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Kurzfassung

In vielen Zweigen der chemischen und pharmazeutischen Industrie ist man mit

der Aufgabenstellung konfrontiert, Stoffgemische zu trennen. Hierfür existieren

verschiedene Trennverfahren, die jeweils die unterschiedlichen Stoffeigenschaften

der einzelnen Komponenten ausnutzen. Ein häufig benutztes Trennverfahren ist

die Chromatographie. Diese nutzt das unterschiedliche Adsorptionsverhalten

der in ein Lösungsmittel aufgelösten Stoffe aus. So bewegt sich die Konzen-

trationsfront einer stärker adsorbierten Komponente mit einer geringeren Ge-

schwindigkeit durch eine chromatographische Säule als die Konzentrationsfront

der schwächer adsorbierten Komponente. Um eine kontinuierliche Auftren-

nung eines Stoffgemisches zu realisieren, ist eine zyklische Verschaltung von

chromatographischen Säulen notwendig. Eine solche Methode wurde von der

Firma Universial Oil Products, UOP, in den 60-iger Jahren entwickelt, [1], und

wird als Simulated- Moving- Bed, SMB, Verfahren bezeichnet. Seit dieser Zeit

wurde diese Technologie in verschiedenen Bereichen zur Stofftrennung erfolgre-

ich angewandt. Der Prozess ist jedoch sehr empfindlich gegenüber Änderungen

in den einzustellenden Volumenströmen und Umschaltzeiten. Es ist daher not-

wendig die Volumenströme und die Umschaltzeit, die man zusammenfassend

als Betriebspunkt bezeichnen kann, für einen störungsfreien Betrieb korrekt ein-

zustellen.

Die Berechnung eines Betriebspunktes erfolgt heutzutage meist auf der Basis

eines True- Moving- Bed, TMB, Prozesses. Bei diesem Prozess wird ein echter

Gegenstrom des Adsorbtionsbetts angenommen. Der Grund hierfür liegt in der

Tatsache, dass ein TMB- Prozess mathematisch einfacher zu analysieren ist als

ein periodisch arbeitender SMB- Prozess. Auf Basis dieses Modells haben sich im

Wesentlichen zwei Verfahren für die Berechnung von Betriebspunkten für voll-

ständige Trennung und vollständige Regeneration etabliert. Das eine Verfahren

bezeichnet man als triangle theory, [2], [3], und das andere als standing wave de-

sign, [4], [5]. Die mit diesem Verfahren berechneten Betriebspunkte für den TMB-

Prozess werden anschließend in Betriebspunkte für den SMB- Prozess trans-



formiert. Zusätzlich wurden auch Anstrengungen unternommen, um Betrieb-

spunkte für TMB- Prozesse bei geringeren Reinheitsanforderungen zu berech-

nen, [6], [7]. Der TMB- Prozess ist jedoch nicht in der Lage, die periodischen

Konzentrationsänderungen an den Abzügen zu beschreiben.

Um den aktuellen Herausforderungen gerecht zu werden und auch weiteren-

twickelte Betriebsweisen, wie z.B. die asynchrone Umschaltung durch das VariCol-

Konzept, [8], und die Variation des Stoffmengenflusses durch ModiCon, [9], und

PowerFeed, [10], gut beschreiben zu können, ist es unabdingbar, neue Verfahren

für die Bestimmung von Betriebspunkten zu entwickeln, die den tatsächlichen

SMB- Prozess als Ausgangspunkt für die mathematische Analyse verwenden.

In dieser Arbeit wird eine neue Methode für die Berechnung der Stellgrößen

des zyklisch-stationären Zustandes eines SMB- Prozesses unter idealisierten Be-

dingungen vorgestellt. Mit Hilfe dieses Ansatzes, lassen sich explizite Design-

formeln für eine vollständige Trennung der beteiligten Stoffkomponenten für

die in der Praxis häufig verwendeten Langmuir- Isothermen und den daraus

abgeleiteten Grenzfällen herleiten. Die periodischen Konzentrationsänderungen

an den Abzügen lassen sich nun mathematisch sehr gut beschreiben. Weiterhin

wird aufgezeigt, wie sich diese Methode auch bei reduzierter Produktreinheit

anwenden lässt.

Zusätzlich wird diese Methode verwendet, um einfache, aber sehr robuste Re-

gelungskonzepte für die automatische Einstellung von SMB- Anlagen zu en-

twickeln. Diese Regelungskonzepte lassen sich auch verwenden, um komplexe

Modelle von SMB- Anlagen effektiv zu optimieren.



Abstract

In many branches of the chemical and pharmaceutical industry, one is confronted

with the task of separating mixtures of substances. For this, various separat-

ing methods exist, which make use of the different properties of the individ-

ual components. A frequently-used separating procedure is chromatography.

This exploits the different adsorption behaviors of the materials dissolved into a

solvent. Thus, the concentration front of a component more strongly adsorbed

moves with a lower velocity through a chromatographic column than the con-

centration front of the component more weakly adsorbed. In order to realize a

continuous separation of a substance mixture, a special cyclical port shifting is

necessary. Such a method was developed by Universal Oil Products, UOP, in the

’60s, [1], and is called the simulated moving bed, SMB, method. Since that time,

this technology has successfully been used for the separation of substances in

different areas. However, this process is very sensitive to volumetric flow rates

and switching time. Therefore, it is necessary to adjust the flow rates and switch-

ing time carefully for a faultless operation. In the following, the flow rates and

switching time are summarized as an operating point.

Nowadays, the determination of an operating point is usually carried out on the

basis of a true moving bed, TMB, process. Like a countercurrent heat exchanger,

the TMB process assumes a countercurrent motion between adsorbed and liquid

phase. This assumption allows a simpler mathematical analysis in comparison

with a SMB process that works periodically. Based on the TMB model, two meth-

ods have been introduced for the calculation of operating points in the case of

complete separation and complete regeneration. The first procedure is called

triangle theory, [2], [3], and the second is called standing wave design, [4],[5]. The

operating points for the TMB process calculated with one of these procedures are

transformed into operating points for the SMB process. In addition, some efforts

were made to also compute operating points for TMB processes under reduced

purity requirements, [6], [7]. Unfortunately, the TMB process is only an approx-

imation and is not able to describe the periodic changes in the concentrations at



the drains.

Many modern operations, like asynchronous switching of columns by the Vari-

Col concept, [8], and the variation of the component flow rates by ModiCon, [9],

and PowerFeed, [10], make use of the periodic behavior of the SMB process. In

order to appropriately describe the cyclic processes mathematically, it is neces-

sary to develop new tools that analyze the SMB process directly.

In this contribution, a new method for designing SMB plants is developed. It

is based on an idealized model which neglects axial dispersion and assumes

thermodynamic equilibrium. The periodic changes of the concentrations at the

drains at cyclic steady state are appropriately described. Explicit design formu-

las are derived for the most popular isotherms, which mathematically describe

the adsorption behavior. This work shows further how operating points can

be determined under reduced purity requirements. In addition, this method is

used to develop simple but very robust control concepts for an automatic adjust-

ment of SMB plants. These control concepts may also be used to optimize more

complex models of SMB plants effectively.
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1 Introduction to Simulated

Moving Bed Chromatography

Preparative chromatography is an important separation method. It uses the ef-

fect of different adsorption affinities of components dissolved into a solvent.

Thus, the concentration front of a more strongly adsorbed component moves

with a lower velocity through a chromatographic column than the concentra-

tion front of the more weakly adsorbed component. In the sixties, the company

Universal Oil Products, UOP, developed the simulated moving bed, SMB, Tech-

nology, [1]. Chromatographic columns are interconnected to form a ring. The

connections of the feeding and drains are cyclically changed to allow a continu-

ous separation of a binary mixture.

1.1 Process Description

As shown in Fig. 1.1, the classical SMB process consists of four zones that are

coupled through the volumetric flow rates of the liquid phase. Each zone can

consist of several chromatographic columns. The binary mixture, which is fed

in between the second and third zone, is called "feed". The stronger adsorbed

component, B, is obtained at the "extract" between the first and second zone. On

the other hand, the weaker adsorbed component, A, is obtained at the "raffinate"

between the third and fourth zone. Additionally, a pure solvent stream is pro-

vided between the fourth and first zones. The volumetric flow rates are adjusted

with the aid of the four pumps, UI , UEx, UFe and URa. The flow and port shift di-

rections are indicated in Fig. 1.1. After a specific time, the connections together

with the pumps are shifted synchronously in the direction of the liquid phase

by one column length. The propagation velocity of the more strongly adsorbed

component, B, must be smaller than the switching speed, so that this component

moves in the direction of the extract. On the other hand, the propagation ve-
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1. Introduction to Simulated Moving Bed Chromatography

port
switching A

,A Rac ,B Rac

RaVɺ

ElVɺ

B

,A Exc ,B Exc

ExVɺ

,A Fec ,B FecFeVɺ

II

I

III

IV

FeU

ExU RaU

IU

Figure 1.1: Configuration of a four zone SMB plant.

locity of the weaker adsorbed component, A, must be larger than the switching

speed, so that this component moves in the direction of the raffinate. Therefore,

a correct setting of the zone velocities is necessary for a faultless operation. As

indicated in Fig. 1.2, the four zones may be arranged in a plane to plot the associ-

ated concentration profiles at cyclic steady state above the columns. The spatial

coordinate is chosen such that it starts with zone I. Within a certain time interval,

the concentration profiles move from the left to the right.

1.2 A Short Review on Design of SMB plants

The SMB process has a periodic behavior, which makes the mathematical anal-

ysis difficult. For this reason, one frequently uses an approximation. Thus, it

is assumed that a real countercurrent flow exists between liquid and adsorbed

phase. Such a process is called a true moving bed, TMB. The main reason for this

approximation is that a suitable adjusted TMB process offers a real steady state,

where all states are constant. A SMB process will only archive a cyclic steady

state. The cyclic steady state still depends on space and time coordinates regard-

less if a rotating observer is used or not. This means that one still has to solve

a partial differential equation, PDE, to determine its cyclic steady state profile,

2 PhD Thesis – On Design and Control of SMB Plants



1.2. A Short Review on Design of SMB plants

I II III IV

El
Vɺ

Ex
Vɺ

Fe
Vɺ
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Vɺ

B
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A
c

z

I II III IV

S
T

Figure 1.2: Idealized concentration profiles of an SMB plant moving from the left
to the right.

which makes an analytic approach more demanding.

Nowadays, it is most common to use either the triangle theory, [2], [3], or the

standing wave design, [4], [5], to find operating conditions for a TMB process.

The triangle theory is based on the classical approach to solve a ordinary differen-

tial equation, ODE, for the steady state profile. Since the standard TMB process

consist of four section all four solutions together with the coupling equations

leads to an algebraic set of equations that needs to be solved. For a dispersion-

free model and for complete separation, the set of equations leads to explicit

solutions for Henry and Langmuir isotherms.

The standing wave design uses the observation that at steady-state each wave front

has a fixed location. With other words four standing waves are formed. Using

the conditions for a standing wave, one can set-up a set of algebraic equations,

which can be used to solve for the unknown flow rates.

Both methods only find operating conditions under idealized conditions and

there may be a discrepancy to the real SMB process. Thus, the idealized oper-

ating conditions are often used as initial guess for a dynamic optimization, [11],

[12]. A dynamic optimization is only usefully if a good dynamic model includ-

ing its parameters is known. In practice, this is often not the case and therefore

a closed loop control is of great interest.

A general review on design of SMB plants including the references to the most

significant contributions can be found in [13], [14], [15].
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1. Introduction to Simulated Moving Bed Chromatography

1.3 A Short Review on Control of SMB plants

SMB technology is an attractive separation process for binary mixtures and has

its applications in the fine chemical and pharmaceutical industry. Nowadays,

most plants operate in open loop far away from the optimum to increase robust-

ness. Since this process is very sensitive to disturbances and parameter changes,

it is natural to require an automatic controller which is capable of always driving

the system near the optimum.

Several contributions on this topic have been reported in the literature. The first

concepts published are based on TMB models, [16], [17], [18], [19]. However,

this model is not able to describe the periodic behavior of the concentrations at

the drains. For this reason, the full SMB model is often suggested as a basis for

the control design. In [20] and [21] a concept was introduced, which uses the

linearization of the complete model around the trajectory of the cyclic steady

state. The resulting linear time varying model of high order can then be used as

a starting point for an arbitrary classical control design.

A predictive control strategy based on a numeric optimization of the future tra-

jectory of the nonlinear model is also frequently suggested, [22], [23]. An advan-

tage in this approach lies in the fact that this method is relatively universal and

can be easily transferred to different process models. Furthermore, constraints

in the control variables can also be taken into account explicitly. The drawback is

that the necessary discretization of the partial differential equations often leads

to a numeric model representation of high order. Usually, the parameters will

enter into the model in a complex way. Furthermore, a high number of states

of this model need to be reconstructed from a small number of inputs and mea-

sured outputs, which often leads to a slow convergence in the state estimates.

Changes in the model parameters, e.g. by aging, have a great influence on the

quality of the state estimates and the control performance. Therefore, it is neces-

sary to adapt the process parameters.

The natural question arises if it would be possible to describe the essential dy-

namics with a low-order model. First concepts with this philosophy are pub-

lished in [24], [25] and in [26], [27], [28]. In a first step, these works attempt to

reconstruct the concentration fronts of the SMB profile in a different way. After

the concentration fronts of the SMB profile are approximated, signals are derived

for their positions. In a second step, an experimental model approach is used to

establish a connection between the positions of the four concentration fronts and

4 PhD Thesis – On Design and Control of SMB Plants



1.4. Outline of this Thesis

the four control variables. Such a control design leads to simpler controllers of

low order that are desired in practice. However, the concentration fronts can take

very different shapes, especially during the startup phase. Through this, the re-

construction of the concentration front is very susceptible. It would therefore

be favorable to find a control concept without the reconstruction of the complete

concentration fronts. In [18] and [19] the static equations of the concentration ve-

locities of the wave fronts of the TMB model are used in order to achieve a static

decoupling. The dynamic behavior is also described by an experimental ap-

proach that leads again to time-consuming experiments. To avoid this, it would

be favorably to find a more rigorous approach, which describes the relationship

between the inputs and outputs. Furthermore, it should be tried to achieve an

automatic adjustment of the model parameters from past measurements.

1.4 Outline of this Thesis

In this thesis, a new method for the analysis of SMB plants is presented. In a

first chapter, the basics of chromatography are repeated to provide the reader

the mathematical tools necessary in the subsequent chapters.

A second chapter deals with the determination of operating points for dispersion-

free SMB models for the most used isotherms. Explicit equations are derived

which have a great practical use for the design of SMB plants. These equations

can be used as an ideal initial condition for a further dynamic optimization. In

this way, the optimization time can be reduced considerably. In addition it is

possible to predict the time trajectory of the concentrations at the drains at cyclic

steady state almost exactly. Thus, one can judge the quality of different numeric

solution methods for the simulation. A simple sensitivity analysis can be carried

out with help of these equations. This leads to more insight into the process and

to new ideas how one can optimize it.

A third chapter shows how one can use this knowledge for an adaptive control-

strategy. Two control concepts are introduced. The first concept is a simple but

extremely robust adaptive control strategy for SMB plants in case of complete

separation. The second control concept indicates a simple extension to reduced

purities and the control of four-column SMBs.
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If you pretend to be good, the world takes you very seriously.
If you pretend to be bad, it doesn’t. Such is the astounding
stupidity of optimism.

∼ Oscar Wilde ∼



2 Basics of Chromatography

This chapter will review the basic theory in chromatography, as it is needed

throughout the thesis. It is written in such a style that it provides a good starting

point to enter the field of chromatography. Experienced readers may skip this

chapter.

2.1 Modeling of Chromatographic Columns

In this section, the basic model equations for chromatographic columns are de-

rived from first principles, [29], [30], [31], [32], [33].

2.1.1 Liquid Phase Balance

To describe a chromatographic column in a simple way, an incompressible fluid

is assumed, and thus the total mass balance reduces to an algebraic equation.

Therefore, one may start directly with the component balance of the liquid phase

in general integral form. To do this, the mole number per unit length is intro-

duced and signed with an over bar. Further, all flow variables are indicated with

an over dot. The balance equation simple states: that the temporal change of

stored moles within the fixed domain of interest is equal to the in and out flow

to this domain and the production rate. In this case, the production rate is the

exchange rate between the liquid and adsorbed phase.

d

dt

b
∫

a

n̄ (t, z) dz = ṅ (t, a) − ṅ (t, b) +

b
∫

a

˙̄nex (t, z) dz (2.1)

O

T
T
O

-V
O

N
-G

U
E

R

IC
KE-UNIVERSIT

Ä
T

M
A

G
D

E
B

U
R

G

Otto-von-Guericke-Universität Magdeburg, 2009 7



2. Basics of Chromatography

If continuity of component flow is assumed, the in and out flow can be expressed

using the equivalent integral relationship.

b
∫

a

∂ n̄ (t, z)

∂t
dz = −

b
∫

a

∂ṅ (t, z)

∂z
dz +

b
∫

a

˙̄nex (t, z) dz (2.2)

The volume concentration is used to substitute the mole number per unit length.

The volume occupied by the liquid is expressed as product of void fraction, ε,

and total volume, V.

n̄ (t, z) = c (t, z)
ε V

L
= c (t, z) ε A (2.3)

The mole flow rate, within the domain, consists of a convective and a diffusive

part. It is practical to use the measurable liquid volume flow rate to build up the

convective part. Fick’s law describes the diffusive part, which is proportional to

the fluid cross section area.

ṅ (t, z) = c (t, z) V̇l − D ε A
∂c (t, z)

∂z
(2.4)

A linear driving term is used to express the exchange between liquid and ad-

sorbed phase. For simplicity, the chosen mass transfer resistance includes also

the surface area. Further, an equilibrium relationship, f (c (t, z)), needs to be

specified.

˙̄nex (t, z) = − 1
R

( f (c (t, z)) − q (t, z)) (2.5)

All these terms are inserted in the integral balance equation, Eq. (2.2).

b
∫

a

∂c(t,z)
∂t ε Adz = −

b
∫

a

(

∂c(t,z)
∂z V̇l − D ε A

∂2c(t,z)
∂z2

)

dz

−
b
∫

a

1
R ( f (c (t, z)) − q (t, z)) dz

(2.6)

Afterwards, all parts are collected under one integral.

b
∫

a

[

∂c(t,z)
∂t ε A + ∂c(t,z)

∂z V̇l − D ε A
∂2c(t,z)

∂z2

+ 1
R ( f (c (t, z)) − q (t, z))

]

dz = 0 (2.7)

8 PhD Thesis – On Design and Control of SMB Plants



2.1. Modeling of Chromatographic Columns

Since the equation has to be satisfied for arbitrary fixed length, the term under

the integral must be zero. As result, the differential description of the fluid phase

concentration is obtained.

ε A
∂c(t,z)

∂t + V̇l
∂c(t,z)

∂z − D ε A
∂2c(t,z)

∂z2

+ 1
R ( f (c (t, z)) − q (t, z)) = 0

(2.8)

2.1.2 Adsorbed Phase Balance

The same method can be used to derive the component balance for the adsorbed

phase. Now the integral balance equation will not have a flow term.

d

dt

b
∫

a

n̄q (t, z) dz = −
b

∫

a

˙̄nex (t, z) dz (2.9)

Again, the mole numbers are substituted using volume concentration.

b
∫

a

∂q (t, z)

∂t
(1 − ε) Adz =

b
∫

a

1
R

( f (c (t, z)) − q (t, z)) dz (2.10)

All terms are collected under one integral and the equation needs to be satisfied

for different fixed length. Therefore, the integrand must be zero.

b
∫

a

[

∂q (t, z)

∂t
(1 − ε) A − 1

R
( f (c (t, z)) − q (t, z))

]

dz = 0 (2.11)

Finally, the differential description of the adsorbed phase concentration is ob-

tained.

∂q (t, z)

∂t
(1 − ε) A − 1

R
( f (c (t, z)) − q (t, z)) = 0 (2.12)

2.1.3 Boundary Conditions

To complete the model, boundary conditions need to be defined. They describe

the in and out flow through the boundary of the specified domain. For the liquid
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2. Basics of Chromatography

phase, the integral description of the left boundary is formulated by Eq. (2.13).

d

dt

b
∫

0

n̄ (t, z) dz = ṅin (t) − ṅ (t, b) +

b
∫

0

˙̄nex (t, z) dz (2.13)

In the limit, lim
b→0

, the mole flow rates are coupled directly:

ṅin (t) = ṅ (t, 0) . (2.14)

The mole flow rates are expressed in volume concentration. Therefore, the left

boundary condition has following form:

cin (t) V̇l = c (t, 0) V̇l − D ε A
∂c (t, z)

∂z |z=0
, for z = 0. (2.15)

The integral balance for the right boundary is derived in a similar manner.

d

dt

L
∫

a

n̄ (t, z) dz = ṅ (t, a) − ṅout (t) +

L
∫

a

˙̄nex (t, z) dz (2.16)

If taking the limit, lim
a→L

, the inner and outer mole flow rates are coupled directly:

ṅout (t) = ṅ (t, L) , (2.17)

cout (t) V̇l = c (t, L) V̇l − D ε A
∂c (t, z)

∂z |z=L
, for z = L. (2.18)

Since the leaving concentration is equal to the concentration at the boundary,

cout (t) = c (t, L), the right boundary condition, Eq. (2.18), is simple:

∂c (t, z)

∂z |z=L
= 0. (2.19)

There is no need to specify boundary conditions for the adsorbed phase, since

no flow is present. The partial differential equation for the adsorbed phase con-

centration is in principle an ordinary differential equation where the space coor-

dinate is treated as a parameter.
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2.1. Modeling of Chromatographic Columns

2.1.4 Summary of Governing Equations

For a quick overview, the governing model equations for single component chro-

matography are collected here:

∂c(t,z)
∂t = − V̇l

ε A
∂c(t,z)

∂z + D
∂2c(t,z)

∂z2 − 1
R ε A ( f (c (t, z)) − q (t, z)) , (2.20)

∂q(t,z)
∂t = 1

R (1−ε) A ( f (c (t, z)) − q (t, z)) , (2.21)

z ∈ (0, L) and t ∈ (0, ∞).

