4k + 1 for
some integer k. Then there are ϕ(p−1)

2 pairs of distinct exponential Welch Costas
arrays with exactly p−1

2 common points, where ϕ denotes the Euler’s Phi function.

Proof. Since p ≡ 1 mod 4, then α is a primitive element of Fp if and only if
−α is [21]. Suppose that Wexp

1 (p, α, 0) is an exponential Costas array as in
Theorem 2.34. Since −α is also a primitive element, then we can construct
Wexp

1 (p,−α, 0) exponential Costas array. We claim that Wexp
1 (p, α, 0) and

Wexp
1 (p,−α, 0) exponential Costas arrays have exactly p−1

2 common points.
The number of common points can be obtained by finding the number of
solutions of the equation

αi mod p = (−α)i mod p.

Since −1 = α
p−1

2 , then we obtain

α
i
(

p−1
2

)
≡ 1 mod p. (3.1)

It is immediate that Equation 3.1 for any even integer i has a solution. Since
0 ≤ i ≤ p − 2, then there are p−1

2 even integers that provide a solution for

Equation 3.1. It is easy to check that there are ϕ(p−1)
2 such pairs of exponential

Welch Costas arrays.

It is a simple matter to show that any other choice of primitive elements in
Theorem 3.4 will lead to the smaller number of common points than p−1

2 . We
follow [39] in proving the following theorem.

Theorem 3.5. Let α1 and α2 be two distinct primitive elements of the finite field
Fp, where p is a prime and let Wexp

1 (p, α1, c1) and Wexp
1 (p, α2, c2), where c1, c2 ∈

{0, 1, . . . , p − 2}, be two exponential Welch Costas arrays as in Theorem 2.34. Then
the maximum number of common points can be attained if and only if p ≡ 1 mod 4

and α2 = −α1 = α
p−1

2 +1
1 .
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Proof. Clearly, to compute the number of common points, we need to solve
the following equation

α1
i+c1 mod p = α2

i+c2 mod p.

Since α1 and α2 are primitive elements, then there exists an integer k ∈
{2, . . . , p − 2} such that gcd(k, p − 1) = 1 and α2 = αk

1, then by taking
logarithm base α1 from both sides of the above equation, we have

(i + c1) ≡ k(i + c2) mod p − 1 ⇔ (k − 1)i ≡ (c1 − kc2) mod p − 1.

It can be seen that the above congruence has a solution if and only if
d := gcd(k − 1, p − 1) divides (c1 − kc2) [101]. If d|(c1 − kc2), it has exactly
d incongruent solutions modulo p − 1, and no solution otherwise. Since d
is a divisor of p − 1, then the maximum possible value for d is p−1

2 , which

attains if and only if gcd
(

2(k−1)
p−1 , 2

)
= 1 if and only if 2(k−1)

p−1 = 1 if and

only if k = p−1
2 + 1, and gcd(k, p − 1) = 1 simultaneously. Since 1 =

gcd
(

p−1
2 + 1, p − 1

)
= gcd

(
p−1

2 + 1, 2
)

, then we obtain p−1
2 + 1 ≡ 1 mod 2,

showing p ≡ 1 mod 4, which completes the proof.

Since all known Costas arrays of size n ≥ 28 are either generated or
emergent, it is interesting to investigate whether one can explain the
maximum value of the Costas arrays’ common points for these sizes.
Theorem 3.3 justifies some of the maximum values of the number of common
points in Table 3.1, where the size of the Costas arrays is p − 1 for a prime
p. For instance, Table 3.1 illustrates that for n = 36, the maximum number
of common points is 18. Since 37 is a prime of form 4k + 1 for k = 9, the
maximum number of common points for Welch Costas arrays is equal to 18,
which is the maximum number of common points between any two known
Costas arrays of size 36. Using the database of all known Costas arrays, one
can check that all Costas arrays of size 36 have been constructed using Welch,
G⋆

5 (Table 2.2), T1 (Table 2.3), and Inhom. Add 1 (Definition 2.51).
Having discussed the number of common points of Welch Costas arrays, we
will now discuss the number of common points of Lempel-Golomb Costas
arrays. The crosscorrelation of Lempel-Golomb Costas arrays at origin (the
number of common points) is substantially more complicated than that of
Welch Costas arrays. Nevertheless, several attempts have been made to
explain Lempel-Golomb arrays’ crosscorrelation properties, but a theoretical
justification is still an open problem. So far, what we know theoretically
about the crosscorrelation of Lempel-Golomb Costas arrays is primarily
based on the choice of primitive elements. Drakakis et al. in [39] stated
the following theorem that shows a surprising link between the Welch and
Lempel-Golomb arrays.

Theorem 3.6 ([39]). Let A and B be two Lempel-Golomb arrays generated in the
field Fq, where q is a prime power, as in Theorem 2.46. Let A and B be G2 arrays
generated by some primitive elements α and β, and αr and β, respectively, where
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gcd(r, q − 1) = 1, r > 1. Then

max Ca
A,B(0, 0) =

q − 1
w

− 1,

where w is the smallest prime such that q ≡ 1 mod (2w) if q is odd, or that q ≡
1 mod (w) if q is even.

The above theorem also helps to explain the maximum number of common
points between any two known Costas arrays of sizes q − 2 for a prime
powers q in Table 3.1. For example, for q = 97, we can construct Lempel-
Golomb Costas arrays of size n = 95. Theorem 3.6 shows that the maximum
number of common points between two Lempel-Golomb Costas arrays
generated by a specific choice of primitive elements is 47 for q = 97, which is
also the maximum value of the number of common points between any two
known Costas arrays of size 95.
Our study of the number of common points in Table 3.6 revealed a curious
phenomenon related to G3 Lempel-Golomb arrays, as in Table 2.2. More
precisely, for sizes n = q − 3, where q is a prime power, in Table 3.6, one
can verify that the maximum number of common points is much smaller
than those of size n = q − 2. We went through the database of all known
Costas arrays to check how these Costas arrays of size n = q − 3 have been
constructed. We observed that all these arrays are either G3 or Wexp

3 (p, α)
Costas arrays, as in Theorem 2.39. Therefore, we realized that perhaps
a specific subfamily of Lempel-Golomb arrays corresponds to a relatively
small number of common points, namely the subfamily of Lempel-Golomb
Costas arrays generated in Fq using primitive elements α and β such that
α + β = 1 in Fq. Let us denote by G′

2 the set of Lempel-Golomb Costas arrays
constructed by primitive elements α and β with the property that α + β = 1.
We computed the number of common points of this subfamily of Lempel-
Golomb Costas arrays for prime powers 8 ≤ q ≤ 97, for which this subfamily
contains at least two elements, and the result is shown in the following table.

TABLE 3.2: The distributions of the number of common
points of G2 and G′

2: the second and forth columns show the
distribution sets of common points of G′

2 and G2, respectively,
and the third and fifth columns illustrate the maximum value
of these, distribution sets, denoted by MDG′

2
and MDG2 ,

respectively.

prime {(k, DG′
2
(k))} MDG′

2
{(k, DG2(k))} MDG2

8 {(4, 1)} 4 {(0, 54), (3, 12)} 3

17 {(1, 2), (2, 2), (3, 2)} 3
{(0, 256), (1, 1344),
(2, 128), (3, 224),

(7, 64)}
7

23 {(1, 7), (2, 7), (6, 1)} 6 {(0, 1750), (1, 2200),
(2, 900), (6, 100)} 6

27 {(4, 1)} 4 {(1, 936), (4, 192)} 4
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prime {(k, DG′
2
(k))} MDG′

2
{(k, DG2(k))} MDG2

29 {(2, 3), (3, 7)} 3
{(0, 4608), (1, 3024),
(2, 1296), (3, 1152),
(6, 72), (13, 144)}

13

31 {(3, 1)} 3
{(0, 320), (1, 448),
(2, 256), (3, 704),
(5, 224), (9, 64)}

9

32 {(5, 15)} 5 {(0, 13410), (5, 2700)} 5

37 {(1, 2), (3, 1))} 3

{(0, 1872), (1, 2592),
(2, 3024), (3, 1152),
(4, 576), (5, 288),
(7, 288), (8, 72),
(11, 288), (17, 144)}

17

41 {(1, 9), (4, 2), (6, 4)} 6

{(0, 10496), (1, 13056),
(2, 3840), (3, 2048),
(4, 512), (5, 256),
(6, 768), (7, 768),
(9, 640), (19, 256)}

19

43 {(5, 1)} 5

{(0, 1584), (1, 1584),
(2, 3024), (3, 1728),
(4, 1296), (5, 936),

(13, 144)}

13

47 {(1, 16), (2, 26),
(3, 18), (6, 6)} 6

{(0, 44770), (1, 44044),
(2, 20328), (3, 6292),

(6, 1452)}
6

53 {(1, 20), (2, 15),
(3, 10), (4, 6), (6, 4)} 6

{(0, 56448), (1, 67392),
(2, 28224), (3, 9792),
(4, 1728), (6, 1152),
(12, 288), (25, 576)}

25

59 {(1, 10), (2, 34), (3, 22),
(4, 2), (5, 4), (12, 6)} 12

{(0, 119560),
(1, 116032), (2, 47040),
(3, 18816), (4, 3136),
(5, 1568), (12, 784)}

12

61
{(1, 8), (2, 8), (3, 13),
(4, 2), (5, 2), (6, 1),

(7, 1), (8, 1)}
8

{(0, 4864), (1, 6400),
(2, 7936), (3, 7680),
(4, 2048), (5, 768),
(7, 1024), (8, 256),
(9, 256), (11, 768),
(14, 128), (19, 256),

(29, 256)}

29

64 {(8, 1), (15, 2)} 15

{(0, 7452), (2, 7452),
(3, 1728), (5, 1944),
(6, 2268), (8, 1728),
(15, 216), (20, 432)}

20



3.1. Transforming the existing Costas arrays 53

prime {(k, DG′
2
(k))} MDG′

2
{(k, DG2(k))} MDG2

67
{(1, 8), (2, 8), (3, 13),
(4, 2), (5, 2), (6, 1),

(7, 1), (8, 1)}
8

{(0, 16400), (1, 14800),
(2, 20600), (3, 16800),
(4, 3600), (5, 5600),
(6, 400), (7, 400),
(8, 800), (21, 400)}

21

71 {(1, 19), (2, 4),
(3, 4), (6, 1)} 6

{(0, 71424), (1, 57024),
(2, 23040), (3, 7488),
(4, 576), (6, 1440),
(9, 2880), (13, 1728)}

13

73
{(1, 6), (2, 2), (3, 10),
(4, 6), (8, 1), (10, 2),

(11, 1)}
11

{(0, 27648), (1, 23040),
(2, 46368), (3, 22464),
(35, 576), (5, 12960),
(4, 15552), (7, 2304),
(6, 2880), (9, 3456),
(10, 1152), (11, 1440),
(8, 2016), (14, 1152),
(17, 1440), (23, 1152)}

23

79 {(3, 11), (4, 3), (9, 1)} 9

{(0, 23616), (1, 44928),
(2, 39168), (3, 39744),
(4, 7488), (5, 8640),
(8, 864), (9, 576),

(25, 576)}

25

81 {(9, 1), (7, 2)} 7

{(1, 16512), (3, 6656),
(5, 2560)(7, 3200),
(39, 256), (9, 1408),
(11, 512), (15, 896),

(19, 640)}

19

83 {(1, 60), (2, 75), (3, 31),
(4, 4), (5, 1)} 5

{(0, 460000),
(1, 529600), (2, 185600)
, (3, 83200), (4, 12800),
(5, 1600), (6, 6400)}

6

89
{(1, 29), (2, 54), (3, 40),
(4, 12), (5, 8), (6, 6),

(7, 3), (9, 1)}
9

{(0, 324800), (1, 488000)
, (2, 278400), (3, 124000),
(4, 20800), (5, 11200),
(6, 6400), (7, 16000),
(9, 4000), (43, 1600),

(21, 4000)}

21

97 {(1, 12), (2, 12), (3, 19),
(4, 14), (5, 7), (14, 2)} 14

{(0, 79872), (1, 102400)
, (2, 126976), (3, 115712)
, (4, 39936), (5, 22528)
, (6, 8192), (7, 12288),
(9, 4096), (11, 4096),
(13, 1024), (14, 1024),
(15, 1024), (47, 1024),
(23, 2560), (31, 1024)}

31
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Table 3.2 reveals interesting observations regarding the number of common
points of any two elements of G′

2.

• Since α + β = 1, there is a dot at the top left corner of any array in G′
2.

Therefore, any two elements of G′
2 have at least one point in common.

• As one can verify in Table 3.2, for primes p with the property that p−1
2

is also a prime (these primes are known as safe primes), the number of
common points between G′

2 arrays and G2 arrays are the same or differ
by 1. These values are 23, 47, 59 and 83 in this Table. For the other

values, one can check that MDG′
2
≤ MDG2−1

2 .

• For prime powers q in this table, where 8 < q ≤ 81, it can be seen that
MDG′

2
≤ MDG2 .

As we mentioned earlier, it is interesting to find subfamilies of Costas arrays
with few common points. This attitude may lead to finding subfamilies of
Costas arrays with low crosscorrelation. We will follow this point of view in
the last chapter of this thesis.
Since there is no theoretical proof for the crosscorrelation of any two Lempel-
Golomb Costas arrays in general, having proof even for exceptional cases
may also be fruitful, leading to a better understanding of their behaviour.
With this in mind, we state the following theorem that discusses exceptional
pairs of Lempel-Golomb Costas arrays containing at most one point in
common.

Theorem 3.7. Let A and B be two Lempel-Golomb arrays generated in the field Fq,
where q is a prime power, as in Theorem 2.46. Let A and B be G2 arrays generated
by some primitive elements α1 and β1, and α2 and β2, respectively, where α1α2 = 1
and β1 + β2 = 0 in Fq. Then the number of common points of A and B is at most
one.

Proof. Let A = [logα1
(1 − β

j
1)] be a G2 array generated by α1 and β1, and let

B = [logα2
(1− β

j
2)] be a G2 array generated by α2 and β2, where 1 ≤ j ≤ q− 2.

Thus, the number of common points of A and B can be obtained by solving
the following equation for 1 ≤ j ≤ q − 2

logα1
(1 − β

j
1) = logα2

(1 − β
j
2). (3.2)

Since α1α2 = 1 and β1 + β2 = 0 in Fq, it follows that

logα1
(1 − β

j
1) = logα−1

1
(1 − (−β1)

j). (3.3)

Equivalently,
(1 − β

j
1)

−1 = (1 − (−β1)
j) in Fq. (3.4)

Therefore, the proof falls naturally into two cases.
Case 1. If j is odd: in this case, by multiplying both sides of Equation 3.4 by
(1 − β

j
1), we obtain β

2j
1 = 0 in Fq, which has no solution because 1 ≤ j ≤
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Costas arrays of size 23 Allowable
swaps

[23, 5, 12, 17, 11, 3, 20, 10, 13, 2, 15, 21, 19, 16, 9, 4, 6, 7, 22, 8,
18, 14, 1] 1 and 23

[23, 10, 6, 16, 2, 17, 18, 20, 15, 8, 5, 3, 9, 22, 11, 14, 4, 21, 13, 7,
12, 19, 1] 1 and 23

[1, 14, 18, 8, 22, 7, 6, 4, 9, 16, 19, 21, 15, 2, 13, 10, 20, 3, 11, 17,
12, 5, 23] 1 and 23

[1, 19, 12, 7, 13, 21, 4, 14, 11, 22, 9, 3, 5, 8, 15, 20, 18, 17, 2, 16,
6, 10, 23] 1 and 23

TABLE 3.3: Costas arrays of size 23, for which swapping two
points results in another Costas array.

q − 2.
Case 2. If j is even: in this case, by multiplying both sides of Equation 3.4 by
(1 − β

j
1), we obtain β

j
1(β

j
1 − 2) = 0 in Fq, which has only one solution if and

only if β
j
1 = 2 in Fq. Therefore, in total, Equation 3.4 can have at most one

solutions, which completes the proof.

Table 3.1 also reveals another curious phenomenon regarding the number of
common points of Costas arrays of sizes n, for which the majority of Costas
arrays are sporadic. Table 3.1 illustrates that MD(n) = n − 2 for 2 ≤ n ≤
17 and n = 23, showing for these sizes there are Costas arrays for which
swapping two points will result in another Costas array. For example, let
A = [1, 5, 3, 8, 7, 4, 6, 2] be a Costas array of size 8. Then, Changing the value
of 1 and 2 gives another Costas array B = [2, 5, 3, 8, 7, 4, 6, 1]. Drawing T(A)
and T(B) shows that A and B are Costas arrays.

1 5 3 8 7 4 6 2
4 −2 5 −1 −3 2 −4
2 3 4 −4 −1 −2
7 2 1 −2 −5
6 −1 3 −6
3 1 −1
5 −3
1

2 5 3 8 7 4 6 1
3 −2 5 −1 −3 2 −5
1 3 4 −4 −1 −3
6 2 1 −2 −6
5 −1 3 −7
2 1 −2
4 −4
−1

As we can see in Table 3.1, there are only four arrays of size 23, for which we
can swap two points to obtain another Costas array. Size 23 is the largest size
after 17, for which this is happening. These arrays are shown in the Table 3.3.
One can easily verify that these four arrays of size 23 in Table 3.3 belong to
one equivalence class and are sporadic arrays. Since the number of sporadic
arrays monotonically decrease from size 16 to 27, one may ask whether it is
a property that sporadic Costas arrays have that swapping points result in
another Costas array or there are also generated or emergent Costas arrays
with this property.
Further analysis of algebraically constructed Costas arrays showed that for
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5 ≤ n ≤ 200, there is only one equivalence of the Welch Costas array with
the property that only one allowable swap exists for each Costas array in
this equivalence class. Wexp

1 (7, 5, 0) = [1, 5, 4, 6, 2, 3] is the representative
of this equivalence class, in which 3 and 4 are allowable swaps. Finding
the allowable swap for the other elements in this equivalence is a simple
matter. Note that if swapping two points in a given Costas array produces
another Costas array, these two Costas arrays are not equivalent (relative to
the action of D8). For the other main algebraic construction, there are only
two equivalence classes of Lempel-Golomb Costas arrays of sizes 11 and 13,
for which swapping two points produces another Costas array. These arrays
are shown in Table 3.4. It is worth noting that after swapping two points
in the Lempel-Golomb Costas arrays in Table 3.4, the obtained arrays are
sporadic Costas arrays.

TABLE 3.4: Lempel-Golomb Costas arrays, for which swapping
two points results in another Costas array. The last column
provides information on how these Lempel-Golomb Costas

arrays are constructed.

Prime Lempel-Golomb Costas arrays Allowable
swaps Info

11 X=[7, 8, 2, 4, 3, 1, 6, 9, 5] 1 and 9 α = 6 and β = 7

11 [6, 3, 5, 4, 9, 7, 1, 2, 8] 6 and 8 Diagonal
reflection of X

11 [4, 7, 5, 6, 1, 3, 9, 8, 2] 2 and 4 90◦ rotation of
X

11 [3, 2, 8, 6, 7, 9, 4, 1, 5] 1 and 9 Horizontal
reflection of X

11 [5, 9, 6, 1, 3, 4, 2, 8, 7] 1 and 9 Vertical
reflection of X

11 [5, 1, 4, 9, 7, 6, 8, 2, 3] 1 and 9 180◦ rotation of
X

11 [8, 2, 1, 7, 9, 4, 5, 3, 6] 6 and 8 270◦ rotation of
X

11 [2, 8, 9, 3, 1, 6, 5, 7, 4] 2 and 4 Anti-diagonal
reflection of X

13 Y=[3, 10, 1, 9, 6, 5, 7, 11, 4, 2, 8] 8 and 11 α = 6 and β = 6

13 [9, 2, 11, 3, 6, 7, 5, 1, 8, 10, 4] 1 and 4 90◦ rotation of
Y

13 [8, 2, 4, 11, 7, 5, 6, 9, 1, 10, 3] 8 and 11 Vertical
reflection of Y

13 [4, 10, 8, 1, 5, 7, 6, 3, 11, 2, 9] 1 and 4 180◦ rotation of
Y

Table 3.1 further demonstrates that for values of n ranging from 24 to 100,
if there exists a possibility to transform a given Costas array into another,
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at least half of the elements in the corresponding permutation must be
rearranged. This observation prompts an important question: Is it feasible
to offer a theoretical proof that exchanging the positions of two points within
a given Costas array of size n ≥ 24 can never yield another Costas array?
Drawing upon the insights provided in Table 3.1, we formulate the following
two conjectures based on the available information.

Conjecture 3.8. Swapping two points in a given Costas array of size n ≥ 24 does
not preserve Costas property.

Conjecture 3.9. The number of common points of two given Costas arrays of size
n ≥ 24 is at most n

2 .

Although it seems difficult to prove these conjectures for arbitrary Costas
arrays, one might be able to provide theoretical proof for algebraically
constructed Costas arrays. It turned out that proving Conjecture 3.8 for
Costas arrays with G-symmetric property might be applicable due to several
symmetries in the difference triangle table of such Costas arrays. We will
provide partial proof for these Costas arrays.

Theorem 3.10. Let X = [ f (1), f (2), . . . , f (n)] be a G-symmetric Costas arrays of
even size n. Swapping two points f (r) and f (s), where 1 ≤ r < s ≤ n, in the
following cases, will never produce a Costas array.
Case 1. If r, s < n

2 or r, s > n
2 .

Case 2. If r < n
2 , s > n

2 , s − r ̸= n
2 and r and s have the same parity.

Proof. For case 1, if r, s < n
2 , after swapping f (r) and f (s), in row s − r of

the difference triangle table of X, we change the value of f (s) − f (r) with
f (r)− f (s). Moreover, before swapping f (r) and f (s), in row s − r, we have
the value f (n

2 + s)− f (n
2 + r), which will be fixed after swapping f (r) and

f (s). By using the G-symmetric property of X, we have

f (r)− f (s) =
(
n + 1 − f (n

2 + r)
)
−
(
n + 1 − f (n

2 + s)
)
= f (n

2 + s)− f (n
2 + r),

which shows a repetition in the row s − r. Then, swapping f (r) and f (s) will
not produce a Costas array.
Now, if r, s > n

2 , we can have the same argument as above by nothing that

f (s − n
2 )− f (r − n

2 ) = (n + 1 − f (s))− (n + 1 − f (r)) = f (r)− f (s).

For case 2, since r and s have the same parity, both r+s
2 and s−r

2 are integers.
We claim that after swapping f (r) and f (s), we obtain repeated elements in
row s−r

2 of the difference triangle of X. Since r < n
2 , depending on whether

s+r
2 ≤ n

2 or s+r
2 > n

2 , we have the following cases:
Case 2.1: If r < n

2 and s+r
2 ≤ n

2 , then in row s−r
2 , before swapping f (r) and

f (s), we have the element f ( s+r
2 + n

2 ) − f (r + n
2 ), which will be fixed also

after swapping f (r) and f (s). Moreover, in row s−r
2 , after swapping f (r)

and f (s), we change the value of f (s)− f ( s+r
2 ) with the value f (r)− f ( s+r

2 ).
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Using the G-symmetric property of X, we have

f (r)− f ( s+r
2 ) =

(
n + 1 − f (r + n

2 )
)
−
(
n + 1 − f ( s+r

2 + n
2 )
)

= f ( s+r
2 + n

2 )− f (r + n
2 ).

It follows that after swapping f (r) and f (s), the elements f ( s+r
2 + n

2 )− f (r +
n
2 ) and f (r)− f ( s+r

2 ) have the same value in row s−r
2 .

Case 2.2: If r < n
2 and s+r

2 > n
2 , in row s−r

2 , after swapping f (r) and f (s), we
change the value of f ( s+r

2 )− f (r) with the value f ( s+r
2 )− f (s). Utilizing the

G-symmetric property of X, we obtain

f ( s+r
2 )− f (s) =

(
n + 1 − f ( s+r

2 − n
2 )
)
−
(
n + 1 − f (s − n

2 )
)

= f (s − n
2 )− f ( s+r

2 − n
2 ).

But f (s− n
2 )− f ( s+r

2 − n
2 ) is an element in row s−r

2 , which will be fixed before
and after swapping f (r) and f (s). In this case, we also obtain a repeated
value in row s−r

2 after swapping f (r) and f (s). Therefore, swapping f (r)
and f (s) values will not produce a Costas array.

We do not have proof for the other cases because it seems challenging to
find a pattern for repeating elements that occur in rows of the difference
triangle table after swapping two elements. We searched for such patterns
by analyzing the difference triangle table of Costas arrays of even sizes with
G-symmetric properties before and after swapping. However, even for small
sizes, we could not find such patterns that hold in general.
As mentioned earlier there is no Welch Costas array for which swapping
two points give another Costas array for 11 ≤ p < 200. As a corollary of
Theorem 3.10, we do not obtain another Costas array by swapping two (for
those specific swaps mentioned in Theorem 3.10) points in an exponential
Welch Costas array because they have G-symmetric property. We decided
to write this corollary with the proof because it provides essential insights
into understanding the difference triangle table of exponential Welch Costas
arrays.

Corollary 3.11. Let Wexp
1 (p, α, c) be an exponential Welch Costas array as in

Theorem 2.34. Swapping two elements αr and αs, where r and s are integers in
{0, 1, . . . , p − 2} with r < s, of Wexp

1 (p, α, c), in the following cases, will never
produce a Costas array.
Case 1. If r, s < p−1

2 or r, s > p−1
2 .

Case 2. If r < p−1
2 , s > p−1

2 , s − r ̸= p−1
2 and r and s have the same parity.

Proof. Without loss of generality, we can choose c = 0. Let α be a primitive
element of the finite field Fp, where p is a prime, and let Wexp

1 (p, α, 0) =

[αi mod p] be a Welch Costas array as in Remark 2.36. Let us begin by proving
case 1. Suppose that r, s < p−1

2 and r < s. In this case, we look at the row
s − r of T

(
Wexp

1

)
before and after swapping αr and αs. Before swapping, the

row s − r contains the following elements:

αs − αr (3.5)
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αs+
p−1

2 − αr+
p−1

2 (3.6)

Moreover, since α
p−1

2 = −1 over Fp, we have

αs − αr = − (αr − αs) = α
p−1

2 (αr − αs) = αr+
p−1

2 − αs+
p−1

2 , (3.7)

showing αs − αr and αs+
p−1

2 − αr+
p−1

2 are equal in absolute value. After
swapping, we change the element αs − αr with αr − αs, while the element

αs+
p−1

2 − αr+
p−1

2 does not change, showing a repetition has occurred after

swapping because αs+
p−1

2 − αr+
p−1

2 = αr − αs.
If r, s > p−1

2 , we can have the same argument, but we should notice that

αs− p−1
2 − αr− p−1

2 = αr − αs.

For case 2, since r and s have the same parity, both r+s
2 and s−r

2 are integers.
We look at the row s−r

2 before and after swapping to find a duplicated entry
in this row. Before swapping, the row s−r

2 contains the following elements:

α
s+r

2 − αr, (3.8)

αs − α
s+r

2 . (3.9)

Since s ≥ p−1
2 and s+r

2 > p−1
2 , then we have the element αs− p−1

2 − α
s+r

2 − p−1
2

in row s−r
2 , which will be fixed after swapping αr and αs. Moreover, we have

αs− p−1
2 − α

s+r
2 − p−1

2 = α
s+r

2 − αs. (3.10)

After swapping, we change the elements 3.8 and 3.9 by the following
elements:

α
s+r

2 − αs, (3.11)

αr − α
s+r

2 . (3.12)

From 3.10 and 3.11, we can conclude that there is a repetition after swapping
αr and αs.

