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Zusammenfassung 

 
Das Ziel der hier vorgelegten Dissertation waren die Modellierung, der Entwurf, die 

Herstellung und die messtechnische Charakterisierung von mikroelektromechanischen 

(MEMS) Schaltern sowie koplanaren Filtern für Anwendungen im Hochfrequenzbereich (HF). 

Die elektro-mechanische Modellierung und Optimierung von HF MEMS Schaltern mittels 

Finite Element Methoden (FEM) wurde untersucht. Dabei wurden zwei verschiedene Ansätze 

der Modellierung des elektrostatisch-strukturierten Problems verwendet. Die erste Methode 

basiert auf der konsequenten Anwendung eines Kopplungsalgorithmus, wobei die 

elektrostatische und die mechanische Problemstellung nacheinander gelöst wurden. Die 

zweite Methode benutzte eine reduzierte Ordnung des Modells, bei dem die beiden Probleme 

durch Wandlerelemente (transducer elements) beschrieben (gekoppelt) wurden. Die 

elektromagnetische Simulationen der HF MEMS Schalter und der HF Filterstrukturen wurden 

mit den elektromagnetischen (EM) 3-D Simulatoren durchgeführt. 

Neue Designs von kapazitiven und DC-Kontakt MEMS Schaltern mit geringer 

Betätigungsspannung (4 V … 13 V) und hoher HF-Performance für die Anwendungen in den 

L-, S- und X-Bändern wurden entworfen. Es wurden zwei Methoden zur Erhöhung der 

kapazitiven Kopplung und der damit verbunden Verschiebung der Resonanzfrequenz des 

kapazitiven MEMS Schalters zu einem tieferen Frequenzbereich hin (0,8 GHz ... 2 GHz) 

eingesetzt und optimiert. Ein erster erfolgreicher Lösungsansatz basierte auf der Gestaltung 

einer MIM (metal-insulator-metal) Struktur, die auf dem HF-Leiter gegenüber der MEMS 

Brückenstruktur angeordnet war. Im Zusammenwirken mit der Top-Elektrode der MIM 

Struktur realisierte die Brückenstruktur einen ohmschen Kontakt. Mit einem solchen MEMS 

Schalter wurde im Frequenzbereich von 1,5 GHz bis 35 GHz eine Isolation von mehr 

als -20 dB erreicht. Darüber hinaus zeigte die neue Geometrie der Brückenstruktur in 

Verbindung mit dem Signalleiter eine Einfügungsdämpfung, die bis zu einer Frequenz von 

35 GHz nur bei -0,3 dB lag. Im zweiten Lösungsansatz zur kapazitiven Kopplung von RF 

Schalterstrukturen finden zum Unterschied zur ersten zwei Kondensatoren ihren Einsatz, die 

gegen das Massepotenzial geschaltet sind. Technologisch erfolgte die Herstellung der 

Isolationsschicht in der Weise, dass sie mittels Abscheidung einer dielektrischen Schicht auf 

der Massefläche aufgesetzt wurde. Dieser MEMS Schalter zeigte auch eine sehr niedrige 
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Einfügungsdämpfung, die für einen erweiterten Durchlassbereich bis zu einer Frequenz von 

40 GHz bei -0,8 dB lag und im Frequenzbereich von 0,8 GHz bis 40 GHz eine Isolation, die 

unter -20 dB lag, aufwies. Dazu wurde eine neue Methode zur Herstellung einer out-of-plane 

Membran vorgeschlagen. 

Konventionelle kapazitive MEMS Schalter wurden simuliert und auf hochohmigem 

Siliziumsubstrat in CMOS-kompatibler Dünnschicht-MEMS-Technologie hergestellt. Dazu 

wurden alle Herstellungsprozesse für die Anforderungen an die Schalter entwickelt und 

erprobt. Niedertemperatur ECR-PECVD Prozesse zur Abscheidung der dielektrischen 

Schichten aus Siliziumnitrid mit hoher Durchschlagspannung, mit niedriger relativer 

dielektrischer Konstante, und mit geringer Oberflächenrauhigkeit wurden entwickelt und 

optimiert. Die Trockenätz- sowie Nasschemie-Prozesse zur Strukturierung der eingesetzten 

metallischen und dielektrischen Schichten wurden angepasst und optimiert. Die hergestellten 

MEMS-Schalter wurden getestet und die Messergebnisse mit den Simulationsergebnissen 

verglichen, wobei eine gute Übereinstimmung aufgezeigt werden konnte. 

Zusätzlich wurden koplanaren Filterstrukturen entworfen, simuliert und auch hergestellt. 

Dazu wurden zwei unterschiedliche Methoden zur Realisierung von Bandpassfiltern (BPF) 

eingesetzt. Die erste Methode basierte auf den λ/4 open-stubs Resonatoren, die kapazitiv 

gekoppelt sind. Ein anderer Ansatz war eine induktiv Shunt-gekoppelte Struktur, die mittels 

Serpentin förmiger shunt-stubs realisiert wurde. Dabei konnte die hohe HF-Performance und 

die Kompaktheit von BPF erreicht werden. Die Fraktal-Methode wurde verwendet, um die 

Verbesserung der HF-Eigenschaften von konventionellen zweidimensionalen periodischen 

rechteckigen DGS (defected ground structure) zu erreichen. Es wurden zwei weitere 

Anordnungen der DGS entworfen und untersucht, um die HF-Performance von DGS-

Resonatoren weiter zu verbessern. Dabei wurde die Abhängigkeit der 

Ersatzschaltungselemente von den Entwurfsparametern der DGS demonstriert. Um damit 

hochwertige koplanare DGS Tiefpassfilter (LPF) entwerfen zu können, wurde die 

Kaskadierungsmethode zur Anwendung gebracht. Alle diese theoretischen Ergebnisse 

konnten erfolgreich experimentell bestätigt werden. 

Als Ausführungsbeispiel für die Anwendung von MEMS-Schaltern wurde ein kompakter, 

abstimmbarer HF-MEMS Quasi-DGS Bandpassfilter für den Einsatz im K-Band entworfen. 

Die vorgeschlagene Filterstruktur wurde mit dem Ersatzschaltmodell sowie mit dem EM-

Simulator untersucht. Ein derartiges Bandpassfilter kann unter anderem in Automobilen und 

in Transceivern seinen Einsatz finden. 
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Physical Symbols and Abbreviations 
α  Coefficient of thermal expansion K-1 

BPF  Bandpass filter 

BSF  Bandstop filter 

BST Barium strontium titanate 

CMOS  Complementary metal-oxide-semiconductor 

CPW Coplanar waveguide 

CVD  Chemical vapour deposition 

D  Plate stiffness N/m 

DGS  Defected ground structures 

DOG  Dielectric on ground 

E   Young's modulus N/m2 

E   Electrostatic field V/m 

ECR   Electron cyclotron resonance 

Fe   Electrostatic force N 

Fr   Restoring force 

fo  Resonant frequency Hz 

FEM   Finite element method 

FET   Field Effect Transistor 

G   CPW slot width μm 

go   Nominal gap height μm 

HMDS  Hexamethyldisilazane 

I   Moment of inertia m4 

k   Spring constant N/m 

Lm   Beam length m 

LIGA   Lithographie, Galvanoformung und Abformung 

LPF   Low-pass filter 

MEMS  Micro-electro-mechanical systems 

MIM   Metal-insulator-metal 

MIC   Microwave integrated circuit 

MMIC  Monolithic microwave integrated circuit 

MoM   Method of moment 

PBG   Photonic band gap 
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PECVD  Plasma enhanced chemical vapor deposition 

PIN diode  Positive intrinsic negative diode 

PR   Photoresist 

PVD   Physical vapour deposition 

Q-factor  Quality factor 

Ra   Average surface roughness 

RF   Radio-frequency 

RFIC   Radio-frequency integrated circuit 

RIE   Reactive ion etching 

ROM   Reduced order modeling 

SP2T   Single-pole double-throw 

SP4T   Single-pole four-throw 

STO   Strontium titanate 

TEM   Transverse electromagnetic mode 

tm   Beam thickness μm 

tm   Thickness of dielectric film μm 

u   Transverse beam displacement μm 

UWB   Ultra wideband 

V   Applied voltage Volts 

Vp   Pull-down voltage Volts 

VLSI   Very large-scale integration 

λ   Wavelength m 

W   Lower electrode width μm 

wm   Beam width μm 

ρ   Electrostatic charge density Q/m2 

v  Poisson's ration | 

σ   Biaxial residual stress N/m2 

σt   Thermal stress N/m2 

εo   Free space permittivity F/m 

εt   Thermal strain N/m 

XPS   X-ray photoelectron spectroscopy 
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Introduction and Basic Considerations 
 

Micro-Electro-Mechanical Systems (MEMS) technology allows the fabrication of miniature 

devices or systems which are able to combine electrical and mechanical components and are 

scaled in the size from micrometers to millimeters [1-9]. These MEMS products range from 

physical sensors (e.g. pressure, inertial) to radio-frequency (RF) devices and are useful for 

many different industrial and research applications [1, 3]. They are already used in automotive, 

chemical, medical, optical, robotic and sensing systems, for instance. 

Radio-frequency (RF) MEMS technology offers new possibilities to improve performance of 

the devices which work in millimeterwave and microwave ranges such as RF switches, phase 

shifter, routing switches, time delay networks, reconfigurable antennas, tunable filters and 

resonators and other passive components [10-17]. It allows the fabrication of devices which 

are advantageous over conventional RF component with unique actuation mechanism, 

miniature size, and high integration features. Planar RF MEMS passive devices or circuits 

which can be batch processed lead to an increase of the functionality without extra connector 

losses and to a dramatic reduction of the manufacturing costs. Also, millimeterwave devices, 

which are fabricated by MEMS technology, have high Q-factors, that can solve the loss issues 

associated with passive devices. In addition, this technology allows to use a variety of 

substrates. 

Currently, three different RF MEMS fabrication technologies are predominantly used: 

• Bulk micromachining techniques, which utilize wet- or dry etching processes to produce 

an isotropic or anisotropic etch profile in a material in order to form the microstructures 

with desired shapes as shown in Figure 1.1 (a). 

• Surface micromachining techniques (see Figure 1.1 (b)) form the microstructures on the 

surface of silicon or any other suitable substrate by using thin films and sacrificial layers. 

This technique offers the possibility to integrate the electronics and the MEMS structure 

more easily. Generally, this technique is limited by a film thickness of 2 µm to 6 µm with 

an overall device thickness of < 15 µm [1]. 
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• LIGA (Lithographie, Galvanoformung und Abformung, a German acronym for 

Lithography, Electroplating and Molding) is a technology which allows to form complex 

structures with very high aspect ratios using x-ray lithography, thick resist layers and 

electroplated metals, as illustrated in Figure 1.1 (c). 

 

a) 

 

b) 

 

c) 

Figure 1.1: MEMS fabrication techniques: (a) bulk micromachining [18], (b) surface 

micromachining and (c) LIGA process [19]. 

Micro-Electro-Mechanical Systems have been developed since 1970s for sensor applications. 

But the most common MEMS devices for RF/Microwave applications are MEMS switches 

and varactors. The first RF MEMS switch (and varactor) has been investigated in 1990-1991, 

by Dr. Larry Larson at Hughes Research Labs in Malibu, California [20]. Figure 1.2 shows 

some application fields of RF MEMS switches: a 2-bit MEMS phase shifter using SP4T 

switches (a), phased-array antenna (b), and single-pole double-throw (SP2T) transceiver 

switches (c). 



Chapter 1                                                                                                                                   3 

Introduction and Basic Considerations 

 

                                    a)                                 b)                                c) 

Figure 1.2: Some application fields of RF MEMS switches: a 2-bit MEMS phase shifter using 

SP4T switches (a), phased-array antenna (b), and single-pole double-throw (SP2T) transceiver 

switches (c). 

1.1 RF MEMS Switches 

The conventional MEMS devices for millimetre/microwave applications are RF MEMS 

switches. In these devices a mechanical movement is used to realise an open or short circuit in 

the RF transmission line (for a given bandwidth). In other words, the impedance of an RF 

transmission line is controlled by the physical mechanical movement of an RF MEMS switch. 

The very first cantilever beam MEMS switches have been fabricated on silicon and 

investigated for low-frequency applications [21, 22]. Therefore, many devices are based on 

polysilicon, which has excellent mechanical properties [23]. But for the microwave low-loss 

circuits the polysilicon is not suitable due to its high resistivity. That has been the reason to 

develop high-conductivity metallic MEMS components. Aluminum, gold and copper are 

usually used as materials for the fabrication [24-28], while nickel and platinum have also been 

demonstrated as potential candidates [29, 30]. 

RF MEMS switches are suitable for low-loss microwave systems, which do not require high 

switching rates, such as: cellular telephone, airborne, automotive and satellite communication. 

The advantages of RF MEMS switches over their solid-state counterparts, such as FETs or 

PIN diodes, are: 

1. Low Power Consumption: Electrostatic actuated switches operate by a dc voltage but do 

not consume any current resulting in a very low power consumption. 

2. Very Low ON-state Insertion Loss.  

3. Very High Off-state Isolation. 

4. High Intermodulation Products: Due to a very high linearity of the RF MEMS switches 

(no p-n junction) they provide negligible intermodulation distortion. 
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5. Very Low Fabrication Cost: RF MEMS switches can be fabricated on different substrates 

using surface micromachining techniques and do not require high cost processes. 

However, RF MEMS switches have also some disadvantageous, such as: 

1. Relatively Low Switching Time: The switching time of most RF MEMS switches is 

between 1 µsec and 200 µsec. This relatively low switching speed does not satisfy the 

requirements for some communication and radar systems. However, etching holes in the 

movable membrane allows faster operation by reducing the damping effect. 

2. Low Power Handling: Most RF MEMS switches can handle a power of 20-50 mW, but 

not more. 

3. High Actuation-Voltage: Conventional electrostatic RF MEMS switches require 20-80 V 

for a reliable operation, a rather high voltage. Therefore, a lot of work has been done to 

reduce the actuation-voltage values [31-36]. 

4. Low Reliability: The lifetime of mature RF MEMS switches is higher than 50 billion 

cycles. But, a lot of microwave systems require switches with lifetime of more than 200 

billion cycles. 

5. Packaging: The packaging technique itself can lead to significant degradation of the 

switch reliability. 

6. High Total Cost: Costs of packaging have a high share of total costs in switch fabrication 

[37, 38, 39]. Additionally, the high-voltage drive has to be considered, while fabrication 

costs of the switch itself are rather low [40]. 

The RF MEMS switches can be generally classified based on contact type, actuation 

mechanism, construction and circuit configuration. Two different contact mechanisms can 

characterize RF MEMS switch designs: a capacitive contact (metal-insulator-metal) and a 

resistive (metal-to-metal) contact. The capacitive contact switch is characterized by the 

capacitance ratio between the up-state (ON-state) and the down-state (OFF-state) positions. 

This ratio typically ranges from 80 to 200 and depends on the switch design. The OFF-state 

capacitance amounts to 2-4 pF, and is suitable for 5-100 GHz applications. The conventional 

dielectric films used in RF MEMS switches are silicon oxide or silicon nitride. They do not 

allow to obtain a large down-state capacitance due to their low dielectric constant that limits 

the low-frequency operation of the switches. This problem can be solved by using high 

dielectric constant materials such as strontium titanate (STO), barium strontium titanate (BST) 

or titanium oxide [41-46]. But these dielectric materials require a special technology and are 
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not standard materials for CMOS technology. Moreover, MEMS capacitive switches with 

high relative dielectric constant materials are very sensitive to the capacitance degradation 

caused by non-planar metal membranes and surface roughness of the dielectric layer [39]. A 

method to eliminate the effect of the surface roughness is the deposition of a thin metal film 

directly on the dielectric layer [47]; by doing so a metal-insulator-metal (MIM) structure on 

the center line is formed. In [48] the dielectric on ground (DOG) approach has been 

introduced to increase the down-state capacitance and, in such a way, to improve the switch 

isolation at lower frequencies. Resistive contact switches have small up-state capacitances 

(ON-state) and operate from 0.01 GHz up to 60 GHz. For example, the design of the 

Rockwell Scientific switch [49] provides an OFF-state capacitance of only 1.75 fF and an 

isolation of -23 dB at 60 GHz. In the ON-state a gap in the microwave t-line is contacted 

together by the MEMS switch forming a series resistor with a resistance of 0.5-2 Ω, 

depending on the used contact material. The main disadvantage of the dc-contact switch, 

compared to the capacitive coupled one, is a contact metal degradation leading to a short 

lifetime [50-52]. 

Four most frequently used actuation methods for RF MEMS switches are based on 

electrostatic [53], magnetostatic [54], piezoelectric [55] or thermal [56] techniques. In the 

magnetostatic MEMS switches the mechanical actuation is based on the Lorentz force, when 

the pulling force is induced by a magnetic field. Motion force of piezoelectric MEMS 

switches is based on the ability of certain materials to change their geometrical dimensions in 

response to the applied electrical potential. A change in a linear dimension due to thermal 

expansion of any solid underlies the functioning of the thermal MEMS switches. But the 

majority of the RF MEMS switches are electrostatic in nature. Their motion is actuated by the 

attractive Coulomb’s force existing between charges of opposite polarity. The electrostatically 

actuated MEMS switch has a great potential for microwave applications due to its extremely 

high power handling capability and compatibility with other state-of-the-art fabrication 

technologies for high level integrated circuits or systems. Moreover, the fabrication of these 

switches is relatively simple and requires only a minimum of commonly available fabrication 

equipment. A drawback is the high actuation-voltage, which is in the range of 20 V to 80 V. 

The high actuation-voltage can cause the stiction between a movable membrane and a bottom 

electrode. It has been investigated and published that the failure mechanism is due to a charge 

accumulation in the dielectric material [57-60]. This charge builds up in the dielectric layer 

and is strictly related to the actuation-voltage. It has been observed that a switch lifetime is 

increased by one order of magnitude for every 5-7 V reduction of the applied voltage [60]. 
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Two different constructions of the RF MEMS switches are commonly used: cantilever or 

fixed-fixed beam. The cantilever type has an important advantage in comparison to the 

suspension bridge, a lower actuation-voltage [4]. But these switches are very sensitive to 

residual mechanical stress in the beam material. The fabrication process of the fixed-fixed 

beam configuration is easier and does not require special processing compared to dielectric 

beams or thick low-stress electroplated cantilevers [61]. 

RF MEMS switches can also be classified according to the configuration of the circuit. 

Generally, there are two configurations: shunt and series configurations depending on the 

position across a transmission line. A shunt configuration is typically used for capacitive 

switches [62], while a series configuration is major used for resistive-contact switches [63]. 

The reason is that it is easier to get a good isolation with a limited impedance ratio (such as 

the capacitive switch) in a shunt-circuit than in a series circuit. Both configurations of RF 

MEMS switches are implemented either for microstrip or coplanar waveguide (CPW) lines on 

glass, quartz, silicon, GaAs, and other substrates [15, 64, 65, 66, 67], and have been used in 

these implementations up to 100 GHz. High-resistivity materials must be used as substrate in 

order to eliminate dielectric losses in the substrate for low-loss microwave applications. 

1.1.1 State-Of-The-Art 

During the last years, the MEMS market showed a rapid roughly exponential growth. It is 

expected to reach the $8.3 billion dollars by 2012, up from $5.6 billion in 2006. This is 

mostly due to the incorporation of MEMS devices into accelerometers, microphones, 

gyroscopes, pressure devices and more recently, the application of RF MEMS devices in 

mainstream consumer products [68]. 

     

a)                                                b)                                                c) 
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d)                                                e)                                                f) 

Figure 1.3: Photomicrographs of MEMS switches: (a) low-voltage MEMS shunt-capacitive 

switch of the University of Michigan [36], (b) direct contact MEMS switch of the Ewha 

Womans University [69], (c) shunt-capacitive switch of Electronic Laboratory (EPFL) [46], 

(d) the Radant MEMS series switch [63], (e) the Rockwell Scientific MEMS series switch 

[49], and (f) the Raytheon MEMS shunt-capacitive switch [24, 70]. 

More than 120 research centers, laboratories and universities in Europe are involved in 

MEMS technologies, developing and investigating a large variety of modern processes and 

device concepts and providing considerable tests. A huge amount of RF MEMS switches and 

RF MEMS based devices have been introduced, developed, tested and presented in open 

sources. The choice of the type of RF MEMS switch depends on the performance 

requirements, on the application and on the manufacturing facilities. In Figure 1.3 several 

examples of these switches are shown. 

1.1.2 RF MEMS Switch Analytical Modeling 

Electrostatic Domain  

The fundamental principle of an electrostatic actuation is the attraction of two plates of 

opposite charge to each other. It is widely used as it allows a relatively straightforward 

fabrication. However, this force is nonlinearly related to the applied voltage. The simple 

parallel plate model is shown in Figure 1.4. The electrostatic force (Fe) within the initial gap 

g0 is directly related to the local separation g (see Figure 1.5) as: 

dg
gdCVgVFe

)(
2
1),( 2−= ,                                                  (1.1) 

where C is the capacitance of the parallel plate model and V is the applied voltage. 
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Figure 1.4: A simple parallel plate electrostatic actuator. 

If the initial gap g0 is much smaller than the lateral dimensions of the parallel plate structure, a 

fringing field effect can be neglected and the capacitance can be calculated as: 

0

0)(
g

AgC ε
=                                                            (1.2) 

where ε0 is the free space permittivity and A is the area of the plate. Substituting C(g) into the 

electrostatic force equation yields: 

2
02

2
1),(

g
AVgVFe

ε
−=                                                  (1.3) 

It can be seen from equations above that the force tends to infinity if the gap separation 

reaches zero. 

Electrostatic force can also be expressed in term of the electric field applied to the plate as: 

2
QEFe = ,                                                           (1.4) 

where Q is the charge on the plate and E=V/g is the electric field caused by the applied 

voltage. The charge induced on the plate is increased as the applied voltage is increased that 

results in an increase in the electrostatic force. 

Mechanical Domain  

The theory of beams and plates can be used to describe the mechanical behaviour of MEMS 

structures [71, 72]. However, the theory of beams covers the movement of a components only 

in one direction. In the case of a significant deformation in two directions, the theory of plates 

and shells must be used. At a small deflection the restoring force, Fr, countering the 

electrostatic force and preventing the beam from immediately collapsing onto bottom 

electrode is given by: 

)( 0 ggkFr −−= ,                                                      (1.5)  

where k is normalized spring constant of the beam, and g0-g is the small deflection of the 
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beam from its initial position as shown in Figure 1.5. The effective spring constant k of the 

membrane can be expressed as [73]: 

m

mm

m

mm

L
wtv

L
wEtk )1(832

3

3 −
+=

σ
,                                          (1.6) 

where E and v are the Young’s modulus and Poisson’s ratio of the membrane material, 

respectively, tm and Lm are the thickness and the length of the membrane, respectively, and s 

is the tensile residual stress in the membrane. 

It should be noted that a very low spring-constant design with a thin meander which supports 

the bridge anchors results in a large bridge inductance affecting the operation of the switch 

above 10.0 GHz [39]. Also, the isolation of the switch is strongly depending on the 

connection of the switch to the post [39]. 

 

Figure 1.5: Schematic diagram of the simple 2-D distributed model for fixed-fixed beam. 

Electromechanical Coupling 

Electrostatic actuation provides very low forces, but it is a high enough for the actuation of a 

MEMS switch. When a dc voltage is applied between both, fixed and movable electrodes, the 

movable part is pulled down, the gap is reduced, and the electrostatic force increases. On the 

other hand, the restoring force acts in the opposite direction. The force balance equation for 

the electrostatic and the mechanical forces is given by: 

rFgVF =),( ,                                                         (1.7) 

)(
2

02

2
0 ggk

g

AVr −=
εε

,                                                (1.8) 

The solution of this cubic equation in term of g results in an unstable position of the beam at 

2g0/3 due to a positive feedback in the electrostatic actuation. At a deflection higher than 

2g0/3 a complete collapse of the movable plate to the lower electrode happens. The voltage 

that causes this collapse is expressed as: 



Chapter 1                                                                                                                                   10 

Introduction and Basic Considerations 

)(2
0

2

0

ggg
A

kV
r

−=
εε

,                                                (1.9) 

The schematic diagram of the conventional MEMS switch is shown in Figure 1.6. In this case, 

the up-state capacitance is defined by the thick air gap, g0, and the thin dielectric layer in 

series and is given by: 

⎟⎟
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where td and εr are the thickness and the relative dielectric constant of the dielectric layer. 

Then the electrostatic force is calculated using Eqn. (1.10) and is: 

2
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Figure 1.6: Schematic diagram of the simple 2-D for fixed-fixed beam MEMS switch. 

The mechanical restoring force is the same as in the case of the parallel plate model. 

Substituting this value in Eqn. (1.7) and assuming that the height at which instability occurs is 

found to be exactly 2g0/3, the “pull-down” voltage is found to be [39]: 

3
0

027
8 g
Ww
kV

m
p ε
= ,                                                    (1.12) 

where wm and W is the width of the membrane and the lower actuation electrode, respectively. 