With boundary conditions:

cin (t) = c (t, 0) − D ε A
V̇l

∂c(t,z)
∂z |z=0 , ∂c(t,z)

∂z |z=L
= 0, (2.22)

and initial conditions:

c (0, z) = c0 (z) , q (0, z) = q0 (z) . (2.23)

If Eq. (2.21) is substituted in Eq. (2.20), following alternative form is derived:

∂c(t,z)
∂t + 1−ε

ε
∂q(t,z)

∂t = − V̇l
ε A

∂c(t,z)
∂z + D

∂2c(t,z)
∂z2 , (2.24)

∂q(t,z)
∂t = 1

R (1−ε) A ( f (c (t, z)) − q (t, z)) . (2.25)

2.1.5 Simplification for Fast Adsorption

If the resistance for the exchange between the liquid and adsorbed phase ap-

proaches zero, the differential equation for the adsorbed phase becomes an al-

gebraic equation. In this case, the adsorbed phase is expressed directly by the

equilibrium relationship.

q (t, z) = f (c (t, z)) (2.26)
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2. Basics of Chromatography

As consequence, only one partial differential equation is needed to describe a

single component chromatographic column.

∂c (t, z)

∂t
+

1 − ε

ε

∂q (t, z)

∂t
= − V̇l

ε A

∂c (t, z)

∂z
+ D

∂2c (t, z)

∂z2 (2.27)

2.1.6 Two Component Chromatography for Fast Adsorption

If chromatography with several components is used, one gets for each compo-

nent one partial differential equation. The steady state adsorption relationship

will in general depend on all components used. The governing equations for a

two component chromatographic column for fast adsorption are given below:

∂cA

∂t
+

1 − ε

ε

∂qA (cA, cB)

∂t
= − V̇l

ε A

∂cA

∂z
+ D

∂2cA

∂z2 , (2.28)

∂cB

∂t
+

1 − ε

ε

∂qB (cA, cB)

∂t
= − V̇l

ε A

∂cB

∂z
+ D

∂2cB

∂z2 , (2.29)

for z ∈ (0, L) and t ∈ (0, ∞).

With boundary conditions:

ci,in (t) = ci (t, 0) − D ε A
V̇l

∂ci(t,z)
∂z |z=0 , ∂ci(t,z)

∂z |z=L
= 0, i = A, B, (2.30)

and initial conditions:

ci (0, z) = ci,0 (z) , qi (0, z) = qi,0 (z) , i = A, B. (2.31)

2.1.7 Langmuir Isotherms

To describe the adsorption process on surfaces the simple model idea of Lang-

muir, [34], [35], is used. It assumes that molecules are adsorbed at a fixed num-

ber of adsorption sites of equal energy, where each site can hold one adsorbate

molecule until mono layer coverage is achieved. It is further assumed that no

interaction between adsorbate molecules takes place. A fractional coverage, ϑ,

is introduced, which is defined as ratio of adsorbed covered sites of component

A to the total number of sites available per unit volume. The exchange rates

between adsorbed and liquid phase is described by the rate of adsorption and

desorption.
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2.1. Modeling of Chromatographic Columns

The rate of adsorption is written in dependency of the liquid component concen-

tration and the overall coverage.

rad = kad cA (1 − ϑ) (2.32)

The rate of desorption is only written in dependency of the coverage with com-

ponent A.

rdes = kdes ϑA (2.33)

At equilibrium, the overall rate is zero and following equation holds.

0 = rad − rdes = kad cA (1 − ϑ) − kdes ϑA (2.34)

The overall coverage is the sum of all component coverage’s. For a single com-

ponent A it is just:

ϑ = ϑA. (2.35)

The resulting equation can now be solved for this component coverage.

ϑA =

kad
kdes

cA

1 + kad
kdes

cA

=
KA cA

1 + KA cA
(2.36)

Finally, the equation can be written in adsorbed concentrations by introducing

the saturation limit also called mono layer capacity for the corresponding com-

ponent for Langmuir isotherms:

qA = qS
KA cA

1 + KA cA
, qA (cA → ∞) = qS. (2.37)

The equilibrium constant, KA, decreases with increasing temperature and can be

modeled by the following ansatz:

KA (T) = KA∞ e
Q

R T . (2.38)

The product of saturation limit and equilibrium rate constant may be combined
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2. Basics of Chromatography

to the Henry constant.

HA = qS KA (2.39)

This reaction kinetic like modeling can be extended to more than one species. For

two components and different saturation capacities, the Langmuir isotherms are

given by Eq. (2.40) and Eq. (2.41).

qA (cA, cB) =
HA cA

1 + KA cA + KB cB
(2.40)

qB (cA, cB) =
HB cB

1 + KA cA + KB cB
(2.41)

2.1.8 Selectivity and Adsorbility

Adsorbility is defined as ratio of adsorbed to liquid concentration in steady state.

γ =
q (c)

c
(2.42)

Selectivity between two components is defined as ratio of their adsorbilities.

SAB =
γA

γB
=

q (cA) cB

q (cB) cA
(2.43)

In case of Langmuir Isotherms, it follows that they have constant selectivity, [34].

γ =
H

1 + K c
, SAB =

HA

HB
(2.44)

2.2 Analysis of a Single Component

Chromatographic Column

The questions arise if some analytical approach can be made to get a deeper in-

sight in the behavior of chromatography by using the model equations. To this,

Some analysis techniques are introduced here as a basic tool to derive analytical

equations that sufficiently describes chromatographic effects. A detailed treat-

ment was given by [29].
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2.2. Analysis of a Single Component Chromatographic Column

2.2.1 Method of Characteristic

The method of characteristics, [36], is a powerful tool to derive analytical solu-

tions for first-order partial differential equation. Since the original model is sec-

ond order in space, one can only use this tool if diffusion is neglected. Therefore

following partial differential equation for a single component chromatography

is used as starting point.

∂c

∂t
+ F

∂q

∂t
= −vl

∂c

∂z
, z ∈ (0, L] , t ∈ (0, ∞) (2.45)

with q = q (c (t, z)) and cin (t) = c (t, 0), c (0, z) = c0 (z).

This partial differential equation may be written in form of Eq. (2.46).

(

1 + F
dq

dc

)

∂c

∂t
+ vl

∂c

∂z
= 0 (2.46)

It is assumed that the concentration depends only on a single variable. If this is

the case, following relationship is obtained.

c (t (s) , z (s)) → dc

ds
=

∂c

∂t

dt

ds
+

∂c

∂z

dz

ds
(2.47)

A simple comparison of the coefficients results in a set of ordinary differential

equations.

dc
ds = 0
dt
ds = 1 + F

dq
dc

dz
ds = vl

(2.48)

This set is reduced by one equation if s is eliminated.

(

1 + F
dq

dc

)

dc

dt
= 0,

dz

dt
=

vl

1 + F
dq
dc

(2.49)

The first equation is satisfied if either the concentration is constant or the bracket

is zero. If the concentration is constant, the right hand side of the second differ-

ential equation, Eq. (2.49), is also constant and can be integrated.

c (t) = cre f , z − zre f =
vl

1 + F
dq
dc

(

t − tre f

)

(2.50)
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2. Basics of Chromatography

The integration constants, cre f , zre f , and tre f , are selected such that the initial

or boundary conditions are satisfied. With, cre f = c
(

0, zre f

)

= c0
(

zre f

)

, the

propagation of any point of the initial profile can be described.

c (t, z) = c0
(

zre f

)

= c0

(

z − vl

1 + F
dq
dc

t

)

(2.51)

Taking, cre f = c
(

tre f , 0
)

= cin

(

tre f

)

, any point of the boundary condition can

also be described.

c (t, z) = cin

(

tre f

)

= cin

(

t − 1 + F
dq
dc

vl
z

)

(2.52)

There is still one special solution of Eq. (2.49) left, which is the root of following

equation.

1 + F
dq

dc
= 0 (2.53)

Since for most practical isotherms, dq
dc ≥ 0, for all positive concentration it is not

a physical solution and can be neglected.

2.2.2 Rarefaction Wave

The solution found by the method of characteristics describes the propagation

of a concentration point along the characteristics. A problem arises if the char-

acteristic lines are not parallel. Suppose the initial profile is piecewise constant.

Assume further that the left side of the discontinuity is lower than the right side.

In this case, there is a piece within the (t, z) space that is not directly related to

any point of the initial profile and the equations from last section are not able to

describe this area, [37].

(

1 +
F H

(1 + K c)2

)

∂c

∂t
+ vl

∂c

∂z
= 0, c (0, z) =

{

cL z < zre f

cR z > zre f

, cL < cR

(2.54)

Since the model describes a real physical system, there should be a unique so-

lution for this area. The boundary of this area can be described by the left and
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2.2. Analysis of a Single Component Chromatographic Column

Figure 2.1: Creation of a rarefaction wave.

right state of the initial condition. One may assume that a smooth transition be-

tween these states is developed as time increases. In case of Langmuir isotherms,

Eq. (2.40) and Eq. (2.41) on page 14, it is possible to solve the equation explicitly,

which determines the characteristic for the concentration.

z − zre f =
vl

1 + F
dq
dc

(

t − tre f

)

=
vl

1 + F H

(1+K c)2

(

t − tre f

)

(2.55)

c (t, z) =
1
K







√

√

√

√

√

∣

∣

∣

∣

∣

∣

F H

vl
t−tre f

z−zre f
− 1

∣

∣

∣

∣

∣

∣

− 1






(2.56)

To show that this is indeed a solution one has to plug it into the original PDE and

prove that it can solve this equation. This kind of solution is called self-similarity

solution since it does not depend separately on t and z. It depends on a similarity

variable, η (t, z) =
t−tre f

z−zre f
. If the reference point is chosen to be the origin, which

means, tre f = 0 and zre f = 0, one call this centered rarefaction. The full solution

of this Riemann problem is stated below.

c (t, z) =











































cL
z−zre f

t−tre f
<

vl

1+F H

(1+K cL)2

1
K







√

√

√

√

√

∣

∣

∣

∣

∣

∣

F H

vl

t−tre f
z−zre f

−1

∣

∣

∣

∣

∣

∣

− 1







vl

1+F H

(1+K cL)2
<

z−zre f

t−tre f
<

vl

1+F H

(1+K cR)2

cR
z−zre f

t−tre f
>

vl

1+F H

(1+K cR)2

(2.57)
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2. Basics of Chromatography

2.2.3 Shock Wave

Another problem arises if a piecewise constant initial profile is chosen with a

discontinuity; where the right side is lower than the left side, [37]. In such cases

the left side will travel with higher speed as the right side, which is pointed out

by the intersections of characteristic lines. It seems that the shaded area is over

determined.

∂

∂t
(c + F q (c)) + vl

∂c

∂z
= 0, c (0, z) =

{

cL z < zre f

cR z > zre f

, cL > cR (2.58)

To deal with this problem, a general balance equation in differential form is

Figure 2.2: Creation of a shock wave.

investigated.

∂q̃ (v (t, z))

∂t
= −∂f̃ (v (t, z))

∂z
(2.59)

The variable, q̃, is a stored quantity and, f̃, is a flow density in dependency of a

chosen state variable. Integration in space and time on both side of the equation

is performed.

L
∫

0

q̃ (v (t, ζ)) dζ = −
t

∫

0

f̃ (v (τ, L)) − f̃ (v (τ, 0)) dτ = 0 (2.60)
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2.2. Analysis of a Single Component Chromatographic Column

Taking the time derivative on both sides and neglecting initial conditions one

obtains a general balance equation in integral form.

d

dt

L
∫

0

q̃ (v (t, ζ)) dζ = f̃ (v (t, 0)) − f̃ (v (t, L)) (2.61)

If a discontinuity exists, the integration needs to be divided in two parts. The po-

sition of this discontinuity may be time dependent and is described by following

equation.

s = s (t) (2.62)

Since the balance equation has to be valid for any arbitrary domain, some fixed

values in space are used around the discontinuity. Therefore, following equation

can be derived.

d

dt

s(t)
∫

z1

q̃ (v (t, ζ)) dζ +
d

dt

z2
∫

s(t)

q̃ (v (t, ζ)) dζ = f̃ (v (t, z1)) − f̃ (v (t, z2)) (2.63)

Changing the order of differentiation and integration and taking care about the

time dependent boundary one obtains Eq. (2.64).

s(t)−0
∫

z1

dq̃
dv

∂v(t,ζ)
∂t dζ + ṡ (t) q̃ (v (t, s (t) − 0))

+
z2
∫

s(t)+0

dq̃
dv

∂v(t,ζ)
∂t dζ − ṡ (t) q̃ (v (t, s (t) + 0)) = f̃ (v (t, z1)) − f̃ (v (t, z2))

(2.64)

Since the upper and lower fixed boundaries are arbitrary, the limits, lim
z1→s(t)−0

z1

and lim
z2→s(t)+0

z2, are taken which removes the integrals of the equation.

ṡ (t) (q̃ (v (t, s (t) − 0)) − q̃ (v (t, s (t) + 0)))

= f̃ (v (t, s (t) − 0)) − q̃ (v (t, s (t) + 0))
(2.65)

One may define the left state by: q̃ (v (t, s (t) − 0)) = q̃ (vL) and the right state

by: q̃ (v (t, s (t) + 0)) = q̃ (vR). Now a simple equation for the shock velocity is
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2. Basics of Chromatography

derived.

ṡ (t) (q̃ (vL) − q̃ (vR)) = f̃ (vL) − f̃ (vR) (2.66)

Within the multi dimensional case, all scalar ratios needs to be satisfied by the

shock velocity.

ṡ (t) = f̃ (vL)− f̃ (vR)
q̃1(vL)−q̃1(vR)

= . . . = f̃i(vL)− f̃i(vR)
q̃i(vL)−q̃i(vR)

. . .

. . . = f̃n(vL)− f̃n(vR)
q̃n(vL)−q̃n(vR)

(2.67)

This relation was derived by Rankine and Hugoniot for a problem arising in gas

dynamics and is therefore signed after their names, [38]. In a simple scalar case,

the shock velocity is determined by:

ṡ (t) =
f̃ (vR) − f̃ (vL)

q̃ (vR) − q̃ (vL)
. (2.68)

Before a shock occurs, a compression of characteristic lines is needed. This con-

dition due to Oleinik, [37], can be stated as follow.

f̃ (vR) − f̃ (v)

q̃ (vR) − q̃ (v)
≤ ṡ (t) =

f̃ (vR) − f̃ (vL)

q̃ (vR) − q̃ (vL)
≤ f̃ (v) − f̃ (vL)

q̃ (v) − q̃ (vL)
(2.69)

Returning to the original problem of a single component chromatography fol-

lowing shock condition applies.

vl (cR−c)
cR+F q(cR)−c−F q(c)

≤ ṡ (t) = vl (cR−cL)
cR+F q(cR)−cL−F q(cL)

≤ vl (c−cL)
c+F q(c)−cL−F q(cL)

(2.70)

2.2.4 Traveling Wave Solution for Langmuir Isotherms

Traveling wave solutions gives answer how concentration profiles propagate

through a specific medium, [39], [30], [40], [31], [41]. As an example, a single

component is considered that travels through a chromatographic column with

infinite length. The adsorption is described by a Langmuir isotherm.

∂c
∂t + F

∂q
∂t = −vl

∂c
∂z + D ∂2c

∂z2 , with q (c) = H c
1+K c

(2.71)
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2.2. Analysis of a Single Component Chromatographic Column

An investigation is carried out if a solution, c (t, z) = c (s), exists, where the

concentration depends only on a single variable, s = z − u t. This single variable

can be thought of as a moving coordinate, where the velocity, u, is the observer

velocity. Further, it is assumed that the concentrations at the boundaries are

constant. To simplify the analysis the right boundary is assumed to be zero.

That means following boundary conditions are applied.

lim
s→−∞

c (s) = cL, lim
s→+∞

c (s) = cR,
dcL

ds
= 0,

dcR

ds
= 0, cR = 0 (2.72)

If this ansatz is substituted in the partial differential equation, Eq. (2.71), it will

reduce to an ordinary differential equation as it is shown below.

d

ds
(c + F q)

∂s

∂t
+

d

ds

(

vl c − D
dc

ds

∂s

∂z

)

∂s

∂z
= 0 (2.73)

−u
d

ds
(c + F q) +

d

ds

(

vl c − D
dc

ds

)

= 0 (2.74)

This ODE can be integrated once.

−u (c + F q) +

(

vl c − D
dc

ds

)

+ C1 = 0 (2.75)

D
dc

ds
= −u (c + F q) + vl c + C1 (2.76)

The right boundary definition of Eq. (2.72) is now used to evaluate the integra-

tion constant.

0 = −u (cR + F qR) + vl cR + C1 → C1 = 0 (2.77)

It is helpful to look at the special case of zero diffusion. The ordinary differential

equation reduces to an algebraic equation, which is equivalent to Eq. (2.66) for

u = ṡ and the special adsorption isotherm.

0 = −u (c + F q) + vl c (2.78)

Since, q (0) = 0, the equation is still valid for the right boundary condition. To

be also valid for the left boundary condition, the observer velocity needs to be
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2. Basics of Chromatography

chosen in the following way.

u =
vl

1 + F
q(cL)

cL

=
vl

1 + F H
1+K cL

(2.79)

The general case with diffusion is now investigated by substituting the Lang-

muir isotherm in the differential equation.

D
dc

ds
=

(

vl − u

(

1 +
F H

1 + K c

))

c (2.80)

Since concentration never can be negative and the equilibrium constant, K, is

positive no singularity can occur. Separation of differentials can be done.

(1 + K c) D

K (vl − u) c2 + (vl − u − u F H) c
dc = ds (2.81)

Both sides of the equation can be integrated and an implicit expression is ob-

tained.

D
ln (c) (vl − u) − u F H ln (u F H − (1 + K c) (vl − u))

(vl − u − u F H) (vl − u)
= s + C2 (2.82)

The observer velocity is chosen to be the same like for zero diffusion and the

equation becomes:

−D
ln (c) − (1 + K cL) ln

(

(cL − c) vl K F H
1+K cL+F H

)

vl
F H

1+K cL+F H K cL

= s + C2. (2.83)

If the left boundary condition is applied the argument of the second natural log-

arithm becomes zero and therefore the equation will be satisfied for all finite C2.

The integration constant may be chosen to set the origin of the moving coordi-

nate system to a specified value. It is natural to chose:

c (0) =
cL

2
. (2.84)

In this case, the concentration constant becomes:

C2 = −D
ln

( cL
2

)

− (1 + K cL) ln
(

cL
2

vl K F H
1+K cL+F H

)

vl
F H

1+K cL+F H K cL

. (2.85)
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2.2. Analysis of a Single Component Chromatographic Column

Some manipulation can be done to get the final implicit form.

ln
(

2 c

cL

)

− (1 + K cL) ln
(

2
cL − c

cL

)

= −s
vl

D

F H K cL

1 + K cL + F H
(2.86)

2 c

cL

(

cL

2 (cL − c)

)(1+K cL)

= e
−s

vl
D

F H K cL
1+K cL+F H (2.87)

The concentration profile of a traveling wave in case of Langmuir Isotherm can

be determined using this formula, Fig. 2.3. A shock layer may be defined as
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)
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D=5.0e-006

D=7.0e-006

Figure 2.3: Traveling wave profile.

distance until p 100 % of both states is reached. This is the double size of s if

c = p cL is substituted.

δ (p) = 2
D

vl

(1 + K cL + F H)

F H K cL
ln

(

(2 (1 − p))(1+K cL)

2 p

)

(2.88)

2.2.5 Similarity Analysis of Rarefaction

Consider the partial differential equation for a single component chromatogra-

phy with Langmuir isotherm.

∂c

∂t
+ F

∂q

∂t
= −vl

∂c

∂z
, with q (c) =

H c

1 + K c
(2.89)
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2. Basics of Chromatography

To find the general shape of the rarefaction, diffusion is neglected. Further, fol-

lowing similarity variable is defined, [40].

c (t, z) = c (η) , η =
z − zre f

t − tre f
(2.90)

Plugging this into the partial differential equation, Eq. (2.89), it will reduce to an

ordinary one.

−
(

z − zre f

)

(

t − tre f

)2

dc

dη

(

1 + F
dq

dc

)

= 0 (2.91)

(

vl − η

(

1 + F
dq

dc

))

dc

dη
= 0 (2.92)

One solution of the equation above can be found by setting the bracket to zero

and solve the algebraic equation.

vl − η

(

1 +
F H

(1 + K c)2

)

= 0 (2.93)

c (η) =
1
K

(
√

F H

∣

∣

∣

∣

η

vl − η

∣

∣

∣

∣

− 1

)

(2.94)

If the similarity variable, η, is substituted back, it results in a solution identical

to Eq. (2.56) on page 17. Thus, with aid of the similarity ansatz the solution is

found more quickly.

c

(

z − zre f

t − tre f

)

=
1
K







√

√

√

√

√

∣

∣

∣

∣

∣

∣

F H

vl
t−tre f

z−zre f
− 1

∣

∣

∣

∣

∣

∣

− 1






(2.95)

2.3 Analysis of a Two Component

Chromatographic Column

The method of characteristics can be extended to a system of first order equation

and is therefore useful to derive analytical solutions for multi component chro-

matographic columns. In this thesis only two species are considered. Therefore,

the analysis is presented for a two component chromatographic column, [29].
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2.3. Analysis of a Two Component Chromatographic Column

2.3.1 Matrix Description of a Column

Neglecting diffusion, the model equations of a two component chromatographic

column can be written in following form.

