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ABSTRACT 
 

   Cultured hippocampal neurons and organotypic slices have been useful for 

investigating long-lasting plasticity beyond the time limit of acutely prepared slices. 

However, difficulties with culturing adult neurons have restricted such studies to 

preparations from embryonic, perinatal, and juvenile tissue. Immature hippocampal 

cultures not only differ in the anatomical organization and maturity of their neurons from 

adult tissue, but also in the mechanisms for the induction and expression of long-term 

potentiation (LTP). This study provides evidence that mature hippocampal cultures can 

retain electrophysiological properties required for long-term plasticity for several weeks 

in vitro. Introducing improved methods for culturing and maintaining hippocampal-

entorhinal cortex slices from young adult rats (P25-30) resulted in cultures for use in 

long-term electrophysiological investigations. The electrophysiological properties and, in 

particular, the induction of LTP in mature organotypic slices were highly sensitive to 

dissection and tissue culture techniques. Using the modified preparation and culture 

protocols, cultured mature slices maintained an intact and functional trisynaptic cascade, 

synaptic function comparable to acute slices, as well as reliable long-term recording 

stability for at least 14 days in vitro. As in the adult hippocampus in vivo, LTP at the 

Schaffer-collateral-CA1 synapse could be induced by extracellular stimulation. Its 

induction was N-methyl-D-aspartate (NMDA) receptor dependent and its maintenance 

long-lasting (> 4 h). The development of mature slice cultures and protocols for LTP 

induction makes further studies investigating the mechanisms involved in the long-

lasting maintenance of LTP feasible. For example, phosphorylation of the transcription 

factor cAMP-response element binding protein (CREB) has been implicated in synaptic 

plasticity and long-term memory, and its sustained activation has been proposed to be 

required for the maintenance of late-LTP (L-LTP). In the present work, the level of CREB 
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phosphorylation was determined for individual neurons in mature organotypic 

hippocampal slices after LTP was induced by stimulating the CA1 area. Confocal 

imaging was used to determine the ratio between nonphosphorylated and 

phosphorylated CREB (pCREB) revealing the extent of CREB phosphorylation at a 

single-cell resolution. The activation of CREB after LTP induction was compared to 

cAMP-activation after bath application of forskolin. An increase in cAMP by forskolin 

resulted in a persistent and uniform increase of the pCREB/CREB immunofluorescence 

ratio in the entire hippocampal principal neuron population. High-frequency tetanization 

(100Hz) in the CA1 area resulted in long-lasting LTP accompanied by a significant 

increase in the pCREB/CREB ratio, which continued to increase in parallel with the 

increased duration of LTP. Specific for CA1 cells following tetanization was a marked 

variability of CREB phosphorylation between adjacent cells throughout the duration of 

LTP. Only LTP-inducing stimuli translated synaptic input into varied degrees of CREB 

phosphorylation, and resulted in the continued increase of the proportion of nuclear 

CREB phosphorylation in parallel to the maintenance of long-lasting LTP irrespective of 

the initial level of activation. Activity-dependent CREB activation was specific for CA1 

neurons, whereas CA3 and dentate neurons remained at baseline levels indicating that 

antidromic stimulation was not sufficient for inducing CREB phosphorylation. In addition, 

100 Hz stimulation in the presence of an NMDA receptor antagonist resulted in a short-

lasting posttetanic potentiation and an unchanged pCREB/CREB ratio revealing that 

both CREB phosphorylation and LTP induction in mature slices required NMDA receptor 

activation. This study supports the hypothesis that CREB may play a role in the late 

phases of LTP and provides evidence that molecular and electrophysiological plasticity 

can be studied in parallel in mature cultured tissue, which can be maintained in culture 

without a loss in hippocampal cell function or stability.  
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1. Introduction 
 

1.1. Synaptic Plasticity 

 

 The remarkable capacity of the brain to continually create and store endless volumes of 

memories is thought to rely on long-lasting, activity-dependent changes in the strength of 

synaptic connections between neurons. Ramon y Cajal (1894) first proposed that 

memory was stored as an anatomical change in the strength between neuronal 

connections. His classical descriptions of nervous system structure and function were 

the basis for the innovative theories put forth by the Canadian psychologist Donald Hebb 

in the late 1940s. He proposed the following idea to explain how synapses possibly 

change: 

 

 “When an axon of cell A is near enough to excite cell B repeatedly or 

consistently takes place in firing it, some growth process or metabolic 

change takes place in one or both cells such that A’s efficiency, as one of 

the cells firing B, is increased” (Hebb, 1949, pg.62).  

 

“… any two cells or systems of cells that are repeatedly active at the same 

time will tend to become ‘associated’, so that activity in one facilitates 

activity in the other” (Hebb, 1949, pg. 70). 

 

Support that mammalian synapses could undergo such a type of modification did not 

appear until 1973 when Timothy Bliss and Terje Lømo described a ‘Hebbian’ form of 

plasticity in the mammalian brain. In their groundbreaking study, Bliss and Lømo 

demonstrated in anesthetized rabbits that repeated high-frequency stimulation of the 
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perforant path in vivo, a fiber pathway to the dentate gyrus of the hippocampal formation, 

produced a long-lasting enhancement of the extracellularly recorded field potential, 

which they called long-term potentiation (LTP). The increased postsynaptic field 

potential, which was taken to reflect strengthened synapses between the perforant path 

and dentate granule cells, could last for hours in vitro and days and even weeks in the 

intact animal (Bliss and Gardner-Medwin, 1973; Bliss and Lømo, 1973).  

   It is believed that understanding the mechanisms of LTP will uncover the processes 

involved in the formation and storage of memories, and lead to a greater understanding 

of physiological and molecular events resulting in learning and memory. LTP has been 

studied using a variety of methods, both in vitro and in vivo, in many different synapses 

throughout the brain of several species. The fact that LTP can be reliably generated in 

brain regions thought to constitute the core anatomical components of learning and 

memory (Hippocampal formation, Bliss and Gardner-Medwin, 1973; Bliss and Lømo, 

1973; Septum, Racine et al., 1983; Neocortex, Kirkwood et al., 1993; Heynen and Bear, 

2001; and Amygdala, Yaniv et al., 2001) provides further evidence for its involvement in 

learning and memory. Considering the important role of the hippocampus in memory 

formation and taking advantage of its relatively simple circuitry and laminar organization 

has focused much of the experimental research on understanding LTP at the excitatory 

synapses of the hippocampal formation. The hippocampus appears to be involved in the 

acquisition and consolidation of long-term memories, including episodic memory and 

memories with spatial content (Milner et al., 1968; Smith and Milner, 1981; Kesner et al., 

1989; Squire et al., 1993). Furthermore, many cellular and molecular processes that are 

necessary for hippocampal-dependent memory are also required for LTP induction and 

maintenance (Morris et al., 1986; Izquierdo et al., 1997; Morris et al., 2003).  
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1.2. Properties of Long-Term Potentiation in the Hippocampus 

 

   The hippocampal formation is an area of primitive cortex (i.e., allocortex) connected to 

the adjacent entorhinal cortex and other associative cortical areas (Fig. 1a). The 

hippocampal formation is composed of the subiculum, the hippocampus proper, and the 

dentate gyrus. Based on cytoarchitecture the hippocampus proper is further subdivided 

into four regions designated CA1-CA4 (cornu ammonis, or Ammon’s horn), where CA1 

is located proximal to the subiculum and CA4 close to the dentate gyrus. The basic 

anatomical connections of the hippocampal formation were first observed in the classical 

Golgi studies of Ramon y Cajal (1893) and Lorente de No (1933, 1934), but it was not 

until the early 1970’s that physiological studies were combined with previous anatomical 

studies to provide a clearer description of the three-dimensional and laminar 

organization of the hippocampus (Andersen et al., 1971, 1977). Per Andersen et al. 

(1977) provided physiological evidence that the hippocampal formation is composed of 

three major excitatory pathways forming a trisynaptic cascade. The first major excitatory 

pathway is called the perforant pathway. This input to the hippocampal formation 

originates from layers two and three of the entorhinal cortex and passes through the 

subiculum to terminate in the molecular layer of the dentate gyrus. Granule cells in the 

dentate gyrus form the second excitatory pathway, the mossy fiber pathway, which 

projects to the proximal dendrites of pyramidal cells in the CA3 region of the 

hippocampus. In addition to sending recurrent collaterals to cells within CA3 and 

collaterals back to the granule cells, CA3 pyramidal neurons also send an excitatory 

projection, comprising the third excitatory pathway, to the pyramidal cells in the CA1 

hippocampal region (i.e., Schaffer collateral fibers). The CA1 neurons, in turn, provide 

input to the subiculum as well as layers four and five of the entorhinal cortex (see Witter, 

1993; Fig. 1b).  
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Figure 1. Reconstruction of the hippocampus (red) oriented within the rat brain. (A) Lines indicate 
the orientation of additional visual planes represented at the left and right respectively. The 
internal anatomy of the hippocampus is represented by a Nissl-stained coronal section (right box; 
Nissl-stained image adapted from Lu et al., 2001). (B) A schematic representation of the 
trisynaptic hippocampal cascade (illustrated in a hippocampal slice). The position of the
hippocampal slice is shown in the rat brain drawn below (image adapted from Amaral and Witter,
1989). The electrode placement is shown for recording LTP evoked at the synapses of the
Schaffer collateral input to the pyramidal neurons of the CA1 region. Scale bar: 600 µm.  a, 
anterior; p, posterior; m, medial; l, lateral; d, dorsal; v, ventral; DG, dentate gyrus; ff, fimbria 
fornex; hipp. fiss., hippocampal fissure; mf, mossy fiber pathway; pp, perforant pathway; Subc,
subiculum; sc, Schaffer collateral fibers; TRANS, transverse axis. 
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The 
internal anatomy of the hippocampus is represented by a Nissl-stained coronal section (right box; 
Nissl-stained image adapted from Lu et al., 2001). (B) A schematic representation of the 
trisynaptic hippocampal cascade (illustrated in a hippocampal slice). The position of the
hippocampal slice is shown in the rat brain drawn below (image adapted from Amaral and Witter,
1989). The electrode placement is shown for recording LTP evoked at the synapses of the
Schaffer collateral input to the pyramidal neurons of the CA1 region. Scale bar: 600 µm.  a, 
anterior; p, posterior; m, medial; l, lateral; d, dorsal; v, ventral; DG, dentate gyrus; ff, fimbria 
fornex; hipp. fiss., hippocampal fissure; mf, mossy fiber pathway; pp, perforant pathway; Subc,
subiculum; sc, Schaffer collateral fibers; TRANS, transverse axis. 



   A commonly studied synapse in the hippocampus, and in the entire brain is the 

Schaffer collateral input to the pyramidal neurons of the CA1 region. LTP evoked at the 

synapses between the Schaffer collateral axons and the apical dendrites of CA1 

pyramidal cells is characterized by three properties: cooperativity, associativity, and 

specificity. Cooperativity refers to the fact that the probability of inducing LTP increases 

with the number of stimulated afferents. Weak high-frequency stimulation was found to 

result in LTP less often than strong stimulation at the same frequency and duration 

presumably due to the recruitment of more axons at higher stimulation intensities, which 

‘cooperate’ to trigger LTP (McNaughton et al., 1978). LTP in area CA1 is also 

associative as shown in preparations when two distinct axonal inputs converge on the 

same cell, where stimulation of a weak input (few stimulated afferents) only evokes LTP 

when coupled with stimulation of the strong input (many stimulated afferents). Or in other 

words, strong activation of one set of synapses can facilitate LTP at synapses on the 

same cell if both are activated during a specific time window (Barrionuevo and Brown, 

1983; Levy and Steward, 1983). Finally, LTP in area CA1 is input-specific, meaning that 

LTP is only evoked at the inputs that receive high-frequency stimulation (Lynch et al., 

1977; Kelso and Brown, 1986). Accordingly, LTP in area CA1 has been shown to closely 

follow the properties proposed by Donald Hebb. The first direct evidence that CA1 

synapses were ‘Hebbian’ was provided by substituting the usual strong input with direct 

depolarization of the postsynaptic neuron (Kelso et al., 1986), and by showing that LTP 

induction in the CA1 region requires depolarization of the postsynaptic cell that coincided 

with activity in the presynaptic neuron (Gustafson and Wigström, 1988).  

   Different forms of LTP have also been shown for mammalian synapses, which in turn 

display differing properties including non-Hebbian mechanisms (reviewed in Bliss and 

Collingridge, 1993; Nicoll and Malenka, 1995; Morris and Frey, 1997; Bailey et al., 

2000). For example, non-glutamatergic heterosynaptic inputs have been hypothesized to 
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enhance synaptic strengthening that was initially induced by homosynaptic mechanisms. 

It has been proposed that ‘Hebbian’ mechanisms are primarily responsible for short-term 

memories, whereas plasticity resulting from the heterosynaptic input is required for long-

term memory (Frey et al., 1988; Frey and Morris, 1998). Synapse strengthening by a 

modulatory pathway would accordingly be necessary for prolonged synaptic plasticity 

and in particular protein synthesis dependent late-LTP (Frey et al. 1988; reviewed in 

Matthies et al., 1990; Frey and Morris, 1998; Bailey et al., 2000; Kendal et al., 2001).  

 

1.3. Mechanisms for the Induction of Long-Term Potentiation 

 

   The N-methyl-D-aspartate (NMDA) receptor, which is a glutamate receptor subtype, 

has key molecular properties that convey ‘Hebbian’ synaptic plasticity. NMDA receptors 

are permeable to Ca2+, the critical trigger for the induction of LTP, and its permeability 

depends on both pre- and postsynaptic events. Opening of the channel for the influx of 

Ca2+ and Na+ ions requires the binding of the neurotransmitter glutamate, which is 

released from the presynaptic cell. In addition, coincident and sufficient depolarization of 

the postsynaptic cell is needed to disassociate Mg2+ from its binding site within the 

NMDA receptor channel before allowing Ca2+ and Na+ entry into the cell. The 

depolarization is largely mediated by the activation of α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic (AMPA) receptors, which are co-localized with NMDA receptors on 

dendritic spines and are also activated by the binding of presynaptically released 

glutamate. However, it is the properties of the NMDA receptor that account for the 

induction of LTP through the influx of Ca2+ into the dendritic spine, which in turn activates 

Ca2+ dependent enzymes responsible for the induction of LTP (Fig. 2). The Hebbian 

properties of LTP can be fully explained by the behavior of the NMDA receptor voltage 

dependence, which allows for Ca2+ entry into the cell only when the presynaptic release 
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Figure 2. Events leading to LTP as well as CREB activation. The schematic depicts events in the 
pre- and postsynaptic spines following forced synaptic input by electrical stimulation. Tetanization
of the presynaptic neuron causes glutamate (glu) to be released from the presynaptic bouton that
acts on both AMPA and NMDA receptors. The NMDA receptor admits Ca2+ only after sufficient 
depolarization removes the Mg2+ block, the subsequent rise in [Ca2+] is the critical trigger for the 
induction of LTP. Various sources of Ca2+ in the postsynaptic spine are shown. The activation of 
second messenger cascades acting through their respective protein kinases affect multiple
cellular processes such as the phosphorylation of CREB and result in the enhancement of
synaptic transmission. Long-term alterations in synaptic strength (i.e., L-LTP) are achieved 
through regulation of protein synthesis. However, the direct role of CREB or other transcription
factors has not been conclusively determined (see text for additional details). β-AD (β-adrenergic 
receptor); AC (adenyl cyclase); D1/D5 (D1/D5 dopamine receptor); G (G-protein); mGluR 
(metabotropic glutamate receptor); PLC (phospholipase); VGCC (voltage gated Ca2+ channel).  
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of glutamate is coupled with postsynaptic depolarization. Accordingly, pharmacological 

studies have shown that this distinct form of LTP in the CA1 area is selectively 

prevented after the addition of competitive antagonists of the NMDA receptor site such 

as 2-amino-5-phosphonovaleric acid (APV). 

   Considerable debate has emerged about the question whether the increase in synaptic 

function during LTP takes place on the pre- or postsynaptic side of the synapse. 

Conclusive evidence has been found showing that increases in synaptic strength result 

from a modification in the AMPA receptor number and function at the postsynaptic side 

of the activated synapse. The expression of LTP was shown to be caused both by the 

phosphorylation of AMPA receptors and the delivery of additional receptors to the 

postsynaptic membrane. However, evidence also exists in support of changes in the 

presynaptic neuron. These data describe an increase in the probability of 

neurotransmitter release following the induction of LTP, which could potentially occur in 

concert with modifications at the postsynaptic side of the same synapse population 

(reviewed in Malenka and Nicoll, 1999; Lisman J, 2003).  

 

1.4. Phases of Long-Term Potentiation 

 

   Synaptic potentiation can be divided into several temporal stages that use different 

mechanisms for their induction, expression, and/or maintenance. An NMDA-dependent 

increase in Ca2+ that is insufficient to generate LTP results only in the first and often 

second phase of synaptic potentiation, i.e. posttetanic potentiation (PTP) and short-term 

potentiation (STP). The induction of PTP results in enhanced potentials returning to 

baseline levels after 5-10 min, whereas STP lasts 60-90 min. When induced and 

expressed, LTP is divided into two major phases, early-LTP and late-LTP (Matthies et 

al., 1990). The early-phase of LTP (E-LTP) is transient, stable for up to 2-3 h, induced by 
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second messenger cascades activated by Ca2+ influx, and maintained by activated 

kinases (reviewed by Malenka and Nicoll, 1999; Soderling and Derkach, 2000). Late-

LTP (L-LTP) begins gradually during the first 1-3 h and can last for 6-10 h in 

hippocampal slices in vitro or days to months in vivo (Fig. 3). 

 
Figure 3. The multiple phases of LTP. See text for a detailed description. 
 

 

   The different forms of LTP can be induced in acute slices using separate stimulus 

protocols (Frey et al., 1993; Huang and Kandel, 1994; Nguyen et al., 1994). A single 

high-frequency stimulus train of distinct stimulation strength immediately induces E-LTP 

that lasts for up to 3 h, but is normally not sufficient to induce L-LTP. The induction of L-

LTP, on the other hand, requires repeated or stronger trains of high-frequency 

stimulation. The activation of heterosynaptic inputs has been proposed to be required for 

the induction of L-LTP (Morris and Frey, 1997; Bailey et al., 2000). Stimulation of 

modulatory subcortical inputs (i.e., dopaminergic fibers) as well as hippocampal 

excitatory synapses has been shown to induce and maintain L-LTP in area CA1 (Frey et 
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al., 1990; Frey et al., 1991; Huang and Kandel, 1995; Swanson-Park et al., 1999). 

Considerable research is currently underway to investigate the cellular mechanisms 

including the nature of plasticity-related proteins involved in L-LTP. The early and late 

phases of LTP involve different signaling pathways. In contrast to E-LTP, L-LTP requires 

PKA-activity pathways (Frey et al., 1993; Huang and Kandel, 1994; Abel et al., 1997; 

Nyugen and Kandel, 1997). Furthermore, L-LTP is distinguished from E-LTP by the 

requirement for protein synthesis (Krug et al., 1984; Frey et al., 1988; Huang and 

Kandel, 1994; Nguyen et al., 1994; Frey et al., 1996; Huang et al., 1996). By using 

suppressors of RNA-translation, studies have shown that late stages of LTP (> 3 h) 

require protein expression (Krug et al., 1984; Stanton et al., 1984; Deadwyler et al., 

1997; Frey et al., 1988; Frey et al., 1996; Mochida et al., 2001). Protein synthesis is 

assumed to be necessary for the cell to maintain synaptic changes over long time 

periods, which requires constant molecular turnover and eventually leads to synaptic 

growth. It is hypothesized that L-LTP requires the activation of transcription factors for 

sustaining long periods of synaptic enhancement and finally making the synaptic change 

permanent. In support of this theory it has been shown that the transcription factor 

cAMP-responsive element binding protein (CREB) differs in its activation following the 

induction of either the short or long form of LTP (Matthies et al., 1997; Impey et al., 

1998; Schulz et al., 1999; but see Gass et al., 1998; Balschun et al., 2003). Only L-LTP 

is accompanied by sustained CREB phosphorylation (Schulz et al., 1999), or CREB-

mediated transcription (Bito et al., 1996; Impey et al., 1996; Impey et al., 1998; 

Deisseroth and Tsien, 2002).  

