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Mögen noch viele spannende Projekte folgen!

Mein liebster und innigster Dank gilt meiner Frau Moni und meiner Fa-

milie, die immer an mich glauben und mich in allem mental unterstützen.





This dissertation has been promoted by a graduate support

program of the University of Applied Sciences Düsseldorf (FH D).





Zusammenfassung

Die Klassifikation von komplexen Mustern ist eine der beeindruckendsten ko-

gnitiven Leistungen des menschlichen Gehirns. Ein Mensch ist in der Lage

innerhalb einer halben Sekunde ein komplexes Bild, zum Beispiel das von

einer bekannten Person, zu erkennen und von anderen Objekten zu unter-

scheiden. Während das Gehirn zur Lösung dieser Aufgabe auf eine massive

Parallelität und ein riesiges, hierarchisch organisiertes und auto-assoziatives

Gedächtnis zurückgreifen kann, sind gewöhnliche Rechnerarchitekturen nur zu

einer sequentiellen Verarbeitung von Informationen aus einem nicht-assozia-

tiven Speicher fähig. Selbst moderne, parallel verarbeitende, Mehrprozessor-

systeme erreichen bei weitem nicht die Leistungsfähigkeit unseres Gehirns.

Trotzdem ist es heute möglich mit Hilfe von modernen statistischen und al-

gorithmischen Lernverfahren komplexe und speicheraufwendige Mustererken-

nungsprobleme, wie zum Beispiel das Erkennen von handgeschriebenen Ziffern

oder die Transkribierung gesprochener Sprache, zufriedenstellend auf einem

Rechner zu lösen.

Eines der erfolgreichsten Verfahren der maschinellen Mustererkennung ist

die sogenannte Support Vector Machine (SVM). Die SVM basiert auf dem

Lernparadigma der strukturierten Risikominimierung, welches sich gegenüber

empirisch motivierten Ansätzen auszeichnet, wenn nur wenig Daten zur Lösung

des betrachteten Klassifikationsproblems vorliegen. Obwohl die SVM häufig

sehr gute Erkennungsleistungen zeigt, stößt sie auch auf Grenzen ihrer An-

wendbarkeit, zum Beispiel wenn spezielles Vorwissen genutzt werden soll.

Insbesondere immer komplexer werdende Anwendungen erfordern eine hohe

Anpassbarkeit des Klassifikationsverfahren an die konkrete Problemstellung.

Auch in diesem Punkt ist die SVM auf Grund einer sehr eingeschränkten

Auswahl an implementierbaren Klassifikationsfunktionen limitiert.

Das Ziel der vorliegenden Dissertation ist die Entwicklung von neuen Lern-

algorithmen zur Musterklassifikation, die einerseits über die Grenzen der SVM

hinausgehen, aber andererseits trotzdem auf den gleichen theoretischen Kon-

zepten aufbauen, welche die herausragende Erkennungsleistung der SVM er-

klären. Es werden zwei neue Algorithmen basierend auf einer theoretischen

Verallgemeinerung der SVM vorgestellt, und erstmalig für eine praktische

Implementierung nutzbar gemacht. Im Gegensatz zur SVM erschließen die

neuentwickelten Verfahren eine sehr viel größere Funktionenklasse zum Auf-

bau eines Klassifikators. Dies ist eine wichtige Voraussetzung für eine flexible

Anpassung des Klassifikators an schwierige Klassifikationsaufgaben mit spezi-

ellen Anforderungen sowie der Integration von Vorwissen über das zu lösende

Problem.
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Der Weg zu implementierbaren Algorithmen führt in dieser Arbeit über

verschiedene mathematische Reformulierungen des Ausgangsproblems. Aus-

gehend von einer theoretischen Verallgemeinerung der SVM resultiert ein im

Allgemeinen sehr schwierig zu lösendes restringiertes Optimierungsproblem.

In einem ersten Schritt wird dieses, bei Auswahl einer sehr großen Funktio-

nenklasse, bestehend aus (Affin-)Linearkombinationen von mindestens einmal

stetig differenzierbaren Funktionen, durch ein restringiertes Minimax-Problem

reformuliert. Im nächsten Schritt wird dann das Minimax-Problem weiter in

ein sogenanntes semi-infinites Problem (SIP) überführt. Es zeigt sich, dass

diese spezielle mathematische Problemstellung geeignet ist, um mit bekannten

Optimierungsmethoden eine Lösung des Ausgangsproblems für die betrachte-

te Funktionenklasse numerisch zu bestimmen. Um die Problemstruktur noch

weiter auszunutzen, wird aus dem SIP ein gleichgestelltes duales Problem

hergeleitet. Hierfür beweisen wir einen Dualitätssatz über die Gleichheit der

Optimalwerte des dualen Problems und des Ausgangsproblems.

Zur Lösung des dualen Problems wird ein mehrstufiges iteratives Verfahren

entwickelt, aus dem durch die Verfolgung unterschiedlicher Lösungsstrategien

die vorgeschlagenen Algorithmen resultieren. Darüber hinaus werden alle für

eine Softwareimplementierung notwendigen Teiloptimierungsverfahren jeder

Stufe entwickelt. Hierzu gehören ein angepasstes Innere-Punkt-Verfahren, eine

auf Simulated Annealing basierende Suchheuristik und ein spezielles Gradien-

tenabstiegsverfahren. Außerdem werden Möglichkeiten zur Effizienzsteigerung

für zukünftige Implementierungen aufgezeigt.

Neben dem Schwerpunkt der theoretischen Entwicklung von neuen Lern-

verfahren und deren praktischen Realisierungen wurden alle Algorithmen für

den experimentellen Teil dieser Arbeit in der MATLABR© Programmierumge-

bung implementiert. Damit stehen diese auch für zukünftige Forschungsvor-

haben zur Verfügung.

Erste Klassifikationsergebnisse mit den neuen Algorithmen werden im Ver-

gleich zur SVM auf unterschiedlichen Datensätzen untersucht und bewertet.

Als Testdaten wurden hierfür ein künstlich erstellter 2D-Datensatz, sowie zwei

reale Anwendungsdatensätze verwendet. Im abschließenden Experiment wird

beispielhaft ein Szenario betrachtet, auf das die SVM unzureichend anwend-

bar ist und das gerade hier die Einsatzfähigkeit der neuen Verfahren belegen

soll.

Resultierend kann gesagt werden, dass die vorgestellten Lernverfahren in

Standardanwendungen ähnlich gute Klassifikationsergebnisse wie die SVM auf

den hier verwendeten Datensätzen erreichen. Der besondere Nutzen der neu-

en Verfahren zeigt sich theoretisch und experimentell jedoch in der Fähigkeit

Klassifikationsprobleme mit Entscheidungsfunktionen zu lösen, die der SVM

verschlossen sind. Dabei werden die zu Grunde liegenden Ideen übertragen,
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welche die SVM gegenüber vielen anderen Verfahren, bezüglich Generalisierungs-

fähigkeit bei wenig Lerninformation, auszeichnet. Dies eröffnet erstmalig die

Möglichkeit des Designs und der Nutzung von neuen Klassifikatoren, die bis-

her in einem als robust und generalisierungsfähig erwiesenen Grundkonzept

wie der SVM nicht realisierbar sind.





Abstract

The classification of complex patterns is one of the most impressive cognitive

achievements of the human brain. Humans have the ability to recognize a

complex image, like for example that of a known person, and to distinguish it

from other objects within half a second. While for a solution of this task the

brain has access to a massive parallelism and a vast, hierarchically organized,

and auto-associative memory, common computer architectures are just able

to a sequential processing of information stored in a non auto-associative

memory. Even modern, parallelly operating, multi-processor systems are far

away from the performance of our brain. However, nowadays, it is possible to

solve complex and memory extensive pattern recognition problems, like the

recognition of handwritten digits or the transcription of speech, satisfactorily

with a common computer by the use of modern statistical and algorithmic

learning approaches.

One of the most successful pattern recognition methods is the so-called

Support Vector Machine (SVM). The SVM is based on the learning paradigm

of structural risk minimization, which outperforms empirical approaches if

only few data is available for solving the considered classification problem.

Although the SVM has proven very good recognition performances in many

cases, the SVM also comes up with limitations, for example if specific a priori

knowledge shall be used. In particular, the increasing complexity of appli-

cations requires a high adaptivity of the classification method to the specific

problem. Also concerning this point, the SVM is limited due to a restricted

variety of implementable classification functions.

The objective of the present thesis is the development of new learning

algorithms for the classification of patterns, that on the one hand overcome

the limitations of the SVM, but on the other hand are based on the same

theoretical concepts facilitating the good performance of the SVM. Two new

algorithms will be presented that are justified by a theoretical generalization

of the SVM, and which will be utilized for the first time for a practical im-

plementation. In contrast to the SVM, the new methods make accessible a

much larger function class for constructing a classifier. This is an important

prerequisite for flexible adaptation of the classifier to difficult classification

tasks with particular requirements as well as for the integration of a priori

knowledge about the problem at hand.

In this work, the way to implementable algorithms leads across different

mathematical reformulations of the original problem. Starting with the theo-

retical generalization of the SVM, it results a restricted optimization problem
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that is difficult to solve in general. In a first step, this problem is expressed in

terms of a restricted minimax-problem by a modification of the suitable classi-

fication functions to a still very large function class consisting of (affine-)linear

combinations of at least one-time continuously differentiable functions. In the

next step, the minimax-problem is converted into a so-called Semi-Infinite

Problem (SIP). It turns out, that this particular mathematical problem is

appropriate in order to obtain a solution of the original problem for the con-

sidered function class using well-known optimization methods. To further

exploit the problem structure, an equivalent dual problem is derived from the

SIP. Therefore, we prove a duality theorem about the equality of the optimal

values of the dual and the original problem.

For solving the dual problem, a multilevel iterative approach is devel-

oped from which the proposed algorithms follow by pursuing different solution

strategies. Moreover, all sub-optimization methods of any stage necessary for

an implementation in software are developed. Namely, these are an adapted

interior-point-method, a simulated annealing based search heuristics and a

particular gradient decent approach. Furthermore, options are depicted for an

improvement of efficiency for future implementations.

Besides the emphasis on the theoretical development of new learning meth-

ods and their practical implementations, all algorithms were implemented in

the MATLABR© programming environment for the experimental part of the

present thesis. Hence, they are also available for further research purposes in

future.

For the first time, classification results are explored and evaluated in com-

parison to the SVM on different data sets. As test data, an artificial 2d-dataset

as well as two real-world datasets were used. In the concluding experiment, a

scenario is prototypically considered to which the SVM is only inadequately

applicable and which shall precisely prove the capability of the new methods

in that case.

It follows, regarding the considered datasets, the proposed learning meth-

ods reach comparably good classification accuracy like the SVM in standard

applications. Moreover, the particular benefit of the new methods is reflected

theoretically and experimentally in the ability to solve classification problems

using decision functions that are not accessible to SVMs. Thereby, the under-

lying ideas, which make the SVM excel compared to other approaches with

respect to generalization performances in case of few available learning infor-

mation, are adequately transported into the proposed new environment. This

opens the way for a design and a use of new classifiers that have not been

implementable in a robust and generalizing basic concept so far.
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Chapter 1

Introduction and Motivation

”I believe that something drastic has happened in computer science and ma-

chine learning. Until recently, philosophy was based on the very simple idea

that the world is simple. In machine learning, for the first time, we have ex-

amples where the world is not simple.” - Vladimir N. Vapnik (2008)

M achine learning is concerned with the design and development of al-

gorithms that allow computers to learn based on data. In the late

1950s, the scientific discipline of machine learning was in its infancy. Due to

the available primitive computer technology at that time, most research was

almost of theoretical nature. A first step was made with the development

of the Perceptron [Rosenblatt 1958], the Pandemonium [Selfridge 1959] and

the Adaline [Widrow 1962]. Due to the large number of research efforts in

this area, a next stage was to leave the pattern classification setting as rep-

resented by Perceptrons and to concentrate in the development of associative

memories based on the idea the brain stores information in the connections

of millions of neurons. The first publication on associative memories was due

to [Kohonen 1972], and 1982 so-called Hopfield Association Networks were in-

troduced [Hopfield 1982]. In parallel, the experience with the early stages of

neural networks spawned the new discipline of pattern recognition and led to

the development of a decision-theoretic approach to machine learning. In the

center of this approach was the supervised learning of discriminant functions

from training data. One of the best known successful learning systems using

generalized discriminant functions was a computer checkers [Samuel 1959].

Remarkably, the checkers program reached master-level performance via re-

peated training. The expeditious growth of pattern recognition methods uti-

lizing statistical decision theory led to the excellent and well-known classical

textbooks [Fukunaga 1972] and [Duda 1973]. In 1975 still inspired by the

self-organizing ability of the brain, the Cognitron network was introduced as

an extension of Perceptrons [Fukushima 1975]. The Cognitron was the first

developed multilayer neural network. A leverage was the presentation of the

Back-propagation algorithm for learning multilayer networks in 1986. The

Back-popagation algorithm was found by three independent research groups

[Rumelhart 1986], [Parker 1985], [LeCun 1985].
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During 1960 and 1970 the theoretical branch of machine learning, namely

the statistical learning theory, was developed. The concepts of quantifying

learning machines for pattern recognition in terms of their separation ability

were introduced in 1969. Based on these concepts, namely VC-Entropy and

VC-Dimension, bounds for the rate of uniform convergence of empirical es-

timates of the risk of misclassification to the unknown true risk were found

[Vapnik 1968], [Vapnik 1971]. These bounds made a novel learning concept

possible. Thitherto, the empirical risk minimization principle was prevailing

in pattern recognition, but the new learning paradigm called structural risk

minimization inductive principle completed the development of learning the-

ory [Vapnik 1974]. The statistical learning theory cumulated in conditions

for the consistency of the empirical risk minimization in the end of the 1980s

[Vapnik 1989].

In the 1980s, Vapnik and co-workers introduced the first learning machine

implementing the structural risk minimization principle - the celebrated Sup-

port Vector Machine (SVM). At this time, the SVM was largely unnoticed,

although justified by a strong theoretical background. The reason was the

widespread belief that SVMs are neither suitable nor relevant for practical

applications. This belief changed in the early 1990, because very good results

using SVMs on a handwritten digit recognition task were reported (see e.g.

[Vapnik 1999]). During the 1990, a great progress was made in the develop-

ment of efficient SVM learning algorithms even for problems with millions of

training data. Until now, many different classification problems have been

solved successfully using SVMs. The success of SVMs is rooted in the statis-

tical properties of a maximum margin separating hyperplane, as well as in its

ability to efficiently learn a separating hyperplane in feature spaces of very

high dimension via a mathematical technique, distantly called the ”kernel-

trick”.

Nowadays, due to the SVM’s superiority compared to other approaches,

almost any well-known pattern recognition method is ”kernelized”, if possible,

to profit from the ”kernel-trick” as well. Examples are PCA, LDA, clustering

or Bayesian methods. In order to apply any kernel-method, the kernel has to

be chosen beforehand due to validation results or based on some knowledge

of the problem at hand. As representer of the structure of a feature space,

kernels have to satisfy mathematical constraints limiting any kernel-machine,

in particular the SVM. Unfortunately, only a handful of functions are proved

to be kernels, and thus are available for the SVM. On the other hand, whenever

prior knowledge is present, it should be incorporated some how into the kernel

such that the additional information is useful for the learning method. This is

often not possible for the desired functions. For example, in DNA microarray

analysis, similarity measures best suited to distinguish and emphasize specific
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patterns of gene expressions can not be directly used to compose the decision

function of SVMs. Similar, in applications where generative models are used

to model varying features, like in speech recognition, information theoretic

measures of density functions would be appropriate, but can not be employed

in SVMs.

Using (dis-)similarities or any other non-kernel function in SVMs is only

possible indirectly by unsatisfactory distortions of the original function such

that it is turned into a valid kernel function. Moreover, if violating the assump-

tion of a kernel function, a good generalization performance is not justified

by statistical learning theory and a maximum margin concept anymore, nor

is the SVM algorithm guaranteed to find a global solution of the classification

problem at all. On the one hand, overcoming the limitation to kernel func-

tions, and on the other hand, maintaining the generalizing properties rooted

in a maximum margin classification, requires to translate the margin concept

to more general feature spaces than assumed by the SVM framework. So far,

only few publications address the issue of learning a separating hyperplane

with a maximizing margin in more general spaces, theoretically, and almost

no algorithms implementable in practice are discussed.

The main focus of the present thesis is to overcome the lack of practical

algorithms for maximum margin classification beyond SVMs. We contribute

to this goal with the development of new implementable maximum margin

algorithms for learning separating hyperplanes in a very general setting. The

new algorithms make accessible a larger class of decision functions for solving

binary classification problems than it is the case for SVMs. Namely, the im-

plementable decision functions are expanded to the space of finite affine-linear

combinations of one-times continuously differentiable functions, of course in-

cluding almost any kind of (dis-)similarity measure, kernel functions, polyno-

mials, trigonometric functions and many other functions valuable for a given

application.

Summary by Chapters

The present thesis is structured in eight chapters. We decided to start each

chapter (except, introduction and conclusion) with a mini table of contents

so that the reader keeps the overview, and we feel it is advantageous when

revisiting several sections. Additionally, each chapter concludes with a short

summary. This Chapter (1) reviews the history of machine learning and gives

the motivation for our research. The following chapters are build on top of

each other, but Chapter (2) and (3) can be skipped if the reader is familiar

with the topics therein. We start with a general survey of pattern classification
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in Chapter (2), in order to make the reader familiar with pattern classifica-

tion and methods. The survey ends with an introduction of Support Vector

Machines on a basic level focusing more on applications. The next Chapter

(3) introduces statistical learning theory for pattern classification. Statistical

learning theory is crucial for the argumentation that among separating hyper-

planes the maximum margin hyperplanes are to prefer for classification. The

chapter concludes with a detailed discussion on SVMs. Although SVMs have

shown very good classification performances, they also have a shortcoming we

discuss in Chapter (4). After accepting the limitations, we review research

with the objective to overcome the drawback of SVMs, that is related work.

Chapter (5) is dedicated to the main focus of this thesis - the development

of new maximum margin algorithms for binary classifications beyond SVMs.

We introduce the theoretical framework our research is based on. Then we

show how to derive implementable algorithms from the theory. In Chapter

(6), we extensively discuss the technical details for an implementation. Given

different implementations of the new maximum margin algorithms, Chapter

(7) presents results obtained by experiments. The thesis ends with Chapter

(8) giving the conclusion, open issues and future work. Last but not least, in

the Appendix the reader can find some important mathematical background,

some proofs and additional information to some sections.
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Pattern Classification: A

General Survey

Contents
2.1 Recognition Systems . . . . . . . . . . . . . . . . . . . 5
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The following chapter gives an overview on pattern classification in gen-

eral. Starting with the classification of data using linear models, we in-

troduce subsequently the most prominent non-linear generalizations, namely

Artificial Neural Networks (ANNs) and the Support Vector Machines (SVMs).

Because pattern recognition is a broad field, we just scratch the surface here

in the context of the present thesis. For more details, we refer the reader to

e.g. [Fukunaga 1990], [Duda 2000], [Hastie 2001] and [Bishop 2006].

2.1 Recognition Systems

A general recognition system can be thought of as a black-box, in which

information about the observed reality is collected and processed in order to

derive some decision. For example, imagine an e-mail spam filter. In this case,
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the information about the reality is manifested in the words or word sequences

of the e-mail under consideration. The spam filter (recognition system) has to

produce a decision based on the observed words. A decision could be to move

an e-mail into the recycle bin, if the e-mail is categorized as spam because it

contains one of the most frequently occurring spam words like adviser, credit-

card, blackjack, etc., or sequences of such words. Clearly, in order to make

a careful decision, the spam filter has to extract the essential information

(features) out of the whole e-mail, like e.g. signal words, frequency of words

and/or dependencies to other words or even e-mails received in the past.

Therefore, this part of a recognition system is called the feature extractor.

Ideally, a feature extractor provides features that are invariant to irrelevant

transformations of the input data. Using a set of extracted features, a second

part of the overall system - the classifier - has to categorize the objects into

predefined classes. In our spam filter example, these classes are defined to be

spam or not spam. Another possibility could be two have a ranking of spam

mails for different grades of vulnerability, which would result in more than

two classes.

Figure 2.1: Sketch of a typical recognition system divided into its fundamental

functionalities. The feature extraction provides distinguishing features, that

are invariant to irrelevant transformations of the input. Given a set of features

of an input object, the classification has to assign the object to a category

in order to make a decision. Some systems also use some kind of feedback

(dashed line) from the classification to refine the feature extraction.

Summarizing, a recognition system can be divided into two coarse func-

tional parts - feature extraction and classification (Fig. 2.1). Each part has

its own requirements and could itself further decomposed into meaningful

sub-functionalities. Although very important, we do not further discuss the
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feature extraction. We address exclusively the classification starting with the

simplest one, namely the linear classification.

2.2 Linear Classifiers

Consider two set of feature vectors X1,X2 ⊂ Rm extracted from observed ob-

jects of two categories ω1, ω2. An example in two dimensions is plotted in figure

(2.2). The figure shows two separable clouds of points that can be perfectly

Figure 2.2: An example showing two clouds of points separated by a linear

(solid line) and non-linear (dashed line) decision boundary.

classified using (linear) decision boundaries {x ∈ R2 : g(x) = 0} implied by

a (linear) discriminant function g : R2 → R. In general, classification is faced

with the problem to seek for a discriminant function g : Rm → R implying a

decision boundary which classifies with a low error rate not just the observed

objects but also the unobserved prospective ones. For example, the dashed

decision boundary in Figure (2.2) is more unlikely to classify new data points

correctly than the solid one. The dashed boundary does not generalize well

because of overfitting to the training data.

A statistical approach for selecting the best possible decision boundary is

to assume a particular probability model P (ωi|x) ∝ p(x|ωi)P (ωi) =: gi(x)

for each class ωi given a data point x ∈ Rm. The probability density p(x|ωi)
is also called likelihood. With a predefined probability model, a data point

is classified to the class with highest probability, i.e. x belongs to class ωi if

gi(x) > gj(x) ∀i 6= j. This approach is motivated by the Bayesian Decision

Theory and yields the lowest expected error provided the probability model
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represents the true nature of data, there are equal costs of misclassification

and assuming independently drawn data points. In particular, the assumption

of a Gaussian model p(x|ωi) ∝ N (µi,Σ) with mean µi ∈ Rm and diagonal

covariance matrix Σ := σ2Im leads to the (affine-)linear function

ln (gi(x)) = wT
i x+ bi + c(x) (2.1)

with

wi :=
1

σ2
µi, bi := − 1

2σ2
µTi µi + ln (P (ωi)) . (2.2)

Note, c(x) is independent of the parameters (wi, bi). Because gi(x) > gj(x)⇔
ln (gi(x)) > ln (gj(x)), the decision boundary between two classes ωi and ωj
is implied by the (affine-)linear discriminant function

g(x) = (wi −wj)
Tx+ bi − bj. (2.3)

Rewriting the boundary equation g(x) = 0 as

wT (x− x0) = 0 (2.4)

with

w := µi − µj, (2.5)

x0 := 1
2
(µi + µj)− σ2

‖µi−µj‖2
ln
(
P (ωi)
P (ωj)

)
(µi − µj) (2.6)

shows, that the decision boundary is a hyperplane intersecting x0 perpendic-

ular to the line going through the means, i.e. orthogonal to w (Fig. 2.3).

Figure 2.3: Separating hyperplanes implied by Bayesian linear discriminant

functions. The hyperplanes are perpendicular to the line going through the

means µ1,µ2 of each class ω1, ω2 shown in Fig. (2.2). If the prior probabilities

are not equal, then the intersection point x0 shifts away from the most likely

class.
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In particular, if P (ωi) = P (ωj) ∀i, j each decision boundary is the perpen-

dicular bisector of the line between the corresponding means (Fig. 2.3) and

the decision rule simplifies to the minimum-distance classifier : classify x to

the class ωi for which the distance ‖x − µi‖ is minimal. The minimum dis-

tance classifier can also be considered as a template matching method, where

the means are prototypes of the different objects.

2.3 Learning of Discriminant Functions

So far, we assumed to know the true prior probabilities P (ωi) and class-

conditional probabilities p(x|ωi). Unfortunately, often one has just a vague

knowledge of the true reality. Thus, the question arise how to estimate these

probabilities appropriately, that means such that the decision boundary is as

near as possible to the optimal one in the Bayesian sense? The answer to

this question is in the heart of statistical learning theory (Chapter 3). Next,

we review a very important approach for estimating parametric probability

models, and in particular we introduce methods for learning discriminant

functions directly from data. The latter is the basis for the development of

very successful learning algorithms.

2.3.1 Maximum Likelihood Method

A prominent statistical approach for the estimation of parametric probability

models is the so-called maximum likelihood method: Given Ni independently

drawn samples XNi := (xi1, . . . ,x
i
Ni

) for each class ωi, and some parametric

form of the class-conditionals p(xin|ωi) = p(xin|λi) with parameters λi ∈ Λ,

the likelihood of the observations of class ωi reads as

L(λi) := p(XNi |λi) =

Ni∏
n=1

p(xin|λi). (2.7)

A maximum likelihood estimate λ∗i is then given by

p(XNi|λ∗i ) = max {L(λi) : λi ∈ Λ} . (2.8)

In the Gaussian case p(xin|λi) ∝ N (µi,Σi) with mean µi and covariance ma-

trix Σi, the maximum likelihood estimates are easily derived using differential

calculus and yield:

µ∗i =
1

Ni

Ni∑
n=1

xin (2.9)

Σ∗i =
1

Ni

Ni∑
n=1

(xin − µ∗i )(xin − µ∗i )T . (2.10)
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The maximum likelihood estimates equal the empirical estimators of mean

and covariance well-known from statistics. Note, assuming a class-common

covariance matrix Σi = Σ∀i, the corresponding discriminant function is again

(affine-)linear (2.3), but with parameterswi = Σ−1µi and bi := −1
2
µTi Σ−1µi+

ln (P (ωi)). Thus, the induced hyperplane is in general not perpendicular to

the line through the means anymore.

The maximum likelihood approach also applies to the prior class proba-

bilities. For this purpose define a random variable

yi(x) :=

{
1 if ω(x) = ωi
0 else

(2.11)

with the sample’s class ω(x). Let be λi := P (ωi), then because it holds

P (yi(x) = 1|λi) + P (yi(x) = 0|λi) = 1, (2.12)

the likelihood of the parameter λi using a complete observation (x1, . . . ,xN)

with N =
∑c

i=1Ni and Ni := card{1 ≤ j ≤ N : ω(xj) = ωi}, i.e the number

of samples xj of class ωi , is given by

L(λi) := P ((yi(xn))Nn=1|λi) =
N∏
n=1

λ
yi(xn)
i (1− λi)1−yi(xn). (2.13)

The distribution P ((yi(xn))Nn=1|λi) is known as Bernoulli distribution. It is

easy to see, the corresponding maximum likelihood estimate is P ∗(ωi) = λ∗i =

Ni/N . Strongly related to the maximum likelihood method is Bayesian Pa-

rameter Estimation, in which a additional parametric prior on the parameters

is considered, e.g. see [Duda 2000].

2.3.2 Least-Squares Method

Another approach to derive discriminant functions is not to assume some

particular form of the underlying probability densities but instead to directly

specify the discriminant function itself. After defining the parametric from

of the discriminant function, the parameters are fitted to the training data.

That means for (affine-)linear discriminant functions

gi(x) := wT
i x+ bi (2.14)

the weights w and the bias b are optimized with respect to a specific criterion

function J . A criterion function J measures typically the classification error

on a given training sample Xl := (x1, . . . ,xl), l ∈ N, xj ∈ X ⊆ Rm, 1 ≤ j ≤ l.
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A well-known approach for solving a c-class problem using linear discrim-

inant functions is the method of least squares. For this purpose, one en-

codes the class ω(xn) of a training example xn using a target vector yn :=

(0, . . . , yn,k, . . . , 0)T ∈ Rc with the k-th component set to yn,k = 1, if ω(xn)

equals the class ωk. The remaining components are set to zero. The criterion

function J of the method of least-squares is the mean squared error

J(A) :=
l∑

n=1

‖yn − g(xn)‖2 (2.15)

with discriminant function

g(xn) := Ax̂n =
(
αT1 x̂n, . . . ,α

T
c x̂n

)T
= (g1(xn), . . . , gc(xn))T (2.16)

where αTi := (wT
i , bi) is the i-th row of A and x̂n := (xTn , 1)T is an augmented

feature vector. The associated parameter optimization can be stated as:

min
A

J(A) = min
α1,...,αc

l∑
n=1

c∑
k=1

(yn,k −αTk x̂n)2 (2.17)

If X̂ := (x̂1, . . . , x̂l) ∈ R(m+1)×l is of full rank, then the well-known solution

of this multivariate regression is

A∗ = YX̂T (X̂X̂T )−1 = YX̂+. (2.18)

The matrix X̂+ denotes the right-pseudo inverse of X̂, and Y := (y1, . . . ,yl) ∈
Rc×l is called target coding matrix. Using the optimized parameters A∗ a new

sample can be classified simply by

ω(x) = ωarg max
k
{(α∗k)T ·(xT ,1)T}. (2.19)

The least-squares approach is attractive, because it yields a closed-form solu-

tion. However, the resulting discriminant function suffers from severe prob-

lems.
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Figure 2.4: A negative example of a solution found by the method of least-

squares. The plot shows points X1,X2,X3 of three-classes ω1, ω2, ω3. The

decision boundary {x : g(x) = 0} obtained by the method of least-squares

strongly failures in classifying points from class ω2.

A negative example of a three-class problem solved by the method of least-

squares is shown in figure (2.4). In the general case of multi-class problems,

one has to take into account all inequalities gi(x) > gj(x) ∀i 6= j in order

to classify a sample x into a class ωi. It follows for a three-class problem

a decision boundary that divide the feature space into three regions associ-

ated to each class. Unfortunately, the multi-class decision from the method

of least-squares shown in figure (2.4) classifies poorly the class ω2. The failure

of least-squares can be explained via its correspondence to a maximum likeli-

hood estimation under the assumption of unimodal Gaussian class conditional

probabilities (cf. 2.2). Obviously, the distribution of binary target vectors is

far away from a unimodal Gaussian. To circumvent this problem, one ap-

proach is to use another criterion function J . For example the minimization

of the cross-entropy function

J(A) := −
l∑

n=1

c∑
k=1

yn,k ln
(
σ(αTk x̂n)

)
(2.20)

with σ(gk) := exp(gk)/
∑c

i=1 exp(gi), which yields the so-called multi-class lo-

gistic regression approach. In opposite to least-squares, the logistic regression

approach introduces nonlinearities in order to model more appropriate condi-

tional probabilities. In Figure (2.5) the same three-class problem is shown as

in Figure (2.4), but solved via logistic regression.

Very similar in essence, is a direct generalization of the linear function

(2.14) by a nonlinear function gi(x) := wT
i Φ(x) + bi with some non-linear
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mapping Φ : X → Rp. This idea is implemented for example in Artificial

Neural Networks, presented in Section (2.4.1).

Figure 2.5: A classification found by the logistic regression for the same three-

class problem as shown in Figure (2.4). The plot shows points X1,X2,X3 of

three-classes ω1, ω2, ω3. In opposite to the least-squares method, the deci-

sion boundary {x : g(x) = 0} obtained by the logistic regression approach

perfectly classifies all examples.

2.3.3 Perceptron Algorithm

A further important procedure for constructing linear decision boundaries

is that of finding a separating hyperplane. Separating hyperplanes provide

the basis for Support Vector Machines, introduced in Section (2.4.3). Figure

(2.6) shows a toy example of two classes ω1, ω2 of artificial feature vectors

separated by differently learnt hyperplanes H1, H2 in R2. In this example, the

least-squares solution H1 produces errors, but the hyperplane H2 found by an

alternative approach, namely the Perceptron Algorithm, classifies all training

points perfectly.
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Figure 2.6: A toy example showing two differently learnt hyperplanes. Hy-

perplane H1 is learnt using the least-squares method and hyperplane H2 is

found by the Perceptron Algorithm. While the solution H1 is sub-optimal,

the solution H2 classifies all points perfectly.

The Perceptron Algorithm tries to find an separating hyperplane that min-

imizes the criterion function

J(w, b) := −
∑
i∈M

yi(w
Txi + b) (2.21)

where the set M comprises all indices of misclassified feature vectors.

Because a hyperplane is defined by H :=
{
x ∈ X : wTx+ b = 0

}
the

vector w/‖w‖ is orthonormal to H (Fig. 2.7). Thus, the signed distance

between any point x and its projection to the line intersecting x0 ∈ H or-

thogonal to H is given by 〈x− x0,w/‖w‖〉. Because it holds wTx0 + b = 0,

it is easy to see that the signed distance of any point x ∈ X to H is given by

〈x− x0,w/‖w‖〉 =
1

‖w‖
(wTx+ b). (2.22)

The sign of wTx + b depends on the side of the hyperplane the vector x is

lying. In particular, the hyperplane has the distance |b|/‖w‖ from the origin.
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Figure 2.7: A linear hyperplane in R2.

In case of a binary classification, suppose the j-th sample’s class ω(xj) =

ω1 is encoded by a label yj = 1, or respectively ω(xj) = ω2 by yj = −1.

Defining wTxj + b > 0 for all xj of class ω1, and wTxj + b < 0 for all xj
of class ω2, the criterion function (2.21) is non-negative and proportional to

the sum of distances of the misclassified points to the decision boundary. An

analytic minimization of (2.21) is not possible in closed form. Therefore, a

local solution (w∗, b∗) is usually iterated via a gradient descent with step-size

ν > 0:

Algorithm 2.3.1 Perceptron Algorithm [Rosenblatt 1958]

Require: Training set ∅ 6= ON ⊂ Z = X × Y , start values (w(0), b(0)), step-

size ν > 0, accuracy ε > 0

Ensure: ∃(xj, yj), (xi, yi) ∈ ON : yj = −1∧ yi = 1, both classes are linearly

separable

t← 0

while
(∥∥∑

i∈M(t) yixi
∥∥ > ε

)∧ (∥∥∑
i∈M(t) yi

∥∥ > ε
)

do

w(t+1) = w(t) − ν∇w(t)J(w(t), b(t)) = w(t) + ν
∑
i∈M(t)

yixi (2.23)

b(t+1) = b(t) − ν∇b(t)J(w(t), b(t)) = b(t) + ν
∑
i∈M(t)

yi. (2.24)

t← t+ 1

end while

It can be shown, that the gradient descent converges to a separating hy-

perplane, if the classes are linearly separable (e.g. [Duda 2000]). In the non-
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separable case, ordinary Perceptron learning completely fails. However, mod-

ified Perceptron algorithms exist which still produce meaningful results. Fast

algorithms reaching local optima are given by [Wendemuth 1995]. A Global

solution can be achieved by the Pocket algorithm [Gallant 1990] albeit at the

cost of an unknown and possibly extremely slow rate of convergence.

As Figure (2.6) let imagine, there are infinitely many separating hyper-

planes perfectly classifying the feature vectors. To which of them the Percep-

tron Algorithm will end up depends on the starting point (w(0), b(0)). Another

issue is concerning the generalization performance of the discriminant func-

tion. Although all training points are correctly classified, this must not be true

for unseen data points. An elegant solution to avoid arbitrariness is to impose

additional constraints to the separating hyperplane. Instead of requiring a

correct classification, i.e. yi(w
Txi + b) > 0 ∀i, one could for example impose

alternatively the constraints yi(w
Txi+b) ≥ ρ > 0 ∀i. The constant ρ is called

margin, because it defines a minimum distance that all points have to maintain

to the separating hyperplane in order to satisfy the constraints. Intuitively,

for increasing ρ the hyperplane is more and more shifted to a stable position

in the middle of the solution region. Such a stable hyperplane is more likely

to classify new examples correctly. This is exactly the idea behind an optimal

separating hyperplane implemented by the Support Vector Machine, as we

will see in Section (2.4.3). There is also a Perceptron algorithm for achiev-

ing a stable hyperplane in the linearly separable case, called Perceptron of

Optimal Stability [Krauth 1987]. However, this algorithm fails completely in

the nonlinearly separable case. But it was generalized by [Wendemuth 1995],

producing (globally) maximum margins for the linearly separable case, and

(locally) maximum (negative) margins for the nonlinearly separable case with-

out having any knowledge about separability or nonseparability in advance.

2.4 Nonlinear Classifiers

The linear classifiers reviewed so far, rely on some monotone transformation

like the logarithm of the considered posterior probabilities P (ωi|x) yielding

a linear function in x. Such a transformation into linear functionals is often

not possible for complex data distributions of real-world problems. In the

next sections, we review Artificial Neural Networks and in particular Support

Vector Machines that both go beyond linear models.
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2.4.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) realize generalizations of linear discrim-

inant functions gi(x) defined in Section (2.2), namely nonlinear functions

gi(x) = fi(w
T
i Φ(x) + bi) with some non-linear mapping Φ : Rd → Rp. In par-

ticular, ANNs implement continuously differentiable output-layer functions

f1, . . . , fc : R→ R composed of input-layer functions f 0
1 , . . . , f

0
d : R→ R and

hidden-layer functions f r1 , . . . , f
r
Nr

: R→ R with 1 ≤ r ≤ L, N0 := d, NL := p,

i.e. ∀1 ≤ i ≤ c

gi(x) = fi

(
NL∑
j=1

wijΦj(x) + bi

)
(2.25)

and ∀1 ≤ j ≤ NL

Φj(x) := fLj

(
NL−1∑
k=1

wLjkf
L−1
k

(
. . . f 1

l

(
N0∑
m=1

w1
lmf

0
m(xm) + b1

l

)
. . .

)
+ bLj

)
.

(2.26)

The discriminant function of ANNs has a biological analogy in the neural

network of the brain (Fig. 2.8).

Figure 2.8: An artificial neural network (picture on the left) is a techni-

cal abstraction of the neural network of the brain (picture on the right

[Koninck 2007], 2007 copyright by Paul De Koninck. All rights reserved.)
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Figure 2.9: A single neuron. (picture on the right [Schrader 2010], 2010 copy-

right by Tulane University. All rights reserved.)

A neural network is build up of single neurons (Fig. 2.9). Each neu-

ron i receives signals xj from other neurons j with different strength wij,

which are summed to yield the activation ai :=
∑

j wijxj + bi of the neu-

ron. The threshold bi is some basis-potential of the neuron. The neuron

reacts immediately with a response fi(ai) modeled via the activation func-

tion fi. Typical activation functions used in ANNs are the linear function

fi(ai) = ai, the threshold function fi(ai) =

{
1 if ai ≥ 0

0 if ai < 0
or the sigmoid

function fi(ai) = 1/ (1 + exp(−ai)) (Fig. 2.10).

−1 0 1
−1

0

1

(a) linear function

−1 0 1
−1

0

1

(b) threshold function

−1 0 1
0

0.5

1

(c) sigmoid function

Figure 2.10: Typical activation functions used in Artificial Neural Networks.

ANNs can be used for regression and classification as well. For classifi-

cation the output function fi in (2.25) is usually chosen to be linear or the

softmax function σ(ai) = exp(ai)/
∑

j exp(aj).

The weights and biases of an ANN are fitted to the training data ON =
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{(x1, y1), . . . , (xN , yN)}, N ∈ N by minimizing the sum-of-squared errors

J(Θ) :=
N∑
n=1

=:Jn(Θ)︷ ︸︸ ︷
‖yn − g(xn)‖2 (2.27)

between the network’s outputs g(xn) := (g1(xn), . . . , gc(xn))T and a target

vector yn ∈ Rc associated to a training vector xn ∈ Rd via gradient descent.

The complete set of weights and biases is denoted by Θ. For classification,

the target vectors yn are coded with the k-th component set to yn,k = 1, if

ω(xn) equals the class ωk, while the remaining components are set to zero,

i.e. yn = (0, . . . , yn,k, . . . , 0)T . However, the cross-entropy function (cf. 2.20)

is often a more appropriate criterion in a classification setting than the sum-

of-squared errors.

2.4.2 Back-propagation Algorithm

The gradient descent approach for neural networks is called back-propagation

[Rumelhart 1986], because the compositional form of the model enables to

compute the gradients by using the chain rule for differentiation in a for-

ward and backward sweep over the network. Denoting ark(xn), 1 ≤ r ≤ L

(respectively ak) the activation of a neuron k in the r-th hidden-layer (respec-

tively output-layer) given a training vector xn, the output-layer updates at

the (t+ 1)-st iteration reads as

w
(t+1)
ij = w

(t)
ij − ν

∂J(Θ(t))

∂w
(t)
ij

= w
(t)
ij − ν

N∑
n=1

δ
(t)
i,n · fLj (a

L,(t)
j (xn)) (2.28)

b
(t+1)
i = b

(t)
i − ν

∂J(Θ(t))

∂b
(t)
i

= b
(t)
i − ν

N∑
n=1

δ
(t)
i,n (2.29)

with

δ
(t)
i,n :=

∂Jn(Θ(t))

∂gi
· (fi)

′
(a

(t)
i (xn)). (2.30)

Similar, the input- and hidden-layer updates (1 ≤ r ≤ L) are given by

w
r,(t+1)
jk = w

r,(t)
jk − ν

∂J(Θ(t))

∂w
r,(t)
jk

(2.31)

= w
r,(t)
jk − ν

N∑
n=1

δ
r,(t)
j,n · f r−1

k (a
r−1,(t)
k (xn)) (2.32)

b
r,(t+1)
j = b

r,(t)
j − ν ∂J(Θ(t))

∂bj
r,(t)

= b
r,(t)
j − ν

N∑
n=1

δ
r,(t)
j,n . (2.33)
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with

δ
r,(t)
j,n := (f rj )

′
(a
r,(t)
j (xn)) ·

Nr+1∑
i=1

w
r+1,(t)
ij δ

r+1,(t)
i,n , (2.34)

and NL+1 := c, w
L+1,(t)
ij := w

(t)
ij , δ

L+1,(t)
i,n := δ

(t)
i,n, a

0,(t)
k (xn) := xn.

We see from the update equations that first all activations and neuron outputs

of the network have to be computed (forward sweep). Second, the activations

and neuron outputs are used to compute error-terms δ from each layer back

to the predecessor layer in order to adjust the network parameters (back-

ward sweep). Hence, the backward sweep is sometimes called backward error

propagation. The back-propagation algorithm is summarized in (Alg. 2.4.1).

Algorithm 2.4.1 Back-propagation Algorithm [Rumelhart 1986]

Require: Training sample ∅ 6= ON ⊂ Z = X × Y , start value Θ(0), step-size

ν > 0, accuracy ε > 0

Ensure: ∃(xj, yj), (xi, yi) ∈ ON : yj = −1 ∧ yi = 1

t← 0

while
∥∥∇J(Θ(t))

∥∥ > ε do

for all 1 ≤ n ≤ N do

{Forward Sweep:}
Compute ∀1 ≤ r ≤ L, 1 ≤ k ≤ Nr the activations a

r,(t)
k (xn).