In conclusion, Conjecture 3.9 in this section proposes that if there is a
possibility of transforming a Costas array of size n ≥ 24 into another
Costas array, it would require rearranging at least half of the points.
Consequently, the subsequent section will delve into the discussion of a novel
transformation that satisfies this particular property.
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3.2 A new Transformation

One possible approach to achieve a deeper understanding of Costas arrays
properties is to construct a matrix close to a Costas array and then examine
whether it is possible to do some modification to get a Costas array out of
it. With this in mind, we introduce a new transformation, which enables us
to apply this transformation to an existing Costas array to obtain another
permutation matrix with the property that the aperiodic autocorrelation
function values for all non-zero shifts are at most two. In other words, the
aperiodic autocorrelation function of these transformed Costas arrays are
four-valued. Let us call these types of permutation matrices “Almost Costas
arrays”. What follows is the definition of our new transformation, and we
will explain how this transformation is beneficial to construct a Costas array
from a given one in some cases.
Let X = [ f (1), f (2), ..., f (n)] be a Costas array of size n. We plan to construct
another bijection g from f and then examine the correlation properties of its
corresponding permutation matrix. Suppose that k is a positive integer such
that gcd(k, n + 1) = 1. We define g : [n] −→ [n], by

i 7−→ f (ki mod n + 1) .

We claim that g is a bijection. Note that f is a bijection and ki mod (n + 1) is
an integer in [n]. It is sufficient to show that g is injective. To do so, if there
are integers i1, i2 ∈ [n] such that g(i1) = g(i2), then we have

f (ki1 mod n + 1) = f (ki2 mod n + 1) .

Since f is a bijection, then applying f−1 on both sides of the above equation
gives

ki1 mod (n + 1) = ki2 mod (n + 1).

Since gcd(k, n + 1) = 1, then i1 = i2 that shows g is an injective map. Now
we can state the formal definition of our transformation.

Definition 3.12 ([5]). Let X = [ f (1), f (2), ..., f (n)] represent a permutation
matrix of size n, where n ∈ N, and let k be a positive integer such that gcd(k, n +
1) = 1. We define a bijection g : [n] −→ [n], by

i 7−→ f (ki mod n + 1) .

We denote the corresponding permutation matrix of g by Ak(X).

As discussed in the previous Section, Conjecture 3.9 suggested that if
transformation Ak may produce another Costas array, for a given Costas
array X of size n ≥ 24, X and Ak(X) might have at most n

2 points in common.
Consequently, to obtain another Costas array after applying Ak, at least half
of the points in X might be rearranged. The following theorem shows how
many points X and Ak(X) can have in common.
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Theorem 3.13 ([5]). Let X = [ f (1), f (2), . . . , f (n)] be a Costas array of size n,
and let k be a positive integer such that gcd(k, n + 1) = 1. Then the number of
common points between X and Ak(X) is at most ⌊n

2 ⌋.

Proof. In order to compute the number of common points between X and
Ak(X), we need to solve the following equation

f (i) = f (ki mod n + 1) for 1 ≤ i ≤ n. (3.13)

Since f is a bijection, then applying f−1 on both sides of Equation 3.13 gives
i = ki mod n + 1. Equivalently,

(k − 1)i ≡ 0 mod n + 1. (3.14)

Setting d := gcd(k − 1, n + 1), we know that Equation 3.14 has exactly d
incongruent solutions modulo n + 1. Clearly, d ≤ n+1

2 . Therefore, since 1 ≤
i ≤ n and zero is always a solution of Equation 3.14, the number of common
points between X and Ak(X) can not exceed n−1

2 , which is less than ⌊n
2 ⌋.

Example 3.14. Consider the Costas array X = [1, 7, 4, 8, 2, 3, 6, 5] of size 8. Since
gcd(2, 9) = gcd(4, 9) = gcd(5, 9) = gcd(7, 9) = gcd(8, 9) = 1, we can construct
A2(X), A4(X) , A5(X) , A7(X) and A8(X). Let us first construct A2(X).

A2(X) = [ f (2 · 1 mod 9) , f (2 · 2 mod 9) , ..., f (2 · 8 mod 9)]
= [ f (2), f (4), f (6), f (8), f (1), f (3), f (5), f (7)]
= [7, 8, 3, 5, 1, 4, 2, 6].

Similarly, we can construct A4(X), A5(X), A7(X) and A8(X). Thus we
have A4(X) = [8, 5, 4, 6, 7, 3, 1, 2], A5(X) = [2, 1, 3, 7, 6, 4, 5, 8], A7(X) =
[6, 2, 4, 1, 5, 3, 8, 7] and A8(X) = [5, 6, 3, 2, 8, 4, 7, 1]. The matrices that correspond
to these permutations are shown in figure 3.1. One can easily check that A2(X),
A7(X) and A8(X) are Costas arrays, but A4(X) and A5(X) are not Costas arrays.

Example 3.14 indicates that sometimes transformation Ak produces another
Costas array and sometimes does not. For convenience, let us call a Costas
array X of size n transferable if there is an integer k, where gcd(k, n + 1) =
1, such that Ak(X) is again a Costas array. We observed that if an array
is transferable, then some of the elements of its equivalence class are also
transferable. The observed relation is shown in the following theorem.

Theorem 3.15. Let X be a transferable Costas array of size n. Then the vertical
reflection, horizontal reflection and 180◦ rotation of X are transferable.

Proof. Let us denote by Xv, Xh and Xr the Costas arrays obtained by vertical
reflection, horizontal reflection and 180◦ rotation of the Costas array X,
respectively. The procedure of proving a Costas array is transferable is to find
a positive integer t with the property that gcd(t, n + 1) = 1 and applying At
gives a Costas array. We begin by proving Xv is transferable. One can easily
check that Xv = [ f (n + 1− i)], for 1 ≤ i ≤ n. Let us apply the transformation
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X = [1, 7, 4, 8, 2, 3, 6, 5]

•
•

•
•

•
•

•
•

A2(X) = [7, 8, 3, 5, 1, 4, 2, 6]

•
•

•
•

•
•

•
•

A4(X) = [8, 5, 4, 6, 7, 3, 1, 2]

•
•

•
•

•
•

•
•

A5(X) = [2, 1, 3, 7, 6, 4, 5, 8]

•
•

•
•

•
•

•
•

A7(X) = [6, 2, 4, 1, 5, 3, 8, 7]

•
•

•
•

•
•

•
•

A8(X) = [5, 6, 3, 2, 8, 4, 7, 1]

FIGURE 3.1: The matrix X and all possible transformations,
Ak(X), for k, where gcd(k, 9) = 1.

for t = −k. Then for 1 ≤ i ≤ n we have

A−k(Xv) = [ f (−k(n + 1 − i) mod n + 1)]
= [ f (ki mod n + 1))]
= Ak(X).

Since X is transferable, then Ak(X) is a Costas array. Thus Xv is transferable.
We next prove that Xh is transferable. One can see that the horizontal
reflection of X is given by Xh = [n + 1 − f (i)] for 1 ≤ i ≤ n. We apply
the transformation for t = k. Then we have for 1 ≤ i ≤ n

Ak(Xh) = [n + 1 − f (ki mod n + 1)] = (Ak(X))h .

We already know that [ f (ki mod n + 1)] for 1 ≤ i ≤ n is a Costas array. Thus
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Xh is transferable. Similarly, we can verify that 180◦ rotation of X is also
transferable. The 180◦ rotation of X is given by Xr = [n + 1 − f (n + 1 − i)]
for 1 ≤ i ≤ n. Let us take t = −k, then we have

A−k(Xr) = [n + 1 − f (−k(n + 1 − i) mod n + 1)]
= [n + 1 − f (ki mod n + 1))]
= (Ak(X))h .

Similar to the latter case, we can conclude that Xr is transferable, which
completes the proof.

Corollary 3.16 ([5]). Assume that X and its transpose, XT, are transferable. Then
all the elements of the equivalence class of X are transferable.

Proof. The proof is straightforward. On account of Theorem 3.15, since X
and XT are transferable, then the vertical reflection, horizontal reflection
and 180◦ rotation of both X and XT are transferable. Obviously, the
vertical reflection, horizontal reflection and 180◦ rotation of XT are 270◦

counterclockwise rotation, 90◦ counterclockwise rotation and Antidiagonal
reflection of X, respectively. It follows that the entire equivalence class of X
is transferable.

Example 3.17. Consider the Costas array X = [1, 2, 9, 3, 5, 10, 8, 4, 7, 6]. One can
easily check that XT = [1, 2, 4, 8, 5, 10, 9, 7, 3, 6]. It can be seen that Ak(X) for
k ∈ {2, 3, . . . , 9} is Costas array. However, Ak(XT) is not transferable.

The following theorem provides one of the most exciting properties of the
transformation Ak.

Theorem 3.18 ([5]). Let X = [ f (1), f (2), ..., f (n)] represent a Costas array of
size n, where n ∈ N, and k is a positive integer such that gcd(k, n + 1) = 1 and
k ̸= 1, n. Then for all possible shifts (r, s) ̸= (0, 0), |r| ≤ n, |s| ≤ n, we have

CAk(X)(r, s) ≤ 2.

In other words, Ak(X) is an almost Costas array.

Proof. By way of contradiction, we assume that the aperiodic autocorrelation
function of Ak(X) for a non-zero shift has a value of at least 3. This means
there is a row l in the difference triangle table of Ak(X) in which there are
at least three equal entries. Let us say g(i1 + l)− g(i1), g(i2 + l)− g(i2), and
g(i3 + l)− g(i3) be equal in row l, where 1 ≤ i1, i2, i3, i1 + l, i2 + l, i3 + l ≤ n,
and i1, i2, and i3 are all distinct. Regarding Definition 3.12, we have

g(i1 + l)− g(i1) = f (k(i1 + l) mod n + 1)− f (ki1 mod n + 1). (3.15)

g(i2 + l)− g(i2) = f (k(i2 + l) mod n + 1)− f (ki2 mod n + 1). (3.16)

g(i3 + l)− g(i3) = f (k(i3 + l) mod n + 1)− f (ki3 mod n + 1). (3.17)
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It follows that

g(i1 + l)− g(i1) = f ((ki1 + kl) mod n + 1)− f (ki1 mod n + 1) . (3.18)

g(i2 + l)− g(i2) = f ((ki2 + kl) mod n + 1)− f (ki2 mod n + 1) . (3.19)

g(i3 + l)− g(i3) = f ((ki3 + kl) mod n + 1)− f (ki3 mod n + 1) . (3.20)

Let us assume that i′t = kit mod n + 1, where t = 1, 2, 3, and l′ = kl mod n + 1.
Therefore, we have

g(i1 + l)− g(i1) = f ((i′1 + l′) mod n + 1)− f (i′1). (3.21)

g(i2 + l)− g(i2) = f ((i′2 + l′) mod n + 1)− f (i′2). (3.22)

g(i3 + l)− g(i3) = f ((i′3 + l′) mod n + 1)− f (i′3). (3.23)

Clearly, 1 ≤ i′t ≤ n and 1 ≤ l′ ≤ n, hence it follows that 2 ≤ i′t + l′ ≤
2n. Moreover, since 1 ≤ it + l ≤ n for t = 1, 2, 3 and gcd(k, n + 1) = 1, it
follows that i′t + l′ ̸= n + 1. Therefore, we can assume that i′t + l′ < n + 1 or
i′t + l′ > n + 1. In the latter case, we can conclude that ((i′t + l′) mod n + 1) =
i′t + l′ − n − 1.
We already assumed that the left-hand side of the equations (3.21), (3.22) and
(3.23) are equal. hence, we will use the fact that X is a Costas array to obtain
a contradiction. To do so, we need to consider four cases:

1. For all t ∈ {1, 2, 3}, we have i′t + l′ < n + 1.

2. For all t ∈ {1, 2, 3}, we have i′t + l′ ≥ n + 1.

3. For two values of t, where t ∈ {1, 2, 3}, we have i′t + l′ < n + 1.

4. For two values of t, where t ∈ {1, 2, 3}, we have i′t + l′ > n + 1.

Case 1. According to the equations (3.21), (3.22) and (3.23), we have

f (i′1 + l′)− f (i′1) = f (i′2 + l′)− f (i′2) = f (i′3 + l′)− f (i′3).

Since X is a Costas array, i′1 = i′2 = i′3 or l′ = 0. Assume that i′1 = i′2, then

ki1 mod n + 1 = ki2 mod n + 1.

Since gcd(k, n + 1) = 1, then we can conclude that i1 mod n + 1 = i2 mod n +
1. This gives i1 = i2, because we assumed 1 ≤ i1, i2 ≤ n, which gives a
contradiction with the fact that i1 and i2 are distinct. Moreover, if l′ = 0, then
l = 0. This finishes the proof of case 1.
Case 2. According to the equations (3.21), (3.22) and (3.23), we have

f (i′1 + l′−n− 1)− f (i′1) = f (i′2 + l′−n− 1)− f (i′2) = f (i′3 + l′−n− 1)− f (i′3).
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It follows that

f (i′1)− f (i′1 + l′ − n − 1) = f (i′2)− f (i′2 + l′ − n − 1).

Define that i′′1 = i′1 + l′ − n − 1 and i′′2 = i′2 + l′ − n − 1. Hence we have

f (i′′1 + (n + 1 − l′))− f (i′′1 ) = f (i′′2 + (n + 1 − l′))− f (i′′2 ).

Clearly, 1 ≤ i′′1 , i′′2 ≤ n. Assuming l′′ = n + 1 − l′, we can conclude that
i′′1 = i′′2 or l′′ = 0, because X is a Costas array. We know that l′′ ̸= 0, because
1 ≤ l′ ≤ n − 1. Thus i′′1 = i′′2 . Therefore, we can conclude that i′1 = i′2. Now,
by a similar argument as in case 1, we can conclude that i1 = i2 which gives
a contradiction.
Case 3. There is no loss of generality in assuming i′1 + l′ < n + 1 and
i′2 + l′ < n + 1. With the same argument as in case 1, we can complete the
proof of this case.
Case 4. Without loss of generality we can assume i′1 + l′ > n + 1 and
i′2 + l′ > n + 1. Then we can complete the proof of this case by using the
same argument as in case 2.
It follows that assuming repetition of three elements in a row of Ak(X)’s
difference triangle table leads to a contradiction. Therefore, in each row
of the Ak(X)’s difference triangle table, we do not have a repeated value
more than twice. Hence we can conclude that the aperiodic autocorrelation
function values of Ak(X) for all possible non-zero shifts are at most two,
which completes the proof.

As we mentioned in the introductory Section of this chapter, constructing
permutation matrices with the property that the aperiodic autocorrelation
function is four-valued is is of some interest. Theorem 3.18 indicates that we
can construct ϕ(n)− 1 more permutation matrices from a given Costas array
of size n with a four-valued aperiodic autocorrelation function.

Example 3.19. Consider Costas arrays X = [9, 3, 5, 6, 2, 12, 7, 4, 8, 11, 10, 1] and
Y = [1, 2, 5, 3, 10, 6, 12, 4, 9, 11, 8, 7]. Since gcd(12, 7) = 1, we can construct both
A7(X) and A7(Y). It can be seen that A7(X) = [7, 9, 4, 3, 8, 5, 11, 6, 10, 2, 1, 12]
and A7(Y) = [12, 1, 4, 2, 9, 5, 11, 3, 8, 10, 7, 6]. One can easily verify that A7(X) is
not a Costas array, and A7(Y) is a Costas array. The following matrix is the aperiod
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autocorrelation matrix of A7(X), Ca
A7(X).

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1 0 1 0 2 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 2 1 1 1 1 0 0 0 1 0 1 0 2 0 0 0 0
0 0 0 0 1 0 1 1 1 1 0 0 2 1 1 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 1 1 2 0 0 1 1 1 1 0 1 0 0 0 0
0 0 0 0 2 0 1 0 1 0 0 0 1 1 1 1 2 0 0 0 0 0 0
0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0
0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 2 0 1 0 1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0


We can conclude that transformation Ak(X) sometimes preserves the Costas
property. Although A7(X) is not a Costas array, as we can see in matrix Ca

A7(X),
the maximum value is two, showing that the permutation matrix A7(X) has a four-
valued aperiodic autocorrelation function.

Having defined the transformation Ak, we will now discuss how this
transformation operates on Welch and Lempel-Golomb Costas arrays.

Theorem 3.20 ([5]). Let X be a logarithmic Welch Costas array. Then Ak(X),
where Ak is the transformation introduced in Definition 3.12, is also a logarithmic
Welch Costas array, obtained by a cyclic shift of the rows of X.

Proof. Assume that X is a logarithmic Welch Costas array. Then X = [c +
logα j mod p − 1] for 1 ≤ j ≤ p − 1. We know that the non-zero elements in
Fp form a cyclic group with respect to multiplication. Moreover, according
to the discrete logarithm’s definition, if we have a cyclic group G of order n,
then for any g1, g2 ∈ G and a generator x we have

logx(g1g2) = (logx g1 + logx g2) mod n.

Therefore, we can conclude that

logα(kj mod p) = (logα k + logα j) mod (p − 1) (3.24)

A logarithmic Welch Costas array is a (p − 1)× (p − 1) matrix. We explained
in section 2.5.1 that Welch Costas arrays are singly periodic, meaning cyclic
shifts of the rows of logarithmic Welch is again a logarithmic Welch Costas
array. Equivalently, if we add a constant number to all the elements of a
logarithmic Welch Costas permutation such that the computations are taking
modulo p − 1, the result is again a logarithmic Welch Costas permutation.
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Now, if we take a look at the Ak(X) permutation, we can see

Ak(X) = [(c + logα(kj mod p) mod p − 1] for 1 ≤ j ≤ p − 1.

Thus, equality 3.24 shows that

Ak(X) = [(c + logα k + logα j) mod p − 1],

which shows that Ak(X) is obtained by a cyclic shift of the rows of a
logarithmic Welch that completes the proof.

It is worthwhile to mention that exponential Costas arrays are not always
transferable. In fact, what is surprising is that in a few examples of
exponential Welch Costas arrays, after applying Ak, we obtain none-
generated Costas arrays. We did hope that we might find transferable
exponential Welch Costas arrays of size greater than or equal to 30, for which
we do not have a complete search to see whether we find a new Costas array.
We checked for all exponential Welch Costas arrays up to size 1030 while
none of them was transferable, except a few cases of small sizes, collected in
table 3.5.

Wexp
1 (p, α, c) and k None-generated Costas array
p = 11, α = 2,
c = 3, k = 5 [7, 4, 9, 2, 10, 1, 5, 6, 8, 3]

p = 11, α = 2,
c = 3, k = 6 [3, 8, 6, 5, 1, 10, 2, 9, 4, 7]

p = 11, α = 6,
c = 8, k = 5 [4, 7, 2, 9, 1, 10, 6, 5, 3, 8]

p = 11, α = 6,
c = 8, k = 6 [8, 3, 5, 6, 10, 1, 9, 2, 7, 4]

p = 23, α = 5,
c = 5, k = 2 [8, 16, 9, 18, 13, 3, 6, 12, 1, 2, 4, 20, 17, 11, 22, 21, 19, 15, 7, 14, 5, 10]

p = 23, α = 5,
c = 5, k = 21 [10, 5, 14, 7, 15, 19, 21, 22, 11, 17, 20, 4, 2, 1, 12, 6, 3, 13, 18, 9, 16, 8]

p = 23, α = 5,
c = 16, k = 2 [15, 7, 14, 5, 10, 20, 17, 11, 22, 21, 19, 3, 6, 12, 1, 2, 4, 8, 16, 9, 18, 13]

p = 23, α = 5,
c = 16, k = 21 [13, 18, 9, 16, 8, 4, 2, 1, 12, 6, 3, 19, 21, 22, 11, 17, 20, 10, 5, 14, 7, 15]

TABLE 3.5: All none-generated Costas arrays obtained by
transforming exponential Welch Costas arrays.

Additionally, as experimental evidence, it is important to mention that we
have extensively examined all known Costas arrays up to size 500. In our
investigation, we specifically checked whether applying the transformation
Ak would yield new Costas arrays. However, we have found no instances
of transferable Costas arrays up to size 500, except for the logarithmic Welch
and Lempel-Golomb Costas arrays.
A natural question arises here; does the transformation in the Definition 3.12
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work also for the Lempel-Golomb method? The answer to this question
is positively yes. Let us discuss the transformation Ak’s effect on Lempel-
Golomb Costas arrays.

Theorem 3.21. Let X be a Lempel-Golomb Costas array of size q − 2, where q is
a prime power, as in Theorem 2.46. Suppose that Ak is transformation introduced
in Definition 3.12. Then Ak(X) is again a Lempel-Golomb Costas array. Moreover,
let [X] be the equivalence class of the matrix X. Then Ak(Y), where Y ∈ [X], is a
Costas array.

Proof. Since X is a Lempel-Golomb Costas array, there are primitive elements
α and β of Fq such that in the array X there is a dot at position (i, j) if and
only if αi + βj = 1, 1 ≤ i, j ≤ q − 2. Let us apply the transformation Ak to X.
It follows that in the matrix Ak(X), there is a dot at position (ki mod q − 1, j)
if and only if αki mod q−1 + βj = 1, 1 ≤ i, j ≤ q − 2. According to the Lemma
2.33 and the fact that gcd(k, q − 1) = 1, we can conclude that Ak(X) is again
a Lempel-Golomb Costas array because αk is a primitive element as well.
We now proceed by proving that all elements in the equivalence class of X
are also Costas arrays. Assume that Y is a matrix in the equivalence class [X].
We showed that after applying the transformation Ak on a Lempel-Golomb
Costas array, we obtain another Lempel-Golomb Costas array. Moreover,
since the action of the Dihedral group leaves invariant the class of Lempel-
Golomb Costas array [88], then Ak(Y) is again a Lempel-Golomb Costas
array.

3.3 None-generated Costas arrays

Although a considerable amount of literature has been published on Costas
arrays, most of these studies have only focused on systematically constructed
Costas arrays. Not much has been discovered about none-generated Costas
arrays’ properties, which indicates the difficulties of finding any common
property between generated Costas arrays and none-generated ones [35].
Turning now to the experimental evidence, we went through the database
to identify transferable Costas arrays up to size 29. Independent analyses
were carried out on generated and none-generated Costas arrays. Table 3.6
contains all information about the number of transferable Costas arrays of
each size up to size 29. The previous section showed that logarithmic Welch
and Lempel-Golomb Costas arrays are transferable. Therefore, we have
infinitely many transferable Costas arrays because we have infinitely many
logarithmic Welch and Lempel-Golomb Costas arrays. Another interesting
observation is that, in some cases, we can obtain a none-generated Costas
array by transforming a generated one. We saw examples of this type in Table
3.5. The last column of Table 3.6 illustrates the total number of transferable
generated Costas arrays with the property that the transformed permutations
are none-generated Costas arrays.
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TABLE 3.6: The total number of transferable Costas arrays per
class up to size 29.Cn stands for the total number of Costas
arrays of size n; GT and NGT stand for generated transferable
Costas arrays and none-generated transferable Costas arrays,

respectively [5].

Size Cn GT NGT NGT from GT
6 116 60 0 0
7 200 16 0 0
8 444 32 76 24
9 760 24 48 0

10 2160 60 132 20
11 4368 32 48 8
12 7852 52 264 4
13 12828 4 88 4
14 17252 16 144 0
15 19612 80 24 0
16 21104 128 16 0
17 18278 48 0 0
18 15096 108 0 0
19 10240 0 0 0
20 6464 0 0 0
21 3536 120 0 0
22 2052 224 4 4
23 872 32 0 0
24 200 0 0 0
25 88 48 0 0
26 56 0 0 0
27 204 168 0 0
28 712 336 0 0
29 164 80 0 0

3.4 Difference set’s point of view

Another practical way to define the transformation Ak in the Definition 3.12
using dots’ positions in a matrix is stated in the following definition.

Definition 3.22. Suppose that X = [ f (1), f (2), ..., f (n)] is a permutation of size
n, and k is a positive integer such that gcd(k, n + 1) = 1. We denote by D the set
of all dots’ positions in the matrix X. We can consider D = {( f (i), i); i ∈ [n]},
as a subset of Z⋆

n+1 × Z⋆
n+1, where Z⋆

n+1 = Zn+1 \ {0}. Let us define a new set of
points σk(D) as follows:

σk(D) = {( f (ki mod (n + 1)), i); i ∈ [n]}.

Then we can associate a matrix, let us say Ak(X), with the set of points σk(D).
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Example 3.23. Assume that X = [1, 3, 6, 4, 5, 2, 7]. Let us consider D to be the set
of points in the matrix X. Then, we have

D = {(1, 1), (3, 2), (6, 3), (4, 4), (5, 5), (2, 6), (7, 7)}

Since gcd(3, 8) = gcd(5, 8) = gcd(7, 8) = 1, then we can construct σ3(D), σ5(D)
and σ7(D) as follows

σ3(D) = {(6, 1), (2, 2), (1, 3), (4, 4), (7, 5), (3, 6), (5, 7)},

σ5(D) = {((5, 1), (3, 2), (7, 3), (4, 4), (1, 5), (2, 6), (6, 7)},

σ7(D) = {(7, 1), (2, 2), (5, 3), (4, 4), (6, 5), (3, 6), (1, 7)}.

The matrices that correspond to these set of points are as follows.

•
•

•
•

•
•

•
A3(X) = [6, 2, 1, 4, 7, 3, 5]

•
•

•
•

•
•

•
A5(X) = [5, 3, 7, 4, 1, 2, 6]

•
•

•
•

•
•

•
A7(X) = [7, 2, 5, 4, 6, 3, 1]

Let us briefly explain how the set of dot’s position in a logarithmic Welch
Costas array is equivalent to a direct product difference set. We refer the
reader to [87, 102] for more details on direct product difference sets and
Costas sequences.

Definition 3.24 (Direct Product Difference Set [51,102]). Let H and N be groups
(written additively), with |H| = n − 1 and |N| = n, where n ≥ 3, and let G =
H × N be the direct product of two groups H and N. Let D be a subset of G with
the property that every element of G \ {(H × {0}) ∪ ({0} × N)} can be uniquely
represented as pairwise differences of elements of D, i.e., di − dj, where di, dj ∈ D.
Moreover, assume that no non-identity element of {(H × {0}) ∪ ({0} × N)} can
be represented as the difference of elements in D. The set D is called a direct product
difference set in G of order n.

Example 3.25. Suppose that G = Z4 × Z5. Consider subset D =
{(0, 1), (1, 2), (3, 3), (2, 4)} ⊆ G. Taking all the differences between distinct
elements of D gives

(0, 1)− (1, 2) = (3, 4) (3, 3)− (0, 1) = (3, 2)
(0, 1)− (3, 3) = (1, 3) (3, 3)− (1, 2) = (2, 1)
(0, 1)− (2, 4) = (2, 2) (3, 3)− (2, 4) = (1, 4)
(1, 2)− (0, 1) = (1, 1) (2, 4)− (0, 1) = (2, 3)
(1, 2)− (3, 3) = (2, 4) (2, 4)− (1, 2) = (1, 2)
(1, 2)− (2, 4) = (3, 3) (2, 4)− (3, 3) = (3, 1).
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As we can see, these differences between distinct elements of D produce every element
of (Z4 \ {0}) × (Z5 \ {0}) precisely once, and no elements of (Z4 × {0}) ∪
({0} × Z5) appear as a difference between elements in D; therefore, D is a direct
product difference set in G of order 5.