It should be noted that the pull-down voltage does not depend on the beam width, since the 

spring constant, k, varies linearly with the beam width, wm. Eqn. (1.12) is a first-order 

approximation to model the MEMS switch as a parallel plate capacitor, which has some 

disadvantages. The first one is that the structure is fixed at both edges, thus the structure is not 

an ideal parallel plate capacitor. The second one is that the stiffness of the beam is not 

constant, especially at large deformations. In [74, 75] Senturia and co-workers determined the 
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deflection of a beam under applied voltage by solving an elastic beam equation. The 

governing differential equation, which balances the electrostatic and the mechanical restoring 

forces, is given as: 

)65.01(
2

0
2
0

2
0

2

2

4

4

mw
g

g
V

dx
gdT

dx
gdIE +−=−′ ε ,                                    (1.13) 

where 3

12
1

mmtwI =  is the moment of inertia, mmtwvT )1( −= σ , tm is the thickness of the 

membrane, σ  is the biaxial tensile residual stress in the membrane, and v  is the Poisson’s 

ratio for the membrane material. The factor in parentheses on the right-hand side of the 

equation is a fringing field correction. If wm<5tm (short beam) the effective modulus E' is 

equal to Young’s modulus of the membrane material E and in the case of wm ≥5tm the 

effective modulus is E'=E/(1-v2) [74]. A solution for this equation shows that a stable position 

of the beam is possible until the beam deflection is approximately 40% of the initial gap. 

When no residual stress is present in the membrane and the initial gap height is much smaller 

than the bridge width the pull-down voltage is given as [74]: 

4
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3
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444.3
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p L

gtEV
ε
′

≈                                                   (1.14) 

Thermo Mechanical Analysis 

The main effect of the temperature variation is to change the residual stress and the stress 

gradient in the membrane for the fixed-fixed beams. When the temperature of the switch 

membrane changes, the membrane becomes stressed by a normal mechanical strain. The 

thermal strain for a homogeneous and isotropic material is given by: 

)( Tt Δ=αε ,                                                       (1.15) 

where α  is the coefficient of thermal expansion and ΔT is the temperature variation. Due to 

the fact that the second component of the spring constant in Eqn. (1.6) depends on the value 

of the residual stress the effective spring constant of the membrane will be changed. The 

value of the thermal stress due to a temperature variation can be calculated as [71]: 

v
TE

t −
Δ

=
1

)(ασ ,                                                     (1.16) 

where E and v are the Young’s modulus and Poisson’s ratio of the membrane material, 

respectively. For a fixed-fixed beam with a dominating residual stress, the spring constant can 
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be changed by ±20% in the temperature range from -200 C to +850 C, resulting in a ±10% 

variation in the pull-down voltage [49]. 

Electromagnetic Domain Simulation for Fixed-Fixed Beam MEMS Switches 

The RF parameters which usually characterize MEMS switches are: the ON-state insertion 

loss, the OFF-state isolation and the return loss in both states. Basically, it is desirable to have 

a low insertion and a high return loss in the ON-state and a high OFF-state isolation. The RF 

MEMS switches considered in this thesis are the series switches, Figure 1.6 (a) and the shunt-

capacitive switches, Figure 1.6. (b), with fixed-fixed beam implementations. 

                           

   a)                                                               b) 

Figure 1.6: Two port equivalent RF circuit for a MEMS switch: (a) in series configuration and 

(b) shunt-capacitive configuration. 

The series switch in the up-position represents an open circuit with a 40-100 µm wide gap in 

the microwave t-line resulting in a high isolation. When the switch is in the down-position, a 

short circuit between the open ends is created. The up-state isolation of the dc-contact series 

switch is calculated as [39]: 

0

0
21 21

2
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ω
ω

+
= ,                                                    (1.17) 

where Cu=Cs/2+Cp. When S21<< -10 dB and 12 0 <<ZCuω the up-state isolation can be 

approximated as: 
2
0

222
21 4 ZCS uω≈                                                        (1.18) 

In the down-state, the equivalent series impedance of a dc-contact switch is given by [39]: 

LjRZ s ω+= ,                                                         (1.19) 

and if Zs=R, (ωL<<R) then return loss is calculated as: 
2

0

2
11 2 ⎟⎟
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⎞
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⎝

⎛
=

Z
RS ,                                                        (1.20) 

where L is the inductance of the switch in the down-state position. 
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The shunt impedance of the MEMS shunt-capacitive switch corresponding to the lumped LCR 

model in Figure 1.6 (b) is given by: 

Cj
LjRZ s ω

ω 1
++= ,                                                    (1.21) 

where C is the down- or the up-state capacitance. The LC series-resonant frequency of the 

switch is:  

LC
f 1

2
1

0 π
=                                                           (1.22) 

At frequencies lower than the inductance-capacitance LC series-resonant frequency the switch 

behaves as a capacitor, while at frequencies above the LC resonant frequency it represents a 

inductance, and is a pure resistance at the resonant. 

The reflection coefficient (return loss) in the up-state position can be calculated as [39, 76]: 
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= ,                                                     (1.23) 

if S11 ≤ -10 dB or ωCuZ0 << 2 then: 
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≈                                                        (1.24) 

When a bias voltage is applied, the movable bridge collapses onto the dielectric layer, largely 

increasing the switch capacitance by a factor of 30-100. The t-line becomes to be connected to 

the ground by this capacitance resulting in the reflection of the RF power. Then the 

relationship between the capacitance and the insertion loss in the down-state is [76]: 

2/1
1

0
21 ZCj

S
dω+

=                                                    (1.25) 

and if S21 << -10 dB and ωCdZ0 >> 2 then: 
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The down-state capacitance can be determined from the measured isolation which is taken far 

away from the resonant frequency [39, 76]. 

Conventional RF MEMS shunt-capacitive switches have a good performance from the X-

band (8-12 GHz) to the W-band (75-110 GHz) frequency range [5, 24, 61, 65, 76, 77, 78]. 

And at frequencies lower than 10 GHz the capacitive switches are not useful due to their weak 

isolations. The one of ways to overcome this disadvantage is adding of a short section of a 

high impedance transmission line between the fixed-fixed beam and the ground plane, so that 



Chapter 1                                                                                                                                   14 

Introduction and Basic Considerations 

the series resonant frequency can be shifted down to the X-band [79]. However an increased 

inductive loading leads to the reduction of the bandwidth. 

1.1.3 MEMS Simulation and Design Tools 

The interdisciplinary MEMS switch nature requires a very tight coupling between the 

electrical and mechanical domains. One-, two- and three-dimensional simulations with 

various accuracy levels have been used to help understanding and characterization of switches 

[80-84]. Simulation of MEMS plays an increasingly important role. The motivation here is 

similar to that of the simulation of purely electronic VLSI circuit: before fabricating a 

prototype, one wishes to virtually build the device and predict its behavior [3]. Many physical 

aspects, such as mechanical, electrical, thermal and electromagnetic, must be comprised in the 

simulation of RF MEMS switches. All these aspects interact with each other and have 

influence on each other. Therefore, the problem of simulation is rather difficult and complex. 

Two approaches are used in MEMS electromechanical simulation software. The first one is 

system level (or behavioral or reduced order or lumped parameter) modeling and the second 

one is finite element modeling (FEM). The concept of the system level modeling is that the 

device can be described by a set of ordinary differential equations and nonlinear functions at a 

block diagram level [3]. The most popular modeling tools, which use this approach, are 

Simulink, which is a toolbox within Matlab [85], Spice [86], VisSim [87] and Saber [88]. The 

finite element modeling approach can predict mechanical and nonmechanical responses to a 

load, such are force, moment, temperature, electromagnetic field and any other loading 

applied to a body. The simulating component is divided into small, discrete elements which 

interact with each other at the connected nodes. FEM results in a more realistic simulation 

than system level modeling, but it requires more computational resources. Well known FEM 

simulation software tools are: CoventorWare [89], Intellisuite [90], ANSYS [91], ABAQUS 

FE [92], MEMSCAP [93] and several other simulators. In this thesis, ANSYS Multiphysics 

simulation tool has been used for electromechanical analyses of the RF MEMS switches. 

ANSYS FEM Electromechanical Analysis of RF MEMS Switches 

The ANSYS FEM simulator introduces two different methods for the solution of the 

electrostatic-structural problem. The first method is based on the sequential coupling 

algorithm [94, 95]. It allows to combine the results of single field simulations for solving the 

coupled field model. In the case of an electromechanical problem, electrostatic and 
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mechanical structural domains are solved sequentially. The coupling between both domains is 

realized by the load vector which represents the electrostatic force acting upon the boundaries 

of the structural elements. In ANSYS, each domain is described by a database file co-called 

physics environment [91]. In the electromechanical analysis the interaction between both, the 

electrostatic environment and the structural environment is performed by the transfer between 

two corresponding databases. The electrostatic problem is based on solving Laplace’s 

equation in different homogenous regions. By solving this equation, the potential distribution 

in the surrounding environment and on the conductor surfaces can be determined and, thus, 

the electrostatic force between the two conductors can be calculated. The next step is to solve 

the structural problem in the structural environment. The actually deformed shape of the 

membrane under acting of the electrostatic force is obtained following the plate/shell theory 

[71-73]. Then, the structural domain is switched back to the electrostatic environment 

updating the electrostatic mesh. The iterative process proceeds until a convergence between 

two environments will be reached. The second method to realize the electrostatic-structural 

problem in ANSYS environment is the lumped or reduced order method. This method is 

usually strongly coupled and considered to be the fastest with respect to the convergence time 

perspective [96, 97]. It can be implemented using lumped transducer elements, which can 

eliminate the shortcoming of the sequential method. Transducer elements are a special 

concept for direct coupling of different physical environments. This element stores 

electrostatic energy and transforms it into mechanical energy and vice versa. Input data for the 

transducer element is a voltage applied to the opposite nodes; and from electrostatic field 

solution a capacitance-displacement relationship can be obtained. Compared with the 

sequential coupling method 3-D electrostatic elements, which represent the surrounding 

environment (air between two conductors), are replaced by a set of transducer elements. Thus, 

a reduced order modeling (ROM) of a coupled electrostatic-structural system can be 

performed. 

As shown in [98], ANSYS produces results that are almost identical to these obtained by 

other simulators. 

1.1.4 Fabrication of RF MEMS Switches 

RF MEMS devices and structures can be fabricated using conventional integrated circuit 

process techniques, such as lithography, deposition, and etching, together with a broad range 

of specially developed micromachining techniques [3]. The standard CMOS processes, such 
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as oxidation, chemical vapour deposition (CVD), epitaxy, physical vapour deposition (PVD), 

lithography, dry and wet etching, diffusion, and ion implantation are used for MEMS 

fabrication. Some of these standard processes have been modified for MEMS fabrication, e.g. 

the use of thick photoresist, greyscale lithography, or deep reactive ion etching (DRIE). 

 The materials used in RF MEMS fabrication are all those related to integrated circuit 

processing. They include epitaxial, polycrystalline, or amorphous silicon, silicon nitride, 

silicon dioxide, deposited by CVD, or a variety of metals and metallic compounds, such as Cu, 

W, Al, Ti, Cr, and TiN, deposited by PVD processes. Optical lithography and spin-on 

technologies are used for deposition and structuring of standard organic polymer photoresists 

or polyimides with thickness up to a few micrometers used as a sacrificial layer in RF MEMS 

fabrication. Additional metals, metallic compounds and metallic alloys such as Au, Ni, ZnO, 

SnPb, deposited by PVD, CVD, cosputtering or electroplating are widely presented in the 

literature as materials for RF MEMS fabrication [26, 29, 99, 100]. 

The critical step in RF MEMS switch fabrication is the development of a low-stress thin film 

process for the membrane material (Al, Au, Ni) [39]. Deposition conditions have to be found 

to form membranes with a low biaxial residual stress and a low stress gradient in the vertical 

direction. Otherwise, the membrane can be deflected from the desired position by several 

microns. It leads to a significant change in the bias voltage or even to switch failure. A lot of 

studies are presented in literature, which theoretically explain the mechanisms of these stress 

phenomena [101,102] and experimentally measure their effects [74, 103, 104]. However, in 

general thin film stress is complicately to be treated and strongly depends on the fabrication 

process conditions. As shown in literature [70, 104], only a micromachining process resulting 

in tensile residual stress in the thin metal film can be used for manufacturing of MEMS 

switches. Several approaches have been proposed in the literature to achieve a low stressed 

thin metal membrane. On of them is based on the formation of holes in the membrane in order 

to reduce the effective Young’s modulus of the structure [105]. But this approach can result in 

a reduction of the effective down-state capacitance areas. The second way is based on 

modifying the out-of-plane geometry of the membrane (corrugated membranes) so that the 

structure becomes much more compliant [29, 104, 106]. Both approaches can also be 

implemented together. 

Conventional dielectric films used in the RF MEMS switch fabrication are silicon oxide and 

silicon nitride deposited by plasma enhanced chemical vapor deposition (PECVD). Due to 

better electrical properties with respect to silicon dioxide, silicon nitride deposited by electron 
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cyclotron resonance (ECR) PECVD has been utilized in this study. The main properties of 

silicon nitride as a dielectric layer for RF MEMS capacitive switches are: high breakdown 

voltage, relatively high dielectric constant, low surface roughness and low trap density. These 

characteristics strongly depend on the Si/N ratio and the hydrogen contents in the deposited 

films [107-110]. The ECR-PECVD method allows to reach these requirements and has some 

advantages over the conventional RF-plasma process. That includes a low deposition pressure 

leading to a good uniformity, a low process temperature, a reduced process contamination, 

and a potentially low damage density deposition [107-110]. As has been investigated in [111] 

the low temperature silicon nitride has a lower dielectric charging than the high temperature 

deposited films and the charging increases as the film thickness increases. 

1.2 CPW Filters 

1.2.1 CPW Lines and Conventional CPW Filters 

Coplanar waveguides (CPW) are a type of planar transmission line used in microwave 

integrated circuit (MICs) as well as in monolithic microwave integrated circuits (MMICs) 

[112]. The major conception of these transmission lines is their uniplanar nature, which 

means that all of the conductors are only on one side of the substrate. The conventional CPW 

on a dielectric substrate supports a quasi transverse electromagnetic (TEM) mode of 

propagation, and consists of a center strip conductor with semi-infinite ground planes on 

either side. Main advantages of the CPW over conventional microstrip lines are: simple 

manufacturability; possible surface mounting of active and passive devices [113-117]; 

abandonment of wraparound and via holes; and reduced radiation loss [112]. Moreover, the 

characteristic impedance is determined by the ratio of the center conductor width to the gap 

width [112]. This all makes CPW eminently suitable for MIC as well as MMIC applications. 

Filters are essential components of most microwave and mobile systems [118]. Such systems 

require compact filter structures, which can effectively suppress unwanted out-of-band signals. 

Design of microwave and millimetrewave filters based on coplanar waveguide (CPW) 

transmission lines offers some advantageous compared to microstrip lines such as: easier 

realisation of shunt and series connections, avoiding via holes and providing lower frequency 

dispersion. Up to now, numbers of CPW filters have been reported in literature. They are 

usually realised using distributed transmission line stubs which occupy relatively large area 

[119-123]. Several approaches have been proposed to reduce the stub size: bent lines [124, 
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125], meander stubs [126, 127] and capacitive loading [128, 129]. End-coupled coplanar 

filters are realised by cutting gaps in the center line [130], but the gap does not satisfy the 

filter requirements due to a low capacitance. Also, the method of coupling is the inductively-

coupled lines approach to realize a shunt inductively-coupled CPW filter, which has good RF 

characteristics such as low insertion loss and good stop-band rejection [131]. An alternative 

approach to filter design is the use of DGS resonators. 

1.2.2 Defected Ground Structures 

Defected ground structures (DGS) have promised an increasing potential for implementation 

in different applications: MIC, MMIC, and RFIC [132-151]. These structures have etched 

defects in a metallic ground plane like photonic band gap (PBG) structures [152-154]. These 

defects disturb the shielded current distribution in the ground plane exciting a parallel 

propagating mode. This disturbance can change the characteristics of a transmission line such 

as the effective line capacitance and inductance [132]. The DGS can not only significantly 

increase the characteristic impedance of a microstrip line, but also improve the stop-band 

performance by rejecting higher order pass-bands. It leads to a reduction of resonant structure 

sizes. Most of the applications of DGS and PBG structures, which have been published in the 

recent years, are in microstrip implementation [132-145]. Therefore, these devices require a 

precise fabrication process on both substrate sides and an adequate packaging to keep an air-

gap between the ground and the package box. In such a way, CPW can be a good compromise 

for DGS structures. Additionally, they are less sensitive to substrate thickness and substrate 

dielectric constant compared to microstrip structures [155]. To the author’s knowledge, few 

applications for DGS on CPW circuits have been reported [145-151]. Different defect shapes 

in both microstrip and CPW implementations exist in the literature: dumbbell [134], periodic 

[140, 145, 150], fractal [135], circular [152], spiral [151], T-shaped [141], L-shaped DGS 

[146], arrowhead [142, 143], and different other geometrical shapes. Several examples of 

DGS are shown in Figure 1.7. 

                                

a)                                                     b) 
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c)                                                      d) 

                                           

e)                                                       f) 

Figure 1.7: Examples of DGS: (a) schematic diagram of microstrip and CPW transmission 

lines with vertical periodic DGS [145], (b) photograph of fabricated DGS LPF using 

arrowhead DGS and multilayer technique [143], (c) photograph of the microstrip ring filter 

with patterned ground plane [144], (d) schematic view of the lattice shape DGS on CPW [147, 

156], (e) fork-shaped DGS on CPW [149] and (f) L-shaped DGS on CPW [146]. 

Analytical Model for DGS 

The conventional lumped-element resonator generally works well at low frequencies while it 

has several problems at microwave frequencies [157]. The main of them is a limited range of 

values of inductors and capacitors at microwave frequencies. Moreover, the distance between 

the resonator components can not be neglected at microwave frequencies. Transformation of 

lumped elements to transmission line sections can be carried out by using Richard’s 

transformation, while a separation of the filter elements by transmission line sections can be 

provided by Kuroda’s identities [157]. 

A parallel LC equivalent circuit (see Figure 1.8 (b)) represents the DGS slot; the geometrical 

dimensions and the shape of the defect affect the lumped-element parameters [132]. Any 

shape of the DGS slot with the same area can be used to obtain the same equivalent 

inductance at the cut-off frequency [132]. However, the performance of the complete circuit 

strongly depends on shape, size and orientation of a DGS slot, which provides the band-reject 

(band-stop) characteristic [132, 158]. A DGS basically consists of large defects and a narrow 

connecting slot. Large defects result in an equivalent inductance, while the connecting slot 

represents an equivalent capacitance [132]. Figure 1.8 (a) shows the dumbbell shape DGS 



Chapter 1                                                                                                                                   20 

Introduction and Basic Considerations 

slots which are symmetrically etched on the ground planes on both sides of the CPW center 

line. The one-cell DGS can provide cut-off and resonance frequencies due to the slow-wave 

effect, as shown in Figure 1.8 (c). 

             

a)                                              b)                                               c) 

Figure 1.8: Schematic view of the dumbbell shape DGS unit section (a); its equivalent circuit 

(b); and frequency response of the DGS unit section (c). 

The simulation result clearly reveals that the DGS provides a one-pole low-pass filter 

characteristic [157]. The slow-wave effect changes the propagation constant of the 

transmission line by an increased inductive loading corresponding to the DGS slot. Therefore, 

the compactness of the resonance structure can be increased by reducing the line length. 

At frequencies below the resonance frequency the DGS slot behaves as an increased effective 

inductance of the CPW line. The cut-off frequency is mainly controlled by the DGS slot head 

area. The frequency response of the DGS slot can be described using an equivalent circuit 

extraction method. The equivalent circuit will simultaneously exhibit low-pass and bandstop 

filter performances. The 3-dB cut-off and attenuation pole frequencies can be extracted from 

EM simulation or from the measured frequency response. The equivalent inductive reactance 

can be easily derived from the maximally flat Butterworth low-pass response using a one-pole 

prototype element [157]. Then, the parallel capacitance can be extracted from the resonance 

frequency value. The equivalent reactance value of the one-cell DGS unit can be expressed as 

follows [132, 157, 158]: 
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where L and C are the inductance and capacitance of the equivalent circuit model, 

respectively, and ω0 is the resonance angle frequency. The value of the parallel effective 

capacitance in pF of the 50-Ω CPW line can be calculated by using the prototype element of 

the one-pole response network, which is shown in Figure 1.9, as follows [132, 157, 158]: 
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Rearranging (1.32), the parallel effective inductance in nH is defined as [158]: 
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where fc and f0 are 3 dB cut-off and attenuation pole frequencies in GHz, respectively, Z0 is 

the characteristic impedance of the CPW, and g1 = 2 is a tabulated element value for a 

maximally flat low-pass filter prototype. The comparison between EM and circuit model 

simulations, obtained by the commercially available method-of-moment electromagnetic 

(MoM EM) simulators Sonnet [159] and Microwave Office [160], is depicted in Figure 1.8 

(c). The resonance magnitude of the circuit model simulation is infinite because the lumped-

element model does not take into account the radiation losses in the DGS. Due to a bandstop 

response of the DGS most of researches are performed to realise CPW low-pass filters (LPF). 

 

Figure 1.9: One-pole prototype low-pass filter. 

1.3 Tunable MEMS Filters 

The subject microwave filters is quite extensive due to the importance of these components in 

practical systems and the wide variety of possible implementations. Tunable microwave 
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devices should offer services which provide flexibility and scalability that meet the system 

requirements. For instance, a control system of a tunable filter should have a minimum 

influence on transmission and reflection characteristics. Several different tuning methods 

have been investigated in the past as outlined in [161]. Most of them are based on varactor 

diodes [162], paraelectric capacitors [163], or micro-electro-mechanical systems capacitors 

[164-170]. However, filters which utilize the first two tuning elements have a low Q- factor 

due to a high series resistance of the diodes. MEMS technology offers promising 

opportunities to fabricate filter structures with good parameters, like narrow band width, low 

loss, and good stability. 

For many applications, the tunable filters must have a compact size and a small degree of 

tunability and must be realized in CPW configuration. To our knowledge only several tunable 

filters, based on CPW DGS and MEMS switches are presented in literature [171, 172]. Both 

tunable bandstop filters are realized by introducing MEMS capacitive switches periodically 

located between DGS providing the capacitance loading. In [171] a conventional rectangular 

DGS slots is used. This filter reveals a tuning range from 19.0 GHz to 17.3 GHz with lower 

pass-band insertion loss of 0.7-2.2 dB and a bandwidth of 5.5 GHz. However, losses in both 

pass-bands are very high. A filter presented in [172] is based on a fractal DGS etched on the 

ground plane as well as on the signal line. This BSF offers a tuning range from 17.6 GHz to 

16.5 GHz with insertion loss of 1.7-2.5 dB. This approach allows to increase the structure 

compactness and improves the pass-band performance. An other approach to combine DGS 

structures with MEMS switches realising a reconfigurable resonator is proposed in [173]. In 

this work, series MEMS switches are located directly on the ground plane and provide the 

control of a number of rectangular DGS cells. 

1.4 Dissertation Objectives and Organisations 

The objects of the dissertation are: 

• To model and simulate accurately the mechanical behaviour of the fixed-fixed beam 

micro-bridges under the effect of electrostatic forces and residual biaxial tensile stress and 

predict their actuation-voltage and stress intensity distribution using the finite elements 

method (FEM). 

• To design and optimise low actuation-voltage high isolation and high reliability RF 

MEMS switches using commercially available FEM and full-wave 2.5-D planar MoM 
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(method of moment) electromagnetic simulation tools, and to describe the electromagnetic 

behaviour of the proposed switches using lumped-element equivalent circuit models. 

• To fabricate RF MEMS switches based on fixed-fixed beam configuration and optimize 

every fabrication step using standard CMOS technology, to optimize the deposition 

process of the conventional dielectric films, such as silicon nitride, using the low-

temperature plasma enhanced chemical vapour deposition (PECVD) method, to find the 

optimal etch (wet or dry) process parameters for the metal, photoresist and the dielectric 

films; and finally to compare the measured results with the theoretical calculated and 

simulated results. 

• To design passive, high performance RF filters in CPW implementation using the 

conventional design approach and the approach based on the defected ground structure 

(DGS) method. To fabricate the proposed HF structure and compare the measured 

response with the simulated one. 

• To design and investigate the tunable RF MEMS switch controlled quasi defected ground 

structure (DGS) microwave filter using a full-wave 2.5-D planar MoM electromagnetic 

simulator and a lumped-element equivalent circuit model. 

The organization of the dissertation is as follows. Chapter 1 begins with an introduction and 

basic considerations for micro-electro-mechanical systems. It discusses the state-of-the-art of 

RF MEMS switches, DGS and passive and tunable RF filters. It presents the contributions of 

the thesis to the RF MEMS and the CPW filter topics. 