Compute ∀1 ≤ i ≤ c the activations a
(t)
i (xn).

{Backward Sweep:}
Compute ∀1 ≤ i ≤ c the errors δ

(t)
i,n.

Compute ∀L ≥ r ≥ 1, 1 ≤ j ≤ Nr the errors δ
r,(t)
j,n .

{Updates:}
Compute ∀1 ≤ i ≤ c,∀1 ≤ j ≤ NL the weights w

(t+1)
ij = w

(t)
ij − ν

∂J(Θ(t))

∂w
(t)
ij

and biases b
(t+1)
i = b

(t)
i − ν

∂J(Θ(t))

∂b
(t)
i

.

Compute ∀1 ≤ r ≤ L, 1 ≤ j ≤ Nr, 1 ≤ k ≤ Nr−1 the weights w
r,(t+1)
jk =

w
r,(t)
jk − ν

∂J(Θ(t))

∂w
r,(t)
jk

and biases b
r,(t+1)
j = b

r,(t)
j − ν ∂J(Θ(t))

∂bj
r,(t) .

end for

t← t+ 1

end while

At first glance, ANNs seem to be very attractive because they potentially

learn any complicated function (if the number of layers exceeds three and

the number of neurons are sufficiently large) and the back-propagation algo-

rithm is easy to implement. But training of ANNs is a challenge, because



2.4. Nonlinear Classifiers 21

the optimization of the network parameters is highly nonlinear and unsta-

ble. Moreover, large ANNs are overparametrized and thus tend to overfitting.

A feasible solution depends mainly on the topology of the network and the

starting values. Usually, the topology is often selected by experiments, and

the starting values are randomly initialized leading to poor local solutions in

particular for networks with many hidden-layers and thousands of free param-

eters.

2.4.3 Support Vector Machines

Although Support Vector Machines (SVMs) [Vapnik 1998], [Vapnik 1999] are

in essence linear classifiers as presented in Section (2.2), they implement non-

linear discriminant functions. In contrast to linear classifiers, the SVM’s hy-

perplane is learnt in a space H (feature space) of high dimension in which the

data has been implicitly mapped. In this way, highly overlapping samples of

two categories, which can not be separated through a linear decision boundary

in the lower dimensional data space X , are more likely to be linear classifiable

in the feature space H. Fortunately, the nonlinear feature map Φ : X → H
must not be carried out explicitly. A nonlinear decision function in X results

from the implicit inverse transformation Φ−1 of the hyperplane (Fig. 2.11).

Figure 2.11: Nonlinear decision boundary obtained by a feature map Φ.

The training algorithm for the SVM’s discriminant function

g(x) := wTΦ(x) + b (2.35)

is based on the Perceptron Algorithm with margin ρ > 0 for the linearly

separable case (Sec. 2.3.3). In particular, the SVM tries to find an optimal
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separating hyperplane that classifies all training patterns correctly with a

maximum margin (Fig. 2.12).

Figure 2.12: Optimal separating hyperplane.

A maximum margin hyperplane is justified to have better statistical prop-

erties than any other possible linear separation (Chapter 3). The SVM can

also be thought of as a particularly trained neural network (Sec. 2.4.1) with

one hidden layer representing the transform Φ and a linear input- and output-

layer (Fig. 2.13). In contrast to neural networks, the data transformation is

implicitly performed by SVMs.

Figure 2.13: SVM viewed as feed-forward ANN.

Because of its particular importance for this thesis, in Chapter (3) much

more details on Support Vector Machines are revisited. Therefore, in the next

section we go on with a few application where SVMs have been successfully

applied.

2.4.4 Some Applications of SVMs

Due to the good generalization properties and the efficient computation, SVMs

have been successfully applied to many binary- as well as multi-category clas-
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sification problems appearing in different application contexts. Even on tasks

where the linear methods or ANNs are worse or inapplicable.

Figure 2.14: Visualization of one hundred examples from the U.S. Postal

Service database [Wang 1988].

The most prominent application of SVMs is surely the task of handwritten

digit recognition [Vapnik 1999]. First experiments were performed using the

U.S. Postal Service (USPS) database [Wang 1988]. It contains 7,300 training

patterns and 2,000 test patterns of handwritten digits extracted from real-

life zip codes. Each pattern has a resolution of 16 x 16 pixels (Fig. 2.14).

The human raw error rate for this data set is about 2.5% [Bromley 1991].

The best reported result before SVMs showed up was 5.0% reached with a

five layer ANN using task specific adapted recpetive fields [LeCun 1989]. In

comparision, the SVM’s misclassification rate of the test patterns is about

4.0% [Vapnik 1999], which is one of the best reported results1.

Another classical handwritten digit task is given by the NIST database,

which is a benchmark database provided by the U.S. National Institute of

Standards and Technology (NIST). This database consists of 60,000 training

patterns and 10,000 test patterns. The characters have a resolution of 20 x 20

pixels. For the NIST data the best reported result is 0.7% error using a very

special convolution network that is highly adapted to the handwirtten digit

task [LeCun 1998]. Not far away from the best, a standard SVM reached a

comparable performance of 1.1% test error [Vapnik 1999].

A popular benchmark for text categorization is the Reuters-22173 text cor-

pus. Usually, text categorization is a high-dimensional classification problem

with many classes. For example the Reuters corpus was collected from 21,450

13.3% error using a local learning approch, 2.7% error using tangent distance matching
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Figure 2.15: SVM accuracies on ten most frequent Reuters categories. (Cour-

tesy of [Joachims 1998].)

news stories from 1997, and is partitioned and indexed into 135 different cat-

egories. The dimensionality of the raw data space is 104 containing the word

frequencies within a document. Even for document classification improved

results have been reported using SVMs in comparison to other approaches

(Fig. 2.15, [Joachims 1998]).

A very interesting application of Support Vector Machines is from the

domain of biometrics, namely the recognition of faces. Face recognition is a

field of active research and recent results combining SVMs with different linear

feature extraction methods have shown the potential of SVMs to improve

the overall performance [Mazanec 2008]. The experiments were performed

on the Facial Recognition Technology (FERET) database. This benchmark

corpus consists of 14,051 eight-bit grayscale images of human heads with views

ranging from frontal to left and right profiles (Fig. 2.16).

The experiments reported in [Mazanec 2008] indicate that very good re-

sults are possible combining Linear Discriminant Analysis (LDA) and Sup-

port Vector Machines (Fig. 2.17).

Although SVMs are static classifiers by nature, a interesting attempt is

to combine SVMs with Hidden-Markov-Models (HMM) for the classification

of time-varying data appearing in particular in Automatic Speech Recognition

(ASR), speaker verification or speaker identification.

Substituting statistical models by SVMs for modeling the acoustic of speech

and using HMMs for capturing the time dependencies is a straightforward way

to benefit from the generalization performance of SVMs also in speech recog-

nition. Because SVMs are static with respect to the length of feature vectors

as well as dependencies in time, Hidden-Markov-Models are necessary to pro-

vide the temporal information. For example using the time alignment from a

HMM-Viterbi decoder enables to pre-process the feature stream from spoken
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Figure 2.16: Examples from the FERET training-set. (Courtesy of

[Mazanec 2008].)

Figure 2.17: Face recognition results on the FERET database using different

combinations of SVMs and feature extractors. (Courtesy of [Mazanec 2008].)
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utterances (Fig. 2.18) to feature vectors of constant length for an adjacent

SVM classification [Ganapathiraju 2000].

Figure 2.18: Visualization of a feature stream of some spoken utterance.

In [Ganapathiraju 2000] a first hybrid system was proposed and tested on

the Oregon Graduate Institute (OGI) Alphadigit corpus which is a telephone

speech database similar to the SWITCHBOARD corpus. The OGI task con-

sists of spoken six word strings out of a vocabulary of 36 words. Using this

dataset, the SVM/HMM approach reached an improvement of 10% relative

to the HMM baseline system.

Motivated by the former result, it has been extensively studied how SVM

can be applied in ASR and what value of improvement can be expected due

to a substitution of the Gaussian mixture models usually used in HMMs to

model the acoustic of speech, e.g. [Campbell 2003], [Gurban 2005], [Liu 2007].

A offline-framework for using SVMs and HMMs side by side was pro-

posed in [Stuhlsatz 2008a], [Stuhlsatz 2007a] and is based on the work of

[Ganapathiraju 2000]. The framework uses HMMs for the time-alignment

and SVMs for an offline re-scoring of N-best lists as well as phoneme lat-

tices produced by the HMM-Viterbi decoder. Experiments using N-best list

re-scoring were performed on a phoneme recognition database, namely the

DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus with N-best

list re-scoring [Stuhlsatz 2003]. The TIMIT corpus was spoken by 630 speaker

from eight regions of the United States. The training-set consists of about

150,000 training examples while the test-set is composed of about 7,000 test

patterns. A total of 50 different SVMs (one for each phoneme in the vocabu-

lary) were evaluated for this recognition task. After training and transform-

ing the SVM classifier’s outputs to probabilities, different N-best lists were

re-scored first and then all hypotheses were re-ranked. The best hypothesis

selected from the new list was then used as prediction (Fig. 2.19). This ap-
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proach could reduce the phoneme misclassification rate about 2.64% compared

to the HMM baseline [Stuhlsatz 2003].

Figure 2.19: Sketch of the hybrid HMM/SVM architecture.

A further improvement was obtained due to a SVM re-scoring of recogni-

tion lattices produced by the decoder instead of N-best list re-scoring. Using

this method, a relative error decrease of 7.72% was reported on the TIMIT

database, and on the Wallstreet Journal Cambridge (WSJCAM0) corpus,

which constists of about 170,000 phonemes for training and about 38,000 for

testing, an error decrease of 12.8% was obtained [Stuhlsatz 2006]. The perfor-

mance of a HMM/SVM hybrid architecture has also been investigated on the

DARPA RM1 database. For these experiments refined estimates of emission

probabilities from the SVM outputs and a more online integration of SVMs

into the recognition process were proposed [Krüger 2005a], [Krüger 2005b],

[Andelic 2006], [Krüger 2006], [Krüger 2007].

Summary

In this chapter, a general overview of pattern classification and methods are

given. Without doubt, the SVM is a state-of-the-art classifier in pattern

recognition for solving many different classification problems with good per-

formance and manageable computational costs. In particular, the SVM has

shown very good generalization properties. Because the list of successful ap-

plications of SVMs seems almost endless, we refer the reader to the vast num-

ber of available articles for further reading (e.g. [Osuna 1997], [Brown 1999],

[Lee 2000], [Kim 2002], [Ghent 2005], [Iplikci 2006] and references therein).
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However, it is important to note that classification is extremely data and

therefore application dependent. Moreover, there is an inherent lack of supe-

riority of any classifier in advance. That means, one can not decide to prefer

a classifier without any prior knowledge of the nature of the classification

problem. Thus, some problems might be solved very well (sometimes better

than SVMs) using for example Artificial Neural Networks or other (nonlinear)

classification methods.

In the following chapter, more theoretical background is presented for the

purpose to understand why SVMs perform better on many tasks than other

pattern recognition methods. It turns out that the maximum margin concept

is the key to the generalization ability of SVMs and thus the maximum margin

will be crucial throughout this thesis.
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S tatistical learning theory [Vapnik 1998], [Vapnik 1999], [Vapnik 2006],

the fundamental theory of machine learning and pattern classification,

deals mainly with the question whether a learning method, that utilizes the

Empirical Risk Minimization (ERM) principle, converges to the best possible

risk and how fast convergence takes place.

Although the theory is very general covering regression, density estimation

and classification problems the present chapter will concentrate on classifica-

tion only, because it is the focus of this thesis.

The results obtained from statistical learning theory justify the develop-

ment of learning algorithms like the SVM that implement decision functions
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maximizing a minimal distance to the given data (recall Chapter 2). More-

over, we will see that a maximum margin hyperplane is crucial for a good

generalization performance.

We start our discussion with an illustrative example (Sec. 3.1). The

example leads immediately to the question, which constraints are necessary

and sufficient for successful learning from data (Sec. 3.2). For this purpose

some measure of the capacity of the functions used for classification is needed

(Sec. 3.3.3). Given this measure a new learning paradigm is introduced

(Sec. 3.4) and searching for a maximum margin hyperplane approximates

this principle (Sec. 3.5). At the end (Sec. 3.6), we revisit the SVM again but

with more technical details than in Section (2.4.3).

3.1 Illustration Example

Consider the following simple pattern recognition scenario: We are faced with

the problem of classifying a data point x ∈ X of some data space X into a

category y ∈ Y . The category space Y considered here consists of two possible

realizations {−1, 1} =: Y (binary classification) for the two possible outcomes

that x belongs to one of two classes ω1, ω2.

Neither x nor y are known in advance, however we can treat them as

random variables with joint density p : X ×Y → [0,∞),
∫
p(x, y) dx dy = 1.

Unfortunately, we do not know the true density p, but we assume to have

available some set of observations Ol := {(x1, y1), . . . , (xl, yl)} ⊂ (X × Y),

l ∈ N, where the samples (xi, yi) are generated from p. In Figure (3.1) an

example of nine points is shown.

Figure 3.1: An example of two categories (triangles and squares). One data

point has unknown class-membership (marked with ?).

The objective is to develop an algorithm that solves the classification prob-

lem for the given data points such that the misclassification will be as small

as possible. For this purpose, suppose a look-up table is stored (Tab. 3.1),

which enables (for a fixed l) to assign all possible classifications to a set of
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rule (y1, y2, y3, y4, y5, y6, y7, y8, y)

f 1 (+1,+1,+1,+1,+1,+1,+1,+1,+1)

f 2 (+1,+1,+1,+1,+1,+1,+1,+1,−1)

f 3 (+1,+1,+1,+1,+1,+1,+1,−1,+1)
...

...

f emp,1 (+1,+1,+1,+1,−1,−1,−1,−1,+1)

f emp,2 (+1,+1,+1,+1,−1,−1,−1,−1,−1)
...

...

f 29 (−1,−1,−1,−1,−1,−1,−1,−1,−1)

Table 3.1: Example of a look-up table of all decision rules assigning one out

of 29 possible classifications to a set of nine points.

points {x1, . . . ,xl}∪{x}. Further, a loss function Lf : (X ×Y)→ R specifies

how much an erroneous classification will hurt us when applying a decision

rule f i := (y1, . . . , yl, y) with yj := f i(xj) and y := f i(x) be the outputs

of a decision function f i : X → Y . Hence, each decision rule f i comprises

a possible class assignment to a set of points. Obviously, for l + 1 different

elements one has to implement a total of NF = 2(l+1) different rules.

In order to obtain the lowest loss on average, the algorithm should select

automatically a rule f ∗ from the look-up table such that the expected risk

R(f) :=

∫
Lf (x, y)p(x, y) dx dy (3.1)

will be minimized, i.e. R(f ∗) = min {R(f i) : f i}.
Because R(f) can not be determined due to a lack of p, one could try to

select the best rule f ∗ based on an empirical estimate

Rl(f) :=
1

l

l∑
i=1

Lf (xi, yi) (3.2)

computed by the use of the observation Ol.
As shown in table (3.1), there are two rules f emp,1 and f emp,2 perfectly

classifying the observation Ol, i.e. Rl(f
emp,1) = Rl(f

emp,2) = 0. Hence, mini-

mizing the empirical risk (3.2) gives no useful information about the unknown

category. So, how to choose f ∗ ∈
{
f emp,1,f emp,1

}
?

Consider an appropriate choice of loss Lf which is in case of a binary
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classification problem the 0/1-loss function

Lf (x, y) = L
0|1
f (x, y) :=

{
0 if y = f(x)

1 if y 6= f(x)
. (3.3)

Assuming a sample (x, y) is independently and identically-distributed (i.i.d.)

according to a distribution p, it follows that Lf itself is an i.i.d. random

variable. Therefore, when using the 0/1-loss function (3.3), the risk (3.1)

equals the probability of an incorrect classification

Perr(f
∗) =

∫
p(x)

( ∑
y∈{−1,+1}

L
0|1
f∗ (x, y) P (y|x)︸ ︷︷ ︸

=:Perr(f∗|x)

)
dx

=

∫
p(x)Perr(f

∗|x) dx (3.4)

and the empirical risk (3.2) equals the relative frequency P̂err(f) of assigning

an observed sample to a wrong class. The conditional Perr(f
∗|x) is called the

Bayes-error.

From (3.4) we see, that in order to minimize the overall misclassification,

f ∗ has to be selected such that Perr(f
∗|x) is minimal, i.e. the algorithm

should select the rule f ∗ = f emp,1 if P (y = +1|x) ≥ P (y = −1|x), and

f ∗ = f emp,2 otherwise (Bayes decision rule). Clearly, to apply the Bayes

decision rule in practice, one has to estimate the class posteriors P (y = +1|x)

and P (y = −1|x) from the given observations shifting the function estimation

problem to probability estimation (cf. Sec. 2.3.1).

3.2 Uniform Convergence

Despite the simplicity of the former example, we can get some important

insights from it:

1. Although we are able to minimize the empirical error Rl down to zero,

it does not imply that the true risk R will also be zero, because it

depends on the Bayes-error.

2. It may happen, even though the empirical risk is minimized at f ∗ using

l observations, e.g. Rl(f
∗) = 0, that the expected loss R(f ∗) is not at

the lowest possible (Bayes-risk). For example imagine the case, when

our program selects always by chance out of
{
f emp,1,f emp,2

}
even when

the true but unknown probabilities P (y = +1|x) and P (y = −1|x) are

not equal.
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3. Empirical risk minimization is ill-posed, because usually there are many

(equivalent) minimizer of Rl from which one has to choose somehow.

The expected risk R depends strongly on the chosen minimizer.

At this point, the question of consistency of an empirical learning method

arises. In a formal sense that means for a set of decision functions F and

given a set of i.i.d. observations {z1, . . . ,zl}, zi := (xi, yi) ∈ X × Y , it holds

∀ε > 0 : lim
l→∞

P (|R(f l)− inf
f∈F

R(f)| > ε) = 0 (3.5)

∀ε > 0 : lim
l→∞

P (|Rl(f
l)− inf

f∈F
R(f)| > ε) = 0, (3.6)

where f l denotes the minimizer of the empirical risk Rl (3.2) using an obser-

vation of size l.

Theorem 3.2.1 (The Key Theorem of Learning Theory, [Vapnik 1998]). Let

Lf , f ∈ F , be a set of loss functions that satisfies

A ≤ R(f) ≤ B. (3.7)

Then for the ERM method to be consistent, it is necessary and sufficient that

the empirical risk Rl converges uniformly to the actual risk R in the following

sense:

lim
l→∞

P

{
sup
f∈F

(R(f)−Rl(f)) > ε

}
= 0 ∀ε > 0 (3.8)

Proof. See [Vapnik 1998][pp. 89].

Thus, one-sided convergence is equivalent to consistency of the ERM prin-

ciple. Note, the loss function Lf has to be taken into account when applying

this theorem.

3.3 Rate of Convergence for the 0/1-Loss Func-

tion

3.3.1 Finite Case

For the simple case of a finite set of 0/1-loss functions {L0|1
f : f ∈ F} of size

NF <∞, we now derive when uniform convergence takes place and how fast

the ERM method converges.

Define the event Ai associated to a function L
0|1
fi

to be all pairs z :=

(x, y) ∈ X × Y with L
0|1
fi

(x, y) = 1, i.e. Ai := {z ∈ X × Y : L
0|1
fi

(z) = 1}.
As already mentioned, the risks Rl and R can be considered as the fre-

quency Rl(f) = P̂err(f) of assigning an observed sample to a wrong class and
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the probability of an incorrect classification R(f) = Perr(f). By the law of

large numbers, for each event the frequency converges to the true probability

as the number of trials increases indefinitely.

Thus, applying Hoeffding’s inequality (cf. App. A.1.1) yields for each

event Ai an exponential rate of convergence for l→∞ and any ε > 0:

P
(
|Perr(fi)− P̂err(fi)| > ε

)
≤ 2exp

(
−2ε2l

)
. (3.9)

It follows

P

(
max

1≤i≤NF

(
|Perr(fi)− P̂err(fi)|

)
> ε

)
≤

NF∑
i=1

P
(
|Perr(fi)− P̂err(fi)| > ε

)
≤ 2NF · exp

(
−2ε2l

)
= 2 · exp

((
ln(NF)

l
− 2ε2

)
· l
)

︸ ︷︷ ︸
=:ν

(3.10)

that in turn implies (two-sided) uniform convergence takes place for a finite

function class if liml→∞ ln(NF)/l = 0:

lim
l→∞

P

(
max

1≤i≤NF

(
|Perr(fi)− P̂err(fi)|

)
> ε

)
= 0. (3.11)

By definition of ν > 0 (Eq. 3.10), one obtains the relation

ε =

√
ln(NF)− ln(ν/2)

2l
. (3.12)

Therefore, it holds at least with probability 1− ν for all fi ∈ F , 1 ≤ i ≤ NF
(including the minimizer f l of the emprirical risk):

Rl(fi)− ε ≤ R(fi) ≤ Rl(fi) + ε. (3.13)

Remember the example in Section (3.1) of selecting a rule f ∗ with Rl(f
∗) =

0 from a look-up table out of NF = 29 rules using a observation of size l = 8.

Applying the upper bound (Eq. 3.13), the true risk of misclassification is

not greater than 85% almost sure (ν = 0.01). This bound is not very tight,

because in our example selecting a optimal rule by chance yields a probability

of missclassification of 50%. A tighter bound is obtainable for a set of 0/1-loss

functions when taking into account, that multiple equivalent minimizer of Rl

solving the problem perfectly are in the set F (cf. [Vapnik 2006][pp. 144]).

In general, the upper bound can further refined considering one-sided uniform

convergence instead of two-sided uniform convergence (cf. [Vapnik 2006][pp.

146]).
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3.3.2 Infinite Case

From the rate of convergence for a finite number NF of functions (Eq. 3.10),

it follows that uniform convergence takes place, if for any ε > 0 holds

ln(NF)

l
−→
l→∞

0. (3.14)

The basic idea in case of an infinite set F is to substitute NF with a similar

quantity describing the capacity of F and then to prove uniform convergence

using this quantity. The capacity assesses a function class, e.g. the space

of all linear decision functions, with respect to its flexibility in classifying a

finite set of samples. This measure of flexibility is not to be confused with the

number of free parameters of a function, e.g. the number of coefficients of a

polynomial. One can imagine that an infinite function class may contain many

functions that classify a set of samples in the same way. Thus, a meaningful

concept of capacity should not depend on equivalent functions. We will see

the appropriate concept of capacity introduced by [Vapnik 1998] results in a

condition like (Eq. 3.14).

For this purpose, a more refined measure of capacity is given using the

effective number of functions in the class F with respect to the events Af :=

{z ∈ X × Y : L
0|1
f (z) = 1} given a random sample Ol := {z1, . . . ,zl}.

Consider a binary vector g(f) :=
(
L

0|1
f (z1), . . . , L

0|1
f (zl)

)
∈ {0, 1}l. Each

vector is a subset of vertices of a hypercube (Fig. 3.2) and represents the

different subsets of Ol that are also subsets of the events Af , f ∈ F . The

point (0, . . . , 0) represents the case that no subset is contained in one of the

events Af .
In other words, each vector g(f) is a symbolization of an equivalence class

[f ] :=
{
f̃ ∈ F : f̃ ≡ f

}
(3.15)

with the relation

∀f1, f2 ∈ F : f1 ≡ f2 ⇔ ∀zi ∈ Ol : L
0|1
f1

(zi) = L
0|1
f2

(zi). (3.16)

That means two functions f1, f2 ∈ F are equivalent, if they produce the same

decomposition (induced by L
0|1
f ) of a random sample Ol in two disjoint sets.

Obviously, the number of equivalence classes [f ] on F , denoted NF(Ol),
equals the number of subsets of Ol induced by the events Af , f ∈ F . Thus,

no more than NF(Ol) ≤ 2l equivalence classes are possible (cf. Fig. 3.2),

although the set of functions F is infinite.

Because NF(Ol) is a random variable, one may define the entropy

HF(l) := E {ln (NF(Ol))} (3.17)
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Figure 3.2: Sketch showing the space of distinguishable subsets (bold dots) of

the sample Ol, which are also subsets of the events Af over the set of functions

F .

where E means the expectation with respect to the density p(Ol).
Defining this quantity one can show:

Theorem 3.3.1. In order that (two-sided) uniform convergence over a set of

indicator functions Lf , f ∈ F , takes place, it is necessary and sufficient that

the condition

lim
l→∞

HF(l)

l
= 0 (3.18)

is satisfied.

Proof. See [Vapnik 1998],[Vapnik 2006].

The entropy HF(l) depends on the sample size as well as on the function

class. Unfortunately, it also depends on the distribution of the sample, which

is not known in advance.

Applying Jensen’s inequality (cf. App. A.1.2), we obtain

HF(l) ≤ ln (E {NF(Ol)}) ≤ ln

(
max
Ol
{NF(Ol)}

)
, (3.19)

where

GF(l) := ln

(
max
Ol
{NF(Ol)}

)
(3.20)

is called the Growth-Function.

Using the Growth-Function, Theorem 3.3.1 can be restated:

Theorem 3.3.2. In order that (two-sided) uniform convergence over a set of

indicator functions Lf , f ∈ F is true, it is necessary and sufficient that the

condition

lim
l→∞

GF(l)

l
= 0 (3.21)
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is satisfied.

The Growth-Function is distribution free, but not easy to compute. Thus,

a easy to compute approximation of the Growth-Function would be conve-

nient.

3.3.3 VC-Dimension

Suppose the set F would be as rich such that NF(Ol) = 2l. Then, it follows

GF(l) = l · ln(2), and thus the violation of the condition (Eq. 3.21).

Nevertheless, [Vapnik 1971] has shown, that any Growth-Function is lin-

ear, or there exists a maximum number l = h such that the Growth-Function

is bounded:

GF(l)

{
= l · ln(2) if l ≤ h

≤ h
(
ln
(
l
h

)
+ 1
)

if l > h
, (3.22)

(see Fig. 3.3).
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Figure 3.3: Graph bounding the Growth-Function, when successful learning

is possible.

Definition 3.3.1 (VC-Dimension). The quantity h is called VC-Dimension,

and it denotes the maximum number of points zi ∈ X ×Y , 1 ≤ i ≤ h that can

be decomposed in two subsets induced by a indicator function Lf , f ∈ F , in 2h

ways.

It is important to note, that the VC-Dimension of a set of functions is not

to be confused with the term complexity for the number of free parameters of

parameterized functions.

Applying a similar technique for bounding the rate of convergence as in the

finite case (Eq. 3.10), one gets following (one-sided) rate of convergence if F
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is of infinite cardinality (cf. [Vapnik 2006] or [Schölkopf 2002][pp. 136-138]):

P

(
sup
f∈F

(R(f)−Rl(f)) > ε

)
≤ 4 · exp

(
ln (E {NF(O2l)})−

ε2l

8

)
. (3.23)

Using the inequalities (Eq. 3.19) and the property (Eq. 3.22) of the

Growth-Function, it follows for l > h:

P

(
sup
f∈F

(R(f)−Rl(f)) > ε

)
≤ 4 · exp

(
h

(
ln

[
2l

h

]
+ 1

)
− ε2l

8

)
︸ ︷︷ ︸

=:ν

, (3.24)

and theorem (3.3.2) applies.

By definition of ν > 0 (Eq. 3.24), one obtains the relation

ε =

√
8

l

[
h

(
ln

[
2l

h

]
+ 1

)
− ln

(ν
4

)]
. (3.25)

Therefore, it holds at least with probability 1− ν for all f ∈ F (including the

minimizer f l of the empirical risk):

R(f) ≤ Rl(f) + ε. (3.26)

3.4 Structural Risk Minimization

The risk bound for a set of functions f ∈ F (assuming a indicator loss func-

tion)

R(f) ≤ Rl(f) + Φh

(
l

h

)
(3.27)

consists of two terms, namely the empirical risk Rl and the confidence term

Φh (x) :=

√
8

x

[
(ln (2x) + 1)− 1

h
ln
(ν

4

)]
, x > 1. (3.28)

If a large number l of samples is given, then the bound (Eq. 3.27) depends

mainly on the empirical risk. But if the sample size is small compared to the

VC-dimension, i.e. 1 < l/h is small, the influence of the confidence term is

significant. Thus, to obtain a low actual risk R, one has to optimize both

terms simultaneously.

An approach to find the minimizer f ∗ ∈ F of the right-hand side in (Eq.

3.27) is called Structural Risk Minimization (SRM) [Vapnik 1998].
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SRM suggests to introduce a structure S :=
⋃
k Fk,Fk ⊂ F such that

F1 ⊂ F2 ⊂ · · · ⊂ Fn (3.29)

and the VC-dimension of each element of the structure h(Fk) satisfies

h(F1) ≤ h(F2) ≤ · · · ≤ h(Fn). (3.30)

Given such a structure S (Fig. 3.4) determine the function f lk ∈ Fk of the

subset Fk, which is the minimizer of Rl. Then select from the set of minimizing

functions
{
f l1, . . . , f

l
n

}
a function f ∗ that minimizes the risk bound (Eq. 3.27).

Figure 3.4: Nested subsets of F used for the SRM method.

In the following, it will be shown how to construct a nested sequence of

subsets of the space of (affine-)linear decision functions, which is one of the

most important spaces for constructing classification algorithms.

3.5 Maximum Margin Hyperplanes

Consider a set of linear parameterized decision functions:

Flin :=

{
f : X → R

∣∣∣∣∣ f(x, c1, . . . , cn, b) :=
n∑
k=1

ckΦk(x) + b,

(c1, . . . , cn, b) ∈ Rn+1

}
(3.31)

with Φk : X → R.

Recall, the VC-dimension is defined as the maximum number h of points

x ∈ X that can be separated in two disjoint sets in all 2h ways using indicator

functions L
0|1
f (Def. 3.3.1).

Obviously, for a set of linear functions Flin (3.31) in Rn it holds h = n+ 1,

cf. (Fig. 3.5), thus this is also true for the set of 0/1-loss functions {L0|1
f : f ∈

Flin} with respect to the parameter space.
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Figure 3.5: An example of separating hyperplanes in two dimensions. Note,

h = 3 points can be linearly separated but four can not. In general, hyper-

planes in Rn separate a maximum of h = n+1 points in all 2h possible binary

classifications.

In view of the definition of the Growth-function (3.20) and its properties

(3.22), it follows for a sample Ol ⊂ X × Y , X := Rn of size l > h that the

number NFlin(Ol) of equivalence classes [f ] ⊂ Flin (Def. 3.15) is bounded by

NFlin(Ol) ≤ exp(h)

(
l

h

)h
, h = n+ 1. (3.32)

An appropriate structure S =
⋃
r Fr ⊆ Flin can be constructed by

F1 := ∅ (3.33)

Fr :=
{
f ∈ F : ρf/D > 1/

√
r − 1

}
for 2 ≤ r < n (3.34)

Fr := F for r ≥ n, (3.35)

where D is the diameter of the smallest sphere enclosing all vectors, and ρf
denotes the distance between the convex hulls of vectors x ∈ Rn separated by

functions f ∈ Fr into two classes (Fig. 3.6). The smallest distance

ρr := inf {ρf/D : f ∈ Fr} (3.36)

= min {ρf/D : [f ] ∈ [Fr]} , (3.37)

where [Fr] denotes the set of all equivalence classes with respect to Fr, equals

two times the maximum of the minimum distance, which is called the margin

ρ = ρr/2, between a hyperplane H and all points.

For a structure S constructed in this way, the following important lemma

holds:

Lemma 3.5.1. The number NFr(Ol) of equivalence classes in the structure

element Fr ⊆ Flin (i.e., functions linear in their parameters, cf. (3.31)) is

bounded by

NFr(Ol) ≤ exp(hr)

(
l

hr

)hr
(3.38)

for l > hr, where hr is the VC-Dimension of Fr bounded by

hr ≤ min

{
n,

⌈
D2

ρ2
r

⌉}
+ 1, (3.39)

n is the dimensionality of the feature space, and d·e is the ceiling function.

Proof. See [Vapnik 2006][pp. 323].
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Figure 3.6: Example of a separation of a set of points in two subsets induced

by a equivalence class [fr]. The distance ρr between the convex hulls of the sets

equals two times the maximum of the minimum distance (margin) between a

hyperplane H and the two classes of points.

The result of Lemma (3.5.1) and the bound on the actual risk (3.13) pro-

pose the following procedure for selecting an optimal linear decision function

f ∗ ∈ F : choose f ∗ such that the empirical error is minimized and the mini-

mum distance between a separating hyperplane induced by f ∗ to the convex

hulls of two classes of points is maximized. In particular, Lemma (3.5.1) is

important for explaining the generalization performance of Support Vector

Machines revisited in the next section. However, it is important to note, the

argument that SVMs implement the SRM principle is known to be flawed (for

a discussion of this issue, see e.g. [Burges 1998]). This is because the struc-

ture S constructed by SVMs is based on the training data which is known in

advance. And this contradicts the assumption of SRM, because the structure

S must be constructed before the data arrives. Nevertheless, Lemma (3.5.1)

strongly suggests that algorithms minimizing D2/ρ2
r can be expected to give

better generalization performance. In particular, one can show [Vapnik 1999]

the expectation of a test error Perr using maximum margin hyperplanes asso-

ciated to training sets of size l− 1 can be bounded by E(Perr) ≤ E(D2/ρ2
r)/l.

This result gives further evidence in the argumentation for a maximum margin

concept.

3.6 Support Vector Machines Revisited

As concluded from Lemma (3.5.1) of the preceding section, among all sepa-

rating hyperplanes Hf induced by linear decision functions f classifying two
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classes of points with empirical error Rl(f) = 0, the hyperplane Hf∗ (respec-

tively the function f ∗ ∈ F) that maximizes a margin ρ has to be preferred

in order to minimize the actual risk R. Moreover, the VC-Dimension h∗ of a

family of maximum margin separating hyperplanes can be much smaller than

the VC-Dimension of non-restricted hyperplanes in Rn, i.e. h∗ ≤ h = n + 1.

It follows the probability that a maximum margin hyperplane missclassifies a

test sample is bounded at least with probability 1− ν by

Perr(f
∗) ≤

√
8

l

[
h∗
(

ln

[
2l

h∗

]
+ 1

)
− ln

(ν
4

)]
(3.40)

with VC-Dimension

h∗ ≤ min

{
n,

⌈
D2

ρ2

⌉}
+ 1 (3.41)

where n is the dimension of the feature space, D is the radius of a data

enclosing sphere, and ρ denotes the margin.

3.6.1 The Separable Case

Recall the Perceptron Algorithm introduced in Section (2.3.3) in case of lin-

ear separability. The signed distance between a point x and a separating

hyperplane f ∈ Flin with f(x) := wTΦ(x) + b is given by

ρ =
1

‖w‖
(wTΦ(x) + b). (3.42)

Now, consider a training set ON containing points of two classes that are

linear separable, i.e. there exist a margin ρ > 0 (For the non-linearly separable

case refer to Section (3.6.2)). Then, the requirements that RN(f) = 0, i.e.

∀1 ≤ i ≤ N : (wTΦ(xi)+b) ·yi > 0, as well as that all points have to maintain

a distance of at least ρ > 0 to the hyperplane Hf can be written

∀1 ≤ i ≤ N :
1

‖w‖
(wTΦ(xi) + b) · yi ≥ ρ. (3.43)

For anyw and b satisfying these constraints, also any positively scaled multiple

satisfies them. Hence the constraints can be arbitrarily rewritten with ρ := 1
‖w‖

as

∀1 ≤ i ≤ N : (wTΦ(xi) + b) · yi ≥ 1. (3.44)

Due to this rescaling, the optimal hyperplane is in canonical form such that

its margin is given by ρ = 1/‖w‖ (Fig. 3.7).
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Figure 3.7: Canonical maximum margin hyperplane with four points on the

margin boundary.

Because a maximization of 1/‖w‖ is conveniently equivalent to a mini-

mization of (1/2)‖w‖2, it follows the optimization problem of the Support

Vector Machine in case of two linearly separable classes:

Algorithm 3.6.1 Support Vector Machine (Hard-Margin, Primal Version)

[Vapnik 1999]

Require: Training set ∅ 6= ON ⊂ Z = X × Y , a mapping Φ : X → H ⊆ Rn.

Ensure: ∃(xj, yj), (xi, yi) ∈ ON : yj = −1∧ yi = 1, both classes are linearly

separable in H

min
(w,b)∈Rn+1

1
2
‖w‖2 (3.45)

s.t. ∀1 ≤ i ≤ N : (wTΦ(xi) + b) · yi − 1 ≥ 0 (3.46)

The SVM optimization problem can be solved using Lagrange duality

(App. A.3.4). Define the Lagrange function L : Rn × R× RN → R with

L(w, b,α) :=
1

2
‖w‖2 −

N∑
i=1

αi
(
(wTΦ(xi) + b) · yi − 1

)
. (3.47)

In order to determine the dual function

DL(α) := inf
{
L(w, b,α) : (w, b) ∈ Rn+1

}
, (3.48)

the derivatives of the Lagrange function with respect to the parameters (w, b)
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have to be set to zero yielding:

w =
N∑
i=1

αiyiΦ(xi) (3.49)

0 =
N∑
i=1

αiyi. (3.50)

The infimum in (3.48) is finite, if and only if the linear constraint (3.50) is

satisfied, and it is uniquely attained for optimal weights given by equation

(3.49). Thus, using (3.50) and (3.49) in (3.48) gives the dual function of the

SVM for all α ∈ RN :
∑N

i=1 αiyi = 0:

DL(α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj〈Φ(xi),Φ(xj)〉2. (3.51)

The dual function is a concave (quadratic) function (App. A.3.2). Thus, in

virtue of the strong duality theorem from convex optimization theory (App.

A.3.4.2), the SVM algorithm can equivalently reformulated:

Algorithm 3.6.2 Support Vector Machine (Hard-Margin, Dual Version)

[Vapnik 1999]

Require: Training set ∅ 6= ON ⊂ Z = X × Y , a mapping Φ : X → H ⊆ Rn

Ensure: ∃(xj, yj), (xi, yi) ∈ ON : yj = −1∧ yi = 1, both classes are linearly

separable in H

max
α∈RN

∑N
i=1 αi −

1
2

∑N
i=1

∑N
j=1 αiαjyiyj〈Φ(xi),Φ(xj)〉2 (3.52)

s.t. ∀1 ≤ i ≤ N : αi ≥ 0 (3.53)∑N
i=1 αiyi = 0 (3.54)

Due to the Karush-Kuhn-Tucker optimality conditions (App. A.3.3) the

unique global solution α∗ of (3.52), (3.53), (3.54) must satisfies the equations

∀1 ≤ i ≤ N : α∗i
(
(wTΦ(xi) + b) · yi − 1

)
= 0. (3.55)

From these, we can conclude for all α∗i > 0 it must hold (wTΦ(xi)+b)yi−1 =

0, i.e. the corresponding vectors Φ(xi) are on the margin boundary. A vector

for which α∗i is strictly positive, is called Support Vector (SV). The Support

Vectors are essential for constructing the maximum margin hyperplane (3.49),
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because for vectors that are far away from the hyperplane and are classified

on the correct side it holds (wTΦ(xi) + b)yi − 1 > 0 and therefore α∗i = 0. In

Figure (3.7) four Support Vectors are shown.

The decision function of the SVM reads as

g(x) = sign

 ∑
i : α∗i>0

α∗i yi〈Φ(xi),Φ(x)〉2 + b∗

 (3.56)

where the optimal bias b∗ is usually determined from the Equations (3.55)

using some Support Vectors. Although theoretically not necessary, but be-

cause of numerical reasons, often b∗ is computed by averaging the solutions of

(3.55) for more than one Support Vector. For example consider two Support

Vectors Φ(xi) with yi = 1, αi > 0 and Φ(xj) with yj = −1, αj > 0. Taking

the arithmetical mean of the solutions b(Φ(xi)) and b(Φ(xj)) obtained from

the associated Equations (3.55) yields

b∗ = −

∑
k : α∗k>0

α∗kyk〈Φ(xk),Φ(xj) + Φ(xi)〉2

2
. (3.57)

3.6.2 The Nonseparable Case

So far, we assumed that the two classes of points of a training set ON are

linear separable. This is seldom the case for real-world data. Indeed, the

classes almost always overlap in the feature space. In order to deal with the

overlap, one still maximize the margin ρ, but one allows for some points to be

on the wrong side of the margin.

Figure 3.8: Maximum soft-margin hyperplane in case of overlapping classes.

Four points are on the wrong side of the margin by an amount ξ̂i = ρξi.

For this purpose so-called slack variables ξ := (ξ1, . . . , ξN) ≥ 0 are intro-

duced and the constraints (3.43) are modified to be

∀1 ≤ i ≤ N :
1

‖w‖
(wTΦ(xi) + b) · yi ≥ ρ(1− ξi). (3.58)
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Thus the value of ξi is proportional to the distance a point Φ(xi) is on the

wrong side of the margin boundary (Fig. 3.8). If ξi > 1, then a misclassifica-

tion occurs. Normalizing the constraints (3.58) with ρ = 1/‖w‖ as in (3.43)

yields

∀1 ≤ i ≤ N : (wTΦ(xi) + b) · yi ≥ 1− ξi. (3.59)

In order to get the best compromise between minimizing the total amount

of margin errors
∑N

i=1 ξi and maximizing the margin size (1/2)‖w‖2, the ob-

jective is to minimize (1/2)‖w‖2 + C
∑N

i=1 ξi with fixed C > 0. The con-

stant C controls the trade-off between minimum margin errors and maxi-

mum margin size. Alternatively, a (local) optimal maximum margin hyper-

plane can found by e.g. minimizing the number of correctly classified samples

[Wendemuth 1995].

Applying the Lagrangian dual approach in the same way as shown in case

of the SVM hard-margin algorithm (3.6.2), the soft-margin version of the SVM

algorithm can be obtained:

Algorithm 3.6.3 Support Vector Machine (Soft-Margin, Dual Version)

[Vapnik 1999]

Require: Training set ∅ 6= ON ⊂ Z = X × Y , a mapping Φ : X → H ⊆ Rn,

trade-off paramater C > 0.

Ensure: ∃(xj, yj), (xi, yi) ∈ ON : yj = −1 ∧ yi = 1

max
α∈RN

∑N
i=1 αi −

1
2

∑N
i=1

∑N
j=1 αiαjyiyj〈Φ(xi),Φ(xj)〉2 (3.60)

s.t. ∀1 ≤ i ≤ N : 0 ≤ αi ≤ C (3.61)∑N
i=1 αiyi = 0 (3.62)

The only difference compared to the hard-margin SVM algorithm is the

box-constraint (3.61). The decision function reads as

g(x) = sign

 ∑
i : α∗i>0

α∗i yi〈Φ(xi),Φ(x)〉2 + b∗

 (3.63)

where b∗ can be obtained from the Karush-Kuhn-Tucker conditions

∀1 ≤ i ≤ N : α∗i
(
(wTΦ(xi) + b) · yi − 1 + ξi

)
= 0 (3.64)

using Support Vectors with 0 < αi < C for which one can show that ξi = 0.