   The theory that the activation of nuclear transcription factors are required for L-LTP 

raises the problem of synaptic input specificity. The question arises how proteins 

produced in the soma or dendritic compartments are targeted to LTP-expressing 

synaptic inputs rather than traveling to any synapse within the cell. It has been proposed 
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that the synapse produces a local marker after an appropriate stimulus event that allows 

it to sequester proteins in response to nuclear signals (Frey and Morris, 1997). However, 

the proteins and possible markers involved in such a mechanism have not yet been 

identified experimentally. 

 

1.5. CREB: a Possible Modulator of Long-Term Plasticity 

 

   De novo gene expression and protein synthesis, which are initiated by the activation of 

transcription factors, are required to maintain plastic changes for long periods after 

learning (Davis and Squire, 1984; Matthies, 1989; Izquierdo et al., 1997; Schafe et al., 

1999; Vianna et al., 2001; Igaz et al., 2002) as well as for the induction of L-LTP (Krug et 

al., 1984; Frey et al., 1988; Nguyen et al., 1994, Kandel and Pittenger, 1999). However, 

the cellular mechanisms that initiate gene expression subsequent to long-lasting 

enhancement of synaptic transmission are uncertain. Activation of single transcription 

factors by multiple pathways makes them of particular interest as candidate mechanisms 

responsible for modulating long-term plasticity changes. The activation of a single 

transcription factor CREB by multiple signaling pathways known to be involved in 

memory as well as LTP has created great interest into CREB activation as a candidate 

mechanism in the long-term modulation of synaptic change. In addition, as one of the 

proteins that may be activated during L-LTP, CREB has been studied particularly based 

on the suggestion that this transcription factor may play a significant role in memory 

formation (reviewed in Frank and Greenberg, 1994; Silva et al., 1998; Deisseroth et al., 

2003). 

   CREB is a member of the basic leucine zipper superfamily of transcription factors that 

modulates the transcription of genes by binding to a regulatory DNA promoter known as 

cAMP responsive element (CRE) (Brindle and Montminy, 1992; Mayr and Montminy, 
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2001). Nuclear CREB can be activated by several neural signaling pathways, including 

the cAMP and Ca2+ pathways which are known to be involved in memory and are 

activated or up-regulated by stimuli that induce LTP (see West et al., 2001; Deisseroth et 

al., 2003). A variety of kinases induced by these pathways have been shown to both 

activate CREB by phosphorylating the Ser 133 site (Gonzalez et al, 1989; Sheng et al., 

1991; Bito et al., 1996; Impey et al., 1998; Deisseroth and Tsien, 2002; Ying et al., 

2002), as well as play critical roles in the induction and/or maintenance of LTP (Silva et 

al., 1992; Frey et al., 1993; Huang et al., 1994; Patterson et al., 1996; Impey et al., 1998; 

Nicoll, 2003). These kinases include protein kinase A (PKA), protein kinase C (PKC), as 

well as the calmodulin kinases (CamKs). The activation of CREB by phosphorylation at 

the Ser 133 site causes CREB to become active in promoting transcription from the CRE 

(Dash et al., 1991; Hunter and Karin, 1992; Chrivia et al., 1993; Mayr and Montminy, 

2001; see Fig. 2). CREs lie upstream from a number of genes, including immediate early 

genes such as c-fos (Sassone-Corsi et al., 1988) and zif/268 (Sakamoto et al., 1991), 

which have been shown to be required in L-LTP or to be selectively expressed in 

association with neuronal activity and subsequent CREB activation (Morgan and Curran, 

1989; Dash et al., 1991; Scheng et a., 1991; Worley et al., 1993; Alberini et al., 1995; 

Huang et al., 1996; Guzowski et al., 2000; Jones et al., 2001; Ying et al., 2002; Bozon et 

al., 2003). Immediate early genes activated by neuronal activity could in turn transcribe 

late-effector genes that encode the proteins underlying structural changes at the 

synapse, which are believed to be the final result of long-term plasticity changes. The 

activation of CREB by converging signal pathways induced by multiple synaptic inputs 

could be a mechanism that controls the consolidation of lasting forms of synaptic 

plasticity, such as L-LTP. Research has focused on understanding the relationship 

between CREB activation and LTP due to the considerable overlap in their signaling 

mechanisms.  
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   Considerable evidence has implicated CREB in the formation of memory (reviewed in 

Frank and Greenberg, 1994; Silva et al., 1998) particularly in invertebrate models, such 

as Aplysia and Drosophila. In the mollusc Aplysia, long-term facilitation is blocked by the 

injection of CRE oligonucleotides into the presynaptic nucleus (Dash et al., 1990), and in 

Drosophila, long-term memory disappears or is increased after the repression or the 

induction of activated forms of CREB (Tully et al., 1994; Yin et al., 1994, 1995). 

However, in the vertebrate hippocampus, the specific role of CREB in memory has not 

been clear, perhaps due to the complexity of signaling pathways in the mammalian 

nervous system. In mutant mice, where CREBα∆ was inactivated by homologous 

recombination, animals displayed deficits in long-term memory, including spatial memory 

(Bourtchuladze et al., 1994; Kogan et al., 1996). Another group verified that CREB 

deficient mutant mice had deficits in long-term memory, but also provided evidence that 

this deficit was not related to hippocampal-dependent spatial memory (Gass et al., 

1998). Mutant mouse strains that have a progressively more complete deficiency of all 

CREB isoforms, also showed only subtle effects on hippocampal-dependent types of 

learning and memory (Balchun et al., 2003) suggesting that perhaps CREB activation is 

a covariate of general hippocampal activity rather then a critical modulator of 

hippocampal types of learning and memory or is compensated for by other transcription 

factors in these genetically modified mice. However, due to the central role of CREB in 

development, general neuronal activity deficiencies caused by deregulation in mutant 

mice could lead to memory abnormalities. Therefore, it is important to test whether acute 

modulations of CREB function also affect memory, as well as to determine the direct role 

of CREB in plasticity models for memory formation such as LTP. 

   Electrophysiological data support a functional role for CREB in hippocampal LTP. The 

activation of CREB is specific for LTP-inducing stimuli, both events share common 

signaling mechanisms, and the dynamics of both processes are regulated through the 
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temporal patterns of synaptic input. It was initially of particular significance to investigate 

the physiology of CREB activation and to establish that the activation of CREB is 

correlated with the induction of LTP. CREB activation can be detected in hippocampal 

neurons using an antibody specific to phosphorylated CREB (at the Ser 133 site; Gity et 

al., 1993). Many studies have used this approach to observe the activation of CREB in 

response to electrical stimulation. By using this technique it was found that CREB 

phosphorylation was not just a general marker for neuronal activity, but was rather 

specifically activated in response to synaptic stimulation (Deisseroth et al., 1996). Only 

tetani that generated robust, long-lasting potentiation (18 sec at 50 Hz) activated CREB 

in immature disassociated hippocampal neurons (Deisseroth et al., 1996). However, 

Ser 133 phosphorylation of CREB alone did not necessarily result in CREB-dependent 

gene expression (Bito et al., 1996). Only longer synaptic stimulation (180 sec at 5 Hz, 

rather than 8 sec) resulted in a sustained phosphorylation of CREB that was 

accompanied with CREB-dependent gene expression (Bito et al., 1996). These findings 

in immature hippocampal-neuron cultures were confirmed in acute slices from transgenic 

mice. Transgenic mice with a CRE-regulated reporter construct revealed that CRE-

mediated gene expression is increased in response to stimuli that generate L-LTP 

(Impey et al., 1996). The induction of E-LTP with a brief stimulus (1s at 100 Hz) 

phosphorylated CREB, but failed to induce CREB-dependent transcription. Tetani given 

at a higher frequency (3 tetani at 5 min intervals) resulted in both protein-synthesis 

dependent L-LTP (4 h) and CRE-mediated gene expression (Impey et al., 1996). 

Therefore, it was shown that both phases of LTP are associated with the 

phosphorylation of CREB, but that only the activation of L-LTP by repeated tetanic 

stimulation, which induces protein synthesis dependent LTP (Frey et al., 1993; Huang 

and Kandel, 1994; Nguyen et al., 1994), resulted in CREB-mediated transcription (Impey 

et al., 1996), which is assumed to be responsible for long-term plasticity. These findings 
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naturally led to the investigation of the temporal dynamics of CREB activation during 

both E-LTP and L-LTP.  

   Matthies et al., (1997) investigated the temporal dynamics of CREB activation in acute 

hippocampal slices and observed that high-frequency stimulation (100 Hz) of the 

Schaffer collaterals resulted in L-LTP (4 h) associated with an immediate increase in 

CREB phosphorylation apparent in protein fractions of area CA1 as well as by 

immunohistochemistry. Fluorescent imaging of the entire hippocampal CA1 region 

revealed an increase in CREB phosphorylation after the induction of LTP, but this 

increase was transient and appeared to decline after 30 min despite continued synaptic 

enhancement. The temporal dynamics of CREB phosphorylation during hippocampal 

LTP in vivo were shown to be biphasic, and depended on the type of LTP induced. L-

LTP induced in the perforant path in vivo (200 Hz) appeared to result in an immediate 

increase in CREB phosphorylation at 30 min followed by an additional long-lasting peak 

at 2 h. This later sustained phosphorylation of CREB was shown to last for up to 24 h, 

whereas E-LTP resulted in transient CREB phosphorylation that disappeared by 2 h, as 

shown by optical imaging of the entire population of dentate granule cells (Schulz et al., 

1999). It was shown that sustained CREB phosphorylation was invariably generated by 

stimuli that also induced L-LTP similar to the findings in cultured immature hippocampal 

neurons (Bito et al., 1996). Although the evidence presented in vivo suggests a possible 

correlation between the sustained phosphorylation of CREB and the maintenance of L-

LTP, the temporal dynamics of CREB phosphorylation in vivo clearly differ from those 

observed in acute hippocampal slices (Matthies et al., 1997), bringing into question 

whether acute hippocampal slices are an appropriate model in the investigation of 

cellular CREB activation. In addition, both studies inferred an increase in CREB 

phosphorylation by visually comparing fluorescent images of entire neuronal populations 

to control images. An actual quantification of nuclear CREB phosphorylation at a single-
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cell resolution during the multiple phases of LTP could more conclusively reveal the 

dynamics of CREB activation during hippocampal long-term synaptic plasticity. 

Revealing the temporal relationship among these events is important in elucidating their 

possible causal relationship. 

   Electrophysiological investigation of the role of CREB in LTP using CREB mutant mice 

has also produced conflicting results. Acute hippocampal slices from CREBα∆ mutant 

mice were severely impaired in the maintenance of LTP lasting longer than 2 h after 

strong tetanization (100 Hz) of the Schaffer collateral fibers, however, E-LTP was not 

affected (Bourtchuladze et al., 1994). However, these results have not been reproduced 

(personal communication, JU Frey), and additional data have contradicted their results. 

L-LTP in acute hippocampal slices from mice with a progressive reduction of CREB in 

the CA1 area as well as from mutants completely lacking CREB in the entire brain was 

not affected (Gass et al., 1998; Balschun et al., 2003), suggesting that CREB may not 

play a pivotal role in hippocampal-dependent synaptic plasticity, a view supported by 

previous findings that suggest CREB plays different roles according to the mode of LTP 

induction (Pittenger et al., 2002).  

   The fact that the temporal dynamics of CREB activation are related to the phases of 

LTP has lead to the investigation of the signaling cascades that mediate CREB 

phosphorylation. The significance of multiple pathways signaling CREB activation could 

serve to carry information to the nucleus about a specific set of synaptic stimuli. 

Electrical stimulation of mouse dorsal root ganglion neurons in culture showed that the 

temporal dynamics of intracellular signaling patterns are important for ensuring the 

pattern of gene expression. The temporal features of action potentials and Ca2+ 

transients were shown to regulate the expression of the immediate early gene c-fos 

(Fields et al., 1997). Only stimuli with the appropriate temporal patterns to induce the 

ERK/MAPK pathway in concert with CREB phosphorylation resulted in expression of c-
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fos. Impey et al. (1998) further showed that sustained CREB phosphorylation in cultured 

hippocampal neurons is dependent on the activation of the extracellular signal-related 

protein kinase (ERK)/MAPK pathway, with the persistent activation of ERK increasing 

CRE-mediated gene expression. This transcription also required the activation of the 

PKA pathway. PKA is required for the translocation of ERK to the nucleus for the 

activation of CREB kinase Rsk2 (see Fig. 2). These results show that the temporal 

patterns of synaptic input also modulate CREB-dependent transcription through the 

activation of distinct kinases. 

   Further investigation of activity-dependent CREB phosphorylation has shown, by direct 

depolarization of hippocampal neurons in vitro, that synaptic stimulation recruits first the 

fast CaMK pathway responsible for early CREB signaling, followed by a slower MAPK 

pathway shown to mediate long-term CREB phosphorylation (Wu et al., 2001). Short 

Ca2+ signals produced rapid CaMK signaling (Finkbeiner et al., 1997) such as stimuli that 

induce E-LTP, whereas stronger intracellular Ca2+ transients produced both rapid CaMK 

and slow MAPK signaling. The coupling of the two pathways resulted in sustained CREB 

phosphorylation. These findings suggest that the kinetics of intracellular signaling 

pathways can each in turn convey information to the nucleus about synaptic stimuli, 

such as their timing or duration. Such research could lead to evidence that would 

support the idea that CREB is part of an important switch that translates short-term into 

long-term plasticity after appropriate stimulation, and provide insight into whether CREB 

activation is required for LTP or one of its phases.  

 

1.6. The Study of LTP in Hippocampal Slices 

 

   If in fact the protein synthesis dependent late phases of LTP are required for memory 

formation by causing long-lasting changes in synaptic strength and structure, then 
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understanding the mechanisms and events by which this occurs is extremely important, 

but technically difficult. Investigating the mechanisms of LTP has been greatly aided by 

the use of acute hippocampal slices (Schwartzkroin and Wester, 1975). Their easy 

access to each of the components of the hippocampal trisynaptic cascade has made 

them one of the most widely studied models for synaptic plasticity in vitro (Bliss and 

Collingridge, 1993; Bliss et al., 2003). The hippocampal brain slice retains its intrinsic 

circuitry, along with the major hippocampal cell types within a 400 µm transverse slice 

(see Fig. 1b), and a majority of LTP research to date has been done using acute brain 

slices that remain viable for several hours. Extending the viability of acute slices has 

resulted in important advances in understanding the protein-synthesis dependent phase 

of LTP. However, their viability remains relatively short compared to behavioral models 

of learning and memory, limiting the use of acute slices for investigating the mechanisms 

involved in the maintenance of long-term LTP. To study the full time course of 

hippocampal LTP typically requires in vivo studies, which are confined by limited 

accessibility to the hippocampus, a lesser degree of experimental control, and limited to 

extracellular field-potential recordings.  

   Imaging experiments with fluorescent labeling can observe the proteins involved in L-

LTP in hippocampal neurons. However, the associated methods can last days and 

require the use of cultured hippocampal tissue, such as dissociated cell cultures or 

organotypic slices. Cultured slices may prove to be of advantage in monitoring live 

biochemical changes in parallel to changes in synaptic strength with appropriate 

spatiotemporal resolution. LTP research using cultured hippocampal neurons and 

organotypic slices have allowed scientists to overcome the time restraint of acute 

hippocampal slices as well as provide experimental freedom that is not possible in vivo.  

   Hippocampal slice cultures can be maintained for weeks with viable connections, 

making them an ideal model for experiments that require extensive manipulation or time 
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(Gähwiler 1981, Gähwiler et al., 1997; Stoppini et al., 1991; Evans et al., 1998). 

However, due to the difficulty in which adult tissue can be cultured, such LTP research 

has been limited to the study of embryonic, perinatal, and juvenile cultured slices, which 

develop their cytoarchitecture in vitro (Zhabotinski et al., 1979; Buchs et al., 1993; Müller 

et al., 1993; Sakaguchi et al., 1994). Their neurons do not acquire the same anatomical 

and functional maturity as neurons that have matured in vivo. In vitro studies of synaptic 

plasticity for long periods and when experiments require many days of incubation such 

as for optical imaging and protein labeling are thus limited to cultures of initially immature 

hippocampal synapses. For the study of LTP, and particularly its late phases, this is 

limiting as recent evidence has shown that the mechanisms for synaptic plasticity in 

neonatal or juvenile brains differs from those in more mature, functioning neural circuits 

(Yasuda et al., 2003).  

Immature hippocampal cultures do not only differ in the anatomical organization and 

maturity of their neurons, but also in the mechanisms underlying LTP. It was initially 

thought that LTP in general only occurred in the well established mature hippocampal 

synapse, as it was not possible to induce LTP with tetanic stimulation in slices from 

juvenile rats (< postnatal day 10; P10)(Baudry et al., 1981; Harris et al., 1984; 

Bekenstein and Lothman, 1991; Dudek and Bear, 1993; and Bolshakov and 

Siegelbaum, 1994). However, it was found that a distinct form of LTP could be induced 

in hippocampal slices from neonatal animals (< 8 days old) by using a stimulation 

protocol that pairs presynaptic stimulation with postsynaptic depolarization (Durand et 

al., 1996; Liao et al., 1996). The failure of immature hippocampal neurons to respond to 

tetanic stimuli was shown to be a result of the lack of functional AMPA receptors at the 

young synapse, shown by an absence of synaptic current at resting membrane potential 

despite presynaptic glutamate release (Durand et al., 1996; Liao et al., 1996). A pairing 

protocol caused these ‘silent synapses’ (i.e., those composed of only NMDA receptors) 
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to recruit functional AMPA receptors and increased synaptic currents (Isaac et al., 1995; 

Liao et al., 1995; Liao et al., 1996; Durand et al., 1996). The percentage of silent 

synapses decreases during the first postnatal weeks of hippocampal development, but 

they continue to be present during the second and third postnatal week (Isaac et al., 

1995; Liao et al., 1995). These findings suggest that the basic mechanism of LTP in 

young rats (< P10-12) is based on a transformation of silent synapses into functional 

ones by recruiting additional AMPA receptors. Studies in thalamocortical synapses add 

to the evidence that postsynaptic modification in AMPA receptor function underlies LTP 

at immature synapses, where synapses with low AMPA/NMDA ratios convert to higher 

AMPA/NMDA ratios during LTP (Isaac et al., 1997).  

There are additional differences at young compared to mature hippocampal synapses 

with respect to synaptic transmission. NMDA receptor channels in young neurons have 

longer open times, differences in the voltage-dependent Mg2+ block prior to P20 (Monyer 

et al., 1994; Kutsuwada et al., 1996; Takahashi et al., 1996), a higher affinity for 

glutamate (Kutsuwada et al., 1996), lower levels of CaMKII (Kelly and Vernon, 1985), 

and a higher affinity for Ca2+/calmodulin(CaM)-dependent adenyl cyclase (Constantine-

Paton and Cline, 1998). In addition, the glutamate transporters responsible for buffering 

glutamate in the synaptic cleft are expressed late into the second postnatal week 

(Diamond et al., 1997; Ullensvang et al., 1997). Even though the CA1 pyramidal neurons 

of the rat hippocampus have fully completed the expansion of their apical dendrites into 

the dendritic layer, stratum radiatum, by P1 (Bayer et al., 1980), it is clear that the 

functional molecular components of their synapses are still developing. Prior to P12 half 

of the synapses in the CA1 region occur on dendritic shafts rather then spines (Fiala et 

al., 1998), a possible reason for the lack of long-term LTP in immature hippocampal 

neurons for dendritic spines provide synapse specificity and biochemical 

departmentalization. 
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Current findings show that synaptic plasticity is dependent on different signaling 

cascades during development. It was shown by Yasuda et al. (2003), that the induction 

of LTP in the CA1 region of mature rats (> P 20) required CaMKII, whereas LTP in the 

neonatal hippocampus (< P9) required PKA. In addition, CaMKII and MAPK are both 

required for the expression of LTP (Malenka et al., 1999; Lisman et al., 2002; Yasuda et 

al., 2003), whereas PKA is only required for its long-term maintenance at the mature 

synapse (Frey et al., 1993; Huang and Kandel, 1994; Abel et al., 1997; Nyugen and 

Kandel, 1997). In contrast, LTP in the immature hippocampus does not require CaMKII 

or MAPK activity, but is solely dependent on PKA activity for its induction, in part by 

modulating synaptic AMPA receptor activity (Yasuda et al., 2003). These kinases all 

participate in the activation of nuclear transcription factors, such as CREB, in response 

to synaptic input resulting in LTP (Impey et al., 1998; Wu et al., 2001; Deisseroth and 

Tsien, 2002) suggesting that their activation in immature systems of synaptic plasticity 

may not correspond to those in mature neural circuits. 