The set D given in the above example is derived from the set of the position of
dots in the logarithmic Welch Costas array W log(5, 2, 0), as in Theorem 2.40.
Example 3.25 also provides an essential observation about the logarithmic
Welch Costas array. In Example 3.25, we take all the differences between
distinct elements of D; in the first coordinate, we compute modulo 4, and in
the second coordinate, we compute modulo 5. Since W log(5, 2, 0) is a 4 × 4
Costas array, if we consider set D as a subset of Z4 × Z4, and compute the
differences between elements in D modulo 4 in the second coordinate, then D
is not a direct product difference set in Z4 ×Z4. By considering the elements
(1, 2), (4, 3), (3, 4), and (2, 2) in D, we obtain (1, 2) − (4, 3) = (1, 2) and
(3, 4)− (2, 2) = (1, 2), showing (1, 2) is not uniquely obtained by differences
between distinct elements of D.
According to the definition of logarithmic Welch Costas array, as in Theorem
2.40, we construct an (p − 1)× (p − 1) Costas array W log(p, α, 0) by placing
a dot at position ( f (i), i), where f is a bijective map from Zp \ {0} to Zp−1
defined by f (i) = logα(i).
The following theorem clarifies how the set of the positions of dots in an
logarithmic Welch Costas array is a direct product difference set. It is
worthwhile to mention that there are similarities between the works done in
this section and those described by Jane Louise Wodlinger [119] and Drakakis
et al., [38, 42].

Theorem 3.26. Let α be a primitive element in Fp, where p is a prime, and let
f : Zp \ {0} −→ Zp−1 be the bijective map defined by f (i) = logα(i). Then, the
set D = {( f (i), i) : 0 < i ≤ p − 1} is a direct product difference set in Zp−1 × Zp
of order p.

Proof. The proof depends on the injectivity of the following difference map
for all k ∈ Zp \ {0}

∆ f ,k : Zp \ {0,−k} −→ Zp−1, x 7−→ f (x + k)− f (x).

Let us first show that ∆ f ,k is injective. Suppose that ∆ f ,k(i) = ∆ f ,k(j) for some
i, j ∈ Zp \ {0,−k}. Then

f (i + k)− f (i) = f (j + k)− f (j)
⇐⇒ logα(i + k)− logα(i) = logα(j + k)− logα(j)

⇐⇒ logα

(
1 +

k
i

)
= logα

(
1 +

k
j

)
⇐⇒1 +

k
i
= 1 +

k
j
.

Since i, j /∈ {0,−k}, it follows that i = j. Thus, ∆ f ,k is an injective map for all
k ̸= 0. It can be seen that Im(∆ f ,k) = Zp−1 \ {0}.
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Consider (a, b) ∈ Zp−1 × Zp. Assume (a, b) /∈
(
Zp−1 × {0}

)
∪
(
{0} × Zp

)
.

Due to the fact that a, b ̸= 0, ∆ f ,b is injective, and Im(∆ f ,b) = Zp−1 \ {0},
there exists a unique element y ∈ Zp \ {0,−b} such that f (y + b)− f (y) = a.
We define x := y + b. Since y ̸= −b, then 0 < x ≤ p − 1. It follows that
( f (x), x) and ( f (y), y) are elements in D that have been defined uniquely by
the element (a, b). Now, taking the difference between these two elements of
D yields

( f (x), x)− ( f (y), y) = ( f (y + b), y + b)− ( f (y), y)
= ( f (y + b)− f (y), y + b − y)
= (a, b).

This shows that (a, b) can be written uniquely as difference from elements in
D. If ( f (x)− f (y), x − y) = (i, 0) for some i ∈ Zp−1, then x = y and i = 0.
Moreover, if ( f (x)− f (y), x − y) = (0, j) for some j ∈ Zp, then x = y because
f is injective. Therefore, D is a direct product difference set in Zp−1 × Zp of
order p.

A preliminary observation about difference sets is that if ϕ is a given
automorphism of a group G, then a subset X ⊆ G is a difference set if and
only if ϕ(X) is a difference set [98]. Therefore, it is possible to have more
difference sets from a given one utilizing symmetries of G. We will take
advantage of this notion to see how our transformation would be beneficial.
The dots’ positions in a logarithmic Welch Costas of size p − 1 is a direct
product difference set in Zp−1 × Zp, so if we add an empty column to
right of a logarithmic Welch Costas array, let us call this array an extended
logarithmic Welch, this extended array has the property that it contains all
non-trivial displacement vectors exactly once, in which the differences are
taken periodically. Consequently, the extended array has the property that
the periodic autocorrelation function values are at most 1 for all possible non-
zero shifts. Let us provide an example that shows the effect of extending an
empty column to a logarithmic Welch Costas on its periodic property.

Example 3.27. Let α = 2 be the primitive element of F11. In F11,

1 = 20, 2 = 21, 3 = 28, 4 = 22, 5 = 24, 6 = 29, 7 = 27, 8 = 23, 9 = 26, 10 = 25.

It follows that X = [0, 1, 8, 2, 4, 9, 7, 3, 6, 5] represents a logarithmic Welch Costas
array as in Definition 2.40 with c = 0. In order to get a permutation on [p − 1], we
add all the elements by 1. The following matrix shows the periodic autocorrelation
matrix of X:
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Cp
X =



1 1 1 1 2 1 1 1 1 0 1 1 1 1 2 1 1 1 1
1 1 1 2 0 2 1 1 1 0 1 1 1 2 0 2 1 1 1
1 1 2 1 0 1 2 1 1 0 1 1 2 1 0 1 2 1 1
1 2 0 1 2 1 0 2 1 0 1 2 0 1 2 1 0 2 1
2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
1 2 0 1 2 1 0 2 1 0 1 2 0 1 2 1 0 2 1
1 1 2 1 0 1 2 1 1 0 1 1 2 1 0 1 2 1 1
1 1 1 2 0 2 1 1 1 0 1 1 1 2 0 2 1 1 1
1 1 1 1 2 1 1 1 1 0 1 1 1 1 2 1 1 1 1
0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0
1 1 1 1 2 1 1 1 1 0 1 1 1 1 2 1 1 1 1
1 1 1 2 0 2 1 1 1 0 1 1 1 2 0 2 1 1 1
1 1 2 1 0 1 2 1 1 0 1 1 2 1 0 1 2 1 1
1 2 0 1 2 1 0 2 1 0 1 2 0 1 2 1 0 2 1
2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
1 2 0 1 2 1 0 2 1 0 1 2 0 1 2 1 0 2 1
1 1 2 1 0 1 2 1 1 0 1 1 2 1 0 1 2 1 1
1 1 1 2 0 2 1 1 1 0 1 1 1 2 0 2 1 1 1
1 1 1 1 2 1 1 1 1 0 1 1 1 1 2 1 1 1 1


Now, we extend X with an empty column to the right, and we denote this extended
array by Y as follows

•
•

•
•

•
•

•
•

•
•

The following matrix shows the periodic autocorrelation matrix of Y

Cp
Y =



1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1


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As we can see, the maximum value in Cp
X is 2, and by extending X with an empty

column, we obtain the maximum value of 1. Moreover, Cp
Y also shows that all

non-trivial displacement vectors appear precisely once, where the array is being
considered periodically.

Let us now discuss the effect of applying the transformation Ak, as in
Definition 3.22, to the extended logarithmic Welch Costas array. Let X =
[ f (1), f (2), ..., f (p − 1)] represent a logarithmic Welch Costas array as in
Theorem 2.40. As we already mentioned, the dots’ position in the extended
logarithmic Welch Costas array produces a direct product difference set
in Zp−1 × Zp. Hence, we can apply any automorphism to the set of
points of dots’ position in an extended logarithmic Welch, and the periodic
autocorrelation property will not change at all. Let k be an integer relatively
prime to p, and Tk be a mapping on the set of positions of dots in an extended
logarithmic Welch Costas array defined as follows

Tk : Zp−1 × Zp → Zp−1 × Zp

(i, j) 7→ (i, kj)

It is straightforward to check that Tk is an element of the automorphism
group of Zp−1 × Zp because k and p are coprime. Therefore, applying
Tk to the extended logarithmic Welch Costas array will preserve the
periodic property, which is the periodic autocorrelation function value of
the extended logarithmic Welch Costas array for all possible non-zero shifts
is at most 1. According to observation 2.18, if the periodic autocorrelation
function value is at most 1, then the aperiodic autocorrelation function value
is also at most 1. In addition, after applying Tk, the empty row in the
extended logarithmic Welch Costas array stays fixed, so we can remove it to
have an array of size (p − 1)× (p − 1), let us denote by Y, with the property
that the aperiodic autocorrelation function value for all possible non-zero
shifts is at most 1. Therefore, we can conclude that Y is a Costas array.
It is a simple matter to check that Y = Ak(X) because after applying the
transformation Ak to X, we send every element of the set of dots’ position
(i, j) to (i, kj mod p). It needs to be noted regarding the definition of Ak,
gcd(k, p) = 1. What we explained so far gives another proof of Theorem
3.20, showing logarithmic Welch Costas arrays are transferable.

Example 3.28. Consider the logarithmic Welch Costas array X =
[0, 1, 8, 2, 4, 9, 7, 3, 6, 5] in Example 3.27. According to Definition 3.22, the
set of dots in X is the set

D = {(0, 1), (1, 2), (8, 3), (2, 4), (4, 5), (9, 6), (7, 7), (3, 8), (6, 9), (5, 10)}.

Since gcd(2, 11) = 1, then we have

σ2(D) = {(1, 1), (2, 2), (9, 3), (3, 4), (5, 5), (0, 6), (8, 7), (4, 8), (7, 9), (6, 10)}.
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Thus we can conclude that A2(X) = [1, 2, 9, 3, 5, 0, 8, 4, 7, 6]. The following figure
shows the visualization of the aperiodic autocorrelation function of A2(X). One can
easily check that A2(X) is a Costas array.

FIGURE 3.3: The visualization of Ca
A2(X).

Jane Wodlinger [119] showed that if we consider the displacement vectors
when we view the array periodically, an extended Lempel-Golomb Costas
array (obtained by adding an empty row on the bottom and then an empty
column to the right) contains the displacement vector (i, j) exactly once if
αi ̸= βj and otherwise never. In other words, the extended Lempel-Golomb
Costas array has the property that the periodic autocorrelation function value
for all possible non-zero shifts are at most 1. Let k is an integer relatively
prime to q − 1, and let G2 be a Lempel-Golomb Costas array of size q − 2,
where q is a prime power, as in Theorem 2.46. We denote the extended
Lempel-Golomb Costas array by X, and we define a map on the set of
positions of dots in X as follows

T′
k : Zq−1 × Zq−1 → Zq−1 × Zq−1

(i, j) 7→ (i, kj)

It can be seen that T′
k is an element of the automorphism group of Zq−1 ×

Zq−1. Therefore, T′
k will preserve the periodic property of the extended

Lempel-Golomb Costas arrays, X. Thus, after applying T′
k, we obtain an

(q − 1)× (q − 1) array, let us denote by Y, with the property that its periodic
and aperiodic autocorrelation function’s values for all possible non-zero
shifts are at most 1. Since the empty row and empty column in X stay fixed
after being transformed by T′

k, we can remove them without changing the
aperiodic properties of X to obtain an (q − 2)× (q − 2) array, denoted by Z.
It can be seen that Z = Ak(G2) because after applying Ak on G2, we send
every dot at position (i, j) to (i, kj mod (q − 1)).
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Definition 3.29. A complete Costas array of size n is a matrix X for which one of
the following cases gives an array with the property that for all possible non-zero
shifts (r, s), |r| ≤ n, |s| ≤ n, the periodic autocorrelation values are at most 1,
Cp

X(r, s) ≤ 1.

1. If we add an empty column on the right of the array.

2. If we add an empty row on the bottom of the array and then an empty column
on the right.

We can collect all of the above in the following theorem.

Theorem 3.30. Assume that X is a complete Costas array of size n, and k is a
positive integer such that gcd(k, n + 1) = 1, then Ak(X) is a Costas array.

Proof. Suppose that f : [n] −→ [n] is the corresponding permutation to the
Costas array X. Since f is a permutation of size n, the set of dots’ positions in
X, say D = {( f (i), i) : i ∈ [n]}, can be considered as a subset of Z⋆

n+1 ×Z⋆
n+1.

By adding an empty column to the right of X, we can think of this set of dots’
positions as a subset of Z⋆

n+1 ×Zn+1. After sending every element at position
(i, j) to (i, kj mod (n + 1)). Since gcd(k, n + 1) = 1, it is straightforward to
check that

Tk : Z⋆
n+1 × Zn+1 → Z⋆

n+1 × Zn+1

(i, j) 7→ (i, kj),

is an element of the automorphism group of Z⋆
n+1 × Zn+1. Hence, applying

Tk to the set of positions of dots in the extended X will preserve its periodic
property.
Since X is a complete Costas array, the periodic autocorrelation function of
extended X after being transformed by Tk has the property that it can take
a value of, at most, 1 for all possible non-zero shifts. It follows that the
aperiodic autocorrelation function’s values of extended X are at most 1 for
all possible non-zero shifts, as shown in Observation 2.18. Furthermore, after
applying Tk, the empty column in the extended X stay fixed. Consequently,
we can remove this empty column without increasing the maximum value
of the aperiodic autocorrelation function of extended X. It follows that the
permutation matrix Ak(X) is a Costas array.
Similar arguments apply to the case where adding an empty row and then
an empty column makes a Costas array a complete Costas array.

It is worth mentioning in passing that among the known Costas arrays up
to size 29, apart from the Welch and Lempel-Golomb Costas arrays, none of
them qualify as complete Costas arrays.
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Chapter 4

A measure for Costas property

This chapter will consider a particular class of permutations, namely odd
permutations, from which we can not construct a Costas array. Although
most permutations do not produce a Costas array, it is worth discussing why
they fail to construct Costas arrays. This chapter attempts to define a measure
by which we can examine how far a permutation matrix is from being a
Costas array and then examine whether or not it is possible to eliminate or at
least reduce the violation causes. It is clear that even reducing the number of
violations will lead to staying closer to a Costas array, which is fruitful.
Costas arrays are indeed known for their perfect aperiodic autocorrelation
properties. In principle, finding Costas arrays, permutation matrices with
aperiodic autocorrelation function values of at most 1 for all possible non-
zero shifts, is challenging. Sometimes permutation matrices with low
periodic autocorrelation also show perfect aperiodic autocorrelation. Take
Welch and Lempel-Golomb constructions as an example where the extended
arrays, as explained in Section 3.4, have periodic autocorrelation function
values of 0 or 1 for all possible non-zero shifts, which means their aperiodic
autocorrelation has the same behaviour because periodic autocorrelation
bounds the aperiodic autocorrelation, as shown in Observation 2.18. We
will follow this point of view to introduce a transformation that reduces
violation causes to the Costas property in some permutations with low
periodic autocorrelation properties.
Let us recall that a polynomial f ∈ Fq[x] (Fq[x] denotes the polynomial
ring over Fq) is a permutation polynomial of Fq if the map from Fq to
itself defined by x 7−→ f (x) is a permutation of Fq. We refer the readers
to [77] for more details about this subject. Wensong Chu in [19] discussed
the application of permutation polynomials over finite fields in the study of
Costas arrays. Since basic algebraic constructions for Costas arrays are based
on finite fields, it is reasonable to examine such permutation matrices as
permutation polynomials over their underlying finite fields. From this point
of view, Wensong Chu also showed that the algebraic construction methods
utilize relatively simple permutation polynomials. More precisely, he
defined Welch and Lempel-Golomb constructions the following permutation
polynomials:

• Welch Construction: Wexp
1 = [ f (x)], where f (x) = x and x = αj+c,

where f ∈ Fp[x], α is a primitive element in Fp, 0 ≤ j ≤ p − 2 and
c ∈ {0, . . . , p − 2}.
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• Lempel-Golomb Construction: G2 = [logα f (x)], where f (x) = 1 − xm

and x = αj, where f ∈ Fq[x], gcd(m, q − 1) = 1, α is a primitive element
in Fq and 1 ≤ j ≤ q − 2.

Moreover, he showed that no more Costas arrays from permutation
binomials exist by stating the following theorem.

Theorem 4.1 ([19]). Let α be a primitive element of Fq and let f (x) = xk − axj,
a ∈ Fq and k > j ≥ 0 be a permutation polynomial over Fq. If

[
logα f

(
αj)],

1 ≤ j ≤ q − 2 is a Costas array, then gcd(k − j, q − 1) = 1.

The above theorem shows that for f(x), as in Theorem 4.1, being a
permutation polynomial over Fq with (k − j, q − 1) = 1, we require
that j = 0 because if j ≥ 1, then f (x) = 0 has more than one zero.
Following this point of view, we will examine the Costas property of a class
of permutations constructed by some permutation polynomials over a finite
field, which will not produce Costas permutations; moreover, we will check
if it is possible to reduce violation causes in these permutations to stay closer
to Costas permutations.
A prerequisite for a permutation matrix to have perfect aperiodic
autocorrelation is that its periodic autocorrelation function values must
not exceed 4, as one can verify from Observation 2.18. Then this permutation
matrix is worth studying because it may be the case therefore that it has
perfect aperiodic autocorrelation. One suitable candidate for this approach
could be permutation polynomials with low differential uniformity, which
has been widely investigated through literature. This chapter also aims to
investigate the aperiodic property of these permutation polynomials.

4.1 Forbidden Configurations

Soltanalian et al. in [107] proposed a geometrically equivalent definition
of Costas arrays in which a permutation matrix is a Costas array if it does
not contain four ones that form a parallelogram; moreover, it is free of lines
formed by three equidistant ones. Bill Correl et al. in [112] provided a more
refined version of this definition. They considered all possible ways that
the arrangements of ones within a permutation matrix violate the Costas
property. They referred to such sets of ones as L3- and P4-configurations,
where an L3-configuration is defined as a set of three equidistant ones lying
on a single line, and a P4-configuration is defined to be a set of four ones
that form a non-degenerate parallelogram. It is worth noting that sets of four
ones that form a degenerate parallelogram will violate the Costas property
if these four ones are equidistant. However, since one can think of a set of
four equidistant ones lying on a single line as two L3-configurations, we only
consider L3- and P4-configurations as violation causes to the Costas property;
let us call them forbidden configurations. We denote by FC(X) the total
number of forbidden configurations in X, where X is a permutation matrix
of size n. The matrices in Figure 4.1 shows such forbidden configurations.
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•

•

•

L3-configuration

•

•
•

•

P4-configuration

FIGURE 4.1: Forbidden configurations that violate the Costas
property.

Since the total number of forbidden configurations in a given Costas array
is zero, a given permutation matrix is close to being a Costas array if the
number of forbidden configurations is small. In other words, the fewer
forbidden configurations, the more close to being Costas array. The total
number of forbidden configurations in a given permutation matrix is closely
related to the number of repetitions in each row of its difference triangle table.
One can easily verify that an L3-configuration in a given permutation matrix
represents a pair of displacement vectors with the same length and slope,
showing a repeated value in a row of its difference triangle table. Moreover,
a P4-configuration depicts two pairs of displacement vectors, each of which
has the same length and slope, showing two repeated values in two different
rows of its difference triangle table. Let us provide an example that shows
this relation.

Example 4.2. Figure 4.2 illustrates the permutation matrix X = [1, 2, 3, 6, 4, 5] and
its corresponding difference triangle table. The first two blue entries in the first row
of T(X) correspond to the displacement vectors that form an L3-configuration. The
first and last blue entries in the first row and the repeated brown entries in the fourth
row of T(X) correspond to the displacement vectors that form a P4-configuration.
Similarly, the second and last blue entries in the first row and the repeated red entries
in the third row of T(X) represents a P4-configuration.

•
•

•
•

•
•

X = [1, 2, 3, 6, 4, 5]

1 2 3 6 4 5
1 1 3 -2 1

2 4 1 -1
5 2 2

3 3
4

FIGURE 4.2: Permutation matrix X and its corresponding
difference triangle table, T(X).

In order to compute the total number of forbidden configurations in a
given permutation matrix, we can provide a formula utilizing the difference
triangle table with an extra assumption. Our basic assumption is the
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following. When we count the total number of forbidden configurations,
we consider a P4-configuration as two forbidden configurations. The reason
for preferring this is that since a P4-configuration in a given permutation
matrix shows two pairs of equal values in two different rows of a given
difference triangle table, by counting a P4-configuration as two forbidden
configurations, we only consider repeated values in each row of the
difference triangle table. If one considers a P4-configuration as only
one forbidden configuration, then constructing a formula for this number
becomes much more complicated.

Theorem 4.3. Let X be a permutation matrix of size n. Suppose that ith row
of the difference triangle table of X contains values ai1, ai2, ..., aik with repetitions
ni1, ni2, ..., nik respectively. Then

FC(X) =
n−1

∑
i=1

k

∑
j=1

(
nij

2

)
,

where FC(X) denotes the total number of forbidden configurations in X.

Proof. It can be seen that any two repeated values in a row of T(X) represent
a pair of displacement vectors that form either an L3-configuration or a
pair of displacement vectors of a P4-configuration. Since we consider a P4-
configuration as two pairs of displacement vectors with the same length and
slope, we do not need to find two pairs of repeated values in two different
rows of T(X) to avoid over-counting. It is readily seen that in a given row
i, we have ∑k

j=1 (
nij
2 ) pairs of displacement vectors with the same length

and slope. Summing this expression over all rows of T(X) counts the total
number of forbidden configurations in X. Thus,

FC(X) =
n−1

∑
i=1

k

∑
j=1

(
nij

2

)
,

which completes the proof.

By the definition of a Costas array, we know that a permutation matrix
X is a Costas array if each row of its difference triangle table is
free of duplication. Thus, the Costas array definition is precisely the
property of FC(X) = 0. It follows that having a permutation matrix
with perfect aperiodic autocorrelation property is equivalent to a zero
number of forbidden configurations. It is challenging to design Costas
arrays directly. Since most of the permutation matrices of a given
size n are not Costas arrays, one approach to constructing a Costas
array or a permutation matrix close to a Costas array could be finding
transformations that eliminate or reduce the total number of forbidden
configurations in a permutation matrix which is not a Costas array.
For example, the difference triangle table of the permutation X =
[1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9, 14, 12, 7, 6, 15, 3, 19, 13, 21, 18, 22] is given by
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1 5 2 10 4 20 8 17 16 11 9 14 12 7 6 15 3 19 13 21 18 22
4 -3 8 -6 16 -12 9 -1 -5 -2 5 -2 -5 -1 9 -12 16 -6 8 -3 4
1 5 2 10 4 -3 8 -6 -7 3 3 -7 -6 8 -3 4 10 2 5 1
9 -1 18 -2 13 -4 3 -8 -2 1 -2 -8 3 -4 13 -2 18 -1 9
3 15 6 7 12 -9 1 -3 -4 -4 -3 1 -9 12 7 6 15 3

19 3 15 6 7 -11 6 -5 -9 -5 6 -11 7 6 15 3 19
7 12 14 1 5 -6 4 -10 -10 4 -6 5 1 14 12 7

16 11 9 -1 10 -8 -1 -11 -1 -8 10 -1 9 11 16
15 6 7 4 8 -13 -2 -2 -13 8 4 7 6 15
10 4 12 2 3 -14 7 -14 3 2 12 4 10
8 9 10 -3 2 -5 -5 2 -3 10 9 8

13 7 5 -4 11 -17 11 -4 5 7 13
11 2 4 5 -1 -1 5 4 2 11
6 1 13 -7 15 -7 13 1 6
5 10 1 9 9 1 10 5

14 -2 17 3 17 -2 14
2 14 11 11 14 2

18 8 19 8 18
12 16 16 12
20 13 20
17 17
21

One can verify that FC(X) = 122. We can construct the permutation
sequence Y = [1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9, 22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14]
from X as follows: we split the permutation sequence X into two equal
pieces, let us denote them by X1 = [1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9] and X2 =
[14, 12, 7, 6, 15, 3, 19, 13, 21, 18, 22], and then if we reverse the ordering of
the elements in X2, we obtain X3 = [22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14]. By
concatenating X1 and X3, we obtain Y with the following difference triangle
table.

1 5 2 10 4 20 8 17 16 11 9 22 18 21 13 19 3 15 6 7 12 14
4 -3 8 -6 16 -12 9 -1 -5 -2 13 -4 3 -8 6 -16 12 -9 1 5 2
1 5 2 10 4 -3 8 -6 -7 11 9 -1 -5 -2 -10 -4 3 -8 6 7
9 -1 18 -2 13 -4 3 -8 6 7 12 -9 1 -18 2 -13 4 -3 8
3 15 6 7 12 -9 1 5 2 10 4 -3 -15 -6 -7 -12 9 -1

19 3 15 6 7 -11 14 1 5 2 10 -19 -3 -15 -6 -7 11
7 12 14 1 5 2 10 4 -3 8 -6 -7 -12 -14 -1 -5

16 11 9 -1 18 -2 13 -4 3 -8 6 -16 -11 -9 1
15 6 7 12 14 1 5 2 -13 4 -3 -15 -6 -7
10 4 20 8 17 -7 11 -14 -1 -5 -2 -10 -4
8 17 16 11 9 -1 -5 -2 -10 -4 3 -8

21 13 19 3 15 -17 7 -11 -9 1 5
17 16 11 9 -1 -5 -2 -10 -4 3
20 8 17 -7 11 -14 -1 -5 -2
12 14 1 5 2 -13 4 -3
18 -2 13 -4 3 -8 6
2 10 4 -3 8 -6

14 1 5 2 10
5 2 10 4
6 7 12

11 9
13

As we can see, there is no repetition in each row of T(Y), showing FC(Y) = 0.
This simple transformation eliminated all forbidden configurations in X. The
array X in this example has a particular property that we will discuss in the
next section in more detail.
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4.2 Odd Permutation

As discussed in the introductory part of this chapter, we will discuss the
Costas property of odd permutations in this section. What follows is the
definition of odd permutations.

Definition 4.4. Let f : [n] −→ [n] be a permutation of even size n. We say f is an
odd permutation if for all 1 ≤ i ≤ n, we have

f (i) + f (n + 1 − i) = n + 1.

Theorem 4.5. Let f : [n] −→ [n] be an odd permutation of even size n. Then f is
not a Costas permutation.

Proof. Let us take two consecutive elements in permutation [ f (i)], i ∈ [n].
We claim that there exist a duplicate value in the first row of its difference
triangle table. Let us take f (x) and f (x + 1) such that 1 ≤ x ≤ n

2 − 1. Since f
is an odd permutation, we have

f (x + 1)− f (x) = (n + 1 − f (n − x))− (n + 1 − f (n + 1 − x))
= f (n − x + 1)− f (n − x).