Because of numerical reasons, often b∗ is computed as in (3.57) by averaging
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solutions of (3.64) with respect to b using more than one Support Vector. For

example using two Support Vectors Φ(xj),Φ(xi) with class labels yj = −1

respectively yi = 1 and 0 < αi, αj < C yields

b∗ = −

∑
k : α∗k>0

α∗kyk〈Φ(xk),Φ(xj) + Φ(xi)〉2

2
. (3.65)

3.6.3 Mercer Kernel Hilbert Space

One can see from the SVM algorithms (3.6.2), (3.6.3) and the decision function

(3.63), the data is only involved via Euclidean inner products 〈Φ(x),Φ(y)〉2.

The inner products are evaluated in a feature space H implied by some trans-

formation Φ : X → H. Thus, in order to obtain a nonlinear decision function

in the original data space X , one has to transform the data via Φ into a high-

dimensional feature space first. Then, the SVM learns a maximum margin

hyperplane in the feature space using the inner products, while the implicit

back-projection gives a nonlinear decision boundary in the raw data space

(Fig. 2.11).

Because such a data transformation into spaces with very high dimension

is computational intractable, one uses following theorem in order to implicitly

evaluate the inner products:

Theorem 3.6.1 (Mercer’s Condition, cf. [Courant 1953]). To guarantee that

a symmetric function k : X × X → R from L2 has an expansion

k(x,y) :=

NH∑
k=1

akΨk(x)Ψk(y) (3.66)

with positive eigenvalues ak > 0 and eigenfunctions Ψk, i.e. k describes an

inner product in some Hilbert space H of either finite or infinite dimension

NH, it is necessary and sufficient that the condition∫
X

∫
X
k(x,y)f(x)f(y) dx dy > 0 (3.67)

holds for all f 6= 0 with ∫
X
f 2(x) dx <∞. (3.68)

Proof. See [Mercer 1909].
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Note, it follows a function k : X×X → R is a kernel, if for all N ∈ N and all

x1, . . . ,xN ∈ X the kernel matrix K ∈ RN×N with elements Kij := k(xi,xj)

is real, symmetric and positive definite.

Mercer’s theorem states a correspondence of a function k ∈ L2 (kernel

function) and its associated (pre-)Hilbert space H (Def. A.2.3). This enables

to implicitly evaluate the inner products 〈Φ(x),Φ(y)〉2 = k(x,y) for transfor-

mations Φ with components Φk(x) :=
√
akΨk(x) without explicitly applying

Φ. The correspondence of k and H is not unique, because for a given kernel

there are usually many different feature spaces possible. For example consider

the kernel k(x,y) := 〈x,y〉2 that has following equivalent finite factorizations

k(x,y) = 〈Φ1(x),Φ1(y)〉2 = 〈Φ2(x),Φ2(y)〉2 using

Φ1(x) :=

 x2
1√

2x1x2

x2
2

 (3.69)

Φ2(x) :=
1√
2

 x2
1 − x2

2

2x1x2

x2
1 + x2

2

 . (3.70)

Figure (3.9) visualizes the mappings under Φ1 and Φ2 from R2 to R3.
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Figure 3.9: Two different Hilbert spaces embeddings represented by a kernel

function.

Thus, in order to obtain nonlinear decision boundaries using SVMs (e.g.

Fig. (3.10)) the inner products appearing in the Algorithms (3.6.2), (3.6.3)

and the decision function (3.63) have to be substituted by appropriate kernel

functions satisfying the Mercer’s condition. Unfortunately, the Mercer’s con-

dition is proved only for a handful of kernels, summarized in Section (3.6.5).

However, a remarkable property of kernel based SVMs is, that although actu-

ally learning a hyperplane in a space even of infinite dimension, a solution of
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Figure 3.10: Nonlinear decision boundaries learnt by different SVMs.

the SVM is always built-up of a finite linear combination of kernel functions.

This result is known as Representer Theorem [Kimeldorf 1971] (see Section

(4.2.3), or refer to [Schölkopf 2002] and references therein).

In this section we noted, that many equivalent Hilbert spaces with respect

to the kernel function exist. Because of its importance in analyzing SVM

feature mappings, we additionally introduce in the next section the so-called

Reproducing Kernel Hilbert Space (RKHS).

3.6.4 Reproducing Kernel Hilbert Space

Given a kernel function k : X ×X → R with non-empty and finite data space

X (also called index set), one can define a feature map Φ : X → H using

Φ(x) := k(·,x). That means, the data space is mapped to the space

H := span{k(·,x) : X → R | x ∈ X}, (3.71)

which is spanned by the kernel functions over X . Thus, H is a linear space.

In order to turn the space H also into a Hilbert space (App. (A.2.3)), we

have to endow the space with an appropriate inner product first and second

we have to complete it1. For the former, consider two arbitrary sequences

(x̂i)
N
n=1 ∈ X , N ∈ N and (x̌m)Mm=1 ∈ X ,M ∈ N and the functions g, f ∈ H

with

f(x) :=
N∑
n=1

αnk(x, x̂n) (3.72)

1completed means that every Cauchy sequence in H converges in the induced metric to

an element of H
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and

g(x) :=
M∑
m=1

βmk(x, x̌m). (3.73)

where αi, βm ∈ R.

Now, we show that

〈f, g〉H :=
N∑
n=1

M∑
m=1

αnβmk(x̂n, x̌m) (3.74)

is a well-defined inner product 〈·, ·〉H : H×H → R (cf. App. (A.2.3)):

1. By definition, it holds 〈f, g〉H =
∑N

n=1 αng(x̂n) =
∑M

m=1 βmf(x̌m) =

〈g, f〉H (symmetry and bilinearity).

2. Because k is a kernel it holds 〈f, f〉H =
∑N

n=1

∑M
m=1 αnαmk(x̂n, x̂m) ≥

0 (positivity).

3. By definition, it holds 〈k(·,x), f〉H = f(x) and in particular

〈k(·,x), k(·, x̂)〉H = k(x, x̂) (reproducing kernel property), (3.75)

thus in virtue of the Cauchy-Schwarz inequality we get

|f(x)|2 = |〈k(·,x), f〉H|2 ≤ k(x,x) · 〈f, f〉H. (3.76)

This implies 〈f, f〉H = 0 if and only if f = 0.

It follows, the Reproducing Kernel Hilbert Space (RKHS) R := (H, 〈·, ·〉H)

is a well-defined inner product space. Moreover, because of the reproducing

kernel property, it holds 〈Φ(x),Φ(y)〉H = k(x,y) showing that R is a further

possible example of a feature space implied by a kernel k, respectively the

feature map Φ.

3.6.5 Kernel Functions

In the preceding sections, we presented two feature spaces, namely Mercer

Kernel Hilbert Spaces and Reproducing Kernel Hilbert Spaces. Both are

implied by the choice of a particular kernel function. Recall, a function k :

X × X → R is called a kernel, if it satisfies the Mercer’s condition (Theorem

(3.6.1)). In the following, we summarize the few functions k that are proved

to be kernels usable for SVMs (for some proofs and more details, we refer the

reader to e.g. [Burges 1998], [Schölkopf 2002]):

• Radial Basis Function (RBF) kernel

k(x,y) = exp
(
−γ ‖x− y‖2

2

)
, γ > 0 (3.77)
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• Polynomial kernel

k(x,y) = (〈x,y〉2 + c)d , c ≥ 0, d ∈ N (3.78)

• Dirichlet kernel

k(x,y) =
sin ((N + 1/2)(x− y))

2 sin ((x− y)/2)
, N ∈ N (3.79)

• B-spline kernel

k(x,y) = B2p+1(‖x− y‖2), p ∈ N (3.80)

The kernel computes B-splines of order 2p + 1 defined by (2p + 1)-

fold convolution of indicator functions I[− 1
2
, 1
2

](x) := 1 if x ∈ [−1
2
, 1

2
],

otherwise I[− 1
2
, 1
2

](x) := 0.

• natural kernel

k(x,y) = ∇ϑ ln p(x|ϑ)M−1∇ϑ ln p(y|ϑ),M � 0 (3.81)

Natural kernels are particular scalar products, defined by a positive

definite matrix M, measuring similarities between data which has been

transformed to a so-called score-space [Schölkopf 2002]. In case of Mij :=∫
X ∂ϑi ln p(x|ϑ)∂ϑj ln p(x|ϑ)p(x) dx the natural kernel is called Fisher-

kernel [Jaakkola 1999]. Setting M := I one obtains the so-called Plain

kernel [Schölkopf 2002].

• convolution kernel [Haussler 1999]

k(x,y) =
∑
~x∈Rx

∑
~y∈Ry

D∏
d=1

kd(xd, yd) (3.82)

Strictly speaking, a convolution kernel is a general way of constructing

kernels using a set of kernels kd : Xd×Xd → R for structured objects x ∈
X , which can be composed by parts ~x := (x1, . . . , xD) ∈ X1 × · · · × XD.

The set Rx contains all possible decompositions of x defined through

a specific relation [Haussler 1999]. For example, for the decomposi-

tion X = X1 × · · · × XD, the relation R(~x,x) := {(~x,x) : ~x = x} and

kd(xd, yd) := exp(− |xd−yd|
2

2σ2 ), the associated convolution kernel equals the

RBF-kernel. Also the ANOVA-kernel [Wahba 1990] and the Gibbs-

kernel [Haussler 1999] are special cases of convolution kernels.

Among the explicitly mentioned kernels, the closure properties of the set

of feasible kernels enables to construct kernels k : X ×X → R from following

operations [Schölkopf 2002]:

k(x,y) = α1k1(x,y) + α2k2(x,y) (linearity) (3.83)

k(x,y) = k1(x,y) · k2(x,y) (pointwise product) (3.84)

k(x,y) = f(x)k(x,y)f(y), fpositive (conformal transform). (3.85)
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Summary

In this chapter, we introduced statistical learning theory for the purpose of

motivating the idea of a maximum margin classification. In comparison to the

empirical risk minimization, the structural risk minimization (SRM) principle

proposes to select among all separating hyperplanes the one that maximizes

the margin. The maximum margin hyperplane has the lowest bound on the

VC-Dimension (Lemma (3.5.1)) and thus minimizes the bound on the actual

risk. We discussed that the SVM approximates the idea of SRM, and we

derived the SVM algorithms. Although the SVM learns a linear decision

function it can be generalized to nonlinear ones using kernel functions. Kernel

functions induce a feature map into a high-dimensional feature space (Hilbert

space), if and only if the Mercer’s condition is satisfied. We reviewed two

concepts for identifying kernels with an associated Hilbert space, and functions

known to be kernels are presented too.

In the next chapter we discuss that SVMs have a drawback albeit their

nice properties. This drawback is due to the severe restriction of SVMs to the

use of kernel functions satisfying the Mercer’s condition, only. For example

it limits the application of SVMs in cases where similarity functions are the

appropriate choice. However, we show in this thesis that it is possible to

overcome the restriction to kernel functions while maintaining the preferable

maximum margin concept not just theoretically but also practically.



Chapter 4

The Shortcoming of SVMs and

Ways to Resolve It

Contents
4.1 Pseudo-Kernels used in SVMs . . . . . . . . . . . . . . 55

4.2 Distance based Maximum Margin Classification . . . 57

4.2.1 Hilbert Spaces induced by Semi-Metric Spaces . . . . 58

4.2.2 Kuratowski Embedding . . . . . . . . . . . . . . . . . 59

4.2.3 Subalgebra of Lipschitz Functions . . . . . . . . . . . 61

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Chapter (3) introduced the fundamentals of statistical learning theory

to explain the benefits of SVMs compared to other pattern recognition

approaches (Chapter (2)). It was concluded, that maximum margin hyper-

planes are crucial for a good generalization performance. In Section (3.6) we

demonstrated how SVMs algorithmically realize a maximum margin hyper-

plane while Section (3.6.3) discussed how linear SVMs can be generalized to

nonlinear SVMs via the ”kernel-trick”. Although kernel functions permit the

efficient learning of maximum margin hyperplanes in spaces of very high di-

mensions, they impose severe restrictions on the decision functions that are

possible to implement with SVM classifiers. It was shown that a solution of

the SVM problem is build up of a finite expansion of inner products between

given data points lying within some feature space (Hilbert Space). Kernels

must satisfy specific mathematical properties, namely the Mercer’s condition

(Theorem (3.6.1)), before they represent the geometrical structure of a fea-

ture space. Mercer’s condition, however, has only be proven for a handful of

kernels, which means that SVMs are not suitable for handling classification

problems that are not appropriately solvable with kernels such as those pre-

sented in Section (3.6.5) or derivatives of them. Vice versa, generalization

properties are not guaranteed if using decision functions based on other types

of functions in SVMs. At first glance, one could argue that the presented ker-

nels, albeit few, cover most cases that occur in practice. However, in practice,
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there is a need of using decision functions which e.g. facilitate a priori knowl-

edge of the problem or represent a particular structure of the data that has

to be classified. Particular knowledge of a classification problem is based on

the experience of the classifier’s designer, or is dedicated by the preprocessing

(feature extraction) of the recognition system or other design goals. To make

matters worse, a priori knowledge is often formulated in a very intuitive way.

For example, in Optical Character Recognition (OCR) it is known that the

data is subject to any transformations, like shifts or rotations. Clearly, at best

the decision function should be invariant with respect to such transformations.

An intuitive way to reach this goal is to classify samples based on invariant

similarity measures comparing two samples. Unfortunately, many similarity

measures suitable for such a task are not usable in SVMs. In general it is

mostly not possible to translate a desired similarity to a kernel function, nor

via such general construction methods like the convolution kernel presented

in Section (3.6.5). On the other hand, if using arbitrary functions in the

SVM algorithm violating the Mercer’s condition, then one might not expect

improved generalization performance justified due to the maximum margin

philosophy. Moreover, the SVM algorithm does not guarantee to converge to

a global solution of the SVM optimization problem. So, strictly speaking, the

learnt classifier must not be called SVM. Despite this, many researcher had

tried to use non-kernel functions in the SVM algorithm in the past. Exam-

ples of non-kernel functions used in SVMs are given in Section (4.1). These

examples suggest that there is a practical need of a larger variety of decision

functions suitable for an application, and in particular in a maximum margin

concept due to the good generalization performance compared to other ap-

proaches. This is the reason, why recently new methods have been proposed

to overcome the limitations of SVMs (Sec. (4.2)). In particular, the approach

summarized in Section (4.2.1) can be viewed as an extension of the classical

SVM to a subset of distance functions. A more general concept is the mapping

of the data space and the decision function space simultaneously into general

spaces endowed with suitable mathematical properties. This enables to define

separating hyperplanes and a margin for larger function classes than acces-

sible to SVMs. Such a particular embedding is presented in Section (4.2.2).

We also review in Section (4.2.3) a related approach for distance based clas-

sification that uses a subset of the space of so-called Lipschitz functions. By

now, all these methods have in common to be related to the most general

framework focused in the next Chapter (5) because of its importance for the

present thesis.
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4.1 Pseudo-Kernels used in SVMs

We emphasize again, the interpretation of a SVM as a maximum margin

separating hyperplane in a Hilbert space holds, if and only if the associated

inner product can be represented by a function, called kernel (Sec. (3.6.5),

satisfying the Mercer’s condition (Theorem (3.6.1)).

Despite this, a misleading misnomer can be observed in literature: func-

tions are also called kernels and are actually used in SVMs, although they do

not satisfy the Mercer’s condition. Therefore, we use in the following the term

pseudo-kernels to distinguish explicitly kernels from non-kernel functions.

In fact, if using pseudo-kernels in the SVM algorithms the resulting clas-

sifier is not a SVM and justification by the maximum margin concept as con-

cluded from statistical learning theory (Chapter (3)) does not apply. More-

over, a global solution of the quadratic SVM objective (3.60) is also not guar-

anteed due to the indefiniteness of the involved kernel matrix. Nevertheless,

the many applications, where pseudo-kernels have been used in SVMs, sug-

gest the necessity of more flexibility in choosing suitable decision functions,

but without a loss of generalization performances expected from maximum

margin classifiers. In our opinion, this goal can only be reached satisfyingly

through the development of new classification methods generalizing SVMs.

This can also be concluded by reported results obtained in applications of

pseudo-kernels in SVMs. For example, in [Haasdonk 2002] so-called tangent

distance-”kernels” are used in SVMs for solving an OCR application. The

idea behind tangent-distances is to approximate locally at the training points

the nonlinear manifold of possible transformations the data is subject to by a

linear space (tangent-space). Then the similarity of a test point and a training

point is defined as the Euclidean distance between the test point and its projec-

tion to the tangent-space associated to the training point. In this way, tangent-

distances incorporate a priori knowledge about local invariances. Although the

tangent-distance dtan(x,y) is not a metric, [Haasdonk 2002] used it regardless

in the RBF-kernel via substitution, i.e. ktan(x,y) = exp(−γdtan(x,y)), for

classifying the USPS data (cf. Sec. (2.4.4)). Because dtan is not a metric it fol-

lows ktan is not a kernel function. However, this approach resulted in a test er-

ror of 3.4% compared to 4.0% using SVMs with standard RBF-kernel. On the

other hand, in essence a very similar approach to incorporate local invariances

is to generate Virtual Support Vectors (VSV) by applying transformations like

shifts and rotations [Schölkopf 1996] to the set of Support Vectors found by

a standard RBF-SVM. Then a new SVM is trained on the set of VSVs in or-

der to get a classifier that is invariant to such transformations. This method

reached a test error of 3.2% using the USPS dataset, which is a better result

than obtained by using tangent-distances indirectly in RBF-SVMs. Together
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with the superior result of 2.4% test error applying a Bayesian approach us-

ing also tangent-distances indirectly in RBF-kernel-densities [Keysers 2000]

let us conclude that SVMs do not completely facilitate the incorporation of

transformation invariances when using tangent-distances in RBF-kernels.

Another very prominent example of a pseudo-kernel used in SVMs is the

function

f(x,y) := tanh (κ〈x,y〉+ ϑ) (sigmoid ”pseudo-kernel”). (4.1)

The sigmoid pseudo-kernel is not positive definite for most of its parameters

(κ, ϑ) ∈ R × R and even of the data itself. A few settings for which the sig-

moid function satisfies the Mercer’s condition were observed just empirically

in [Vapnik 1999]. Hence in general the sigmoid function is not a kernel func-

tion. Nevertheless, this pseudo-kernel is very popular for SVMs because of its

relation to the activation function of neural networks (Sec. (2.4.1)). It was

used for example in handwritten digit recognition [Vapnik 1999].

Further examples are given by the

• dynamic time warping-”pseudo-kernel” e.g. [Lei 2007]

• jittering-”pseudo-kernel” [DeCoste 2002], [Bahlmann 2002]

• Kullback-Leibler Divergence-”pseudo-kernel” [Moreno 2003]

which are frequently used in SVMs for image recognition or for classification

of vector sequences of different length.

Mostly, pseudo-kernels are constructed by simply substituting the eu-

clidean metric ‖x − y‖2 that is used in the RBF-kernel function (3.77) with

a suitable similarity function d : X × X → R, d(x,y) ≥ 0, d(x,y) =

d(y,x) ∀x,y ∈ X , i.e.

k(x,y) = exp
(
−γd(x,y)2

)
, γ > 0. (4.2)

The RBF-kernel can be shown to satisfy the Mercer’s condition as long as the

euclidean metric ‖x − y‖2 is substituted with a metric function, i.e. it also

holds d(x,y) = 0 ⇔ x = y as well as the triangle inequality (App. (A.2.1)).

But this condition is mostly not true for an arbitrary similarity function.

On the other hand, using similarity functions to build up a classification

function is particularly desirable in cases in which prior knowledge can be

encoded in terms of a measure of similarity (for example the encoding of lo-

cal invariances via tangent-distances). In biological informatics, often such

similarity functions are defined to emphasize specific gene expressions. For

example in [Selinski 2005], similarities for clustering particular gene expres-

sions are investigated for the purpose of analyzing the influence and interac-

tion of single nucleotide polymorphic (SNP) loci and exogenous risk factors
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to develop breast cancer. In [Cha 2006], different distance measures between

binary vectors are investigated on biometric and handwritten digit data.

Likewise, for the classification of vector sequences of different length the

use of similarities is tempting. For example in [Moreno 2003], the Kullback-

Leibler divergence is used to handle the sequence classification problem by

applying the symmetric divergence

d (p(x|ϑi), p(x|ϑj)) :=

∫
p(x|ϑi) ln

(
p(x|ϑi)
p(x|ϑj)

)
+ p(x|ϑj) ln

(
p(x|ϑj)
p(x|ϑi)

)
dx

(4.3)

to the RBF-kernel function yielding

k(p(x|ϑi), p(x|ϑj)) := exp
(
−γd (p(x|ϑi), p(x|ϑj))2) . (4.4)

Thus, each data point x ∈ X can be viewed to be preprocessed by a transfor-

mation to the space spanned by the likelihoods of generating the example from

an associated generative model. The symmetric Kullback-Leibler divergence

(4.3) is not a metric and therefore, if used in the SVM quadratic the resulting

classifier is again not a maximum margin classifier nor a SVM. However, the

use of information theoretic measures of similarity between generative models

is a promising way to handle vector sequences. Additionally, prior knowledge

about the problem at hand could also be incorporated using (4.3) in a static

maximum margin classifier via prior probabilities. An admissible application

of the Kullback-Leibler distance would also extend the investigations (Chap-

ter (2.4.3)) in replacing the acoustic models used in speech recognition with

static SVM classifiers.

A further motivation for similarity-based classification is the use of dis-

tances from cluster algorithms. Often, cluster algorithms are used to pre-

process data in order to subsequently learn a classification. A natural way

would be to use the same distance functions to construct classifiers and to

facilitate the same geometrical structure. In the past, many similarities have

been developed to solve highly data-dependent problems of clustering. Un-

fortunately, these similarities can not be used directly in a maximum margin

classifier like SVMs, because they do not satisfy the metric property.

In the next sections, we review related work concerning to overcome the

restrictions of SVMs and to admissibly use similarity functions.

4.2 Distance based Maximum Margin Classi-

fication

In case of non metric functions, recently in [Chen 2009] some heuristics, called

spectrum clip, spectrum flip or spectrum shift, have been experimentally stud-
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ied and compared using different similarity-based classifiers. The proposed

heuristics are based on the idea to modify the eigenvalues of a similarity ma-

trix D := (d(xi,xj))i,j ∈ RN×N (spectrum of D) such that it becomes positive

definite, i.e. it becomes a kernel matrix valid for SVMs. Improvements for

SVMs in some situations are reported in [Chen 2009], using similarities in this

way. The results show, that similarity based decision functions can perform

well, if chosen appropriately to the data. On the other hand, the spectrum

modifications distort the original similarity such that it is difficult to select

the similarity based on prior knowledge in advance or to interpret the results.

Thus, to use similarity functions without any modification directly in a maxi-

mum margin classifier, one has to generalize the idea of the maximum margin

separating hyperplane to other spaces than Hilbert spaces.

4.2.1 Hilbert Spaces induced by Semi-Metric Spaces

In the past, feature spaces more general than Hilbert spaces had attracted

little attention from the machine learning community. The reason might be,

that the few available publications addressing this issue are almost completely

of theoretical value from which it seems difficult to derive usable algorithms.

In this context, the work of [Hein 2004] has to be noted, in which two

different injective and structure preserving mappings (also called embeddings)

are proposed.

Given a (semi-)metric d : X × X → R, it is shown in [Hein 2004] that

any (semi-)metric space M := (X , d) (cf. App. A.2.1) can be embedded (not

uniquely) in a corresponding Hilbert space H as long as −d2 is Conditional

Positive Definite (CPD). Conditional positive definiteness of −d2 is equivalent

with the requirement that
∑N

n,m=1 cncmd
2(xn,xm) ≤ 0 holds for all N ∈

N, cn, cm ∈ R with
∑N

n=1 cn = 0 (cf. [Schölkopf 2002][pp. 48-50]).

If CPD is satisfied, a (semi-)metric space M can be (isometrically1) em-

bedded into a Reproducing Kernel Hilbert Space (RKHS) (Sec. (3.6.4)) via

the feature map

x 7→ Φd
x(·) := k(x, ·) = −1

2
d2(x, ·) +

1

2
d2(x,x0) +

1

2
d2(x0, ·) (4.5)

with arbitrary chosen x0 ∈ X in advance. Vice versa, it has been proved, that

any CPD-kernel k : X × X → R induces a (semi-)metric

d(x,y) =
√
k(x,x) + k(y,y)− 2k(x,y) (4.6)

on X , such that −d2 is also CPD. One can show a optimal SVM decision

function using Φd
x is spanned by functions −1

2
d2(x,y).

1Isometrically means that the embedding is bijective and (semi-)metric preserving.
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In addition it is important to note, the use of semi-metrics in SVMs as-

sumes implicitly some kind of global invariance in the data [Hein 2004]. This

is often not the case, or if there is some kind of global invariance it is difficult

to construct a semi-metric that reflects it. For example imagine the case, in

which there are points x 6= y ∈ M such that d(x,y) = 0 holds. Obviously,

these points are not separable by hyperplanes defined according to the semi-

metric d. If this situation is not consistent with some invariance in the data,

such a SVM- or any other distance based classifier is doomed to failure.

4.2.2 Kuratowski Embedding

However, the (semi-)metric spaces that can be embedded into Hilbert spaces

usable in SVMs are limited to a subspace of all (semi-)metric spaces, because

of the constraint that −d2 has to be CPD.

Therefore, in [Hein 2004] also a more general embedding is proposed and

analyzed. The proposed embedding is called Kuratowski embedding and it is

an isometric mapping of a metric space M = (X , d) to a Banach space (cf.

App. A.2.2) B := (D̄, ‖ · ‖∞) ⊂ (C(X ,R), ‖ · ‖∞) with D := span{Φx : x ∈
X},x ∈ X 7→ Φx := d(x, ·)− d(x0, ·) That means, B is a subset of the space

C(X ,R) of continuous functions defined on a compact X endowed with the

supremum norm ‖f‖∞ := supx∈X |f(x)|.
Simultaneously, it is shown [Hein 2004] that the space of all linear function-

als B′ defined on B is isometrically isomorphic to the Banach space (Ē , ‖ · ‖E)
with E := span{Ψx : x ∈ X},x ∈ X 7→ Ψx := d(·,x)−d(x0,x) (x0 ∈ X arbi-

trary chosen) and ‖e‖E := inf
{∑

i∈I |βi| : e =
∑

i∈I βiΨxi ,xi ∈ X , |I| <∞
}

.

This observation enables us to determine a margin and a separating hy-

perplane in B′, which in turn can be expressed in the Banach space (Ē , ‖ · ‖E)
resulting in the following maximum margin classification algorithm:

Algorithm 4.2.1 Max. Margin Classifier using (Ē , ‖ · ‖E) (Hard-Margin)

[Hein 2004]

Require: Training set ∅ 6= Ol ⊂ Z = X × Y , x0 ∈ X , a metric d

Ensure: ∃(xj, yj), (xi, yi) ∈ Ol : yj = −1 ∧ yi = 1, both classes are linearly

separable in B

inf
e∈E,b∈R

‖e‖E = inf
m∈N,(x1,...,xm)∈Xm,b∈R,(β1,...,βm)∈Rm

∑m
i=1 |βi| (4.7)

s.t. ∀(xj, yj) ∈ Ol : yj (
∑m

i=1 βi (d(xj,xi)− d(x0,xi)) + b) ≥ 1 (4.8)
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Algorithm (4.2.1) can be derived, because the geometry of maximum mar-

gin hyperplanes in Hilbert spaces carries over to Banach spaces [Zhou 2002].

For this purpose consider two separable data sets H1,H2 of a Hilbert space H.

Then, the standard optimization formulation for finding the optimal maximum

margin hyperplane as shown in Section (3.6.1) can be equivalently restated

as:

min
w∈H′, b∈R

‖w‖ (4.9)

s.t. ∀Φj ∈ H1 ∪H2 : (w(Φj) + b) · yj ≥ 1 , (4.10)

where H′ denotes the space of all linear functionals w : H → R, and ‖ · ‖ is

the usual operator norm. One can show [Zhou 2002], that this formulation

holds also for finding optimal maximum margin hyperplanes in Banach spaces

B assuming two separable training sets B1,B2 ⊂ B. Thus, in particular for B′
we get

min
w∈D̄′, b∈R

‖w‖ (4.11)

s.t. ∀Φxj ∈ B1 ∪ B2 : (w(Φxj) + b) · yj ≥ 1 . (4.12)

Using the isomorphism of D̄′ and Ē yields

min
e∈Ē, b∈R

‖e‖E (4.13)

s.t. ∀Φxj ∈ B1 ∪ B2 : (
∑

i∈I βiΨxi(Φxj) + b) · yj ≥ 1 . (4.14)

By the continuity of the norm ‖ · ‖E and because E is dense in Ē the minimum

on Ē can be replaced by an infimum on E . Together with the definition of Ψxi

and Φxj it finally results Algorithm (4.2.1).

Unfortunately, the proposed algorithm is computational impractical, be-

cause of the optimization over the sets Xm ∀m ∈ N. Thus, to make the

problem tractable, the space E must be restricted to some finite dimensional

subspace. The simplest way is to choose some finite subset V ⊂ X , |V| = m

that spans E . For example (cf. [Hein 2004]) using the setting V = Om let us

recover an algorithm already proposed by [Graepel 1999], which is a standard

linear programming problem:
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Algorithm 4.2.2 LP Machine by [Graepel 1999] (Hard-Margin)

Require: Training set ∅ 6= Om ⊂ Z = X × Y , a metric d

Ensure: ∃(xj, yj), (xi, yi) ∈ Om : yj = −1∧ yi = 1, both classes are linearly

separable in B

inf
(β1,...,βm)∈Rm,c∈R

∑m
i=1 |βi| (4.15)

s.t. ∀(xj, yj) ∈ Om : yj (
∑m

i=1 βid(xj,xi) + c) ≥ 1 (4.16)

Note, Algorithm (4.2.1) and Algorithm (4.2.2) can also be formulated in

the case of nonlinearly separable data in B by e.g. introducing slack variables

(cf. Sec. (3.6.2)).

Unlike the SVM, there holds no Representer Theorem [Kimeldorf 1971] for

Algorithm (4.2.1) that means a solution is not guaranteed to be expressible

in form of the training data only. Nevertheless, from a theoretical point of

view the work of [Hein 2004] is of particular value because it demonstrates

the use of the powerful concept of duality and isometric isomorphisms of

function spaces in order to carry over maximum margin hyperplanes from

Hilbert spaces induced by a kernel to more general spaces, like Banach spaces.

The derivation of a Representer Theorem in the setting of learning in metric

spaces is the focus of the work of [Minh 2004], which we summarize in the

next section due to a surprising relation to our preceding discussion and the

next Chapter (5).

4.2.3 Subalgebra of Lipschitz Functions

In [Minh 2004] a general framework is derived to obtain a Representer Theo-

rem for the minimization of regularized loss functionals of the form

Rl(f) + γΩ(f), f ∈ F , γ ≥ 0, (4.17)

where Ω denotes some regularization operator satisfying some mild condi-

tions and Rl is the empirical risk (cf. Eq. (3.2)) with a convex lower semi-

continuous loss function Lf . Considering an operator A : F → Rl with

A(f) := (f(x1), . . . , f(xl)) evaluating f at the training points xi ∈ X , it

is shown that a minimizer (if exists) of (4.17) always lies in a finite dimen-

sional space Fl with dimension at most l. The space Fl is a linear subspace

of F such that the decomposition F = Fl ⊕ null(A) holds for the null space

null(A) := {f ∈ F : A(f) = 0}. That means, if we are able to decompose
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the considered decision function space F in this way and explicitly express Fl
in terms of the training data, we can explicitly characterize the solution.

For example, it is well-known that a soft-margin SVM in a Hilbert space

H is equivalently reformulated in a regularized loss functional form (cf. e.g.

[Schölkopf 2002]) with Rl(f) := 1/l ·
∑l

i=1 max{0, 1 − yif(xi)} (Soft-Margin

Loss [Bennett 1992]) and Ω(f) := 〈f, f〉H (cf. Sec. 3.6.4). Now, by set-

ting F to be a Reproducing Kernel Hilbert Space R (cf. Sec. 3.6.4) it

follows from the reproducing property f(x) = 〈f, k(x, ·)〉 that null(A) =

span{k(x1, ·), . . . , k(xl, ·)}⊥. Using the unique orthogonal decomposition well-

known from functional analysis we get F = Fl ⊕ span{k(x1, ·), . . . , k(xl, ·)}⊥
with Fl = span{k(x1, ·), . . . , k(xl, ·)}. Thus, a solution of the SVM problem is

represented by a finite expansion of kernel functions evaluated at the training

points, although the decision function space F might be of infinite dimension.

In the context of learning in general spaces than Hilbert spaces, [Minh 2004]

also derived a Representer Theorem for learning in compact metric spaces

M = (X , d). For this purpose the regularized loss functional (4.17) is mini-

mized over a subalgebra2 A of C(X ,R) generated by the family {1, d(x, ·)}x∈X .

Remarkably, in this case, a minimizer (if one exists) always admits a finite

expansion f ∗ =
∑l

i=1 c
∗
iMi, Mi :=

∏
j 6=i d(xj, ·) in terms of the training data

xj. Using this result, it follows the most important case with respect to our

discussion of maximum margin classifiers overcoming the restriction to ker-

nels [Minh 2004]: minimizing the regularized functional (4.17) over A using

Rl(f) := 1/l ·
∑l

i=1 Θ(1 − yif(xi)) and Ω(f) :=
∑

i |ci| yields the unique

solution

f ∗ =
l∑

i=1

c∗i
∏
j 6=i

d(xj, ·) (4.18)

with c∗i = yi
Mi

. The function Θ denotes the Heaviside-function. The loss

Θ(1− ynf(xn)) of the empirical risk Rl(f) is equivalent with the hard-margin

loss used in the standard SVM formulation (cf. e.g. [Schölkopf 2002]), but the

regularizer is different and equals the coefficient regularizer also used in the

Lasso regression method (e.g. [Hastie 2001]). Although it will become clear

in the next chapter, by now, A consists of Lipschitz continuous functions

(Def. 5.1.1) and the minimization of the regularized loss functional restated

in Algorithm (4.2.3) can be shown to be an approximation to a maximum

margin algorithm.

2algebra: vector space additionally endowed with a bilinear operator defining multipli-

cation
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Algorithm 4.2.3 LP Machine by [Minh 2004] (Hard-Margin)

Require: Training set ∅ 6= Om ⊂ Z = X × Y , a metric d

Ensure: ∃(xj, yj), (xi, yi) ∈ Om : yj = −1∧ yi = 1, both classes are linearly

separable in A

inf
(β1,...,βm)∈Rm

∑m
i=1 |βi| (4.19)

s.t. ∀(xj, yj) ∈ Om : yj

(∑m
i=1 βi

∏
k 6=i d(xk,xj)

)
≥ 1 (4.20)

Note, Algorithm (4.2.3) is very similar to the LP Machine by [Graepel 1999]

(Alg. 4.2.2) but in contrast another decision function class is used. However,

as we will see in the next chapter, both algorithms share the same drawback

that a solution leads just to a crude approximation to a maximum margin

classifier. Even worse the decision functions are again restricted to a par-

ticular form build up of basis functions satisfying the metric properties (cf.

App. (A.2.1)). Thus, these algorithms are not suitable in a similarity based

setting nor they can be regarded as (approximate) generalizations of the SVM

algorithm, because the use of kernels is denied completely.

Summary

In this chapter, we discussed the drawback of SVMs due to the restriction to

kernel functions. We emphasized that the interpretation of SVMs as maxi-

mum margin separating hyperplanes in some high-dimensional Hilbert space

holds if and only if the used functions satisfy the Mercer’s condition. It was

demonstrated that kernels cover not all cases that occur in practice and sample

applications were presented indicating the need of more flexibility in choos-

ing appropriate decision functions in a maximum margin concept. This need

and the lack of suitable algorithms had forced many researchers to use also

not valid kernels (pseudo-kernels) in SVMs anyway. In this case there is no

reasoning to expect a good generalization performance justified by statisti-

cal learning theory. Strictly speaking, if using pseudo-kernels in the SVM

algorithms then the learnt classifier is not a SVM. Moreover, an example for

similarity based classification was given that let us conclude that SVMs are

not able to facilitate the advantage of a priori knowledge encoded in pseudo-

kernels.

However, in order to extend the application of SVMs, the kernel approach

was generalized to a subset of similarity functions that have to be conditional
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positive definite (Sec. (4.2.1)). Unfortunately, it is very difficult to develop

similarity functions for a specific application that encode prior knowledge or

encode some invariance in the data while satisfying the CPD-constraint.

Therefore, a much more general approach for generalizing the maximum

margin concept and for overcoming the restriction to kernels was proposed in

[Hein 2004]. Therein, the concept of duality and isometric isomorphisms of

function spaces is applied to translate the optimal maximum margin hyper-

plane to a special function space that is more general than a Hilbert space. In

this way decision functions can be implemented build up of metric functions

(Sec. (4.2.2)). This is unfortunately again a severe restriction in particular in

the context of similarity based classification, because many usful similarities

do not satisfy the properties of a metric. A further drawback is, that the use

of kernels or other basis functions the decision function is built up is denied

completely. Moreover, the proposed method results in an Algorithm (4.2.1)

that is impractical in general and thus it can only be solved as a crude approx-

imation to a maximum margin algorithm (Alg. (4.2.2)). Another approach

proposed by [Minh 2004] resulted in a similar approximation (Alg. (4.2.3))

also permitting solely the use of metric functions in a specific form of decision

function (Sec. (4.2.3)) and also denying any other kind of basis function.

Below the line, the related work summarized in this chapter, although of

theoretical value, do not provide practical learning algorithms that reached

the sophisticated goal of overcoming the restrictions to kernels in a maximum

margin concept generalizing SVMs without imposing new severe restrictions

or without being very crude approximation to a maximum margin classifier.

Regardless, in the next chapter, we show that it is indeed possible to derive

maximum margin algorithms that facilitate a very huge decision function class.

But in contrast, only mild restrictions have to be imposed on the decision

functions and the algorithms are manageable without crude approximations.

The development of these new maximum margin algorithms are theoretically

based on an isometric isomorphism generalizing SVMs as well as subsuming

other learning approaches.
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The few published articles that aim on a generalization of the maxi-

mum margin concept implemented in SVMs to more general spaces than

Hilbert spaces, are presented in the preceding chapter.

In the following part of the present thesis, the theory behind a further

generalization, called Lipschitz embedding, is introduced (Sec. 5.1). Using the

Lipschitz embedding, a maximum margin classifier results that is presented in

Section (5.1.2). The new classifier subsumes the SVM, 1st-Nearest-Neighbor

classifier and the algorithms presented in the preceding chapter.

After the theory is introduced, together with some mathematical terms,

we go step-by-step into the details on solving the new maximum margin clas-

sifier. The derived algorithm maintains most of its generality while it is im-

plementable without some crude approximations that have to be considered

in advance (Sec. 5.2).
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It turns out, that a formulation of the classifier can be derived, that enables

the use of functions from a very rich function class in order to learn more

general decision functions in a maximum margin concept than it is the case

for SVMs.

5.1 Embedding of Lipschitz Functions

As pointed out in the preceding chapter, the nature of maximum margin

classification requires mathematical definitions of distances between points

and separating hyperplanes. In case of the SVM a distance d (actually a

metric) is induced by a inner product of some appropriate chosen Hilbert

space represented by an associated kernel function.

Although many metric spacesM := (X , d) (cf. App. A.2.1) can be imag-

ined, only a subset of all metric spaces inherit the structure of an associated

Hilbert space H (cf. App. A.2.3). This is also true for Banach spaces B (cf.

App. A.2.2). Obviously, any Hilbert space H passes its structure to a Banach

space B, and any Banach space B passes its structure to a metric space M,

but the reverse is not always true. For example, the euclidean inner prod-

uct 〈x,y〉2,x,y ∈ H induces the euclidean norm ‖x‖2 :=
√
〈x,x〉2,x ∈ B,

and the metric d(x,y) := ‖x− y‖2 =
√
〈x− y,x− y〉2,x,y ∈ M, and vice

versa. In contrast, the metric

d(x,y) =

{
0 if x = y

1 else
(5.1)

induces no corresponding norm, respectively inner product.

However, in the very general setting of metric spaces M, it is possible to

transfer the data space X to a (high-dimensional) feature space Φ(X ) endowed

with more structure in such a way that distances are preserved. Technically

spoken, this can be achieved by the use of injective and structure preserving

mappings, also called embeddings. In order to identify hyperplanes defined on

a feature space Φ(X ) with (non-linear) decision functions f ∈ F defined on the

original data space X , one is particularly interested in bijective embeddings

(isomorphisms). Isomorphisms preserve the natural metric d defined on X
at least up to a constant factor. This ensures that the structure of the data

space will not be distorted too much.

The most important embedding in the context of binary classification,

was recently proposed by [von Luxburg 2004]. Therein, a maximum margin

classification is derived based on a simultaneous isometric embbeding of a

metric space and its associated space of Lipschitz continuous functions into

an appropriate Banach space.
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5.1.1 Lipschitz Spaces

We first introduce some spaces and their properties important for what follows.

For more details, we refer to [Weaver 1999].

5.1.1.1 The Space LIP (M)

Definition 5.1.1 (Lipschitz function space). Consider a metric space M :=

(X , d). Then, a function f : X → R is called Lipschitz function, if there exists

a constant L such that ∀x,y ∈ X : |f(x)−f(y)| ≤ L ·d(x,y). The smallest

constant L is called Lipschitz constant L(f). The space LIP (M) denotes the

space of all Lipschitz functions defined on the metric space M with bounded

metric.

Because for f, g ∈ LIP (M) it holds L(f+g) ≤ L(f)+L(g) and L(α ·f) =

|α| · L(f), but not L(f) = 0⇔ f = 0, it follows that L : F → R with

L(f) := sup
x,y∈X ,x6=y

|f(x)− f(y)|
d(x,y)

(5.2)

is a semi-norm on the space F ⊆ LIP (M). Note, L(f) is just a semi-norm,

because for any constant function f it holds L(f) = 0. But one can augment

the semi-norm to get a convenient norm on the vector space1 LIP (M):

max {L(f), ‖f‖∞} . (5.3)

Now suppose Lipschitz functions F for classifying two classes. Reasonable

decision functions should take positive and negative values on X dependent

on the category of a considered data point x ∈ X . In case of such positive

and negative valued functions, i.e.