   The facts that cultured slices are necessary for long-term investigations, and 

considering that adult tissue rarely survives in culture has led to the common use of 

juvenile hippocampal slices from P10 animals in LTP investigations. Synaptic 

transmission can be detected at resting membrane potentials as in adults (Hestrin et al., 

1990), many gross developmental processes have been completed, and tissue from P10 

animals can readily be maintained in culture in contrast to tissue from more mature 

animals. However, current findings that synaptic plasticity is dependent on different 

signaling cascades during development (Yasuda et al., 2003), causes hesitation in 

comparing data from P10 animals to those in mature systems. 

Mature hippocampal cultures could overcome the experimental limitations of previous 

culture models in the study of LTP, and a method for the long-term maintenance of 

mature hippocampal slices in vitro has recently been introduced. Xiang et al. (2000) 
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demonstrated that cultured mature slices (P20-30) remained viable, morphologically 

intact, and showed field potentials after several weeks in culture. They proposed that 

neuronal plasticity of the adult hippocampus could be studied in their slice cultures after 

neurogenesis and synaptogenesis has been completed in vivo. However, it has not been 

determined whether cultured mature slices maintain normal synaptic function and 

recording stability to provide a model system for the study of LTP and, in particular, its 

late phases.  

 

1.7. Aims of the Dissertation 

 

   This study investigated whether mature cultured hippocampal slices could be used for 

long-term electrophysiological experiments and particularly for the study of long-term 

changes in synaptic plasticity, which is not feasible in acute slices for prolonged periods 

of time or of limited relevance in the immature slice due to the differences in the cellular 

processes of synaptic plasticity at the immature synapse. Mature cultured hippocampal 

slices were characterized using electrophysiological and immunohistochemical 

techniques to determine whether mature hippocampal tissue can retain normal synaptic 

function and recording stability after extended time in culture. Data is presented 

describing the effects of culture processes on hippocampal structure and function, as 

well as the development of adapted methodological procedures required to obtain and 

sustain stable electrophysiological properties in mature hippocampal-entorhinal cortex 

slices (P25-30) for use in LTP experiments. The electrophysiological properties of 

mature cultured slices were assessed, in particular the induction and maintenance of 

long-lasting LTP. In addition, I present data describing the extracellular stimulation 

requirements for LTP induction and its maintenance for > 4 h at the Schaffer-collateral-

CA1 synapse, and determine the type of LTP expressed in these slices. After 
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establishing protocols for the use of mature hippocampal cultures in electrophysiological 

experiments, and characterizing the properties of LTP they express, mature cultured 

hippocampal-entorhinal cortex slices were continually used throughout this dissertation 

as the model in the study of long-term plasticity changes. 

   Mature hippocampal-entorhinal cortex slices were used in this study to determine the 

relationship between the maintenance of long-lasting LTP and CREB activation. It is 

hypothesized that sustained activation of the nuclear transcription factor CREB is 

needed to maintain long-term LTP. The hypothesis was tested in mature hippocampal-

entorhinal cortex slices (P25-30) by quantifying changes in CREB phosphorylation for 

individual CA1-pyramidal neurons during the maintenance of L-LTP using confocal 

microscopy. Measuring the extent of CREB phosphorylation at a single-cell resolution in 

mature intact hippocampal tissue during the maintenance of LTP revealed the dynamics 

and extent of CREB phosphorylation for individual neurons undergoing long-lasting 

changes in synaptic strength. The findings in this dissertation characterize LTP in 

cultured mature slices in order to validate their use for further experiments investigating 

the specific mechanisms involved in LTP, specifically the role of the nuclear transcription 

factor CREB in the maintenance of long-lasting LTP.  
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2. Methods 
 

2.1. General Methods 

 
2.1.1. Mature Hippocampal-Entorhinal Cortex Slice Preparation  

   Organotypic hippocampal slice cultures were prepared from 25-30 day old male Wistar 

rats (SHOE, Institute breeding stock, Magdeburg, Germany) by using methods that were 

modified from those described previously (Xiang et al., 2000). All modifications were 

aimed at obtaining slices that exhibited stable electrophysiological signals and reliable 

long-term potentiation. Rats were calmed with a brief exposure to halothane and 

anaesthetized using 0.18 g/kg ketamine hydrochloride (Sigma), which is the required 

dose for maximum neuronal protection (Lees, 1995). The animals were then left to rest 

for 6 min in a chamber filled with carbogen (95 % O2/5 % CO2), before decapitating them 

and removing their brains. The hemispheres were separated mid-sagittally and cooled in 

ice-cold modified Gey’s balanced salt solution (mGBSS) saturated with carbogen for 

10 min. The mGBSS was composed of 1.5 mM CaCl2, 4.9 mM KCl, 0.2 mM KH2PO4, 

11 mM MgCl2, 0.3 mM MgSO4, 130 mM NaCl, 2.7 mM NaHCO3, 0.8 mM NaHPO4, 

22 mM NaHEPES, and 5 mM glucose, pH 7.32. A scalpel was used to make a 50-70 ° 

cut along the dorsal edge of each hemisphere laying flat on its medial surface (see Fig. 

4). A hemisphere was then glued (Histoacryl, Braun) to a Teflon platform, surrounded by 

frozen mGBSS, oriented with the freshly cut surface facing down. The tissue was 

submerged in chilled mGBSS and 400 µm thick sections were cut from posterior to 

anterior using a vibratome (Cambden, UK) modified to minimize Z-axis oscillation. 

Vibratome sections were taken perpendicular to the septo-temporal hippocampal axis. 

The hippocampal formation, subicular and entorhinal cortices, as well as the cortices 

dorsolaterally adjacent to hippocampus were taken from the entire 400 µm section. Only 

hippocampal slices with cell layers that appeared transparent and intact were placed on 
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Figure 4. Schematic of the sequential steps in the preparation of hippocampal-entorhinal cortex 
slices from young adult rats (P25-30). Dashed lines indicate the orientation and angle of each cut
and the hippocampal formation is represented (grey) throughout the procedure. The brains were 
first cut mid-sagittally and at a 50-70° angle along the dorsal edge of each hemisphere and were
then mounted on the vibratome platform to be sectioned perpendicular to the septo-temporal 
hippocampal axis. Vibratome sections were taken from each hemisphere oriented with the newly 
cut surface down. The hippocampal formation, subicular and entorhinal cortices, as well as the
cortices dorsolaterally adjacent to hippocampus were taken from the entire 400 µm section (small 
inset). A representative transmitted light image of a freshly prepared hippocampal-entorhinal 
cortex slice is shown (right). Scale bar: 400 µm.  a, anterior; p, posterior; m, medial; l, lateral; d, 
dorsal; v, ventral; PER, perirhinal cortex; EC, entorhinal cortex; SubC, subicular cortices; DG,
dentate gyrus; h, hilus. 
 

25 mm culture membrane inserts (NUNC, 0.2 µm anapore membrane) in a 6-well cluster 

dish (Sigma) with 1 ml of high K+ culture media (25 % heat-inactivated horse serum, Lot-

Nr.: 3042915D, GIBCO-Life Technologies; 40 % Basal Essential Media, Eagle’s (BME), 

Sigma; 25 % Earle’s Balanced Salt Solution (EBSS), Sigma; 10 % 250 mM NaHepes in 

BME, (pH 7.3); 0.5 mM L-glutamine, Sigma; 28 mM glucose, pH 7.32). The slices were 

incubated overnight at 34 °C in a humidified carbogen atmosphere (95 % O2/5 % CO2), 

and then transferred to ambient O2 and 5 % CO2 the following morning. After 3 days the 

slices were switched to media with decreased K+ levels, decreased horse serum 

concentration, and increased L-glutamine levels (5 % heat-inactivated horse serum, 

20 % BME, 65 % modified Earle’s Balanced Salt Solution (mEBSS), 10 % 250 mM 

NaHepes in BME, (pH 7.3); 1.0 mM L-glutamine, 28 mM glucose, pH 7.32). The mEBSS 

was self-made and composed of 1.8 mM CaCl2, 2.0 mM MgSO4, 52.5 mM NaCl, 

30.9 mM NaHCO3, 0.9 mM NaH2PO4, prepared in sterile H2O (GIBCO-Life 
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Technologies), pH 7.32. Formulating the mEBSS without K+ salts resulted in a final K+ 

concentration of 1.6 mM for the tissue culture media. Testing several lots of horse serum 

revealed considerable differences in the survival of the neuronal circuitry and the 

reliability of LTP induction. Serum from a lot that resulted in low levels of reactive gliosis 

and promoted neuronal survival was used throughout all LTP experiments. The culture 

medium was exchanged every 3 days. For experiments investigating cellular CREB 

phosphorylation two slices were always cultured on one membrane to provide a control 

slice for electrophysiological and immunohistochemical experiments. 

 

2.1.2. Electrophysiology 

   Following cultivation for 10-15 days, slice cultures were transferred to a carbogen-

interface recording chamber (Scientific Systems Design, Inc.) that was modified to fit 

tissue culture inserts and optimized for long-term recordings of cultured slices using 

enhanced humidification (≥ 90% saturation). Slice cultures were superfused with artificial 

cerebrospinal fluid (ACSF; 2.5 mM CaCl2, 20 mM glucose, 1,0 mM L-glutamine, 3 mM 

KCL, 1.24 mM KH2PO4, 110 mM NaCl, 25.6 mM NaHCO3, 1.5 mM MgSO4, osmolarity 

adjusted to the level of the culture media) saturated with carbogen at 32 °C.  

   Extracellular field excitatory postsynaptic potentials (fEPSPs) and/or population spikes 

were recorded after stimulation was applied at constant current (A385 Stimulus Isolator; 

WPI) using a stainless-steel stimulation electrode (AM-5710, 5 MΩ, Zak-Medizin 

Technik) altered to result in a final tip resistance of 400-800 kΩ. Signals were amplified 

by the Axonclamp 2B amplifier (Axon Instruments), digitized using a CED 1401 A/D 

converter, and analyzed with custom-made software (PWIN, Magdeburg, Germany). 

   LTP induction. Mature hippocampal slices (10-15 DIV) were allowed to rest in the 

recording chamber for 30 min and a stainless-steel stimulation electrode (Zak-Medizin 

Technik) was then positioned in the stratum radiatum of the CA1 region for stimulation. 
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FEPSPs were recorded extracellularly in the CA1 region of the stratum radiatum with a 

glass capillary microelectrode filled with ACSF (17 µm; resistance 400-800 kΩ), and the 

slope (mV/ms) of the fEPSP was measured. Stimulation was applied at constant current 

with the stimulation intensity adjusted to result in 50 % of the maximum fEPSP and held 

constant throughout the experiment. Once a baseline was recorded for 1 h a specified 

tetanization protocol was used to induce LTP. After the tetanus, recordings were taken 

at 1 min and every 5 min thereafter. The average slope of the baseline recordings was 

compared to the slopes after tetanization using the two-tailed Mann-Whitney U-test 

(P<0.05). The fEPSP amplitudes and slopes are reported as the mean ± SEM. 

 

2.1.3. Immunohistochemistry 

   The hippocampal-entorhinal slice cultures were fixed in 2.5 % paraformaldehyde in 

0.1 M phosphate buffered saline (PBS, pH 7.4) for 30 min at 4 °C. Fixated slices were 

then removed from the anapore membrane and cryoprotected in 30 % sucrose in PBS 

overnight at 4 °C. Forty-five µm sections were cut using a cryostat and the free-floating 

sections were washed 2 times in chilled PBS. The sections were rocked for 2 h at room 

temperature in ROTI Immunoblock (Roth GmBH, Germany) diluted 1:10 in PBS with 

0.5 % Triton X-100, and rocked overnight at 4 °C with primary antibodies diluted in 

blocking solution. Primary antibodies were as follows: anti-ß-III-tubulin (monoclonal 

IgG2b, 1:500; Sigma), anti-chondroitin sulfate proteoglycans (CSPGs, polyclonal, 1:1000; 

Sigma), anti-CREB (monoclonal IgG1, 1:300; Zymed Lab. Inc.), anti-glial fibrillary acidic 

protein (GFAP, polyclonal, 1:1000; Sigma), anti-glutamic acid decarboxylase (GAD 67, 

polyclonal, 1:1000; Chemicon), anti-MAP2a,b (polyclonal, 1:500, Sigma), anti-

neurofilament 68 (monoclonal IgG, 1:1000; Transduction Laboratories), and anti-

phosphorylated CREB (polyclonal, 1:300; New England Biolabs). After incubation, the 

slices were returned to room temperature and rocked for 2 h, then rinsed 3 times in PBS. 
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All secondary antibodies (Molecular Probes) were conjugated with Alexa dyes and 

diluted to a working solution of 1:200. Following 2 h incubation at room temperature, 

slices were washed 3 times in PBS and mounted on glass coverslips using anti-fade 

(Molecular Probes) to slow fluorescent decay. Specimens were examined using a Leica 

CLSM (TCS-SpectroPhotometer 1; Heidelberg, Germany) confocal laser-scanning 

microscope. Immunofluorescence images were obtained as Z-series stacks and 

analyzed for localization of staining using Leica imaging software. 

 
2.1.4. Immunoblotting 

 Anti-neurofilament 68 antibody staining was used to indicate improved tissue culture 

quality by measuring the relative portion of neural protein within slices cultured for 

14 DIV. For the first 3 days slices were cultured in 25 % serum. On the 3rd DIV, they 

were switched to low K+ media with serum concentrations of 5 %, 25 %, or 40 % (n=12 

for each group). Four slices per serum concentration group were pooled and loaded on 

each of 3 immunoblots. After 14 DIV the slice cultures were frozen, pooled, and then 

homogenized in ice-cold buffer (10 mM HEPES pH 7.9, 10 mM KCl, 10 mM EDTA, DTT, 

IGEPAL and one protease inhibitor cocktail tablet; Roche Diagnostic GmbH, Germany). 

Following homogenization, protein concentrations were measured using a Bradford 

(1976) analysis with bovine serum albumin as the standard. Equal amounts of protein 

were resolved in 12.5 % SDS-polyacrylamide gels (SDS-PAGE) and transferred to 

membranes for immunoblotting. Membranes were blocked in ROTIblock (Roth GmBH, 

Germany) diluted 1:10 in 1 M PBS (pH 7.4) with 0.5 % Tween (2 h) and then probed with 

mouse monoclonal anti-neurofilament 68 antibodies (1:1000, Transduction 

Laboratories). The blots were incubated in the blocking solution containing the anti-

neurofilament 68 antibody overnight at 4 °C, after which they were washed three times in 

1 M PBS (pH 7.4). Blots were then incubated with horseradish peroxidase-linked goat 
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anti-mouse IgG antibodies (2 h; 1:20,000 dilution, Amersham) before being developed 

using enzyme-linked chemiluminescence (ECL, Amersham).  

   Anti-neurofilament 68 antibody staining was also used to indicate the relative density 

of neurons and their processes within slices preincubated in a carbogen atmosphere. 

After tissue preparation, slices were incubated in carbogen for various lengths of time (0, 

4 h, 8 h, and 16 h). Four slices per time point were pooled and loaded on one 

immunoblot. After 10 DIV slices were processed for the analysis of protein fractions as 

described above.  

 

2.2. Experimental Design 

 
2.2.1. Characterization of Mature Cultured Hippocampal-Entorhinal Cortex Slices 

   To determine the connectivity of the hippocampal circuit, the molecular cell layer of the 

dentate gyrus was stimulated using a twisted bipolar Teflon-insulated platinum electrode 

(17 µm; resistance 400-800 kΩ). FEPSPs and populations spikes were recorded 

throughout the hippocampal circuit using stainless-steel electrodes. 

   Analysis of electrotonic components. The contribution of electrotonic stratum oriens 

components to stratum radiatum fEPSPs was analyzed by placing a cut through striatum 

oriens fibers that project to CA1 basal dendrites. The slice was allowed to recover for 

1 h, after which extracellular fEPSPs were recorded from the CA1 stratum oriens and 

radiatum following stimulation of the stratum oriens or radiatum. These experiments 

revealed potential confounds from electrotonic signals with opposite polarity, which were 

avoided in subsequent LTP experiments by placing the stimulation electrode closer to 

the recording electrode. As a standard only field potentials with a defined negative shape 

and apparent pair-pulse facilitation were included in subsequent experiments. In 
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addition, a fuchsine acid stain was performed using standard staining protocols to verify 

the cut placement. 

   Pharmacological analysis of the fEPSP: NMDA receptor contribution. Slices were 

preincubated in ACSF for 30 min, and baseline fEPSPs were recorded for 1 h. The 

following antagonists were permanently washed into the superfused ACSF in the 

subsequent order (n=4): a gamma aminobutyric acid A (GABAA) receptor antagonist 

(30 µM picrotoxin, RBI), an AMPA/kainate receptor antagonist (10 µM 1,2,3,4-

Tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide; NBQX, RBI), and a 

NMDA receptor antagonist (10 µM R-(−)-3-(2-Carboxypiperazin-4-yl)propanephosphonic 

acid; CPP, RBI). The fEPSP amplitude after the addition of picrotoxin was considered to 

represent the total excitatory component of the fEPSP, composed of both AMPA and 

NMDA receptor currents. The AMPA receptor contribution was blocked using NBQX. 

The remaining component reflects the contribution of NMDA receptor currents to the 

fEPSP and was completely eliminated by the NMDA antagonist CPP. 

   LTP induction. The extracellular stimulation requirements for LTP-induction and its 

maintenance for > 4 h were investigated at the Schaffer collateral/CA1 synapse in 

cultured mature hippocampal slices using the following standard stimulation protocols: 

(1) Tetanization (100 Hz) consisted of 3 stimulus trains of 100 pulses at 100 Hz with a 

10 min intertrain interval, later reduced to 2 stimulus trains in order to minimize after-

burst discharges. (2) Tetanization (200 Hz) consisted of 2 stimulus trains of 200 pulses 

with a 10 min intertrain interval. (3) Theta burst stimulation consisted of 4 x 5 pulses at 

100 Hz with a 250 ms interburst interval. Responses to each stimulus protocol were 

categorized as either potentiated (fEPSPs > 120 % of baseline responses at 1 min post 

tetanus), non-responsive, or resulting in after-burst discharges with subsequent 

depression. Potentiated slices were further classified by the duration of the potentiation 

(longer or less than 4 h; see Results). In addition, the fEPSP amplitudes for slices that 
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resulted in E-LTP were compared to those that resulted in long-lasting LTP. Only the 

100 Hz tetanization protocol with 2 stimulus trains of 100 pulses at 100 Hz with a 10 min 

intertrain interval was used for all subsequent long-term LTP experiments.  

    Induction of NMDA receptor-dependent LTP. Fifty µM D,L-2-amino-5-

phosphonovaleric acid (APV; Tocris) was added to the ACSF solution after a 1 h 

baseline recording and was perfused for 15 min before as well as during tetanization 

using the 100 Hz stimulation protocol. Normal ACSF was perfused for the remainder of 

the recording. Control LTP experiments were performed on slices from the same animal 

on alternating days with APV experiments, the only difference being the absence of APV 

(n=6). The time course of the field potential slopes was compared between control and 

APV treated slices using the Mann-Whitney U-test. 

   Hippocampal cell survival. For analysis of hippocampal cell survival, mouse 

monoclonal anti-neurofilament 68 antibody was used as a neuron-specific cell marker 

and rabbit polyclonal anti-glial fibrillary acidic protein as an astrocyte-specific cell marker. 

Images of 6 hippocampi per animal (n=4 animals) were divided between the anterior, 

middle, and posterior thirds of the hippocampus and analyzed for immunostaining in an 

area encompassing the entire granule cell layer of the dentate gyrus, the pyramidal cell 

layer of the CA3 region, and the pyramidal cell layer of the CA1 region. The mean cell 

number was determined for each group, and differences were tested for statistical 

significance by using the paired Student’s t test. Probability values of less than 0.05 

were considered significant.  

   Bromodeoxyuridine (BrdU) labeling. BrdU labeling was performed to determine the 

origins of atypical cells found in the hilus and inner molecular layer of the dentate gyrus 

of mature hippocampal-entorhinal cortex slices cultured in high serum concentrations 

(25 % serum). BrdU was used specifically to determine whether these ectopically placed 

neurons were dislocalized from the granule cell layer or were generated from precursor 
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cells in culture. BrdU is taken up only by mitotically active cells and neurons labeled by 

an anti-BrdU marker can be assumed to be generated from precursor cells in culture. 