∂cA

∂t
+

1 − ε

ε

∂qA (cA, cB)

∂t
+

V̇l

ε A

∂cA

∂z
= 0 (2.96)

∂cB

∂t
+

1 − ε

ε

∂qB (cA, cB)

∂t
+

V̇l

ε A

∂cB

∂z
= 0 (2.97)

Using the substitution, F = 1−ε
ε and vl = V̇l

ε A , this model is written in matrix

form.

(

1 + F
∂qA
∂cA

F
∂qA
∂cB

F
∂qB
∂cA

1 + F
∂qB
∂cB

) (

∂cA
∂t

∂cB
∂t

)

+ vl

(

∂cA
∂z

∂cB
∂z

)

=

(

0

0

)

(2.98)

The complete model may also be stated in a short matrix notation.

A
∂c

∂t
+ vl

∂c

∂z
= 0, z ∈ (0, L] , t ∈ (0, ∞) (2.99)

with c (t, 0) = cin (t) and c (0, z) = c0 (z).

2.3.2 Finding Riemann Invariants

To decouple the system in scalar equations, the matrix equation is pre multiplied

by a transposed vector, [38], [29].

lT
i A

∂c

∂t
+ vl lT

i

∂c

∂z
= 0, i = 1, 2 (2.100)

A decoupling is achieved if the vector is a left eigenvector of the matrix A. To

find such a vector following eigenvalue equation has to be solved.

lT
i A = λi lT

i (2.101)

Notice that by transposing this equation a standard right eigenvalue problem is

obtained.

AT li = λi li (2.102)
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2. Basics of Chromatography

If such a vector and eigenvalue is found one gets following decoupled first order

partial differential equations.

lT
i

(

λi
∂c

∂t
+ vl

∂c

∂z

)

= 0 (2.103)

λi lT
i

(

∂c

∂t
+

vl

λi

∂c

∂z

)

= 0 (2.104)

To find a solution, it is realized that the bracket term is just the ordinary time

derivative of the concentrations.

dc

dt
=

∂c

∂t
+

∂c

∂z

dz

dt
=

∂c

∂t
+

vl

λi

∂c

∂z
(2.105)

Therefore, the system is converted to a set of ordinary differential equations, [38].

lT
i

dc

dt
= 0,

dz

dt
=

vl

λi
, λi 6= 0 (2.106)

The first equation describes the Riemann invariant. The second equation de-

scribes the characteristic line on which the Riemann invariants are constant.

Since, li, is unlikely a constant vector it is in general not easy to integrate these

equations to find the algebraic relation which defines the Riemann invariant.

However, the system under investigation is 2x2 and homogeneous. This means

the differential equations can be converted always to the phase plane.

l1,i
dcA

dt
+ l2,i

dcB

dt
= 0 → dcA

dcB
= − l2,i

l1,i
(2.107)

Therefore, the Riemann invariants are found by solving this first order differen-

tial equation.

2.3.3 Solving the Eigenvalue Problem

The eigenvalue problem is solved by first determining the associated eigenval-

ues.

det
(

AT − λ I2

)

= det

(

1 + F
∂qA
∂cA

− λ F
∂qB
∂cA

F
∂qA
∂cB

1 + F
∂qB
∂cB

− λ

)

(2.108)
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2.3. Analysis of a Two Component Chromatographic Column

Following characteristic equation is obtained.

(

1 + F
∂qA

∂cA
− λ

) (

1 + F
∂qB

∂cB
− λ

)

− F2 ∂qA

∂cB

∂qB

∂cA
= 0 (2.109)

The eigenvalue is determined by solving this quadratic equation.

λ1,2 = 1 +
F

2

(

∂qA

∂cA
+

∂qB

∂cB

)

± F

2

√

(

∂qB

∂cB
− ∂qA

∂cA

)2

+ 4
∂qA

∂cB

∂qB

∂cA
(2.110)

Notice that the eigenvalues are real if the second part under the square root is

of positive sign, which is often the case for practical isotherm relationships. The

next step is to compute the associated eigenvectors. This is done with help of the

eigenvalue equation.

(

1 + F
∂qA
∂cA

F
∂qB
∂cA

F
∂qA
∂cB

1 + F
∂qB
∂cB

) (

l1,i

l2,i

)

= λi

(

l1,i

l2,i

)

(2.111)

Using the first equation and substituting the eigenvalue, a relationship for the

elements of the eigenvectors is obtained.

F
∂qB

∂cA
l2,i =

(

λi − 1 − F
∂qA

∂cA

)

l1,i (2.112)

l1,i =
2 ∂qB

∂cA

(

∂qB
∂cB

− ∂qA
∂cA

)

±
√

(

∂qB
∂cB

− ∂qA
∂cA

)2
+ 4 ∂qA

∂cB

∂qB
∂cA

l2,i (2.113)

Following choice can be made.

lT
i =

[

2 ∂qB
∂cA

, −
(

∂qA
∂cA

− ∂qB
∂cB

)

±
√

(

∂qA
∂cA

− ∂qB
∂cB

)2
+ 4 ∂qA

∂cB

∂qB
∂cA

]

(2.114)

This results in following differential equation for the Riemann invariants.

(

dcA

dcB

)

1,2
=

(

∂qA
∂cA

− ∂qB
∂cB

)

∓
√

(

∂qA
∂cA

− ∂qB
∂cB

)2
+ 4 ∂qA

∂cB

∂qB
∂cA

2 ∂qB
∂cA

(2.115)
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2. Basics of Chromatography

It is cumbersome to solve these two differential equations in this form. It is sim-

pler to convert them in implicit form by noting that the left side can be thought

of as a solution of following quadratic equation.

[

(

∂qB

∂cA

) (

dcA

dcB

)2

−
(

∂qA

∂cA
− ∂qB

∂cB

)

dcA

dcB
− ∂qA

∂cB

]

∂qB

∂cA
= 0 (2.116)

Either, ∂qB
∂cA

= 0, or the differential equation inside the bracket must be fulfilled.

Since a dependency between the concentrations is required, only the ODE needs

to be considered.

2.3.4 Concept of Coherency

As shown in the two previous sections, a static functional relationship may exist

between the concentrations. The functional relationship may be presented in the

following general form.

cA = cA (cB) , for i = A, B (2.117)

This undetermined expression can be inserted into the partial differential equa-

tions, Eq. (2.96) and Eq. (2.97) on page 25. Thus, the PDE can be written using

the notation style of complete differentials.

∂ci

∂t
+ F

dqi

dci

∂ci

∂t
= −vl

∂ci

∂z
(2.118)

In this presentation, the propagation velocity of an arbitrary concentration value

is determined by the negated ratio of partial differentials.

vci
= −

∂ci
∂t
∂ci
∂z

=
vl

1 + F
dqi
dci

, for i = A, B (2.119)

Because of the static relationship between the two concentrations, the velocities

must be the same for a specific concentration composition for both components.

This is called coherence condition, [42], [43], [44], [45].

vcA
= vcB

(2.120)
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2.3. Analysis of a Two Component Chromatographic Column

By inspection of the velocity equations for the concentrations, Eq. (2.119), it is

immediately obvious that the equality of the velocities leads to the equality of

the complete differentials of the two isotherms.

dqA

dcA
=

dqB

dcB
(2.121)

If the complete differentials are replaced by the partial differentials, then a dif-

ferential equation for the determination of the functional relationship between

the two concentrations is formed. It is the same differential equation as derived

by the Riemann analysis, Eq. (2.116) on page 28.

− ∂qB

∂cA

(

dcA

dcB

)2

+

(

∂qA

∂cA
− ∂qB

∂cB

)

dcA

dcB
+

∂qA

∂cB
= 0 (2.122)

2.3.5 Solving Clairauts Differential Equation

Before the ODE can be solved, the partial derivatives of the isotherm relation-

ships needs to be specified, Eq. (2.123) and Eq. (2.124). In case of Langmuir

isotherms, Eq. (2.40) and Eq. (2.41) on page 14, one ends up with Eq. (2.125).

∂qA

∂cA
=

HA (1 + KB cB)

(1 + KA cA + KB cB)2 ,
∂qA

∂cB
= − HA KB cA

(1 + KA cA + KB cB)2 (2.123)

∂qB

∂cA
= − HB KA cB

(1 + KA cA + KB cB)2 ,
∂qB

∂cB
=

HB (1 + KA cA)

(1 + KA cA + KB cB)2 (2.124)

cB

(

dcA

dcB

)2

+
HA (1 + KB cB) − HB (1 + KA cA)

HB KA

(

dcA

dcB

)

− HA KB

HB KA
cA = 0

(2.125)

This differential equation is of Clairauts type. For solving Clairauts equation, it

is useful to make some substitution to cast the equation in standard form, [46].

cB

(

dcA

dcB

)2

−
(

HB − HA

HB KA
+ cA − HA KB

HB KA
cB

) (

dcA

dcB

)

− HA KB

HB KA
cA = 0

(2.126)
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2. Basics of Chromatography

α =
HB − HA

HB KA
, β =

HA KB

HB KA
, HB > HA (2.127)

cB

(

dcA

dcB

)2

− (α + cA − β cB)

(

dcA

dcB

)

− β cA = 0 (2.128)

This equation is solved by differentiating with respect to cB. Notice that this is

a non-equivalent transformation. Therefore, one needs to check the result after-

ward.

(

dcA
dcB

)2
+ 2 cB

dcA
dcB

d2cA

dc2
B
−

(

dcA
dcB

− β
)

dcA
dcB

− (α + cA − β cB) d2cA

dc2
B
− β dcA

dcB
= 0

(2.129)

(

2 cB
dcA

dcB
− (α + cA − β cB)

)

d2cA

dc2
B

= 0 (2.130)

This equation has two solutions. One if the bracket is zero and one if the second

derivative is zero. The latter solution gives a linear relationship between the

concentrations.

d2cA

dc2
B

= 0 → cA = C cB + D (2.131)

Since the original ODE was of first order, there must be a dependency between

the integration constants. To determine this, the linear relationship is plugged

into the original equation.

cB C2 − (α + C cB + D − β cB) C − β (C cB + D) = 0 (2.132)

D = − α C

β + C
(2.133)

Therefore the first general solution is:

cA = C cB − α C

β + C
. (2.134)
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2.3. Analysis of a Two Component Chromatographic Column

The second solution is defined by an ordinary differential equation.

2 cB
dcA

dcB
− (α + cA − β cB) = 0 (2.135)

dcA

dcB
=

α + cA − β cB

2 cB
(2.136)

This ODE cannot be solved by separating the variables, but one can plug it into

the original equation and an algebraic equation is obtained.

cB

(

α + cA − β cB

2 cB

)2

− (α + cA − β cB)

(

α + cA − β cB

2 cB

)

− β cA = 0 (2.137)

(α + cA − β cB)2 + 4 β cA cB = 0 (2.138)

It is not possible to solve this equation for positive concentrations. It is therefore

not a physical solution. As result of this analysis, two Riemann invariants are

obtained. Instead of using the traditional Riemann invariants, R̃i = Di (cA, cB),

[38], one uses, Ri = Ci (cA, cB), since it is also a constant. Given a composi-

tion, (cA, cB), in the composition space, the slopes, Ci, can be calculated from a

quadratic equation.

cB C2
1,2 +

HA (1 + KB cB) − HB (1 + KA cA)

HB KA
C1,2 −

HA KB

HB KA
cA = 0, HB > HA

(2.139)

The Riemann invariant relationship determines the characteristics, where the

Riemann invariant stays constant.

cA = C1,2 cB − (HB − HA) C1,2

HA KB + HB KA C1,2
(2.140)

Furthermore, the speed of propagation can be computed with help of the asso-

ciated eigenvalue.

dCi

dt
= 0,

dz

dt
=

vl

λi
, λi 6= 0 (2.141)
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λ1,2 = 1 + F

2 (1+KA cA+KB cB)2











(HA (1+KB cB)+HB (1+KA cA))

±

√

√

√

√

(HA (1+KB cB)−HB (1+KA cA))2

+4 KA KB HA HB cA cB











(2.142)

2.3.6 Hodograph Plane

The static relationship between the concentrations can be represented in the

hodograph plane. Their name originates from the hodograph transformation,

which interchanges the role of dependent and independent variables. Eq. (2.140)

is used to construct this plane as shown in Fig. 2.4. For the construction of

these paths one provides arbitrary concentration values at the coordinate axises.

The slopes at these points are computed by the quadratic equation, Eq. (2.139).

Eq. (2.143) determines the intersections with the coordinate axis:
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Figure 2.4: Hodograph plane.

cA (Ci; cB = 0) = − (HB−HA) Ci
KB HA+KA HB Ci

, i = 1, 2 ,

cB (Ci; cA = 0) = (HB−HA)
KB HA+KA HB Ci

.

(2.143)
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2.3. Analysis of a Two Component Chromatographic Column

The ranges of the slopes are immediately obtained from the range of concentra-

tions.

C1 ∈ [0, ∞) , C2 ∈
(

−HA KB

HB KA
, 0

]

(2.144)

2.3.7 Constructing Solutions Using Riemann Invariants

Given a dispersion-free model, Eq. (2.96) and Eq. (2.97) on page 25, of a chro-

matographic column with Langmuir isotherms, it is now possible to construct

a solution for a given piecewise constant boundary and initial conditions with

help of the Riemann invariants. Fig. 2.5 shows at three different time points,

how an initially equally distributed concentration profile, with cA,0(z) = 1.5 and

cB,0(z) = 1.25, is rinsed out by a pure solvent stream, e.g. cA,in(t) = 0 and

cB,in(t) = 0 for all t > 0. It is clearly seen that a rarefaction is formed. The veloc-

ity increases with the magnitude of concentration. Thus, the head moves faster

than the tail. Further, one can notice a formation of an intermediate plateau value

of the component cB which has a concentration value of approximately 0.6. To
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Figure 2.5: Propagation of a rarefaction within a chromatographic column at
three different time points.

investigate the solution it is useful to look at the hodograph plane, Fig. 2.4. A

cross marks the initial state. The final state will be in the origin. If a simple

wave condition is assumed, the Riemann invariant relationship, Eq. (2.140) on
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2. Basics of Chromatography

page 31, will hold and both points are connected via a Riemann path. Using the

additional knowledge that component B is slower than component A the only

possible path in Fig. 2.4 goes from point 3 through point 2 to point 1. In point

2 the concentration value of component A becomes zero and the concentration

value of component B is approximately 0.6. It is just the intermediate plateau

value of the concentration profile. The plateau value is bounded by two corners

that run with two different velocities corresponding to their eigenvalues and just

widens itself. The concentration velocities of the components are determined by

Eq. (2.145) and Eq. (2.146).

vcA (cA, cB) = vl

1+F
dqA(cA ,cB)

dcA

= vl

1+F
(

∂qA
∂cA

+
∂qA
∂cB

dcB
dcA

)

= vl

1+F
HA (1+KB cB)−HA KB cA

dcB
dcA

(1+KA cA+KB cB)2

(2.145)

vcB (cA, cB) = vl

1+F
dqB(cA ,cB)

dcB

= vl

1+F
(

∂qB
∂cA

dcA
dcB

+
∂qB
∂cB

)

= vl

1+F
HB (1+KA cA)−HB KA cB

dcA
dcB

(1+KA cA+KB cB)2

(2.146)

The velocities can be evaluated only if the slopes between the concentrations are

known. These are determined from the quadratic equation, Eq. (2.139) on page

31.

2.3.8 Shock Paths

The differential description is invalid if a discontinuity in the concentration pro-

file occurs, as already has been shown in section 2.2.3 on page 18. In this case,

an integral description is necessary that leads to the Rankine- Huginot- condi-

tion, Eq. (2.67) on page 20. If this equation is applied to the system, Eq. (2.147), a

relation between the concentrations across the shock is obtained. The shock ve-

locities for both components are equal, thus the coherence condition is still valid
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2.3. Analysis of a Two Component Chromatographic Column

also for shocks.

∂

∂t
(ci + F qi (cA, cB)) + vl

∂ci

∂z
= 0, i = A, B (2.147)

ṡ (t) =
vl

1 + F
qA(cA,L,cB,L)−qA(cA,R,cB,R)

cA,L−cA,R

=
vl

1 + F
qB(cA,L,cB,L)−qB(cA,R,cB,R)

cB,L−cB,R

(2.148)

The Eq. (2.148) may be rearranged to give Eq. (2.149).

qA (cA,L, cB,L) − qA (cA,R, cB,R)

cA,L − cA,R
=

qB (cA,L, cB,L) − qB (cA,R, cB,R)

cB,L − cB,R
(2.149)

This algebraic equation can be used to construct possible shock paths in the

hodograph plane. Because component B is considered to be slower than compo-

nent A, the plateau value on the right, cB,R, is set to zero. For Langmuir isotherms

following relationship across the shock are obtained.

cA,L (cB,L) = − KB cA,R
HB
HA

(1 + KA cA,R) − 1
cB,L + cA,R, cB,R = 0 (2.150)

It is easily provable that the possible shock paths are identical with the possible

rarefaction paths for Langmuir isotherms, [34], [29]. For this, one can use the

rule of L’Hospital to show that the slope of the algebraic equation is identical to

the negative slope defined by the Riemann invariant. Eq. (2.151) show this for

C2.

lim
cB→0

C2− (cA, cB) = − KB cA
HB
HA

(1 + KA cA) − 1
(2.151)

The traditional Riemann invariant, R̃, is in this case also identically with the

concentration value, cA,R, of the component A on the ordinate axis, which can be

seen from Eq. (2.140) on page 31. Now, consider following example that presents

how shocks are propagated through a column. Fig. 2.6 shows, how an initially

purged chromatographic column, cA,0(z) = 0 and cB,0(z) = 0, is filled from

the left side with a binary feed, with cA,in(t) = 1.5 and cB,in(t) = 1.25 for all

t > 0. The figure shows at three different time points the formation of a shock.

Component B has a plateau value equally to its feed value, which one would

expect. Component A has an intermediate plateau value that is higher than its
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Figure 2.6: Propagation of a shock within a chromatographic column at three
different time points.

feed value. A look at the hodograph plane, Fig. 2.4 on page 32, is now helpful.

The feed composition is the cross marked point in the associated hodograph

plane. This will be the final state for the whole chromatographic column after

the transients. At beginning, the column is completely purged. Therefore, this

state lies in the origin. With the knowledge that the component A is faster than

the component B the only possible path must be from 1 to 4 and finally to 3. The

upper plateau value is immediately found at point 4 and is around 2.4.
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A great many people think they are thinking
when they are merely rearranging their prejudices.

∼ William James ∼



3 Design of SMB Plants

The design of SMB plants starts with a suitable choice of chromatographic col-

umns according to the desired feed mixture and the desired throughput. This

choice also defines the adsorption properties, which may be described mathe-

matically with the aid of an isotherm relationship. For a faultless operation, an

exact adjustment of the four volumetric flow rates and switching time is neces-

sary. These, together with the feeding concentrations, define the operating point

of the process. Nowadays, there are two methods available to find operating

points for SMB plants under idealized conditions. The first method is called tri-

angle theory, [2], [3], and the second method is called standing wave design, [4],

[5]. Both methods rely on the TMB model. Similar to a countercurrent heat

exchanger, a TMB model assumes a real countercurrent motion between liquid

and adsorbed phase. This leads to a mathematical advantage since stationary

concentration profiles exist for a correct setting. Unfortunately, the TMB process

and thus both mentioned methods are not able to describe the cyclic concen-

tration fluctuations at the drains. For this reason a new method to determine

operating points for SMB plants is developed, which is also capable to predict

the cyclic steady state concentration pattern at the drains. The advantage of this

method lies in the fact that this method leads for dispersion-free SMB model at

cyclic steady state to almost exact solutions and is especially attractive to design

SMB plants for reduced purity. Further, this method can be used to a simple and

robust adaptive control design. In this chapter, this method is used to derive

equations to determine operating conditions of SMB plants for Henry, noncom-

petitive and competitive Langmuir isotherms for complete regeneration.

3.1 The Dispersion-free SMB Model

Throughout this thesis, a four-zone SMB process is considered as shown in Fig. 3.1.

To be able to simulate such a device one must use the model equations for one
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port
switching A

,A Rac ,B Rac

RaVɺ

ElVɺ

B

,A Exc ,B Exc

ExVɺ

,A Fec ,B FecFeVɺ

II

I

III

IV

FeU

ExU RaU

IU

Figure 3.1: SMB process with four zones.

chromatographic column together with the equations that describe the coupling

of the columns. These equations can be entered in a suitable simulation package,

like COMSOL, [48].

3.1.1 Governing Equations for One Column

For convenience, the model equations of a chromatographic column are repeated

here. In this case, mass transfer resistances and axial dispersion are neglected. A

detailed derivation can be found in chapter 2 on page 7 or in [29], [32].

∂cA

∂t
+ F

∂qA (cA, cB)

∂t
= −vl

∂cA

∂z
(3.1)

∂cB

∂t
+ F

∂qB (cA, cB)

∂t
= −vl

∂cB

∂z
(3.2)

F =
1 − ε

ε
, vl =

V̇

ε A
, z ∈ (0, L] , t ∈ (0, ∞)

The boundary and initial conditions are similar for both components:

ci (t, 0) = ci,in (t) , i = A, B,
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3.1. The Dispersion-free SMB Model

ci (0, z) = ci,0 (z) , i = A, B.

For the completion of the model, a static relationship between adsorbed and

liquid phase is necessary using an adsorption isotherm.

qi = qi (cA, cB) , i = A, B (3.3)

3.1.2 Couplings of Columns

The couplings for chromatographic columns are derived in accordance with Fig. 3.1.

Under the assumption of equal and constant densities, the overall mass balance

reduces to a flow rate balance as given by the Eqs. (3.4)-(3.9).