Chapter 2 deals with the 2-D and 3-D coupled electrostatic-mechanical FEM models for the 

fixed-fixed beam micro-bridge structure. Two methods to solve the electrostatic problem will 

be presented. The first one is the sequential coupling algorithm; electrostatic and structural 

aspects are solved sequentially. The second method of the solution of the electrostatic-

structural problem is the lumped or reduced order model. This model is usually strongly 

coupled and is considered to be the fastest from the convergence time perspective. 

Chapter 3 is dealing with the modeling, the simulation and the optimization of low actuation-

voltage, high isolation and high reliability RF MEMS shunt-capacitive and shunt-resistive 

switches for L-, S-, and X-band applications. The new configuration of the movable 

membrane based on the flexure-flexure suspension will be proposed to increase the effective 

areas of the actuation pads, and thus to reduce the actuation-voltage. On the other hand, the 

contact areas between the movable membrane and the CPW center conductor have been 
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decreased to reduce an insertion loss of the switch in the ON-state. Two approaches have been 

used to increase the OFF-state isolation of the shunt-capacitive switch. In the first one a larger 

capacitive structure is formed directly on the center conductor by depositing a thin metal film 

on a dielectric layer which covers the center line. The second approach implements large 

shunting capacitances on the ground plane under the suspension posts. The proposed RF 

MEMS switches will be investigated with FEM electromechanical simulations to define the 

actuation-voltage and with a 3-D full-wave EM simulator to define the frequency responses of 

the switches. The lumped-element equivalent circuit simulations will also be used to describe 

the switch electromagnetic properties. 

In chapter 4 a fabrication process of RF MEMS switches based on a fixed-fixed beam 

configuration is described. High-resistivity (> 4.0 kΩ) silicon has been used as substrate 

material. Each fabrication step being compatible to standard CMOS technology will be 

investigated in details. Low temperature deposition processes of dielectric films like silicon 

nitride have been carried out by using ECR-PECVD using mixtures of Ar, N2 and SiH4 as 

precursors. The deposited films have been investigated with ellipsometry and X-ray 

photoelectron spectroscopy (XPS). Metal-insulator-metal (MIM) capacitors have been 

fabricated in order to investigate the electrical properties of the dielectric films. The 

conventional chemical wet etch process has been used to form CPW line while RIE etching 

has been utilized to realize the movable metal parts of the RF MEMS switches. Finally, the 

fabricated switches have been tested and the measured results have been compared to the 

electromechanical and electromagnetic simulations. Good agreements have been reached. 

In chapter 5 the designs of microwave coplanar filters are introduced. The conventional 

methods of the filter implementation have been modified to improve the filter characteristics. 

Serpentine shape shunt/open-stubs are proposed to increase the inductive and capacitive 

loading of the CPW line, therefore, the shift of the operation range of the bandpass/bandstop 

filters to lower frequency without any enlargement in filter dimensions. The DGS approach is 

used to realize the coplanar low-pass and ultra wideband (UWB) low-pass filters with 

compact size and high performance. Quasi-fractal DGS slots have been investigated with EM 

and lumped-element equivalent circuit simulations and, then, the obtained results have been 

confirmed by measurements. 

The design of tunable coplanar quasi-DGS bandpass filter for K-band applications, for 

instance in automotive and transceivers systems, is introduced in Chapter 6. The proposed 

structure is composed of λ/4 open-end stubs resonators coupled by the gap capacitance and 
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external metal stubs on both sides of the CPW. A method to control the resonance frequency 

and bandwidth has been developed by creating an ohmic contact between the ground plane 

and external metal plane in a certain location. Eight RF MEMS series-resistive switches form 

the control system of the tunable bandpass filter. The proposed BPF has been designed and 

described using the full-wave EM MoM simulator and lumped-element equivalent circuit 

model. 

In Chapter 7 this work is concluded. 
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Chapter 2 

 
FEM Electromechanical Analysis of Fixed-

Fixed Beam MEMS Switches 
 

This chapter presents the coupled finite element model (FEM) electrostatic-structural analysis 

of fixed-fixed beam parallel plate microstructures using the commercial FEM simulator 

ANSYS Muliphysics 9.0 [91]. The two- and three-dimensional (2-D and 3-D) models will be 

investigated in order to determine the pull-down voltage and the stress in the membrane. Two 

different algorithms will be implemented to solve the electrostatic problem. Additionally, the 

effects of the residual stress due to the fabrication process and the axial force resulting from 

the mechanical deformation of the beam are taken into account in this study. 

2.1 Sequential Coupling Algorithm 

One of the most accurate methods to analyze coupled electrostatic-structural problems using 

full 3-D FEM simulations is the sequential coupling approach. It provides a high accuracy 

level, but requires a lot of computational resources. For the sequential coupling analysis 

ANSYS can use an ESSOLV macro which solves the coupled electrostatic-structural problem 

[174]. 

The sequential coupling analysis starts with the generation of an electrostatic physic file, 

which describes the electrical potential distribution when a voltage is applied to the 

conductors. The problem is solved by Laplace’s equation which is given by: 
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where V is the potential distribution in the electrodes surrounding medium. The known 

boundary conditions are: V = Va is a voltage applied to the membrane (upper electrode); and 

V = 0 V is the potential of the bottom electrode. This equation is suitable for any geometry of 

MEMS devices. 

Figure 2.1 shows the parallel plate model which will be verified using the ANSYS simulation 

platform and the result will be compared with the theoretical model described in chapter 1. 
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The initial gap high g0 is assumed to be uniform in the structure. The upper plate is a 

moveable electrode which is clamped in two opposite sides while the bottom plate is a fixed 

electrode, as shown in Figure 2.1 (b). Both electrodes are enclosed in an air box (not shown in 

the figures). The electrode material used for this simulation is aluminum. The dimensions and 

the materials properties of the problem are listed in Table 2.1. It considers a wide beam 

(wm ≥ 5tm) which exhibits plane-strain conditions [74]. Therefore, the key options for the 

structural elements in ANSYS must be set to allow the plane-strain modeling. 

            
a)                                                                  b) 

Figure 2.1: Verification parallel plate model: (a) 3-D view and (b) cross-section (2-D). 

Table 2.1 Verification parallel plate model dimensions and material properties  
Length of the plates,         Lm
Width of the plates,          wm
Initial gap height,               g0
Thickness of plates,           tm
Young’s modulus of Al,     E 
Poisson’s ratio of Al,           v

(µm) 
(µm) 
(µm) 
(µm) 
(GPa) 
 

300 
100 
2 
2 
70 
0.35 

Usually, in the electrostatic analysis the electric field must be unbounded. Therefore the effect 

of the open environment has to be included in the electrostatic model for high accuracy. But 

in practice, the electrostatic model cannot be infinitely extended. There are two possibilities to 

model the effect of an open field using ANSYS environment. The first one is extending of the 

free space region, and the second is using infinite elements. In the case of a small initial gap 

(in ANSYS Lm > 20tm), where a fringing field has a minimum effect, an extension of the free 

space is more efficient. For models with a large initial gap (Lm < 20tm), for which fringing has 

to be taken into account, the infinite elements are required. A fringing field builds up in the 

perimeter of the parallel plates. Since all problems encountered in this study are small gap 

problems, the method of the free space region extension is used. In this method an outer edge 

of the air box must be modeled with Neumann boundary conditions which assume that current 

flows only parallel to the box edges [175]. On the other hand, an air-metal interface is 

modeled with Dirichlet boundary conditions where the electric field is perpendicular to the 

conducting surface [175]. For a higher accuracy level in ANSYS the free space must be 

extended approximately by 4 times of the initial gap height. 



Chapter 2                                                                                                                                 28 

FEM Electromechanical Analysis of Fixed-Fixed Beam MEMS Switches 

Figure 2.2 (a) shows a scaled view of the right side of the meshed 2-D fixed-fixed beam 

structure. Due to a structure symmetry in both x- and y-directions only a quarter of the 3-D 

model has been modeled, as shown in Figure 2.2 (b). 2-D, 8-nodes triangular charge-based 

electrostatic elements, PLANE121, have been used to mesh the air region in the 2-D model, 

while for the 3-D model, meshing of the surrounding medium has been implemented by using 

the 3-D, 20-nodes rectangular charge-based elements SOLID122 [174]. 

                  

a)                                                                 b) 

Figure 2.2: Enlarged meshed model views: (a) 2-D model and (b) 3-D model. 

A bias voltage, applied to the moveable electrode, is changing from zero volt to a value at 

which a convergence between the electrostatic and the structural domains does not happen. It 

should be noted that the membrane can be pulled through the bottom electrode, because the 

contact problem has not been modeled in this study. But it plays no role, since the simulator 

cannot identify a stable solution until the applied voltage is less than the pull-down value. The 

enlarged contour plots of the applied voltage of 28 V surrounding the deformed plates for the 

2-D and 3-D models are shown in Figure 2.3. This voltage is very close to the pull-down 

voltage and almost a maximum deflection can be obtained. 

A 2-D contour plot of the electric field strength of the half membrane and at the right side of 

the structure is shown in Figure 2.4. As expected the maximum magnitude is in the gap region 

where the maximum displacement occurs, namely, at the membrane center. The maximum 

electrical field is 19.515 V/µm corresponding to a gap height of 1.44 µm and a bias of 29 V. 

The fringing field is shown in Figure 2.4 (b). In the case of the 2-D model the fringing field 

can be observed at both opposite fixed edges of the membrane. It is obvious, that in the case 

of the 3-D model, the fringing field is present at every side of the membrane. Figure 2.5 

shows a 2-D vector plot of the electric field at the right side of the membrane, where the 

fringing field effect is observed, and one half of the membrane. The vector set in Figure 2.5 

determines the electric field direction. 
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a)                                                                 b) 

Figure 2.3: Voltage contour plot for the structure with applied bias voltage of 28 V: (a) right 

side of the 2-D model and (b) quarter of the 3-D model. 

             

a)                                                                 b) 

Figure 2.4: Contour plot of the electric field strength in V/µm for the 2-D structure: (a) one 

half of the membrane and (b) structure right side. 

             

a)                                                                          b) 

Figure 2.5: Vector plot of the electric field strength in V/µm for the 2-D structure: (a) right 

side and (b) one half of the membrane. 
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The 2-D vector plot of the electrostatic force distribution along the membrane length is shown 

in Figure 2.6. The vector length is linearly related to the magnitude of the force. It is obvious 

that the force increases as the membrane deflection is increased (from the fixed ends to the 

center of the membrane) and has its highest value at the center of the bridge where the 

maximum deflection occurs. 

 

Figure 2.6: Vector plot of electrostatic force distribution in µN for the 2-D model. 

The structural model is based on solving the plate equation, which describes the behaviour of 

the plates (or shells) under the applied pressure and is given by [71]: 
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where u is the transverse deflection in z-direction, P(x, y) is the pressure (N/m2) (in our case 

the electrostatic force obtained from the electrostatic simulation), D=Etm
3/12(1-v2) is the 

flexural rigidity of the plate, where E is the Young's modules, t is the bridge thickness, and v 

is the Poisson's ratio of the membrane material. For the fixed edges, the deflection in all 

directions is assumed to be zero. Taking into account that the center of the membrane is given 

by x = 0 and the fixed edges are at x = -Lm/2 and x = Lm/2 (Lm is the length of the membrane), 

the boundary conditions are: 
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Figure 2.7 shows the deflection of the bridge structure in micrometers obtained with the 2-D 

and 3-D models under an applied bias of 28 V. Figure 2.7 (a) shows the undeformed 

membrane and deformed structure directly below. The maximum displacements of the bridge 

structure with respect to its initial position are 0.565 µm for the 2-D model and 0.677 µm for 

the 3-D model. It should be noted that the free edges of the membrane in the 3-D model are 
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stronger deformed due to a probability of motion in all directions as can be seen in Figure 2.7 

(b). In Figure 2.7 the deflection of the membrane is magnified by a factor of 20 for an easier 

visibility of the displacement. 

                

a)                                                                          b) 

Figure 2.7: Contour plot of the deformed membrane with the applied voltage of 28 V: (a) 2-D 

model and (b) 3-D model. 

The voltage has been varied from 0 V until the pull-down voltage has been found. At the pull-

down voltage the solution becomes unstable and the simulator cannot find a convergence 

between electrostatic and structural energies. A plot of the center deflection of the bridge 

versus the applied voltage is shown in Figure 2.8. 

The maximum deflection of the center of the fixed-fixed beam before the membrane collapses 

onto the bottom electrode was 0.774 µm at a voltage of 29.1 V for the 2-D model and 0.732 

µm at 28.4 V for the 3-D model, respectively. This corresponds to a 39% and 37% center 

deflection of the original gap for the 2-D and 3-D simulations, respectively. For the 2-D case, 

the convergence between the two physical environments has been reached with an applied 

voltage of 29.1 V, but for 29.2 V a solution can not be found. Therefore, the pull-down 

voltage is lying between these two voltage values. Using the CMATRIX macro of ANSYS and 

0 V for the applied voltage the capacitance values of the 2-D and 3-D parallel plate structures 

are 13.47 pF and 14.1 pF, respectively. According to Eqn. 1.10 the capacitance value of a 

simple parallel plate capacitor formula is 13.28 pF. It can be seen that both, theoretical and 

simulated capacitance values of the 2-D model are very close (1.4% difference) to each other 

because the fringing field is very small. Therefore, it can be concluded that the simulator is 

valid to predict the MEMS structure behavior. Figure 2.9 shows the capacitance of the parallel 

plate structure versus the applied voltage simulated by using the CMATRIX macro. The pull-

down voltage obtained by using the approximation in Eqn. 1.14 has been found to be 29.06 V. 
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This is very close to the results calculated by ANSYS (29.1 V - 29.2 V). In the case of the 3-

D model, the initial capacitance value is 6.2% higher than the theoretically calculated one. 

Therefore, the pull-down voltage is lower than the values obtained by the 2-D simulation and 

the theoretical prediction. This is due to the fringing field effect at every side of the membrane 

in the 3-D model. The fringing capacitance amplifies the electrostatic force between the 

parallel plates; consequently, the maximum deflection before the membrane collapses onto 

bottom electrode in the 3-D model is also smaller than in the 2-D case. 

 

Figure 2.8: Membrane center deflection for 2-D and 3-D models versus applied voltage. 

 

Figure 2.9: Membrane capacitance for 2-D and 3-D models versus applied voltage. 

2.2 Lumped or Reduced Order Algorithm 

Lumped-element models allow the treatment of a diverse number of analysis types, including 

pre-stressed modal and harmonic analyses. The Newton-Raphson nonlinear iteration is used 

to find quickly and robustly a convergence between the electrostatic and the mechanical 

energies by use of a lumped model. On the other hand, this method has some limitations with 
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regard to geometries where the capacitance cannot be accurately described as a function of a 

single degree of freedom, usually for the deflection of a comb drive. For small gap problems, 

like MEMS shunt capacitive switches, the fringing field effect can be neglected; then the 

capacitance between the electrodes can be practically modeled by a number of parallel 

connected capacitors. In the ANSYS simulator the electro mechanical transducer generator 

(EMTGEN command) macro can be used to solve the electrostatic-structural problems [174]. 

The 1-D electromechanical transducer element, TRANS126, can realise strong coupling 

between distributed, lumped mechanical and electrostatic systems, representing a reduced-

order model suitable for the use for structural finite element analysis as well as for 

electromechanical circuit simulation. This element represents the capacitive response of the 

device for the motion in one direction. The TRANS126 element calculates a capacitance-

displacement relation as [174]: 
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where C0, C1, C2, C3 and C4 are the polynomial coefficients of capacitance per unit length. 

 

a)                                                                     b) 

Figure 2.10: The ANSYS TRANS126 element: (a) finite element interpretation, and (b) 

geometry of the TRANS126 element. 

The finite element interpretation and geometry of the ANSYS’ TRANS126 element is shown 

in Figure 2.10. The element has two nodes (i, j) with two degrees of freedom for each node: 

displacement in x-, y- or z-direction and electric potential. The gap is calculated as the sum of 

the initial gap and the difference of the nodal displacement in the direction of the element. 

The force with the constant voltage is calculated as: 
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In the case of an electrostatic pressure on an area of the parallel plate structure, each node of 

the area in an overlapping location is connected to the opposite electrode by a transducer 

element. 
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Figures 2.11 show the enlarged meshed structure views of the 2-D and 3-D models. The air 

space between the electrodes is meshed with transducer elements TRANS126, which are 

shown in the plots as violet lines. In the case of the 2-D simulation, the mechanical solid 

structures have been meshed with 2-D, 8-nodes structural solid elements PLANE82. A key 

option for this elements has been set so that the structure is modeled using only plane-strain 

conditions. For the 3-D simulation, solid mechanical parts have been meshed with 3-D, 20-

nodes structural solid elements SOLID95. Every node of the bottom surface of the movable 

membrane is connected to the top node of the transducer element. The transducer element 

matrix has been performed using the EMTGEN macro from ANSYS. 

                  

a)                                                                       b) 

Figure 2.11: Enlarged meshed model views: (a) 2-D model (grey box is the bottom electrode), 

and (b) 3-D model (the bottom electrode is not shown). Violet lines are distributed TRANS126 

elements. 

In Figure 2.12 the contour plots of a deformed and an undeformed membrane are shown with 

transducer elements at the applied voltage of 29 V. The displacement is enlarged by a factor 

of 20. The length of the transducer elements is equivalent to the displacement value. The 

voltage has been varied from 0 V up to the predicted pull-down voltage with a step width of 

0.2 V. Close to the pull-down voltage the step width is changed to 0.1 V. After the pull-down 

voltage has been reached the membrane is immediately collapsing to the bottom electrode. 

Figure 2.13 shows the plot of the center deflection of the membrane versus the applied 

voltages for the 2-D and for the 3-D model. Before the collapse occurs the maximum 

deflections of the center of the fixed-fixed beam were 0.76 µm at 29.45 V and 0.728 µm at 

29.1 V for the 2-D and 3-D simulations, respectively. 

Table 2.2 summarises the simulation results of the sequential coupling and reduced order 

algorithms. It can be seen that the simulation results are almost equal. However, the pull-
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down voltages of the reduced order method are higher because the fringing field effect has not 

been taken into account. 

                 

a)                                                                      b) 

Figure 2.12: Contour plot of the deformed and the undeformed membrane with the applied 

voltage of 29 V: (a) 2-D model and (b) 3-D model. 

 

Figure 2.13: Membrane center deflection for 2-D and 3-D models versus applied voltage. 

Table 2.2 Simulation results with ANSYS ESSOLV and EMTGEN macros 
 Max. center deflect. before collapse, [µm] Pull-down voltage, [V] 
 2-D 3-D 2-D 3-D 

ESSOLV 0.774 0.732 29.1-29.2 28.4 
EMTGEN 0.76 0.728 29.45 29.1 

2.3 Stress in a Fixed-Fixed Beam 

The stress level in the metal membrane has a strong influence on the device reliability. If the 

stress is too large the device will fail. The stress level should not exceed the material yield 

strength. In the case of a metal membrane, material can fail plastically so that the metal bridge 

does not return to its original position after the loading (electrostatic force) has been removed. 
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Thus, the reliability of the device strongly depends on the stress during device actuation. 

Therefore, its level should be determined. 

The 3-D model of the fixed-fixed beam has been applied to determine the stress level during 

actuation. The voltage between the metal plates has been chosen to be a little bit lower than 

the pull-down voltage so that the movable electrode has a maximum deflection of 0.7 µm at 

the center. Figure 2.14 shows the contour plots of the stress on the top membrane surface in 

the x-, y- and z-directions, and the stress intensity of the fixed-fixed beam. The maximum 

stress in the x-direction (along the beam length) is 23.6 MPa. This stress concentrates on the 

edges of the beam, where the bridge structure is connected to the supports, and decreases 

towards the center of the membrane. It is clear that the fixed edges at the top membrane 

surface are stretched and at the bottom membrane surface are compressed. But at the center of 

the membrane, where a maximum deflection is observed, the top surface is compressed and 

the bottom surface is stretched. The y-component of stress has a maximum value of 12.2 MPa. 

This stress is also concentrated at the fixed edges of the membrane. And as it is for the x-

component, the top surface at the fixed edges is stretched and the bottom surface is 

compressed. It can be seen that the middle part of the membrane is almost not stressed. The 

same situation is observed for the z-component of the stress but with a maximum value of 

11.1 MPa. 

ANSYS can combine all components of stress in order to compare it with allowable values. 

The stress in the x-, y-, and z-directions is combined into a stress intensity. This value is 

derived on base of the Tresca failure criterion [91]. The stress intensity can be compared with 

the ultimate strength, in this case for aluminum, of 55-310 MPa [176]. As can be seen in 

Figure 2.14 (d), the maximum stress intensity in the membrane is 19.8 MPa. It is more than 

two times smaller than the ultimate strength for aluminum. 

             

a)                                                                  b) 
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c)                                                                 d) 

Figure 2.14: Contour plots of the stress on the top surface of the deformed membrane (0.7 µm 

center deflection): (a) Sx component, (b) Sy component, (c) Sz component and (d) stress 

intensity. The unit of the stress is MPa. 

2.4 Effect of Residual Stress on the Pull-Down Voltage 

The previous analysis has been performed for the pull-down voltage of the parallel plate 

structure without any intrinsic residual stress in the metal film. Residual stress, however, is 

developed during the fabrication of most microstructures and typically ranges from a few 

MPa to over 100 MPa [103, 176, 177]. Therefore, the effect of the residual stress should be 

taken into account in MEMS device simulations. In this section, the effect of the tensile 

residual stress on the pull-down voltage will be discussed. 

               

a)                                                                     b) 

Figure 2.15: Contour plots of the displacement vector sum for the deformed membrane with 

applied biaxial tensile stress: (a) 20 MPa and (b) 40 MPa. 

Values of 20 MPa and 40 MPa biaxial tensile stress have been applied to the rectangular thin 

metal plate (movable electrode) to investigate its effect on the pull-down voltage. Figure 2.15 
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shows the contour plots of the displacement vector sum for the deformed metal membrane in 

its initial position (0 V bias voltage) with values of 20 MPa and 40 MPa biaxial tensile stress 

applied to the membrane. The displacement has been magnified by a factor of 1000 to 

improve visibility. It can be seen that the displacement is proportional to the applied stress 

value in this stress range and the metal membrane exhibits a linear behaviour. It is obvious, 

that the displacement is maximum in y-direction, and no displacement is observed at the fixed 

edges. 

Figure 2.16 shows the contour plots of the stress intensity at the top surface of the metal 

membrane in its initial position (0 V bias voltage) with a biaxial tensile stress of 20 MPa and 

of 40 MPa. Due to the structure symmetry only one half of the membrane is shown. The 

maximum stress is observed near the sharp corners of the membrane, and is 24.4 MPa and 

48.8 MPa for 20 MPa and 40 MPa biaxial tensile stress, respectively. There are critical points 

on the suspended metal plates. This stress concentration could spread tiny cracks produced 

during fabrication. The stress in the middle part of the membrane is constant and quite small, 

4.2 MPa and 8.4 MPa for the plate with 20 MPa and 40 MPa, respectively. 

             

a)                                                                   b) 

Figure 2.16: Contour plots of the stress intensity for the membrane in its initial position with 

applied biaxial tensile stress: (a) 20 MPa and (b) 40 MPa. 

Figure 2.17 shows the contour plots of the stress distribution at the top surface in the x-, y-, 

and z-directions and stress intensity for the membrane with 0.7 µm center deflection and 

applied biaxial tensile stress of 20 MPa. As in the case of no actuated structure with applied 

biaxial tensile stress the critical points are near the sharp corners at the fixed edges. It is 

obvious that the maximum stress is in the x-direction where the membrane has a limited 

degree of freedom due to the fixed opposite edges. The main stress concentration is located at 

the fixed edges while the middle part of the membrane is almost unstressed. 
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a)                                                                   b) 

               

c)                                                                   d) 

Figure 2.17: Contour plots of the stress for the membrane with 0.7 µm center deflection and 

an applied biaxial tensile stress of 20 MPa: (a) Sx component, (b) Sy component, (c) Sz 

component and (d) stress intensity. 

The value of the compressive stress in the bottom surface of the membrane (not shown in the 

figure) is not comparable to the value of the tensile stress in the top surface, as in the case of 

the unstressed membrane (Figure 2.14) because the compressive stress is reduced by the 

applied biaxial residual stress. The maximum stress intensity is 31 MPa, as shown in Figure 

2.17 (d), and does not exceed the allowable value for aluminum of 55-310 MPa. 

The same tendency has been observed for the fixed-fixed beam with 0.7 µm center deflection 

and an applied biaxial tensile stress of 40 MPa, as shown in Figure 2.18. There only the 

contour plots of the x-component of stress at the top surface are shown, where the stress is 

largest. It can be seen that the maximum value of the compressive stress in x-direction is less 

than in the membrane with 20 MPa tensile stress. The maximum stress intensity is 57.1 MPa 

that is close to the lower limit of the allowable stress range for the aluminum. Typical average 

tensile stress in thin aluminum membranes, which is usually used for fixed-fixed beam 

simulation, amounts close to about 20 MPa. 
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a)                                                                   b) 

Figure 2.18: Contour plots of the stress for the membrane with 0.7 µm center deflection and 

applied biaxial tensile stress of 40 MPa: (a) Sx component and (d) stress intensity. 