F+
− :=

{
f ∈ LIP (M)

∣∣∣∣ ∃a, b ∈ X : f(a)f(b) ≤ 0

}
, (5.4)

it holds

‖f‖∞ = sup
x∈X
|f(x)| ≤ sup

x,y∈X
|f(x)− f(y)| ≤ diam(X ) · L(f) (5.5)

with 0 < diam(X ) := supx,y∈X d(x,y) <∞.

Modifying the norm (5.3) to

‖f‖L := max

{
L(f),

‖f‖∞
diam(X )

}
(5.6)

1Indeed, one can prove [Weaver 1999] that (LIP (M),max {L(f), ‖f‖∞}) is a Banach

space.
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it immediately follows from (5.5), if 0 < diam(X ), that ‖f‖∞
diam(X )

≤ L(f) and

thus

∀f ∈ F+
− : ‖f‖L = L(f). (5.7)

5.1.1.2 The Space LIP0(M0)

Consider an augmentation of the metric space M with a distinguished point

e, which is fixed in advance such thatM0 := (X0, dX0),X0 := X ∪{e} (pointed

metric space). Then another Lipschitz space is defined by

LIP0(M0) :=

{
f ∈ LIP (M0)

∣∣∣∣ f(e) = 0

}
. (5.8)

Clearly, for this space L(f) is indeed a norm. Unfortunately, the constraint

f(e) = 0 is an improper assumption in a classification setting. On the other

hand, one can easily circumvent this constraint in two steps: First, by defining

the metric of M0 to be

dX0(x,y) :=

{
d(x,y) if x,y ∈ X
diam(X ) if x ∈ X ,y = e.

(5.9)

Second, by embedding the space LIP (M) into the space LIP0(M0) via the

bijective and isometric mapping ψ : LIP (M)→ LIP0(M0) with

ψ(f)(x) :=

{
f(x) if x ∈ X
0 if x = e.

(5.10)

Bijectivity of ψ follows trivially, and isometry follows directly from

L(ψ(f)) = sup
x,y∈X0,x6=y

|ψ(f)(x)− ψ(f)(y)|
dX0(x,y)

(5.11)

= max

{
sup

x,y∈X ,x6=y

|f(x)− f(y)|
d(x,y)

, sup
x∈X

|f(x)− f(e)|
diam(X )

}
(5.12)

= ‖f‖L. (5.13)

In particular, for positive and negative valued functions, i.e. f ∈ F+
− , it holds

L(ψ(f)) = L(f).

The space LIP0(M0) has some interesting dual properties, as we will see

in the next subsection.

5.1.1.3 The Arens-Eells Space (Predual of LIP0(M0))

Definition 5.1.2 (xy-Atom). Let be x,y ∈ X , then a xy-atom is a function

mxy : X → {−1, 1, 0} defined as

mxy(z) :=


−1 if y = z

1 if x = z

0 otherwise .

(5.14)
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Figure 5.1: A visualization of the embedding ψ : LIP (M) → LIP0(M0).

The extended space X0 is a conjunction of the space X (here a closed curve)

with diam(X) and the base point {e}.

Definition 5.1.3 (Molecule). A function m : X → R with finite support

{z ∈ X | m(z) 6= 0} and the property
∑
z∈X m(z) = 0 is called a molecule of

X . Any molecule has a not unique expansion of atoms, i.e.

m(z) =
n∑
i=1

ai ·mxiyi(z), n ∈ Z+, xi,yi ∈ X , ai ∈ R.

Definition 5.1.4 (Arens-Eells space). The completion of the space of all

molecules (Def. 5.1.3) endowed with the semi-norm

‖m‖AE := inf

{
n∑
i=1

|ai| · d(xi,yi)

∣∣∣∣ m(z) =
n∑
i=1

ai ·mxiyi(z),

n ∈ Z+, xi,yi ∈ X , ai ∈ R

}
(5.15)

modulo the subspace {m : ‖m‖AE = 0} is called Arens-Eells space AE(X ).

In [Weaver 1999][Corollary 2.2.3] it is proved, that for pointed metric

spaces M0 the Arens-Eells semi-norm ‖ · ‖AE is even a norm on the space

of molecules of X0. Therefore, the Arens-Eells space is a Banach space (cf.

App. A.2.2).

Moreover, it holds the powerful

Theorem 5.1.1. The dual space AE∗(X0) of AE(X0), i.e. the space of all

linear functionals on AE(X0), is isometrically isomorphic to LIP0(M0).

Proof. See [Weaver 1999][Theorem 2.2.2].
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A nice consequence of Theorem (5.1.1) is that there exists an unique

linear functional Tf : AE(X0) → R associated to any Lipschitz function

f ∈ LIP0(M0) with

Tf (m) :=
∑
y∈X0

f(y)m(y). (5.16)

In particular, Tf (mxe) = f(x).

Moreover, the mapping f 7→ Tf is an isometry, that is it holds

L(f) = ‖f‖L = ‖Tf‖ := sup
m∈AE(X0)
‖m‖AE 6=0

|Tf (m)|
‖m‖AE

. (5.17)

Now, from the Definition (5.15), it follows directly ‖mxy‖AE ≤ dX0(x,y).

And in virtue of the Hahn-Banach theorem, for any m ∈ AE(X0) exists a

f0 ∈ LIP0(M0) and a linear functional Tf0 ∈ AE∗(X0) with Tf0(m) = ‖m‖AE.

In particular, it holds

‖m‖AE = max {|Tf (m)| : f ∈ LIP0(M0), L(f) ≤ 1} . (5.18)

Defining fy ∈ LIP0(M0), y ∈ X0 with L(fy) = 1 via fy(z) := dX0(z,y) −
dX0(e,y) it follows

‖mxy‖AE ≥ |Tfy(mxy)| = |fy(x)− fy(y)| = dX0(x,y). (5.19)

Thus, ‖mxe −mye‖AE = ‖mxy‖AE = dX0(x,y), and we have proved

Corollary 5.1.1. The mapping (x 7→ mxe) : X0 → AE(X0) is an isometry.

5.1.2 Maximum Margin Classifier using Lipschitz Con-

tinuous Decision Functions

In [von Luxburg 2004] the duality results presented in the preceding subsec-

tions were used to define a maximum margin classifier on the space AE(X0).

For this purpose, consider the following implicit embeddings of the data

space X and the decision function space F+
− ⊆ F ⊆ LIP (M)

Φ : X → X0 → AE(X0),x 7→ mxe (5.20)

Ψ : F → LIP0(M0)→ AE∗(X0), f 7→ Tf . (5.21)

Using these embeddings, a hyperplane Hf in AE(X0) is straightforwardly

defined by

Hf := {m ∈ AE(X0) : Tf (m) = 0} . (5.22)
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As the minimum distance of a set of data points {x1, . . . ,xl} ⊂ X to a

hyperplane Hf (cf. Fig. (3.6), the margin ρ reads

ρ = inf
1≤i≤l, m∈Hf

‖mxie −m‖AE. (5.23)

Consider a canonical hyperplane Hf , meaning the linear functional Tf is

scaled2 such that min1≤i≤l |Tf (mxie)| = 1, it holds by the Cauchy-Schwarz

inequality for any mxie and mh ∈ Hf

‖Tf‖‖mxie −mh‖AE ≥ |Tf (mxie −mh)| = |Tf (mxie)− Tf (mh)| = |Tf (mxie)|.
(5.24)

And it follows by taking the infimum, the margin associated to a canonical

hyperplane is bounded from below

ρ = inf
1≤i≤l, m∈Hf

‖mxie −m‖AE ≥
inf1≤i≤l |Tf (mxie)|

‖Tf‖
=

1

‖Tf‖
, (5.25)

if ‖Tf‖ > 0. In particular, it holds for all f ∈ F+
− due to Theorem (5.1.1)

ρ ≥ 1

L(f)
. (5.26)

So, likewise in case of the SVM (Sec. (3.6)), a canonical hyperplane and

classification of all training examples without error implies the (hard margin)

inequality

yiTf (mxie) = yif(xi) ≥ 1. (5.27)

In particular, if a training sample Ol contains examples of both classes (the

common case), then inequality (5.27) implies f ∈ F+
− . Consequently and

in analogy to the SVM (Sec. (3.6)), the resulting algorithms for learning a

hard- and soft-maximum margin classifier using Lipschitz continuous decision

functions f ∈ F ⊆ LIP (M) can be restated as

Algorithm 5.1.1 LIP (M)-Lipschitz Classifier (Hard-Margin)

[von Luxburg 2004]

Require: Training set ∅ 6= ON ⊂ Z = X × Y , decision function space F ⊆
LIP (M)

Ensure: ∃(xj,yj), (xi,yi) ∈ ON : yj = −1 ∧ yi = 1, both classes are

separable in AE(X0)

inf
f∈F⊆LIP (M)

L(f) (5.28)

s.t. ∀(xj, yj) ∈ ON : yjf(xj) ≥ 1 (5.29)

2Scaling a linear operator equals scaling its associated representative, i.e. αTf = Tαf .
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Algorithm 5.1.2 LIP (M)-Lipschitz Classifier (Soft-Margin)

[von Luxburg 2004]

Require: Training set ∅ 6= ON ⊂ Z = X × Y , decision function space F ⊆
LIP (M), trade-off parameter C > 0

Ensure: ∃(xj, yj), (xi, yi) ∈ ON : yj = −1 ∧ yi = 1

inf
f∈F⊆LIP (M), (ξ1,...,ξl)∈RN

L(f) + C
∑N

j=1 ξj (5.30)

s.t. ∀1 ≤ j ≤ N : ξj ≥ 0, (5.31)

∀(xj, yj) ∈ ON : yjf(xj) ≥ 1− ξj (5.32)

Algorithm (5.1.1) and (5.1.2) represent a prototype for constructing large

margin classifiers. For example, the SVM can be obtained as a particular

solution if restricting the decision function space F ⊆ LIP (M) to the set

of all linear functionals R′. The reason is that the Lipschitz constant of

linear functionals coincide with their operator norm, respectively Hilbert space

norm, i.e. with f ∈ H holds ∀Tf :=< ·, f >H∈ R′ : L(Tf ) = ‖Tf‖ = ‖f‖H
(cf. Sec. (3.6.4)). Also the 1-nearest neighbor classifier can be shown to

be a particular solution [von Luxburg 2004]. Further, suppose the decision

function space F to be the set of all linear combinations of distance functions

of the type f(x) :=
∑N

n=1 βid(xi,x) + c. Then it is easy to see, that L(f) ≤∑N
n=1 |βn|. Thus, Algorithm (4.2.2) is an approximation to the maximum

hard-margin Algorithm (5.1.1) as already mentioned in Section (4.2).

5.2 Toward Implementable Algorithms

The results presented in the last section are promising. The new maximum

margin Algorithms (5.1.1) and (5.1.2) permit to implement decision functions

from a very rich space F ⊆ LIP (M). Now, we are actually in the nice position

to implement nonlinear decision functions in a maximum margin concept that

must not necessarily be build up with kernel functions, like in case of SVMs.

For this purpose, the decision functions have to satisfy only the much milder

restriction to be just Lipschitz continuous (M have to be bounded) than it is

the case from SVMs which implement linear combinations of Mercer kernels.

We showed in the preceding section that an optimal decision function found

by Algorithm (5.1.1) with minimum Lipschitz constant can be interpreted

geometrically as a large margin hyperplane in an appropriate Banach space,

namely the Arens-Eells space AE(X0) (the decision function itself corresponds

to a linear functional of the dual AE∗(X0) of the Arens-Eells space AE(X0),
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cf. Def. (5.1.4)). The margin between a hyperplane in AE(X0) and the

data which is implicitly transformed to AE(X0) is bounded from below by the

Lipschitz constant (cf. Eq. (5.26)).

However, what remains is the problem of how to realize the Lipschitz

classifier algorithm practically. In order to implement the Lipschitz classifier

one has to evaluate the Lipschitz constant L(f) for any decision function f of

a chosen subspace F . In case of the LP Machine (Alg. (4.2.2)) it is possible

to obtain a poor upper bound on the Lipschitz constant resulting in a poor

approximation to a maximum margin classifier. In general, it is difficult to

get a closed-form expression of L(f). Thus from a practical point of view, a

chosen space F shall satisfy two goals: First, the space should contain a rich

class of decision functions in order to be able to solve nearly every real-world

classification task. Second, the Lipschitz constant shall be easy to compute.

For this reason, we choose a subset F of the space of real-valued, at least

one-time continuously differentiable functions C(1)(X ,R) ⊂ LIP (M) defined

on a compact and convex Euclidean metric space M := (X , ‖ · − · ‖2),X ⊂
Rm [Stuhlsatz 2007c] (Fig. 5.2). In that case, an analytic expression of the

Lipschitz constant can be obtained:

Lemma 5.2.1 (Lipschitz Constant for C(1)(X ,R) functions). Suppose, the

normed space V := (Rm, ‖·‖2), DX ⊆ V open and X ⊂ DX compact and

convex. If f : DX → R is continuously differentiable, then the Lipschitz

constant of f restricted to X is given by

L(f) = max
x∈X
‖∇f(x)‖2 . (5.33)

Proof. Consider x1,x2 ∈ X ,x1 6= x2 and the set

S := {λx1 + (1− λ)x2 : λ ∈ (0, 1)} ⊆ X ,

then by the Mean-Value-Theorem there exists x̂ ∈ S, so that

|f(x1)− f(x2)| =
∥∥∇f(x̂)T (x1 − x2)

∥∥
2

≤ ‖∇f(x̂)‖2 ‖x1 − x2‖2

⇔ |f(x1)− f(x2)|
‖x1 − x2‖2

≤ ‖∇f(x̂)‖2 ≤ max
x∈X
‖∇f(x)‖2

⇒ L(f) = max
x1,x2∈X ,x1 6=x2

|f(x1)− f(x2)|
‖x1 − x2‖2

≤ max
x∈X
‖∇f(x)‖2 .
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For x ∈ X and some v ∈ Rm with ‖v‖2 = 1, the directional derivative reads

as

lim
t→0

f(x+ tv)− f(x)

t
= ∂vf(x) = ∇f(x)Tv.

Next, we conclude for ‖∇f(x)‖2 6= 0 and v := ∇f(x)/‖∇f(x)‖2 that

‖∇f(x)‖2 = lim
t→0

|f(x+ tv)− f(x)|
|t|

≤ L(f).

It follows the lower bound

max
x∈X
‖∇f(x)‖2 ≤ L(f).

Figure 5.2: Subspaces of the space of continuous functions. The space

C(1)(X ,R) of at least one-time continuously differentiable functions is a sub-

space of the Lipschitz function space.

Lemma (5.2.1) is very general permitting us the computation of Lipschitz

constants for decision functions f of the space C(1)(X ,R) (Fig. 5.2). A typical

decision function implemented by many common machine learning algorithms

is chosen from the space of finite (affine) linear combinations of some basis

functions Φn : X → R. For example in case of the SVM a decision function

is selected from a RKHS R = (H, 〈·, ·〉H) induced by a kernel k (cf. (3.71))

that must satisfy the Mercer’s condition. It follows, a solution of the SVM

is a finite series of basis functions Φn = k(·,xn) (cf. Eq. (3.56) and the

Representer Theorem [Kimeldorf 1971]).

Because our goal is to derive practical maximum margin algorithms using

Lipschitz decision functions, we further focus our attention in compliance and

due to technical reasons to a subspace F ⊂ C(1)(X ,R) of finite affine combina-

tions of C(1)(X ,R)-functions. However, the algorithms we derive in the follow-

ing sections do not select a decision function from a RKHS induced by a chosen

Mercer kernel k in advance. In contrast, our algorithms seek for a decision

function that is a finite series of basis functions Φn ∈ C(1)(X ,R) which corre-

sponds implicitly to a separating hyperplane in the Arens-Eells space AE(X0).
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Due to a simultaneous minimization of the Lipschitz constant, a solution is as-

sociated to the hyperplane with maximum margin, respectively to the decision

function which is of minimum possible variation. From now on, we may de-

sign a decision function for a maximum margin classification independently of

Mercer’s condition permitting us to use basis functions Φn ∈ C(1)(X ,R) like

for example continuously differentiable similarity functions, pseudo-kernels,

kernels, trigonometric functions or polynomials as well as mixtures of them.

Moreover, if appropriate the basis function must not necessarily be evaluated

at the training data, as it is the case using SVMs.

5.2.1 Lipschitz Classifier as Minimax Problem

As mentioned in the preceding section, a typical function space implemented

by many machine learning algorithms, e.g. the SVM, is the space of finite

affine linear combinations of some basis functions Φn : X → R. In case

of SVMs these basis functions are defined by kernels that have to satisfy

the Mercer’s condition, i.e. Φn = k(·,xn). In the following, our focus is to

derive maximum margin classifiers permitting us to use more basis function

types than just kernels by the application of the Lipschitz classifier framework

and Lemma (5.2.1) introduced in the preceding sections. For this purpose,

we consider from now on basis functions Φn ∈ C(1)(X ,R) for building up a

decision function with respect to a compact and convex data space X ⊂ Rm:

Definition 5.2.1 (Decision function space of the Lipschitz classifier). Let be

DX ⊆ Rm open, X ⊂ DX compact and convex as well as Φn : DX → R
with 1 ≤ n ≤ M arbitrary at least one-time continuously differentiable basis

functions, i.e. Φn ∈ C(1)(X ,R) is restricted to X . Then, we define the decision

function space under consideration to be

F :=

{
f : X → R

∣∣∣∣ f(x) :=
M∑
n=1

cnΦn(x) + b, cn, b ∈ R
}
⊂ LIP (X ).

Note, the boundedness of f ∈ F is implied by the compactness of X .

Considering the function space of Definition (5.2.1) together with Lemma

(5.2.1) enables to state the original soft-margin algorithm (5.1.2) for finding

an optimal decision function f ∗ ∈ F parameterized by (c∗, b∗) ∈ RM+1 in the

following minimax formulation:
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Algorithm 5.2.1 C(1)(X ,R)-Lipschitz Classifier (Minimax Form)

Require: Training set ∅ 6= ON ⊂ Z = X × Y , X compact and convex,

1 ≤ m ≤M basis functions Φm(x) ∈ C(1)(X ,R), C > 0

Ensure: ∃(xj, yj), (xi, yi) ∈ ON : yj = −1 ∧ yi = 1

min
(c,ξ,b)∈SP

max
x∈X

1

2
cTK(x)c+ C1TNξ (5.34)

with feasible set

SP :=

{
(c, ξ, b) ∈ RM ×RN ×R

∣∣∣∣ ξ ≥ 0,YGc+ yb− 1N + ξ ≥ 0

}
(5.35)

with matrix notations:

• K(x) ∈ RM×M is symmetric positive-semidefinite with elements

K(x)m,n := 〈∇Φm(x),∇Φn(x)〉2 ∀x ∈ X ,

• G ∈ RN×M is a data dependent design matrix with elements

Gn,m := Φm(xn),

• Y := diag(y) ∈ RN×N is a diagonal matrix of a given target vector

y ∈ {−1, 1}N with components yn,

• ξ ∈ RN is the slack-variable of the soft margin formulation with com-

ponents ξn,

• 1N := (1, . . . , 1)T ∈ RN is the vector of ones.

It is easy to see that algorithm (5.2.1) is equivalent3 to algorithm (5.1.2) if

using the subspace F ⊂ LIP (X ). That means a solution (c∗, ξ∗, b∗,x∗) of

(5.2.1) implies a solution (f ∗, ξ∗) of (5.1.2). Obviously, a maximizer of

‖∇f(x)‖2 =

√√√√ M∑
m=1

M∑
n=1

cmcn 〈∇Φm(x),∇Φn(x)〉2 (5.36)

is also a maximizer of ‖∇f(x)‖2
2 /2.

It is important to note, that the objective function cTK(x)c is convex in

c ∈ RM because

0 ≤ ‖∇f(x)‖2
2 =

M∑
m=1

M∑
n=1

cmcn 〈∇Φm(x),∇Φn(x)〉2 (5.37)

= cTK(x)c, (5.38)

i.e. the positive-semidefinitness of K(x) for all x ∈ X . Moreover, as a point-

wise maximum of a family of convex functions the function maxx∈X c
TK(x)c

3Equivalent with respect to a solution.
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is convex in c ∈ RM . The feasible set SP is convex as well, because it is

the intersection of half-spaces induced by linear functions. Hence, for a fixed

x ∈ X , the minimization problem is a typical (convex) quadratic optimization

problem which is well studied in optimization theory. It is very similar to the

SVM optimization problem (3.6.1). But in contrast to the SVM’s regular-

izer (1/2)‖w‖2
2, the regularization operator in (5.34) is a solution of a global

maximization problem Ω(c) := 1/2 · maxx∈X c
TK(x)c = 1/2 · L(f)2 which

is proportional to the absolute value of the maximum slope of f on the data

space X . Actually, Algorithm (5.2.1) seeks for a decision function f which

has a minimal maximum slope over its domain and classifies the training data

with minimum error with respect to a soft-margin controlled by C. Thus, the

optimal function f ∗ ∈ F implies the flattest decision boundary with respect

to the data space X (and w.r.t. its first derivative) that can be constructed

by a linear combination of M basis functions Φm. Surprisingly, for a solution

x(c) of maxx∈X c
TK(x)c the regularization operator equals the regulariza-

tion operator
∫
X ‖∇f(x)‖2

2p(x|ϑ) dx implied by a plain kernel (Sec. 3.6.5) if

the distribution p(x|ϑ) is supposed to be a delta distribution δ(x−x(c)) (cf.

[Oliver 2000]).

However, solving the constrained minimax problem (5.34) is non-trivial

avoiding the application of standard optimization techniques known from op-

timization theory. In the following section, we will reformulate problem (5.34)

in order to exploit as much as possible of the inherent problem structure and

to be able to apply standard optimization methods.

5.2.2 On Solving the Minimax Problem

In the previous section, a constrained multidimensional minimax problem

(5.34) has been obtained representing the Lipschitz classifier (5.30) in case

of the chosen function space F (Def. 5.2.1) and a convex and compact Eu-

clidean data space X . Unfortunately, this problem is difficult to solve directly

because of the restricted inner global maximization depending on the con-

strained convex outer minimization. However, using the minimax formulation

it is possible to exploit the inherent structure as much as possible through

a further transformation of the problem in a Semi-Infinite Program (SIP).

With the resulting reformulation, we will be in the position to apply standard

optimization techniques.

We start our discussion with a brief introduction to Semi-Infinite Pro-

gramming. Then we show how to derive a SIP formulation of the Lipschitz

classifier that is equivalent to (5.34). In particular, we derive and prove a

duality theorem for (5.34). Recall, duality is also the key to an efficient algo-

rithmic implementation of the SVM (Sec. 3.6). The resulting new statement



78 Chapter 5. Lipschitz Classifier

of the Lipschitz classifier problem opens a way for an iterative optimization

using standard methods.

5.2.2.1 Semi-Infinite Programming

A constrained minimization of an objective F : RL → R of a finite number of

variables is called Semi-Infinite Program (SIP) (Alg. 5.2.2), when the feasible

set SSIP ⊆ RL is described by a infinite number of constraints G(·,x) : RL →
R, x ∈ T . The set T is an infinite compact index set. Further, for each x ∈ T
the functions F and G(·,x) are supposed to be at least one-time continuously

differentiable on RL. The constraints G(w, ·) are assumed to be continuous

on T for each w ∈ RL. Such problems are well-known in different fields, like

Chebyshev approximation, optimal control and mathematical physics. For

example, refer to [Hettich 1993], [Goberna 2001], [Lopez 2007] for a review of

some applications and more details on this topic.

Algorithm 5.2.2 Semi-infinite Program (SIP)

Require: objective function F : RL → R, infinite compact index set T ,

constraints G(·,x) : RL → R, x ∈ T
Ensure: F and G(·,x) are at least one-time continuously differentiable for

all x ∈ T , G(w, ·) is continuous for all w ∈ RL

min
w∈SSIP

F (w) (5.39)

with feasible set

SSIP :=
{
w ∈ RL | G(w,x) ≤ 0 ∀x ∈ T

}
6= ∅. (5.40)

In what follows, we need a few definitions:

Definition 5.2.2 (Active set). For w ∈ SSIP the set

T 0(w) := {x ∈ T : G(w,x) = 0} (5.41)

is called the active set at w ∈ RL.

Definition 5.2.3 (Convex SIP). A Semi-Infinite Program (5.39) is called

convex SIP, iff the objective function F : RL → R and the feasible set SSIP
are both convex (cf. App. A.3.1, A.3.2), i.e. G(·,x) : RL → R, x ∈ T is

convex for all x ∈ T .
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Definition 5.2.4 (Convex hull). The convex hull of a set H of real valued

functions is defined as

conv(H) :=

{ k∑
j=1

µjhj

∣∣∣∣ k ∈ IN, hj ∈ H, k∑
j=1

µj = 1 and µj ≥ 0

}
. (5.42)

In order to get necessary conditions for a semi-infinite program to be opti-

mal at w∗ ∈ SSIP , the feasible set SSIP respectively the constraint functions

G(·,x) have to satisfy so-called Constraint Qualifications :

Definition 5.2.5 (MFCQ, e.g. [Lopez 2007]). The Mangasarian-Fromovitz

Constraint Qualification (MFCQ) holds at w ∈ SSIP , iff there exists a direc-

tion d ∈ RL such that ∇wG(w,x)Td < 0 ∀x ∈ T 0(w).

Descriptively speaking, the MFCQ ensures that at a point w ∈ SSIP
(which may be a boundary point of the feasible set) there exists a direction

that strictly points into the interior of the feasible set. This ensures, that the

feasible set is not degenerated and it is possible to derive so-called Karush-

Kuhn-Tucker (KKT) conditions [Karush 1939], [Kuhn 1951] (see App. (A.3.3)):

Theorem 5.2.1 (Necessary KKT Optimality Condition, e.g. [Lopez 2007]).

Let w∗ ∈ SSIP be a local minimizer of SIP and MFCQ (Def. 5.2.5) holds,

then there exist multipliers 0 ≤ (µ∗1, . . . , µ
∗
k) =: µ∗ and x∗1, . . . ,x

∗
k ∈ T 0(w∗)

with k ≤ L, such that

∇wL(w∗,µ∗) = ∇F (w∗) +
k∑
j=1

µ∗j∇wG(w∗,x∗j) = 0 (5.43)

with Lagrange function

L(w,µ) := F (w) +
k∑
j=1

µjG(w,xj). (5.44)

Proof. A proof can be found for example in [Lopez 2007][Theorem 2].

It is important to note, a nice conclusion of this theorem is that only a

finite number k ≤ L of elements (x∗i , µ
∗
i ) ∈ T × R+ characterize an optimal

point. Also an upper bound on their quantity is given. Unfortunately, one

does not know the points x∗i ∈ T in advance.

Without further information, e.g. second-order optimality, it is impossible

in case of a general nonlinear SIP to derive sufficient conditions for w∗ to

be optimal. But in the particular case of a convex SIP, i.e. the objective

function F and the set SSIP are both convex, the KKT condition is necessary

and sufficient for a (global) minimizer w∗ ∈ SSIP :
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Theorem 5.2.2 (Sufficient KKT Optimality Condition, e.g. [Lopez 2007]).

Let (w∗,µ∗) ∈ SSIP×Rk be a solution of the KKT-condition (5.43) of a convex

SIP (Def. 5.2.3) with 0 ≤ (µ∗1, . . . , µ
∗
k) = µ∗ and x∗1, . . . ,x

∗
k ∈ T 0(w∗), k ≤ L.

Then w∗ is a (global) minimizer.

Proof. A proof can be found for example in [Lopez 2007][Theorem 3].

Usually, the MFCQ is not easy to prove for general feasible sets. But in

case of convex SIP there is also a more handy constraint qualification implying

MFCQ:

Definition 5.2.6 (SCQ, e.g. [Lopez 2007]). The Slater constraint qualifica-

tion (SCQ) holds, iff there exists w ∈ SSIP such that G(w,x) < 0 ∀x ∈ T .

That SCQ indeed implies MFCQ is stated in the following lemma:

Lemma 5.2.2. Let a convex SIP (Def. 5.2.3) satisfy SCQ (Def. 5.2.6) then

MFCQ (Def. 5.2.5) holds at every w ∈ SSIP .

Proof. Suppose SCQ is satisfied at ŵ ∈ SSIP . Then, using convexity of

G(·,x), for any w ∈ SSIP holds

∇wG(w,x)T (ŵ −w) ≤ G(ŵ,x)−G(w,x) < 0 ∀x ∈ T 0(w) 6= ∅ (5.45)

Choosing d := (ŵ − w) satisfies MFCQ. If T 0(w) is empty, then MFCQ is

trivially satisfied.

5.2.2.2 Primal SIP of the Lipschitz Classifier

The mathematical tools from semi-infinite programming have been introduced

in the preceding section. Because of its importance for this work, we first

summarize the technical results in following corollary:

Corollary 5.2.1 (Necessary and sufficient KKT conditions for convex SIP).

Suppose SCQ holds for a convex SIP (Def. 5.2.3). Then w∗ ∈ RL is a (global)

optimal point, iff there exist x∗1, . . . ,x
∗
k ∈ T , k ≤ L and (µ∗1, . . . , µ

∗
k) = µ∗ ≥ 0

such that (w∗,µ∗) ∈ RL×Rk is a solution of the following system of equations,

∇F (w∗) +
k∑
j=1

µ∗j∇wG(w∗,x∗j) = 0 (5.46)

∀x ∈ T : G(w∗,x) ≤ 0 (5.47)

µ∗ ≥ 0 (5.48)
k∑
j=1

µ∗jG(w∗,x∗j) = 0. (5.49)

Proof. The proof follows directly from Theorem (5.2.1), Theorem (5.2.2) and

Lemma (5.2.2).
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In order to reformulate the minimax problem of the Lipschitz classifier

(5.34) aiming to apply standard convex optimization methods, we have only

to verify the relationship to a convex SIP and to use Corollary (5.2.1).

This relationship is formalized in the following lemma:

Lemma 5.2.3 ([Stuhlsatz 2008b]). Let be X ⊂ Rm infinite and compact,

∅ 6= Y ⊂ Rm compact such that X ∩ Y = ∅, T := X ∪ Y, f : Rl → R,

g(·,x) : Rl → R ∀x ∈ T convex and continuously differentiable and g(z, ·) :

T → R ∀z ∈ Rl continuous. Suppose SCQ holds for the convex feasible set

SP :=

{
z ∈ Rl

∣∣∣∣ g(z,υ) ≤ 0 ∀υ ∈ Y
}
. (5.50)

Further, define L := 1 + l, w := (z0, z) ∈ RL, the constraint functions

G(w,x) :=

{
g(z,x) if x ∈ Y

g(z,x)− z0 if x ∈ X
, (5.51)

the objective function

F (w) := z0 + f(z) (5.52)

and the set

H :=

{
g(·,x) : Rl → R

∣∣∣∣ x ∈ X} . (5.53)

Then there exist a point w∗ := (z∗0 , z
∗) ∈ SSIP and a function h∗ ∈

conv(H) (Def. 5.2.4) with

z∗0 = max
x∈X

g(z∗,x) = h∗(z∗). (5.54)

Moreover, it follows the convex SIP version of the minimax problem:

z∗0 + f(z∗) = min
(z0,z)∈SSIP

z0 + f(z) (5.55)

= min
z∈SP

max
x∈X

g(z,x) + f(z). (5.56)

Proof. Solutions (z∗,x∗) ∈ SP ×X of (5.56) are guaranteed by the compact-

ness of X 6= ∅, the continuity of g(z, ·), the convexity of the functions f ,

g(·,x) and the convexity of the set SP 6= ∅. Because X ∩ Y = ∅ implies

dist(X ,Y) > 0, it follows G(w, ·) is continuous.

Consider a point z ∈ SP , which satisfies the SCQ for SP . Then, with z0 :=

maxx∈X g(z,x) + 1, we conclude G(w,x) = g(z,x) − z0 ≤ −1 < 0 ∀x ∈ X ,

and thus SCQ holds also for SSIP .

Using Corollary (5.2.1), there exist x∗1, . . . ,x
∗
k ∈ X ,υ∗1, . . . ,υ∗n ∈ Y , k +

n ≤ L = l + 1 and (µ∗1, . . . , µ
∗
k) = µ ≥ 0, (λ∗1, . . . , λ

∗
n) =: λ∗ ≥ 0, such that
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a solution w∗ = (z∗0 , z
∗) ∈ SSIP of the convex SIP (5.55) admits a solution

(z∗0 , z
∗,µ∗,λ∗) ∈ R× Rl × Rk × Rn of the KKT-system

1−
k∑
j=1

µ∗j = 0,µ∗ ≥ 0,λ∗ ≥ 0 (5.57)

∇f(z∗) +
k∑
j=1

µ∗j∇zg(z∗,x∗j) +
n∑
i=1

λ∗i∇zg(z∗,υ∗i ) = 0 (5.58)

∀x ∈ X : g(z∗,x)− z∗0 ≤ 0 (5.59)

∀υ ∈ Y : g(z∗,υ) ≤ 0 (5.60)
k∑
j=1

µ∗j(g(z∗,x∗j)− z∗0) +
n∑
i=1

λ∗i g(z∗,υ∗i ) = 0. (5.61)

Because of (5.57), it follows T 0(w∗) 6= ∅. Using (5.61), we obtain x∗j ∈
T 0(w∗) ⊆ T for all x∗j ∈ X with µ∗j > 0. Therefore, it follows from (5.59)

that

∀x ∈ X ,x∗ ∈ T 0(w∗) : g(z∗,x) ≤ z∗0 = g(z∗,x∗). (5.62)

In particular, it holds

∀x∗ ∈ T 0(w∗) : max
x∈X

g(z∗,x) = z∗0 = g(z∗,x∗). (5.63)

Defining h∗ ∈ conv(H) by

∀z ∈ IRl : h∗(z) :=
k∑
j=1

µ∗jg(z,x∗j), (5.64)

and using (5.57),(5.61) and (5.63), it follows our first statement

max
x∈X

g(z∗,x) = g(z∗,x∗) = z∗0 = h∗(z∗). (5.65)

For any z ∈ SP choose ẑ0 := maxx∈X g(z,x). Because (ẑ0, z) ∈ SSIP , it

holds

z∗0 + f(z∗) = min
(z0,z)∈SSIP

z0 + f(z) (5.66)

≤ ẑ0 + f(z) = max
x∈X

g(z,x) + f(z). (5.67)

Taking the minimum over all z ∈ SP and using (5.63), it follows our the

second statement for z∗ ∈ SP :

z∗0 + f(z∗) = min
(z0,z)∈SSIP

z0 + f(z) (5.68)

≤ min
z∈SP

max
x∈X

g(z,x) + f(z) (5.69)

≤ max
x∈X

g(z∗,x) + f(z∗) = z∗0 + f(z∗). (5.70)
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The feasible set SP of the minimax version of the Lipschitz classifier (5.40)

satisfies SCQ trivially. For example choose ẑ := (0, π1N , 0) ∈ SP . Next,

we choose an arbitrary infinite compact set X ⊂ Rm and 2N points Y :=

{υ1, . . . ,υ2N} with υj ∈ Rm \ X , υj 6= υi ∀i 6= j. Then, we identify by

inspection of (5.34) and (5.40), that

l := M +N + 1, (5.71)

z := (c, ξ, b) ∈ Rl, (5.72)

f(z) := C1TNξ, (5.73)

(g(z,υ1), . . . , g(z,υN))T := −ξ, (5.74)

(g(z,υN+1), . . . , g(z,υ2N))T := −YGc− yb+ 1N − ξ, (5.75)

g(z,x) :=
1

2
cTK(x)c ∀x ∈ X (5.76)

have to be defined in order to apply lemma (5.2.3) and to yield a primal con-

vex SIP version of the Lipschitz classifier (Alg. 5.2.3). Moreover, in virtue of

corollary (5.2.1), we obtain an equation system (5.57)-(5.61), which is neces-

sary and sufficient for optimality and reminds of the KKT systems obtained

from problems in finite convex settings (App. A.3.3). This equation system is

also known as primal KKT-system associated to the primal SIP (5.39), and

a solution is called primal solution.

Algorithm 5.2.3 C(1)(X ,R)-Lipschitz Classifier (Primal Convex SIP Version)

Require: Training set ∅ 6= ON ⊂ Z = X ×Y , X ⊂ Rm compact and convex,

1 ≤ n ≤M basis functions Φn(x) ∈ C(1)(X ,R), C > 0

Ensure: ∃(xj, yj), (xi, yi) ∈ ON : yj = −1 ∧ yi = 1

min
(z0,c,ξ,b)∈SSIP

z0 + C1TNξ (5.77)

with feasible set

SSIP :=

{
(z0, c, ξ, b) ∈ R× RM × RN × R

∣∣∣∣ YGc+ yb− 1N + ξ ≥ 0,

ξ ≥ 0,
1

2
cTK(x)c− z0 ≤ 0 ∀x ∈ X

}
(5.78)

The novel primal convex SIP version of the Lipschitz classifier enables to

solve the problem by a sufficient fine discretization of the set X with a Newton-

type optimization of the corresponding KKT system [Stuhlsatz 2008c]. This is

possible, because given a grid X̂ ⊂ X the infinite number of convex inequalities
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1
2
cTK(x)c−z0 ≤ 0 ∀x ∈ X reduces to finitely many inequalities 1

2
cTK(xi)c−

z0 ≤ 0 ∀xi ∈ X̂ . One can show [Hettich 1993], in case of a convex SIP the

optimal solutions using stepwise refined grids tend in the limit to the optimal

solution of the continuous problem. Thus, in order to expect an accurate

solution, a fine discretization grid should be chosen. On the other hand,

discretizing the primal SIP is technically not satisfactory due to two reasons:

First, the discrete primal problem has a very complicated feasible set breaking

down standard solvers. Second, it involves many matrix evaluations which

all have to be stored during optimization. This requires prohibitive storage

capacities. It follows, that discretization is extremely impractical for higher

dimensional spaces due to the exponentially growing number of grid points

with increasing number of dimensions of the data space X . Hence, one is in

favor to apply some kind of duality as it is used for example for solving the

SVM more efficiently (Sec. 3.6).

5.2.2.3 Dual SIP of the Lipschitz Classifier

Recall the Lagrange function L : RL × Rk → R with

L(w,µ) = F (w) +
k∑
j=1

µjGj(w), F : RL → R, Gj : RL → R (5.79)

introduced in Theorem (5.2.1) of the optimality conditions for general semi-

infinite programming problems, respectively with Gj(w) := G(w,xj), xj ∈
T . The weights (µ1, . . . , µk)

T =: µ ∈ Rk are called Lagrange multipliers.

In optimization theory, the dual of a Lagrangian (5.79) is defined as

Definition 5.2.7 (Dual of a Lagrange function). A function DLS : Rk → R
with

DLS(µ) := inf
w∈RL

L(w,µ) (5.80)

is called the dual of the Lagrange function

L(w,µ) = F (w) +
k∑
j=1

µjGj(w), µj ∈ R. (5.81)

In particular, the dual is a concave function on the convex domain{
µ ∈ Rk : µ ≥ 0,DLS(µ) > −∞

}
, (5.82)

(cf. App. A.3.4).
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Definition 5.2.8 (Dual problem). The problem

sup
µ≥0
DLS(µ) (5.83)

is called the dual problem associated to the primal problem

inf {F (w) : w ∈ S} (5.84)

with feasible set S :=
{
w ∈ RL : Gj(w) ≤ 0 ∀1 ≤ j ≤ k

}
.

It is important to note, that always weak duality holds

sup
µ≥0
DLS(µ) ≤ inf

w∈S
F (w). (5.85)

Thus, the primal optimal value is lower bounded by the dual optimal value

(cf. App. A.3.4). In the particular situation, that equality in (5.85) holds

throughout, namely strong duality holds (cf. App. A.3.4), then one can solve

alternatively the dual instead of the primal problem.

In the following, we prove a strong duality theorem for convex SIP using

Lemma (5.2.3) [Stuhlsatz 2008b], [Stuhlsatz 2008c]. The strong duality the-

orem interconnects the minimax formulation of the Lipschitz classifier (5.34)

with a dual SIP via the primal convex SIP (5.77):

Theorem 5.2.3 (Strong Duality, [Stuhlsatz 2008b]). Suppose all preliminar-

ies and assumptions of lemma (5.2.3) are satisfied.

Then strong duality holds with

min
z∈SP

max
x∈X

g(z,x) + f(z) = max
h∈conv(H)

min
z∈SP

h(z) + f(z) (5.86)

and a solution z∗ ∈ SP is primal and dual optimal point.

Proof. Choosing any z ∈ Rl and h ∈ conv(H), by definition of the convex hull

(Def. 5.2.4), there are k ∈ N points x1, . . . ,xk ∈ X and µ1, . . . , µk ≥ 0 with

h(z) =
k∑
j=1

µjg(z,xj) ≤

(
k∑
j=1

µj

)
︸ ︷︷ ︸

=1

max
x∈X

g(z,x). (5.87)

Taking the minimum of the convex Lagrangian L(·, h) = h+f with respect

to the convex set SP , we get

min
z∈SP

h(z) + f(z) ≤ min
z∈SP

max
x∈X

g(z,x) + f(z) (5.88)
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and in particular

sup
h∈conv(H)

min
z∈SP

h(z) + f(z) ≤ min
z∈SP

max
x∈X

g(z,x) + f(z). (5.89)

Using the optimal point w∗ := (z∗0 , z
∗) of lemma (5.2.3), the right-hand

side of the last inequality equals z∗0 + f(z∗). Hence using (5.54), we obtain

sup
h∈conv(H)

min
z∈SP

h(z) + f(z) ≤ h∗(z∗) + f(z∗). (5.90)

Because h∗ ∈ conv(H) and z∗ ∈ SP , the supremum is attained with

max
h∈conv(H)

min
z∈SP

h(z) + f(z) = min
z∈SP

max
x∈X

g(z,x) + f(z). (5.91)

This also implies that z∗ ∈ SP is primal and dual optimal point.

Theorem (5.2.3) is a very nice result. Because the parametrization of

the original minimax problem as a max-min problem over the convex hull of

functions h ∈ H opens a direction to solve the problem iteratively without

any discretization:

Theorem 5.2.4 (Solution of the C(1)(X ,R)-Lipschitz Classifier without dis-

cretization). Any solution c∗ of the system of equations K∗c = GTYα∗ asso-

ciated to a dual optimal point (K∗,α∗) ∈ conv(K)×RN of the dual C(1)(X ,R)-

Lipschitz Classifier problem

max
K∈conv(K)

(
max

α,β≥0 : αTy=0,C1N−α−β=0
αT1N −

1

2
(c∗)TK(c∗)

)
(5.92)

admits the same optimal value

(α∗)T1N −
1

2
(c∗)T (K∗)(c∗) = min

(c,ξ,b)∈SP
max
x∈X

1

2
cTK(x)c+ C1TNξ

=
1

2
(c∗)TK(x∗)(c∗) + C1TNξ

∗. (5.93)

Any c∗ is a primal feasible solution of the C(1)(X ,R)-Lipschitz Classifier.