External flow rates:

0 = V̇El + V̇Fe − V̇Ex − V̇Ra, (3.4)

0 = ci,Fe V̇Fe − ci,Ex V̇Ex − ci,Ra V̇Ra, i = A, B. (3.5)

Eluent feed:

V̇I = V̇IV + V̇El, ci,in,I V̇I = ci,out,IV V̇IV , i = A, B. (3.6)

Extract drain:

V̇I I = V̇I − V̇Ex, ci,in,I I = ci,out,I = ci,Ex, i = A, B. (3.7)

Feed:

V̇I I I = V̇I I + V̇Fe, ci,in,I I I V̇I I I = ci,out,I I V̇I I + ci,Fe V̇Fe, i = A, B. (3.8)

Raffinate drain:

V̇IV = V̇I I I − V̇Ra, ci,Ra = ci,in,IV = ci,out,I I I , i = A, B. (3.9)
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3. Design of SMB Plants

3.2 Operating Points for Henry Isotherms

In this subsection, Henry isotherms are considered to derive design equations

for SMB plants for reduced purities and complete regeneration, [47], [52]. Henry

isotherms, Eq. (3.10), are the simplest isotherm relationship and may, in general,

be insufficient to describe the real adsorption behavior. However, for very low

feed concentrations, they often provide a good approximation and, therefore,

they are a good starting point to analyze SMB plants.

qi (cA, cB) = Hi ci, i = A, B (3.10)

In Fig. 3.2, the idealized concentration profiles of a SMB plant at cyclic steady

state and complete regeneration in the outer zones are indicated. Four concen-

tration fronts can be identified, where each has its own concentration velocity.

In this way, one can set up four velocity equations dependent on the control

variables. The objective is to choose the control variables such that the desired

velocity is assigned to every concentration front.

I II III IV

El
Vɺ

Ex
Vɺ

Fe
Vɺ

Ra
Vɺ

B
c

A
c

,A Fec

,B Fec

z

A
c
v

B
c
v

I II III IV

,
A
c s
v

,
B
c s
v

Figure 3.2: Idealized concentration profiles of a SMB plant at the beginning of a
time interval for Henry isotherms and for complete regeneration.

3.2.1 Concept of the Characteristic Velocities

Since there is no coupling between the concentrations if one is using Henry

isotherms, the concentration velocity can be determined from the ratio of the
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3.2. Operating Points for Henry Isotherms

partial differentials directly; see Eq. (3.11):

vci
= −

∂ci
∂t
∂ci
∂z

=
vl

1 + F Hi
=

(1 + F)

A

V̇

1 + F Hi
, i = A, B. (3.11)

If one considers a characteristic point of the concentration front, the traveled dis-

tance of this point is calculated with the aid of the concentration velocity. For ro-

bust operations of SMB plants, it is necessary that the outer concentration fronts

travel between two zones with different zone velocities. The mean velocity can

be calculated with the help of the time integral and is equated to the port shift

velocity. In cyclic steady state, the following velocity equation can be found for

the concentration front of the component B at the extract side; Eq. (3.12):

L

TS
=

1
TS

τB,I TS
∫

0

vcB,Idt +
1
TS

TS
∫

τB,I TS

vcB,I Idt = τB,I vcB,I + (1 − τB,I) vcB,I I . (3.12)

The introduced normalized residence times, τB,I , determines how long the con-

centration front stays within zone I. This parameter is an ideal measure in order

to set the time-stamp at which the concentration front will appear at the drain

at cyclic steady state to the desired value. If this concept is used for all four

concentration fronts, the following four velocity equations are derived.

L

TS
= τB,I

(1 + F)

A

V̇I

1 + F HB
+ (1 − τB,I)

(1 + F)

A

V̇I − V̇Ex

1 + F HB
(3.13)

L

TS
= (1 − τA,I I)

(1 + F)

A

V̇I

1 + F HA
+ τA,I I

(1 + F)

A

V̇I − V̇Ex

1 + F HA
(3.14)

L

TS
= τB,I I I

(1 + F)

A

V̇I − V̇Ex + V̇Fe

1 + F HB
+(1 − τB,I I I)

(1 + F)

A

V̇I − V̇Ex + V̇Fe − V̇Ra

1 + F HB

(3.15)

L

TS
= (1 − τA,IV)

(1 + F)

A

V̇I − V̇Ex + V̇Fe

1 + F HA
+ τA,IV

(1 + F)

A

V̇I − V̇Ex + V̇Fe − V̇Ra

1 + F HA

(3.16)
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3. Design of SMB Plants

If one sets the positions of the four concentration fronts with aid of the normal-

ized residence times, the equations can be solved for the four control variables.

However, it is desired to express the positions of the inner concentration fronts

by the purities.

3.2.2 Additional Equations

The purities at the drains are defined by the following equations:

PEx =
c̄B,Ex

c̄A,Ex + c̄B,Ex
, PRa =

c̄A,Ra

c̄A,Ra + c̄B,Ra
. (3.17)

For their calculation, the knowledge of the mean concentrations for both com-

ponents at the extract and raffinate for one switching interval is necessary. The

time trajectories of the concentrations at the extract drain, see also Fig. 3.4, are

determined with aid of the normalized residence times and the plateau values,

Eqs. (3.18)-(3.19):

c̄A,Ex = (1 − τA,I I) cA,Fe, (3.18)

c̄B,Ex = τB,I cB,Fe. (3.19)

The ideal trajectory of the concentrations at the raffinate drain, see also Fig. 3.5,

can be determined in a similar way, Eqs. (3.20)-(3.21):

c̄A,Ra = τA,IV cA,Fe, (3.20)

c̄B,Ra = (1 − τB,I I I) cB,Fe. (3.21)

The four mean concentrations may now be inserted in the equations for the drain

purities. After this, these equations are solved for the inner normalized residence

times, τA,I I and τB,I I I , by Eqs. (3.22)-(3.23), respectively:

τA,I I = 1 − 1 − PEx

PEx

cB,Fe

cA,Fe
τB,I , (3.22)

τB,I I I = 1 − 1 − PRa

PRa

cA,Fe

cB,Fe
τA,IV . (3.23)
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3.2. Operating Points for Henry Isotherms

3.2.3 Explicit Equations for Henry Isotherms

The velocity equations, Eqs. (3.13)-(3.16), can be solved explicitly. In this case, it

is useful to define the following intermediate variables:

γEx =
1 − PEx

PEx

cB,Fe

cA,Fe
, γRa =

1 − PRa

PRa

cA,Fe

cB,Fe
. (3.24)

Given the feed concentrations, cA,Fe and cB,Fe, the feed flow rate, V̇Fe, the desired

purities, PEx and PRa, and the outer normalized residence times, 0 ≪ τB,I 6 1

and 0 ≪ τA,IV 6 1, one can compute the necessary volumetric flow rates, V̇I ,

V̇Ex, V̇Ra, and the switching time, TS, for HA < HB and complete regeneration in

the following way.

V̇I =
(1 − γRa)

(1 − γEx γRa) τB,I

(

(1 − γEx) − F (γEx HB − HA)

F (HB − HA)
τB,I + 1

)

V̇Fe (3.25)

V̇Ex =
(1 − γRa)

(1 − γEx γRa) τB,I
V̇Fe (3.26)

V̇Ra =
(1 − γEx)

(1 − γEx γRa) τA,IV
V̇Fe (3.27)

TS =
F A L

(1 + F) V̇Fe

(1 − γEx γRa)

(1 − γEx) (1 − γRa)
(HB − HA) (3.28)

If incomplete regeneration in the zones I and IV is desired a similar procedure

leads to the design equations as given in the appendix.

3.2.4 Simulation Results

To check the validity of the equations derived, a dynamic simulation was carried

out with the help of finite element software called COMSOL, [48], [49].

In this case, Lagrange polynomials of third order as well as 384 elements per

column were used. In order to stabilize the numerics, streamline diffusion was

switched on. In Fig. 3.3 the concentration profiles for the cyclic steady state are

given. The operating point is given in Tab. 3.1 and the simulation parameters

are indicated in the appendix. The broader lines are the concentration profiles

in the middle of the switching interval, whereas the thin lines are the profiles to

the beginning and end of the switching interval. The typical moving box pro-
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3. Design of SMB Plants

file is formed with concentration plateaus identical to the feed concentrations, as

pointed out in [50]. The time trajectories of the concentrations at the drains are
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Figure 3.3: Concentration profiles for SMB process with τB,I = 0.95, τA,IV = 0.9,
PEx = 0.9, PRa = 0.8, cfg = [1, 1, 1, 1] and model parameters taken
from table A-2 on page 128.

represented in Fig. 3.4 and Fig. 3.5. The dotted trajectories are calculated theoret-

ically, while the solid lines are the results of the dynamic simulation. They are in

good agreement with the predicted values. The influence of the purities on the

solvent consumption can be studied in a simple way with the aid of these equa-

tions. This is highlighted graphically through a contour plot in which the ratio

of solvent flow rate to feed flow rate is represented. It is immediately obvious

from Fig. 3.6 that an increase of the purities leads to an increase of the solvent

flow rate. On a similar way, the dependence of the switching time from the pu-

rities can be studied. A higher switching time is required for lower purities, as

indicated in Fig. 3.7.

3.2.5 Summary

In this section, simple explicit equations for Henry isotherms were derived to

determine the control variables of a dispersion-free SMB model. The positions of

the concentration fronts as well as the desired purities can be provided directly,
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Figure 3.4: Time trajectories of the concentrations at the extract drain within one
switching interval to Fig. 3.3.
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Figure 3.5: Time trajectories of the concentrations at the raffinate drain within
one switching interval to Fig. 3.3.

Table 3.1: Operating points.

V̇I/
[

ml
min

]

V̇Ex/
[

ml
min

]

V̇Ra/
[

ml
min

]

TS/ [s]

Fig. 3.3 27.44 7.58 10.37 224.43

O

T
T
O

-V
O

N
-G

U
E

R

IC
KE-UNIVERSIT

Ä
T

M
A

G
D

E
B

U
R

G

Otto-von-Guericke-Universität Magdeburg, 2009 47



3. Design of SMB Plants

0.65

0.7

0.7

0.75

0.75

0.75

0.8

0.8

0.8

0.85

0.85

0.85

0.85

0.9

0.9

0.9

0.95

0.95

0.95

1

1

1

1.05

1.05

1.1

P
Ra

P
E

x

0.75 0.8 0.85 0.9 0.95 1
0.75

0.8

0.85

0.9

0.95

1

Figure 3.6: On the influence of the purities to the ratio of solvent to feed flow
rate, V̇El/V̇Fe, with τB,I = 0.95 and τA,IV = 0.9 and model parameters
taken from table A-2.
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which is not possible either by the triangle theory, [2], or the standing wave design,

[4]. Furthermore, the time trajectories of the concentrations at the drains can be

predicted exactly, which opens new fields of application, such as an intelligent

optimization.

3.3 Operating Points for Noncompetitive

Langmuir Isotherms

Since Henry isotherms are often insufficient to describe the adsorption behavior

at high concentrations, it is natural to extend the proposed method to nonlinear

isotherms. In this section, noncompetitive Langmuir isotherms are used to de-

rive design equations for complete separation and complete regeneration, [51].

qi (ci) =
Hi ci

1 + Ki ci
, i = A, B (3.29)

Fig. 3.8 shows an idealized concentration profile of a dispersion-free SMB model

at cyclic steady state for complete regeneration by using noncompetitive Lang-

muir isotherms at the beginning of a time interval. There are four concentration

fronts, each having its own propagation velocity. Furthermore, two plateau con-

centrations are formed with values depending on the feed concentrations and

the isotherm parameters. In zones I and II there are smooth transitions to the

plateau concentrations. These transitions are called expansion waves. In zones

III and IV discontinuous transitions occur, called shock waves. The objective

is to set up four velocity equations in dependence on the volumetric flow rates

and the time interval which are the control variables. The control variables are

chosen in a way that each concentration front moves exactly one column length

during one time interval at cyclic steady state.

3.3.1 Concept of Characteristic Velocities

If one assumes that the foot point of the expansion wave of component B above

the extract drain runs between zones I and II, then the following velocity equa-
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Figure 3.8: Idealized concentration profile of SMB plant at the beginning of a
time interval for noncompetitive Langmuir isotherms.

tion holds for one time interval.

L

TS
=

1
TS

τB,I TS
∫

0

vcB,I dt +
1
TS

TS
∫

τB,I TS

vcB,I I dt = τB,I vcB,I + (1 − τB,I) vcB,I I (3.30)

The normalized residence time, τB,I , introduced here, gives the time in percent

during which the foot point stays in zone I. This parameter is an ideal quantity to

adjust the position of the concentration front to the desired value at the time tra-

jectory. See also Fig. 3.10 on page 54. In the same way, it is possible to determine

a velocity equation for each concentration front. For further analysis, it is neces-

sary to examine the velocities of the concentration fronts and their dependence

on the control variables.

3.3.2 Foot Point Velocities

Since the isotherms considered in this study do not interact, the concentration

velocity is simply determined through the negative ratio of the partial differen-

tials:

vci
= −

∂ci
∂t
∂ci
∂z

=
vl

1 + F
dqi(ci)

dci

=
vl

1 + F Hi

(1+Ki ci)
2

, i = A, B. (3.31)
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To determine the foot point velocities of the expansion waves, the concentration

to be considered is set to zero, since complete regeneration in the outer zones is

assumed. In this way, the following expressions for the foot point velocities in

zones I and II are obtained:

vcB,I =
vl

1 + F HB
, (3.32)

vcA,I I =
vl

1 + F HA
. (3.33)

3.3.3 Shock Velocities

If there is a discontinuity in the concentration profile, the differential description

of this discontinuity by the partial differential equation is invalid. In this case, an

integral description must be used. From this, one obtains the Rankine-Huginot

condition, [29], for the description of shocks. The shock speed is calculated using

the ratio of differences between adsorbed and liquid concentration across the

shock, [32]:

vci,s (t) =
vl

1 + F
qi(ci,L)−qi(ci,R)

ci,L−ci,R

, i = A, B. (3.34)

For complete regeneration in the outer zones, the following velocities for the

shock fronts of zones III and IV are determined:

vcB,s,I I I =
vl

1 + F HB
1+KB cB,P

, (3.35)

vcA,s,IV =
vl

1 + F HA
1+KA cA,P

. (3.36)

3.3.4 Velocity Equations

Using the foot point and shock velocities, the following four velocity equations

in dependence of the control variables for the case of complete separation, i.e.

τA,I I = 1 and τB,I I I = 1, can be found.

A L

(1 + F) TS
=

1
1 + F HB

[

τB,I V̇I + (1 − τB,I)
(

V̇I − V̇Ex

)]

(3.37)
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A L

(1 + F) TS
=

1
1 + F HA

(

V̇I − V̇Ex

)

(3.38)

A L

(1 + F) TS
=

1

1 + F HB
1+KB cB,P

(

V̇I − V̇Ex + V̇Fe

)

(3.39)

A L

(1 + F) TS
=

1

1 + F HA
1+KA cA,P

[

(1 − τA,IV)
(

V̇I − V̇Ex + V̇Fe

)

+τA,IV

(

V̇I − V̇Ex + V̇Fe − V̇Ra

)

]

(3.40)

For the determination of the control variables, the plateau values must still be

determined. For this, two further equations are required.

3.3.5 Component Balances

To determine the plateau values, cA,P and cB,P, the component balances of the

overall system are used. It is assumed that at cyclic steady state the stored mass

is constant during one time interval. Further, complete separation is assumed.

For components A and B the following equations hold:

0 = cA,Fe V̇Fe − c̄A,Ra V̇Ra, (3.41)

0 = cB,Fe V̇Fe − c̄B,Ex V̇Ex. (3.42)

To evaluate the equations, the mean concentration values must be determined

with respect to one time interval. The time trajectory of the concentrations at the

raffinate drain can be described for one time interval by Eq. (3.43), as can be seen

from Fig. 3.9.

cA,Ra (t) =

{

0 0 6 t < (1 − τA,IV) TS

cA,P (1 − τA,IV) TS 6 t 6 TS

(3.43)

The mean concentration of component A at the raffinate drain is expressed by

the normalized residence time, τA,IV , and the plateau value, cA,P, of this compo-

nent:

c̄A,Ra =
1
TS

TS
∫

0

cA,Ra (t) dt = τA,IV cA,P. (3.44)
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Figure 3.9: Estimated and simulated time trajectories of concentrations at the raf-
finate drain within one switching interval to Fig. 3.12 on page 59.

The time trajectory of the concentration at the extract drain is mainly determined

by the shape of the expansion wave, see Fig. 3.10. The course can be exactly de-

termined from the partial differential equation, [29]. The transition between the

two states is between two time points, which are expressed by the normalized

residence times of the foot and head point. For one time interval, the course at

the extract can be described by Eq. (3.45).

cB,Ex (t) =























cB,P 0 6 t 6 τ TS

1
KB

[

√

(1+KB cB,P)2 (τB,I−τ) TS

(2+KB cB,P) KB cB,P (t−τ TS)+(τB,I−τ) TS
− 1

]

τ TS < t < τB,I TS

0 τB,I TS 6 t 6 TS

(3.45)

The mean concentration value with respect to one time interval is now calculated

using the integral:

c̄B,Ex =
1
TS

TS
∫

0

cB,Ex (t) dt = τ cB,P + (τB,I − τ)
cB,P

2 + KB cB,P
. (3.46)
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3. Design of SMB Plants

The normalized residence time, τ, of the head point is determined with the aid

of the concentration velocity, Eq. (3.31) on page 50. It is assumed that the head

point runs between zones I and II. This assumption can be checked afterwards

and is valid for low feed concentrations. Thus, the following velocity equation

can be derived:

L

TS
=

1 + F

A

1

1 + F HB

(1+KB cB,P)2

[

τ V̇I + (1 − τ)
(

V̇I − V̇Ex

)]

. (3.47)

This equation is solved for the normalized residence time, τ, of the head point:

τ =

(

1 +
F HB

(1 + KB cB,P)2

)

A L

(1 + F) V̇Ex TS
− V̇I − V̇Ex

V̇Ex
. (3.48)

Now, four velocity equations and two component balances are available for the

determination of the four control variables and the two plateau values.
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Figure 3.10: Estimated and simulated time trajectories of concentrations at the
extract drain within one switching interval to Fig. 3.12 on page 59.

3.3.6 Solution for Low Feed Concentration

The system of equations consisting of Eqs. (3.37)-(3.40), (3.41), (3.42) and the aux-

iliary Eqs. (3.44), (3.46), (3.48) can be solved explicitly. As stated above, for low
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feed concentrations the head point of the expansion wave travels between zones

I and II. The validity of this solution structure for low feed concentration of com-

ponent B can be checked with Eqs. (3.49) and (3.50). Thus, given the feed concen-

trations, cA,Fe, cB,Fe, the feed flow rate, V̇Fe, and the normalized residence times,

0 ≪ τB,I 6 1 and 0 ≪ τA,IV 6 1, the necessary flow rates V̇I , V̇Ex, V̇Ra and

switching time, TS, for HA < HB can be computed for complete separation and

complete regeneration in the following way.

cB,0 =
1

KB

HB − HA√
HA HB + HA

(3.49)

cB,Fe < cB,0 (3.50)

cA,P =
2 cA,Fe

(1 − KA cA,Fe ) +

√

(1 + KA cA,Fe)
2 +

4 HA ( 1+KB cB,Fe )
HB−HA (1+KB cB,Fe )

KA cA,Fe

(3.51)

cB,P = cB,Fe (3.52)

V̇I =
[F HB + τB,I − F HA (1 − τB,I)]

F τB,I [HB − HA (1 + KB cB,Fe )]
(1 + KB cB,Fe ) V̇Fe (3.53)

V̇Ex =
(HB − HA) (1 + KB cB,Fe )

τB,I [HB − HA (1 + KB cB,Fe )]
V̇Fe (3.54)

V̇Ra =
cA,Fe

τA,IV cA,P
V̇Fe (3.55)

TS =
F

1 + F

A L

V̇Fe

HB − HA (1 + KB cB,Fe )

1 + KB cB,Fe
(3.56)

τ =
HB − HA (1 + (2 + KB cB,Fe) KB cB,Fe)

(HB − HA) (1 + KB cB,Fe )2 τB,I (3.57)

The time trajectories of the concentrations at the extract and raffinate can be con-

structed with Eqs. (3.43) and (3.45) on page 52 for the cyclic steady state. Note
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that Eq. (3.56) for the time interval may also be solved for the feed flow rate if

the time interval is fixed in advance. If one likes to restrict the pressure drop in

zone I, it is also possible to preselect the volumetric flow rate of zone I and solve

Eq. (3.53) for the feed flow rate instead.

3.3.7 Extension to High Feed Concentration

For high concentrations, the head point of the expansion wave only runs in zone

II. Therefore, the assumption made before is invalid so that the components bal-

ance for component B in the form of Eq. (3.42) on page 52 and Eq. (3.46) on

page 53 is incorrect. The maximum concentration, cB,0, that appears at the ex-

tract drain can again be determined with the aid of the concentration velocity,

Eq. (3.31) on page 50. This concentration value moves exactly one column length

in zone I during one time interval so that the following equation holds:

L

TS
=

(1 + F)

A

V̇I − V̇Ex

1 + F HB

(1+KB cB,0)
2

. (3.58)

This equation is solved for the concentration value:

cB,0 =
1

KB





F HB
√

(1+F) (V̇I−V̇Ex) TS

A L − 1
− 1



 . (3.59)

The time trajectory of the concentration at the extract can be described for one

time interval by Eq. (3.60).

cB,Ex (t) =











1
KB

[

√

(1+KB cB,0)
2 τB,I TS

(2+KB cB,0) KB cB,0 t+τB,I TS
− 1

]

0 6 t 6 τB,I TS

0 τB,I TS < t 6 TS

(3.60)

The mean concentration value can be calculated using the integral.

c̄B,Ex =
1
TS

TS
∫

0

cB,Ex (t) dt = τB,I
cB,0

2 + KB cB,0
(3.61)
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Figure 3.11: Estimated and simulated time trajectories of concentrations at the
extract drain within one switching interval to Fig. 3.13 on page 60.