Hippocampal-entorhinal cortex slices were first prepared from P25 rats. Part of the slices 

were fixated at the time of dissection, and the remaining slices were cultured in media 

containing 25 µm BrdU and then fixated after various times in culture. All groups were 

immunostained as described above with the following additional steps: free-floating 

sections were incubated in 50 % formamide/ 2 x SSC (0.3 M NaCl, 0.03 M sodium 

citrate), followed by 2 N HCl to denature DNA. Sections were then rinsed in PBS and 

treated with 1 % H2O2 to block endogenous peroxidases (Parent et al., 1996). A mouse 

monoclonal anti-BrdU IgG1 antibody (Sigma) was diluted 1:100 in blocking solution and 

incubated for 36 h at 4 °C. Double and triple staining was done with one of the following 

antibodies and analyzed for co-localization: the astrocyte specific cell-marker anti-GFAP 

(polyclonal, 1:1000, Sigma), the early stage neuronal marker anti-beta-III-tubulin, 

(monoclonal IgG2b, 1:500, Sigma), the interneuron cell marker anti-GAD 67 (polyclonal, 

1:1000, Chemicon), and the neural marker anti-neurofilament 68 (monoclonal IgG, 

1:1000, Transduction Laboratories). Monoclonal antibodies used in combination for BrdU 

co-localization experiments were of different subtypes and tested for minimal cross-

reactivity. Counting of ectopic dentate cells was performed as described above, by 

scoring cells with co-localized anti-beta-III-tubulin (a neural marker) and anti-BrdU (a 

proliferation marker).  

 
 
2.2.2. Single-Cell Analysis of Nuclear CREB Phosphorylation  

   Confocal Microscopy and Analysis. Mature cultured slices were labeled with 

primary antibodies (polyclonal anti-phosphorylated CREB, New England Biolabs; 

monoclonal anti-CREB IgG1, Zymed Lab. Inc.) and secondary antibodies (Alexa Fluor 

568 goat anti-rabbit IgG and Alexa Fluor 488 goat anti-mouse IgG1, Molecular Probes). 
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Specimens were examined using a Leica CLSM (TCS-SP1; Heidelberg, Germany) 

confocal laser-scanning microscope. Confocal imaging was used to determine the ratio 

between phosphospecific anti-CREB (specific for Ser 133 phosphorylation of CREB, 

Ginty et al., 1998) and phosphorylation state-independent anti-CREB by detection of 

each of the labeled immunofluorescent fluorophores. Imaging protocols and settings 

(i.e., photomultiplier, pinhole aperture, gain, laser intensity and speed, etc.) were kept 

constant for all specimens examined to minimize differences between experiments. 

Images were recorded using 20x, and 60x oil immersion objective lenses. Only 60x 

images were used in quantitative CREB analysis. Imaging was performed using an 

Argon ion laser with two fluorescence channels that scanned the specimen at alternating 

intervals to eliminate non-specific autofluorescent signals. Channel one recorded 

emission from 488 nm excitation and channel two at 568 nm excitation. For each 

channel separate images were acquired, after which a composite overlay image of both 

channels was created using Leica imaging software. Images were collected from the 

neuronal cell layer of each hippocampal region (dentate gyrus, CA3, and CA1). 

Following image acquisition, fluorescent staining for phosphospecific anti-CREB 

(pCREB) and phosphorylation state-independent anti-CREB was quantified blindly, 

using Leica TCS-NT imaging software. By creating a circle around the circumference of 

a cell body, the mean fluorescent amplitude was determined from the integrated pixel 

intensity for each cell on both the 488 nm and 568 nm emission channels. Twenty-five 

adjacent cells were measured from each image. 

   To determine the level of CREB phosphorylation at Ser 133, a ratio of the mean 

fluorescent amplitude measured by the excitation of Alexa Fluor 568 bound to 

phosphorylated CREB was divided by the mean fluorescent amplitude measured by the 

excitation of Alexa Fluor 488 (CREB) for each individual cell. By creating a relative ratio 

of pCREB to CREB immunofluorescence inaccuracies in staining protocols were 
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compensated for, which allows for the comparison of phosphorylated CREB levels 

between slices and between experiments (modified from Carlson et al., 2000 who 

describe a similar method for the quantification of fluorescence DNA probes). A 

composite overlay image was also created using Leica imaging software to accurately 

portray the immunofluorescent pCREB/CREB ratio visually for each neuron. Relative 

pCREB/CREB ratios were determined for each cell, averaged for each experimental 

group, and reported as the mean ± SEM. Differences were tested for statistical 

significance by using the paired Student’s t test. Probability values of less than 0.05 

were considered significantly different.  

   Pharmacology. Analysis of forskolin-induced changes in CREB phosphorylation was 

performed on slices incubated in either the presence or absence of 20 µm forskolin (RBI 

Sigma). Slices were incubated in forskolin for various time periods (0, 5, 30, 60, 120, and 

240 min; n=6 for each group), after which they were removed and immediately fixated for 

immunohistochemical investigation. 

   Electrophysiology. Changes in CREB phosphorylation, as indicated by changes in 

pCREB/CREB ratios, were assessed in slices left undisturbed in the recording chamber, 

slices that received continuous low-frequency stimulation (i.e., baseline tetani), as well 

as slices in which LTP was induced by high-frequency stimulation in the presence or 

absence of a competitive antagonist of the NMDA receptor site.  

   Control Slices. One tissue culture insert contained two slices from the same dissection. 

One slice was continually left undisturbed for the remainder of the experiment and a 

stainless-steel stimulation electrode (Zak-Medizin Technik) was positioned in the CA1-

stratum radiatum of the adjacent slice for baseline stimulation. FEPSPs were recorded 

extracellularly in the CA1 region of the stratum radiatum with a glass capillary 

microelectrode filled with ACSF (tip resistance 400-800 kΩ), as described above. 

Following 5 h baseline stimulation, the tissue culture insert was removed and both slices 
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were immediately fixated for immunohistochemical investigation (n=4, for each group). 

Non-manipulated slices were used to determine the extent of CREB phosphorylation 

induced by conditions within the recording chamber. Slices receiving baseline 

stimulation were used to determine whether cellular activation, by stimuli not sufficient to 

induce LTP, caused CREB activation. 

   LTP Trials. Two cultured mature hippocampal slices (10-15 DIV) placed on one tissue 

culture insert were allowed to rest for 30 min with superfused ACSF in the optimized 

interface-recording chamber. Recording and stimulating electrodes were positioned on 

one of the slices for area CA1 recordings, whereas the adjacent slice was left 

undisturbed for the remainder of the experiment. Responses to Schaffer collateral 

stimulation in area CA1 were monitored for 1 h as mentioned above before the delivery 

of LTP-inducing high-frequency stimulation. High-frequency tetanization consisted of 2 

stimulus trains of 100 pulses at 100 Hz with a 10 min intertrain interval. LTP was 

recorded for increasing time intervals (30, 120, 240 min; n=6 each group) after which 

electrodes were removed, and both slices were immediately fixated for 

immunohistochemical analysis.  

   CREB phosphorylation was also investigated after the induction of LTP in the 

presence of an NMDA receptor antagonist (APV, Tocris). Again, two slices on one insert 

were placed in the recording chamber and electrodes were positioned for CA1 

recordings on one slice, whereas the adjacent slice was left undisturbed to serve as a 

control (n=6). Fifty µM APV was added to the ACSF solution after a 1 h baseline 

recording and was applied for 15 min before as well as during tetanization using the 

100 Hz stimulation protocol. Normal ACSF was applied for the remainder of the 

recording (n=6). Recordings lasted 120 min following 100 Hz stimulation in the presence 

of APV, after which slices were immediately fixated. 
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3. Results and Discussion 
 
  
3.1. LTP in Cultured Hippocampal-Entorhinal Cortex Slices from Young Adult  
(P25-30) Rats  
 

   Due to the inability to culture healthy adult tissue, many mechanistic studies of 

synaptic plasticity have used cultures prepared from juvenile, embryonic or neonatal 

brains to address questions technically limited by other models. However, the more LTP 

is understood in these developing neural systems, the clearer it becomes that the 

mechanisms involved in LTP as a process of neural formation and refinement diverges 

from those of mature established neural circuits. It is hypothesized that mature 

hippocampal cultures could overcome the experimental limitations of previous models in 

the study of LTP. However, it has not been determined whether cultured mature slices 

maintain normal synaptic function and recording stability in vitro, which is required to 

study LTP and in particular its late phases. This study investigated whether mature 

cultured slices could be used for the study of synaptic plasticity and particularly for long-

term electrophysiological experiments. 

 

3.1.1. Retention of Hippocampal Circuitry and Recording Stability in Vitro  

   To determine whether cultured mature hippocampal slices could serve as a model 

system to study LTP including its late phases, it was first determined whether these 

slices maintain proper synaptic connections and cellular properties to allow LTP 

induction in vitro. First, the connectivity between neurons in each hippocampal subregion 

was tested, as well as the stability of baseline recordings from neuron populations in 

various hippocampal regions. It was found that a previously introduced protocol (Xiang 

et al., 2000) often resulted in slices with damaged neurons within the CA3 or CA1 cell 

layers, which was apparent visually as disconnected or swollen neuronal layers when 
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using a dissection microscope as well as electrically after stimulation as a lack of evoked 

extracellular responses after 10 DIV. Using a vibratome and adding the entorhinal cortex 

to the hippocampal cultures resulted more reliably in slices with undamaged CA3 and 

CA1 pyramidal neurons. The portion of slices observed to retain undamaged cell layers 

increased from 38.8 ± 2.1 % to 76.4 ± 3.9 % for each dissected animal (visual 

observation, n=4 animals, 8 slices per animal, 4 from each hemisphere). However, 

regardless of the dissection protocol, the slices continued to display a progressive 

decrease in the amplitude and stability of extracellularly recorded field potentials with 

time in culture, which indicated that recovery was not reached after the initial period of 

cell death that was reported to last for 7 days in culture (Xiang et al., 2000). 

   Slices incubated overnight in a carbogen atmosphere and then transferred to ambient 

O2 the following morning had healthier electrophysiological responses and a better 

recovery from initially low fEPSP amplitudes (at 10 DIV) in comparison to those without 

carbogen. Pre-incubation in carbogen enhanced slice viability by increasing neuronal 

survival (Fig. 5a, b). The neural density of slices incubated for various times in carbogen 

(0, 4, 8, and 16 h; n= 4 for each group) was assessed by immunohistochemistry and 

immunoblot analysis using the neuron-specific markers MAP2a,b and neurofilament 68 

as indicators of neural density. The findings show that the level of neurofilament 68 

protein increased in parallel to prolonged incubation in carbogen (Fig. 5c) with incubation 

times longer than 16 h resulting in no additional benefit (data not shown). 

   Slices exhibited spontaneous activity for 1 DIV to 7 DIV and were prone to after-burst 

discharges and oscillations within the hippocampal circuit presumably as a consequence 

of cell loss after the dissection. It was found that addition of the adjacent cortices to the 

hippocampus stabilized baseline recordings and reduced the occurrence of spontaneous 

activity and oscillations within the hippocampal circuit. Stable baselines and 

electrophysiological recordings were possible following 8 DIV and remained stable until 
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Figure 5.  Carbogen pre-incubation enhanced slice viability by increasing neural survival. CA1 
pyramidal cells were labeled using antibodies to MAP2a,b and visualized as composites of 
stacked optical sections obtained by confocal microscopy. Slices without carbogen pre-incubation 
(A) and slices pre-incubated in a carbogen atmosphere for 16 h (B) were subsequently cultured
for 14 DIV using identical conditions. The images indicate an increase in the survival of neurons
and their processes following carbogen pre-incubation, which was confirmed by using the neuron-
specific marker neurofilament 68 as an indicator of neural density in immunoblots of mature slices
cultured for 14 DIV. Following carbogen pre-incubation for 0, 4, 8, and 16 h (n = 4 for each 
group), immunostaining revealed that neurofilament 68 protein increased with longer periods of
carbogen incubation (C). Scale bar (shown in B): 40 µm. sr, stratum radiatum; sp, stratum 
pyramidale; so, stratum oriens. 
 

30 DIV (Fig. 6a). However, after 20 DIV stimulation of the CA1 stratum radiatum often 

resulted in late positive potentials in the recorded fEPSPs (shown in Fig. 6b) presumably 

due to stimulation of CA3 axon branches projecting to striatum oriens after the spreading 

of cell layers in response to the presence of serum in culture. Subsequent 

electrophysiological experiments were therefore performed between 10-15 DIV.  

   The fEPSP recorded in the CA1 stratum radiatum after stimulation of the Schaffer 

collateral fibers consisted of an earlier negative and a later positive component. The 

positive component of the recorded fEPSP in the CA1 stratum radiatum after stimulation 

of the Schaffer collaterals was thought to occur by stimulating axon branches that terminate 

 44



 
 

 

 
 

 

t
p  
C
e  
f  
s  
t  
f
(
a
t  
o  
a
r  
(
w
w  
(
o
f
l  
s  
t
s  
r
a
s
p
t  
d
b

 

 

 

in stratum oriens. To determine the degree 

activation may have on recorded potentials in 

and after a cut in stratum oriens were com

stimulations). A cut in the stratum oriens fibers r

 45 
Figure 6. Baseline recordings from 
hippocampal-entorhinal cortex cultures. 
(A) The addition of cortical areas to the
hippocampal formation resulted in more
stable electrophysiological recordings. 
Field potential recordings in the CA1 area 
of cultured mature slices (9 DIV) showed
that the fEPSP slope values remained 
stable during 8 h baseline recordings (at 
120 min, 100.02 ± 12.20; at 480 min, 
101.43 ± 4.45; n=4). (B) Electrotonic
components of the stratum radiatum 
fEPSPs were analyzed by placing a cut 
hrough the striatum oriens fibres that 
roject from the CA3 pyramidal cells to the
A1 basal dendrites. Analog traces of 
xtracellularly recorded stratum radiatum

EPSPs evoked by Schaffer collateral
timulation at S1 prior to cut (top). Analog
races of extracellular fEPSPs recorded
ollowing a cut in the stratum oriens 
bottom). (C) A representative fuchsine
cid stained cultured slice (14 DIV) shows 
he stimulation and recording sites used to
btain laminar field potentials before and
fter cutting the stratum oriens. The 
ecorded sites were in stratum radiatum
sr) and stratum oriens (so; indicated by 
hite asterisks) stimulation electrodes 
ere placed either in stratum radiatum

S1) or stratum oriens (S2). The stratum 
riens contribution to the stratum radiatum 

EPSP is absent after the cut (B, bottom 
eft). The stratum oriens potentials could
till be evoked by stimulating proximal to
he recording site. The traces illustrate that 
timulation of Schaffer collateral fibers
esulted in potentials generated by the 
ctivation of basal dendrite synapses in 
tratum oriens that electrotonically 
ropagated to stratum radiatum where 
hey were observed as a positive
eflection in the field potentials. Scale 
ars: B, 2 mV/5 ms; C, 250 µm.  
of influence that direct stratum oriens 

stratum radiatum, the potentials before 

pared (Fig. 6b, comparing both S1 

esulted in a loss of the delayed positive 



component at the stratum radiatum recording site, confirming that an electrotonic 

component in the stratum oriens contributed to the potentials recorded in stratum 

radiatum. One likely explanation is that the positive potentials were generated by the 

activation of basal dendritic synapses in stratum oriens and had electrotonically 

propagated to stratum radiatum where they were observed as a positive deflection in the 

field potentials (Fig. 6b, c). In theory the positive component of the stratum radiatum field 

potential could be due to the direct activation of inhibitory conductances in stratum 

radiatum. However, if this was the case then one would expect that the shape of the field 

potential in stratum radiatum would not change after cutting stratum oriens fibers. In fact, 

moving the stimulation electrode closer to the recording site in subsequent experiments 

resulted almost exclusively in field potentials with only a negative component (compare 

Fig. 6b, S1 before cut to subsequent experiments) further suggesting that electrotonic 

components from the stratum oriens had contributed when using the more distant 

stimulation site in stratum radiatum.  

   The cellular synaptic arrangement of the hippocampal circuit has been shown to be 

well preserved for extended periods in culture (Xiang et al., 2000). It was tested whether 

these synapses remain functional in mature slices cultured for 14 DIV by recording 

responses throughout the hippocampal circuit after stimulating in the dentate gyrus (Fig. 

7a, b). Stimulation in the hilus of the dentate gyrus evoked an antidromic spike from the 

dentate granule cell layer. Stimulation of the molecular cell layer of the dentate gyrus 

evoked population spikes in the CA3 and CA1 pyramidal cell layers, which had an 

average amplitude of 2.7 ± 0.3 mV (n=10) and increased in latency throughout the circuit 

(Fig 7c, d). Similar results were obtained for slices cultured for up to 30 DIV (Fig. 7b), 

suggesting that the trisynaptic cascade remains functional for extended time in vitro.  
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Figure 7. Mature hippocampal-entorhinal cortex slice cultures retain functional synapses 
throughout the hippocampal trisynaptic cascade for extended time in culture. (A) Transmitted light
image of a mature hippocampal-entorhinal cortex slice cultured for 14 DIV. Neuronal layers
appear as bright transparent laminae, whereas axon pathways appear dark. The image illustrates
stimulation and recording sites used to obtain field potential recordings throughout the
hippocampal trisynaptic cascade. (B) Analog traces of extracellular field potentials recorded in the 
dentate gyrus (DG), CA3 and CA1 of mature slices cultured for either 14 DIV or 30 DIV. Field
potential recordings were evoked using two stimulation sites, S1 and S2, with recording sites
labeled 1-5. Hilar stimulation, S1, evoked an antidromic population spike from the dentate granule 
cell layer (1). Stimulation of the molecular layer of the dentate gyrus, S2, evoked population
spikes from pyramidal cells in area CA3 (2) and CA1 (4), as well as fEPSPs in the stratum
radiatum (3) and stratum oriens (5). (C) Data represent the mean population spike amplitude
recorded from slices cultured for 14 DIV, (n=10). (D) Evoked responses increased in latency
throughout the circuit. Data represent the mean latency of population spikes shown in (C). Scale
bars: A, 250 µm; B, 1 mV/10 ms. sr, stratum radiatum; so, stratum oriens. 
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   It has been shown that the probability of inducing LTP at the CA1/Schaffer collateral 

synapse increases with the number of stimulated afferents (McNaughton et al., 1978). 

To evaluate the neural density in each hippocampal subarea, slices were either fixated 

at the time of dissection or cultured for 10-14 DIV and labeled with antibodies against the 

neuron-specific marker ß-III-tubulin. Immunofluorescent labeling showed that time in 

culture did not change the cellular organization and morphology of the hippocampal 

circuit. In fact, area CA1 in particular appeared to retain a large degree of its neural 

processes after time in culture (Fig. 8). Cell counting confirmed immunohistochemical 

findings and revealed that the number of CA1 neurons was reduced by 18.1 ± 6.8 % 

relative to acute slices (not significant). However, there was a significant reduction in the 

number of CA3 pyramidal neurons, which decreased to 61.1 ± 0.8 % of acute slices (P < 

0.05). To determine whether neural loss was a result of increased serum levels in 

culture, mature slices were cultured in media with varying serum concentrations from 

3 DIV to 14 DIV (5 %, 25 %, and 40 %). Proteins were separated using a standard SDS-

PAGE gel and probed for the neuron-specific marker neurofilament 68 as an indicator of 

the neural density. Results revealed that the levels of neurofilament 68 protein 

decreased along with the increase in serum concentration (Fig. 9).  

   Atypical cells with irregularly shaped nuclei were observed in cultured adult slices at 

the border between the hilus and the inner granule cell layer (Fig. 10a, b). The identity of 

these cells was tested using antibodies against the neuron-specific early differentiation 

marker, ß-III-tubulin (Lee, 1990), the astrocyte specific marker GFAP (Debus et al., 

1983), as well as the interneuron marker GAD 67. Some cells labeled only by the 

neuronal specific marker ß-III-tubulin were shown to project processes into the dentate 

molecular layer and randomly through the hilus (Fig. 10c). These cells were initially 

observed in 83.3 % of the slices after 8-14 DIV (n=18). However, when the protocol was 

altered to change the culture media to 5 % serum at 3 DIV, the occurrence of these 
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Figure 8. Pyramidal cells in the CA1 area of cultured mature hippocampal-entorhinal cortex slices 
retain their layered organization and neural processes. (Top images) In acute slices (A) and
slices cultured for 14 DIV (B) cell bodies and processes of CA1 pyramidal cells (green) and 
interneurons (red) were visualized using immunofluorescent staining with antibodies to β-III-
tubulin and glutamic acid decarboxylase (GAD 67). Note that the pyramidal cell processes in 
cultured slices become organized within a single optical plane as a result of culture conditions, in
contrast to acute slices where processes are not limited in their spatial orientation. Neuronal cell
bodies and processes in the dentate gyrus and area CA3 were also visualized (bottom). A and B
are composites of stacked optical sections obtained by confocal microscopy. Scale bar (shown in
B): 40 µm. dgc, dentate granule cell layer; h, hilus; m, molecular layer; mfp, mossy fiber pathway; 
sr, stratum radiatum; sp, stratum pyramidale. 
 