It is easy to check that f (n − x + 1) and f (n − x) are also consecutive
elements. Thus, the value f (n − x + 1) − f (n − x) is also appear in the
first row of the difference triangle table of f . Since n − x + 1 ̸= x + 1 and
x ̸= n − x, then f can not be a Costas permutation.

Since we can think of the set of dots’ position in a permutation matrix as a
subset of Zn × Zn, it is worthwhile to study permutation polynomials over
Zn and their property to see if a particular permutation polynomial gives a
Costas array or not. A polynomial f (x) = a0 + a1x + a2x2 + ... + arxr with
integral coefficients is called a permutation polynomial over a finite ring if
it induces a bijective map from the ring to itself. We are mainly interested
in permutation polynomials over Zn and Fq. In what follows, we denote by
Zn[x] the polynomial ring over Zn.

Definition 4.6 (Odd Permutation Polynomial). Let Zn denote the ring of
integers modulo n, where n ∈ N is an odd positive integer. A permutation
polynomial f ∈ Zn[x] is an odd permutation polynomial if f (−x) = − f (x) for
all x ∈ Zn.

The reason for discussing odd permutation polynomials is that zero is a
fixed point of any odd permutation polynomial f ∈ Zn[x]. Suppose that
f (x) = a0 + a1x + a2x2 + ... + arxr is an odd permutation polynomial over
Zn of degree r. Since f (−x) = − f (x) for all x ∈ Zn, then f (0) = − f (0)
implies a0 = 0. Thus f (0) = 0. Consequently, after removing zero,
we still have a permutation on elements of {1, ..., n − 1}. This property
allows us to construct an odd permutation from an odd permutation
polynomial. The following observation reveals our intention of constructing
odd permutations from odd permutation polynomials.
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Observation 4.7. A permutation polynomial f ∈ Zn[x], where n is an odd integer,
will give rise to an odd permutation.

Proof. Since f is an odd permutation polynomial with f (0) = 0, we can
construct a permutation matrix of size n − 1 by placing a dot at position
(i, f (i)), where 1 ≤ i ≤ n − 1. Let us represents this matrix by X =
[ f (1), . . . , f (n − 1)], so X represents a permutation of even size m := n − 1
with the property that for all 1 ≤ i ≤ m we have:

f (i) + f (m + 1 − i) = f (i) + f (n − i)
= f (i) + f (−i)
= f (i)− f (i)
= m + 1.

Thus, X corresponds to an odd permutation.

As a corollary of Theorem 4.5, we can see that odd permutation polynomials
over Zn will not produce Costas permutations.

Corollary 4.8. Let f ∈ Zn[x] be an odd permutation polynomial over Zn, where n
is an odd integer. Then the permutation [ f (i)], i ∈ Zn is not a Costas permutation.

Proof. The proof is the same as the proof of Theorem 4.5.

Permutation polynomials have been broadly studied since the 19thcentury,
and extensive research has been carried out on finding permutation
polynomials over finite fields. In order to have some examples of odd
permutation polynomials over a finite field, we collect the following
theorems from Xiang-dong Hou’s survey of recent advances on permutation
polynomials over finite fields [32].

Theorem 4.9. ([77]) The power mapping f (x) = xn is an odd permutation
polynomial of Fq if and only if gcd(n, q − 1) = 1.

Theorem 4.10. ([31]) The polynomial f (x) = x2m+1+1 + x3 + x is an odd
permutation polynomial of F22m+1 .

Theorem 4.11. Let s = 3t+1 and a ∈ F32t+1 , where t is a positive integer . Then,
f (x) = x2s+3 + (ax)s − a2x is an odd permutation polynomial of F32t+1 .

Theorem 4.12. ([6]) The polynomial f (x) = x + x2(m+2)/2−1 + x2m−2m/2 + 1,
where m is a positive even integer, is an odd permutation polynomial of F2m

Theorem 4.13. ([68]) Let f (x) = ax + bxq + x2q−1 be a polynomial over Fq2 [x],
where q is odd. Then, f is an odd permutation polynomial if and only if one of the
following is satisfied.

• a = b = 0, q ≡ 1, 3 (mod 6).

• (−a)
q+1

2 = −1 or 3, b = 0.
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• ab ̸= 0, a = b1−q, 1 − 4a
b2 is a square of F∗

q .

• ab(a − b1−q) ̸= 0, 1 − 4a
b2 is a square of F∗

q , b2 − a2bq−1 − 3a = 0.

The above theorems give examples of odd permutation polynomials, and the
introduced reference also contains more such examples. Since a permutation
polynomial over Zn induces a bijective map from Zn to itself, we can
represent it with a permutation matrix. From now on, we regard the
difference triangle table of a permutation polynomial as the difference
triangle table of its corresponding permutation matrix.

4.3 G-symmetric and Odd Permutations

The previous section discussed the Costas property of odd permutations.
Although odd permutations do not have the Costas property, we will
introduce a transformation from which we considerably reduce the number
of forbidden configurations in these permutation matrices. We are mainly
interested in odd permutations because there is a close tie between odd
permutations and G-symmetric permutations. Essentially, it is possible to
construct a G-symmetric permutation from a given odd permutation. Let us
explain how we can transform an odd permutation to obtain a G-symmetric
permutation, and then we will investigate how this procedure may reduce
the total number of forbidden configurations. Let X = [ f (1), . . . , f (n)] be
an odd permutation on elements {1, 2, ..., n}, where n is an even integer. Let
us split the permutation X into two equal pieces, X1 = [ f (1), f (2), ..., f (n

2 )]
and X2 = [ f (n

2 + 1), f (n
2 + 2), ..., f (n)]. We reverse the ordering of the second

piece to obtain X′
2 = [ f (n), f (n − 1), . . . , f (n

2 + 1)]. Then we concatenate
X1 and X′

2 to obtain permutation Y = [ f (1), f (2), ..., f (n
2 ), f (n), f (n −

1), ..., f (n
2 + 1)]. Let us denote this transformation by G. The following

definition gives the formal definition of the transformation G.

Definition 4.14 (Transformation G). Let X = [ f (1), f (2), . . . , f (n)] be an odd
permutation, where n is an even integer. We define a bijective map g : [n] −→ [n],
by

g(i) =


f (i) 1 ≤ i ≤ n

2

f
(3n

2 + 1 − i
) n

2 + 1 ≤ i ≤ n.

We denote the corresponding permutation matrix g by G(X).

Theorem 4.15. Let f : [n] −→ [n], where n is an even integer, be an odd
permutation with the corresponding permutation matrix X, then G(X), as in
Definition 4.14, has the G-symmetric property.

Proof. To prove that G(X) has the G-symmetric property, we need to show
that for all 1 ≤ i ≤ n

2 , we have g(i) + g
(n

2 + i
)
= n + 1. From the definition
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of G(X) and the fact that 1 + n
2 ≤ i + n

2 ≤ n, we can conclude that

g(i) + g
(n

2 + i
)
= f (i) + f

(3n
2 + 1 − n

2 − i
)

= f (i) + f (n − i + 1)
= f (i) + n + 1 − f (i)
= n + 1.

The third equality holds because f is an odd permutation. Thus G(X) has the
G-symmetric property.

Although a Costas array is a permutation matrix with no forbidden
configurations, one may ask which permutation matrix contains the maximal
number of forbidden configurations. The following theorem provides an
answer to this question.

Theorem 4.16. Let In and An be the identity matrix of size n, n ∈ N, and the
anti-diagonal matrix of 1’s of size n, respectively. Among all permutation matrices
of size n, In and An contain the maximal number of forbidden configurations.

Proof. Suppose X is a permutation matrix of size n. A maximum number of
common points occurs if each row of its difference triangle table has elements
with the same values, which can only happen if X is of the form [a, a + t, a +
2t, . . . , a + nt] for some integer a, t ∈ [n], but X can be a permutation on n
elements if a = i = 1 or a = n and i = −1. It follows that X is either In or
An.

Another relevant question that one can ask is how many forbidden
configurations the identity matrix contains. The result is

Theorem 4.17. For n ≥ 2, let In be the identity matrix of size n. Then the number
of forbidden configurations in In is

FC(In) =

(
n
3

)
.

Proof. It is easy to verify that in row i, 1 ≤ i ≤ n− 1, of the difference triangle
table of In, we have n − i elements with a value equal to i. It follows that the
number of forbidden configurations in In can be calculated as follow

FC(In) =
n−1

∑
i=1

(
n − i

2

)
=

n−1

∑
j=0

(
j
2

)

=
n−1

∑
j=0

j(j − 1)
2
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=
1
2

n−1

∑
j=0

j2 +
1
2

n−1

∑
j=0

j

=
1
2

(
n(n − 1)(2n − 1)

6
− n(n − 1)

2

)
=

n(n − 1)(2n − 4)
12

=
n(n − 1)(n − 2)

6

=

(
n
3

)
.

Let us note that the identity matrix is also an odd permutation. Then, in
order to have a better understanding of the transformation G’s effect on
the number of forbidden configurations in a given odd permutation, we
subsequently can apply the transformation G on an identity matrix to see
how much will be the reduction in the number of forbidden configurations.
We realized that the transformation G significantly reduces the number of
forbidden configurations in a given identity permutation. We will state a
theorem that indicates the desired reduction.

Theorem 4.18. Let In be an identity permutation of size n, where n is an even
integer. Then

FC(G(In)) =



n
2−1

∑
i=1

2
(

i
2

)
n
2 is even

n−2
4
∑

i=1
2
(n−2i

2
2

)
+

n
2−1

∑
i=n+2

4

[(n−2i
2
2

)
+

(n−2i+2
2
2

)]
n
2 is odd

where FC(G(In)) is the total number of forbidden configuration of G(In) as in
Theorem 4.3, and G is the transformation introduced in Definition 4.14.

Proof. Let us take a row i of the difference triangle table of G(In). Taking
Lemma 2.45 into account, it is easy to verify that in a row i, the first n−2i

2
elements in T1’s region have the value equal to i, and the i elements in T3’s
region are of the form (n − k) − (n

2 − (i − (k + 1))) for some integer k in
{0, 1, ..., i − 1}, and the n−2i

2 elements in T2’s region have the value equal to
−i. In other words, row i is as follows

[ i, i, . . . , i︸ ︷︷ ︸
n−2i

2 −times

, (n − 1)− (n
2 − (i − 2)), . . . , n − (i − 1)− n

2︸ ︷︷ ︸
i−times

,−i,−i, . . . ,−i︸ ︷︷ ︸
n−2i

2 −times

]

To compute the number of forbidden configurations in this row, we first show
that none of the elements in the T3’s region can be equal. In fact, if for some
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distinct integers k1 and k2 in {0, 1, ..., i − 1} we have

(n − k1)− (n
2 − (i − (k1 + 1))) = (n − k2)− (n

2 − (i − (k2 + 1))),

then we obtain k1 = k2. On account of Lemma 2.45, since each row of
T3’s region is free of duplication, each row of T4’s region is also free of
duplication. Thus, for computing the number of forbidden configurations,
we can consider the rows of difference triangle table for 1 ≤ i ≤ n

2 − 1.
Moreover, we claim that all the elements in T3’s region are positive integers.
Suppose, contrary to our claim, that

(n − k)− (n
2 − (i − (k + 1))) < 0.

Thus, we can conclude that n
2 + i < 2k + 1. We also know that k ≤ i − 1

which means that 2k + 1 ≤ 2i − 1. Thus, n
2 + i < 2i − 1. This contradicts our

assumption of i < n
2 .

So far, we showed that all elements in the T3’s region of the row i are distinct
and positive, which means there is no intersection between T3 and T2’s region
in the row i. Since all the elements in T3’s region are distinct, then T1 and T3’s
region can have at most one element in common. In other words, there is
only the possibility that there exist an element in T3’s region with a value
equal to i.
Suppose that

(n − k)− (n
2 − (i − (k + 1))) = i for some integer k ∈ {0, 1, . . . , i − 1}.

Thus, n
2 = 2k + 1. Therefore, the proof falls naturally into two cases.

1) if n
2 is even, there is no intersection between T1 and T3’s regions in the

row i. Therefore, in this row, there are n−2i
2 elements with a value equal

to i, and n−2i
2 elements with a value equal to −i. Thus, the total number

of forbidden configurations in G(In) is

n
2−1

∑
i=1

2
(n−2i

2
2

)
=

n
2−1

∑
i=1

2
(

i
2

)
.

2) suppose that n
2 is odd. Since n

2 = 2k + 1, k = n−2
4 . We know that

k ≤ i − 1, which means i ≥ n+2
4 . Therefore, in the T1 and T3’s regions,

there are n−2i
2 + 1 elements with a value equal to i, and there are n−2i

2
elements with a value equal to −i in the T2’s region. From this we
conclude that the number of forbidden configurations can be computed
as follows

n−2
4

∑
i=1

2
(n−2i

2
2

)
+

n
2−1

∑
i=n+2

4

[(n−2i
2
2

)
+

(n−2i+2
2
2

)]
.
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The above theorem implies that reducing the number of forbidden
configurations in an odd permutation might be possible by applying the
transformation G. Intuition and computational experiments suggest that
the transformation G reduces the number of the forbidden configurations
in all odd permutations of even size n significantly. Our computational
experiments revealed that for all odd permutations of even size up to size
14, the transformation G always reduces the total number of forbidden
configurations. Moreover, random sample checks for n ≤ 200 confirm
that transforming an odd permutation to a G-symmetric one will result in
fewer forbidden configurations. Figure 4.3 illustrates the transformation G’s
effect on all odd permutations of even sizes up to size 14. In these figures,
each vertical line contains two points, one red and one blue point. The red
points show FC(X), where X is an odd permutation, and the blue points
show FC(G(X)). We will formulate the following conjecture based on these

FIGURE 4.3: The number of the forbidden configurations of all
odd permutations of sizes 6 − 14 and their corresponding G-

symmetric permutations.
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experimental computations.

Conjecture 4.19. Let X = [ f (1), f (2), ..., f (n)] be an odd permutation of even size
n, where n ∈ N is a positive integer. Then, G(X) has fewer forbidden configurations
than X.

In order to facilitate comparisons of the reduction in the number of
forbidden configurations in a given odd permutation and its corresponding
G-symmetric array, we computed the ratio of the number of forbidden
configurations in a given G-symmetric permutation divided by the number
of forbidden configurations in its corresponding odd permutation. In other
words, each point shows the value FC(G(X))

FC(X)
, where X is an odd permutation.

This result is shown in Figure 4.4. One can easily verify that this ratio is
always less than 1, meaning the reduction in all cases has been achieved.
It is worth noting that in order to provide a theoretical proof for Conjecture
4.19, one can not show that in each row of the difference triangle table
of G(X), where X is any odd permutation, we obtain fewer forbidden
configurations by reducing the number of repeated values, which will lead
to fewer forbidden configurations in total. Let us provide an example for this
remark.

Example 4.20. Consider the odd permutation X = [5, 7, 3, 2, 10, 1, 9, 8, 4, 6]. We
obtain the G-symmetric permutation G(X) = [5, 7, 3, 2, 10, 6, 4, 8, 9, 1] by applying
the transformation G. We construct their difference triangle tables as follows.

5 7 3 2 10 1 9 8 4 6
2 -4 -1 8 -9 8 -1 -4 2
-2 -5 7 -1 -1 7 -5 -2
-3 3 -2 7 -2 3 -3
5 -6 6 6 -6 5
-4 2 5 2 -4
4 1 1 4
3 -3 3
-1 -1
1

5 7 3 2 10 6 4 8 9 1
2 -4 -1 8 -4 -2 4 1 -8
-2 -5 7 4 -6 2 5 -7
-3 3 3 2 -2 3 -3
5 -1 1 6 -1 -5
1 -3 5 7 -9
-1 1 6 -1
3 2 -2
4 -6
-4

Utilizing Theorem 4.3, one can verify that FC(X) = 20(2
2) = 20 and FC(G(X)) =

4(2
2) + (3

2) = 7. As we can see, the number of forbidden configurations has been
reduced considerably, but three repeated values of 3 have occurred in the third row
of the difference triangle table of G(X), showing the transformation G results in an
arrangement of some points that constitute more forbidden configurations. In other
words, there is a local increase in the number of forbidden configurations, but in
total, the number of forbidden configurations has reduced.

We saw in Theorem 4.9 that the mappings of form f (x) = xd over finite
fields with q elements, where q is a prime power, give odd permutation
polynomials if gcd(d, q − 1) = 1. In our case of interest, we consider the
permutation polynomial f (x) = xp−2 over Fp, where p is an odd prime. This
function is known as inverse mapping through literature. Due to several
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FIGURE 4.4: The values FC(G(X))
FC(X)

, where X is an odd
permutation of even sizes 4 − 14.

applications of inverse functions that we will discuss in the next section, we
decided to accomplish an experimental computation to assess the validity
of Conjecture 4.19 for this function. Let us provide an example of the
transformation G’s effect on inverse function over a finite field.

Example 4.21. Let f (x) = x9 be the inverse function over F11. The permutation
corresponds to f for 1 ≤ x ≤ 10 is X = [1, 6, 4, 3, 9, 2, 8, 7, 5, 10], and then G(X) =
[1, 6, 4, 3, 9, 10, 5, 7, 8, 2]. Let us draw the difference triangle table of X and G(X).
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1 6 4 3 9 2 8 7 5 10
5 −2 −1 6 −7 6 −1 −2 5
3 −3 5 −1 −1 5 −3 3
2 3 −2 5 −2 3 2
8 −4 4 4 −4 8
1 2 3 2 1
7 1 1 7
6 −1 6
4 4
9

1 6 4 3 9 10 5 7 8 2
5 −2 −1 6 1 −5 2 1 −6
3 −3 5 7 −4 −3 3 −5
2 3 6 2 −2 −2 −3
8 4 1 4 −1 −8
9 −1 3 5 −7
4 1 4 −1
6 2 −2
7 −4
1

Using Theorem 4.25 we can compute the number of forbidden configurations in X
as follows.

9

∑
i=1

⌊
10−i

2

⌋ (2
2

)
= 4 + 4 + 3 + 3 + 2 + 2 + 1 + 1 + 0 = 20.

Using Theorem 4.3, we have

FC(G(X)) = 2
(

2
2

)
+ 2
(

2
2

)
+

(
2
2

)
+

(
2
2

)
= 6.

As we expected, the number of forbidden configurations drops significantly.
Therefore, G(X) has fewer violations to the Costas property than X.

Turning to the experimental evidence, we computed the number of
forbidden configurations of odd permutations constructed by inverse
functions and their transformed version using the transformation G over
a finite field Fp for prime 5 ≤ p ≤ 977, and we visualized the result in
Figure 4.5. Figure 4.5 illustrates that the number of forbidden configurations
has been reduced by applying the transformation G on the inverse function
over Fp, 5 ≤ p ≤ 977. This case study also provides more evidence of the
validity of Conjecture 4.19. To have a better estimation of these reductions,
we computed the ratio between FC(X) and FC(G ′(X)), as shown in Figure
4.6. Figure 4.6 shows that the number of forbidden configurations has been
reduced significantly. Our further analysis showed that for 37 ≤ p ≤ 997,
more than 65% of forbidden configurations have been eliminated after being
transformed by G. The following section will discuss odd permutation
polynomials more in a periodic setting.
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FIGURE 4.5: Values of FC(X) and FC(G(X)), where X is an
odd permutation constructed by inverse function over Fp, for
5 ≤ p ≤ 997: the blue and red dots correspond to FC(X) and

FC(G(X)), respectively.

FIGURE 4.6: Values of FC(G(X))
FC(X)

, where X is an odd permutation
constructed by an inverse function over finite field Fp, for

prime 5 ≤ p ≤ 997.

4.4 PN/APN mappings

Our investigation of finding an odd permutation X with the property that
G(X) is close to being a Costas array resulted in an interesting observation
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related to permutation polynomials with low differential uniformity. If we
want to stay as close as possible to a Costas array, we require a permutation
with a small number of forbidden configurations. Regarding Theorem 4.2,
we know that if we have a small number of repetitions in each row of
the difference triangle table of a given permutation, we also have a small
number of forbidden configurations. Suppose X = [ f (1), f (2), ..., f (n)] is a
permutation of size n. For any given permutation f : [n] −→ [n], we can
define a function f ′ : Zn −→ Zn such that {(x, f ′(x)) : x ∈ Zn} expresses
the set of position of dots in the permutation matrix X. It follows that we can
think of an element b, where 1 − n ≤ b ≤ n − 1, in a row i, 1 ≤ i ≤ n − 1, of
the difference triangle table of X as a solution to the equation

f ′(x + i)− f ′(x) = b, for all 1 ≤ x ≤ n − i. (4.1)

Hence, to avoid repetitions in each row of a difference triangle table, we
want Equation (4.1) to have few solutions. It can be seen that any solution to
Equation (4.1) is also a solution to the following equation:

f ′ ((x + i) mod (n))− f ′(x) ≡ b mod (n), for x, b ∈ Zn, (4.2)

but not the other way around. Thus, the number of solutions of Equation
(4.2) provides an upper bound for the number of solutions of Equation (4.1).
This attitude helps to investigate the differential properties of functions that
express the set of points in permutation matrices [93].
Let G1 and G2 be two Abelian groups of the same size n, and let f be a
mapping between these two Abelian groups, f : G1 −→ G2. For a ∈ G1,
a ̸= 0 and b ∈ G2, let us denote the number of solutions x ∈ G2 of
f (x + a)− f (x) = b by N(a, b) and let

△ f= max{N(a, b)|a ∈ G1, a ̸= 0 and b ∈ G2}.

According to Nyberg [90], a mapping f is called differentially k-uniform if
△ f= k. When k is small, f is considered a mapping with low differential
uniformity.
Mappings with low differential uniformity have been extensively studied,
especially in the last 30 years. This concept is a significant area of interest
within the field of cryptography, geometry, combinatorics and coding theory.
For applications in cryptography, one would prefer mappings for which △ f
is as small as possible. Mappings with low differential uniformity meet our
desire to have as few forbidden configurations as possible. The mapping f
for which △ f= 1 is called perfect nonlinear (PN). Moreover, those mappings
for which △ f= 2 are called almost perfect nonlinear (APN). Drakakis, Gow
and McGuire have already connected the two topics of APN mappings and
Costas arrays in [37], where they showed the Welch construction for Costas
arrays gives APN permutations, f : Zp−1 −→ Zp−1, where p is a prime.
They also mentioned some critical differences between Costas arrays and PN
or APN mappings. Firstly, PN/APN mappings are defined to be mappings
between two Abelian groups with the same cardinality, whereas Costas
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arrays are defined on integers {1, 2, ..., n}. Secondly, PN/APN mappings are
not necessarily permutations. Lastly, PN/APNness is a periodic property
because, for these mappings, x + a could not fall outside the mapping’s
domain, while this can happen for Costas permutations.
A noticeable fact about APN permutation functions is that the APN property
is a periodic property, implying that when its corresponding permutation
matrix is wrapped on a torus, it can not have three or more displacement
vectors with the same length and slope. Let us explain how we associate a
matrix to an odd permutation polynomial.

Definition 4.22. Let f ∈ Zn[x] be an odd permutation polynomial. The
corresponding matrix of f is an n × n matrix constructed through the two following
steps:

1) First, we construct a permutation matrix of size n − 1, say X =
(
xi,j
)
, 1 ≤

i, j ≤ n − 1, where the entries are given by

xi,j =

{
1 if i = f (j)
0 otherwise.

2) Next, we extend the constructed permutation matrix X in the previous step by
an empty column to the left and then an empty row at the bottom.

Let us note that the reason for appending an empty column and row is that
an odd permutation polynomial maps 0 to 0.

Example 4.23. Consider the permutation polynomial f (x) = x3 over Z11. It can
be seen that X = [1, 8, 5, 9, 4, 7, 2, 6, 3, 10] represents a permutation matrix of size
10 for all 1 ≤ x ≤ 10. By extending X with an empty column to the right and
then an empty row at the bottom, we obtain the following corresponding matrix to
the permutation polynomial f .

•
•

•
•

•
•

•
•

•
•

The critical point to note here is that for an odd APN permutation function
on Zn, the property of mapping the element zero to zero plays an important
role. We saw in Theorem 4.25 that since we remove the element zero
to construct an odd permutation from an odd APN permutation, it is
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worthwhile to discuss its effect on both periodic and aperiodic properties
of its corresponding permutation matrix. According to the definition of the
corresponding matrix to an odd permutation, as in Definition 4.22, removing
zero leads to removing the empty row and column. Although removing zero
in an aperiodic setting will not cause any problems, it will be problematic
in a periodic setting, which may change the whole periodic property of
the permutation matrix. In other words, removing zero might increase the
maximum value of the periodic autocorrelation function values, whereas the
maximum value of the aperiodic autocorrelation function will not increase.
Let us provide an example for this comment.

Example 4.24. Consider the corresponding matrix to the permutation polynomial
f (x) = x3 over Z11, as in Example 4.23, with the following periodic autocorrelation
matrix

Cp
X =



0 2 0 0 1 2 2 0 2 0 0 0 2 0 0 1 2 2 0 2 0
0 1 2 0 2 0 0 2 2 0 0 0 1 2 0 2 0 0 2 2 0
1 0 0 2 0 0 2 2 0 2 0 1 0 0 2 0 0 2 2 0 2
2 2 1 0 0 0 0 2 0 2 0 2 2 1 0 0 0 0 2 0 2
0 0 0 1 2 2 2 0 0 2 0 0 0 0 1 2 2 2 0 0 2
2 0 0 2 2 2 1 0 0 0 0 2 0 0 2 2 2 1 0 0 0
2 0 2 0 0 0 0 1 2 2 0 2 0 2 0 0 0 0 1 2 2
2 0 2 2 0 0 2 0 0 1 0 2 0 2 2 0 0 2 0 0 1
0 2 2 0 0 2 0 2 1 0 0 0 2 2 0 0 2 0 2 1 0
0 2 0 2 2 1 0 0 2 0 0 0 2 0 2 2 1 0 0 2 0
0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0
0 2 0 0 1 2 2 0 2 0 0 0 2 0 0 1 2 2 0 2 0
0 1 2 0 2 0 0 2 2 0 0 0 1 2 0 2 0 0 2 2 0
1 0 0 2 0 0 2 2 0 2 0 1 0 0 2 0 0 2 2 0 2
2 2 1 0 0 0 0 2 0 2 0 2 2 1 0 0 0 0 2 0 2
0 0 0 1 2 2 2 0 0 2 0 0 0 0 1 2 2 2 0 0 2
2 0 0 2 2 2 1 0 0 0 0 2 0 0 2 2 2 1 0 0 0
2 0 2 0 0 0 0 1 2 2 0 2 0 2 0 0 0 0 1 2 2
2 0 2 2 0 0 2 0 0 1 0 2 0 2 2 0 0 2 0 0 1
0 2 2 0 0 2 0 2 1 0 0 0 2 2 0 0 2 0 2 1 0
0 2 0 2 2 1 0 0 2 0 0 0 2 0 2 2 1 0 0 2 0


Since there in no value greater than or equal to 3 in the matrix Cp

X, except the
value 10 which is the value at (0, 0) shift, we can conclude that the permutation
X has the APN property. If we remove the empty column and empty row X, we
obtain a permutation Y = [1, 8, 5, 9, 4, 7, 2, 6, 3, 10] with the following periodic
autocorrelation matrix
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Cp
Y =



1 2 0 0 1 4 0 2 0 0 1 2 0 0 1 4 0 2 0
0 0 2 2 0 0 2 4 0 0 0 0 2 2 0 0 2 4 0
1 0 1 2 0 2 0 0 4 0 1 0 1 2 0 2 0 0 4
2 2 0 0 4 0 2 0 0 0 2 2 0 0 4 0 2 0 0
2 0 3 0 0 0 3 0 2 0 2 0 3 0 0 0 3 0 2
0 0 2 0 4 0 0 2 2 0 0 0 2 0 4 0 0 2 2
4 0 0 2 0 2 1 0 1 0 4 0 0 2 0 2 1 0 1
0 4 2 0 0 2 2 0 0 0 0 4 2 0 0 2 2 0 0
0 2 0 4 1 0 0 2 1 0 0 2 0 4 1 0 0 2 1
0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0
1 2 0 0 1 4 0 2 0 0 1 2 0 0 1 4 0 2 0
0 0 2 2 0 0 2 4 0 0 0 0 2 2 0 0 2 4 0
1 0 1 2 0 2 0 0 4 0 1 0 1 2 0 2 0 0 4
2 2 0 0 4 0 2 0 0 0 2 2 0 0 4 0 2 0 0
2 0 3 0 0 0 3 0 2 0 2 0 3 0 0 0 3 0 2
0 0 2 0 4 0 0 2 2 0 0 0 2 0 4 0 0 2 2
4 0 0 2 0 2 1 0 1 0 4 0 0 2 0 2 1 0 1
0 4 2 0 0 2 2 0 0 0 0 4 2 0 0 2 2 0 0
0 2 0 4 1 0 0 2 1 0 0 2 0 4 1 0 0 2 1


As we can see in the matrix Cp

Y, we have value 4 for all non-zero shifts, showing
that after removing 0, the maximum of the periodic autocorrelation function values
has increased. It is easy to check that we do not increase the maximum value of the
aperiodic autocorrelation functions values by removing 0 because after removing 0,
we delete the first values of each row of the difference triangle table of X and removing
these values will not increase the number of repetitions in each row. Consequently,
the maximum of the aperiodic autocorrelation function values will not increase.