Proof. First, recall definition (5.76). Then for any h ∈ H it holds

h(z) =
k∑
j=1

µjg(z,xj) =
1

2
cT

(
k∑
j=1

µjK(xj)

)
c =

1

2
cTKc (5.94)
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with K ∈ conv(K). K denotes the set of all positive semi-definite matrices

K(x) with K(x)m,n := 〈∇Φm(x),∇Φn(x)〉2 defined on X , i.e.

K :=
{

0 � K(x) ∈ RM×M | x ∈ X
}
. (5.95)

Defining the Lagrangian

LSP (z,α,β,K) := h(z) + f(z)− βTξ −αT (YGc+ yb− 1N + ξ)

=
1

2
cTKc−αTy · b−αTYGc+αT1N +

ξT (C1N −α− β) (5.96)

with h ∈ H and f(z) defined as in (5.73), yields the dual

DLSP (α,β,K) := inf
{
LSP (z,α,β,K) | z ∈ Rl

}
. (5.97)

The infimum is attained for all (z∗,α,β) ∈ Rl+N+M satisfying the constraints

Kc∗ −GTYα = 0, αTy = 0 and C1N −α− β = 0 with optimal value

DLSP (α,β,K) = LSP (z∗,α,β,K) = αT1N −
1

2
(c∗)TK(c∗). (5.98)

From (5.97), the identity (5.94) and Definition (5.73) follows immediately

in virtue of the strong duality theorem of finite convex programming (App.

A.3.4) the duality

max
α,β≥0 : αTy=0,C1N−α−β=0

DLSP (α,β,K) = min
z∈SP

h(z) + f(z). (5.99)

Now, applying Theorem (5.2.3) to (5.99) gives

1

2
(c∗)TK(x∗)(c∗) + C1TNξ

∗

= min
z∈SP

max
x∈X

1

2
cTK(x)c+ C1TNξ

= max
K∈conv(K)

(
max

α,β≥0 : αTy=0,C1N−α−β=0
DLSP (α,β,K)

)
= (α∗)T1N −

1

2
(c∗)T (K∗)(c∗) (5.100)

Because any solution c∗ can be represented as c∗ = c(α∗) + λc0 for any

c0 ∈ null(K∗), i.e. the null space of K∗, and λ ∈ R, one easily verifies

from (5.100) that the null space does not change the optimal value. The last

statement follows directly from the proof of Theorem (5.2.3).
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Making the constraint Kc∗ = GTYα for attaining the infimum in (5.97)

explicit, we obtain by Theorem (5.2.4) the dual formulation of the Lipschitz

classifier algorithm:

Algorithm 5.2.4 C(1)(X ,R)-Lipschitz Classifier (Dual Convex SIP Version)

Require: Training set ∅ 6= ON ⊂ Z = X ×Y , X ⊂ Rm compact and convex,

1 ≤ n ≤M basis functions Φn(x) ∈ C(1)(X ,R), C > 0

Ensure: ∃(xj, yj), (xi, yi) ∈ ON : yj = −1 ∧ yi = 1

max
K∈conv(K)

max
(α,c)∈SD(K)

αT1N −
1

2
cTKc (5.101)

with feasible set

SD(K) :=

{
(α, c) ∈ RN × RM

∣∣∣∣ Kc = GTYα,αTy = 0,0 ≤ α ≤ C1N

}
(5.102)

If an optimal point (K∗,α∗, c∗) of (5.101) is found, one can compute the

optimal bias b∗ of the decision function f(x) :=
∑M

n=1 c
∗
nΦn(x) + b∗ by taking

the KKT conditions (5.57)-(5.61) into account. From the KKT conditions

follows, that for each 0 < α∗i < C holds yi
∑M

n=1 c
∗
nΦn(xi) + byi − 1 + ξ∗i = 0

and ξ∗i = 0. Therefore, b = yi −
∑M

n=1 c
∗
nΦn(xi). For example, taking the

average over equally sized index sets A+ ⊆ {i ∈ N : 0 < αi < C, yi = 1} and

A− ⊆ {j ∈ N : 0 < αj < C, yj = −1} with |A+| = |A−|, yields an estimate

of b∗:

b∗ =
1

2|A+|

 ∑
i∈A+∪A−

yi −
M∑
n=1

c∗nΦn(xi)

 (5.103)

= − 1

2|A+|

∑
i∈A+

M∑
n=1

c∗nΦn(xi) +
∑
j∈A−

M∑
n=1

c∗nΦn(xj)

 . (5.104)

The dual problem (5.101) exploits the structure compared to the origi-

nal minimax problem (5.34) such that the inner problem is now a standard

constrained QP-problem, which is relatively easy to solve. Fortunately, the

nonlinear global optimization over an arbitrary complicated feasible set (data

space X ) is now transformed to an outer maximization over a convex hull of

matrices enabling us to solve the Lipschitz classifier iteratively by a sequence

of QP-problems as presented in next chapter.



5.2. Summary 89

Summary

At the beginning of this chapter, we introduced the theory behind the most

general embedding for the generalization of a maximum margin classification

to more general spaces than Hilbert spaces induced by a kernel. Using the

embedding of a metric space into a Banach space AE(X0) and a simultane-

ous embedding of the space of bounded Lipschitz continuous functions into

the dual AE∗(X0), we reviewed the Lipschitz classifier framework proposed by

[von Luxburg 2004]. The presented theory justifies that the Lipschitz constant

L(f) lower bounds a margin in a implicitly defined Banach space AE(X0).

Thus, minimizing L(f) also maximizes the margin. Moreover, the SVM and

the 1-Nearest-Neighbor classifier are special cases of the Lipschitz classifier.

It follows Algorithms (4.2.2) and (4.2.3) use very crude approximations of the

Lipschitz constant. The most general versions of the Lipschitz classifier algo-

rithm (Alg. 5.1.1 and Alg. 5.1.2) are difficult to compute due to the evaluation

of the Lipschitz constant for each function of a considered decision function

space. Rarely any analytic expression for L(f) can be derived permitting the

development of practical algorithms.

However, we showed that restricting the function space to the still very rich

space of at least one-time continuously differentiable functions (Def. (5.2.1)),

which are defined on a compact and convex Euclidean metric space, let us

compute the Lipschitz constant (Lemma (5.2.1)) explicitly. The proposed

setting enables us to implement almost all decision functions important for

machine learning in a maximum margin concept without severe restrictions

like the Mercer’s condition. Moreover, the explicit expression of the Lipschitz

constant resulted in a novel minimax soft-margin algorithm (Alg. 5.2.1), in

which the Lipschitz constant is a regularization operator of the optimization

problem implying an optimal solution that induces a flat decision boundary.

Because Algorithm (5.2.1) is a constrained minimax problem, standard

optimization methods do not apply. Therefore, we reformulated the problem

into a so-called semi-infinite program in order to exploit its structure as much

as possible. We obtained an additional new Lipschitz classifier algorithm

(Alg. 5.2.3). The primal SIP version is the first implementable formulation

of the Lipschitz classifier. Using a sufficiently fine discretized data space, it

can be solved with standard optimization methods. Because, discretization

is practically not satisfactory for high-dimensional data spaces and often the

complicated feasible set of the primal problem breaks down standard solvers,

we proved a duality theorem for a convex SIP (Theorem (5.2.3)). Duality

enables us to interconnect the minimax problem with a max-min problem in

which the maximization has to be performed over a convex hull of positive

semi-definite matrices. The obtained new dual Lipschitz classifier algorithm
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(Alg. 5.2.4) further exploits the problem structure, so that we are able for the

first time to apply standard optimization methods without discretization and

to solve the Lipschitz classifier iteratively. Thus, at this point, we can state

without doubt that we reached the main objective of this thesis successfully.

In the next chapter, we want to discuss the details of implementing the

new Lipschitz classifier algorithms divided into parts: the inner constrained

QP-problem and the outer problem of maximizing the optimal value of inner

problem over a convex hull of positive semi-definite matrices. For solving the

inner QP-problem, we adapt a Primal-Dual Interior Point method (Section

(6.1)). And for solving the outer problem, an optimal convex combination of

matrices is iteratively constructed using a stochastic search based on Simulated

Annealing and a Spectral-Gradient method (Section (6.2)). Then, in Section

(6.3) both solvers are used to develop two different realizations of the dual

C(1)(X ,R)-Lipschitz classifier algorithm.
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In the last chapter, we derived a new dual formulation of the C(1)(X ,R)-

Lipschitz classifier which can be solved using standard optimization tech-

niques without the need of any discretization of the data space. In this chapter,

we discuss in details all components necessary for a real implementation of

the dual C(1)(X ,R)-Lipschitz classifier algorithm in software.

In its abstract form, the dual C(1)(X ,R)-Lipschitz classifier Algorithm

(5.2.4) consists in essence of two coupled optimization problems, namely the
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inner problem, that is a Quadratic Problem (QP) with convex feasible set, and

the outer problem of finding an optimal matrix from a convex hull of posi-

tive semidefinite matrices such that the optimal value of the inner problem is

maximized.

Details on a QP solver implementation adapted to the particular inner

problem structure is the topic of Section (6.1). The implementation details

regarding a sequential optimization scheme for the outer problem are discussed

in Section (6.2).

After developing these building blocks, in Section (6.3.1) and (6.3.2) two

detailed realizations of the dual C(1)(X ,R)-Lipschitz classifier algorithm (Alg.

5.2.4) are introduced and serve as a template for our own implementations

used in the experimental part of this thesis. Note, although aiming to solve

the same problem, both realizations are technically different in the way how

they handle the ambiguity of multiple equivalent solutions as discussed in the

context of Theorem (5.2.4).

6.1 A QP-Solver for the Inner Constrained

Problem

Recall Section (5.2.2.3), for any K ∈ conv(K) (Def. (5.2.4)) with

K =
{

0 � K(x) ∈ RM×M | x ∈ X
}

(6.1)

the inner problem of the dual C(1)(X ,R)-Lipschitz classifier Algorithm (5.2.4)

is a Quadratic Optimization (QP) problem

q(K) := max
(α,c)∈SD(K)

αT1N −
1

2
cTKc

= − min
(α,c)∈SD(K)

1

2
cTKc−αT1N (6.2)

with convex feasible set

SD(K) :=

{
(α, c) ∈ RN × RM

∣∣∣∣ Kc = GTYα,αTy = 0,0 ≤ α ≤ C1N

}
.

(6.3)

Such QP problems are well-known (e.g. the SVM algorithm in Sec. (3.6)) and

efficiently solvable with Newton-type methods applied to a modified KKT-

system such that the iterates converge to a solution starting from a point of

the interior of the feasible set. The logarithmic barrier Interior-Point (IP) ap-

proach for constrained problems [Frisch 1955] is based on a logarithmic barrier
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function making inequalities gi(x) ≥ 0 implicit in the objective function, i.e.

min
x>0

f(x)− τ
N∑
i=1

log(gi(x)) (6.4)

s.t. h(x) = 0.

For an appropriate sequence of decreasing τ > 0, it is possible to solve a

sequence of equality constraint problems with Newton’s method, such that

the sequence of solutions converges to a solution of the inequality constrained

problem. This idea was first introduced by [Frisch 1955] and then formally

studied in [Fiacco 1968]. Due to the seminal work of [Karmarkar 1984] about

a polynomial time projective algorithm, the logarithmic barrier method gained

popularity after [Gill 1986] pointed out the close connections with Karmarkar’s

algorithm. Nowadays IP methods are the most powerful and reliable algo-

rithms for solving linear programming problems in polynomial time, and they

are applicable even for efficiently solving convex quadratic optimization prob-

lems [Monteiro 1989b]. Very similar to the logarithmic barrier approach is

the class of so-called primal-dual interior-point methods. The search direc-

tions in a primal-dual IP method are obtained by a relaxation of the KKT-

system and applying Newton’s method [Monteiro 1989a], [Monteiro 1989b].

Contrary to logarithmic barrier approaches eliminating dual variables, the

primal-dual IP method computes search directions for the primal and dual

variables simultaneously. Primal-dual IP approaches are often more efficient

than barrier methods, in particular if high accuracy is required. For a prac-

tical implementation the primal-dual-predictor-corrector algorithm proposed

by [Mehrotra 1992] emerged as the algorithm of choice in case of linear and

quadratic programming problems. Upon the many available and well-written

textbooks on nonlinear constrained optimization, we would like to refer the

reader to e.g. [Boyd 2004] for more details on convex optimization.

In the following, we derive Mehrotra’s algorithm adapted to our problem

structure given by (6.2) and (6.3). The resulting QP-solver is needed later on

as a subroutine in the complete C(1)(X ,R)-Lipschitz Classifier implementation.

For this purpose, we first abstract from our problem formulation:

Definition 6.1.1 (Primal Convex QP-Problem (PCQP)). Let be f : Rn ×
Rm → R, f(x,y) := 1

2
yTQy+ dTx, Q ∈ Rm×m,Q = QT � 0, A ∈ Rp×n and
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B ∈ Rm×n. We define the primal convex QP-problem as:

min
x,y

f(x,y) (6.5)

s.t. 0 ≤ x ≤ ub
Ax+ b = 0

Qy + Bx = 0.

Using so-called slack variables 0 ≤ s ∈ Rn we obtain the more appropriate

equivalent form of (6.5):

min
x≥0,s≥0,y

f(x,y) (6.6)

s.t. x− ub + s = 0

Ax+ b = 0

Qy + Bx = 0.

Because PCQP has a convex objective and a convex feasible set, the KKT-

conditions are necessary and sufficient for optimality (App. (A.3.3)). This

means, in order to solve PCQP we have to solve the associated KKT-system.

Therefore, we define the Lagrangian function

LP (x,y, s,κ,λ,µ,ν, ξ) :=
1

2
yTQTy + dTx+ κT (x− ub + s) +

λT (Ax+ b) + µT (Qy + Bx)− νTx− ξTs (6.7)

with Lagrange multipliers (κ,λ,µ,ν, ξ) ∈ Rn × Rp × Rm × Rn × Rn.

It follows the primal KKT-system

∇xLP (x,y, s,κ,λ,µ,ν, ξ) = d+ κ+ ATλ+ BTµ− ν = 0 (6.8)

∇yLP (x,y, s,κ,λ,µ,ν, ξ) = Qy + Qµ = 0⇔ y = −µ (6.9)

∇sLP (x,y, s,κ,λ,µ,ν, ξ) = κ− ξ = 0⇔ κ = ξ (6.10)

Qy + Bx = 0 (6.11)

Ax+ b = 0 (6.12)

x− ub + s = 0 (6.13)

Nx = 0, Ξs = 0 (6.14)

x ≥ 0, s ≥ 0 (6.15)

ν ≥ 0, ξ ≥ 0 (6.16)

with diagonal matrices N := diag(ν) ∈ Rn×n and Ξ := diag(ξ) ∈ Rn×n.

One can show (cf. App. B.1.1) that a solution w∗ := (y∗,λ∗, ξ∗,x∗,ν∗, s∗)
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is a primal and dual feasible optimal point of PCQP. This is also the reason

for the name of primal-dual interior-point methods, which apply Netwon’s

method to the primal KKT-system that results in iterates for the primal and

dual variables simultaneously.

6.1.1 Newton’s Method for Solving the KKT-System

For solving the KKT-system (6.8)-(6.14) ignoring for a moment the inequality

constraints (6.15) and (6.16) Newton’s method suggest to solve at the current

iterate w the Newton-equation

DΨ0(w)∆w = −Ψ0(w) (6.17)

with respect to the Newton step ∆w. The matrix DΨ0(w) is the Jakobi -

matrix of

Ψ0(w) :=



Qy + Bx

Ax+ b

x− ub + s

ATλ−BTy + ξ − ν + d

Nx

Ξs

 (6.18)

with w := (y,λ, ξ,x,ν, s) ∈ Rm × Rp × Rn × Rn × Rn × Rn. A new iterate

is obtained by the update w̃ = w + µ∆w that is known to be a fixed point

iteration with fixed point w∗ satisfying Ψ0(w∗) = 0, if convergence takes

place. In order that the Newton’s iteration converges to an unique (local)

fixed point the Jakobi-matrix DΨ0(w) must be nonsingular1:

Theorem 6.1.1. Let be Q = QT ∈ Rm×m positive definite, A ∈ Rp×n with

rank(A) = p ≤ n and 0 < ν ∈ Rn,0 < s ∈ Rn,0 < ξ ∈ Rn,0 < x ∈ Rn.

Then the matrix

DΨ0(w) :=



Q 0 0 B 0 0

0 0 0 A 0 0

0 0 0 In 0 In
−BT AT In 0 −In 0

0 0 0 N X 0

0 0 S 0 0 Ξ

 (6.19)

is nonsingular. Where S := diag(s) ∈ Rn×n,N := diag(ν) ∈ Rn×n,Ξ :=

diag(ξ) ∈ Rn×n,X := diag(x) ∈ Rn×n denotes positive diagonal matrices and

In ∈ Rn×n is an identity matrix.

1Global convergence requires definiteness of the Jacobian.
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Proof. Suppose there exists a vector v := (a, b, c,d, e,f) 6= 0 that solves

DΨ0(w)v = 0. Then it follows from the 4th block-row by left multiplication

with dT that −dTBTa + dTATb + dTc − dTe = 0 holds. Now, substituting

Qa = −Bd from the 1st block-row and using the 2nd block-row Ad = 0

yields aTQa + dTc − dTe = 0. With d = −N−1Xe from the 5th block-

row, c = −S−1Ξf from the 6th block-row, as well as d = −f from the 3rd

block-row, it follows aTQa+fTS−1Ξf +eTXN−1e = 0. The latter equation

implies immediately a = 0, f = 0 and e = 0, because Q, S−1Ξ and XN−1

are positive definite. Further, it follows d = 0 and c = 0. The reduced 4th

block-row then reads as ATb = 0. Because A has full row-rank, i.e. AT has

full column rank, it follows b = 0. Thus, our assumption is contradicted.

Thus, due to Theorem (6.1.1) we can apply Newton’s method to solve

Ψ0(w) = 0 as long as we can ensure that all iterates remain strictly feasible

with respect to the inequalities (6.15), (6.16). Unfortunately, the latter is not

the case as we will see in the next section.

6.1.2 Primal-Dual Interior Point Method

Consider the the complementary constraints Nx = 0 and Ξs = 0. Obviously,

due to ν ≥ 0,x ≥ 0 and ξ ≥ 0, s ≥ 0, a solution of the KKT-system must

be at the boundary of the feasible set. That means, the strict feasibility with

respect to the inequalities (6.15), (6.16), which is necessary for the Jakobi-

matrix DΨ(w) to be nonsingular (Theorem 6.1.1), is violated because always

at least one component of ν or x, respectively ξ or s, has to be zero to satisfy

the complementary constraints. However, to apply Newton’s method, primal-

dual IP methods slack the complementary constraints to be Nx−τ1n = 0 and

Ξs − τ1n = 0 with an appropriate τ > 0. Then, starting with a sufficiently

large initial value τ0, τ is step-wise reduced and a solution wτ of the disturbed

KKT-system is iterated via Newton’s method. The mapping τ 7→ wτ is called

the central path. One can show [Monteiro 1989b], if the strictly feasible set is

not empty, then for any τ > 0 the associated logarithmic barrier problem

min
x>0,s>0,y

f(x,y)− τ
N∑
i=1

log(xi)− τ
N∑
j=1

log(sj) (6.20)

s.t. x− ub + s = 0

Ax+ b = 0

Qy + Bx = 0.
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is unique and completely characterized by a solution wτ of the slacked KKT-

system

Ψτ (w) :=



Qy + Bx

Ax+ b

x− ub + s

ATλ−BTy + ξ − ν + d

Nx− τ1n
Ξs− τ1n

 = 0, (6.21)

x > 0, s > 0, ξ > 0,ν > 0. (6.22)

Thus, the objective is to solve Newton’s equation DΨτ (w)∆w = −Ψτ (w).

Because it holds DΨτ (w) = DΨ0(w) (6.19), we obtain a Newton step ∆w :=

(∆y,∆λ,∆ξ,∆x,∆ν,∆s) for a given τ > 0 by a solution of


Q 0 0 B 0 0

0 0 0 A 0 0

0 0 0 In 0 In
−BT AT In 0 −In 0

0 0 0 N X 0

0 0 S 0 0 Ξ




∆y

∆λ

∆ξ

∆x

∆ν

∆s

 =


−Qy −Bx

−Ax− b
−x+ ub − s

−ATλ+ BTy − ξ + ν − d
−NX1n + τ1n
−ΞS1n + τ1n

 .

(6.23)

By multiplication of the 5th, respectively 6th, block-row with N−1, respec-

tively −S−1, as well as the 2nd, 3rd and 4th block-row with −1 gives



Q 0 0 B 0 0

0 0 0 −A 0 0

0 0 0 −In 0 −In
BT −AT −In 0 In 0

0 0 0 In N−1X 0

0 0 −In 0 0 −S−1Ξ


︸ ︷︷ ︸

=:DΨ̂(w)


∆y

∆λ

∆ξ

∆x

∆ν

∆s

 =



−Qy −Bx

Ax+ b

x− ub + s

ATλ−BTy + ξ − ν + d

−X1n + τN−11n
Ξ1n − τS−11n


︸ ︷︷ ︸

=:Ψ̂τ (w)

.

(6.24)



98 Chapter 6. Implementing the Lipschitz Classifier

Now, the Jakobi-matrix is symmetric. Because the 3rd, 5th and 6th block-

rows are of simple structure, we solve them explicitly:

∆x+ ∆s = −x+ ub − s =: ρp1(x, s) (6.25)

⇔ ∆s = ρp1(x, s)−∆x (6.26)

∆x+ N−1X∆ν = −X1n + τN−11n (6.27)

⇔ X−1N∆x+ ∆ν = −N1n + τX−11n =: ρτkkt1(x,ν) (6.28)

⇔ ∆ν = ρτkkt1(x,ν)−X−1N∆x (6.29)

∆ξ + S−1Ξ∆s = −Ξ1n + τS−11n =: ρτkkt2(s, ξ) (6.30)

⇔ ∆ξ = ρτkkt2(s, ξ)− S−1Ξ∆s . (6.31)

Eliminating the associated rows in (6.24) yields

 Q 0 0 B 0 0

0 0 0 −A 0 0

BT −AT −In 0 In 0




∆y

∆λ

∆ξ

∆x

∆ν

∆s

 =

 ρp3(x,y)

ρp2(x)

ρd1(y,λ, ξ,ν)

 , (6.32)

with substitutions

ρp3(x,y) := −Qy −Bx (6.33)

ρp2(x) := Ax+ b (6.34)

ρd1(y,λ, ξ,ν) := ATλ−BTy + ξ − ν + d. (6.35)

Using ∆ξ and ∆ν in the 3rd block-row of (6.32) gives

BT∆y −AT∆λ− ρτkkt2(s, ξ) + S−1Ξ∆s+ ρτkkt1(x,ν)−X−1N∆x

= ρd1(y,λ, ξ,ν) (6.36)

and using ∆s yields

BT∆y −AT∆λ+ S−1Ξρp1(x, s)− S−1Ξ∆x−X−1N∆x

= ρd1(y,λ, ξ,ν)− ρτkkt1(x,ν) + ρτkkt2(s, ξ) (6.37)

⇔ BT∆y −AT∆λ−
(
X−1N + S−1Ξ

)
∆x (6.38)

= ρd1(y,λ, ξ,ν)− ρτkkt1(x,ν) + ρτkkt2(s, ξ)− S−1Ξρp1(x, s).(6.39)
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Finally, it results the reduced KKT-Newton-system(
H M

MT −D

)(
∆u

∆x

)
=

(
ρ1(x,y)

ρτ2(x,y, s,λ,ν, ξ)

)
(6.40)

with

H :=

(
Q 0

0 0

)
∈ R(m+p)×(m+p), M :=

(
B

−A

)
∈ R(m+p)×n,

D := X−1N + S−1Ξ ∈ Rn×n, ∆u :=

(
∆y

∆λ

)
∈ Rm+p,

ρ1(x,y) :=

(
ρp3(x,y)

ρp2(x)

)
,

ρτ2(x,y, s,λ,ν, ξ) := ρd1(y,λ, ξ,ν)− ρτkkt1(x,ν) +

ρτkkt2(s, ξ)− S−1Ξρp1(x, s).

The reduced KKT-Newton-system can be solved by resolving for ∆x first:

MT∆u−D∆x = ρτ2(x,y, s,λ,ν, ξ) (6.41)

⇔ ∆x = D−1
(
MT∆u− ρτ2(x,y, s,λ,ν, ξ)

)
(6.42)

and then by substitution of ∆x in

H∆u+ M∆x = ρ1(x,y) (6.43)

⇔ H∆u+ MD−1
(
MT∆u− ρτ2(x,y, s,λ,ν, ξ)

)
= ρ1(x,y) (6.44)

⇔ H∆u+ MD−1MT∆u−MD−1ρτ2(x,y, s,λ,ν, ξ) = ρ1(x,y) (6.45)

⇔
(
H + MD−1MT

)
∆u = [ρ1(x,y) + MD−1ρτ2(x,y, s,λ,ν, ξ)] . (6.46)

The last equation (6.46) is called normal equation and is best solved using a

Cholesky factorization [Golub 1996].

6.1.3 Mehrotra’s Primal-Dual Predictor-Corrector Al-

gorithm

As discussed in the last sections, the KKT-system (6.8)-(6.16) of problem

(6.5), respectively (6.6), can be solved approximately using Newton’s Method

applied to a disturbed KKT-system (6.21), while maintaining strict feasibil-

ity (6.22). The sequence of solutions wτ of the disturbed KKT-system is

called the central path which is tracked by practical implementations of the

IP method. Because tracking the central path is numerically not exactly pos-

sible, so-called path following methods define valid search directions ∆w in a
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proximity of the central path. A very popular algorithm of this kind is Mehro-

tra’s Primal-Dual Predictor-Corrector Algorithm [Mehrotra 1992]. Beside a

few heuristics established to be useful in practice, Mehrotra proposed to use

a predictor-corrector approach to obtain improved search directions. To mo-

tivate the idea, the equation system Ψ0(w) = 0 can be considered as a first

order Taylor-series approximation of the KKT-system (6.8)-(6.16) neglecting

nonlinear terms ∆N∆X1n and ∆Ξ∆S1n, i.e.

Ψ0(x+ ∆x,y + ∆y, s+ ∆s,λ+ ∆λ,ν + ∆ν, ξ + ∆ξ)

=


Qy + Q∆y + Bx+ B∆x

Ax+ A∆x+ b

x+ ∆x− ub + s+ ∆s

ATλ+ AT∆λ−BTy −BT∆y + ξ + ∆ξ − ν −∆ν + d

NX1n + N∆x+ X∆ν + ∆N∆X1n
ΞS1n + S∆ξ + Ξ∆s+ ∆Ξ∆S1n

 (6.47)

≈



Qy + Q∆y + Bx+ B∆x

Ax+ A∆x+ b

x+ ∆x− ub + s+ ∆s

ATλ+ AT∆λ−BTy −BT∆y + ξ + ∆ξ − ν −∆ν + d

NX1n + N∆x+ X∆ν

ΞS1n + S∆ξ + Ξ∆s


= 0.

(6.48)

Now, in order to get as close as possible to an exact solution of (6.47), resulting

in an improved convergence rate and accuracy of the IP method, one first

solves (Eq. (6.24)), i.e.

DΨ̂(w)∆wP = Ψ̂τ (w) (6.49)

yielding an estimate ∆wP := (∆yP ,∆λP ,∆ξP ,∆xP ,∆νP ,∆sP ) of the ex-

act Newton-direction. This step is called predictor-step. Then, an improved

estimate ∆wK := (∆yK ,∆λK ,∆ξK ,∆xK ,∆νK ,∆sK) is obtained by solving

(6.47) using the predictor estimates, i.e. by resolving

DΨ̂(w)∆wK =



−Qy −Bx

Ax+ b

x− ub + s

ATλ−BTy + ξ − ν + d

−X1n + τN−11n −N−1∆NP∆XP1n
Ξ1n − τS−11n + S−1∆SP∆ΞP1n

 .

(6.50)
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This step is called corrector-step. In the same manner as for the predictor-step

(Eq. (6.26), (6.29), (6.31), (6.42), (6.46)), the reduced KKT-Newton-system

for the corrector estimates can be derived to be(
H M

MT −D

)(
∆uK

∆xK

)
=

(
ρ1(x,y)

ρτ2(x,y, s,λ,ν, ξ) + ρK(x, s,ν, ξ,∆xP ,∆sP ,∆νP ,∆ξP )

)
(6.51)

with

ρK(x, s,ν, ξ,∆xP ,∆sP ,∆νP ,∆ξP ) := X−1∆NP∆XP1n − S−1∆SP∆ΞP1n.

(6.52)

Crucial for the corrector-step is that only the right-hand side in (6.51) has

changed compared to (6.40). That means the expensive computation for solv-

ing the normal equation using a Cholesky factorization must be performed

only once in the predictor-step.

The corrector-updates can be computed by

∆sK = ρp1(x, s)−∆xK (6.53)

∆νK = ρτkkt1(x,ν)−X−1N∆xK −X−1∆NP∆XP1n (6.54)

∆ξK = ρτkkt2(s, ξ)− S−1Ξ∆sK − S−1∆SP∆ΞP1n (6.55)

∆xK = D−1

(
MT∆uK − ρτ2(x,y, s,λ,ν, ξ)−

ρK(x, s,ν, ξ,∆xP ,∆sP ,∆νP ,∆ξP
)

(6.56)

and the normal equation(
H + MD−1MT

)
∆uK = ρ1(x,y) + MD−1

(
ρτ2(x,y, s,λ,ν, ξ) +

ρK(x, s,ν, ξ,∆xP ,∆sP ,∆νP ,∆ξP )

)
.(6.57)

To ensure the strict feasibility of the iterates wk+1 = wk + µ∆w, while

obtaining a fast convergence rate, one chooses the maximum possible step-

length µmax ∈ [0, 1] such that all iterates remain nonnegative (backtracking-

line-search):

µmax := sup
{
µ ∈ [0, 1]

∣∣∣ xk + µ∆x ≥ 0, sk + µ∆s ≥ 0,

νk + µ∆ν ≥ 0, ξk + µ∆ξ ≥ 0
}

(6.58)

= min
{

1, min
i:∆xi<0

{
− xki

∆xi

}
, min
i:∆si<0

{
− ski

∆si

}
,

min
i:∆νi<0

{
− νki

∆νi

}
, min
i:∆ξi<0

{
− ξki

∆ξi

}}
. (6.59)
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Then, the step-length for the updates is computed by µ = η · µmax using a

damping factor η ∈ [0.8, 1.0] that avoids the iterates to converge to the vicinity

of the boundary of the feasible set.

6.1.4 A Practical Implementation of the QP-Solver

For a practical implementation of the IP method proposed by [Mehrotra 1992],

we use the predictor and corrector updates derived in the preceding section

with respect to the problem structure of the inner problem (Def. (6.1.1))

of the C(1)(X ,R)-Lipschitz classifier algorithm. It is important to note that

our adapted IP solver implements the heuristics proposed in [Mehrotra 1992],

except the computation of the step-length µ and the relaxation parameter τ

are justified regarding the particular problem we want to solve. Additionally,

we do not use different step-lengths for the variables (x, s,ν, ξ) because of

their linear coupling via the KKT-conditions. The IP solver is summarized in

Algorithm (6.1.1).

Algorithm 6.1.1 QP-Solver for the C(1)(X ,R)-Lipschitz classifier algorithm

(cf. [Mehrotra 1992])

Require: start values u0 := ((y0)T , (λ0)T )T ∈ Rm+p, 0 < (x0, s0,ν0, ξ0) ∈
Rn × Rn × Rn × Rn, accuracies ε1, ε2 > 0, max. number of iterations

kmax ∈ N, input data A ∈ Rp×n, B ∈ Rm×n, Q ∈ Rm×m, d ∈ Rn, b ∈ Rp,

upper bounds 0 < ub ∈ Rn

Ensure: Q is positive definite, A is of full row rank

1: k ← 0.

2: while k ≤ kmax do

3: (u,x, s,ν, ξ)← (uk,xk, sk,νk, ξk)

4: τ ←
[
(ν)Tx+ (ξ)Ts

]
/(2n)

5: if ‖ATλ−BTy + ξ − ν + d‖ < ε1, ‖x− ub + s‖ < ε1, ‖Ax+ b‖ < ε1,

‖Qy + Bx‖ < ε1 and τ < ε2 then {solution is found}
6: return (x,y)

7: end if

8: Compute predictor-steps using τP := 0:

Solve
(
H + MD−1MT

)
∆uP =

[
ρ1(x,y) + MD−1ρτP2 (x,y, s,λ,ν, ξ)

]
∆xP ← D−1

(
MT∆uP − ρτP2 (x,y, s,λ,ν, ξ)

)
∆sP ← ρp1(x, s)−∆xP

∆νP ← ρτPkkt1(x,ν)−X−1N∆xP

∆ξP ← ρτPkkt2(s, ξ)− S−1Ξ∆sP .
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9: Compute maximum predictor step-length

µmaxP ← min

{
1, min

i:∆xPi <0

{
− xi

∆xPi

}
, min
i:∆sPi <0

{
− si

∆sPi

}
,

min
i:∆νPi <0

{
− νi

∆νPi

}
, min
i:∆ξPi <0

{
− ξi

∆ξPi

}}
.

10: Compute corrector relaxation parameter

τ+ ←
(ν + µmaxP ∆νP )T (x+ µmaxP ∆xP ) + (ξ + µmaxP ∆ξP )T (s+ µmaxP ∆sP )

2n

and

τK ← τ · σ with centering-parameter σ :=
(τ+

τ

)3

.

11: Compute corrector-steps:

Solve
(
H + MD−1MT

)
∆uK = ρ1(x,y) + MD−1

(
ρτ2(x,y, s,λ,ν, ξ) +

ρK(x, s,ν, ξ,∆xP ,∆sP ,∆νP ,∆ξP )

)

∆xK ← D−1

(
MT∆uK − ρτK2 (x,y, s,λ,ν, ξ)−

ρK(x, s,ν, ξ,∆xP ,∆sP ,∆νP ,∆ξP

)
∆sK ← ρp1(x, s)−∆xK

∆νK ← ρτKkkt1(x,ν)−X−1N∆xK −X−1∆NP∆XP1n

∆ξK ← ρτKkkt2(s, ξ)− S−1Ξ∆sK − S−1∆SP∆ΞP1n.

12: Choose damping factor η ∈ [0.8, 1.0] and compute maximum corrector

step-length

µmaxK ← min

{
1, min

i:∆xKi <0

{
− xi

∆xKi

}
, min
i:∆sKi <0

{
− si

∆sKi

}
,

min
i:∆νKi <0

{
− νi

∆νKi

}
, min
i:∆ξKi <0

{
− ξi

∆ξKi

}}
.
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13: Compute Newton-step-length

µ← min {1, η · µmaxK } .

14: Update

uk+1 ← u+ µ∆uK

xk+1 ← x+ µ∆xK

sk+1 ← s+ µ∆sK

νk+1 ← ν + µ∆νK

ξk+1 ← ξ + µ∆ξK .

15: k ← k + 1

16: end while

Note, in step 9 and step 12, if no i exists satisfying ∆xi < 0, ∆si < 0, ∆νi < 0,

∆ξi < 0, then the step-length is set to µ = 1. The damping factor η is usually

geared to the quality of the corrector step. As rule of thumb, for small τK and

large µmaxK one chooses η ≈ 1 to improve convergence.

Another issue is the determination of appropriate start values for Algo-

rithm (6.1.1), i.e.

u0 = ((y0)T , (λ0)T )T ∈ Rm+p,0 < (x0, s0,ν0, ξ0) ∈ Rn × Rn × Rn × Rn.

As a heuristic, we first compute start values (u0,x0) by solving the reduced

KKT-Newton-system (6.40) setting ∆u = u0, ∆x = x0, S−1Ξρp1(x, s) =

ρτkkt1(x,ν) = ρτkkt2(s, ξ) = 0, x = 0, y = 0, λ = 0, ξ = 0, ν = 0 and

D = In. Moreover, H is substituted by the matrix H̃ := H + ∆ yielding(
H̃ M

MT −In

)(
u0

x0

)
=

(
(0T , bT )T

d

)
, (6.60)

∆ :=

(
Im 0

0 0

)
∈ R(m+p)×(m+p). (6.61)

Second, we initialize the variables (x0, s0,ν0, ξ0) dependent on the compo-

nents of x0 such that the nonnegative condition is satisfied. The initialization

heuristics works well in practice and is summarized in Algorithm (6.1.2).

Algorithm 6.1.2 QP-Solver’s Initializer

Require: input data A ∈ Rp×n, B ∈ Rm×n, Q ∈ Rm×m, d ∈ Rn, b ∈ Rp,

upper bounds 0 < ub ∈ Rn



6.2. An Iterative Solver for the Outer Optimization over the
Convex Hull of Matrices 105

Ensure: Q is positive definite, A is of full row rank

1: Solve
(
H + ∆ + MMT

)
u0 =

[(
0

b

)
+ Md

]
2: x0 ←MTu0 − d
3: for i = 1 to n do

4: if x0
i < 0 then

5: x0
i ← eps2/3{eps ≡machine precision}

6: end if

7: if x0
i > u0

b,i then

8: x0
i ← 0.9 · u0

b,i

9: end if

10: s0
i ← u0

b,i − x0
i

11: if x0
i = 0 then

12: ν0
i ← 1.0, ξ0

i ← 1.0

13: end if

14: if x0
i > 0 then

15: ξ0
i ← 5/4x0

i , ν
0
i ← x0

i /4

16: end if

17: end for

18: return (u0,x0, s0,ν0, ξ0)

At this point, all necessary components for solving the inner problem of

the C(1)(X ,R)-Lipschitz classifier algorithm are introduced. Hence, the next

sections focus the development of an iterative solver for the outer problem.

6.2 An Iterative Solver for the Outer Opti-

mization over the Convex Hull of Matri-

ces

In the previous section an algorithm for solving the inner QP problem of

the C(1)(X ,R)-Lipschitz classifier algorithm was developed. In this section,

we focus on the development of a solver that iterates a solution of the outer

problem.

For this purpose, recall the outer problem of Algorithm (5.2.4)

max
K∈conv(K)

q(K) = − min
K∈conv(K)

−q(K) (6.62)

where q(K) = (α∗)T1N− 1
2
(c∗)TK(c∗) is the optimal value of the QP problem

(6.2) for a given matrix K of the convex hull conv(K).
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Solving the outer problem (6.62) is based on the idea to iterate a global

solution by a sequence of solutions found with respect to a more and more

growing subset of the convex hull conv(K), which itself is spanned by matrices

K(t) ∈ conv(K), 1 ≤ t ≤ T (Fig. (6.1)). The sequence of matrices (K(t))
T
t=1 is

constructed such that the associated sequences of optimal values (q(K(t)))
T
t=1

is monotonously increasing, i.e. it holds

q(K(1)) < q(K(2)) < · · · < q(K(T )). (6.63)

The scheme of sequentially solving appropriate QP problems is attractive,

because it enables a derivative-free optimization with respect to the matrix

K ∈ conv(K). Moreover, in each step a new candidate matrix K(t+1) is deter-

mined in an optimal sense, i.e. such that a maximum possible improvement is

reached with respect to the next performed inner QP optimization q(K(t+1)).

Figure 6.1: The convex hull conv(K) can be step-wise constructed via a se-

quence of matrices K(t) ∈ conv(K).

6.2.1 Optimizing for An Optimal Convex Combination

Let (α(t), c(t)) denote the optimal variables of the solved QP problem q(K(t))

in the t-th outer iteration. Further suppose a candidate matrix K∗ ∈ conv(K)

with q(K∗) > q(K(t)). Then we can seek for the best new convex combination

K(t+1) := (1− µ∗) ·K(t) + µ∗ ·K∗ (6.64)

with respect to µ∗ ∈ [0, 1]. By definition of K(t+1) and the convex hull conv(K)

(Def. (5.2.4)), it follows K(t+1) ∈ conv(K) for all µ∗ ∈ [0, 1]. Thus, it holds

max
µ∈[0,1]

q
(
(1− µ) ·K(t) + µ ·K∗

)
= q(K(t+1)) ≥ q(K∗) > q(K(t)) (6.65)

where K(t+1) is the new convex combination satisfying inequalities (6.63).

Moreover, K(t+1) is an optimal matrix from the convex hull in the sense that

it maximizes the optimal value q(K(t+1)) of the inner QP problem which has

to be solved in the next iteration.
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In order to apply derivative based techniques, like e.g. projected-gradient

methods, for solving the constrained maximization problem in (6.65) we need

the following result about the right directional derivative of

g(µ) := −q
(
(1− µ) ·K(t) + µ ·K∗

)
. (6.66)

Theorem 6.2.1. Let be S ⊆ Rm a nonempty, compact and convex set, and

let be T ⊂ Rn a nonempty, open and convex set. Assume the function G :

S ×T → R to be continuous and convex on S ×T . Then the right directional

derivative of the function g : T → R defined as

g(µ) := min {G(α,µ) : α ∈ S} (6.67)

with nonempty solution set

M(µ) := {α ∈ S : G(α,µ) = g(µ)} (6.68)

in the direction d ∈ T exists and reads as follows

g′(µ;d) := min {G′(α,µ;d) : α ∈M(µ)} . (6.69)

Here G′(α,µ;d) denotes the right directional derivative of G with respect to

µ ∈ T in the direction d ∈ T .

Proof. To prove the theorem we need the following three quite technical lem-

mata:

Lemma 6.2.1. Let be G : S ×T → R convex, and let be the set S ⊆ Rm and

T ⊆ Rn nonempty and convex, then the function g : T → R defined as

g(µ) := inf {G(α,µ) : α ∈ S} (6.70)

is convex if g(µ) > −∞ for any µ ∈ T .

Proof. For a proof see Appendix (B.2.1).

Lemma 6.2.2. Let be T ⊆ Rn a nonempty, open and convex set, g : T → R
a convex function, µ ∈ T and d ∈ Rn. Then it holds

1. any sequence (q(t))t∈N of the differential quotient

q(t) :=
g(µ+ td)− g(µ)

t
(6.71)

is monotonously decreasing for t→ 0+.