 

 
 
 
 
 
 

 

Figure 9. The neural density of mature cultured slices 
increases when serum concentrations are reduced. 
Mature slices were incubated in media with varying 
serum concentrations from 3 DIV to 14 DIV (5 %, 
25 %, and 40 %). Immunoblot analysis of 
neurofilament 68, a neuron-specific marker, was used 
as an indicator of the neural density in acute P25 
slices and P25 slices cultured for 14 DIV (n=4 for each 
group). Immunostaining of neurofilament 68 protein 
revealed the decrease of neural density in cultured 
compared to acute slices, as well as the lowest neural 
density with the highest serum concentration. 
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Figure 10. Ectopic ß-III-tubulin-immunoreactive cells were found in the hilus of mature
hippocampal-entorhinal cortex slices cultured in 25 % horse serum. Beta-III-tubulin 
immunohistochemistry (green) illustrates a population of cells in the hilar region of mature cultured 
slices (A), which was not seen in acute slices from the same animal (B). For comparison glial cells 
were labeled using antibodies to glial fibrillary acidic protein (GFAP, red). (C) Displaced ß-III-
tubulin-immunoreactive neurons were also shown to project erratic processes (right and left 
panels), suggesting there is some reorganization in the dentate gyrus of mature slices cultured in
high serum concentrations. (D) Right panel. Nuclear BrdU (red) was co-localized with ß-III-tubulin 
immunostaining (green) in the hilar region of mature slices cultured in the presence of BrdU for
14 DIV (white asterisks indicate co-localization), indicating that some ß-III-tubulin-immunoreactive 
neurons, in the hilus of mature slices cultured in high serum, resulted from neurogenesis in culture. 
Note that most of the BrdU positive cells in the subproliferative zone of the denate granule cell layer 
are ß-III-tubulin-negative. Slices cultured in high serum were not used in further electrophysiological
experiments. A–C are composites of stacked optical sections obtained by confocal microscopy.
Scale bars: 40 µm. dgc, dentate granule cell layer; h, hilus; m, molecular layer.  
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cells decreased to 18.2 % of the slices (8-14 DIV, n=11) implicating high serum 

concentration to contribute to the presence of these neurons. Co-localization of BrdU, 

which is taken up by mitotically active cells, with the neuron–specific marker ß-III-tubulin 

showed that 36.3 % of the displaced neuronal cells were generated in culture (Fig. 10d). 

However, the majority of positively labeled BrdU cells were co-localized with the 

astrocyte-specific antibody, GFAP (data not shown).  

   Changes in the morphology, distribution, and number of astrocytes in mature cultured 

hippocampal-entorhinal cortex slices were examined using immunohistochemistry. 

Astrocytes cultured from animals older than post-natal day 13 have been characterized 

to undergo morphological and chemical changes that alter their ability to support 

neurons in vitro (Smith et al., 1990; Ascher et al., 1998; Howard, 2000). Such a tissue 

culture effect could influence the viability of mature hippocampal cultures. Slices, 10-

14 DIV, were labeled with antibodies against GFAP, an astrocyte-specific cell marker. 

Staining revealed that astrocytes within cultured mature slices alter their morphology, 

lose their random and even distribution throughout the hippocampal lamina, and 

increase in number (Fig. 11a, b). Cell counting experiments revealed that astrocytes in 

area CA1 of the hippocampal slice increased by 53.1 ± 2.5 % after 14 DIV. In addition, 

astrocytes from a small portion of mature hippocampal cultures became reactive as 

indicated by a characteristic change in morphology as well as the expression of 

chondroitin sulfate proteoglycans (CSPGs, Fig. 11c, d) known to change the 

extracellular cell matrix (McKeon et al., 1991; Hoke and Silver, 1994; Silver, 1994), 

resulting in excitotoxicity (Barger and Basile, 2001), a loss of neuronal support (Smith et 

al., 1990; Howard, 2000), as well as the production of inflammatory cytokines (Silver, 

1994; Chao et al., 1995; Viviani et al., 1998), all of which could influence LTP. 
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Figure 11. Astrocytes in cultured mature slices alter their morphology, lose their even distribution 
throughout the hippocampal lamina, and increased in number as indicated by a comparison of A
and B. Immunofluorescence using antibodies to glial fibrillary acidic protein (GFAP), an astrocyte
specific cell marker, labeled the entire cell body of astrocytes in area CA1 of acute slices (A) and 
slices cultured for 14 DIV (B). (C) In the dentate gyrus of acute hippocampal slices GFAP (green) 
was not co-localized with chondroitin sulfate proteoglycans (CSPGs, red) illustrating that 
astrocytes do not express CSPGs. Note: CSPGs are normally expressed by neuronal axons in 
the dentate and mossy fiber pathways in vivo (Engel et al., 1996) as shown in the CSPG 
expression pattern after immunostaining in the acute slice. (D) CSPGs (red) were co-localized 
with GFAP immunostaining (green) in the dentate gyrus of select slices cultured for 14 DIV 
(yellow indicates co-localization) suggesting that astrocytes have become reactive. A-D are 
composites of stacked optical sections obtained by confocal microscopy. Scale bar: 40 µm. sr, 
stratum radiatum; sp, stratum pyramidale; dgc, dentate granule cell layer; h, hilus; m, molecular 
layer. 
 

 

3.1.2. Characterization of the fEPSP in the CA1 Stratum Radiatum 

   Increases in synaptic strength, which are thought to participate in information 

processing at the cellular level, can be measured as an increased fEPSP slope. To 
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determine whether persistent synaptic potentiation can be induced and maintained in 

cultured mature hippocampal-entorhinal slices, the fEPSP recorded at the Schaffer 

collateral input to the pyramidal neurons of the CA1 region was characterized. Synapses 

were tested using a paired-pulse paradigm that resulted in paired-pulse facilitation, i.e. 

an increase in the slope of the second response during paired stimulation. The paired-

pulse facilitation, which is short lasting and presumably presynaptic, indicates that there 

is sufficient transmitter release from the presynaptic afferents even when pulses are 

given at short intervals. On the other hand, when CA1 pyramidal cell population spikes 

were recorded simultaneously, the second response decreased for paired stimuli (Fig. 

12a, b). This pattern suggests that culture conditions do not lead to synaptic failure by, 

for example, the depletion of readily releasable vesicles. 

   It was further investigated whether NMDA currents contribute to the fEPSP to show 

that the receptors and their excitatory synaptic currents, which are essential for the 

induction and expression of LTP are not lost after time in culture. Receptor antagonists 

were added in succession until the complete fEPSP was blocked to reveal the 

contribution of each receptor type to the total fEPSP. First, the addition of picrotoxin 

(30 µM), a GABAA channel antagonist, resulted in temporary synchronized bursting of 

CA1 and CA3 pyramidal cells indicating the presence and functionality of the inhibitory 

synaptic circuit. The remaining excitatory synaptic current was expected to be composed 

of an earlier AMPA component, and a smaller late NMDA component (Watkins and 

Evan, 1981; Hestrin et al., 1990). Accordingly, the AMPA/kainate receptors antagonist 

NBQX (10 µM), resulted in a large reduction of the evoked fEPSP amplitude, and the 

NMDA receptor antagonist CPP (10 µM) completely blocked the remaining signal (Fig. 

12c, n=4 slices). The amplitude component that remained as a result of NMDA receptor 

activation corresponded to 33.88 ± 12.39 % of the combined AMPA and NMDA-

dependent fEPSP amplitude.  
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Figure 12. The synapses of CA1 pyramidal cells in mature slice cultures show functional 
properties corresponding to acute transverse slices. (A) and (B) Analog traces of extracellularly 
recorded field potentials when using paired-pulse stimulation in stratum radiatum. (A) Stimulation 
resulted in paired-pulse facilitation of the fEPSP evoked at the synapses between the Schaffer
collateral axons and apical dendrites of CA1 pyramidal cells, and (B) simultaneously in a paired-
pulse depression of the CA1 pyramidal cell population spike amplitude. (C) NMDA receptor
activity at the apical dendrites of CA1 pyramidal cells can be measured physiologically. 
Representative analog traces showing the stratum radiatum fEPSP after adding the following 
antagonists. After the addition of picrotoxin (30 µM), the AMPA receptor contribution was blocked 
using NBQX (10 µM), and the remaining NMDA component was completely eliminated using
CPP. Arrows match each additional antagonist application to the response recorded thereafter. 
Scale bars: A and B, 0.5 mV/10 ms; C, 0.5 mV/5 ms. 

 

3.1.3. Induction and Expression of LTP in Area CA1 of Cultured Mature Hippocampal-
Entorhinal Cortex Slices. 
 
   The stimulation requirements for LTP induction and its maintenance for more than 4 h 

at the Schaffer collateral input to the CA1 pyramidal neurons was investigated in 

cultured mature hippocampal-entorhinal cortex slices. I tested three different high-

frequency stimulation paradigms to determine whether long-term modifications of 

synaptic inputs were possible in mature cultured hippocampal-entorhinal cortex slices. 
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The results were categorized into instances with potentiated (> 20% increase at 1 min 

posttetanus compared to baseline) and non-potentiated fEPSPs, and potentiated slices 

were further classified by the LTP duration (Table 1). Three or more trains of high-

frequency stimulation consistently resulted in after-burst discharges and synaptic 

depression following the third stimulus train. When two rather than three stimulus trains 

were given, bursting was reduced to 38.8 % of the slices (n=18). LTP induction was 

significantly more successful using the 100 Hz or 200 Hz protocols compared to using 

theta burst stimulation (100 Hz, 61.1 % of the slices, n=18; 200 Hz, 55 %, n=20; theta 

burst stimulation, 27 %, n=15). However, 100 Hz stimulation less often resulted in after-

burst discharges and subsequent depression. The 100 Hz protocol consisting of 2 trains 

of 100 pulses at 100 Hz with a 10 min intertrain interval was therefore adapted for further 

LTP experiments.  

 

 
 
 
Table 1. LTP trials in mature slice cultures a

Stimulation Protocol PTP E-LTP 
< 4 h 

L-LTP 
> 4 h 

ABD NR n 

Theta Burst 0 3 1 7 4 15 
200 Hz 4 5 2 7 2 20 
100 Hz: 4 7 0 5 2 18 

5 % serum 6 11 0 0 3 20 
Enhanced chamber 2 3 4 0 1 10 

Single animal  1 5   6 
 

a Slice cultures were maintained in vitro for 10-15 days, after which one of the listed stimulus 
paradigms was tested for the success of LTP induction and expression. Increases of greater than 
20 % compared to baseline (at 1 min post tetanus) were considered as potentiation and those 
cases were further divided by duration. Posttetanic potentiation (PTP) was defined as a return to 
baseline after less than 5 min, E-LTP lasted more than 30 min but less than 4 h and L-LTP was 
defined as potentiation that lasted more than 4 h. Tetanization that did not result in potentiation 
was separated into non-responsive (NR) cases or cases with after-burst discharges (ABD), which 
were often accompanied by depression. Experiments with the 100 Hz stimulation protocol are 
subdivided to reflect further changes in culturing and recording protocols, which include a 
decrease in serum concentration at 3 DIV, an enhancement of the recording chamber, and a 
comparison of slices taken from a single animal to control for a possible lesser variation within a 
dissection. 
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   To reduce the number of LTP trials that resulted in spontaneous bursting and 

depression and to increase the duration of LTP expression, it was tested whether serum 

may be excitotoxic to hippocampal neurons in culture at high concentrations (see Ye and 

Sontheimer, 1998), which could contribute to the frequent failure of LTP induction and/or 

maintenance in cultured mature slices. Reducing the serum concentration from 25 to 

5 % at day 3 in vitro resulted in an increase in the frequency of slices with successful 

LTP induction to 85 %, and in addition, the absence of bursting (Table 1). These results 

suggest that the higher serum concentrations after 3 DIV had previously increased the 

likelihood for the failure of LTP induction.  

   The 100 Hz stimulation protocol in mature cultured slices had consistently resulted in 

E-LTP lasting less than 4 h. To rule out the contribution of unfavorable recording 

conditions to short-lasting LTP, the recording chamber was modified to better support 

cultured slices by introducing enhanced humidification with a vapor saturation of ≥ 90 %. 

Slices remained viable in the improved recording chamber for extended periods of time 

as shown by stable fEPSP baseline recordings for a 14 h period after which LTP was 

successfully induced (data not shown). In addition, the overall frequency of an extended 

LTP duration was increased with the improved chamber conditions, in which long-lasting 

LTP occurred in 40 % of all slices (n=10, see Table 1). Although long-lasting, the 

induced LTP consistently had a decremental component, with a declining potentiation for 

3 h and a subsequent plateau at an ~ 30 % increase compared to baseline. Potentiated 

responses were observed to remain significantly increased for up to 6 h (the longest time 

point measured; mean at 360 min, 132.89 ± 13.79 %, P < 0.05, n=4). Along with long-

lasting LTP in 40 % of the slices, we observed E-LTP in 30 % of all slices when using 

the same stimulus protocol and recording conditions (mean at 60 min, 130.67 ± 8.71 %, 

P < 0.05; mean at 120 min, 115.64 ± 12.18 %; n=3; Table 1 and Fig. 13a). All slices that 

showed E-LTP rather than L-LTP were characterized by smaller fEPSP amplitudes during  
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Figure 13. Expression of LTP in the CA1 synapses of cultured mature hippocampal-entorhinal 
cortex slices following high-frequency stimulation (HFS; 2 trains of 100 Hz for 1 sec, 10 min
intertrain interval). HFS of slices with smaller fEPSP amplitudes resulted in E-LTP, whereas the 
same stimulation paradigm resulted in L-LTP in slices with larger fEPSPs. (A) HFS (arrows) of the 
Schaffer collaterals resulted in both L-LTP (ο), and also E-LTP (∆) in mature slices (L-LTP at 
360 min, 132.89 ± 13.79 %, n=4), (E-LTP at 60 min, 130.67 ± 8.71 %; at 120 min, 
115.64 ± 12.18 %; n=3). HFS induced L-LTP in 5 of 6 cultured slices from the same animal (•; at 
300 min, 142.8 ± 20.37 %, n=6). Symbols in A also correspond to the same data represented in B
and C. (B) Superimposed representative field potentials taken 10 min before and 30 min after
HFS of Schaffer collateral axons. Note that tetanization experiments that resulted in E-LTP were 
characterized by smaller fEPSP amplitudes during baseline recordings. (C) Mean baseline fEPSP 
amplitudes for each trial shown in (A) that resulted in E-LTP (< 4 h) and L-LTP (> 4 h). Symbols 
represent the mean baseline fEPSP. Scale bar: 0.5 mV/20 ms. 
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baseline recordings (Fig. 13b, c), suggesting that the failure of LTP to last longer than 

4 h was related to the lower initial amplitudes of the fEPSP.  

   To investigate whether the variation in the response to 100 Hz stimulation was due in 

part to differences between dissections, LTP was induced in slices taken from the same 

animal (right and left hemispheres, n=6, see Table 1). High-frequency stimulation 

resulted in an average initial potentiation of excitatory postsynaptic potentials at ~ 150 % 

of the baseline slope and with a minimum duration of at least 3 h when using the 100 Hz 

stimulus protocol (mean percent of baseline at 60 min, 142.81 ± 11.94 %, P < 0.05; at 

300 min, 142.81 ± 20.37 %, P < 0.05, n=6, Fig. 13a). As in previous experiments a 

robust short-term LTP was observed along with a weaker and more variable longer-

lasting LTP. The variation in response to strong stimulation was reduced between slices 

from the same animal with all cultured slices showing a similar initial magnitude of 

potentiation, and longer-lasting LTP in 83 % of all slices. 

 

3.1.4. LTP in area CA1 is NMDA Receptor-Dependent 

   I have shown that mature hippocampal-entorhinal cortex cultures retain synaptic 

properties in vitro that allow for the induction and expression of long-lasting LTP. LTP 

induced by 100 Hz stimulation requires postsynaptic Ca2+ influx and is either dependent 

on NMDA receptor activation (Collingridge et al., 1983; Lynch et al., 1983) or on the 

activation of voltage-gated Ca2+ channels (Grover and Teyler, 1990, 1995). It was tested 

whether LTP induced by 100 Hz stimulation of mature hippocampal slices is NMDA 

receptor-dependent. When 100 Hz stimulation was applied to the Schaffer collateral 

fibers in the presence of the NMDA receptor antagonist APV (50 µM), the potentiation 

was significantly reduced relative to control LTP (P < 0.05, Fig. 14). In the presence of 

APV, the stimulation resulted in an immediate posttetanic potentiation (mean percent of 
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baseline at 10 min (126.31 ± 10.81 %, n=6) but was significantly different from controls 

at 60 min (P < 0.05, mean APV percent of baseline, 105.69 ± 6.07 %, n=6; control, 

142.04 ± 10.68 %, n=6) indicating that the long-lasting LTP induced by 100 Hz 

stimulation in mature hippocampal-entorhinal cultured slices was NMDA receptor-

dependent.  

 

 

 

Figure 14. LTP in the CA1 area of 
mature cultures is NMDA receptor 
dependent. APV was added to ACFS 
and superfused for 20 min before until 
20 min after the induction of LTP 
(bar). High-frequency stimulation 
(HFS; arrows) applied in the presence 
of 50 µM APV (♦), resulted in 
significantly lower initial potentiation 
than HFS applied in control conditions 
( ; APV at 60 min, 105.69 ± 6.07 %, 
n=6, Control at 60 min, 
142.04 ± 10.68 %, n=6). Top: 
Superimposed representative field 
potentials in the CA1 area at 10 min 
before and 30 min after HFS of the 
Schaffer collaterals in normal ACSF 
(control; data also included in Fig. 13), 
or in ACSF with 50 µM APV.  Scale 
bar: 0.5 mV/10 ms. 
 

 

3.2. Discussion of Mature Hippocampal Slice Characterization 

 

3.2.1. Improved Electrophysiological Signals and their Stability in Mature Hippocampal 
Slice Cultures 
 
   By improving the culturing procedures of hippocampal-entorhinal slice cultures from 

mature animals (P25-30), it was possible to obtain slices with a functionally intact 

trisynaptic loop, stable fEPSP amplitudes during baseline recordings, and reliable LTP 
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including a long-lasting form of LTP. LTP in mature hippocampal-entorhinal cortex slices 

after 100 Hz stimulation of the Schaffer collateral input to the CA1 pyramidal neurons 

was NMDA receptor-dependent, characterized by an initial decremental component, and 

could last for up to 6 h (the longest time point measured). LTP induction and 

maintenance in mature cultured slices was dependent on optimizing the culture 

conditions to obtain adult tissue cultures with electrophysiological properties that 

resemble those of acute slices and, in part, intact animals including the capability for 

LTP induction by extracellular stimulation.  

   The use of mature hippocampal-entorhinal cortex slice cultures in electrophysiological 

experiments required five key protocol changes. First, it was found that using a 

vibratome to prepare hippocampal-entorhinal slices for culture resulted in a higher 

proportion of slices with undamaged CA3 or CA1 regions. The use of a modified 

vibratome allows one to constantly keep the tissue at 4 °C throughout the entire 

procedure and to take sections along the entire hemisphere from which the 

hippocampus and associated subicular and entorhinal cortices can be removed by a 

single cut, which minimizes tissue handling and potential cell damage. Second, adding 

the adjacent subicular and entorhinal cortices to the hippocampus greatly enhanced the 

stability of baseline recordings by reducing the occurrence of spontaneous activity within 

the hippocampal circuit, which permitted stable baseline recordings (Fig. 6a). Third, 

slices incubated overnight at 34 °C in carbogen retained larger electrophysiological 

responses and recovered better from initially low synaptic amplitudes (at 10 DIV) in 

comparison to slices maintained at ambient O2 (Fig. 5). Fourth, lowering the serum 

concentrations had a dramatic effect on the capability for LTP induction in mature 

hippocampal-entorhinal cortex co-cultures and was necessary to reliably induce LTP in 

mature cultured slices. Reducing the serum concentration from 25 to 5 % at 3 DIV 

resulted in a significant increase in the frequency of LTP induction to occur in up to 85 % 
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of all slices in the absence of bursting and synaptic depression following 100 Hz 

stimulation (see Table 1). Finally, modification of the recording chamber resulted in an 

overall increase in the duration of LTP (> 4 h) with long-lasting LTP occuring in 40 % of 

all tested slices (Table 1). Taken together, improved electrophysiological characteristics 

and the success of LTP induction and maintenance were shown to depend on adapted 

methodological procedures aimed at better sustaining the survival of hippocampal 

neurons and their connections, which is a prerequisite for sustained synaptic function 

and the induction of synaptic plasticity in mature cultured slices. 