We know that PN permutations do not exist [37]. For this reason, we are
mainly interested in odd APN permutation mappings on Zn for odd integer
n because we know that they will give rise to odd permutations of even sizes,
for which applying the transformation G on such permutations might reduce
the number of forbidden configurations. Moreover, the APN property of
permutations implies that each row of their difference triangle tables can
not contain three or more repeated values. Consequently, since we have
more control over the number of repetitions in each row of the difference
triangle table of odd APN permutations, we can provide a formula to count
the number of forbidden configurations of the odd permutations that we can
construct from them.

Theorem 4.25. Let f : Zn −→ Zn be an odd APN permutation function,
where n is an odd integer. Then f gives rise to an odd permutation X =
[ f (1), f (2), ..., f (n − 1)] on elements {1, ..., n − 1} with the property that

FC(X) =
n−1

∑
i=1

⌊
n−i

2

⌋
.

Proof. According to Observation 4.7, we can construct the odd permutation
a permutation X = [ f (1), f (2), ..., f (n − 1)] of even size n − 1 on elements
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{1, ..., n − 1}. In order to compute FC(X), since the function f has APN
property, each row of its difference triangle table could not contain values
that occur more than twice; moreover, since X is an odd permutation of even
size n − 1, we know that for all 1 ≤ i ≤ n − 1, we have f (i) + f (n − i) = n.
Then, in a row k, 1 ≤ k ≤ n − 1, of the difference triangle table of X for
1 ≤ i ≤ n − k we have

f (i + k)− f (i) = n − f (n − k − i)− n − f (n − i) = f (n − i)− f (n − i − k).

It can be seen that this row k contains the following values

[ f (k + 1)− f (1), f (k + 2)− f (2), . . . , f (n − 1)− f (n − 1 − k)] .

It follows that the first
⌊

n−k
2

⌋
values in the row k are the same as the last⌊

n−k
2

⌋
values in this row. Therefore, we can conclude that each row of

the difference triangle table of X contains
⌊

n−k
2

⌋
values that occur precisely

twice. Thus, we have

FC(X) =
n−1

∑
k=1

⌊
n−k

2

⌋ (2
2

)
=

n−1

∑
k=1

⌊
n−k

2

⌋
.

The above theorem also provides an upper bound on the number of
forbidden configurations of any permutation constructed from an APN
function.

Theorem 4.26. Let f : Zn −→ Zn be an APN permutation. Take the
corresponding (n − 1)× (n − 1) matrix X to function f , which is constructed by
placing a dot at the position (i, j), where 1 ≤ i, j ≤ n − 1, if and only if i = f (j);
placing 0 otherwise. Then the number of forbidden configurations in X satisfies

FC(X) ≤
n−1

∑
i=1

⌊
n−i

2

⌋
.

Proof. Since f is an APN permutation, each row of the difference triangle
table of X can not contain a value that occurs more than twice. It follows that
the maximum number of forbidden configurations can be achieved if all the
values in each row of the difference of X appear twice. Since a given row k,
1 ≤ k ≤ n − 1, of the difference triangle table of X contains at most

⌊
n−k

2

⌋
values that occur twice, we have

FC(X) ≤
n−1

∑
k=1

⌊
n−k

2

⌋ (2
2

)
=

n−1

∑
k=1

⌊
n−k

2

⌋
.
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In view of all that has been mentioned so far, an intriguing question is
whether there exist odd APN permutation functions for which applying the
transformation G on odd permutations that we construct from them results
in an acceptable periodic property. In the rest of this section, we will follow
this point of view for a particular type of permutation polynomials, namely
inverse functions over finite fields of odd characteristics.
Power mappings with low differential uniformity have mainly been studied
due to their application in cryptography, and these studies showed several
values of d for which the power mapping f (x) = xd over Fq are PN/APN
mappings [8,12,14,31,49,76,120,123–126]. In 1999, Helleseth et al. published
a paper in which they showed that if d = p − 2, where p is an odd prime and
p ≡ 2 (mod 3), the corresponding power mapping over Fp is APN [65]. As
we mentioned earlier, this function is known as the inverse function. Let us
provide an example of the effect of transformation G on an inverse function’s
aperiodic and periodic properties.

Example 4.27. Let f (x) = x9 be a power mapping over F11. Since gcd(9, 10) = 1
and 11 ≡ 2 mod 3, f is an odd APN permutation. The permutation corresponds to
the mapping f for 1 ≤ x ≤ 10 is X = [1, 6, 4, 3, 9, 2, 8, 7, 5, 10], and then G(X) =
[1, 6, 4, 3, 9, 10, 5, 7, 8, 2]. Using Matlab, figures 4.7, 4.8, 4.9 and 4.10 illustrate the
visualization of both the periodic and aperiodic properties of X and G(X).

FIGURE 4.7: Visualization of the periodic autocorrelation
function values of X.
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FIGURE 4.8: Visualization of the periodic autocorrelation
function values of G(X).

FIGURE 4.9: Visualization of the aperiodic autocorrelation
function values of X.

FIGURE 4.10: Visualization of the aperiodic autocorrelation
function values of G(X).

One can verify that applying transformation G on inverse function f (x) =
x9 over F11 has increased the differential uniformity, as shown in Figure
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4.8. This phenomenon raises the question of how much we increase the
differential uniformity of an inverse function over a finite field by applying
the transformation G. As we mentioned earlier, the element zero plays an
essential role, and to utilize the APNness property of the inverse function,
we can not remove zero. Accordingly, we propose the following generalized
definition for the transformation G that takes the role of zero into account.

Definition 4.28. Let f ∈ Zn[x] be an odd permutation function with corresponding
permutation matrix X of size n, where n is an odd integer. We define a bijective map
g′ : Zn −→ Zn by

g′(i) =


f (i) 0 ≤ i ≤ n−1

2

f
(

n−1
2 − i

)
1 + n−1

2 ≤ i ≤ n − 1.

We denote the corresponding permutation matrix g′ by G ′(X).

It would be interesting to assess the differential properties of G ′(X), where X
is a permutation matrix that corresponds to a power mapping xp−2 over Fp,
where p is a prime congruent to 2 modulo 3.

Theorem 4.29. Let f (x) = xp−2 be a mapping over Fp, where p > 2 is a prime
such that p ≡ 2 (mod 3). Let X be the corresponding permutation matrix to the
mapping f , and let G ′ be the transformation introduced in Definition 4.28. Then
G ′(X) represents a differentially at most 6-uniform mapping over Fp.

Proof. It can be seen that G ′(X) corresponds to the mapping g′ : Fp −→ Fp
such that

g′(x) =


xp−2 0 ≤ x ≤ p−1

2(
p−1

2 − x
)p−2

1 + p−1
2 ≤ x ≤ p − 1.

In order to show that g′ is differentially at most 6-uniform, we need to discuss
the number of solutions x ∈ Fp of the equation g′(x + a)− g′(x) = b where
a, b ∈ Fp, which falls naturally into the four following cases:

1) If 0 ≤ x ≤ p−1
2 and 0 ≤ x + a ≤ p−1

2 .

2) If 0 ≤ x ≤ p−1
2 and 1 + p−1

2 ≤ x + a ≤ p − 1.

3) If 1 + p−1
2 ≤ x ≤ p − 1 and 1 + p−1

2 ≤ x + a ≤ p − 1.

4) If 1 + p−1
2 ≤ x ≤ p − 1 and 0 ≤ x + a ≤ p−1

2 .

For case 1, since f (x) is an odd APN mapping and the fact that for x ∈ Fp
and fixed a, b ∈ Fp, we have

b = (x + a)p−2 − xp−2 = (p − x)p−2 − (p − x − a)p−2 .
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This equation shows for a fixed a, b ∈ Fp, if x is a solution of g′(x + a) −
g′(x) = b so is p − x − a. Since 0 ≤ x + a ≤ p−1

2 , we can conclude that
p+1

2 ≤ p − x − a ≤ p. Thus, the equation g′(x + a)− g′(x) = b in the interval
that we considered can admit at most one solution when 0 ≤ x, x + a ≤ p−1

2 .
For case 2, it follows immediately that

g′(x + a)− g′(x) =
(

p−1
2 − x − a

)p−2
− xp−2

=
(

p−1
2 − x − a

)−1
− x−1

=
1

p−1
2 − x − a

− 1
x

=
x − p−1

2 + x + a

x
(

p−1
2 − x − a

)
=

4x + 2a + 1
−2x2 − 2ax − x

.

This shows since g′(x + a)− g′(x) = b is equivalent to the equation

2bx2 + (2ab + b + 4)x + 2a + 1 = 0,

the equation g′(x + a)− g′(x) = b has at most two solutions for any b ∈ Fp.
For case 3, we have

g′(x + a)− g′(x) = (x + a)p−2 −
(

p−1
2 − x

)p−2

= (x + a)−1 −
(

p−1
2 − x

)−1

=
1

x + a
− 2

p − 1 − 2x

=
−1 − 2x − 2(x + a)
(x + a) (−1 − 2x)

=
−4x − 2a − 1

−2x2 − (2a + 1)x − a

=
4x + 2a + 1

2x2 + (2a + 1)x + a
.

Therefore, g′(x + a)− g′(x) = b is equivalent to the equation

2bx2 + (2ab + b − 4)x + ab − 2a − 1 = 0,
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which can have at most two solutions for all b ∈ Fp.
For case 4, we have

g′(x + a)− g′(x) =
(

p−1
2 − x − a

)p−2
−
(

p−1
2 − x

)p−2

=
(

x − p−1
2

)−1
−
(

x + a − p−1
2

)−1
.

Using the same argument as in case 1 yields g′(x + a)− g′(x) = b has at most
one solution for all b ∈ Fp.
Hence, the number of solutions x ∈ Fp of the equation g′(x + a)− g′(x) = b
where a, b ∈ Fp is at most 6 because we get at most one solution from cases 1
and 4, and at most two solutions from cases 2 and 3.

Theorem 4.29 states that applying the transformation G ′ on inverse functions
over a finite field produces permutations with differential uniformity at
most 6. However, it is interesting to question how much we reduce the
number of forbidden configurations by transforming these functions using
G ′. We computed the number of forbidden configurations of permutations
constructed by inverse functions and their transformed version using the
transformation G ′ over a finite field Fp for prime 5 ≤ p ≤ 977, and we
visualized the result in Figure 4.11. For this computational experiment,
we also considered the case where p ≡ 1 mod (3) because the number of
forbidden configurations can be reduced even if the inverse function is not
APN. Moreover, the main difference between this experimental computation
and what was discussed in the previous section is that here we consider the
effect of element zero for computing the number of forbidden configurations.

FIGURE 4.11: Values of FC(X) and FC(G ′(X)), where X is
an inverse function over Fp, for 5 ≤ p ≤ 997, is shown in
this figure. The blue and red dots correspond to FC(X) and

FC(G ′(X)), respectively.
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FIGURE 4.12: Values of FC(X)
FC(G ′(X))

, where X is a permutation
constructed by an inverse function over finite field Fp, for

prime 5 ≤ p ≤ 997.

It is apparent from Figure 4.11 that we obtain a considerable amount of
reduction in the number of forbidden configurations in such permutation
after being transformed by G ′.
In order to have a better estimation of these reductions, we computed
the ratio between FC(X) and FC(G ′(X)), where X is an inverse function
over Fp, as shown in Figure 4.12. Figure 4.12 illustrates that there is
only one permutation (constructed over F5) for which we do not reduce
the number of forbidden configurations by applying the transformation
G ′, and for the others, the required reduction has been achieved. For
prime 37 ≤ p ≤ 977, Figure 4.12 reveals that there has been a sharp
decrease in the number of forbidden configurations, which is indeed
remarkable. Interestingly, it can be seen that for prime 37 ≤ p ≤ 977, the
transformation G ′ can eliminate roughly 65% of forbidden configurations in
such permutations. Further analysis of these results showed that for primes
of the set {13, 17, 19, 31, 37, 47, 53, 59, 79}, their corresponding permutations
are differential 4-uniform, and for other primes in the range mentioned
above, they are either differential 5- or 6-uniform.
Overall, the computational results in this Chapter indicate that the
transformations G and G ′ significantly reduce the number of forbidden
configurations for some odd permutations. However, further work is
required to provide theoretical proof for these findings.
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4.5 Search algorithm for G-symmetric Costas
arrays

In order to search for all G-symmetric Costas arrays of even size n, we do not
need to traverse n! permutation matrices because the elements in the first half
define the elements in the second half of an G-symmetric permutation. To be
more precise, suppose X = [ f (1), . . . , f (n

2 )] is a permutation matrix of size
n
2 , where n is an even integer and f (i) ∈ {1, 2, . . . , n

2}. By subtracting n + 1
from all elements of X, we obtain a permutation Y = [n + 1 − f (1), . . . , n +
1 − f (n

2 )] of size n
2 on elements {n

2 + 1, . . . , n}. By concatenating X and Y,
we construct the G-symmetric permutation Z := [ f (1), . . . , f (n

2 ), n + 1 −
f (1), . . . , n + 1 − f (n

2 )] of size n on elements {1, 2, . . . , n}. Let us note that
swapping any two elements f (i) and n + 1 − f (i) for 1 ≤ i ≤ n

2 will not
violate the G-symmetric property. Hence, we have

(
2n/2 ·

(n
2

)
!
)

G-symmetric
permutations of size n. Consequently, there also exists

(
2n/2 ·

(n
2

)
!
)

odd
permutations of even size n because applying the transformation G on a
given G-symmetric permutation yields an odd permutation. The above
procedure also helps develop a search algorithm for all G-symmetric Costas
arrays of even size n. We implemented the above algorithm using python
language on a Macbook Air system with 1,6 GHz Dual-Core Intel Core
i5 and memory of 8 GB 2133 MHz LPDDR3. The result is shown in the
following table. As we mentioned in the introductory part of this chapter,

TABLE 4.1: The result of searching for all G-symmetric Costas
arrays of even sizes.

Size Number of G-symmetric
Costas arrays

Searching times
(seconds)

4 8 0.017
6 16 0.022
8 16 0.023

10 96 0.099
12 176 1.136
14 124 19.442
16 308 433.375
18 116 10064.090
20 12 153258.804

our motivation for reducing the number of forbidden configurations in a
given permutation matrix is to stay as close as possible to a Costas array. The
algorithm presented above, derived from Theorem 4.15, demonstrates that
G-symmetric Costas arrays can be generated by applying the transformation
G to odd permutations.
Another motivation to study odd permutations is that since exponential
Welch Costas arrays have the G-symmetric property, it is reasonable
to ask what is the property of odd permutations for which applying
transformations G results in G-symmetric Costas arrays. Moreover, using the
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database of all known Costas arrays, one can easily verify that not all known
G-symmetric Costas arrays have been constructed by the exponential Welch
construction method. We have analyzed all the odd permutations X of even
sizes up to size 28, for which G(X) is a G-symmetric Costas array, and we
observed that it is challenging to find a pattern in these odd permutations.
One possible approach to analyzing an odd permutation X with the property
that G(X) is an exponential Welch Costas array is to study the permutation
polynomial that generates X. On the one hand, since exponential Welch
Costas arrays are constructed using an algebraic method over a finite field,
we can easily find the permutation polynomial generating the set of points
in X utilizing the Lagrange interpolation method. On the other hand, while
an exponential Welch Costas array uses a relatively simple permutation
polynomial over a finite field, the odd permutation polynomial obtained
by Lagrange interpolation that produces the set of points in X looks more
complicated, showing finding a pattern even for such odd permutations is
also an arduous task to do. Let us provide an example for this comment.

Example 4.30. Let α = 2 be a primitive element in F11. Take f (x) = x, where
x = αi for 0 ≤ i ≤ 9. Then, we can construct the exponential Welch Costas array
X = [1, 2, 4, 8, 5, 10, 9, 7, 3, 6]. It is easy to verify that applying transformation G on
odd permutation Y = [1, 2, 4, 8, 5, 6, 3, 7, 9, 10] gives the permutation X, G(Y) =
X. Utilizing the Lagrange interpolation Formula, we can check that

g(x) = 6x9 + 6x7 + x5 + 8x3 + 2x over F11 \ {0},

is the permutation polynomial that generates Y.
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Chapter 5

Crosscorrelation Properties of
Costas Arrays

Investigating families of arrays with low pairwise crosscorrelation is
a continuing concern within digital watermarking, multiplexing, and
multiuser systems [36, 82, 111]. Konstantinos Drakakis et al. in [36, 39]
discussed why it is essential to study families of Costas arrays with low
pairwise crosscorrelation. Moreover, the crosscorrelation of Costas arrays
represents a fascinating mathematical problem, showing that this problem
is worth studying for its own sake as a mathematical subject. Chapter 3
mainly discussed the crosscorrelation between two algebraically constructed
Costas arrays at the origin. We introduced a subfamily of Lempel-Golomb
Costas arrays with low crosscorrelation at the origin, and we will discuss
this family in more detail in this chapter. For two main reasons, we also
investigated the maximal crosscorrelation of the family of power mappings
over a finite field. Firstly, while most of the studies of power mappings over a
finite field have considered the periodic properties of these functions, we will
discuss their aperiodic properties. Secondly, we observed a close relationship
between the maximal crosscorrelation of the family of exponential Welch
Costas arrays and power mappings, which is remarkable to note because
the nature of the two families is entirely different. Finally, we will discuss the
effect of our introduced transformation Ak, as in Definition 3.12, on inverse
functions over a finite field to introduce a family of arrays of size p − 1 with
auto- and crosscorrelation 2. This chapter only considers aperiodic auto- and
crosscorrelation between any two arrays, and all the computations will be
performed aperiodically.

5.1 Crosscorrelation of algebraically constructed
Costas arrays

Konstantinos Drakakis et al. in [39] provided computational results for the
maximal crosscorrelation of the families of exponential Welch and Lempel-
Golomb Costas arrays, determined by an exhaustive search, as shown in
Table 5.1. Based on their computational results, they presented several
exciting explanations for their observations and proposed conjectures on
the maximal crosscorrelations of these families. Recently, Domingo Gomez-
Perez and Arne Winterhof in [62] settled some of these conjectures. In
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particular, they provided proof containing the upper bound for the maximal
crosscorrelation of the family of exponential Welch Costas arrays and a
subfamily of Lempel-Golomb Costas arrays.
We will consider the family of exponential Welch and Lempel-Golomb Costas
arrays as follows.
• Family of exponential Welch arrays: for p ≥ 5, the family Wp of Welch
permutations of {1, . . . , p − 1}, that does not contain cyclic shifts of a given
exponential Welch, is

Wp = {[αi mod p] : 0 ≤ i ≤ p − 2 and α is a primitive element of Fp},

of size ϕ(p − 1), |Wp| = ϕ(p − 1), where ϕ is Euler’s totient function.
• Family of Lempel-Golomb arrays: for a prime power q = pm ≥ 4, the
family Gq of Lempel-Golomb permutations of {1, . . . , q − 2} is

Gq =
{

σα,β(j) : 1 ≤ j ≤ q − 2 and α, β are primitive elements of Fq
}

,

where σα,β(j) = logα

(
1 − βj) mod (q − 2). Then, the size of this family is

|Gq| = ϕ2(q−1)
m .

In section 2.3, we defined auto and crosscorrelation of permutation matrices.
Mapping’s representation of permutation matrices could bring advantages
to define the crosscorrelation between two permutation matrices more
practically, as defined in [62].

Definition 5.1 ([62]). The crosscorrelation Ca
f ,g(r, s) between two mappings f , g :

[n] −→ [n] at shift (r, s), where 1 − n ≤ r, s ≤ n − 1, is the number of solutions

x ∈ {max{1, 1 − r}, . . . , min{n, n − r}}

of the equation
f (x) + s = g(x + r). (5.1)

For a family F of matrices, the maximal crosscorrelation, denoted by C(F ), is

C(F ) = max
r,s

max
f ,g∈F
f ̸=g

C f ,g(r, s).

As explained in [39], the red rows of Table 5.1, correspond to the safe primes.
A prime p is safe if it can be written as 2r + 1, where r is also prime. The
number r associated with a safe prime is called Sophie Germain prime. The
following theorem represents the maximal value of the crosscorrelation of
the family of Welch Costas permutations.

Theorem 5.2 ([62]). Let Wp be the family of exponential Costas arrays, where p ≥
5 is a prime, and let t be the smallest prime divisor of p−1

2 . Then the maximal
crosscorrelation of Wp satisfies

C(Wp)

{
≤ 1 +

⌊(
1 − 2

p−1

)√
p
⌋

if p is a safe prime,

= p−1
t otherwise.
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TABLE 5.1: Maximal Crosscorrelation’s value between pairs of
Welch and of Lempel-Golomb Costas arrays: generated in Fp,

where p is a prime.

prime Wp Gp prime Wp Gp prime Wp Gp
5 2 2 79 26 25 179 6 12
7 2 2 83 5 9 181 90 89

11 3 4 89 44 43 191 38 37
13 6 5 97 48 47 193 96 95
17 8 7 101 50 49 197 98 97
19 6 6 103 34 33 199 66 65
23 4 6 107 5 10 211 70 69
29 14 13 109 54 53 223 74 73
31 10 9 113 56 55 227 6 13
37 18 17 127 42 41 229 114 113
41 20 19 131 26 25 233 116 115
43 14 13 137 68 67 239 34 33
47 5 8 139 46 45 241 120 119
53 26 25 149 74 73 251 50 49
59 5 12 151 50 49 257 128 127
61 30 29 157 78 77 263 7 12
67 22 21 163 54 53 269 134 133
71 14 13 167 6 12 271 90 89
73 36 35 173 86 85

Domingo Gomez-Perez and Arne Winterhof in [62], provided proof for the
maximal crosscorrelation of a subfamily of Lempel-Golomb Costas arrays
when one primitive element is considered to be fixed. They considered the
following subfamily.
• The subfamily G ′

q: for q ≥ 4 and a fixed primitive element β of the field Fq,
the subfamily G ′

q of the Lempel-Golomb Costas permutations is defined by

G ′
q =

{
σ′

α,β(j) : 1 ≤ j ≤ q − 2 and α is a primitive element of Fq

}
,

where σ′
α,β(j) =

[
logα

(
1 − βj) mod (q − 2)

]
. Then, the size of this family is

|G ′
q| = ϕ(q − 1).

The following theorem show the maximal crosscorrelation value of the
family G ′

q.

Theorem 5.3 ([62],). Let G ′
q be the subfamily of Lempel-Golomb Costas arrays,

where q ≥ 4 is a prime power. Then the maximal crosscorrelation of this family
satisfies

C(G ′
q)


≤ 1 +

⌊(
1 − 2

q−1

)√
q
⌋

if q is odd and t = q−1
2 ,

≤
⌊(

1 − 1
q−1

) (
1 +

√
q
)⌋

if q is even and t = q − 1,

= p−1
t − 1 otherwise.
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All results presented so far indicate that the crosscorrelation for the family
of Lempel-Golomb Costas arrays is still an open problem. Therefore, it is
worthwhile to discuss why it is a complex problem. Drakakis et al. in
[39], showed how the crosscorrelation for Lempel-Golomb Costas arrays at
a given shift is bounded above by the number of solutions of a particular
polynomial over a finite field. They provided the following theorem
regarding this remark.

Theorem 5.4 ([39]). For a prime power q, let f and g be two Lempel-Golomb
permutations constructed in Fq by the primitive elements α, β and αu, βv,
respectively, where gcd(u, q − 1) = gcd(v, q − 1) = 1. Then, the crosscorrelation
between f and g at (r, s) ∈ Z2 is

Ca
f ,g(r, s) ≤

∣∣{x ∈ Fq : αur(1 − x)u + βvsxv − 1 = 0
}∣∣ , (5.2)

where the equality will achieve if r = s = 0.