Thus, the correct component balance for component B for high feed concentra-

tion is described by Eq. (3.62):

0 = cB,Fe V̇Fe − τB,I
cB,0

2 + KB cB,0
V̇Ex. (3.62)

3.3.8 Solution for High Feed Concentration

The system of equations consisting of the Eqs. (3.37)-(3.40), (3.41), (3.42) and the

auxiliary Eqs. (3.59), (3.61) can be again solved explicitly. Eq. (3.63) indicates the

concentration value at which the solution structure will change.

cB,0 =
1

KB

HB − HA√
HA HB + HA

(3.63)

cB,Fe > cB,0 (3.64)

cA,P =
HB − HA

2









√

√

√

√

(HB − HA)2 (1 + KA cA,Fe)
2

+4 HA

(√
HB +

√
HA

)2
KA KB cA,Fe cB,Fe

− (HB − HA) (1 − KA cA,Fe)









KA

(

HA

(√
HB +

√
HA

)2
KB cB,Fe + (HB − HA)2

) (3.65)
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cB,P =
HB − HA

KB

(√
HB +

√
HA

)2
KB cB,Fe − (HB − HA)

HA

(√
HB +

√
HA

)2
KB cB,Fe + (HB − HA)2

(3.66)

V̇I =

(√
HB +

√
HA

)2
[F (HB − HA (1 − τB,I)) + τB,I ]

F τB,I (HB − HA)2 KB cB,Fe V̇Fe (3.67)

V̇Ex =

(√
HB +

√
HA

)2

τB,I (HB − HA)
KB cB,Fe V̇Fe (3.68)

V̇Ra =
cA,Fe

τA,IV cA,P
V̇Fe (3.69)

TS =
F

1 + F

A L

V̇Fe

(HB − HA)2

(√
HB +

√
HA

)2
KB cB,Fe

(3.70)

Again, a rearrangement can be carried out between the predefined and the quan-

tities to be calculated if required.

3.3.9 Simulation Results

A dynamic simulation was performed to validate the derived equations. This

was done using the finite element software COMSOL, [48], [49]. Third-order La-

grange polynomials as well as 384 elements per column were used. To stabilize

the numerics, streamline diffusion was switched on. For the feeding concentra-

tions, cA,Fe = 0.5 and cB,Fe = 0.4, and the parameters given in the Appendix,

one obtains the cyclic steady state concentration profile shown in Fig. 3.12. The

broader lines correspond to the concentration profile in the middle of a time in-

terval whereas the thin lines are the profiles at the beginning and the end of a

time interval. The corresponding time trajectories of the concentrations at the

drains were already shown in Fig. 3.10 on page 54 and Fig. 3.9 on page 53. The

dotted trajectories are calculated theoretically while the solid lines are the results

of the dynamic simulation. There is a very good agreement with the predicted

values.

A second simulation was performed with increased feed concentrations, cA,Fe =

1.50 and cB,Fe = 1.25. These results are shown in Fig. 3.13, Fig. 3.11 and Fig. 3.14.

Again, a very good agreement between predicted and the simulated concentra-

tion trajectories can be observed with only one difference at the raffinate side.

58 PhD Thesis – On Design and Control of SMB Plants



3.3. Operating Points for Noncompetitive Langmuir Isotherms

I II III IV

El
Vɺ

Ex
Vɺ

Fe
Vɺ

Ra
Vɺ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

extract

feed

raffinatez / [m]

c
A
, 
c

B /
 [

 m
o
l/
 m

3
]

cA

cB

Figure 3.12: Concentration profile for SMB plant with τB,I = 0.95, τA,IV = 0.9,
cA,Fe = 0.5, cB,Fe = 0.4, cfg = [2, 2, 2, 2] und model parameters from
table A-2.
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Around the predicted plateau value, an oscillating behavior can be observed

which is caused by the periodic switching.

I II III IV

El
Vɺ

Ex
Vɺ

Fe
Vɺ

Ra
Vɺ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

extract

feed

raffinatez / [m]

c
A
, 
c

B /
 [

 m
o
l/
 m

3
]

cA

cB

Figure 3.13: Concentration profiles for SMB plant with τB,I = 0.95, τA,IV = 0.9,
cA,Fe = 1.50, cB,Fe = 1.25, cfg = [2, 2, 2, 2] and model parameters
from table A-2.

3.3.10 Summary

In this section, simple explicit equations were derived to determine the control

variables of a dispersion-free SMB model for noncompetitive Langmuir isotherms.

To account for model inaccuracies and non-modeled dispersion, the positions of

the outer concentration fronts and thus the distance to the outer zone boundaries

can be set by the normalized residence times. Furthermore, the periodical time

trajectories of the concentrations at the drains can be predicted very well. This

opens up new fields of application, such as an intelligent optimization or control

of SMB plants. The designer can use these equations to quickly calculate the de-

sired control variables and may take them as an ideal starting point to optimize

SMB plants that are more complex. Thus, a great reduction in computation time

can be achieved. In addition, the equations may be used to study the influence
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Figure 3.14: Estimated and simulated time trajectories of concentrations at the
raffinate drain within one switching interval to Fig. 3.13.

Table 3.2: Operating points.

Fig. 3.12 Fig. 3.13

cA,Fe/
[

mol
m3

]

0.50 1.5

cB,Fe/
[

mol
m3

]

0.40 1.25

V̇I/
[

ml
min

]

61.82 155.73

V̇Ex/
[

ml
min

]

15.51 39.07

V̇Ra/
[

ml
min

]

13.07 20.20

TS/ [s] 99.50 39.50

cA,P/
[

mol
m3

]

0.42 0.83

cB,P/
[

mol
m3

]

0.40 1.07
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of the model parameters on the trajectories of the concentrations at the drains

in a simple way. Finally, the equations are also very useful to validate software

for simulation and optimization of SMB plants. The concept of the characteris-

tic velocities can also be transferred to other isotherms. Applied to competitive

Langmuir isotherms, it leads to the equations indicated in [49]. This method can

also be extended to compute operating points for reduced purities.

3.4 Operating Points for Langmuir Isotherms

The adsorption affinity of a substance often depends on the composition of the

substance mixture. To describe the interactions, one can use a competitive Lang-

muir isotherm. Thus, the method will now be extended to derive design equa-

tions for complete and incomplete separation and complete regeneration, [52],

[53], by using competitive Langmuir isotherms, as described by Eq. (3.71):

qi (cA, cB) =
Hi ci

1 + KA cA + KB cB
, for i = A, B. (3.71)

Now, the velocities of the concentration fronts cannot be adjusted independently

for each component and an extended mathematical analysis is necessary. To an-

alyze a coupled system of hyperbolic differential equations, one needs to solve a

left eigenvalue problem to decouple the system differentially. This leads to a set

of ordinary differential equations, which describes the Riemann invariants along

the characteristic lines. For a homogenous 2x2 system, the differential equations

in time can be converted to the phase plane, which gives a differential relation-

ship between both dependent variables. For Langmuir isotherms, this differ-

ential equation is of Clairauts type and can be solved. The physically relevant

solutions lead to a linear Riemann invariant relationship, which determines the

characteristics where the Riemann invariants stay constant. Graphically, these

relations are best represented in the hodograph plane, Fig. 3.16. Furthermore,

the speed of propagation can be computed with help of the associated eigen-

value. For a complete treatment, the reader is referred to [29], [32] and for the

basic concept to [38]. In chapter 2.3, the reader will find an introduction to this

theory. The sequel will build up on these known results.

In Fig. 3.15, the idealized concentration profiles of a SMB plant at cyclic steady

state with zero axial dispersion and complete regeneration in zones I and IV are
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given. It is possible to define some characteristic points at this profile for which

the velocity can be determined and, therefore, the propagation can be evaluated.

It is also helpful to have a look at the track of the associated hodograph plane for

this profile as shown in Fig. 3.16. One can identify four characteristic plateau
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Figure 3.15: Idealized concentration profiles of a SMB plant at the beginning of a
time interval for Langmuir isotherms.

values that represent just the corners of the track within the hodograph plane.

These corners are indicated with Arabic numbers. If the track follows the Rie-

mann invariants sufficiently well, the simple wave condition is established and

can be used as basic tool for constructing the desired startup formula.

3.4.1 Concept of Characteristic Velocities

It is assumed that the foot point of the expansion wave of the component, B,

above the extract drain runs between zone I and II. Therefore, the velocity equa-

tion, Eq. (3.72), holds for one time interval.

L

TS
=

1
TS

τB,I TS
∫

0

vcB,I dt +
1
TS

TS
∫

τB,I TS

vcB,I I dt = τB,I vcB,I + (1 − τB,I) vcB,I I (3.72)
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Figure 3.16: Associated hodograph plane to Fig. 3.15.

The introduced normalized residence time, τB,I , gives the time in percentage for

which the foot point stays in zone I. This parameter is a suitable measure to

adjust the position of the concentration front to the desired value at the time

trajectory. See also Fig. 3.18 on page 69. Thus, for each concentration front, a ve-

locity equation can be determined again. Now, the velocity of the concentration

fronts and their dependence on the control variables need to be analyzed.

3.4.2 Foot Point Velocities

Within the first and second zone, an expansion wave is established. The veloci-

ties of the foot points are determined as special cases of concentration velocities,

where the concentration under investigation is zero, since complete regeneration

is required. In general, the concentration velocity is computed with Eq. (3.73):

vci
=

vl

1 + F
dqi(cA,cB)

dci

, for i = A, B. (3.73)

From the hodograph plane, it becomes immediately clear that the plateau value,

cB,2, is maintained when cA becomes nonzero. In the case of Langmuir isotherms,
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these velocities are identified as:

vcB,I =
vl

1 + F HB
, (3.74)

vcA,I I =
vl

1 + F HA
1+KB cB,2

. (3.75)

3.4.3 Shock Velocities

Within the third and fourth zone, a shock wave is established. The shock ve-

locities can be determined using the Rankine- Huginot condition, which for this

model can be stated as:

vs =
vl

1 + F
qi(cA,L,cB,L)−qi(cA,R,cB,R)

ci,L−ci,R

, for i = A, B. (3.76)

Notice that the indices, L and R, are the left and right values across the shock,

respectively. Therefore, the shock velocities depend on the plateau values. Con-

sidering Langmuir isotherms and complete regeneration, following velocities,

Eq. (3.77) and Eq. (3.78), are determined:

vcA,B,I I I =
vl

1 + F HB
1+KA cA,3+KB cB,3

, (3.77)

vcA,IV =
vl

1 + F HA
1+KA cA,4

. (3.78)

3.4.4 Velocity Equations for Complete Separation

If a cyclic steady state is achieved, the chosen characteristic points will travel

one column length within a switching interval. That means they travel with

averaged velocity, L/TS. One can now set up the system of equations to find

the unknown liquid velocities. For complete separation, the inner concentration

fronts are forced to stay only within the inner zones. To get a formula that is

capable of incorporating some safety margin due to model uncertainty, the outer

concentration fronts are allowed to travel within two zones. The safety margins,

0 ≪ τB,I 6 1 and 0 ≪ τA,IV 6 1, are defined to be the normalized residence time.

With them, this concentration fronts stays within the outer zones. Expressing the
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liquid velocities by the appropriate volumetric flow rates leads to the following

four basic velocity equations for complete separation and complete regeneration,

Eqs. (3.79-3.82).

A

(1 + F)

L

TS
=

1
1 + F HB

[

τB,I V̇I + (1 − τB,I)
(

V̇I − V̇Ex

)]

(3.79)

A

(1 + F)

L

TS
=

1

1 + F HA
1+KB cB,2

(

V̇I − V̇Ex

)

(3.80)

A

(1 + F)

L

TS
=

1

1 + F HB
1+KA cA,3+KB cB,3

(

V̇I − V̇Ex + V̇Fe

)

(3.81)

A

(1 + F)

L

TS
=

1

1 + F HA
1+KA cA,4

[

(1 − τA,IV)
(

V̇I − V̇Ex + V̇Fe

)

+τA,IV

(

V̇I − V̇Ex + V̇Fe − V̇Ra

)

]

(3.82)

3.4.5 Simple Wave Condition

If the simple wave condition is satisfied, the concentration profile of the SMB

plant will track along the Riemann invariants and the linear relationship, Eq. (3.83),

between the concentrations is maintained, [29], [53]. Notice that for Langmuir

isotherms, one needs not to distinguish between shock path and expansion path,

since both go on the same curves in the hodograph plane, [34], [53].

cA = Ci cB − (HB − HA) Ci

HA KB + HB KA Ci
, Ci =

(

dcA

dcB

)

i

, for i = 1, 2 (3.83)

By investigating the hodograph plane, Fig. 3.16 on page 64, it is immediate clear

that if cB,2 and cA,4 are known, the inner plateaus, cA,3 and cB,3, are determined

from the intersection point of two Riemann invariants. The Riemann invariants

are obtained from the equations that determine the intersection with the coordi-

nate axis, Eqs. (3.84) and (3.85):

cB,2 =
(HB − HA)

KB HA + KA HB C1
, (3.84)

cA,4 = − (HB − HA) C2

KB HA + KA HB C2
. (3.85)
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The intersection point 3 of both invariants is found with help of the Riemann

invariant relationship, Eq. (3.86).

cA,3 = Ci cB,3 −
(HB − HA) Ci

HA KB + HB KA Ci
, for i = 1, 2 (3.86)

Solving Eq. (3.84) and Eq. (3.85) for the Riemann invariants and using them in

the Eqs. of (3.86), the concentrations of intersection point 3 yields:

cA,3 =
(HB − HA − KB HA cB,2) cA,4

HB − HA
, (3.87)

cB,3 =
(HB − HA + KA HB cA,4) cB,2

HB − HA
. (3.88)

3.4.6 Component Balances for Complete Separation

To get a solution for the system of equations, Eqs. (3.79) to (3.82) on page 66, the

outer plateau values, cB,2 and cA,4, must be determined. This can be done with

the aid of the component balances of the complete system. It is assumed that in

cyclic steady state, the stored amount of substance is constant during one cycle.

For the components, A and B, the following equations will hold for complete

separation:

0 = cA,Fe V̇Fe − c̄A,Ra V̇Ra, (3.89)

0 = cB,Fe V̇Fe − c̄B,Ex V̇Ex. (3.90)

To evaluate the equations, the mean concentrations must be determined for one

switching time. The concentration course at the raffinate for one cycle is very

simply parameterized, Eq. (3.91), because of the shock wave.

cA,Ra (t) =

{

0 0 6 t < (1 − τA,IV) TS

cA,4 (1 − τA,IV) TS 6 t 6 TS

(3.91)
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Figure 3.17: Estimated and simulated time trajectories of concentrations at the
raffinate drain within one switching interval to Fig. 3.19 on page 71.

Thus, the mean concentration at the raffinate drain can be represented with the

aid of the normalized residence time and the plateau value by Eq. (3.92):

c̄A,Ra =
1
TS

TS
∫

0

cA,Ra (t) dt = τA,IV cA,4. (3.92)

The concentration course at the extract depends on the shape of the expansion

wave ( see Fig. 3.18). This course is exactly determined from the PDEs, Eq. (3.1)

and (3.2) on page 40, by the self-similarity solution, Eq. (2.95) on page 24. The

transition between the two states is expressed by the normalized residence times

of the foot and head point.

cB,Ex (t) =























cB,2 0 6 t 6 τ TS

1
KB

[

√

(1+KB cB,2)
2 (τB,I−τ) TS

(2+KB cB,2) KB cB,2 (t−τ TS)+(τB,I−τ) TS
− 1

]

τ TS < t < τB,I TS

0 τB,I TS 6 t 6 TS

(3.93)
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Figure 3.18: Estimated and simulated time trajectories of concentrations at the
extract drain within one switching interval to Fig. 3.19 on page 71.

Now the mean concentration is computed by the time integral:

c̄B,Ex =
1
TS

TS
∫

0

cB,Ex (t) dt = τ cB,2 + (τB,I − τ)
cB,2

2 + KB cB,2
. (3.94)

For the determination of the normalized residence time of the head point, τ,

the concentration velocity, Eq. (3.73) on page 64, of this point can be used. It

is assumed that the head point runs between zone I and II. The validity of this

assumption can be checked afterwards.

A

(1 + F)

L

TS
=

1

1 + F HB

(1+KB cB,2)
2

[

τ V̇I + (1 − τ)
(

V̇I − V̇Ex

)]

(3.95)

Solving Eq. (3.95) for τ leads to Eq. (3.96).

τ =

(

1 +
F HB

(1 + KB cB,2)
2

)

A L

(1 + F) V̇Ex TS
− V̇I − V̇Ex

V̇Ex
(3.96)

Finally, there are four velocity equations, Eq. (3.79) to Eq. (3.82) on page 66, and

two component mass balances, Eq. (3.89) and Eq. (3.90) on page 67, to determine

the four control variables, V̇I , V̇Ex, V̇Ra and TS, and the two outer plateau values,
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cB,2 and cA,4.

3.4.7 Explicit Equations for Langmuir Isotherms

Given a specific feed composition, cA,Fe and cB,Fe and feed flow rate, V̇Fe, Eqs. (3.79)-

(3.82), Eq. (3.89) and Eq. (3.90) can be solved for the unknown volumetric flow

rates, V̇I , V̇Ex, and V̇Ra, and switching time, TS, where some arbitrary normal-

ized residence times, 0 ≪ τB,I 6 1 and 0 ≪ τA,IV 6 1, can be chosen to increase

robustness. Thus, for HB > HA, KA > 0, and KB > 0, the following result,

Eqs. (3.97)-(3.103), is obtained for complete separation and complete regenera-

tion.

α = HB (1 + KA cA,Fe) − HA (1 + KB cB,Fe)

C1 =
α +

√

α2 + 4 HA HB KA KB cA,Fe cB,Fe

2 HB KA cB,Fe
(3.97)

cB,2 =
HB − HA

HB KA C1 + HA KB
(3.98)

cA,4 =
HB − HA

HB − HA [1 − KA cA,Fe + KB cB,2]
cA,Fe (3.99)

V̇I =
1

τB,I

(τB,I + F HB) (1 + KB cB,2) − F HA (1 − τB,I)

F [HB − HA (1 + KA cA,4)]
(1 + KA cA,4) V̇Fe

(3.100)

V̇Ex =
1

τB,I

HB (1 + KB cB,2) − HA

HB − HA (1 + KA cA,4)
(1 + KA cA,4) V̇Fe (3.101)

V̇Ra =
1

τA,IV

HB − HA (1 + KB cB,2)

HB − HA (1 + KA cA,4)
V̇Fe (3.102)

TS =
F

1 + F

A L

V̇Fe

HB − HA (1 + KA cA,4)

(1 + KB cB,2) (1 + KA cA,4)
(3.103)

The time trajectories of the concentrations at the raffinate and extract can be

constructed with Eqs. (3.91) and (3.93) for the cyclic steady state. Notice that
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Eq. (3.103), for the switching time, may also be solved for the feed flow rate, if

the time interval is fixed in advance. If one likes to restrict the pressure drop

in zone I, it is also possible to pre-select the volumetric flow rate of zone I and

solve Eq. (3.100) for the feed flow rate instead. In a similar way, the solution for

Anti-Langmuir isotherms may also be derived as indicated in [53] and stated in

the appendix.

3.4.8 Simulation Results for Complete Separation

Using the operating points from Tab. 3.3 and the parameters from the appendix,

table A-2, the profile plot of Fig. 3.19 is obtained for an eight-column SMB assum-

ing zero dispersion. The normalized residence times are chosen as τB,I = 0.95

and τA,IV = 0.90. The plateau values, cB,2 and cA,4, are very well predicted as
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Figure 3.19: Concentration profiles for SMB plant with τB,I = 0.95, τA,IV = 0.90,
cfg = [2, 2, 2, 2] and model parameters taken from table A-2.

indicated in Fig. 3.19. More interesting are the time trajectories at the drains for

one switching interval at cyclic steady state; see Figs. 3.17 and 3.18. The rarefac-

tion at the extract is well described by the self-similarity solution, Eq. (3.92) and

Eq. (3.93) on page 68, as shown in Fig. 3.18 on page 69. The dotted lines are the

predicted concentrations, which are equal to the solid lines obtained by dynamic
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simulation. In Fig. 3.17 on page 68, the typical saw tooth effect due to zero dis-

persion is observed around the plateau value, cA,4. This was not considered in

the mass balance, but the discrepancies between the predicted, Eq. (3.91) on page

67, and the simulated trajectory is small.

In a simple way, the design formulas may also be used to study the influence of

the outer normalized residence times on the eluent consumption using a contour

plot, as given in Fig. 3.20. It immediately shows that the ratio of eluent to feed

flow rate increases from 3.6 to 5 as the normalized residence times decreases.

Therefore, robustness leads to higher eluent consumption.
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Figure 3.20: On the influence of normalized residence times on the ratio of elu-
ent to feed flow rate, V̇El/V̇Fe, for complete separation with model
parameters taken from table A-2.

Additionally, the question may be answered, which values should be chosen for

the feeding concentrations in order to allow a low solvent consumption. To this,

an often-used definition of the solvent consumption, Eq. (3.104) from [13], may

be used together with the derived design equations to produce the contour plot

of Fig. 3.21.

sc =
V̇El + V̇Fe

V̇Fe (cA,Fe + cB,Fe)
(3.104)

From the picture, it is immediately clear that the feeding concentrations should

be chosen as highly as possible. However, there may be some technical restric-
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Figure 3.21: On the influence of feeding concentrations on the eluent consump-
tion for complete separation with τB,I = 0.95, τA,IV = 0.90 and
model parameters taken from table A-2.

tions. In addition, there are asymmetrical contours recognizable, which suggest

to choose the feeding concentration of component A higher than those of com-

ponent B at high concentrations.