 

3.2.2. LTP in Mature Hippocampal-Entorhinal Cortex Slice Cultures 

   After 2-3 weeks in culture, mature (P25-30) rat hippocampal-entorhinal cortex slices 

are capable of activity-dependent changes in synaptic strength at the Schaffer collateral 

input to the pyramidal neurons of the CA1 region. Further investigation of the properties 

of LTP in culture after high-frequency stimulation showed that high-frequency stimulation 

(100 Hz) at the Schaffer collateral input to the CA1 pyramidal neurons in mature 

hippocampal-entorhinal cortex slices is NMDA receptor-dependent and consistently 

characterized by an initial robust early phase of LTP that declines and is followed by a 

variable late phase. In acute slices a single high-frequency stimulation train (100 Hz) 

consistently evokes E-LTP. The early-phase of LTP is short-lasting, stable for up to 3-

4 h, dependent on NMDA receptor activation, and maintained by second messenger 

cascades activated after an initial influx of Ca2+ (reviewed in Malenka and Nicoll, 1999; 

Soderling and Derkach, 2000). When three or more high-frequency stimulus trains are 

given a second component is added, which begins gradually during the first 1-3 h and is 

retained as long as 10 h in acute slices (Frey et al., 1988, 1993, 1996; Matthies et al., 

1990). The late phase of LTP is protein synthesis dependent (Krug et al., 1984; Frey et 

al., 1988; Huang and Kandel, 1994; Nguyen et al., 1994; Huang et al., 1996; Frey et al., 
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1996), activated by second messenger cascades typically initiated during E-LTP, and 

prevented in area CA1 in the presence of dopamine antagonists during its induction 

(Frey et al., 1990; Frey et al., 1991). Co-activation of subcortical inputs, such as 

dopamine, is necessary to establish the late forms of LTP in area CA1 (Frey et al., 1990; 

Frey et al., 1991; Huang and Kandel, 1995; Swanson-Park et al., 1999). 

   High-frequency stimulation (100 Hz) of the Schaffer collateral/ CA1 synapses in 

mature hippocampal-entorhinal slices resulted in varied amplitudes and time courses of 

LTP, even after introducing the modified protocol that improved and prolonged LTP 

(Table 1 and Fig. 13a). The stimulus protocol that had been identified to be the most 

effective (2 trains of 100 pulses at 100 Hz, 10 min intertrain interval) resulted in at least 

an initial potentiation in 70 % of all slices. The potentiation was characterized by an initial 

robust E-LTP and, in 40 % of the slices, also a form of L-LTP. An analysis of the fEPSP 

amplitudes during baseline recordings revealed that all slices that only expressed E-LTP 

had lower fEPSP amplitudes than any of the slices that showed L-LTP (Fig. 13b, c). 

These results suggest that the expression of L-LTP was prevented when fewer 

synapses and/or lesser currents at each synapse contributed to the fEPSP indicating 

that the size of the fEPSP can predict whether L-LTP can be induced in a slice culture. 

Even when expressed, the long-lasting LTP in mature cultured slices was weak in 

comparison to the early phases and of varying duration between slices (Fig. 13a). The 

long-lasting LTP observed in mature cultures slices does not reflect the same non-

decremental transition from E-LTP to L-LTP shown in acute slices. Cultured slices lack 

afferent innervation from extrinsic inputs, which may be required to establish the late 

phases of LTP at maximal levels of potentiation. Further investigation is needed to 

determine factors that modulate the late form of LTP in mature hippocampal slices. 

Thus, it remains currently open whether the prolonged form of LTP in such cultures also 

depends on protein synthesis.  
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   Mature hippocampal-entorhinal cortex slice cultures were shown to be hyperexcitable, 

in particular in response to the high-frequency stimulation needed to induce long-lasting 

changes in synaptic strength. Three or more trains of high-frequency stimulation have 

been shown to consistently induce L-LTP in acute slices (Frey et al., 1993; Nguyen et 

al., 1994). The same stimulus pattern resulted in after-burst discharges and synaptic 

depression in cultured mature slices. With a reduction to 2 stimulus trains it was possible 

to induce LTP within a portion of cultured slices (see Table 1).  

   It was shown that the surviving hippocampal circuit, that has been established in P25 

animals in vivo, remains functional in mature cultured slices for at least up to 30 DIV 

(see Fig. 7). In addition, I show that a distinct balance between excitation and inhibition 

is maintained, and the proper receptor contribution to the fEPSP is retained when the 

slices are cultured in low serum media (Fig. 12c). However, strong stimuli resulted in 

spontaneous bursting and oscillations throughout the hippocampal circuit. Such 

hyperexcitability may in part be due to intact functional connections throughout the 

hippocampal trisynaptic cascade, or differences in inhibition. In acute slices, severed 

afferent fibers are stimulated, preventing high-frequency stimulation from propagating for 

long distances. In mature cultures only intact, healthy neurons and their connections are 

retained and fiber stumps can be assumed to have degenerated. LTP induction in 

mature slices is thus complicated by the delicate balance between providing a high 

enough extracellular stimulus intensity to activate a sufficient number of afferent axons 

to the CA1 cell population without hyperexciting the entire circuit. Similar problems for 

LTP induction have also been described at the CA1 synapses in the intact animal 

(Leung, 1979; Leung and Shen, 1995). Therefore, in contrast to acutely prepared adult 

hippocampal slices, the properties of LTP induction in mature cultured slices show 

properties that are otherwise only observed in vivo with a completely connected 

hippocampal-entorhinal cortex loop.  
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   The Role of Serum in the Induction of LTP. Impaired LTP induction in cultured 

mature slices occurred as a direct consequence of cell culture conditions, most 

importantly the serum content in the culture media. When the serum concentration was 

reduced from 25 to 5 % at 3 DIV, bursting and depression following 100 Hz high-

frequency stimulation was eliminated and the occurrence of long-term potentiation 

significantly increased to occur in 85 % of all slices (see Table 1). Possible mechanisms 

by which serum prevents LTP induction are by decreasing the total neural density of the 

mature slice (see Fig. 9) and by inducing the occurrence of ectopic neurons (see Fig. 

10).  

   It was shown that the neural density of mature hippocampal-entorhinal cortex slices 

cultured for 14 DIV decreased with increasing serum concentration in the culture media 

(see Fig. 9) suggesting a direct effect of serum on the survival of hippocampal neurons 

or their processes in culture. Decreased serum concentration, along with increased 

neural density resulted in successful LTP induction in most slice cultures. The probability 

of inducing LTP at the Schaffer collateral/CA1 synapse increases with higher stimulation 

intensities that recruit a larger number of axons (McNaughton et al., 1978). Cell counting 

experiments revealed that neuronal loss, relative to acute slices, after 14 DIV in 25 % 

serum was most pronounced in the CA3 area. A significant reduction in CA3 pyramidal 

cells can in turn lead to a reduction in the number of axons projecting to CA1 pyramidal 

cells, thus reducing the probability to induce LTP at the Schaffer collateral/CA1 

synapses. A reduced density and number of surviving neurons in culture along with a 

decreased number of afferent fibers recruited by high-frequency stimulation can result in 

the failure to provide the spatiotemporal cooperativity for LTP induction at the Schaffer 

collateral-CA1 pyramidal cell synapse (McNaughton et al., 1978; Kelso and Brown, 

1986; Brown et al., 1990; Bliss and Collingridge, 1993; Bliss et al., 2003). Such 

properties of LTP induction could also explain the variability in the resulting magnitude of 
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LTP between slices as well as the difference in the time-course of LTP expression (see 

Fig. 13 and Table 1). Most fibers in the vicinity of the stimulating electrode can be 

assumed to be activated by stimulation in slice cultures, which are only 100-200 µm thick 

after 10 DIV leading one to believe that the variability in fEPSP amplitude reflects 

variability in the number of activated afferent fibers (see Fig. 13b, c). Small differences in 

the dissection procedure during each slice preparation are expected to lead to varying 

levels of neural density between slice preparations and, to a lesser extent, between 

slices from one animal. 

   Increased serum concentrations were also shown to generate ectopically placed 

neurons within the hilus of cultured mature hippocampal-entorhinal cortex slices in vitro 

(see Fig. 10). The reduction in serum concentration reduced the occurrence of ectopic 

neurons from 83.3 to 18.2 %. The appearance of such cells in vitro could be a result of 

epileptiform activity (oscillations, bursting) induced, for example, by serum-borne 

glutamate or by spreading of the neuronal cell layers in culture. In adult rats ectopic 

granule cells located at the border of the hilus and the inner granule cell layer are 

characterized by irregular shaped nuclei (Parent et al., 1996, 1999) and give rise to 

abnormal axonal projections resulting in hippocampal hyperexcitability in vivo 

(Scharfman et al., 2000). These ectopic granule cells are generated as a result of kainic 

acid-induced seizures and resemble those in mature cultures both in morphology and 

immunofluorescent labeling (Fig. 10 a, d). Although we did not test whether these cells 

form connections influencing the properties of CA3 pyramidal cells as reported in vivo 

(Scharfman et al., 2000), we observed that spontaneous bursting and after-burst 

discharges were reduced along with their reduced occurrence. Moreover, fluorescent 

imaging revealed some displaced granule cells that projected misguided processes (see 

Fig. 10c). Xiang et al. (2000) also mentioned the appearance of dislocated cells from the 

granule cell layer, and confirmed using Timm’s stain and DiI tracing that there is minor 
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rearrangement of the mossy fiber pathway in mature slice cultures. Ectopically placed 

neurons within the hilus of mature cultured hippocampal-entorhinal cortex slices were 

shown to occur as a consequence of increased serum concentrations (25 %) in culture 

and were shown to occur along with changes in the layered organization of mature 

hippocampal slices, which could contribute to the hyperexcitability of those mature slice 

cultures after high-frequency stimulation.  

   The activation of astrocytes in cultured mature slices was observed in a small portion 

of slices cultured in high serum concentrations, and could also be a potential cause of L-

LTP failure. Horse sera are known to be a significant source for glutamate, supplying 

glutamate at concentrations sufficient to kill primary cultured hippocampal neurons by 

excitotoxicity (Ye and Sontheimer, 1998; Chen et al., 2000). In slice cultures, the entire 

cellular network of microglia is thought to protect hippocampal neurons from excitotoxic 

cell death induced by glutamate. Astrocytes are known to buffer high glutamate 

concentrations and protect hippocampal neurons from excitotoxic cell death (Yudkoff et 

al., 1993). However, when astrocytes become activated their ability to protect 

hippocampal neurons is lost, and they can in fact contribute to neuronal death (Kingham 

et al., 1999; Tanabe et al., 1999; Bal-Price and Brown, 2001). Suggested mechanisms 

by which activated glia cells damage neurons in culture are by the release of glutamate 

(Barger and Basile, 2001), reactive oxygen species (Beckman et al., 1994), nitric oxide 

(Hu et al., 1997; Bal-Price and Brown 2001), and/or the inflammatory cytokines TNFα 

and IL-1β (Silver, 1994; Chao et al., 1995; Viviani et al., 1998), all of which have been 

shown to alter the induction and or maintenance of L-LTP (Bellinger et al., 1993; 

Zorumski and Izumi 1993; Cunningham et al., 1996; Schneider et al., 1998; Tancredi et 

al., 1992; Vereker et al., 2001). Inflammatory cytokines have also been shown to reduce 

the fEPSP slope and amplitude before the tetanus (Bellinger et al., 1993). I show in a 

small portion of mature hippocampal cultures that astrocytes became reactive indicated 
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by a characteristic change in morphology as well as the expression of CSPGs (Fig. 11d). 

In addition, the number of astrocytes significantly increased in culture, which was 

accompanied by a loss of their even distribution within the hippocampal layers (Fig. 

11b). Astrocyte proliferation and activation is an effect of tissue culture on hippocampal 

tissue, and speculated to be induced by serum (Chen et al., 2000; Howard, 2000). 

Reactive astrocytes in cell cultures could possibly influence LTP in mature cultured 

hippocampal slices through the secretion of several molecules that have been shown to 

alter LTP directly. LTP could also, in theory, be affected indirectly by the loss of 

hippocampal neurons from excitotoxic cell death after the accumulation of serum born 

glutamate, as a consequence of the cessation of astrocyte support. Irrespective of 

whether serum concentration activated astrocytes or had a more direct effect on the 

organization of the hippocampal circuit, it was important to identify high serum 

concentrations as correlated with the failure of LTP and to use only slices cultured in low 

serum in subsequent electrphysiological experiments. 

 

3.2.3. Mature Hippocampal-Entorhinal Cultures: a Valuable Tool in the Study of Synaptic 
Plasticity. 
 
   Mature hippocampal-entorhinal cultures are an excellent advance in the study of 

synaptic plasticity allowing one to overcome some of the experimental limitations in 

previous models, and providing an additional tool in the field of LTP research. They allow 

for experimental manipulation that is not possible in vivo, overcome the time restraint of 

acute hippocampal slices, and allow scientists to study LTP at the mature synapse in 

experiments that are better suited for the use of cultured tissue. I have shown that long-

lasting LTP can be induced in cultured hippocampal-entorhinal cortex slices from mature 

(P25-30) rats. However, it remains to be investigated whether the prolonged 

maintenance of LTP in mature cultured slices is indeed characterized by the requirement 
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of protein synthesis, as in the intact animal and in acute hippocampal slices. One hint 

that cultures may show similar requirements comes from the characterization of CREB 

phosphorylation during long-lasting LTP in these slices. 

 

3.3. Single-Cell Analysis of Activity-Dependent CREB Phosphorylation Following the 
Induction of Long-Lasting LTP in Area CA1 of Mature Hippocampal-Entorhinal Cortex 
Slices. 
 
 
   The characterization of LTP in cultured mature slices was of great significance in order 

to validate their use for further experiments investigating specific mechanisms involved 

in LTP at the mature synapse, specifically the role of the nuclear transcription factor 

CREB in the maintenance of long-lasting LTP. It is hypothesized that sustained 

activation of the nuclear transcription factor CREB is needed to maintain long-term LTP. 

The hypothesis was tested in mature hippocampal-entorhinal cortex slices (P25-30) by 

quantifying changes in CREB phosphorylation for individual CA1-pyramidal neurons 

during the maintenance of L-LTP using confocal microscopy.  

 

3.3.1. Forskolin Bath Application Induces Uniform CREB Phosphorylation.  

   Changes in CREB phosphorylation were measured by immunohistochemically double-

labeling slices with both an anti-phosphorylated CREB antibody (pCREB; specific for 

Ser 133 phosphorylation) and a phosphorylation state-independent anti-CREB antibody 

(total CREB). The two primary antibodies were visualized with immunofluorescent 

fluorophores and the staining intensity (mean fluorescent amplitude calculated from the 

integrated pixel intensity) for each antibody was measured in selected cells using 

confocal imaging. From the unadjusted fluorescence signal it is difficult to interpret the 

staining intensity of nuclear phosphorylated CREB in each cell from sections of fixated 

hippocampal tissue (Fig. 15a). However, by creating a composite overlay image of the 
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Figure 15. A composite overlay fluorescence image was created using confocal imaging to
visually reflect the calculated cellular pCREB/CREB ratio. (A) Representative fluorescent images
from the mid-CA1 area of a hippocampal section, following LTP. Separate images of the same
labeled pyramidal neurons were simultaneously produced using confocal microscopy from both 
the 488 nm and 568 nm emission channels to visualize cell nuclei labeled with both a 
phosphorylation state-independent anti-CREB antibody and an anti-phosphorylated CREB 
antibody (pCREB; specific for Ser 133 phosphorylation). The value of the mean fluorescent 
intensity for each cell (calculated from the integrated pixel intensity) is portrayed as a color value 
that can be interpreted on the far-left scale bar, with blue reflecting the highest values. (B) A 
composite overlay image was created from both recording channels, using Leica imaging
software, to visually portray the numerically calculated immunofluorescent pCREB/CREB ratio for
each neuron. Images created from the 488 nm channel were reassigned to shades of blue, and 
the 568 nm channel red in order to create a visible contrast when superimposed. White boxes 
enclose the same pyramidal neurons shown in (A) and (B) for reference. High levels of pCREB
immunofluorescence do not necessarily reflect a large cellular level of CREB phosphorylation. By
creating a visual pCREB/CREB image the localization and extent of CREB phosphorylation can
easily be observed in each cell nuclei. Scale bars shown in A and B: 20 µm. sp, stratum 
pyramidale. 
 

(mean) fluorescent amplitude of labeled pCREB and CREB immunostaining, the 

pCREB/CREB ratio for each individual cell can be calculated, and the level of CREB 

phosphorylation can also be more easily interpreted visually (Fig. 15b). Such a ratio 

more accurately reflects relative CREB phosphorylation and allows one to compare 

values between experiments, which is normally prevented by the high variability of the 

staining procedures. Accordingly, the use of CREB or pCREB antibodies alone would fail 

to provide information regarding the amount of nuclear CREB phosphorylation. Changes 

in CREB phosphorylation in an intact hippocampal slice following the induction and 
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maintenance of long-lasting LTP have previously not been quantitated at a single-cell 

resolution, and it was first tested whether different levels of pCREB/CREB could be 

reliably detected by this method in a pathway known to elicit CREB phosphorylation.  

   CREB phosphorylation at a single-cell resolution was therefore first measured by 

pharmacological activation of a second messenger pathway known to phosphorylate 

CREB. Bath application of forskolin, an activator of the PKA cascade, has been shown 

to result in an increase in CREB phosphorylation (Kanterewicz et al., 2000). Analysis of 

forskolin-induced changes in CREB phosphorylation was performed on mature 

hippocampal-entorhinal cortex slices after 12 DIV. Slices were incubated in forskolin 

(20 µm) for various time periods (0, 5, 30, 60, 120, and 240 min; n=6 for each group), 

after which they were removed and immediately fixated for immunohistochemical 

investigation. Forskolin induced increases in cAMP resulted in an increase of the 

pCREB/CREB immunofluorescence ratio in cells of the entire hippocampal principal 

neuron population (CA1 mean cellular pCREB/CREB ratio, control, 0.116 ± 0.001, n=6; 

2 h forskolin bath, 0.51 ± 0.03, n=6; Fig. 16; CA3 and dentate data not shown). The 

small variation in pCREB/CREB values between cells shows that CREB is activated 

rather uniformly. 

 

3.3.2. LTP-Inducing Stimulation is Required for Postsynaptic Nuclear CREB 
Phosphorylation in Area CA1.  
 
   After validating that the ratio imaging detected the extent of nuclear CREB 

phosphorylation at a single-cell resolution, it was tested whether LTP induction or, as a 

control, any of the manipulations required for long-term extracellular recording 

experiments resulted in CREB phosphorylation. Changes in the pCREB/CREB ratio 

were assessed in slices left undisturbed in the recording chamber, slices that received 

continuous low-frequency stimulation (control stimulation), as well as slices in which LTP 
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Figure 16. Forskolin-induced increases in phosphorylated CREB. CREB phosphorylation was 
quantitated at a cellular resolution following the induction of the PKA pathway, which is known to 
elicit CREB activation. A ratio of phosphorylated CREB to CREB immunofluorescence was 
calculated for each cell using confocal microscopy to determine the portion of phosphorylated 
transcription factor CREB in individual neurons. Analysis of forskolin-induced changes in CREB 
phosphorylation was performed on mature hippocampal-entorhinal cortex slices cultured 12 DIV, 
which were then incubated in either the presence or absence of 20 µm forskolin. Data represent 
the mean cellular pCREB/CREB ratio for CA1 pyramidal cells after slices were incubated in
forskolin for various time periods (0, 5, 30, 60, 120, and 240 min; n=6 slices for each group). An 
increase in cAMP by forskolin resulted in a persistent and uniform increase in the average mean
cellular pCREB/CREB immunofluorescence ratio, reported as the mean ± SEM. The rather 
uniform increase in CREB phosphorylation at the cellular level is reflected in the small variation in 
pCREB/CREB values between cells. Circles (ο) represent the individual cellular pCREB/CREB 
ratios. 
 

was induced by high-frequency stimulation in the presence or absence of a competitive 

antagonist of the NMDA receptor site.  