The results stated in Theorems 5.3 and 5.4 show that the crosscorrelation
correlation of the subfamily G ′

q of the family of Lempel-Golomb Costas arrays
at a given shift (r, s) ∈ Z2 is the number of solutions of the following
equation

αur(1 − x)u + βsx − 1 = 0 for x ∈ Fq, (5.3)

which is obtained by assuming v = 1 in Theorem 5.4.
As we discussed in the introductory section of this Chapter, it is interesting
to find subfamilies of Costas arrays with low crosscorrelation properties.
Theorem 5.3 shows that the proof of this subfamily of Lempel-Golomb is
heavily dependent on the choice of primitive elements. With this in mind, we
further analyzed the family of Lempel-Golomb Costas arrays to see whether
it is possible to find a subfamily with lower crosscorrelation than the family
of Lempel-Golomb Costas arrays. This analysis, together with asking the
question of the number of solutions of Equation (5.2) if u = v, revealed
that for a particular subfamily of Lempel-Golomb Costas arrays, a lower
maximal crosscorrelation than the family G ′

q could be achieved. We studied
the maximal crosscorrelation of the family of Lempel Costas arrays. The
family of Lempel Costas arrays is defined below.
• Family of Lempel Costas arrays: For a prime power q ≥ 5 we define
the subfamily of Lq of the family of Lempel-Golomb Costas permutations
of {1, . . . , q − 2} by

Lq = {πα,α(j) : 1 ≤ j ≤ q − 2 and α primitive element of Fq},

where πα,α(j) = logα

(
1 − αj) mod (q − 2). Then, the size of this family is

|Lq| = ϕ(q − 1).
By utilizing Theorem 5.4, It can easily be seen that if we consider two
Lempel Costas permutations πα,α and παr,αr , where (r, q − 1) = 1. Then the
crosscorrelation between the two permutations at (u, v) ∈ Z2 is bounded
above by the number of solutions of the polynomial

αru(1 − x)r + αrvxr − 1 = 0 with x ∈ Fq and x /∈ {0, 1}. (5.4)
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TABLE 5.2: Values of the maximal crosscorrelation of two
families of Costas arrays, the family of Lempel Costas arrays

and a subfamily of Lempel-Golomb Costas arrays.

prime C(Lq) C(G ′
q) prime C(Lq) C(G ′

q) prime C(Lq) C(G ′
q) prime C(Lq) C(G ′

q)
4 1 1 32 3 5 83 8 5 149 36 73
5 2 1 37 8 17 89 21 43 151 20 49
7 2 2 41 9 19 97 23 47 157 38 77
8 2 3 43 6 13 101 24 49 163 20 53
9 2 3 47 8 5 103 20 33 167 12 12

11 2 3 49 11 23 107 10 5 169 41 83
13 2 5 53 12 25 109 26 53 173 42 85
16 2 5 59 12 5 113 27 55 179 10 10
17 4 7 61 14 29 121 29 59 181 44 89
19 4 6 64 8 20 125 30 61 191 12 37
23 5 4 67 10 21 127 13 41 193 47 95
25 5 11 71 7 13 128 6 7 197 48 97
27 5 4 73 17 35 131 8 25 199 21 65
29 6 13 79 8 25 137 33 67
31 5 9 81 19 39 139 14 45

We computed the maximal crosscorrelation of the family of Lempel arrays
for prime powers 4 ≤ q ≤ 199 using an exhaustive search. Since the size
of the two families, Lq and G ′

q, are the same, we decided to compare their
maximal crosscorrelation. So, for the prime powers ranging from 4 to 199,
we also exhaustively computed the maximal crosscorrelation of the family
G ′

q,. The result is shown in Table 5.2. Based on these computational results,
we make the following observations:

• Assuming q is a prime power, 9 ≤ q ≤ 199, then the maximal
crosscorrelation of the family of Lempel Costas permutations is
bounded above by

⌊
q−1

4

⌋
.

• If q ̸= 17 and 11 ≤ q ≤ 199 is a prime power such that q ≡ 1 mod (4),
the maximal crosscorrelation of the family of Lempel permutations is
equal to q−1

4 − 1.

• In the red rows, prime powers are safe primes, and for these values of
primes, C(G ′

q) ≤ C(Lq).

• The unique blue rows correspond to the primes congruent to 1 modulo
4, for which the maximal crosscorrelation equals q−1

4 .

• The green rows correspond to even prime powers q such that q − 1 is
also prime. In this case, it seems there is no apparent relation between
C(G ′

q) and C(Lq).

The computational evidence on the maximal crosscorrelation between any
two Lempel Costas arrays suggests the maximal value can be obtained at the
origin if q ≡ 1 mod (4). Then, by assuming u = v = 0 and exhaustively
computing the number of solutions of Equation (5.4) for 4 ≤ q ≤ 541, where
q ≡ 1 mod (4) and q ̸= 9, 17, we observed that the maximum number of
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solutions of (5.4) occurs for r = q−1
2 + 1, which will be q−1

4 − 1. It is also
possible to provide theoretical proof in this case.

Theorem 5.5. Let q ≥ 4 be a prime power such that q ≡ 1 mod (4). Suppose
r = q−1

2 + 1. Then the number of solutions of the diophantine equation

xr + (1 − x)r = 1,

over Fq equals q−1
4 − 1.

Proof. Let α be a primitive element of Fq. Furthermore, assuming x /∈ {0, 1}
(note that x = 0, 1 are always solutions). Since each non-zero element of Fq

can be written as αi for some integer i, then we have x = αi for some integer
1 ≤ i ≤ q − 2. Substituting x = αi into the diophantine equation, yields(

1 − αi
)r

= 1 − αri.

Substituting r = q−1
2 + 1 into the above equation, we obtain

(
1 − αi

) q−1
2 +1

= 1 − α

(
q−1

2 +1
)

i
. (5.5)

Since α
q−1

2 = −1, it follows that

(
1 − αi

) q−1
2 +1

= 1 −
(
−αi

)
. (5.6)

The proof falls naturally into two parts depending on whether(
1 − αi)(q−1)/2

= 1 or
(
1 − αi)(q−1)/2

= −1 by noticing that((
1 − αi

) q−1
2

)2

=
(

1 − αi
)q−1

= 1 =⇒
(

1 − αi
) q−1

2 = ±1.

Case 1. If
(
1 − αi)(q−1)/2

= 1, the left hand side of (5.6) becomes
(
1 − αi).

Considering whether i is odd or even, we have the following two cases

(
1 − αi

)
=

{(
1 − αi) if i is even(
1 + αi) if i is odd

.

Clearly, if i is odd, we have no solutions because it forces αi = 0. But if i is

even, we always have a solution. It is important to note that
(
1 − αi)(q−1)/2

=

1 if
(
1 − αi) is a quadratic residue, and we now that modulo an odd prime

number q, where q ≡ 1 mod (4), half of the residues are quadratic residues.
Although there are q−3

2 − 1 = q−5
2 even numbers between 2 to q − 2, half

of them lead to quadratic residues for 1 − αi. It follows that the number of
solutions of (5.6) is at most q−5

4 . Adding 0 and 1 back into the solutions of
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(5.6) lead to q−5
4 + 2 = q+3

4 = q−1
4 − 1 number of solutions for (5.6), which

completes the proof.

Taking Theorem 5.4 and the data presented in Table 5.2 into account, we can
suggest the following conjecture.

Conjecture 5.6. Let q ≥ 4 be a prime power and 2 ≤ r ≤ q − 2 be an integer
relatively prime to q − 1. Let us denote by Nq the number of solutions of the
diophantine equation xr + (1 − x)r = 1 over Fq. Then, Nq ≤ q−1

4 − 1, where
the inequality becomes an equality if q ≡ 1 mod (4) and r = q−1

2 + 1.

More broadly, research is also needed to determine solutions to the
diophantine equation xr + (1 − x)r = 1 over Fq, where 2 ≤ r ≤ q − 2 is
an integer relatively prime to q − 1.

5.2 Crosscorrelation of power mappings

Due to the practical applications of power mappings over a finite field and
the fact that almost all studies have considered their periodic properties, we
decided to study these objects in an aperiodic setting. This point of view
led to an interesting observation regarding the maximal crosscorrelation of
the two families of power mappings and exponential Welch Costas arrays
generated in Fp, where p is a prime.
We refer the reader to [62] to verify that the proof of Theorems 5.2 and 5.3
is based on character theory; we utilized the same method to provide partial
proof for the family of power mappings discussed in this section. We refer
to [77] for more details on character theory; however, we will provide the
necessary definitions and theorems that we will use.
Exponential sums are essential tools for solving intractable problems
involving integers and real numbers. Character theory provides expressions
for the number of solutions of equations in a finite abelian group [77]. Let f
be an arbitrary map from a finite group G into itself. Then for fixed b in G,
the number of solutions of the equation f (a) = b for all b in G, denoted by
N(b), is given by

N(b) =
1
|G| ∑

a∈G
∑

χ∈G∧
χ( f (a))χ(b), (5.7)

where G∧ is the set of characters of G and the bar denotes complex
conjugation. Equation 5.7 is obtained on account of the orthogonality
relations for characters, which says:
Let χ and ψ be characters of G. Then

1
|G| ∑

a∈G
χ(a)ψ(a) =

{
0 for χ ̸= ψ,
1 for χ = ψ.

(5.8)
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Furthermore, if a and b are elements of G, then we have

1
|G| ∑

a∈G∧
χ(a)χ(b) =

{
0 for a ̸= b,
1 for a = b.

(5.9)

Rudolf Lidl and Harald Niederreiter in [77] discussed that when we
apply the orthogonality relation (5.9) to multiplicative characters of Fq, the
following fundamental identity can be achieved. If a, b ∈ F⋆

q , then

∑
ψ

ψ(a)ψ(b) =

{
0 for a ̸= b,
q − 1 for a = b,

(5.10)

where the sum runs through all multiplicative characters ψ of Fq. Then for
any b ∈ Fq the number of solutions of f (x) = b in Fq, denoted by N, is given
by

N =
1

q − 1 ∑
a∈F⋆

q

∑
ψ

ψ( f (a))ψ(b) (5.11)

on account of 5.10.
In the rest of this section, we study the maximal crosscorrelation of the family
of power mappings defined below.
• Family of power mappings: For a prime p ≥ 5, let f : Fp −→ Fp be a
power mapping, i.e., f (x) ≡ xd mod p, where d ̸= 1 is an integer relatively
prime to p− 1. Since f maps 0 to 0, f generates a permutation of {1, 2, . . . , p−
1} by considering x ∈ Fp \ {0}. Then, the family Pp of power mappings is
defined by

Pp = {[xd mod p] : 1 ≤ x ≤ p − 1, and gcd(d, p − 1) = 1}.

Thus, we have |Pp| = ϕ(p − 1)− 1 because we already excluded d = 1, and
the number of relatively prime integers to p − 1 is given by ϕ(p − 1).
Considering x in a range from 1 to p − 1 allows us to construct a
permutation of size p − 1, the same size as the exponential Welch Costas
arrays constructed over Fp. Consequently, it is possible to compare the
crosscorrelation properties of exponential Welch Costas arrays and power
mappings. Using an exhaustive search, we determined the maximal
crosscorrelation between any two power mappings over Fp, 5 ≤ p ≤
271. Moreover, since the autocorrelation of a given power mapping is not
perfect, we also computed the maximal autocorrelation. Table collects the
information on these computational results. We also provided a detailed
version of Table 5.3 in the Appendix 6, in which one can check what values
of d and which shifts correspond to the maximal value of power mappings’
crosscorrelation generated in Fp.
Using information provided in Table 5.3 and the table in Appendix 6, we can
make the following observations:

• For non-safe primes, the maximal crosscorrelation of the family of
power mapping happens at (0, 0) shift, which is equal to the maximal
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TABLE 5.3: Maximal Crosscorrelation’s value between pairs of
power mappings: generated in Fp, where p is a prime.

prime Wp Pp prime Wp Pp prime Wp Pp
5 2 2 79 26 26 179 6 10
7 2 2 83 5 9 181 90 90
11 3 3 89 44 44 191 38 38
13 6 6 97 48 48 193 96 96
17 8 8 101 50 50 197 98 98
19 6 6 103 34 34 199 66 66
23 4 6 107 5 10 211 70 70
29 14 14 109 54 54 223 74 74
31 10 10 113 56 56 227 6 10
37 18 18 127 42 42 229 114 114
41 20 20 131 26 26 233 116 116
43 14 14 137 68 68 239 34 34
47 5 8 139 46 46 241 120 120
53 26 26 149 74 74 251 50 50
59 5 12 151 50 50 257 128 128
61 30 30 157 78 78 263 7 12
67 22 22 163 54 54 269 134 134
71 14 14 167 6 12 271 90 90
73 36 36 173 86 86

crosscorrelation of the family of exponential Welch Costas arrays, as
shown in Theorem 5.2, this value is equal to p−1

t , where t is the smallest
prime divisor of p−1

2 . We will provide proof for this case.

• For safe primes, the value C(Pp) happens at non-zero shifts. It appears

then that the value C(Pp) is bounded above by
⌈

p−2
p−1

(
1 +

√
p
)⌉

, except
for p = 59. One can easily verify that this upper bound behaves like the
Lempel-Golomb’s upper bound, as in Theorem 5.3. We will give partial
proof for this case.

• For safe primes, except p = 11, 23, 83, the maximal attained for
autocorrelation of a power mapping at a non-zero shift.

Let us discuss the crosscorrelation of the family of Power mappings at (0, 0)
shift (origin). We follow [39] in proving this case.

Theorem 5.7. Let f (x) = xd1 and g(x) = xd2 be power mappings over Fp, where
p ≥ p is a prime and gcd(d1, p − 1) = gcd(d2, p − 1) = 1, and let t be the smallest
prime divisor of p−1

2 . Then

max(Ca
f ,g(0, 0)) = p−1

t
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Proof. In order to compute Ca
f ,g(0, 0), the goal is to solve

xd1 ≡ xd2 mod p. (5.12)

Let α be a primitive element in Fp, then there exists a positive integer m such
that gcd(m, p − 1) = 1 and x = αm. Then, we have

αmd1 ≡ αmd2 mod p ⇔ m(d2 − d1) ≡ 0 mod (p − 1). (5.13)

It is know that 5.13 has exactly gcd(d2 − d1, p − 1) pair-wise incongruent
solutions, and the number of solution of the equation 5.13 can only be a
divisor of p − 1, because the set of solutions of 5.13 form a subgroup of the
group of integers modulo p − 1. When d1 ̸= d2, the maximum number
of solutions of equation 5.13 can be p−1

2 , which happens if and only if
d2 − d1 = p−1

2 . Equivalently, d2 = d1 +
p−1

2 . Since gcd(d2, p − 1) = 1, we
have

1 = gcd(d1 +
p−1

2 , p − 1) = gcd(d1 +
p−1

2 , 2).

So that, d1 +
p−1

2 ≡ 1 mod 2. It follows that p ≡ 3 − 2d1 mod 4 −→ p ≡
1 mod 4. Therefore, it can be seen that

C(Pp) = max
d1,d2∈X

(gcd(d2 − d1, p − 1)) ,

where X = {d : 2 ≤ d ≤ p − 2, gcd(d, p − 1) = 1}, is equal to p−1
2 if p ≡

1 mod 4. Now, Assume that p ̸≡ 1 mod 4. Thus p ≡ 3 mod 4. Let s be a
prime with the property that p ≡ 1 mod s, and let d2 − d1 = k p−1

s , for some
k ∈ [p − 1]. Clearly, we have

gcd(d2 − d1, p − 1) = gcd
(

k p−1
s , k p−1

k

)
= p−1

s gcd(k, s) = p−1
s . (5.14)

Drakakis et al. in [39] have shown that for every prime p ≡ 3 mod 4 and
every prime s with the property that p ≡ 1 mod 2s, equation 5.13 can have
p−1

s roots, which attains its maximum when s is the least possible such prime.

Next we will prove an upper bound for shift (r, s), where s = 0 and arbitrary
r ̸= 0. In other words, we will introduce an upper bound for

max
r ̸=0

max
f ,g∈Pp

C f ,g(r, 0).

In this case, the goal is to solve

xd1 ≡ (x + r)d2 mod p. (5.15)

Before going further, since we will utilize the Weil bound for proving this
case, it seems reasonable to state the Weil bound theorem here. See [77] for
more details.
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Theorem 5.8 ([77]). Let Fq be a finite field with q elements and let ψ be a
multiplicative character of Fq of order s > 1. Suppose f ∈ Fq[x] has precisely
d distinct roots in its splitting field over Fq, and suppose that f is not an sth power
of a polynomial. Then for every a ∈ Fq we have∣∣∣∣∣∣ ∑

x∈Fq

ψ(a f (x))

∣∣∣∣∣∣ ≤ (d − 1)
√

q.

Theorem 5.9. Let f (x) = xd1 and g(x) = xd2 be power mappings over Fp, where
p is a prime and gcd(d1, p − 1) = gcd(d2, p − 1) = 1, then for r ̸= 0, we have

max(Ca
f ,g(r, 0)) ≤

⌈
p−2
p−1 (1 +

√
p)
⌉

.

Proof. In order to compute the crosscorrelation between f and g at shift
(r, 0), we need to discuss the number of solutions of Equation 5.15. As we
explained briefly at the early of this chapter, the number of solutions of this
equation is

1
p−1 ∑

χ
∑

x∈F⋆
p\{−r}

χ
(
(x + r)d2

)
χ(xd1), (5.16)

where the first sum runs through all multiplicative characters of Fp. Let us
denote the number of solutions of 5.16 by N. The contribution of the trivial
character is p−2

p−1 . So that from 5.16 and the Weil bound in Theorem 5.8, we
obtain

N = p−2
p−1 +

1
p−1 ∑

χ ̸=χ0

∑
x∈F⋆

p

χ
(
(x + r)d2

)
χ(xd1)

≤ p−2
p−1 +

p−2
p−1 max

r∈F⋆
p

max
χ ̸=χ0

∣∣∣∣∣∣ ∑
x∈F⋆

p

χ
(
(x + r)d2 xp−1−d1

)∣∣∣∣∣∣
≤
⌈

p−2
p−1 (1 +

√
p)
⌉

.

Note that we can use the Weil bound because

gcd(d2, p − 1) = gcd(p − 1 − d1, p − 1) = 1

and the order m of any multiplicative character χ is a divisor of p − 1.

It is also worth noting that we cannot use this method for estimating
Ca

f ,g(r, s), where both r and s are non-zero because the Weil bound becomes
trivial. In other words, to estimate Ca

f ,g(r, s), where f and g are power
mappings over Fp, we need to study the number of solutions of the form

xd1 + s ≡ (x + r)d2 mod p. (5.17)
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Since the Weil bound depends on the number of roots of the polynomial(
xd1 + s

)
(x + r)p−1−d2 over the splitting field and the fact that this

polynomial over the splitting field can have at most d1 + 1 roots, the Weil
bound becomes trivial.

5.3 Crosscorrelation of exponential Welch and
power mappings

The previous section discussed how the two families of power mappings
and exponential Welch Costas arrays are closely related. So, it would be
interesting to extend the family of exponential Welch with the family of
power mappings and examine its crosscorrelation properties. The family that
we considered is

PW p = { f : f ∈ Wp ∨ f ∈ Pp over Fp}.

Let f (x) = xd, x ∈ Fp \ {0} and gcd(d, p − 1) = 1, be a power mapping
over Fp, and let g = Wexp

1 (p, α, 0) be an exponential Welch Costas array as in
Definition 2.34. Then, to compute Ca

f ,g(r, s), we need to solve the following
equation

xd mod p + s = αx−1+r mod p for x ∈ Fp \ {0}. (5.18)

It can be seen that estimating the number of solutions for Equation (5.18)
could be challenging. Even where r = s = 0 (at the origin), studying
Equation (5.18) could be tricky.

From the computational experiments’ point of view, we exhaustively
computed the value of the maximal crosscorrelation between any two
elements of the family PW p for primes 5 ≤ p ≤ 271. The results of this
computation are collected in table 5.4 in which, in order to avoid overwriting,
we point out that the maximal crosscorrelation for non-safe primes occurs
between either two exponential Welch Costas arrays or two power mappings
as well as safe primes 47, 59, 83, 167 and 263, for which the results is already
included in Table 5.3 and Appendix 6. Then, in table 5.4, we just collected
the results for safe primes where the maximal value occurs between an
exponential Welch Costas array and a power mapping over Fp.
Overall, the provided information in this section shows how the maximal
crosscorrelation of the three families, Wp, Pp, and PW p, are closely related.
The size of the family PW p equals ϕ2(p − 1)− ϕ(p − 1), indicating a family
of size larger than both exponential Welch and power mappings still have
almost the same crosscorrelation properties, which is indeed noticeable.

5.4 The family of inverse permutations

Oscar Moreno et al. in [84, 92] discussed how it is essential to introduce
new families of binary arrays with low auto- and crosscorrelation properties.
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TABLE 5.4: Value of the maximum crosscorrelation between
two pairs of the family PW p: the second column shows the
value of d’s and α’s, for which the maximum occurs, and the
third column illustrates the responsible shifts (r, s). The last

column depicts C(PW p).

p
Power mappings and

Welch arrays
parameters

Shifts (r, s) C(PW p)

11 [d=3, α=2] (2, 0) 4
11 [d=7, α=2] (1, 1), (4, 0) 4
11 [d=7, α=6] (2, 0), (5, -1) 4
11 [d=7, α=8] (0, 1) 4
11 [d=9 α=2] (4, 4) 4
11 [d=9, α=8] (2, 0) 4
23 [d=21, α=11] (0, -1) 6
107 [d=15, α=98] (5, 14) 10
179 [d=117, α=115] (24, 1) 11
227 [d=5, α=178] (-50, 35), (176, 35) 10
227 [d=175, α=151] (11, 5) 10
227 [d=189, α=184] (-21, 2), (205, 2) 10
227 [d=191, α=216] (11, -6) 10

Such families of binary arrays have actual applications in watermarking. As
explained in Section 4.4, inverse functions over a finite field have periodic
autocorrelation 2. We realized that applying the transformation Ak, as
in Definition 3.12, allows us to construct a family of binary arrays with
aperiodic auto and crosscorrelation 2.
Let us consider a permutation matrix X defined as X = [ f (1), f (2), . . . , f (p−
1)], where f (i) = i−1, and i belongs to the finite field Fp \ {0}, where p is a
prime. Now, we apply the transformation Ak, as defined in Definition 3.12, to
X, where k is an integer that is relatively prime to the size of the permutation
matrix plus one, denoted as gcd(k, p) = 1. This results in Ak(X) = [ f (k ·
1 mod p), f (k · 2 mod p), . . . , f (k · (p − 1) mod p)]. Now, we can provide
the definition of this family obtained through the transformation. For
convenience, we call a permutation an inverse permutation if it is generated
by the inverse function over a finite field. The family that we consider is as
follows.
• Family of inverse permutations: For a prime p, we define the family Ip of
inverse permutations of {1, . . . , p − 1}, by

Ip =
{[

(kx)p−2
]

: x ∈ Fp \ {0} and gcd(k, p) = 1
}

.

Then we have
∣∣Ip
∣∣ = p − 1.

We will now investigate the crosscorrelation properties of the family Ip by
stating the following theorem.
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Theorem 5.10. For a prime p, the maximal aperiodic auto and crosscorrelation of
the family of inverse permutations Ip of {1, . . . , p − 1} satisfies C(Ip) = 2.

Proof. Consider two inverse permutations f1 and f2, generated by f1(x) =

(k1x)−1 and f2(x) = (k2x)−1 in Fp \ {0}, where k1 and k2 are not
necessarily distinct integers relatively prime to p. In order to compute the
crosscorrelation at (r, s) ∈ Z2 between f1 and f2, we need to estimate the
number of solutions of the equation(

(k1x)−1 mod p
)
+ s = (k2(x + r))−1 mod p. (5.19)

The main idea of the proof is to show that any solution of (5.19) is also
a solution to a quadratic equation over Fp, which can admit at most two
solutions, leading to C(Ip) ≤ 2. By following the subsequent sequence
of steps, while considering that we are calculating the aperiodic correlation
(where x and x + r are never equal to 0), we will demonstrate the equivalence
of (5.19) to a quadratic equation.(

(k1x)−1 mod p
)
+ s = (k2(x + r))−1 mod p

⇐⇒
(

k−1
1 x−1 mod p

)
+ s =

(
k−1

2 mod p
)
·
(
(x + r)−1 mod p

)

Multiplying both sides of the above equation by (x + r)−1 mod p yields(
k−1

1 x−1 mod p
)
· ((x + r) mod p) + s ((x + r) mod p) = k−1

2

⇐⇒
(

k−1
1 + rk−1

1 x−1 + sx + sr
)

mod p = k−1
2

Multiplying now both sides of the above equation by k2 gives(
k−1

1 k2 + rk−1
1 k2x−1 + k2sx + k2sr

)
mod p = 1.

We multiply both sides of the above equation by (x mod p) to obtain(
k−1

1 k2x + rk−1
1 k2 + k2sx2 + k2srx

)
mod p = x mod p

⇐⇒
(

k−1
1 k2x + rk−1

1 k2 + k2sx2 + k2srx − x
)
≡ 0 mod p.

It follows that since k2sx2 +
(

k−1
1 k2 + k2sr − 1

)
x + rk−1

1 k2 is a polynomial of
degree 2 in Fp, it can have at most two solutions. This observation completes
the proof by considering the fact that, since k1 and k2 are not necessarily
distinct, both the aperiodic autocorrelation and aperiodic crosscorrelation of
any two members of this family are two.