2. the right directional derivative

g′(µ;d) := lim
t→0+

q(t) (6.72)

exists for all µ ∈ T in the direction d ∈ Rn, ‖d‖ = 1. In particular,

it even holds

g′(µ;d) = inf
t>0

q(t). (6.73)

Proof. For a proof see Appendix (B.2.2).
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Lemma 6.2.3. Let be the function G : S ×T → R continuous, T ⊆ Rm, and

let be S ⊆ Rm a nonempty and compact set, then the function g : T → R with

g(µ) := min {G(α,µ) : α ∈ S} is continuous.

Proof. For a proof see Appendix (B.2.3).

Now, we are ready to prove the theorem. Because G is a convex function

and S, T are both nonempty convex sets, in virtue of Lemma (6.2.1) the

function g is convex too. Therefore, and because T is open, due to Lemma

(6.2.2) the right directional derivative g′(µ;d) in the direction d ∈ S exists.

Further, for all α ∈M(µ) and t > 0 it holds

g(µ+ td)− g(µ)

t
=

min {G(α,µ+ td) : α ∈ S} −G(α,µ)

t
(6.74)

≤ G(α,µ+ td)−G(α,µ)

t
. (6.75)

Due to convexity, Lemma (6.2.2) also applies to the function G(α, ·) for all

α ∈ S. Thus, the limiting process t→ 0+ in (6.74) and (6.75) implies

g′(µ;d) ≤ G′(α,µ;d) ∀α ∈M(µ) (6.76)

and in particular we have

g′(µ;d) ≤ inf {G′(α,µ;d) : α ∈M(µ)} . (6.77)

Now, we show that indeed equality holds throughout in (6.77). For this

purpose let be (tn)n∈N a zero-sequence, i.e. (tn)n∈N
n→∞−→ 0+. Due to the

compactness and non-emptiness of S it exist αn ∈ M(µ+ tnd) ⊆ S for each

tn such that g(µ + tnd) = G(αn,µ + tnd). Likewise, it exists a convergent

subsequence (αnk)k∈N of (αn)n∈N with limit α∗ := limk→∞αnk ,α
∗ ∈ S.

Because of Lemma (6.2.3) the function g is continuous, and with

g(µ+ tnkd) = G(αnk ,µ+ tnkd) (6.78)

it follows that

g(µ) = lim
k→∞

g(µ+ tnkd) = lim
k→∞

G(αnk ,µ+ tnkd) = G(α∗,µ). (6.79)

This implies α∗ ∈M(µ).

By definition ∀α ∈ S ∧ α /∈ M(µ) : g(µ) < G(α,µ), thus for all tnk > 0

and αnk ∈M(µ+ tnkd) we have

g(µ+ tnkd)− g(µ) ≥ G(αnk ,µ+ tnkd)−G(αnk ,µ). (6.80)
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In virtue of the mean-value theorem of differential calculus, there exists for

any tnk > 0 a point ξnk ∈ (µ,µ+ tnkd) (i.e. the line between µ and µ+ tnkd)

with

G(αnk ,µ+ tnkd)−G(αnk ,µ) = tnkG
′(αnk , ξnk ;d). (6.81)

Insertion in (6.80) gives

g(µ+ tnkd)− g(µ)

tnk
≥ G′(αnk , ξnk ;d) (6.82)

and for k →∞ we get

g′(µ;d) ≥ G′(α∗,µ;d) (6.83)

because ξnk
k→∞−→ µ and αnk

k→∞−→ α∗.

In particular, if G(α, ·) is differentiable we have

g′(µ;d) = min
{
∇µG(α,µ)Td : α ∈M(µ) ⊂ S

}
= ∇µG(α∗,µ)Td (6.84)

enabling us to solve the constrained maximization in (6.65) iteratively using

e.g. steepest descent methods.

For this purpose, suppose we have given a parametrization c : RN×[0, 1]→
RM defined by a solution of the equation system K(µ)c(α, µ) = GTYα for

all α ∈ RN and µ ∈ [0, 1] with

K(µ) := (1− µ) ·K(t) + µ ·K∗ (6.85)

such that

G(α, µ) :=
1

2
c(α, µ)TK(µ)c(α, µ)−αT1N (6.86)

is continuous and convex. Further, let be T := R and

g(µ) = −q(K(µ)) = min
α∈S

G(α, µ) (6.87)

with feasible set

S :=

{
α ∈ RN

∣∣∣∣αTy = 0,0 ≤ α ≤ C1N

}
. (6.88)

Then, by these assumptions it holds

max
µ∈[0,1]

q(K(µ)) = − min
µ∈[0,1]

−q(K(µ)) = − min
µ∈[0,1]

g(µ) (6.89)

and we can apply Theorem (6.2.1).
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Note, compared to the QP-problem q(K(µ)) (6.2) we eliminated here the

equation system from the feasible set SD(K(µ)) (6.3) which is now implicitly

contained in the objective function G(α, µ) of the QP-problem g(µ). Thus,

the feasible set S is independent of µ. Clearly, both representations of the

problem are completely equivalent and they can be interchanged if necessary.

Although we consider here the simple case of µ ∈ [0, 1] ⊂ R, in virtue of

Theorem (6.2.1) one could also try to solve for an optimal convex combination

consisting of more than two matrices from the convex hull conv(K).

By the way, Lemma (6.2.1) proves that optimizing for µ∗ ∈ [0, 1] is a convex

optimization problem, that means a solution is always a global solution.

Corollary 6.2.1. Let be G : S × T → R convex, then µ∗ ∈ [0, 1] is a global

solution of the convex problem

min
µ∈[0,1]

g(µ). (6.90)

Proof. The proof follows directly from Lemma (6.2.1) and the equality (6.89).

However, the directional derivative depends on the parameterization c(α, µ)

of the solutions of the equation system K(µ)c = GTYα. Later on, in Section

(6.3), we revisit this issue and specify two continuously differentiable param-

eterizations c(α, µ) resulting in different implementations of the C(1)(X ,R)-

Lipschitz Classifier algorithm.

Next, we will present a particular projected gradient method which we

use for solving the constrained maximization in (6.65), respectively problem

(6.65), using (6.84).

6.2.2 Spectral Projected Gradient Method

The well-known steepest descent method from unconstrained optimization

seeks for a search direction d ∈ Rn that makes the approximate change in

a function g : Rn → R, i.e. the value of the directional derivative g′(µ,d),

as negative as possible for a sufficiently small step in the direction d. The

motivation is that g can be approximated near µ in the direction d for small

η > 0 by

g(µ+ ηd) ≈ g(µ) + ηg′(µ;d). (6.91)

Thus, generating a sequence of iterates µk+1 := µk + ηk∆µk with a steepest

descent direction

∆µk := arg min
d∈Rn

{g′(µk;d) : ‖d‖ = 1, g′(µk;d) < 0} (6.92)
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yields a maximum decrease g(µk+1) − g(µk) < 0. That means, the sequence

(g(µk))k∈N is monotonously decreasing if the step-length ηk ≥ 0 is chosen

appropriately in each iteration (assuming the directional derivative exists for

all µk). If there exists no such descent direction at a point µ∗ ∈ Rn then

the point is said to be stationary. In particular, if g is differentiable then it

follows ∆µk = −∇g(µk)/‖∇g(µk)‖2 from (6.92) with respect to the Euclidean

norm ‖d‖2 = 1. In this case, the steepest descent method reduces to the

well-known gradient descent method for which it holds ∇g(µ)Td < 0 for a

descent direction d. Using the gradient descent method, any point µ∗ ∈ Rn

is stationary if the necessary condition ∇g(µ∗) = 0 is satisfied.

In steepest descent methods the step-length ηk is sometimes exactly com-

puted via a solution of

g(µk + ηk∆µk) = min {g(µk + η∆µk) : η ≥ 0} (6.93)

which is called exact line search. Most line searches used in practice are

inexact : the step length is chosen to approximately minimize g along the

ray {µk + η∆µk : η ≥ 0}. A very simple and quite effective inexact search

in unconstrained optimization is called backtracking line search which starts

with η = 1 and then reduces it by some factor 0 < β < 1 until the stopping

condition

g(µk + η∆µk) < g(µk) + α · η · g′(µk; ∆µk) (6.94)

holds for fixed 0 < α < 0.5 (for details see e.g. [Boyd 2004][Sec. 9.2]).

However, in constrained optimization, one must be careful in applying back-

tracking because one could leave the feasible set.

As discussed in the preceding section, given an appropriate parameteriza-

tion, G can be assumed to be convex and differentiable and it holds g′(µ; d) =

∂µG(α∗, µ) · d where α∗ is a (global) solution of the parameterized problem

(6.87). Because µ is constrained to the convex set [0, 1], we implemented a

projected gradient descent method. Projected gradient descent methods main-

tain feasibility by projecting the iterates on the feasible set (Fig. 6.2). This

process is in general expensive. Moreover, even if the projection is inexpen-

sive to compute, like e.g. in case of box-constraints, the method is considered

to be slow, because it suffers typically from zig-zagging trajectory like its

analogue, the gradient descent method. On the other hand, the projected

gradient method is quite simple to implement. In our simple case of [0, 1] the

projection is very easily derived to be

proj[0,1](µ) :=


µ = 0 if µ < 0

µ if 0 < µ < 1

µ = 1 if µ > 1

. (6.95)
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Figure 6.2: Projection projT (µk + ∆µk) of an iterate to a feasible set T .

Unfortunately, even in this simple case, our first attempts showed that

often the computed derivatives ∂µG(α∗, µ) are very small making the deter-

mination of appropriate step-length very difficult. Thus, a standard imple-

mentation of a projected gradient descent method with monotone line-search,

like backtracking, failed most of the time with slow convergence rates (if con-

vergence took place at all). Thus, we concluded that without using second-

order derivatives solving for the best convex combination is doomed to fail-

ure. On the other hand, the effort of computing second order derivatives

of the parametrization we will later use in (6.87) is prohibitive. Therefore,

we decided to use a non-monotone spectral projected gradient method pro-

posed by [Birgin 2000], [Birgin 2009]. Their method combines two ingredients,

first a non-monotone line search yielding a not necessarily monotone decreas-

ing sequence (g(µk))k∈N, and second a generalized projected gradient descent

method, called spectral projected gradient method, which is related to the fam-

ily of quasi-Newton methods [Dennis 1977]. That means, the non-monotone

spectral projected gradient method uses first- and second-order derivatives.

But contrary to Newton’s method, in quasi-Newton methods second-order

derivatives are approximated using first-order derivatives.

The non-monotone spectral projected gradient method by [Birgin 2000] is

summarized in Algorithm (6.2.1) with adapted notations for solving problem

(6.87), respectively problem (6.65).

Algorithm 6.2.1 Non-monotone Spectral Projected Gradient Solver (cf.

[Birgin 2000])

Require: the function g : [0, 1] → R, the derivative function ∂µG : S ×
[0, 1]→ R, a start value µ0 ∈ [0, 1], 1 ≤M ∈ N, a small αmin > 0, a large

αmax > αmin, a sufficient decrease parameter γ ∈ (0, 1), safeguarding

parameters 0 < σ1 < σ2 < 1, an accuracy ε > 0, and a maximum number

of iterations kmax ∈ N.

Ensure: α0 ∈ [αmin, αmax]
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1: for k = 0 to kmax do

2: if |proj[0,1](µk − ∂µG(α∗µk , µk))| < ε then

3: return µk {stop, µk is stationary}
4: end if

5: {Backtracking:}
6: Compute dk = proj[0,1](µk − αk∂µG(α∗µk , µk))− µk.
7: Set λ← 1.

8: loop

9: Set µ+ = µk + λdk.

10: if {Test non-monotone step-length criterion}

g(µ+) ≤ max
0≤j≤min{k,M−1}

g(µk−j) + γ · λ · dk · ∂µG(α∗µk , µk) (6.96)

then

11: break loop

12: else

13: {Compute safeguarded new trial step-length:}
14: Set δ = dk · ∂µG(α∗µk , µk).

15: Set λnew = −1
2
λ2δ/(g(µ+)− g(µk)− λδ).

16: if (λnew ≥ σ1) and (λnew ≤ σ2λ) then

17: λ← λnew
18: else

19: λ← λ/2

20: end if

21: end if

22: end loop

23: {Updates:}
24: λk = λ

25: µk+1 = µ+

26: sk = µk+1 − µk
27: yk = ∂µG(α∗µk+1

, µk+1)− ∂µG(α∗µk , µk).

28: Compute bk = sk · yk.
29: if bk ≤ 0 then

30: Set αk+1 = αmax
31: else

32: Compute ak = sk · sk.
33: Set αk+1 = min{αmax,max{αmin, ak/bk}}.
34: end if

35: end for

Obviously, the most expensive part of Algorithm (6.2.1) is the computa-

tion of the test criterion (6.96) in the backtracking loop, because we have
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to solve g(µ+) = minα∈S G(α, µ+) using Algorithm (6.1.1) in each iteration.

Additionally, we have to store the 0 ≤ j ≤ M − 1 previous function values

g(µk−j) with respect to g(µk) in a look-up table to determine (6.96). Fortu-

nately, due to the update µk+1 = µ+ we can use a solution α∗µk+1
associated to

g(µ+) in each backtracking and main iteration to determine ∂µG(α∗µk+1
, µk+1)

without extra costs. In the practical implementation the settings γ = 10−4,

αmin = 10−30, αmax = 1030, σ1 = 0.1, σ2 = 0.9, α0 = 1/|∂µG(α∗µ0 , µ0)| and

M = 10 turned out to be useful.

So far, we assumed a new candidate matrix K∗ ∈ conv(K) is given. The

question remains how to get a matrix satisfying q(K∗) > q(K(t)). In the next

section we answer this question by proposing a stochastic search heuristics.

6.2.3 Stochastically Searching for A Candidate Matrix

via Simulated Annealing

For solving the outer optimization (6.62), we propose a two stage optimization

scheme: In the first stage, a candidate matrix K∗ ∈ conv(K) has to be found

such that q(K∗) > q(K(t)) is satisfied with respect to the current iterate K(t) ∈
conv(K). Then in the second stage the best linear combination K(t+1) =

(1 − µ∗) · K(t) + µ∗ · K∗ is determined by minimization of g(µ) regarding

µ ∈ [0, 1] and using Algorithm (6.2.1). Because the convex hull conv(K) is

spanned by matrices K(x) for all x ∈ X , the idea is to stochastically search

for a candidate matrix K∗ = K(x∗) over the domain X . Even if the function

g is convex, the function q(K(·)) : X → R may be highly nonlinear over

its domain X . If it fluctuates not too dramatically, it is plausible that the

next new candidate matrix will be in some small vicinity of the predecessor

candidate matrix. On the other hand, if q(K(·)) varies strongly it is very

likely that a stochastic search based on a simple random walk will trap in

some local minimum q(K(x∗)) ≤ q(K(t)). To give an idea, a hypothetical

search space is outlined in Figure (6.3).

The solid curve in Figure (6.3) represents the function q(K(·)) on X and

the dashed curves show the situation for the concave function −g(µ) which

interpolates q(K(t)) and q(K(x(t))) for µ ∈ [0, 1]. As shown, once trapped into

the minimum at the point K(x∗) it is not possible to improve the q function via

optimizing the interpolant g. Clearly, to get as much improvement as possible

per iteration we would like to find, for example when starting at K(t), directly

the point K(x(t+1)) instead of the point K(x(t)). Ideally, we would find the

global maximum. But this requires a prohibitive number of trial steps in X .

On the other hand, the benefit from optimizing the convex combination is that

we need just good local maxima as supporting points for the interpolant in

order to sufficiently improve the q function in each iteration. Thus, a search
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Figure 6.3: A hypothetical search space.

heuristic is needed that negotiate a compromise between improvement and

number of trial steps per iteration. Additionally, the heuristic should try to

avoid to get stuck in local minima. For this reason, we used a Simulated

Annealing (SA) [Kirkpatrick 1983], [Schneider 2006] based stochastic search.

The SA approach is a classic algorithm for finding solutions, also called

low-energy states or optimum configurations, of complex optimization prob-

lems that can not be solved analytically. SA has its analogon in the ancient

technique for creating metal with desirable mechanical properties. After a

period of heating up the metal to its melting temperature, the metal can

be slowly cooled resulting in a softer, more ductile material. If desired, the

metal can also be rapidly quenched to a low temperature yielding a harder

surface. The motivation to use SA for optimization is that usually physical

systems end up in low energy states if cooling is performed slowly enough.

And such systems only reach a less desirable local minimum energy state if

quenched down rapidly. Thus, SA simulates a sufficiently slow cooling pro-

cess in order to end up in a (global) minimum of the energy landscape of a

considered objective function. Starting at a high temperature the system is

free to randomly take any configuration even with high energy value, i.e. all

system states can be visited with nearly equal probability. Then proceeding

with gradually lowering the temperature to zero the randomness decreases,

with the effect that less and less high energy configurations are explored, and

finally the system relaxes into a low energy state (also called ground state).

In SA one assumes physical systems that behave like moving gas particles
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at a temperature Tk. In this case the Boltzmann distribution

p(σ) =
1

Z(Tk)
exp

(
− h(σ)

kBTk

)
(6.97)

describes the probability the system is in a specific energetic state σ ∈ Γ with

respect to the energy function h : Γ→ R, respectively the fraction of particles

that have a specific kinetic energy. In (6.97), Z(Tk) is the partition sum

Z(Tk) =
∑
σ∈Γ

exp

(
− h(σ)

kBTk

)
(6.98)

with the Boltzmann constant kB = 1.3807 ·10−23J/K that is usually neglected

in practical SA algorithms. For the purpose of randomly exploring the state

space Γ, one has to sample from the Boltzmann distribution (6.97) which is

intractable due to the computation of the partition sum (6.98). Fortunately,

[Metropolis 1953] observed that Markov chains, which have the desired dis-

tribution as equilibrium distribution, can be used for generating a sequence

of moves in the state space instead of a simple random walk. One can show

(e.g. [Liu 2001]), starting from a state σ and moving to a new state τ with

probability π(σ → τ) (transition probability) that satisfies the detailed balance

equation

p(σ)π(σ → τ) = p(τ)π(τ → σ) (6.99)

is sufficient for the associated Markov chain to have p(σ) as its invariant equi-

librium distribution. In particular this holds even for any arbitrary starting

distribution.

Inserting Equation (6.97) into Equation (6.99) yields

π(σ → τ)

π(τ → σ)
= exp

(
−h(τ)− h(σ)

kBTk

)
. (6.100)

Thus, the transition probability ratio of a move σ → τ and the inverse move

τ → σ has to depend only on the energy difference ∆h = h(τ)− h(σ) as well

as the temperature T . Most often, one chooses the Metropolis criterion

π(σ → τ) =

{
exp

(
− ∆h
kBTk

)
if ∆h > 0

1 otherwise
(6.101)

and π(τ → σ) = 1.

That means with respect to the SA algorithm, we have to run a Markov

chain to equilibrium at temperature Tk using the Metropolis criterion first.

Then from adjacent samples produced by the chain we can obtain a new

configuration ν which is effectively produced from the Boltzmann distribution
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(6.97). The procedure is repeated at each temperature level Tk of a sequence

(Tk)k∈N with limk→∞ Tk = 0. A function producing a temperature sequence

is called cooling schedule. In [Geman 1984] it is shown that with probability

one a global optimum can be reach using a cooling schedule like

Tk =
a

b+ log(k)
. (6.102)

The parameters a and b are problem dependent. This cooling schedule is

extremely slow and is therefore not used in practice. Usually, an exponential

cooling is employed, i.e.

Tk = T0 · rk (6.103)

with start temperature T0 and some reduction factor r ∈ [0.8, 0.999].

The SA algorithm we implemented is summarized in Algorithm (6.2.2).

Algorithm 6.2.2 SA Algorithm for Finding a New Candidate Matrix (cf.

[Kirkpatrick 1983])

Require: start state x0 ∈ X , start temperature T0 > 0, reduction factor

r ∈ [0.8, 0.999], an energy function hK : X → R implicitly dependent on

K(x), max. energy value hmax, variance σ2 of a Gaussian random walker,

max. number of SA loops kmax ∈ N, max. number of equilibration steps

imax ∈ N
1: Set k = 0.

2: Set h0 = hK(x0).

3: while k ≤ kmax do

4: {Metropolis-Hastings-loop:}
5: for i = 1 to imax do

6: Simulate δ ∼ N (0, σ2 · I)

7: Compute xp = xk + δ {proposal state}
8: if xp /∈ X then

9: Reflect xp at boundary.

10: end if

11: Compute hp = hK(xp) {proposal energy}
12: if hp ≤ hk then

13: {proposal state has lower or equal energy}
14: hk ← hp
15: xk ← xp
16: else

17: {proposal state has higher energy}
18: Simulate uniformly distributed u ∼ U [0, 1].

19: Compute ∆h = hp − hk.
20: if ln(u) ≤ −∆h/Tk then
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21: {accept proposal state with Boltzmann probability}
22: hk ← hp
23: xk ← xp
24: end if

25: end if

26: end for

27: if hk < hmax then

28: {new candidate matrix found!}
29: return K(x∗) with x∗ = xk
30: end if

31: {updates:}
32: Set hk+1 = hk.

33: Set xk+1 = xk.

34: Set Tk+1 = T0 · rk.
35: k ← k + 1

36: end while

Clearly, the energy function hK depends on X via the matrix K(x). But in

Algorithm (6.2.2) we made this dependency not explicit. The reason is, that

we have to change the energy function suitable for the different realizations of

the C(1)(X ,R)-Lipschitz classifier algorithm, as we will see in Section (6.3.1)

and Section (6.3.2).

Contrary to a standard SA implementation, we stop the stochastic search

in Line (27) if an improving matrix K(x∗) is found, because good local max-

ima are sufficient for the outer optimization (6.62). Further, in Line (8), we

reflect the random walker at the boundary of X , if he is going to leave the set

X . For example, in the practical implementations of the C(1)(X ,R)-Lipschitz

classifier algorithm presented in the next sections, we assume X to be a hy-

percube [a, b]d. Thus, a reflection can be effectively performed by scaling all

components xjp /∈ [a, b] of a proposal state xp by a small factor, say e.g. 0.85.

It is important to note that in Line (2) and Line (11) a QP-problem has to

be solved using Algorithm (6.1.1). We will come back to this issue in Section

(6.3.1).

The number of Metropolis-Hastings iterations, imax, influences the equili-

bration of the Markov chain for sampling from the Boltzmann distribution at

temperature Tk. In many practical SA implementations this number is set to

unity, i.e. no equilibration takes place and sampling is performed only approx-

imately from a Boltzmann distribution. In general, one has to carefully select

the starting temperature, the number of equilibration steps, the number of SA

loops, the reduction factor and the variance of the random walker dependent

of the problem data. As rule of thumb, we set these parameters such that
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approximately for the first 25% of the SA loops, kmax, a 100% acceptance

rate of the proposal configurations is maintained during equilibration, and for

the rest of the SA loops the acceptance rate decreases slowly with at most

a 25% acceptance rate in the last 25% of all loops. Starting with a relative

high temperature value, e.g. T0 = 1000, we carefully adjusted the variance of

the random walker for a trade-off between quality and overhead of the search.

If the variance is high, the search is very crude and many local minima are

ignored. On the other hand, if the variance is set to very small values, many

steps are involved for finding good configurations. We found out, that the

variance is often well adjusted if on average an improving matrix is found

somewhere between the iterations marked by the 100% and 25% acceptance

rates. In cases it is not possible to maintain the corresponding 100% and 25%

acceptance rates using a high start temperature T0, we reduced T0 to control

the upper rate. Clearly, if the temperature is decreased, the acceptance rates

must increase eventually. The lower rate can be controled via the number of

SA loops kmax and the reduction factor r. Most of the time, a suitable value

for the reduction factor turned out to be 0.8, thus we changed only kmax to

reach the lower rate.

6.3 The Assembling of All Parts: Complete

Implementations of the C(1)(X ,R)-Lipschitz

Classifier

In Section (6.1) and Section (6.2), we developed the building blocks for an

implementation of the C(1)(X ,R)-Lipschitz Classifier. In the following, we

assemble all components considering particular realizations of the algorithm.

We suggest two realizations that are due to different parameterizations of

the solutions of the involved equation system K(µ)c = GTYα. A suitable

parameterization c(α, µ) should ideally satisfy two goals: First, the matrix Q

considered for the QP-solver (Def. 6.1.1) has to be positive definite. Second,

in order to apply Theorem (6.2.1) the feasible set SD has to be equivalently

reformulated independently of µ in terms of the feasible set S, while the

function G has to be continuous and convex. Starting in the next section

with a very simple solution using regularization, in the subsequent section

another approach based on an algebraic parameterization is presented.
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6.3.1 The Regularized C(1)(X ,R)-Lipschitz Classifier Al-

gorithm

The matrix K(µ) = (1−µ) ·K(t) +µ ·K∗, µ ∈ [0, 1] is positive semi-definite as

a convex combination of positive semi-definite matrices. Hence, the inhomo-

geneous system of equations K(µ)c = GTYα of the feasible set SD(K(µ)) has

no unique solution c∗ ∈ RM . If there is given a particular solution c(α∗, µ)

associated to an optimal point (α∗, c(α∗, µ)) ∈ SD(K(µ)) for some µ ∈ [0, 1],

then every c∗ = c(α∗, µ) + λc0 with c0 ∈ null(K(µ)), i.e. the null space of

K(µ), and λ ∈ R, solves the problem with identical optimal value q(K(µ)).

This can easily verified by insertion of c∗ into the QP-problem (6.2).

An intuitive way to avoid this ambiguity is a perturbation of the set

K =
{

0 � K(x) ∈ RM×M | x ∈ X
}

[Stuhlsatz 2007c]. For this purpose, we

introduce the set

Kε := {K + εIM : K ∈ K} (6.104)

for a sufficient small ε > 0. In this case we get

Lemma 6.3.1. Any matrix K ∈ conv(Kε) is positive definite.

Proof. For any ε > 0, 0 6= x ∈ RM and K ∈ K it holds

xT (K + εI)x

xTx
≥ min

06=x∈RM

xTKx

xTx
+ min

0 6=x∈RM

xT εIx

xTx
= λK

min + ε > 0 (6.105)

where λK
min ≥ 0 is the smallest eigenvalue of K � 0.

By the way, it is easy to see, that such a perturbation can also equivalently

be introduced by an additional constraint ‖c‖2
2 ≤ δ, δ > 0, in the feasible set

(5.78) of the Primal Convex SIP Algorithm (5.2.3) of the C(1)(X ,R)-Lipschitz

classifier algorithm. The reason is, that there is an one-to-one correspon-

dence between the Lagrange coefficient of the additional constraint and the

perturbation ε.

Due to Lemma (6.3.1), for matrices K(t),K
∗ ∈ conv(Kε) the matrix K(µ)

is positive definite yielding an unique solution c∗ = c(α, µ) = K(µ)−1GTYα

for any µ ∈ [0, 1] and α ∈ RN . Insertion of c(α, µ) in (6.86) gives

G(α, µ) =
1

2
αTYGK(µ)−1GTYα−αT1N (6.106)

which is continuous on RN × [0, 1]. Convexity with respect to α is obvious

and convexity with respect to µ follows by
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Lemma 6.3.2. Let be A(µ) := (1 − µ)A1 + µA2 for µ ∈ T with open set

T ⊆ R, and let be A1,A2 ∈ RN×N symmetric positive definite matrices.

Then, for x ∈ RN the function fx : T → R with fx(µ) := xTA(µ)−1x =

y(x, µ)TA(µ)y(x, µ) and y(x, µ) := A(µ)−1x is convex. Its first- and second-

order derivatives read as

f ′x(µ) = xTA(µ)−1BA(µ)−1x = y(x, µ)TBy(x, µ) (6.107)

f ′′x(µ) = 2xTA(µ)−1BA(µ)−1BA(µ)−1x

= 2y(x, µ)TBA(µ)−1BA(µ)−1y(x, µ) (6.108)

with B := A1 −A2.

Proof. Because it holds for all µ ∈ T(
A(µ)−1

)′
= −A(µ)−1A′(µ)A(µ)−1 = A(µ)−1 (A1 −A2) A(µ)−1 (6.109)

it follows Equation (6.107). Due to symmetry, we get (A(µ)−1BA(µ)−1)
′

=

(A(µ)−1)′BA(µ)−1+A(µ)−1B(A(µ)−1)′ = 2(A(µ)−1)′BA(µ)−1, i.e. it follows

Equation (6.108) with(
A(µ)−1

)′′
= 2

(
A(µ)−1

)′
(A1 −A2) A(µ)−1. (6.110)

Now, because of the symmetry of A(µ), we have the eigenvalue decomposition

A(µ)−1 = UµDµU
T
µ for all µ ∈ T where Dµ is diagonal with positive diagonal

elements and UµU
T
µ = I. Hence, with Cµ :=

√
2D

1/2
µ UT

µBA(µ)−1 it holds for

all µ ∈ T that

f ′′x(µ) = xTCT
µCµx = ‖Cµx‖2

2 ≥ 0 (6.111)

implying the convexity of fx(µ).

Thus, from Lemma (6.3.2), we obtain for K(t),K
∗ ∈ conv(Kε) that

∂µG(α, µ) =
1

2
c(α, µ)T

(
K(t) −K∗

)
c(α, µ). (6.112)

Because the primal variables c are eliminated from the feasible set SD(K(µ))

of Algorithm (5.2.4), it remains the feasible set

S =

{
α ∈ RN

∣∣∣∣αTy = 0,0 ≤ α ≤ C1N

}
(6.113)

that is independent of K(µ), respectively µ.
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In virtue of Theorem (6.2.1), the right directional derivative of g(µ) =

−q(K(µ)) = minα∈S G(α, µ) is given by

g′(µ; 1) = ∂µG(α∗µ, µ) (6.114)

with the global minimizer α∗µ := arg minα∈S G(α, µ). And due to Corollary

(6.2.1) the problem of finding the optimal convex combination, minµ∈[0,1] g(µ),

has a global solution µ∗ ∈ [0, 1]. In order to iterate a global minimizer µ∗ we

used the spectral projected gradient solver (Alg. (6.2.1)) together with the

QP-solver (Alg. 6.1.1) to solve for α∗µ in each iteration. The benefit from using

our modified QP-solver is that the large matrix K(µ) must not be inverted

explicitly in each iteration. Instead c(α∗µ, µ) = c∗µ is directly returned by the

QP-solver as an optimal feasible solution (α∗µ, c
∗
µ) ∈ SD(K(µ)).

A very nice property of the perturbation heuristics, is that the stochastic

search can be performed very efficiently. During stochastic search we have

to check the criterion whether the current energy value hk = −q(K(xk)) is

greater than the proposal energy value hp = −q(K(xp)), and to terminate

if hk < hmax = −q(K(t)). Thus, in each iteration of the SA algorithm (Alg.

6.2.2) we must solve a QP-problem. Fortunately, in case of a perturbed ma-

trices K ∈ conv(Kε) it is possible to bound the q values.

For this purpose, let be

Q(α, c,K) := αT1N −
1

2
cTKc. (6.115)

Recall, that for optimal points (α∗, c(α∗,K)) ∈ SD(K) and (α∗(t), c
∗
(t)) ∈

SD(K(t)) with Q(α∗, c(α∗,K),K) = q(K) and Q(α∗(t), c
∗
(t),K(t)) = q(K(t)),

it holds c(α∗,K) = K−1GTYα∗, c∗(t) = K−1
(t) G

TYα(t) and α∗,α∗(t) ∈ S.

Thus, if we seek via the SA algorithm for a matrix K ∈ conv(Kε) satisfying

Q(α∗(t), c(α
∗
(t),K),K) > Q(α∗(t), c

∗
(t),K(t)) then it follows the inequality

q(K) ≥ Q(α∗(t), c(α
∗
(t),K),K) > Q(α∗(t), c

∗
(t),K(t)) = q(K(t)). (6.116)

Fortunately, this means a quadratic problem q(K(t)) has to be solved for

α∗(t) ∈ SD(K(t)) only once. Practically, for the requirements of the SA Algo-

rithm (6.2.2), one simply has to set the function hK to be

hK(x) := −Q(α∗(t), c(α
∗
(t),K(x)),K(x)) (6.117)

with K(x) ∈ Kε and hmax := −Q(α∗(t), c
∗
(t),K(t)).

On the other hand, the computation of Q(α∗(t), c
∗,K(x)) requires the com-

putation of the inverse of K(x) ∈ RM×M . However, this inversion can be per-

formed very efficiently using the Woodbury matrix identity [Woodbury 1950]:

(E + FGH)−1 = E−1 − E−1F
(
G−1 + HE−1F

)−1
HE−1. (6.118)
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By definition (5.95), any matrix K(x) ∈ K can be factorized as K(x) =

Ψ(x)TΨ(x) with Ψ(x) := (∇Φ1(x), . . . ,∇ΦM(x)) ∈ Rm×M . Hence, for any

matrix K(x) ∈ Kε, the Woodbury matrix identity yields

K(x)−1 =
(
εIM + Ψ(x)T ImΨ(x)

)−1
(6.119)

=
1

ε
IM −

1

ε2
Ψ(x)T

(
Im + Ψ(x)Ψ(x)T

)−1
Ψ(x). (6.120)

Because the matrix Im+Ψ(x)Ψ(x)T is mostly of dimension m�M , inversion

is quite practicable with low computational costs.

The fully implementable regularized C(1)(X ,R)-Lipschitz classifier algo-

rithm is summarized in Algorithm (6.3.1) [Stuhlsatz 2007c].

Algorithm 6.3.1 Regularized C(1)(X ,R)-Lipschitz Classifier Algorithm

Require: Training set ∅ 6= ON ⊂ Z = X ×Y , X ⊂ Rm compact and convex,

1 ≤ n ≤ M basis functions Φn(x) ∈ C(1)(X ,R), trade-off parameter

C > 0, distortion ε > 0, K(0) ∈ conv(Kε), T ∈ N
Ensure: Kε := {K + εIM : K ∈ K}, K :=

{
0 � K(x) ∈ RM×M | x ∈ X

}
,

∃(xj, yj), (xi, yi) ∈ ON : yj = −1 ∧ yi = 1

1: Set t = 0.

2: loop

3: Solve for

(α∗(t), c
∗
(t))←− arg min

(α,c)∈SD(K(t))

−Q(α, c,K(t))

with feasible set

SD(K(t)) :=

{
(α, c) ∈ RN × RM

∣∣∣∣ K(t)c = GTYα,αTy = 0,0 ≤ α ≤ C1N

}
using the QP-Solver Algorithm (6.1.1) and the Initializer (6.1.2).

4: if (t=T) then

5: return

c∗ ←− c∗(t)

b∗ ←− − 1

2|A+|

∑
i∈A+

M∑
n=1

c∗nΦn(xi) +
∑
j∈A−

M∑
n=1

c∗nΦn(xj)


with I := {i ∈ N : 0 < αi < C}, A+ ⊆ {i ∈ I : yi = 1}
and A− ⊆ {j ∈ I : yj = −1} such that |A+| = |A−|.

6: end if

7: Search for a candidate matrix K∗ := K(x∗) ∈ conv(Kε), x∗ ∈ X ,

satisfying

hK(x∗) = −Q(α∗(t), c(α
∗
(t),K(x∗)),K(x∗)) < hmax := −Q(α∗(t), c

∗
(t),K(t))
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using the SA-Algorithm (6.2.2) with

hK(x) := −Q(α∗(t), c(α
∗
(t),K(x)),K(x))

and the inversion-formula (6.120) to compute

c(α∗(t),K(x)) := K(x)−1GTYα∗(t).

8: Solve for

µ∗ ←− arg min
µ∈[0,1]

g(µ)

using the Gradient Solver Algorithm (6.2.1) with

g(µ) := −Q(α∗µ, c
∗
µ,K(µ))

and the derivative

∂µG(α∗µ, µ) :=
1

2
c(α∗µ, µ)T

(
K(t) −K∗

)
c(α∗µ, µ)

whereas c(α∗µ, µ) := c∗µ is computed for each µ ∈ [0, 1] by

(α∗µ, c
∗
µ)←− arg min

(α,c)∈SD(K(µ))

−Q(α, c,K(µ))

using the QP-Solver Algorithm (6.1.1) and the Initializer (6.1.2).

9: Set K(t+1) = K(µ∗).

10: t←− t+ 1.

11: end loop

6.3.2 The Non-Regularized C(1)(X ,R)-Lipschitz Classi-

fier Algorithm

In the preceding section, we presented the fully implementable C(1)(X ,R)-

Lipschitz classifier algorithm in case of a regularization of the coefficients

c ∈ RM , which results in a perturbed version Kε of the set K. It turned

out, that the use of the set Kε yields some desirable properties for an efficient

implementation. On the other hand, the distortion ε > 0 can not be made

arbitrarily small due to numerical reasons. This can be seen, because any

matrix K ∈ K is positive semi-definite and can be factorized by K = ΨTΨ

with Ψ ∈ Rm×M . It follows the rank of K is at most m. Thus, for a very

small ε > 0 the matrix K becomes ill-conditioned and has adverse effects on
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the QP-Solver as well as on the inversion of K in the SA-algorithm. Because

the size of the distortion ε depends on the problem data and in particular

on the chosen basis functions, we need a modified parameterization c(α, µ)

which avoids large perturbations if the problem data and the basis functions

constitute an extremely ill-conditioned situation.

We start our discussion with a result about the rank of a positive linear

combination of two symmetric positive semi-definite matrices:

Lemma 6.3.3. Let be K1,K2 ∈ RM×M symmetric positive semi-definite,

r1 := rank(K1), r2 := rank(K2), µ1, µ2 > 0 and

K(µ1, µ2) := µ1K1 + µ2K2. (6.121)

Then, the rank of K(µ1, µ2) is independent of µ1, µ2, i.e.

r1 + r2 ≥ rank (K(µ1, µ2)) = r ≥ max{r1, r2} ∀µ1, µ2 > 0 (6.122)

with r := M − dim(null(K(µ1, µ2))) and

null (K(µ1, µ2)) = null(K1) ∩ null(K2) ∀µ1, µ2 > 0. (6.123)

Proof. Because ∀µ1, µ2 ≥ 0 the matrix K(µ1, µ2) is positive semi-definite. It

follows

∀µ1, µ2 > 0,v ∈ null(K(µ1, µ2)) : vTK(µ1, µ2)v = 0 (6.124)

which implies vTK1v = vTK2v = 0, respectively ‖K
1
2
1 v‖2 = ‖K

1
2
2 v‖2 = 0.

Hence, it holds ∀µ1, µ2 > 0 : null(K(µ1, µ2)) = null(K1) ∩ null(K2) and

r1 + r2 ≥ rank (K(µ1, µ2)) = M − dim(null(K(µ1, µ2))

≥ M −min{dim(null(K1)), dim(null(K2))}
= max{r1, r2}. (6.125)

Due to Lemma (6.3.3) the rank of a matrix

K(µ) = (1− µ) ·K(t) + µ · K∗ (6.126)

is independent of µ ∈ (0, 1). This suggests, that it is possible to find a

algebraic parameterization c(α, µ) of a particular solution of the equation

system K(µ)c = GTYα for any matrix K(µ) ∈ conv(K):
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Lemma 6.3.4. Let be K1,K2 ∈ RM×M symmetric positive semi-definite,

r1 := rank(K1), r2 := rank(K2). Then for all µ ∈ (0|1) the matrix

K(µ) := (1− µ) ·K1 + µ ·K2 (6.127)

can be transformed such that

VTK(µ)V =

 J(µ) 0

0 0

 ∈ RM×M . (6.128)

The matrix J(µ) ∈ Rr×r is symmetric and positive definite for all µ ∈ (0, 1)

and it holds

J(µ) = (1− µ)A + µB (6.129)

with A := VT
r K1Vr and B := VT

r K2Vr.

The matrix Vr = (v1, . . . ,vr) ∈ RM×r calculated by the Eigenvalue De-

composition (EV)

VT (K1 + K2) V = Λ (6.130)

consists of the orthonormal eigenvectors vk ∈ RM associated to the eigenvalues

λk > 0, 1 ≤ k ≤ r. It holds r1 + r2 ≥ r = rank(J(µ)) ≥ max{r1, r2} ∀µ ∈
(0, 1).

Proof. Consider the eigenvalue decomposition of the matrix

K1 + K2 = VΛVT (6.131)

where V = (v1, . . . ,vM) ∈ RM×M is an unitary matrix consisting of eigen-

vectors vk ∈ RM and Λ ∈ RM×M is a diagonal matrix with eigenvalues

λk ≥ 0, 1 ≤ k ≤M on its diagonal entries.

For any eigenvector vk ∈ RM associated to its eigenvalue λk ≥ 0 it holds

(K1 + K2)vk = λkvk, 1 ≤ k ≤M. (6.132)

In virtue of Lemma (6.3.3) it holds rank(K1 + K2) = r. Thus, it follows

λr+1 = · · · = λM = 0.

Because for any µ ∈ (0, 1) there corresponds an η ∈ (−1, 1) such that

K(µ) = (1− µ) ·K1 + µ ·K2 =
K1 + K2

2
+ η

K2 −K1

2
. (6.133)

it follows that K(µ) can be transformed using V in the right hand side matrix

(6.128) with positive definite J(µ) of rank r for all µ ∈ (0, 1).
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The application of Lemma (6.3.4) let us parameterize all solutions c∗ =

c(α, µ) + λc0 with c0 ∈ null(K(µ)) of the equation system K(µ)c = GTYα

for all α ∈ SD(K(µ)) and µ ∈ (0, 1). For this purpose, let be

c := Vd = (Vr,Vr+1)d (6.134)

with d := (dTr ,d
T
r+1)T ,dr ∈ Rr,dr+1 ∈ RM−r, Vr ∈ RM×r as defined in

Lemma (6.3.4), and Vr+1 := (vr+1, . . . ,vM) ∈ RM×M−r consisting of the

eigenvectors vk ∈ RM associated to the eigenvalues λk = 0, r + 1 ≤ k ≤M .

It follows K(µ)c = GTYα, µ ∈ (0, 1), can be equivalently reformulated as

VTK(µ)Vd =

(
J(µ)dr

0

)
= VTGTYα. (6.135)

Hence, with dr = J(µ)−1VT
r GTYα and arbitrary dr+1 ∈ RM−r, all solutions

are given by

c∗ = VrJ(µ)−1VT
r GTYα+ Vr+1dr+1. (6.136)

That means the parametrization we are looking for is given by

c(α, µ) := VrJ(µ)−1VT
r GTYα (6.137)

while c0 := Vr+1dr+1 parameterizes the null space of K(µ). Because dr+1 is

arbitrary, and it does not have any influence on the objective function value

Q(α, c∗,K(µ)), it can be set to zero or to any particular setting that results

in a desired property. For example, one could try to optimize dr+1 such that

the solution c∗ is sparse, i.e. many components are nearly zero. However, in

the present thesis, we do not further discuss this issue.