Control Slices. Mature hippocampal-entorhinal cortex slices (10-15 DIV) were 

transferred to a carbogen-interface recording chamber and subjected to the same 

handling procedures and recording chamber conditions used in LTP experiments (Fig. 

17). Slices were left undisturbed in the chamber for 5 h, after which they were 

immediately fixated for immunohistochemical investigation (n=4). Handling, chamber 

conditions, and extended incubation in the slice chamber did not result in a 
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pCREB/CREB immunofluorescence ratio that was different between pyramidal cells in 

CA1, pyramidal cells in CA3, or dentate granule cells. The level of CREB 

phosphorylation in untreated slices was uniform between hippocampal regions (mean 

cellular pCREB/CREB ratio at 5 h in area-CA1, 0.32 ± 0.01; area-CA3, 0.33 ± 0.02; 

dentate gyrus, 0.33 ± 0.01; n=4). The differences seen between individual cells also 

remained small as shown by the low level of variance for each subregion. It should be 

noted that there is a uniform increase in CREB phosphorylation for all principal 

hippocampal neurons following their removal from the incubator as a small increase in 

the mean cellular pCREB/CREB ratio is seen for control slices transferred to the 

recording chamber (CA1 mean cellular pCREB/CREB ratio in chamber controls, 

0.32 ± 0.01), compared to slices taken fresh from culture (control CA1 mean cellular 

pCREB/CREB ratio for incubator controls, 0.12 ± 0.002, n=6, see Fig. 16). A chamber 

control slice was therefore used along with each LTP recording to directly compare each 

experimental condition to its own chamber control.  

Low-Frequency Stimulation. In addition, it was tested whether continued low-

frequency stimulation of the Schaffer collaterals could activate CREB in CA1 pyramidal 

cells. Again, to exclude that routine recording conditions further increased cellular CREB 

phosphorylation. Slices were stimulated with low-frequency control stimulation for 5 h 

(i.e., the length of an entire LTP experiment), and then fixated for immunohistochemical 

analysis. It was shown that sustained action potential firing did not significantly increase 

CREB phosphorylation beyond chamber control levels (chamber control CA1 mean 

cellular pCREB/CREB ratio at 5 h, 0.32 ± 0.01; baseline recording CA1 mean cellular 

pCREB/CREB ratio at 5 h, 0.30 ± 0.01, n=4). In addition, CREB phosphorylation in CA1 

pyramidal cells also remained rather uniform between cells, as shown by the small 

variance between the pCREB/CREB ratios of individual neurons (Fig. 17). Hippocampal 

neurons in the CA3 area and dentate also remained at control CREB phosphorylation 
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Figure 17. Low-frequency stimulation did not result in significantly increased phosphorylated
CREB compared to control slices that were incubated simultaneously and left undisturbed. It was 
tested whether the conditions required for long-term extracellular recording experiments resulted 
in CREB phosphorylation. Control slices were left in the recording chamber undisturbed for 5 h,
after which cellular pCREB/CREB ratios were quantitated in each region (n=4 slices). The second 
group received continuous low-frequency stimulation at the Schaffer collateral fibers to control for
a standard recording that lasted as long as a typical LTP experiment, 5 h (n=4 slices). Handling 
and chamber conditions resulted in a small uniform increase in the pCREB/CREB signal, and the 
extended recording duration did not further increase CREB phosphorylation, which remained 
equal in hippocampal principal neurons of all regions. Averaged mean cellular pCREB/CREB 
ratios for each region are reported as the mean ± SEM. Circles (ο) represent the pCREB/CREB 
ratios for individual cells. DG, dentate gyrus. 
 

levels following low-frequency stimulation of the Schaffer collateral fibers in the CA1 

area (CA3 baseline mean cellular pCREB/CREB ratio at 5 h, 0.35 ± 0.02; dentate, 

0.31 ± 0.01; n=4).  

High-Frequency Stimulation. After having established that CREB activation was low 

and uniform in response to the experimental paradigm used for LTP recordings, CREB 

phosphorylation was assessed for single cells following high-frequency stimulation 

(100Hz) of the Schaffer collateral input to the CA1 pyramidal neurons in cultured mature 
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hippocampal-entorhinal cortex slices (10-15 DIV). Two slices were placed within the 

recording chamber for each LTP experiment; one was left undisturbed to serve as an 

experimental control, whereas the other received the high-frequency stimulation that 

induced long-lasting LTP in mature cultured slices (2 trains at 100 pulses of 100 Hz, 

10 min intertrain interval). Long-lasting LTP was recorded for 4 h following a 1 h baseline 

(n=6) after which electrodes were removed and all slices were immediately fixated for 

immunohistochemical analysis.  

   High-frequency stimulation (100Hz) of the CA1 area resulted in a potentiation of the 

fEPSP to 165.35 ± 13.73 % and a significant 2-fold increase of the pCREB/CREB ratio 

at 4 h after tetanization (Fig. 18). The increase in CREB phosphorylation was observed 

for CA1 pyramidal neurons (CA1 mean cellular pCREB/CREB ratio after 4 h LTP, 

0.73 ± 0.06; control CA1 neurons, 0.34 ± 0.01; n=6 slices, P < 0.05), whereas CA3 

pyramidal and dentate granule neurons remained at chamber baseline levels (CA3 

mean cellular pCREB/CREB ratio after 4 h LTP, 0.40 ± 0.02; dentate, 0.35 ± 0.01; n=6 

slices) indicating that antidromic stimulation of CA3 pyramidal neurons was not sufficient 

to increase nuclear CREB phosphorylation (Fig. 18c). Also specific for CA1 neurons 

following tetanization was a marked variability of CREB phosphorylation between 

adjacent cells as shown by the high variance in the pCREB/CREB ratio for CA1 

pyramidal neurons following the 4 h maintenance of LTP (Fig. 18c). The varied level of 

CREB phosphorylation between CA1 pyramidal cells following long-lasting LTP is also 

apparent in the confocal images from slices with LTP (Fig. 19a). The high variation in the 

proportion of activated CREB in individual pyramidal neurons following synaptic input is 

in contrast to the uniform levels after long-term baseline recordings and after forskolin 

bath application (Fig. 19b, c). These data suggest that CREB phosphorylation is 

specifically involved in hippocampal plasticity, requires high-frequency synaptic input, 

and is enhanced to varying degrees specifically in postsynaptic neurons. 
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Figure 18. Individual postsynaptic CA1 pyramidal neurons show variable increases in CREB 
phosphorylation specifically in association with L-LTP. (A) High-frequency tetanization (HFS; 2 
trains of 100 pulses at 100 Hz, 10 min intertrain interval) induced long-lasting LTP (4 h) in the 
CA1 area. Insert in top right: Superimposed representative field potentials taken 10 min before
and 120 min after HFS. (B) An overlay composite pCREB/CREB image (pCREB, red; CREB, 
blue) created by confocal imaging at low magnification of immunostained CA1-pyramidal neurons 
following the induction and maintenance of 4 h LTP. CREB phosphorylation is specifically seen in 
postsynaptic neurons following LTP-inducing stimuli. Positions of the stimulation (S) and 
recording (R) electrodes are indicated by white arrows. The image is oriented proportionally 
within the illustrated hippocampal cell layers. (C) HFS of the CA1 area in mature cultured slices 
(n=6) resulted in a significant 2-fold increase of the pCREB/CREB ratio (P < 0.05) after the 4 h 
maintenance of long-lasting LTP. PCREB/CREB ratios were calculated for individual hippocampal
neurons in area CA1, CA3, and dentate gyrus. A significant increase in CREB phosphorylation
was specific for the postsynaptic CA1 pyramidal neurons, whereas CA3 pyramidal and dentate
granule neurons remained at baseline levels. Specific for CA1 pyramidal neurons following the
induction of LTP was a marked variation in the proportion of nuclear CREB phosphorylation as
shown by the high variance in the pCREB/CREB ratios for each individual neuron, shown as (ο). 
Averaged mean cellular pCREB/CREB ratios and fEPSP slopes are reported as the 
mean ± SEM. Scale bar in A: 0.5 mV/20 ms; in B: 20 µm. sr, stratum radiatum; sp, stratum 
pyramidale; so, stratum oriens; DG, dentate gyrus. 
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Figure 19. Differential CREB phosphorylation between individual neurons receiving synaptic input
was specific for CA1 pyramidal cells only following the expression of LTP. Representative overlay 
composite pCREB/CREB images (pCREB, red; CREB, blue) were created from fluorescent 
images acquired by confocal microscopy at high magnification in the mid-CA1 area of 
hippocampal slice sections. Slices were immunostained following either (A) the 4 h maintenance 
of LTP, (B) 5 h routine baseline recordings using low-frequency stimulation, or (C) 4 h incubation 
in the presence of 20 µm forskolin, an activator of PKA. CREB is constitutively expressed as
shown by the labeling of CA1-pyramidal neurons (blue). The high variability in the portion of
phosphorylated CREB in adjacent pyramidal neurons following high-frequency stimulation of the 
synaptic input (A) is in contrast to the uniform increase in CREB phosphorylation after forskolin 
bath application (C) and in contrast to the lack of CREB phosphorylation following continued low-
frequency stimulation (B). Scale bar in A and C: 20 µm. sp, stratum pyramidale; so, stratum 
oriens. 

 

 

  To determine whether CREB phosphorylation in mature hippocampal-entorhinal 

cultured slices requires NMDA receptor activation, the slices were treated with the 

NMDA receptor antagonist APV prior to LTP induction and the level of CREB 

phosphorylation was investigated 2 h after a 100 Hz stimulus (Fig. 20). When 100 Hz 

stimulation (i.e., 2 trains of 100 bursts at 100 Hz with a 10 min intertrain interval) was 

applied to the CA1 area in the presence of APV (50 µM), the potentiation was 

significantly reduced relative to control LTP. Moreover, APV not only prevented the 
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Figure 20. L-LTP and associated increases in cellular CREB phosphorylation require NMDA 
receptor activity. (A) L-LTP in area CA1 was blocked by 50 µM APV (♦) compared to control LTP 
(ο) after HFS. Right: Superimposed representative field potentials 10 min before and 30 min after
HFS of the Schaffer collaterals (electrophysiological APV data was in part presented previously,
Fig. 14, section 3.1.4). (B) Representative composite pCREB/CREB images (pCREB, red; CREB, 
blue) of the mid-CA1 area in an untetanized control slice, and slices fixated 120 min after HFS in
the presence and absence of 50 µM APV. Images show that APV also blocked the enhancement
of CREB phosphorylation specific for the expression of LTP in the absence of APV. (C) Individual
cellular pCREB/CREB ratios calculated in all principal hippocampal neurons of control slices, and 
slices fixated 120 min after HFS in the presence and absence of 50 µM APV (n=6). APV blocked 
the enhancement of CREB phosphorylation, which remained at control levels. Scale bars in A:
0.5 mV/10 ms; B: 20 µm. sp, stratum pyramidale; so, stratum oriens. 

iduction                                                                                                                     
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induction of LTP but also blocked the enhancement of CREB phosphorylation, which 

remained at control levels (CA1 mean cellular pCREB/CREB ratio after 2 h in the 

absence of APV, 0.68 ± 0.07, n=6; in the presence of APV, 0.30 ± 0.03, P < 0.05, n=6; 

control, 0.38 ± 0.01, n=6). Thus, long-lasting LTP and the associated increases in CREB 

phosphorylation in mature hippocampal-entorhinal cortex cultures require NMDA 

receptor activity.  

 

3.3.3. Spatio-Temporal Dynamics of CREB Phosphorylation during Hippocampal LTP in 
Area CA1. 
 
   CREB phosphorylation was assessed at a single-cell resolution at different time 

intervals (30, 120, 240 min; n=6 each group) following LTP induction by high-frequency 

stimulation (100Hz) in the CA1 area of cultured mature hippocampal-entorhinal cortex 

slices (10-15 DIV). In addition to investigating the temporal dynamics of the average 

CREB phosphorylation after LTP in mature cultured slices, it was further investigated to 

what extent nuclear CREB phosphorylation changed throughout the neuron population 

activated by high-frequency stimulation, and if changes in the proportion of CREB 

activated at a cellular level occur during the maintenance of LTP. LTP was accompanied 

by a significant increase in the pCREB/CREB ratio at 30 min, which continued to 

increase after LTP had lasted for longer intervals (CA1 mean cellular pCREB/CREB ratio 

at 30 min, 0.50 ± 0.05; at 2 h, 0.60 ± 0.06; at 4 h, 0.73 ± 0.06; n=6, P < 0.05, Fig. 21). 

The sustained phosphorylation of CREB was specific for CA1 pyramidal cells, whereas 

CA3 pyramidal cells and dentate granule cells remained at baseline levels for the entire 

LTP duration (4 h time point shown in Fig. 18, additional data not shown). Moreover, the 

striking variation of CREB activation between CA1 neurons, after LTP induction 

remained throughout the duration of LTP (Fig. 21), but with the level of CREB 
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Figure 21. CREB phosphorylation increased continually in the entire population of CA1-pyramidal 
neurons in slices where long-lasting LTP was induced. CREB phosphorylation was assessed at a 
single-cell resolution following HFS (100 Hz) of the CA1 stratum radiatum, after which LTP was 
recorded for increasing time intervals (0, 30, 120, 240 min; n=6 each group). LTP resulted in an
initial increase in the mean cellular pCREB/CREB ratio, which continued to significantly increase 
in parallel to the increased duration of LTP (to 4 h; P < 0.05). The high variability of CREB 
phosphorylation between individual CA1-pyramidal neurons following the induction of LTP is seen 
for each time point. The cellular pCREB/CREB ratios calculated for each neuron (ο) are shown. 
The variation between pyramidal neurons remained high, but did not further increase for later 
time points. The averaged cellular pCREB/CREB ratios are reported as the mean ± SEM. 

 

phosphorylation increasing in the entire population of CA1 pyramidal neurons after 

longer LTP durations.  

 

3.4. Discussion of Single-Cell Analysis 

 

   The level of CREB phosphorylation was measured at a single-cell resolution in 

organotypic hippocampal slices from young adult rats (P25-30) at different time points 

throughout the duration of long-lasting LTP. CREB phosphorylation was shown to occur 
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in postsynaptic neurons only in response to stimuli that were sufficient to result in LTP. 

High-frequency stimulation (100Hz) of the CA1 area induced long-lasting LTP and a 2-

fold increase compared to chamber controls of the pCREB/CREB ratio at 4 h after 

tetanization (see Fig. 18). This increase in CREB phosphorylation was specific for 

conditions that increased the fEPSP of postsynaptic CA1 pyramidal neurons (Fig. 18c), 

and did not occur during continued low-frequency activation (i.e., 5 h baseline 

recordings; see Fig. 17).  

   It was critical to provide adequate controls to differentiate between stimulus-specific 

processes and changes related to routine LTP recordings. Each experiment in this study 

included 2 slices from the same animal, which were cultured and transferred to the 

recording chamber together. One of these slices was always left undisturbed to 

continually provide verification that the recording environment in each trial did not 

significantly induce CREB phosphorylation. It should be noted that there is a uniform 

increase in CREB phosphorylation for all principal hippocampal neurons following their 

removal from tissue culture incubation (compare incubator control values from Fig. 16 to 

all chamber controls). However, the degree of change is of a consistent magnitude and 

uniform for all principal hippocampal neurons and occurs presumably due to the low 

basal activity of quiescent slices in culture and the subsequent activation of normal 

“house-keeping” functions. By using chamber controls in all LTP experiments in this 

study (shown in each control group, Fig. 17-21), it can be concluded that CREB was not 

further activated in response to the baseline stimulation used for LTP recordings in 

cultured mature hippocampal-entorhinal cortex slices.  

   The stability of mature cultured slices during routine LTP recordings (Section 3.1; 

Leutgeb et al., 2003) makes them an excellent model for investigating CREB activation 

in relation to the maintenance of long-lasting synaptic enhancement. It is crucial to 

choose an adequate model to investigate CREB-function during LTP for it has been 

 80



shown recently that acute hippocampal slices from genetically engineered mice with 

deficiencies in CREB-gene-dosage are potentially inappropriate models for such studies 

(Gass et al., 1998; Balschun et al., 2003). The acute hippocampal slice has been a 

preferred model for the investigation of LTP. However, its limited viability has raised 

concerns that such a model might not accurately reflect changes of CREB 

phosphorylation in healthy intact neural systems. It has been shown that the routine 

incubation of acute slices alone can result in the up-regulation of immediate early-genes, 

whose transcription depends on CREB activation, presumably as a result of hypoxic 

injury and apoptosis (Zhou et al., 1995). Moreover, CREB can be specifically 

phosphorylated during the activation of neuronal cell death and apoptosis (Vyas et al., 

2002) as well as in the processes of neuronal survival (Finkbeiner et al., 1997; Walton 

and Dragunow, 2000; Mantamadiotis et al., 2002). These processes are of particular 

concern when correlating CREB phosphorylation with L-LTP recordings in acute slices 

with temporally limited viability and a greater potential for necrosis. Mature hippocampal 

slices on the other hand have been shown to be free of cell death and necrosis after 

7 DIV (Xiang et al., 2000), and the phosphorylation of CREB has been shown to remain 

at stable baseline levels throughout the entire length of all L-LTP experiments in this 

study.  

      Previous investigation of the temporal dynamics of CREB phosphorylation has 

revealed that the multiple phases of LTP are associated with different patterns of CREB 

phosphorylation, which differed depending on the experimental model. Matthies et al., 

(1997) investigated the temporal dynamics of CREB phosphorylation in acute 

hippocampal slices and observed that high-frequency stimulation (100 Hz) in the CA1 

area resulted in L-LTP (4 h) associated with an immediate increase in CREB 

phosphorylation. The phosphorylation of CREB was transient and declined after 30 min 

despite continued synaptic enhancement. Transient CREB phosphorylation that 
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disappeared by 2 h is observed in vivo only after inducing decremental E-LTP after 

perforant path stimulation (Schulz et al., 1999). Nondecremental L-LTP resulted in a 

biphasic CREB phosphorylation with an initial robust peak at 30 min and sustained 

phosphorylation of CREB beginning at 2 h LTP and lasting up to 24 h. The induction of 

long-lasting LTP in the CA1 area of mature cultured slices resulted in the sustained 

phosphorylation of nuclear CREB. CREB phosphorylation was first observed at 30 min 

after the induction of LTP, and remained after 4 h of maintenance (Fig. 21). Moreover, 

from calculating the individual cellular PCREB/CREB ratio for individual cells, it was 

further shown that increases occur throughout the entire CA1 cell population during the 

maintenance of long-lasting LTP. These findings coincide better with the dynamics of 

CREB phosphorylation described in vivo, rather than the pattern observed during L-LTP 

in acute slices, and suggests that the differences in the experimental models rather then 

the region of LTP induction resulted in the opposing results. Accordingly, only L-LTP 

induced in experimental models characterized by stable, intact neural connections has 

been shown to be associated with stable, sustained CREB phosphorylation. 

      In contrast to previous studies that have inferred an increase in CREB 

phosphorylation by the visual comparison of fluorescent images from entire neuronal 

populations, I have quantified the nuclear CREB phosphorylation in individual neurons 

during the duration of LTP to provide additional information on the dynamics of CREB 

activation during hippocampal long-term synaptic plasticity. CREB was phosphorylated 

in individual pyramidal cells as a result of the induction of long-lasting LTP in mature 

cultured slices (Fig. 18, 21), and it was shown for the first time that activated nuclear 

CREB in individual pyramidal neurons following synaptic input varied significantly 

between adjacent neurons. Differential CREB phosphorylation between neurons 

receiving synaptic input was specific for CA1 pyramidal cells only following the 

expression of LTP, which is reflected in the high variance of the pCREB/CREB ratio for 
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individual CA1 pyramidal neurons (Fig. 18c, 20, 21). This phenomenon was 

accompanied consistently by a minimal variance between individual neuron 

pCREB/CREB ratios for all experiments and cell regions other than those receiving high-

frequency stimulation. The striking variation in CREB activation observed between CA1 

neurons, specifically as a result of LTP induction, remained throughout the duration of 

long-lasting LTP while increases in CREB phosphorylation were observed throughout 

the entire pyramidal cell population. This pattern suggests that the neurons initially 

recruited by high-frequency stimulation phosphorylated CREB at different degrees in 

response to postsynaptic input and that increases occurred irrespective of the initial level 

of CREB phosphorylation. The fact that increases in the portion of nuclear CREB 

phosphorylation occur in a consistent pattern and magnitude during the maintenance of 

LTP, suggests that high-frequency stimulation results in varied CREB activation by 

initially inducing phosphorylation at different levels. Differences in the cellular levels of 

CREB phosphorylation were unique to LTP induced by tetanic stimulation in mature 

slices. In contrast to chemical stimulation in vitro, which drives cellular signaling systems 

to steady-state equilibrium, electrical stimulation models the dynamic intracellular 

signaling system driven by neural activity. Therefore, the differences in the cellular level 

of CREB phosphorylation after electrical stimuli possibly reflect differences in the 

number of active inputs perceived at each cell. 