One application of transformation Ak is that it turns a single permutation
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into a family of permutations. Therefore, there is ample room for
further investigation into finding permutations with good autocorrelation
properties, for which applying transformation Ak might construct a family
of permutations with suitable crosscorrelation properties.
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Appendix

Computational results on the maximal
crosscorrelation of the family of power mappings

Value of the maximum Crosscorrelation between pairs of power mappings is
shown in the following table: the second column shows the value of d1 and
d2, not necessarily distinct, for which the maximal crosscorrelation occurs,
and the third column illustrates the responsible shifts (r, s) for the maximal
value. The last column depicts C(Pp).

p [d1, d2] Shifts (r, s) C(Pp)

5 [3, 3]
(1, -1), (1, -3), (2, 2), (3, -1), (4,
-2), (-1, 1), (-1, 3), (-2, -2), (-3,

1), (-4, 2)
2

7 [5, 5] (1, -2), (2, -1), (-1, 2), (-2, 1) 2
11 [3, 9] (-2, -4), (2, 4) 3
11 [7, 9] (-4, -2), (4, 2) 3
13 [5,11] (0, 0) 6
17 [3, 11], [5, 13], [7, 15] (0,0) 8

19 [5, 11], [5, 17], [7, 13],
[11, 17] (0, 0) 6

23 [7, 19] (4, -4), (-1, -1), (1, 1), (-4, 4) 6

29 [3, 17], [5, 19], [9, 23],
[11, 25], [13, 27] (0, 0) 14

31 [7, 17], [13, 23], [19, 29] (0, 0) 10

37 [5, 23], [7, 25], [11, 29],
[13, 31], [17, 35] (0, 0) 18

41
[3, 23], [7, 27], [9, 29],
[11, 31], [13, 33], [17,

37], [19, 39]
(0, 0) 20

43 [5, 19], [11, 25], [13, 41],
[17, 31], [23, 37] (0, 0) 14

47 [11, 11]
(-2, -23), (3, -14), (-4,-10), (6,
-2), (-6, 2), (4, 10), (-3, 14),

(2,23)
8
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p [d1, d2] Shifts (r, s) C(Pp)

47 [17, 17] (-9, -5), (6, -4), (2, -2), (-15, -1),
(15, 1), (-2, 2), (-6, 4), (9, 5) 8

47 [19, 19] (-1, -15), (-5, -9), (4, -6), (2, -2),
(-2, 2), (-4, 6), (5, 9), (1, 15) 8

47 [21, 21]
(2, -6), (-10, -4), (14, -3), (-23,

-2), (23, 2), (-14, 3), (10, 4), (-2,
6)

8

53

[3, 29], [5, 31], [7, 33], [9,
35], [11, 37], [15, 41],
[17, 43], [19, 45], [21,
47], [23, 49], [25, 51]

(0, 0) 26

59 [17, 17] (-8, -6), (-1, -1), (1, 1), (8, 6) 12
59 [41, 41] (-6, -8), (-1, -1), (1, 1), (6, 8) 12

61
[7, 37], [11, 41], [13, 43],

[17, 47], [19, 49], [23,
53], [29, 59]

(0, 0) 30

67
[5, 49], [7, 29], [13, 35],

[17, 61], [19, 41], [25, 47],
[31, 53], [37, 59], [43, 65]

(0, 0) 22

71

[3, 17], [3, 31], [3, 59], [9,
23], [9, 37], [9, 51], [11,
39], [11, 53], [11, 67],
[13, 27], [13, 41], [13,
69], [17, 31], [17, 59],
[19, 33], [19, 47], [19,
61], [23, 37], [23, 51],
[27, 41], [27, 69], [29,
43], [29, 57], [31, 59],
[33, 47], [33, 61], [37,
51], [39, 53], [39, 67],
[41, 69], [43, 57], [47,

61], [53, 67]

(0, 0) 14

73

[5, 41], [7, 43], [11, 47],
[13, 49], [17, 53], [19,
55], [23, 59], [25, 61],

[29, 65], [31, 67], [35, 71]

(0, 0) 36

79

[5, 31], [7, 59], [11, 37],
[17, 43], [19, 71], [23,
49], [25, 77], [29, 55],

[35, 61], [41, 67], [47, 73]

(0, 0) 26

83 [63, 71] (-1, -11), (1, 11) 9
83 [67, 69] (-11, -1), (11, 1) 9
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p [d1, d2] Shifts (r, s) C(Pp)

89

[3, 47], [5, 49], [7, 51], [9,
53], [13, 57], [15, 59],
[17, 61], [19, 63], [21,
65], [23, 67], [25, 69],
[29, 73], [31, 75], [35,
79], [37, 81], [39, 83],

[41, 85], [43, 87]

(0, 0) 44

97

[5, 53], [7, 55], [11, 59],
[17, 65], [19, 67], [23, 71],

[25, 73], [29, 77], [31,
79], [35, 83], [37, 85],

[41, 89], [43, 91], [47, 95

(0, 0) 48

101

[3, 53], [7, 57], [9, 59],
[11, 61], [13, 63], [17, 67],

[19, 69], [21, 71], [23,
73], [27, 77], [29, 79],
[31, 81], [33, 83], [37,
87], [39, 89], [41, 91],

[43, 93], [47, 97], [49, 99]

(0, 0) 50

103

[5, 73],[7, 41],[11,
79],[13, 47],[19, 53],[23,
91],[25, 59],[29, 97],[31,
65],[37, 71],[43, 77],[49,
83],[55, 89],[61, 95],[67,

101]

(0, 0) 34

107 [21, 21]

(-2, -45), (7, -23), (31, -14), (6,
-13), (30, -5), (18, -1), (-18, 1),
(-30, 5), (-6, 13), (-31, 14), (-7,

23), (2, 45)

10

107 [101, 101]

(14, -31), (5, -30), (1, -18), (23,
-7), (13, -6), (-45, -2), (45, 2),
(-13, 6), (-23, 7), (-1, 18), (-5,

30), (-14, 31)]

10

109

[5, 59], [7, 61], [11, 65],
[13, 67], [17, 71], [19,
73], [23, 77], [25, 79],
[29, 83], [31, 85], [35,
89], [37, 91], [41, 95],

[43, 97], [47, 101], [49,
103], [53, 107]

(0, 0) 54
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p [d1, d2] Shifts (r, s) C(Pp)

113

[3, 59], [5, 61], [9, 65],
[11, 67], [13, 69], [15,
71], [17, 73], [19, 75],
[23, 79], [25, 81], [27,
83], [29, 85], [31, 87],
[33, 89], [37, 93], [39,
95], [41, 97], [43, 99],

[45, 101], [47, 103], [51,
107], [53, 109], [55, 111]

(0, 0) 56

127

[5, 47], [11, 53], [11, 95],
[13, 55], [13, 97], [17,

59], [17, 101], [19, 61],
[19, 103], [23, 65], [23,

107], [25, 67], [25, 109],
[29, 71], [29, 113], [31,
73], [31, 115], [37, 79],
[37, 121], [41, 83], [41,
125], [43, 85], [47, 89],
[55, 97], [59, 101], [61,

103], [65, 107], [67, 109],
[71, 113], [73, 115], [79,

121], [83, 125]

(0, 0) 42

131

[3, 29], [3, 81], [3, 107],
[7, 33], [7, 111], [9, 61],
[9, 87], [9, 113], [11, 37],

[11, 63], [11, 89], [17,
43], [17, 69], [17, 121],
[19, 71], [19, 97], [19,

123], [21, 47], [21, 73],
[21, 99], [23, 49], [23,

101], [23, 127], [27, 53],
[27, 79], [29, 81], [29,

107], [31, 57], [31, 83],
[31, 109], [33, 59], [33,
111], [37, 89], [41, 67],
[41, 119],[43, 69], [43,
121], [47, 73], [47, 99],

[49, 101], [49, 127], [51,
77], [51, 129], [53, 79],
[57, 83], [57, 109], [59,

111], [61, 87], [61, 113],
[63, 89], [67, 93],

(0, 0) 26
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p [d1, d2] Shifts (r, s) C(Pp)

131

[67, 119], [69, 121], [71,
97], [71, 123], [73, 99],

[77, 103], [77, 129], [81,
107], [83, 109], [87, 113],
[93, 119], [97, 123], [101,

127], [103, 129]

(0, 0) 26

137

[3, 71],[5, 73],[7, 75],[9,
77],[11, 79],[13, 81],[15,
83],[19, 87],[21, 89],[23,
91],[25, 93],[27, 95],[29,

97],[31, 99],[33, 101],[35,
103],[37, 105],[39,
107],[41, 109],[43,
111],[45, 113],[47,
115],[49, 117],[53,
121],[55, 123],[57,
125],[59, 127],[61,
129],[63, 131],[65,

133],[67, 135]

(0, 0) 68

139

[5, 97],[7, 53],[11,
103],[13, 59],[17,

109],[19, 65],[25, 71],[29,
121],[31, 77],[35,
127],[37, 83],[41,

133],[43, 89],[49, 95],[55,
101],[61, 107],[67,
113],[73, 119],[79,

125],[85, 131],[91, 137]

(0, 0) 46

149

[3, 77],[5, 79],[7, 81],[9,
83],[11, 85],[13, 87],[15,
89],[17, 91],[19, 93],[21,
95],[23, 97],[25, 99],[27,

101],[29, 103],[31,
105],[33, 107],[35,
109],[39, 113],[41,
115],[43, 117],[45,
119],[47, 121],[49,
123],[51, 125],[53,
127],[55, 129],[57,
131],[59, 133],[61,
135],[63, 137],[65,
139],[67, 141],[69,

143],[71, 145],[73, 147]

(0, 0) 74
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p [d1, d2] Shifts (r, s) C(Pp)

151

[7, 107],[11, 61],[13,
113],[17, 67],[19,

119],[23, 73],[29, 79],[31,
131],[37, 137],[41,

91],[43, 143],[47, 97],[49,
149],[53, 103],[59,
109],[71, 121],[77,

127],[83, 133],[89, 139]

(0,0) 50

157

[5, 83],[7, 85],[11,
89],[17, 95],[19, 97],[23,

101],[25, 103],[29,
107],[31, 109],[35,
113],[37, 115],[41,
119],[43, 121],[47,
125],[49, 127],[53,
131],[55, 133],[59,
137],[61, 139],[67,
145],[71, 149],[73,

151],[77, 155]

(0, 0) 78

163

[5, 59],[5, 113],[7, 61],[7,
115],[11, 65],[11,
119],[13, 67],[13,
121],[17, 71],[17,
125],[19, 73],[19,
127],[23, 77],[23,
131],[25, 79],[25,
133],[29, 83],[29,
137],[31, 85],[31,
139],[35, 89],[35,
143],[37, 91],[37,
145],[41, 95],[41,
149],[43, 97],[43,

151],[47, 101],[47,
155],[49, 103],[49,
157],[53, 107],[53,
161],[55, 109],[59,
113],[61, 115],[65,
119],[67, 121],[71,
125],[73, 127],[77,
131],[79, 133],[83,
137],[85, 139],[89,
143],[91, 145],[95,

149],[97, 151],[101,
155],[103, 157],[107, 161]

(0, 0) 54
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p [d1, d2] Shifts (r, s) C(Pp)

167 [69, 69]

(-15, -69), (-47, -31), (30, -24),
(-38, -22), (-6, -18), (3, -10),

(-50, -9), (-32, -6), (25, -5), (-12,
-1), (12, 1), (-25, 5), (32, 6), (50,

9), (-3, 10), (6, 18), (38, 22),
(-30, 24), (47, 31), (15, 69)

12

167 [77, 77]

(-9, -50), (-31, -47), (-22, -38),
(-6, -32), (24, -30), (5, -25),

(-69, -15), (-1, -12), (-18, -6),
(10, -3), (-10, 3), (18, 6), (1, 12),
(69, 15), (-5, 25), (-24, 30), (6,
32), (22, 38), (31, 47), (9, 50)

12

167 [131, 131]

(45, -44), (5, -24), (35, -22), (26,
-19), (-29, -18), (56, -17), (7,
-13), (-4, -9), (-2, -3), (-1, -1),
(1, 1), (2, 3), (4, 9), (-7, 13),
(-56, 17), (29, 18), (-26, 19),
(-35, 22), (-5, 24), (-45, 44)

12

167 [147, 147]

(17, -56), (44, -45), (22, -35),
(-18, -29), (19, -26), (13, -7),
(24, -5), (-9, -4), (-3, -2), (-1,

-1), (1, 1), (3, 2), (9, 4), (-24, 5),
(-13, 7), (-19, 26), (18, 29), (-22,

35), (-44, 45), (-17, 56)

12

173

[3, 89],[5, 91],[7, 93],[9,
95],[11, 97],[13, 99],[15,

101],[17, 103],[19,
105],[21, 107],[23,
109],[25, 111],[27,
113],[29, 115],[31,
117],[33, 119],[35,
121],[37, 123],[39,
125],[41, 127],[45,
131],[47, 133],[49,
135],[51, 137],[53,
139],[55, 141],[57,
143],[59, 145],[61,
147],[63, 149],[65,
151],[67, 153],[69,
155],[71, 157],[73,
159],[75, 161],[77,
163],[79, 165],[81,

167],[83, 169],[85, 171]

(0, 0) 86
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p [d1, d2] Shifts (r, s) C(Pp)

179 [47, 47]

(11, -50), (84, -40), (-42, -32),
(-4, -24), (-41, -16), (-3, -6),

(-28, -5), (14, -4), (-14, 4), (28,
5), (3, 6), (41, 16), (4, 24), (42,

32), (-84, 40), (-11, 50)

10

179 [125, 125]

(40, -84), (-32, -42), (-16, -41),
(-5, -28), (4, -14), (50, -11),

(-24, -4), (-6, -3), (6, 3), (24, 4),
(-50, 11), (-4, 14), (5, 28), (16,

41), (32, 42), (-40, 84)

10

181

[7, 97],[11, 101],[13,
103],[17, 107],[19,
109],[23, 113],[29,
119],[31, 121],[37,
127],[41, 131],[43,
133],[47, 137],[49,
139],[53, 143],[59,
149],[61, 151],[67,
157],[71, 161],[73,
163],[77, 167],[79,

169],[83, 173],[89, 179]

(0, 0) 90

191

[3, 41],[3, 79],[3, 117],[7,
83],[7, 121],[7, 159],[9,

47],[9, 123],[9, 161],[11,
49],[11, 87],[11, 163],[13,
51],[13, 89],[13, 127],[17,

93],[17, 131],[17,
169],[21, 59],[21, 97],[21,
173],[23, 61],[23, 99],[23,

137],[27, 103],[27,
141],[27, 179],[29,
67],[29, 143],[29,
181],[31, 69],[31,

107],[31, 183],[33,
71],[33, 109],[33,

147],[37, 113],[37,
151],[37, 189],[39,

77],[39, 153],[41, 79],[41,
117],[43, 81],[43,

119],[43, 157],[47,
123],[47, 161],[49,

87],[49, 163],[51, 89],[51,
127],[53, 91],[53,

129],[53, 167],[59,
97],[59, 173],[61, 99],[61,

137],[63, 101]

(0, 0) 38
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p [d1, d2] Shifts (r, s) C(Pp)

191

[63, 139],[63, 177],[67,
143],[67, 181],[69,
107],[69, 183],[71,
109],[71, 147],[73,
111],[73, 149],[73,
187],[77, 153],[79,
117],[81, 119],[81,
157],[83, 121],[83,
159],[87, 163],[89,
127],[91, 129],[91,
167],[93, 131],[93,
169],[97, 173],[99,

137],[101, 139],[101,
177],[103, 141],[103,
179],[107, 183],[109,
147],[111, 149],[111,
187],[113, 151],[113,
189],[119, 157],[121,
159],[123, 161],[129,
167],[131, 169],[139,
177],[141, 179],[143,

181],[149, 187],[151, 189]

(0, 0) 38

193

[5, 101],[7, 103],[11,
107],[13, 109],[17,
113],[19, 115],[23,
119],[25, 121],[29,
125],[31, 127],[35,
131],[37, 133],[41,
137],[43, 139],[47,
143],[49, 145],[53,
149],[55, 151],[59,
155],[61, 157],[65,
161],[67, 163],[71,
167],[73, 169],[77,
173],[79, 175],[83,
179],[85, 181],[89,

185],[91, 187],[95, 191]

(0, 0) 96
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p [d1, d2] Shifts (r, s) C(Pp)

197

[3, 101],[5, 103],[9,
107],[11, 109],[13,
111],[15, 113],[17,
115],[19, 117],[23,
121],[25, 123],[27,
125],[29, 127],[31,
129],[33, 131],[37,
135],[39, 137],[41,
139],[43, 141],[45,
143],[47, 145],[51,
149],[53, 151],[55,
153],[57, 155],[59,
157],[61, 159],[65,
163],[67, 165],[69,
167],[71, 169],[73,
171],[75, 173],[79,
177],[81, 179],[83,
181],[85, 183],[87,
185],[89, 187],[93,

191],[95, 193],[97, 195]

(0, 0) 98

199

[5, 71],[5, 137],[7, 73],[7,
139],[13, 79],[13,
145],[17, 83],[17,
149],[19, 85],[19,
151],[23, 89],[23,
155],[25, 91],[25,
157],[29, 95],[29,
161],[31, 97],[31,

163],[35, 101],[35,
167],[37, 103],[37,
169],[41, 107],[41,
173],[43, 109],[43,
175],[47, 113],[47,
179],[49, 115],[49,
181],[53, 119],[53,
185],[59, 125],[59,
191],[61, 127],[61,

193],[65, 131],[65, 197],
[67, 133],[71, 137],[73,

139],[79, 145],[83,
149],[85, 151],

(0, 0) 66
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p [d1, d2] Shifts (r, s) C(Pp)

199

[89, 155],[91, 157],[95,
161],[97, 163],[101,

167],[103, 169],[107,
173],[109, 175],[113,
179],[115, 181],[119,
185],[125, 191],[127,

193],[131, 197]

(0, 0) 66

211

[11, 151],[13, 83],[17,
157],[19, 89],[23,
163],[29, 169],[31,
101],[37, 107],[41,
181],[43, 113],[47,
187],[53, 193],[59,
199],[61, 131],[67,
137],[73, 143],[79,

149],[97, 167],[103,
173],[109, 179],[121,

191],[127, 197],[139, 209]

(0, 0) 70

223

[5, 79],[7, 155],[11,
85],[13, 161],[17, 91],[19,

167],[23, 97],[25,
173],[29, 103],[31,
179],[35, 109],[41,
115],[43, 191],[47,
121],[49, 197],[53,
127],[55, 203],[59,
133],[61, 209], [65,
139],[67, 215],[71,
145],[73, 221],[77,
151],[83, 157],[89,

163],[95, 169],[101,
175],[107, 181],[113,
187],[119, 193],[125,
199],[131, 205],[137,

211],[143, 217]

(0, 0) 74

227 [29, 29]

(-46, -109), (-21, -93), (-7, -55),
(17, -54), (-41, -48), (-95, -43),
(23, -26), (-9, -24), (56, -20),

(-1, -18), (-19, -15), (-32, -10),
(76, -4), (-42, -3), (-11, -2), (11,

2), (42, 3), (-76, 4), (32, 10),
(19, 15), (1, 18), (-56, 20), (9,

24), (-23, 26), (95, 43), (41, 48),
(-17, 54), (7, 55), (21, 93), (46,

109)

10
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p [d1, d2] Shifts (r, s) C(Pp)

227 [39, 39]

(-43, -95), (4, -76), (20, -56),
(-109, -46), (-3, -42), (-48, -41),
(-10, -32), (26, -23), (-93, -21),
(-15, -19), (54, -17), (-2, -11),

(-24, -9), (-55, -7), (-18, -1), (18,
1), (55, 7), (24, 9), (2, 11), (-54,
17), (15, 19), (93, 21), (-26, 23),
(10, 32), (48, 41), (3, 42), (109,
46), (-20, 56), (-4, 76), (43, 95)

10

227 [93, 93]

(-46, -59), (14, -52), (30, -49),
(64, -47), (38, -46), (28, -28),
(-60, -26), (-53, -22), (-2, -9),

(42, -6), (-42, 6), (2, 9), (53, 22),
(60, 26), (-28, 28), (-38, 46),
(-64, 47), (-30, 49), (-14, 52),

(46, 59)

10

227 [209, 209]

(47, -64), (-26, -60), (-22, -53),
(-59, -46), (6, -42), (46, -38),
(49, -30), (28, -28), (52, -14),
(-9, -2), (9, 2), (-52, 14), (-28,

28), (-49, 30), (-46, 38), (-6, 42),
(59, 46), (22, 53), (26, 60), (-47,

64)

10

229

[5, 119],[7, 121],[11,
125],[13, 127],[17,
131],[23, 137],[25,
139],[29, 143],[31,
145],[35, 149],[37,
151],[41, 155],[43,
157],[47, 161],[49,
163],[53, 167],[55,
169],[59, 173],[61,
175],[65, 179],[67,
181],[71, 185],[73,
187],[77, 191],[79,
193],[83, 197],[85,
199],[89, 203],[91,

205],[97, 211],[101,
215],[103, 217],[107,

221],[109, 223],[113, 227]

(0, 0) 114
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p [d1, d2] Shifts (r, s) C(Pp)

233

[3, 119],[5, 121],[7,
123],[9, 125],[11,
127],[13, 129],[15,
131],[17, 133],[19,
135],[21, 137],[23,
139],[25, 141],[27,
143],[31, 147],[33,
149],[35, 151],[37,
153],[39, 155],[41,
157],[43, 159],[45,
161],[47, 163],[49,
165],[51, 167],[53,
169],[55, 171],[57,
173],[59, 175],[61,
177],[63, 179],[65,
181],[67, 183], [69,
185],[71, 187],[73,
189],[75, 191],[77,
193],[79, 195],[81,
197],[83, 199],[85,
201],[89, 205],[91,
207],[93, 209],[95,
211],[97, 213],[99,

215],[101, 217],[103,
219],[105, 221],[107,
223],[109, 225],[111,

227],[113, 229],[115, 231]

(0, 0) 116

239

[3, 37],[3, 71],[3, 139],[3,
173],[3, 207],[5, 39],[5,
73],[5, 107],[5, 141],[5,
209],[9, 43],[9, 111],[9,

145],[9, 179],[9, 213],[11,
45],[11, 79],[11, 113],[11,

181],[11, 215],[13,
47],[13, 81],[13, 115],[13,

149],[13, 183],[15,
83],[15, 117],[15,
151],[15, 185],[15,

219],[19, 53],[19, 87],[19,
121],[19, 155],[19,
223],[23, 57],[23,
125],[23, 159],[23,

193],[23, 227],

(0, 0) 34
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p [d1, d2] Shifts (r, s) C(Pp)

239

[25, 59],[25, 93],[25,
127],[25, 195],[25,

229],[27, 61],[27, 95],[27,
129],[27, 163],[27,
197],[29, 97],[29,

131],[29, 165], [29,
199],[29, 233],[31,

65],[31, 99],[31, 167],[31,
201],[31, 235],[33,
67],[33, 101], [33,
135],[33, 169],[33,
237],[37, 71],[37,

139],[37, 173],[37,
207],[39, 73],[39,

107],[39, 141],[39,
209],[41, 75],[41, 109],
[41, 143],[41, 177],[41,

211],[43, 111],[43,
145],[43, 179],[43,
213],[45, 79],[45,

113],[45, 181],[45,
215],[47, 81],[47,

115],[47, 149],[47,
183],[53, 87],[53,

121],[53, 155],[53, 223],
[55, 89],[55, 123],[55,

157],[55, 191],[55,
225],[57, 125],[57,
159],[57, 193],[57,
227],[59, 93],[59,

127],[59, 195],[59,
229],[61, 95],[61,

129],[61, 163],[61,
197],[65, 99], [65,
167],[65, 201],[65,
235],[67, 101],[67,
135],[67, 169],[67,
237],[69, 103],[69,
137],[69, 171],[69,
205],[71, 139],[71,
173],[71, 207],[73,
107],[73, 141],[73,
209],[75, 109],[75,
143],[75, 177],[75,
211],[79, 113],[79,
181],[79, 215],[81,
115],[81, 149],[81,
183],[83, 117],[83,
151],[83, 185],[83,

219],[87, 121],

(0, 0) 34



Chapter 6. Appendix 135

p [d1, d2] Shifts (r, s) C(Pp)

239

[87, 155],[87, 223],[89,
123],[89, 157],[89,
191],[89, 225],[93,
127],[93, 195],[93,

229],[95, 129],[95, 163],
[95, 197],[97, 131],[97,

165],[97, 199],[97,
233],[99, 167],[99,

201],[99, 235],[101,
135],[101, 169],[101,
237],[103, 137],[103,
171],[103, 205],[107,
141],[107, 209],[109,
143],[109, 177],[109,
211],[111, 145],[111,
179],[111, 213],[113,
181],[113, 215],[115,
149],[115, 183],[117,
151],[117, 185],[117,
219], [121, 155],[121,
223],[123, 157],[123,
191],[123, 225],[125,
159],[125, 193],[125,
227],[127, 195],[127,
229],[129, 163],[129,
197],[131, 165],[131,
199],[131, 233],[135,
169],[135, 237],[137,
171],[137, 205],[139,
173],[139, 207],[141,
209],[143, 177],[143,
211],[145, 179],[145,
213],[149, 183],[151,
185],[151, 219],[155,
223], [157, 191],[157,
225],[159, 193],[159,
227],[163, 197],[165,
199],[165, 233],[167,
201],[167, 235],[169,
237],[171, 205],[173,
207],[177, 211],[179,
213],[181, 215],[185,
219],[191, 225],[193,
227],[195, 229],[199,

233],[201, 235]

(0, 0) 34



136 Chapter 6. Appendix

p [d1, d2] Shifts (r, s) C(Pp)

241

[7, 127],[11, 131],[13,
133],[17, 137],[19,
139],[23, 143],[29,
149],[31, 151],[37,
157],[41, 161],[43,
163],[47, 167],[49,
169],[53, 173],[59,
179],[61, 181],[67,
187],[71, 191],[73,
193],[77, 197],[79,
199],[83, 203],[89,
209],[91, 211],[97,

217],[101, 221],[103,
223],[107, 227],[109,

229],[113, 233],[119, 239]

(0, 0) 120

251

[3, 53],[3, 103],[3,
153],[3, 203],[7, 57],[7,

107],[7, 157],[7, 207],[9,
59],[9, 109],[9, 159],[9,

209],[11, 61],[11,
111],[11, 161],[11,
211],[13, 63],[13,

113],[13, 163],[13,
213],[17, 67],[17,

117],[17, 167],[17,
217],[19, 69],[19,

119],[19, 169],[19,
219],[21, 71],[21,

121],[21, 171],[21,
221],[23, 73],[23,

123],[23, 173],[23,
223],[27, 77],[27,

127],[27, 177], [27,
227],[29, 79],[29,

129],[29, 179],[29,
229],[31, 81],[31,

131],[31, 181],[31,
231],[33, 83],[33,

133],[33, 183],[33, 233],
[37, 87],[37, 137],[37,

187], [37, 237],[39,
89],[39, 139],[39,

189],[39, 239],[41,
91],[41, 141],[41,

191],[41, 241],

(0, 0) 50
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p [d1, d2] Shifts (r, s) C(Pp)

251

[43, 93],[43, 143],[43,
193],[43, 243],[47,
97],[47, 147],[47,
197],[47, 247],[49,
99],[49, 149],[49,
199],[49, 249],[51,
101],[51, 151], [51,
201],[53, 103],[53,
153],[53, 203],[57,

107],[57, 157],[57, 207],
[59, 109],[59, 159],[59,

209],[61, 111],[61,
161],[61, 211],[63,
113],[63, 163],[63,
213],[67, 117],[67,
167],[67, 217],[69,

119],[69, 169],[69, 219],
[71, 121],[71, 171],[71,

221],[73, 123],[73,
173],[73, 223],[77,
127],[77, 177],[77,
227],[79, 129],[79,
179],[79, 229],[81,
131],[81, 181],[81,
231],[83, 133],[83,
183],[83, 233],[87,
137],[87, 187],[87,
237],[89, 139],[89,
189],[89, 239],[91,
141],[91, 191],[91,
241],[93, 143],[93,
193],[93, 243],[97,
147],[97, 197],[97,
247],[99, 149],[99,

199],[99, 249],[101,
151],[101, 201],[103,
153],[103, 203], [107,
157],[107, 207],[109,
159],[109, 209],[111,
161],[111, 211],[113,
163],[113, 213],[117,
167],[117, 217],[119,
169],[119, 219],[121,
171],[121, 221],[123,
173],[123, 223],[127,
177],[127, 227],[129,
179],[129, 229],[131,
181],[131, 231],[133,

183],[133, 233],

(0, 0) 50
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p [d1, d2] Shifts (r, s) C(Pp)

251

[137, 187],[137,
237],[139, 189], [139,
239],[141, 191],[141,
241],[143, 193],[143,
243],[147, 197],[147,
247],[149, 199],[149,
249],[151, 201],[153,
203],[157, 207],[159,
209],[161, 211],[163,
213],[167, 217],[169,
219],[171, 221],[173,
223],[177, 227],[179,
229],[181, 231],[183,
233],[187, 237],[189,
239],[191, 241],[193,

243],[197, 247],[199, 249]

(0, 0) 50

257

[3, 131],[5, 133],[7,
135],[9, 137],[11,

139],[13, 141],[15,
143],[17, 145],[19,
147],[21, 149],[23,
151],[25, 153],[27,
155],[29, 157],[31,
159],[33, 161],[35,
163],[37, 165],[39,
167],[41, 169],[43,
171],[45, 173],[47,
175],[49, 177],[51,
179],[53, 181],[55,

183],[57, 185],[59, 187],
[61, 189],[63, 191],[65,

193],[67, 195],[69,
197],[71, 199],[73,
201],[75, 203],[77,
205],[79, 207],[81,
209],[83, 211],[85,
213],[87, 215],[89,

217],[91, 219], [93, 221],
[95, 223],[97, 225],[99,
227],[101, 229],[103,
231],[105, 233],[107,
235],[109, 237],[111,
239],[113, 241],[115,
243],[117, 245],[119,
247],[121, 249],[123,

251],[125, 253],[127, 255]

(0, 0) 128
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p [d1, d2] Shifts (r, s) C(Pp)

263 [41, 41]

(-52, -95), (-78, -89), (-8, -75),
(-6, -72), (-16, -68), (21, -52),
(-3, -33), (-35, -31), (59, -25),
(32, -19), (-93, -18), (15, -17),
(-89, -12), (-18, -9), (-34, -4),

(-49, -2), (-1, -1), (1, 1), (49, 2),
(34, 4), (18, 9), (89, 12), (-15,
17), (93, 18), (-32, 19), (-59,

25), (35, 31), (3, 33), (-21, 52),
(16, 68), (6, 72), (8, 75), (78,

89), (52, 95)

12

263 [147, 147]

(-18, -93), (-12, -89), (-89, -78),
(25, -59), (-95, -52), (-2, -49),
(-31, -35), (-4, -34), (19, -32),
(52, -21), (-9, -18), (-68, -16),
(17, -15), (-75, -8), (-72, -6),

(-33, -3), (-1, -1), (1, 1), (33, 3),
(72, 6), (75, 8), (-17, 15), (68,

16), (9, 18), (-52, 21), (-19, 32),
(4, 34), (31, 35), (2, 49), (95,

52), (-25, 59), (89, 78), (12, 89),
(18, 93)

12

269

[3, 137],[5, 139],[7,
141],[9, 143],[11,
145],[13, 147],[15,
149],[17, 151],[19,
153],[21, 155],[23,
157],[25, 159],[27,
161],[29, 163],[31,
165],[33, 167],[35,
169],[37, 171],[39,
173],[41, 175],[43,
177],[45, 179],[47,
181],[49, 183],[51,
185],[53, 187],[55,
189],[57, 191],[59,
193],[61, 195],[63,
197],[65, 199],[69,
203],[71, 205],[73,
207],[75, 209], [77,
211],[79, 213],[81,
215],[83, 217],[85,
219],[87, 221],[89,

223],[91, 225],[93, 227],

(0, 0) 134
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p [d1, d2] Shifts (r, s) C(Pp)

269

[95, 229],[97, 231],[99,
233],[101, 235],[103,
237],[105, 239],[107,
241],[109, 243],[111,
245],[113, 247],[115,
249],[117, 251],[119,
253],[121, 255],[123,
257],[125, 259],[127,
261],[129, 263],[131,

265],[133, 267]

(0, 0) 134

271

[7, 97],[7, 187],[11,
101],[11, 191],[13,
103],[13, 193],[17,
107],[17, 197],[19,
109],[19, 199],[23,
113],[23, 203],[29,
119],[29, 209],[31,
121],[31, 211],[37,

127],[37, 217],[41, 131],
[41, 221],[43, 133],[43,

223],[47, 137],[47,
227],[49, 139],[49,
229],[53, 143],[53,
233],[59, 149],[59,
239],[61, 151], [61,
241],[67, 157],[67,
247],[71, 161],[71,
251],[73, 163],[73,
253],[77, 167],[77,
257],[79, 169],[79,
259],[83, 173],[83,
263],[89, 179],[89,
269],[91, 181],[97,

187],[101, 191], [103,
193],[107, 197],[109,
199],[113, 203],[119,
209],[121, 211],[127,
217],[131, 221],[133,
223],[137, 227],[139,
229],[143, 233],[149,
239],[151, 241],[157,
247],[161, 251],[163,
253],[167, 257],[169,

259],[173, 263],[179, 269]

(0, 0) 90



141

Bibliography

[1] Erkan Afacan, A new search method for costas arrays by using difference triangle analysis,
2017 progress in electromagnetics research symposium-spring (piers), 2017, pp. 456–
461.