In what follows, let be

Qr(α,dr,J) := αT1N −
1

2
dTr Jdr (6.138)

the reduced objective function and let be

qr(J) := max
(α,dr)∈SDr (J)

Qr(α,dr,J) (6.139)

the associated reduced QP-problem with reduced feasible set

SDr(J) :=

{
(α,dr) ∈ RN × Rr

∣∣∣∣ Jdr = (VK
r )TGTYα,αTy = 0,

(VK
r+1)TGTYα = 0,0 ≤ α ≤ C1N

}
.

(6.140)
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Note, the superscript of VK
r respectively VK

r+1 shall indicate the eigenvalue

decomposition K = (VK
r ,V

K
r+1)Λ(VK

r ,V
K
r+1)T for any K ∈ conv(K).

Insertion of c(α, µ) in G(α, µ) (6.86) yields

G(α, µ) =
1

2
αTYGVrJ(µ)−1VT

r GTYα−αT1N (6.141)

which is continuous and convex for µ ∈ (0, 1) due to Lemma (6.3.2). The

feasible set SD(K(µ)) reduces independently of µ ∈ (0, 1) to the set

S(Vr+1) :=

{
α ∈ RN

∣∣∣∣VT
r+1G

TYα = 0,αTy = 0,0 ≤ α ≤ C1N

}
. (6.142)

Therefore, and due to the linearity of the transformation, we can apply

Theorem (6.2.1) by the use of the derivative

∂µG(α, µ) =
1

2
c(α, µ)T

(
K(t) −K∗

)
c(α, µ) (6.143)

obtained from Lemma (6.3.2).

In virtue of Theorem (6.2.1), for µ ∈ (0, 1) the directional derivative of

g(µ) = −qr(J(µ)) = minα∈S(Vr+1)G(α, µ) is given by

g′(µ; 1) = ∂µG(α∗µ, µ) (6.144)

with the global minimizer α∗µ := arg minα∈S(Vr+1)G(α, µ). And due to Corol-

lary (6.2.1) the problem of finding the optimal convex combination, i.e. solv-

ing the problem minµ∈(0,1) g(µ), has a global solution µ∗ ∈ (0, 1). In or-

der to iterate a global minimizer µ∗ we used the spectral projected gradient

solver (Alg. (6.2.1)) together with the QP-solver (Alg. 6.1.1) to solve for

α∗µ in each iteration. The benefit from using our modified QP-solver is that

the matrix J(µ) must not be inverted explicitly in each iteration. Instead

c(α∗µ, µ) = Vrd
∗
µ is directly returned by the QP-solver as an optimal feasible

solution (α∗µ,d
∗
µ) ∈ SDr(J(µ)).

Although the feasible set S(Vr+1) is independent of µ, it remains depen-

dent on the matrix K(µ) via the transformation Vr+1. In this case, it follows

the analogon of inequality (6.116) can not be maintained anymore, because

the left hand side inequality

qr(J) ≥ Qr(α
∗
(t),d

∗
r,J) (6.145)

might not hold for an optimal point (α∗,d∗r) ∈ SDr(J) with Qr(α
∗
(t),d

∗
r,J) =

qr(J) and d∗r = J−1VT
r GTYα∗. The reason is that α∗(t) ∈ S(V

K(t)

r+1 ) might

not be in the feasible set S(VK
r+1) and hence qr(J) could be smaller than

Qr(α
∗
(t),d

∗
r,J).
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Therefore, and contrary to the regularized C(1)(X ,R)-Lipschitz Classifier

Algorithm, we must now solve in each iteration of the SA Algorithm (6.2.2)

a QP-problem of the form

qr(Jµ0(x)) = max
(α,dr)∈SDr (Jµ0 (x))

Qr(α,dr,Jµ0(x)) (6.146)

with

Jµ0(x) := (V
Kµ0 (x)
r )TKµ0(x)V

Kµ0 (x)
r (6.147)

and

Kµ0(x) := (1− µ0) ·K(t) + µ0 ·K(x) (6.148)

until the inequality

qr(Jµ0(x
∗)) > Qr(α

∗
(t),d

∗
r(t),J(t)) (6.149)

is satisfied for a matrix J∗ := Jµ0(x
∗), x∗ ∈ X . For this purpose, we have to

define hK(x) := −qr(Jµ0(x)) and hmax := −Qr(α
∗
(t),d

∗
r(t),J(t)) in the require-

ments of the SA algorithm (6.2.2). The weight µ0 ∈ (0, 1) is arbitrary chosen

and fixed in advance.

To solve hp = −qr(Jµ0(xp)) for any trial step xp ∈ X of the random walker

in Line (11) of the SA Algorithm (6.2.2), we can use our proposed QP-Solver

(Alg. 6.1.1). Additionally, the associated eigenvalue decompositions have to

be computed.

In analogy to Algorithm (6.3.1), the fully implementable non-regularized

C(1)(X ,R)-Lipschitz classifier algorithm is summarized in Algorithm (6.3.2)

[Stuhlsatz 2008c]. A few special notes on an efficient implementation that

go beyond the present thesis can be found in the Addendum (B.3.1) to this

section.

Algorithm 6.3.2 Non-regularized C(1)(X ,R)-Lipschitz Classifier Algorithm

Require: Training set ∅ 6= ON ⊂ Z = X ×Y , X ⊂ Rm compact and convex,

1 ≤ n ≤ M basis functions Φn(x) ∈ C(1)(X ,R), trade-off parameter

C > 0, K(0) ∈ conv(K), T ∈ N
Ensure: K :=

{
0 � K(x) ∈ RM×M | x ∈ X

}
,

∃(xj, yj), (xi, yi) ∈ ON : yj = −1 ∧ yi = 1

1: Set t = 0.

2: Compute (Vr(0),Vr+1(0))←− EV (K(0)). {Eigenvalue Decomposition}.
3: Compute J(0) := VT

r(0)K(0)Vr(0).

4: loop

5: Solve for

(α∗(t),d
∗
r(t))←− arg min

(α,dr)∈SDr (J(t))

−Qr(α,dr,J(t))
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with feasible set

SDr(J(t)) :=

{
(α,dr) ∈ RN × Rr

∣∣∣∣ J(t)dr = VT
r(t)G

TYα,αTy = 0,

VT
r+1(t)G

TYα = 0,0 ≤ α ≤ C1N

}
.

using the QP-Solver Algorithm (6.1.1) and the Initializer (6.1.2).

6: if (t=T) then

7: return

c∗ ←− Vr(t)d
∗
r(t) + Vr+1(t)d

∗
r+1(t), d

∗
r+1(t) ∈ RM−r arbitrary

b∗ ←− − 1

2|A+|

∑
i∈A+

M∑
n=1

c∗nΦn(xi) +
∑
j∈A−

M∑
n=1

c∗nΦn(xj)


with I := {i ∈ N : 0 < αi < C}, A+ ⊆ {i ∈ I : yi = 1}
and A− ⊆ {j ∈ I : yj = −1} such that |A+| = |A−|.

8: end if

9: Search for a candidate matrix K∗ := K(x∗) ∈ conv(K), x∗ ∈ X , satis-

fying

hK(x∗) = −qr(Jµ0(x∗)) < hmax := −Qr(α
∗
(t),d

∗
r(t),J(t))

for µ0 ∈ (0, 1) using the SA-Algorithm (6.2.2) with

hK(x) := −qr(Jµ0(x)).

The value of qr(Jµ0(x)) is computed using QP-Solver Algorithm (6.1.1),

the Initializer (6.1.2) and an eigenvalue decomposition

(V∗r ,V
∗
r+1)←− EV (Kµ0(x)) (6.150)

to compute

Jµ0(x) := (V∗r)
TKµ0(x)V∗r .

10: Solve for

µ∗ ←− arg min
µ∈(0,1)

g(µ)

using the Gradient Solver Algorithm (6.2.1) with

g(µ) := −Q(α∗µ,d
∗
µ,J(µ))
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and the derivative

∂µG(α∗µ, µ) :=
1

2
c(α∗µ, µ)T

(
K(t) −K∗

)
c(α∗µ, µ)

whereas c(α∗µ, µ) := V∗rd
∗
µ is computed for each µ ∈ (0, 1) by

(α∗µ,d
∗
µ)←− arg min

(α,dr)∈SDr (J(µ))

−Q(α,dr,J(µ))

using the QP-Solver Algorithm (6.1.1) and the Initializer (6.1.2).

11: Set (Vr(t+1),Vr+1(t+1)) = (V∗r ,V
∗
r+1).

12: Set K(t+1) = K(µ∗).

13: Set J(t+1) = J(µ∗).

14: t←− t+ 1

15: end loop

Summary

In this chapter, we developed in a divide-and-conquer manner the compo-

nents necessary for implementing the C(1)(X ,R)-Lipschitz classifier algorithm.

Namely, these components are an adapted interior point QP-solver (Alg.

(6.1.1)), a spectral projected gradient solver (Alg. (6.2.1)) and a stochas-

tic search heuristics (Alg. (6.2.2)) based on simulated annealing. In Figure

(6.4) a global view of the framework is sketched in which the QP-solver takes

a central role.

We showed if providing an appropriate parameterization of all solutions of

the involved linear equation system of the feasible set, one obtains different

realizations of the dual C(1)(X ,R)-Lipschitz classifier algorithm. The first re-

alization (Alg. (6.3.1)) we introduced is based on a perturbation of the matrix

set K [Stuhlsatz 2007c]. It turned out, that a perturbation yields desirable

properties of the algorithm with respect to an efficient implementation. On the

other hand, a perturbation ε > 0 of the set K results in a change of the origi-

nal problem in particular if ε is chosen to be large. Because the ε-parameter

depends on the data space and the employed basis functions, it may happen, if

ε > 0 is very small, that the QP-solver or the involved matrix inversion run in

numerical problems for ill-conditioned situations. Therefore, we developed an

alternative based on an algebraic parameterization avoiding any kind of per-

turbations [Stuhlsatz 2008c]. Because there is no free lunch [Wolpert 1997],

the resulting non-regularized C(1)(X ,R)-Lipschitz classifier Algorithm (6.3.2)

is computationally more demanding than its regularized counterpart. Fortu-

nately, due to the component-wise architecture of the developed framework,
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Figure 6.4: A global view of the C(1)(X ,R)-Lipschitz classifier framework with

its specific components and dependencies.

it is possible to optimize all components with respect to an optimal efficiency

independently of each other in future. However, for this thesis we coded both

realizations in software without any additional efficiency optimizations.

In the next chapter, results will be presented using our implementations

experimentally tested on different data sets. These experiments shall explore

the performance of the new learning algorithms compared with the SVM in

standard situations on the one hand, and on the other hand they shall prove

the benefit obtained from the new learning algorithms in cases the SVM fails

completely.
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W e have presented new implementable maximum margin algorithms.

To prove their performance, this chapter presents experimental re-

sults. For this purpose, we coded both realizations of the dual C(1)(X ,R)-

Lipschitz classifier algorithm introduced in Chapter (6) in the MATLABR© pro-

gramming language1. As classification tasks we chose three different datasets.

The first is a 2-dimensional artificial dataset consisting of 10 subsets simulated

from a mixture of Gaussian distributions. This artificial dataset serves as a

measurement of robustness of the learning algorithms over varying data. Ad-

ditionally, due to the 2-dimensional nature, it facilitates a visualization of the

data and the learnt decision boundaries. As real world scenarios, we selected

two datasets from the UCI Machine Learning Repository [Asuncion 2007] with

different number of training and test samples and different number of dimen-

sions of the data points.

We start in Section (7.1) with experiments, that shall evaluate the perfor-

mance of the C(1)(X ,R)-Lipschitz classifier learnt by our algorithms in compar-

ison to the SVM classifier when employing a kernel function as basis function,

namely the RBF-kernel. Using the same decision function, we want to find

out if both approaches have the ability to reach comparable performance in

standard situations.

1The C(1)(X ,R)-Lipschitz classifier’s MATLAB-code can be sourced from the author for

academic use only.
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In Section (7.2), we present results obtained from an experimental setup

on real world data using the hyperbolic tangent function as basis function to

build up the decision function. The hyperbolic tangent function is well-known

to violate the Mercer’s condition for most of its parameter space. Thus, this

experiment serves as an archetype for scenarios in which decision functions,

which are being build from basis functions that do not satisfy Mercer’s con-

dition, and hence are not suitable for a use in SVMs, are a reasonable choice

for a specific application. This experiment is impressive, because it shows

exemplarily that our new learning algorithms work with basis functions that

go beyond an application of standard kernel functions as shown in Section

(7.1). This opens the way to a practical design of new classifiers that are able

to facilitate a specific application in a robust maximum margin concept.

7.1 Performance Test using Mercer Kernel

Functions

In this section, we evaluate the classification accuracy of the C(1)(X ,R)-

Lipschitz classifier learnt using Algorithm (6.3.1) and Algorithm (6.3.2) pre-

sented in Chapter (6).

For this purpose, we employ the RBF-kernel function (3.77) as basis func-

tion (cf. Def (5.2.1)), i.e.

Φrbf
n (x) := exp

(
−γ‖xn − x‖2

2

)
,xn ∈ ON ⊂ X , (7.1)

which satisfies the Mercer’s condition for all γ > 0 and is therefore suitable

for use in SVMs. In particular, the RBF-kernel function is the most popular

basis function for SVMs and has shown good classification accuracies on many

different datasets.

For our experiments we consider three different datasets. The first one

is a 2-dimensional artificial dataset consisting of 10 subsets for training and

testing which were generated from a random mixture of Gaussian distributions

(Fig. (7.1)). Due to the multimodality of the data distribution, there is a

large overlap of the two classes and the subsets differ strongly rendering the

classification problem not easy to solve. On the one hand, the different subsets

let us analyze the performance over varying datasets, and on the other hand,

the 2-dimensional nature let us visualize the classifications.

The other real world datasets, namely the UCI heart dataset and the UCI

breast-cancer dataset2, are taken from the UCI Machine Learning Reposi-

2This breast cancer domain was obtained from the University Medical Centre, Institute

of Oncology, Ljubljana, Yugoslavia. Thanks go to M. Zwitter and M. Soklic for providing

the data.
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Figure 7.1: A scatter plot of a training set of the 2d-artificial dataset.

feature 2d-artificial UCI heart UCI breast-cancer

#dimensions 2 13 9

#data total 6100 270 257

#data test 10x 400 70 87

#data training 10x 200 200 170

val. splits:

#val. training 5x 200 5x 150 5x 130

#val. eval 1x 100 5x 50 5x 40

Table 7.1: Summary of the datasets used for the comparison experiments.

tory [Asuncion 2007]. These sets are real-world datasets of different size and

dimension. A summary of the used datasets is given in Table (7.1).

Note, the 2d-artificial dataset contains 10 test sets of 400 points, 10 train-

ing sets of 200 points and an extra evaluation set of 100 points. All these

sets are disjoint. We used the first 5 training sets and the evaluation set to

tune the trade-off parameter C of the algorithms and the parameter γ of the

RBF-kernel. The UCI dataset contains a test set of 70 points and a training

set of 200 points, and the UCI breast-cancer dataset consists of a test set of

87 points and a training set of 170 points. In both cases, the test set and

the training set are disjoint too. We randomly partitioned the training set of

the UCI datasets in 5 subsets for parameter tuning, because in contrast to

the 2d-artificial dataset only a very limited amount of data is available. The

subsets are then used for selecting appropriate values of γ > 0 and C > 0

via 5-fold cross-validation. The evaluation procedure for parameter tuning is

described in more detail in the next section.
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parameter 2d-artificial UCI heart UCI breast-cancer

kmax 5,000 5,000 5,000

imax 100 100 100

T0 1,000 1,000 1 · 10−5

σ2 2 · 10−5 1 · 10−5 3.5 · 10−6

X [−10, 10]2 [−100, 100]13 [−10, 10]9

ε 1 · 10−6 1 · 10−6 5 · 10−4

Table 7.2: Algorithm specific settings fixed for evaluation and testing of the

non-/regularized C(1)(X ,R)-Lipschitz Classifier.

7.1.1 Evaluation of Algorithmic Parameters

Before the C(1)(X ,R)-Lipschitz classifier and the SVM both using the RBF-

kernel can be tested, algorithmic parameters as in particular the parameters

(γ, C) ∈ R+ × R+ have to be tuned for each dataset. In Table (7.2), some

important algorithmic settings are listed which have to be carefully selected

and fixed for all evaluation and test procedures in advance. Namely, for the

stochastic search (Alg. 6.2.2), these parameters are the maximum number of

SA loops kmax, the maximum number of MH loops imax, the start temperature

T0, the variance σ2 of the random walker and the search region X . Table (7.2)

also shows the distortion factor ε used for the regularized C(1)(X ,R)-Lipschitz

Classifier. Note, that for all three datasets the regularization parameter ε is

fixed to very small values. In all cases, the start configuration x0 ∈ X is set to

the mean vector of the training data. We determined all settings summarized

in Table (7.2) by trial runs on the training data such that acceptance rates as

described in the end of Section (6.2.3) are maintained. This part of parameter

selection is performed manually without the use of any measure of quality. The

space X is chosen such that it covers a large data space including all available

training data.

In order to determine (γ, C) ∈ R+×R+ in case of the 2d-artificial dataset,

we used the first 5 realizations of the training data and an extra validation

set. The evaluation procedure was as follows: We trained independently a

RBF-C(1)(X ,R)-Lipschitz classifier as well as a RBF-SVM classifier on each

of the first 5 realization with a fixed parameter configuration. Then, we

evaluated each classifier by computing the median of the classification error

rates obtained from classifying the validation data (validation errors). For

parameter selection, we repeated the evaluation procedure for each parameter

(γ, C) of a discretized and predefined parameter range.

In Table (7.3) our selection for the 2d-artificial dataset is summarized in-

cluding the median validation errors and standard deviations. In Figures (7.2)-



7.1. Performance Test using Mercer Kernel Functions 137

reg. Lip. non-reg. Lip. SVM

dataset 2d-art. 2d-art. 2d-art.

basis function RBF-kernel RBF-kernel RBF-kernel

parameter (γ, C) (0.02, 0.01) (0.006, 8) (0.0714, 150)

median val. err. 14.00± 0.00% 15.00± 1.14% 14.00± 0.55%

Table 7.3: Selected parameters (γ, C) for the non-/regularized C(1)(X ,R)-

Lipschitz classifier and the SVM classifier due to the median validation errors

using the 2d-artificial dataset and the RBF-kernel.

reg. Lip. non-reg. Lip. SVM

dataset heart heart heart

basis function RBF-kernel RBF-kernel RBF-kernel

parameter (γ, C) (0.0001, 0.25) (5 · 10−5, 200) (0.000256, 100)

median val. err. 14.00± 2.61% 14.00± 2.52% 14.00± 3.74%

Table 7.4: Selected parameters (γ, C) for the non-/regularized C(1)(X ,R)-

Lipschitz classifier and the SVM classifier due to the median cross-validation

errors using the UCI heart dataset and the RBF-kernel.

reg. Lip. non-reg. Lip. SVM

dataset breast-cancer breast-cancer breast-cancer

basis function RBF-kernel RBF-kernel RBF-kernel

parameter (γ, C) (0.175, 2.5 · 10−5) (0.001, 0.01) (0.0556, 1.5)

median val. err. 22.50± 3.95% 27.50± 8.51% 20.00± 8.73%

Table 7.5: Selected parameters (γ, C) for the non-/regularized C(1)(X ,R)-

Lipschitz classifier and the SVM classifier due to the median cross-validation

errors using the UCI breast-cancer dataset and the RBF-kernel.

(7.5), respectively Figure (7.6) and Figure (7.7), the medians of the valida-

tion errors obtained by applying the regularized, respectively non-regularized,

RBF-C(1)(X ,R)-Lipschitz classifier to the 2d-artificial dataset are depicted.

While Figure (7.2) and Figure (7.6) show the full explored parameter range,

Figures (7.3)-(7.5) and Figure (7.7) present a finer parameter grid of the area

marked by the dashed boxes around the best configuration of the coarser grid.

Likewise, in Figure (7.8) and Figure (7.9) the results of the parameter eval-

uation in case of the RBF-SVM classifier are shown. Note, each grid point

represents an inspected parameter configuration. Thus, the contours visual-

ize roughly the areas of equal median validation errors. Small white squares

represent parameter settings resulting in a minimum median validation error.
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In case of more than one minimum median validation error, black triangles

mark the parameter settings which have the minimum standard deviation.

We always chose a parameter setting that has resulted in a minimum median

validation error and minimum standard deviation.

In case of the UCI datasets, we performed a slightly different evaluation

procedure. Due to the few available training data, we randomly partitioned

the training set in 5 cross-validation sets each comprising a training set and

a disjoint validation set (see Tab. (7.1)). Then, to evaluate good param-

eter settings for (γ, C), we trained independently a non-/regularized RBF-

C(1)(X ,R)-Lipschitz classifier and a RBF-SVM classifier on the training set

of each cross-validation set and evaluated the accuracy on the associated val-

idation set (5-fold cross-validation). Thus, for a particular parameter con-

figuration we obtained 5 results for each classifier. The median of these 5

results for each parameter configuration of the considered parameter range

is used for a parameter selection. Table (7.4) summarizes the selected pa-

rameters for testing the classifiers on the UCI heart dataset. Figure (7.10)

and (7.11), respectively Figure (7.12) and (7.13), show the scanned parameter

range and associated medians of the 5-fold cross-validation errors using the

regularized, respectively non-regularized, RBF-C(1)(X ,R)-Lipschitz classifier

on the UCI heart dataset. Likewise, Figure (7.14) depicts the situation using

the RBF-SVM classifier.

We also performed a 5-fold cross-validation on a random partition of the

training set of the UCI breast-cancer dataset. Table (7.5) summarizes the se-

lected parameters for testing the classifiers on the UCI breast-cancer dataset.

Figure (7.15) and (7.17), respectively Figure (7.18) and (7.19), show the

scanned parameter range and associated medians of the 5-fold cross-validation

errors using the regularized, respectively non-regularized, RBF-C(1)(X ,R)-

Lipschitz classifier. Likewise, Figure (7.20) and Figure (7.21) depict the situ-

ation using the RBF-SVM classifier.

It is important to note, that although completely different parameter set-

tings were evaluated for the regularized RBF-C(1)(X ,R)-Lipschitz classifier

and the RBF-SVM classifier, the median validation errors are equal (except

on UCI breast-cancer). Moreover, the standard deviations of the regularized

RBF-C(1)(X ,R)-Lipschitz classifier over all validation runs are always less than

the standard deviations of the RBF-SVM classifier. This indicates that de-

cision functions found by the regularized RBF-C(1)(X ,R)-Lipschitz classifier

are more stable with respect to the classification performance over varying

data sets. The non-regularized RBF-C(1)(X ,R)-Lipschitz classifier performs

slightly worse than its regularized counterpart, but also the standard devia-

tions are less than the standard deviations of the RBF-SVM (except on 2d-

artificial). On the other hand, the evaluated trade-off parameter C is much
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larger than the setting for the regularized RBF-C(1)(X ,R)-Lipschitz classi-

fier. This indicates, that the decision functions found by the non-regularized

RBF-C(1)(X ,R)-Lipschitz classifier are able to separate the data with fewer

margin errors. In the next section we will use the evaluated parameters to get

classification performances with respect to the test sets.
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Figure 7.2: Median validation errors of the regularized RBF-C(1)(X ,R)-

Lipschitz classifier on the 2d-artificial dataset for different parameter

configurations (γ, C).

14.5

14.5

14.5

14.5

14.5

14.5

15

15

15

15

15

15

15

15

15

15

15

15
.5

15.5

15.5

15.5

15.5

15
.5

15.5

15.5

15
.5

15.5

15
.5

16
16

16

16

16

16 16

16

16

16

16

15.5

15.5

16

16

16

16.5

16.51515

17

17
15.515.5

16

16

16
.5

17
.5

16
.5

15

16
.5

15.5

16.5

16.5

16

1717

γ

C

Median 5−fold validation error (2D artificial dataset)

 

 

  14  

0.007 0.007 0.008 0.009  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08
5

6

7

8

9

10

20

30

40

50

60

70

14.5

15

15.5

16

16.5

17

17.5
median val err (%)
min median
min stddev of min median

Figure 7.3: Median validation errors of the regularized RBF-C(1)(X ,R)-

Lipschitz classifier on the 2d-artificial dataset in an enlarged parameter

region surrounded by the upper dashed box in Figure (7.2).
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Figure 7.4: Median validation errors of the regularized RBF-C(1)(X ,R)-

Lipschitz classifier on the 2d-artificial dataset in an enlarged parameter

region surrounded by the lower dashed box in Figure (7.2).
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Figure 7.5: Median validation errors of the regularized RBF-C(1)(X ,R)-

Lipschitz classifier on the 2d-artificial dataset in an enlarged parameter

region surrounded by the dashed box in Figure (7.4).
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Figure 7.6: Median validation errors of the non-regularized RBF-

C(1)(X ,R)-Lipschitz classifier on the 2d-artificial dataset for different

parameter configurations (γ, C).
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Figure 7.7: Median validation errors of the non-regularized RBF-

C(1)(X ,R)-Lipschitz classifier on the 2d-artificial dataset in an enlarged

parameter region surrounded by the dashed box in Figure (7.6).
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Figure 7.8: Median validation errors of the RBF-SVM classifier on the

2d-artificial dataset for different parameter configurations (γ, C).
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Figure 7.9: Median validation errors of the RBF-SVM classifier on the

2d-artificial dataset in an enlarged parameter region surrounded by the

dashed box in Figure (7.8).
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Figure 7.10: Median 5-fold cross-validation errors of the regularized

RBF-C(1)(X ,R)-Lipschitz classifier on the UCI heart dataset for differ-

ent parameter configurations (γ, C).
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Figure 7.11: Median 5-fold cross-validation errors of the regularized

RBF-C(1)(X ,R)-Lipschitz classifier on the UCI heart dataset for an

enlarged parameter region surrounded by the dashed box in Figure (7.10).
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Figure 7.12: Median 5-fold cross-validation errors of the non-

regularized RBF-C(1)(X ,R)-Lipschitz classifier on the UCI heart

dataset for different parameter configurations (γ, C).

14.5

14.5

14.5

14.5

14.5

14.5

14.5

14.5

15

15

15

15

15

15

15

15

1515.5

15.5

15.5

15.5

14.5

14.5

14
.5

16

16

16

15.5

15.5

14.5 14.5

16.5

16
.5

15

15

14.5

14.5

14.5

15.5

15
15.5

14.5

16

17

γ

C

Median 5−fold cross validation error (UCI Heart dataset)

 

 

  14    14    14  

1e−005 5e−005 0.0001  0.001  0.005   0.01    0.1      1
50 

75 

100

125

150

200

250

300

400

14.5

15

15.5

16

16.5
median cross−val err (%)
min median
min stddev of min median

Figure 7.13: Median 5-fold cross-validation errors of the non-

regularized RBF-C(1)(X ,R)-Lipschitz classifier on the UCI heart

dataset for an enlarged parameter region surrounded by the dashed box

in Figure (7.12).
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Figure 7.14: Median 5-fold cross-validation errors of the RBF-SVM

classifier on the UCI heart dataset for different parameter configurations

(γ, C).
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Figure 7.15: Median 5-fold cross-validation errors of the regularized

RBF-C(1)(X ,R)-Lipschitz classifier on the UCI breast-cancer dataset

for different parameter configurations (γ, C).
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Figure 7.16: Median 5-fold cross-validation errors of the regularized

RBF-C(1)(X ,R)-Lipschitz classifier on the UCI breast-cancer dataset

for an enlarged parameter region surrounded by the dashed box in Figure

(7.15).
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Figure 7.17: Median 5-fold cross-validation errors of the regularized

RBF-C(1)(X ,R)-Lipschitz classifier on the UCI breast-cancer dataset

for an enlarged parameter region surrounded by the dashed box in Figure

(7.16).
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Figure 7.18: Median 5-fold cross-validation errors of the non-

regularized RBF-C(1)(X ,R)-Lipschitz classifier on the UCI breast-

cancer dataset for different parameter configurations (γ, C).
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Figure 7.19: Median 5-fold cross-validation errors of the non-

regularized RBF-C(1)(X ,R)-Lipschitz classifier on the UCI breast-
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Figure 7.20: Median 5-fold cross-validation errors of the RBF-SVM

classifier on the UCI breast-cancer dataset for different parameter con-

figurations (γ, C).
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Figure 7.21: Median 5-fold cross-validation errors of the RBF-SVM

classifier on the UCI breast-cancer dataset for an enlarged parameter

region surrounded by the dashed box in Figure (7.20).
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7.1.2 Testing the RBF-C(1)(X ,R)-Lipschitz Classifier

In the preceding section, we discussed the tuning of algorithmic parameters,

in particular the evaluation of the parameters (γ, C) ∈ R+×R+. Additionally,

results obtained from the evaluation are presented. In this section, we present

the test results for the different datasets using these parameters. For this

purpose, we fixed the evaluated parameters to the tuned values in advance and

trained the RBF-C(1)(X ,R)-Lipschitz classifier and the RBF-SVM classifier on

the 2d-artificial, UCI heart and UCI breast-cancer datasets. Then, the trained

classifiers were applied to the corresponding test sets for yielding test error

rates for the so far unseen data. That means, the test data was separated from

evaluation and training data and was only used during the test phase of the

classifiers. In particular, in case of the 2d-artificial data, we had 10 training

and 10 test sets at hand. Thus, we trained independently 10 classifiers for the

RBF-C(1)(X ,R)-Lipschitz classifiers as well as the RBF-SVM classifier using

the 10 training sets. After training, we computed the test error rates with

respect to the associated disjoint 10 test sets. Table (7.6) summarizes the test

results.

RBF-C(1)(X ,R)-Lip. class.

reg. non-reg. RBF-SVM

2d-artificial 12.25±2.28% 14.25± 3.26% 12.28± 2.86%

heart 18.57% (13/70) 18.57% (13/70) 18.57% (13/70)

breast-cancer 28.74% (25/87) 32.18% (28/87) 28.74% (25/87)

Table 7.6: Test error rates obtained using the RBF-C(1)(X ,R)-Lipschitz clas-

sifier in comparison to the RBF-SVM classifier for different test datasets.

In Table (7.6), the error rates on the 2d-artificial dataset are given as aver-

aged test error rates and standard deviations with respect to the 10 different

test sets. For the UCI datasets we have only one training and test set, hence

standard deviations are not presented in Table (7.6). However, the fraction

of misclassified test examples to the total number of test examples are listed

in brackets. In Table (7.7) the individual test error rates for the 2d-artificial

dataset are shown. Additionally, in Figures (7.22(a))-(7.23(f)), the decision

boundaries learnt by the regularized RBF-C(1)(X ,R)-Lipschitz classifier algo-

rithm as well as the RBF-SVM together with the test data for the last six test

sets of the 2d-artificial dataset are plotted column-wise.

For the UCI datasets, the regularized RBF-C(1)(X ,R)-Lipschitz classifier

yields test error rates equal to the RBF-SVM classifier results. Moreover,

on the 2d-artificial dataset the regularized RBF-C(1)(X ,R)-Lipschitz classifier

is superior to the RBF-SVM on average. In particular, as already observed
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no. reg. Lip. non-reg. Lip. SVM

1 0.1200 0.1150 0.1150

2 0.1375 0.2075 0.1200

3 0.0925 0.1750 0.0800

4 0.1425 0.1225 0.1400

5 0.0950 0.1100 0.1050

6 0.1275 0.1320 0.1175

7 0.0875 0.1075 0.0850

8 0.1475 0.1425 0.1675

9 0.1425 0.1425 0.1450

10 0.1325 0.1700 0.1525

mean 0.1225±0.0228 0.1425± 0.0326 0.1228± 0.0286

Table 7.7: Single test error rates on the 2d-artificial dataset produced by

the non-/regularized RBF-C(1)(X ,R)-Lipschitz classifier and the RBF-SVM

classifier.

avrg. #sol. K∗ #sol. K∗ #sol. K∗

dataset 2d-artificial heart breast-cancer

reg. Lip. 9 50 6

non-reg. Lip. 9 49 0

Table 7.8: Number of solution matrices K∗ found during training the non-

/regularized RBF-C(1)(X ,R)-Lipschitz classifier.

after the evaluation phase, the variance over the 10 training and test sets is

smaller compared to the RBF-SVM’s variance. This indicates a more robust

decision function found by the regularized RBF-C(1)(X ,R)-Lipschitz classifier

with respect to varying datasets. Qualitatively, this can also be noticed from

the 2d-decision boundaries drawn in Figures (7.22(a))-(7.23(f)). Compared to

the RBF-SVM’s decision boundaries, the boundaries learnt by the regularized

RBF-C(1)(X ,R)-Lipschitz classifier do not vary much in shape over different

training sets. In particular, in Figure (7.22(a)) and Figures (7.23(a))-(7.23(c)),

the boundaries are very similar in shape and the resulting classification of the

test data is superior to the RBF-SVM’s classification. This indicates that

these boundaries reflect the true multimodal nature of the data very well

yielding a good generalization performance.

On the other hand, the classification performance of the non-regularized

RBF-C(1)(X ,R)-Lipschitz classifier is worse than its regularized counterpart,

except for the UCI heart dataset. However, from a theoretical point of view as
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mentioned in the end of Chapter (6), the non-regularized C(1)(X ,R)-Lipschitz

classifier algorithm can be used for an ill-conditioned classification problem

that would require a prohibitively large perturbation ε > 0 for an applica-

tion of the regularized C(1)(X ,R)-Lipschitz classifier algorithm. However, ε

is fairly small for all used datasets (cf. Tab. (7.2)). From a practical point

of view, we found out that the non-regularized C(1)(X ,R)-Lipschitz classifier

algorithm is sensitive to small changes in the algorithmic parameter settings

rendering its evaluation very difficult. Also the computational overhead of

the non-regularized C(1)(X ,R)-Lipschitz classifier algorithm forced us to use

much fever total search iterations for its parameter evaluation. This might be

a reason for worse parameter settings of (γ, C) yielding the worse accuracies

compared to the accuracies using the regularized C(1)(X ,R)-Lipschitz classi-

fier algorithm. In Table (7.8), we listed the number of solutions found during

training the non-/regularized RBF-C(1)(X ,R)-Lipschitz classifier.

It is conspicuous, that no solution matrix K∗ was found in case of the

UCI breast cancer dataset using the non-regularized RBF-C(1)(X ,R)-Lipschitz

classifier. The reason is, that due to the training data and the evaluated

parameters (γ, C), the first computed matrix K(0) = K(x0) (with x0 set to the

mean training vector) resulted in a large q-value that could not be improved

further. This may happen if for example γ is small and the training data is

such that the superposition of broad RBF-peaks at the data points result in a

global peak near the center of all data points. Indeed for UCI breast cancer,

the evaluated γ is small compared to the one for the regularized algorithm (cf.

Tab. (7.5)). To confirm this argument, we started the search with a matrix

K(x0) with x0 randomly initialized. In this case, the algorithm’s first q-value

was much smaller than the former q-value and when climbing the hill many

solutions were found improving the subsequent q-values. However, during the

same number of total search iterations, the algorithm did not reach the same

high q-value corresponding to the mean training vector thus the resulting

accuracy was inferior. It is important to note, that this behavior is an artifact

of the RBF basis function. Using other basis functions the situation could be

totally different and the non-regularized RBF-C(1)(X ,R)-Lipschitz classifier

might work well.
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(a) reg. RBF-C(1)(X ,R)-

Lip. class. (test set #5, err.

9.50%)

(b) reg. RBF-C(1)(X ,R)-

Lip. class. (test set #6, err.

12.75%)

(c) reg. RBF-C(1)(X ,R)-

Lip. class. (test set #7, err.

8.75%)

(d) RBF-SVM class. (test

set #5, err. 10.50%)

(e) RBF-SVM class. (test set

#6, err. 11.75%)

(f) RBF-SVM class. (test set

#7, err. 8.50%)

Figure 7.22: Plots showing column-wise the 2d-artificial data of test sets #5-

#7 and the learnt decision boundaries. The first row presents the learnt

boundaries of the regularized RBF-C(1)(X ,R)-Lipschitz classifier and the sec-

ond row of the RBF-SVM classifier, respectively.
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(a) reg. RBF-C(1)(X ,R)-

Lip. class. (test set #8, err.

14.75%)

(b) reg. RBF-C(1)(X ,R)-

Lip. class. (test set #9, err.

14.25%)

(c) reg. RBF-C(1)(X ,R)-

Lip. class. (test set #10, err.

13.25%)

(d) RBF-SVM class. (test

set #8, err. 16.75%)

(e) RBF-SVM class. (test set

#9, err. 14.50%)

(f) RBF-SVM class. (test set

#10, err. 15.25%)

Figure 7.23: Plots showing column-wise the 2d-artificial data of test sets #8-

#10 and the learnt decision boundaries. The first row presents the learnt

boundaries of the regularized RBF-C(1)(X ,R)-Lipschitz classifier and the sec-

ond row of the RBF-SVM classifier, respectively.
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7.2 Performance Test using Non-Mercer Ker-

nel Functions

In the preceding section, we analyzed the performance of our new learning

algorithms in a setting where the SVM is applicable. In this case, the least we

would like to expect from the C(1)(X ,R)-Lipschitz classifier is that it works

with nearly the same classification performance than the SVM. The experi-

ments using the RBF-kernel function as basis function show that this expecta-

tion is indeed satisfied for the 2d-artificial dataset, the UCI heart dataset and

the UCI breast-cancer data set. Moreover, on the 2d-artificial dataset, the

performance of the C(1)(X ,R)-Lipschitz classifier is slightly superior to the

SVM classifier with respect to the averaged performance and the standard

deviation.

In this section, we study the applicability of the C(1)(X ,R)-Lipschitz classi-

fier in a scenario where the SVM is known to collapse. As discussed in Chapter

(4), one popular function not satisfying Mercer’s condition is the hyperbolic

tangent basis function:

f tanh(x,y) := tanh (a〈x,y〉+ r) . (7.2)

It is well-known, that the hyperbolic tangent basis function is not positive

definite for most of its parameter (a, r) ∈ R× R, thus it does not satisfy the

Mercer’s condition. Recently, in [Lin 2003] different parameter ranges of (a, r)

are examined for the use of basis functions Φtanh
n (x) := f tanh(x,xn),xn ∈

ON ⊂ X in SVMs. It turns out that only for a > 0 and sufficiently small

r < 0 the function Φtanh
n is CPD (cf. Sec. 4.2.1). In all other cases, the SVM

cannot be trained because the SVM problem (3.52)-(3.54) is mostly infeasible

due to an indefinite kernel matrix or a solution corresponds most likely to a

very poor local optimum. In Table (7.9) qualitative results due to [Lin 2003]

are summarized using a tanh-SVM classifier for different parameter ranges of

(a, r).

a r qualitative result due to [Lin 2003]

> 0 < 0 Φtanh
n is CPD if r is small; similar to Φrbf

n for small a

> 0 > 0 is worse than (> 0, < 0)-case or SVM problem is infeasible

< 0 > 0 SVM problem is most likely to be infeasible

< 0 < 0 SVM problem is almost always infeasible

Table 7.9: Behavior of the SVM using tanh (a〈xn,x〉+ r).

Contrary to the work of [Lin 2003] focusing only the (a > 0, r < 0)-

case and the (a > 0, r > 0)-case for the tanh-SVM experiments, we are now
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Figure 7.24: Median 5-fold cross-validation errors using the UCI heart dataset

and a tanh-SVM for different parameter settings (a, r) and C fixed to the value

yielding the lowest cross-validation error (white square).

particularly interested in exploring the behavior of the C(1)(X ,R)-Lipschitz

classifier for all parameter ranges in Table (7.9) for which the SVM can be

expected to fail.

In accordance with [Lin 2003], the UCI heart dataset is used and split into

five subsets for a 5-fold cross-validation. Due to our experience, which we

discussed in the preceding section, and in order to limit the computational

effort of exploring three parameters (a, r, C) ∈ R × R × R+ via 5-fold cross-

validation, we used in the following experiments the regularized C(1)(X ,R)-

Lipschitz classifier, only. Additionally, the maximum number of SA loops,

kmax, is set to 1% of kmax that was used for the SVM performance comparision

on the UCI heart dataset (Section (7.1.1), Table (7.2)).

In Figure (7.24) the median 5-fold cross-validation errors are shown for the

evaluated parameter ranges of (a, r) summarized in Table (7.9). The param-

eter C is fixed to the value that yielded the lowest median cross-validation

error. The white filled areas mark cross-validation errors greater or equal

than 80%, respectively 70% for the light gray filled areas. The white square

marks the best evaluted parameter setting, a = 0.005 and r = −0.5, with 12%

median cross-validation error. One observes the SVM indeed has extremely

poor performance for the cases (a < 0, r > 0) and (a < 0, r < 0). This agrees

with the results reported in [Lin 2003] and summarized in Table (7.9).

A comparison of the results shown in Figure (7.24) with the results de-
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Figure 7.25: Median 5-fold cross-validation errors using the UCI heart dataset

and a tanh-C(1)(X ,R)-Lipschitz classifier for different parameter settings (a, r)

and C fixed to the value yielding the lowest cross-validation error (white

squares).

picted in Figure (7.25) makes obvious the benefit of the tanh-C(1)(X ,R)-

Lipschitz classifier against the tanh-SVM. The tanh-C(1)(X ,R)-Lipschitz clas-

sifier does not suffer from the indefiniteness of the hyperbolic tangent basis

function for the cases (a < 0, r > 0) and (a < 0, r < 0)! The entire consid-

ered parameter range is well defined except the very uninteresting setting of

a = 0 has high error rates in the vicinity of r = 0. Figure (7.25) also reflects

the symmetry of the hyperbolic tangent function. The lowest median cross-

validation error (white squares) of 14% obtained using the tanh-C(1)(X ,R)-

Lipschitz classifier is slightly worse than the one reached by the tanh-SVM.

The reason is that we used only a marginal number of SA-iterations, thus the

solutions found by our algorithm are probably very sub-optimal compared to

the deterministic solutions found by the SVM. However, in Section (7.1.2), we

already showed that the C(1)(X ,R)-Lipschitz classifier performs as well as the

SVM in standard situations on different datasets. Thus, we may also expect

that the C(1)(X ,R)-Lipschitz classifier reaches similar or better performances

than the SVM classifier in the tanh-case if we would increase the number of

search steps.