   The variation in the portion of CREB activated in individual pyramidal neurons 

following synaptic activation was in contrast to the uniform control levels and to the 

uniform increase in CREB phosphorylation following bath application of forskolin (Fig. 

19). Cellular increases of cAMP induced by forskolin bath application, which is known to 

activate the PKA pathway and to result in L-LTP (Scheng et al., 1990; Impey et al., 1998; 

Deisseroth et al., 1998; Kanterewicz et al., 2000) was shown to induce CREB 

phosphorylation that was uniform across all pyramidal cells and gradually increased with 
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continued bath application of forskolin in mature cultured slices (Fig. 16). Electrical 

stimulation, on the other hand, resulted in a more immediate increase in CREB 

phosphorylation that initially reached higher maximum pCREB/CREB levels than those 

induced by forskolin bath application (compare Fig. 16, 18c, and 21). 

   The activation of CREB in mature hippocampal-entorhinal cortex cultures requires 

NMDA receptor activity, as does the induction of L-LTP, for both processes were 

blocked when high-frequency stimulation was given in the presence of the NMDA 

receptor antagonist APV (Fig. 20). It is intriguing that in the signaling mechanisms 

controlling the phosphorylation of CREB individual neurons appear to also be required 

for the induction of LTP as shown by the fact that not even single cells showed increases 

in phosphorylation without the activation of NMDA receptors.  

   The signaling pathways involved in synaptic plasticity and for CREB signaling might 

share common steps. However, the threshold for the activation of phosphorylation may 

be different for each cell. The differences in the magnitude of CREB phosphorylation 

after tetanic stimulation could also reflect relative differences in the activation of different 

signaling pathways. LTP induced in mature hippocampal slices was shown to be NMDA-

receptor dependent (Fig. 20). Activation of NMDA receptors can activate both CamK and 

PKA signaling pathways (reviewed in West et al., 2001), both of which phosphorylate 

CREB at different times and durations (Impey et al., 1998; Wu et al., 2001; Deisseroth 

and Tsien, 2002). The coupling of these pathways was shown to result in sustained 

CREB phosphorylation (Impey et al., 1998). These findings suggest that the kinetics of 

intracellular signaling pathways can each in turn convey information to the nucleus about 

the pattern of synaptic stimulation, such as timing or duration, and activate CREB 

depending on the received synaptic input pattern.  

   Accordingly, changes in the concentration of postsynaptic Ca2+ as a result of synaptic 

input could result in varied levels of CREB phosphorylation between CA1 cells in mature 
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slices. Cell specific translation of input patterns and strength to gene expression for the 

maintenance of enhanced plasticity is a proposed function of CREB phosphorylation. It 

has been shown in dorsal root ganglion neurons in vitro that CREB phosphorylation is a 

relatively poor indicator of stimulus pattern (Fields et al., 1997), but changes in the 

stimulus burst duration and the peak increase in Ca2+ concentration after stimuli 

produced differences in the degree of CREB phosphorylation. The shortest bursts 

produced the least increase in Ca2+ concentration, but the highest level of CREB 

phosphorylation, which could be explained by kinase, or phosphatase activity. In fact, 

CREB phosphorylation as a result of a weak priming stimulus has been shown to occur 

faster and be more sensitive to Ca2+ elevation (Mermelstein et al., 2001), suggesting that 

nuclear processing of synapse-to-nucleus signals can result in varied CREB 

phosphorylation. In this study cells varied in the degree of CREB phosphorylation 

following LTP induction by high-frequency stimulation, possibly as a result of cells 

receiving different numbers of active input. Differences in the location or number of 

synapses activated in response to the stimulus event could be conveyed to the nucleus 

and reflected in the varied degrees of CREB phosphorylation.  

   Many questions remain to be answered in terms of the influence of dendritic 

processing on nuclear CREB activation. Irrespective of the widely different levels of 

CREB phosphorylation, why did the pattern of activation not seem to diverge with 

increasing overall levels of CREB activation? How many active synapses are needed to 

trigger nuclear CREB phosphorylation, are fewer activated synapses translated to a 

lower level of CREB phosphorylation and transcription? To what extent does the level of 

dendritic processing influence the level of CREB phosphorylation in the nucleus? The 

dynamics of CREB activation in response to information conveyed from the synapse to 

the nucleus and its correlation to the mechanisms of L-LTP prove to be a complicated 

puzzle, and will require continued investigation.  
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4. Conclusions 
 

   The experiments of the present dissertation asked whether hippocampal slices from 

young adult rats (P25-30) could be used to investigate long-term plasticity, which may 

also occur during learning in adult organisms. Studying related processes in immature 

slices may be of limited relevance due to differences in the cellular processes of synaptic 

plasticity at immature synapses. The electrophysiological characteristics, in particular the 

parameters for long-lasting LTP induction were first established in mature cultures. The 

mature cultures were then used to investigate the relationship between the maintenance 

of long-lasting LTP and the activation of CREB by phosphorylation at the Ser 133 site. It 

was hypothesized that continued phosphorylation of the nuclear transcription factor 

CREB is needed to sustain long-lasting LTP. The principle findings of this dissertation 

are as follows: 

1) Improved tissue culture methods and new electrophysiological protocols were 

required to obtain mature hippocampal slice cultures that do not only show synaptic 

signals, but also synaptic plasticity. Cultured hippocampal-entorhinal cortex slices 

from young adult rats (P25-30) retain electrophysiological stability and the capability 

for recording long-lasting LTP after 2-3 weeks in vitro.  

2) It was shown that the temporal pattern of CREB phosphorylation in mature cultured 

slices matches the pattern that has previously been observed in vivo better than 

what was shown for acute hippocampal slices. 

3) The spatio-temporal dynamics of CREB phosphorylation were investigated by 

analysis at a single-cell resolution. It was shown that the induction of long-lasting 

LTP resulted in varied amounts of CREB phosphorylation in CA1 pyramidal neurons 

that as a population expressed an enhancement in synaptic strength. This 

observation was specific for electrical stimulation that resulted in LTP, and limited to 
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the cell population that also underwent a change in synaptic strength. In addition, the 

proportion of phosphorylated nuclear CREB during the maintenance of L-LTP 

continued to increase in the entire CA1 pyramidal cell population irrespective of the 

initial cellular levels of phosphorylation.  

   The mechanisms that turn on gene expression subsequent to learning events leading 

to long-term synaptic change and memory consolidation are uncertain. If in fact the late 

phases of LTP are responsible for memory formation by leading to long-lasting changes 

in synaptic strength and structure, then understanding the mechanisms and events by 

which this occurs is extremely important, but technically very difficult. I have shown that 

molecular and electrophysiological plasticity can be studied in parallel in mature cultured 

tissue. Long-lasting electrophysiological and technically advanced in vitro experiments 

using adult tissue are possible with the development of mature hippocampal-entorhinal 

cultures. This experimental freedom can serve as an invaluable tool for further 

investigating the events of synapse-to-nucleur signaling responsible for long-term 

synaptic plasticity. 
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APPENDICES 

 
I. ZUSAMMENFASSUNG DER DISSERTATION 

 
Die Mechanismen, die zur Protein- und Genexpression nach Lernen und in der Folge zu 

lang anhaltenden synaptischen Veränderungen sowie der Gedächtniskonsolidierung 

führen, sind noch weitgehend unbekannt. Falls die späten Phasen der 

Langzeitpotenzierung (LTP, engl.: long-term potentiation) zu dauernden strukturellen 

synaptischen Veränderungen und daher zur Langzeitgedächtnisbildung führen, ist das 

Verständnis dieser Prozesse wichtig, aber auch methodisch schwierig zu untersuchen. 

Zusätzlich zu akut präparierten Hippokampusschnitten von adulten Organismen werden 

daher auch hippokampale Zell- und Gewebekulturen, die bisher von embryonalen und 

juvenilen Organismen gewonnen wurden, für Untersuchungen der LTP verwendet. 

Kulturen von juvenilem Gewebe zeigen allerdings nicht nur in der anatomischen und 

zellulären Entwicklung Unterschiede zur ontogenetischen Entwicklung des Tieres, 

sondern auch im Hinblick auf die zur synaptischen Plastizität führenden Mechanismen. 

Wichtig ist daher die Suche nach einem Forschungsmodell, das auch adultes Gewebe in 

vitro Experimenten zugänglich zu macht. Daher war es Ziel der vorliegenden 

Dissertation, hippokampales Gewebe mit bereits ausgebildeten synaptischen 

Verbindungen zu kultivieren und organotypische Schnittkulturen von jung-adulten Ratten 

als zusätzliches Modell zum Studium der LTP zu etablieren. Für diese Präparation 

wurde Gewebe von 25 bis 30 Tage alten Tieren verwendet, da die Entwicklung des 

Gehirns zu diesem Zeitpunkt größtenteils abgeschlossen ist. Außerdem wurden die 

elektrophysiologischen Eigenschaften der Schnittkulturen und speziell die synaptische 

Plastizität untersucht. 
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In der vorliegenden Arbeit wurden zunächst die Effekte verschiedener 

Präparationsmethoden und Kultivierungsbedingungen auf die morphologischen und 

funktionellen Eigenschaften der kultivierten Hippokampusschnitte von jung-adulten 

Ratten beschrieben.  Mit Hilfe elektrophysiologischer und immunohistochemischer 

Methoden wurde festgestellt, ob nach der Kultivierung physiologisch aktive Synapsen 

vorhanden sind und ob die Einführung optimierter Methoden die elektrophysiologischen 

Eigenschaften von hippokampalen Schnitten verbesserte. Mit den modifizierten 

Protokollen war es möglich auch nach 2-wöchigem Kultivieren der Hirnschnitte 

funktionell intakte Synapsen zwischen Tractus perforans und Granularzellen im Gyrus 

dentatus, Moosfasern und CA3 Zellen als auch an den Verbindungen zwischen 

Schafferschen Kollateralen und CA1 Pyramidenzellen zu gewährleisten. Die 

elektrophysiologischen Eigenschaften der adulten Schnittkulturen wurden wiederholt 

geprüft, insbesondere um Stimulationssequenzen für die Induktion einer mehrstündigen 

LTP in der CA1 Region zu finden. Mit den hier entwickelten Protokollen konnte die LTP 

in CA1, wie in akut präparierten Schnitten, erstmalig auch in adulten Schnittkulturen 

verlässlich nach extrazellulärer Stimulation induziert werden. Ihre Induktion war NMDA-

Rezeptor-abhängig und ihre Aufrechterhaltung lang andauernd (> 4 Stunden). In den 

neu entwickelten hippokampal-entorhinalen Hirnschnittkulturen von jung-adulten Ratten 

bleiben daher die für die Langzeitpotenzierung erforderlichen Eigenschaften erhalten, 

und die Kulturen erlauben in vitro Untersuchungen der Plastizität neuronaler 

Verbindungen, deren ontogenetische Entwicklung vor der Präparation weitgehend 

abgeschlossen war. 

 

Die Phosphorylierung des Transkriptionsfaktors CREB (engl.: cAMP response element 

binding protein) wird sowohl für die synaptische Plastizität als auch für 

Gedächtnisprozesse als wesentlich erachtet. Die hippokampal-entorhinalen 
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Schnittkulturen von adultem Gewebe wurden nun verwendet, um die Beziehung 

zwischen der lang anhaltenden LTP und der zeitlichen und räumlichen Dynamik der 

CREB Phosphorylierung zu visualisieren. Die Dynamik der CREB-Aktivierung wurde 

durch die Verwendung von immunhistologischen Methoden und konfokalen 

bildgebenden Verfahren erstmalig auch mit zellulärer Auflösung beobachtet. Die 

Methode wurde zunächst nach Erhöhung der cAMP Konzentration durch die Zugabe 

von Forskolin getestet. Eine Normalisierung und Quantifizierung der relativen CREB-

Phosphorylierung war durch das Bestimmen des Verhältnisses zwischen 

phosphoryliertem CREB (pCREB) und nicht phosphoryliertem CREB möglich, und nach 

der Applikation von Forskolin wurde eine stetige Erhöhung der pCREB/CREB 

Immunfluoreszenz in der gesamten Population der hippokampalen Pyramidenzellen 

beobachtet. Nach elektrischer Stimulation des CA1 Areals mit einer Frequenz von 100 

Hz (Tetanisierung) konnte eine lang anhaltende LTP induziert werden und ebenfalls eine 

signifikante Erhöhung des Anteils von pCREB detektiert werden. Zudem stieg der 

durchschnittliche pCREB/CREB Wert während der Aufrechterhaltung der lang 

andauernden LTP weiter an. Eine erhöhte CREB Phosphorylierung wurde nach der LTP 

Induktion nur im CA1 Gebiet beobachtet, und die Werte zeigten eine hohe Variabilität 

zwischen einzelnen, auch benachbarten CA1 Neuronen. Im Gegensatz zu den 

Ergebnissen nach Forskolin Applikation wurden nach der LTP Induktion keine 

Unterschiede zu Kontrollwerten für Messungen im CA3 Areal und im Gyrus dentatus 

gefunden. Die für das CA1 Areal spezifische CREB-Phosphorylierung weißt darauf hin, 

dass weder die antidrome Stimulation noch spezifische Messbedingungen für die 

Induktion der CREB-Phosphorylierung nach der Tetanisierung ausreichend waren. Es 

wurde außerdem kein Anstieg des pCREB/CREB-Wertes gemessen, wenn die 

Tetanisierung während der Applikation von APV erfolgte und nur eine posttetanische 

Potenzierung induziert wurde. Sowohl die Aktivierung von CREB als auch die LTP 
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Induktion in Schnittkulturen adulter Ratten sind daher NMDA-Rezeptor-abhängig. Durch 

die hier verwendeten Methoden konnte erstmalig gezeigt werden, dass die Induktion der 

LTP zu unterschiedlicher CREB Aktivierung in einzelnen Pyramidenzellen führt und 

während der gesamten Dauer der LTP in der CA1 Zellpopulation weiter zunimmt. Die 

Hypothese, dass die CREB-Aktivierung eine wichtige Rolle während der Expression und 

Aufrechterhaltung von lang andauernder LTP spielt, wird durch die vorliegenden 

Resultate weitgehend unterstützt. 

 

In der vorliegenden Dissertation habe ich gezeigt, dass die molekularen und 

elektrophysiologischen Eigenschaften der Schnittkulturen denen jung-adulter 

Organismen entsprechen und in vitro untersucht werden können. Mit der Entwicklung 

der hippokampal-entorhinalen Schnittkulturen von jung-adultem Gewebe ist der Einsatz 

von Techniken möglich, die in anderen Modellen der Langzeitplastizität nur begrenzt 

anwendbar sind. Diese experimentellen Möglichkeiten können für weitere 

Untersuchungen von großer Bedeutung sein, insbesondere im Hinblick auf nun möglich 

werdende Untersuchungen der für die Langzeitplastizität wesentlichen 

Signaltransduktionswege zwischen der Synapse und dem Nukleus. 
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Winter 1998 Rotation Student, Advisor : Dr. Robert Marc 

 Project:  Mapping the ionotropic glutamatergic drive histories of amacrine 
cell layer neurons reported by 1-Amino-4-Guanidobutane (AGB) in vivo. 
Methods: Tissue culture, immunohistochemistry, computer analysis (GSS 
mapping software). 

    
Fall 1998 Rotation Student, Advisor: Dr. Mark Noble 

 Project:  Glial progenitor cell biology: Nicotine receptor involvement 
during glial progenitor cell development. Methods: Ca2+ imaging, single-
cell RT-PCR, tissue culture. 

    
Summer 1998 Rotation Student, Advisor: Dr. Scott Rogers 

Project: Cytokine-mediated neuroprotection in response to alcohol. 
Methods: Molecular biology (RT-PCR, RNA isolation, subcloning, 
transfection), protein chemistry (western blot, immunoprecipitation), tissue 
culture, cobalt staining, immunocytochemistry, microscopy.  

 
June 1998 Bachelor of Science Senior Project, Advisor: Dr. Scott Rogers 

 Title: “Glutamatergic Splice Variants ‘Flip and Flop’ in the Aged Mouse 
Brain”. Methods: Sub-cloning, RT-PCR, RNA isolation, 
immunohistochemistry, microscopy. 

 
1996-1998 Laboratory Technician, Advisor: Dr. Scott Rogers  

 Project: Structure and function of neuronal nicotinic receptors and 
glutamate receptors: Molecular mechanisms of neuro-immune 
interactions. Changes in the expression of these receptor systems were 
examined in the aging brain as well as in response to inflammatory 
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responses using various molecular biology and protein chemistry 
techniques. 

 
 
PERSONAL REFERENCES 
 
Prof. Dr. Julietta Uta Frey 
Leibniz Institute for Neurobiology 
Department of Neurophysiology 
Brenneckestr. 6 
D-39118 Magdeburg, Germany 
Phone: +49 0391 62 63425 
E-mail: Julie.Frey@ifn-magdeburg.de  
 
Dr. Mark Noble        
Center for Cancer Biology 
AAB Institute for Biomedical Sciences, Box 633 
University of Rochester 
601 Elmwood Ave. 
Rochester, NY 14610, U.S.A. 
Phone: 716-273-1440 
E-mail: mark_noble@urmc.rochester.edu 
 
Dr. Scott Rogers 
Department of Neurobiology and Anatomy 
University of Utah 
Bldg. 555, Rm. 242 
SLC, UT  84112, U.S.A. 
Phone: 801-584-6994 
E-mail: srogers@genetics.utah.edu
 
 

 111 

mailto:srogers@genetics.utah.edu

	ACKNOWLEDGEMENTS
	ABSTRACT
	1. Introduction
	1.1. Synaptic Plasticity
	1.2. Properties of Long-Term Potentiation in the Hippocampus
	1.3. Mechanisms for the Induction of Long-Term Potentiation
	1.4. Phases of Long-Term Potentiation
	1.5. CREB: a Possible Modulator of Long-Term Plasticity
	1.6. The Study of LTP in Hippocampal Slices
	1.7. Aims of the Dissertation
	2. Methods

	2.1. General Methods
	2.1.1. Mature Hippocampal-Entorhinal Cortex Slice Preparatio
	2.1.2. Electrophysiology
	2.1.3. Immunohistochemistry
	2.1.4. Immunoblotting

	2.2. Experimental Design
	2.2.1. Characterization of Mature Cultured Hippocampal-Entor
	2.2.2. Single-Cell Analysis of Nuclear CREB Phosphorylation
	3. Results and Discussion


	3.1. LTP in Cultured Hippocampal-Entorhinal Cortex Slices fr
	(P25-30) Rats
	3.1.1. Retention of Hippocampal Circuitry and Recording Stab
	3.1.2. Characterization of the fEPSP in the CA1 Stratum Radi
	3.1.3. Induction and Expression of LTP in Area CA1 of Cultur
	3.1.4. LTP in area CA1 is NMDA Receptor-Dependent

	3.2. Discussion of Mature Hippocampal Slice Characterization
	3.2.1. Improved Electrophysiological Signals and their Stabi
	3.2.2. LTP in Mature Hippocampal-Entorhinal Cortex Slice Cul
	3.2.3. Mature Hippocampal-Entorhinal Cultures: a Valuable To

	3.3. Single-Cell Analysis of Activity-Dependent CREB Phospho
	3.3.1. Forskolin Bath Application Induces Uniform CREB Phosp
	3.3.2. LTP-Inducing Stimulation is Required for Postsynaptic
	3.3.3. Spatio-Temporal Dynamics of CREB Phosphorylation duri

	3.4. Discussion of Single-Cell Analysis
	4. Conclusions
	REFERENCES
	APPENDICES


	I. ZUSAMMENFASSUNG DER DISSERTATION
	II. SELBSTÄNDIGKEITSERKLÄRUNG
	III. PUBLICATIONS
	IV. CURRICULUM VITAE


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