In the same way the influences of different design parameters on specific perfor-

mance measures can be studied quickly with the help of the design equations.

3.4.9 Extension to Reduced Purities

The previous results have shown that the positions of the outer concentration

fronts can be adjusted very well by the normalized residence times. If incomplete

separation is requested, the inner concentration fronts are allowed to move in the

outer zones. Again, they can be adjusted by introducing normalized residence

times. Using this approach, the main velocity equations, Eq. (3.80) and Eq. (3.81)

on page 66, changes to Eq. (3.105) and Eq. (3.106).

A

1 + F

L

TS
=

1

1 + F HA
1+KB cB,2

[

(1 − τA,I I) V̇I + τA,I I

(

V̇I − V̇Ex

)]

(3.105)
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A

1 + F

L

TS
=

1

1 + F HB
1+KA cA,3+KB cB,3

[

τB,I I I

(

V̇I − V̇Ex + V̇Fe

)

+ (1 − τB,I I I)
(

V̇I − V̇Ex + V̇Fe − V̇Ra

)

]

(3.106)

The inner plateau values are entirely determined by the outer plateau values

using Eq. (3.87) and Eq. (3.88) on page 67. The outer plateau values, cB,2 and cA,4,

must be determined from the overall component balances which, for reduced

purities, are given by Eq. (3.107) and Eq. (3.108).

0 = cA,Fe V̇Fe − c̄A,Ex V̇Ex − c̄A,Ra V̇Ra (3.107)

0 = cB,Fe V̇Fe − c̄B,Ex V̇Ex − c̄B,Ra V̇Ra (3.108)

One needs to express the mean values at the drains in terms of the plateau

values and the normalized residence times. The inner normalized residence

times should be expressed in terms of the drain purities, which are defined by

Eq. (3.109) and Eq. (3.110).

PEx =
c̄B,Ex

c̄A,Ex + c̄B,Ex
(3.109)

PRa =
c̄A,Ra

c̄A,Ra + c̄B,Ra
(3.110)

Mean Concentrations at Raffinate

According to Fig. 3.22, the ideal time trajectories of the concentrations at the raffi-

nate drain are expressed mathematically for one switching interval by Eq. (3.111)

and Eq. (3.112).

cA,Ra (t) =











0 0 ≤ t < (1 − τA,IV) TS

cA,4 (1 − τA,IV) TS ≤ t ≤ τA,B,I I I TS

cA,3 τA,B,I I I TS < t ≤ TS

(3.111)

cB,Ra (t) =

{

0 0 ≤ t < τA,B,I I I TS

cB,3 τA,B,I I I TS ≤ t ≤ TS

(3.112)
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Figure 3.22: Estimated and simulated time trajectories of concentrations at the
raffinate drain within one switching interval to Fig. 3.25 on page 81.

The mean concentrations for one switching interval are computed using the time

integral, Eqs. (3.113) and (3.114).

c̄A,Ra = 1
TS

TS
∫

0
cA,Ra (t) dt

= cA,4 (τA,B,I I I − (1 − τA,IV)) + cA,3 (1 − τA,B,I I I)

(3.113)

c̄B,Ra = 1
TS

TS
∫

0
cB,Ra (t) dt

= cB,3 (1 − τA,B,I I I)

(3.114)

Now, the definition of the raffinate purity, Eq. (3.110), is used to express the inner

normalized residence time, τA,B,I I I , by the raffinate purity, PRa.

τA,B,I I I = 1 − 1 − PRa

PRa

cA,4

cB,3 + 1−PRa
PRa

(cA,4 − cA,3)
τA,IV (3.115)

Mean Concentrations at Extract for High Extract Purity

In Fig. 3.23, the time trajectories of the concentrations at the extract drain for one

switching time is given. To express this course mathematically, the concentra-

tions, cA,0 and cB,0, at t = 0 must be determined. These concentration values
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Figure 3.23: Estimated and simulated time trajectories of concentrations at the
extract drain within one switching interval to Fig. 3.25 on page 81.

are determined with aid of the concentration velocity, since both corner concen-

trations cover exactly one column length in zone II during a switching interval.

A

(1 + F)

L

TS
=

1

1 + F
dqA
dcA

∣

∣

∣

cA,0
cB,0

(

V̇I − V̇Ex

)

(3.116)

Using the simple wave condition, these values are determined by Eq. (3.117) and

(3.118).

cA,0 =
HB − HA (1 + KB cB,2)

KA (HB − HA)







√

√

√

√

F HA

1 + KB cB,2

1
(1+F) (V̇I−V̇Ex) TS

A L − 1
− 1







(3.117)

cB,0 =
KA HB cB,2

HB − HA (1 + KB cB,2)
cA,0 + cB,2 (3.118)

Now, the self-similarity solution is used to express both trajectories. To do this,

modified Langmuir constants are defined, Eq. (3.119) and Eq. (3.120):

K̃A =
HB − HA

HB − HA (1 + KB cB,2)
KA, (3.119)
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K̃B =
HB − HA

HB

1
cB,2

. (3.120)

This leads to the mathematical description of the concentrations at the extract
drain by Eqs. (3.121) and (3.122).

cA,Ex (t) =















1
K̃A





√

(1+K̃A cA,0)
2
(1−τA,I I) TS

(2+K̃A cA,0) K̃A cA,0 t+(1−τA,I I) TS
− 1



 0 ≤ t ≤ (1 − τA,I I) TS

0 (1 − τA,I I) TS < t ≤ TS

(3.121)

cB,Ex (t) =















































cB,2 + 1
K̃B





√

(1+K̃B (cB,0−cB,2))
2
(1−τA,I I) TS

(2+K̃B (cB,0−cB,2)) K̃B (cB,0−cB,2) t+(1−τA,I I) TS
− 1



 0 ≤ t ≤ (1 − τA,I I) TS

cB,2 (1 − τA,I I) TS < t ≤ τ TS

1
KB





√

(1+KB cB,2)
2
(τB,I−τ) TS

(2+KB cB,2) KB cB,2 (t−τ TS)+(τB,I−τ) TS
− 1



 τ TS < t ≤ τB,I TS

0 τB,I TS < t ≤ TS

(3.122)

Again, the mean values are computed using the time integrals, Eq. (3.123) and

Eq. (3.124).

c̄A,Ex = 1
TS

TS
∫

0
cA,Ex (t) dt

= (1 − τA,I I)
cA,0

2+K̃A cA,0

(3.123)

c̄B,Ex = 1
TS

TS
∫

0
cB,Ex (t) dt

= (1 − τA,I I)
cB,0−cB,2

2+K̃B (cB,0−cB,2)
+ τ cB,2 + (τB,I − τ)

cB,2
2+KB cB,2

(3.124)

Finally, the definition of the extract purity, Eq. (3.109) on page 74, is used to

express the inner normalized residence time, τA,I I , by the extract purity, PEx.

τA,I I = 1 − 1 − PEx

PEx

τB,I + (1 + KB cB,2) τ
cA,0

2+K̃A cA,0
− 1−PEx

PEx

cB,0−cB,2

2+K̃B (cB,0−cB,2)

cB,2

2 + KB cB,2
(3.125)

Mean Concentrations at Extract for Low Extract Purity

As shown in Fig. 3.24, the inner plateau values, cA,3 and cB,3, will now appear

at the extract drain for low extract purities. Thus, the solution structure changes

and must be treated separately. To express the concentration trajectories at the

extract for low purities, it is necessary to find the time point, τ3 TS, until these

plateau values are detected at the extract. The corner concentrations run be-
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Figure 3.24: Estimated and simulated time trajectories of concentrations at the
extract drain within one switching interval to Fig. 3.26 on page 81.

tween zone I and zone II. Therefore, a new normalized residence time, τ3, is

introduced to locate these corner concentrations. Using the concentration veloc-

ity and the simple wave condition, the normalized residence time is determined

by Eq. (3.127).

L

TS
=

1 + F

A

(

τ3 V̇I + (1 − τ3)
(

V̇I − V̇Ex

)) 1

1 + F
dqA
dcA

∣

∣

∣

cA,3
cB,3

(3.126)

τ3 =

(

1 +
F HA

(1 + KB cB,2) (1 + KA cA,4)
2

)

A L

(1 + F) V̇Ex TS
− V̇I − V̇Ex

V̇Ex
(3.127)

Now, the self-similarity solution of the rarefaction at the extract is used to ex-
press both time trajectories of the concentrations at the extract, Eq. (3.128) and
Eq. (3.129), respectively.

cA,Ex (t) =























cA,3 0 ≤ t < τ3 TS

1
K̃A





√

(1+K̃A cA,3)
2
(1−τA,I I−τ3) TS

(2+K̃A cA,3) K̃A cA,3 (t−τ3 TS)+(1−τA,I I−τ3) TS
− 1



 τ3 TS ≤ t < (1 − τA,I I) TS

0 (1 − τA,I I) TS ≤ t < TS

(3.128)
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cB,Ex (t) =



























































cB,3 0 ≤ t < τ3 TS

cB,2 + 1
K̃B





√

(1+K̃B (cB,3−cB,2))
2
(1−τA,I I−τ3) TS

(2+K̃B (cB,3−cB,2)) K̃B (cB,3−cB,2) (t−τ3 TS)+(1−τA,I I−τ3) TS
− 1



 τ3 TS ≤ t < (1 − τA,I I) TS

cB,2 (1 − τA,I I) TS ≤ t < τ TS

1
KB





√

(1+KB cB,2)
2
(τB,I−τ) TS

(2+KB cB,2) KB cB,2 (t−τ TS)+(τB,I−τ) TS
− 1



 τ TS ≤ t < τB,I TS

0 τB,I TS ≤ t ≤ TS

(3.129)

The mean concentrations at the extract for low purities are determined by Eq. (3.130)

and Eq. (3.131).

c̄A,Ex = 1
TS

TS
∫

0
cA,Ex (t) dt

= τ3 cA,3 + (1 − τA,I I − τ3)
cA,3

2+K̃A cA,3

(3.130)

c̄B,Ex = 1
TS

TS
∫

0
cB,Ex (t) dt

= τ3 cB,3 + (1 − τA,I I − τ3)
cB,3−cB,2

2+K̃B (cB,3−cB,2)

+ (τ − τ3) cB,2 + (τB,I − τ)
cB,2

2+KB cB,2

(3.131)

Using the definition of the extract purity, the inner normalized residence time is
determined by Eq. (3.132).

τA,I I = 1 − τ3 −
1−PEx

PEx

(

τ3 cB,3 + (τ − τ3) cB,2 + (τB,I − τ)
cB,2

2+KB cB,2

)

− τ3 cA,3

cA,3

2+K̃A cA,3
− 1−PEx

PEx

cB,3−cB,2

2+K̃B (cB,3−cB,2)

(3.132)

The System of Equations for Reduced Purities

Now, all required equations are found to compute the flow rates and switching

time for the desired purities. The Eqs. (3.79), (3.105), (3.106), (3.82), (3.107), and

(3.108) are the main equations that have to be solved for the desired flow rates,

V̇I , V̇Ex, V̇Ra , the switching time, TS, and the plateau values, cB,2 and cA,4. This

system of equations can be solved numerically using the explicit formula for

complete separation as a starting guess.

At every iteration step, the inner plateau values are computed by Eqs. (3.87) and

(3.88). The mean concentrations at the raffinate are determined by Eqs. (3.115),

O

T
T
O

-V
O

N
-G

U
E

R

IC
KE-UNIVERSIT

Ä
T

M
A

G
D

E
B

U
R

G

Otto-von-Guericke-Universität Magdeburg, 2009 79



3. Design of SMB Plants

(3.113), (3.114). To compute the mean concentrations at the extract, Eqs. (3.96),

(3.119) and (3.120) are solved first. After this, the residence time, τ3, is computed

by Eq. (3.127) to discriminate between the two solution structures at the extract.

If τ3 ≤ 0, the equations for high purity at the extract are used. This means

Eqs. (3.117), (3.118), (3.125), (3.123), and (3.124) are evaluated. If τ3 > 0, the

equations for low purity at the extract are used, which means that Eqs. (3.132),

(3.130), and (3.131) are evaluated. Finally, the equation errors of the four veloc-

ities, Eqs. (3.79), (3.105), (3.106), and (3.82), and the equation errors of the two

component balances, Eqs. (3.107) and (3.108), are determined.

After the numerical solution is found, the normalized residence times and the

plateau values can be computed afterwards to construct the time trajectories of

the concentrations at the drains for one switching time.

3.4.10 Simulation Results for Reduced Purities

To show the practical usefulness of this method, a simulation result is introduced

here. It is assumed that the feed flow rate and the feed concentrations are given.

The goal is to design a SMB plant that will separate a given feed stream. This

task is natural since one like to achieve a desired throughput. One can now use

the proposed approach to determine the corresponding flow rates and switching

time. If there are some constraints on the flow rates due to pressure drops, one

just needs to reduce the requested feed flow rate. The simulation is carried out

with τB,I = 0.95, τA,IV = 0.90, PEx = 90% and PRa = 80%. The concentration

profiles are given by Fig. 3.25. The time trajectories at the drains are well pre-

dicted as given in Fig. 3.23 on page 76 and Fig. 3.22 on page 75. The dotted lines

are the predicted concentrations, whereas the solid lines obtained by simulation.

A second simulation is carried out with reduced extract purity, PEx = 65%. The

concentration profiles are given by Fig. 3.26 and the associated trajectories at the

extract are given in Fig. 3.24 on page 78. To show that the self-similarity solution

will produce exact results, an additional simulation is carried out with feeding

concentrations considerably increased. The concentration course at the extract

drain is represented in Fig. 3.27. It shows that the proposed approach is able

to predict the time trajectory sufficiently well. Finally, one can study with this

approach the influence of the purities on the eluent consumption and switching

time using contour plots given in Fig. 3.28 and Fig. 3.29. To prove the results

by dynamic simulation, a high number of base points per column are necessary.
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Figure 3.25: Concentration profiles for SMB plant with τB,I = 0.95, τA,IV = 0.90,
PEx = 0.90, PRa = 0.80, cfg = [2, 2, 2, 2] and model parameters taken
from table A-2.
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Figure 3.26: Concentration profiles for SMB plant with τB,I = 0.95, τA,IV = 0.90,
PEx = 0.65, PRa = 0.80, cfg = [2, 2, 2, 2] and model parameters taken
from table A-2.
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Figure 3.27: Estimated and simulated time trajectories of concentrations at the
extract drain within one switching interval with τB,I = 0.95, τA,IV =
0.90, PEx = 0.70, PRa = 0.80, cA,Fe = 5.0, cB,Fe = 8.0, cfg = [2, 2, 2, 2]
and the remaining parameters taken from table A-2.
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Figure 3.29: On the influence of purities on the switching time, TS, with τB,I =
0.95 and τA,IV = 0.9 and model parameters taken from table A-2.

Further, the simulation time should be chosen as sufficiently large, so that the

raffinate trajectory converges to the predicted trajectory. In this contribution,

all simulations were carried out with a commercially available finite element

package called COMSOL, [48], using third-order Lagrange polynomials and 192

elements per column. Streamline diffusion was used to stabilize the numerics.

However, the same results are obtained if using a traditional method of lines

algorithm, [54], with flux limiter.

Table 3.3: Operating points.

V̇I/
[

ml
min

]

V̇Ex/
[

ml
min

]

V̇Ra/
[

ml
min

]

TS/ [s]

Fig. 3.19 102.60 33.54 12.07 60.19
Fig. 3.25 50.10 20.63 8.73 123.80
Fig. 3.26 30.40 16.96 5.28 205.51
Fig. 3.27 50.03 39.49 1.77 118.97

3.4.11 Summary

A new explicit startup formula for SMB plants using Langmuir isotherms for

complete separation was derived. The advantage is that the outer concentration
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fronts can be very well adjusted by the normalized residence times introduced,

τB,I and τA,IV , that are essential for robustness. An extension of the proposed

method to incomplete separation was made, which enables the designer to do a

quick study of the necessary eluent consumption in terms of the required puri-

ties or other parameters. If implementing these equations, appropriate scaling

should be made to find numerical reliable solutions.

3.5 Conclusion

In this chapter, a new method to analyze SMB plants was proposed. It leads to

design equations for dispersion-free SMB models for the most practical isotherms.

The formulas give the designers more insight into the process and, thus, they can

use this information for further optimizations. With the aid of these formulas,

the influences of the parameters on the operating conditions can be examined

very well. The numeric solution methods to simulate SMB plants may also be

judged. Although, the equations derived are only valid for zero dispersion. This

is in practice an unrealistic assumption. To derive design equations that also con-

sider dispersion, one can make use of the traveling wave solution. For Langmuir

isotherms it was derived in chapter 2.2.4, Eq. (2.87) on page 23. The thickness of

the shock layer may also indicate the zone length necessary. However, it is un-

likely to find solutions with low computational effort. For this reason, one may

use the operating point determined for a dispersion-free SMB model as a start-

ing guess for a rigorous dynamic optimization. Such possibilities are pointed

out in chapter 4. As shown in Fig. 3.30, dispersion will have a negative effect on

the eluent consumption. Therefore, methods should be developed to avoid or

counter act dispersion.
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Figure 3.30: On the effect of dispersion.
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Average people discuss events.
Big people discuss ideas.
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4 Adaptive Control of SMB

Plants

The SMB technology is an attractive separation process for binary mixtures and

has its applications in the fine chemical and pharmaceutical industry. Nowa-

days, most plants operate in open loop far away from their optimum to increase

robustness. Since this process is very sensitive to disturbances and parameter

changes, it is natural to design an automatic controller which is capable of al-

ways driving the system near the optimum.

In this chapter, two control concepts for complete and incomplete separation and

for complete regeneration are suggested. These are capable, to find a suitable

operating point automatically and independently of the adsorption behavior.

For this purpose, the specific properties of the process will be exploited in order

to derive simple models of low order. Based on these models a classical control

design will be carried out.

4.1 Control of SMB Plants for Complete

Separation

This section proposes an adaptive control concept for SMB plants for complete

separation and complete regeneration, [56]. First, a reduced model is derived to

predict the location of the foot points of the concentration fronts. Then a sim-

ple control design is carried out using this model. At the end of this section, a

simulation is used to underline the potential of this proposed control concept.

4.1.1 Simplified Modeling

A symmetric SMB configuration with eight columns is represented in Fig. 4.1.

The zone velocities are adjusted by four pumps as indicated. In the middle of
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each section, a UV- sensor is mounted to measure a concentration dependent

signal. The associated concentration profiles of a SMB plant at cyclic steady state

port

switching A

,A Rac
,B Rac

RaV

E lV

B

,A Exc
,B Exc

ExV
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FeV

zone II
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FeU

ExU RaU
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.

.

. .

Figure 4.1: SMB configuration with eight chromatographic columns.

are indicated in Fig. 4.2. The thin lines are the profiles at the beginning and the

end of a switching period, whereas the broader lines correspond to profiles at the

middle of the switching time. In addition to the single concentrations, the sum

of both concentrations is indicated by black lines. This is because UV- sensors

often cannot detect the concentrations separately, but provide a weighted sum

of both.

Derivation of the Concentration Front Model

Four concentration fronts of the concentration profiles can be identified. In Fig. 4.3,

an idealized concentration front that travels between two connected columns,

where a UV-detector is located in the middle, is represented. It is assumed that

the velocity of the foot point of the concentration front is constant for one switch-

ing period. This opens a simple and advantageous discrete description of the

movement of the foot point of the concentration front. The distance traveled

by the foot point of the concentration front on the left side of the UV- sensor is

calculated by using the velocity and time. The time is a fraction of the switch-
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Figure 4.2: Concentration profiles at cyclic steady state for Henry isotherms and
model parameters taken from table A-2.

ing time, which may be expressed by introducing a normalized residence time,

τ. The dependency of distance traveled on the right side of the UV- sensor on

normalized residence time is also expressed, Eq. (4.1) and Eq. (4.2):

∆zL (k) = v (k) τ (k) TS (k) , τ ∈ [0, 1] , (4.1)

∆zR (k) = v (k) (1 − τ (k)) TS (k) . (4.2)

As indicated in Fig. 4.3, the left and right distances are related to Eq. (4.3):

∆zL (k + 1) = L − ∆zR (k) . (4.3)

The distances are substituted by their velocities and times. The resulting equa-

tion is solved for the future normalized residence time, Eq. (4.4) and Eq. (4.5).

v (k + 1) τ (k + 1) TS (k + 1) = L − v (k) (1 − τ (k)) TS (k) (4.4)
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Figure 4.3: On the derivation of the foot point movement.
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4.1. Control of SMB Plants for Complete Separation

τ (k + 1) =
L − v (k) (1 − τ (k)) TS (k)

v (k + 1) TS (k + 1)
(4.5)

It is now assumed that the velocity of the foot point of the concentration front

is linearly dependent on the volumetric flow rate, which will be the case under

idealized conditions.

v (k) =
L

θ
V̇ (k) (4.6)

This leads to following equation:

τ (k + 1) =
θ − V̇ (k) (1 − τ (k)) TS (k)

V̇ (k + 1) TS (k + 1)
. (4.7)

Model Equations

The model is now stated using the traditional notation style of the control com-

munity. Before this is done, it should be noted that the normalized residence

times can be measured only after a delay of one sample. Therefore, one must add

an additional delay of one sample to the outputs. In order to avoid redundancy,

the volumetric flow rates are concatenated with the switching time, Eq. (4.8) to

Eq. (4.10).

ui (k) = V̇i (k) , u5 (k) = TS (k) , i = 1, 2, 3, 4 (4.8)

u⌢i (k) = ui (k) u5 (k) , yi (k) = τi (k − 1) (4.9)

yi (k + 1) =
θi − u⌢i (k − 1) (1 − yi (k))

u⌢i (k)
(4.10)

At cyclic steady state, the input, u⌢i, will be equal to the parameter, θi. This

presents a simple way to compute the parameters from existing design rules,

as given in the previous chapter, for complete separations directly from the pa-

rameters of the full model.