Additionally, in accordance to the work of [Lin 2003], in Figure (7.26) and

Figure (7.27) the median 5-fold cross-validation errors obtained by using the

tanh-SVM are depicted for different parameter settings of (a, C).
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Figure 7.26: Median 5-fold cross-validation errors using the UCI heart dataset

and a tanh-SVM for different parameter settings (a, C) and r < 0 fixed to the

value yielding the lowest cross-validation error (white squares).
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Figure 7.27: Median 5-fold cross-validation errors using the UCI heart dataset

and a tanh-SVM for different parameter settings (a, C) and r > 0 fixed to the

value yielding the lowest cross-validation error (white squares).
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The parameter r is fixed to the positive respectively negative value with

lowest cross-validation error. These figures indicate how well the data is sep-

arated with a large margin for different trade-off parameters C by the SVM

algorithm. Again, one observes the SVM indeed has extremely poor perfor-

mance for the cases (a < 0, r > 0) and (a < 0, r < 0). That means for the

corresponding C values it is not possible to separate the data well using a

tanh-SVM. Although it is difficult to interpret the value of C quantitatively,

it is possible to state qualitatively that for decreasing C more points may rest

in the margin area or may even be misclassified, and vice versa for increasing

C. In our experiments, for all indefinite cases of the hyperbolic tangent basis

function, the SVM algorithm terminated successfully but with a solution α∗

with nearly all components α∗i = C. This indicates the severe tendency of the

SVM problem to become infeasible for any C. Moreover, it justifies the theory

presented in Section (3.6.3) as well as the SVM’s shortcomings discussed in

Chapter (4) that there exists no feasible SVM solution separating the data

well in any case of non-kernel functions.

Fortunately, the situation for the tanh-C(1)(X ,R)-Lipschitz classifier al-

gorithm is totally different. In Figure (7.28) and Figure (7.29) one clearly

observes that our algorithm has found many solutions with relatively low

cross-validation errors for parameter settings the SVM fails with errors greater

than 80%. Thus, the C(1)(X ,R)-Lipschitz classifier has always found a feasible

solution.

Additionally, in order to quantify the completely checked parameter range

of (a, r, C), we summarized in Table (7.10) the averaged 5-fold cross-validation

results and corresponding standard deviations. As shown in Table (7.10), the

tanh-C(1)(X ,R)-Lipschitz classifier performs better than the tanh-SVM on

average with respect to varying parameter settings.

a r tanh-C(1)(X ,R)-Lipschitz class. tanh-SVM class.

> 0 < 0 24.83± 10.46% 27.43± 8.80%

> 0 > 0 24.29± 10.33% 26.60± 8.38%

< 0 > 0 24.86± 10.61% 75.61± 12.66%

< 0 < 0 24.30± 10.30% 75.78± 12.79%

Table 7.10: Averaged 5-fold cross-validation errors obtained by the C(1)(X ,R)-

Lipschitz classifier and the SVM classifier using the non-kernel function

tanh (a〈xn,x〉+ r).

The very nice experimental results of this section justify our theoretical

treatment and let us conclude the benefit from using the C(1)(X ,R)-Lipschitz

classifier - the C(1)(X ,R)-Lipschitz classifier is usable when the SVM is not
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Figure 7.28: Median 5-fold cross-validation errors using the UCI heart dataset

and a C(1)(X ,R)-Lipschitz classifier for different parameter settings (a, C) and

r < 0 fixed to the value yielding the lowest cross-validation error (white

squares).
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Figure 7.29: Median 5-fold cross-validation errors using the UCI heart dataset

and a C(1)(X ,R)-Lipschitz classifier for different parameter settings (a, C) and

r > 0 fixed to the value yielding the lowest cross-validation error (white

squares).
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capable. In particular, the C(1)(X ,R)-Lipschitz classifier is able to find feasible

solutions also in cases of indefinite basis functions and for large C-values. This

indicates the ability to separate the data well with a large margin in a feature

space implicitly defined by indefinite basis functions used by the C(1)(X ,R)-

Lipschitz classifier.

Summary

In this chapter, experiments using the C(1)(X ,R)-Lipschitz classifier algorithm

are presented. We used three different databases: a 2d-artificial dataset, and

two real world datasets, namely the UCI heart and UCI breast-cancer dataset.

The first experiment is introduced in Section (7.1). Therein, after sum-

marizing the parameter tuning in Section (7.1.1), classification results of the

C(1)(X ,R)-Lipschitz classifier compared to results of the SVM classifier are

presented in Section (7.1.2) in a standard situation using the popular RBF-

kernel function as basis function. The evidence of this experiment is that the

regularized C(1)(X ,R)-Lipschitz classifier algorithm has equal or better classi-

fication performance than the SVM on the considered datasets and basis func-

tion. The non-regularized counterpart performs slightly worse, which might

be reasoned by an inferior algorithmic parameter selection as discussed in Sec-

tion (7.1.2). In turn, the inadequate parameter selection is due to the severe

sensitivity of the present implementation of the non-regularized C(1)(X ,R)-

Lipschitz classifier algorithm to algorithmic parameter changes and due to

the higher computational effort prohibiting a large number of search steps

during validation.

The second experiment introduced in Section (7.2) aims at pointing out

the benefit from using the C(1)(X ,R)-Lipschitz classifier algorithm. For this

purpose, we used a non-kernel function as basis function, namely the hy-

perbolic tangent function well-known as artificial neural network’s activation

function. The tanh-function is indefinite respectively Mercer’s condition is

violated, thus the tanh-function is not usable as basis function in SVMs for a

large range of function parameters. That means, the SVM problem is infea-

sible or it results in a very poor classification performance due to poor local

minima of the SVM objective function that is not convex anymore. Follow-

ing the analysis of [Lin 2003] for the tanh-SVM, we examined the parameter

ranges for which the SVM fails.

Our experimental results impressively show, that the C(1)(X ,R)-Lipschitz

classifier algorithm does not suffer from the indefiniteness of the hyperbolic

tangent function for any parameter selection. Moreover, because the tanh-

experiment is conceived as an archetype of situations for which non-kernel
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functions might be the better choice, the results let us conclude also from a

practical point of view, that the C(1)(X ,R)-Lipschitz classifier algorithm opens

the way for the design of new decision functions in a maximum margin based

classifier. Furthermore, as we showed in Section (7.1.2), using Lipschitz clas-

sifiers is in no way inferior to using conventional machine learning methods

(like SVMs with kernel-functions), hence the methodology proposed here does

not lead to performance loss and can be used without restriction. An expert

is now able to design a maximum margin classifier facilitating his experience

and prior knowledge of the classification problem at hand. There is no rea-

son to choose only from kernel-functions, anymore, neither theoretically nor

practically.



Chapter 8

Conclusion, Open Issues and

Future Work

This thesis focused on the development of new learning methods for clas-

sification satisfying two main objectives:

1. new algorithms have to implement the same generalizing ideas making

the SVM one of the most successful learning methods,

2. new algorithms have to overcome the SVM’s restrictions, that prohibit

their use in applications where a priori knowledge shall be functionally

encoded in the classifier, or where decision functions that are not built

up of Mercer-kernel functions would be more suitable.

Our new learning algorithms satisfy (1.) and (2.) and thus open the way

for a design of new classifiers that go beyond the SVM. Moreover, the back-

bone of our learning algorithms is a justified theoretical concept, namely that

maximum margin separating hyperplanes, which already made SVMs robust

and superior to many empirical learning approaches, on the one hand. On the

other hand, our learning algorithms facilitate new and specific applications

and data domains due to the flexibility of handling a very large class of basis

functions to construct a decision function. Because a designer of a maximum

margin classifier is not restricted to a handful of kernel functions anymore, he

is now free to exploit any experience or prior knowledge about the classifica-

tion problem in a more general learning framework.

After a general survey on classification and methods in Chapter (2), we

discussed in Chapter (3) the theoretical ideas leading to the maximum mar-

gin concept and in particular to the SVM. Our first objective of developing

maximum margin based learning methods is motivated by the theoretical con-

clusion from Chapter (3) that maximum margin hyperplanes may yield a lower

expected error than other separating hyperplanes. This theoretical conclusion

is also practically proven by the use of the SVM in many applications (e.g.

Chapter (2)).

In Chapter (4), the shortcomings of SVMs were presented and examples

were given motivating our second objective to overcome the SVM’s restric-

tions. We presented related work also trying to overcome these drawbacks.
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Chapter (4) was concluded with the insight that the available related work

is of theoretical value but does not provide practical algorithms that reached

the sophisticated goal of generalizing the SVM to larger function classes than

kernel functions, so far. Even though abstract algorithms are proposed, they

are far apart from a practical implementation or they impose new severe re-

strictions on the usable decision function class.

Guided by our objectives, we reviewed in Chapter (5), Section (5.1), a the-

oretical framework, namely the Lipschitz classifier [von Luxburg 2004], that

generalizes the SVM via a feature space transformation called Lipschitz em-

bedding. This framework leads to a maximum margin classifier respectively a

learning algorithm using decision functions which have to be Lipschitz contin-

uous. Therefore, the decision function space of the Lipschitz classifier consti-

tutes many more functions than are accessible to the SVM due to the SVM’s

restrictions imposed by Mercer’s condition.

Unfortunately, the most general version of the Lipschitz classifier is not

easy to implement, because the Lipschitz constant of any decision function of

the entire considered space must be computed somehow.

Nevertheless, we observed in Section (5.2) that the Lipschitz constant can

be derived analytically for any decision function in a still very large deci-

sion function space - the space of at least one-time continuously differentiable

functions defined on a Euclidean domain (5.2.1). Having an implementable

algorithm in mind, and in compliance with the SVM, we further restricted

ourselves to the decision function space of affine-linear combinations of at

least one-time continuously differentiable basis functions (Def. (5.2.1)).

From this starting point, we obtained a constrained minimax formulation

of the Lipschitz classifier (Alg. 5.2.1). Due to the difficult problem structure,

we derived from the minimax problem an equivalent semi-infinite program

(SIP) yielding a completely new and for the first time practical C(1)(X ,R)-

Lipschitz classifier algorithm (Alg. (5.2.3)). The primal C(1)(X ,R)-Lipschitz

classifier algorithm is actually implementable via a discretization of the data

space, but it can break down standard solvers due to the complicated feasible

set. In particular, discretization is impractical in case of high dimensional

data spaces.

In order to circumvent these drawbacks of the primal problem, and to fur-

ther exploit the problem’s inherent structure as much as possible, we derived

a dual SIP and proved a strong duality theorem showing the equality of the

primal and the dual optimal values of the SIP (Theorem (5.2.3)). Finally, we

developed in Chapter (5) the dual version of the C(1)(X ,R)-Lipschitz classifier

algorithm (Alg. (5.2.4)).

We conclude that the benefit from the dual formulation is the transforma-

tion of the very difficult to solve constrained minimax problem into a concave
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max-max problem with a much simpler structured feasible set. The max-max

problem consists of a concave quadratic problem constrained to a convex fea-

sible set, which can be easily solved with standard methods, on the one hand.

And on the other hand, we have to perform a maximization of the optimal

values of the quadratic programming problem over a convex hull of positive

semi-definite matrices. Although sounding still complex, this is a significant

simplification compared to the nonlinear minimax optimization over an arbi-

trary complicated feasible set, which is the data space itself. Moreover, the

dual version of the C(1)(X ,R)-Lipschitz classifier algorithm (Alg. (5.2.3)) goes

without any discretization and it opens the way to iterate a global solution

using well-known standard optimization methods.

In Chapter (6), we concretized the abstract algorithms derived in Chap-

ter (5) towards an implementation in software. For this purpose, we adapted

Mehrotra’s primal-dual-predictor-corrector algorithm (Alg. 6.1.1) to solve the

involved convex constrained quadratic programming problem. Further, we

proposed a simulated annealing based search heuristics (Alg. 6.2.2) for find-

ing candidate matrices used to construct the convex hull in the second stage of

the optimization. In order to find the optimal convex combination of two ma-

trices of the convex hull, we developed a gradient solver (Alg. 6.2.1) based on

a nonmonotone spectral projected gradient method proposed by [Birgin 2000].

To apply the projected gradient method to our particular problem, we proved

the general Theorem (6.2.1) about the right-directional derivative of the opti-

mal values of the constrained quadratic problem with respect to the parameter

of the considered convex combination. It turned out, if using regularization

or an algebraic reparameterization of the involved linear equation system of

the QP-problem’s feasible set then finding the optimal convex combination

between two matrices is itself a convex optimization problem with an unique

global solution. The global solution is easily found by Algorithm (6.2.1) using

Theorem (6.2.1).

We concluded Chapter (6) with two new maximum margin based learning

methods that overcome the shortcomings of SVMs (Chapter (4)), namely the

limitation to kernel based decision functions: If using regularization, we de-

rived the regularized C(1)(X ,R)-Lipschitz classifier algorithm (Alg. 6.3.1) and

in case of the algebraic reparameterization we obtained the non-regularized

C(1)(X ,R)-Lipschitz classifier algorithm (Alg. 6.3.2).

In the last Chapter (7), we performed experiments with our new learn-

ing algorithms to validate whether our main objectives are satisfied not just

from a theoretical but also from a practical point of view. For this purpose

we implemented all components of the non-/regularized C(1)(X ,R)-Lipschitz

classifier algorithm developed in Chapter (6) in the MATLABR© programming
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environment1. Then we investigated two different scenarios:

The first experiment is a comparison between the C(1)(X ,R)-Lipschitz clas-

sifier algorithm and the SVM algorithm on three different datasets, namely a

2d-artificial dataset, the UCI heart dataset and the UCI breast-cancer dataset,

in a standard situation using positive definite basis functions Φn. To fairly

compare both learning machines, we used in both algorithms the popular

RBF-kernel, i.e. Φn(x) = exp (−γ‖x− xn‖2
2), as basis function for learn-

ing a decision function. Our experiment showed that the regularized RBF-

C(1)(X ,R)-Lipschitz classifier algorithms performs equal or slightly better than

the RBF-SVM (Table (7.6)). Moreover, the classification results obtained by

the RBF-C(1)(X ,R)-Lipschitz classifier have always lower variance with re-

spect to the different 2d-artificial datasets. This indicates the robustness of

the RBF-C(1)(X ,R)-Lipschitz classifier against varying datasets is superior to

the RBF-SVM’s robustness. On the other hand, the non-regularized RBF-

C(1)(X ,R)-Lipschitz classifier algorithms performs worse than its regularized

counterpart on the 2d-artificial dataset and the UCI breast-cancer set. But

the classification results were equal on the UCI heart dataset. We argued,

that a reason for the worse accuracies is the sensitivity of the non-regularized

RBF-C(1)(X ,R)-Lipschitz classifier algorithms with respect to the algorithmic

parameters. This made an optimal parameter tuning very difficult and led

to suboptimal settings. However, the classification performance of the non-

regularized C(1)(X ,R)-Lipschitz classifier algorithm can be very good, if other

basis functions than RBF-kernels are used resulting in a lower sensitivity to

algorithmic parameter changes.

We conclude that it makes no great difference if using the regularized

C(1)(X ,R)-Lipschitz classifier or the SVM in standard situations with respect

to the classification accuracy. Regarding the current implementations of the

C(1)(X ,R)-Lipschitz classifier algorithm, we suggest to use the regularized al-

gorithm instead of the non-regularized version due to its lower computational

costs and a better manageable adjustment of algorithmic parameters. Never-

theless, the non-regularized C(1)(X ,R)-Lipschitz classifier algorithm will be a

good choice if a classification problem requires very large perturbations.

In order to motivate the benefit of the C(1)(X ,R)-Lipschitz classifier com-

pared to the SVM classifier, we examined in our second experiment the situa-

tion the SVM indeed fails. For this purpose, we employed the indefinite hyper-

bolic tangent function, i.e. tanh (a〈x,y〉+ r), as basis functions in both algo-

rithms and computed 5-fold cross-validation errors on the UCI heart dataset

for a large set of parameter configurations (a, r). We chose this scenario as

1The C(1)(X ,R)-Lipschitz classifier’s MATLAB-code can be sourced from the author for

academic use only.
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archetype for non-standard situations, because the tanh-function is a popular

function due to its relation to artificial neural networks (Chapter (2)), and

because recently [Lin 2003] has studied its use in SVMs extensively on the

UCI heart dataset too. Our results for the tanh-SVM classifier depicted in

the Figures (7.24), (7.26), (7.27) and Table (7.10) agree completely with the

results reported in [Lin 2003].

We conclude the tanh-SVM fails with high cross-validation errors greater

than 70% for a large range of parameters, namely for a < 0, r > 0 and

a < 0, r < 0.

In contrast, Figures (7.25), (7.28), (7.29) and Table (7.10) show that the

tanh-C(1)(X ,R)-Lipschitz classifier algorithm does not suffer from the indefi-

niteness of the hyperbolic tangent function for the entire considered parameter

range. Moreover, the averaged cross-validation error for all checked param-

eter configurations (a, r, C), including the trade-off parameter C, reads as

24.86 ± 10.61% (a < 0, r > 0) and 24.30 ± 10.30% (a < 0, r < 0) using the

tanh-C(1)(X ,R)-Lipschitz classifier, respectively 75.61±12.66% (a < 0, r > 0)

and 75.78± 12.79% (a < 0, r < 0) using the tanh-SVM.

We conclude the C(1)(X ,R)-Lipschitz classifier algorithm finds a maximum

margin separating hyperplane induced by indefinite basis functions Φn for

which the SVM fails to find an appropriate solution. Therefore, the C(1)(X ,R)-

Lipschitz classifier algorithm is usable for a larger range of applications than

the SVM. This includes applications for which prior knowledge has to be func-

tionally encoded or where the designer of the classifier needs more flexibility

in choosing from appropriate decision functions.

The benefit of the C(1)(X ,R)-Lipschitz classifier algorithms comes not

without extra costs. We presented in this thesis a number of fruitful ways

to exploit the structure of the difficult to solve optimization problem such

that a usable implementation is now actually available - however, our new

maximum margin algorithms are computational expensive compared to the

SVM for example. Currently, our implementations of the algorithms are in

a similar position the SVM was in the late 1980s when convex optimization,

and in particular interior point methods, were in their infancy. At that time,

SVMs were generally considered to be inapplicable to real world problems due

to their computational effort. After years of research, matters have changed,

and the SVM is one of the most sophisticated and successful machine learning

methods, so far.

In the present thesis, we proposed a foundation for a new type of learn-

ing machine and its implementation that inherits the theoretical ideas of the

SVM but without suffering from the restrictions imposed by Mercer’s condi-

tion. We opened the way to the design of new classifiers suitable to particular

applications and data domains. Moreover, we also opened the way for inter-
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esting questions for future research and development of the algorithms. In

particular, our prearrangement enables to examine possibilities of improving

independently each component of the algorithms on its own. Several of the

evolving lines of research will be addressed now.

For example, a better characterization of the image of the matrix valued

mapping K : X → Sn0+ into the convex cone of symmetric positive semi-

definite n × n-matrices, denoted Sn0+, would give probably further usable in-

sights. Such a structural statement could guide the stochastic search for a

candidate matrix more efficiently or it might lead to a deterministic opti-

mization approach. Moreover, other search heuristics like for example genetic

algorithms and evolution strategies could be investigated instead of the pro-

posed simulated annealing approach.

Another question regards the possibility to derive a representer theorem.

In this case, one could immediately derive a deterministic algorithm. It is

known, that for the general Lipschitz classifier algorithm using the entire space

of Lipschitz functions this is not possible in terms of the individual training

data [von Luxburg 2004]. But here, we restricted our attention to the space of

finite linear combinations of at least one-time continuously differentiable basis

functions. Because the space of at least one-time continuously differentiable

real functions is dense in the space of all continuous real functions, it could

lead to a representer theorem in terms of the training data even for an infinite

linear combination of basis functions. This is also likely, because recently

in [Minh 2004] a Representer Theorem has been proved for a subalgebra of

Lipschitz functions that is dense in the space of Lipschitz functions (Section

(4.2.3)).

A great impact on the overall performance, particularly for large scale

problems, would be an improvement of the QP-solver. In case of the SVM

it is possible to use a decomposition strategy for solving the constrained QP-

problem very fast by much smaller quadratic sub-problems. Fortunately, in

case of the regularized C(1)(X ,R)-Lipschitz classifier algorithm we showed that

it is possible to reformulate the QP-problem equivalently such that the feasi-

ble set is identical with the feasible set of the SVM problem. Thus, one can

apply a similar decomposition strategy as used for the SVM. Unfortunately,

in case of the non-regularized C(1)(X ,R)-Lipschitz classifier algorithm the fea-

sible set consists of an additional linear equation system making an efficient

decomposition strategy difficult at first.

So far, we did not use any termination criterion measuring the quality of

the iterates toward a solution. Such a criterion is in principle derivable from

the KKT optimality conditions yielding an estimate of the gap between the

dual optimal value and the primal optimal value that must vanish at a optimal

point (App. B.3.1). We suggest such a criterion for a future implementation
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of the proposed algorithms.

Additionally, it would be advantageous to force a more sparse solution,

because this would reduce the computational effort of evaluating the decision

function. In the regularized C(1)(X ,R)-Lipschitz classifier algorithm this could

be reached by using another regularization enforcing sparsity. In the non-

regularized version one could try to optimize the degrees of freedom of the

solution associated to the null space of the involved linear equation system.





Appendix A

Mathematical Background

A.1 Important Inequalities

A.1.1 Hoeffding’s Inequality

Let be x1, . . . , xk independent observations of a random variable X ∈ [a, b]

and let be Ek := 1
k

∑k
i=1 xk its empirical mean. Then, for any ε > 0,

P (|E(X)− Ek| ≥ ε) ≤ exp

(
− 2kε2

(b− a)2

)
(A.1)

is called Hoeffding’s inequality [Hoeffding 1963]. It means, that the empirical

mean Ek of a random variable X converges to its actual expectation E(X)

with exponential rate.

A.1.2 Jensen’s Inequality

Let be f a convex function and λ1, . . . , λk ≥ 0 with λ1 + · · ·+ λk = 1, then

f

(
k∑
i=1

λixi

)
≤

k∑
i=1

λif (xi) (A.2)

is called Jensen’s inequality [Jensen 1906]. The inequality extends to infinite

sums, integrals and expectation values.

A.2 Mathematical Spaces

A.2.1 (Semi-)Metric Space

Definition A.2.1 ((semi-)metric space). A (semi-)metric space is a pair

(X , d) with nonempty set X and a function d : X × X → R, called (semi-

)metric, with the properties for all x,y, z ∈ X :

1. d(x,y) ≥ 0 (positivity)

2. d(x,y) = d(y,x) (symmetry)

3. d(x,y) ≤ d(x, z) + d(z,y) (triangle inequality)

4. in case of a metric space, it must also hold d(x,y) = 0⇔ x = y.
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A.2.2 Banach Space

Definition A.2.2 (Banach space). A Banach space B is a vector space en-

dowed with a function ‖ · ‖ : B → R such that every Cauchy sequence in B
converges in the induced metric d(x,y) := ‖x − y‖ to an element of B (i.e.

the space is completed). For all x,y ∈ B, α ∈ R, the function ‖ · ‖ has the

properties:

1. ‖x‖ ≥ 0 with ‖x‖ = 0⇔ x = 0

2. ‖α · x‖ = |α| · ‖x‖
3. ‖x+ y‖ ≤ ‖x|+ ‖y‖.

A.2.3 Hilbert Space

Definition A.2.3 (Hilbert space). A Hilbert space H is a vector space en-

dowed with a bilinear function 〈·, ·〉 : H × H → R (inner product) such

that every Cauchy sequence in H converges in the induced metric d(x,y) :=√
〈x− y,x− y〉 to an element of H (i.e. the space is completed). For all

x,y, z ∈ H, α ∈ R, the function 〈·, ·〉 has the properties:

1. 〈x,x〉 ≥ 0 with 〈x,x〉 = 0⇔ x = 0

2. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉
3. 〈α · x,y〉 = α · 〈x,y〉

Note, from 1.)-4.) follows the Cauchy-Schwarz’s inequality:

|〈x,y〉| ≤
√
〈x,x〉

√
〈y,y〉.

A vector space endowed with an inner product which is not completed is called

Pre-Hilbert space.

A.3 Convex Optimization Theory

A.3.1 Convex Sets

Definition A.3.1 (Convex Sets). A set X is called convex, if for any x1,x2 ∈
X and 0 ≤ λ ≤ 1 it holds

λx1 + (1− λ)x2 ∈ X . (A.3)

See Figure (A.1).
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A.3.2 Convex (Concave) Functions

Definition A.3.2 (Convex (Concave) Functions). A function f : X → R is

called convex, if for any x1,x2 ∈ X and 0 ≤ λ ≤ 1 it holds

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2). (A.4)

See Figure (A.2). A functions f is concave, if −f is convex.

Figure A.1: A non-convex and a convex set.

Figure A.2: Graph of a convex function.

A.3.3 Karush-Kuhn-Tucker Optimality Conditions

Let be F : RL → R, Gj : RL → R ∀1 ≤ j ≤ k convex functions. Consider the

convex (primal) problem

inf {F (w) : w ∈ S} (A.5)

with convex feasible set

S :=
{
w ∈ RL : Gj(w) ≤ 0 ∀1 ≤ j ≤ k

}
. (A.6)
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Further, the function L : RL × Rk → R with

L(w,µ) := F (w) +
k∑
j=1

µjGj(w) (A.7)

is called Lagrange function with Lagrange multipliers µj ≥ 0 ∀1 ≤ j ≤ k.

Note, without loss of generality, the following statements about problems

of the form (A.5) carry over to feasible sets S described by equality constraints

too.

Theorem A.3.1 (Kuhn-Tucker Saddle Point Condition [Kuhn 1951]). Con-

sider a optimization problem of the form (A.5) with Lagrange function (A.7).

If a pair (w∗,µ∗) ∈ RL×Rk with µ∗ ≥ 0 exists, such that for all w ∈ RL and

µ ∈ [0,∞)k holds

L(w∗,µ) ≤ L(w∗,µ∗) ≤ L(w,µ∗), (A.8)

i.e. (w∗,µ∗) is a saddle point, then w∗ is a feasible solution of (A.5) with

F (w∗) = L(w∗,µ∗).

Proof. For a proof see e.g. [Mangasarian 1969].

Now, suppose the feasible set S satisfies

Definition A.3.3 (Slater’s Constraint Qualification). A convex optimization

problem (A.5) satisfies the Slater’s constraint qualification, if it exists a vector

ŵ ∈ RL such that

Gj(ŵ) < 0 ∀1 ≤ j ≤ k. (A.9)

Then, the following theorems well-known from optimization theory hold:

Theorem A.3.2 (Karush-Kuhn-Tucker (KKT) conditions [Karush 1939],

[Kuhn 1951]). Let be w∗ ∈ S a minimum point of the convex optimization

problem (A.5) with feasible set S satisfying the Slater’s constraint qualifica-

tion. Then it exist Lagrange multipliers µ∗ ∈ Rk such that the tuple (w∗,µ∗)

satisfies the KKT-conditions

∇wL(w∗,µ∗) = 0 (A.10)

∇µL(w∗,µ∗) ≤ 0 (A.11)

µ∗jGj(w
∗) = 0 ∀1 ≤ j ≤ k (A.12)

µ∗j ≥ 0 ∀1 ≤ j ≤ k. (A.13)

Proof. For a proof see e.g. [Nocedal 1999], [Mangasarian 1969].
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Theorem A.3.3. Let be (w∗,µ∗) a KKT-point satisfying the KKT-conditions

(A.3.2) of the convex optimization problem (A.5). Then w∗ ∈ S is a minimum

point of (A.5).

Proof. For a proof see e.g. [Nocedal 1999], [Mangasarian 1969].

Together, Theorem (A.3.2) and Theorem (A.3.3) show that the KKT-

conditions are necessary and sufficient for optimality of convex optimization

problems. Clearly, the KKT-conditions extend to linear constraints too, be-

cause linear functions are convex as well as concave.

A.3.4 Lagrange Duality

Definition A.3.4 (Dual of a Lagrange function). The function DLS : Rk → R
with

DLS(µ) := inf
w∈RL

L(w,µ) (A.14)

is called the dual of the Lagrange function (A.7).

Theorem A.3.4. The dual function DLS (A.3.4) is a concave function on

the convex domain dom(DLS) :=
{
µ ∈ Rk : µ ≥ 0,DLS(µ) > −∞

}
.

Proof. For all w ∈ RL, µ1,µ2 ∈ dom(DLS) and any α ∈ [0, 1] it holds

L(w, αµ1 + (1− α)µ2) = F (w) +
k∑
j=1

(
αµ1

j + (1− α)µ2
j

)
Gj(w)

= α

(
F (w) +

k∑
j=1

µ1
jGj(w)

)

+(1− α)

(
F (w) +

k∑
j=1

µ2
jGj(w)

)
= αL(w,µ1) + (1− α)L(w,µ2). (A.15)

Taking the infimum, one gets

inf
w∈RL

L(w, αµ1 + (1− α)µ2) ≥ α inf
w∈RL

L(w,µ1) + (1− α) inf
w∈RL

L(w,µ2).

Thus, we have

DLS(αµ1 + (1− α)µ2) ≥ αDLS(µ1) + (1− α)DLS(µ2)

that means concavity ofDLS . Further, this implies due to µ1,µ2 ∈ dom(DLS)

that αµ1 + (1− α)µ2 ∈ dom(DLS). Thus, dom(DLS) is a convex set.



176 Appendix A. Mathematical Background

Note, Theorem (A.3.4) is also true, if problem (A.5) is not convex.

A.3.4.1 Weak Duality

Definition A.3.5 (Dual problem). The problem

sup(D) := sup
µ≥0
DLS(µ) (A.16)

with µ ∈ Rk is called the dual problem associated to the primal problem

inf(P) := inf {F (w) : w ∈ S} (A.17)

with feasible set S :=
{
w ∈ RL : Gj(w) ≤ 0 ∀1 ≤ j ≤ k

}
.

Note, due to Theorem (A.3.4) a maximizer µ∗ of the dual problem sup(D)

is always a global one.

Theorem A.3.5 (Weak Duality). Let be w ∈ S and µ ∈ Rk,µ ≥ 0, then it

always holds

sup(D) ≤ inf(P). (A.18)

Proof. Because w and µ are feasible, we have

DLS(µ) = inf
w∈RL

L(w,µ)

≤ L(w,µ) = F (w) +
k∑
j=1

µjGj(w)

≤ F (w)

Obviously, the question arises under which circumstances equality holds

in the inequality of Theorem (A.3.5). That means strong duality holds.

A.3.4.2 Strong Duality

Due to Theorem (A.3.5), weak duality holds always. This is not true for strong

duality. But in case of a convex optimization problem (A.5), it is well-known

from optimization theory that indeed inf(P) = sup(D) is attainable:

Theorem A.3.6 (Strong Duality). Consider the convex optimization problem

(A.5). If the feasible set S satisfies Slater’s constraint qualification, then the

dual problem is solvable and it holds

inf(P) = sup(D). (A.19)

Proof. For a proof see e.g. [Nocedal 1999], [Mangasarian 1969].
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The duality gap εdual(w,µ) := F (w)−DLS(µ) for a primal feasible point

w ∈ S and a dual feasible point µ ∈ Rk,µ ≥ 0 is given by

Theorem A.3.7 (Duality Gap). Suppose a convex optimization problem (A.5)

with solution w∗ ∈ S. Then for any primal and dual feasible pair (ŵ, µ̂) ∈
S × [0,∞)k satisfying ∇wL(ŵ, µ̂) = 0 it holds

εdual(ŵ, µ̂) = −
k∑
j=1

µ̂jGj(ŵ) ≥ F (ŵ)− F (w∗) ≥ 0. (A.20)

In particular, the duality gap attains zero at (w∗,µ∗) if strong duality holds.

Proof. Due to theorem (A.3.1) for a saddle point (w∗,µ∗) we have for any

w ∈ S,µ ≥ 0,

F (w) ≥ F (w∗) = L(w∗,µ∗) ≥ L(w∗,µ) ≥ inf
w∈RL

L(w,µ) = DLS(µ).

(A.21)

Because L(·,µ) is convex for all µ ≥ 0, it follows that any ŵ ∈ S is a mini-

mizer if ∇wL(ŵ, µ̂) = 0 for some µ̂ ≥ 0 is satisfied, i.e. it holds L(ŵ, µ̂) =

F (ŵ)+
∑k

j=1 µ̂jGj(ŵ) = infw∈RL L(w, µ̂). Together with inequality (A.21) we

get 0 ≤ F (ŵ)− F (w∗) ≤ −
∑k

j=1 µ̂jGj(ŵ) = F (ŵ)−DLS(µ̂) = εdual(ŵ, µ̂).

In turn, this implies that the gap vanishes if and only if strong duality holds

at ŵ = w∗ and µ̂ = µ∗.
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Appendix

B.1 Addendum to Section (6.1)

B.1.1 Equivalence of the Primal and Dual Feasible Op-

timal Points

Consider the Lagrange function (6.7) and the associated KKT-system (6.8)-

(6.16), then it follows

LP (x,y, s,κ,λ,µ,ν, ξ) =
1

2
yTQTy + dTx+ κTx− κTub + κTs+

λTAx+ λTb+ µTQy + µTBx− νTx− ξTs

=
1

2
yTQTy + xT

d+ κ+ ATλ+ BTµ− ν︸ ︷︷ ︸
= 0 (cf. 6.8)

−
κTub︸ ︷︷ ︸

= ξTub s. (cf. 6.10)

+ κTs︸︷︷︸
= ξT s (cf. 6.10)

+λTb+

µTQy︸ ︷︷ ︸
= −yTQy (cf. 6.9)

−ξTs (B.1)

and the dual problem reads as

min
y,λ,ν,ξ

1

2
yTQy − λTb+ ξTub (B.2)

u.d.N. ATλ−BTy + ξ − ν + d = 0

ν ≥ 0, ξ ≥ 0.

Defining the associated dual Lagrange function

LD(y,λ,ν, ξ,α,β,γ) :=
1

2
yTQy − λTb+ ξTub+

αT
(
ATλ−BTy + ξ − ν + d

)
− βTν − γTξ (B.3)
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with Lagrange multipliers (α,β,γ) ∈ Rn × Rn × Rn, the dual KKT-system

read as

∇yLD(y,λ,ν, ξ,α,β,γ) = Qy −Bα = 0 (B.4)

∇λLD(y,λ,ν, ξ,α,β,γ) = −b+ Aα = 0 (B.5)

∇ξLD(y,λ,ν, ξ,α,β,γ) = ub +α− γ = 0 (B.6)

ATλ−BTy + ξ − ν + d = 0 (B.7)

ν ≥ 0, ξ ≥ 0 (B.8)

βTν = 0, γTξ = 0 (B.9)

β ≥ 0, γ ≥ 0. (B.10)

Setting β = x, γ = s, α = −x one easily verifies that the dual KKT-system

is identical to the primal KKT-system. Thus, a primal feasible optimal point

is also a dual feasible optimal point. Moreover, in virtue of the strong duality

theorem (App. A.3.4.2) the optimal values coincide too.

B.2 Addendum to Section (6.2)

B.2.1 Proof of Lemma (6.2.1)

Proof. Let be µ1,µ2 ∈ T and ε > 0. Then it exist α1,α2 ∈ S such that

G(αi,µi) ≤ g(µi) + ε for i = 1, 2. Let be λ ∈ [0, 1], it follows by Jensen’s

inequality (App. (A.1.2)) that

g(λµ1 + (1− λ)µ2) = inf {G(α, λµ1 + (1− λ)µ2) : α ∈ S} (B.11)

≤ G(λα1 + (1− λ)α2, λµ1 + (1− λ)µ2) (B.12)

≤ λG(α1,µ1) + (1− λ)G(α2,µ2) (B.13)

≤ λg(µ1) + (1− λ)g(µ2) + ε ∀ε > 0. (B.14)

Thus, it follows for ε→ 0+

g(λµ1 + (1− λ)µ2) ≤ λg(µ1) + (1− λ)g(µ2) ∀µ1,µ2 ∈ T . (B.15)

B.2.2 Proof of Lemma (6.2.2)

Proof. Let be 0 < λ1 < λ2 with µ+λ2d ∈ T (implying µ+λ1d ∈ T ). Because

g is convex, it holds

g(µ+ λ1d) = g

(
λ1

λ2

(µ+ λ2d) +

(
1− λ1

λ2

)
µ

)
(B.16)

≤ λ1

λ2

g(µ+ λ2d) +

(
1− λ1

λ2

)
g(µ). (B.17)
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This inequality implies

g(µ+ λ1d)− g(µ)

λ1

≤ g(µ+ λ2d)− g(µ)

λ2

. (B.18)

Now, let be λ, τ > 0 with µ+ λd ∈ T and µ− τd ∈ T . Again, convexity

of g implies

g(µ) = g

(
λ

λ+ τ
(µ− τd) +

τ

λ+ τ
(µ+ λd)

)
(B.19)

≤ λ

λ+ τ
g(µ− τd) +

τ

λ+ τ
g(µ+ λd), (B.20)

thus we have

q(λ) :=
g(µ+ λd)− g(µ)

λ
≥ g(µ)− g(µ− τd)

τ
. (B.21)

This means for λ→ 0+ the differential quotient q(λ) is bounded from below by

the right-hand side of (B.21). Additionally, inequality (B.18) implies q(λ1) ≤
q(λ2), λ1 < λ2 which means that q(λ) is monotonically decreasing for λ→ 0+.

Together, this implies the existence of the directional derivative g′(µ;d) with

the property

g′(µ;d) := lim
λ→0+

q(λ) = inf
λ>0

q(λ). (B.22)

B.2.3 Proof of Lemma (6.2.3)

Proof. Due to the continuity of G, it follows G is uniformly continuous for

any µ0 ∈ T on a compact set S × Ūε(µ0)(Heine’s Theorem), ε > 0, with

a compact ε-neighborhood Ūε(µ0) of µ0. That means, for any sequence

(µn)n∈N ∈ Ūε(µ0)
n→∞−→ µ0 it exists for all ε > 0 an index n0 ∈ N such

that

∀n > n0, α ∈ S : |G(α,µn)−G(α,µ0)| < ε. (B.23)

Thus, it holds

∀n > n0, α ∈ S : −ε+G(α,µ0) < G(α,µn) < G(α,µ0) + ε (B.24)

implying by definition of g(µ) that

∀n > n0 : −ε+ g(µ0) ≤ g(µn) ≤ g(µ0) + ε. (B.25)

This is equivalent with

∀n > n0 : |g(µn)− g(µ0)| ≤ ε (B.26)

that means continuity of g for all µ ∈ T .
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B.3 Addendum to Section (6.3.1) and Section

(6.3.2)

B.3.1 Some Special Implementation Notes

First, the search for a new candidate matrix K∗ introduces an expensive

quadratic problem qr(Jµ0(x)) in each trial step. Hence, the search is more

efficient, if a lower bound on the optimal value qr(Jµ0(x)) is available and

inexpensive to compute. Unfortunately, inequality (6.116) is contradicted in

general for the non-regularized C(1)(X ,R)-Lipschitz classifier algorithm. The

reason is that α∗(t) ∈ S(V
K(t)

r+1 ) might not be in the feasible set S(VK
r+1) for

a matrix K ∈ conv(K). However, one could project the point α∗(t) onto the

feasible set S(VK
r+1). This requires a solution of a different quadratic pro-

gramming problem, which might be easier to solve than problem qr(Jµ0(x)).

Alternatively, one could guide the search if projecting α∗(t) to a point β∗ ∈
S(VK

r+1) such that ‖α∗ − β∗‖ ≤ ε holds for sufficiently small ε > 0, then

one could reject a possible candidate matrix K if the associated inequality

Qr(β
∗, d∗r,J) ≤ Qr(α

∗, d∗(t),K(t)) is satisfied.

Second, if the rank r of the matrix Kµ0(x) has reached r = M , then no fur-

ther eigenvalue decomposition is necessary in subsequent iterations. In this

case, one could terminate the non-regularized C(1)(X ,R)-Lipschitz classifier

algorithm and it would be wise to continue with the regularized algorithm us-

ing a very small ε > 0 for the remaining iterations. A further issue concerning

the rank of Kµ0(x) is that r is bounded from above due to Lemma (6.3.1).

Thus, a truncated eigenvalue decomposition can be used with same precision

than a full decomposition.

Third, instead of running the C(1)(X ,R)-Lipschitz classifier algorithms for

a predefined maximum number of steps, one can (additionally) use a termi-

nation criterion obtained from Theorem (A.3.7) measuring the gap between

the primal and dual optimal value: Let be x(t) ∈ X with candidate matrix

K∗ = K(x(t)) found in iteration t. Further, let be λ(t) ∈ R with
∑

t λ(t) = 1

the associated optimal weights of the matrix K =
∑

t λ(t)K(x(t)) ∈ conv(K).

From the constraints of the feasible set of the primal SIP (5.78) it follows the

duality gap

εdual(z0, c, ξ, b,α,β,λ) = αT (YGc+ yb− 1N + ξ) + βTξ

−
∑
t

λ(t)

(
1

2
cTK(x(t))c− z0

)
. (B.27)
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The Lagrange function of the primal SIP (5.78) reads as

L(z0, c, ξ, b,α,β,λ) = z0 + C1TNξ +αT (−YGc− yb+ 1N − ξ) + βT (−ξ)

+
∑
t

λ(t)

(
1

2
cTK(x(t))c− z0

)
(B.28)

The dual variables (α,β,λ) obtained in each iteration of the C(1)(X ,R)-

Lipschitz classifier algorithms determine (c, b) such that

∇(c,b)L(z0, c, ξ, b,α,β,λ) = 0

is satisfied. Therefore, we can bound the duality gap (B.27) provided by

Theorem (A.3.7) if we choose bounds on feasible values of ξ and z0 satisfying

∇(ξ,z0)L(z0, c, ξ, b,α,β,λ) = 0 at the same time.

Rewriting the duality gap (B.27) and using

∇ξL(z0, c, ξ, b,α,β,λ) = C1TN −α− β = 0 (B.29)

∇λL(z0, c, ξ, b,α,β,λ) = 1−
∑
t

λ(t) = 0 (B.30)

we get

εdual(z0, c, ξ, b,α,β,λ) = αT (YGc+ yb− 1N) + (β +α)Tξ

−
∑
t

λ(t)

(
1

2
cTK(x(t))c

)
+

(∑
t

λ(t)

)
z0

= αT (YGc+ yb− 1N) + C1TNξ

−
∑
t

λ(t)

(
1

2
cTK(x(t))c

)
+ z0

≥ αT (YGc+ yb− 1N) + C1TN ξ̃

−
∑
t

λ(t)

(
1

2
cTK(x(t))c

)
+ z̃0

≥ 0 (B.31)

with

ξ̃i = min {ξi ≥ 0 : 0 ≥ −yif(xi) + 1− ξ} = max {0, 1− yif(xi)} (B.32)

and

z̃0 = min

{
z0 : 0 ≥ 1

2
cTK(x(t))c− z0∀t

}
= max

t

{
1

2
cTK(x(t))c

}
. (B.33)

Note, all candidate matrices K(x(t)) found by the algorithm up to the consid-

ered iteration have to be available in order to compute z̃0.
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demuth. Classification of speech recognition hypotheses with Support

Vector Machines. In Proceedings of the Speech Processing Workshop

in connection with DAGM, pages pp. 65–72. University of Magdeburg,

ISBN 3-929757-59-1, 2003.

[Stuhlsatz 2006] A. Stuhlsatz, H.-G. Meier, M. Katz, S. E. Krüger and
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