The curves of the center deflection of the stressed membrane versus the applied voltage 

predicted by the analyses are shown in Figure 2.19. It can be seen that the pull-down voltage 

is increased up to 55 V for the membrane with a biaxial tensile stress of 40 MPa. It is well 

known that the high actuation-voltages can result in a stiction after a limited number of 

actuation cycles due to charge accumulation in the dielectric layer [57-60]. Therefore, 

designing of reliable MEMS switches requires lower actuation-voltages. 

 

Figure 2.19: Membrane center deflection for the 3-D model with different values of the 

biaxial tensile stress versus applied voltage. 
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2.5 Summary 

In this chapter, two- and three-dimensional coupled electrostatic-mechanical models for fixed-

fixed beam parallel plate structures have been presented. The simulations have been 

performed using the finite element method (FEM) in ANSYS environment in order to 

determine the deformation of the membrane as a function of the applied voltage. The 

influence of the residual biaxial tensile stress on the structure behaviour has also been 

investigated. 

Two methods for the modeling of the electrostatic environment have been presented. One is 

the sequential coupling algorithm which allows the combination of the strength of single field 

simulators. The electrostatic problem is based on the solution of the Laplace’s equation in the 

different homogenous regions. The second method to solve the electrostatic problem in 

ANSYS environment is the lumped or reduced order model. This method is implemented by 

using lumped transducer elements which convert the stored electrostatic energy into 

mechanical energy and vice versa. The mechanical model to determine the deformation of the 

membrane under acting of the electrostatic force is obtained following the plate/shell theory. 

The predictions by the simulation are very close to the theoretical calculations described in 

chapter 1. The sequential coupling algorithm leads to results of high accuracy as the fringing 

field effect is taken into account. But this algorithm requires much more CPU time compared 

to a lumped or reduced order model. 

The simulated stress level in a deformed 1.0 µm thick Al metal membrane with an applied 

biaxial tensile stress of 40 MPa does not exceed the critical value of aluminum. It has been 

shown, however, that the initial biaxial tensile stress can increase the pull-down voltage 

significantly. 
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Chapter 3 

 
Design, Modeling and Optimization of Low 

Actuation-Voltage RF MEMS Switches 
 

This chapter is treating design and optimization of low actuation-voltage, high RF 

performance MEMS switches. Several different approaches to enlarge the isolation of the RF 

MEMS switches will be investigated using a numerical design technique based on 3-D full-

wave electromagnetic and circuit simulations using the commercial EM MoM simulators 

Sonnet [159] and Microwave Office [160]. The first method is realized by adding a thin metal 

layer on the bottom surface of the dielectric deposited on the center conductor. And the 

second one is based on the realization of capacitive structures on the ground plane. In this 

study all RF MEMS switches are designed on a 735 μm thick high-resistivity (> 5 kΩ·cm) 

silicon substrate (εr=11.9) covered by a 1.0 μm silicon dioxide (εr=3.9) buffer layer in order to 

decrease the dielectric loss in substrate. The structures are modeled on 50-Ω CPW lines with a 

center conductor width of W = 120 μm and a slot width of G = 80 μm. Aluminum is used as a 

metallization material. FEM simulations are performed for the electromechanical modeling 

using the ANSYS platform. The chapter starts with the description of the conventional RF 

MEMS shunt-capacitive and shunt-resistive switches operation. In the next sections the 

designs of the low-actuation voltage RF MEMS switches based on a H-shaped membrane will 

be introduced and investigated. For all switches, the lumped-element equivalent circuit model 

will be studied for a better understanding and for optimization purposes. 

3.1 Conventional RF MEMS Switches Operation 

A conventional RF MEMS shunt-capacitive switch in a fixed-fixed beam configuration 

consists of a thin metal membrane suspended over a lower electrode (CPW signal line) which 

is covered by a dielectric layer, as shown in Figure 3.1 (a). In the case of a RF MEMS shunt-

resistive switch the actuation electrodes are placed on the sides of a center conductor and a 

metal dimple is added between a movable membrane and a signal line as shown in Figure 3.1 

(b). For the shunt-capacitive switch the dielectric film, which covers the bottom electrode, 
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prevents the electric short between the moveable membrane and the bottom electrode and 

realises a low impedance path for the RF signal when the switch is actuated. In the ON-state 

the membrane is in the up-position and the fixed-fixed beam provides a high impedance path 

for the RF signal due to a low capacitance between the membrane and the CPW signal line. 

Figure 3.2 (a) shows simulated EM frequency responses of the conventional RF MEMS 

shunt-capacitive and shunt-resistive switches in the ON-state with a bridge size of 

300×100 µm2 and a center conductor width of 100 µm. After applying a dc voltage between 

the moveable membrane and the fixed lower electrode the bridge is pulled down onto a 

dielectric surface; the switch starts in the OFF-state. When the membrane is in direct contact 

with the dielectric layer in the case of a shunt-capacitive switch or with the ohmic contact in 

the case of a shunt-resistive switch the bridge provides a low impedance path for the RF 

signal due to a high capacitance (shunt-capacitive switch) or low resistance (shunt-resistive 

switch). The simulated EM frequency responses of the conventional shunt-capacitive and 

shunt-resistive switches in the OFF-state are depicted in Figure 3.2 (b). 

                   

a)                                                                    b) 

Figure 3.1: Fixed-fixed beam FR MEMS switches: (a) shunt-capacitive switch and (b) shun-

resistive switch. 

                 

a)                                                                   b) 

Figure 3.2: EM simulations for the conventional RF MEMS shunt-capacitive and shunt-

resistive switches: (a) up-state and (b) down-state. 
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3.2 Design of H-Shaped Low Actuation-Voltage RF MEMS 

Switches 

In this section, new designs for RF MEMS shunt-capacitive and shunt-resistive switches are 

investigated to meet the requirements of a low actuation-voltage and a high reliability for 

many RF and microwave applications. 

     

a)                                                                      b) 

 

c) 

Figure 3.3: Schematic diagram of the designed RF MEMS switches: (a) shunt-capacitive 

switch, (b) shunt-resistive switch and (c) H-shaped membrane (b). All dimensions in microns. 

3.2.1 H-Shaped MEMS Switch Design 

Figure 3.3 (a) and (b) show schematic diagrams of the designed RF MEMS shunt-capacitive 

and shunt-resistive switches. They consist of the so-called H-shaped membrane suspended 

above a coplanar waveguide line. Figure 3.3 (c) shows the moveable electrode which consists 

of two bridges with fixed-fixed flexure suspensions, which are connected to each other by the 

contact area. The membrane with a thickness of 0.8 μm is suspended above the lower 
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electrode with an initial gap height g0 = 3.0 μm. The lower electrodes are made of a higher 

resistivity metal (NiCr) with a sheet resistance of 1400 Ω/square. A silicon nitride layer of 0.1 

µm thickness and a relative permittivity of 7.6 covers the lower electrodes to avoid the direct 

electrical contact between the metal electrodes. For a capacitive switch, this dielectric layer is 

larger and covers the signal line underneath the membrane to achieve a high coupling 

capacitance in the OFF-state. In the case of the shunt-resistive switch(see Figure 3.3 (b)), a 

50×60 µm rectangular dimple with height of 0.15 μm is added to the lower surface of the 

membrane above the RF signal line in order to achieve a good metal-to-metal contact in the 

OFF-state. 

3.2.2 Electromagnetic and Circuit Simulations 

RF responses for the capacitively coupled and the resistive-contact switches are shown in 

Figure 3.4 (a) and 3.4 (b) for the ON- and OFF-states, respectively. The optimized ON-state 

return losses (S11) are less than -18 dB and -21 dB, while the insertion losses (S21) are less 

than 0.19 dB and 0.18 dB from dc up to 40 GHz for the resistive and the capacitive switches, 

respectively. The OFF-state isolation (S21) for the resistive structure is higher than -25 dB 

from dc up to 40 GHz, while for the capacitive one it is higher than -20 dB at 7.0 GHz and 

higher than -30 dB from 15 GHz up to 40 GHz, see Figure 3.4 (b). 

          

a)                                                                  b) 

Figure 3.4: EM simulations for the designed shunt-capacitive and shunt-resistive RF MEMS 

switches: (a) in the ON-state and (b) in the OFF-state. 

The EM circuit simulator has been used to find out an appropriate equivalent circuit for the 

designed RF MEMS switches. Figure 3.5 shows the equivalent circuit model for both the 

types of H-shaped RF MEMS switches. 
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Figure 3.5: Equivalent circuit model for the designed RF MEMS switches. 

The bridge structure is modeled by a lumped RLC branch, which represents the circuit with 

the changeable capacitance from the up-position to the down-position. It should be noted, that 

for the shunt-resistive switch in the down-position (OFF-state) the capacitance C must be 

removed from the branch because the capacitive coupling changes to ohmic. This electrical 

circuit model has been used to fit the S-parameters of the switches, which are obtained by 

using the EM simulator. The simulation results for both switches in the ON- and OFF-states 

are depicted in Figure 3.6 and Figure 3.7. A good matching between the circuit and the EM 

simulations assure that the proposed equivalent circuit model describes the H-shaped RF 

MEMS shunt-capacitive and shunt-resistive switches with sufficient accuracy. Table 3.1 

shows the values of the lumped electrical circuit parameters extracted from circuit simulation. 

Table 3.1 Extracted equivalent circuit element parameters 
 Shunt-Capacitive Switch Shunt-Resistive Switch 
 ON-state        OFF-state ON-state        OFF-state 
C   (pF) 
Lsh (pH) 
Rsh (Ω) 
Ls    (pH) 
Rs   (mΩ) 

0.036 
12 
5.0 
30 
200 

8.08 
12.5 
0.011 
30 
337 

0.039 
11.7 
4.2 
25.6 
230 

― 
11.8 
0.0255 
25.6 
200 

The simulated frequency responses of the designed RF MEMS switches shown in Figure 3.4 

are achieved by an iterative optimization technique. Some of these results are depicted in 

Figure 3.8. The switches have a good isolation over a wide bandwidth. The initial gap height 

g0 between the movable membrane and the RF center conductor has an influence on the 

insertion loss which depends on the up-state capacitance. Therefore, the capacitive coupling 

must be as small as possible. It can be reached by an increase of the gap height or a decrease 

of the overlap between bridge and signal line areas. But a large gap leads to an increase of the 

actuation-voltage and a decreased overlap leads to a deterioration of the OFF-state isolation. 
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a)                                                                           b) 

Figure 3.6: EM and equivalent circuit model simulations for the designed shunt-capacitive RF 

MEMS switch: (a) in the ON-state and (b) in the OFF-state. 

           

a)                                                                           b) 

Figure 3.7: EM and equivalent circuit model simulations for the designed shunt-resistive RF 

MEMS switch: (a) in the ON-state and (b) in the OFF-state. 

           

a)                                                                        b) 

Figure 3.8: EM simulation for the designed RF MEMS switches in the ON-state for different 

values of the initial gap height g0: (a) shunt-capacitive switch and (b) shunt-resistive switch. 
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A compromise between these values has to be found. Figure 3.8 shows RF responses for the 

shunt-capacitive and shunt-resistive switches in the up-position for different gap heights. It 

can be seen in the figure that a 3 µm gap is the optimum value for the both switches to 

achieve a return loss less than -18 dB with an insertion loss less than 0.2 dB from dc up to 

40 GHz. 

3.2.3 Electromechanical Modeling 

As has been mentioned in chapter 1 the formula for the pull-down voltage in terms of the 

switch dimensions is given by [39]: 

o

o
p A

kgV
ε27

8 3

=                                                           (3.1) 

where k is the spring constant of the membrane, go is the initial gap height between the 

membrane and the bottom electrode, A is the area of the actuation pads and εo is the free space 

permittivity. There are three approaches to reduce the pull-down voltage: 1) reducing the 

spring constant; 2) decreasing the gap between the membrane and the bottom electrode; and 3) 

increasing the effective actuation area. A small gap height can lead to an increase of the 

insertion losses of the switch as has been shown above. The effective area of the actuation 

electrodes is limited with regard to the total area of the device. Decreasing the spring-constant 

is the route with the highest flexibility, since the design of the springs does not have a 

considerable impact on size, weight, and/or RF performance of the circuit. The actuation areas 

of the lower electrodes have been extended toward CPW line under the membrane. The use of 

a low spring-constant suspension membrane supports with improvement. 

The electromechanical simulations have been carried out with the FEM simulator using the 

reduced order method. The 1-D transducer element (TRANS126) has been used to directly 

couple the structural motion with the electrostatic fields, as shown in chapter 2. The initial 

residual stress has been introduced by applying a “negative” temperature to the membrane and 

considered with large deformation and stress stiffening effects. A zero voltage has been 

applied to the bottom electrodes, while the actuation voltage has been applied to the 

membrane. 

All geometrical parameters must fulfill the fabrication requirements, which are the major 

considerations of the geometrical design. The proposed design is completely based on real 

fabrication data. 20 MPa and 40 MPa biaxial tensile stresses have been applied to the H-
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shaped switch to examine its effect on the pull-down voltage. Figure 3.9 (a) shows the shape 

of the membrane with an actuation voltage of 14 V (very close to the pull-down voltage) and 

no residual stress. The maximum deflection of the membrane is 1.77 µm at the center of the 

contact area. The maximum stress concentrates in the meander suspension near the contact 

area, as shown in Figure 3.9 (b), because there are maximum torsion and motion in all 

directions. The maximum stress of 25.5 MPa does not exceed the allowable value for 

aluminum of 55-310 MPa. 

                

a)                                                                           b) 

Figure 3.9: Contour plot of the H-shaped membrane with an applied bias voltage of 14 V and 

no residual stress: (a) deformed shape and (b) stress strength. 

                

a)                                                                           b) 

Figure 3.10: Contour plot of the H-shaped membrane with an applied bias voltage of 32.5 V 

and 40 MPa biaxial tensile stress: (a) deformed shape and (b) stress strength. 

Figure 3.10 shows contour plot of the deformed H-shaped membrane with an applied bias 

voltage of 32.5 V and a 40 MPa biaxial tensile stress (Figure 3.10 (a)) the stress strength in 

this membrane can be seen in Figure 3.10 (b). As in the case of a membrane with no residual 
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stress the critical points of the H-shaped membrane are the fixed supports. The maximum 

value of the stress strength is 86.87 MPa, a value which exceeds the acceptable limit of 

aluminum of 55-310 MPa. Therefore, the fabrication conditions have to be optimised in order 

to obtain a membrane with low stress. The deflections of the center of the contact area versus 

the applied voltage are presented in Figure 3.11 for different values of biaxial tensile stress. 

The maximum deflection of the center of the contact area, after which the structure collapses 

onto the lower electrodes, decreases with an increase in the biaxial tensile stress value. This 

can be explained by an increased tensile strength in both directions deforming the structure 

before the actuation voltage is applied. 

 

Figure 3.11: H-shaped membrane center deflection versus applied voltage for different values 

of the biaxial tensile stress. 

3.3 Design of Low Actuation-Voltage, High Isolation S-Band 

MEMS Shunt-Capacitive Switches 

In this section the RF MEMS shunt-capacitive switches, the concept of which has been 

investigated in the previous section, has been redesigned and optimized in order to obtain a 

high isolation at 2-4 GHz (S-band). 

3.3.1 S-Band Switch Design 

Figure 3.12 (a) shows the schematic diagram of the S-band MEMS shunt-capacitive switch of 

type1. It is based on a H-shaped membrane, investigated in the previous section, but the 

thickness has been increased to a 1.0 µm. The initial gap height has also been changed to 

2.0 µm. The lower electrodes are made of a highly doped polysilicon with a sheet resistance 
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of 1400 Ω/□. In this case the dielectric layer over the lower electrode can be made of silicon 

dioxide deposited in a high temperature low pressure chemical vapor deposition (LPCVD) 

process [178]. Due to LPCVD silicon oxide the reliability of a RF MEMS shunt-capacitive 

switch can be increased significantly. A silicon nitride layer (0.1 µm thick) covers the central 

RF line as a dielectric layer for capacitive coupling. The thin (50 nm) Al layer of 540 µm 

length and 130 µm width is deposited on the silicon nitride forming a large capacitance area 

when the switch is actuated. This metal interlayer also solves the problem related to the 

roughness of the dielectric layer when the switch is in the down-state. Figures 3.12 (b, c) 

show the top views of the investigated types of RF MEMS shunt-capacitive switches. To 

avoid the stiction between the membrane and the metal layer on the dielectric in the down-

state the contact area should be small. Both types of MEMS switches do not require dimples 

at the contact areas simplifying their fabrication significantly. 

 

a) 

                      

b)                                                                       c) 

Figure 3.12: Schematic diagrams of the designed S-band MEMS shunt-capacitive switches: (a) 

type 1 (3-D view), (b) type 1 (top), and (c) type 2 (top). All dimensions in microns. 
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3.3.2 Electromagnetic and Circuit Simulations 

The designed RF MEMS shunt-capacitive switches are modeled by two short sections of the 

transmission lines with a characteristic impedance Z0 = 50Ω. The equivalent circuit of the 

designed RF MEMS shunt-capacitive switches is shown in Figure 3.13. The base-model used 

for the calculation of the capacitance between the RF signal line and the bridge is the parallel-

plate capacitance model [39]: 

f
rd

up C
tg
A

C +
+
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/0

0                                                                 (3.2) 
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εε 0=                                                                          (3.3) 

where Cup and Cd are the designed up-state and the down-state capacitance, respectively. Cf is 

the fringing field capacitance; td is the thickness of the dielectric layer; g0 is the gap between 

RF signal line and the bridge; ε0 is the free space permittivity; εr is the relative permittivity of 

the dielectric layer and A is the total area of the capacitive structure. In the down-state the total 

capacitive area is the area of the thin metal layer deposited on the dielectric above the CPW 

signal line and is 59.2×103 µm2 and 57.15×103 µm2 corresponding to the down-state 

capacitances of 39.8 pF and 38.5 pF for the switches of type 1 and type 2, respectively. The 

total up-state capacitance area is the area below the bridge at the contact location and is 

2×103 µm2 and 0.9×103 µm2 for the RF MEMS switches of type 1 and type 2, respectively. 

Thus the up-state capacitances, excluding the fringing capacitance, which usually ranges from 

0.2 to 1.0 of a parallel-plate capacitance and depends on the bridge dimension and the initial 

gap height, are 8.80 fF for the switch of type 1 and 3.96 fF for the switch of type 2. 

Consequently, the designed MEMS switches have a down-state/up-state capacitance ratio 

higher than 3.8×103. 

The equivalent resistance Rsh represents the sum of the resistances of the metal bridge Rb and 

the electrical pass Rep between the membrane and the metal interlayer at the contact location. 

In the up-state the bridge inductance and the bridge resistance can be neglected because the 

switch impedance is predominantly determined by the small up-state capacitance. 

The down-state resonant frequency of the switch response ω0 is given by: 

CLsh

1
0 =ω                                                            (3.4) 

where C is the down-state capacitance which has to be relatively high to reach an acceptable 

isolation at lower frequencies. 
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The horizontal branch of the equivalent circuit in Figure 3.13 describes the CPW transmission 

line. As will be shown below, each type of the designed switches has different lumped-element 

parameters due to the shape of their CPW lines. 

 

Figure 3.13: Equivalent circuit model for the designed S-band RF MEMS switches. 

Figure 3.14 shows the simulated RF responses for the designed RF MEMS shunt-capacitive 

switches of type 1 and type 2 in the up-state and the down-state. The ON-state return loss (S11) 

is less than -20 dB and -30 dB, while the insertion loss (S21) is less than 0.32 and 0.28 dB 

from dc up to 35 GHz for the switches of type 1 and type 2, respectively. The OFF-state 

isolation (S21) for both types of the designed shunt-capacitive switches is higher than -20 dB 

from 1.5 GHz up to 35 GHz. However, the isolation of the switch of type 1 is higher 

than -30 dB from 4.5 GHz up to 28 GHz with a maximum stop-band rejection of 56 dB at the 

resonance frequency of 11.6 GHz. The switch of type 2 provides an OFF-state isolation 

higher than -30 dB only from 4.2 GHz up to 20 GHz with a maximum stop-band rejection of 

42 dB at the resonance frequency of 9.6 GHz. 

               

a)                                                                           b) 

Figure 3.14: EM simulations for the designed S-band MEMS shunt-capacitive switches: (a) in 

the ON-state and (b) in the OFF-state. 
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Figure 3.15 shows the ON- and OFF-state frequency responses obtained using EM and 

equivalent circuit simulations. A good agreement between both simulations has been reached. 

                

a)                                                                           b) 

Figure 3.15: EM and equivalent circuit simulations for the designed S-band MEMS shunt-

capacitive switch of type 1: (a) in the ON-state and (b) in the OFF-state. 

Table 3.2 summaries the lumped-element parameters extracted from the EM simulations. It 

can be seen that the designed switches have different element values due to the different 

shapes of the bridges and the CPW center conductors at the contact locations. 

Table 3.2 Extracted equivalent circuit parameters for S-band MEMS switches 
 Type 1 Type 2  
Cup 
Cd  
Lsh 
Rsh “ON” 
Rsh “OFF” 
Ls 
Rs  

(fF) 
(pF) 
(pH) 
(Ω) 
(mΩ) 
(pH) 
(mΩ) 

14.4 
39.2 
10 
500 
44 
2.2 
250 

11.4 
38 
14.4 
560 
200 
28.2 
250 

The simulation shows that the rectangular holes on the transmission line of the switch of type 

1 increase the series inductive loading Ls significantly. The theoretically calculated up-state 

capacitance, excluding the fringing capacitances Cf, and the EM simulated capacitance are 

8.80 fF and 14.4 fF for the switch of type 1 and 3.96 fF and 11.4 fF for the switch of type 2. It 

can be seen that the simulated up-state capacitance is 1.7 times higher than the parallel-plate 

capacitance of the switch of type 1 and 3 times higher for the switch of type 2. This may be is 

due to the fringing field capacitance existing at the bridge edges close to the CPW signal lines. 

The CPW slot of the switch of type 2 is increased by the decrease of the signal line width; 

therefore, the inductances Lsh and Ls of the switch of type 2 are higher than for the switch of 

type 1. 
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The isolation of both types of RF MEMS shunt-capacitive switches at low frequency (0.8-2 

GHz) can be increased by increasing the length of the thin Al layer on the dielectric layer. 

Unfortunately, the size of the switches will also be increased. Figure 3.16 shows the simulated 

OFF-state RF responses of the MEMS shunt-capacitive switches of type 1 and type 2 and of 

the same switches with an interlayer length increased to 1000 µm (high capacitance (HC) 

switches). It can be seen that the HC switches have an isolation of -20 dB at 0.8 GHz that 

makes them useful for mobile systems such as cell phones, etc. 

 

Figure 3.16: EM simulations for the designed MEMS switches in the OFF-state. 

                  

a)                                                                           b) 

Figure 3.17: Contour plot of the deformed membranes with biaxial tensile stress of 20 MPa: 

(a) switch of type 1 at 11.5 V and (b) switch of type 2 at 9.0 V. 

3.3.3 Electromechanical Modeling 

The electromechanical modeling for the designed S-band MEMS shunt-capacitive switches 

has been carried out with the FEM simulator using the sequentially coupled method. 

Figure 3.17 shows the contour plots of the deformed membranes with a biaxial tensile stress 

of 20 MPa with actuation-voltages of 12 V and 9 V (very close to the pull-down voltage) for 
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the switches of type 1 and type 2, respectively. It can be observed that the maximum 

deflection is at the contact location for both switches.  

The contour plots of the stress intensity are depicted in Figure 3.18 (a, b). The maximum 

stress concentration has been observed at the sharp corners of the fixed meander suspensions, 

while the contact areas are almost unstressed. The maximum stress strength for both switches 

is less than 39 MPa and does not exceed the allowable value of aluminum. 

                  

a)                                                                           b) 

Figure 3.18: Contour plot of the stress strength in the deformed membranes with biaxial 

tensile stress of 20 MPa: (a) switch of type 1 at 11.5 V and (b) switch of type 2 at 9.0 V. 

Figure 3.19 shows the deflection of the center of the contact areas in dependence on the 

applied voltage for both types of the designed RF MEMS switches for different values of the 

biaxial tensile stress. It can be seen that the biaxial tensile residual stress increases the pull-

down voltage but the voltage value dose not exceed 15 V even for a tensile stress of 40 MPa. 

 
Figure 3.19: The membrane center deflection versus applied voltage for different values of the 

biaxial tensile stress. 

The proposed design of MEMS shunt-capacitive switches is completely based on real 

fabrication facilities and requires five lithographic masks. 
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3.4 Design of Low Actuation-Voltage High Isolation L-Band 

MEMS DC-Contact Shunt-Capacitive Switches 

In this section the design of a dc-contact shunt-capacitive L-band MEMS switch based on the 

geometry concept investigated in previous sections will be presented. The dielectric on 

ground (DOG) structure has been used to increase the capacitive coupling and, thus, to 

improve the switch isolation at low frequencies. A new approach to solve the stiction problem 

and to achieve the out-of-plane profile membrane is proposed. 