[2] KT Arasu, Sequences and arrays with desirable correlation properties, Information security,
coding theory and related combinatorics, 2011, pp. 136–171.

[3] KT Arasu, Cunsheng Ding, Tor Helleseth, P Vijay Kumar, and Halvard M Martinsen,
Almost difference sets and their sequences with optimal autocorrelation, IEEE transactions
on information theory 47 (2001), no. 7, 2934–2943.

[4] Alejandro Arbelaez and Philippe Codognet, A gpu implementation of parallel
constraint-based local search, 2014 22nd euromicro international conference on parallel,
distributed, and network-based processing, 2014, pp. 648–655.

[5] Ali Ardalani and Alexander Pott, A new transformation for costas arrays, 2022 10th
international workshop on signal design and its applications in communications
(iwsda), 2022, pp. 1–5.

[6] Simeon Ball and Michael Zieve, Symplectic spreads and permutation polynomials,
International conference on finite fields and applications, 2003, pp. 79–88.

[7] Lionel Barker, Konstantinos Drakakis, and Scott Rickard, On the complexity of the
verification of the costas property, Proceedings of the IEEE 97 (2009), no. 3, 586–593.

[8] Daniele Bartoli and Marco Calderini, On construction and (non) existence of c-(almost)
perfect nonlinear functions, Finite Fields and Their Applications 72 (2021), 101835.

[9] J. K. Beard, J. C. Russo, K. G. Erickson, M. C. Monteleone, and M. T. Wright, Costas
array generation and search methodology, IEEE Transactions on Aerospace and Electronic
Systems 43 (2007), no. 2, 522–538.

[10] James Beard, Costas arrays and enumeration to order 1030, IEEE Dataport (2017), available
at https://dx.doi.org/10.21227/H21P42.

[11] James Beard, Keith Erickson, M. Monteleone, M. Wright, and Jon Russo, Combinatoric
collaboration on costas arrays and radar applications, 200405, pp. 260 –265.

[12] Céline Blondeau, Anne Canteaut, and Pascale Charpin, Differential properties of power
functions, International Journal of Information and Coding Theory 1 (2010), no. 2, 149–
170.

[13] Leopold Bomer and Markus Antweiler, Binary and biphase sequences and arrays with
low periodic autocorrelation sidelobes, International conference on acoustics, speech, and
signal processing, 1990, pp. 1663–1666.

[14] Carl Bracken and Gregor Leander, A highly nonlinear differentially 4 uniform power
mapping that permutes fields of even degree, Finite Fields and Their Applications 16 (2010),
no. 4, 231–242.

[15] Kevin Byard, Synthesis of binary arrays with perfect correlation properties—coded
aperture imaging, Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 336 (1993), no. 1-2,
262–268.

[16] Domenick Calabro and Jack K Wolf, On the synthesis of two-dimensional arrays with
desirable correlation properties, Information and Control 11 (1967), no. 5-6, 537–560.

https://dx.doi.org/10.21227/H21P42


142 BIBLIOGRAPHY

[17] Yves Caniou, Philippe Codognet, Florian Richoux, Daniel Diaz, and Salvador Abreu,
Large-scale parallelism for constraint-based local search: the costas array case study,
Constraints 20 (2015), no. 1, 30–56.

[18] Weita Chang, A remark on the definition of costas arrays, Proceedings of the IEEE 75
(1987), no. 4, 522–523.

[19] Wensong Chu, Permutation polynomials, tuscan-k arrays and costas sequences (2003), 7–16
pp., available at https://doi.org/10.1007/978-1-4615-0304-0_2.

[20] Philippe Codognet, Modeling the costas array problem in qubo for quantum annealing,
European conference on evolutionary computation in combinatorial optimization
(part of evostar), 2022, pp. 143–158.

[21] Stephen D Cohen and Gary L Mullen, Primitive elements in finite fields and costas arrays,
Applicable Algebra in Engineering, Communication and Computing 2 (1991), no. 1,
45–53.

[22] Bill Correll, The density of costas arrays and three-free permutations, 2012 ieee statistical
signal processing workshop (ssp), 2012, pp. 492–495.

[23] , A new structural property of Costas arrays, 2018 ieee radar conference
(radarconf18), 2018, pp. 0748–0753.

[24] , More new structural properties of Costas arrays, 2019 ieee radar conference
(radarconf), 2019, pp. 1–6.

[25] J. P. Costas, Medium constraints on sonar design and performance, Technical Report Class
1 Rep. R65EMH33 (1965November).

[26] John P Costas, A study of a class of detection waveforms having nearly ideal range—doppler
ambiguity properties, Proceedings of the IEEE 72 (1984), no. 8, 996–1009.

[27] J.P. Costas, A study of a class of detection waveforms having nearly ideal range—doppler
ambiguity properties, Proceedings of the IEEE 72 (1984), no. 8, 996–1009.

[28] D Huw Davies, On the density of costas arrays, IEEE Transactions on Information Theory
(1989).

[29] Daniel Diaz, Florian Richoux, Yves Caniou, Philippe Codognet, and Salvador Abreu,
Parallel local search for the costas array problem, 2012 ieee 26th international parallel and
distributed processing symposium workshops & phd forum, 2012, pp. 1793–1802.

[30] Daniel Diaz, Florian Richoux, Philippe Codognet, Yves Caniou, and Salvador Abreu,
Constraint-based local search for the costas array problem, International conference on
learning and intelligent optimization, 2012, pp. 378–383.

[31] H. Dobbertin, Almost perfect nonlinear power functions on GF(2n): the welch case, IEEE
Transactions on Information Theory 45 (1999), no. 4, 1271–1275.

[32] Xiang dong Hou, Permutation polynomials over finite fields — a survey of recent advances,
Finite Fields and Their Applications 32 (2015), 82–119. Special Issue : Second Decade
of FFA.

[33] Konstantinos Drakakis, A review of costas arrays, Journal of Applied Mathematics
(2006).

[34] , Some results on the degrees of freedom of costas arrays, 2010 44th annual conference
on information sciences and systems (ciss), 2010, pp. 1–5.

[35] , Open problems in Costas arrays, arXiv preprint arXiv:1102.5727 (2011).

[36] Konstantinos Drakakis, Rod Gow, John Healy, and Scott Rickard, Cross-correlation
properties of costas arrays and their images under horizontal and vertical flips, Mathematical
Problems in Engineering (2008).

[37] Konstantinos Drakakis, Rod Gow, and Gary McGuire, APN permutations on Zn and
Costas arrays, Discrete Applied Mathematics 157 (2009), no. 15, 3320–3326.

https://doi.org/10.1007/978-1-4615-0304-0_2


BIBLIOGRAPHY 143

[38] Konstantinos Drakakis, Roderick Gow, and Scott Rickard, Common distance vectors
between costas arrays, Advances in Mathematics of Communications 3 (2009), no. 1,
35.

[39] Konstantinos Drakakis, Roderick Gow, Scott Rickard, John Sheekey, and Ken
Taylor, On the maximal cross-correlation of algebraically constructed costas arrays, IEEE
Transactions on Information Theory 57 (2011), no. 7, 4612–4621.

[40] Konstantinos Drakakis, Francesco Iorio, and Scott Rickard, The enumeration of Costas
arrays of order 28, 2010 ieee information theory workshop, 2010, pp. 1–5.

[41] Konstantinos Drakakis, Francesco Iorio, Scott Rickard, and John Walsh, Results of the
enumeration of Costas arrays of order 29, Advances in Mathematics of Communications
5 (2011), no. 3, 547.

[42] Konstantinos Drakakis, Verónica Requena, and Gary McGuire, On the nonlinearity of
exponential welch costas functions, IEEE Transactions on information theory 56 (2010),
no. 3, 1230–1238.

[43] Konstantinos Drakakis, Scott Rickard, James K Beard, Rodrigo Caballero, Francesco
Iorio, Gareth O’Brien, and John Walsh, Results of the enumeration of Costas arrays of order
27, IEEE Transactions on Information Theory 54 (2008), no. 10, 4684–4687.

[44] David Mark Drumheller and Edward L Titlebaum, Cross-correlation properties of
algebraically constructed costas arrays, IEEE Transactions on Aerospace and Electronic
Systems 27 (1991), no. 1, 2–10.

[45] David Steven Dummit and Richard M Foote, Abstract algebra, Vol. 3, Wiley Hoboken,
2004.

[46] Yves Edel, Gohar Kyureghyan, and Alexander Pott, A new apn function which is not
equivalent to a power mapping, IEEE Transactions on Information Theory 52 (2006), no. 2,
744–747.

[47] Tuvi Etzion, Combinatorial designs derived from costas arrays, Sequences, 1990, pp. 208–
227.

[48] Pingzhi Z Fan and Michael Darnell, The synthesis of perfect sequences, Ima international
conference on cryptography and coding, 1995, pp. 63–73.

[49] Patrick Felke, The multivariate method strikes again: New power functions with low
differential uniformity in odd characteristic, Cryptography and Communications 12
(2020), no. 5, 841–857.

[50] Avraham Freedman and Nadav Levanon, Any two n× n costas signals must have at least
one common ambiguity sidelobe if n> 3—a proof, Proceedings of the IEEE 73 (1985), no. 10,
1530–1531.

[51] Michael J Ganley, Direct product difference sets, Journal of Combinatorial Theory, Series
A 23 (1977), no. 3, 321 –332, available at https://doi.org/10.1016/0097-3165(77)
90023-1.

[52] Gagan Garg, Tor Helleseth, and P. Vijay Kumar, Recent advances in low-correlation
sequences (Vahid Tarokh, ed.), Springer US, Boston, MA, 2009.

[53] E. N. Gilbert, Latin squares which contain no repeated digrams, SIAM Review 7 (1965),
no. 2, 189–198, available at https://doi.org/10.1137/1007035.

[54] Solomon Golomb and Herbert Taylor, Two-dimensional synchronization patterns for
minimum ambiguity, IEEE Transactions on Information Theory 28 (1982), no. 4, 600–
604.

[55] Solomon W Golomb, Algebraic constructions for Costas arrays, Journal of Combinatorial
Theory, Series A 37 (1984), no. 1, 13–21.

[56] Solomon W. Golomb and Guang Gong, Signal design for good correlation: For wireless
communication, cryptography, and radar, Cambridge University Press, 2005.

https://doi.org/10.1016/0097-3165(77)90023-1
https://doi.org/10.1016/0097-3165(77)90023-1
https://doi.org/10.1137/1007035


144 BIBLIOGRAPHY

[57] , The status of costas arrays, IEEE Transactions on Information Theory 53 (2007),
no. 11, 4260–4265.

[58] Solomon W Golomb and Guang Gong, The status of Costas arrays, IEEE Transactions on
Information Theory 53 (2007), no. 11, 4260–4265.

[59] S.W. Golomb, The T4 and G4 constructions for costas arrays, IEEE Transactions on
Information Theory 38 (1992), no. 4, 1404–1406.

[60] S.W. Golomb and H. Taylor, Constructions and properties of costas arrays, Proceedings of
the IEEE 72 (1984), no. 9, 1143–1163.

[61] DH Green and SK Amarasinghe, Families of sequences and arrays with good periodic
correlation properties, IEE Proceedings E (Computers and Digital Techniques) 138
(1991), no. 4, 260–268.

[62] Domingo Gómez-Pérez and Arne Winterhof, A note on the cross-correlation of costas
permutations, IEEE Transactions on Information Theory 66 (2020), no. 12, 7724–7727.

[63] Hao He, Jian Li, and Petre Stoica, Waveform design for active sensing systems: a
computational approach, Cambridge University Press, 2012.

[64] Hao He, Petre Stoica, and Jian Li, Designing unimodular sequence sets with good
correlations—including an application to mimo radar, IEEE Transactions on Signal
Processing 57 (2009), no. 11, 4391–4405.

[65] T. Helleseth, C. Rong, and D. Sandberg, New families of almost perfect nonlinear power
mappings, IEEE Transactions on Information Theory 45 (1999), no. 2, 475–485.

[66] Tor Helleseth, Chunming Rong, and Daniel Sandberg, New families of almost perfect
nonlinear power mappings, IEEE transactions on Information Theory 45 (1999), no. 2,
475–485.

[67] Tor Helleseth and Daniel Sandberg, Some power mappings with low differential uniformity,
Applicable Algebra in Engineering, Communication and Computing 8 (1997), no. 5,
363–370.

[68] Xiang-dong Hou, Determination of a type of permutation trinomials over finite fields, ii,
Finite Fields and Their Applications 35 (2015), 16–35.

[69] Jonathan Jedwab and Jane Wodlinger, Structural properties of Costas arrays., Adv. Math.
Commun. 8 (2014), no. 3, 241–256.

[70] Jonathan Jedwab and Kayo Yoshida, The peak sidelobe level of families of binary sequences,
IEEE transactions on information theory 52 (2006), no. 5, 2247–2254.

[71] WenJie Jia, XiangYong Zeng, ChunLei Li, Tor Helleseth, and Lei Hu, Permutation
polynomials with low differential uniformity over finite fields of odd characteristic, Science
China Mathematics 56 (2013), no. 7, 1429–1440.

[72] Dieter Jungnickel and Alexander Pott, Perfect and almost perfect sequences, Discrete
Applied Mathematics 95 (1999), no. 1-3, 331–359.

[73] Sükrü Ekin Kocabas and Abdullah Atalar, Binary sequences with low aperiodic
autocorrelation for synchronization purposes, IEEE Communications Letters 7 (2003),
no. 1, 36–38.

[74] P. Vijay Kumar, On the existence of square dot-matrix patterns having a specific three-valued
periodic-correlation function, IEEE transactions on information theory 34 (1988), no. 2,
271–277.

[75] Nadav Levanon, Radar, Encyclopedia of physical science and technology (third
edition), 2003, pp. 497–510.

[76] Nian Li, Yanan Wu, Xiangyong Zeng, and Xiaohu Tang, On the differential spectrum
of a class of power functions over finite fields, CoRR abs/2012.04316 (2020), available at
2012.04316.

2012.04316


BIBLIOGRAPHY 145

[77] Rudolf Lidl and Harald Niederreiter, Introduction to finite fields and their applications,
Cambridge university press, 1994.

[78] Hans Dieter Luke, Sequences and arrays with perfect periodic correlation, IEEE
Transactions on Aerospace and Electronic Systems 24 (1988), no. 3, 287–294.

[79] SV Maric, Ivan Seskar, and Edward L Titlebaum, On cross-ambiguity properties of welch-
costas arrays, IEEE Transactions on Aerospace and Electronic Systems 30 (1994), no. 4,
1063–1071.

[80] Oscar Moreno, Survey on Costas arrays and their generalizations, Mathematical properties
of sequences and other combinatorial structures, 2003, pp. 55–64.

[81] Oscar Moreno, Reza Omrani, and Svctislav V Maric, A new construction of multiple target
sonar and extended costas arrays with perfect correlation, 2006 40th annual conference on
information sciences and systems, 2006, pp. 512–517.

[82] Oscar Moreno and Jose Ortiz-Ubarri, Double periodic arrays with good correlation for
applications in watermarking, 2007 3rd international workshop on signal design and its
applications in communications, 2007, pp. 214–218.

[83] Oscar Moreno and José Ortiz-Ubarri, A new method to construct double periodic arrays
with optimal correlation, 2009 ieee information theory workshop, 2009, pp. 364–368.

[84] Oscar Moreno and Andrew Tirkel, Multi-dimensional arrays for watermarking, 2011 ieee
international symposium on information theory proceedings, 2011, pp. 2691–2695.

[85] Oscar Moreno et al., Survey of results on signal patterns for locating one or multiple targets,
Nato adv. sci. inst. ser. c, math. phys. sci., ser. difference sets, sequences and their
correlation properties, 1999.

[86] Gary L Mullen and Daniel Panario, Handbook of finite fields, Vol. 17, CRC Press Boca
Raton, 2013.

[87] Amela Muratovic-Ribic, Alexander Pott, David Thomson, and Qiang Wang, On the
characterization of a semi-multiplicative analogue of planar functions over finite fields, Topics
in finite fields, Amer. Math. Soc., Providence, RI 632 (2015), 317–325.

[88] Jong-Seon No, Hong-Yeop Song, Tor Helleseth, and P Vijay Kumar, Mathematical
properties of sequences and other combinatorial structures, Vol. 726, Springer Science &
Business Media, 2012.

[89] Kaisa Nyberg, Perfect nonlinear s-boxes, Workshop on the theory and application of of
cryptographic techniques, 1991, pp. 378–386.

[90] , Differentially uniform mappings for cryptography, Workshop on the theory and
application of of cryptographic techniques, 1993, pp. 55–64.

[91] Kaisa Nyberg and Lars Ramkilde Knudsen, Provable security against differential
cryptanalysis, Annual international cryptology conference, 1992, pp. 566–574.

[92] Anatol Zygmunt Tirkel Oscar Moreno De Ayala, "digital watermarking," us patent
application, docket no: Us8934663b2, 2015-01-13.

[93] Daniel Panario, Amin Sakzad, Brett Stevens, and Qiang Wang, Two new measures
for permutations: ambiguity and deficiency, IEEE transactions on information theory 57
(2011), no. 11, 7648–7657.

[94] Daniel Panario, Brett Stevens, and Qiang Wang, Ambiguity and deficiency in costas arrays
and apn permutations, Latin 2010: Theoretical informatics, 2010, pp. 397–406.

[95] Matthew G Parker and Alexander Pott, On boolean functions which are bent and negabent,
Sequences, subsequences, and consequences, 2007, pp. 9–23.

[96] Alexander Pott, Group algebras and correlation immune functions, International
conference on sequences and their applications, 2004, pp. 437–450.



146 BIBLIOGRAPHY

[97] , Nonlinear functions in abelian groups and relative difference sets, Discrete Applied
Mathematics 138 (2004), no. 1-2, 177–193.

[98] Alexander Pott, Qi Wang, and Yue Zhou, Sequences and functions derived from projective
planes and their difference sets, International workshop on the arithmetic of finite fields,
2012, pp. 64–80.

[99] Scott Rickard, Searching for Costas arrays using periodicity properties, Ima international
conference on mathematics in signal processing, the royal agricultural college,
cirencester, 2004.

[100] Harvey E Rose, A course on finite groups, Springer Science & Business Media, 2009.

[101] H Rosen Kenneth, Elementary number theory and its applications, Addison-Weley
Publishing Company, 1984.

[102] Ivelisse Rubio and Jaziel Torres, Circular costas maps: a multidimensional analog of circular
costas sequences, arXiv preprint arXiv:2210.16661 (2022).

[103] Joseph J Rushanan, Weil sequences: A family of binary sequences with good correlation
properties, 2006 ieee international symposium on information theory, 2006, pp. 1648–
1652.

[104] D.V. Sarwate and M.B. Pursley, Crosscorrelation properties of pseudorandom and related
sequences, Proceedings of the IEEE 68 (1980), no. 5, 593–619.

[105] D Shedd and D Sarwate, Construction of sequences with good correlation properties
(corresp.), IEEE Transactions on Information Theory 25 (1979), no. 1, 94–97.

[106] J. Silverman, V.E. Vickers, and J.M. Mooney, On the number of costas arrays as a function
of array size, Proceedings of the IEEE 76 (1988), no. 7, 851–853.

[107] Mojtaba Soltanalian and Petre Stoica, Computational design of sequences with good
correlation properties, IEEE Transactions on Signal processing 60 (2012), no. 5, 2180–
2193.

[108] Mojtaba Soltanalian, Petre Stoica, and Jian Li, Search for costas arrays via sparse
representation, 2014 22nd european signal processing conference (eusipco), 2014,
pp. 2235–2239.

[109] Junxiao Song, Prabhu Babu, and Daniel P Palomar, Sequence set design with
good correlation properties via majorization-minimization, IEEE Transactions on Signal
Processing 64 (2016), no. 11, 2866–2879.

[110] Petre Stoica, Hao He, and Jian Li, New algorithms for designing unimodular sequences
with good correlation properties, IEEE Transactions on Signal Processing 57 (2009), no. 4,
1415–1425.

[111] Imants D Svalbe and Andrew Z Tirkel, Extended families of 2d arrays with near optimal
auto and low cross-correlation, EURASIP Journal on Advances in Signal Processing 2017
(2017), no. 1, 1–19.

[112] Christopher N. Swanson, Bill Correll, and Randy W. Ho, Enumeration of parallelograms
in permutation matrices for improved bounds on the density of costas arrays, Electron. J.
Comb. 23 (2016), no. 1, P1.44.

[113] Nima Tabatabaei, Matched-filter thermography, Applied Sciences 8 (2018), no. 4.

[114] Ken Taylor, Konstantinos Drakakis, and Scott Rickard, Generated, emergent, and sporadic
costas arrays, Ima international conference on mathematics in signal processing at the
royal agricultural college,” cirencester, uk, 2008.

[115] E.L. Titlebaum and S.V. Maric, Multiuser sonar properties for costas array frequency hop
coded signals, International conference on acoustics, speech, and signal processing,
1990, pp. 2727–2730.



BIBLIOGRAPHY 147

[116] David Vulakh and Raphael Finkel, Parallel m-dimensional relative ant colony optimization
(mdraco) for the costas-array problem, Soft Computing 26 (2022), no. 12, 5765–5772.

[117] S Wang, Efficient heuristic method of search for binary sequences with good aperiodic
autocorrelations, Electronics Letters 44 (2008), no. 12, 731–732.

[118] Lutz Warnke, Bill Correll, and Christopher N. Swanson, The density of costas arrays
decays exponentially, IEEE Transactions on Information Theory 69 (2023), no. 1, 575–
581.

[119] Jane Louise Wodlinger, Costas arrays, golomb rulers and wavelength isolation sequence
pairs, Master’s Thesis, 2012.

[120] Yongbo Xia, Xianglai Zhang, Chunlei Li, and Tor Helleseth, The differential spectrum of
a ternary power mapping, Finite Fields and Their Applications 64 (2020), 101660.

[121] Yin Xinchun and Liu Tao, Searching for costas arrays using general particle swarm
optimization, Tencon 2006-2006 ieee region 10 conference, 2006, pp. 1–3.

[122] Guangkui Xu, Xiwang Cao, and Shanding Xu, Several classes of polynomials with
low differential uniformity over finite fields of odd characteristic, Applicable Algebra in
Engineering, Communication and Computing 27 (2016), no. 2, 91–103.

[123] Haode Yan and Dongchun Han, New ternary power mapping with differential uniformity
△ f≤ 3 and related optimal cyclic codes, IEICE TRANSACTIONS on Fundamentals of
Electronics, Communications and Computer Sciences 102 (2019), no. 6, 849–853.

[124] Haode Yan and Zhengchun Zhou, Power functions over finite fields with low c-differential
uniformity, CoRR abs/2003.13019 (2020), available at 2003.13019.

[125] Haode Yan, Zhengchun Zhou, Jian Weng, Jinming Wen, Tor Helleseth, and Qi Wang,
Differential spectrum of kasami power permutations over odd characteristic finite fields, IEEE
Transactions on Information Theory 65 (2019), no. 10, 6819–6826.

[126] Zhengbang Zha and Lei Hu, Some classes of power functions with low c-differential
uniformity over finite fields, Designs, Codes and Cryptography 89 (2021), no. 6, 1193–
1210.

2003.13019

	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	Overview
	Introduction
	Costas Arrays
	Difference Triangle Table
	Cross and autocorrelation
	Symmetry
	Construction Techniques
	The Welch Construction
	Lempel-Golomb Construction

	Heuristic Constructions
	Search methods for Costas arrays
	Sporadic Costas arrays

	A new transformation for Costas arrays
	Transforming the existing Costas arrays
	A new Transformation
	None-generated Costas arrays
	Difference set's point of view

	A measure for Costas property
	Forbidden Configurations
	Odd Permutation
	G-symmetric and Odd Permutations
	PN/APN mappings
	Search algorithm for G-symmetric Costas arrays

	Crosscorrelation Properties of Costas Arrays
	Crosscorrelation of algebraically constructed Costas arrays
	Crosscorrelation of power mappings
	Crosscorrelation of exponential Welch and power mappings
	The family of inverse permutations

	Appendix
	 Bibliography