θi = u⌢i = V̇i TS (4.11)
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4. Adaptive Control of SMB Plants

In case of Henry isotherms, the parameters are determined explicitly as follows,

[47].

θ1 = θ3 =
1 + F HB

1 + F
A L (4.12)

θ2 = θ4 =
1 + F HA

1 + F
A L (4.13)

4.1.2 Control Design

Based on the reduced model an arbitrary controller design can be carried out.

For the evaluation of the control concept, only a simple controller shall be intro-

duced here. To improve the control performance, the order of the controller can

be increased easily, e.g. [57], [61].

Proportional Feedback Design

The plant has integral behavior near the optimum, and therefore, is very sen-

sitive to disturbances. Every small disturbance step leads to a running away

of the concentration fronts from the optimal operating point. For this reason, a

controller should be used to adjust the flow rates in order to keep the foot points

of the concentration fronts at the desired locations. The following simple control

law is suggested, which consists of an ideal open loop control and a proportional

feedback.

u⌢i (k) = θi − a
(

yi,re f − yi (k)
)

θi, i = 1, 2, 3, 4 (4.14)

This control law is inserted to the model equation to obtain the closed loop dy-

namics, Eq. (4.15).

yi (k) =
1 −

(

1 − a
(

yi,re f − yi (k − 2)
))

[1 − yi (k − 1)]

1 − a
(

yi,re f − yi (k − 1)
) (4.15)

If a stationary solution exists, one concludes that the output will approach the

reference value.

lim
k→∞

yi (k) = yi,∞ = yi,re f (4.16)
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4.1. Control of SMB Plants for Complete Separation

A linearization around the stationary value is performed to analyze local stabil-

ity. This leads to the following linear difference equation:

∆yi (k)−
(

1 − a yi,re f

)

∆yi (k − 1) + a
(

1 − yi,re f

)

∆yi (k − 2) = 0, (4.17)

with ∆yi (k) = yi (k) − yi,re f . One can derive the following associated character-

istic equation.

λ2 −
(

1 − a yi,re f

)

λ + a
(

1 − yi,re f

)

= 0, yi,re f ∈ [0, 1] (4.18)

The polynomial depends on the actual reference value. However, for a = 0.25

the two real roots are inside the unit disc, as seen in Fig. 4.4. Therefore, local

stability is at least guaranteed for this value.

λ1,2 =

(

1 − a yi,re f

)

2
± 1

2

√

(

1 + a yi,re f

)2 − 4 a (4.19)
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Figure 4.4: Dependency of the roots from the set point.

Computing the Optimal Switching Time

The SMB process is usually designed for a fixed throughput of the binary feed.

To achieve this even in presence of disturbances, the feed flow rate cannot be
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4. Adaptive Control of SMB Plants

used as control input. However, the switching time can be used instead. The op-

timal switching time for a fixed feed flow rate is computed from the normalized

control inputs by the following equation:

TS (k) =
u⌢3 (k) − u⌢2 (k)

V̇Fe
. (4.20)

The flow rates for each section can be computed with the aid of the optimal

switching time, Eq. (4.21).

ui (k) =
u⌢i (k)

TS (k)
, i = 1, 2, 3, 4 (4.21)

It should be noted that the scaling property of the switching time may also be

used to satisfy upper constraints on the volumetric flow rates. With other words,

the switching time is chosen such that following constraints are satisfied.

TS ≥ u⌢1

V̇I,max
, TS ≥ u⌢1 − u⌢2

V̇Ex,max
, TS ≥ u⌢3 − u⌢2

V̇Fe,max
, TS ≥ u⌢3 − u⌢4

V̇Ra,max
(4.22)

Computing Parameter Errors

It is likely that the parameters will change with time due to thermal processes,

see Eq. (2.38) on page 13, or aging. Therefore, it is necessary to estimate the

parameters online from measurements. The parameter errors are defined as the

difference between the true parameters and their estimates.

θ̃i (k) = θi − θ̂i (k) , i = 1, 2, 3, 4 (4.23)

The difference between the measured and one-step ahead forecasted output is

used to compute the previous parameter errors.

θ̃i (k − 1) = ui (k − 1) (yi (k) − ŷi (k)) (4.24)

Estimator Design

The following parameter estimator is suggested to determine the parameters,

Eq. (4.25):

θ̂i (k) = θ̂i (k − 1) + (1 − aθ) θ̃i (k − 1) , |aθ| < 1, i = 1, 2, 3, 4. (4.25)
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4.1. Control of SMB Plants for Complete Separation

The resulting error equation reduces to a first-order homogenous difference equa-

tion.

θ̃i (k) = θ̃i (k − 1) − (1 − aθ) θ̃i (k − 1) = aθ θ̃i (k − 1) (4.26)

This means that the estimation error will vanish as k → ∞.

Determination of the Normalized Residence Times

The normalized residence times of the foot points can be determined with the aid

of a correlation technique. In order to achieve this, one may define the following

intermediate signals.

x (t) = sign (c (t) − c0) , (4.27)

xre f (t) = α sign
(

t − τre f TS

)

, (4.28)

α =

{

−1 extract side

+1 raffinate side
(4.29)

The offset, c0, defines the concentration value at which propagation will be in-

vestigated. For robustness, this value should lie above the expected sensor noise

level. The sign of α takes into account the different qualitative course of the con-

centrations between the extract and raffinate side. The intermediate signal, x,

can be interpreted as actual trajectory, whereas xre f can be thought of as a refer-

ence signal. The cross-correlation of both signals will result in a maximum at the

shift, ∆τmax, as shown in Fig. 4.5. This is a measure of the control error.

Rxre f x (∆τ) = lim
T→∞

1
2 T

T
∫

−T

xre f (t) x (t + ∆τ TS) dt (4.30)

∆τ ∈ [−1, 1] (4.31)

max Rxre f x = Rxre f x (∆τmax) (4.32)
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The maximum value of ∆τ may then be determined by a simple one-dimensional

search. The sum of the shift, ∆τmax, and reference, τre f , results in the actual value

τ.
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Figure 4.5: On cross correlation of two phase shifted sign signals.

A Note on Concentration Measurements

In practice, one cannot measure the concentration directly. A simple and cheap

possibility to determine a concentration dependent signal is the usage of UV-

sensors. These optical sensors exploit differences in the optical property of the

two components. However, only a weighted sum of the concentrations can be

determined. The weighting factors depend on the components and the wave-

length used.

cUV = k1 cA + k2 cB, k1 = k2 = 1 (4.33)

One way to determine the single concentrations is to use sensors with two dif-

ferent wavelengths. If the linear factors are independent, the set of two equa-

tions can be solved for the concentrations. In this contribution, the measured

weighted sum is used directly. For simplicity, it shall be assumed that the weight-

ing factors are equal to one. If the offset values for the intermediate signals are

set correctly, the control concept can be used with simple UV- sensors. The fol-
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4.1. Control of SMB Plants for Complete Separation

lowing intermediate signals are constructed, Eq. (4.34) to Eq. (4.37).

x1 (t) = sign (cUV1 (t) − 0.03 cB,Fe) (4.34)

x2 (t) = sign (cUV2 (t) − (cB,Fe + 0.03 cA,Fe)) (4.35)

x3 (t) = sign (cUV3 (t) − (cA,Fe + 0.03 cB,Fe)) (4.36)

x4 (t) = sign (cUV4 (t) − 0.03 cA,Fe) (4.37)

4.1.3 Simulation Results

A simulation using the detailed model is carried out to validate the control con-

cept. The model parameters are taken from [47]. The discretization of the partial

differential equation is performed using finite differences, [54], where 51 base

points per column were used. The modeling of the dispersion was neglected,

since the numerical dispersion was considered as sufficient. The initial flow

rates, the switching time, and therefore, the initial parameters were computed

using the formulas for complete separation as given by Eqs. (3.25)-(3.28) on page

45 or in [47]. The controller parameter was selected as a = 0.25 and the esti-

mator pole as aθ = 0.40. The set points were chosen to τI = τI I = 0.75 and

τI I I = τIV = 0.25. It should be noticed that the proposed adaptive control con-

cept makes use of the certainty equivalence principle, [58]. This means that both

the controller and estimator are stable if they are used separately, but stability

is not guaranteed if they are used together. However, a simulation study has

shown that for a proper selection of the controller parameters, the control loop

can always be stabilized. The resulting concentration profiles at cyclic steady

state are shown in Fig. 4.2 on page 89. At the second UV- sensor location, one

can record the time trajectories of the concentrations as given in Fig. 4.6. At cyclic

steady state, the concentration of the component B is nearly constant and equal

to the feed concentration. To detect the foot point of component A from the sum

of both concentrations, the offset value is chosen slightly higher than the feed

concentration of component B. The time trajectories of the normalized residence

times are represented in Fig. 4.7. It can be seen that after a transient time, the
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Figure 4.6: Time trajectories of the concentrations at the second UV- sensor
within one switching interval to Fig. 4.2 on page 89.

controller is capable of setting the locations of the concentration fronts as de-

sired. The parameters are adjusted as soon as the concentration fronts appear

at the associated UV- sensor locations, as seen in Fig. 4.8. They depart slightly

from their initial conditions, which is due to the dispersion. The switching time

is initially high, which is desired since the concentration fronts should appear at

the UV- locations as fast as possible. After a transient time, the switching time

approaches a constant value, as indicated in Fig. 4.9. Finally, a portion of the time

trajectory of the concentrations at the extract is given in Fig. 4.10. In cyclic steady

state only component B is drained off at the extract. The controller ensures the

positioning of the concentration fronts, and therefore, the complete separation

of the binary feed.

Table 4.1: Operating points for τ1 = τ2 = 0.75, τ3 = τ4 = 0.25, a = 0.25, aθ =
0.40.

V̇I/
[

ml
min

]

V̇Ex/
[

ml
min

]

V̇Fe/
[

ml
min

]

V̇Ra/
[

ml
min

]

TS/ [s]

t = 0 41.43 10.00 10.00 10.00 146.63
t = tend 42.42 10.25 10.00 10.20 140.80
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Figure 4.7: Time trajectories of the normalized residence times during startup
phase.
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Figure 4.9: Time trajectories of the switching time during startup phase.
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Figure 4.10: Time trajectories of the concentrations at the extract.
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4.1.4 Summary

A simple control concept for SMB plants is introduced for the case of complete

separation. It is based on a simple nonlinear model for the movements of the foot

points of the concentration fronts. If the concentrations can be measured sepa-

rately, the proposed control concept leads to a reliable and robust adjustment of

the volumetric flow rates and switching time. However, even if one cannot mea-

sure the concentrations separately it is possible to apply this method, as shown

in the simulation results. The only crucial selection is the choice of correct off-

set values for the inner intermediate signals. The placement of the sensors in

the middle of each section has an advantage in that the presence of small dis-

placements of the concentration fronts from their set points do not result in sig-

nificant impurities occurring at the drains. Sensor offset will be unaffected as

long as these are smaller than the offset value, c0. The controller drives the pro-

cess to the optimal point for a dispersion-free system. This leads to lower eluent

consumption compared to an open loop operating SMB plant, which must be

run with some safety margins. One may assume that this will also be the case

in presence of dispersion. This proposed concept is quite versatile and works

independently of the adsorption behavior, see also [59]. It can be extended to

SMB plants with multi-component separation and reactive SMBs. Furthermore,

this concept can be used as a special optimization technique. In this way, it is

possible to compute optimal operating conditions for more complex SMB plants

where no analytical solution is known.

4.2 Control of SMB Plants under Reduced Purity

Requirements

The basic idea of the previous section to construct an adaptive controller for

SMB plants is now extended to the case of incomplete separation and complete

regeneration, [60]. This time a symmetric four-column SMB will be considered,

as shown in Fig. 4.11. Again, a simple model is derived to predict the locations of

the foot points of the concentration fronts for each switching interval. Based on

this model, an adaptive controller is constructed to fix the concentration fronts

in such a way that the purity requirements are fulfilled. Finally, some simula-

tion results are given to show the potential of this control concept for industrial
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Figure 4.11: Configuration of the SMB installation.

application.

4.2.1 Simplified Modeling

The full model, Eq. (3.1) to Eq. (3.9) on page 40, is able to describe the plant

sufficiently well, but it is less suited for control design. For this reason, a simple

model for the movements of the foot points of the concentration fronts is derived.

In Fig. 4.12, a typical concentration profile at cyclic steady state is shown. The

concentration fronts move from the left to the right side. The narrow lines are the

profiles at the beginning and the end of a switching interval, whereas the thick

lines correspond to profiles at the middle of the switching interval. In Fig. 4.13

and Fig. 4.14, the time trajectories of the concentrations at the drains for one

switching interval are presented. They are the measured quantities. The goal of

the control device is to place the concentration fronts within the measured time

trajectories for one switching interval in such a way that the purity requirements

are fulfilled. To find a simple low-order model, it is sufficient to only describe

the positions of the foot points of the concentration fronts. It is useful to fix the

volumetric flow rates for one period, which opens an advantageous, discrete

description.
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Figure 4.12: Concentration profiles at cyclic steady state for Langmuir isotherms
and model parameters taken from table A-2.
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Figure 4.13: Time trajectories of the concentrations at the extract drain within one
switching interval to Fig. 4.12.
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Figure 4.14: Time trajectories of the concentrations at the raffinate drain within
one switching interval to Fig. 4.12.

Outer Concentration Front of the Extract

In Fig. 4.15, the movement of the foot points of the outer concentration front

at the extract side is given. This point moves now in contrast to the previous

section between two zones with different velocities. The distance traveled by

the foot point can be computed through velocity and time. For this purpose, it is

advantageous to define a normalized residence time, τB,I . This time determines

how long the foot point stays within zone I, and is normalized to the actual

switching time. Later, this value is simply computed from the concentration

measurements at the drain. The distances traveled in each zone are computed as

follows.

∆zB,I (k) = vB,I (k) τB,I (k) TS (k) , τB,I ∈ [0, 1] (4.38)

∆zB,I I (k) = vB,I I (k) (1 − τB,I (k)) TS (k) (4.39)

If the end of the switching time is reached, the foot point is shifted back by one

column length, therefore Eq. (4.40) holds.

∆zB,I (k + 1) = L − ∆zB,I I (k) (4.40)
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Figure 4.15: On the derivation of the foot point movement.
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The distances are substituted through their velocities and times, Eq. (4.38) and

Eq. (4.39). Thereafter, Eq. (4.40) is solved for the future normalized residence

time.

τB,I (k + 1) =
L − vB,I I (k) (1 − τB,I (k)) TS (k)

vB,I (k + 1) TS (k + 1)
(4.41)

Inner Concentration Front of the Extract

The same method is now applied to the inner concentration front of the extract.

The distances are expressed in the normalized residence time of the inner foot

point of zone II.

∆zA,I (k) = vA,I (k) (1 − τA,I I (k)) TS (k) , τA,I I ∈ [0, 1] (4.42)

∆zA,I I (k) = vA,I I (k) τA,I I (k) TS (k) (4.43)

The back shifting of the foot point by one column length and the elimination of

the distances leads to the future normalized residence time for the inner concen-

tration front.

τA,I I (k + 1) = 1 − L − vA,I I (k) τA,I I (k) TS (k)

vA,I (k + 1) TS (k + 1)
(4.44)

Now the assumption is made again that the velocities of the foot points depend

linearly on the volumetric flow rates of the zones.

vB,I (k) =
L

θ1
V̇I (k) , vB,I I (k) =

L

θ1
V̇I I (k) (4.45)

vA,I (k) =
L

θ2
V̇I (k) , vA,I I (k) =

L

θ2
V̇I I (k) (4.46)

This leads to the following model, Eq. (4.47) and Eq. (4.48), for the extract side.

τB,I (k + 1) =
θ1 − V̇I I (k) (1 − τB,I (k)) TS (k)

V̇I (k + 1) TS (k + 1)
(4.47)

τA,I I (k + 1) = 1 +
V̇I I (k) TS (k) τA,I I (k) − θ2

V̇I (k + 1) TS (k + 1)
(4.48)
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The derivation of the equations for the raffinate side is done in a similar way.

Model Equations

The normalized residence times are first measured after an additional delay of

one sample. For this reason, an additional delay must be added to the model

equations. Using the traditional notation of the control community for the inputs

and outputs, Eq. (4.49), the complete model for the movements of the foot points

of the concentration fronts, Eq. (4.51) to Eq. (4.54), can be derived as follows:

y1 (k) = τB,I (k − 1) , y2 (k) = τA,I I (k − 1) ,

y3 (k) = τB,I I I (k − 1) , y4 (k) = τA,IV (k − 1) ,

u1 (k) = V̇I (k) , u2 (k) = V̇I I (k) ,

u3 (k) = V̇I I I (k) , u4 (k) = V̇IV (k) ,

u5 (k) = TS (k) .

(4.49)

u⌢i (k) = ui (k) u5 (k) , i = 1, 2, 3, 4 (4.50)

Model:

y1 (k + 1) =
θ1 − u⌢2 (k − 1) [1 − y1 (k)]

u⌢1 (k)
, (4.51)

y2 (k + 1) = 1 +
u⌢2 (k − 1) y2 (k) − θ2

u⌢1 (k)
, (4.52)

y3 (k + 1) =
θ3 − u⌢4 (k − 1) [1 − y3 (k)]

u⌢3 (k)
, (4.53)

y4 (k + 1) = 1 +
u⌢4 (k − 1) y4 (k) − θ4

u⌢3 (k)
. (4.54)

If one sets all outputs and, consequently, the normalized residence times to unity,

it becomes noticeable that every model parameter corresponds to one normal-

ized control input.

θi = u⌢i, i = 1, 2, 3, 4 (4.55)
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This state occurs for the ideal case of complete separation. Design rules already

exist to compute this control inputs and thus, the parameters, e.g. in [49] or

in chapter 3. From now on, only the extract side will be analyzed because the

extract and raffinate sides have the same structure. The results obtained for the

extract side are simply transferred to the raffinate side.

4.2.2 Control Design

Based on the simplified model, different controller designs are possible. Again,

only a simple, but still powerful, controller is introduced here. An improvement

may be obtained as shown in [57], [61].

Derivation of the Inverse Model

To decouple the multivariable system and to allow a simple control design, an

inverse model is derived. Setting the outputs, yi, equal to new virtual inputs, wi,

delayed by two lags, Eq. (4.56) and Eq. (4.57), and solving the resulting system of

equations for the inputs with the aid of the system dynamics, gives the inverse

model in Eq. (4.58) and Eq. (4.59).

Model:

y1 (k) = w1 (k − 2) =
θ1 − u⌢2 (k − 2) [1 − y1 (k − 1)]

u⌢1 (k − 1)
, (4.56)

y2 (k) = w2 (k − 2) = 1 +
u⌢2 (k − 2) y2 (k − 1) − θ2

u⌢1 (k − 1)
. (4.57)

Inverse model:

u⌢1 (k) =
w2 (k − 2) θ1 − [1 − w1 (k − 2)] θ2

w1 (k − 1) w2 (k − 2) − [1 − w1 (k − 2)] [1 − w2 (k − 1)]
, (4.58)

u⌢2 (k) =
w1 (k) θ2 − [1 − w2 (k)] θ1

w1 (k) w2 (k − 1) − [1 − w1 (k − 1)] [1 − w2 (k)]
. (4.59)
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Feedback Control

Assuming exact parameter knowledge, the resulting dynamics with respect to

the new virtual input is just a delay of two.

yi (k) = wi (k − 2) , i = 1, 2 (4.60)

In order to place the concentration fronts even in the presence of disturbances,

following control law is suggested.

wi (k) = a wi (k − 1) + (1 − a) wi (k − 2) + (1 − a) ei (k) , i = 1, 2 (4.61)

ei (k) = yi,re f (k)− yi (k) , |a| < 1 (4.62)

Using Eq. (4.60), the closed loop dynamics is derived as follows.

yi (k) = a yi (k − 1) + (1 − a) yi (k − 2) + (1 − a) ei (k − 2)

= a yi (k − 1) + (1 − a) yi,re f (k − 2)
(4.63)

This is a first-order difference equation with a delay of two. If a is chosen to lie

inside the unit disc, the output will converge to the reference as k → ∞.

Tracing the Purity Error back to a Normalized Residence Time Error

To place the inner concentration front in such a way that the purity require-

ments are fulfilled, one needs to find a static relationship between purity and

both concentration fronts. Such a relationship, Eq. (4.64), was derived in [47] for

a dispersion-free SMB model under consideration of Henry isotherms, see also

Eq. (3.22) at page 44. For Langmuir isotherms this relationship is more compli-

cated as shown by Eq. (3.125) at page 77 or Eq. (3.132) at page 79. However, for

the purpose of the controller design it is found that the relationship for Henry

isotherms generally represents a sufficient approximation.

τA,I I = 1 − 1 − PEx

PEx

cB,Fe

cA,Fe
τB,I (4.64)

It is assumed that the ratio of the feed concentrations remains constant. Fur-

thermore, it is assumed that the outer normalized residence time, τB,I , is already
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4. Adaptive Control of SMB Plants

fixed to the desired value by the outer control loop. These assumptions allow

the following substitutions.

pEx =
1 − PEx

PEx
, ϑEx =

cB,Fe

cA,Fe
τB,I (4.65)

The static relationship, (4.64), can be rearranged to give the newly introduced

virtual output, pEx.

pEx =
1 − τA,I I

ϑEx
(4.66)

The control error, (4.67), in this quantity is proportional to the control error in

the normalized residence times. For this reason, one can use the same control

design as before. Thus, the transformation has a linearizing effect and a cascaded

control design, which would lead to a reduction in the bandwidth of the closed

loop is avoided through this.

ep = pEx,re f − pEx = −
τA,I I,re f − τA,I I

ϑEx
= − 1

ϑEx
eτ (4.67)

Notice that the introduced transformation of the purities is one to one. With

other words, if the error in the transformed signals goes to zero, the purity will

also converge to its reference. Notice further that if disturbances in the feed con-

centrations occur, the parameter, ϑEx, may be weakly time-varying. Therefore,

the closed loop needs a good gain margin, which can be assigned by a proper

choice of a.