 

a) 

                                 

                                          b)                                                                     c) 

Figure 3.20: Schematic diagram of the designed L-band MEMS dc-contact shunt-capacitive 

switch: (a) 3-D view, (b) top view and (c) moveable membrane. All dimensions in microns. 

3.4.1 L-Band Switch Design and Description 

Figure 3.20 shows the schematic diagram of the designed L-band RF MEMS dc-contact 

shunt-capacitive switch. It consists of the H-shaped membrane suspended above a coplanar 

waveguide line with an initial gap height of 2 µm described above. The moveable membrane 
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with a thickness of 1.0 µm is depicted in Figure 3.20 (c). A 25×30 µm2 rectangular dimple 

with a height of 0.6 µm is additionally located at the center of the contact area. This dimple 

forms an electrical contact with the center conductor when the switch is actuated. A silicon 

nitride layer with a thickness of 0.1 µm covers the ground planes as a dielectric layer for 

capacitive coupling. A 0.5 µm thick aluminum layer deposited on the dielectric layer 

represents the upper electrode of the resulting MIM structure. This metallization also forms 

the “ribs” on the lower actuation electrodes as shown in Figure 3.20 (b). Figure 3.21 (a, b) 

shows a schematic diagram of the predicted out-off-plane profile of the membrane after 

fabrication. The wave-shaped membrane and the ribbed pull-down electrodes decrease the 

contact area between the metal bridge and the lower electrodes reducing the risk of stiction. 

Moreover, the out-off-plane membrane decreases the influence of the residual stress. The 

driving voltage is applied between the ground planes of the CPW line and the upper metal 

films deposited on the dielectric layer. 

 

a)                                                                                     b) 

Figure 3.21: Schematic diagram of the predicted shape of the membranes at the contact 

location: (a) on the sacrificial layer and (b) after fabrication when the switch is actuated. 

3.4.2 Electromagnetic and Circuit Simulations 

Figure 3.22 shows the equivalent circuit model of the designed L-band MEMS dc-contact 

shunt-capacitive switch. The up-state capacitance is mainly determined by the area of the 

metal bridge over the center conductor. For this reason and to decrease the up-state insertion 

loss the width of the bridge over the signal line and the RF central line at the contact location 

have been decreased, as shown in Figure 3.20. In the down-state the capacitance of the switch 

is determined by the MIM capacitors at the posts of the metal bridge while the capacitance 

Cup has to be removed from the lumped-element circuit model. In order to provide a low 

contact resistance between the bridge and the signal line a dimple has been formed at the 

contact location. A high contact resistance leads to an increase in the radiation loss and, thus, 

to a reduction of the stop-band rejection. 
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Figure 3.22: Equivalent circuit model for the designed L-band RF MEMS switch. 

Figure 3.23 shows the simulated frequency response of the designed RF MEMS dc-contact 

shunt-capacitive switch using EM and equivalent circuit simulators. The ON-state return loss 

(S11) is less than -40 dB while the insertion loss (S21) is less than 0.8 dB from dc up to 40 GHz. 

The OFF-state isolation (S21) of the designed switch is higher than -25 dB at 0.8 GHz and 

close to -20 dB at 40 GHz.  

              

a)                                                                  b) 

Figure 3.23: EM and equivalent circuit simulations for the designed L-band MEMS dc-

contact shunt-capacitive switch: (a) in the ON-state and (b) in the OFF-state. 

Table 3.3 RF characteristics and extracted RLC values 
ON-state OFF-state 

• Return loss (dB)  
0.8 GHz                                                        52 
3.8 GHz                                                        49 
40 GHz                                                         40 

0.08 
0.09 
0.22 

• Isolation (dB)  
0.8 GHz                                                       0.03 
3.8 GHz                                                       0.04 
40 GHz                                                        0.08 

26 
54 
19 

Capacitance Cup (fF)                                   2.4 – 
Capacitance CMIM (pF)                               150 150 
Inductance Lsh (pH)                                   23.1 23.1 
Resistance R (Ω)                                        1200 0.5 
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Table 3.3 summarises the lumped-element parameters extracted from the circuit simulation 

and the RF characteristics of the switch. The down-state capacitance determined by the MIM 

structure is 150 pF. According to Eqn. 3.4 the resonance frequency is shifted to lower 

frequencies and occurs at a 3.8 GHz. The inductance Lsh is relatively high as in this case the 

piece of the bridge located above the CPW slot is enlarged. 

3.4.3 Electromechanical Modeling 

The electromechanical modeling has been performed using FEM sequentially coupled 

analysis. Figure 3.24 (a) shows the contour plots of the deformed membrane with an applied 

voltage of 9.0 V (very close to the pull-down voltage) and with a biaxial tensile stress of 

20 MPa. It can be seen that the required maximum deflection is at the contact location. The 

contour plot of the stress strength is depicted in Figure 3.24 (b). As in the previous cases the 

maximum stress concentrates in the meander suspensions at the fixed edges and is less than 

39 MPa. The area between the fixed-fixed flexure suspensions is almost unstressed excluding 

the contact location where the metal walls in z-direction form the dimple. The vertical metal 

walls of the dimple introduce a stress gradient in the contact location from 4.2 MPa to 8.63 

MPa. This value is several times less than the allowable value of aluminum. 

                  

a)                                                                           b) 

Figure 3.24: Contour plot of the membrane with an applied bias voltage of 9 V and biaxial 

tensile stress: deformed shape (a), and stress strength (b). 

Figure 3.25 shows the deflection of the center of the dimple versus the applied bias voltage 

for different values of biaxial tensile stress. It can be seen that even for a 40 MPa biaxial 

tensile stress the pull-down voltage does not exceed 12 V. 
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Figure 3.25: The displacement of the center of the dimple versus the applied voltage for 

different values of biaxial tensile stress. 

3.5 Summary 

The concept of low actuation-voltage, high isolation RF MEMS switches has been introduced 

and investigated in this chapter. The switches are based on the designed H-shape membrane 

with a low spring constant fixed-fixed flexure suspension. Shunt-capacitive and shunt-

resistive modifications have been modeled and optimized using EM MoM and FEM 

simulation platforms. The simulated base-model of the H-shape RF MEMS switch is useful 

for X-band applications and provides an ON-state insertion loss less than 0.2 dB together with 

a return loss of more than -18 dB. The simulated OFF-state isolation is higher than -20 dB 

from 7.0 GHz up to 40 GHz for the shunt-capacitive switch and higher than -25 dB from dc 

up to 40 GHz for the shunt-resistive structure. The FEM simulated pull-down voltage is close 

to 14 V for the membrane without residual stress and less then 25 V for the pre-stressed 

membrane with a biaxial tensile stress of 20 MPa. 

One of the main advantages of these switches is that the bias voltage has not to be applied 

between the center-conductor and the ground planes; hence no interference occurs with other 

semiconductor devices in a practical circuit. This separation between RF and dc signals 

allows modeling practical circuits more flexibly. 

Dc-contact RF MEMS shunt-capacitive switches based on the proposed H-shape membrane 

have been introduced, simulated and optimized for S- and L-band applications. The S-band 

MEMS shunt-capacitive switch has been designed by forming a MIM structure directly on the 

center signal line so that the actuated bridge realizes a dc-contact with the top electrode of the 

MIM capacitor. The bridge shape and the conductor line at the contact location have been 
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modified to reduce the up-state capacitance and avoid the stiction problem. The S-band switch 

provides an ON-state insertion loss less than 0.3 dB with a return loss higher than -25 dB 

from dc up to 35 GHz. The simulated OFF-state isolation is higher than -20 dB from 1.5 GHz 

up to 35 GHz. The predicted OFF/ON-state capacitance ratio is higher than 3.8×103. The 

simulated pull-down voltage lies in the range from 9.0 V to 12 V for a membrane with a 

biaxial tensile stress of 20 MPa. Even for a residual stress of 40 MPa the pull-down voltage 

does not exceed 15 V. 

Finally, the base switch model has been redesigned to meet the requirements of a low-

actuation voltage and a high isolation for L-band applications. The dielectric on ground 

(DOG) approach has been used to enlarge the capacitive coupling. The EM simulation shows 

an ON-state insertion loss less than 0.8 dB with a return loss higher than -40 dB from dc up to 

40 GHz. The isolation in the OFF-state is higher than -20 dB from 0.8 GHz up to 40 GHz. A 

method to reach the out-of-plane profile of the membrane is proposed. The electromechanical 

simulation shows pull-down voltages of 9.0 V and 12.0 V for membranes with biaxial tensile 

stresses of 20 MPa and 40 MPa, respectively. 

The proposed designs of RF MEMS switches are completely based on fabrication facilities. 
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Chapter 4 

 
Fabrication of Fixed-Fixed Beam MEMS 

Shunt-Capacitive Switches 
 

In this chapter, the fabrication process of conventional RF MEMS switches with a fixed-fixed 

beam configuration will be described. The fabrication of low-stress thin-film materials and 

high quality dielectric films is highly dependent on the process conditions and on the used 

equipment.  

Two designs of fixed-fixed beam shunt-capacitive RF MEMS switches in CPW configuration 

presented in [76] and [24] have been fabricated on high resistivity (> 4 kΩ·cm) silicon 

substrates using standard fabrication processes compatible with complementary metal oxide 

semiconductor (CMOS) technology. Each fabrication step will be described and investigated 

in this chapter. The optimized process parameters will be presented. Finally, the fabricated 

switches are measured and the obtained results are compared to the simulations. 

4.1 Fabrication Process 

4.1.1 Switch Designs 

The fabrication process of the conventional capacitive RF MEMS switches with a fixed-fixed 

beam configuration includes surface micromachining compatible with standard CMOS 

technology. Two designs of RF MEMS shunt-capacitive switches described in [76] (Figure 

4.1 (a), labeled type A) and in [24] (Figure 4.1 (b), labeled type B) have been fabricated in a 

standard clean-room. The dimensions of the structures are listed in Table 4.1. The moveable 

membrane of the switch of type A has a simple rectangular shape. The movable membrane of 

the RF MEMS switch of type B has a bowtie shape as shown in Figure 4.1 (c). Notice that 

holes with a diameter of 2.0 µm (not shown in Figure 4.1) are added to the membrane in order 

to decrease the damping effect, to reduce the residual stress in the membrane and to facilitate 

a removal of the sacrificial layer. The switches have been fabricated on high-resistivity 

(> 4 kΩ·cm) silicon substrates. 
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a)                                                                     b) 

 

c) 

Figure 4.1: Schematic diagrams of the RF MEMS capacitive switch: (a) type A, (b) type B 

and (c) membrane shape of the switch of type B. 

Table 4.1 Dimensions of RF MEMS switches of type A and type B 
Parameters Switch Type A Switch Type B Materials 
G/W/G 
tsub 
tox 
trf 
tG 

g0 
td 
Lm 
tm 
Wm 

(µm) 
(µm) 
(µm) 
(µm) 
(µm) 
(µm) 
(nm) 
(µm) 
(µm) 
(µm) 

60/100/60 
625 
1.0 
0.8 
0.8 
1.5 
60 
300 
1.0 

60-100 

80/120/80 
625 
1.0 
0.8 
2.85 
2.0 
60 
310 
0.7 
100 

Al 
Si 

SiO2 
Al 
Al 
- 

SiN 
Al 
- 
- 

4.1.2 Fabrication Steps 

The switch designs need only four lithographic masks as shown in Figure 4.2. The following 

technology steps have been performed to fabricate the RF MEMS shunt-capacitive switches 

of type A and type B: 

Step 1: Cleaning of the silicon substrate; 

Step 2: Wet thermal oxidation to grow a silicon dioxide buffer layer; 
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Step 3: PVD of an Al/Cr thin metal bi-layer for the CPW lines; 

Step 4: Patterning of the Al/Cr bi-layer by wet etching to form the CPW (Figure 4.2 (a)); 

Step 5: ECR-PECVD of silicon nitride as a dielectric layer for the capacitive coupling; 

Step 6: Patterning of silicon nitride by dry etching (Figure 4.2 (b)); 

Step 7 (Only for switch of type B) PVD of Al for CPW ground planes; 

Step 8 (Only for switch of type B) Patterning of Al to form CPW ground planes; 

Step 9: Deposition and patterning of the sacrificial layer (Figure 4.2 (c)); 

Step 10: PVD of Al for the membrane; 

Step 11: Patterning of Al film by dry etching to form the membrane shape (Figure 4.2 (d)); 

Step 12: Removal of the sacrificial layer by dry etching (Figure 4.2 (e)). 

Type A                                                           Type B 

                  

a) 

                 

b) 

                

c) 

                  

d) 
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e) 

Figure 4.2: Fabrication flow of RF MEMS capacitive switches: (a) PVD process for the CPW 

lines; (b) PECVD and patterning of the dielectric layer; (c) PVD of Al for the switch of type B, 

spin coating and patterning of the sacrificial layer for both switches; (d) PVD and dry etch 

processes to form the membrane; and (e) removal of the sacrificial layer by dry etching. 

4.1.2.1 Cleaning and Wet Thermal Oxidation of the Silicon Substrate 

The first step in the fabrication flow for both types of RF MEMS switches was cleaning of the 

silicon substrate by Caro’s acid (H2SO4:H2O2 ≡ 2:1; prepared using 96% H2SO4 and 32% 

H2O2) at T = 120 °C for 5 min. After the treatment with Caro’s acid, the wafers were dipped 

for 1 min in diluted hydrofluoric acid (0.5% HF). Then the silicon dioxide buffer layer was 

grown by wet thermal oxidation in a Centrotherm hot wall oxidation furnace. (T=1100 °C, t = 

50 min, oxygen flow 3 slm and hydrogen flow 5 slm) (step 2). 

4.1.2.2 PVD and Patterning of Al/Cr to Form the CPW Lines 

The PVD equipment used in the switch fabrication was a Balzers BAK 600 [179] which is a 

conventional e-gun evaporation system. The metal deposition procedure was carried out at a 

base pressure of 10-6 mbar with a deposition rate of about 1.0 nm/sec. An Al/Cr bi-layer was 

evaporated and patterned to form the CPW lines (step 3). A thin layer of chromium was 

deposited on top of Al in order to avoid the formation of Al hillocks. 

The wet etch process (step 4) was performed using a chromium etch mixture (ammonium 

nitrate – 20 mass% and acetic acid – 4 mass% in DI H2O) to etch the Cr layer and a 

phosphorous acid mixture (ortho-phosphorous acid - 63 mass%, acetic acid - 20 mass% and 

nitric acid - 3 mass% in DI H2O) to etch the Al layer. The wet etching is commonly an 

isotropic process and etches equally in all directions. Therefore, all the line widths were 

oversized by 2.0 μm to compensate a decrease after the wet etching. Sharp lines have been 

obtained as shown in Figure 4.3. 
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Figure 4.3: Microphotograph of Al/Cr metal lines patterned by wet etching. 

4.1.2.3 Deposition and Characterization of the Dielectric Film 

The step 5 in the fabrication flow for both types of MEMS switches is the deposition the 

dielectric layer. Silicon nitride was deposited on the center conductor line using a low 

temperature electron cyclotron resonance plasma enhanced chemical vapour deposition (ECR-

PECVD) technique. Silane (SiH4), nitrogen (N2) gases were used as precursors of the 

deposition process and argon (Ar) as inert diluent. 

Deposition Procedure of Silicon Nitride 

The deposition equipment used in this work was a high-density plasma system equipped with 

an ECR source Roth&Rau MicroSys 350 [180]. Figure 4.4 shows a schematic diagram of the 

ECR-PECVD cluster module. In such a system a high density of ions and free radicals in the 

discharge is generated. It allows to significantly reduce the deposition temperature. In order to 

increase the energy of ions bombarding the surface the substrate chuck can be biased by 

applying RF (13.56 GHz) power. 

 

Figure 4.4: Schematic diagram of the ECR-PECVD system and the path of an electron in the 

plasma. 
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Nitrogen N2 and argon Ar gases are fed directly into the ECR plasma, and silane SiH4 is 

injected into the deposition chamber via a gas-ring around the perimeter of the substrate 

chuck. The substrate temperature is controlled by the heated chuck. 

The deposition conditions used in this investigation are listed in Table 4.2. The microwave 

power, RF power, Ar flow and process pressure were 500 W, 1 W, 100 sccm, and 

approximately 2.5×10-2 mbar, respectively, and were kept constant for all experiments. 

Table 4.2 Deposition parameters of silicon nitride films 
Process  SiH4, (sccm) N2, (sccm) T, °C 

1 5 30 50 
2 7.5 30 50 
3 30 30 50 
4 15 30 20 
5 15 30 100 
6 15 30 200 

Characterization of Deposited Silicon Nitride Thin Films 

For an optimization of the deposition parameters and an investigation of the obtained silicon 

nitride film MIM capacitors were fabricated on p-type Si <100> substrates covered by a 

1.0 µm thick silicon dioxide. Aluminum films with a thickness of 0.2 µm were used as 

electrode materials. The top contacts had circular-shapes with areas from 0.031 mm2 up to 

0.785 mm2. 

The dielectric properties of the deposited films were evaluated by current-voltage (I-V) and 

capacity-voltage (C-V) measurements. The I-V and C-V (at 1.0 MHz) measurements were 

carried out using a programmable sub-femtoampere electrometer (Keithley 6430) and a 

precision LCR meter (Agilent 4284A), respectively. 

The thickness and the refractive index of the deposited films were measured by ellipsometry 

(SE 850, Sentech) in the wavelength range from 248 nm to 869 nm with an incidence angle of 

70° and evaluated using Cauchy’s model. The film thickness uniformity was estimated over 

the full wafer size using the “Wafermap” mapping software from Boin GmbH. The film 

composition was analyzed by X-ray photoelectron spectroscopy (XPS) with a Perkin Elmer 

PHI 5600 ESCA system, using Mg Kα (1253.6 eV) X-radiation with an input power of the 

excitation source of 400 W. The film roughness was measured using an atomic force 

microscope (AFM) (Nanotop-2006) operating in contact and tapping modes. 
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The deposition features, physical and electrical properties of the deposited silicon nitride 

films are summarized in Table 4.3. The average thickness of the deposited films is 50 nm. 

Table 4.3 Deposition features, physical and electrical properties of deposited SixNy films

Process Dep. rate, 
(nm/min) 

Film thickness 
uniformity, (%)

Roughness, 
Ra (nm) 

Refr. 
index 

N/Si 
ratio εr 

1 6.8 2.3 ≈ 2.25 1.79 1.34 6.2 
2 8.1 2.1 ≈ 2.17 1.87 1.29 6.6 
3 14.6 1.96 ≈ 1.15 2.22 0.89 7.9 
4 11.8 1.92 ≈ 2.1 1.89 1.17 6.9 
5 11.4 2.0 ≈ 2.2 1.9 1.19 7.0 
6 10.3 2.1 ≈ 2.2 1.9 1.20 7.0 

One of the most important factors that influence the dielectric film quality is the silane to 

nitrogen ratio. In our experiments the nitride films were deposited with ratios of SiH4/N2 of 

1:6, 1:4, 1:2 and 1:1. 

XPS results summarized in Table 4.3 show that the concentration of nitrogen in the film was 

lowered when the silane flow was increased (see Tables 4.2). A higher silane flow, i.e. an 

increase of the SiH4/N2 ratio, increases the concentration of reactive silyl species (SiH2) in the 

chamber. Due to the low process chamber pressure no significant gas phase reaction can occur 

between both precursors resulting in a reduction of the N/Si ratio in the deposited film. This 

was verified by experiments: silicon nitride deposited with SiH4/N2 = 1:1 is silicon-rich see 

process 3 in Tables 4.2 and 4.3. The deposition rate of the dielectric film increased if the 

N2/SiH4 ratio decreased indicating that the formation of the film was limited by the silane 

species in the ECR plasma. It could also be observed that the deposition rate slightly 

decreased if the process temperature was increased. This is due to more dense films at higher 

deposition temperatures as the concentration of hydrogen incorporated in the film decreases. 

The refractive index of the deposited silicon nitride also depended on the N/Si ratio in the film; 

at values higher than 1.9 the silicon nitride is silicon-rich what could be confirmed by 

ellipsometry and XPS measurements. The film uniformity over the whole wafer was 

measured for each of the deposition conditions and ranged from 1.92% to 2.3%. This satisfies 

the requirements of microfabrication. A radial variation of the thickness was observed with a 

maximum thickness at the center of the substrate. It is known that the uniformity of the 

deposited film depends on the uniformity of the plasma profile in an ECR-PECVD chamber 

[109]. Mapping of the thickness of the nitride film deposited with process 3 is shown in 

Figure 4.5 (a). Notice that the mapping was obtained by the measurement of 18 points in two 
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perpendicular directions over the wafer (cross-measurement). The average roughness of the 

deposited films decreased from 2.25 nm to 1.15 nm as the SiH4/N2 ratio was increased from 

1:6 to 1:1. This may be due to the higher surface diffusion of silicon atoms [181]. The better 

mobility of the adatoms leads to a smoother surface and a densification of the film; such 

phenomena have been observed and described in [181, 182]. The AFM image of the sample 

obtained with process 3 is shown in Figure 4.5 (b). 

            

a)                                                                              b) 

Figure 4.5: Mapping of the thickness (a) and (b) AFM image of the silicon nitride film 

deposited by ECR-PECVD with process 3. 

Figure 4.6 (a) shows the results of C-V measurements on MIM structures with an area of the 

top electrode of 0.785 mm2 for different deposition conditions. It can be seen from the 

measurement results (see Figure 4.6 and 4.7 (a)) that the capacitance was substantially 

independent of the applied voltage (value and polarity), only depending on the dielectric 

properties of the film and the areas of the electrodes. The dielectric constant of the deposited 

film can be easily calculated using the conventional parallel plate model: 

d

r

t
AC εε0=                                                                (4.1) 

where εr is the dielectric constant, ε0 is the free space permittivity, A is the active area and td is 

the dielectric film thickness. Figure 4.7 (b) shows a plot of the capacitance as a function of the 

electrode area at zero bias voltage for the nitride film deposited with process parameters 3. It 

can be seen that there is a linear relationship between C and V and Eqn. (4.1) is valid. From 

the slope of the curve, giving a value of εr ε0/td of 1.4×10-3 F/m2, the permittivity εr of the 

dielectric film was calculated to be 7.9. The same procedures were carried out to determine 

the dielectric constants for all samples (see Table 4.3). 
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Due to the higher silicon content the silicon-rich nitride had a higher dielectric constant than 

the nitrogen-rich one. 

 

Figure 4.6: Dependence of capacitance on voltage for MIM structures with an area of the top 

electrode of 0.785 mm2 fabricated with different deposition parameters. 

    

                                       a)                                                                        b) 

Figure 4.7: Dependence of capacitance on voltage for MIM structures fabricated with process 

parameters 3 vs. top electrode areas (a) and capacitance as function of top electrode area at 

zero bias voltage for process 3 (b). 

In order to study the insulating properties of the deposited films, current-voltage 

characteristics have been measured. Figure 4.8 shows the I-V characteristics obtained for a 

capacitor area of 0.785 mm2 with silicon nitride films deposited with processes 1, 2 and 3. It 

was defined that the dielectric breakdown of the MIM structures had happened if a leakage 

current of 100 nA was reached. The corresponding average breakdown voltages of the 

nitrogen-rich films of processes 1 and 2 were 40 V and 37 V, respectively, and were higher 
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than for the silicon-rich films having values of 29.5 V. For a capacitor area of 0.785 mm2 and 

a film thickness of about 50 nm these voltages are corresponding to electric field strengths of 

7.9 MV/cm, 7.4 MV/cm, and 5.9 MV/cm for the processes 1, 2 and 3, respectively. The 

breakdown field strength for the processes 4-6 is close 7.5 MV/cm. The silicon-rich nitride 

films had a higher conductivity and, thus, a lower breakdown voltage. 

 

Figure 4.8: Dependence of leakage current on voltage for MIM structures with an effective 

area of 0.785 mm2 fabricated with different process parameters. 

The FEM predicted actuation-voltage of both types of RF MEMS switches with a 60 nm thick 

dielectric layer is not higher than 32 V even for a value of 30 MPa of residual stress in the 

metal membrane. This voltage value and the above film thicknesses correspond to an electric 

field strength of 5.3 MV/cm which is lower than the breakdown field of all investigated 

silicon nitride films. The silicon nitride film deposited in process 3 was chosen for the 

fabrication of the switches as it exhibited a higher dielectric constant and better physical 

properties such as a surface roughness in comparison to the films of the other processes. 

4.1.2.4 Patterning of Silicon Nitride Film 

Reactive ion etching (RIE) was carried out to etch the deposited silicon nitride layer (step 6). 

AZ6612 positive photoresist with a thickness of 1.2 µm was spin coated and patterned on the 

nitride surface. 

RIE Process 

A scheme of a parallel plate RIE system is shown in Figure 4.9. In this reactor the neutral 

electrode is attached to the chamber wall to enlarge its effective electrode area. Therefore, a 
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higher potential can be created between the plasma and the powered electrode thus increasing 

the energy of the ion bombardment [183]. For a pressure in the reactor higher than 1 Torr the 

plasma compresses and loses contact with the walls. Therefore, RIE should be done with low 

pressure condition, where the mean free path is in the order of millimeters and the plasma 

stays in good contact with the chamber walls. 

 

Figure 4.9: Conventional parallel plate RIE system. 

 

Figure 4.10: SEM image of a silicon nitride film deposited on the center conductor of a CPW 

and patterned by RIE. 

In our case a high anisotropy of the etch process is not needed, because the dielectric layer is 

larger than the real capacitive contact area under the metal bridge. However, etch selectivity 

plays an important role as the undesired nitride has to be removed without damaging the 

metallization laying beneath the nitride. A CHF3-CF4-O2 gas mixture was used to etch the 

silicon nitride in a STS C 071 RIE system [184]. The gas flows of CHF3, CF4 and O2 were 70, 

20 and 5 sccm respectively, the susceptor temperature was 20 °C, the process pressure 

50 mTorr, the base pressure 1.0 mTorr, and the RF power 100 W. The measured etch rate was 

about 1.8 nm/sec. A SEM image of a RIE patterned silicon nitride film is shown in Figure 

4.10. 
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4.1.2.5 PVD and Patterning of Aluminum to Form CPW Ground Planes 

(Only for Switches of type B) 

The Al layer with a thickness of 2.85 µm has been deposited by PVD process and patterned by 

wet etching to form the ground planes of the RF MEMS switch of type B as shown in 

Figure 4.2 (c). The process parameters were the same as outlined in section 4.1.2.2. 

4.1.2.6 Fabrication of the Membrane 

Spin Coating and Patterning of the Sacrificial Layer 

Step 6 in the fabrication flow of both switches is spin coating and patterning of the sacrificial 

layer. As sacrificial layer a positive photoresist film AZ6612 with a thickness of 1.6 µm for 

switch of type A and of 2.9 µm for switch of type B was spin coated, patterned and developed. 

In detail, the following steps were carried out: 

• Dehydration bake for 120 min at 140 °C; 

• HMDS evaporation for 10 min at 80 °C; 

• Spin coating of the photoresist AZ6612 at 1800 rpm for 30 sec; 

• Soft bake at 90 °C on a hotplate for 60 sec; 

• Image exposure; 

• Development in AZ 726 MIF; 

• Post bake at 120 °C on a hotplate for 45 min. 

                  

a)                                                                  b)        

Figure 4.11: Microphotographs of the RF MEMS switches with a patterned sacrificial layer: 

(a) the switch of type A and (b) the switch of type B. 
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Figure 4.11 shows the microphotographs of the RF MEMS switches of type A and B with the 

patterned sacrificial layer. The final thicknesses of the photoresist were approximately 

1.55 µm and 2.85 µm for the switches of type A and B, respectively. 

PVD and Patterning of the Al Layer 

After patterning of the sacrificial photoresist, a layer of Al (1.0 µm – type A and 0.7 µm – 

type B) was evaporated and patterned forming a metal bridge with the last mask as shown in 

Figure 4.2 (d). The aluminum films were structured is a dry etching process to form the 

membrane shapes using a Sentech RIE cluster [185]. The following parameters were: process 

pressure 18 Pa, substrate temperature 60 °C, RF power 150 W and a gas flow ratio of Cl2/BCl3 

of 1:6. The etch selectivity of the AZ6612 positive photoresist to aluminum was 1:1. 

                      

Figure 4.12: Microphotograph of the top view of the fabricated RF MEMS switch of type A 

(a). SEM images of the realised membrane of a switch of type A: (b) view on the post of the 

membrane and (c) view on the membrane over the substrate. 

                       

                                              a)                                                                  b) 

Figure 4.13: Microphotograph of the fabricated RF MEMS switch of type B (a). SEM image 

of the realised membrane of a switch of type B over the central line (b). 
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Removal of the Sacrificial Layer 

The final step in the switch fabrication flow is the etching step to remove the sacrificial layer 

and to release the metal membrane. A dry etching in an oxygen plasma was performed to 

remove the sacrificial layer in a Sentech RIE cluster. The total etching time was 45 min with 

an O2 flow of 120 sccm. Microphotographs of the fabricated RF MEMS switches of type A 

and of type B are shown in Figure 4.12 and Figure 4.13, respectively. It can be seen that the 

suspended bridge structure is realised for both switches using the reported CMOS compatible 

technology. 

4.2 Simulation and Measurement Results 

In this section, the simulated and measured results of the fabricated RF MEMS switches of 

type A and type B are presented. The electrostatic-structural simulations were carried out with 

the FEM simulator ANSYS Multiphysics 9.0 [91] and the electromagnetic simulations with 

MoM EM simulators Sonnet [159] and Microwave Office [160], see chapters 2 and 3. The 

fabricated RF MEMS switches were contacted to a Suss MicroTec PM5 probe station [186] in 

order to measure the S-parameters. The RF measurements were performed with a HP 8722D 

vector network analyzer. External voltage for the switch actuation was applied by a 

Keithley 6430 source measurement unit. The RLC values of the switches were extracted from 

the S-parameter measurements by a fit to the simulated responses. 

EM Measurements, Simulation and Fitting CLR Parameters 

Both switches were implemented on CPW lines with a characteristic impedance of Z0 = 50 Ω. 

The measured and the fitted frequency responses of the RF MEMS switch of type A for 

different bridge widths are shown in Figure 4.14. The measured and the fitted S-parameters of 

the switch of type B are depicted in Figure 4.15. The fit was carried out using the lumped-

element model described in chapter 1 by changing the value of the shunt capacitance. The 

measurements show that the ON-state insertion loss S11 of all switches is less than 0.5 dB and 

the return loss is less than -10 dB up to 40 GHz. The OFF-state isolation is higher than -18 dB 

for the switch of type A and higher than -20 dB for the switch of type B for frequencies from 

6.0 GHz up to 40 GHz. 
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a)                                                                             b) 

Figure 4.14: Measured and fitted S-parameters of the RF MEMS shunt-capacitive switch of 

type A for different bridge width: (a) up-state and (b) down-state. 

        

a)                                                                           b) 

Figure 4.15: Measured, simulated and fitted S-parameters of the RF MEMS shunt-capacitive 

switch of type B: (a) up-state and (b) down-state. 

The up-state capacitance Cu can be extracted from the measured reflection coefficient S11 and 

for S11 ≤ -10 dB it is given by [39]: 

0

112
Z
S

Cu ω
≈                                                           (4.2) 

Table 4.4 summarises the capacitance values extracted from the measurements (Cu) and 

calculated using a simple parallel plate model (Cpp). It can be seen that the difference between 

these values for the switch of type A increases from 29% to 40% as the bridge width 

decreases. This is due to the fringing capacitance which has a higher influence as the 

capacitance area is decreased. For this reason the diameter of holes in the membrane plane 

should be less than 2·g0 in order to not affect the total capacitance value. The bridge 
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inductance and resistance were not fitted for the up-state because their influence on the 

frequency response is negligible. 

Table 4.4 Calculated and measured capacitance values  
 Up-state Down-state 

wm, µm Cpp, fF Cu, fF ΔC, fF ΔC/Cpp, % Cpp, pF Cd, pF 
100 56.5 72.8 16.3 29 11.66 8.8 
80 45.2 60.9 15.7 35 9.33 6.17 
60 33.9 47.4 13.5 40 7.0 4.7 

Type B 51.4 65.3 13.9 27 14.0 11.63 

The down-state capacitance Cd can be extracted from the measured transmission characteristic 

shown in Figure 4.14 (b) and Figure 4.15 (b). For S21 << -10 dB the down-state capacitance 

can be approximated as [39]: 

210

2
SZ

Cd ω
≈                                                            (4.3) 

The capacitance value must be extracted in the frequency range lower than f0/2 (f0 is the 

resonant frequency) because the response in this range is controlled by a pure capacitance. 

The down-state capacitance values calculated by using the parallel plate model and those 

extracted from the measurements are also listed in Table 4.4. The measured down-state 

capacitances were smaller than the calculated ones. The capacitance area of the experimental 

samples is reduced by the holes in the moveable membrane; additionally, the surface 

roughness will contribute to a not perfect contact of the membrane to the dielectric film 

resulting in a lower capacitance than calculated. With the down-state capacitance values, 

extracted from the measurements, the simulations were carried out to fit the simulated 

response to the measured S-parameters as depicted in Figure 4.14 (b) and in Figure 4.15 (b). 

The series inductance of the bridge controls the slope of S21, therefore, it controls the position 

of the resonance frequency as shown in Figure 4.14 (b). Its value increases as the bridge width 

increases and depends on the portion of the bridge over the CPW slot. The series resistance of 

the bridge can be fitted best at resonance frequency where the switch impedance is Zs = R and 

S21 is given by [46]: 
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The extracted values of bridge inductance and resistance are shown in Table 4.5. It is obvious 

that the resistance increases as the bridge width decreases. The bridge resistance controls the 

value of the rejection at the resonance frequency. 
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Table 4.5 Extracted inductance and resistance values  
 Type A Type B 

wm, µm 100 80 60 100 
L, pH  6 9.2 11.8 5.7 
R, Ω 0.15 0.33 0.4 0.065 

Electromechanical Measurements and Analysis 

The measured pull-down voltages were in the range of 24-26 V for the RF MEMS switch of 

type A and about 30 V for the switch of type B. As shown in chapter 1, the pull-down voltage 

can be calculated by the following expression [39]: 
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where k is the spring constant of the membrane. For the rectangular bridge it can be expressed 

as: 
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where E is Young’s modulus (E = 70 GPa for Al), v is Poison’s ratio (v = 0.35 for Al), and s 

is the residual tensile stress in the membrane. Using the equations above the theoretically 

calculated spring constant of the membrane of the switch of type A for the bridge width of 

100 μm is 55 N/m; this corresponds to a residual tensile stress of 31 MPa. The geometrical 

shape of the membrane of the switch of type B does not satisfy the requirements of the model 

described above. Therefore, 3-D FEM simulations were carried out for both types of MEMS 

switches in order to extract the residual stress value in the metal bridge. The simulated results 

gave values of the tensile stress of 27-28 MPa for both types of switches. It can be seen that 

the simulated stress is in 3-4 MPa less than the calculated one which was obtained using a 

first order expression where the stress only in one direction was taken into account. 
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4.3 Summary 

In this chapter the fabrication process of conventional RF MEMS switches with a fixed-fixed 

beam configuration was described. The switches were fabricated in a clean-room using 

surface micromachined techniques compatible with standard CMOS technology. Each 

fabrication step was described in details. High quality silicon nitride films were deposited 

using the ECR-PECVD method at 50 °C deposition temperature. The deposition parameters 

were optimized to get silicon nitride films with a relatively high dielectric constant, a high 

breakdown electric field strength and a low surface roughness. MIM capacitor structures were 

fabricated to determine the electrical properties of the deposited dielectric films. The 

refractive index and the film thickness were measured by ellipsometry. The surface roughness 

was analyzed by AFM. The dielectric constant and the breakdown voltage were determined 

by C-V and I-V measurements, respectively. XPS analysis was used to analyse the film 

composition. The influence of the gas mixture, namely the SiH4/N2 ratio, on the film 

properties was studied. The films grown at SiH4/N2 ratios of 1:6, 1:4 and 1:2 were nitrogen-

rich while the films deposited with a ratio of 1:1 were silicon rich. The deposition rate 

increased if the SiH4/N2 ratio was increased. The refractive index and the dielectric constant of 

the nitride films decreased if the SiH4/N2 ratio was reduced. The average surface roughness of 

deposited films was lower for silicon-rich films. The measured breakdown field of a sample 

processed with a SiH4/N2 ratio of 1:6 was 7.9 MV/cm at J = 12 µA/cm2 and decreased to 

5.9 MV/cm for a ratio of 1:1. The measurements showed that the substrate temperature had 

almost no influence on the film properties. 

Electromagnetic and electromechanical measurements of the fabricated RF MEMS switches 

were carried out in order to determine their properties. The measured ON-state insertion loss 

S11 for the all switches was less than 0.5 dB with a return loss less than -10 dB up to 40 GHz. 

The OFF-state isolation S21 was higher than -18 dB for frequency ranging from 6 GHz up to 

40 GHz. 

The measured pull-down voltage of the switch of type A was in the range of 24-26 V; for the 

switch of type B it was about 30 V. A FEM analysis was performed to estimate the residual 

stress in the metal membrane. The simulations showed that a value of the residual stress in the 

thin Al film deposited by PVD was about 27 MPa. 
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Coplanar Microwave Filters 
 

At first in this chapter two different types of coplanar bandpass filters (BPF) will be studied. 

The first one is designed as end-coupled λ/4 open-stub resonator. The second type is a new 

compact coplanar BPF with an inductively shunt-coupled approach using meander serpentine-

shape λ/2 shunt-stubs which allow to increase the inductive load and, thus, to reduce the size 

of the filter. 

Then, three different designs of coplanar filters based on defected ground structures (DGS) 

are presented. Several DGS shapes as resonator structures are investigated. The first one is a 

2-D quasi-fractal periodic defected ground structure (PDGS) based on a conventional 

rectangular dumbbell shape. The second DGS possesses triangular arrowhead slots which 

have been cascaded to realize low-pass filters (LPF). The last designed structure is a new 

compact DGS LPF. This structure is based on λ/4 open-end stub resonators combined with 

DGS slot resonators. 

All filter structures have been designed and characterized by EM as well as by lumped-

element equivalent circuit simulations using the full-wave EM MoM simulators Sonnet [159] 

and Microwave Office [160]. The optimized filters were fabricated on ceramic substrates 

Ro4003c produced by Rogers Corporation with a dielectric constant of 3.38 ± 0.05, a loss 

tangent of 0.0027 and a thickness of 0.813 mm. Copper with a thickness of 35 μm is used as 

metallization. The fabricated structures are measured using a Hewlett Packard 8722D Vector 

Network Analyzer. 

5.1 Design of Coplanar Bandpass Filter composed on Open-End 

Stubs 

This section treats design, fabrication, measurements and characterization of compact end-

coupled coplanar bandpass filters. EM simulation shows that the filters introduce very low 

insertion losses and are well matched in the pass-band. These results have been verified by 

measurements. The filters have been developed for the pass-band of 1.7-5.2 GHz. 
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5.1.1 Bandpass Filter Topology 

Figure 5.1 (a) shows a schematic diagram of the designed bandpass filter structure. It consists 

of two symmetrical parts. Each part is composed of a λ/4 conductor section followed by two 

parallel open-stubs of length b. These two parts are capacitively coupled through the gap c. 

The dimensions are as follows: length L = 15.0 mm, width H = 17.0 mm, a = 5.1 mm, b = 

5.75 mm, c = 0.2 mm. 

                     

                                  a)                                                                       b) 

Figure 5.1: Schematic drawing of the designed coplanar BPF (a) and its EM simulation results 

(b). 

5.1.2 Electromagnetic and Equivalent Circuit Simulations 

The CPW line used in this filter was designed for a characteristic impedance of 50 Ω. This 

impedance corresponds to G = 0.2 mm and W = 2.8 mm. The electromagnetic simulation 

result for the bandpass filter is shown in Figure 5.1 (b). The filter resembles two poles in the 

pass-band ranging from 1.7 GHz to 5.2 GHz and has a steep transition from the pass-band to 

the stop-band. The filter has a 3 dB bandwidth of 3.5 GHz. At the same time the filter shows a 

matching below -20 dB within a bandwidth of 1.5 GHz and has a reflection of less 

than -35 dB at the resonances. Figure 5.2 shows the current density distribution for the 

designed filter in the pass-band (4.0 GHz) and in the stop-band (10 GHz). It can be seen that 

at the pass-band the two ports are well coupled, while in the stop-band almost no RF power 

passes through the filter. 

The filter structure has also been simulated with a lumped-element model which is shown in 

Figure 5.3. The conductor section is modeled as a series inductor Ls while the parallel λ/4 

stubs are modeled as an inductor Lp in series with a capacitance Cp. The gap between the two 

sections of the filter is modeled as a series capacitance C0. Table 5.1 shows the values of the 
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components of the equivalent circuit model. Figure 5.4 shows the simulation results obtained 

with EM and the lumped-element model. The results of both simulations are in good 

agreement. 

                      

a)                                                                    b) 

Figure 5.2: Current density distribution in the designed BPF: (a) at 4 GHz and (b) at 10 GHz. 

 

Figure 5.3: Equivalent circuit model for the designed BPF. 

Table 5.1 Equivalent circuit parameters of the designed BPF 
Capacitance, C0   (pF) 
Capacitance, Cp   (pF) 
Inductance, Ls     (nH) 
Inductance, Lp       (nH) 

0.486 
0.289 
3.46 
0.195 

 

Figure 5.4: EM and equivalent circuit simulations of the designed BPF. 
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5.1.3 Effect of Geometrical Parameters 

In order to investigate the dependence of geometrical dimensions on the filter properties, the 

EM simulation has been carried out for different values of the filter dimensions a, b, c (see 

Figure 5.1 (a)). 

Figure 5.5 (a) shows the frequency response of the designed filter for values of the gap c = 

0.1 mm, c = 0.2 mm and c = 0.3 mm, while values of a and b were kept constant. The gap c 

was changing by the change of the width of the open-stubs. Variation of the gap c affects only 

slightly the transmission within the pass-band, while the reflection significantly depends on c. 

In particular, a smaller value for c makes the transition from the pass-band to the stop-band 

steeper. The first resonance pole at 2.95 GHz is mainly controlled by the capacitive coupling 

between two resonators. Referring to the lumped-element model (Figure 5.3), an increase of 

the gap c almost linearly reduces the capacitance C0 as shown in Figure 5.5 (b). Other lumped-

element parameters do not change. The second pole in the pass-band at 4.0 GHz is slightly 

shifted due to the change of the open-stubs width. Consequently, the values of Cp and Lp in the 

equivalent circuit model change too. 

             

a)                                                                       b) 

Figure 5.5: EM simulations for different values of the gap c (a) and equivalent capacitances 

and inductances versus the gap c (b). 

In Figure 5.6 (a) the impact of the open-stub length b on the filter response is presented. 

These simulations were carried out for the lengths b = 4.75 mm, b = 5.25 mm and b = 

5.75 mm, while all other dimensions were kept constant. The length b affects the position of 

the pass-band but has very low influence on the bandwidth. Based on this result it can be 

concluded that the second resonance pole in the pass-band is controlled by the λ/4 open-stub 

resonators. As shown in Figure 5.6 (b), a change of the length b leads to a change of Lp and C0 

in the equivalent circuit model. 
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a)                                                                  b) 

Figure 5.6: EM simulations for different values of the length of the parallel open-stubs b (a) 

and equivalent capacitances and inductances versus the length b (b). 

Finally, Figure 5.7 (a) shows the characteristics of the filter structure for three different values 

of the length of the conductor section a (see Figure 5.1 (a)). An increase of this geometric 

parameter leads to a slight decrease of the bandwidth, but the reflection is improved. a mainly 

affects the inductances Ls of the lumped-element model, as shown in Figure 5.7 (b). As a 

decreases the pass-band is shifted to higher frequencies. It should be mentioned that the width 

of the ground plane at the input and output ports are also changing with the parameter a. 

         

a)                                                                  b) 

Figure 5.7: EM simulations for different values of the λ/4 conductor section a (a) and 

equivalent capacitances and inductances versus the conductor section a (b). 

5.1.4 Measurement 

The designed filter was fabricated and measured for frequencies from 0.5 GHz to 12.0 GHz. 

Figure 5.8 (a) shows a photo of the fabricated filter. The measurements can be seen in Figure 
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5.8 (b). The simulated results are in good agreement to the measured ones. The slight 

differences between both may be due to the tolerances in the fabrication procedure. The 

measured insertion loss in the pass-band is less than 1.0 dB with the return loss higher 

than -19 dB. The measured pass-band width is 3.8 GHz (1.8-5.6 GHz). 

               

                                   a)                                                                   b) 

Figure 5.8: Photo of the fabricated BPF (a) and its EM simulated and measured results (b). 

5.2 Miniaturized Coplanar Bandpass/Bandstop Filter Using 

Meander Serpentine-Shape Shunt/Open-Stubs 

In this section, a new type of compact coplanar bandpass filters with an inductively shunt-

coupled approach using meander serpentine-shape shunt-stubs has been designed and 

investigated. The designed meander serpentine-shape shunt-stubs increase the inductive 

loading of the structure. Therefore, the resonant frequency is shifted to low frequencies. 

Finally, the designed bandpass filter has been transformed to the bandstop filter and described. 

5.2.1 Bandpass Filter Structure 

Figure 5.9 (a) shows a scheme of the designed bandpass filter structure. It consists of two 

symmetrical parts. Each part is composed of a λ/2 conductor section followed by two parallel 

meander serpentine-shape shunt-stubs. A detailed view of the meander serpentine-shape 

shunt-stub is shown in Figure 5.9 (b). These two parts are capacitively coupled through the 

gap c. The designed filter has the dimensions: a = 0.4 mm, b = 0.8 mm, h = 0.5 mm and c = 

0.4 mm. The total area of the designed bandpass filter is 20×13.2 mm2. 
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                                           a)                                                                       c) 

Figure 5.9: Scheme of the designed coplanar bandpass filter (a), detailed view of the 

serpentine-shape shunt-stub (b) and equivalent circuit model of the designed BPF (c). 

            

                                                     a)                                                                b) 

Figure 5.10: EM and equivalent circuit simulations for the designed BPF (a) and current 

density distributions at 4.8 GHz and at 7.7 GHz (b). 

5.2.2 Electromagnetic and Equivalent Circuit Simulations 

The CPW line used in this filter was designed for a characteristic impedance of 50 Ω. This 

impedance corresponds to a signal line width of W = 2.8 mm and slot width of G = 0.2 mm. 

The simulation results for the filter are shown in Figure 5.10 (a). The designed filter has two 

poles and a steep transition from the pass-band to the stop-band. The 3 dB bandwidth of the 

BPF is 2.1 GHz (3.9-6.0 GHz); the filter shows a matching below -20 dB within a bandwidth 

of 1.0 GHz and has a reflection of less than -35 dB at the resonances. Figure 5.10 (b) shows 

the current distribution for the designed filter in the pass-band (4.8 GHz) and in the stop-band 

(7.7 GHz). At the pass-band the two ports are well coupled, while in the stop-band almost no 
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RF power passes through the filter. The simulated current density distribution at the 

transmission zero (7.7 GHz) in the upper stop-band clearly shows a minimum current at the 

middle of the serpentine-shape shunt-stubs. Therefore, according to the transmission line 

theory an inductively coupled shunt-stub has to be modeled as a series LC resonator. Figure 

5.9 (c) shows the lumped-element model for the designed BPF. The λ/2 transmission line 

conductor section is modeled as a series inductor Ls; the shunt-stubs are modeled as series 

connected inductor Lsh and capacitance Csh. The open-end stubs are modeled as series 

connected capacitance Cp and inductance Lp. The gap between the two sections of the filter is 

modeled as a series capacitance C0. 

The shunt inductors can be modeled using the classical formula for ribbon inductors, which is 

given by [131]: 
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where w and l (in centimeters) are the width and the length of the inductor, respectively. The 

serpentine-shape ribbon inductor allows to increase the inductor effective length and, thus, to 

increase the shunt inductance. The shunt capacitance of the short circuit λ/2 line can be 

calculated as [157]: 
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where ωz1 is the transmission-zero frequency (0.85 GHz) in the lower stop-band extracted 

from the simulation. The capacitance of the λ/4 open-end stubs can be expressed as [157]: 
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 where ωz2 is the second transmission-zero frequency (9.2 GHz) in the upper stop-band 

extracted from the simulation and Zp is the characteristic impedance of the loaded t-line 

section. The inductance of the open-end stubs can be calculated using Eqn. (5.2). The 

coupling capacitance C0 between two conductor sections can be calculated as [112]: 
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 where ω01 is the first resonance frequency (4.65 GHz) in the pass-band extracted from the 

simulation and Z0 is the characteristic impedance of the CPW line. The series inductance of 

the transmission line can be evaluated from expression for the length of the loaded signal line 

l which is given by [112]: 
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Table 5.2 Extracted equivalent circuit parameters 
Capacitance, C0   (pF) 
Capacitance, Cp   (pF) 
Capacitance, Csh  (pF) 
Inductance, Lsh    (nH) 
Inductance, Lp     (nH) 
Inductance, Ls      (nH) 

0.104 
0.163 
2.711 
12.93 
1.835 
4.040 

The extracted lumped-element parameters are listed in Table 5.2. Figure 5.10 shows a 

comparison between EM and equivalent circuit simulations. A good agreement is reached that 

confirms the designed equivalent circuit model. 