Computing the Optimal Switching Time

The switching time is an additional, redundant input which may be used to gain

additional advantages. It is natural to demand a fixed throughput of the binary

feed. Therefore, the feed flow rate is always kept constant and the switching

time is changed instead. The optimal switching time is computed from the nor-

malized control inputs for a fixed feed flow rate by following equation.

u5 (k) =
u⌢3 (k)− u⌢2 (k)

V̇Fe
(4.68)
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Notice that this degree of freedom may also be used to satisfy upper constraints

on the volumetric flow rates. In this case, the switching time serves as a proper

scaling factor, see Eq. (4.22) on page 94.

After determination of the optimal switching time, the flow rates for each section

can be calculated.

ui (k) =
u⌢i (k)

u5 (k)
, i = 1, 2, 3, 4 (4.69)

Computing Parameter Errors

In general, the parameters of the process may be unknown and subject to changes,

e.g. aging, thermal processes; see Eq. (2.38) on page 13. For this reason, an au-

tomatic adaptation is desirable in practice. The parameter errors are defined as

the difference between the true parameters and their estimates.

θ̃i (k) = θi − θ̂i (k) , i = 1, 2 (4.70)

The error between the measured and the one-step-ahead predicted output can

now be used to compute the previous parameter errors.

θ̃1 (k − 1) = u⌢1 (k − 1) ε1 (k) = u⌢1 (k − 1) (y1 (k) − ŷ1 (k)) (4.71)

θ̃2 (k − 1) = −u⌢1 (k − 1) ε2 (k) = −u⌢1 (k − 1) (y2 (k) − ŷ2 (k)) (4.72)

Estimator Design

For the determination of the parameters, the following parameter estimator is

suggested.

θ̂i (k) = θ̂i (k − 1) + (1 − aθ) θ̃i (k − 1) , |aθ| < 1, i = 1, 2 (4.73)

If this equation is written as an error equation, a first-order difference equation

arises.

θ̃i (k) = θ̃i (k − 1) − (1 − aθ) θ̃i (k − 1) = aθ θ̃i (k − 1) (4.74)

In other words, the estimation error will vanish as k → ∞.
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4. Adaptive Control of SMB Plants

Computing Purities and Normalized Residence Times

To apply this control concept, the purities and the normalized residence times

have to be determined for each cycle. The purities are defined as follows.

PEx =
c̄B,Ex

c̄A,Ex + c̄B,Ex
, PRa =

c̄A,Ra

c̄A,Ra + c̄B,Ra
(4.75)

To compute the purities, one needs to calculate the mean concentrations at the

drains.

c̄i,j =
1
TS

TS
∫

0

ci,j (t) dt, i = A, B; j = Ex, Ra (4.76)

With the aid of the correlation technique, it is possible to evaluate the normalized

residence times of the foot points from concentration measurements at the drains

for each cycle. Using the sign function, the following intermediate signals can

be defined.

xre f (t) = α sign
(

t − τre f TS

)

(4.77)

x (t) = sign (c (t) − c0) (4.78)

α =

{

−1 extract

+1 raffinate
(4.79)

The newly introduced quantity, c0, has a small positive value above the expected

sensor noise level. The sign of α takes care of the different qualitative course

of the concentrations between extract and raffinate. The intermediate signal,

xre f , may be thought of as the reference signal, whereas the signal, x, may be

interpreted as actual trajectory. The cross correlation of both signals by Eq. (4.80),

also see Fig. 4.16, will reach a maximum at the shift, ∆τmax, which is a measure

of the control error.

Rxre f x (∆τ) = lim
T→∞

1
2 T

T
∫

−T

xre f (t) x (t + ∆τ TS) dt (4.80)
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∆τ ∈ [−1, 1] (4.81)

max Rxre f x = Rxre f x (∆τmax) (4.82)

The sum of reference, τre f , and shift, ∆τmax, results in the actual value τ. The

maximum is found by a simple one-dimensional search. A suitable choice of c0

and the application of the correlation integral lead to a robust determination of

the normalized residence times, even in the presence of sensor noise.
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Figure 4.16: On cross correlation of two phase shifted sign signals.

Control Loop Description

Finally, the full program for the extract side is presented here to clarify the pro-

posed control concept.

1. Compute normalized residence times and purity from concentration mea-

surements at the extract drain.

y1 (k) , y2 (k) , PEx (k) , y1,re f , PEx,re f
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4. Adaptive Control of SMB Plants

2. Compute the predicted outputs:

ŷ1 (k) =
θ̂1 (k − 1) − u⌢2 (k − 2) [1 − y1 (k − 1)]

u⌢1 (k − 1)
,

ŷ2 (k) = 1 +
u⌢2 (k − 2) y2 (k − 1) − θ̂2 (k − 1)

u⌢1 (k − 1)
.

3. Compute prediction errors:

εi (k) = yi (k) − ŷi (k) , i = 1, 2.

4. Compute parameter errors:

θ̃1 (k − 1) = u⌢1 (k − 1) ε1 (k) ,

θ̃2 (k − 1) = −u⌢1 (k − 1) ε2 (k) .

5. Compute parameter estimates:

θ̂i (k) = θ̂i (k − 1) + (1 − aθ) θ̃i (k − 1) , i = 1, 2, |aθ| < 1.

6. Compute control errors:

e1 (k) = y1,re f − y1 (k) ,

e2 (k) = −ϑEx

(

1 − PEx,re f

PEx,re f
− 1 − PEx (k)

PEx (k)

)

, ϑEx =
cB,Fe

cA,Fe
y1,re f .

7. Compute virtual control signals:

wi (k) = a wi (k − 1)+ (1 − a) wi (k − 2)+ (1 − a) ei (k) , i = 1, 2, |a| < 1.

8. Compute normalized control signals:

u⌢1 (k) =
w2 (k − 2) θ̂1 (k) − [1 − w1 (k − 2)] θ̂2 (k)

w1 (k − 1) w2 (k − 2) − [1 − w1 (k − 2)] [1 − w2 (k − 1)]
,

u⌢2 (k) =
w1 (k) θ̂2 (k) − [1 − w2 (k)] θ̂1 (k)

w1 (k) w2 (k − 1) − [1 − w1 (k − 1)] [1 − w2 (k)]
.

9. Apply a similar procedure (1-8) for the raffinate side.
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10. Compute switching time:

TS (k) =
u⌢3 (k)− u⌢2 (k)

V̇Fe
.

11. Compute internal volumetric flow rates for each zone:

ui (k) =
u⌢i (k)

TS (k)
, i = 1, 2.

12. Compute volumetric flow rates for the specific SMB configuration and apply

the quantities computed for one switching time.

As stated above, the proposed adaptive control loop for adjusting the purities

of a SMB plant makes use of the certainty equivalence concept, [58]. It means that

the control loop without estimator, as well as the estimator alone, is stable. If one

puts both parts together, stability cannot be guaranteed. However, as indicated

by simulations, it was always possible to get a stable overall system for a proper

choice of the poles, a and aθ.

4.2.3 Simulation Results

In order to give a first impression of the efficiency of the adaptive controller de-

veloped here, a simulation of the control loop using the full model was carried

out. The system of partial differential equations was transferred into ordinary

differential equations with aid of the method of lines, [54]. In this case, 51 base

points per column length were used. The equations of the full model and all its

parameters were taken from [49] ( same as in Tab. A-2 but cA,Fe = cB,Fe = 1.5mol
m3 );

only the modeling of the dispersion was neglected. Further, a four-column SMB

was used. The volumetric flow rates as well as the switching time, and thus

the parameters of the reduced model were initialized with the equations for

complete separation, as indicated in [49]. The controller pole was chosen as

a = 0.75 and the estimator pole as aθ = 0.40. The outer normalized residence

times were taken to be τB,I,re f = τA,IV,re f = 0.95 and the purity references,

PEx,re f = PRa,re f = 0.98.

In Fig. 4.12 on page 103, the concentration profiles at cyclic steady state for drain

purities of 98% are represented. Fig. 4.13 on page 103 and Fig. 4.14 on page 104

are the associated time trajectories of the concentrations at the drains.
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4. Adaptive Control of SMB Plants

In addition to the startup process, the behavior of the system for a counter step

in the feed concentrations was also investigated. The step was simulated after 58

min, at which the feed concentrations were changed by 25 % from their nominal

values. In Fig. 4.17, the time trajectories of the purities at the drains are repre-

sented. After approx. 45 switches, the purities have converged to their reference

values. The counter step, which is indicated in Fig. 4.17 by a vertical line, leads

only to a small departure from the desired purity set points, which are regulated

back in approx. 20 switches to the nominal values. The great impurity during

the startup phase is necessary in order to give the parameter estimator enough

time for the determination of the process parameters. Especially in the outer
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Figure 4.17: Adjustment of the purities at the drains during startup phase and a
counter step disturbance in the feed.

normalized residence times, one recognizes the forced exponential behavior of

the closed loop, as shown in Fig. 4.18. The parameter estimator works first if

the concentration fronts appear at the drains. After the occurrence of the step in

the feed concentrations, the plateau values of the concentration profiles and thus

the parameters of the process change themselves, as pointed out in Fig. 4.19. As

seen in Fig. 4.20, the switching time starts with a high value. This is desired since

the concentration fronts should appear at the drains as fast as possible. After 45

switches, the optimal switching time is settled down. The step change in the

feed concentration leads to a different switching time. Therefore, the control of

the switching time ensures a constant feed flow rate, which is desired in practice.
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Figure 4.18: Adjustment of normalized residence times during startup phase and
a counter step disturbance in the feed.
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Figure 4.20: Adjustment of switching time during startup phase and a counter
step disturbance in the feed.

4.2.4 Summary

A new adaptive control concept for adjusting the purities of SMB plants was

presented here. It is based on a simple nonlinear model for the movements of

the foot points of the concentration fronts. The proposed controller works inde-

pendently of the adsorption behavior. In this section, the adsorption behavior

was modeled by Langmuir isotherms. However, a simulation study with Henry,

[57], and Bi-Langmuir isotherms, ( not published), turns out to give similarly

good results. A further advantage of this control concept lies in the robust de-

termination of the normalized residence times. This procedure is also applicable

for discontinuous concentration fronts.

The advantages of the proposed control concept are pointed out particularly

well by a general control loop representation as shown in Fig. 4.21. The puri-

ties as well as the outer normalized residence times are adjusted by measuring

the four concentrations at the drains. Since a time-discrete description was used,

the time-discrete response can be assigned independently of the actual param-

eters of the SMB process. A time consuming tuning procedure of the controller

to different SMB processes is therefore avoided. The controller is parameterized
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4.3. Conclusion

only with a rough knowledge about the volumetric flow rates, the switching

time, and the feed concentrations for ideal complete separation. Usually the

operators of SMB plants already know this information. The set points for the

outer normalized residence times are a measure of robustness with respect to

step disturbances. These should be selected close to one according to a low sol-

vent consumption. A choice of 0.95 is usually sufficient. The set points are fixed

by the operator of the plant depending on his special interest and specifications.

The regulation serves to adhere to his specifications. Sometimes one would like

ˆ
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Figure 4.21: General control loop to adjust the purities of SMB plants.

to separate binary mixtures, where the concentrations are not separately measur-

able. If only the sum of both concentrations is available, no direct control of the

purities can be realized. However, placements of the concentration fronts can be

realized. In this case, one has to select two suitable points from the sum of the

concentration profiles with the aid of the sign function, as shown in [56]. Under

the assumption that the feed concentrations remain constant, one can guarantee

an equal quality of the purities without having to determine their values exactly.

Thus, the proposed control concept is ideally suited for industrial use.

4.3 Conclusion

In this chapter, two new control concepts were introduced. According to a sim-

ple and clear representation, controllers of low order were used. An improve-
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ment in the control accuracy can easily be obtained by increasing the order, [57],

[61].

The major advantage with these control concepts is the usage of a simple time-

discrete description of the process. This led to simple models, which describe

the essential dynamics sufficiently well. The adjustment of the flow rates and

the switching time is carried out at the same time. No hybrid modeling of a

continuous and time-discrete subsystem is necessary. The parameters of the

simplified models can be derived directly from the parameters of the complete

model. This allows to already get good initial estimates if the parameters of the

complete model are known. The parameters can also be calculated using for-

mer measurements. Thus, extremely robust and self-adjustable controllers can

be constructed. The control law can be expressed directly in dependence of the

model parameters, because of the low model order. The dynamics can already

be assigned in form of the transition sequence without knowing the nominal pa-

rameters in advance. A time-consuming calibration of the controller for different

SMB processes is avoided through that.

Another essential advantage lies in the kind of the measuring principle. If purity

control is not explicitly required, these control concepts do not use the concen-

trations directly as variables to be controlled. What is done instead is that the

time-distance between the measured concentration fronts to a pre-defined refer-

ence is determined from the concentration dependent signals. The application

of the correlation technique leads to an extremely robust determination of the

variables that one likes to control.

Upper constraints of the volumetric flow rates can be taken into account easily

as already shown. To this, no iterative method of computation is necessary. The

control concepts are real time capable and can be easily implemented by using

cheap micro controllers.

In practice, it makes sense to combine both concepts. In other words, the user

decides whether a complete or incomplete separation is desired. A positioning

of UV- sensors in the middle of the four zones also improves the regulation at

incomplete separation. In this case, the control variables can be adjusted in time

if insufficient parameter knowledge is present. Thus, no higher impurities than

allowed will occur during the startup phase. Both concepts may serve as a base

for further developments and an industrial application.
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Appendix

Appendix

Notation

Table A-1: Notation

c
[

mol
m3

]

Fluid concentration ( volumetric)

q
[

mol
m3

]

Adsorbed concentration ( volumetric)

H [−] Henry constant

K
[

m3

mol

]

Langmuir constant

vl

[

m
s

]

Liquid velocity

vs

[

m
s

]

Shock velocity

vc

[

m
s

]

Concentration velocity

V̇
[

m3

s

]

Volumetric flow rate

TS [s] Switching time

τ [−] Time normalized to switching time

PEx [−] Extract purity

PRa [−] Raffinate purity

NC Number of columns

cFe

[

mol
m3

]

Feed concentration
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Appendix

Model Parameters

Table A-2: Model parameters

Column length L 0.12m

Column diameter d 0.02m

Cross section area A π
4 d2

Void fraction ε 0.7407

Package ratio F 1−ε
ε

Henry constant A HA 5.0

Henry constant B HB 7.5

Langmuir constant A KA 0.15 m3

mol

Langmuir constant B KB 0.30 m3

mol

Column configuration cfg [NI , NI I , NI I I , NIV ]

Feed concentration of compo-
nent A

cA,Fe 1.5 mol
m3

Feed concentration of compo-
nent B

cB,Fe 1.25 mol
m3

Feed flow rate V̇Fe 10 ml/min
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Appendix

COMSOL Implementation of SMB Process

To simulate the SMB process the finite element software package COMSOL, [48],

is used, since it is a standard package that is broadly available. If implementing

the system of equations, one needs to compare the model equations with COM-

SOL’s PDE equation in general form, as stated below.

da ·
∂u

∂t
+ ∇ · Γ = F (A-1)

COMSOL’s vector variables are identified to be:

u =
(

cA cB

)T
, da =

(

1 + F
∂qA
∂cA

∂qA
∂cB

∂qB
∂cA

1 + F
∂qB
∂cB

)

, (A-2)

Γ =
(

V̇
ε A · cA − D ∂cA

∂z
V̇

ε A cB − D ∂cB
∂z

)T
, F =

(

0 0
)T

. (A-3)

The boundary condition in general forms are:

−n · Γ = G +

(

∂R

∂u

)T

, R = 0. (A-4)

One possible solution is:

G|z=0 =
(

V̇
ε A cA,in

V̇
ε A cB,in

)T
, G|z=L =

(

− V̇
ε A cA − V̇

ε A cB

)T
, (A-5)

R∣

∣

∣

∣

∣

∣

∣

z=0

z=L

=
(

0 0
)T

. (A-6)

The coupling of the chromatographic columns can be done in COMSOL by ex-

trusion or identity coupling variables.
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Appendix

Solution for Anti- Langmuir Isotherms

Given a specific feed composition, cA,Fe and cB,Fe and feed flow rate, V̇Fe, the ve-

locity equations for Anti-Langmuir isotherms for complete separation and for

complete regeneration, [53], can be solved for the unknown volumetric flow

rates, V̇I , V̇Ex, V̇Ra and switching time TS, where some arbitrary normalized

residence times, 0 ≪ τB,I 6 1 and 0 ≪ τA,IV 6 1, can be chosen to increase

robustness.

1 + KA cA,Fe + KB cB,Fe > 0, KA < 0, KB < 0

α = HB (1 + KA cA,Fe) − HA (1 + KB cB,Fe)

C2 =
α −

√

α2 + 4 HA HB KA KB cA,Fe cB,Fe

2 HB KA cB,Fe
(A-7)

cA,4 = − HB − HA

HB KA C2 + HA KB
C2 (A-8)

cB,2 =
HB − HA

HB (1 + KA cA,4 − KB cB,Fe) − HA
cB,Fe (A-9)

V̇I =
1

τB,I

(τB,I (1 + KB cB,2) + F HB) (1 + KA cA,4) − F HA (1 − τB,I)

F [HB (1 + KB cB,2) − HA]
V̇Fe

(A-10)

V̇Ex =
1

τB,I

HB (1 + KA cA,4) − HA

HB (1 + KB cB,2) − HA
V̇Fe (A-11)

V̇Ra =
1

τA,IV

HB − HA (1 + KA cA,4)

HB (1 + KB cB,2) − HA
(1 + KB cB,2) V̇Fe (A-12)

TS =
F

1 + F

A L

V̇Fe

HB (1 + KB cB,2) − HA

(1 + KA cA,4) (1 + KB cB,2)
(A-13)
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Appendix

Solution for Henry Isotherms without Complete

Regeneration

It is useful to define the following intermediate variables.

γEx =
1 − PEx

PEx

cB,Fe

cA,Fe
, γRa =

1 − PRa

PRa

cA,Fe

cB,Fe
(A-14)

Given the feed concentrations, cA,Fe and cB,Fe, the feed flow rate, V̇Fe, the desired

purities, PEx and PRa, and the inner normalized residence times, (1 − γEx) ≤
τA,I I ≤ 1 and (1 − γRa) ≤ τB,I I I ≤ 1, one can compute the necessary volumetric

flow rates, V̇I , V̇Ex, V̇Ra and switching time, TS, for HA < HB and incomplete

regeneration in the following way.

V̇I =
τA,I I (1−γRa) ( 1+F HB)+(τB,I I I−(1−γRa)) (1−γEx) ( 1+F HA)

F ( HB−HA) (1−γEx γRa)
V̇Fe (A-15)

V̇Ex =
1 − γRa

1 − γEx γRa
V̇Fe (A-16)

V̇Ra =
1 − γEx

1 − γEx γRa
V̇Fe (A-17)

TS = (1−ε)· A L

V̇Fe
(HB − HA)

· 1−γEx·γRa
τA,I I (1−γRa)+τB,I I I (1−γEx)−(1−γRa) (1−γEx)

(A-18)
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Self-similarity solutions for Langmuir isotherms at high extract purity:

cA,Ex (t) =















1
K̃A





√

(1+K̃A cA,0)
2
(1−τA,I I) TS

(2+K̃A cA,0) K̃A cA,0 t+(1−τA,I I) TS
− 1



 0 ≤ t ≤ (1 − τA,I I) TS

0 (1 − τA,I I) TS < t ≤ TS

(3.121)

cB,Ex (t) =















































cB,2 + 1
K̃B





√

(1+K̃B (cB,0−cB,2))
2
(1−τA,I I) TS

(2+K̃B (cB,0−cB,2)) K̃B (cB,0−cB,2) t+(1−τA,I I) TS
− 1



 0 ≤ t ≤ (1 − τA,I I) TS

cB,2 (1 − τA,I I) TS < t ≤ τ2 TS

1
KB

[

√

(1+KB cB,2)
2 (τB,I−τ) TS

(2+KB cB,2) KB cB,2 (t−τ2 TS)+(τB,I−τ) TS
− 1

]

τ2 TS < t ≤ τB,I TS

0 τB,I TS < t ≤ TS

(3.122)
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ix

Self-similarity solutions for Langmuir isotherms at low extract purity:

cA,Ex (t) =



























cA,3 0 ≤ t < τ3 TS

1
K̃A





√

(1+K̃A cA,3)
2
(1−τA,I I−τ3) TS

(2+K̃A cA,3) K̃A cA,3 (t−τ3 TS)+(1−τA,I I−τ3) TS
− 1



 τ3 TS ≤ t < (1 − τA,I I) TS

0 (1 − τA,I I) TS ≤ t < TS

(3.128)

cB,Ex (t) =























































cB,3 0 ≤ t < τ3 TS

cB,2 + 1
K̃B





√

(1+K̃B (cB,3−cB,2))
2
(1−τA,I I−τ3) TS

(2+K̃B (cB,3−cB,2)) K̃B (cB,3−cB,2) (t−τ3 TS)+(1−τA,I I−τ3) TS
− 1



 τ3 TS ≤ t < (1 − τA,I I) TS

cB,2 (1 − τA,I I) TS ≤ t < τ2 TS

1
KB

[

√

(1+KB cB,2)
2 (τB,I−τ) TS

(2+KB cB,2) KB cB,2 (t−τ2 TS)+(τB,I−τ) TS
− 1

]

τ2 TS ≤ t < τB,I TS

0 τB,I TS ≤ t ≤ TS

(3.129)
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Appendix

Table A-3: Definition of sign function.

sign (x) =







+1 x > 0
0 x = 0

−1 x < 0
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