5.2.3 Effect of Geometrical Parameters 

The influence of the geometrical parameters on the filter response has been investigated using 

EM simulations. Figure 5.11 (a) shows the filter characteristics for fewer values of the gap c 

between two symmetrical sections. 

        

a)                                                                         b) 

Figure 5.11: EM simulations for different values of the gap c (a) and equivalent capacitance 

C0 versus the gap c (b). 

As can be seen n the figure, the value of the gap c has only an influence on the lower cut-off 

and on the first resonance pole within the pass-band, while the upper cut-off frequency is not 

changed. In particular, a smaller value of the gap c shifts the resonance pole and the lower 

cut-off to lower frequencies. Referring to the lumped-element model (see Figure 5.9 (c)), an 

increase of the gap c reduces the capacitance C0, as shown in Figure 5.11 (b). 
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Figure 5.12 (a) shows the dependence of the simulated filter response on the section length a 

on the filter response. These simulations reveal that a variation of a changes the position of 

the pass-band while the bandwidth strongly depends on a. According to Eqn. (5.1), an 

increase of the length a results in an increase of the value of the shunt inductance Lsh. 

Consequently, the shunt capacitance Csh will also changed. An increase of the distance a 

increases the shunt inductance Lsh and Csh and slightly affects the other parameters as shown 

in Figure 5.12 (b). 

          

a)                                                                    b) 

Figure 5.12: EM simulations for different values of the length a (a), and equivalent 

capacitance and inductance versus the conductor section a (b). 

              

a)                                                                    b) 

Figure 5.13: Photo of the fabricated BPF (a), EM simulation and measurement for BPF (b). 

5.2.4 Measurement 

The designed bandpass filter was fabricated, Figure 5.13 (a) shows a photo of the fabricated 

filter, and measured with a vector network analyzer in the frequency range from 0.5 GHz to 

10 GHz. The measurements are shown in Figure 5.13 (b). As can be seen, the simulated and 
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measured results are in good agreement. The measured insertion loss in the pass-band is less 

than 0.7 dB, and the reflection loss is less than -20 dB. 

5.2.5 Transformation from Bandpass Filter to Bandstop Filter 

The designed coplanar bandpass filter can be easily transformed to a bandstop filter structure. 

Figure 5.14 (a) shows a schematic drawing of the transformed coplanar bandstop filter. The 

capacitive coupling through the gap c in the bandpass structure has been removed. The 

meander serpentine-shape shunt-stubs have been transformed to meander serpentine-shape 

open-stubs, as can be seen in Figure 5.14 (a). The lumped-element model of the coplanar 

bandstop filter is shown in Figure 5.14 (b). The gap capacitance C0 was removed from 

lumped-element model and coupling capacitance Cc was added to the shunt branch of the 

equivalent circuit model, see Figure 5.14 (b). 

          

                                  a)                                                                         b) 

Figure 5.14: Schematic diagram of the designed coplanar bandstop filters (a) and equivalent 

circuit model of the designed BSF (b). 

                       

                                           a)                                                                b) 

Figure 5.15: EM and equivalent circuit simulations for the designed BSF (a) and  current 

density distribution at 2.0 GHz and at 4.4 GHz (b). 
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The results of electromagnetic and lumped-element model simulations are presented in Figure 

5.15 (a). A good agreement between these simulations has been reached. Figure 5.15 (b) 

shows the current density distribution in the bandstop structure in the stop-band at 4.4 GHz 

and in the pass-band at 2.0 GHz. It can be seen that at the pass-band the two ports are well 

coupled, while in the stop-band almost no RF power passes through the filter. 

5.3 2-D Quasi-Fractal Periodic Defected Ground Structure for 

Coplanar Waveguide 

This section is dedicated to a 2-D quasi-fractal periodic dumbbell DGS. A conventional 

rectangular dumbbell DGS has been modified in order to improve the RF performance by 

using a fractal geometry approach. The quasi-fractal DGS slot is added as a unit-cell in a 

systematic way in both horizontal and vertical directions to construct the 2-D periodic DGS as 

proposed in [150]. This method allows to use the structure area more effectively and to shift 

the transmission zero to lower frequencies. 

5.3.1 Structure Design Methodology 

The quasi-fractal periodic DGS structure in CPW environment is based on the standard 

dumbbell structure (Figure 5.16 (a)). The quasi-fractal DGS cell is designed by adding eight 

open-end rectangular stubs within the (Figure 5.16 (c)). The cells are symmetrically added 

along the axes (A-A). Thus, the two-cell structure is realised by adding the next cell above the 

first one in vertical direction, see Figure 5.17 (a). The three cells are located in the horizontal 

direction to the left and to the right of the first cell. A larger number of cells is realised in the 

same way. The schematic diagrams of 2, 3, 4, 5 cells are shown in Figure 5.17. 

5.3.2 Electromagnetic Simulation and Circuit Modeling 

The unit dumbbell DGS has been designed for a 50-Ω coplanar waveguide line where the 

strip and slot widths are 2.8 mm and 0.2 mm, respectively. The geometrical parameters of the 

rectangular unit-cell have been optimized to get a resonance frequency close to 11.5 GHz. 

This corresponds to unit-cell dimensions of a×b = 2.0×1.8 mm2. The cells are symmetrically 

etched in the ground planes on both sides of the center conductor at distance a/2 and are 

connected to the CPW slots by a gap with width t = 0.2 mm. The quasi-fractal cell with the 
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same geometrical parameters exhibits a resonance frequency at 10 GHz. The optimized 

dimensions of the open-end stub within the quasi-fractal DGS unit-cell are 0.9×0.2 mm2. 

                      

                        a)                                             b)                                                c) 

Figure 5.16: Schematic diagram of the standard dumbbell structure (a), rectangular DGS cell 

(b) and quasi-fractal cell (c). 

 

Figure 5.17: The designed periodic DGS: 2-Cells (a), 3-Cells (b), 4-Cells (c), and 5-Cells (d). 

          

a)                                                                     b) 

Figure 5.18: Frequency response for DGS with different number of cells n: rectangular cells 

(a) and quasi-fractal DGS cells (b). 

Two, three, and up to five-cells are arranged as outlined above and shown in Figure 5.17. The 

frequency responses of the five rectangular and five quasi-fractal cells can be seen in Figure 

5.18 (a) and (b), respectively. The transmission coefficient S21 shows a minimum at a 
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frequency determined by the structure geometry. Its value increases as the number of cells 

decreases. For one cell (n = 1) the resonance frequencies are 11.4 GHz and 10.0 GHz, while 

for five cells, these frequencies are shifted to 5.15 GHz and 4.4 GHz for the rectangular and 

the quasi-fractal DGS cell, respectively. The stop-band rejection for all structures is higher 

than -20 dB. 

The lumped-element equivalent circuit model (in Figure 5.19 (a)) has been used to describe 

the behaviour of the periodic DGS. It consists of parallelly connected R, L and C elements 

representing the DGS region and two sections of transmission line which are connected in 

series at both sides. The characteristic impedance and the effective dielectric constant of the 

transmission line sections determined by the EM simulator are 50.6 Ω and 1.935, respectively. 

EM and equivalent circuit model simulations for the rectangular and quasi-fractal DGS are 

can be seen in Figure 5.19 (b). This equivalent circuit model is valid for any number of 

repeated cells, only the values of the circuit parameters have to be varied. 

                

a)                                                                       b) 

Figure 5.19: Equivalent circuit model of the DGS (a) and EM and circuit simulations for both 

DGS cells (b). 

              

a)                                                                     b) 

Figure 5.20: Equivalent capacitance, inductance, and resistance versus the number of repeated 

cells for the 2-D periodic DGS structure: rectangular cells (a), quasi-fractal cells (b). 
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Variations of the R, L and C values as a function of the cell number of the rectangular and 

quasi-fractal structures are depicted in Figure 5.20 (a) and Figure 5.20 (b), respectively. It can 

be seen that the equivalent capacitance is approximately constant independent of the number 

of cells. For the quasi-fractal slots, however, its value is more than 30 % higher. The 

equivalent inductance linearly increases with the number of cells and is almost the same for 

both DGS cells. 

The results can be interpreted with respect to the structure topology as follows: The current 

path increases as the number of cells is increased resulting in an increase of the inductance L. 

Due to the constant area of all cells the parallel inductance changes linearly with a number of 

cells. The capacitance is mainly determined by the gap capacitance of the first cell, which 

remains the same for all structures. For the quasi-fractal cell the gap is extended inside the 

cell by the open-end stubs. Therefore, the equivalent capacitance of the quasi-fractal DGS is 

higher than for the rectangular one, thus, the resonant frequency is shifted to lower 

frequencies. The resistance changes due to radiation, conductor and dielectric losses in the 

DGS. 

5.3.3 Experimental Verifications 

The quasi-fractal DGS devices with the geometric dimensions investigated in the previous 

section were fabricated. The photos of the fabricated quasi-fractal periodic DGS with two, 

three, four and five cells are shown in Figure 5.21 (a). The enlarged view of the three cells 

geometry is illustrated in Figure 5.21 (b). The measurements were carried out at frequencies 

from 2.0 GHz to 8.0 GHz. The measured S-parameters together with EM and equivalent 

circuit model simulations are shown in Figures 5.21 (c-g). A good agreement between 

measurements and simulations could be obtained. 

                         

a)                                                                     b) 
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c)                                                                     d) 

      

e)                                                                      g) 

Figure 5.21: Photo of the fabricated quasi-fractal periodic DGS with 2, 3, 4 and 5 cells (a), 

scaled fragment of the quasi-fractal 3-cells DGS (b). Measurements, EM and equivalent 

circuit simulated results: 2 cells (c), 3 cells (d), 4 cells (e) and 5 cells (g). 

5.4 Coplanar Low-Pass Filter Using Cascaded Arrowhead DGS 

A cascaded DGS low-pass filter in CPW environment is presented in this section. The filter 

structure is designed by using triangular arrowhead DGS slots symmetrically etched in the 

ground metallization on both sides of the center conductor. The one-cell arrowhead DGS slot 

was designed and optimized using EM simulations as well as a lumped-element equivalent 

circuit model. 

5.4.1 One-Cell Triangular Arrowhead DGS Slot 

A scheme of the one-cell triangular arrowhead DGS slot is shown in Figure 5.22 (a). This 

structure is implemented in CPW environment with a characteristic impedance of 50 Ω; this 

corresponds to strip and slot widths of 2.8 mm and 0.2 mm, respectively. The dimensions of 
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DGS are: a = 5.5 mm, g = 0.5 mm and l = 2.0 mm. The structure resonates at 8.1 GHz. The 

equivalent circuit model of the one-cell DGS slot is depicted in Figure 5.22 (b). 

The resonance frequency ω0 of the parallel resonant circuit elements is given by: 

11
0

1
CL

=ω                                                                   (5.6) 

                  

                                  a)                                                                   b) 

Figure 5.22: Schematic drawing of the coplanar triangular arrowhead DGS slot (a) and its EM 

and equivalent circuit simulated frequency responses (b). 

The equivalent impedance is given by: 
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The transmission coefficient S21 is easily shown to be given by [157]: 
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The 3 dB cut-off frequency location ωc is defined through [157]: 
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Rearranging (5.9), the capacitance of the parallel RLC resonator is given by [83]: 
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Substituting the capacitance value back into (5.6), the inductance value L1 can be determined. 
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The parallel resistance R1 of the DGS can be best fitted at the resonance frequency where the 

structure equivalent impedance is Zs=R1, S21 is then given by [83]: 
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The 3 dB cut-off frequency ωc and the resonance frequency ω0 are extracted from an EM 

simulation. To validate the circuit model, the one-cell triangular arrowhead DGS has been 

simulated using the EM MoM simulator. The frequency responses of the one-cell DGS slot 

obtained by using EM and equivalent circuit model simulations are presented in Figure 5.22 

(b). The EM simulation results show the transmission zero at 8.1 GHz with more than -30 dB 

rejection, a cut-off frequency of 5.5 GHz and a S21 at ω0 of 0.15 dB. The extracted R1, L1, and 

C1 values are 5.77 kΩ, 1.72 nH, and 0.224 pF, respectively. The resistance R1 is much higher 

than the characteristic impedance of the CPW line and represents the radiation loss in the 

structure. Both, the EM and the equivalent circuit model simulations are in good agreement as 

can be seen in Figure 5.22 (b). 

Figures 5.23 (a) and (b) show the frequency responses for the one-cell triangular arrowhead 

DGS slot for different values of the triangular area and different gap widths g. An increase of 

the triangular area shifts cut-off and transmission-zero to lower frequencies, see Figure 5.32 

(a). A change of the gap width g shifts the resonance frequency and slightly affects the cut-off 

frequency (Figure 5.32 (b)). The triangle area represents a magnetic loading and is responsible 

for the parallel inductance in the equivalent circuit model, while the gap g represents an 

electric loading and is responsible for the parallel capacitance. 

        

a)                                                                      b) 

Figure 5.23: Simulated frequency response of the triangular arrowhead DGS slot for different 

values of the parameter a (a) and the gap width g (b). 
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5.4.2 Design of Cascaded Arrowhead DGS Low-Pass Filter 

Figure 5.24 (a) shows the schematic diagram of coplanar cascaded DGS low-pass filter. It 

consists of three pairs of arrowhead triangular DGS slots. A low impedance conductor section 

is added to the center line in order to increase the capacitive loading of the CPW structure. 

This section is periodically loaded by parallel LC resonators modeled by DGS. In order to 

reduce the undesired coupling between the DGS resonators the area of the DGS slots at the 

filter ports is smaller than the area of the DGS in the middle as is shown in Fig. 5.24 (a).  

     

                                a)                                                                          b) 

Figure 5.24: Schematic diagram of the cascaded coplanar triangular arrowhead DGS LPF (a) 

and its lumped-element equivalent circuit model (b). 

The equivalent circuit model of the capacitively coupled CPW DGS LPF is shown in Figure 

5.24 (b). Parallel LiCi resonators represent the DGS slots per-section, and Csh are the coupling 

capacitances. Due to the structure symmetry the smaller DGS slots are modeled by identical 

values of the elements L1C1.  

The equivalent impedance of the DGS can be determined using Eqn. 5.7 while the 

characteristic impedance of the transmission line between adjacent DGS resonators at low 

frequency is given by [157]: 

sh

i
T C

LZ =                                                            (5.12) 

where Li is the inductance of the unloaded line. The filter designed according to these 

equations provides a cut-off frequency of 4.4 GHz. Since the stop-band width of the filter 

increases as well as the ratio ZDGS/ZT, the characteristic impedance of the unloaded line has 

been set equal to ZT = 35 Ω. Using these equations the parameters of the equivalent circuit 

model are inferred. The lateral dimensions of the low impedance section, as well as the 
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distance between adjacent resonators, can be obtained using the transmission line simulator. 

Full-wave EM simulations with parameter variation have been carried out to fit the 

dimensions of the CPW to those required for the nominal value of the capacitance Csh. The 

results of these simulations are depicted in Figure 5.25 (a). The result clearly illustrates that 

the filer response in the pass-band strongly depends on the electric coupling between the 

center line and the ground planes. In the equivalent circuit model this coupling is modeled by 

the shunt capacitances Csh which decreases as the line width decreases. The optimised center 

conductor line and gap width are c = 7.6 mm and G = 0.15 mm, respectively. 

         

a)                                                                    b) 

Figure 5.25: Simulated frequency response for the different values of the line width c (a) and 

EM and equivalent circuit model simulations of the cascaded arrowhead DGS LPF (b). 

The dimensions of the triangular arrowhead DGS slots are: a1 = 6.0 mm, b1 = 5.3 mm, a2 = 

9.6 mm, b2 = 1.8 mm, c = 7.6 mm, g = 0.2 mm, l = 1.0 mm, M = 8.7 mm and L = 27.4 mm. 

A comparison between EM and circuit simulation is shown in Figure 5.25 (b). A good 

agreement is achieved that validates the designed lumped-element equivalent circuit model. 

The simulated return loss in the stop- and pass-band is better than -0.4 dB and -15 dB, 

respectively. The 3 dB cut-off frequency is at 4.4 GHz and the stop-band rejection is higher 

than - 28 dB. 

5.4.3 Experimental Verification 

The designed cascaded coplanar arrowhead DGS low-pass filter was optimized by using full-

wave EM MoM simulators and was fabricated. A photo of this filter structure is shown in 

Figure 5.26 (a). The total size of the LPF is 28.0×25 mm2. The fabricated filter was measured 

using a vector network analyzer in the frequency range from 0.5 GHz to 12 GHz. The 
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measured and simulated frequency responses are presented in Figure 5.26 (b). Both results 

agree rather well. The slight differences between both may be due to tolerances in the 

fabrication process. The measured insertion and return losses in the pass-band are better than 

0.7 dB and -12 dB, respectively. The designed LPF provides a -20 dB stop-band width of 4.7 

GHz within the frequency range from 5.7 GHz up to 10.4 GHz. A good cut-off transition is 

reached as can be seen in Figure 5.26 (b). 

          

                                    a)                                                                        b) 

Figure 5.26: Photo of the fabricated coplanar cascaded triangular arrowhead DGS LPF (a) and 

its measured and simulated frequency responses (b). 

5.5 Design of Compact Coplanar UWB DGS Low-Pass Filter 

In this section, the design of a new compact ultra wideband (UWB) DGS low-pass filter is 

pesented. The designed structure is based on coplanar waveguide (CPW) lines and λ/4 

resonators. The filter provides three transmission zeros within the stop-band and offers a 

bandwidth of 8.3 GHz, namely from 3.1 GHz to 11.4 GHz. The stop-band rejection is higher 

than -20 dB. The filter area is as low as 17.6×23.4 mm2. The cascade method was used to 

increase the stop-band width and to improve the pass-band characteristics. The cascaded LPF 

provides a stop-band width of more than 20 GHz, namely from 3.7 GHz up to more than 22.0 

GHz with a rejection higher than -15 dB. 

5.5.1 Low-Pass DGS Filter Topology 

Figure 5.27 (a) shows a scheme of the designed low-pass DGS filter structure. It has been 

constructed by combining λ/4 open-ended stub resonators with DGS resonators. Two DGS 

slots are etched in the ground plane and located on both sides of the center conductor. The 
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designed DGS slot consists of two square heads and a connecting slot with a gap of 1.0 mm. 

The CPW lines used for this filter have been designed for a characteristic impedance of 50 Ω. 

This impedance corresponds to a strip width of W = 2.8 mm and to a slot width of G = 

0.2 mm, see Figure 5.27 (a). The geometrical parameters of the filter structure are: a = 6.3 

mm and l = 7.7 mm. Figure 5.27 (b) shows the insertion and return losses of the simulated 

structure with the above dimensions. 

                     

a)                                                                       b) 

Figure 5.27: Scheme of the designed coplanar low-pass DGS filter (a) and the EM simulation 

result for the designed low-pass filter (b). 

The slot-head areas basically control the inductance, whereas the width of the connecting 

rectangular slot controls the capacitance. The series inductance has been increased by adding 

the open-end sections of the transmission line between the two DGS heads in the ground 

plane (Figure 5.27 (a)). 

5.5.2 EM and Equivalent Circuit Simulations 

Figure 5.28 (a) shows the lumped-element equivalent circuit model for the designed low-pass 

DGS filter. Due to the stubs A, (Figure 5.27 (a)), the DGS slots operate as a shunted series 

resonator at the corresponding λ/4. These stubs resonate when their length is equal to λ/4 that 

is responsible for the transmission zero occurring at 4.0 GHz. In order to verify that, the 

physical length of the stub A is compared to the effective wavelength at the first transmission-

zero frequency, which is given by [118]: 

zeff
g f

c
ε

λ = ,                                                        (5.13) 
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where c is the speed of light in free space, εeff is the effective dielectric constant, and fz is the 

transmission-zero frequency. 

The effective dielectric constant εeff and the transmission-zero frequency have been extracted 

from the electromagnetic simulation. The theoretically calculated effective wavelength λg at 

the first transmission-zero frequency is 49.2 mm. The physical length of the stub A is 

approximately equal to λg/4. 

Similarly the stubs B which are connected to the central transmission line operate as shunted 

series resonator at the corresponding λ/4, which is responsible for the transmission zero that 

occurs at 7.6 GHz. 

In order to understand the reason behind the transmission zero occurring at 10.55 GHz, the 

current density distribution in the filter metallization has been calculated using the EM MoM 

simulator. Figure 5.28 (b) shows this distribution at the third transmission-zero frequency of 

10.55 GHz.  

From Figure 5.28 (b) it can be clearly seen that there is a coupling between the open-end stubs 

and the stubs within the DGS slots, since the current density has maxima and minima at the 

stub metallization. Such a coupling is a mixed one, i.e. an inductive and a capacitive coupling 

together. Therefore, a parallel LC resonator can represent this coupling. 

The equivalent circuit of the designed low-pass structure has two shunted series resonators 

coupled to each other by a mixed coupling element (parallel resonator). As shown in Figure 

5.28 (a), the first resonator C1L1 represents the stubs inside the DGS slots, while C2L2 

represents the open-end stubs connected to the center line. The parallel resonator CcLc 

represents the mixed coupling between these stubs. 

               

a)                                                           b) 

Figure 5.28: Equivalent circuit model of the designed coplanar low-pass DGS filter (a) and 

simulated current density distribution at the third transmission zero at 10.55 GHz (b). 
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The equivalent circuit extraction method has been used to extract the values of the circuit 

parameters. The resonance frequency ω0i given in term of the resonant circuit elements can be 

determined by Eqn. (5.6).  

The shunted series resonator L1C1, corresponded to the first transmission zero at 4.0 GHz, has 

an impedance given by: 

1
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The transmission coefficient S21 is easily shown to be given by [157]: 
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The 3 dB cut-off frequency ωc is defined through [157]: 
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Rearranging (5.16), the capacitance of the equivalent circuit model is: 
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Substituting back in the expression for the resonance frequency Eqn. (5.6), the inductance 

value L1 can be determined as: 
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A similar calculation can be used to extract the element parameters for the shunted series 

resonator L2C2 which is responsible for the transmission zero at 7.6 GHz. 

At high frequencies the equivalent circuit is represented by the parallel coupled resonator LcCc 

while the series resonators are in the rejection state. The equivalent capacitance and 

inductance of the parallel resonator can be determined as in section 5.4.1 of this chapter. 

The extracted circuit parameters are: L1 = 3.95 nH; C1 = 0.40 pF; L2 = 0.87 nH; C2 = 0.56 pF; 

and Lc = 1.45 nH; Cc = 0.15 pF. Equivalent circuit simulations have been carried out and the 

lumped-element parameters have been adjusted to meet the EM response. Both EM and 

equivalent circuit simulation results for the designed low-pass filter are in good agreement as 

can be seen in Figure 5.29. 
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Figure 5.29: EM and equivalent circuit simulations for the designed coplanar DGS LPF. 

5.5.3 Control of the Low-Pass Filter Characteristics 

Some parameters are influencing the transmission-zero frequency positions such as the 

geometrical parameters a and l, (see Figure 5.27 (a)). Figure 5.30 (a) shows the filter response 

for three values the length l of the open-end sections. As can be seen, an increase of the length 

of the stub shifts the second and third transmission zeros to lower frequencies, and vice versa. 

A change of the length of these stubs should only affect the second transmission zero. Due to 

the narrow gap between the stubs, however, any change of the dimensions of each affects the 

coupling between them. Therefore, the third transmission zero is also shifted to a lower 

frequency band. 

         

a)                                                                       b) 

Figure 5.30: EM simulations for the different values of the geometrical parameters: for the 

length of the open-stubs l (a) and for the distance a (b). 

By changing the value a (see Figure 5.27 (a)) the length of the stubs that are responsible for 

the first transmission zero is changing. Therefore, by increasing the distance a the first 

transmission zero is shifted to a lower frequency band while the other two transmission zeros 
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remain at the same position. Figure 5.30 (b) shows the filter response with different values of 

the distance a. 

5.5.4 Experimental Results 

The designed filter was optimized and then fabricated. The dimensions of the fabricated and 

investigated filter are a = 7 mm, l = 7.7 mm, see Figure 5.27 (a). The filter has a 3 dB cut-off 

frequency of 1.5 GHz, and three transmission zeros located at 4.0 GHz, 7.6 GHz, and 10.55 

GHz. The highest insertion loss in the pass-band is better than 0.8 dB, and the highest group 

delay is better that 0.21 ns. Figure 5.31 (a) shows a photo of the fabricated filter. The 

measurements are depicted in Figure 5.31 (b). A very good agreement between the simulated 

and measured result could be achieved with the exception of the third transmission-zero 

position which is shifted to a lower frequency. This is most probably due to the thickness of 

the metallization which has not been taken into account in the simulation. 

         

                                a)                                                                           b) 

Figure 5.31: Photo of the fabricated coplanar low-pass UWB DGS filter (a) and its EM 

simulated and measured results (b). 

5.5.5 Cascaded UWB Low-Pass Filter 

In order to increase the stop-band width and to improve the pass-band performance the 

cascade approach has been implemented. Figure 5.32 depicts a schematic drawing of the 

cascaded UWB DGS LPF. To meet the requirement of compactness the dimensions of the 

structure were changed as shown in the figure. The simulated frequency response for the 

designed UWB DGS LPF is shown in Figure 5.33. It can be seen that the transmission pole 

appears in the lower pass-band. Therefore, the transition characteristic is improved. It can be 
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understood by increased total capacitances of the open-stubs resonators. The highest 

reflection coefficient S11 in the pass-band is better than 0.5 dB. The optimized dimensions 

with regard to the performed simulations are: a = 3.6 mm, l = 5.0 mm and g = 2.6 mm. The 

total area of the cascaded structure is 23.4×24.0 mm2. 

 

Figure 5.32: Schematic drawing of the designed coplanar cascaded UWB DGS LPF. 

 

Figure 5.33: EM simulation results for the designed cascaded UWB DGS LPF. 

The lumped-elements equivalent circuit model of the cascaded UWB DGS LPF is depicted in 

Figure 5.34. Both resonator structures are coupled with each other through an inductance L0. 

Thereby, the coupling between open-stubs and DGS slots is presented by a Π-junction of 

series connected L2C2 and parallel inductance L0, as can be seen in Figure 5.34. 

 

Figure 5.34: Equivalent circuit model of the cascaded CPW UWB DGS LPF. 
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Figure 5.35: EM simulations for the different values of the distance g. 

Figure 5.35 shows the simulated frequency responses of the cascaded UWB DGS low-pass 

filter for different values of the distance g. As can be seen, increasing this distance decreases 

the electromagnetic coupling between two DGS slots leading to a shift of the first 

transmission zero to higher frequencies. But if the distance g exceeds certain limiting values 

the transmission characteristics in the pass-band become worse. The optimum distance is 

2.6 mm. 

     

a)                                                                        b) 

Figure 5.36: Photo of the fabricated coplanar cascaded UWB DGS LPF (a) and (b) its 

simulated and measured frequency responses. 

The designed cascaded CPW UWB DGS PPF was fabricated on the same substrate as the 

filter described above. The photo of it is shown in Figure 5.36 (a), the frequency response in 

Figure 5.36 (b). A very good agreement between the simulated and the measured results is 

achieved. The measured frequency response is superior to the simulated one. Namely, the 

stop-band width is increased up to 22.0 GHz with a rejection of more than -15 dB. This may 

be due to the thickness of the metallization which has not been taken into account in the 
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simulation as in the case of one-cell UWB DGS LPF. The highest measured reflection 

coefficient in the pass-band is better than 0.9 dB. The highest measured insertion loss in the 

stop-band ranging from 3.5 GHz to 15.0 GHz is better than 0.7 dB. 

 

 

5.6 Summary 

In this chapter several designs of RF filters constructed in CPW environment have been 

presented. Different approaches were used to realize the filter structures. Two bandpass filters 

were designed using the capacitively end-coupled method and the inductively shunt-coupled 

line approach. The first BPF was realized by using λ/4 open-end stub resonators for the pass-

band of 1.7-5.2 GHz. The second BPF was designed for the pass-band of 3.9-6.0 GHz. using 

meander serpentine-shape λ/2 shunt-stubs that reduced the filter size and improved its RF 

performance. Additionally, the designed BPF was transformed to bandstop structure. 

The performance of the conventional dumbbell DGS was been improved by using fractal 

geometry. A 2-D quasi-fractal DGS structure was periodically repeated in order to control the 

resonance frequency. The designed quasi-fractal DGS had a capacitance value more than 

30 % higher than the capacitance of the standard rectangular DGS. It allowed to shift the 

resonance pole to lower frequencies. 

A coplanar capacitively coupled DGS low-pass filter was designed and optimized. The filter 

was constructed on a CPW line, which was periodically loaded with triangular arrowhead 

DGS slots realizing slow-wave effect. One-cell arrowhead triangular DGS slot was 

investigated using an equivalent circuit extraction method in addition to EM simulations. The 

measured stop-band width was close to 5.0 GHz with a stop-band rejection higher than -20 dB. 

A new compact high performance coplanar UWB low-pass DGS filter with improved stop-

band was introduced in the last section of this chapter. The structure was based on λ/4 open-

end stub resonators combined with novel shape DGS. The designed filter showed wide and 

deep stop-band characteristics. The designed one-cell DGS LPF provided three transmission 

zeros within the stop-band and a bandwidth of 8.3 GHz, ranging from 3.1 GHz to 11.4 GHz. 

The stop-band width and the pass-band characteristic were improved further by using the 

cascade method. The bandwidth of the cascaded DGS LPF was more than 20 GHz with a 

stop-band rejection higher than -15 dB. 
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All filter structures were fabricated and measured. A very good agreement between the 

electromagnetic simulated results, the lumped-element equivalent circuit model simulations 

and the measured results could be obtained. 
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Chapter 6 

 
A Compact MEMS-Switch Controlled Tunable 

Quasi-DGS Coplanar Bandpass Filter 
 
This chapter introduces the design of a new compact microwave RF MEMS-Switch 

controlled, tunable, quasi defected ground structure (DGS) coplanar bandpass filter (BPF), 

which operates from 18 GHz to 26 GHz (K-band). The designed structure can be redesigned 

for an other frequency range by changing the geometrical parameters of the CPW. The 

bandpass filter occupies an area of 2.8×1.3 mm2 and consists of λ/4 open-end stub resonators 

coupled with a series gap capacitance. The use of MEMS series-resistive contact switches 

between the additional external metal stubs and the metallic ground planes permits systematic 

control of the resonance frequency and the pass-band width, thus, the control of the 

transmission zero in the frequency domain. Therefore, the designed bandpass filter has a wide 

upper stop-band and an improved symmetry of the pass-band response. The equivalent circuit 

model has also been developed. Simulations based on the proposed circuit model are in good 

agreement with the electromagnetic (EM) simulation. The BPF has been designed in CPW 

environment for high-resistivity silicon substrates and is, therefore, compatible with is 

suitable for standard MIS and MMIS technologies. 

6.1 2-D Coplanar Bandpass Filter 

The new 2-D coplanar quasi-DGS bandpass filter has been designed and analyzed using the 

full-wave 2.5-D planar MoM EM simulator Sonnet [159]. Figure 6.1 (a) shows a schematic 

drawing of the proposed 2-D resonant structure constructed on the open-end-coupled CPW 

line. The structure has been modeled on a high-resistivity (> 4 kΩ·cm) silicon substrate with a 

thickness of 735 μm and a dielectric constant of 11.9. The substrate is covered by a 1.0 µm 

thick silicon dioxide buffer layer. An aluminum layer of 2.0 µm thickness has been used as 

structure metallization. The CPW was designed for a characteristic impedance of 50 Ω which 

corresponds to a signal line width of W = 90 µm and slot width of G = 60 µm. Two external 

microstrip lines have been added on both sides of the structure. These stubs represent 

something like a defected ground structure but with a very low capacitive coupling. 
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a) 

             

b)                                                                        c) 

Figure 6.1: Schematic drawing of the proposed 2-D coplanar bandpass filter (a); its lumped-

elements equivalent circuit model (b); EM and equivalent circuit simulation results (c). 

In order to suppress unwanted modes it is necessary to hold the ground planes at equal 

potential. Therefore, a thin metal line is added between the two resonators connecting the 

ground planes. The λ/4 open-end stubs are modeled as series LpCp resonators as shown in 

Figure 6.1 (b). The dominating central capacitive coupling is modeled with the capacitance C0. 

The parallel CLLL and CRLR resonators represent the coupling between the center signal line 

and the ground planes including the external metal planes. The passive coplanar bandpass filter 

has been designed and optimized for the K-band with a resonant frequency of 20.0 GHz with 

two symmetrical cut-off frequencies and one transmission zero in the upper stop-band. The 

simulated insertion loss in the pass-band is about 1.0 dB with a stop-band rejection of more 

than -20 dB. A comparison between EM and equivalent circuit simulated responses are shown 

in Figure 6.1 (c). Both simulation results are in good agreement, therefore, the derived 

equivalent circuit can be used to design practical circuits. Figures 6.2 (a) and (b) show the 

simulated current density distribution at the transmission-zero frequency of 37.9 GHz and at 

the resonance frequency of 20.0 GHz, respectively. The transmission through the CPW signal 

line at the resonance frequency is observed while at the transmission zero no RF power passes 

through the filter. 
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b)                                                                      c) 

Figure 6.2: Current density distribution in the designed 2-D coplanar BPF at the resonance 

frequency of 20.0 GHz (a) and at the transmission-zero frequency of 37.9 GHz (b). 

6.2 Control of Resonance Frequency and Bandwidth of BPF 

A new method to control the resonance frequency and the bandwidth of the proposed coplanar 

bandpass filter has been investigated. Due to the symmetry the filter structure can be 

segmented into four symmetrical quarters as shown in Figure 6.3 (a). The thin metal line 

“jumper” with an area of 20×70 µm2 has been added between the ground and the external 

ground plane in the first quarter of the filter structure (see Figure 6.3 (a)). This jumper forms 

an electrical contact and, thus, changes the inductive and capacitive loading in the structure. 

Figure 6.3 (b) shows the current density distribution in the filter at the resonance frequency of 

22.3 GHz. It can be clearly seen that the magnetic current, propagating through the ground 

plane, concentrates in the metal jumper and in the external metal line. It results in an increase 

of the magnetic coupling on one side of the center signal line. Corresponding to the equivalent 

circuit model the jumper adds the parallel inductances and capacitances to the parallel 

resonators LLCL and LRCR. Therefore, the total inductance of each parallel resonator is less 

than the initial inductance value. The inductances LL and LR on the left and the right sides of 

the structure, respectively, have different values. On the other hand the capacitances CL and 

CR of the parallel resonators are increased due to the increased area of the ground plane and 

have identical values. As the inductive loading dominates, the 3 dB bandwidth is decreased 

and the resonance frequency is shifted to higher frequencies, see Figure 6.3 (c). By variation 

of the distance a it is possible to control the inductive and the capacitive loading and, thus, to 

control the resonance frequency and the bandwidth of the designed BPF, as shown in Figure 

6.3 (d) and (e). Figure 6.3 (f) shows the dependence of the equivalent circuit capacitances and 

inductances, extracted from the equivalent circuit model simulation, versus the distance a. 

With the presence of the metal jumper the equivalent capacitances CL and CR are equal and 

remain almost constant. The equivalent inductances LL and LR have different values, namely 
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the inductance LL at the metal jumper location is higher than LR. The values of the both 

inductances increase as the distance a is increased and become equal at the center of the 

external metal line. The difference between them reduces with the displacement of the metal 

jumper toward the center of the structure and disappears when the jumper is removed as 

shown in Figure 6.3 (f). 

       

a)                                                                        b) 

         

c)                                                                        d) 

            

e)                                                                        f) 

Figure 6.3: Schematic drawing of the designed 2-D coplanar BPF with the metal jumper on 

one side (a). Simulated current density distribution at resonance (b), frequency responses of 

the BPF without and with metal jumper in the first quarter of the structure for a = 0 µm (c) 

and for different distances a (d). Resonance frequency and the bandwidth in dependence on 

the distance a (e) and equivalent inductances and capacitances vs. a distance a (e). 
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6.3 Tunable MEMS-Switch Controlled Quasi-DGS BPF 

Figure 6.4 shows a schematic diagram of the proposed MEMS-switch controlled tunable, 

quasi-DGS coplanar BPF. It consists of the 2-D bandpass structure, investigated in the 

previous section, and eight RF MEMS series-resistive switches based on a fixed-fixed beam 

configuration. The tuning range of the filter covers almost the whole K-band for automotive 

application and transceivers, e.g. All RF MEMS switches are placed symmetrically on both 

sides of the signal line between the ground planes and the external metal lines as shown in 

Figure 6.5. Every switch in the down-state forms an electrical contact and joins the metal 

planes together in the certain locations. 

 

Figure 6.4: Scheme of the designed MEMS-switch controlled tunable BPF. 

 

Figure 6.5: 2-D view of the first quarter of the MEMS-switch controlled tunable BPF, which 

is depicted in Figure 6.4. 

Figure 6.6 (a) shows a scheme diagram of the fixed-fixed beam RF MEMS series ohmic-

contact switch, which has been presented in [61]. These switches are combined with the 2-D 

bandpass filter structure, as shown in Figure 6.4. If they are actuated, the ohmic contact 

between the ground and the external metal plane is realised and, consequently, the properties 
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of the bandpass structure will change. This results in a change of the resonance frequency and 

of the bandwidth of the filter. Length, width, and thickness of the MEMS membrane are 

250 µm, 60 µm and 1.0 µm, respectively. The initial gap height over the lower electrode is 1.3 

µm and 1.2 µm over the RF signal line. The MEMS switches are made of aluminum. The 

design of this switch allows to increase the areas of the lower electrodes and does not require 

dumbbells at the contact locations. It reduces the pull-down voltage and simplifies the 

fabrication process of the MEMS switches. The contact area is 20×20 µm2. A highly doped 

polysilicon with a sheet resistance higher than 1400 Ω/□ can be used as material for the lower 

electrodes. Figure 6.6 (b) shows the FEM simulated result for the center deflection of the 

MEMS membrane versus the applied bias voltage for different values of the tensile residual 

stress. 

          

a)                                                                        b) 

Figure 6.6: Schematic drawing of the fixed-fixed beam RF MEMS series-resistive switch (a) 

and simulated center deflection vs. applied voltage for different values of tensile stress (b). 

 

Figure 6.7: Simulated RF frequency response of the single-separate RF MEMS series-

resistive switch in the ON- and in the OFF-states. 

In the OFF-state the switch isolation is determined by the gap in the signal line under the 

bridge, which has a width of 20 µm in our case. In the ON-state the membrane is pulled down 
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on the contact locations realising an electrical contact between them. The RF signal now 

passes through the switch structure. The simulated RF frequency responses of the RF MEMS 

series resistive-contact switch in both, the ON- and OFF- states are shown in Figure 6.7. In 

the ON-state, the insertion loss is less then 0.1 dB with a return loss higher than -30 dB up to 

40 GHz. While in the OFF-state, the isolation is higher than -17 dB. 

A system of RF MEMS switches controls the parameter values of the cascaded parallel LLCL 

and LRCR resonators in the equivalent circuit model shown in Figure 6.1 (b). The RF 

frequency response of the tunable coplanar BPF in the case of a zero applied bias voltage to 

all RF MEMS switches is almost the same as in the case of the 2-D coplanar BPF investigated 

in section 6.2 and shown in Figure 6.1 (c), but the bandwidth is reduced a little bit. The 

resonance frequency is at 20 GHz with a rejection higher than -20 dB. The simulated pass-

band width is 4.3 GHz. The filter quality factor can be determined by [157]: 

ω
ω
Δ

= 0Q                                                                (6.1) 

where ω0 is the resonance frequency and Δω is the bandwidth. The calculated Q-factor 

including the effect of the CPW line length and the RF MEMS switches is about 4.65. 

The eight RF MEMS switches, which can be actuated individually, allow to obtain 28 

independent states. Due to the structure symmetry, only 26 states are available. The lowest 

(20.0 GHz) and the highest (22.5 GHz) resonance frequencies are obtained by “no switches 

are actuated” and “switches S1, S2, S3, S5, and S6 are actuated”, respectively. Between these 64 

states can be realised providing a small discrete frequency steps between the upper and lower 

limit. 

The loaded filter structure has been simulated for combinations of differently actuated RF 

MEMS switches in order to get the RF frequency response. 

The following combinations have been chosen to describe the performance of the tunable 

filter in different states of the MEMS switches: 

Combination 1: The MEMS switches S2 and S4 are actuated. In this case the loading is 

changed on one side in two quarters of the filter structure. As a result, the 

resonance frequency is shifted from 20 GHz to 22 GHz. 

Combination 2: The MEMS switches S1 and S2 are actuated. The loading is applied to one 

side and the first quarter of the structure is loaded. The filter in this case 

operates with a resonance frequency of 22.3 GHz. 
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Combination 3: The MEMS switches S1, S4 and S7 are actuated. In this case the loading is 

applied to both sides of the structure, whereby the quarters I, II and IV are 

loaded. Therefore, the resonance frequency is changed an amount to 

22.7 GHz. 

Combination 4:  The MEMS switches S1, S3 and S7 are actuated. As in the previous case the 

structure is loaded on both sides, so that the resonance frequency increases 

further to 22.9 GHz. 

Combination 5: The MEMS switches S1, S2 and S4, S8 are actuated. In this case the 

bandpass filter is loaded in three quarters of the structure. The resonance 

frequency in this case is 23.1 GHz. 

Combination 6: The MEMS switches S1, S2 and S3, S8 on both sides are actuated. Three 

quarters are loaded, the resonance frequency has a value of 23.3 GHz. 

Combination 7: The MEMS switches S1 and S6 are actuated. In this case the quarters I and 

III on both sides of the structure are loaded. As a result, the resonance 

frequency increases to 23.7 GHz. 

The simulated reflection coefficient S11 and the simulated transmission coefficient S21 in all 

these cases are presented in Figure 6.8 (a) and (b), respectively. The rejection in the pass-band 

is higher than -30 dB for all the cases. 

               
a)                                                                        b) 

Figure 6.8: Simulated RF frequency responses of the proposed tunable BPF for the different 

cases of actuated MEMS switches, as outlined above: (a) reflection coefficient S11 and 

transmission coefficient S21 (b). 

The simulated resonance frequency and the filter pass-band width for the combinations of the 

actuated MEMS switches mentioned above are shown Figure 6.9. As can be seen for the 
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combinations 3, 4, 5, and 6 the bandwidth of the filter structure remains almost constant, 

namely around 2.15 GHz. In these cases more than two MEMS switches are actuated and at 

least tree quarters of the structure are loaded. These findings can be understood that the 

capacitive loading of the cascaded parallel resonators is constant and more stable as more than 

two quarters are loaded. Therefore, it can be concluded that the presented tunable bandpass 

filter for these combinations operates as an inductively controlled structure. 

 

Figure 6.9: Variations of the resonance frequency and the bandwidth of the tunable BPF for 

different cases of actuated MEMS switches. 

6.4 Summary 

In this chapter, a RF MEMS-switch controlled, tunable bandpass filter for K-band 

applications has been designed and investigated. The filter structure is based on two-

dimensional quasi defected ground structure in CPW environment and fixed-fixed beam RF 

MEMS series-resistive switches. The structure has been designed on high-resistivity silicon 

substrate that is suitable for monolithic integration using CMOS compatible surface 

micromachining technology. The tuning of the designed filter structure has been provided 

using a system of RF MEMS series-resistive switches which controls the inductive-capacitive 

loading of the filter structure. An equivalent circuit has been developed to describe the 

behavior of the bandpass filter by modeling. The EM and circuit simulations are in a good 

agreement validating the proposed equivalent circuit model. Simulations have shown that it is 

possible to control the resonance frequency as well as the bandwidth of the filter. The 

properties of the filter depend on the number of the loaded quarters of the structure. The 

designed structure is very flexible to be designed for different frequency bands since the 

resonance frequency and the bandwidth can be controlled by the geometrical parameters of 

the 2-D coplanar bandpass structure. 
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Chapter 7 

 
Conclusions 
 
Design, modeling, simulation and fabrication of radio-frequency (RF) micro-electro-

mechanical system (MEMS) switches were the matter of this thesis. It also introduced design 

and characterization of RF filters in coplanar waveguide (CPW) implementation. Defected 

ground structures (DGS) were investigated in order to improve the characteristics of coplanar 

filters. Finally, both MEMS switches and DGS were combined to design a tunable coplanar 

bandpass filter. 

The electromechanical modeling was carried out by using the finite element method (FEM). 

The ANSYS FEM simulation platform was used in this investigation. Two algorithms to 

solve the electrostatic problem were implemented. One is the sequential coupling method 

which allowed the combination of the strength of single field simulators. The electrostatic 

problem is based on the solution of the Laplace’s equation in the different homogenous 

regions. The second method to solve the electrostatic problem was the lumped or reduced 

order model. This method was implemented using lumped transducer elements which 

converted the stored electrostatic energy into mechanical energy and vice versa. The 

mechanical model to determine the deformation of the membrane under acting of the 

electrostatic force was obtained following the plate/shell theory. The sequential coupling 

algorithm led to results of high accuracy as the fringing field effect was taken into account. 

But this algorithm required much more computational time than the lumped or reduced order 

model. 

The effect of the residual stress on the structure behaviour was also investigated. It was shown 

the initial biaxial tensile stress could increase the pull-down voltage significantly. 

The concept of a low actuation-voltage, high isolation RF MEMS switches was introduced 

and investigated in chapter 3. The switches were based on the proposed H-shape membrane 

with a low spring constant fixed-fixed flexure suspension. Shunt-capacitive and shunt-

resistive modifications were modeled and optimized. The simulated base-model of the H-

shape RF MEMS switch was useful for X-band applications and provided an ON-state 

insertion loss less than 0.2 dB with a return loss of more than -18 dB. The simulated OFF-
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state isolation was higher than -20 dB for frequencies from 7.0 GHz up to 40 GHz for the 

shunt-capacitive switch and higher than -25 dB for frequencies from dc up to 40 GHz for the 

shunt-resistive structure. The FEM simulated pull-down voltage was less than 25 V for the 

membrane with biaxial tensile stress of 20 MPa. 

A dc-contact RF MEMS shunt-capacitive switches based on the proposed H-shape membrane 

was introduced, simulated and optimized for S- and L-band applications. The S-band MEMS 

shunt-capacitive switch provided an ON-state insertion loss less than 0.3 dB with a return loss 

higher than -25 dB from dc up to 35 GHz. The simulated OFF-state isolation was higher than 

-20 dB from 1.5 GHz up to 35 GHz. The predicted OFF/ON-state capacitance ratio was 

higher than 3.8×103. The simulated pull-down voltage lied in the range from 9.0 V to 12 V for 

the membrane with a biaxial tensile stress of 20 MPa. Even for a residual stress of 40 MPa the 

pull-down voltage did not exceed 15 V. The designed L-band MEMS switch had an ON-state 

insertion loss less than 0.8 dB with a return losses higher than -40 dB from dc up to 40 GHz. 

The OFF-state isolation was higher than -20 dB from 0.8 GHz up to 40 GHz. The simulated 

pull-down voltage was 9.0 V and 12.0 V for the membranes with a biaxial tensile stress of 20 

MPa and 40 MPa, respectively. 

The proposed designs of RF MEMS switches were completely based on CMOS compatible 

fabrication steps and processes. 

The fabrication process of conventional RF MEMS switches in the fixed-fixed beam 

configuration was described in chapter 4. The switches were fabricated in a clean-room using 

surface micromachined techniques compatible with standard CMOS technology. Each 

fabrication step was described in details. High quality silicon nitride films were deposited 

using the electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR-

PECVD) method at 50 °C. The influence of the gas mixture, namely the SiH4/N2 ratio, on the 

film properties was studied. The dielectric constant of the nitride films obtained with 

optimized deposition conditions was 7.9, the average surface roughness 1.15 nm. The 

measured breakdown field strength of a sample processed with the SiH4/N2 ratio of 1:6 was 

7.9 MV/cm at J = 12 µA/cm2 and deceased to 5.9 MV/cm as the ratio was increased to 1:1. 

The measured ON-state insertion loss of the fabricated switches was less than 0.5 dB with a 

return loss less than -10 dB up to 40 GHz. The OFF-state isolation was higher than -18 dB for 

frequencies from 6 GHz up to 40 GHz. The measured pull-down voltage of the fabricated 

switches was in range of 24-30 V. 
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In chapter 5, designs of RF filters constructed in CPW environment were presented. Several 

different approaches were proposed to realize the filter structures. Two bandpass filters (BPF) 

were designed using capacitively end-coupled method and inductively shunt-coupled line 

approach. The first bandpass filter was designed by using λ/4 open-end stub resonators 

coupled by gap capacitance. The second BPF was designed using meander serpentine-shape 

λ/2 shunt-stubs that reduced the filter size and improved its RF performance. 

The performance of the conventional dumbbell DGS slots was improved by using the fractal 

geometry. For the designed quasi-fractal DGS the capacitance value was more than 30 % 

higher than for the capacitance of the standard rectangular DGS. It allowed to shift the 

resonance pole to lower frequencies. 

A coplanar capacitively coupled DGS low-pass filter was designed and optimized. The filter 

was constructed on coplanar line, which was periodically loaded with arrowhead triangular 

DGS slots. A new compact high performance coplanar ultra wideband low-pass filter (UWB 

LPF) with improved stop-band characteristic was designed by using λ/4 open-end stub 

resonators combined with novel shape DGS. The designed filter showed wide (more than 

20 GHz) and deep stop-band characteristics. 

In chapter 6, RF MEMS-switch controlled tunable bandpass filter for K-band applications 

was designed and investigated. The filter structure was based on quasi-DGS in CPW 

environment and RF MEMS series-resistive switches. The tuning of the designed filter 

structure was performed by the control of the inductive-capacitive loading of the structure. 

Simulations showed that it was possible to control the resonance frequency as well as the 

bandwidth of the filter. It depended on the number of the loaded quarters of the filter structure. 
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